SITE CHARACTERIZATION INVESTIGATION REED ROAD LANDFILL

Friendship, New York Site No. 902018

April 2007

Prepared by:

Division of Environmental Remediation New York State Department of Environmental Conservation Prepared by:

Chad Stanser

Chad Staniszewski, P.E. Division of Environmental Remediation, Region 9 Project Manager

Reviewed by:

N

Martin L. Doster, P.E. Division of Environmental Remediation, Region 9 Regional Hazardous Waste Remediation Engineer

TABLE OF CONTENTS

Summary

1.0	Introduction1									
2.0	Site D	Site Description and History1								
3.0	Site C	Site Characterization Objectives2								
4.0	Site V	Work3								
	4.1	Initial Site Inspection								
	4.2	Site Survey4								
	4.3	Geophysical Survey4								
	4.4	Direct Push Soil Borings								
	4.5	Leachate Pipe Flushing and Sediment Removal								
	4.6	Drilling / Monitoring Well Installation								
	4.7	Soil Cover Sampling9								
	4.8	Test Pit / Site Cleanup9								
	4.9	Sampling								
		4.9.1Waste Sampling.104.9.2Sediment Sampling.104.9.3Leachate Sampling.114.9.4Surface Water Sampling.114.9.5Groundwater Sampling.124.9.6Residential Water Supply Sampling.12								
5.0	Inves	tigation Results and Discussion13								
	5.1	Location of Buried Waste13								
	5.2	Integrity of the Leachate Collection System14								
	5.3	Cover Soil Investigation14								

5.4	Groundwater Flow Direction	15
5.5	Waste Material and Leachate Characterization	15
	Waste Material	15
	Leachate	16
5.6	Sediment, Surface Water and Groundwater Characterization	16
	Pond Sediment	17
	Pond Water	17
	On-Site Groundwater	17
	Residential Water Samples	19
Conc	lusions	19
Reco	mmendations	20

List of Figures

6.0

7.0

Figure 1:	Site Vicinity Map
Figure 2:	Site Aerial Map
Figure 3:	Site Map
Figure 4:	Groundwater Flow Direction, December 6, 2006
Figure 5:	Groundwater Flow Direction, December 20, 2006
Figure 6:	Groundwater Flow Direction, January 12, 2007

List of Tables

- Table 1: Sediment/Waste Analytical Data Summary Table
- Table 2:
 Leachate/Surface Water/Groundwater Analytical Data Summary Table
- Table 3: Well Gauging Data

Appendices

- Appendix A: Field Inspection Reports
- Appendix B: Site Survey Drawing
- Appendix C: Geophysical Report
- Appendix D: Soil Boring Logs
- Appendix E: Monitoring Well Installation Logs
- Appendix F: Laboratory Analytical Data Sheets
- Appendix G: Cover Soil Test Results

SUMMARY

The Reed Road Landfill site is located in a rural portion of Allegany County in the Town of Friendship, New York. The Landfill was operated as a New York State permitted solid waste disposal facility from 1983 to 1987. The landfill was approved to accept foundry waste including used mold sand, sand molds, slag and metal bindings. The unlined landfill has remained inactive since 1987.

The New York State Department of Environmental Conservation is the recipient of an United Stated Environmental Protection Agency Targeted Site Assessment Grant. The Allegany County Industrial Development Agency (IDA), during an October 24, 2005 meeting, requested grant funds be utilized to complete an environmental site characterization investigation at the site.

The results of the investigation confirmed the disposal of solid waste in three parallel trenches approximately 20 feet wide by 400 feet long. Minimal buried waste was observed outside the limits of the trenches. Trench cover soils range in thickness from 2.0 to 4.5 feet, consist of clayey silt material and is poorly to moderately compacted. Underground piping conveys leachate from the disposal trenches to a leachate collection tank. Leachate over tops the tank, flowing over ground into a pond. The pond discharges off-site.

Leachate exiting the tank is clear to slightly turbid brown. The ground surface adjacent to the tank overflow is stained red due to the oxidation of iron in the leachate. No significant odors were noted in the vicinity of the leachate tank overflow. Water in the pond is slightly turbid brown with no visible signs of contamination.

Water exiting the pond is impacted by total phenolics (0.026 mg/l). Pond sediments have not been significantly impacted, however, slightly elevated concentrations of arsenic, nickel and zinc were detected.

Groundwater in the vicinity of the landfill is impacted by total phenolics. Total phenolic concentrations in the groundwater range from 0.008 mg/l in up gradient wells to 0.04 mg/l in down gradient wells. Groundwater in the vicinity of the leachate collection tank has also been impacted by total phenolics (0.03 mg/l) and iron (64.7 mg/l) due to overflowing leachate.

The water supply at two residences located south/southwest of the landfill are not impacted by landfill contaminants. These potentially down gradient water sources are supplied via groundwater springs.

1.0 Introduction

The Reed Road Landfill site is located in a rural portion of Allegany County in the Town of Friendship, New York. The Landfill was operated as a New York State permitted solid waste disposal facility from 1983 to 1987. The landfill was approved to accept foundry waste including used mold sand, sand molds, slag and metal bindings. In 1987, the site operator (Macler Industries) filed for bankruptcy and the landfill facility was subsequently closed. There is no record documenting the facility was closed in accordance with the Department approved closure plan. No monitoring of the facility has been completed since closure. The Allegany County Industrial Development Agency (IDA) owned the site during its operation as a landfill and remains the current owner.

The New York State Department of Environmental Conservation (hereafter referred to as the 'Department') is the recipient of an United Stated Environmental Protection Agency Targeted Site Assessment Grant. At the request of the Allegany County IDA during an October 24, 2005 meeting, grant funds were utilized to complete a site characterization investigation at the Reed Road Landfill. The investigation assessed environmental impacts immediately surrounding the landfill and leachate handling facilities. This report details the site characterization investigation completed by the Department.

2.0 Site Description and History

The Reed Road Landfill site is located on Reed Road in a rural portion of Allegany County in the Town of Friendship, New York. The site is approximately 1.9 miles north west of Interstate 86, Exit 29, 'Friendship Exit' (See Figure 1; 'Site Vicinity Map'). The nearest residence to the site is located approximately 1,000 feet south/south-west of the landfill.

Reed Road Landfill was operated as a New York State permitted solid waste disposal facility between 1983 and 1987. The landfill was permitted to accept foundry waste generated at the Friendship Foundry including used mold sand, sand molds, slag and metal bindings. Drake Manufacturing, a division of Macler Industries, owned the Friendship Foundry and leased the Reed Road property from the Allegany County Industrial Development Agency (IDA). In 1987, Macler Industries filed for bankruptcy. The landfill became inactive and the method and/or adequacy of closure is not documented. Currently, the Allegany County Industrial Development Agency (IDA) maintains ownership of the site. No other industrial uses of the site are known.

Reed Road Landfill is located near the top of a hill in an open field surrounded by forest and agricultural lands (See Figure 2; 'Site Areal Map'). According to historical documents, Foundry waste was disposed in three parallel trenches, each approximately 20-feet wide by 400-feet long by 10-feet deep. The trenches were installed in native material with no additional engineered containment system. Lateral piping conveys leachate from each trench into three manholes (one for each trench), which subsequently discharge into a header pipe. The header pipe terminates in a below grade rectangular concrete storage tank with an approximate volume of 7,000 gallons. The tank discharges leachate into a constructed pond. The pond water flows into a ditch which drains off the east end of the site, eventually flowing to White Creek (Class C) approximately ¹/₂ mile from the site . Leachate is not transported from the site for disposal. The site access road, disposal trenches, leachate collection structures (manholes and tank) and pond encompass an area of approximately 9.5 acres (See Figure 3; 'Site Map').

3.0 Site Characterization Objectives

The objectives of this site characterization include:

- ✓ Determine if hazardous substances are present and, if present, does the site pose a significant threat to the environment.
- ✓ Evaluate the integrity of the existing leachate collection system including lateral and header piping, manholes and concrete storage tank.
- ✓ Identify the approximate vertical and horizontal limits of the three foundry waste disposal trenches.
- ✓ Characterize the waste material disposed in the trenches and the leachate discharging from the disposal trenches.
- ✓ Assess the soil type, permeability and thickness of the existing cover soils over each disposal trench.
- ✓ Identify any areas of subsurface disposal in addition to the three disposal trenches.
- ✓ Characterize any soil/sediment, surface water or groundwater that is suspected of potentially being impacted by contaminants.
- ✓ Understand groundwater flow direction and characterize the groundwater down gradient of the three disposal trenches.

4.0 Site Work

Multiple tasks were completed in order to achieve the site characterization objectives stated above. These tasks included an initial site inspections, site survey, geophysical survey, direct push soil borings, leachate pipe flushing and sediment removal, drilling/monitoring well installation, soil cover sampling, test pitting and sediment/groundwater/surface water sampling. The Department retained Empire GeoServices, Inc. (5167 South Park Ave, Hamburg, NY 14075) to implement a standby contractor work assignment to complete the site work tasks. The site work commenced in February 2006 and was completed in December 2006.

4.1 Initial Site Inspection

The Department completed an initial site inspection on November 3, 2005 (see Field Inspection Report dated November 3, 2005 in Appendix A). The initial inspection was completed to identify site features (i.e. terrain, structures, disposal trench locations, etc.), assess the condition of site structures and identify any obvious environmental impacts at the site. The majority of the site was grass covered with some briars and small brush becoming established. A hedgerow of trees and brush parallel the western and southern border of the site.

Two elevated parallel grass covered mounds were visible running east-west across the site. Three concrete manholes approximately 8-10 feet deep were located approximately 120 feet east of the disposal trenches. The bottoms of the manholes were filled with sediment, covering or partially covering the inlet/outlet pipes. Liquid in the manholes appeared red in color most likely due to iron oxide precipitate. The liquid in the manholes appeared relatively stagnant. The leachate tank was full and leachate was overflowing the tank through the southern most manway on the top of the tank. Iron staining was visible at the overflow. A portion of the leachate exiting the tank was flowing over ground into the pond. Some leachate also appeared to be flowing south onto the adjacent property. The water in the pond appeared to be clear to slightly turbid brown in color, with no visible signs of contamination.

No foundry waste was observed on the ground surface. No leachate seeps were visible surrounding the disposal trenches. The surface of the trenches appeared to be sloped to drain, preventing pooling water above the trenches. Two existing monitoring wells were located. One monitoring well was positioned immediately south of the southern disposal trench. This well was locked and appeared to be intact at the ground surface . A second well was located approximately 550 feet to the east of the disposal trenches. The concrete surface seal was heaved out of the ground and the well was in poor condition. The wells are located on the site survey drawing (Appendix B) as 'Abandoned MW' and 'MW: Well Poor Cond.'.

Miscellaneous surface dumping of old vehicle gas tanks, tires/rims, empty drums, car parts, etc. exists north of the trench disposal area. A small area of surface dumped junk car parts

and metal debris is also visible just west of the trench disposal area. There are also several small areas where it appears tires have been burned. These areas do not appear to be associated with the landfill activities and are outside the disposal area footprint. Therefore, these areas were not investigated as part of the site characterization. No obvious signs of significant contamination were visible in these areas.

4.2 Site Survey

Empire GeoServices, Inc. subcontracted TVGA Consultants (1000 maple Road, Elma, NY 14059) to complete the site survey work. The site survey was completed in two phases. The first phase, completed on February 13, 2006 defined the site boundary (for the purposes of this report), located existing site structures and provided topographic contours of the site. The second phase of the site survey located monitoring wells, test pits and soil borings completed as part of this investigation. Monitoring well casing elevation data was also collected to facilitate the use of well gauging data in defining groundwater flow direction. The site survey map is included in Appendix B.

According to the topographic survey, the site moderately slopes to the south/south-east. Storm water drainage ditches exist alongside site access roads used to access the leachate tank and manholes. These storm water ditches converge and drain parallel to the southern site boundary. A drainage ditch installed north of the pond prevents up gradient storm water from entering the pond.

An abrupt break in grade defines the approximate southern boundary of the southern most disposal trench. A second, less obvious, mound exists approximately 110 feet north of this abrupt grade break. This mound defines the approximate location of the northern most trench. The third trench lies beneath a swale in between the southern and northern mounds. The two mounds, and the center swale, are in line with the three manholes located east of the trenches. This further confirms the north/south location of the three disposal trenches. The approximate east/west limits of the trenches are defined on the survey by an abrupt rise in elevation.

4.3 Geophysical Survey

Empire Geoservices, Inc. subcontracted Advanced Geological Services (3 Mystic Lane, Malvern, PA 19355) to complete a geophysical survey across the site. The primary objective of this task was to complete a reconnaissance-level, near surface geophysical investigation across the site to determine the presence and location of any buried structures, metal objects, utilities or buried debris. The survey was also completed to further define the approximate horizontal and vertical limits of the disposal trenches.

Advanced Geological Services used an EM-31 ground conductivity meter and Global Positioning System to complete the investigation. EM data was collected at approximate 10-foot line intervals and 2.5 to 3.0 foot station intervals. The EM-31 meter records two measurements at each station point, the in-phase response and the quadrature response. The in-phase response is a better indicator of metal objects, whereas, the quadrature response is better indicator of non-metallic, high-conductivity targets, such as buried waste.

The geophysical results are summarized in a report prepared by Advanced Geological Services (Appendix C). This report contains two figures, 'quadrature response' and 'in-phase response', which outline the approximate locations of the disposal trenches and areas of potential buried debris. The geophysical survey identified 3 linear anomalies associated with the disposal trenches. These anomalies indicate the trenches are approximately 20 feet wide by 400 feet long, which is consistent with historical information and evaluation of the site survey. The trenches are situated in line with the three manholes.

The geophysical survey detected six significant EM anomalies most likely associated with buried metal objects. Four anomalies (A1 thru A4) show up on the quadrature and in-phase response maps and two anomalies (IP1 and IP2) show up on the in-phase map only. Anomalies A1, A2 and IP2 are located within, or partially within, the disposal trenches. Anomalies A3 and IP1 are located directly adjacent to the disposal tenches. These anomalies are approximately 20 feet wide by 20 to 30 feet long. Anomaly A4 is located to the south west of the southern disposal trench and is approximately 50 feet long by 25 feet wide.

4.4 Direct Push Soil Borings

Empire Geoservices Inc. completed a total of nine soil borings (B-1 thru B-9) on September 27 and October 4, 2006. A Simco 2400 SK-1 direct push sampler was used to complete the borings. Continuous macro core probe samples were field screened for volatile contaminants using a Photo-Ionization Detector (PID). One inch monitoring wells were installed in borings where groundwater was encountered. Borings not completed as monitoring wells were backfilled with bentonite powder. The surveyed locations of each boring are included on the site survey drawing in Appendix B. Figure 3 shows the approximate locations of the soil borings on a simplified site map.

The direct push soil borings were completed to evaluate the near surface site geology, determine if shallow or perched groundwater was present and determine if contaminated soil or waste material was present outside the disposal trenches. Borings B1, B2, B3, B4, B5 and B9 were completed adjacent to the north, west and southern perimeter of the disposal trenches. Boring B8 was completed just east of the northern most leachate manhole (no borings were completed between the eastern limit of the disposal trenches and the manholes due to concerns over possibly boring through a leachate collection pipe). Boring B6 was installed adjacent to the leachate collection tank and boring B7 was installed through the pond dike.

Relatively consistent stratigraphy was encountered in near surface native soils adjacent to the landfill. Borings B1, B2, B3, B4, B5 and B8 identified a layer of topsoil underlain by 6 to 9 feet of brown grey clayey silt with some sand and gravel. The clay was underlain by hard weathered shale. Weathered shale, or refusal, was encountered 6 to 9 feet bgs (below ground surface). Boring B-9, located on the west side of the landfill, identified a three foot thick clay layer underlain by weathered shale to 6.5 feet where refusal was encountered. Direct push soil boring logs are included in Appendix D.

Groundwater was not encountered in borings B1, B2, B3, B4, B8 or B-9. Groundwater was encountered at a depth of 7.5 feet in boring B5. The groundwater was contained in a layer of gravel and sand encountered 7.5 to 9.0 feet bgs (refusal encountered at 9.0). This is the only boring where a discrete layer of gravel and sand was encountered. A temporary monitoring well, with a 1-inch PVC riser, was installed in this boring. Monitoring well installation logs are included in Appendix E.

Boring B6, installed immediately adjacent to the leachate collection tank, identified brown/black silty clay with some organics to a depth of 13 feet bgs, where refusal was encountered. The soil appeared to be reworked tank backfill material. The soil was moist to a depth of 6-feet where it became wet (the groundwater elevation in this boring may be influenced by overflow water from the leachate collection tank). A temporary monitoring well, with a 1-inch PVC riser, was installed in this boring.

Boring B7 was in installed in the pond dike south of the pond. Brown silty clay with some sand and trace gravel was observed to a depth of 13 feet, where refusal was encountered. Groundwater was encountered 6.0 bgs (the groundwater elevation in this boring may be effected by the boring's proximity to the pond). A temporary monitoring well, with a 1-inch PVC riser, was installed in this boring.

No evidence of soil contamination was noted in any of the nine direct push borings. Undisturbed native fill material was encountered in each boring, with the exception of borings B6 and B7, which contained re-compacted native tank backfill and pond dike material. No staining, odors or waste material was encountered in any boring (it should be noted that surface soils around the tank were stained red due to leachate overflow, indicating potential contamination). No PID reading above background was recorded during continuous screening of the soil boring samples.

4.5 Leachate Pipe Flushing and Sediment Removal

Empire Geoservices, Inc. subcontracted Green Environmental Specialists (8335 Quarry Road, Niagara Falls, NY 14304) to perform leachate pipe flushing and leachate collection system sediment removal activities. The primary objective of this task was to assess the integrity of the leachate collection system and remove sediment obstructions to increase leachate flow out of the

disposal trenches. Prior to completing the flushing and sediment removal activities, several feet of sediment existed in the bottom of the leachate collection tank and the three manholes. Pipes entering and exiting the manholes were partially or completely covered in sediment.

Prior to completing the pipe flushing and sediment removal activities, the Department sampled the leachate and sediment for disposal characterization. The Department collected leachate samples from the leachate collection tank ('Tank' sample) and from the center manhole ('MH-2' sample) on July 17, 2006. A sediment sample ('Tank Sediment' sample) was collected from the leachate collection tank on July 24, 2006. The leachate and sediment was sampled for TCL volatile (method 8260), TCL semi-volatiles (method 8270), TCL pesticides (method 8081), herbicides (method 8150), PCBs (method 8082), TAL metals (method 6010/7471) and total recoverable phenolics (method 9066). A summary of the analytical results are included in Table 1 'Sediment/Waste Analytical Data Summary Table' and Table 2 'Leachate/Surface Water/Groundwater Analytical Data Summary Table'. The laboratory analytical data sheets are included in Appendix F. The leachate tested non-hazardous, however, it exceeded New York State Ambient Water Quality Standards and Guidance Values (AWQSGVs) for surface water aesthetics for iron, manganese and total phenolics. Therefore, leachate generated during cleaning activities was collected and disposed by Green Environmental at the Niagara Falls Waste Water Treatment Plant. The sediment also tested non-hazardous and was dewatered and stabilized at Green Environmental's Niagara Falls facility prior to disposal at a non-hazardous landfill.

Green Environmental used a vacuum truck to removed approximately 7,500 gallons of leachate and sediment from the leachate collection tank on November 2, 2006. The inside of the tank was inspected and appeared to be in good condition. Green Environmental returned to the site on November 13, 2006 and remove approximately 2,300 gallons of leachate and sediment from the three manholes (some leachate was removed from the tank to access the header pipe and prevent tank overflow during flushing). Green Environmental flushed the leachate collection piping using potable water and a high pressure cleaning nozzle to power wash the inside of the collection pipes. The full length of the header pipe, between the leachate tank and each manhole, was successfully cleaned. Lateral pipe flushing was limited to down gradient sections due to limited potable water, limited flushing hose length and poor vehicle access due to wet/soft ground conditions. The lateral pipe from the northern trench was flushed approximately 25-feet from the northern manhole, the lateral pipe from the center trench was flushed approximately 25-feet from the center manhole and the southern trench was flushed approximately 100-feet from the south manhole.

A significant amount of sediment was removed from the collection pipes, manholes and leachate tank. An increase in leachate flow was noted from each lateral pipe after flushing was completed, indicating leachate was backed up into the disposal trenches. The leachate tank and manholes appeared to be in good condition. No blockages in the piping were encountered. No leachate was discharged during the flushing and sediment removal activities.

4.6 Drilling/Monitoring Well Installation

Empire Geoservices, Inc. provided drilling services on November 24 and November 27 thru 30, 2006. Empire Geoservices utilized a CME-850 track mounted drill rig to decommission one existing monitoring well and install (5) soil borings completed as monitoring wells (MW-1 thru MW-5). The surveyed locations of the monitoring wells are included on the site survey drawing in Appendix B. Approximate locations of monitoring wells MW-1 thru MW-5 are shown on a simplified site map included as Figure 3.

The existing 4-inch carbon steel monitoring well located just south of the southern most disposal trench was decommissioned. The steel casing was removed to eliminate a potential below ground source of metals, which may skew analytical test data in adjacent monitoring wells. The existing well was over drilled and the 24-foot metal well casing was removed. The bore hole was tremie grouted with cement bentonite grout to the ground surface.

Empire Geoservices drilled (5) soil borings which were completed as monitoring wells. The monitoring wells were positioned around the perimeter of the landfill to intercept groundwater up gradient and down gradient of the disposal trenches. The drilling/monitoring well installation was completed to evaluate site geology and hydrogeology at depths greater than direct push boring refusal. The monitoring wells will also facilitate assessment of groundwater flow and quality in the vicinity of the landfill.

All monitoring well borings were drilled utilizing 4.5-inch diameter hollow stem augers. Split spoon samplers were advanced in front of the augers at depths greater than refusal of adjacent direct push borings (continuous sampling was completed in direct push borings). Borings were completed to a depth of 20 - 23.5 feet bgs based the amount of groundwater encountered, auger refusal or slow auger advancement. A 20-foot well depth was also considered adequate since this corresponds to an elevation below the expected depth of waste in the disposal trenches. Monitoring wells were constructed using 2-inch ID, threaded, flush jointed, Schedule 40 PVC risers with 0.010-inches x 10 feet screens straddling the surface of the groundwater. The screens were over packed with #0 silica sand, sealed with bentonite chips and the remainder of the well was backfilled with cement/bentonite grout. A Portland Cement surface seal and a 3-foot steel surface casing stick-up finished the well. It should be noted that a steel weight attached to the end of the measuring tape was lost in the original boring for MW-2. Attempts to retrieve the steel weight were not successful. The original borehole was grouted and the replacement borehole was drilled 20-feet to the north. Monitoring well installation logs are included in Appendix E.

Grey weathered shale, encountered at refusal of the direct push soil borings, was observed throughout the depth of split spoon sampling (20 - 23.5 feet bgs). One or more wet seams were encountered in each boring between 12 and 22 feet below ground surface. Soil boring logs are included in Appendix D.

4.7 Soil Cover Sampling

Empire Geo-Services utilized the CME-850 track mounted drill rig to sample the cover soils above each disposal trench. On November 30, 2006 Empire Geoservices drove split spoon samplers into the cover soils over each disposal trench to assess the soil type and depth of cover. In addition to the split spoon samples, shelby tube samples (ST-N, ST-C, ST-S, for Shelby Tube-North, Center and South trenches) were collected from the cover soils over each trench for possible permeability testing and/or sieve analysis. Only one split spoon sample location and one shelby tube sample location were investigated over each trench to minimize disturbance to the existing cover. The survey locations of the shelby tube samples are include on the site survey drawing in Appendix B. The approximate locations of the shelby tube sample locations are included on a simplified site drawing included as Figure 3.

The split spoon samples indicate that the cover material over each trench is composed of reworked native soil including brown clayey silt, trace shale, trace wood and trace sand. Sampling was terminated when waste material was encountered. At each location, waste material consisted of tan/grey/black sands with no significant odor (See photo included in Field Inspection Report dated November 22 thru 30, 2006 in Appendix A). Approximately 4.5 feet of cover soil was in place at the north trench sample location, approximately 4.2 feet at the center trench sample location and approximately 2.0 feet at the south trench sample location. Split spoon sample logs are included in Appendix D.

4.8 Test Pit/Site Cleanup

On December 7, 2006, Empire Geoservices used a rubber tired backhoe and loader bucket to excavate a test pit in an area of buried debris, as identified by the geophysical survey. Geophysical survey anomaly A-4 (see geophysical survey report in Appendix C) is located adjacent to the south west corner of the southern disposal trench. This anomaly is approximately 50 foot long by 25 foot wide with an EM response indicative of metal debris. No other anomalies shown on the geophysical survey were excavated due to their inclusion in, or proximity to, a disposal trench. The Department decided not to compromise the integrity of the disposal trenches by excavating these anomalies.

The test pit excavated in the area of anomaly A-4 located a layer of refractory brick and foundry sand approximately 2 to 5 feet bgs (See 'Field Inspection Report' dated December 7, 2006 included in Appendix A). One side of the refractory brick was covered in deposits of iron, which probably caused the EM response typical of metal debris. The Department collected a sample of the foundry sand. Native clay material was observed below the brick and sand. The excavated waste material was placed back in the test pit, covered with soil and tapped into place.

In addition to investigating anomaly A-4, Empire Geoservices performed general site clean-up and maintenance activities on December 7, 2006. These included cutting and removing the decommissioned well casing, rooming ruts from on-site access roads and digging a trench adjacent to the leachate tank to direct all leachate overflowing the tank into the pond.

4.9 Sampling

The Department implemented a site characterization level sampling plan to determine the environmental impacts associated with the long term containment of foundry wastes in the three disposal trenches. The Department sampled on-site sediment, foundry waste, leachate, surface water and groundwater to determine the type and level of contamination, if any, that can be attributed to the waste in the disposal trenches. The Department also sampled the water supply at two offsite residences who utilize potentially down gradient groundwater springs as their primary source of drinking water.

4.9.1 Waste Sampling

Foundry Sand

The Department collected a sample of the foundry sand (sample 'Foundry Sand') excavated during the test pit investigation of geophysical survey anomaly A-4 on December 7, 2006. This was the only waste sample collected during the investigation because additional waste sampling would have required intrusive work in the disposal trenches. This composite sample was collected from various areas around the test pit trench and was composed primarily of black foundry sand with some refractory brick and clay soil. The sample was placed in a plastic Ziplock bag and stored in a refrigerator at the Department's Buffalo Office until delivery to the lab. It should be noted that the foundry sand sample exceeded the EPA's recommended holding time and results should be considered estimated. This sample of waste was analyzed for TAL metals (method 6010/7471), TCL semi-volatiles (method 8270), PCBs (method 8082) and total recoverable phenolics (method 9066).

4.9.2 Sediment Sampling

Leachate Collection Tank Sediment

The Department sampled the leachate tank sediment (sample 'Tank Sediment') on July 24, 2006 for disposal characterization prior to leachate pipe flushing and sediment removal activities. This sample was also collected to determine chemical constituents of the sediment discharging from the disposal trenches. This composite sample was collected utilizing a manual drive cylinder pushed through the full depth of sediment at two locations in the tank. The tank

sediment sample was immediately packed in ice until delivery to the laboratory. The tank sediment was analyzed for TCL volatiles (method 8260), TCL semivolatiles (method 8270), TCL pesticides (method 8081), herbicides (method 8150), PCBs (method 8082), TAL metals (method 6010/7471) and total recoverable phenolics (method 9066).

Pond Sediment

The Department used a manual drive cylinder to collect a four point composite sample of leachate pond sediment (sample 'Pond Sediment') on December 19, 2006. The pond sediment was considered a potential receptor for contamination by leachate overflowing the tank. The top 4-inches of pond sediment was sampled and consisted of a thin layer of organics underlain by hard brown clay with some stones. The pond sediment sample was immediately packed in ice until delivery to the landfill. The pond sediment was sampled for TAL metals (method 6010/7471) and PCBs (method 8082).

4.9.3 Leachate Sampling

The Department collected three grab samples of leachate from varying locations within the leachate collection system on July 17, 2006 and December 19, 2006. Two samples were collected on July 17, 2006 for disposal characterization and to provide an accurate assessment of leachate quality prior to leachate pipe flushing and sediment removal activities. The leachate was sampled from the tank (sample 'Tank') and the center leachate collection manhole (sample 'MH-2').

On December 19, 2006, the Department collected a sample of leachate from the south manhole (sample 'South MH'). The sample was collected to provide an assessment of leachate quality post leachate line flushing and sediment removal.

All leachate samples were collected with disposable polyethylene bailers and immediately packed in ice until delivery to the laboratory. All three leachate samples were analyzed for TCL volatiles (method 8260), TCL semi-volatiles (method 8270), TCL pesticides (method 8081), herbicides (method 8150), PCBs (method 8082), TAL metals (method 6010/7471) and total recoverable phenolics (method 9066).

4.9.4 Surface Water Sampling

Pond Water

One surface water sample was collected from the pond on December 19, 2006. The grab sample was collected near the pond outlet to assess surface water quality discharging from the

site. The pond water was sampled using a disposable polyethylene bailer and immediately packed in ice until delivery to the laboratory. The pond water was analyzed for TAL metals (method 6010/7471) and total recoverable phenolics (method 9066).

4.9.5 On-site Groundwater Sampling

The Department collected groundwater samples from temporary (1-inch) monitoring well B6 on December 19, 2006 and monitoring wells MW-1 through MW-5 on December 20, 2006. Temporary monitoring well B5 was not sampled due to its proximity to MW-1. Temporary monitoring well B7 was also not sampled.

Temporary monitoring well B6 was developed on October 11, 2006. Field Inspection Report dated October 11, 2006 (Appendix A) details the well development information. A minimum of three well volumes were purged just prior to sampling. A Masterflex peristaltic pump with polyethylene tubing was used to develop and sample the well. Samples were pack in ice immediately upon collection until transport to the laboratory. The groundwater sample collected from monitoring well B6 was analyzed for TAL metals (method 6010/7471) and total recoverable phenolics (method 9066). Field Inspection Report dated December 19, 2006 (Appendix A) contains additional well sampling information.

MW-1 through MW-5 were developed on December 6, 2006. Field Inspection Report dated December 6, 2006 (Appendix A) details the well development information. A submersible Whale pump with polyethylene tubing was used to develop the wells. Discrete disposable polyethylene bailers were used to sample each well. A minimum of 3 well volumes were purged from each well prior to sampling, with the exception of MW-5, where slower recharge limited purging to 2.3 well volumes. Samples were packed in ice immediately after collection until transported to the laboratory. Groundwater samples collected from MW-1 and MW-4 were analyzed for TCL volatiles (method 8260), TCL semi-volatiles (method 8270), TCL pesticides (method 8081), herbicides (method 8150), PCBs (method 8082), TAL metals (method 6010/7471) and total recoverable phenolics (method 9066). Groundwater samples collected from MW-2, MW-3 and MW-5 were sampled for TAL metals (method 6010/7471) and total recoverable phenolics (method 9066). Field Inspection Report dated December 20, 2006 (Appendix A) contains additional well sampling information.

4.9.6 Residential Water Supply Sampling

The Department collected water samples from two residences who utilize groundwater springs as their primary source of drinking water. The samples were collected on March 21, 2007. The two residences are located south/southwest of the landfill. The location of the two residences are shown on Figure 2, 'Site Aerial Map'.

The two residential water supply samples (labeled 'Amish Home' and '5361 Reed Rd.') were collected directly from the kitchen faucet inside the homes. The Amish home receives water via a surface spring near the home on the west side of Reed Road. A water treatment system is not believed to be in use at the Amish home. The home at 5361 Reed Road receives water via a surface spring located on the east side of Reed Road. The water is filtered prior to entering the home.

The water was allowed to run through the faucet for several minutes prior to collecting the samples. The 'Amish Home' sample and the '5361 Reed Rd' sample were analyzed for TCL volatiles (method 8260), TCL semi-volatiles (method 8270), TCL pesticides (method 8081), herbicides (method 8150), PCBs (method 8082), TAL metals (method 6010/7471), total recoverable phenolics (method 9066) and Total/Fecal Coliform. At the request of the homeowner, the '5361 Reed Rd' sample was also analyzed for E. Coli. It should be noted that the 6 hour E. Coli sample holding time was exceeded.

5.0 Investigation Results and Discussion

5.1 Location of Buried Waste

Two objectives of this site characterization were to locate the approximate limits of the three foundry waste disposal trenches and identify/investigate any areas of subsurface disposal outside the limits of the three disposal trenches. Historic Department files indicate the presence of three trenches running parallel in an east west orientation. Information collected from site inspections (Appendix A), the site survey (Appendix B) and the geophysical survey (Appendix C) confirm the southern, western and eastern limits of the disposal trenches are approximately defined by a distinctive rise in grade near the center portion of the site. The approximate northern limit of the trenches is defined by a less significant, but still distinctive, grade break. Data obtained from the geophysical survey, concurs with Department files indicating the trenches are approximately 400 feet long by 20 feet wide. The geophysical survey determined the distance between the south and center trench is approximately 20 feet and the distance between the center and north trench is approximately 15 feet. The depth of waste material was not determined from the geophysical survey, however, Department files indicate the waste was deposited in 10-foot deep trenches.

The geophysical survey located one area (anomaly A-4) of buried metal debris not positioned within, or immediately adjacent to, the disposal trenches. Anomaly A-4 is located near the south west corner of the southern disposal trench. A test pit excavated in this location confirmed the presence of foundry sand and refractory brick (w/ iron deposits) in the 2 to 5 foot bgs interval. This waste is consistent with the waste type approved for disposal in the landfill.

