
SITE CHARACTERIZATION INVESTIGATION

Howard Street Site

(also known as Friendship Foundry Site; 902015)

Friendship, New York Site No. 902017

August 2008

Prepared by:

Division of Environmental Remediation New York State Department of Environmental Conservation Prepared by:

Chad Staniszewski, P.E.

Division of Environmental Remediation, Region 9

Project Manager

Reviewed by:

Martin L. Doster, P.E.

Division of Environmental Remediation, Region 9 Regional Hazardous Waste Remediation Engineer

TABLE OF CONTENTS

1.0	Intro	oduction	1						
2.0	Site	Description	2						
3.0	Site	History	3						
4.0	Prio	r Environmental Work/Investigations	4						
5.0	Site	Characterization Objectives	7						
6.0	Site	Investigation Work	8						
	6.1	Empire Geoservices Report	8						
	6.2	Site Survey	9						
	6.3	Soil/Fill Investigation Sampling	9						
	6.4	Monitoring Well Installation and Sampling	10						
7.0	Resu	ults	12						
	7.1	Extent of Fill Material	12						
	7.2	Soil Analytical Results	13						
	7.3	Groundwater Flow Direction and Analytical Results	14						
8.0	Cond	clusions	17						
9.0	Site	Site Redevelopment							

List of Figures

Figure 1: Site Location Map Figure 2: Site Aerial Map

Figure 3: Monitoring Well and Groundwater Flow Map - Factory Site Figure 4: Monitoring Well and Groundwater Flow Map - Disposal Site

List of Tables

Table 1: Sampling Summary - Factory Site Table 2: Sampling Summary - Disposal Site

Table 3: Groundwater Elevation Data

Table 4: Summary of Restricted Commercial Exceedances - Factory Site Table 5: Summary of Restricted Commercial Exceedances - Disposal Site

Appendices

Appendix A: (electronic copies on disc)

- 1. Remedial Investigation Report Friendship Foundry Site Allegany County, New York Site No. 9-02-015 February 1996
- Empire GeoServices Report, Inc. Subsurface Investigation Former Friendship Foundry Sites (aka Howard Street Site) Town of Friendship, New York February 15, 2008

Appendix B: Site Survey Drawings

Appendix C: Groundwater Analytical Data (Raw Data)

1.0 INTRODUCTION

The Howard Street Site (902017) includes property associated with an abandoned cast iron foundry (Friendship Foundry) located in the Village of Friendship, Allegany County. The site encompasses two separate areas including the majority of the main foundry plant site (hereafter referred to as the 'Factory Site') and a historic fill area used for the disposal of foundry waste (hereafter referred to as the 'Disposal Site').

The New York State Department of Environmental Conservation (hereafter referred to as the 'NYSDEC') is the recipient of an United Stated Environmental Protection Agency Targeted Site Assessment Grant. The grant provides funding for environmental investigation of brownfield sites with the goal of helping to return the sites to productive use. At the request of the Allegany County IDA, grant funds were utilized to complete a site characterization investigation at the Howard Street Site. The investigation assessed environmental impacts on the main foundry site and the associated foundry waste disposal site. This report details the site characterization investigation.

On May 21, 2007, the Allegany County Court issued an 'Order to Stay Foreclosure Pending Environmental Investigation' to Allegany County via Temporary Incidence of Ownership. The order allowed the County to temporarily foreclose on the property due to delinquent property taxes and allowed the NYSDEC to complete the current site characterization investigation utilizing EPA grant funds. Pending the results of the site characterization assessment, the County can elect to continue foreclosure proceedings or return the property to the current owner.

2.0 SITE DESCRIPTION

The Howard Street Site encompasses two areas including the main foundry plant site (Factory Site) located at 10 Howard Street and an associated foundry waste disposal site (Disposal Site) located along Elmwood Avenue. These two areas associated with the Howard Street Site are located in the Village of Friendship, Allegany County. The Village of Friendship is small community located just south of interstate I-86. The area surrounding the village is rural with a hilly topography. A site location map is provided as Figure 1. An aerial map of the Howard Street Site is provided as Figure 2.

Factory Site

The area comprising the Factory Site includes the majority of the main foundry plant. The factory Site is made up of three tax parcels (Tax Map No.s 182.001-2-3, 182.001-2-4, 182.001-2-5) totaling approximately 3.2 acres. The original foundry plant footprint included an additional 0.5 acre parcel on the west end of the site, however, th parcel is currently under private ownership and was not included in this investigation.

The Factory Site is bounded on the north by Sawyer Avenue, on the south by railroad tracks, on the east by Depot Street and on the west by a privately owned vacant lot. Howard Street traverses the site. The Factory Site is currently vacant property, which slopes gently to the south toward the railroad tracks. Brush and large trees are sporadically spaced across the site. Soil fill piles (i.e. land clearing debris, soil, stone, concrete) are located along the southern portion of the site, west of Howard Street. The nearest residence are located immediately to the north of the site (across Sawyer Avenue). Water service is provided by the Friendship Town Water District in the vicinity of the Factory Site.

Disposal Site

The area comprising the Disposal Site is located approximately 0.25 miles west of the Factory Site. The Disposal Site includes land used for the dumping of foundry wastes including foundry sands, resins and slag. The disposal site encompasses one tax parcel (Tax Map No. 182.11-1-14) totaling approximately 2.89 acres. The disposal site is bounded to the east by Elmwood Avenue, to the north by railroad tracks, to the west by the North Branch of Van Campen Creek and to the south by residential property. The majority of fill was disposed on the north half of the property as identified by an abrupt change in grade transecting the property east to west. The northern half of the property (i.e. the fill area) is covered by trees and brush. The southern half of the property is covered by a manicured lawn, apparently maintained by the adjoining residential property owners. Deteriorating metal drums are visible protruding from the south and west banks of the fill area. Water service is provided by the Friendship Town Water District in the vicinity of the Disposal Site.

3.0 SITE HISTORY

Factory Site

The foundry began operations in the 1800's under the management of Drake Manufacturing Company. Drake Manufacturing sold the foundry to Macler Industries in 1955. The facility was closed in 1987 when Macler Industries filed for bankruptcy. Later in 1987 the plant reopened as Friendship Foundry under the ownership of Mr. And Mrs. Henry Mayo.

In May 1988, Friendship Foundry entered into Consent Order No. 87-183 with the New York State Department of Environmental Conservation (NYSDEC) to address air pollution violations. In August 1988, a NYSDEC inspection of the foundry noted several violations including piles of particulate from baghouse dust filters around the foundry yard, open containers of baghouse dust particulate, foundry sand being dumped outdoors and several air pollution concerns. A status report issued by the NYSDEC's Division of Air Resources dated September 16, 1988 noted that Friendship Foundry was now properly storing foundry sand, however, it also noted contaminated soil that required cleanup, PCB contamination of a basement sump, the discharging of water without a SPDES permit, and several continuing air emissions problems. On March 6, 1989 Consent Order No. 87-183A was issued by the NYSDEC fining Friendship foundry for failure to comply with the previous Consent Order and requiring the foundry to design and construct an air pollution abatement system, properly store foundry sand and dispose of all drums in the drum storage yard. On June 1, 1990 the NYSDEC determined that the foundry was unable to comply with the air pollution regulations specified in the Order on Consent #87-183A and issued a Summary Abatement Order terminating Friendship Foundry's authorization to operate the air emission points associated with the casting operation, which resulted in the closing of the Foundry.

Disposal Site

Little information was obtained regarding the historic use of the Disposal Site located on Elmwood Avenue. The disposal of foundry wastes including foundry sands, slag and resins are documented based on visual observation of the waste material. The period of time the site was used for disposal is not known. A nearby resident indicated that he had seen old pictures which showed several building associated with a wood trim manufacturer operating on-site, apparently prior to the disposal of foundry waste (during the investigation, the NYSDEC did encounter several building foundations at depth within the waste material). No other historic information is known regarding the Disposal Site.

4.0 PRIOR ENVIRONMENTAL WORK/INVESTIGATIONS

Factory Site

The following sections provide a summary of prior environmental work completed at the Howard Street Site. Detailed information regarding this work is included in the NYSDEC report titled 'Remedial Investigation Report, Friendship Foundry Site, Allegany County, New York, Site No. 9-02-015' dated January 1996. An electronic copy of this report has been provided on disc in Appendix A for reference.

Drum/Waste Removal

Subsequent to the closing of the foundry, site inspections revealed foundry sand, leaking and bulging drums, chemical sheens on nearby surface water and other waste material remaining at the site, which represented threats to the public health and/or the environment. It was also noted that although 1,1,1-trichloroethane had been used for degreasing at the foundry, no records regarding proper disposal of the spent material were found. Based upon these inspections, the NYSDEC listed the site on the New York State Registry of Inactive Hazardous Waste Sites as a Class 2 site.

To address the threat posed by the abandoned waste materials, in an October 10, 1990 letter, the NYSDEC requested the United States Environmental Protection Agency (USEPA) perform an emergency removal action to stabilize, characterize and remove the hazardous wastes and substances which had been abandoned at the Foundry Site. This Interim Remedial Measure (IRM) was initiated by the USEPA on August 7, 1991 and the removal action was completed in May 1992. The IRM included the removal of flammable, combustible, corrosive and alkaline liquids, waste PCB oil, phenolic powered resin, etc. In addition to the chemical wastes, the USEPA removed foundry sand, baghouse dust, contaminated soil, and other debris and disposed of the material at a secure landfill. At the completion of the IRM, the foundry area was seeded to stabilize the surface soils and reduce runoff from the site.

Superfund Remedial Investigation

The generally poor condition of the drums removed from the site during the EPA removal action suggested that soil and/or groundwater may have been impacted by the hazardous wastes removed from the site during the IRM. Also, foundry sand and baghouse dust remained at the foundry plant site after the EPA removal action was complete. In order to resolve the Class 2 designation of the site, NYSDEC determined a Remedial Investigation (RI) was necessary to identify any remaining hazardous waste and associated environmental contamination which may have resulted from disposal of the waste.

The NYSDEC Remedial Investigation Report for the Friendship Foundry Site (Site No. 902015) was issued in February 1996. The Report details remedial investigation work including a soil gas survey, waste sampling, surface soil sampling, test pitting, subsurface sampling and surface

water and sediment sampling. The report concluded the following regarding the main foundry site (i.e. 'Factory Site':

- High concentrations of PCBs existed in the sediment from the capacitor sump where an
 explosion prior to 1988 released PCB oils. The capacitor sump was dewatered, the
 sediment removed and the sump cleaned as an IRM during the remedial investigation.
- The results of the soil gas survey, test pit investigation and sampling, did not identify the presence of any buried drums or other indication of subsurface disposal or migration of hazardous waste at the Friendship Foundry plant site.
- The analysis of foundry sand and baghouse dust, the predominate waste material in the fill and also present in and around the buildings at the site, identified the presence of heavy metals and Polynuclear Aromatic Hydrocarbons (PAHs), above the NYSDEC guidance values for protection of groundwater. The TCLP analytical results for these compounds showed that these contaminants were not likely to leach out of their present matrix.
- Groundwater samples from seven monitoring wells installed during the RI consistently showed levels of manganese, nickel, iron and sodium which, while slightly exceeding the NYS groundwater standards, were considered to represent background concentrations for these metal and were not attributed to the site. VOCs, SVOCs and PCBs were non-detect in all wells with the exception of MW-6 which showed low concentrations of VOCs including 1,1 DCA (25 ppb) and 1,1,1-TCA (12 ppb). MW-6 is located adjacent to the former drum storage area.
- Surface water and sediment was sampled in Sawyer Creek which, in the vicinity of the site, is nothing more than a roadside drainage ditch. PCBs were detected in one sediment sample at 61 ppb and phenol was detected in the creek water at 12 ppb. It was determined this level of contamination would not adversely effect the environment.

Based on the results of the RI, the NYSDEC recommended that "since the investigation did not identify any remaining hazardous waste contamination at the site, which is resulting in an exposure to the public or the environment, no further action is required to address hazardous waste disposal at the site. Although the NYSDEC is recommending no further action at the Friendship Foundry site under the inactive hazardous waste site remediation program, solid wastes containing hazardous substances will remain on site that may pose a risk to human health or the environment. These substances should not be ignored should future land use change." The site was reclassified from a Class 2 to a Class 5 site.

Since completion of the Superfund RI, on-site buildings have been demolished and no piles of foundry sand and/or baghouse dust could be located on-site. The disposition of these wastes are not known.

UST Removal

NYSDEC records indicate that three Underground Storage Tanks (USTs) were removed from the Friendship Foundry Plant site in 1998 by the NYSDEC spills program (Spill No. 9875186). The removed USTs included 1,000 gallon diesel tank, a 500 gallon tank of unknown contents and a 10,000 gallon gasoline tank. The exact locations of the tanks were not identified in the file.

Disposal Site

The NYSDEC is not aware of any prior comprehensive environmental investigation that have been completed at the Disposal Site. During the superfund remedial investigation completed in the mid 1990s (see above), the Department identified partially buried drums protruding from the east bank of the North Branch of Van Campen Creek (western limit of the current Disposal Site). The drums contained foundry sand and slag. A sample collected from the drum contained chromium and copper in excess of the NYSDEC soil guidance values for the protection of groundwater. However, since no hazardous waste was identified near these drums and the TCLP analysis results showed that these contaminants were not likely to leach out of their present matrix, no remediation (or further investigation) to address hazardous waste contamination was required.

5.0 SITE CHARACTERIZATION OBJECTIVES

The objectives of this site characterization include:

- ✓ Identify the type, areal extent and depth of fill material at the Factory Site and Disposal Site.
- ✓ Quantify the type and concentration of contaminates in the fill material at the Factory Site and Disposal Site.
- ✓ Quantify the type and concentration of contaminates in the groundwater, attributable to site contamination, at the Factory Site and Disposal Site.
- ✓ Assess potential future property use based on the results of the investigation at the Factory Site and Disposal Site.

6.0 SITE INVESTIGATION WORK

The NYSDEC directed the site investigation work to achieve the site characterization objectives outlined in Section 5.0. The NYSDEC hired Empire Geoservices Inc. (5167 South Park Avenue, Hamburg, NY, 14075) to complete ground intrusive field work including test pitting, direct push borings and groundwater monitoring well installation. Empire Geoservices also provided oversight and sampling services including logging test pits, borings and monitoring well installation, field screening of soil samples (PID screening) and soil sample collection. The NYSDEC provided direct oversight to Empire Geoservices including identifying soil test pit and boring locations, soil sampling locations and sampling parameters, monitoring well installation locations, as well as part time field oversight. NYSDEC personnel completed monitoring well development and monitoring well sampling activities. Empire Geoservices Inc. subcontracted site surveying to Creekside Boundary (1746 Higgins Road, Warsaw, NY, 14567). Laboratory Services were provided by Upstate Laboratories Inc. (6034 Corporate Drive, East Syracuse, NY, 13057).

6.1 Empire Geoservices Report

Empire Geoservices prepared the report titled 'Subsurface Investigation, Former Friendship foundry Sites', dated February 15, 2008, which documents their field work and oversight activities. The report contains detailed information regarding test pitting, direct push borings, monitoring well installation, soil field screening activities, soil sampling work and all soil sampling analytical data. An electronic copy of the report is provided on disc in Appendix A.

The following specific information is included in the report:

- Attachment A: Analytical Summary Tables Factory Site (for soil samples)
- Attachment B: Analytical Summary Tables Disposal Site (for soil samples)
- Appendix A: Test Pit Photographs Factory Site
- Appendix B: Test Pit Logs Factory Site
- Appendix C: Test Boring Logs Factory Site
- Appendix D: Monitoring Well Installation Details Factory Site
- Appendix E: Test Pit Photographs Disposal Site
- Appendix F: Test Pit Logs Disposal Site
- Appendix G: Monitoring Well Installation Details Disposal Site
- Appendix H: Upstate Laboratories Inc. Analytical Reports
- Site Survey Drawings

The Empire Geoservices report provides a comparison of the soil analytical results to NYSDEC 'Technical and Administrative Guidance Memorandum #4046 - Determination of Soil Cleanup Objectives and Cleanup Levels' (hereafter referred to as TAGM #4046). TAGM #4046 is utilized in some NYSDEC remedial programs to approximate 'pre-release' conditions at

contaminated sites. This comparison provides useful information regarding the level of contamination, however, it is often difficult to achieve 'pre-release' conditions at former industrial sites. Therefore, a comparison of soil analytical results to the 'future use' based criteria outlined in NYSDEC regulations (6 NYCRR Part 375) is provided in Section 8.0 of this report.

6.2 Site Survey

Empire Geoservices subcontracted Creekside Boundary (1746 Higgins Road, Warsaw, NY, 14567) to complete site survey work. The survey work was completed in two phases. The first phase included locating the site boundaries in the field and preparing a draft survey drawing for field use. The second phase included returning to the site after the investigation was complete to locate all test pits, borings, surface sampling and monitoring well locations. The final site survey drawings are provide at the end of the Empire Geoservices Report included on disc in Appendix A. Hard copies of the final site survey drawings are also provided in Appendix B.

The scope of work prepared by Empire Geoservices used to secure surveying bids did not include surveying the elevations of the top of well casings. Therefore, in order to determine groundwater flow directions based on well gauging results, Empire Geoservices used Creekside Boundary's site benchmarks to survey the necessary elevations. Although the elevations were not obtained by a NYS licensed surveyor, the data generated was considered useable for the purposes of assessing groundwater flow direction.

6.3 Soil/Fill Investigation and Sampling

A detailed description of the soil fill investigation and sampling is provided in the Empire Geoservices' report included in Appendix A, therefore this section only provides a brief summary of the work performed.

Factory Site

Test pits and/or borings were performed on an approximate 50 foot grid across the Factory Site resulting in a total of 52 test pits and 15 direct push borings. The test pitting was completed between September 5 and September 10, 2007. Soil borings were completed on October 3, 2007. Direct push borings were completed in areas were existing concrete slabs prevented test pitting. The concrete was cored prior to completing the borings. Borings were also used to complete a second round of sampling which took place after the backhoe was removed from the site. Test pits and boring were used to log subsurface conditions (including fill type and thickness) and access the subsurface for soil sampling. In general, test pits and borings were terminated at depths were native material was encountered. The location of all test

pits and borings are included on the survey drawing in Appendix B.

Soil sampling locations and parameters were determined based upon information obtained during prior investigations, type of fill encountered, field screening results, as well as, randomly distributing samples across the site. A second round of sampling was completed to further delineate areas of greatest contamination based on analytical results from samples collected during the initial round of sampling. A comprehensive list of sampling locations and parameters at the Factory Site is included in Table 1. All test pit and soil boring samples were field screened for Volatile Organic Compounds (VOCs) using a Photo Ionization Detector (PID).

Disposal Site

Test pits were utilized as the primary means of subsurface investigation at the Disposal Site. Test pits were completed between October 15 and October 18, 2007. A total of 15 test pits were randomly distributed across the northern half of the disposal site. No test pits were completed on the southern half of the site due to the apparent lack of fill material and the use of this area as a manicured lawn by adjacent residents. Test pits were used to log subsurface conditions (including fill type and thickness) and access the subsurface for soil sampling. In general, test pits were terminated at a depth were native material was encountered. The location of all test pits are included on the survey drawing in Appendix B.

Soil sampling locations and parameters were determined based upon the type of fill encountered, field screening results, as well as, randomly distributing samples across the site. Due to the relatively homogeneous nature of the fill material encountered in each test pit, composite samples of the fill were collected from the test pit stockpiles. A comprehensive list of sampling locations and parameters at the Disposal Site is included in Table 2. All test pit samples were field screened for Volatile Organic Compounds (VOCs) using a Photo Ionization Detector (PID).

6.4 Monitoring Well Installation and Sampling

A combination of existing and new groundwater monitoring wells were used to assess groundwater flow direction and quality at the Howard Street Site. Existing wells were installed at the Factory Site during the hazardous waste Superfund investigation completed in the mid 1990s. Intact wells that were producing water were utilized as sampling points during the current investigation. Additional new 2-inch monitoring wells were installed as appropriate by Empire Geoservices. Monitoring well installation details for newly installed wells are contained in the Empire Geoservices report provided on disc in Appendix A.

Monitoring wells were developed and sampled by NYSDEC personnel. A minimum of (3) well volumes were purged from each well within 24-hours of sample collection. Discrete disposable polyethylene bailers were used to collect groundwater samples. Groundwater in all

monitoring wells was sampled for TCL-VOCs (method SW8260B), TCL-SVOCs (complete series, method SW8270C), TAL-metals (method E200.7), PCBs (method SW8082) and total recoverable phenolics (method E420.4).

Factory Site

Several existing and newly installed groundwater monitoring wells were utilized to assess groundwater flow direction and quality at the Factory Site. On October 3, 2007, the NYSDEC inspected and gauged six existing 2-inch wells(MW-1, MW-2, MW-3, MW-3d, MW-4, MW-5) at the Factory Site. It was determined two of the six wells, MW-2 and MW-3D, contained sufficient water to produce representative groundwater samples. Empire Geoservices installed three additional groundwater monitoring wells at the Factory Site on November 14 and 15, 2007 (MW-6, MW-7, MW-8 and MW-9). MW-7 did not produce water and therefore was not included as part of the well sampling.

The surveyed locations of all newly installed monitoring wells are included on the survey drawing in Appendix B. Existing monitoring wells have been located on the survey drawings (but are not labeled), with the exception of MW-2. MW-2 does not lie within the footprint of the Factory Site. The approximate locations of all existing and new monitoring wells are shown on Figure 3.

MW-2, MW-3d, MW-6 and MW-8 were purged and sampled on December 26, 2007.

Disposal Site

Empire GeoServices installed four new 2-inch monitoring wells at the Disposal Site on November 19 and 20, 2007. The wells were positioned surrounding the fill area at the northern end of the site. No known wells existed on the Disposal Site. The surveyed locations of the new monitoring wells are shown on the survey drawing provided in Appendix B. The approximate locations of the four monitoring wells are shown on Figure 4.

MW-9 and MW-10 were purged and sampled on December 26, 2007. MW-11 and MW-12 were purged on December 26, 2007 and sampled on December 27, 2007. The groundwater was very turbid following purging MW-11 and MW-12 and remained turbid regardless of the quantity of water purged. The wells were allowed to sit overnight to facilitate the collection of relatively clear samples.

7.0 RESULTS

This section provides a summary of the site characterization results as it relates to extent of fill material, soil/fill quality and groundwater quality.

7.1 Extent of Fill Material

All test pit and soil boring logs are included in the Appendices of the Empire Geoservices report titled 'Subsurface Investigation - Former Friendship Foundry Sites' dated February 15, 2008. This report is included on disc in Appendix A.

Factory Site

In general, the subsurface conditions at the Factory Site, west of Howard Street, consist of 3 to 6 feet of fill material including foundry sands, gravels, cinders, slag, and construction debris (i.e. metal scraps, brick, concrete, etc.). Numerous concrete slabs at depths ranging from 2 to 5 feet were encountered along Sawyer and Howard Streets. Native material directly below the fill layer consisted of silty clay with sand at the north end of the site, which transitions to a sandy gravel as you approach the railroad tracks at the south end of the site. Surface conditions consist of a mixture of cobbles and gravel ranging in depth from 0 to 1 foot.

Subsurface conditions at the Factory Site east of Howard Street are characterized by fill ranging from 0 to 7 feet in depth. Limited amounts of fill (foundry sand, cinders, slag) were encountered north of the dirt drive except adjacent to the building foundations along Depot Street, where several feet of fill was encountered. Up to 7 feet of fill material was consistently encountered south of the dirt drive. Native material encountered below the fill material consisted of sandy gravel with some clay. In general, surface conditions consisted of 0.5 to 1 foot of topsoil.

Disposal Site

Subsurface conditions at the northern end of the Disposal Site consist of up to 16 feet of fill including foundry sands, slag, silts, brick and numerous deteriorating metal drums containing slag, resins and foundry sands. In general the depth of fill material increases as you move south across the site until you encounter an abrupt change in grade which identifies the limit of the main fill area. South of the abrupt grade change lies a small wooded area and manicured lawns. The fill material at the north end of the property is underlain by native brown sand and gravel. The surface conditions include fill material mixed with some topsoil.

7.2 Soil Analytical Results

Soil sampling raw analytical data and summary tables are included in the Appendices of the Empire Geoservices report titled 'Subsurface Investigation - Former Friendship Foundry Sites' dated February 15, 2008. This report is included on disc in Appendix A. Tables 1 and 2 (in this report) contain a summary of parameters sampled at each test pit and boring location.

Factory Site

Subsurface Samples

Analytical results for samples collected from the subsurface fill showed several discrete sampling locations with elevated metals and SVOC contaminates. In general, significant concentrations of VOCs were not detected with the exception of TP-25 which showed elevated concentrations of acetone (0.130 ppm). Low concentrations of total recoverable phenolics were detected at the majority of sample locations (ND to 0.436 ppm). Pesticides, herbicides, total PCBs and total hexavalent chromium were non detect in all samples.

Elevated metals concentrations were detected in 4 of 34 subsurface samples including samples collected from TP-7 (copper @ 500 ppm), TP-12 (arsenic @ 390 ppm, barium @ 1,500 ppm, lead @ 1,400 ppm, Mercury @ 3.22 ppm), B-2 (arsenic @ 22 ppm) and B-11 (arsenic @ 51 ppm, cadmium @ 83 ppm, copper @ 1,100 ppm). These samples were all collected to the west of Howard Street. Boring B-11 was completed approximately 10 feet to the north of TP-12 which confirmed elevated metals concentrations in this area (although the specific elevated metals were not consistent between the samples). Samples collected on the 50 foot grid immediately adjacent to TP-12 did not exhibit elevated metals concentrations.

Elevated SVOC concentrations were detected in 4 of 12 subsurface samples including TP-25, TP-44, B-14 and B-15. Borings B-14 and B-15 were installed within 20 feet to the east and south of TP-44 and confirmed elevated SVOC concentrations in this area, which is located just south of the dirt drive east of Howard Street. The following contaminates were elevated in at least one of the three samples: benzo(a)anthracene (0.6 to 3.0 ppm), benzo(a)pyrene (3.0 ppm), benzo(b)flouranthene (3.0 to 4.1 ppm), chrysene (0.8 to 3.0 ppm) and phenol (0.8 ppm). Benzo(a)anthracene (0.7 ppm) and chrysene (0.7 ppm) were elevated in TP-25. TP-25 is located at the south east corner of the site, west of Howard Street.

Surface Samples

A total of seven composite surface samples were collected from the Factory Site to assess the quality of surface soils in the 0 to 1 foot bgs interval. VOCs, SVOCs, metals, total PCBs, herbicides, pesticides and total hexavalent chromium were not significantly elevated in any surface sample. Low concentrations of total phenolics (ND to 0.545 ppm) were detected in most surface samples.

One sample was collected from the top three inches of sediment in Sawyer Creek which, in the vicinity of the site, is nothing more than a roadside drainage ditch that parallels the east side of Howard Street. The sample was analyzed for metals which showed elevated concentrations of manganese (5,800 ppm).

Disposal Site

Subsurface Samples

Subsurface fill sampling at the Disposal site showed elevated metals concentrations in the hardened green resin (arsenic @ 91 pmm, cadmium @ 86 ppm) and hardened black resin (barium @ 600 ppm) which were contained in deteriorated metal drums sporadically encountered throughout the fill. The fill sample collected at TP-15 contained slightly elevated arsenic concentrations (21 ppm). PCBs were detected at low concentrations in fill samples collected from TP-11 (0.056 ppm) and TP-12 (0.053 ppm). Significantly elevated concentrations of VOCs and SVOCs were not detected in any samples collected from the Disposal Site. All samples were non detect for herbicides and pesticides. Total phenolics were detected in TP-1 (0.149 ppm) and TP-12 (0.150 ppm).

Surface Samples

Surface samples were not collected from the disposal site since significant contamination was not detected in the subsurface fill samples.

7.3 Groundwater Flow Direction and Analytical Results

The following section contains gauging data and analytical results collected on groundwater. Monitoring well gauging data is provided on Table 3. Estimated groundwater flow direction is shown on Figures 3 and 4 for the Factory Site and Disposal Site, respectively. Groundwater sampling raw analytical data is provided in Appendix C. A groundwater analytical data summary table is provided as Table 3. The summary table includes all compounds detected above the laboratory detection limits.

Factory Site

Groundwater flow direction at the Factory Site was estimated from two separate well gauging events completed on November 23, 2007 and May 8, 2008. The estimated groundwater flow direction is to the south as shown on Figure 3.

Groundwater was sampled from four monitoring wells (MW-2, MW-3d, MW-6, MW-8) at the Factory Site on December 26, 2007. These results show elevated concentrations of several

metals exceeding New York State's ambient water quality standards and guidance values for groundwater used as a drinking water source. Specific metals that exceeded the standards and guidance values in at least one well include arsenic (0.028 mg/l), iron (0.43 to 1.2 mg/l), manganese (0.52 mg/l), sodium (53 - 61 mg/l) and thallium (0.002 - 0.017 mg/l). In addition to these metals, total recoverable phenolics exceeded the groundwater guidance value at MW-2 (0.005 mg/l). No VOC, SVOC, herbicide, pesticide or PCB compounds were detected in the groundwater above the laboratory detection limit.

Water service is provided by the Friendship Town Water District in the vicinity of the Factory Site, therefore, it is not expected that groundwater is used as a drinking water source. Arsenic exceeded the drinking water standard by 3 ug/l in MW-3d only, and therefore, is not considered a contaminant of concern in the groundwater. Iron, manganese and total recoverable phenolics moderately exceeded the guidance values in several wells, however, these guidance values are based on aesthetics and, for the purpose of this site characterization, are not considered contaminants of concern in the groundwater. Sodium exceeded drinking water standards in two wells, however, sodium is naturally occurring and is not considered a concern at the concentrations detected.

Thallium is the only contaminant at the Factory Site that was consistently detected in all wells at concentrations between 4 and 34 times the drinking water standard. Thallium is most commonly produced in the electronics, pharmaceutical and glass manufacturing industries. Until it was banned in 1975, Thallium sulfate was used as a rat and ant killer. It is also associated with the production of sulfuric acid and the smelting of lead and zinc ores. Thallium was not detected in any surface or subsurface fill sample at the Factory Site and was detected in up gradient well MW-6 at 18 times the drinking water standard. The source of thallium detected in on-site groundwater is not known.

Disposal Site

Groundwater flow direction at the Disposal Site was estimated from two separate well gauging events completed on November 26, 2007 and May 8, 2008 . As shown on Figure 4, groundwater is estimate to flow to the south east.

Groundwater was sampled from four monitoring wells (MW-9, MW-10, MW-11, MW-12) at the Disposal Site on December 26 and 27, 2007. These results show elevated concentrations of several metals exceeding New York State's ambient water quality standards and guidance values for groundwater used as a drinking water source. Specific metals that exceed the standards and/or guidance values include iron (0.45 - 1.5 mg/l), manganese (0.43 - .91 mg/l), sodium (24 - 30 mg/l) and thallium (0.008 - 0.011 mg/l). One SVOC, bis(2-ethylhexyl)phthalate (6.3 ug/l), slightly exceeded the drinking water standard at MW-9. Total recoverable phenolics exceeded the drinking water guidance value at MW-10 (0.011 mg/l) and MW-12 (0.007 mg/l). No VOC, herbicide, pesticide or PCB compound was detected in the groundwater above the laboratory detection limit.

Water service is provided by the Friendship Town Water District in the vicinity of the Disposal Site, therefore, it is not expected that groundwater is used as a drinking water source. Iron, manganese and total recoverable phenolics moderately exceeded the guidance values in several wells, however, these guidance values are based on aesthetics and, for the purpose of this site characterization, are not considered contaminants of concern in the groundwater. Sodium exceeded groundwater drinking water standards in three wells, however, sodium is naturally occurring and is not considered a concern at the concentrations detected. Bis(2-ethylhexyl)phthalate exceeded the drinking water standard by 1.3 ppb at MW-9 only, therefore, bis(2-ethylhexyl)phthalate is not considered a significant contaminant of concern at the Disposal Site.

Thallium is the only contaminant at the Disposal Site that was consistently detected in all wells at concentrations between 16 and 22 times the drinking water standard. Thallium was detected in one subsurface fill sample at 65 ppm at the Disposal Site. This sample identified as 'green resin' was collected from a hardened resin material contained in deteriorating metal drums sporadically encountered throughout the fill material. Although thallium was detected in this sample, it cannot be verified that this is the source of the thallium in on-site groundwater. Thallium was also detected in groundwater at the Factory Site where the green resin was not encountered.

8.0 CONCLUSIONS

This section provides a bulleted summary of results obtained during the site characterization investigation:

Factory Site

Between 3 and 7 feet of fill material, including foundry sand, gravels, cinders, slag and construction debris, exists across the majority of the site. The portion of the site east of Howard Street and north of the dirt drive contained limited amounts of fill except adjacent to (and presumably under) the concrete slabs encountered along Depot Street, where several feet of fill material was encountered.

Subsurface Fill:

- Elevated metals concentrations were detected in 4 of 34 subsurface fill samples including TP-7 (copper @ 500 ppm), TP-12 (arsenic @ 390 ppm, barium @ 1,500 ppm, lead @ 1,400 ppm, Mercury @ 3.22 ppm), B-2 (arsenic @ 22 ppm) and B-11 (arsenic @ 51 ppm, cadmium @ 83 ppm, copper @ 1,100 ppm).
- Elevated SVOC concentrations were detected in 4 of 12 subsurface fill samples including TP-25, TP-44, B-14 and B-15. Specific elevated SVOC contaminates detected in at least one sample include benzo(a)anthracene (0.6 to 3.0 ppm), benzo(a)pyrene (3.0 ppm), benzo(b)flouranthene (3.0 to 4.1 ppm), chrysene (0.7 to 3.0 ppm) and phenol (0.8 ppm).
- Significant concentrations of VOCs were not detected with the exception of TP-25 which showed elevated concentrations of acetone (0.130 ppm).
- Low concentrations of total recoverable phenolics were detected at the majority of sample locations (ND to 0.436 ppm).
- Pesticides, herbicides, total PCBs and total hexavalent chromium were non detect in all samples.

Surface Samples:

• A total of seven composite surface samples were collected in the 0 to 1 foot below ground surface interval. Native material underlying the fill consisted silty clay and/or sandy gravel.

- VOCs, SVOCs, metals, total PCBs, herbicides, pesticides and total hexavalent chromium were not significantly elevated in any surface sample.
- Low concentrations of total phenolics (ND to 0.545 ppm) were detected in 3 of 4 surface samples.

Groundwater:

- Estimated groundwater flow direction is to the south.
- The following metal compounds exceeded New York State's ambient water quality standards and guidance values for groundwater used as a drinking water source in at least one of the four wells sampled: *Metals:* arsenic (0.028 mg/l), iron (0.43 to 1.2 mg/l), manganese (0.52 mg/l), sodium (53 61 mg/l) and thallium (0.002 0.017 mg/l). The source of Thallium is unknown.
- Total recoverable phenolics exceeded the groundwater guidance value at MW-2 (0.005 ppm).
- No VOC, SVOC, herbicide, pesticide or PCB compounds were detected above the laboratory detection limit.
- Nearby residents are serviced by the Friendship Town Water District, therefore direct consumption of groundwater is not expected.

Disposal Site

- Subsurface conditions at the northern end of the Disposal Site consist of up to 16 feet of fill including foundry sands, slag, silts, brick and numerous deteriorating metal drums containing slag, resins and foundry sands. In general the depth of fill material increases as you move south across the site until you encounter an abrupt change in grade which identifies the limit of the main fill area.
- The east bank of the North Branch of Van Campen Creek is a near vertical wall of exposed fill material along the northern end of the site.

Subsurface Fill:

- 3 of 10 subsurface samples exhibited elevated metals concentrations including the hardened green resin (arsenic @ 91 pmm, cadmium @ 86 ppm), hardened black resin (barium @ 600 ppm) and fill at TP-15 (arsenic @ 21 ppm).
- PCBs were detected at low concentrations in fill samples collected from TP-11 (0.056 ppm) and TP-12 (0.053 ppm).
- Significantly elevated concentrations of VOCs and SVOCs were not detected in any sample. All samples were non detect for herbicides and pesticides.
- Total phenolics were detected in TP-1 (0.149 ppm) and TP-12 (0.150 ppm).
- Results from sample TP-1, collected adjacent to the fill along the east bank of Van Campen Creek, did not indicate significant ecological concerns regarding the fill material in this area.

► Groundwater:

- Estimated groundwater flow direction is to the southeast.
- The following metal compounds exceeded New York State's ambient water quality standards and guidance values for groundwater used as a drinking water source in at least one of the four wells sampled: iron (0.45 1.5 mg/l), manganese (0.43 .91 mg/l), sodium (24 30 mg/l) and thallium (0.008 0.011 mg/l).
- One SVOC, bis(2-ethylhexyl)phthalate (6.3 ug/l), slightly exceeded the drinking water standard at MW-9.
- Total recoverable phenolics exceeded the drinking water guidance value at MW-10 (0.011 mg/l) and MW-12 (0.007 mg/l).
- No VOC, herbicide, pesticide or PCB compound was detected in the groundwater above the laboratory detection limit.
- Nearby residents are serviced by the Friendship Town Water District, therefore direct consumption of groundwater is not expected.

9.0 SITE REDEVELOPMENT

This site characterization investigation, funded by an EPA Targeted Site Assessment Grant, was undertaken to characterize environmental contamination at the Howard Street Site. The goal of the Targeted Site Assessment Program is to help spur redevelopment of brownfield sites by providing environmental data that can be used to assess potential liability associated with site contamination.

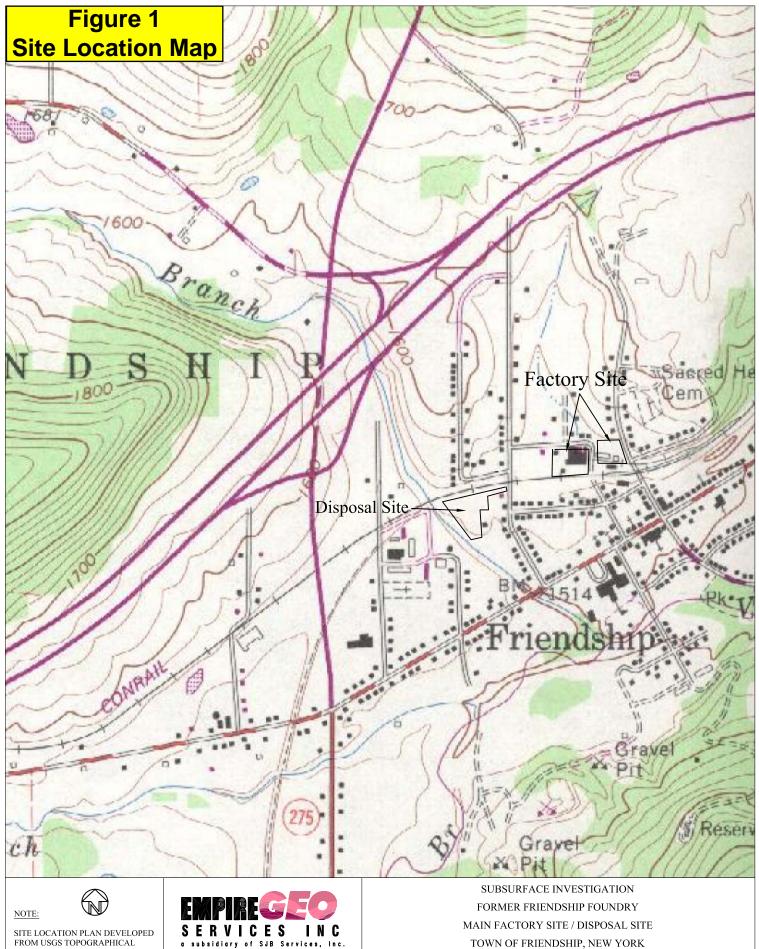
This section provides a cursory assessment of potential future use as is relates to the environmental data collected. The basis for this assessment are the restricted use soil cleanup objectives provided in regulation section 6 NYCRR Part 375-6.8(b). This regulation section outlines maximum soil contaminant concentrations for various development scenarios including residential, restricted residential, commercial and industrial. It is emphasized that these concentrations only apply to sites which have been formally and legally accepted into one of the State's brownfield cleanup programs. These concentrations cannot solely be used independent of a specific State program which provides additional controls including the filing of environmental easements, engineering controls, long term monitoring, etc. Therefore, these restricted use soil cleanup objectives are used for comparison only as it relates to this investigation.

Factory Site

Development of the Factory Site property for commercial use appears to be a reasonable and readily obtainable development scenario based on past use and current environmental state of the site. Residential use is not recommended since heavy industrial use and disposal of waste has created adverse environmental impacts to both site soils and groundwater. No distinct or significant source areas of contamination in subsurface fill materials were identified. Impacts to subsurface fill material in excess of the 6 NYCRR Part 375 'Restricted Commercial Use' soil cleanup objectives have been identified as summarized in Table 4. Surface soils appear to be minimally impacted with the exception of low levels of total recoverable phenolics. Groundwater has been impacted by site contaminants, however, groundwater is not used as a drinking water source in the area surrounding the site.

Potential remedial scenarios may include providing an adequate cover using buildings, roadways or clean fill. Consideration may be given to removal and disposal of subsurface soils in excess of the 6 NYCRR Part 375 'Restricted Commercial Use' soil cleanup objectives. Restrictions on groundwater use and appropriate soils management is suggested.

Disposal Site


Development of the Disposal Site property for commercial use appears to be a reasonable and readily obtainable development scenario based on past use and current environmental state

of the site. Residential use is not recommended since the disposal of industrial waste has created adverse environmental impacts to both site soils and groundwater. No distinct or significant source areas of contamination in subsurface fill materials were identified. Impacts to subsurface fill material in excess of the 6 NYCRR Part 375 'Restricted Commercial Use' soil cleanup objectives have been identified as summarized in Table 5. The resin material is contained in deteriorating drums sporadically encountered throughout the fill material. Groundwater most likely has been impacted by site contaminants, however, groundwater is not used as a drinking water source in the area surrounding the site.

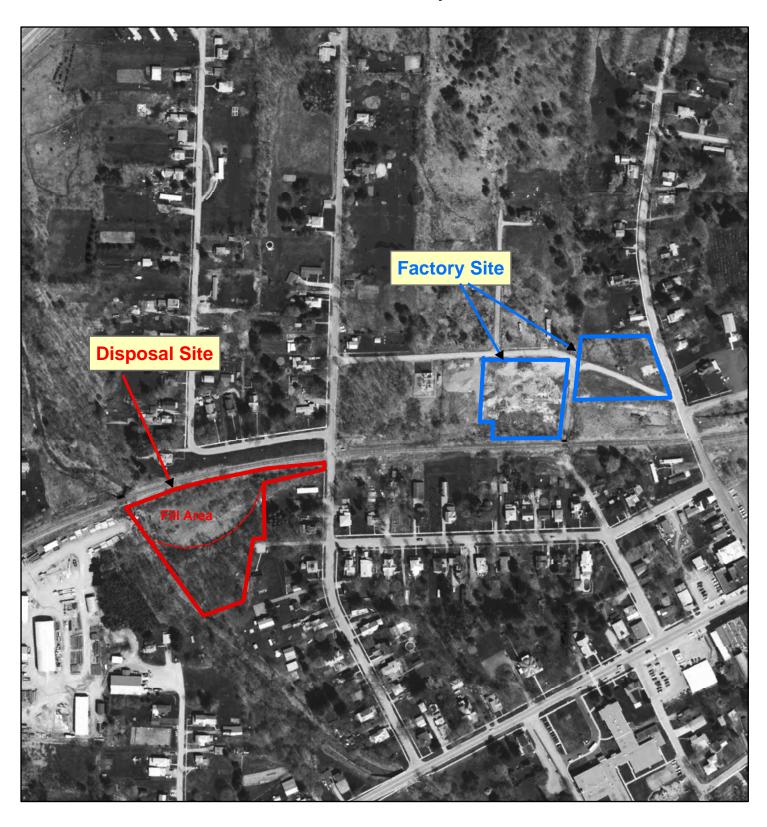
Potential remedial scenarios may include providing an adequate cover using buildings, roadways or clean fill. Consideration may be given to removal and disposal of subsurface soils in excess of the 6 NYCRR Part 375 'Restricted Commercial Use' soil cleanup objectives. Restrictions on groundwater use and appropriate soils management is suggested.

Consideration should also be given to preventing fill material from eroding into the North Branch of Van Campen Creek. The east bank of the creek is a near vertical wall consisting of fill material visually similar to those encountered elsewhere on site. Analytical results indicate the fill material adjacent to the bank is less contaminated then the fill located on the interior of the site. Also, the resin material which exhibited elevated contaminate levels is currently not visible along the bank. However, stabilization of the bank should be considered during remediation of the site.

Figures

FRIENDSHIP QUADRANGLE MAP

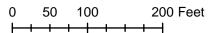
LIMITS OF SITE BOUNDARIES ARE APPROXIMATE


SITE LOCATION MAP

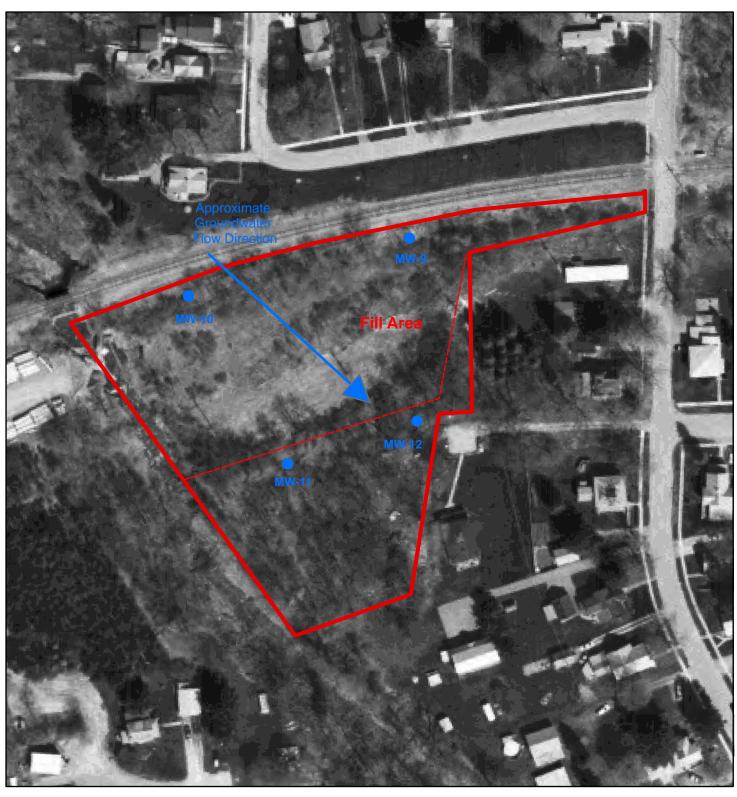
DR. BY: JCM SCALE: NTS PROJECT NO.: BEV-07-022 CK. BY: DRS DATE: 12/26/07

FIGURE 2

Howard Street Site Aerial Map


FIGURE 3

Factory Site Monitoring Well and Groundwater Flow Map


MW-2 -->Sampled during current investigation MW-1 -->Not sampled during current investigation

old/new -->Installed during prior investigation/installed during current investigation

FIGURE 4

Disposal Site Monitoring Well and Groundwater Flow Map

Tables

TABLE 1 SAMPLING SUMMARY

FACTORY SITE

Friendship Foundry
Town of Friendship, New York

		5 4	<u> </u>	I				T		
	Sample	Depth		Hexavalent		Total				
	ID	(Feet)	Metals	Chromium	SVOCs	Phenolics	VOCs	PCBs	Pesticides	Herbicides
	Analytical Me		SW6010B ¹	SW7196A	SW8270C	E420.1	SW8260B	SW8081A	SW8081A	SW8151A
	TP-1	5'	X	.,	.,			X		
	TP-3	4'	X	X	Χ		X	Х	X	X
	TP-6A	1.5'	X							
	TP-7	2.5'	X ²					.,		
	TP-8	4'	X					X		
Т	TP-12	2'	X	,,	.,,	.,	.,,	X	.,,	
Ė	TP-14	5'	X	X	X	X	X	X	X	X
S	TP-16	3'	X	X	X	X	X	X	X	X
Т	TP-17A	3'	X					Х		
_	TP-20	3'	X							
P I	TP-24	4'	Х	.,	.,	.,	.,	X	.,	
Ť	TP-25	2'	X	X	X	X	X	X	X	X
	TP-26	1.5'	X					,,		
S	TP-28	3'	X					X		
A	TP-30	4.5'	X					X		
M P	TP-34	3'	Х				.,	Х		
Ĺ	TP-37	1'					Х	.,		
E	TP-40	3'	X					X		
S	TP-41	2'	X							
	TP-42	2'	X		.,	.,	.,		.,	
	TP-44	3'	X	Х	X	Х	Х	Х	Х	X
	TP-46	4'	X	.,	.,,	.,	.,,	.,	.,,	
	TP-47	5'	X	Х	Х	Х	Х	Х	Х	X
	TP-49	3'	X							
	TP-50	5'	X					X		
	B-1	3-4'	X					X		
	B-2	2-3'	X	.,	.,	.,		.,		
	B-3	4-7'	X	Х	X	Х	X	X		
В О	B-4	3-4'	X					X		
R	B-5	4-5'	X					X		
ı	B-8	6-7'	X	V	X		X	X	V	V
N	B-9	3-6'	X	Х	Х	Х	Х	Х	Х	Х
G S	B-11	3'	X							
l °	B-12	2'	Х		\ <u>'</u>					
	B-13 B-14	2' 2'			X					
	B-14 B-15	2'			X					
		0-1'	V	X	X	V	V	X	V	V
s	TPs-6,11,16 ³	0-1'	X			X	X		X	X
U R F A	TPs-49,46,42 ³ TPs-37,39,40B ³		X	Х	X	X	X	X	X	X
		0-1	X		X	X				X
	TPs-31,32,38 ³ SS-1	0-1'	X		^	^		X	X	^
	SS-1	0-1	X							
C E	SS-2 SS-3	0-1	X							
_	Sed 1	0-1	X							
-		0-0.25	41	10	16	11	12	26	11	11
Total Samples			41	10	16	11	12	26	11	11

¹Mercury was analyzed via analytical method SW7471A.

²A red (X) indicates at least one compound exceeded 6 NYCRR Part 375 Restricted Commercial guidance values.

³Surface samples were collected as composites from the referenced test pits.

TABLE 2 SAMPLING SUMMARY

DISPOSAL SITE

Friendship Foundry
Town of Friendship, New York

Sample			Total				
Identification	Metals	SVOCs	Phenolics	VOCs	PCBs	Pesticides	Herbicides
Analytical Method>	SW6010B ¹	SW8270C	E420.1	SW8260B	SW8081A	SW8081A	SW8151A
TP-1 ²	Х	Х	Х	Х	Х	Х	Х
TP-4	Х	Х	Х	Х	Х	Х	Х
TP-10 (Drum)	Х	Х	Х	Х	Х	Х	Х
TP-11	Х	Х	Х	Х	Х	Х	Х
TP-12	Х	Х	Х	Х	Х	Х	Χ
TP-15	X^3	Х	Х	Х	Х	Х	X
Green 'Resin'	Χ	Х					
Black 'Resin'	X	Х					
Grey Slag	Х						
White Slag	Х						
Total Samples	10	8	6	6	6	6	6

¹Mercury was analyzed via analytical method SW7471A.

²Test Pit Samples collected as composites from excavated fill material.

³A red (X) indicates at least one compound exceeded 6 NYCRR Part 375 Restricted Commercial guidance values.

TABLE 3 GROUNDWATER ELEVATION DATA¹

FACTORY AND DISPOSAL SITES

Friendship Foundry

Town of Friendship, New York

	V	Vell Information	on	Water Elevation Data						
Monitoring Well	Well Type ²	Ground Elevation	Riser Elevation	Depth To Water ³	Water Elevation	Reference Elevation ⁴	Depth To Water	Water Elevation	Reference Elevation	
Factory Site);			11/23/2007			5/8/2008			
MW-2	Existing	1526.8	1529.3				9.38	1519.92	11.38	
MW-3d	Existing	1523.9	1526.1	21.9	1502	0	17.12	1508.98	0.44	
MW-6	New	1534.5	1537.4	23.31	1514.09	12.09	20.79	1516.61	8.07	
MW-7	New	1531.3	1533.7	Dry			Dry			
MW-8	New	1523.4	1526.4	21.51	1504.89	2.89	17.86	1508.54	0	
Disposal Sit	te:			11/26/2007			5/8/2008			
MW-9	New	1535.8	1538.6	18.82	1519.78	2.56	16.57	1522.03	3.16	
MW-10	New	1536.6	1539.5	19.7	1519.8	2.58	12.21	1527.29	8.42	
MW-11	New	1525.7	1528.4	10.95	1517.45	0.23	7.33	1521.07	2.2	
MW-12	New	1524.6	1527.7	10.48	1517.22	0	8.83	1518.87	0	

All ground surface and riser elevation data was collected by Empire GeoServices. The data was not collected by a NYS Licensed Surveyor and was only used to approximate groundwater flow direction. Elevation data is listed in feet and referenced to a benchmark established by Creekside boundary.

² Existing wells refers to monitoring wells installed during the NYS Superfund investigation completed in the mid 1990s. New wells refer to monitoring wells installed during the current investigation.

³ Depth to water measurements are recorded in feet and measured relative to the top of riser.

⁴ Reference Elevation references each well elevation to the lowest elevation recorded at each site on each day.

TABLE 4 SUMMARY OF RESTRICTED COMMERCIAL EXCEEDANCES

FACTORY SITE

Friendship Foundry
Town of Friendship, New York

			Sample Identification						
		Restricted	TP-7	TP-12	B-2	B-11	TP-44		
		Commercial SCOs	(2.5')	(2')	(2-3')	(3')	(3')		
	Units>	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg		
	Arsenic	16	8.1	390	22	51	9.3		
	Barium	400	96	1500	130	190	190		
M E	Cadmium	9.3	3.5	2	2.1	83	1.2		
T	Copper	270	500	230	73	1100	41		
A	Lead	1000	360	1400	230	610	180		
s	Mercury	2.8	0.22	3.22	0.18	0.085	0.078		
svocs	Units>	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg		
	Benzo(a)pyrene	1000	NA	NA	NA	NA	3000		

Red highlight indicates an exceedance of 6 NYCRR Part 375 Restricted Commercial SCOs.

TABLE 5 SUMMARY OF RESTRICTED COMMERCIAL EXCEEDANCES

DISPOSAL SITE

Friendship Foundry
Town of Friendship, New York

			Sample Identification				
		Restricted Commercial SCOs	Green Resin	Black Resin	TP-15		
	Units>	mg/kg	mg/kg	mg/kg	mg/kg		
METALS	Arsenic	16	91	ND	21		
WIETALS	Barium	400	230	600	100		
	Cadmium	9.3	86	ND	0.9		

Red highlight indicates an exceedance of 6 NYCRR Part 375 Restricted Commercial SCOs.

ND - Non Detect

Appendix A

Reports on Disc:

- 1. Remedial Investigation Report Friendship Foundry Site Allegany County, New York Site No. 9-02-015 February 1996
- 2. Empire GeoServices Report, Inc.
 Subsurface Investigation
 Former Friendship Foundry Sites (aka Howard Street Site)
 Town of Friendship, New York
 February 15, 2008

NYS Department of Environmental Conservation

REMEDIAL INVESTIGATION REPORT

Friendship Foundry Site

Allegany County, New York Site No. 9-02-015

RECEIVED

FEB 1996

Bureau of Western Remedial Action Division of Hazardous Waste Remediation

TABLE OF CONTENTS

1.	Purpose and Scope	1
2.	Site Description and History 2.1 Site Description 2.2 Site History	2
3.	Geological and Hydrogeologic Setting	7
4.	Background Search/Survey of Existing Data	.0
5.	Soil Gas Survey	2
6.	Waste and Surface Soil Sampling	.5
7.	Test Pit Investigation	0;
8.	Surface water and Sediment Sampling	:3
9.	Groundwater Investigation	:7
10	10.1 USEPA IRM Removal	0
11	Discussion of Remedial Investigation Results	1
12		
	12.1 Friendship Foundry No. 1	
	12.2 Friendship Foundry No. 2 and 3	5

	<u>FIGURES</u>	
-	Figure 1	Site Location Map 4
_	Figure 2A	Site Map, Friendship Foundry No. 1
	Figure 2B	Site Map, Friendship Foundry No. 2 and No. 3
-	Figure 3	Soil Gas Survey
-	Figure 4A	Waste and Soil Sample Locations, Friendship Foundry No. 1
	Figure 4B	Waste and Soil Sample Locations, Friendship Foundry No. 2 and No. 3 19
	Figure 5	Test Pit Locations
***	Figure 6A	Surface Waste and Sediment Sample Locations, Friendship Foundry No. 1 25
- ,	Figure 6B	Surface Waste and Sediment Sample Locations, Friendship Foundry No.2&3 . 26
-	Figure 7	Monitoring Well Locations and Groundwater Flow Direction
- -	TABLES	
-	Table 1	Standards, Criterium, and Guidance Values
-	Table 2	Wastes Removed During USEPA Removal Action
	Table 3	Groundwater Elevation Data
	Table 4	Soil Gas Survey Target Compound List
-	Table 5	Surface Soil and Waste Sampling Results
	Table 6	Test Pit Investigation Sample Results
-	Table 7	Surface Water and Sediment Sampling Results 24
-	Table 8	Groundwater Sampling Results
-	APPENDIC	CES
-	• •	Data Tables Well Logs/Test Pit Logs USEPA Report
-	• •	Historical Correspondence

1.0 PURPOSE AND SCOPE

The Friendship Foundry site was listed on the New York State Registry of Inactive Hazardous Waste Sites in 1991 because of the presence of drums and other waste materials containing hazardous wastes which were abandoned when the foundry closed. The drums containing hazardous wastes, as well as surficial soil, foundry sand, and various foundry wastes, were removed by the USEPA by May 1992. The poor condition of many of the drums that were removed suggested that soil and/or groundwater may have been impacted by foundry activities. Also, foundry wastes (foundry sand, baghouse dust, etc.) remain on the site. The purpose of the remedial investigation at Friendship Foundry is to determine if soil or groundwater has been impacted by hazardous waste disposal associated with past foundry activities, and whether any additional hazardous wastes remain at the site. The following activities were included in the Remedial Investigation (RI):

- 1. Site Description and History
- 2. Background Search/Survey of Existing Data
- 3. Soil Gas Survey
- 4. Waste and Surface Soil Sampling Program
- 5. Subsurface (Test Pit) Investigation and Sampling Program
- 6. Surface Water and Sediment Sampling Program
- 7. Groundwater Investigation (Monitoring Wells)

Results from the sampling programs were compared to all applicable Standards, Criteria, and Guidance values (SCG's). SCG's that apply to different media are as follows:

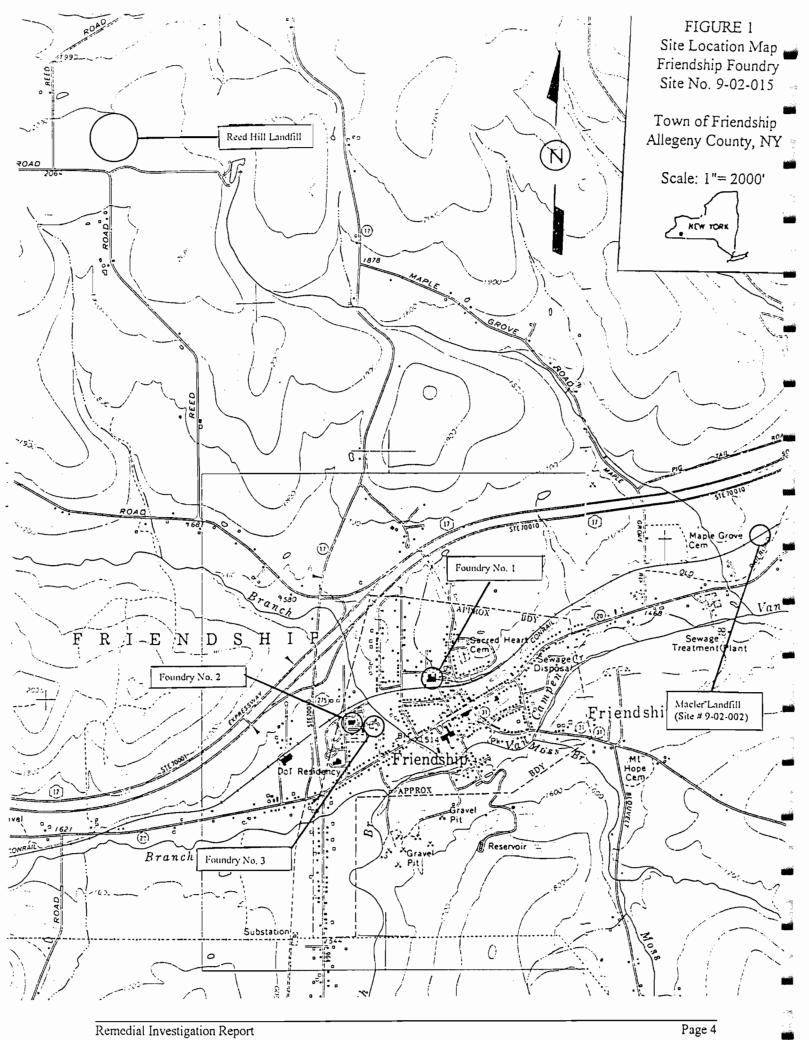
APPLIC	TABLE 1 ABLE STANDARDS, CRITERIA, AND GUIDANCE (SCGs)
Media	SCG
Soil	NYSDEC Division of Hazardous Waste Remediation TAGM 4046, Determination of Soil Cleanup Objectives and Cleanup Levels 6 NYCRR Part 371, NYSDEC Division of Hazardous Substance Regulation TAGM 3028, "Contained in Criteria for Environmental Media" (11/92)
Waste	6 NYCRR Part 371, Listing of Hazardous Waste, NYSDEC Division of Hazardous Substance Regulation TAGM 3028, "Contained in Criteria for Environmental Media" (11/92)
Surface Water Body Sediments	NYSDEC Division of Fish and Wildlife, Technical Guidance for Screening Contaminated Sediments
Surface Water	6NYCRR Part 700-705, Water Quality Regulations for Surface Water and Groundwater, NYSDEC Division of Water TOGS 1.1.1
Groundwater	6NYCRR Part 700-705, Water Quality Regulations for Surface Water and Groundwater, NYSDEC Division of Water TOGS 1.1.1

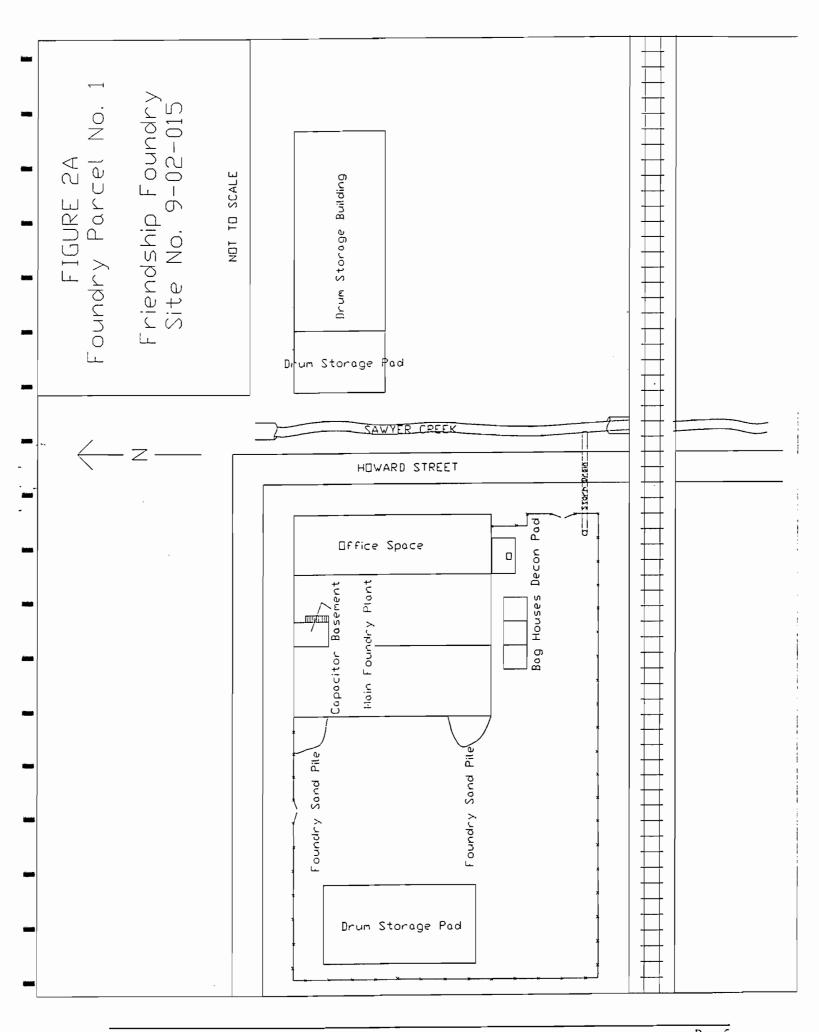
2.0 SITE DESCRIPTION AND HISTORY

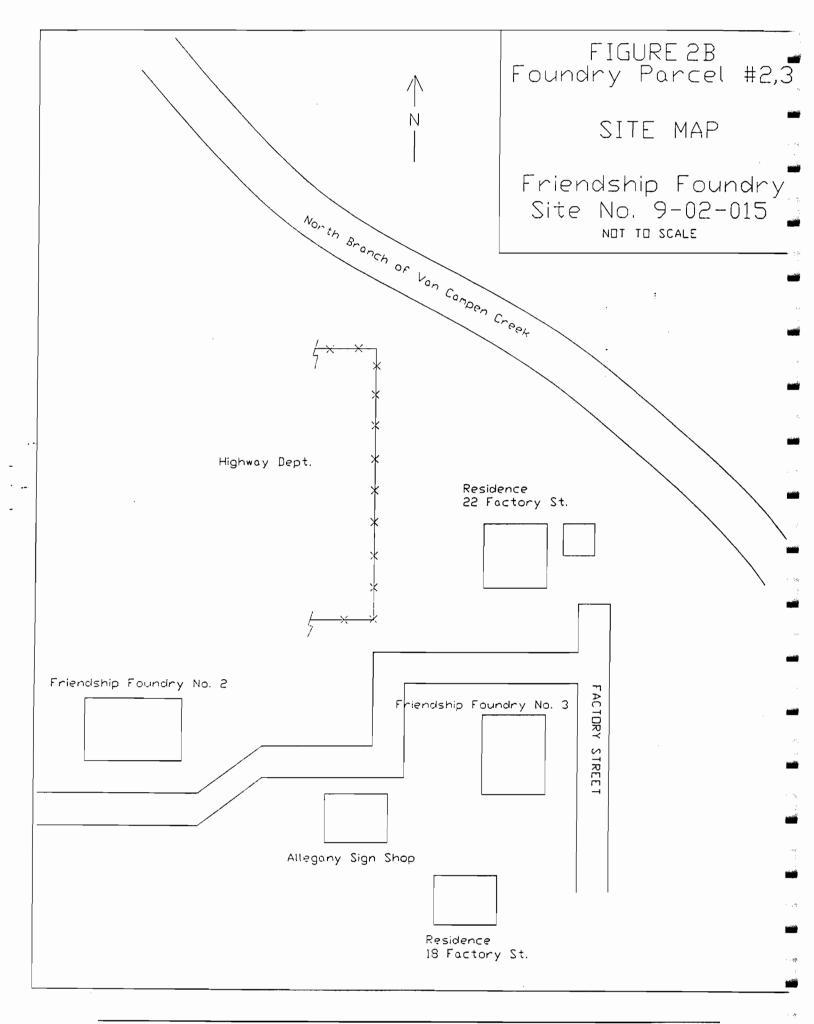
2.1 <u>Site Description</u>:

The Friendship Foundry site (Site No. 9-02-015) is an abandoned cast iron foundry located in the Village of Friendship, Allegany County. Friendship is a small village with a population of 2,185 (U.S. Census Bureau, 1990). The area surrounding the village is rural and the topography is hilly. Three separate properties comprise the site; known as Friendship Foundry No. 1 (main foundry plant, drum storage building, maintenance building, and wooden building), Friendship Foundry No. 2 (pattern shop), and Friendship Foundry No. 3 (casting cleaning operations). Figure 1 shows the locations of these three parcels. The three parcels total approximately 3.9 acres.

2.2 <u>Site History</u>:


The foundry began operations in the 1800's under the management of Drake Manufacturing Company. Drake Manufacturing sold the foundry to Macler Industries in 1955. The facility was closed in 1987 when Macler Industries filed for bankruptcy. Later in 1987 the plant reopened as Friendship Foundry under the ownership of Mr. and Mrs. Henry Mayo.


In May 1988, Friendship Foundry entered into Consent Order No. 87-183 with the New York State Department of Environmental Conservation (NYSDEC) to address air pollution violations. In August 1988, a NYSDEC inspection of the foundry noted several violations including piles of particulates from baghouse filters around the foundry yard, open containers of baghouse particulate, foundry sand being dumped outdoors, and several air pollution concerns. A status report issued by the NYSDEC's Division of Air Resources dated September 16, 1988 noted that Friendship Foundry was now properly storing foundry sand. however, it also noted contaminated soil that required cleanup, PCB contamination of a basement sump, the discharging of water without a SPDES permit, and several continuing air emissions problems. On March 6, 1989 Consent Order No. 87-183A was issued by the NYSDEC fining Friendship Foundry for failure to comply with the previous Consent Order and requiring the foundry to design and construct an air pollution abatement system, properly store foundry sand, and dispose of all drums in the drum storage yard. On June 1, 1990 the NYSDEC determined that the foundry was unable to comply with the air pollution regulations specified in Order on Consent #87-183A and issued a Summary Abatement Order terminating Friendship Foundry's authorization to operate the air emission points associated with the casting operation, which resulted in the closing of the Foundry.


Subsequent to the closing of the Foundry, site inspections revealed foundry sand, leaking and bulging drums, chemical sheens on nearby surface water and other waste materials remaining at the site, which represented threats to public health and/or the environment. It was also noted that although 1,1,1-trichloroethane had been used for degreasing at the foundry, no records regarding proper disposal of the spent material were found. To address the threat posed by the abandoned waste materials, in an October 10, 1990 letter, the NYSDEC

requested that the United States Environmental Protection Agency (USEPA) perform an emergency removal action to stabilize, characterize and remove the hazardous wastes and substances which had been abandoned at the Foundry site. This interim remedial measure (IRM) was initiated by USEPA on August 7, 1991 and the removal action was completed in May 1992. Table 2, which was developed by the USEPA, documents the types and quantities of waste removed during the IRM. In addition to the wastes listed on Table 2, foundry sand, baghouse dust, contaminated soil, and other debris were also removed from the foundry and sent to a secure landfill. At the completion of the IRM, the foundry area was seeded to stabilize the surface soils and reduce runoff from the site.

TABLE 2 Wastes Removed During USEPA Removal Action					
Waste Type	Volume/Weight				
Labpacks	9,045 pounds				
Waste flammable/corrosive liquid	110 gallons				
Waste combustible liquid	55 gallons				
Waste flammable liquid	605 gallons				
Waste alkaline liquid	550 gallons				
Waste corrosive reactive solid	600 pounds				
Waste corrosive reactive liquid	110 gallons				
Waste PCB oil	5000 K (assumed Kilograms)				
Waste flammable liquid	5,285 gallons				
Phenolic based foundry sand	1,038 tons				
Phenolic hard rock resins	150 cubic yards				
Phenolic powdered resins	22,500 pounds				
Empty containers	590 55 gallon and 250 5 gallon				
Scrap metal	62 tons				
Foundry products	27,850 pounds				

The generally poor condition of the drums removed from the site suggested that soil and/or groundwater may have been impacted by the hazardous wastes removed from the site during the IRM. Also, foundry sand and baghouse dust remained on the Foundry No. 1 parcel after the EPA removal action was complete. In order to resolve the Class 2 designation of the site, NYSDEC determined that a Remedial Investigation (RI) was necessary to identify any remaining hazardous waste and associated environmental contamination which may have resulted from the disposal of the waste.

3.0 Geological and Hydrogeological Setting:

3.1 Regional Geology and Hydrogeology:

The following section is an excerpt from the report "Friendship, New York, Groundwater Development Feasibility Study," prepared for Day Engineering by Moody and Associates.

Topographical Setting: The Village of Friendship, New York is located within Allegany County in the southern portion of the Genesee River Basin in glaciated southwestern New York. The topography in the area is dissected by Van Campen Creek and it's North Branch, West Branch, and South Branch tributaries. Total topographic relief in the study area is approximately 540 feet with the highest elevations on the hills surrounding Friendship, New York and the lowest elevations found in the Van Campen Creek Valley.

Glacial Geology: This region of Allegany County, New York contains a covering of unconsolidated glacial and fluvio-glacial sediments deposited here during the Pleistocene glaciation events. The highlands surrounding Friendship, New York are generally covered with one to a hundred feet plus of poorly sorted till. Till is generally poorly sorted sands, gravels, and even boulders set in a very fine clay matrix. The valleys of Van Campen Creek and it's tributaries contain glacial and fluvio-glacial deposits.

The valley of the West Branch of Van Campen Creek, west of Route 275, and along the valley of Van Campen Creek south of Route 408 and northeast of Corbin Hill Road, contain stratified sands and gravels. These sands and gravels lie beneath lacustrine deposits consisting of fine grained sands, silts, and clays.

The valley of the South Branch of Van Campen Creek and in the Van Campen Creek Valley north of Route 408 contain stratified sands and gravels with lacustrine deposits overlying them. The lacustrine deposits of fine sands, silts, and clays are overlain by approximately 5 to 20 feet of additional sands and gravels.

On the Van Campen valley wall north of Mt. Hope Cemetery, but south of Route 408, there are some surficial kame deposits of course sands and gravels deposited upon till.

<u>Bedrock Geology</u>: Geologic units found in the study area consist of the Upper Devonian Age, Conneaut and Canadaway Groups.

Bedrock is exposed in few locations in the Friendship, New York area due to extensive periods of glaciation, which resulted in the deposition of unconsolidated glacial material over the bedrock surface.

The Conneaut Group is the youngest bedrock unit in the study area, and therefore, is found at the highest elevations underneath unconsolidated glacial sediments. The Conneaut Group consists of alternating sequences of shales, siltstones, and fine grained sandstones. The Conneaut Group has potential to be a groundwater source in this region where thick beds of sandstones are encountered.

Beneath the Conneaut Group lies the Canadaway Group which consists of more sequences of alternating shales, siltstones, and fine grained sandstones. This group has the potential as well to be used as a groundwater source in this region, where thick beds of sandstone are encountered.

Structural Geology: Allegany County, New York is located in the Appalachian Uplands physiographic province. This area consists of moderately to steeply sloping hillsides and deep narrow valleys. The bedrock in this region has a gentle dip to the southwest at approximately 30 to 60 feet per mile.

Occurrence of Groundwater in Glacial Deposits: The sand and gravel deposits located within the Van Campen Creek Valley and it's tributaries are potential sources for groundwater aquifers.

Occurrence of Groundwater in Bedrock: The occurrence of thick accumulations of unconsolidated glacial sediments, which are largely fine grained and have low permeability, result in little infiltration of precipitation and consequently recharge to the bedrock aquifer occurs slowly. Bedrock exposed at the surface or beneath a thin cover of glacial sediment will yield water under water table conditions, however, wells drilled to greater depths in bedrock may yield water under artesian conditions.

3.2 <u>Site Geology and Hydrogeology</u>:

Friendship Foundry is located in the Village of Friendship, which occupies a low flat area that comprises the valley of Van Campen Creek. A small drainage swale/ditch known as Sawyer Creek runs along the eastern side of the Friendship Foundry No. 1 property and flows south into Van Campen Creek. On route to Van Campen Creek, Sawyer Creek feeds a shallow man-made ornamental pond known as the Nicholas Pond. North of Friendship Foundry No. 3, the North Branch of Van Campen Creek flows northeasterly towards Van Campen Creek.

The RI geological and hydrogeological investigations were focussed on the Friendship Foundry No. 1 property since this was the location of the vast majority of the hazardous waste removed by the USEPA IRM. The shallow overburden was investigated by the excavation of test pits. In general, the upper foot of the overburden consisted of dark brown sandy fill. Foundry debris (scrap metal, chunks of hard resin, ash, etc.) were also encountered in the top foot in some test pits. Some of the fill appeared stained. Below the fill a one to two foot layer of clayey silt was encountered over a majority of the site, observed to have areas of perched groundwater. This silt layer was not observed in three test pits located in the center of the main foundry yard (TP-2, TP-3, and TP-8). Based upon these observations, the silt layer is either discontinuous or dips to a lower elevation in these areas. The next unit, beginning about two to four feet below ground surface, is a brown till with sand and gravel. The silt and till layers appear to be undisturbed native material. Test pit locations are shown on Figure 5 and the test pit logs are included in Appendix B.

The overburden investigation was continued to a depth of 44 feet below ground surface (bgs) during the installation of monitoring wells. Split spoon sampling confirmed the presence of approximately two feet of fill covering a majority of the site. Alternating layers of silt, silty clay, sand, silty sand, and sand/silt/gravel lay beneath the fill. This layering continues at least as far as 44 feet bgs; the extent of the drilling program. Soil testing was performed on a sample of the silty clay collected with a Shelby Tube from MW-2 at a depth of 18 to 19.75 feet below ground surface. A sieve analysis determined that the sample contained 0.7% sand, 77.8% silt, and 21.5% clay. The hydraulic conductivity of the sample was 1.2 x 10° cm/s as calculated by performing an undisturbed falling head test. A hydraulic conductivity of 1.2 x 10° cm/s is typical for silt and glacial till (Groundwater, Freeze and Cherry, 1979) which can act as a semi-permeable confining layer. The sample was visually classified as 'Grey moist SILT, little very fine sand, trace clay laminated with possible fabric other than laminations.'

Monitoring wells were installed with total depths ranging from 16 feet bgs to 44 feet bgs, with each well screened for the bottom ten feet. These wells confirmed the presence of groundwater in the overburden. One well (MW-5) well was very low yielding, containing only 6 inches of water. The remaining five shallow wells and one deep well produced a significant flow rate of groundwater. Monitoring well locations are shown on Figure 7 and the well installation logs are included in Appendix B.

Groundwater elevations are presented in Table 3. Groundwater contours have been inferred using these monitoring points and are shown on Figure 7. From these contours, overburden groundwater appears to generally flow to the south-southeast towards Van Campen Creek. This flow pattern is consistant with the topographical drainage pattern of the area.

	TABLE 3 GROUNDWATER ELEVATION DATA										
Well	Measurement Date	Depth of Well	Groundwater Elevation	GW Yield							
MW-1	1/9/95	21	86.8	High							
MW-2	1/10/95	19	86.2	High							
MW-3	1/10/95	19	84.8	High							
MW-4	1/10/95	20.35	76.93	Moderate							
MW-4D	1/10/95	43.9	73.44	Moderate							
MW-5	1/11/95	17.9	74.28	Low							
MW-6	1/11/95	16	87.35	Moderate							

4.0 BACKGROUND SEARCH/SURVEY OF EXISTING DATA

Before field investigation activities were initiated, a review of available documents related to previous actions at this site was performed. The documents that were reviewed include the NYSDEC project file; the NYSDOH project file; and the USEPA Final Site Inspections Report, Friendship Foundry, Vol. I and II, July 7 1993. In addition to information on the properties comprising the site, the records search identified several other foundry properties used in the past as foundry sand disposal areas. These properties include: Macler Landfill, Reed Hill Dump, and a landfill near the North Branch of Van Campen Creek. These locations are also shown on Figure 1.

The following is a summary of past sampling events associated with the investigation of conditions on the foundry property. Many of the sampling events resulted from complaints to the NYSDEC by residents of Friendship. Additional documentation of these events can be found in Appendix D of this report.

January 21, 1988:

NYSDEC and Allegeny County Department of Health personnel sampled Sawyer Creek and analyzed for "phenol, priority pollutants, and heavy metals." Phenol was detected at 12 ppb. It was not noted whether the sample was of sediment or surface water..

May 26, 1988:

NYSDEC personnel sampled the capacitor basement sump, drums, stained soil, and an underground storm sewer line near the foundry outfall. The

capacitor basement sump contained 8.3 ppb PCBs in the water and 4,200,000 ppb in sediment. PCBs at a concentration of 2,700 ppb were detected in the underground sewer line. One of the soil samples contained phenol at a concentration of 8,900,000 ppb.

August 3, 1988:

NYSDEC personnel sampled Sawyer Creek and the Nicholas Pond, which is fed by Sawyer Creek. Sawyer Creek was analyzed for PCBs and pesticides. No compounds were detected above instrument detection limits. Three sediment samples were collected from the Nicholas Pond and analyzed for PCBs and pesticides. One of the three samples was also analyzed for organics and inorganics. An water sample was collected and analyzed for phenols, formaldehyde, and PCBs. None of the analytes were present above instrument detection limits in any of the pond samples.

October 26, 1988:

NYSDEC personnel sampled sediment, a "rubbery" solid layer, and water from the Nicholas Pond and analyzed for PCBs and pesticides. The rubbery solid layer was also analyzed for phenols. No analytes were detected in surface water. PCBs were detected at 1 ppb in sediment and 18 ppb in the rubber solid layer. Also, phenol was detected at 24,000 ppb in the rubbery solid layer.

January 13, 1989:

NYSDEC personnel sampled sediment from the capacitor basement sump after it had been reportedly cleaned. PCBs were detected at a concentration of 180,000 ppb.

July 6, 1989:

Friendship Foundry personnel sampled the capacitor basement sump, drum material, "dust", and soil. Six samples were collected and analyzed for PCBs, ignitability, and phenols. In addition, the Extraction Procedure (EP) analysis for metals was performed on four of the samples. PCBs were detected at 90,000 ppb from the capacitor basement sump and 11,000 ppb from a drum used in the cleanup of the capacitor basement sump. The EP analysis from a dust sample identified 6,420 ppb phenol.

July 20, 1990:

NYSDEC personnel collected and analyzed six samples from drums located on-site. Four samples were ignitable and one contained 2,900,000 ppb PCBs. In addition, dichloroethane (DCA) was detected in one sample at 3,580,000 ppb; trichloroethane (TCA) was detected in three samples at 67,000,000 ppb, 36,000 ppb, and 8,600 ppb; and total xylenes were detected in three samples at 3,600,000 ppb, 4,000,000 ppb, and 420,000 ppb.

November, 1990:

The United States Environmental Protection Agency (USEPA) collected two drum, one oil, and two surficial soil samples from the main foundry area prior to the emergency removal action. Samples were analyzed for VOCs, SVOCs, and pesticides. The oil sample contained 44,000 ppb toluene, 52,000 ppb

ethyl benzene, and 990,000 ppb total xylenes. Drum samples contain total xylenes at 32,000 ppb and 47,000, and phenol at 35,000,000 ppb. In one soil sample: acetone was detected at 1,200 ppb, fluoranthene was detected at 82,000 ppb, pyrene was detected at 73,000, beta-BHC was detected at 1,200 ppb, and 4,4-DDT was detected at 2,200 ppb. No contaminants were detected in the other soil sample.

March 28, 1995:

The Allegany County Department of Public Works (DPW) dug four test pits around Friendship Foundry No. 2 and collected samples. Samples were analyzed for metals, VOCs, SVOCs, and PCBs. None of the analytes were detected above NYSDEC's DHWR TAGM 4030 soil cleanup objectives.

Based on the background information, NYSDEC determined that the primary focus of the remedial investigation should be the Friendship Foundry No. 1 property. Visual observations and known histories of Friendship Foundry No. 2 and No. 3 indicate that hazardous waste generation and improper hazardous waste disposal were not likely to have occured at these two locations. An in depth investigation of Friendship Foundry No 2 and No. 3 was therefore not warranted.

5.0 SOIL GAS SURVEY

It was known that Friendship Foundry used the solvents trichloroethane (TCA) and dichloroethane (DCA) in cleaning operations and, since no records could be found demonstrating proper disposal of spent solvents, on-site disposal was a possibility. In addition, the abandoned drums of chemicals removed by the USEPA were missing bungs and generally in a poor condition. Because of the large area that needed to be investigated, a soil gas survey was undertaken to attempt to locate possible areas of past spills or disposal. The soil gas survey results were then used to direct the soil sampling program, test pit program, and groundwater investigation.

Soil gas sample collection was attempted at 45 locations (see Figure 3) at Friendship Foundry No. 1 on November 29-30, 1994. Due to recent rain, some areas of the site were inundated and could not be sampled. In total, 30 soil gas samples and one soil sample were collected and analyzed.

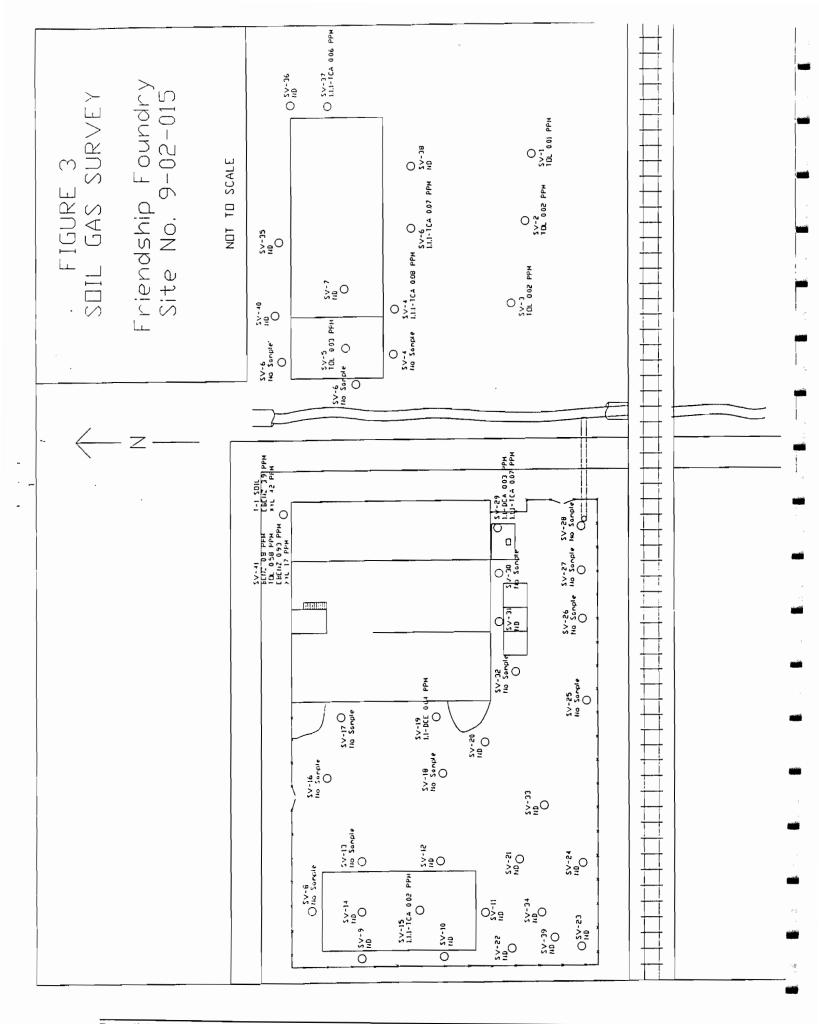

Sample locations were selected throughout the site with preference given to known or suspected drum storage areas. Soil vapor was collected from a depth of two to five feet below ground surface, based on field conditions. Soil vapor was collected through driven 7/8" OD hardened steel rods. When the rod was in place, clay was placed around the rod to prevent movement of atmospheric air into the sample. A pump was connected to the rod and the system was purged for two minutes at a flow of 2.0 liters per minute (or equivalent mass at lower flowrates). After purging, a 5.0 mL gas tight syringe was used to collect a sample. Samples were immediately taken to and analyzed by an onsite mobile laboratory. Samples were analyzed using a modification of EPA Methods 8010/8020. The target compounds are identified on Table 4.

TABLE 4 Soil Gas Survey Target Compound List

Benzene Toluene Ethylbenzene Chlorobenzene o-xylene, p-xylene, and m-xylene Vinyl Chloride 1,1-Dichloroethene Methylene Chloride t-1,1-Dichloroethene 1.1-Dichloroethane c-1,2-Dichloroethene 1,1,1-Trichloroethane Carbon Tetrachloride 1,2-Dichloroethane Trichloroethene Tetrachloroethene

The solvents toluene, 1,1,1-TCA, 1,1-DCE, and 1,1-DCA were detected in concentrations ranging from 10 ppb to 80 ppb in ten of the thirty samples. Eight of the samples identified with levels of solvents were in areas of known chemical storage (one through the drum storage pad in the main foundry yard and seven spaced around the drum storage building). One sample containing solvents was located near the decontamination pad used during the USEPA emergency response. Another sample with detected solvents was located near the main foundry building by a pile of foundry sand. Two samples were analyzed from near an underground storage tank standpipe (one soil gas, one soil). The soil had a very distinct petroleum odor and xylene was detected at concentrations as high as 42 ppm. Also detected were benzene, toluene, and ethyl benzene. See Figure 2 for sample locations and concentrations.

DCE, DCA, and TCE were detected at relatively low concentrations. The number and extent of the detections do not, however, suggest the presence of a source area. A pattern of toluene contamination was identified south of the drum storage building. Further investigation of this area occurred during the test pit investigation. Contamination found near the underground storage tank standpipe indicates the possible presence of a petroleum spill. This has been referred to the NYSDEC Region 9 office, Division of Spills Management, for appropriate action.

6.0 WASTE AND SURFACE SOIL SAMPLING

To characterize surface soil and foundry waste, samples were collected and analyzed by the Toxicity Characteristic Leaching Procedure (TCLP). The TCLP analysis measures, under laboratory conditions, the amount of a contaminant that could potentially leach out of the sample and into the natural environment. Based on the concentration of contaminants detected in the TCLP leachate, 6NYCCR Part 371 defines levels at which the material may be classified as a characteristic hazardous waste. The classes of compounds analyzed for using this method were: volatile organic compounds (VOCs), semi-volatile compounds (SVOCs), pesticides, herbicides, and metals. In addition, some of the samples collected were also analyzed by NYSDEC Analytical Services Protocol 12/91 (ASP) for the Target Compound List (procedure henceforth referred to as 'ASP') for VOCs, SVOCs, metals, and PCBs/pesticides. The ASP analysis measures the actual concentration of compounds present in a sample. By using the ASP and TCLP, a correlation can be made between the amount of contaminants that could potentially leach and the actual amount of contaminants in the sample.

The following is a description of the type of wastes sampled, why each sample was collected, and any observations noted during sample collection.

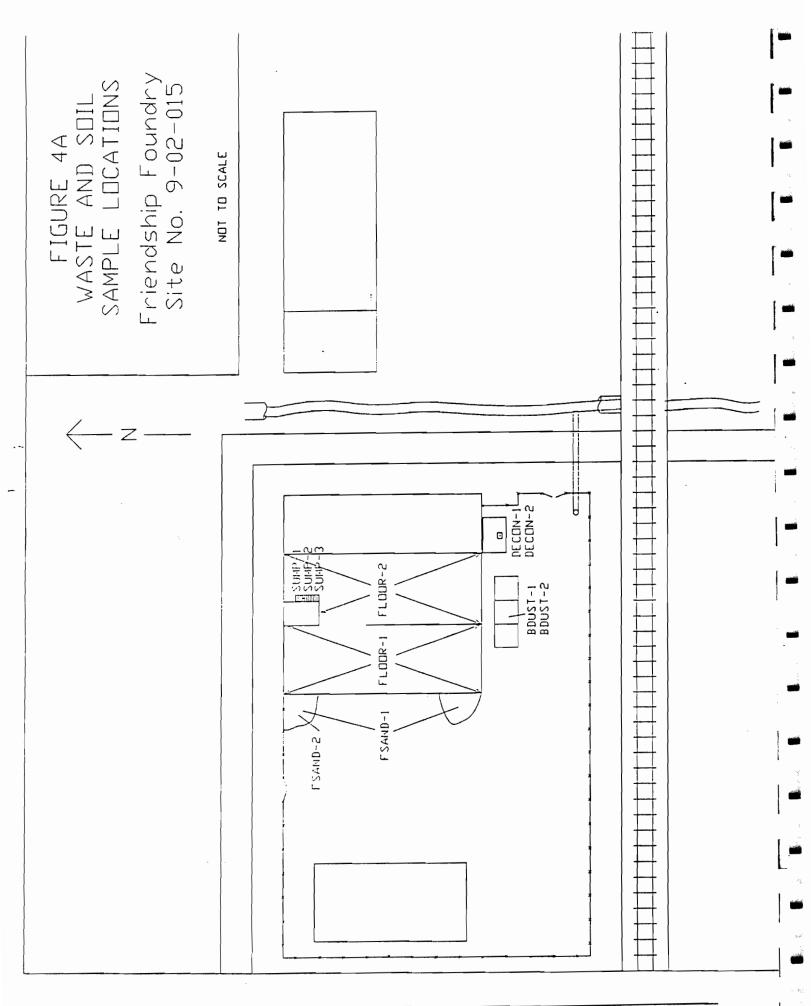
- DECON-1: Adjacent to the main foundry building is a concrete pad with a sump. This pad was used by the USEPA as a decontamination pad during their removal action. During a site walkover, a petroleum-like sheen was observed on the surface of the sump so a sediment and water sample were collected. The sediment had a strong petroleum odor and high organic content (leaves, etc.).
- DECON-2: This is an aqueous sample collected in conjunction with DECON-1. The sample had a petroleum odor and sheen on the surface.
- FSAND-1: Sand was mixed with resins to form molds used in the casting of iron at the foundry. When molds were no longer useful, they were broken up and became waste foundry sand. Foundry sand is not a listed hazardous waste and is not typically a characteristic hazardous waste. However, in some cases foundry sand may contain high levels of heavy metals which could result in it being a characteristic hazardous waste. Resins used to bind the sand are often phenolic based and, although not a hazardous waste, are considered a hazardous substance. Piles of the waste foundry sand are scattered throughout the main plant yard. To determine if the sand is a characteristic hazardous waste, an analysis by the TCLP was performed on this sample collected from the sand piles.
- FLOOR-1: The main plant building has a dirt floor. To evaluate whether foundry activities resulted in contamination of this soil, a composite sample was collected from several locations on the foundry plant floor.
- FLOOR-2: A sample similar to FLOOR-1 was collected from a different area in the main plant building.

BDUST-1: Foundry activities created air emissions that required controls. The air emissions control device used at Friendship Foundry was a baghouse filter. A baghouse contains a series of filter bags that collect particulates, thereby preventing their escape to the environment. The collected particulates become a waste known as cupola dust or baghouse dust. Baghouse dust generated during foundry activities is not a listed hazardous waste. In some cases, high heavy metal content may result in baghouse dust being classified as a characteristic hazardous waste. Samples were collected to determine if the baghouse dust is a hazardous waste. This sample was collected from piles that exist under the baghouses in the main foundry yard.

BDUST-2: Baghouse dust from the main foundry yard was sampled.

FSAND-2: Foundry sand from the main foundry yard was sampled.

DRUM-1: A local resident identified partially buried drums on the bank of the North Branch of Van Campen Creek. These drums contained obvious foundry wastes such as iron slag, foundry sand, etc. Since these drums were in close proximity to FF#3, samples were collected for analysis.


SOIL-1: A local resident claimed that a tree located adjacent to a vent from the FF#3 building used to have orange stained bark. Visual observations did not reveal any evidence of stained bark. However, a soil sample was collected with a hand auger at one foot below ground surface. The sample was reddish black in color.

SUMP-1: High levels of PCBs were historically present in sediment from the capacitor basement sump. To determine whether the sump was still contaminated, collection of water and sediment samples was attempted. When samples were collected, the basement was flooded, making the sump inaccessible. Since there was no sediment on the basement floor, only an aqueous sample was collected and analyzed.

SUMP-2: PCBs were detected in sample SUMP-1 (see above) at 73 ppb. PCBs in water flooding the basement suggest that a source area may exist in the basement. To further investigate the sump, NYSDEC decided to dewater the basement and collect capacitor sump sediment samples. During a reconnaissance site visit prior to dewatering the basement, a ½ inch thick layer of floating petroleum product was observed covering the flooded basement. Sample SUMP-2 was collected from the floating petroleum product.

SUMP-3: This is an aqueous sample collected in conjunction with SUMP-2.

TABLE 5 SURFACE SOIL AND WASTE SAMPLING RESULTS	COMPOUND CLASS DETECTED BELOW ANALY 1ES DETECTED OVER SCG'S (SCG Level)	C, posticides/PCB, metals ASP: VOC, SVOC, pesticides/PCB, metals Total Xylenes: 11,400 ppb (1,000) Naphthalene: 73,000 ppb (13,000)	OC, pesticides, herbicides, metals Metals None	DC, pesticides, herbicides, metals TCLP: metals TCLP: metals ASP: VOC, SVOC, pesticides, metals ASP: Phenol: 170 ppb (30) Arsenic: 8,700 ppb (7,500) Cadmium: 4,500 ppb (1,000) Cadmium: 78,900 ppb (10,000) Copper: 347,000 ppb (25,000) I.cad: 844,000 ppb (25,000) Nickel: 90,800 ppb (25,000) Zinc: 1,150,000 ppb (20,000)	DC, pesticides, herbicides, metals TCLP: metals	OC, pesticides, herbicides, metals TCLP: VOC, SVOC, pesticides, herbicides, hone metals	OC, pesticides, herbicides, metals TCLP: VOC, SVOC, metals None	DC, pesticides, metals TCLP:, metals C, pesticides, herbicides, metals TCLP: None ASP: VOC, SVOC, pesticides, metals ASP: Phenol: 4,000 ppb (30) 2-Methyl phenol: 270 ppb (100) Arsenic: 20,000 ppb (12,000) Cadmium: 12,200 ppb (1,000) Chromium: 276,000 ppb (40,000) Chromium: 276,000 ppb (500,000) Lead: 4,320,000 ppb (500,000) Nickel: 322,000 ppb (25,000) Zinc: 766,000 ppb (25,000)	OC, pesticides, herbicides, metals OC, pesticides/PCB, metals ASP: VOC, SVOC, metals Copper: 27,500 ppb (25,000)	ASP: SVOC, metals Arsenic: 10,100 ppb (7,500) Chromium: 22,200 ppb (10,000)
INS	MATRIX ANALYSIS	ASP: VOC, SVOC, pesticides/PCB, metals	TCLP: VOC, SVOC, pesticides, herbicides, metals	TCLP: VOC, SVOC, pesticides, herbicides, metals ASP: VOC, SVOC, pesticides/PCB, metals	TCLP: VOC, SVOC, pesticides, herbicides, metals	TCLP: VOC, SVOC, pesticides, herbicides, metals	TCLP: VOC, SVOC, pesticides, herbicides, metals	TCLP: VOC, SVOC, pesticides, herbicides, metals ASP: VOC, SVOC, pesticides/PCB, metals	TCLP: VOC, SVOC, pesticides, herbicides, metals ASP: VOC, SVOC, pesticides/PCB, metals	ASP: SVOC, metals
	MATRIX	Wastc	Waste	Waste	Waste	Waste	Waste	Wastc	Waste	Soil
	SAMPLE	DECON-1	FSAND-1	FSAND-2	F1,001R-1	FLOOR-2	BDUST-1	BDUST-2	DRUM-1	SOIL-1

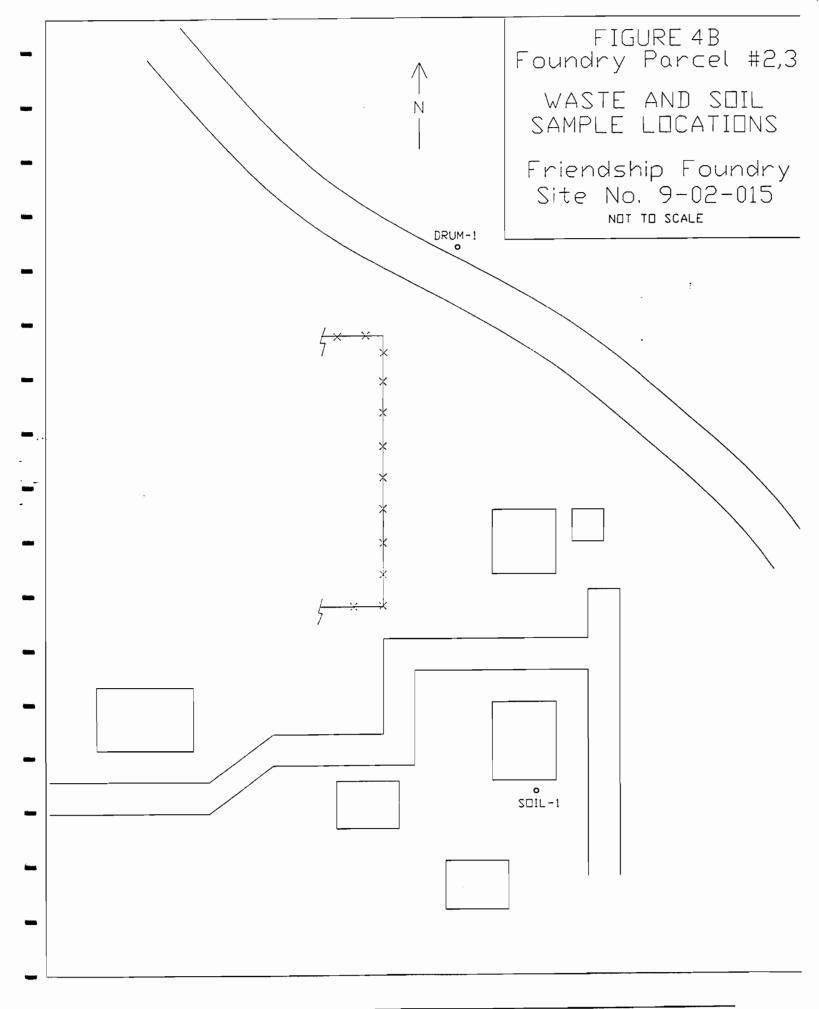
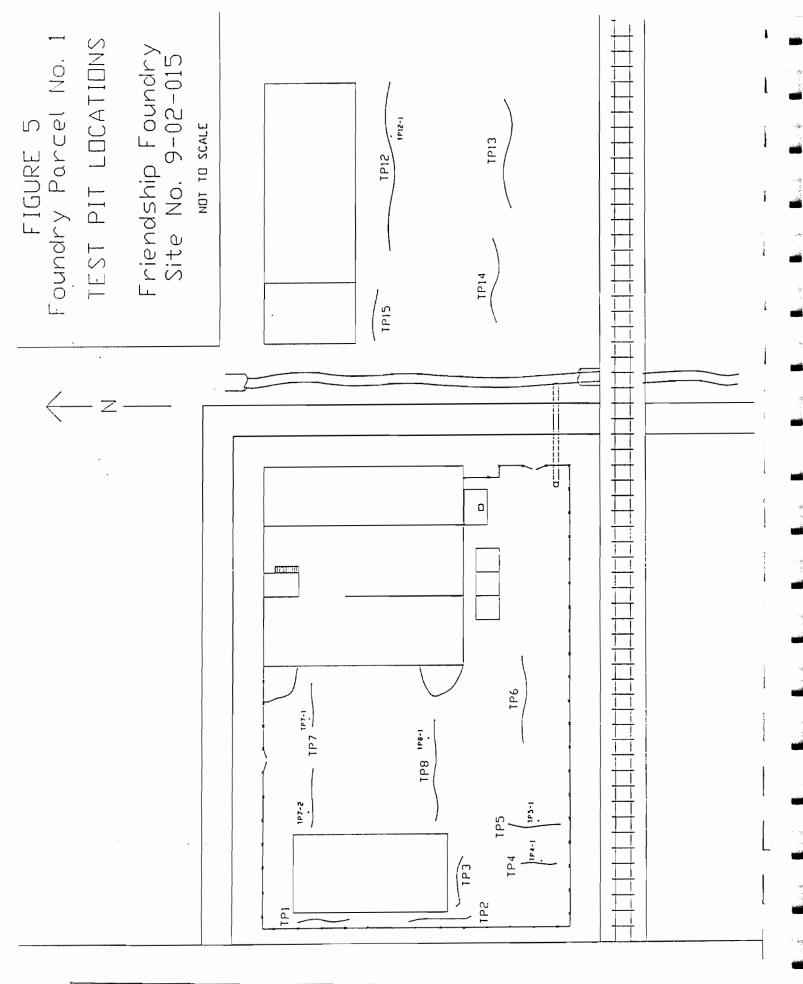


Table 5 summarize the results of the soil and waste sampling. Appendix A includes the detailed presentation of the sampling results.

7.0 TEST PIT INVESTIGATION

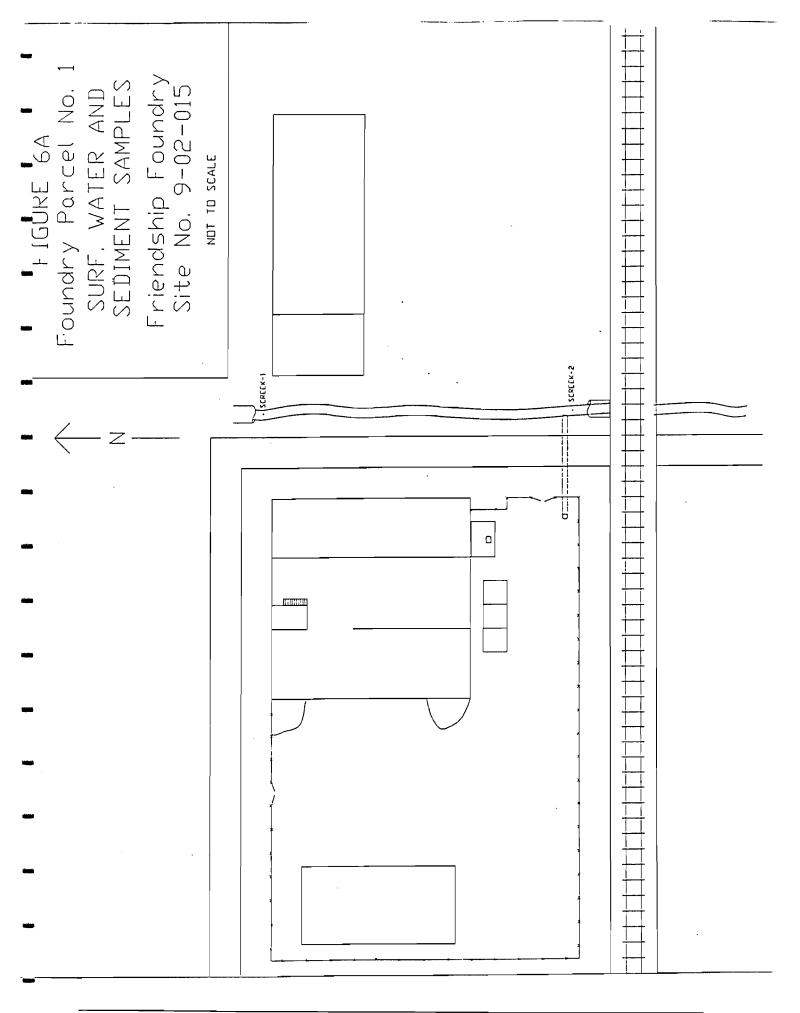

The purpose of the test pit investigation was to characterize shallow sub-surface geology, observe and sample subsurface soil, and to search for possible buried objects. Test pits were excavated in the main foundry yard and in the field adjacent to the drum storage building (see Figure 5). Test pit locations were based in part on the results of the soil gas survey and existing features at the site. Test pits were excavated to a depth of five to ten feet below ground surface using a backhoe. Field activities occurred from December 6, 1994 to December 7, 1994. The summary description of the overburden is presented in Section 3.2, Site Geology and Hydrogeology, and is based in part on the descriptions of the shallow overburden from this investigation.

Samples were collected from the test pits based on field observations. The following is a summary and description of the samples collected:

- TP4-1: This sample was collected from test pit TP4. A gray to white colored ash-like material was encountered at a depth of approximately one foot below ground surface.
- TP5-1: This sample was collected from test pit TP5. A black stained fill material consisting of sand, gravel, and foundry waste existed to a depth of four feet.
- TP7-1: This sample was collected from test pit TP7. A black colored sandy fill material was collected from just above the silt layer (approx. one foot bgs).
- TP7-2: This sample was collected from test pit TP7. A purple hard resin was encountered at a depth of one foot below ground surface and sampled.
- TP8-1: This sample was collected from test pit TP8. A sample was collected from black stained soil at a depth of one foot below ground surface.
- TP12-1: This sample was collected from test pit TP12. A sample was collected from black stained soil at a depth of one foot below ground surface.

Table 6 summarizes the analyticval results from the test pit investigation sampling. Appendix A includes the detailed presentation of the sampling results and Appendix B includes the test pit logs.

	ANALYTES DETECTED OVER SCG'S	None	TCLP: None ASP: Arsenie: 7,900 ppb (7,500) Chromium: 10,900 ppb (10,000) Copper: 25,300 ppb (25,000) Zine: 85,600 ppb (20,000)	TCLP: None ASP: Phenol: 240 ppb (30) Dibenzo(a,h)anthracene: 330 ppb (14) Arsenie: 8,700 ppb (7,500) Cadmium: 1,200 ppb (1,000) Chromium: 29,500 ppb (10,000) Copper: 32,500 ppb (25,000) Zinc: 126,000 ppb (20,000)	None	None	TCLP: None ASI ² : Arsenic: 14,200 ppb (12,000) Cadmium: 1,600 ppb (1,000) Chromium: 23,400 ppb (10,000) Copper: 58,600 ppb (50,000) Mercury: 440 ppb (200) Zinc: 787,000 ppb (20,000)
TABLE 6 TEST PIT INVESTIGATION SAMPLE RESULTS	COMPOUND CLASS DETECTED BELOW SCG'S	TCLP: VOC, metals	TCLP: metals ASP: metals	TCLP: SVOC, metals ASP: VOC, SVOC, pesticides, metals	TCLP: metals	TCLP: metals	TCLP: metals ASP: metals
TEST PIT INVE	ANALYSIS	TCLP: VOC, SVOC, pesticides, herbicides, metals	TCLP: VOC, SVOC, pesticides, herbicides, metals ASP: VOC, SVOC, pesticides/PCB, metals	TCLP: VOC, SVOC, pesticides, herbicides, metals metals	TCLP: VOC, SVOC, pesticides, lerbicides, metals	TCLP: VOC, SVOC, pesticides, lecrbicides, metals	TCLP: VOC, SVOC, pesticides, herbicides, metals
	MATRIX	Soil	Soil	Soil	Soil	Soil	Soil
	SAMPLE	TP4-1	TP5-1	TP7-1	1.P7-2	TP8-1	TP12-1


8.0 SURFACE WATER AND SEDIMENT SAMPLING

The following samples were collected to assess any impact on surface water bodies by the site.

- SCREEK-1: Sawyer Creek flows in a drainage ditch that runs along the western side of Howard Street, between the main foundry yard and the drum storage building. A drainage pipe, which has been cleaned, formally ran from the capacitor basement to the creek. Samples collected from the creek in the past have not shown sediment or surface water contamination. However, because of the past high concentrations of PCBs in the capacitor basement sump, sediment samples upstream and downstream of the discharge pipe were collected and analyzed. This is the upstream sample collected.
- SCREEK-2: This is the downstream sample collected from Sawyer Creek.
- VCCREEK-1: Partially buried drums were discovered along the north bank of the North Branch of Van Campen Creek. Since the contents of the drums were unknown, sediment and surface water samples were collected from the creek upstream and downstream of the drum location. This sediment sample was collected upstream.
- VCCREEK-2: This sample is the upstream surface water sample collected in the North Branch of Van Campen Creek.
- VCCREEK-3: This sample is the downstream sediment sample collected in the North Branch of Van Campen Creek.
- VCCREEK-4: This sample is the downstream surface water sample collected in the North Branch of Van Campen Creek.
- Table 7 summarizes the results of the surface water and sediment sampling. Appendix A includes the detailed presentation of the sampling results.

		SURFACE WATER	TABLE 7 SURFACE WATER AND SEDIMENT SAMPLE RESULTS	
SAMPLE	MATRIX	ANALYSIS	COMPOUND CLASS DETECTED BELOW SCG'S	ANALYTES DETECTED OVER SCG'S
DECON-2	Aqueous	ASP: VOC, SVOC, pesticides/PCB, metals	ASP: VOC, SVOC, pesticides/PCB, metals	Phenol: 530 ppb (5)
SUMP-1	Aqueous	ASP: VOC, SVOC, pesticides/PCB, metals	ASP: VOC, SVOC, pesticides/PCB, metals	Phenol: 570 ppb (5) PCB/Aroclor-1248: 73 ppb (0.1)
SUMP-2	Waste	8080 PCBs	None	PCBs: 340,000 ppb (NA)
SUMP-3	Aqueous	8080 PCBs	None	PCBs: 260 ppb (0.1)
SCREEK-1	Sediment	ASP: pesticides/PCB	ASP: pesticides/PCB	None
SCREEK-2	Sediment	ASP: pesticides PCB	ASP: pesticides/PCB	PCBs: 61 ppb (42)*
VCCREEK-1	Sediment	ASP: SVOC, metals	ASP: SVOC, metals	Benzo(a)pyrene: 160 ppb (130) Lead: 42,600 ppb (Low:31,000) Manganese: 721,000 ppb (Low: 460,000) Nickel: 24,100 ppb (Low: 16,000)
VCCREEK-2	Aqueons	ASP: SVOC, metals	ASP: SVOC, metals	None
VCCREEK-3	Sediment	ASP: SVOC, metals	ASP: SVOC, metals	None
VCCREEK-4	Aqueous	ASP: SVOC, metals	ASP: SVOC, metals	None

* An organic carbon content of 3% was assumed based on visual observation of the stream sediment.

			TABLE 7	
		SURFACE WATE	SURFACE WATER AND SEDIMENT SAMPLE RESULTS	
SAMPLE	NIATRIX	ANALYSIS	COMPOUND CLASS DETECTED BELOW SCG'S	ANALYTES DETECTED OVER SCG'S
DECON-2	Aqueous	ASP: VOC, SVOC, pesticides/PCB, metals	ASP: VOC, SVOC, pesticides/PCB, metals	Phenol: 530 ppb (5)
SUMP-1	Aqueous	ASP: VOC, SVOC, pesticides/PCB, metals	ASP: VOC, SVOC, pesticides/PCB, metals	Phenol: 570 ppb (5) PCB/Aroclor-1248: 73 ppb (0.1)
SUMP-2	Waste	8080 PCBs	None	PCBs: 340.000 ppb (NA)
SUMP-3	Aqueous	8080 PCBs	None	PCBs: 260 ppb (0.1)
SCREEK-1	Sediment	ASP: pesticides/PCB	ASP: pesticides/PCB	None
SCREEK-2	Sediment	ASP: pesticides/PCB	ASP: pesticides/PCB	PCBs: 61 ppb (42)*
VCCRIEK-1	Sediment	ASP: SVOC, metals	ASP: SVOC, metals	Benzo(a)pyrene: 160 ppb (39)* Benzo(a)anthracene: 270 (39)* Benzo(b)flouranthene: 170 (39)* Benzo(k)flouranthene: 190 (39)* Chrysene: 250 (39)* Arsenie: 11.100 (Low 6000) Lead: 42.600 ppb (Low 31,000) Manganese: 721.000 ppb (Low 460,000) Nickel: 24,100 ppb (Low 16.000)
VCCREEK-2	Aqueous	ASP; SVOC, metals	ASP: SVOC, metals	None
VCCREEK-3	Sediment	ASP: SVOC, metals	ASP: SVOC, metals	Benzo(a)pyrene: 90 ppb (39)* Benzo(a)anthracene: 160 (39)* Benzo(b)flouranthene: 98 (39)* Benzo(k)flouranthene: 100 (39)* Chrysene: 170 (39)* Arsenie: 17,800 (Low:31,000) Lead: 42,600 ppb (Low:31,000) Manganese: 721,000 ppb (Low: 460,000) Nickel: 24,100 ppb (Low: 16,000)
VCCREEK-4	Aqueous	ASP: SVOC, metals	ASP: SVOC, metals	None

* An organic carbon content of 3% was assumed based on visual observation of the stream sediment.

9.0 GROUNDWATER INVESTIGATION

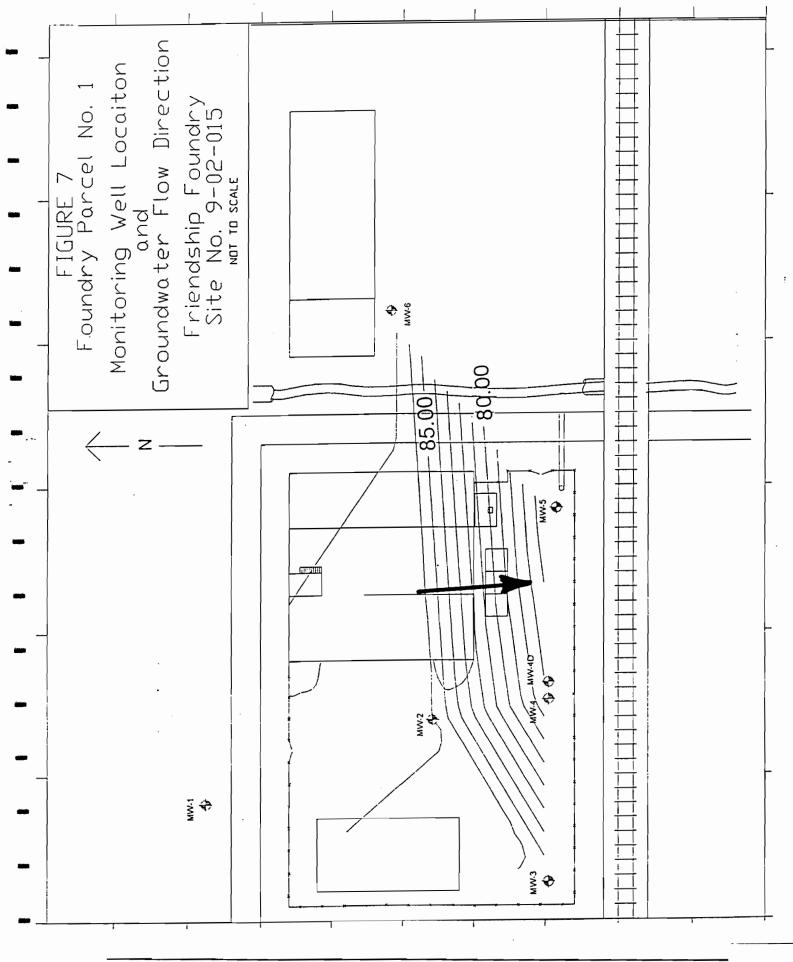
Seven monitoring wells were installed during the remedial investigation. Six wells were installed to a depth of approximately 20 feet and one was installed adjacent to a shallow well to a depth of 44 feet. Split spoons were driven in advance of the augers continuously to investigate the local geology. The results of the geology/hydrogeology investigation are presented in Section 3.2, Site Geology and Hydrogeology.

Once the well installation was complete, the wells were developed by surging the well and removing the groundwater by either pumping or bailing, until the turbidity was below 50 NTU's. During the development, turbidity, pH and conductivity were monitored. After being developed, either three well volumes of groundwater were removed or the wells were bailed dry before samples were collected. Samples were collected with a dedicated disposable bailer for each well. All samples were analyzed by the ASP for VOCs, SVOCs, PCB/pesticides, and metals. The following is a description of the physical characteristics of each sample and the results of the analysis:

MW1: This sample was collected from monitoring well MW-1. The sample was slightly turbid (45.8 NTU's) and had no odor.

MW-2 This sample was collected from monitoring well MW-2. The sample was very slightly turbid (4.2 NTU's) and had no odor.

MW-3 This sample was collected from monitoring well MW-3. The sample was very slightly turbid (1.3 NTU's) and had no odor.


MW-4 This sample was collected from monitoring well MW-4. The sample was slightly turbid (reading not noted) and had no odor.

MW-4D This sample was collected from monitoring well MW-4D. The sample was slightly turbid (65.0 NTU's) and had no odor.

MW-6 This sample was collected from monitoring well MW-6. The sample was very slightly turbid (14 NTU's) and had no odor.

Table 8 summarize the results of the groundwater sampling. Appendix A includes the detailed presentation of the sampling results.

	ANALYTES DETECTED OVER SCG'S	Manganese: 5,280 ppb (300) Iron: 1,870 ppb (300) Sodium: 20,800 ppb (20,000)	Sodium: 46,600 ppb (20,000)	Manganese: 3,090 ppb (300) Iron: 2,500 ppb (300) Sodium: 24,000 ppb (20,000)	Manganese: 520 ppb (300) Iron: 3,160 ppb (300)	Manganese: 5,280 ppb (300) Iron: 1,870 ppb (300) Sodium: 20,800 ppb (20,000)	1,1-DCA: 25 ppb (5) 1,1,1-TCA: 12 ppb (5) Manganese: 6,200 ppb (300) Iron: 2,490 ppb (300) Sodium: 47,500 ppb (20,000)
TABLE 8 GROUNDWATER SAMPLING RESULTS	COMPOUND CLASS DETECTED BELOW SCG'S	ASP: SVOC, metals	ASP: VOC, SVOC, metals	ASP: VOC, SVOC, metals	ASP: VOC, SVOC, pesticides, metals	ASP: VOC, SVOC, pesticides, metals	ASP: VOC, SVOC, metals
GROU	ANALYSIS	ASP: VOC, SVOC, pesticides/PCB, metals	ASP: VOC, SVOC, pesticides/PCB, metals	ASP: VOC, SVOC, pesticides/PCB, metals	ASP. VOC, SVOC, pesticides/PCB, metals	ASP: VOC, SVOC, pesticides/PCB, metals	ASP: VOC, SVOC, pesticides/PCB, metals
	MATRIX	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater
	SAMPLE	MW-1	MW-2	MW-3	MW4	Mw4D	MW-6

10.0 INTERIM REMEDIAL MEASURES

10.1 <u>USEPA IRM Removal</u>:

This IRM is discussed in detail in Section 2.2 Site History. During this IRM, USEPA removed a large variety and quantity of hazardous waste as detailed in Table 2.

10.2 NYSDEC Capacitor Sump IRM:

Prior to 1988, an explosion in the capacitor basement at Friendship Foundry No. 1 caused a release of oil containing polychlorinated biphenyls (PCBs). It was reported that capacitors containing PCB oils were removed and disposed of properly, however there is no documentation of the capacitor basement and basement sump being cleaned by Friendship Foundry immediately following the explosion. On May 26, 1988 when NYSDEC personnel sampled sediment and water from the sump, 4,200,000 ppb and 8.3 ppb of PCBs were detected in the sediment and surface water respectively. The sump was then reportedly cleaned by Friendship Foundry and was resampled by the NYSDEC on January 13, 1989. Although only a minimal amount of sediment was present in the capacitor basement sump, a sufficient quantity was available for sampling. The analysis of this sample revealed 180,000 ppb of PCBs remaining in the sump sediment. There are no records of whether the capacitor basement sump was cleaned subsequent to the January 13, 1989 sampling.

To determine if proper cleanup of the sump was conducted, since the January 1989 sampling, this area was targeted for sampling during the RI. Since the basement was flooded and the sump was inaccessible, a water sample was all that could be initially collected. Water collected from the capacitor basement contained PCBs at a concentration of 73 ppb. Although this PCB level is not very high, their presence in water suggests that a source with elevated levels of PCBs could still remain in the capacitor basement sump.

To further investigate the sump, NYSDEC decided to dewater the basement and collect additional samples from the sump. During a site reconnaissance visit prior to pumping out the basement, a ½ inch thick layer of floating petroleum-like product was observed covering the water in the flooded basement. Samples of the floating product and the basement water were collected for analysis. Sample results showed PCB concentrations of 340,000 ppb and 260 ppb in the product and water respectively.

Based on these sample results, NYSDEC initiated an IRM to dewater and decontaminate the capacitor sump. A contractor has been mobilized to perform the activities listed below and the IRM will be completed in the Spring of 1996.

1) Dewater the basement, pumping water through a carbon filter. If confirmatory samples show that the water has been properly treated, it will be discharged.

The basement will be cleaned and sampled. If confirmatory samples show that the sump and basement were properly cleaned and all PCBs have been removed, the IRM will be complete.

Samples of sediment collected from the USEPA decontamination pad sump exceeded DHWR guidance values for xylenes and naphthalene, and water samples collected from the sump exceeded DOW criteria for phenol. Since these contaminants are likely remnants of the USEPA removal IRM, this sump will also be cleaned out as part of the capacitor sump IRM.

11.0 SUMMARY AND CONCLUSIONS OF THE REMEDIAL INVESTIGATION

The primary goals of the remedial investigation at the Friendship Foundary site were; to determine whether hazardous wastes remained on the Friendship Foundry site, and if present, to delineate the nature and extent of hazardous waste contamination. Three properties comprising the Friendship Foundry site have been sampled in the past and this sampling was augmented by the soil gas survey, test pit program, sampling program, and groundwater investigation of this RI. Based upon the findings of these investigations, two interim remedial measures (IRMs) will have been performed to address hazardous wastes that were identified. The first IRM, an emergency response drum removal was completed by the USEPA, and the second; removal of contaminated sediment from the capacitor basement sump will be completed by the NYSDEC by the Spring of 1996. These IRMs were undertaken to address discrete areas of hazardous waste disposal identified at the site. The RI determined that the IRMs will have removed the hazardous wastes that were disposed at the site. Sections 11.1 and 11.2 discuss the basis for this determination.

11.1 Friendship Foundry No. 1:

11.1.1 Soil and Waste Investigation:

As a result of widespread evidence of the disposal of waste foundry sand, castings and metal slag on many areas at the site, the possibility of subsurface disposal of hazardous waste and the subsequent impact on groundwater, was a major focus of this investigation. The results of the soil gas survey, test pit investigation and sampling, did not identify the presence of any buried drums or other indication of subsurface disposal or migration of hazardous waste at the Friendship Foundary No. 1 parcel.

The analysis of foundry sand and baghouse dust, the predominate waste materials in the fill and also present in and around the buildings at the site, identified the presence of phenol, arsenic, cadmium, chromium, copper, lead, magnesium, nickel, zinc, and some Polynuclear Aromatic Hydrocarbons (PAH's), above the NYSDEC guidance values for protection of groundwater. The TCLP analytical results for these compounds, however, showed that while constituents of the waste material, the contaminants were not likely to leach out of their present matrix. Furthermore the levels of metals and the PAH's did not exceed the regulatory

eriteria which would result in these solid wastes being considered characteristic hazardous waste. Since the foundry sand and baghouse dust are not listed or characteristic hazardous waste, no further action to address this material under the inactive hazardous waste remedial program is warranted. The presence of elevated levels of heavy metals, in particular, lead in excess of 500 ppm does represent a possible exposure risk for tresspassers to the site and will need to be addressed should redevelopment of the site be proposed in the future.

Two other areas of concern at the site, and the focus of past sampling, were the former locations of the abandoned drums and the capacitor basement sump. While the drums exhibited high concentrations of hazardous waste, they have been removed from the site and are no longer a direct concern. However, until this RI, no assessement had been made of possible environmental contamination resulting from the presence at the site of these hazardous waste materials. Based upon the findings of the RI, no significant impacts to soils at the site were identified which are related to the hazardous wastes identified in the drums, etc. which were removed by the IRM.

High concentrations of PCBs in sediment from the capacitor basement sump have been detected in the past. An IRM being conducted based on the RI site activities will dewater and clean the sump. Contaminated water and oil will be removed via a tanker truck and disposed of at a hazardous waste facility. Confirmatory samples will demonstrate successful decontamination of the basement sump. Since the sump is being remediated, it will no longer pose a threat to human health and the environment and, therefore, requires no further action.

During the course of the RI, one underground storage tank (UST), believed to have been the fuel oil storage tank for the facility, was discovered at Friendship Foundry No. 1. The soil surrounding the fill port had a strong petroleum odor and xylenes, benzene, toluene, and ethyl benzene were also detected in a soil sample and soil gas collected near the tank. These constituents are indicative of petroleum contamination. This petroleum contamination is considered non-hazardous and spills or leakage from USTs are typically the responsibility of the NYSDEC Spills Management Program. The NYSDEC Division of Spills Management has been advised of the presence of the UST and will be investigating the tank for appropriate action.

11.1.2 Groundwater Investigation:

Groundwater samples from the seven monitoring wells installed during the RI consistently showed levels of manganese, nickel, iron, and sodium which, while slightly exceeding the NYS groundwater standards, are considered to represent background concentrations for these metals and are not attributable to the site. With the exception of one groundwater sample collected from MW-6, located near the former drum storage building, the remaining wells on the site did not exhibit any volitile or semivolitle organic contamination, nor were

PCBs detected. The contaminants identified in MW-6 consisted of low concentrations of the volitile compounds 1,1-DCA and 1,1,1-TCA at 25ppb and 12 ppb, respectively. The

groundwater standard for each compound is 5 ppb. The soil gas program and test pit program did not identify a continuing source in the area for this volatile contamination. Given the proximity of this well to the former drum storage building, this contamination is likely an artifact of past drum storage and handling.

Although levels exceed the groundwater standard, which is based on consumption of groundwater, there are no nearby groundwater users and thus no human exposure pathway exists. In addition, the low concentration and limited extent of this contamination are not anticipated to have any detectable impact on surface water quality in the area or result in any other environmental exposure. Therefore, given the low concentration, lack of a defined source and limited extent of the problem, it is anticipated that this contamination will attenuate naturally.

11.1.3 Surface Water Investigation:

Sawyer Creek and the Nicholas Pond are the two surface water features in close proximity to the site. As previously described, Sawyer Creek in the vicinity of the site is nothing more than a roadside drainage ditch, while Nicholas Pond is an approximately 1/16th acre shallow man made impoundment on a private property, intended as an ornamental pond. Neither represents a significant habitat capable of supporting a viable aquatic population. Both features were sampled on two and three occasions respectively. One sediment sample from Sawyer Creek had PCBs at a concentration of 61 ppb, which slightly exceeds the Division of Fish and Wildlife (DFW) guidance value of 42 ppb for piscivorous wildlife. Since it is unlikely that Sawyer Creek supports piscivorous wildlife and the Nicholas Pond likely functions as a sediment trap (protecting Van Campen Creek), this exceedance is not a threat to the environment. Phenol has been detected in the creek water at 12 ppb, which is above both the water quality criteria of 5 ppb, however, phenol is not a hazardous waste and levels present are not anticipated to adversely affect the environment.

11.2 Friendship Foundry No. 2 and No. 3:

Based upon a review of Foundry operating records, as well as the sampling and investigations conducted by the NYSDEC and others, no evidence of hazardous waste disposal has been identified on the properties known as Friendship Foundry No. 2 and Friendship Foundry No. 3. Past foundry activities conducted at these properties did not appear to have involved the handling, generation or disposal of hazardous waste. Test pits dug by the Allegany County DPW did not show any evidence of hazardous waste disposal and soil samples collected did not identify any contaminants above levels of concern.

Although a soil sample collected during the RI at Friendship Foundry No. 3 contained arsenic, chromium, and mercury at levels exceeding NYSDEC guidance values for protection of groundwater, the TCLP analytical results for these compounds showed that the contaminants were not likely to leach out of their present matrix and are not present at levels which would classify them as hazardous waste. Since hazardous waste disposal has not been identified, no further action to address this material under the inactive hazardous waste remedial program is warranted.

Based on the available information relative to hazardous waste disposal evaluated by this report, the parcels identified as Friendship Foundry No. 2 and No. 3 do not warrant further investigation and require no remediation to address hazardous waste contamination.

During the course of the NYSDEC investigation, partially buried drums were discovered on property adjacent to the Friendship Foundry No. 3 parcel. These drums were investigated and found to contain only foundry slag and foundry sand, which are not hazardous wastes. A sample collected from a drum contained chromium and copper in excess of NYSDEC soil guidance values for the protection of groundwater. However, since no hazardous waste were identified near these drums and the TCLP analysis results showed that these contaminants were not likely to leach out of their present matrix, no remediation to address hazardous waste contamination is required.

Due to the proximity of the above drums to the North Branch of Van Campen Creek, sediment samples were collected from near the buried drums and from a downstream location. These samples contained benzo(a)pyrene, benzo(a)anthracene, benzo(b)flouranthene, benzo(k)flouranthene, and chrysene at levels that exceed NYSDEC sediment criteria. Lead, arsenic, manganese, and nickel were also detected at levels exceeding the NYSDEC lowest effect level but did not exceed the severe effect level. The levels observed in the creek, while slightly elevated, are commonly attributable to street runoff and are not a result of hazardous waste. Therefore, no further action is warranted in the North Branch of Van Campen Creek under the State Superfund Program.

12.0 RECOMMENDATIONS

12.1 Friendship Foundry No. 1:

After the completion of the RI, it has been determined that hazardous waste will no longer be present at the site, having been addressed by the IRMs undertaken by the NYSDEC and USEPA. Furthermore, since the investigation did not identify any remaining hazardous waste contamination at the site which is resulting in an exposure to the public or the environment, no further action is required to address hazardous waste disposal at this site. Although the NYSDEC is recommending no further action at the Friendship Foundry site under the inactive hazardous waste site remedial

program, solid wastes containing hazardous substances will remain on site that may pose a risk to human health or the environment. These hazardous substances should not be ignored should future land use change. Recommendations to address those areas which can be accomplished by inserting restrictions into property deeds are:

- The main foundry building is structurally unstable and presents a physical hazard. This structure should be properly demonlished prior to any use of the site. Until the structure can be demolished, existing fences and other access restrictions should be maintaned.
- SVOCs are piled in the main foundry yard and in and around the building. These materials must be properly disposed of or contained before the property can be redeveloped. Residential development of the property should be discouraged. Guidance regarding regulations governing handling or disposal of the non-hazardous wastes remaining at the site can be obtained from the NYSDEC and information regarding mitigation of any potential health exposures can be obtained from the NYSDOH if any redevelopment is contemplated. As with the physical hazards presented by the site, maintainence of the existing access restrictions should continue to minimize the potential for exposure to the materials remaining at the site.
- 3) The site may qualify for reconsideration should a program, currently being evaluated by the State Legislature, provide funding and authorization to address sites where contamination is attributable to hazardous substances be enacted in the future.
- 4) It is recommended that this site be considered for reclassification or delisting from the New York State Registry of Inactive Hazardous Waste Disposal Sites, upon completion of the ongoing capacitor sump IRM.

12.2 Friendship Foundry No. 2 and No. 3:

It is reccommended that the Division of Hazardous Waste Remediation (DHWR) modify the description of the Friendship Foundry Site, Site no. 9-02-015, included in the Registry of Inactive Hazardous Waste Disposal Sites to delete the properties known as Friendship Foundry No. 2 and Friendship Foundry No. 3 from the description of the property comprising the Class 2 site.

Below are the sample results. All concentrations are in parts per billion (ppb). Note that B denotes that contamination was found in the method blank as well as sample. J indicates that the value is estimated and below instrument quantitation levels. ND indicates that the analyte was not detected.

Compound	FSAND-1	FLOOR-1	FLOOR-2	BDUST-1
Volatiles	TCLP	TCLP	TCLP	TCLP
Vinyl Chloride	ND	ND	ND	ND
1,1-Dichloroethene	ND	ND	ND	ND
Chloroform	ND	ND	ND	ND
2-Butanone	ND	ND	8 BJ	ND
1,2-Dichloroethane	ND	ND	ND	ND
Carbon Tetrachloride	ND	ND	ND	ND
Trichloroethene	ND	ND	ND	ND
Benzene	ND	ND	2 J	ND
Tetrachloroethene	ND	ND	ND	ND
Chlorobenzene	ND	ND	ND	ND
Semi-Volatiles				
Pyridine	ND	ND	ND	ND
1,4-Dichlorobenzene	ND	ND	ND _	ND
2-Methyl phenol	ND	ND _	3 J	ND
Hexachloroethane	ND	ND	ND	ND
M+P Methyl phenol	ND	ND	2 J	ND
Nitrobenzene	ND	ND	ND	ND
Hexachlorobutadiene	ND	ND	ND	ND
2,4,6-Trichlorophenol	ND	ND	ND	ND
2,4,5-Trichlorophenol	ND	ND	ND	ND
2.4-Dinitrotoluene	ND	ND	ND	ND
Hexachlorobenzene	ND	ND	ND	ND
Pentachlorophenol	ND	ND	ND	ND
Pesticides	_	_		
gamma-BHC	ND	ND	ND	ND
Heptachlor	ND	ND	ND	ND
Heptachlor Epoxide	ND	ND	ND	ND
Endrin	ND	ND	_ND	ND
Methoxychlor	ND	ND	ND	ND
Toxaphene	ND	ND	ND	ND
Tech Chlordane	ND	ND	ND	ND
Herbicides				
2.4-D	ND	ND	ND	ND
2.4,5-TP(Silvex)	ND	ND	ND	ND
Metals				
Arsenic	ND	ND	ND	ND
Barium	607	549	506	482
Cadmium	12.3	13.3	47.2	17.1
Chromium	13	8.2 B	34.9	ND
Lead	654	149	1560	262
Mercury	0.3	0.59	ND	ND
Selenium	ND	64.5	ND	ND
Silver	ND	ND	ND	ND

Compound	FSA	ND-2	BDU	JST-2	DRU	M-1	SOIL-1
Volatiles	ASP	TCLP	ASP	TCLP	ASP	TCLP	ASP
Chloromethane	ND		ND		ND		
Bromomenthane	ND		ND		ND		
Vinyl Chloride	ND	ND	ND ND	ND	ND	ND	
Chloroethane Methylene Chloride	ND 5 J		ND 15 ID	+	ND 0 ID		
Acetone	ND	-	15 JB	+	8 JB		
Carbon Disulfide	ND ND		18 B ND		ND ND	+	1
1,1-Dichloroethene	ND ND	ND	ND ND	ND	ND ND	ND	
1.1-Dichloroethane	ND ND	ND	ND ND	ND	ND ND	I ND	
1.2-Dichloroethene (total)	ND	 	ND ND		ND ND		
Chloroform	ND	ND	ND	ND	ND ND	ND	
2-Butanone	ND	ND	18 BJ	ND	ND	ND	
1,2-Dichloroethane	ND	ND	ND	ND	ND	ND	
1,1,1-Trichloroethane	ND	- 112	ND	1,12	ND	112	
Carbon Tetrachloride	ND	ND	ND	ND	ND	ND	
Bromodichloromethane	ND		ND		ND		
1,2-Dichloropropane	ND		ND		ND		
cis-1,3-Dichloropropene	ND		ND		ND		
Trichloroethene	ND	ND	ND	ND	ND	ND	
Dibromochloromethane	ND		ND		ND		
1,1,2-Trichloroethane	ND		ND		ND		
Benzene	ND	ND	ND	ND	ND	ND	
trans-1,3-Dichloropropene	ND		ND		ND		
Bromoform	ND		ND		ND		
4-Methyl-2-pentanone	ND	<u> </u>	ND_		ND		
2-Hexanone	ND		ND	I	ND		
Tetrachloroethene	4 J	ND	2 J	ND	1 J	ND	
1,1,2,2-Tetrachloroethane	ND		ND_		ND		
Toluene	ND ND		18 J	NA	ND	N.D.	
Chlorobenzene	ND ND	ND	ND	ND	ND	ND	
Ethyl Benzene	ND ND	-	ND		ND		
Styrene Total Xylenes	ND ND		ND ND		ND ND		
Semi-Volatiles	ND	 	ND_	+	ND	_	
Pyridine Pyridine	ND	ND	ND	ND	ND	ND	ND
Phenol	170 J	ND	4000	110	ND	, ND	ND
Bis(2-chloroethyl) ether	ND		ND		ND		ND
2-Chlorophenol	ND		ND		ND		ND
1.3-Dichlorobenzene	ND		ND		ND		ND
1,4-Dichlorobenzene	ND	ND	ND	ND	ND	ND	ND
1,2-Dichlorobenzene	ND		ND		ND		ND
2-Methyl phenol	ND	ND	270 J	ND	ND	ND	ND
Bis(2-chloroisopropyl) ether	ND		ND		ND		ND
4-Methyl phenol	ND		ND		ND		ND
N-Nitroso-Di-n-propylamine	ND		ND		ND		ND
Hexachloroethane	ND	ND	ND	ND	ND	ND	ND
M+P Methyl phenol	ND	ND	ND	ND	ND	ND	ND
Nitrobenzene	ND	ND	ND	ND	ND	ND	ND
Isophorone	ND		ND		ND ND		ND
2-Nitrophenol	ND ND		ND ND		ND_		ND
2,4-Dimethylphenol	ND ND	-	ND ND	+	ND ND	+	ND ND
Bis(2-chloromethoxy)methane	ND ND	-	ND ND	+	ND ND	+	ND ND
2,4-Dichlorophenol 1,2,4-Trichlorobenzene	ND ND	 	ND ND	+	ND ND	1	ND ND
Naphthalene	60 JB	 	3400 B	+	ND ND		ND ND
4-Chloroaniline	ND		ND	+	ND ND		ND ND
Hexachlorobutadiene	ND ND	ND	ND ND	ND	ND	ND	ND
2-Chloro-3-Methyl phenol	ND	1112	ND ND	1,1	ND	1,12	ND
2-Methylnaphthalene	ND		1000	1	ND		ND
Hexachlorocyclopentadiene	ND		ND		ND		ND
2,4,6-Trichlorophenol	ND	ND	ND	ND	ND	ND	ND
2,4,5-Trichlorophenol	ND	ND	ND	ND_	ND	ND	ND
2-Chloronaphthalene	ND		ND		ND		ND
2-nitroanaline	ND		_ND		ND		ND
Dimethyl phthalate	ND		ND		ND		ND
Acenaphthylene	ND_		110 J		ND		ND
2,6-Dinitrotoluene	ND _		ND	-	ND		ND
3-Nitroaniline	ND		ND		ND		ND
Acenaphthene	ND		ND		ND		ND_
2,4-Dinitrophenol	ND		ND		ND ND		ND
4-Nitrophenol	ND		ND		ND		ND

Compound	FSAI	ND-2	BDUS	ST-2	DRUI	M_1	SOIL-1
Semi-Volatiles, Cont.	ASP	TCLP	ASP	TCLP	ASP	TCLP	ASP
Dibenzofuran	ND		340 J		ND		ND
2,4-Dinitrotoluene	ND	ND	ND	ND	ND	ND	ND
Diethyl phthalate	ND		ND		ND		ND
4-Chlorodiphenylether	ND		ND		ND		ND
Fluorene 4-Nitroaniline	ND ND		ND ND		ND		ND
4,6-Dinitro-2-methyl phenol	ND ND		ND ND		ND ND	ļ	ND
N-Nitrosodiphenylamine	ND ND		ND ND		ND ND		ND ND
4-Bromophenyl phenyl ether	ND		ND ND		ND		ND ND
Hexachlorobenzene	ND	ND	ND	ND	ND	ND	ND ND
Pentachlorophenol	ND	ND	ND	ND	ND	ND	ND
Phenanthrene	ND		900		ND		130
Anthracene	ND		220J		ND		ND
Carbazole	ND		ND		ND		ND
Di-n-butyl phthalate	ND		260 J		ND		ND
Fluoranthene	ND		560J		ND		190 J
Pyrene	ND		920		ND		160 J
Butyl benzyl phthalate	ND ND		ND ND		ND		ND
3,3-Dichlorobenzidine	ND ND		ND 150 I		ND		ND 70 I
Benzo(a)anthracene	ND ND		150 J		ND		70 J
Chrysene Bis(2-ethylhexyl) phthalate	ND 200 J		290 J 640		ND 270 J		100 J
Di-n-octyl phthalate	ND		ND		ND	-	210 J ND
Benxo(b)fluoranthene	ND ND		160 J		ND ND		65 J
Benzo(k)fluoranthene	ND ND		84 J		ND ND		61 J
Benxo(a)pyrene	ND ND		ND		ND ND		46 J
Indeno(1,2,3-cd)pyrene	ND		ND ND		ND	1	ND
Dibenzo(a,h)anthracene	ND		ND		ND		ND
Benzo(ghi)perylene	ND		ND		ND		ND
Pesticides							
alpha-BHC	ND		ND		ND		
beta-BHC	ND		ND		ND		
delta-BHC	ND		ND		ND		
gamma-BHC(Lindane)	ND		ND		ND		
Heptachlor	ND		ND		ND		
Aldrin	ND		ND_		ND		
Heptachlor Epoxide	ND		4.9 PY		ND ND		
Endosulfan I	ND ND		ND ND		ND ND		
	ND ND		ND ND		ND ND		
Endrin	ND ND		10 PY		ND ND		
Endosulfan II	ND ND		6.2 P		ND		
4,4-DDD	ND ND		ND		ND		
Endosulfan Sulfate	ND		ND		ND		
4.4-DDT	ND		7.8 PY		ND		
Methoxychlor	180		ND		ND		
Endrin Ketone	ND		5.8 JPY		ND		
Endrin aldehyde	ND		ND		ND _		
alpha-Chlordane	ND		6.1 Y		ND_		
gamma-Chlordane	ND ND		ND		ND		
Toxaphene Toxaphene	ND ND		ND ND		ND ND		
Tech Chlordane Aroclor-1016	ND ND		ND ND		ND ND		
Aroclor-1016 Aroclor-1221	ND ND		ND ND		ND ND		1
Aroclor-1221 Aroclor-1232	ND ND		ND ND		ND ND		
Aroclor-1232 Aroclor-1242	ND ND		ND ND		ND		
Aroclor-1248	32 J		ND_		ND		
Aroclor-1254	ND		_ 71		ND		
Aroclor-1260	ND		ND		ND		
Herbicides							
2,4-D							
2,4,5-TP(Silvex)							
Metals	2/00000		25,0000		40,4000	-	15000000
Aluminum	2690000		3560000		404000		15200000
Antimony	37300	NITS	23000	NID	17100	834	ND 10100
Arsenic	8700	ND 1680	20000 136000	ND 662	4800 5700 B	496	101 <u>00</u> 127000
Barium Bervllium	114000 ND	1680	ND	002	ND	490	690 B
Cadmium	4500	30.6	12200	47.6	ND ND	34.7	ND
Caumum		50.0	6890000	77.0	713000 B	54.7	1950000
Calcium	1 455CXXXI I						
Calcium Chromium	4550000 78900	28.2	276000	ND	22000	ND	22200

APPENDIX A

DATA TABLES

Compound	FSAI	ND-2	BDUS	ST-2	DRUN	/ I-1	SOIL-1
Metals, Cont.	ASP	TCLP	ASP	TCLP	ASP	TCLP	ASP
Copper	347000		444000		27500		20200
Iron	77300000		169000000		34000000		31700000
Lead	844000	769	4320000	477	43500	115	121000
Magnesium	1740000		18600000		141000 B		3030000
Manganese	1300000		2660000		1010000		808000
Mercury	ND	ND	180	ND	ND	5.3	430
Nickel	90800		322000		24900		28300
Potassium	663000 B		690000 B		140000 B		1720000
Selenium	ND	ND	ND	ND	ND	ND	ND
Silver	ND	11.8	7210	ND	ND	ND	ND
Sodium	202000 B		811000 B		ND		ND
Thallium	ND		ND		ND		ND
Vanadium	26600		52810		138		26800
Zinc	1150000		766000		283		141000

Volume	Compound	TP5-1		TP	7-1	TP12	-1	TP4-1	TP7-2	TP8-1
Chloromethane										TCLP
Virvi Chloride	Chloromethane			ND						
Chlorocthane			2115		N.III		ND	210	110) ID
Methylene Chloride			ND		ND		ND	ND	ND	ND
Acetone										
Carbon Disulfide										
1.1-Dichlororethane (total)										
1.2-Dichloroethene (total)	1,1-Dichloroethene		ND	2 130	ND		ND	ND	ND	ND
Chloroform										
2-Butanone			ND		ND		ND	ND	NID	ND
1,12-Tichloroethane										ND
1,1,1-Trichlorochane										ND
Carbon Tetrachloride	1.1.1-Trichloroethane		1,12				-			
1.2-Dichloronropane			ND	ND	ND		ND	ND	ND	ND
Cisl 3-Dichloropropene										
Trichloroethene										
Dibromochloromethane			ND		ND		ND	ND	ND	ND
1,1,2-Trichloroethane			מאו		ND		ND	IND	ND	140
Benzene										
Section Sect			ND	ND	ND		ND	ND	ND	ND
4-Methyl-2-pentanone	trans-1,3-Dichloropropene									
2-Hexanone										
Tetrachloroethene								-		
1,1,2,2-Tetrachloroethane			ND		ND		ND	ND	ND	ND
Toluene			ND		ND		TID	112	112	1125
Chlorobenzene	-1-1-1-1									
Styrene			ND	ND	ND		ND	ND	ND	ND
Total Xylenes 360 Semi-Volatiles ND										
Semi-Volatiles										<u> </u>
Pyridine				360				-		
Phenol 240 J			ND	ND	ND		ND	ND	ND	ND
Bis(2-chloroethyl) ether			ND		1,12					
1,3-Dichlorobenzene										
1,4-Dichlorobenzene										
1,2-Dichlorobenzene			MD		NID		NID	NID	ND	ND
2-Methyl phenol			ND		ND		ND	ND	ND	ND
Bis(2-chloroisopropyl) ether			ND		ND		ND	ND	ND	ND
A-Methyl phenol			112		1,12					
Hexachloroethane				ND						
M+P Methyl phenol) II		NID.
Nitrobenzene										ND ND
No										ND ND
2-Nitrophenol ND 2,4-Dimethylphenol ND Bis(2-chloromethoxy)methane ND 2,4-Dichlorophenol ND 1,2,4-Trichlorobenzene ND Naphthalene 290 J 4-Chloroaniline ND Hexachlorobutadiene ND 2-Chloro-3-Methyl phenol ND 2-Methylnaphthalene 170 J Hexachlorocyclopentadiene ND			עא	2 777	עא		עאו	140	ערי	110
2,4-Dimethylphenol ND Bis(2-chloromethoxy)methane ND 2,4-Dichlorophenol ND 1,2,4-Trichlorobenzene ND Naphthalene 290 J 4-Chloroaniline ND Hexachlorobutadiene ND 2-Chloro-3-Methyl phenol ND 2-Methylnaphthalene 170 J Hexachlorocyclopentadiene ND	2-Nitrophenol			ND						
Bis(2-chloromethoxy)methane	2,4-Dimethylphenol			ND						
1,2,4-Trichlorobenzene	Bis(2-chloromethoxy)methane									
Naphthalene 290 J 4-Chloroaniline ND Hexachlorobutadiene ND ND ND ND ND 2-Chloro-3-Methyl phenol ND 2-Methylnaphthalene 170 J Hexachlorocyclopentadiene ND										
4-Chloroaniline ND Hexachlorobutadiene ND										
Hexachlorobutadiene ND				ND_						
2-Chloro-3-Methyl phenol ND 2-Methylnaphthalene 170 J Hexachlorocyclopentadiene ND	Hexachlorobutadiene		ND	ND	ND		ND	ND	ND	ND
Hexachlorocyclopentadiene ND	2-Chloro-3-Methyl phenol							-		
TICAGE MOTOR CONTROL AND AND AND						-		+		
	Hexachlorocyclopentadiene 2.4.6-Trichlorophenol		ND	ND ND	ND		ND	ND	ND	ND
		-				1				ND
2-Chloronaphthalene ND			1,12							
2-nitroanaline ND				ND						
Dimethyl phthalate ND	Dimethyl phthalate									
Acenaphthylene 180 J						-				
2,6-Dinitrotoluene ND ND ND					-	-				
		 				 		1		
Acenaphthene			ND		ND		ND	ND	ND	ND
4-Nitrophenol ND						<u> </u>				

Compound	TP5-1		TP7	-1	TP12-	.1	TP4-1	TP7-2	TP8-1
Semi-Volatiles, Cont.	ASP	TCLP	ASP	TCLP	ASP	TCLP	TCLP	TCLP	TCLP
Dibenzofuran			99 J						
2,4-Dinitrotoluene			ND	10 J					
Diethyl phthalate			ND						
4-Chlorodiphenylether			ND 210 I						
Fluorene			310 J						
4-Nitroaniline 4,6-Dinitro-2-methyl phenol			ND ND						
N-Nitrosodiphenylamine			ND ND						
4-Bromophenyl phenyl ether			ND						
Hexachlorobenzene		ND	ND	ND		ND	ND	ND	ND
Pentachlorophenol		ND	ND	ND		ND	ND	ND	ND
Phenanthrene			1600						
Anthracene			490						
Carbazole			480						
Di-n-butyl phthalate			ND						
Fluoranthene			1900						
Pyrene Detail horsel with plate			1800 ND						
Butyl benzyl phthalate 3.3-Dichlorobenzidine			ND ND						
Benzo(a)anthracene			1200						
Chrysene			960						
Bis(2-ethylhexyl) phthalate			ND						
Di-n-octyl phthalate			ND						
Benxo(b)fluoranthene			1500						
Benzo(k)fluoranthene			1200						
Benxo(a)pyrene			1200						
Indeno(1,2,3-cd)pyrene			800						
Dibenzo(a,h)anthracene			330 J						
Benzo(ghi)perylene			880						
Pesticides			ND						
alpha-BHC			ND ND						
beta-BHC delta-BHC			ND ND						
gamma-BHC(Lindane)		ND	ND ND	ND		ND	ND	ND	ND
Heptachlor		ND	ND	1112		. 1.2			
Aldrin		112	ND					_	
Heptachlor Epoxide		ND	1 J	ND		ND	ND	ND	ND
Endosulfan I			2 P						
Dieldrin			3.4 JP						
4,4-DDE			ND				- 100		
Endrin		ND	6.6 JP	ND		ND	ND	ND	ND
Endosulfan II			1.9 JP						
4,4-DDD			ND ND						
Endosulfan Sulfate			ND ND						
4,4-DDT		ND	ND ND	ND		ND	ND	ND	ND
Endrin Ketone		HD	ND ND	4112			1,2		- / -
Endrin Aldehyde			ND						
alpha-Chlordane			0.7 JP						
gamma-Chlordane			ND						
Toxaphene		ND	ND	ND		ND	ND	ND	ND
Tech Chlordane		ND	ND	ND		ND	ND	ND	ND
Aroclor-1016			ND				-		
Aroclor-1221			ND ND				 		
Arcelor 1232			ND ND						
Aroclor-1242 Aroclor-1248			ND ND						
Aroclor-1248 Aroclor-1254	1		ND ND						
Aroclor-1254 Aroclor-1260			ND						
Herbicides									
2,4-D		ND		ND		ND	ND	ND	ND
2,4,5-TP(Silvex)		ND		ND		ND	ND	ND_	ND
Metals			0250000		10400000				
Aluminum	7870000		8370000		10400000		1		-
Antimony	ND	ND	13300	NID	ND 14200	ND	ND	ND	ND
Arsenic	7900	ND 540	8700 90500	ND 546	74000	581	442	292	985
Barium	93000 500 B	340	280 B	240	360 B	201	772	2,2	703
Beryllium	ND 8	ND	1200	7.1	1600	6.5	ND	ND	20.3
<u>Cadmium</u> Calcium	1570000	1417	5600000	/··	29200000	0,0	- 1,2		
Chromium	10900	ND	29500	9.5 B	23400	ND	ND	ND	ND
			5900B		10300 B				

Compound	TP5-	1	TP'	7-1	TP12	l-1	TP4-1	TP7-2	TP8-1
Metals, Cont.	ASP	TCLP	ASP	TCLP	ASP	TCLP	TCLP	TCLP	TCLP
Copper	25300		32500		58600			_	
Iron	19100000		49800000		27100000				
Lead	94800	ND	102000	ND	186000	ND	ND	ND	296
Magnesium	1350000		1810000		4210000				
Manganese	205000		648000		467000				
Mercury	210	ND	ND	0.210	440	ND	ND	ND	0.410
Nickel	17500		17200		2180	_			
Potassium	861000 B		927000 B		1090000 B				
Selenium	650 B	58.9	330 B	ND	290 B	ND	ND	ND	ND
Silver	ND	ND	ND	ND	ND	ND	ND	ND	ND
Sodium	192000 B		1180000		204000 B				
Thallium	530 B		430 B		ND				
Vanadium_	17200		28000		17900				
Zinc	85600		126000		787000				

Compound	DECON-1	DECON-2	SUMP-1	SCREEK-1	SCREEK-2	VCCREEK-1	VCCREEK-2	VCCREEK-3	VCCREEK-4
Compound	ASP	ASP	ASP	ASP	ASP	ASP	ASP	ASP	ASP
Volatiles	SED	AQ	AQ	SED	SED	SED	AQ	SED	AQ
Chloromethane	ND	ND	ND						ND
Bromomenthane	ND	ND	ND						ND
Vinyl Chloride	ND	ND	ND						ND
Chloroethane	ND	ND	ND						ND
Methylene Chloride	31 J	ND	6 J						ND
Acetone	14 J	24 B	20 B						27 B
Carbon Disulfide	ND	ND	ND						ND ND
1,1-Dichloroethene	ND ND	ND ND	ND 7 J	-		-			ND ND
1,1-Dichloroethane 1.2-Dichloroethene	53 J	ND ND	ND						ND ND
Chloroform	ND	ND ND	ND		 		 		ND
2-Butanone	ND	ND	6 BJ						7 BJ
1.2-Dichloroethane	ND	ND	ND						ND
1,1,1-Trichloroethane	ND	ND	20						ND
Carbon Tetrachloride	ND	ND	ND						ND
Bromodichloromethane	ND	ND	ND						ND
1,2-Dichloropropane	ND	ND	ND						ND
cis-1,3-Dichloropropene	ND	ND	ND						ND
Trichloroethene	16 J	ND	ND						ND
Dibromochloromethane	ND	ND	ND		-				ND
1,1,2-Trichloroethane	ND 12.1	ND	ND ND			-			ND ND
Benzene	13 J	ND ND	ND ND		-				ND ND
trans-1,3-	ND ND	ND ND	ND ND		 				ND ND
Bromoform_ 4-Methyl-2-pentanone	ND ND	ND ND	ND ND		1				ND
2-Hexanone	ND	ND	ND						ND
Tetrachloroethene	46 J	ND	ND						ND
1,1,2,2-	ND	ND	ND						ND
Toluene	110	1 J	ND						1 J
Chlorobenzene	49 J	ND	ND						ND
Ethyl Benzene	53 J	ND	ND						ND
Styrene	ND	ND	ND						ND
Total Xylenes	11400	3 J	N <u>D</u>	ļ	ļ				5 J
Semi-Volatiles	710	710	NID	-	-	ND	ND	ND	ND
Pyridine	ND 22000 E	ND 530	ND 570	 		ND	ND ND	ND	610
Phenol Bis(2-chloroethyl) ether	ND	ND	ND	 		ND	ND	ND	ND
2-Chlorophenol	ND	ND	ND	1		ND	ND	ND	ND
1,3-Dichlorobenzene	ND	ND	ND	1		ND	ND	ND	ND
1,4-Dichlorobenzene	ND	ND	ND			ND	ND	ND	ND
1,2-Dichlorobenzene	ND	ND	ND			ND	ND	ND	ND_
2-Methyl phenol	ND_	ND	ND	<u> </u>	<u> </u>	ND	ND	ND	ND
Bis(2-chloroisopropyl)	ND	ND	ND	ļ		ND	ND	ND	ND
4-Methyl phenol	ND	ND	ND	 	-	ND ND	ND ND	ND ND	11 J ND
N-Nitroso-Di-n-	ND ND	ND ND	ND ND		 	ND ND	ND	ND	ND
Hexachloroethane	ND ND	ND ND	ND ND	 	+	ND	ND	ND	ND
M+P Methyl phenol Nitrobenzene	ND ND	ND ND	ND ND			ND	ND	ND	ND
Isophorone	ND ND	ND	ND			ND	ND	ND	ND
2-Nitrophenol	ND	ND	ND		<u> </u>	ND	ND	ND	ND
2,4-Dimethylphenol	ND	ND	ND			ND	ND	ND	ND
Bis(2-	ND	ND	ND			ND	ND	ND	ND
2,4-Dichlorophenol	ND	ND	ND			ND	ND	ND	ND
1,2,4-Trichlorobenzene	ND_	ND	ND		-	ND	ND	ND	ND 170
Naphthalene	73000 E	86 J	ND ND		-	ND ND	ND ND	ND ND	170 ND
4-Chloroaniline Hexachlorobutadiene	ND ND	ND ND	ND ND		 	ND ND	ND ND	ND	ND ND
2-Chloro-3-Methyl	ND ND	ND ND	ND		1	ND	ND	ND	ND
2-Methylnaphthalene	35000 E	ND ND	ND		1	ND	ND	ND	42 J
Hexachlorocyclopentadie	ND	ND	ND			ND	ND	ND	ND
2.4,6-Trichlorophenol	ND	ND	ND			ND	ND	ND	ND
2,4,5-Trichlorophenol	ND	ND	ND			ND	ND	ND	ND
2-Chloronaphthalene	ND_	ND	ND			ND	ND	ND	ND
2-nitroanaline	ND	ND	ND			ND	ND	ND	ND
Dimethyl phthalate	ND	ND	ND			ND	ND	ND	ND
Acenaphthylene	ND_	ND	ND		-	ND	ND	ND	ND
2,6-Dinitrotoluene	ND_	ND	ND	-	+	ND ND	ND ND	ND ND	ND ND
3-Nitroaniline	ND 400	ND	ND			ND ND	ND ND	ND ND	ND ND
Acenaphthene 2.4-Dinitrophenol	480 ND	ND	ND ND	+		ND ND	ND ND	ND ND	ND
	I NIJ	ND	I ND			LVD	L ND	- 1117	

Compound	DECON-1	DECON-2	SUMP-1	SCREEK-1	SCREEK-2	VCCREEK-1	VCCREEK-2	VCCREEK-3	VCCREEK-4
	ASP	ASP	ASP	ASP	ASP	ASP	ASP	ASP	ASP
4-Nitrophenol	ND	ND	ND			ND	ND	ND	ND
Semi-Volatiles Cont.	SED	AQ	AQ	SED	SED	SED	AQ	SED	AO
Dibenzofuran	ND	ND	ND			ND	ND	ND	ND
2,4-Dinitrotoluene	ND	ND	ND			ND	ND	ND	ND
Diethyl phthalate	ND	ND	ND			ND	ND	ND	ND
4-Chlorodiphenylether	ND	ND	ND	_		ND	ND	ND	ND
Fluorene	700	ND	ND			ND	NĎ	ND	ND
4-Nitroaniline	ND	ND	ND			ND	ND	ND	ND
4,6-Dinitro-2-methyl	ND	ND	ND			ND	ND	ND	ND
N-Nitrosodiphenylamine	ND	ND	ND			ND	ND	ND	ND
4-Bromophenyl phenyl	ND	ND	ND			ND	ND	ND	ND
Hexachlorobenzene	ND	ND	ND			ND	ND	ND	ND
Pentachlorophenol	ND 1100	ND	ND			ND 120 I	ND	ND 150 I	ND
Phenanthrene Anthracene	1100 180 J	ND ND	ND ND			120 J 46 J	ND ND	150 J 180 J	ND ND
Carbazole	ND	ND ND	ND ND			ND -	ND ND	ND	ND ND
Di-n-butyl phthalate	320 J	35 BJ	57 BJ		_	ND -	43 B	ND ND	54 BJ
Fluoranthene	ND	ND	ND			530	ND	380 J	ND
Pyrene	580	ND	ND			440	ND	280 J	ND ND
Butyl benzyl phthalate	DN DN	ND	ND	-		ND	ND	ND	ND ND
3,3-Dichlorobenzidine	ND	ND	ND			ND	ND	ND	ND ND
Benzo(a)anthracene	ND ND	ND	ND			270 J	ND	160 J	ND
Chrysene	ND ND	ND	ND			250 J	ND	170 J	ND
Bis(2-ethylhexyl)	2400	ND	ND			150 J	ND	130 J	15 J
Di-n-octyl phthalate	ND	ND	ND	-		ND	ND	ND	ND
Benxo(b)fluoranthene	ND	ND	ND			170 J	ND	98 J	ND
Benzo(k)fluoranthene	ND	ND	ND			190 J	ND	100 J	ND
Benxo(a)pyrene	ND	ND	ND			160 J	ND	90 J	ND
Indeno(1,2,3-cd)pyrene	ND	ND	ND	_		40 J	ND	ND	ND
Dibenzo(a,h)anthracene	ND	ND	ND			ND	ND	ND	ND
Benzo(ghi)perylene	ND	ND	ND			ND	ND	ND	ND
Pesticides									
alpha-BHC	ND	0.05	ND	ND	ND				ND
beta-BHC	ND	ND	ND	ND	ND				0.023
delta-BHC	15 P	ND	ND	ND	ND				ND
gamma-BHC(Lindane)	ND	ND	ND	ND	ND			_	ND
Heptachlor	ND	ND	ND	ND	ND				ND
Aldrin	ND	ND	ND	ND	ND ND				ND
Heptachlor Epoxide	ND	ND	ND	ND	ND				ND ND
Endosulfan I	ND	ND	ND 0.14 ID	ND ND	ND				ND 0.021 ID
Dieldrin	ND ND	ND ND	0.14 JP 0.18 J	ND ND	ND ND				0.031 JP 0.016 JP
4,4-DDE Endrin	ND ND	ND ND	ND	ND ND	ND ND				ND
Endosulfan II				ן עע ן					ND ND
	NID I			ND				-	ND
1 4.4-DDD	ND ND	ND	ND	ND ND	ND				0.018.1
4,4-DDD Endosulfan Sulfate	ND	ND ND	ND ND	ND	ND ND				0.018 J ND
Endosulfan Sulfate	ND ND	ND ND ND	ND ND ND	ND ND	ND ND ND				ND
Endosulfan Sulfate 4,4-DDT	ND ND ND	ND ND ND ND	ND ND ND ND	ND	ND ND				ND ND
Endosulfan Sulfate	ND ND ND ND	ND ND ND ND ND	ND ND ND ND 0.48 JP	ND ND ND	ND ND ND ND ND				ND ND ND
Endosulfan Sulfate 4,4-DDT Methoxychlor	ND ND ND	ND ND ND ND	ND ND ND ND	ND ND ND ND	ND ND ND ND				ND ND
Endosulfan Sulfate 4,4-DDT Methoxychlor Endrin Ketone	ND ND ND ND	ND ND ND ND ND ND	ND ND ND ND 0.48 JP ND	ND ND ND ND ND	ND ND ND ND ND ND				ND ND ND ND
Endosulfan Sulfate 4,4-DDT Methoxychlor Endrin Ketone Endrin aldehyde	ND	ND N	ND ND ND ND O.48 JP ND ND	ND ND ND ND ND ND	ND ND ND ND ND ND ND ND ND				ND ND ND ND ND
Endosulfan Sulfate 4,4-DDT Methoxychlor Endrin Ketone Endrin aldehyde alpha-Chlordane gamma-Chlordane Toxaphene	ND	ND N	ND ND ND O.48 JP ND	ND	ND N				ND ND ND ND ND ND
Endosulfan Sulfate 4,4-DDT Methoxychlor Endrin Ketone Endrin aldehyde alpha-Chlordane gamma-Chlordane Toxaphene Tech Chlordane	ND N	ND ND ND ND ND ND ND ND ND ND ND	ND ND ND ND O.48 JP ND	ND N	ND N				ND N
Endosulfan Sulfate 4,4-DDT Methoxychlor Endrin Ketone Endrin aldehyde alpha-Chlordane gamma-Chlordane Toxaphene Tech Chlordane Aroclor-1016	ND N	ND N	ND ND ND ND O.48 JP ND	ND N	ND N				ND O.015 JP ND ND ND
Endosulfan Sulfate 4,4-DDT Methoxychlor Endrin Ketone Endrin aldehyde alpha-Chlordane gamma-Chlordane Toxaphene Tech Chlordane Aroclor-1016 Aroclor-1221	ND N	ND N	ND ND ND ND O.48 JP ND	ND N	ND N				ND ND ND ND ND ND ND ND
Endosulfan Sulfate 4,4-DDT Methoxychlor Endrin Ketone Endrin aldehyde alpha-Chlordane gamma-Chlordane Toxaphene Tech Chlordane Aroclor-1016 Aroclor-1221 Aroclor-1232	ND N	ND N	ND ND ND ND O.48 JP ND	ND N	ND N				ND N
Endosulfan Sulfate 4,4-DDT Methoxychlor Endrin Ketone Endrin aldehyde alpha-Chlordane gamma-Chlordane Toxaphene Tech Chlordane Aroclor-1016 Aroclor-1221 Aroclor-1232 Aroclor-1242	ND N	ND N	ND N	ND N	ND N				ND N
Endosulfan Sulfate 4,4-DDT Methoxychlor Endrin Ketone Endrin aldehyde alpha-Chlordane gamma-Chlordane Toxaphene Tech Chlordane Aroclor-1016 Aroclor-1221 Aroclor-1232 Aroclor-1242 Aroclor-1248	ND N	ND N	ND ND ND ND O.48 JP ND	ND N	ND N				ND N
Endosulfan Sulfate 4,4-DDT Methoxychlor Endrin Ketone Endrin aldehyde alpha-Chlordane gamma-Chlordane Toxaphene Tech Chlordane Aroclor-1016 Aroclor-1221 Aroclor-1232 Aroclor-1242 Aroclor-1248 Aroclor-1254	ND N	ND N	ND ND ND ND O.48 JP ND	ND N	ND N				ND N
Endosulfan Sulfate 4,4-DDT Methoxychlor Endrin Ketone Endrin aldehyde alpha-Chlordane gamma-Chlordane Toxaphene Tech Chlordane Aroclor-1016 Aroclor-1221 Aroclor-1232 Aroclor-1242 Aroclor-1248 Aroclor-1254 Aroclor-1254	ND N	ND N	ND ND ND ND O.48 JP ND	ND N	ND N				ND N
Endosulfan Sulfate 4,4-DDT Methoxychlor Endrin Ketone Endrin aldehyde alpha-Chlordane gamma-Chlordane Toxaphene Tech Chlordane Aroclor-1016 Aroclor-1221 Aroclor-1232 Aroclor-1242 Aroclor-1248 Aroclor-1254 Aroclor-1254 Aroclor-1260 Metals	ND N	ND N	ND ND ND 0.48 JP ND ND ND ND ND ND ND ND ND ND ND ND ND	ND N	ND N	9430000	75 0 P	801000	ND N
Endosulfan Sulfate 4,4-DDT Methoxychlor Endrin Ketone Endrin aldehyde alpha-Chlordane gamma-Chlordane Toxaphene Tech Chlordane Aroclor-1016 Aroclor-1221 Aroclor-1232 Aroclor-1242 Aroclor-1248 Aroclor-1254 Aroclor-1254 Aroclor-1260 Metals Aluminum	ND N	ND N	ND ND ND 0.48 JP ND ND ND ND ND ND ND ND ND ND ND ND ND	ND N	ND N	9430000 NT)	75.9 B	8910000 NT)	ND ND ND ND ND ND ND ND
Endosulfan Sulfate 4,4-DDT Methoxychlor Endrin Ketone Endrin aldehyde alpha-Chlordane gamma-Chlordane Toxaphene Tech Chlordane Aroclor-1016 Aroclor-1221 Aroclor-1232 Aroclor-1242 Aroclor-1248 Aroclor-1254 Aroclor-1254 Aroclor-1260 Metals Aluminum Antimony	ND N	ND N	ND ND ND ND 0.48 JP ND ND ND ND ND ND ND ND ND ND ND ND ND	ND N	ND N	ND	ND	ND	ND
Endosulfan Sulfate 4,4-DDT Methoxychlor Endrin Ketone Endrin aldehyde alpha-Chlordane gamma-Chlordane Toxaphene Tech Chlordane Aroclor-1016 Aroclor-1221 Aroclor-1232 Aroclor-1242 Aroclor-1248 Aroclor-1254 Aroclor-1254 Aroclor-1260 Metals Aluminum Antimony Arsenic	ND N	ND N	ND ND ND ND 0.48 JP ND ND ND ND ND ND ND ND ND ND ND ND ND	ND N	ND N	ND 11100	ND ND	ND 17800	ND ND ND ND ND ND ND ND
Endosulfan Sulfate 4,4-DDT Methoxychlor Endrin Ketone Endrin aldehyde alpha-Chlordane gamma-Chlordane Toxaphene Tech Chlordane Aroclor-1016 Aroclor-1221 Aroclor-1232 Aroclor-1242 Aroclor-1248 Aroclor-1254 Aroclor-1254 Aroclor-1260 Metals Aluminum Antimony Arsenic Barium	ND N	ND	ND N	ND N	ND N	ND 11100 77000	ND ND 14.3 B	ND 17800 93800	ND N
Endosulfan Sulfate 4,4-DDT Methoxychlor Endrin Ketone Endrin aldehyde alpha-Chlordane gamma-Chlordane Toxaphene Tech Chlordane Aroclor-1016 Aroclor-1221 Aroclor-1232 Aroclor-1242 Aroclor-1248 Aroclor-1254 Aroclor-1254 Aroclor-1260 Metals Aluminum Antimony Arsenic Barium Beryllium	ND N	ND N	ND N	ND N	ND N	ND 11100 77000 650 B	ND ND 14.3 B ND	ND 17800 93800 520 B	ND ND ND ND ND ND ND ND
Endosulfan Sulfate 4,4-DDT Methoxychlor Endrin Ketone Endrin aldehyde alpha-Chlordane gamma-Chlordane Toxaphene Tech Chlordane Aroclor-1016 Aroclor-1221 Aroclor-1232 Aroclor-1242 Aroclor-1248 Aroclor-1254 Aroclor-1254 Aroclor-1260 Metals Aluminum Antimony Arsenic Barium Beryllium Cadmium	ND N	ND N	ND ND ND ND 0.48 JP ND ND ND ND ND ND ND ND ND ND ND ND ND	ND N	ND N	ND 11100 77000 650 B 680 B	ND ND 14.3 B ND ND	ND 17800 93800 520 B 650 B	ND ND ND ND ND ND ND ND
Endosulfan Sulfate 4,4-DDT Methoxychlor Endrin Ketone Endrin aldehyde alpha-Chlordane gamma-Chlordane Toxaphene Tech Chlordane Aroclor-1016 Aroclor-1221 Aroclor-1232 Aroclor-1242 Aroclor-1248 Aroclor-1254 Aroclor-1254 Aroclor-1260 Metals Aluminum Antimony Arsenic Barium Beryllium Cadmium Calcium	ND N	ND N	ND ND ND ND 0.48 JP ND ND ND ND ND ND ND ND ND ND ND ND ND	ND N	ND N	ND 11100 77000 650 B 680 B 1780000	ND ND 14.3 B ND ND 9920	ND 17800 93800 520 B 650 B 6020000	ND ND ND ND ND ND ND ND
Endosulfan Sulfate 4,4-DDT Methoxychlor Endrin Ketone Endrin aldehyde alpha-Chlordane gamma-Chlordane Toxaphene Tech Chlordane Aroclor-1016 Aroclor-1221 Aroclor-1232 Aroclor-1242 Aroclor-1248 Aroclor-1254 Aroclor-1260 Metals Aluminum Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium	ND N	ND N	ND ND ND ND 0.48 JP ND ND ND ND ND ND ND ND ND ND ND ND ND	ND N	ND N	ND 11100 77000 650 B 680 B 1780000 11800	ND ND 14.3 B ND ND 9920 ND	ND 17800 93800 520 B 650 B 6020000 10800 B	ND N
Endosulfan Sulfate 4,4-DDT Methoxychlor Endrin Ketone Endrin aldehyde alpha-Chlordane gamma-Chlordane Toxaphene Tech Chlordane Aroclor-1016 Aroclor-1221 Aroclor-1232 Aroclor-1242 Aroclor-1248 Aroclor-1254 Aroclor-1254 Aroclor-1260 Metals Aluminum Antimony Arsenic Barium Beryllium Cadmium Calcium	ND N	ND N	ND ND ND ND 0.48 JP ND ND ND ND ND ND ND ND ND ND ND ND ND	ND N	ND N	ND 11100 77000 650 B 680 B 1780000	ND ND 14.3 B ND ND 9920	ND 17800 93800 520 B 650 B 6020000	ND ND ND ND ND ND ND ND