5.2 Integrity of the Leachate Collection System

A third objective of the site characterization investigation was to evaluate the integrity of the existing leachate collection system including piping, manholes and collection tank. During initial site inspections, the Department observed a significant accumulation of sediment in the three leachate manholes, as well as, suspected impedance of leachate flow into and out of the manholes. Additional investigation also confirmed several feet of sediment accumulation in the bottom of the leachate tank.

The Department arranged for the removal of sediment from the leachate collection tank and manholes, as well as, limited high pressure leachate pipe flushing. This work confirmed that sediment laden piping and manholes were partially blocking the flow of leachate out of the disposal trenches. No permanent blockages were encountered during the flushing activities. Visual inspection of the inside of the leachate collection tank and manholes indicate these structures have not significantly deteriorated.

5.3 Cover Soil Investigation

A fourth objective of this site characterization investigation was to evaluate the soil type, thickness and permeability of existing cover soils over each disposal trench. Split spoon sampling was used to determine the type and depth of cover soil over each trench. Shelby tube samples were used to determine cover soil permeability and particle size distribution. The survey locations of the shelby tube samples are include on the site survey drawing in Appendix B. The approximate locations of the shelby tube samples are included on a simplified site drawing in Figure 3.

The split spoon samples indicate that the cover material over each trench is composed of reworked native soil including brown clayey silt, trace shale, trace wood and trace sand. Sampling was terminated when waste material was encountered. At each location, waste material consisted of tan/grey/black sands with no significant odor (See photo included in Field Inspection Report dated November 22 thru 30, 2006 in Appendix A). Approximately 4.5 feet of cover soil exists at the north trench sample location, approximately 4.2 feet at the center trench sample location and approximately 2.0 feet at the south trench sample location. Split spoon sample logs are included in Appendix D.

The laboratory tested permeability of shelby tube sample ST-N was 3.62×10^{-8} cm/s. This was the only tube sampled for permeability due to significant sample compaction while driving the tubes. It is estimated that soil in the tube compacted to approximately 75% of its original size. Significant sample compaction during collection can result in large variances between laboratory tested and in-place soil permeability. However, the very low laboratory tested permeability implies in place soil of relatively low permeability. The laboratory permeability

test report is included in Appendix G.

A particle size distribution analysis was also completed on soil collected in shelby tube sample ST-N. The particle size distribution report (included in Appendix G) indicates the sample contained 30.8% clay, 39.9% silt, 16.7% sand and 12.6% gravel by weight. This high percentage of clay and silt is characteristic of lower permeable soils.

5.4 Groundwater Flow Direction

A fifth objective of the site characterization investigation was to determine the groundwater flow direction. Determining groundwater flow direction allows differentiation between monitoring wells installed hydraulically up gradient and down gradient of the disposal trenches. This aides in assessing groundwater quality impacts associated with the waste disposal trenches. It also aides in determining potential down gradient receptors such as residences, farms, commercial building, sensitive ecosystems, etc.

The Department utilized water level data collected from MW-1 thru MW-5 to determine groundwater flow direction. Table 3, 'Well Gauging Data', includes water elevation data collected on December 6 and December 20, 2006 and January 12, 2007. Figures 4, 5 and 6 depict groundwater contour maps and flow directions associated with each set of gauging data. As shown, groundwater flows in a south-south easterly direction, consistent with the ground elevation contours. As shown on Figure 2, 'Site Aerial Map', the nearest resident to the site is located approximately 1,000 feet south west of the site and, therefore would not be a probable receptor of groundwater emanating from this site.

5.5 Waste Material and Leachate Characterization

A sixth objective of the site characterization investigation was to characterize the waste material disposed in the trenches and the leachate generated by this waste material.

Waste Material

As previously stated, the Department decided not to intrusively investigate the disposal trenches to avoid compromising the integrity of the trenches. Therefore, samples of waste material were not collected directly from the trench. However, a sample of foundry sand (sample 'Foundry Sand') was obtained from the waste material excavated while investigating geophysical anomaly A4. This foundry sand waste was analyzed for TAL metals (method 6010/7471), TCL semivolatiles (method 8270), PCBs (method 8082) and total recoverable phenolics (method 9066). A summary of the 'Foundry Sand' analytical results is included in

Table 1, 'Sediment/Waste Analytical Data Summary Table'. The laboratory analytical data sheets are included in Appendix F.

The foundry sand contained elevated levels of total phenolics (37.3 mg/kg), phenol (12.0 mg/kg) and Chromium (183 mg/kg). Copper (59.8 mg/kg) and Nickel (68.8 mg/kg) were also slightly elevated when compared to typical eastern united states soil background concentrations. Low levels of several semi-volatile compounds and PCBs were detected.

Leachate

Three leachate samples were collected over the course of the investigation. Two samples were collected prior to leachate pipe flushing and sediment removal activities, including one sample from the leachate collection tank (sample 'Tank') and one sample from the center manhole (sample 'MH-2'). Total phenolics were detected in both the 'Tank' sample (0.015 mg/l) and the MH-2 sample (0.014 mg/l). The concentration of iron in the 'MH-2' sample (444 mg/l) exceeded the concentration of iron in the 'Tank' sample (3.8 mg/l). This disparity in iron concentrations can be attributed to the relatively stagnant water conditions and iron oxide deposits present in the manholes prior to pipe flushing. Manganese and aluminum were slightly elevated above New York State Ambient Water Quality Standards and Guidance Values (AWQSGVs) as provided in the NYSDEC Division of Water Technical and Operational Guidance Series (1.1.1) (comparison of leachate concentrations to AWQSGVs is provided strictly for the purpose of providing a comparison to determine potential contaminants of concern). A summary of all leachate analytical results is included in Table 2, 'Leachate/Surface Water/Groundwater Analytical Data Summary Table'. The laboratory analytical data sheets are included in Appendix F.

One leachate sample was collected from the south manhole (sample 'South Manhole') after pipe flushing and sediment removal. Slightly elevated concentrations of iron and manganese detected the 'South Manhole' sample (3.8 mg/l and 0.46 mg/l, respectively) were consistent with concentrations detected in the leachate 'tank' sample, collected prior to flushing activities. Total phenolic concentrations in the 'South Manhole' sample (0.050 mg/l) collected after flushing, were higher than total phenolic concentrations in the leachate samples collected prior to pipe flushing. The increased phenolic concentrations in the post flushing leachate sample may be attributed to increased leachate flow from the trenches.

5.6 Sediment, Surface Water and Groundwater Characterization

The final objective of the site characterization was to identify and characterize any soil sediment, surface water or groundwater that is suspected of potential impact from foundry waste contaminants. The (9) direct push borings and (5) drilled borings completed on site did not reveal any signs of soil contamination, therefore, no soil samples were collected for analysis.

The pond was identified as the immediate down gradient receptor of leachate and sediment generated by the disposal trenches. Samples of the pond water and pond sediment were collected for analysis. Groundwater immediately down gradient of the landfill was identified as being potentially impacted. Groundwater immediately surrounding the leachate tank is potentially impacted from overflowing leachate.

Pond Sediment

A composite sample was collected from the top 4-inches of sediment in the pond (sample 'Pond Sediment'). The sediment was analyzed for environmentally persistent compounds including TAL metals (method 6010/7471) and PCBs (method 8082). PCBs were not detected in the sample. Arsenic (15.1 mg/kg), nickel (25.8 mg/kg) and zinc (65.2 mg/kg) were slightly elevated above typical eastern background soil concentrations. A summary of the 'Pond Sediment' analytical results is included in Table 1, 'Sediment/Waste Analytical Data Summary Table'. The laboratory analytical data sheets are included in Appendix F.

Concentrations of arsenic, nickel and zinc were also detected in the sediment sample collected directly from the leachate tank. Therefore, elevated concentrations of these parameters in the pond sediment may be attributed to impacts from the foundry waste.

Pond Water

A grab sample of surface water was collected near the outlet of the pond (sample 'Pond Water'). The pond water was analyzed for TAL metals (method 6010/7471) and total recoverable phenolics (method 9066). No metals exceeded the AWQSGVs for surface water. Total recoverable phenolics were elevated at 0.026 mg/l. A summary of the 'Pond Water' analytical results is included in Table 2, 'Leachate/Surface Water/Groundwater Analytical Data Summary Table'. The laboratory analytical data sheets are included in Appendix F.

Concentrations of total recoverable phenolics in the pond water is most likely due to impacts associated with leachate discharge to the pond.

On-site Groundwater

Groundwater was sampled from monitoring wells hydraulically up gradient of the disposal trenches (MW-2 and MW-3) and hydraulically down gradient of the disposal trenches (MW-1, MW-4 and MW-5). Groundwater was also sampled immediately adjacent to the leachate tank at temporary monitoring well B-6. Monitoring wells MW-2, MW-3, MW-5 and B-6 were sampled for TAL metals (method 6010/7471) and total recoverable phenolics (method 9066). Monitoring wells MW-1 and MW-4 were sampled for TAL metals (method 6010/7471),

TCL semivolatiles (method 8270), PCBs (method 8082) and total recoverable phenolics (method 9066). A summary of all groundwater analytical results is included in Table 2, 'Leachate/Surface Water/Groundwater Analytical Data Summary Table'. The laboratory analytical data sheets are included in Appendix F.

Pesticides, herbicides, SVOCs and PCBs were not detected in down gradient monitoring wells MW-1 and MW-4. The volatile compound 1,1-dichloroethane was detected in MW-4 at a concentration of 1.1 ug/l, which is below the AWQSGVs for a groundwater drinking supply. No other VOCs were detected in down gradient wells MW-1 and MW-4.

Iron and manganese concentrations were elevated in up gradient wells MW-2 at 12.7 mg/l and 0.55 mg/l, respectively. An area of surface disposed metal debris adjacent to MW-2 may be contributing to high iron concentrations in this well. Iron and manganese concentrations are also elevated in down gradient wells MW-1 (Fe-1.7 mg/l; Mn-0.37 mg/l), MW-4(Fe-2.1 mg/l; Mn-1.6 mg/l) and MW-5(Fe-2.9 mg/l; Mn-0.54 mg/l). Sodium is slightly elevated in MW-4 (28.9 mg/l).

Several elevated concentrations of metals were detected in well B-6 including arsenic (0.052 mg/l), iron (64.7 mg/l), magnesium (35.6 mg/l), manganese (5.5 mg/l) and sodium (41.1 mg/l). Elevated concentrations of arsenic, magnesium and sodium were not detected in leachate samples, therefore, it is not expected that elevated concentration of these contaminants are due to leachate impacts. Elevated iron and manganese may be associated with leachate impacts.

Total phenolic concentrations were elevated at all groundwater sampling locations. In general, total phenolic concentrations in up gradient wells MW-2 (0.009 mg/l) and MW-3 (0.008 mg/l) were less than or equal to concentrations in down gradient wells MW-1 (0.017 mg/l), MW-4 (0.006 mg/l) and MW-5 (0.040 mg/l). Total phenolics were also elevated in well B-6 (0.03 mg/l).

Iron was elevated at all groundwater sampling locations. The highest concentrations of iron were detected in monitoring wells MW-2 (12.7 mg/l) and B-6 (64.7 mg/l). The elevated iron concentrations in up gradient well MW-2 may be attributed to an adjacent surface disposal area of abandoned metal debris. The elevated iron concentration in B-6 may be associated with leachate impacts. Slightly elevated iron and manganese concentrations in the remaining wells may be attributed to slight variations in sample turbidity common in unfiltered groundwater samples. Although all metals samples were noted to be clear, turbidity testing was not completed. Elevated total phenolic concentrations are most likely due to impacts associated with the foundry waste disposal trenches.

Residential Water Samples

Water samples were collected from two residences that utilize groundwater springs located south and southwest of the landfill as their primary source of water. Although gauging data demonstrates on-site groundwater flows to the south/southeast, off-site surface topography indicates groundwater flow may shift to the south west. These two residences are the nearest potential receptors of groundwater contaminates from the landfill.

The 'Amish Home' and '5361 Reed Rd' samples were non detect for volatiles, semivolatiles, herbicides, PCBs and total recoverable phenolics. The pesticide gamma-chlordane was detected in the 'Amish Home' sample at an estimated concentration of 0.029 ug/l, which is below the NYS AWQSGV of 0.05 ug/l for groundwater as a source of drinking water. No pesticides were detected in the '5361 Reed Rd' sample. Metal concentrations in both samples were below NYS AWQSGVs for groundwater as a source of drinking water.

The number of total coliform in the 'Amish Home' and '5361 Reed Rd' samples were TNTC/100 ml (To Numerous To Count) and 42/100 ml, respectively. Fecal Coliform counts were <2/100 ml in both samples. E. Coli tested positive in the '5361 Reed Rd', however, it should be noted that the 6 hour holding time for E. Coli analysis was exceeded. E. Coli was not analyzed in the 'Amish Sample'.

The analytical data indicates landfill contaminates in the groundwater have not impacted either residential water supply spring.

6.0 Conclusions

The Reed Road Landfill consists of three parallel foundry waste disposal trenches approximately 20 feet wide by 400 feet long. The trenches were installed in native soil with no engineered containment system. Three manholes are positioned in line with the disposal trenches and serve to transfer leachate from the lateral leachate collection pipes to the header pipe. The header pipe discharges into a concrete storage tank which overflows into a pond. The pond discharges to a drainage ditch which flows off-site.

The geologic stratigraphy of the site consists of a layer of topsoil, underlain by 3 to 9 feet of silty clay, underlain by weathered shale. Groundwater was consistently encountered in the upper portion of the weathered shale.

The cover soils above the disposal trenches consist of 2.0 to 4.5 feet of reworked native clayey silt soils. It is evident that the cover soils were not aggressively compacted during placement, however, the high clay and silt content is consistent with lower permeable soils.

In general, waste material is confined within or directly adjacent to the disposal trenches. In one location, a discrete area of buried foundry sand and refractory brick was identified approximately 20 feet beyond the south west corner of the southern disposal trench. No other buried waste material or contaminated soil was identified during this investigation.

Limited testing of the foundry sand waste identified elevated concentrations of phenol (12.0 mg/kg), total phenolics (37.3 mg/kg), chromium (183 mg/kg) and nickel (68.8 mg/l). Results of leachate testing identified elevated concentrations of total phenolics (0.014 - 0.050 mg/l) and iron (3.8 - 444 mg/l).

Pond surface water and sediment have been impacted by continuous leachate flow to the pond. The pond water contains elevated concentrations of total phenolics (0.026 mg/l), which exceeds the New York State Ambient Water Quality Standards and Guidance Value (AWQSGV) for surface water esthetics for total phenolics (0.001 mg/l). Concentrations of Arsenic, Nickel and Zinc in the pond sediment slightly exceed typical eastern background soil concentrations, however, the pond sediment is not considered significantly impacted.

Groundwater concentrations of iron (0.31 - 64.7 mg/l), manganese (0.37 - 5.5 mg/l), sodium (28.9 - 41.1 mg/l) and total phenolics (0.006 - 0.03 mg/l) exceed AWQSGVs. Concentrations of iron, magnesium and sodium are consistent with naturally occurring hard water, except adjacent to the leachate tank where overflowing leachate has impacted groundwater quality. Groundwater in the vicinity of the landfill has been impacted by total phenolic compounds associated with the foundry waste. These impacts do not pose a significant threat to the groundwater in the area.

The nearest current potential water supply receptors, two residential use groundwater springs, have not been impacted by landfill contaminates.

7.0 Recommendations

Based on the results of this investigation, the reed road landfill site does not currently pose a significant threat to the environment.

Routine maintenance of the leachate collection system is required to ensure esthetic (especially visual color) and contaminant impacts to surface and ground waters are mitigated.

Figures

Figure 1

Site Vicinity Map Reed Road Landfill

Figure 2 Site Aerial Map Reed Road Landfill

Figure 3 Site Map Reed Road Landfill

Figure 4 Groundwater Flow Direction December 6, 2006

Figure 5 Groundwater Flow Direction December 20, 2006

Figure 6 Groundwater Flow Direction January 12, 2007

Tables

			Sample Indentification (Sample Date)				
			Tank	Foundry	Pond		
	Parameter ⁽¹⁾	Typical Soil	Sediment	Sand	Sediment		
		Background ⁽²⁾	(07/24/06)	(12/07/06)	(12/19/06)		
	Units>	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)		
	Aluminum	33000	12,800	1,600	13,300		
	Arsenic	3 - 12	29.8 ⁽³⁾	4	15.1		
	Barium	15 - 600	182	16.4	100		
	Beryllium	0 - 1.75	0.67	ND ⁽⁴⁾	0.77		
	Cadmium	0.1 - 1	0.61	ND	ND		
	Calcium	130-35,000	3,070	557	1,700		
M	Chromium	1.5 - 40	15.9	183	15.3		
E	Cobalt	2.5 - 60	9.1	4	13.1		
Т	Copper	1 - 50	22.2	59.8	17.7		
A	Iron	2,000 - 550,000	81,800	37,100	31,200		
L	Lead	4 - 61	7.3	5.2	14.6		
S	Magnesium	100 - 5,000	4,010	516	4,190		
	Manganese	50 - 5,000	2,780	449	571		
	Mercury	0.1	ND	0.066	ND		
	Nickel	0.5 - 25	28.2	68.8	25.8		
	Potassium	8,500 - 43,000	2,290	315	1,320		
	Sodium	6,000 - 8,000	474	ND	ND		
	Vanadium	1 - 300	17.1	12.6	16.9		
	Zinc	9 - 50	59.8	14.6	65.2		
	Units>	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)		
	2-Butanone		18 (J*) ⁽⁵⁾	NA ⁽⁶⁾	NA		
	Acetone		78 (B*) ⁽⁷⁾	NA	NA		
V	Carbon Disulfide		4 (J)	NA	NA		
0	Isopropylbenzene		9 (J)	NA	NA		
С	Methylene Chloride		22 (B)	NA	NA		
	Toluene		70 (B)	NA	NA		
	Total Xylenes		12 (J)	NA	NA		
	Trichlorofluoromethane		4 (BJ)	NA	NA		
_	Units>	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)		
S	2-Methylnaphthalene		40 (J)	1,600 (J)	NA		
V	4-Methylphenol		360 (J)	ND	NA		
0	Flouranthene		21 (J)	ND	NA		
С	Naphthalene		58 (J)	3,700 (J)	NA		
	Phenol		ND	12,000	NA		
РСВ	Units>	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)		
	Aroclor 1242		ND	5.6 (J)	ND		
	Units>	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)		
Pesticides	4,4'-DDT		1.8 (J)	NA	NA		
	alpha-BHC		1.6 (J)	NA	NA		
Phenols	Units>	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)		
	Total Phenolics		ND	37.3	NA		

Table 1: Sediment/Waste Analytical Data Summary Table

⁽¹⁾ Parameters that were not detected in at least one sample are not included in summary table.

Refer to laboratory analytical data sheets (Appendix F) for a full list of parameters analyzed.

⁽²⁾Typical Eastern United States Soil Background Concentrations as referenced from NYSDEC Technical and Administrative

Guidance Memorandum #4046, 'Determination of Soil Cleanup Objectives and Cleanup Levels'.

⁽³⁾ Values in red exceed TAGM and typical eastern United States soil background values.

⁽⁵⁾ Data qualifier (J) indicates an estimated value. Values is less than the sample quantification limit but

greater than zero.

⁽⁶⁾ NA - Not Analyzed.

⁽⁷⁾ Data qualifier (B) refers to a compound found in the associated blank, as well as the sample.

⁽⁴⁾ ND - Not Detected.

				Sample Identification (Sample Date)									
-				Leachate Surface Water Upgradient V				nt Wells ⁽¹⁾	ells ⁽¹⁾ Downgradient Wells ⁽¹⁾				
	Denemeter ⁽²⁾	AM	VQSGV ⁽³⁾	Tank	MH-2 ⁽⁴⁾	South MH	Pond Water	MW-2	MW-3	MW-1	MW-4	MW-5	B-6
	Parameter	Surface Water	Groundwater	(07/17/06)	(07/17/06)	(12/19/06)	(12/19/06)	(12/20/06)	(12/20/06)	(12/20/06)	(12/20/06)	(12/20/06)	(12/19/06)
	Units>	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)
	Aluminum	0.1	None Provided ⁽⁵⁾	ND ⁽⁶⁾	1.5 ⁽⁷⁾	ND	ND	12	0.31	2.6	3	4.1	2.2
	Arsenic	0.050	0.025	ND	0.045	ND	ND	ND	ND	ND	ND	ND	0.052
	Barium	1.0	1.0	0.084	0.55	0.090	0.072	0.2	0.042	0.046	0.35	0.16	0.24
	Cadmium	0.005	0.005	ND	0.0057	ND	ND	ND	ND	ND	ND	ND	ND
м	Calcium	None Provided	None Provided	32.5	17.9	33.6	36.4	23.2	5.2	25.9	38	52	97.4
F	Chromium	0.05	0.05	ND	ND	ND	ND	0.012	ND	0.004	ND	0.0043	ND
T	Cobalt	0.005	None Provided	ND	ND	ND	ND	0.017	ND	ND	ND	ND	0.0044
Δ	Iron	0.3 ⁽³⁾	0.3 ⁽³⁾	3.8	444	6.2	0.68	12.7	0.31	1.7	2.1	2.9	64.7
î	Lead	0.05	0.025	ND	0.0074	ND	ND	0.006	ND	ND	ND	ND	ND
S S	Magnesium	35	35	10.9	4.4	10.6	14.8	10.6	3	11.4	21.3	24.3	35.6
0	Manganese	0.3 ⁽³⁾	0.3 ⁽³⁾	0.46	0.89	0.42	0.13	0.55	0.08	0.37	1.6	0.54	5.5
	Nickel	0.1	0.1	ND	ND	ND	ND	0.013	ND	0.011	ND	ND	ND
	Potassium	None Provided	None Provided	2.6	2.2	2.5	3.3	9.2	1	2.9	4.2	6.6	25.8
	Sodium	None Provided	20	10.5	2.5	10.3	11.3	7.2	2.7	9	28.9	10.8	41.1
	Vanadium	0.014	None Provided	ND	ND	ND	ND	0.015	ND	ND	ND	0.0054	ND
	Zinc	2	2	ND	0.019	ND	ND	0.033	ND	ND	0.015	0.011	ND
	Units>	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)
v	1,1-Dichloroethane	5	5	3	ND	2.8	NS ⁽⁸⁾	NS	NS	ND	1.1	NS	NS
o	Acetone	50	50	4.8 (J) ⁽⁹⁾	ND	ND	NS	NS	NS	ND	ND	NS	NS
Ċ	Benzene	1.0	1.0	ND	ND	0.54 (J)	NS	NS	NS	ND	ND	NS	NS
5	Isopropylbenzene	5	5	ND	ND	2.4	NS	NS	NS	ND	ND	NS	NS
C C	Methylene Chloride	5	5	ND	6.9	ND	NS	NS	NS	ND	ND	NS	NS
	Total Xylenes	5	5	1.0 (J)	ND	4.6	NS	NS	NS	ND	ND	NS	NS
	Units>	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)
Herbicides	2,4,5-TP (Silvex)			ND	0.29 (J)	ND	NS	NS	NS	ND	ND	NS	NS
	2,4-D			ND	0.31 (J)	ND	NS	NS	NS	ND	ND	NS	NS
Phonols	Units>	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)
Thenois	Total Phenolics	0.001 ⁽³⁾	0.001 ⁽³⁾	0.015	0.014	0.050	0.026	0.009	0.008	0.017	0.006	0.040	0.03

Table 2: Leachate/Surface Water/Groundwater Analytical Data Summary Table

(1) Refers to groundwater monitoring wells installed Hydraulically upgradient and downgradient of the disposal trenches as per guaging data collected on 12/06/06, 12/20/06 and 01/12/07.

(2) Parameters that were not detected in at least one sample are not included in summary table. Refer to laboratory analytical data sheets (Appendix F) for a full list of parameters analyzed.

⁽³⁾ New York State Ambient Water Quality Standards and Guidance Values as provided in the NYSDEC Division of Water Technical and Operational Guidance Series (1.1.1). The values provided in this table are drinking water standards/guidance for surface and groundwater sources,

with the exception of iron, manganese and total phenolics. No drinking source value was provided for these parameters, therefore, an aesthetic water quality standard/guidance value is included in the table.

⁽⁴⁾ MH-2 (manhole 2) is also referred to as the 'center' manhole.

⁽⁵⁾ No AWQSGV was provided in the Division of Water Technical and Operational Guidance Series (1.1.1).

(6) ND - Not Detected.

(7) Values in red exceed the AWQSGV for type of water source. Leachate and pond water were compared to surface water AWQSGVs. Well data was compared to groundwater AWQSGVs.

(8) NS -Not Sampled.

⁽⁹⁾ Data qualifier (J) indicates an estimated value. Values is less than the sample quantification limit but greater than zero.

Table 3: Well Gauging Data

	Elovati	on*	Well Gauging Data**							
	Elevati	on	12/06/06		12/2	20/06	01/12/07			
	Ground Surface	Inner Casing	Depth to Water	Water Elevation	Depth to Water Water Elevation		Depth to Water	Water Elevation		
MW-1	1955.62	1958.68	8.35	1950.33	10.17	1948.51	8.07	1950.61		
MW-2	1968.5	1971.49	13.40	1958.09	16.09	1955.40	15.20	1956.29		
MW-3	1968.84	1972.18	15.20	1956.98	15.20	1956.98	14.83	1957.35		
MW-4	1960.58	1963.66 10.20 1953.46 11.21 1952.45		1952.45	9.92	1953.74				
MW-5	1957.21	1960.34	9.60	1950.74	10.04	1950.30	9.72	1950.62		

*Elevation and well gauging data recorded in units of feet. Depth to water measured from top of inner casing to water surface.

**12/06/06 and 12/20/06 well gauging data collected by Department. 01/12/07 data collected by Empire GeoServices.
Appendix A

Field Inspection Reports

New York Department of Environmental Conservation Division of Environmental Remediation Region 9 Office-Buffalo

DAILY FIELD REPORT

Date:	November 3, 2005
Site Name:	Reed Road Landfill
Site Number:	902018
Location:	Reed Road, Friendship, Allegany County
Project Manager:	Chad Staniszewski
Project Engineer:	
Contractor:	
Job Phone:	

Weather Conditions:

Description of Work Performed:

On-site with Dennis Weiss from the DSHM, This was a preliminary site visit to identify site features including terrain, structures, noticeable areas of dumping, etc. Dennis has previous knowledge of the site since it operated as a permitted solid waste disposal facility in the 1980s. The site consists mainly of open fields with hedgerows along the southern and western property boundaries. Exact site property boundaries are not known at this time. Two elevated mounds were observed in the area where foundry waste was deposited in three parallel trenches. Located three manholes that apparently transfer leachate from lateral collection piping in each trench to the main header pipe. The header pipe terminates inside a concrete collection tank which discharges into a small pond. The pond flows into a ditch that drains off-site.

Miscellaneous surface dumping of old vehicle gas tanks, tires/rims, barrels, vehicle parts, etc. was observed north of the landfill disposal area. Also, observed several small areas where it appeared tires had been burned. It is not clear if these areas are within the property boundary. It could not be determined if below ground dumping exists in these areas.

Two old monitoring wells were observed. One well was located just south of the existing disposal trenches and the second well was located several hundred feet east of the disposal trenches. The integrity of both wells is not known, however, the concrete well casing on the well east of the disposal area has heaved out of the ground.

Items of Concern:

HEALTH & SAFETY:

Is the PPE in conformance with the specifications: Are atmospheric monitoring results at acceptable levels?

SITE VISITORS:

CONTRACTORS INFORMATION

Equipment:

Work Force:

Inspector's Name: Chad Staniszewski Date: November 3, 2005

Distribution:

New York Department of Environmental Conservation Division of Environmental Remediation Region 9 Office-Buffalo

FIELD INSPECTION REPORT

Date:	05/03/06
Site Name:	Reed Road Landfill
Site Number:	hw90218
Location:	Town of Friendship
Project Engineer:	Chad Staniszewski, NYSDEC - Buffalo
Contractor:	Empire GeoServices
SubContractor:	Advanced Geological Services (AGS)

Weather Conditions: Sunny - 65F

Purpose of Inspection: AGS was on-site to complete GeoPhysical Survey

Observations:

- AGS was on-site to complete a GeoPhysical survey in the area encompassing the three trenches, manholes and tank. One worker was on-site walking the area .
- I walked the area encompassing the three trenches, manholes, tank and pond. No surface seeps or staining was observed on the ground except for staining on top of and adjacent to the south end of the tank. The reddish stained area resulted from liquid inside the tank discharging through the southern manway on top of the tank. It does not appear that there is a direct discharge from the tank to the pond, rather liquid discharges out of the top of the tank manway runs along the ground several feet into the pond. There was no odor associated with the staining or liquid in the tanks.
- At the time of the inspection, there was no liquid exiting the tank and the pond water was clear to slightly cloudy due to silt in the pond.
- Walked the discharge drainage ditch from the pond heading east. No discoloration of the ditch was noted.
- There was stagnant reddish colored liquid in the three manholes with what appeared to be an iron crust on top of the water.
- Walked the 'farm dump' area directly north of the surveyed site area (this area is not part of the site). Several parts of car and truck bodies, multiple rusted vehicle gas tanks and tires and several old rusted drums are scattered on the ground surface. There was no evidence of subsurface disposal. There were no stained or bare areas except in several locations where it appears tires have been burned.

Date:	September 27, 2006
Site Name:	Reed Road Landfill
Site Number:	hw902018
Location:	Reed Road, Town of Friendship
Project Engineer:	Chad Staniszewski, NYSDEC - Buffalo
Contractor:	Empire GeoServices

Weather Conditions: Partly Cloudy; Approx. 65°F

Purpose of Inspection: Observe direct push borings and 1-inch monitoring well installation in the vicinity of the landfill.

Observations:

- DEC on-site 9:30 am; off-site 3:00 pm
- Contractor on-site 10:00 am; Off-site 3:15 pm.
- Equipment: (1) Simco 2400 SK-1 Direct Push Sampler
- Workers (1) Operator
 - (1) Engineer
 - (1) Project Manager (part of day)
- Installed a total of (5) borings and (1) temporary monitoring well. Boring B1, B2 and B3 were installed on the north side of the landfill. Borings B4 and B5 were installed on the south side of the landfill. A temporary 1-inch monitoring well was installed in boring B5 when a layer of stone/gravel was encountered.
- The contractor's engineer completed boring logs. Similar native soils were encountered in each boring: Saturated topsoil to a depth of 1.0 1.5 feet underlain by hard dry silty clay with some sand/gravel to a depth of 7.0 9.5 feet. Borings were terminated at refusal approximately 7.0 9.5 feet bgs in weathered shale.
- Water was encountered in boring B-5 in a lens of stone/gravel. A well was installed in this boring.
- No soil samples were collected. Only native material was encountered with no evidence of contamination (background PID readings, no staining, no odor, etc)

Date:	October 4,, 2006
Site Name:	Reed Road Landfill
Site Number:	hw902018
Location:	Reed Road, Town of Friendship
Project Engineer:	Chad Staniszewski, NYSDEC - Buffalo
Contractor:	Empire GeoServices

Weather Conditions: Cloudy/Rain/Passing Thunderstorms; Approx. 55°F

Purpose of Inspection: Observe direct push borings and 1-inch monitoring well installation in the vicinity of the landfill, leachate manholes, leachate tank and pond.

Observations:

- DEC on-site 8:30 am; off-site 3:30 pm
- Contractor on-site 9:30 am; Off-site 3:45 pm.
- The contractor brought the wrong keys for the sampler and therefore, work was delayed until noon. Also, drilling was terminated during period of passing thunderstorms due to lightening.
- Equipment: (1) Simco 2400 SK-1 Direct Push Sampler
- Workers (1) Operator

(1) Engineer

- Installed a total of (4) borings and (2) temporary monitoring wells. Boring B6 was completed adjacent to the leachate storage tank, boring B7 was completed through the pond dike (south side of pond), boring B8 was completed east of manhole 2 and boring B9 was completed west of the landfill. Temporary 1-inch monitoring wells were installed in borings B6 and B7 where water was encountered.
- The contractor's engineer completed boring logs. Boring B6 included 1.0-1.5 feet of topsoil underlain by wet silty clay material assumed to be used for tank backfill. A monitoring well was installed at this location. Boring B7 included 1.0-1.5 feet of topsoil underlain by dry silty clay, except for a thin lens of wet gravel. A monitoring well was installed at this location, however, due to a partial collapse of the boring wall, the sand pack could not be installed to the bottom of the well. Borings B8 and B9 contained material similar to the native soils encountered elsewhere around the perimeter of the landfill: Saturated topsoil to a depth of 1.0 1.5 feet underlain by hard dry silty clay with some sand/gravel to a depth of 7.0 9.5 feet. Borings were terminated at refusal approximately 7.0 9.5 feet bgs in weathered shale.
- No soil samples were collected. No evidence of contamination was observed.

Distribution: M. Doster/file

Date:	October 11, 2006
Site Name:	Reed Road Landfill
Site Number:	hw902018
Location:	Reed Road, Town of Friendship
Project Engineer:	Chad Staniszewski, NYSDEC - Buffalo
Contractor:	No contractor on-site

Weather Conditions: Steady Rain; Approx. 50°F

Purpose of Inspection: Developed temporary 1-inch monitoring wells installed on September 27 and October 4, 2006.

Observations:

- Developed the (3) temporary 1-inch monitoring wells installed in direct push borings B5, B6 and B7. Well B5 was installed in native material on the south of the landfill. Well B6 was installed in the silty clay backfill material around the leachate tank. Well B7 was installed through the pond dike on the south side of the pond.
- A MasterFlex Peristaltic pump was used to purge the wells.
- The following table contains well development information:

Well	Depth (ft) (Top of Casing to water)	Depth (ft) (Top of Casing to Bottom of Well ()	Amount of water Purged (gallons)	Notes
В5	*Before: 8.06 After: 8.35	12.31	5	Start Very Turbid End Clear
B6	Before: 2.80 After: 6.00	14.25	5	Start Turbid End Slightly Turbid
Β7	Before: 7.45 After: 13.60	13.86	0.5	**Very Turbid Throughout Pumping

*Refers to before and after purging wells.

**Due to a partial well wall collapse during installation, the sand pack could not be installed to the bottom of well.

Distribution: M. Doster/file

New York Department of Environmental Conservation Division of Environmental Remediation Region 9 Office-Buffalo

DAILY FIELD REPORT

Date:	November 3, 2005
Site Name:	Reed Road Landfill
Site Number:	902018
Location:	Reed Road, Friendship, Allegany County
Project Manager:	Chad Staniszewski
Project Engineer:	
Contractor:	
Job Phone:	

Weather Conditions:

Description of Work Performed:

On-site with Dennis Weiss from the DSHM, This was a preliminary site visit to identify site features including terrain, structures, noticeable areas of dumping, etc. Dennis has previous knowledge of the site since it operated as a permitted solid waste disposal facility in the 1980s. The site consists mainly of open fields with hedgerows along the southern and western property boundaries. Exact site property boundaries are not known at this time. Two elevated mounds were observed in the area where foundry waste was deposited in three parallel trenches. Located three manholes that apparently transfer leachate from lateral collection piping in each trench to the main header pipe. The header pipe terminates inside a concrete collection tank which discharges into a small pond. The pond flows into a ditch that drains off-site.

Miscellaneous surface dumping of old vehicle gas tanks, tires/rims, barrels, vehicle parts, etc. was observed north of the landfill disposal area. Also, observed several small areas where it appeared tires had been burned. It is not clear if these areas are within the property boundary. It could not be determined if below ground dumping exists in these areas.

Two old monitoring wells were observed. One well was located just south of the existing disposal trenches and the second well was located several hundred feet east of the disposal trenches. The integrity of both wells is not known, however, the concrete well casing on the well east of the disposal area has heaved out of the ground.

Items of Concern:

HEALTH & SAFETY:

Is the PPE in conformance with the specifications: Are atmospheric monitoring results at acceptable levels?

SITE VISITORS:

CONTRACTORS INFORMATION

Date <u>:</u>	November 13, 2006
Site Name:	Reed Road Landfill
Site Number:	hw902018
Location:	Reed Road, Town of Friendship
Project Engineer:	Chad Staniszewski, NYSDEC - Buffalo
Contractor:	Green Environmental

Weather Conditions: Partly Cloudy, 50°F

Purpose of Inspection: Observe the removal of accumulated sediment from the (3) manholes and the flushing of the leachate header and lateral lines.

Observations:

- DEC on-site 9:00 am; off-site 3:00 pm
- Contractor on-site 9:00 am; off-site shortly after 3:00 pm (assumed)
- Equipment: (1) High Suction Vac Truck (1) Tow Behind Pipe Flushing Unit
- Equipment failure prevented Green Environmental from completing the required work on a previous day. Green is back on-site to complete the work. Previously, Green pumped down the leachate from the leachate holding tank and removed the sediment from the bottom of the leachate tank. According to Empire GeoServices, who oversaw Green's initial work at the site, approximately 4 feet of sediment was removed from the bottom of the tank. Green transported the leachate/sediment to their facility in Niagara Falls for segregation and dispose of the wastes.
- Green had difficulty accessing the site with the vac truck due to soft access road conditions. The access road was rutted during Green's previous work at the site. The existing ruts and recent wet weather had softened the road. The vac truck got stuck and Green solicited local businesses for a tractor and excavator to free the vac truck and gain access to the site. The Department agreed to pay for the tractor/excavator (assumed cost approximately \$100.00).
- The leachate tank had filled to capacity since Green previously removed leachate from the tank, and therefore, Green needed to remove approximately 3,500 gallons of leachate to finishing the flushing work.
- Green removed approximately 3 to 4 feet of sediment from each of the three manholes.

- Green flushed the header pipe between each manhole and the header pipe between the southern most manhole and the leachate tank.
- Green indicated that they were not contracted to flush the lateral pipes, however, the Department indicated that Empire GeoServices (who subcontracted Green Environmental) was instructed by the Department to flush the lateral pipes. Although Green was not equip to flush the entire length of the lateral pipe (insufficient hose and water), they did flush the following lengths of lateral pipe: Lateral from Trench 1 (southern trench) was flushed 100 feet from Manhole 1; Lateral from Trench 2 (middle trench) was flushed 75 feet from Manhole 2; Lateral from Trench 3 (northern trench) was flushed 25 feet from Manhole 3. Although the full length of the lateral pipes (approx. 450 to 500 feet) were not flushed, sediment at the lower end of the pipes was removed and leachate flow into the manholes increased.

Distribution: M. Doster/file

PHOTOS

Excavator Fixing Access Road

High Suction Vacuum Truck

Removing Sediment From Manhole

Flushing Leachate Pipes

New York Department of Environmental Conservation Division of Environmental Remediation Region 9 Office-Buffalo

FIELD INSPECTION REPORT

Date:	November 22, 24, 27, 28, 29, 30 2006	
Site Name:	Reed Road Landfill	
Site Number:	hw902018	
Location:	Reed Road, Town of Friendship	
Project Engineer: Chad Staniszewski, NYSDEC - Buffalo		
Contractor:	Empire GeoServices	

Weather Conditions: Most days were partly cloudy; 45°-60°F. Some rain on November 30.

Purpose of Inspection: Empire GeoServices (Empire) was onsite to abandon (1) existing 4-inch steel cased well, install (5) 2-inch PVC monitoring wells and collect shelby tube samples from the existing landfill cover material for permeability testing.

Observations:

- Empire was on-site November 22, 24, 27, 28, 29 and 30 to complete the drilling work.
- NYSDEC was on-site November 22, 27, 28, 29 and 30 to observe the work performed.
- Empire abandoned an existing 4-inch steel cased well located at the base of the south berm of the landfill (east end). Empire over drilled the well, removed the steel casing pipe and grouted the well hole. The well was abandoned to eliminate this potential source of metals contamination in the groundwater which could effect groundwater monitoring in a new adjacent well.
- Empire used a track mounted drill rig to installed (5) 2-inch PVC groundwater monitoring wells (MW-1 thru MW-5) surrounding the perimeter of the landfill. Wells were installed in the following general locations: MW-1 and MW-4 south of the landfill, MW-2 west of the landfill, MW-3 north of the landfill and MW-5 east of the landfill (east of manhole 2). The wells were installed to a depth of approximately 20 to 25 feet bgs. Split spoon sampling was attempted below a depth of 10 feet (soil conditions were previously documented above the 10 foot depth during the previous direct push probe investigation). In general, hard weathered shale was encountered below 10 feet and split spoon sample recovery was poor. Seams of moist wet soil/weathered shale were encountered in each boring. Boring logs and monitoring well installation logs are being prepared by Empire.
- Split spoon samples were collected from the cover soil over each disposal trench (trenches 1, 2 and 3). Samples were collected from one location over each trench. Split spoon samples were collected to a depth were foundry sands were encountered. Approximately 4 to 5 feet of cover soil was encountered over trenches 2 (center trench) and 3 (north trench). Slightly less than 2-feet of cover soil was encountered over trench 1 (south trench). The

cover soils consisted of poorly compacted reworked on-site clay/silt soils. A shelby tube sample was collected from the cover soil over each trench. Depth of soil recovery in the shelby tubes (as well as the split spoon samples) was considerably less than the depth the tube was pushed. Therefore, the soil compacted in the tube, and the tested permeability may be lower than the actual soil permeability in the field. Only one shelby tube sample will be tested for permeability.

Distribution: M. Doster/file

Photos

Drilling MW-2 (West Side of Landfill)

Foundry Sand Waste In Split Spoon Sample (Trench 3)

Date <u>:</u>	December 6, 2006
Site Name:	Reed Road Landfill
Site Number:	hw902018
Location:	Reed Road, Town of Friendship
Project Engineer:	Chad Staniszewski, NYSDEC - Buffalo
Contractor:	No contractor on-site

Weather Conditions: Overcast; Approx. 20°F

Purpose of Inspection: Developed the (5) 2-inch monitoring wells installed between November 24 - November 30, 2006.

Observations:

- Developed (5) 2-inch monitoring wells installed in augered borings MW-1 thru MW-5. MW-1 and MW-4 were installed in native material on the south side of the landfill. MW-2 was installed in native material on the west side of the landfill. MW-3 was installed in native material on the north side of the landfill. MW-5 was installed in native material east of manhole 2 (east of the landfill).
- A submersible Whale Pump was used to purge the wells (5 gallons of water was manually bailed from MW-2 using a disposable bailer)
- Wells were purged on December 6 and December 7, 2006 as part of the well development (MW-4 was only bailed on December 6). On December 6, two rounds of bailing was completed to allow the wells to recharge. Only one round of bailing was completed on December 7.
- At the start of the 1st round of purging, the bottom of the well was hard in wells MW-1 and MW-4, had approximately 4 to 5-inches of soft sediment in MW- 2, 2 to 3-inches of soft sediment in MW-5 and 1 to 2-inches of soft sediment in MW-3. The bottom of all wells were noted to be hard during subsequent purging rounds (the pump discharge hose was not long enough to reach the bottom of MW-2 on 12/7/06, therefore the amount of sediment could not be estimated).
- During each round of purging, the wells were pumped dry or to the point where pumping became slow. The exception was MW-4 where recharge was sufficient to maintain an adequate pumping rate throughout purging.
- The following table contains well development information:

Well	Depth (ft) (Top of Casing to Bottom of Well)	Depth (ft) (Top of Casing to Water (before purging))	Amount of water Purged (gallons)	Visual Water Quality
MW-1	23.9	8.35	12/06/06: 1 st Round:12 gallons 2 nd Round: 7 gallons 12/07/06: 1 st Round: 8 gallons (11 well volumes total)	Clear at start of each round, quickly turning turbid brown during pumping. Finish slightly less turbid brown.
MW-2	25.0	13.4	12/06/06: 1 st Round: 10 gallons 2 nd Round: 4 gallons 12/07/06: 1 st Round: 5 gallons (10 well volumes total)	Clear at start of each round, quickly turning very turbid gray (grout??) during pumping. Finish very turbid gray.
MW-3	22.25	15.2	12/06/06: 1 st Round: 10 gallons 2 nd Round: 5 gallons 12/07/06: 1 st Round: 7 gallons (18 well volumes total)	Clear at start of each round, quickly turning turbid brown during pumping. Finish slightly less turbid brown.
MW-4	21.3	10.2	12/06/06: 1 st Round: 30 gallons 2 nd Round: 12/07/06: 1 st Round: (17 well volumes total)	Clear at start, quickly turning turbid brown during pumping. Finish much less turbid brown (cloudy appearance).
MW-5	23.5	9.6	12/06/06: 1 st Round: 7 gallons 2 nd Round: 4 gallons 12/07/06: 1 st Round: 4 gallons (7 well volumes total)	Clear at start of each round, quickly turning turbid brown during pumping. Finish slightly less turbid brown

Distribution: M. Doster/file

Date <u>:</u>	December 7, 2006
Site Name:	Reed Road Landfill
Site Number:	hw902018
Location:	Reed Road, Town of Friendship
Project Engineer:	Chad Staniszewski, NYSDEC - Buffalo
Contractor:	Empire GeoServices

Weather Conditions: Partly Cloudy; Approx. 35°F

Purpose of Inspection: Directed excavation and site clean-up work completed with a backhoe equipped with a loader bucket. These tasks included directing leachate tank overflow into the pond, investigating potential buried metal debris as identified by the geophysical survey, remove debris generated as part of the site work and remove ruts from the on-site access roads. The Department also continued the development of MWs 1 thru 5 (see Field Inspection Report dated December 6 for well development details).

Observations:

- DEC on-site 9:00 am; off-site 1:30 pm
- Contractor on-site 9:30 am; Off-site 12:30 pm.
- Equipment: (1) rubber tire backhoe w/ loader bucket
- Workers (1) Operator
- Empire excavated a small ditch to intercepted the leachate overflowing the east end of the leachate tank (through a vent hole and manway) and directed the leachate into the pond. This leachate was running directly into a drainage ditch leading to an adjacent property. The Department decided not to attempt excavation of the outlet pipe to avoid potential damage to the pipe. Although the outlet pipe orafice is visible from inside the tank (when the leachate level was lowered), the terminus of the outlet pipe could not be located. Flushing the outlet pipe was attempted during the flushing event, however, a blockage was encountered approximately 4 to 5 feet into the pipe. A slow but steady stream of water was running back into the tank from the outlet pipe, indicating that the outlet may be submerged. Since excavating the outlet pipe may have resulted in significant damage to the piping and may have increased backflow into the tank, the piping was not excavated.
- Empire removed the flexible hose left on-site by Green Environmental during the pipe flushing/sediment removal work. Empire also cut and removed the metal well casing that was removed from the ground during the monitoring well installation work.
- Empire excavated the partially buried manhole cover for manhole #2, which was on the ground adjacent to the manhole. The manhole cover had been removed prior to the

Department accessing the site for investigation purposes. The Department placed the manhole cover on the manhole as it was considered a safety hazard.

- Empire back bladed the access road running north-south, parallel to the three manholes, and the access road running east-west between Reed Road and the leachate tank. The access road work was completed to remove ruts from previous investigation work completed at the site. It should be noted that the road was very soft and some ruts remain in the roads.
- Empire excavated in the vicinity of anomaly A-4 depicted on the geophysical survey. The anomaly indicates that buried metal debris may be present in this location. A-4 is located at the south west corner of the bermed area surrounding the trenches. This was the only anomaly excavated since it did not appear to encroach on the disposal trenches. Buried refractory brick and black foundry sand were located approximately 2 to 5 feet bgs,. No other materials of concern were located. A sample of this material was collected and the hole was backfilled. The Department decided not to excavate the other geophysical survey anomalies due to their proximity to the disposal trenches. The Department did not want to compromise the structural integrity and/or the containment properties of the disposal trenches.

Distribution: M. Doster/file

PHOTOS

Ditch Excavated to Direct Tank Overflow to Pond

Geophysical Survey Anomaly A-4 Excavation (Refractory Brick/Foundry Sand)

Date:	December 19, 2006
Site Name:	Reed Road Landfill
Site Number:	hw902018
Location:	Reed Road, Town of Friendship
Project Engineer:	Chad Staniszewski, NYSDEC - Buffalo
Contractor:	No contractor on-site

Weather Conditions: Overcast; Approx. 32°F

Purpose of Inspection: Sampled pond water, pond sediment, leachate in the south manhole and 1-inch monitoring well B-6.

Observations:

- Well B-6 was sampling using a peristaltic pump.
- The pond water and leachate were sampled using a manual bailer. The pond water sample was collected near the outlet of the pond. The leachate sample was collected from the southern most manhole.
- Pond sediment was sampled using a manual drive cylinder. Approximately the top 4inches of pond sediment was sampled. The sample was a composite of four locations around the pond. The pond sediment was comprised of a thin layer of organics underlain by hard brown clay with some stones.

Sample	Sample Time	Depth to Well Bottom* (ft)	Depth to Water* (ft) (Static Level)	Gallons Purged (Well Volumes)	Analysis	Notes
Pond Water	0930			Metals, Total Phenolics		Sample water clear
Pond Sediment	1000				Metals, PCBs	Pond bottom: thin layer of organics underlain by hard brown clay
Leachate (South MH)	1115				Metals, PCBs, VOCs, SVOCs, Pest/Herb, Total Phenolics	Sample water slightly cloudy
B-6	1215	14.25	2.89	2.0 (4.4)	Metals, Total Phenolics	Sample water generally clear

* Depth taken from top of riser pipe to bottom of well (or water level)

New York Department of Environmental Conservation Division of Environmental Remediation Region 9 Office-Buffalo

FIELD INSPECTION REPORT

Date:	December 20, 2006
Site Name:	Reed Road Landfill
Site Number:	hw902018
Location:	Reed Road, Town of Friendship
Project Engineer:	Chad Staniszewski, NYSDEC - Buffalo
Contractor:	No contractor on-site

Weather Conditions: Sunny; Approx. 40°F

Purpose of Inspection: Sampled MW-1, MW-2, MW-3, MW-4 and MW-5.

Observations:

• All wells were manually purged and sampled with a disposable bailer.

Sample	Sample Time	Depth to Well Bottom* (ft)	Depth to Water* (ft) (Static Level)	Gallons Purged (Well Volumes)	Analysis	Notes
MW-1	1245	23.9	10.17	7.0 (3.2)	Metals, PCBs, VOCs, SVOCs, Pest/Herb, Total Phenolics	All Sample Water Clear
MW-2	1130	25.0	16.09	5.0 (3.5) Purged Dry	Metals, Total Phenolics	Metals - Sample Water Clear Phenolics - Sample Water Turbid Gray
MW-3	1145	22.3	15.20	5.0 (4.4) Purged Dry	Metals, Total Phenolics	All Sample Water Clear
MW-4	1215	21.3	11.21	7.0 (4.3) Metals, PCBs, VOCs, SVOCs, Pest/Herb, Total Phenolics		Metals - Sample Water Clear All Other Samples - Cloudy
MW-5	1315	23.5	10.04	5.0 (2.3) Purged Dry	Metals, Total Phenolics	Metals - Sample Water Clear Phenolics - Sample Water Turbid Brown

* Depth taken from top of riser pipe to bottom of well (or water level)

Distribution: M. Doster/file

Appendix B

Site Survey Drawing

Appendix C

Geophysical Survey Report

Geophysical Survey Results

Former Landfill Site

Reed Road

Friendship, New York

May 5, 2006

Prepared for:

Empire Geo Services, Inc. Henrietta, New York

Prepared by:

ADVANCED GEOLOGICAL SERVICES 3 Mystic Lane Malvern, PA 19355

AGS Project No. 06-106-1

TABLE OF CONTENTS

	Page

1.0	Introduction	1
2.0	Objectives	1
3.0	Survey Locations	2
4.0	Electromagnetic Conductivity Method	2
5.0	Field Procedure	3
6.0	Resolution of Geologic Features	3
7.0	Results and Discussion	3
7.1	Lateral Extent of Landfill Wastes	3
7.2	Buried Metal Objects	4
7.3	Drainage Trenches	4
7.4	Site Soil Conductivity	5
7.5	Surface Anomalies	5
8 .0	Data Quality	5

LIST OF FIGURES

- 1 EM Quadrature Response Map, Buried Structures, and Buried Anomalies
- 2 EM In-Phase Response Map, Buried Structures, and Buried Anomalies

1.0 Introduction

This report provides the results of a geophysical investigation that was conducted at the Former Landfill Site (Site) in Friendship, New York. The area of investigation defined by Empire personnel included approximately 9 acres of land that is bordered by Reed Road in the southwest corner of the survey area. The remainder of the site lies in an open field that is surrounded by forest and agricultural lands. Currently, the site property is inactive and is owned by the local township. In the past, it was used as a regional landfill for disposal of wastes for numerous years. In addition, AGS was informed that there has been some surface dumping of old vehicle gas tanks, tires/rims, drums, car parts, and other miscellaneous items to the north of the trenches. There is evidence that tires have been burned in several small areas.

The landfill is located in a rural portion of the Allegany County, and it is approximately 1.9 miles northwest of Interstate 86. It is situated on a moderately-sloping hill that dips to the south, along with several pronounced "grade breaks" that were presumably constructed by the former landfill owners. According to historic site information, foundry waste was disposed of in three disposal trenches that were approximately 400 feet long by 20 feet wide by 10 feet deep. Unfortunately, the exact dimensions are unknown due to lapses in the historic data. Apparently, three buried pipelines extended from the eastern ends of the trenches to three raised manholes that are visible today. The fluid wastes run from the trenches along these pipelines to the manholes. The manholes are connected by a header pipeline that runs downslope to a concrete storage vault, where wastes accumulate. From the vault, the wastes then travel to a settling pond that is located 20 feet due east from the vault.

The original ground surface at the southern end of the trenches appears to be approximately 10-25 feet below the existing trench surface. The trenches are below a series of parallel, man-made berms that are oriented in an east-to-west manner. Based on the surface topography and site characteristics, the locations and dimensions of the trenches were not readily apparent. Their positions could only be placed roughly.

2.0 Objectives

The primary objective of this investigation was to complete a reconnaissance-level, near surface geophysical investigation across the site to determine the presence and location of any buried structures, metal objects of concern, utilities, and/or buried debris within the survey area that may be associated with historic site uses. A second objective of the survey was to determine the approximate horizontal limits of the three disposal trenches. This information will be used to help assess and design the final closure activities for the landfill.

The electromagnetic conductivity (EM) method was chosen as the primary technique for meeting the project objectives. AGS anticipated that a strong or measurable electrical contrast would exist between areas containing the targets described above and the surrounding areas. The EM method was chosen to provide a detailed image of the subsurface over the entire landfill and an additional "band" outside of the landfill. It is important to collect data away from the landfill materials to observe the natural, or background, conditions, as well.

3.0 Survey Locations

Based on the requirements described in the original Request for Proposal (RFP), AGS collected EM data at approximately 10-foot line intervals and 2.5 to 3.0-foot station intervals in all accessible areas. In areas where dense vegetation prohibited the collection of data, AGS omitted the area and made an appropriate note in our field book. A Global positioning system (GPS) was used concurrently with the EM unit to tie the EM data to precise physical locations within the survey area. GPS and EM data were collected at one-second intervals to provide detailed information that were transformed into meaningful contour maps.

The EM data was acquired in line segments that were oriented in a south-to-north manner. The line lengths were approximately 40 feet in difficult access areas, to 650 feet in open areas. Again, a GPS unit was used to provide station point locations for each EM measurement. From this information, EM contour plots (Figures 1 and 2) were generated that showed subsurface targets at the former landfill.

4.0 Electromagnetic Conductivity Method

The electromagnetic (EM) method uses the principle of electromagnetic induction to measure the variability of electrical conductivity of subsurface materials and the presence of buried metal objects. Significant contrasts in the electrical properties between non-indigenous materials and surrounding soil enable accurate delineation of buried waste materials, fill, and air spaces. The large EM response to metal makes this technique particularly well suited to identifying buried metal objects such as metallic wastes, USTs, buried drums, pipelines, reinforced building foundations, or other metal components of buried structures. It is, however, equally sensitive to metal objects on the ground surface, and it is important to take careful field notes that indicate the position of surface metal to avoid mis-interpretation.

The EM-31 ground conductivity meter by Geonics was used to measure the presence and location of buried waste materials and targets within the former landfill. The EM-31 is a oneman, portable system that induces a sinusoidal, 9.8 kilohertz (kHz) signal into the ground. The transmitted signal induces eddy currents into the subsurface materials, which, in turn, generate a secondary magnetic field that is measured by the receiver coil. Two measurements are recorded at each station point; the in-phase response, which is measured in parts per thousand (ppt), and the quadrature response, which is measured in milliSeimens per meter (mS/m). For the interpretation of non-metallic, high-conductivity targets such as buried wastes, the quadrature response is more discriminative. Metal objects are better indicated with the in-phase response. The EM data can be viewed in contour or profile format, or the data can be acquired in a scan mode.

5.0 Field Procedures

The field procedure for the EM31 instrument involved (1) equipment setup, (2) before survey calibration and equipment checkout, (3) test run completion, (4) production profile recording with Trimble Pro XR GPS unit, (5) data storage to disk for subsequent processing in the office. Data were examined each evening for consistency, repeatability, and accuracy of measurement. Anomalous readings were carefully observed in the field, and detailed field notes were taken to aid in the interpretation and presentation of all data sets.

6.0 Resolution of Subsurface Features

The ability to resolve a buried structure, disposal trenches, or discrete metal target using the EM method depends on several factors. First, it is important that a measurable electrical contrast exists between the target and surrounding fill/natural soils. As this electrical contrast increases, the target will become more apparent and well-defined on the contour maps. In the event that data is collected in a non-conductive environment, such as the former landfill site, the electrical contrast between the targets and fill/natural soils should be large due to the increased amount of water and metal in the targets.

Secondly, as the thickness of the waste materials increases, the EM values typically increase, and the observed contour lines representing the edge of the target are clearer. A sharper EM gradient exists, which makes the interpretation less ambiguous. If a "feather-edge" of trench materials is present (less than approximately 2-3 feet), the EM response will be diminished, and the exact boundary will be more difficult to define.

Thirdly, the ability to detect a buried metal object is dependent upon the size and proximity of the metal object to the EM instrument. As the size and number of objects increases, and as the proximity to the instrument decreases, the resulting EM responses will increase accordingly.

Typically, changes in the apparent thickness of wastes or changes in the type of waste material can affect the EM responses. This fact was important as we defined the limits of the northern trench, Trench 1, in our survey. It was apparent that this trench was regraded and thus possessed different physical characteristics than Trench 2 or Trench 3.

7.0 Results and Discussion

AGS has included Figures 1 and 2 with this report. The figures show the quadrature and inphase responses, interpreted locations of Trench 1, Trench 2, and Trench3, buried anomalies, and various site features such as pathways, grade breaks, the pond, vault, and entrance gate. The notes section briefly discusses the anomalies found on the maps. The locations of each of these features was measured with the GPS unit and placed on the map for reference purposes. AGS has included annotated interpretations on the plots. The results of the geophysical survey are summarized below.

7.1 Lateral Extent of the Disposal Trenches

Figures 1 and 2 show the results of the EM survey over the disposal trenches. AGS detected three, roughly-linear anomalies that are associated with the trenches. They are oriented in a west-

to-east manner and are located within a parallel group of high and low EM values on the maps. From the quadrature data in Figure 1, the trenches are positioned in the relative low bands, and from the in-phase data the trenches are positioned in the relative high bands. These differences are a function of the trench geometry, instrument configuration, and edge effects from the trenches. The EM anomalies associated with the trenches appear to be approximately 400 feet long by 20 feet wide. The distance between Trench 1 and Trench 2 is approximately 15 feet, and the distance between Trench 3 is approximately 20 feet. AGS found that the interpreted orientation of each trench lined up with three elevated manholes that were observed in the field. The manholes were approximately 100 feet to the east of the interpreted trenches. This scenario is consistent with historic sketches that indicated the same occurrence.

The three trenches are located within the grade break, which is shown as a dashed brown line on the maps. Within this area, the surface elevations are greater due to the placement of the trenches, possible trench caps, and surrounding fill materials. The grade break is steepest and of greater vertical extent along the southern boundary, and is relatively flat along the northern boundary.

7.2 Buried Metal Objects

AGS detected several EM anomalies that are probably due to buried metal objects. The most significant areas are designated as A1 through A4, and IP1 and IP2. Those anomalies that use the capital "A" convention are found on the quadrature and in-phase maps, while those anomalies using an "IP" convention were observed on the in-phase maps alone. Anomaly A1 is located at the eastern end of Trench 3 and indicates the presence of buried metal. It exhibits strong, negative quadrature responses and strong, positive in-phase responses. It is approximately 30 feet long by 20 feet wide and it is probably related to objects or features within the trench. It is the most significant buried metal anomaly detected at the site.

Anomaly A2 and A3 are located near the western ends of Trench 2 and Trench 3. Again, the EM data provides a strong indication that buried metal objects are present in the subsurface. Negative quadrature responses and positive in-phase responses are present over a 20-foot by 20-foot area at both locations. A2 is positioned inside of Trench 2 and the source is probably due to metal objects or metallic residue within the trench limits. A3 is located between Trench 2 and Trench 3 and the metal object may not be associated with the disposal materials. Instead, it may be a piece of metal debris. A4 is located to the south of A3, along the border of the grade break. It is approximately 50 feet long by 25 feet wide and may be related to buried metal debris, as well.

In-phase anomalies IP1 and IP2 were detected only on the in-phase map shown in Figure 2. IP1 is located along the southern border of Trench 3 and it has two lobes that indicate the possibility of buried metal. The western and eastern lobes are approximately 20 feet by 20 feet, and 20 feet by 10 feet, respectively, and the magnitudes are relatively high. AGS does not believe the anomalies are due to edge effects.

7.3 Drainage Trenches

AGS detected three drainage trenches at the site. They exhibited elevated or strong quadrature

responses (Figure 1) that are due to the increased soil moisture content that is present in the trenches. One trench runs from the eastern edges of the disposal trenches to the south, where it intersects a west-to-east drainage trench near a metal drain pipe that runs under a pathway. A second drainage trench runs parallel to the first drainage trench, approximately 45 feet to the east. It runs almost directly south from the three manholes shown on the maps. The third drainage trench runs the full width of the survey area, from the entrance gate in the west, to the pond in the east. It has an arc-shaped geometry and it passes just to the north of stakes CP3 and Pol1.

7.4 Site Soil Conductivity

AGS observed that the bulk soil conductivity was noticeably lower in the northwestern and western parts of the survey area. A notable, north-to-south boundary is present near the north-central part of the site that indicates a subtle demarcation between sediments and fluids below the area. Apparently, there is a change from natural soils to landfill-affected soils, and/or a change in shallow lithology here. The western half of the disposal trenches seem to truncate this feature.

7.5 Surface Anomalies

Several EM anomalies shown on the map are due to known objects at the ground surface. These include a storage vault next to the pond, the drainage trench pipe segment, three manholes, a monitoring well, metal debris, and discarded tires. GPS data was acquired over these items to ensure they were not interpreted as buried unknown anomalies.

8.0 Data Quality

The EM data quality was very good for this project. The EM data was very consistent, and the landfill disposal trenches, buried anomalies, and soil conductivity features were defined with a good confidence level.