Compound	DECON-1	DECON-2	SUMP-1	SCREEK-I	SCREEK-2	VCCREEK-1	VCCREEK-2	VCCREEK-3	VCCREEK-4
	ASP	ASP	ASP	ASP	ASP	ASP	ASP	ASP	ASP
Metals, Cont.	SED	AQ	AQ	SED	SED	SED	AQ	SED	AQ
Iron	127000000	12400	22600			2920000	222	3010000	7340
Lead	428000	119	49.1			42600	ND	19500	49.3
Magnesium	4730000	2300 B	6550	_		4260000	3320 B	3300000	1830 B
Manganese	869000	372	728			721000	13.6 B	ND	302
Mercury	200	ND	ND			ND	0.25	130	ND
Nickel	53300	16.1 B	14.7 B			24100	ND _	22500 B	12 B
Potassium	714000 B	4150 B	12600			945000 B	1120 B	ND	3680 B
Selenium	ND	ND	5.2			ND	5.5	ND	ND
Silver	ND	ND	ND			ND	ND _	ND	ND
Sodium	151000 B	1470 B	62000			ND	8210	ND	1550 B
Thallium	ND	ND	ND			ND	ND	1200	ND
Vanadium	23600	4.3 B	2.6 B			18600	ND	18100	ND
Zinc	872000	468	2530			78200	7.8 B	70300	253

Compound	MW-1	MW-2	MW-3	MW-4	MW-4D	MW-6
	ASP	ASP	ASP	ASP	ASP	ASP
Volatiles	AQ	AQ	AQ	AQ	AQ	AQ
Chloromethane	ND	ND	ND	ND	3 J	ND ND
Bromomenthane Vinyl Chloride	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Chloroethane	ND ND	ND	ND ND	ND ND	ND	ND ND
Methylene Chloride	ND	ND	ND	ND	ND	ND -
Acetone	ND	ND	7 BJ	7 BJ	12 B	14 B
Carbon Disulfide	ND	ND	ND	ND	ND	ND
1,1-Dichloroethene	ND	ND	ND	ND	ND	2 J
1,1-Dichloroethane	ND	ND	ND	ND	ND_	25
1,2-Dichloroethene (total)	ND ND	ND ND	ND	ND ND	ND	ND
Chloroform 2-Butanone	ND ND	ND 6 J	ND ND	ND 0.8 J	ND 4 J	ND ND
1,2-Dichloroethane	ND ND	ND	ND ND	ND	ND ND	ND ND
1,1,1-Trichloroethane	ND	ND	ND	ND	ND	12
Carbon Tetrachloride	ND	ND	ND	ND -	ND	ND
Bromodichloromethane	ND	ND	ND	ND	ND	ND
1,2-Dichloropropane	ND	ND	ND	ND	ND	ND
cis-1,3-Dichloropropene	ND	ND	ND	ND	ND	ND
Trichloroethene	ND ND	ND	ND ND	ND ND	ND	ND ND
Dibromochloromethane	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
1,1,2-Trichloroethane Benzene	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
trans-1,3-Dichloropropene	ND ND	ND ND	ND ND	ND ND	ND	ND ND
Bromoform	ND ND	ND	ND	ND	ND	ND
4-Methyl-2-pentanone	ND	ND	ND	ND	ND	ND
2-Hexanone	ND	ND	ND	ND	ND	ND
Tetrachloroethene	ND	ND	0.4 J	ND	ND	ND
1,1,2,2-Tetrachloroethane	ND	1 J	ND	ND	ND	ND
Toluene	ND	ND	ND	ND	ND ND	ND ND
Chlorobenzene	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Ethyl Benzene Styrene	ND ND	ND	ND ND	ND ND	ND	ND
Total Xylenes	ND ND	ND	ND	ND ND	ND	ND ND
Semi-Volatiles	112	7145	1,12		- 1,2	112
Phenol	ND	ND	ND	ND	ND	ND
Bis(2-chloroethyl) ether	ND	ND	ND	ND	ND	ND
2-Chlorophenol	ND	ND	ND	ND	ND	ND
1,3-Dichlorobenzene	ND	ND	ND	ND	ND	ND ND
1,4-Dichlorobenzene	ND	ND ND	ND ND	ND ND	ND ND	ND ND
1,2-Dichlorobenzene 2-Methyl phenol	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Bis(2-chloroisopropyl) ether	ND ND	ND	ND	ND	ND	ND
4-Methyl phenol	ND	ND	ND	ND	ND	ND
N-Nitroso-Di-n-propylamine	ND	ND	ND	ND	ND	ND
Hexachloroethane	ND	ND	ND	ND	ND	ND
Nitrobenzene	ND	ND	ND	ND	ND	ND
Isophorone	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
2,4-Dimethylphenol	ND ND	ND	ND ND	ND ND	ND	ND ND
Bis(2-	ND ND	ND	ND	ND ND	ND	ND
2,4-Dichlorophenol	ND	ND	ND	ND	ND	ND
1,2,4-Trichlorobenzene	ND	ND	ND	ND	ND	ND
Naphthalene	ND	ND	ND	ND	ND	ND
4-Chloroaniline	ND	ND	ND ND	ND	ND	ND ND
Hexachlorobutadiene 2-Chloro-3-Methyl phenol	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
2-Chloro-3-Methyl phenol 2-Methylnaphthalene	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Hexachlorocyclopentadiene	ND ND	ND ND	ND	ND	ND	ND
2,4,6-Trichlorophenol	ND	ND	ND	ND	ND	ND
2,4,5-Trichlorophenol	ND	ND	ND	ND	ND	ND
2-Chloronaphthalene	ND	ND	ND	ND	ND	ND
2-nitroanaline	ND	ND	ND	ND ND	ND	ND
Dimethyl phthalate	ND	ND	ND	ND ND	ND ND	ND ND
Acenaphthylene	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
2,6-Dinitrotoluene 3-Nitroaniline	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Acenaphthene	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
2.4-Dinitrophenol	ND ND	ND ND	ND	ND	ND	ND

Compound	MW-1	MW-2	MW-3	MW-4	MW-4D	MW-6
Semi-Volatiles, Cont.	ASP	ASP	ASP	ASP	ASP	ASP
4-Nitrophenol	ND	ND	ND	ND	ND	ND
Dibenzofuran	ND	ND	ND	ND	ND	ND
2,4-Dinitrotoluene	ND	ND	ND	ND	ND	ND
Diethyl phthalate	1 J ND	ND ND	ND ND	ND	ND ND	2 J
4-Chlorodiphenylether Fluorene	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
4-Nitroaniline	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
4,6-Dinitro-2-methyl phenol	ND ND	ND ND	ND ND	ND	ND ND	ND ND
N-Nitrosodiphenylamine	ND	ND	ND	ND	ND	ND ND
4-Bromophenyl phenyl ether	ND	ND	ND	ND	ND	ND
Hexachlorobenzene	ND	ND	ND	ND	ND	ND
Pentachlorophenol	ND	ND	ND	ND	ND	ND
Phenanthrene	ND	ND	ND	ND ND	ND ND	ND ND
Anthracene Carbazole	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Di-n-butyl phthalate	41 B	36 B	48 B	42 BJ	30 B	47 B
Fluoranthene	ND	ND	ND	ND	ND	ND ND
Pyrene	ND	ND	ND	ND	ND	ND
Butyl benzyl phthalate	0.9 BJ	ND	9 BJ	2 BJ	ND	13 B
3,3-Dichlorobenzidine	ND	ND	ND	ND	ND	ND
Benzo(a)anthracene	ND	ND	ND	ND	ND	ND
Chrysene	ND	ND	ND	ND	ND	ND ND
Bis(2-ethylhexyl) phthalate	ND ND	2 J	ND ND	ND ND	ND ND	ND ND
Di-n-octyl phthalate Benxo(b)fluoranthene	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Benzo(k)fluoranthene	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Benxo(a)pyrene	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Indeno(1,2,3-cd)pyrene	ND	ND	ND	ND	ND	ND
Dibenzo(a,h)anthracene	ND	ND	ND	ND	ND	ND
Benzo(ghi)perylene	ND	ND	ND	ND	ND	ND
Pesticides						
alpha-BHC	ND	ND	ND ND	ND ND	ND ND	ND
beta-BHC	ND	ND	ND ND	ND	ND	ND ND
delta-BHC gamma-BHC(Lindane)	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Heptachlor	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Aldrin	ND ND	ND	ND	ND	ND	ND ND
Heptachlor Epoxide	ND	ND	ND	ND	ND	ND
Endosulfan I	ND	ND	ND	ND	ND	ND
Dieldrin	ND	ND	ND	ND	0.029 JP	ND
4,4-DDE	ND	ND	ND	ND	0.22 J	ND
Endrin	ND	ND	ND	ND	0.037 J	ND ND
Endosulfan II 4.4-DDD	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Endosulfan Sulfate	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
4.4-DDT	ND	ND	ND	ND	ND ND	ND ND
Methoxychlor	ND	ND	ND	ND	ND	ND
Endrin Ketone	ND	ND_	ND	ND	ND	ND
Endrin aldehyde	ND	ND	ND	ND	ND	ND
alpha-Chlordane	ND	ND	ND ND	ND	ND 0.017 ID	ND
gamma-Chlordane	ND ND	ND	ND ND	ND ND	0.017 JP	ND ND
Toxaphene Tech Chlordane	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Aroclor-1016	ND ND	ND ND	ND	ND ND	ND ND	ND ND
Aroclor-1010	ND	ND ND	ND	ND	ND	ND
Aroclor-1232	ND	ND	ND	ND	ND	ND
Aroclor-1242	ND_	ND	ND	ND	ND	ND
Aroclor-1248	ND	ND	ND	ND	ND	ND
Aroclor-1254	ND	ND	ND ND	ND ND	ND ND	ND ND
Aroclor-1260	ND	ND	ND	ND	ND	ND
Metals	162 B	108 B	57.9 B	878	1390	ND
Antimony	ND	ND	ND	ND	ND	ND ND
Arsenic	ND	ND	4.5 B	ND	11.4	ND
Barium	76 B	39.2 B	34.8 B	46.9 B	209	65.3 B
Beryllium	ND	ND	ND	ND	ND	ND
Cadmium	ND_	ND_	ND_	ND 10600	ND	ND
Calcium	69700	28100	30400	40600	60600	86900
Chromium	ND ND	ND	ND ND	ND ND	ND ND	ND ND
Cobalt	ND	NDND	ND	ND 5.4 B	ND 4.1 B	ND 3.9 B
Copper	ND 1870	421	264	2500	3160	2490
Iron	10/0	421	204	2300	7100 ,	<u> </u>

Compound	MW-1	MW-2	MW-3	MW-4	MW-4D	MW-6
Metals, Cont.	ASP	ASP	ASP	ASP	ASP	ASP
Lead	ND	ND	ND	ND	ND	ND
Magnesium	28100	4880 B	5610	10800	15500	12000
Manganese	5280	379	64.5	3090	520	6200
Mercury	0.26	0.29	0.36	0.34	0.34	0.3
Nickel	ND	ND	ND _	9.7 B	8.6 B	ND
Potassium	7220	8060	4410 B	3130 B	2870 B	8170
Selenium	ND	ND	4.1 B	ND	ND	ND
Silver	ND	ND	ND	ND	ND	ND
Sodium	20800	45900	46600	24000	19100	47500
Thallium	ND	ND	ND	ND	ND	ND
Vanadium	ND	ND	ND	2.5 B	3.1 B	ND
Zinc	4.8 B	4.9 B	17.70 B	10.9 B	14.8 B	7.7

APPENDIX B

WELL LOGS AND TEST PIT LOGS

			r RECORD		mp 4
	FRIENDSHIP FOUR	NDRY NYSDEC	TEST PI		TP-1
PROJECT NUMBE			Location:	West of	concrete pad, due West of
Weather:	Overcast rain, 40 de	grees F	building		
Date/Time Start:	12/6/94 1520		Plot Plan	J	
Date/Time Finish:	12/6/94		.		
Contractor:	SJB		-	1	
Inspector:	DRD of ES		-	TP-10	concrete pad
Excavation Dept (feet)	Field	Identification of Ma	terial		Comments
0 -	Brown black sandy s	oil		PID= 0	ppm
1 -					
2 .	Some gray clay (sine	ilar to clay found in TP-	7 however not as tig		
3 -	Appeared clean.			PID= 0	ppm
4 -		and gravel that has bee	n found in other TP		
5 -	Bottom of Excava			1	nsions 40'L by 4'D by 1' wide
6 .	Daniel of Davier				
7 -					
0	(O)			D	
	' ' '	water seeping into tr		PID= 0	ppni
9 .	may exist on North	side of site in TP-7 a	nd north end of I		
10 -					
11 -	Encounted the bro	wn till at approx 3', so	did not think ther		
12 -	to continue to dept	h in TP			
13 -					
14 -					
15 .					
16 -					
17 .					
18 .					
19 -				_	<u> </u>
20 -					
SUMMARY					
JOININAKI					
		AIR MONI	TORNG DATA		
TIME	PID	LEL			OTHER
1525	0 ppm	0 %		•	hloroform Sensidyne = 0ppm
1530	0 ppm	0 %		ppm	
1535	0 ppm	0 %		ppm	
1540	0 ppm	0 %	0 (ppm	

ENGINEERING-SCIENCE TEST PIT RECORD TEST PIT NO. TP-2 PROJECT NAME: FRIENDSHIP FOUNDRY NYSDEC PROJECT NUMBE 723844.01010 Location: East of concrete pad Overcast some rain 40 degrees F Weather: Date/Time Start: 12/6/94 1450 Plot Plan 12/6/94 1510 Date/Time Finish: Contractor: SJB DRD of ES Inspector: **Excavation Dept** Field Identification of Material Comments (feet) 0 PID= 0 ppm Brown black sandy soil 1 2 Brown soil with sandy gravel, till, clean, appears to be native soil 3 PID= 0 ppm 5 TP dimensions 40'L by 4'D by 1' wide 6 7 **Bottom of Excavation** 8 9 10 (TP is very similar to till found in TP-3, no sample collecte 11 12 (We did not feel it was nessary to go to water as we found 13 in TP-3 nearby) 14 15 (No sample collected from TP-2) 16 17 18 19 20 SUMMARY AIR MONITORNG DATA PID OTHER TIME 0 % 0 Methyl Chloroform Sensidyne = 0ppm 1450 0 ppm 1455 0 ppm 0 % 0 ppm 1500 0 ppm 0 % 0 ppm 0 % 0 ppm 1510 0 ppni

		ENGINEERI TEST PIT	RECORD		
PROJECT NAME:	FRIENDSHIP FOU	NDRY NYSDEC	TEST PI	T NO. TP	2-3
PROJECT NUMBI	E_723844.01010		Location:	West of plant/sout	h of concrete pad
Weather:	Overcast some rain	40 degrees F			
Date/Time Start:	12/6/94 1420		Plot Plan	concrete pad	N _o
Date/Time Finish:	12/6/94 1445		-	_	
Contractor:	SJB		.		Plant bldg
Inspector:	DRD of ES			TP-30	
Excavation Dept	Field	Identification of Mat	erial	Cor	nments
0 -	Brown to dark color	topsoil, not much debris		PID= 0 ppm	
1 .					
2 -	Brown soil with cob	bles and gravel			
3 -				PID= 0 ppm	
4 .					
5 -				TP dimensions 40	'L hy 9-3'D hy 1'
6 .				wide	
7 -				we dug to 9' on	east end
8 -	Some sand, appea	ars to be till		PID= 0 ppm	
9 .		seems to be native		"	
10 .	Bottom	of Excavation			
11 .					
12 -	(No sample collect	ted from TP-3)			
13 -		,			
14 -					
15 -					
16 -				1	
17 -					
18 -					
19 -					
20 -					
					
SUMMARY_					
710.40	DUD.		ORNG DATA		
1425	PID	0 %		OTHE	
1425	0 ppm 0 ppm	0 %		Methyl Chloroforn	i acnsidyne = Oppm
1435	0 ppm 0 ppm	0 %		ppm	
1440	0 ppm	0 %		ppm	

ENGINEERING-SCIENCE TEST PIT RECORD TEST PIT NO. TP-4 PROJECT NAME: FRIENDSHIP FOUNDRY NYSDEC PROJECT NUMBE 723844.01010 Location: South west corner of property Weather: Overcast some rain 40 degrees F Plot Plan Date/Time Start: 12/6/94 1600 Ŋ Date/Time Finish: 12/6/94 1630 smContractor: Plant bldg DRD of ES small Inspector: concrete pad **Excavation Dept** Field Identification of Material Comments (feet) 0 Dark black topsoil first 6". Below is brown to gr PID≃ 0 ppm 1 clay and gravel, gray to white ash north end 2 Brown till with some slate pieces at top 2' till similar to other TP, 3 PID= 0 ppm Water at 4.5' 4 5 TP dimensions 40°L by 3-5°D by 1° 6 Bottom of Excavtion wide 8 (TP was similar to other TP,s with brown till at approx 2° i PID= 0 ppm 9 10 (Discovered a gray, white material on north end of TP that 11 material. Collected a sample for TCLP analysis.) 12 13 14 15 16 17 18 19 20 SUMMARY AIR MONITORNG DATA TIME PID LEL OTHER 1605 0 ppm 0 % 0 Methyl Chloroform Sensidyne = 0ppm 0 ppm 1615 0 % 0 ppm 1620 0 ppm 0 % 0 ppm 0 ppm 1625 0 % 0 ppm

	ENGINEERIN TEST PIT I		CE			
PROJECT NAME:	FRIENDSHIP FOUNDRY NYSDEC	TEST PIT NO. TP-5				
PROJECT NUMBE		Location: South west of plant bldg				
Weather:	Overcast some rain 30 degrees F					
Date/Time Start:	12/7/94 0845	Plot Plan		N		
Date/Time Finish:	12/7/94 0915			l N		
Contractor:	SJB			Plant bldg		
Inspector:	DRD of ES	small concrete pad	тр.50	Hoppers		
Excavation Dept (feet)	Field Identification of Materi	<u> </u>	Comm	ents		
0 -	Black stained sand, gravel, appears to be foundr	color	PID= 0 ppm			
1 -						
2 -						
3 -	Black stained sand on top, changing to clay, wet	t very tight, till bl	PID= 0 ppm			
4 -						
5 -	Brown till with gravel, sand, clean		TP dimensions 35'L h	ny 4'D by I' wide		
6 .	Bottom of Excavtion					
7 .						
8 .	(Due to surface water infiltration, trench qui	ckly filled with	PID= 0 ppm			
9 -		·				
10 -	(on north end of trench an 18" steel pipe w	as encountere				
11 -	Pipe was not damaged. Purpos of this pipe					
12 -		·				
13 -	(Because this TP had the most black staine	ed fill that we ha				
14 -	we collected a soil sample. DEC rep not on					
15 -	parameters)					
16 -	,					
17						
18 -						
19 -						
20 -						
SUMMARY						
	AIR MONITO	RNG DATA				
TIME	PID LEL		OTHER			
0850	0 ppm 0 %		Methyl Chloroform Se	ensidyne = 0ppm		
0850	0 ppm 0 %		ppm			
0910	0 ppm 0 %	0	ppnı			
re						

Date/Time Finish: 12/7/94 0950	
PROJECT NUMBE 723844.01010 Location: South west of plant bldg Weather: Overcast some rain 30 degrees F Date/Time Start: 12/7/94 0930 Plot Plan Date/Time Finish: 12/7/94 0950 Contractor: SJB Inspector: DRD of ES small TP-60	
Date/Time Start: 12/7/94 0930 Plot Plan	
Date/Time Finish: 12/7/94 0950	
Contractor: SJB Inspector: DRD of ES sniall TP-60	Ŋ
Inspector: DRD of ES small TP-60	IN
·	Plant bldg
	Норреги
Excavation Dept (feet) Field Identification of Material Comments	
O - Black stained fill, sand, gravel, metal debris simi PID= 0 ppm	
l -	
2 .	
3 - Black stained sand with some clay, gray PID= 0 ppm	
4 -	
5 - Brown till with gravel, sand, clean TP dimensions 35°L by 4'D by 1'	wide
6 - Bottom of Excavtion	
7 .	
8 - (TP was very similar to TP-5, soil more metal debris was f PID= 0 ppm	
9 - in TP-6)	
10 -	
11 - (No sample was collected from TP-6 as we collected a sa	
12 - material in TP-5)	
13 -	
14 .	
15 -	
16 -	
17 .	
18 -	
19 -	
20 -	
SUMMARY	
AIR MONITORNG DATA	
TIME PID LEL OTHER	
0935 0 ppm 0 % 0 Methyl Chloroform Sensidyne = 0	Эррт
0940 0 ppm 0 % 0 ppm 0945 0 ppm 0 % 0 ppm	
0945 0 ppm 0 % 0 ppm	

		ENGINEERIN TEST PIT I			
PROJECT NA	ME: FRIENDSHIP	FOUNDRY NYSDEC	TEST PI	T NO. TP-7	
	MBE 723844.01010		Location:	West of main bldg	_
Weathe	r: Overcast some	rain 45 degrees F			
Date/Time Star			Plot Plan		ν°
Date/Time Fin	ish: 12/6/94 1200		concrete pad	TP-70	18
Contracto	г:			-	main bldg
Inspecto	r: DRD of ES				Hoppers
Excavation I	Dept F	ield Identification of Materi	al	Comments	
0	- Slag rock black	color, fill black color sandy fill,	vater. Top of gra	PID= 0 ppm	
1	- Clay layer, tigh	t appears to be confining water p	ouring in on top.		
2	- Yellow color of	ay with sand and rounded gravel.]	
3	_	,		PID= 0 ppm	
4		Bottom of Excavtion			
5				TP dimensions 75'L by 4'D	by I' wide
6					
7	- (Soil appears	to be native from top of clay a	t approx 3'.)		
8	Ι'	ck had purple color coliceted s		. PID= 0 ppm	
9	- INSTRUCTIO			, v pp	
10		d sample of black colored san	dy fill found on		
11	'	•	ay iiii loana on		
12	- AND TCL and	ily 515)			
13	-				
		ep on east end near foundry o	east Jen did no		
14	- clay in other a	•			
15	' '	ipprox 3' and perched water p	oured into tren	}	
16	- clay layer appre	ox 18" thick.)			
17	- (Midway throu	gh TP we ran into concrete area	near Sawyer stre		
18	- from near bldg	to concrete pad.)			
19	-				
20					
SUMMAR	Υ				
		AIR MONITO	RNG DATA		
TIME	PID	LEL		OTHER	
1105	0 ppni	0 %	0	Methyl Chloroform Sensidyr	ne = Oppm
1110	4.5 ppm	0 %	(0 ppm	
1120	9.0 ppm	0 %	(0 թթու	
1135	0.3 ppm	0 %	(0 ppni	
1145	0 ppm	0 %	0	ppm	

		ENGINEERII TEST PIT	NG-SCIEN RECORD	CE	
PROJECT NAME	FRIENDSHIP FOUN		TEST PI	T NO. TP-8	
PROJECT NUMB			Location:	Due West of main bldg	
Weather:	Overcast				
Date/Time Start:	12/6/94 1305		Plot Plan		ν ^β
Date/Time Finish:	12/6/94 1315		concrete pad		N
Contractor:	<u>s</u>				nıain bldg
Inspector:	DRD of ES			TP-80	Hoppers
Excavation Dept	Field I	dentification of Mate	rial	Comments	
0 -	Black stained sand w	ith scrap metal/ engine pa	irts	PID= 0 ppm	_
1 -					
2 -	•				
3 -	Till with gravel of var	rious sizes, sand brown ir	color, some wate	PID= 0 ppm	
4 -	clean and native.				
5.				TP dimensions 45'L by 3'D by	l' wide
6 -				we went to 9' on east end near	hldg
7 -					
8 -	Brown sand satural	ted, water collecting in	hole, some grav	PID= 0 ppm	
9.					
10 -	Bottom	of Excavtion			
11 -					
12 -	(We would have lik	e to have found clay, h	owever we went		
13 -	which bottom 7' ap	peared to be native. at	approx 7' deep,		
14 -	soil so depth was to	erminated.)			
15 -	1				
16 -	(Collected soil sample	of black stained soil from	m 1-1.5' in depth f		
17 -	TCLP analysis.)				
18 -					
19 -					
20 -					
SUMMARY_					
		A VD M ONLTH	ODNO DATA		
TIME	PID	AIR MONITO	JKNG DATA	OTHER	
1320	0 ppm	0 %	0	Methyl Chloroform Sensidyne	= 0ppm
1325	0 ppm	0 %	0	ppnı	
1340	0 ppm	0 %	0	ppm	
1350	0 ppm	0 %	0	ppnı	
1400	0 ppni	0 %	0	ppm	

		ENGINEERII TEST PIT	NG-SCIENC RECORD	CE			
PROJECT NAME:	FRIENDSHIP FO	UNDRY NYSDEC	TEST PI	T NO.	TP-12		
PROJECT NUMBI	723844.01010		Location:	South of East plant bldg and			
Weather:	Overcast rain, 30	degrees F	East of Howa	ard St			
Date/Time Start:	12/7/94 1140		Plot Plan		concrete p		
Date/Time Finish:	12/7/94 1155				bidg -		
Contractor:	SJB			Howard	TP-120		
Inspector:	DRD of ES						
Excavation Dept (feet)	Flei	d Identification of Mate	rial		Comments		
0 -		oil top 6" black stained sandy	soil	PID≈ 0	ppm		
2 .		silt, gravel, most gravel near	top, clean.				
3 -				PID= 0	ppnı		
4 -		Bottom of excavation					
5 -				TP dime	ensions 40'L by 3.5'D by 1' wide		
6 -							
7 .	(Collected samp	ole of stained soil from abo	out 1' in depth for	-			
8 -	for metals as pe	r G Sutton NYSDEC instr	uctions.)	PID= 0	ppni		
9 -							
10 -							
11 .							
12 -							
13 -							
14 -							
15 .							
16 -							
17 -							
18 -							
19 -							
20 -							
SUMMARY_							
		AIR MONIT	ORNG DATA				
TIME	PID	LEL			OTHER		
1145	0 ppm	0 %	0	Methyl C	Chloroform Sensidyne = Oppm		
1150	0 ppm	0 %		ppm			
1155	0 ppni	0 %	0	ррт			

OFFCT MANE	· EDIEVIDANID EOI		TEST PIT	r NO	TP-13
	: FRIENDSHIP FOU E 723844.01010	INDRI NISDEC	Location:		East plant bldg and
Weather:	Overcast rain, 30 d	egrees F	East of How		Lust plant orag and
Date/Time Start:	12/7/94 1115		Plot Plan		concrete
Date/Time Finish:	12/7/94 1130				pad N
Contractor:	SJB			Howard	
Inspector:	DRD of ES				TP-130
Excavation Dep	t Field	Identification of Mate	rial		Comments
^	Dark brown topsoil	top first 6", bottom 8" is l	black cinders, like r	PID= 0	ppm ,
1		•			
2	Yellow clay with si	ilt and some gravel, clean r	native.		
3				PID= 0	ppm
4	- В	ottoni of excavation			
5				TP dime	nsions 40°L by 3.5°D by 1' wide
6					
7	- (Cinders found at	around 1' depth were s	imilar to railroad		
8	- cupola dust.)			PID= 0	ppm
9	-				
10	-				
11	(No soil sample	e collected.)			
12					
13	.				
14	.				
15	.				
16	.				
17	. ·				
18					
19					
20	-				
SUMMARY_					
		AIR MONIT	ORNG DATA		
TIME	PID	LEL			OTHER
1115	0 ppni	0 %		•	hloroform Sensidyne = 0ppm
1120	0 ppm	0 %		opnı	
1125	0 ppm	0 %	0 1	ppnı	

		ENGINEERIN TEST PIT I		CE	
PROJECT NAME:	FRIENDSHIP FOUR	NDRY NYSDEC	TEST PIT	ΓNO.	TP-14
PROJECT NUMBE			Location:		ast of railroad abutment,
Weather:	Overcast rain, 30 deg	grees F	East of H		ward St
Date/Time Start:	12/7/94 1100		Plot Plan		concrete pad N
Date/Time Finish:	12/7/94 1110				pad N
Contractor:	ѕљ			Howard	
Inspector:	DRD of ES				TP-14 ()
Excavation Dept (feet)	Field I	Identification of Materi	al		Comments
0 -	Dark brown topsoil			PID= 0	ppm
1 -					
2 .	Yellow clay with sor	me silt, gravelly at top, clear	ı, native.		
3 -				PID= 0	ppm
4 .					
5 -	Bo	ttom of excavation		TP dime	ensions 30°L by 4°D by 1' wide
6 .					
7 .	(TP soils are the s	same as TP-15, clean no	evidence of fill		
8 .	,			P(D= 0	ppm
9 .	(No soil sample co	ollected.)			
10 -	, ,	,			
11 -					
12 -					
13 -					
14 .					
15 .					
16 -					
17 -					
18 -					
19 -					
20 -					
SUMMARY_					
		AIR MONITOI	RNG DATA		
TIME	PID	LEL			OTHER
1105	0 ppm	0 %	0	Methyl C	hloroform Sensidyne = 0ppm
1110	0 ppni	0 %	0 г	ppm	
				-	

		TEST PIT	r record		
PROJECT NAME:	FRIENDSHIP FOU	NDRY NYSDEC	TEST PI	T NO.	TP-15
PROJECT NUMBE	•••		Location:	North E	ast of railroad abutment,
Weather:	Overcast rain, 30 de	egrees F		of Howard	St
Date/Time Start:	12/7/94 1030		Plot Plan]	concrete D
Date/Time Finish:	12/7/94 1100		-		bidg
Contractor:	SJB			Howard	TP-15 🛘
Inspector:	DRD of ES				
Excavation Dept (feet)	Field	Identification of Mat	terial		Comments
0 -	Dark brown topsoil			PID= 0	ppm
1 -					
2 -	Sand with lots of gra	avel, light brown			
3 -	Yellow clay with sil	lt,some gravel, clean appo	eared to be native	PID= 0	ppm
4 -					
5 .				TP dime	nsions 45'L by 3 to 7'D by 1'
6 .				wide	,
7 -	Brown clay, clean,	. some water		1	
8 -	•	ottom of excavation		PID= 0	nnn
9 -					t.t
10 -					
11 -					
12 -	(Hole appeared to	be clean throughout,	went to 7' on west		
13 -	(lole appeared to	be clean anoaghout,	went to 7 on west		
14 -					
15 -	(No soil sample	sollasted)			
16	(No son sample	conected)			
17					
17 -					
19 -					
20 -					
SUMMARY_					
TIME	DID		FORNG DATA		OTHER
TIME 1035	PID 0 ppm	LEL 0 %	Λ	Methyl C	Chloroform Sensidyne = Oppm
1035	0 ppm	0 %		ppm	and otoral density ite - oppin
1050	0 ppm	0 %		bbui	
	· ·				

					PARSONS ENGINEERING SCIENCE		} /	MW-	1	
Contractor	: SJB SE	ERVICES,I	NC.		DRILLING RECORD	WELL N	0	MW-	1	
Driller:	Ron as	nd Kevia								
Inspector:	Richar	d S. Moraw	ec		PROJECT NAME NYSDEC FRIENDSHIP FOUNDARY	Sheet 1	l of	2		
Rig Type:	Гуре:		CME PROJECT NUMBER 72384401010							
					<u> </u>					
G	ROUNDW	ATER OBS	ERVATIO	NS						
Water					Weather LIGHT SNOW, 30	LOCATION	N PLAN			
Level						See Site	e Plan			
Date					Date/Time Start DECEMBER 19, 1994, 1320					
Time										
Meas.					Date/Time Finish DECEMBER 20, 1994, 1100					
From								,		
PID/FID	Sample	Sample	Percent	Blow	MATERIAL	USCS	WELL	STAIN	SHEEN	PREE
Reading	I.D.	Depth	Recovery	Cts	IDENTIFICATION	CLASSIF.	LOG			PHASE
		0					3.3			
				3	FILL; brown, fine—coarse sand, silt, tr fine gravel, coal pcs.					
			;	6	moist, no odor					
				11	·		83			
0.8		2	50	14						
				7	Brownish-gray to greenish-gray SILT, Ir fine sand, tr clay with little	ML-CL	11000			
				4	occasional fine—coarse gravel, moist, no odor					
				5			6002			
1.3		4	40	4	·					
				7		1	S			
				13	Light brown SILT, some clay and fine-coarse sand, occasional fine-	ML-CL	A			
_				9	coarse gravel, wet at 4.5-5.0 feet, no odor		M			
9		6	30	8			19			
				9			∭			
				9			12	J	1	
				10			%			
4.3		8	100	11			9			
				4			15			
				7			₩		- 1	
				8			₩			
2	_	10	50	11			₩			
				3		İ	₩			
				4	D. H. L. L. L. L. CH. T. L. L.		₩	ĺ		
1.0		12		7	Reddish-tan clayey SILT, moist	ML				
1.8		12	50	8	Daniel to mark Gas CAND and CHT	\/I CI	W]		
		-			Brown - tan very fine SAND and SILT	ML-CL	₩			
				8 11	moist—wet, no odor					
1.6		14	70	10	Gray very fine SAND and SILT with few (<1/4") clay seams	1				
2.0		.,		2	moist—wet, no odor	ML-CL				
	-			4		02	S			
				7			A			
1.1		16	60	9	Light brown very fine SAND and SILT, wet, no odor	ML	N	ľ		
				10			1 2			
				11	Brown, medium-coarse SAND and fine-coarse GRAVEL	SP				
				8	wet, no odor		P			
0.8		18	90	8			A			
				3	Brown-tan SILT with tr fine sand	ML	с к			
				4	moist – wet, no odor		X			
				7	Gray SILT with tr clay, tr fine gravel					
0		20	70	10	low plasticity, moist—wet	ML-CL				
					COMMENTS CONDUCTED BORING TO 30 FEET 12/19 THEN INSTAL	LED MW-1	TO 19 1	2/20		
	55 -	SPLIT SPOO	N		MW-1; 2.5 FEET STICKUP					
	A - A	UGER CUTTI	NOS							
					<u>- </u>					\neg

					PARSONS ENGINEERING SCIENCE	BORING	7		MW-1	<u> </u>			
Contractor	: SJB SI	ERVICES,I	NC.		DRILLING RECORD	WELL N	0	MW-1					
Driller:	Ron as	nd Kevin											
Inspector:	Richar	d S. Morav	ec		PROJECT NAME NYSDEC FRIENDSHIP FOUNDARY	Sheet 2	ol	2					
Rig Type:	СМЕ				PROJECT NUMBER 72384401010	Location De	scription.						
						-							
Water	ROUNDW	ATER OB	SERVATIO	NS	Weather LIGHT SNOW, 30	LOCATION PLAN							
Level					Weather LIGHT SNOW, 30	LOCATION PLAN See Site Plan							
Date					Date/Time Start DECEMBER 19, 1994, 1320								
Time						1							
Meas.					Date/Time Finish DECEMBER 20, 1994, 1100								
From													
PID/FID	Sample	Sample	Percent	Blo₩	MATERIAL	USCS	WELL	STAIN	SHEBN				
Reading	I.D.	Depth	Recovery	Cts	IDENTIFICATION	CLASSIF.	LOG		_	PHAS			
		20		2	Gray SILT with tr clay, tr fine gravel	ML-CL				l			
				. 3	low plasticity, moist—wet (to 24.7 ft)	WIL-CL							
					ion pasticity, around neckto 24.7 mg	1				ĺ			
0.5		22	80	6						1			
				6	,] <i>.</i>			1			
				6			· /	- 1		1			
				8									
0		24	70	9		}			1				
				3				- 1	J				
				6	Brown very fine SAND, tr silt, few silt seams	-				l			
0	_	26	70	7	wet, no odor	SM			ĺ				
		20	70	6	wei, 20 0001	5.7		ĺ	1				
				9									
				11					ĺ				
0		28	90	13				ĺ	- 1				
				5				ı	- {				
		20	100	10				- 1	ľ				
0		30	100	12	END OF BORING	-	/						
			:		END OF BONNIO			ľ	1				
			:				1						
		32											
								ĺ	1				
							1	- 1	- 1				
						[]							
		34						ĺ					
	-												
									[
		36							[
			:	· · · · · · · · · · · · · · · · · · ·					Ì				
							.	J					
									Ì				
		38						- 1	- 1				
-													
		_											
		40	——- <u> </u>										
			·						<u> </u>				
					COMMENTS CONDUCTED BORING TO 30 FEET 12/19 THEN INSTAL	LED MW-1	TO 19 1	2/20					
	33 -	SPLIT SPOC	ИС		MW-1; 2.5 FEET STICKUP	_							
		UGER CUTT	INGS										
		C - CORRD											

_					PARSONS ENGINEERING SCIENCE	1/	MW-2				
Contractor	SJB SE	ERVICES,I	NC.		DRILLING RECORD	WELL N	0.	MW-	2		
Driller:	Randy	and Kevin									
Inspector:	Richard S. Moravec			-	PROJECT NAME NYSDEC FRIENDSHIP FOUNDARY	Sheet 1	of	2			
Rig Type:	CME				PROJECT NUMBER 72384401010	Location De	scription	12			
	ROUNDW	ATER OB	ERVATIO	NS		LOCATION	101 431				
Water				ĺ	Weather CLEAR, 27	LOCATION See Site					
Level					Date/Time Start DECEMBER 23, 1994, 0901	See Site	rian				
Date Time			-		Date Time Start December 2, 1771, 5701	1					
Meas.					Date/Time Finish DECEMBER 23, 1994, 1515						
From											
PID/FID	Sample	Sample	Percent	Blow	MATERIAL	USCS	WBLL	STAIN	SHEEN	PREE	
Reading	I.D.	Depth	Recovery	Cts	IDENTIFICATION	CLASSIF.	Log			PHASE	
		0									
				13	Dark brown, varied amount of f-c SAND, SILT and f-c GRAVEL,	GM	G				
				21	Moist, no odor		R				
				12	_		0				
0.9	_	2	30	10	<u> </u>		_ <u></u>				
				5	Brown, damp – moist, no odor		T		1 1		
				7	-						
		4	20	31	-		S				
0.0		4	20	17	Moist	J	A				
			T	29	Most		N				
				30	-		D				
0.0		6	70	39		1					
				17	Moist		P				
				18		1	A		1 1		
				17			C				
0.0		8	90	15			K				
				23	Wet at 8.0 ft, no odor						
				24			[
				19							
0.0		10	50	25							
				15	Moist-wet				1 1		
				23 26		1		İ			
0.0		12	80	24							
0.0	_			23	Wet						
				19			:				
				18				- 1			
0.0		14	60	19							
				8	Brown SILT with fine—me. sand	ML	 				
		_		7			S				
			_	8			A				
0.0		16	5	9	Oliver	ML-CL	N				
	-			5 7	Olive—gray very fine sand, silt, and tr. clay, tr. coarse sand moist—wet, no odor	ML-CL	D	ł			
				7	most—wet, no odot		P				
0.0		18	60	11			A				
- 0.0	ST-1	10			Olive-gray		c	- 1			
				Shelby	g- ,		K				
				Tube							
		20	1.4'/1.75								
					COMMENTS CONDUCTED BORING TO 30 FEET 12/23 THEN INSTA	LLED MW-2	TO 19.0	ft on 12	123		
	\$\$	~ SPLIT SPO	ON		MW-2; 2.5 à STICKUP						
	A - A	UGER CUTT	TNG\$		BACKFILL BORING TO 20 FT., FILTER PACK START A	T 20 FT., SCF	LEEN AT	19 FT.			
		C-COPED									

					PARSONS ENGINEERING SCIENCE	BORING			MW-2	2		
Contractor	SJB SI	ERVICES,I	NC.		DRILLING RECORD	WELL N	O.	MW-	2			
Driller:	<u>-</u>	and Kevin			DROWN AND AUTOPO CRIPTING ARE POLICED AND AREA	S		•				
Inspector: Richard S. Moravec Rig Type: CME					PROJECT NAME NYSDEC FRIENDSHIP FOUNDARY PROJECT NUMBER 72384401010	Sheet 2 Location D	of	2				
Rig Type: CME					PROJECT NOWIDER TEMPORATOR	Excaudin D	csa ipuoi	••				
G	ROUNDW	ATER OB	SERVATIO	NS								
Water					Weather CLEAR, 27	LOCATION PLAN						
Level						See Site	e Plan					
Date					Date/Time Start DECEMBER 23, 1994, 0901	+						
Time Meas.					Date/Time Finish DECEMBER 23, 1994, 1515							
From												
PID/FID	Sample	Sample	Percent	Blow	MATERIAL	USCS	WELL	STAIN	SHEEN	FREE		
Reading	I.D.	Depth	Recovery	Cis	IDENTIFICATION	CLASSIF.	roa			PHASE		
		20			Line time and in the CHT was 5- CAND to day	VG CI	-					
				6	Light, olive—gray, varied amount SILT, very fine SAND, tr. clay wet, no odor	ML-CL						
		[6	wet, 10 odot		В					
0.0		22	100	8			E					
				5	Wet		N					
				5			Т					
				9			0					
0.0		24	90	11	Litte Victoria CHT as 6 CAND) (T	N					
				2	Light, olive—gray, varied amount SILT, very fine SAND, wet, no odor	ML	T					
				4	Wei, 10 odoi		E					
0.0		26	30	5								
				6			В					
				6	27.1 ft.		Α					
				4	Light, olive-gray, yaried_amount SILT, very fine SAND, tr. clay	ML-CL	C					
0.0		28	90	4	wet, no odor		K F					
			 :	4	29.2 ft.		I					
				6	Light, olive-gray, varied amount SILT, very fine SAND,	ML	L					
0.0		30	100	8	wet, no odor		L					
					END OF BORING							
		22										
		32										
			:									
		34										
						ļ						
		36										
		-50										
			;									
		38										
		40	!									
		7*										
					COMMENTS CONDUCTED BORING TO 30 FEET 12/23 THEN INSTA	LED MW-	2 TO 19.0	ft on 12	123			
		- SPLIT SPO			MW-2; 2.5 ft STICKUP							
A - AUGER CUTTINGS					BACKFILL BORING TO 20 FT., FILTER PACK START A	1 20 FT_SCF	CEEN AT	19 FT.				

					PARSONS ENGINEERING SCIENCE	BORING			MW-3	3
Contractor	: SJB SE	ERVICES,I	NC.		DRILLING RECORD	WELL N	0.	MW-	3	
Driller:		and Kevin								
Inspector					PROJECT NAME NYSDEC FRIENDSHIP FOUNDARY	Sheet 1		2		
Rig Type:	CME	_			PROJECT NUMBER 72384401010	Location D	act ibnou	<u>:</u>		
G	ROUNDW	ATER OBS	ERVATIO	NS.						
Water					Weather CLEAR, 28 (GO!NG TO 50)	LOCATION	N PLAN			
Level						See Site	: Plan			
Date					Date/Time Start DECEMBER 22, 1994, 0949	-				
Time	1									
Меаз.					Date/Time Finish DECEMBER 21, 1994, 1600 (INSTALL MW-3)	1				
From PID/FID	Sample	Sample	Percent	Blow	MATERIAL	USCS	WELL	STAIN	SHEEN	FREE
Reading	I.D.	Depth	Recovery		IDENTIFICATION	CLASSIF.	LOG	***************************************		PHASE
Table 1		0	,							1
l				1	FILL; black pes of coal, fine—coarse sand, silt, and fine gravel		G		Coal	
				2	moist, no odor (0 - 1.0 ft)		G R O		Dust	
				3	Brown fine—coarse sand, varied amt. silt and fine—coarse gravel,					
3.6		2	50	4	Moist, no odor	0.4				
			<u>:</u>	3	-	GM	313			
				10	-	}				
1.9		4	80	24	-		S			
				18	Damp-dry, no odor	ĺ	A			
				28			N			
				30			D			
4.8		6	70	30	_		~			
	_			18	Gray-brown, damp, no odor	ĺ	P			
				27 34			A			
4.3		8	70	31	-	1	K		1	
- 7.5	-			22	Brown, wet at 8.5 ft, no odor		I			
				24	, , , , , , , , , , , , , , , , , , , ,	1				
				26			}			
2.5		10	70	23				Ì		
				10	No recovery (10-12 ft), inferred from 12-14 ft.	ML-CL				
				10	Brown – tan varied SILT and very fine SAND content, trace clay seams	1	ा. 	ĺ		
	-	12	0	12	Fe staining, wet, no odor		- <u></u>		ĺ	
				12	No clay seams	ML				
				14	, 100 ta, 100 ta					
				12		ĺ	∷- -			
2.7		14	50	10			∛		ł	
				2			(
				3	Ti-ba (15.26)		S	- 1	ľ	
1.8		16	60	4	Light gray (15.2 ft) wet, no odor		A	- 1	ł	
1.0		10		5	Wet, 110 0001		D			
				4				ĺ		
				5			P			
2.1		18	70	5	Tan-gray to tan-brown (17.0 ft)		A		- 1	
				4			C			
				4			K			
0.8		20	10	4						
0.0		20	10							
					COMMENTS CONDUCTED BORING TO 30 FEET 12/22 THEN INSTAL	LED MW-3	TO 19.0	R on 12	22	
	35 -	SPLIT SPOO)N		MW-3; 2.5 ft STICKUP					
	A - A	UGER CUTT	NGS		WELL INSTALLED IN ADJACENT BORING, 30 FT BORI	NG GROUT	ED TO S	URFAC	E	
		C - CORED								

ı

					PARSONS ENGINEERING SCIENCE	BORING			MW-3	3
Contractor	r: SJB SI	ERVICES,I	NC.		DRILLING RECORD	WELL N	o	MW-	3	
Driller:		and Kevin								
Inspector:					PROJECT NAME NYSDEC FRIENDSHIP FOUNDARY	Sheet 2		2		
Rig Type:	Type: CME				PROJECT NUMBER 72384401010	Location De	scription	1:		
G	ROUNDW	ATER OB	SERVATIO	NS ZV						
Water					Weather CLEAR, 28 (GOING TO 50)	LOCATION	PLAN			
Level						See Site	Plan			
Date					Date/Time Start DECEMBER 22, 1994, 0949	-				
Time Meas.					Date/Time Finish DECEMBER 21, 1994, 1600 (INSTALL MW-3)					
From					Back time times Become Better, 1774, 1886 (1887)	1				
PID/FID	Sample	Sample	Percent	Blow	MATERIAL	USCS	WBLL	STAIN	SHEEN	FREE
Reading	I.D.	Depth	Recovery	Cu	IDENTIFICATION	CLASSIF.	LOG			PHASI
		20								
				3	Light, olive-gray, varied SILT, Clay and very fine SAND content	ML-CL				
					wet, no odor					
2.2		22	80	6						
				4	·					
				6						
				7	Alternating seams and small layers at 23.4 ft.					
1.7		24	80	15	wet, no odor	ML-CL				
				3						
2.1		26	50	$\frac{3}{7}$		1				
				10						
			•	7						
				12						
1.8		28	80	12						
				<u>5</u>						
				7		ML				
1.0		30	100							
				<u> </u>	END OF BORING					
									l	
							1			
	-	32				'				
		34								
		36								
		38								
		40								
					COMMENTS CONDUCTED BORING TO 30 FEET 12/22 THEN INSTAI	LED MW-3	TO 19.0	ft on 12	m2	
	55	- SPLIT SPO	ON		MW-3; 2.5 & STICKUP					
	A - A	UGER CUTT	INGS		WELL INSTALLED IN ADJACENT BORING, 30 FT BOR	ING GROUT	EDTOS	URFAC	CE	
										_

					PARSONS ENGINEERING SCIENCE	BORING	1	N	(W-4I)		
Contractor	SJB SE	RVICES,I	NC.		DRILLING RECORD	WELL N	ο	MW-	D_			
Driller:		andy, and I	Cevin									
Inspector:	Richar	d S. Moraw	ec		PROJECT NAME NYSDEC FRIENDSHIP FOUNDARY	Sheet 1		3				
Rig Type:	CME				PROJECT NUMBER 72384401010	Location De	scription	: <u> </u>				
	ROUNDW	ATER OBS	ERVATIO	NS	Weather CLOUDY, 34	LOCATION	PLAN					
Water					Walia CD001,34	See Site						
Level Date					Date/Time Start DECEMBER 20, 1994, 1315 (0-44 FT)							
Time						1						
Meas.					Date/Time Finish DECEMBER 21, 1994, 1330 (INSTALL MW-4D & MW-4	}						
From												
PID/FID	Sample	Sample	Percent	Blo₩	MATERIAL	USCS	WELL	STAIN	SHBBN	1		
Reading	I.D.	Depth	Recovery	Сы	IDENTIFICATION	CLASSIF.	LOG			PHASE		
		0			TILL the draw of seel fine seems and site and fine gravel	[Coal			
			!		FILL; black pcs of coal, fine—coarse sand, silt, and fine gravel moist, no odor (tan at 2.0 ft)	l			Dust			
			:	11	most, no odor (tan at 2.0 tr)							
8.4		2	60	13		ł						
				7	Tan – Brown SILT with fine – coarse gravel, little sand	GM						
				7	moist, (wet in tip of spoon), no odor (possible fill)	ĺ		}				
				13		1						
6.0		4	50	15								
_				12		l						
				6	and the second s	247						
				6	Light brown - tan, very fine SAND with silt, some Fe (orange) staining	ML						
10.2		6	50	6	wet, no odor		8.38					
			:	7								
			<u>-</u>	9								
10.0		8	80	7		ĺ						
				5								
				6		ĺ)				
				- 8		}						
11.1		10	80	8	•							
			,	2		1						
			<u> </u>	4	T	ML-CL						
12.3		12	80	8	Tan clayey SILT, moist (11.0 – 11.3 ft)	ML-CL						
12.3		12	- 30	7	Brown—tan to gray very fine to fine SAND with varied silt content	ML	186					
				6	wet, no odor	}						
	-			7	Gray-brown (15.0 ft)							
8.1		14	80	9		,	1 3 9 4 18 8 4					
				2								
			<u> </u>	3		ĺ						
2.		16		5								
3.1		16	80	5		ĺ						
_				7		ł						
				10		J						
2.1		18	90	11	Tan-brown (17.7 ft)							
				3								
				3								
				4	Light olive gray (19.2 ft)							
3.3		20	90	5			1000 2000					
			!		GOLUMENTO CONTRACTOR DE CARROL	LED YOU	DTO 1		1201			
					COMMENTS CONDUCTED BORING TO 46 FEET 12/20 THEN INSTAI	TED MW-	10 4	וט זו כיו	441			
		- SPLIT SPO LUGER CUTT			MW-4U, 25 II STICKUP MW-4 INSTALLED TO 19 FT (WELL PAIR)							
		C - CORED			1011211011011011011							

				_	PARSONS ENGINEERING SCIENCE	BORING	} /	M	ſW−4I)
Contractor	r: SJB SI	ERVICES,I	NC.		DRILLING RECORD	WELL N	O.	MW-	‡D	
Driller:	Ron, I	Randy, and	Kevia							
Inspector.	Richae	d S. Morav	ec		PROJECT NAME NYSDEC FRIENDSHIP FOUNDARY		2 o(3		
Rig Type:	CME				PROJECT NUMBER 72384401010	Location D	escriptio	1:		
G	ROUNDW	ATER OB	SERVATIO	NS						
Water	1				Weather CLOUDY, 34	LOCATIO	N PLAN			
Level						See Site	e Plan			
Date					Date/Time Start_DECEMBER 20, 1994, 1315 (0-44 FT)	4				
Time]				
Meas. From					Date/Time Finish DECEMBER 21, 1994, 1330 (INSTALL MW-4D & MW-	43				
PID/FID	Sample	Sample	Percent	Blow	MATERIAL	USCS	WELL	STAIN	SHEEN	FRE
Reading	I.D.	Depth	Recovery	Cts	IDENTIFICATION	CLASSIF.	Loa			PHAS
		20					11.5			
				4	Olive—gray very fine to fine SAND with varied silt content	ML				
				3	wet, no odor					
1.8		22	90	4	-	ļ	\$			
1.0			- 70	5	<u>-</u>		18.			
				4						
				6	23.6 ft		32			
1.0		24	90	8	Light olive—gray alternating seams of fine SAND, SILT, and CLAY	ML-CL				
				2	wet, no odor					
			<u> </u>	4	Court bear 6 - SAND of the court of links and the court of the court o	\a				
1.5		26	90	5	Gray-brown fine SAND w/ few seams of light gray fine sand, trace silt wet, no odor	MIL	8		ĺ	
- 4			70	6	wet, 10 odot		X			
				6	Gray fine SAND w/ trace silt	ML	N			
	. 5		5	Gray fine SAND, SILT, and CLAY, wet no odor	ML-CL	10				
1.7					∭					
					Light olive-gray fine SAND w/ little silt	ML	2 – –			
			<u> </u>	3	wet, no odor -		A			
2.0		30	80	3	-		C			
2.0		30		1	Same as above w/ few clay seams		1			
				2	wet, no odor	ML-CL	∭			
			`	4			∭ −−			
1.0		32	70	2			∭i		J	
				6	Light olive—gray fine SAND w/ varied silt content	ML	∭	İ		
	_			6	wet, no odor					
1.1	•	34	90	7						
1.1		. ,		6			- -	-		
		_		5			∭			
				7			∭		-	
0.8		36	90	8			∭	-		
			<u> </u>	11	36.5 ft		∭			
+			<u> </u>	18 38	Dense, light olive—gray fine SAND and varied SILT content, some	ML-GM	 			
0.0		38	100	41	rounded fine gravel, trace coarse sand	ML-UM				
				11	damp-moist, no odor		∭			
			:	16			3			
				26			%			
0.5		40	70	31	Dense, light olive—gray fine SAND and varied SILT content	ML	X			
					damp, no odor		D			
					COMMENTS CONDUCTED BORING TO 46 FEET 12/20 THEN INSTAI	LED MW-4	IDTO 41	.5 ft on 1	2/21	
	. 35	- SPLIT SPO	DN		MW-4D; 2.5 ft STICKUP			1		
	,	UGER CUTT			MW-4 INSTALLED TO 19 FT (WELL PAIR)					
		C - CORED								

					PARSONS ENGINEERING SCIENCE	BORING		N	ſ₩-41)
Contractor	SJB SE	RVICES,II	NC.		DRILLING RECORD	WELL NO	o	MW-	\$D	
Driller:	Ron, P	andy, and I	Cevin							
Inspector.	Richar	d S. Moraw	ec .		PROJECT NAME NYSDEC FRIENDSHIP FOUNDARY	Sheet 3	ા	3		
Rig Type:	CME				PROJECT NUMBER 72384401010	Location De	scription	<u> </u>		
Water	ROUNDW	ATER OBS	ERVATIO		Weather CLOUDY, 34	LOCATION	PLAN			
Level					Wadd Obootin	See Site				
Date					Date/Time Start DECEMBER 20, 1994, 1315 (0-44 FT)					
Time										
Мсая.					Date/Time Finish DECEMBER 21, 1994, 1330 (INSTALL MW-4D & MW-4	4				
From							i			
PID/FID	Sample	Sample	Percent	Blo₩	MATERIAL	USCS CLASSIF.	MBLT	STAIN	SHEEN	PRES
Reading	I.D.	Depth 40	Recovery	Cts	IDENTIFICATION		18			THASE
		40		12	Dense, light olive—gray fine SAND and varied SILT content	ML	A			
	,			13	damp, no odor		G			
				100/.5	<u> </u>		X			
0.8		42	50		Same as above w/ coarse rounded gravel stones (41.6-42.0 ft)	ML-GM				
				11	Dense, light olive—gray SILT w/ trace very fine sand	ML				
			-	13	damp, no odor					
0.0		44	60	25						
0.0					END OF BORING		Í			
		-	_							
					·					
0		46]				
0		48								
		40			•					
							}			
0		50								
		_								
0		52								
		32								
	_		_							
0		54								
0		56								
]				
								ĺ		
0		58		made				ľ		
0		60								
				-						
					COMMENTS CONDUCTED BORING TO 46 FEET 12/20 THEN INSTAI	LED MW-4	DTO 41	S ft on	12/21	
		- SPLIT SPO			MW-4D; 2.5 ft STICKUP		_			
		UGER CUTT	INGS		MW-4 INSTALLED TO 19 FT (WELL PAIR)					

			_		PARSONS ENGINEERING SCIENCE	BORING		N	⁄W-4I	D
Contractor	r: SJB SI	ERVICES,I	NC.		DRILLING RECORD	WELL N	o	MW-	4	
Driller:		and Kevin								
Inspector		d S. Morav	ec		PROJECT NAME NYSDEC FRIENDSHIP FOUNDARY	Sheet 1		1		
Rig Type:	CME				PROJECT NUMBER 72384401010	Location D	sacription	3:		
G	ROUNDW	ATER OR	SERVATIO	NS						
Water					Weather CLEAR, 25	LOCATIO	N PLAN			
Level						See Site	e Plan			
Date					Date/Time Start DECEMBER 21, 1994, 1400	_				
Time										
Meas.					Date/Time Finish DECEMBER 21, 1994, 1605	4				
From				<u> </u>	V. Germania.		T			
PID/FID Reading	Sample I.D.	Sample Depth	Percent Recovery	Blow Cts	MATERIAL IDENTIFICATION	USCS CLASSIF.	LOG	STAIN	SHEEN	
Reading	1.0.	0	Reway	Cus	SUBSURFACE DESCRIPTIONS FROM MW-4D LOG	CEASSIF.		1		PHAS
			<u> </u>	8	FILL; black pes of coal, fine—coarse sand, silt, and fine gravel		#1 #1 #1 #1 #1 #1 #1 #1 #1 #1 #1 #1 #1 #		Coal	
				12	moist, no odor (tan at 2.0 ft)				Dust	
				11]		
8.4		2	60	13	<u> </u>			[
			<u> </u>	7	Tan - Brown SILT with fine - coarse gravel, little sand	GM]		
				7	moist, (wet in tip of spoon), no odor (possible fill)					ĺ
6.0		4	50	15	-	1	***	1 /		l
0.0				12	-		\$ *			
				6	1		N	[]		
				6	Light brown - tan, very fine SAND with silt, some Fe (orange) staining	ML	N D		. 1	
10.2		6	50	6	wet, no odor	ĺ	P		.	
				6			#			
			;	7	_		%			
10.0				9	-		G I			
10.0	1	8	80	<u>7</u> 5	=					
+				6	-	l	W			
				8	-					
11.1		10	80	8			∭			
				2			∭I			
				4			∭			
		_		8	Tan clayey SILT, moist (11.0 - 11.3 ft)	ML-CL	∭		ļ	
12.3		12	80	8		.,,	∭			
				7	Brown – tan to gray very fine to fine SAND with varied silt content wet, no odor	ML	₩	<u> </u>		
				<u>6</u> 7	Wet, no odor Gray-brown (15.0 ft)					
8.1	-	14	80	9						
				2						
				3			S	,		
				5	_			,		
3.1	***	16	80	5	_		M	,	ľ	
		_		5	-		2	,		
-				7	-					
2.1	-	18	90	11	Tan – brown (17.7 ft)		%		ļ	
				3	·		* G *			
				3			X			
				4	Light olive gray (19.2 ft)					
3.3		20	90	5						
							D. 5.5			
					COMMENTS CONDUCTED BORING TO 46 FEET 12/20 THEN INSTAIL MW-4D AND MW-4; 2.5 ft STICKUP	TEU MW-4	10 41 טו	.⊃ it on 1	441	
		- SPLIT SPOC UGER CUTTI			1000 10 11 12 1 12 1 1 1 1 1 1 1 1 1 1 1					
	A - A				·				-	

						BORING			4W-5	
Contractor	SJB SE	RVICES,II	NC.		DRILLING RECORD	WELL NO	ο	MW - 9	<u> </u>	
Driller:		d Kevin								
Inspector:	Richar	d S. Morave	ec		PROJECT NAME NYSDEC FRIENDSHIP FOUNDARY	Sheet 1				
Rig Type:	CME				PROJECT NUMBER 72384401010	Location De	scription	:		
		. TER ORG		vic						
	ROUNDW	ATER OBS	ERVATIO	~>	Weather CLEAR, 15	LOCATION	PLAN			
Water					Wednesday 10	See Site				
Level Date					Date/Time Start DECEMBER 27, 1994, 1445					
Time										
Meas.					Date/Time Finish DECEMBER 28, 1994, 1020					
From										
PID/FID	Sample	Sample	Percent	Blow	MATERIAL	USCS	MELL	STAIN	SHEEN	FREE
Reading	I.D.	Depth	Recovery	Cus	IDENTIFICATION	CLASSIF.	LOG			BEAHS
		0								
				21	Brown-tan, f-c GRAVEL, some sand, dark staining with slag at 1.5 ft	FILL	G R			
				27	(Fill), damp – dry, no odor		0			
			70	23	-		ŭ			
2.1		2	70	19	Dark gray, fine SAND, SILT and little fine GRAVEL to 2.5 ft., moist		T			
				11	Brown - tan, varied amount of f-c SAND, SILT and f-c GRAVEL,	GM	*******		ĺ	
	, .			23	damp-dry, no odor					
2.8		· 4	50	20			S			
20	11			Wet at 4.3 ft.		A				
				13			N			
				16]	D			
1.7		6	50	13	1					
				18	Moist-wet		P			
				17			A			
				18			C		ĺ	
0.8			14	·		K				
				7	Gray-brown, damp-moist					
				11]				
				15						
1.9		10	50	12						
				13	No recovery, spoon wet					
				10						
				. 11			S			
1.9		12	0	9	12.2 FT.	sw	A			
				10	Tan - brown fine SAND, tr. silt	3₩	D			
				8	damp, no odor		 		ĺ	
2.2		14	100	S			P			
2.2		14	100	2			A			
				3			c			
				3	Tan - brown very fine SAND and SILT, tr. clay	ML-CL	K			
2.8		16	90	. 5	wet, no odor					
				5	16.4 ft.					
				6	Tan - brown very fine SAND and SILT	ML	В			
				- 8	wet, no odor		A			
3.1		18	100	9			C			
	ST-1			2	-		K			
				. 2			F			
				4			I			
2.0		20	60	5		-	L			
			<u> </u>		COMMENTS CONDUCTED BORING TO 30 FEET 12/27 THEN INSTA	LED WW-		ft on 12	<i>1</i> 28	· · · · · · · · · · · · · · · · · · ·
		- 59: 17 440	ON		MW-5; 25 R STICKUP	.,,,,,,,				
SS - SPLIT SPOON					BACKFILL BORING TO 15.5 FT., FILTER PACK START	AT 15.5 FT_	SCREEN	AT 15.	FT.	
A - AUGER CUTTINGS C - CORED										

					PARSONS ENGINEERING SCIENCE BORING/			1	MW-5		
Contracto	Contractor: SJB SERVICES,INC.			DRILLING RECORD	DRILLING RECORD WELL NO. MW			5			
Driller:		nd Kevin									
Inspector:		d S. Morav	ec		PROJECT NAME NYSDEC FRIENDSHIP FOUNDARY	Sheet 2	of				
Rig Type:	CME				PROJECT NUMBER 72384401010	Location D	escription	<u> </u>			
	ROUNDW	ATER OBS	SERVATIO		-	 					
Water					Weather CLEAR, 15	LOCATIO	N PLAN				
Level						See Site	Plan				
Date					Date/Time Start DECEMBER 27, 1994, 1445	_					
Time					D						
Meas. From					Date/Time Finish DECEMBER 28, 1994, 1020	+					
PID/FID	Sample	Sample	Percent	Blow	MATERIAL	USCS	WBLL	STAIN	SHEEN	FREE	
Reading	I.D.	Depth	Recovery		IDENTIFICATION	CLASSIF.	LOG			PHAS	
		20									
				2	Wet, tr. silt	ML					
				2			7				
2.2		22	60	<u>5</u>			B			1	
2.2			- 60	6 .	Wet		N				
				9			Т				
				10			O				
2.4		24	100	11	23.8 ft.		N				
				2	Gray very fine SAND and SILT	ML	I			ĺ	
				5	wet, no odor Alternating, gray, very fine SAND and SILT, tr. clay, wet no odor	ML-CL	TE				
2.8		26	90	7	wet, no odor	WIL-CL					
			70	6			В				
				9	Brown fine SAND, tr. silt	sw	A				
				10	wet, no odor		С				
2.0			9			K					
				- 4			F				
				9			L				
2.1		30	70	9			L				
					END OF BORING						
								ĺ			
		32									
		34			,						
		24									
		36									
	THE RELATION AND THE WAY	38									
		40									
		70									
					COMMENTS CONDUCTED BORING TO 30 FEET 12/27 THEN INSTALLED MW-5 TO 15.0 ft on 12/28						
	55 - SPLIT SPOON				MW-5; 2.5 ft STICKUP	AT 11 1 7 7 7 7		ATT	CTT.		
		UGER CUTT			BACKFILL BORING TO 15.5 FT., FILTER PACK START	WI IND EL";	X-KEEN	A1 133	r I.		

									MW-6	5
Contractor		ERVICES,I	NC.		DRILLING RECORD	WELL N	0.	MW-	6	
Driller:		nd Kevin						_		
Inspector:		d S. Morav	oc		PROJECT NAME NYSDEC FRIENDSHIP FOUNDARY	Sheet 1		2		
Rig Type:	CME				PROJECT NUMBER 72384401010	Location D	scription	1:		
	ROUNDW	ATER OBS	SERVATIO	NS .						
Water					Weather CLEAR, 15	LOCATIO	N PLAN			
Level						See Site	e Plan			
Date					Date/Time Start DECEMBER 27, 1994, 0955	_				
Time										
Meas.					Date/Time Finish DECEMBER 28, 1994, 1355	_				
From PID/FID	Sample	Sample	Percent	Blow	MATERIAL	USCS	WBLL	97AIN	SHEEN	FREE
Reading	i.D.	Depth	Recovery		IDENTIFICATION	CLASSIF.	Log	JIAIN	JAGEN	PHASE
		0		-						
				2	Dark brown, fine sand, some reddish sand, (pc. of wood, refusal)	FILL	G			
				50/.5	(Fill), damp, no odor		R			
							O U			
3.0		2	30							
			<u> </u>	3	Tan - brown, varied amount of SILT, and very fine SAND	ML	T			
	_		i		damp, no odor	ML				
0.0		4	70	7	-		S			
				3	=		A			
				5	5.1 ft		N			1
				4	As above w/f-c GRAVEL, 5.1 - 5.7 ft.	GM	D			
0.8		6	60	5	Wet at 5.7 ft.		<u></u> ∴ – –			
				3	Tan-brown, varied amount of SILT, and very fine SAND	ML	P			
				4	wet, no odor	C)(A			1
65		8 80 3		3	As above w/ f = c GRAVEL, 6.7 - 7.2 ft. Tan = gray fine SAND and SILT to 7.6 ft. then dark gray w/ peat	GM ML-PT	C			
0.5			2	Gray-olive gray, various amounts of fine SAND, GRAVEL, SILT	GM	े				
-				1	wet, no odor		[∂ - -			
			:	2					1 1	1
3.8		10	30	10			,;;: - -			
	_			6	Tan - brown, wet					ĺ
_	-			7	_		s			
1.3		12	50	- 7 8	-		A			
1.5		12	30	7			D	ľ	.	
				9	-		Ĭ			
-		_		8			P			
1.0		14	30	8			A		ĺ	
				12			С			
				7			K			
1.0		16	40	<u>7</u> 10	Tan - brown very fine SAND and SILT, tr. clay	ML-CL				
1.0		10	40 ;	15	moist, no odor	ML-CL				
				13	100, 10 0401	ML	в	J		
				13	17.3 ft.		A			
2.6		18	80	13	Brown fine SAND, tr. silt (dark br. oxidation stains)	sw	С			
	ST-1			4	damp—dry, no odor		K			
				7			F			
		-		8	Wet at 19.6 ft., no odor		I			
2.0		20	50	- 11			L			
					COMMENTS CONDUCTED BORING TO 30 FEET 12/27 THEN INSTA	ILEDIAN (L	A ac 12	<u></u>	
	37.	- SPLIT SPO) N		MW-6;25 ft STICKUP	WW-C	10 14.0	11 00 12		
		UGER CUTT			BACKFILL BORING TO 15.0 FT., FILTER PACK START AT 15.0 FT., SCREEN AT 14.0 FT.					
										-

Contractor: SJB SERVICES,INC.					PARSONS ENGINEERING SCIENCE DRILLING RECORD	BORING/ MW-6 WELL NO. MW-6				
Driller:		and Kevin	INC.	-	DRILLING RECORD	WELL		.v1 w	-0	
Inspector:		rd S. Morav			PROJECT NAME NYSDEC FRIENDSHIP FOUNDARY	Sheet 2	of	2		
Rig Type:					PROJECT NUMBER 72384401010	Location D				
108 1700.		_								
$\overline{}$	ROUNDW	ATER OB	SERVATIO	NS						
Water				;	Weather CLEAR, 15	LOCATIO				
Level		1		,		See Sit	e Plan			
Date	-		-	 	Date/Time Start DECEMBER 27, 1994, 0955	4				
Time				<u> </u>	Duration Field December 40 4004 1266					
Meas.				i	Date/Time Finish DECEMBER 28, 1994, 1355	-				
From PID/FID	Sample	Sample	Percent	Blow	MATERIAL	USCS	WBLL	STAIN	SHEEN	FR
Reading	I.D.	Depth	Recovery		IDENTIFICATION	CLASSIF.	LOG			PHA
Results	120.	20	, according							
	<u> </u>			7	Wet, tr. silt	sw				
				. 8						
				9			В			
1.8		22	60	11			E			
				. 8	Wet, tr. silt		N			
				6			T			
				. 7			0			
2.2		24 ·	60	8			N			
			ļ	3			I			
				2		ML-CL	T E]	
•		2/	- 00	3	Fe staining wet, no odor (tr. clayey silt seam at 25.7 ft.)	ML-CL	E			
2.8		26	90	4	Alternating seams/small layers; (brown sand and silt 25.7 — 25.9 ft.) Small layers/seams of gray and brown very fine SAND, SILT and		В			
				6	CLAY to 27.5 ft.		A			
				7	wet, no odor		c			
2.0		28	100	7	Gray very fine SAND, tr. silt	 	K			
2.0			100	1	wet, no odor		F			
			 -	2			1		İ	
			:	4	29.9 ft.		L	1		
1.7		30	80	7	Tan - brown very fine SAND and SILT, wet, no odor		L			
					END OF BORING			- 1		
			-							
			i			[1	
		32						ĺ		
						[[
-								ľ		
			 -						-	
		34	h	***************************************						
		36					ľ			
							1	Í		
						ĺ		1	İ	
		38								
		40		,						
L						. 50) 511 51	TO 1461	125	 _	
			w		COMMENTS CONDUCTED BORING TO 30 FEET 12/21 THEN INSTAL MW-6; 2.5 ft STICKUP	TED WM-6	10 14.01	00 12/	£1	
SS = SPLIT SPOON A = AUGER CUTTINGS					BACKFILL BORING TO 15.0 FT., FILTER PACK START A	T 15.0 FT S	CREEN	AT 14.0	FT.	
A = AUGER CUTTINGS C = CORED					and the state of t					

APPENDIX C

USEPA REPORT

U.S. ENVIRONMENTAL PROTECTION AGENCY, REGION II

POLLUTION REPORT

I. HEADING

Date:

May 20, 1992

From:

Jack D. Harmon, OSC

Region II, Removal Action Branch

To:

C. Sidamon-Eristoff, EPA

K. Callahan, EPA
R. Salkie, EPA
J. Marshall, EPA
G. Zachos, EPA
J. Rotola, EPA
A. Schmandt, EPA
M. Basile, EPA
S. Becker, EPA

ERD - Washington (E-mail)

M. O'Toole, NYSDEC G. Sutton, NYSDEC R. Tuers, NYSDOH

J. Tucker, Allegany Co. OES C. Schneider, Friendship

Friendship Volunteer Fire Department

TAT

Subject: Friendship Foundry #1, Friendship, Allegany

County, New York

POLREP #: Nine (9) and Final

II. BACKGROUND

Site No.: 7F

Delivery Order No.: 0016-02-019 Response Authority: NCP/CERCLA

NPL Status: Non-NPL

Start Date: August 7, 1991

Demobilization Date: May 1, 1992 Completion Date: May 1, 1992

III. SITE INFORMATION

A. Situation

See previous POLREPS 1-8.

- B. Actions Taken
- 1. On April 9, 1992, twelve drums of waste flammable/combustible liquids and ten drums of waste

corrosive liquids were shipped for off-site disposal through chemical treatment.

- 2. On April 14, 15 and 16, 1992, a total of 13 truck loads of foundry sand/soil/debris were shipped off-site for landfilling within a chemically secure cell. These 13 truck loads brought the total number of loads to 49 and represented 2,076,850 pounds. On April 14, 1992, two truck loads representing forty cubic yards of hard rock phenolic resins were shipped for off-site disposal within a chemically secure cell. These two loads brought the total 120 cubic yards.
- 3. 15,550 pounds of recyclable foundry products were shipped off-site on April 22, 1992. These foundry products consisted of silica sand, refractory cement and graphite. This shipment coupled with a prior shipment, brought the total amount of material sent for reuse/recycling to 27,850 pounds.
- 4. On April 24, 1992, two drums of waste ractive corrosive solids and two drums of waste reactive corrosive liquids were shipped for off-site treatment. In addition, 112 empty drums were shipped off-site for recycling which brought the total number of recycled empty containers to 840, 590 55-gallon drums and 250 five-gallon containers. Also on this date, a local scrap metal contractor initiated the demolision and scrapping the cupola unit on the north west corner of the foundry building.
- 5. On April 27, 1992, the rear portion of the foundry property was hydroseeded to promote vegetation and reduce runoff of storm water during episodes of heavy downfall and/or snow melt.
- 6. 24 drums of PCB contaminated waste oil were shipped for off-site incineration on April 29, 1992. In addition, one 30 cubic yard roll-off of phenolic based hard rock resins was shipped for off-site landfilling within a chemically secure cell, bringing the total to 150 cubic yards.
- 7. On April 30, 1992, 96 drums of waste flammable liquids were shipped for off-site fuels blending. In addition, 1,500 gallons of decontamination water were treated onsite through granular activated carbon (GAC). A sample of the effluent was collected and analyzed. Acceptable discharge results were received and the decontamination water was discharged into the local storm sewer system.
- 8. The ERCS contractor completed policing the property and securing all possible points of entry into the property prior to demobilizing on May 1, 1992. The date of May

1, 1992 is the effective date of completion for this removal action.

The following is a table that itemizes the types of wastes and their associated volumes/weights shipped off-site during the course of this removal action.

011 0100	ddring cr	ie course (or chib remova.	Nethod
Waste Type	Volume/W	<u>Veight</u>	TSDF	of Disposal
Labpacks	9045	P	ENSCO	Incineration
Waste flammable/ corrosive liquid	110	G	CWM - Model City	Treatment/ Incineration
Waste combustible liquid	55	G	CWM - Model City	Chemical Treatment
Waste flammable liquid	605	·G· ·	Model City	Chemical Treatment
Waste alkaline liquid	550	G	CWM - Model City	Chemical Treatment
Waste corrosive reactive solid	600	P	BDT	Chemical Treatment
Waste corrosive reactive liquid	110	G	BDT	Chemical Treatment
Waste PCBs oil .	5000	K	APTUS	Incineration
Waste flammable liquid	5285	G	CWM - SRR	Fuel blend/ incineration
Phenolic based foundry sand	1038	T	CWM - Model City	Landfill
Phenolic hard rock resins	150	CY	CWM - Model City	Landfill
Phenolic powdered resins	22,500	P	CWM - Model City	Landfill
Empty containers		55-G 5-G	Feldman	Recycle
Scrap metal	62	T	Christy & Son	Recycle
Foundry products	27,850	P	Hickman - Williams	Reuse/ recycle

- C. Next Steps
- 1. Upon completing an on-site inspection by representives from the NYSDEC, Chief of Removal Action Branch Section B and the OSC, a closure memorandum will be submitted to the NYSDEC by the EPA which relinquishes itself as the lead agency.
- 2. The OSC is waiting for Certificates of Disposal verifying the final disposition of all wastes.
- 3. Work has been initiated on the On-Scene Coordinators Report and is expected to be distributed by July 1, 1992.
- D. Results Achieved
- 1. All hazardous materials have been removed from the site for disposal at RCRA permitted TSDs. The threats that these materials presented have been eliminated.

IV. Cost Information

Cost to Date: 04/30/92

ERCS Contractor: 1,100,000
TAT Contractor: 49,170
EPA: 94,688

Total: 1,243,858
Project Ceiling: 1,961,000
Project Funds Remaining: 37%

This does not represent final project cost.

FURTHER FINAL POLREPS POLREP X FORTHCOMING	SUBMITTED BY: Jack D. Ha
	Jack D. Harmon, OSC Removal Action Branch
	DATE: 5/21/92

APPENDIX D

HISTORICAL CORRESPONDENCE

K Hant

New York State Department of Environmental Conservation

(11)

600 Delaware Avenue Buffalo, New York 14202-1073

Thomas C. Jorling Commissioner

August 8, 1988

Mr. Henry Mayo President Friendship Foundry 10 Howard Street Friendship, New York 14739

Dear Mr. Mayo:

n n

Notice of Violation

This Office conducted an inspection of your facility on July 28, 1988 and observed several violations.

All three baghouses located at the Howard Street plant were found to be in violation of Part 201.7(b). We found piles of particulates under the baghouse hoppers and open containers of particulates around the yard. This situation allows wind to pick up the particulates and blow them off property. Part 201.7(b) states "No person shall remove collected air contaminants from an air cleaning device or shall recycle, salvage, or dispose of such contaminants in a manner so as to reintroduce them to the outdoor atmosphere to cause air pollution." You stated that all of the baghouse waste would be cleaned up by my next inspection.

Also, the practice of dumping used foundry sand outdoors across from the office must be discontinued. This practice allows the wind to blow the particulates off property as well as exposes the storm sewer to phenol runoff during rains. We request that this material be stored inside the plant and hauled to the landfill on a daily or weekly basis.

The middle baghouse was observed as emitting opacity as high as 40% during my inspection. This is a violation of Part 212.5. You stated that a bag failure was responsible for the excessive opacity and that the unit would be serviced on July 29, 1988.

Mr. Henry Mayo August 8, 1988 Page 2

During our discussion concerning the baghouses, you stated that only about a dozen spare bags are on site for these units. We strongly insist that a more extensive inventory of spare parts and bags be on site to minimize downtime and/or violations.

We discussed the operation of the smoke room during this inspection as well as my prior July 15, 1988 visit. You stated that the no-bake molds are allowed to cool from three to eight hours and often as long as 24 hours. It is our understanding that odors are released during this entire cooling process. Therefore, the temporary solution to control these odors was to contain these molds in a room, capture the emissions, and treat the discharged air. However, Mr. Jerry Brown, the day foreman, stated that the Vaportek spray nozzle system is routinely turned off when no visible emission is present in the room. We strongly disapprove of this practice. The odor is not only generated during the release of smoke, but during the entire cooling process. Since you are pouring no-bake molds during each shift, you are introducing hot molds in the smoke room on each shift.

Therefore, the exhaust fan and Vaportek spray system associated with the smoke room is to be operating whenever molds and castings are cooling in the smoke room.

Regarding step 7 in the Consent Order that is due October 1, 1988, we request that if you propose to utilize the thermal sand reclaimer as discussed previously, the following information be submitted by September 1, 1988.

- 1. The name and address of the facility in which the thermal sand reclaimer was operated.
- 2. Supporting data from the facility to indicate its effectiveness in operating in compliance.

We have yet to receive the cyanide data as requested in letters of May 9, 1988 and July 12, 1988. This is to be submitted no later than 1788.

You stated that your engineering consultant, Mr. Robert Chaffee, would be submitting a plot plan of the facility showing the location of the emission points on the roof. This should be included in your August 19, 1988 submittal.

Mr. Henry Mayo August 8, 1988 Page 3

Although you are, with our approval, more than two months behind in complying with step 4A of the Order, we advise you not to expect an extension of the date for step 7. We believe ample time has been allotted to comply with step 7 of the Order. You are reminded that penalties may be assessed for violating the terms of the Order by not meeting a scheduled date. Please note that step 7 requires the submission of an approvable application. Thus, the application must be complete when submitted.

We are concerned about odorous emissions from the ventilators above the conveyorized pour line and the hot shell mold muller and pug mill. We are also concerned about odors emitted from the shakeout operation associated with the conveyorized pour line. The level of activity in this area of the plant has increased greatly since we first addressed the plant odor emissions. We will contact you in the near future to arrange discussions on abating odor emissions from these sources.

Your continued cooperation is greatly appreciated.

Very truly yours,

Thomas Tzymanski

Thomas Szymanski Principal Engineering Technician

TS:ec

cc: Mr. James Charles

Mr. James McGarry

Mr. Kevin Hintz

Mr. Mark Jackson

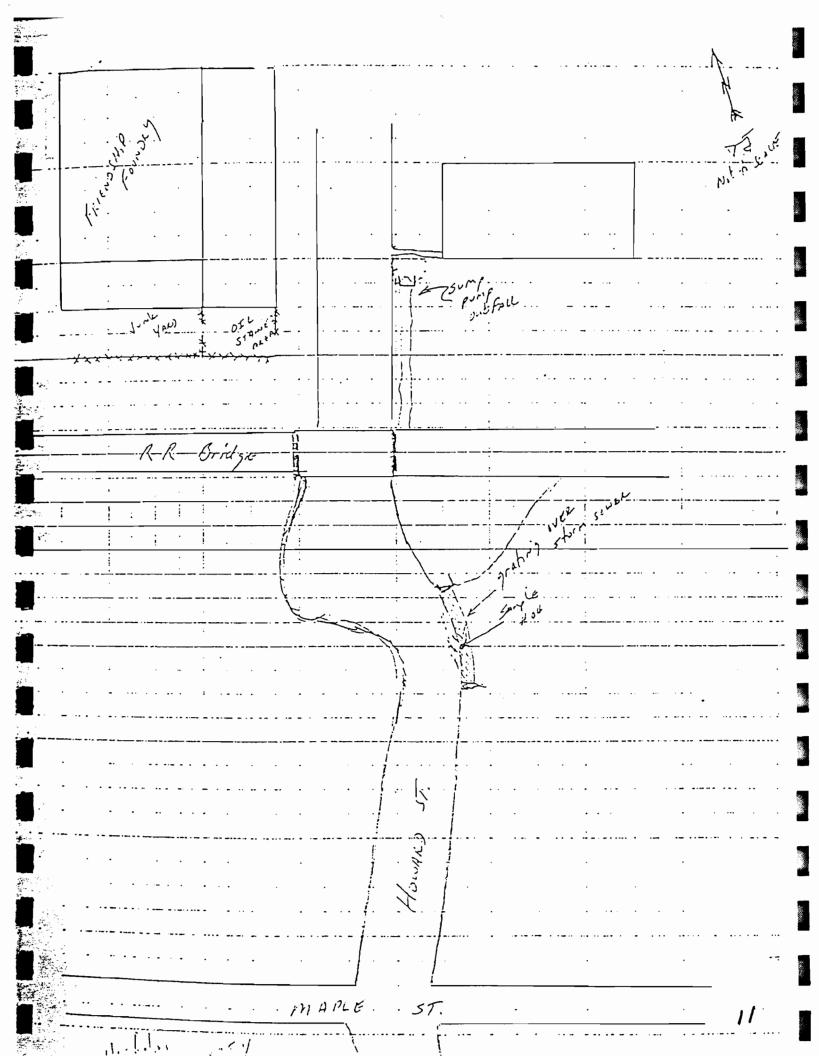
Joe Ryan
Tom Johnson ()
Sampling at Sam Nicholas Pond
(Friendship Foundry)

August 10, 1988

On August 3, 1988 I traveled to the town of Friendship, N.Y. The purpose of the visit was to examine and sample pond sediment on the property of Sam Nicholas. The pond in question is located on the property at the corner of Maple and Howard Streets. Mark Jackson of the water division was also present to collect water samples from the pond.

We arrived in Friendship at approximately 11:00 a.m. We first surveyed possible sampling points along the storm sewer system in question. The water in this system flows past Friendship Foundry, along Howard Street and under the Nicholas property. We found an area south of the foundry which had a buildup of a sludgy material. This area was sampled after our pond samples were taken and is labeled sample #04.

Mrs. Nicholas met us when we arrived at the property. She informed us of poor water quality in the pond during heavy rainfalls and acrid odors from the pond during hot stagnant days. Apparent oil sheens also show up on the surface of their pond after heavy rainfalls. She also expressed concern of her daughter's skin rashes which arose after wading in the pond.


A measurement of the pond size was taken and a sketch of the sampling points are on the attached diagram. The inlet and outlet points of the pond were distinguishable by the rock formation created by the designer of the pond. Openings in the underground drainage pipe were visible near these rocks. Sediment sample #01 was taken at the outlet area while sediment sample #02 was taken at the inlet area. Sample #03 was taken in the middle of the pond and also consisted of the upper layer of sediment. Water samples were taken by Mr. Jackson before the sediment sampling to reduce the possibility of sample contamination.

Sample #'s 01, 02, and 04 will be analyzed for PCB's in sediment while sample #03 will be run for the full TCL list. The water samples will be run for PCB's, phenols and formaldehyde.

TJ/mf Attachments

CC: Mark Jackson - Division of Water
Otto Tertinek - BECI

Foodby \ MAPLE

600 Delaware Avenue, Buffalo, NY 14202-1073

August 16, 1988

Mr. Samuel Nicholas 6 Maple Avenue Friendship, NY 14739

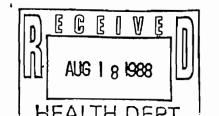
Dear Mr. Nicholas:

This is in response to your August 10, 1988 telephone conversation with Mr. Thomas Johnson of this office. The purpose of your call was to request results for samples collected by this department on July 26, 1988 of wastes discharged from the Friendship Foundry to the stream which is (was) used by you for feedwater for your pond. The results are tabulated below:

Sample Location	Matrix	Compound Present	Concentrations
Sump-capacitor area	Water at top	PCB (Arochlor 1232)	8.3 PPB 370 PPB(duplicate)
Sump-capacitor area	Sediment in bottom	PCB (Arochlor 1242)	4200 PPM
Stream in front of office	Sediment	PCB (Arochlor 1242)	2.7 PPM

*Duplicate analysis - sample contained more turbidity.

We will be in touch with you when we receive the results for samples we collected from your pond on August 3, 1988. In the meantime, it would be helpful for our assessment if you would share the analytical results for any sampling you have done.


Should you have any questions, please feel free to contact me (716 847-4582).

Very truly yours,

E. Joseph Lumia

E. Joseph Sciascia, P. E. Senior Sanitary Engineer Division of Environmental Enforcement

EJS/mf

Ronald Tramontano, NYSDOH

Al Vossler, Allegany Health Dept.
J. Spagnoli, Region 9
J. Gould, Esq., DEE

· Cail DEG:

New York State Department of Environmental Conservation 600 Delaware Avenue, Buffalo, New York 14202

Thomas C. Jorling Commissioner

MEMORANDUM

TO:

Mr. John J. Spagnoli

FROM:

Mr. James L. McGarry Mulfaury

SUBJECT:

FRIENDSHIP FOUNDRY ENVIRONMENTAL PROBLEM

STATUS REPORTS

DATE:

September 16, 1988

The subject foundry has signed a consent order to abate odor emissions that are causing a problem in the neighborhood. Some air emission problems remain that must be addressed in an order. In addition, there exist environmental problems related to solid and hazardous waste and water quality which must be resolved. The following is a status report on the various problems:

Solid Waste

- 1. Storage and disposal of used mold sand
 - a. Storage molds and sand are stored temporarily on a concrete pad across Howard Street from the plant office and next to a block building. This procedure is approved by the Department of Environmental Conservation (DEC).

Mr. Kevin Hintz, in a letter to the firm dated August 1, 1988, requested the firm to install a curb around the pad in order to prevent contaminated rain runoff. More frequent removal of the used sand was also requested. The letter also stated that additional measures may be needed if these actions were not adequate.

- b. Disposal the used sand is being legally disposed of at the Allegany County landfill in the Town of Angelica.
- 2. Old drums in plant yard The drums with material have been emptied and are now stored in the block building with other drums. This is with the approval of the Bureau of Environmental Conservation Investigation

(BECI). The material from the drums has been properly disposed of.

- 3. Plant yard The area where the drums were stored must be cleaned up. Some soil is contaminated and must be removed. Lt. Otto Tertinek of BECI will inspect and make a legal referral if not in compliance.
- 4. Sump in basement Excessive polychlorinated biphenyl (PCB) concentrations have been found in the sump and corrective action is needed. Lt. Otto Tertinek of BECI will inspect in the near future and determine if the sump has been filled in as rumored. If filled in, this situation will be referred for legal action as well as the excessive PCB levels.
- 5. Drainage ditch near plant-and Mr. Samuel Nicholas' pond Mr. Thomas Johnson of the Division of Environmental Enforcement (DEE) collected sludge samples at these two locations on August 3, 1988 and sent them to a contract lab in Boston to be analyzed for Target Compound List contaminants. He expects the results by September 23, 1988. If concentrations are excessive, this will be referred for legal action along with Lt. Tertinek's referral mentioned above.

Water Resources

- 1. Water discharges firm is currently operating without a required State Pollutant Discharge Elimination System (SPDES) permit. Firm has made several applications for permit and latest submission was found to be incomplete on August 5, 1988. A revised application was requested by August 31, 1988. If the application is not received as requested, this will be referred for legal action.
- 2. Mr. Nicholas' pond, Maple Avenue and Howard Street -The pond water was sampled for PCB's, phenols, and formaldehyde on August 3, 1988 and none was found.
- 3. Sump in basement Two ground water infiltration areas have been contained by curbing and the collected water is being pumped outside the plant. Water collecting in the sump is pumped to a barrel for collection and disposal. A block curb has been constructed on the floor under the capacitors to contain any PCB leakage.

Air Resources

1. Two odor abatement arrangements have been installed per terms of the Consent Order and are operating. However, the results are not satisfactory. One arrangement appears to be inadequate, and the other is probably not being operated properly. More information has been

requested from the firm to help us evaluate the performance.

- 2. The application for the permanent odor abatement arrangement on no-bake casting, cooling and mold breakdown is due October 1, 1988 per terms of the Consent Order. There are indications that the application will not be submitted on-schedule, even though we have warned the firm of the importance of this step.
- 3. Another source of odor has been recognized at the plant. Ventilators above a conveyorized casting line are now emitting significant contaminants because of increased production at the foundry. These sources must be abated and we have referred them for legal action.
- 4. Baghouse collector maintenance Inspections have shown that much better maintenance must be performed on the baghouse collector and surrounding area. This has been referred for legal action.
- 5. Grinder and Buffer in Plant #3 These sources are operating without Certificate to Operate. We requested applications for these sources and they were submitted on March 7, 1988. The applications were incomplete and returned to the firm. Revised applications were requested by July 27, 1988. They have not been received by this office.
- 6. There are reports of the firm storing hot, smoking, foundry waste in the concrete pad across Howard Street from the plant. This practice must cease since air pollution results.
- 7. The Region 9 Office has requested the services of the DEC mobile air contaminant sampling and analytical van to determine the level of certain toxic gases in the air near the plant. The van will not be available until early November, 1988 and we hope to be able to use it then. The results will be very useful in our enforcement program.
- 8. Summary There are many problems developing in this air abatement program. Some of the problems are worsening and the firm is falling behind schedule. Responses from the firm are either non-existent or inadequate. We intend to make an additional legal referral by early October.

It appears from the foregoing that the solid waste and water resources abatement programs have limited the scope and potential of the pollution from this plant. At the same

time, those programs are preparing to seek legal action to achieve the final steps needed for compliance. These referrals will be provided to me by October 1, 1988 for inclusion in the intended legal referral.

The air program has serious problems ahead in making a significant improvement in the air quality near the foundry. Fines and other penalties must be applied to force the firm to abate their air emission sources.

If you have any questions, please contact me.

JMcG:mkb

cc: Mr. Peter Buechi

Mr. Stanley Gubner

Mr. John McMahon

Mr. Robert Mitrey

Mr. Gerard Palumbo

Mr. Kevin Hintz

Mr. Mark Jackson.

Mr. Thomas Szymanski

Capt. Gary Bobseine

Lt. Otto Tertinek

Mr. Joseph Ryan

Mr. Thomas Johnson

ALLEGANY COUNTY DEPARTMENT OF HEALTH

COUNTY OFFICE BUILDING

BELMONT, NEW YORK 14813

TELEPHONE 716 208-9250

DONALD KRAMER, President Board of Health

ANDREW LUCYSZYN, MPA Public Health Director

MEMO

TO:

Louis Violanti

FROM:

Albert M. Vossler, P.E.

Public Health Engineer

DATE:

October 26, 1988

SUBJECT:

Friendship Foundry & Resident's Complaints

Our department received a complaint from Sam Nicholas on January 14, 1988 about fumes coming from the sewer grate in the street at the corner of Muple & Baxter. He was also concerned about the purity of his drinking water.

Jim Sturniolo, Senior Sanitarian, and I responded on January 15, 1988 and collected four written complaints about dust, fumes and contaminated storm drain water allegedly emitted by Friendship Foundry. Drinking water samples were clear and had about 0.2 ppm chlorine. We didn't sample for coliform bacteria since it was Friday. Friendship water operator got a satisfactory sample from Maple Avenue on February 1, 1988 as a monitoring sample. We contacted DEC about the air and water emission problems.

On January 21, 1988, Mark Jackson of DEC sampled the storm sewer near Main Street (same sewer, a short distance downstream of the Baxter & Maple Street grate). This sample was analysed for phenol, priority pollutants and heavy metals. Phenol was found at 12 ppb. Tolulene and methylene chloride were found at 5 & 6 ppb, respectively but were also in the blank, indicating laboratory contamination. On January 21, 1988, Mark and I inspected the Friendship Foundry plant on Howard Street. One unpermitted cooling water discharge was found, but this water was clean. A large exterior pile of waste foundry sand was found which could be leaching to the storm sewer.

I have enclosed DEC reports relating further progress and investigations. I sent a package of material to Linda Rusin & Sonya Bush on March 18, 1988.

Louis Violanti October 26, 1988 Page II

If you have further questions, please call.

AMV/les

Encs: DEC letter by E. J. Sciascia - October 5, 1988

DEC letter by Thomas Szymanski - September 13, 1988

DEC letter by Joseph Sciascia - August 16, 1988

Olean Times Herald Newsclips - July 8, 1988 & May 27, 1988

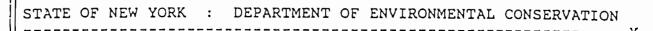
Friendship map

Joe Ryan
Tom Johnson
Sam Nicholas (Friendship Foundry)

November 29, 1988

On November 28, 1988 our office received the analytical results for the samples taken on 10/26/88. Four samples were taken from the pond on Sam Nicholas's property. The samples consisted of surface water, pond sediment and a sample of a rubbery solid material covering the bottom of the pond. The analysis conducted on the samples consisted of pest./PCB's on the water, PCB's on the sediment and PCB's and phenols on the solid material. The results of the analysis are as follows:

Site Contaminant (ppm)	Surface Water #01	Solid Layer #02	Sediment #03	Sediment #04
Phenols	ND	24.0	ND	ND
Aroclor 1016/1242	ND	0.018	0.001	ND


*Non Detected (ND)

Phenols analysis was requested for all samples but apparently was only run on the solid material. Our previous samples taken at the pond tentatively identified very low phenol concentrations in the sediment. The rubbery material coating parts of the pond sediment appears to be the source of the phenol contamination.

Sample #03 was taken from the area of the pond which showed high levels of PCB's on Mr. Nicholas's laboratory report. The concentrations found on our report are at a level which could be indicative of background levels. The solid rubbery material also had very low levels of PCB's, contrary to Mr. Nicholas's results.

TJ/mf

cc: Jim McGarry - DEC, Region 9

In the Matter of the Violation of the New York State Environmental Conservation Law by:

FRIENDSHIP FOUNDRY 10 Howard Street P.O. Box 7 Friendship, New York ORDER ON CONSENT

(Allegany County)

FILE

NO. 87-183A

Respondent

R9-2298-87-11

WHEREAS:

- '1. Articles 17, 19 and 27 of the Environmental Conservation
 Law of the State of New York (hereinafter "ECL") set forth
 certain restrictions and requirements governing water pollution
 control, air pollution control and the collection, treatment, and
 disposal of refuse and other solid waste within the State of
 New York and provide for the adoption and implementation of rules
 and regulations for the enforcement thereof.
- 2. Respondent owns, operates, and/or controls a foundry in the Town of Friendship, Allegany County, New York which is subject to the aforesaid laws, codes, rules and regulations.
- 3. Respondent is delinquent in complying with the terms and conditions of Order on Consent No. 87-183 which it executed on May 12, 1988 and which is annexed hereto as Exhibit A and made a part hereof.
- 4. Respondent has operated its facility in violation of certain provisions of ECL Articles 17, 19 and 27 and 6 New York Codes, Rules, and Regulations, which violations are indexed in Schedule A attached hereco and made a part hereof.

- 5. Respondent has waived its rights to notice and hearing in this matter as provided by law and has consented to the issuing and entering of this Order and Schedule B attached hereto and made a part hereof.
- NOW, having considered this matter and being duly advised, it is ORDERED THAT:
- I. Respondent is assessed a penalty in the amount of Ten Thousand Dollars (\$10,000). Respondent shall, upon execution of this Order, pay to the Commissioner Ten Thousand Dollars by certified check or money order made payable to the Commissioner of the New York State Department of Environmental Conservation, 600 Delaware Avenue, Buffalo, New York 14202-1073 to be paid as follows: March 1, 1989, \$2000; April 1, 1989, \$2,000; June 1, 1989, \$2,000; July 1, 1989, \$2,000.
- II. Upon written notification of any violation of this Order or of any regulations or standards relating to the operation of Respondent's facility, the Department may immediately summarily terminate all authorization, licenses, or permits issued by the Department relative to the operation of the aforesaid facility.
- III. Respondent shall comply with the terms and conditions of Schedule B. Nothing in this Order shall be construed as a waiver of the Department's right to take such actions as authorized under the Environmental Conservation Law in the even. Respondent fails to comply with the terms of this Order of the

Environmental Conservation Law. This Order and Schedule B shall bind the Respondent and its successors and assigns.

DATED: Buffalo, New York March 6, 1989

THOMAS C. JORLING, Commissioner New York State Department of Environmental Conservation

John J. Spagnol Regional Attorney

S C H E D U L E A

	Violations	Authority
A. 1.	Failure to submit: Application/plans for odor abatement for Cooshell moldmaking	Order (la)
2.	Application/plans for temporary odor abatement for no bake mold/casting	Order (4a)
3.	Application/plans for permanent odor abatement for no bake mold casting	Order (7)
4.	Plans for odor abatement for no-bake mold-making process	Order (10)
5.	Cyanide air sampling results	6 NYCRRR 201.3(a)
6.	Updated plot plan of all air emission sources	6 NYCRR Pt. 201.3(a)
7.	Application for Certificate to Operate grinder/buffer at Plant #3	6 NYCRR
в.	Unsatisfactory operation of Colshell odor abatement equipment	
c.	Excessive opacity, EP #2	6 NYCRR Part 212.5
D.	Failure to contain baghouse waste causing wind and water-borne pollution	6 NYCRR Pt. 260 201.5(d) 201.7(b), and 211.2; ECL 17-0505, 17-0701, and 17-0803
E.	Failure to properly cool and causing odor and wind and water-borne pollution	6 NYCRR Part 211.2; ECL 17-0505, 17-0701, 17-0803

SCHEDULE A (Cont'd)

Violations

- F. Odor emissions from Colshell, no bake, and hot shell casting processes
- G. Mishandling of polychorinated biphenyls (PCBs)
- H. Mishandling of drums containing phenol residues causing soil/ water pollution

Authority

6 NYCRR Part 211.2

6 NYCRR
Part 372.2(a)(8)(ii);
373-1.2(a); 373-2.10;
373-3.10

ECL 17-0501

SCHEDULE B

Respondent shall, on or before the dates indicated:

Date

 Submit an approvable application and plans for abatement of odors from Colshell moldmaking. Said application shall include:

Effective date of Order + three months

- electrical schematic diagram and scrubber schematic diagram showing all instrumentation with a description of control system operation.
- table of fluid flows and chemical and contaminant concentrations at designated points in scrubber, washing, and air exhaust systems.
- specifications and set points of system equipment.
- cut-away drawing of scrubber tower showing internal features.
 (Step la of May 12, 1988 Order)
- Submit an approvable application and plans for a temporary arrangement to abate odors from no bake mold and casting breakdown including:

Effective date of Order + three months

- electrical schematic diagram, flow diagram, and description of system operation.
- equipment specifications.
- set points of control system items. (Step 4a of May 12, 1988 Order)
- 3.* Submit an approvable application and plans for a permanent arrangement to abate odors from the no bake mold and casting cooling and no bake mold and casting breakdown. (Step 7 of May 12, 1988 Order)

Effective date of Order + one year

3a.* Initiate purchase of equipment to implement Step 3 plans.
(Step 7a of May 12, 1988 Order)

Effect: ... date of Orde: - 18 months

4.* Start construction of the permanent arrangement to abate odors approved in Step 3. (Step 8 of May 12, 1988 Order) Effective date of Order + 2 years

of the permanent arrangement to abate ours approved in Step 3.
(Step 9 of May 12, 1988 Order)

Effect date of C: 30 months

03221

S C H E D U L E B (Con't)

Date

Submit approvable plans to abate 6. odors from the no-bake moldmaking process.

Effective date of Order + 18 months

Start construction of equipment to 7. abate odors from the no-bake moldmaking process.

Effective date of Order + two years

8. Complete construction of equipment to abate odors from the no-bake moldmaking process.

Effective date of Order + 30 months

DEC to evaluate the effectiveness of controls on the abatement of odor emissions.

Ongoing and as each abatement . phase is completed.

10. Provide information requested by DEC regarding cyanide sampling reported in March 29, 1988 letter to DEC. Pursuant to DEC's May 9, 1988 letter, state:

Effective date of Order + one month

- nature of sample
- where it was collected
- analysis
- plan of the facility showing:

Order + one month

- location of all air emissions sources
- wind direction
- location of nearby streets, roads, railroads
- 12. Perform baghouse maintenance including:

Effective date of Order + three months and then ongoing

- removal of accumulated foundry sand
- disposal of waste at DEC approved location
- covering waste bins to prevent waste sand from becoming an air and water-borne pollutant
- periodic inspection of mechanical equipment and bags to prevent accidental discharges and unscheduled outages
- maintain inventory of spare parts and bags
- submit inspection schedule, periodic maintenance schedule, and list of spare parts on hand.

00222

SCHEDULE B (Con't)

Date

13. With respect to spent foundry sand:

Effective date of Order + one month and then ongoing

- install curbing around concrete pad to prevent runoff.
- store sand on concrete pad
- hold sand in smoke house until smoking subsides and sand is cool
- cover sand piles to prevent air and water-borne pollution
- at least twice weekly, dispose of spent sand to DEC approved landfill.
- 14. Dispose of all drums in drum storage yard in DEC approved manner at rate of 20 drums/month and retain receipts.

Start removal on Effective Date of Order

Remove visibly contaminated soil from drum storage yard and from fenced area on south end of plant property and dispose of in DEC approved manner.

By October 1, 1989

16. Submit approvable application to operate Effective date of grinder and buffer exhaust located at . Order + one month Plant #3.

17. Submit approvable applications and plans Effective date of for abatement odor emissions from the casting floor ventilators EP's 10, 11, 12 and 13 and the casting shakeout operation of the conveyorized casting line.

Order + 18 months

18. Start construction of arrangement to abate odors approved in Step 17.

Effective date of Order + one year

19. Complete construction and start operation Effective date of of arrangement to abate odors approved in Step 17.

Order + two years

20. Submit approvable application and plans for abatement of odor emissions from the hot shell sand muller and pug mill.

Effective date of Order + two years

21. Start construction of arrangement to abate odors approved in Step 20.

Effective date of Order + 30 months

S C H E D U L E B (Con't)

Date

22. Complete construction and start operation of arrangement to abate odors approved in Step 20. Effective date of Order + 36 months

23. Perform periodic inspections on all decodor abatement system and related equipment to prevent accidental odor emissions and unscheduled outages.

Maintain adequate inventory of spare parts to minimize the period of time that processes might operate without odor control due to equipment failure. Submit inspection schedules, periodic maintenance schedule, and list of spare parts to be inventoried.

Effective Date of Order + Ongoing

*With respect to the dates contained in items #3-5, the Department may require earlier dates in the event the casting tunnel and sand reclaimer option is not chosen. The dates in items #3-5 may also be altered, upon Respondent's request, if in the Department's opinion good cause exists for such alteration. "Good cause" includes but is not limited to acts of God, strikes, and third party negligence.

Consent by Respondent

Respondent hereby consents to the issuing and entering of the foregoing Order, waives its right to a hearing herein as provided by law, and agrees to be bound by the provisions, terms and conditions contained therein.

	· ·
·	Respondent ////
	By
	Title
and the	Date
(Seal)	•
Corporate	
State of NEW YORK County of ALLEGANY))
personally came HENK known, who being by me resides at 3799 RIVERSIDE he is the PRESIDENT corporation described instrument; and that he said corporation. EDWARD C. BAUMGARDNER J.	duly sworn did depose and say that he PR, SCIO NEW YORK that of FRIENDENIA FOUNDRY, INC the n and which executed the foregoing signed his name as authorized by
Notary Public, State of New York Registered in Allegany County My Commission Express on	Elway Dunigario
8/3/ 19 89 # 490364/ Individual	
State of County of))
	, to me known and ndividual described in and who consent and he duly acknowledged to

NOTARY PUBLIC

New York State Department of Environmental Conservation

plucoury.

MEMORANDUM

FROM:

Mr. McGarry, Air Mr. Jackson, Water

SUBJECT:

Friendship Foundry, Inc.

DATE:

Friendship (T), Allegany County

March 15, 1989

Attached hereto are results from the PCB sediment sample collected on January 13, 1989, showing a PCB concentration of 180 ppm.

The sample was collected from the sump in the transformer room after Mr. Mayo indicated to us that the sump had been cleaned.

The quantity of sediment in the sump on January 13, 1989 was quite small, as we had a difficult time obtaining enough sediment to analyze.

The sump, which formerly discharged to the storm receiver, is now routed to the sanitary sewer.

We recommend that another, more thorough, cleaning of the sump be required. The sump should be entirely dewatered, and all accumulated material scraped and washed from the sump and transferred to a proper container for storage and disposal. The pump should be temporarily pulled to facilitate cleaning.

MAJ:lej

Attachment

cc: Mr. Lacey, Legal Affairs

Ms. Sansone, Legal Affairs

Mr. Hintz, Solid Waste

Mr. Szymanski, Air

Mr. Sciascia, DEE

Mr. Johnson, DEE

Mr. Clare, Water

IWO File

Microbac Laboratories, Inc. J-Labs Division P.O. Box 489, Bradford, Pennsylvania 16701 [814] 368-6087

August 15, 1989

N.Y. Lab. ID #10122

Case No. 82212

Mr. Edward C. Baumgardner, Jr. Friendship Foundry, Inc. P. O. Box 7
10 Howard Street
Friendship, NY 14739

Subject: Samples Submitted July 7, 7989

. Dear Mr. Baumgardner:

Attached are the results of the tests requested on the subject samples taken by Mr. Henry Mayo and submitted on the labove date.

The samples were analyzed in accordance with SW846 "Test Methods for Evaluating Solid Waste."

Missing are results for 89G48 where PCB's have been requested. We will supplement this report with this data as soon as it is available.

If there are any questions concerning these results or if we can be of further service to you at anytime, do not hesitate to contact our office.

Very truly yours,

J-LABS DIVISION

Bradley S. Mitchell

BSM/gc Enclosures

Case No. 82212

ANALYSIS
CONSULTING
SALES
SERVICE

P. O. BOX 48P. . Bradford, PA 16701 Tel. 814-368-6087

N.Y. Lab. ID #10122

TECK: LABS DIVISION

lenl: Friendship	Foundry, Inc.	System:	,	
mple No.	89G48	89G49L	89G5Q	896501,
mpled by: H. Mayo	7-6-89	Uate firm:	7-6-89	(ture 1 me
celved by:	7-7-89		7-7-89	
ication	Sump by Electric Furnace Sample #1	EP Leachate of Dust From Sample #2	From drum of Material Sample #3	EP Leachate of Sample #3
4				
rsenic	,			<0.01
arlum				2.06
admlum				0.02
hromlum	• _ ,			<0.02
aad				0.52
lercury	· ·			<0.001
elenium				< 0:002
lk ·				< 0.01
luoride				
Itrate NO1 · N				
<u>L'enol</u>		6.42		<0.002
gnitability			Does Not Flash	
3			Extinguishes Flame	
	ι,		at 200°F	
			Does Not Burn When Flame Applied	:
. 10			,	
<u> </u>				·. · ·
	<u></u>			
			••	
. 500				
art art.				~
A STATE OF THE STA	•			
	Results expressed	d in mg/liter "ND" means	"not determined"	00112

ANALYSIS
CONSULTING
SALES
SERVICE

N.Y. Lab. ID #10122

TECK:LABS DIVISION

nt: Friendship	Foundry, I	nc.	Sys	item:				
ple No.	89G5	1	89G5		89G			353
pled by: H. Mayo	7-6-89	Time	Date .	line	7'-6-89	Time	Date	Time
elved by:	7-7-89	<u> </u>			7-7-89			
3llon .			EP Lead of Sample		Cleanup	From Sump Drum in Phouse	of Soi	rom Pile 1 Cleaned il Spill e #6
enlc			< 0.01					
ium			1.46	-				
`mlumi			<0.01					
omlum			<0.02					
d			0.13					
cury			<0.00	<u> </u>				
c. r.iw		٠.	<0.00	2				
'er			< 0.01					
orlde								
rale NO3 - N								
:no1			0.01	0				
<u>.</u>		•			11 Arochlor	mg./kg. s 1242		
itability	at 200°F.	shes Flame Burn When			Does Not Burns Wh	en Flame	Extinguat 200°	t Burn When
nzene							<0	.05
lorobenzene								.05
2-Dichlorobenzene					٠.		<0	.05
3-Dichlorobenzene							<0	.05
4-Dichlorobenzene						·		.05
hylbenzene							-	.05
1 1e					1.			.05
The same of the sa		•						
Market Control	Resull	s expressed	in mg/liter "N	iD'' means	s "not determ	ined"		N112

Case No. 82212

P. O. BOX 489... Bradford, PA 16701 Tel. 014-360:4087

N.Y. Lab. ID \$10122

00114

ANALYSIS CONSULTING SALES SERVICE

TECK: LABS DIVISION

Ī		••		•			
ent: Friendship	Foundry, 1	inc.		System:			
nple No.	89G						
npled by:	Oale	I mus	Date	lime	() + (+	1~	(Vote 1 ~~
elved by:							
allon	EP Lead	hate				,	
	o f	4.0			.		
•	Sample	¥ 6					
;enic	< 0.0						
rlum	0.45	<u> </u>					
dmlum	. 0.02	<u></u>		·			· ·
romlum	< 0.02	2				· _	
3d	0.14	4					•
icall	< 0.00	01					
ienium	< 0.00)2					·
<u>'.</u>	<0.0	<u>'</u>					
orlde		•		_			
irale NO3 - N							
			_				
•							_
							<u> </u>
							<u> </u>
							
		•					200
•		•					· · · · · · · · · · · · · · · · · · ·
							•
						·	
•							
						•	
	·						
			-				
1.						<u> </u>	
		•					
•	Result	s expresso	d in mg/liter	ND me:	ans "not de	termined"	00114

Microbac Laboratories, Inc. J-Labs Division P.O. Box 489, Bradford, Pennsylvania 16701 [814] 368 6087

August 22, 1989

Case No. 82212

Mr. Edward C. Baumgardner, Jr. Friendship Foundry, Inc. P. O. Box 7 10 Howard Street Friendship, NY 14739

Subject: PCB Analysis of Sample 89G48

Dear Mr. Baumgardner:

Attached is a revised report showing the result of the PCB analysis of the subject sample.

If you have any questions about this result or if we can be of further assistance to you at anytime, do not hesitate to contact our office.

Very truly yours,

J-LABS DIVISION

Bradley 6 / Mitchell

BSM/gc Enclosure

Case No. 82212

ANALYSIS CONSULTING SALES SERVICE

P. O. BOX 489. Bradford, PA, 16701 Tel. 014-360-6087

N.Y. Lab. ID #10122

TECK: LABS DIVISION

mple No.	. 89G48	89Ç49L	89G50	896501
mpled by: H. Mayo	7-6-89	Oate lung	7-6-89	(C. 03(1))(1)
celved by:	7-7-89		7-7-89	
ication	Sump by Electric Furnace Sample #1	EP Leachate of Dust From Sample #2	From drum of Material Sample #3	EP Leachate of Sample #3
senic				<0.01
วะใบเท				2.06
admlum				0.02
hromlum	· .			<0.02
ead .				0.52
ercury				< 0.001
elenium				< 0.002
lver				_< 0.01
uorlde				
Irale NO2 - N				
enol		6.42		<0.002
В	·(90 mg./kg.)			
nitability			Does Not Flash Extinguishes Flame	
			at 200°F Does Not Burn When	•
		<u> </u>	Flame Applied	
			·	*
•				
			••	

occ:

New York State Department of Environmental Conservatio 50 Wolf Road, Albany, New York 12233

M. O'Toole (2)

C. Goddard

A. Rockmore

T. Vickerson

P. Buechi - NYSDEC Regior

TJV/mj

Mr. Richard Caspe, P.E. Director Emergency and Remedial Response Division U.S. Environmental Protection Agency Region II 26 Federal Plaza New York, New York 10278

OCT 1 0 1990

Dear Mr. Caspe:

Re: Friendship Foundry 10 Howard Street Friendship, New York 14739

Results of a recent inspection of the referenced facility indicate several hazardous wastes are stored on site posing a potential threat to the environment.

The enclosed correspondence details the concern of State and local officials and the analytical data documents the hazardous wastes in the drums which were sampled.

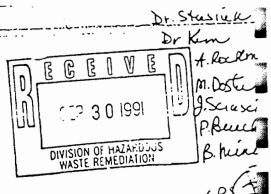
The New York State Department of Environmental Conservation (NYSDEC) requests that the United States Environmental Protection Agency (USEPA) take appropriate action to investigate, stabilize and remove the hazardous wastes from the Friendship Foundry under the removal action program.

As further support and clarification of the reason for this request, we realize under Section 104 of CERCLA, as amended by SARA, that the President of the United States may respond to any release or threat of release of a hazardous substance, if in the President's discretion it constitutes a public health or environmental emergency and no other person with the authority and capability to respond to the emergency will do so in a timely manner.

If you have any questions regarding this request, please contact Alan Rockmore, P.E., of my staff at (518) 457-9280.

Michael J. Horle J.

Michael J. O'Toole, Jr., P.E.


Director

Division of Hazardous Waste Remediation

Enclosure

cc: R. Salkie - USEPA, Region II

G. Zachos - USEPA, Region II, Edison, NJ

U.S. ENVIRONMENTAL PROTECTION AGENCY POLLUTION REPORT INITIAL POLREP

I. Heading

> Date: September 13, 1991

From: Jack D. Harmon, OSC, U.S. EPA, Region II

Removal Action Branch

To: C. Sidamon-Eristoff, EPA K. Callahan, EPA

R. Salkie, EPA G. Zachos, EPA J. Marshall, EPA E. Schaaf, EPA

M. Basile, EPA-NF ERD - Washington (E-Mail) -M. O'Toole, NYSDEC G. Button, NYSDEC

R. Tuers, NYSDOH TAT

Friendship Foundry #1, Friendship, Allegany

County, New York

POLREP No.: 01

II. BACKGROUND

> Site No.: 7 F

D.O. No.: 0016-02-019 Response Authority: CERCLA/SARA

NPL Statue:

Non-HPL

Start Date: August 7, 1991

III. RESPONSE INFORMATION

Situation

This facility is presently a defunct foundry that was operated by Macler Industries until 1987, at which time Friendship Foundry took over the operation. Friendship Foundry entered into a revised Consent Order with the New York State Department of Environmental Conservation (NYSDEC) in 1989, to address air pollution, solid waste and water quality related violations. The NYSDEC Division of Air determined that the facility was unable to come into compliance with Air Pollution Regulations as had been specified in the Order on Consent No. 87-183A. Region IX closed the facility on June 1, 1990, by serving a Summary Order Terminating Authorization to operate emission points associated with the casting operation.

In October, 1990, the NYSDEC requested that the USEPA take appropriate action to investigate, stabilize and remove the hazardous wastes from the Friendship Foundry authorized

In response to the NYSDEC's request, a removal site evaluation (RSE) was conducted on November 1 and 2, 1990, by an On-Scene Coordinator (OSC) from the Removal Action Branch and representatives from the Technical Assistance Team (TAT). The foundry was found to be in complete disorder. It appeared that Friendship Foundry had little or no concern for waste management. There were approximately 500 drums present that were either full, partially full, or empty. . addition, hundreds of laboratory sized containers as well as foundry sand spread throughout the entire site. The majority of the drums were severely dented; some were leaking, some were bulging and many were open and double stacked. It was very difficult to inspect various areas of the foundry due to insufficient lighting, piles of equipment, drums, debris and the overall dilapidated condition of the building. On the western portion of the property, a storage yard contained approximately 200 partially filled and empty drums. Distressed vegetation and stained soil was evident. Inadequate perimeter fencing was also noted as well as several points of entry into the foundry.

In August 1990, the NYSDEC collected six samples from drums located on-site. Laboratory results from five of these samples revealed that four were hazardous by nature of their ignitable characteristic while the other possessed a PCB concentration of 2,900 parts per million (ppm).

During the RSE on Novermber 1 and 2, 1990, several samples were collected and later analyzed. The laboratory analyses corroborated the NYSDEC earlier findings that hazardous materials are present.

B. Actions Taken

- 1. On February 8, 1991, a PRP Search was requested by the Program Support Branch. 104(e) letters have been drafted and will be issued once all revisions have been made.
- 2. The Action Memorandum authorizing funding for the removal action was approved on July 10, 1991 by the Regional Administrator.
- 3. An access agreement was obtained on July 29, 1991 from the present owner of the property.
- 4. On August 7, 1991, a fencing subcontractor initiated the installation of fencing to prevent unauthorized entries into the foundry property. Completion of the fencing was completed on August 13, 1991. Also during this period, the ERCS contractor secured building openings and doors with chains and padlocks.

- 5. The Regional ERCS contractor was mobilized on August 26 and site preparation commenced. During the following two week period the premises was organized and three work zones were established i.e., support, contaminant reduction and exclusion zones. Also, two storage buildings were erected to house tools/equipment and personal protective equipment. In addition, a concrete berm was established on an existing concrete pad to serve as a decontamination pad. Four loads of crushed stone were delivered and leveled in areas of poor drainage.
- 6. During the week of September 2, 1991, an office trailer was delivered. The office trailer was rendered fully operational with the subsequent connection of phone and electric services. Prior to the placement of the office trailer, a composite surface soil sample was collected to confirm the area as "clean". Also during this period, a former storage room inside the foundry was decontaminated and an intrinsically safe fume hood installed to serve as a "laboratory" for hazcatting future samples.
- 7. During the week of September 9, 1991, the ERCS contractor inventoried and then staged empty drums from the warehouse into the foundry building across the street. Drums that were double stacked were staged in the space provided by removal of the empty drums.
- 8. A complete inventory of full and partially full drums within the warehouse was concluded during the week of September 9, 1991. Four bulging drums were vented to relieve pressures.
- 9. Three grab samples of foundry sand were collected on September 13, 1991 from inside the foundry and submitted to a laboratory for analyses on September 16, 1991.
- 10. The present property owner, Mr. Henry Mayo visited the site and granted the USEPA permission to salvage any scrap metal that would prevent the cleanup contractor from freely moving about the site. Mr. Mayo offered his services to assess samples of drum contents to ascertain wastes from products. Mr. Mayo has also contacted other foundries that may be interested in use of the products.

B. Next Steps

1. Samples of contents from full and partilly full drums will commence the week of September 16, 1991. The present foundry owner and the former foundry foreman will attempt to ascertain product from waste by comparing drum inventory sheets and associated samples. All those samples which are deemed waste or not entirely certain to be product will be hazcatted and placed into compatible waste groups.

2. Once all wastes have been placed into compatible waste groups, samples from each compatible waste group will be submitted for laboratory disposal analyses. Transportation and disposal will follow waste acceptances at approved TSDFs. Empty drums will be decontaminated, if possible, and crushed for salvage. Otherwise they will be crushed, placed into a roll-off and disposed.

IV. Cost Information

	Amount	Cost	Amount
	Budgeted	To Date	Remaining
Cleanup Contractor TAT Extramural Contingency EPA (HQ and Region)	1,500,000	100,000	1,400,000
	50,000	1,000	49,000
	310,000	-0-	310,000
	101,000	19,700	81,830
Project Funds Remaining	1,961,000	120,700	1,840,300

FURTHER POLREPS FORTHCOMING: X POLREP : SUBMITTED BY D. Harmon, OSC

Removal Action Branch

DATE RELEASED: 9/17/91

TRANSMITTAL SLIP

Jeff Edwards - DHWR - Remedi	ial Section A
FROM Greg Sutton - DHWR - Regio	on9 B125/95
Friendship Foundies Pl	Ant #2 Sampling
	4 1.
	n Elip
FOR ACTION AS INDICATED:	Comments AUG 3 0 1995
☐ Please Handle	Comments AUG
Prepare Reply	☐ Signature
Prepare Reply for	File BUREAU
Signature /	Return to me
Information	
☐ Approval	
Propers final/draft in conies	U ———

ONE RESEARCH CIRCLE WAVERLY, NY 14592-1532 TELEPHONE (607) 565-3500 FAX (607) 565-4083 Apr 18, 199

LAB SAMPLE ID

. 78476

Allegany County DPW John Mancuso Room 210 County Office

Belmont NY 14813

SAMPLE SOURCE ORIGIN

DESCRIPTION SAMPLED ON

DATE RECEIVED P.O. NO

EQUIPMENT SHOP-FRIENDSHIP

TEST PIT-1 WEST

COMPOSITE 03/28/95 03/28/95

by FLI/CSF

Analouda						
Analysis Performed	Result	Units	Dat∉ Anslyzed	Hethod	Notebook Reference	Analyst
Arsenic	ND<7.31	mg/Kg 7.5	04/17/95	EPA 6010	95-061-06	DGR
.Barium	67.1	mg/Kg 300	04/17/95	EPA 6010 '	95-061-06	DGR
Cadmium	ND <0.366	mg/Kg l	04/17/95	EPA 6010	95-061-06	DGR
Chromfum	13.0	mg/Kg (O	04/17/95	EPA 6010	95-061-06	DGR
Lead	27.2	mg/Kg 200/5 0	04/17/95	EPA 6010	95-061-06	DGR
Mercury	0.042	mg/Kg O.1	03/31/95	EPA 7470	93-290-25	VHT
Selenium	ND<3.29	mg/Kg 2	04/17/95	EPA 6010	95-061-06	DGR
Silver	ND<0.548	mg/Kg 5 8	04/17/95	EPA 6010	95-061-06	DGR

For questions regarding this report, please call Customer Services.

NY 10252 PA 68180 NJ 73168 EPA NY 033

Approved by: _

QJALITY ASSURANCE

The information in this report is accurate to the best of our knowledge and ability. In no event shall our liability exceed the cost of these services. Your samples will be discarded after 14 days unless we are advised otherwise.

Albany, NY

Scranton, PA

Jamestown, NY

Boston, MA

Syracuse NY

Jundsey

ONE RESEARCH CIRCLE WAY TELEPHONE (607) 565-3500

WAVERLY, NY 14892-1532 FAX (607) 565-4083

LAB SAMPLE ID

John Mancuso

: 78476

7162689610

SAMPLE SOURCE ORIGIN EQUIPMENT SHOP-FRIENDSHIP

TEST PIT-1 WEST

DESCRIPTION

SAMPLED ON

P.Q. NO.

COMPOSITE 03/28/95

DATE

nt = /00

DATE RECEIVED

EIVED | 03/28

03/28/95

by FLI/CSF

Belmont NY 14813

Allegany County DPW

Room 210 County Office

Analysis <u>Performed</u> Solids, Total

Result 83.03

Units percent Date Analyzed 03/29/95

Method CLP 3.0 Notebook

Reference Analyst 94-204-87 JAS

APR 2 1 1995

For questions regarding this report, please call Customer Services.

cc :

NY 10252 PA 68180 NJ 73168 EPA NY 033

Approved by: .

QUALITY ASSURANCE

The information in this report is accurate to the best of our knowledge and ability. In no event shall our liability exceed the cost of these services. Your samples will be discarded after 14 days unless we are advised otherwise.

Albany, NY

Scranton, PA

Jamestown, NY

Boston, MA

Syracuse, NY

Jindsey

Volatiles ONE RESEARCH CIRCLE WAVERLY, NY 14892-1532 TELEPHONE (607) 565-3500

FAX (607) 565-4083

P.O NO.

Page 1

5, 1995

LAB SAMPLE 10 : 78476.

Allegany County DPW John Mancuso Room 210 County Office

Belmont NY 14813

		1.52 37 2333	_
SAMPLE SOURCE		EQUIPMENT SHOP-FRIENDSHI	E
ORIGIN	:	TEST PIT-1 WEST	
DESCRIPTION	:	COMPOSITE	
SAMPLED ON	:	03/28/95 by FLI/CSF	
DATE RECEIVED	·	03/28/95	

THE list by 8240(Total) Method : SW846/5030/8240 Compounds Detected	Analyst : C Units : UG/ Results	
	••••	
Vinyl Chloride	. ND <25 %	0.2
1,1-Dichloroethene	ND < 25 40	0.7
2-Butanone (MEK)	HD<250 30	• 200
Chloroform	ND<25 30	6 .0
Benzene	ND<25 6	o 0.5
Carbon Tetrachloride	ND<25 ▲ ◆	o 0.5
1,2-Dichloroethane	HD<25 100	0.5
Trichloroethene	ND < 25 700	0.5
Tetrachloroethene	ND < 25 140	0.7
Chlorobenzene	ND<25 170	1 00
1,4-Dichlorobenzene	ND <25 85	00 7.5
1,1,1-Trichloroethane	ND <25 80	•
Surrogate Recovery (%)		
Toluene-d8	101	
4-Bromofluorobenzene	102	•
Dibromofluoromethene	96	

For questions regarding this report, please call and ask for Customer Services.

cc :

NY 10252 PA 68180 NJ 73168 EPA NY 033

Approved by: Jundsey

DUALITY ASSURANCE

The information in this report is accurate to the best of our knowledge and ability. In no event shall our liability excee the cost of these services. Your samples will be discarded after 14 days unless we are advised otherwise.

Albany, NY

Scranton, PA

Jamestown, NY

Boston, MA

Syracuse, NY

ONE RESEARCH CIRCLE WAVERLY, NY 14892-1532 Semivolatiles TELEPHONE (607) 565-3500

Page 1 of 2

FAX (607) 565-4083

PQ. NO

Apr 20,

LAB SAMPLE ID : 78476

Allegany County DPW John Mancuso Room 210 County Office

Belmont NY 14813

SAMPLE SOURCE	:	EQUIPMENT SHOP-FRIENDSHIP
ORIGIN	:	TEST PIT-1 WEST
	ı,	

DESCRIPTION COMPOSITE 03/28/95 SAMPLED ON

03/28/95 DATE RECEIVED

by	FLI/CSF

TCLP List (Total) Method : \$W846/8270/3540 Compounds Detected	Analyst : 8CC Units : UG/G Results	Notebook Reference : 94-248-098 Date Analyzed : 04/18/95 Date Extracted : 04/03/95
Pyridine	ND<0.3	5.0
o-Cresol	MD<0.3	200.0
p-Cresol/m-Cresol	NO<0.3	200.0
Hexachloroethane	NO<0.3	3.0
Mitrobenzene	ND<0.3	2.0
Hexachlorobutadiene	ND<0.3	0.5
2,4,6-Trichlorophenol	ND<0.3 O	2.0
2,4,5-Trichtorophenot	ND<0.3	400.0
2,4-Dinitrotoluene	ND<0.3	0.13
Hexachtorobenzene	ND<0.3	0.13
Pentachlorophenol	ND<1	100.0
Surrogate Recovery (%)		
2-Fluorophenol	39	
Phenol-dó	52 .	
Nitrobenzene-d5	55	
2-Fluorobiphenyl	66	
2,4,6-Tribromophenol	50	•
Terphonyl-d14	68	
PCB's (Monitoring Wells & Solid/Hazardou	Analyst : PDB	Notebook Reference: 94-197-720
Method: SW846/8080/3540	Units : MG/KG	Date Analyzed: 04/04/95
Compounds Detected	Results	Date Extracted : 04/03/95
***************************************	•••••	
PCB 1016	ND<0.1	
PCB 1221	ND<0.1	
PCB 1232	ND<0.1	
PCB RESULTS ARE CALCULATED ON A DRY WEIGHT		

For questions regarding this report, please call and ask for Customer Services.

cc :

NY 10252 PA 68180 NJ 73168 EPA NY 033

Approved by:

Lindsey QUALITY ASSURANCE

The information in this report is accurate to the best of our knowledge and ability. In no event shall our liability excee the cost of these services. Your samples will be discarded after 14 days unless we are advised otherwise.

Albany, NY

Scranton, PA

Jamestown, NY

Boston, MA

Syracuse, NY

04/	27/1995	13:5	3 71	626896				ALI	_EGANY	COUNT	= = Mc_ A			PAGE 06
	,	RIAL	CODE	∞	1		∞	20	۵			DATE/TIME	10	5
	SIGNATURE	ANALYSES/TESTS REQUESTED	المربية الم	5								DAT	3/28/195	2ES 14892-1532) 565-4083
	SAMPLER'S	ANALYSES/TE REQUESTED	1 .1	38% UNIGHT					->				or monty Marty	ENVIRONMENTAL BERVICES SIRCLE * WAVERLY, NY 14 565-2893 * FAX (607) 5
	c.	NOI	отнек		-							RELINQUESHED BY SIGNATURE PRINT	ved at tab Fure Oabbus Oebbis	ENVIRONMENTAL BEY CIRCLE * WAVERLY, 565-2893 * FAX (
סאכ	SAMPLE SITE	DESCRIPTION	GRAB	×	Х		X	又	X			RELINQUES SIGNATURE PRINT	RECEIVED A SIGNATURE () Y.
DY RECORD	SAMP	Ω	COMP 76										INE	FLI ONE RESEARCH Phone (607)
OF CUSTODY	# OF	TAIN- ERS	78476	<u> </u>	_		78477	/					DATE/TIME	
CHAIN C				23. to 12.				ik ic spy				ED BY URE		
	MJQ	RCE		Composito	·			Composite				RECEIVED I SICNATURE PRINT	co by	e, As. Horoethare
	٦,		=	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	24"	\	2.	12" 5	14"			Sheks 3TD	RELINQUESHED BY SIGNATURE PRINT	As, Ba, Cd, Cr, Pb, Hy, Se, As. Scer#29 + 1,1,1-Tr. clloroethane
	CLIENT NAME Allegany Co.	<u> </u>	,,9-0	121-9	12-24"		0,10	,21-,7	12"-24"			S spek	RELIN SIGNA PRINT	(d, C,) + 129 + 1
£ 2	CLI	TIME	<u>;</u>	3) 2) 2) 2) 2) 2) 2) 2) 2) 2) 2) 2) 2) 2)	अंग्रीज विस्		6:33	328 FG 10.30	\$ 18:30 B:30		,	M.S.J.		1 / 1 21
of	NO.	DATE	John	2000	3/2/16		3.2855	373KG	J. 30 27 20 20			UISHED BY	BY	RKS: * Pcb's, As, Voltily - Sce Seni. Vod s-
~	мест но.	PLE BER	11/2	ただ	ナダナ		7.00	+ 17.1 Section	が大			HOUISHED HAD TATURE (NOTE)	IVED I	RKS:

94	/27/1995 13:53 7162689648			AL	LEGAN	Y COUM	YTY DEY	ų.		PAGE 0	37			
•		MATE- RIAL CODE	8	8	8	S	8	که			оате/тіме		•	
	S SIGNATURE	ALYSES/TESTS REQUESTED .	10/2/10. 4-15.					1			DATE	3(28/AS		
	SANPLER'S	ANALYSES	PCIS, Metals, Volatiles			•		->			3Y .:	RECEIVED AT LAB BY FORTY SIGNATURE DEDDLE IT FORTY PRINT DEDDIE IT FORTY	D ENVIRORMENTAL BERVICES SIRCLE * WAVERLY, NY 1. 565-2893 * FAX (607) 5	
		ron OTHER		·							<u> </u>	ORE DOD'S	ENVIRONME CIRCLE * 6 565-2893	
ממכ	SAMPLE SIME ESCHPE	18. E	×	×	*	×	又	X			RELINQUESHED SIGNATURE PRINT	RECEIV SIGNATI PRINT	· ·	
аиоэаи хас	SAMPLE ESCIPIANO Frodski	. DI										ІМЕ	FLI ONE RESEARCH Phone (607)	
OF CUSTODY	# OF	TAIN- ERS	78478	<u> </u>	. /	78479						олте/тіме		
CHAIN				ا من الم			インスト				auc auc			
	DPW	RCE		Compose to			Composite Laborator				RECEIVED I SIGNATURE PRINT	Ер ву		
	CLIENT NAME Allegany Co.	ORIGIN/SOURCE	0.56"	6-12" }	1224"	020	6"-12" 5	(", 22-"1)			2/20/83:00	RELINQUESHED SIGNATURE PRINT	-	
7	CLIE	тіме	10:40	1845 10:40	3/28/15/40	3					A Day			
2 of	JECT NO.	DATE	N	S	3/24/5	1/20/45	928945 11:00	37845 [1:00			SHED BY	E BX		
	JEC	LE ER	10 40 1- 171	t p:t 35E	t 52'	7.5	P.F.	4/2			ATURE OF CONTRACT	(VED)	:SXR	

ONE RESEARCH CIRCLE WAVERLY, NY 14892-1532 TELEPHONE (607) 565-3500 FAX (607) 565-4083

LAB SAMPLE ID

: 78477

Allegany County DPW John Mancuso Room 210 County Office

Belmont NY 14813

SAMPLE SOURCE
ORIGIN
DESCRIPTION
SAMPLED ON
DATE RECEIVED

P.O NO.

EQUIPMENT SHOP-FRIENDSHIP TEST PIT-2 SOUTH COMPOSITE

03/28/95 03/28/95 by FLI/CSF

Analysis			Date		Natebook	
Performed	Result	Units	Analyzed	<u>Metho</u> d	Reference	Analyst
Arsenic	ND<6.48	mg/Kg 1	04/17/95	EPA 6010	95-061-06	DGR
Barium	59.3	mg/Kg 300	04/17/95	EPA 6010	95-061-06	DGR
Cedmium	ND<0.324	mg/Kg (04/17/95	EPA 6010	95-061-06	DGR.
Chromium	9.37	mg/Kg (೮	04/17/95	EPA 6010	95-061-06	DGR
Lead	28.6	mg/Kg 1997Cs	04/17/95	EPA 6010	95-061-06	DGR
Hercury	0.038	mg/Kg 🐈	03/31/95	EPA 7470	93-290-25	VHT
Selenium	ND<2.91	mg/Kg ³	04/17/95	EPA 6010	95-061-06	DGR
Silver	ND<0.486	mg/Kg 🚉	04/17/95	EPA 6010	95-061-06	DGR

For questions regarding this report, please call Customer Services.

() e

NY 10252 PA 68180 NJ 73168 EPA NY 033

Approved by: _

QUALITY ASSURANCE

The Information in this report is accurate to the best of our knowledge and ability. In no event shall our liability exceed the cost of these services. Your samples will be discarded after 14 days unless we are advised otherwise.

Albany, NY

Scranton, PA

Jamestown, NY

Boston, MA

Syracuse, NY

Judge

Volatiles ONE RESEARCH CIRCLE WAVERLY, NY 14892-1532 TELEPHONE (607) 565-3500 FAX (607) 565-4088 Page 1

Apr

5, 1995

LAB SAMPLE ID : 78477

Allegany County DPW John Mancuso Room 210 County Office

Belmont NY 14813

SAMPLE SOURCE .	EQUIPMENT SHOP-FRIENDSHIP
ORIGIN :	TEST PIT-2 SOUTH
DESCRIPTION :	COMPOSITE
SAMPLED ON	03/28/95 by FLI/CSF
DATE RECEIVED :	03/28/95
P.O. NO.	

ZHE list by 8240(Total)	Analyst : CPW	Notebook Reference : 95-048-1185
Method : SW846/5030/8240	Units: UG/KG	Date Analyzed : 03/31/95
Compounds Detected	Results	
•••••		• • • • • • • • • • • • • • • • • • • •
Vinyl Chloride	NO < 25	0.2
1,1-Dichloroethene	- ND < 25	0.7
2-Butanone (MEK)	ND<250	200
Chloroform	NO < 25	6.0
Benzene	NO<25	0.5
Carbon Tetrachloride	ND < 25	0.5
1,2-Dichtoroethane	NO < 25	0.5
Trichloroethene	มด<25	0.5
Tetrachloroethene	ND <25	0.7
Chlorobenzene	NO <25	100
1,4-Dichlorobenzene	ND < 25	7.5
1,1,1-Trichloroethane	ND <25	
Surrogate Recovery (%)		
Toluene-d8	98	
4-Bromofluorobenzene	97	
Dibromofluoromethane	100	

For questions regarding this report, please call and ask for Customer Services.

cc :

NY 10252 PA 68180 NJ 73168 EPA NY 033

Approved by: _

"QUALITY ASSURANCE

The information in this report is accurate to the best of our knowledge and ability. In no event shall our liability exceed the cost of these services. Your samples will be discarded after 14 days unless we are advised otherwise.

Albany, NY

Scranton, PA

Jamestown, NY

Boston, MA

Syracuse, NY

ONE RESEARCH CIRCLE DSemivolatiles TELEPHONE (607) 565-3500

WAVERLY, NY 14892-1532 FAX (607) 565-4083

Page 2 of 2

Apr 19, 1995

LAB SAMPLE ID : 78477

Decachlorobiphenyl

108

Allegany County DPW

SAMPLE SOURCE ORIGIN DESCRIPTION SAMPLED ON

> DATE RECEIVED P.O NO.

EQUIPMENT SHOP-FRIENDSHIP TEST PIT-2 SOUTH COMPOSITE

03/28/95 03/28/95

DATE

by FLI/CSF

PCB 1242	ND<0.1
PCB 1248	ND<0.1
PCB 1254	NO<0.1
PCB 1260	ND<0.1
Surrogate Recovery (X)	

NY 10252 PA 68180 NJ 73188 EPA NY 033

Approved by: Jundsey

QUALITY ASSURANCE

The Information in this report is accurate to the best of our knowledge and ability. In no event shall our liability exceed the cost of these services. Your samples will be discarded after 14 days unless we are advised otherwise.

ONE RESEARCH CIRCLE R LE N D Semivolatiles TELEPHONE (607) 565-3500 ABORATORY

WAVERLY, NY 14892-1532 FAX (607) 565-4083

Page 1 of 2 Apr 20,

LAB SAMPLE ID : 78477

Allegany County DPW John Mancuso Room 210 County Office

Belmont NY 14813

					_
SAMPLE SOURCE	:	EQUIPMENT S	SHOP-1	FRIENDSHIE	,
ORIGIN	:	TEST PIT-2			
DESCRIPTION	:	COMPOSITE			
SAMPLED ON	;	03/28/95	by	FLI/CSF	
DATE RECEIVED	: ¦	03/28/95			
P.O. NO	:				

TCLP List (Total)	Analyst : BCC	Notebook Reference : 94-248-098
Method : SW846/8270/3540	Units : UG/G	Date Analyzed: 04/18/95
Compounds Detected	Results	Date Extracted: 04/03/95
***************************************	•••••	
Pyridine	MD<0.3	5.0
a-Cresal	ND<0.3	200.0
p-Cresol/m-Cresol	ND<0.3	200.0
Hexachloroethane	ND<0.3	3.0
Witrobenzene	ND<0.3	2.0
Hexachlorobutadiene	ND<0.3	0.5
2,4,6-Trichlorophenol	ND<0.3	2.0
2,4,5-Trichlorophenol	NO<0.3	400.0
2,4-Dinitrotoluene	ND<0.3	0.13
Hexach Lorobenzene	ND<0.3	0.13
Pentachi orophenol	ND<1	100.0
Surrogate Recovery (X)		•
Z-fluorophenol	39	
Phenot-dó	52	
Nitrobenzene-d5	57	
Z-fluarabiphenyl	65	
2,4,6-Tribromophenal	60	•
Terphenyl-d14	73	
PCB's (Monitoring Wells & Solid/Hazardou	Analyst : PDB	Natebook Reference: 94-197-721
Method: SW846/8080/3540	Units : MG/KG	Date Analyzed: 04/04/95
Compounds Detected	Results	Date Extracted : 04/03/95
	• • • • • • • • • • • • • • • • • • • •	
PCB 1016	ND<0.1	
PCB 1221	ND<0.1	
PCB 1232	ND<0.1	
PCB RESULTS ARE CALCULATED ON A DRY WEIGHT	BASIS.	

For questions regarding this report, please call and ask for Customer Services.

cc :

NY 10252 PA 68180 NJ 73168 EPA NY 033

Approved by:

The information in this report is accurate to the best of our knowledge and ability. In no event shall our liability exceed the cost of these services. Your samples will be discarded after 14 days unless we are advised otherwise.

Albany, NY

Scranton, PA

Jamestown, NY

Boston, MA

Syracuse, NY

ONE RESEARCH CIRCLE TELEPHONE (607) 565-3500

WAVERLY, NY 14892-1532 FAX (607) 565-4083

DATE Mar 30, 1995

LAB SAMPLE ID

: 78477

Allegany County DPW John Mancuso Room 210 County Office

Belmont NY 14813

SAMPLE SOURCE ORIGIN

EQUIPMENT SHOP-FRIENDSHIP TEST PIT-2 SOUTH

COMPOSITE DESCRIPTION 03/28/95 SAMPLED ON

03/28/95

by FLI/CSF

Date

DATE RECEIVED P.Q NO.

Notebook

Analysis Performed Solids, Total

Result 85.52

Units percent Analyzed 03/29/95

Method CLP 3.0

Reference 94-204-87 <u>Analyst</u> JAS

For questions regarding this report, please call Customer Services.

cc:

NY 10252 PA 68180 NJ 73168 EPA NY 033

Approved by:

QUALITY ASSURANCE

more

The information in this report is accurate to the best of our knowledge and ability. In no event shall our liability exceed 🗯 the cost of these services. Your samples will be discarded after 14 days unless we are advised otherwise.

Albany, NY

Scranton, PA

Jamestown, NY

Boston, MA

Syracuse, NY

Lindrey

TELEPHONE (607) 565-3500

ONE RESEARCH CIRCLE WAVERLY, NY 14592-1532 FAX (607) 565-4083

LAB SAMPLE 10 : 78479

Allegany County DPW John Mancuso Room 210 County Office

Belmont NY 14813

SAMPLE SOURCE ORIGIN DESCRIPTION

EQUIPMENT SHOP-FRIENDSHIP TEST PIT-4 EAST

COMPOSITE

03/28/95 03/28/95

DATE

by FLI/CSF

SAMPLED ON

DATE RECEIVED PO. NO.

	_	,					
	Analysis Performed	Rosult	Units	Date Analyzed	Method	Notebook <u>Reference</u>	Analyst
	Arsenic	10.6	mg/Kg	04/17/95	EPA 6010	95-061-06	OGR
	Barium	128	mg/Kg 300	04/17/95	EPA 6010	95-061-06	· DGR
	Cadmium	NO<0.353	mg/Kg	04/17/95	EPA 6010	95-061-06	DGR
	Chromium	13.3	mg/Kg j∮	04/17/95	EPA 6010	95-061-06	DG9
 .	Lead	32.0	mg/Kg	. 04/17/95	EPA 6010	95-061-06	DGR
	Mercury	0.034	mg/Kg 🙃	03/31/95	EPA 7470	93-290-25	VHT
 .	Selenium	ND <63.6	mg/Kg 👃	04/17/95	EPA 6010	95-061-06	DGR
	Silver	NO<10.6	mg/Kg 🎵	04/17/95	EPA 6010	95-061-06	DGR

for questions regarding this report, please call Customer Services.

NY 10252 PA 68180 NJ 73168 EPA NY 033

Approved by: Jundsey

QUALITY ASSURANCE

The information in this report is accurate to the best of our knowledge and ability. In no event shall our liability exceed the cost of these services. Your samples will be discarded after 14 days unless we are advised otherwise.

Albany, NY

Scranton, PA

Jamestown, NY

Boston, MA

Syracuse, NY

Volatiles ONE RESEARCH CIRCLE WAVERLY, NY 14892-1592 TELEPHONE (607) 565-3500 FAX (607) 565-4083 Page 1

DATE

LAB SAMPLE 10 : 78479

Allegany County DPW John Mancuso Room 210 County Office

Belmont NY 14813

SAMPLE SOURCE
ORIGIN
DESCRIPTION
SAMPLED ON
DATE RECEIVED
P.O NO.

EQUIPMENT SHOP-FRIENDSHIP TEST PIT-4 EAST COMPOSITE 03/28/95 by FLI/CSF 03/28/95

ZHE list by 8240(Total)	Analyst : CPW	Notebook Reference : 95-048-1201
Method: \$W846/5030/8240	Units : UG/KG	Date Analyzed: 04/03/95
Compounds Detected	Results	
•••••		•••••
Vinyl Chloride	ND<25	0.2
1,1-Dichloroethene	• ND < 25	0.7
2-Butanone (MEK)	ND < 250	200
Chloroform	ND < 25	6.0
8enzene	ND <25	0.5
Carbon Tetrachloride	ND < 25	0.5
1,2-Dichloroethane	ND <25	0.5
Trichloroethene	ND<25	0.5
*etrachloroethene	ND<25	0.7
Chlorobenzene	ND <25	100
1,4-Dichlorobenzene	ND<25	7.5
1,1,1-Trichloroethane	ND < 25	
Surrogate Recovery (%)		
Toluene-d8	101	
4-Bromoftuorobenzene	97 .	
Dibromofluoromethane	94	

For questions regarding this report, please call and ask for Customer Services.

cc :

ac (1)

NY 10252 PA 68180 NJ 73168 EPA NY 033

Approved by: Jundsey

QUALITY ASSURANCE

The Information in this report is accurate to the best of our knowledge and ability. In no event shall our liability exceed the cost of these services. Your samples will be discarded after 14 days unless we are advised otherwise.

Albany, NY

Scranton, PA

Jamestown, NY

Boston, MA

Syracuse, NY

R LENDSemivolatiles TELEPHONE (607) 565-3500 ABORATORY

ONE RESEARCH CIRCLE WAVERLY, NY 14892-1532

FAX (607) 565-4083

DATE RECEIVED PQ. NO

Apr 19, 1995

LAB SAMPLE ID

: 78479

Allegany County DPW

SAMPLE SOURCE EQUIPMENT SHOP-FRIENDSHIP ORIGIN TEST PIT-4 EAST

Page 2 of 2

DESCRIPTION COMPOSITE 03/28/95 SAMPLED ON

03/28/95

by FLI/CSF

ND<0.1 PCB 1242 PCB 1248 ND<0.1 ND<0.1 PCB 1254 PCB 1260 ND<0.1 Surrogate Recovery (%) 114 Decachlorobiphenyl

NY 10252 PA 68180 NJ 73168 EPA NY 033

Approved by: Jundsey

QUALITY ASSURANCE

The information in this report is accurate to the best of our knowledge and ability. In no event shall our liability exceed the cost of these services. Your samples will be discarded after 14 days unless we are advised otherwise.

Albany, NY

Scranton, PA

Jamestown, NY

Boston, MA

Syracuse, NY

ONE RESEARCH CIRCLE DSemivolatiles TELEPHONE (607) 565-3500 Page 1 of 2

WAVERLY, NY 14892-1582 FAX (607) 565-4083 : Apr 20, 199

LAB SAMPLE ID

: 78479

Allegany County DPW John Mancuso Room 210 County Office

Belmont NY 14813

SAMPLE SOURCE ORIGIN	:	EQUIPMENT S TEST PIT-4		FRIENDSHIP
DESCRIPTION SAMPLED ON	:	COMPOSITE 03/28/95	by	FLI/CSF
DATE RECEIVED P.O. NO.	:	03/28/95		

TCLP List (Total) Wethod : SW846/8270/3540 Compounds Detected	Analyst : BCC Units : UG/G Results	Notebook Reference: 94-248-0989 Date Analyzed: 04/18/95 Date Extracted: 04/03/95
	ND < 0.3	5.0
Pyridine	ND<0.3	200.0
o-Cresol	ND<0.3	200.0
p-Cresol/m-Cresol	ND<0.3	3.0
Hexachloroethane	ND<0.3	2.0
Nitrobenzene	ND<0.3	0.5
Hexachlorobutadiene	ND<0.3	2.0
2,4,6-Trichlorophenol		400.0
2,4,5-Trichlorophenol	ND<0.3	
2,4-Dinitrotoluene	ND<0.3	0.13
Hexach Lorobenzene	ND<0.3	0.13
Pentachlorophenol	ND<1	100.0
Surrogate Recovery (%)		
2-Fluorophenal	43	
Phenal-dó	61 '	
Nitrobenzene-d5	65	
2-fluorobiphenyl	74	
2,4,6-Tribromophenol	59	
Terphenyl-d14	74	•
PCB's (Monitoring Wells & Solid/Hazardou	Analyst : PDB	Notebook Reference : 94-197-723
Method: \$4846/8080/3540	Units : MG/KG	Date Analyzed: 04/04/95
Compounds Detected	Results	Date Extracted : 04/03/95

PCB 1016	ND<0.1	
PCB 1221	ND<0.1	
PCB 1232	ND<0.1	
PCS RESULTS ARE CALCULATED ON A DRY WEIGHT	BASIS.	

For questions regarding this report, please call and ask for Customer Services.

cc :

NY 10252 PA 88180 NJ 73168 EPA NY 033

Approved by: _

Jundrey *BUALITY ASSURANCE*

The information in this report is accurate to the best of our knowledge and ability. In no event shall our liability exceed the cost of these services. Your samples will be discarded after 14 days unless we are advised otherwise.

ONE RESEARCH CIRCLE TELEPHONE (607) 565-3500

WAVERLY, NY 14892-1532 FAX (607) 565-4083 Mar 30, 199

LAB SAMPLE ID

: 78479

Allegany County DPW

John Mancuso

Room 210 County Office

Belmont NY 14813

SAMPLE SOURCE ORIGIN

EQUIPMENT SHOP-FRIENDSHIP

TEST PIT-4 EAST

COMPOSITE DESCRIPTION

03/28/95

DATE

by FLI/CSF

Date

P.O. 140.

SAMPLED ON

03/28/95 DATE RECEIVED

Reference Analyst 94-204-87

Analysis Performed Solids, Total

Result 86.25

<u>Units</u> percent

Analyzed 03/29/95

<u>Method</u> CLP 3.0 Notebook

JAS

For questions regarding this report, please call Customer Services.

cc :

NY 10252 PA 68180 NJ 73168 EPA NY 033

Approved by: _

QUALITY ASSURANCE

The information in this report is accurate to the best of our knowledge and ability. In no event shall our liability exceed the cost of these services. Your samples will be discarded after 14 days unless we are advised otherwise.

Albany, NY

Scranton, PA

Jamestown, NY

Boston, MA

Syracuse, NY

undre

ONE RESEARCH CIRCLE WAVERLY, NY 14892-1532 TELEPHONE (607) 565-3500

FAX (607) 565-4083

Apr 18, 1999

LAB SAMPLE ID : 78478

Allegany County DPW John Mancuso Room 210 County Office

Belmont NY 14813

SAMPLE SOURCE ORIGIN DESCRIPTION SAMPLED ON

EQUIPMENT SHOP-FRIENDSHIP TEST PIT-3 SOUTH EAST COMPOSITE

03/28/95 03/28/95

by FLI/CSF

DATE RECEIVED P.O. NO

	/					
Analysis Performed	Result	Units	Date Analyzed	Method	Notebook Reference	Analyst
Arsenic	7.68	mg/Kg n ;	04/17/95	EPA 6010	95-061-06	DGR
Barium	132	mg/Kg 30	04/17/95	EPA 6010	95-061-06	DGR
Cadmium	ND<0.335	mg/Kg	04/17/95	EPA 6010	95-061-06	DGR
Chromfum	15.0	mg/Kg 🕦	04/17/95	EPA 6010	95-061-06	DGR
Lead	35.8	mg/Kg	04/17/95	EPA 6010	95-061-06	DGR
Mercury	0.036	mg/Kg (03/31/95	EPA 7470	93-290-25	VHT
Selenium	NO<60.4	mg/Kg -	04/17/95	EPA 6010	95-061-06	DGR
Silver	ND<10.1	mg/Kg	04/17/95	EPA 6010	95-061-06	DGR

For questions regarding this report, please call Customer Services.

CG

NY 10252 PA 68180 NJ 73168 EPA NY 033

Approved by: Jundsey

QUALITY ASSURANCE

The Information in this report is accurate to the best of our knowledge and ability. In no event shall our liability exceed 🚄 the cost of these services. Your samples will be discarded after 14 days unless we are advised otherwise.

Albany, NY

Scranton, PA

Jamestown, NY

Boston, MA

Syracuse, NY

ONE RESEARCH CIRCLE WAVERLY, NY 14802-1532 FRIEND SemivolatilesTELEPHONE (607) 565-3500 IABORATORY

7162689648

Page 1 of 2

FAX (607) 565-4083

P.O. NO.

LAB SAMPLE 10 : 78478

Allegany County DPW John Mancuso Room 210 County Office

Belmont NY 14813

	DATE : Apr 20, 199300.
SAMPLE SOURCE :	EQUIPMENT SHOP-FRIENDSHIP
ORIGIN :	TEST PIT-3 SOUTH EAST
DESCRIPTION :	COMPOSITE
SAMPLED ON :	03/28/95 by FLI/CSF
DATE RECEIVED	03/28/95

TCLP List (Total)	Analyst : BCC	Notebook Reference : 94-248-098
Method : \$W846/8270/3540	Units : UG/G	Date Analyzed: 04/18/95
Compounds Detected	Resul ts	Date Extracted: 04/03/95

Pyridine	E.0>DH	5.0
o-Cresol	ND<0.3	200.0
p-Cresol/m-Cresol	ND<0.3	200.0
Hexachloroethane	ND<0.3	3.0
Mitrobenzene	ND<0.3	2.0
Hexachlorobutadiene	ND<0.3	0.5
2,4,6-Trichlorophenol	ND<0.3	2.0
2,4,5-Trichlorophenol	ND<0.3	400.0
2,4-Dinitrotoluene	ND<0.3	0.13
Hexach Lorobenzene	ND<0.3	0.13
Pentachlorophenol	ND<1	100.0
Surrogate Recovery (%)		
2-Fluorophenol	50	
Phenot-d6	63 '	
Nitrobenzene-d5	73	
2-Fluorobiphenyl	46	•
2,4,6-Tribromophenol	54	
Terphenyt-d14	68	•
PCB's (Monitoring Wells & Solid/Hazardou	Analyst : PDB	Notebook Reference: 94-197-722
Method ; \$\\846/8080/3540	Units : MG/KG	Date Analyzed: 04/04/95
Compounds Detected	Results	Date Extracted: 04/03/95

PCB 1016	ND<0.1	
PC# 1221	ND<0.1	
PCB 1232	ND<0.1	
PCB RESULTS ARE CALCULATED ON A DRY WEIGHT	BASIS.	

For questions regarding this report, please call and ask for Customer Services.

cc :

NY 10252 PA 68180 NJ 73168 EPA NY 033

Approved by: Jindiey

QUALITY ASSURANCE

The information in this report is accurate to the best of our knowledge and ability. In no event shall our liability exceed the cost of these services. Your samples will be discarded after 14 days unless we are advised otherwise.

Albany, NY

Scranton, PA

Jamestown NY

Baston, MA

Syracuse, NY

ONE RESEARCH CIRCLE WAVERLY, NY 14892-1532 Semivolatiles TELEPHONE (607) 565-3500

Page 2 of 2

FAX (607) 565-4083

Apr 19, 199

LAB SAMPLE ID

: 78478

Allegany County DPW

SAMPLE SOURCE ORIGIN DESCRIPTION

TEST PIT-3 SOUTH EAST COMPOSITE 03/28/95 03/28/95

DATE

by FLI/CSF

EQUIPMENT SHOP-FRIENDSHIP

SAMPLED ON DATE RECEIVED P Q. NO.

PCB 1242	ND<0.1
PCB 1248	NO < 0.1
PCB 1254	ND<0.1
PCB 1260	MD<0.1
Surrogate Recovery (%)	•
Decachlorobiphenyl	112

NY 10252 PA 68180 NJ 73168 EPA NY 033

Approved by: Jundsey

QUALITY ASSURANCE

The Information in this report is accurate to the best of our knowledge and ability. In no event shall our liability excee. the cost of these services. Your samples will be discarded after 14 days unless we are advised otherwise.

Volatiles ONE RESEARCH CIRCLE WAVERLY, NY 14892-1532 TELEPHONE (607) 565-3500 FAX (607) 565-4083 Page 1

5, 1995

LAB SAMPLE 10 : 78478

Allegany County DPW John Mancuso Room 210 County Office

Belmont NY 14813

SAMPLE SOURCE	EQUIPMENT SHOP-FRIENDSHIP
ORIGIN	TEST PIT-3 SOUTH EAST
DESCRIPTION	COMPOSITE
SAMPLED ON	03/28/95 by FLI/CSF
DATE RECEIVED	03/28/95
P.O. NO.	

DATE

ZHE list by 8240(Total) Method : SW846/5030/8240	Analyst : CPW Units : UG/KG	Notebook Reference : 95-048-121 Date Analyzed : 04/04/95
Compounds Detected	Results	

Vinyl Chloride	- ND<25	0.2
1,1-Dichloroethene	ND <25	0.7
2-Butanone (MEK)	ND <250	200
Chloroform	ND < 25	6.0
Benzene	ND <25	0.5
Carbon Tetrachloride	ND < 25	0.5
1,2-Dichloroethane	ND<25	0.5
Trichloroethene	ND<25	0.5
Tetrachloroethene	ND < 25	0.7
Chlorobenzene	ND < 25	100
1,4-Dichlorobenzene	ND < 25	7.5
1,1,1-Trichloroethane	ND < 25	
Surrogate Recovery (%)		
Toluene-d8	99	
4-Bromofluorobenzene	100	
Dibromofluoromethane	102	

For questions regarding this report, please call and ask for Customer Services.

cc :

QC NY 10252 PA 68180 NJ 73168 EPA NY 033

Approved by: _

QUALITY ASSURANCE

The information in this report is accurate to the best of our knowledge and ability. In no event shall our liability excest the cost of these services. Your samples will be discarded after 14 days unless we are advised otherwise.

Albany, NY Scr

Scranton, PA

Jamestown, NY

Syracuse, NY

Jendsey

Watertown, NY

ONE RESEARCH CIRCLE WAVERLY, NY 14892-1532 TELEPHONE (607) 565-3500

FAX (607) 565-4083

LAB SAMPLE ID

: 78478

Allegany County DPW

John Mancuso

Room 210 County Office

Belmont NY 14813

SAMPLE SOURCE ORIGIN

SAMPLED ON

EQUIPMENT SHOP-FRIENDSHIP TEST PIT-3 SOUTH EAST

DESCRIPTION COMPOSITE

DATE

03/28/95 03/28/95

by FLI/CSF

Date

DATE RECEIVED P.Q. NQ.

Notebook

Reference

Analysis <u>Performed</u> Solids, Total

Result 84.88

Units percent Analyzed 03/29/95 Method CLP 3.0

94-204-87

Analyst JAS

for questions regarding this report, please call Customer Services.

cc :

NY 10252 PA 68180 NJ 73168 EPA NY 033

Approved by:

QUALITY ASSURANCE

The Information in this report is accurate to the best of our knowledge and ability. In no event shall our liability exceed the cost of these services. Your samples will be discarded after 14 days unless we are advised otherwise.

Albany, NY

Scranton, PA

Jamestown, NY

Syracuse NY

Watertown NY

Boston, MA

DIVISION OF HAZARDOUS

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

50 Wolf Road, Albany, New York 12233-7251 Division of Solid & Hazardous Materials

Bureau of Material Storage, Combustion & Regulation

(518) 485-8988 FAX: (518) 485-8769

MEMORANDUM

TO: Jeff Edwards, Division of Hazardous Waste Remediation

FROM: William A Yeman, Technical Determination Section

SUBJECT: Hazardous Waste Determination for Friendship Foundry

Site 9-02-015

DATE: NOV 0 9 1995

This is in response to your memo of October 25, 1995 (received here on October 30) and our telephone conversation of October 24. You requested that we examine whether *listed* hazardous wastes were present at the site. You indicated that EPA had removed all drums as well as foundry sand and other foundry wastes, but asked whether residual foundry sand and baghouse dust wastes -- or any other residual wastes -- qualified as listed hazardous waste.

There is no evidence that any *listed* hazardous wastes are present at the site, although the information you forwarded suggested three "candidates." A brief discussion of each is given below:

K061

Baghouse dusts from certain furnaces used to melt steel meet the KO61 hazardous waste definition. However, as indicated in the enclosed June 15, 1993 letter from EPA, baghouse dusts from foundries are excluded.

<u>B00x</u>

The "Site Description and History" noted that there was "PCB contamination of a basement sump," but none of the analytical sheets show PCB concentrations above 50 ppm. Because 371.4(e)(1) requires that a waste (except solvent flushings) have a PCB concentration ≥ 50 ppm in order to meet the B00x definitions, we cannot conclude that this site contains listed hazardous waste number B00x.

F001

The "Site Description and History" noted that 1,1,1trichloroethane had been used for degreasing at the foundry. However, none of the analytical sheets show any detectable levels of the chemical. Therefore, we cannot conclude that this site contains listed hazardous waste number F001.

Comment regarding D008 characteristic hazardous waste

It is noted that the "total" lead concentration for the baghouse dust (CDPL1) was 4320 ppm, but that the TCLP concentration was only 0.477 ppm (ie, less than the D008 regulatory threshold of 5 ppm). While such results are entirely possible, it is somewhat unexpected to have so little of the 4320 ppm of lead present leach during the (18-hour) TCLP test, given the affinity of the test's acetate ions for lead. It may well be due to the presence of high iron levels.

FILE

Dane 4/23

ULLE LITTLE TO INTERPRETATION AGENCY

REGION II

JACOB K JAVITS FEDERAL BUILDING NEW YORK, NEW YORK 10278

測狀 1 5 1993

Mr. Norman Nosenchuck, Director
Division of Hazardous Substances Regulation
New York State Department of
Environmental Conservation
50 Wolf Road
Albany, NY 12233

RECEIVED

JUN 2 2 1923

FIRECTOR'S OFFICE CIVISION OF HAZARGOUS SUBSTANCES REGULATION

Dear Mr. Nosenchuck:

This is in response to the request you made in a telephone conversation with Helen Beggun and George Meyer, of my staff, on June 9, 1993, regarding the status of activities and disposal options related to the KO61 mixed waste at Auburn Steel located in Syracuse, NY. You requested that the U.S. Environmental Protection Agency (EPA) provide written confirmation as to the applicable EPA definition of KO61 waste.

As George confirmed during the telephone call, KO61 is generated in primary steel production using electric arc furnaces. KO61 is not generated by foundary operations using the electric arc furnace to melt steel scrap for castings. EPA made this clear in the response to comments received in the interim final rule for KO61 listing.

KO61 is generated in the primary production of steel regardless of the combination of "raw" materials used. It does not make a difference whether steel scrap or ore or pig iron or any combination of these is used. This supersedes the interpretation on the generation of KO61 waste contained in the letter from James Scarborough, EPA, Region IV dated January 13, 1993. Guidance used in making this determination can be found in the RCRA Permit Policy Compendium (April, 1992) as indicated below. A copy of the Compendium was sent to each State by EPA Headquarters.

- (1) Letter to William English from John P. Lehman dated December 2, 1980 (9444.1980(05)).
- (2) Memorandum from Alan Corson to Chief, Residuals Management Branch dated July 11, 1983 (9444.1983(02)).
 - (3) Letter to Len Devaney from Matthew A. Straus dated May 3, 1984 (9441.1984(08)).

- (4). RCRA/Superfund Hotline Monthly Report (Matt Straus) dated August, 1984 (3444.1984(16)).
- (5). Letter to Abe Esral from Marcia Williams dated January 27, 1986 (9444.1986(02)).

George has also spoken to Robert Kaiser, a Section Chief in the Waste Identification Branch in EPA Headquarters, who confirmed the above interpretation.

If you have any questions, please call me at (212) 264-2301 or George Meyer at (212) 264-8356.

Sinceraly yours,

Conrad Simon, Director
Air & Waste Management Division

cc: William F. Brandes (OS-333)
 Robert Kaiser (OS-333)

RECEIVED

Extil 1 2 12

portage of participation of the contract of th

SAMPLE ID CONVERSION					
ID in RI Report and ROD ID on Sample Sheets					
BDUST-1	SS-4				
BDUST-2	CDPL1				
DECON-1	DSPL1				
DECON-2	SWDECS				
DRUM-1	FSSP23				
FLOOR-1	SS-2				
FLOOR-2	SS-3				
FSAND-1	SS-1				
FSAND-2	FSPL1				
SCREEK-1	SCPL1U				
SCREEK-2	SCPL1D				
SOIL-1	FSAP23				
SUMP-1	PBLDG1				
TP4-1	TP-404				
TP5-1	TP-505				
TP 7- 1	TP-701				
TP 7 -2	TP7-02				
TP8-1	TP-83				
TP12-1	TP-1206				
VCCREEK-1	MCP2UP				
VCCREEK-2	SCKUP1				
VCCREEK-3	MCP2DN				
VCCREEK-4	SWFDUP				

	1		
INORGANIC	ANALYSES	DATA	SHEET

EPA SAMPLE NO.

		INORGANIC	ANALYSES DATA	SH	EET	1
ab Name: NYT	EST_ENV_INC		Contract: 9	42	1457	FSSP23
ab Code: NYT	EST C	ase No.: 22	820_ SAS No.	:		SDG No.: FF1
atrix (soil/	water): WAT	ER		L	ab Sam	ple ID: T282011
evel (low/med	d): LOW_	_		D	ate Re	ceived: 12/27/94
Solids:	0	. 0				·
Co	oncentration	units (ug	/L or mg/kg dr	У	weight	: UG/L_
	CAS No.	 Analyte	 Concentration	I	l I Q	 M
	i	i		i	i -	i i
	7429-90-5	Aluminum	İ	i-	i	INR
	17440-36-0	Antimony	ĺ	i ⁻	i ——	NR
	7440-38-2		834	1	N	ĪP J
	7440-39-3	Barium	496	1		[P]
	7440-41-7	Beryllium		1_1		NR
	7440-43-9	Cadmium	34.7	$I \square I$		P
	7440-70-2	Calcium	l	1_1		INRI
	7440-47-3	Chromium	5.0	וּטּו		P
	7440-48-4	Cobalt				้ ทหิ
	7440-50-8	Copper		ıΤı		NRI
	17439-89-6	Iron		اآا		NR
	7439-92-1	Lead	115	ا ًا		P
	7439-95-4	Magnesium		I_I		NRI
	7439-96-5	Manganese		1_1		NR
	7439-97-6	Mercury	5.3	1_1		cvi
	7440-02-0	Nickel		<u> </u> _		NR
	7440-09-7	Potassium		<u> </u>		NR
	7782-49-2	Selenium	76.0	ועו		IP I
	7440-22-4	Silver	6.0	וטו	*	IP I
	17440-23-5	Sodium				NR
	7440-28-0	Thallium		۱ ا		NR
	7440-62-2	Vanadium		۱٦١		NR
	7440-66-6			_		NR
	5955-70-0	Cyanide		-		NR
lor Before:	COLORLESS	'' Clarit	y Before: CLE	'' \R		'' Texture:
lor After:	COLORLESS		y After: CLEA		-	Artifacts:
ments: TCLP						

FORM I - IN

ILM03.0

U.S. EPA - CLP

Concentration Units (ug/L or mg/kg dry weight): UG/L_

 CAS No. 	 Analyte 	 Concentration	I C I	 	 M
17429-90-5	Aluminum	-	1	i ———	INR
17440-36-0	Antimony		i —	Ì	INR
7440-38-2	Arsenic	46.0	ו זו	N	P
17440-39-3	Barium	1680			P P
17440-41-7	Beryllium		1		NR
7440-43-9	Cadmium	30.6	1-1		l P
7440-70-2	Calcium		1-1		- NR
7440-47-3	Chromium	28.2	II		P
7440-48-4	Cobalt		1		NR
17440-50-8	Copper		1 1		- NR
7439-89-6	Iron		ı ⁻ ı		_ NR
7439-92-1	Lead	769	ı – ı		P
7439-95-4	Magnesium		ı_ı		NR!
7439-96-5	Manganese		1-1		NR
7439-97-6	Mercury	0.20	ŪΙ		_ CV
7440-02-0	Nickel		1		NR
17440-09-7	Potassium		- ₁		NR
17782-49-2	Selenium	76.0	ប		- P
17440-22-4	Silver	11.8	_1	*	_ P_
7440-23-5	Sodium		_1		NR
7440-28-0	Thallium		_1		_ NR
17440-62-2	Vanadium	I	_1		- NR
7440-66-6	Zinc		_1		NR
5955-70-0	Cyanide		_1		NR
1	i				_li

Color Before:	COLORLESS	Clarity Before:	CLEAR_	Texture:
Color After:	COLORLESS	Clarity After:	CLEAR_	Artifacts:
Comments: TCLP				
			_	

FORM I - IN

ILM03.0

	INORGANIC ANALY	SES DATA SHEET	EFA SAMPLE NO.
Lab Name: NYTEST_ENV		ontract: 9421457	CDPL1
Lab Code: NYTEST	Case No.: 22820_	SAS No.:	SDG No.: FF1
Matrix (soil/water):	WATER	Lab Sampl	le ID: T282006
Level (low/med):	LOW	Date Rece	eived: 12/27/94
% Solids:	0.0		

Concentration Units (ug/L or mg/kg dry weight): UG/L_

CAS No.	 Analyte	 Concentration 	l IC	Ι ! · Q	I I I
7429-90-5	Aluminum		i-	i	-; <u>™</u>
7440-36-0	Antimony		ı [—]	·	NR
17440-38-2		46.0	Ū	N	— P
7440-39-3	Barium	662		<u>, — — </u>	_ P_
17440-41-7	Beryllium			i ——	NR
7440-43-9		47.6		1	P
7440-70-2	Calcium		_		NR
17440-47-3	Chromium	5.0	Ū		_ P
7440-48-4	Cobalt				-INR
7440-50-8	Copper		_i		NR
17439-89-6	Iron		_		NR
7439-92-1	Lead	477	_i		_ P
7439 -95-4	Magnesium		_		- NR
7439-96-5	Manganese		_		- NR
7439-97-6	Mercury	0.20	ซิเ		-icvi
17440-02-0			ĺ		NR
7 44 0-09- 7	Potassium		-i		NR
7 782 -49 -2	Selenium	76.0	וּט		_ P
7440-22-4	Silver	6.0	U	*	_ P_
7440-23-5	Sodium		ı		NR
7440-28-0	Thallium		_i		_ NR
7440-62-2	Vanadium		-i		NR
17440-66-6	Zinc		٦į		NR
15955-70-0	Cyanide		-i		_ NR
1	ıi		~i		−i i

Color Before:	COLORLESS	Clarity Before:	CLEAR_	Texture:	
Color After:	COLORLESS	Clarity After:	CLEAR_	Artifacts:	
Comments: TCLP	·				
				,	

FORM I - IN

ILM03.0

TABLE 1-A

Analytical Data Summary Friendship Foundry Building Sampling

TCLP Volatiles		SS-1	SS-2	SS-3	SS-4
TCLP Volatiles Vinyl Chloride 10 U 1			I	I	
Vinyl Chloride	TCLP Volatiles	00.1	00.1	00.1	00/1
1,1-Dichloroethene		10 U	10 U	10 U	10 U
Chloroform					
2-Butanone					
1,2-Dichloroethane					
Carbon Tetrachlori					
Trichloroethene	,				
Benzene	I I				
Tetrachloroethene					
TCLP Semi-Volatil					
TCLP Semi-Volatil					
Pyridine	Officiobelizerie	10 0	100	10 0	10 0
Pyridine	TCLP Semi-Volatil				
1,4-Dichlorobenzen		10 11	10 11	10 11	10 11
2-Methylphenol	· / ·····			l .	
Hexachloroethane					
M+P Methylphenol 10 U 10 U 2 J 10 U Nitrobenzene 10 U 10 U 10 U 10 U 10 U Hexachlorobutadie 10 U 10 U 10 U 10 U 10 U 2,4,6-Trichlorophen 25 U 25 U 25 U 25 U 25 U 2,4-Dinitrotoluene 10 U 10 U 10 U 10 U 10 U 10 U Hexachlorobenzen 10 U 10 U 10 U 10 U 10 U 10 U Pentachlorobenzen 10 U 10 U 10 U 10 U 10 U 10 U Pentachlorophenol 25 U 25 U 25 U 25 U 25 U 25 U TCLP Pesticide 305 U 0.05 U 0.05 U 0.05 U 0.05 U 0.05 U Heptachlor Epoxid 0.05 U 0.05 U 0.05 U 0.05 U 0.05 U 0.05 U Heptachlor Epoxid 0.1 U 0.1 U 0.1 U 0.1 U 0.1 U 0.1 U Toxaphene 5 U 5 U <					
Nitrobenzene 10 U	I I				
Hexachlorobutadie					
2,4,6-Trichlorophen 10 U 10 U 10 U 10 U 10 U 10 U 25 U 26 U 26 U 26 U 26 U 26 U 26 U 26 U 26 U 26 U </td <td> </td> <td></td> <td></td> <td></td> <td></td>					
2,4,5-Trichlorophen 25 U 26 U 20 U 20 U 20 U 20 U 20 U 20 U 20 U 20 U 20 U 20 U 20 U </td <td></td> <td></td> <td></td> <td></td> <td></td>					
2,4-Dinitrotoluene 10 U 25 U 20 U <td>1 ' ' ' ' 1</td> <td></td> <td></td> <td></td> <td></td>	1 ' ' ' ' 1				
Hexachlorobenzen					
Pentachlorophenol 25 U 20 U <td>1 '</td> <td></td> <td></td> <td></td> <td></td>	1 '				
TCLP Pesticide gamma-BHC 0.05 U 0.05 U 0.05 U 0.05 U Heptachlor 0.05 U 0.05 U 0.05 U 0.05 U Heptachlor Epoxid 0.05 U 0.05 U 0.05 U 0.05 U Endrin 0.1 U 0.1 U 0.1 U 0.1 U 0.1 U Methoxychlor 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U Toxaphene 5 U 5 U 5 U 5 U 5 U 5 U Tech Chlordane 0.2 U 0.2 U 0.2 U 0.2 U 0.2 U 0.2 U TCLP Herbicide 2,4-D 10 U 10 U 10 U 10 U 10 U 0.2 U					
gamma-BHC 0.05 U 0.02	Pentachiorophenoi	25 0	25 0	25 0	25 0
gamma-BHC 0.05 U 0.02	TCLP Pesticide				
Heptachlor 0.05 U 0.05 U 0.05 U 0.05 U 0.05 U Heptachlor Epoxid 0.05 U 0.05 U 0.05 U 0.05 U 0.05 U Endrin 0.1 U 0.1 U 0.1 U 0.1 U 0.1 U Methoxychlor 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U Toxaphene 5 U 5 U 5 U 5 U 5 U 5 U Tech Chlordane 0.2 U 0.2 U 0.2 U 0.2 U 0.2 U 0.2 U TCLP Herbicide 2,4-D 10 U 10 U 10 U 10 U 10 U 0.2 U<		0.05 U	0.05 U	0.05 U	0.05 U
Heptachlor Epoxid 0.05 U 0.05 U 0.05 U 0.05 U 0.1 U 0.1 U 0.1 U 0.1 U 0.1 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.2	Hentachior				
Endrin 0.1 U 0.1 U 0.1 U 0.1 U Methoxychlor 0.5 U 0.5 U 0.5 U 0.5 U Toxaphene 5 U 5 U 5 U 5 U Tech Chlordane 0.2 U 0.2 U 0.2 U 0.2 U TCLP Herbicide 2,4-D 10 U 10 U 10 U 10 U 2,4,5-TP(Silvex) 0.2 U 0.2 U 0.2 U 0.2 U TCLP Metals Arsenic 97.3 U 97.3 U 97.3 U 97.3 U 97.3 U Barium 607 549 506 482 Cadmium 12.3 13.3 47.2 17.1 Chromium 13 8.2 B 34.9 6.7 U Lead 654 149 1560 262 Mercury 0.3 0.59 0.2 U 0.2 U Selenium 51.8 U 64.5 51.8 U 51.8 U					
Methoxychlor 0.5 U 0.5 U 0.5 U 0.5 U Toxaphene 5 U 5 U 5 U 5 U Tech Chlordane 0.2 U 0.2 U 0.2 U 0.2 U TCLP Herbicide 2,4-D 10 U 10 U 10 U 10 U 2,4,5-TP(Silvex) 0.2 U 0.2 U 0.2 U 0.2 U TCLP Metals Arsenic 97.3 U 97.3 U 97.3 U 97.3 U Barium 607 549 506 482 Cadmium 12.3 13.3 47.2 17.1 Chromium 13 8.2 B 34.9 6.7 U Lead 654 149 1560 262 Mercury 0.3 0.59 0.2 U 0.2 U Selenium 51.8 U 64.5 51.8 U 51.8 U					
Toxaphene Tech Chlordane 5 U 0.2 U 5 U 0.2 U<					
Tech Chlordane 0.2 U 0.2 U 0.2 U 0.2 U TCLP Herbicide 2,4-D 10 U 10 U 10 U 10 U 0.2 U 0.3 U 97.3 U<					
TCLP Herbicide 2,4-D 10 U 10 U 10 U 10 U 10 U 0.2 U 0.3 U 97.3					
2,4-D 10 U 0.2 U 0.3 U 97.3 U <t< td=""><td>Tech Onlordane</td><td>0.2 0</td><td>0.2 0</td><td>0.2 0</td><td>0.2 0</td></t<>	Tech Onlordane	0.2 0	0.2 0	0.2 0	0.2 0
2,4-D 10 U 0.2 U 0.3 U 97.3 U <t< td=""><td>TCLP Herbicide</td><td></td><td></td><td></td><td></td></t<>	TCLP Herbicide				
TCLP Metals Arsenic 97.3 U	- -				
Arsenic 97.3 U 482 Cadmium 12.3 13.3 47.2 17.1 17.1 Chromium 13 8.2 B 34.9 6.7 U Lead 654 149 1560 262 Mercury 0.3 0.59 0.2 U 0.2 U Selenium 51.8 U 64.5 51.8 U 51.8 U	2,4,5-TP(Silvex)	0.2 U	0.2 U	0.2 U	0.2 U
Arsenic 97.3 U 482 Cadmium 12.3 13.3 47.2 17.1 17.1 Chromium 13 8.2 B 34.9 6.7 U Lead 654 149 1560 262 Mercury 0.3 0.59 0.2 U 0.2 U Selenium 51.8 U 64.5 51.8 U 51.8 U	TCLP Metals				
Barium 607 549 506 482 Cadmium 12.3 13.3 47.2 17.1 Chromium 13 8.2 B 34.9 6.7 U Lead 654 149 1560 262 Mercury 0.3 0.59 0.2 U 0.2 U Selenium 51.8 U 64.5 51.8 U 51.8 U		97.3 U	97.3 U	97.3 U	97.3 U
Cadmium 12.3 13.3 47.2 17.1 Chromium 13 8.2 B 34.9 6.7 U Lead 654 149 1560 262 Mercury 0.3 0.59 0.2 U 0.2 U Selenium 51.8 U 64.5 51.8 U 51.8 U					482
Chromium 13 8.2 B 34.9 6.7 U Lead 654 149 1560 262 Mercury 0.3 0.59 0.2 U 0.2 U Selenium 51.8 U 64.5 51.8 U 51.8 U					
Lead 654 149 1560 262 Mercury 0.3 0.59 0.2 U 0.2 U Selenium 51.8 U 64.5 51.8 U 51.8 U				I	6.7 U
Mercury 0.3 0.59 0.2 U 0.2 U Selenium 51.8 U 64.5 51.8 U 51.8 U				1560	262
Selenium 51.8 U 64.5 51.8 U 51.8 U			0.59	0.2 U	0.2 U
		_			

U: Analyzed for but not detected

B: (organics) Found in associated lab method blank as well as sample

J: Estimated value, below quantitation limit

B: (inorganics) detected below contract required detection limit but above the instrument detection limit

TABLE 3-E

Analytical Data Summary Friendship Foundry SEDIMENT Sampling

	FSF	L1	FSSF	23	CDPI	L1
	mg/	/L	mg/l	L	mg/l	_
TCLP Volatiles						
Vinyl Chloride	0.05		0.05	U	0.05	U
1,1-Dichloroethene	0.05	U	0.05	U	0.05	U
Chloroform	0.05		0.05	U	0.05	U
2-Butanone	0.05		0.05	U	0.05	U
1,2-Dichloroethane	0.05		0.05	U	0.05	U
Carbon Tetrachlori	0.05	U	0.05	U	0.05	U
Trichloroethene	0.05	U	0.05	U	0.05	U
Benzene	0.05	U	0.05	U	0.05	U
Tetrachloroethene	0.05	U	0.05	U	0.05	U
Chlorobenzene	0.05	U	0.05	U	0.05	U
TCLP Semi-Volatil						
Pyridine	0.04		0.04	U	0.04	U
1,4-Dichlorobenzen			0.04	U	0.04	U
2-Methylphenol	0.04		0.04	U	0.04	U
Hexachloroethane	0.04		0.04	U	0.04	U
3+4 Methylphenol	0.08		0.08	U	0.08	U
Nitrobenzene	0.04		0.04	U	0.04	U
Hexachlorobutadie	0.04		0.04	U	0.04	U
2,4,6-Trichlorophen			0.04	U	0.04	U
2,4,5-Trichlorophen			0.04	U	0.04	U
2,4-Dinitrotoluene	0.04		0.04	U	0.04	U
Hexachlorobenzen	0.04		0.04	U	0.04	U
Pentachlorophenol	0.2	U	0.2	U	0.2	U
TCLP Metals	UG/		UG/		UG/	
Arsenic	46	U	834		46	U
Barium	168		496		662	
Cadmium	30		34.		47.6	
Chromium	28		5	U	5	U
Lead	76		115	-	477	
Mercury	0.2	U	5.3		0.2	U
Selenium	76	Û	76	U	76	U
Silver	11	.8	6	U	6	U

U: Analyzed for but not detected

B: (organics) Found in associated lab method blank as well as sample

J: Estimated value, below quantitation limit

B:(inorganics) detected below contract required detection limit but above the instrument detection li

TABLE 2-E

Analytical Data Summary Friendship Foundry TEST PITS Sampling

	TP12	06	TP70)2	TP40)4	TP50)5	TP70)1	TP8	3
	UG/I		UG/I	_	UG/I		UG/I	-	UG/I		UG/I	- 1
TCLP Volatiles	2 3/1											
Vinyl Chloride	10	U	10	U	10	U	10	U	10	U	10	U
1,1-Dichloroethene	10	U	10	U	10	U	10	U	10	U	10	U
Chloroform	10	U	10	U	10	U	10	U	10	U	10	υ
2-Butanone	10	U	10	U	6	J	10	U	10	U	10	U
1,2-Dichloroethane	10	U	10	U	10	U	10	U	10	U	10	U
Carbon Tetrachlori	10	U	10	U	10	U	10	U	10	U	10	U
Trichloroethene	10	U	10	U	10	U	10	U	10	U	10	U
Benzene	10	U	10	U	10	U	10	U	10	U	10	U
Tetrachloroethene	10	U	10	U	10	U	10	U	10	U	10	U
Chlorobenzene	10	Ū	10	Ū	10	U	10	U	10	U	10	U
										-		-
TCLP Semi-Volatile												
Pyridine	10	U	10	U	10	U	10	U	10	Ω	10	U
1,4-Dichlorobenzen	10	U	10	U	10	U	10	U	10	U	10	υ
2-Methylphenol	10	U	10	U	10	υ	10	U	10	U	10	υ
Hexachloroethane	10	U	10	U	10	U	10	U	10	U	10	υ
M+P Methylphenoi	10	U	10	U	10	U	10	U	10	U	10	υ
Nitrobenzene	10	U	10	U	10	υ	10	U	10	U	10	υ
Hexachlorobutadie	10	U	10	U	10	U	10	U	10	U	10	υ
2,4,6-Trichlorophen	10	U	10	U	10	U	10	U	10	U	10	υ
2,4,5-Trichlorophen	25	U	25	U	25	υ	25	U	25	U	25	υ
2,4-Dinitrotoluene	10	U	10	U	10	υ	10	U	10	J	10	U
Hexachlorobenzen	10	U	10	U	10	U	10	U	10	U	10	U
Pentachlorophenol	25	U	25	U	25	U	25	U	25	U	25	U
TCLP Pesticide												-
gamma-BHC	0.05	U	0.05	U	0.05	U	0.05	U	0.05	U	0.05	U
Heptachlor	0.05	Ŭ	0.05	Ü	0.05	ŭ	0.05	Ŭ	0.05	Ŭ	0.05	Ū
Heptachlor Epoxide	0.05	Ü	0.05	Ü	0.05	ŭ	0.05	Ŭ	0.05	Ŭ	0.05	Ŭ
Endrin	0.1	Ü	0.1	Ü	0.1	ŭ	0.1	Ü	0.1	Ü	0.1	ŭ
Methoxychlor	0.5	Ŭ	0.5	Ü	0.5	ŭ	0.5	Ŭ	0.5	Ŭ	0.5	ŭ
Toxaphene	5	Ü	5	Ü	5	ŭ	5	Ŭ	5	Ŭ	5	ŭ
Tech Chlordane	0.2	Ü	0.2	Ü	0.2	Ü	0.2	Ü	0.2	Ü	0.2	ŭ
Tech Officialie	0.2	Ü	0.2	Ü	0.2		0.2	Ü	0.2	Ŭ	0.2	
TCLP Herbicide												
2,4-D	10	U	10	U	10	U	10	U	10	U	10	U
2,4,5-TP(Silvex)	2	U	2	U	2	U	2	U	2	U	2	U
TCLP Metals												
Arsenic	97.3	U	97.3	U	97.3	U	97.3	U	97.3	U	97.3	U
Barium	581		292	2	442	2	540)	546	6	985	
Cadmium	6.5		5	U	5	U	5	U	7.1		20.3	
Chromium	6.7	U	6.7	U	6.7	U	6.7	U	9.5	В	6.7	U
Lead	55.9	U	55.9	U	55.9	U	55.9	U	55.9	U	296	
Mercury	0.2	U	0.2	U	0.2	U	0.2	U	0.2		0.4	
Selenium	51.8	U	51.8	U	51.8	U	58.9	9	51.8	U	51.8	U
Silver	7.2	U	7.2	U	7.2	U	7.2	U	7.2	U	7.2	U
							<u></u>					

U: Analyzed for but not detected

B: Found in associated lab method blank as well as sample

J: Estimated value, below quantitation limit

B: (inorganics) detected below contract required detection limit but above the instrument detection limit

TABLE 2-A

Analytical Data Summary Friendship Foundry/Test Pits Samplin

	TP-701
) (O) ATU EO	
VOLATILES	(g/kg)
TCL	
Chloromethane	62 U
Bromomethane	62 U
Vinyl chloride	62 U
Chloroethane	62 U
Methylene chloride	21 J
Acetone	150 B
Carbon Disulfide	62 U
1,1-Dichloroethene	62 U
1,1-Dichloroethane	62 U
1,2-Dichloroethene (Tota	62 U
Chloroform	62 U
1,2-Dichloroethane	62 U
2-Butanone	39 BJ
1,1,1-Trichloroethane	62 U
Carbon Tetrachloride	62 U
Bromodichloromethane	62 U
1,2-Dichloropropane	62 U
cis-1,3-Dichloropropene	62 U
Trichloroethene	62 U
Dibromochloromethane	62 U
1,1,2-Trichloroethane	62 U
Benzene	62 U
trans-1,3-Dichloropropen	62 U
Bromoform	62 U
4-Methyl-2-pentanone	62 U
2-Hexanone	62 U
Tetrachloroethene	62 U
1,1,2,2-Tetrachloroethan	62 U
Toluene	9 J
Chlorobenzene	62 U
Ethyl benzene	6 J
Styrene	62 U
Total Xylenes	360

U: Analyzed for but not detected

B:(organics) Found in associated lab method blank as well as sample J: Estimated value, below quantitation limit

TABLE 2-B Analytical Data Summary Friendship Foundry/Test Pits Sampling

Γ		TP-701	1	TP-701	RE
	SEMIVOLATILES	(g/kg)		(g/kg)	-,
	TCL				
Γ	Phenol	240	J	1100)
	Bis(2-chloroethyl) ether	390	U	780	U
	2-Chlorophenol	390	U	780	U
	1,3-Dichlorobenzene	390	υl	780	U
	1,4-Dichlorobenzene	390	U	780	U
	1,2-Dichlorobenzene	390	U	780	U
	2-Methylphenol	390	υl	130	J
	Bis(2-chloroisopropyl) et	390	υl	780	U
1	4-Methylphenol	390	U	780	U
	N-Nitroso-Di-n-propylam	390	υl	780	U
	Hexachloroethane	390	υl	780	U
	Nitrobenzene	390	υl	780	U
	Isophorone	390	υl	780	U
	2-Nitrophenol	390	υl	780	U
	2,4-Dimethylphenol	390	υl	780	U
	Bis(2-chloroethoxy) met	390	υl	780	Ū
	2,4-Dichlorophenol	390	υl	780	Ū
	1,2,4-Trichlorobenzene	390	υl	780	Ū
	Naphthalene	290	J	1600	-
	4-Chloroaniline	390	ŭΙ	780	Ú
	Hexachlorobutadiene	390	ŭΙ	780	Ŭ
	4-Chloro-3-methylpheno	390	ŭΙ	780	Ü
	2-Methylnaphthalene	170	ĭ	700	J
	Hexachlorocyclopentadi	390	ΰl	780	Ü
	2,4,6-Trichlorophenol	390	ŭΙ	780	Ü
		980	ŭl	2000	Ü
	2,4,5-Trichlorophenol		- 1		-
	2-Chloronaphthalene	390	<u></u>	780	U
	2-Nitroaniline	980	٧l	2000	U
	Dimethyl phthalate	390	۷ļ	780	Ų
	Acenaphthylene	180		680	J
	2,6-Dinitrotoluene	390	U.	780	U
	3-Nitroaniline	980	Ψļ	2000	Ų
	Acenaphthene	110	J	260	J
	2,4-Dinitrophenol	980	υl	2000	U
	4-Nitrophenol	980	Ψļ	2000	Ų
	Dibenzofuran	99	J	180	J
	2,4-Dinitrotoluene	390	U	780	U
	Diethyl phthalate	390	υ	780	U
	4-Chlorodiphenylether	390	υ	780	U
	Fluorene	310	J	700	J
	4-Nitroaniline	980	υ	2000	U
I	4,6-Dinitro-2-methylphe	980	υ	2000	U
	N-nitrosodiphenylamine	390	U	780	U
	4-Bromophenyl phenyl e	390	U	780	U
	Hexachlorobenzene	390	U	780	U
	Pentachlorophenol	980	U	2000	U
	Phenanthrene	1600		5000	_
	Anthracene	490		1200)
	Carbazole	480		1500	
	Di-n-butyl phthalate	390	U	980	
	Fluoranthene	1900		5900	
	Pyrene	1800		5800	
	Butyl benzyl phthalate	390	U	780	U
	3,3'-Dichlorobenzidine	390	U	780	U
	Benzo(a)anthracene	1200		3500	
1	Chrysene	960		3100	
	Bis(2-ethylhexyl) phthal	390	U	780	U
	Di-n-octyl phthalate	390	U	780	U
	Benzo(b)fluoranthene	1500		3000	
	Benzo(k)fluoranthene	1200		3600	
	Benzo(a)pyrene	1200		3900	
	Indeno(1,2,3-cd)pyrene	800		2300	
	Dibenzo(a,h)anthracene	330	J	1100	
	Benzo(ghi)perylene	880		2500	

U: Analyzed for but not detected B:(organics) Found in associated lab method blank as well as sampl J: Estimated value, below quantitation limit

TABLE 2-D Analytical Data Summary Friendship Foundry/Test Pits Sampling

	TP-1206	TP-505	TP-701
METALS TCL	(mg/kg)	(mg/kg)	(mg/kg)
Aluminum	10400	7870	8370
Antimony	13.2 U	12.5 U	13.3
Arsenic	14.2	7.9	8.7
Barium	74	93	90.5
Beryllium	0.36 B	0.5 B	0.28 B
Cadmium	1.6	1.1 U	1.2
Calcium	29200	1570	5600
Chromium	23.4	10.9	29.5
Cobalt	10.3 B	8.7 B	5.9 B
Copper	58.6	25.3	32.5
Iron	27100	19100	49800
Lead	186	94.8	102
Magnesium	4210	1350	1810
Manganese	467	205	648
Mercury	0.44	0.21	0.12 U
Nickel	21.8	17.5	17.2
Potassium	1090 B	861 B	927 B
Selenium	0.29 B	0.65 B	0.33 B
Silver	1.6 U	1.6 U	1.6 U
Sodium	204 B	192 B	1180
Thallium	0.42 U	0.53 B	0.43 B
Vanadium	17.9	17.2	28
Zinc	787	85.6	126
Cyanide			

U: Analyzed for but not detected
B:(organics) Found in associated lab method blank as well as sample
J: Estimated value, below quantitation limit
B: (inorganics) detected below contract required detection limit but above the instrument detection li

TABLE 2-C

Analytical Data Summary
Friendship Foundry/Test Pits Sampling

The state of the s	TP-70	1	TP-701	RE
PESTICIDE/PCB	(g/k	(g)	(g/kg)	
TCL				
alpha-BHC	2	Ū	2	Ū
beta-BHC	2	U	2	U
delta-BHC	2 2 2 2 2 2	U	5.2	
gamma-BHC (Lindane)	2	U	2	U
Heptachlor	2	U	2 2 2	U
Aldrin	2	U	2	U
Heptachlor Epoxide	1	J		U
Endosulfan I	2	Р	2	U
Dieldrin	3.4	JP	3.9	U
4,4'-DDE	3.9	U	3.9	U
Endrin	6.6	Р	6.4	Р
Endosulfan II	1.9	JP	2.2	JP
4,4'-DDD	3.9	U	3.9	U
Endosulfan Sulfate	3.9	U	3.9	U
4,4'-DDT	3.9	U	3.9	U
Methoxychlor	20	U	20	U
Endrin Ketone	3.9	U	3.9	U
Endrin aldehyde	3.9	U	3.9	U
alpha-Chlordane	0.7	JP	2	U
gamma-Chlordane	2	U	2	U
Toxaphene	200	U	200	U
Aroclor-1016	39	υ	39	U
Aroclor-1221	78	υ	78	U
Aroclor-1232	39	U	39	U
Aroclor-1242	39	U	39	U
Aroclor-1248	39	U	39	U
Aroclor-1254	39	U	39	U
Aroclor-1260	39	U	39	U

U: Analyzed for but not detected

B:(organics) Found in associated lab method blank as well as sample

J: Estimated value, below quantitation limit

P: Percent difference between results from quantitative and confirmatory column is greater than 25 percent

TABLE 4-D

METALS (UG/L) (UG/L)<		I MW1	MW2	MW3	MW4	MW4D		 SCKDW2			"SWFDU
TCL 162 B 108.00 B 57.90 B 878.00 1390.00 9.10 U 193.00 B 172.00 B 75.9 B 6.4 U 6.40 U <th>METALS</th> <th>(UG/L)</th> <th>(UG/L)</th> <th>(ng/L)</th> <th>(ng/r)</th> <th>(ng/r)</th> <th></th> <th>(UG/L)</th> <th></th> <th>(UG/L)</th> <th>(NG/L)</th>	METALS	(UG/L)	(UG/L)	(ng/L)	(ng/r)	(ng/r)		(UG/L)		(UG/L)	(NG/L)
162 B 108 00 B 57.90 B 878.00 1390.00 910 U 193.00 B 75.90 B 75.9 B 6.4 U 6.40 U </th <th>121</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>6 97</th> <th></th> <th></th>	121								6 97		
6.4 U 6.40 U 6.50 U </td <td>Aluminum</td> <td>162 B</td> <td>1</td> <td>57.90 B</td> <td></td> <td>1390.00</td> <td>9.10 U</td> <td>172.00 B</td> <td>75.9 B</td> <td>765</td> <td>323</td>	Aluminum	162 B	1	57.90 B		1390.00	9.10 U	172.00 B	75.9 B	765	323
4.3 U 4.30 U 4.50 B 4.30 U 4.30 U </td <td>Antimony</td> <td>6.4 U</td> <td></td> <td>6.40 U</td> <td></td> <td>6.40 U</td> <td>6.40 U</td> <td>6.40 U</td> <td>6.4 U</td> <td>6.4 U</td> <td>6.4 U</td>	Antimony	6.4 U		6.40 U		6.40 U	6.40 U	6.40 U	6.4 U	6.4 U	6.4 U
76 B 39.20 B 34.80 B 46.90 B 209.00 65.30 B 61.60 B 14.70 B 14.3 B 1.3 U 0.50 U <td>Arsenic</td> <td>4.3 U</td> <td></td> <td>4.50 B</td> <td></td> <td>11.40</td> <td>4.30 U</td> <td>4.30 U</td> <td>4.3 U</td> <td>4.3 U</td> <td>4.3 U</td>	Arsenic	4.3 U		4.50 B		11.40	4.30 U	4.30 U	4.3 U	4.3 U	4.3 U
0.5 U 0.50 U </td <td>Barium</td> <td>76 B</td> <td></td> <td>34.80 B</td> <td></td> <td>209.00</td> <td>65.30 B</td> <td>14.70 B</td> <td>14.3 B</td> <td>55.6 B</td> <td>40.6 B</td>	Barium	76 B		34.80 B		209.00	65.30 B	14.70 B	14.3 B	55.6 B	40.6 B
1.3 U 1.30 U 1.40 U 1.40 U 6.50 U </td <td>Benyllium</td> <td>0.5 U</td> <td></td> <td>0.50 U</td> <td></td> <td>0.50 U</td> <td>0.50 U</td> <td>0.50 U</td> <td>0.5 U</td> <td>0.5 U</td> <td>0.5 U</td>	Benyllium	0.5 U		0.50 U		0.50 U	0.50 U	0.50 U	0.5 U	0.5 U	0.5 U
69700 28100.00 30400.00 40600.00 60600.00 45300.00 45300.00 1.60 U 2.20 U	Cadmium	1.3 U		1.30 U		1.30 U	1.30 U	1.30 U	1.3 U	1.3 U	1.3 U
1.6 U 1.60 U 1.60 U 1.60 U 1.60 U 1.60 U 1.60 U 1.60 U 1.60 U 1.60 U 1.60 U 1.60 U 1.60 U 6.50 U </td <td>Calcium</td> <td>00269</td> <td></td> <td>30400.00</td> <td></td> <td>60600.00</td> <td>86900.00</td> <td>10300.00</td> <td>9920</td> <td>311000</td> <td>28700</td>	Calcium	00269		30400.00		60600.00	86900.00	10300.00	9920	311000	28700
6.5 U 6.50 U 2.40 U </td <td>Chromium</td> <td>1.6 U</td> <td></td> <td>1.60 U</td> <td></td> <td>1.60 U</td> <td>1.60 U</td> <td>1.60 U</td> <td>1.6 U</td> <td>19.1</td> <td>7.7 B</td>	Chromium	1.6 U		1.60 U		1.60 U	1.60 U	1.60 U	1.6 U	19.1	7.7 B
3 U 3.00 U 3.00 U 5.40 B 4.10 B 3.90 B 106.00 6.60 B 3.1 B 1870 421.00 284.00 2500.00 3160.00 2490.00 2260.00 223.00 222 2.4 U 2.40 U <td< td=""><td>Cobalt</td><td>6.5 U</td><td></td><td>6.50 U</td><td></td><td>6.50 U</td><td>6.50 U</td><td>6.50 U</td><td>6.5 U</td><td>6.5 U</td><td>6.5 U</td></td<>	Cobalt	6.5 U		6.50 U		6.50 U	6.50 U	6.50 U	6.5 U	6.5 U	6.5 U
1870 421.00 264.00 2500.00 3160.00 2490.00 22600.00 223.00 222 2.4 U 2.40 U	Copper	30		3.00 U		4.10 B	3.90 B	6.60 B	3.1 B	38.7	19.6 B
2.4 U 2.40 U </td <td>Iron</td> <td>1870</td> <td></td> <td>264.00</td> <td></td> <td>3160.00</td> <td>2490.00</td> <td>223.00</td> <td>222</td> <td>12400</td> <td>7340</td>	Iron	1870		264.00		3160.00	2490.00	223.00	222	12400	7340
28100 4880.00 B 5610.00 10800.00 15500.00 12000.00 6550.00 3700.00 B 3320 B 5280 379,00 64,50 3090,00 520,00 6200.00 728.00 11,90 B 13.6 B 5.8 U 5.80 U 47.00 B 3130.00 B 2870.00 B 8170.00 147.00 B 6.90 B 5.8 U 7220 8060.00 4410.00 B 3130.00 B 2870.00 B 8170.00 12600.00 1420.00 B 5.8 U 2.9 U 4.10 B 2.90 U 1.70 U	Lead	2.4 U		2.40 U		2.40 U	2.40 U	2.40 U	2.4 U	119	49.3
5280 379.00 64.50 3090.00 520.00 6200.00 728.00 11.90 B 13.6 B 0.26 0.29 0.34 0.34 0.34 0.34 0.30 0.20 U 0.29 0.25 7220 8060.00 4410.00 B 3130.00 B 2870.00 B 8170.00 B 147.00 B 1420.00 B 5.8 U 1.7 U 1.70 U 1.70 U 1.70 U 1.70 U 1.70 U 1.70 U 1.70 U 1.70 U 1.70 U 1.70 U 1.70 U 1.70 U 1.70 U 1.20 U 2.90 U 2.90 U 2.90 U 1.70 U 1.	Magnesium	28100		5610.00		15500.00	12000.00	3700.00 B	3320 B	2300 B	1830 B
0.26 0.29 0.36 0.34 0.34 0.30 0.20 0.29 0.25 5.8 U 5.80 U 5.80 U 4.70 B 8.60 B 8.70 D 14.70 B 5.80 U 14.70 B 5.80 B 5.80 U 14.70 B 5.80 U 14.70 B 5.80 U 14.70 D 17.00 B 1120 B 1120 B 1120 B 1120 B 1120 B 1120 B 1120 B 1120 B 1120 B 1120 B 1120 B 1120 B 1120 B 1120 B 1120 B 1120 B 1120 B 1120 B 1120 U 1	Manganese	5280		64.50		520.00	6200.00	11.90 B	13.6 B	372	302
5.8 U 5.80 U 5.80 U 5.80 U 9.70 B 8.60 B 5.80 U 14.70 B 5.80 U 5.80 U<	Mercury	0.26		0.36		0.34	0.30	0.29	0.25	0.2 U	0.2 U
7220 8060.00 4410.00 B 3130.00 B 2870.00 B 8170.00 12600.00 1420.00 B 1120 B 2.9 U 2.9 U 4.10 B 2.9 U 2.9 U 5.20 U 5.20 U 5.5 2.9 U 4.50 0.00 4600.00 4600.00 24000.00 47500.00 47500.00 7990.00 7990.00 6 U 6.00 U 6.00 U 6.00 U 6.00 U 6.00 U 2.50 U 1.20 U 1.20 U 6.0 2.5 U 2.50 U	Nickel	5.8 U		5.80 U		8.60 B	5.80 U	6.90 B	5.8 U	16.1 B	12.00 B
2.9 U 2.90 U 4.10 B 2.90 U 2.90 U 5.20 U </td <td>Potassium</td> <td>7220</td> <td></td> <td>4410.00 B</td> <td></td> <td>2870.00 B</td> <td>8170.00</td> <td>1420.00 B</td> <td>1120 B</td> <td>4150 B</td> <td>3680 B</td>	Potassium	7220		4410.00 B		2870.00 B	8170.00	1420.00 B	1120 B	4150 B	3680 B
1.7 U 1.70 U </td <td>Selenium</td> <td>2.9 U</td> <td></td> <td>4.10 B</td> <td></td> <td>2.90 U</td> <td>2.90 U</td> <td>2.90 U</td> <td>5.5</td> <td>2.9 U</td> <td>2.9 U</td>	Selenium	2.9 U		4.10 B		2.90 U	2.90 U	2.90 U	5.5	2.9 U	2.9 U
20800 45900.00 46600.00 24000.00 19100.00 47500.00 62000.00 7990.00 8210 6 U 6.00 U 6.00 U 6.00 U 1.20 U 1.20 U 1.20 U 1.20 U 1.20 U 1.20 U 1.20 U 6.00 U 6.00 U 6.00 U 6.00 U 6.00 U 1.20 U 1.20 U 1.20 U 1.20 U 1.20 U 6.00	Silver	1.7 U		1.70 U		1.70 U	1.70 U	1.70 U	1.7 U	1.7 U	1.7 U
6 U 6.00 U 6.00 U 6.00 U 1.20 U 1.20 U 1.20 U 1.20 U 1.20 U 6.00 U 6.00 U 2.50 U 2.50 U 2.50 U 2.50 U 2.50 U 2.50 U 10.90 B 14.80 B 7.70 B 2530.00 8.10 B 7.80 B	Sodium	20800		46600.00		19100.00	47500.00	7990.00	8210	1470 B	1550 B
2.5 U 2.50 U </td <td>Thallium</td> <td>0 9</td> <td></td> <td>6.00 U</td> <td></td> <td>1.20 U</td> <td>1.20 U</td> <td>1.20 U</td> <td>0 9</td> <td>1.2 U</td> <td>1.2 U</td>	Thallium	0 9		6.00 U		1.20 U	1.20 U	1.20 U	0 9	1.2 U	1.2 U
4.8 B 4.90 B 17.70 B 10.90 B 14.80 B 7.70 B 2530.00 8.10 B 7.80 B	Vanadium	2.5 U	2.50 U	2.50 U		3.10 B	2.50 U	2.50 U	2.5 U	4.3 B	2.5 U
	Zinc	4.8 B	4.90 B	17.70 B		14.80 B	7.70 B	8.10 B	7.80 B	468	253
Cyanide	Cyanide										

U: Analyzed for but not detected
 B:(organics) Found in associated lab method blank as well as sample
 J: Estimated value, below quantitation limit
 B: (inorganics) detected below contract requiered detection limit but above the instrument detection limit

TABLE 4-C

PCB		MWZ		MW3	<u>.</u>	M M		MW4		MM		PBLD	11.	SWD		SWFD	-
	(UG/L)	(UG/L)	_	(UG/L)		(UG/L)	1). "-	(UG/L)		(UG/L)	:	(UG/L)	استا	(ng/L)		(UG/L)	
TCL		٠.				1764 1764		'n). ().					
_	05 U	0.05	n	0.05	П	0.05 U	0	.05		0.05	5	0.50	n	0.05		0.05	⊃
	05 U	0.05		0.05	_	0.05 U	_	.05	_	0.05	_	0.50	-	0.05	_	.023	_
	05 U	0.05)	0.05	_	0.05 U	<u> </u>	.05		0.05	-	0.50	>	0.05	_	0.05	-
_	.05 U	0.05	⊃	0.05	_	0.05 U	<u> </u>	.05	_	0.05	_	0.50	>	0.05	_	0.05	_ _
_	05 U	0.05	<u> </u>	0.05	_	0.05 U	<u> </u>	.05	_	0.05	_	0.50	>	0.05	_	0.05	_
_	.05 U	0.05	n	0.05	_	0.05 U	<u> </u>	.05	_	0.05	<u> </u>	0.50	_	0.05	_	0.05	_
Heptachlor Epoxide 0.0	0.05 U	0.05	>	0.05	_	0.05 U	_	0.05		0.05	_	0.50	>	0.05	_	0.05	_
	.05 U	0.05	_ _	0.05		0.05 U	<u> </u>	.05	_	0.05		0.50	_	0.05	_	0.05	_
	.10 U	0.10	⊃	0.10	_	0.10 U	о́ 	029	₫	0.10	<u> </u>	0.14	ᆿ	0.10	_	.031	٩
	10 U	0.10	>	0.10	_	0.10 U	<u> </u>	.22	_	0.10	<u> </u>	0.18	7	0.10		0.016	ᆿ
_	10 U	0.10	<u> </u>	0.10	 	0.10 U	<u>o</u>	037	_	0.10		1.00	⊃	0.10	_	0.10	_
_	10 U	0.10)	0.10	_	0.10 U	-	10		0.10	-	1.00	<u> </u>	0.10	_	0.10	_
_	10 U	0.10	>	0.10	_	0.10 U	<u> </u>	10	_	0.10	_ _	1.00	<u></u>	0.10	_	.018	_
	10 U	0.10	5	0.10	_	0.10 U	<u> </u>	10	_	0.10	_ _	1.00	<u></u>	0.10	_	0.10	\supset
	10 U	0.10	>	0.10	_	0.10 U	<u> </u>	10	_	0.10	-	1.00	_	0.10	_	0.10	-
	.50 U	0.50	<u></u>	0.50	_	0.50 U	<u>-</u>	.50	_	0.50	-	0.48	굨	0.50	_	0.50	-
_	10 U	0.10	_ _	0.10	_	0.10 U	<u> </u>	10	_	0.10	-	1.00	_	0.10	_	0.10	_
_	10 U	0.10	_ _	0.10	_	0.10 U	<u> </u>	10	_	0.10	_ _	1.00	⊃	0.10	_	0.10	_
_	.05 U	0.05	>	0.05	_	0.05 U	<u> </u>	.05	_	0.05	-	0.50	-	0.05	_	0.05	_
	.05 U	0.05	>	0.05	_	0.05 U	<u>.</u>	017		0.05	-	0.50	-	0.05		.015	ᆿ
	2 ○	S	>	2		5	_	2	_	S.	-	50.00	-	co -	_	2	_
Aroclor-1016	1 0	-	>	-	_	۔ ت	_	_	_	_	_	10.00	>	-	_	_	→
Aroclor-1221	2 N	7	>	2	_	2 0	_	2	_	7	<u> </u>	20.00	<u> </u>	7	_	7	
Aroclor-1232	1 0	_	_ _	-	_	1 U	_	_	 _	-	<u> </u>	10.00	<u> </u>	-	_	_	
Aroclor-1242	1 U	-	>	-	_	1 U	_	_	_	_		10.00	-	-	_	-	-
Aroclor-1248	1 U	-	>	-	_	- C	_	_	_	_	 	73.00		-	_	-	
Arocior-1254	<u>1</u>	-	>	-	_	۔ 0	_	_	_	_		10.00	-	-	_	-	
Aroclor-1260	1 ت	-	>	-	n	1 U	_	_	_	_	_	10.00	>	-	_	_	

U: Analyzed for but not detected
 B:(organics) Found in associated lab method blank as well as sample
 J: Estimated value, below quantitation limit
 P: Percent difference between results from quantitative and confirmatory columns is greater than 25 percent

TABLE 4-A

	MW1	MW2	MW3	"MW4	"MW4D		"PBLDG1	"SWDECS	"SWEDUP
VOLA IILES TCL	(UG/L)	(OG/L)	(UG/L)	(UG/L)	(ng/r)	(ng/r)	(ng/L)	(0G/L)	(ngvr)
Chloromethane	10 U	10 U		10 U	3 J	10 U	10 U	10 U	10 U
Bromomethane	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
Vinyl chloride	10 U	10 U		10 U		10 U	10 U	10 U	10 U
Chloroethane	10 U	10 U		10 U		10 U	10 U	10 U	10 U
Methylene chloride	10 U	10 U	10 U	10 U		10 U	ر ₉	10 U	10 U
Acetone	10 U	10 U		7 BJ	_	14 B	20 B	24 B	27 B
Carbon Disulfide	10 U	10 U		10 U		10 U	10 U	10 U	10 U
1,1-Dichloroethene	10 U	10 U		10 U		2 2	10 U	10 U	10 U
1,1-Dichloroethane	10 U	10 U	10 U	10 U		25	7 J	10 U	10 U
1,2-Dichloroethene (Total)	10 U	10 U		10 U	10 U	10 U	10 U	10 U	10 U
Chloroform	10 U	10 U	10 U	10 U		10 U	10 U	10 U	10 U
,2-Dichloroethane	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
2-Butanone	10 U	ر 9	10 U	0.8 J		10 U	6 BJ	10 U	7 BJ
,1,1-Trichloroethane	10 U	10 U	10 U	10 U		12	20	10 U	10 U
Sarbon Tetrachloride	10 U	10 U	10 U	10 U		10 U	10 U	10 U	10 U
Bromodichloromethane	10 U	10 U	10 U	10 U		10 U	10 U	10 U	10 U
,2-Dichloropropane	10 U	10 U	10 U	10 U		10 U	10 U	10 U	10 U
cis-1,3-Dichloropropene	10 U	10 U	10 U	10 U		10 U	10 U	10 U	10 U
richloroethene	10 U	10 U	10 U	10 U		10 U	10 U	10 U	10 U
Dibromochloromethane	10 U	10 U	10 U	10 U		10 U	10 U	10 U	10 U
,1,2-Trichloroethane	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
Benzene	10 U	10 U	10 U	10 U		10 U	10 U	10 U	10 U
rans-1,3-Dichloropropene	10 U	10 U	10 U	10 U		10 U	10 U	10 U	10 U
Bromoform	10 U	10 U	10 U	10 U		10 U	10 U	10 U	10 U
4-Methyl-2-pentanone	10 U	10 U	10 U	10 U		10 U	10 U	10 U	10 U
2-Hexanone	10 U	10 U	10 U	10 U		10 U	10 U	10 U	10 U
Fetrachloroethene	10 U	10 U	0.4 J	10 U	10 U	10 U	10 U	10 U	10 U
,1,2,2-Tetrachloroethane	10 U	<u></u>	10 U	10 U		10 U	10 U	10 U	10 U
Toluene	10 U	10 U	10 U	10 U	10 U	10 U	10 U		
Chlorobenzene	10 U	0	10 U	10 U	_	10 U	10 U	10 C	10 U
Ethyl benzene	10 U	10 U		10 U	10 U	10 U	10 U	10 U	10 U
Styrene	10 U	10 C	10 U	10 10 10 10 10 10 10 10 10 10 10 10 10	10 U	10 U	10 U	10 U	10 U
rotal Xylenes	10	10 U	10 U	10 U	10 U	10 O	10 U	3	5 J

U: Analyzed for but not detected B:(organics) Found in associated lab method blank as well as sample J: Estimated value, below quantitation limit

TABLE 4-C

	MW1		MW2		MW3	MW		MW4		MW		PBLD		SWD	Г	SWFL	
PESTICIDE/PCB	(0G/L)		(UG/L)	ڪ ِ	JG/L)	(NG/I)	~	(UG/L)	<u>.</u>	COGN	_	(UG/L)		(UG/L)	_	(UG/L)	~
3								er.			3	:			_		
alpha-BHC	0.05		0.05 U	ö	0	0.05	>	0.05	כ	0.05	Э	0.50)	0.05		0.05	ם
beta-BHC	0.05	_	0.05 U	<u>.</u>	25	0.05	>	0.05	>	0.05	_	0.50	_	0.05	5	0.023	7
delta-BHC	0.05	-	0.05 U	0.0	U	0.05	D	0.05	>	0.05	_	0.50	_	0.05	>	0.05)
gamma-BHC (Lindane)	0.05	-	0.05 U	<u>.</u>)5 U	0.05	_	0.05	<u></u>	0.05	-	0.50	_	0.05	_	0.05	_
Heptachlor	0.05	-	0.05 U	0.)S	0.05	-	0.05	>	0.05	-	0.50)	0.05	_	0.05	\supset
Aldrin	0.05	-	0.05 U	0	∪	0.05	⊃	0.05	>	0.05	_	0.50	>	0.05	_	0.05	>
Heptachlor Epoxide	0.05	-	0.05 U	0.05	55	0.05	D	0.05	_	0.05	_	0.50	_	0.05	_	0.05	>
Endosulfan i	0.05	-	0.05 U	0.)5 U	0.05	>	0.05	<u></u>	0.05	_	0.50)	0.05	-	0.05	<u> </u>
Dieldrin	0.10	<u> </u>	0.10 U	0.	0	0.10	>	0.029	ᆨ	0.10	<u> </u>	0.14	ᆨ	0.10	_	0.031	ᆨ
4,4'-DDE	0.10	_ _	0.10 U	0	0	0.10	>	0.22	_	0.10	-	0.18	7	0.10	-	0.016	ဌ
Endrin	0.10	_ _	0.10 U	ö	n 0	0.10	_	0.037	7	0.10	_	90.	<u> </u>	0.10	_	0.10	<u></u>
Endosulfan II	0.10	-	0.10 U	0	0	0.10	>	0.10	>	0.10	<u></u>	9.	>	0.10	>	0.10	>
4,4'-DDD	0.10	<u> </u>	0.10 U	0.	0	0.10	>	0.10	>	0.10	_	1.00	_	0.10	<u></u>	0.018	7
Endosulfan Sulfate	0.10	_ _	0.10 U	0	0	0.10	>	0.10	>	0.10	-	1.00	<u> </u>	0.10	_	0.10	<u> </u>
4,4'-DDT	0.10	-	0.10 U	0	0	0.10	>	0.10	<u> </u>	0.10	<u></u>	1.00	-	0.10	_	0.10	_
Methoxychlor	0.50	-	0.50 U	ő	O.	0.50	>	0.50	<u></u>	0.50	-	0.48	ᆨ	0.50	_	0.50	>
Endrin Ketone	0.10	_	0.10 U	0	0	0.10	>	0.10	>	0.10)	1.00	<u> </u>	0.10	_	0.10	<u></u>
Endrin aldehyde	0.10	_ >	0.10 U	ö	o	0.10	>	0.10	<u> </u>	0.10	<u> </u>	1.00	_	0.10	¬	0.10	<u> </u>
alpha-Chlordane	0.05	-	0.05 U	0)2 O	0.05	>	0.05	-	0.05	<u> </u>	0.50	-	0.05	_	0.05	\supset
gamma-Chlordane	0.05	_ _	0.05 U	<u>o</u>	12	0.05	-	0.017	굨	0.05	-	0.50	<u> </u>	0.05	\supset	0.015	<u></u>
Toxaphene	2	_	5 U	40)	2	>	2	_ _	2	<u> </u>	20.00	>	2	_	2	_
Aroclor-1016	-	_ _	1 U	_	-	-	>	-	>	-	_	10.00	-	-	_	-	-
Aroclor-1221	7	-	2 U	C4	_	7	>	7	>	7	-	20.00	-	7	_	7	>
Aroclor-1232	-	-	- C	_	<u> </u>	-	_	-	_	-	_	10.00	_	-	_	-	<u> </u>
Aroclor-1242	-	_ _	1	_)	-	>	-	_	-	_	10.00	-	-	\supset	-	>
Aroclor-1248	-	-	1 0	_	\neg	-	-	-	-	-	_	73.00		-	-	-	0
Aroclor-1254	-	-	1 C	_	n	-	_ _	-	D	-	_	10.00	_	-	-	-	<u> </u>
Aroclor-1260	•	-	1 C	_	n	-	-	-	>	-	_	10.00	<u></u>	-	\supset	-	_
															1		ľ

U. Analyzed for but not detected
 B.(organics) Found in associated lab method blank as well as sample
 J. Estimated value, below quantitation limit
 P. Percent difference between results from quantitative and confirmatory columns is greater than 25 percent

TABLE 4-A

	MW1	MW2	"MW3	"MW4	"MW4D	"MW6	"PBLDG1	"SWDECS	"SWFDUP
VOLATILES	(UG/L)	(UG/L)	(UG/L)	(ng/L)	(UG/L)	(UG/L)	(J/S/I)	(UG/L)	(UG/L)
TCL			ara 						
Chloromethane	10 U		10 U	10 U	ſε	10 U	10 U		10 U
Bromomethane	10 U	10 U	10 U	10 U	10 U	10 U	10 U		10 U
Vinyl chloride	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
Chloroethane	10 U	10 U	10 U	10 U	10 U	10 U	10 U		10 U
Methylene chloride	10 U	10 U	10 U	10 U	10 U	10 U	9		10 U
Acetone	10 U	10 U	7 BJ	7 BJ	12 B	14 B	20 B		27 B
Carbon Disulfide	10 U	10 U	10 U	10 U	10 U	10 U	10 U		10 U
1,1-Dichloroethene	10 U	10 U	10 U	10 U	10 U	2 J	10 U		10 0
1,1-Dichloroethane	10 U	10 U	10 U	10 U	10 U	25	ر 7		10 0
1,2-Dichloroethene (Total)	10 U	10 U	10 U	10 U	10 U	10 U	10 U		10 U
Chloroform	10 U	10 U	10 U	10 U	10 U	10 U	10 U		10 U
1,2-Dichloroethane	10 U	10 U	10 U	10 U	10 U	10 U	10 U		10 U
2-Butanone	10 U	٦ 9	10 U	0.8 J	4 J	10 U	6 BJ		7 BJ
1,1,1-Trichloroethane	10 U	10 U	10 U	10 U	10 U	12	20		10 U
Carbon Tetrachloride	10 U	10 U	10 U	10 U	10 U	10 U	10 U		10 U
Bromodichloromethane	10 U	10 U	10 U	10 U	10 U	10 U	10 U		10 U
1,2-Dichloropropane	10 U	10 U	10 U	10 U	10 U	10 U	10 U		10 U
cis-1,3-Dichloropropene	10 U	10 U	10 U	10 U	10 U	10 U	10 U		10 U
Trichloroethene	10 U	10 U	10 U	10 U	10 U	10 U	10 U		10 U
Dibromochloromethane	10 U	10 U	10 U	10 U	10 U	10 U	10 U		10 U
1,1,2-Trichloroethane	10 U	10 U	10 U	10 U	10 U	10 U	10 U		10 U
Benzene	10 U	10 U	10 U	10 U	10 U	10 U	10 U		10 U
trans-1,3-Dichloropropene	10 U	10 U	10 U	10 U	10 U	10 C	10 U		10 U
Bromoform	10 U	10 U	10 U	10 U	10 U	10 U	10 U		10 U
4-Methyl-2-pentanone	10 U	10 U	10 U	10 U	10 U	10 U	10 U		10 U
2-Hexanone	10 U	10 U	10 U	10 U	10 U	10 U	10 U		10 U
Tetrachloroethene	10 U	10 U	0.4 J	10 U	10 U	10 U	10 U		10 U
1,1,2,2-Tetrachloroethane	10 U		10 U	10 U		10 U	10 U		10 U
Toluene	10 U		10 U	10 U		10 0	10 U	1	- C L
Chlorobenzene	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
Ethyl benzene	10 U	10 U	10 U	10 U	10 U	10 U		10 U	10 U
Styrene	10 U	10 C	10 C	10 C	0 ; 0 :	10 U	10 U	10 U	10 U
lotal Xylenes	10	J 0 L	10 U	10 O	10 U	10 U	10 U	3 9	5 J

U: Analyzed for but not detected B:(organics) Found in associated lab method blank as well as sample J: Estimated value, below quantitation limit

TABLE 4-A

	MW1	MW2	"MW3	"MW4	"MW4D	MW6	"PBLDG1	"SWDECS	"SWFDUP
VOLATILES	(UG/L)	(UG/L)	(UG/L)	(ng/l)	(NG/L)	(UG/L)	(ng/r)	(UG/L)	(ng/r)
TCL			erik, Sik	- *# - * #	о: :: :.	ч. Цы			
Chloromethane	10 U	10 U	10 U	10 U	3 J	10 U	10 U	10 U	10 U
Bromomethane	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 O
Vinyl chloride	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
Chloroethane	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
Methylene chloride	10 U	10 U	10 U	10 U	10 U	10 U	f 9	10 U	10 U
Acetone	10 U	10 U	7 BJ	7 BJ	12 B	14 B	20 B	24 B	27 B
Carbon Disulfide	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
1,1-Dichloroethene	10 U	10 U	10 U	10 U	10 U	2 J	10 U	10 U	10 U
1,1-Dichloroethane	10 U	10 U	10 U	10 U	10 U	25	۲ ک	10 U	10 U
1,2-Dichloroethene (Total)	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
Chloroform	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
1,2-Dichloroethane	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
2-Butanone	10 U	6 J	10 U	0.8 J	4	10 U	6 BJ	10 U	7 BJ
1,1,1-Trichloroethane	10 U	10 U	10 U	10 U	10 U	12	20	10 U	10 U
Carbon Tetrachloride	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
Bromodichloromethane	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
1,2-Dichloropropane	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
cis-1,3-Dichloropropene	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
Trichloroethene	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
Dibromochloromethane	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
1,1,2-Trichloroethane	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
Benzene	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
trans-1,3-Dichloropropene	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
Bromoform	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
4-Methyl-2-pentanone	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
2-Hexanone	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
Tetrachloroethene	10 U	10 U	0.4 J	10 U	10 U	10 U	10 U	10 U	10 U
1,1,2,2-Tetrachloroethane	10 U	1	10 U	10 U	10 U	10 U	10 U	10 U	10 U
Toluene	10 U	10 U	10 U	10 U	10 U	10 U	10 U	1 ک	- -
Chlorobenzene	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
Ethyl benzene	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
Styrene	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
Total Xylenes	10	10 U	10 U	10 U	10 U	10 U	10 U	3 J	5 J

U: Analyzed for but not detected B:(organics) Found in associated lab method blank as well as sample J: Estimated value, below quantitation limit

TABLE 4-B

Analytical Data Summary FRIENDSHIP FOUNDRY MONITORING WELLS/SURFACE WATER SAMPLING

		_	_	_	_								_						_	_						_	_															_																		
KUP1 (UG/L)	э:	> =	=) ⊃	_	>	> :	> :	> :	> =	=	> =	> =) =))	ח)	_	>	>	>	>	>	>	>	>	>	0	>)) >	0	ם)	>	>	>	>	>	>	>	>	>	>	> :	0 (m:	> :	o :	> :	> =	=	> =	, >) >	>	>	>	> =
"SCKUP1 (UG/I	5 5	2 \$	5	2	9	9	2 :	2 9	2 9	2 5	2 \$	2 5	2 0	9	9	9	9	2	9	9	\$	2	9	25	9	52	9	9	9	25	9	25	25	9	9	9	9	9	52	52	9	9	9	52	9	2 9	2 9	43	2 5	2 9	2 \$	2 5	5 5	2 0	9	9	9	9	9	5 5
FDUP (UG/L)	610	3 8			00	> 8	ے و		3 8			3 5		00	00	00	0	100 U	0	0	45) 0	0	ے دو) 0	⊃ 0	0) 0	0	00	0	250 U	0	000	0	0) 0	0) 	0	100 U) 	⊃ 0) 0	0 :	2 :	Z :) : 	0:) : 2 9	38	3 8	, v	0	00	0 0	0.0		0 0
"SWFDUP (UG/L	.9	= =	: =	Ψ.	¥	=	₽.		7 4	= ∓		- =	=	7	Ŧ	¥	-	¥	F	¥	•	¥	¥	72	¥	55	¥	¥	¥	5	=	5	3	¥	٣	¥	¥	¥	5	5	¥	¥	Ψ.	55	7	₽;	Ξ.	-,;	= ÷	= ;	= \$	2 ≒	-		2	Ψ.	2	2	5	5 5
တ္တ	0	3 5	3 8	0	⊃ 8	_ _ 0	o :	0:	3 8	9 5		0 =	200	000	0	0 0	6 9	0	0	0	0		000			_ _ 0		_ _ 0	0 0	0 0	0	250 U	0 0	0	0	001	_ _ 0	0	<u>-</u>	20 O	⊃ 8))		0 :		G :) :) :	0:) :) :	= =	=	88	; _	0	0	0))) :
"SWDECS "UG/L)	530	2 5	-		2	2	2;	2 9	2 9	2 \$	2 \$	2 5	20	9	5	9	80	9	9	2	우	2	2	52	2	52	2	2	2	25	5	25	25	9	5	9	9	9	52	52	9	9	9 ;	52	2	2;	2 '	,	2 \$	2 9	2 9	2 5	2 5	. 2	2	2	9	9	9	9 6
.DG1 (UG/L)	570			200 O	200 U	> 8	200 C	2 :	2 2	2 2	2 2	2 2		000) 00) 0) 0	000) 0) 0	ے 0	2	2	2	> 8)) 0	_ 0 0) 0) 0	D 00) 0	0	0	000	⊃ 8	_ _ 0	ے 2	⊃ 0	2	300 ∪) 0	200 N) 2) 0) 0	200 C		27 87	2 2	2 2	2 2		2 2	2		500 U	0	⊃ 0) ()	200
PBLDG1	57	γ γ	, iz	2	5	Š	ະ ຄ	ກີເ	ត់	ă ă	5 W	, ic	200	2.	26	20	2	5	ž	ž	ž	ŭ	š	3	ŭ	3	Š	ស	2	130	32	130	130	5	20	ઝ	ž	32	130	13	Š	š	Š	130	25	ις, ι	አ`	";	กัน	กั	កម	i ia	, ic	Š	Š	55	35	32	25	2 2
We (UG/L)	o :	> =	=	, >	>	<u> </u>	> :	> :	> :	> =	=	=	> =))	>	>	_	>	_	¬	0	_ _	>	>	>	>	>	>	>	0	_	, >)	>	>	7	>	>	>	>	>	>	-	-	>	>:	٥ د	n :	> =	ء د	o =	=	=	> >	· >	_	>	>	> :	> =
MW.	ę ;	2 5	5	9	9	9	9	2 9	2 \$	2 5	2 5	5 5	9 6	9	9	9	9	9	9	9	5	우	우	22	9	25	9	9	9	52	9	52	52	10	9	7	9	9	52	52	9	9	9	52	9	9 9	2 !	4,	2 5	2 5	2 5	2 6	5 5	2	5	9	10	10	9	5 5
(UG/L)	ɔ :	> =	=) >	>	_ _	> :	o :	> =	> =	-	> =	> =)	_	_ _	_	_	_ _	>	>	>	>	-	>	>	>	-	>	>	_	· >	, D	_	>	_	>	>	-	>	-	>	> :) 	_ >	⊃:	<u>-</u>	n:	> =	o :	o =	> =) =	, >	· >	_	_	>	>	> >
"MW45 (UG/	ę ę	2 5	2 5	9	9	9	9	2 9	2 5	2 5	2 5	2 5	9	10	9	9	5	5	9	9	9	6	9	52	9	25	9	9	9	25	9	52	25	9	9	9	9	9	52	52	9	5	2 ;	52	9	2 9	2 6	2 5	2 5	2 9	2 \$	2 5	2 5	9	9	9	9	9	9	9 9
W4 (UG/L)	> :	> =	=) >	_	>	> :	- :	>:	> =	>=	=) =	- >	>	_	>	>	>	>	>	>	>	>	>	_ >	>	>	>	>	>) >	_	_	>	_	>	>	>	>	>	>	> :	> :	>	 ⊃:	o (n:	> =	5 6	3 =	> =	-) >	· >	>	_	>	> :	> >
WW.	2 5	2 9	5 5	9	9	9	99	2 9	2 9	2 5	2 5	2 9	2 0	9	9	9	9	9	9	9	9	9	9	52	9	22	우	9	9	25	9	25	52	5	9	9	9	9	22	52	9	9	9	52	9	9 9	2 9	47	2 5	2 ،	۰ ¢	2 5	5 5	9	9	9	9	10	9	9 9
(ngr)	ɔ :	> =	=	-	>	>	> :	> :	> :	> =	> =) =) =	- >	>	>	_	>	>	>	>	>	⊃	>	>	⊃	<u> </u>	>	>	>	>)))	>	>	>	>	>	>	>	>	>	-	>	>	> :	<u>-</u>	n :	> =	5	3 :	> =) =)))	>	>	>	> :	> >
EWW.	9 9	2 9	2 5	9	2	5	9	2 9	2 9	2 5	2 5	2 5	9	9	9	9	9	5	9	9	10	9	9	52	9	52	9	9	9	52	10	52	52	9	9	우	9	9	8	52	9	9	2	52	9	9 9	2 9	4 4	2 \$	2 0	n Ç	5 5	2 6	9	9	9	0	9	9	9 9
WW2 (UG/L)	D :	> =	=	, >	>	>	> :	o :	> :	> =) =	> =	> =)	>	>	>	>	>	>	>	>	>	>	>	>	>	>	>	>	_) >)	_	>	_	>	>	>	>	>	>	-	>	>	> :	0 (n:	> =	o :	> =	> =	=	, ¬	· >	· >	>	>	> :	> >
MW2 (UG/	5 5	2 5	5	9	9	6	2	2 9	2 9	2 5	2 5	2 5	2 0	9	0	9	9	9	9	9	9	9	9	22	9	25	9	9	9	25	9	52	25	9	9	우	9	9	52	25	9	9	9	52	9	유 :	2 5	9 9	2 5	2 9	2 \$	5 5	5 5	9	9	9	9	9	9	2 9
	D :	> =	-	, ,	_	-	> :	- :	> :) =) :	> =	> =	-	_	_	_	-	-	-	>	-	-	-	>	-	_	_ >	_	_	_	, >	-	_	>	7	-	_	-	>	-	-	> :	-		> :	<u>-</u>	n :	> =	5 0	3 :	> =) =	-	_	_	>	-	> :)
(UG/L)	٥ ۽	2 5	2 5	9	9	9	9	2 9	2 \$	2 5	2 5	2 9	2 9	9	10	10	9	9	9	9	우	9	9	52	9	25	9	9	우	25	9	25	52	9	9	-	6	9	52	22	9	9	9	52	9	9 9	2;	14	2 9	2 8	9.0	2 9	2 9	5 6	9	9	9	9	9	e e
,,,,,,		<u> </u>	-		Φ.		ther		e le					than		ne .			e	lou:	a	liene	_	_								_				_	er			enol	ne	ethe	a	_		_		<u></u>		_	9 9	₽ 0		late	_	<u>•</u>	e e		2	e e
ILES	_ 1	lyi) ett	200	4-Dichlorobenzene	,2-Dichlorobenzene	enol	<u>(</u>	eno	opylar		9 6	2 2	pheno	v) me	phenol	benze	ane	iline	tadien	hylphe	thalen	pentad	pheno	opheno	thalen	line	halate	/lene	6-Dinitrotoluene	line	ene	henol	one	ıran	4-Dinitrotoluene	nalate	nyleth		line	thylph	nylami	henyl	enzene	Pentachlorophenol	ene	e.	je	thalate	eue	1	nmala		, e	phtha	thalate	anthen	anthen	rene	3-cd)pyrene	ithrace irviene
- [A]	Phenol	-chloroethys) e	1	horob	horob	2-Methylphenol	igosio	4-Methylpheno	-	Xacnoroema Nitobenzene	ropenzen	2-Nitrophenol	hethy	oetho	chloro	chloro	Naphthalene	4-Chloroaniline	lorobu	3-met	/Inapt	ocyclo	ichlor	ichlor	onaph	2-Nitroaniline	hy Ph	Acenaphthylene	initrok	3-Nitroaniline	Acenaphthene	4-Dinitrophenol	-Nitrophenol	Dibenzofuran	initrot	Diethyl phthalate	ad ph	Fluorene	4-Nitroaniline	-2-me	diphe	leny	lorob.	chloro	Phenanthrene	Anthracene	Carbazole	<u>.</u>	Fluoranthene	ryrene	ly zy	d de (e	Chrysana	h,	A I)fluor	()fluor	Benzo(a)pyrene	,2,3-c	a,h)ar (ahi)o
SEMIVOLATILES TCL	- 1	bis(z-chloroetnyi) etner 2-Chlomphenol	2. Dichlorohenzene	P-Did-4	2-Did	2-Me	Bis(2-chloroisopropyl) ether	Ā.	N-Nitroso-Di-n-propylamine	Nitopenane	-	2	2.4-Dimethylpheno	Bis(2-chloroethoxy) methar	2.4-Dichlorophenol	,2,4-Trichlorobenzene	Na	4-C	Hexachlorobutadiene	4-Chloro-3-methylphenol	2-Methylnaphthalene	Hexachlorocyclopentadier	2,4,6-Trichloropheno	2,4,5-Trichlorophenol	2-Chloronaphthalene	2-N	Dimethyl phthalate	Acen	2,6-D	S	Ace	2.4-D	4 N	ÖİÞ	2,4-D	Dieth	4-Chlorodiphenylether	ш.	4 Z	6-Dinitro-2-methylphenol	N-nitrosodiphenylamine	4-Bromophenyl phenyl ethe	Hexachiorobenzene	Penta	Phe	٩	ن	Di-n-buty/ phthalate	₽ "	1	Butyl benzyl prunalate	,s-Dicitiorobenzium Renzo(a)anthracene	C	Bis(2-ethylhexyl) phthalate	Di-n-octyl phthalate	Benzo(b)fluoranthene	Benzo(k)fluoranthene	Benz	ndeno(1,2	Dibenzo(a,h)anthracene Benzo(ohi)perviene
	ä	ń	,	_	-		Bis(2	-	ž				.,	Bis/2	, . •	1,			Ι	40	Ċ	Hexe	7	V,	7		_										4			4,6-	ź	4-Br	_					_			Ď,	٠ <u>.</u> "	•	Bis	ĺ	æ	Ó		드	5
																						_																																						

U: Analyzed for but not detected B:(organics). Found in associated lab method blank as well as sample J: Estimated value, below quantitation limit

TABLE 3-D

Analytical Data Summary Friendship Foundry/SEDIMENT Sampling

111	CDPL1	DSPL1	FSAP23	FSPL1	FSSP23	MCP2UP	MCP2DN
METALS	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
3							
Aluminum	3560	4040	15200	2690	404	9430	8910
Antimony	23	29.9	n 6	37.3	17.1	8.3 U	10 U
Arsenic	70	9.1	10.1	8.7	4.8	11.1	17.8
Barium	136	79	127	114	5.7 B	77	93.8
Beryllium	0.3 U	0.34 U	0.69 B	0.21 U	0.21 U	0.65 B	0.52 B
Cadmium	12.2	2.3	0.47 U	4.5	0.42 U	0.68 B	0.65 B
Calcium	0689	52400	1950	4550	713 B	17800	6020
Chromium	276	96.1	22.2	78.9	22	11.8	10.8 B
Cobalt	31.9	8.4 B	13	11.7	5.8 B	11.7	12.4
Copper	444	6.86	20.2	347	27.5	14	13
Iron	169000	127000	31700	77300	34000	29200	30100
Lead	4320	428	121	844	43.5	42.6	19.5
Magnesium	18600	4730	3030	1740	141 B	4260	3300
Manganese	2660	869	808	1300	1010	721	912 U
Mercury	0.18	0.2	0.43	0.11 U	0.11 U	0.12 U	0.13
Nickel	322	53.3	28.3	8.06	24.9	24.1	22.5 B
Potassium	8 069	714 B	1720	663 B	140 B	945 B	720 U
Selenium	1.6 U	1.5 U	1.2 U	1 C	1.1 U	1.1 U	1.2 U
Silver	7.21	2 U	1.4 U	1.2 U	1.3 U	1.3 U	1.6 U
Sodium	811 B	151 B	82.7 U	202 B	73.3 U	76.3 U	92 U
Thallium	1.6 U	1.5 U	1.2 U	٦ -	1.1 U	1.1 U	1.2
Vanadium	52.81	23.6	26.8	26.6	13.8	18.6	18.1
Zinc	99/	872	141	1150	28.3	78.2	70.3
Cyanide							

U.: Analyzed for but not detectedB. (inorganics) detectsd below contract required detection limit but above the instrument detection limitJ. Estimated value, below quantitation limit

TABLE 3-C

Analytical Data Summary Friendship Foundry/SEDIMENT Sampling

	DSPL1	r	FSPL1		FSSP23		SCPL1	SCPL1	CDPL
	(g/kg)		(g/kg)	<u> </u>	(g/kg)		(g/kg)	(g/kg)	(g/kg)
	5.9	b	1.9	D	1.9	כ	2.2 U	2.9 U	3 U
	5.9	_	1.9	\supset	6.	_	2.2 U	2.9 ∪	3 ∪
====	15	<u>а</u>	1.9	\supset	6.	>	2.2 U	2.9 ∪	3 ∪
lue)	5.9	_	1.9	\supset	1.9	\supset	2.2 U	2.9 ∪	3 ∪
	5.9	<u> </u>	6.	⊃	9.	_ _	2.2 U	2.9 ∪	3 ∪
_	5.9		6.	\supset	6.	>	2.2 U	2.9 ∪	3 ∪
	5.9		1.9	⊃	1.9		2.2 U	2.9 ∪	4.9 PY
_	5.9	_	9.	_	1.9	-	2.2 U	2.9 U	3 ∪
	7	_ _	3.7	⊃	3.7	\supset	4.2 U	5.7 U	5.9 U
_	=	_	3.7	_	3.7	\supset	4.2 U	5.7 U	5.9 U
	=	_ _	3.7	⊃	3.7	>	4.2 U	5.7 U	10 PY
	=	_	3.7	⊃	3.7	_	4.2 U	5.7 U	6.2 P
_	7	_	3.7	\supset	3.7	\supset	4.2 U	5.7 U	5.9 U
te	7	_ _	3.7	⊃	3.7	\supset	4.2 U	5.7 U	5.9 U
	=	_	3.7	⊃	3.7	_	4.2 U	5.7 U	7.8 PY
	5.9	_ _	180		19	>	22 U	29 U	30 N
	7	\supset	3.7	\supset	3.7	>	4.2 U	5.7 U	5.8 JP
_	=	_ _	3.7	⊃	3.7	>	4.2 U	5.7 U	5.9 U
alpha-Chlordane	5.9		1.9	\supset	1.9	>	2.2 U	2.9 U	3 U
gamma-Chlordane	5.9		1.9	⊃	1.9	-	2.2 U	2.9 U	6.1 Y
	290	_	190	⊃	190	⊃	220 U	290 U	300 ∪
_	110	_	37	\supset	37	>	42 N	92 O	29 U
	230	_	75	⊃	75	>	0 98 0 0	120 U	120 U
	110	_ _	37	⊃	37	>	42 U	57 U	29 U
	110	_	37	⊃	37	>	42 U	10 Z	29 U
_	420	<u>а</u>	37	\supset	37	>	61	27 U	29 U
	110	_	35	~	37	>	42 U	19 J	71
-	190	_	37	\Box	37)	42 U	57 U	29 U

U.: Analyzed for but not detected
B. (organics) Found in associated lab method blank as well as sample
J. Estimated value, below quantitation limit
P.: Percent difference between results from quantitative and confirmatory columns is greater than 25 percent
Y.: Pesticide detects may be due to Aroclor contribution

TABLE 3-A

Analytical Data Summary Friendship Foundry/SEDIMENT Sampling

i e	CDPL1	DSPL1	FSPL1	FSSP23
VOLATILES	(g/kg)	(g/kg)	(g/kg)	(g/kg)
TCL	4			
Chloromethane	18 U	98 U	11 U	11 Ū
Bromomethane	18 U	0 98 0	11 0	11 U
Vinyl chloride	18 U	∩ 98	11 U	11 0
Chloroethane	18 U	98 U	11 U	11 U
Methylene chloride	15 JB	31 J	5 J	8 JB
Acetone	18 B	14 J	11 U	11 U
Carbon Disulfide	18 U	86 U	11 U	11 U
1,1-Dichloroethene	18 U	98 U	11 U	11 U
1,1-Dichloroethane	18 U	0 98 0 98	11 U	11 0
1,2-Dichloroethene (Tota	18 U	53 J	11 U	11 U
Chloroform	18 U	0 98 0	11 U	11 U
1,2-Dichloroethane	18 U	98 U	11 0	11 U
2-Butanone	18 BJ	_ ∩ 98	11 D	11 U
1,1,1-Trichloroethane	18 U	0 98	11 U	11 U
Carbon Tetrachloride	18 U	0 98 0	11 U	11 0
Bromodichloromethane	18 U	0 98 0	11 U	11 U
1,2-Dichloropropane	18 U	∩ 98	11 U	11 U
cis-1,3-Dichloropropene	18 U	98 U	11 U	11 0
Trichloroethene	18 U	16 J	11 U	11 U
Dibromochloromethane	18 U	n 98	11 O	11 U
1,1,2-Trichloroethane	18 U	0 98 0 0	11 U	11 U
Benzene	18 U	13 J	11 C	11 O
trans-1,3-Dichloropropen	18 U	n 98	11 U	11 U
Bromoform	18 U	98 U	11 0	11 U
4-Methyl-2-pentanone	18 U	98 0	11 0	11 U
2-Hexanone	18 U	98 U	11 U	11 U
Tetrachloroethene	2 J	46 J	4 ل م	1)
1,1,2,2-Tetrachloroethan	18 U	0 98 0	11 U	11 U
Toluene	18 J	110	11 0	11 O
Chlorobenzene	18 U	49 J	11 D	11 U
Ethyl benzene	18 U	53 J	11 U	11 U
Styrene	18 U	_ ∩ 98	11 U	11 U
Total Xylenes	18 U	11400	11 U	11 U

U: Analyzed for but not detected B:(organics) Found in associated lab method blank as well as sample J: Estimated value, below quantitation limit

	Buch		(Bu Ba)		in a	1	Anna Y		6		Thursday .	1	70	/0.0
		1		1		1		1			1000			
1	4000		4100	=	22000	ш :	34000	Δ:	430	> =	170 7	370 U	380 0	2 4 40 2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
2-Chlomohend	8 6		8 6	> =	570	- -	11000		430	-	370 1		390 1	440 1
3-Dichlorobenzene	99	, ,	90	, >	570	-	11000	, ,	430	_	370 U	370 ∪		440 U
4-Dichlorobenzene	900	_	900	_	270	_	11000	_	430	_	370 ∪	370 ∪	390 N	440 ∪
,2-Dichlorobenzene	900		900	-	570	- :	11000	D :	430	-	370 ∪	370 ∪	380 ∩	140 □
2-Methylphenol	2/0	- -	900	> :	0,5	-	200		55	> :	370	370	360	0.44
Dis(z-Gillololsopiopy) etti	809) =	909	> =	570	-	1000	-	430	-	370 0	370 U	390 0	440 \
N-Nitroso-Di-n-propylamin	909	-	909	, >	570	_	11000	, D	430	-	370 U	370 U	390 ∩	440 ∪
Hexachloroethane	900	_	900	>	220	_	11000	_	430	_	370 U	370 U		440 U
_	900	_	900	>	220	_	11000		430	>	370 U	370 ∪		440 U
	900	<u> </u>	900	>	220		11000		430	> :	370 U	370 ∪		440 □
	900		900	> :	270	_ >:	11000	- :	430	- :	370 0	370 0	390	440 U
2,4-Dimethylphenol	900		200	o :	2/0	- :	11000	- :	430	> :		3/0 0		440
Bis(2-chloroethoxy) metha	9		009	> :	220	-	11000	_ _ :	430	> :	370 0	370 0		440 0
4-Dichlorophenol	9	- :	009	> :	270	> :	11000	-	630	-	370 0	3/0 0/2	0.086	0 0 44
4- Inchlorobenzene	3 3	- ·	200	 	0/6	- î	2001	5	5 5	-	200	370 0		1400
	9	0 :	3	0 :	2000	B =	0000	3 =	2 5	> =	200 20	270		7
4-Chloroanime	3 8	-	8	o :	2 2	-	3 5	- -	2 5	> =	370 0	270		
Hexachioroputatione	2 2	-		> =	2 2	> =	9 5	- -	2 5	- -	270 0	270		
4-Chloro-3-memyiphenol	9	5	3 5	 o	200	ם כ	200	0 0	2 5	-	200	2700	0 0 0 0	
z-Methylnaphthalene		_	3	-	22000	u =	0000		2 5	-	2000	3700		0 044
Hexachlorocyclopentadien	3 8	 -:	200	o :	2 5	-	3 5	-	5 5	> :	370 0	2000	0.00	1004
Z,4,6-1 ncnloropnenol	3 5	_ : :	3 5	o :	2 5	-	200		2 5	> :	0 0 0	200	2000	1
2,4,5-1 Inchiolophiellol	3 6) =	3 6	> =	2 5	- -	41000	> =	3 5	-=	370	2000	2000	
2-Cilioronaphilinalene	3 5	-	3 5) =	2 5	-	280	> =	2 5	> =		2 6	2 2 2 2	5 5 5
	9 6		3 6	- -	3 5	-	7000	-	3 5	> =	2000	2200		200
Dimetinyi pilitialate	3 5		8 5	-	2 5	-	2 5	o :	2 5	-	200	2000		
Acenaphrnylene	2 6	- -	2 6	o :	2 6	> =	3 5	> :	3 5	- -	3700	2700	2000	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2,0-Dilling ordina	3 5) :	3 5) =	2 5	-	2000	-	3 5	- =				1
Acensohthene	2 6	- -	2	=	480) -	11000	-=	430	> =	370 11	370 11		440 1
4-Dinitrophenol	1400	-	1400) =	1400	. =	28000	, =	1000	, =	∩ 006	n 006	930 N	1100 U
4-Nitrophenol	140	-	1400	=	1400	-	28000	-	1000	-=	000	1 006		1100 U
	340	, -	320) =	570	, =	11000	, ,	430	, =	370 U	370 □		440 U
2 4-Dinitmtolinene	909	, =	900	, =	570	, =	11000	, =	430	- =	370 U	370 U	390 ח	440 U
Diethyl ohthalate	900	-	909	-	570	, ,	11000		430	, ,	370 ∪	370 U	390 ח	440 □
4-Chlomdiphenylether	909	-	909	=	570	-	11000	-	430	=	370 U	370 U	390 U	440 U
-	009	, ,	909		700	,	11000	_	430	, >	370 ∪	370 ∪		440 U
_	1400	_	1400		1400	_	28000	_	1000	_	O 006	O 006	930 U	1100 U
6-Dinitro-2-methylphenol	1400	_	1400	_	1400	_	28000	_	1000	_	∩ 006	O 006		1100 U
N-nitrosodiphenylamine	900	_	909	⊃	570	>	11000	_	430	_	370 U	370 ∪	390 ∩	440 U
4-Bromophenyl phenyl eth	900	_	009	>	570	⊃	1100	-	430	-	370 ∪	370 U		440 U
Hexachlorobenzene	00	-	009	-	270	-	11000	-	9	- :	370 U	370 U		440 U
Pentachlorophenol	1400		1400	o :	1400	<u> </u>	7,000	- -	900	<u> </u>	000	3000	390 -	1000
Phenanthrene	96	-	5 6	o -	9 5	_		> =	2 2	> =	370	200	6071	190
	3 6	, <u>=</u>	909	, =	220	, =	1000	- -	430	> =	370 1	370 U	390 1	440 [
Di-n-butyl phthalate	760	-	250	, ,	320	, ,	11000	-	430	-	370 U	370 ∪		440 U
Fluoranthene	280	_	530	7	570	>	11000	_	190	_	370 ∪	370 ∪	230	380
	920		840		580	_	11000	-	160	_	370 U	370 U		280 J
Butyl benzyl phthalate	900		900	D :	570		1000	-	430	-	370 ∪	370 U	380	440 U
dine	8	<u> </u>	009	-	570		1000	- -:	95.5	<u> </u>	370 0	370 0		440 0
Denzo(a)antiliacene	9 5	, -	2 5	, -	270	- -	96	> =	5 5	, -	370	370 🗆	250.2	170.
Bis/2-ethylhexyl) phthalate	640	,	009		2400	,	2100	9	210	_	200	270 J	150 J	130 J
Di-n-octyl phthalate	900	_	900	_	929	_	11000	_	430	⊃	370 U	370 U	390 ∪	440 U
Benzo(b)fluoranthene	160	_	87	_	570	_ >	11000	_	65	_	370 ∪	370 ∪	170 J	98
Benzo(k)fluoranthene	8	_	900	>	220	-	11000	_ _	19	_	370 ∪	370 ∪	190)	100 J
Benzo(a)pyrene	000		130	¬:	570	 >:	11000	> :	46	<u>-</u>	370 U	370 U	160 7	06
Indeno(1,2,3-cd)pyrene	300	- -	3 8	> =	270	- -	3	5	3 5	-	200	2 5	0 00)
Deligo(a,ri)alitili accine	3						11000	=	4.30		3770	370 11	380 11	44

U. Analyzed for but not detected
B: (organics) Found in associated 8b method blank as well as sample
L: Estimated value, below quantitation limit
E: Concentration exceeds instrument calibration range
D: Compounds identified under a secondary dilution factor

February 15, 2008

New York State Department of Environmental Conservation Region 9 – Headquarters Office 270 Michigan Avenue City of Buffalo, New York 14203

Attention:

Mr. Chad Staniszewski

Environmental Engineer II

Reference:

Subsurface Investigation

Former Friendship Foundry Sites Town of Friendship, New York

Dear Mr. Staniszewski:

Empire Geo Services, Inc. (Empire) has recently completed a subsurface investigation at the former Friendship Foundry sites located in the Town of Friendship, Allegany County, New York as per the request of the New York State Department of Environmental Conservation (NYSDEC). Investigatory work was completed periodically from September 5 to November 20, 2007. The following report summarizes the subsurface conditions encountered, analytical sampling results and associated observations. A site plan for the factory and disposal sites has been prepared by Creekside Boundary and is included with this report.

I. SITE DESCRIPTION

The project was divided into two separate locations consisting of the main site where the factory previously operated and the disposal site where the factory disposed of waste.

The factory site is bounded on the north by Sawyer Avenue, on the south by railroad tracks, on the east by Depot Street and on the west by lands owned by Rochester Gas and Electric (RG&E). Howard Street traverses the factory site. The factory site is currently vacant property, which slopes gently to the south toward the railroad tracks. Brush and large trees are sporadically spaced on both halves of the site (east and west of Howard Street). Fill soil piles are present along the southern portion of the main site causing mound topography.

CORPORATE/
BUFFALO OFFICE

5167 South Park Avenue Hamburg, NY 14075 Phone: (716) 649-8110 Fax: (716) 649-8051

ALBANY OFFICE
PO Box 2199
Ballston Spa, NY 12020

5 Knabner Road Mechanicville, NY 12118 Phone: (518) 899-7491 (518) 899-7496

☐ CORTLAND OFFICE

60 Miller Street Cortland, NY 13045 Phone: (607) 758-7182 Fax: (607) 758-7188

□ ROCHESTER OFFICE

535 Summit Point Drive Henrietta, NY 14467 Phone: (585) 359-2730 Fax: (585) 359-9668 The disposal site is located along Elmwood Avenue and is bounded to the east by Elmwood Avenue, to the north by railroad tracks, to the west by North Branch Creek and to the south by residential property. The disposal site was overgrown by trees and brush with a steep slope where the disposal fill limits occurred. The southern portion of the disposal site was relatively flat slopes slightly to the west toward North Branch Creek and contains sporadic trees and brush.

A site location map has been prepared by Empire and is included as Figure No. 1. Detailed drawings depicting site limits, features, and locations of test pits, test borings, monitoring wells, and surface soil samples was prepared by a New York State Professional Surveyor, Creekside Boundary (Creekside), and is included with this report.

II. MAIN FACTORY SITE

A. Subsurface Investigation

The subsurface investigation consisted of performing various test pits spaced in a grid formation to best define the conditions on site. The test pit locations were selected in conjunction with the NYSDEC and were excavated to depths where native soils were encountered. The test pits were excavated utilizing a Ford 555C backhoe with the extended bucket capacity. They were completed by Empire from September 5 to September 10, 2007 under the direction and supervision of an engineer from Empire's staff. Empire was accompanied on site during test pit excavations by a representative from the NYSDEC.

The subsurface conditions existing at the main site to the west of Howard Street consisted of fill material with foundry sands, gravels, cinder and general construction debris (i.e. metal scraps, concrete fragments, etc.) continuing from the ground surface to depths of 3 to 6 feet below ground surface (bgs). The fill material is underlain by a native gray clayey silt to silty clay at depths ranging from 3 to 6 feet bgs. A native sand and gravel material was encountered along the south half of the site at depths of 4 to 7 feet bgs. Numerous concrete slabs were encountered at various test pit locations at depths of 2 to 6 feet bgs, which prevented advancement of the test pit to native soils. Subsurface samples were collected beneath the concrete slabs at a later date, as discussed below. Generally, there was less fill material located to the east of Howard Street with fill depths ranging from ground surface to 6 feet bgs. The fill was underlain by a native brown sand and gravel. The individual test pit logs for the factory site are presented in Appendix B.

Photographs were taken of each test pit excavated at the factory site and are included in Appendix A.

A concrete coring drill was utilized to core through the concrete slabs encountered in the test pits. The core holes were fitted with a PVC pipe to allow collection of samples by means of direct push test borings. A direct push unit was utilized to complete a total of ten (10) test borings (B-1 through B-10). The borings were advanced to depths where

native soils were encountered, which occurred at depths of 2 to 6 feet bgs. The soil sampling was completed in general accordance with ASTM D6282 – Standard Guide for Direct Push Soil Sampling for Environmental Site Characterizations. At each boring location, continuous soil sampling was performed from the concrete slab elevation to the termination depth using the Geoprobe® Macro-Core (MC) soil sampling system. The MC soil sampler permits the collection of core samples of soils 1.5-inches in diameter and 48 inches in length. The samplers were fitted with a removable cutting shoe and clear PVC liner. A new liner was utilized for each soil sample in order to prevent crosscontamination between sample intervals and boring locations. The onsite engineer visually classified the recovered soil samples in the field and prepared individual subsurface logs indicating soil types, indications of any contamination, occurrence of groundwater and other pertinent observations. The test borings were completed by Empire's affiliate SJB Services, Inc. on October 3, 2007 under the direction and supervision of an engineer from Empire's staff. The individual direct push logs for the factory site are presented in Appendix C.

B. Laboratory Analytical Results

Soil samples for laboratory analysis were collected at various test pits, direct push boring locations, and surface locations as directed by the NYSDEC. Every test pit, boring and surface soil sample was screened for volatile organic compounds (VOCs) using a PhoCheck 1000 Photoionization Detector (PID) meter to assist in the evaluation for potential contamination. A total of forty-five (45) soil samples for laboratory analysis were collected from the test pits, surface samples, and borings at the factory site. The laboratory samples were taken from the portion of the soil sample that produced the highest PID readings or had visual evidence of potential contamination (i.e. discoloration, odor, metallic appearance, etc). The laboratory data were compared to soil cleanup objectives as per the NYSDEC Technical and Administrative Guidance Memorandum (TAGM) 4046 guidelines where applicable.

All samples were placed into pre-cleaned 4 or 8 oz. glass jars, labeled with the date, time, location of the project, and placed into an iced cooler at approximately 4-degrees Celsius for transport via courier to Upstate Laboratories, Inc. (Upstate) located in East Syracuse, NY. Upstate is a New York State Department of Health (NYSDOH) certified analytical testing laboratory. The soil samples were analyzed for VOCs, semi-VOCs, pesticides, herbicides, total metals, polychlorinated biphenyls (PCBs), total phenolics and hexavalent chromium. The testing parameters for each sample were selected by the NYSDEC. Soil samples were analyzed for VOCs or semi-VOCs if the PID meter produced a positive measurement. Chain-of custody documentation accompanied all samples.

One soil sample at TP-25 produced an individual VOC above the recommended soil clean-up objectives as defined by the NYSDEC TAGM 4046 guidelines. The individual VOC, Acetone, had a concentration of 310 ug/Kg or parts per billion (ppb). The remaining soil samples did not produce total VOC concentrations above the cleanup objectives with lab results between 5 ppb and 359 ppb, well below the total recommended cleanup objective of 10,000 ppb.

No soil samples had semi-VOC concentrations above the recommended soil cleanup objective of 500,000 ppb as defined by TAGM 4046. However, four (4) soil samples including TP-25, TP-44, B-14 and B-15 produced individual semi-VOCs above cleanup objectives, including Benzo(a)anthracene, Benzo(a)pyrene, Benzo(b)fluoranthene and Chrysene. Total semi-VOC concentrations ranged from 290 ppb at TP-14 to 34,500 ppb at TP-44.

Four (4) soil samples had metal concentrations above the individual concentration limits. TP-7 had a copper concentration of 500 ug/Kg or parts per million (ppm). TP-12 had arsenic, barium, lead and mercury concentrations of 390 ppm, 1,500 ppm, 1,400 ppm, and 3.22 ppm, respectively. B-2 produced an arsenic concentration of 22 ppb. B-11 had arsenic, cadmium and copper concentrations of 51 ppb, 83 ppb, and 1,100 ppb, respectively.

No PCB's, herbicides, pesticides, or hexavalent chromium were detected above the laboratory detection limits ("none detected") in any of the soil samples. Total phenolics produced concentrations ranging from "none detected" above the laboratory detection limit to 0.436 ppb.

An additional sample was obtained from the sediment in the ditch running parallel along the east side of Howard Street. The "Sediment" sample was analyzed for total metals. None of the metals results exceeded the cleanup objectives.

Analytical summary tables for VOCs, semi-VOCs, total metals, PCBs, herbicides, pesticides, hexavalent chromium and total phenolics for the factory site are included in Attachment A of this report. Analytical reports prepared by Upstate can be referenced in Appendix H.

III. DISPOSAL SITE

A. Subsurface Investigation

The subsurface investigation at the disposal site consisted of performing various test pits spaced throughout the disposal fill material in order to best define the conditions on site. The test pit locations were selected in conjunction with the NYSDEC and were excavated to depths where native soils were encountered. The test pits were excavated utilizing a Caterpillar 312B excavator. The test pits were completed by Empire from October 12 to October 16, 2007 under the direction and supervision of an engineer from Empire's staff.

The subsurface conditions at the disposal site consisted of fill material with foundry sands, silts, slag, and 55-gallon drums continuing from the ground surface to depths of approximately 3 to 16 feet below ground surface (bgs). The fill material is underlain by a native brown sand and gravel at depths of 3 to 16 feet bgs.

The fill material generally increased in thickness from north to south across the site. A concrete slab was encountered at TP-5 at a depth of 12 feet bgs. Native soils were never encountered at TP-1 due to the physical limitations of the excavator, which is limited to about 16 feet, the termination depth of TP-1. Numerous 55-gallon drums were encountered in most test pits and contained various slag, resin, and foundry sand materials. The individual test pit logs for the disposal site including soil classifications, number of drums, and samples collected for lab analysis are presented in Appendix F.

Photographs were taken of each test pit excavated at the disposal site and are included in Appendix E.

B. Laboratory Analytical Results

Soil samples for laboratory analysis were collected at various test pits as directed by the NYSDEC. Every test pit was screened for volatile organic compounds (VOCs) using a PhoCheck 1000 Photoionization Detector (PID) meter to assist in the evaluation for potential contamination. A total of ten (10) soil samples for laboratory analysis were collected throughout the array of test pits at the disposal site. The laboratory samples were taken from a portion of the soils that produced the highest PID readings or had visual evidence of potential contamination (i.e. discoloration, odor, metallic appearance, etc). The laboratory data were compared to soil cleanup objectives as per the NYSDEC TAGM 4046 guidelines where applicable.

All samples were placed into pre-cleaned 4 or 8 oz. glass jars, labeled with the date, time, location of the project, and placed into an iced cooler at approximately 4-degrees Celsius for transport via courier to Upstate Laboratories, Inc. (Upstate) located in East Syracuse, NY. Upstate is a New York State Department of Health (NYSDOH) certified analytical testing laboratory. The soil samples were analyzed for VOCs, semi-VOCs, pesticides, herbicides, total metals, polychlorinated biphenyls (PCBs,) and total phenolics. The testing parameters for each soil samples were selected by the NYSDEC. Soil samples were analyzed for VOCs or semi-VOCs if the PID meter produced a positive measurement. Chain-of custody documentation accompanied all samples.

No soil sample produced a concentration of total VOCs above the recommended soil cleanup objectives of 10,000 ppb as defined by the NYSDEC TAGM 4046 guidelines. The concentration of VOCs varied from "none detected" above the laboratory detection limit at TP-4 to 128 ppb at TP-10 Drum. In addition to the total VOC concentrations, no individual compound exceeded the recommended soil cleanup objectives.

There were no soil samples having semi-VOC concentrations above the recommended soil cleanup objective of 500,000 ppb as defined by TAGM 4046. The concentrations of semi-VOCs ranged from "none detected" above the laboratory detection limits at TP-1, TP-11, TP-12 and TP-15 to 4,600 ppb at TP-10 Drum. Also, no individual compound exceeded the TAGM 4046 guidance values.

There were four (4) soil samples having metal concentrations above the individual concentration limits. TP-15 had an arsenic concentration of 21 ppm. The "Green Resin" sample had arsenic and cadmium concentrations of 91 ppm and 86 ppm, respectively. The "Black Resin" sample produced a barium concentration of 600 ppm. B-11 produced a barium concentration of 400 ppm.

PCB's were detected below the TAGM cleanup objectives at TP-11 and TP-12 with PCB concentrations of 56 ppb and 53 ppb, respectively.

No herbicides or pesticides were detected above the laboratory detection limits ("none detected") in any of the soil samples. Concentrations of total phenolics ranged from "none detected" above the laboratory detection limit to 0.150 ppm.

Analytical summary tables for VOCs, semi-VOCs, total metals, PCBs, herbicides, pesticides and total phenolics are included in Attachment B of this report. Analytical reports prepared by Upstate can be referenced in Appendix H.

IV. MONITORING WELL INSTALLATION

Three (3) monitoring wells were installed at the factory site and identified as MW-6, MW-7 and MW-8. Four (4) monitoring wells were installed at the disposal site and identified as MW-9, MW-10, MW-11 and MW-12. The purpose of the monitoring well installations was to obtain information regarding the groundwater quality and direction of flow. Soil samples were obtained during the drilling activities by advancing 2-inch O.D. split-barrel samplers through auger casing in accordance with ASTM D-1586 Standard Method for Penetration Test and Split Barrel Sampling of Soils. The soil samples were collected continuously from the ground surface until native soils were encountered. Sampling then continued every 5 feet until groundwater was encountered. Each of the borings was converted into a groundwater monitoring well in general accordance with ASTM D 5092 Standard Practice for Design and Installation of Groundwater Monitoring Wells in Aquifers. The well installations were completed by SJB on from November 14 to November 20, 2007 under the direction of an engineer from Empire's staff. The monitoring well locations were selected by the NYSDEC based on assumed groundwater flow directions.

The borings were advanced to depths of approximately 25.0 feet to 40.0 feet below the existing grades using a Central Mining Equipment (CME) Model 550 rubber-tire all-terrain vehicle mounted drill rig. The onsite engineer visually classified and screened the recovered soil samples in the field with a PID. Individual subsurface boring logs were prepared that indicated the soil types encountered, groundwater occurrence, indications of contamination, and other pertinent observations.

The wells were constructed using 10 feet of 0.020-slot, 2-inch I.D. PVC screen and 2-inch PVC riser extending to the ground surface. The wells were constructed with #1 filter sand placed to approximately 2 feet above the top of the screen, followed by a

bentonite seal and a cement/bentonite grout mix up to the ground surface. A locking steel protective casing was installed over the top of each monitoring well and cemented in-place. The subsurface boring logs for and monitoring well construction details are presented in Appendix D and Appendix G, including "Monitoring Well Installation Detail" sheets.

CONCLUSIONS

Based on the information collected on site by Empire from September 5 to November 20, 2007, the following conclusions can be made:

- Groundwater was encountered at depths ranging from 15 to 20 feet bgs at the factory site and at depths ranging from 24 to 30 feet bgs at the disposal site.
- No herbicides, pesticides, PCBs, or hexavalent chromium was detected above the laboratory detection limits at the **factory** site.
- No herbicides, pesticides or hexavalent chromium was detected above the laboratory detection limit at the **disposal** site.
- PCB's were encountered below TAGM limits at test pit locations TP-11 and TP-12 at the **disposal** site with concentrations of 56 ppb and 53 ppb, respectively.
- No individual compounds or total concentrations including VOCs, semi-VOCs, total metals, pesticides, herbicides, PCBs, hexavalent chromium and total phenolics exceeded the TAGM 4046 cleanup objectives in any surface samples obtained from the **factory** site.
- The soil samples obtained from TP-7, TP-12, TP-25, TP-44, TP-47, B-2, B-11, B-14 and B-15 showed concentrations of one or more *individual compounds* that exceeded the cleanup objectives for VOCs, semi-VOCs, or metals at the **factory** site. However, no soil samples produced *total* concentrations that exceeded the recommended cleanup objectives.
- The soil samples obtained from TP-15, TP-11, TP-12, "Green Resin", "Black Resin", and "White Slag" indicated concentrations of one or more individual compounds that exceeded the cleanup objectives for PCBs and metals at the disposal site. However, no soil samples produced total concentrations that exceeded the recommended cleanup objectives.

This report has been prepared for the exclusive use of the NYSDEC – Region 9 and their designated agents for the specific application to the subject site in accordance with generally accepted environmental practices. If you have any questions or if we can provide further assistance, please do not hesitate to contact our office at (716) 649-8110.

Respectfully Submitted,

EMPIRE GEO SERVICES, INC.

Jacob C. Metzger

Environmental Engineer

David R. Steiner

David K. Ste

Senior Engineering Geologist

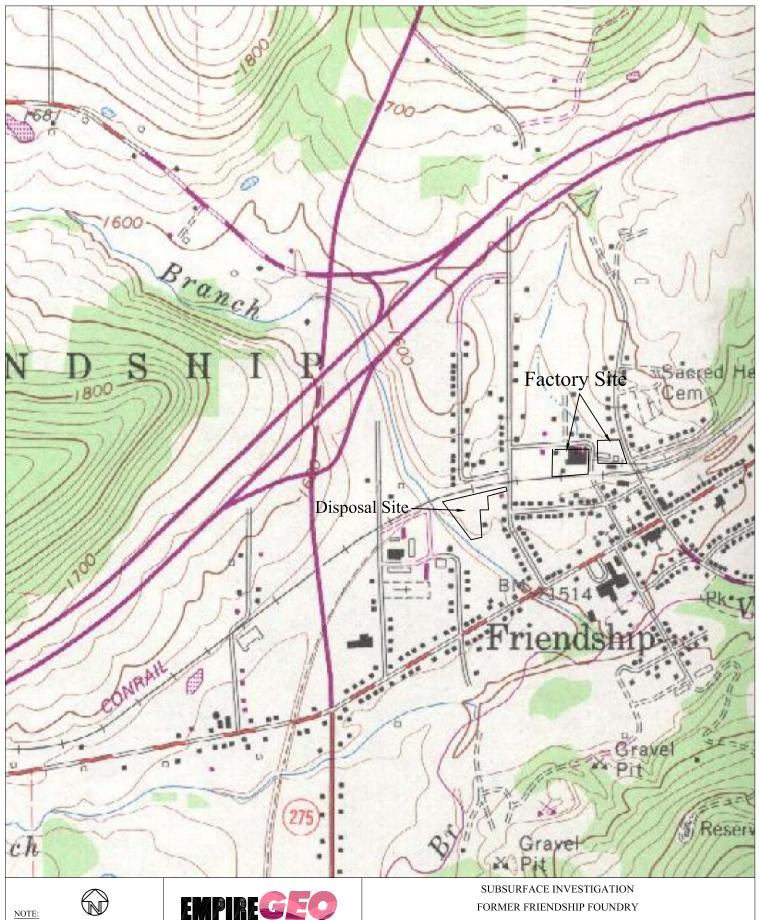
Figure No. 1 – Site Location Map

ATTACHMENT A

Analytical Tables - Factory Site

ATTACHMENT B

Analytical Tables - Disposal Site


ATTACHMENT C

Analytical Tables – Surface Samples (Factory Site)

APPENDICES

- A. Site Photographs Factory Site
- B. Test Pit Logs Factory Site
- C. Test Boring Logs Factory Site
- D. Monitoring Well Installation Details Factory Site
- E. Site Photographs Disposal Site
- F. Test Pit Logs Disposal Site
- G. Monitoring Well Installation Details Disposal Site
- H. Upstate Laboratories, Inc. Analytical Reports

Factory Site Plan
Disposal Site Plan
(Plans developed by Creekside Boundary)

SITE LOCATION PLAN DEVELOPED FROM USGS TOPOGRAPHICAL FRIENDSHIP QUADRANGLE MAP

LIMITS OF SITE BOUNDARIES ARE APPROXIMATE

SERVICES

MAIN FACTORY SITE / DISPOSAL SITE TOWN OF FRIENDSHIP, NEW YORK

SITE LOCATION MAP

DR. BY: JCM SCALE: NTS PROJECT NO.: BEV-07-022 CK. BY: DRS DATE: 12/26/07 FIGURE NO.: 1

ATTACHMENT A ANALYTICAL TABLES – FACTORY SITE

TABLE I SUMMARY OF TOTAL VOLATILE ORGANIC COMPOUNDS FACTORY SITE

Friendship Foundry

Town of Friendship, New York

Sample Identification	TP-3	TP-14	TP-16	TP-25	TP-37	TP-44	TP-47	B-3	B-8	B-9	NYSDEC TAGM
Depth	4'	5'	3'	2'	1'	3'	5'	4-7'	6-7'	3-6'	Recommended
and Date	09/05/07	09/05/07	09/06/07	09/06/07	09/07/07	09/10/07	09/10/07	10/03/07	10/03/07	10/03/07	Cleanup Objectives
Analyte	00,00,0	00,00,0		00,00,0	00,01,01	00/10/01	00/10/01	10/00/01	10,00,0	10,00,0	Cicamap Cajecares
1,1,1-Trichloroethane	ND	2	ND	1,400							
1,1,2,2-Tetrachloroethane	ND	600									
1,1,2-Trichloroethane	ND	6,000									
1,1-Dichloroethane	ND	200									
1,1-Dichloroethene	ND	400									
1,2-Dichloroethane	ND	100									
1,2-Dichloropropane	ND	300									
2-Butanone	ND	300									
2-Hexanone	ND	N/A									
4-Methyl-2-pentanone	ND	1,000									
Acetone	ND	ND	ND	310	ND	ND	ND	60	110	35	200
Benzene	ND	60									
Bromodichloromethane	ND	N/A									
Bromoform	ND	N/A									
Bromomethane	ND	N/A									
Carbon disulfide	ND	ND	ND	7	ND	ND	ND	ND	ND	7	2,700
Carbon tetrachloride	ND	600									
Chlorobenzene	ND	1,700									
Chloroethane	ND	1,900									
Chloroform	2	4	5	ND	ND	2	ND	ND	ND	ND	300
Chloromethane	ND	N/A									
cis-1,2-Dichloroethene	ND	N/A									
cis-1,3-Dichloropropene	ND	N/A									
Dibromochloromethane	ND	N/A									
Ethylbenzene	ND	5,500									
Methylene chloride	3	13	11	42	5	6	11	7	ND	28	100
Total Xylenes	ND	1,200									
Styrene	ND	ND	ND	ND	ND	ND	1	ND	ND	ND	N/A
Tetrachloroethene	ND	4	ND	1,400							
Toluene	ND	1,500									
trans-1,2-Dichloroethene	ND	N/A									
trans-1,3-Dichloropropene	ND	N/A									
Trichloroethene	ND	700									
Vinyl chloride	ND	200									
Total Volatile Organic Compounds	5	23	16	359	5	8	12	67	110	70	10,000

- 1) All concentrations are presented in ug/kg or parts per billion (ppb).
- 2) ND denotes None Detected above the laboratory detection limit.
- 3) All samples were analyzed for VOC's by EPA Method 8260 STARS
- 4) Guidance values were obtained from the NYSDEC TAGM Memorandum #4046 12/20/00 Memo Consolidating TAGM #4046 and STARS #1
- 5) Denotes exceedence of the TAGM Recommended Clean-up Objectives

TABLE II SUMMARY OF TOTAL SEMI-VOLATILE ORGANIC COMPOUNDS FACTORY SITE

Frienship Foundry Town of Friendship, New York

Sample Identification	TP-3	TP-14 5'	TP-16 3'	TP-25 2'	TP-44 3'	TP-47 5'	B-3 4-7'	B-8	B-9 3-6'	B-13 2'	B-14 2'	B-15 2'	NYSDEC TAC
Depth and Date		09/05/07	09/06/07	09/06/07	09/10/07	09/10/07	10/03/07	6-7' 10/03/07	10/03/07	11/15/07	11/15/07	11/15/07	Recommend
and Date	09/05/07	09/05/07	09/06/07	09/06/07	09/10/07	09/10/07	10/03/07	10/03/07	10/03/07	11/15/07	11/15/07	11/15/07	Cleanup Objec
Analyte	T												
(3+4) Methylphenol	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	N/A
1,2,4-Trichlorobenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	N/A
1,2-Dichlorobenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	N/A
1,3-Dichlorobenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	N/A
1,4-Dichlorobenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	N/A
2,4,5-Trichlorophenol	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	100
2,4,6-Trichlorophenol	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	N/A
2,4-Dichlorophenol	ND	ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND	ND ND	ND	ND	400
2,4-Dimethylphenol	ND	ND			ND				ND		ND	ND	N/A
2,4-Dinitrotoluene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	N/A
2,6-Dinitrotoluene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1,000
2-Chloronaphthalene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	N/A
2-Chlorophenol	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	800
2-Methylnaphthalene	600	ND	ND	500	1,000	60	ND	ND	ND	ND	ND	ND	36,400
2-Methylphenol	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	100
2-Nitroaniline	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	430
2-Nitrophenol	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	330
3,3'-Dichlorobenzidine	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	N/A
3-Nitroaniline	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	500
4,6-Dinitro-2-methylphenol	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	N/A
4-Bromophenyl phenyl ether	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	N/A
4-Nitroaniline	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	N/A
4-Nitrophenol	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	100
Acenaphthene	ND	ND	ND	ND	500	ND	ND	ND	ND	ND	ND	ND	50,000
Acenaphthylene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	41,000
Anthracene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	50,000
Benz(a)anthracene	ND	ND	ND	700	3,000	ND	ND	ND	ND	ND	3,000	600	224
Benzo(a)pyrene	ND	ND	ND	ND	3,000	ND	ND	ND	ND	ND	ND	ND	61
Benzo(b)fluoranthene	ND	ND	ND	ND	3,000	ND	ND	ND	ND	ND	4,100	ND	1,100
Benzo(g,h,i)perylene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	2,000	ND	50,000
Benzo(k)fluoranthene	ND	ND	ND	ND	900	ND	ND	ND	ND	ND	ND	ND	1,100
Bis(2-chloroethoxy)methane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	N/A
Bis(2-chloroethyl)ether	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	N/A
Bis(2-chloroisopropyl)ether	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	N/A
Bis(2-ethylhexyl)phthalate	2,000	200	2,000	ND	ND	300	440	5,700	2,000	8,600	5,200	9,300	50,000
Butyl benzyl phthalate	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	50,000
Carbazole	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	N/A
Chrysene	ND	ND	ND	700	3,000	ND	ND	ND	ND	ND	3,000	800	400
Di-n-butyl phthalate	ND	ND	ND	ND	ND	ND	80	ND	ND	ND	ND	ND	8,100
Di-n-octyl phthalate	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	50,000
Dibenz(a,h)anthracene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	14
Dibenzofuran	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	6,200
Diethyl phthalate	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	7,100
Dimethyl phthalate	ND	ND	ND 500	ND 000	ND 4.000	ND	ND	ND	ND	ND	ND 0.700	ND 4.000	2,000
Fluoranthene	ND	ND ND	500 ND	800 ND	4,800 1,000	ND ND	ND	ND ND	ND	ND ND	6,700 ND	1,000	50,000 50,000
Fluorene	ND						ND		ND			ND	
Hexachlorobenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	410
Hexachlorobutadiene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	N/A
Hexachlorocyclopentadiene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	N/A
Hexachloroethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	N/A
Indeno(1,2,3-cd)pyrene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	3,200
Isophorone	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	4,400
N-Nitrosodi-n-propylamine	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	N/A
N-Nitrosodiphenylamine	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	N/A
Naphthalene	4,700	90	ND	ND	2,000	ND	ND	ND	ND	ND	ND	ND	13,000
Nitrobenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	200
Pentachlorophenol	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1,000
Phenanthrene	ND	ND	ND	ND	5,900	80	ND	1,000	ND	ND	2,000	500	50,000
Phenol	ND	ND	ND	ND	ND	ND	80	ND	ND	ND	ND	800	30
Pyrene	ND	ND	ND	ND	6,400	ND	ND	ND	ND	ND	5,600	1,000	50,000

¹⁾ All concentrations are presented in ug/kg or parts per billion (ppb).

²⁾ ND denotes None Detected above the laboratory detection limit.

³⁾ All samples were analyzed for semi-VOCs by EPA Method 8270 STARS

⁴⁾ Guidance values were obtained from the NYSDEC TAGM Memorandum #4046 - 12/20/00 Memo Consolidating TAGM #4046 and STARS #1

TABLE III SUMMARY OF TOTAL METALS FACTORY SITE

Friendship Foundry Town of Friendship, New York

	Town of Friendship, New York													
Sample Identification	TP-1	TP-3	TP-6A	TP-7	TP-8	TP-12	TP-14	TP-16	TP-17A	TP-20	TP-24	TP-25	TP-26	Soil Concentration
Depth	5'	4'	1.5'	2.5'	4'	2'	5'	3'	3'	2'	4'	2'	1.5'	Limitations
and Date	09/05/07	09/05/07	09/05/07	09/05/07	09/05/07	09/05/07	09/05/07	09/06/07	09/06/07	09/06/07	09/06/07	09/06/07	09/06/07	
Analyte														
Aluminum	7,500	6,500	7,800	4,600	10,000	9,700	2,200	8,300	6,800	8,800	12,000	5,400	8,000	N/A
Antimony	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	N/A
Arsenic	16.0	7.6	6.5	8.1	1.0	390.0	1.1	6.9	3.4	2.9	13.0	10.0	3.1	16.0
Barium	110	140	100	96	69	1,500	20	73	72	20	94	100	42	400
Beryllium	ND	0.6	ND	ND	ND	0.9	ND	ND	ND	ND	0.6	0.8	ND	590
Cadmium	1.1	1.1	1.9	3.5	0.7	2.0	ND	0.6	0.9	ND	ND	ND	0.5	9.3
Calcium	2,100	7,200	17,000	13,000	8,300	3,500	1,200	31,000	4,700	750	1,300	25,000	2,300	N/A
Chromium	13	48	84	260	17	23	8	15	25	13	11	11	15	N/A
Cobalt	10	8.1	7.4	13.0	5.0	13.0	ND	8.0	ND	ND	10.0	7.3	ND	N/A
Copper	140	65	130	500	30	230	14	28	120	16	12	42	20	270
Iron	44,000	31,000	42,000	130,000	21,000	90,000	9,100	27,000	25,000	9,300	25,000	27,000	31,000	N/A
Lead	420	81	570	360	83	1,400	20	68	91	21	20	37	41	1,000
Magnesium	1,800	2,500	4,600	2,800	2,300	1,900	850	6,000	1,500	350	2,600	1,200	740	N/A
Manganese	370	580	18,000	1,500	600	780	140	720	310	74	300	240	420	10,000
Nickel	140	39	39	120	11	62	15	20	27	11	19	19	9	310
Potassium	840	970	960	650	1,300	1,300	450	1,000	630	370	1,300	650	580	N/A
Selenium	9.0	6.4	10.0	20.0	6.5	17.0	1.7	5.4	7.0	3.9	6.6	3.6	7.0	1,500.0
Silver	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1,500
Sodium	ND	ND	210	ND	50	ND	30	ND	170	ND	ND	ND	ND	N/A
Thallium	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	N/A
Vanadium	20	10	10	10	20	30	5	10	10	10	20	20	20	N/A
Zinc	270	630	600	270	170	380	38	190	1,000	180	82	70	110	10,000
Mercury	0.014	0.021	0.120	0.220	0.056	3.220	ND	ND	0.033	ND	ND	0.001	0.049	2.8

- 1) All concentrations are presented in mg/kg or parts per million (ppm).
- 2) ND denotes None Detected above the laboratory detection limit.
- 3) All samples were analyzed for metals via Method 6010
- 4) Denotes exceedance of soil concentration limitations

TABLE III (continued) SUMMARY OF TOTAL METALS FACTORY SITE

Friendship Foundry Town of Friendship, New York

	Town of Thendship, New Tork													
Sample Identification	TP-28	TP-30	TP-34	TP-42	TP-44	TP-46	TP-47	TP-40	TP-41	TP-49	TP-50	Sediment	B-1	Soil Concentration
Depth	3'	4.5'	3'	2'	3'	4'	5'	3'	2'	3'	-	-	3-4'	Limitations
and Date	09/06/07	09/06/07	09/07/07	09/10/07	09/10/07	09/10/07	09/10/07	09/07/07	09/07/07	09/10/07	09/13/07	09/07/07	10/03/07	
Analyte														
Aluminum	11,000	5,500	9,100	7,400	7,700	3,200	4,100	5,400	6,600	4,400	2,500	5,100	13,000	N/A
Antimony	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	N/A
Arsenic	15.0	5.6	8.3	10.0	9.3	3.6	9.3	8.7	13.0	2.9	1.5	13.0	7.7	16.0
Barium	86	83	45	87	190	200	53	120	170	42	30	140	130	400
Beryllium	ND	ND	ND	ND	ND	1.1	0.9	ND	0.6	ND	ND	ND	ND	590
Cadmium	ND	1.8	0.5	0.9	1.2	2.1	0.7	3.6	2.1	1.9	0.6	2.5	ND	9.3
Calcium	920	2,600	1,100	4,600	36,000	1,500	2,000	8,000	4,900	12,000	3,400	9,100	1,400	N/A
Chromium	10	140	8	10	13	6	6	24	10	47	11	34	13	N/A
Cobalt	11.0	6.9	8.1	6.6	6.7	6.0	7.9	6.7	8.2	6.7	ND	10.0	9.0	N/A
Copper	20	100	8	30	41	32	24	130	150	73	18	77	13	270
Iron	24,000	87,000	16,000	19,000	20,000	98,000	23,000	33,000	51,000	74,000	11,000	79,000	19,000	N/A
Lead	22	130	21	88	180	12	10	500	840	75	51	120	44	1,000
Magnesium	2,600	1,900	1,600	2,300	5,000	200	1,000	1,900	1,700	840	1,200	4,200	2,400	N/A
Manganese	1,000	580	310	410	530	74	200	450	460	980	190	5,800	490	10,000
Nickel	24	64	11	14	15	7	14	24	21	29	24	35	17	310
Potassium	1,200	640	670	1,000	1,300	600	500	730	780	560	480	600	1,600	N/A
Selenium	9.7	12.0	5.5	5.0	4.2	12.0	4.2	5.8	8.6	9.5	2.0	13.0	7.0	1,500.0
Silver	ND	ND	ND	ND	ND	ND	2	ND	ND	ND	ND	ND	ND	1,500
Sodium	ND	76	ND	190	ND	300	N/A							
Thallium	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	N/A
Vanadium	10	10	10	10	10	20	10	10	10	10	ND	8	20	N/A
Zinc	69	1,800	49	140	430	11	45	330	450	210	95	420	100	10,000
Mercury	0.021	0.170	0.057	0.041	0.078	0.028	0.030	0.160	0.120	0.039	0.075	0.019	0.076	2.8

- 1) All concentrations are presented in mg/kg or parts per million (ppm).
- 2) ND denotes None Detected above the laboratory detection limit.
- 3) All samples were analyzed for metals via Method 6010 $\,$
- 4) Guidance values were obtained from the NYSDEC TAGM Memorandum #4046 12/20/00 Memo Consolidating TAGM #4046

TABLE III (continued) SUMMARY OF TOTAL METALS FACTORY SITE

Friendship Foundry

Town of Friendship, New York

	Town of Thendship, New Tork											
Sample Identification	B-2	B-3	B-4	B-5	B-8	B-9	B-11	B-12	Soil Concentration			
Depth	2-3'	4-7'	3-4'	4-5'	6-7'	3-6'	3'	2'	Limitations			
and Date	10/03/07	10/03/07	10/03/07	10/03/07	10/03/07	10/03/07	11/14/07	11/15/07				
Analyte					<u> </u>			<u> </u>				
Aluminum	8,100	10,000	11,000	6,000	9,500	11,000	28,000	6,600	N/A			
Antimony	ND	ND	ND	ND	ND	ND	ND	ND	N/A			
Arsenic	22	9	5	5	15	9	51	12	16.0			
Barium	130	82	71	63	120	120	190	63	400			
Beryllium	ND	ND	ND	ND	ND	1	ND	ND	590			
Cadmium	2	ND	ND	ND	ND	ND	83	4	9.3			
Calcium	ND	970	1,400	4,000	520	1,200	1,400	3,600	N/A			
Chromium	38	12	11	11	9	17	96	12	N/A			
Cobalt	24	9	9	9	10	12	41	7	N/A			
Copper	73	9	8	22	11	69	1,100	18	270			
Iron	240,000	19,000	16,000	24,000	19,000	24,000	530,000	20,000	N/A			
Lead	230	17	16	49	18	77	610	32	1,000			
Magnesium	1,600	2,100	2,000	1,400	1,900	1,900	730	3,000	N/A			
Manganese	1,200	730	770	330	2,000	960	1,700	430	10,000			
Nickel	53	18	14	14	19	25	190	17	310			
Potassium	840	1,200	1,200	1,200	1,100	1,000	460	950	N/A			
Selenium	31	6	6	6	7	8	53	4	1,500.0			
Silver	ND	ND	ND	ND	ND	ND	1	ND	1,500			
Sodium	ND	460	300	120	75	ND	ND	ND	N/A			
Thallium	ND	ND	ND	ND	ND	ND	ND	ND	N/A			
Vanadium	54	10	10	20	10	20	20	9	N/A			
Zinc	170	58	60	97	50	120	330	81	10,000			
Mercury	0.180	0.024	0.022	0.100	0.034	0.050	0.085	0.074	2.8			

- 1) All concentrations are presented in mg/kg or parts per million (ppm).
- 2) ND denotes None Detected above the laboratory detection limit.
- 3) All samples were analyzed for metals via Method 6010
- 4) Guidance values were obtained from the NYSDEC TAGM Memorandum #4046 12/20/00 Memo Consolidating TAGM #4046

TABLE IV SUMMARY OF TOTAL POLYCHLORINATED BIPHENYLS FACTORY SITE

Friendship Foundry Town of Friendship, New York

					0	р, .		-				
Sample Identification	TP-1	TP-3	TP-8	TP-12	TP-14	TP-16	TP-17A	TP-24	TP-25	TP-28	TP-30	NYSDEC TAGM
Depth	5'	4'	4'	2'	5'	3'	3'	4'	2'	3'	4.5'	Recommended
and Date	09/05/07	09/05/07	09/05/07	09/05/07	09/05/07	09/06/07	09/06/07	09/06/07	09/06/07	09/06/07	09/06/07	Cleanup Objectives
Analyte												
Aroclor 1016	ND	N/A										
Aroclor 1221	ND	N/A										
Aroclor 1232	ND	N/A										
Aroclor 1242	ND	N/A										
Aroclor 1248	ND	N/A										
Aroclor 1254	ND	N/A										
Aroclor 1260	ND	N/A										
Aroclor 1268	ND	N/A										
Total PCBs	ND	10										

- 1) All concentrations are presented in ug/kg or parts per billion (ppb).
- 2) ND denotes None Detected above the laboratory detection limit.
- 3) All samples were analyzed for PCBs via Method 8082
- 4) Guidance values were obtained for the SUBSURFACE from the NYSDEC TAGM Memorandum #4046 12/20/00 Memo Consolidating TAGM #4046
- 5) Denotes exceedence of the TAGM Recommended Clean-up Objectives

TABLE IV (continued) SUMMARY OF TOTAL POLYCHLORINATED BIPHENYLS FACTORY SITE

Friendship Foundry Town of Friendship, New York

Town of Friedding, New York												
Sample Identification	TP-34	TP-40	TP-44	TP-47	TP-50	B-1	B-3	B-4	B-5	B-8	B-9	NYSDEC TAGM
Depth	3'	3'	3'	5'	-	3-4'	4-7'	3-4'	4-5'	6-7'	3-6'	Recommended
and Date	09/07/07	09/07/07	09/10/07	09/10/07	09/13/07	10/03/07	10/03/07	10/03/07	10/03/07	10/03/07	10/03/07	Cleanup Objectives
Analyte												
Aroclor 1016	ND	N/A										
Aroclor 1221	ND	N/A										
Aroclor 1232	ND	N/A										
Aroclor 1242	ND	N/A										
Aroclor 1248	ND	N/A										
Aroclor 1254	ND	N/A										
Aroclor 1260	ND	N/A										
Aroclor 1268	ND	N/A										
Total PCBs	ND	10										

- 1) All concentrations are presented in ug/kg or parts per billion (ppb).
- 2) ND denotes None Detected above the laboratory detection limit.
- 3) All samples were analyzed for PCBs via Method 8082
- 4) Guidance values were obtained for the SUBSURFACE from the NYSDEC TAGM Memorandum #4046 12/20/00 Memo Consolidating TAGM #4046
- 5) Denotes exceedence of the TAGM Recommended Clean-up Objectives

TABLE V SUMMARY OF TOTAL HERBICIDES/PESTICIDES FACTORY SITE

Friendship Foundry Town of Friendship, New York

	I own of Friendship, New York											
Sample Identification	TP-3	TP-14	TP-16	TP-25	TP-44	TP-47	B-9	NYSDEC TAGM				
Depth	4'	5'	3'	2'	3'	5'	3-6'	Recommended				
and Date	09/05/07	09/05/07	09/06/07	09/06/07	09/10/07	09/10/07	10/03/07	Cleanup Objectives				
Analyte								, , , , , , , , , , , , , , , , , , , ,				
Herbicides												
2,4,5-T	ND	ND	ND	ND	ND	ND	ND	1,900				
2,4,5-TP (Silvex)	ND	ND	ND	ND	ND	ND	ND	700				
2,4-D	ND	ND	ND	ND	ND	ND	ND	500				
Dicamba	ND	ND	ND	ND	ND	ND	ND	N/A				
Dinoseb	ND	ND	ND	ND	ND	ND	ND	N/A				
Total Herbicides	ND	ND	ND	ND	ND	ND	ND					
Pesticides												
4-4'-DDD	ND	ND	ND	ND	ND	ND	ND	2,900				
4,4'-DDE	ND	ND	ND	ND	ND	ND	ND	2,100				
4,4'-DDT	ND	ND	ND	ND	ND	ND	ND	2,100				
Aldrin	ND	ND	ND	ND	ND	ND	ND	41				
alpha-BHC	ND	ND	ND	ND	ND	ND	ND	110				
alpha-Chlordane	ND	ND	ND	ND	ND	ND	ND	540				
beta-BHC	ND	ND	ND	ND	ND	ND	ND	200				
delta-BHC	ND	ND	ND	ND	ND	ND	ND	300				
Dieldrin	ND	ND	ND	ND	ND	ND	ND	44				
Endosulfan I	ND	ND	ND	ND	ND	ND	ND	900				
Endosulfan II	ND	ND	ND	ND	ND	ND	ND	900				
Endosulfan sulfate	ND	ND	ND	ND	ND	ND	ND	1,000				
Endrin	ND	ND	ND	ND	ND	ND	ND	100				
Endrin aldehyde	ND	ND	ND	ND	ND	ND	ND	N/A				
Endrin ketone	ND	ND	ND	ND	ND	ND	ND	N/A				
gamma-BHC	ND	ND	ND	ND	ND	ND	ND	60				
gamma-Chlordane	ND	ND	ND	ND	ND	ND	ND	540.00				
Heptachlor	ND	ND	ND	ND	ND	ND	ND	100				
Heptachlor epoxide	ND	ND	ND	ND	ND	ND	ND	20				
Methoxychlor	ND	ND	ND	ND	ND	ND	ND	10,000				
Toxaphene	ND	ND	ND	ND	ND	ND	ND	N/A				
Total Pesticides	ND	ND	ND	ND	ND	ND	ND					

- 1) All concentrations are presented in ug/kg or parts per billion (ppb).
- 2) ND denotes None Detected above the laboratory detection limit.
- 3) All samples were analyzed for Herbicides via Method 8151 and Pesticides via Method 8081
- 4) Guidance values were obtained from the NYSDEC TAGM Memorandum #4046 12/20/00 Memo Consolidating TAGM #4046
- 5) Denotes exceedence of the TAGM Recommended Clean-up Objectives

TABLE VI SUMMARY OF TOTAL HEXAVALENT CHROMIUM **FACTORY SITE Friendship Foundry Town of Friendship, New York Sample Identification** TP-3 **TP-14 TP-16 TP-25 TP-44 TP-47** B-3 **B-9** 3' 5' 3' 2' 4-7' 3-6' **Depth** and Date 09/05/07 09/05/07 09/06/07 09/06/07 09/10/07 09/10/07 10/03/07 10/03/07 Analyte Hexavalent Chromium ND ND ND ND ND ND ND ND

- 1) All concentrations are presented in mg/kg or parts per million (ppm).
- 2) ND denotes None Detected above the laboratory detection limit.
- 3) All samples were analyzed for Hexavalent Chromium via Method 7196

TABLE VII SUMMARY OF TOTAL PHENOLICS FACTORY SITE Friendship Foundry Town of Friendship, New York TP-16 TP-25 Sample Identification TP-14 TP-44 TP-47 B-3 B-9 3' 3' 4-7' 3-6' **Depth** and Date 09/05/07 09/06/07 09/06/07 09/10/07 09/10/07 10/03/07 10/03/07 **Analyte Total Phenolics** 0.436 0.429 0.220 ND 0.238 0.193 0.179

- 1) All concentrations are presented in mg/kg or parts per million (ppm).
- 2) ND denotes None Detected above the laboratory detection limit.
- 3) All samples were analyzed for Total Phenolics via Method 420.1

ATTACHMENT B ANALYTICAL TABLES – DISPOSAL SITE

TABLE I SUMMARY OF TOTAL VOLATILE ORGANIC COMPOUNDS DISPOSAL SITE

Friendship Foundry Town of Friendship, New York

Sample Identification	TP-1	TP-4	TP-10 Drum	7 TP-11	TP-12	TP-15	NYSDEC TAGM
and Date	10/15/07	10/15/07	10/16/07	10/16/07	10/16/07	10/16/07	Cleanup Objectives
Analyte							
1,1,1-Trichloroethane	ND	ND	ND	ND	ND	ND	1,400
1,1,2,2-Tetrachloroethane	ND	ND	ND	ND	ND	ND	600
1,1,2-Trichloroethane	ND	ND	ND	ND	ND	ND	6,000
1,1-Dichloroethane	ND	ND	ND	ND	ND	ND	200
1,1-Dichloroethene	ND	ND	ND	ND	ND	ND	400
1,2-Dichloroethane	ND	ND	ND	ND	ND	ND	100
1,2-Dichloropropane	ND	ND	ND	ND	ND	ND	300
2-Butanone	ND	ND	ND	ND	ND	ND	300
2-Hexanone	ND	ND	ND	ND	ND	ND	N/A
4-Methyl-2-pentanone	ND	ND	ND	ND	ND	ND	1,000
Acetone	ND	ND	98	ND	ND	ND	200
Benzene	ND	ND	ND	ND	ND	ND	60
Bromodichloromethane	ND	ND	ND	ND	ND	ND	N/A
Bromoform	ND	ND	ND	ND	ND	ND	N/A
Bromomethane	ND	ND	ND	ND	ND	ND	N/A
Carbon disulfide	ND	ND	ND	ND	ND	ND	2,700
Carbon tetrachloride	ND	ND	ND	ND	ND	ND	600
Chlorobenzene	ND	ND	ND	ND	ND	ND	1,700
Chloroethane	ND	ND	ND	ND	ND	ND	1,900
Chloroform	ND	ND	ND	ND	ND	5.4	300
Chloromethane	ND	ND	ND	ND	ND	ND	N/A
cis-1,2-Dichloroethene	ND	ND	ND	ND	ND	ND	N/A
cis-1,3-Dichloropropene	ND	ND	ND	ND	ND	ND	N/A
Dibromochloromethane	ND	ND	ND	ND	ND	ND	N/A
Ethylbenzene	ND	ND	ND	ND	ND	ND	5,500
Methylene chloride	14	ND	30	49	20	13	100
Total Xylenes	ND	ND	ND	ND	ND	ND	1,200
Styrene	ND	ND	ND	ND	ND	ND	N/A
Tetrachloroethene	ND	ND	ND	ND	ND	ND	1,400
Toluene	ND	ND	ND	ND	ND	ND	1,500
trans-1,2-Dichloroethene	ND	ND	ND	ND	ND	ND	N/A
trans-1,3-Dichloropropene	ND	ND	ND	ND	ND	ND	N/A
Trichloroethene	ND	ND	ND	ND	ND	ND	700
Vinyl chloride	ND	ND	ND	ND	ND	ND	200
Total Volatile Organic Compounds	14	ND	128	49	20	18.4	10,000

- 1) All concentrations are presented in ug/kg or parts per billion (ppb).
- 2) ND denotes None Detected above the laboratory detection limit.
- 3) All samples were analyzed for VOC's by EPA Method 8260 STARS
- 4) Guidance values were obtained from the NYSDEC TAGM Memorandum #4046 12/20/00 Memo Consolidating TAGM #4046 and STARS #1
- 5) Denotes exceedence of the TAGM Recommended Clean-up Objectives

TABLE II SUMMARY OF TOTAL SEMI-VOLATILE ORGANIC COMPOUNDS DISPOSAL SITE

Frienship Foundry Town of Friendship, New York

				ienusinp,			I	T	
Sample Identification	TP-1	TP-4	TP-10 Drum	TP-11	TP-12	TP-15	Green Resin	Black Resin	NYSDEC TAGN
and Date	10/15/07	10/15/07	10/16/07	10/16/07	10/16/07	10/16/07	10/18/07	10/18/07	Cleanup Objectiv
Analyte									
(3+4) Methylphenol	ND	ND	ND	ND	ND	ND	ND	ND	N/A
1,2,4-Trichlorobenzene	ND	ND	ND	ND	ND	ND	ND	ND	N/A
1,2-Dichlorobenzene	ND	ND	ND	ND	ND	ND	ND	ND	N/A
1,3-Dichlorobenzene	ND	ND	ND	ND	ND	ND	ND	ND	N/A
1,4-Dichlorobenzene	ND	ND	ND	ND	ND	ND	ND	ND	N/A
2,4,5-Trichlorophenol	ND	ND	ND	ND	ND	ND	ND	ND	100
2,4,6-Trichlorophenol	ND	ND	ND	ND	ND	ND	ND	ND	N/A
2,4-Dichlorophenol	ND	ND	ND	ND	ND	ND	ND	ND	400
2,4-Dimethylphenol	ND	ND	700	ND	ND	ND	ND	ND	N/A
2,4-Dinitrotoluene	ND	ND	ND	ND	ND	ND	ND	ND	N/A
2,6-Dinitrotoluene	ND	ND	ND	ND	ND	ND	ND	ND	1,000
2-Chloronaphthalene	ND	ND	ND	ND	ND	ND	ND	ND	N/A
2-Chlorophenol	ND	ND	ND	ND	ND	ND	ND	ND	800
2-Methylnaphthalene	ND	ND	2,000	ND	ND	ND	ND	ND	36,400
2-Methylphenol	ND	ND	ND	ND	ND	ND	ND	ND	100
2-Nitroaniline	ND	ND	ND	ND	ND	ND	ND	ND	430
2-Nitrophenol	ND	ND	ND	ND	ND	ND	ND	ND	330
3,3'-Dichlorobenzidine	ND	ND	ND	ND	ND	ND	ND	ND	N/A
3-Nitroaniline	ND	ND	ND	ND	ND	ND	ND	ND	500
4,6-Dinitro-2-methylphenol	ND	ND	ND	ND	ND	ND	ND	ND	N/A
4-Bromophenyl phenyl ether	ND	ND	ND	ND	ND	ND	ND	ND	N/A
4-Nitroaniline	ND	ND	ND	ND	ND	ND	ND	ND	N/A
4-Nitrophenol	ND	ND	ND	ND	ND	ND	ND	ND	100
Acenaphthene	ND	ND	ND	ND	ND	ND	ND	ND	50,000
Acenaphthylene	ND	ND	ND	ND	ND	ND	ND	ND	41,000
Anthracene	ND	ND	ND	ND	ND	ND	ND	ND	50,000
Benz(a)anthracene	ND	ND	ND	ND	ND	ND	ND ND	ND	224
Benzo(a)pyrene	ND	ND	ND	ND	ND	ND	ND ND	ND	61
Benzo(b)fluoranthene	ND	ND	ND	ND	ND	ND	ND ND	ND ND	1,100
Benzo(g,h,i)perylene	ND	ND	ND	ND	ND	ND	ND ND	ND	50,000
Benzo(k)fluoranthene	ND	ND	ND	ND	ND	ND	ND	ND	1,100
Bis(2-chloroethoxy)methane	ND	ND	ND	ND	ND	ND	ND ND	ND	N/A
Bis(2-chloroethyl)ether	ND	ND	ND	ND	ND	ND	ND ND	ND	N/A
Bis(2-chloroisopropyl)ether	ND	ND	ND	ND	ND	ND	ND	ND	N/A
Bis(2-ethylhexyl)phthalate	ND	200	ND ND	ND	ND	ND	700	1,000	50,000
Butyl benzyl phthalate	ND	ND	ND ND	ND	ND	ND	ND	ND	50,000
	ND ND	ND	ND ND	ND	ND	ND	ND	ND ND	N/A
Carbazole	ND	ND	ND ND	ND	ND	ND	ND ND	ND ND	400
Chrysene Di-n-butyl phthalate	ND ND	ND ND	ND ND	ND	ND ND	ND	ND ND	200	
									8,100
Di-n-octyl phthalate Dibenz(a,h)anthracene	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	50,000 14
Dibenzofuran	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	6,200
Diethyl phthalate	ND ND	ND	ND ND	ND ND	ND	ND	ND ND	ND ND	7,100
Dimethyl phthalate	ND ND	ND CO	ND ND	ND	ND	ND ND	ND	ND ND	2,000
Fluoranthene	ND ND	60 ND	ND ND	ND	ND	ND	ND	ND ND	50,000
Fluorene	ND	ND	ND ND	ND	ND	ND	ND	ND ND	50,000
Hexachlorobenzene	ND	ND	ND	ND	ND	ND	ND	ND	410
Hexachlorobutadiene	ND ND	ND ND	ND ND	ND	ND	ND	ND ND	ND ND	N/A
Hexachlorocyclopentadiene	ND	ND	ND	ND	ND	ND	ND	ND	N/A
Hexachloroethane	ND	ND	ND	ND	ND	ND	ND	ND	N/A
Indeno(1,2,3-cd)pyrene	ND	ND	ND	ND	ND 	ND	ND	ND	3,200
Isophorone	ND	ND	ND	ND	ND	ND	ND	ND	4,400
N-Nitrosodi-n-propylamine	ND	ND	ND	ND	ND	ND	ND	ND	N/A
N-Nitrosodiphenylamine	ND	ND	ND	ND	ND	ND	ND	ND	N/A
Naphthalene	ND	ND	1,000	ND	ND	ND	ND	ND	13,000
Nitrobenzene	ND	ND	ND	ND	ND	ND	ND	ND	200
Pentachlorophenol	ND	ND	ND	ND	ND	ND	ND	ND	1,000
Phenanthrene	ND	ND	900	ND	ND	ND	ND	ND	50,000
Phenol	ND	ND	ND	ND	ND	ND	ND	ND	30
Pyrene	ND	ND	ND	ND	ND	ND	ND	ND	50,000
otal Semi-Volatile Organic Compounds	ND	260	4,600	ND	ND	ND	700	1,200	500,000

- 1) All concentrations are presented in ug/kg or parts per billion (ppb).
- 2) ND denotes None Detected above the laboratory detection limit.
- 3) All samples were analyzed for semi-VOCs by EPA Method 8270 STARS $\,$
- 4) Guidance values were obtained from the NYSDEC TAGM Memorandum #4046 12/20/00 Memo Consolidating TAGM #4046 and STARS #1
- 5) Denotes exceedence of the TAGM Soil Recommended Clean-up Objectives

TABLE III SUMMARY OF TOTAL METALS DISPOSAL SITE

Friendship Foundry Town of Friendship, New York

Sample Identification and Date	TP-1 10/15/07	TP-4 10/15/07	TP-10 Drum 10/16/07	TP-11 10/16/07	TP-12 10/16/07	TP-15 10/16/07	Green Resin 10/16/07	Black Resin 09/06/07	Grey Slag 10/16/07	White Slag 10/16/07	Soil Concentration Limitations
Analyte	10/10/07	10/10/01	10/10/01	10/10/01	10/10/01	10/10/01	10/10/01	00/00/01	10/10/01	10/10/01	
Aluminum	3,500	11,000	9,800	3,300	4,200	6,600	20,000	30,000	330	27,000	N/A
Antimony	ND	ND	ND	ND	ND	ND	20	ND	ND	ND	N/A
Arsenic	1.2	10.0	4.0	4.4	5.1	21.0	91.0	ND	ND	9.0	16.0
Barium	33	76	170	42	54	100	230	600	ND	400	400
Beryllium	ND	0.7	ND	ND	ND	0.8	90.0	ND	ND	ND	590
Cadmium	0.5	ND	0.8	1.0	1.7	0.9	86.0	ND	ND	ND	9.3
Calcium	2,000	1,000	3,300	5,800	4,200	10,000	140,000	120,000	5,200	210,000	N/A
Chromium	9	12	6	17	39	8	120	50	ND	ND	N/A
Cobalt	ND	13.0	ND	ND	ND	ND	91.0	ND	ND	ND	N/A
Copper	24	13	44	85	87	52	99	ND	ND	ND	270
Iron	15,000	24,000	16,000	32,000	39,000	27,000	7,800	2,600	1,400	3,200	N/A
Lead	34	21	22	46	140	53	83	ND	ND	ND	1,000
Magnesium	1,100	3,100	2,300	850	960	1,300	2,600	2,600	100	3,900	N/A
Manganese	210	620	250	370	620	360	6,500	6,800	85	6,000	10,000
Nickel	9	22	20	15	29	12	87	ND	ND	ND	310
Potassium	750	1,400	800	550	630	900	4,800	ND	ND	ND	N/A
Selenium	4.1	9.3	0.9	3.5	4.5	2.7	98.0	ND	ND	ND	1,500.0
Silver	ND	ND	ND	ND	ND	ND	87	ND	ND	ND	1,500
Sodium	160	76	300	ND	ND	ND	1,100	ND	ND	ND	N/A
Thallium	ND	ND	ND	ND	ND	ND	65	ND	ND	ND	N/A
Vanadium	7	10	ND	10	10	9	110	ND	ND	ND	N/A
Zinc	100	66	86	79	150	60	85	47	ND	ND	10,000
Mercury	0.130	0.032	0.003	0.068	0.220	0.000	0.036	ND	ND	ND	2.8

- 1) All concentrations are presented in mg/kg or parts per million (ppm).
- 2) ND denotes None Detected above the laboratory detection limit.
- 3) All samples were analyzed for metals via Method 6010
- 4) Denotes exceedance of soil concentration limitations

TABLE IV SUMMARY OF TOTAL POLYCHLORINATED BIPHENYLS DISPOSAL SITE

Friendship Foundry Town of Friendship, New York

Sample Identification and Date	TP-1 10/15/07	TP-4 10/15/07	TP-10 Drum 10/16/07	TP-11 10/16/07	TP-12 10/16/07	TP-15 10/16/07	NYSDEC TAGM Cleanup Objectives
Analyte							
Aroclor 1016	ND	ND	ND	ND	ND	ND	N/A
Aroclor 1221	ND	ND	ND	ND	ND	ND	N/A
Aroclor 1232	ND	ND	ND	ND	ND	ND	N/A
Aroclor 1242	ND	ND	ND	ND	ND	ND	N/A
Aroclor 1248	ND	ND	ND	ND	ND	ND	N/A
Aroclor 1254	ND	ND	ND	ND	ND	ND	N/A
Aroclor 1260	ND	ND	ND	ND	ND	ND	N/A
Aroclor 1268	ND	ND	ND	56	53	ND	N/A
Total PCBs	ND	ND	ND	56	53	ND	1,000

- 1) All concentrations are presented in ug/kg or parts per billion (ppb).
- 2) ND denotes None Detected above the laboratory detection limit.
- 3) All samples were analyzed for PCBs via Method 8082
- 4) Guidance values were obtained for the SUBSURFACE from the NYSDEC TAGM Memorandum #4046 12/20/00 Memo Consolidating TAGM #4046

TABLE V SUMMARY OF TOTAL HERBICIDES/PESTICIDES DISPOSAL SITE

Friendship Foundry Town of Friendship, New York

			71 1 110114011	.p,			
Sample Identification	TP-1	TP-4	TP-10 Drum	TP-11	TP-12	TP-15	NYSDEC TAGM
and Date	10/15/07	10/15/07	10/16/07	10/16/07	10/16/07	10/16/07	Recommended
Analyte							Cleanup Objectives
Herbicides							
2,4,5-T	ND	ND	ND	ND	ND	ND	1,900
2,4,5-TP (Silvex)	ND	ND	ND	ND	ND	ND	700
2,4-D	ND	ND	ND	ND	ND	ND	500
Dicamba	ND	ND	ND	ND	ND	ND	N/A
Dinoseb	ND	ND	ND	ND	ND	ND	N/A
Total Herbicides	ND	ND	ND	ND	ND	ND	
Pesticides							
4-4'-DDD	ND	ND	ND	ND	ND	ND	2,900
4,4'-DDE	ND	ND	ND	ND	ND	ND	2,100
4,4'-DDT	ND	ND	ND	ND	ND	ND	2,100
Aldrin	ND	ND	ND	ND	ND	ND	41
alpha-BHC	ND	ND	ND	ND	ND	ND	110
alpha-Chlordane	ND	ND	ND	ND	ND	ND	540
beta-BHC	ND	ND	ND	ND	ND	ND	200
delta-BHC	ND	ND	ND	ND	ND	ND	300
Dieldrin	ND	ND	ND	ND	ND	ND	44
Endosulfan I	ND	ND	ND	ND	ND	ND	900
Endosulfan II	ND	ND	ND	ND	ND	ND	900
Endosulfan sulfate	ND	ND	ND	ND	ND	ND	1,000
Endrin	ND	ND	ND	ND	ND	ND	100
Endrin aldehyde	ND	ND	ND	ND	ND	ND	N/A
Endrin ketone	ND	ND	ND	ND	ND	ND	N/A
gamma-BHC	ND	ND	ND	ND	ND	ND	60
gamma-Chlordane	ND	ND	ND	ND	ND	ND	540.00
Heptachlor	ND	ND	ND	ND	ND	ND	100
Heptachlor epoxide	ND	ND	ND	ND	ND	ND	20
Methoxychlor	ND	ND	ND	ND	ND	ND	10,000
Toxaphene	ND	ND	ND	ND	ND	ND	N/A
Total Pesticides	ND	ND	ND	ND	ND	ND	

- 1) All concentrations are presented in ug/kg or parts per billion (ppb).
- 2) ND denotes None Detected above the laboratory detection limit.
- 3) All samples were analyzed for Herbicides via Method 8151 and Pesticides via Method 8081
- 4) Guidance values were obtained from the NYSDEC TAGM Memorandum #4046 12/20/00 Memo Consolidating TAGM #4046
- 5) Denotes exceedence of the TAGM Recommended Clean-up Objectives

TABLE VI SUMMARY OF TOTAL PHENOLICS DISPOSAL SITE Friendship Foundry Town of Friendship, New York

Sample Identification	TP-1	TP-4	TP-10 Drum	TP-11	TP-12	TP-15
and Date	10/15/07	10/15/07	10/16/07	10/16/07	10/16/07	10/16/07
Analyte						
Total Phenolics	0.149	ND	ND	ND	0.150	ND

- 1) All concentrations are presented in mg/kg or parts per million (ppm).
- 2) ND denotes None Detected above the laboratory detection limit.
- 3) All samples were analyzed for Total Phenolics via Method 420.1

ATTACHMENT C ANALYTICAL TABLES – SURFACE SAMPLES (FACTORY SITE)

TABLE I SUMMARY OF TOTAL VOLATILE ORGANIC COMPOUNDS SURFACE SAMPLES - FACTORY SITE

Friendship Foundry Town of Friendship, New York

Sample Identification and Date	TP-6, TP-11 and TP-16 Comp 09/10/07	TP-49, TP-46 and TP-42 Comp 09/10/07	NYSDEC TAGM Cleanup Objectives
Analyte			1
1,1,1-Trichloroethane	ND	ND	1,400
1,1,2,2-Tetrachloroethane	ND	ND	600
1,1,2-Trichloroethane	ND	ND	6,000
1,1-Dichloroethane	ND	ND	200
1,1-Dichloroethene	ND	ND	400
1,2-Dichloroethane	ND	ND	100
1,2-Dichloropropane	ND	ND	300
2-Butanone	ND	ND	300
2-Hexanone	ND	ND	N/A
4-Methyl-2-pentanone	ND	ND	1,000
Acetone	ND	ND	200
Benzene	ND	ND	60
Bromodichloromethane	ND	ND	N/A
Bromoform	ND	ND	N/A
Bromomethane	ND	ND	N/A
Carbon disulfide	ND	ND	2,700
Carbon tetrachloride	ND	ND	600
Chlorobenzene	ND	ND	1,700
Chloroethane	ND	ND	1,900
Chloroform	2	2	300
Chloromethane	ND	ND	N/A
cis-1,2-Dichloroethene	ND	ND	N/A
cis-1,3-Dichloropropene	ND	ND	N/A
Dibromochloromethane	ND	ND	N/A
Ethylbenzene	ND	ND	5,500
Methylene chloride	5.3	5.5	100
Total Xylenes	ND	ND	1,200
Styrene	ND	ND	N/A
Tetrachloroethene	ND	ND	1,400
Toluene	ND	ND	1,500
trans-1,2-Dichloroethene	ND	ND	N/A
trans-1,3-Dichloropropene	ND	ND	N/A
Trichloroethene	ND	ND	700
Vinyl chloride	ND	ND	200
Total Volatile Organic Compounds	7.3	7.5	10,000

- 1) All concentrations are presented in ug/kg or parts per billion (ppb).
- 2) ND denotes None Detected above the laboratory detection limit.
- 3) All samples were analyzed for VOC's by EPA Method 8260 STARS
- 4) Guidance values were obtained from the NYSDEC TAGM Memorandum #4046 12/20/00 Memo Consolidating TAGM #4046 and STARS #1
- 5) Denotes exceedence of the TAGM Recommended Clean-up Objectives

TABLE II SUMMARY OF TOTAL SEMI-VOLATILE ORGANIC COMPOUNDS SURFACE SAMPLE - FACTORY SITE Frienship Foundry

Town of Friendship, New York

	Town of Friendship, New York					
Sample Identification and Date	TP-6, TP-11 and TP-16 Comp 09/10/07	TP-49, TP-46 and TP-42 Comp 09/10/07	TP-37, TP-39, TP-40B 09/07/07	TP-31, TP-32 and TP-38 09/07/07	NYSDEC TAGM Cleanup Objectives	
Analyte					1	
(3+4) Methylphenol	ND	ND	ND	ND	N/A	
1,2,4-Trichlorobenzene	ND	ND ND	ND ND	ND ND	N/A	
1,2-Dichlorobenzene	ND	ND	ND ND	ND ND	N/A	
1,3-Dichlorobenzene	ND	ND ND	ND ND	ND ND	N/A	
1,4-Dichlorobenzene	ND	ND ND	ND ND	ND ND	N/A	
2,4,5-Trichlorophenol	ND	ND ND	ND ND	ND ND	100	
	ND ND	ND ND	ND ND	ND ND	N/A	
2,4,6-Trichlorophenol	ND ND	ND ND	ND ND	ND ND	400	
2,4-Dichlorophenol						
2,4-Dimethylphenol	ND	ND	ND	ND	N/A	
2,4-Dinitrotoluene	ND	ND	ND	ND	N/A	
2,6-Dinitrotoluene	ND	ND	ND	ND	1,000	
2-Chloronaphthalene	ND	ND	ND	ND	N/A	
2-Chlorophenol	ND	ND	ND	ND	800	
2-Methylnaphthalene	ND	ND	ND	40	36,400	
2-Methylphenol	ND	ND	ND	ND	100	
2-Nitroaniline	ND	ND	ND	ND	430	
2-Nitrophenol	ND	ND	ND	ND	330	
3,3'-Dichlorobenzidine	ND	ND	ND	ND	N/A	
3-Nitroaniline	ND	ND	ND	ND	500	
4,6-Dinitro-2-methylphenol	ND	ND	ND	ND	N/A	
4-Bromophenyl phenyl ether	ND	ND	ND	ND	N/A	
4-Nitroaniline	ND	ND	ND	ND	N/A	
4-Nitrophenol	ND	ND	ND	ND	100	
Acenaphthene	ND	ND	ND	ND	50,000	
Acenaphthylene	ND	ND	ND	ND	41,000	
Anthracene	ND	ND	ND	ND	50,000	
Benz(a)anthracene	ND	ND	ND	ND	224	
Benzo(a)pyrene	ND	ND	ND	ND	61	
Benzo(b)fluoranthene	ND ND	ND ND	ND ND	ND ND	1,100	
Benzo(g,h,i)perylene	ND ND	ND ND	ND ND	ND ND	50,000	
Benzo(k)fluoranthene	ND ND	ND ND	ND ND	ND ND	1,100	
Bis(2-chloroethoxy)methane	ND	ND ND	ND ND	ND ND	N/A	
Bis(2-chloroethyl)ether	ND	ND ND	ND ND	ND ND	N/A	
• • •	ND ND	ND ND	ND ND	ND ND	N/A	
Bis(2-chloroisopropyl)ether	100	ND ND		300		
Bis(2-ethylhexyl)phthalate			ND ND		50,000	
Butyl benzyl phthalate	ND ND	ND	ND ND	ND ND	50,000	
Carbazole	ND ND	ND	ND ND	ND ND	N/A	
Chrysene	ND	ND	ND	ND	400	
Di-n-butyl phthalate	ND	ND	ND	ND	8,100	
Di-n-octyl phthalate	ND	ND	ND	ND	50,000	
Dibenz(a,h)anthracene	ND	ND	ND	ND	14	
Dibenzofuran	ND	ND	ND	ND	6,200	
Diethyl phthalate	ND	ND	ND	ND	7,100	
Dimethyl phthalate	ND	ND	ND	ND	2,000	
Fluoranthene	ND	1,000	ND	100	50,000	
Fluorene	ND	ND	ND	ND	50,000	
Hexachlorobenzene	ND	ND	ND	ND	410	
Hexachlorobutadiene	ND	ND	ND	ND	N/A	
Hexachlorocyclopentadiene	ND	ND	ND	ND	N/A	
Hexachloroethane	ND	ND	ND	ND	N/A	
Indeno(1,2,3-cd)pyrene	ND	ND	ND	ND	3,200	
Isophorone	ND	ND	ND	ND	4,400	
N-Nitrosodi-n-propylamine	ND	ND	ND	ND	N/A	
N-Nitrosodiphenylamine	ND ND	ND ND	ND ND	ND ND	N/A	
Naphthalene	ND	ND ND	ND ND	ND ND	13,000	
Nitrobenzene	ND	ND ND	ND ND	ND ND	200	
Pentachlorophenol	ND	ND ND	ND ND	ND ND	1,000	
Phenanthrene	ND ND	1,000	ND ND	80	50,000	
FIICHAHUHENE		1,000 ND	ND ND	ND	30	
Dhonel						
Phenol Pyrene	ND ND	2,000	ND ND	300	50,000	

¹⁾ All concentrations are presented in ug/kg or parts per billion (ppb).

²⁾ ND denotes None Detected above the laboratory detection limit.

³⁾ All samples were analyzed for semi-VOCs by EPA Method 8270 STARS

⁴⁾ Guidance values were obtained from the NYSDEC TAGM Memorandum #4046 - 12/20/00 Memo Consolidating TAGM #4046 and STARS #1

⁵⁾ Denotes exceedence of the TAGM Soil Recommended Clean-up Objectives

TABLE III SUMMARY OF TOTAL METALS SURFACE SAMPLE - FACTORY SITE Friendship Foundry

Town of Friendship, New York

	Town of Friendship, Non-Tork							
Sample Identification and Date	TP-6, TP-11 and TP-16 Comp 09/10/07	TP-49, TP-46 and TP-42 Comp 09/10/07	TP-37, TP-39, TP-40B 09/07/07	TP-31, TP-32 and TP-38 09/07/07	SS-1 11/14/07	SS-2 11/14/07	SS-3 11/14/07	Soil Concentration Limitations
Analyte							Limitations	
Aluminum	7,200	10,000	9,000	9,200	8,700	9,500	11,000	N/A
Antimony	ND	ND	ND	ND	ND	ND	ND	N/A
Arsenic	7.9	11.0	14.0	10.0	15.0	15.0	13.0	16
Barium	75	92	130	70	84	110	77	400
Beryllium	ND ND	0.7	ND	ND	ND	ND	ND	590
Cadmium	2.0	0.8	1.0	0.8	6.2	5.6	4.1	9.3
Calcium	28,000	15,000	6,400	1,900	6,000	5,900	8,600	N/A
Chromium	21	12	9	12	27	27	17	N/A
Cobalt	7.8	8.9	7.2	6.7	9.7	10.0	11.0	N/A
Copper	44	21	22	37	48	39	26	270
Iron	29,000	21,000	19,000	17,000	32,000	31,000	24,000	N/A
Lead	160	48	92	180	240	120	33	1,000
Magnesium	7,900	4,500	1,500	1,400	3,000	3,500	4,100	N/A
Manganese	850	640	620	440	790	850	590	10,000
Nickel	28	17	10	11	33	28	23	310
Potassium	1,200	1,200	530	630	1,400	1,400	1,900	N/A
Selenium	5.9	4.7	4.6	5.4	2.7	1.3	ND	1,500
Silver	ND	ND	ND	ND	ND	ND	24	1,500
Sodium	ND	ND	ND	ND	ND	ND	ND	N/A
Thallium	ND	ND	ND	ND	ND	ND	ND	N/A
Vanadium	10	10	10	10	10	20	20	N/A
Zinc	190	110	130	160	230	130	92	10,000
Mercury	0.082	0.046	0.120	0.110	0.180	0.064	0.032	2.8

- 1) All concentrations are presented in mg/kg or parts per million (ppm).
- 2) ND denotes None Detected above the laboratory detection limit.
- 3) All samples were analyzed for metals via Method 6010

TABLE IV SUMMARY OF TOTAL POLYCHLORINATED BIPHENYLS SURFACE SAMPLE - FACTORY SITE Friendship Foundry Town of Friendship, New York

Sample Identification	TP-6, TP-11 and TP-16 Comp	TP-49, TP-46 and TP-42 Comp	TP-37, TP-39, TP-40B	TP-31, TP-32 and TP-38	NYSDEC TAGM
and Date	09/10/07	09/10/07	09/07/07	09/07/07	Cleanup Objectives
Analyte					
Aroclor 1016	ND	ND	ND	ND	N/A
Aroclor 1221	ND	ND	ND	ND	N/A
Aroclor 1232	ND	ND	ND	ND	N/A
Aroclor 1242	ND	ND	ND	ND	N/A
Aroclor 1248	ND	ND	ND	ND	N/A
Aroclor 1254	ND	ND	ND	ND	N/A
Aroclor 1260	ND	ND	ND	ND	N/A
Aroclor 1268	ND	ND	ND	ND	N/A
Total PCBS	ND	ND	ND	ND	100

- 1) All concentrations are presented in ug/kg or parts per billion (ppb).
- 2) ND denotes None Detected above the laboratory detection limit.
- 3) All samples were analyzed for PCBs via Method 8082
- 4) Guidance values were obtained for the SURFACE from the NYSDEC TAGM Memorandum #4046 12/20/00 Memo Consolidating TAGM #4046
- 5) Denotes exceedence of the TAGM Recommended Clean-up Objectives

TABLE V SUMMARY OF TOTAL HERBICIDES/PESTICIDES SURFACE SAMPLE - FACTORY SITE

Friendship Foundry Town of Friendship, New York

Sample Identification and Date	TP-6, TP-11 and TP-16 Comp 09/10/07	TP-49, TP-46 and TP-42 Comp 09/10/07	TP-37, TP-39, TP-40B 09/07/07	TP-31, TP-32 and TP-38 09/07/07	NYSDEC TAGM Recommended
Analyte					Cleanup Objectives
Herbicides					
2,4,5-T	ND	ND	ND	ND	1,900
2,4,5-TP (Silvex)	ND	ND	ND	ND	700
2,4-D	ND	ND	ND	ND	500
Dicamba	ND	ND	ND	ND	N/A
Dinoseb	ND	ND	ND	ND	N/A
Total Herbicides	ND	ND	ND	ND	
Pesticides					
4-4'-DDD	ND	ND	ND	ND	2,900
4,4'-DDE	ND	ND	ND	ND	2,100
4,4'-DDT	ND	ND	ND	ND	2,100
Aldrin	ND	ND	ND	ND	41
alpha-BHC	ND	ND	ND	ND	110
alpha-Chlordane	ND	ND	ND	ND	540
beta-BHC	ND	ND	ND	ND	200
delta-BHC	ND	ND	ND	ND	300
Dieldrin	ND	ND	ND	ND	44
Endosulfan I	ND	ND	ND	ND	900
Endosulfan II	ND	ND	ND	ND	900
Endosulfan sulfate	ND	ND	ND	ND	1,000
Endrin	ND	ND	ND	ND	100
Endrin aldehyde	ND	ND	ND	ND	N/A
Endrin ketone	ND	ND	ND	ND	N/A
gamma-BHC	ND	ND	ND	ND	60
gamma-Chlordane	ND	ND	ND	ND	540.00
Heptachlor	ND	ND	ND	ND	100
Heptachlor epoxide	ND	ND	ND	ND	20
Methoxychlor	ND	ND	ND	ND	10,000
Toxaphene	ND	ND	ND	ND	N/A
Total Pesticides	ND	ND	ND	ND	

- 1) All concentrations are presented in ug/kg or parts per billion (ppb).
- 2) ND denotes None Detected above the laboratory detection limit.
- 3) All samples were analyzed for Herbicides via Method 8151 and Pesticides via Method 8081
- 4) Guidance values were obtained from the NYSDEC TAGM Memorandum #4046 12/20/00 Memo Consolidating TAGM #4046
- 5) Denotes exceedence of the TAGM Recommended Clean-up Objectives

TABLE VI SUMMARY OF TOTAL PHENOLICS SURFACE SAMPLES - FACTORY SITE Friendship Foundry Town of Friendship, New York

		1 /		
Sample Identification	TP-6, TP-11 and TP-16 Comp	TP-49, TP-46 and TP-42 Comp	TP-37, TP-39, TP-40B	TP-31, TP-32 and TP-38
and Date	09/10/07	09/10/07	09/07/07	09/07/07
Analyte				
Total Phenolics	0.181	0.545	0.539	ND

- 1) All concentrations are presented in mg/kg or parts per million (ppm).
- 2) ND denotes None Detected above the laboratory detection limit.
- 3) All samples were analyzed for Total Phenolics via Method 420.1

TABLE VII SUMMARY OF TOTAL HEXAVALENT CHROMIUM SURFACE SAMPLES - FACTORY SITE Friendship Foundry Town of Friendship, New York

Sample Identification	TP-6, TP-11 and TP-16 Comp	TP-49, TP-46 and TP-42 Comp
and Date	09/10/07	09/10/07
Analyte		
Hexavalent Chromium	ND	ND

- 1) All concentrations are presented in mg/kg or parts per million (ppm).
- 2) ND denotes None Detected above the laboratory detection limit.
- 3) All samples were analyzed for Hexavalent Chromium via Method 7196

APPENDIX A SITE PHOTOGRAPHS – FACTORY SITE

Test Pit 1

Test Pit 2

Test Pit 4

Test Pit 5

Test Pit 6A

Test Pit 7

Test Pit 8

Test Pit 10

Test Pit 11

Test Pit 12

Test Pit 13

Test Pit 15

Test Pit 17

Test Pit 18

Test Pit 19

Test Pit 20

Test Pit 21

Test Pit 22

Test Pit 23

Test Pit 24

Test Pit 25

Test Pit 26

Test Pit 28

Test Pit 29

Test Pit 30

Test Pit 32

Test Pit 33

Test Pit 34 with water main exposed

Test Pit 35

06 77 20607

Test Pit 37

Test Pit 38

Test Pit 39

Test Pit 40A

Test Pit 40B

Test Pit 44

Test Pit 45

Test Pit 46

Test Pit 47

Test Pit 48

Test Pit 49

55-gallon drum taken from TP-49

APPENDIX B TEST PIT LOGS – FACTORY SITE

5167 South Park Avenue Hamburg, NY 14075

Western New York Office

Phone: (716) 649-8110 Fax: (716) 649-8051

G. Morris

PROJECT CLIENT CONTRACTOR FIELD REP Friendship Foundry
NYSDEC
Empire - Geo Services, Inc.
J. Metzger / B. Murray

Sept. 2007

LOCATION TEST PIT NO. PROJECT NO. WEATHER / TEMP Friendship, New York
TP-1 (factory site)
BEV-07-022
sunny / 80°F

EXCAVATION EQUIP
GROUND ELEV
TIME STARTED
TIME FINISHED

Ford Backhoe

OPERATOR MAKE/ MODEL CAPACITY REACH

Ford 555 c Backhoe

CY

FT

PROP USED

DEPTH	SOIL DESCRIPTION	PID READING	Remarks
	Brown coarse gravel (fill)	0	
1'	Brown coarse graver (IIII)		
2'			
3'	Brown f-c sand and f-c gravel, tr. silt (fill)	0	
4'			
5'		0	
6'			
7'	Gray Silty CLAY, tr. Sand	0	
8'	Test Pit Completed at 7.0'		
9'			
10			
11'			
12'			
13'			
14'			
15'			

Analytical sample taken at 5' bgs for metals F - FINE F/M - FINE TO MEDIUM TRACE (TR.) 0-10% and PCBs C - COARSE F/C-FINE/COARSE LITTLE (LI.) 10 - 20% PID = 0.0 ppmGR - GRAY SOME (SO.) M - MEDIUM 20 -35% BN - BROWN V-VERY AND 35 - 50% YEL-YELLOW

ABREVIATIONS

L31 FIT TILLD LOC

Western New York Office 5167 South Park Avenue Hamburg, NY 14075

Phone: (716) 649-8110 Fax: (716) 649-8051

G. Morris

PRC	JECT	
CLII	ENT	
CON	NTRACTOR	2
FIFI	D REP	

Friendship Foundry
NYSDEC
Empire - Geo Services, Inc.
J. Metzger / B. Murray

Sept. 2007

LOCATION TEST PIT NO. PROJECT NO. WEATHER / TEMP Friendship, New York
TP-2/2A (factory site)
BEV-07-022
sunny / 80°F

EXCAVATION EQUIP Ford Backhoe
GROUND ELEV
TIME STARTED
TIME FINISHED

Ford Backhoe

OPERATOR MAKE/ MODEL CAPACITY REACH

Ford 555 c Backhoe

CY

FT

DEPTH	SOIL DESCRIPTION	PID READING	Remark
1'	f-c sand and f-c gravel, little silt	0	
2'			
3'	Concrete slab encountered at 3.0'	0	
	Test Pit Completed at 3.0'		
4'			
5'			
6'			
7'			
8'			
9'			
10			
11'			
12'			
13'			
14'			
15'			
	ABREVIATIONS	PROP USED	

PID = 0.0 ppmF - FINE F/M - FINE TO MEDIUM TRACE (TR.) 0-10% C - COARSE F/C-FINE/COARSE LITTLE (LI.) 10 - 20% GR - GRAY SOME (SO.) M - MEDIUM 20 -35% AND BN - BROWN V-VERY 35 - 50% YEL-YELLOW

5167 South Park Avenue Hamburg, NY 14075

Western New York Office

Phone: (716) 649-8110 Fax: (716) 649-8051

G. Morris

Sept. 2007

PROJECT CLIENT CONTRACTOR FIELD REP

Friendship Foundry
NYSDEC
Empire - Geo Services, Inc.
J. Metzger / B. Murray

LOCATION TEST PIT NO. PROJECT NO. WEATHER / TEMP Friendship, New York
TP-3 (factory site)
BEV-07-022
sunny / 80°F

EXCAVATION EQUIP
GROUND ELEV
TIME STARTED
TIME FINISHED

Ford Backhoe

OPERATOR MAKE/ MODEL CAPACITY REACH

Ford 555 c Backhoe

CY

FT

DEPTH	SOIL DESCRIPTION	PID	Remarks
		READING	
	Brown f-c sand and f-c gravel, little silt		
1'			
		0	
2'			
3'	black s-m sand, some slag, slight odor	11.6	
4'	black 5-III Sand, Some Slag, Slight odor	11.0	
	Gray silty Clay		
5'	Gray Sitty Glay		
	Test Pit Completed at 5.0'		
6'	•		
7'			
8'			
9'			
10			
10			
11'			
12'			
13'			
14'			
451			
15'			

PID = 11.6 ppm

Analytical samples taken at 4.0' for VOCs, sVOCs,

Pesticides, Herbicides, Metals, PCBs, and

Hexavalent Chromium

ABREVIATIONS

F - FINE F/M - FINE TO MEDIUM

C - COARSE F/C-FINE/COARSE

GR - GRAY M - MEDIUM

BN - BROWN V-VERY

YEL-YELLOW

TRACE (TR.) 0-10% LITTLE (LI.) 10 - 20% SOME (SO.) 20 -35% AND 35 - 50%

PROP USED

Western New York Office 5167 South Park Avenue Hamburg, NY 14075

Phone: (716) 649-8110 Fax: (716) 649-8051

G. Morris

PROJECT Friendship Foundry
CLIENT NYSDEC
CONTRACTOR Empire - Geo Service

NYSDEC
Empire - Geo Services, Inc.
J. Metzger / B. Murray

Sept. 2007

LOCATION TEST PIT NO. PROJECT NO. WEATHER / TEMP Friendship, New York
TP-4 (factory site)
BEV-07-022
sunny / 80°F

EXCAVATION EQUIP Ford Backhoe
GROUND ELEV
TIME STARTED
TIME FINISHED

FIELD REP

Ford Backhoe

OPERATOR MAKE/ MODEL CAPACITY REACH

Ford 555 c Backhoe

CY

FT

DEPTH	SOIL DESCRIPTION	PID	Remark
		READING	
	Brown f-c sand and f-c gravel, little silt		
1'			
		0	
2'	some organics		
3'			
		0	
4'			
	Gray silty Clay, tr. Sand		
5'			
	Test Pit Completed at 5.0'		
6'			
7'			
8'			
9'			
9			
10			
10			
11'			
11			
12'			
12			
13'			
10			
14'			
17			
15'			
	ABREVIATIONS	PROP USED	

PID = 0.0 ppmF - FINE F/M - FINE TO MEDIUM TRACE (TR.) 0-10% C - COARSE F/C-FINE/COARSE LITTLE (LI.) 10 - 20% GR - GRAY SOME (SO.) M - MEDIUM 20 -35% AND BN - BROWN V-VERY 35 - 50% YEL-YELLOW

Western New York Office 5167 South Park Avenue Hamburg, NY 14075

Phone: (716) 649-8110 Fax: (716) 649-8051

G. Morris

PROJECT CLIENT CONTRACTOR FIELD REP Friendship Foundry
NYSDEC
Empire - Geo Services, Inc.
J. Metzger / B. Murray

Sept. 2007

LOCATION TEST PIT NO. PROJECT NO. WEATHER / TEMP Friendship, New York
TP-5 (factory site)
BEV-07-022
sunny / 80°F

EXCAVATION EQUIP Ford Backhoe
GROUND ELEV
TIME STARTED
TIME FINISHED

Ford Backhoe

OPERATOR MAKE/ MODEL CAPACITY REACH

Ford 555 c Backhoe

CY

FT

DEPTH	SOIL DESCRIPTION	PID	Remark
		READING	
	Brown f-c sand and f-c gravel, little silt	0	
1'			
		0	
2'			
		0	
3'	Concrete slab encountered at 3.0'		
	Test Pit Completed at 3.0'		
4'	·		
·			
5'			
6'			
7'			
,			
8'			
0			
9'			
9			
10			
10			
11'			
101			
12'			
13'			
14'			
15'			
	ABREVIATIONS	PROP USED	

PID = 0.0 ppmF - FINE F/M - FINE TO MEDIUM TRACE (TR.) 0-10% C - COARSE F/C-FINE/COARSE LITTLE (LI.) 10 - 20% GR - GRAY SOME (SO.) M - MEDIUM 20 -35% BN - BROWN V-VERY AND 35 - 50% YEL-YELLOW

Hamburg, NY 14075 Phone: (716) 649-8110

Fax: (716) 649-8051

Western New York Office 5167 South Park Avenue

PROJECT CLIENT CONTRACTOR FIELD REP

Friendship Foundry NYSDEC Empire - Geo Services, Inc. J. Metzger / B. Murray

Sept. 2007

LOCATION TEST PIT NO. PROJECT NO. WEATHER / TEMP Friendship, New York TP-6/6A (factory site) BEV-07-022 sunny / 80°F

EXCAVATION EQUIP Ford Backhoe **GROUND ELEV** TIME STARTED TIME FINISHED

OPERATOR MAKE/ MODEL CAPACITY **REACH**

G. Morris Ford 555 c Backhoe CY FT

SOIL DESCRIPTION	PID	Remarks
		riomanic
Brown f-c sand and f-c gravel, little silt		
	0	
	0	
Test Pit Completed at 2.5'		
	Brown f-c sand and f-c gravel, little silt Concrete slab encountered at 2.5' Test Pit Completed at 2.5'	Brown f-c sand and f-c gravel, little silt 0 Concrete slab encountered at 2.5' 0

Analytical Sample taken at 1.5' for Metals	F - FINE	F/M - FINE TO MEDIUM	TRACE (TR.)	0-10%
Composite analytical sample taken with TP-11 and	C - COARSE	F/C-FINE/COARSE	LITTLE (LI.)	10 - 20%
TP-16 at the surface for VOCs, s-VOCs, Metals,	GR - GRAY	M - MEDIUM	SOME (SO.)	20 -35%
Herbicides, Pesticides, Total Phenolics, and	BN - BROWN	V-VERY	AND	35 - 50%
Hexavalent Chromium	YEL-YELLOW			

G. Morris

Phone: (716) 649-8110 Fax: (716) 649-8051

Western New York Office 5167 South Park Avenue Hamburg, NY 14075

Sept. 2007

PROJECT CLIENT CONTRACTOR FIELD REP

Friendship Foundry NYSDEC Empire - Geo Services, Inc. J. Metzger / B. Murray

LOCATION TEST PIT NO. PROJECT NO. **WEATHER / TEMP**

Friendship, New York TP-7 (factory site) BEV-07-022 sunny / 80°F

EXCAVATION EQUIP Ford Backhoe **GROUND ELEV** TIME STARTED TIME FINISHED

OPERATOR MAKE/ MODEL CAPACITY **REACH**

Ford 555 c Backhoe CY FT

PROP USED

DEPTH	SOIL DESCRIPTION	PID	Remarks
		READING	
	Brown f-c sand and f-c gravel	0	
1'	some slag, little silt		
		0	
2'			
	Concrete slab encountered at 2.5'	0	
3'	Test Pit Completed at 2.5'		
4'			
5'			
6'			
7'			
8'			
9'			
10			
11'			
12'			
13'			
13			
14'			
15'			

PID = 0.0 ppmF - FINE F/M - FINE TO MEDIUM TRACE (TR.) 0-10% Analytical Sample taken at 2.5' at C - COARSE F/C-FINE/COARSE LITTLE (LI.) 10 - 20% GR - GRAY SOME (SO.) M - MEDIUM 20 -35% AND 35 - 50% BN - BROWN V-VERY YEL-YELLOW

ABREVIATIONS

5167 South Park Avenue Hamburg, NY 14075

G. Morris

Phone: (716) 649-8110 Fax: (716) 649-8051

Western New York Office

Sept. 2007

PROJECT CLIENT CONTRACTOR FIELD REP Friendship Foundry
NYSDEC
Empire - Geo Services, Inc.
J. Metzger / B. Murray

LOCATION TEST PIT NO. PROJECT NO. WEATHER / TEMP Friendship, New York
TP-8 (factory site)
BEV-07-022
sunny / 80°F

EXCAVATION EQUIP Ford Backhoe
GROUND ELEV
TIME STARTED
TIME FINISHED

Ford Backhoe

OPERATOR MAKE/ MODEL CAPACITY REACH

Ford 555 c Backhoe

CY

FT

DEPTH	SOIL DESCRIPTION	PID	Remark
		READING	
	Brown f-c sand and f-c gravel, little silt	0	
1'			
		0	
2'			
		0	
3'	black sand and gravel, tr slag		
		0	
4'	gray silty Clay		
		0	
5'			
		0	
6'	Test Pit Completed at 5.5'		
7'			
8'			
9'			
9			
10			
10			
11'			
12'			
13'			
14'			
15'			
	ABREVIATIONS	PROP USED	

PID = 0.0 ppmF - FINE F/M - FINE TO MEDIUM TRACE (TR.) 0-10% Analytical Sample taken at 4.0' for Metals and PCBs C - COARSE F/C-FINE/COARSE LITTLE (LI.) 10 - 20% GR - GRAY SOME (SO.) M - MEDIUM 20 -35% AND 35 - 50% BN - BROWN V-VERY YEL-YELLOW

Western New York Office 5167 South Park Avenue Hamburg, NY 14075

Phone: (716) 649-8110 Fax: (716) 649-8051

G. Morris

PROJECT CLIENT CONTRACTOR FIELD REP Friendship Foundry
NYSDEC
Empire - Geo Services, Inc.
J. Metzger / B. Murray

Sept. 2007

LOCATION TEST PIT NO. PROJECT NO. WEATHER / TEMP Friendship, New York
TP-9 (factory site)
BEV-07-022
sunny / 80°F

EXCAVATION EQUIP Ford Backhoe
GROUND ELEV
TIME STARTED
TIME FINISHED

Ford Backhoe

OPERATOR MAKE/ MODEL CAPACITY REACH

Ford 555 c Backhoe

CY

FT

DEPTH	SOIL DESCRIPTION	PID	Remark
		READING	
	Brown f-c sand and f-c gravel	0	
1'	mixed with asphalt, metal frags.		
		0	
2'			
		0	
3'			
		0	
4'			
E.	Compared alph apparentaged at F.O.	0	
5'	Concrete slab encountered at 5.0' Test Pit Completed at 5.0'		
6'	rest Fit Completed at 5.0		
7'			
•			
8'			
9'			
10			
11'			
12'			
12			
13'			
10			
14'			
15'			
		i	

ABREVIATIONS PROP USED PID = 0.0 ppmF - FINE F/M - FINE TO MEDIUM TRACE (TR.) 0-10% C - COARSE F/C-FINE/COARSE LITTLE (LI.) 10 - 20% GR - GRAY SOME (SO.) M - MEDIUM 20 -35% BN - BROWN V-VERY AND 35 - 50% YEL-YELLOW

Western New York Office 5167 South Park Avenue Hamburg, NY 14075

Phone: (716) 649-8110 Fax: (716) 649-8051

G. Morris

PROJECT CLIENT CONTRACTOR FIELD REP Friendship Foundry
NYSDEC
Empire - Geo Services, Inc.
J. Metzger / B. Murray

Sept. 2007

LOCATION TEST PIT NO. PROJECT NO. WEATHER / TEMP Friendship, New York
TP-10 (factory site)
BEV-07-022
sunny / 80°F

EXCAVATION EQUIP Ford Backhoe
GROUND ELEV
TIME STARTED
TIME FINISHED

Ford Backhoe

OPERATOR MAKE/ MODEL CAPACITY REACH

Ford 555 c Backhoe

CY

FT

DEPTH	SOIL DESCRIPTION	PID	Remark
		READING	
	Brown f-c sand and f-c gravel, tr silt	0	
1'			
21	Concrete alab anacymtered at 2.01	0	
2'	Concrete slab encountered at 2.0' Test Pit Completed at 2.0'		
3'	rest i it completed at 2.0		
4'			
5'			
6'			
7'			
8'			
9'			
10			
111			
11'			
12'			
13'			
14'			
451			
15'			

PID = 0.0 ppmF - FINE F/M - FINE TO MEDIUM TRACE (TR.) 0-10% C - COARSE F/C-FINE/COARSE LITTLE (LI.) 10 - 20% SOME (SO.) GR - GRAY M - MEDIUM 20 -35% AND BN - BROWN V-VERY 35 - 50% YEL-YELLOW

Western New York Office 5167 South Park Avenue Hamburg, NY 14075

Phone: (716) 649-8110 Fax: (716) 649-8051

PROJECT CLIENT CONTRACTOR FIELD REP Friendship Foundry
NYSDEC
Empire - Geo Services, Inc.
J. Metzger / B. Murray

Sept. 2007

LOCATION TEST PIT NO. PROJECT NO. WEATHER / TEMP Friendship, New York
TP-11 (factory site)
BEV-07-022
sunny / 80°F

EXCAVATION EQUIP Ford Backhoe
GROUND ELEV
TIME STARTED
TIME FINISHED

Ford Backhoe

OPERATOR MAKE/ MODEL CAPACITY REACH G. Morris
Ford 555 c Backhoe

CY
FT

Brown f-c sand and f-c gravel, little silt	READING 0	
Brown 1-c sand and 1-c gravel, little slit	0	
	0	
Test Pit Completed at 2.0'		
	<u> </u>	
	Test Pit Completed at 2.0' Test Pit Completed at 2.0' ABREVIATIONS	Test Pit Completed at 2.0'

PID = 0.0 ppm
PID = 0.0 ppm Composite analytical sample taken with TP-6 and
TP-16 at the surface for VOCs, s-VOCs, Metals, PCBs, Herbicides, Pesticides, Total Phenolics, and Hexavalent Chromium
PCBs, Herbicides, Pesticides, Total Phenolics, and
Hexavalent Chromium

ABREVIATIONS

F - FINE F/M - FINE TO MEDIUM

C - COARSE F/C-FINE/COARSE

GR - GRAY M - MEDIUM

BN - BROWN V-VERY

YEL-YELLOW

TRACE (TR.) 0-10%

LITTLE (LI.) 10 - 20%

SOME (SO.) 20 -35%

AND 35 - 50%

FII FIELD LOG

Western New York Office 5167 South Park Avenue Hamburg, NY 14075

Phone: (716) 649-8110 Fax: (716) 649-8051

G. Morris

PROJECT CLIENT CONTRACTOR FIELD REP Friendship Foundry
NYSDEC
Empire - Geo Services, Inc.
J. Metzger / B. Murray

Sept. 2007

LOCATION TEST PIT NO. PROJECT NO. WEATHER / TEMP Friendship, New York
TP-12 (factory site)
BEV-07-022
sunny / 80°F

EXCAVATION EQUIP Ford Backhoe
GROUND ELEV
TIME STARTED
TIME FINISHED

Ford Backhoe

OPERATOR
MAKE/ MODEL
CAPACITY
REACH

Ford 555 c Backhoe

CY

FT

PROP USED

DEPTH	SOIL DESCRIPTION	PID	Remarks
		READING	
	Topsoil	0	
1'			
21	brownish-black f-c sand and gravel, tr slag	0	
2'		0	
3'			
		0	
4'			
		0	
5'			
		0	
6'			
	gray silty Clay	0	
7'	Test Pit Completed at 7.0'		
8'	rest Fit Completed at 7.0		
9'			
10			
11'			
101			
12'			
13'			
14'			
15'			

PID = 0.0 ppm	F - FINE	F/M - FINE TO MEDIUM	TRACE (TR.)	0-10%
Analytical Sample taken at 2.0' for Metals and PCBs	C - COARSE	F/C-FINE/COARSE	LITTLE (LI.)	10 - 20%
	GR - GRAY	M - MEDIUM	SOME (SO.)	20 -35%
	BN - BROWN	V-VERY	AND	35 - 50%
	YEL-YELLOW			

ABREVIATIONS

G. Morris

Western New York Office 5167 South Park Avenue Hamburg, NY 14075

Phone: (716) 649-8110 Fax: (716) 649-8051

PROJECT CLIENT CONTRACTOR FIELD REP

Friendship Foundry **NYSDEC** Empire - Geo Services, Inc. J. Metzger / B. Murray

Sept. 2007

LOCATION TEST PIT NO. PROJECT NO. WEATHER / TEMP

Friendship, New York TP-13 (factory site) BEV-07-022 sunny / 80°F

EXCAVATION EQUIP Ford Backhoe **GROUND ELEV** TIME STARTED TIME FINISHED

PID = 0.0 ppm

OPERATOR MAKE/ MODEL CAPACITY **REACH**

Ford 555 c Backhoe CY FT

DEPTH	SOIL DESCRIPTION	PID READING	Remarks
	Brown f-c sand and gravel, some silt	0	
1'			
2'	Concrete slab encountered at 1.5' Test Pit Completed at 1.5'	0	
2	rest Fit Completed at 1.5		
3'			
4'			
5'			
6'			
7'			
8'			
0			
9'			
10			
11'			
12'			
13'			
10			
14'			
15'			
	ABREVIATIONS	PROP USED	

F - FINE

C - COARSE

GR - GRAY

BN - BROWN

YEL-YELLOW

F/M - FINE TO MEDIUM

F/C-FINE/COARSE

M - MEDIUM

V-VERY

TRACE (TR.)