Date: May 5, 2006 AGS Reference: 06-106-1/pm	Empire Geo Services, Inc. 535 Summit Point Drive Henrietta, New York	Figure 1 EM Quadrature Response Map, Buried Structures and Buried Anomalies Former Landfill Site Friendship, Pennsylvania	 (6) The depth of investigation for the EM unit is approximately 15 feet. (7) AGS collected GPS data over various site features and have included them on the map. (8) The field positions were not surveyed by a licenced surveyor and should be considered approximate. 	(5) The soil conductivity appears to be lower in the northwestern and western parts of the survey area. A notable, north-to-south boundary is present near the north-central part of the survey area. Apparently, there is a change from natural soils to landfill-affected soils, and/or a change in shallow lithology here. The western half of the landfill appear to truncae this feature.	 (4) Three drainage trenches exhibited high EM responses due to the increase in moisture. These features are noted on the quadrature map. They typically run adjacent to an existing pathway and ultimately run int the vault and pond. 	A2 and A3, and is within the "grade break" limits, as shown on the M2 and A3, and is within the "grade break" limits, as shown on the map. It is outside of the trench area, however. It is approximately 50° long by 25' wide. In phase anomalies IP1 and IP2 indicate buried metal as well. IP1 is located along the southern border of Trench 3 and IP2 is located the poster party of Trench 2 border of Trench 3 and IP2 is as well. IP1 is located along the southern border of Trench 3 and IP2 is as well. IP1 is located along the southern border of the trench 3 and IP2 is as well. IP1 is located along the southern border of the trench 3 and IP2 is as well. IP1 is located along the southern border of the trench 3 and IP2 is as well. IP1 is located along the southern border of the trench 3 and IP2 is as well. IP1 is located along the southern border of the trench 3 and IP2 is as well. IP1 is located along the southern border of the trench 3 and IP2 is as well. IP1 is located along the southern border of the trench 3 and IP2 is as well. IP1 is located along the southern border of the trench 3 and IP2 is as well. IP1 is located along the southern border of the trench 3 and IP2 is as well. IP1 is located along the southern border of the trench 3 and IP2 is as well. IP1 is located along the southern border of the trench 3 and IP2 is as well. IP1 is located along the southern border of the trench 3 and IP2 is as well. IP1 is located along the southern border of the trench 3 and IP2 is as well. IP1 is along the trench 3 and 3 an	(3) Four distinct quadrature anomalies were detected within the former trench area. They area designated as A1, A2, A3, and A4. Anomaly A1 is located at the eastern end of Trench 3 and indicates the presence of buried metal. It exhibits a strong, negative EM response over an area that is approximately 30' long by 20' wide. A2 and A3 are located at the western end of Trench 2 and Trench 3 and again both indicate the presence of buried metal. Strong, negative EM responses are present at both locations. Both anomalies are	(2) Three former disposal trenches were detected in the survey area. They are designated as "Trench 1" though "Trench 3" on the map. All trenches are approximately 450' long by 20' wide, which is consistent with historic documentation. They run west-to-east and are in-line with 3 manholes that are located 100' to the east of the trenches.	(1) An EM31 electromagnetic instrument and a Trimble ProXRS GPS system were used for the survey. Data from these instruments was combined and correlated to locate the former trenches and buried anomalies.	Notes	Monitoring Well	+ Staked Location	 Pathway Manhole 	Grade Break	A3 EM Anomaly	Interpreted Disposal Trench	<u>Legend:</u>		
NCED DGICAL CES		Ś	ded	y, y, pears	map. un into	netal P2 is	÷ چ وہ د م		0,					_					

Date: May 5, 2006 AGS Reference: 06-106-1/pm	Empire Geo Se 535 Summit F Henrietta, N	Figure 2 EM In-Phase Response N Buried Structures and Bu Former Landfill Site Friendship, Pennsylvania	 located at the eastern edge or I rench? 2. 1) Three drainage trenches exhibited high E increase in moisture. These features are r They typically run adjacent to an existing J the valit and pond. 1) The soil conductivity appears to be lower western parts of the survey area. A notabl is present near the north-central part of th there is a change from natural soils to land change in shallow lithology here. The wes to truncate this feature. 3) The depth of investigation for the EM unit 1) AGS collected GPS data over various site them on the map. 3) The field positions were not surveyed by a should be considered approximate.
	ervices, Inc. Point Drive Jew York	Map, uried Anomalies a	M responses due to the noted on the quadrature map, pathway and ultimately run into in the northwestern and le, north-to-south boundary e survey area. Apparently, drill-affected soils, and/or a drill-affected soils, and/or a drill-affected soils, and/or a stern half of the landfill appears is approximately 15 feet. a features and have included a licenced surveyor and

Legend:

- Manhole
- Monitoring Well Staked Location

Notes

- An EM31 electromagnetic instrument and a Trimble ProXRS GPS system were used for the survey. Data from these instruments was combined and correlated to locate the former trenches and buried anomalies.
 Three former disposal trenches were detected in the survey area. They are designated as "Trench 1" though "Trench 3" on the map. All trenches are approximately 450' long by 20' wide, which is consistent with historic documentation. They run west-to-east and are in-line with 3 manholes that are located 100' to the east of the trenches.
- (3) Four distinct quadrature anomalies were detected within the former trench area. They area designated as A1, A2, A3, and A4. Anomaly A1 is located at the eastern end of Trench 3 and indicates the presence of buried metal. It exhibits a strong, negative EM response over an area that is approximately 30' long by 20' wide. A2 and A3 are located at the western end of Trench 2 and Trench 3 and again both indicate the presence of buried metal. Strong, negative EM responses are present at both locations. Both anomalies are approximately 20' by 20' in dimension. A4 is located to the south of A2 and A3, and is within the "grade break" limits, as shown on the map. It is outside of the trench area, nowever. It is approximately 50' long by 25' wide. In phase anomalies IP1 and IP2 indicate buried metal as well. IP1 is located along the southern border of Trench 3 and IP2 is located at the eastern end of Trench 2

Appendix D

Soil Boring Logs

DATE: STARTED FINISHED SHEET PROJECT:	9/27/2006 9/27/2006 1 OF 1 REED ROAD LANDE	SJB SERVICES, INC. DIRECT PUSH LOG	SJB SERVICES, INC.	HOLE NO. B-1 SURF. ELEV 1961.72 G.W. DEPTH See Not	es			
PROJ. NO.:	BEV-05-037		FRIENDSHIF	P, NEW YORK				
DEPTH PID	G	SOIL OR ROCK CLASSIFICATION		NOTES				
BKG	Brown- Grey Clayey	SILT, some f-m Sand, tr. gravel, tr. o	rganics					
	(moist, ML- CL)				4			
2					-			
З ВКС								
					-			
− ⁴ −	-				-			
5 ВКС								
					4			
- ⁶ -					-			
7 ВКС	Contains some f-m G	ravel, little f-m Sand			-			
8	-							
9 BKG					-			
10								
		Refusal Encountered at 8.5'		No Free Standing Water	-			
┝━`'⊷┥				Completion	-			
12								
					4			
					-			
14								
− ¹⁵ −					-			
16					-			
DRILLER: A. KO	SKE DRILL RIG TY	PE: SIMCO 2400	CLASSIFIED BY:	ENGINEER				
METHOD OF INVESTIG	GATION: ASTM 6282 - [PRECT PUSH SAMPLING						
DATE: START FINISH SHEET	'ED IED -	9/27/2006 9/27/2006 1 OF 1	SJB SERVICES, INC. DIRECT PUSH LOG	SERVICES, INC.	HOLE NO. B-2 SURF. ELEV 1966.24 G.W. DEPTH See Notes			
-----------------------------------	---	----------------------------------	---------------------------------------	-------------------	--	--	--	--
PROJI PROJ.	ECT: NO.:	REED ROAD LANDF BEV-05-037	LOC	CATION: REED ROAD	2, NEW YORK			
DEPTH			SOIL OR ROCK		NOTES			
	BKG		TOPSOIL					
		Liaht Brown- Grev Cl	avev SILT. tr. sand (moist, ML- CL)		-			
			-,-,-,,		-			
2					-			
					-			
3	BKG				-			
					-			
4					1			
					7			
5	BKG				7			
					7			
6					-			
					-			
7	BKG				-			
\vdash					-			
8					-			
- ĭ -	BKG	-						
9	DICO							
⊢ [•] –					-			
10								
⊢́—			Pofusal Encountered at 8.5		No Eroo Standing Water			
11			Relusar Encountered at 0.5		Encountered at Boring			
⊢⊣								
12								
┝─ ``─┥					-			
13					-			
					-			
					-			
					-			
15					-			
┝ ─ `` ─┤					-			
16					-			
DRILLER:	A KOS		PE: SIMCO 2400	CLASSIFIED RY:	ENGINEER			
-				APUAAILIER D.I.				
METHOD OF	METHOD OF INVESTIGATION: ASTM 6282 - DIRECT PUSH SAMPLING							

DATE: START FINISH SHEET	ED ED	9/27/2006 9/27/2006 1 OF 1	SJB SERVICES, INC. DIRECT PUSH LOG	IDES, INC.	HOLE NO. B-3 SURF. ELEV G.W. DEPTH See Note	
PROJE PROJ.	ECT: NO.:	REED ROAD LANDF	ILL LOCATIO			_
DEPTH	PID		SOIL OR ROCK		NOTES	
FT.	READING		CLASSIFICATION			_
	BKG	Brown Crow Clovery				
┝─ ' ─┤		Brown- Grey Clayey	SILT, some f-c Gravel, tr. sand (moist, ML-	CL)		
2						
						-
3	BKG					-
4						
<u> </u>	BKG					
⁶						_
		Brown Weathered SH	ALE			_
┝━ ′ ━┥	BKG					
│						-
┝━ ° ━┥						
9			Refusal Encountered at 7.5		No Free Standing Water	-
\vdash \neg \dashv					Completion	-1
10					Completion	-
						-
11						
12						
- 13						
'4						_
15						
- '`						-
16						-
DRILLER:	A. KOSK	E DRILL RIG TYPE	GEOPROBE- SIMCO 2400	CLASSIFIED BY:	ENGINEER	
METHOD OF I	NVESTIGAT	TION: ASTM 6282 - DIF	ECT PUSH SAMPLING			

DATE: START FINISH SHEET PROJE	ED IED	9/27/2006 9/27/2006 1 OF 1 REED ROAD LANDF	SJB SERVICES, INC. SINC. SINC. SINC. SINC. SINC. SERVICES, INC. SERVICES, INC	HOLE NO. B-4 SURF. ELEV G.W. DEPTH See Notes				
PROJ.	NO.:	BEV-05-037	FRIE	NDSHIP, NEW YORK				
DEPTH FT.	PID READING		SOIL OR ROCK CLASSIFICATION	NOTES				
	BKG		TOPSOIL					
		Brown- Grey Clayey	SILT, tr. sand, tr. gravel (moist, ML- CL)					
2								
	BKG			-				
4								
⁵	BKG							
6								
		Brown Weathered SI	HALE	_				
- ⁷ -	BKG			-				
8 9 10 11 11 12 13			Refusal Encountered at 7.5'	No Free Standing Water Encountered at Boring Completion				
<u>⊢</u> ¹⁴								
15								
16								
DRILLER:	A. KOS	KE DRILL RIG TY	PE: GEOPROBE- SIMCO 2400 CLASS	FIED BY: ENGINEER				
METHOD OF	METHOD OF INVESTIGATION: ASTM 6282 - DIRECT PUSH SAMPLING							

DATE: STARTED FINISHED SHEET PROJECT:	9/27/2006 9/27/2006 1 OF 1 REED ROAD LAND	SJB SERVICES, INC. DIRECT PUSH LOG	SB BA	HOLE NO. <u>B-5</u> SURF. ELEV G.W. DEPTH <u>See Notes</u>
PROJ. NO.:	BEV-05-037		FRIENDSHIF	P, NEW YORK
DEPTH PID	NG	SOIL OR ROCK		NOTES
ВКС	G	TOPSOIL		
	Grey Clayey SILT, se	ome f-c Gravel, tr. sand (moist, ML- CL)		-
2 вко 3 вко				
4	_			
5 вко	3			
	Brown Weathered St	HALE, thinly bedded		-
	f-c GRAVEL and f-m	Sand, tr. silt (wet, GW)		GW Encountered at 7.5' Based on Sample Moisture
9ВКС				
10 		Refusal Encountered at 9.0'		Temporary monitoring well installed to a depth of 9.0' (see temporary
12				monitoring well installation detail).
13				-
14				
15 16				4
DRILLER: <u>A. K</u>	OSKE DRILL RIG TY	PE:GEOPROBE- SIMCO 2400	CLASSIFIED BY:	ENGINEER

DATE: STARTED FINISHED SHEET		10/4/2006 10/4/2006 10F1	SJB SERVICES, INC. DIRECT PUSH LOG	HOLE NO. B-6 SURF. ELEV G.W. DEPTH See Notes						
PROJE PROJ.	ECT: NO.:	REED ROAD LANDF BEV-05-037	FILL LOCATION: REED ROAD FRIENDSHI FRIENDSHI	P, NEW YORK						
DEPTH FT.	PID READING		SOIL OR ROCK CLASSIFICATION	NOTES						
1 2	BKG	No recovery								
3	BKG									
5	BKG	Black Silty CLAY, sor	ne f-m Sand, tr. gravel, tr. organics (moist, CL)							
	BKG	(wet)	(wet)							
9 10	BKG	Contains some Organ	nics							
11 12	BKG									
13	BKG	Becomes Brown cont	ains "and" f-c Gravel, tr. sand	4						
14			Temporary monitoring well installed to a depth of 11.5'							
15 16			(see temporary monitoring well installation detail).							
DRILLER: A. KOSKE DRILL RIG TYPE: GEOPROBE- SIMCO 2400 CLASSIFIED BY: ENGINEER METHOD OF INVESTIGATION: ASTM 6282 - DIRECT PUSH SAMPLING										

DATE: STARTED FINISHED SHEET PROJECT:	10/4/2006 10/4/2006 1 OF 1 REED ROAD LANDE		SUB BUSINESSERVICES, INC.	HOLE NO. <u>B-7</u> SURF. ELEV G.W. DEPTH <u>See Notes</u>					
PROJ. NO.:	BEV-05-037		FRIENDSHIP	NEW YORK					
DEPTH PID FT. READING		SOIL OR ROCK CLASSIFICATION		NOTES					
1 BKG	Brown Silty CLAY, so	ome f-m Sand, tr. gravel, tr. organics ((moist, CL)						
3 ВКС 4	_			-					
5 ВКС 6 ВКС 7 ВКС	Contains "and" f-m G	contains "and" f-m Gravel, tr. sand (wet)							
ВКС 9				- - - -					
10 вкс 11				- -					
12 13 14		Refusal Encountered at 11.0'		Temporary monitoring well installed to a depth of 11.0' (see temporary monitoring well installation detail).					
15 16 	KE DRILL RIG TY	PE:GEOPROBE- SIMCO 2400	CLASSIFIED BY: _	ENGINEER					

DATE: STARTED FINISHED SHEET	10/4/2006 10/4/2006 1 OF 1	SJB SERVICES, INC. DIRECT PUSH LOG	SERVICES, INC.	HOLE NO. B-8 SURF, ELEV G.W. DEPTH See Notes				
PROJECT: PROJ. NO.:	REED ROAD LANDE BEV-05-037		ATION: REED ROAD	P, NEW YORK				
DEPTH PID FT. READING		SOIL OR ROCK CLASSIFICATION		NOTES				
1 ВКС 2 3 ВКС 4 5 ВКС 6 ВКС	Brown Silty CLAY, so	ome f-m Gravel, tr. sand (moist, CL)						
7 8 9 10 11 11 12 13 14 14 15 16		Refusal Encountered at 6.5'		No Free Standing Water Encountered at Boring Completion				
DRILLER: A. KOSKE DRILL RIG TYPE: GEOPROBE- SIMCO 2400 CLASSIFIED BY: ENGINEER METHOD OF INVESTIGATION: ASTM 6282 - DIRECT PUSH SAMPLING								

DATE: START FINISH SHEET		10/4/2006 10/4/2006 1 OF 1	SJB SERVICES, INC. DIRECT PUSH LOG	SERVICES, INC.	HOLE NO. B-9 SURF. ELEV G.W. DEPTH See Notes			
PROJE PROJ.	ECT: NO.:	REED ROAD LANDF BEV-05-037	LOC	ATION: REED ROAI FRIENDSHI	P, NEW YORK			
DEPTH FT.	PID READING		SOIL OR ROCK		NOTES			
	BKG		TOPSOIL					
└ <u></u>		Brown Silty CLAY, so	me f-m Gravel, tr. sand (moist, CL)		_			
					-			
	BKG				-			
³					1			
		Brown Weathered SH	IALE		_			
					-			
⁵	BKG							
					_			
<u>⊢°</u> –	BKG				-			
_ 7 _								
			.		_			
			Refusal Encountered at 7.0'		No Free Standing Water			
9					Completion			
11					-			
- ¹² -					_			
13								
14								
15								
16]			
DRILLER: _	A. KOSK	E DRILL RIG TYP	E:GEOPROBE- SIMCO 2400	CLASSIFIED BY:	ENGINEER			
METHOD OF	METHOD OF INVESTIGATION: ASTM 6282 - DIRECT PUSH SAMPLING							

DATE

START	11/22/2006			
FINISH	11	/24/20	06	
SHEET	1	OF	1	

SJB SERVICES, INC. SUBSURFACE LOG

Existing HOLE NO. <u>MW</u> SURF. ELEV <u>1956.49</u> G.W. DEPTH See Notes

REED RD. LANDFILL- MW DECOMMISSIONING LOCATION: REED ROAD PROJECT: FRIENDSHIP, NEW YORK PROJ. NO .: BEV-05-037 NOTES SOIL OR ROCK BLOWS ON SAMPLER DEPTH SMPL **CLASSIFICATION** 0/6 6/12 12/18 N FT. NO. Overdrilled existing 4- inch I.D. carbon steel well casing using 6 1/4- inch I.D. hollow stem augers. Augering became more difficult at a depth of approximately 14.5- feet, possibly due to shale bedrock. Water was encountered while augering from 5 19.5- 20.5- feet. Stopped drilling and pulled casing after augering to 20.5- feet. Borehole was open to 22.0- feet after removing casing. Recovered 24.0-U G E R feet of threaded, 4- inch I.D. steel casing. Tremie-A W/ 6 1/4- INCH I.D. pumped cement- bentonite grout which came up to 10 ground surface. Removed the augers and pumped in the second grout batch, which brought the grout level back up to ground surface. 15 20 Overdrilling Complete at 20.5- Feet 25 30 35 40 N = NO. BLOWS TO DRIVE 2-INCH SPOON 12-INCHES WITH A 140 LB. PIN WT. FALLING 30-INCHES PER BLOW CLASSIFIED BY: N/A **B. FULLER** DRILL RIG TYPE : CME- 850 DRILLER: METHOD OF INVESTIGATION HOLLOW STEM AUGERS

DATE START <u>11/24/2006</u> FINISH <u>11/27/2006</u> SHEET 1 OF 1

SJB SERVICES, INC. SUBSURFACE LOG

HOLE NO. MW-1 SURF. ELEV 1955.62 G.W. DEPTH See Notes

PRO	JE	CT:	REE	DR	D. LA	NDFI	MW INSTALLATIONS LOCATION: REED ROA	D
PROJ. NO.:		BEV	-05-0	037		FRIENDSHIP, NEW YORK		
								NOTES
DEPTH		SMPL	010	BLO	WS ON S			NOTES
FI.		1	0/6	0/12	12/18	N	TOPSOIL	
-	-//		3	5		5	Tan- Brown Clavey SILT tr sand tr gravel	
-	\mathbf{H}	2	5	7		5	(moist soft ML)	
-	1/1	2	10	17		17	Bocomes Mottled with Grey (stiff)	-
		3	11	12				
⊢° –	1/1	5	15	16	-	27	Becomes Croy Brown, contains little f.a. Grovel	-
-	Ł	1	17	10		21	Becomes Grey- Brown, contains intie I-c Graver	-
-	-//	4	21	22		40	(Ilaid) Contains some f.c. Gravel (v. hard)	-
-	\mathbf{H}	5	21	10		40	Contains some weathered Shale, little f.c. Gravel	-
10-	$\frac{1}{1}$	5	17	10		27		· · · · · · · · ·
- "-	\mathbf{H}	6	7	40		21	(hard)	-
-	/	0	24	24		10	Containe "and" weathered Shale (v. hard)	~
-		7	42	30		40		Contains wet seam
_	\mathbb{Z}	/	42	42		DEE		
		0	50/0.4	27		REF		12.1-12.8
- ¹⁵ -		0	39	37		DEE		
	F	-	60/0.5	00		REF		
	$\frac{1}{1}$	9	1	20	<u> </u>	55		Contains wet seam 16-17
-	\mathbf{F}	10	35	50		55		DEE- Sample Speen
	Ł	10	50/0.5	50/0.2		REF	Contains weathered Shale seams	REF = Sample Spoon
- ²⁰ -		110	al state	e est interes				Relusar
-		11	50/0.4	1		REF		_
	-	40	and a					
	-	12	50/0.1			REF	Grey Weathered SHALE	
	$\left\{ \right\}$		1225	1.1.1	1		Baring Complete with Auger Befugel et 22 5	Erec Standing Water
- ²⁵ -	1		1	Engl			Bonny Complete with Auger Relusal at 25.5	Pree Standing Water
_			12.00	Station of				
-						+ +		
				÷				Installed 2- inch I D
30					100			PVC monitoring well to
		100	1.22	-	-	-		depth of 23.5'
								deptil 01 20:0
-								-
-								-
35								-
- ~ -	+							21
					-			-
_								-
40								
-+0			<u> </u>					
	N -		010/9 7/	מופח כ	/E 2-IN	CH SPOO		
		ILLER.	00001	R	FUI	LER		
	ME			STICA		HOLLON	STEM AUGERS	
	1416			SHOA	non			
								and the second se

DATI STAI FINIS SHE PRO PRO	E RT SH ET JE	CT: NO.:	11/ 11/ 1 REE BEV	/27/2 /28/2 OF 	006 006 1 D. LA	- - - NDFI	S. S	UBSURFACE LOG	HOLE NO. <u>MW-2</u> SURF. ELEV <u>1968.50</u> G.W. DEPTH <u>See Notes</u> NEW YORK
DEPTH		SMPL		BLO	WS ON S	AMPLER	1 (r	SOIL OR ROCK	NOTES
FT.		NO.	0/6	6/12	12/18	N		CLASSIFICATION	
5		4	A	U	G	E	R		
10								Auger to 10' before sampling (see log for direct- push test boring B-9)	
	Ľ	1	41	50/0.2		REF		Grey Weathered SHALE, tr little Silt (dry- moist)	REF= Sample Spoon
		2	50/0.2			REF			Refusal
			50/0.2						Wet seam 16'- 17'
20	~	4	50/0.2			REF			Water in sample spoon
_	N	5	50/0.2			REF		•	0.7' of water inside augers
_ 25 _		6	70/0 4		_	REE		-	S-5: 22.5'- 22.7'
			10/0.4					Boring Complete at 25.5' Lost steel weight off of measuring tape down the hole.	3.5' of water inside augers after augering to 25.5'
³⁰		ð						portion of test boring and moved 20' north for replacement boring, which was drilled to 24.0'	Installed 2- inch I.D. PVC monitoring well to a depth of 24- feet
35									
40									
	N = DR ME	NO. BL ILLER: THOD C		O DRIV B STIGA	'E 2-IN . FUL TION	CH SPO LER HOLLO	ON 12-II W STEN	NCHES WITH A 140 LB. PIN WT. FALLING 30-INCHES PER BLOW CL DRILL RIG TYPE : <u>CME- 850</u> I AUGERS	ASSIFIED BY: GEOLOGIST

DATE START FINISH SHEET PROJECT: PROJ. NO.:	11/28/2006 11/28/2006 1 OF 1 REED RD. LANDF BEV-05-037	SJB SERVICES, INC. SUBSURFACE LOG	HOLE NO. <u>MW-3</u> SURF. ELEV <u>1968.84</u> G.W. DEPTH <u>See Notes</u>
DEPTH SMPL	BLOWS ON SAMPLER	SOIL OR ROCK	NOTES
FT. NO.	0/6 6/12 12/18 N	CLASSIFICATION	and the state of the
	A U G E A U G E 15 16	R Auger to 8.0' before sampling (see log for direct- push test boring B-3) Brown- Grey Clayey SILT and Weathered Shale (moist, hard, CL) Becomes wet at approximately 10.2' Grey Weathered SHALE, tr little Clayey Silt (moist)	REF= Sample Spoon Refusal Water in bottom half of sample spoon when retrieving S-2 (10.0'- 10.6')
		Boring Complete at 20.0'	Installed 2- inch I.D. PVC monitoring well to a depth of 20.0 feet.
N = NO. B DRILLER: METHOD	LOWS TO DRIVE 2-INCH SPO B. FULLER OF INVESTIGATION HOLLC	ON 12-INCHES WITH A 140 LB. PIN WT. FALLING 30-INCHES PER BLOW CL DRILL RIG TYPE : <u>CME- 850</u> W STEM AUGERS	ASSIFIED BY: GEOLOGIST

DATE START <u>11/29/2006</u> FINISH <u>11/29/006</u> SHEET <u>1</u> OF <u>1</u>				S. S	UB SERVICES, INC. UBSURFACE LOG	HOLE NO. <u>MW-4</u> SURF. ELEV <u>1960.58</u> G.W. DEPTH See Notes			
PRO PRO	JE J. I	CT: NO.:	REE BEV	D RI -05-0	D. LA 037	NDFI	LL- M	W INSTALLATIONS LOCATION: REED ROAD FRIENDSHIP,	NEW YORK
DEPTH FT.		SMPL NO.	0/6	BLOV 6/12	WS ON S	AMPLER N		SOIL OR ROCK CLASSIFICATION	NOTES
5			A	U	G	E	R	Auger to 8.0' before sampling	
10	ł	1	57 50/0.3	32		REF		(see log for direct- push test boring B-4) Grey Clayey SILT, tr. sand (wet, v. hard, ML)	Contains wet seams at 8.0'-8.5', 13.0'- 14.0',
		2	50/0.2			REF		Contains "and" weathered Shale (moist)	15.0'- 15.2' and at 19.0'
		3	50/0.4 A	U	G	REF E	R	Contains Grey LIMESTONE fragments 15.0'- 15.2'	REF= Sample Spoon Refusal
20								Boring Complete at 20.0'	Installed 2- inch I.D.
30				14. The second s					depth of 20.0 feet.
40	N = DRI ME	NO. BLO ILLER: THOD O		D DRIV B. STIGAT	E 2-INC FULI	LER HOLLON	ON 12-IN W STEM	CHES WITH A 140 LB. PIN WT. FALLING 30-INCHES PER BLOW CL DRILL RIG TYPE : <u>CME- 850</u> AUGERS	ASSIFIED BY: <u>GEOLOGIST</u>

DATE SJB SERVICES, INC. HOLE NO. MW-5 START 11/29/2006 SUBSURFACE LOG FINISH 11/30/2006 SURF. ELEV 1957.21 1 OF 1 G.W. DEPTH See Notes SHEET PROJECT: REED RD. LANDFILL- MW INSTALLATIONS LOCATION: REED ROAD BEV-05-037 FRIENDSHIP, NEW YORK PROJ. NO.: NOTES SOIL OR ROCK SMPL BLOWS ON SAMPLER DEPTH 6/12 12/18 CLASSIFICATION 0/6 N FT. NO. Е Auger to 6.0' before sampling А U G R (see log for direct- push test boring B-8) 5 10 7 Brown Clayey SILT, some weathered Shale, tr. sand 1 15 8 10 (moist, medium, ML) 9 12 2 18 23 30 Contains tr. limestone fragments (hard) 10 3 12 32 55 57 87 **REF=** Sample Spoon REF 4 75 50/0.1 Grey Weathered SHALE Refusal 5 17 48 15 REF 37 50/0.3 7 57 6 REF 50/0.4 7 28 30 REF 20 60 50/0.2 REF Spoon was wet when 8 50/0.3 retrieved for S-9 REF 9 50/0.1 Boring Complete at 22.1' Installed 2- inch I.D. PVC monitoring well to depth 25 of 22.0'. 30 35 40 N = NO. BLOWS TO DRIVE 2-INCH SPOON 12-INCHES WITH A 140 LB. PIN WT. FALLING 30-INCHES PER BLOW GEOLOGIST CLASSIFIED BY: **B. FULLER** DRILL RIG TYPE : CME- 850 DRILLER: METHOD OF INVESTIGATION HOLLOW STEM AUGERS

DATE START <u>11/30/2006</u> FINISH <u>11/30/2006</u> SHEET <u>1</u> OF <u>1</u> PROJECT: REED RD. LANDFIL		SJB SERVICES, INC. SUBSURFACE LOG	HOLE NO. <u>ST-N</u> SURF. ELEV <u>1969.39</u> G.W. DEPTH See Notes
PROJ. NO.:	BEV-05-037	FRIENDSHIP,	NEW YORK
DEPTH SMPL FT. NO.	BLOWS ON SAMPLER 0/6 6/12 12/18 N	SOIL OR ROCK CLASSIFICATION	NOTES
	1 2 4 3 6 3 6 7 6 13 5 6 11	Brown Clayey SILT, tr. shale, tr. wood, tr. sand (moist, FILL) Becomes Grey	Fill is re- worked native soil
		Boring Complete at 6.0' Moved sample location approximately 12' south and encountered apparent foundry sand at depth of approximately 4.5- feet. Collected shelby tube sample 0- 2'	
N = NO. BLO DRILLER: METHOD O	DWS TO DRIVE 2-INCH SPO B. FULLER F INVESTIGATION HOLLO	ON 12-INCHES WITH A 140 LB. PIN WT. FALLING 30-INCHES PER BLOW CL DRILL RIG TYPE : <u>CME- 850</u> W STEM AUGERS	ASSIFIED BY: GEOLOGIST

DATE START <u>11/30/2006</u> FINISH <u>11/30/2006</u> SHEET <u>1</u> OF <u>1</u> PROJECT: <u>REED RD. LANDFIL</u>	SJB SERVICES, INC. SUBSURFACE LOG	HOLE NO. <u>ST-C</u> SURF. ELEV <u>1967.59</u> G.W. DEPTH <u>See Notes</u>
PROJ. NO.: BEV-05-037	FRIENDSHIP	NEW YORK
DEPTH SMPL BLOWS ON SAMPLER FT. NO. 0/6 6/12 12/18 N	SOIL OR ROCK CLASSIFICATION	NOTES
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Brown Clayey SILT, tr. sand, tr. shale fragments (moist, FILL)	Fill is re- worked native
	Foundry SAND encountered at 4.2'	
	Boring Complete at 6.0' Collected shelby tube sample 0-2'	
30		
35		
40		
N = NO. BLOWS TO DRIVE 2-INCH SPOO DRILLER: B. FULLER METHOD OF INVESTIGATION HOLLOW	DN 12-INCHES WITH A 140 LB. PIN WT. FALLING 30-INCHES PER BLOW CL DRILL RIG TYPE : <u>CME-850</u> V STEM AUGERS	ASSIFIED BY: <u>GEOLOGIST</u>

DATE START FINISH SHEET	11/30/2000 11/30/2000 1 OF	6 6 1	SJB SERVICES, INC. SUBSURFACE LOG	HOLE NO. <u>ST-S</u> SURF. ELEV <u>1967.94</u> G.W. DEPTH See Notes
PROJECT: PROJ. NO.:	REED RD. L BEV-05-037	ANDFILL 7	SHELBY TUBE SAMPLES LOCATION: REE	ED ROAD ENDSHIP, NEW YORK
DEPTH SMPL	BLOWS C	ON SAMPLER	SOIL OR ROCK	NOTES
FT. NO.	0/6 6/12 12	/18 N	CLASSIFICATION	
	2 4		(moist, FILL)	native soil
			Foundry SAND encountered at 1.9'	
5	+ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$	+ +	Boring Complete at 2.0'	-
	+		Collected shelby tube sample 0- 1 9'	tube -
			had 1- inch of foundry sand in both	om –
10			(i)	
	+			\$ E 44 -
	+ $+$ $+$	+-+		-
				/h]
15				24
	+ + +			
	+			- XX -
20				-
				-
	+			-
25				-
			-	-
				-
30				-
		+-+	-	-
				-
				_
35				-
		+-+		-
				-
				-
			-	
40				
N = NO. BI DRILLER: METHOD (OWS TO DRIVE 2- B. FL		12-INCHES WITH A 140 LB. PIN WT. FALLING 30-INCHES PER DRILL RIG TYPE :CME- 850	BLOW CLASSIFIED BY: GEOLOGIST

Appendix E

Monitoring Well Installation Logs

PROJECT: Reed Rd. Landfill MW Ins	SERVICES, INC.	
PROJECT NUMBER: BEV-05-037	HOLLOW STEM AUGERS	
WELL NUMBER: MW-1	GEOLOGIST:	D. STEINER
DRILLER: B. FULLER	INSTALLATION DATE	E(S): 11/24- 11/27/06

1		ELEVATIONS/ TOP OF SURF	FACE CA	SING: N/A
GROUND		STICK- UP/ TOP OF SURFAC	CE CASIN	IG: N/A
	-1 -1	ELEVATION/ TOP OF RISER	PIPE:	1958.68
1000.02		STICK- UP/ TOP OF RISER F	PIPE:	3.06- Feet
MIRIKULI V		TYPE OF SURFACE SEAL:		Portland Cement
		I.D. OF SURFACE CASING:		4- Inches
		TYPE OF SURFACE CASING	;;	Steel
		- TYPE OF BACKFILL:	Cemen	nt/ Bentonite Grout
	1	BOREHOLE DIAMETER:	Manual Sciences and Sciences and	- inches
			8 -1	2- inches
		TYPE OF RISER PIPE:	30	G E Eact
		DEPTH OF SEAL:		0.5- Feet
		TYPE OF SEAL:	Be	entonite Chips
		- DEPTH OF SAND PACK:		8.5- Feet
	E	DEPTH TOP OF SCREEN:		10.0- Feet
		TYPE OF SCREEN:	Sc	hedule 40 PVC
		SLOT SIZE X LENGTH:	0.010	-Inches x 10-Feet
		I.D. OF SCREEN:		2- Inches
		TYPE OF SAND PACK:		#0 Silica Sand
	14 2-51	DEPTH BOTTOM OF SCREE	N:	20.0- Feet
		- DEPTH BOTTOM OF SAND F	PACK:	23.5- Feet
		- TYPE OF BACKFILL BELOW	OBSERV	ATION WELL:
			N/A	
	۱ ار ــــ کې د کې د ا	- ELEVATION/ DEPTH OF HOL	.E:	23.5- Feet

PROJECT: Reed Rd. Landfill MW Ins	SERVICES, INC.	
PROJECT NUMBER: BEV-05-037	HOLLOW STEM AUGERS	
WELL NUMBER: MW-2	GEOLOGIST:	D. STEINER
DRILLER: B. FULLER	INSTALLATION DAT	E(S): 11/27-11/28/06

	ELEVATIONS/ TOP OF SUR	FACE CAS	ING: N/A
GROUND	STICK- UP/ TOP OF SURFA	CE CASIN	G: N/A
	- ELEVATION/ TOP OF RISE	R PIPE:	1971.49
1900.00	STICK- UP/ TOP OF RISER	PIPE:	2.99- Feet
PRIXIN'	TYPE OF SURFACE SEAL:		Portland Cement
	I.D. OF SURFACE CASING:		4- Inches
	TYPE OF SURFACE CASIN	G:	Steel
	TYPE OF BACKFILL:	Cement	t/ Bentonite Grout 8- Inches
	LD. OF RISER PIPE:		2- Inches
	TYPE OF RISER PIPE:	Sch	edule 40 PVC
	DEPTH OF SEAL:		9.0- Feet
	TYPE OF SEAL:	Be	ntonite Chips
	DEPTH OF SAND PACK:		11.0- Feet
	DEPTH TOP OF SCREEN:		13.0- Feet
	TYPE OF SCREEN:	Sch	edule 40 PVC
調言語	SLOT SIZE X LENGTH:	0.010-	Inches x 10-Feet
	I.D. OF SCREEN:		2- Inches
	TYPE OF SAND PACK:		#0 Silica Sand
	DEPTH BOTTOM OF SCREE	EN:	23.0- Feet
	DEPTH BOTTOM OF SAND	PACK:	24.0- Feet
	TYPE OF BACKFILL BELOW	V OBSERV N/A	ATION WELL:
	ELEVATION/ DEPTH OF HO	LE:	24.0- Feet

PROJECT: Reed Rd. Landfill MW Ins	SERVICES, INC.		
PROJECT NUMBER: BEV-05-037	DRILLING METHOD: H	IOLLOW STEM AUGERS	
WELL NUMBER: MW-3	GEOLOGIST: D	D. STEINER	
DRILLER: B. FULLER	INSTALLATION DATE	S): 11/28/2006	

	ELEVATIONS/ TOP OF SURFA	CE CASING: N/A
GROUND	STICK- UP/ TOP OF SURFACE	CASING: N/A
ELEVATION		
	ELEVATION/ TOP OF RISER P	IPE: 1972.18
1900.04	STICK- UP/ TOP OF RISER PIP	E: 3.34- Feet
PRIXIXUAL	TYPE OF SURFACE SEAL:	Portland Cement
	I.D. OF SURFACE CASING:	4- Inches
	TYPE OF SURFACE CASING:	Steel
	- TYPE OF BACKFILL:	Cement/ Bentonite Grout
	BOREHOLE DIAMETER:	8- Inches
	I.D. OF RISER PIPE:	2- Inches
1	TYPE OF RISER PIPE:	Schedule 40 PVC
	DEPTH OF SEAL:	5.5- Feet
	TYPE OF SEAL:	Bentonite Chips
	DEPTH OF SAND PACK:	7.5- Feet
	DEPTH TOP OF SCREEN:	9.0- Feet
	TYPE OF SCREEN:	Schedule 40 PVC
調画商	SLOT SIZE X LENGTH:	0.010-Inches x 10-Feet
「」■■■	I.D. OF SCREEN:	2- Inches
	TYPE OF SAND PACK:	#0 Silica Sand
	DEPTH BOTTOM OF SCREEN:	19.0- Feet
	DEPTH BOTTOM OF SAND PA	ск: 20.0- Feet
	TYPE OF BACKFILL BELOW O	BSERVATION WELL:
A STATE OF STATE OF STATE		

PROJECT: Reed Rd. Landfill MW Inst	SERVICES, INC.	
PROJECT NUMBER: BEV-05-037	DRILLING METHOD:	HOLLOW STEM AUGERS
WELL NUMBER: MW-4	GEOLOGIST:	G. YOUNG
DRILLER: B. FULLER	INSTALLATION DAT	E(S): 11/29/2006

	-	ELEVATIONS/ TOP OF SURF	ACE CASING:	N/A
GROUND		STICK- UP/ TOP OF SURFAC	E CASING:	N/A
	-	ELEVATION/ TOP OF RISER	PIPE:	1963.66
1900.00		STICK- UP/ TOP OF RISER P	IPE:	3.08- Feet
MARKAN V	in the	TYPE OF SURFACE SEAL:	Ро	rtland Cement
		I.D. OF SURFACE CASING		4- Inches
		TYPE OF SURFACE CASING		Steel
		- TYPE OF BACKFILL:	Cement/ Be	entonite Grout
		BOREHOLE DIAMETER:		8- Inches
		I.D. OF RISER PIPE:	2-1	nches
		TYPE OF RISER PIPE:	Schedu	le 40 PVC
		DEPTH OF SEAL:	5.0	- Feet
			Bentor	ite Chips
		 DEPTH OF SAND PACK:		7.0- Feet
		DEPTH TOP OF SCREEN:		8.0- Feet
		TYPE OF SCREEN:	Schedu	le 40 PVC
		SLOT SIZE X LENGTH:	0.010-Inch	es x 10-Feet
		I.D. OF SCREEN:	2- I	nches
		TYPE OF SAND PACK:	#	0 Silica Sand
		_		
		DEPTH BOTTOM OF SCREEN	4:	18.0- Feet
		DEPTH BOTTOM OF SAND P	ACK:	20.0- Feet
		_ TYPE OF BACKFILL BELOW	OBSERVATION V	WELL:
		ELEVATION/ DEPTH OF HOL	E:	20.0- Feet

PROJECT: Reed Rd. Landfill MW Installations		SERVICES, INC.
PROJECT NUMBER: BEV-05-037	DRILLING METHOD:	HOLLOW STEM AUGERS
WELL NUMBER: MW-5	GEOLOGIST:	G. YOUNG/ D. STEINER
DRILLER: B. FULLER	INSTALLATION DATI	E(S): 11/29-11/30/2006

	ELEVATIONS/ TOP OF SURF	ACE CASING: N/A
GROUND	STICK- UP/ TOP OF SURFAC	E CASING: N/A
	ELEVATION/ TOP OF RISER	PIPE: 1960.34
1957.21	STICK- UP/ TOP OF RISER P	IPE: 3.13- Feet
THERE IS IN THE IS INTO IS INTO IS INTERNED. INTO IS INTON	TYPE OF SURFACE SEAL:	Portland Cement
	LD. OF SURFACE CASING:	4- Inches
	TYPE OF SUPFACE CASING	Steel
	TYPE OF BACKFILL:	Cement/ Bentonite Grout
	BOREHOLE DIAMETER:	8- Inches
i i i i i i i i i i i i i i i i i i i	I.D. OF RISER PIPE:	2- Inches
	TYPE OF RISER PIPE:	Schedule 40 PVC
	DEPTH OF SEAL:	5.3- Feet
	TYPE OF SEAL:	Bentonite Chips
	DEPTH OF SAND PACK:	7.6- Feet
	DEPTH TOP OF SCREEN:	10.0- Feet
	TYPE OF SCREEN:	Schedule 40 PVC
調言調	SLOT SIZE X LENGTH:	0.010-Inches x 10-Feet
	I.D. OF SCREEN:	2- Inches
	TYPE OF SAND PACK:	#0 Silica Sand
	DEPTH BOTTOM OF SCREEN	i: 20.0- Feet
i i i i i i i i i i i i i i i i i i i	DEPTH BOTTOM OF SAND PA	ACK: 22.0- Feet
	TYPE OF BACKFILL BELOW	OBSERVATION WELL:
	Service and the service of the servi	N/A
	ELEVATION/ DEPTH OF HOL	E: 22.0- Feet

Appendix F

Laboratory Analytical Data Sheets

ANALYTICAL REPORT

Job#: <u>A06-8163</u>

STL Project#: NY5A946109 Site Name: <u>NYSDEC - REGION 9 REMEDIATION/SPILLS CONTRACT</u> Task: NYSDEC Spills - Reed Rd. lanfill: Site#902018

Mr. Chad Staniszewski NYSDEC - Region 9 270 Michigan Ave Buffalo, NY 14203

STL Buffalo

Brian J. Fischer Project Manager

08/03/2006

1/18

STL Buffalo Current Certifications

As of 4/10//2006

STATE	Program	Cert # / Lab ID
AFCEE	AFCEE	
Arkansas	SDWA, CWA, RCRA, SOIL	03-054-D/88-0686
California	NELAP CWA, RCRA	01169CA
Connecticut	SDWA, CWA, RCRA, SOIL	PH-0568
Florida	NELAP CWA, RCRA	E87672
Georgia	SDWA	956
Illinois	NELAP SDWA, CWA, RCRA	200003
lowa	SW/CS	374
Kansas	NELAP SDWA, CWA, RCRA	E-10187
Kentucky	SDWA	90029
Kentucky UST	UST	30
Louisiana	NELAP CWA, RCRA	2031
Maine	SDWA, CWA	NY044
Maryland	SDWA	294
Massachusetts	SDWA, CWA	M-NY044
Michigan	SDWA	9937
Minnesota	SDWA,CWA, RCRA	036-999-337
New Hampshire	NELAP SDWA, CWA	233701
New Jersey	SDWA, CWA, RCRA, CLP	NY455
New York	NELAP, AIR, SDWA, CWA, RCRA,ASP	10026
Oklahoma	CWA, RCRA	9421
Pennsylvania	Env. Lab Reg.	68-281
South Carolina	RCRA	91013
Tennessee	SDWA	02970
USACE	USACE	
USDA	FOREIGN SOIL PERMIT	S-41579
USDOE	Department of Energy	DOECAP-STB
Virginia	SDWA	278
Washington	CWA,RCRA	C1677
West Virginia	CWA,RCRA	252
Wisconsin	CWA	998310390

SAMPLE SUMMARY

							SAMPI	SAMPLED		Ð
LAB	SAMPLE	ID	CLIENT	SAMPLE	ID	MATRIX	DATE	TIME	DATE	TIME
Ae	5816302		MH-2			WATER	07/17/2006	12:45	07/18/2006	12:30
Ae	5816301		TANK			WATER	07/17/2006	11:45	07/18/2006	12:30
Ae	5816303		TRIP BLAN	1K		WATER	07/17/2006		07/18/2006	12:30

METHODS SUMMARY

Job#: <u>A06-8163</u>

STL Project#: <u>NY5A946109</u> Site Name: <u>NYSDEC - REGION 9 REMEDIATION/SPILLS CONTRACT</u>

ANTAT VATIT CAT

PARAMETER	I	/ETHOD		
NYSDEC - AQUEOUS-SW8463 TCL 8260	SW8463	8260		
NYDEC AQ- 8270 TCL SEMI-VOLATILE ORGANIC	SW8463	8270		
METHOD 8081 - TCL PESTICIDES	SW8463	8081		
METHOD 8082 - POLYCHLORINATED BIPHENYLS	SW8463	8082		
METHOD 8151 - HERBICIDES	SW8463	8151		
Aluminum - Total	SW8463	6010		
Antimony - Total	SW8463	6010		
Arsenic - Total	SW8463	6010		
Barium - Total	SW8463	6010		
Beryllium - Total	SW8463	6010		
Cadmium - Total	SW8463	6010		
Calcium - Total	SW8463	6010		
Chromium - Total	SW8463	6010		
Cobalt - Total	SW8463	6010		
Copper - Total	SW8463	6010		
Iron - Total	SW8463	6010		
Lead - Total	SW8463	6010		
Maqnesium - Total	SW8463	6010		
Manganese - Total	SW8463	6010		
Mercury - Total	SW8463	7470		
Nickel - Total	SW8463	6010		
Potassium - Total	SW8463	6010		
Selenium - Total	SW8463	6010		
Silver - Total	SW8463	6010		
Sodium - Total	SW8463	6010		
Thallium - Total	SW8463	6010		
Vanadium - Total	SW8463	6010		
Zinc - Total	SW8463	6010		
рн	MCAWW	150.1		
Total Recoverable Phenolics	MCAWW	420.2		

- MCAWW "Methods for Chemical Analysis of Water and Wastes", EPA/600/4-79-020 (Mar 1983) with updates and supplements EPA/600/4-91-010 (Jun 1991), EPA/600/R-92-129 (Aug 1992) and EPA/600/R-93-100 (Aug 1993)
- SW8463 "Test Methods for Evaluating Solid Waste Physical/Chemical Methods (SW846), Third Edition, 9/86; Update I, 7/92; Update IIA, 8/93; Update II, 9/94; Update IIB, 1/95; Update III, 12/96.

NON-CONFORMANCE SUMMARY

Job#: <u>A06-8163</u>

STL Project#: <u>NY5A946109</u> Site Name: <u>NYSDEC - REGION 9 REMEDIATION/SPILLS CONTRACT</u>

General Comments

The enclosed data may or may not have been reported utilizing data qualifiers (Q) as defined on the Data Comment Page.

Soil, sediment and sludge sample results are reported on "dry weight" basis unless otherwise noted in this data package.

According to 40CFR Part 136.3, pH, Chlorine Residual, Dissolved Oxygen, Sulfite, and Temperature analyses are to be performed immediately after aqueous sample collection. When these parameters are not indicated as field (e.g. pH-Field), they were not analyzed immediately, but as soon as possible after laboratory receipt.

Sample dilutions were performed as indicated on the attached Dilution Log. The rationale for dilution is specified by the 3-digit code and definition.

Sample Receipt Comments

A06-8163

Sample Cooler(s) were received at the following temperature(s); 2@6.0 °C All samples were received in good condition.

<u>GC/MS Volatile Data</u>

No deviations from protocol were encountered during the analytical procedures.

<u>GC/MS Semivolatile Data</u>

No deviations from protocol were encountered during the analytical procedures.

<u>GC Extractable Data</u>

No deviations from protocol were encountered during the analytical procedures.

<u>Metals Data</u>

No deviations from protocol were encountered during the analytical procedures.

Wet Chemistry Data

No deviations from protocol were encountered during the analytical procedures.

The results presented in this report relate only to the analytical testing and condition of the sample at receipt. This report pertains to only those samples actually tested. All pages of this report are integral parts of the analytical data. Therefore, this report should be reproduced only in its entirety.

"I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hardcopy data package and in the computer-readable data submitted on floppy diskette has been authorized by the Laboratory Manager or his designee, as verified by the following signature."

Brian J. Fischer Project Manager

Date

Client Sample ID	Lab Sample ID	Parameter (Inorganic)/Method (Organic)	<u>Dilution</u>	Code
MH-2	A6816302	8260	4.00	003

Dilution Code Definition:

002 -	· sample	matrix	effects

003 - excessive foaming

004 - high levels of non-target compounds

005 - sample matrix resulted in method non-compliance for an Internal Standard

006 - sample matrix resulted in method non-compliance for Surrogate

007 - nature of the TCLP matrix

008 - high concentration of target analyte(s)

009 - sample turbidity

010 - sample color

011 - insufficient volume for lower dilution

012 – sample viscosity

013 - other

DATA QUALIFIER PAGE

These definitions are provided in the event the data in this report requires the use of one or more of the qualifiers. Not all qualifiers defined below are necessarily used in the accompanying data package.

ORGANIC DATA QUALIFIERS

ND or U Indicates compound was analyzed for, but not detected.

- J Indicates an estimated value. This flag is used either when estimating a concentration for tentatively identified compounds where a 1:1 response is assumed, or when the data indicates the presence of a compound that meets the identification criteria but the result is less than the sample quantitation limit but greater than zero.
- C This flag applies to pesticide results where the identification has been confirmed by GC/MS.
- B This flag is used when the analyte is found in the associated blank, as well as in the sample.
- E This flag identifies compounds whose concentrations exceed the calibration range of the instrument for that specific analysis.
- D This flag identifies all compounds identified in an analysis at the secondary dilution factor.
- N Indicates presumptive evidence of a compound. This flag is used only for tentatively identified compounds, where the identification is based on the Mass Spectral library search. It is applied to all TIC results.
- P This flag is used for CLP methodology only. For Pesticide/Aroclor target analytes, when a difference for detected concentrations between the two GC columns is greater than 25%, the lower of the two values is reported on the data page and flagged with a "P".
- A This flag indicates that a TIC is a suspected aldol-condensation product.
- ¹ Indicates coelution.
- * Indicates analysis is not within the quality control limits.

INORGANIC DATA QUALIFIERS

- ND or U Indicates element was analyzed for, but not detected. Report with the detection limit value.
- J or B Indicates a value greater than or equal to the instrument detection limit, but less than the quantitation limit.
- N Indicates spike sample recovery is not within the quality control limits.
- S Indicates value determined by the Method of Standard Addition.
- E Indicates a value estimated or not reported due to the presence of interferences.
- H Indicates analytical holding time exceedance. The value obtained should be considered an estimate.
- * Indicates the spike or duplicate analysis is not within the quality control limits.
- + Indicates the correlation coefficient for the Method of Standard Addition is less than 0.995.

Date: 08/03/2006 Time: 20:23:53

NYSDEC NYSDEC - REGION 9 REMEDIATION/SPILLS CONTRACT NYSDEC Spills - Reed Rd. lanfill: Site#902018 9/18 Page: 1

Rept: AN1178

Sample ID: MH-2 Lab Sample ID: A6816302 Date Collected: 07/17/2006 Time Collected: 12:45

Date Received:	07/18/2006
Project No:	NY5A946109
Client No:	L10190
Site No:	

			Detection				
Parameter	Result	Flag	Limit	Units	Method	Analyzed	Analyst
NYSDEC - AQUEOUS-SW8463 TCL 8260							
1,1,1-Trichloroethane	ND		4.0	UG/L	8260	07/19/2006 15:31	TRB
1,1,2,2-Tetrachloroethane	ND		4.0	UG/L	8260	07/19/2006 15:31	TRB
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		4.0	UG/L	8260	07/19/2006 15:31	TRB
1,1,2-Trichloroethane	ND		4.0	UG/L	8260	07/19/2006 15:31	TRB
1,1-Dichloroethane	ND		4.0	UG/L	8260	07/19/2006 15:31	TRB
1,1-Dichloroethene	ND		4.0	UG/L	8260	07/19/2006 15:31	TRB
1,2,4-Trichlorobenzene	ND		4.0	UG/L	8260	07/19/2006 15:31	TRB
1,2-Dibromo-3-chloropropane	ND		4.0	UG/L	8260	07/19/2006 15:31	TRB
1,2-Dibromoethane	ND		4.0	UG/L	8260	07/19/2006 15:31	TRB
1,2-Dichlorobenzene	ND		4.0	UG/L	8260	07/19/2006 15:31	TRB
1,2-Dichloroethane	ND		4.0	UG/L	8260	07/19/2006 15:31	TRB
1,2-Dichloropropane	ND		4.0	UG/L	8260	07/19/2006 15:31	TRB
1,3-Dichlorobenzene	ND		4.0	UG/L	8260	07/19/2006 15:31	TRB
1,4-Dichlorobenzene	ND		4.0	UG/L	8260	07/19/2006 15:31	TRB
2-Butanone	ND		20	UG/L	8260	07/19/2006 15:31	TRB
2-Hexanone	ND		20	UG/L	8260	07/19/2006 15:31	TRB
4-Methyl-2-pentanone	ND		20	UG/L	8260	07/19/2006 15:31	TRB
Acetone	ND		20	UG/L	8260	07/19/2006 15:31	TRB
Benzene	ND		4.0	UG/L	8260	07/19/2006 15:31	TRB
Bromodichloromethane	ND		4.0	UG/L	8260	07/19/2006 15:31	TRB
Bromoform	ND		4.0	UG/L	8260	07/19/2006 15:31	TRB
Bromomethane	ND		4.0	UG/L	8260	07/19/2006 15:31	TRB
Carbon Disulfide	ND		4.0	UG/L	8260	07/19/2006 15:31	TRB
Carbon Tetrachloride	ND		4.0	UG/L	8260	07/19/2006 15:31	TRB
Chlorobenzene	ND		4.0	UG/L	8260	07/19/2006 15:31	TRB
Chloroethane	ND		4.0	UG/L	8260	07/19/2006 15:31	TRB
Chloroform	ND		4.0	UG/L	8260	07/19/2006 15:31	TRB
Chloromethane	ND		4.0	UG/L	8260	07/19/2006 15:31	TRB
cis-1,2-Dichloroethene	ND		4.0	UG/L	8260	07/19/2006 15:31	TRB
cis-1,3-Dichloropropene	ND		4.0	UG/L	8260	07/19/2006 15:31	TRB
Cyclohexane	ND		4.0	UG/L	8260	07/19/2006 15:31	TRB
Dibromochloromethane	ND		4.0	UG/L	8260	07/19/2006 15:31	TRB
Dichlorodifluoromethane	ND		4.0	UG/L	8260	07/19/2006 15:31	TRB
Ethylbenzene	ND		4.0	UG/L	8260	07/19/2006 15:31	TRB
Isopropylbenzene	ND		4.0	UG/L	8260	07/19/2006 15:31	TRB
Methyl acetate	ND		4.0	UG/L	8260	07/19/2006 15:31	TRB
Methyl-t-Butyl Ether (MTBE)	ND		4.0	UG/L	8260	07/19/2006 15:31	TRB
Methylcyclohexane	ND		4.0	UG/L	8260	07/19/2006 15:31	TRB
Methylene chloride	6.9		4.0	UG/L	8260	07/19/2006 15:31	TRB
Styrene	ND		4.0	UG/L	8260	07/19/2006 15:31	TRB
Tetrachloroethene	ND		4.0	UG/L	8260	07/19/2006 15:31	TRB
Toluene	ND		4.0	UG/L	8260	07/19/2006 15:31	TRB
Total Xylenes	ND		12	UG/L	8260	07/19/2006 15:31	TRB
trans-1,2-Dichloroethene	ND		4.0	UG/L	8260	07/19/2006 15:31	TRB
trans-1,3-Dichloropropene	ND		4.0	UG/L	8260	07/19/2006 15:31	TRB
Trichloroethene	ND		4.0	UG/L	8260	07/19/2006 15:31	TRB
Trichlorofluoromethane	ND		4.0	UG/L	8260	07/19/2006 15:31	TRB
Vinyl chloride	ND		4.0	UG/L	8260	07/19/2006 15:31	TRB
NYSDEC NYSDEC - REGION 9 REMEDIATION/SPILLS CONTRACT NYSDEC Spills - Reed Rd. lanfill: Site#902018

Rept: AN1178

Sample ID: MH-2 Lab Sample ID: A6816302 Date Collected: 07/17/2006 Time Collected: 12:45

			Detection			——Date/Time——	
Parameter	Result	Flag	Limit	<u> Units</u>	Method	Analyzed	<u>Analyst</u>
NYDEC AQ- SW8463 8270 - TCL SVOA ORGANIC							
1,2,4-Trichlorobenzene	ND		9	UG/L	8270	07/27/2006 19:25	MRF
1,2-Dichlorobenzene	ND		9	UG/L	8270	07/27/2006 19:25	MRF
1,3-Dichlorobenzene	ND		9	UG/L	8270	07/27/2006 19:25	MRF
1,4-Dichlorobenzene	ND		9	UG/L	8270	07/27/2006 19:25	MRF
2,2'-0xybis(1-Chloropropane)	ND		9	UG/L	8270	07/27/2006 19:25	MRF
2,4,5-Trichlorophenol	ND		9	UG/L	8270	07/27/2006 19:25	MRF
2,4,6-Trichlorophenol	ND		9	UG/L	8270	07/27/2006 19:25	MRF
2,4-Dichlorophenol	ND		9	UG/L	8270	07/27/2006 19:25	MRF
2,4-Dimethylphenol	ND		9	UG/L	8270	07/27/2006 19:25	MRF
2,4-Dinitrophenol	ND		47	UG/L	8270	07/27/2006 19:25	MRF
2,4-Dinitrotoluene	ND		9	UG/L	8270	07/27/2006 19:25	MRF
2,6-Dinitrotoluene	ND		9	UG/L	8270	07/27/2006 19:25	MRF
2-Chloronaphthalene	ND		9	UG/L	8270	07/27/2006 19:25	MRF
2-Chlorophenol	ND		9	UG/L	8270	07/27/2006 19:25	MRF
2-Methylnaphthalene	ND		9	UG/L	8270	07/27/2006 19:25	MRF
2-Methylphenol	ND		9	UG/L	8270	07/27/2006 19:25	MRF
2-Nitroaniline	ND		47	UG/L	8270	07/27/2006 19:25	MRF
2-Nitrophenol	ND		9	UG/L	8270	07/27/2006 19:25	MRF
3,3'-Dichlorobenzidine	ND		19	UG/L	8270	07/27/2006 19:25	MRF
3-Nitroaniline	ND		47	UG/L	8270	07/27/2006 19:25	MRF
4,6-Dinitro-2-methylphenol	ND		47	UG/L	8270	07/27/2006 19:25	MRF
4-Bromophenyl phenyl ether	ND		9	UG/L	8270	07/27/2006 19:25	MRF
4-Chloro-3-methylphenol	ND		9	UG/L	8270	07/27/2006 19:25	MRF
4-Chloroaniline	ND		9	UG/L	8270	07/27/2006 19:25	MRF
4-Chlorophenyl phenyl ether	ND		9	UG/L	8270	07/27/2006 19:25	MRF
4-Methylphenol	ND		9	UG/L	8270	07/27/2006 19:25	MRF
4-Nitroaniline	ND		47	UG/L	8270	07/27/2006 19:25	MRF
4-Nitrophenol	ND		47	UG/L	8270	07/27/2006 19:25	MRF
Acenaphthene	ND		9	UG/L	8270	07/27/2006 19:25	MRF
Acenaphthylene	ND		9	UG/L	8270	07/27/2006 19:25	MRF
Anthracene	ND		9	UG/L	8270	07/27/2006 19:25	MRF
Benzo(a)anthracene	ND		9	UG/L	8270	07/27/2006 19:25	MRF
Benzo(a)pyrene	ND		9	UG/L	8270	07/27/2006 19:25	MRF
Benzo(b)fluoranthene	ND		9	UG/L	8270	07/27/2006 19:25	MRF
Benzo(ghi)perylene	ND		9	UG/L	8270	07/27/2006 19:25	MRF
Benzo(k)fluoranthene	ND		9	UG/L	8270	07/27/2006 19:25	MRF
Bis(2-chloroethoxy) methane	ND		9	UG/L	8270	07/27/2006 19:25	MRF
Bis(2-chloroethyl) ether	ND		9	UG/L	8270	07/27/2006 19:25	MRF
Bis(2-ethylhexyl) phthalate	ND		9	UG/L	8270	07/27/2006 19:25	MRF
Butyl benzyl phthalate	ND		9	UG/L	8270	07/27/2006 19:25	MRF
Carbazole	ND		9	UG/L	8270	07/27/2006 19:25	MRF
Chrysene	ND		9	UG/L	8270	07/27/2006 19:25	MRF
Di-n-butyl phthalate	ND		9	UG/L	8270	07/27/2006 19:25	MRF
Di-n-octyl phthalate	ND		9	UG/L	8270	07/27/2006 19:25	MRF
Dibenzo(a,h)anthracene	ND		9	UG/L	8270	07/27/2006 19:25	MRF
Dibenzofuran	ND		9	UG/L	8270	07/27/2006 19:25	MRF
Diethyl phthalate	ND		9	UG/L	8270	07/27/2006 19:25	MRF
Dimethyl phthalate	ND		9	UG/L	8270	07/27/2006 19:25	MRF
Fluoranthene	ND		9	UG/L	8270	07/27/2006 19:25	MRF

NYSDEC NYSDEC - REGION 9 REMEDIATION/SPILLS CONTRACT NYSDEC Spills - Reed Rd. lanfill: Site#902018

Rept: AN1178

Sample ID: MH-2 Lab Sample ID: A6816302 Date Collected: 07/17/2006 Time Collected: 12:45

			Detection			—_Date/Time—	
Parameter	Result	Flag	Limit	Units	Method	Analyzed	Analyst
NYDEC AQ- SW8463 8270 - TCL SVOA ORGANIC							
Fluorene	ND		9	UG/L	8270	07/27/2006 19:25	MRF
Hexachlorobenzene	ND		9	UG/L	8270	07/27/2006 19:25	MRF
Hexachlorobutadiene	ND		9	UG/L	8270	07/27/2006 19:25	MRF
Hexachlorocyclopentadiene	ND		43	UG/L	8270	07/27/2006 19:25	MRF
Hexachloroethane	ND		9	UG/L	8270	07/27/2006 19:25	MRF
Indeno(1,2,3-cd)pyrene	ND		9	UG/L	8270	07/27/2006 19:25	MRF
Isophorone	ND		9	UG/L	8270	07/27/2006 19:25	MRF
N-Nitroso-Di-n-propylamine	ND		9	UG/L	8270	07/27/2006 19:25	MRF
N-nitrosodiphenylamine	ND		9	UG/L	8270	07/27/2006 19:25	MRF
Naphthalene	ND		9	UG/L	8270	07/27/2006 19:25	MRF
Nitrobenzene	ND		9	UG/L	8270	07/27/2006 19:25	MRF
Pentachlorophenol	ND		47	UG/L	8270	07/27/2006 19:25	MRF
Phenanthrene	ND		9	UG/L	8270	07/27/2006 19:25	MRF
Phenol	ND		9	UG/L	8270	07/27/2006 19:25	MRF
Pyrene	ND		9	UG/L	8270	07/27/2006 19:25	MR F
NYSDEC - AQUEOUS-SW8463 8081 - TCL PESTICIDES							
4,4'-DDD	ND		0.047	UG/L	8081	07/26/2006 17:54	тсн
4,4'-DDE	ND		0.047	UG/L	8081	07/26/2006 17:54	ТСН
4,4'-DDT	ND		0.047	UG/L	8081	07/26/2006 17:54	ТСН
Aldrin	ND		0.047	UG/L	8081	07/26/2006 17:54	ТСН
alpha-BHC	ND		0.047	UG/L	8081	07/26/2006 17:54	ТСН
alpha-Chlordane	ND		0.047	UG/L	8081	07/26/2006 17:54	тсн
beta-BHC	ND		0.047	UG/L	8081	07/26/2006 17:54	TCH
delta-BHC	ND		0.047	UG/L	8081	07/26/2006 17:54	TCH
Dieldrin	ND		0.047	UG/L	8081	07/26/2006 17:54	тсн
Endosulfan I	ND		0.047	UG/L	8081	07/26/2006 17:54	тсн
Endosulfan II	ND		0.047	UG/L	8081	07/26/2006 17:54	тсн
Endosulfan Sulfate	ND		0.047	UG/L	8081	07/26/2006 17:54	тсн
Endrin	ND		0.047	UG/L	8081	07/26/2006 17:54	ТСН
Endrin aldehyde	ND		0.047	UG/L	8081	07/26/2006 17:54	тсн
Endrin ketone	ND		0.047	UG/L	8081	07/26/2006 17:54	ТСН
gamma-BHC (Lindane)	ND		0.047	UG/L	8081	07/26/2006 17:54	ТСН
gamma-Chlordane	ND		0.047	UG/L	8081	07/26/2006 17:54	тсн
Heptachlor	ND		0.047	UG/L	8081	07/26/2006 17:54	ТСН
Heptachlor epoxide	ND		0.047	UG/L	8081	07/26/2006 17:54	TCH
Methoxychlor	ND		0.047	UG/L	8081	07/26/2006 17:54	TCH
Toxaphene	ND		0.94	UG/L	8081	07/26/2006 17:54	TCH
NYSDEC-AQ-SW8463 8082 - PCBS							
Aroclor 1016	ND		0.47	UG/L	8082	07/24/2006 16:04	DJB
Aroclor 1221	ND		0.47	UG/L	8082	07/24/2006 16:04	DJB
Aroclor 1232	ND		0.47	UG/L	8082	07/24/2006 16:04	DJB
Aroclor 1242	ND		0.47	UG/L	8082	07/24/2006 16:04	DJB
Aroclor 1248	ND		0.47	UG/L	8082	07/24/2006 16:04	DJB
Aroclor 1254	ND		0.47	UG/L	8082	07/24/2006 16:04	DJB
Aroclor 1260	ND		0.47	UG/L	8082	07/24/2006 16:04	DJB

NYSDEC NYSDEC - REGION 9 REMEDIATION/SPILLS CONTRACT NYSDEC Spills - Reed Rd. lanfill: Site#902018

Sample ID: MH-2

Date Received: 07/18/2006

Rept: AN1178

Lab Sample ID: A6816302	.e ID: A6816302			Project No: NY5A946109					
Date Collected: 07/17/2006						Client No: L10190			
Time Collected: 12:45						Site No:			
			Detection			Date/Time	_		
Parameter	Result	Flag	Limit	Units	Method	Analyzed	Analyst		
NYSDEC - AQ-SW8463 8151 - HERBICIDES (3 COMPO									
2,4,5-T	ND		0.48	UG/L	8151	07/27/2006 23:39	Э ТСН		
2,4,5-TP (Silvex)	0.29	J	0.48	UG/L	8151	07/27/2006 23:39	Э ТСН		
2,4-D	0.31	J	0.48	UG/L	8151	07/27/2006 23:39	Э ТСН		
Metals Analysis									
Aluminum — Total	1.5		0.20	MG/∟	6010	07/21/2006 04:10	6 JP		
Antimony – Total	ND		0.020	MG/L	6010	07/21/2006 04:10	6 JP		
Arsenic – Total	0.045		0.010	MG/L	6010	07/21/2006 04:10	6 JP		
Barium – Total	0.55		0.0020	MG/L	6010	07/21/2006 04:10	6 JP		
Beryllium – Total	ND		0.0020	MG/L	6010	07/21/2006 04:10	6 JP		
Cadmium — Total	0.0057		0.0010	MG/L	6010	07/21/2006 04:10	5 JP		
Calcium — Total	17.9		0.50	MG/L	6010	07/21/2006 04:10	5 JP		
Chromium – Total	ND		0.0040	MG/L	6010	07/21/2006 04:10	5 JP		
Cobalt – Total	ND		0.0040	MG/L	6010	07/21/2006 04:10	6 JP		
Copper – Total	ND		0.010	MG/L	6010	07/21/2006 04:10	6 JP		
Iron – Total	444		0.050	MG/L	6010	07/21/2006 04:10	6 JP		
Lead - Total	0.0074		0.0050	MG/∟	6010	07/21/2006 04:10	6 JP		
Magnesium – Total	4.4		0.20	MG/L	6010	07/21/2006 04:10	6 JP		
Manganese - Total	0.89		0.0030	MG/∟	6010	07/21/2006 04:10	6 JP		
Mercury - Total	ND		0.00020	MG/∟	7470	07/19/2006 16:42	2 MM		
Nickel - Total	ND		0.010	MG/∟	6010	07/21/2006 04:10	6 JP		
Potassium – Total	2.2		0.50	MG/∟	6010	07/21/2006 04:10	6 JP		
Selenium – Total	ND		0.015	MG/∟	6010	07/21/2006 19:2 [.]	1 JP		
Silver – Total	ND		0.0030	MG/∟	6010	07/21/2006 04:10	6 JP		
Sodium – Total	2.5		1.0	MG/∟	6010	07/21/2006 04:10	6 JP		
Thallium — Total	ND		0.020	MG/L	6010	07/21/2006 04:10	6 JP		
Vanadium – Total	ND		0.0050	MG/∟	6010	07/21/2006 04:10	6 JP		
Zinc - Total	0.019		0.010	MG/L	6010	07/21/2006 04:10	6 JP		
Wet Chemistry Analysis									
рН	6.7		0.50	s.U.	150.1	07/18/2006 17:30) SM		
Total Recoverable Phenolics	0.014		0.0050	MG/L	420.2	07/24/2006 12:22	2 RLG		

NYSDEC NYSDEC - REGION 9 REMEDIATION/SPILLS CONTRACT NYSDEC Spills - Reed Rd. lanfill: Site#902018

Rept: AN1178

Sample ID: TANK Lab Sample ID: A6816301 Date Collected: 07/17/2006 Time Collected: 11:45