LITTLE (LI.)

SOME (SO.)

AND

0-10%

10 - 20%

20 -35%

35 - 50%

5167 South Park Avenue Hamburg, NY 14075 Phone: (716) 649-8110

Western New York Office

Phone: (716) 649-8110 Fax: (716) 649-8051

G. Morris

PROJECT CLIENT CONTRACTOR FIELD REP

Friendship Foundry
NYSDEC
Empire - Geo Services, Inc.
J. Metzger / B. Murray

Sept. 2007

LOCATION TEST PIT NO. PROJECT NO. WEATHER / TEMP Friendship, New York
TP-14 (factory site)
BEV-07-022
sunny / 80°F

EXCAVATION EQUIP Ford Backhoe
GROUND ELEV
TIME STARTED
TIME FINISHED

Ford Backhoe

OPERATOR MAKE/ MODEL CAPACITY REACH

Ford 555 c Backhoe

CY

FT

DEPTH	SOIL DESCRIPTION	PID	Remark
		READING	
	Brown-black f-c sand	0	
1'			
01		0	
2'		0	
3'			
		0	
4'			
		0	
5'	Concrete Slab encountered at 5.0'		
	Test Pit Completed at 5.0'	0	
6'		0	
7'			
,			
8'			
9'			
10			
10			
11'			
12'			
13'			
14'			
14			
15'			

PID = 0.0 ppm

Analytical Sample taken at 5.0' for Metals and PCBs

VOCs, s-VOCs, Pesticides, Herbicides, Total

Phenolics, and Hexavalent Chromium

ABREVIATIONS

F - FINE F/M - FINE TO MEDIUM

C - COARSE F/C-FINE/COARSE

GR - GRAY M - MEDIUM

BN - BROWN V-VERY

YEL-YELLOW

TRACE (TR.) 0-10% LITTLE (LI.) 10 - 20% SOME (SO.) 20 -35% AND 35 - 50%

PROP USED

Hamburg, NY 14075

G. Morris

Phone: (716) 649-8110 Fax: (716) 649-8051

Western New York Office 5167 South Park Avenue

PROJECT CLIENT CONTRACTOR FIELD REP Friendship Foundry
NYSDEC
Empire - Geo Services, Inc.
J. Metzger / B. Murray

Sept. 2007

LOCATION TEST PIT NO. PROJECT NO. WEATHER / TEMP Friendship, New York
TP-15 (factory site)
BEV-07-022
sunny / 80°F

EXCAVATION EQUIP Ford Backhoe
GROUND ELEV
TIME STARTED
TIME FINISHED

Ford Backhoe

OPERATOR MAKE/ MODEL CAPACITY REACH

Ford 555 c Backhoe

CY

FT

DEPTH	SOIL DESCRIPTION	PID	Remark
	Donath de la constant	READING	
41	Brown-black f-c sand, some concrete fragments	0	
1'			
		0	
2'			
	Concrete Slab encountered at 2.5'	0	
3'	Test Pit Completed at 2.5'		
4'			
5'			
6'			
7'			
8'			
9'			
10			
11'			
12'			
13'			
14'			
15'			

PID = 0.0 ppmF - FINE F/M - FINE TO MEDIUM TRACE (TR.) 0-10% C - COARSE F/C-FINE/COARSE LITTLE (LI.) 10 - 20% GR - GRAY SOME (SO.) M - MEDIUM 20 -35% AND BN - BROWN V-VERY 35 - 50% YEL-YELLOW

5167 South Park Avenue Hamburg, NY 14075

G. Morris

Phone: (716) 649-8110 Fax: (716) 649-8051

Western New York Office

Friendship Foundry

NYSDEC
Empire - Geo Services, Inc.
J. Metzger / B. Murray

Sept. 2007

LOCATION TEST PIT NO. PROJECT NO. WEATHER / TEMP Friendship, New York
TP-16 (factory site)
BEV-07-022
sunny / 80°F

EXCAVATION EQUIP Ford Backhoe
GROUND ELEV
TIME STARTED
TIME FINISHED

PROJECT

FIELD REP

CONTRACTOR

CLIENT

Ford Backhoe

OPERATOR MAKE/ MODEL CAPACITY REACH

Ford 555 c Backhoe

CY

FT

DEPTH	SOIL DESCRIPTION	PID	Remark
		READING	
	Brown-black f-c sand, some silt	0	
1'			
		15	
2'	encountered wood fragments (railroad tie?)		
		869	
3'			
		10	
4'	0		
5'	Gray silty Clay, tr sand	10	
5	Test Pit Completed at 5.0'		
6'	rest Fit Completed at 5.0		
7'			
•			
8'			
9'			
10			
11'			
101			
12'			
13'			
10			
14'			
15'			

Analytical sample taken at 3.0' for VOCs, s-VOCs,
Pesticides, Herbicides, Metals, PCBs, total
pheonolics, and hexavalent chromium
Composite analytical sample taken with TP-6 and
TP-11 at the surface for VOCs, s-VOCs, Pest, Herb,
PCBs, Total Phenolics, and Hexavalent Chromium

F - FINE F/M - I C - COARSE F/C-FI GR - GRAY M - ME

ABREVIATIONS

BN - BROWN

YEL-YELLOW

F/M - FINE TO MEDIUM
F/C-FINE/COARSE
M - MEDIUM
V-VERY

TRACE (TR.) 0-10% LITTLE (LI.) 10 - 20% SOME (SO.) 20 -35%

PROP USED

AND 35 - 50%

5167 South Park Avenue Hamburg, NY 14075

Phone: (716) 649-8110

Western New York Office

Fax: (716) 649-8051

PROJECT CLIENT CONTRACTOR FIELD REP

Friendship Foundry **NYSDEC** Empire - Geo Services, Inc. J. Metzger / B. Murray

Sept. 2007

LOCATION TEST PIT NO. PROJECT NO. WEATHER / TEMP

Friendship, New York TP-17 (factory site) BEV-07-022 sunny / 80°F

EXCAVATION EQUIP Ford Backhoe **GROUND ELEV** TIME STARTED TIME FINISHED

OPERATOR MAKE/ MODEL CAPACITY **REACH**

G. Morris Ford 555 c Backhoe CY FT

DEPTH	SOIL DESCRIPTION	PID	Remark
		READING	
1'	Brown f-c sand and gravel	0	
	Brownish-black f-m sand	0	
2'			
	Concrete Slab encountered at 2.5'	0	
3'	Test Pit Completed at 2.5'		
4'			
5'			
6'			
7'			
8'			
9'			
10			
11'			
12'			
13'			
14'			
15'			
	ABREVIATIONS	PROP USED	

PID = 0.0 ppmF - FINE F/M - FINE TO MEDIUM TRACE (TR.) 0-10% C - COARSE F/C-FINE/COARSE LITTLE (LI.) 10 - 20% GR - GRAY SOME (SO.) M - MEDIUM 20 -35% AND BN - BROWN V-VERY 35 - 50% YEL-YELLOW

Pho

G. Morris

Western New York Office 5167 South Park Avenue Hamburg, NY 14075

Phone: (716) 649-8110 Fax: (716) 649-8051

PROJECT CLIENT CONTRACTOR FIELD REP Friendship Foundry
NYSDEC
Empire - Geo Services, Inc.
J. Metzger / B. Murray

Sept. 2007

LOCATION TEST PIT NO. PROJECT NO. WEATHER / TEMP Friendship, New York
TP-17A (factory site)
BEV-07-022
sunny / 80°F

EXCAVATION EQUIP Ford Backhoe
GROUND ELEV
TIME STARTED
TIME FINISHED

Ford Backhoe

OPERATOR MAKE/ MODEL CAPACITY REACH

Ford 555 c Backhoe

CY

FT

PROP USED

DEPTH	SOIL DESCRIPTION	PID	Remarks
52		READING	Romanio
	Black f-c sand, some gravel, some brick fragments	0	
1'			
		0	
2'			
3'	Concrete Clab Engagnetored at 2 0	0	
3	Concrete Slab Encountered at 3.0' Test Pit Completed at 3.0'		
4'	rest i it completed at 5.0		
5'			
6'			
7.			
7'			
8'			
-			
9'			
10			
441			
11'			
12'			
· -	1		
13'			
14'			
15'			
15	1		
	<u> </u>		

	PID = 0.0 ppm	F - FINE	F/M - FINE TO MEDIUM	TRACE (TR.)	0-10%
	Analyticla sample taken at 3.0' for Metals and PCBs	C - COARSE	F/C-FINE/COARSE	LITTLE (LI.)	10 - 20%
		GR - GRAY	M - MEDIUM	SOME (SO.)	20 -35%
		BN - BROWN	V-VERY	AND	35 - 50%
ı		YFI -YFI I OW			

ABREVIATIONS

Western New York Office 5167 South Park Avenue Hamburg, NY 14075

Phone: (716) 649-8110 Fax: (716) 649-8051

G. Morris

Sept. 2007

PROJECT CLIENT CONTRACTOR FIELD REP Friendship Foundry
NYSDEC
Empire - Geo Services, Inc.
J. Metzger / B. Murray

LOCATION TEST PIT NO. PROJECT NO. WEATHER / TEMP Friendship, New York
TP-18 (factory site)
BEV-07-022
sunny / 80°F

EXCAVATION EQUIP Ford Backhoe
GROUND ELEV
TIME STARTED
TIME FINISHED

Ford Backhoe

OPERATOR MAKE/ MODEL CAPACITY REACH

Ford 555 c Backhoe

CY

FT

DEPTH	SOIL DESCRIPTION	PID	Remarks
		READING	
1'	Brown f-c sand and f-c gravel, little silt	0	
<u>'</u>		0	
2'			
3'		0	
4'		0	
		0	
5'		0	
6'			
7'		0	
8'		0	
9'		0	
		0	
10	Tool Dit Commission of 40 Ol		
11'	Test Pit Completed at 10.0'		
12'			
13'			
14'			
15'			
	ADDEVIATIONS.		

PID = 0.0 ppm

Groundwater encountered at 9.5' below the ground surface (bgs)

ABREVIATIONS

F - FINE F/M - FINE TO MEDIUM

C - COARSE F/C-FINE/COARSE

GR - GRAY M - MEDIUM

BN - BROWN V-VERY

YEL-YELLOW

PROP USED

TRACE (TR.) 0-10%

LITTLE (LI.) 10 - 20%

SOME (SO.) 20 -35%

AND 35 - 50%

Western New York Office 5167 South Park Avenue Hamburg, NY 14075

Phone: (716) 649-8110 Fax: (716) 649-8051

G. Morris

PROJECT CLIENT CONTRACTOR

FIELD REP

Friendship Foundry
NYSDEC
Empire - Geo Services, Inc.
J. Metzger / B. Murray

Sept. 2007

LOCATION TEST PIT NO. PROJECT NO. WEATHER / TEMP Friendship, New York
TP-19 (factory site)
BEV-07-022
sunny / 80°F

EXCAVATION EQUIP Ford Backhoe
GROUND ELEV
TIME STARTED
TIME FINISHED

Ford Backhoe

OPERATOR MAKE/ MODEL CAPACITY REACH

Ford 555 c Backhoe

CY

FT

DEPTH	SOIL DESCRIPTION	PID	Remark
		READING	
	Brown f-c sand and f-c gravel, little silt	0	
1'			
01		0	
2'		0	
3'		ŭ	
-		0	
4'			
		0	
5'			
6'		0	
<u> </u>	Test Pit Completed at 6.0'		
7'	·		
8'			
9'			
,			
10			
11'			
12'			
12			
13'			
14'			
15'			

ABREVIATIONS PROP USED PID = 0.0 ppmF - FINE F/M - FINE TO MEDIUM TRACE (TR.) 0-10% C - COARSE F/C-FINE/COARSE LITTLE (LI.) 10 - 20% GR - GRAY SOME (SO.) M - MEDIUM 20 -35% BN - BROWN V-VERY AND 35 - 50% YEL-YELLOW

Western New York Office 5167 South Park Avenue Hamburg, NY 14075

Phone: (716) 649-8110 Fax: (716) 649-8051

G. Morris

PROJECT CLIENT CONTRACTOR FIELD REP Friendship Foundry
NYSDEC
Empire - Geo Services, Inc.
J. Metzger / B. Murray

Sept. 2007

LOCATION TEST PIT NO. PROJECT NO. WEATHER / TEMP Friendship, New York
TP-20 (factory site)
BEV-07-022
sunny / 80°F

EXCAVATION EQUIP Ford Backhoe
GROUND ELEV
TIME STARTED
TIME FINISHED

Ford Backhoe

OPERATOR MAKE/ MODEL CAPACITY REACH

Ford 555 c Backhoe

CY

FT

DEPTH	SOIL DESCRIPTION	PID	Remarks
		READING	
	Black f-c sand and gravel, some slag	0	
1'			
		0	
2'	orange f-m sand		
3'	Brown f-c sand and f-c gravel	0	
3		0	
4'			
'		0	
5'			
		0	
6'			
		0	
7'			
		0	
8'	Test Pit Completed at 7.5'		
9'			
9			
10			
10			
11'			
12'			
13'			
14'			
15'			
10			
	ABREVIATIONS	PROP USED	

PID = 0.0 ppm	F - FINE	F/M - FINE TO MEDIUM	TRACE (TR.)	0-10%
Analytical Sample taken at 2.0' for Metals	C - COARSE	F/C-FINE/COARSE	LITTLE (LI.)	10 - 20%
	GR - GRAY	M - MEDIUM	SOME (SO.)	20 -35%
	BN - BROWN	V-VERY	AND	35 - 50%
	YEL-YELLOW			

Hamburg, NY 14075

G. Morris

Phone: (716) 649-8110 Fax: (716) 649-8051

Western New York Office 5167 South Park Avenue

Sept. 2007

PROJECT CLIENT CONTRACTOR FIELD REP Friendship Foundry
NYSDEC
Empire - Geo Services, Inc.
J. Metzger / B. Murray

LOCATION TEST PIT NO. PROJECT NO. WEATHER / TEMP Friendship, New York
TP-21 (factory site)
BEV-07-022
sunny / 80°F

EXCAVATION EQUIP Ford Backhoe
GROUND ELEV
TIME STARTED
TIME FINISHED

Ford Backhoe

OPERATOR MAKE/ MODEL CAPACITY REACH

Ford 555 c Backhoe

CY

FT

Black f-c sand, some gravel, tr slag and concrete fragments	0 0 0	
	0	
and concrete fragments	0	
	0	
	"	
grav clavev Silt		
g.u, e.u,e, e.u		
	0	
Test Pit Completed at 5.5'		
<u> </u>		
	gray clayey Silt Test Pit Completed at 5.5'	Test Pit Completed at 5.5'

PID = 0.0 ppmF - FINE F/M - FINE TO MEDIUM TRACE (TR.) 0-10% C - COARSE F/C-FINE/COARSE LITTLE (LI.) 10 - 20% GR - GRAY SOME (SO.) M - MEDIUM 20 -35% BN - BROWN V-VERY AND 35 - 50% YEL-YELLOW

Phone: (716) 649-8110

G. Morris

Fax: (716) 649-8051

Western New York Office 5167 South Park Avenue Hamburg, NY 14075

PROJECT CLIENT CONTRACTOR FIELD REP

Friendship Foundry **NYSDEC** Empire - Geo Services, Inc. J. Metzger / B. Murray

Sept. 2007

LOCATION TEST PIT NO. PROJECT NO. WEATHER / TEMP

Friendship, New York **TP-22** (factory site) BEV-07-022 sunny / 80°F

EXCAVATION EQUIP Ford Backhoe **GROUND ELEV** TIME STARTED TIME FINISHED

OPERATOR MAKE/ MODEL CAPACITY **REACH**

Ford 555 c Backhoe CY FT

DEPTH	SOIL DESCRIPTION	PID	Remark
		READING	
	Brownish-gray f-c sand and gravel	0	
1'			
2'		0	
	Brown f-c sand and f-c gravel	0	
3'	ŭ		
		0	
4'			
5'		0	
<u> </u>		0	
6'			
	Test Pit Completed at 6.0'		
7'			
8'			
9'			
40			
10			
11'			
12'			
13'			
13			
14'			
15'			
	ABREVIATIONS	PROP USED	

PID = 0.0 ppmF - FINE F/M - FINE TO MEDIUM TRACE (TR.) 0-10% C - COARSE F/C-FINE/COARSE LITTLE (LI.) 10 - 20% GR - GRAY SOME (SO.) M - MEDIUM 20 -35% BN - BROWN V-VERY AND 35 - 50% YEL-YELLOW

5167 South Park Avenue Hamburg, NY 14075

Western New York Office

Phone: (716) 649-8110 Fax: (716) 649-8051

G. Morris

PROJECT CLIENT CONTRACTOR FIELD REP Friendship Foundry
NYSDEC
Empire - Geo Services, Inc.
J. Metzger / B. Murray

Sept. 2007

LOCATION TEST PIT NO. PROJECT NO. WEATHER / TEMP Friendship, New York
TP-23 (factory site)
BEV-07-022
sunny / 80°F

EXCAVATION EQUIP Ford Backhoe
GROUND ELEV
TIME STARTED
TIME FINISHED

Ford Backhoe

OPERATOR MAKE/ MODEL CAPACITY REACH

Ford 555 c Backhoe

CY

FT

DEPTH	SOIL DESC	CRIPTION	PID READING	Remarks
	Topsoil mixed with sand	and gravel, some silt	0	
1'	Concrete Slab enc	ountered at 1.0'		
	Test Pit Comp	leted at 1.0'		
2'				
3'				
4'				
5'				
6'				
7'				
8'				
9'				
10				
11'				
12'				
121				
13'				
14'				
14				
15'				
15				
			<u> </u>	
		ABREVIATIONS	PROP USED	

PID = 0.0 ppmF - FINE F/M - FINE TO MEDIUM TRACE (TR.) 0-10% C - COARSE F/C-FINE/COARSE LITTLE (LI.) 10 - 20% GR - GRAY SOME (SO.) M - MEDIUM 20 -35% AND BN - BROWN V-VERY 35 - 50% YEL-YELLOW

Western New York Office 5167 South Park Avenue Hamburg, NY 14075

Phone: (716) 649-8110 Fax: (716) 649-8051

G. Morris

PROJECT CLIENT CONTRACTOR FIELD REP

Friendship Foundry **NYSDEC Empire - Geo Services, Inc.** J. Metzger / B. Murray

Sept. 2007

LOCATION TEST PIT NO. PROJECT NO. **WEATHER / TEMP** Friendship, New York TP-24 (factory site) BEV-07-022 sunny / 80°F

EXCAVATION EQUIP Ford Backhoe **GROUND ELEV** TIME STARTED TIME FINISHED

OPERATOR MAKE/ MODEL **CAPACITY REACH**

Ford 555 c Backhoe CY FT

PROP USED

DEPTH	SOIL DESCRIPTION	PID READING	Remarks
	Brown f-c sand and gravel	0	
1'	Brown i-c sand and gravei	0	
1.		_	
		0	
2'			
		0	
3'			
		0	
4'			
	gray clayey silt, some f-m gravel	0	
5'			
-	Test Pit Completed at 5.0'		
6'			
7'			
<u>'</u>			
8'			
9'			
10			
11'			
12'			
13'			
14'			
15'			

PID = 0.0 ppm	F - FINE	F/M - FINE TO MEDIUM	TRACE (TR.)	0-10%
Analytical Sample taken at 4.0' for Metals and PCBs	C - COARSE	F/C-FINE/COARSE	LITTLE (LI.)	10 - 20%
	GR - GRAY	M - MEDIUM	SOME (SO.)	20 -35%
	BN - BROWN	V-VERY	AND	35 - 50%
	YEL-YELLOW			

ABREVIATIONS

Western New York Office 5167 South Park Avenue Hamburg, NY 14075

Phone: (716) 649-8110 Fax: (716) 649-8051

G. Morris

PROJECT CLIENT CONTRACTOR FIELD REP

Friendship Foundry
NYSDEC
Empire - Geo Services, Inc.
J. Metzger / B. Murray

Sept. 2007

LOCATION TEST PIT NO. PROJECT NO. WEATHER / TEMP Friendship, New York
TP-25 (factory site)
BEV-07-022
sunny / 80°F

EXCAVATION EQUIP
GROUND ELEV
TIME STARTED
TIME FINISHED

Ford Backhoe

OPERATOR MAKE/ MODEL CAPACITY REACH

Ford 555 c Backhoe

CY

FT

DEPTH	SOIL DESCRIPTION	PID	Remarks
		READING	
	Black cinders, some gravel	0	
1'			
2'		0	
	gray f-c sand and f-c gravel	30	
3'			
4'		15	
	becomes brown	18	
5'			
		0	
6'			
7'	Test Pit Completed at 6.0'		
<i>T</i>			
8'			
9'			
10			
10			
11'			
12'			
401			
13'			
14'			
15'			

PID = 30 ppm
Analytical Sample taken at 4.0' for Metals, PCBs,
VOCs, s-VOCs, Pesticides, Herbicides, Total
Phenolics, and Hexavalent Chromium

F - FINE C - COARSE GR - GRAY BN - BROWN

YEL-YELLOW

ABREVIATIONS

F/M - FINE TO MEDIUM
F/C-FINE/COARSE
M - MEDIUM
V-VERY

PROP USED
TRACE (TR.) 0-10%
LITTLE (LI.) 10 - 20%
SOME (SO.) 20 -35%
AND 35 - 50%

5167 South Park Avenue Hamburg, NY 14075

Western New York Office

Phone: (716) 649-8110 Fax: (716) 649-8051

G. Morris

PROJECT CLIENT CONTRACTOR FIELD REP Friendship Foundry
NYSDEC
Empire - Geo Services, Inc.
J. Metzger / B. Murray

Sept. 2007

LOCATION TEST PIT NO. PROJECT NO. WEATHER / TEMP Friendship, New York
TP-26 (factory site)
BEV-07-022
sunny / 80°F

EXCAVATION EQUIP Ford Backhoe
GROUND ELEV
TIME STARTED
TIME FINISHED

Ford Backhoe

OPERATOR MAKE/ MODEL CAPACITY REACH

Ford 555 c Backhoe

CY

FT

PROP USED

DEPTH	SOIL DESCRIPTION	PID	Remark
		READING	
	Brownish-black sand and gravel, some silt, tr slag	0	
1'			
		0	
2'		0	
3'			
	gray f-c sand and f-c gravel	0	
4'	3.,		
		0	
5'			
		0	
6'	becomes brown		
7'	Test Pit Completed at 6.0'		
,			
8'			
9'			
1.5			
10			
11'			
12'			
13'			
1.41			
14'			
15'			

PID = 0.0 ppm	F - FINE	F/M - FINE TO MEDIUM	TRACE (TR.)	0-10%
Analytical Sample taken at 1.5' for Metals	C - COARSE	F/C-FINE/COARSE	LITTLE (LI.)	10 - 20%
	GR - GRAY	M - MEDIUM	SOME (SO.)	20 -35%
	BN - BROWN	V-VERY	AND	35 - 50%
	YEL-YELLOW			

ABREVIATIONS

Hamburg, NY 14075

Phone: (716) 649-8110 Fax: (716) 649-8051

Western New York Office 5167 South Park Avenue

Sept. 2007

PROJECT CLIENT CONTRACTOR FIELD REP Friendship Foundry
NYSDEC
Empire - Geo Services, Inc.
J. Metzger / B. Murray

LOCATION TEST PIT NO. PROJECT NO. WEATHER / TEMP Friendship, New York
TP-27 (factory site)
BEV-07-022
sunny / 80°F

EXCAVATION EQUIP Ford Backhoe
GROUND ELEV
TIME STARTED
TIME FINISHED

Ford Backhoe

OPERATOR MAKE/ MODEL CAPACITY REACH G. Morris
Ford 555 c Backhoe

CY
FT

Brownish-black f-c sand, some silt, tr gravel, tr slag 2' 3' gray f-c sand and f-c gravel, little silt 4' becomes brown 5' 6' Test Pit Completed at 6.0' 7' 8' 9' 10 11' 12' 13'	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
1' 2' 3' gray f-c sand and f-c gravel, little silt 4' becomes brown 5' 6' 7' 8' 9' 10 11' 12'	0 0 0	
2' 3' gray f-c sand and f-c gravel, little silt 4' becomes brown 5' 6' 7' 8' 9' 10 11' 12'	0 0 0	
3' gray f-c sand and f-c gravel, little silt 4' becomes brown 5' 6' Test Pit Completed at 6.0' 7' 8' 9' 10 11' 12'	0 0 0	
3' gray f-c sand and f-c gravel, little silt 4' becomes brown 5' 6' Test Pit Completed at 6.0' 7' 8' 9' 10 11' 12'	0	
4' becomes brown 5' 6' Test Pit Completed at 6.0' 9' 10 11' 12'	0	
4' becomes brown 5' 6' 7' 8' 9' 10 11' 12'	0	
5' 6' Test Pit Completed at 6.0' 7' 8' 9' 10 11' 12'	0	
5' 6' Test Pit Completed at 6.0' 7' 8' 9' 10 11' 12'		
6' Test Pit Completed at 6.0' 7' 8' 9' 10 11' 12'		
6' Test Pit Completed at 6.0' 7' 8' 9' 10 11' 12'	0	
7' 8' 9' 10 11' 12'		
7' 8' 9' 10 11' 12'		
7' 8' 9' 10 11' 12'		
9' 10 11' 12'	t the state of the	
9' 10 11' 12'		
10 11' 12'		
10 11' 12'		
11' 12'		
11' 12'		
12'		
12'		
131		
13 1		
14'		
15'		

PID = 0.0 ppmF - FINE F/M - FINE TO MEDIUM TRACE (TR.) 0-10% C - COARSE F/C-FINE/COARSE LITTLE (LI.) 10 - 20% GR - GRAY SOME (SO.) M - MEDIUM 20 -35% AND BN - BROWN V-VERY 35 - 50% YEL-YELLOW

Hamburg, NY 14075 Phone: (716) 649-817

Phone: (716) 649-8110 Fax: (716) 649-8051

Western New York Office 5167 South Park Avenue

Sept. 2007

PF	ROJECT
CI	_IENT
C	ONTRACTOR
FI	ELD REP

Friendship Foundry
NYSDEC
Empire - Geo Services, Inc.
J. Metzger / B. Murray

LOCATION TEST PIT NO. PROJECT NO. WEATHER / TEMP Friendship, New York
TP-28 (factory site)
BEV-07-022
sunny / 80°F

EXCAVATION EQUIP Ford Backhoe
GROUND ELEV
TIME STARTED
TIME FINISHED

Ford Backhoe

OPERATOR MAKE/ MODEL CAPACITY REACH G. Morris
Ford 555 c Backhoe

CY
FT

DEPTH	SOIL DESCRIPTION	PID	Remarks
		READING	
	Black f-c sand, some silt, tr cinders, tr slag	0	
1'			
2'		0	
		0	
3'	grayish f-c sand and gravel		
	1	0	
4'	becomes brown		
E.		0	
5'	_	0	
6'		U	
		0	
7'			
	Test Pit Completed at 7.0'		
8'	_		
9'			
•			
10			
11'			
12'			
· -	-		
13'			
14'	4		
15'			
	†		
	ABREVIATIONS	PROP USED	

PID = 0.0 ppm	F - FINE	F/M - FINE TO MEDIUM	TRACE (TR.)	0-10%
Analytical Sample taken at 3.0' for Metals and PCBs	C - COARSE	F/C-FINE/COARSE	LITTLE (LI.)	10 - 20%
	GR - GRAY	M - MEDIUM	SOME (SO.)	20 -35%
	BN - BROWN	V-VERY	AND	35 - 50%
	YEL-YELLOW			

Western New York Office 5167 South Park Avenue Hamburg, NY 14075

Phone: (716) 649-8110 Fax: (716) 649-8051

G. Morris

PROJECT CLIENT CONTRACTOR FIELD REP Friendship Foundry
NYSDEC
Empire - Geo Services, Inc.
J. Metzger / B. Murray

Sept. 2007

LOCATION TEST PIT NO. PROJECT NO. WEATHER / TEMP Friendship, New York
TP-29 (factory site)
BEV-07-022
sunny / 80°F

EXCAVATION EQUIP Ford Backhoe
GROUND ELEV
TIME STARTED
TIME FINISHED

Ford Backhoe

OPERATOR MAKE/ MODEL CAPACITY REACH

Ford 555 c Backhoe

CY

FT

DEPTH	SOIL DESCRIPTION	PID	Remark
		READING	
	Brownish-red f-c sand and gravel, tr cinders	0	
1'			
		0	
2'		0	
3'	gray f-c sand and gravel	0	
<u> </u>	gray i-c saild alld graver	0	
4'	becomes brown	ŭ	
		0	
5'			
		0	
6'			
7'		0	
	Test Pit Completed at 7.0'		
8'	100t 1 it Completod at 110		
	1		
9'			
10			
11'			
11	-		
12'			
	1		
13'			
14'	4		
15'			
10			
	ABREVIATIONS	PROP USED	

ABREVIATIONS PROP USED PID = 0.0 ppmF - FINE F/M - FINE TO MEDIUM TRACE (TR.) 0-10% C - COARSE F/C-FINE/COARSE LITTLE (LI.) 10 - 20% GR - GRAY SOME (SO.) M - MEDIUM 20 -35% BN - BROWN V-VERY AND 35 - 50% YEL-YELLOW

Western New York Office 5167 South Park Avenue Hamburg, NY 14075

Phone: (716) 649-8110 Fax: (716) 649-8051

PROJECT CLIENT CONTRACTOR FIELD REP Friendship Foundry
NYSDEC
Empire - Geo Services, Inc.
J. Metzger / B. Murray

Sept. 2007

LOCATION TEST PIT NO. PROJECT NO. WEATHER / TEMP Friendship, New York
TP-30 (factory site)
BEV-07-022
sunny / 80°F

EXCAVATION EQUIP Ford Backhoe
GROUND ELEV
TIME STARTED
TIME FINISHED

Ford Backhoe

OPERATOR MAKE/ MODEL CAPACITY REACH G. Morris
Ford 555 c Backhoe

CY
FT

DEPTH	SOIL DESCRIPTION	PID	Remarks
		READING	
	Black f-c sand and silt, some wood fragments, general	0	
1'	construction fill (i.e. rubber hose, wood planks, metal, etc.)		
		0	
2'			
		0	
3'		· ·	
<u> </u>	_	0	
		0	
4'			
		0	
5'			
		0	
6'			
		0	
7'	Drawn f m and arms ground to Cill	U	
/	Brown f-m sand, some gravel, tr. Silt		
		0	
8'	Test Pit Completed at 7.5'		
9'			
10			
11'			
11			
12'			
13'			
14'			
<u> </u>	\dashv		
15'			
10	\dashv		
	ABREVIATIONS	PROP USED	

PID = 0.0 ppm	F - FINE	F/M - FINE TO MEDIUM	TRACE (TR.)	0-10%
Analytical Sample taken at 4.5' for Metals, and PCBs	C - COARSE	F/C-FINE/COARSE	LITTLE (LI.)	10 - 20%
	GR - GRAY	M - MEDIUM	SOME (SO.)	20 -35%
	BN - BROWN	V-VERY	AND	35 - 50%
	YEL-YELLOW			

Western New York Office 5167 South Park Avenue Hamburg, NY 14075

Phone: (716) 649-8110 Fax: (716) 649-8051

G. Morris

Sept. 2007

PROJECT CLIENT CONTRACTOR FIELD REP

Friendship Foundry
NYSDEC
Empire - Geo Services, Inc.
J. Metzger / B. Murray

LOCATION TEST PIT NO. PROJECT NO. WEATHER / TEMP Friendship, New York
TP-31 (factory site)
BEV-07-022
sunny / 80°F

EXCAVATION EQUIP Ford Backhoe
GROUND ELEV
TIME STARTED
TIME FINISHED

Ford Backhoe

OPERATOR MAKE/ MODEL CAPACITY REACH

Ford 555 c Backhoe

CY

FT

DEPTH	SOIL DESCRIPTION	PID	Remark
		READING	
	Brown-black silt, some organics	0	
1'			
		0	
2'	Brown f-c sand, some gravel		
3'		0	
3	Test Pit Completed at 3.0'		
4'	rest Fit Completed at 3.0		
-			
5'			
6'			
7'			
8'			
9'			
9			
10			
11'			
12'			
13'			
14'			
14			
15'			
10			

PID = 0.0 ppm

Composite analytical sample taken with TP-32 and TP-38 for s-VOCs, Herbicides, Pesticides, Metals, PCBs, and Total Phenolics

ABREVIATIONS

F - FINE F/M - FINE TO MEDIUM

C - COARSE F/C-FINE/COARSE

GR - GRAY M - MEDIUM

BN - BROWN V-VERY

YEL-YELLOW

PROP USED
TRACE (TR.) 0-10%
LITTLE (LI.) 10 - 20%
SOME (SO.) 20 -35%
AND 35 - 50%

Ham

G. Morris

Western New York Office 5167 South Park Avenue Hamburg, NY 14075

Phone: (716) 649-8110 Fax: (716) 649-8051

PROJECT CLIENT CONTRACTOR FIELD REP

Friendship Foundry
NYSDEC
Empire - Geo Services, Inc.
J. Metzger / B. Murray

Sept. 2007

LOCATION TEST PIT NO. PROJECT NO. WEATHER / TEMP Friendship, New York
TP-32 (factory site)
BEV-07-022
sunny / 80°F

EXCAVATION EQUIP Ford Backhoe
GROUND ELEV
TIME STARTED
TIME FINISHED

Ford Backhoe

OPERATOR MAKE/ MODEL CAPACITY REACH

Ford 555 c Backhoe

CY

FT

DEPTH	SOIL DESCRIPTION	PID	Remark
		READING	
	Topsoil Brown f-c sand, some gravel, tr silt	0	
1'	Brown f-c sand, some gravel, tr silt		
		0	
2'		_	
		0	
3'			
4'	Test Pit Completed at 3.5'	0	
4	rest Fit Completed at 5.5		
5'			
6'			
7'			
8'			
9'			
10			
10			
11'			
12'			
13'			
14'			
151			
15'			

PID = 0.0 ppm

Composite analytical sample taken with TP-31 and TP-38 for s-VOCs, Pesticides, Herbicides, Metals, PCBs, and Total Phenolics

F - FINE F/M - FINE TO MEDIUM
C - COARSE F/C-FINE/COARSE
GR - GRAY M - MEDIUM
BN - BROWN V-VERY

ABREVIATIONS

YEL-YELLOW

PROP USED
TRACE (TR.) 0-10%
LITTLE (LI.) 10 - 20%
SOME (SO.) 20 -35%
AND 35 - 50%

Western New York Office 5167 South Park Avenue Hamburg, NY 14075

Phone: (716) 649-8110 Fax: (716) 649-8051

G. Morris

PROJECT CLIENT CONTRACTOR FIELD REP Friendship Foundry
NYSDEC
Empire - Geo Services, Inc.
J. Metzger / B. Murray

Sept. 2007

LOCATION TEST PIT NO. PROJECT NO. WEATHER / TEMP Friendship, New York
TP-33 (factory site)
BEV-07-022
sunny / 80°F

EXCAVATION EQUIP Ford Backhoe
GROUND ELEV
TIME STARTED
TIME FINISHED

Ford Backhoe

OPERATOR MAKE/ MODEL CAPACITY REACH

Ford 555 c Backhoe

CY

FT

DEPTH	SOIL DESCRIPTION	PID	Remark
		READING	
	Topsoil	0	
1'	Brown f-c sand, some gravel, tr silt		
2'		0	
	-	0	
3'			
	Test Pit Completed at 3.0'		
4'			
5'			
6'			
	-		
7'			
8'			
9'			
9	-		
10			
11'			
401			
12'	-		
13'			
	†		
14'	_		
45'			
15'	-		
	<u> </u>		

PID = 0.0 ppmF - FINE F/M - FINE TO MEDIUM TRACE (TR.) 0-10% C - COARSE F/C-FINE/COARSE LITTLE (LI.) 10 - 20% GR - GRAY SOME (SO.) M - MEDIUM 20 -35% BN - BROWN V-VERY AND 35 - 50% YEL-YELLOW

Western New York Office 5167 South Park Avenue Hamburg, NY 14075

Phone: (716) 649-8110 Fax: (716) 649-8051

G. Morris

PROJECT CLIENT CONTRACTOR FIELD REP Friendship Foundry
NYSDEC
Empire - Geo Services, Inc.
J. Metzger / B. Murray

Sept. 2007

LOCATION TEST PIT NO. PROJECT NO. WEATHER / TEMP Friendship, New York
TP-34 (factory site)
BEV-07-022
sunny / 80°F

EXCAVATION EQUIP Ford Backhoe
GROUND ELEV
TIME STARTED
TIME FINISHED

Ford Backhoe

OPERATOR MAKE/ MODEL CAPACITY REACH

Ford 555 c Backhoe

CY

FT

DEPTH	SOIL DESCRIPTION	PID	Remarks
		READING	
	Topsoil	0	
1'	Brownish f-c sand, some gravel, tr fill material		
	(i.e. rubber belt, slag, metal fragments, etc.)	0	
2'		_	
0.1		0	
3'			
4'		0	
4		0	
5'	Test Pit Completed at 4.5'	U	
<u> </u>	Test i it completed at 4.5		
6'			
-			
7'			
8'			
9'			
4.0			
10			
11'			
11	_		
12'			
· -	 		
13'			
14'			
15'			
· · · · · · · · · · · · · · · · · · ·			

PID = 0.0 ppm Water Main encountered at 4.0' Analytical sample taken at 3' for Metals and PCBs F - FINE F/M - FINE TO MEDIUM
C - COARSE F/C-FINE/COARSE
GR - GRAY M - MEDIUM
BN - BROWN V-VERY

ABREVIATIONS

YEL-YELLOW

TRACE (TR.) 0-10% LITTLE (LI.) 10 - 20% SOME (SO.) 20 -35% AND 35 - 50%

PROP USED

Western New York Office 5167 South Park Avenue Hamburg, NY 14075

Phone: (716) 649-8110 Fax: (716) 649-8051

PROJECT CLIENT CONTRACTOR FIELD REP

Friendship Foundry **NYSDEC** Empire - Geo Services, Inc. J. Metzger / B. Murray

Sept. 2007

LOCATION TEST PIT NO. PROJECT NO. **WEATHER / TEMP**

Friendship, New York TP-35 (factory site) BEV-07-022 sunny / 80°F

EXCAVATION EQUIP Ford Backhoe **GROUND ELEV** TIME STARTED TIME FINISHED

OPERATOR MAKE/ MODEL CAPACITY **REACH**

G. Morris Ford 555 c Backhoe CY FT

DEPTH	SOIL DESCRIPTION	PID	Remark
		READING	
1'	Topsoil Brown f-c sand, some gravel, tr silt	0	
2'		0	
3'		0	
3	_	0	
4'	Test Pit Completed at 3.5'		
5'			
6'			
7'			
8'			
9'			
10			
11'			
12'			
13'			
14'			
15'			

ABREVIATIONS PROP USED PID = 0.0 ppmF - FINE F/M - FINE TO MEDIUM TRACE (TR.) 0-10% C - COARSE F/C-FINE/COARSE LITTLE (LI.) 10 - 20% SOME (SO.) GR - GRAY M - MEDIUM 20 -35% AND BN - BROWN V-VERY 35 - 50% YEL-YELLOW

Western New York Office 5167 South Park Avenue Hamburg, NY 14075

Phone: (716) 649-8110 Fax: (716) 649-8051

G. Morris

PROJECT CLIENT CONTRACTOR

Friendship Foundry
NYSDEC
Empire - Geo Services, Inc.
J. Metzger / B. Murray

Sept. 2007

LOCATION TEST PIT NO. PROJECT NO. WEATHER / TEMP Friendship, New York
TP-36 (factory site)
BEV-07-022
sunny / 80°F

EXCAVATION EQUIP Ford Backhoe
GROUND ELEV
TIME STARTED
TIME FINISHED

FIELD REP

Ford Backhoe

OPERATOR MAKE/ MODEL CAPACITY REACH

Ford 555 c Backhoe

CY

FT

DEPTH	SOIL DESCRIPTION	PID	Remark
		READING	
1'	Topsoil Brown f-c sand, some gravel, tr silt	0	
2'		0	
3'		0	
		0	
4'		0	
5'			
6'	Test Pit Completed at 5.0'		
7'			
8'			
9'			
10			
11'	<u> </u>		
12'			
13'			
14'			
15'			

ABREVIATIONS PROP USED PID = 0.0 ppmF - FINE F/M - FINE TO MEDIUM TRACE (TR.) 0-10% C - COARSE F/C-FINE/COARSE LITTLE (LI.) 10 - 20% GR - GRAY SOME (SO.) M - MEDIUM 20 -35% AND BN - BROWN V-VERY 35 - 50% YEL-YELLOW

G. Morris

Hamburg, NY 14075 Phone: (716) 649-8110

Western New York Office 5167 South Park Avenue

Fax: (716) 649-8051

PROJECT CLIENT CONTRACTOR FIELD REP

Friendship Foundry **NYSDEC** Empire - Geo Services, Inc. J. Metzger / B. Murray

Sept. 2007

LOCATION TEST PIT NO. PROJECT NO. WEATHER / TEMP

Friendship, New York TP-37 (factory site) BEV-07-022 sunny / 80°F

EXCAVATION EQUIP Ford Backhoe **GROUND ELEV** TIME STARTED TIME FINISHED

OPERATOR MAKE/ MODEL CAPACITY **REACH**

Ford 555 c Backhoe CY FT

DEPTH	SOIL DESCRIPTION	PID	Remarks
		READING	
	Topsoil, some cinders and slag	0	
1'	Brown f-c sand, some gravel, tr silt		
		0	
2'			
01		0	
3'		0	
4'		"	
4		0	
5'	Test Pit Completed at 4.5'		
6'			
7'			
8'			
9'			
,			
10			
11'			
12'			
13'			
13			
14'			
15'			
= 0.0 ppm	ABREVIATIONS	PROP USED	

ı	15 = 0.0 ppm
	Anlaytical sample taken at 1' for VOCs
	Composite analytical sample taken with TP-39 and
	TP-40B for s-VOCs, Pesticides, Herbicides, Metals,
	PCBs, and Total Phenolics
ı	

ABREVIATIONS F - FINE F/M - FINE TO MEDIUM C - COARSE F/C-FINE/COARSE GR - GRAY M - MEDIUM BN - BROWN V-VERY

YEL-YELLOW

TRACE (TR.) 0-10% LITTLE (LI.) 10 - 20% SOME (SO.) 20 -35% AND 35 - 50%

Western New York Office 5167 South Park Avenue Hamburg, NY 14075

Phone: (716) 649-8110 Fax: (716) 649-8051

PROJECT CLIENT CONTRACTOR FIELD REP

Friendship Foundry NYSDEC Empire - Geo Services, Inc. J. Metzger / B. Murray

Sept. 2007

LOCATION TEST PIT NO. PROJECT NO. **WEATHER / TEMP** Friendship, New York TP-38 (factory site) BEV-07-022 sunny / 80°F

EXCAVATION EQUIP Ford Backhoe **GROUND ELEV** TIME STARTED TIME FINISHED

OPERATOR MAKE/ MODEL CAPACITY **REACH**

G. Morris Ford 555 c Backhoe CY FT

DEPTH	SOIL DESCRIPTION	PID	Remarks
		READING	
	Topsoil	0	
1'			
		0	
2'	Brown f-c sand, some gravel, tr silt		
3'		0	
<u> </u>	_	0	
4'			
		0	
5'	Test Pit Completed at 4.5'		
6'			
71			
7'	_		
8'			
	-		
9'			
10			
441			
11'	_		
12'			
· –			
13'			
14'	_		
15'			
15'			
= 0.0 ppm	ABREVIATIONS	PROP USED	

FID = 0.0 ppm	ABREVIATIONS		PROP USED	
	F - FINE	F/M - FINE TO MEDIUM	TRACE (TR.)	0-10%
Composite analytical sample taken with TP-31 and	C - COARSE	F/C-FINE/COARSE	LITTLE (LI.)	10 - 20%
TP-32 for s-VOCs, Pesticides, Herbicides, Metals,	GR - GRAY	M - MEDIUM	SOME (SO.)	20 -35%
PCBs, and Total Phenolics	BN - BROWN	V-VERY	AND	35 - 50%
	YEL-YELLOW			

5167 South Park Avenue Hamburg, NY 14075

G. Morris

Phone: (716) 649-8110 Fax: (716) 649-8051

Western New York Office

PROJECT CLIENT CONTRACTOR

FIELD REP

Friendship Foundry
NYSDEC
Empire - Geo Services, Inc.
J. Metzger / B. Murray

Sept. 2007

LOCATION TEST PIT NO. PROJECT NO. WEATHER / TEMP Friendship, New York
TP-39 (factory site)
BEV-07-022
sunny / 80°F

EXCAVATION EQUIP
GROUND ELEV
TIME STARTED
TIME FINISHED

Ford Backhoe

OPERATOR MAKE/ MODEL CAPACITY REACH

Ford 555 c Backhoe

CY

FT

DEPTH	SOIL DESCRIPTION	PID	Remarks
DEI III	SOIL DESCRIPTION	READING	Nemarks
	Black silt and slag, some sand	0	
1'		, and the second	
	-	0	
2'	Brown f-c sand, some gravel, tr silt		
		0	
3'			
		0	
4'			
	Test Pit Completed at 4.0'		
5'			
,,			
6'	_		
7'			
<u>'</u>	-		
8'			
	-		
9'			
10			
11'			
 .			
12'			
121			
13'			
14'			
14			
15'			
	-		
	<u> </u>		

PID = 0.0 ppm

Composite analytical sample taken with TP-37 and TP-40B for s-VOCs, Pesticides, Herbicides, Metals, PCBs, and Total Phenolics

ABREVIATIONS

F - FINE F/M - FINE TO MEDIUM

C - COARSE F/C-FINE/COARSE

GR - GRAY M - MEDIUM

BN - BROWN V-VERY

YEL-YELLOW

PROP USED

TRACE (TR.) 0-10%

LITTLE (LI.) 10 - 20%

SOME (SO.) 20 -35%

AND 35 - 50%

EST FIT FIELD LOC

Western New York Office 5167 South Park Avenue Hamburg, NY 14075

Phone: (716) 649-8110 Fax: (716) 649-8051

G. Morris

PROJECT CLIENT CONTRACTOR FIELD REP Friendship Foundry
NYSDEC
Empire - Geo Services, Inc.
J. Metzger / B. Murray

Sept. 2007

LOCATION TEST PIT NO. PROJECT NO. WEATHER / TEMP Friendship, New York
TP-40A (factory site)
BEV-07-022
sunny / 80°F

EXCAVATION EQUIP Ford Backhoe
GROUND ELEV
TIME STARTED
TIME FINISHED

Ford Backhoe

OPERATOR MAKE/ MODEL CAPACITY REACH

Ford 555 c Backhoe

CY

FT

DEPTH	SOIL DESCRIPTION	PID	Remark
		READING	
	Blackish-brown silt mixed with metal	0	
1'	fragments, slag, pipes, etc.		
		0	
2'		0	
3'	Concrete slab encountered at 3.0'	0	
3	Test Pit Completed at 3.0'		
4'	rest Fit Completed at 3.0		
			
5'			
6'			
7'			
8'			
9'			
9			
10			
10			
11'			
12'			
13'			
14'			
15'			
10			
<u> </u>	ABREVIATIONS	PROP USED	

PID = 0.0 ppmF - FINE F/M - FINE TO MEDIUM TRACE (TR.) 0-10% C - COARSE F/C-FINE/COARSE LITTLE (LI.) 10 - 20% GR - GRAY SOME (SO.) M - MEDIUM 20 -35% BN - BROWN V-VERY AND 35 - 50% YEL-YELLOW

Western New York Office 5167 South Park Avenue Hamburg, NY 14075

Phone: (716) 649-8110 Fax: (716) 649-8051

G. Morris

PROJECT CLIENT CONTRACTOR FIELD REP

Friendship Foundry NYSDEC Empire - Geo Services, Inc. J. Metzger / B. Murray

Sept. 2007

LOCATION TEST PIT NO. PROJECT NO. **WEATHER / TEMP** Friendship, New York TP-40B (factory site) BEV-07-022 sunny / 80°F

EXCAVATION EQUIP Ford Backhoe **GROUND ELEV** TIME STARTED TIME FINISHED

OPERATOR MAKE/ MODEL CAPACITY **REACH**

Ford 555 c Backhoe CY FT

DEPTH	SOIL DESCRIPTION	PID	Remarks
		READING	
	Brown f-c sand, tr silt, tr organics	0	
1'	<u> </u>		
		0	
2'		0	
3'		U	
<u> </u>		0	
4'		Ü	
•		0	
5'	Brown f-c sand, some gravel, tr silt	-	
	Test Pit Completed at 4.5'		
6'			
7'			
8'			
9'			
9	-		
10			
10			
11'			
12'			
13'	<u> </u>		
14'			
15'			
15	\dashv		

PID = 0.0 ppm	ABREVIATIONS		PROP USED	
Composite analytical sample taken with TP-37 and	F - FINE	F/M - FINE TO MEDIUM	TRACE (TR.)	0-10%
TP-39 for s-VOCs, Pesticides, Herbicides, Metals,	C - COARSE	F/C-FINE/COARSE	LITTLE (LI.)	10 - 20%
PCBs, and Total Phenolics	GR - GRAY	M - MEDIUM	SOME (SO.)	20 -35%
Analytical sample taken at 3.0' for Metals and PCBs	BN - BROWN	V-VERY	AND	35 - 50%
	YEL-YELLOW			

Hamburg, NY 14075 Phone: (716) 649-8110

G. Morris

Fax: (716) 649-8051

Western New York Office 5167 South Park Avenue

PROJECT CLIENT CONTRACTOR FIELD REP

Friendship Foundry NYSDEC Empire - Geo Services, Inc. J. Metzger / B. Murray

Sept. 2007

LOCATION TEST PIT NO. PROJECT NO. WEATHER / TEMP Friendship, New York TP-41 (factory site) BEV-07-022 sunny / 80°F

EXCAVATION EQUIP Ford Backhoe **GROUND ELEV** TIME STARTED TIME FINISHED

OPERATOR MAKE/ MODEL CAPACITY **REACH**

Ford 555 c Backhoe CY FT

DEPTH	SOIL DESCRIPTION	PID	Remark
		READING	
	Topsoil	0	
1'	f-c sand, some silt, tr slag		
		0	
2'			
	*Lead conduit encountered	0	
3'			
		0	
4'	Brown f-c sand, some gravel, tr silt		
		0	
5'			
	Test Pit Completed at 5.0'		
6'			
7'	<u> </u>		
8'	<u> </u>		
9'			
40			
10			
11'			
<u> </u>	- 		
12'			
12	- 		
13'			
10	- 		
14'			
17	\dashv		
15'			
	\dashv		
	1		

	F - FINE	F/M - FINE TO MEDIUM	TRACE (TR.)	0-10%
PID = 0.0 ppm	C - COARSE	F/C-FINE/COARSE	LITTLE (LI.)	10 - 20%
Analytical sample taken at 2' for Metals	GR - GRAY	M - MEDIUM	SOME (SO.)	20 -35%
	BN - BROWN	V-VERY	AND	35 - 50%
	YEL-YELLOW			

5167 South Park Avenue Hamburg, NY 14075

Western New York Office

Phone: (716) 649-8110 Fax: (716) 649-8051

G. Morris

Sept. 2007

PROJECT CLIENT CONTRACTOR FIELD REP

Friendship Foundry
NYSDEC
Empire - Geo Services, Inc.
J. Metzger / B. Murray

LOCATION TEST PIT NO. PROJECT NO. WEATHER / TEMP Friendship, New York
TP-42 (factory site)
BEV-07-022
sunny / 80°F

EXCAVATION EQUIP
GROUND ELEV
TIME STARTED
TIME FINISHED

Ford Backhoe

OPERATOR MAKE/ MODEL CAPACITY REACH

Ford 555 c Backhoe

CY

FT

DEPTH	SOIL DESCRIPTION	PID	Remark
		READING	
	Topsoil	0	
1'	Black sandy silt, little slag, tr cinders		
		0	
2'			
		0	
3'			
	B	0	
4'	Brown f-m sand, some silt, tr gravel	0	
5'		U	
		0	
6'	Test Pit Completed at 5.5'	· ·	
	root in completed at old		
7'			
8'			
9'			
10			
11'			
11			
12'			
13'			
14'			
15'			
= 0.0 ppm	ABREVIATIONS	PROP USED	·

Analytical sample taken at 2' for Metals
Composite analytical sample taken with TP-46 and
TP-49 at the surface for PCBs, Metals, Herbicides,
Pesticides, VOCs, s-VOCs, Total Phenolics, and
Hexavalent Chromuim

ABREVIATIONS

F - FINE F/M - FINE TO MEDIUM

C - COARSE F/C-FINE/COARSE

GR - GRAY M - MEDIUM

BN - BROWN V-VERY

YEL-YELLOW

TRACE (TR.) 0-10% LITTLE (LI.) 10 - 20% SOME (SO.) 20 -35% AND 35 - 50%

5167 South Park Avenue Hamburg, NY 14075

Western New York Office

Phone: (716) 649-8110 Fax: (716) 649-8051

G. Morris

PROJECT CLIENT CONTRACTOR FIELD REP Friendship Foundry
NYSDEC
Empire - Geo Services, Inc.
J. Metzger / B. Murray

Sept. 2007

LOCATION TEST PIT NO. PROJECT NO. WEATHER / TEMP Friendship, New York
TP-43 (factory site)
BEV-07-022
sunny / 80°F

EXCAVATION EQUIP Ford Backhoe
GROUND ELEV
TIME STARTED
TIME FINISHED

Ford Backhoe

OPERATOR MAKE/ MODEL CAPACITY REACH

Ford 555 c Backhoe

CY

FT

DEPTH	SOIL DESCRIPTION	PID	Remarks
		READING	
	Topsoil	0	
1'	Brownish-black sandy silt, little slag, tr cinders		
	1	0	
2'			
		0	
3'			
		0	
4'			
		0	
5'			
		0	
6'	Brown sandy silt, tr gravel		
71	Total Pit Occupated Lot 0.51	0	
7'	Test Pit Completed at 6.5'		
8'			
	- 		
9'			
•	\dashv		
10			
11'			
12'			
401			
13'			
14'			
14	- 		
15'			
10	- 		
	ABREVIATIONS	PROP USED	

F - FINE F/M - FINE TO MEDIUM TRACE (TR.) 0-10% PID = 0.0 ppmC - COARSE LITTLE (LI.) F/C-FINE/COARSE 10 - 20% GR - GRAY SOME (SO.) M - MEDIUM 20 -35% AND BN - BROWN V-VERY 35 - 50% YEL-YELLOW

5167 South Park Avenue Hamburg, NY 14075

Western New York Office

Phone: (716) 649-8110 Fax: (716) 649-8051

PROJECT CLIENT CONTRACTOR FIELD REP Friendship Foundry
NYSDEC
Empire - Geo Services, Inc.
J. Metzger / B. Murray

Sept. 2007

LOCATION TEST PIT NO. PROJECT NO. WEATHER / TEMP Friendship, New York
TP-44 (factory site)
BEV-07-022
sunny / 80°F

EXCAVATION EQUIP Ford Backhoe
GROUND ELEV
TIME STARTED
TIME FINISHED

Ford Backhoe

OPERATOR MAKE/ MODEL CAPACITY REACH G. Morris
Ford 555 c Backhoe

CY
FT

DEPTH	SOIL DESCRIPTION	PID	Remarks
		READING	
1'	Topsoil Blackish sandy silt, some gravel, tr slag	0	
2'		35	
3'	contains "some" slag, tr metal fragments	20	
4'		0	
5'		0	
6'		0	
7'	Brown sandy silt, little gravel, tr clay	0	
	Test Pit Completed at 7.0'		
9'			
10			
11'			
12'			
13'			
14'			
15'			
	ABREVIATIONS	PROP USED	

	ADICEVIATION		I KOI OOLD	
	F - FINE	F/M - FINE TO MEDIUM	TRACE (TR.)	0-10%
PID = 0.0 ppm	C - COARSE	F/C-FINE/COARSE	LITTLE (LI.)	10 - 20%
Analytical Sample taken at 3' for VOCs, s-VOCs,	GR - GRAY	M - MEDIUM	SOME (SO.)	20 -35%
Metals, PCBs, Herbicides, Pesticides, Total	BN - BROWN	V-VERY	AND	35 - 50%
Phenolics, and Hexavalent Chromium	YEL-YELLOW			

5167 South Park Avenue Hamburg, NY 14075

Western New York Office

Phone: (716) 649-8110 Fax: (716) 649-8051

G. Morris

PROJECT CLIENT CONTRACTOR FIELD REP Friendship Foundry
NYSDEC
Empire - Geo Services, Inc.
J. Metzger / B. Murray

Sept. 2007

LOCATION TEST PIT NO. PROJECT NO. WEATHER / TEMP Friendship, New York
TP-45 (factory site)
BEV-07-022
sunny / 80°F

EXCAVATION EQUIP Ford Backhoe
GROUND ELEV
TIME STARTED
TIME FINISHED

Ford Backhoe

OPERATOR MAKE/ MODEL CAPACITY REACH

Ford 555 c Backhoe

CY

FT

DEPTH	SOIL DESCRIPTION	PID	Remarks
DEI III	COLE DECORNI FICH	READING	Kemarks
	Topsoil	0	
1'	Brown-black sandy silt, some gravel, tr slag		
·		0	
2'		_	
		0	
3'			
		0	
4'	contains more slag		
		0	
5'			
		0	
6'			
		0	
7'	Brown sandy silt, some gravel, tr clay		
8'	Test Pit Completed at 7.0'		
8	_		
9'			
7	- 		
10			
11'			
12'			
13'			
14'			
451			
15'	\dashv		
	<u> </u>		
	ABREVIATIONS	PROP USED	

F - FINE F/M - FINE TO MEDIUM TRACE (TR.) 0-10% PID = 0.0 ppmC - COARSE LITTLE (LI.) F/C-FINE/COARSE 10 - 20% SOME (SO.) GR - GRAY M - MEDIUM 20 -35% BN - BROWN V-VERY AND 35 - 50% YEL-YELLOW

Western New York Office 5167 South Park Avenue Hamburg, NY 14075

Phone: (716) 649-8110 Fax: (716) 649-8051

G. Morris

Sept. 2007

PROJECT CLIENT CONTRACTOR FIELD REP Friendship Foundry
NYSDEC
Empire - Geo Services, Inc.
J. Metzger / B. Murray

LOCATION TEST PIT NO. PROJECT NO. WEATHER / TEMP Friendship, New York
TP-46 (factory site)
BEV-07-022
sunny / 80°F

EXCAVATION EQUIP Ford Backhoe
GROUND ELEV
TIME STARTED
TIME FINISHED

Ford Backhoe

OPERATOR
MAKE/ MODEL
CAPACITY
REACH

Ford 555 c Backhoe

CY

FT

SOIL DESCRIPTION	PID	Remark
	READING	
	0	
Brown-black sandy silt, some gravel, tr slag		
	0	
Brown f-c sand and gravel		
	0	
	0	
Black slag	0	
	0	
gray sandy silt, some gravel, tr clay	0	
	0	
Test Pit Completed at 8.0'		
<u> </u>		
}		
+		
	Topsoil Brown-black sandy silt, some gravel, tr slag Concrete slab (~4") Brown f-c sand and gravel	Topsoil 0

PID = 0.0 ppm	ABREVIATIONS	}	PROP USED	
Analytical sample taken at 4' for Metals	F - FINE	F/M - FINE TO MEDIUM	TRACE (TR.)	0-10%
Composite analytical sample taken with TP-42 and	C - COARSE	F/C-FINE/COARSE	LITTLE (LI.)	10 - 20%
TP-49 for VOCs, s-VOCs, Pesticides, Herbicides,	GR - GRAY	M - MEDIUM	SOME (SO.)	20 -35%
Metals, PCBs, Total Phenolics and Hexavalent	BN - BROWN	V-VERY	AND	35 - 50%
Chromium	YEL-YELLOW			

Western New York Office 5167 South Park Avenue Hamburg, NY 14075

Phone: (716) 649-8110 Fax: (716) 649-8051

G. Morris

PROJECT CLIENT CONTRACTOR FIELD REP Friendship Foundry
NYSDEC
Empire - Geo Services, Inc.
J. Metzger / B. Murray

Sept. 2007

LOCATION TEST PIT NO. PROJECT NO. WEATHER / TEMP Friendship, New York
TP-47 (factory site)
BEV-07-022
sunny / 80°F

EXCAVATION EQUIP
GROUND ELEV
TIME STARTED
TIME FINISHED

Ford Backhoe

OPERATOR MAKE/ MODEL CAPACITY REACH

Ford 555 c Backhoe

CY

FT

DEPTH	SOIL DESCRIPTION	PID	Remarks
		READING	
	Brown f-c sand and gravel	0	
1'			
2'		0	
2		0	
3'			
		0	
4'			
	Black slag	0	
5'			
6'		0	
	Brown sandy silt, some gravel, tr clay	0	
7'	Brown bandy only come gravel, it olay		
		0	
8'	Test Pit Completed at 7.5'		
9'			
10			
10			
11'			
12'			
401			
13'			
14'			
• • • • • • • • • • • • • • • • • • • •			
15'			

PID = 0.0 ppm

Analytical sample taken at 5' for VOCs, s-VOCs,

Metals, PCBs, Total Phenolics, Herbicides,

Pesticides, and Hexavalent Chromium

 F - FINE
 F/M - FI

 C - COARSE
 F/C-FIN

 GR - GRAY
 M - MEI

 BN - BROWN
 V-VERY

ABREVIATIONS

YEL-YELLOW

 F/M - FINE TO MEDIUM
 TRACE (TR.)
 0-10%

 F/C-FINE/COARSE
 LITTLE (LI.)
 10 - 20%

 M - MEDIUM
 SOME (SO.)
 20 -35%

 V-VERY
 AND
 35 - 50%

PROP USED

5167 South Park Avenue Hamburg, NY 14075

Western New York Office

Phone: (716) 649-8110 Fax: (716) 649-8051

G. Morris

PROJECT CLIENT CONTRACTOR FIELD REP Friendship Foundry
NYSDEC
Empire - Geo Services, Inc.
J. Metzger / B. Murray

Sept. 2007

LOCATION TEST PIT NO. PROJECT NO. WEATHER / TEMP Friendship, New York
TP-48 (factory site)
BEV-07-022
sunny / 80°F

EXCAVATION EQUIP Ford Backhoe
GROUND ELEV
TIME STARTED
TIME FINISHED

Ford Backhoe

OPERATOR MAKE/ MODEL CAPACITY REACH

Ford 555 c Backhoe

CY

FT

DEPTH	SOIL DESCRIPTION	PID	Remark
		READING	
	Brownish-black silt, some slag	0	
1'			
		0	
2'	Brown clayey silt, tr gravel		
		0	
3'			
		0	
4'	Test Pit Completed at 3.5'		
5'			
6'			
7'			
8'			
9'			
10			
11'			
12'			
13'			
14'			
15'			

PID = 0.0 ppmF - FINE F/M - FINE TO MEDIUM TRACE (TR.) 0-10% C - COARSE F/C-FINE/COARSE LITTLE (LI.) 10 - 20% GR - GRAY SOME (SO.) M - MEDIUM 20 -35% AND BN - BROWN V-VERY 35 - 50% YEL-YELLOW

5167 South Park Avenue Hamburg, NY 14075

G. Morris

Phone: (716) 649-8110 Fax: (716) 649-8051

Western New York Office

Sept. 2007

PROJECT CLIENT CONTRACTOR FIELD REP

Friendship Foundry **NYSDEC** Empire - Geo Services, Inc. J. Metzger / B. Murray

LOCATION TEST PIT NO. PROJECT NO. **WEATHER / TEMP**

Friendship, New York TP-49 (factory site) BEV-07-022 sunny / 80°F

EXCAVATION EQUIP Ford Backhoe **GROUND ELEV** TIME STARTED TIME FINISHED

OPERATOR MAKE/ MODEL CAPACITY **REACH**

Ford 555 c Backhoe CY FT

DEPTH	SOIL DESCRIPTION	PID	Remarks
		READING	
	Topsoil	0	
1'			
		0	
2'	Red-brown sandy silt, little slag	_	
	*metal crum encountered with slag/resin	0	
3'			
4'		0	
4	Brown sandy silt, some gravel, tr clay	0	
5'	Brown Sandy Sint, Some graver, it clay	U	
	_	0	
6'	Test Pit Completed at 5.5'		
7'			
	7		
8'			
9'			
10			
10	-		
11'			
···	-		
12'			
	-		
13'			
]		
14'			
4-1			
15'			

Analytical sample taken at 3' for Metals	F - FINE	F/M
Composite analytical sample taken with TP-42 and	C - COARSE	F/C-
TP-46 at the surface for VOCs, s-VOCs, Metals,	GR - GRAY	M - I
PCBs, Pesticides, Herbicides, Total Phenolics, and	BN - BROWN	V-VI
Hexavalent Chromium	YEL-YELLOW	

M - FINE TO MEDIUM TRACE (TR.) C-FINE/COARSE LITTLE (LI.) **MEDIUM** SOME (SO.) /ERY AND

0-10%

10 - 20%

20 -35%

35 - 50%

5167 South Park Avenue Hamburg, NY 14075

Western New York Office

Phone: (716) 649-8110 Fax: (716) 649-8051

G. Morris

PROJECT Friend
CLIENT NYSD
CONTRACTOR Empir

Friendship Foundry
NYSDEC
Empire - Geo Services, Inc.
J. Metzger / B. Murray

Sept. 2007

LOCATION TEST PIT NO. PROJECT NO. WEATHER / TEMP Friendship, New York
TP-50 (factory site)
BEV-07-022
sunny / 80°F

EXCAVATION EQUIP Ford Backhoe
GROUND ELEV
TIME STARTED
TIME FINISHED

FIELD REP

Ford Backhoe

OPERATOR MAKE/ MODEL CAPACITY REACH

Ford 555 c Backhoe

CY

FT

DEPTH	SOIL DESCRIPTION	PID	Remarks
		READING	
	Brown f-c sand and gravel	0	
1'			
2'	Black f-sand, some concrete frags, tr wood fragments	0	
3'		0	
<u> </u>	_	0	
4'			
5'		0	
	-	0	
6'			
7'	Test Pit Completed at 6.5'	0	
•			
8'			
9'			
10			
11'			
12'			
12	- 		
13'			
14'			
15'			
	- 		

PID = 0.0 ppm Analytical sample taken at 5' for Metals and PCBs ABREVIATIONS

F - FINE F/M - FINE TO MEDIUM

C - COARSE F/C-FINE/COARSE

GR - GRAY M - MEDIUM

BN - BROWN V-VERY

YEL-YELLOW

TRACE (TR.) 0-10% LITTLE (LI.) 10 - 20% SOME (SO.) 20 -35% AND 35 - 50%

PROP USED

APPENDIX C TEST BORING LOGS – FACTORY SITE

STARTED FINISHED 10/3/2007 10/3/2007

SHEET		1 OF 1		SERVICES, INC.	G.W. DEPTH See Notes
PROJI	ECT:	FRIENDSHIP FOUND	RY LOC	CATION: FRIENDSHIP	NEW YORK
PROJ.		BEV-07-022			
DEPTH	PID		SOIL OR ROCK		NOTES
FT.	READING		CLASSIFICATION		
1		Brown f-c SAND and f	c Gravel, tr. silt		-
- '-					
2					
		September 1997			
_ 3					
	BG	Concrete slab previous			Analytical sample taken
_ 4 _		Grey- Green Sandy Si	t, little Clay		from 3-4'
_					
_ 5					S-1 from 3-7' REC= 42"
6	BG				NEO- 42
7					
_ 8			Boring Complete at 7.0'		
9					<u> </u>
_ = _					
10					
11					
12					<u> -</u>
12				· 15	
13					-
14					
15					
16					
DRILLER:	S. FULL	ER DRILL RIG TYPE	SIMCO 2400 SK-1	CLASSIFIED BY:	J. METZGER
METHOD OF	INVESTIGA	ATION: ASTM 6282 - DIF	RECT PUSH SAMPLING		

STARTED FINISHED 10/3/2007 10/3/2007

SHEET	Г	1 OF 1 SERVICES, INC	G.W. DEPTH See Notes
PROJE	FCT [.]	FRIENDSHIP FOUNDRY LOCATION: FRIENDS	HIP NEW YORK
PROJ.		BEV-07-022	
DEPTH	PID	SOIL OR ROCK	NOTES
FT.	READING	CLASSIFICATION Drawn to CRAVEL and to Sand to plan to pile	
1		Brown f-c GRAVEL and f-c Sand, tr. slag, tr. silt	-
2			- <u>-</u>
3	BG	f-c Sand and f-c Gravel, tr. silt	Concrete slab previously cored at 2.0'
		Grey- Green Sandy SILT, little Clay, tr. gravel (wet)	Analytical sample taken
4			from 2-3'
_ 5 _			S-1 from 2-6'
6	BG		Poor Recovery REC= 12"
7		Boring Complete at 6.0'	
			<u> </u>
_ 8 _			-
9			
10			_
			_
11			-
12			<u>.</u>
13			_
14			-
15			
			_
16			
DRILLER:	S. FULL	ER DRILL RIG TYPE: SIMCO 2400 SK-1 CLASSIFIED	BY: J. METZGER
METHOD OF	FINVESTIGA	ATION: ASTM 6282 - DIRECT PUSH SAMPLING	

STARTED **FINISHED** 10/3/2007 10/3/2007

		LOCATION: FRIENDSHIP, NEW YORK
DEPTH P).: BEV-07-022	
		R ROCK NOTES
1	f-c SAND and f-c Gravel, tr. slag, tr	silt
_ 2	Concrete fragments	
3		
	Grey- Green Sandy Silt, some Clay (wet)	tr. gravel Concrete slab previously cored at 4.0'
_ 6 _ 7 B	Contains Black seams	S-1 REC= 36" Analytical sample taken from 4-7'
8	Brownish f-c SAND and f-c Gravel (Black seams)	reworked native)
	3G	
10 11B	G Brown Sandy SILT, some C	S-2 REC= 48"
12		
	3G same	
14		S-3 REC= 48"
В	G C	
16	Boring	complete at 16.0'

STARTED **FINISHED**

10/3/2007 10/3/2007

SHEET 1 OF 1

SJB SERVICES, INC. DIRECT PUSH LOG

HOLE NO. SURF. ELEV

G.W. DEPTH

See Notes

PROJECT: FRIENDSHIP FOUNDRY		FRIENDSHIP FOUNDRY LOCATION: FR	LOCATION: FRIENDSHIP, NEW YORK		
	. NO.:	BEV-07-022			
EPTH FT.	PID READING	SOIL OR ROCK CLASSIFICATION	NOTES		
1 _		f-c SAND and f-c Gravel, some Slag, tr. concrete fragments, tr. asphalt fragments			
2 _					
3		Blackish Sandy Silt, some Clay, tr. gravel	Concrete slab previously		
4 _	BG		cored 3.0' Analytical sample taken		
⁵ —	BG		from 3-4' S-1 REC= 42"		
~ - 7	BG	Brownish Silty CLAY			
8		Boring Complete at 7.0'			
9 _					
0					
1					
2— 3					
4					
5_					
16					
LER:	S. FULI	LER DRILL RIG TYPE: SIMCO 2400 SK-1 CLA	SSIFIED BY: J. METZGER		

STARTED FINISHED

10/3/2007

SHEET 1 OF 1

SJB SERVICES, INC. DIRECT PUSH LOG

HOLE NO. SURF. ELEV

B-5

G.W. DEPTH See Notes

тн	PID READING	SOIL OR ROCK CLASSIFICATION	NOTES
		f-c SAND and Gravel, tr. slag, concrete fragments	
	BG	Black f-m Sand, some Silt, little Gravel	Concrete slab previousl cored at 4.0' Analytical sample taken S-1 REC= 42"
	BG BG	Greyish Brown Silty CLAY, some Sand	
)	BG		S-2 REC= 48"
		Boring Complete at 12.0'	

STARTED FINISHED 10/3/2007 10/3/2007

SJB SERVICES, INC. DIRECT PUSH LOG

HOLE NO. SURF. ELEV

B-6

SHEET					G.W. DEFTIT Gee Notes
PROJE		FRIENDSHIP FOUN	DRY	LOCATION: FRIENDSHIP	P, NEW YORK
PROJ.	NO.:	BEV-07-022			
DEPTH FT.	PID READING		SOIL OR ROCK CLASSIFICATION		NOTES
_ 1		Brown f-c SAND and	f-c Gravel		
3 3 4 5	BG	Brown f-c Sand and (Gravel		Concrete slab previously cored at 3.0' S-1 REC= 24"
6 7 8 9 10 11 12 12 12 12 12 12 12 12 12 13 12 13 12 14 15 15 15 16 17 16 17			Boring Refusal at 5.0	y	
13 14 15 16 DRILLER:	S. FULI	.ER DRILL RIG TY	/PE: SIMCO 2400 SK-1	CLASSIFIED BY:	J. METZGER

STARTED

10/3/2007

FINISHED

10/3/2007

ROJECT: ROJ. NO.:	FRIENDSHIP FOUNDRY BEV-07-022	LOCATION: FRIEND	OSHIP, NEW YORK
TH PIC	에는 그들을 잃어나는 아이들은 얼마를 가는 아이들을 받아 보는 것이 없다. 사람들은 사람들은 사람들은 사람들은 사람들은 사람들은 사람들은 사람들은		NOTES
, INCAD		RETE Slab	
	f-m SAND, some Gravel		S-1 REC= 10"
			Concrete slab
	Boring Re	efusal at 1.5'	
+			
°			
1			
2			
3			
-			
5			
3			

STARTED FINISHED

10/3/2007

SHEET 1 OF 1

SJB SERVICES, INC. DIRECT PUSH LOG

HOLE NO. SURF. ELEV

B-8

G.W. DEPTH See Notes

		BEV-07-022 SOIL OR ROCK	NOTES
PTH T.	PID READING	CLASSIFICATION	NOTES
		CONCRETE Slab	
1	BG	Brown f-c SAND and Gravel, some Silt	
			S-1 REC= 36"
2			
3			
	BG		
4			
5	BG		
	3,0		S-2 REC= 48"
6		Becomes Grey with slight Black staining (slight petroleum odor)	Analytical sample taken
	5	(wet)	from 6-7'
7			
8			
9	7	Contains more Silt	S-3 REC= 48"
10			
trick of			
11			
	BG	Brown Sandy SILT, tr. clay	
12			and the second
13		Boring Complete at 12.0'	
14			
15			
16			

STARTED FINISHED

10/3/2007

SHEET

10/3/2007 1 OF 1

SJB SERVICES, INC. DIRECT PUSH LOG

HOLE NO. SURF. ELEV

B-9

G.W. DEPTH See Notes

PROJE PROJ.		FRIENDSHIP FOUNDRY LOCATION: FRIENDSHII BEV-07-022	P, NEW YORK
DEPTH	PID	SOIL OR ROCK CLASSIFICATION	NOTES
FT.	READING	CONCRETE Slab	
1 _	BG		
		Reddish f-c SAND, some Gravel, tr. silt	S-1 REC= 42"
2			
3			
	BG		
4			
_	B0		Analytical sample taken from 3-6'
5	BG		110111 3-0
6		SLAG	
		Grey Sandy SILT, some Clay	S-2 REC= 48"
7	BG		
8		Becomes Brown	
9		Boring Complete at 8.0'	
10			
11			
_			The state of
12—			
13			
			14.7
14_			
15			
16			
LLER:	S. FULL	ER DRILL RIG TYPE: SIMCO 2400 SK-1 CLASSIFIED BY:	J. METZGER

STARTED **FINISHED** 10/3/2007

10/3/2007

HOLE NO. SURF. ELEV

B-10

ROJ		FRIENDSHIP FOUNDRY L BEV-07-022	OCATION: FRIENDSHIP, N	
PTH T.	PID READING	SOIL OR ROCK CLASSIFICATION		NOTES
1 <u> </u>		f-c SAND and f-c Gravel, tr. organics		
2 — 3 — 4	BG	Brown Sandy Gravel, some Silt, tr. clay	со	encrete slab previously red at 2.0' 1 REC= 48"
5 _	BG			
6 7 	BG	SLAG Greyish- Black SILT, tr. sand (wet)	S-	2 REC= 48"
9 —	BG	Brown- Grey Sandy SILT, tı		
11_		Boring Complete at 10.0'		
12				
14				
15				

DATE

START FINISH 11/14/2007

SHEET 1 OF 1

SJB SERVICES, INC. SUBSURFACE LOG

HOLE NO. B-11
SURF. ELEV
G.W. DEPTH See Notes

SMPL BLOWS ON SAMPLER		IPLER	SOIL OR ROCK	NOTES			
	NO.	0/6	6/12		N PID	CLASSIFICATION	
17	1	3	7			TOPSOIL	
1/		8	9		15 0	Black CINDERS with Slag, some Gravel	
17	2	9	12				
V		14	10		26 0	Brownish Silty CLAY, little Sand	
						Boring Complete at 4.0'	
			100				
		100					
-							
-							
-							
-							
1							
+		100000					
+							
			-300				
1							
1		2015					
			100				
		200					
		200					
-							
-							
-							
-							
-							
-							
		1					

DATE

START

11/15/2007

FINISH

11/15/2007

SHEET 1 OF 1

SJB SERVICES, INC. SUBSURFACE LOG

HOLE NO. B-12
SURF. ELEV
G.W. DEPTH See Notes

No. 016 612 N PID CLASSIFICATION 1 3 5	
6 5 11 0 Brown SAND and Slag, little Gravel 2 3 3 3 4 9 7 0 same	
2 3 3	
2 3 3	
Boring Complete at 4.0'	
Boring Complete at 4.0'	

N = NO. BLOWS	TO DRIVE 2-INCH	SPOON 12-INCHES WITH A 140 LB. PIN WT. FAL	LING 30-INCHES PER BLOW	CLASSIFIED BY:	Geologist
DRILLER:	K. FULLE	R DRILL RIG TYPE :	CME- 550	1000000	
METHOD OF IN	ESTIGATION AS	STM D-1586 USING HOLLOW STEM AUGERS			

DATE

START FINISH 11/15/2007 11/15/2007

SHEET 1 OF 1

SJB SERVICES, INC. SUBSURFACE LOG

HOLE NO. B-13
SURF. ELEV
G.W. DEPTH See Notes

RO	JEC	T:	FRIE	ENDS	SHIP	FOU	NDRY	LOCATION: FRIENDSHIP,	NEW YORK
RO	J. N	10.:	BEV	-07-0)22				
РТН	T	SMPL		BLOV	VS ON SA	AMPLER	19	SOIL OR ROCK	NOTES
		NO.	0/6	6/12		N	PID	CLASSIFICATION	
	1	1	3	5				TOPSOIL	
	/ [5	6		10	0	Black- Brown Sandy SILT, Slag, Gravel	
200	7	2	6	6					
	/[6	8		12	0	same	
5	89						e su		
								Boring Complete at 4.0'	
			SACIA						
			51.54						
				(8)					
_		1					2/19		
		0.50(8)		Lack					
_							0.036		
_									
-									
_									
	1								
_									
_	1								
_									
-	1					0.000			
				E 200					
5									
	1		1000						
			100						
0				D.E.					
			L.						
						100			
5 _									
								BUTCHES AND AND AND AND AND AND AND AND AND AND	
			l de l	200					
			100		986				
0			1						

N = NO. BLOWS	TO DRIVE 2-IN	CH SPOON 12-INCH	ES WITH A 140 LB. PIN WT. FALLIN	IG 30-INCHES PER BLOW	CLASSIFIED BY:	Geologist
DRILLER:	K. FUL	LER	DRILL RIG TYPE :	CME- 550		
METHOD OF IN	ESTIGATION	ASTM D-1586 USIN	IG HOLLOW STEM AUGERS			

START

11/15/2007

SHEET 1 OF 1

SJB SERVICES, INC. SUBSURFACE LOG

HOLE NO. B-14
SURF. ELEV
G.W. DEPTH See Notes

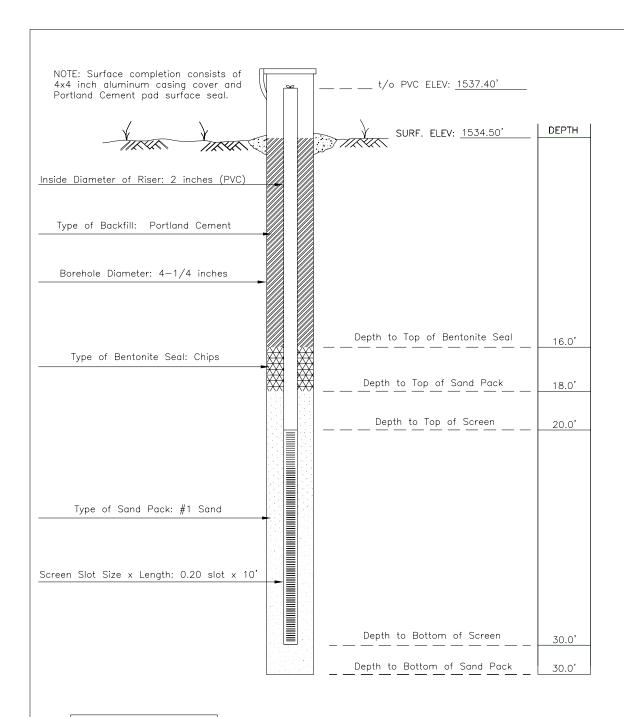
н	П	SMPL		BLOW	S ON SA	MPLER		SOIL OR ROCK	NOTES
		NO.	0/6	6/12		N	PID	CLASSIFICATION	
	1	1	2	3				TOPSOIL mixed with Slag, Gravel (Orange color)	
	4		5	6		8	0		
	1	2	7	5					
-	4		5	4	/8/8	10	0	same	
-	1							Bardon Carrellata at 1.01	
-	-					NF.		Boring Complete at 4.0'	
-	-								
	1								
	-	du il se			6				
				-48	Д				
		170							
	N			- F					
				17.50		X. I			
	1								
	-								
-	-					1000			
_	-								
4	-								
\dashv	-								
	-						No.		
-	ŀ								
	1	Y F		7. 4	10.5				
Y							N. C.		
					196				
8									
	1								
	-								
	-			20.5					
_	-								
-	-								
\dashv	1								
_	+				N SE				
-	-				200				
	1				Tall 1				
-	1		100			X 85			

METHOD OF INVESTIGATION ASTM D-1586 USING HOLLOW STEM AUGERS

START FINISH 11/15/2007 11/15/2007

SHEET __1_ OF __1

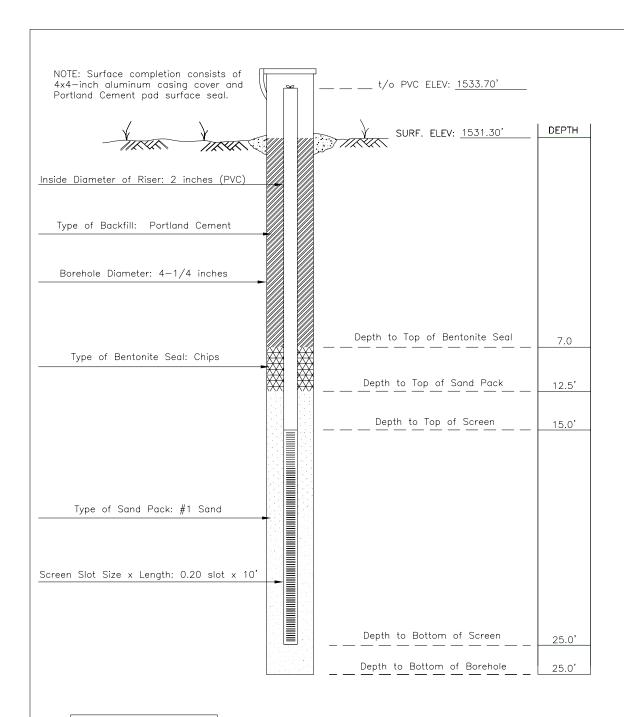
SJB SERVICES, INC. SUBSURFACE LOG



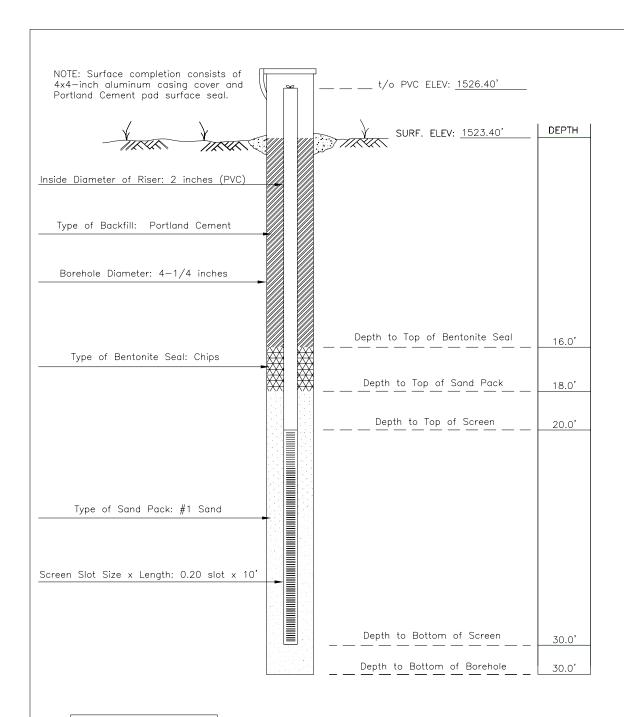
HOLE NO. B-15
SURF. ELEV
G.W. DEPTH See Notes

Т	_			/-07-0			L SOULOR BOOK	NOTES
'		SMPL NO.	0/6	6/12	S ON SAMPI	and the same of th	SOIL OR ROCK CLASSIFICATION	NOTES
	1	1	3	3			TOPSOIL	
	/		5	5	1	3 0	Red- Brown Foundry SAND, tr. slag	
T	1	2	5	4				
			5	2	9	0	same	
	1						Boring Complete at 4.0'	
-	-							
-	-							
-	-							
-	-							
-	-							
	-							
				TELE !				
	L							
_								
\dashv	-							
-	-							
\dashv	-			2 3 4				
-	-							
-	-		360			2 20		
T	ı				5.8 kg			
		re i in						
	-							
_	_	18.5			200			
-	-							
-	-							
-	-							
-	+			0.71				
-	-							
1	-							
		Mark N						

METHOD OF INVESTIGATION ASTM D-1586 USING HOLLOW STEM AUGERS


APPENDIX D MONITORING WELL INSTALLATION DETAILS – FACTORY SITE

- (1) Drilling Method: ASTM D-1586 Using 4-1/2 inch hollow stem auger
- (2) Driller: K. Fuller
- (3) Geotechnical & Environmental Specialist: J. Metzger



- (1) Drilling Method: ASTM D-1586 Using 4-1/2 inch hollow stem auger
- (2) Driller: K. Fuller
- (3) Geotechnical & Environmental Specialist: J. Metzger

- (1) Drilling Method: ASTM D-1586 Using 4-1/2 inch hollow stem auger
- (2) Driller: K. Fuller
- (3) Geotechnical & Environmental Specialist: J. Metzger

START

11/14/2007

SHEET 1 OF 1

SJB SERVICES, INC. SUBSURFACE LOG

HOLE NO. MW-6
SURF. ELEV
G.W. DEPTH See Notes

ROJI			FRIE			FOU	VDRY		TE P, NEW YORK
	. 14	0	DEV	-07-0	122				
ТН		SMPL			WS ON SA		DID	SOIL OR ROCK	NOTES
	+	NO.	0/6	6/12	12/18	N	PID	CLASSIFICATION	
-	/-	1	6	5				TOPSOIL	
1	4		4	4		9	0	Brown Sandy SILT and f-c Gravel (moist, compact)	
4	1	2	5	13					The same as the
-1	4		31	28		43	0		
			7 19				fiel N		
			12						
					20				
	1	3	7	7				Brown Sandy SILT (moist, firm)	
7	1		12	14		19	0		
		200	37.00						
	1								
	1								
+	1	4	7	8					
7	1		11	13		19	0		Groundwater encountere
+	+			.0					at approximately 18- feet
-	-	18.5							Li approximatory 10- 1660
-	-			ale Y					
-	1	5	8	9	- 1			Brown- Tan Silty CLAY, some Gravel (wet, v. stiff)	
-	1	0	12	12		21	0	L	
+	+		12	12		21	0	Brown Sandy SILT (wet, firm)	
-	-							Diowit Gallay Ster (wet, illill)	
-	+								
-	+	C	2	2					
-	1	6	2	2		1	0		ASSESSED AND ADDRESS.
-	+		2	5		4	0		
-	-								
\dashv	-								
-	-								
-	-			1				B 1 0 1 1 100 01	1 1 10 10 10 10
_	-	Supple .						Boring Complete at 30.0'	Installed 2" PVC
_	-	20/8							well. See monitoring wel
_	L		7120						installation detail.
	L								
	L								
	L				En la				
	L								
					10.1				

METHOD OF INVESTIGATION ASTM D-1586 USING HOLLOW STEM AUGERS

START FINISH 11/14/2007 11/15/2007

HOLE NO. MW-7 SURF. ELEV

RO.		10.:	BEV				NDRY	LOCATION: FACTORY SI FRIENDSHIP	
тн		SMPL		BLO	NS ON SA		W-E	SOIL OR ROCK	NOTES
		NO.	0/6	6/12	12/18	N	PID	CLASSIFICATION	
_	/	1	4	6				Brownish SILT with topsoil, some Gravel	
-		_	3	3		9	0	Brown f-c SAND, some Silt, little Gravel (moist, FILL)	
_	/	2	4	6		_			
-		3	5	3		9	0		Poor Recovery Sample #
-	/	3				0	0	Cantains Black Slag from E 6!	Poor Recovery Sample #
_		4	5	5		9	0	Contains Black Slag from 5-6' Brown- Tan Sandy SILT, little Gravel, tr. clay	
-	/	4	6	6		9	0	(moist, loose)	
_			0	0		9	U	(moist, loose)	
-									
	1	5	7	8		11.024			Poor Recovery Sample #
	/	-	9	10		17	0		Tool (todovor) Campio ii
-						2			
					636				Groundwater encountere
	1	6	7	7				f-c SAND and f-c Gravel (wet)	at approximately 15- feet.
	1		9	12		16	0	Brown Sandy SILT, little Gravel (wet, firm)	
						TB		Becomes Grey	
	1	7	5	5				Contains "little" Clay	
			4	11		9	0		
			S III		100			Boring Complete at 25.0'	Installed 2" PVC monitorii
_									well. See monitoring well
_						100			installation detail.
_									
_									
_									
_									
-									
-	-								
-						55 SV			
_									

START FINISH 11/15/2007

SHEET 1 OF 1

SJB SERVICES, INC. SUBSURFACE LOG

HOLE NO. MW-8
SURF. ELEV
G.W. DEPTH See Notes

20			BEV				NDRY	FRIENDSHIP,	NEW YORK	
							PA STATE	SOIL OR ROCK	NOTES	
Н		SMPL	0/6		WS ON SA	N	PID	CLASSIFICATION	NOTES	
	1	NO.	_	6/12	12/18	N	PIU	Brown- Tan SAND and Silt, some Gravel (moist, FILL)		
-	1/	1	8	13		26	0			
	/	0	23	27		36	0	Becomes Black, contains some Slag	Door Doogyany Comples	
	1/	2	19	25		F.4	0	Brown- Tan SAND and Silt, some Gravel	Poor Recovery Samples	
	1	2	32	31		54	0	(moist, v. compact)	#2 and #3	
-	1/	3		_		0.4	0			
	1	4	27	20		64	0			
	1/	4	20	21		50	0			
	1	-	37	24		58	0	(
	1/	5	14	22	7/2	11	0	(compact)		
	/		22	16		44	0			
	1/	6	21	19		00	_			
	/		17	20		36	0			
1						Visit is				
_										
	1/	7	8	3		-		Brown Sandy SILT (moist, loose)		
	/		3	5		6	0			
							1000			
									Groundwater encountered	
	1/	8	6	6	18.63			Contains Silt and Sand (wet, firm)	at approximately 20- feet	
	/		5	3		11	0			
		17								
	1/	9	3	5	300			Becomes Grey		
			10	10		15	0			
200	-						1 380			
	-									
	-							Poring Complete at 20 01	Installed 2" PVC	
	-							Boring Complete at 30.0'		
	-	()							well. See monitoring we installation detail.	
	+								installation detail.	
	-					1000				
	-				0_44					
	+			35			1000			
	-						MEST.	THE RESERVE OF THE PARTY OF THE PARTY.		
_	-									
				1000	1000					

N = NO. BLOWS	TO DRIVE 2-IN	ICH SPOON 12-INC	HES WITH A 140 LB. PIN WT. FALLIN	NG 30-INCHES PER BLOW	CLASSIFIED BY:	Geologist
DRILLER:	K. FUL	LER	DRILL RIG TYPE :	CME- 550		
METHOD OF IN	VESTIGATION	ASTM D-1586 US	SING HOLLOW STEM AUGERS			

APPENDIX E SITE PHOTOGRAPHS – DISPOSAL SITE

Test Pit 1

Debris from Test Pit 1 (i.e. drums, metal fragments, etc.)

55-gallon drum excavated from Test Pit 2 ("whitish slag" material)

Test Pit 3

Test Pit 4

Test Pit 5 with the brick foundation ~12' bgs.

Test Pit 6

55-gallon drum encountered in Test Pit 6 ("green resin" material)

Test Pit 7

Test Pit 8

Test Pit 9

55-gallon drum encountered in Test Pit 10 ("whitish slag" material)

Contents of a 55-gallon drum encountered in Test Pit 10 (saturated, black fine sand material)

Test Pit 10

Contents of a 55-gallon drum encountered in Test Pit 10 ("tan resin" material).

55-gallon drum encountered in Test Pit 10 ("whitish slag" material)

"Whitish slag" material encountered in a 55-gallon drum in Test Pit 10

Test Pit 11

Test Pit 14

APPENDIX F TEST PIT LOGS – DISPOSAL SITE

Western New York Office 5167 South Park Avenue Hamburg, NY 14075

Phone: (716) 649-8110 Fax: (716) 649-8051

G. Morris

Oct. 2007

PROJECT CLIENT CONTRACTOR FIELD REP

Friendship Foundry
NYSDEC
Empire - Geo Services, Inc.
J. Metzger / B. Murray

LOCATION TEST PIT NO. PROJECT NO. WEATHER / TEMP Friendship, New York
TP-1 (disposal site)
BEV-07-022
sunny / 55°F

EXCAVATION EQUIP Excavator
GROUND ELEV
TIME STARTED
TIME FINISHED

Excavator

OPERATOR MAKE/ MODEL CAPACITY REACH

Caterpillar Excavator 312D CY

FT

DEPTH	SOIL DESCRIPTION	PID	Remarks
		READING	
	Blackish silt intermixed with topsoil and slag	0	
1'			
2'			
	Black sandy silt, some slag, tr wood fragments	0	
3'			
4'			
		0	
5'			
6'			
7'		0	
8'			
9'		0	
•	Brown sand, some silt, little brick fragments		
10			
11'		0	
12'			
13'	contains little concrete fragments	0	
14'			
15'		0	
	Test Pit Completed at 16.0'		
) = 0.0 ppm	ABREVIATIONS	PROP USED	

PID = 0.0 ppm**ABREVIATIONS** PROP USED Analytical sample taken at 4' for PCBs, Pesticides, F - FINE F/M - FINE TO MEDIUM TRACE (TR.) 0-10% Herbicides, Metals, s-VOCs, VOCs, and Total C - COARSE F/C-FINE/COARSE LITTLE (LI.) 10 - 20% **Phenolics** GR - GRAY SOME (SO.) M - MEDIUM 20 -35% 3-55 gallon drums encountered with whitish slag BN - BROWN V-VERY AND 35 - 50% YEL-YELLOW

Western New York Office 5167 South Park Avenue Hamburg, NY 14075

Phone: (716) 649-8110 Fax: (716) 649-8051

G. Morris

PROJECT CLIENT CONTRACTOR FIELD REP Friendship Foundry
NYSDEC
Empire - Geo Services, Inc.
J. Metzger / B. Murray

Oct. 2007

LOCATION TEST PIT NO. PROJECT NO. WEATHER / TEMP Friendship, New York
TP-2 (disposal site)
BEV-07-022
sunny / 55°F

EXCAVATION EQUIP Excavator
GROUND ELEV
TIME STARTED
TIME FINISHED

Excavator

OPERATOR
MAKE/ MODEL
CAPACITY
REACH

Caterpillar Excavator 312D

CY

FT

DEPTH	SOIL DESCRIPTION	PID	Remark
		READING	
	Topsoil mixed with slag	0	
1'			
	Blackish brown sandy silt, little slag		
2'			
		0	
3'			
4'			
		0	
5'			
6'	contains tr metal fragments		
		0	
7'			
8'			
8		0	
9'			
	Brown f-c sand and f-c gravel		
10	-		
		0	
11'			
101			
12'			
13'		0	
10	Test Pit Completed at 13.0'		
14'	root it completed at 1010		
15'			
<u> </u>	ABREVIATIONS	PROP USED	

F - FINE F/M - FINE TO MEDIUM TRACE (TR.) 0-10% PID = 0.0 ppmC - COARSE F/C-FINE/COARSE LITTLE (LI.) 10 - 20% 3-55 gallon drums encountered with whitish slag SOME (SO.) GR - GRAY M - MEDIUM 20 -35% AND 35 - 50% BN - BROWN V-VERY YEL-YELLOW

G. Morris

Hamburg, NY 14075 Phone: (716) 649-8110

Western New York Office 5167 South Park Avenue

Fax: (716) 649-8051

PROJECT CLIENT CONTRACTOR FIELD REP

Friendship Foundry NYSDEC Empire - Geo Services, Inc. J. Metzger / B. Murray

Oct. 2007

LOCATION TEST PIT NO. PROJECT NO. **WEATHER / TEMP**

Friendship, New York TP-3 (disposal site) BEV-07-022 sunny / 55°F

EXCAVATION EQUIP Excavator **GROUND ELEV** TIME STARTED TIME FINISHED

OPERATOR MAKE/ MODEL CAPACITY **REACH**

Caterpillar Excavator 312D CY

FT

DEPTH	SOIL DESCRIPTION	PID	Remarks
		READING	
41	Topsoil	0	
1'	Black silt, some sand, little slag		
2'			
		0	
3'	Brown f-c sand and f-c gravel		
4'			
	Test Pit Completed at 4.0'		
5'			
6'			
7'			
8'			
9'			
10			
10			
11'			
12'			
13'			
14'			
15'			
	ABREVIATIONS	PROP USED	

F - FINE F/M - FINE TO MEDIUM TRACE (TR.) 0-10% PID = 0.0 ppmC - COARSE LITTLE (LI.) F/C-FINE/COARSE 10 - 20% GR - GRAY SOME (SO.) M - MEDIUM 20 -35% BN - BROWN V-VERY AND 35 - 50% YEL-YELLOW

Western New York Office 5167 South Park Avenue Hamburg, NY 14075

Phone: (716) 649-8110 Fax: (716) 649-8051

G. Morris

PROJECT CLIENT CONTRACTOR FIELD REP

Friendship Foundry
NYSDEC
Empire - Geo Services, Inc.
J. Metzger / B. Murray

Oct. 2007

LOCATION TEST PIT NO. PROJECT NO. WEATHER / TEMP Friendship, New York
TP-4 (disposal site)
BEV-07-022
sunny / 55°F

EXCAVATION EQUIP Excavator
GROUND ELEV
TIME STARTED
TIME FINISHED

Excavator

OPERATOR MAKE/ MODEL CAPACITY REACH

Caterpillar Excavator 312D
CY

FT

DEPTH	SOIL DESCRIPTION	PID	Remarks
		READING	
	Blackish sandy silt, some slag	0	
1'			
2'			
3'		0	
4'			
		0	
5'			
6'			
7'		0	
8'			
9'		0	
10			
11'		0	
12'		0	
13'			
14'			
15'	Brown sandy silt, tr gravel	0	
	Test Pit Completed at 15.0'		

PID = 0.0 ppm**ABREVIATIONS** PROP USED Analytical sample taken in the native soils for PCBs, F - FINE F/M - FINE TO MEDIUM TRACE (TR.) 0-10% Pesticides, Herbicides, Metals, s-VOCs, VOCs, and C - COARSE LITTLE (LI.) 10 - 20% F/C-FINE/COARSE **Total Phenolics** GR - GRAY M - MEDIUM SOME (SO.) 20 -35% 2-55 gallon drums encountered filled with whitish slag BN - BROWN V-VERY AND 35 - 50% 1-55 gallon drum filled with groundwater liquids YEL-YELLOW

Western New York Office 5167 South Park Avenue Hamburg, NY 14075

Phone: (716) 649-8110 Fax: (716) 649-8051

G. Morris

PROJECT Friendship Foundry
CLIENT NYSDEC

NYSDEC
Empire - Geo Services, Inc.
J. Metzger / B. Murray

Oct. 2007

LOCATION TEST PIT NO. PROJECT NO. WEATHER / TEMP Friendship, New York
TP-5 (disposal site)
BEV-07-022
sunny / 55°F

EXCAVATION EQUIP Excavator
GROUND ELEV
TIME STARTED
TIME FINISHED

CONTRACTOR

FIELD REP

Excavator

OPERATOR MAKE/ MODEL CAPACITY REACH

Caterpillar Excavator 312D

FT

DEPTH	SOIL DESCRIPTION	PID	Remarks
		READING	
	Blackish sandy silt, some slag	0	
1'			
2'			
		0	
3'			
4'			
·		0	
5'			
6'			
0		0	
7'			
8'			
		0	
9'			
10	Brown sandy silt, some red brick		
10		0	
11'			
12'	Concrete slab encountered at 12.0'		
13'	Test Pit Completed at 12.0'		
14'			
15'			
	<u> </u>		
	ABREVIATIONS	PROP USED	

F - FINE F/M - FINE TO MEDIUM TRACE (TR.) 0-10% PID = 0.0 ppmC - COARSE F/C-FINE/COARSE LITTLE (LI.) 10 - 20% 1-55 gallon drum encountered with whitish slag SOME (SO.) GR - GRAY M - MEDIUM 20 -35% AND BN - BROWN V-VERY 35 - 50% YEL-YELLOW

Western New York Office 5167 South Park Avenue Hamburg, NY 14075

Phone: (716) 649-8110 Fax: (716) 649-8051

G. Morris

PROJECT CLIENT CONTRACTOR FIELD REP

Friendship Foundry
NYSDEC
Empire - Geo Services, Inc.
J. Metzger / B. Murray

Oct. 2007

LOCATION TEST PIT NO. PROJECT NO. WEATHER / TEMP Friendship, New York
TP-6 (disposal site)
BEV-07-022
sunny / 55°F

EXCAVATION EQUIP Excavator
GROUND ELEV
TIME STARTED
TIME FINISHED

Excavator

OPERATOR
MAKE/ MODEL
CAPACITY
REACH

Caterpillar Excavator 312D

CY

FT

DEPTH	SOIL DESCRIPTION	PID	Remarks
		READING	
	Black sand and silt, some slag	0	
1'			
2'			
3'		0	
4'	contains more sand (foundry sand)		
5'		0	
6'			
7'		0	
8'			
9'		0	
10			
11'		0	
	Brown f-c sand and f-c gravel		
12'	· ·		
13'		0	
	Test Pit Completed at 13.0'		
14'			
15'			
	ABREVIATIONS	PROP USED	

F - FINE F/M - FINE TO MEDIUM TRACE (TR.) 0-10% PID = 0.0 ppmC - COARSE F/C-FINE/COARSE LITTLE (LI.) 10 - 20% 8-55 gallon drum encountered with whitish slag SOME (SO.) GR - GRAY M - MEDIUM 20 -35% AND BN - BROWN V-VERY 35 - 50% YEL-YELLOW

Western New York Office 5167 South Park Avenue Hamburg, NY 14075

Phone: (716) 649-8110 Fax: (716) 649-8051

G. Morris

Oct. 2007

PROJECT CLIENT CONTRACTOR FIELD REP Friendship Foundry
NYSDEC
Empire - Geo Services, Inc.
J. Metzger / B. Murray

LOCATION TEST PIT NO. PROJECT NO. WEATHER / TEMP Friendship, New York
TP-7 (disposal site)
BEV-07-022
sunny / 55°F

EXCAVATION EQUIP Excavator
GROUND ELEV
TIME STARTED
TIME FINISHED

Excavator

OPERATOR MAKE/ MODEL CAPACITY REACH

Caterpillar Excavator 312D

FT

DEPTH	SOIL DESCRIPTION	PID READING	Remarks
1'	Blackish sandy silt, some slag	0	
2'			
3'		0	
4'			
5'		0	
6'		0	
7'			
8'	Brown f-c sand and f-c gravel		
9'	Test Pit Completed at 8.0'		
10			
11'			
12'			
13'			
14'			
15'			
	ABREVIATIONS	PROP USED	

F - FINE F/M - FINE TO MEDIUM TRACE (TR.) 0-10% PID = 0.0 ppmC - COARSE F/C-FINE/COARSE LITTLE (LI.) 10 - 20% 4-55 gallon drum encountered with whitish slag SOME (SO.) GR - GRAY M - MEDIUM 20 -35% AND BN - BROWN V-VERY 35 - 50% YEL-YELLOW

Western New York Office 5167 South Park Avenue Hamburg, NY 14075

Phone: (716) 649-8110 Fax: (716) 649-8051

G. Morris

Oct. 2007

PROJECT CLIENT CONTRACTOR FIELD REP Friendship Foundry
NYSDEC
Empire - Geo Services, Inc.
J. Metzger / B. Murray

LOCATION TEST PIT NO. PROJECT NO. WEATHER / TEMP Friendship, New York
TP-8 (disposal site)
BEV-07-022
sunny / 55°F

EXCAVATION EQUIP Excavator
GROUND ELEV
TIME STARTED
TIME FINISHED

Excavator

OPERATOR MAKE/ MODEL CAPACITY REACH

Caterpillar Excavator 312D CY

FT

DEPTH	SOIL DESCRIPTION	PID READING	Remarks
1'	Brown-light tan silty sand, some brick fragments, tr concrete fragments	0	
2'			
3'		0	
4'	Brown f-c sand and f-c gravel, little silt		
5'	Test Pit Completed at 4.0'		
6'			
7'			
8'			
9'			
10			
11'			
12'			
13'			
14'			
15'			
	ABREVIATIONS	PROP USED	

ABREVIATIONS PROP USED F - FINE F/M - FINE TO MEDIUM TRACE (TR.) 0-10% PID = 0.0 ppmC - COARSE LITTLE (LI.) F/C-FINE/COARSE 10 - 20% GR - GRAY SOME (SO.) M - MEDIUM 20 -35% BN - BROWN V-VERY AND 35 - 50% YEL-YELLOW

G

Western New York Office 5167 South Park Avenue Hamburg, NY 14075

Phone: (716) 649-8110 Fax: (716) 649-8051

G. Morris

PROJECT CLIENT CONTRACTOR FIELD REP

Friendship Foundry
NYSDEC
Empire - Geo Services, Inc.
J. Metzger / B. Murray

Oct. 2007

LOCATION TEST PIT NO. PROJECT NO. WEATHER / TEMP Friendship, New York
TP-9 (disposal site)
BEV-07-022
sunny / 55°F

EXCAVATION EQUIP Excavator
GROUND ELEV
TIME STARTED
TIME FINISHED

Excavator

OPERATOR
MAKE/ MODEL
CAPACITY
REACH

Caterpillar Excavator 312D

CY

FT

DEPTH	SOIL DESCRIPTION	PID	Remarks
		READING	
	Blackish silty sand, some slag, tr gravel	0	
1'			
2'			
		0	
3'			
41			
4'		0	
5'		U	
5		_	
6'	trace metal debris		
	trade metal debris	0	
7'			
· · · · · · · · · · · · · · · · · · ·			
8'			
		0	
9'			
10			
		0	
11'			
101			
12'		0	
13'		U	
13			
14'			
17		0	
15'			
	Brown f-c sand and f-c gravel, little silt	1	
est Bit Completed at 16 0'	ADDENIATIONS	DDOD HOED	

Test Pit Completed at 16.0' **ABREVIATIONS** PROP USED F - FINE F/M - FINE TO MEDIUM TRACE (TR.) 0-10% PID = 0.0 ppmC - COARSE F/C-FINE/COARSE LITTLE (LI.) 10 - 20% 9-55 gallon drums encountered filled with "resin" SOME (SO.) GR - GRAY M - MEDIUM 20 -35% BN - BROWN V-VERY AND 35 - 50% YEL-YELLOW

Western New York Office 5167 South Park Avenue Hamburg, NY 14075

Phone: (716) 649-8110 Fax: (716) 649-8051

G. Morris

PROJECT CLIENT CONTRACTOR FIELD REP Friendship Foundry
NYSDEC
Empire - Geo Services, Inc.
J. Metzger / C. Staniszewski

Oct. 2007

LOCATION TEST PIT NO. PROJECT NO. WEATHER / TEMP Friendship, New York
TP-10 (disposal site)
BEV-07-022
sunny / 55°F

EXCAVATION EQUIP Excavator
GROUND ELEV
TIME STARTED
TIME FINISHED

Excavator

OPERATOR MAKE/ MODEL CAPACITY REACH

Caterpillar Excavator 312D

CY

FT

0-10%

10 - 20%

20 -35% 35 - 50%

DEPTH	SOIL DESCRIPTION	PID READING	Remarks
	Blackish silty sand, some slag, metal debris	0	
1'	, the same state of the same s		
2'			
3'		0	
4'			
5'		0	
6'			
7'		0	
8'			
9'		0	
10			
11'		0	
12'			
12	Brown silty sand, little gravel	0	
13'			
14'	Test Pit Completed at 13.0'		
15'			
gallon drum filled with wl	hitish slag ABREVIATIONS	PROP USED	

1-55 gallon drum filled with whitish slag	ABREVIATIONS		PROP USED	
1-55 gallon drum filled with "resin"	F - FINE	F/M - FINE TO MEDIUM	TRACE (TR.)	
1-55 gallon drum filled with saturated black fine sand	C - COARSE	F/C-FINE/COARSE	LITTLE (LI.)	
Analtical sample taken of pourous rust colored slag	GR - GRAY	M - MEDIUM	SOME (SO.)	
for PCBs, s-VOCs, VOCs, Pesticides, Herbicides,	BN - BROWN	V-VERY	AND	
Metals, and Total Phenolics	YEL-YELLOW			

Western New York Office 5167 South Park Avenue Hamburg, NY 14075

Phone: (716) 649-8110 Fax: (716) 649-8051

G. Morris

Oct. 2007

PROJECT CLIENT CONTRACTOR FIELD REP

Friendship Foundry
NYSDEC
Empire - Geo Services, Inc.
J. Metzger / C. Staniszewski

LOCATION TEST PIT NO. PROJECT NO. WEATHER / TEMP Friendship, New York
TP-11 (disposal site)
BEV-07-022
sunny / 55°F

EXCAVATION EQUIP Excavator
GROUND ELEV
TIME STARTED
TIME FINISHED

Excavator

OPERATOR
MAKE/ MODEL
CAPACITY
REACH

Caterpillar Excavator 312D CY

FT

DEPTH	SOIL DESCRIPTION	PID READING	Remarks
	Dischiele was either and some along to meetal debuilt		
4.	Blackish-gray silty sand, some slag, tr metal debris	0	
1'			
2'			
		0	
3'			
4'			
		0	
5'			
	7		
6'			
	\dashv	0	
7'		U	
	-		
01			
8'			
		0	
9'	Brown f-c sand and f-c gravel, little silt		
10			
	Test Pit Completed at 10.0'		
11'			
12'			
13'			
· ÷	\dashv		
14'			
17	\dashv		
15'			
10	\dashv		
	<u> </u>		
ID = 0.0 ppm	ARREVIATIONS	DBUD LIGED	

PID = 0.0 ppm**ABREVIATIONS** PROP USED 6-55 gallon drum filled with greyish slag mixed with F - FINE F/M - FINE TO MEDIUM TRACE (TR.) 0-10% greenish resin C - COARSE LITTLE (LI.) F/C-FINE/COARSE 10 - 20% Analytical sample taken for VOCs, s-VOCs, Metals, GR - GRAY M - MEDIUM SOME (SO.) 20 -35% PCBs, Herbicides, Pesticides, Total Phenolics BN - BROWN V-VERY AND 35 - 50% YEL-YELLOW

Western New York Office 5167 South Park Avenue Hamburg, NY 14075

Phone: (716) 649-8110 Fax: (716) 649-8051

PROJECT CLIENT CONTRACTOR FIELD REP

Friendship Foundry
NYSDEC
Empire - Geo Services, Inc.
J. Metzger / C. Staniszewski

Oct. 2007

LOCATION TEST PIT NO. PROJECT NO. WEATHER / TEMP Friendship, New York
TP-12 (disposal site)
BEV-07-022
sunny / 55°F

EXCAVATION EQUIP Excavator
GROUND ELEV
TIME STARTED
TIME FINISHED

Excavator

OPERATOR MAKE/ MODEL CAPACITY REACH G. Morris
Caterpillar Excavator 312D
CY

FT

DEPTH	SOIL DESCRIPTION	PID	Remark
		READING	
	Blackish silty sand, little slag	0	
1'			
2'			
3'		0	
	Brown-grey silty clay, tr sand		
4'	E. o.m. g. oy omy omy, a omio		
-	Test Pit Completed at 4.0'		
5'	·		
6'			
7'			
8'			
9'			
10			
11'			
12'			
401			
13'			
14'			
15'			

PID = 0.0 ppm

Analytical sample taken for PCBS, VOCs, s-VOCs,

Pesticides, Herbicides, Metals, and Total Phenolics

ABREVIATIONS

F - FINE F/M - FINE TO MEDIUM

C - COARSE F/C-FINE/COARSE

GR - GRAY M - MEDIUM

V-VERY

BN - BROWN

YEL-YELLOW

TRACE (TR.) 0-10% LITTLE (LI.) 10 - 20% SOME (SO.) 20 -35% AND 35 - 50%

PROP USED

Western New York Office 5167 South Park Avenue Hamburg, NY 14075

Phone: (716) 649-8110 Fax: (716) 649-8051

G. Morris

PROJECT	
CLIENT	
CONTRACTOR	₹
FIELD REP	

Friendship Foundry
NYSDEC
Empire - Geo Services, Inc.
J. Metzger / C. Staniszewski

Oct. 2007

LOCATION TEST PIT NO. PROJECT NO. WEATHER / TEMP Friendship, New York
TP-13 (disposal site)
BEV-07-022
sunny / 55°F

EXCAVATION EQUIP Excavator
GROUND ELEV
TIME STARTED
TIME FINISHED

Excavator

OPERATOR MAKE/ MODEL CAPACITY REACH

Caterpillar Excavator 312D
CY

FT

SOIL DESCRIPTION	PID	Remarks
OOIL BLOOK!! HON		Romano
Black silty sand, little slag		
	0	
	0	
	0	
	0	
	0	
Brown f-c sand and f-c gravel, little silt	0	
Test Pit Completed at 15.0'		
	Black silty sand, little slag Brown f-c sand and f-c gravel, little silt Test Pit Completed at 15.0'	Black silty sand, little slag 0 0 0 0 0 0 Brown f-c sand and f-c gravel, little silt 0

PID = 0.0 ppm

3-55 gallon drums encountered filled with whitish slag
mixed with black "resin"

ABREVIATIONS

F - FINE F/M - FINE TO MEDIUM

C - COARSE F/C-FINE/COARSE

GR - GRAY M - MEDIUM

BN - BROWN V-VERY

YEL-YELLOW

TRACE (TR.) 0-10% LITTLE (LI.) 10 - 20% SOME (SO.) 20 -35% AND 35 - 50%

Western New York Office 5167 South Park Avenue Hamburg, NY 14075

Phone: (716) 649-8110 Fax: (716) 649-8051

G. Morris

Oct. 2007

PROJECT
CLIENT
CONTRACTOR
FIELD REP

Friendship Foundry
NYSDEC
Empire - Geo Services, Inc.
J. Metzger / C. Staniszewski

LOCATION TEST PIT NO. PROJECT NO. WEATHER / TEMP Friendship, New York
TP-14 (disposal site)
BEV-07-022
sunny / 55°F

EXCAVATION EQUIP Excavator
GROUND ELEV
TIME STARTED
TIME FINISHED

Excavator

OPERATOR MAKE/ MODEL CAPACITY REACH

Caterpillar Excavator 312D CY

FT

DEPTH	SOIL DESCRIPTION	PID	Remarks
		READING	
1'	Topsoil Brown f-c sand and f-c gravel, little silt	0	
2'			
3'		0	
4'	Test Pit Completed at 3.0'		
5'			
6'			
7'			
8'			
9'			
10			
11'			
12'			
13'			
14'			
15'			
	ABREVIATIONS	PROP USED	

ABREVIATIONS PROP USED PID = 0.0 ppmF - FINE F/M - FINE TO MEDIUM TRACE (TR.) 0-10% C - COARSE F/C-FINE/COARSE LITTLE (LI.) 10 - 20% GR - GRAY SOME (SO.) M - MEDIUM 20 -35% AND BN - BROWN V-VERY 35 - 50% YEL-YELLOW

5167 South Park Avenue Hamburg, NY 14075

Phone: (716) 649-8110 Fax: (716) 649-8051

Western New York Office

Oct. 2007

PROJECT
CLIENT
CONTRACTOR
FIFI D RFP

Friendship Foundry

NYSDEC

Empire - Geo Services, Inc.

J. Metzger / C. Staniszewski

LOCATION TEST PIT NO. PROJECT NO. WEATHER / TEMP Friendship, New York

TP-15 (disposal site)

BEV-07-022
sunny / 55°F

EXCAVATION EQUIP Excavator
GROUND ELEV
TIME STARTED
TIME FINISHED

Excavator

OPERATOR MAKE/ MODEL CAPACITY REACH G. Morris
Caterpillar Excavator 312D
CY

FT

DEPTH	SOIL DESCRIPTION	PID READING	Remarks
	Black f-c gravel, some slag	0	
1'	Black 1-c gravel, some stag	U	
2'	Brown f-c sand and f-c gravel		
3'		0	
4'			
	Test Pit Completed at 4.0'		
5'			
6'			
7'			
8'			
9'			
10			
11'			
12'			
13'			
14'			
15'			

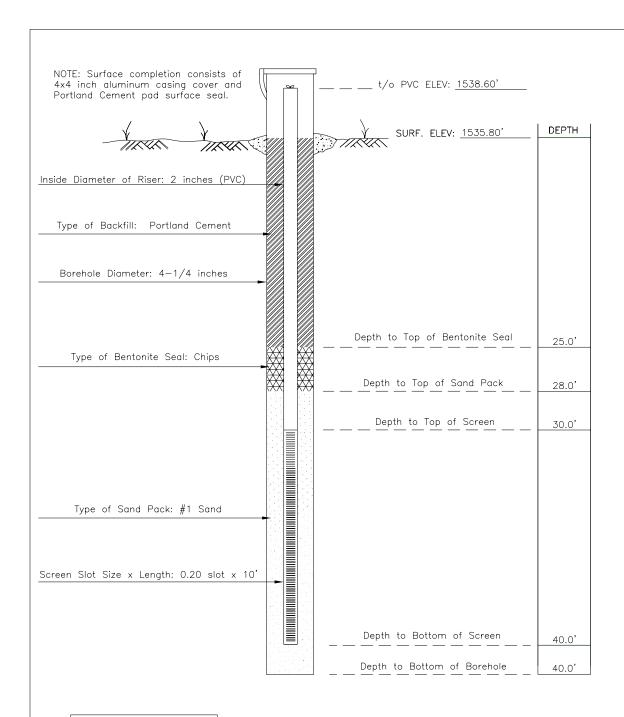
PID = 0.0 ppm
PID = 0.0 ppm Analytical sample taken for VOCs, s-VOCs, Metals, PCBs. Herbicides. Pesticides. and Total Phenolics
PCBs. Herbicides, Pesticides, and Total Phenolics

ABREVIATIONS

F - FINE F/M - FINE TO MEDIUM

C - COARSE F/C-FINE/COARSE

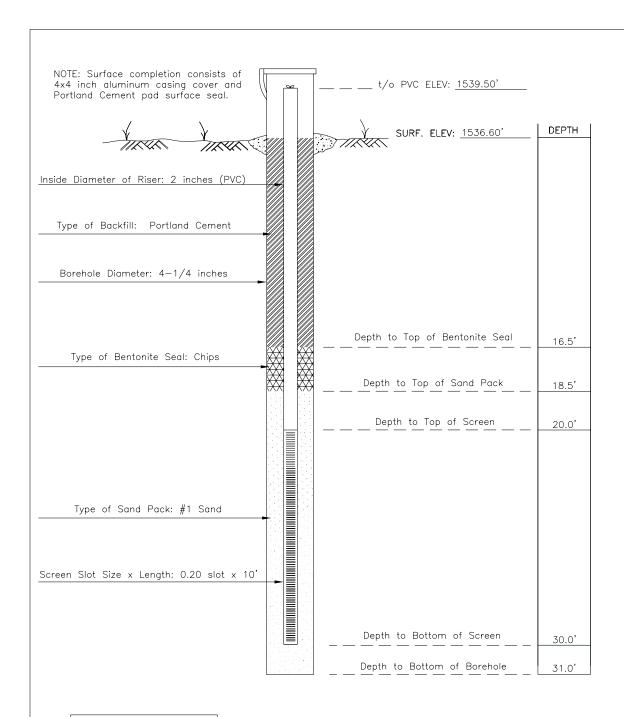
GR - GRAY M - MEDIUM


BN - BROWN V-VERY

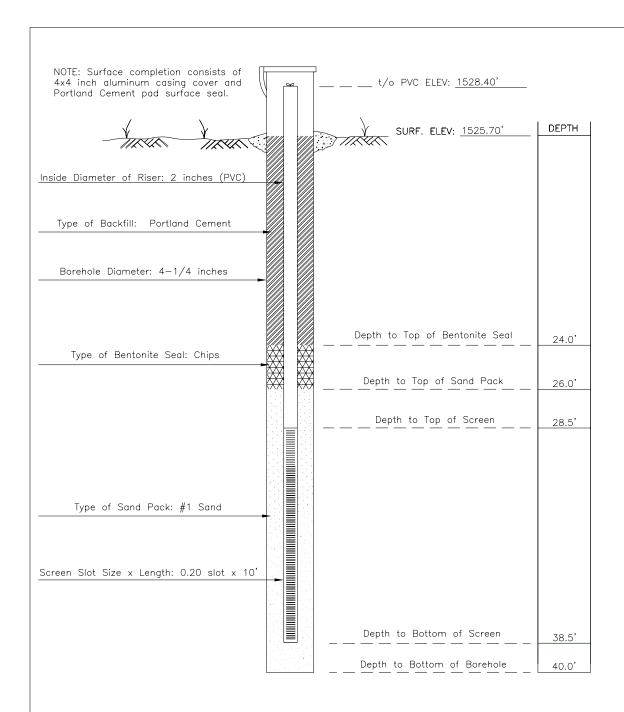
YEL-YELLOW

TRACE (TR.) 0-10% LITTLE (LI.) 10 - 20% SOME (SO.) 20 -35% AND 35 - 50%

PROP USED

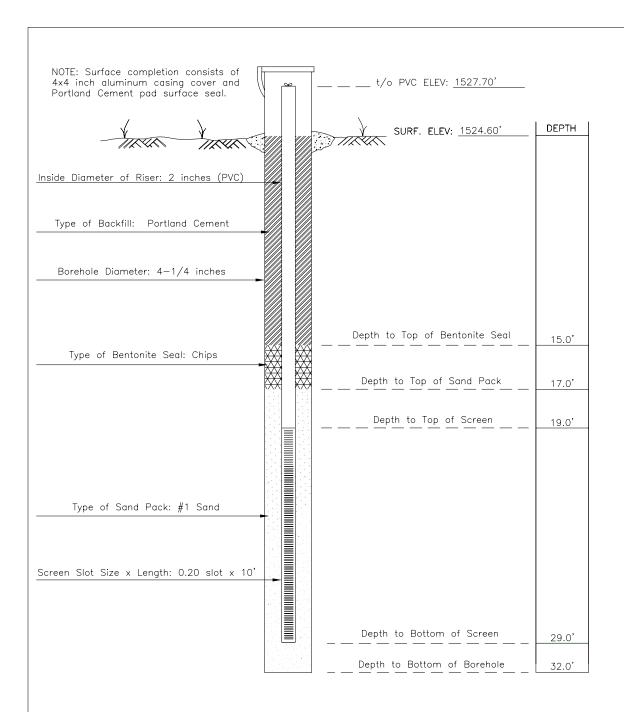

APPENDIX G MONITORING WELL INSTALLATION DETAILS – DISPOSAL SITE

- (1) Drilling Method: ASTM D-1586 Using 4-1/2 inch hollow stem auger
- (2) Driller: K. Fuller
- (3) Geotechnical & Environmental Specialist: J. Metzger



WELL No. MW-10

- (1) Drilling Method: ASTM D-1586 Using 4-1/2 inch hollow stem auger
- (2) Driller: K. Fuller
- (3) Geotechnical & Environmental Specialist: J. Metzger



WELL No. MW-11

- (1) Drilling Method: ASTM D-1586 Using 4-1/2 inch hollow stem auger
- (2) Driller: K. Fuller
- (3) Geotechnical & Environmental Specialist: J. Metzger

WELL No. MW-12

NOTES:

- (1) Drilling Method: ASTM D-1586 Using 4-1/2 inch hollow stem auger
- (2) Driller: K. Fuller
- (3) Geotechnical & Environmental Specialist: J. Metzger

START

11/19/2007

FINISH SHEET

1 OF 1

SJB SERVICES, INC. SUBSURFACE LOG

HOLE NO. MW-9
SURF. ELEV
G.W. DEPTH See Notes

+		SMPL		BLOV	WS ON SA	AMPLER		SOIL OR ROCK	NOTES
		NO.	0/6	6/12	12/18	N	PID	CLASSIFICATION	
	1	1	9	11				Brown f-c SAND and Gravel, some Silt, tr. clay,	
_	4		13	21		24	0	tr. slag (moist, FILL)	
_	4	2	36	26		DEE	0		DEE= Cample Space
-	-		50/0.4			REF	0		REF= Sample Spoon Refusal
-	+								reladar
-	1								
	1								
	1	N. 462				6.46			
						1302			
	1	3	8	10				Grey Clayey SILT, tr. sand (moist, hard0	
	4		12	20		22	0		
		1	A-1						
-	-								
-	1	4	P	0					Poor Recovery Sample #4
-	/	4	12	9		21	0	(v. stiff)	l controcovery cample #
-	4		12	13		21	-	(1.50.0)	
				77,86					
			1987						
	1	5	5	5					
	Δ		8	9		13	0	(stiff)	
	1	6	3	5					
	/	0	7	6		12	0		
			,						
			N. S.						
	1	7	6	7					No Recovery Sample #7
	/		8	8		15	0	(wet)	C
									Groundwater encountered at approximately 30- feet.
									at approximately 30- leet.
						100.00			Installed 2" PVC
									well. See monitoring well
									installation detail.
								Boring Complete at 40.0'	

START

11/19/2007

FINISH

11/19/2007

SHEET 1 OF 1

SJB SERVICES, INC. SUBSURFACE LOG

HOLE NO. MW-10
SURF. ELEV
G.W. DEPTH See Notes

LOCATION: DISPOSAL SITE FRIENDSHIP FOUNDRY PROJECT: FRIENDSHIP, NEW YORK PROJ. NO .: BEV-07-022 NOTES SOIL OR ROCK SMPL **BLOWS ON SAMPLER** 6/12 12/18 N PID CLASSIFICATION 0/6 FT. NO. Black fine SAND, some Slag (moist, FILL) 1 10 8 8 5 16 0 7 2 7 7 7 14 0 3 11 10 6 5 16 Brown Sandy SILT, some Gravel (moist, firm) Auger to 25- feet between samples 3 and 4. Groundwater encountered at approximately 20- feet. REF= Sample Spoon 76 50/0.3 REF Becomes Grey (wet, v. compact) Refusal Poor Recovery Sample #4 30 5 32 50/0.4 REF Installed 2" PVC Boring Complete at 31.0' well. See monitoring wellinstallation detail. N = NO. BLOWS TO DRIVE 2-INCH SPOON 12-INCHES WITH A 140 LB. PIN WT. FALLING 30-INCHES PER BLOW Geologist CLASSIFIED BY: K. FULLER DRILL RIG TYPE : CME- 550 METHOD OF INVESTIGATION ASTM D-1588 USING HOLLOW STEM AUGERS

START

11/20/2007

SHEET 1 OF 1

SJB SERVICES, INC. SUBSURFACE LOG

HOLE NO. MW-11
SURF. ELEV
G.W. DEPTH See Notes

1		SMPL		BLOV	NS ON SA	MPLER		SOIL OR ROCK	NOTES
		NO.	0/6	6/12	12/18	N	PID	CLASSIFICATION	
	1	1	3	5				Brown SILT, some Sand, little Gravel (moist, firm)	
			6	5		11	0		
	1	2	5	6					
	4		7	10		13	0		
	-		5.4						
	-								
_	-								
	-								
-	+								
-	1	3	7	6	1000			Grey Silty CLAY, little Gravel (moist, stiff)	
58	/	3	7	9		13	0	Orey Only OLAT, Ittle Graver (IIIOIst, Still)	
	+		,	3		13	J		
	1								
	-								
	1	4	3	4	4-17			Contains tr. gravel	
	1		5	9		9	0		
					100				
	1	5	7	7				(v. stiff)	
	4		12	15		19	0		
	-								
	1								
	+	G	6	6				(stiff)	Poor Recovery Sample #
	/	6	6 7	10		13	0	(Suit)	Tool Necovery Sample #
-	4		1	10		13	J		
	-								
	-								
	1	7	3	4				(medium)	
	1	No.	3	4		7	0		
V.						and the same			A 100 TO
									Groundwater encountere
									at approximately 34- feet
	1	8	3	3				(wet)	
	4		2	5		5	0		Installed 2" PVC
	-								well. See monitoring well
	-							Boring Complete at 40.0'	installation detail.
								y Bonning Complete at 40.0	

START FINISH 11/20/2007

SHEET 1 OF 1

SJB SERVICES, INC. SUBSURFACE LOG

HOLE NO. MW-12
SURF. ELEV
G.W. DEPTH See Notes

DEPTH SMPL BLOWS ON SAMPL		AMPLER	NOTES						
		NO.	0/6	6/12	12/18	N	PID	CLASSIFICATION	
-	1							Augered to 20- feet before collecting first sample.	
								The grant of the state of the s	
_									
-	$\ \ $								
3									
									14 36
_									
		R S				51			
	ľ								Groundwater encountered
	/	1	7	8		13	0	Grey Silty SAND, tr. clay (wet, firm)	at approximately 20- feet.
					1				
						reng 2			
-	1	2	5	5			200	Grey Sandy SILT, little Clay	
			5	6		10	0	(wet, firm)	
-									WOH= Weight of Hamme
	1	3	WOH	WOH					and Rods
	4		WOH	WOH		WOH	0	(loose)	
					A Parlier			Boring Complete at 32.0'	Installed 2" PVC
									well. See monitoring well
									installation detail.
				HA					
			Policy			18.05			

APPENDIX H UPSTATE LABORATORIES INC. ANALYTICAL REPORTS

CLIENT: NYSDEC - Region 9 Client Sample ID: TP-1@5'

Lab Order: U0709117 **Collection Date:** 9/5/2007 11:00:00 AM

Project: Friendship Foundry

Lab ID: U0709117-001 **Matrix:** SOIL

Analyses	Result	Limit Qua	al Units	DF	Date Analyzed
POLYCHLORINATED BIPHENYLS(SOIL/S	LUDGE)	SW8082	(SW35	50B)	Analyst: KC
Aroclor 1016	ND	0.099	mg/Kg-dry	1	9/18/2007
Aroclor 1221	ND	0.099	mg/Kg-dry	1	9/18/2007
Aroclor 1232	ND	0.099	mg/Kg-dry	1	9/18/2007
Aroclor 1242	ND	0.099	mg/Kg-dry	1	9/18/2007
Aroclor 1248	ND	0.099	mg/Kg-dry	1	9/18/2007
Aroclor 1254	ND	0.099	mg/Kg-dry	1	9/18/2007
Aroclor 1260	ND	0.099	mg/Kg-dry	1	9/18/2007
Aroclor 1268	ND	0.099	mg/Kg-dry	1	9/18/2007
SOIL AND SOLID METALS BY ICP		SW6010E	B (SW30	50A)	Analyst: EA
Aluminum	7500	6.0	mg/Kg-dry	1	9/10/2007 12:49:00 PM
Antimony	ND	36	mg/Kg-dry	1	9/10/2007 12:49:00 PM
Arsenic*	16	1.2	mg/Kg-dry	1	9/10/2007 12:49:00 PM
Barium	110	36	mg/Kg-dry	1	9/10/2007 12:49:00 PM
Beryllium	ND	0.60	mg/Kg-dry	1	9/10/2007 12:49:00 PM
Cadmium	1.1	0.60	mg/Kg-dry	1	9/10/2007 12:49:00 PM
Calcium	2100	60	mg/Kg-dry	1	9/10/2007 12:49:00 PM
Chromium	13	6.0	mg/Kg-dry	1	9/10/2007 12:49:00 PM
Cobalt	10	6.0	mg/Kg-dry	1	9/10/2007 12:49:00 PM
Copper	140	2.4	mg/Kg-dry	1	9/10/2007 12:49:00 PM
Iron	44000	3.6	mg/Kg-dry	1	9/10/2007 12:49:00 PM
Lead	420	12	mg/Kg-dry	1	9/10/2007 12:49:00 PM
Magnesium	1800	60	mg/Kg-dry	1	9/10/2007 12:49:00 PM
Manganese	370	2.4	mg/Kg-dry	1	9/10/2007 12:49:00 PM
Nickel	140	3.6	mg/Kg-dry	1	9/10/2007 12:49:00 PM
Potassium	840	60	mg/Kg-dry	1	9/10/2007 12:49:00 PM
Selenium*	9.0	0.60	mg/Kg-dry	1	9/10/2007 12:49:00 PM
Silver	ND	6.0	mg/Kg-dry	1	9/10/2007 12:49:00 PM
Sodium	ND	60	mg/Kg-dry	1	9/10/2007 12:49:00 PM
Thallium*	ND	0.36	mg/Kg-dry	1	9/10/2007 12:49:00 PM
Vanadium	20	36 J	mg/Kg-dry	1	9/10/2007 12:49:00 PM
Zinc	270	1.2	mg/Kg-dry	1	9/10/2007 12:49:00 PM
TOTAL MERCURY - SOIL/SOLID/WASTE	0.044	SW7471	\ -	•	Analyst: EA
Mercury	0.014	0.239 J	mg/Kg-dry	1	9/11/2007 12:57:11 PM
PERCENT MOISTURE		D2216			Analyst: KAM
Percent Moisture	16.3	0.00100	wt%	1	9/10/2007

Approved By:	Date:	Page 1 of 31
Qualifiers: * Low Level	**	Value exceeds Maximum Contaminant Value

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

E Value above quantitation range

J Analyte detected below quantitation limits

Date: 21-Sep-07

CLIENT: NYSDEC - Region 9

Client Sample ID: TP-3@4' Lab Order: U0709117 **Collection Date:** 9/5/2007 11:30:00 AM

Friendship Foundry **Project:**

Matrix: SOIL Lab ID: U0709117-002

Analyses	Result	Limit Qual	Units	DF	Date Analyzed
PEST/PCB IN SOIL/SLUDGE		SW8081A	(SW355	0)	Analyst: KC
4,4´-DDD	ND	38	μg/Kg-dry	10	9/18/2007
4,4´-DDE	ND	38	μg/Kg-dry	10	9/18/2007
4,4´-DDT	ND	38	μg/Kg-dry	10	9/18/2007
Aldrin	ND	20	μg/Kg-dry	10	9/18/2007
alpha-BHC	ND	20	μg/Kg-dry	10	9/18/2007
alpha-Chlordane	ND	20	μg/Kg-dry	10	9/18/2007
Aroclor 1016	ND	20	μg/Kg-dry	10	9/18/2007
Aroclor 1221	ND	20	μg/Kg-dry	10	9/18/2007
Aroclor 1232	ND	20	μg/Kg-dry	10	9/18/2007
Aroclor 1242	ND	20	μg/Kg-dry	10	9/18/2007
Aroclor 1248	ND	20	μg/Kg-dry	10	9/18/2007
Aroclor 1254	ND	20	μg/Kg-dry	10	9/18/2007
Aroclor 1260	ND	20	μg/Kg-dry	10	9/18/2007
beta-BHC	ND	20	μg/Kg-dry	10	9/18/2007
delta-BHC	ND	20	μg/Kg-dry	10	9/18/2007
Dieldrin	ND	38	μg/Kg-dry	10	9/18/2007
Endosulfan I	ND	20	μg/Kg-dry	10	9/18/2007
Endosulfan II	ND	38	μg/Kg-dry	10	9/18/2007
Endosulfan sulfate	ND	38	μg/Kg-dry	10	9/18/2007
Endrin	ND	38	μg/Kg-dry	10	9/18/2007
Endrin aldehyde	ND	38	μg/Kg-dry	10	9/18/2007
Endrin ketone	ND	38	μg/Kg-dry	10	9/18/2007
gamma-BHC	ND	20	μg/Kg-dry	10	9/18/2007
gamma-Chlordane	ND	20	μg/Kg-dry	10	9/18/2007
Heptachlor	ND	20	μg/Kg-dry	10	9/18/2007
Heptachlor epoxide	ND	20	μg/Kg-dry	10	9/18/2007
Methoxychlor	ND	200	μg/Kg-dry	10	9/18/2007
Toxaphene	ND	2000	μg/Kg-dry	10	9/18/2007
NOTES:					
The reporting limits were raised due to mate	rix interference.				
CHLORINATED HERBICIDES		SW8151A	(SW355	0)	Analyst: KC
2,4,5-T	ND	38	μg/Kg-dry	1	9/11/2007
2,4,5-TP (Silvex)	ND	38	μg/Kg-dry	1	9/11/2007
2,4-D	ND	38	μg/Kg-dry	1	9/11/2007
Dicamba	ND	38	μg/Kg-dry	1	9/11/2007
Dinoseb	ND	38	μg/Kg-dry	1	9/11/2007
SOIL AND SOLID METALS BY ICP		SW6010B	(SW305	0A)	Analyst: EA
Aluminum	6500	5.8	mg/Kg-dry	1	9/10/2007 1:04:18 PM

Approved By:	Date:	Page 2 of 31

Qualifiers: Low Level

> В Analyte detected in the associated Method Blank

Η Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit Value exceeds Maximum Contaminant Value

Date: 21-Sep-07

Е Value above quantitation range

Analyte detected below quantitation limits J

CLIENT: NYSDEC - Region 9 Client Sample ID: TP-3@4'

Lab Order: U0709117 **Collection Date:** 9/5/2007 11:30:00 AM

Project: Friendship Foundry

Lab ID: U0709117-002 **Matrix:** SOIL

Analyses	Result	Limit	Qual	Units	DF	Date Analyzed
SOIL AND SOLID METALS BY ICP		SW60	010B	(SW305	60A)	Analyst: EA
Antimony	ND	35		mg/Kg-dry	1	9/10/2007 1:04:18 PM
Arsenic*	7.6	1.2		mg/Kg-dry	1	9/10/2007 1:04:18 PM
Barium	140	35		mg/Kg-dry	1	9/10/2007 1:04:18 PM
Beryllium	0.59	0.58		mg/Kg-dry	1	9/10/2007 1:04:18 PM
Cadmium	1.1	0.58		mg/Kg-dry	1	9/10/2007 1:04:18 PM
Calcium	7200	58		mg/Kg-dry	1	9/10/2007 1:04:18 PM
Chromium	48	5.8		mg/Kg-dry	1	9/10/2007 1:04:18 PM
Cobalt	8.1	5.8		mg/Kg-dry	1	9/10/2007 1:04:18 PM
Copper	65	2.3		mg/Kg-dry	1	9/10/2007 1:04:18 PM
Iron	31000	3.5		mg/Kg-dry	1	9/10/2007 1:04:18 PM
Lead	81	12		mg/Kg-dry	1	9/10/2007 1:04:18 PM
Magnesium	2500	58		mg/Kg-dry	1	9/10/2007 1:04:18 PM
Manganese	580	2.3		mg/Kg-dry	1	9/10/2007 1:04:18 PM
Nickel	39	3.5		mg/Kg-dry	1	9/10/2007 1:04:18 PM
Potassium	970	58		mg/Kg-dry	1	9/10/2007 1:04:18 PM
Selenium*	6.4	0.58		mg/Kg-dry	1	9/10/2007 1:04:18 PM
Silver	ND	5.8		mg/Kg-dry	1	9/10/2007 1:04:18 PM
Sodium	ND	58		mg/Kg-dry	1	9/10/2007 1:04:18 PM
Thallium*	ND	0.35		mg/Kg-dry	1	9/10/2007 1:04:18 PM
Vanadium	10	35	J	mg/Kg-dry	1	9/10/2007 1:04:18 PM
Zinc	630	1.2		mg/Kg-dry	1	9/10/2007 1:04:18 PM
TOTAL MERCURY - SOIL/SOLID/WAS	STE	SW74	171A	(SW747	'1A)	Analyst: EA
Mercury	0.021	0.232	J	mg/Kg-dry	1	9/11/2007 1:00:54 PM
TCL-SEMIVOLATILE ORGANICS		SW82	270C	(SW355	60A)	Analyst: LD
(3+4)-Methylphenol	ND	3800		μg/Kg-dry	10	9/10/2007 9:56:00 PM
1,2,4-Trichlorobenzene	ND	3800		μg/Kg-dry	10	9/10/2007 9:56:00 PM
1,2-Dichlorobenzene	ND	3800		μg/Kg-dry	10	9/10/2007 9:56:00 PM
1,3-Dichlorobenzene	ND	3800		μg/Kg-dry	10	9/10/2007 9:56:00 PM
1,4-Dichlorobenzene	ND	3800		μg/Kg-dry	10	9/10/2007 9:56:00 PM
2,4,5-Trichlorophenol	ND	3800		μg/Kg-dry	10	9/10/2007 9:56:00 PM
2,4,6-Trichlorophenol	ND	3800		μg/Kg-dry	10	9/10/2007 9:56:00 PM
2,4-Dichlorophenol	ND	3800		μg/Kg-dry	10	9/10/2007 9:56:00 PM
2,4-Dimethylphenol	ND	3800		μg/Kg-dry	10	9/10/2007 9:56:00 PM
2,4-Dinitrophenol	ND	38000		μg/Kg-dry	10	9/10/2007 9:56:00 PM
2,4-Dinitrotoluene	ND	3800		μg/Kg-dry	10	9/10/2007 9:56:00 PM
2,6-Dinitrotoluene	ND	3800		μg/Kg-dry	10	9/10/2007 9:56:00 PM
2-Chloronaphthalene	ND	3800		μg/Kg-dry	10	9/10/2007 9:56:00 PM
2-Chlorophenol	ND	3800		μg/Kg-dry	10	9/10/2007 9:56:00 PM

Approved By:

Qualifiers:

Low Level

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

** Value exceeds Maximum Contaminant Value

Page 3 of 31

Date: 21-Sep-07

E Value above quantitation range

Date:

J Analyte detected below quantitation limits

CLIENT: NYSDEC - Region 9 Client Sample ID: TP-3@4'

Lab Order: U0709117 **Collection Date:** 9/5/2007 11:30:00 AM

Project: Friendship Foundry

Lab ID: U0709117-002 **Matrix:** SOIL

Analyses	Result	Limit	Qual	Units	DF	Date Analyzed
TCL-SEMIVOLATILE ORGANICS		SW8	270C	(SW355	50A)	Analyst: LD
2-Methylnaphthalene	600	3800	J	μg/Kg-dry	10	9/10/2007 9:56:00 PM
2-Methylphenol	ND	3800		μg/Kg-dry	10	9/10/2007 9:56:00 PM
2-Nitroaniline	ND	38000		μg/Kg-dry	10	9/10/2007 9:56:00 PM
2-Nitrophenol	ND	3800		μg/Kg-dry	10	9/10/2007 9:56:00 PM
3,3'-Dichlorobenzidine	ND	3800		μg/Kg-dry	10	9/10/2007 9:56:00 PM
3-Nitroaniline	ND	38000		μg/Kg-dry	10	9/10/2007 9:56:00 PM
4,6-Dinitro-2-methylphenol	ND	38000		μg/Kg-dry	10	9/10/2007 9:56:00 PM
4-Bromophenyl phenyl ether	ND	3800		μg/Kg-dry	10	9/10/2007 9:56:00 PM
4-Chloro-3-methylphenol	ND	3800		μg/Kg-dry	10	9/10/2007 9:56:00 PM
4-Chloroaniline	ND	3800		μg/Kg-dry	10	9/10/2007 9:56:00 PM
4-Chlorophenyl phenyl ether	ND	3800		μg/Kg-dry	10	9/10/2007 9:56:00 PM
4-Nitroaniline	ND	38000		μg/Kg-dry	10	9/10/2007 9:56:00 PM
4-Nitrophenol	ND	38000		μg/Kg-dry	10	9/10/2007 9:56:00 PM
Acenaphthene	ND	3800		μg/Kg-dry	10	9/10/2007 9:56:00 PM
Acenaphthylene	ND	3800		μg/Kg-dry	10	9/10/2007 9:56:00 PM
Anthracene	ND	3800		μg/Kg-dry	10	9/10/2007 9:56:00 PM
Benz(a)anthracene	ND	3800		μg/Kg-dry	10	9/10/2007 9:56:00 PM
Benzo(a)pyrene	ND	3800		μg/Kg-dry	10	9/10/2007 9:56:00 PM
Benzo(b)fluoranthene	ND	3800		μg/Kg-dry	10	9/10/2007 9:56:00 PM
Benzo(g,h,i)perylene	ND	3800		μg/Kg-dry	10	9/10/2007 9:56:00 PM
Benzo(k)fluoranthene	ND	3800		μg/Kg-dry	10	9/10/2007 9:56:00 PM
Bis(2-chloroethoxy)methane	ND	3800		μg/Kg-dry	10	9/10/2007 9:56:00 PM
Bis(2-chloroethyl)ether	ND	3800		μg/Kg-dry	10	9/10/2007 9:56:00 PM
Bis(2-chloroisopropyl)ether	ND	3800		μg/Kg-dry	10	9/10/2007 9:56:00 PM
Bis(2-ethylhexyl)phthalate	2000	3800	J	μg/Kg-dry	10	9/10/2007 9:56:00 PM
Butyl benzyl phthalate	ND	3800		μg/Kg-dry	10	9/10/2007 9:56:00 PM
Carbazole	ND	3800		μg/Kg-dry	10	9/10/2007 9:56:00 PM
Chrysene	ND	3800		μg/Kg-dry	10	9/10/2007 9:56:00 PM
Di-n-butyl phthalate	ND	3800		μg/Kg-dry	10	9/10/2007 9:56:00 PM
Di-n-octyl phthalate	ND	3800		μg/Kg-dry	10	9/10/2007 9:56:00 PM
Dibenz(a,h)anthracene	ND	3800		μg/Kg-dry	10	9/10/2007 9:56:00 PM
Dibenzofuran	ND	3800		μg/Kg-dry	10	9/10/2007 9:56:00 PM
Diethyl phthalate	ND	3800		μg/Kg-dry	10	9/10/2007 9:56:00 PM
Dimethyl phthalate	ND	3800		μg/Kg-dry	10	9/10/2007 9:56:00 PM
Fluoranthene	ND	3800		μg/Kg-dry	10	9/10/2007 9:56:00 PM
Fluorene	ND	3800		μg/Kg-dry	10	9/10/2007 9:56:00 PM
Hexachlorobenzene	ND	3800		μg/Kg-dry	10	9/10/2007 9:56:00 PM
Hexachlorobutadiene	ND	3800		μg/Kg-dry	10	9/10/2007 9:56:00 PM
Hexachlorocyclopentadiene	ND	3800		μg/Kg-dry	10	9/10/2007 9:56:00 PM

Approved By

Qualifiers: * Low Level

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

Date:

3 7 - 1-- -

Page 4 of 31

** Value exceeds Maximum Contaminant Value

Date: 21-Sep-07

- E Value above quantitation range
- J Analyte detected below quantitation limits
- S Spike Recovery outside accepted recovery limits

CLIENT: NYSDEC - Region 9 Client Sample ID: TP-3@4'

Lab Order: U0709117 **Collection Date:** 9/5/2007 11:30:00 AM

Project: Friendship Foundry

Lab ID: U0709117-002 Matrix: SOIL

Analyses	Result	Limit Qua	l Units	DF	Date Analyzed
TCL-SEMIVOLATILE ORGANICS		SW8270C	(SW355	50A)	Analyst: LD
Hexachloroethane	ND	3800	μg/Kg-dry	10	9/10/2007 9:56:00 PM
Indeno(1,2,3-cd)pyrene	ND	3800	μg/Kg-dry	10	9/10/2007 9:56:00 PM
Isophorone	ND	3800	μg/Kg-dry	10	9/10/2007 9:56:00 PM
N-Nitrosodi-n-propylamine	ND	3800	μg/Kg-dry	10	9/10/2007 9:56:00 PM
N-Nitrosodiphenylamine	ND	3800	μg/Kg-dry	10	9/10/2007 9:56:00 PM
Naphthalene	4700	3800	μg/Kg-dry	10	9/10/2007 9:56:00 PM
Nitrobenzene	ND	3800	μg/Kg-dry	10	9/10/2007 9:56:00 PM
Pentachlorophenol	ND	7800	μg/Kg-dry	10	9/10/2007 9:56:00 PM
Phenanthrene	ND	3800	μg/Kg-dry	10	9/10/2007 9:56:00 PM
Phenol	ND	3800	μg/Kg-dry	10	9/10/2007 9:56:00 PM
Pyrene	ND	3800	μg/Kg-dry	10	9/10/2007 9:56:00 PM
NOTES:					
The reporting limits were raised due to ma	trix interference.				
TCL VOLATILE ORGANICS		SW8260B			Analyst: MG
1,1,1-Trichloroethane	ND	3.5	μg/Kg-dry	1	9/17/2007 10:12:00 PN
1,1,2,2-Tetrachloroethane	ND	3.5	μg/Kg-dry	1	9/17/2007 10:12:00 PM
1,1,2-Trichloroethane	ND	3.5	μg/Kg-dry	1	9/17/2007 10:12:00 PM
1,1-Dichloroethane	ND	3.5	μg/Kg-dry	1	9/17/2007 10:12:00 PM
1,1-Dichloroethene	ND	3.5	μg/Kg-dry	1	9/17/2007 10:12:00 PN
1,2-Dichloroethane	ND	3.5	μg/Kg-dry	1	9/17/2007 10:12:00 PM
1,2-Dichloropropane	ND	3.5	μg/Kg-dry	1	9/17/2007 10:12:00 PM
2-Butanone	ND	12	μg/Kg-dry	1	9/17/2007 10:12:00 PM
2-Hexanone	ND	12	μg/Kg-dry	1	9/17/2007 10:12:00 PM
4-Methyl-2-pentanone	ND	12	μg/Kg-dry	1	9/17/2007 10:12:00 PM
Acetone	ND	12	μg/Kg-dry	1	9/17/2007 10:12:00 PN
Benzene	ND	3.5	μg/Kg-dry	1	9/17/2007 10:12:00 PM
Bromodichloromethane	ND	3.5	μg/Kg-dry	1	9/17/2007 10:12:00 PN
Bromoform	ND	3.5	μg/Kg-dry	1	9/17/2007 10:12:00 PN
Bromomethane	ND	3.5	μg/Kg-dry	1	9/17/2007 10:12:00 PM
Carbon disulfide	ND	3.5	μg/Kg-dry	1	9/17/2007 10:12:00 PM
Carbon tetrachloride	ND	3.5	μg/Kg-dry	1	9/17/2007 10:12:00 PM
Chlorobenzene	ND	3.5	μg/Kg-dry	1	9/17/2007 10:12:00 PM
Chloroethane	ND	3.5	μg/Kg-dry	1	9/17/2007 10:12:00 PM
Chloroform	2	3.5 J	μg/Kg-dry	1	9/17/2007 10:12:00 PM
Chloromethane	ND	3.5	μg/Kg-dry	1	9/17/2007 10:12:00 PM
cis-1,2-Dichloroethene	ND	3.5	μg/Kg-dry	1	9/17/2007 10:12:00 PM
cis-1,3-Dichloropropene	ND	3.5	μg/Kg-dry	1	9/17/2007 10:12:00 PN
 					- /- /- /

Approved By:	Date:	Page 5 of 31

3.5

ND

Qualifiers: * Low Level

Dibromochloromethane

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

** Value exceeds Maximum Contaminant Value

9/17/2007 10:12:00 PM

Date: 21-Sep-07

E Value above quantitation range

μg/Kg-dry

J Analyte detected below quantitation limits

CLIENT: NYSDEC - Region 9

Lab Order: U0709117

Friendship Foundry **Project:**

U0709117-002 Lab ID:

Date: 21-Sep-07

Client Sample ID: TP-3@4'

Matrix: SOIL

Collection Date: 9/5/2007 11:30:00 AM

Analyses	Result	Limit	Qual	Units	DF	Date Analyzed
TCL VOLATILE ORGANICS		SW8	260B			Analyst: MG
Ethylbenzene	ND	3.5		μg/Kg-dry	1	9/17/2007 10:12:00 PM
m,p-Xylene	ND	3.5		μg/Kg-dry	1	9/17/2007 10:12:00 PM
Methylene chloride	3	3.5	J	μg/Kg-dry	1	9/17/2007 10:12:00 PM
o-Xylene	ND	3.5		μg/Kg-dry	1	9/17/2007 10:12:00 PM
Styrene	ND	3.5		μg/Kg-dry	1	9/17/2007 10:12:00 PM
Tetrachloroethene	ND	3.5		μg/Kg-dry	1	9/17/2007 10:12:00 PM
Toluene	ND	3.5		μg/Kg-dry	1	9/17/2007 10:12:00 PM
trans-1,2-Dichloroethene	ND	3.5		μg/Kg-dry	1	9/17/2007 10:12:00 PM
trans-1,3-Dichloropropene	ND	3.5		μg/Kg-dry	1	9/17/2007 10:12:00 PM
Trichloroethene	ND	3.5		μg/Kg-dry	1	9/17/2007 10:12:00 PM
Vinyl chloride	ND	2.3		μg/Kg-dry	1	9/17/2007 10:12:00 PM
HEXAVALENT CHROMIUM		SW7	196A			Analyst: DEY
Chromium, Hexavalent	ND	0.23		mg/Kg-dry	20	9/6/2007 10:30:00 AM
PERCENT MOISTURE		D22	216			Analyst: KAM
Percent Moisture	13.9	0.00100		wt%	1	9/10/2007

Approved By:	Date:	Page 6 of 31
Qualifiers: * Low Level	**	Value exceeds Maximum Contaminant Value

В Analyte detected in the associated Method Blank Holding times for preparation or analysis exceeded Η

ND Not Detected at the Reporting Limit Ε Value above quantitation range J Analyte detected below quantitation limits

CLIENT: NYSDEC - Region 9 Client Sample ID: TP-6A@1.5'

Lab Order: U0709117 **Collection Date:** 9/5/2007 11:55:00 AM

Project: Friendship Foundry

Lab ID: U0709117-003 **Matrix:** SOIL

Analyses	Result	Limit Qual	Units	DF	Date Analyzed
SOIL AND SOLID METALS BY ICP		SW6010B	(SW305	0A)	Analyst: EA
Aluminum	7800	5.5	mg/Kg-dry	1	9/10/2007 1:15:54 PM
Antimony	ND	33	mg/Kg-dry	1	9/10/2007 1:15:54 PM
Arsenic*	6.5	1.1	mg/Kg-dry	1	9/10/2007 1:15:54 PM
Barium	100	33	mg/Kg-dry	1	9/10/2007 1:15:54 PM
Beryllium	ND	0.55	mg/Kg-dry	1	9/10/2007 1:15:54 PM
Cadmium	1.9	0.55	mg/Kg-dry	1	9/10/2007 1:15:54 PM
Calcium	17000	55	mg/Kg-dry	1	9/10/2007 1:15:54 PM
Chromium	84	5.5	mg/Kg-dry	1	9/10/2007 1:15:54 PM
Cobalt	7.4	5.5	mg/Kg-dry	1	9/10/2007 1:15:54 PM
Copper	130	2.2	mg/Kg-dry	1	9/10/2007 1:15:54 PM
Iron	42000	3.3	mg/Kg-dry	1	9/10/2007 1:15:54 PM
Lead	570	11	mg/Kg-dry	1	9/10/2007 1:15:54 PM
Magnesium	4600	55	mg/Kg-dry	1	9/10/2007 1:15:54 PM
Manganese	1800	2.2	mg/Kg-dry	1	9/10/2007 1:15:54 PM
Nickel	39	3.3	mg/Kg-dry	1	9/10/2007 1:15:54 PM
Potassium	960	55	mg/Kg-dry	1	9/10/2007 1:15:54 PM
Selenium*	10	0.55	mg/Kg-dry	1	9/10/2007 1:15:54 PM
Silver	ND	5.5	mg/Kg-dry	1	9/10/2007 1:15:54 PM
Sodium	210	55	mg/Kg-dry	1	9/10/2007 1:15:54 PM
Thallium*	ND	0.33	mg/Kg-dry	1	9/10/2007 1:15:54 PM
Vanadium	10	33 J	mg/Kg-dry	1	9/10/2007 1:15:54 PM
Zinc	600	1.1	mg/Kg-dry	1	9/10/2007 1:15:54 PM
TOTAL MERCURY - SOIL/SOLID/WAST	Έ	SW7471A	(SW747	1A)	Analyst: EA
Mercury	0.12	0.220 J	mg/Kg-dry	1	9/11/2007 1:01:56 PM
PERCENT MOISTURE		D2216			Analyst: KAM
Percent Moisture	9.19	0.00100	wt%	1	9/10/2007

Approved By:	Date:	Page 7 of 31
Qualifiers: * Low Level	**	Value exceeds Maximum Contaminant Value

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

E Value above quantitation range

J Analyte detected below quantitation limits

Date: 21-Sep-07

CLIENT: NYSDEC - Region 9 Client Sample ID: TP-7@2.5'

Lab Order: U0709117 **Collection Date:** 9/5/2007 1:30:00 PM

Project: Friendship Foundry

Lab ID: U0709117-004 Matrix: SOIL

Analyses	Result	Limit Qua	l Units	DF	Date Analyzed
SOIL AND SOLID METALS BY ICP		SW6010B	(SW305	0A)	Analyst: EA
Aluminum	4600	5.5	mg/Kg-dry	1	9/10/2007 1:19:26 PM
Antimony	ND	33	mg/Kg-dry	1	9/10/2007 1:19:26 PM
Arsenic*	8.1	1.1	mg/Kg-dry	1	9/10/2007 1:19:26 PM
Barium	96	33	mg/Kg-dry	1	9/10/2007 1:19:26 PM
Beryllium	ND	0.55	mg/Kg-dry	1	9/10/2007 1:19:26 PM
Cadmium	3.5	0.55	mg/Kg-dry	1	9/10/2007 1:19:26 PM
Calcium	13000	55	mg/Kg-dry	1	9/10/2007 1:19:26 PM
Chromium	260	5.5	mg/Kg-dry	1	9/10/2007 1:19:26 PM
Cobalt	13	5.5	mg/Kg-dry	1	9/10/2007 1:19:26 PM
Copper	500	2.2	mg/Kg-dry	1	9/10/2007 1:19:26 PM
Iron	130000	33	mg/Kg-dry	10	9/10/2007 2:21:39 PM
Lead	360	11	mg/Kg-dry	1	9/10/2007 1:19:26 PM
Magnesium	2800	55	mg/Kg-dry	1	9/10/2007 1:19:26 PM
Manganese	1500	2.2	mg/Kg-dry	1	9/10/2007 1:19:26 PM
Nickel	120	3.3	mg/Kg-dry	1	9/10/2007 1:19:26 PM
Potassium	650	55	mg/Kg-dry	1	9/10/2007 1:19:26 PM
Selenium*	20	0.55	mg/Kg-dry	1	9/10/2007 1:19:26 PM
Silver	ND	5.5	mg/Kg-dry	1	9/10/2007 1:19:26 PM
Sodium	ND	55	mg/Kg-dry	1	9/10/2007 1:19:26 PM
Thallium*	ND	0.33	mg/Kg-dry	1	9/10/2007 1:19:26 PM
Vanadium	10	33 J	mg/Kg-dry	1	9/10/2007 1:19:26 PM
Zinc	270	1.1	mg/Kg-dry	1	9/10/2007 1:19:26 PM
TOTAL MERCURY - SOIL/SOLID/WAS	TE	SW7471A	(SW747	1A)	Analyst: EA
Mercury	0.22	0.222 J	mg/Kg-dry	1	9/11/2007 1:34:38 PM
PERCENT MOISTURE		D2216			Analyst: KAM
Percent Moisture	9.77	0.00100	wt%	1	9/10/2007

Approved F	3y: _		Date:	Page 8 of 31
Qualifiers:	*	Low Level	**	Value exceeds Maximum Contaminant Value
	В	Analyte detected in the associated Method Blank	E	Value above quantitation range

B Analyte detected in the associated Method Blank
 H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

J Analyte detected below quantitation limits
 S Spike Recovery outside accepted recovery limits

Date: 21-Sep-07

CLIENT: NYSDEC - Region 9 Client Sample ID: TP-8@4'

Lab Order: U0709117 **Collection Date:** 9/5/2007 1:00:00 PM

Project: Friendship Foundry

Lab ID: U0709117-005 Matrix: SOIL

Analyses	Result	Limit	Qual	Units	DF	Date Analyzed
POLYCHLORINATED BIPHENYLS(SOIL/S	SLUDGE)	SW	8082	(SW35	50B)	Analyst: KC
Aroclor 1016	ND	0.11		mg/Kg-dry	1	9/18/2007
Aroclor 1221	ND	0.11		mg/Kg-dry	1	9/18/2007
Aroclor 1232	ND	0.11		mg/Kg-dry	1	9/18/2007
Aroclor 1242	ND	0.11		mg/Kg-dry	1	9/18/2007
Aroclor 1248	ND	0.11		mg/Kg-dry	1	9/18/2007
Aroclor 1254	ND	0.11		mg/Kg-dry	1	9/18/2007
Aroclor 1260	ND	0.11		mg/Kg-dry	1	9/18/2007
Aroclor 1268	ND	0.11		mg/Kg-dry	1	9/18/2007
SOIL AND SOLID METALS BY ICP		SW6	010B	(SW30	50A)	Analyst: EA
Aluminum	10000	6.4		mg/Kg-dry	1	9/10/2007 1:23:14 PM
Antimony	ND	38		mg/Kg-dry	1	9/10/2007 1:23:14 PM
Arsenic*	1	1.3	J	mg/Kg-dry	1	9/10/2007 1:23:14 PM
Barium	69	38		mg/Kg-dry	1	9/10/2007 1:23:14 PM
Beryllium	ND	0.64		mg/Kg-dry	1	9/10/2007 1:23:14 PM
Cadmium	0.68	0.64		mg/Kg-dry	1	9/10/2007 1:23:14 PM
Calcium	8300	64		mg/Kg-dry	1	9/10/2007 1:23:14 PM
Chromium	17	6.4		mg/Kg-dry	1	9/10/2007 1:23:14 PM
Cobalt	5	6.4	J	mg/Kg-dry	1	9/10/2007 1:23:14 PM
Copper	30	2.6		mg/Kg-dry	1	9/10/2007 1:23:14 PM
Iron	21000	3.8		mg/Kg-dry	1	9/10/2007 1:23:14 PM
Lead	83	13		mg/Kg-dry	1	9/10/2007 1:23:14 PM
Magnesium	2300	64		mg/Kg-dry	1	9/10/2007 1:23:14 PM
Manganese	600	2.6		mg/Kg-dry	1	9/10/2007 1:23:14 PM
Nickel	11	3.8		mg/Kg-dry	1	9/10/2007 1:23:14 PM
Potassium	1300	64		mg/Kg-dry	1	9/10/2007 1:23:14 PM
Selenium*	6.5	0.64		mg/Kg-dry	1	9/10/2007 1:23:14 PM
Silver	ND	6.4		mg/Kg-dry	1	9/10/2007 1:23:14 PM
Sodium	50	64	J	mg/Kg-dry	1	9/10/2007 1:23:14 PM
Thallium*	ND	0.38		mg/Kg-dry	1	9/10/2007 1:23:14 PM
Vanadium	20	38	J	mg/Kg-dry	1	9/10/2007 1:23:14 PM
Zinc	170	1.3		mg/Kg-dry	1	9/10/2007 1:23:14 PM
TOTAL MERCURY - SOIL/SOLID/WASTE		SW7	471A	(SW747	71A)	Analyst: EA
Mercury	0.056	0.255	J	mg/Kg-dry	1	9/11/2007 1:06:04 PM
PERCENT MOISTURE			216			Analyst: KAM
Percent Moisture	21.6	0.00100		wt%	1	9/10/2007

Approved B	y: _		Date:	Page 9 of 31
Qualifiers:	*	Low Level	**	Value exceeds Maximum Contaminant Value
	_		 _	

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

E Value above quantitation range

J Analyte detected below quantitation limits

Date: 21-Sep-07

CLIENT: NYSDEC - Region 9 Client Sample ID: TP-12@2'

Lab Order: U0709117 **Collection Date:** 9/5/2007 1:45:00 PM

Project: Friendship Foundry

Lab ID: U0709117-006 Matrix: SOIL

Analyses	Result	Limit Qual	Units	DF	Date Analyzed
POLYCHLORINATED BIPHENYLS(SOIL/S	LUDGE)	SW8082	(SW3550)B)	Analyst: KC
Aroclor 1016	ND	0.11	mg/Kg-dry	1	9/18/2007
Aroclor 1221	ND	0.11	mg/Kg-dry	1	9/18/2007
Aroclor 1232	ND	0.11	mg/Kg-dry	1	9/18/2007
Aroclor 1242	ND	0.11	mg/Kg-dry	1	9/18/2007
Aroclor 1248	ND	0.11	mg/Kg-dry	1	9/18/2007
Aroclor 1254	ND	0.11	mg/Kg-dry	1	9/18/2007
Aroclor 1260	ND	0.11	mg/Kg-dry	1	9/18/2007
Aroclor 1268	ND	0.11	mg/Kg-dry	1	9/18/2007
SOIL AND SOLID METALS BY ICP		SW6010B	(SW3050	OA)	Analyst: EA
Aluminum	9700	6.6	mg/Kg-dry	1	9/10/2007 1:26:41 PM
Antimony	ND	39	mg/Kg-dry	1	9/10/2007 1:26:41 PM
Arsenic*	390	1.3	mg/Kg-dry	1	9/10/2007 1:26:41 PM
Barium	1500	39	mg/Kg-dry	1	9/10/2007 1:26:41 PM
Beryllium	0.95	0.66	mg/Kg-dry	1	9/10/2007 1:26:41 PM
Cadmium	2.0	0.66	mg/Kg-dry	1	9/10/2007 1:26:41 PM
Calcium	3500	66	mg/Kg-dry	1	9/10/2007 1:26:41 PM
Chromium	23	6.6	mg/Kg-dry	1	9/10/2007 1:26:41 PM
Cobalt	13	6.6	mg/Kg-dry	1	9/10/2007 1:26:41 PM
Copper	230	2.6	mg/Kg-dry	1	9/10/2007 1:26:41 PM
Iron	90000	39	mg/Kg-dry	10	9/10/2007 2:25:13 PM
Lead	1400	13	mg/Kg-dry	1	9/10/2007 1:26:41 PM
Magnesium	1900	66	mg/Kg-dry	1	9/10/2007 1:26:41 PM
Manganese	780	2.6	mg/Kg-dry	1	9/10/2007 1:26:41 PM
Nickel	62	3.9	mg/Kg-dry	1	9/10/2007 1:26:41 PM
Potassium	1300	66	mg/Kg-dry	1	9/10/2007 1:26:41 PM
Selenium*	17	0.66	mg/Kg-dry	1	9/10/2007 1:26:41 PM
Silver	ND	6.6	mg/Kg-dry	1	9/10/2007 1:26:41 PM
Sodium	ND	66	mg/Kg-dry	1	9/10/2007 1:26:41 PM
Thallium*	ND	0.39	mg/Kg-dry	1	9/10/2007 1:26:41 PM
Vanadium	30	39 J	mg/Kg-dry	1	9/10/2007 1:26:41 PM
Zinc	380	1.3	mg/Kg-dry	1	9/10/2007 1:26:41 PM
TOTAL MERCURY - SOIL/SOLID/WASTE		SW7471A	(SW7471	IA)	Analyst: EA
Mercury	3.22	0.262	mg/Kg-dry	1	9/11/2007 1:35:50 PM
PERCENT MOISTURE		D2216			Analyst: KAM
Percent Moisture	23.8	0.00100	wt%	1	9/10/2007

Approved By:		Date:	Page 10 of 31
Qualifiers: *	Low Level	**	Value exceeds Maximum Contaminant Value

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

E Value above quantitation range

J Analyte detected below quantitation limits

Date: 21-Sep-07

CLIENT: NYSDEC - Region 9 Client Sample ID: TP-14@5'

Lab Order: U0709117 **Collection Date:** 9/5/2007 3:00:00 PM

Project: Friendship Foundry

Lab ID: U0709117-007 Matrix: SOIL

Analyses	Result	Limit Qual	Units	DF	Date Analyzed
PEST/PCB IN SOIL/SLUDGE		SW8081A	(SW355	50)	Analyst: KC
4,4´-DDD	ND	34	μg/Kg-dry	10	9/18/2007
4,4´-DDE	ND	34	μg/Kg-dry	10	9/18/2007
4,4´-DDT	ND	34	μg/Kg-dry	10	9/18/2007
Aldrin	ND	18	μg/Kg-dry	10	9/18/2007
alpha-BHC	ND	18	μg/Kg-dry	10	9/18/2007
alpha-Chlordane	ND	18	μg/Kg-dry	10	9/18/2007
Aroclor 1016	ND	18	μg/Kg-dry	10	9/18/2007
Aroclor 1221	ND	18	μg/Kg-dry	10	9/18/2007
Aroclor 1232	ND	18	μg/Kg-dry	10	9/18/2007
Aroclor 1242	ND	18	μg/Kg-dry	10	9/18/2007
Aroclor 1248	ND	18	μg/Kg-dry	10	9/18/2007
Aroclor 1254	ND	18	μg/Kg-dry	10	9/18/2007
Aroclor 1260	ND	18	μg/Kg-dry	10	9/18/2007
beta-BHC	ND	18	μg/Kg-dry	10	9/18/2007
delta-BHC	ND	18	μg/Kg-dry	10	9/18/2007
Dieldrin	ND	34	μg/Kg-dry	10	9/18/2007
Endosulfan I	ND	18	μg/Kg-dry	10	9/18/2007
Endosulfan II	ND	34	μg/Kg-dry	10	9/18/2007
Endosulfan sulfate	ND	34	μg/Kg-dry	10	9/18/2007
Endrin	ND	34	μg/Kg-dry	10	9/18/2007
Endrin aldehyde	ND	34	μg/Kg-dry	10	9/18/2007
Endrin ketone	ND	34	μg/Kg-dry	10	9/18/2007
gamma-BHC	ND	18	μg/Kg-dry	10	9/18/2007
gamma-Chlordane	ND	18	μg/Kg-dry	10	9/18/2007
Heptachlor	ND	18	μg/Kg-dry	10	9/18/2007
Heptachlor epoxide	ND	18	μg/Kg-dry	10	9/18/2007
Methoxychlor	ND	180	μg/Kg-dry	10	9/18/2007
Toxaphene	ND	1800	μg/Kg-dry	10	9/18/2007
NOTES:			, ,		
The reporting limits were raised due to mate	rix interference.				
CHLORINATED HERBICIDES		SW8151A	(SW355	60)	Analyst: KC
2,4,5-T	ND	34	μg/Kg-dry	1	9/11/2007
2,4,5-TP (Silvex)	ND	34	μg/Kg-dry	1	9/11/2007
2,4-D	ND	34	μg/Kg-dry	1	9/11/2007
Dicamba	ND	34	μg/Kg-dry	1	9/11/2007
Dinoseb	ND	34	μg/Kg-dry	1	9/11/2007
SOIL AND SOLID METALS BY ICP		SW6010B	(SW305	60A)	Analyst: EA
Aluminum	2200	5.2	mg/Kg-dry	1	9/10/2007 1:30:17 PM

Approved By:	Date:	Page 11 of 31

Qualifiers: * Low Level

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

** Value exceeds Maximum Contaminant Value

Date: 21-Sep-07

E Value above quantitation range

J Analyte detected below quantitation limits

CLIENT: NYSDEC - Region 9 Client Sample ID: TP-14@5'

Lab Order: U0709117 **Collection Date:** 9/5/2007 3:00:00 PM

Project: Friendship Foundry

Lab ID: U0709117-007 Matrix: SOIL

Analyses	Result	Limit	Qual	Units	DF	Date Analyzed
SOIL AND SOLID METALS BY ICP		SW60	SW6010B (SW305		50A)	Analyst: EA
Antimony	ND	31		mg/Kg-dry	1	9/10/2007 1:30:17 PM
Arsenic*	1.1	1.0		mg/Kg-dry	1	9/10/2007 1:30:17 PM
Barium	20	31	J	mg/Kg-dry	1	9/10/2007 1:30:17 PM
Beryllium	ND	0.52		mg/Kg-dry	1	9/10/2007 1:30:17 PM
Cadmium	ND	0.52		mg/Kg-dry	1	9/10/2007 1:30:17 PM
Calcium	1200	52		mg/Kg-dry	1	9/10/2007 1:30:17 PM
Chromium	8.2	5.2		mg/Kg-dry	1	9/10/2007 1:30:17 PM
Cobalt	ND	5.2		mg/Kg-dry	1	9/10/2007 1:30:17 PM
Copper	14	2.1		mg/Kg-dry	1	9/10/2007 1:30:17 PM
Iron	9100	3.1		mg/Kg-dry	1	9/10/2007 1:30:17 PM
Lead	20	10		mg/Kg-dry	1	9/10/2007 1:30:17 PM
Magnesium	850	52		mg/Kg-dry	1	9/10/2007 1:30:17 PM
Manganese	140	2.1		mg/Kg-dry	1	9/10/2007 1:30:17 PM
Nickel	15	3.1		mg/Kg-dry	1	9/10/2007 1:30:17 PM
Potassium	450	52		mg/Kg-dry	1	9/10/2007 1:30:17 PM
Selenium*	1.7	0.52		mg/Kg-dry	1	9/10/2007 1:30:17 PM
Silver	ND	5.2		mg/Kg-dry	1	9/10/2007 1:30:17 PM
Sodium	30	52	J	mg/Kg-dry	1	9/10/2007 1:30:17 PM
Thallium*	ND	0.31		mg/Kg-dry	1	9/10/2007 1:30:17 PM
Vanadium	5	31	J	mg/Kg-dry	1	9/10/2007 1:30:17 PM
Zinc	38	1.0		mg/Kg-dry	1	9/10/2007 1:30:17 PM
TOTAL MERCURY - SOIL/SOLID/WASTE		SW74	471A	(SW747	′1A)	Analyst: EA
Mercury	ND	0.206		mg/Kg-dry	1	9/11/2007 1:08:30 PM
TCL-SEMIVOLATILE ORGANICS		SW82	270C	(SW355	50A)	Analyst: LD
(3+4)-Methylphenol	ND	680		μg/Kg-dry	2	9/10/2007 10:40:00 PM
1,2,4-Trichlorobenzene	ND	680		μg/Kg-dry	2	9/10/2007 10:40:00 PM
1,2-Dichlorobenzene	ND	680		μg/Kg-dry	2	9/10/2007 10:40:00 PM
1,3-Dichlorobenzene	ND	680		μg/Kg-dry	2	9/10/2007 10:40:00 PM
1,4-Dichlorobenzene	ND	680		μg/Kg-dry	2	9/10/2007 10:40:00 PM
2,4,5-Trichlorophenol	ND	680		μg/Kg-dry	2	9/10/2007 10:40:00 PM
2,4,6-Trichlorophenol	ND	680		μg/Kg-dry	2	9/10/2007 10:40:00 PM
2,4-Dichlorophenol	ND	680		μg/Kg-dry	2	9/10/2007 10:40:00 PM
2,4-Dimethylphenol	ND	680		μg/Kg-dry	2	9/10/2007 10:40:00 PM
2,4-Dinitrophenol	ND	6800		μg/Kg-dry	2	9/10/2007 10:40:00 PM
2,4-Dinitrotoluene	ND	680		μg/Kg-dry	2	9/10/2007 10:40:00 PM
2,6-Dinitrotoluene	ND	680		μg/Kg-dry	2	9/10/2007 10:40:00 PM
2-Chloronaphthalene	ND	680		μg/Kg-dry	2	9/10/2007 10:40:00 PM
2-Chlorophenol	ND	680		μg/Kg-dry	2	9/10/2007 10:40:00 PM

Approved By:

Qualifiers:

Low Level

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

** Value exceeds Maximum Contaminant Value

Page 12 of 31

Date: 21-Sep-07

E Value above quantitation range

Date:

J Analyte detected below quantitation limits

CLIENT: NYSDEC - Region 9 Client Sample ID: TP-14@5'

Lab Order: U0709117 **Collection Date:** 9/5/2007 3:00:00 PM

Project: Friendship Foundry

Lab ID: U0709117-007 Matrix: SOIL

Analyses	Result Limit Qual Units		ual Units	DF	Date Analyzed	
TCL-SEMIVOLATILE ORGANICS	-	SW8270	C (SW35	50A)	Analyst: LD	
2-Methylnaphthalene	ND	680	μg/Kg-dry	2	9/10/2007 10:40:00 PM	
2-Methylphenol	ND	680	μg/Kg-dry	2	9/10/2007 10:40:00 PM	
2-Nitroaniline	ND	6800	μg/Kg-dry	2	9/10/2007 10:40:00 PM	
2-Nitrophenol	ND	680	μg/Kg-dry	2	9/10/2007 10:40:00 PM	
3,3'-Dichlorobenzidine	ND	680	μg/Kg-dry	2	9/10/2007 10:40:00 PM	
3-Nitroaniline	ND	6800	μg/Kg-dry	2	9/10/2007 10:40:00 PM	
4,6-Dinitro-2-methylphenol	ND	6800	μg/Kg-dry	2	9/10/2007 10:40:00 PM	
4-Bromophenyl phenyl ether	ND	680	μg/Kg-dry	2	9/10/2007 10:40:00 PM	
4-Chloro-3-methylphenol	ND	680	μg/Kg-dry	2	9/10/2007 10:40:00 PM	
4-Chloroaniline	ND	680	μg/Kg-dry	2	9/10/2007 10:40:00 PM	
4-Chlorophenyl phenyl ether	ND	680	μg/Kg-dry	2	9/10/2007 10:40:00 PM	
4-Nitroaniline	ND	6800	μg/Kg-dry	2	9/10/2007 10:40:00 PM	
4-Nitrophenol	ND	6800	μg/Kg-dry	2	9/10/2007 10:40:00 PM	
Acenaphthene	ND	680	μg/Kg-dry	2	9/10/2007 10:40:00 PM	
Acenaphthylene	ND	680	μg/Kg-dry	2	9/10/2007 10:40:00 PM	
Anthracene	ND	680	μg/Kg-dry	2	9/10/2007 10:40:00 PM	
Benz(a)anthracene	ND	680	μg/Kg-dry	2	9/10/2007 10:40:00 PM	
Benzo(a)pyrene	ND	680	μg/Kg-dry	2	9/10/2007 10:40:00 PM	
Benzo(b)fluoranthene	ND	680	μg/Kg-dry	2	9/10/2007 10:40:00 PM	
Benzo(g,h,i)perylene	ND	680	μg/Kg-dry	2	9/10/2007 10:40:00 PM	
Benzo(k)fluoranthene	ND	680	μg/Kg-dry	2	9/10/2007 10:40:00 PM	
Bis(2-chloroethoxy)methane	ND	680	μg/Kg-dry	2	9/10/2007 10:40:00 PM	
Bis(2-chloroethyl)ether	ND	680	μg/Kg-dry	2	9/10/2007 10:40:00 PM	
Bis(2-chloroisopropyl)ether	ND	680	μg/Kg-dry	2	9/10/2007 10:40:00 PM	
Bis(2-ethylhexyl)phthalate	200	680	J μg/Kg-dry	2	9/10/2007 10:40:00 PM	
Butyl benzyl phthalate	ND	680	μg/Kg-dry	2	9/10/2007 10:40:00 PM	
Carbazole	ND	680	μg/Kg-dry	2	9/10/2007 10:40:00 PM	
Chrysene	ND	680	μg/Kg-dry	2	9/10/2007 10:40:00 PM	
Di-n-butyl phthalate	ND	680	μg/Kg-dry	2	9/10/2007 10:40:00 PM	
Di-n-octyl phthalate	ND	680	μg/Kg-dry	2	9/10/2007 10:40:00 PM	
Dibenz(a,h)anthracene	ND	680	μg/Kg-dry	2	9/10/2007 10:40:00 PM	
Dibenzofuran	ND	680	μg/Kg-dry	2	9/10/2007 10:40:00 PM	
Diethyl phthalate	ND	680	μg/Kg-dry	2	9/10/2007 10:40:00 PM	
Dimethyl phthalate	ND	680	μg/Kg-dry	2	9/10/2007 10:40:00 PM	
Fluoranthene	ND	680	μg/Kg-dry	2	9/10/2007 10:40:00 PM	
Fluorene	ND	680	μg/Kg-dry	2	9/10/2007 10:40:00 PM	
Hexachlorobenzene	ND	680	μg/Kg-dry	2	9/10/2007 10:40:00 PM	
Hexachlorobutadiene	ND	680	μg/Kg-dry	2	9/10/2007 10:40:00 PM	
Hexachlorocyclopentadiene	ND	680	μg/Kg-dry	2	9/10/2007 10:40:00 PM	

Approved By

Qualifiers: * Low Level

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

Date:

Value exceeds Maximum Contaminant Value

Page 13 of 31

E Value above quantitation range

J Analyte detected below quantitation limits

Date: 21-Sep-07

CLIENT: NYSDEC - Region 9 Client Sample ID: TP-14@5'

Lab Order: U0709117 **Collection Date:** 9/5/2007 3:00:00 PM

Project: Friendship Foundry

Lab ID: U0709117-007 Matrix: SOIL

Analyses	Result	Limit Qu	al Units	DF	Date Analyzed	
TCL-SEMIVOLATILE ORGANICS		SW8270	C (SW35	50A)	Analyst: LD	
Hexachloroethane	ND	680	μg/Kg-dry	2	9/10/2007 10:40:00 PM	
Indeno(1,2,3-cd)pyrene	ND	680	μg/Kg-dry	2	9/10/2007 10:40:00 PM	
Isophorone	ND	680	μg/Kg-dry	2	9/10/2007 10:40:00 PM	
N-Nitrosodi-n-propylamine	ND	680	μg/Kg-dry	2	9/10/2007 10:40:00 PM	
N-Nitrosodiphenylamine	ND	680	μg/Kg-dry	2	9/10/2007 10:40:00 PM	
Naphthalene	90	680 J	μg/Kg-dry	2	9/10/2007 10:40:00 PM	
Nitrobenzene	ND	680	μg/Kg-dry	2	9/10/2007 10:40:00 PM	
Pentachlorophenol	ND	1400	μg/Kg-dry	2	9/10/2007 10:40:00 PM	
Phenanthrene	ND	680	μg/Kg-dry	2	9/10/2007 10:40:00 PM	
Phenol	ND	680	μg/Kg-dry	2	9/10/2007 10:40:00 PM	
Pyrene	ND	680	μg/Kg-dry	2	9/10/2007 10:40:00 PM	
NOTES:						
The reporting limits were raised due to ma	trix interference.					
TCL VOLATILE ORGANICS		SW8260	В		Analyst: MG	
1,1,1-Trichloroethane	2	3.1 J	μg/Kg-dry	1	9/17/2007 11:01:00 PM	
1,1,2,2-Tetrachloroethane	ND	3.1	μg/Kg-dry	1	9/17/2007 11:01:00 PM	
1,1,2-Trichloroethane	ND	3.1	μg/Kg-dry	1	9/17/2007 11:01:00 PM	
1,1-Dichloroethane	ND	3.1	μg/Kg-dry	1	9/17/2007 11:01:00 PM	
1,1-Dichloroethene	ND	3.1	μg/Kg-dry	1	9/17/2007 11:01:00 PM	
1,2-Dichloroethane	ND	3.1	μg/Kg-dry	1	9/17/2007 11:01:00 PM	
1,2-Dichloropropane	ND	3.1	μg/Kg-dry	1	9/17/2007 11:01:00 PM	
2-Butanone	ND	10	μg/Kg-dry	1	9/17/2007 11:01:00 PM	
2-Hexanone	ND	10	μg/Kg-dry	1	9/17/2007 11:01:00 PM	
4-Methyl-2-pentanone	ND	10	μg/Kg-dry	1	9/17/2007 11:01:00 PM	
Acetone	ND	10	μg/Kg-dry	1	9/17/2007 11:01:00 PM	
Benzene	ND	3.1	μg/Kg-dry	1	9/17/2007 11:01:00 PM	
Bromodichloromethane	ND	3.1	μg/Kg-dry	1	9/17/2007 11:01:00 PM	
Bromoform	ND	3.1	μg/Kg-dry	1	9/17/2007 11:01:00 PM	
Bromomethane	ND	3.1	μg/Kg-dry	1	9/17/2007 11:01:00 PM	
Carbon disulfide	ND	3.1	μg/Kg-dry	1	9/17/2007 11:01:00 PM	
Carbon tetrachloride	ND	3.1	μg/Kg-dry	1	9/17/2007 11:01:00 PM	
Chlorobenzene	ND	3.1	μg/Kg-dry	1	9/17/2007 11:01:00 PM	
Chloroethane	ND	3.1	μg/Kg-dry	1	9/17/2007 11:01:00 PM	
Chloroform	4.1	3.1	μg/Kg-dry	1	9/17/2007 11:01:00 PM	
Chloromethane	ND	3.1	μg/Kg-dry	1	9/17/2007 11:01:00 PM	
cis-1,2-Dichloroethene	ND	3.1	μg/Kg-dry	1	9/17/2007 11:01:00 PM	
cis-1,3-Dichloropropene	ND	3.1	μg/Kg-dry	1	9/17/2007 11:01:00 PM	
Dibromochloromethane	ND	3.1	μg/Kg-dry	1	9/17/2007 11:01:00 PM	

Approved By:	Date:	Page 14 of 31

Qualifiers: *

- * Low Level
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

** Value exceeds Maximum Contaminant Value

Date: 21-Sep-07

- E Value above quantitation range
- J Analyte detected below quantitation limits
- S Spike Recovery outside accepted recovery limits

CLIENT: NYSDEC - Region 9 Client Sample ID: TP-14@5'

Lab Order: U0709117 **Collection Date:** 9/5/2007 3:00:00 PM

Friendship Foundry **Project:**

Matrix: SOIL Lab ID: U0709117-007

Analyses	Result	Limit (Qual	Units	DF	Date Analyzed
TCL VOLATILE ORGANICS		SW82	60B			Analyst: MG
Ethylbenzene	ND	3.1		μg/Kg-dry	1	9/17/2007 11:01:00 PM
m,p-Xylene	ND	3.1		μg/Kg-dry	1	9/17/2007 11:01:00 PM
Methylene chloride	13	3.1	В	μg/Kg-dry	1	9/17/2007 11:01:00 PM
o-Xylene	ND	3.1		μg/Kg-dry	1	9/17/2007 11:01:00 PM
Styrene	ND	3.1		μg/Kg-dry	1	9/17/2007 11:01:00 PM
Tetrachloroethene	4.0	3.1		μg/Kg-dry	1	9/17/2007 11:01:00 PM
Toluene	ND	3.1		μg/Kg-dry	1	9/17/2007 11:01:00 PM
trans-1,2-Dichloroethene	ND	3.1		μg/Kg-dry	1	9/17/2007 11:01:00 PM
trans-1,3-Dichloropropene	ND	3.1		μg/Kg-dry	1	9/17/2007 11:01:00 PM
Trichloroethene	ND	3.1		μg/Kg-dry	1	9/17/2007 11:01:00 PM
Vinyl chloride	ND	2.1		μg/Kg-dry	1	9/17/2007 11:01:00 PM
NOTES: Methylene chloride is a common laboratory	solvent.					
PHENOLICS, TOTAL RECOVERABLE	FOR SOLID 0.436	E420 0.103).1	(E420.1)	4	Analyst: MB 9/11/2007
Phenolics, Total Recoverable	0.436	0.103		mg/Kg-dry	1	9/11/2007
HEXAVALENT CHROMIUM Chromium, Hexavalent	ND	SW71 9	96A	mg/Kg-dry	20	Analyst: DEY 9/6/2007 10:30:00 AM
PERCENT MOISTURE Percent Moisture	3.14	D22 ′ 0.00100	16	wt%	1	Analyst: KAM 9/10/2007

Approved I	3y: _		Date:	Page 15 of 31
Qualifiers:	*	Low Level	**	Value exceeds Maximum Contaminant Value

В Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded Η

ND Not Detected at the Reporting Limit

Date: 21-Sep-07

Ε Value above quantitation range

Analyte detected below quantitation limits J Spike Recovery outside accepted recovery limits

CLIENT: NYSDEC - Region 9

Client Sample ID: TP-16@3' Lab Order: U0709117 **Collection Date:** 9/6/2007 9:00:00 AM

Friendship Foundry **Project:**

Matrix: SOIL Lab ID: U0709117-008

Analyses	Result	Limit Qual	Units	DF	Date Analyzed	
PEST/PCB IN SOIL/SLUDGE		SOIL/SLUDGE SW8081A (SW		0)	Analyst: KC	
4,4´-DDD	ND	38	μg/Kg-dry	10	9/18/2007	
4,4´-DDE	ND	38	μg/Kg-dry	10	9/18/2007	
4,4´-DDT	ND	38	μg/Kg-dry	10	9/18/2007	
Aldrin	ND	20	μg/Kg-dry	10	9/18/2007	
alpha-BHC	ND	20	μg/Kg-dry	10	9/18/2007	
alpha-Chlordane	ND	20	μg/Kg-dry	10	9/18/2007	
Aroclor 1016	ND	20	μg/Kg-dry	10	9/18/2007	
Aroclor 1221	ND	20	μg/Kg-dry	10	9/18/2007	
Aroclor 1232	ND	20	μg/Kg-dry	10	9/18/2007	
Aroclor 1242	ND	20	μg/Kg-dry	10	9/18/2007	
Aroclor 1248	ND	20	μg/Kg-dry	10	9/18/2007	
Aroclor 1254	ND	20	μg/Kg-dry	10	9/18/2007	
Aroclor 1260	ND	20	μg/Kg-dry	10	9/18/2007	
beta-BHC	ND	20	μg/Kg-dry	10	9/18/2007	
delta-BHC	ND	20	μg/Kg-dry	10	9/18/2007	
Dieldrin	ND	38	μg/Kg-dry	10	9/18/2007	
Endosulfan I	ND	20	μg/Kg-dry	10	9/18/2007	
Endosulfan II	ND	38	μg/Kg-dry	10	9/18/2007	
Endosulfan sulfate	ND	38	μg/Kg-dry	10	9/18/2007	
Endrin	ND	38	μg/Kg-dry	10	9/18/2007	
Endrin aldehyde	ND	38	μg/Kg-dry	10	9/18/2007	
Endrin ketone	ND	38	μg/Kg-dry	10	9/18/2007	
gamma-BHC	ND	20	μg/Kg-dry	10	9/18/2007	
gamma-Chlordane	ND	20	μg/Kg-dry	10	9/18/2007	
Heptachlor	ND	20	μg/Kg-dry	10	9/18/2007	
Heptachlor epoxide	ND	20	μg/Kg-dry	10	9/18/2007	
Methoxychlor	ND	200	μg/Kg-dry	10	9/18/2007	
Toxaphene	ND	2000	μg/Kg-dry	10	9/18/2007	
NOTES:						
The reporting limits were raised due to matr	ix interference.					
CHLORINATED HERBICIDES		SW8151A	(SW355	0)	Analyst: KC	
2,4,5-T	ND	38	μg/Kg-dry	1	9/11/2007	
2,4,5-TP (Silvex)	ND	38	μg/Kg-dry	1	9/11/2007	
2,4-D	ND	38	μg/Kg-dry	1	9/11/2007	
Dicamba	ND	38	μg/Kg-dry	1	9/11/2007	
Dinoseb	ND	38	μg/Kg-dry	1	9/11/2007	
SOIL AND SOLID METALS BY ICP		SW6010B	(SW305	0A)	Analyst: EA	
Aluminum	8300	5.7	mg/Kg-dry	1	9/10/2007 1:34:06 PM	

Page 16 of 31 Approved By: Date:

Qualifiers: Low Level

> В Analyte detected in the associated Method Blank

Η Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit Value exceeds Maximum Contaminant Value

Date: 21-Sep-07

Е Value above quantitation range

J Analyte detected below quantitation limits

CLIENT: NYSDEC - Region 9 Client Sample ID: TP-16@3'

Lab Order: U0709117 **Collection Date:** 9/6/2007 9:00:00 AM

Project: Friendship Foundry

Lab ID: U0709117-008 Matrix: SOIL

Analyses	Result Limit Qual Units		Units	DF	Date Analyzed	
SOIL AND SOLID METALS BY ICP		SW6	010B	(SW305	i0A)	Analyst: EA
Antimony	ND	34		mg/Kg-dry	1	9/10/2007 1:34:06 PM
Arsenic*	6.9	1.1		mg/Kg-dry	1	9/10/2007 1:34:06 PM
Barium	73	34		mg/Kg-dry	1	9/10/2007 1:34:06 PM
Beryllium	ND	0.57		mg/Kg-dry	1	9/10/2007 1:34:06 PM
Cadmium	0.6	0.57	J	mg/Kg-dry	1	9/10/2007 1:34:06 PM
Calcium	31000	57		mg/Kg-dry	1	9/10/2007 1:34:06 PM
Chromium	15	5.7		mg/Kg-dry	1	9/10/2007 1:34:06 PM
Cobalt	8.0	5.7		mg/Kg-dry	1	9/10/2007 1:34:06 PM
Copper	28	2.3		mg/Kg-dry	1	9/10/2007 1:34:06 PM
Iron	27000	3.4		mg/Kg-dry	1	9/10/2007 1:34:06 PM
Lead	68	11		mg/Kg-dry	1	9/10/2007 1:34:06 PM
Magnesium	6000	57		mg/Kg-dry	1	9/10/2007 1:34:06 PM
Manganese	720	2.3		mg/Kg-dry	1	9/10/2007 1:34:06 PM
Nickel	20	3.4		mg/Kg-dry	1	9/10/2007 1:34:06 PM
Potassium	1000	57		mg/Kg-dry	1	9/10/2007 1:34:06 PM
Selenium*	5.4	0.57		mg/Kg-dry	1	9/10/2007 1:34:06 PM
Silver	ND	5.7		mg/Kg-dry	1	9/10/2007 1:34:06 PM
Sodium	ND	57		mg/Kg-dry	1	9/10/2007 1:34:06 PM
Thallium*	ND	0.34		mg/Kg-dry	1	9/10/2007 1:34:06 PM
Vanadium	10	34	J	mg/Kg-dry	1	9/10/2007 1:34:06 PM
Zinc	190	1.1		mg/Kg-dry	1	9/10/2007 1:34:06 PM
TOTAL MERCURY - SOIL/SOLID/WAST	E	SW7	471A	(SW747	'1A)	Analyst: EA
Mercury	ND	0.229		mg/Kg-dry	1	9/11/2007 1:09:40 PM
TCL-SEMIVOLATILE ORGANICS		SW8	270C	(SW355	i0A)	Analyst: LD
(3+4)-Methylphenol	ND	3800		μg/Kg-dry	10	9/10/2007 11:23:00 PM
1,2,4-Trichlorobenzene	ND	3800		μg/Kg-dry	10	9/10/2007 11:23:00 PM
1,2-Dichlorobenzene	ND	3800		μg/Kg-dry	10	9/10/2007 11:23:00 PM
1,3-Dichlorobenzene	ND	3800		μg/Kg-dry	10	9/10/2007 11:23:00 PM
1,4-Dichlorobenzene	ND	3800		μg/Kg-dry	10	9/10/2007 11:23:00 PM
2,4,5-Trichlorophenol	ND	3800		μg/Kg-dry	10	9/10/2007 11:23:00 PM
2,4,6-Trichlorophenol	ND	3800		μg/Kg-dry	10	9/10/2007 11:23:00 PM
2,4-Dichlorophenol	ND	3800		μg/Kg-dry	10	9/10/2007 11:23:00 PM
2,4-Dimethylphenol	ND	3800		μg/Kg-dry	10	9/10/2007 11:23:00 PM
2,4-Dinitrophenol	ND	38000		μg/Kg-dry	10	9/10/2007 11:23:00 PM
2,4-Dinitrotoluene	ND	3800		μg/Kg-dry	10	9/10/2007 11:23:00 PM
2,6-Dinitrotoluene	ND	3800		μg/Kg-dry	10	9/10/2007 11:23:00 PM
2-Chloronaphthalene	ND	3800		μg/Kg-dry	10	9/10/2007 11:23:00 PM
2-Chlorophenol	ND	3800		μg/Kg-dry	10	9/10/2007 11:23:00 PM

Approved By:

Qualifiers:

* Low Level

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

** Value exceeds Maximum Contaminant Value

Page 17 of 31

Date: 21-Sep-07

E Value above quantitation range

Date:

J Analyte detected below quantitation limits

CLIENT: NYSDEC - Region 9 Client Sample ID: TP-16@3'

Lab Order: U0709117 **Collection Date:** 9/6/2007 9:00:00 AM

Friendship Foundry **Project:**

Matrix: SOIL Lab ID: U0709117-008

Analyses	Result	Limit	Qual	Units	DF	Date Analyzed
TCL-SEMIVOLATILE ORGANICS		SW82	270C	(SW3550A)		Analyst: LD
2-Methylnaphthalene	ND	3800		μg/Kg-dry	10	9/10/2007 11:23:00 PM
2-Methylphenol	ND	3800		μg/Kg-dry	10	9/10/2007 11:23:00 PM
2-Nitroaniline	ND	38000		μg/Kg-dry	10	9/10/2007 11:23:00 PM
2-Nitrophenol	ND	3800		μg/Kg-dry	10	9/10/2007 11:23:00 PM
3,3´-Dichlorobenzidine	ND	3800		μg/Kg-dry	10	9/10/2007 11:23:00 PM
3-Nitroaniline	ND	38000		μg/Kg-dry	10	9/10/2007 11:23:00 PM
4,6-Dinitro-2-methylphenol	ND	38000		μg/Kg-dry	10	9/10/2007 11:23:00 PM
4-Bromophenyl phenyl ether	ND	3800		μg/Kg-dry	10	9/10/2007 11:23:00 PM
4-Chloro-3-methylphenol	ND	3800		μg/Kg-dry	10	9/10/2007 11:23:00 PM
4-Chloroaniline	ND	3800		μg/Kg-dry	10	9/10/2007 11:23:00 PM
4-Chlorophenyl phenyl ether	ND	3800		μg/Kg-dry	10	9/10/2007 11:23:00 PM
4-Nitroaniline	ND	38000		μg/Kg-dry	10	9/10/2007 11:23:00 PM
4-Nitrophenol	ND	38000		μg/Kg-dry	10	9/10/2007 11:23:00 PM
Acenaphthene	ND	3800		μg/Kg-dry	10	9/10/2007 11:23:00 PM
Acenaphthylene	ND	3800		μg/Kg-dry	10	9/10/2007 11:23:00 PM
Anthracene	ND	3800		μg/Kg-dry	10	9/10/2007 11:23:00 PM
Benz(a)anthracene	ND	3800		μg/Kg-dry	10	9/10/2007 11:23:00 PM
Benzo(a)pyrene	ND	3800		μg/Kg-dry	10	9/10/2007 11:23:00 PM
Benzo(b)fluoranthene	ND	3800		μg/Kg-dry	10	9/10/2007 11:23:00 PM
Benzo(g,h,i)perylene	ND	3800		μg/Kg-dry	10	9/10/2007 11:23:00 PM
Benzo(k)fluoranthene	ND	3800		μg/Kg-dry	10	9/10/2007 11:23:00 PM
Bis(2-chloroethoxy)methane	ND	3800		μg/Kg-dry	10	9/10/2007 11:23:00 PM
Bis(2-chloroethyl)ether	ND	3800		μg/Kg-dry	10	9/10/2007 11:23:00 PM
Bis(2-chloroisopropyl)ether	ND	3800		μg/Kg-dry	10	9/10/2007 11:23:00 PM
Bis(2-ethylhexyl)phthalate	2000	3800	J	μg/Kg-dry	10	9/10/2007 11:23:00 PM
Butyl benzyl phthalate	ND	3800		μg/Kg-dry	10	9/10/2007 11:23:00 PM
Carbazole	ND	3800		μg/Kg-dry	10	9/10/2007 11:23:00 PM
Chrysene	ND	3800		μg/Kg-dry	10	9/10/2007 11:23:00 PM
Di-n-butyl phthalate	ND	3800		μg/Kg-dry	10	9/10/2007 11:23:00 PM
Di-n-octyl phthalate	ND	3800		μg/Kg-dry	10	9/10/2007 11:23:00 PM
Dibenz(a,h)anthracene	ND	3800		μg/Kg-dry	10	9/10/2007 11:23:00 PM
Dibenzofuran	ND	3800		μg/Kg-dry	10	9/10/2007 11:23:00 PM
Diethyl phthalate	ND	3800		μg/Kg-dry	10	9/10/2007 11:23:00 PM
Dimethyl phthalate	ND	3800		μg/Kg-dry	10	9/10/2007 11:23:00 PM
Fluoranthene	500	3800	J	μg/Kg-dry	10	9/10/2007 11:23:00 PM
Fluorene	ND	3800		μg/Kg-dry	10	9/10/2007 11:23:00 PM
Hexachlorobenzene	ND	3800		μg/Kg-dry	10	9/10/2007 11:23:00 PM
Hexachlorobutadiene	ND	3800		μg/Kg-dry	10	9/10/2007 11:23:00 PM
Hexachlorocyclopentadiene	ND	3800		μg/Kg-dry	10	9/10/2007 11:23:00 PM

Approved By:

Qualifiers: Low Level

> В Analyte detected in the associated Method Blank

Н Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit Date:

Page 18 of 31

Value exceeds Maximum Contaminant Value

Date: 21-Sep-07

Е Value above quantitation range

J Analyte detected below quantitation limits

CLIENT: NYSDEC - Region 9 Client Sample ID: TP-16@3'

Lab Order: U0709117 **Collection Date:** 9/6/2007 9:00:00 AM

Project: Friendship Foundry

Lab ID: U0709117-008 **Matrix:** SOIL

Analyses	Result	Limit	Qual	Units	DF	Date Analyzed
TCL-SEMIVOLATILE ORGANICS		SW8270C (SW3550A)		50A)	Analyst: LD	
Hexachloroethane	ND	3800		μg/Kg-dry	10	9/10/2007 11:23:00 PM
Indeno(1,2,3-cd)pyrene	ND	3800		μg/Kg-dry	10	9/10/2007 11:23:00 PM
Isophorone	ND	3800		μg/Kg-dry	10	9/10/2007 11:23:00 PM
N-Nitrosodi-n-propylamine	ND	3800		μg/Kg-dry	10	9/10/2007 11:23:00 PM
N-Nitrosodiphenylamine	ND	3800		μg/Kg-dry	10	9/10/2007 11:23:00 PM
Naphthalene	ND	3800		μg/Kg-dry	10	9/10/2007 11:23:00 PM
Nitrobenzene	ND	3800		μg/Kg-dry	10	9/10/2007 11:23:00 PM
Pentachlorophenol	ND	7700		μg/Kg-dry	10	9/10/2007 11:23:00 PM
Phenanthrene	ND	3800		μg/Kg-dry	10	9/10/2007 11:23:00 PM
Phenol	ND	3800		μg/Kg-dry	10	9/10/2007 11:23:00 PM
Pyrene	600	3800	J	μg/Kg-dry	10	9/10/2007 11:23:00 PM
NOTES:						
The reporting limits were raised due to ma	atrix interference.					
TCL VOLATILE ORGANICS		SW8	260B			Analyst: MG
1,1,1-Trichloroethane	ND	3.4		μg/Kg-dry	1	9/17/2007 11:50:00 PM
1,1,2,2-Tetrachloroethane	ND	3.4		μg/Kg-dry	1	9/17/2007 11:50:00 PM
1,1,2-Trichloroethane	ND	3.4		μg/Kg-dry	1	9/17/2007 11:50:00 PM
1,1-Dichloroethane	ND	3.4		μg/Kg-dry	1	9/17/2007 11:50:00 PM
1,1-Dichloroethene	ND	3.4		μg/Kg-dry	1	9/17/2007 11:50:00 PM
1,2-Dichloroethane	ND	3.4		μg/Kg-dry	1	9/17/2007 11:50:00 PM
1,2-Dichloropropane	ND	3.4		μg/Kg-dry	1	9/17/2007 11:50:00 PM
2-Butanone	ND	11		μg/Kg-dry	1	9/17/2007 11:50:00 PM
2-Hexanone	ND	11		μg/Kg-dry	1	9/17/2007 11:50:00 PM
4-Methyl-2-pentanone	ND	11		μg/Kg-dry	1	9/17/2007 11:50:00 PM
Acetone	ND	11		μg/Kg-dry	1	9/17/2007 11:50:00 PM
Benzene	ND	3.4		μg/Kg-dry	1	9/17/2007 11:50:00 PM
Bromodichloromethane	ND	3.4		μg/Kg-dry	1	9/17/2007 11:50:00 PM
Bromoform	ND	3.4		μg/Kg-dry	1	9/17/2007 11:50:00 PM
Bromomethane	ND	3.4		μg/Kg-dry	1	9/17/2007 11:50:00 PM
Carbon disulfide	ND	3.4		μg/Kg-dry	1	9/17/2007 11:50:00 PM
Carbon tetrachloride	ND	3.4		μg/Kg-dry	1	9/17/2007 11:50:00 PM
Chlorobenzene	ND	3.4		μg/Kg-dry	1	9/17/2007 11:50:00 PM
Chloroethane	ND	3.4		μg/Kg-dry	1	9/17/2007 11:50:00 PM
Chloroform	4.5	3.4		μg/Kg-dry	1	9/17/2007 11:50:00 PM
Chloromethane	ND	3.4		μg/Kg-dry	1	9/17/2007 11:50:00 PM
cis-1,2-Dichloroethene	ND	3.4		μg/Kg-dry	1	9/17/2007 11:50:00 PM
cis-1,3-Dichloropropene	ND	3.4		μg/Kg-dry	1	9/17/2007 11:50:00 PM
D'han an a bhan an a than a	ND	0.4		1.5. 5 . 7	4	0/47/0007 44 F0 00 PM

Approved By:	Date:	Page 19 of 31

3.4

ND

Qualifiers: * Low Level

Dibromochloromethane

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

** Value exceeds Maximum Contaminant Value

9/17/2007 11:50:00 PM

Date: 21-Sep-07

E Value above quantitation range

μg/Kg-dry

J Analyte detected below quantitation limits

CLIENT: NYSDEC - Region 9 Client Sample ID: TP-16@3'

Lab Order: U0709117 **Collection Date:** 9/6/2007 9:00:00 AM

Friendship Foundry **Project:**

Matrix: SOIL Lab ID: U0709117-008

Analyses	Result	Limit Qu	al Units	DF	Date Analyzed
TCL VOLATILE ORGANICS		SW8260	В		Analyst: MG
Ethylbenzene	ND	3.4	μg/Kg-dry	1	9/17/2007 11:50:00 PM
m,p-Xylene	ND	3.4	μg/Kg-dry	1	9/17/2007 11:50:00 PM
Methylene chloride	11	3.4 E	μg/Kg-dry	1	9/17/2007 11:50:00 PM
o-Xylene	ND	3.4	μg/Kg-dry	1	9/17/2007 11:50:00 PM
Styrene	ND	3.4	μg/Kg-dry	1	9/17/2007 11:50:00 PM
Tetrachloroethene	ND	3.4	μg/Kg-dry	1	9/17/2007 11:50:00 PM
Toluene	ND	3.4	μg/Kg-dry	1	9/17/2007 11:50:00 PM
trans-1,2-Dichloroethene	ND	3.4	μg/Kg-dry	1	9/17/2007 11:50:00 PM
trans-1,3-Dichloropropene	ND	3.4	μg/Kg-dry	1	9/17/2007 11:50:00 PM
Trichloroethene	ND	3.4	μg/Kg-dry	1	9/17/2007 11:50:00 PM
Vinyl chloride	ND	2.3	μg/Kg-dry	1	9/17/2007 11:50:00 PM
NOTES: Methylene chloride is a common laborate	ory solvent.				
PHENOLICS, TOTAL RECOVERABL	E FOR SOLID	E420.1	(E420.1)	Analyst: MB
Phenolics, Total Recoverable	0.429	0.115	mg/Kg-dry	1	9/11/2007
HEXAVALENT CHROMIUM Chromium, Hexavalent	ND	SW7196 0.23	A mg/Kg-dry	1	Analyst: DEY 9/7/2007 12:00:00 PM
PERCENT MOISTURE Percent Moisture	12.8	D2216 0.00100	wt%	1	Analyst: KAM 9/10/2007

Approved By:	Date:	Page 20 of 31
Qualifiers: * Low Level	**	Value exceeds Maximum Contaminant Value

В Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded Η

ND Not Detected at the Reporting Limit

Ε Value above quantitation range

Date: 21-Sep-07

Analyte detected below quantitation limits J Spike Recovery outside accepted recovery limits

CLIENT: NYSDEC - Region 9 Client Sample ID: TP-17A@3'

Lab Order: U0709117 **Collection Date:** 9/6/2007 9:30:00 AM

Project: Friendship Foundry

Lab ID: U0709117-009 Matrix: SOIL

Analyses	Result	Limit Qua	l Units	DF	Date Analyzed
POLYCHLORINATED BIPHENYLS(SOIL/S	LUDGE)	SW8082	(SW35	50B)	Analyst: KC
Aroclor 1016	ND	0.088	mg/Kg-dry	1	9/18/2007
Aroclor 1221	ND	0.088	mg/Kg-dry	1	9/18/2007
Aroclor 1232	ND	0.088	mg/Kg-dry	1	9/18/2007
Aroclor 1242	ND	0.088	mg/Kg-dry	1	9/18/2007
Aroclor 1248	ND	0.088	mg/Kg-dry	1	9/18/2007
Aroclor 1254	ND	0.088	mg/Kg-dry	1	9/18/2007
Aroclor 1260	ND	0.088	mg/Kg-dry	1	9/18/2007
Aroclor 1268	ND	0.088	mg/Kg-dry	1	9/18/2007
SOIL AND SOLID METALS BY ICP		SW6010B	(SW30	50A)	Analyst: EA
Aluminum	6800	5.3	mg/Kg-dry	1	9/10/2007 1:37:54 PM
Antimony	ND	32	mg/Kg-dry	1	9/10/2007 1:37:54 PM
Arsenic*	3.4	1.1	mg/Kg-dry	1	9/10/2007 1:37:54 PM
Barium	72	32	mg/Kg-dry	1	9/10/2007 1:37:54 PM
Beryllium	ND	0.53	mg/Kg-dry	1	9/10/2007 1:37:54 PM
Cadmium	0.96	0.53	mg/Kg-dry	1	9/10/2007 1:37:54 PM
Calcium	4700	53	mg/Kg-dry	1	9/10/2007 1:37:54 PM
Chromium	25	5.3	mg/Kg-dry	1	9/10/2007 1:37:54 PM
Cobalt	ND	5.3	mg/Kg-dry	1	9/10/2007 1:37:54 PM
Copper	120	2.1	mg/Kg-dry	1	9/10/2007 1:37:54 PM
Iron	25000	3.2	mg/Kg-dry	1	9/10/2007 1:37:54 PM
Lead	91	11	mg/Kg-dry	1	9/10/2007 1:37:54 PM
Magnesium	1500	53	mg/Kg-dry	1	9/10/2007 1:37:54 PM
Manganese	310	2.1	mg/Kg-dry	1	9/10/2007 1:37:54 PM
Nickel	27	3.2	mg/Kg-dry	1	9/10/2007 1:37:54 PM
Potassium	630	53	mg/Kg-dry	1	9/10/2007 1:37:54 PM
Selenium*	7.0	0.53	mg/Kg-dry	1	9/10/2007 1:37:54 PM
Silver	ND	5.3	mg/Kg-dry	1	9/10/2007 1:37:54 PM
Sodium	170	53	mg/Kg-dry	1	9/10/2007 1:37:54 PM
Thallium*	ND	0.32	mg/Kg-dry	1	9/10/2007 1:37:54 PM
Vanadium	10	32 J	mg/Kg-dry	1	9/10/2007 1:37:54 PM
Zinc	1000	1.1	mg/Kg-dry	1	9/10/2007 1:37:54 PM
TOTAL MERCURY - SOIL/SOLID/WASTE	0.022	SW7471A	\ -	•	Analyst: EA
Mercury	0.033	0.213 J	mg/Kg-dry	1	9/11/2007 1:10:39 PM
PERCENT MOISTURE		D2216			Analyst: KAM
Percent Moisture	6.19	0.00100	wt%	1	9/10/2007

Approved By:		Date:	Page 21 of 31
Qualifiers: *	Low Level	**	Value exceeds Maximum Contaminant Value

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

E Value above quantitation range

J Analyte detected below quantitation limits

Date: 21-Sep-07

CLIENT: NYSDEC - Region 9 Client Sample ID: TP-20@3'

Lab Order: U0709117 **Collection Date:** 9/6/2007 11:15:00 AM

Project: Friendship Foundry

Lab ID: U0709117-010 **Matrix:** SOIL

Analyses	Result	Limit (Qual	Units	DF	Date Analyzed
SOIL AND SOLID METALS BY ICP		SW601	10B	(SW305	0A)	Analyst: EA
Aluminum	8800	5.4		mg/Kg-dry	1	9/10/2007 1:41:24 PM
Antimony	ND	33		mg/Kg-dry	1	9/10/2007 1:41:24 PM
Arsenic*	2.9	1.1		mg/Kg-dry	1	9/10/2007 1:41:24 PM
Barium	20	33	J	mg/Kg-dry	1	9/10/2007 1:41:24 PM
Beryllium	ND	0.54		mg/Kg-dry	1	9/10/2007 1:41:24 PM
Cadmium	ND	0.54		mg/Kg-dry	1	9/10/2007 1:41:24 PM
Calcium	750	54		mg/Kg-dry	1	9/10/2007 1:41:24 PM
Chromium	13	5.4		mg/Kg-dry	1	9/10/2007 1:41:24 PM
Cobalt	ND	5.4		mg/Kg-dry	1	9/10/2007 1:41:24 PM
Copper	16	2.2		mg/Kg-dry	1	9/10/2007 1:41:24 PM
Iron	9300	3.3		mg/Kg-dry	1	9/10/2007 1:41:24 PM
Lead	21	11		mg/Kg-dry	1	9/10/2007 1:41:24 PM
Magnesium	350	54		mg/Kg-dry	1	9/10/2007 1:41:24 PM
Manganese	74	2.2		mg/Kg-dry	1	9/10/2007 1:41:24 PM
Nickel	11	3.3		mg/Kg-dry	1	9/10/2007 1:41:24 PM
Potassium	370	54		mg/Kg-dry	1	9/10/2007 1:41:24 PM
Selenium*	3.9	0.54		mg/Kg-dry	1	9/10/2007 1:41:24 PM
Silver	ND	5.4		mg/Kg-dry	1	9/10/2007 1:41:24 PM
Sodium	ND	54		mg/Kg-dry	1	9/10/2007 1:41:24 PM
Thallium*	ND	0.33		mg/Kg-dry	1	9/10/2007 1:41:24 PM
Vanadium	10	33	J	mg/Kg-dry	1	9/10/2007 1:41:24 PM
Zinc	180	1.1		mg/Kg-dry	1	9/10/2007 1:41:24 PM
TOTAL MERCURY - SOIL/SOLID/WASTE	<u> </u>	SW747	71A	(SW747	1A)	Analyst: EA
Mercury	ND	0.217		mg/Kg-dry	1	9/11/2007 1:11:44 PM
PERCENT MOISTURE		D221	16			Analyst: KAM
Percent Moisture	7.98	0.00100		wt%	1	9/10/2007

Approved By:		Date:	Page 22 of 31	
Qualifiers:	*	Low Level	**	Value exceeds Maximum Contaminant Value
	В	Analyte detected in the associated Method Blank	E	Value above quantitation range

B Analyte detected in the associated Method Blank
 H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

J Analyte detected below quantitation limits
 S Spike Recovery outside accepted recovery limits

Date: 21-Sep-07

CLIENT: NYSDEC - Region 9 Client Sample ID: TP-24@4'

Lab Order: U0709117 **Collection Date:** 9/6/2007 12:30:00 PM

Project: Friendship Foundry

Lab ID: U0709117-011 **Matrix:** SOIL

Analyses	Result	Limit Qual	Units	DF	Date Analyzed
POLYCHLORINATED BIPHENYLS(SOIL/S	SLUDGE)	SW8082	(SW35	50B)	Analyst: KC
Aroclor 1016	ND	0.10	mg/Kg-dry	1	9/18/2007
Aroclor 1221	ND	0.10	mg/Kg-dry	1	9/18/2007
Aroclor 1232	ND	0.10	mg/Kg-dry	1	9/18/2007
Aroclor 1242	ND	0.10	mg/Kg-dry	1	9/18/2007
Aroclor 1248	ND	0.10	mg/Kg-dry	1	9/18/2007
Aroclor 1254	ND	0.10	mg/Kg-dry	1	9/18/2007
Aroclor 1260	ND	0.10	mg/Kg-dry	1	9/18/2007
Aroclor 1268	ND	0.10	mg/Kg-dry	1	9/18/2007
SOIL AND SOLID METALS BY ICP		SW6010B	(SW30	50A)	Analyst: EA
Aluminum	12000	6.2	mg/Kg-dry	1	9/10/2007 1:45:10 PM
Antimony	ND	37	mg/Kg-dry	1	9/10/2007 1:45:10 PM
Arsenic*	13	1.2	mg/Kg-dry	1	9/10/2007 1:45:10 PM
Barium	94	37	mg/Kg-dry	1	9/10/2007 1:45:10 PM
Beryllium	0.62	0.62	mg/Kg-dry	1	9/10/2007 1:45:10 PM
Cadmium	ND	0.62	mg/Kg-dry	1	9/10/2007 1:45:10 PM
Calcium	1300	62	mg/Kg-dry	1	9/10/2007 1:45:10 PM
Chromium	11	6.2	mg/Kg-dry	1	9/10/2007 1:45:10 PM
Cobalt	10	6.2	mg/Kg-dry	1	9/10/2007 1:45:10 PM
Copper	12	2.5	mg/Kg-dry	1	9/10/2007 1:45:10 PM
Iron	25000	3.7	mg/Kg-dry	1	9/10/2007 1:45:10 PM
Lead	20	12	mg/Kg-dry	1	9/10/2007 1:45:10 PM
Magnesium	2600	62	mg/Kg-dry	1	9/10/2007 1:45:10 PM
Manganese	300	2.5	mg/Kg-dry	1	9/10/2007 1:45:10 PM
Nickel	19	3.7	mg/Kg-dry	1	9/10/2007 1:45:10 PM
Potassium	1300	62	mg/Kg-dry	1	9/10/2007 1:45:10 PM
Selenium*	6.6	0.62	mg/Kg-dry	1	9/10/2007 1:45:10 PM
Silver	ND	6.2	mg/Kg-dry	1	9/10/2007 1:45:10 PM
Sodium	ND	62	mg/Kg-dry	1	9/10/2007 1:45:10 PM
Thallium*	ND	0.37	mg/Kg-dry	1	9/10/2007 1:45:10 PM
Vanadium	20	37 J	mg/Kg-dry	1	9/10/2007 1:45:10 PM
Zinc	82	1.2	mg/Kg-dry	1	9/10/2007 1:45:10 PM
TOTAL MERCURY - SOIL/SOLID/WASTE	ND	SW7471A	(SW747	•	Analyst: EA
Mercury	ND	0.246	mg/Kg-dry	1	9/11/2007 1:12:56 PM
PERCENT MOISTURE		D2216			Analyst: KAM
Percent Moisture	18.9	0.00100	wt%	1	9/10/2007

Approved By:		Date:	Page 23 of 31
Qualifiers: *	Low Level	**	Value exceeds Maximum Contaminant Value

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

E Value above quantitation range

J Analyte detected below quantitation limits

Date: 21-Sep-07

CLIENT: NYSDEC - Region 9 Client Sample ID: TP-25@2'

Lab Order: U0709117 **Collection Date:** 9/6/2007 1:30:00 PM

Project: Friendship Foundry

Lab ID: U0709117-012 **Matrix:** SOIL

Analyses	Result	Limit Qual	Units	DF	Date Analyzed
PEST/PCB IN SOIL/SLUDGE		SW8081A	(SW3550	D)	Analyst: KC
4,4´-DDD	ND	40	μg/Kg-dry	10	9/18/2007
4,4´-DDE	ND	40	μg/Kg-dry	10	9/18/2007
4,4´-DDT	ND	40	μg/Kg-dry	10	9/18/2007
Aldrin	ND	21	μg/Kg-dry	10	9/18/2007
alpha-BHC	ND	21	μg/Kg-dry	10	9/18/2007
alpha-Chlordane	ND	21	μg/Kg-dry	10	9/18/2007
Aroclor 1016	ND	21	μg/Kg-dry	10	9/18/2007
Aroclor 1221	ND	21	μg/Kg-dry	10	9/18/2007
Aroclor 1232	ND	21	μg/Kg-dry	10	9/18/2007
Aroclor 1242	ND	21	μg/Kg-dry	10	9/18/2007
Aroclor 1248	ND	21	μg/Kg-dry	10	9/18/2007
Aroclor 1254	ND	21	μg/Kg-dry	10	9/18/2007
Aroclor 1260	ND	21	μg/Kg-dry	10	9/18/2007
beta-BHC	ND	21	μg/Kg-dry	10	9/18/2007
delta-BHC	ND	21	μg/Kg-dry	10	9/18/2007
Dieldrin	ND	40	μg/Kg-dry	10	9/18/2007
Endosulfan I	ND	21	μg/Kg-dry	10	9/18/2007
Endosulfan II	ND	40	μg/Kg-dry	10	9/18/2007
Endosulfan sulfate	ND	40	μg/Kg-dry	10	9/18/2007
Endrin	ND	40	μg/Kg-dry	10	9/18/2007
Endrin aldehyde	ND	40	μg/Kg-dry	10	9/18/2007
Endrin ketone	ND	40	μg/Kg-dry	10	9/18/2007
gamma-BHC	ND	21	μg/Kg-dry	10	9/18/2007
gamma-Chlordane	ND	21	μg/Kg-dry	10	9/18/2007
Heptachlor	ND	21	μg/Kg-dry	10	9/18/2007
Heptachlor epoxide	ND	21	μg/Kg-dry	10	9/18/2007
Methoxychlor	ND	210	μg/Kg-dry	10	9/18/2007
Toxaphene	ND	2100	μg/Kg-dry	10	9/18/2007
NOTES:			, ,		
The reporting limits were raised due to mate	rix interference.				
CHLORINATED HERBICIDES		SW8151A	(SW3550	D)	Analyst: KC
2,4,5-T	ND	40	μg/Kg-dry	1	9/11/2007
2,4,5-TP (Silvex)	ND	40	μg/Kg-dry	1	9/11/2007
2,4-D	ND	40	μg/Kg-dry	1	9/11/2007
Dicamba	ND	40	μg/Kg-dry	1	9/11/2007
Dinoseb	ND	40	μg/Kg-dry	1	9/11/2007
SOIL AND SOLID METALS BY ICP		SW6010B	(SW3050A)		Analyst: EA
Aluminum	5400	6.0	mg/Kg-dry	1	9/10/2007 1:48:53 PM

Approved By:	Date:	Page 24 of 31
11pp10:04 2j.	Dute.	1 450 2 1 01 3 1

Qualifiers: * Low Level

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

** Value exceeds Maximum Contaminant Value

Date: 21-Sep-07

E Value above quantitation range

J Analyte detected below quantitation limits

CLIENT: NYSDEC - Region 9 Client Sample ID: TP-25@2'

Lab Order: U0709117 **Collection Date:** 9/6/2007 1:30:00 PM

Project: Friendship Foundry

Lab ID: U0709117-012 **Matrix:** SOIL

Analyses	Result	Limit Qu	al Units	DF	Date Analyzed
SOIL AND SOLID METALS BY ICP		SW6010	3 (SW30	 50A)	Analyst: EA
Antimony	ND	36	mg/Kg-dry	1	9/10/2007 1:48:53 PM
Arsenic*	10	1.2	mg/Kg-dry	1	9/10/2007 1:48:53 PM
Barium	100	36	mg/Kg-dry	1	9/10/2007 1:48:53 PM
Beryllium	0.78	0.60	mg/Kg-dry	1	9/10/2007 1:48:53 PM
Cadmium	ND	0.60	mg/Kg-dry	1	9/10/2007 1:48:53 PM
Calcium	25000	60	mg/Kg-dry	1	9/10/2007 1:48:53 PM
Chromium	11	6.0	mg/Kg-dry	1	9/10/2007 1:48:53 PM
Cobalt	7.3	6.0	mg/Kg-dry	1	9/10/2007 1:48:53 PM
Copper	42	2.4	mg/Kg-dry	1	9/10/2007 1:48:53 PM
Iron	27000	3.6	mg/Kg-dry	1	9/10/2007 1:48:53 PM
Lead	37	12	mg/Kg-dry	1	9/10/2007 1:48:53 PM
Magnesium	1200	60	mg/Kg-dry	1	9/10/2007 1:48:53 PM
Manganese	240	2.4	mg/Kg-dry	1	9/10/2007 1:48:53 PM
Nickel	19	3.6	mg/Kg-dry	1	9/10/2007 1:48:53 PM
Potassium	650	60	mg/Kg-dry	1	9/10/2007 1:48:53 PM
Selenium*	3.6	0.60	mg/Kg-dry	1	9/10/2007 1:48:53 PM
Silver	ND	6.0	mg/Kg-dry	1	9/10/2007 1:48:53 PM
Sodium	ND	60	mg/Kg-dry	1	9/10/2007 1:48:53 PM
Thallium*	ND	0.36	mg/Kg-dry	1	9/10/2007 1:48:53 PM
Vanadium	20	36 J	mg/Kg-dry	1	9/10/2007 1:48:53 PM
Zinc	70	1.2	mg/Kg-dry	1	9/10/2007 1:48:53 PM
TOTAL MERCURY - SOIL/SOLID/WAS	TE	SW7471	A (SW747	71A)	Analyst: EA
Mercury	0.00080	0.241 J	mg/Kg-dry	1	9/11/2007 1:13:59 PM
TCL-SEMIVOLATILE ORGANICS		SW8270	C (SW35	50A)	Analyst: LD
(3+4)-Methylphenol	ND	4000	μg/Kg-dry	10	9/11/2007 12:07:00 AM
1,2,4-Trichlorobenzene	ND	4000	μg/Kg-dry	10	9/11/2007 12:07:00 AM
1,2-Dichlorobenzene	ND	4000	μg/Kg-dry	10	9/11/2007 12:07:00 AM
1,3-Dichlorobenzene	ND	4000	μg/Kg-dry	10	9/11/2007 12:07:00 AM
1,4-Dichlorobenzene	ND	4000	μg/Kg-dry	10	9/11/2007 12:07:00 AM
2,4,5-Trichlorophenol	ND	4000	μg/Kg-dry	10	9/11/2007 12:07:00 AM
2,4,6-Trichlorophenol	ND	4000	μg/Kg-dry	10	9/11/2007 12:07:00 AM
2,4-Dichlorophenol	ND	4000	μg/Kg-dry	10	9/11/2007 12:07:00 AM
2,4-Dimethylphenol	ND	4000	μg/Kg-dry	10	9/11/2007 12:07:00 AM
2,4-Dinitrophenol	ND	40000	μg/Kg-dry	10	9/11/2007 12:07:00 AM
2,4-Dinitrotoluene	ND	4000	μg/Kg-dry	10	9/11/2007 12:07:00 AM
2,6-Dinitrotoluene	ND	4000	μg/Kg-dry	10	9/11/2007 12:07:00 AM
2-Chloronaphthalene	ND	4000	μg/Kg-dry	10	9/11/2007 12:07:00 AM
2-Chlorophenol	ND	4000	μg/Kg-dry	10	9/11/2007 12:07:00 AM
Approved By:		Ι	Date:		Page 25 of

Qualifiers: * Low Level

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

** Value exceeds Maximum Contaminant Value

Date: 21-Sep-07

E Value above quantitation range

J Analyte detected below quantitation limits

CLIENT: NYSDEC - Region 9 Client Sample ID: TP-25@2'

Lab Order: U0709117 **Collection Date:** 9/6/2007 1:30:00 PM

Project: Friendship Foundry

Lab ID: U0709117-012 **Matrix:** SOIL

Analyses	Result	Limit	Qual	Units	DF	Date Analyzed
TCL-SEMIVOLATILE ORGANICS	-	SW8270C		(SW3550A)		Analyst: LD
2-Methylnaphthalene	500	4000	J	μg/Kg-dry	10	9/11/2007 12:07:00 AM
2-Methylphenol	ND	4000		μg/Kg-dry	10	9/11/2007 12:07:00 AM
2-Nitroaniline	ND	40000		μg/Kg-dry	10	9/11/2007 12:07:00 AM
2-Nitrophenol	ND	4000		μg/Kg-dry	10	9/11/2007 12:07:00 AM
3,3'-Dichlorobenzidine	ND	4000		μg/Kg-dry	10	9/11/2007 12:07:00 AM
3-Nitroaniline	ND	40000		μg/Kg-dry	10	9/11/2007 12:07:00 AM
4,6-Dinitro-2-methylphenol	ND	40000		μg/Kg-dry	10	9/11/2007 12:07:00 AM
4-Bromophenyl phenyl ether	ND	4000		μg/Kg-dry	10	9/11/2007 12:07:00 AM
4-Chloro-3-methylphenol	ND	4000		μg/Kg-dry	10	9/11/2007 12:07:00 AM
4-Chloroaniline	ND	4000		μg/Kg-dry	10	9/11/2007 12:07:00 AM
4-Chlorophenyl phenyl ether	ND	4000		μg/Kg-dry	10	9/11/2007 12:07:00 AM
4-Nitroaniline	ND	40000		μg/Kg-dry	10	9/11/2007 12:07:00 AM
4-Nitrophenol	ND	40000		μg/Kg-dry	10	9/11/2007 12:07:00 AM
Acenaphthene	ND	4000		μg/Kg-dry	10	9/11/2007 12:07:00 AM
Acenaphthylene	ND	4000		μg/Kg-dry	10	9/11/2007 12:07:00 AM
Anthracene	ND	4000		μg/Kg-dry	10	9/11/2007 12:07:00 AM
Benz(a)anthracene	700	4000	J	μg/Kg-dry	10	9/11/2007 12:07:00 AM
Benzo(a)pyrene	ND	4000		μg/Kg-dry	10	9/11/2007 12:07:00 AM
Benzo(b)fluoranthene	ND	4000		μg/Kg-dry	10	9/11/2007 12:07:00 AM
Benzo(g,h,i)perylene	ND	4000		μg/Kg-dry	10	9/11/2007 12:07:00 AM
Benzo(k)fluoranthene	ND	4000		μg/Kg-dry	10	9/11/2007 12:07:00 AM
Bis(2-chloroethoxy)methane	ND	4000		μg/Kg-dry	10	9/11/2007 12:07:00 AM
Bis(2-chloroethyl)ether	ND	4000		μg/Kg-dry	10	9/11/2007 12:07:00 AM
Bis(2-chloroisopropyl)ether	ND	4000		μg/Kg-dry	10	9/11/2007 12:07:00 AM
Bis(2-ethylhexyl)phthalate	ND	4000		μg/Kg-dry	10	9/11/2007 12:07:00 AM
Butyl benzyl phthalate	ND	4000		μg/Kg-dry	10	9/11/2007 12:07:00 AM
Carbazole	ND	4000		μg/Kg-dry	10	9/11/2007 12:07:00 AM
Chrysene	700	4000	J	μg/Kg-dry	10	9/11/2007 12:07:00 AM
Di-n-butyl phthalate	ND	4000		μg/Kg-dry	10	9/11/2007 12:07:00 AM
Di-n-octyl phthalate	ND	4000		μg/Kg-dry	10	9/11/2007 12:07:00 AM
Dibenz(a,h)anthracene	ND	4000		μg/Kg-dry	10	9/11/2007 12:07:00 AM
Dibenzofuran	ND	4000		μg/Kg-dry	10	9/11/2007 12:07:00 AM
Diethyl phthalate	ND	4000		μg/Kg-dry	10	9/11/2007 12:07:00 AM
Dimethyl phthalate	ND	4000		μg/Kg-dry	10	9/11/2007 12:07:00 AM
Fluoranthene	800	4000	J	μg/Kg-dry	10	9/11/2007 12:07:00 AM
Fluorene	ND	4000		μg/Kg-dry	10	9/11/2007 12:07:00 AM
Hexachlorobenzene	ND	4000		μg/Kg-dry	10	9/11/2007 12:07:00 AM
Hexachlorobutadiene	ND	4000		μg/Kg-dry	10	9/11/2007 12:07:00 AM
Hexachlorocyclopentadiene	ND	4000		μg/Kg-dry	10	9/11/2007 12:07:00 AM

Approved By	Α	pp	ro	ved	Bv	:
-------------	---	----	----	-----	----	---

Qualifiers: * Low Level

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

** Value exceeds Maximum Contaminant Value

Date: 21-Sep-07

E Value above quantitation range

Date:

- J Analyte detected below quantitation limits
- S Spike Recovery outside accepted recovery limits

Page 26 of 31

CLIENT: NYSDEC - Region 9 Client Sample ID: TP-25@2'

Lab Order: U0709117 **Collection Date:** 9/6/2007 1:30:00 PM

Friendship Foundry **Project:**

Lab ID: U0709117-012			Matr	ix: SOIL	SOIL			
Analyses	Result	Limit Qual	Units	DF	Date Analyzed			
TCL-SEMIVOLATILE ORGANICS		SW8270C	(SW355	0A)	Analyst: LD			
Hexachloroethane	ND	4000	μg/Kg-dry	10	9/11/2007 12:07:00 AM			
Indeno(1,2,3-cd)pyrene	ND	4000	μg/Kg-dry	10	9/11/2007 12:07:00 AM			
Isophorone	ND	4000	μg/Kg-dry	10	9/11/2007 12:07:00 AM			
N-Nitrosodi-n-propylamine	ND	4000	μg/Kg-dry	10	9/11/2007 12:07:00 AM			
N-Nitrosodiphenylamine	ND	4000	μg/Kg-dry	10	9/11/2007 12:07:00 AM			
Naphthalene	ND	4000	μg/Kg-dry	10	9/11/2007 12:07:00 AM			
Nitrobenzene	ND	4000	μg/Kg-dry	10	9/11/2007 12:07:00 AM			
Pentachlorophenol	ND	8100	μg/Kg-dry	10	9/11/2007 12:07:00 AM			
Phenanthrene	1000	4000 J	μg/Kg-dry	10	9/11/2007 12:07:00 AM			
Phenol	ND	4000	μg/Kg-dry	10	9/11/2007 12:07:00 AM			
Pyrene	1000	4000 J	μg/Kg-dry	10	9/11/2007 12:07:00 AM			
NOTES:								
The reporting limits were raised due to ma	atrix interference.							
TCL VOLATILE ORGANICS		SW8260B			Analyst: MG			
1,1,1-Trichloroethane	ND	18	μg/Kg-dry	5	9/18/2007 12:39:00 AM			
1,1,2,2-Tetrachloroethane	ND	18	μg/Kg-dry	5	9/18/2007 12:39:00 AM			
1,1,2-Trichloroethane	ND	18	μg/Kg-dry	5	9/18/2007 12:39:00 AM			
1,1-Dichloroethane	ND	18	μg/Kg-dry	5	9/18/2007 12:39:00 AM			
1,1-Dichloroethene	ND	18	μg/Kg-dry	5	9/18/2007 12:39:00 AM			
1,2-Dichloroethane	ND	18	μg/Kg-dry	5	9/18/2007 12:39:00 AM			
1,2-Dichloropropane	ND	18	μg/Kg-dry	5	9/18/2007 12:39:00 AM			
2-Butanone	ND	60	μg/Kg-dry	5	9/18/2007 12:39:00 AM			
2-Hexanone	ND	60	μg/Kg-dry	5	9/18/2007 12:39:00 AM			
4-Methyl-2-pentanone	ND	60	ug/Kg-drv	5	9/18/2007 12:39:00 AM			

1,1,2,2-Tetrachloroethane	ND	18	μg/Kg-dry	5	9/18/2007 12:39:00 AM
1,1,2-Trichloroethane	ND	18	μg/Kg-dry	5	9/18/2007 12:39:00 AM
1,1-Dichloroethane	ND	18	μg/Kg-dry	5	9/18/2007 12:39:00 AM
1,1-Dichloroethene	ND	18	μg/Kg-dry	5	9/18/2007 12:39:00 AM
1,2-Dichloroethane	ND	18	μg/Kg-dry	5	9/18/2007 12:39:00 AM
1,2-Dichloropropane	ND	18	μg/Kg-dry	5	9/18/2007 12:39:00 AM
2-Butanone	ND	60	μg/Kg-dry	5	9/18/2007 12:39:00 AM
2-Hexanone	ND	60	μg/Kg-dry	5	9/18/2007 12:39:00 AM
4-Methyl-2-pentanone	ND	60	μg/Kg-dry	5	9/18/2007 12:39:00 AM
Acetone	310	60	μg/Kg-dry	5	9/18/2007 12:39:00 AM
Benzene	ND	18	μg/Kg-dry	5	9/18/2007 12:39:00 AM
Bromodichloromethane	ND	18	μg/Kg-dry	5	9/18/2007 12:39:00 AM
Bromoform	ND	18	μg/Kg-dry	5	9/18/2007 12:39:00 AM
Bromomethane	ND	18	μg/Kg-dry	5	9/18/2007 12:39:00 AM
Carbon disulfide	7	18 J	l μg/Kg-dry	5	9/18/2007 12:39:00 AM
Carbon tetrachloride	ND	18	μg/Kg-dry	5	9/18/2007 12:39:00 AM
Chlorobenzene	ND	18	μg/Kg-dry	5	9/18/2007 12:39:00 AM
Chloroethane	ND	18	μg/Kg-dry	5	9/18/2007 12:39:00 AM
Chloroform	ND	18	μg/Kg-dry	5	9/18/2007 12:39:00 AM
Chloromethane	ND	18	μg/Kg-dry	5	9/18/2007 12:39:00 AM
cis-1,2-Dichloroethene	ND	18	μg/Kg-dry	5	9/18/2007 12:39:00 AM
cis-1,3-Dichloropropene	ND	18	μg/Kg-dry	5	9/18/2007 12:39:00 AM
Dibromochloromethane	ND	18	μg/Kg-dry	5	9/18/2007 12:39:00 AM

Approved By:	Date:	Page 27 of 31

Qualifiers: Low Level

> В Analyte detected in the associated Method Blank

Н Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit Value exceeds Maximum Contaminant Value

Date: 21-Sep-07

Е Value above quantitation range

Analyte detected below quantitation limits J

CLIENT: NYSDEC - Region 9 Client Sample ID: TP-25@2'

Lab Order: U0709117 **Collection Date:** 9/6/2007 1:30:00 PM

Project: Friendship Foundry

Lab ID: U0709117-012 **Matrix:** SOIL

Analyses	Result	Limit Qu	al Units	DF	Date Analyzed
TCL VOLATILE ORGANICS	SW8260B				Analyst: MG
Ethylbenzene	ND	18	μg/Kg-dry	5	9/18/2007 12:39:00 AM
m,p-Xylene	ND	18	μg/Kg-dry	5	9/18/2007 12:39:00 AM
Methylene chloride	42	18	μg/Kg-dry	5	9/18/2007 12:39:00 AM
o-Xylene	ND	18	μg/Kg-dry	5	9/18/2007 12:39:00 AM
Styrene	ND	18	μg/Kg-dry	5	9/18/2007 12:39:00 AM
Tetrachloroethene	ND	18	μg/Kg-dry	5	9/18/2007 12:39:00 AM
Toluene	ND	18	μg/Kg-dry	5	9/18/2007 12:39:00 AM
trans-1,2-Dichloroethene	ND	18	μg/Kg-dry	5	9/18/2007 12:39:00 AM
trans-1,3-Dichloropropene	ND	18	μg/Kg-dry	5	9/18/2007 12:39:00 AM
Trichloroethene	ND	18	μg/Kg-dry	5	9/18/2007 12:39:00 AM
Vinyl chloride	ND	12	μg/Kg-dry	5	9/18/2007 12:39:00 AM
NOTES:					

The reporting limits were raised due to the high concentration of non-target compounds. Methylene chloride is a common laboratory solvent.

PHENOLICS, TOTAL RECOVERABLE Phenolics, Total Recoverable	FOR SOLID	E420.1 0.121	(E420.1) mg/Kg-dry	1	Analyst: MB 9/11/2007
HEXAVALENT CHROMIUM Chromium, Hexavalent	ND	SW7196A 0.24	mg/Kg-dry	1	Analyst: DEY 9/7/2007 12:00:00 PM
PERCENT MOISTURE Percent Moisture	17.1	D2216 0.00100	wt%	1	Analyst: KAM 9/10/2007

Approved By:		Date:	Page 28 of 31
Qualifiers: *	Low Level	**	Value exceeds Maximum Contaminant Value

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

E Value above quantitation rangeJ Analyte detected below quantitation limits

Date: 21-Sep-07

CLIENT: NYSDEC - Region 9 Client Sample ID: TP-28@3'

Lab Order: U0709117 **Collection Date:** 9/6/2007 1:45:00 PM

Project: Friendship Foundry

Lab ID: U0709117-013 **Matrix:** SOIL

Analyses	Result	Limit Qual	Units	DF	Date Analyzed
POLYCHLORINATED BIPHENYLS(SOIL/S	SLUDGE)	SW8082	(SW355	60B)	Analyst: KC
Aroclor 1016	ND	0.093	mg/Kg-dry	1	9/18/2007
Aroclor 1221	ND	0.093	mg/Kg-dry	1	9/18/2007
Aroclor 1232	ND	0.093	mg/Kg-dry	1	9/18/2007
Aroclor 1242	ND	0.093	mg/Kg-dry	1	9/18/2007
Aroclor 1248	ND	0.093	mg/Kg-dry	1	9/18/2007
Aroclor 1254	ND	0.093	mg/Kg-dry	1	9/18/2007
Aroclor 1260	ND	0.093	mg/Kg-dry	1	9/18/2007
Aroclor 1268	ND	0.093	mg/Kg-dry	1	9/18/2007
SOIL AND SOLID METALS BY ICP		SW6010B	(SW305	60A)	Analyst: EA
Aluminum	11000	5.6	mg/Kg-dry	1	9/10/2007 2:00:06 PM
Antimony	ND	34	mg/Kg-dry	1	9/10/2007 2:00:06 PM
Arsenic*	15	1.1	mg/Kg-dry	1	9/10/2007 2:00:06 PM
Barium	86	34	mg/Kg-dry	1	9/10/2007 2:00:06 PM
Beryllium	ND	0.56	mg/Kg-dry	1	9/10/2007 2:00:06 PM
Cadmium	ND	0.56	mg/Kg-dry	1	9/10/2007 2:00:06 PM
Calcium	920	56	mg/Kg-dry	1	9/10/2007 2:00:06 PM
Chromium	10	5.6	mg/Kg-dry	1	9/10/2007 2:00:06 PM
Cobalt	11	5.6	mg/Kg-dry	1	9/10/2007 2:00:06 PM
Copper	20	2.2	mg/Kg-dry	1	9/10/2007 2:00:06 PM
Iron	24000	3.4	mg/Kg-dry	1	9/10/2007 2:00:06 PM
Lead	22	11	mg/Kg-dry	1	9/10/2007 2:00:06 PM
Magnesium	2600	56	mg/Kg-dry	1	9/10/2007 2:00:06 PM
Manganese	1000	2.2	mg/Kg-dry	1	9/10/2007 2:00:06 PM
Nickel	24	3.4	mg/Kg-dry	1	9/10/2007 2:00:06 PM
Potassium	1200	56	mg/Kg-dry	1	9/10/2007 2:00:06 PM
Selenium*	9.7	0.56	mg/Kg-dry	1	9/10/2007 2:00:06 PM
Silver	ND	5.6	mg/Kg-dry	1	9/10/2007 2:00:06 PM
Sodium	ND	56	mg/Kg-dry	1	9/10/2007 2:00:06 PM
Thallium*	ND	0.34	mg/Kg-dry	1	9/10/2007 2:00:06 PM
Vanadium	10	34 J	mg/Kg-dry	1	9/10/2007 2:00:06 PM
Zinc	69	1.1	mg/Kg-dry	1	9/10/2007 2:00:06 PM
TOTAL MERCURY - SOIL/SOLID/WASTE		SW7471A	(SW747	'1A)	Analyst: EA
Mercury	0.021	0.224 J	mg/Kg-dry	1	9/11/2007 1:15:20 PM
PERCENT MOISTURE		D2216			Analyst: KAM
Percent Moisture	10.8	0.00100	wt%	1	9/10/2007

Approved By:		Date:	Page 29 of 31
Qualifiers: *	Low Level	**	Value exceeds Maximum Contaminant Value

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

E Value above quantitation range

J Analyte detected below quantitation limits

Date: 21-Sep-07

CLIENT: NYSDEC - Region 9 Client Sample ID: TP-26@1.5'

Lab Order: U0709117 **Collection Date:** 9/6/2007 2:00:00 PM

Project: Friendship Foundry

Lab ID: U0709117-014 **Matrix:** SOIL

Aluminum 8000 5.7 mg/Kg-dry 1 9/10/2007 2:03:51 PI Antimony ND 34 mg/Kg-dry 1 9/10/2007 2:03:51 PI Arsenic* 3.1 1.1 mg/Kg-dry 1 9/10/2007 2:03:51 PI Barium 42 34 mg/Kg-dry 1 9/10/2007 2:03:51 PI Beryllium ND 0.57 mg/Kg-dry 1 9/10/2007 2:03:51 PI Cadmium 0.5 0.57 J mg/Kg-dry 1 9/10/2007 2:03:51 PI Calcium 2300 57 mg/Kg-dry 1 9/10/2007 2:03:51 PI Chromium 15 5.7 mg/Kg-dry 1 9/10/2007 2:03:51 PI Cobalt ND 5.7 mg/Kg-dry 1 9/10/2007 2:03:51 PI Copper 20 2.3 mg/Kg-dry 1 9/10/2007 2:03:51 PI Lead 41 11 mg/Kg-dry 1 9/10/2007 2:03:51 PI Magnesium 740 57 mg/Kg-dry 1 9/10/2007 2:03:51 PI Magnesium 740 57 mg/Kg-dry 1 9/10/2007 2:03:51 P	Analyses	Result	Limit	Qual	Units	DF	Date Analyzed
Aluminum 8000 5.7 mg/Kg-dry 1 9/10/2007 2:03:51 PI Antimony ND 34 mg/Kg-dry 1 9/10/2007 2:03:51 PI Antimony ND 34 mg/Kg-dry 1 9/10/2007 2:03:51 PI Arsenic* 3.1 1.1 mg/Kg-dry 1 9/10/2007 2:03:51 PI Barium 42 34 mg/Kg-dry 1 9/10/2007 2:03:51 PI Beryllium ND 0.57 mg/Kg-dry 1 9/10/2007 2:03:51 PI Cadmium 0.5 0.57 J mg/Kg-dry 1 9/10/2007 2:03:51 PI Cadmium 0.5 0.57 J mg/Kg-dry 1 9/10/2007 2:03:51 PI Cadmium 15 5.7 mg/Kg-dry 1 9/10/2007 2:03:51 PI Chromium 15 5.7 mg/Kg-dry 1 9/10/2007 2:03:51 PI Chromium 15 5.7 mg/Kg-dry 1 9/10/2007 2:03:51 PI Copper 20 2.3 mg/Kg-dry 1 9/10/2007 2:03:51 PI Iron 31000 3.4 mg/Kg-dry 1 9/10/2007 2:03:51 PI Iron 31000 3.4 mg/Kg-dry 1 9/10/2007 2:03:51 PI Iron 31000 3.4 mg/Kg-dry 1 9/10/2007 2:03:51 PI Magnesium 740 57 mg/Kg-dry 1 9/10/2007 2:03:51 PI Magnesee 420 2.3 mg/Kg-dry 1 9/10/2007 2:03:51 PI Nickel 8.7 3.4 mg/Kg-dry 1 9/10/2007 2:03:51 PI Nickel 8.7 3.4 mg/Kg-dry 1 9/10/2007 2:03:51 PI PI Nickel 8.7 3.4 mg/Kg-dry 1 9/10/2007 2:03:51 PI PI Nickel 8.7 3.4 mg/Kg-dry 1 9/10/2007 2:03:51 PI PI Nickel 8.7 3.4 mg/Kg-dry 1 9/10/2007 2:03:51 PI PI Nickel 8.7 3.4 mg/Kg-dry 1 9/10/2007 2:03:51 PI PI Nickel 8.7 3.4 mg/Kg-dry 1 9/10/2007 2:03:51 PI PI Nickel 8.7 3.4 mg/Kg-dry 1 9/10/2007 2:03:51 PI PI Nickel 8.7 3.4 mg/Kg-dry 1 9/10/2007 2:03:51 PI PI Nickel 8.7 3.4 mg/Kg-dry 1 9/10/2007 2:03:51 PI PI Nickel 8.7 3.4 mg/Kg-dry 1 9/10/2007 2:03:51 PI PI Nickel 8.7 3.4 mg/Kg-dry 1 9/10/2007 2:03:51 PI PI Nickel 8.7 3.4 mg/Kg-dry 1 9/10/2007 2:03:51 PI PI Nickel 8.7 3.4 mg/Kg-dry 1 9/10/2007 2:03:51 PI PI Nickel 8.7 3.4 mg/Kg-dry 1 9/10/2007 2:03:51 PI PI Nickel 8.7 3.4 mg/Kg-dry 1 9/10/2007 2:03:51 PI PI Nickel 8.7 3.4 mg/Kg-dry 1 9/10/2007 2:03:51 PI Nickel 8.7 3.4 mg/Kg-dry 1 9/10/2007 2:03:51 PI Nickel 8.7 3.4 mg/Kg-dry 1 9/10/2007 2:03:51 PI Nickel 8.7 3.4 mg/Kg-dry 1 9/10/2007 2:03:51 PI Nickel 8.7 3.4 mg/Kg-dry 1 9/10/2007 2:03:51 PI Nickel 8.7 3.4 mg/Kg-dry 1 9/10/2007 2:03:51 PI Nickel 8.7 3.4 mg/Kg-dry 1 9/10/2007 2:03:51 PI Nickel 8.7 3.4 mg/Kg-dry 1 9/10/2007 2:03:51 PI Nickel 8.7 3.4	SOIL AND SOLID METALS BY ICP		SW6	010B	(SW3050	DA)	Analyst: EA
Arsenic* 3.1 1.1 mg/Kg-dry 1 9/10/2007 2:03:51 PI Barium 42 34 mg/Kg-dry 1 9/10/2007 2:03:51 PI Beryllium ND 0.57 mg/Kg-dry 1 9/10/2007 2:03:51 PI Cadmium 0.5 0.57 J mg/Kg-dry 1 9/10/2007 2:03:51 PI Cadmium 0.5 0.57 J mg/Kg-dry 1 9/10/2007 2:03:51 PI Calcium 2300 57 mg/Kg-dry 1 9/10/2007 2:03:51 PI Chromium 15 5.7 mg/Kg-dry 1 9/10/2007 2:03:51 PI Chromium 15 5.7 mg/Kg-dry 1 9/10/2007 2:03:51 PI Copper 20 2.3 mg/Kg-dry 1 9/10/2007 2:03:51 PI Copper 20 2.3 mg/Kg-dry 1 9/10/2007 2:03:51 PI Iron 31000 3.4 mg/Kg-dry 1 9/10/2007 2:03:51 PI Iron 31000 3.4 mg/Kg-dry 1 9/10/2007 2:03:51 PI Magnesium 740 57 mg/Kg-dry 1 9/10/2007 2:03:51 PI Magnesium 740 57 mg/Kg-dry 1 9/10/2007 2:03:51 PI Magnese 420 2.3 mg/Kg-dry 1 9/10/2007 2:03:51 PI PI Potassium 580 57 mg/Kg-dry 1 9/10/2007 2:03:51 PI PI Selenium* 7.0 0.57 mg/Kg-dry 1 9/10/2007 2:03:51 PI Selenium* 7.0 0.57 mg/Kg-dry 1 9/10/2007 2:03:51 PI Selenium* 7.0 0.57 mg/Kg-dry 1 9/10/2007 2:03:51 PI Selenium* ND 5.7 mg/Kg-dry 1 9/10/2007 2:03:51 PI Selenium* ND 5.7 mg/Kg-dry 1 9/10/2007 2:03:51 PI Selenium* ND 5.7 mg/Kg-dry 1 9/10/2007 2:03:51 PI Sodium ND 5.7 mg/Kg-dry 1 9/10/2007 2:03:51 PI Sodium ND 5.7 mg/Kg-dry 1 9/10/2007 2:03:51 PI Sodium ND 5.7 mg/Kg-dry 1 9/10/2007 2:03:51 PI Selenium* ND 5.7 mg/Kg-dry 1 9/10/2007 2:03:51 PI Selenium* ND 5.7 mg/Kg-dry 1 9/10/2007 2:03:51 PI Sodium ND 5.7 mg/Kg-dry 1 9/10/2007 2:03:51 PI Selenium* ND 5.7 mg/Kg-dry 1 9/10/2007 2:03:51 PI Selenium* ND 5.7 mg/Kg-dry 1 9/10/2007 2:03:51 PI Selenium* ND 5.7 mg/Kg-dry 1 9/10/2007 2:03:51 PI Selenium* ND 5.7 mg/Kg-dry 1 9/10/2007 2:03:51 PI Selenium* ND 5.7 mg/Kg-dry 1 9/10/2007 2:03:51 PI Selenium* ND 5.7 mg/Kg-dry 1 9/10/2007 2:03:51 PI Selenium* ND 5.7 mg/Kg-dry 1 9/10/2007 2:03:51 PI Selenium* ND 5.7 mg/Kg-dry 1 9/10/2007 2:03:51 PI Selenium* ND 5.7 mg/Kg-dry 1 9/10/2007 2:03:51 PI Selenium* ND 5.7 mg/Kg-dry 1 9/10/2007 2:03:51 PI Selenium* ND 5.7 mg/Kg-dry 1 9/10/2007 2:03:51 PI Selenium* ND 5.7 mg/Kg-dry 1 9/10/2007 2:03:51 PI Selenium* ND 5.7 mg/Kg-dry 1 9/10/2007 2:03:51 PI Selenium*	Aluminum	8000	5.7		-	-	9/10/2007 2:03:51 PM
Barium 42 34 mg/Kg-dry 1 9/10/2007 2:03:51 PF Beryllium ND 0.57 mg/Kg-dry 1 9/10/2007 2:03:51 PF Cadmium 0.5 0.57 J mg/Kg-dry 1 9/10/2007 2:03:51 PF Calcium 2300 57 mg/Kg-dry 1 9/10/2007 2:03:51 PF Chromium 15 5.7 mg/Kg-dry 1 9/10/2007 2:03:51 PF Cobalt ND 5.7 mg/Kg-dry 1 9/10/2007 2:03:51 PF Copper 20 2.3 mg/Kg-dry 1 9/10/2007 2:03:51 PF Iron 31000 3.4 mg/Kg-dry 1 9/10/2007 2:03:51 PF Lead 41 11 mg/Kg-dry 1 9/10/2007 2:03:51 PF Magnesium 740 57 mg/Kg-dry 1 9/10/2007 2:03:51 PF Magnesee 420 2.3 mg/Kg-dry 1 9/10/2007 2:03:51 PF Nickel 8.7 3.4 mg/Kg-dry 1 9/10/2007 2:03:51 PF	Antimony	ND	34		mg/Kg-dry	1	9/10/2007 2:03:51 PM
Beryllium ND 0.57 mg/Kg-dry 1 9/10/2007 2:03:51 PI Cadmium 0.5 0.57 J mg/Kg-dry 1 9/10/2007 2:03:51 PI Calcium 2300 57 mg/Kg-dry 1 9/10/2007 2:03:51 PI Chromium 15 5.7 mg/Kg-dry 1 9/10/2007 2:03:51 PI Cobalt ND 5.7 mg/Kg-dry 1 9/10/2007 2:03:51 PI Copper 20 2.3 mg/Kg-dry 1 9/10/2007 2:03:51 PI Iron 31000 3.4 mg/Kg-dry 1 9/10/2007 2:03:51 PI Lead 41 11 mg/Kg-dry 1 9/10/2007 2:03:51 PI Magnesium 740 57 mg/Kg-dry 1 9/10/2007 2:03:51 PI Manganese 420 2.3 mg/Kg-dry 1 9/10/2007 2:03:51 PI Nickel 8.7 3.4 mg/Kg-dry 1 9/10/2007 2:03:51 PI Potassium 580 57 mg/Kg-dry 1 9/10/2007 2:03:51 PI <t< td=""><td>Arsenic*</td><td>3.1</td><td>1.1</td><td></td><td>mg/Kg-dry</td><td>1</td><td>9/10/2007 2:03:51 PM</td></t<>	Arsenic*	3.1	1.1		mg/Kg-dry	1	9/10/2007 2:03:51 PM
Cadmium 0.5 0.57 J mg/Kg-dry 1 9/10/2007 2:03:51 Pf Calcium 2300 57 mg/Kg-dry 1 9/10/2007 2:03:51 Pf Chromium 15 5.7 mg/Kg-dry 1 9/10/2007 2:03:51 Pf Cobalt ND 5.7 mg/Kg-dry 1 9/10/2007 2:03:51 Pf Copper 20 2.3 mg/Kg-dry 1 9/10/2007 2:03:51 Pf Lead 31000 3.4 mg/Kg-dry 1 9/10/2007 2:03:51 Pf Lead 41 11 mg/Kg-dry 1 9/10/2007 2:03:51 Pf Magnesium 740 57 mg/Kg-dry 1 9/10/2007 2:03:51 Pf Manganese 420 2.3 mg/Kg-dry 1 9/10/2007 2:03:51 Pf Nickel 8.7 3.4 mg/Kg-dry 1 9/10/2007 2:03:51 Pf Potassium 580 57 mg/Kg-dry 1 9/10/2007 2:03:51 Pf Selenium* 7.0 0.57 mg/Kg-dry 1 9/10/2007 2:03:51 Pf <td>Barium</td> <td>42</td> <td>34</td> <td></td> <td>mg/Kg-dry</td> <td>1</td> <td>9/10/2007 2:03:51 PM</td>	Barium	42	34		mg/Kg-dry	1	9/10/2007 2:03:51 PM
Calcium 2300 57 mg/Kg-dry 1 9/10/2007 2:03:51 Pf Chromium 15 5.7 mg/Kg-dry 1 9/10/2007 2:03:51 Pf Cobalt ND 5.7 mg/Kg-dry 1 9/10/2007 2:03:51 Pf Copper 20 2.3 mg/Kg-dry 1 9/10/2007 2:03:51 Pf Iron 31000 3.4 mg/Kg-dry 1 9/10/2007 2:03:51 Pf Lead 41 11 mg/Kg-dry 1 9/10/2007 2:03:51 Pf Magnesium 740 57 mg/Kg-dry 1 9/10/2007 2:03:51 Pf Manganese 420 2.3 mg/Kg-dry 1 9/10/2007 2:03:51 Pf Nickel 8.7 3.4 mg/Kg-dry 1 9/10/2007 2:03:51 Pf Potassium 580 57 mg/Kg-dry 1 9/10/2007 2:03:51 Pf Selenium* 7.0 0.57 mg/Kg-dry 1 9/10/2007 2:03:51 Pf Sodium ND 5.7 mg/Kg-dry 1 9/10/2007 2:03:51 Pf	Beryllium	ND	0.57		mg/Kg-dry	1	9/10/2007 2:03:51 PM
Chromium 15 5.7 mg/Kg-dry 1 9/10/2007 2:03:51 PI Cobalt ND 5.7 mg/Kg-dry 1 9/10/2007 2:03:51 PI Copper 20 2.3 mg/Kg-dry 1 9/10/2007 2:03:51 PI Iron 31000 3.4 mg/Kg-dry 1 9/10/2007 2:03:51 PI Lead 41 11 mg/Kg-dry 1 9/10/2007 2:03:51 PI Magnesium 740 57 mg/Kg-dry 1 9/10/2007 2:03:51 PI Manganese 420 2.3 mg/Kg-dry 1 9/10/2007 2:03:51 PI Nickel 8.7 3.4 mg/Kg-dry 1 9/10/2007 2:03:51 PI Potassium 580 57 mg/Kg-dry 1 9/10/2007 2:03:51 PI Selenium* 7.0 0.57 mg/Kg-dry 1 9/10/2007 2:03:51 PI Silver ND 5.7 mg/Kg-dry 1 9/10/2007 2:03:51 PI Sodium ND 57 mg/Kg-dry 1 9/10/2007 2:03:51 PI	Cadmium	0.5	0.57	J	mg/Kg-dry	1	9/10/2007 2:03:51 PM
Cobalt ND 5.7 mg/Kg-dry 1 9/10/2007 2:03:51 PF Copper 20 2.3 mg/Kg-dry 1 9/10/2007 2:03:51 PF Iron 31000 3.4 mg/Kg-dry 1 9/10/2007 2:03:51 PF Lead 41 11 mg/Kg-dry 1 9/10/2007 2:03:51 PF Magnesium 740 57 mg/Kg-dry 1 9/10/2007 2:03:51 PF Manganese 420 2.3 mg/Kg-dry 1 9/10/2007 2:03:51 PF Nickel 8.7 3.4 mg/Kg-dry 1 9/10/2007 2:03:51 PF Potassium 580 57 mg/Kg-dry 1 9/10/2007 2:03:51 PF Selenium* 7.0 0.57 mg/Kg-dry 1 9/10/2007 2:03:51 PF Silver ND 5.7 mg/Kg-dry 1 9/10/2007 2:03:51 PF Sodium ND 57 mg/Kg-dry 1 9/10/2007 2:03:51 PF Vanadium* 20 34 J mg/Kg-dry 1 9/10/2007 2:03:51 PF	Calcium	2300	57		mg/Kg-dry	1	9/10/2007 2:03:51 PM
Copper 20 2.3 mg/Kg-dry 1 9/10/2007 2:03:51 Pf Iron 31000 3.4 mg/Kg-dry 1 9/10/2007 2:03:51 Pf Lead 41 11 mg/Kg-dry 1 9/10/2007 2:03:51 Pf Magnesium 740 57 mg/Kg-dry 1 9/10/2007 2:03:51 Pf Manganese 420 2.3 mg/Kg-dry 1 9/10/2007 2:03:51 Pf Nickel 8.7 3.4 mg/Kg-dry 1 9/10/2007 2:03:51 Pf Potassium 580 57 mg/Kg-dry 1 9/10/2007 2:03:51 Pf Selenium* 7.0 0.57 mg/Kg-dry 1 9/10/2007 2:03:51 Pf Silver ND 5.7 mg/Kg-dry 1 9/10/2007 2:03:51 Pf Sodium ND 57 mg/Kg-dry 1 9/10/2007 2:03:51 Pf Total imm* ND 0.34 mg/Kg-dry 1 9/10/2007 2:03:51 Pf TOTAL MERCURY - SOIL/SOLID/WASTE SW7471A (SW7471A) Analyst: EA	Chromium	15	5.7		mg/Kg-dry	1	9/10/2007 2:03:51 PM
Iron	Cobalt	ND	5.7		mg/Kg-dry	1	9/10/2007 2:03:51 PM
Lead 41 11 mg/Kg-dry 1 9/10/2007 2:03:51 Pf Magnesium 740 57 mg/Kg-dry 1 9/10/2007 2:03:51 Pf Manganese 420 2.3 mg/Kg-dry 1 9/10/2007 2:03:51 Pf Nickel 8.7 3.4 mg/Kg-dry 1 9/10/2007 2:03:51 Pf Potassium 580 57 mg/Kg-dry 1 9/10/2007 2:03:51 Pf Selenium* 7.0 0.57 mg/Kg-dry 1 9/10/2007 2:03:51 Pf Silver ND 5.7 mg/Kg-dry 1 9/10/2007 2:03:51 Pf Sodium ND 57 mg/Kg-dry 1 9/10/2007 2:03:51 Pf Thallium* ND 0.34 mg/Kg-dry 1 9/10/2007 2:03:51 Pf Vanadium 20 34 J mg/Kg-dry 1 9/10/2007 2:03:51 Pf TOTAL MERCURY - SOIL/SOLID/WASTE SW7471A (SW7471A) Analyst: EA Mercury 0.049 0.227 J mg/Kg-dry 1 9/11/2007 1:16:32 Pf PERCENT MOISTURE	Copper	20	2.3		mg/Kg-dry	1	9/10/2007 2:03:51 PM
Magnesium 740 57 mg/Kg-dry 1 9/10/2007 2:03:51 Pf Manganese 420 2.3 mg/Kg-dry 1 9/10/2007 2:03:51 Pf Nickel 8.7 3.4 mg/Kg-dry 1 9/10/2007 2:03:51 Pf Potassium 580 57 mg/Kg-dry 1 9/10/2007 2:03:51 Pf Selenium* 7.0 0.57 mg/Kg-dry 1 9/10/2007 2:03:51 Pf Silver ND 5.7 mg/Kg-dry 1 9/10/2007 2:03:51 Pf Sodium ND 57 mg/Kg-dry 1 9/10/2007 2:03:51 Pf Thallium* ND 0.34 mg/Kg-dry 1 9/10/2007 2:03:51 Pf Vanadium 20 34 J mg/Kg-dry 1 9/10/2007 2:03:51 Pf TOTAL MERCURY - SOIL/SOLID/WASTE SW7471A (SW7471A) Analyst: EA Mercury 0.049 0.227 J mg/Kg-dry 1 9/11/2007 1:16:32 Pf PERCENT MOISTURE D2216 Analyst: KA	Iron	31000	3.4		mg/Kg-dry	1	9/10/2007 2:03:51 PM
Manganese 420 2.3 mg/Kg-dry 1 9/10/2007 2:03:51 Pf Nickel 8.7 3.4 mg/Kg-dry 1 9/10/2007 2:03:51 Pf Potassium 580 57 mg/Kg-dry 1 9/10/2007 2:03:51 Pf Selenium* 7.0 0.57 mg/Kg-dry 1 9/10/2007 2:03:51 Pf Silver ND 5.7 mg/Kg-dry 1 9/10/2007 2:03:51 Pf Sodium ND 57 mg/Kg-dry 1 9/10/2007 2:03:51 Pf Thallium* ND 0.34 mg/Kg-dry 1 9/10/2007 2:03:51 Pf Vanadium 20 34 J mg/Kg-dry 1 9/10/2007 2:03:51 Pf Zinc 110 1.1 mg/Kg-dry 1 9/10/2007 2:03:51 Pf FOTAL MERCURY - SOIL/SOLID/WASTE SW7471A (SW7471A) Analyst: EA Mercury 0.049 0.227 J mg/Kg-dry 1 9/11/2007 1:16:32 Pf PERCENT MOISTURE D2216 Analyst: KA	Lead	41	11		mg/Kg-dry	1	9/10/2007 2:03:51 PM
Nickel 8.7 3.4 mg/Kg-dry 1 9/10/2007 2:03:51 Pf Potassium 580 57 mg/Kg-dry 1 9/10/2007 2:03:51 Pf Selenium* 7.0 0.57 mg/Kg-dry 1 9/10/2007 2:03:51 Pf Silver ND 5.7 mg/Kg-dry 1 9/10/2007 2:03:51 Pf Sodium ND 57 mg/Kg-dry 1 9/10/2007 2:03:51 Pf Thallium* ND 0.34 mg/Kg-dry 1 9/10/2007 2:03:51 Pf Vanadium 20 34 J mg/Kg-dry 1 9/10/2007 2:03:51 Pf Zinc 110 1.1 mg/Kg-dry 1 9/10/2007 2:03:51 Pf FOTAL MERCURY - SOIL/SOLID/WASTE SW7471A (SW7471A) Analyst: EA Mercury 0.049 0.227 J mg/Kg-dry 1 9/11/2007 1:16:32 Pf PERCENT MOISTURE	Magnesium	740	57		mg/Kg-dry	1	9/10/2007 2:03:51 PM
Potassium 580 57 mg/Kg-dry 1 9/10/2007 2:03:51 Pf Selenium* 7.0 0.57 mg/Kg-dry 1 9/10/2007 2:03:51 Pf Silver ND 5.7 mg/Kg-dry 1 9/10/2007 2:03:51 Pf Sodium ND 57 mg/Kg-dry 1 9/10/2007 2:03:51 Pf Thallium* ND 0.34 mg/Kg-dry 1 9/10/2007 2:03:51 Pf Vanadium 20 34 J mg/Kg-dry 1 9/10/2007 2:03:51 Pf Zinc 110 1.1 mg/Kg-dry 1 9/10/2007 2:03:51 Pf FOTAL MERCURY - SOIL/SOLID/WASTE SW7471A (SW7471A) Analyst: EA Mercury 0.049 0.227 J mg/Kg-dry 1 9/11/2007 1:16:32 Pf PERCENT MOISTURE D2216 Analyst: KA	Manganese	420	2.3		mg/Kg-dry	1	9/10/2007 2:03:51 PM
Selenium* 7.0 0.57 mg/Kg-dry 1 9/10/2007 2:03:51 Pf Silver ND 5.7 mg/Kg-dry 1 9/10/2007 2:03:51 Pf Sodium ND 57 mg/Kg-dry 1 9/10/2007 2:03:51 Pf Thallium* ND 0.34 mg/Kg-dry 1 9/10/2007 2:03:51 Pf Vanadium 20 34 J mg/Kg-dry 1 9/10/2007 2:03:51 Pf Zinc 110 1.1 mg/Kg-dry 1 9/10/2007 2:03:51 Pf FOTAL MERCURY - SOIL/SOLID/WASTE SW7471A (SW7471A) Analyst: EA Mercury 0.049 0.227 J mg/Kg-dry 1 9/11/2007 1:16:32 Pf PERCENT MOISTURE D2216 Analyst: KA	Nickel	8.7	3.4		mg/Kg-dry	1	9/10/2007 2:03:51 PM
Silver ND 5.7 mg/Kg-dry 1 9/10/2007 2:03:51 Pf Sodium ND 57 mg/Kg-dry 1 9/10/2007 2:03:51 Pf Thallium* ND 0.34 mg/Kg-dry 1 9/10/2007 2:03:51 Pf Vanadium 20 34 J mg/Kg-dry 1 9/10/2007 2:03:51 Pf Zinc 110 1.1 mg/Kg-dry 1 9/10/2007 2:03:51 Pf FOTAL MERCURY - SOIL/SOLID/WASTE SW7471A (SW7471A) Analyst: EA Mercury 0.049 0.227 J mg/Kg-dry 1 9/11/2007 1:16:32 Pf PERCENT MOISTURE D2216 Analyst: KA	Potassium	580	57		mg/Kg-dry	1	9/10/2007 2:03:51 PM
Sodium ND 57 mg/Kg-dry 1 9/10/2007 2:03:51 Pf Thallium* ND 0.34 mg/Kg-dry 1 9/10/2007 2:03:51 Pf Vanadium 20 34 J mg/Kg-dry 1 9/10/2007 2:03:51 Pf Zinc 110 1.1 mg/Kg-dry 1 9/10/2007 2:03:51 Pf FOTAL MERCURY - SOIL/SOLID/WASTE SW7471A (SW7471A) Analyst: EA Mercury 0.049 0.227 J mg/Kg-dry 1 9/11/2007 1:16:32 Pf PERCENT MOISTURE D2216 Analyst: KA	Selenium*	7.0	0.57		mg/Kg-dry	1	9/10/2007 2:03:51 PM
Thallium* ND 0.34 mg/Kg-dry 1 9/10/2007 2:03:51 Pf Vanadium 20 34 J mg/Kg-dry 1 9/10/2007 2:03:51 Pf Zinc 110 1.1 mg/Kg-dry 1 9/10/2007 2:03:51 Pf FOTAL MERCURY - SOIL/SOLID/WASTE SW7471A (SW7471A) Analyst: EA Mercury 0.049 0.227 J mg/Kg-dry 1 9/11/2007 1:16:32 Pf PERCENT MOISTURE D2216 Analyst: KA	Silver	ND	5.7		mg/Kg-dry	1	9/10/2007 2:03:51 PM
Vanadium 20 34 J mg/Kg-dry 1 9/10/2007 2:03:51 Pf Zinc 110 1.1 mg/Kg-dry 1 9/10/2007 2:03:51 Pf FOTAL MERCURY - SOIL/SOLID/WASTE SW7471A (SW7471A) Analyst: EA Mercury 0.049 0.227 J mg/Kg-dry 1 9/11/2007 1:16:32 Pf PERCENT MOISTURE D2216 Analyst: KA	Sodium	ND	57		mg/Kg-dry	1	9/10/2007 2:03:51 PM
Zinc 110 1.1 mg/Kg-dry 1 9/10/2007 2:03:51 Pf FOTAL MERCURY - SOIL/SOLID/WASTE SW7471A (SW7471A) Analyst: EA Mercury 0.049 0.227 J mg/Kg-dry 1 9/11/2007 1:16:32 Pf PERCENT MOISTURE D2216 Analyst: KA	Thallium*	ND	0.34		mg/Kg-dry	1	9/10/2007 2:03:51 PM
TOTAL MERCURY - SOIL/SOLID/WASTE SW7471A (SW7471A) Analyst: EA Mercury 0.049 0.227 J mg/Kg-dry 1 9/11/2007 1:16:32 Pt PERCENT MOISTURE D2216 Analyst: KA	Vanadium	20	34	J	mg/Kg-dry	1	9/10/2007 2:03:51 PM
Mercury 0.049 0.227 J mg/Kg-dry 1 9/11/2007 1:16:32 Pf PERCENT MOISTURE D2216 Analyst: KA	Zinc	110	1.1		mg/Kg-dry	1	9/10/2007 2:03:51 PM
PERCENT MOISTURE D2216 Analyst: KA	TOTAL MERCURY - SOIL/SOLID/WAST	Έ	SW7	471A	(SW747	1A)	Analyst: EA
,	Mercury	0.049	0.227	J	mg/Kg-dry	1	9/11/2007 1:16:32 PM
Percent Moisture 11.9 0.00100 wt% 1 9/10/2007	PERCENT MOISTURE		D22	216			Analyst: KAM
	Percent Moisture	11.9	0.00100		wt%	1	9/10/2007

Approved B	3y: _		Date:	Page 30 of 31
Qualifiers:	*	Low Level	**	Value exceeds Maximum Contaminant Value
	В	Analyte detected in the associated Method Blank	E	Value above quantitation range

B Analyte detected in the associated Method Blank
 H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

J Analyte detected below quantitation limits
 S Spike Recovery outside accepted recovery limits

Date: 21-Sep-07

CLIENT: NYSDEC - Region 9 Client Sample ID: TP-30@4.5'

Lab Order: U0709117 **Collection Date:** 9/6/2007 3:00:00 PM

Project: Friendship Foundry

Lab ID: U0709117-015 **Matrix:** SOIL

Analyses	Result	Limit Qua	al Units	DF	Date Analyzed
POLYCHLORINATED BIPHENYLS(SOIL/S	LUDGE)	SW8082	(SW35	50B)	Analyst: KC
Aroclor 1016	ND	0.11	mg/Kg-dry	1	9/18/2007
Aroclor 1221	ND	0.11	mg/Kg-dry	1	9/18/2007
Aroclor 1232	ND	0.11	mg/Kg-dry	1	9/18/2007
Aroclor 1242	ND	0.11	mg/Kg-dry	1	9/18/2007
Aroclor 1248	ND	0.11	mg/Kg-dry	1	9/18/2007
Aroclor 1254	ND	0.11	mg/Kg-dry	1	9/18/2007
Aroclor 1260	ND	0.11	mg/Kg-dry	1	9/18/2007
Aroclor 1268	ND	0.11	mg/Kg-dry	1	9/18/2007
SOIL AND SOLID METALS BY ICP		SW6010E	3 (SW30	50A)	Analyst: EA
Aluminum	5500	6.5	mg/Kg-dry	1	9/10/2007 2:07:42 PM
Antimony	ND	39	mg/Kg-dry	1	9/10/2007 2:07:42 PM
Arsenic*	5.6	1.3	mg/Kg-dry	1	9/10/2007 2:07:42 PM
Barium	83	39	mg/Kg-dry	1	9/10/2007 2:07:42 PM
Beryllium	ND	0.65	mg/Kg-dry	1	9/10/2007 2:07:42 PM
Cadmium	1.8	0.65	mg/Kg-dry	1	9/10/2007 2:07:42 PM
Calcium	2600	65	mg/Kg-dry	1	9/10/2007 2:07:42 PM
Chromium	140	6.5	mg/Kg-dry	1	9/10/2007 2:07:42 PM
Cobalt	6.9	6.5	mg/Kg-dry	1	9/10/2007 2:07:42 PM
Copper	100	2.6	mg/Kg-dry	1	9/10/2007 2:07:42 PM
Iron	87000	19	mg/Kg-dry	5	9/10/2007 2:11:16 PM
Lead	130	13	mg/Kg-dry	1	9/10/2007 2:07:42 PM
Magnesium	1900	65	mg/Kg-dry	1	9/10/2007 2:07:42 PM
Manganese	580	2.6	mg/Kg-dry	1	9/10/2007 2:07:42 PM
Nickel	64	3.9	mg/Kg-dry	1	9/10/2007 2:07:42 PM
Potassium	640	65	mg/Kg-dry	1	9/10/2007 2:07:42 PM
Selenium*	12	0.65	mg/Kg-dry	1	9/10/2007 2:07:42 PM
Silver	ND	6.5	mg/Kg-dry	1	9/10/2007 2:07:42 PM
Sodium	76	65	mg/Kg-dry	1	9/10/2007 2:07:42 PM
Thallium*	ND	0.39	mg/Kg-dry	1	9/10/2007 2:07:42 PM
Vanadium	10	39 J	mg/Kg-dry	1	9/10/2007 2:07:42 PM
Zinc	1800	1.3	mg/Kg-dry	1	9/10/2007 2:07:42 PM
TOTAL MERCURY - SOIL/SOLID/WASTE		SW7471	\ -	71A)	Analyst: EA
Mercury	0.17	0.260 J	mg/Kg-dry	1	9/11/2007 1:17:42 PM
PERCENT MOISTURE		D2216			Analyst: KAM
Percent Moisture	23.0	0.00100	wt%	1	9/10/2007

Approved By:	Date:	Page 31 of 31
Qualifiers: * Low Level	**	Value exceeds Maximum Contaminant Value

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

E Value above quantitation range

J Analyte detected below quantitation limits

Date: 21-Sep-07

CLIENT: NYSDEC - Region 9 Client Sample ID: TP-42@ 2'

Project: Friendship Foundry, Site #902017

Lab ID: U0709166-001 **Matrix:** SOIL

Analyses	Result	Limit Qu	al Units	DF	Date Analyzed
SOIL AND SOLID METALS BY ICP		SW6010	B (SW305	50A)	Analyst: EA
Aluminum	7400	5.7	mg/Kg-dry	1	9/17/2007 1:35:01 PM
Antimony	ND	34	mg/Kg-dry	1	9/17/2007 1:35:01 PM
Arsenic*	10	1.1	mg/Kg-dry	1	9/17/2007 1:35:01 PM
Barium	87	34	mg/Kg-dry	1	9/17/2007 1:35:01 PM
Beryllium	ND	0.57	mg/Kg-dry	1	9/17/2007 1:35:01 PM
Cadmium	0.89	0.57	mg/Kg-dry	1	9/17/2007 1:35:01 PM
Calcium	4600	57	mg/Kg-dry	1	9/17/2007 1:35:01 PM
Chromium	9.5	5.7	mg/Kg-dry	1	9/17/2007 1:35:01 PM
Cobalt	6.6	5.7	mg/Kg-dry	1	9/17/2007 1:35:01 PM
Copper	30	2.3	mg/Kg-dry	1	9/17/2007 1:35:01 PM
Iron	19000	3.4	mg/Kg-dry	1	9/17/2007 1:35:01 PM
Lead	88	11	mg/Kg-dry	1	9/17/2007 1:35:01 PM
Magnesium	2300	57	mg/Kg-dry	1	9/17/2007 1:35:01 PM
Manganese	410	2.3	mg/Kg-dry	1	9/17/2007 1:35:01 PM
Nickel	14	3.4	mg/Kg-dry	1	9/17/2007 1:35:01 PM
Potassium	1000	57	mg/Kg-dry	1	9/17/2007 1:35:01 PM
Selenium*	5.0	0.57	mg/Kg-dry	1	9/17/2007 1:35:01 PM
Silver	ND	5.7	mg/Kg-dry	1	9/17/2007 1:35:01 PM
Sodium	ND	57	mg/Kg-dry	1	9/17/2007 1:35:01 PM
Thallium*	ND	0.34	mg/Kg-dry	1	9/17/2007 1:35:01 PM
Vanadium	10	34 J	mg/Kg-dry	1	9/17/2007 1:35:01 PM
Zinc	140	1.1	mg/Kg-dry	1	9/17/2007 1:35:01 PM
TOTAL MERCURY - SOIL/SOLID/WAST	E	SW7471	A (SW747	'1A)	Analyst: EA
Mercury	0.041	0.228 J	mg/Kg-dry	1	9/20/2007 1:09:56 PM
PERCENT MOISTURE		D2216			Analyst: KAM
Percent Moisture	12.3	0.00100	wt%	1	9/13/2007

Approved By:	Date:	Page 1 of 37
Qualifiers: * Low Level	**	Value exceeds Maximum Contaminant Value

B Analyte detected in the associated Method Blank
 H Holding times for preparation or analysis exceeded

Troiding times for preparation of analysis exceeds

ND Not Detected at the Reporting Limit

E Value above quantitation range

J Analyte detected below quantitation limits

Date: 24-Sep-07

CLIENT: NYSDEC - Region 9 Client Sample ID: TP-46@ 4'

Project: Friendship Foundry, Site #902017

Lab ID: U0709166-002 **Matrix:** SOIL

Analyses	Result	Limit Qual	Units	DF	Date Analyzed
SOIL AND SOLID METALS BY ICP		SW6010B	(SW305	0A)	Analyst: EA
Aluminum	3200	6.1	mg/Kg-dry	1	9/17/2007 1:51:28 PM
Antimony	ND	36	mg/Kg-dry	1	9/17/2007 1:51:28 PM
Arsenic*	3.6	1.2	mg/Kg-dry	1	9/17/2007 1:51:28 PM
Barium	200	36	mg/Kg-dry	1	9/17/2007 1:51:28 PM
Beryllium	1.1	0.61	mg/Kg-dry	1	9/17/2007 1:51:28 PM
Cadmium	2.1	0.61	mg/Kg-dry	1	9/17/2007 1:51:28 PM
Calcium	1500	61	mg/Kg-dry	1	9/17/2007 1:51:28 PM
Chromium	6.3	6.1	mg/Kg-dry	1	9/17/2007 1:51:28 PM
Cobalt	6	6.1 J	mg/Kg-dry	1	9/17/2007 1:51:28 PM
Copper	32	2.4	mg/Kg-dry	1	9/17/2007 1:51:28 PM
Iron	98000	91	mg/Kg-dry	25	9/17/2007 3:02:48 PM
Lead	12	12	mg/Kg-dry	1	9/17/2007 1:51:28 PM
Magnesium	200	61	mg/Kg-dry	1	9/17/2007 1:51:28 PM
Manganese	74	2.4	mg/Kg-dry	1	9/17/2007 1:51:28 PM
Nickel	7.3	3.6	mg/Kg-dry	1	9/17/2007 1:51:28 PM
Potassium	600	61	mg/Kg-dry	1	9/17/2007 1:51:28 PM
Selenium*	12	0.61	mg/Kg-dry	1	9/17/2007 1:51:28 PM
Silver	ND	6.1	mg/Kg-dry	1	9/17/2007 1:51:28 PM
Sodium	ND	61	mg/Kg-dry	1	9/17/2007 1:51:28 PM
Thallium*	ND	0.36	mg/Kg-dry	1	9/17/2007 1:51:28 PM
Vanadium	20	36 J	mg/Kg-dry	1	9/17/2007 1:51:28 PM
Vanadium	ND	910	mg/Kg-dry	25	9/17/2007 3:02:48 PM
Zinc	11	1.2	mg/Kg-dry	1	9/17/2007 1:51:28 PM
TOTAL MERCURY - SOIL/SOLID/WAST	E	SW7471A	(SW747	1A)	Analyst: EA
Mercury	0.028	0.242 J	mg/Kg-dry	1	9/20/2007 1:16:04 PM
PERCENT MOISTURE		D2216			Analyst: KAM
Percent Moisture	17.5	0.00100	wt%	1	9/13/2007

Approved By:		Page 2 of 37
Qualifiers: * Low Level	**	Value exceeds Maximum Contaminant Value

B Analyte detected in the associated Method Blank
 H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

E Value above quantitation rangeJ Analyte detected below quantitation limits

Date: 24-Sep-07

CLIENT: NYSDEC - Region 9 Client Sample ID: TP-47@ 5'

Lab Order: U0709166 **Collection Date:** 9/10/2007 12:00:00 PM

Project: Friendship Foundry, Site #902017

Lab ID: U0709166-003 **Matrix:** SOIL

Analyses	Result	Limit Qual	Units	DF	Date Analyzed	
PEST/PCB IN SOIL/SLUDGE	CB IN SOIL/SLUDGE SW8081A (SW3550		(SW3550)		Analyst: KC	
4,4´-DDD	ND	40	μg/Kg-dry	10	9/18/2007	
4,4´-DDE	ND	40	μg/Kg-dry	10	9/18/2007	
4,4´-DDT	ND	40	μg/Kg-dry	10	9/18/2007	
Aldrin	ND	21	μg/Kg-dry	10	9/18/2007	
alpha-BHC	ND	21	μg/Kg-dry	10	9/18/2007	
alpha-Chlordane	ND	21	μg/Kg-dry	10	9/18/2007	
Aroclor 1016	ND	21	μg/Kg-dry	10	9/18/2007	
Aroclor 1221	ND	21	μg/Kg-dry	10	9/18/2007	
Aroclor 1232	ND	21	μg/Kg-dry	10	9/18/2007	
Aroclor 1242	ND	21	μg/Kg-dry	10	9/18/2007	
Aroclor 1248	ND	21	μg/Kg-dry	10	9/18/2007	
Aroclor 1254	ND	21	μg/Kg-dry	10	9/18/2007	
Aroclor 1260	ND	21	μg/Kg-dry	10	9/18/2007	
beta-BHC	ND	21	μg/Kg-dry	10	9/18/2007	
delta-BHC	ND	21	μg/Kg-dry	10	9/18/2007	
Dieldrin	ND	40	μg/Kg-dry	10	9/18/2007	
Endosulfan I	ND	21	μg/Kg-dry	10	9/18/2007	
Endosulfan II	ND	40	μg/Kg-dry	10	9/18/2007	
Endosulfan sulfate	ND	40	μg/Kg-dry	10	9/18/2007	
Endrin	ND	40	μg/Kg-dry	10	9/18/2007	
Endrin aldehyde	ND	40	μg/Kg-dry	10	9/18/2007	
Endrin ketone	ND	40	μg/Kg-dry	10	9/18/2007	
gamma-BHC	ND	21	μg/Kg-dry	10	9/18/2007	
gamma-Chlordane	ND	21	μg/Kg-dry	10	9/18/2007	
Heptachlor	ND	21	μg/Kg-dry	10	9/18/2007	
Heptachlor epoxide	ND	21	μg/Kg-dry	10	9/18/2007	
Methoxychlor	ND	210	μg/Kg-dry	10	9/18/2007	
Toxaphene	ND	2100	μg/Kg-dry	10	9/18/2007	
NOTES:						
The reporting limits were raised due to mate	ix interference.					
CHLORINATED HERBICIDES		SW8151A	(SW3550)		Analyst: KC	
2,4,5-T	ND	40	μg/Kg-dry	1	9/20/2007	
2,4,5-TP (Silvex)	ND	40	μg/Kg-dry	1	9/20/2007	
2,4-D	ND	40	μg/Kg-dry	1	9/20/2007	
Dicamba	ND	40	μg/Kg-dry	1	9/20/2007	
Dinoseb	ND	40	μg/Kg-dry	1	9/20/2007	
SOIL AND SOLID METALS BY ICP		SW6010B	(SW3050A	a)	Analyst: EA	
Aluminum	4100	6.1	mg/Kg-dry	1	9/17/2007 2:02:39 PM	

Approved By:	Date:	Page 3 of 37

Qualifiers: * Low Level

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

** Value exceeds Maximum Contaminant Value

Date: 24-Sep-07

E Value above quantitation range

J Analyte detected below quantitation limits

CLIENT: NYSDEC - Region 9 Client Sample ID: TP-47@ 5'

Project: Friendship Foundry, Site #902017

Lab ID: U0709166-003 **Matrix:** SOIL

Analyses	Result	Limit	Qual	Units	DF	Date Analyzed
SOIL AND SOLID METALS BY ICP		SW6	010B	(SW3050A)		Analyst: EA
Antimony	ND	36		mg/Kg-dry	1	9/17/2007 2:02:39 PM
Arsenic*	9.3	1.2		mg/Kg-dry	1	9/17/2007 2:02:39 PM
Barium	53	36		mg/Kg-dry	1	9/17/2007 2:02:39 PM
Beryllium	0.86	0.61		mg/Kg-dry	1	9/17/2007 2:02:39 PM
Cadmium	0.66	0.61		mg/Kg-dry	1	9/17/2007 2:02:39 PM
Calcium	2000	61		mg/Kg-dry	1	9/17/2007 2:02:39 PM
Chromium	6.2	6.1		mg/Kg-dry	1	9/17/2007 2:02:39 PM
Cobalt	7.9	6.1		mg/Kg-dry	1	9/17/2007 2:02:39 PM
Copper	24	2.4		mg/Kg-dry	1	9/17/2007 2:02:39 PM
Iron	23000	3.6		mg/Kg-dry	1	9/17/2007 2:02:39 PM
Lead	10	12	J	mg/Kg-dry	1	9/17/2007 2:02:39 PM
Magnesium	1000	61		mg/Kg-dry	1	9/17/2007 2:02:39 PM
Manganese	200	2.4		mg/Kg-dry	1	9/17/2007 2:02:39 PM
Nickel	14	3.6		mg/Kg-dry	1	9/17/2007 2:02:39 PM
Potassium	500	61		mg/Kg-dry	1	9/17/2007 2:02:39 PM
Selenium*	4.2	0.61		mg/Kg-dry	1	9/17/2007 2:02:39 PM
Silver	2	6.1	J	mg/Kg-dry	1	9/17/2007 2:02:39 PM
Sodium	ND	61		mg/Kg-dry	1	9/17/2007 2:02:39 PM
Thallium*	ND	0.36		mg/Kg-dry	1	9/17/2007 2:02:39 PM
Vanadium	10	36	J	mg/Kg-dry	1	9/17/2007 2:02:39 PM
Zinc	45	1.2		mg/Kg-dry	1	9/17/2007 2:02:39 PM
TOTAL MERCURY - SOIL/SOLID/WAS	STE	SW7	471A	(SW747	′1A)	Analyst: EA
Mercury	0.030	0.242	J	mg/Kg-dry	1	9/20/2007 1:17:08 PM
TCL-SEMIVOLATILE ORGANICS		SW82	270C	(SW355	50A)	Analyst: LD
(3+4)-Methylphenol	ND	400		μg/Kg-dry	1	9/20/2007 10:44:00 PM
1,2,4-Trichlorobenzene	ND	400		μg/Kg-dry	1	9/20/2007 10:44:00 PM
1,2-Dichlorobenzene	ND	400		μg/Kg-dry	1	9/20/2007 10:44:00 PM
1,3-Dichlorobenzene	ND	400		μg/Kg-dry	1	9/20/2007 10:44:00 PM
1,4-Dichlorobenzene	ND	400		μg/Kg-dry	1	9/20/2007 10:44:00 PM
2,4,5-Trichlorophenol	ND	400		μg/Kg-dry	1	9/20/2007 10:44:00 PM
2,4,6-Trichlorophenol	ND	400		μg/Kg-dry	1	9/20/2007 10:44:00 PM
2,4-Dichlorophenol	ND	400		μg/Kg-dry	1	9/20/2007 10:44:00 PM
2,4-Dimethylphenol	ND	400		μg/Kg-dry	1	9/20/2007 10:44:00 PM
2,4-Dinitrophenol	ND	4000		μg/Kg-dry	1	9/20/2007 10:44:00 PM
2,4-Dinitrotoluene	ND	400		μg/Kg-dry	1	9/20/2007 10:44:00 PM
2,6-Dinitrotoluene	ND	400		μg/Kg-dry	1	9/20/2007 10:44:00 PM
2-Chloronaphthalene	ND	400		μg/Kg-dry	1	9/20/2007 10:44:00 PM
2-Chlorophenol	ND	400		μg/Kg-dry	1	9/20/2007 10:44:00 PM

Approved By:	

Qualifiers:

* Low Level

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

Date:

Value exceeds Maximum Contaminant Value

Page 4 of 37

Date: 24-Sep-07

E Value above quantitation range

J Analyte detected below quantitation limits

CLIENT: NYSDEC - Region 9 Client Sample ID: TP-47@ 5'

Lab Order: U0709166 Collection Date: 9/10/2007 12:00:00 PM

Friendship Foundry, Site #902017 **Project:**

Matrix: SOIL Lab ID: U0709166-003

Analyses	Result	Limit (Qual	Units	DF	Date Analyzed
TCL-SEMIVOLATILE ORGANICS		SW82	70C	(SW355	50A)	Analyst: LD
2-Methylnaphthalene	60	400	J	μg/Kg-dry	1	9/20/2007 10:44:00 PM
2-Methylphenol	ND	400		μg/Kg-dry	1	9/20/2007 10:44:00 PM
2-Nitroaniline	ND	4000		μg/Kg-dry	1	9/20/2007 10:44:00 PM
2-Nitrophenol	ND	400		μg/Kg-dry	1	9/20/2007 10:44:00 PM
3,3´-Dichlorobenzidine	ND	400		μg/Kg-dry	1	9/20/2007 10:44:00 PM
3-Nitroaniline	ND	4000		μg/Kg-dry	1	9/20/2007 10:44:00 PM
4,6-Dinitro-2-methylphenol	ND	4000		μg/Kg-dry	1	9/20/2007 10:44:00 PM
4-Bromophenyl phenyl ether	ND	400		μg/Kg-dry	1	9/20/2007 10:44:00 PM
4-Chloro-3-methylphenol	ND	400		μg/Kg-dry	1	9/20/2007 10:44:00 PM
4-Chloroaniline	ND	400		μg/Kg-dry	1	9/20/2007 10:44:00 PM
4-Chlorophenyl phenyl ether	ND	400		μg/Kg-dry	1	9/20/2007 10:44:00 PM
4-Nitroaniline	ND	4000		μg/Kg-dry	1	9/20/2007 10:44:00 PM
4-Nitrophenol	ND	4000		μg/Kg-dry	1	9/20/2007 10:44:00 PM
Acenaphthene	ND	400		μg/Kg-dry	1	9/20/2007 10:44:00 PM
Acenaphthylene	ND	400		μg/Kg-dry	1	9/20/2007 10:44:00 PM
Anthracene	ND	400		μg/Kg-dry	1	9/20/2007 10:44:00 PM
Benz(a)anthracene	ND	400		μg/Kg-dry	1	9/20/2007 10:44:00 PM
Benzo(a)pyrene	ND	400		μg/Kg-dry	1	9/20/2007 10:44:00 PM
Benzo(b)fluoranthene	ND	400		μg/Kg-dry	1	9/20/2007 10:44:00 PM
Benzo(g,h,i)perylene	ND	400		μg/Kg-dry	1	9/20/2007 10:44:00 PM
Benzo(k)fluoranthene	ND	400		μg/Kg-dry	1	9/20/2007 10:44:00 PM
Bis(2-chloroethoxy)methane	ND	400		μg/Kg-dry	1	9/20/2007 10:44:00 PM
Bis(2-chloroethyl)ether	ND	400		μg/Kg-dry	1	9/20/2007 10:44:00 PM
Bis(2-chloroisopropyl)ether	ND	400		μg/Kg-dry	1	9/20/2007 10:44:00 PM
Bis(2-ethylhexyl)phthalate	300	400	J	μg/Kg-dry	1	9/20/2007 10:44:00 PM
Butyl benzyl phthalate	ND	400		μg/Kg-dry	1	9/20/2007 10:44:00 PM
Carbazole	ND	400		μg/Kg-dry	1	9/20/2007 10:44:00 PM
Chrysene	ND	400		μg/Kg-dry	1	9/20/2007 10:44:00 PM
Di-n-butyl phthalate	ND	400		μg/Kg-dry	1	9/20/2007 10:44:00 PM
Di-n-octyl phthalate	ND	400		μg/Kg-dry	1	9/20/2007 10:44:00 PM
Dibenz(a,h)anthracene	ND	400		μg/Kg-dry	1	9/20/2007 10:44:00 PM
Dibenzofuran	ND	400		μg/Kg-dry	1	9/20/2007 10:44:00 PM
Diethyl phthalate	ND	400		μg/Kg-dry	1	9/20/2007 10:44:00 PM
Dimethyl phthalate	ND	400		μg/Kg-dry	1	9/20/2007 10:44:00 PM
Fluoranthene	ND	400		μg/Kg-dry	1	9/20/2007 10:44:00 PM
Fluorene	ND	400		μg/Kg-dry	1	9/20/2007 10:44:00 PM
Hexachlorobenzene	ND	400		μg/Kg-dry	1	9/20/2007 10:44:00 PM
Hexachlorobutadiene	ND	400		μg/Kg-dry	1	9/20/2007 10:44:00 PM
Hexachlorocyclopentadiene	ND	400		μg/Kg-dry	1	9/20/2007 10:44:00 PM

Approved By:

Qualifiers: Low Level

- В Analyte detected in the associated Method Blank
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

Date:

Page 5 of 37

Value exceeds Maximum Contaminant Value

- Е Value above quantitation range
- J Analyte detected below quantitation limits
- Spike Recovery outside accepted recovery limits

CLIENT: NYSDEC - Region 9 Client Sample ID: TP-47@ 5'

Project: Friendship Foundry, Site #902017

Lab ID: U0709166-003 **Matrix:** SOIL

Analyses	Result	Limit	Qual	Units	DF	Date Analyzed
TCL-SEMIVOLATILE ORGANICS		SW8	270C	(SW35	50A)	Analyst: LD
Hexachloroethane	ND	400		μg/Kg-dry	1	9/20/2007 10:44:00 PM
Indeno(1,2,3-cd)pyrene	ND	400		μg/Kg-dry	1	9/20/2007 10:44:00 PM
Isophorone	ND	400		μg/Kg-dry	1	9/20/2007 10:44:00 PM
N-Nitrosodi-n-propylamine	ND	400		μg/Kg-dry	1	9/20/2007 10:44:00 PM
N-Nitrosodiphenylamine	ND	400		μg/Kg-dry	1	9/20/2007 10:44:00 PM
Naphthalene	ND	400		μg/Kg-dry	1	9/20/2007 10:44:00 PM
Nitrobenzene	ND	400		μg/Kg-dry	1	9/20/2007 10:44:00 PM
Pentachlorophenol	ND	810		μg/Kg-dry	1	9/20/2007 10:44:00 PM
Phenanthrene	80	400	J	μg/Kg-dry	1	9/20/2007 10:44:00 PM
Phenol	ND	400		μg/Kg-dry	1	9/20/2007 10:44:00 PM
Pyrene	ND	400		μg/Kg-dry	1	9/20/2007 10:44:00 PM
TCL VOLATILE ORGANICS		SW8	260B			Analyst: MG
1,1,1-Trichloroethane	ND	3.6		μg/Kg-dry	1	9/18/2007 1:28:00 AM
1,1,2,2-Tetrachloroethane	ND	3.6		μg/Kg-dry	1	9/18/2007 1:28:00 AM
1,1,2-Trichloroethane	ND	3.6		μg/Kg-dry	1	9/18/2007 1:28:00 AM
1,1-Dichloroethane	ND	3.6		μg/Kg-dry	1	9/18/2007 1:28:00 AM
1,1-Dichloroethene	ND	3.6		μg/Kg-dry	1	9/18/2007 1:28:00 AM
1,2-Dichloroethane	ND	3.6		μg/Kg-dry	1	9/18/2007 1:28:00 AM
1,2-Dichloropropane	ND	3.6		μg/Kg-dry	1	9/18/2007 1:28:00 AM
2-Butanone	ND	12		μg/Kg-dry	1	9/18/2007 1:28:00 AM
2-Hexanone	ND	12		μg/Kg-dry	1	9/18/2007 1:28:00 AM
4-Methyl-2-pentanone	ND	12		μg/Kg-dry	1	9/18/2007 1:28:00 AM
Acetone	ND	12		μg/Kg-dry	1	9/18/2007 1:28:00 AM
Benzene	ND	3.6		μg/Kg-dry	1	9/18/2007 1:28:00 AM
Bromodichloromethane	ND	3.6		μg/Kg-dry	1	9/18/2007 1:28:00 AM
Bromoform	ND	3.6		μg/Kg-dry	1	9/18/2007 1:28:00 AM
Bromomethane	ND	3.6		μg/Kg-dry	1	9/18/2007 1:28:00 AM
Carbon disulfide	ND	3.6		μg/Kg-dry	1	9/18/2007 1:28:00 AM
Carbon tetrachloride	ND	3.6		μg/Kg-dry	1	9/18/2007 1:28:00 AM
Chlorobenzene	ND	3.6		μg/Kg-dry	1	9/18/2007 1:28:00 AM
Chloroethane	ND	3.6		μg/Kg-dry	1	9/18/2007 1:28:00 AM
Chloroform	ND	3.6		μg/Kg-dry	1	9/18/2007 1:28:00 AM
Chloromethane	ND	3.6		μg/Kg-dry	1	9/18/2007 1:28:00 AM
cis-1,2-Dichloroethene	ND	3.6		μg/Kg-dry	1	9/18/2007 1:28:00 AM
cis-1,3-Dichloropropene	ND	3.6		μg/Kg-dry	1	9/18/2007 1:28:00 AM
Dibromochloromethane	ND	3.6		μg/Kg-dry	1	9/18/2007 1:28:00 AM
Ethylbenzene	ND	3.6		μg/Kg-dry	1	9/18/2007 1:28:00 AM
m,p-Xylene	ND	3.6		μg/Kg-dry	1	9/18/2007 1:28:00 AM

Approved By:	Date:	Page 6 of 37
Approved by.	Date.	1 age 0 01 37

Qualifiers: * Low Level

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

** Value exceeds Maximum Contaminant Value

Date: 24-Sep-07

E Value above quantitation range

J Analyte detected below quantitation limits

CLIENT: NYSDEC - Region 9 Client Sample ID: TP-47@ 5'

Project: Friendship Foundry, Site #902017

Lab ID: U0709166-003 **Matrix:** SOIL

Analyses	Result	Limit Qua	l Units	DF	Date Analyzed
TCL VOLATILE ORGANICS		SW8260B			Analyst: MG
Methylene chloride	11	3.6 B	μg/Kg-dry	1	9/18/2007 1:28:00 AM
o-Xylene	ND	3.6	μg/Kg-dry	1	9/18/2007 1:28:00 AM
Styrene	ND	3.6	μg/Kg-dry	1	9/18/2007 1:28:00 AM
Tetrachloroethene	1	3.6 J	μg/Kg-dry	1	9/18/2007 1:28:00 AM
Toluene	ND	3.6	μg/Kg-dry	1	9/18/2007 1:28:00 AM
trans-1,2-Dichloroethene	ND	3.6	μg/Kg-dry	1	9/18/2007 1:28:00 AM
trans-1,3-Dichloropropene	ND	3.6	μg/Kg-dry	1	9/18/2007 1:28:00 AM
Trichloroethene	ND	3.6	μg/Kg-dry	1	9/18/2007 1:28:00 AM
Vinyl chloride	ND	2.4	μg/Kg-dry	1	9/18/2007 1:28:00 AM
NOTES: Methylene chloride is a common laborar	tory solvent.				
PHENOLICS, TOTAL RECOVERABI	LE FOR SOLID	E420.1	(E420.1))	Analyst: MB
Phenolics, Total Recoverable	0.238	0.121	mg/Kg-dry	1	9/18/2007
HEXAVALENT CHROMIUM		SW7196A			Analyst: DEY
Chromium, Hexavalent	ND	0.24	mg/Kg-dry	1	9/11/2007 11:00:00 AM
PERCENT MOISTURE		D2216			Analyst: KAM
Percent Moisture	17.5	0.00100	wt%	1	9/13/2007

Approved By:	Date:	Page 7 of 37
Qualifiers: * Low Level	**	Value exceeds Maximum Contaminant Value

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

E Value above quantitation rangeJ Analyte detected below quantitation limits

Date: 24-Sep-07

CLIENT: NYSDEC - Region 9 Client Sample ID: TP-49@ 3'

Lab Order: U0709166 **Collection Date:** 9/10/2007 1:00:00 PM

Friendship Foundry, Site #902017 **Project:**

Matrix: SOIL Lab ID: U0709166-004

Analyses	Result	Limit	Qual	Units	DF	Date Analyzed
SOIL AND SOLID METALS BY ICP		SW6010B		(SW305	0A)	Analyst: EA
Aluminum	4400	5.5		mg/Kg-dry	1	9/17/2007 2:06:14 PM
Antimony	ND	33		mg/Kg-dry	1	9/17/2007 2:06:14 PM
Arsenic*	2.9	1.1		mg/Kg-dry	1	9/17/2007 2:06:14 PM
Barium	42	33		mg/Kg-dry	1	9/17/2007 2:06:14 PM
Beryllium	ND	0.55		mg/Kg-dry	1	9/17/2007 2:06:14 PM
Cadmium	1.9	0.55		mg/Kg-dry	1	9/17/2007 2:06:14 PM
Calcium	12000	55		mg/Kg-dry	1	9/17/2007 2:06:14 PM
Chromium	47	5.5		mg/Kg-dry	1	9/17/2007 2:06:14 PM
Cobalt	6.7	5.5		mg/Kg-dry	1	9/17/2007 2:06:14 PM
Copper	73	2.2		mg/Kg-dry	1	9/17/2007 2:06:14 PM
Iron	74000	83		mg/Kg-dry	25	9/17/2007 3:06:29 PM
Lead	75	11		mg/Kg-dry	1	9/17/2007 2:06:14 PM
Magnesium	840	55		mg/Kg-dry	1	9/17/2007 2:06:14 PM
Manganese	980	2.2		mg/Kg-dry	1	9/17/2007 2:06:14 PM
Nickel	29	3.3		mg/Kg-dry	1	9/17/2007 2:06:14 PM
Potassium	560	55		mg/Kg-dry	1	9/17/2007 2:06:14 PM
Selenium*	9.5	0.55	В	mg/Kg-dry	1	9/17/2007 2:06:14 PM
Silver	ND	5.5		mg/Kg-dry	1	9/17/2007 2:06:14 PM
Sodium	ND	55		mg/Kg-dry	1	9/17/2007 2:06:14 PM
Thallium*	ND	0.33		mg/Kg-dry	1	9/17/2007 2:06:14 PM
Vanadium	10	33	J	mg/Kg-dry	1	9/17/2007 2:06:14 PM
Zinc	210	1.1		mg/Kg-dry	1	9/17/2007 2:06:14 PM
TOTAL MERCURY - SOIL/SOLID/WAST	Έ	SW7	471A	(SW747	'1A)	Analyst: EA
Mercury	0.039	0.221	J	mg/Kg-dry	1	9/20/2007 1:18:19 PM
PERCENT MOISTURE		D22	216			Analyst: KAM
Percent Moisture	9.64	0.00100		wt%	1	9/13/2007

Approved By:		Date:	Page 8 of 37	
Qualifiers:	*	Low Level	**	Value exceeds Maximum Contaminant Value
	В	Analyte detected in the associated Method Blank	E	Value above quantitation range

В Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded Η

ND Not Detected at the Reporting Limit

J Analyte detected below quantitation limits Spike Recovery outside accepted recovery limits

CLIENT: NYSDEC - Region 9 Client Sample ID: TP-44@ 3'

Lab Order: U0709166 **Collection Date:** 9/10/2007 1:15:00 PM

Project: Friendship Foundry, Site #902017

Lab ID: U0709166-005 **Matrix:** SOIL

Analyses	Result	Limit Qual	Units	DF	Date Analyzed
PEST/PCB IN SOIL/SLUDGE		SW8081A	(SW355	60)	Analyst: KC
4,4´-DDD	ND	38	μg/Kg-dry	10	9/18/2007
4,4´-DDE	ND	38	μg/Kg-dry	10	9/18/2007
4,4´-DDT	ND	38	μg/Kg-dry	10	9/18/2007
Aldrin	ND	20	μg/Kg-dry	10	9/18/2007
alpha-BHC	ND	20	μg/Kg-dry	10	9/18/2007
alpha-Chlordane	ND	20	μg/Kg-dry	10	9/18/2007
Aroclor 1016	ND	20	μg/Kg-dry	10	9/18/2007
Aroclor 1221	ND	20	μg/Kg-dry	10	9/18/2007
Aroclor 1232	ND	20	μg/Kg-dry	10	9/18/2007
Aroclor 1242	ND	20	μg/Kg-dry	10	9/18/2007
Aroclor 1248	ND	20	μg/Kg-dry	10	9/18/2007
Aroclor 1254	ND	20	μg/Kg-dry	10	9/18/2007
Aroclor 1260	ND	20	μg/Kg-dry	10	9/18/2007
beta-BHC	ND	20	μg/Kg-dry	10	9/18/2007
delta-BHC	ND	20	μg/Kg-dry	10	9/18/2007
Dieldrin	ND	38	μg/Kg-dry	10	9/18/2007
Endosulfan I	ND	20	μg/Kg-dry	10	9/18/2007
Endosulfan II	ND	38	μg/Kg-dry	10	9/18/2007
Endosulfan sulfate	ND	38	μg/Kg-dry	10	9/18/2007
Endrin	ND	38	μg/Kg-dry	10	9/18/2007
Endrin aldehyde	ND	38	μg/Kg-dry	10	9/18/2007
Endrin ketone	ND	38	μg/Kg-dry	10	9/18/2007
gamma-BHC	ND	20	μg/Kg-dry	10	9/18/2007
gamma-Chlordane	ND	20	μg/Kg-dry	10	9/18/2007
Heptachlor	ND	20	μg/Kg-dry	10	9/18/2007
Heptachlor epoxide	ND	20	μg/Kg-dry	10	9/18/2007
Methoxychlor	ND	200	μg/Kg-dry	10	9/18/2007
Toxaphene	ND	2000	μg/Kg-dry	10	9/18/2007
NOTES:					
The reporting limits were raised due to matr	ix interference.				
CHLORINATED HERBICIDES		SW8151A	(SW355	60)	Analyst: KC
2,4,5-T	ND	38	μg/Kg-dry	1	9/20/2007
2,4,5-TP (Silvex)	ND	38	μg/Kg-dry	1	9/20/2007
2,4-D	ND	38	μg/Kg-dry	1	9/20/2007
Dicamba	ND	38	μg/Kg-dry	1	9/20/2007
Dinoseb	ND	38	μg/Kg-dry	1	9/20/2007
SOIL AND SOLID METALS BY ICP		SW6010B	(SW305	60A)	Analyst: EA
Aluminum	7700	5.8	mg/Kg-dry	1	9/17/2007 2:10:12 PM

Approved By:	Date:	Page 9 of 37
11 0		$\boldsymbol{\mathcal{C}}$

Qualifiers: * Low Level

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

** Value exceeds Maximum Contaminant Value

Date: 24-Sep-07

E Value above quantitation range

J Analyte detected below quantitation limits

CLIENT: NYSDEC - Region 9 Client Sample ID: TP-44@ 3'

Lab Order: U0709166 **Collection Date:** 9/10/2007 1:15:00 PM

Project: Friendship Foundry, Site #902017

Lab ID: U0709166-005 **Matrix:** SOIL

Analyses	Result	Limit Qual	Units	DF	Date Analyzed
SOIL AND SOLID METALS BY ICP		SW6010B	(SW305	0A)	Analyst: EA
Antimony	ND	35	mg/Kg-dry	1	9/17/2007 2:10:12 PM
Arsenic*	9.3	1.2	mg/Kg-dry	1	9/17/2007 2:10:12 PM
Barium	190	35	mg/Kg-dry	1	9/17/2007 2:10:12 PM
Beryllium	ND	0.58	mg/Kg-dry	1	9/17/2007 2:10:12 PM
Cadmium	1.2	0.58	mg/Kg-dry	1	9/17/2007 2:10:12 PM
Calcium	36000	58	mg/Kg-dry	1	9/17/2007 2:10:12 PM
Chromium	13	5.8	mg/Kg-dry	1	9/17/2007 2:10:12 PM
Cobalt	6.7	5.8	mg/Kg-dry	1	9/17/2007 2:10:12 PM
Copper	41	2.3	mg/Kg-dry	1	9/17/2007 2:10:12 PM
Iron	20000	3.5	mg/Kg-dry	1	9/17/2007 2:10:12 PM
Lead	180	12	mg/Kg-dry	1	9/17/2007 2:10:12 PM
Magnesium	5000	58	mg/Kg-dry	1	9/17/2007 2:10:12 PM
Manganese	530	2.3	mg/Kg-dry	1	9/17/2007 2:10:12 PM
Nickel	15	3.5	mg/Kg-dry	1	9/17/2007 2:10:12 PM
Potassium	1300	58	mg/Kg-dry	1	9/17/2007 2:10:12 PM
Selenium*	4.2	0.58	mg/Kg-dry	1	9/17/2007 2:10:12 PM
Silver	ND	5.8	mg/Kg-dry	1	9/17/2007 2:10:12 PM
Sodium	ND	58	mg/Kg-dry	1	9/17/2007 2:10:12 PM
Thallium*	ND	0.35	mg/Kg-dry	1	9/17/2007 2:10:12 PM
Vanadium	10	35 J	mg/Kg-dry	1	9/17/2007 2:10:12 PM
Zinc	430	1.2	mg/Kg-dry	1	9/17/2007 2:10:12 PM
TOTAL MERCURY - SOIL/SOLID/WAS	STE	SW7471A	(SW747	1A)	Analyst: EA
Mercury	0.078	0.231 J	mg/Kg-dry	1	9/20/2007 1:19:38 PM
TCL-SEMIVOLATILE ORGANICS		SW8270C	(SW355	0A)	Analyst: LD
(3+4)-Methylphenol	ND	3800	μg/Kg-dry	10	9/20/2007 11:27:00 PM
1,2,4-Trichlorobenzene	ND	3800	μg/Kg-dry	10	9/20/2007 11:27:00 PM
1,2-Dichlorobenzene	ND	3800	μg/Kg-dry	10	9/20/2007 11:27:00 PM
1,3-Dichlorobenzene	ND	3800	μg/Kg-dry	10	9/20/2007 11:27:00 PM
1,4-Dichlorobenzene	ND	3800	μg/Kg-dry	10	9/20/2007 11:27:00 PM
2,4,5-Trichlorophenol	ND	3800	μg/Kg-dry	10	9/20/2007 11:27:00 PM
2,4,6-Trichlorophenol	ND	3800	μg/Kg-dry	10	9/20/2007 11:27:00 PM
2,4-Dichlorophenol	ND	3800	μg/Kg-dry	10	9/20/2007 11:27:00 PM
2,4-Dimethylphenol	ND	3800	μg/Kg-dry	10	9/20/2007 11:27:00 PM
2,4-Dinitrophenol	ND	38000	μg/Kg-dry	10	9/20/2007 11:27:00 PM
2,4-Dinitrotoluene	ND	3800	μg/Kg-dry	10	9/20/2007 11:27:00 PM
2,6-Dinitrotoluene	ND	3800	μg/Kg-dry	10	9/20/2007 11:27:00 PM
2-Chloronaphthalene	ND	3800	μg/Kg-dry	10	9/20/2007 11:27:00 PM
2-Chlorophenol	ND	3800	μg/Kg-dry	10	9/20/2007 11:27:00 PM

Approved By:

Qualifiers:

Low Level

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

** Value exceeds Maximum Contaminant Value

Page 10 of 37

Date: 24-Sep-07

E Value above quantitation range

Date:

J Analyte detected below quantitation limits

CLIENT: NYSDEC - Region 9 Client Sample ID: TP-44@ 3'

Lab Order: U0709166 **Collection Date:** 9/10/2007 1:15:00 PM

Project: Friendship Foundry, Site #902017

Lab ID: U0709166-005 **Matrix:** SOIL

Analyses	Result	Limit	Qual	Units	DF	Date Analyzed
TCL-SEMIVOLATILE ORGANICS		SW8	270C	(SW3550A)		Analyst: LD
2-Methylnaphthalene	1000	3800	J	μg/Kg-dry	10	9/20/2007 11:27:00 PM
2-Methylphenol	ND	3800		μg/Kg-dry	10	9/20/2007 11:27:00 PM
2-Nitroaniline	ND	38000		μg/Kg-dry	10	9/20/2007 11:27:00 PM
2-Nitrophenol	ND	3800		μg/Kg-dry	10	9/20/2007 11:27:00 PM
3,3´-Dichlorobenzidine	ND	3800		μg/Kg-dry	10	9/20/2007 11:27:00 PM
3-Nitroaniline	ND	38000		μg/Kg-dry	10	9/20/2007 11:27:00 PM
4,6-Dinitro-2-methylphenol	ND	38000		μg/Kg-dry	10	9/20/2007 11:27:00 PM
4-Bromophenyl phenyl ether	ND	3800		μg/Kg-dry	10	9/20/2007 11:27:00 PM
4-Chloro-3-methylphenol	ND	3800		μg/Kg-dry	10	9/20/2007 11:27:00 PM
4-Chloroaniline	ND	3800		μg/Kg-dry	10	9/20/2007 11:27:00 PM
4-Chlorophenyl phenyl ether	ND	3800		μg/Kg-dry	10	9/20/2007 11:27:00 PM
4-Nitroaniline	ND	38000		μg/Kg-dry	10	9/20/2007 11:27:00 PM
4-Nitrophenol	ND	38000		μg/Kg-dry	10	9/20/2007 11:27:00 PM
Acenaphthene	500	3800	J	μg/Kg-dry	10	9/20/2007 11:27:00 PM
Acenaphthylene	ND	3800		μg/Kg-dry	10	9/20/2007 11:27:00 PM
Anthracene	ND	3800		μg/Kg-dry	10	9/20/2007 11:27:00 PM
Benz(a)anthracene	3000	3800	J	μg/Kg-dry	10	9/20/2007 11:27:00 PM
Benzo(a)pyrene	3000	3800	J	μg/Kg-dry	10	9/20/2007 11:27:00 PM
Benzo(b)fluoranthene	3000	3800	J	μg/Kg-dry	10	9/20/2007 11:27:00 PM
Benzo(g,h,i)perylene	ND	3800		μg/Kg-dry	10	9/20/2007 11:27:00 PM
Benzo(k)fluoranthene	900	3800	J	μg/Kg-dry	10	9/20/2007 11:27:00 PM
Bis(2-chloroethoxy)methane	ND	3800		μg/Kg-dry	10	9/20/2007 11:27:00 PM
Bis(2-chloroethyl)ether	ND	3800		μg/Kg-dry	10	9/20/2007 11:27:00 PM
Bis(2-chloroisopropyl)ether	ND	3800		μg/Kg-dry	10	9/20/2007 11:27:00 PM
Bis(2-ethylhexyl)phthalate	ND	3800		μg/Kg-dry	10	9/20/2007 11:27:00 PM
Butyl benzyl phthalate	ND	3800		μg/Kg-dry	10	9/20/2007 11:27:00 PM
Carbazole	ND	3800		μg/Kg-dry	10	9/20/2007 11:27:00 PM
Chrysene	3000	3800	J	μg/Kg-dry	10	9/20/2007 11:27:00 PM
Di-n-butyl phthalate	ND	3800		μg/Kg-dry	10	9/20/2007 11:27:00 PM
Di-n-octyl phthalate	ND	3800		μg/Kg-dry	10	9/20/2007 11:27:00 PM
Dibenz(a,h)anthracene	ND	3800		μg/Kg-dry	10	9/20/2007 11:27:00 PM
Dibenzofuran	ND	3800		μg/Kg-dry	10	9/20/2007 11:27:00 PM
Diethyl phthalate	ND	3800		μg/Kg-dry	10	9/20/2007 11:27:00 PM
Dimethyl phthalate	ND	3800		μg/Kg-dry	10	9/20/2007 11:27:00 PM
Fluoranthene	4800	3800		μg/Kg-dry	10	9/20/2007 11:27:00 PM
Fluorene	1000	3800	J	μg/Kg-dry	10	9/20/2007 11:27:00 PM
Hexachlorobenzene	ND	3800		μg/Kg-dry	10	9/20/2007 11:27:00 PM
Hexachlorobutadiene	ND	3800		μg/Kg-dry	10	9/20/2007 11:27:00 PM
Hexachlorocyclopentadiene	ND	3800		μg/Kg-dry	10	9/20/2007 11:27:00 PM

Approved By:

Qualifiers: * Low Level

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

** Value exceeds Maximum Contaminant Value

E Value above quantitation range

Date:

J Analyte detected below quantitation limits

Date: 24-Sep-07

S Spike Recovery outside accepted recovery limits

Page 11 of 37

CLIENT: NYSDEC - Region 9 Client Sample ID: TP-44@ 3'

Lab Order: U0709166 **Collection Date:** 9/10/2007 1:15:00 PM

Project: Friendship Foundry, Site #902017

Lab ID: U0709166-005 **Matrix:** SOIL

Analyses	Result	Limit Qu	al Units	DF	Date Analyzed
TCL-SEMIVOLATILE ORGANICS		SW8270	C (SW35	50A)	Analyst: LD
Hexachloroethane	ND	3800	μg/Kg-dry	10	9/20/2007 11:27:00 PM
Indeno(1,2,3-cd)pyrene	ND	3800	μg/Kg-dry	10	9/20/2007 11:27:00 PM
Isophorone	ND	3800	μg/Kg-dry	10	9/20/2007 11:27:00 PM
N-Nitrosodi-n-propylamine	ND	3800	μg/Kg-dry	10	9/20/2007 11:27:00 PM
N-Nitrosodiphenylamine	ND	3800	μg/Kg-dry	10	9/20/2007 11:27:00 PM
Naphthalene	2000	3800 J	μg/Kg-dry	10	9/20/2007 11:27:00 PM
Nitrobenzene	ND	3800	μg/Kg-dry	10	9/20/2007 11:27:00 PM
Pentachlorophenol	ND	7700	μg/Kg-dry	10	9/20/2007 11:27:00 PM
Phenanthrene	5900	3800	μg/Kg-dry	10	9/20/2007 11:27:00 PM
Phenol	ND	3800	μg/Kg-dry	10	9/20/2007 11:27:00 PM
Pyrene	6400	3800	μg/Kg-dry	10	9/20/2007 11:27:00 PM
NOTES:					
The reporting limits were raised due to ma	trix interference.				
TCL VOLATILE ORGANICS		SW8260	В		Analyst: MG
1,1,1-Trichloroethane	ND	3.5	μg/Kg-dry	1	9/18/2007 2:17:00 AM
1,1,2,2-Tetrachloroethane	ND	3.5	μg/Kg-dry	1	9/18/2007 2:17:00 AM
1,1,2-Trichloroethane	ND	3.5	μg/Kg-dry	1	9/18/2007 2:17:00 AM
1,1-Dichloroethane	ND	3.5	μg/Kg-dry	1	9/18/2007 2:17:00 AM
1,1-Dichloroethene	ND	3.5	μg/Kg-dry	1	9/18/2007 2:17:00 AM
1,2-Dichloroethane	ND	3.5	μg/Kg-dry	1	9/18/2007 2:17:00 AM
1,2-Dichloropropane	ND	3.5	μg/Kg-dry	1	9/18/2007 2:17:00 AM
2-Butanone	ND	12	μg/Kg-dry	1	9/18/2007 2:17:00 AM
2-Hexanone	ND	12	μg/Kg-dry	1	9/18/2007 2:17:00 AM
4-Methyl-2-pentanone	ND	12	μg/Kg-dry	1	9/18/2007 2:17:00 AM
Acetone	ND	12	μg/Kg-dry	1	9/18/2007 2:17:00 AM
Benzene	ND	3.5	μg/Kg-dry	1	9/18/2007 2:17:00 AM
Bromodichloromethane	ND	3.5	μg/Kg-dry	1	9/18/2007 2:17:00 AM
Bromoform	ND	3.5	μg/Kg-dry	1	9/18/2007 2:17:00 AM
Bromomethane	ND	3.5	μg/Kg-dry	1	9/18/2007 2:17:00 AM
Carbon disulfide	ND	3.5	μg/Kg-dry	1	9/18/2007 2:17:00 AM
Carbon tetrachloride	ND	3.5	μg/Kg-dry	1	9/18/2007 2:17:00 AM
Chlorobenzene	ND	3.5	μg/Kg-dry	1	9/18/2007 2:17:00 AM
Chloroethane	ND	3.5	μg/Kg-dry	1	9/18/2007 2:17:00 AM
Chloroform	2	3.5 J	μg/Kg-dry	1	9/18/2007 2:17:00 AM
Chloromethane	ND	3.5	μg/Kg-dry	1	9/18/2007 2:17:00 AM
cis-1,2-Dichloroethene	ND	3.5	μg/Kg-dry	1	9/18/2007 2:17:00 AM
cis-1,3-Dichloropropene	ND	3.5	μg/Kg-dry	1	9/18/2007 2:17:00 AM
Dibromochloromethane	ND	3.5	μg/Kg-dry	1	9/18/2007 2:17:00 AM

Approved By:	Date:	Page 12 of 37

Qualifiers: * Low Level

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

** Value exceeds Maximum Contaminant Value

Date: 24-Sep-07

E Value above quantitation range

J Analyte detected below quantitation limits

CLIENT: NYSDEC - Region 9 Client Sample ID: TP-44@ 3'

Lab Order: U0709166 **Collection Date:** 9/10/2007 1:15:00 PM

Friendship Foundry, Site #902017 **Project:**

Matrix: SOIL Lab ID: U0709166-005

Analyses	Result	Limit Qual	Units	DF	Date Analyzed
TCL VOLATILE ORGANICS		SW8260B			Analyst: MG
Ethylbenzene	ND	3.5	μg/Kg-dry	1	9/18/2007 2:17:00 AM
m,p-Xylene	ND	3.5	μg/Kg-dry	1	9/18/2007 2:17:00 AM
Methylene chloride	5.6	3.5 B	μg/Kg-dry	1	9/18/2007 2:17:00 AM
o-Xylene	ND	3.5	μg/Kg-dry	1	9/18/2007 2:17:00 AM
Styrene	ND	3.5	μg/Kg-dry	1	9/18/2007 2:17:00 AM
Tetrachloroethene	ND	3.5	μg/Kg-dry	1	9/18/2007 2:17:00 AM
Toluene	ND	3.5	μg/Kg-dry	1	9/18/2007 2:17:00 AM
trans-1,2-Dichloroethene	ND	3.5	μg/Kg-dry	1	9/18/2007 2:17:00 AM
trans-1,3-Dichloropropene	ND	3.5	μg/Kg-dry	1	9/18/2007 2:17:00 AM
Trichloroethene	ND	3.5	μg/Kg-dry	1	9/18/2007 2:17:00 AM
Vinyl chloride	ND	2.3	μg/Kg-dry	1	9/18/2007 2:17:00 AM
NOTES: Methylene chloride is a common laborate	ory solvent.				
PHENOLICS, TOTAL RECOVERABL	E FOR SOLID	E420.1	(E420.1))	Analyst: MB
Phenolics, Total Recoverable	ND	0.115	mg/Kg-dry	1	9/18/2007
HEXAVALENT CHROMIUM Chromium, Hexavalent	ND	SW7196A 0.23	mg/Kg-dry	1	Analyst: DEY 9/11/2007 11:00:00 AM
PERCENT MOISTURE Percent Moisture	13.4	D2216 0.00100	wt%	1	Analyst: KAM 9/13/2007

Approved By:		Date:	Page 13 of 37	
Qualifiers:	*	Low Level	**	Value exceeds Maximum Contaminant Value
	В	Analyte detected in the associated Method Blank	Е	Value above quantitation range

В Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded Η

ND Not Detected at the Reporting Limit

Value above quantitation range Analyte detected below quantitation limits J Spike Recovery outside accepted recovery limits

CLIENT: NYSDEC - Region 9 Client Sample ID: TP-6,11,16 Comp

Lab Order: U0709166 **Collection Date:** 9/10/2007 1:30:00 PM

Project: Friendship Foundry, Site #902017

Lab ID: U0709166-006 Matrix: SOIL

Analyses	Result	Limit Qual	Units	DF	Date Analyzed
PEST/PCB IN SOIL/SLUDGE			(SW355	0)	Analyst: KC
4,4´-DDD	ND	38	μg/Kg-dry	10	9/18/2007
4,4´-DDE	ND	38	μg/Kg-dry	10	9/18/2007
4,4´-DDT	ND	38	μg/Kg-dry	10	9/18/2007
Aldrin	ND	20	μg/Kg-dry	10	9/18/2007
alpha-BHC	ND	20	μg/Kg-dry	10	9/18/2007
alpha-Chlordane	ND	20	μg/Kg-dry	10	9/18/2007
Aroclor 1016	ND	20	μg/Kg-dry	10	9/18/2007
Aroclor 1221	ND	20	μg/Kg-dry	10	9/18/2007
Aroclor 1232	ND	20	μg/Kg-dry	10	9/18/2007
Aroclor 1242	ND	20	μg/Kg-dry	10	9/18/2007
Aroclor 1248	ND	20	μg/Kg-dry	10	9/18/2007
Aroclor 1254	ND	20	μg/Kg-dry	10	9/18/2007
Aroclor 1260	ND	20	μg/Kg-dry	10	9/18/2007
beta-BHC	ND	20	μg/Kg-dry	10	9/18/2007
delta-BHC	ND	20	μg/Kg-dry	10	9/18/2007
Dieldrin	ND	38	μg/Kg-dry	10	9/18/2007
Endosulfan I	ND	20	μg/Kg-dry	10	9/18/2007
Endosulfan II	ND	38	μg/Kg-dry	10	9/18/2007
Endosulfan sulfate	ND	38	μg/Kg-dry	10	9/18/2007
Endrin	ND	38	μg/Kg-dry	10	9/18/2007
Endrin aldehyde	ND	38	μg/Kg-dry	10	9/18/2007
Endrin ketone	ND	38	μg/Kg-dry	10	9/18/2007
gamma-BHC	ND	20	μg/Kg-dry	10	9/18/2007
gamma-Chlordane	ND	20	μg/Kg-dry	10	9/18/2007
Heptachlor	ND	20	μg/Kg-dry	10	9/18/2007
Heptachlor epoxide	ND	20	μg/Kg-dry	10	9/18/2007
Methoxychlor	ND	200	μg/Kg-dry	10	9/18/2007
Toxaphene	ND	2000	μg/Kg-dry	10	9/18/2007
NOTES:			, ,		
The reporting limits were raised due to mate	ix interference.				
CHLORINATED HERBICIDES		SW8151A	(SW355	0)	Analyst: KC
2,4,5-T	ND	38	μg/Kg-dry	1	9/20/2007
2,4,5-TP (Silvex)	ND	38	μg/Kg-dry	1	9/20/2007
2,4-D	ND	38	μg/Kg-dry	1	9/20/2007
Dicamba	ND	38	μg/Kg-dry	1	9/20/2007
Dinoseb	ND	38	μg/Kg-dry	1	9/20/2007
SOIL AND SOLID METALS BY ICP		SW6010B	(SW3050A)		Analyst: EA
Aluminum	7200	5.8	mg/Kg-dry	1	9/17/2007 2:14:12 PM

Approved By:	Date:	Page 14 of 37
• • • • • • • • • • • • • • • • • • • •		C

Qualifiers: * Low Level

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

** Value exceeds Maximum Contaminant Value

Date: 24-Sep-07

E Value above quantitation range

J Analyte detected below quantitation limits

CLIENT: NYSDEC - Region 9 Client Sample ID: TP-6,11,16 Comp

Lab Order: U0709166 **Collection Date:** 9/10/2007 1:30:00 PM

Project: Friendship Foundry, Site #902017

Lab ID: U0709166-006 **Matrix:** SOIL

Analyses	Result	Limit	Qual	Units	DF	Date Analyzed
SOIL AND SOLID METALS BY ICP		SW6	010B	(SW3050A)		Analyst: EA
Antimony	ND	35		mg/Kg-dry	1	9/17/2007 2:14:12 PM
Arsenic*	7.9	1.2		mg/Kg-dry	1	9/17/2007 2:14:12 PM
Barium	75	35		mg/Kg-dry	1	9/17/2007 2:14:12 PM
Beryllium	ND	0.58		mg/Kg-dry	1	9/17/2007 2:14:12 PM
Cadmium	2.0	0.58		mg/Kg-dry	1	9/17/2007 2:14:12 PM
Calcium	28000	58		mg/Kg-dry	1	9/17/2007 2:14:12 PM
Chromium	21	5.8		mg/Kg-dry	1	9/17/2007 2:14:12 PM
Cobalt	7.8	5.8		mg/Kg-dry	1	9/17/2007 2:14:12 PM
Copper	44	2.3		mg/Kg-dry	1	9/17/2007 2:14:12 PM
Iron	29000	3.5		mg/Kg-dry	1	9/17/2007 2:14:12 PM
Lead	160	12		mg/Kg-dry	1	9/17/2007 2:14:12 PM
Magnesium	7900	58		mg/Kg-dry	1	9/17/2007 2:14:12 PM
Manganese	850	2.3		mg/Kg-dry	1	9/17/2007 2:14:12 PM
Nickel	28	3.5		mg/Kg-dry	1	9/17/2007 2:14:12 PM
Potassium	1200	58		mg/Kg-dry	1	9/17/2007 2:14:12 PM
Selenium*	5.9	0.58		mg/Kg-dry	1	9/17/2007 2:14:12 PM
Silver	ND	5.8		mg/Kg-dry	1	9/17/2007 2:14:12 PM
Sodium	ND	58		mg/Kg-dry	1	9/17/2007 2:14:12 PM
Thallium*	ND	0.35		mg/Kg-dry	1	9/17/2007 2:14:12 PM
Vanadium	10	35	J	mg/Kg-dry	1	9/17/2007 2:14:12 PM
Zinc	190	1.2		mg/Kg-dry	1	9/17/2007 2:14:12 PM
TOTAL MERCURY - SOIL/SOLID/WAS	STE	SW7	471A	(SW747	'1A)	Analyst: EA
Mercury	0.082	0.233	J	mg/Kg-dry	1	9/20/2007 1:20:41 PM
TCL-SEMIVOLATILE ORGANICS		SW8	270C	(SW355	60A)	Analyst: LD
(3+4)-Methylphenol	ND	380		μg/Kg-dry	1	9/21/2007 12:11:00 AM
1,2,4-Trichlorobenzene	ND	380		μg/Kg-dry	1	9/21/2007 12:11:00 AM
1,2-Dichlorobenzene	ND	380		μg/Kg-dry	1	9/21/2007 12:11:00 AM
1,3-Dichlorobenzene	ND	380		μg/Kg-dry	1	9/21/2007 12:11:00 AM
1,4-Dichlorobenzene	ND	380		μg/Kg-dry	1	9/21/2007 12:11:00 AM
2,4,5-Trichlorophenol	ND	380		μg/Kg-dry	1	9/21/2007 12:11:00 AM
2,4,6-Trichlorophenol	ND	380		μg/Kg-dry	1	9/21/2007 12:11:00 AM
2,4-Dichlorophenol	ND	380		μg/Kg-dry	1	9/21/2007 12:11:00 AM
2,4-Dimethylphenol	ND	380		μg/Kg-dry	1	9/21/2007 12:11:00 AM
2,4-Dinitrophenol	ND	3800		μg/Kg-dry	1	9/21/2007 12:11:00 AM
2,4-Dinitrotoluene	ND	380		μg/Kg-dry	1	9/21/2007 12:11:00 AM
2,6-Dinitrotoluene	ND	380		μg/Kg-dry	1	9/21/2007 12:11:00 AM
2-Chloronaphthalene	ND	380		μg/Kg-dry	1	9/21/2007 12:11:00 AM
2-Chlorophenol	ND	380		μg/Kg-dry	1	9/21/2007 12:11:00 AM

Approved By:

Qualifiers:

Low Level

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

** Value exceeds Maximum Contaminant Value

Page 15 of 37

Date: 24-Sep-07

E Value above quantitation range

Date:

J Analyte detected below quantitation limits

CLIENT: NYSDEC - Region 9 Client Sample ID: TP-6,11,16 Comp

Lab Order: U0709166 **Collection Date:** 9/10/2007 1:30:00 PM

Project: Friendship Foundry, Site #902017

Lab ID: U0709166-006 **Matrix:** SOIL

Analyses	Result	Limit Q	ual Units	DF	Date Analyzed	
TCL-SEMIVOLATILE ORGANICS		SW827	0C (SW35	50A)	Analyst: LD	
2-Methylnaphthalene	ND	380	μg/Kg-dry	1	9/21/2007 12:11:00 AM	
2-Methylphenol	ND	380	μg/Kg-dry	1	9/21/2007 12:11:00 AM	
2-Nitroaniline	ND	3800	μg/Kg-dry	1	9/21/2007 12:11:00 AM	
2-Nitrophenol	ND	380	μg/Kg-dry	1	9/21/2007 12:11:00 AM	
3,3´-Dichlorobenzidine	ND	380	μg/Kg-dry	1	9/21/2007 12:11:00 AM	
3-Nitroaniline	ND	3800	μg/Kg-dry	1	9/21/2007 12:11:00 AM	
4,6-Dinitro-2-methylphenol	ND	3800	μg/Kg-dry	1	9/21/2007 12:11:00 AM	
4-Bromophenyl phenyl ether	ND	380	μg/Kg-dry	1	9/21/2007 12:11:00 AM	
4-Chloro-3-methylphenol	ND	380	μg/Kg-dry	1	9/21/2007 12:11:00 AM	
4-Chloroaniline	ND	380	μg/Kg-dry	1	9/21/2007 12:11:00 AM	
4-Chlorophenyl phenyl ether	ND	380	μg/Kg-dry	1	9/21/2007 12:11:00 AM	
4-Nitroaniline	ND	3800	μg/Kg-dry	1	9/21/2007 12:11:00 AM	
4-Nitrophenol	ND	3800	μg/Kg-dry	1	9/21/2007 12:11:00 AM	
Acenaphthene	ND	380	μg/Kg-dry	1	9/21/2007 12:11:00 AM	
Acenaphthylene	ND	380	μg/Kg-dry	1	9/21/2007 12:11:00 AM	
Anthracene	ND	380	μg/Kg-dry	1	9/21/2007 12:11:00 AM	
Benz(a)anthracene	ND	380	μg/Kg-dry	1	9/21/2007 12:11:00 AM	
Benzo(a)pyrene	ND	380	μg/Kg-dry	1	9/21/2007 12:11:00 AM	
Benzo(b)fluoranthene	ND	380	μg/Kg-dry	1	9/21/2007 12:11:00 AM	
Benzo(g,h,i)perylene	ND	380	μg/Kg-dry	1	9/21/2007 12:11:00 AM	
Benzo(k)fluoranthene	ND	380	μg/Kg-dry	1	9/21/2007 12:11:00 AM	
Bis(2-chloroethoxy)methane	ND	380	μg/Kg-dry	1	9/21/2007 12:11:00 AM	
Bis(2-chloroethyl)ether	ND	380	μg/Kg-dry	1	9/21/2007 12:11:00 AM	
Bis(2-chloroisopropyl)ether	ND	380	μg/Kg-dry	1	9/21/2007 12:11:00 AM	
Bis(2-ethylhexyl)phthalate	100	380	J μg/Kg-dry	1	9/21/2007 12:11:00 AM	
Butyl benzyl phthalate	ND	380	μg/Kg-dry	1	9/21/2007 12:11:00 AM	
Carbazole	ND	380	μg/Kg-dry	1	9/21/2007 12:11:00 AM	
Chrysene	ND	380	μg/Kg-dry	1	9/21/2007 12:11:00 AM	
Di-n-butyl phthalate	ND	380	μg/Kg-dry	1	9/21/2007 12:11:00 AM	
Di-n-octyl phthalate	ND	380	μg/Kg-dry	1	9/21/2007 12:11:00 AM	
Dibenz(a,h)anthracene	ND	380	μg/Kg-dry	1	9/21/2007 12:11:00 AM	
Dibenzofuran	ND	380	μg/Kg-dry	1	9/21/2007 12:11:00 AM	
Diethyl phthalate	ND	380	μg/Kg-dry	1	9/21/2007 12:11:00 AM	
Dimethyl phthalate	ND	380	μg/Kg-dry	1	9/21/2007 12:11:00 AM	
Fluoranthene	ND	380	μg/Kg-dry	1	9/21/2007 12:11:00 AM	
Fluorene	ND	380	μg/Kg-dry	1	9/21/2007 12:11:00 AM	
Hexachlorobenzene	ND	380	μg/Kg-dry	1	9/21/2007 12:11:00 AM	
Hexachlorobutadiene	ND	380	μg/Kg-dry	1	9/21/2007 12:11:00 AM	
Hexachlorocyclopentadiene	ND	380	μg/Kg-dry	1	9/21/2007 12:11:00 AM	

Approved By:

Qualifiers: * Low Level

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

Date:

Page 16 of 37

** Value exceeds Maximum Contaminant Value

- E Value above quantitation range
- J Analyte detected below quantitation limits
- S Spike Recovery outside accepted recovery limits

CLIENT: NYSDEC - Region 9 Client Sample ID: TP-6,11,16 Comp

Lab Order: U0709166 **Collection Date:** 9/10/2007 1:30:00 PM

Project: Friendship Foundry, Site #902017

Lab ID: U0709166-006 **Matrix:** SOIL

Analyses	Result	Result Limit Qual Units		DF	Date Analyzed	
TCL-SEMIVOLATILE ORGANICS		SW82700	C (SW35	50A)	Analyst: LD	
Hexachloroethane	ND	380	μg/Kg-dry	1	9/21/2007 12:11:00 AM	
Indeno(1,2,3-cd)pyrene	ND	380	μg/Kg-dry	1	9/21/2007 12:11:00 AM	
Isophorone	ND	380	μg/Kg-dry	1	9/21/2007 12:11:00 AM	
N-Nitrosodi-n-propylamine	ND	380	μg/Kg-dry	1	9/21/2007 12:11:00 AM	
N-Nitrosodiphenylamine	ND	380	μg/Kg-dry	1	9/21/2007 12:11:00 AM	
Naphthalene	ND	380	μg/Kg-dry	1	9/21/2007 12:11:00 AM	
Nitrobenzene	ND	380	μg/Kg-dry	1	9/21/2007 12:11:00 AM	
Pentachlorophenol	ND	780	μg/Kg-dry	1	9/21/2007 12:11:00 AM	
Phenanthrene	ND	380	μg/Kg-dry	1	9/21/2007 12:11:00 AM	
Phenol	ND	380	μg/Kg-dry	1	9/21/2007 12:11:00 AM	
Pyrene	ND	380	μg/Kg-dry	1	9/21/2007 12:11:00 AM	
TCL VOLATILE ORGANICS		SW8260E	3		Analyst: MG	
1,1,1-Trichloroethane	ND	3.5	μg/Kg-dry	1	9/18/2007 3:07:00 AM	
1,1,2,2-Tetrachloroethane	ND	3.5	μg/Kg-dry	1	9/18/2007 3:07:00 AM	
1,1,2-Trichloroethane	ND	3.5	μg/Kg-dry	1	9/18/2007 3:07:00 AM	
1,1-Dichloroethane	ND	3.5	μg/Kg-dry	1	9/18/2007 3:07:00 AM	
1,1-Dichloroethene	ND	3.5	μg/Kg-dry	1	9/18/2007 3:07:00 AM	
1,2-Dichloroethane	ND	3.5	μg/Kg-dry	1	9/18/2007 3:07:00 AM	
1,2-Dichloropropane	ND	3.5	μg/Kg-dry	1	9/18/2007 3:07:00 AM	
2-Butanone	ND	12	μg/Kg-dry	1	9/18/2007 3:07:00 AM	
2-Hexanone	ND	12	μg/Kg-dry	1	9/18/2007 3:07:00 AM	
4-Methyl-2-pentanone	ND	12	μg/Kg-dry	1	9/18/2007 3:07:00 AM	
Acetone	ND	12	μg/Kg-dry	1	9/18/2007 3:07:00 AM	
Benzene	ND	3.5	μg/Kg-dry	1	9/18/2007 3:07:00 AM	
Bromodichloromethane	ND	3.5	μg/Kg-dry	1	9/18/2007 3:07:00 AM	
Bromoform	ND	3.5	μg/Kg-dry	1	9/18/2007 3:07:00 AM	
Bromomethane	ND	3.5	μg/Kg-dry	1	9/18/2007 3:07:00 AM	
Carbon disulfide	ND	3.5	μg/Kg-dry	1	9/18/2007 3:07:00 AM	
Carbon tetrachloride	ND	3.5	μg/Kg-dry	1	9/18/2007 3:07:00 AM	
Chlorobenzene	ND	3.5	μg/Kg-dry	1	9/18/2007 3:07:00 AM	
Chloroethane	ND	3.5	μg/Kg-dry	1	9/18/2007 3:07:00 AM	
Chloroform	2	3.5 J	μg/Kg-dry	1	9/18/2007 3:07:00 AM	
Chloromethane	ND	3.5	μg/Kg-dry	1	9/18/2007 3:07:00 AM	
cis-1,2-Dichloroethene	ND	3.5	μg/Kg-dry	1	9/18/2007 3:07:00 AM	
cis-1,3-Dichloropropene	ND	3.5	μg/Kg-dry	1	9/18/2007 3:07:00 AM	
Dibromochloromethane	ND	3.5	μg/Kg-dry	1	9/18/2007 3:07:00 AM	
Ethylbenzene	ND	3.5	μg/Kg-dry	1	9/18/2007 3:07:00 AM	
m,p-Xylene	ND	3.5	μg/Kg-dry	1	9/18/2007 3:07:00 AM	

Approved By:	Date:	Page 17 of 37

Qualifiers: * Low Level

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

** Value exceeds Maximum Contaminant Value

Date: 24-Sep-07

E Value above quantitation range

J Analyte detected below quantitation limits

CLIENT: NYSDEC - Region 9 Client Sample ID: TP-6,11,16 Comp

Lab Order: U0709166 **Collection Date:** 9/10/2007 1:30:00 PM

Project: Friendship Foundry, Site #902017

Lab ID: U0709166-006 Matrix: SOIL

Analyses	Result	Limit Qual	Units	DF	Date Analyzed
TCL VOLATILE ORGANICS		SW8260B			Analyst: MG
Methylene chloride	5.3	3.5 B	μg/Kg-dry	1	9/18/2007 3:07:00 AM
o-Xylene	ND	3.5	μg/Kg-dry	1	9/18/2007 3:07:00 AM
Styrene	ND	3.5	μg/Kg-dry	1	9/18/2007 3:07:00 AM
Tetrachloroethene	ND	3.5	μg/Kg-dry	1	9/18/2007 3:07:00 AM
Toluene	ND	3.5	μg/Kg-dry	1	9/18/2007 3:07:00 AM
trans-1,2-Dichloroethene	ND	3.5	μg/Kg-dry	1	9/18/2007 3:07:00 AM
trans-1,3-Dichloropropene	ND	3.5	μg/Kg-dry	1	9/18/2007 3:07:00 AM
Trichloroethene	ND	3.5	μg/Kg-dry	1	9/18/2007 3:07:00 AM
Vinyl chloride	ND	2.3	μg/Kg-dry	1	9/18/2007 3:07:00 AM
NOTES: Methylene chloride is a common labora	tory solvent.				
PHENOLICS, TOTAL RECOVERABLE	LE FOR SOLID	E420.1	(E420.1)		Analyst: MB
Phenolics, Total Recoverable	0.181	0.116	mg/Kg-dry	1	9/18/2007
HEXAVALENT CHROMIUM		SW7196A			Analyst: DEY
Chromium, Hexavalent	ND	0.23	mg/Kg-dry	1	9/11/2007 11:00:00 AM
PERCENT MOISTURE		D2216			Analyst: KAM
Percent Moisture	14.1	0.00100	wt%	1	9/13/2007

Approved By:		Date:	Page 18 of 37	
Qualifiers:	*	Low Level	**	Value exceeds Maximum Contaminant Value
	В	Analyte detected in the associated Method Blank	E	Value above quantitation range

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

J Analyte detected below quantitation limits
 S Spike Recovery outside accepted recovery limits

CLIENT: NYSDEC - Region 9 Client Sample ID: TP-49,46,42 Comp

Lab Order: U0709166 **Collection Date:** 9/10/2007 2:00:00 PM

Project: Friendship Foundry, Site #902017

Lab ID: U0709166-007 **Matrix:** SOIL

Analyses	Result	Limit Qual	Units	DF	Date Analyzed
PEST/PCB IN SOIL/SLUDGE		SW8081A	(SW3550	0)	Analyst: KC
4,4´-DDD	ND	39	μg/Kg-dry	10	9/18/2007
4,4´-DDE	ND	39	μg/Kg-dry	10	9/18/2007
4,4´-DDT	ND	39	μg/Kg-dry	10	9/18/2007
Aldrin	ND	20	μg/Kg-dry	10	9/18/2007
alpha-BHC	ND	20	μg/Kg-dry	10	9/18/2007
alpha-Chlordane	ND	20	μg/Kg-dry	10	9/18/2007
Aroclor 1016	ND	20	μg/Kg-dry	10	9/18/2007
Aroclor 1221	ND	20	μg/Kg-dry	10	9/18/2007
Aroclor 1232	ND	20	μg/Kg-dry	10	9/18/2007
Aroclor 1242	ND	20	μg/Kg-dry	10	9/18/2007
Aroclor 1248	ND	20	μg/Kg-dry	10	9/18/2007
Aroclor 1254	ND	20	μg/Kg-dry	10	9/18/2007
Aroclor 1260	ND	20	μg/Kg-dry	10	9/18/2007
beta-BHC	ND	20	μg/Kg-dry	10	9/18/2007
delta-BHC	ND	20	μg/Kg-dry	10	9/18/2007
Dieldrin	ND	39	μg/Kg-dry	10	9/18/2007
Endosulfan I	ND	20	μg/Kg-dry	10	9/18/2007
Endosulfan II	ND	39	μg/Kg-dry	10	9/18/2007
Endosulfan sulfate	ND	39	μg/Kg-dry	10	9/18/2007
Endrin	ND	39	μg/Kg-dry	10	9/18/2007
Endrin aldehyde	ND	39	μg/Kg-dry	10	9/18/2007
Endrin ketone	ND	39	μg/Kg-dry	10	9/18/2007
gamma-BHC	ND	20	μg/Kg-dry	10	9/18/2007
gamma-Chlordane	ND	20	μg/Kg-dry	10	9/18/2007
Heptachlor	ND	20	μg/Kg-dry	10	9/18/2007
Heptachlor epoxide	ND	20	μg/Kg-dry	10	9/18/2007
Methoxychlor	ND	200	μg/Kg-dry	10	9/18/2007
Toxaphene	ND	2000	μg/Kg-dry	10	9/18/2007
NOTES:					
The reporting limits were raised due to matr	ix interference.				
CHLORINATED HERBICIDES		SW8151A	(SW3550	0)	Analyst: KC
2,4,5-T	ND	39	μg/Kg-dry	1	9/20/2007
2,4,5-TP (Silvex)	ND	39	μg/Kg-dry	1	9/20/2007
2,4-D	ND	39	μg/Kg-dry	1	9/20/2007
Dicamba	ND	39	μg/Kg-dry	1	9/20/2007
Dinoseb	ND	39	μg/Kg-dry	1	9/20/2007
SOIL AND SOLID METALS BY ICP		SW6010B	(SW3050	DA)	Analyst: EA
Aluminum	10000	5.9	mg/Kg-dry	1	9/17/2007 2:18:13 PM

Approved By:	Date:	Page 19 of 37
		\mathcal{C}

Qualifiers: * Low Level

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

** Value exceeds Maximum Contaminant Value

Date: 24-Sep-07

E Value above quantitation range

J Analyte detected below quantitation limits

CLIENT: NYSDEC - Region 9 Client Sample ID: TP-49,46,42 Comp

Lab Order: U0709166 **Collection Date:** 9/10/2007 2:00:00 PM

Project: Friendship Foundry, Site #902017

Lab ID: U0709166-007 **Matrix:** SOIL

Analyses	Result	Limit (Qual	Units	DF	Date Analyzed
SOIL AND SOLID METALS BY ICP		SW601	10B	(SW305	0A)	Analyst: EA
Antimony	ND	36		mg/Kg-dry	1	9/17/2007 2:18:13 PM
Arsenic*	11	1.2		mg/Kg-dry	1	9/17/2007 2:18:13 PM
Barium	92	36		mg/Kg-dry	1	9/17/2007 2:18:13 PM
Beryllium	0.68	0.59		mg/Kg-dry	1	9/17/2007 2:18:13 PM
Cadmium	0.80	0.59		mg/Kg-dry	1	9/17/2007 2:18:13 PM
Calcium	15000	59		mg/Kg-dry	1	9/17/2007 2:18:13 PM
Chromium	12	5.9		mg/Kg-dry	1	9/17/2007 2:18:13 PM
Cobalt	8.9	5.9		mg/Kg-dry	1	9/17/2007 2:18:13 PM
Copper	21	2.4		mg/Kg-dry	1	9/17/2007 2:18:13 PM
Iron	21000	3.6		mg/Kg-dry	1	9/17/2007 2:18:13 PM
Lead	48	12		mg/Kg-dry	1	9/17/2007 2:18:13 PM
Magnesium	4500	59		mg/Kg-dry	1	9/17/2007 2:18:13 PM
Manganese	640	2.4		mg/Kg-dry	1	9/17/2007 2:18:13 PM
Nickel	17	3.6		mg/Kg-dry	1	9/17/2007 2:18:13 PM
Potassium	1200	59		mg/Kg-dry	1	9/17/2007 2:18:13 PM
Selenium*	4.7	0.59		mg/Kg-dry	1	9/17/2007 2:18:13 PM
Silver	ND	5.9		mg/Kg-dry	1	9/17/2007 2:18:13 PM
Sodium	ND	59		mg/Kg-dry	1	9/17/2007 2:18:13 PM
Thallium*	ND	0.36		mg/Kg-dry	1	9/17/2007 2:18:13 PM
Vanadium	10	36	J	mg/Kg-dry	1	9/17/2007 2:18:13 PM
Zinc	110	1.2		mg/Kg-dry	1	9/17/2007 2:18:13 PM
TOTAL MERCURY - SOIL/SOLID/WAS	TE	SW747	71A	(SW747	1A)	Analyst: EA
Mercury	0.046	0.237	J	mg/Kg-dry	1	9/20/2007 1:22:34 PM
TCL-SEMIVOLATILE ORGANICS		SW827	70C	(SW355	0A)	Analyst: LD
(3+4)-Methylphenol	ND	3900		μg/Kg-dry	10	9/21/2007 12:54:00 AM
1,2,4-Trichlorobenzene	ND	3900		μg/Kg-dry	10	9/21/2007 12:54:00 AM
1,2-Dichlorobenzene	ND	3900		μg/Kg-dry	10	9/21/2007 12:54:00 AM
1,3-Dichlorobenzene	ND	3900		μg/Kg-dry	10	9/21/2007 12:54:00 AM
1,4-Dichlorobenzene	ND	3900		μg/Kg-dry	10	9/21/2007 12:54:00 AM
2,4,5-Trichlorophenol	ND	3900		μg/Kg-dry	10	9/21/2007 12:54:00 AM
2,4,6-Trichlorophenol	ND	3900		μg/Kg-dry	10	9/21/2007 12:54:00 AM
2,4-Dichlorophenol	ND	3900		μg/Kg-dry	10	9/21/2007 12:54:00 AM
2,4-Dimethylphenol	ND	3900		μg/Kg-dry	10	9/21/2007 12:54:00 AM
2,4-Dinitrophenol	ND	39000		μg/Kg-dry	10	9/21/2007 12:54:00 AM
2,4-Dinitrotoluene	ND	3900		μg/Kg-dry	10	9/21/2007 12:54:00 AM
2,6-Dinitrotoluene	ND	3900		μg/Kg-dry	10	9/21/2007 12:54:00 AM
2-Chloronaphthalene	ND	3900		μg/Kg-dry	10	9/21/2007 12:54:00 AM
2-Chlorophenol	ND	3900		μg/Kg-dry	10	9/21/2007 12:54:00 AM

Approved By:

Qualifiers:

Low Level

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

** Value exceeds Maximum Contaminant Value

Page 20 of 37

Date: 24-Sep-07

E Value above quantitation range

Date:

J Analyte detected below quantitation limits

CLIENT: NYSDEC - Region 9 Client Sample ID: TP-49,46,42 Comp

Project: Friendship Foundry, Site #902017

Lab ID: U0709166-007 **Matrix:** SOIL

Analyses	Result	Limit	Qual	Units	DF	Date Analyzed
TCL-SEMIVOLATILE ORGANICS		SW82	70C	(SW35	50A)	Analyst: LD
2-Methylnaphthalene	ND	3900	- 1	μg/Kg-dry	10	9/21/2007 12:54:00 AM
2-Methylphenol	ND	3900	1	μg/Kg-dry	10	9/21/2007 12:54:00 AM
2-Nitroaniline	ND	39000	I	µg/Kg-dry	10	9/21/2007 12:54:00 AM
2-Nitrophenol	ND	3900	I	µg/Kg-dry	10	9/21/2007 12:54:00 AM
3,3´-Dichlorobenzidine	ND	3900	1	μg/Kg-dry	10	9/21/2007 12:54:00 AM
3-Nitroaniline	ND	39000	1	μg/Kg-dry	10	9/21/2007 12:54:00 AM
4,6-Dinitro-2-methylphenol	ND	39000	1	μg/Kg-dry	10	9/21/2007 12:54:00 AM
4-Bromophenyl phenyl ether	ND	3900	1	μg/Kg-dry	10	9/21/2007 12:54:00 AM
4-Chloro-3-methylphenol	ND	3900		μg/Kg-dry	10	9/21/2007 12:54:00 AM
4-Chloroaniline	ND	3900	1	μg/Kg-dry	10	9/21/2007 12:54:00 AM
4-Chlorophenyl phenyl ether	ND	3900	ı	µg/Kg-dry	10	9/21/2007 12:54:00 AM
4-Nitroaniline	ND	39000	ı	µg/Kg-dry	10	9/21/2007 12:54:00 AM
4-Nitrophenol	ND	39000	ı	µg/Kg-dry	10	9/21/2007 12:54:00 AM
Acenaphthene	ND	3900	ı	µg/Kg-dry	10	9/21/2007 12:54:00 AM
Acenaphthylene	ND	3900	ı	µg/Kg-dry	10	9/21/2007 12:54:00 AM
Anthracene	ND	3900	ı	µg/Kg-dry	10	9/21/2007 12:54:00 AM
Benz(a)anthracene	ND	3900	ı	µg/Kg-dry	10	9/21/2007 12:54:00 AM
Benzo(a)pyrene	ND	3900	ı	µg/Kg-dry	10	9/21/2007 12:54:00 AM
Benzo(b)fluoranthene	ND	3900	ı	µg/Kg-dry	10	9/21/2007 12:54:00 AM
Benzo(g,h,i)perylene	ND	3900	ı	µg/Kg-dry	10	9/21/2007 12:54:00 AM
Benzo(k)fluoranthene	ND	3900	ı	µg/Kg-dry	10	9/21/2007 12:54:00 AM
Bis(2-chloroethoxy)methane	ND	3900	ı	µg/Kg-dry	10	9/21/2007 12:54:00 AM
Bis(2-chloroethyl)ether	ND	3900	ı	µg/Kg-dry	10	9/21/2007 12:54:00 AM
Bis(2-chloroisopropyl)ether	ND	3900	ı	µg/Kg-dry	10	9/21/2007 12:54:00 AM
Bis(2-ethylhexyl)phthalate	ND	3900	ı	µg/Kg-dry	10	9/21/2007 12:54:00 AM
Butyl benzyl phthalate	ND	3900	ı	µg/Kg-dry	10	9/21/2007 12:54:00 AM
Carbazole	ND	3900	ı	µg/Kg-dry	10	9/21/2007 12:54:00 AM
Chrysene	ND	3900	ı	µg/Kg-dry	10	9/21/2007 12:54:00 AM
Di-n-butyl phthalate	ND	3900	ı	µg/Kg-dry	10	9/21/2007 12:54:00 AM
Di-n-octyl phthalate	ND	3900		µg/Kg-dry	10	9/21/2007 12:54:00 AM
Dibenz(a,h)anthracene	ND	3900	ı	µg/Kg-dry	10	9/21/2007 12:54:00 AM
Dibenzofuran	ND	3900	ı	µg/Kg-dry	10	9/21/2007 12:54:00 AM
Diethyl phthalate	ND	3900	ı	µg/Kg-dry	10	9/21/2007 12:54:00 AM
Dimethyl phthalate	ND	3900		μg/Kg-dry	10	9/21/2007 12:54:00 AM
Fluoranthene	1000	3900	Jι	µg/Kg-dry	10	9/21/2007 12:54:00 AM
Fluorene	ND	3900		µg/Kg-dry	10	9/21/2007 12:54:00 AM
Hexachlorobenzene	ND	3900		μg/Kg-dry	10	9/21/2007 12:54:00 AM
Hexachlorobutadiene	ND	3900		μg/Kg-dry	10	9/21/2007 12:54:00 AM
Hexachlorocyclopentadiene	ND	3900	ı	μg/Kg-dry	10	9/21/2007 12:54:00 AM

Approved By:

Qualifiers: * Low Level

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

Date:

Value exceeds Maximum Contaminant Value

Date: 24-Sep-07

E Value above quantitation range

J Analyte detected below quantitation limits

S Spike Recovery outside accepted recovery limits

Page 21 of 37

CLIENT: NYSDEC - Region 9 Client Sample ID: TP-49,46,42 Comp

Lab Order: U0709166 **Collection Date:** 9/10/2007 2:00:00 PM

Project: Friendship Foundry, Site #902017

Lab ID:	U0709166-007				Mat	rix: SOIL	
Analyses		Result	Limit	Qual	Units	DF	Date Analyzed
TCL-SEMIVO	DLATILE ORGANICS		SW8	270C	(SW355	50A)	Analyst: LD
Hexachloroe	thane	ND	3900		μg/Kg-dry	10	9/21/2007 12:54:00 AM
Indeno(1,2,3-	-cd)pyrene	ND	3900		μg/Kg-dry	10	9/21/2007 12:54:00 AM
Isophorone		ND	3900		μg/Kg-dry	10	9/21/2007 12:54:00 AM
N-Nitrosodi-n	n-propylamine	ND	3900		μg/Kg-dry	10	9/21/2007 12:54:00 AM
N-Nitrosodipl	henylamine	ND	3900		μg/Kg-dry	10	9/21/2007 12:54:00 AM
Naphthalene		ND	3900		μg/Kg-dry	10	9/21/2007 12:54:00 AM
Nitrobenzene)	ND	3900		μg/Kg-dry	10	9/21/2007 12:54:00 AM
Pentachlorop	phenol	ND	7900		μg/Kg-dry	10	9/21/2007 12:54:00 AM
Phenanthren	е	1000	3900	J	μg/Kg-dry	10	9/21/2007 12:54:00 AM
Phenol		ND	3900		μg/Kg-dry	10	9/21/2007 12:54:00 AM
Pyrene		2000	3900	J	μg/Kg-dry	10	9/21/2007 12:54:00 AM
NOTES: The reporting	g limits were raised due to ma	trix interference.					
TCL VOLATI	LE ORGANICS		SW8	260B			Analyst: MG
1,1,1-Trichlo	roethane	ND	3.6		μg/Kg-dry	1	9/18/2007 3:56:00 AM
1,1,2,2-Tetra	chloroethane	ND	3.6		μg/Kg-dry	1	9/18/2007 3:56:00 AM
1,1,2-Trichlo	roethane	ND	3.6		μg/Kg-dry	1	9/18/2007 3:56:00 AM
1,1-Dichloroe	ethane	ND	3.6		μg/Kg-dry	1	9/18/2007 3:56:00 AM
1,1-Dichloroe	ethene	ND	3.6		μg/Kg-dry	1	9/18/2007 3:56:00 AM
1,2-Dichloroe	ethane	ND	3.6		μg/Kg-dry	1	9/18/2007 3:56:00 AM
1,2-Dichlorop	propane	ND	3.6		μg/Kg-dry	1	9/18/2007 3:56:00 AM
2-Butanone		ND	12		μg/Kg-dry	1	9/18/2007 3:56:00 AM
0.11							

1,1,2,2-Tetrachloroethane	ND	3.6	μg/Kg-dry	1	9/18/2007 3:56:00 AM
1,1,2-Trichloroethane	ND	3.6	μg/Kg-dry	1	9/18/2007 3:56:00 AM
1,1-Dichloroethane	ND	3.6	μg/Kg-dry	1	9/18/2007 3:56:00 AM
1,1-Dichloroethene	ND	3.6	μg/Kg-dry	1	9/18/2007 3:56:00 AM
1,2-Dichloroethane	ND	3.6	μg/Kg-dry	1	9/18/2007 3:56:00 AM
1,2-Dichloropropane	ND	3.6	μg/Kg-dry	1	9/18/2007 3:56:00 AM
2-Butanone	ND	12	μg/Kg-dry	1	9/18/2007 3:56:00 AM
2-Hexanone	ND	12	μg/Kg-dry	1	9/18/2007 3:56:00 AM
4-Methyl-2-pentanone	ND	12	μg/Kg-dry	1	9/18/2007 3:56:00 AM
Acetone	ND	12	μg/Kg-dry	1	9/18/2007 3:56:00 AM
Benzene	ND	3.6	μg/Kg-dry	1	9/18/2007 3:56:00 AM
Bromodichloromethane	ND	3.6	μg/Kg-dry	1	9/18/2007 3:56:00 AM
Bromoform	ND	3.6	μg/Kg-dry	1	9/18/2007 3:56:00 AM
Bromomethane	ND	3.6	μg/Kg-dry	1	9/18/2007 3:56:00 AM
Carbon disulfide	ND	3.6	μg/Kg-dry	1	9/18/2007 3:56:00 AM
Carbon tetrachloride	ND	3.6	μg/Kg-dry	1	9/18/2007 3:56:00 AM
Chlorobenzene	ND	3.6	μg/Kg-dry	1	9/18/2007 3:56:00 AM
Chloroethane	ND	3.6	μg/Kg-dry	1	9/18/2007 3:56:00 AM
Chloroform	2	3.6	J μg/Kg-dry	1	9/18/2007 3:56:00 AM
Chloromethane	ND	3.6	μg/Kg-dry	1	9/18/2007 3:56:00 AM
cis-1,2-Dichloroethene	ND	3.6	μg/Kg-dry	1	9/18/2007 3:56:00 AM
cis-1,3-Dichloropropene	ND	3.6	μg/Kg-dry	1	9/18/2007 3:56:00 AM
Dibromochloromethane	ND	3.6	μg/Kg-dry	1	9/18/2007 3:56:00 AM

Approved By:	Date:	Page 22 of 37

Qualifiers: * Low Level

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

** Value exceeds Maximum Contaminant Value

Date: 24-Sep-07

E Value above quantitation range

J Analyte detected below quantitation limits

CLIENT: NYSDEC - Region 9 Client Sample ID: TP-49,46,42 Comp

Lab Order: U0709166 **Collection Date:** 9/10/2007 2:00:00 PM

Project: Friendship Foundry, Site #902017

Lab ID: U0709166-007 **Matrix:** SOIL

Analyses	Result	Limit Qua	al Units	DF	Date Analyzed
TCL VOLATILE ORGANICS		SW8260E	}		Analyst: MG
Ethylbenzene	ND	3.6	μg/Kg-dry	1	9/18/2007 3:56:00 AM
m,p-Xylene	ND	3.6	μg/Kg-dry	1	9/18/2007 3:56:00 AM
Methylene chloride	5.5	3.6 B	μg/Kg-dry	1	9/18/2007 3:56:00 AM
o-Xylene	ND	3.6	μg/Kg-dry	1	9/18/2007 3:56:00 AM
Styrene	ND	3.6	μg/Kg-dry	1	9/18/2007 3:56:00 AM
Tetrachloroethene	ND	3.6	μg/Kg-dry	1	9/18/2007 3:56:00 AM
Toluene	ND	3.6	μg/Kg-dry	1	9/18/2007 3:56:00 AM
trans-1,2-Dichloroethene	ND	3.6	μg/Kg-dry	1	9/18/2007 3:56:00 AM
trans-1,3-Dichloropropene	ND	3.6	μg/Kg-dry	1	9/18/2007 3:56:00 AM
Trichloroethene	ND	3.6	μg/Kg-dry	1	9/18/2007 3:56:00 AM
Vinyl chloride	ND	2.4	μg/Kg-dry	1	9/18/2007 3:56:00 AM
NOTES: Methylene chloride is a common laborato	ry solvent.				
PHENOLICS, TOTAL RECOVERABLE Phenolics, Total Recoverable	FOR SOLID 0.545	E420.1 0.118	(E420.1 mg/Kg-dry) 1	Analyst: MB 9/18/2007
Theriolics, Total Necoverable	0.545	0.110	mg/rtg-dry	'	3/10/2007
HEXAVALENT CHROMIUM Chromium, Hexavalent	ND	SW7196A 0.24	mg/Kg-dry	1	Analyst: DEY 9/11/2007 11:00:00 AM
PERCENT MOISTURE Percent Moisture	15.6	D2216 0.00100	wt%	1	Analyst: KAM 9/13/2007

Approved By:	Date:	Page 23 of 37
Qualifiers: * Low Level	**	Value exceeds Maximum Contaminant Value

B Analyte detected in the associated Method Blank
 H Holding times for preparation or analysis exceeded

Troiding times for preparation of analysis exece

ND Not Detected at the Reporting Limit

E Value above quantitation range

J Analyte detected below quantitation limits

Date: 24-Sep-07

CLIENT: NYSDEC - Region 9 Client Sample ID: TP-34@ 3'

Project: Friendship Foundry, Site #902017

Lab ID: U0709166-008 **Matrix:** SOIL

Analyses	Result	Limit	Qual	Units	DF	Date Analyzed
POLYCHLORINATED BIPHENYLS(SOIL/S	SLUDGE)	SW8	8082	(SW35	50B)	Analyst: KC
Aroclor 1016	ND	0.092		mg/Kg-dry	1	9/18/2007
Aroclor 1221	ND	0.092		mg/Kg-dry	1	9/18/2007
Aroclor 1232	ND	0.092		mg/Kg-dry	1	9/18/2007
Aroclor 1242	ND	0.092		mg/Kg-dry	1	9/18/2007
Aroclor 1248	ND	0.092		mg/Kg-dry	1	9/18/2007
Aroclor 1254	ND	0.092		mg/Kg-dry	1	9/18/2007
Aroclor 1260	ND	0.092		mg/Kg-dry	1	9/18/2007
Aroclor 1268	ND	0.092		mg/Kg-dry	1	9/18/2007
SOIL AND SOLID METALS BY ICP		SW6	010B	(SW30	50A)	Analyst: EA
Aluminum	9100	5.6		mg/Kg-dry	1	9/17/2007 2:22:02 PM
Antimony	ND	33		mg/Kg-dry	1	9/17/2007 2:22:02 PM
Arsenic*	8.3	1.1		mg/Kg-dry	1	9/17/2007 2:22:02 PM
Barium	45	33		mg/Kg-dry	1	9/17/2007 2:22:02 PM
Beryllium	ND	0.56		mg/Kg-dry	1	9/17/2007 2:22:02 PM
Cadmium	0.5	0.56	J	mg/Kg-dry	1	9/17/2007 2:22:02 PM
Calcium	1100	56		mg/Kg-dry	1	9/17/2007 2:22:02 PM
Chromium	8.2	5.6		mg/Kg-dry	1	9/17/2007 2:22:02 PM
Cobalt	8.1	5.6		mg/Kg-dry	1	9/17/2007 2:22:02 PM
Copper	8.1	2.2		mg/Kg-dry	1	9/17/2007 2:22:02 PM
Iron	16000	3.3		mg/Kg-dry	1	9/17/2007 2:22:02 PM
Lead	21	11		mg/Kg-dry	1	9/17/2007 2:22:02 PM
Magnesium	1600	56		mg/Kg-dry	1	9/17/2007 2:22:02 PM
Manganese	310	2.2		mg/Kg-dry	1	9/17/2007 2:22:02 PM
Nickel	11	3.3		mg/Kg-dry	1	9/17/2007 2:22:02 PM
Potassium	670	56		mg/Kg-dry	1	9/17/2007 2:22:02 PM
Selenium*	5.5	0.56	В	mg/Kg-dry	1	9/17/2007 2:22:02 PM
Silver	ND	5.6		mg/Kg-dry	1	9/17/2007 2:22:02 PM
Sodium	ND	56		mg/Kg-dry	1	9/17/2007 2:22:02 PM
Thallium*	ND	0.33		mg/Kg-dry	1	9/17/2007 2:22:02 PM
Vanadium	10	33	J	mg/Kg-dry	1	9/17/2007 2:22:02 PM
Zinc	49	1.1		mg/Kg-dry	1	9/17/2007 2:22:02 PM
TOTAL MERCURY - SOIL/SOLID/WASTE		SW7	471A	(SW747	71A)	Analyst: EA
Mercury	0.057	0.222	J	mg/Kg-dry	1	9/20/2007 1:25:08 PM
PERCENT MOISTURE		D2:	216			Analyst: KAM
Percent Moisture	9.91	0.00100		wt%	1	9/13/2007

Approved By:		Date:	Page 24 of 37
Qualifiers: *	Low Level	**	Value exceeds Maximum Contaminant Value

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

E Value above quantitation range

J Analyte detected below quantitation limits

Date: 24-Sep-07

CLIENT: NYSDEC - Region 9 Client Sample ID: TP-37@ 1'

Lab Order: U0709166 **Collection Date:** 9/7/2007 11:30:00 AM

Friendship Foundry, Site #902017 **Project:**

Matrix: SOIL U0709166-009 Lab ID:

Analyses	Result	Limit Q	ual Units	DF	Date Analyzed
TCL VOLATILE ORGANICS		SW826	0B		Analyst: MG
1,1,1-Trichloroethane	ND	3.3	μg/Kg-dry	1	9/18/2007 4:46:00 AM
1,1,2,2-Tetrachloroethane	ND	3.3	μg/Kg-dry	1	9/18/2007 4:46:00 AM
1,1,2-Trichloroethane	ND	3.3	μg/Kg-dry	1	9/18/2007 4:46:00 AM
1,1-Dichloroethane	ND	3.3	μg/Kg-dry	1	9/18/2007 4:46:00 AM
1,1-Dichloroethene	ND	3.3	μg/Kg-dry	1	9/18/2007 4:46:00 AM
1,2-Dichloroethane	ND	3.3	μg/Kg-dry	1	9/18/2007 4:46:00 AM
1,2-Dichloropropane	ND	3.3	μg/Kg-dry	1	9/18/2007 4:46:00 AM
2-Butanone	ND	11	μg/Kg-dry	1	9/18/2007 4:46:00 AM
2-Hexanone	ND	11	μg/Kg-dry	1	9/18/2007 4:46:00 AM
4-Methyl-2-pentanone	ND	11	μg/Kg-dry	1	9/18/2007 4:46:00 AM
Acetone	ND	11	μg/Kg-dry	1	9/18/2007 4:46:00 AM
Benzene	ND	3.3	μg/Kg-dry	1	9/18/2007 4:46:00 AM
Bromodichloromethane	ND	3.3	μg/Kg-dry	1	9/18/2007 4:46:00 AM
Bromoform	ND	3.3	μg/Kg-dry	1	9/18/2007 4:46:00 AM
Bromomethane	ND	3.3	μg/Kg-dry	1	9/18/2007 4:46:00 AM
Carbon disulfide	ND	3.3	μg/Kg-dry	1	9/18/2007 4:46:00 AM
Carbon tetrachloride	ND	3.3	μg/Kg-dry	1	9/18/2007 4:46:00 AM
Chlorobenzene	ND	3.3	μg/Kg-dry	1	9/18/2007 4:46:00 AM
Chloroethane	ND	3.3	μg/Kg-dry	1	9/18/2007 4:46:00 AM
Chloroform	ND	3.3	μg/Kg-dry	1	9/18/2007 4:46:00 AM
Chloromethane	ND	3.3	μg/Kg-dry	1	9/18/2007 4:46:00 AM
cis-1,2-Dichloroethene	ND	3.3	μg/Kg-dry	1	9/18/2007 4:46:00 AM
cis-1,3-Dichloropropene	ND	3.3	μg/Kg-dry	1	9/18/2007 4:46:00 AM
Dibromochloromethane	ND	3.3	μg/Kg-dry	1	9/18/2007 4:46:00 AM
Ethylbenzene	ND	3.3	μg/Kg-dry	1	9/18/2007 4:46:00 AM
m,p-Xylene	ND	3.3	μg/Kg-dry	1	9/18/2007 4:46:00 AM
Methylene chloride	5.4	3.3	B μg/Kg-dry	1	9/18/2007 4:46:00 AM
o-Xylene	ND	3.3	μg/Kg-dry	1	9/18/2007 4:46:00 AM
Styrene	ND	3.3	μg/Kg-dry	1	9/18/2007 4:46:00 AM
Tetrachloroethene	ND	3.3	μg/Kg-dry	1	9/18/2007 4:46:00 AM
Toluene	ND	3.3	μg/Kg-dry	1	9/18/2007 4:46:00 AM
trans-1,2-Dichloroethene	ND	3.3	μg/Kg-dry	1	9/18/2007 4:46:00 AM
trans-1,3-Dichloropropene	ND	3.3	μg/Kg-dry	1	9/18/2007 4:46:00 AM
Trichloroethene	ND	3.3	μg/Kg-dry	1	9/18/2007 4:46:00 AM
Vinyl chloride	ND	2.2	μg/Kg-dry	1	9/18/2007 4:46:00 AM
NOTES:					

Methylene chloride is a common laboratory solvent.

D2216 PERCENT MOISTURE Analyst: KAM

Approved By: Date: Page 25 of 37

Qualifiers:

- Low Level
- В Analyte detected in the associated Method Blank
- Н Holding times for preparation or analysis exceeded
- Not Detected at the Reporting Limit

Value exceeds Maximum Contaminant Value

- Е Value above quantitation range
- Analyte detected below quantitation limits J
- Spike Recovery outside accepted recovery limits

CLIENT: NYSDEC - Region 9 Client Sample ID: TP-37@ 1'

Lab Order: U0709166 **Collection Date:** 9/7/2007 11:30:00 AM

Project: Friendship Foundry, Site #902017

Lab ID: U0709166-009 **Matrix:** SOIL

Analyses	Result	Limit Q	ıal Units	DF	Date Analyzed
PERCENT MOISTURE		D2216	i		Analyst: KAM
Percent Moisture	8.51	0.00100	wt%	1	9/20/2007

Approved By:		Date:	Page 26 of 3	
Qualifiers:	*	Low Level	**	Value exceeds Maximum Contaminant Value
	В	Analyte detected in the associated Method Blank	E	Value above quantitation range

J

B Analyte detected in the associated Method Blank
 H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit S S

Analyte detected below quantitation limits

Spike Recovery outside accepted recovery limits

CLIENT: NYSDEC - Region 9 Client Sample ID: TP-37 and 39 and 40B Comp

Lab Order: U0709166 **Collection Date:** 9/7/2007 12:00:00 PM

Project: Friendship Foundry, Site #902017

Lab ID: U0709166-010 **Matrix:** SOIL

Analyses	Result	Limit Qual	Units	DF	Date Analyzed
PEST/PCB IN SOIL/SLUDGE		SW8081A	(SW355	0)	Analyst: KC
4,4´-DDD	ND	42	μg/Kg-dry	10	9/18/2007
4,4´-DDE	ND	42	μg/Kg-dry	10	9/18/2007
4,4´-DDT	ND	42	μg/Kg-dry	10	9/18/2007
Aldrin	ND	22	μg/Kg-dry	10	9/18/2007
alpha-BHC	ND	22	μg/Kg-dry	10	9/18/2007
alpha-Chlordane	ND	22	μg/Kg-dry	10	9/18/2007
Aroclor 1016	ND	22	μg/Kg-dry	10	9/18/2007
Aroclor 1221	ND	22	μg/Kg-dry	10	9/18/2007
Aroclor 1232	ND	22	μg/Kg-dry	10	9/18/2007
Aroclor 1242	ND	22	μg/Kg-dry	10	9/18/2007
Aroclor 1248	ND	22	μg/Kg-dry	10	9/18/2007
Aroclor 1254	ND	22	μg/Kg-dry	10	9/18/2007
Aroclor 1260	ND	22	μg/Kg-dry	10	9/18/2007
beta-BHC	ND	22	μg/Kg-dry	10	9/18/2007
delta-BHC	ND	22	μg/Kg-dry	10	9/18/2007
Dieldrin	ND	42	μg/Kg-dry	10	9/18/2007
Endosulfan I	ND	22	μg/Kg-dry	10	9/18/2007
Endosulfan II	ND	42	μg/Kg-dry	10	9/18/2007
Endosulfan sulfate	ND	42	μg/Kg-dry	10	9/18/2007
Endrin	ND	42	μg/Kg-dry	10	9/18/2007
Endrin aldehyde	ND	42	μg/Kg-dry	10	9/18/2007
Endrin ketone	ND	42	μg/Kg-dry	10	9/18/2007
gamma-BHC	ND	22	μg/Kg-dry	10	9/18/2007
gamma-Chlordane	ND	22	μg/Kg-dry	10	9/18/2007
Heptachlor	ND	22	μg/Kg-dry	10	9/18/2007
Heptachlor epoxide	ND	22	μg/Kg-dry	10	9/18/2007
Methoxychlor	ND	220	μg/Kg-dry	10	9/18/2007
Toxaphene	ND	2200	μg/Kg-dry	10	9/18/2007
NOTES:			, ,		
The reporting limits were raised due to matr	ix interference.				
CHLORINATED HERBICIDES		SW8151A	(SW355	0)	Analyst: KC
2,4,5-T	ND	42	μg/Kg-dry	1	9/20/2007
2,4,5-TP (Silvex)	ND	42	μg/Kg-dry	1	9/20/2007
2,4-D	ND	42	μg/Kg-dry	1	9/20/2007
Dicamba	ND	42	μg/Kg-dry	1	9/20/2007
Dinoseb	ND	42	μg/Kg-dry	1	9/20/2007
SOIL AND SOLID METALS BY ICP		SW6010B	(SW305	0A)	Analyst: EA
Aluminum	9000	6.4	mg/Kg-dry	1	9/17/2007 2:25:48 PM

Approved By:	Date:	Page 27 of 37

Qualifiers: * Low Level

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

** Value exceeds Maximum Contaminant Value

Date: 24-Sep-07

E Value above quantitation range

J Analyte detected below quantitation limits

CLIENT: NYSDEC - Region 9 Client Sample ID: TP-37 and 39 and 40B Comp

Lab Order: U0709166 **Collection Date:** 9/7/2007 12:00:00 PM

Project: Friendship Foundry, Site #902017

Lab ID: U0709166-010 **Matrix:** SOIL

Analyses	Result	Limit Qu	ıal (Units	DF	Date Analyzed
SOIL AND SOLID METALS BY ICP		SW6010	В	(SW305	50A)	Analyst: EA
Antimony	ND	38	n	ng/Kg-dry	1	9/17/2007 2:25:48 PM
Arsenic*	14	1.3	n	ng/Kg-dry	1	9/17/2007 2:25:48 PM
Barium	130	38	n	ng/Kg-dry	1	9/17/2007 2:25:48 PM
Beryllium	ND	0.64	n	ng/Kg-dry	1	9/17/2007 2:25:48 PM
Cadmium	1.0	0.64	n	ng/Kg-dry	1	9/17/2007 2:25:48 PM
Calcium	6400	64	n	ng/Kg-dry	1	9/17/2007 2:25:48 PM
Chromium	8.5	6.4	n	ng/Kg-dry	1	9/17/2007 2:25:48 PM
Cobalt	7.2	6.4	n	ng/Kg-dry	1	9/17/2007 2:25:48 PM
Copper	22	2.5	n	ng/Kg-dry	1	9/17/2007 2:25:48 PM
Iron	19000	3.8	n	ng/Kg-dry	1	9/17/2007 2:25:48 PM
Lead	92	13	n	ng/Kg-dry	1	9/17/2007 2:25:48 PM
Magnesium	1500	64	n	ng/Kg-dry	1	9/17/2007 2:25:48 PM
Manganese	620	2.5	n	ng/Kg-dry	1	9/17/2007 2:25:48 PM
Nickel	10	3.8	n	ng/Kg-dry	1	9/17/2007 2:25:48 PM
Potassium	530	64	n	ng/Kg-dry	1	9/17/2007 2:25:48 PM
Selenium*	4.6	0.64	n	ng/Kg-dry	1	9/17/2007 2:25:48 PM
Silver	ND	6.4	n	ng/Kg-dry	1	9/17/2007 2:25:48 PM
Sodium	ND	64	n	ng/Kg-dry	1	9/17/2007 2:25:48 PM
Thallium*	ND	0.38	n	ng/Kg-dry	1	9/17/2007 2:25:48 PM
Vanadium	10	38 J	J n	ng/Kg-dry	1	9/17/2007 2:25:48 PM
Zinc	130	1.3	n	ng/Kg-dry	1	9/17/2007 2:25:48 PM
TOTAL MERCURY - SOIL/SOLID/WAST	ΓE	SW7471	Α	(SW747	71A)	Analyst: EA
Mercury	0.12	0.254 J	J n	ng/Kg-dry	1	9/20/2007 1:27:00 PM
TCL-SEMIVOLATILE ORGANICS		SW8270	C	(SW355	50A)	Analyst: LD
(3+4)-Methylphenol	ND	420000	μ	ıg/Kg-dry	1000	9/21/2007 1:38:00 AM
1,2,4-Trichlorobenzene	ND	420000	μ	ıg/Kg-dry	1000	9/21/2007 1:38:00 AM
1,2-Dichlorobenzene	ND	420000	μ	ıg/Kg-dry	1000	9/21/2007 1:38:00 AM
1,3-Dichlorobenzene	ND	420000	μ	ıg/Kg-dry	1000	9/21/2007 1:38:00 AM
1,4-Dichlorobenzene	ND	420000	μ	ıg/Kg-dry	1000	9/21/2007 1:38:00 AM
2,4,5-Trichlorophenol	ND	420000	μ	ıg/Kg-dry	1000	9/21/2007 1:38:00 AM
2,4,6-Trichlorophenol	ND	420000	μ	ıg/Kg-dry	1000	9/21/2007 1:38:00 AM
2,4-Dichlorophenol	ND	420000	μ	ıg/Kg-dry	1000	9/21/2007 1:38:00 AM
2,4-Dimethylphenol	ND	420000	μ	ıg/Kg-dry	1000	9/21/2007 1:38:00 AM
2,4-Dinitrophenol	ND	4200000	μ	ıg/Kg-dry	1000	9/21/2007 1:38:00 AM
2,4-Dinitrotoluene	ND	420000	μ	ıg/Kg-dry	1000	9/21/2007 1:38:00 AM
2,6-Dinitrotoluene	ND	420000	μ	ıg/Kg-dry	1000	9/21/2007 1:38:00 AM
2-Chloronaphthalene	ND	420000	μ	ıg/Kg-dry	1000	9/21/2007 1:38:00 AM
2-Chlorophenol	ND	420000	μ	ıg/Kg-dry	1000	9/21/2007 1:38:00 AM

Approved By:

Qualifiers:

Low Level

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

** Value exceeds Maximum Contaminant Value

Page 28 of 37

Date: 24-Sep-07

E Value above quantitation range

Date:

J Analyte detected below quantitation limits

CLIENT: NYSDEC - Region 9 Client Sample ID: TP-37 and 39 and 40B Comp

Lab Order: U0709166 **Collection Date:** 9/7/2007 12:00:00 PM

Project: Friendship Foundry, Site #902017

Lab ID: U0709166-010 **Matrix:** SOIL

Analyses	Result	Limit Qua	l Units	DF	Date Analyzed
TCL-SEMIVOLATILE ORGANICS		SW8270C	(SW35	50A)	Analyst: LD
2-Methylnaphthalene	ND	420000	μg/Kg-dry	1000	9/21/2007 1:38:00 AM
2-Methylphenol	ND	420000	μg/Kg-dry	1000	9/21/2007 1:38:00 AM
2-Nitroaniline	ND	4200000	μg/Kg-dry	1000	9/21/2007 1:38:00 AM
2-Nitrophenol	ND	420000	μg/Kg-dry	1000	9/21/2007 1:38:00 AM
3,3´-Dichlorobenzidine	ND	420000	μg/Kg-dry	1000	9/21/2007 1:38:00 AM
3-Nitroaniline	ND	4200000	μg/Kg-dry	1000	9/21/2007 1:38:00 AM
4,6-Dinitro-2-methylphenol	ND	4200000	μg/Kg-dry	1000	9/21/2007 1:38:00 AM
4-Bromophenyl phenyl ether	ND	420000	μg/Kg-dry	1000	9/21/2007 1:38:00 AM
4-Chloro-3-methylphenol	ND	420000	μg/Kg-dry	1000	9/21/2007 1:38:00 AM
4-Chloroaniline	ND	420000	μg/Kg-dry	1000	9/21/2007 1:38:00 AM
4-Chlorophenyl phenyl ether	ND	420000	μg/Kg-dry	1000	9/21/2007 1:38:00 AM
4-Nitroaniline	ND	4200000	μg/Kg-dry	1000	9/21/2007 1:38:00 AM
4-Nitrophenol	ND	4200000	μg/Kg-dry	1000	9/21/2007 1:38:00 AM
Acenaphthene	ND	420000	μg/Kg-dry	1000	9/21/2007 1:38:00 AM
Acenaphthylene	ND	420000	μg/Kg-dry	1000	9/21/2007 1:38:00 AM
Anthracene	ND	420000	μg/Kg-dry	1000	9/21/2007 1:38:00 AM
Benz(a)anthracene	ND	420000	μg/Kg-dry	1000	9/21/2007 1:38:00 AM
Benzo(a)pyrene	ND	420000	μg/Kg-dry	1000	9/21/2007 1:38:00 AM
Benzo(b)fluoranthene	ND	420000	μg/Kg-dry	1000	9/21/2007 1:38:00 AM
Benzo(g,h,i)perylene	ND	420000	μg/Kg-dry	1000	9/21/2007 1:38:00 AM
Benzo(k)fluoranthene	ND	420000	μg/Kg-dry	1000	9/21/2007 1:38:00 AM
Bis(2-chloroethoxy)methane	ND	420000	μg/Kg-dry	1000	9/21/2007 1:38:00 AM
Bis(2-chloroethyl)ether	ND	420000	μg/Kg-dry	1000	9/21/2007 1:38:00 AM
Bis(2-chloroisopropyl)ether	ND	420000	μg/Kg-dry	1000	9/21/2007 1:38:00 AM
Bis(2-ethylhexyl)phthalate	ND	420000	μg/Kg-dry	1000	9/21/2007 1:38:00 AM
Butyl benzyl phthalate	ND	420000	μg/Kg-dry	1000	9/21/2007 1:38:00 AM
Carbazole	ND	420000	μg/Kg-dry	1000	9/21/2007 1:38:00 AM
Chrysene	ND	420000	μg/Kg-dry	1000	9/21/2007 1:38:00 AM
Di-n-butyl phthalate	ND	420000	μg/Kg-dry	1000	9/21/2007 1:38:00 AM
Di-n-octyl phthalate	ND	420000	μg/Kg-dry	1000	9/21/2007 1:38:00 AM
Dibenz(a,h)anthracene	ND	420000	μg/Kg-dry	1000	9/21/2007 1:38:00 AM
Dibenzofuran	ND	420000	μg/Kg-dry	1000	9/21/2007 1:38:00 AM
Diethyl phthalate	ND	420000	μg/Kg-dry	1000	9/21/2007 1:38:00 AM
Dimethyl phthalate	ND	420000	μg/Kg-dry	1000	9/21/2007 1:38:00 AM
Fluoranthene	ND	420000	μg/Kg-dry	1000	9/21/2007 1:38:00 AM
Fluorene	ND	420000	μg/Kg-dry	1000	9/21/2007 1:38:00 AM
Hexachlorobenzene	ND	420000	μg/Kg-dry	1000	9/21/2007 1:38:00 AM
Hexachlorobutadiene	ND	420000	μg/Kg-dry	1000	9/21/2007 1:38:00 AM
Hexachlorocyclopentadiene	ND	420000	μg/Kg-dry	1000	9/21/2007 1:38:00 AM

Approved By:

Qualifiers: * Low Level

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

Date:

4 37-1---

Page 29 of 37

** Value exceeds Maximum Contaminant Value

- E Value above quantitation range
- J Analyte detected below quantitation limits
- S Spike Recovery outside accepted recovery limits

CLIENT: NYSDEC - Region 9 Client Sample ID: TP-37 and 39 and 40B Comp

Lab Order: U0709166 **Collection Date:** 9/7/2007 12:00:00 PM

Project: Friendship Foundry, Site #902017

Lab ID: U0709166-010 **Matrix:** SOIL

Analyses	Result	Limit Qual	Units	DF	Date Analyzed
TCL-SEMIVOLATILE ORGANICS		SW8270C	(SW3550A	١)	Analyst: LD
Hexachloroethane	ND	420000	μg/Kg-dry	1000	9/21/2007 1:38:00 AM
Indeno(1,2,3-cd)pyrene	ND	420000	μg/Kg-dry	1000	9/21/2007 1:38:00 AM
Isophorone	ND	420000	μg/Kg-dry	1000	9/21/2007 1:38:00 AM
N-Nitrosodi-n-propylamine	ND	420000	μg/Kg-dry	1000	9/21/2007 1:38:00 AM
N-Nitrosodiphenylamine	ND	420000	μg/Kg-dry	1000	9/21/2007 1:38:00 AM
Naphthalene	ND	420000	μg/Kg-dry	1000	9/21/2007 1:38:00 AM
Nitrobenzene	ND	420000	μg/Kg-dry	1000	9/21/2007 1:38:00 AM
Pentachlorophenol	ND	850000	μg/Kg-dry	1000	9/21/2007 1:38:00 AM
Phenanthrene	ND	420000	μg/Kg-dry	1000	9/21/2007 1:38:00 AM
Phenol	ND	420000	μg/Kg-dry	1000	9/21/2007 1:38:00 AM
Pyrene	ND	420000	μg/Kg-dry	1000	9/21/2007 1:38:00 AM
NOTES: The reporting limits were raised due to matrix	interference.				
PHENOLICS, TOTAL RECOVERABLE FOR Phenolics, Total Recoverable	OR SOLID 0.539	E420.1 0.127	(E420.1) mg/Kg-dry	1	Analyst: MB 9/18/2007
PERCENT MOISTURE Percent Moisture	21.4	D2216 0.00100	wt%	1	Analyst: KAM 9/13/2007

Approved By:	Date:	Page 30 of 37
Qualifiers: * Low Level	**	Value exceeds Maximum Contaminant Value

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

E Value above quantitation range
 J Analyte detected below quantitation limits
 S Spike Recovery outside accepted recovery limits

CLIENT: NYSDEC - Region 9 Client Sample ID: TP-40 @ 3'

Lab Order: U0709166 Collection Date: 9/7/2007 1:00:00 PM

Project: Friendship Foundry, Site #902017

Lab ID: U0709166-011 **Matrix:** SOIL

Analyses	Result	Limit	Qual	Units	DF	Date Analyzed
POLYCHLORINATED BIPHENYLS(SOIL/S	SLUDGE)	SW8	082	(SW35	50B)	Analyst: KC
Aroclor 1016	ND	0.086		mg/Kg-dry	1	9/18/2007
Aroclor 1221	ND	0.086		mg/Kg-dry	1	9/18/2007
Aroclor 1232	ND	0.086		mg/Kg-dry	1	9/18/2007
Aroclor 1242	ND	0.086		mg/Kg-dry	1	9/18/2007
Aroclor 1248	ND	0.086		mg/Kg-dry	1	9/18/2007
Aroclor 1254	ND	0.086		mg/Kg-dry	1	9/18/2007
Aroclor 1260	ND	0.086		mg/Kg-dry	1	9/18/2007
Aroclor 1268	ND	0.086		mg/Kg-dry	1	9/18/2007
SOIL AND SOLID METALS BY ICP		SW60	10B	(SW30	50A)	Analyst: EA
Aluminum	5400	5.2		mg/Kg-dry	1	9/17/2007 2:29:54 PM
Antimony	ND	31		mg/Kg-dry	1	9/17/2007 2:29:54 PM
Arsenic*	8.7	1.0		mg/Kg-dry	1	9/17/2007 2:29:54 PM
Barium	120	31		mg/Kg-dry	1	9/17/2007 2:29:54 PM
Beryllium	ND	0.52		mg/Kg-dry	1	9/17/2007 2:29:54 PM
Cadmium	3.6	0.52		mg/Kg-dry	1	9/17/2007 2:29:54 PM
Calcium	8000	52		mg/Kg-dry	1	9/17/2007 2:29:54 PM
Chromium	24	5.2		mg/Kg-dry	1	9/17/2007 2:29:54 PM
Cobalt	6.7	5.2		mg/Kg-dry	1	9/17/2007 2:29:54 PM
Copper	130	2.1		mg/Kg-dry	1	9/17/2007 2:29:54 PM
Iron	33000	3.1		mg/Kg-dry	1	9/17/2007 2:29:54 PM
Lead	500	10		mg/Kg-dry	1	9/17/2007 2:29:54 PM
Magnesium	1900	52		mg/Kg-dry	1	9/17/2007 2:29:54 PM
Manganese	450	2.1		mg/Kg-dry	1	9/17/2007 2:29:54 PM
Nickel	24	3.1		mg/Kg-dry	1	9/17/2007 2:29:54 PM
Potassium	730	52		mg/Kg-dry	1	9/17/2007 2:29:54 PM
Selenium*	5.8	0.52	В	mg/Kg-dry	1	9/17/2007 2:29:54 PM
Silver	ND	5.2		mg/Kg-dry	1	9/17/2007 2:29:54 PM
Sodium	ND	52		mg/Kg-dry	1	9/17/2007 2:29:54 PM
Thallium*	ND	0.31		mg/Kg-dry	1	9/17/2007 2:29:54 PM
Vanadium	10	31	J	mg/Kg-dry	1	9/17/2007 2:29:54 PM
Zinc	330	1.0		mg/Kg-dry	1	9/17/2007 2:29:54 PM
TOTAL MERCURY - SOIL/SOLID/WASTE	0.40	SW74		(SW747	•	Analyst: EA
Mercury	0.16	0.208	J	mg/Kg-dry	1	9/20/2007 1:28:21 PM
PERCENT MOISTURE		D22	16			Analyst: KAM
Percent Moisture	3.90	0.00100		wt%	1	9/13/2007

Approved By:		Date:	Page 31 of 37
Qualifiers: *	Low Level	**	Value exceeds Maximum Contaminant Value

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

E Value above quantitation range

J Analyte detected below quantitation limits

Date: 24-Sep-07

CLIENT: NYSDEC - Region 9 Client Sample ID: TP-41@ 2'

Project: Friendship Foundry, Site #902017

Lab ID: U0709166-012 **Matrix:** SOIL

Analyses	Result	Limit Qual	Units	DF	Date Analyzed
SOIL AND SOLID METALS BY ICP		SW6010B	(SW305	(0A)	Analyst: EA
Aluminum	6600	5.7	mg/Kg-dry	1	9/17/2007 2:40:48 PM
Antimony	ND	34	mg/Kg-dry	1	9/17/2007 2:40:48 PM
Arsenic*	13	1.1	mg/Kg-dry	1	9/17/2007 2:40:48 PM
Barium	170	34	mg/Kg-dry	1	9/17/2007 2:40:48 PM
Beryllium	0.60	0.57	mg/Kg-dry	1	9/17/2007 2:40:48 PM
Cadmium	2.1	0.57	mg/Kg-dry	1	9/17/2007 2:40:48 PM
Calcium	4900	57	mg/Kg-dry	1	9/17/2007 2:40:48 PM
Chromium	9.9	5.7	mg/Kg-dry	1	9/17/2007 2:40:48 PM
Cobalt	8.2	5.7	mg/Kg-dry	1	9/17/2007 2:40:48 PM
Copper	150	2.3	mg/Kg-dry	1	9/17/2007 2:40:48 PM
Iron	51000	3.4	mg/Kg-dry	1	9/17/2007 2:40:48 PM
Lead	840	11	mg/Kg-dry	1	9/17/2007 2:40:48 PM
Magnesium	1700	57	mg/Kg-dry	1	9/17/2007 2:40:48 PM
Manganese	460	2.3	mg/Kg-dry	1	9/17/2007 2:40:48 PM
Nickel	21	3.4	mg/Kg-dry	1	9/17/2007 2:40:48 PM
Potassium	780	57	mg/Kg-dry	1	9/17/2007 2:40:48 PM
Selenium*	8.6	0.57	mg/Kg-dry	1	9/17/2007 2:40:48 PM
Silver	ND	5.7	mg/Kg-dry	1	9/17/2007 2:40:48 PM
Sodium	ND	57	mg/Kg-dry	1	9/17/2007 2:40:48 PM
Thallium*	ND	0.34	mg/Kg-dry	1	9/17/2007 2:40:48 PM
Vanadium	10	34 J	mg/Kg-dry	1	9/17/2007 2:40:48 PM
Zinc	450	1.1	mg/Kg-dry	1	9/17/2007 2:40:48 PM
TOTAL MERCURY - SOIL/SOLID/WAST	E	SW7471A	(SW747	'1A)	Analyst: EA
Mercury	0.12	0.228 J	mg/Kg-dry	1	9/20/2007 1:29:34 PM
PERCENT MOISTURE		D2216			Analyst: KAM
Percent Moisture	12.3	0.00100	wt%	1	9/13/2007

Approved By:	Date:	Page 32 of 37
Qualifiers: * Low Level	**	Value exceeds Maximum Contaminant Value

B Analyte detected in the associated Method Blank
 H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

E Value above quantitation rangeJ Analyte detected below quantitation limits

Date: 24-Sep-07

CLIENT: NYSDEC - Region 9 Client Sample ID: TP-31,32,and 38

Project: Friendship Foundry, Site #902017

Lab ID: U0709166-013 **Matrix:** SOIL

Analyses	Result	Limit Qual	Units	DF	Date Analyzed
PEST/PCB IN SOIL/SLUDGE		SW8081A	(SW355	60)	Analyst: KC
4,4´-DDD	ND	35	μg/Kg-dry	10	9/18/2007
4,4´-DDE	ND	35	μg/Kg-dry	10	9/18/2007
4,4´-DDT	ND	35	μg/Kg-dry	10	9/18/2007
Aldrin	ND	18	μg/Kg-dry	10	9/18/2007
alpha-BHC	ND	18	μg/Kg-dry	10	9/18/2007
alpha-Chlordane	ND	18	μg/Kg-dry	10	9/18/2007
Aroclor 1016	ND	18	μg/Kg-dry	10	9/18/2007
Aroclor 1221	ND	18	μg/Kg-dry	10	9/18/2007
Aroclor 1232	ND	18	μg/Kg-dry	10	9/18/2007
Aroclor 1242	ND	18	μg/Kg-dry	10	9/18/2007
Aroclor 1248	ND	18	μg/Kg-dry	10	9/18/2007
Aroclor 1254	ND	18	μg/Kg-dry	10	9/18/2007
Aroclor 1260	ND	18	μg/Kg-dry	10	9/18/2007
beta-BHC	ND	18	μg/Kg-dry	10	9/18/2007
delta-BHC	ND	18	μg/Kg-dry	10	9/18/2007
Dieldrin	ND	35	μg/Kg-dry	10	9/18/2007
Endosulfan I	ND	18	μg/Kg-dry	10	9/18/2007
Endosulfan II	ND	35	μg/Kg-dry	10	9/18/2007
Endosulfan sulfate	ND	35	μg/Kg-dry	10	9/18/2007
Endrin	ND	35	μg/Kg-dry	10	9/18/2007
Endrin aldehyde	ND	35	μg/Kg-dry	10	9/18/2007
Endrin ketone	ND	35	μg/Kg-dry	10	9/18/2007
gamma-BHC	ND	18	μg/Kg-dry	10	9/18/2007
gamma-Chlordane	ND	18	μg/Kg-dry	10	9/18/2007
Heptachlor	ND	18	μg/Kg-dry	10	9/18/2007
Heptachlor epoxide	ND	18	μg/Kg-dry	10	9/18/2007
Methoxychlor	ND	180	μg/Kg-dry	10	9/18/2007
Toxaphene	ND	1800	μg/Kg-dry	10	9/18/2007
NOTES:			, ,		
The reporting limits were raised due to matr	ix interference.				
CHLORINATED HERBICIDES		SW8151A	(SW355	60)	Analyst: KC
2,4,5-T	ND	35	μg/Kg-dry	1	9/20/2007
2,4,5-TP (Silvex)	ND	35	μg/Kg-dry	1	9/20/2007
2,4-D	ND	35	μg/Kg-dry	1	9/20/2007
Dicamba	ND	35	μg/Kg-dry	1	9/20/2007
Dinoseb	ND	35	μg/Kg-dry	1	9/20/2007
SOIL AND SOLID METALS BY ICP		SW6010B	(SW305	60A)	Analyst: EA
Aluminum	9200	5.3	mg/Kg-dry	1	9/17/2007 2:44:32 PM

Approved By:	Date:	Page 33 of 37
ripproved by:	Bate.	1 450 33 01 37

Qualifiers: * Low Level

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

** Value exceeds Maximum Contaminant Value

Date: 24-Sep-07

E Value above quantitation range

J Analyte detected below quantitation limits

CLIENT: NYSDEC - Region 9 Client Sample ID: TP-31,32,and 38

Project: Friendship Foundry, Site #902017

Lab ID: U0709166-013 **Matrix:** SOIL

Analyses	Result	Limit	Qual	Units	DF	Date Analyzed
SOIL AND SOLID METALS BY ICP		SW60	10B	(SW305	60A)	Analyst: EA
Antimony	ND	32		mg/Kg-dry	1	9/17/2007 2:44:32 PM
Arsenic*	10	1.1		mg/Kg-dry	1	9/17/2007 2:44:32 PM
Barium	70	32		mg/Kg-dry	1	9/17/2007 2:44:32 PM
Beryllium	ND	0.53		mg/Kg-dry	1	9/17/2007 2:44:32 PM
Cadmium	0.83	0.53		mg/Kg-dry	1	9/17/2007 2:44:32 PM
Calcium	1900	53		mg/Kg-dry	1	9/17/2007 2:44:32 PM
Chromium	12	5.3		mg/Kg-dry	1	9/17/2007 2:44:32 PM
Cobalt	6.7	5.3		mg/Kg-dry	1	9/17/2007 2:44:32 PM
Copper	37	2.1		mg/Kg-dry	1	9/17/2007 2:44:32 PM
Iron	17000	3.2		mg/Kg-dry	1	9/17/2007 2:44:32 PM
Lead	180	11		mg/Kg-dry	1	9/17/2007 2:44:32 PM
Magnesium	1400	53		mg/Kg-dry	1	9/17/2007 2:44:32 PM
Manganese	440	2.1		mg/Kg-dry	1	9/17/2007 2:44:32 PM
Nickel	11	3.2		mg/Kg-dry	1	9/17/2007 2:44:32 PM
Potassium	630	53		mg/Kg-dry	1	9/17/2007 2:44:32 PM
Selenium*	5.4	0.53	В	mg/Kg-dry	1	9/17/2007 2:44:32 PM
Silver	ND	5.3		mg/Kg-dry	1	9/17/2007 2:44:32 PM
Sodium	ND	53		mg/Kg-dry	1	9/17/2007 2:44:32 PM
Thallium*	ND	0.32		mg/Kg-dry	1	9/17/2007 2:44:32 PM
Vanadium	10	32	J	mg/Kg-dry	1	9/17/2007 2:44:32 PM
Zinc	160	1.1		mg/Kg-dry	1	9/17/2007 2:44:32 PM
TOTAL MERCURY - SOIL/SOLID/WAS	TE	SW74	71A	(SW747	'1A)	Analyst: EA
Mercury	0.11	0.213	J	mg/Kg-dry	1	9/20/2007 1:33:13 PM
TCL-SEMIVOLATILE ORGANICS		SW82	70C	(SW355	60A)	Analyst: LD
(3+4)-Methylphenol	ND	350		μg/Kg-dry	1	9/21/2007 2:21:00 AM
1,2,4-Trichlorobenzene	ND	350		μg/Kg-dry	1	9/21/2007 2:21:00 AM
1,2-Dichlorobenzene	ND	350		μg/Kg-dry	1	9/21/2007 2:21:00 AM
1,3-Dichlorobenzene	ND	350		μg/Kg-dry	1	9/21/2007 2:21:00 AM
1,4-Dichlorobenzene	ND	350		μg/Kg-dry	1	9/21/2007 2:21:00 AM
2,4,5-Trichlorophenol	ND	350		μg/Kg-dry	1	9/21/2007 2:21:00 AM
2,4,6-Trichlorophenol	ND	350		μg/Kg-dry	1	9/21/2007 2:21:00 AM
2,4-Dichlorophenol	ND	350		μg/Kg-dry	1	9/21/2007 2:21:00 AM
2,4-Dimethylphenol	ND	350		μg/Kg-dry	1	9/21/2007 2:21:00 AM
2,4-Dinitrophenol	ND	3500		μg/Kg-dry	1	9/21/2007 2:21:00 AM
2,4-Dinitrotoluene	ND	350		μg/Kg-dry	1	9/21/2007 2:21:00 AM
2,6-Dinitrotoluene	ND	350		μg/Kg-dry	1	9/21/2007 2:21:00 AM
2-Chloronaphthalene	ND	350		μg/Kg-dry	1	9/21/2007 2:21:00 AM
2-Chlorophenol	ND	350		μg/Kg-dry	1	9/21/2007 2:21:00 AM

Approved By:

Qualifiers:

Low Level

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

** Value exceeds Maximum Contaminant Value

Page 34 of 37

Date: 24-Sep-07

E Value above quantitation range

Date:

J Analyte detected below quantitation limits

CLIENT: NYSDEC - Region 9 Client Sample ID: TP-31,32,and 38

Lab Order: U0709166 **Collection Date:** 9/7/2007 2:30:00 PM

Friendship Foundry, Site #902017 **Project:**

Matrix: SOIL Lab ID: U0709166-013

Analyses	Result	Limit	Qual	Units	DF	Date Analyzed
TCL-SEMIVOLATILE ORGANICS		SW8270C		(SW3550A)		Analyst: LD
2-Methylnaphthalene	40	350	J	μg/Kg-dry	1	9/21/2007 2:21:00 AM
2-Methylphenol	ND	350		μg/Kg-dry	1	9/21/2007 2:21:00 AM
2-Nitroaniline	ND	3500		μg/Kg-dry	1	9/21/2007 2:21:00 AM
2-Nitrophenol	ND	350		μg/Kg-dry	1	9/21/2007 2:21:00 AM
3,3´-Dichlorobenzidine	ND	350		μg/Kg-dry	1	9/21/2007 2:21:00 AM
3-Nitroaniline	ND	3500		μg/Kg-dry	1	9/21/2007 2:21:00 AM
4,6-Dinitro-2-methylphenol	ND	3500		μg/Kg-dry	1	9/21/2007 2:21:00 AM
4-Bromophenyl phenyl ether	ND	350		μg/Kg-dry	1	9/21/2007 2:21:00 AM
4-Chloro-3-methylphenol	ND	350		μg/Kg-dry	1	9/21/2007 2:21:00 AM
4-Chloroaniline	ND	350		μg/Kg-dry	1	9/21/2007 2:21:00 AM
4-Chlorophenyl phenyl ether	ND	350		μg/Kg-dry	1	9/21/2007 2:21:00 AM
4-Nitroaniline	ND	3500		μg/Kg-dry	1	9/21/2007 2:21:00 AM
4-Nitrophenol	ND	3500		μg/Kg-dry	1	9/21/2007 2:21:00 AM
Acenaphthene	ND	350		μg/Kg-dry	1	9/21/2007 2:21:00 AM
Acenaphthylene	ND	350		μg/Kg-dry	1	9/21/2007 2:21:00 AM
Anthracene	ND	350		μg/Kg-dry	1	9/21/2007 2:21:00 AM
Benz(a)anthracene	ND	350		μg/Kg-dry	1	9/21/2007 2:21:00 AM
Benzo(a)pyrene	ND	350		μg/Kg-dry	1	9/21/2007 2:21:00 AM
Benzo(b)fluoranthene	ND	350		μg/Kg-dry	1	9/21/2007 2:21:00 AM
Benzo(g,h,i)perylene	ND	350		μg/Kg-dry	1	9/21/2007 2:21:00 AM
Benzo(k)fluoranthene	ND	350		μg/Kg-dry	1	9/21/2007 2:21:00 AM
Bis(2-chloroethoxy)methane	ND	350		μg/Kg-dry	1	9/21/2007 2:21:00 AM
Bis(2-chloroethyl)ether	ND	350		μg/Kg-dry	1	9/21/2007 2:21:00 AM
Bis(2-chloroisopropyl)ether	ND	350		μg/Kg-dry	1	9/21/2007 2:21:00 AM
Bis(2-ethylhexyl)phthalate	300	350	J	μg/Kg-dry	1	9/21/2007 2:21:00 AM
Butyl benzyl phthalate	ND	350		μg/Kg-dry	1	9/21/2007 2:21:00 AM
Carbazole	ND	350		μg/Kg-dry	1	9/21/2007 2:21:00 AM
Chrysene	ND	350		μg/Kg-dry	1	9/21/2007 2:21:00 AM
Di-n-butyl phthalate	ND	350		μg/Kg-dry	1	9/21/2007 2:21:00 AM
Di-n-octyl phthalate	ND	350		μg/Kg-dry	1	9/21/2007 2:21:00 AM
Dibenz(a,h)anthracene	ND	350		μg/Kg-dry	1	9/21/2007 2:21:00 AM
Dibenzofuran	ND	350		μg/Kg-dry	1	9/21/2007 2:21:00 AM
Diethyl phthalate	ND	350		μg/Kg-dry	1	9/21/2007 2:21:00 AM
Dimethyl phthalate	ND	350		μg/Kg-dry	1	9/21/2007 2:21:00 AM
Fluoranthene	100	350	J	μg/Kg-dry	1	9/21/2007 2:21:00 AM
Fluorene	ND	350		μg/Kg-dry	1	9/21/2007 2:21:00 AM
Hexachlorobenzene	ND	350		μg/Kg-dry	1	9/21/2007 2:21:00 AM
Hexachlorobutadiene	ND	350		μg/Kg-dry	1	9/21/2007 2:21:00 AM
Hexachlorocyclopentadiene	ND	350		μg/Kg-dry	1	9/21/2007 2:21:00 AM

Approved By:

Qualifiers: Low Level

- В Analyte detected in the associated Method Blank
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

Value exceeds Maximum Contaminant Value

Page 35 of 37

- Е Value above quantitation range
- J Analyte detected below quantitation limits
- Spike Recovery outside accepted recovery limits

Date:

CLIENT: NYSDEC - Region 9 Client Sample ID: TP-31,32,and 38

Project: Friendship Foundry, Site #902017

Lab ID: U0709166-013 **Matrix:** SOIL

Analyses	Result	Limit (Qual	Units	DF	Date Analyzed
TCL-SEMIVOLATILE ORGANICS		SW82	70C	(SW355	0A)	Analyst: LD
Hexachloroethane	ND	350		μg/Kg-dry	1	9/21/2007 2:21:00 AM
Indeno(1,2,3-cd)pyrene	ND	350		μg/Kg-dry	1	9/21/2007 2:21:00 AM
Isophorone	ND	350		μg/Kg-dry	1	9/21/2007 2:21:00 AM
N-Nitrosodi-n-propylamine	ND	350		μg/Kg-dry	1	9/21/2007 2:21:00 AM
N-Nitrosodiphenylamine	ND	350		μg/Kg-dry	1	9/21/2007 2:21:00 AM
Naphthalene	ND	350		μg/Kg-dry	1	9/21/2007 2:21:00 AM
Nitrobenzene	ND	350		μg/Kg-dry	1	9/21/2007 2:21:00 AM
Pentachlorophenol	ND	710		μg/Kg-dry	1	9/21/2007 2:21:00 AM
Phenanthrene	80	350	J	μg/Kg-dry	1	9/21/2007 2:21:00 AM
Phenol	ND	350		μg/Kg-dry	1	9/21/2007 2:21:00 AM
Pyrene	300	350	J	μg/Kg-dry	1	9/21/2007 2:21:00 AM
PHENOLICS, TOTAL RECOVERABLI	FOR SOLID	E420).1	(E420.1)	Analyst: MB
Phenolics, Total Recoverable	ND	0.107		mg/Kg-dry	1	9/18/2007
PERCENT MOISTURE		D22	16			Analyst: KAM
Percent Moisture	6.15	0.00100		wt%	1	9/13/2007

Approved By:	Date:	Page 36 of 37
Qualifiers: * Low Level	**	Value exceeds Maximum Contaminant Value

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

E Value above quantitation rangeJ Analyte detected below quantitation limits

Spike Recovery outside accepted recovery limits

Date: 24-Sep-07

CLIENT: NYSDEC - Region 9 Client Sample ID: Sed 1

Lab Order: U0709166 **Collection Date:** 9/7/2007 3:00:00 PM

Friendship Foundry, Site #902017 **Project:**

Matrix: SOIL Lab ID: U0709166-014

Analyses	Result	Limit Q	ual	Units	DF	Date Analyzed
SOIL AND SOLID METALS BY ICP		SW601	0B	(SW305	0A)	Analyst: EA
Aluminum	5100	6.1		mg/Kg-dry	1	9/17/2007 2:47:56 PM
Antimony	ND	36		mg/Kg-dry	1	9/17/2007 2:47:56 PM
Arsenic*	13	1.2		mg/Kg-dry	1	9/17/2007 2:47:56 PM
Barium	140	36		mg/Kg-dry	1	9/17/2007 2:47:56 PM
Beryllium	ND	0.61		mg/Kg-dry	1	9/17/2007 2:47:56 PM
Cadmium	2.5	0.61		mg/Kg-dry	1	9/17/2007 2:47:56 PM
Calcium	9100	61		mg/Kg-dry	1	9/17/2007 2:47:56 PM
Chromium	34	6.1		mg/Kg-dry	1	9/17/2007 2:47:56 PM
Cobalt	10	6.1		mg/Kg-dry	1	9/17/2007 2:47:56 PM
Copper	77	2.4		mg/Kg-dry	1	9/17/2007 2:47:56 PM
Iron	79000	18		mg/Kg-dry	5	9/17/2007 2:51:46 PM
Lead	120	12		mg/Kg-dry	1	9/17/2007 2:47:56 PM
Magnesium	4200	61		mg/Kg-dry	1	9/17/2007 2:47:56 PM
Manganese	5800	12		mg/Kg-dry	5	9/17/2007 2:51:46 PM
Nickel	35	3.6		mg/Kg-dry	1	9/17/2007 2:47:56 PM
Potassium	600	61		mg/Kg-dry	1	9/17/2007 2:47:56 PM
Selenium*	13	0.61		mg/Kg-dry	1	9/17/2007 2:47:56 PM
Silver	ND	6.1		mg/Kg-dry	1	9/17/2007 2:47:56 PM
Sodium	ND	61		mg/Kg-dry	1	9/17/2007 2:47:56 PM
Thallium*	ND	0.36		mg/Kg-dry	1	9/17/2007 2:47:56 PM
Vanadium	8	36	J	mg/Kg-dry	1	9/17/2007 2:47:56 PM
Zinc	420	1.2		mg/Kg-dry	1	9/17/2007 2:47:56 PM
TOTAL MERCURY - SOIL/SOLID/WAST	Έ	SW747	ΊΑ	(SW747	1A)	Analyst: EA
Mercury	0.019	0.243	J	mg/Kg-dry	1	9/20/2007 1:34:25 PM
PERCENT MOISTURE		D221	6			Analyst: KAM
Percent Moisture	17.6	0.00100		wt%	1	9/13/2007

Approved By:	Date:	Page 37 of 37
Qualifiers: * Low Level	**	Value exceeds Maximum Contaminant Value

В Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded Η

ND Not Detected at the Reporting Limit

Date: 24-Sep-07

Е Value above quantitation range

Analyte detected below quantitation limits J

CLIENT: NYSDEC - Region 9

Lab Order: U0709247

Project: Friendship Foundry

Lab ID: U0709247-001

Date: 21-Sep-07

Client Sample ID: TP-50

Collection Date: 9/13/2007 1:00:00 PM

Matrix: SOIL

Analyses	Result	Limit Qu	ual Units	DF	Date Analyzed
POLYCHLORINATED BIPHENYLS(SOIL/S	SLUDGE)	SW808	2 (S	W3550B)	Analyst: KC
Aroclor 1016	ND	0.10	mg/Kg-d	ry 1	9/18/2007
Aroclor 1221	ND	0.10	mg/Kg-d	ry 1	9/18/2007
Aroclor 1232	ND	0.10	mg/Kg-d	ry 1	9/18/2007
Aroclor 1242	ND	0.10	mg/Kg-d	ry 1	9/18/2007
Aroclor 1248	ND	0.10	mg/Kg-d	ry 1	9/18/2007
Aroclor 1254	ND	0.10	mg/Kg-d	ry 1	9/18/2007
Aroclor 1260	ND	0.10	mg/Kg-d	ry 1	9/18/2007
Aroclor 1268	ND	0.10	mg/Kg-d	ry 1	9/18/2007
SOIL AND SOLID METALS BY ICP		SW6010	B (S	W3050A)	Analyst: EA
Aluminum	2500	6.2	mg/Kg-d	ry 1	9/20/2007 10:29:43 AM
Antimony	ND	37	mg/Kg-d	ry 1	9/20/2007 10:29:43 AM
Arsenic*	1.5	1.2	mg/Kg-d	ry 1	9/20/2007 10:29:43 AM
Barium	30	37 J	J mg/Kg-d	ry 1	9/20/2007 10:29:43 AM
Beryllium	ND	0.62	mg/Kg-d	ry 1	9/20/2007 10:29:43 AM
Cadmium	0.63	0.62	mg/Kg-d	ry 1	9/20/2007 10:29:43 AM
Calcium	3400	62	mg/Kg-d	ry 1	9/20/2007 10:29:43 AM
Chromium	11	6.2	mg/Kg-d	ry 1	9/20/2007 10:29:43 AM
Cobalt	ND	6.2	mg/Kg-d	ry 1	9/20/2007 10:29:43 AM
Copper	18	2.5	mg/Kg-d	ry 1	9/20/2007 10:29:43 AM
Iron	11000	3.7	mg/Kg-d	ry 1	9/20/2007 10:29:43 AM
Lead	51	12	mg/Kg-d	ry 1	9/20/2007 10:29:43 AM
Magnesium	1200	62	mg/Kg-d	ry 1	9/20/2007 10:29:43 AM
Manganese	190	2.5	mg/Kg-d	ry 1	9/20/2007 10:29:43 AM
Nickel	24	3.7	mg/Kg-d	ry 1	9/20/2007 10:29:43 AM
Potassium	480	62	mg/Kg-d	ry 1	9/20/2007 10:29:43 AM
Selenium*	2.0	0.62	mg/Kg-d	ry 1	9/20/2007 10:29:43 AM
Silver	ND	6.2	mg/Kg-d	ry 1	9/20/2007 10:29:43 AM
Sodium	190	62	mg/Kg-d	ry 1	9/20/2007 10:29:43 AM
Thallium*	ND	0.37	mg/Kg-d	ry 1	9/20/2007 10:29:43 AM
Vanadium	ND	37	mg/Kg-d	ry 1	9/20/2007 10:29:43 AM
Zinc	95	1.2	mg/Kg-d	ry 1	9/20/2007 10:29:43 AM
TOTAL MERCURY - SOIL/SOLID/WASTE		SW7471	\ -	W7471A)	Analyst: EA
Mercury	0.075	0.249 J	J mg/Kg-d	ry 1	9/20/2007 1:35:25 PM
PERCENT MOISTURE		D2216			Analyst: KAM
Percent Moisture	19.8	0.00100	wt%	1	9/17/2007

Approved By:		Date:	Page 1 of 1
Qualifiers: *	Low Level	**	Value exceeds Maximum Contaminant Value

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

- E Value above quantitation range
- J Analyte detected below quantitation limits
- S Spike Recovery outside accepted recovery limits

CLIENT: NYSDEC - Region 9 Client Sample ID: B-1 @ 3-4'

Project: Friendship Foundry, Site #902017

Lab ID: U0710072-001 Matrix: SOIL

Analyses	Result	Limit Qua	l Units	DF	Date Analyzed
POLYCHLORINATED BIPHENYLS(SOIL/S	SLUDGE)	SW8082	(SW355	60B)	Analyst: KC
Aroclor 1016	ND	0.10	mg/Kg-dry	1	10/8/2007
Aroclor 1221	ND	0.10	mg/Kg-dry	1	10/8/2007
Aroclor 1232	ND	0.10	mg/Kg-dry	1	10/8/2007
Aroclor 1242	ND	0.10	mg/Kg-dry	1	10/8/2007
Aroclor 1248	ND	0.10	mg/Kg-dry	1	10/8/2007
Aroclor 1254	ND	0.10	mg/Kg-dry	1	10/8/2007
Aroclor 1260	ND	0.10	mg/Kg-dry	1	10/8/2007
Aroclor 1268	ND	0.10	mg/Kg-dry	1	10/8/2007
SOIL AND SOLID METALS BY ICP		SW6010B	(SW305	60A)	Analyst: LJ
Aluminum	13000	6.2	mg/Kg-dry	1	10/6/2007 12:42:25 PM
Antimony	ND	37	mg/Kg-dry	1	10/6/2007 12:42:25 PM
Arsenic*	7.7	1.2	mg/Kg-dry	1	10/6/2007 12:42:25 PM
Barium	130	37	mg/Kg-dry	1	10/6/2007 12:42:25 PM
Beryllium	ND	0.62	mg/Kg-dry	1	10/6/2007 12:42:25 PM
Cadmium	ND	0.62	mg/Kg-dry	1	10/6/2007 12:42:25 PM
Calcium	1400	62	mg/Kg-dry	1	10/6/2007 12:42:25 PM
Chromium	13	6.2	mg/Kg-dry	1	10/6/2007 12:42:25 PM
Cobalt	9.1	6.2	mg/Kg-dry	1	10/6/2007 12:42:25 PM
Copper	13	2.5	mg/Kg-dry	1	10/6/2007 12:42:25 PM
Iron	19000	3.7	mg/Kg-dry	1	10/6/2007 12:42:25 PM
Lead	44	12	mg/Kg-dry	1	10/6/2007 12:42:25 PM
Magnesium	2400	62	mg/Kg-dry	1	10/6/2007 12:42:25 PM
Manganese	490	2.5	mg/Kg-dry	1	10/6/2007 12:42:25 PM
Nickel	17	3.7	mg/Kg-dry	1	10/6/2007 12:42:25 PM
Potassium	1600	62	mg/Kg-dry	1	10/6/2007 12:42:25 PM
Selenium*	7.3	0.62	mg/Kg-dry	1	10/6/2007 12:42:25 PM
Silver	ND	6.2	mg/Kg-dry	1	10/6/2007 12:42:25 PM
Sodium	300	62	mg/Kg-dry	1	10/6/2007 12:42:25 PM
Thallium*	ND	0.37	mg/Kg-dry	1	10/6/2007 12:42:25 PM
Vanadium	20	37 J	mg/Kg-dry	1	10/6/2007 12:42:25 PM
Zinc	100	1.2	mg/Kg-dry	1	10/6/2007 12:42:25 PM
TOTAL MERCURY - SOIL/SOLID/WASTE Mercury	0.076	SW7471A 0.246 J	(SW747 mg/Kg-dry	'1A) 1	Analyst: EA 10/11/2007 12:14:16 PM
PERCENT MOISTURE		D2216			Analyst: KAM
Percent Moisture	18.8	0.00100	wt%	1	10/9/2007

Approved By:		Date:	Page 1 of 17
Qualifiers: *	Low Level		Value exceeds Maximum Contaminant Value

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

E Value above quantitation range

J Analyte detected below quantitation limits

Date: 19-Oct-07

CLIENT: NYSDEC - Region 9 Client Sample ID: B-2 @ 2-3'

Lab Order: U0710072 **Collection Date:** 10/3/2007 10:15:00 AM

Friendship Foundry, Site #902017 **Project:**

Matrix: SOIL Lab ID: U0710072-002

Analyses	Result	Limit Qual	Units	DF	Date Analyzed
SOIL AND SOLID METALS BY ICP		SW6010B	(SW305	(A)	Analyst: LJ
Aluminum	8100	6.6	mg/Kg-dry	1	10/6/2007 12:59:19 PM
Antimony	ND	39	mg/Kg-dry	1	10/6/2007 12:59:19 PM
Arsenic*	22	1.3	mg/Kg-dry	1	10/6/2007 12:59:19 PM
Barium	130	39	mg/Kg-dry	1	10/6/2007 12:59:19 PM
Beryllium	ND	0.66	mg/Kg-dry	1	10/6/2007 12:59:19 PM
Cadmium	2.1	0.66	mg/Kg-dry	1	10/6/2007 12:59:19 PM
Calcium	ND	66	mg/Kg-dry	1	10/6/2007 12:59:19 PM
Chromium	38	6.6	mg/Kg-dry	1	10/6/2007 12:59:19 PM
Cobalt	24	6.6	mg/Kg-dry	1	10/6/2007 12:59:19 PM
Copper	73	2.6	mg/Kg-dry	1	10/6/2007 12:59:19 PM
Iron	240000	99	mg/Kg-dry	25	10/8/2007 9:56:40 AM
Lead	230	13	mg/Kg-dry	1	10/6/2007 12:59:19 PM
Magnesium	1600	66	mg/Kg-dry	1	10/6/2007 12:59:19 PM
Manganese	1200	2.6	mg/Kg-dry	1	10/6/2007 12:59:19 PM
Nickel	53	3.9	mg/Kg-dry	1	10/6/2007 12:59:19 PM
Potassium	840	66	mg/Kg-dry	1	10/6/2007 12:59:19 PM
Selenium*	31	0.66	mg/Kg-dry	1	10/6/2007 12:59:19 PM
Silver	ND	6.6	mg/Kg-dry	1	10/6/2007 12:59:19 PM
Sodium	ND	66	mg/Kg-dry	1	10/6/2007 12:59:19 PM
Thallium*	ND	0.39	mg/Kg-dry	1	10/6/2007 12:59:19 PM
Vanadium	54	39	mg/Kg-dry	1	10/6/2007 12:59:19 PM
Zinc	170	1.3	mg/Kg-dry	1	10/6/2007 12:59:19 PM
TOTAL MERCURY - SOIL/SOLID/WAS	TE	SW7471A	(SW747	'1A)	Analyst: EA
Mercury	0.18	0.263 J	mg/Kg-dry	1	10/11/2007 12:15:16 PM
PERCENT MOISTURE		D2216			Analyst: KAM
Percent Moisture	24.0	0.00100	wt%	1	10/9/2007

Approved By:	Date:	Page 2 of 17
Qualifiers: * Low Level	**	Value exceeds Maximum Contaminant Value

В Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded Η

ND Not Detected at the Reporting Limit

Date: 19-Oct-07

Ε Value above quantitation range

Analyte detected below quantitation limits J

CLIENT: NYSDEC - Region 9 Client Sample ID: B-3 @ 4-7'

Project: Friendship Foundry, Site #902017

Lab ID: U0710072-003 Matrix: SOIL

POLYCHLORINATED BIPHENYLS(SOIL Aroclor 1016 Aroclor 1221 Aroclor 1232	/SLUDGE) ND ND ND	SW808 0.099 0.099	2 (SW359 mg/Kg-dry	,	Analyst: KC
Aroclor 1221	ND		ma/Ka-dry	-	
		0.000	mg/ng ary	1	10/8/2007
Aroclor 1232	ND	0.099	mg/Kg-dry	1	10/8/2007
		0.099	mg/Kg-dry	1	10/8/2007
Aroclor 1242	ND	0.099	mg/Kg-dry	1	10/8/2007
Aroclor 1248	ND	0.099	mg/Kg-dry	1	10/8/2007
Aroclor 1254	ND	0.099	mg/Kg-dry	1	10/8/2007
Aroclor 1260	ND	0.099	mg/Kg-dry	1	10/8/2007
Aroclor 1268	ND	0.099	mg/Kg-dry	1	10/8/2007
SOIL AND SOLID METALS BY ICP		SW6010)B (SW30	50A)	Analyst: LJ
Aluminum	10000	6.0	mg/Kg-dry	1	10/6/2007 1:10:18 PM
Antimony	ND	36	mg/Kg-dry	1	10/6/2007 1:10:18 PM
Arsenic*	8.7	1.2	mg/Kg-dry	1	10/6/2007 1:10:18 PM
Barium	82	36	mg/Kg-dry	1	10/6/2007 1:10:18 PM
Beryllium	ND	0.60	mg/Kg-dry	1	10/6/2007 1:10:18 PM
Cadmium	ND	0.60	mg/Kg-dry	1	10/6/2007 1:10:18 PM
Calcium	970	60	mg/Kg-dry	1	10/6/2007 1:10:18 PM
Chromium	12	6.0	mg/Kg-dry	1	10/6/2007 1:10:18 PM
Cobalt	9.4	6.0	mg/Kg-dry	1	10/6/2007 1:10:18 PM
Copper	9.2	2.4	mg/Kg-dry	1	10/6/2007 1:10:18 PM
Iron	19000	3.6	mg/Kg-dry	1	10/6/2007 1:10:18 PM
Lead	17	12	mg/Kg-dry	1	10/6/2007 1:10:18 PM
Magnesium	2100	60	mg/Kg-dry	1	10/6/2007 1:10:18 PM
Manganese	730	2.4	mg/Kg-dry	1	10/6/2007 1:10:18 PM
Nickel	18	3.6	mg/Kg-dry	1	10/6/2007 1:10:18 PM
Potassium	1200	60	mg/Kg-dry	1	10/6/2007 1:10:18 PM
Selenium*	6.1	0.60	mg/Kg-dry	1	10/6/2007 1:10:18 PM
Silver	ND	6.0	mg/Kg-dry	1	10/6/2007 1:10:18 PM
Sodium	460	60	mg/Kg-dry	1	10/6/2007 1:10:18 PM
Thallium*	ND	0.36	mg/Kg-dry	1	10/6/2007 1:10:18 PM
Vanadium	10	36	J mg/Kg-dry	1	10/6/2007 1:10:18 PM
Zinc	58	1.2	mg/Kg-dry	1	10/6/2007 1:10:18 PM
TOTAL MERCURY - SOIL/SOLID/WAST	E	SW7471	A (SW74	71A)	Analyst: EA
Mercury	0.024	0.239	J mg/Kg-dry	1	10/11/2007 12:16:37 PM
TCL-SEMIVOLATILE ORGANICS		SW8270	C (SW35	50A)	Analyst: LD
(3+4)-Methylphenol	ND	390	μg/Kg-dry	1	10/5/2007 4:30:00 PM
1,2,4-Trichlorobenzene	ND	390	μg/Kg-dry	1	10/5/2007 4:30:00 PM
1,2-Dichlorobenzene	ND	390	μg/Kg-dry	1	10/5/2007 4:30:00 PM

Approved By: Page 3 of 17

Qualifiers: * Low Level

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

** Value exceeds Maximum Contaminant Value

Date: 19-Oct-07

E Value above quantitation range

J Analyte detected below quantitation limits

CLIENT: NYSDEC - Region 9 Client Sample ID: B-3 @ 4-7'

Project: Friendship Foundry, Site #902017

Lab ID: U0710072-003 Matrix: SOIL

Analyses	Result	Limit Qual	Units	DF	Date Analyzed
TCL-SEMIVOLATILE ORGANICS		SW8270C	(SW355	50A)	Analyst: LD
1,3-Dichlorobenzene	ND	390	μg/Kg-dry	1	10/5/2007 4:30:00 PM
1,4-Dichlorobenzene	ND	390	μg/Kg-dry	1	10/5/2007 4:30:00 PM
2,4,5-Trichlorophenol	ND	390	μg/Kg-dry	1	10/5/2007 4:30:00 PM
2,4,6-Trichlorophenol	ND	390	μg/Kg-dry	1	10/5/2007 4:30:00 PM
2,4-Dichlorophenol	ND	390	μg/Kg-dry	1	10/5/2007 4:30:00 PM
2,4-Dimethylphenol	ND	390	μg/Kg-dry	1	10/5/2007 4:30:00 PM
2,4-Dinitrophenol	ND	3900	μg/Kg-dry	1	10/5/2007 4:30:00 PM
2,4-Dinitrotoluene	ND	390	μg/Kg-dry	1	10/5/2007 4:30:00 PM
2,6-Dinitrotoluene	ND	390	μg/Kg-dry	1	10/5/2007 4:30:00 PM
2-Chloronaphthalene	ND	390	μg/Kg-dry	1	10/5/2007 4:30:00 PM
2-Chlorophenol	ND	390	μg/Kg-dry	1	10/5/2007 4:30:00 PM
2-Methylnaphthalene	ND	390	μg/Kg-dry	1	10/5/2007 4:30:00 PM
2-Methylphenol	ND	390	μg/Kg-dry	1	10/5/2007 4:30:00 PM
2-Nitroaniline	ND	3900	μg/Kg-dry	1	10/5/2007 4:30:00 PM
2-Nitrophenol	ND	390	μg/Kg-dry	1	10/5/2007 4:30:00 PM
3,3´-Dichlorobenzidine	ND	390	μg/Kg-dry	1	10/5/2007 4:30:00 PM
3-Nitroaniline	ND	3900	μg/Kg-dry	1	10/5/2007 4:30:00 PM
4,6-Dinitro-2-methylphenol	ND	3900	μg/Kg-dry	1	10/5/2007 4:30:00 PM
4-Bromophenyl phenyl ether	ND	390	μg/Kg-dry	1	10/5/2007 4:30:00 PM
4-Chloro-3-methylphenol	ND	390	μg/Kg-dry	1	10/5/2007 4:30:00 PM
4-Chloroaniline	ND	390	μg/Kg-dry	1	10/5/2007 4:30:00 PM
4-Chlorophenyl phenyl ether	ND	390	μg/Kg-dry	1	10/5/2007 4:30:00 PM
4-Nitroaniline	ND	3900	μg/Kg-dry	1	10/5/2007 4:30:00 PM
4-Nitrophenol	ND	3900	μg/Kg-dry	1	10/5/2007 4:30:00 PM
Acenaphthene	ND	390	μg/Kg-dry	1	10/5/2007 4:30:00 PM
Acenaphthylene	ND	390	μg/Kg-dry	1	10/5/2007 4:30:00 PM
Anthracene	ND	390	μg/Kg-dry	1	10/5/2007 4:30:00 PM
Benz(a)anthracene	ND	390	μg/Kg-dry	1	10/5/2007 4:30:00 PM
Benzo(a)pyrene	ND	390	μg/Kg-dry	1	10/5/2007 4:30:00 PM
Benzo(b)fluoranthene	ND	390	μg/Kg-dry	1	10/5/2007 4:30:00 PM
Benzo(g,h,i)perylene	ND	390	μg/Kg-dry	1	10/5/2007 4:30:00 PM
Benzo(k)fluoranthene	ND	390	μg/Kg-dry	1	10/5/2007 4:30:00 PM
Bis(2-chloroethoxy)methane	ND	390	μg/Kg-dry	1	10/5/2007 4:30:00 PM
Bis(2-chloroethyl)ether	ND	390	μg/Kg-dry	1	10/5/2007 4:30:00 PM
Bis(2-chloroisopropyl)ether	ND	390	μg/Kg-dry	1	10/5/2007 4:30:00 PM
Bis(2-ethylhexyl)phthalate	440	390	μg/Kg-dry	1	10/5/2007 4:30:00 PM
Butyl benzyl phthalate	ND	390	μg/Kg-dry	1	10/5/2007 4:30:00 PM
Carbazole	ND	390	μg/Kg-dry	1	10/5/2007 4:30:00 PM
Chrysene	ND	390	μg/Kg-dry	1	10/5/2007 4:30:00 PM

Approve	d Bv:
---------	-------

Qualifiers: * Low Level

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

Date:

37 - 1-- -

Page 4 of 17

** Value exceeds Maximum Contaminant Value

Date: 19-Oct-07

- E Value above quantitation range
- J Analyte detected below quantitation limits
- S Spike Recovery outside accepted recovery limits

CLIENT: NYSDEC - Region 9 Client Sample ID: B-3 @ 4-7'

Project: Friendship Foundry, Site #902017

Lab ID: U0710072-003 Matrix: SOIL

Analyses	Result	Limit	Qual	Units	DF	Date Analyzed
TCL-SEMIVOLATILE ORGANICS		SW82	270C	(SW35	50A)	Analyst: LD
Di-n-butyl phthalate	80	390	J	μg/Kg-dry	1	10/5/2007 4:30:00 PM
Di-n-octyl phthalate	ND	390		μg/Kg-dry	1	10/5/2007 4:30:00 PM
Dibenz(a,h)anthracene	ND	390		μg/Kg-dry	1	10/5/2007 4:30:00 PM
Dibenzofuran	ND	390		μg/Kg-dry	1	10/5/2007 4:30:00 PM
Diethyl phthalate	ND	390		μg/Kg-dry	1	10/5/2007 4:30:00 PM
Dimethyl phthalate	ND	390		μg/Kg-dry	1	10/5/2007 4:30:00 PM
Fluoranthene	ND	390		μg/Kg-dry	1	10/5/2007 4:30:00 PM
Fluorene	ND	390		μg/Kg-dry	1	10/5/2007 4:30:00 PM
Hexachlorobenzene	ND	390		μg/Kg-dry	1	10/5/2007 4:30:00 PM
Hexachlorobutadiene	ND	390		μg/Kg-dry	1	10/5/2007 4:30:00 PM
Hexachlorocyclopentadiene	ND	390		μg/Kg-dry	1	10/5/2007 4:30:00 PM
Hexachloroethane	ND	390		μg/Kg-dry	1	10/5/2007 4:30:00 PM
Indeno(1,2,3-cd)pyrene	ND	390		μg/Kg-dry	1	10/5/2007 4:30:00 PM
Isophorone	ND	390		μg/Kg-dry	1	10/5/2007 4:30:00 PM
N-Nitrosodi-n-propylamine	ND	390		μg/Kg-dry	1	10/5/2007 4:30:00 PM
N-Nitrosodiphenylamine	ND	390		μg/Kg-dry	1	10/5/2007 4:30:00 PM
Naphthalene	ND	390		μg/Kg-dry	1	10/5/2007 4:30:00 PM
Nitrobenzene	ND	390		μg/Kg-dry	1	10/5/2007 4:30:00 PM
Pentachlorophenol	ND	800		μg/Kg-dry	1	10/5/2007 4:30:00 PM
Phenanthrene	ND	390		μg/Kg-dry	1	10/5/2007 4:30:00 PM
Phenol	80	390	J	μg/Kg-dry	1	10/5/2007 4:30:00 PM
Pyrene	ND	390		μg/Kg-dry	1	10/5/2007 4:30:00 PM
TCL VOLATILE ORGANICS		SW82	260B			Analyst: AT
1,1,1-Trichloroethane	ND	3.6		μg/Kg-dry	1	10/18/2007 2:06:00 PM
1,1,2,2-Tetrachloroethane	ND	3.6		μg/Kg-dry	1	10/18/2007 2:06:00 PM
1,1,2-Trichloroethane	ND	3.6		μg/Kg-dry	1	10/18/2007 2:06:00 PM
1,1-Dichloroethane	ND	3.6		μg/Kg-dry	1	10/18/2007 2:06:00 PM
1,1-Dichloroethene	ND	3.6		μg/Kg-dry	1	10/18/2007 2:06:00 PM
1,2-Dichloroethane	ND	3.6		μg/Kg-dry	1	10/18/2007 2:06:00 PM
1,2-Dichloropropane	ND	3.6		μg/Kg-dry	1	10/18/2007 2:06:00 PM
2-Butanone	ND	12		μg/Kg-dry	1	10/18/2007 2:06:00 PM
2-Hexanone	ND	12		μg/Kg-dry	1	10/18/2007 2:06:00 PM
4-Methyl-2-pentanone	ND	12		μg/Kg-dry	1	10/18/2007 2:06:00 PM
Acetone	60	12		μg/Kg-dry	1	10/18/2007 2:06:00 PM
Benzene	ND	3.6		μg/Kg-dry	1	10/18/2007 2:06:00 PM
Bromodichloromethane	ND	3.6		μg/Kg-dry	1	10/18/2007 2:06:00 PM
Bromoform	ND	3.6		μg/Kg-dry	1	10/18/2007 2:06:00 PM
Bromomethane	ND	3.6		μg/Kg-dry	1	10/18/2007 2:06:00 PM

Approved By:	Date:	Page 5 of 17

Qualifiers: * Low Level

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

** Value exceeds Maximum Contaminant Value

Date: 19-Oct-07

E Value above quantitation range

J Analyte detected below quantitation limits

CLIENT: NYSDEC - Region 9 Client Sample ID: B-3 @ 4-7'

Project: Friendship Foundry, Site #902017

Lab ID: U0710072-003 Matrix: SOIL

Analyses	Result	Limit Qual	Units	DF	Date Analyzed
TCL VOLATILE ORGANICS		SW8260B			Analyst: AT
Carbon disulfide	ND	3.6	μg/Kg-dry	1	10/18/2007 2:06:00 PM
Carbon tetrachloride	ND	3.6	μg/Kg-dry	1	10/18/2007 2:06:00 PM
Chlorobenzene	ND	3.6	μg/Kg-dry	1	10/18/2007 2:06:00 PM
Chloroethane	ND	3.6	μg/Kg-dry	1	10/18/2007 2:06:00 PM
Chloroform	ND	3.6	μg/Kg-dry	1	10/18/2007 2:06:00 PM
Chloromethane	ND	3.6	μg/Kg-dry	1	10/18/2007 2:06:00 PM
cis-1,2-Dichloroethene	ND	3.6	μg/Kg-dry	1	10/18/2007 2:06:00 PM
cis-1,3-Dichloropropene	ND	3.6	μg/Kg-dry	1	10/18/2007 2:06:00 PM
Dibromochloromethane	ND	3.6	μg/Kg-dry	1	10/18/2007 2:06:00 PM
Ethylbenzene	ND	3.6	μg/Kg-dry	1	10/18/2007 2:06:00 PM
m,p-Xylene	ND	3.6	μg/Kg-dry	1	10/18/2007 2:06:00 PM
Methylene chloride	6.5	3.6	μg/Kg-dry	1	10/18/2007 2:06:00 PM
o-Xylene	ND	3.6	μg/Kg-dry	1	10/18/2007 2:06:00 PM
Styrene	ND	3.6	μg/Kg-dry	1	10/18/2007 2:06:00 PM
Tetrachloroethene	ND	3.6	μg/Kg-dry	1	10/18/2007 2:06:00 PM
Toluene	ND	3.6	μg/Kg-dry	1	10/18/2007 2:06:00 PM
trans-1,2-Dichloroethene	ND	3.6	μg/Kg-dry	1	10/18/2007 2:06:00 PM
trans-1,3-Dichloropropene	ND	3.6	μg/Kg-dry	1	10/18/2007 2:06:00 PM
Trichloroethene	ND	3.6	μg/Kg-dry	1	10/18/2007 2:06:00 PM
Vinyl chloride	ND	2.4	μg/Kg-dry	1	10/18/2007 2:06:00 PM
PHENOLICS, TOTAL RECOVERAB	LE FOR SOLID	E420.1	(E420.1)	Analyst: MB
Phenolics, Total Recoverable	0.193	0.119	mg/Kg-dry	1	10/9/2007
HEXAVALENT CHROMIUM		SW7196A			Analyst: DEY
Chromium, Hexavalent	ND	0.48	mg/Kg-dry	2	10/4/2007 9:45:00 AM
PERCENT MOISTURE		D2216			Analyst: KAM
Percent Moisture	16.3	0.00100	wt%	1	10/9/2007

Approved By:	Date:	Page 6 of 17
Qualifiers: * Low Level	**	Value exceeds Maximum Contaminant Value

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

E Value above quantitation range

J Analyte detected below quantitation limits

Date: 19-Oct-07

CLIENT: NYSDEC - Region 9 Client Sample ID: B-4 @ 3-4'

Lab Order: U0710072 **Collection Date:** 10/3/2007 11:30:00 AM

Friendship Foundry, Site #902017 **Project:**

Matrix: SOIL Lab ID: U0710072-004

Analyses	Result	Limit Qual	Units	DF	Date Analyzed
POLYCHLORINATED BIPHENYLS(SOIL/S	SLUDGE)	SW8082	(SW355	60B)	Analyst: KC
Aroclor 1016	ND	0.10	mg/Kg-dry	1	10/8/2007
Aroclor 1221	ND	0.10	mg/Kg-dry	1	10/8/2007
Aroclor 1232	ND	0.10	mg/Kg-dry	1	10/8/2007
Aroclor 1242	ND	0.10	mg/Kg-dry	1	10/8/2007
Aroclor 1248	ND	0.10	mg/Kg-dry	1	10/8/2007
Aroclor 1254	ND	0.10	mg/Kg-dry	1	10/8/2007
Aroclor 1260	ND	0.10	mg/Kg-dry	1	10/8/2007
Aroclor 1268	ND	0.10	mg/Kg-dry	1	10/8/2007
SOIL AND SOLID METALS BY ICP		SW6010B	(SW305	60A)	Analyst: LJ
Aluminum	11000	6.1	mg/Kg-dry	1	10/6/2007 1:14:12 PM
Antimony	ND	36	mg/Kg-dry	1	10/6/2007 1:14:12 PM
Arsenic*	4.8	1.2	mg/Kg-dry	1	10/6/2007 1:14:12 PM
Barium	71	36	mg/Kg-dry	1	10/6/2007 1:14:12 PM
Beryllium	ND	0.61	mg/Kg-dry	1	10/6/2007 1:14:12 PM
Cadmium	ND	0.61	mg/Kg-dry	1	10/6/2007 1:14:12 PM
Calcium	1400	61	mg/Kg-dry	1	10/6/2007 1:14:12 PM
Chromium	11	6.1	mg/Kg-dry	1	10/6/2007 1:14:12 PM
Cobalt	9.2	6.1	mg/Kg-dry	1	10/6/2007 1:14:12 PM
Copper	8.2	2.4	mg/Kg-dry	1	10/6/2007 1:14:12 PM
Iron	16000	3.6	mg/Kg-dry	1	10/6/2007 1:14:12 PM
Lead	16	12	mg/Kg-dry	1	10/6/2007 1:14:12 PM
Magnesium	2000	61	mg/Kg-dry	1	10/6/2007 1:14:12 PM
Manganese	770	2.4	mg/Kg-dry	1	10/6/2007 1:14:12 PM
Nickel	14	3.6	mg/Kg-dry	1	10/6/2007 1:14:12 PM
Potassium	1200	61	mg/Kg-dry	1	10/6/2007 1:14:12 PM
Selenium*	5.5	0.61	mg/Kg-dry	1	10/6/2007 1:14:12 PM
Silver	ND	6.1	mg/Kg-dry	1	10/6/2007 1:14:12 PM
Sodium	300	61	mg/Kg-dry	1	10/6/2007 1:14:12 PM
Thallium*	ND	0.36	mg/Kg-dry	1	10/6/2007 1:14:12 PM
Vanadium	10	36 J	mg/Kg-dry	1	10/6/2007 1:14:12 PM
Zinc	60	1.2	mg/Kg-dry	1	10/6/2007 1:14:12 PM
TOTAL MERCURY - SOIL/SOLID/WASTE Mercury	0.022	SW7471A 0.243 J	(SW747 mg/Kg-dry	'1A) 1	Analyst: EA 10/11/2007 12:17:49 PM
PERCENT MOISTURE		D2216			Analyst: KAM
Percent Moisture	17.7	0.00100	wt%	1	10/9/2007

Approved I	By: _		Date:	Page 7 of 17
Qualifiers:	*	Low Level	**	Value exceeds Maximum Contaminant Value
	В	Analyte detected in the associated Method Blank	Е	Value above quantitation range

Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded Η

ND Not Detected at the Reporting Limit

Analyte detected below quantitation limits J

Date: 19-Oct-07

CLIENT: NYSDEC - Region 9 Client Sample ID: B-5 @ 4-5'

Project: Friendship Foundry, Site #902017

Lab ID: U0710072-005 Matrix: SOIL

Analyses	Result	Limit Qua	l Units	DF	Date Analyzed
POLYCHLORINATED BIPHENYLS(SOIL/S	SLUDGE)	SW8082	(SW35	50B)	Analyst: KC
Aroclor 1016	ND	0.10	mg/Kg-dry	1	10/8/2007
Aroclor 1221	ND	0.10	mg/Kg-dry	1	10/8/2007
Aroclor 1232	ND	0.10	mg/Kg-dry	1	10/8/2007
Aroclor 1242	ND	0.10	mg/Kg-dry	1	10/8/2007
Aroclor 1248	ND	0.10	mg/Kg-dry	1	10/8/2007
Aroclor 1254	ND	0.10	mg/Kg-dry	1	10/8/2007
Aroclor 1260	ND	0.10	mg/Kg-dry	1	10/8/2007
Aroclor 1268	ND	0.10	mg/Kg-dry	1	10/8/2007
SOIL AND SOLID METALS BY ICP		SW6010B	(SW305	50A)	Analyst: LJ
Aluminum	6000	6.3	mg/Kg-dry	1	10/6/2007 1:18:04 PM
Antimony	ND	38	mg/Kg-dry	1	10/6/2007 1:18:04 PM
Arsenic*	5.2	1.3	mg/Kg-dry	1	10/6/2007 1:18:04 PM
Barium	63	38	mg/Kg-dry	1	10/6/2007 1:18:04 PM
Beryllium	ND	0.63	mg/Kg-dry	1	10/6/2007 1:18:04 PM
Cadmium	ND	0.63	mg/Kg-dry	1	10/6/2007 1:18:04 PM
Calcium	4000	63	mg/Kg-dry	1	10/6/2007 1:18:04 PM
Chromium	11	6.3	mg/Kg-dry	1	10/6/2007 1:18:04 PM
Cobalt	8.6	6.3	mg/Kg-dry	1	10/6/2007 1:18:04 PM
Copper	22	2.5	mg/Kg-dry	1	10/6/2007 1:18:04 PM
Iron	24000	3.8	mg/Kg-dry	1	10/6/2007 1:18:04 PM
Lead	49	13	mg/Kg-dry	1	10/6/2007 1:18:04 PM
Magnesium	1400	63	mg/Kg-dry	1	10/6/2007 1:18:04 PM
Manganese	330	2.5	mg/Kg-dry	1	10/6/2007 1:18:04 PM
Nickel	14	3.8	mg/Kg-dry	1	10/6/2007 1:18:04 PM
Potassium	1200	63	mg/Kg-dry	1	10/6/2007 1:18:04 PM
Selenium*	6.1	0.63	mg/Kg-dry	1	10/6/2007 1:18:04 PM
Silver	ND	6.3	mg/Kg-dry	1	10/6/2007 1:18:04 PM
Sodium	120	63	mg/Kg-dry	1	10/6/2007 1:18:04 PM
Thallium*	ND	0.38	mg/Kg-dry	1	10/6/2007 1:18:04 PM
Vanadium	20	38 J	mg/Kg-dry	1	10/6/2007 1:18:04 PM
Zinc	97	1.3	mg/Kg-dry	1	10/6/2007 1:18:04 PM
TOTAL MERCURY - SOIL/SOLID/WASTE		SW7471A	\ -	71A)	Analyst: EA
Mercury	0.10	0.252 J	mg/Kg-dry	1	10/11/2007 12:18:48 PM
PERCENT MOISTURE		D2216			Analyst: KAM
Percent Moisture	20.6	0.00100	wt%	1	10/9/2007

Approved By:		Date:	Page 8 of 17
Qualifiers: *	Low Level		Value exceeds Maximum Contaminant Value

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

E Value above quantitation range

J Analyte detected below quantitation limits

Date: 19-Oct-07

CLIENT: NYSDEC - Region 9 Client Sample ID: B-8 @ 6-7'

Lab Order: U0710072 **Collection Date:** 10/3/2007 12:45:00 PM

Project: Friendship Foundry, Site #902017

Lab ID: U0710072-006 Matrix: SOIL

Aroclor 1016	Analyses	Result	Limit Qual	Units	DF	Date Analyzed
Arcolor 1221 Arcolor 1232 Arcolor 1232 ND 0.095 mg/kg-dry 1 10/8/2007 Arcolor 1242 ND 0.095 mg/kg-dry 1 10/8/2007 Arcolor 1248 ND 0.095 mg/kg-dry 1 10/8/2007 Arcolor 1248 ND 0.095 mg/kg-dry 1 10/8/2007 Arcolor 1260 ND 0.095 mg/kg-dry 1 10/8/2007 Arcolor 1260 ND 0.095 mg/kg-dry 1 10/8/2007 Arcolor 1260 ND 0.095 mg/kg-dry 1 10/8/2007 Arcolor 1268 ND 0.095 mg/kg-dry 1 10/8/2007 Arcolor 1268 ND 0.095 mg/kg-dry 1 10/8/2007 Arcolor 1268 ND 0.095 mg/kg-dry 1 10/8/2007 Arcolor 1268 ND 0.095 Mg/kg-dry 1 10/8/2007 Araclor 1268 ND 0.095 Mg/kg-dry 1 10/8/2007 Arcolor 1268 ND 0.095 Mg/kg-dry 1 10/8/2007 Arcolor 1224:17 PM Arsonic* 15 1.1 mg/kg-dry 1 10/8/2007 1:22:17 PM Arsonic* 15 1.1 mg/kg-dry 1 10/8/2007 1:22:17 PM Barium 120 34 mg/kg-dry 1 10/8/2007 1:22:17 PM Cadmium ND 0.57 mg/kg-dry 1 10/8/2007 1:22:17 PM Calcium 520 57 mg/kg-dry 1 10/8/2007 1:22:17 PM Calcium 520 57 mg/kg-dry 1 10/8/2007 1:22:17 PM Calcium 520 57 mg/kg-dry 1 10/8/2007 1:22:17 PM Calcium 520 57 mg/kg-dry 1 10/8/2007 1:22:17 PM Cobalt 9,6 5,7 mg/kg-dry 1 10/8/2007 1:22:17 PM Copper 11 2,3 mg/kg-dry 1 10/8/2007 1:22:17 PM Copper 11 2,3 mg/kg-dry 1 10/8/2007 1:22:17 PM Manganese 200 3,4 mg/kg-dry 1 10/8/2007 1:22:17 PM Manganese 2000 2,3 mg/kg-dry 1 10/8/2007 1:22:17 PM Manganese 2000 2,3 mg/kg-dry 1 10/8/2007 1:22:17 PM Manganese 2000 2,3 mg/kg-dry 1 10/8/2007 1:22:17 PM Manganese 2000 2,3 mg/kg-dry 1 10/8/2007 1:22:17 PM Manganese 2000 2,3 mg/kg-dry 1 10/8/2007 1:22:17 PM Manganese 2000 2,3 mg/kg-dry 1 10/8/2007 1:22:17 PM Manganese 2000 2,3 mg/kg-dry 1 10/8/2007 1:22:17 PM Manganese 2000 2,3 mg/kg-dry 1 10/8/2007 1:22:17 PM Manganese 2000 2,3 mg/kg-dry 1 10/8/2007 1:22:17 PM Manganese 2000 2,3 mg/kg-dry 1 10/8/2007 1:22:17 PM Manganese 2000 2,3 mg/kg-dry 1 10/8/2007 1:22:17 PM Manganese 2000 2,3 mg/kg-dry 1 10/8/2007 1:22:17 PM Manganese 2000 2,3 mg/kg-dry 1 10/8/2007 1:22:17 PM Manganese 2000 2,3 mg/kg-dry 1 10/8/2007 1:22:17 PM Manganese 2000 2,3 mg/kg-dry 1 10/8/2007 1:22:17 PM Manganese 2000 2,3 mg/kg-dry 1 10/8/2007 1:22:17 PM Manganese 2000 2	POLYCHLORINATED BIPHENYLS(SOIL/SLUDGE)		SW8082	(SW355	50B)	Analyst: KC
Arcolor 1232 ND 0.095 mg/Kg-dry 1 10/8/2007 Arcolor 1242 ND 0.095 mg/Kg-dry 1 10/8/2007 Arcolor 1248 ND 0.095 mg/Kg-dry 1 10/8/2007 Arcolor 1254 ND 0.095 mg/Kg-dry 1 10/8/2007 Arcolor 1266 ND 0.095 mg/Kg-dry 1 10/8/2007 Arcolor 1268 ND 0.095 mg/Kg-dry 1 10/8/2007 Arcolor 1268 ND 0.095 mg/Kg-dry 1 10/8/2007 Arcolor 1268 ND 0.095 mg/Kg-dry 1 10/8/2007 Arcolor 1268 ND 0.095 mg/Kg-dry 1 10/8/2007 Arcolor 1268 ND 0.095 mg/Kg-dry 1 10/8/2007 Arcolor 1268 ND 0.095 mg/Kg-dry 1 10/8/2007 Arcolor 1268 ND 0.095 mg/Kg-dry 1 10/8/2007 Arcolor 1268 ND 0.095 mg/Kg-dry 1 10/6/2007 122:17 PM Antimony ND 34 mg/Kg-dry 1 10/6/2007 122:17 PM Arsenic* 15 1.1 mg/Kg-dry 1 10/6/2007 122:17 PM Barium 120 34 mg/Kg-dry 1 10/6/2007 122:17 PM Beryllium ND 0.57 mg/Kg-dry 1 10/6/2007 122:17 PM Beryllium ND 0.57 mg/Kg-dry 1 10/6/2007 122:17 PM Cadmium ND 0.57 mg/Kg-dry 1 10/6/2007 122:17 PM Calcium 520 57 mg/Kg-dry 1 10/6/2007 122:17 PM Cobalt 9.6 5.7 mg/Kg-dry 1 10/6/2007 122:17 PM Cobalt 9.6 5.7 mg/Kg-dry 1 10/6/2007 122:17 PM Copper 11 2.3 mg/Kg-dry 1 10/6/2007 122:17 PM Lead 18 11 mg/Kg-dry 1 10/6/2007 122:17 PM Lead 18 11 mg/Kg-dry 1 10/6/2007 122:17 PM Magnesium 1900 3.4 mg/Kg-dry 1 10/6/2007 122:17 PM Magnesium 1900 57 mg/Kg-dry 1 10/6/2007 122:17 PM Nickel 19 3.4 mg/Kg-dry 1 10/6/2007 122:17 PM Nickel 19 3.4 mg/Kg-dry 1 10/6/2007 122:17 PM Nickel 19 3.4 mg/Kg-dry 1 10/6/2007 122:17 PM Nickel 19 3.4 mg/Kg-dry 1 10/6/2007 122:17 PM Nickel 19 3.4 mg/Kg-dry 1 10/6/2007 122:17 PM Nickel 19 3.4 mg/Kg-dry 1 10/6/2007 122:17 PM Nickel 19 3.4 mg/Kg-dry 1 10/6/2007 122:17 PM Nickel 19 3.4 mg/Kg-dry 1 10/6/2007 122:17 PM Nickel 19 3.4 mg/Kg-dry 1 10/6/2007 122:17 PM Nickel 19 3.4 mg/Kg-dry 1 10/6/2007 122:17 PM Nickel 19 3.4 mg/Kg-dry 1 10/6/2007 122:17 PM Nickel 19 3.4 mg/Kg-dry 1 10/6/2007 122:17 PM Nickel 19 3.4 mg/Kg-dry 1 10/6/2007 122:17 PM Nickel 19 3.4 mg/Kg-dry 1 10/6/2007 122:17 PM Nickel 19 3.4 mg/Kg-dry 1 10/6/2007 122:17 PM Nickel 19 3.4 mg/Kg-dry 1 10/6/2007 122:17 PM Nickel 19 3.4 mg/Kg-dry 1 10/6/2007 122:17 PM Nickel 19 3.4 mg/Kg	Aroclor 1016	ND	0.095	mg/Kg-dry	1	10/8/2007
Aroclor 1242 ND 0.095 mg/Kg-dny 1 10/8/2007 Aroclor 1248 ND 0.095 mg/Kg-dny 1 10/8/2007 Aroclor 1254 ND 0.095 mg/Kg-dny 1 10/8/2007 Aroclor 1260 ND 0.095 mg/Kg-dny 1 10/8/2007 Aroclor 1268 ND 0.095 mg/Kg-dny 1 10/8/2007 Aroclor 1268 ND 0.095 mg/Kg-dny 1 10/8/2007 Aroclor 1268 ND 0.095 mg/Kg-dny 1 10/8/2007 Aroclor 1268 ND 0.095 mg/Kg-dny 1 10/8/2007 SOIL AND SOLID METALS BY ICP Aluminum 9500 5.7 mg/Kg-dny 1 10/6/2007 122:17 PM Arsenic* 15 1.1 mg/Kg-dny 1 10/6/2007 122:17 PM Barium 120 34 mg/Kg-dny 1 10/6/2007 122:17 PM Barium ND 0.57 mg/Kg-dny 1 10/6/2007 122:17 PM Cadmium ND 0.57 mg/Kg-dny 1 10/6/2007 122:17 PM Cadmium ND 0.57 mg/Kg-dny 1 10/6/2007 122:17 PM Calcium 520 57 mg/Kg-dny 1 10/6/2007 122:17 PM Calcium 520 57 mg/Kg-dny 1 10/6/2007 122:17 PM Cobalt 9.6 5.7 mg/Kg-dny 1 10/6/2007 122:17 PM Copper 11 2.3 mg/Kg-dny 1 10/6/2007 122:17 PM Copper 11 2.3 mg/Kg-dny 1 10/6/2007 122:17 PM Lead 18 11 mg/Kg-dny 1 10/6/2007 122:17 PM Magnesium 1900 3.4 mg/Kg-dny 1 10/6/2007 122:17 PM Magnesium 1900 57 mg/Kg-dny 1 10/6/2007 122:17 PM Magnesium 1900 59 mg/Kg-dny 1 10/6/2007 122:17 PM	Aroclor 1221	ND	0.095	mg/Kg-dry	1	10/8/2007
Aroclor 1248	Aroclor 1232	ND	0.095	mg/Kg-dry	1	10/8/2007
Aroclor 1254 ND 0.095 mg/Kg-dry 1 10/8/2007 Aroclor 1260 ND 0.095 mg/Kg-dry 1 10/8/2007 Aroclor 1268 ND 0.095 mg/Kg-dry 1 10/8/2007 SOIL AND SOLID METALS BY ICP SW6010B (SW3050A) Analyst: LJ Aluminum 9500 5.7 mg/Kg-dry 1 10/6/2007 1:22:17 PM Antimony ND 34 mg/Kg-dry 1 10/6/2007 1:22:17 PM Arsenic* 15 1.1 mg/Kg-dry 1 10/6/2007 1:22:17 PM Barium ND 0.57 mg/Kg-dry 1 10/6/2007 1:22:17 PM Cadmium ND 0.57 mg/Kg-dry 1 10/6/2007 1:22:17 PM Calcium 520 57 mg/Kg-dry 1 10/6/2007 1:22:17 PM Cobalt 9.6 5.7 mg/Kg-dry 1 10/6/2007 1:22:17 PM Copper 11 2.3 mg/Kg-dry 1 10/6/2007 1:22:17 PM Lead 18	Aroclor 1242	ND	0.095	mg/Kg-dry	1	10/8/2007
Aroclor 1260 Aroclor 1268 ND O.095 mg/Kg-dry 1 10/8/2007 SOIL AND SOLID METALS BY ICP Aluminum 9500 5.7 mg/Kg-dry 1 10/6/2007 1:22:17 PM Antimony ND Arsenic* 15 1.1 mg/Kg-dry 1 10/6/2007 1:22:17 PM Barium 120 34 mg/Kg-dry 1 10/6/2007 1:22:17 PM Cadmium ND O.57 mg/Kg-dry 1 10/6/2007 1:22:17 PM Calcium ND Calcium 9500 5.7 mg/Kg-dry 1 10/6/2007 1:22:17 PM Calcium ND Cobalt 190 Cobalt 9.6 5.7 mg/Kg-dry 1 10/6/2007 1:22:17 PM Copper 11 2.3 mg/Kg-dry 1 10/6/2007 1:22:17 PM Copper 11 2.3 mg/Kg-dry 1 10/6/2007 1:22:17 PM Copper 11 2.3 mg/Kg-dry 1 10/6/2007 1:22:17 PM Magnesium 1900 3.4 mg/Kg-dry 1 10/6/2007 1:22:17 PM Magnesium 1900 3.4 mg/Kg-dry 1 10/6/2007 1:22:17 PM Magnesium 1900 57 mg/Kg-dry 1 10/6/2007 1:22:17 PM Magnesium 1900 57 mg/Kg-dry 1 10/6/2007 1:22:17 PM Magnesium 1900 57 mg/Kg-dry 1 10/6/2007 1:22:17 PM Magnesium 1900 57 mg/Kg-dry 1 10/6/2007 1:22:17 PM Magnesium 1900 57 mg/Kg-dry 1 10/6/2007 1:22:17 PM Magnesium 1900 57 mg/Kg-dry 1 10/6/2007 1:22:17 PM Magnesium 1900 57 mg/Kg-dry 1 10/6/2007 1:22:17 PM Magnesium 1900 57 mg/Kg-dry 1 10/6/2007 1:22:17 PM Magnesium 1900 57 mg/Kg-dry 1 10/6/2007 1:22:17 PM Mickel 19 3.4 mg/Kg-dry 1 10/6/2007 1:22:17 PM Selenium* 7.3 0.57 mg/Kg-dry 1 10/6/2007 1:22:17 PM Selenium* ND Sodium 75 57 mg/Kg-dry 1 10/6/2007 1:22:17 PM Vanadium 10 34 J mg/Kg-dry 1 10/6/2007 1:22:17 PM Vanadium 10 34 J mg/Kg-dry 1 10/6/2007 1:22:17 PM Vanadium 10 34 J mg/Kg-dry 1 10/6/2007 1:22:17 PM Vanadium 10 34 J mg/Kg-dry 1 10/6/2007 1:22:17 PM Vanadium 10 34 J mg/Kg-dry 1 10/6/2007 1:22:17 PM Vanadium 10 34 J mg/Kg-dry 1 10/6/2007 1:22:17 PM Vanadium 10 34 J mg/Kg-dry 1 10/6/2007 1:22:17 PM Vanadium 10 36 VANATIA VANAGUM VANATILE ORGANICS SW8270E (SW3550A) Analyst: LD Anal	Aroclor 1248	ND	0.095	mg/Kg-dry	1	10/8/2007
Aroclor 1268 ND 0.095 mg/Kg-dry 1 10/8/2007	Aroclor 1254	ND	0.095	mg/Kg-dry	1	10/8/2007
SW610B SW650A Analyst: LJ	Aroclor 1260	ND	0.095	mg/Kg-dry	1	10/8/2007
Aluminum	Aroclor 1268	ND	0.095	mg/Kg-dry	1	10/8/2007
Antimony ND 34 mg/Kg-dry 1 10/6/2007 1:22:17 PM Arsenic* 15 1.1 mg/Kg-dry 1 10/6/2007 1:22:17 PM Barium 120 34 mg/Kg-dry 1 10/6/2007 1:22:17 PM Beryllium ND 0.57 mg/Kg-dry 1 10/6/2007 1:22:17 PM Cadmium ND 0.57 mg/Kg-dry 1 10/6/2007 1:22:17 PM Calcium 520 57 mg/Kg-dry 1 10/6/2007 1:22:17 PM Chromium 9.2 5.7 mg/Kg-dry 1 10/6/2007 1:22:17 PM Cobalt 9.6 5.7 mg/Kg-dry 1 10/6/2007 1:22:17 PM Copper 11 2.3 mg/Kg-dry 1 10/6/2007 1:22:17 PM Lead 18 11 mg/Kg-dry 1 10/6/2007 1:22:17 PM Magnesium 1900 57 mg/Kg-dry 1 10/6/2007 1:22:17 PM Manganese 2000 2.3 mg/Kg-dry 1 10/6/2007 1:22:17 PM <tr< td=""><td>SOIL AND SOLID METALS BY ICP</td><td></td><td>SW6010B</td><td>(SW305</td><td>50A)</td><td>Analyst: LJ</td></tr<>	SOIL AND SOLID METALS BY ICP		SW6010B	(SW305	50A)	Analyst: LJ
Arsenic* 15 1.1 mg/Kg-dry 1 10/6/2007 1:22:17 PM Barium 120 34 mg/Kg-dry 1 10/6/2007 1:22:17 PM Beryllium ND 0.57 mg/Kg-dry 1 10/6/2007 1:22:17 PM Cadmium ND 0.57 mg/Kg-dry 1 10/6/2007 1:22:17 PM Calcium S20 57 mg/Kg-dry 1 10/6/2007 1:22:17 PM Chromium 9.2 5.7 mg/Kg-dry 1 10/6/2007 1:22:17 PM Chromium 9.2 5.7 mg/Kg-dry 1 10/6/2007 1:22:17 PM Cobalt 9.6 5.7 mg/Kg-dry 1 10/6/2007 1:22:17 PM Copper 11 2.3 mg/Kg-dry 1 10/6/2007 1:22:17 PM Lead 18 11 mg/Kg-dry 1 10/6/2007 1:22:17 PM Lead 18 11 mg/Kg-dry 1 10/6/2007 1:22:17 PM Magnesium 1900 57 mg/Kg-dry 1 10/6/2007 1:22:17 PM Magnesium 1900 57 mg/Kg-dry 1 10/6/2007 1:22:17 PM Manganese 2000 2.3 mg/Kg-dry 1 10/6/2007 1:22:17 PM Nickel 19 3.4 mg/Kg-dry 1 10/6/2007 1:22:17 PM Potassium 1100 57 mg/Kg-dry 1 10/6/2007 1:22:17 PM Selenium* 7.3 0.57 mg/Kg-dry 1 10/6/2007 1:22:17 PM Selenium* 7.3 0.57 mg/Kg-dry 1 10/6/2007 1:22:17 PM Sodium 75 57 mg/Kg-dry 1 10/6/2007 1:22:17 PM Sodium 75 57 mg/Kg-dry 1 10/6/2007 1:22:17 PM Thallium* ND 0.34 mg/Kg-dry 1 10/6/2007 1:22:17 PM Total Mercury - Soil/SoliD/WASTE Mercury 0.034 SW270C (SW3550A) Analyst: EA Mercury 0.034 SW8270C (SW3550A) Analyst: LD TCL-SEMIVOLATILE ORGANICS SW8270C (SW3550A) 10/6/2007 6:47:00 PM 1,2,4-Trichlorobenzene ND 3800 µg/Kg-dry 10 10/6/2007 6:47:00 PM	Aluminum	9500	5.7	mg/Kg-dry	1	10/6/2007 1:22:17 PM
Barium 120 34 mg/Kg-dry 1 10/6/2007 1:22:17 PM Beryllium ND 0.57 mg/Kg-dry 1 10/6/2007 1:22:17 PM Cadmium ND 0.57 mg/Kg-dry 1 10/6/2007 1:22:17 PM Calcium 520 57 mg/Kg-dry 1 10/6/2007 1:22:17 PM Chromium 9.2 5.7 mg/Kg-dry 1 10/6/2007 1:22:17 PM Chobalt 9.6 5.7 mg/Kg-dry 1 10/6/2007 1:22:17 PM Copper 11 2.3 mg/Kg-dry 1 10/6/2007 1:22:17 PM Iron 19000 3.4 mg/Kg-dry 1 10/6/2007 1:22:17 PM Lead 18 11 mg/Kg-dry 1 10/6/2007 1:22:17 PM Magnesium 1900 57 mg/Kg-dry 1 10/6/2007 1:22:17 PM Mackel 19 3.4 mg/Kg-dry 1 10/6/2007 1:22:17 PM Nickel 19 3.4 mg/Kg-dry 1 10/6/2007 1:22:17 PM	Antimony	ND	34	mg/Kg-dry	1	10/6/2007 1:22:17 PM
Beryllium ND 0.57 mg/Kg-dry 1 10/6/2007 1:22:17 PM Cadmium ND 0.57 mg/Kg-dry 1 10/6/2007 1:22:17 PM Calcium 520 57 mg/Kg-dry 1 10/6/2007 1:22:17 PM Chromium 9.2 5.7 mg/Kg-dry 1 10/6/2007 1:22:17 PM Cobalt 9.6 5.7 mg/Kg-dry 1 10/6/2007 1:22:17 PM Copper 11 2.3 mg/Kg-dry 1 10/6/2007 1:22:17 PM Iron 19000 3.4 mg/Kg-dry 1 10/6/2007 1:22:17 PM Lead 18 11 mg/Kg-dry 1 10/6/2007 1:22:17 PM Magnesium 1900 57 mg/Kg-dry 1 10/6/2007 1:22:17 PM Mickel 19 3.4 mg/Kg-dry 1 10/6/2007 1:22:17 PM Nickel 19 3.4 mg/Kg-dry 1 10/6/2007 1:22:17 PM Potassium 1100 57 mg/Kg-dry 1 10/6/2007 1:22:17 PM	Arsenic*	15	1.1	mg/Kg-dry	1	10/6/2007 1:22:17 PM
Cadmium ND 0.57 mg/Kg-dry 1 10/6/2007 1:22:17 PM Calcium 520 57 mg/Kg-dry 1 10/6/2007 1:22:17 PM Chromium 9.2 5.7 mg/Kg-dry 1 10/6/2007 1:22:17 PM Cobalt 9.6 5.7 mg/Kg-dry 1 10/6/2007 1:22:17 PM Copper 11 2.3 mg/Kg-dry 1 10/6/2007 1:22:17 PM Iron 1900 3.4 mg/Kg-dry 1 10/6/2007 1:22:17 PM Lead 18 11 mg/Kg-dry 1 10/6/2007 1:22:17 PM Magnesium 1900 57 mg/Kg-dry 1 10/6/2007 1:22:17 PM Manganese 2000 2.3 mg/Kg-dry 1 10/6/2007 1:22:17 PM Nickel 19 3.4 mg/Kg-dry 1 10/6/2007 1:22:17 PM Potassium 1100 57 mg/Kg-dry 1 10/6/2007 1:22:17 PM Selenium* 7.3 0.57 mg/Kg-dry 1 10/6/2007 1:22:17 PM <t< td=""><td>Barium</td><td>120</td><td>34</td><td>mg/Kg-dry</td><td>1</td><td>10/6/2007 1:22:17 PM</td></t<>	Barium	120	34	mg/Kg-dry	1	10/6/2007 1:22:17 PM
Calcium 520 57 mg/Kg-dry 1 10/6/2007 1:22:17 PM Chromium 9.2 5.7 mg/Kg-dry 1 10/6/2007 1:22:17 PM Cobalt 9.6 5.7 mg/Kg-dry 1 10/6/2007 1:22:17 PM Copper 11 2.3 mg/Kg-dry 1 10/6/2007 1:22:17 PM Iron 19000 3.4 mg/Kg-dry 1 10/6/2007 1:22:17 PM Lead 18 11 mg/Kg-dry 1 10/6/2007 1:22:17 PM Magnesium 1900 57 mg/Kg-dry 1 10/6/2007 1:22:17 PM Manganese 2000 2.3 mg/Kg-dry 1 10/6/2007 1:22:17 PM Nickel 19 3.4 mg/Kg-dry 1 10/6/2007 1:22:17 PM Potassium 1100 57 mg/Kg-dry 1 10/6/2007 1:22:17 PM Selenium* 7.3 0.57 mg/Kg-dry 1 10/6/2007 1:22:17 PM Sodium 75 57 mg/Kg-dry 1 10/6/2007 1:22:17 PM	Beryllium	ND	0.57	mg/Kg-dry	1	10/6/2007 1:22:17 PM
Chromium 9.2 5.7 mg/Kg-dry 1 10/6/2007 1:22:17 PM Cobalt 9.6 5.7 mg/Kg-dry 1 10/6/2007 1:22:17 PM Copper 11 2.3 mg/Kg-dry 1 10/6/2007 1:22:17 PM Iron 19000 3.4 mg/Kg-dry 1 10/6/2007 1:22:17 PM Lead 18 11 mg/Kg-dry 1 10/6/2007 1:22:17 PM Magnesium 1900 57 mg/Kg-dry 1 10/6/2007 1:22:17 PM Manganese 2000 2.3 mg/Kg-dry 1 10/6/2007 1:22:17 PM Nickel 19 3.4 mg/Kg-dry 1 10/6/2007 1:22:17 PM Potassium 1100 57 mg/Kg-dry 1 10/6/2007 1:22:17 PM Potassium* 1100 57 mg/Kg-dry 1 10/6/2007 1:22:17 PM Potassium* 1100 57 mg/Kg-dry 1 10/6/2007 1:22:17 PM Silver ND 5.7 mg/Kg-dry 1 10/6/2007 1:22:17 PM	Cadmium	ND	0.57	mg/Kg-dry	1	10/6/2007 1:22:17 PM
Cobalt 9.6 5.7 mg/Kg-dry 1 10/6/2007 1:22:17 PM Copper 11 2.3 mg/Kg-dry 1 10/6/2007 1:22:17 PM Iron 19000 3.4 mg/Kg-dry 1 10/6/2007 1:22:17 PM Lead 18 11 mg/Kg-dry 1 10/6/2007 1:22:17 PM Magnesium 1900 57 mg/Kg-dry 1 10/6/2007 1:22:17 PM Manganese 2000 2.3 mg/Kg-dry 1 10/6/2007 1:22:17 PM Nickel 19 3.4 mg/Kg-dry 1 10/6/2007 1:22:17 PM Potassium 1100 57 mg/Kg-dry 1 10/6/2007 1:22:17 PM Selenium* 7.3 0.57 mg/Kg-dry 1 10/6/2007 1:22:17 PM Silver ND 5.7 mg/Kg-dry 1 10/6/2007 1:22:17 PM Sodium 75 57 mg/Kg-dry 1 10/6/2007 1:22:17 PM Vanadium* 10 34 J mg/Kg-dry 1 10/6/2007 1:22:17 PM <tr< td=""><td>Calcium</td><td>520</td><td>57</td><td>mg/Kg-dry</td><td>1</td><td>10/6/2007 1:22:17 PM</td></tr<>	Calcium	520	57	mg/Kg-dry	1	10/6/2007 1:22:17 PM
Copper 11 2.3 mg/Kg-dry 1 10/6/2007 1:22:17 PM Iron 19000 3.4 mg/Kg-dry 1 10/6/2007 1:22:17 PM Lead 18 11 mg/Kg-dry 1 10/6/2007 1:22:17 PM Magnesium 1900 57 mg/Kg-dry 1 10/6/2007 1:22:17 PM Manganese 2000 2.3 mg/Kg-dry 1 10/6/2007 1:22:17 PM Nickel 19 3.4 mg/Kg-dry 1 10/6/2007 1:22:17 PM Potassium 1100 57 mg/Kg-dry 1 10/6/2007 1:22:17 PM Selenium* 7.3 0.57 mg/Kg-dry 1 10/6/2007 1:22:17 PM Silver ND 5.7 mg/Kg-dry 1 10/6/2007 1:22:17 PM Sodium 75 57 mg/Kg-dry 1 10/6/2007 1:22:17 PM Thallium* ND 0.34 mg/Kg-dry 1 10/6/2007 1:22:17 PM Vanadium 10 34 J mg/Kg-dry 1 10/6/2007 1:22:17 PM	Chromium	9.2	5.7	mg/Kg-dry	1	10/6/2007 1:22:17 PM
Iron	Cobalt	9.6	5.7	mg/Kg-dry	1	10/6/2007 1:22:17 PM
Lead 18 11 mg/Kg-dry 1 10/6/2007 1:22:17 PM Magnesium 1900 57 mg/Kg-dry 1 10/6/2007 1:22:17 PM Manganese 2000 2.3 mg/Kg-dry 1 10/6/2007 1:22:17 PM Nickel 19 3.4 mg/Kg-dry 1 10/6/2007 1:22:17 PM Potassium 1100 57 mg/Kg-dry 1 10/6/2007 1:22:17 PM Selenium* 7.3 0.57 mg/Kg-dry 1 10/6/2007 1:22:17 PM Silver ND 5.7 mg/Kg-dry 1 10/6/2007 1:22:17 PM Sodium 75 57 mg/Kg-dry 1 10/6/2007 1:22:17 PM Thallium* ND 0.34 mg/Kg-dry 1 10/6/2007 1:22:17 PM Vanadium 10 34 J mg/Kg-dry 1 10/6/2007 1:22:17 PM TOTAL MERCURY - SOIL/SOLID/WASTE SW7471A (SW7471A) Analyst: EA Mercury 0.034 0.228 J mg/Kg-dry 1 10/6/2007 1:22:07 P	Copper	11	2.3	mg/Kg-dry	1	10/6/2007 1:22:17 PM
Magnesium 1900 57 mg/Kg-dry 1 10/6/2007 1:22:17 PM Manganese 2000 2.3 mg/Kg-dry 1 10/6/2007 1:22:17 PM Nickel 19 3.4 mg/Kg-dry 1 10/6/2007 1:22:17 PM Potassium 1100 57 mg/Kg-dry 1 10/6/2007 1:22:17 PM Selenium* 7.3 0.57 mg/Kg-dry 1 10/6/2007 1:22:17 PM Silver ND 5.7 mg/Kg-dry 1 10/6/2007 1:22:17 PM Sodium 75 57 mg/Kg-dry 1 10/6/2007 1:22:17 PM Thallium* ND 0.34 mg/Kg-dry 1 10/6/2007 1:22:17 PM Vanadium 10 34 J mg/Kg-dry 1 10/6/2007 1:22:17 PM TOTAL MERCURY - SOIL/SOLID/WASTE SW7471A (SW7471A) Analyst: EA Mercury 0.034 0.228 J mg/Kg-dry 1 10/11/2007 12:20:07 PM TCL-SEMIVOLATILE ORGANICS SW8270C (SW3550A) Analyst: LD	Iron	19000	3.4	mg/Kg-dry	1	10/6/2007 1:22:17 PM
Manganese 2000 2.3 mg/Kg-dry 1 10/6/2007 1:22:17 PM Nickel 19 3.4 mg/Kg-dry 1 10/6/2007 1:22:17 PM Potassium 1100 57 mg/Kg-dry 1 10/6/2007 1:22:17 PM Selenium* 7.3 0.57 mg/Kg-dry 1 10/6/2007 1:22:17 PM Silver ND 5.7 mg/Kg-dry 1 10/6/2007 1:22:17 PM Sodium 75 57 mg/Kg-dry 1 10/6/2007 1:22:17 PM Thallium* ND 0.34 mg/Kg-dry 1 10/6/2007 1:22:17 PM Vanadium 10 34 J mg/Kg-dry 1 10/6/2007 1:22:17 PM TOTAL MERCURY - SOIL/SOLID/WASTE SW7471A (SW7471A) Analyst: EA Mercury 0.034 0.228 J mg/Kg-dry 1 10/11/2007 12:20:07 PM TCL-SEMIVOLATILE ORGANICS SW8270C (SW3550A) Analyst: LD (3+4)-Methylphenol ND 3800 µg/Kg-dry 10 10/8/2007 6:47:00 PM	Lead	18	11	mg/Kg-dry	1	10/6/2007 1:22:17 PM
Nickel 19 3.4 mg/Kg-dry 1 10/6/2007 1:22:17 PM Potassium 1100 57 mg/Kg-dry 1 10/6/2007 1:22:17 PM Selenium* 7.3 0.57 mg/Kg-dry 1 10/6/2007 1:22:17 PM Silver ND 5.7 mg/Kg-dry 1 10/6/2007 1:22:17 PM Sodium 75 57 mg/Kg-dry 1 10/6/2007 1:22:17 PM Thallium* ND 0.34 mg/Kg-dry 1 10/6/2007 1:22:17 PM Vanadium 10 34 J mg/Kg-dry 1 10/6/2007 1:22:17 PM Zinc 50 1.1 mg/Kg-dry 1 10/6/2007 1:22:17 PM TOTAL MERCURY - SOIL/SOLID/WASTE Mercury SW7471A (SW7471A) Analyst: EA Mercury 0.034 0.228 J mg/Kg-dry 1 10/11/2007 12:20:07 PM TCL-SEMIVOLATILE ORGANICS SW8270C (SW3550A) Analyst: LD (3+4)-Methylphenol ND 3800 μg/Kg-dry 10 10/8/2007 6:47:	Magnesium	1900	57	mg/Kg-dry	1	10/6/2007 1:22:17 PM
Potassium 1100 57 mg/Kg-dry 1 10/6/2007 1:22:17 PM Selenium* 7.3 0.57 mg/Kg-dry 1 10/6/2007 1:22:17 PM Silver ND 5.7 mg/Kg-dry 1 10/6/2007 1:22:17 PM Sodium 75 57 mg/Kg-dry 1 10/6/2007 1:22:17 PM Thallium* ND 0.34 mg/Kg-dry 1 10/6/2007 1:22:17 PM Vanadium 10 34 J mg/Kg-dry 1 10/6/2007 1:22:17 PM Zinc 50 1.1 mg/Kg-dry 1 10/6/2007 1:22:17 PM TOTAL MERCURY - SOIL/SOLID/WASTE Mercury SW7471A (SW7471A) Analyst: EA Mercury 0.034 0.228 J mg/Kg-dry 1 10/11/2007 12:20:07 PM TCL-SEMIVOLATILE ORGANICS SW8270C (SW3550A) Analyst: LD (3+4)-Methylphenol ND 3800 µg/Kg-dry 10 10/8/2007 6:47:00 PM 1,2,4-Trichlorobenzene ND 3800 µg/Kg-dry 10 <td>Manganese</td> <td>2000</td> <td>2.3</td> <td>mg/Kg-dry</td> <td>1</td> <td>10/6/2007 1:22:17 PM</td>	Manganese	2000	2.3	mg/Kg-dry	1	10/6/2007 1:22:17 PM
Selenium* 7.3 0.57 mg/Kg-dry 1 10/6/2007 1:22:17 PM Silver ND 5.7 mg/Kg-dry 1 10/6/2007 1:22:17 PM Sodium 75 57 mg/Kg-dry 1 10/6/2007 1:22:17 PM Thallium* ND 0.34 mg/Kg-dry 1 10/6/2007 1:22:17 PM Vanadium 10 34 J mg/Kg-dry 1 10/6/2007 1:22:17 PM Zinc 50 1.1 mg/Kg-dry 1 10/6/2007 1:22:17 PM TOTAL MERCURY - SOIL/SOLID/WASTE SW7471A (SW7471A) Analyst: EA Mercury 0.034 0.228 J mg/Kg-dry 1 10/11/2007 12:20:07 PM TCL-SEMIVOLATILE ORGANICS SW8270C (SW3550A) Analyst: LD (3+4)-Methylphenol ND 3800 μg/Kg-dry 10 10/8/2007 6:47:00 PM 1,2,4-Trichlorobenzene ND 3800 μg/Kg-dry 10 10/8/2007 6:47:00 PM	Nickel	19	3.4	mg/Kg-dry	1	10/6/2007 1:22:17 PM
Silver ND 5.7 mg/Kg-dry 1 10/6/2007 1:22:17 PM Sodium 75 57 mg/Kg-dry 1 10/6/2007 1:22:17 PM Thallium* ND 0.34 mg/Kg-dry 1 10/6/2007 1:22:17 PM Vanadium 10 34 J mg/Kg-dry 1 10/6/2007 1:22:17 PM Zinc 50 1.1 mg/Kg-dry 1 10/6/2007 1:22:17 PM TOTAL MERCURY - SOIL/SOLID/WASTE SW7471A (SW7471A) Analyst: EA Mercury 0.034 0.228 J mg/Kg-dry 1 10/11/2007 12:20:07 PM TCL-SEMIVOLATILE ORGANICS SW8270C (SW3550A) Analyst: LD (3+4)-Methylphenol ND 3800 μg/Kg-dry 10 10/8/2007 6:47:00 PM 1,2,4-Trichlorobenzene ND 3800 μg/Kg-dry 10 10/8/2007 6:47:00 PM	Potassium	1100	57	mg/Kg-dry	1	10/6/2007 1:22:17 PM
Sodium 75 57 mg/Kg-dry 1 10/6/2007 1:22:17 PM Thallium* ND 0.34 mg/Kg-dry 1 10/6/2007 1:22:17 PM Vanadium 10 34 J mg/Kg-dry 1 10/6/2007 1:22:17 PM Zinc 50 1.1 mg/Kg-dry 1 10/6/2007 1:22:17 PM TOTAL MERCURY - SOIL/SOLID/WASTE SW7471A (SW7471A) Analyst: EA Mercury 0.034 0.228 J mg/Kg-dry 1 10/11/2007 12:20:07 PM TCL-SEMIVOLATILE ORGANICS SW8270C (SW3550A) Analyst: LD (3+4)-Methylphenol ND 3800 μg/Kg-dry 10 10/8/2007 6:47:00 PM 1,2,4-Trichlorobenzene ND 3800 μg/Kg-dry 10 10/8/2007 6:47:00 PM	Selenium*	7.3	0.57	mg/Kg-dry	1	10/6/2007 1:22:17 PM
Thallium* ND 0.34 mg/Kg-dry 1 10/6/2007 1:22:17 PM Vanadium 10 34 J mg/Kg-dry 1 10/6/2007 1:22:17 PM Zinc 50 1.1 mg/Kg-dry 1 10/6/2007 1:22:17 PM TOTAL MERCURY - SOIL/SOLID/WASTE SW7471A (SW7471A) Analyst: EA Mercury 0.034 0.228 J mg/Kg-dry 1 10/11/2007 12:20:07 PM TCL-SEMIVOLATILE ORGANICS SW8270C (SW3550A) Analyst: LD (3+4)-Methylphenol ND 3800 μg/Kg-dry 10 10/8/2007 6:47:00 PM 1,2,4-Trichlorobenzene ND 3800 μg/Kg-dry 10 10/8/2007 6:47:00 PM	Silver	ND	5.7	mg/Kg-dry	1	10/6/2007 1:22:17 PM
Vanadium 10 34 J mg/Kg-dry 1 10/6/2007 1:22:17 PM Zinc 50 1.1 mg/Kg-dry 1 10/6/2007 1:22:17 PM TOTAL MERCURY - SOIL/SOLID/WASTE SW7471A (SW7471A) Analyst: EA Mercury 0.034 0.228 J mg/Kg-dry 1 10/11/2007 12:20:07 PM TCL-SEMIVOLATILE ORGANICS SW8270C (SW3550A) Analyst: LD (3+4)-Methylphenol ND 3800 μg/Kg-dry 10 10/8/2007 6:47:00 PM 1,2,4-Trichlorobenzene ND 3800 μg/Kg-dry 10 10/8/2007 6:47:00 PM	Sodium	75	57	mg/Kg-dry	1	10/6/2007 1:22:17 PM
Zinc 50 1.1 mg/Kg-dry 1 10/6/2007 1:22:17 PM TOTAL MERCURY - SOIL/SOLID/WASTE Mercury SW7471A O.228 J mg/Kg-dry (SW7471A) 1 10/11/2007 12:20:07 PM TCL-SEMIVOLATILE ORGANICS SW8270C (SW3550A) Analyst: LD (3+4)-Methylphenol ND 3800 μg/Kg-dry 10 10/8/2007 6:47:00 PM 1,2,4-Trichlorobenzene ND 3800 μg/Kg-dry 10 10/8/2007 6:47:00 PM	Thallium*	ND	0.34	mg/Kg-dry	1	10/6/2007 1:22:17 PM
TOTAL MERCURY - SOIL/SOLID/WASTE SW7471A (SW7471A) Analyst: EA Mercury 0.034 0.228 J mg/Kg-dry 1 10/11/2007 12:20:07 PM TCL-SEMIVOLATILE ORGANICS SW8270C (SW3550A) Analyst: LD (3+4)-Methylphenol ND 3800 μg/Kg-dry 10 10/8/2007 6:47:00 PM 1,2,4-Trichlorobenzene ND 3800 μg/Kg-dry 10 10/8/2007 6:47:00 PM	Vanadium	10	34 J	mg/Kg-dry	1	10/6/2007 1:22:17 PM
Mercury 0.034 0.228 J mg/Kg-dry 1 10/11/2007 12:20:07 PN TCL-SEMIVOLATILE ORGANICS SW8270C (SW3550A) Analyst: LD (3+4)-Methylphenol ND 3800 μg/Kg-dry 10 10/8/2007 6:47:00 PM 1,2,4-Trichlorobenzene ND 3800 μg/Kg-dry 10 10/8/2007 6:47:00 PM	Zinc	50	1.1	mg/Kg-dry	1	10/6/2007 1:22:17 PM
TCL-SEMIVOLATILE ORGANICS SW8270C (SW3550A) Analyst: LD (3+4)-Methylphenol ND 3800 μg/Kg-dry 10 10/8/2007 6:47:00 PM 1,2,4-Trichlorobenzene ND 3800 μg/Kg-dry 10 10/8/2007 6:47:00 PM	TOTAL MERCURY - SOIL/SOLID/WAST	ГЕ	SW7471A	(SW747	71A)	Analyst: EA
(3+4)-Methylphenol ND 3800 μg/Kg-dry 10 10/8/2007 6:47:00 PM 1,2,4-Trichlorobenzene ND 3800 μg/Kg-dry 10 10/8/2007 6:47:00 PM	Mercury	0.034	0.228 J	mg/Kg-dry	1	10/11/2007 12:20:07 PM
(3+4)-Methylphenol ND 3800 μg/Kg-dry 10 10/8/2007 6:47:00 PM 1,2,4-Trichlorobenzene ND 3800 μg/Kg-dry 10 10/8/2007 6:47:00 PM	TCL-SEMIVOLATILE ORGANICS		SW8270C	(SW355	50A)	Analyst: LD
100,	(3+4)-Methylphenol	ND	3800	μg/Kg-dry	10	
1,2-Dichlorobenzene ND 3800 µg/Kg-dry 10 10/8/2007 6:47:00 PM	1,2,4-Trichlorobenzene	ND	3800	μg/Kg-dry	10	10/8/2007 6:47:00 PM
	1,2-Dichlorobenzene	ND	3800	μg/Kg-dry	10	10/8/2007 6:47:00 PM

Approved By: Page 9 of 17

Qualifiers: * Low Level

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

** Value exceeds Maximum Contaminant Value

Date: 19-Oct-07

E Value above quantitation range

J Analyte detected below quantitation limits

CLIENT: NYSDEC - Region 9 Client Sample ID: B-8 @ 6-7'

Lab Order: U0710072 **Collection Date:** 10/3/2007 12:45:00 PM

Project: Friendship Foundry, Site #902017

Lab ID: U0710072-006 Matrix: SOIL

Analyses	Result	Limit Qu	al Units	DF	Date Analyzed
TCL-SEMIVOLATILE ORGANICS		SW8270	C (SW35	50A)	Analyst: LD
1,3-Dichlorobenzene	ND	3800	μg/Kg-dry	10	10/8/2007 6:47:00 PM
1,4-Dichlorobenzene	ND	3800	μg/Kg-dry	10	10/8/2007 6:47:00 PM
2,4,5-Trichlorophenol	ND	3800	μg/Kg-dry	10	10/8/2007 6:47:00 PM
2,4,6-Trichlorophenol	ND	3800	μg/Kg-dry	10	10/8/2007 6:47:00 PM
2,4-Dichlorophenol	ND	3800	μg/Kg-dry	10	10/8/2007 6:47:00 PM
2,4-Dimethylphenol	ND	3800	μg/Kg-dry	10	10/8/2007 6:47:00 PM
2,4-Dinitrophenol	ND	38000	μg/Kg-dry	10	10/8/2007 6:47:00 PM
2,4-Dinitrotoluene	ND	3800	μg/Kg-dry	10	10/8/2007 6:47:00 PM
2,6-Dinitrotoluene	ND	3800	μg/Kg-dry	10	10/8/2007 6:47:00 PM
2-Chloronaphthalene	ND	3800	μg/Kg-dry	10	10/8/2007 6:47:00 PM
2-Chlorophenol	ND	3800	μg/Kg-dry	10	10/8/2007 6:47:00 PM
2-Methylnaphthalene	ND	3800	μg/Kg-dry	10	10/8/2007 6:47:00 PM
2-Methylphenol	ND	3800	μg/Kg-dry	10	10/8/2007 6:47:00 PM
2-Nitroaniline	ND	38000	μg/Kg-dry	10	10/8/2007 6:47:00 PM
2-Nitrophenol	ND	3800	μg/Kg-dry	10	10/8/2007 6:47:00 PM
3,3´-Dichlorobenzidine	ND	3800	μg/Kg-dry	10	10/8/2007 6:47:00 PM
3-Nitroaniline	ND	38000	μg/Kg-dry	10	10/8/2007 6:47:00 PM
4,6-Dinitro-2-methylphenol	ND	38000	μg/Kg-dry	10	10/8/2007 6:47:00 PM
4-Bromophenyl phenyl ether	ND	3800	μg/Kg-dry	10	10/8/2007 6:47:00 PM
4-Chloro-3-methylphenol	ND	3800	μg/Kg-dry	10	10/8/2007 6:47:00 PM
4-Chloroaniline	ND	3800	μg/Kg-dry	10	10/8/2007 6:47:00 PM
4-Chlorophenyl phenyl ether	ND	3800	μg/Kg-dry	10	10/8/2007 6:47:00 PM
4-Nitroaniline	ND	38000	μg/Kg-dry	10	10/8/2007 6:47:00 PM
4-Nitrophenol	ND	38000	μg/Kg-dry	10	10/8/2007 6:47:00 PM
Acenaphthene	ND	3800	μg/Kg-dry	10	10/8/2007 6:47:00 PM
Acenaphthylene	ND	3800	μg/Kg-dry	10	10/8/2007 6:47:00 PM
Anthracene	ND	3800	μg/Kg-dry	10	10/8/2007 6:47:00 PM
Benz(a)anthracene	ND	3800	μg/Kg-dry	10	10/8/2007 6:47:00 PM
Benzo(a)pyrene	ND	3800	μg/Kg-dry	10	10/8/2007 6:47:00 PM
Benzo(b)fluoranthene	ND	3800	μg/Kg-dry	10	10/8/2007 6:47:00 PM
Benzo(g,h,i)perylene	ND	3800	μg/Kg-dry	10	10/8/2007 6:47:00 PM
Benzo(k)fluoranthene	ND	3800	μg/Kg-dry	10	10/8/2007 6:47:00 PM
Bis(2-chloroethoxy)methane	ND	3800	μg/Kg-dry	10	10/8/2007 6:47:00 PM
Bis(2-chloroethyl)ether	ND	3800	μg/Kg-dry	10	10/8/2007 6:47:00 PM
Bis(2-chloroisopropyl)ether	ND	3800	μg/Kg-dry	10	10/8/2007 6:47:00 PM
Bis(2-ethylhexyl)phthalate	5700	3800	μg/Kg-dry	10	10/8/2007 6:47:00 PM
Butyl benzyl phthalate	ND	3800	μg/Kg-dry	10	10/8/2007 6:47:00 PM
Carbazole	ND	3800	μg/Kg-dry	10	10/8/2007 6:47:00 PM
Chrysene	ND	3800	μg/Kg-dry	10	10/8/2007 6:47:00 PM

Approved By:

Qualifiers: * Low Level

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

Date:

* Value exceeds Maximum Contaminant Value

Page 10 of 17

Date: 19-Oct-07

E Value above quantitation range

J Analyte detected below quantitation limits

CLIENT: NYSDEC - Region 9 Client Sample ID: B-8 @ 6-7'

Project: Friendship Foundry, Site #902017

Lab ID: U0710072-006 Matrix: SOIL

Analyses	Result	Limit Qual	Units	DF	Date Analyzed
TCL-SEMIVOLATILE ORGANICS		SW8270C	(SW355	0A)	Analyst: LD
Di-n-butyl phthalate	ND	3800	μg/Kg-dry	10	10/8/2007 6:47:00 PM
Di-n-octyl phthalate	ND	3800	μg/Kg-dry	10	10/8/2007 6:47:00 PM
Dibenz(a,h)anthracene	ND	3800	μg/Kg-dry	10	10/8/2007 6:47:00 PM
Dibenzofuran	ND	3800	μg/Kg-dry	10	10/8/2007 6:47:00 PM
Diethyl phthalate	ND	3800	μg/Kg-dry	10	10/8/2007 6:47:00 PM
Dimethyl phthalate	ND	3800	μg/Kg-dry	10	10/8/2007 6:47:00 PM
Fluoranthene	ND	3800	μg/Kg-dry	10	10/8/2007 6:47:00 PM
Fluorene	ND	3800	μg/Kg-dry	10	10/8/2007 6:47:00 PM
Hexachlorobenzene	ND	3800	μg/Kg-dry	10	10/8/2007 6:47:00 PM
Hexachlorobutadiene	ND	3800	μg/Kg-dry	10	10/8/2007 6:47:00 PM
Hexachlorocyclopentadiene	ND	3800	μg/Kg-dry	10	10/8/2007 6:47:00 PM
Hexachloroethane	ND	3800	μg/Kg-dry	10	10/8/2007 6:47:00 PM
Indeno(1,2,3-cd)pyrene	ND	3800	μg/Kg-dry	10	10/8/2007 6:47:00 PM
Isophorone	ND	3800	μg/Kg-dry	10	10/8/2007 6:47:00 PM
N-Nitrosodi-n-propylamine	ND	3800	μg/Kg-dry	10	10/8/2007 6:47:00 PM
N-Nitrosodiphenylamine	ND	3800	μg/Kg-dry	10	10/8/2007 6:47:00 PM
Naphthalene	ND	3800	μg/Kg-dry	10	10/8/2007 6:47:00 PM
Nitrobenzene	ND	3800	μg/Kg-dry	10	10/8/2007 6:47:00 PM
Pentachlorophenol	ND	7600	μg/Kg-dry	10	10/8/2007 6:47:00 PM
Phenanthrene	1000	3800 J	μg/Kg-dry	10	10/8/2007 6:47:00 PM
Phenol	ND	3800	μg/Kg-dry	10	10/8/2007 6:47:00 PM
Pyrene	ND	3800	μg/Kg-dry	10	10/8/2007 6:47:00 PM
NOTES:					
The reporting limits were raised due to ma	trix interference.				
TCL VOLATILE ORGANICS		SW8260B			Analyst: AT
1,1,1-Trichloroethane	ND	17	μg/Kg-dry	5	10/18/2007 2:55:00 PM
4 4 0 0 Tetreschlausethere	ND	47		_	40/40/0007 0 FF 00 DN

TCL VOLATILE ORGANICS		SW8260)B		Analyst: AT
1,1,1-Trichloroethane	ND	17	μg/Kg-dry	5	10/18/2007 2:55:00 PM
1,1,2,2-Tetrachloroethane	ND	17	μg/Kg-dry	5	10/18/2007 2:55:00 PM
1,1,2-Trichloroethane	ND	17	μg/Kg-dry	5	10/18/2007 2:55:00 PM
1,1-Dichloroethane	ND	17	μg/Kg-dry	5	10/18/2007 2:55:00 PM
1,1-Dichloroethene	ND	17	μg/Kg-dry	5	10/18/2007 2:55:00 PM
1,2-Dichloroethane	ND	17	μg/Kg-dry	5	10/18/2007 2:55:00 PM
1,2-Dichloropropane	ND	17	μg/Kg-dry	5	10/18/2007 2:55:00 PM
2-Butanone	ND	57	μg/Kg-dry	5	10/18/2007 2:55:00 PM
2-Hexanone	ND	57	μg/Kg-dry	5	10/18/2007 2:55:00 PM
4-Methyl-2-pentanone	ND	57	μg/Kg-dry	5	10/18/2007 2:55:00 PM
Acetone	110	57	μg/Kg-dry	5	10/18/2007 2:55:00 PM
Benzene	ND	17	μg/Kg-dry	5	10/18/2007 2:55:00 PM
Bromodichloromethane	ND	17	μg/Kg-dry	5	10/18/2007 2:55:00 PM

Approved By:	Date:	Page 11 of 17

Qualifiers: * Low Level

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

** Value exceeds Maximum Contaminant Value

Date: 19-Oct-07

E Value above quantitation range

J Analyte detected below quantitation limits

CLIENT: NYSDEC - Region 9 Client Sample ID: B-8 @ 6-7'

Lab Order: U0710072 **Collection Date:** 10/3/2007 12:45:00 PM

Project: Friendship Foundry, Site #902017

Lab ID: U0710072-006 Matrix: SOIL

Analyses	Result	Limit Qua	Units	DF	Date Analyzed
TCL VOLATILE ORGANICS		SW8260B			Analyst: AT
Bromoform	ND	17	μg/Kg-dry	5	10/18/2007 2:55:00 PM
Bromomethane	ND	17	μg/Kg-dry	5	10/18/2007 2:55:00 PM
Carbon disulfide	ND	17	μg/Kg-dry	5	10/18/2007 2:55:00 PM
Carbon tetrachloride	ND	17	μg/Kg-dry	5	10/18/2007 2:55:00 PM
Chlorobenzene	ND	17	μg/Kg-dry	5	10/18/2007 2:55:00 PM
Chloroethane	ND	17	μg/Kg-dry	5	10/18/2007 2:55:00 PM
Chloroform	ND	17	μg/Kg-dry	5	10/18/2007 2:55:00 PM
Chloromethane	ND	17	μg/Kg-dry	5	10/18/2007 2:55:00 PM
cis-1,2-Dichloroethene	ND	17	μg/Kg-dry	5	10/18/2007 2:55:00 PM
cis-1,3-Dichloropropene	ND	17	μg/Kg-dry	5	10/18/2007 2:55:00 PM
Dibromochloromethane	ND	17	μg/Kg-dry	5	10/18/2007 2:55:00 PN
Ethylbenzene	ND	17	μg/Kg-dry	5	10/18/2007 2:55:00 PM
m,p-Xylene	ND	17	μg/Kg-dry	5	10/18/2007 2:55:00 PN
Methylene chloride	ND	17	μg/Kg-dry	5	10/18/2007 2:55:00 PM
o-Xylene	ND	17	μg/Kg-dry	5	10/18/2007 2:55:00 PM
Styrene	ND	17	μg/Kg-dry	5	10/18/2007 2:55:00 PN
Tetrachloroethene	ND	17	μg/Kg-dry	5	10/18/2007 2:55:00 PN
Toluene	ND	17	μg/Kg-dry	5	10/18/2007 2:55:00 PM
trans-1,2-Dichloroethene	ND	17	μg/Kg-dry	5	10/18/2007 2:55:00 PM
trans-1,3-Dichloropropene	ND	17	μg/Kg-dry	5	10/18/2007 2:55:00 PN
Trichloroethene	ND	17	μg/Kg-dry	5	10/18/2007 2:55:00 PN
Vinyl chloride	ND	11	μg/Kg-dry	5	10/18/2007 2:55:00 PM
NOTES: The reporting limits were raised due to	the high concentratio	n of non-target cor	npounds.		