			Detection			——Date/Time——	
Parameter	Result	Flag	Limit	<u> Units </u>	Method	Analyzed	<u>Analyst</u>
NYSDEC - AQUEOUS-SW8463 TCL 8260							
1,1,1-Trichloroethane	ND		1.0	UG/L	8260	07/19/2006 15:03	TRB
1,1,2,2-Tetrachloroethane	ND		1.0	UG/L	8260	07/19/2006 15:03	TRB
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		1.0	UG/L	8260	07/19/2006 15:03	TRB
1,1,2-Trichloroethane	ND		1.0	UG/L	8260	07/19/2006 15:03	TRB
1,1-Dichloroethane	3.0		1.0	UG/L	8260	07/19/2006 15:03	TRB
1,1-Dichloroethene	ND		1.0	UG/L	8260	07/19/2006 15:03	TRB
1,2,4-Trichlorobenzene	ND		1.0	UG/L	8260	07/19/2006 15:03	TRB
1,2-Dibromo-3-chloropropane	ND		1.0	UG/L	8260	07/19/2006 15:03	TRB
1,2-Dibromoethane	ND		1.0	UG/L	8260	07/19/2006 15:03	TRB
1,2-Dichlorobenzene	ND		1.0	UG/L	8260	07/19/2006 15:03	TRB
1,2-Dichloroethane	ND		1.0	UG/L	8260	07/19/2006 15:03	TRB
1,2-Dichloropropane	ND		1.0	UG/L	8260	07/19/2006 15:03	TRB
1,3-Dichlorobenzene	ND		1.0	UG/L	8260	07/19/2006 15:03	TRB
1,4-Dichlorobenzene	ND		1.0	UG/L	8260	07/19/2006 15:03	TRB
2-Butanone	ND		5.0	UG/L	8260	07/19/2006 15:03	TRB
2-Hexanone	ND		5.0	UG/L	8260	07/19/2006 15:03	TRB
4-Methyl-2-pentanone	ND		5.0	UG/L	8260	07/19/2006 15:03	TRB
Acetone	4.8	J	5.0	UG/L	8260	07/19/2006 15:03	TRB
Benzene	ND		1.0	UG/L	8260	07/19/2006 15:03	TRB
Bromodichloromethane	ND		1.0	UG/L	8260	07/19/2006 15:03	TRB
Bromoform	ND		1.0	UG/L	8260	07/19/2006 15:03	TRB
Bromomethane	ND		1.0	UG/L	8260	07/19/2006 15:03	TRB
Carbon Disulfide	ND		1.0	UG/L	8260	07/19/2006 15:03	TRB
Carbon Tetrachloride	ND		1.0	UG/L	8260	07/19/2006 15:03	TRB
Chlorobenzene	ND		1.0	UG/L	8260	07/19/2006 15:03	TRB
Chloroethane	ND		1.0	UG/L	8260	07/19/2006 15:03	TRB
Chloroform	ND		1.0	UG/L	8260	07/19/2006 15:03	TRB
Chloromethane	ND		1.0	UG/L	8260	07/19/2006 15:03	TRB
cis-1.2-Dichloroethene	ND		1.0	UG/L	8260	07/19/2006 15:03	TRB
cis-1,3-Dichloropropene	ND		1.0	UG/L	8260	07/19/2006 15:03	TRB
Cyclohexane	ND		1.0	UG/L	8260	07/19/2006 15:03	TRB
DibromochLoromethane	ND		1.0	UG/L	8260	07/19/2006 15:03	TRB
Dichlorodifluoromethane	ND		1.0	UG/L	8260	07/19/2006 15:03	TRB
Ethylbenzene	ND		1.0	UG/L	8260	07/19/2006 15:03	TRB
Isopropylbenzene	ND		1.0	UG/L	8260	07/19/2006 15:03	TRB
Methyl acetate	ND		1.0	UG/L	8260	07/19/2006 15:03	TRB
Methyl-t-Butyl Ether (MTBE)	ND		1.0	UG/L	8260	07/19/2006 15:03	TRB
Methylcyclohexane	ND		1.0	UG/L	8260	07/19/2006 15:03	TRB
Methylene chloride	ND		1.0	UG/L	8260	07/19/2006 15:03	TRB
Styrene	ND		1.0	UG/L	8260	07/19/2006 15:03	TRB
TetrachLoroethene	ND		1.0	UG/L	8260	07/19/2006 15:03	TRB
Toluene	ND		1.0	UG/L	8260	07/19/2006 15:03	TRB
Total Xylenes	1.0	J	3.0	UG/L	8260	07/19/2006 15:03	TRB
trans-1.2-Dichloroethene	ND		1.0	UG/L	8260	07/19/2006 15:03	TRB
trans-1,3-Dichloropropene	ND		1.0	UG/L	8260	07/19/2006 15:03	TRB
Trichloroethene	ND		1.0	UG/L	8260	07/19/2006 15:03	TRB
Trichlorofluoromethane	ND		1.0	UG/L	8260	07/19/2006 15:03	TRB
Vinyl chloride	ND		1.0	UG/L	8260	07/19/2006 15:03	TRB
						.,.,.,	

NYSDEC NYSDEC - REGION 9 REMEDIATION/SPILLS CONTRACT NYSDEC Spills - Reed Rd. lanfill: Site#902018

Sample ID: TANK Lab Sample ID: A6816301 Date Collected: 07/17/2006 Time Collected: 11:45 Rept: AN1178

Date Received: 07/18/2006 Project No: NY5A946109 Client No: L10190 Site No:

.

		Detection			——Date/Time——	
Parameter	Result		Units	Method	Analyzed	Analyst
NYDEC AQ- SW8463 8270 - TCL SVOA ORGANIC						
1,2,4-Trichlorobenzene	ND	10	UG/L	8270	07/27/2006 19:00	MRF
1,2-Dichlorobenzene	ND	10	UG/L	8270	07/27/2006 19:00	MRF
1,3-Dichlorobenzene	ND	10	UG/L	8270	07/27/2006 19:00	MRF
1,4-Dichlorobenzene	ND	10	UG/L	8270	07/27/2006 19:00	MRF
2,2'-0xybis(1-Chloropropane)	ND	10	UG/L	8270	07/27/2006 19:00	MRF
2,4,5-Trichlorophenol	ND	10	UG/L	8270	07/27/2006 19:00	MRF
2,4,6-Trichlorophenol	ND	10	UG/L	8270	07/27/2006 19:00	MRF
2,4-Dichlorophenol	ND	10	UG/L	8270	07/27/2006 19:00	MRF
2,4-Dimethylphenol	ND	10	UG/L	8270	07/27/2006 19:00	MRF
2,4-Dinitrophenol	ND	48	UG/L	8270	07/27/2006 19:00	MRF
2,4-Dinitrotoluene	ND	10	UG/L	8270	07/27/2006 19:00	MRF
2,6-Dinitrotoluene	ND	10	UG/L	8270	07/27/2006 19:00	MRF
2-Chloronaphthalene	ND	10	UG/L	8270	07/27/2006 19:00	MRF
2-Chlorophenol	ND	10	UG/L	8270	07/27/2006 19:00	MRF
2-Methylnaphthalene	ND	10	UG/L	8270	07/27/2006 19:00	MRF
2-Methylphenol	ND	10	UG/L	8270	07/27/2006 19:00	MRF
2-Nitroaniline	ND	48	UG/L	8270	07/27/2006 19:00	MRF
2-Nitrophenol	ND	10	UG/L	8270	07/27/2006 19:00	MRF
3,3'-Dichlorobenzidine	ND	19	UG/L	8270	07/27/2006 19:00	MRF
3-Nitroaniline	ND	48	UG/L	8270	07/27/2006 19:00	MRF
4,6-Dinitro-2-methylphenol	ND	48	UG/L	8270	07/27/2006 19:00	MRF
4-Bromophenyl phenyl ether	ND	10	UG/L	8270	07/27/2006 19:00	MRF
4-Chloro-3-methylphenol	ND	10	UG/L	8270	07/27/2006 19:00	MRF
4-Chloroaniline	ND	10	UG/L	8270	07/27/2006 19:00	MRF
4-Chlorophenyl phenyl ether	ND	10	UG/L	8270	07/27/2006 19:00	MRF
4-Methylphenol	ND	10	UG/L	8270	07/27/2006 19:00	MRF
4-Nitroaniline	ND	48	UG/L	8270	07/27/2006 19:00	MRF
4-Nitrophenol	ND	48	UG/L	8270	07/27/2006 19:00	MRF
Acenaphthene	ND	10	UG/L	8270	07/27/2006 19:00	MRF
Acenaphthylene	ND	10	UG/L	8270	07/27/2006 19:00	MRF
Anthracene	ND	10	UG/L	8270	07/27/2006 19:00	MRF
Benzo(a)anthracene	ND	10	UG/L	8270	07/27/2006 19:00	MRF
Benzo(a)pyrene	ND	10	UG/L	8270	07/27/2006 19:00	MRF
Benzo(b)fluoranthene	ND	10	UG/L	8270	07/27/2006 19:00	MRF
Benzo(ghi)perylene	ND	10	UG/L	8270	07/27/2006 19:00	MRF
Benzo(k)fluoranthene	ND	10	UG/L	8270	07/27/2006 19:00	MRF
Bis(2-chloroethoxy) methane	ND	10	UG/L	8270	07/27/2006 19:00	MRF
Bis(2-chloroethyl) ether	ND	10	UG/L	8270	07/27/2006 19:00	MRF
Bis(2-ethylhexyl) phthalate	ND	10	UG/L	8270	07/27/2006 19:00	MRF
Butyl benzyl phthalate	ND	10	UG/L	8270	07/27/2006 19:00	MRF
Carbazole	ND	10	UG/L	8270	07/27/2006 19:00	MRF
Chrysene	ND	10	UG/L	8270	07/27/2006 19:00	MRF
Di-n-butyl phthalate	ND	10	UG/L	8270	07/27/2006 19:00	MRF
Di-n-octyl phthalate	ND	10	UG/L	8270	07/27/2006 19:00	MRF
Dibenzo(a,h)anthracene	ND	10	UG/L	8270	07/27/2006 19:00	MRF
Dibenzofuran	ND	10	UG/L	8270	07/27/2006 19:00	MRF
Diethyl phthalate	ND	10	UG/L	8270	07/27/2006 19:00	MRF
Dimethyl phthalate	ND	10	UG/L	8270	07/27/2006 19:00	MRF
Fluoranthene	ND	10	UG/L	8270	07/27/2006 19:00	MRF

NYSDEC NYSDEC - REGION 9 REMEDIATION/SPILLS CONTRACT NYSDEC Spills - Reed Rd. lanfill: Site#902018

15/18 Page: 7

Rept: AN1178

Sample ID: TANK Lab Sample ID: A6816301 Date Collected: 07/17/2006 Time Collected: 11:45

			Detection			—	ə	
Parameter	Result	Flag	Limit	Units	Method	Analyzed	d	Analyst
NYDEC AQ- SW8463 8270 - TCL SVOA ORGANIC								
Fluorene	ND		10	UG/L	8270	07/27/2006 ^	19:00	MRF
Hexachlorobenzene	ND		10	UG/L	8270	07/27/2006 ′	19:00	MRF
Hexachlorobutadiene	ND		10	UG/L	8270	07/27/2006 [^]	19:00	MR F
Hexachlorocyclopentadiene	ND		43	UG/L	8270	07/27/2006 [^]	19:00	MR F
Hexachloroethane	ND		10	UG/L	8270	07/27/2006 ′	19:00	MRF
Indeno(1,2,3-cd)pyrene	ND		10	UG/L	8270	07/27/2006 ′	19:00	MRF
Isophorone	ND		10	UG/L	8270	07/27/2006 ′	19:00	MRF
N-Nitroso-Di-n-propylamine	ND		10	UG/L	8270	07/27/2006 <i>^</i>	19:00	MRF
N-nitrosodiphenylamine	ND		10	UG/L	8270	07/27/2006 <i>^</i>	19:00	MRF
Naphthalene	ND		10	UG/L	8270	07/27/2006 [^]	19:00	MRF
Nitrobenzene	ND		10	UG/L	8270	07/27/2006 [^]	19:00	MRF
Pentachlorophenol	ND		48	UG/L	8270	07/27/2006 ′	19:00	MRF
Phenanthrene	ND		10	UG/L	8270	07/27/2006 ′	19:00	MRF
Phenol	ND		10	UG/L	8270	07/27/2006 ′	19:00	MRF
Pyrene	ND		10	UG/L	8270	07/27/2006 <i>′</i>	19:00	MRF
NYSDEC - AQUEOUS-SW8463 8081 - TCL PESTICIDES								
4,4'-DDD	ND		0.047	UG/L	8081	07/26/2006 [^]	16:05	тсн
4,4'-DDE	ND		0.047	UG/L	8081	07/26/2006 ^	16:05	тсн
4,4'-DDT	ND		0.047	UG/L	8081	07/26/2006 ^	16:05	тсн
Aldrin	ND		0.047	UG/L	8081	07/26/2006 [^]	16:05	тсн
alpha-BHC	ND		0.047	UG/L	8081	07/26/2006 ^	16:05	тсн
alpha-Chlordane	ND		0.047	UG/L	8081	07/26/2006 ^	16:05	тсн
beta-BHC	ND		0.047	UG/L	8081	07/26/2006 [/]	16:05	тсн
delta-BHC	ND		0.047	UG/L	8081	07/26/2006 [^]	16:05	тсн
Dieldrin	ND		0.047	UG/L	8081	07/26/2006 [^]	16:05	тсн
Endosulfan I	ND		0.047	UG/L	8081	07/26/2006 ´	16:05	тсн
Endosulfan II	ND		0.047	UG/L	8081	07/26/2006 ´	16:05	тсн
Endosulfan Sulfate	ND		0.047	UG/L	8081	07/26/2006 [^]	16:05	тсн
Endrin	ND		0.047	UG/L	8081	07/26/2006 ´	16:05	тсн
Endrin aldehyde	ND		0.047	UG/L	8081	07/26/2006 ´	16:05	тсн
Endrin ketone	ND		0.047	UG/L	8081	07/26/2006 ´	16:05	тсн
gamma-BHC (Lindane)	ND		0.047	UG/L	8081	07/26/2006 ´	16:05	тсн
gamma-Chlordane	ND		0.047	UG/L	8081	07/26/2006 ´	16:05	тсн
Heptachlor	ND		0.047	UG/L	8081	07/26/2006 ´	16:05	тсн
Heptachlor epoxide	ND		0.047	UG/L	8081	07/26/2006 ´	16:05	тсн
Methoxychlor	ND		0.047	UG/L	8081	07/26/2006 ´	16:05	тсн
Toxaphene	ND		0.94	UG/L	8081	07/26/2006 <i>′</i>	16:05	тсн
NYSDEC-AQ-SW8463 8082 - PCBS								
Aroclor 1016	ND		0.47	UG/L	8082	07/24/2006 ´	15 : 45	DJB
Aroclor 1221	ND		0.47	UG/L	8082	07/24/2006 <i>^</i>	15 : 45	DJB
Aroclor 1232	ND		0.47	UG/L	8082	07/24/2006 <i>^</i>	15 : 45	DJB
Aroclor 1242	ND		0.47	UG/L	8082	07/24/2006 <i>^</i>	15 : 45	DJB
Aroclor 1248	ND		0.47	UG/L	8082	07/24/2006 <i>^</i>	15 : 45	DJB
Aroclor 1254	ND		0.47	UG/L	8082	07/24/2006 <i>^</i>	15 : 45	DJB
Aroclor 1260	ND		0.47	UG/L	8082	07/24/2006 <i>^</i>	15 : 45	DJB

NYSDEC NYSDEC - REGION 9 REMEDIATION/SPILLS CONTRACT NYSDEC Spills - Reed Rd. lanfill: Site#902018

Sample ID: TANK Date Received: 07/18/2006 Lab Sample ID: A6816301 Project No: NY5A946109 Date Collected: 07/17/2006 Client No: L10190 Time Collected: 11:45 Site No: Detection —Date/Time-Parameter Result Flag Limit Units Method Analyzed Analyst NYSDEC - AQ-SW8463 8151 - HERBICIDES (3 COMPO 0.47 UG/L 8151 07/27/2006 22:48 тсн 2,4,5-T ND 2,4,5-TP (Silvex) 0.47 UG/L 8151 07/27/2006 22:48 ND тсн UG/L 07/27/2006 22:48 2,4-D ND 0.47 8151 тсн Metals Analysis MG/L 6010 07/21/2006 03:52 Aluminum - Total ND 0.20 JP Antimony - Total 0.020 MG/L 6010 07/21/2006 03:52 ND JP 0.010 6010 Arsenic - Total ND MG/L 07/21/2006 03:52 JP Barium – Total 0.084 0.0020 MG/L 6010 07/21/2006 03:52 JP Beryllium – Total ND 0.0020 MG/L 6010 07/21/2006 03:52 JP Cadmium - Total ND 0.0010 MG/L 6010 07/21/2006 03:52 JP Calcium - Total 32.5 0.50 MG/L 6010 07/21/2006 03:52 JP Chromium - Total 6010 07/21/2006 03:52 ND 0.0040 MG/L JP Cobalt - Total ND 0.0040 MG/L 6010 07/21/2006 03:52 JP Copper - Total ND 0.010 MG/L 6010 07/21/2006 03:52 JP Iron - Total 0.050 MG/L 6010 07/21/2006 03:52 3.8 JP Lead - Total 0.0050 MG/L 6010 07/21/2006 03:52 ND JP 10.9 0.20 6010 07/21/2006 03:52 Magnesium - Total MG/L JP MG/L 6010 07/21/2006 03:52 Manganese – Total 0.46 0.0030 JP 07/19/2006 16:39 Mercury - Total ND 0.00020 MG/L 7470 MM Nickel - Total ND 0.010 MG/L 6010 07/21/2006 03:52 JP 07/21/2006 03:52 Potassium - Total 2.6 0.50 MG/L 6010 JP 07/21/2006 18:57 Selenium - Total 0.015 MG/L 6010 ND JP 0.0030 Silver - Total ND MG/L 6010 07/21/2006 03:52 JP Sodium - Total 10.5 1.0 MG/L 6010 07/21/2006 03:52 JP 0.020 6010 07/21/2006 03:52 Thallium – Total ND MG/L JP Vanadium - Total ND 0.0050 MG/L 6010 07/21/2006 03:52 JP Zinc - Total ND 0.010 MG/L 6010 07/21/2006 03:52 JP Wet Chemistry Analysis 6.9 0.50 s.u. 150.1 07/18/2006 17:30 SM pН Total Recoverable Phenolics 0.015 0.0050 MG/L 420.2 07/27/2006 13:26 LRM

NYSDEC NYSDEC - REGION 9 REMEDIATION/SPILLS CONTRACT NYSDEC Spills - Reed Rd. lanfill: Site#902018

17/18 Page: 9

Rept: AN1178

Sample ID: TRIP BLANK Lab Sample ID: A6816303 Date Collected: 07/17/2006 Time Collected: :

Date Received:	07/18/2006
Project No:	NY5A946109
Client No:	L10190
Site No:	

			Detection			——Date/Time——	-
Parameter	Result	Flag	Limit	<u> Units </u>	Method	Analyzed	Analyst
NYSDEC - AQUEOUS-SW8463 TCL 8260							
1,1,1-Trichloroethane	ND		1.0	UG/L	8260	07/19/2006 14:34	TRB
1,1,2,2-Tetrachloroethane	ND		1.0	UG/L	8260	07/19/2006 14:34	TRB
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		1.0	UG/L	8260	07/19/2006 14:34	TRB
1,1,2-Trichloroethane	ND		1.0	UG/L	8260	07/19/2006 14:34	TRB
1,1-Dichloroethane	ND		1.0	UG/L	8260	07/19/2006 14:34	TRB
1,1-Dichloroethene	ND		1.0	UG/L	8260	07/19/2006 14:34	TRB
1,2,4-Trichlorobenzene	ND		1.0	UG/L	8260	07/19/2006 14:34	TRB
1,2-Dibromo-3-chloropropane	ND		1.0	UG/L	8260	07/19/2006 14:34	TRB
1,2-Dibromoethane	ND		1.0	UG/L	8260	07/19/2006 14:34	TRB
1,2-Dichlorobenzene	ND		1.0	UG/L	8260	07/19/2006 14:34	TRB
1,2-Dichloroethane	ND		1.0	UG/L	8260	07/19/2006 14:34	TRB
1,2-Dichloropropane	ND		1.0	UG/L	8260	07/19/2006 14:34	TRB
1,3-Dichlorobenzene	ND		1.0	UG/L	8260	07/19/2006 14:34	TRB
1,4-Dichlorobenzene	ND		1.0	UG/L	8260	07/19/2006 14:34	TRB
2-Butanone	ND		5.0	UG/L	8260	07/19/2006 14:34	TRB
2-Hexanone	ND		5.0	UG/L	8260	07/19/2006 14:34	TRB
4-Methyl-2-pentanone	ND		5.0	, UG∕L	8260	07/19/2006 14:34	TRB
Acetone	ND		5.0	, UG∕L	8260	07/19/2006 14:34	TRB
Benzene	ND		1.0	, UG/L	8260	07/19/2006 14:34	TRB
Bromodichloromethane	ND		1.0	, UG∕L	8260	07/19/2006 14:34	TRB
Bromoform	ND		1.0	, UG∕L	8260	07/19/2006 14:34	TRB
Bromomethane	ND		1.0	UG/L	8260	07/19/2006 14:34	TRB
Carbon Disulfide	ND		1.0	, UG/L	8260	07/19/2006 14:34	TRB
Carbon Tetrachloride	ND		1.0	UG/L	8260	07/19/2006 14:34	TRB
Chlorobenzene	ND		1.0	UG/L	8260	07/19/2006 14:34	TRB
Chloroethane	ND		1.0	UG/L	8260	07/19/2006 14:34	TRB
Chloroform	ND		1.0	UG/L	8260	07/19/2006 14:34	TRB
Chloromethane	ND		1.0	UG/L	8260	07/19/2006 14:34	TRB
cis-1.2-Dichloroethene	ND		1.0	UG/L	8260	07/19/2006 14:34	TRB
cis-1.3-Dichloropropene	ND		1.0	UG/L	8260	07/19/2006 14:34	TRB
Cyclohexane	ND		1.0	UG/L	8260	07/19/2006 14:34	TRB
Dibromochloromethane	ND		1.0	UG/L	8260	07/19/2006 14:34	TRB
Dichlorodifluoromethane	ND		1.0	UG/L	8260	07/19/2006 14:34	TRB
Ethylbenzene	ND		1.0	UG/L	8260	07/19/2006 14:34	TRB
Isopropylbenzene	ND		1.0	UG/L	8260	07/19/2006 14:34	TRB
Methyl acetate	ND		1.0	UG/L	8260	07/19/2006 14:34	TRB
Methyl-t-Butyl Ether (MTBE)	ND		1.0	UG/L	8260	07/19/2006 14:34	TRB
Methylcyclohexane	ND		1.0	UG/L	8260	07/19/2006 14:34	TRB
Methylene chloride	ND		1.0	, UG/L	8260	07/19/2006 14:34	TRB
Styrene	ND		1.0	, UG/L	8260	07/19/2006 14:34	TRB
Tetrachloroethene	ND		1.0	, UG/L	8260	07/19/2006 14:34	TRB
Toluene	ND		1.0	, UG/L	8260	07/19/2006 14:34	TRB
Total Xylenes	ND		3.0	, UG/L	8260	07/19/2006 14:34	TRB
trans-1,2-Dichloroethene	ND		1.0	, UG∕L	8260	07/19/2006 14:34	TRB
trans-1,3-Dichloropropene	ND		1.0	, UG∕L	8260	07/19/2006 14:34	TRB
Trichloroethene	ND		1.0	, UG∕L	8260	07/19/2006 14:34	TRB
Trichlorofluoromethane	ND		1.0	, UG/L	8260	07/19/2006 14:34	TRB
Vinyl chloride	ND		1.0	, UG/L	8260	07/19/2006 14:34	TRB
y e le l				, L	0200		

cuain or Custody Record			T R Sever	n Trent Laboratories, Inc.	
STL4124 (0901) Client NYS DEC	Proje	CHAD STAA	/15 Zeuski	Date 7/17/06	Chain of Custody Number
270 MICHIGAN AVE		phone Number (Area Code)	Fax Number (7)1b) Q51 - 73Q6	Lab Number	Page of
CIN DEFALD State Zip Cod	and chi	Contact Contact	BRIAN FISCHER	Analysis (Attach list if more space beeeded)	
Project Name and Location (State) REED RNAD LANDFILL (903018)	NY Cam	er/Waybill Number		12 12 12 12 12 12 12 12 12 12 12 12 12 1	Special Instructions/
Contract/Purchase Order/Quote No.		Matrix	Containers & Preservatives	Netol 150 150 250 250 250 250 250 250 250 250 250 2	Conditions of Receipt
Sample I.D. No. and Description (Containers for each sample may be combined on one line)	Date Time	niA 2uo9upA 1io2	HOEN ADE HOEN HOS HOS HOS HOS HOS HOS HOS HOS HOS HOS	1945 1945 1945 1947 1977 1977 1977 1977 1977 1977 1977	•
TANK TANK	17/06 1145	, X	7113		
L C-HW	17/06 1345	X	7113		
5					
Possible Hazard Identification		Sample Disposal		(A fee may be a	ssessed if samples are retained
X Non-Hazard L Flammable Skin Irritant L F Tum Around Time Required	Poison B Unkno	wn L Return To Client	Disposal By Lab	Archive For Months longer than 1 mc	onth)
□ 24 Hours □ 48 Hours □ 7 Days □ 14 Days	21 Days 🕅 (other 10 days		0.	
1. Relinquished By Stormageushing		116/06 13:30	1. Received By	the ser	by y lad Time 230
2. Helinquished By	Date	a Lime	2. Hecowed By		Date
3. Relinquished By	Date	Time	3. Received By		Date
raments					
WHITE - Returned to Client with Report; CAN	ARY - Stays with the Se	imple; PINK - Field Copy		206.0%	

SEVERN STL®

NON-CONFORMANCE SUMMARY

Job#: <u>A06-8406</u>

STL Project#: <u>NY5A946109</u> Site Name: <u>NYSDEC - REGION 9 REMEDIATION/SPILLS CONTRACT</u>

General Comments

The enclosed data may or may not have been reported utilizing data qualifiers (Q) as defined on the Data Comment Page.

Soil, sediment and sludge sample results are reported on "dry weight" basis unless otherwise noted in this data package.

According to 40CFR Part 136.3, pH, Chlorine Residual, Dissolved Oxygen, Sulfite, and Temperature analyses are to be performed immediately after aqueous sample collection. When these parameters are not indicated as field (e.g. pH-Field), they were not analyzed immediately, but as soon as possible after laboratory receipt.

Sample dilutions were performed as indicated on the attached Dilution Log. The rationale for dilution is specified by the 3-digit code and definition.

Sample Receipt Comments

A06-8406

Sample Cooler(s) were received at the following temperature(s); 4.2 °C All samples were received in good condition.

GC/MS Volatile Data

The analyte Methylene chloride was detected in the Method Blank VBLK68 (A6B2362502) at a level above the project established reporting limit. Samples had levels of Methylene chloride less than ten times that of the Method Blank value. All sample detections for Methylene chloride may potentially be due to laboratory contamination and should be evaluated accordingly. All associated sample detections were qualified with a "B".

The analytes Acetone, Toluene and Trichlorofluoromethane were detected in the Method Blank VBLK68 (A6B2362502) at a level below the project established reporting limit. No corrective action is necessary for any values in Method Blanks that are below the requested reporting limits.

GC/MS Semivolatile Data

The analyte Pyrene was detected in the Method Blank A6B2369802 at a level below the project established reporting limit. No corrective action is necessary for any values in Method Blanks that are below the requested reporting limits.

<u>GC Extractable Data</u>

For method 8081, all sample extracts and associated quality control required treatment with Copper prior to analysis due to the presence of elemental Sulfur.

Metals Data

The LCS CLP (Lot D051-540) recovery for Iron fell outside of the quality control limits, however, the LCS CLP (A6B2344201) value was within the manufacturer's recommended acceptance limits. No corrective action was taken.

Wet Chemistry Data

No deviations from protocol were encountered during the analytical procedures.

The results presented in this report relate only to the analytical testing and condition of the sample at receipt. This report pertains to only those samples actually tested. All pages of this report are integral parts of the analytical data. Therefore, this report should be reproduced only in its entirety.

"I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hardcopy data package and in the computer-readable data submitted on floppy diskette has been authorized by the Laboratory Manager or his designee, as verified by the following signature."

Brian J. Fischer Project Manager

8-10-06

Date

NYSDEC - REGION 9 REMEDIATION/SPILLS CONTRACT NYSDEC Spills - Reed Rd. landfill: Site#902018

Date Received:	07/25/2006
Project No:	NY5A946109
Client No:	L10190
Site No:	

			Detection			Date/Time	
Parameter	Result	Flag	Limit	<u>Units</u>	Method	Analyzed	<u>Analyst</u>
NYSDEC - SOIL-SW8463 8260 - TCL VOLATILES							
1,1,1-Trichloroethane	ND		15	UG/KG	8260	07/27/2006 20:59	TRB
1,1,2,2-Tetrachloroethane	ND		15	UG/KG	8260	07/27/2006 20:59	TRB
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		15	UG/KG	8260	07/27/2006 20:59	TRB
1,1,2-Trichloroethane	ND		15	UG/KG	8260	07/27/2006 20:59	TRB
1,1-Dichloroethane	ND		15	UG/KG	8260	07/27/2006 20:59	TRB
1,1-Dichloroethene	ND		15	UG/KG	8260	07/27/2006 20:59	TRB
1,2,4-Trichlorobenzene	ND		15	UG/KG	8260	07/27/2006 20:59	TRB
1,2-Dibromo-3-chloropropane	ND		15	UG/KG	8260	07/27/2006 20:59	TRB
1,2-Dibromoethane	ND		15	UG/KG	8260	07/27/2006 20:59	TRB
1,2-Dichlorobenzene	ND		15	UG/KG	8260	07/27/2006 20:59	TRB
1,2-Dichloroethane	ND		15	UG/KG	8260	07/27/2006 20:59	TRB
1,2-Dichloropropane	ND		15	UG/KG	8260	07/27/2006 20:59	TRB
1,3-Dichlorobenzene	ND		15	UG/KG	8260	07/27/2006 20:59	TRB
1,4-Dichlorobenzene	ND		15	UG/KG	8260	07/27/2006 20:59	TRB
2-Butanone	18	J	74	UG/KG	8260	07/27/2006 20:59	TRB
2-Hexanone	ND		74	UG/KG	8260	07/27/2006 20:59	TRB
4-Methyl-2-pentanone	ND		74	UG/KG	8260	07/27/2006 20:59	TRB
Acetone	78	В	74	UG/KG	8260	07/27/2006 20:59	TRB
Benzene	ND		15	UG/KG	8260	07/27/2006 20:59	TRB
Bromodichloromethane	ND		15	UG/KG	8260	07/27/2006 20:59	TRB
Bromoform	ND		15	UG/KG	8260	07/27/2006 20:59	TRB
Bromomethane	ND		15	UG/KG	8260	07/27/2006 20:59	TRB
Carbon Disulfide	4	J	15	UG/KG	8260	07/27/2006 20:59	TRB
Carbon Tetrachloride	ND		15	UG/KG	8260	07/27/2006 20:59	TRB
Chlorobenzene	ND		15	UG/KG	8260	07/27/2006 20:59	TRB
Chloroethane	ND		15	UG/KG	8260	07/27/2006 20:59	TRB
Chloroform	ND		15	UG/KG	8260	07/27/2006 20:59	TRB
Chloromethane	ND		15	UG/KG	8260	07/27/2006 20:59	TRB
cis-1,2-Dichloroethene	ND		15	UG/KG	8260	07/27/2006 20:59	TRB
cis-1,3-Dichloropropene	ND		15	UG/KG	8260	07/27/2006 20:59	TRB
Cyclohexane	ND		15	UG/KG	8260	07/27/2006 20:59	TRB
Dibromochloromethane	ND		15	UG/KG	8260	07/27/2006 20:59	TRB
Dichlorodifluoromethane	ND		15	UG/KG	8260	07/27/2006 20:59	TRB
Ethylbenzene	ND		15	UG/KG	8260	07/27/2006 20:59	TRB
Isopropylbenzene	9	J	15	UG/KG	8260	07/27/2006 20:59	TRB
Methyl acetate	ND		15	UG/KG	8260	07/27/2006 20:59	TRB
Methyl-t-Butyl Ether (MTBE)	ND		15	UG/KG	8260	07/27/2006 20:59	TRB
Methylcyclohexane	ND		15	UG/KG	8260	07/27/2006 20:59	TRB
Methylene chloride	22	В	15	UG/KG	8260	07/27/2006 20:59	TRB
Styrene	ND		15	UG/KG	8260	07/27/2006 20:59	TRB
Tetrachloroethene	ND		15	UG/KG	8260	07/27/2006 20:59	TRB
Toluene	70	В	15	UG/KG	8260	07/27/2006 20:59	TRB
Total Xylenes	12	J	44	UG/KG	8260	07/27/2006 20:59	TRB
trans-1,2-Dichloroethene	ND		15	UG/KG	8260	07/27/2006 20:59	TRB
trans-1,3-Dichloropropene	ND		15	UG/KG	8260	07/27/2006 20:59	TRB
Trichloroethene	ND		15	UG/KG	8260	07/27/2006 20:59	TRB
Trichlorofluoromethane	4	BJ	15	UG/KG	8260	07/27/2006 20:59	TRB
Vinyl chloride	ND		30	UG/KG	8260	07/27/2006 20:59	TRB

NYSDEC - REGION 9 REMEDIATION/SPILLS CONTRACT NYSDEC Spills - Reed Rd. landfill: Site#902018

Date Received:	07/25/2006
Project No:	NY5A946109
Client No:	L10190
Site No:	