PERCENT MOISTURE	D2216				Analyst: KAM		
Percent Moisture	12.2	0.00100	wt%	1	10/9/2007		

 Approved By:
 Date:
 Page 12 of 17

Qualifiers: * Low Level

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

** Value exceeds Maximum Contaminant Value

Date: 19-Oct-07

E Value above quantitation range

J Analyte detected below quantitation limits

CLIENT: NYSDEC - Region 9 Client Sample ID: B-9 @ 3-6'

Lab Order: U0710072 **Collection Date:** 10/3/2007 2:00:00 PM

Project: Friendship Foundry, Site #902017

Lab ID: U0710072-007 Matrix: SOIL

Analyses	Result	Limit Qual	Units	DF	Date Analyzed
PEST/PCB IN SOIL/SLUDGE		SW8081A	SW8081A (SW3556		Analyst: KC
4,4´-DDD	ND	38	μg/Kg-dry	10	10/8/2007
4,4´-DDE	ND	38	μg/Kg-dry	10	10/8/2007
4,4´-DDT	ND	38	μg/Kg-dry	10	10/8/2007
Aldrin	ND	20	μg/Kg-dry	10	10/8/2007
alpha-BHC	ND	20	μg/Kg-dry	10	10/8/2007
alpha-Chlordane	ND	20	μg/Kg-dry	10	10/8/2007
Aroclor 1016	ND	20	μg/Kg-dry	10	10/8/2007
Aroclor 1221	ND	20	μg/Kg-dry	10	10/8/2007
Aroclor 1232	ND	20	μg/Kg-dry	10	10/8/2007
Aroclor 1242	ND	20	μg/Kg-dry	10	10/8/2007
Aroclor 1248	ND	20	μg/Kg-dry	10	10/8/2007
Aroclor 1254	ND	20	μg/Kg-dry	10	10/8/2007
Aroclor 1260	ND	20	μg/Kg-dry	10	10/8/2007
beta-BHC	ND	20	μg/Kg-dry	10	10/8/2007
delta-BHC	ND	20	μg/Kg-dry	10	10/8/2007
Dieldrin	ND	38	μg/Kg-dry	10	10/8/2007
Endosulfan I	ND	20	μg/Kg-dry	10	10/8/2007
Endosulfan II	ND	38	μg/Kg-dry	10	10/8/2007
Endosulfan sulfate	ND	38	μg/Kg-dry	10	10/8/2007
Endrin	ND	38	μg/Kg-dry	10	10/8/2007
Endrin aldehyde	ND	38	μg/Kg-dry	10	10/8/2007
Endrin ketone	ND	38	μg/Kg-dry	10	10/8/2007
gamma-BHC	ND	20	μg/Kg-dry	10	10/8/2007
gamma-Chlordane	ND	20	μg/Kg-dry	10	10/8/2007
Heptachlor	ND	20	μg/Kg-dry	10	10/8/2007
Heptachlor epoxide	ND	20	μg/Kg-dry	10	10/8/2007
Methoxychlor	ND	200	μg/Kg-dry	10	10/8/2007
Toxaphene	ND	2000	μg/Kg-dry	10	10/8/2007
NOTES:					
The reporting limits were raised due to matr	ix interference.				
CHLORINATED HERBICIDES		SW8151A	(SW3556	0)	Analyst: KC
2,4,5-T	ND	38	μg/Kg-dry	1	10/12/2007
2,4,5-TP (Silvex)	ND	38	μg/Kg-dry	1	10/12/2007
2,4-D	ND	38	μg/Kg-dry	1	10/12/2007
Dicamba	ND	38	μg/Kg-dry	1	10/12/2007
Dinoseb	ND	38	μg/Kg-dry	1	10/12/2007
SOIL AND SOLID METALS BY ICP		SW6010B	(SW305	0A)	Analyst: LJ
Aluminum	11000	5.8	mg/Kg-dry	1	10/6/2007 1:26:14 PM

Approved By:	Date:	Page 13 of 17

Qualifiers: * Low Level

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

** Value exceeds Maximum Contaminant Value

Date: 19-Oct-07

E Value above quantitation range

J Analyte detected below quantitation limits

CLIENT: NYSDEC - Region 9 Client Sample ID: B-9 @ 3-6'

Lab Order: U0710072 **Collection Date:** 10/3/2007 2:00:00 PM

Project: Friendship Foundry, Site #902017

Lab ID: U0710072-007 Matrix: SOIL

Analyses	Result	Limit	Qual	Units	DF	Date Analyzed
SOIL AND SOLID METALS BY ICP		SW60)10B	(SW305	60A)	Analyst: LJ
Antimony	ND	35		mg/Kg-dry	1	10/6/2007 1:26:14 PM
Arsenic*	9.4	1.2		mg/Kg-dry	1	10/6/2007 1:26:14 PM
Barium	120	35		mg/Kg-dry	1	10/6/2007 1:26:14 PM
Beryllium	0.77	0.58		mg/Kg-dry	1	10/6/2007 1:26:14 PM
Cadmium	ND	0.58		mg/Kg-dry	1	10/6/2007 1:26:14 PM
Calcium	1200	58		mg/Kg-dry	1	10/6/2007 1:26:14 PM
Chromium	17	5.8		mg/Kg-dry	1	10/6/2007 1:26:14 PM
Cobalt	12	5.8		mg/Kg-dry	1	10/6/2007 1:26:14 PM
Copper	69	2.3		mg/Kg-dry	1	10/6/2007 1:26:14 PM
Iron	24000	3.5		mg/Kg-dry	1	10/6/2007 1:26:14 PM
Lead	77	12		mg/Kg-dry	1	10/6/2007 1:26:14 PM
Magnesium	1900	58		mg/Kg-dry	1	10/6/2007 1:26:14 PM
Manganese	960	2.3		mg/Kg-dry	1	10/6/2007 1:26:14 PM
Nickel	25	3.5		mg/Kg-dry	1	10/6/2007 1:26:14 PM
Potassium	1000	58		mg/Kg-dry	1	10/6/2007 1:26:14 PM
Selenium*	7.6	0.58		mg/Kg-dry	1	10/6/2007 1:26:14 PM
Silver	ND	5.8		mg/Kg-dry	1	10/6/2007 1:26:14 PM
Sodium	ND	58		mg/Kg-dry	1	10/6/2007 1:26:14 PM
Thallium*	ND	0.35		mg/Kg-dry	1	10/6/2007 1:26:14 PM
Vanadium	20	35	J	mg/Kg-dry	1	10/6/2007 1:26:14 PM
Zinc	120	1.2		mg/Kg-dry	1	10/6/2007 1:26:14 PM
TOTAL MERCURY - SOIL/SOLID/WAS	STE	SW74	171A	(SW747	'1A)	Analyst: EA
Mercury	0.050	0.232	J	mg/Kg-dry	1	10/11/2007 12:23:25 PM
TCL-SEMIVOLATILE ORGANICS		SW82	270C	(SW355	60A)	Analyst: LD
(3+4)-Methylphenol	ND	3800		μg/Kg-dry	10	10/8/2007 7:30:00 PM
1,2,4-Trichlorobenzene	ND	3800		μg/Kg-dry	10	10/8/2007 7:30:00 PM
1,2-Dichlorobenzene	ND	3800		μg/Kg-dry	10	10/8/2007 7:30:00 PM
1,3-Dichlorobenzene	ND	3800		μg/Kg-dry	10	10/8/2007 7:30:00 PM
1,4-Dichlorobenzene	ND	3800		μg/Kg-dry	10	10/8/2007 7:30:00 PM
2,4,5-Trichlorophenol	ND	3800		μg/Kg-dry	10	10/8/2007 7:30:00 PM
2,4,6-Trichlorophenol	ND	3800		μg/Kg-dry	10	10/8/2007 7:30:00 PM
2,4-Dichlorophenol	ND	3800		μg/Kg-dry	10	10/8/2007 7:30:00 PM
2,4-Dimethylphenol	ND	3800		μg/Kg-dry	10	10/8/2007 7:30:00 PM
2,4-Dinitrophenol	ND	38000		μg/Kg-dry	10	10/8/2007 7:30:00 PM
2,4-Dinitrotoluene	ND	3800		μg/Kg-dry	10	10/8/2007 7:30:00 PM
2,6-Dinitrotoluene	ND	3800		μg/Kg-dry	10	10/8/2007 7:30:00 PM
2-Chloronaphthalene	ND	3800		μg/Kg-dry	10	10/8/2007 7:30:00 PM
2-Chlorophenol	ND	3800		μg/Kg-dry	10	10/8/2007 7:30:00 PM

Approved By:

Qualifiers:

Low Level

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

** Value exceeds Maximum Contaminant Value

Page 14 of 17

Date: 19-Oct-07

E Value above quantitation range

Date:

J Analyte detected below quantitation limits

CLIENT: NYSDEC - Region 9 Client Sample ID: B-9 @ 3-6'

Lab Order: U0710072 **Collection Date:** 10/3/2007 2:00:00 PM

Project: Friendship Foundry, Site #902017

Lab ID: U0710072-007 Matrix: SOIL

Analyses	Result	Limit Q	Qual Units	DF	Date Analyzed
TCL-SEMIVOLATILE ORGANICS		SW827	OC (SW	3550A)	Analyst: LD
2-Methylnaphthalene	ND	3800	μg/Kg-dry	10	10/8/2007 7:30:00 PM
2-Methylphenol	ND	3800	μg/Kg-dry	10	10/8/2007 7:30:00 PM
2-Nitroaniline	ND	38000	μg/Kg-dry	10	10/8/2007 7:30:00 PM
2-Nitrophenol	ND	3800	μg/Kg-dry	10	10/8/2007 7:30:00 PM
3,3´-Dichlorobenzidine	ND	3800	μg/Kg-dry	10	10/8/2007 7:30:00 PM
3-Nitroaniline	ND	38000	μg/Kg-dry	10	10/8/2007 7:30:00 PM
4,6-Dinitro-2-methylphenol	ND	38000	μg/Kg-dry	10	10/8/2007 7:30:00 PM
4-Bromophenyl phenyl ether	ND	3800	μg/Kg-dry	10	10/8/2007 7:30:00 PM
4-Chloro-3-methylphenol	ND	3800	μg/Kg-dry	10	10/8/2007 7:30:00 PM
4-Chloroaniline	ND	3800	μg/Kg-dry	10	10/8/2007 7:30:00 PM
4-Chlorophenyl phenyl ether	ND	3800	μg/Kg-dry	10	10/8/2007 7:30:00 PM
4-Nitroaniline	ND	38000	μg/Kg-dry	10	10/8/2007 7:30:00 PM
4-Nitrophenol	ND	38000	μg/Kg-dry	10	10/8/2007 7:30:00 PM
Acenaphthene	ND	3800	μg/Kg-dry	10	10/8/2007 7:30:00 PM
Acenaphthylene	ND	3800	μg/Kg-dry	10	10/8/2007 7:30:00 PM
Anthracene	ND	3800	μg/Kg-dry	10	10/8/2007 7:30:00 PM
Benz(a)anthracene	ND	3800	μg/Kg-dry	10	10/8/2007 7:30:00 PM
Benzo(a)pyrene	ND	3800	μg/Kg-dry	10	10/8/2007 7:30:00 PM
Benzo(b)fluoranthene	ND	3800	μg/Kg-dry	10	10/8/2007 7:30:00 PM
Benzo(g,h,i)perylene	ND	3800	μg/Kg-dry	10	10/8/2007 7:30:00 PM
Benzo(k)fluoranthene	ND	3800	μg/Kg-dry	10	10/8/2007 7:30:00 PM
Bis(2-chloroethoxy)methane	ND	3800	μg/Kg-dry	10	10/8/2007 7:30:00 PM
Bis(2-chloroethyl)ether	ND	3800	μg/Kg-dry	10	10/8/2007 7:30:00 PM
Bis(2-chloroisopropyl)ether	ND	3800	μg/Kg-dry	10	10/8/2007 7:30:00 PM
Bis(2-ethylhexyl)phthalate	2000	3800	J μg/Kg-dry	10	10/8/2007 7:30:00 PM
Butyl benzyl phthalate	ND	3800	μg/Kg-dry	10	10/8/2007 7:30:00 PM
Carbazole	ND	3800	μg/Kg-dry	10	10/8/2007 7:30:00 PM
Chrysene	ND	3800	μg/Kg-dry	10	10/8/2007 7:30:00 PM
Di-n-butyl phthalate	ND	3800	μg/Kg-dry	10	10/8/2007 7:30:00 PM
Di-n-octyl phthalate	ND	3800	μg/Kg-dry	10	10/8/2007 7:30:00 PM
Dibenz(a,h)anthracene	ND	3800	μg/Kg-dry	10	10/8/2007 7:30:00 PM
Dibenzofuran	ND	3800	μg/Kg-dry	10	10/8/2007 7:30:00 PM
Diethyl phthalate	ND	3800	μg/Kg-dry	10	10/8/2007 7:30:00 PM
Dimethyl phthalate	ND	3800	μg/Kg-dry	10	10/8/2007 7:30:00 PM
Fluoranthene	ND	3800	μg/Kg-dry	10	10/8/2007 7:30:00 PM
Fluorene	ND	3800	μg/Kg-dry	10	10/8/2007 7:30:00 PM
Hexachlorobenzene	ND	3800	μg/Kg-dry	10	10/8/2007 7:30:00 PM
Hexachlorobutadiene	ND	3800	μg/Kg-dry	10	10/8/2007 7:30:00 PM
Hexachlorocyclopentadiene	ND	3800	μg/Kg-dry	10	10/8/2007 7:30:00 PM

Approved By:

Qualifiers: * Low Level

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

Date:

* Value exceeds Maximum Contaminant Value

Page 15 of 17

Date: 19-Oct-07

- E Value above quantitation range
- J Analyte detected below quantitation limits
- S Spike Recovery outside accepted recovery limits

CLIENT: NYSDEC - Region 9 Client Sample ID: B-9 @ 3-6'

Lab Order: U0710072 **Collection Date:** 10/3/2007 2:00:00 PM

Project: Friendship Foundry, Site #902017

Lab ID: U0710072-007 Matrix: SOIL

Analyses	Result	Limit Qual	Units	DF	Date Analyzed
TCL-SEMIVOLATILE ORGANICS		SW8270C	(SW35	50A)	Analyst: LD
Hexachloroethane	ND	3800	μg/Kg-dry	10	10/8/2007 7:30:00 PM
Indeno(1,2,3-cd)pyrene	ND	3800	μg/Kg-dry	10	10/8/2007 7:30:00 PM
Isophorone	ND	3800	μg/Kg-dry	10	10/8/2007 7:30:00 PM
N-Nitrosodi-n-propylamine	ND	3800	μg/Kg-dry	10	10/8/2007 7:30:00 PM
N-Nitrosodiphenylamine	ND	3800	μg/Kg-dry	10	10/8/2007 7:30:00 PM
Naphthalene	ND	3800	μg/Kg-dry	10	10/8/2007 7:30:00 PM
Nitrobenzene	ND	3800	μg/Kg-dry	10	10/8/2007 7:30:00 PM
Pentachlorophenol	ND	7800	μg/Kg-dry	10	10/8/2007 7:30:00 PM
Phenanthrene	ND	3800	μg/Kg-dry	10	10/8/2007 7:30:00 PM
Phenol	ND	3800	μg/Kg-dry	10	10/8/2007 7:30:00 PM
Pyrene	ND	3800	μg/Kg-dry	10	10/8/2007 7:30:00 PM
NOTES:					
The reporting limits were raised due to ma	trix interference.				
TCL VOLATILE ORGANICS		SW8260B			Analyst: AT
1,1,1-Trichloroethane	ND	3.5	μg/Kg-dry	1	10/18/2007 4:42:00 PM
1,1,2,2-Tetrachloroethane	ND	3.5	μg/Kg-dry	1	10/18/2007 4:42:00 PM
1,1,2-Trichloroethane	ND	3.5	μg/Kg-dry	1	10/18/2007 4:42:00 PM
1,1-Dichloroethane	ND	3.5	μg/Kg-dry	1	10/18/2007 4:42:00 PM
1,1-Dichloroethene	ND	3.5	μg/Kg-dry	1	10/18/2007 4:42:00 PM
1,2-Dichloroethane	ND	3.5	μg/Kg-dry	1	10/18/2007 4:42:00 PM
1,2-Dichloropropane	ND	3.5	μg/Kg-dry	1	10/18/2007 4:42:00 PM
2-Butanone	ND	12	μg/Kg-dry	1	10/18/2007 4:42:00 PM
2-Hexanone	ND	12	μg/Kg-dry	1	10/18/2007 4:42:00 PM
4-Methyl-2-pentanone	ND	12	μg/Kg-dry	1	10/18/2007 4:42:00 PM
Acetone	35	12	μg/Kg-dry	1	10/18/2007 4:42:00 PM
Benzene	ND	3.5	μg/Kg-dry	1	10/18/2007 4:42:00 PM
Bromodichloromethane	ND	3.5	μg/Kg-dry	1	10/18/2007 4:42:00 PM
Bromoform	ND	3.5	μg/Kg-dry	1	10/18/2007 4:42:00 PM
Bromomethane	ND	3.5	μg/Kg-dry	1	10/18/2007 4:42:00 PM
Carbon disulfide	7.3	3.5	μg/Kg-dry	1	10/18/2007 4:42:00 PM
Carbon tetrachloride	ND	3.5	μg/Kg-dry	1	10/18/2007 4:42:00 PM
Chlorobenzene	ND	3.5	μg/Kg-dry	1	10/18/2007 4:42:00 PM
Chloroethane	ND	3.5	μg/Kg-dry	1	10/18/2007 4:42:00 PM
Chloroform	ND	3.5	μg/Kg-dry	1	10/18/2007 4:42:00 PM
Chloromethane	ND	3.5	μg/Kg-dry	1	10/18/2007 4:42:00 PM
cis-1,2-Dichloroethene	ND	3.5	μg/Kg-dry	1	10/18/2007 4:42:00 PM
cis-1,3-Dichloropropene	ND	3.5	μg/Kg-dry	1	10/18/2007 4:42:00 PM
Dibromochloromethane	ND	3.5	μg/Kg-dry	1	10/18/2007 4:42:00 PM

Approved By:	Date:	Page 16 of 17

Qualifiers: * Low Level

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

** Value exceeds Maximum Contaminant Value

Date: 19-Oct-07

E Value above quantitation range

J Analyte detected below quantitation limits

CLIENT: NYSDEC - Region 9 Client Sample ID: B-9 @ 3-6'

Lab Order: U0710072 **Collection Date:** 10/3/2007 2:00:00 PM

Project: Friendship Foundry, Site #902017

Lab ID: U0710072-007 Matrix: SOIL

Analyses	Result	Limit Qu	al Units	DF	Date Analyzed
TCL VOLATILE ORGANICS	SW8260B				Analyst: AT
Ethylbenzene	ND	3.5	μg/Kg-dry	1	10/18/2007 4:42:00 PM
m,p-Xylene	ND	3.5	μg/Kg-dry	1	10/18/2007 4:42:00 PM
Methylene chloride	28	3.5	μg/Kg-dry	1	10/18/2007 4:42:00 PM
o-Xylene	ND	3.5	μg/Kg-dry	1	10/18/2007 4:42:00 PM
Styrene	ND	3.5	μg/Kg-dry	1	10/18/2007 4:42:00 PM
Tetrachloroethene	ND	3.5	μg/Kg-dry	1	10/18/2007 4:42:00 PM
Toluene	ND	3.5	μg/Kg-dry	1	10/18/2007 4:42:00 PM
trans-1,2-Dichloroethene	ND	3.5	μg/Kg-dry	1	10/18/2007 4:42:00 PM
trans-1,3-Dichloropropene	ND	3.5	μg/Kg-dry	1	10/18/2007 4:42:00 PM
Trichloroethene	ND	3.5	μg/Kg-dry	1	10/18/2007 4:42:00 PM
Vinyl chloride	ND	2.3	μg/Kg-dry	1	10/18/2007 4:42:00 PM
NOTES:					

S - Outlying surrogate or spike recovery(ies) observed. A duplicate analysis was performed with similar results indicating a matrix effect.

PHENOLICS, TOTAL RECOVERABLE	FOR SOLID	E420.1	(E420.1))	Analyst: MB
Phenolics, Total Recoverable	0.179	0.116	mg/Kg-dry	1	10/9/2007
HEXAVALENT CHROMIUM		SW7196A			Analyst: DEY
Chromium, Hexavalent	ND	0.46	mg/Kg-dry	2	10/4/2007 9:45:00 AM
PERCENT MOISTURE		D2216			Analyst: KAM
Percent Moisture	13.7	0.00100	wt%	1	10/9/2007

Approved By:

Qualifiers:

* Low Level

B Analyte detected in the associated Method Blank

E Value exceeds Maximum Contaminant Value

* Value above quantitation range

B Analyte detected in the associated Method Blank
 H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

J Analyte detected below quantitation limits
 S Spike Recovery outside accepted recovery limits

Date: 19-Oct-07

Lab Order:

CLIENT: NYSDEC - Region 9

Client Sample ID: TP-1 U0710381 **Collection Date:** 10/15/2007 11:00:00 AM

Friendship Foundry, Site #902017 **Project:**

Matrix: SOIL Lab ID: U0710381-001

Analyses	Result	Limit Qual	Units	DF	Date Analyzed
PEST/PCB IN SOIL/SLUDGE		SW8081A	(SW355	50)	Analyst: KC
4,4´-DDD	ND	3.4	μg/Kg-dry	1	10/24/2007
4,4´-DDE	ND	3.4	μg/Kg-dry	1	10/24/2007
4,4´-DDT	ND	3.4	μg/Kg-dry	1	10/24/2007
Aldrin	ND	1.8	μg/Kg-dry	1	10/24/2007
alpha-BHC	ND	1.8	μg/Kg-dry	1	10/24/2007
alpha-Chlordane	ND	1.8	μg/Kg-dry	1	10/24/2007
Aroclor 1016	ND	1.8	μg/Kg-dry	1	10/24/2007
Aroclor 1221	ND	1.8	μg/Kg-dry	1	10/24/2007
Aroclor 1232	ND	1.8	μg/Kg-dry	1	10/24/2007
Aroclor 1242	ND	1.8	μg/Kg-dry	1	10/24/2007
Aroclor 1248	ND	1.8	μg/Kg-dry	1	10/24/2007
Aroclor 1254	ND	1.8	μg/Kg-dry	1	10/24/2007
Aroclor 1260	ND	1.8	μg/Kg-dry	1	10/24/2007
beta-BHC	ND	1.8	μg/Kg-dry	1	10/24/2007
delta-BHC	ND	1.8	μg/Kg-dry	1	10/24/2007
Dieldrin	ND	3.4	μg/Kg-dry	1	10/24/2007
Endosulfan I	ND	1.8	μg/Kg-dry	1	10/24/2007
Endosulfan II	ND	3.4	μg/Kg-dry	1	10/24/2007
Endosulfan sulfate	ND	3.4	μg/Kg-dry	1	10/24/2007
Endrin	ND	3.4	μg/Kg-dry	1	10/24/2007
Endrin aldehyde	ND	3.4	μg/Kg-dry	1	10/24/2007
Endrin ketone	ND	3.4	μg/Kg-dry	1	10/24/2007
gamma-BHC	ND	1.8	μg/Kg-dry	1	10/24/2007
gamma-Chlordane	ND	1.8	μg/Kg-dry	1	10/24/2007
Heptachlor	ND	1.8	μg/Kg-dry	1	10/24/2007
Heptachlor epoxide	ND	1.8	μg/Kg-dry	1	10/24/2007
Methoxychlor	ND	18	μg/Kg-dry	1	10/24/2007
Toxaphene	ND	180	μg/Kg-dry	1	10/24/2007
CHLORINATED HERBICIDES		SW8151A (SW3550)		60)	Analyst: KC
2,4,5-T	ND	34	μg/Kg-dry	1	10/24/2007
2,4,5-TP (Silvex)	ND	34	μg/Kg-dry	1	10/24/2007
2,4-D	ND	34	μg/Kg-dry	1	10/24/2007
Dicamba	ND	34	μg/Kg-dry	1	10/24/2007
Dinoseb	ND	34	μg/Kg-dry	1	10/24/2007
SOIL AND SOLID METALS BY ICP		SW6010B	(SW305	60A)	Analyst: EA
Aluminum	3500	5.2	mg/Kg-dry	1	10/19/2007 10:21:34 AM
Antimony	ND	31	mg/Kg-dry	1	10/19/2007 10:21:34 AM
Arsenic*	1.2	1.0	mg/Kg-dry	1	10/19/2007 10:21:34 AM

Page 1 of 10 Approved By: Date:

Qualifiers: Low Level

> В Analyte detected in the associated Method Blank

Н Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit Value exceeds Maximum Contaminant Value

Date: 30-Oct-07

Е Value above quantitation range

J Analyte detected below quantitation limits

CLIENT: NYSDEC - Region 9 Client Sample ID: TP-1

Lab Order: U0710381 **Collection Date:** 10/15/2007 11:00:00 AM

Project: Friendship Foundry, Site #902017

Lab ID: U0710381-001 **Matrix:** SOIL

Analyses	Result	Limit Qua	l Units	DF	Date Analyzed
SOIL AND SOLID METALS BY ICP		SW6010B	(SW305	50A)	Analyst: EA
Barium	33	31	mg/Kg-dry	1	10/19/2007 10:21:34 AM
Beryllium	ND	0.52	mg/Kg-dry	1	10/19/2007 10:21:34 AM
Cadmium	0.53	0.52	mg/Kg-dry	1	10/19/2007 10:21:34 AM
Calcium	2000	52	mg/Kg-dry	1	10/19/2007 10:21:34 AM
Chromium	9.1	5.2	mg/Kg-dry	1	10/19/2007 10:21:34 AM
Cobalt	ND	5.2	mg/Kg-dry	1	10/19/2007 10:21:34 AM
Copper	24	2.1	mg/Kg-dry	1	10/19/2007 10:21:34 AM
Iron	15000	3.1	mg/Kg-dry	1	10/19/2007 10:21:34 AM
Lead	34	10	mg/Kg-dry	1	10/19/2007 10:21:34 AM
Magnesium	1100	52	mg/Kg-dry	1	10/19/2007 10:21:34 AM
Manganese	210	2.1	mg/Kg-dry	1	10/19/2007 10:21:34 AM
Nickel	8.7	3.1	mg/Kg-dry	1	10/19/2007 10:21:34 AM
Potassium	750	52	mg/Kg-dry	1	10/19/2007 10:21:34 AM
Selenium*	4.1	0.52	mg/Kg-dry	1	10/19/2007 10:21:34 AM
Silver	ND	5.2	mg/Kg-dry	1	10/19/2007 10:21:34 AM
Sodium	160	52	mg/Kg-dry	1	10/19/2007 10:21:34 AM
Thallium*	ND	0.31	mg/Kg-dry	1	10/19/2007 10:21:34 AM
Vanadium	7	31 J	mg/Kg-dry	1	10/19/2007 10:21:34 AM
Zinc	100	1.0	mg/Kg-dry	1	10/19/2007 10:21:34 AM
TOTAL MERCURY - SOIL/SOLID/WAS	TE	SW7471A	(SW7471A)		Analyst: DRP
Mercury	0.13	0.209 J	mg/Kg-dry	1	10/19/2007 11:50:07 AM
TCL-SEMIVOLATILE ORGANICS		SW82700	(SW355	50A)	Analyst: LD
(3+4)-Methylphenol	ND	3400	μg/Kg-dry	10	10/24/2007 10:59:00 PM
1,2,4-Trichlorobenzene	ND	3400	μg/Kg-dry	10	10/24/2007 10:59:00 PM
1,2-Dichlorobenzene	ND	3400	μg/Kg-dry	10	10/24/2007 10:59:00 PM
1,3-Dichlorobenzene	ND	3400	μg/Kg-dry	10	10/24/2007 10:59:00 PM
1,4-Dichlorobenzene	ND	3400	μg/Kg-dry	10	10/24/2007 10:59:00 PM
2,4,5-Trichlorophenol	ND	3400	μg/Kg-dry	10	10/24/2007 10:59:00 PM
2,4,6-Trichlorophenol	ND	3400	μg/Kg-dry	10	10/24/2007 10:59:00 PM
2,4-Dichlorophenol	ND	3400	μg/Kg-dry	10	10/24/2007 10:59:00 PM
2,4-Dimethylphenol	ND	3400	μg/Kg-dry	10	10/24/2007 10:59:00 PM
2,4-Dinitrophenol	ND	34000	μg/Kg-dry	10	10/24/2007 10:59:00 PM
2,4-Dinitrotoluene	ND	3400	μg/Kg-dry	10	10/24/2007 10:59:00 PM
2,6-Dinitrotoluene	ND	3400	μg/Kg-dry	10	10/24/2007 10:59:00 PM
2-Chloronaphthalene	ND	3400	μg/Kg-dry	10	10/24/2007 10:59:00 PM
2-Chlorophenol	ND	3400	μg/Kg-dry	10	10/24/2007 10:59:00 PM
2-Methylnaphthalene	ND	3400	μg/Kg-dry	10	10/24/2007 10:59:00 PM
2-Methylphenol	ND	3400	μg/Kg-dry	10	10/24/2007 10:59:00 PM

Approved By:

Qualifiers:

Low Level

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

** Value exceeds Maximum Contaminant Value

Page 2 of 10

Date: 30-Oct-07

E Value above quantitation range

Date:

J Analyte detected below quantitation limits

CLIENT: NYSDEC - Region 9 Client Sample ID: TP-1

Lab Order: U0710381 **Collection Date:** 10/15/2007 11:00:00 AM

Friendship Foundry, Site #902017 **Project:**

Matrix: SOIL Lab ID: U0710381-001

Analyses	Result	lt Limit Qual Units		DF	Date Analyzed
TCL-SEMIVOLATILE ORGANICS		SW82700	C (SW3550A)		Analyst: LD
2-Nitroaniline	ND	34000	μg/Kg-dry	10	10/24/2007 10:59:00 PM
2-Nitrophenol	ND	3400	μg/Kg-dry	10	10/24/2007 10:59:00 PM
3,3´-Dichlorobenzidine	ND	3400	μg/Kg-dry	10	10/24/2007 10:59:00 PM
3-Nitroaniline	ND	34000	μg/Kg-dry	10	10/24/2007 10:59:00 PM
4,6-Dinitro-2-methylphenol	ND	34000	μg/Kg-dry	10	10/24/2007 10:59:00 PM
4-Bromophenyl phenyl ether	ND	3400	μg/Kg-dry	10	10/24/2007 10:59:00 PM
4-Chloro-3-methylphenol	ND	3400	μg/Kg-dry	10	10/24/2007 10:59:00 PM
4-Chloroaniline	ND	3400	μg/Kg-dry	10	10/24/2007 10:59:00 PM
4-Chlorophenyl phenyl ether	ND	3400	μg/Kg-dry	10	10/24/2007 10:59:00 PM
4-Nitroaniline	ND	34000	μg/Kg-dry	10	10/24/2007 10:59:00 PM
4-Nitrophenol	ND	34000	μg/Kg-dry	10	10/24/2007 10:59:00 PM
Acenaphthene	ND	3400	μg/Kg-dry	10	10/24/2007 10:59:00 PM
Acenaphthylene	ND	3400	μg/Kg-dry	10	10/24/2007 10:59:00 PM
Anthracene	ND	3400	μg/Kg-dry	10	10/24/2007 10:59:00 PM
Benz(a)anthracene	ND	3400	μg/Kg-dry	10	10/24/2007 10:59:00 PM
Benzo(a)pyrene	ND	3400	μg/Kg-dry	10	10/24/2007 10:59:00 PM
Benzo(b)fluoranthene	ND	3400	μg/Kg-dry	10	10/24/2007 10:59:00 PM
Benzo(g,h,i)perylene	ND	3400	μg/Kg-dry	10	10/24/2007 10:59:00 PM
Benzo(k)fluoranthene	ND	3400	μg/Kg-dry	10	10/24/2007 10:59:00 PM
Bis(2-chloroethoxy)methane	ND	3400	μg/Kg-dry	10	10/24/2007 10:59:00 PM
Bis(2-chloroethyl)ether	ND	3400	μg/Kg-dry	10	10/24/2007 10:59:00 PM
Bis(2-chloroisopropyl)ether	ND	3400	μg/Kg-dry	10	10/24/2007 10:59:00 PM
Bis(2-ethylhexyl)phthalate	ND	3400	μg/Kg-dry	10	10/24/2007 10:59:00 PM
Butyl benzyl phthalate	ND	3400	μg/Kg-dry	10	10/24/2007 10:59:00 PM
Carbazole	ND	3400	μg/Kg-dry	10	10/24/2007 10:59:00 PM
Chrysene	ND	3400	μg/Kg-dry	10	10/24/2007 10:59:00 PM
Di-n-butyl phthalate	ND	3400	μg/Kg-dry	10	10/24/2007 10:59:00 PM
Di-n-octyl phthalate	ND	3400	μg/Kg-dry	10	10/24/2007 10:59:00 PM
Dibenz(a,h)anthracene	ND	3400	μg/Kg-dry	10	10/24/2007 10:59:00 PM
Dibenzofuran	ND	3400	μg/Kg-dry	10	10/24/2007 10:59:00 PM
Diethyl phthalate	ND	3400	μg/Kg-dry	10	10/24/2007 10:59:00 PM
Dimethyl phthalate	ND	3400	μg/Kg-dry	10	10/24/2007 10:59:00 PM
Fluoranthene	ND	3400	μg/Kg-dry	10	10/24/2007 10:59:00 PM
Fluorene	ND	3400	μg/Kg-dry	10	10/24/2007 10:59:00 PM
Hexachlorobenzene	ND	3400	μg/Kg-dry	10	10/24/2007 10:59:00 PM
Hexachlorobutadiene	ND	3400	μg/Kg-dry	10	10/24/2007 10:59:00 PM
Hexachlorocyclopentadiene	ND	3400	μg/Kg-dry	10	10/24/2007 10:59:00 PM
Hexachloroethane	ND	3400	μg/Kg-dry	10	10/24/2007 10:59:00 PM
Indeno(1,2,3-cd)pyrene	ND	3400	μg/Kg-dry	10	10/24/2007 10:59:00 PM

Approved By:

Qualifiers: Low Level

> В Analyte detected in the associated Method Blank

Н Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit Date:

Page 3 of 10

Value exceeds Maximum Contaminant Value

Date: 30-Oct-07

- Е Value above quantitation range
- J Analyte detected below quantitation limits
- Spike Recovery outside accepted recovery limits

CLIENT: NYSDEC - Region 9

Lab Order: U0710381

Project: Friendship Foundry, Site #902017

Lab ID: U0710381-001 **Matrix:** SOIL

Analyses	ses Result Limit Qual Units		DF	Date Analyzed	
TCL-SEMIVOLATILE ORGANICS		SW8270C	(SW355	50A)	Analyst: LD
Isophorone	ND	3400	μg/Kg-dry	10	10/24/2007 10:59:00 PM
N-Nitrosodi-n-propylamine	ND	3400	μg/Kg-dry	10	10/24/2007 10:59:00 PM
N-Nitrosodiphenylamine	ND	3400	μg/Kg-dry	10	10/24/2007 10:59:00 PM
Naphthalene	ND	3400	μg/Kg-dry	10	10/24/2007 10:59:00 PM
Nitrobenzene	ND	3400	μg/Kg-dry	10	10/24/2007 10:59:00 PM
Pentachlorophenol	ND	7000	μg/Kg-dry	10	10/24/2007 10:59:00 PM
Phenanthrene	ND	3400	μg/Kg-dry	10	10/24/2007 10:59:00 PM
Phenol	ND	3400	μg/Kg-dry	10	10/24/2007 10:59:00 PM
Pyrene	ND	3400	μg/Kg-dry	10	10/24/2007 10:59:00 PM
NOTES: The reporting limits were raised due to ma	trix interference.				
TCL VOLATILE ORGANICS		SW8260B			Analyst: AT
1,1,1-Trichloroethane	ND	3.1	μg/Kg-dry	1	10/25/2007 4:24:00 PM
1,1,2,2-Tetrachloroethane	ND	3.1	μg/Kg-dry	1	10/25/2007 4:24:00 PM
1,1,2-Trichloroethane	ND	3.1	μg/Kg-dry	1	10/25/2007 4:24:00 PM
1,1-Dichloroethane	ND	3.1	μg/Kg-dry	1	10/25/2007 4:24:00 PM
1,1-Dichloroethene	ND	3.1	μg/Kg-dry	1	10/25/2007 4:24:00 PM
1,2-Dichloroethane	ND	3.1	μg/Kg-dry	1	10/25/2007 4:24:00 PM
1,2-Dichloropropane	ND	3.1	μg/Kg-dry	1	10/25/2007 4:24:00 PM
2-Butanone	ND	10	μg/Kg-dry	1	10/25/2007 4:24:00 PM
2-Hexanone	ND	10	μg/Kg-dry	1	10/25/2007 4:24:00 PM
4-Methyl-2-pentanone	ND	10	μg/Kg-dry	1	10/25/2007 4:24:00 PM
Acetone	ND	10	μg/Kg-dry	1	10/25/2007 4:24:00 PM
Benzene	ND	3.1	μg/Kg-dry	1	10/25/2007 4:24:00 PM
Bromodichloromethane	ND	3.1	μg/Kg-dry	1	10/25/2007 4:24:00 PM
Bromoform	ND	3.1	μg/Kg-dry	1	10/25/2007 4:24:00 PM
Bromomethane	ND	3.1	μg/Kg-dry	1	10/25/2007 4:24:00 PM
Carbon disulfide	ND	3.1	μg/Kg-dry	1	10/25/2007 4:24:00 PM
Carbon tetrachloride	ND	3.1	μg/Kg-dry	1	10/25/2007 4:24:00 PM
Chlorobenzene	ND	3.1	μg/Kg-dry	1	10/25/2007 4:24:00 PM
Chloroethane	ND	3.1	μg/Kg-dry	1	10/25/2007 4:24:00 PM
Chloroform	ND	3.1	μg/Kg-dry	1	10/25/2007 4:24:00 PM
Chloromethane	ND	3.1	μg/Kg-dry	1	10/25/2007 4:24:00 PM
cis-1,2-Dichloroethene	ND	3.1	μg/Kg-dry	1	10/25/2007 4:24:00 PM
cis-1,3-Dichloropropene	ND	3.1	μg/Kg-dry	1	10/25/2007 4:24:00 PM
Dibromochloromethane	ND	3.1	μg/Kg-dry	1	10/25/2007 4:24:00 PM
Ethylbenzene	ND	3.1	μg/Kg-dry	1	10/25/2007 4:24:00 PM
m,p-Xylene	ND	3.1	μg/Kg-dry	1	10/25/2007 4:24:00 PM

Approved By:	Date:	Page 4 of 10

Qualifiers: * Low Level

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

** Value exceeds Maximum Contaminant Value

Date: 30-Oct-07

Collection Date: 10/15/2007 11:00:00 AM

Client Sample ID: TP-1

E Value above quantitation range

J Analyte detected below quantitation limits

CLIENT: NYSDEC - Region 9 Client Sample ID: TP-1

Lab Order: U0710381 **Collection Date:** 10/15/2007 11:00:00 AM

Project: Friendship Foundry, Site #902017

Matrix: SOIL Lab ID: U0710381-001

Analyses	Result	Limit Qua	l Units	DF	Date Analyzed
TCL VOLATILE ORGANICS		SW8260B			Analyst: AT
Methylene chloride	14	3.1	μg/Kg-dry	1	10/25/2007 4:24:00 PM
o-Xylene	ND	3.1	μg/Kg-dry	1	10/25/2007 4:24:00 PM
Styrene	ND	3.1	μg/Kg-dry	1	10/25/2007 4:24:00 PM
Tetrachloroethene	ND	3.1	μg/Kg-dry	1	10/25/2007 4:24:00 PM
Toluene	ND	3.1	μg/Kg-dry	1	10/25/2007 4:24:00 PM
trans-1,2-Dichloroethene	ND	3.1	μg/Kg-dry	1	10/25/2007 4:24:00 PM
trans-1,3-Dichloropropene	ND	3.1	μg/Kg-dry	1	10/25/2007 4:24:00 PM
Trichloroethene	ND	3.1	μg/Kg-dry	1	10/25/2007 4:24:00 PM
Vinyl chloride	ND	2.1	μg/Kg-dry	1	10/25/2007 4:24:00 PM
NOTES: Analytical Note: Results confirmed by r Methylene chloride is a common labora	•				
PHENOLICS, TOTAL RECOVERAB	LE FOR SOLID	E420.1	(E420.1)	Analyst: MB
Phenolics, Total Recoverable	0.149	0.104	mg/Kg-dry	1	10/19/2007
PERCENT MOISTURE	4.22	D2216	ve+9/	1	Analyst: KAM
Percent Moisture	4.22	0.00100	wt%	ı	10/22/2007

Approved B	y: _		Date:	Page 5 of 10
Qualifiers:	*	Low Level	**	Value exceeds Maximum Contaminant Value
	В	Analyte detected in the associated Method Blank	E	Value above quantitation range

Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

Analyte detected below quantitation limits Spike Recovery outside accepted recovery limits

Date: 30-Oct-07

CLIENT: NYSDEC - Region 9 Client Sample ID: TP-4

Lab Order: U0710381 **Collection Date:** 10/15/2007 1:30:00 PM

Project: Friendship Foundry, Site #902017

Lab ID: U0710381-002 **Matrix:** SOIL

Analyses	Result Limit Qual		Units DF		Date Analyzed	
PEST/PCB IN SOIL/SLUDGE	ST/PCB IN SOIL/SLUDGE SW8081A (SW3550)		60)	Analyst: KC		
4,4´-DDD	ND	3.5	μg/Kg-dry	1	10/24/2007	
4,4´-DDE	ND	3.5	μg/Kg-dry	1	10/24/2007	
4,4´-DDT	ND	3.5	μg/Kg-dry	1	10/24/2007	
Aldrin	ND	1.8	μg/Kg-dry	1	10/24/2007	
alpha-BHC	ND	1.8	μg/Kg-dry	1	10/24/2007	
alpha-Chlordane	ND	1.8	μg/Kg-dry	1	10/24/2007	
Aroclor 1016	ND	1.8	μg/Kg-dry	1	10/24/2007	
Aroclor 1221	ND	1.8	μg/Kg-dry	1	10/24/2007	
Aroclor 1232	ND	1.8	μg/Kg-dry	1	10/24/2007	
Aroclor 1242	ND	1.8	μg/Kg-dry	1	10/24/2007	
Aroclor 1248	ND	1.8	μg/Kg-dry	1	10/24/2007	
Aroclor 1254	ND	1.8	μg/Kg-dry	1	10/24/2007	
Aroclor 1260	ND	1.8	μg/Kg-dry	1	10/24/2007	
beta-BHC	ND	1.8	μg/Kg-dry	1	10/24/2007	
delta-BHC	ND	1.8	μg/Kg-dry	1	10/24/2007	
Dieldrin	ND	3.5	μg/Kg-dry	1	10/24/2007	
Endosulfan I	ND	1.8	μg/Kg-dry	1	10/24/2007	
Endosulfan II	ND	3.5	μg/Kg-dry	1	10/24/2007	
Endosulfan sulfate	ND	3.5	μg/Kg-dry	1	10/24/2007	
Endrin	ND	3.5	μg/Kg-dry	1	10/24/2007	
Endrin aldehyde	ND	3.5	μg/Kg-dry	1	10/24/2007	
Endrin ketone	ND	3.5	μg/Kg-dry	1	10/24/2007	
gamma-BHC	ND	1.8	μg/Kg-dry	1	10/24/2007	
gamma-Chlordane	ND	1.8	μg/Kg-dry	1	10/24/2007	
Heptachlor	ND	1.8	μg/Kg-dry	1	10/24/2007	
Heptachlor epoxide	ND	1.8	μg/Kg-dry	1	10/24/2007	
Methoxychlor	ND	18	μg/Kg-dry	1	10/24/2007	
Toxaphene	ND	180	μg/Kg-dry	1	10/24/2007	
CHLORINATED HERBICIDES		SW8151A	(SW355	60)	Analyst: KC	
2,4,5-T	ND	35	μg/Kg-dry	1	10/24/2007	
2,4,5-TP (Silvex)	ND	35	μg/Kg-dry	1	10/24/2007	
2,4-D	ND	35	μg/Kg-dry	1	10/24/2007	
Dicamba	ND	35	μg/Kg-dry	1	10/24/2007	
Dinoseb	ND	35	μg/Kg-dry	1	10/24/2007	
SOIL AND SOLID METALS BY ICP		SW6010B	(SW305	-	Analyst: EA	
Aluminum	11000	5.3	mg/Kg-dry	1	10/19/2007 10:45:03 AM	
Antimony	ND	32	mg/Kg-dry	1	10/19/2007 10:45:03 AM	
Arsenic*	10	1.1	mg/Kg-dry	1	10/19/2007 10:45:03 AM	

Approved By: Page 6 of 10

Qualifiers: * Low Level

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

** Value exceeds Maximum Contaminant Value

Date: 30-Oct-07

E Value above quantitation range

J Analyte detected below quantitation limits

CLIENT: NYSDEC - Region 9 Client Sample ID: TP-4

Lab Order: U0710381 **Collection Date:** 10/15/2007 1:30:00 PM

Project: Friendship Foundry, Site #902017

Lab ID: U0710381-002 **Matrix:** SOIL

Analyses	Result	Limit Qua	Units	DF	Date Analyzed
SOIL AND SOLID METALS BY ICP		SW6010B	(SW305	(OA)	Analyst: EA
Barium	76	32	mg/Kg-dry	1	10/19/2007 10:45:03 AM
Beryllium	0.65	0.53	mg/Kg-dry	1	10/19/2007 10:45:03 AM
Cadmium	ND	0.53	mg/Kg-dry	1	10/19/2007 10:45:03 AM
Calcium	1000	53	mg/Kg-dry	1	10/19/2007 10:45:03 AM
Chromium	12	5.3	mg/Kg-dry	1	10/19/2007 10:45:03 AM
Cobalt	13	5.3	mg/Kg-dry	1	10/19/2007 10:45:03 AM
Copper	13	2.1	mg/Kg-dry	1	10/19/2007 10:45:03 AM
Iron	24000	3.2	mg/Kg-dry	1	10/19/2007 10:45:03 AM
Lead	21	11	mg/Kg-dry	1	10/19/2007 10:45:03 AM
Magnesium	3100	53	mg/Kg-dry	1	10/19/2007 10:45:03 AM
Manganese	620	2.1	mg/Kg-dry	1	10/19/2007 10:45:03 AM
Nickel	22	3.2	mg/Kg-dry	1	10/19/2007 10:45:03 AM
Potassium	1400	53	mg/Kg-dry	1	10/19/2007 10:45:03 AM
Selenium*	9.3	0.53	mg/Kg-dry	1	10/19/2007 10:45:03 AM
Silver	ND	5.3	mg/Kg-dry	1	10/19/2007 10:45:03 AM
Sodium	76	53	mg/Kg-dry	1	10/19/2007 10:45:03 AM
Thallium*	ND	0.32	mg/Kg-dry	1	10/19/2007 10:45:03 AM
Vanadium	10	32 J	mg/Kg-dry	1	10/19/2007 10:45:03 AM
Zinc	66	1.1	mg/Kg-dry	1	10/19/2007 10:45:03 AM
TOTAL MERCURY - SOIL/SOLID/WASTE		SW7471A	A (SW7471A)		Analyst: DRP
Mercury	0.032	0.213 J	mg/Kg-dry	1	10/19/2007 11:51:16 AM
TCL-SEMIVOLATILE ORGANICS		SW8270C	(SW355	60A)	Analyst: LD
(3+4)-Methylphenol	ND	350	μg/Kg-dry	1	10/24/2007 11:42:00 PM
1,2,4-Trichlorobenzene	ND	350	μg/Kg-dry	1	10/24/2007 11:42:00 PM
1,2-Dichlorobenzene	ND	350	μg/Kg-dry	1	10/24/2007 11:42:00 PM
1,3-Dichlorobenzene	ND	350	μg/Kg-dry	1	10/24/2007 11:42:00 PM
1,4-Dichlorobenzene	ND	350	μg/Kg-dry	1	10/24/2007 11:42:00 PM
2,4,5-Trichlorophenol	ND	350	μg/Kg-dry	1	10/24/2007 11:42:00 PM
2,4,6-Trichlorophenol	ND	350	μg/Kg-dry	1	10/24/2007 11:42:00 PM
2,4-Dichlorophenol	ND	350	μg/Kg-dry	1	10/24/2007 11:42:00 PM
2,4-Dimethylphenol	ND	350	μg/Kg-dry	1	10/24/2007 11:42:00 PM
2,4-Dinitrophenol	ND	3500	μg/Kg-dry	1	10/24/2007 11:42:00 PM
2,4-Dinitrotoluene	ND	350	μg/Kg-dry	1	10/24/2007 11:42:00 PM
2,6-Dinitrotoluene	ND	350	μg/Kg-dry	1	10/24/2007 11:42:00 PM
2-Chloronaphthalene	ND	350	μg/Kg-dry	1	10/24/2007 11:42:00 PM
2-Chlorophenol	ND	350	μg/Kg-dry	1	10/24/2007 11:42:00 PM
2-Methylnaphthalene	ND	350	μg/Kg-dry	1	10/24/2007 11:42:00 PM
2-Methylphenol	ND	350	μg/Kg-dry	1	10/24/2007 11:42:00 PM

Approved By:

Qualifiers:

* Low Level

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

** Value exceeds Maximum Contaminant Value

Page 7 of 10

Date: 30-Oct-07

E Value above quantitation range

Date:

J Analyte detected below quantitation limits

CLIENT: NYSDEC - Region 9 Client Sample ID: TP-4

Lab Order: U0710381 **Collection Date:** 10/15/2007 1:30:00 PM

Project: Friendship Foundry, Site #902017

Lab ID: U0710381-002 **Matrix:** SOIL

Analyses	Result	Limit (Qual U	Inits	DF	Date Analyzed
TCL-SEMIVOLATILE ORGANICS		SW82	70C	(SW3550A)		Analyst: LD
2-Nitroaniline	ND	3500	μ	g/Kg-dry	1	10/24/2007 11:42:00 PM
2-Nitrophenol	ND	350	μ	g/Kg-dry	1	10/24/2007 11:42:00 PM
3,3´-Dichlorobenzidine	ND	350	μ	g/Kg-dry	1	10/24/2007 11:42:00 PM
3-Nitroaniline	ND	3500	μ	g/Kg-dry	1	10/24/2007 11:42:00 PM
4,6-Dinitro-2-methylphenol	ND	3500	μ	g/Kg-dry	1	10/24/2007 11:42:00 PM
4-Bromophenyl phenyl ether	ND	350	μ	g/Kg-dry	1	10/24/2007 11:42:00 PM
4-Chloro-3-methylphenol	ND	350	μ	g/Kg-dry	1	10/24/2007 11:42:00 PM
4-Chloroaniline	ND	350	μ	g/Kg-dry	1	10/24/2007 11:42:00 PM
4-Chlorophenyl phenyl ether	ND	350	μ	g/Kg-dry	1	10/24/2007 11:42:00 PM
4-Nitroaniline	ND	3500	μ	g/Kg-dry	1	10/24/2007 11:42:00 PM
4-Nitrophenol	ND	3500	μ	g/Kg-dry	1	10/24/2007 11:42:00 PM
Acenaphthene	ND	350	μ	g/Kg-dry	1	10/24/2007 11:42:00 PM
Acenaphthylene	ND	350	μ	g/Kg-dry	1	10/24/2007 11:42:00 PM
Anthracene	ND	350	μ	g/Kg-dry	1	10/24/2007 11:42:00 PM
Benz(a)anthracene	ND	350	μ	g/Kg-dry	1	10/24/2007 11:42:00 PM
Benzo(a)pyrene	ND	350	μ	g/Kg-dry	1	10/24/2007 11:42:00 PM
Benzo(b)fluoranthene	ND	350	μ	g/Kg-dry	1	10/24/2007 11:42:00 PM
Benzo(g,h,i)perylene	ND	350	μ	g/Kg-dry	1	10/24/2007 11:42:00 PM
Benzo(k)fluoranthene	ND	350	μ	g/Kg-dry	1	10/24/2007 11:42:00 PM
Bis(2-chloroethoxy)methane	ND	350	μ	g/Kg-dry	1	10/24/2007 11:42:00 PM
Bis(2-chloroethyl)ether	ND	350	μ	g/Kg-dry	1	10/24/2007 11:42:00 PM
Bis(2-chloroisopropyl)ether	ND	350	μ	g/Kg-dry	1	10/24/2007 11:42:00 PM
Bis(2-ethylhexyl)phthalate	200	350	Jμ	g/Kg-dry	1	10/24/2007 11:42:00 PM
Butyl benzyl phthalate	ND	350	μ	g/Kg-dry	1	10/24/2007 11:42:00 PM
Carbazole	ND	350	μ	g/Kg-dry	1	10/24/2007 11:42:00 PM
Chrysene	ND	350	μ	g/Kg-dry	1	10/24/2007 11:42:00 PM
Di-n-butyl phthalate	ND	350	μ	g/Kg-dry	1	10/24/2007 11:42:00 PM
Di-n-octyl phthalate	ND	350	μ	g/Kg-dry	1	10/24/2007 11:42:00 PM
Dibenz(a,h)anthracene	ND	350	μ	g/Kg-dry	1	10/24/2007 11:42:00 PM
Dibenzofuran	ND	350	μ	g/Kg-dry	1	10/24/2007 11:42:00 PM
Diethyl phthalate	ND	350	μ	g/Kg-dry	1	10/24/2007 11:42:00 PM
Dimethyl phthalate	ND	350	μ	g/Kg-dry	1	10/24/2007 11:42:00 PM
Fluoranthene	60	350	Jμ	g/Kg-dry	1	10/24/2007 11:42:00 PM
Fluorene	ND	350	μ	g/Kg-dry	1	10/24/2007 11:42:00 PM
Hexachlorobenzene	ND	350	μ	g/Kg-dry	1	10/24/2007 11:42:00 PM
Hexachlorobutadiene	ND	350	μ	g/Kg-dry	1	10/24/2007 11:42:00 PM
Hexachlorocyclopentadiene	ND	350		g/Kg-dry	1	10/24/2007 11:42:00 PM
Hexachloroethane	ND	350		g/Kg-dry	1	10/24/2007 11:42:00 PM
Indeno(1,2,3-cd)pyrene	ND	350		g/Kg-dry	1	10/24/2007 11:42:00 PM

Approved By:

Qualifiers: * Low Level

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

Date:

37 - 1-- -

Page 8 of 10

** Value exceeds Maximum Contaminant Value

Date: 30-Oct-07

- E Value above quantitation range
- J Analyte detected below quantitation limits
- S Spike Recovery outside accepted recovery limits

CLIENT: NYSDEC - Region 9 Client Sample ID: TP-4

Lab Order: U0710381 **Collection Date:** 10/15/2007 1:30:00 PM

Project: Friendship Foundry, Site #902017

Lab ID: U0710381-002 **Matrix:** SOIL

Analyses	Result	Limit Qu	al Units	DF	Date Analyzed
TCL-SEMIVOLATILE ORGANICS		SW8270	C (SW35	50A)	Analyst: LD
Isophorone	ND	350	μg/Kg-dry	1	10/24/2007 11:42:00 PM
N-Nitrosodi-n-propylamine	ND	350	μg/Kg-dry	1	10/24/2007 11:42:00 PM
N-Nitrosodiphenylamine	ND	350	μg/Kg-dry	1	10/24/2007 11:42:00 PM
Naphthalene	ND	350	μg/Kg-dry	1	10/24/2007 11:42:00 PM
Nitrobenzene	ND	350	μg/Kg-dry	1	10/24/2007 11:42:00 PM
Pentachlorophenol	ND	710	μg/Kg-dry	1	10/24/2007 11:42:00 PM
Phenanthrene	ND	350	μg/Kg-dry	1	10/24/2007 11:42:00 PM
Phenol	ND	350	μg/Kg-dry	1	10/24/2007 11:42:00 PM
Pyrene	50	350 J	μg/Kg-dry	1	10/24/2007 11:42:00 PM
TCL VOLATILE ORGANICS		SW8260	В		Analyst: AT
1,1,1-Trichloroethane	ND	3.2	μg/Kg-dry	1	10/25/2007 5:13:00 PM
1,1,2,2-Tetrachloroethane	ND	3.2	μg/Kg-dry	1	10/25/2007 5:13:00 PM
1,1,2-Trichloroethane	ND	3.2	μg/Kg-dry	1	10/25/2007 5:13:00 PM
1,1-Dichloroethane	ND	3.2	μg/Kg-dry	1	10/25/2007 5:13:00 PM
1,1-Dichloroethene	ND	3.2	μg/Kg-dry	1	10/25/2007 5:13:00 PM
1,2-Dichloroethane	ND	3.2	μg/Kg-dry	1	10/25/2007 5:13:00 PM
1,2-Dichloropropane	ND	3.2	μg/Kg-dry	1	10/25/2007 5:13:00 PM
2-Butanone	ND	11	μg/Kg-dry	1	10/25/2007 5:13:00 PM
2-Hexanone	ND	11	μg/Kg-dry	1	10/25/2007 5:13:00 PM
4-Methyl-2-pentanone	ND	11	μg/Kg-dry	1	10/25/2007 5:13:00 PM
Acetone	ND	11	μg/Kg-dry	1	10/25/2007 5:13:00 PM
Benzene	ND	3.2	μg/Kg-dry	1	10/25/2007 5:13:00 PM
Bromodichloromethane	ND	3.2	μg/Kg-dry	1	10/25/2007 5:13:00 PM
Bromoform	ND	3.2	μg/Kg-dry	1	10/25/2007 5:13:00 PM
Bromomethane	ND	3.2	μg/Kg-dry	1	10/25/2007 5:13:00 PM
Carbon disulfide	ND	3.2	μg/Kg-dry	1	10/25/2007 5:13:00 PM
Carbon tetrachloride	ND	3.2	μg/Kg-dry	1	10/25/2007 5:13:00 PM
Chlorobenzene	ND	3.2	μg/Kg-dry	1	10/25/2007 5:13:00 PM
Chloroethane	ND	3.2	μg/Kg-dry	1	10/25/2007 5:13:00 PM
Chloroform	ND	3.2	μg/Kg-dry	1	10/25/2007 5:13:00 PM
Chloromethane	ND	3.2	μg/Kg-dry	1	10/25/2007 5:13:00 PM
cis-1,2-Dichloroethene	ND	3.2	μg/Kg-dry	1	10/25/2007 5:13:00 PM
cis-1,3-Dichloropropene	ND	3.2	μg/Kg-dry	1	10/25/2007 5:13:00 PM
Dibromochloromethane	ND	3.2	μg/Kg-dry	1	10/25/2007 5:13:00 PM
Ethylbenzene	ND	3.2	μg/Kg-dry	1	10/25/2007 5:13:00 PM
m,p-Xylene	ND	3.2	μg/Kg-dry	1	10/25/2007 5:13:00 PM
Methylene chloride	ND	3.2	μg/Kg-dry	1	10/25/2007 5:13:00 PM
o-Xylene	ND	3.2	μg/Kg-dry	1	10/25/2007 5:13:00 PM

Approved By:	Date:	Page 9 of 10

Qualifiers: * Low Level

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

** Value exceeds Maximum Contaminant Value

Date: 30-Oct-07

E Value above quantitation range

J Analyte detected below quantitation limits

CLIENT: NYSDEC - Region 9 Client Sample ID: TP-4

Lab Order: U0710381 **Collection Date:** 10/15/2007 1:30:00 PM

Project: Friendship Foundry, Site #902017

Lab ID: U0710381-002 **Matrix:** SOIL

Analyses	Result	Limit Qual	Units	DF	Date Analyzed
TCL VOLATILE ORGANICS		SW8260B			Analyst: AT
Styrene	ND	3.2	μg/Kg-dry	1	10/25/2007 5:13:00 PM
Tetrachloroethene	ND	3.2	μg/Kg-dry	1	10/25/2007 5:13:00 PM
Toluene	ND	3.2	μg/Kg-dry	1	10/25/2007 5:13:00 PM
trans-1,2-Dichloroethene	ND	3.2	μg/Kg-dry	1	10/25/2007 5:13:00 PM
trans-1,3-Dichloropropene	ND	3.2	μg/Kg-dry	1	10/25/2007 5:13:00 PM
Trichloroethene	ND	3.2	μg/Kg-dry	1	10/25/2007 5:13:00 PM
Vinyl chloride	ND	2.1	μg/Kg-dry	1	10/25/2007 5:13:00 PM
NOTES: Analytical Note: Results confirmed by re	eanalysis.				
PHENOLICS, TOTAL RECOVERABL	E FOR SOLID	E420.1	(E420.1)	Analyst: MB
Phenolics, Total Recoverable	ND	0.106	mg/Kg-dry	1	10/19/2007
PERCENT MOISTURE		D2216			Analyst: KAM
Percent Moisture	5.92	0.00100	wt%	1	10/22/2007

Approved By:	Date:	Page 10 of	
Qualifiers: * Low Level	**	Value exceeds Maximum Contaminant Value	

B Analyte detected in the associated Method Blank
 H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

E Value above quantitation range
 J Analyte detected below quantitation limits
 S Spike Recovery outside accepted recovery limits

Date: 30-Oct-07

CLIENT: NYSDEC - Region 9 Client Sample ID: TP-10 Drum

Lab Order: U0710428 **Collection Date:** 10/16/2007 11:30:00 AM

Project: Friendship Foundry, Site #902017

Lab ID: U0710428-001 **Matrix:** SOIL

Analyses	Result	Limit Qual	Units	DF	Date Analyzed
PEST/PCB IN SOIL/SLUDGE		SW8081A	(SW355	60)	Analyst: KC
4,4´-DDD	ND	4.7	μg/Kg-dry	1	10/24/2007
4,4´-DDE	ND	4.7	μg/Kg-dry	1	10/24/2007
4,4´-DDT	ND	4.7	μg/Kg-dry	1	10/24/2007
Aldrin	ND	2.4	μg/Kg-dry	1	10/24/2007
alpha-BHC	ND	2.4	μg/Kg-dry	1	10/24/2007
alpha-Chlordane	ND	2.4	μg/Kg-dry	1	10/24/2007
Aroclor 1016	ND	2.4	μg/Kg-dry	1	10/24/2007
Aroclor 1221	ND	2.4	μg/Kg-dry	1	10/24/2007
Aroclor 1232	ND	2.4	μg/Kg-dry	1	10/24/2007
Aroclor 1242	ND	2.4	μg/Kg-dry	1	10/24/2007
Aroclor 1248	ND	2.4	μg/Kg-dry	1	10/24/2007
Aroclor 1254	ND	2.4	μg/Kg-dry	1	10/24/2007
Aroclor 1260	ND	2.4	μg/Kg-dry	1	10/24/2007
beta-BHC	ND	2.4	μg/Kg-dry	1	10/24/2007
delta-BHC	ND	2.4	μg/Kg-dry	1	10/24/2007
Dieldrin	ND	4.7	μg/Kg-dry	1	10/24/2007
Endosulfan I	ND	2.4	μg/Kg-dry	1	10/24/2007
Endosulfan II	ND	4.7	μg/Kg-dry	1	10/24/2007
Endosulfan sulfate	ND	4.7	μg/Kg-dry	1	10/24/2007
Endrin	ND	4.7	μg/Kg-dry	1	10/24/2007
Endrin aldehyde	ND	4.7	μg/Kg-dry	1	10/24/2007
Endrin ketone	ND	4.7	μg/Kg-dry	1	10/24/2007
gamma-BHC	ND	2.4	μg/Kg-dry	1	10/24/2007
gamma-Chlordane	ND	2.4	μg/Kg-dry	1	10/24/2007
Heptachlor	ND	2.4	μg/Kg-dry	1	10/24/2007
Heptachlor epoxide	ND	2.4	μg/Kg-dry	1	10/24/2007
Methoxychlor	ND	24	μg/Kg-dry	1	10/24/2007
Toxaphene	ND	240	μg/Kg-dry	1	10/24/2007
CHLORINATED HERBICIDES		SW8151A	(SW355	60)	Analyst: KC
2,4,5-T	ND	47	μg/Kg-dry	1	10/24/2007
2,4,5-TP (Silvex)	ND	47	μg/Kg-dry	1	10/24/2007
2,4-D	ND	47	μg/Kg-dry	1	10/24/2007
Dicamba	ND	47	μg/Kg-dry	1	10/24/2007
Dinoseb	ND	47	μg/Kg-dry	1	10/24/2007
SOIL AND SOLID METALS BY ICP		SW6010B	(SW305	-	Analyst: EA
Aluminum	9800	7.2	mg/Kg-dry	1	10/24/2007 3:23:49 PM
Antimony	ND	43	mg/Kg-dry	1	10/24/2007 3:23:49 PM
Arsenic*	4.0	1.4	mg/Kg-dry	1	10/24/2007 3:23:49 PM

Approved By: Page 1 of 20

Qualifiers: * Low Level

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

** Value exceeds Maximum Contaminant Value

Date: 30-Oct-07

E Value above quantitation range

J Analyte detected below quantitation limits

CLIENT: NYSDEC - Region 9 Client Sample ID: TP-10 Drum

Project: Friendship Foundry, Site #902017

Lab ID: U0710428-001 **Matrix:** SOIL

Analyses	Result	Limit (Qual	Units	DF	Date Analyzed
SOIL AND SOLID METALS BY ICP		SW601	10B	(SW305	0A)	Analyst: EA
Barium	170	43		mg/Kg-dry	1	10/24/2007 3:23:49 PM
Beryllium	ND	0.72		mg/Kg-dry	1	10/24/2007 3:23:49 PM
Cadmium	0.83	0.72		mg/Kg-dry	1	10/24/2007 3:23:49 PM
Calcium	3300	72		mg/Kg-dry	1	10/24/2007 3:23:49 PM
Chromium	6	7.2	J	mg/Kg-dry	1	10/24/2007 3:23:49 PM
Cobalt	ND	7.2		mg/Kg-dry	1	10/24/2007 3:23:49 PM
Copper	44	2.9		mg/Kg-dry	1	10/24/2007 3:23:49 PM
Iron	16000	4.3		mg/Kg-dry	1	10/24/2007 3:23:49 PM
Lead	22	14		mg/Kg-dry	1	10/24/2007 3:23:49 PM
Magnesium	2300	72		mg/Kg-dry	1	10/24/2007 3:23:49 PM
Manganese	250	2.9		mg/Kg-dry	1	10/24/2007 3:23:49 PM
Nickel	20	4.3		mg/Kg-dry	1	10/24/2007 3:23:49 PM
Potassium	800	72		mg/Kg-dry	1	10/24/2007 3:23:49 PM
Selenium*	0.90	0.72		mg/Kg-dry	1	10/24/2007 3:23:49 PM
Silver	ND	7.2		mg/Kg-dry	1	10/24/2007 3:23:49 PM
Sodium	300	72		mg/Kg-dry	1	10/24/2007 3:23:49 PM
Thallium*	ND	0.43		mg/Kg-dry	1	10/24/2007 3:23:49 PM
Vanadium	ND	43		mg/Kg-dry	1	10/24/2007 3:23:49 PM
Zinc	86	1.4		mg/Kg-dry	1	10/24/2007 3:23:49 PM
TOTAL MERCURY - SOIL/SOLID/WAS	STE	SW747	71A	(SW747	1A)	Analyst: DRP
Mercury	0.0027	0.287	J	mg/Kg-dry	1	10/23/2007 12:36:15 PM
TCL-SEMIVOLATILE ORGANICS		SW827	70C	(SW355	0A)	Analyst: LD
(3+4)-Methylphenol	ND	4700		μg/Kg-dry	10	10/25/2007 12:25:00 AM
1,2,4-Trichlorobenzene	ND	4700		μg/Kg-dry	10	10/25/2007 12:25:00 AM
1,2-Dichlorobenzene	ND	4700		μg/Kg-dry	10	10/25/2007 12:25:00 AM
1,3-Dichlorobenzene	ND	4700		μg/Kg-dry	10	10/25/2007 12:25:00 AM
1,4-Dichlorobenzene	ND	4700		μg/Kg-dry	10	10/25/2007 12:25:00 AM
2,4,5-Trichlorophenol	ND	4700		μg/Kg-dry	10	10/25/2007 12:25:00 AM
2,4,6-Trichlorophenol	ND	4700		μg/Kg-dry	10	10/25/2007 12:25:00 AM
2,4-Dichlorophenol	ND	4700		μg/Kg-dry	10	10/25/2007 12:25:00 AM
2,4-Dimethylphenol	700	4700	J	μg/Kg-dry	10	10/25/2007 12:25:00 AM
2,4-Dinitrophenol	ND	47000		μg/Kg-dry	10	10/25/2007 12:25:00 AM
2,4-Dinitrotoluene	ND	4700		μg/Kg-dry	10	10/25/2007 12:25:00 AM
2,6-Dinitrotoluene	ND	4700		μg/Kg-dry	10	10/25/2007 12:25:00 AM
2-Chloronaphthalene	ND	4700		μg/Kg-dry	10	10/25/2007 12:25:00 AM
2-Chlorophenol	ND	4700		μg/Kg-dry	10	10/25/2007 12:25:00 AM
2-Methylnaphthalene	2000	4700	J	μg/Kg-dry	10	10/25/2007 12:25:00 AM
2-Methylphenol	ND	4700		μg/Kg-dry	10	10/25/2007 12:25:00 AM

Approved By:

Qualifiers:

Low Level

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

** Value exceeds Maximum Contaminant Value

Page 2 of 20

Date: 30-Oct-07

E Value above quantitation range

Date:

J Analyte detected below quantitation limits

CLIENT: NYSDEC - Region 9 Client Sample ID: TP-10 Drum

Lab Order: U0710428 **Collection Date:** 10/16/2007 11:30:00 AM

Friendship Foundry, Site #902017 **Project:**

Matrix: SOIL Lab ID: U0710428-001

Analyses	Result	Limit Qua	l Units	DF	Date Analyzed
TCL-SEMIVOLATILE ORGANICS		SW8270C	(SW35	50A)	Analyst: LD
2-Nitroaniline	ND	47000	μg/Kg-dry	10	10/25/2007 12:25:00 AM
2-Nitrophenol	ND	4700	μg/Kg-dry	10	10/25/2007 12:25:00 AM
3,3´-Dichlorobenzidine	ND	4700	μg/Kg-dry	10	10/25/2007 12:25:00 AM
3-Nitroaniline	ND	47000	μg/Kg-dry	10	10/25/2007 12:25:00 AM
4,6-Dinitro-2-methylphenol	ND	47000	μg/Kg-dry	10	10/25/2007 12:25:00 AM
4-Bromophenyl phenyl ether	ND	4700	μg/Kg-dry	10	10/25/2007 12:25:00 AM
4-Chloro-3-methylphenol	ND	4700	μg/Kg-dry	10	10/25/2007 12:25:00 AM
4-Chloroaniline	ND	4700	μg/Kg-dry	10	10/25/2007 12:25:00 AM
4-Chlorophenyl phenyl ether	ND	4700	μg/Kg-dry	10	10/25/2007 12:25:00 AM
4-Nitroaniline	ND	47000	μg/Kg-dry	10	10/25/2007 12:25:00 AM
4-Nitrophenol	ND	47000	μg/Kg-dry	10	10/25/2007 12:25:00 AM
Acenaphthene	ND	4700	μg/Kg-dry	10	10/25/2007 12:25:00 AM
Acenaphthylene	ND	4700	μg/Kg-dry	10	10/25/2007 12:25:00 AM
Anthracene	ND	4700	μg/Kg-dry	10	10/25/2007 12:25:00 AM
Benz(a)anthracene	ND	4700	μg/Kg-dry	10	10/25/2007 12:25:00 AM
Benzo(a)pyrene	ND	4700	μg/Kg-dry	10	10/25/2007 12:25:00 AM
Benzo(b)fluoranthene	ND	4700	μg/Kg-dry	10	10/25/2007 12:25:00 AM
Benzo(g,h,i)perylene	ND	4700	μg/Kg-dry	10	10/25/2007 12:25:00 AM
Benzo(k)fluoranthene	ND	4700	μg/Kg-dry	10	10/25/2007 12:25:00 AM
Bis(2-chloroethoxy)methane	ND	4700	μg/Kg-dry	10	10/25/2007 12:25:00 AM
Bis(2-chloroethyl)ether	ND	4700	μg/Kg-dry	10	10/25/2007 12:25:00 AM
Bis(2-chloroisopropyl)ether	ND	4700	μg/Kg-dry	10	10/25/2007 12:25:00 AM
Bis(2-ethylhexyl)phthalate	ND	4700	μg/Kg-dry	10	10/25/2007 12:25:00 AM
Butyl benzyl phthalate	ND	4700	μg/Kg-dry	10	10/25/2007 12:25:00 AM
Carbazole	ND	4700	μg/Kg-dry	10	10/25/2007 12:25:00 AM
Chrysene	ND	4700	μg/Kg-dry	10	10/25/2007 12:25:00 AM
Di-n-butyl phthalate	ND	4700	μg/Kg-dry	10	10/25/2007 12:25:00 AM
Di-n-octyl phthalate	ND	4700	μg/Kg-dry	10	10/25/2007 12:25:00 AM
Dibenz(a,h)anthracene	ND	4700	μg/Kg-dry	10	10/25/2007 12:25:00 AM
Dibenzofuran	ND	4700	μg/Kg-dry	10	10/25/2007 12:25:00 AM
Diethyl phthalate	ND	4700	μg/Kg-dry	10	10/25/2007 12:25:00 AM
Dimethyl phthalate	ND	4700	μg/Kg-dry	10	10/25/2007 12:25:00 AM
Fluoranthene	ND	4700	μg/Kg-dry	10	10/25/2007 12:25:00 AM
Fluorene	ND	4700	μg/Kg-dry	10	10/25/2007 12:25:00 AM
Hexachlorobenzene	ND	4700	μg/Kg-dry	10	10/25/2007 12:25:00 AM
Hexachlorobutadiene	ND	4700	μg/Kg-dry	10	10/25/2007 12:25:00 AM
Hexachlorocyclopentadiene	ND	4700	μg/Kg-dry	10	10/25/2007 12:25:00 AM
Hexachloroethane	ND	4700	μg/Kg-dry	10	10/25/2007 12:25:00 AM
Indeno(1,2,3-cd)pyrene	ND	4700	μg/Kg-dry	10	10/25/2007 12:25:00 AM

Approved By:

Qualifiers: Low Level

- В Analyte detected in the associated Method Blank
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

Date:

Page 3 of 20

Value exceeds Maximum Contaminant Value

Date: 30-Oct-07

- Е Value above quantitation range
- J Analyte detected below quantitation limits
- Spike Recovery outside accepted recovery limits

CLIENT: NYSDEC - Region 9 Client Sample ID: TP-10 Drum

Lab Order: U0710428 **Collection Date:** 10/16/2007 11:30:00 AM

Friendship Foundry, Site #902017 **Project:**

Lab ID: U0710428-001				Mati	rix: SOIL	
Analyses	Result	Limit	Qual	Units	DF	Date Analyzed
TCL-SEMIVOLATILE ORGANICS		SW8	270C	(SW355	60A)	Analyst: LD
Isophorone	ND	4700		μg/Kg-dry	10	10/25/2007 12:25:00 AM
N-Nitrosodi-n-propylamine	ND	4700		μg/Kg-dry	10	10/25/2007 12:25:00 AM
N-Nitrosodiphenylamine	ND	4700		μg/Kg-dry	10	10/25/2007 12:25:00 AM
Naphthalene	1000	4700	J	μg/Kg-dry	10	10/25/2007 12:25:00 AM
Nitrobenzene	ND	4700		μg/Kg-dry	10	10/25/2007 12:25:00 AM
Pentachlorophenol	ND	9600		μg/Kg-dry	10	10/25/2007 12:25:00 AM
Phenanthrene	900	4700	J	μg/Kg-dry	10	10/25/2007 12:25:00 AM
Phenol	ND	4700		μg/Kg-dry	10	10/25/2007 12:25:00 AM
Pyrene	ND	4700		μg/Kg-dry	10	10/25/2007 12:25:00 AM
NOTES:						
The reporting limits were raised due to ma	trix interference. F	Petroleum pa	attern p	resent.		
TCL VOLATILE ORGANICS		SW8	260B			Analyst: AT
1,1,1-Trichloroethane	ND	8.6		μg/Kg-dry	2	10/29/2007 12:52:00 PM
1,1,2,2-Tetrachloroethane	ND	8.6		μg/Kg-dry	2	10/29/2007 12:52:00 PM
1,1,2-Trichloroethane	ND	8.6		μg/Kg-dry	2	10/29/2007 12:52:00 PM
1,1-Dichloroethane	ND	8.6		μg/Kg-dry	2	10/29/2007 12:52:00 PM
1,1-Dichloroethene	ND	8.6		μg/Kg-dry	2	10/29/2007 12:52:00 PM
1,2-Dichloroethane	ND	8.6		μg/Kg-dry	2	10/29/2007 12:52:00 PM
1,2-Dichloropropane	ND	8.6		μg/Kg-dry	2	10/29/2007 12:52:00 PM
2-Butanone	ND	29		μg/Kg-dry	2	10/29/2007 12:52:00 PM

1,1,1-Trichloroethane	ND	8.6	μg/Kg-dry	2	10/29/2007 12:52:00 PM
1,1,2,2-Tetrachloroethane	ND	8.6	μg/Kg-dry	2	10/29/2007 12:52:00 PM
1,1,2-Trichloroethane	ND	8.6	μg/Kg-dry	2	10/29/2007 12:52:00 PM
1,1-Dichloroethane	ND	8.6	μg/Kg-dry	2	10/29/2007 12:52:00 PM
1,1-Dichloroethene	ND	8.6	μg/Kg-dry	2	10/29/2007 12:52:00 PM
1,2-Dichloroethane	ND	8.6	μg/Kg-dry	2	10/29/2007 12:52:00 PM
1,2-Dichloropropane	ND	8.6	μg/Kg-dry	2	10/29/2007 12:52:00 PM
2-Butanone	ND	29	μg/Kg-dry	2	10/29/2007 12:52:00 PM
2-Hexanone	ND	29	μg/Kg-dry	2	10/29/2007 12:52:00 PM
4-Methyl-2-pentanone	ND	29	μg/Kg-dry	2	10/29/2007 12:52:00 PM
Acetone	98	29	μg/Kg-dry	2	10/29/2007 12:52:00 PM
Benzene	ND	8.6	μg/Kg-dry	2	10/29/2007 12:52:00 PM
Bromodichloromethane	ND	8.6	μg/Kg-dry	2	10/29/2007 12:52:00 PM
Bromoform	ND	8.6	μg/Kg-dry	2	10/29/2007 12:52:00 PM
Bromomethane	ND	8.6	μg/Kg-dry	2	10/29/2007 12:52:00 PM
Carbon disulfide	ND	8.6	μg/Kg-dry	2	10/29/2007 12:52:00 PM
Carbon tetrachloride	ND	8.6	μg/Kg-dry	2	10/29/2007 12:52:00 PM
Chlorobenzene	ND	8.6	μg/Kg-dry	2	10/29/2007 12:52:00 PM
Chloroethane	ND	8.6	μg/Kg-dry	2	10/29/2007 12:52:00 PM
Chloroform	ND	8.6	μg/Kg-dry	2	10/29/2007 12:52:00 PM
Chloromethane	ND	8.6	μg/Kg-dry	2	10/29/2007 12:52:00 PM
cis-1,2-Dichloroethene	ND	8.6	μg/Kg-dry	2	10/29/2007 12:52:00 PM
cis-1,3-Dichloropropene	ND	8.6	μg/Kg-dry	2	10/29/2007 12:52:00 PM
Dibromochloromethane	ND	8.6	μg/Kg-dry	2	10/29/2007 12:52:00 PM
Ethylbenzene	ND	8.6	μg/Kg-dry	2	10/29/2007 12:52:00 PM
m,p-Xylene	ND	8.6	μg/Kg-dry	2	10/29/2007 12:52:00 PM

Approved By:	Date:	Page 4 of 20

Qualifiers: Low Level

> В Analyte detected in the associated Method Blank

Н Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit Value exceeds Maximum Contaminant Value

Date: 30-Oct-07

Е Value above quantitation range

Analyte detected below quantitation limits J

CLIENT: NYSDEC - Region 9 Client Sample ID: TP-10 Drum

Project: Friendship Foundry, Site #902017

Lab ID: U0710428-001 **Matrix:** SOIL

Analyses	Result	Limit Qual	Units	DF	Date Analyzed
TCL VOLATILE ORGANICS		SW8260B			Analyst: AT
Methylene chloride	30	8.6	μg/Kg-dry	2	10/29/2007 12:52:00 PM
o-Xylene	ND	8.6	μg/Kg-dry	2	10/29/2007 12:52:00 PM
Styrene	ND	8.6	μg/Kg-dry	2	10/29/2007 12:52:00 PM
Tetrachloroethene	ND	8.6	μg/Kg-dry	2	10/29/2007 12:52:00 PM
Toluene	ND	8.6	μg/Kg-dry	2	10/29/2007 12:52:00 PM
trans-1,2-Dichloroethene	ND	8.6	μg/Kg-dry	2	10/29/2007 12:52:00 PM
trans-1,3-Dichloropropene	ND	8.6	μg/Kg-dry	2	10/29/2007 12:52:00 PM
Trichloroethene	ND	8.6	μg/Kg-dry	2	10/29/2007 12:52:00 PM
Vinyl chloride	ND	5.7	μg/Kg-dry	2	10/29/2007 12:52:00 PM
NOTES: The reporting limits were raised due to mate Methylene chloride and Acetone are common		vents.			
PHENOLICS, TOTAL RECOVERABLE Phenolics, Total Recoverable	FOR SOLID ND	E420.1 0.144	(E420.1) mg/Kg-dry	1	Analyst: MB 10/23/2007
PERCENT MOISTURE Percent Moisture	30.3	D2216 0.00100	wt%	1	Analyst: KAM 10/22/2007

Approved B	3y: _		Date:	Page 5 of 20
Qualifiers:	*	Low Level	**	Value exceeds Maximum Contaminant Value
	В	Analyte detected in the associated Method Blank	E	Value above quantitation range

B Analyte detected in the associated Method Blank
 H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

J Analyte detected below quantitation limits
 S Spike Recovery outside accepted recovery limits

Date: 30-Oct-07

CLIENT: NYSDEC - Region 9

Client Sample ID: TP-11 Lab Order: U0710428 **Collection Date:** 10/16/2007 12:00:00 PM

Friendship Foundry, Site #902017 **Project:**

Matrix: SOIL Lab ID: U0710428-002

Analyses	Result	Limit Qual	Units	DF	Date Analyzed
PEST/PCB IN SOIL/SLUDGE		SW8081A	(SW3550)		Analyst: KC
4,4´-DDD	ND	3.6	μg/Kg-dry	1	10/24/2007
4,4´-DDE	ND	3.6	μg/Kg-dry	1	10/24/2007
4,4´-DDT	ND	3.6	μg/Kg-dry	1	10/24/2007
Aldrin	ND	1.8	μg/Kg-dry	1	10/24/2007
alpha-BHC	ND	1.8	μg/Kg-dry	1	10/24/2007
alpha-Chlordane	ND	1.8	μg/Kg-dry	1	10/24/2007
Aroclor 1016	ND	1.8	μg/Kg-dry	1	10/24/2007
Aroclor 1221	ND	1.8	μg/Kg-dry	1	10/24/2007
Aroclor 1232	ND	1.8	μg/Kg-dry	1	10/24/2007
Aroclor 1242	ND	1.8	μg/Kg-dry	1	10/24/2007
Aroclor 1248	ND	1.8	μg/Kg-dry	1	10/24/2007
Aroclor 1254	ND	1.8	μg/Kg-dry	1	10/24/2007
Aroclor 1260	56	1.8	μg/Kg-dry	1	10/24/2007
beta-BHC	ND	1.8	μg/Kg-dry	1	10/24/2007
delta-BHC	ND	1.8	μg/Kg-dry	1	10/24/2007
Dieldrin	ND	3.6	μg/Kg-dry	1	10/24/2007
Endosulfan I	ND	1.8	μg/Kg-dry	1	10/24/2007
Endosulfan II	ND	3.6	μg/Kg-dry	1	10/24/2007
Endosulfan sulfate	ND	3.6	μg/Kg-dry	1	10/24/2007
Endrin	ND	3.6	μg/Kg-dry	1	10/24/2007
Endrin aldehyde	ND	3.6	μg/Kg-dry	1	10/24/2007
Endrin ketone	ND	3.6	μg/Kg-dry	1	10/24/2007
gamma-BHC	ND	1.8	μg/Kg-dry	1	10/24/2007
gamma-Chlordane	ND	1.8	μg/Kg-dry	1	10/24/2007
Heptachlor	ND	1.8	μg/Kg-dry	1	10/24/2007
Heptachlor epoxide	ND	1.8	μg/Kg-dry	1	10/24/2007
Methoxychlor	ND	18	μg/Kg-dry	1	10/24/2007
Toxaphene	ND	180	μg/Kg-dry	1	10/24/2007
NOTES: Aroclor is altered and/or weathered.					
CHLORINATED HERBICIDES		SW8151A	(SW3550)		Analyst: KC
2,4,5-T	ND	36	μg/Kg-dry	1	10/24/2007
2,4,5-TP (Silvex)	ND	36	μg/Kg-dry	1	10/24/2007
2,4-D	ND	36	μg/Kg-dry	1	10/24/2007
Dicamba	ND	36	μg/Kg-dry	1	10/24/2007
Dinoseb	ND	36	μg/Kg-dry	1	10/24/2007
SOIL AND SOLID METALS BY ICP		SW6010B	(SW3050A))	Analyst: EA
Aluminum	3300	5.4	mg/Kg-dry	1	10/24/2007 3:40:18 PM

Approved By:	Date:	Page 6 of 20

Qualifiers: Low Level

> В Analyte detected in the associated Method Blank

Н Holding times for preparation or analysis exceeded

Not Detected at the Reporting Limit

Value exceeds Maximum Contaminant Value

Date: 30-Oct-07

Е Value above quantitation range

Analyte detected below quantitation limits J

CLIENT: NYSDEC - Region 9 Client Sample ID: TP-11

Lab Order: U0710428 **Collection Date:** 10/16/2007 12:00:00 PM

Project: Friendship Foundry, Site #902017

Lab ID: U0710428-002 **Matrix:** SOIL

Analyses	Result	Limit Qua	Units	DF	Date Analyzed
SOIL AND SOLID METALS BY ICP		SW6010B	(SW305	0A)	Analyst: EA
Antimony	ND	33	mg/Kg-dry	1	10/24/2007 3:40:18 PM
Arsenic*	4.4	1.1	mg/Kg-dry	1	10/24/2007 3:40:18 PM
Barium	42	33	mg/Kg-dry	1	10/24/2007 3:40:18 PM
Beryllium	ND	0.54	mg/Kg-dry	1	10/24/2007 3:40:18 PM
Cadmium	1.0	0.54	mg/Kg-dry	1	10/24/2007 3:40:18 PM
Calcium	5800	54	mg/Kg-dry	1	10/24/2007 3:40:18 PM
Chromium	17	5.4	mg/Kg-dry	1	10/24/2007 3:40:18 PM
Cobalt	ND	5.4	mg/Kg-dry	1	10/24/2007 3:40:18 PM
Copper	85	2.2	mg/Kg-dry	1	10/24/2007 3:40:18 PM
Iron	32000	3.3	mg/Kg-dry	1	10/24/2007 3:40:18 PM
Lead	46	11	mg/Kg-dry	1	10/24/2007 3:40:18 PM
Magnesium	850	54	mg/Kg-dry	1	10/24/2007 3:40:18 PM
Manganese	370	2.2	mg/Kg-dry	1	10/24/2007 3:40:18 PM
Nickel	15	3.3	mg/Kg-dry	1	10/24/2007 3:40:18 PM
Potassium	550	54	mg/Kg-dry	1	10/24/2007 3:40:18 PM
Selenium*	3.5	0.54	mg/Kg-dry	1	10/24/2007 3:40:18 PM
Silver	ND	5.4	mg/Kg-dry	1	10/24/2007 3:40:18 PM
Sodium	ND	54	mg/Kg-dry	1	10/24/2007 3:40:18 PM
Thallium*	ND	0.33	mg/Kg-dry	1	10/24/2007 3:40:18 PM
Vanadium	10	33 J	mg/Kg-dry	1	10/24/2007 3:40:18 PM
Zinc	79	1.1	mg/Kg-dry	1	10/24/2007 3:40:18 PM
TOTAL MERCURY - SOIL/SOLID/WAS	STE	SW7471A	(SW747	1A)	Analyst: DRP
Mercury	0.068	0.217 J	mg/Kg-dry	1	10/23/2007 12:39:24 PM
TCL-SEMIVOLATILE ORGANICS		SW8270C	(SW355	0A)	Analyst: LD
(3+4)-Methylphenol	ND	3600	μg/Kg-dry	10	10/25/2007 1:07:00 AM
1,2,4-Trichlorobenzene	ND	3600	μg/Kg-dry	10	10/25/2007 1:07:00 AM
1,2-Dichlorobenzene	ND	3600	μg/Kg-dry	10	10/25/2007 1:07:00 AM
1,3-Dichlorobenzene	ND	3600	μg/Kg-dry	10	10/25/2007 1:07:00 AM
1,4-Dichlorobenzene	ND	3600	μg/Kg-dry	10	10/25/2007 1:07:00 AM
2,4,5-Trichlorophenol	ND	3600	μg/Kg-dry	10	10/25/2007 1:07:00 AM
2,4,6-Trichlorophenol	ND	3600	μg/Kg-dry	10	10/25/2007 1:07:00 AM
2,4-Dichlorophenol	ND	3600	μg/Kg-dry	10	10/25/2007 1:07:00 AM
2,4-Dimethylphenol	ND	3600	μg/Kg-dry	10	10/25/2007 1:07:00 AM
2,4-Dinitrophenol	ND	36000	μg/Kg-dry	10	10/25/2007 1:07:00 AM
2,4-Dinitrotoluene	ND	3600	μg/Kg-dry	10	10/25/2007 1:07:00 AM
2,6-Dinitrotoluene	ND	3600	μg/Kg-dry	10	10/25/2007 1:07:00 AM
2-Chloronaphthalene	ND	3600	μg/Kg-dry	10	10/25/2007 1:07:00 AM
2-Chlorophenol	ND	3600	μg/Kg-dry	10	10/25/2007 1:07:00 AM

Approved By:

Qualifiers: *

* Low Level

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

** Value exceeds Maximum Contaminant Value

Date: 30-Oct-07

E Value above quantitation range

Date:

J Analyte detected below quantitation limits

S Spike Recovery outside accepted recovery limits

Page 7 of 20

CLIENT: NYSDEC - Region 9 Client Sample ID: TP-11

Lab Order: U0710428 **Collection Date:** 10/16/2007 12:00:00 PM

Friendship Foundry, Site #902017 **Project:**

Matrix: SOIL Lab ID: U0710428-002

Analyses	Result	Limit Q	ual Units	DF	Date Analyzed
TCL-SEMIVOLATILE ORGANICS		SW827	OC (SW35	50A)	Analyst: LD
2-Methylnaphthalene	ND	3600	μg/Kg-dry	10	10/25/2007 1:07:00 AM
2-Methylphenol	ND	3600	μg/Kg-dry	10	10/25/2007 1:07:00 AM
2-Nitroaniline	ND	36000	μg/Kg-dry	10	10/25/2007 1:07:00 AM
2-Nitrophenol	ND	3600	μg/Kg-dry	10	10/25/2007 1:07:00 AM
3,3´-Dichlorobenzidine	ND	3600	μg/Kg-dry	10	10/25/2007 1:07:00 AM
3-Nitroaniline	ND	36000	μg/Kg-dry	10	10/25/2007 1:07:00 AM
4,6-Dinitro-2-methylphenol	ND	36000	μg/Kg-dry	10	10/25/2007 1:07:00 AM
4-Bromophenyl phenyl ether	ND	3600	μg/Kg-dry	10	10/25/2007 1:07:00 AM
4-Chloro-3-methylphenol	ND	3600	μg/Kg-dry	10	10/25/2007 1:07:00 AM
4-Chloroaniline	ND	3600	μg/Kg-dry	10	10/25/2007 1:07:00 AM
4-Chlorophenyl phenyl ether	ND	3600	μg/Kg-dry	10	10/25/2007 1:07:00 AM
4-Nitroaniline	ND	36000	μg/Kg-dry	10	10/25/2007 1:07:00 AM
4-Nitrophenol	ND	36000	μg/Kg-dry	10	10/25/2007 1:07:00 AM
Acenaphthene	ND	3600	μg/Kg-dry	10	10/25/2007 1:07:00 AM
Acenaphthylene	ND	3600	μg/Kg-dry	10	10/25/2007 1:07:00 AM
Anthracene	ND	3600	μg/Kg-dry	10	10/25/2007 1:07:00 AM
Benz(a)anthracene	ND	3600	μg/Kg-dry	10	10/25/2007 1:07:00 AM
Benzo(a)pyrene	ND	3600	μg/Kg-dry	10	10/25/2007 1:07:00 AM
Benzo(b)fluoranthene	ND	3600	μg/Kg-dry	10	10/25/2007 1:07:00 AM
Benzo(g,h,i)perylene	ND	3600	μg/Kg-dry	10	10/25/2007 1:07:00 AM
Benzo(k)fluoranthene	ND	3600	μg/Kg-dry	10	10/25/2007 1:07:00 AM
Bis(2-chloroethoxy)methane	ND	3600	μg/Kg-dry	10	10/25/2007 1:07:00 AM
Bis(2-chloroethyl)ether	ND	3600	μg/Kg-dry	10	10/25/2007 1:07:00 AM
Bis(2-chloroisopropyl)ether	ND	3600	μg/Kg-dry	10	10/25/2007 1:07:00 AM
Bis(2-ethylhexyl)phthalate	ND	3600	μg/Kg-dry	10	10/25/2007 1:07:00 AM
Butyl benzyl phthalate	ND	3600	μg/Kg-dry	10	10/25/2007 1:07:00 AM
Carbazole	ND	3600	μg/Kg-dry	10	10/25/2007 1:07:00 AM
Chrysene	ND	3600	μg/Kg-dry	10	10/25/2007 1:07:00 AM
Di-n-butyl phthalate	ND	3600	μg/Kg-dry	10	10/25/2007 1:07:00 AM
Di-n-octyl phthalate	ND	3600	μg/Kg-dry	10	10/25/2007 1:07:00 AM
Dibenz(a,h)anthracene	ND	3600	μg/Kg-dry	10	10/25/2007 1:07:00 AM
Dibenzofuran	ND	3600	μg/Kg-dry	10	10/25/2007 1:07:00 AM
Diethyl phthalate	ND	3600	μg/Kg-dry	10	10/25/2007 1:07:00 AM
Dimethyl phthalate	ND	3600	μg/Kg-dry	10	10/25/2007 1:07:00 AM
Fluoranthene	ND	3600	μg/Kg-dry	10	10/25/2007 1:07:00 AM
Fluorene	ND	3600	μg/Kg-dry	10	10/25/2007 1:07:00 AM
Hexachlorobenzene	ND	3600	μg/Kg-dry	10	10/25/2007 1:07:00 AM
Hexachlorobutadiene	ND	3600	μg/Kg-dry	10	10/25/2007 1:07:00 AM
Hexachlorocyclopentadiene	ND	3600	μg/Kg-dry	10	10/25/2007 1:07:00 AM

Approved By:

Qualifiers: Low Level

- В Analyte detected in the associated Method Blank
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

Date:

Page 8 of 20

Value exceeds Maximum Contaminant Value

- Е Value above quantitation range
- J Analyte detected below quantitation limits
- Spike Recovery outside accepted recovery limits

CLIENT: NYSDEC - Region 9

Lab Order: U0710428

Project: Friendship Foundry, Site #902017

Lab ID: U0710428-002

Date: 30-Oct-07

Client Sample ID: TP-11

Collection Date: 10/16/2007 12:00:00 PM

Matrix: SOIL

Analyses	Result	Limit Qual	Units	DF	Date Analyzed
TCL-SEMIVOLATILE ORGANICS	TCL-SEMIVOLATILE ORGANICS		(SW35	50A)	Analyst: LD
Hexachloroethane	ND	3600	μg/Kg-dry	10	10/25/2007 1:07:00 AM
Indeno(1,2,3-cd)pyrene	ND	3600	μg/Kg-dry	10	10/25/2007 1:07:00 AM
Isophorone	ND	3600	μg/Kg-dry	10	10/25/2007 1:07:00 AM
N-Nitrosodi-n-propylamine	ND	3600	μg/Kg-dry	10	10/25/2007 1:07:00 AM
N-Nitrosodiphenylamine	ND	3600	μg/Kg-dry	10	10/25/2007 1:07:00 AM
Naphthalene	ND	3600	μg/Kg-dry	10	10/25/2007 1:07:00 AM
Nitrobenzene	ND	3600	μg/Kg-dry	10	10/25/2007 1:07:00 AM
Pentachlorophenol	ND	7300	μg/Kg-dry	10	10/25/2007 1:07:00 AM
Phenanthrene	ND	3600	μg/Kg-dry	10	10/25/2007 1:07:00 AM
Phenol	ND	3600	μg/Kg-dry	10	10/25/2007 1:07:00 AM
Pyrene	ND	3600	μg/Kg-dry	10	10/25/2007 1:07:00 AM
NOTES:					
The reporting limits were raised due to ma	trix interference.				
TCL VOLATILE ORGANICS		SW8260B			Analyst: AT
1,1,1-Trichloroethane	ND	6.5	μg/Kg-dry	2	10/29/2007 1:41:00 PM
1,1,2,2-Tetrachloroethane	ND	6.5	μg/Kg-dry	2	10/29/2007 1:41:00 PM
1,1,2-Trichloroethane	ND	6.5	μg/Kg-dry	2	10/29/2007 1:41:00 PM
1,1-Dichloroethane	ND	6.5	μg/Kg-dry	2	10/29/2007 1:41:00 PM
1,1-Dichloroethene	ND	6.5	μg/Kg-dry	2	10/29/2007 1:41:00 PM
1,2-Dichloroethane	ND	6.5	μg/Kg-dry	2	10/29/2007 1:41:00 PM
1,2-Dichloropropane	ND	6.5	μg/Kg-dry	2	10/29/2007 1:41:00 PM
2-Butanone	ND	22	μg/Kg-dry	2	10/29/2007 1:41:00 PM
2-Hexanone	ND	22	μg/Kg-dry	2	10/29/2007 1:41:00 PM
4-Methyl-2-pentanone	ND	22	μg/Kg-dry	2	10/29/2007 1:41:00 PM
Acetone	ND	22	μg/Kg-dry	2	10/29/2007 1:41:00 PM
Benzene	ND	6.5	μg/Kg-dry	2	10/29/2007 1:41:00 PM
Bromodichloromethane	ND	6.5	μg/Kg-dry	2	10/29/2007 1:41:00 PM
Bromoform	ND	6.5	μg/Kg-dry	2	10/29/2007 1:41:00 PM
Bromomethane	ND	6.5	μg/Kg-dry	2	10/29/2007 1:41:00 PM
Carbon disulfide	ND	6.5	μg/Kg-dry	2	10/29/2007 1:41:00 PM
Carbon tetrachloride	ND	6.5	μg/Kg-dry	2	10/29/2007 1:41:00 PM
Chlorobenzene	ND	6.5	μg/Kg-dry	2	10/29/2007 1:41:00 PM
Chloroethane	ND	6.5	μg/Kg-dry	2	10/29/2007 1:41:00 PM
Chloroform	ND	6.5	μg/Kg-dry	2	10/29/2007 1:41:00 PM
Chloromethane	ND	6.5	μg/Kg-dry	2	10/29/2007 1:41:00 PM
cis-1,2-Dichloroethene	ND	6.5	μg/Kg-dry	2	10/29/2007 1:41:00 PM
cis-1,3-Dichloropropene	ND	6.5	μg/Kg-dry	2	10/29/2007 1:41:00 PM
Dibromochloromethane	ND	6.5	μg/Kg-dry	2	10/29/2007 1:41:00 PM

Approved By:	
--------------	--

Qualifiers: * Low Level

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

** Value exceeds Maximum Contaminant Value

Page 9 of 20

E Value above quantitation range

Date:

- J Analyte detected below quantitation limits
- S Spike Recovery outside accepted recovery limits

CLIENT: NYSDEC - Region 9 Client Sample ID: TP-11

Project: Friendship Foundry, Site #902017

Lab ID: U0710428-002 **Matrix:** SOIL

Analyses	Result	Limit Qua	l Units	DF	Date Analyzed
TCL VOLATILE ORGANICS		SW8260B			Analyst: AT
Ethylbenzene	ND	6.5	μg/Kg-dry	2	10/29/2007 1:41:00 PM
m,p-Xylene	ND	6.5	μg/Kg-dry	2	10/29/2007 1:41:00 PM
Methylene chloride	49	6.5	μg/Kg-dry	2	10/29/2007 1:41:00 PM
o-Xylene	ND	6.5	μg/Kg-dry	2	10/29/2007 1:41:00 PM
Styrene	ND	6.5	μg/Kg-dry	2	10/29/2007 1:41:00 PM
Tetrachloroethene	ND	6.5	μg/Kg-dry	2	10/29/2007 1:41:00 PM
Toluene	ND	6.5	μg/Kg-dry	2	10/29/2007 1:41:00 PM
trans-1,2-Dichloroethene	ND	6.5	μg/Kg-dry	2	10/29/2007 1:41:00 PM
trans-1,3-Dichloropropene	ND	6.5	μg/Kg-dry	2	10/29/2007 1:41:00 PM
Trichloroethene	ND	6.5	μg/Kg-dry	2	10/29/2007 1:41:00 PM
Vinyl chloride	ND	4.3	μg/Kg-dry	2	10/29/2007 1:41:00 PM
NOTES: The reporting limits were raised due to m Methylene chloride is a common laborato					
PHENOLICS, TOTAL RECOVERABLE Phenolics, Total Recoverable	E FOR SOLID ND	E420.1 0.109	(E420.1) mg/Kg-dry	1	Analyst: MB 10/23/2007
PERCENT MOISTURE Percent Moisture	7.86	D2216 0.00100	wt%	1	Analyst: KAM 10/22/2007

Approved I	3y:		Date:	Page 10 of 20
Qualifiers:	*	Low Level	**	Value exceeds Maximum Contaminant Value
	В	Analyte detected in the associated Method Blank	E	Value above quantitation range

B Analyte detected in the associated Method Blank
 H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

J Analyte detected below quantitation limits
 S Spike Recovery outside accepted recovery limits

CLIENT: NYSDEC - Region 9 Client Sample ID: TP-12

Project: Friendship Foundry, Site #902017

Lab ID: U0710428-003 **Matrix:** SOIL

Analyses	Result	Limit Qual	Units	DF	Date Analyzed
PEST/PCB IN SOIL/SLUDGE		SW8081A	(SW355	50)	Analyst: KC
4,4´-DDD	ND	3.8	μg/Kg-dry	1	10/24/2007
4,4´-DDE	ND	3.8	μg/Kg-dry	1	10/24/2007
4,4´-DDT	ND	3.8	μg/Kg-dry	1	10/24/2007
Aldrin	ND	1.9	μg/Kg-dry	1	10/24/2007
alpha-BHC	ND	1.9	μg/Kg-dry	1	10/24/2007
alpha-Chlordane	ND	1.9	μg/Kg-dry	1	10/24/2007
Aroclor 1016	ND	1.9	μg/Kg-dry	1	10/24/2007
Aroclor 1221	ND	1.9	μg/Kg-dry	1	10/24/2007
Aroclor 1232	ND	1.9	μg/Kg-dry	1	10/24/2007
Aroclor 1242	ND	1.9	μg/Kg-dry	1	10/24/2007
Aroclor 1248	ND	1.9	μg/Kg-dry	1	10/24/2007
Aroclor 1254	ND	1.9	μg/Kg-dry	1	10/24/2007
Aroclor 1260	53	1.9	μg/Kg-dry	1	10/24/2007
beta-BHC	ND	1.9	μg/Kg-dry	1	10/24/2007
delta-BHC	ND	1.9	μg/Kg-dry	1	10/24/2007
Dieldrin	ND	3.8	μg/Kg-dry	1	10/24/2007
Endosulfan I	ND	1.9	μg/Kg-dry	1	10/24/2007
Endosulfan II	ND	3.8	μg/Kg-dry	1	10/24/2007
Endosulfan sulfate	ND	3.8	μg/Kg-dry	1	10/24/2007
Endrin	ND	3.8	μg/Kg-dry	1	10/24/2007
Endrin aldehyde	ND	3.8	μg/Kg-dry	1	10/24/2007
Endrin ketone	ND	3.8	μg/Kg-dry	1	10/24/2007
gamma-BHC	ND	1.9	μg/Kg-dry	1	10/24/2007
gamma-Chlordane	ND	1.9	μg/Kg-dry	1	10/24/2007
Heptachlor	ND	1.9	μg/Kg-dry	1	10/24/2007
Heptachlor epoxide	ND	1.9	μg/Kg-dry	1	10/24/2007
Methoxychlor	ND	19	μg/Kg-dry	1	10/24/2007
Toxaphene	ND	190	μg/Kg-dry	1	10/24/2007
NOTES:					
Aroclor is altered and/or weathered.					
CHLORINATED HERBICIDES		SW8151A	(SW355	i 0)	Analyst: KC
2,4,5-T	ND	38	μg/Kg-dry	1	10/24/2007
2,4,5-TP (Silvex)	ND	38	μg/Kg-dry	1	10/24/2007
2,4-D	ND	38	μg/Kg-dry	1	10/24/2007
Dicamba	ND	38	μg/Kg-dry	1	10/24/2007
Dinoseb	ND	38	μg/Kg-dry	1	10/24/2007
SOIL AND SOLID METALS BY ICP		SW6010B	(SW305	i0A)	Analyst: EA
Aluminum	4200	5.7	mg/Kg-dry	1	10/24/2007 3:44:23 PM

Approved By:	Date:	Page 11 of 20

Qualifiers: * Low Level

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

** Value exceeds Maximum Contaminant Value

Date: 30-Oct-07

E Value above quantitation range

J Analyte detected below quantitation limits

CLIENT: NYSDEC - Region 9 Client Sample ID: TP-12

Project: Friendship Foundry, Site #902017

Lab ID: U0710428-003 **Matrix:** SOIL

Analyses	Result	Limit Qua	l Units	DF	Date Analyzed
SOIL AND SOLID METALS BY ICP		SW6010B	(SW305	0A)	Analyst: EA
Antimony	ND	34	mg/Kg-dry	1	10/24/2007 3:44:23 PM
Arsenic*	5.1	1.1	mg/Kg-dry	1	10/24/2007 3:44:23 PM
Barium	54	34	mg/Kg-dry	1	10/24/2007 3:44:23 PM
Beryllium	ND	0.57	mg/Kg-dry	1	10/24/2007 3:44:23 PM
Cadmium	1.7	0.57	mg/Kg-dry	1	10/24/2007 3:44:23 PM
Calcium	4200	57	mg/Kg-dry	1	10/24/2007 3:44:23 PM
Chromium	39	5.7	mg/Kg-dry	1	10/24/2007 3:44:23 PM
Cobalt	ND	5.7	mg/Kg-dry	1	10/24/2007 3:44:23 PM
Copper	87	2.3	mg/Kg-dry	1	10/24/2007 3:44:23 PM
Iron	39000	3.4	mg/Kg-dry	1	10/24/2007 3:44:23 PM
Lead	140	11	mg/Kg-dry	1	10/24/2007 3:44:23 PM
Magnesium	960	57	mg/Kg-dry	1	10/24/2007 3:44:23 PM
Manganese	620	2.3	mg/Kg-dry	1	10/24/2007 3:44:23 PM
Nickel	29	3.4	mg/Kg-dry	1	10/24/2007 3:44:23 PM
Potassium	630	57	mg/Kg-dry	1	10/24/2007 3:44:23 PM
Selenium*	4.5	0.57	mg/Kg-dry	1	10/24/2007 3:44:23 PM
Silver	ND	5.7	mg/Kg-dry	1	10/24/2007 3:44:23 PM
Sodium	ND	57	mg/Kg-dry	1	10/24/2007 3:44:23 PM
Thallium*	ND	0.34	mg/Kg-dry	1	10/24/2007 3:44:23 PM
Vanadium	10	34 J	mg/Kg-dry	1	10/24/2007 3:44:23 PM
Zinc	150	1.1	mg/Kg-dry	1	10/24/2007 3:44:23 PM
TOTAL MERCURY - SOIL/SOLID/WAS	STE	SW7471A	\ -	'1A)	Analyst: DRP
Mercury	0.22	0.229 J	mg/Kg-dry	1	10/23/2007 12:40:24 PM
TCL-SEMIVOLATILE ORGANICS		SW8270C	(SW355	(A0	Analyst: LD
(3+4)-Methylphenol	ND	3800	μg/Kg-dry	10	10/25/2007 1:50:00 AM
1,2,4-Trichlorobenzene	ND	3800	μg/Kg-dry	10	10/25/2007 1:50:00 AM
1,2-Dichlorobenzene	ND	3800	μg/Kg-dry	10	10/25/2007 1:50:00 AM
1,3-Dichlorobenzene	ND	3800	μg/Kg-dry	10	10/25/2007 1:50:00 AM
1,4-Dichlorobenzene	ND	3800	μg/Kg-dry	10	10/25/2007 1:50:00 AM
2,4,5-Trichlorophenol	ND	3800	μg/Kg-dry	10	10/25/2007 1:50:00 AM
2,4,6-Trichlorophenol	ND	3800	μg/Kg-dry	10	10/25/2007 1:50:00 AM
2,4-Dichlorophenol	ND	3800	μg/Kg-dry	10	10/25/2007 1:50:00 AM
2,4-Dimethylphenol	ND	3800	μg/Kg-dry	10	10/25/2007 1:50:00 AM
2,4-Dinitrophenol	ND	38000	μg/Kg-dry	10	10/25/2007 1:50:00 AM
2,4-Dinitrotoluene	ND	3800	μg/Kg-dry	10	10/25/2007 1:50:00 AM
2,6-Dinitrotoluene	ND	3800	μg/Kg-dry	10	10/25/2007 1:50:00 AM
2-Chloronaphthalene	ND	3800	μg/Kg-dry	10	10/25/2007 1:50:00 AM
2-Chlorophenol	ND	3800	μg/Kg-dry	10	10/25/2007 1:50:00 AM

Approved By:

Qualifiers:

Low Level

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

** Value exceeds Maximum Contaminant Value

Page 12 of 20

Date: 30-Oct-07

E Value above quantitation range

Date:

J Analyte detected below quantitation limits

CLIENT: NYSDEC - Region 9 Client Sample ID: TP-12

Lab Order: U0710428 **Collection Date:** 10/16/2007 1:30:00 PM

Friendship Foundry, Site #902017 **Project:**

Matrix: SOIL Lab ID: U0710428-003

Analyses	Result	Limit Q	ual Units	DF	Date Analyzed
TCL-SEMIVOLATILE ORGANICS		SW827	OC (SW:	3550A)	Analyst: LD
2-Methylnaphthalene	ND	3800	μg/Kg-dry	10	10/25/2007 1:50:00 AM
2-Methylphenol	ND	3800	μg/Kg-dry	10	10/25/2007 1:50:00 AM
2-Nitroaniline	ND	38000	μg/Kg-dry	10	10/25/2007 1:50:00 AM
2-Nitrophenol	ND	3800	μg/Kg-dry	10	10/25/2007 1:50:00 AM
3,3'-Dichlorobenzidine	ND	3800	μg/Kg-dry	10	10/25/2007 1:50:00 AM
3-Nitroaniline	ND	38000	μg/Kg-dry	10	10/25/2007 1:50:00 AM
4,6-Dinitro-2-methylphenol	ND	38000	μg/Kg-dry	10	10/25/2007 1:50:00 AM
4-Bromophenyl phenyl ether	ND	3800	μg/Kg-dry	10	10/25/2007 1:50:00 AM
4-Chloro-3-methylphenol	ND	3800	μg/Kg-dry	10	10/25/2007 1:50:00 AM
4-Chloroaniline	ND	3800	μg/Kg-dry	10	10/25/2007 1:50:00 AM
4-Chlorophenyl phenyl ether	ND	3800	μg/Kg-dry	10	10/25/2007 1:50:00 AM
4-Nitroaniline	ND	38000	μg/Kg-dry	10	10/25/2007 1:50:00 AM
4-Nitrophenol	ND	38000	μg/Kg-dry	10	10/25/2007 1:50:00 AM
Acenaphthene	ND	3800	μg/Kg-dry	10	10/25/2007 1:50:00 AM
Acenaphthylene	ND	3800	μg/Kg-dry	10	10/25/2007 1:50:00 AM
Anthracene	ND	3800	μg/Kg-dry	10	10/25/2007 1:50:00 AM
Benz(a)anthracene	ND	3800	μg/Kg-dry	10	10/25/2007 1:50:00 AM
Benzo(a)pyrene	ND	3800	μg/Kg-dry	10	10/25/2007 1:50:00 AM
Benzo(b)fluoranthene	ND	3800	μg/Kg-dry	10	10/25/2007 1:50:00 AM
Benzo(g,h,i)perylene	ND	3800	μg/Kg-dry	10	10/25/2007 1:50:00 AM
Benzo(k)fluoranthene	ND	3800	μg/Kg-dry	10	10/25/2007 1:50:00 AM
Bis(2-chloroethoxy)methane	ND	3800	μg/Kg-dry	10	10/25/2007 1:50:00 AM
Bis(2-chloroethyl)ether	ND	3800	μg/Kg-dry	10	10/25/2007 1:50:00 AM
Bis(2-chloroisopropyl)ether	ND	3800	μg/Kg-dry	10	10/25/2007 1:50:00 AM
Bis(2-ethylhexyl)phthalate	ND	3800	μg/Kg-dry	10	10/25/2007 1:50:00 AM
Butyl benzyl phthalate	ND	3800	μg/Kg-dry	10	10/25/2007 1:50:00 AM
Carbazole	ND	3800	μg/Kg-dry	10	10/25/2007 1:50:00 AM
Chrysene	ND	3800	μg/Kg-dry	10	10/25/2007 1:50:00 AM
Di-n-butyl phthalate	ND	3800	μg/Kg-dry	10	10/25/2007 1:50:00 AM
Di-n-octyl phthalate	ND	3800	μg/Kg-dry	10	10/25/2007 1:50:00 AM
Dibenz(a,h)anthracene	ND	3800	μg/Kg-dry	10	10/25/2007 1:50:00 AM
Dibenzofuran	ND	3800	μg/Kg-dry	10	10/25/2007 1:50:00 AM
Diethyl phthalate	ND	3800	μg/Kg-dry	10	10/25/2007 1:50:00 AM
Dimethyl phthalate	ND	3800	μg/Kg-dry	10	10/25/2007 1:50:00 AM
Fluoranthene	ND	3800	μg/Kg-dry	10	10/25/2007 1:50:00 AM
Fluorene	ND	3800	μg/Kg-dry	10	10/25/2007 1:50:00 AM
Hexachlorobenzene	ND	3800	μg/Kg-dry	10	10/25/2007 1:50:00 AM
Hexachlorobutadiene	ND	3800	μg/Kg-dry	10	10/25/2007 1:50:00 AM
Hexachlorocyclopentadiene	ND	3800	μg/Kg-dry	10	10/25/2007 1:50:00 AM

Approved By:

Qualifiers: Low Level

> В Analyte detected in the associated Method Blank

Н Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit Date:

Page 13 of 20

Е Value above quantitation range

J Analyte detected below quantitation limits

Spike Recovery outside accepted recovery limits

Value exceeds Maximum Contaminant Value

CLIENT: NYSDEC - Region 9 Client Sample ID: TP-12

Project: Friendship Foundry, Site #902017

Lab ID: U0710428-003 **Matrix:** SOIL

Analyses	Result	Limit Qu	al Units	DF	Date Analyzed
TCL-SEMIVOLATILE ORGANICS		SW8270	C (SW35	50A)	Analyst: LD
Hexachloroethane	ND	3800	μg/Kg-dry	10	10/25/2007 1:50:00 AM
Indeno(1,2,3-cd)pyrene	ND	3800	μg/Kg-dry	10	10/25/2007 1:50:00 AM
Isophorone	ND	3800	μg/Kg-dry	10	10/25/2007 1:50:00 AM
N-Nitrosodi-n-propylamine	ND	3800	μg/Kg-dry	10	10/25/2007 1:50:00 AM
N-Nitrosodiphenylamine	ND	3800	μg/Kg-dry	10	10/25/2007 1:50:00 AM
Naphthalene	ND	3800	μg/Kg-dry	10	10/25/2007 1:50:00 AM
Nitrobenzene	ND	3800	μg/Kg-dry	10	10/25/2007 1:50:00 AM
Pentachlorophenol	ND	7700	μg/Kg-dry	10	10/25/2007 1:50:00 AM
Phenanthrene	ND	3800	μg/Kg-dry	10	10/25/2007 1:50:00 AM
Phenol	ND	3800	μg/Kg-dry	10	10/25/2007 1:50:00 AM
Pyrene	ND	3800	μg/Kg-dry	10	10/25/2007 1:50:00 AM
TCL VOLATILE ORGANICS		SW8260	В		Analyst: AT
1,1,1-Trichloroethane	ND	6.9	μg/Kg-dry	2	10/29/2007 2:31:00 PM
1,1,2,2-Tetrachloroethane	ND	6.9	μg/Kg-dry	2	10/29/2007 2:31:00 PM
1,1,2-Trichloroethane	ND	6.9	μg/Kg-dry	2	10/29/2007 2:31:00 PM
1,1-Dichloroethane	ND	6.9	μg/Kg-dry	2	10/29/2007 2:31:00 PM
1,1-Dichloroethene	ND	6.9	μg/Kg-dry	2	10/29/2007 2:31:00 PM
1,2-Dichloroethane	ND	6.9	μg/Kg-dry	2	10/29/2007 2:31:00 PM
1,2-Dichloropropane	ND	6.9	μg/Kg-dry	2	10/29/2007 2:31:00 PM
2-Butanone	ND	23	μg/Kg-dry	2	10/29/2007 2:31:00 PM
2-Hexanone	ND	23	μg/Kg-dry	2	10/29/2007 2:31:00 PM
4-Methyl-2-pentanone	ND	23	μg/Kg-dry	2	10/29/2007 2:31:00 PM
Acetone	ND	23	μg/Kg-dry	2	10/29/2007 2:31:00 PM
Benzene	ND	6.9	μg/Kg-dry	2	10/29/2007 2:31:00 PM
Bromodichloromethane	ND	6.9	μg/Kg-dry	2	10/29/2007 2:31:00 PM
Bromoform	ND	6.9	μg/Kg-dry	2	10/29/2007 2:31:00 PM
Bromomethane	ND	6.9	μg/Kg-dry	2	10/29/2007 2:31:00 PM
Carbon disulfide	ND	6.9	μg/Kg-dry	2	10/29/2007 2:31:00 PM
Carbon tetrachloride	ND	6.9	μg/Kg-dry	2	10/29/2007 2:31:00 PM
Chlorobenzene	ND	6.9	μg/Kg-dry	2	10/29/2007 2:31:00 PM
Chloroethane	ND	6.9	μg/Kg-dry	2	10/29/2007 2:31:00 PM
Chloroform	ND	6.9	μg/Kg-dry	2	10/29/2007 2:31:00 PM
Chloromethane	ND	6.9	μg/Kg-dry	2	10/29/2007 2:31:00 PM
cis-1,2-Dichloroethene	ND	6.9	μg/Kg-dry	2	10/29/2007 2:31:00 PM
cis-1,3-Dichloropropene	ND	6.9	μg/Kg-dry	2	10/29/2007 2:31:00 PM
Dibromochloromethane	ND	6.9	μg/Kg-dry	2	10/29/2007 2:31:00 PM
Ethylbenzene	ND	6.9	μg/Kg-dry	2	10/29/2007 2:31:00 PM
m,p-Xylene	ND	6.9	μg/Kg-dry	2	10/29/2007 2:31:00 PM

Approved By:	Date:	Page 14 of 20

Qualifiers: *

- * Low Level
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

** Value exceeds Maximum Contaminant Value

- E Value above quantitation range
- J Analyte detected below quantitation limits
- S Spike Recovery outside accepted recovery limits

CLIENT: NYSDEC - Region 9 Client Sample ID: TP-12

Lab Order: U0710428 **Collection Date:** 10/16/2007 1:30:00 PM

Friendship Foundry, Site #902017 **Project:**

Matrix: SOIL Lab ID: U0710428-003

Analyses	Result	Limit Qual	Units	DF	Date Analyzed
TCL VOLATILE ORGANICS		SW8260B			Analyst: AT
Methylene chloride	20	6.9	μg/Kg-dry	2	10/29/2007 2:31:00 PM
o-Xylene	ND	6.9	μg/Kg-dry	2	10/29/2007 2:31:00 PM
Styrene	ND	6.9	μg/Kg-dry	2	10/29/2007 2:31:00 PM
Tetrachloroethene	ND	6.9	μg/Kg-dry	2	10/29/2007 2:31:00 PM
Toluene	ND	6.9	μg/Kg-dry	2	10/29/2007 2:31:00 PM
trans-1,2-Dichloroethene	ND	6.9	μg/Kg-dry	2	10/29/2007 2:31:00 PM
trans-1,3-Dichloropropene	ND	6.9	μg/Kg-dry	2	10/29/2007 2:31:00 PM
Trichloroethene	ND	6.9	μg/Kg-dry	2	10/29/2007 2:31:00 PM
Vinyl chloride	ND	4.6	μg/Kg-dry	2	10/29/2007 2:31:00 PM
NOTES: The reporting limits were raised due to Methylene chloride is a common labora					
PHENOLICS, TOTAL RECOVERAB	LE FOR SOLID	E420.1	(E420.1)		Analyst: MB
Phenolics, Total Recoverable	0.150	0.114	mg/Kg-dry	1	10/23/2007
PERCENT MOISTURE		D2216			Analyst: KAM
Percent Moisture	12.6	0.00100	wt%	1	10/22/2007

Approved By:	Date:	Page 15 of 20
Qualifiers: * Low Level	**	Value exceeds Maximum Contaminant Value

В Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded Η

ND Not Detected at the Reporting Limit

Value above quantitation range

Analyte detected below quantitation limits J

Date: 30-Oct-07

CLIENT: NYSDEC - Region 9 Client Sample ID: TP-15

Project: Friendship Foundry, Site #902017

Lab ID: U0710428-004 **Matrix:** SOIL

Analyses	Result	Limit Qual	Units	DF	Date Analyzed
PEST/PCB IN SOIL/SLUDGE		SW8081A	(SW35	50)	Analyst: KC
4,4´-DDD	ND	45	μg/Kg-dry	10	10/24/2007
4,4´-DDE	ND	45	μg/Kg-dry	10	10/24/2007
4,4´-DDT	ND	45	μg/Kg-dry	10	10/24/2007
Aldrin	ND	23	μg/Kg-dry	10	10/24/2007
alpha-BHC	ND	23	μg/Kg-dry	10	10/24/2007
alpha-Chlordane	ND	23	μg/Kg-dry	10	10/24/2007
Aroclor 1016	ND	23	μg/Kg-dry	10	10/24/2007
Aroclor 1221	ND	23	μg/Kg-dry	10	10/24/2007
Aroclor 1232	ND	23	μg/Kg-dry	10	10/24/2007
Aroclor 1242	ND	23	μg/Kg-dry	10	10/24/2007
Aroclor 1248	ND	23	μg/Kg-dry	10	10/24/2007
Aroclor 1254	ND	23	μg/Kg-dry	10	10/24/2007
Aroclor 1260	ND	23	μg/Kg-dry	10	10/24/2007
beta-BHC	ND	23	μg/Kg-dry	10	10/24/2007
delta-BHC	ND	23	μg/Kg-dry	10	10/24/2007
Dieldrin	ND	45	μg/Kg-dry	10	10/24/2007
Endosulfan I	ND	23	μg/Kg-dry	10	10/24/2007
Endosulfan II	ND	45	μg/Kg-dry	10	10/24/2007
Endosulfan sulfate	ND	45	μg/Kg-dry	10	10/24/2007
Endrin	ND	45	μg/Kg-dry	10	10/24/2007
Endrin aldehyde	ND	45	μg/Kg-dry	10	10/24/2007
Endrin ketone	ND	45	μg/Kg-dry	10	10/24/2007
gamma-BHC	ND	23	μg/Kg-dry	10	10/24/2007
gamma-Chlordane	ND	23	μg/Kg-dry	10	10/24/2007
Heptachlor	ND	23	μg/Kg-dry	10	10/24/2007
Heptachlor epoxide	ND	23	μg/Kg-dry	10	10/24/2007
Methoxychlor	ND	230	μg/Kg-dry	10	10/24/2007
Toxaphene	ND	2300	μg/Kg-dry	10	10/24/2007
CHLORINATED HERBICIDES		SW8151A	(SW35	50)	Analyst: KC
2,4,5-T	ND	45	μg/Kg-dry	1	10/24/2007
2,4,5-TP (Silvex)	ND	45	μg/Kg-dry	1	10/24/2007
2,4-D	ND	45	μg/Kg-dry	1	10/24/2007
Dicamba	ND	45	μg/Kg-dry	1	10/24/2007
Dinoseb	ND	45	μg/Kg-dry	1	10/24/2007
SOIL AND SOLID METALS BY ICP		SW6010B	(SW30	•	Analyst: EA
Aluminum	6600	6.7	mg/Kg-dry	1	10/24/2007 3:47:40 PM
Antimony	ND	40	mg/Kg-dry	1	10/24/2007 3:47:40 PM
Arsenic*	21	1.3	mg/Kg-dry	1	10/24/2007 3:47:40 PM

Approved By: Page 16 of 20

Qualifiers: * Low Level

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

** Value exceeds Maximum Contaminant Value

Date: 30-Oct-07

E Value above quantitation range

J Analyte detected below quantitation limits

CLIENT: NYSDEC - Region 9

Project: Friendship Foundry, Site #902017

Lab ID: U0710428-004 **Matrix:** SOIL

Analyses	Result	Limit Q	ual Units	S DF	Date Analyzed
SOIL AND SOLID METALS BY ICP		SW6010)B	(SW3050A)	Analyst: EA
Barium	100	40	mg/Kg	-	10/24/2007 3:47:40 PM
Beryllium	0.83	0.67	mg/Kg	g-dry 1	10/24/2007 3:47:40 PM
Cadmium	0.85	0.67	mg/Kg	g-dry 1	10/24/2007 3:47:40 PM
Calcium	10000	67	mg/Kg	g-dry 1	10/24/2007 3:47:40 PM
Chromium	7.6	6.7	mg/Kg	g-dry 1	10/24/2007 3:47:40 PM
Cobalt	ND	6.7	mg/Kg	g-dry 1	10/24/2007 3:47:40 PM
Copper	52	2.7	mg/Kg	g-dry 1	10/24/2007 3:47:40 PM
Iron	27000	4.0	mg/Kg	g-dry 1	10/24/2007 3:47:40 PM
Lead	53	13	mg/Kg	g-dry 1	10/24/2007 3:47:40 PM
Magnesium	1300	67	mg/Kg	g-dry 1	10/24/2007 3:47:40 PM
Manganese	360	2.7	mg/Kg	g-dry 1	10/24/2007 3:47:40 PM
Nickel	12	4.0	mg/Kg	g-dry 1	10/24/2007 3:47:40 PM
Potassium	900	67	mg/Kg	g-dry 1	10/24/2007 3:47:40 PM
Selenium*	2.7	0.67	mg/Kg	g-dry 1	10/24/2007 3:47:40 PM
Silver	ND	6.7	mg/Kg	g-dry 1	10/24/2007 3:47:40 PM
Sodium	ND	67	mg/Kg	g-dry 1	10/24/2007 3:47:40 PM
Thallium*	ND	0.40	mg/Kg	g-dry 1	10/24/2007 3:47:40 PM
Vanadium	9	40	J mg/Kg	g-dry 1	10/24/2007 3:47:40 PM
Zinc	60	1.3	mg/Kg	g-dry 1	10/24/2007 3:47:40 PM
TOTAL MERCURY - SOIL/SOLID/WAS	STE	SW7471	A	(E245.2)	Analyst: DRP
Mercury	0.00013	0.200	J mg/Kg	j 1	10/23/2007 1:17:46 PM
TCL-SEMIVOLATILE ORGANICS		SW8270	C	(SW3550A)	Analyst: LD
(3+4)-Methylphenol	ND	4500	μg/Kg	-dry 10	10/25/2007 2:32:00 AM
1,2,4-Trichlorobenzene	ND	4500	μg/Kg	-dry 10	10/25/2007 2:32:00 AM
1,2-Dichlorobenzene	ND	4500	μg/Kg	-dry 10	10/25/2007 2:32:00 AM
1,3-Dichlorobenzene	ND	4500	μg/Kg	-dry 10	10/25/2007 2:32:00 AM
1,4-Dichlorobenzene	ND	4500	μg/Kg	-dry 10	10/25/2007 2:32:00 AM
2,4,5-Trichlorophenol	ND	4500	μg/Kg	-dry 10	10/25/2007 2:32:00 AM
2,4,6-Trichlorophenol	ND	4500	μg/Kg	-dry 10	10/25/2007 2:32:00 AM
2,4-Dichlorophenol	ND	4500	μg/Kg	-dry 10	10/25/2007 2:32:00 AM
2,4-Dimethylphenol	ND	4500	μg/Kg	-dry 10	10/25/2007 2:32:00 AM
2,4-Dinitrophenol	ND	45000	μg/Kg	-dry 10	10/25/2007 2:32:00 AM
2,4-Dinitrotoluene	ND	4500	μg/Kg	-dry 10	10/25/2007 2:32:00 AM
2,6-Dinitrotoluene	ND	4500	μg/Kg	-dry 10	10/25/2007 2:32:00 AM
2-Chloronaphthalene	ND	4500	μg/Kg	-dry 10	10/25/2007 2:32:00 AM
2-Chlorophenol	ND	4500	μg/Kg	-dry 10	10/25/2007 2:32:00 AM
2-Methylnaphthalene	ND	4500	μg/Kg	-dry 10	10/25/2007 2:32:00 AM
2-Methylphenol	ND	4500	μg/Kg		10/25/2007 2:32:00 AM

Approved By:

Qualifiers:

Low Level

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

** Value exceeds Maximum Contaminant Value

Page 17 of 20

Date: 30-Oct-07

Client Sample ID: TP-15

E Value above quantitation range

Date:

J Analyte detected below quantitation limits

CLIENT: NYSDEC - Region 9 Client Sample ID: TP-15

Project: Friendship Foundry, Site #902017

Lab ID: U0710428-004 **Matrix:** SOIL

Analyses	Result	Limit Qu	al Units	DF	Date Analyzed
TCL-SEMIVOLATILE ORGANICS		SW82700	C (SW35	50A)	Analyst: LD
2-Nitroaniline	ND	45000	μg/Kg-dry	10	10/25/2007 2:32:00 AM
2-Nitrophenol	ND	4500	μg/Kg-dry	10	10/25/2007 2:32:00 AM
3,3´-Dichlorobenzidine	ND	4500	μg/Kg-dry	10	10/25/2007 2:32:00 AM
3-Nitroaniline	ND	45000	μg/Kg-dry	10	10/25/2007 2:32:00 AM
4,6-Dinitro-2-methylphenol	ND	45000	μg/Kg-dry	10	10/25/2007 2:32:00 AM
4-Bromophenyl phenyl ether	ND	4500	μg/Kg-dry	10	10/25/2007 2:32:00 AM
4-Chloro-3-methylphenol	ND	4500	μg/Kg-dry	10	10/25/2007 2:32:00 AM
4-Chloroaniline	ND	4500	μg/Kg-dry	10	10/25/2007 2:32:00 AM
4-Chlorophenyl phenyl ether	ND	4500	μg/Kg-dry	10	10/25/2007 2:32:00 AM
4-Nitroaniline	ND	45000	μg/Kg-dry	10	10/25/2007 2:32:00 AM
4-Nitrophenol	ND	45000	μg/Kg-dry	10	10/25/2007 2:32:00 AM
Acenaphthene	ND	4500	μg/Kg-dry	10	10/25/2007 2:32:00 AM
Acenaphthylene	ND	4500	μg/Kg-dry	10	10/25/2007 2:32:00 AM
Anthracene	ND	4500	μg/Kg-dry	10	10/25/2007 2:32:00 AM
Benz(a)anthracene	ND	4500	μg/Kg-dry	10	10/25/2007 2:32:00 AM
Benzo(a)pyrene	ND	4500	μg/Kg-dry	10	10/25/2007 2:32:00 AM
Benzo(b)fluoranthene	ND	4500	μg/Kg-dry	10	10/25/2007 2:32:00 AM
Benzo(g,h,i)perylene	ND	4500	μg/Kg-dry	10	10/25/2007 2:32:00 AM
Benzo(k)fluoranthene	ND	4500	μg/Kg-dry	10	10/25/2007 2:32:00 AM
Bis(2-chloroethoxy)methane	ND	4500	μg/Kg-dry	10	10/25/2007 2:32:00 AM
Bis(2-chloroethyl)ether	ND	4500	μg/Kg-dry	10	10/25/2007 2:32:00 AM
Bis(2-chloroisopropyl)ether	ND	4500	μg/Kg-dry	10	10/25/2007 2:32:00 AM
Bis(2-ethylhexyl)phthalate	ND	4500	μg/Kg-dry	10	10/25/2007 2:32:00 AM
Butyl benzyl phthalate	ND	4500	μg/Kg-dry	10	10/25/2007 2:32:00 AM
Carbazole	ND	4500	μg/Kg-dry	10	10/25/2007 2:32:00 AM
Chrysene	ND	4500	μg/Kg-dry	10	10/25/2007 2:32:00 AM
Di-n-butyl phthalate	ND	4500	μg/Kg-dry	10	10/25/2007 2:32:00 AM
Di-n-octyl phthalate	ND	4500	μg/Kg-dry	10	10/25/2007 2:32:00 AM
Dibenz(a,h)anthracene	ND	4500	μg/Kg-dry	10	10/25/2007 2:32:00 AM
Dibenzofuran	ND	4500	μg/Kg-dry	10	10/25/2007 2:32:00 AM
Diethyl phthalate	ND	4500	μg/Kg-dry	10	10/25/2007 2:32:00 AM
Dimethyl phthalate	ND	4500	μg/Kg-dry	10	10/25/2007 2:32:00 AM
Fluoranthene	ND	4500	μg/Kg-dry	10	10/25/2007 2:32:00 AM
Fluorene	ND	4500	μg/Kg-dry	10	10/25/2007 2:32:00 AM
Hexachlorobenzene	ND	4500	μg/Kg-dry	10	10/25/2007 2:32:00 AM
Hexachlorobutadiene	ND	4500	μg/Kg-dry	10	10/25/2007 2:32:00 AM
Hexachlorocyclopentadiene	ND	4500	μg/Kg-dry	10	10/25/2007 2:32:00 AM
Hexachloroethane	ND	4500	μg/Kg-dry	10	10/25/2007 2:32:00 AM
Indeno(1,2,3-cd)pyrene	ND	4500	μg/Kg-dry	10	10/25/2007 2:32:00 AM

Approved By:

Qualifiers: * Low Level

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

Date:

Page 18 of 20

** Value exceeds Maximum Contaminant Value

- E Value above quantitation range
- J Analyte detected below quantitation limits
- S Spike Recovery outside accepted recovery limits

CLIENT: NYSDEC - Region 9

Lab Order: U0710428

Project: Friendship Foundry, Site #902017

Lab ID: U0710428-004 **Matrix:** SOIL

Analyses	Result	Limit Q	ual Units	DF	Date Analyzed
TCL-SEMIVOLATILE ORGANICS		SW8270	C (SW35	50A)	Analyst: LD
Isophorone	ND	4500	μg/Kg-dry	10	10/25/2007 2:32:00 AM
N-Nitrosodi-n-propylamine	ND	4500	μg/Kg-dry	10	10/25/2007 2:32:00 AM
N-Nitrosodiphenylamine	ND	4500	μg/Kg-dry	10	10/25/2007 2:32:00 AM
Naphthalene	ND	4500	μg/Kg-dry	10	10/25/2007 2:32:00 AM
Nitrobenzene	ND	4500	μg/Kg-dry	10	10/25/2007 2:32:00 AM
Pentachlorophenol	ND	9000	μg/Kg-dry	10	10/25/2007 2:32:00 AM
Phenanthrene	ND	4500	μg/Kg-dry	10	10/25/2007 2:32:00 AM
Phenol	ND	4500	μg/Kg-dry	10	10/25/2007 2:32:00 AM
Pyrene	ND	4500	μg/Kg-dry	10	10/25/2007 2:32:00 AM
NOTES:					
The reporting limits were raised due to ma	atrix interference.				
TCL VOLATILE ORGANICS		SW8260	В		Analyst: AT
1,1,1-Trichloroethane	ND	4.0	μg/Kg-dry	1	10/25/2007 8:29:00 PM
1,1,2,2-Tetrachloroethane	ND	4.0	μg/Kg-dry	1	10/25/2007 8:29:00 PM
1,1,2-Trichloroethane	ND	4.0	μg/Kg-dry	1	10/25/2007 8:29:00 PM
1,1-Dichloroethane	ND	4.0	μg/Kg-dry	1	10/25/2007 8:29:00 PM
1,1-Dichloroethene	ND	4.0	μg/Kg-dry	1	10/25/2007 8:29:00 PM
1,2-Dichloroethane	ND	4.0	μg/Kg-dry	1	10/25/2007 8:29:00 PM
1,2-Dichloropropane	ND	4.0	μg/Kg-dry	1	10/25/2007 8:29:00 PM
2-Butanone	ND	13	μg/Kg-dry	1	10/25/2007 8:29:00 PM
2-Hexanone	ND	13	μg/Kg-dry	1	10/25/2007 8:29:00 PM
4-Methyl-2-pentanone	ND	13	μg/Kg-dry	1	10/25/2007 8:29:00 PM
Acetone	ND	13	μg/Kg-dry	1	10/25/2007 8:29:00 PM
Benzene	ND	4.0	μg/Kg-dry	1	10/25/2007 8:29:00 PM
Bromodichloromethane	ND	4.0	μg/Kg-dry	1	10/25/2007 8:29:00 PM
Bromoform	ND	4.0	μg/Kg-dry	1	10/25/2007 8:29:00 PM
Bromomethane	ND	4.0	μg/Kg-dry	1	10/25/2007 8:29:00 PM
Carbon disulfide	ND	4.0	μg/Kg-dry	1	10/25/2007 8:29:00 PM
Carbon tetrachloride	ND	4.0	μg/Kg-dry	1	10/25/2007 8:29:00 PM
Chlorobenzene	ND	4.0	μg/Kg-dry	1	10/25/2007 8:29:00 PM
Chloroethane	ND	4.0	μg/Kg-dry	1	10/25/2007 8:29:00 PM
Chloroform	5.4	4.0	μg/Kg-dry	1	10/25/2007 8:29:00 PM
Chloromethane	ND	4.0	μg/Kg-dry	1	10/25/2007 8:29:00 PM
cis-1,2-Dichloroethene	ND	4.0	μg/Kg-dry	1	10/25/2007 8:29:00 PM
cis-1,3-Dichloropropene	ND	4.0	μg/Kg-dry	1	10/25/2007 8:29:00 PM
Dibromochloromethane	ND	4.0	μg/Kg-dry	1	10/25/2007 8:29:00 PM
Ethylbenzene	ND	4.0	μg/Kg-dry	1	10/25/2007 8:29:00 PM
m,p-Xylene	ND	4.0	μg/Kg-dry	1	10/25/2007 8:29:00 PM

Approvea	By:
----------	-----

Qualifiers: * Low Level

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

Date:

** Value exceeds Maximum Contaminant Value

Page 19 of 20

Date: 30-Oct-07

Collection Date: 10/16/2007 3:00:00 PM

Client Sample ID: TP-15

E Value above quantitation range

J Analyte detected below quantitation limits

CLIENT: NYSDEC - Region 9 Client Sample ID: TP-15

Project: Friendship Foundry, Site #902017

Lab ID: U0710428-004 **Matrix:** SOIL

Analyses	Result	Limit Qual	Units	DF	Date Analyzed
TCL VOLATILE ORGANICS		SW8260B			Analyst: AT
Methylene chloride	13	4.0	μg/Kg-dry	1	10/25/2007 8:29:00 PM
o-Xylene	ND	4.0	μg/Kg-dry	1	10/25/2007 8:29:00 PM
Styrene	ND	4.0	μg/Kg-dry	1	10/25/2007 8:29:00 PM
Tetrachloroethene	ND	4.0	μg/Kg-dry	1	10/25/2007 8:29:00 PM
Toluene	ND	4.0	μg/Kg-dry	1	10/25/2007 8:29:00 PM
trans-1,2-Dichloroethene	ND	4.0	μg/Kg-dry	1	10/25/2007 8:29:00 PM
trans-1,3-Dichloropropene	ND	4.0	μg/Kg-dry	1	10/25/2007 8:29:00 PM
Trichloroethene	ND	4.0	μg/Kg-dry	1	10/25/2007 8:29:00 PM
Vinyl chloride	ND	2.7	μg/Kg-dry	1	10/25/2007 8:29:00 PM
NOTES: Analytical Note: Results confirmed by Methylene chloride and Acetone are co	•	vents.			
PHENOLICS, TOTAL RECOVERAB	LE FOR SOLID	E420.1	(E420.1))	Analyst: MB
Phenolics, Total Recoverable	ND	0.135	mg/Kg-dry	1	10/23/2007
PERCENT MOISTURE		D2216			Analyst: KAM
Percent Moisture	25.9	0.00100	wt%	1	10/22/2007

Approved By:	Date:	Page 20 of 20
Qualifiers: * Low Level	**	Value exceeds Maximum Contaminant Value

B Analyte detected in the associated Method Blank
 H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

E Value above quantitation range
 J Analyte detected below quantitation limits
 S Spike Recovery outside accepted recovery limits

CLIENT: NYSDEC - Region 9 Client Sample ID: Green "Resin"

Lab Order: U0710466 **Collection Date:** 10/18/2007 12:30:00 PM

Project: Friendship Foundry, Site #902017

Lab ID: U0710466-001 **Matrix:** SOLID

Analyses	Result	Limit Qual	Units	DF	Date Analyzed
SOIL AND SOLID METALS BY ICP		SW6010B	(SW305	0A)	Analyst: EA
Aluminum	20000	5.0	mg/Kg-dry	1	10/26/2007 10:47:01 AM
Antimony	20	30 J	mg/Kg-dry	1	10/26/2007 10:47:01 AM
Arsenic*	91	1.0	mg/Kg-dry	1	10/26/2007 10:47:01 AM
Barium	230	30	mg/Kg-dry	1	10/26/2007 10:47:01 AM
Beryllium	90	0.50	mg/Kg-dry	1	10/26/2007 10:47:01 AM
Cadmium	86	0.50	mg/Kg-dry	1	10/26/2007 10:47:01 AM
Calcium	140000	1300	mg/Kg-dry	25	10/26/2007 11:45:28 AM
Chromium	120	5.0	mg/Kg-dry	1	10/26/2007 10:47:01 AM
Cobalt	91	5.0	mg/Kg-dry	1	10/26/2007 10:47:01 AM
Copper	99	2.0	mg/Kg-dry	1	10/26/2007 10:47:01 AM
Iron	7800	3.0	mg/Kg-dry	1	10/26/2007 10:47:01 AM
Lead	83	10	mg/Kg-dry	1	10/26/2007 10:47:01 AM
Magnesium	2600	50	mg/Kg-dry	1	10/26/2007 10:47:01 AM
Manganese	6500	50	mg/Kg-dry	25	10/26/2007 11:45:28 AM
Nickel	87	3.0	mg/Kg-dry	1	10/26/2007 10:47:01 AM
Potassium	4800	1300	mg/Kg-dry	25	10/26/2007 11:45:28 AM
Selenium*	98	0.50	mg/Kg-dry	1	10/26/2007 10:47:01 AM
Silver	87	5.0	mg/Kg-dry	1	10/26/2007 10:47:01 AM
Sodium	1100	50	mg/Kg-dry	1	10/26/2007 10:47:01 AM
Thallium*	65	0.30	mg/Kg-dry	1	10/26/2007 10:47:01 AM
Vanadium	110	30	mg/Kg-dry	1	10/26/2007 10:47:01 AM
Zinc	85	1.0	mg/Kg-dry	1	10/26/2007 10:47:01 AM

NOTES:

The reporting limits were raised due to the high concentration of target elements.

TOTAL MERCURY - SOIL/SOLID/WASTE		SW7471A	(SW747	71A)	Analyst: DRP
Mercury	0.036	0.200 J	mg/Kg-dry	1	10/26/2007 2:43:05 PM
TCL-SEMIVOLATILE ORGANICS		SW8270C	(SW35	50A)	Analyst: LD
(3+4)-Methylphenol	ND	1400	μg/Kg-dry	1	10/24/2007 5:11:00 PM
1,2,4-Trichlorobenzene	ND	1400	μg/Kg-dry	1	10/24/2007 5:11:00 PM
1,2-Dichlorobenzene	ND	1400	μg/Kg-dry	1	10/24/2007 5:11:00 PM
1,3-Dichlorobenzene	ND	1400	μg/Kg-dry	1	10/24/2007 5:11:00 PM
1,4-Dichlorobenzene	ND	1400	μg/Kg-dry	1	10/24/2007 5:11:00 PM
2,4,5-Trichlorophenol	ND	1400	μg/Kg-dry	1	10/24/2007 5:11:00 PM
2,4,6-Trichlorophenol	ND	1400	μg/Kg-dry	1	10/24/2007 5:11:00 PM
2,4-Dichlorophenol	ND	1400	μg/Kg-dry	1	10/24/2007 5:11:00 PM
2,4-Dimethylphenol	ND	1400	μg/Kg-dry	1	10/24/2007 5:11:00 PM
2,4-Dinitrophenol	ND	14000	μg/Kg-dry	1	10/24/2007 5:11:00 PM
2,4-Dinitrotoluene	ND	1400	μg/Kg-dry	1	10/24/2007 5:11:00 PM

Date:

Approved By:

Qualifiers: * Low Level

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

** Value exceeds Maximum Contaminant Value

Page 1 of 8

Date: 31-Oct-07

E Value above quantitation range

J Analyte detected below quantitation limits

CLIENT: NYSDEC - Region 9 Client Sample ID: Green "Resin"

Lab Order: U0710466 **Collection Date:** 10/18/2007 12:30:00 PM

Project: Friendship Foundry, Site #902017

Lab ID: U0710466-001 Matrix: SOLID

Analyses	Result	Limit Qual	Units	DF	Date Analyzed
TCL-SEMIVOLATILE ORGANICS		SW8270C	(SW355	60A)	Analyst: LD
2,6-Dinitrotoluene	ND	1400	μg/Kg-dry	1	10/24/2007 5:11:00 PM
2-Chloronaphthalene	ND	1400	μg/Kg-dry	1	10/24/2007 5:11:00 PM
2-Chlorophenol	ND	1400	μg/Kg-dry	1	10/24/2007 5:11:00 PM
2-Methylnaphthalene	ND	1400	μg/Kg-dry	1	10/24/2007 5:11:00 PM
2-Methylphenol	ND	1400	μg/Kg-dry	1	10/24/2007 5:11:00 PM
2-Nitroaniline	ND	14000	μg/Kg-dry	1	10/24/2007 5:11:00 PM
2-Nitrophenol	ND	1400	μg/Kg-dry	1	10/24/2007 5:11:00 PM
3,3´-Dichlorobenzidine	ND	1400	μg/Kg-dry	1	10/24/2007 5:11:00 PM
3-Nitroaniline	ND	14000	μg/Kg-dry	1	10/24/2007 5:11:00 PM
4,6-Dinitro-2-methylphenol	ND	14000	μg/Kg-dry	1	10/24/2007 5:11:00 PM
4-Bromophenyl phenyl ether	ND	1400	μg/Kg-dry	1	10/24/2007 5:11:00 PM
4-Chloro-3-methylphenol	ND	1400	μg/Kg-dry	1	10/24/2007 5:11:00 PM
4-Chloroaniline	ND	1400	μg/Kg-dry	1	10/24/2007 5:11:00 PM
4-Chlorophenyl phenyl ether	ND	1400	μg/Kg-dry	1	10/24/2007 5:11:00 PM
4-Nitroaniline	ND	14000	μg/Kg-dry	1	10/24/2007 5:11:00 PM
4-Nitrophenol	ND	14000	μg/Kg-dry	1	10/24/2007 5:11:00 PM
Acenaphthene	ND	1400	μg/Kg-dry	1	10/24/2007 5:11:00 PM
Acenaphthylene	ND	1400	μg/Kg-dry	1	10/24/2007 5:11:00 PM
Anthracene	ND	1400	μg/Kg-dry	1	10/24/2007 5:11:00 PM
Benz(a)anthracene	ND	1400	μg/Kg-dry	1	10/24/2007 5:11:00 PM
Benzo(a)pyrene	ND	1400	μg/Kg-dry	1	10/24/2007 5:11:00 PM
Benzo(b)fluoranthene	ND	1400	μg/Kg-dry	1	10/24/2007 5:11:00 PM
Benzo(g,h,i)perylene	ND	1400	μg/Kg-dry	1	10/24/2007 5:11:00 PM
Benzo(k)fluoranthene	ND	1400	μg/Kg-dry	1	10/24/2007 5:11:00 PM
Bis(2-chloroethoxy)methane	ND	1400	μg/Kg-dry	1	10/24/2007 5:11:00 PM
Bis(2-chloroethyl)ether	ND	1400	μg/Kg-dry	1	10/24/2007 5:11:00 PM
Bis(2-chloroisopropyl)ether	ND	1400	μg/Kg-dry	1	10/24/2007 5:11:00 PM
Bis(2-ethylhexyl)phthalate	700	1400 J	μg/Kg-dry	1	10/24/2007 5:11:00 PM
Butyl benzyl phthalate	ND	1400	μg/Kg-dry	1	10/24/2007 5:11:00 PM
Carbazole	ND	1400	μg/Kg-dry	1	10/24/2007 5:11:00 PM
Chrysene	ND	1400	μg/Kg-dry	1	10/24/2007 5:11:00 PM
Di-n-butyl phthalate	ND	1400	μg/Kg-dry	1	10/24/2007 5:11:00 PM
Di-n-octyl phthalate	ND	1400	μg/Kg-dry	1	10/24/2007 5:11:00 PM
Dibenz(a,h)anthracene	ND	1400	μg/Kg-dry	1	10/24/2007 5:11:00 PM
Dibenzofuran	ND	1400	µg/Kg-dry	1	10/24/2007 5:11:00 PM
Diethyl phthalate	ND	1400	μg/Kg-dry	1	10/24/2007 5:11:00 PM
Dimethyl phthalate	ND	1400	μg/Kg-dry	1	10/24/2007 5:11:00 PM
Fluoranthene	ND	1400	μg/Kg-dry	1	10/24/2007 5:11:00 PM
Fluorene	ND	1400	μg/Kg-dry	1	10/24/2007 5:11:00 PM
1 14010110	ND	1700	μg/itg-diy	Į.	10/27/2007 3.11.001 10

Approved By	7	:
-------------	---	---

Qualifiers: * Low Level

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

** Value exceeds Maximum Contaminant Value

Page 2 of 8

Date: 31-Oct-07

E Value above quantitation range

Date:

- J Analyte detected below quantitation limits
- S Spike Recovery outside accepted recovery limits

CLIENT: NYSDEC - Region 9 Client Sample ID: Green "Resin"

Lab Order: U0710466 **Collection Date:** 10/18/2007 12:30:00 PM

Friendship Foundry, Site #902017 **Project:**

Matrix: SOLID Lab ID: U0710466-001

Analyses	Result	Limit Qual	Units	DF	Date Analyzed
TCL-SEMIVOLATILE ORGANICS		SW8270C (SW3550A)		50A)	Analyst: LD
Hexachlorobenzene	ND	1400	μg/Kg-dry	1	10/24/2007 5:11:00 PM
Hexachlorobutadiene	ND	1400	μg/Kg-dry	1	10/24/2007 5:11:00 PM
Hexachlorocyclopentadiene	ND	1400	μg/Kg-dry	1	10/24/2007 5:11:00 PM
Hexachloroethane	ND	1400	μg/Kg-dry	1	10/24/2007 5:11:00 PM
Indeno(1,2,3-cd)pyrene	ND	1400	μg/Kg-dry	1	10/24/2007 5:11:00 PM
Isophorone	ND	1400	μg/Kg-dry	1	10/24/2007 5:11:00 PM
N-Nitrosodi-n-propylamine	ND	1400	μg/Kg-dry	1	10/24/2007 5:11:00 PM
N-Nitrosodiphenylamine	ND	1400	μg/Kg-dry	1	10/24/2007 5:11:00 PM
Naphthalene	ND	1400	μg/Kg-dry	1	10/24/2007 5:11:00 PM
Nitrobenzene	ND	1400	μg/Kg-dry	1	10/24/2007 5:11:00 PM
Pentachlorophenol	ND	2900	μg/Kg-dry	1	10/24/2007 5:11:00 PM
Phenanthrene	ND	1400	μg/Kg-dry	1	10/24/2007 5:11:00 PM
Phenol	ND	1400	μg/Kg-dry	1	10/24/2007 5:11:00 PM
Pyrene	ND	1400	μg/Kg-dry	1	10/24/2007 5:11:00 PM
PERCENT MOISTURE		D2216			Analyst: KAM
Percent Moisture	0.0455	0.00100	wt%	1	10/24/2007

Approved By:		Page 3 of 8
Qualifiers: * Low Level	**	Value exceeds Maximum Contaminant Value

В Analyte detected in the associated Method Blank Holding times for preparation or analysis exceeded Η

ND Not Detected at the Reporting Limit

Date: 31-Oct-07

Value above quantitation range

Analyte detected below quantitation limits J Spike Recovery outside accepted recovery limits

CLIENT: NYSDEC - Region 9 Client Sample ID: Black "Resin"

Lab Order: U0710466 **Collection Date:** 10/18/2007 12:35:00 PM

Project: Friendship Foundry, Site #902017

Lab ID: U0710466-002 **Matrix:** SOLID

Analyses	Result	Limit Qua	al Units	DF	Date Analyzed
SOIL AND SOLID METALS BY ICP		SW6010	3 (SW305	0A)	Analyst: EA
Aluminum	30000	130	mg/Kg-dry	25	10/26/2007 11:09:34 AM
Antimony	ND	750	mg/Kg-dry	25	10/26/2007 11:09:34 AM
Arsenic*	ND	25	mg/Kg-dry	25	10/26/2007 11:09:34 AM
Barium	600	750 J	mg/Kg-dry	25	10/26/2007 11:09:34 AM
Beryllium	ND	13	mg/Kg-dry	25	10/26/2007 11:09:34 AM
Cadmium	ND	13	mg/Kg-dry	25	10/26/2007 11:09:34 AM
Calcium	120000	1300	mg/Kg-dry	25	10/26/2007 11:09:34 AM
Chromium	50	130 J	mg/Kg-dry	25	10/26/2007 11:09:34 AM
Cobalt	ND	130	mg/Kg-dry	25	10/26/2007 11:09:34 AM
Copper	ND	50	mg/Kg-dry	25	10/26/2007 11:09:34 AM
Iron	2600	75	mg/Kg-dry	25	10/26/2007 11:09:34 AM
Lead	ND	250	mg/Kg-dry	25	10/26/2007 11:09:34 AM
Magnesium	2600	1300	mg/Kg-dry	25	10/26/2007 11:09:34 AM
Manganese	6800	50	mg/Kg-dry	25	10/26/2007 11:09:34 AM
Nickel	ND	75	mg/Kg-dry	25	10/26/2007 11:09:34 AM
Potassium	ND	1300	mg/Kg-dry	25	10/26/2007 11:09:34 AM
Selenium*	ND	13	mg/Kg-dry	25	10/26/2007 11:09:34 AM
Silver	ND	130	mg/Kg-dry	25	10/26/2007 11:09:34 AM
Sodium	ND	1300	mg/Kg-dry	25	10/26/2007 11:09:34 AM
Thallium*	ND	7.5	mg/Kg-dry	25	10/26/2007 11:09:34 AM
Vanadium	ND	750	mg/Kg-dry	25	10/26/2007 11:09:34 AM
Zinc	47	25	mg/Kg-dry	25	10/26/2007 11:09:34 AM

NOTES:

The reporting limits were raised due to the high concentration of target elements.

TOTAL MERCURY - SOIL/SOLID/WASTE		SW7471A	(SW747	71A)	Analyst: DRP
Mercury	ND	0.200	mg/Kg-dry	1	10/26/2007 2:46:22 PM
TCL-SEMIVOLATILE ORGANICS		SW8270C	(SW355	50A)	Analyst: LD
(3+4)-Methylphenol	ND	1400	μg/Kg-dry	1	10/24/2007 5:55:00 PM
1,2,4-Trichlorobenzene	ND	1400	μg/Kg-dry	1	10/24/2007 5:55:00 PM
1,2-Dichlorobenzene	ND	1400	μg/Kg-dry	1	10/24/2007 5:55:00 PM
1,3-Dichlorobenzene	ND	1400	μg/Kg-dry	1	10/24/2007 5:55:00 PM
1,4-Dichlorobenzene	ND	1400	μg/Kg-dry	1	10/24/2007 5:55:00 PM
2,4,5-Trichlorophenol	ND	1400	μg/Kg-dry	1	10/24/2007 5:55:00 PM
2,4,6-Trichlorophenol	ND	1400	μg/Kg-dry	1	10/24/2007 5:55:00 PM
2,4-Dichlorophenol	ND	1400	μg/Kg-dry	1	10/24/2007 5:55:00 PM
2,4-Dimethylphenol	ND	1400	μg/Kg-dry	1	10/24/2007 5:55:00 PM
2,4-Dinitrophenol	ND	14000	μg/Kg-dry	1	10/24/2007 5:55:00 PM
2,4-Dinitrotoluene	ND	1400	μg/Kg-dry	1	10/24/2007 5:55:00 PM

Date:

Approved By:

Qualifiers: * Low Level

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

** Value exceeds Maximum Contaminant Value

Page 4 of 8

Date: 31-Oct-07

E Value above quantitation range

J Analyte detected below quantitation limits

CLIENT: NYSDEC - Region 9 Client Sample ID: Black "Resin"

Lab Order: U0710466 **Collection Date:** 10/18/2007 12:35:00 PM

Friendship Foundry, Site #902017 **Project:**

Matrix: SOLID Lab ID: U0710466-002

Analyses	Result	Limit Qua	Units	DF	Date Analyzed
TCL-SEMIVOLATILE ORGANICS		SW8270C	(SW355	50A)	Analyst: LD
2,6-Dinitrotoluene	ND	1400	μg/Kg-dry	1	10/24/2007 5:55:00 PM
2-Chloronaphthalene	ND	1400	μg/Kg-dry	1	10/24/2007 5:55:00 PM
2-Chlorophenol	ND	1400	μg/Kg-dry	1	10/24/2007 5:55:00 PM
2-Methylnaphthalene	ND	1400	μg/Kg-dry	1	10/24/2007 5:55:00 PM
2-Methylphenol	ND	1400	μg/Kg-dry	1	10/24/2007 5:55:00 PM
2-Nitroaniline	ND	14000	μg/Kg-dry	1	10/24/2007 5:55:00 PM
2-Nitrophenol	ND	1400	μg/Kg-dry	1	10/24/2007 5:55:00 PM
3,3´-Dichlorobenzidine	ND	1400	μg/Kg-dry	1	10/24/2007 5:55:00 PM
3-Nitroaniline	ND	14000	μg/Kg-dry	1	10/24/2007 5:55:00 PM
4,6-Dinitro-2-methylphenol	ND	14000	μg/Kg-dry	1	10/24/2007 5:55:00 PM
4-Bromophenyl phenyl ether	ND	1400	μg/Kg-dry	1	10/24/2007 5:55:00 PM
4-Chloro-3-methylphenol	ND	1400	μg/Kg-dry	1	10/24/2007 5:55:00 PM
4-Chloroaniline	ND	1400	μg/Kg-dry	1	10/24/2007 5:55:00 PM
4-Chlorophenyl phenyl ether	ND	1400	μg/Kg-dry	1	10/24/2007 5:55:00 PM
4-Nitroaniline	ND	14000	μg/Kg-dry	1	10/24/2007 5:55:00 PM
4-Nitrophenol	ND	14000	μg/Kg-dry	1	10/24/2007 5:55:00 PM
Acenaphthene	ND	1400	μg/Kg-dry	1	10/24/2007 5:55:00 PM
Acenaphthylene	ND	1400	μg/Kg-dry	1	10/24/2007 5:55:00 PM
Anthracene	ND	1400	μg/Kg-dry	1	10/24/2007 5:55:00 PM
Benz(a)anthracene	ND	1400	μg/Kg-dry	1	10/24/2007 5:55:00 PM
Benzo(a)pyrene	ND	1400	μg/Kg-dry	1	10/24/2007 5:55:00 PM
Benzo(b)fluoranthene	ND	1400	μg/Kg-dry	1	10/24/2007 5:55:00 PM
Benzo(g,h,i)perylene	ND	1400	μg/Kg-dry	1	10/24/2007 5:55:00 PM
Benzo(k)fluoranthene	ND	1400	μg/Kg-dry	1	10/24/2007 5:55:00 PM
Bis(2-chloroethoxy)methane	ND	1400	μg/Kg-dry	1	10/24/2007 5:55:00 PM
Bis(2-chloroethyl)ether	ND	1400	μg/Kg-dry	1	10/24/2007 5:55:00 PM
Bis(2-chloroisopropyl)ether	ND	1400	μg/Kg-dry	1	10/24/2007 5:55:00 PM
Bis(2-ethylhexyl)phthalate	1000	1400 J	μg/Kg-dry	1	10/24/2007 5:55:00 PM
Butyl benzyl phthalate	ND	1400	μg/Kg-dry	1	10/24/2007 5:55:00 PM
Carbazole	ND	1400	μg/Kg-dry	1	10/24/2007 5:55:00 PM
Chrysene	ND	1400	μg/Kg-dry	1	10/24/2007 5:55:00 PM
Di-n-butyl phthalate	200	1400 J	μg/Kg-dry	1	10/24/2007 5:55:00 PM
Di-n-octyl phthalate	ND	1400	μg/Kg-dry	1	10/24/2007 5:55:00 PM
Dibenz(a,h)anthracene	ND	1400	μg/Kg-dry	1	10/24/2007 5:55:00 PM
Dibenzofuran	ND	1400	μg/Kg-dry	1	10/24/2007 5:55:00 PM
Diethyl phthalate	ND	1400	μg/Kg-dry	1	10/24/2007 5:55:00 PM
Dimethyl phthalate	ND	1400	μg/Kg-dry	1	10/24/2007 5:55:00 PM
Fluoranthene	ND	1400	μg/Kg-dry	1	10/24/2007 5:55:00 PM
Fluorene	ND	1400	μg/Kg-dry	1	10/24/2007 5:55:00 PM

Ap	prove	d Bv:
Ap	prove	u by

Qualifiers: Low Level

- В Analyte detected in the associated Method Blank
- Η Holding times for preparation or analysis exceeded
- Not Detected at the Reporting Limit

Date:

Page 5 of 8

Value exceeds Maximum Contaminant Value

- Е Value above quantitation range
- J Analyte detected below quantitation limits
- Spike Recovery outside accepted recovery limits

CLIENT: NYSDEC - Region 9 Client Sample ID: Black "Resin"

Lab Order: U0710466 **Collection Date:** 10/18/2007 12:35:00 PM

Project: Friendship Foundry, Site #902017

Lab ID: U0710466-002 Matrix: SOLID

Analyses	Result	Limit Qual	Units	DF	Date Analyzed
TCL-SEMIVOLATILE ORGANICS	-SEMIVOLATILE ORGANICS SW8270C (SW3550A)		60A)	Analyst: LD	
Hexachlorobenzene	ND	1400	μg/Kg-dry	1	10/24/2007 5:55:00 PM
Hexachlorobutadiene	ND	1400	μg/Kg-dry	1	10/24/2007 5:55:00 PM
Hexachlorocyclopentadiene	ND	1400	μg/Kg-dry	1	10/24/2007 5:55:00 PM
Hexachloroethane	ND	1400	μg/Kg-dry	1	10/24/2007 5:55:00 PM
Indeno(1,2,3-cd)pyrene	ND	1400	μg/Kg-dry	1	10/24/2007 5:55:00 PM
Isophorone	ND	1400	μg/Kg-dry	1	10/24/2007 5:55:00 PM
N-Nitrosodi-n-propylamine	ND	1400	μg/Kg-dry	1	10/24/2007 5:55:00 PM
N-Nitrosodiphenylamine	ND	1400	μg/Kg-dry	1	10/24/2007 5:55:00 PM
Naphthalene	ND	1400	μg/Kg-dry	1	10/24/2007 5:55:00 PM
Nitrobenzene	ND	1400	μg/Kg-dry	1	10/24/2007 5:55:00 PM
Pentachlorophenol	ND	2900	μg/Kg-dry	1	10/24/2007 5:55:00 PM
Phenanthrene	ND	1400	μg/Kg-dry	1	10/24/2007 5:55:00 PM
Phenol	ND	1400	μg/Kg-dry	1	10/24/2007 5:55:00 PM
Pyrene	ND	1400	μg/Kg-dry	1	10/24/2007 5:55:00 PM
PERCENT MOISTURE	D2216			Analyst: KAM	
Percent Moisture	0.0497	0.00100	wt%	1	10/24/2007

Approved By:		Page 6 of 8
Qualifiers: * Low Level	**	Value exceeds Maximum Contaminant Value

B Analyte detected in the associated Method Blank
 H Holding times for preparation or analysis exceeded

Troiding times for preparation of analysis exceed

ND Not Detected at the Reporting Limit

E Value above quantitation rangeJ Analyte detected below quantitation limits

Spike Recovery outside accepted recovery limits

CLIENT: NYSDEC - Region 9 Client Sample ID: Grey Slag

Project: Friendship Foundry, Site #902017

Lab ID: U0710466-003 **Matrix:** SOLID

Analyses	Result	Limit Qual	Units	DF	Date Analyzed	
SOIL AND SOLID METALS BY ICP		SW6010B	(SW3050A)		Analyst: EA	
Aluminum	330	120	mg/Kg	25	10/26/2007 11:12:58 AM	
Antimony	ND	750	mg/Kg	25	10/26/2007 11:12:58 AM	
Arsenic*	ND	25	mg/Kg	25	10/26/2007 11:12:58 AM	
Barium	ND	750	mg/Kg	25	10/26/2007 11:12:58 AM	
Beryllium	ND	12	mg/Kg	25	10/26/2007 11:12:58 AM	
Cadmium	ND	12	mg/Kg	25	10/26/2007 11:12:58 AM	
Calcium	5200	1200	mg/Kg	25	10/26/2007 11:12:58 AM	
Chromium	ND	120	mg/Kg	25	10/26/2007 11:12:58 AM	
Cobalt	ND	120	mg/Kg	25	10/26/2007 11:12:58 AM	
Copper	ND	50	mg/Kg	25	10/26/2007 11:12:58 AM	
Iron	1400	75	mg/Kg	25	10/26/2007 11:12:58 AM	
Lead	ND	250	mg/Kg	25	10/26/2007 11:12:58 AM	
Magnesium	100	1200 J	mg/Kg	25	10/26/2007 11:12:58 AM	
Manganese	85	50	mg/Kg	25	10/26/2007 11:12:58 AM	
Nickel	ND	75	mg/Kg	25	10/26/2007 11:12:58 AM	
Potassium	ND	1200	mg/Kg	25	10/26/2007 11:12:58 AM	
Selenium*	ND	12	mg/Kg	25	10/26/2007 11:12:58 AM	
Silver	ND	120	mg/Kg	25	10/26/2007 11:12:58 AM	
Sodium	ND	1200	mg/Kg	25	10/26/2007 11:12:58 AM	
Thallium*	ND	7.5	mg/Kg	25	10/26/2007 11:12:58 AM	
Vanadium	ND	750	mg/Kg	25	10/26/2007 11:12:58 AM	
Zinc	ND	25	mg/Kg	25	10/26/2007 11:12:58 AM	
NOTES:						

NOTES:

The reporting limits were raised due to the high concentration of target elements.

TOTAL MERCURY - SOIL/SOLID/WASTE		SW7	171A	(SW7	'471A)	Analyst: DRP
Mercury	0.0089	0.200	J	mg/Kg	1	10/26/2007 2:47:23 PM

 Approved By:
 Date:
 Page 7 of 8

 Qualifiers:
 * Low Level
 ** Value exceeds Maximum Contaminant Value

 B
 Analyte detected in the associated Method Blank
 E
 Value above quantitation range

B Analyte detected in the associated Method Blank
 H Holding times for preparation or analysis exceeded

Troiding times for preparation of analysis exece

ND Not Detected at the Reporting Limit

J Analyte detected below quantitation limits
 S Spike Recovery outside accepted recovery limits

CLIENT: NYSDEC - Region 9 Client Sample ID: White Slag

Project: Friendship Foundry, Site #902017

Lab ID: U0710466-004 **Matrix:** SOLID

Analyses	Result	Limit	Qual	Units	DF	Date Analyzed
SOIL AND SOLID METALS BY ICP		SW60)10B	(SW3	050A)	Analyst: EA
Aluminum	27000	120		mg/Kg	25	10/26/2007 11:16:27 AM
Antimony	ND	750		mg/Kg	25	10/26/2007 11:16:27 AM
Arsenic*	9	25	J	mg/Kg	25	10/26/2007 11:16:27 AM
Barium	400	750	J	mg/Kg	25	10/26/2007 11:16:27 AM
Beryllium	ND	12		mg/Kg	25	10/26/2007 11:16:27 AM
Cadmium	ND	12		mg/Kg	25	10/26/2007 11:16:27 AM
Calcium	210000	1200		mg/Kg	25	10/26/2007 11:16:27 AM
Chromium	ND	120		mg/Kg	25	10/26/2007 11:16:27 AM
Cobalt	ND	120		mg/Kg	25	10/26/2007 11:16:27 AM
Copper	ND	50		mg/Kg	25	10/26/2007 11:16:27 AM
Iron	3200	75		mg/Kg	25	10/26/2007 11:16:27 AM
Lead	ND	250		mg/Kg	25	10/26/2007 11:16:27 AM
Magnesium	3900	1200		mg/Kg	25	10/26/2007 11:16:27 AM
Manganese	6000	50		mg/Kg	25	10/26/2007 11:16:27 AM
Nickel	ND	75		mg/Kg	25	10/26/2007 11:16:27 AM
Potassium	ND	1200		mg/Kg	25	10/26/2007 11:16:27 AM
Selenium*	ND	12		mg/Kg	25	10/26/2007 11:16:27 AM
Silver	ND	120		mg/Kg	25	10/26/2007 11:16:27 AM
Sodium	ND	1200		mg/Kg	25	10/26/2007 11:16:27 AM
Thallium*	ND	7.5		mg/Kg	25	10/26/2007 11:16:27 AM
Vanadium	ND	750		mg/Kg	25	10/26/2007 11:16:27 AM
Zinc	ND	25		mg/Kg	25	10/26/2007 11:16:27 AM
NOTES.						

NOTES:

The reporting limits were raised due to the high concentration of target elements.