			Detection			Date/Time	
Parameter	Result	<u>Flag</u>	Limit	<u>Units</u>	Method	Analyzed	<u>Analyst</u>
NYSDEC -S-SW8463 8270 - TCL SVOA ORGANICS							
2,2'-Oxybis(1-Chloropropane)	ND		410	UG/KG	8270	08/02/2006 14:32	
2,4,5-Trichlorophenol	ND		1000	UG/KG	8270	08/02/2006 14:32	
2,4,6-Trichlorophenol	ND		410	UG/KG	8270	08/02/2006 14:32	
2,4-Dichlorophenol	ND		410	UG/KG	8270	08/02/2006 14:32	
2,4-Dimethylphenol	ND		410	UG/KG	8270	08/02/2006 14:32	
2,4-Dinitrophenol	ND		2000	UG/KG	8270	08/02/2006 14:32	
2,4-Dinitrotoluene	ND		410	UG/KG	8270	08/02/2006 14:32	
2,6-Dinitrotoluene	ND		410	UG/KG	8270	08/02/2006 14:32	
2-Chloronaphthalene	ND		410	UG/KG	8270	08/02/2006 14:32	
2-Chlorophenol	ND		410	UG/KG	8270	08/02/2006 14:32	
2-Methylnaphthalene	40	J	410	UG/KG	8270	08/02/2006 14:32	
2-Methylphenol	ND		410	UG/KG	8270	08/02/2006 14:32	
2-Nitroaniline	ND		2000	UG/KG	8270	08/02/2006 14:32	
2-Nitrophenol	ND		410	UG/KG	8270	08/02/2006 14:32	
3.3'-Dichlorobenzidine	ND		2000	UG/KG	8270	08/02/2006 14:32	
3-Nitroaniline	ND		2000	UG/KG	8270	08/02/2006 14:32	
4.6-Dinitro-2-methylphenol	ND		2000	UG/KG	8270	08/02/2006 14:32	
4-Bromophenyl phenyl ether	ND		410	UG/KG	8270	08/02/2006 14:32	
4-Chloro-3-methylphenol	ND		410	UG/KG	8270	08/02/2006 14:32	
4-Chloroaniline	ND		410	UG/KG	8270	08/02/2006 14:32	
4-Chlorophenyl phenyl ether	ND		410	UG/KG	8270	08/02/2006 14:32	
4-Methylphenol	360	.1	410	UG/KG	8270	08/02/2006 14:32	
4-Nitroaniline	ND	•	2000	UG/KG	8270	08/02/2006 14:32	
4-Nitrophenol	ND		2000	UG/KG	8270	08/02/2006 14:32	
Acenaphthene	ND		410	UG/KG	8270	08/02/2006 14:32	
Acepaphthylene	ND		410	UG/KG	8270	08/02/2006 14:32	
Acetophenone	ND		410	UG/KG	8270	08/02/2006 14:32	
Anthracene	ND		410	UG/KG	8270	08/02/2006 14:32	
Atrazine	ND		410	UG/KG	8270	08/02/2006 14:32	
Benzal dehyde	ND		410	UG/KG	8270	08/02/2006 14:32	
Benzo(a)anthracene	ND		410		8270	08/02/2006 14:32	
Benzo(a)nvrene	ND		410		8270	08/02/2006 14:32	
Benzo(b)fluoranthene	ND		410	UG/KG	8270	08/02/2006 14:32	
Benzo(gbi)pervlene	ND		410		8270	08/02/2006 14:32	
Benzo(k)fluoranthene	ND		410	UG/KG	8270	08/02/2006 14:32	
Binhenvl	ND		410	UG/KG	8270	08/02/2006 14:32	
Bis(2-chloroethoxy) methane	ND		410		8270	08/02/2006 14:32	
Bis(2-chloroethyl) ether	ND		410		8270	08/02/2006 14:32	
Bis(2-ethylbevyl) phthalate	ND		410		8270	08/02/2006 14:32	
Butyl benzyl obthalate	ND		410		8270	08/02/2006 14:32	
	ND		410		8270	08/02/2006 14:32	
Carbazole	ND		410		8270	08/02/2006 14:32	
Chrysene	ND		410		8270	08/02/2006 14:32	
Di-n-butyl phthalate	ND		410		8270	08/02/2006 14:32	
Di-n-octyl phthalate	ND		410		8270	08/02/2006 14.32	
Dibenzo(a h)anthraceno	עא תוג		410		8270	08/02/2006 14.32	
Dibenzofuran	עא חוא		410		8270	00,02/2000 14.32 08/02/2006 14.32	
Disthyl phthalata	עא תוא		410		8270	08/02/2006 14.32	
Dimothyl phthalata	ND		410		8270	03/02/2000 14:32	
Dimethyt phinatate	NU		410	00/KG	0210	00/02/2000 14:32	

NYSDEC - REGION 9 REMEDIATION/SPILLS CONTRACT NYSDEC Spills - Reed Rd. landfill: Site#902018

Date Received:	07/25/2006
Project No:	NY5A946109
Client No:	L10190
Site No:	

			Detection			Date/Time	
Parameter	Result	Flag	Limit	Units	Method	Analyzed	<u>Analyst</u>
NYSDEC -S-SW8463 8270 - TCL SVOA ORGANICS							
Fluoranthene	21	J	410	UG/KG	8270	08/02/2006 14:3	2
Fluorene	ND		410	UG/KG	8270	08/02/2006 14:3	2
Hexachlorobenzene	ND		410	UG/KG	8270	08/02/2006 14:3	2
Hexachlorobutadiene	ND		410	UG/KG	8270	08/02/2006 14:3	2
Hexachlorocyclopentadiene	ND		410	UG/KG	8270	08/02/2006 14:3	52
Hexachloroethane	ND		410	UG/KG	8270	08/02/2006 14:3	52
Indeno(1,2,3-cd)pyrene	ND		410	UG/KG	8270	08/02/2006 14:3	52
Isophorone	ND		410	UG/KG	8270	08/02/2006 14:3	52
N-Nitroso-Di-n-propylamine	ND		410	UG/KG	8270	08/02/2006 14:3	52
N-nitrosodiphenylamine	ND		410	UG/KG	8270	08/02/2006 14:3	52
Naphthalene	58	J	410	UG/KG	8270	08/02/2006 14:3	52
Nitrobenzene	ND		410	UG/KG	8270	08/02/2006 14:3	52
Pentachlorophenol	ND		2000	UG/KG	8270	08/02/2006 14:	52
Phenanthrene	ND		410	UG/KG	8270	08/02/2006 14:	52
Phenol	ND		410	UG/KG	8270	08/02/2006 14:3	52
Pyrene	ND		410	UG/KG	8270	08/02/2006 14:3	52
NYS DEC-SOIL-SW8463 8081 - TCL PESTICIDES							
4,4'-DDD	ND		2.1	UG/KG	8081	07/31/2006 23:	12 TCH
4,4'-DDE	ND		2.1	UG/KG	8081	07/31/2006 23:	12 ТСН
4,4'-DDT	1.8	J	2.1	UG/KG	8081	07/31/2006 23:	12 TCH
Aldrin	ND		2.1	UG/KG	8081	07/31/2006 23:	IZ TCH
alpha-BHC	1.6	J	2.1	UG/KG	8081	07/31/2006 23:	12 ТСН
beta-BHC	ND		2.1	UG/KG	8081	07/31/2006 23:	12 TCH
Chlordane	ND		21	UG/KG	8081	07/31/2006 23:	12 тсн
delta-BHC	ND		2.1	UG/KG	8081	07/31/2006 23:	12 ТСН
Dieldrin	ND		2.1	UG/KG	8081	07/31/2006 23:	12 ТСН
Endosulfan I	ND		2.1	UG/KG	8081	07/31/2006 23:	I2 TCH
Endosulfan II	ND		2.1	UG/KG	8081	07/31/2006 23:	12 ТСН
Endosulfan Sulfate	ND		2.1	UG/KG	8081	07/31/2006 23:	12 ТСН
Endrin	ND		2.1	UG/KG	8081	07/31/2006 23:	12 TCH
Endrin aldehyde	ND		2.1	UG/KG	8081	07/31/2006 23:	12 TCH
Endrin ketone	ND		2.1	UG/KG	8081	07/31/2006 23:	12 TCH
gamma-BHC (Lindane)	ND		2.1	UG/KG	8081	07/31/2006 23:	12 TCH
Heptachlor	ND		2.1	UG/KG	8081	07/31/2006 23:	12 TCH
Heptachlor epoxide	ND		2.1	UG/KG	8081	07/31/2006 23:	12 TCH
Methoxychlor	ND		2.1	UG/KG	8081	07/31/2006 23:	12 TCH
Toxaphene	ND		41	UG/KG	8081	07/31/2006 23:	12 TCH
NYSDEC-SPILLS - SOIL-SW8463 8082 - PCBS							
Aroclor 1016	ND		34	UG/KG	8082	08/02/2006 09:	45 LMW
Aroclor 1221	ND		34	UG/KG	8082	08/02/2006 09:	45 LMW
Aroclor 1232	ND		34	UG/KG	8082	08/02/2006 09:	45 LMW
Aroclor 1242	ND		34	UG/KG	8082	08/02/2006 09:	45 L.MW
Aroclor 1248	ND		34	UG/KG	8082	08/02/2006 09:	45 LMW
Aroclor 1254	ND		34	UG/KG	8082	08/02/2006 09:	45 LMW
Aroclor 1260	ND		34	UG/KG	8082	08/02/2006 09:	45 LMW

Date: 08/10/2006 Time: 14:57:05

NYSDEC NYSDEC - REGION 9 REMEDIATION/SPILLS CONTRACT NYSDEC Spills - Reed Rd. landfill: Site#902018

Date Received:	07/25/2006
Project No:	NY5A946109
Client No:	L10190
Site No:	

			Detection			Date/Time	
Parameter	Result	<u>Flag</u>	Limit	<u>Units</u>	Method	Analyzed	<u>Analyst</u>
NYSDEC - S -SW8463 8151 - HERBICIDES(3 COMPO							
2,4,5-T	ND		31	UG/KG	8151	08/10/2006 03:	41 TCH
2,4,5-TP (Silvex)	ND		31	UG/KG	8151	08/10/2006 03:	41 TCH
2,4-D	ND		31	UG/KG	8151	08/10/2006 03:	41 тсн
Metals Analysis							
Aluminum - Total	12800		20.9	MG/KG	6010	07/28/2006 21:	25 AK
Antimony - Total	ND		31.4	MG/KG	6010	07/28/2006 21:	25 AK
Arsenic - Total	29.8		4.2	MG/KG	6010	07/28/2006 21:	25 AK
Barium - Total	182		1.0	MG/KG	6010	07/28/2006 21:	25 AK
Beryllium - Total	0.67		0.42	MG/KG	6010	07/28/2006 21:	25 AK
Cadmium - Total	0.61		0.42	MG/KG	6010	07/28/2006 21:	25 AK
Calcium - Total	3070		105	MG/KG	6010	07/28/2006 21:	25 AK
Chromium - Total	15.9		1.0	MG/KG	6010	07/28/2006 21:	25 AK
Cobalt - Total	9.1		1.0	MG/KG	6010	07/28/2006 21:	25 AK
Copper - Total	22.2		2.1	MG/KG	6010	07/28/2006 21:	25 AK
Iron - Total	81800		20.9	MG/KG	6010	07/28/2006 21:	25 AK
Lead - Total	7.3		2.1	MG/KG	6010	07/28/2006 21:	25 AK
Magnesium - Total	4010		41.8	MG/KG	6010	07/28/2006 21:	25 AK
Manganese - Total	2780		0.42	MG/KG	6010	07/28/2006 21:	25 AK
Mercury - Total	ND		0.038	MG/KG	7471	07/28/2006 11:	49 LH
Nickel - Total	28.2		1.0	MG/KG	6010	07/28/2006 21:	25 AK
Potassium - Total	2290		62.8	MG/KG	6010	07/28/2006 21:	25 AK
Selenium - Total	ND		8.4	MG/KG	6010	07/28/2006 21:	25 AK
Silver - Total	ND		1.0	MG/KG	6010	07/28/2006 21:	25 AK
Sodium - Total	474		293	MG/KG	6010	07/28/2006 21:	25 AK
Thallium - Total	ND		12.6	MG/KG	6010	07/28/2006 21:	25 AK
Vanadium - Total	17.1		1.0	MG/KG	6010	07/28/2006 21:	25 AK
Zinc - Total	59.8		2.1	MG/KG	6010	07/28/2006 21:	25 AK
Wet Chemistry Analysis							
Leachable pH	9.36		0	s.U.	150.1	07/26/2006 13:	52 RM
Total Recoverable Phenolics	ND		9.5	MG/KG	9066	07/31/2006 10:	02 LRM

Chain of Custody Becord		Ľ		
		Sever	'n Irent Laboratories, Inc.	
Client NYS DEC	Project Manager CHAD STAN	115Zewski	01/24/06	Chain of Custody Number 297851
Adress MICHIGAN AVE	Telephqne Number (Area Code)	1/Fax Number 220 / (7116) 851	- 7221 Lab Number	Page 1 of 1
DINECTON CALL State Zip Code	1 Site Contact	Lab Contact	Analysis (Attach list if Omore space is needed)	
Project Name and Location (State)	Carner/Waybill Number	UTHACIT ANNO	9990 Hd 1987 912 1978 1978 1978 0980 0988	Special Instructions/
ContractPurchase Order/Quote No.	Matrix	Containers & Preservatives	18 2 198 2 198 2 198 2 198 2 199 2 1	Conditions of Receipt
Sample 1.D. No. and Description (Containers for each sample may be combined on one line)	Date Time Air	HOPN ZUFC/ HOPN HCI HCO HCO SeJd Dubles	ए३५५ <u>१</u> २३ ७७ २१ ७७ २३ ७७ २३ २३ ४१ २२ ४१ २२ ४१ २२ ४१ २२ ४१ २२	
TANK SEDIMENT 713	24/06 1030 X 1			
		3		
Possible Hazard Identification	Sample Disposal		(A fee may be as	sessed if samples are retained
Non-Hazard Lammable Skin Irritant LPois	ison B Unknown Return To Client	Disposal By Lab	Archive For Months longer than 1 mor	(lth
ium Around Time required 24 Hours 1 48 Hours 7 7 Days 1 14 Days [21 Days A Other 10 dry	(Ainado) sinania indan oo	*	
1. Relinquished By Advanced Line	735/01 1050	1. Received By	P Brummell	2.25.06 7.50
2. Relinquished By	Date	2. Received By	1	Date
3. Relinquished By	Date	3. Received By		Date
Comments				
DISTRIBUTION: WHITE - Returned to Client with Report. CANAR)	3Y - Stays with the Sample: PINK - Field Copy		J° 1. µ	

SEVERN STL®

STL Buffalo 10 Hazelwood Drive, Suite 106 Amherst, NY 14228

Tel: 716 691 2600 Fax: 716 691 7991 www.stl-inc.com

ANALYTICAL REPORT

Job#: <u>A06-F351</u>

STL Project#: NY5A946109 Site Name: <u>NYSDEC - REGION 9 REMEDIATION/SPILLS CONTRACT</u> Task: NYSDEC Spills - Reed Rd. landfill: Site#902018

Mr. Chad Staniszewski NYSDEC - Region 9 270 Michigan Ave Buffalo, NY 14203

STL Buffalo

Brian JJ Fľ ahor FOR Project Manager

01/08/2007

STL Buffalo Current Certifications

As of 9/28/2006

STATE	Program	Cert # / Lab ID
AFCEE	AFCEE	
Arkansas	SDWA, CWA, RCRA, SOIL	88-0686
California	NELAP CWA, RCRA	01169CA
Connecticut	SDWA, CWA, RCRA, SOIL	PH-0568
Florida	NELAP CWA, RCRA	E87672
Georgia	SDWA,NELAP CWA, RCRA	956
Illinois	NELAP SDWA, CWA, RCRA	200003
Iowa	SW/CS	374
Kansas	NELAP SDWA, CWA, RCRA	E-10187
Kentucky	SDWA	90029
Kentucky UST	UST	30
Louisiana	NELAP CWA, RCRA	2031
Maine	SDWA, CWA	NY044
Maryland	SDWA	294
Massachusetts	SDWA, CWA	M-NY044
Michigan	SDWA	9937
Minnesota	SDWA, CWA, RCRA	036-999-337
New Hampshire	NELAP SDWA, CWA	233701
New Jersey	SDWA, CWA, RCRA, CLP	NY455
New York	NELAP, AIR, SDWA, CWA, RCRA,ASP	10026
Oklahoma	CWA, RCRA	9421
Pennsylvania	NELAP CWA,RCRA	68-00281
South Carolina	RCRA	91013
Tennessee	SDWA	02970
USDA	FOREIGN SOIL PERMIT	S-41579
USDOE	Department of Energy	DOECAP-STB
Virginia	SDWA	278
Washington	CWA,RCRA	C1677
West Virginia	CWA,RCRA	252
Wisconsin	CWA, RCRA	998310390

SAMPLE SUMMARY

					SAMP	LED	RECEIVI	ŦD
LAB SA	AMPLE	\mathbb{ID}	CLIENT SAMPLE ID	MATRIX	DATE	TIME	DATE	TIME
A6F3	35105		B-6	WATER	12/19/2006	12:15	12/21/2006	10:01
A6F3	35101		FOUNDRY SAND	SOIL	12/07/2006	12:00	12/21/2006	10:01
A6F3	35109		MW-1	WATER	12/20/2006	12:45	12/21/2006	10:01
A6F3	35106		MW-2	WATER	12/20/2006	11:30	12/21/2006	10:01
A6F3	35107		MW-3	WATER	12/20/2006	11:45	12/21/2006	10:01
A6F3	35108		MW-4	WATER	12/20/2006	12:15	12/21/2006	10:01
A6F3	35110		MW-5	WATER	12/20/2006	13:15	12/21/2006	10:01
A6F3	35102		POND SEDIMENT	SEDIM	12/19/2006	09:30	12/21/2006	10:01
A6F3	35103		POND WATER	WATER	12/19/2006	10:00	12/21/2006	10:01
A6F3	35104		SOUTH MANHOLE	WATER	12/19/2006	11:15	12/21/2006	10:01

METHODS SUMMARY

Job#: <u>A06-F351</u>

STL Project#: <u>NY5A946109</u> Site Name: <u>NYSDEC - REGION 9 REMEDIATION/SPILLS CONTRACT</u>

PARAMETER	ANZ I	ALYTICAL METHOD
NYSDEC - AQUEOUS-SW8463 TCL 8260	SW8463	8260
NYDEC AQ- 8270 TCL SEMI-VOLATILE ORGANIC	SW8463	8270
NYSDEC -S-METHOD 8270 - TCL SEMI-VOLATILE ORGANICS	SW8463	8270
METHOD 8081 - TCL PESTICIDES	SW8463	8081
METHOD 8082 - POLYCHLORINATED BIPHENYLS	SW8463	8082
METHOD 8151 - HERBICIDES	SW8463	8151
NYSDEC-SPILLS- 8082 - POLYCHLORINATED BIPHENYLS-S	SW8463	8082
Aluminum - Total	SW8463	6010
Antimony - Total	SW8463	6010
Arsenic - Total	SW8463	6010
Barium - Total	SW8463	6010
Beryllium - Total	SW8463	6010
Cadmium - Total	SW8463	6010
Calcium - Total	SW8463	6010
Chromium - Total	SW8463	6010
Cobalt - Total	SW8463	6010
Copper - Total	SW8463	6010
Iron - Total	SW8463	6010
Lead - Total	SW8463	6010
Magnesium - Total	SW8463	6010
Manganese - Total	SW8463	6010
Mercury - Total	SW8463	7470
Mercury - Total	SW8463	7471
Nickel - Total	SW8463	6010
Potassium - Total	SW8463	6010
Selenium - Total	SW8463	6010
Silver - Total	SW8463	6010
Sodium - Total	SW8463	6010
Thallium - Total	SW8463	6010
Vanadium - Total	SW8463	6010
Zinc - Total	SW8463	6010
Total Recoverable Phenolics	MCAWW	420.2
Total Recoverable Phenolics	SW8463	9066

References:

MCAWW "Methods for Chemical Analysis of Water and Wastes", EPA/600/4-79-020 (Mar 1983) with updates and supplements EPA/600/4-91-010 (Jun 1991), EPA/600/R-92-129 (Aug 1992) and EPA/600/R-93-100 (Aug 1993) SW8463 "Test Methods for Evaluating Solid Waste Physical/Chemical Methods (SW846), Third Edition, 9/86; Update I, 7/92; Update IIA, 8/93; Update II, 9/94; Update IIB, 1/95; Update III, 12/96.

NON-CONFORMANCE SUMMARY

Job#: <u>A06-F351</u>

STL Project#: <u>NY5A946109</u> Site Name: <u>NYSDEC - REGION 9 REMEDIATION/SPILLS CONTRACT</u>

General Comments

The enclosed data may or may not have been reported utilizing data qualifiers (Q) as defined on the Data Comment Page.

Soil, sediment and sludge sample results are reported on "dry weight" basis unless otherwise noted in this data package.

According to 40CFR Part 136.3, pH, Chlorine Residual, Dissolved Oxygen, Sulfite, and Temperature analyses are to be performed immediately after aqueous sample collection. When these parameters are not indicated as field (e.g. pH-Field), they were not analyzed immediately, but as soon as possible after laboratory receipt.

Sample dilutions were performed as indicated on the attached Dilution Log. The rationale for dilution is specified by the 3-digit code and definition.

Sample Receipt Comments

A06-F351

Sample Cooler(s) were received at the following temperature(s); 2@5.2 °C All samples were received in good condition.

GC/MS Volatile Data

No deviations from protocol were encountered during the analytical procedures.

GC/MS Semivolatile Data

The percent drift for 2,4-Dinitrophenol was above the laboratory quality control limit in the continuing calibration verification A6C0007321. Since the results were biased high and the analyte was not detected in the samples, the data was not affected. No further corrective action was performed.

Sample FOUNDRY SAND,8270 soil had an adjusted final volume during extraction due to extract matrix and viscosity.

GC Extractable Data

No deviations from protocol were encountered during the analytical procedures.

Metals Data

The LCS CLP (Lot D049-540) recovery for Selenium fell outside of the quality control limits, however, the LCS CLP (A6B3266001) value was within the manufacturer's recommended acceptance limits. No corrective action was taken.

Wet Chemistry Data

No deviations from protocol were encountered during the analytical procedures.

The results presented in this report relate only to the analytical testing and condition of the sample at receipt. This report pertains to only those samples actually tested. All pages of this report are integral parts of the analytical data. Therefore, this report should be reproduced only in its entirety.

"I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hardcopy data package and in the computer-readable data submitted on floppy diskette has been authorized by the Laboratory Manager or his designee, as verified by the following signature."

Brian J. Fischer

FOR Project Manager

8 07

Client Sample ID	Lab Sample ID	Parameter (Inorganic)/Method (Organic)	Dilution Code
FOUNDRY SAND	A6F35101	Total Recoverable Phenolics	5.00 008
Dilution Code Definition:			
002	– sample matrix	c effects	
003	- excessive foa	ming	
004	- high levels c	of non-target compounds	
005	- sample matrix	resulted in method non-compliance for an I	nternal Standard
006	- sample matrix	resulted in method non-compliance for Surr	ogate
007	- nature of the	e TCLP matrix	
008	- high concentr	ation of target analyte(s)	
009	- sample turbic	lity	
010	- sample color		
011	- insufficient	volume for lower dilution	
012	- sample viscos	ity	
013	- other		

Date: 01/08/2007 Time: 10:53:44

The requested project specific reporting limits listed below were less than STL's standard quantitation limits. It must be noted that results reported below STL's standard quantitation limit (PQL) may result in false positive/false negative values and less accurate quantitation. Routine laboratory procedures do not indicate corrective action for detections below the laboratory's PQL.

Method	Parameter	Unit	Client DL	STL PQL
420.2	Total Recoverable Phenolics	MG/L	0.0050	0.010

DATA QUALIFIER PAGE

These definitions are provided in the event the data in this report requires the use of one or more of the qualifiers. Not all qualifiers defined below are necessarily used in the accompanying data package.

ORGANIC DATA QUALIFIERS

ND or U Indicates compound was analyzed for, but not detected.

- J Indicates an estimated value. This flag is used either when estimating a concentration for tentatively identified compounds where a 1:1 response is assumed, or when the data indicates the presence of a compound that meets the identification criteria but the result is less than the sample quantitation limit but greater than zero.
- C This flag applies to pesticide results where the identification has been confirmed by GC/MS.
- B This flag is used when the analyte is found in the associated blank, as well as in the sample.
- E This flag identifies compounds whose concentrations exceed the calibration range of the instrument for that specific analysis.
- D This flag identifies all compounds identified in an analysis at the secondary dilution factor.
- N Indicates presumptive evidence of a compound. This flag is used only for tentatively identified compounds, where the identification is based on the Mass Spectral library search. It is applied to all TIC results.
- P This flag is used for CLP methodology only. For Pesticide/Aroclor target analytes, when a difference for detected concentrations between the two GC columns is greater than 25%, the lower of the two values is reported on the data page and flagged with a "P".
- A This flag indicates that a TIC is a suspected aldol-condensation product.
- ¹ Indicates coelution.
- * Indicates analysis is not within the quality control limits.

INORGANIC DATA QUALIFIERS

ND or U Indicates element was analyzed for, but not detected. Report with the detection limit value.

- J or B Indicates a value greater than or equal to the instrument detection limit, but less than the quantitation limit.
- N Indicates spike sample recovery is not within the quality control limits.
- S Indicates value determined by the Method of Standard Addition.
- E Indicates a value estimated or not reported due to the presence of interferences.
- H Indicates analytical holding time exceedance. The value obtained should be considered an estimate.
- * Indicates the spike or duplicate analysis is not within the quality control limits.
- + Indicates the correlation coefficient for the Method of Standard Addition is less than 0.995.

NYSDEC - REGION 9 REMEDIATION/SPILLS CONTRACT

11/32 Page: 1 Rept: AN1178

NYSDEC Spills - Reed Rd. landfill: Site#902018

		Detection			Date/Time	
Parameter		Limit	Units	Method	Analyzed	Analyst
Metals Analysis						
Aluminum - Total	2.2	0.20	MG/L	6010	12/27/2006 18:47	AK
Antimony – Total	ND	0.020	MG/L	6010	12/27/2006 18:47	AK
Arsenic - Total	0.052	0.010	MG/L	6010	12/27/2006 18:47	AK
Barium - Total	0.24	0.0020	MG/L	6010	12/27/2006 18:47	AK
Beryllium - Total	ND	0.0020	MG/L	6010	12/27/2006 18:47	AK
Cadmium — Total	ND	0.0010	MG/L	6010	12/27/2006 18:47	AK
Calcium — Total	97.4	0.50	MG/L	6010	12/27/2006 18:47	AK
Chromium - Total	ND	0.0040	MG/L	6010	12/27/2006 18:47	AK
Cobalt - Total	0.0044	0.0040	MG/L	6010	12/27/2006 18:47	AK
Copper – Total	ND	0.010	MG/L	6010	12/27/2006 18:47	AK
Iron - Total	64.7	0.050	MG/L	6010	12/27/2006 18:47	AK
Lead – Total	ND	0.0050	MG/L	6010	12/27/2006 18:47	AK
Magnesium – Total	35.6	0.20	MG/L	6010	12/27/2006 18:47	AK
Manganese - Total	5.5	0.0030	MG/L	6010	12/27/2006 18:47	AK
Mercury – Total	ND	0.00020	MG/L	7470	12/27/2006 12:52	LH
Nickel - Total	ND	0.010	MG/L	6010	12/27/2006 18:47	AK
Potassium – Total	25.8	0.50	MG/L	6010	12/27/2006 18:47	AK
Selenium - Total	ND	0.015	MG/L	6010	12/27/2006 18:47	AK
Silver – Total	ND	0.0030	MG/L	6010	12/27/2006 18:47	AK
Sodium - Total	41.1	1.0	MG/L	6010	12/27/2006 18:47	AK
Thallium – Total	ND	0.020	MG/L	6010	12/27/2006 18:47	AK
Vanadium – Total	ND	0.0050	MG/L	6010	12/27/2006 18:47	AK
Zinc - Total	ND	0.010	MG/L	6010	12/27/2006 18:47	AK
Wet Chemistry Analysis						
Total Recoverable Phenolics	0.030	0.0050	MG/L	420.2	12/23/2006 08:28	RLG

NYSDEC - REGION 9 REMEDIATION/SPILLS CONTRACT NYSDEC Spills - Reed Rd. landfill: Site#902018

12/32 Page: 2 Rept: AN1178

Sample ID: FOUNDRY SAND Lab Sample ID: A6F35101 Date Collected: 12/07/2006 Time Collected: 12:00