TOTAL MERCURY - SOIL/SOLID/WASTE		SW74	171A	(SW7	471A)	Analyst: DRP
Mercury	0.010	0.200	J	mg/Kg	1	10/26/2007 2:48:23 PM

B Analyte detected in the associated Method Blank
 H Holding times for preparation or analysis exceeded

Troiding times for preparation of analysis excel

ND Not Detected at the Reporting Limit

J Analyte detected below quantitation limits
S Spike Recovery outside accepted recovery limits

CLIENT: NYSDEC - Region 9 Client Sample ID: B-11 @ 3'

Lab Order: U0711338 **Collection Date:** 11/14/2007 10:30:00 AM

Friendship Foundry, Site #902017 **Project:**

Matrix: SOIL Lab ID: U0711338-001

Analyses	Result	Limit Qual	Units	DF	Date Analyzed
SOIL AND SOLID METALS BY ICP		SW6010B	(SW305	0A)	Analyst: EA
Aluminum	2800	5.8	mg/Kg-dry	1	11/20/2007 1:46:09 PM
Antimony	ND	35	mg/Kg-dry	1	11/20/2007 1:46:09 PM
Arsenic*	51	1.2	mg/Kg-dry	1	11/20/2007 1:46:09 PM
Barium	190	35	mg/Kg-dry	1	11/20/2007 1:46:09 PM
Beryllium	ND	0.58	mg/Kg-dry	1	11/20/2007 1:46:09 PM
Cadmium	83	0.58	mg/Kg-dry	1	11/20/2007 1:46:09 PM
Calcium	1400	58	mg/Kg-dry	1	11/20/2007 1:46:09 PM
Chromium	96	5.8	mg/Kg-dry	1	11/20/2007 1:46:09 PM
Cobalt	41	5.8	mg/Kg-dry	1	11/20/2007 1:46:09 PM
Copper	1100	2.3	mg/Kg-dry	1	11/20/2007 1:46:09 PM
Iron	530000	87	mg/Kg-dry	25	11/20/2007 2:24:49 PM
Lead	610	12	mg/Kg-dry	1	11/20/2007 1:46:09 PM
Magnesium	730	58	mg/Kg-dry	1	11/20/2007 1:46:09 PM
Manganese	1700	2.3	mg/Kg-dry	1	11/20/2007 1:46:09 PM
Nickel	190	3.5	mg/Kg-dry	1	11/20/2007 1:46:09 PM
Potassium	460	58	mg/Kg-dry	1	11/20/2007 1:46:09 PM
Selenium*	53	0.58	mg/Kg-dry	1	11/20/2007 1:46:09 PM
Silver	1	5.8 J	mg/Kg-dry	1	11/20/2007 1:46:09 PM
Sodium	ND	58	mg/Kg-dry	1	11/20/2007 1:46:09 PM
Thallium*	ND	0.35	mg/Kg-dry	1	11/20/2007 1:46:09 PM
Vanadium	20	35 J	mg/Kg-dry	1	11/20/2007 1:46:09 PM
Zinc	330	1.2	mg/Kg-dry	1	11/20/2007 1:46:09 PM
NOTES:					
The reporting limits were raised due to the	high concentratio	n of target element			
TOTAL MERCURY - SOIL/SOLID/WAS	TE	SW7471A	(SW747	1A)	Analyst: EA
Mercury	0.085	0.233 J	mg/Kg-dry	1	11/20/2007 1:22:22 PM

TOTAL MERCURY - SOIL/SOLID/WASTE		SW7471A	(SW747	71A)	Analyst: EA
Mercury	0.085	0.233 J	mg/Kg-dry	1	11/20/2007 1:22:22 PM
PERCENT MOISTURE		D2216			Analyst: KAM

Approved By:	Date:	Page 1 of 4
Qualifiers: * Low Level	**	Value exceeds Maximum Contaminant Value

В Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded Η

ND Not Detected at the Reporting Limit

Value above quantitation range Analyte detected below quantitation limits

Date: 27-Nov-07

CLIENT: NYSDEC - Region 9 Client Sample ID: SS-1

Lab Order: U0711338 **Collection Date:** 11/14/2007 11:00:00 AM

Friendship Foundry, Site #902017 **Project:**

Matrix: SOIL Lab ID: U0711338-002

Analyses	Result	Limit Qual	Units	DF	Date Analyzed
SOIL AND SOLID METALS BY ICP		SW6010B	(SW305	(A)	Analyst: EA
Aluminum	8700	5.9	mg/Kg-dry	1	11/20/2007 1:50:06 PM
Antimony	ND	36	mg/Kg-dry	1	11/20/2007 1:50:06 PM
Arsenic*	15	1.2	mg/Kg-dry	1	11/20/2007 1:50:06 PM
Barium	84	36	mg/Kg-dry	1	11/20/2007 1:50:06 PM
Beryllium	ND	0.59	mg/Kg-dry	1	11/20/2007 1:50:06 PM
Cadmium	6.2	0.59	mg/Kg-dry	1	11/20/2007 1:50:06 PM
Calcium	6000	59	mg/Kg-dry	1	11/20/2007 1:50:06 PM
Chromium	27	5.9	mg/Kg-dry	1	11/20/2007 1:50:06 PM
Cobalt	9.7	5.9	mg/Kg-dry	1	11/20/2007 1:50:06 PM
Copper	48	2.4	mg/Kg-dry	1	11/20/2007 1:50:06 PM
Iron	32000	3.6	mg/Kg-dry	1	11/20/2007 1:50:06 PM
Lead	240	12	mg/Kg-dry	1	11/20/2007 1:50:06 PM
Magnesium	3000	59	mg/Kg-dry	1	11/20/2007 1:50:06 PM
Manganese	790	2.4	mg/Kg-dry	1	11/20/2007 1:50:06 PM
Nickel	33	3.6	mg/Kg-dry	1	11/20/2007 1:50:06 PM
Potassium	1400	59	mg/Kg-dry	1	11/20/2007 1:50:06 PM
Selenium*	2.7	0.59	mg/Kg-dry	1	11/20/2007 1:50:06 PM
Silver	ND	5.9	mg/Kg-dry	1	11/20/2007 1:50:06 PM
Sodium	ND	59	mg/Kg-dry	1	11/20/2007 1:50:06 PM
Thallium*	ND	0.36	mg/Kg-dry	1	11/20/2007 1:50:06 PM
Vanadium	10	36 J	mg/Kg-dry	1	11/20/2007 1:50:06 PM
Zinc	230	1.2	mg/Kg-dry	1	11/20/2007 1:50:06 PM
TOTAL MERCURY - SOIL/SOLID/WAST	Έ	SW7471A	(SW747	'1A)	Analyst: EA
Mercury	0.18	0.237 J	mg/Kg-dry	1	11/20/2007 12:58:16 PM
PERCENT MOISTURE		D2216			Analyst: KAM
Percent Moisture	15.6	0.00100	wt%	1	11/26/2007

Date: 27-Nov-07

Approved I	By: _		Date:	Page 2 of 4
Qualifiers:	*	Low Level	**	Value exceeds Maximum Contaminant Value
	В	Analyte detected in the associated Method Blank	E	Value above quantitation range

В Analyte detected in the associated Method Blank Holding times for preparation or analysis exceeded Η

J ND Not Detected at the Reporting Limit Spike Recovery outside accepted recovery limits

Analyte detected below quantitation limits

CLIENT: NYSDEC - Region 9 Client Sample ID: SS-2

Lab Order: U0711338 **Collection Date:** 11/14/2007 12:00:00 PM

Project: Friendship Foundry, Site #902017

Lab ID: U0711338-003 Matrix: SOIL

Analyses	Result	Limit Qual	Units	DF	Date Analyzed
SOIL AND SOLID METALS BY ICP		SW6010B	(SW305	(0A)	Analyst: EA
Aluminum	9500	6.0	mg/Kg-dry	1	11/20/2007 2:01:03 PM
Antimony	ND	36	mg/Kg-dry	1	11/20/2007 2:01:03 PM
Arsenic*	15	1.2	mg/Kg-dry	1	11/20/2007 2:01:03 PM
Barium	110	36	mg/Kg-dry	1	11/20/2007 2:01:03 PM
Beryllium	ND	0.60	mg/Kg-dry	1	11/20/2007 2:01:03 PM
Cadmium	5.6	0.60	mg/Kg-dry	1	11/20/2007 2:01:03 PM
Calcium	5900	60	mg/Kg-dry	1	11/20/2007 2:01:03 PM
Chromium	27	6.0	mg/Kg-dry	1	11/20/2007 2:01:03 PM
Cobalt	10	6.0	mg/Kg-dry	1	11/20/2007 2:01:03 PM
Copper	39	2.4	mg/Kg-dry	1	11/20/2007 2:01:03 PM
Iron	31000	3.6	mg/Kg-dry	1	11/20/2007 2:01:03 PM
Lead	120	12	mg/Kg-dry	1	11/20/2007 2:01:03 PM
Magnesium	3500	60	mg/Kg-dry	1	11/20/2007 2:01:03 PM
Manganese	850	2.4	mg/Kg-dry	1	11/20/2007 2:01:03 PM
Nickel	28	3.6	mg/Kg-dry	1	11/20/2007 2:01:03 PM
Potassium	1400	60	mg/Kg-dry	1	11/20/2007 2:01:03 PM
Selenium*	1.3	0.60	mg/Kg-dry	1	11/20/2007 2:01:03 PM
Silver	ND	6.0	mg/Kg-dry	1	11/20/2007 2:01:03 PM
Sodium	ND	60	mg/Kg-dry	1	11/20/2007 2:01:03 PM
Thallium*	ND	0.36	mg/Kg-dry	1	11/20/2007 2:01:03 PM
Vanadium	20	36 J	mg/Kg-dry	1	11/20/2007 2:01:03 PM
Zinc	130	1.2	mg/Kg-dry	1	11/20/2007 2:01:03 PM
TOTAL MERCURY - SOIL/SOLID/WAS	TE	SW7471A	(SW747	'1A)	Analyst: EA
Mercury	0.064	0.241 J	mg/Kg-dry	1	11/20/2007 12:59:36 PM
PERCENT MOISTURE		D2216			Analyst: KAM
Percent Moisture	17.0	0.00100	wt%	1	11/26/2007

Approved By:	Date:	Page 3 of 4
Qualifiers: * Low Level	**	Value exceeds Maximum Contaminant Value

B Analyte detected in the associated Method Blank
 H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

E Value above quantitation rangeJ Analyte detected below quantitation limits

Date: 27-Nov-07

CLIENT: NYSDEC - Region 9 Client Sample ID: SS-3

Lab Order: U0711338 **Collection Date:** 11/14/2007 1:00:00 PM

Friendship Foundry, Site #902017 **Project:**

Matrix: SOIL Lab ID: U0711338-004

Analyses	Result	Limit Qual	Units	DF	Date Analyzed
SOIL AND SOLID METALS BY ICP		SW6010B	(SW305	0A)	Analyst: EA
Aluminum	11000	6.0	mg/Kg-dry	1	11/20/2007 2:08:30 PM
Antimony	ND	36	mg/Kg-dry	1	11/20/2007 2:08:30 PM
Arsenic*	13	1.2	mg/Kg-dry	1	11/20/2007 2:08:30 PM
Barium	77	36	mg/Kg-dry	1	11/20/2007 2:08:30 PM
Beryllium	ND	0.60	mg/Kg-dry	1	11/20/2007 2:08:30 PM
Cadmium	4.1	0.60	mg/Kg-dry	1	11/20/2007 2:08:30 PM
Calcium	8600	60	mg/Kg-dry	1	11/20/2007 2:08:30 PM
Chromium	17	6.0	mg/Kg-dry	1	11/20/2007 2:08:30 PM
Cobalt	11	6.0	mg/Kg-dry	1	11/20/2007 2:08:30 PM
Copper	26	2.4	mg/Kg-dry	1	11/20/2007 2:08:30 PM
Iron	24000	3.6	mg/Kg-dry	1	11/20/2007 2:08:30 PM
Lead	33	12	mg/Kg-dry	1	11/20/2007 2:08:30 PM
Magnesium	4100	60	mg/Kg-dry	1	11/20/2007 2:08:30 PM
Manganese	590	2.4	mg/Kg-dry	1	11/20/2007 2:08:30 PM
Nickel	23	3.6	mg/Kg-dry	1	11/20/2007 2:08:30 PM
Potassium	1900	60	mg/Kg-dry	1	11/20/2007 2:08:30 PM
Selenium*	ND	0.60	mg/Kg-dry	1	11/20/2007 2:08:30 PM
Silver	24	6.0	mg/Kg-dry	1	11/20/2007 2:08:30 PM
Sodium	ND	60	mg/Kg-dry	1	11/20/2007 2:08:30 PM
Thallium*	ND	0.36	mg/Kg-dry	1	11/20/2007 2:08:30 PM
Vanadium	20	36 J	mg/Kg-dry	1	11/20/2007 2:08:30 PM
Zinc	92	1.2	mg/Kg-dry	1	11/20/2007 2:08:30 PM
TOTAL MERCURY - SOIL/SOLID/WASTE		SW7471A	(SW747	1A)	Analyst: EA
Mercury	0.032	0.241 J	mg/Kg-dry	1	11/20/2007 1:01:06 PM
PERCENT MOISTURE		D2216			Analyst: KAM
Percent Moisture	16.9	0.00100	wt%	1	11/26/2007

Approved By:	Date:	Page 4 of 4
Qualifiers: * Low Level	**	Value exceeds Maximum Contaminant Value

В Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded Η

ND Not Detected at the Reporting Limit

Date: 27-Nov-07

Value above quantitation range

J Analyte detected below quantitation limits

CLIENT: NYSDEC - Region 9 Client Sample ID: B-12 @ 2'

Lab Order: U0711373 **Collection Date:** 11/15/2007 11:30:00 AM

Project: Friendship Foundry, Site #902017

Lab ID: U0711373-001 Matrix: SOIL

Analyses	Result	Limit Qual	Units	DF	Date Analyzed
SOIL AND SOLID METALS BY ICP		SW6010B	(SW305	(A)	Analyst: EA
Aluminum	6600	5.7	mg/Kg-dry	1	11/26/2007 1:41:22 PM
Antimony	ND	34	mg/Kg-dry	1	11/26/2007 1:41:22 PM
Arsenic*	12	1.1	mg/Kg-dry	1	11/26/2007 1:41:22 PM
Barium	63	34	mg/Kg-dry	1	11/26/2007 1:41:22 PM
Beryllium	ND	0.57	mg/Kg-dry	1	11/26/2007 1:41:22 PM
Cadmium	3.8	0.57	mg/Kg-dry	1	11/26/2007 1:41:22 PM
Calcium	3600	57	mg/Kg-dry	1	11/26/2007 1:41:22 PM
Chromium	12	5.7	mg/Kg-dry	1	11/26/2007 1:41:22 PM
Cobalt	7.1	5.7	mg/Kg-dry	1	11/26/2007 1:41:22 PM
Copper	18	2.3	mg/Kg-dry	1	11/26/2007 1:41:22 PM
Iron	20000	3.4	mg/Kg-dry	1	11/26/2007 1:41:22 PM
Lead	32	11	mg/Kg-dry	1	11/26/2007 1:41:22 PM
Magnesium	3000	57	mg/Kg-dry	1	11/26/2007 1:41:22 PM
Manganese	430	2.3	mg/Kg-dry	1	11/26/2007 1:41:22 PM
Nickel	17	3.4	mg/Kg-dry	1	11/26/2007 1:41:22 PM
Potassium	950	57	mg/Kg-dry	1	11/26/2007 1:41:22 PM
Selenium*	4.0	0.57	mg/Kg-dry	1	11/26/2007 1:41:22 PM
Silver	ND	5.7	mg/Kg-dry	1	11/26/2007 1:41:22 PM
Sodium	ND	57	mg/Kg-dry	1	11/26/2007 1:41:22 PM
Thallium*	ND	0.34	mg/Kg-dry	1	11/26/2007 1:41:22 PM
Vanadium	9	34 J	mg/Kg-dry	1	11/26/2007 1:41:22 PM
Zinc	81	1.1	mg/Kg-dry	1	11/26/2007 1:41:22 PM
TOTAL MERCURY - SOIL/SOLID/WAS	ΤΕ	SW7471A	(SW747	'1A)	Analyst: EA
Mercury	0.074	0.226 J	mg/Kg-dry	1	11/26/2007 2:48:58 PM
PERCENT MOISTURE		D2216			Analyst: KAM
Percent Moisture	11.6	0.00100	wt%	1	11/26/2007

Approved By:	Date:	Page 1 of 7
Qualifiers: * Low Level	**	Value exceeds Maximum Contaminant Value

B Analyte detected in the associated Method Blank
 H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

E Value above quantitation rangeJ Analyte detected below quantitation limits

Date: 03-Dec-07

CLIENT: NYSDEC - Region 9 Client Sample ID: B-13 @ 2'

Lab Order: U0711373 **Collection Date:** 11/15/2007 10:00:00 AM

Friendship Foundry, Site #902017 **Project:**

Matrix: SOIL Lab ID: U0711373-002

Analyses	Result	Limit Qu	al Units	DF	Date Analyzed
TCL-SEMIVOLATILE ORGANICS		SW8270C (SW3550A)		50A)	Analyst: LD
(3+4)-Methylphenol	ND	4200	μg/Kg-dry	10	11/30/2007 1:14:00 PM
1,2,4-Trichlorobenzene	ND	4200	μg/Kg-dry	10	11/30/2007 1:14:00 PM
1,2-Dichlorobenzene	ND	4200	μg/Kg-dry	10	11/30/2007 1:14:00 PM
1,3-Dichlorobenzene	ND	4200	μg/Kg-dry	10	11/30/2007 1:14:00 PM
1,4-Dichlorobenzene	ND	4200	μg/Kg-dry	10	11/30/2007 1:14:00 PM
2,4,5-Trichlorophenol	ND	4200	μg/Kg-dry	10	11/30/2007 1:14:00 PM
2,4,6-Trichlorophenol	ND	4200	μg/Kg-dry	10	11/30/2007 1:14:00 PM
2,4-Dichlorophenol	ND	4200	μg/Kg-dry	10	11/30/2007 1:14:00 PM
2,4-Dimethylphenol	ND	4200	μg/Kg-dry	10	11/30/2007 1:14:00 PM
2,4-Dinitrophenol	ND	42000	μg/Kg-dry	10	11/30/2007 1:14:00 PM
2,4-Dinitrotoluene	ND	4200	μg/Kg-dry	10	11/30/2007 1:14:00 PM
2,6-Dinitrotoluene	ND	4200	μg/Kg-dry	10	11/30/2007 1:14:00 PM
2-Chloronaphthalene	ND	4200	μg/Kg-dry	10	11/30/2007 1:14:00 PM
2-Chlorophenol	ND	4200	μg/Kg-dry	10	11/30/2007 1:14:00 PM
2-Methylnaphthalene	ND	4200	μg/Kg-dry	10	11/30/2007 1:14:00 PM
2-Methylphenol	ND	4200	μg/Kg-dry	10	11/30/2007 1:14:00 PM
2-Nitroaniline	ND	42000	μg/Kg-dry	10	11/30/2007 1:14:00 PM
2-Nitrophenol	ND	4200	μg/Kg-dry	10	11/30/2007 1:14:00 PM
3,3´-Dichlorobenzidine	ND	4200	μg/Kg-dry	10	11/30/2007 1:14:00 PM
3-Nitroaniline	ND	42000	μg/Kg-dry	10	11/30/2007 1:14:00 PM
4,6-Dinitro-2-methylphenol	ND	42000	μg/Kg-dry	10	11/30/2007 1:14:00 PM
4-Bromophenyl phenyl ether	ND	4200	μg/Kg-dry	10	11/30/2007 1:14:00 PM
4-Chloro-3-methylphenol	ND	4200	μg/Kg-dry	10	11/30/2007 1:14:00 PM
4-Chloroaniline	ND	4200	μg/Kg-dry	10	11/30/2007 1:14:00 PM
4-Chlorophenyl phenyl ether	ND	4200	μg/Kg-dry	10	11/30/2007 1:14:00 PM
4-Nitroaniline	ND	42000	μg/Kg-dry	10	11/30/2007 1:14:00 PM
4-Nitrophenol	ND	42000	μg/Kg-dry	10	11/30/2007 1:14:00 PM
Acenaphthene	ND	4200	μg/Kg-dry	10	11/30/2007 1:14:00 PM
Acenaphthylene	ND	4200	μg/Kg-dry	10	11/30/2007 1:14:00 PM
Anthracene	ND	4200	μg/Kg-dry	10	11/30/2007 1:14:00 PM
Benz(a)anthracene	ND	4200	μg/Kg-dry	10	11/30/2007 1:14:00 PM
Benzo(a)pyrene	ND	4200	μg/Kg-dry	10	11/30/2007 1:14:00 PM
Benzo(b)fluoranthene	ND	4200	μg/Kg-dry	10	11/30/2007 1:14:00 PM
Benzo(g,h,i)perylene	ND	4200	μg/Kg-dry	10	11/30/2007 1:14:00 PM
Benzo(k)fluoranthene	ND	4200	μg/Kg-dry	10	11/30/2007 1:14:00 PM
Bis(2-chloroethoxy)methane	ND	4200	μg/Kg-dry	10	11/30/2007 1:14:00 PM
Bis(2-chloroethyl)ether	ND	4200	μg/Kg-dry	10	11/30/2007 1:14:00 PM
Bis(2-chloroisopropyl)ether	ND	4200	μg/Kg-dry	10	11/30/2007 1:14:00 PM
Bis(2-ethylhexyl)phthalate	8600	4200	μg/Kg-dry	10	11/30/2007 1:14:00 PM

Approved By:

Qualifiers: Low Level

- В Analyte detected in the associated Method Blank
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

Value exceeds Maximum Contaminant Value

Date: 03-Dec-07

- Е Value above quantitation range
- J

Date:

Analyte detected below quantitation limits Spike Recovery outside accepted recovery limits

Page 2 of 7

CLIENT: NYSDEC - Region 9 Client Sample ID: B-13 @ 2'

Lab Order: U0711373 **Collection Date:** 11/15/2007 10:00:00 AM

Project: Friendship Foundry, Site #902017

Lab ID: U0711373-002 Matrix: SOIL

Analyses	Result	Limit Qual	Units	DF	Date Analyzed
TCL-SEMIVOLATILE ORGANICS		SW8270C	(SW355	50A)	Analyst: LD
Butyl benzyl phthalate	ND	4200	μg/Kg-dry	10	11/30/2007 1:14:00 PM
Carbazole	ND	4200	μg/Kg-dry	10	11/30/2007 1:14:00 PM
Chrysene	ND	4200	μg/Kg-dry	10	11/30/2007 1:14:00 PM
Di-n-butyl phthalate	ND	4200	μg/Kg-dry	10	11/30/2007 1:14:00 PM
Di-n-octyl phthalate	ND	4200	μg/Kg-dry	10	11/30/2007 1:14:00 PM
Dibenz(a,h)anthracene	ND	4200	μg/Kg-dry	10	11/30/2007 1:14:00 PM
Dibenzofuran	ND	4200	μg/Kg-dry	10	11/30/2007 1:14:00 PM
Diethyl phthalate	ND	4200	μg/Kg-dry	10	11/30/2007 1:14:00 PM
Dimethyl phthalate	ND	4200	μg/Kg-dry	10	11/30/2007 1:14:00 PM
Fluoranthene	ND	4200	μg/Kg-dry	10	11/30/2007 1:14:00 PM
Fluorene	ND	4200	μg/Kg-dry	10	11/30/2007 1:14:00 PM
Hexachlorobenzene	ND	4200	μg/Kg-dry	10	11/30/2007 1:14:00 PM
Hexachlorobutadiene	ND	4200	μg/Kg-dry	10	11/30/2007 1:14:00 PM
Hexachlorocyclopentadiene	ND	4200	μg/Kg-dry	10	11/30/2007 1:14:00 PM
Hexachloroethane	ND	4200	μg/Kg-dry	10	11/30/2007 1:14:00 PM
Indeno(1,2,3-cd)pyrene	ND	4200	μg/Kg-dry	10	11/30/2007 1:14:00 PM
Isophorone	ND	4200	μg/Kg-dry	10	11/30/2007 1:14:00 PM
N-Nitrosodi-n-propylamine	ND	4200	μg/Kg-dry	10	11/30/2007 1:14:00 PM
N-Nitrosodiphenylamine	ND	4200	μg/Kg-dry	10	11/30/2007 1:14:00 PM
Naphthalene	ND	4200	μg/Kg-dry	10	11/30/2007 1:14:00 PM
Nitrobenzene	ND	4200	μg/Kg-dry	10	11/30/2007 1:14:00 PM
Pentachlorophenol	ND	8600	μg/Kg-dry	10	11/30/2007 1:14:00 PM
Phenanthrene	ND	4200	μg/Kg-dry	10	11/30/2007 1:14:00 PM
Phenol	ND	4200	μg/Kg-dry	10	11/30/2007 1:14:00 PM
Pyrene	ND	4200	μg/Kg-dry	10	11/30/2007 1:14:00 PM
NOTES:					
The reporting limits were raised due to ma	atrix interference.				
PERCENT MOISTURE		D2216			Analyst: KAM
Percent Moisture	21.8	0.00100	wt%	1	11/26/2007

Approved By:	Date:	Page 3 of 7
Qualifiers: * Low Level	**	Value exceeds Maximum Contaminant Value

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

E Value above quantitation rangeJ Analyte detected below quantitation limits

Date: 03-Dec-07

CLIENT: NYSDEC - Region 9 Client Sample ID: B-14 @ 2'

Lab Order: U0711373 **Collection Date:** 11/15/2007 10:30:00 AM

Friendship Foundry, Site #902017 **Project:**

Matrix: SOIL Lab ID: U0711373-003

Analyses	Result	Limit	Qual	Units	DF	Date Analyzed
TCL-SEMIVOLATILE ORGANICS		SW82	270C (SW3550A)		60A)	Analyst: LD
(3+4)-Methylphenol	ND	3800		μg/Kg-dry	10	11/30/2007 1:56:00 PM
1,2,4-Trichlorobenzene	ND	3800		μg/Kg-dry	10	11/30/2007 1:56:00 PM
1,2-Dichlorobenzene	ND	3800		μg/Kg-dry	10	11/30/2007 1:56:00 PM
1,3-Dichlorobenzene	ND	3800		μg/Kg-dry	10	11/30/2007 1:56:00 PM
1,4-Dichlorobenzene	ND	3800		μg/Kg-dry	10	11/30/2007 1:56:00 PM
2,4,5-Trichlorophenol	ND	3800		μg/Kg-dry	10	11/30/2007 1:56:00 PM
2,4,6-Trichlorophenol	ND	3800		μg/Kg-dry	10	11/30/2007 1:56:00 PM
2,4-Dichlorophenol	ND	3800		μg/Kg-dry	10	11/30/2007 1:56:00 PM
2,4-Dimethylphenol	ND	3800		μg/Kg-dry	10	11/30/2007 1:56:00 PM
2,4-Dinitrophenol	ND	38000		μg/Kg-dry	10	11/30/2007 1:56:00 PM
2,4-Dinitrotoluene	ND	3800		μg/Kg-dry	10	11/30/2007 1:56:00 PM
2,6-Dinitrotoluene	ND	3800		μg/Kg-dry	10	11/30/2007 1:56:00 PM
2-Chloronaphthalene	ND	3800		μg/Kg-dry	10	11/30/2007 1:56:00 PM
2-Chlorophenol	ND	3800		μg/Kg-dry	10	11/30/2007 1:56:00 PM
2-Methylnaphthalene	ND	3800		μg/Kg-dry	10	11/30/2007 1:56:00 PM
2-Methylphenol	ND	3800		μg/Kg-dry	10	11/30/2007 1:56:00 PM
2-Nitroaniline	ND	38000		μg/Kg-dry	10	11/30/2007 1:56:00 PM
2-Nitrophenol	ND	3800		μg/Kg-dry	10	11/30/2007 1:56:00 PM
3,3´-Dichlorobenzidine	ND	3800		μg/Kg-dry	10	11/30/2007 1:56:00 PM
3-Nitroaniline	ND	38000		μg/Kg-dry	10	11/30/2007 1:56:00 PM
4,6-Dinitro-2-methylphenol	ND	38000		μg/Kg-dry	10	11/30/2007 1:56:00 PM
4-Bromophenyl phenyl ether	ND	3800		μg/Kg-dry	10	11/30/2007 1:56:00 PM
4-Chloro-3-methylphenol	ND	3800		μg/Kg-dry	10	11/30/2007 1:56:00 PM
4-Chloroaniline	ND	3800		μg/Kg-dry	10	11/30/2007 1:56:00 PM
4-Chlorophenyl phenyl ether	ND	3800		μg/Kg-dry	10	11/30/2007 1:56:00 PM
4-Nitroaniline	ND	38000		μg/Kg-dry	10	11/30/2007 1:56:00 PM
4-Nitrophenol	ND	38000		μg/Kg-dry	10	11/30/2007 1:56:00 PM
Acenaphthene	ND	3800		μg/Kg-dry	10	11/30/2007 1:56:00 PM
Acenaphthylene	ND	3800		μg/Kg-dry	10	11/30/2007 1:56:00 PM
Anthracene	ND	3800		μg/Kg-dry	10	11/30/2007 1:56:00 PM
Benz(a)anthracene	3000	3800	J	μg/Kg-dry	10	11/30/2007 1:56:00 PM
Benzo(a)pyrene	ND	3800		μg/Kg-dry	10	11/30/2007 1:56:00 PM
Benzo(b)fluoranthene	4100	3800		μg/Kg-dry	10	11/30/2007 1:56:00 PM
Benzo(g,h,i)perylene	2000	3800	J	μg/Kg-dry	10	11/30/2007 1:56:00 PM
Benzo(k)fluoranthene	ND	3800		μg/Kg-dry	10	11/30/2007 1:56:00 PM
Bis(2-chloroethoxy)methane	ND	3800		μg/Kg-dry	10	11/30/2007 1:56:00 PM
Bis(2-chloroethyl)ether	ND	3800		μg/Kg-dry	10	11/30/2007 1:56:00 PM
Bis(2-chloroisopropyl)ether	ND	3800		μg/Kg-dry	10	11/30/2007 1:56:00 PM
Bis(2-ethylhexyl)phthalate	5200	3800		μg/Kg-dry	10	11/30/2007 1:56:00 PM

Approved By:

Qualifiers: Low Level

- В Analyte detected in the associated Method Blank
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

Page 4 of 7

Date: 03-Dec-07

- Value exceeds Maximum Contaminant Value
- Е Value above quantitation range

Date:

- J Analyte detected below quantitation limits
- Spike Recovery outside accepted recovery limits

CLIENT: NYSDEC - Region 9 Client Sample ID: B-14 @ 2'

Lab Order: U0711373 **Collection Date:** 11/15/2007 10:30:00 AM

Project: Friendship Foundry, Site #902017

Lab ID: U0711373-003 Matrix: SOIL

Analyses	Result	Limit	Qual	Units	DF	Date Analyzed
TCL-SEMIVOLATILE ORGANICS		SW8	270C	(SW355	50A)	Analyst: LD
Butyl benzyl phthalate	ND	3800		μg/Kg-dry	10	11/30/2007 1:56:00 PM
Carbazole	ND	3800		μg/Kg-dry	10	11/30/2007 1:56:00 PM
Chrysene	3000	3800	J	μg/Kg-dry	10	11/30/2007 1:56:00 PM
Di-n-butyl phthalate	ND	3800		μg/Kg-dry	10	11/30/2007 1:56:00 PM
Di-n-octyl phthalate	ND	3800		μg/Kg-dry	10	11/30/2007 1:56:00 PM
Dibenz(a,h)anthracene	ND	3800		μg/Kg-dry	10	11/30/2007 1:56:00 PM
Dibenzofuran	ND	3800		μg/Kg-dry	10	11/30/2007 1:56:00 PM
Diethyl phthalate	ND	3800		μg/Kg-dry	10	11/30/2007 1:56:00 PM
Dimethyl phthalate	ND	3800		μg/Kg-dry	10	11/30/2007 1:56:00 PM
Fluoranthene	6700	3800		μg/Kg-dry	10	11/30/2007 1:56:00 PM
Fluorene	ND	3800		μg/Kg-dry	10	11/30/2007 1:56:00 PM
Hexachlorobenzene	ND	3800		μg/Kg-dry	10	11/30/2007 1:56:00 PM
Hexachlorobutadiene	ND	3800		μg/Kg-dry	10	11/30/2007 1:56:00 PM
Hexachlorocyclopentadiene	ND	3800		μg/Kg-dry	10	11/30/2007 1:56:00 PM
Hexachloroethane	ND	3800		μg/Kg-dry	10	11/30/2007 1:56:00 PM
Indeno(1,2,3-cd)pyrene	ND	3800		μg/Kg-dry	10	11/30/2007 1:56:00 PM
Isophorone	ND	3800		μg/Kg-dry	10	11/30/2007 1:56:00 PM
N-Nitrosodi-n-propylamine	ND	3800		μg/Kg-dry	10	11/30/2007 1:56:00 PM
N-Nitrosodiphenylamine	ND	3800		μg/Kg-dry	10	11/30/2007 1:56:00 PM
Naphthalene	ND	3800		μg/Kg-dry	10	11/30/2007 1:56:00 PM
Nitrobenzene	ND	3800		μg/Kg-dry	10	11/30/2007 1:56:00 PM
Pentachlorophenol	ND	7700		μg/Kg-dry	10	11/30/2007 1:56:00 PM
Phenanthrene	2000	3800	J	μg/Kg-dry	10	11/30/2007 1:56:00 PM
Phenol	ND	3800		μg/Kg-dry	10	11/30/2007 1:56:00 PM
Pyrene	5600	3800		μg/Kg-dry	10	11/30/2007 1:56:00 PM
NOTES:						
The reporting limits were raised due to ma	trix interference.					
PERCENT MOISTURE		D22	216			Analyst: KAM
Percent Moisture	12.6	0.00100		wt%	1	11/26/2007

Approved 1	By:		Date:	Page 5 of 7
Qualifiers:	*	Low Level	**	Value exceeds Maximum Contaminant Value
	В	Analyte detected in the associated Method Blank	Е	Value above quantitation range

B Analyte detected in the associated Method Blank
 H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

E Value above quantitation rangeJ Analyte detected below quantitation limits

Date: 03-Dec-07

CLIENT: NYSDEC - Region 9 Client Sample ID: B-15 @ 2'

Lab Order: U0711373 **Collection Date:** 11/15/2007 11:00:00 AM

Friendship Foundry, Site #902017 **Project:**

Matrix: SOIL Lab ID: U0711373-004

Analyses	Result	Limit	Qual	Units	DF	Date Analyzed
TCL-SEMIVOLATILE ORGANICS		SW82	W8270C (SW3550A)		50A)	Analyst: LD
(3+4)-Methylphenol	ND	3800		μg/Kg-dry	10	11/30/2007 2:38:00 PM
1,2,4-Trichlorobenzene	ND	3800		μg/Kg-dry	10	11/30/2007 2:38:00 PM
1,2-Dichlorobenzene	ND	3800		μg/Kg-dry	10	11/30/2007 2:38:00 PM
1,3-Dichlorobenzene	ND	3800		μg/Kg-dry	10	11/30/2007 2:38:00 PM
1,4-Dichlorobenzene	ND	3800		μg/Kg-dry	10	11/30/2007 2:38:00 PM
2,4,5-Trichlorophenol	ND	3800		μg/Kg-dry	10	11/30/2007 2:38:00 PM
2,4,6-Trichlorophenol	ND	3800		μg/Kg-dry	10	11/30/2007 2:38:00 PM
2,4-Dichlorophenol	ND	3800		μg/Kg-dry	10	11/30/2007 2:38:00 PM
2,4-Dimethylphenol	ND	3800		μg/Kg-dry	10	11/30/2007 2:38:00 PM
2,4-Dinitrophenol	ND	38000		μg/Kg-dry	10	11/30/2007 2:38:00 PM
2,4-Dinitrotoluene	ND	3800		μg/Kg-dry	10	11/30/2007 2:38:00 PM
2,6-Dinitrotoluene	ND	3800		μg/Kg-dry	10	11/30/2007 2:38:00 PM
2-Chloronaphthalene	ND	3800		μg/Kg-dry	10	11/30/2007 2:38:00 PM
2-Chlorophenol	ND	3800		μg/Kg-dry	10	11/30/2007 2:38:00 PM
2-Methylnaphthalene	ND	3800		μg/Kg-dry	10	11/30/2007 2:38:00 PM
2-Methylphenol	ND	3800		μg/Kg-dry	10	11/30/2007 2:38:00 PM
2-Nitroaniline	ND	38000		μg/Kg-dry	10	11/30/2007 2:38:00 PM
2-Nitrophenol	ND	3800		μg/Kg-dry	10	11/30/2007 2:38:00 PM
3,3´-Dichlorobenzidine	ND	3800		μg/Kg-dry	10	11/30/2007 2:38:00 PM
3-Nitroaniline	ND	38000		μg/Kg-dry	10	11/30/2007 2:38:00 PM
4,6-Dinitro-2-methylphenol	ND	38000		μg/Kg-dry	10	11/30/2007 2:38:00 PM
4-Bromophenyl phenyl ether	ND	3800		μg/Kg-dry	10	11/30/2007 2:38:00 PM
4-Chloro-3-methylphenol	ND	3800		μg/Kg-dry	10	11/30/2007 2:38:00 PM
4-Chloroaniline	ND	3800		μg/Kg-dry	10	11/30/2007 2:38:00 PM
4-Chlorophenyl phenyl ether	ND	3800		μg/Kg-dry	10	11/30/2007 2:38:00 PM
4-Nitroaniline	ND	38000		μg/Kg-dry	10	11/30/2007 2:38:00 PM
4-Nitrophenol	ND	38000		μg/Kg-dry	10	11/30/2007 2:38:00 PM
Acenaphthene	ND	3800		μg/Kg-dry	10	11/30/2007 2:38:00 PM
Acenaphthylene	ND	3800		μg/Kg-dry	10	11/30/2007 2:38:00 PM
Anthracene	ND	3800		μg/Kg-dry	10	11/30/2007 2:38:00 PM
Benz(a)anthracene	600	3800	J	μg/Kg-dry	10	11/30/2007 2:38:00 PM
Benzo(a)pyrene	ND	3800		μg/Kg-dry	10	11/30/2007 2:38:00 PM
Benzo(b)fluoranthene	ND	3800		μg/Kg-dry	10	11/30/2007 2:38:00 PM
Benzo(g,h,i)perylene	ND	3800		μg/Kg-dry	10	11/30/2007 2:38:00 PM
Benzo(k)fluoranthene	ND	3800		μg/Kg-dry	10	11/30/2007 2:38:00 PM
Bis(2-chloroethoxy)methane	ND	3800		μg/Kg-dry	10	11/30/2007 2:38:00 PM
Bis(2-chloroethyl)ether	ND	3800		μg/Kg-dry	10	11/30/2007 2:38:00 PM
Bis(2-chloroisopropyl)ether	ND	3800		μg/Kg-dry	10	11/30/2007 2:38:00 PM
Bis(2-ethylhexyl)phthalate	9300	3800		μg/Kg-dry	10	11/30/2007 2:38:00 PM

Approved By:

Qualifiers: Low Level

- В Analyte detected in the associated Method Blank
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

Date:

Page 6 of 7

Value exceeds Maximum Contaminant Value

Date: 03-Dec-07

- Е Value above quantitation range
- J Analyte detected below quantitation limits
- Spike Recovery outside accepted recovery limits

CLIENT: NYSDEC - Region 9 Client Sample ID: B-15 @ 2'

Lab Order: U0711373 **Collection Date:** 11/15/2007 11:00:00 AM

Project: Friendship Foundry, Site #902017

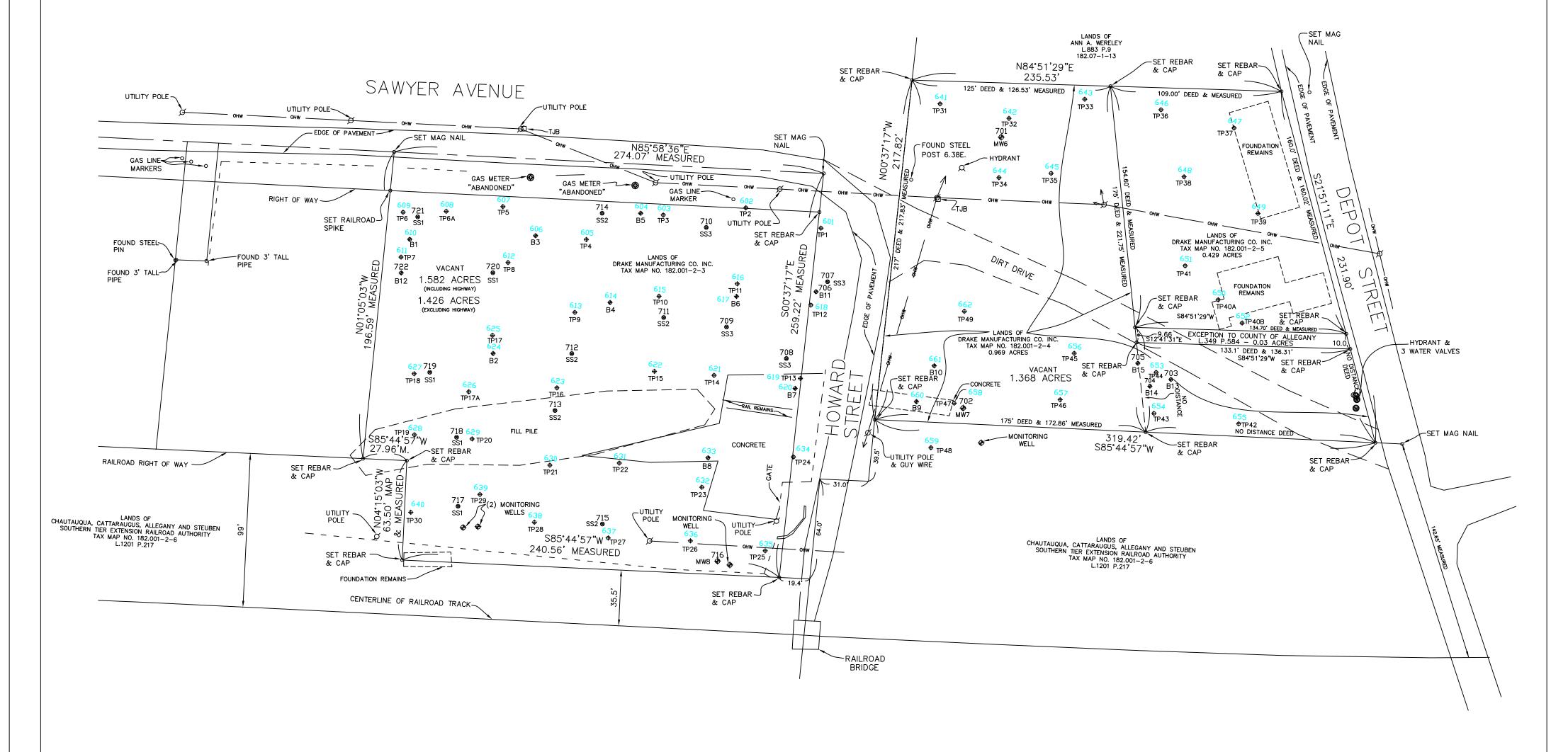
Lab ID: U0711373-004 Matrix: SOIL

Analyses	Result	Limit	Qual	Units	DF	Date Analyzed
TCL-SEMIVOLATILE ORGANICS	SW8270C		(SW3550A)		Analyst: LD	
Butyl benzyl phthalate	ND	3800		μg/Kg-dry	10	11/30/2007 2:38:00 PM
Carbazole	ND	3800		μg/Kg-dry	10	11/30/2007 2:38:00 PM
Chrysene	800	3800	J	μg/Kg-dry	10	11/30/2007 2:38:00 PM
Di-n-butyl phthalate	ND	3800		μg/Kg-dry	10	11/30/2007 2:38:00 PM
Di-n-octyl phthalate	ND	3800		μg/Kg-dry	10	11/30/2007 2:38:00 PM
Dibenz(a,h)anthracene	ND	3800		μg/Kg-dry	10	11/30/2007 2:38:00 PM
Dibenzofuran	ND	3800		μg/Kg-dry	10	11/30/2007 2:38:00 PM
Diethyl phthalate	ND	3800		μg/Kg-dry	10	11/30/2007 2:38:00 PM
Dimethyl phthalate	ND	3800		μg/Kg-dry	10	11/30/2007 2:38:00 PM
Fluoranthene	1000	3800	J	μg/Kg-dry	10	11/30/2007 2:38:00 PM
Fluorene	ND	3800		μg/Kg-dry	10	11/30/2007 2:38:00 PM
Hexachlorobenzene	ND	3800		μg/Kg-dry	10	11/30/2007 2:38:00 PM
Hexachlorobutadiene	ND	3800		μg/Kg-dry	10	11/30/2007 2:38:00 PM
Hexachlorocyclopentadiene	ND	3800		μg/Kg-dry	10	11/30/2007 2:38:00 PM
Hexachloroethane	ND	3800		μg/Kg-dry	10	11/30/2007 2:38:00 PM
Indeno(1,2,3-cd)pyrene	ND	3800		μg/Kg-dry	10	11/30/2007 2:38:00 PM
Isophorone	ND	3800		μg/Kg-dry	10	11/30/2007 2:38:00 PM
N-Nitrosodi-n-propylamine	ND	3800		μg/Kg-dry	10	11/30/2007 2:38:00 PM
N-Nitrosodiphenylamine	ND	3800		μg/Kg-dry	10	11/30/2007 2:38:00 PM
Naphthalene	ND	3800		μg/Kg-dry	10	11/30/2007 2:38:00 PM
Nitrobenzene	ND	3800		μg/Kg-dry	10	11/30/2007 2:38:00 PM
Pentachlorophenol	ND	7700		μg/Kg-dry	10	11/30/2007 2:38:00 PM
Phenanthrene	500	3800	J	μg/Kg-dry	10	11/30/2007 2:38:00 PM
Phenol	800	3800	J	μg/Kg-dry	10	11/30/2007 2:38:00 PM
Pyrene	1000	3800	J	μg/Kg-dry	10	11/30/2007 2:38:00 PM
NOTES:						
The reporting limits were raised due to mat	rix interference.					
PERCENT MOISTURE		D2:	216			Analyst: KAM
Percent Moisture	13.1	0.00100		wt%	1	11/26/2007

Approved 1	By: _		Date:	Page 7 of 7
Qualifiers:	*	Low Level	**	Value exceeds Maximum Contaminant Value
	В	Analyte detected in the associated Method Blank	Е	Value above quantitation range

B Analyte detected in the associated Method Blank
 H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit


E Value above quantitation rangeJ Analyte detected below quantitation limits

Date: 03-Dec-07

Appendix B

Survey Drawings

ONLY BOUNDARY SURVEY MAPS WITH THE SURVEYOR'S EMBOSSED SEAL ARE GENUINE, TRUE AND CORRECT COPIES OF THE SURVEYOR'S ORIGINAL WORK AND OPINION.

ALTERING THIS DOCUMENT IS IN VIOLATION OF THE LAW EXCEPTING AS PROVIDED IN SECTION 7209, PART 2 OF THE NEW YORK STATE EDUCATION LAW. THE ALTERATION OF BOUNDARY SURVEY MAPS BY ANYONE OTHER THAN THE ORIGINAL PREPARER IS MISLEADING, CONFUSING, AND NOT IN THE GENERAL WELFARE AND BENEFIT OF THE PUBLIC.

ONLY VISIBLE UTILITY SERVICES AND/OR ENCUMBRANCES WERE LOCATED AND ARE SHOWN.

THIS SURVEY WAS PREPARED WITHOUT THE BENEFIT OF AN ABSTRACT OF TITLE AND IS SUBJECT TO ANY STATEMENT OF FACTS THAT MAY BE REVEALED BY AN EXAMINATION OF SUCH.

- BEARING SYSTEM REFERENCED TO THE NEW YORK STATE PLANE COORDINATE SYSTEM, NAD 83, 3103 NY WEST.

REFERENCE DATA: - ERIE RAILROAD COMPANY VALUATION MAP NO. V-8-NY/161, FIRST DATED JUNE 30, 1918.
- LANDS TO BE ACQUIRED BY THE NEW YORK STATE DEPARTMENT OF PUBLIC WORKS, DATED - LANDS OF FAY AND BARBARA HASKELL, DATED DECEMBER 20 & 21, 1988, BY JAMES B. BALL, LS.

= MONITORING WELL $igoplus = ext{INDICATES BORE HOLE LOCATION}$ Φ = INDICATES TEST PIT LOCATION TP = TEST PIT---- = CHAIN LINK FENCE M. = MEASURED

TJB = TELEPHONE JUNCTION BOX

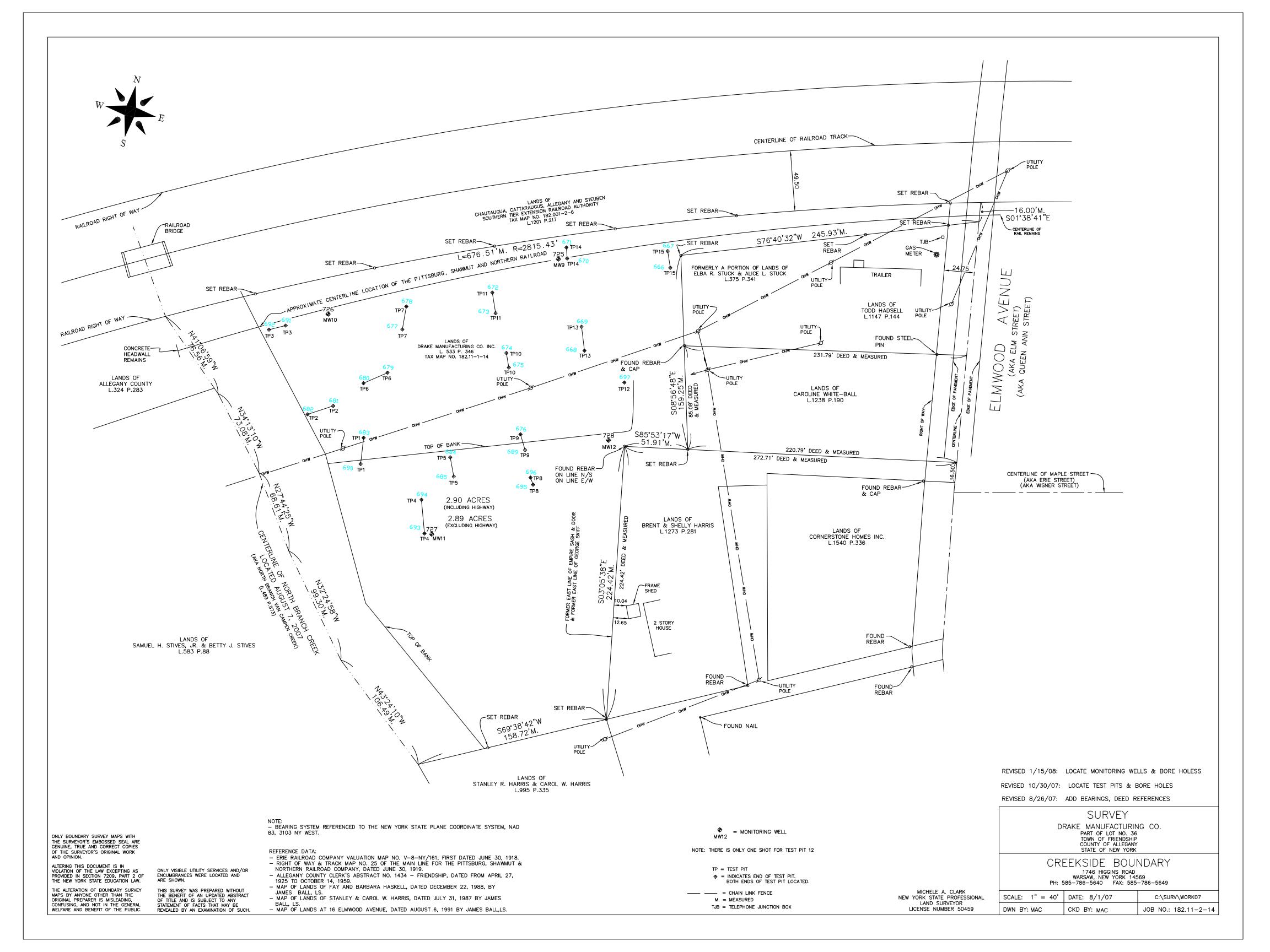
MICHELE A. CLARK
NEW YORK STATE PROFESSIONAL
LAND SURVEYOR

DWN BY: MAC

LICENSE NUMBER 50459

& MONITORING WELLS, AMEND TYPOS SURVEY DRAKE MANUFACTURING CO. PART OF LOT NO. 36 TOWN OF FRIENDSHIP COUNTY OF ALLEGANY STATE OF NEW YORK CREEKSIDE BOUNDARY

1746 HIGGINS ROAD
WARSAW, NEW YORK 14569
PH: 585-786-5640 FAX: 585-786-5649 SCALE: 1" = 40' DATE: 8/1/07C:\SURV\WORK07


JOB NO.: 182.001-2

REVISED 1/15/08: LOCATE MONITORING WELLS & BORE HOLESS

REVISED 10/30/07: LOCATE TEST PITS & BORE HOLES

REVISED 8/26/07: ADD BEARINGS, ADDITIONAL UP'S

CKD BY:

Appendix C

Groundwater Analytical Data (Raw Data)

CLIENT: NYSDEC - Region 9 Client Sample ID: MW-6

Lab Order: U0712474 **Collection Date:** 12/26/2007 12:50:00 PM

Project: Friendship Foundry, hw902017

Lab ID: U0712474-001 Matrix: GROUNDWATER

Analyses	Result	Limit Qual	Units	DF	Date Analyzed
POLYCHLORINATED BIPHENYLS IN	WASTEWAT	SW8082	(SW3510)B)	Analyst: KC
Aroclor 1016	ND	0.050	μg/L	1	1/5/2008
Aroclor 1221	ND	0.050	μg/L	1	1/5/2008
Aroclor 1232	ND	0.050	μg/L	1	1/5/2008
Aroclor 1242	ND	0.050	μg/L	1	1/5/2008
Aroclor 1248	ND	0.050	μg/L	1	1/5/2008
Aroclor 1254	ND	0.050	μg/L	1	1/5/2008
Aroclor 1260	ND	0.050	μg/L	1	1/5/2008
ICP METALS, TOTALS		E200.7	(E200.7)		Analyst: EA
Aluminum	ND	0.050	mg/L	1	1/3/2008 11:42:46 AM
Antimony*	ND	0.003	mg/L	1	1/3/2008 11:42:46 AM
Arsenic*	0.009	0.010 J	mg/L	1	1/3/2008 11:42:46 AM
Barium	ND	0.30	mg/L	1	1/3/2008 11:42:46 AM
Beryllium	ND	0.005	mg/L	1	1/3/2008 11:42:46 AM
Cadmium	ND	0.005	mg/L	1	1/3/2008 11:42:46 AM
Calcium	70	0.50	mg/L	1	1/3/2008 11:42:46 AM
Chromium	ND	0.050	mg/L	1	1/3/2008 11:42:46 AM
Cobalt	ND	0.050	mg/L	1	1/3/2008 11:42:46 AM
Copper	ND	0.020	mg/L	1	1/3/2008 11:42:46 AM
Iron	0.031	0.030	mg/L	1	1/3/2008 11:42:46 AM
Lead*	ND	0.003	mg/L	1	1/3/2008 11:42:46 AM
Magnesium	14	0.50	mg/L	1	1/3/2008 11:42:46 AM
Manganese	ND	0.020	mg/L	1	1/3/2008 11:42:46 AM
Nickel	ND	0.030	mg/L	1	1/3/2008 11:42:46 AM
Potassium	1.8	0.50	mg/L	1	1/3/2008 11:42:46 AM
Selenium*	ND	0.005	mg/L	1	1/3/2008 11:42:46 AM
Silver	ND	0.050	mg/L	1	1/3/2008 11:42:46 AM
Sodium	18	0.50	mg/L	1	1/3/2008 11:42:46 AM
Thallium*	0.009	0.003	mg/L	1	1/3/2008 11:42:46 AM
Vanadium	ND	0.30	mg/L	1	1/3/2008 11:42:46 AM
Zinc	ND	0.010	mg/L	1	1/3/2008 11:42:46 AM
TOTAL MERCURY WATERS		E245.2	(E245.2)		Analyst: EA
Mercury	ND	0.0004	mg/L	1	1/3/2008 8:12:55 AM
TCL-SEMIVOLATILE ORGANICS		SW8270C	(SW3510))	Analyst: LD
(3+4)-Methylphenol	ND	5.0	μg/L	1	1/4/2008 2:22:00 PM
1,2,4-Trichlorobenzene	ND	5.0	μg/L	1	1/4/2008 2:22:00 PM
1,2-Dichlorobenzene	ND	5.0	μg/L	1	1/4/2008 2:22:00 PM
1,3-Dichlorobenzene	ND	5.0	μg/L	1	1/4/2008 2:22:00 PM

Approved By:	Date:	Page 1 of 32

Qualifiers: * Low Level

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

** Value exceeds Maximum Contaminant Value

Date: 10-Jan-08

E Value above quantitation range

J Analyte detected below quantitation limits

CLIENT: NYSDEC - Region 9 Client Sample ID: MW-6

Lab Order: U0712474 **Collection Date:** 12/26/2007 12:50:00 PM

Project: Friendship Foundry, hw902017

Lab ID: U0712474-001 Matrix: GROUNDWATER

Analyses	Result	Limit Qua	Units	DF	Date Analyzed
TCL-SEMIVOLATILE ORGANICS		SW8270C	(SW351	0)	Analyst: LD
1,4-Dichlorobenzene	ND	5.0	μg/L	1	1/4/2008 2:22:00 PM
2,4,5-Trichlorophenol	ND	5.0	μg/L	1	1/4/2008 2:22:00 PM
2,4,6-Trichlorophenol	ND	5.0	μg/L	1	1/4/2008 2:22:00 PM
2,4-Dichlorophenol	ND	5.0	μg/L	1	1/4/2008 2:22:00 PM
2,4-Dimethylphenol	ND	5.0	μg/L	1	1/4/2008 2:22:00 PM
2,4-Dinitrophenol	ND	50	μg/L	1	1/4/2008 2:22:00 PM
2,4-Dinitrotoluene	ND	5.0	μg/L	1	1/4/2008 2:22:00 PM
2,6-Dinitrotoluene	ND	5.0	μg/L	1	1/4/2008 2:22:00 PM
2-Chloronaphthalene	ND	5.0	μg/L	1	1/4/2008 2:22:00 PM
2-Chlorophenol	ND	5.0	μg/L	1	1/4/2008 2:22:00 PM
2-Methylnaphthalene	ND	5.0	μg/L	1	1/4/2008 2:22:00 PM
2-Methylphenol	ND	5.0	μg/L	1	1/4/2008 2:22:00 PM
2-Nitroaniline	ND	50	μg/L	1	1/4/2008 2:22:00 PM
2-Nitrophenol	ND	5.0	μg/L	1	1/4/2008 2:22:00 PM
3,3´-Dichlorobenzidine	ND	5.0	μg/L	1	1/4/2008 2:22:00 PM
3-Nitroaniline	ND	50	μg/L	1	1/4/2008 2:22:00 PM
4,6-Dinitro-2-methylphenol	ND	50	μg/L	1	1/4/2008 2:22:00 PM
4-Bromophenyl phenyl ether	ND	5.0	μg/L	1	1/4/2008 2:22:00 PM
4-Chloro-3-methylphenol	ND	5.0	μg/L	1	1/4/2008 2:22:00 PM
4-Chloroaniline	ND	5.0	μg/L	1	1/4/2008 2:22:00 PM
4-Chlorophenyl phenyl ether	ND	5.0	μg/L	1	1/4/2008 2:22:00 PM
4-Nitroaniline	ND	50	μg/L	1	1/4/2008 2:22:00 PM
4-Nitrophenol	ND	50	μg/L	1	1/4/2008 2:22:00 PM
Acenaphthene	ND	5.0	μg/L	1	1/4/2008 2:22:00 PM
Acenaphthylene	ND	5.0	μg/L	1	1/4/2008 2:22:00 PM
Anthracene	ND	5.0	μg/L	1	1/4/2008 2:22:00 PM
Benz(a)anthracene	ND	5.0	μg/L	1	1/4/2008 2:22:00 PM
Benzo(a)pyrene	ND	5.0	μg/L	1	1/4/2008 2:22:00 PM
Benzo(b)fluoranthene	ND	5.0	μg/L	1	1/4/2008 2:22:00 PM
Benzo(g,h,i)perylene	ND	5.0	μg/L	1	1/4/2008 2:22:00 PM
Benzo(k)fluoranthene	ND	5.0	μg/L	1	1/4/2008 2:22:00 PM
Bis(2-chloroethoxy)methane	ND	5.0	μg/L	1	1/4/2008 2:22:00 PM
Bis(2-chloroethyl)ether	ND	5.0	μg/L	1	1/4/2008 2:22:00 PM
Bis(2-chloroisopropyl)ether	ND	5.0	μg/L	1	1/4/2008 2:22:00 PM
Bis(2-ethylhexyl)phthalate	3	5.0 J	μg/L	1	1/4/2008 2:22:00 PM
Butyl benzyl phthalate	ND	5.0	μg/L	1	1/4/2008 2:22:00 PM
Carbazole	ND	5.0	μg/L	1	1/4/2008 2:22:00 PM
Chrysene	ND	5.0	μg/L	1	1/4/2008 2:22:00 PM
Di-n-butyl phthalate	ND	5.0	μg/L	1	1/4/2008 2:22:00 PM

Approved By:

Qualifiers: * Low Level

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

** Value exceeds Maximum Contaminant Value

Page 2 of 32

Date: 10-Jan-08

E Value above quantitation range

Date:

- J Analyte detected below quantitation limits
- S Spike Recovery outside accepted recovery limits

CLIENT: NYSDEC - Region 9 Client Sample ID: MW-6

Lab Order: U0712474 **Collection Date:** 12/26/2007 12:50:00 PM

Project: Friendship Foundry, hw902017

Lab ID: U0712474-001 Matrix: GROUNDWATER

Analyses	Result	Limit Qual	Units	DF	Date Analyzed
TCL-SEMIVOLATILE ORGANICS		SW8270C	(SW3510)		Analyst: LD
Di-n-octyl phthalate	ND	5.0	μg/L	1	1/4/2008 2:22:00 PM
Dibenz(a,h)anthracene	ND	5.0	μg/L	1	1/4/2008 2:22:00 PM
Dibenzofuran	ND	5.0	μg/L	1	1/4/2008 2:22:00 PM
Diethyl phthalate	ND	5.0	μg/L	1	1/4/2008 2:22:00 PM
Dimethyl phthalate	ND	5.0	μg/L	1	1/4/2008 2:22:00 PM
Fluoranthene	ND	5.0	μg/L	1	1/4/2008 2:22:00 PM
Fluorene	ND	5.0	μg/L	1	1/4/2008 2:22:00 PM
Hexachlorobenzene	ND	5.0	μg/L	1	1/4/2008 2:22:00 PM
Hexachlorobutadiene	ND	5.0	μg/L	1	1/4/2008 2:22:00 PM
Hexachlorocyclopentadiene	ND	5.0	μg/L	1	1/4/2008 2:22:00 PM
Hexachloroethane	ND	5.0	μg/L	1	1/4/2008 2:22:00 PM
Indeno(1,2,3-cd)pyrene	ND	5.0	μg/L	1	1/4/2008 2:22:00 PM
Isophorone	ND	5.0	μg/L	1	1/4/2008 2:22:00 PM
N-Nitrosodi-n-propylamine	ND	5.0	μg/L	1	1/4/2008 2:22:00 PM
N-Nitrosodiphenylamine	ND	5.0	μg/L	1	1/4/2008 2:22:00 PM
Naphthalene	ND	5.0	μg/L	1	1/4/2008 2:22:00 PM
Nitrobenzene	ND	5.0	μg/L	1	1/4/2008 2:22:00 PM
Pentachlorophenol	ND	10	μg/L	1	1/4/2008 2:22:00 PM
Phenanthrene	ND	5.0	μg/L	1	1/4/2008 2:22:00 PM
Phenol	ND	5.0	μg/L	1	1/4/2008 2:22:00 PM
Pyrene	ND	5.0	μg/L	1	1/4/2008 2:22:00 PM
TCL VOLATILE ORGANICS		SW8260B			Analyst: MM
1,1,1-Trichloroethane	ND	3.0	μg/L	1	1/2/2008 6:23:00 PM
1,1,2,2-Tetrachloroethane	ND	3.0	μg/L	1	1/2/2008 6:23:00 PM
1,1,2-Trichloroethane	ND	3.0	μg/L	1	1/2/2008 6:23:00 PM
1,1-Dichloroethane	ND	3.0	μg/L	1	1/2/2008 6:23:00 PM
1,1-Dichloroethene	ND	3.0	μg/L	1	1/2/2008 6:23:00 PM
1,2-Dichloroethane	ND	3.0	μg/L	1	1/2/2008 6:23:00 PM
1,2-Dichloropropane	ND	3.0	μg/L	1	1/2/2008 6:23:00 PM
2-Butanone	ND	10	μg/L	1	1/2/2008 6:23:00 PM
2-Hexanone	ND	10	μg/L	1	1/2/2008 6:23:00 PM
4-Methyl-2-pentanone	ND	10	μg/L	1	1/2/2008 6:23:00 PM
Acetone	ND	10	μg/L	1	1/2/2008 6:23:00 PM
Benzene	ND	3.0	μg/L	1	1/2/2008 6:23:00 PM
Bromodichloromethane	ND	3.0	μg/L	1	1/2/2008 6:23:00 PM
Bromoform	ND	3.0	μg/L	1	1/2/2008 6:23:00 PM
Bromomethane	ND	3.0	μg/L	1	1/2/2008 6:23:00 PM
Carbon disulfide	ND	3.0	μg/L	1	1/2/2008 6:23:00 PM

Approved B	y :
------------	------------

Qualifiers: * Low Level

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

Date:

37 - 1-- -

Page 3 of 32

** Value exceeds Maximum Contaminant Value

- E Value above quantitation range
- J Analyte detected below quantitation limits
- S Spike Recovery outside accepted recovery limits

CLIENT: NYSDEC - Region 9 Client Sample ID: MW-6

Lab Order: U0712474 **Collection Date:** 12/26/2007 12:50:00 PM

Project: Friendship Foundry, hw902017

Lab ID: U0712474-001 Matrix: GROUNDWATER

Analyses	Result	Limit Qua	l Units	DF	Date Analyzed
TCL VOLATILE ORGANICS		SW8260B			Analyst: MM
Carbon tetrachloride	ND	3.0	μg/L	1	1/2/2008 6:23:00 PM
Chlorobenzene	ND	3.0	μg/L	1	1/2/2008 6:23:00 PM
Chloroethane	ND	3.0	μg/L	1	1/2/2008 6:23:00 PM
Chloroform	ND	3.0	μg/L	1	1/2/2008 6:23:00 PM
Chloromethane	ND	3.0	μg/L	1	1/2/2008 6:23:00 PM
cis-1,2-Dichloroethene	ND	3.0	μg/L	1	1/2/2008 6:23:00 PM
cis-1,3-Dichloropropene	ND	3.0	μg/L	1	1/2/2008 6:23:00 PM
Dibromochloromethane	ND	3.0	μg/L	1	1/2/2008 6:23:00 PM
Ethylbenzene	ND	3.0	μg/L	1	1/2/2008 6:23:00 PM
m,p-Xylene	ND	3.0	μg/L	1	1/2/2008 6:23:00 PM
Methylene chloride	ND	3.0	μg/L	1	1/2/2008 6:23:00 PM
o-Xylene	ND	3.0	μg/L	1	1/2/2008 6:23:00 PM
Styrene	ND	3.0	μg/L	1	1/2/2008 6:23:00 PM
Tetrachloroethene	ND	3.0	μg/L	1	1/2/2008 6:23:00 PM
Toluene	ND	3.0	μg/L	1	1/2/2008 6:23:00 PM
trans-1,2-Dichloroethene	ND	3.0	μg/L	1	1/2/2008 6:23:00 PM
trans-1,3-Dichloropropene	ND	3.0	μg/L	1	1/2/2008 6:23:00 PM
Trichloroethene	ND	3.0	μg/L	1	1/2/2008 6:23:00 PM
Vinyl chloride	ND	2.0	μg/L	1	1/2/2008 6:23:00 PM
PHENOLICS, TOTAL REC. FOR WATERS	S	E420.4	(E420.4)		Analyst: MB
Phenolics, Total Recoverable	ND	0.005	mg/L	1	1/3/2008

Approved By:	Date:	Page 4 of 32
Qualifiers: * Low Level	**	Value exceeds Maximum Contaminant Value

B Analyte detected in the associated Method Blank
 H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

E Value above quantitation rangeJ Analyte detected below quantitation limits

Spike Recovery outside accepted recovery limits

CLIENT: NYSDEC - Region 9 Client Sample ID: MW-8

Lab Order: U0712474

Project: Friendship Foundry, hw902017

Lab ID: U0712474-002 Matrix: GROUNDWATER

Analyses	Result	Limit Qual	Units	DF	Date Analyzed
POLYCHLORINATED BIPHENYLS IN V	WASTEWAT	SW8082	(SW351	0B)	Analyst: KC
Aroclor 1016	ND	0.050	μg/L	1	1/5/2008
Aroclor 1221	ND	0.050	μg/L	1	1/5/2008
Aroclor 1232	ND	0.050	μg/L	1	1/5/2008
Aroclor 1242	ND	0.050	μg/L	1	1/5/2008
Aroclor 1248	ND	0.050	μg/L	1	1/5/2008
Aroclor 1254	ND	0.050	μg/L	1	1/5/2008
Aroclor 1260	ND	0.050	μg/L	1	1/5/2008
ICP METALS, TOTALS		E200.7	(E200.7)	Analyst: EA
Aluminum	0.26	0.050	mg/L	1	1/3/2008 11:46:18 AM
Antimony*	ND	0.003	mg/L	1	1/3/2008 11:46:18 AM
Arsenic*	0.016	0.010	mg/L	1	1/3/2008 11:46:18 AM
Barium	ND	0.30	mg/L	1	1/3/2008 11:46:18 AM
Beryllium	ND	0.005	mg/L	1	1/3/2008 11:46:18 AM
Cadmium	ND	0.005	mg/L	1	1/3/2008 11:46:18 AM
Calcium	66	0.50	mg/L	1	1/3/2008 11:46:18 AM
Chromium	ND	0.050	mg/L	1	1/3/2008 11:46:18 AM
Cobalt	ND	0.050	mg/L	1	1/3/2008 11:46:18 AM
Copper	ND	0.020	mg/L	1	1/3/2008 11:46:18 AM
Iron	0.49	0.030	mg/L	1	1/3/2008 11:46:18 AM
Lead*	ND	0.003	mg/L	1	1/3/2008 11:46:18 AM
Magnesium	16	0.50	mg/L	1	1/3/2008 11:46:18 AM
Manganese	0.058	0.020	mg/L	1	1/3/2008 11:46:18 AM
Nickel	ND	0.030	mg/L	1	1/3/2008 11:46:18 AM
Potassium	2.0	0.50	mg/L	1	1/3/2008 11:46:18 AM
Selenium*	ND	0.005	mg/L	1	1/3/2008 11:46:18 AM
Silver	ND	0.050	mg/L	1	1/3/2008 11:46:18 AM
Sodium	53	0.50	mg/L	1	1/3/2008 11:46:18 AM
Thallium*	0.008	0.003	mg/L	1	1/3/2008 11:46:18 AM
Vanadium	ND	0.30	mg/L	1	1/3/2008 11:46:18 AM
Zinc	ND	0.010	mg/L	1	1/3/2008 11:46:18 AM
TOTAL MERCURY WATERS		E245.2	(E245.2)	Analyst: EA
Mercury	ND	0.0004	mg/L	1	1/3/2008 8:16:42 AM
TCL-SEMIVOLATILE ORGANICS		SW8270C	(SW351	0)	Analyst: LD
(3+4)-Methylphenol	ND	5.0	μg/L	1	1/4/2008 3:04:00 PM
1,2,4-Trichlorobenzene	ND	5.0	μg/L	1	1/4/2008 3:04:00 PM
1,2-Dichlorobenzene	ND	5.0	µg/L	1	1/4/2008 3:04:00 PM
1,3-Dichlorobenzene	ND	5.0	µg/L	1	1/4/2008 3:04:00 PM

Approved By:	Date:	Page 5 of 32

Qualifiers: * Low Level

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

** Value exceeds Maximum Contaminant Value

Date: 10-Jan-08

Collection Date: 12/26/2007 1:10:00 PM

E Value above quantitation range

J Analyte detected below quantitation limits

CLIENT: NYSDEC - Region 9 **Client Sample ID:** MW-8

Lab Order: U0712474 **Collection Date:** 12/26/2007 1:10:00 PM

Friendship Foundry, hw902017 **Project:**

Matrix: GROUNDWATER Lab ID: U0712474-002

Analyses	Result	Limit Qua	l Units	DF	Date Analyzed
TCL-SEMIVOLATILE ORGANICS		SW8270C	(SW35	10)	Analyst: LD
1,4-Dichlorobenzene	ND	5.0	μg/L	1	1/4/2008 3:04:00 PM
2,4,5-Trichlorophenol	ND	5.0	μg/L	1	1/4/2008 3:04:00 PM
2,4,6-Trichlorophenol	ND	5.0	μg/L	1	1/4/2008 3:04:00 PM
2,4-Dichlorophenol	ND	5.0	μg/L	1	1/4/2008 3:04:00 PM
2,4-Dimethylphenol	ND	5.0	μg/L	1	1/4/2008 3:04:00 PM
2,4-Dinitrophenol	ND	50	μg/L	1	1/4/2008 3:04:00 PM
2,4-Dinitrotoluene	ND	5.0	μg/L	1	1/4/2008 3:04:00 PM
2,6-Dinitrotoluene	ND	5.0	μg/L	1	1/4/2008 3:04:00 PM
2-Chloronaphthalene	ND	5.0	μg/L	1	1/4/2008 3:04:00 PM
2-Chlorophenol	ND	5.0	μg/L	1	1/4/2008 3:04:00 PM
2-Methylnaphthalene	ND	5.0	μg/L	1	1/4/2008 3:04:00 PM
2-Methylphenol	ND	5.0	μg/L	1	1/4/2008 3:04:00 PM
2-Nitroaniline	ND	50	μg/L	1	1/4/2008 3:04:00 PM
2-Nitrophenol	ND	5.0	μg/L	1	1/4/2008 3:04:00 PM
3,3´-Dichlorobenzidine	ND	5.0	μg/L	1	1/4/2008 3:04:00 PM
3-Nitroaniline	ND	50	μg/L	1	1/4/2008 3:04:00 PM
4,6-Dinitro-2-methylphenol	ND	50	μg/L	1	1/4/2008 3:04:00 PM
4-Bromophenyl phenyl ether	ND	5.0	μg/L	1	1/4/2008 3:04:00 PM
4-Chloro-3-methylphenol	ND	5.0	μg/L	1	1/4/2008 3:04:00 PM
4-Chloroaniline	ND	5.0	μg/L	1	1/4/2008 3:04:00 PM
4-Chlorophenyl phenyl ether	ND	5.0	μg/L	1	1/4/2008 3:04:00 PM
4-Nitroaniline	ND	50	μg/L	1	1/4/2008 3:04:00 PM
4-Nitrophenol	ND	50	μg/L	1	1/4/2008 3:04:00 PM
Acenaphthene	ND	5.0	μg/L	1	1/4/2008 3:04:00 PM
Acenaphthylene	ND	5.0	μg/L	1	1/4/2008 3:04:00 PM
Anthracene	ND	5.0	μg/L	1	1/4/2008 3:04:00 PM
Benz(a)anthracene	ND	5.0	μg/L	1	1/4/2008 3:04:00 PM
Benzo(a)pyrene	ND	5.0	μg/L	1	1/4/2008 3:04:00 PM
Benzo(b)fluoranthene	ND	5.0	μg/L	1	1/4/2008 3:04:00 PM
Benzo(g,h,i)perylene	ND	5.0	μg/L	1	1/4/2008 3:04:00 PM
Benzo(k)fluoranthene	ND	5.0	μg/L	1	1/4/2008 3:04:00 PM
Bis(2-chloroethoxy)methane	ND	5.0	μg/L	1	1/4/2008 3:04:00 PM
Bis(2-chloroethyl)ether	ND	5.0	μg/L	1	1/4/2008 3:04:00 PM
Bis(2-chloroisopropyl)ether	ND	5.0	μg/L	1	1/4/2008 3:04:00 PM
Bis(2-ethylhexyl)phthalate	3	5.0 J	μg/L	1	1/4/2008 3:04:00 PM
Butyl benzyl phthalate	ND	5.0	μg/L	1	1/4/2008 3:04:00 PM
Carbazole	ND	5.0	μg/L	1	1/4/2008 3:04:00 PM
Chrysene	ND	5.0	μg/L	1	1/4/2008 3:04:00 PM
Di-n-butyl phthalate	ND	5.0	μg/L	1	1/4/2008 3:04:00 PM

Approved By:

Qualifiers: Low Level

- В Analyte detected in the associated Method Blank
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

Date:

Page 6 of 32

- Е Value above quantitation range
- J Analyte detected below quantitation limits
- Spike Recovery outside accepted recovery limits

Value exceeds Maximum Contaminant Value

CLIENT: NYSDEC - Region 9 Client Sample ID: MW-8

Project: Friendship Foundry, hw902017

Lab ID: U0712474-002 Matrix: GROUNDWATER

Analyses	Result	Limit Qual	Units	DF	Date Analyzed
TCL-SEMIVOLATILE ORGANICS		SW8270C	(SW3510))	Analyst: LD
Di-n-octyl phthalate	ND	5.0	μg/L	1	1/4/2008 3:04:00 PM
Dibenz(a,h)anthracene	ND	5.0	μg/L	1	1/4/2008 3:04:00 PM
Dibenzofuran	ND	5.0	μg/L	1	1/4/2008 3:04:00 PM
Diethyl phthalate	ND	5.0	μg/L	1	1/4/2008 3:04:00 PM
Dimethyl phthalate	ND	5.0	μg/L	1	1/4/2008 3:04:00 PM
Fluoranthene	ND	5.0	μg/L	1	1/4/2008 3:04:00 PM
Fluorene	ND	5.0	μg/L	1	1/4/2008 3:04:00 PM
Hexachlorobenzene	ND	5.0	μg/L	1	1/4/2008 3:04:00 PM
Hexachlorobutadiene	ND	5.0	μg/L	1	1/4/2008 3:04:00 PM
Hexachlorocyclopentadiene	ND	5.0	μg/L	1	1/4/2008 3:04:00 PM
Hexachloroethane	ND	5.0	μg/L	1	1/4/2008 3:04:00 PM
Indeno(1,2,3-cd)pyrene	ND	5.0	μg/L	1	1/4/2008 3:04:00 PM
Isophorone	ND	5.0	μg/L	1	1/4/2008 3:04:00 PM
N-Nitrosodi-n-propylamine	ND	5.0	μg/L	1	1/4/2008 3:04:00 PM
N-Nitrosodiphenylamine	ND	5.0	μg/L	1	1/4/2008 3:04:00 PM
Naphthalene	ND	5.0	μg/L	1	1/4/2008 3:04:00 PM
Nitrobenzene	ND	5.0	μg/L	1	1/4/2008 3:04:00 PM
Pentachlorophenol	ND	10	μg/L	1	1/4/2008 3:04:00 PM
Phenanthrene	ND	5.0	μg/L	1	1/4/2008 3:04:00 PM
Phenol	ND	5.0	μg/L	1	1/4/2008 3:04:00 PM
Pyrene	ND	5.0	μg/L	1	1/4/2008 3:04:00 PM
TCL VOLATILE ORGANICS		SW8260B			Analyst: MM
1,1,1-Trichloroethane	ND	3.0	μg/L	1	1/2/2008 7:01:00 PM
1,1,2,2-Tetrachloroethane	ND	3.0	μg/L	1	1/2/2008 7:01:00 PM
1,1,2-Trichloroethane	ND	3.0	μg/L	1	1/2/2008 7:01:00 PM
1,1-Dichloroethane	ND	3.0	μg/L	1	1/2/2008 7:01:00 PM
1,1-Dichloroethene	ND	3.0	μg/L	1	1/2/2008 7:01:00 PM
1,2-Dichloroethane	ND	3.0	μg/L	1	1/2/2008 7:01:00 PM
1,2-Dichloropropane	ND	3.0	μg/L	1	1/2/2008 7:01:00 PM
2-Butanone	ND	10	μg/L	1	1/2/2008 7:01:00 PM
2-Hexanone	ND	10	μg/L	1	1/2/2008 7:01:00 PM
4-Methyl-2-pentanone	ND	10	μg/L	1	1/2/2008 7:01:00 PM
Acetone	ND	10	μg/L	1	1/2/2008 7:01:00 PM
Benzene	ND	3.0	μg/L	1	1/2/2008 7:01:00 PM
Bromodichloromethane	ND	3.0	μg/L	1	1/2/2008 7:01:00 PM
Bromoform	ND	3.0	μg/L	1	1/2/2008 7:01:00 PM
Bromomethane	ND	3.0	μg/L	1	1/2/2008 7:01:00 PM
Carbon disulfide	ND	3.0	μg/L	1	1/2/2008 7:01:00 PM

Approved By	:	
-------------	---	--

Qualifiers: * Low Level

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

Date:

Value exceeds Maximum Contaminant Value

Date: 10-Jan-08

E Value above quantitation range

J Analyte detected below quantitation limits

S Spike Recovery outside accepted recovery limits

Page 7 of 32

CLIENT: NYSDEC - Region 9 Client Sample ID: MW-8

Lab Order: U0712474

Project: Friendship Foundry, hw902017

Lab ID: U0712474-002 Matrix: GROUNDWATER

Analyses	Result	Limit Qua	l Units	DF	Date Analyzed
TCL VOLATILE ORGANICS		SW8260B			Analyst: MM
Carbon tetrachloride	ND	3.0	μg/L	1	1/2/2008 7:01:00 PM
Chlorobenzene	ND	3.0	μg/L	1	1/2/2008 7:01:00 PM
Chloroethane	ND	3.0	μg/L	1	1/2/2008 7:01:00 PM
Chloroform	ND	3.0	μg/L	1	1/2/2008 7:01:00 PM
Chloromethane	ND	3.0	μg/L	1	1/2/2008 7:01:00 PM
cis-1,2-Dichloroethene	ND	3.0	μg/L	1	1/2/2008 7:01:00 PM
cis-1,3-Dichloropropene	ND	3.0	μg/L	1	1/2/2008 7:01:00 PM
Dibromochloromethane	ND	3.0	μg/L	1	1/2/2008 7:01:00 PM
Ethylbenzene	ND	3.0	μg/L	1	1/2/2008 7:01:00 PM
m,p-Xylene	ND	3.0	μg/L	1	1/2/2008 7:01:00 PM
Methylene chloride	ND	3.0	μg/L	1	1/2/2008 7:01:00 PM
o-Xylene	ND	3.0	μg/L	1	1/2/2008 7:01:00 PM
Styrene	ND	3.0	μg/L	1	1/2/2008 7:01:00 PM
Tetrachloroethene	ND	3.0	μg/L	1	1/2/2008 7:01:00 PM
Toluene	ND	3.0	μg/L	1	1/2/2008 7:01:00 PM
trans-1,2-Dichloroethene	ND	3.0	μg/L	1	1/2/2008 7:01:00 PM
trans-1,3-Dichloropropene	ND	3.0	μg/L	1	1/2/2008 7:01:00 PM
Trichloroethene	ND	3.0	μg/L	1	1/2/2008 7:01:00 PM
Vinyl chloride	ND	2.0	μg/L	1	1/2/2008 7:01:00 PM
PHENOLICS, TOTAL REC. FOR WATER	RS	E420.4	(E420.4	·)	Analyst: MB
Phenolics, Total Recoverable	ND	0.005	mg/L	1	1/3/2008

Approved I	3y:		Date:	Page 8 of 32
Qualifiers:	*	Low Level	**	Value exceeds Maximum Contaminant Value
	В	Analyte detected in the associated Method Blank	E	Value above quantitation range

B Analyte detected in the associated Method Blank
 H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

J Analyte detected below quantitation limits
 S Spike Recovery outside accepted recovery limits

Date: 10-Jan-08

Collection Date: 12/26/2007 1:10:00 PM

CLIENT: NYSDEC - Region 9 Client Sample ID: MW-3d

Project: Friendship Foundry, hw902017

Lab ID: U0712474-003 Matrix: GROUNDWATER

Analyses	Result	Limit Qual	Units	DF	Date Analyzed
POLYCHLORINATED BIPHENYLS IN	WASTEWAT	SW8082	(SW351))B)	Analyst: KC
Aroclor 1016	ND	0.050	μg/L	1	1/5/2008
Aroclor 1221	ND	0.050	μg/L	1	1/5/2008
Aroclor 1232	ND	0.050	μg/L	1	1/5/2008
Aroclor 1242	ND	0.050	μg/L	1	1/5/2008
Aroclor 1248	ND	0.050	μg/L	1	1/5/2008
Aroclor 1254	ND	0.050	μg/L	1	1/5/2008
Aroclor 1260	ND	0.050	μg/L	1	1/5/2008
ICP METALS, TOTALS		E200.7	(E200.7)		Analyst: EA
Aluminum	0.72	0.050	mg/L `	1	1/3/2008 11:49:52 AM
Antimony*	ND	0.003	mg/L	1	1/3/2008 11:49:52 AM
Arsenic*	0.028	0.010	mg/L	1	1/3/2008 11:49:52 AM
Barium	0.2	0.30 J	mg/L	1	1/3/2008 11:49:52 AM
Beryllium	ND	0.005	mg/L	1	1/3/2008 11:49:52 AM
Cadmium	ND	0.005	mg/L	1	1/3/2008 11:49:52 AM
Calcium	53	0.50	mg/L	1	1/3/2008 11:49:52 AM
Chromium	ND	0.050	mg/L	1	1/3/2008 11:49:52 AM
Cobalt	ND	0.050	mg/L	1	1/3/2008 11:49:52 AM
Copper	ND	0.020	mg/L	1	1/3/2008 11:49:52 AM
Iron	1.2	0.030	mg/L	1	1/3/2008 11:49:52 AM
Lead*	ND	0.003	mg/L	1	1/3/2008 11:49:52 AM
Magnesium	11	0.50	mg/L	1	1/3/2008 11:49:52 AM
Manganese	0.52	0.020	mg/L	1	1/3/2008 11:49:52 AM
Nickel	ND	0.030	mg/L	1	1/3/2008 11:49:52 AM
Potassium	1.2	0.50	mg/L	1	1/3/2008 11:49:52 AM
Selenium*	ND	0.005	mg/L	1	1/3/2008 11:49:52 AM
Silver	ND	0.050	mg/L	1	1/3/2008 11:49:52 AM
Sodium	14	0.50	mg/L	1	1/3/2008 11:49:52 AM
Thallium*	0.017	0.003	mg/L	1	1/3/2008 11:49:52 AM
Vanadium	ND	0.30	mg/L	1	1/3/2008 11:49:52 AM
Zinc	ND	0.010	mg/L	1	1/3/2008 11:49:52 AM
TOTAL MERCURY WATERS		E245.2	(E245.2)		Analyst: EA
Mercury	ND	0.0004	mg/L	1	1/3/2008 8:17:50 AM
TCL-SEMIVOLATILE ORGANICS		SW8270C	(SW3510	0)	Analyst: LD
(3+4)-Methylphenol	ND	5.0	μg/L	1	1/4/2008 3:45:00 PM
1,2,4-Trichlorobenzene	ND	5.0	μg/L	1	1/4/2008 3:45:00 PM
1,2-Dichlorobenzene	ND	5.0	μg/L	1	1/4/2008 3:45:00 PM
1,3-Dichlorobenzene	ND	5.0	μg/L	1	1/4/2008 3:45:00 PM

Approved By:	Date:	Page 9 of 32

Qualifiers: * Low Level

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

** Value exceeds Maximum Contaminant Value

Date: 10-Jan-08

E Value above quantitation range

J Analyte detected below quantitation limits

CLIENT: NYSDEC - Region 9 Client Sample ID: MW-3d

Project: Friendship Foundry, hw902017

Lab ID: U0712474-003 Matrix: GROUNDWATER

Analyses	Result	Limit Qual	Units	DF	Date Analyzed
TCL-SEMIVOLATILE ORGANICS		SW8270C	SW8270C (SW3510)		Analyst: LD
1,4-Dichlorobenzene	ND	5.0	μg/L `	1	1/4/2008 3:45:00 PM
2,4,5-Trichlorophenol	ND	5.0	μg/L	1	1/4/2008 3:45:00 PM
2,4,6-Trichlorophenol	ND	5.0	μg/L	1	1/4/2008 3:45:00 PM
2,4-Dichlorophenol	ND	5.0	μg/L	1	1/4/2008 3:45:00 PM
2,4-Dimethylphenol	ND	5.0	μg/L	1	1/4/2008 3:45:00 PM
2,4-Dinitrophenol	ND	50	μg/L	1	1/4/2008 3:45:00 PM
2,4-Dinitrotoluene	ND	5.0	μg/L	1	1/4/2008 3:45:00 PM
2,6-Dinitrotoluene	ND	5.0	μg/L	1	1/4/2008 3:45:00 PM
2-Chloronaphthalene	ND	5.0	μg/L	1	1/4/2008 3:45:00 PM
2-Chlorophenol	ND	5.0	μg/L	1	1/4/2008 3:45:00 PM
2-Methylnaphthalene	ND	5.0	μg/L	1	1/4/2008 3:45:00 PM
2-Methylphenol	ND	5.0	μg/L	1	1/4/2008 3:45:00 PM
2-Nitroaniline	ND	50	μg/L	1	1/4/2008 3:45:00 PM
2-Nitrophenol	ND	5.0	μg/L	1	1/4/2008 3:45:00 PM
3,3´-Dichlorobenzidine	ND	5.0	μg/L	1	1/4/2008 3:45:00 PM
3-Nitroaniline	ND	50	μg/L	1	1/4/2008 3:45:00 PM
4,6-Dinitro-2-methylphenol	ND	50	μg/L	1	1/4/2008 3:45:00 PM
4-Bromophenyl phenyl ether	ND	5.0	μg/L	1	1/4/2008 3:45:00 PM
4-Chloro-3-methylphenol	ND	5.0	μg/L	1	1/4/2008 3:45:00 PM
4-Chloroaniline	ND	5.0	μg/L	1	1/4/2008 3:45:00 PM
4-Chlorophenyl phenyl ether	ND	5.0	μg/L	1	1/4/2008 3:45:00 PM
4-Nitroaniline	ND	50	μg/L	1	1/4/2008 3:45:00 PM
4-Nitrophenol	ND	50	μg/L	1	1/4/2008 3:45:00 PM
Acenaphthene	ND	5.0	μg/L	1	1/4/2008 3:45:00 PM
Acenaphthylene	ND	5.0	μg/L	1	1/4/2008 3:45:00 PM
Anthracene	ND	5.0	μg/L	1	1/4/2008 3:45:00 PM
Benz(a)anthracene	ND	5.0	μg/L	1	1/4/2008 3:45:00 PM
Benzo(a)pyrene	ND	5.0	μg/L	1	1/4/2008 3:45:00 PM
Benzo(b)fluoranthene	ND	5.0	μg/L	1	1/4/2008 3:45:00 PM
Benzo(g,h,i)perylene	ND	5.0	μg/L	1	1/4/2008 3:45:00 PM
Benzo(k)fluoranthene	ND	5.0	μg/L	1	1/4/2008 3:45:00 PM
Bis(2-chloroethoxy)methane	ND	5.0	μg/L	1	1/4/2008 3:45:00 PM
Bis(2-chloroethyl)ether	ND	5.0	μg/L	1	1/4/2008 3:45:00 PM
Bis(2-chloroisopropyl)ether	ND	5.0	μg/L	1	1/4/2008 3:45:00 PM
Bis(2-ethylhexyl)phthalate	5	5.0 J	μg/L	1	1/4/2008 3:45:00 PM
Butyl benzyl phthalate	ND	5.0	μg/L	1	1/4/2008 3:45:00 PM
Carbazole	ND	5.0	μg/L	1	1/4/2008 3:45:00 PM
Chrysene	ND	5.0	μg/L	1	1/4/2008 3:45:00 PM
Di-n-butyl phthalate	ND	5.0	μg/L	1	1/4/2008 3:45:00 PM

Approved By:

Qualifiers: * Low Level

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

** Value exceeds Maximum Contaminant Value

Date: 10-Jan-08

E Value above quantitation range

Date:

- J Analyte detected below quantitation limits
- S Spike Recovery outside accepted recovery limits

Page 10 of 32

CLIENT: NYSDEC - Region 9 Client Sample ID: MW-3d

Project: Friendship Foundry, hw902017

Lab ID: U0712474-003 Matrix: GROUNDWATER

Analyses	Result	Limit Qual	Units	DF	Date Analyzed
TCL-SEMIVOLATILE ORGANICS		SW8270C	(SW351	0)	Analyst: LD
Di-n-octyl phthalate	ND	5.0	μg/L	1	1/4/2008 3:45:00 PM
Dibenz(a,h)anthracene	ND	5.0	μg/L	1	1/4/2008 3:45:00 PM
Dibenzofuran	ND	5.0	μg/L	1	1/4/2008 3:45:00 PM
Diethyl phthalate	ND	5.0	μg/L	1	1/4/2008 3:45:00 PM
Dimethyl phthalate	ND	5.0	μg/L	1	1/4/2008 3:45:00 PM
Fluoranthene	ND	5.0	μg/L	1	1/4/2008 3:45:00 PM
Fluorene	ND	5.0	μg/L	1	1/4/2008 3:45:00 PM
Hexachlorobenzene	ND	5.0	μg/L	1	1/4/2008 3:45:00 PM
Hexachlorobutadiene	ND	5.0	μg/L	1	1/4/2008 3:45:00 PM
Hexachlorocyclopentadiene	ND	5.0	μg/L	1	1/4/2008 3:45:00 PM
Hexachloroethane	ND	5.0	μg/L	1	1/4/2008 3:45:00 PM
Indeno(1,2,3-cd)pyrene	ND	5.0	μg/L	1	1/4/2008 3:45:00 PM
Isophorone	ND	5.0	μg/L	1	1/4/2008 3:45:00 PM
N-Nitrosodi-n-propylamine	ND	5.0	μg/L	1	1/4/2008 3:45:00 PM
N-Nitrosodiphenylamine	ND	5.0	μg/L	1	1/4/2008 3:45:00 PM
Naphthalene	ND	5.0	μg/L	1	1/4/2008 3:45:00 PM
Nitrobenzene	ND	5.0	μg/L	1	1/4/2008 3:45:00 PM
Pentachlorophenol	ND	10	μg/L	1	1/4/2008 3:45:00 PM
Phenanthrene	ND	5.0	μg/L	1	1/4/2008 3:45:00 PM
Phenol	ND	5.0	μg/L	1	1/4/2008 3:45:00 PM
Pyrene	ND	5.0	μg/L	1	1/4/2008 3:45:00 PM
CL VOLATILE ORGANICS		SW8260B			Analyst: MN
1,1,1-Trichloroethane	ND	3.0	μg/L	1	1/2/2008 7:38:00 PM
1,1,2,2-Tetrachloroethane	ND	3.0	μg/L	1	1/2/2008 7:38:00 PM
1,1,2-Trichloroethane	ND	3.0	μg/L	1	1/2/2008 7:38:00 PM
1,1-Dichloroethane	ND	3.0	μg/L	1	1/2/2008 7:38:00 PM
1,1-Dichloroethene	ND	3.0	μg/L	1	1/2/2008 7:38:00 PM
1,2-Dichloroethane	ND	3.0	μg/L	1	1/2/2008 7:38:00 PM
1,2-Dichloropropane	ND	3.0	μg/L	1	1/2/2008 7:38:00 PM
2-Butanone	ND	10	μg/L	1	1/2/2008 7:38:00 PM
2-Hexanone	ND	10	μg/L	1	1/2/2008 7:38:00 PM
4-Methyl-2-pentanone	ND	10	μg/L	1	1/2/2008 7:38:00 PM
Acetone	ND	10	μg/L	1	1/2/2008 7:38:00 PM
Benzene	ND	3.0	μg/L	1	1/2/2008 7:38:00 PM
Bromodichloromethane	ND	3.0	μg/L	1	1/2/2008 7:38:00 PM
Bromoform	ND	3.0	μg/L	1	1/2/2008 7:38:00 PM
Bromomethane	ND	3.0	μg/L	1	1/2/2008 7:38:00 PM
Carbon disulfide	ND	3.0	μg/L	1	1/2/2008 7:38:00 PM

Qualifiers: * Low Level

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

Date:

** Value exceeds Maximum Contaminant Value

Page 11 of 32

Date: 10-Jan-08

E Value above quantitation range

J Analyte detected below quantitation limits

CLIENT: NYSDEC - Region 9 Client Sample ID: MW-3d

Project: Friendship Foundry, hw902017

Lab ID: U0712474-003 Matrix: GROUNDWATER

Analyses	Result	Limit Qua	l Units	DF	Date Analyzed
TCL VOLATILE ORGANICS		SW8260B			Analyst: MM
Carbon tetrachloride	ND	3.0	μg/L	1	1/2/2008 7:38:00 PM
Chlorobenzene	ND	3.0	μg/L	1	1/2/2008 7:38:00 PM
Chloroethane	ND	3.0	μg/L	1	1/2/2008 7:38:00 PM
Chloroform	ND	3.0	μg/L	1	1/2/2008 7:38:00 PM
Chloromethane	ND	3.0	μg/L	1	1/2/2008 7:38:00 PM
cis-1,2-Dichloroethene	ND	3.0	μg/L	1	1/2/2008 7:38:00 PM
cis-1,3-Dichloropropene	ND	3.0	μg/L	1	1/2/2008 7:38:00 PM
Dibromochloromethane	ND	3.0	μg/L	1	1/2/2008 7:38:00 PM
Ethylbenzene	ND	3.0	μg/L	1	1/2/2008 7:38:00 PM
m,p-Xylene	ND	3.0	μg/L	1	1/2/2008 7:38:00 PM
Methylene chloride	ND	3.0	μg/L	1	1/2/2008 7:38:00 PM
o-Xylene	ND	3.0	μg/L	1	1/2/2008 7:38:00 PM
Styrene	ND	3.0	μg/L	1	1/2/2008 7:38:00 PM
Tetrachloroethene	ND	3.0	μg/L	1	1/2/2008 7:38:00 PM
Toluene	ND	3.0	μg/L	1	1/2/2008 7:38:00 PM
trans-1,2-Dichloroethene	ND	3.0	μg/L	1	1/2/2008 7:38:00 PM
trans-1,3-Dichloropropene	ND	3.0	μg/L	1	1/2/2008 7:38:00 PM
Trichloroethene	ND	3.0	μg/L	1	1/2/2008 7:38:00 PM
Vinyl chloride	ND	2.0	μg/L	1	1/2/2008 7:38:00 PM
PHENOLICS, TOTAL REC. FOR WATER	s	E420.4	(E420.4)		Analyst: MB
Phenolics, Total Recoverable	ND	0.005	mg/L	1	1/3/2008

Approved I	3y: _		Date:	Page 12 of 32
Qualifiers:	*	Low Level	**	Value exceeds Maximum Contaminant Value
	В	Analyte detected in the associated Method Blank	E	Value above quantitation range

B Analyte detected in the associated Method Blank
 H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

J Analyte detected below quantitation limits
 S Spike Recovery outside accepted recovery limits

CLIENT: NYSDEC - Region 9 Client Sample ID: MW-2

Project: Friendship Foundry, hw902017

Lab ID: U0712474-004 Matrix: GROUNDWATER

Analyses	Result	Limit Qu	al Units	DF	Date Analyzed
POLYCHLORINATED BIPHENYLS IN	WASTEWAT	SW8082	2 (SV	N3510B)	Analyst: KC
Aroclor 1016	ND	0.050	μg/L	1	1/5/2008
Aroclor 1221	ND	0.050	μg/L	1	1/5/2008
Aroclor 1232	ND	0.050	μg/L	1	1/5/2008
Aroclor 1242	ND	0.050	μg/L	1	1/5/2008
Aroclor 1248	ND	0.050	μg/L	1	1/5/2008
Aroclor 1254	ND	0.050	μg/L	1	1/5/2008
Aroclor 1260	ND	0.050	μg/L	1	1/5/2008
ICP METALS, TOTALS		E200.7	(E2	200.7)	Analyst: EA
Aluminum	0.28	0.050	mg/L	1	1/3/2008 11:53:25 AM
Antimony*	ND	0.003	mg/L	1	1/3/2008 11:53:25 AM
Arsenic*	0.005	0.010 J	mg/L	1	1/3/2008 11:53:25 AM
Barium	ND	0.30	mg/L	1	1/3/2008 11:53:25 AM
Beryllium	ND	0.005	mg/L	1	1/3/2008 11:53:25 AM
Cadmium	ND	0.005	mg/L	1	1/3/2008 11:53:25 AM
Calcium	24	0.50	mg/L	1	1/3/2008 11:53:25 AM
Chromium	ND	0.050	mg/L	1	1/3/2008 11:53:25 AM
Cobalt	ND	0.050	mg/L	1	1/3/2008 11:53:25 AM
Copper	ND	0.020	mg/L	1	1/3/2008 11:53:25 AM
Iron	0.43	0.030	mg/L	1	1/3/2008 11:53:25 AM
Lead*	ND	0.003	mg/L	1	1/3/2008 11:53:25 AM
Magnesium	3.4	0.50	mg/L	1	1/3/2008 11:53:25 AM
Manganese	0.01	0.020 J	mg/L	1	1/3/2008 11:53:25 AM
Nickel	ND	0.030	mg/L	1	1/3/2008 11:53:25 AM
Potassium	3.2	0.50	mg/L	1	1/3/2008 11:53:25 AM
Selenium*	ND	0.005	mg/L	1	1/3/2008 11:53:25 AM
Silver	ND	0.050	mg/L	1	1/3/2008 11:53:25 AM
Sodium	61	0.50	mg/L	1	1/3/2008 11:53:25 AM
Thallium*	0.002	0.003 J	mg/L	1	1/3/2008 11:53:25 AM
Vanadium	ND	0.30	mg/L	1	1/3/2008 11:53:25 AM
Zinc	ND	0.010	mg/L	1	1/3/2008 11:53:25 AM
TOTAL MERCURY WATERS		E245.2	(E2	245.2)	Analyst: EA
Mercury	ND	0.0004	mg/L	1	1/3/2008 8:19:22 AM
TCL-SEMIVOLATILE ORGANICS		SW8270	C (SI	W3510)	Analyst: LD
(3+4)-Methylphenol	ND	5.0	μg/L	1	1/4/2008 4:26:00 PM
1,2,4-Trichlorobenzene	ND	5.0	μg/L	1	1/4/2008 4:26:00 PM
1,2-Dichlorobenzene	ND	5.0	μg/L	1	1/4/2008 4:26:00 PM
1,3-Dichlorobenzene	ND	5.0	μg/L	1	1/4/2008 4:26:00 PM

Approved By:	Date:	Page 13 of 32

Qualifiers: * Low Level

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

** Value exceeds Maximum Contaminant Value

Date: 10-Jan-08

E Value above quantitation range

J Analyte detected below quantitation limits

CLIENT: NYSDEC - Region 9 Client Sample ID: MW-2

Lab Order: U0712474

Project: Friendship Foundry, hw902017

Lab ID: U0712474-004 Matrix: GROUNDWATER

Analyses	Result	Limit Qua	l Units	DF	Date Analyzed
TCL-SEMIVOLATILE ORGANICS		SW8270C	(SW35	10)	Analyst: LD
1,4-Dichlorobenzene	ND	5.0	μg/L	1	1/4/2008 4:26:00 PM
2,4,5-Trichlorophenol	ND	5.0	μg/L	1	1/4/2008 4:26:00 PM
2,4,6-Trichlorophenol	ND	5.0	μg/L	1	1/4/2008 4:26:00 PM
2,4-Dichlorophenol	ND	5.0	μg/L	1	1/4/2008 4:26:00 PM
2,4-Dimethylphenol	ND	5.0	μg/L	1	1/4/2008 4:26:00 PM
2,4-Dinitrophenol	ND	50	μg/L	1	1/4/2008 4:26:00 PM
2,4-Dinitrotoluene	ND	5.0	μg/L	1	1/4/2008 4:26:00 PM
2,6-Dinitrotoluene	ND	5.0	μg/L	1	1/4/2008 4:26:00 PM
2-Chloronaphthalene	ND	5.0	μg/L	1	1/4/2008 4:26:00 PM
2-Chlorophenol	ND	5.0	μg/L	1	1/4/2008 4:26:00 PM
2-Methylnaphthalene	ND	5.0	μg/L	1	1/4/2008 4:26:00 PM
2-Methylphenol	ND	5.0	μg/L	1	1/4/2008 4:26:00 PM
2-Nitroaniline	ND	50	μg/L	1	1/4/2008 4:26:00 PM
2-Nitrophenol	ND	5.0	μg/L	1	1/4/2008 4:26:00 PM
3,3´-Dichlorobenzidine	ND	5.0	μg/L	1	1/4/2008 4:26:00 PM
3-Nitroaniline	ND	50	μg/L	1	1/4/2008 4:26:00 PM
4,6-Dinitro-2-methylphenol	ND	50	μg/L	1	1/4/2008 4:26:00 PM
4-Bromophenyl phenyl ether	ND	5.0	μg/L	1	1/4/2008 4:26:00 PM
4-Chloro-3-methylphenol	ND	5.0	μg/L	1	1/4/2008 4:26:00 PM
4-Chloroaniline	ND	5.0	μg/L	1	1/4/2008 4:26:00 PM
4-Chlorophenyl phenyl ether	ND	5.0	μg/L	1	1/4/2008 4:26:00 PM
4-Nitroaniline	ND	50	μg/L	1	1/4/2008 4:26:00 PM
4-Nitrophenol	ND	50	μg/L	1	1/4/2008 4:26:00 PM
Acenaphthene	ND	5.0	μg/L	1	1/4/2008 4:26:00 PM
Acenaphthylene	ND	5.0	μg/L	1	1/4/2008 4:26:00 PM
Anthracene	ND	5.0	μg/L	1	1/4/2008 4:26:00 PM
Benz(a)anthracene	ND	5.0	μg/L	1	1/4/2008 4:26:00 PM
Benzo(a)pyrene	ND	5.0	μg/L	1	1/4/2008 4:26:00 PM
Benzo(b)fluoranthene	ND	5.0	μg/L	1	1/4/2008 4:26:00 PM
Benzo(g,h,i)perylene	ND	5.0	μg/L	1	1/4/2008 4:26:00 PM
Benzo(k)fluoranthene	ND	5.0	μg/L	1	1/4/2008 4:26:00 PM
Bis(2-chloroethoxy)methane	ND	5.0	μg/L	1	1/4/2008 4:26:00 PM
Bis(2-chloroethyl)ether	ND	5.0	μg/L	1	1/4/2008 4:26:00 PM
Bis(2-chloroisopropyl)ether	ND	5.0	μg/L	1	1/4/2008 4:26:00 PM
Bis(2-ethylhexyl)phthalate	3	5.0 J	μg/L	1	1/4/2008 4:26:00 PM
Butyl benzyl phthalate	ND	5.0	μg/L	1	1/4/2008 4:26:00 PM
Carbazole	ND	5.0	μg/L	1	1/4/2008 4:26:00 PM
Chrysene	ND	5.0	μg/L	1	1/4/2008 4:26:00 PM
Di-n-butyl phthalate	ND	5.0	μg/L	1	1/4/2008 4:26:00 PM

Approved By:

Qualifiers: * Low Level

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

Date:

Page 14 of 32

** Value exceeds Maximum Contaminant Value

Date: 10-Jan-08

Collection Date: 12/26/2007 1:40:00 PM

- E Value above quantitation range
- J Analyte detected below quantitation limits
- S Spike Recovery outside accepted recovery limits

CLIENT: NYSDEC - Region 9 Client Sample ID: MW-2

Lab Order: U0712474 **Collection Date:** 12/26/2007 1:40:00 PM

Friendship Foundry, hw902017 **Project:**

Matrix: GROUNDWATER Lab ID: U0712474-004

Analyses	Result	Limit Qual	Units	DF	Date Analyzed
TCL-SEMIVOLATILE ORGANICS		SW8270C	(SW351	10)	Analyst: LD
Di-n-octyl phthalate	ND	5.0	μg/L	1	1/4/2008 4:26:00 PM
Dibenz(a,h)anthracene	ND	5.0	μg/L	1	1/4/2008 4:26:00 PM
Dibenzofuran	ND	5.0	μg/L	1	1/4/2008 4:26:00 PM
Diethyl phthalate	ND	5.0	μg/L	1	1/4/2008 4:26:00 PM
Dimethyl phthalate	ND	5.0	μg/L	1	1/4/2008 4:26:00 PM
Fluoranthene	ND	5.0	μg/L	1	1/4/2008 4:26:00 PM
Fluorene	ND	5.0	μg/L	1	1/4/2008 4:26:00 PM
Hexachlorobenzene	ND	5.0	μg/L	1	1/4/2008 4:26:00 PM
Hexachlorobutadiene	ND	5.0	μg/L	1	1/4/2008 4:26:00 PM
Hexachlorocyclopentadiene	ND	5.0	μg/L	1	1/4/2008 4:26:00 PM
Hexachloroethane	ND	5.0	μg/L	1	1/4/2008 4:26:00 PM
Indeno(1,2,3-cd)pyrene	ND	5.0	μg/L	1	1/4/2008 4:26:00 PM
Isophorone	ND	5.0	μg/L	1	1/4/2008 4:26:00 PM
N-Nitrosodi-n-propylamine	ND	5.0	μg/L	1	1/4/2008 4:26:00 PM
N-Nitrosodiphenylamine	ND	5.0	μg/L	1	1/4/2008 4:26:00 PM
Naphthalene	ND	5.0	μg/L	1	1/4/2008 4:26:00 PM
Nitrobenzene	ND	5.0	μg/L	1	1/4/2008 4:26:00 PM
Pentachlorophenol	ND	10	μg/L	1	1/4/2008 4:26:00 PM
Phenanthrene	ND	5.0	μg/L	1	1/4/2008 4:26:00 PM
Phenol	ND	5.0	μg/L	1	1/4/2008 4:26:00 PM
Pyrene	ND	5.0	μg/L	1	1/4/2008 4:26:00 PM
TCL VOLATILE ORGANICS		SW8260B			Analyst: MM
1,1,1-Trichloroethane	ND	3.0	μg/L	1	1/2/2008 8:16:00 PM
1,1,2,2-Tetrachloroethane	ND	3.0	μg/L	1	1/2/2008 8:16:00 PM
1,1,2-Trichloroethane	ND	3.0	μg/L	1	1/2/2008 8:16:00 PM
1,1-Dichloroethane	ND	3.0	μg/L	1	1/2/2008 8:16:00 PM
1,1-Dichloroethene	ND	3.0	μg/L	1	1/2/2008 8:16:00 PM
1,2-Dichloroethane	ND	3.0	μg/L	1	1/2/2008 8:16:00 PM
1,2-Dichloropropane	ND	3.0	μg/L	1	1/2/2008 8:16:00 PM
2-Butanone	ND	10	μg/L	1	1/2/2008 8:16:00 PM
2-Hexanone	ND	10	μg/L	1	1/2/2008 8:16:00 PM
4-Methyl-2-pentanone	ND	10	μg/L	1	1/2/2008 8:16:00 PM
Acetone	ND	10	μg/L	1	1/2/2008 8:16:00 PM
Benzene	ND	3.0	μg/L	1	1/2/2008 8:16:00 PM
Bromodichloromethane	ND	3.0	μg/L	1	1/2/2008 8:16:00 PM
Bromoform	ND	3.0	μg/L	1	1/2/2008 8:16:00 PM
Bromomethane	ND	3.0	μg/L	1	1/2/2008 8:16:00 PM
Carbon disulfide	ND	3.0	μg/L	1	1/2/2008 8:16:00 PM

Approved By	:
-------------	---

Qualifiers: Low Level

> В Analyte detected in the associated Method Blank

Η Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

Page 15 of 32 Value exceeds Maximum Contaminant Value

Date: 10-Jan-08

Е Value above quantitation range

Date:

J Analyte detected below quantitation limits

CLIENT: NYSDEC - Region 9 Client Sample ID: MW-2

Project: Friendship Foundry, hw902017

Lab ID: U0712474-004 Matrix: GROUNDWATER

Analyses	Result	Limit Qua	l Units	DF	Date Analyzed
TCL VOLATILE ORGANICS		SW8260B			Analyst: MM
Carbon tetrachloride	ND	3.0	μg/L	1	1/2/2008 8:16:00 PM
Chlorobenzene	ND	3.0	μg/L	1	1/2/2008 8:16:00 PM
Chloroethane	ND	3.0	μg/L	1	1/2/2008 8:16:00 PM
Chloroform	ND	3.0	μg/L	1	1/2/2008 8:16:00 PM
Chloromethane	ND	3.0	μg/L	1	1/2/2008 8:16:00 PM
cis-1,2-Dichloroethene	ND	3.0	μg/L	1	1/2/2008 8:16:00 PM
cis-1,3-Dichloropropene	ND	3.0	μg/L	1	1/2/2008 8:16:00 PM
Dibromochloromethane	ND	3.0	μg/L	1	1/2/2008 8:16:00 PM
Ethylbenzene	ND	3.0	μg/L	1	1/2/2008 8:16:00 PM
m,p-Xylene	ND	3.0	μg/L	1	1/2/2008 8:16:00 PM
Methylene chloride	ND	3.0	μg/L	1	1/2/2008 8:16:00 PM
o-Xylene	ND	3.0	μg/L	1	1/2/2008 8:16:00 PM
Styrene	ND	3.0	μg/L	1	1/2/2008 8:16:00 PM
Tetrachloroethene	ND	3.0	μg/L	1	1/2/2008 8:16:00 PM
Toluene	ND	3.0	μg/L	1	1/2/2008 8:16:00 PM
trans-1,2-Dichloroethene	ND	3.0	μg/L	1	1/2/2008 8:16:00 PM
trans-1,3-Dichloropropene	ND	3.0	μg/L	1	1/2/2008 8:16:00 PM
Trichloroethene	ND	3.0	μg/L	1	1/2/2008 8:16:00 PM
Vinyl chloride	ND	2.0	μg/L	1	1/2/2008 8:16:00 PM
PHENOLICS, TOTAL REC. FOR WA	ATERS	E420.4	(E420	.4)	Analyst: MB
Phenolics, Total Recoverable	0.005	0.005	mg/L	1	1/3/2008

Approved By:	Date:	Page 16 of 32
Qualifiers: * Low Level	**	Value exceeds Maximum Contaminant Value

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

E Value above quantitation range

Date: 10-Jan-08

J Analyte detected below quantitation limits

CLIENT: NYSDEC - Region 9

Lab Order: U0712474

Project: Friendship Foundry, hw902017

Lab ID: U0712474-005 Matrix: GROUNDWATER

Analyses	Result	Limit Qua	l Units	DF	Date Analyzed
POLYCHLORINATED BIPHENYLS IN	WASTEWAT	SW8082	(SW35	10B)	Analyst: KC
Aroclor 1016	ND	0.050	μg/L	1	1/5/2008
Aroclor 1221	ND	0.050	μg/L	1	1/5/2008
Aroclor 1232	ND	0.050	μg/L	1	1/5/2008
Aroclor 1242	ND	0.050	μg/L	1	1/5/2008
Aroclor 1248	ND	0.050	μg/L	1	1/5/2008
Aroclor 1254	ND	0.050	μg/L	1	1/5/2008
Aroclor 1260	ND	0.050	μg/L	1	1/5/2008
ICP METALS, TOTALS		E200.7	(E200.7	7)	Analyst: EA
Aluminum	0.45	0.050	mg/L	1	1/3/2008 11:56:58 AM
Antimony*	ND	0.003	mg/L	1	1/3/2008 11:56:58 AM
Arsenic*	0.009	0.010 J	mg/L	1	1/3/2008 11:56:58 AM
Barium	ND	0.30	mg/L	1	1/3/2008 11:56:58 AM
Beryllium	ND	0.005	mg/L	1	1/3/2008 11:56:58 AM
Cadmium	ND	0.005	mg/L	1	1/3/2008 11:56:58 AM
Calcium	54	0.50	mg/L	1	1/3/2008 11:56:58 AM
Chromium	ND	0.050	mg/L	1	1/3/2008 11:56:58 AM
Cobalt	ND	0.050	mg/L	1	1/3/2008 11:56:58 AM
Copper	ND	0.020	mg/L	1	1/3/2008 11:56:58 AM
Iron	0.80	0.030	mg/L	1	1/3/2008 11:56:58 AM
Lead*	0.002	0.003 J	mg/L	1	1/3/2008 11:56:58 AM
Magnesium	10	0.50	mg/L	1	1/3/2008 11:56:58 AM
Manganese	0.082	0.020	mg/L	1	1/3/2008 11:56:58 AM
Nickel	ND	0.030	mg/L	1	1/3/2008 11:56:58 AM
Potassium	1.5	0.50	mg/L	1	1/3/2008 11:56:58 AM
Selenium*	ND	0.005	mg/L	1	1/3/2008 11:56:58 AM
Silver	ND	0.050	mg/L	1	1/3/2008 11:56:58 AM
Sodium	9.2	0.50	mg/L	1	1/3/2008 11:56:58 AM
Thallium*	0.008	0.003	mg/L	1	1/3/2008 11:56:58 AM
Vanadium	ND	0.30	mg/L	1	1/3/2008 11:56:58 AM
Zinc	0.023	0.010	mg/L	1	1/3/2008 11:56:58 AM
TOTAL MERCURY WATERS		E245.2	(E245.2	2)	Analyst: EA
Mercury	ND	0.0004	mg/L	1	1/3/2008 8:20:22 AM
TCL-SEMIVOLATILE ORGANICS		SW82700	(SW35	10)	Analyst: LD
(3+4)-Methylphenol	ND	5.0	μg/L	1	1/4/2008 5:09:00 PM
1,2,4-Trichlorobenzene	ND	5.0	μg/L	1	1/4/2008 5:09:00 PM
1,2-Dichlorobenzene	ND	5.0	μg/L	1	1/4/2008 5:09:00 PM
1,3-Dichlorobenzene	ND	5.0	μg/L	1	1/4/2008 5:09:00 PM

Approved By:	Date:	Page 17 of 32

Qualifiers: * Low Level

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

** Value exceeds Maximum Contaminant Value

Date: 10-Jan-08

Collection Date: 12/26/2007 2:05:00 PM

Client Sample ID: MW-9

E Value above quantitation range

J Analyte detected below quantitation limits

CLIENT: NYSDEC - Region 9 Client Sample ID: MW-9

Project: Friendship Foundry, hw902017

Lab ID: U0712474-005 Matrix: GROUNDWATER

Analyses	Result	Limit Qua	Units	DF	Date Analyzed
TCL-SEMIVOLATILE ORGANICS		SW8270C	(SW35	10)	Analyst: LD
1,4-Dichlorobenzene	ND	5.0	μg/L	1	1/4/2008 5:09:00 PM
2,4,5-Trichlorophenol	ND	5.0	μg/L	1	1/4/2008 5:09:00 PM
2,4,6-Trichlorophenol	ND	5.0	μg/L	1	1/4/2008 5:09:00 PM
2,4-Dichlorophenol	ND	5.0	μg/L	1	1/4/2008 5:09:00 PM
2,4-Dimethylphenol	ND	5.0	μg/L	1	1/4/2008 5:09:00 PM
2,4-Dinitrophenol	ND	50	μg/L	1	1/4/2008 5:09:00 PM
2,4-Dinitrotoluene	ND	5.0	μg/L	1	1/4/2008 5:09:00 PM
2,6-Dinitrotoluene	ND	5.0	μg/L	1	1/4/2008 5:09:00 PM
2-Chloronaphthalene	ND	5.0	μg/L	1	1/4/2008 5:09:00 PM
2-Chlorophenol	ND	5.0	μg/L	1	1/4/2008 5:09:00 PM
2-Methylnaphthalene	ND	5.0	μg/L	1	1/4/2008 5:09:00 PM
2-Methylphenol	ND	5.0	μg/L	1	1/4/2008 5:09:00 PM
2-Nitroaniline	ND	50	μg/L	1	1/4/2008 5:09:00 PM
2-Nitrophenol	ND	5.0	μg/L	1	1/4/2008 5:09:00 PM
3,3'-Dichlorobenzidine	ND	5.0	μg/L	1	1/4/2008 5:09:00 PM
3-Nitroaniline	ND	50	μg/L	1	1/4/2008 5:09:00 PM
4,6-Dinitro-2-methylphenol	ND	50	μg/L	1	1/4/2008 5:09:00 PM
4-Bromophenyl phenyl ether	ND	5.0	μg/L	1	1/4/2008 5:09:00 PM
4-Chloro-3-methylphenol	ND	5.0	μg/L	1	1/4/2008 5:09:00 PM
4-Chloroaniline	ND	5.0	μg/L	1	1/4/2008 5:09:00 PM
4-Chlorophenyl phenyl ether	ND	5.0	μg/L	1	1/4/2008 5:09:00 PM
4-Nitroaniline	ND	50	μg/L	1	1/4/2008 5:09:00 PM
4-Nitrophenol	ND	50	μg/L	1	1/4/2008 5:09:00 PM
Acenaphthene	ND	5.0	μg/L	1	1/4/2008 5:09:00 PM
Acenaphthylene	ND	5.0	μg/L	1	1/4/2008 5:09:00 PM
Anthracene	ND	5.0	μg/L	1	1/4/2008 5:09:00 PM
Benz(a)anthracene	ND	5.0	μg/L	1	1/4/2008 5:09:00 PM
Benzo(a)pyrene	ND	5.0	μg/L	1	1/4/2008 5:09:00 PM
Benzo(b)fluoranthene	ND	5.0	μg/L	1	1/4/2008 5:09:00 PM
Benzo(g,h,i)perylene	ND	5.0	μg/L	1	1/4/2008 5:09:00 PM
Benzo(k)fluoranthene	ND	5.0	μg/L	1	1/4/2008 5:09:00 PM
Bis(2-chloroethoxy)methane	ND	5.0	μg/L	1	1/4/2008 5:09:00 PM
Bis(2-chloroethyl)ether	ND	5.0	μg/L	1	1/4/2008 5:09:00 PM
Bis(2-chloroisopropyl)ether	ND	5.0	μg/L	1	1/4/2008 5:09:00 PM
Bis(2-ethylhexyl)phthalate	6.3	5.0	μg/L	1	1/4/2008 5:09:00 PM
Butyl benzyl phthalate	ND	5.0	μg/L	1	1/4/2008 5:09:00 PM
Carbazole	ND	5.0	μg/L	1	1/4/2008 5:09:00 PM
Chrysene	ND	5.0	μg/L	1	1/4/2008 5:09:00 PM
Di-n-butyl phthalate	ND	5.0	μg/L	1	1/4/2008 5:09:00 PM

Approved By:

Qualifiers: * Low Level

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

Date:

** Value exceeds Maximum Contaminant Value

Page 18 of 32

Date: 10-Jan-08

E Value above quantitation range

J Analyte detected below quantitation limits

CLIENT: NYSDEC - Region 9 Client Sample ID: MW-9

Project: Friendship Foundry, hw902017

Lab ID: U0712474-005 Matrix: GROUNDWATER

Analyses	Result	Limit Qual	Units	DF	Date Analyzed
TCL-SEMIVOLATILE ORGANICS		SW8270C	(SW351	0)	Analyst: LD
Di-n-octyl phthalate	ND	5.0	μg/L	1	1/4/2008 5:09:00 PM
Dibenz(a,h)anthracene	ND	5.0	μg/L	1	1/4/2008 5:09:00 PM
Dibenzofuran	ND	5.0	μg/L	1	1/4/2008 5:09:00 PM
Diethyl phthalate	ND	5.0	μg/L	1	1/4/2008 5:09:00 PM
Dimethyl phthalate	ND	5.0	μg/L	1	1/4/2008 5:09:00 PM
Fluoranthene	ND	5.0	μg/L	1	1/4/2008 5:09:00 PM
Fluorene	ND	5.0	μg/L	1	1/4/2008 5:09:00 PM
Hexachlorobenzene	ND	5.0	μg/L	1	1/4/2008 5:09:00 PM
Hexachlorobutadiene	ND	5.0	μg/L	1	1/4/2008 5:09:00 PM
Hexachlorocyclopentadiene	ND	5.0	μg/L	1	1/4/2008 5:09:00 PM
Hexachloroethane	ND	5.0	μg/L	1	1/4/2008 5:09:00 PM
Indeno(1,2,3-cd)pyrene	ND	5.0	μg/L	1	1/4/2008 5:09:00 PM
Isophorone	ND	5.0	μg/L	1	1/4/2008 5:09:00 PM
N-Nitrosodi-n-propylamine	ND	5.0	μg/L	1	1/4/2008 5:09:00 PM
N-Nitrosodiphenylamine	ND	5.0	μg/L	1	1/4/2008 5:09:00 PM
Naphthalene	ND	5.0	μg/L	1	1/4/2008 5:09:00 PM
Nitrobenzene	ND	5.0	μg/L	1	1/4/2008 5:09:00 PM
Pentachlorophenol	ND	10	μg/L	1	1/4/2008 5:09:00 PM
Phenanthrene	ND	5.0	μg/L	1	1/4/2008 5:09:00 PM
Phenol	ND	5.0	μg/L	1	1/4/2008 5:09:00 PM
Pyrene	ND	5.0	μg/L	1	1/4/2008 5:09:00 PM
TCL VOLATILE ORGANICS		SW8260B			Analyst: MM
1,1,1-Trichloroethane	ND	3.0	μg/L	1	1/2/2008 8:54:00 PM
1,1,2,2-Tetrachloroethane	ND	3.0	μg/L	1	1/2/2008 8:54:00 PM
1,1,2-Trichloroethane	ND	3.0	μg/L	1	1/2/2008 8:54:00 PM
1,1-Dichloroethane	ND	3.0	μg/L	1	1/2/2008 8:54:00 PM
1,1-Dichloroethene	ND	3.0	μg/L	1	1/2/2008 8:54:00 PM
1,2-Dichloroethane	ND	3.0	μg/L	1	1/2/2008 8:54:00 PM
1,2-Dichloropropane	ND	3.0	μg/L	1	1/2/2008 8:54:00 PM
2-Butanone	ND	10	μg/L	1	1/2/2008 8:54:00 PM
2-Hexanone	ND	10	μg/L	1	1/2/2008 8:54:00 PM
4-Methyl-2-pentanone	ND	10	μg/L	1	1/2/2008 8:54:00 PM
Acetone	ND	10	μg/L	1	1/2/2008 8:54:00 PM
Benzene	ND	3.0	μg/L	1	1/2/2008 8:54:00 PM
Bromodichloromethane	ND	3.0	μg/L	1	1/2/2008 8:54:00 PM
Bromoform	ND	3.0	μg/L	1	1/2/2008 8:54:00 PM
Bromomethane	ND	3.0	μg/L	1	1/2/2008 8:54:00 PM
Carbon disulfide	ND	3.0	μg/L	1	1/2/2008 8:54:00 PM

Approved B	y:
------------	----

Qualifiers: * Low Level

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

Date:

Page 19 of 32

** Value exceeds Maximum Contaminant Value

- E Value above quantitation range
- J Analyte detected below quantitation limits
- S Spike Recovery outside accepted recovery limits

CLIENT: NYSDEC - Region 9 Client Sample ID: MW-9

Project: Friendship Foundry, hw902017

Lab ID: U0712474-005 Matrix: GROUNDWATER

Analyses	Result	Limit Qua	l Units	DF	Date Analyzed
TCL VOLATILE ORGANICS		SW8260B			Analyst: MM
Carbon tetrachloride	ND	3.0	μg/L	1	1/2/2008 8:54:00 PM
Chlorobenzene	ND	3.0	μg/L	1	1/2/2008 8:54:00 PM
Chloroethane	ND	3.0	μg/L	1	1/2/2008 8:54:00 PM
Chloroform	ND	3.0	μg/L	1	1/2/2008 8:54:00 PM
Chloromethane	ND	3.0	μg/L	1	1/2/2008 8:54:00 PM
cis-1,2-Dichloroethene	ND	3.0	μg/L	1	1/2/2008 8:54:00 PM
cis-1,3-Dichloropropene	ND	3.0	μg/L	1	1/2/2008 8:54:00 PM
Dibromochloromethane	ND	3.0	μg/L	1	1/2/2008 8:54:00 PM
Ethylbenzene	ND	3.0	μg/L	1	1/2/2008 8:54:00 PM
m,p-Xylene	ND	3.0	μg/L	1	1/2/2008 8:54:00 PM
Methylene chloride	ND	3.0	μg/L	1	1/2/2008 8:54:00 PM
o-Xylene	ND	3.0	μg/L	1	1/2/2008 8:54:00 PM
Styrene	ND	3.0	μg/L	1	1/2/2008 8:54:00 PM
Tetrachloroethene	ND	3.0	μg/L	1	1/2/2008 8:54:00 PM
Toluene	ND	3.0	μg/L	1	1/2/2008 8:54:00 PM
trans-1,2-Dichloroethene	ND	3.0	μg/L	1	1/2/2008 8:54:00 PM
trans-1,3-Dichloropropene	ND	3.0	μg/L	1	1/2/2008 8:54:00 PM
Trichloroethene	ND	3.0	μg/L	1	1/2/2008 8:54:00 PM
Vinyl chloride	ND	2.0	μg/L	1	1/2/2008 8:54:00 PM
PHENOLICS, TOTAL REC. FOR WATERS	S	E420.4	(E420.4))	Analyst: MB
Phenolics, Total Recoverable	ND	0.005	mg/L	1	1/3/2008

Approved By:	Date:	Page 20 of 32
Qualifiers: * Low Level	**	Value exceeds Maximum Contaminant Value

B Analyte detected in the associated Method Blank
 H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

J Analyte detected below quantitation limits

Date: 10-Jan-08

E Value above quantitation range

CLIENT: NYSDEC - Region 9 Client Sample ID: MW-10

Project: Friendship Foundry, hw902017

Lab ID: U0712474-006 Matrix: GROUNDWATER

Analyses	Result	Limit Qual	Units	DF	Date Analyzed
POLYCHLORINATED BIPHENYLS IN	WASTEWAT	SW8082	(SW35	10B)	Analyst: KC
Aroclor 1016	ND	0.050	μg/L	1	1/5/2008
Aroclor 1221	ND	0.050	μg/L	1	1/5/2008
Aroclor 1232	ND	0.050	μg/L	1	1/5/2008
Aroclor 1242	ND	0.050	μg/L	1	1/5/2008
Aroclor 1248	ND	0.050	μg/L	1	1/5/2008
Aroclor 1254	ND	0.050	μg/L	1	1/5/2008
Aroclor 1260	ND	0.050	μg/L	1	1/5/2008
ICP METALS, TOTALS		E200.7	(E200.	7)	Analyst: EA
Aluminum	ND	0.050	mg/L `	1	1/3/2008 12:00:29 PM
Antimony*	ND	0.003	mg/L	1	1/3/2008 12:00:29 PM
Arsenic*	0.007	0.010 J	mg/L	1	1/3/2008 12:00:29 PM
Barium	ND	0.30	mg/L	1	1/3/2008 12:00:29 PM
Beryllium	ND	0.005	mg/L	1	1/3/2008 12:00:29 PM
Cadmium	ND	0.005	mg/L	1	1/3/2008 12:00:29 PM
Calcium	62	0.50	mg/L	1	1/3/2008 12:00:29 PM
Chromium	ND	0.050	mg/L	1	1/3/2008 12:00:29 PM
Cobalt	ND	0.050	mg/L	1	1/3/2008 12:00:29 PM
Copper	ND	0.020	mg/L	1	1/3/2008 12:00:29 PM
Iron	0.067	0.030	mg/L	1	1/3/2008 12:00:29 PM
Lead*	ND	0.003	mg/L	1	1/3/2008 12:00:29 PM
Magnesium	11	0.50	mg/L	1	1/3/2008 12:00:29 PM
Manganese	0.43	0.020	mg/L	1	1/3/2008 12:00:29 PM
Nickel	ND	0.030	mg/L	1	1/3/2008 12:00:29 PM
Potassium	2.1	0.50	mg/L	1	1/3/2008 12:00:29 PM
Selenium*	ND	0.005	mg/L	1	1/3/2008 12:00:29 PM
Silver	ND	0.050	mg/L	1	1/3/2008 12:00:29 PM
Sodium	24	0.50	mg/L	1	1/3/2008 12:00:29 PM
Thallium*	0.008	0.003	mg/L	1	1/3/2008 12:00:29 PM
Vanadium	ND	0.30	mg/L	1	1/3/2008 12:00:29 PM
Zinc	ND	0.010	mg/L	1	1/3/2008 12:00:29 PM
TOTAL MERCURY WATERS		E245.2	(E245.	2)	Analyst: EA
Mercury	ND	0.0004	mg/L	1	1/3/2008 8:21:32 AM
TCL-SEMIVOLATILE ORGANICS		SW8270C	(SW35	310)	Analyst: LD
(3+4)-Methylphenol	ND	5.0	μg/L	1	1/4/2008 5:51:00 PM
1,2,4-Trichlorobenzene	ND	5.0	μg/L	1	1/4/2008 5:51:00 PM
1,2-Dichlorobenzene	ND	5.0	μg/L	1	1/4/2008 5:51:00 PM
1,3-Dichlorobenzene	ND	5.0	μg/L	1	1/4/2008 5:51:00 PM

Approved By: Page 21 of 32

Qualifiers: * Low Level

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

** Value exceeds Maximum Contaminant Value

Date: 10-Jan-08

E Value above quantitation range

J Analyte detected below quantitation limits

CLIENT: NYSDEC - Region 9 Client Sample ID: MW-10

Lab Order: U0712474 **Collection Date:** 12/26/2007 2:30:00 PM

Friendship Foundry, hw902017 **Project:**

Matrix: GROUNDWATER Lab ID: U0712474-006

Analyses	Result	Limit Qual	Units	DF	Date Analyzed
TCL-SEMIVOLATILE ORGANICS		SW8270C	(SW351	0)	Analyst: LD
1,4-Dichlorobenzene	ND	5.0	μg/L	1	1/4/2008 5:51:00 PM
2,4,5-Trichlorophenol	ND	5.0	μg/L	1	1/4/2008 5:51:00 PM
2,4,6-Trichlorophenol	ND	5.0	μg/L	1	1/4/2008 5:51:00 PM
2,4-Dichlorophenol	ND	5.0	μg/L	1	1/4/2008 5:51:00 PM
2,4-Dimethylphenol	ND	5.0	μg/L	1	1/4/2008 5:51:00 PM
2,4-Dinitrophenol	ND	50	μg/L	1	1/4/2008 5:51:00 PM
2,4-Dinitrotoluene	ND	5.0	μg/L	1	1/4/2008 5:51:00 PM
2,6-Dinitrotoluene	ND	5.0	μg/L	1	1/4/2008 5:51:00 PM
2-Chloronaphthalene	ND	5.0	μg/L	1	1/4/2008 5:51:00 PM
2-Chlorophenol	ND	5.0	μg/L	1	1/4/2008 5:51:00 PM
2-Methylnaphthalene	ND	5.0	μg/L	1	1/4/2008 5:51:00 PM
2-Methylphenol	ND	5.0	μg/L	1	1/4/2008 5:51:00 PM
2-Nitroaniline	ND	50	μg/L	1	1/4/2008 5:51:00 PM
2-Nitrophenol	ND	5.0	μg/L	1	1/4/2008 5:51:00 PM
3,3´-Dichlorobenzidine	ND	5.0	μg/L	1	1/4/2008 5:51:00 PM
3-Nitroaniline	ND	50	μg/L	1	1/4/2008 5:51:00 PM
4,6-Dinitro-2-methylphenol	ND	50	μg/L	1	1/4/2008 5:51:00 PM
4-Bromophenyl phenyl ether	ND	5.0	μg/L	1	1/4/2008 5:51:00 PM
4-Chloro-3-methylphenol	ND	5.0	μg/L	1	1/4/2008 5:51:00 PM
4-Chloroaniline	ND	5.0	μg/L	1	1/4/2008 5:51:00 PM
4-Chlorophenyl phenyl ether	ND	5.0	μg/L	1	1/4/2008 5:51:00 PM
4-Nitroaniline	ND	50	μg/L	1	1/4/2008 5:51:00 PM
4-Nitrophenol	ND	50	μg/L	1	1/4/2008 5:51:00 PM
Acenaphthene	ND	5.0	μg/L	1	1/4/2008 5:51:00 PM
Acenaphthylene	ND	5.0	μg/L	1	1/4/2008 5:51:00 PM
Anthracene	ND	5.0	μg/L	1	1/4/2008 5:51:00 PM
Benz(a)anthracene	ND	5.0	μg/L	1	1/4/2008 5:51:00 PM
Benzo(a)pyrene	ND	5.0	μg/L	1	1/4/2008 5:51:00 PM
Benzo(b)fluoranthene	ND	5.0	μg/L	1	1/4/2008 5:51:00 PM
Benzo(g,h,i)perylene	ND	5.0	μg/L	1	1/4/2008 5:51:00 PM
Benzo(k)fluoranthene	ND	5.0	μg/L	1	1/4/2008 5:51:00 PM
Bis(2-chloroethoxy)methane	ND	5.0	μg/L	1	1/4/2008 5:51:00 PM
Bis(2-chloroethyl)ether	ND	5.0	μg/L	1	1/4/2008 5:51:00 PM
Bis(2-chloroisopropyl)ether	ND	5.0	μg/L	1	1/4/2008 5:51:00 PM
Bis(2-ethylhexyl)phthalate	4	5.0 J	μg/L	1	1/4/2008 5:51:00 PM
Butyl benzyl phthalate	ND	5.0	μg/L	1	1/4/2008 5:51:00 PM
Carbazole	ND	5.0	μg/L	1	1/4/2008 5:51:00 PM
Chrysene	ND	5.0	μg/L	1	1/4/2008 5:51:00 PM
Di-n-butyl phthalate	ND	5.0	μg/L	1	1/4/2008 5:51:00 PM

Approved By:

Qualifiers: Low Level

- В Analyte detected in the associated Method Blank
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

Date:

Page 22 of 32

Value exceeds Maximum Contaminant Value

- Е Value above quantitation range
- J Analyte detected below quantitation limits
- Spike Recovery outside accepted recovery limits

CLIENT: NYSDEC - Region 9 Client Sample ID: MW-10

Project: Friendship Foundry, hw902017

Lab ID: U0712474-006 Matrix: GROUNDWATER

Analyses	Result	Limit Qual	Units	DF	Date Analyzed
TCL-SEMIVOLATILE ORGANICS		SW8270C	(SW3510)		Analyst: LD
Di-n-octyl phthalate	ND	5.0	μg/L	1	1/4/2008 5:51:00 PM
Dibenz(a,h)anthracene	ND	5.0	μg/L	1	1/4/2008 5:51:00 PM
Dibenzofuran	ND	5.0	μg/L	1	1/4/2008 5:51:00 PM
Diethyl phthalate	ND	5.0	μg/L	1	1/4/2008 5:51:00 PM
Dimethyl phthalate	ND	5.0	μg/L	1	1/4/2008 5:51:00 PM
Fluoranthene	ND	5.0	μg/L	1	1/4/2008 5:51:00 PM
Fluorene	ND	5.0	μg/L	1	1/4/2008 5:51:00 PM
Hexachlorobenzene	ND	5.0	μg/L	1	1/4/2008 5:51:00 PM
Hexachlorobutadiene	ND	5.0	μg/L	1	1/4/2008 5:51:00 PM
Hexachlorocyclopentadiene	ND	5.0	μg/L	1	1/4/2008 5:51:00 PM
Hexachloroethane	ND	5.0	μg/L	1	1/4/2008 5:51:00 PM
Indeno(1,2,3-cd)pyrene	ND	5.0	μg/L	1	1/4/2008 5:51:00 PM
Isophorone	ND	5.0	μg/L	1	1/4/2008 5:51:00 PM
N-Nitrosodi-n-propylamine	ND	5.0	μg/L	1	1/4/2008 5:51:00 PM
N-Nitrosodiphenylamine	ND	5.0	μg/L	1	1/4/2008 5:51:00 PM
Naphthalene	ND	5.0	μg/L	1	1/4/2008 5:51:00 PM
Nitrobenzene	ND	5.0	μg/L	1	1/4/2008 5:51:00 PM
Pentachlorophenol	ND	10	μg/L	1	1/4/2008 5:51:00 PM
Phenanthrene	ND	5.0	μg/L	1	1/4/2008 5:51:00 PM
Phenol	ND	5.0	μg/L	1	1/4/2008 5:51:00 PM
Pyrene	ND	5.0	μg/L	1	1/4/2008 5:51:00 PM
TCL VOLATILE ORGANICS		SW8260B			Analyst: MM
1,1,1-Trichloroethane	ND	3.0	μg/L	1	1/2/2008 9:32:00 PM
1,1,2,2-Tetrachloroethane	ND	3.0	μg/L	1	1/2/2008 9:32:00 PM
1,1,2-Trichloroethane	ND	3.0	μg/L	1	1/2/2008 9:32:00 PM
1,1-Dichloroethane	ND	3.0	μg/L	1	1/2/2008 9:32:00 PM
1,1-Dichloroethene	ND	3.0	μg/L	1	1/2/2008 9:32:00 PM
1,2-Dichloroethane	ND	3.0	μg/L	1	1/2/2008 9:32:00 PM
1,2-Dichloropropane	ND	3.0	μg/L	1	1/2/2008 9:32:00 PM
2-Butanone	ND	10	μg/L	1	1/2/2008 9:32:00 PM
2-Hexanone	ND	10	μg/L	1	1/2/2008 9:32:00 PM
4-Methyl-2-pentanone	ND	10	μg/L	1	1/2/2008 9:32:00 PM
Acetone	ND	10	μg/L	1	1/2/2008 9:32:00 PM
Benzene	ND	3.0	μg/L	1	1/2/2008 9:32:00 PM
Bromodichloromethane	ND	3.0	μg/L	1	1/2/2008 9:32:00 PM
Bromoform	ND	3.0	μg/L	1	1/2/2008 9:32:00 PM
Bromomethane	ND	3.0	μg/L	1	1/2/2008 9:32:00 PM
Carbon disulfide	ND	3.0	μg/L	1	1/2/2008 9:32:00 PM

App	rovea	Ву
-----	-------	----

Qualifiers: * Low Level

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

Date:

Value exceeds Maximum Contaminant Value

Page 23 of 32

E Value above quantitation range

J Analyte detected below quantitation limits

Date: 10-Jan-08

CLIENT: NYSDEC - Region 9 Client Sample ID: MW-10

Lab Order: U0712474 **Collection Date:** 12/26/2007 2:30:00 PM

Friendship Foundry, hw902017 **Project:**

Matrix: GROUNDWATER Lab ID: U0712474-006

Analyses	Result	Limit Qua	l Units	DF	Date Analyzed
TCL VOLATILE ORGANICS		SW8260B			Analyst: MM
Carbon tetrachloride	ND	3.0	μg/L	1	1/2/2008 9:32:00 PM
Chlorobenzene	ND	3.0	μg/L	1	1/2/2008 9:32:00 PM
Chloroethane	ND	3.0	μg/L	1	1/2/2008 9:32:00 PM
Chloroform	ND	3.0	μg/L	1	1/2/2008 9:32:00 PM
Chloromethane	ND	3.0	μg/L	1	1/2/2008 9:32:00 PM
cis-1,2-Dichloroethene	ND	3.0	μg/L	1	1/2/2008 9:32:00 PM
cis-1,3-Dichloropropene	ND	3.0	μg/L	1	1/2/2008 9:32:00 PM
Dibromochloromethane	ND	3.0	μg/L	1	1/2/2008 9:32:00 PM
Ethylbenzene	ND	3.0	μg/L	1	1/2/2008 9:32:00 PM
m,p-Xylene	ND	3.0	μg/L	1	1/2/2008 9:32:00 PM
Methylene chloride	ND	3.0	μg/L	1	1/2/2008 9:32:00 PM
o-Xylene	ND	3.0	μg/L	1	1/2/2008 9:32:00 PM
Styrene	ND	3.0	μg/L	1	1/2/2008 9:32:00 PM
Tetrachloroethene	ND	3.0	μg/L	1	1/2/2008 9:32:00 PM
Toluene	ND	3.0	μg/L	1	1/2/2008 9:32:00 PM
trans-1,2-Dichloroethene	ND	3.0	μg/L	1	1/2/2008 9:32:00 PM
trans-1,3-Dichloropropene	ND	3.0	μg/L	1	1/2/2008 9:32:00 PM
Trichloroethene	ND	3.0	μg/L	1	1/2/2008 9:32:00 PM
Vinyl chloride	ND	2.0	μg/L	1	1/2/2008 9:32:00 PM
PHENOLICS, TOTAL REC. FOR WATERS		E420.4	(E420.4)		Analyst: MB
Phenolics, Total Recoverable	0.011	0.005	mg/L	1	1/3/2008

Approved By:		Date:	Page 24 of 32	
Qualifiers:	*	Low Level	**	Value exceeds Maximum Contaminant Value
	В	Analyte detected in the associated Method Blank	E	Value above quantitation range

В Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded Η

ND Not Detected at the Reporting Limit

Analyte detected below quantitation limits J Spike Recovery outside accepted recovery limits

CLIENT: NYSDEC - Region 9 Client Sample ID: MW-12

Project: Friendship Foundry, hw902017

Lab ID: U0712474-007 Matrix: GROUNDWATER

Analyses	Result	Limit Qual	Units	DF	Date Analyzed
POLYCHLORINATED BIPHENYLS IN	WASTEWAT	SW8082	(SW3510)B)	Analyst: KC
Aroclor 1016	ND	0.050	μg/L	1	1/5/2008
Aroclor 1221	ND	0.050	μg/L	1	1/5/2008
Aroclor 1232	ND	0.050	μg/L	1	1/5/2008
Aroclor 1242	ND	0.050	μg/L	1	1/5/2008
Aroclor 1248	ND	0.050	μg/L	1	1/5/2008
Aroclor 1254	ND	0.050	μg/L	1	1/5/2008
Aroclor 1260	ND	0.050	μg/L	1	1/5/2008
ICP METALS, TOTALS		E200.7	(E200.7)		Analyst: EA
Aluminum	0.26	0.050	mg/L	1	1/3/2008 12:03:55 PM
Antimony*	ND	0.003	mg/L	1	1/3/2008 12:03:55 PM
Arsenic*	0.012	0.010	mg/L	1	1/3/2008 12:03:55 PM
Barium	ND	0.30	mg/L	1	1/3/2008 12:03:55 PM
Beryllium	ND	0.005	mg/L	1	1/3/2008 12:03:55 PM
Cadmium	ND	0.005	mg/L	1	1/3/2008 12:03:55 PM
Calcium	54	0.50	mg/L	1	1/3/2008 12:03:55 PM
Chromium	ND	0.050	mg/L	1	1/3/2008 12:03:55 PM
Cobalt	ND	0.050	mg/L	1	1/3/2008 12:03:55 PM
Copper	ND	0.020	mg/L	1	1/3/2008 12:03:55 PM
Iron	0.45	0.030	mg/L	1	1/3/2008 12:03:55 PM
Lead*	ND	0.003	mg/L	1	1/3/2008 12:03:55 PM
Magnesium	12	0.50	mg/L	1	1/3/2008 12:03:55 PM
Manganese	0.27	0.020	mg/L	1	1/3/2008 12:03:55 PM
Nickel	ND	0.030	mg/L	1	1/3/2008 12:03:55 PM
Potassium	2.2	0.50	mg/L	1	1/3/2008 12:03:55 PM
Selenium*	ND	0.005	mg/L	1	1/3/2008 12:03:55 PM
Silver	ND	0.050	mg/L	1	1/3/2008 12:03:55 PM
Sodium	27	0.50	mg/L	1	1/3/2008 12:03:55 PM
Thallium*	0.008	0.003	mg/L	1	1/3/2008 12:03:55 PM
Vanadium	ND	0.30	mg/L	1	1/3/2008 12:03:55 PM
Zinc	0.012	0.010	mg/L	1	1/3/2008 12:03:55 PM
TOTAL MERCURY WATERS		E245.2	(E245.2)		Analyst: EA
Mercury	0.0002	0.0004 J	mg/L	1	1/3/2008 8:23:32 AM
TCL-SEMIVOLATILE ORGANICS		SW8270C	(SW3510))	Analyst: LD
(3+4)-Methylphenol	ND	5.0	μg/L	1	1/4/2008 6:33:00 PM
1,2,4-Trichlorobenzene	ND	5.0	μg/L	1	1/4/2008 6:33:00 PM
1,2-Dichlorobenzene	ND	5.0	μg/L	1	1/4/2008 6:33:00 PM
1,3-Dichlorobenzene	ND	5.0	μg/L	1	1/4/2008 6:33:00 PM

Approved By: Page 25 of 32

Qualifiers: * Low Level

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

** Value exceeds Maximum Contaminant Value

Date: 10-Jan-08

E Value above quantitation range

J Analyte detected below quantitation limits

CLIENT: NYSDEC - Region 9 Client Sample ID: MW-12

Project: Friendship Foundry, hw902017

Lab ID: U0712474-007 Matrix: GROUNDWATER

Analyses	Result	Limit Qual	Units	DF	Date Analyzed
TCL-SEMIVOLATILE ORGANICS		SW8270C	(SW35	510)	Analyst: LD
1,4-Dichlorobenzene	ND	5.0	μg/L	1	1/4/2008 6:33:00 PM
2,4,5-Trichlorophenol	ND	5.0	μg/L	1	1/4/2008 6:33:00 PM
2,4,6-Trichlorophenol	ND	5.0	μg/L	1	1/4/2008 6:33:00 PM
2,4-Dichlorophenol	ND	5.0	μg/L	1	1/4/2008 6:33:00 PM
2,4-Dimethylphenol	ND	5.0	μg/L	1	1/4/2008 6:33:00 PM
2,4-Dinitrophenol	ND	50	μg/L	1	1/4/2008 6:33:00 PM
2,4-Dinitrotoluene	ND	5.0	μg/L	1	1/4/2008 6:33:00 PM
2,6-Dinitrotoluene	ND	5.0	μg/L	1	1/4/2008 6:33:00 PM
2-Chloronaphthalene	ND	5.0	μg/L	1	1/4/2008 6:33:00 PM
2-Chlorophenol	ND	5.0	μg/L	1	1/4/2008 6:33:00 PM
2-Methylnaphthalene	ND	5.0	μg/L	1	1/4/2008 6:33:00 PM
2-Methylphenol	ND	5.0	μg/L	1	1/4/2008 6:33:00 PM
2-Nitroaniline	ND	50	μg/L	1	1/4/2008 6:33:00 PM
2-Nitrophenol	ND	5.0	μg/L	1	1/4/2008 6:33:00 PM
3,3'-Dichlorobenzidine	ND	5.0	μg/L	1	1/4/2008 6:33:00 PM
3-Nitroaniline	ND	50	μg/L	1	1/4/2008 6:33:00 PM
4,6-Dinitro-2-methylphenol	ND	50	μg/L	1	1/4/2008 6:33:00 PM
4-Bromophenyl phenyl ether	ND	5.0	μg/L	1	1/4/2008 6:33:00 PM
4-Chloro-3-methylphenol	ND	5.0	μg/L	1	1/4/2008 6:33:00 PM
4-Chloroaniline	ND	5.0	μg/L	1	1/4/2008 6:33:00 PM
4-Chlorophenyl phenyl ether	ND	5.0	μg/L	1	1/4/2008 6:33:00 PM
4-Nitroaniline	ND	50	μg/L	1	1/4/2008 6:33:00 PM
4-Nitrophenol	ND	50	μg/L	1	1/4/2008 6:33:00 PM
Acenaphthene	ND	5.0	μg/L	1	1/4/2008 6:33:00 PM
Acenaphthylene	ND	5.0	μg/L	1	1/4/2008 6:33:00 PM
Anthracene	ND	5.0	μg/L	1	1/4/2008 6:33:00 PM
Benz(a)anthracene	ND	5.0	μg/L	1	1/4/2008 6:33:00 PM
Benzo(a)pyrene	ND	5.0	μg/L	1	1/4/2008 6:33:00 PM
Benzo(b)fluoranthene	ND	5.0	μg/L	1	1/4/2008 6:33:00 PM
Benzo(g,h,i)perylene	ND	5.0	μg/L	1	1/4/2008 6:33:00 PM
Benzo(k)fluoranthene	ND	5.0	μg/L	1	1/4/2008 6:33:00 PM
Bis(2-chloroethoxy)methane	ND	5.0	μg/L	1	1/4/2008 6:33:00 PM
Bis(2-chloroethyl)ether	ND	5.0	μg/L	1	1/4/2008 6:33:00 PM
Bis(2-chloroisopropyl)ether	ND	5.0	μg/L	1	1/4/2008 6:33:00 PM
Bis(2-ethylhexyl)phthalate	4	5.0 J	μg/L	1	1/4/2008 6:33:00 PM
Butyl benzyl phthalate	ND	5.0	μg/L	1	1/4/2008 6:33:00 PM
Carbazole	ND	5.0	μg/L	1	1/4/2008 6:33:00 PM
Chrysene	ND	5.0	μg/L	1	1/4/2008 6:33:00 PM
Di-n-butyl phthalate	ND	5.0	μg/L	1	1/4/2008 6:33:00 PM

Approved By:

Qualifiers: * Low Level

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

** Value exceeds Maximum Contaminant Value

Page 26 of 32

Date: 10-Jan-08

- value exceeds Maximum Containmant valu
- E Value above quantitation range

Date:

- J Analyte detected below quantitation limits
- S Spike Recovery outside accepted recovery limits

CLIENT: NYSDEC - Region 9 Client Sample ID: MW-12

Project: Friendship Foundry, hw902017

Lab ID: U0712474-007 Matrix: GROUNDWATER

Analyses	Result	Limit Qual	Units	DF	Date Analyzed
TCL-SEMIVOLATILE ORGANICS		SW8270C	(SW3510)		Analyst: LD
Di-n-octyl phthalate	ND	5.0	μg/L	1	1/4/2008 6:33:00 PM
Dibenz(a,h)anthracene	ND	5.0	μg/L	1	1/4/2008 6:33:00 PM
Dibenzofuran	ND	5.0	μg/L	1	1/4/2008 6:33:00 PM
Diethyl phthalate	ND	5.0	μg/L	1	1/4/2008 6:33:00 PM
Dimethyl phthalate	ND	5.0	μg/L	1	1/4/2008 6:33:00 PM
Fluoranthene	ND	5.0	μg/L	1	1/4/2008 6:33:00 PM
Fluorene	ND	5.0	μg/L	1	1/4/2008 6:33:00 PM
Hexachlorobenzene	ND	5.0	μg/L	1	1/4/2008 6:33:00 PM
Hexachlorobutadiene	ND	5.0	μg/L	1	1/4/2008 6:33:00 PM
Hexachlorocyclopentadiene	ND	5.0	μg/L	1	1/4/2008 6:33:00 PM
Hexachloroethane	ND	5.0	μg/L	1	1/4/2008 6:33:00 PM
Indeno(1,2,3-cd)pyrene	ND	5.0	μg/L	1	1/4/2008 6:33:00 PM
Isophorone	ND	5.0	μg/L	1	1/4/2008 6:33:00 PM
N-Nitrosodi-n-propylamine	ND	5.0	μg/L	1	1/4/2008 6:33:00 PM
N-Nitrosodiphenylamine	ND	5.0	μg/L	1	1/4/2008 6:33:00 PM
Naphthalene	ND	5.0	μg/L	1	1/4/2008 6:33:00 PM
Nitrobenzene	ND	5.0	μg/L	1	1/4/2008 6:33:00 PM
Pentachlorophenol	ND	10	μg/L	1	1/4/2008 6:33:00 PM
Phenanthrene	ND	5.0	μg/L	1	1/4/2008 6:33:00 PM
Phenol	ND	5.0	μg/L	1	1/4/2008 6:33:00 PM
Pyrene	ND	5.0	μg/L	1	1/4/2008 6:33:00 PM
TCL VOLATILE ORGANICS		SW8260B			Analyst: MM
1,1,1-Trichloroethane	ND	3.0	μg/L	1	1/2/2008 10:09:00 PM
1,1,2,2-Tetrachloroethane	ND	3.0	μg/L	1	1/2/2008 10:09:00 PM
1,1,2-Trichloroethane	ND	3.0	μg/L	1	1/2/2008 10:09:00 PM
1,1-Dichloroethane	ND	3.0	μg/L	1	1/2/2008 10:09:00 PM
1,1-Dichloroethene	ND	3.0	μg/L	1	1/2/2008 10:09:00 PM
1,2-Dichloroethane	ND	3.0	μg/L	1	1/2/2008 10:09:00 PM
1,2-Dichloropropane	ND	3.0	μg/L	1	1/2/2008 10:09:00 PM
2-Butanone	ND	10	μg/L	1	1/2/2008 10:09:00 PM
2-Hexanone	ND	10	μg/L	1	1/2/2008 10:09:00 PM
4-Methyl-2-pentanone	ND	10	μg/L	1	1/2/2008 10:09:00 PM
Acetone	ND	10	μg/L	1	1/2/2008 10:09:00 PM
Benzene	ND	3.0	μg/L	1	1/2/2008 10:09:00 PM
Bromodichloromethane	ND	3.0	μg/L	1	1/2/2008 10:09:00 PM
Bromoform	ND	3.0	μg/L	1	1/2/2008 10:09:00 PM
Bromomethane	ND	3.0	μg/L	1	1/2/2008 10:09:00 PM
Carbon disulfide	ND	3.0	μg/L	1	1/2/2008 10:09:00 PM

Approved By:

Low Level

Qualifiers:

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

** Value exceeds Maximum Contaminant Value

Page 27 of 32

Date: 10-Jan-08

E Value above quantitation range

Date:

J Analyte detected below quantitation limits

CLIENT: NYSDEC - Region 9 Client Sample ID: MW-12

Project: Friendship Foundry, hw902017

Lab ID: U0712474-007 Matrix: GROUNDWATER

Analyses	Result	Limit Qua	l Units	DF	Date Analyzed
TCL VOLATILE ORGANICS		SW8260B			Analyst: MM
Carbon tetrachloride	ND	3.0	μg/L	1	1/2/2008 10:09:00 PM
Chlorobenzene	ND	3.0	μg/L	1	1/2/2008 10:09:00 PM
Chloroethane	ND	3.0	μg/L	1	1/2/2008 10:09:00 PM
Chloroform	ND	3.0	μg/L	1	1/2/2008 10:09:00 PM
Chloromethane	ND	3.0	μg/L	1	1/2/2008 10:09:00 PM
cis-1,2-Dichloroethene	ND	3.0	μg/L	1	1/2/2008 10:09:00 PM
cis-1,3-Dichloropropene	ND	3.0	μg/L	1	1/2/2008 10:09:00 PM
Dibromochloromethane	ND	3.0	μg/L	1	1/2/2008 10:09:00 PM
Ethylbenzene	ND	3.0	μg/L	1	1/2/2008 10:09:00 PM
m,p-Xylene	ND	3.0	μg/L	1	1/2/2008 10:09:00 PM
Methylene chloride	ND	3.0	μg/L	1	1/2/2008 10:09:00 PM
o-Xylene	ND	3.0	μg/L	1	1/2/2008 10:09:00 PM
Styrene	ND	3.0	μg/L	1	1/2/2008 10:09:00 PM
Tetrachloroethene	ND	3.0	μg/L	1	1/2/2008 10:09:00 PM
Toluene	ND	3.0	μg/L	1	1/2/2008 10:09:00 PM
trans-1,2-Dichloroethene	ND	3.0	μg/L	1	1/2/2008 10:09:00 PM
trans-1,3-Dichloropropene	ND	3.0	μg/L	1	1/2/2008 10:09:00 PM
Trichloroethene	ND	3.0	μg/L	1	1/2/2008 10:09:00 PM
Vinyl chloride	ND	2.0	μg/L	1	1/2/2008 10:09:00 PM
PHENOLICS, TOTAL REC. FOR WATERS	S	E420.4	(E420.4)		Analyst: MB
Phenolics, Total Recoverable	0.007	0.005	mg/L	1	1/3/2008

Approved By:	Date:	Page 28 of 32
Qualifiers: * Low Level	**	Value exceeds Maximum Contaminant Value

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

E Value above quantitation range
 J Analyte detected below quantitation limits
 S Spike Recovery outside accepted recovery limits

CLIENT: NYSDEC - Region 9 Client Sample ID: MW-11

Project: Friendship Foundry, hw902017

Lab ID: U0712474-008 Matrix: GROUNDWATER

Analyses	Result	Limit Qual	Units	DF	Date Analyzed
POLYCHLORINATED BIPHENYLS IN	WASTEWAT	SW8082	(SW3510	В)	Analyst: KC
Aroclor 1016	ND	0.050	μg/L	1	1/5/2008
Aroclor 1221	ND	0.050	μg/L	1	1/5/2008
Aroclor 1232	ND	0.050	μg/L	1	1/5/2008
Aroclor 1242	ND	0.050	μg/L	1	1/5/2008
Aroclor 1248	ND	0.050	μg/L	1	1/5/2008
Aroclor 1254	ND	0.050	μg/L	1	1/5/2008
Aroclor 1260	ND	0.050	μg/L	1	1/5/2008
ICP METALS, TOTALS		E200.7	(E200.7)		Analyst: EA
Aluminum	0.60	0.050	mg/L	1	1/3/2008 12:07:19 PM
Antimony*	ND	0.003	mg/L	1	1/3/2008 12:07:19 PM
Arsenic*	0.015	0.010	mg/L	1	1/3/2008 12:07:19 PM
Barium	0.2	0.30 J	mg/L	1	1/3/2008 12:07:19 PM
Beryllium	ND	0.005	mg/L	1	1/3/2008 12:07:19 PM
Cadmium	ND	0.005	mg/L	1	1/3/2008 12:07:19 PM
Calcium	85	0.50	mg/L	1	1/3/2008 12:07:19 PM
Chromium	ND	0.050	mg/L	1	1/3/2008 12:07:19 PM
Cobalt	ND	0.050	mg/L	1	1/3/2008 12:07:19 PM
Copper	0.020	0.020	mg/L	1	1/3/2008 12:07:19 PM
Iron	1.5	0.030	mg/L	1	1/3/2008 12:07:19 PM
Lead*	ND	0.003	mg/L	1	1/3/2008 12:07:19 PM
Magnesium	20	0.50	mg/L	1	1/3/2008 12:07:19 PM
Manganese	0.91	0.020	mg/L	1	1/3/2008 12:07:19 PM
Nickel	ND	0.030	mg/L	1	1/3/2008 12:07:19 PM
Potassium	2.1	0.50	mg/L	1	1/3/2008 12:07:19 PM
Selenium*	ND	0.005	mg/L	1	1/3/2008 12:07:19 PM
Silver	ND	0.050	mg/L	1	1/3/2008 12:07:19 PM
Sodium	30	0.50	mg/L	1	1/3/2008 12:07:19 PM
Thallium*	0.011	0.003	mg/L	1	1/3/2008 12:07:19 PM
Vanadium	ND	0.30	mg/L	1	1/3/2008 12:07:19 PM
Zinc	0.016	0.010	mg/L	1	1/3/2008 12:07:19 PM
TOTAL MERCURY WATERS		E245.2	(E245.2)		Analyst: EA
Mercury	ND	0.0004	mg/L	1	1/3/2008 8:26:59 AM
TCL-SEMIVOLATILE ORGANICS		SW8270C	(SW3510)	Analyst: LD
(3+4)-Methylphenol	ND	5.0	μg/L	1	1/4/2008 7:14:00 PM
1,2,4-Trichlorobenzene	ND	5.0	μg/L	1	1/4/2008 7:14:00 PM
1,2-Dichlorobenzene	ND	5.0	μg/L	1	1/4/2008 7:14:00 PM
1,3-Dichlorobenzene	ND	5.0	μg/L	1	1/4/2008 7:14:00 PM

Approved By:	Date:	Page 29 of 32

Qualifiers: * Low Level

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

** Value exceeds Maximum Contaminant Value

Date: 10-Jan-08

E Value above quantitation range

J Analyte detected below quantitation limits

CLIENT: NYSDEC - Region 9 Client Sample ID: MW-11

Project: Friendship Foundry, hw902017

Lab ID: U0712474-008 Matrix: GROUNDWATER

Analyses	Result	Limit Qual	Units	DF	Date Analyzed
TCL-SEMIVOLATILE ORGANICS		SW8270C	(SW35	10)	Analyst: LD
1,4-Dichlorobenzene	ND	5.0	μg/L	1	1/4/2008 7:14:00 PM
2,4,5-Trichlorophenol	ND	5.0	μg/L	1	1/4/2008 7:14:00 PM
2,4,6-Trichlorophenol	ND	5.0	μg/L	1	1/4/2008 7:14:00 PM
2,4-Dichlorophenol	ND	5.0	μg/L	1	1/4/2008 7:14:00 PM
2,4-Dimethylphenol	ND	5.0	μg/L	1	1/4/2008 7:14:00 PM
2,4-Dinitrophenol	ND	50	μg/L	1	1/4/2008 7:14:00 PM
2,4-Dinitrotoluene	ND	5.0	μg/L	1	1/4/2008 7:14:00 PM
2,6-Dinitrotoluene	ND	5.0	μg/L	1	1/4/2008 7:14:00 PM
2-Chloronaphthalene	ND	5.0	μg/L	1	1/4/2008 7:14:00 PM
2-Chlorophenol	ND	5.0	μg/L	1	1/4/2008 7:14:00 PM
2-Methylnaphthalene	ND	5.0	μg/L	1	1/4/2008 7:14:00 PM
2-Methylphenol	ND	5.0	μg/L	1	1/4/2008 7:14:00 PM
2-Nitroaniline	ND	50	μg/L	1	1/4/2008 7:14:00 PM
2-Nitrophenol	ND	5.0	μg/L	1	1/4/2008 7:14:00 PM
3,3´-Dichlorobenzidine	ND	5.0	μg/L	1	1/4/2008 7:14:00 PM
3-Nitroaniline	ND	50	μg/L	1	1/4/2008 7:14:00 PM
4,6-Dinitro-2-methylphenol	ND	50	μg/L	1	1/4/2008 7:14:00 PM
4-Bromophenyl phenyl ether	ND	5.0	μg/L	1	1/4/2008 7:14:00 PM
4-Chloro-3-methylphenol	ND	5.0	μg/L	1	1/4/2008 7:14:00 PM
4-Chloroaniline	ND	5.0	μg/L	1	1/4/2008 7:14:00 PM
4-Chlorophenyl phenyl ether	ND	5.0	μg/L	1	1/4/2008 7:14:00 PM
4-Nitroaniline	ND	50	μg/L	1	1/4/2008 7:14:00 PM
4-Nitrophenol	ND	50	μg/L	1	1/4/2008 7:14:00 PM
Acenaphthene	ND	5.0	μg/L	1	1/4/2008 7:14:00 PM
Acenaphthylene	ND	5.0	μg/L	1	1/4/2008 7:14:00 PM
Anthracene	ND	5.0	μg/L	1	1/4/2008 7:14:00 PM
Benz(a)anthracene	ND	5.0	μg/L	1	1/4/2008 7:14:00 PM
Benzo(a)pyrene	ND	5.0	μg/L	1	1/4/2008 7:14:00 PM
Benzo(b)fluoranthene	ND	5.0	μg/L	1	1/4/2008 7:14:00 PM
Benzo(g,h,i)perylene	ND	5.0	μg/L	1	1/4/2008 7:14:00 PM
Benzo(k)fluoranthene	ND	5.0	μg/L	1	1/4/2008 7:14:00 PM
Bis(2-chloroethoxy)methane	ND	5.0	μg/L	1	1/4/2008 7:14:00 PM
Bis(2-chloroethyl)ether	ND	5.0	μg/L	1	1/4/2008 7:14:00 PM
Bis(2-chloroisopropyl)ether	ND	5.0	μg/L	1	1/4/2008 7:14:00 PM
Bis(2-ethylhexyl)phthalate	3	5.0 J	μg/L	1	1/4/2008 7:14:00 PM
Butyl benzyl phthalate	ND	5.0	μg/L	1	1/4/2008 7:14:00 PM
Carbazole	ND	5.0	μg/L	1	1/4/2008 7:14:00 PM
Chrysene	ND	5.0	μg/L	1	1/4/2008 7:14:00 PM
Di-n-butyl phthalate	ND	5.0	μg/L	1	1/4/2008 7:14:00 PM

Approved By:

Qualifiers: * Low Level

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

** Value exceeds Maximum Contaminant Value

Page 30 of 32

Date: 10-Jan-08

E Value above quantitation range

Date:

J Analyte detected below quantitation limits

CLIENT: NYSDEC - Region 9 Client Sample ID: MW-11

Lab Order: U0712474 **Collection Date:** 12/27/2007 10:30:00 AM

Friendship Foundry, hw902017 **Project:**

Matrix: GROUNDWATER Lab ID: U0712474-008

Analyses	Result	Limit Qual	Units	DF	Date Analyzed
TCL-SEMIVOLATILE ORGANICS		SW8270C	(SW3510)		Analyst: LD
Di-n-octyl phthalate	ND	5.0	μg/L	1	1/4/2008 7:14:00 PM
Dibenz(a,h)anthracene	ND	5.0	μg/L	1	1/4/2008 7:14:00 PM
Dibenzofuran	ND	5.0	μg/L	1	1/4/2008 7:14:00 PM
Diethyl phthalate	ND	5.0	μg/L	1	1/4/2008 7:14:00 PM
Dimethyl phthalate	ND	5.0	μg/L	1	1/4/2008 7:14:00 PM
Fluoranthene	ND	5.0	μg/L	1	1/4/2008 7:14:00 PM
Fluorene	ND	5.0	μg/L	1	1/4/2008 7:14:00 PM
Hexachlorobenzene	ND	5.0	μg/L	1	1/4/2008 7:14:00 PM
Hexachlorobutadiene	ND	5.0	μg/L	1	1/4/2008 7:14:00 PM
Hexachlorocyclopentadiene	ND	5.0	μg/L	1	1/4/2008 7:14:00 PM
Hexachloroethane	ND	5.0	μg/L	1	1/4/2008 7:14:00 PM
Indeno(1,2,3-cd)pyrene	ND	5.0	μg/L	1	1/4/2008 7:14:00 PM
Isophorone	ND	5.0	μg/L	1	1/4/2008 7:14:00 PM
N-Nitrosodi-n-propylamine	ND	5.0	μg/L	1	1/4/2008 7:14:00 PM
N-Nitrosodiphenylamine	ND	5.0	μg/L	1	1/4/2008 7:14:00 PM
Naphthalene	ND	5.0	μg/L	1	1/4/2008 7:14:00 PM
Nitrobenzene	ND	5.0	μg/L	1	1/4/2008 7:14:00 PM
Pentachlorophenol	ND	10	μg/L	1	1/4/2008 7:14:00 PM
Phenanthrene	ND	5.0	μg/L	1	1/4/2008 7:14:00 PM
Phenol	ND	5.0	μg/L	1	1/4/2008 7:14:00 PM
Pyrene	ND	5.0	μg/L	1	1/4/2008 7:14:00 PM
TCL VOLATILE ORGANICS		SW8260B			Analyst: MM
1,1,1-Trichloroethane	ND	3.0	μg/L	1	1/2/2008 10:47:00 PM
1,1,2,2-Tetrachloroethane	ND	3.0	μg/L	1	1/2/2008 10:47:00 PM
1,1,2-Trichloroethane	ND	3.0	μg/L	1	1/2/2008 10:47:00 PM
1,1-Dichloroethane	ND	3.0	μg/L	1	1/2/2008 10:47:00 PM
1,1-Dichloroethene	ND	3.0	μg/L	1	1/2/2008 10:47:00 PM
1,2-Dichloroethane	ND	3.0	μg/L	1	1/2/2008 10:47:00 PM
1,2-Dichloropropane	ND	3.0	μg/L	1	1/2/2008 10:47:00 PM
2-Butanone	ND	10	μg/L	1	1/2/2008 10:47:00 PM
2-Hexanone	ND	10	μg/L	1	1/2/2008 10:47:00 PM
4-Methyl-2-pentanone	ND	10	μg/L	1	1/2/2008 10:47:00 PM
Acetone	ND	10	μg/L	1	1/2/2008 10:47:00 PM
Benzene	ND	3.0	μg/L	1	1/2/2008 10:47:00 PM
Bromodichloromethane	ND	3.0	μg/L	1	1/2/2008 10:47:00 PM
Bromoform	ND	3.0	μg/L	1	1/2/2008 10:47:00 PM
Bromomethane	ND	3.0	μg/L	1	1/2/2008 10:47:00 PM
Carbon disulfide	ND	3.0	μg/L	1	1/2/2008 10:47:00 PM

Approved By:	
--------------	--

Qualifiers: Low Level

> В Analyte detected in the associated Method Blank

Η Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit Date:

Page 31 of 32

Value exceeds Maximum Contaminant Value

Date: 10-Jan-08

Е Value above quantitation range

J Analyte detected below quantitation limits

CLIENT: NYSDEC - Region 9 Client Sample ID: MW-11

Project: Friendship Foundry, hw902017

Lab ID: U0712474-008 Matrix: GROUNDWATER

Analyses	Result	Limit Qua	l Units	DF	Date Analyzed
TCL VOLATILE ORGANICS	SW8260B				Analyst: MM
Carbon tetrachloride	ND	3.0	μg/L	1	1/2/2008 10:47:00 PM
Chlorobenzene	ND	3.0	μg/L	1	1/2/2008 10:47:00 PM
Chloroethane	ND	3.0	μg/L	1	1/2/2008 10:47:00 PM
Chloroform	ND	3.0	μg/L	1	1/2/2008 10:47:00 PM
Chloromethane	ND	3.0	μg/L	1	1/2/2008 10:47:00 PM
cis-1,2-Dichloroethene	ND	3.0	μg/L	1	1/2/2008 10:47:00 PM
cis-1,3-Dichloropropene	ND	3.0	μg/L	1	1/2/2008 10:47:00 PM
Dibromochloromethane	ND	3.0	μg/L	1	1/2/2008 10:47:00 PM
Ethylbenzene	ND	3.0	μg/L	1	1/2/2008 10:47:00 PM
m,p-Xylene	ND	3.0	μg/L	1	1/2/2008 10:47:00 PM
Methylene chloride	ND	3.0	μg/L	1	1/2/2008 10:47:00 PM
o-Xylene	ND	3.0	μg/L	1	1/2/2008 10:47:00 PM
Styrene	ND	3.0	μg/L	1	1/2/2008 10:47:00 PM
Tetrachloroethene	ND	3.0	μg/L	1	1/2/2008 10:47:00 PM
Toluene	ND	3.0	μg/L	1	1/2/2008 10:47:00 PM
trans-1,2-Dichloroethene	ND	3.0	μg/L	1	1/2/2008 10:47:00 PM
trans-1,3-Dichloropropene	ND	3.0	μg/L	1	1/2/2008 10:47:00 PM
Trichloroethene	ND	3.0	μg/L	1	1/2/2008 10:47:00 PM
Vinyl chloride	ND	2.0	μg/L	1	1/2/2008 10:47:00 PM
PHENOLICS, TOTAL REC. FOR WA	ΓERS	E420.4	(E420	.4)	Analyst: MB
Phenolics, Total Recoverable	ND	0.005	mg/L	1	1/3/2008

Approved By:	Date:	Page 32 of 32
Qualifiers: * Low Level	**	Value exceeds Maximum Contaminant Value

B Analyte detected in the associated Method Blank
 H Holding times for preparation or analysis exceeded

11 Holding times for preparation of analysis exect

ND Not Detected at the Reporting Limit

E Value above quantitation range

J Analyte detected below quantitation limits

Date: 10-Jan-08