Parameter Result Find Units Methods Analyzet xy35ct - syndad S270 - TL 2000 00500LTS NU 3800 us/K6 8270 12/26/2000 13:24 PM z, 4-, 5-ri fichtoraphenol NU 3800 us/K6 8270 12/26/2000 13:24 PM z, 4-, 5-ri fichtoraphenol NU 3800 us/K6 8270 12/26/2000 13:24 PM z, 4-sini fichtoraphenol NU 3800 us/K6 8270 12/26/2000 13:24 PM z, 4-sini fichtoraphenol NU 3800 us/K6 8270 12/26/2000 13:24 PM z, 4-sini fichtorabhene NU 3800 us/K6 8270 12/26/2000 13:24 PM z, 4-sini fichtorabhene NU 3800 us/K6 8270 12/26/2000 13:24 PM z, 4-sini fichtorabhene NU 3800 us/K6 8270 12/26/2000 13:24 PM z, 4-sini fichtorabhene NU 3800 us/K6 8270 12/26/2000 13:24 PM z, 4-sini fichtorabhene<				Detection			Date/Time	
Namese Namese 2,2oysid,3 EZO 12/26/2004 13/26/2004 1	Parameter	Result	<u>Flag</u>	Limit	Units	Method	Analyzed	<u>Analyst</u>
2,2-0xybis(1-thlorophenol) NP 3800 VU/KG 8270 12/25/2006 15:24 PM 2,4-5-Trichlorophenol NP 3800 VU/KG 8270 12/25/2006 15:24 PM 2,4-6 NP 3800 VU/KG 8270 12/25/2006 15:24 PM 2,4-0 Introphenol NP 3800 VU/KG 8270 12/26/2006 15:24 PM 2,4-0 Introphenol NP 3800 VU/KG 8270 12/26/2006 15:24 PM 2,4-0 Introphenol NP 3800 VU/KG 8270 12/26/2006 15:24 PM 2,6-10 Introphenol NP 3800 VU/KG 8270 12/26/2006 15:24 PM 2,6-10 Introphenol NP 3800 VU/KG 8270 12/26/2006 15:24 PM 2-restryLphenol NP 3800 VU/KG 8270 12/26/2006 15:24 PM 2-restryLphenol	NYSDEC -S-SW8463 8270 - TCL SVOA ORGANICS							
2,4,5-richlorophenol ND 5200 US/G 8270 12/26/200 15:24 PM 2,4-prichlorophenol ND 5800 US/G 8270 12/26/200 15:24 PM 2,4-prichlorophenol ND 5800 US/G 8270 12/26/200 15:24 PM 2,4-Dinitrotoluene ND 5800 US/G 8270 12/26/200 15:24 PM 2,4-Dinitrotoluene ND 5800 US/G 8270 12/26/200 15:24 PM 2,6-Dinitrotoluene ND 5800 US/G 8270 12/26/200 15:24 PM 2-chlorophenol ND 3800 US/G 8270 12/26/200 15:24 PM 2-mittraanitine ND 3800 US/G 8270 12/26/200 15:24 PM 2-mittraanitine ND 3800 US/G 8270 12/26/200 15:24 PM 2-mittraanitine ND 18000 US/G 8270 12/26/200<	2,2'-Oxybis(1-Chloropropane)	ND		3800	UG/KG	8270	12/26/2006 13:24	PM
2, A, d-rich-grophenol. ND 3800 UV/KG 8270 17/26/2005 312:4 PM 2, A-d-bit-prophenol. ND 3800 UV/KG 8270 17/26/2005 312:4 PM 2, A-d-bit-prophenol. ND 3800 UV/KG 8270 17/26/2005 132:4 PM 2, A-d-bit-froatulene ND 3800 UV/KG 8270 12/26/2005 132:4 PM 2, A-d-bit-froatulene ND 3800 UV/KG 8270 12/26/2005 132:4 PM 2-chtoring/Instal alene ND 3800 UV/KG 8270 12/26/2005 132:4 PM 2-hetty/Labrenol ND 3800 UV/KG	2,4,5-Trichlorophenol	ND		9200	UG/KG	8270	12/26/2006 13:24	РМ
2,Dichtorsphenol. ND 3000 Us/k6 8270 12/26/2000 13:24 PM 2,Dictryphenol. ND 18000 Us/k6 8270 12/26/2000 13:24 PM 2,Dictryphenol. ND 38000 Us/k6 8270 12/26/2006 13:24 PM 2,Dictryphenol. ND 3800 Us/k6 8270 12/26/2006 13:24 PM 2Choromphthaltene ND 3800 Us/k6 8270 12/26/2006 13:24 PM 2Textryphonol ND 3800 Us/k6 8270 12/26/2006 13:24 PM 2Hitryphonol ND 3800 Us/k6 8270 12/26/2006 13:24 PM 2Hitryphonol ND 18000 Us/k6 8270 12/26/2006 13:24 PM 2Hitryphonol ND 18000 Us/k6 8270 12/26/2006 13:24 PM 3-Ji-Dichlorabenzidine ND 18000 Us/k6 8270 <td>2,4,6-Trichlorophenol</td> <td>ND</td> <td></td> <td>3800</td> <td>UG/KG</td> <td>8270</td> <td>12/26/2006 13:24</td> <td>PM</td>	2,4,6-Trichlorophenol	ND		3800	UG/KG	8270	12/26/2006 13:24	PM
2, ADinterbylahenol. ND 3600 Us/K6 8270 12/26/2006 13:24 PM 2, ADintrotalusne ND 3600 Us/K6 8270 12/26/2006 13:24 PM 2, ADintrotalusne ND 3600 Us/K6 8270 12/26/2006 13:24 PM 2, ADintrotalusne ND 3600 Us/K6 8270 12/26/2006 13:24 PM 2hortonghenbl ND 3600 Us/K6 8270 12/26/2006 13:24 PM 2hortonghenbl ND 3600 Us/K6 8270 12/26/2006 13:24 PM 2-hortonghenbl ND 18000 Us/K6 8270 12/26/2006 13:24 PM 2-hortonghenbl ND 18000 Us/K6 8270 12/26/2006 13:24 PM 3-hirtoaniline ND 18000 Us/K6 8270 12/26/2006 13:24 PM 4-broanphenylphylphenbl ND 18000 Us/K6 8270 <td>2,4-Dichlorophenol</td> <td>ND</td> <td></td> <td>3800</td> <td>UG/KG</td> <td>8270</td> <td>12/26/2006 13:24</td> <td>PM</td>	2,4-Dichlorophenol	ND		3800	UG/KG	8270	12/26/2006 13:24	PM
2, A-e-bintrophenol. ND 18000 Us/K6 270 12/2k/2000 13:24 PM 2, A-e-bintrotolume ND 3800 Us/K6 8270 12/2k/2000 13:24 PM 2, A-e-bintrotolume ND 3800 Us/K6 8270 12/2k/2006 13:24 PM 2-chtorophenol ND 3800 Us/K6 8270 12/2k/2006 13:24 PM 2-metry(phenol ND 3800 Us/K6 8270 12/2k/2006 13:24 PM 2-metry(phenol ND 18000 Us/K6 8270 12/2k/2006 13:24 PM 2-metry(phenol ND 18000 Us/K6 8270 12/2k/2006 13:24 PM 3-mitroaniline ND 18000 Us/K6 8270 12/2k/2006 13:24 PM 3-forintro-2-metry(phenol ND 18000 Us/K6 8270 12/2k/2006 13:24 PM 3-forintro-2-metry(phenol ND 3800 Us/K6 827	2,4-Dimethylphenol	ND		3800	UG/KG	8270	12/26/2006 13:24	PM
2,Dintrotaluene ND 3800 UF/K0 8270 12/26/2006 13:24 PM 2,Dintrotaluene ND 3800 UG/K0 8270 12/26/2006 13:24 PM 2-chloronphenel ND 3800 UG/K0 8270 12/26/2006 13:24 PM 2-rhethylphenel ND 3800 UG/K0 8270 12/26/2006 13:24 PM 2-rhethylphenel ND 3800 UG/K0 8270 12/26/2006 13:24 PM 3.31-bichlorobenzidine ND 3800 UG/K0 8270 12/26/2006 13:24 PM 3.31-bichlorobenzidine ND 18000 UG/K0 8270 12/26/2006 13:24 PM 4bolintro-Z=methylphenol ND 18000 UG/K0 8270 12/26/2006 13:24 PM 4bolintro-Z=methylphenol ND 3800 UG/K0 8270 12/26/2006 13:24 PM 4bolintro-Z=methylphenol ND 3800 UG/	2,4-Dinitrophenol	ND		18000	UG/KG	8270	12/26/2006 13:24	РМ
2,6-bintrotaluene ND 3800 UG/KG 8270 12/26/2006 13:24 PM 2-chloronphenol ND 3800 UG/KG 8270 12/26/2006 13:24 PM 2-hetrylphenol ND 3800 UG/KG 8270 12/26/2006 13:24 PM 2-metrylphenol ND 3800 UG/KG 8270 12/26/2006 13:24 PM 2-metrylphenol ND 3800 UG/KG 8270 12/26/2006 13:24 PM 3,3'-Dichlorobenzidine ND 18000 UG/KG 8270 12/26/2006 13:24 PM 3,6'-Dichroz-metrylphenol ND 18000 UG/KG 8270 12/26/2006 13:24 PM 4,6-Dichroz-metrylphenol ND 3800 UG/KG 8270 12/26/2006 13:24 PM 4,6-Dichroz-metrylphenol ND 3800 UG/KG 8270 12/26/2006 13:24 PM 4-chloroaniine ND 3800 UG/KG	2,4-Dinitrotoluene	ND		3800	UG/KG	8270	12/26/2006 13:24	PM
ND 3800 UP/KS 8270 12/26/2005 13:24 PM 2-chtorophenot ND 3800 UP/KS 8270 12/26/2005 13:24 PM 2-rettyliphenot 100 3800 UP/KS 8270 12/26/2005 13:24 PM 2-rettyliphenol ND 3800 UP/KS 8270 12/26/2005 13:24 PM 3.3'-pitchorobenzidine ND 18000 UP/KS 8270 12/26/2005 13:24 PM 3.3'-pitchorobenzidine ND 18000 UP/KS 8270 12/26/2005 13:24 PM 3.3'-pitchorobenzidine ND 18000 UP/KS 8270 12/26/2006 13:24 PM 4cholorophylphenyl there ND 3800 UP/KS 8270 12/26/2006 13:24 PM 4cholorophylphenyl there ND 3800 UP/KS 8270 12/26/2006 13:24 PM 4cholorophylphenyl there ND 3800 UP/KS 8270 <td>2,6-Dinitrotoluene</td> <td>ND</td> <td></td> <td>3800</td> <td>UG/KG</td> <td>8270</td> <td>12/26/2006 13:24</td> <td>PM</td>	2,6-Dinitrotoluene	ND		3800	UG/KG	8270	12/26/2006 13:24	PM
2-chtorophenot. ND 3800 UU/KG 8270 12/26/2006 13:24 PM 2-Methylaphtalene 1600 J 3800 Uu/KG 8270 12/26/2006 13:24 PM 2-Methylaphtalene ND 3800 Uu/KG 8270 12/26/2006 13:24 PM 2-Nitrophenol ND 3800 Uu/KG 8270 12/26/2006 13:24 PM 3.5'Dichlorobenzidine ND 18000 Uu/KG 8270 12/26/2006 13:24 PM 4.6-Dinfro-2-sethylphenol ND 18000 Uu/KG 8270 12/26/2006 13:24 PM 4.6-Dinfro-2-sethylphenol ND 3800 Uu/KG 8270 12/26/2006 13:24 PM 4.6-Dinfro-2-sethylphenol ND 3800 Uu/KG 8270 12/26/2006 13:24 PM 4.6-Chtorophnyl phenyl ether ND 3800 Uu/KG 8270 12/26/2006 13:24 PM 4.Chtorophenyl phenyl ether ND	2-Chloronaphthalene	ND		3800	UG/KG	8270	12/26/2006 13:24	PM
2-methylnphthalene 1000 J 3800 U0/K6 8270 12/26/2006 13:24 PM 2-mitroniline ND 1800 U0/K6 8270 12/26/2006 13:24 PM 2-mitroniline ND 18000 U0/K6 8270 12/26/2006 13:24 PM 3-J* 0: for lordeneridine ND 18000 U0/K6 8270 12/26/2006 13:24 PM 4-bronghenyl phenyl ether ND 18000 U0/K6 8270 12/26/2006 13:24 PM 4-chloros-smethylphenol ND 3800 U0/K6 8270 12/26/2006 13:24 PM 4-chloroshinine ND 3800<	2-Chlorophenol	ND		3800	UG/KG	8270	12/26/2006 13:24	PM
z-methytphenot ND 3800 Ug/K6 8270 12/26/2006 13:24 PM 2-Nitroaniline ND 3800 Ug/K6 8270 12/26/2006 13:24 PM 3.3 'Poichlorobencitine ND 18000 Ug/K6 8270 12/26/2006 13:24 PM 3.3 'Poichlorobencitine ND 18000 Ug/K6 8270 12/26/2006 13:24 PM 4.6-Dinifro-Z-methylphenol ND 18000 Ug/K6 8270 12/26/2006 13:24 PM 4.6-Chioros-methylphenol ND 3800 Ug/K6 8270 12/26/2006 13:24 PM 4-Chloros-methylphenol ND 3800 Ug/K6 8270 12/26/2006 13:24 PM 4-Chloros-methylphenol ND 3800 Ug/K6 8270 12/26/2006 13:24 PM 4-Chloros-henyl phenyl ether ND 3800 Ug/K6 8270 12/26/2006 13:24 PM 4-Mitroaniline ND 3800	2-Methylnaphthalene	1600	J	3800	UG/KG	8270	12/26/2006 13:24	PM
2-mitraniline ND 1800 UG/KG 8270 12/26/2006 13:24 PM 2-mitraphenol ND 1800 UG/KG 8270 12/26/2006 13:24 PM 3-N*-Dichorsbenzidine ND 18000 UG/KG 8270 12/26/2006 13:24 PM 4-Genintro-2-methylphenol ND 18000 UG/KG 8270 12/26/2006 13:24 PM 4-Genintro-2-methylphenol ND 18000 UG/KG 8270 12/26/2006 13:24 PM 4-chloraniline ND 3800 UG/KG 8270 12/26/2006 13:24 PM 4-methylphenol ND 3800 UG/KG 8270 12/26/2006 13:24 PM 4-methylphenol ND 3800 UG/KG 8270 12/26/2006 13:24 PM Aceaphthylene ND 3800 UG/KG 8270 12/26/2006 13:24 PM Aceaphthylene ND 3800 UG/KG 8270	2-Methylphenol	ND		3800	UG/KG	8270	12/26/2006 13:24	PM
2-mirophenol ND 3800 UG/KG 8270 12/26/2006 13:24 PM 3.3'-Dichlorobenzidine ND 18000 UG/KG 8270 12/26/2006 13:24 PM 4.6-Diniforo-Z-methylphenol ND 18000 UG/KG 8270 12/26/2006 13:24 PM 4-Bromophenyl phenyl ether ND 3800 UG/KG 8270 12/26/2006 13:24 PM 4-Chloroaniline ND 3800 UG/KG 8270 12/26/2006 13:24 PM 4-chloroaniline ND 3800 UG/KG 8270 12/26/2006 13:24 PM 4-reitrophenyl phenyl ether ND 3800 UG/KG 8270 12/26/2006 13:24 PM 4-mitrophenol ND 18000 UG/KG 8270 12/26/2006 13:24 PM Acenaphthene ND 18000 UG/KG 8270 12/26/2006 13:24 PM Acenaphthene ND 3800 UG/KG	2-Nitroaniline	ND		18000	UG/KG	8270	12/26/2006 13:24	PM
3.3 - J - J ich Lorobenzi dine ND 18000 UG/KG 8270 12/26/2006 13:24 PM 3Hitroani Line ND 18000 UG/KG 8270 12/26/2006 13:24 PM 4G-Dini Tro2-misthy Lhenol ND 18000 UG/KG 8270 12/26/2006 13:24 PM 4Chloroa-misthy Lhenol ND 3800 UG/KG 8270 12/26/2006 13:24 PM 4Chloroani Line ND 3800 UG/KG 8270 12/26/2006 13:24 PM 4Chloroani Line ND 3800 UG/KG 8270 12/26/2006 13:24 PM 4-Mitroani Line ND 18000 UG/KG 8270 12/26/2006 13:24 PM 4-Mitroani Line ND 18000 UG/KG 8270 12/26/2006 13:24 PM Acenaphthylenol ND 3800 UG/KG 8270 12/26/2006 13:24 PM Acenaphthyleno ND 3800 UG/KG 8270 12/26/2006 13:24 PM Acetophenone N	2-Nitrophenol	ND		3800	UG/KG	8270	12/26/2006 13:24	PM
3-mitroaniline ND 18000 UG/KG 8270 12/26/2006 13:24 PM 4,6-Dinitro-2-methylphenol ND 18000 UG/KG 8270 12/26/2006 13:24 PM 4-Bronoghenyl phenyl ether ND 3800 UG/KG 8270 12/26/2006 13:24 PM 4-chloro-3-methylphenol ND 3800 UG/KG 8270 12/26/2006 13:24 PM 4-chlorophenyl phenyl ether ND 3800 UG/KG 8270 12/26/2006 13:24 PM 4-nethylphenol ND 3800 UG/KG 8270 12/26/2006 13:24 PM 4-nethylphenol ND 3800 UG/KG 8270 12/26/2006 13:24 PM Acenaphthene ND 3800 UG/KG 8270 12/26/2006 13:24 PM Acenaphthylene ND 3800 UG/KG 8270 12/26/2006 13:24 PM Acetophenone ND 3800 UG/KG 8	3,3'-Dichlorobenzidine	ND		18000	UG/KG	8270	12/26/2006 13:24	PM
4,6-Dinitro-2-methylphenol ND 10000 UG/KG 8270 12/26/2000 13:24 PM 4-chloro-3-methylphenol ND 3800 UG/KG 8270 12/26/2000 13:24 PM 4-chloro-3-methylphenol ND 3800 UG/KG 8270 12/26/2000 13:24 PM 4-chloroaniline ND 3800 UG/KG 8270 12/26/2000 13:24 PM 4-chlorophenyl phenyl ether ND 3800 UG/KG 8270 12/26/2000 13:24 PM 4-nethylphenol ND 3800 UG/KG 8270 12/26/2000 13:24 PM 4-nethylphenol ND 18000 UG/KG 8270 12/26/2000 13:24 PM 4-nethylphenol ND 18000 UG/KG 8270 12/26/2000 13:24 PM Acenaphthene ND 3800 UG/KG 8270 12/26/2000 13:24 PM Acetophenone ND 3800 UG/KG 8270 12/26/2000 13:24 PM Benzolahytylene ND	3-Nitroaniline	ND		18000	UG/KG	8270	12/26/2006 13:24	PM
A-Bromophenyl phenyl ether ND 3800 UG/K8 8270 12/26/2006 13:24 PM 4-chloro-3-methylphenol ND 3800 UG/K8 8270 12/26/2006 13:24 PM 4-chlorophenyl phenyl ether ND 3800 UG/K8 8270 12/26/2006 13:24 PM 4-nethylphenyl ether ND 3800 UG/K8 8270 12/26/2006 13:24 PM 4-nethylphenyl ether ND 3800 UG/K8 8270 12/26/2006 13:24 PM 4-nethylphenol ND 18000 UG/K8 8270 12/26/2006 13:24 PM Acenaphthene ND 3800 UG/K8 8270 12/26/2006 13:24 PM Acenaphthylene ND 3800 UG/K8 8270 12/26/2006 13:24 PM Acenaphthylene ND 3800 UG/K8 8270 12/26/2006 13:24 PM Acetophenone ND 3800 UG/K8 82	4,6-Dinitro-2-methylphenol	ND		18000	UG/KG	8270	12/26/2006 13:24	PM
4-chloro-3-methylphenol ND 3800 UG/K8 8270 12/26/2006 13:24 PM 4-chloroaniline ND 3800 UG/K6 8270 12/26/2006 13:24 PM 4-chlorophenyl phenyl ether ND 3800 UG/K6 8270 12/26/2006 13:24 PM 4-heitrophenyl phenyl ether ND 3800 UG/K6 8270 12/26/2006 13:24 PM 4-hitrophenol ND 18000 UG/K6 8270 12/26/2006 13:24 PM Acetophenol ND 3800 UG/K6 8270 12/26/2006 13:24 PM Acetophenone ND 3800 UG/K6 8270 12/26/2006 13:24 PM Arazine ND 3800 UG/K6 8270 12/26/2006 13:24 PM Benzolehyde ND 3800 UG/K6 8270 12/26/2006 13:24 PM Benzolehyde ND 3800 UG/K6 8270 12/26/2006 13:24 PM Benzolehyde ND 3800 UG	4-Bromophenyl phenyl ether	ND		3800	UG/KG	8270	12/26/2006 13:24	PM
4-chloroaniline ND 3800 U6/K6 8270 12/26/2006 13:24 PM 4-chlorophenyl phenyl ether ND 3800 Ue/K6 8270 12/26/2006 13:24 PM 4-Netryl phenol ND 3800 Ue/K6 8270 12/26/2006 13:24 PM 4-Nitroaniline ND 18000 Ue/K6 8270 12/26/2006 13:24 PM Acenaphthplene ND 18000 Ue/K6 8270 12/26/2006 13:24 PM Acenaphthylene ND 3800 Ue/K6 8270 12/26/2006 13:24 PM Acenaphthylene ND 3800 Ue/K6 8270 12/26/2006 13:24 PM Atrazine ND 3800 Ue/K6 8270 12/26/2006 13:24 PM Benzo(a)anthracene ND 3800 Ue/K6 8270 12/26/2006 13:24 PM Benzo(A)apyrane ND 3800 Ue/K6 8270 12/26/2	4-Chloro-3-methylphenol	ND		3800	UG/KG	8270	12/26/2006 13:24	PM
4-Chlorophenyl phenyl ether ND 3800 UG/KG 8270 12/26/2006 13:24 PM 4-methylphenol ND 3800 UG/KG 8270 12/26/2006 13:24 PM 4-mitroaniline ND 18000 UG/KG 8270 12/26/2006 13:24 PM 4-mitroaniline ND 18000 UG/KG 8270 12/26/2006 13:24 PM Acenaphthene ND 3800 UG/KG 8270 12/26/2006 13:24 PM Acetophenone ND 3800 UG/KG 8270 12/26/2006 13:24 PM Atrazine ND 3800 UG/KG 8270 12/26/2006 13:24 PM Benzo(a)antracene ND 3800 UG/KG 8270 12/26/2006 13:24 PM Benzo(a)pyrene ND 3800 UG/KG 8270 12/26/2006 13:24 PM Benzo(a)pyrene ND 3800 UG/KG 8270 12/26/2006	4-Chloroaniline	ND		3800	UG/KG	8270	12/26/2006 13:24	РМ
A-Methylphenol. ND 3800 UG/KG 8270 12/26/2006 13:24 PM A-Mitroaniline ND 18000 UG/KG 8270 12/26/2006 13:24 PM A-cenaphthene ND 18000 UG/KG 8270 12/26/2006 13:24 PM Acenaphthene ND 3800 UG/KG 8270 12/26/2006 13:24 PM Acenaphthylene ND 3800 UG/KG 8270 12/26/2006 13:24 PM Acenaphthylene ND 3800 UG/KG 8270 12/26/2006 13:24 PM Actroaphenone ND 3800 UG/KG 8270 12/26/2006 13:24 PM Atrazine ND 3800 UG/KG 8270 12/26/2006 13:24 PM Benzaldahyde ND 3800 UG/KG 8270 12/26/2006 13:24 PM Benzaldhyde ND 3800 UG/KG 8270 12/26/2006 13:24 </td <td>4-Chlorophenyl phenyl ether</td> <td>ND</td> <td></td> <td>3800</td> <td>UG/KG</td> <td>8270</td> <td>12/26/2006 13:24</td> <td>РМ</td>	4-Chlorophenyl phenyl ether	ND		3800	UG/KG	8270	12/26/2006 13:24	РМ
4-Nitroaniline ND 18000 UG/KG 8270 12/26/2006 13:24 PM 4-Nitrophenol ND 18000 UG/KG 8270 12/26/2006 13:24 PM Acenaphthene ND 3800 UG/KG 8270 12/26/2006 13:24 PM Acenaphthylene ND 3800 UG/KG 8270 12/26/2006 13:24 PM Acetophenone ND 3800 UG/KG 8270 12/26/2006 13:24 PM Antrazene ND 3800 UG/KG 8270 12/26/2006 13:24 PM Benzolabathylene ND 3800 UG/KG 8270 12/26/2006 13:24 PM Benzolabathracene ND 3800 UG/KG 8270 12/26/2006 13:24 PM Benzolabathracene ND 3800 UG/KG 8270 12/26/2006 13:24 PM Benzolabiturathene ND 3800 UG/KG 8270 12/26/200 13:24 PM Benzolabiturathene ND 3800 UG/KG	4-Methylphenol	ND		3800	UG/KG	8270	12/26/2006 13:24	РМ
4-Nitrophenol ND 18000 UG/KG 8270 12/26/2006 13:24 PM Acenaphthene ND 3800 UG/KG 8270 12/26/2006 13:24 PM Acenaphthylene ND 3800 UG/KG 8270 12/26/2006 13:24 PM Acetophenone ND 3800 UG/KG 8270 12/26/2006 13:24 PM Antrazene ND 3800 UG/KG 8270 12/26/2006 13:24 PM Benzaldehyde ND 3800 UG/KG 8270 12/26/2006 13:24	4-Nitroaniline	ND		18000	UG/KG	8270	12/26/2006 13:24	PM
Acenaphthene ND 3800 UG/KG 8270 12/26/2006 13:24 PM Acenaphthylene ND 3800 UG/KG 8270 12/26/2006 13:24 PM Acetophenone ND 3800 UG/KG 8270 12/26/2006 13:24 PM Actophenone ND 3800 UG/KG 8270 12/26/2006 13:24 PM Atrazine ND 3800 UG/KG 8270 12/26/2006 13:24 PM Benzolaphthylene ND 3800 UG/KG 8270 12/26/2006 13:24 PM Benzolaphthylene ND 3800 UG/KG 8270 12/26/2006 13:24 PM Benzolaphtene ND 3800 UG/KG 8270 12/26/2006 13:24 PM Benzolaphtene ND 3800 UG/KG 8270 12/26/2006 13:24 PM Benzolaphtene ND 3800 UG/KG 8270 12/26/2006 13:24 </td <td>4-Nitrophenol</td> <td>ND</td> <td></td> <td>18000</td> <td>UG/KG</td> <td>8270</td> <td>12/26/2006 13:24</td> <td>PM</td>	4-Nitrophenol	ND		18000	UG/KG	8270	12/26/2006 13:24	PM
Acenaphthylene ND 3800 UG/KG 8270 12/26/2006 13:24 PM Acetophenone ND 3800 UG/KG 8270 12/26/2006 13:24 PM Anthracene ND 3800 UG/KG 8270 12/26/2006 13:24 PM Atrazine ND 3800 UG/KG 8270 12/26/2006 13:24 PM Benzola)anthracene ND 3800 UG/KG 8270 12/26/2006 13:24 PM Benzola)anthracene ND 3800 UG/KG 8270 12/26/2006 13:24 PM Benzola)anthracene ND 3800 UG/KG 8270 12/26/2006 13:24 PM Benzola)prene ND 3800 UG/KG 8270 12/26/2006 13:24 PM Benzola)prene ND 3800 UG/KG 8270 12/26/2006 13:24 PM Benzola)horathene ND 3800 UG/KG 8270 12/26/2006	Acenaphthene	ND		3800	UG/KG	8270	12/26/2006 13:24	PM
Acetophenone ND 3800 UG/KG 8270 12/26/2006 13:24 PM Anthracene ND 3800 UG/KG 8270 12/26/2006 13:24 PM Atrazine ND 3800 UG/KG 8270 12/26/2006 13:24 PM Benzaldehyde ND 3800 UG/KG 8270 12/26/2006 13:24 PM Benzaldehyde ND 3800 UG/KG 8270 12/26/2006 13:24 PM Benzo(a)aptracene ND 3800 UG/KG 8270 12/26/2006 13:24 PM Benzo(a)pyrene ND 3800 UG/KG 8270 12/26/2006 13:24 PM Benzo(b)fluoranthene ND 3800 UG/KG 8270 12/26/2006 13:24 PM Benzo(k)fluoranthene ND 3800 UG/KG 8270 12/26/2006 13:24 PM Bis(2-chloroethoxy) methane ND 3800 UG/KG 8270 12/26/2006<	Acenaphthylene	ND		3800	UG/KG	8270	12/26/2006 13:24	PM
Anthracene ND 3800 UG/KG 8270 12/26/2006 13:24 PM Atrazine ND 3800 UG/KG 8270 12/26/2006 13:24 PM Benzaldehyde ND 3800 UG/KG 8270 12/26/2006 13:24 PM Benzaldehyde ND 3800 UG/KG 8270 12/26/2006 13:24 PM Benzola)anthracene ND 3800 UG/KG 8270 12/26/2006 13:24 PM Benzola)pyrene ND 3800 UG/KG 8270 12/26/2006 13:24 PM Benzol(pi)perylene ND 3800 UG/KG 8270 12/26/2006 13:24 PM Benzol(k)/lucranthene ND 3800 UG/KG 8270 12/26/2006 13:24 PM Bis/2-chloroethoxy) methane ND 3800 UG/KG 8270 12/26/2006 13:24 PM Bis/2-chloroethyl) ether ND 3800 UG/KG 8270 <td< td=""><td>Acetophenone</td><td>ND</td><td></td><td>3800</td><td>UG/KG</td><td>8270</td><td>12/26/2006 13:24</td><td>PM</td></td<>	Acetophenone	ND		3800	UG/KG	8270	12/26/2006 13:24	PM
Atrazine ND 3800 UG/KG 8270 12/26/2006 13:24 PM Benzaldehyde ND 3800 UG/KG 8270 12/26/2006 13:24 PM Benza(a)anthracene ND 3800 UG/KG 8270 12/26/2006 13:24 PM Benza(a)apyrene ND 3800 UG/KG 8270 12/26/2006 13:24 PM Benza(b)fluoranthene ND 3800 UG/KG 8270 12/26/2006 13:24 PM Benza(b)fluoranthene ND 3800 UG/KG 8270 12/26/2006 13:24 PM Benza(k)fluoranthene ND 3800 UG/KG 8270 12/26/2006 13:24 PM Bis(2-chloroethyl)enthene ND 3800 UG/KG 8270 12/26/2006 13:24 PM Bis(2-chloroethyl) enthalate ND 3800 UG/KG 8270 12/26/2006 13:24 PM Bis(2-chloroethyl) enthalate ND 3800 UG/KG 8270 12/26/2006 13:24 PM Garolactam ND <td>Anthracene</td> <td>ND</td> <td></td> <td>3800</td> <td>UG/KG</td> <td>8270</td> <td>12/26/2006 13:24</td> <td>PM</td>	Anthracene	ND		3800	UG/KG	8270	12/26/2006 13:24	PM
Benzaldehyde ND 3800 UG/KG 8270 12/26/2006 13:24 PM Benzo(a)anthracene ND 3800 UG/KG 8270 12/26/2006 13:24 PM Benzo(a)pyrene ND 3800 UG/KG 8270 12/26/2006 13:24 PM Benzo(b)fluoranthene ND 3800 UG/KG 8270 12/26/2006 13:24 PM Benzo(b)fluoranthene ND 3800 UG/KG 8270 12/26/2006 13:24 PM Benzo(k)fluoranthene ND 3800 UG/KG 8270 12/26/2006 13:24 PM Bis(2-chloroethoxy) methane ND 3800 UG/KG 8270 12/26/2006 13:24 PM Bis(2-chloroethyl) ether ND 3800 UG/KG 8270 12/26/2006 13:24 PM Bis(2-chloroethyl) ether ND 3800 UG/KG 8270 12/26/2006 13:24 PM Caprolactam ND 3800 UG/KG	Atrazine	ND		3800	UG/KG	8270	12/26/2006 13:24	PM
Benzo(a)anthraceneND3800UG/KG827012/26/200613:24PMBenzo(a)pyreneND3800UG/KG827012/26/200613:24PMBenzo(b)fluorantheneND3800UG/KG827012/26/200613:24PMBenzo(ghi)peryleneND3800UG/KG827012/26/200613:24PMBenzo(k)fluorantheneND3800UG/KG827012/26/200613:24PMBinpenylND3800UG/KG827012/26/200613:24PMBis(2-chloroethoxy) methaneND3800UG/KG827012/26/200613:24PMBis(2-chloroethoxy) methaneND3800UG/KG827012/26/200613:24PMBis(2-chloroethyl) etherND3800UG/KG827012/26/200613:24PMBis(2-chloroethyl) etherND3800UG/KG827012/26/200613:24PMBis(2-chloroethyl) etherND3800UG/KG827012/26/200613:24PMGaprolactamND3800UG/KG827012/26/200613:24PMCarbazoleND3800UG/KG827012/26/200613:24PMDi-n-butyl phthalateND3800UG/KG827012/26/200613:24PMDienzo(a,h)anthraceneND3800UG/KG827012/26/200613:24PMDibenzo(a,h)anthraceneND3800 <td>Benzaldehyde</td> <td>ND</td> <td></td> <td>3800</td> <td>ug/kg</td> <td>8270</td> <td>12/26/2006 13:24</td> <td>PM</td>	Benzaldehyde	ND		3800	ug/kg	8270	12/26/2006 13:24	PM
Benzo(a)pyreneND3800UG/KG827012/26/200613:24PMBenzo(b)fluorantheneND3800UG/KG827012/26/200613:24PMBenzo(ghi)peryleneND3800UG/KG827012/26/200613:24PMBenzo(k)fluorantheneND3800UG/KG827012/26/200613:24PMBiphenylND3800UG/KG827012/26/200613:24PMBis(2-chloroethoxy) methaneND3800UG/KG827012/26/200613:24PMBis(2-chloroethyl) etherND3800UG/KG827012/26/200613:24PMBis(2-chloroethyl) etherND3800UG/KG827012/26/200613:24PMBis(2-chloroethyl) etherND3800UG/KG827012/26/200613:24PMButyl benzyl phthalateND3800UG/KG827012/26/200613:24PMCaprolactamND3800UG/KG827012/26/200613:24PMChryseneND3800UG/KG827012/26/200613:24PMDi-n-butyl phthalateND3800UG/KG827012/26/200613:24PMDi-n-octyl phthalateND3800UG/KG827012/26/200613:24PMDibenzofuranND3800UG/KG827012/26/200613:24PMDibenzofuranND3800UG/KG8270	Benzo(a)anthracene	ND		3800	UG/KG	8270	12/26/2006 13:24	PM
Benzo(b)fluorantheneND3800UG/KG827012/26/200613:24PMBenzo(ghi)peryleneND3800UG/KG827012/26/200613:24PMBenzo(k)fluorantheneND3800UG/KG827012/26/200613:24PMBiphenylND3800UG/KG827012/26/200613:24PMBis(2-chloroethoxy) methaneND3800UG/KG827012/26/200613:24PMBis(2-chloroethyl) etherND3800UG/KG827012/26/200613:24PMBis(2-chloroethyl) etherND3800UG/KG827012/26/200613:24PMBis(2-chloroethyl) etherND3800UG/KG827012/26/200613:24PMButyl benzyl phthalateND3800UG/KG827012/26/200613:24PMCarbazoleND3800UG/KG827012/26/200613:24PMChryseneND3800UG/KG827012/26/200613:24PMDi-n-octyl phthalateND3800UG/KG827012/26/200613:24PMDibenzo(a,h)anthraceneND3800UG/KG827012/26/200613:24PMDibenzofuranND3800UG/KG827012/26/200613:24PMDibenzofuranND3800UG/KG827012/26/200613:24PMDibenzofuranND3800UG/KG8270 </td <td>Benzo(a)pyrene</td> <td>ND</td> <td></td> <td>3800</td> <td>UG/KG</td> <td>8270</td> <td>12/26/2006 13:24</td> <td>PM</td>	Benzo(a)pyrene	ND		3800	UG/KG	8270	12/26/2006 13:24	PM
Benzo(ghi)peryleneND3800UG/KG827012/26/200613:24PMBenzo(k)fluorantheneND3800UG/KG827012/26/200613:24PMBiphenylND3800UG/KG827012/26/200613:24PMBis(2-chloroethoxy) methaneND3800UG/KG827012/26/200613:24PMBis(2-chloroethyl) etherND3800UG/KG827012/26/200613:24PMBis(2-ethylhexyl) phthalateND3800UG/KG827012/26/200613:24PMButyl benzyl phthalateND3800UG/KG827012/26/200613:24PMCaprolactamND3800UG/KG827012/26/200613:24PMChryseneND3800UG/KG827012/26/200613:24PMDi-n-butyl phthalateND3800UG/KG827012/26/200613:24PMDi-n-butyl phthalateND3800UG/KG827012/26/200613:24PMDi-n-butyl phthalateND3800UG/KG827012/26/200613:24PMDi-n-ctyl phthalateND3800UG/KG827012/26/200613:24PMDibenzo(a,h)anthraceneND3800UG/KG827012/26/200613:24PMDibenzofuranND3800UG/KG827012/26/200613:24PMDiethyl phthalateND3800UG/KG </td <td>Benzo(b)fluoranthene</td> <td>ND</td> <td></td> <td>3800</td> <td>UG/KG</td> <td>8270</td> <td>12/26/2006 13:24</td> <td>PM</td>	Benzo(b)fluoranthene	ND		3800	UG/KG	8270	12/26/2006 13:24	PM
Benzo(k)fluorantheneND3800UG/KG827012/26/200613:24PMBiphenylND3800UG/KG827012/26/200613:24PMBis(2-chloroethoxy) methaneND3800UG/KG827012/26/200613:24PMBis(2-chloroethyl) etherND3800UG/KG827012/26/200613:24PMBis(2-ethylhexyl) phthalateND3800UG/KG827012/26/200613:24PMButyl benzyl phthalateND3800UG/KG827012/26/200613:24PMCaprolactamND3800UG/KG827012/26/200613:24PMChryseneND3800UG/KG827012/26/200613:24PMDi-n-butyl phthalateND3800UG/KG827012/26/200613:24PMDi-n-butyl phthalateND3800UG/KG827012/26/200613:24PMDi-n-butyl phthalateND3800UG/KG827012/26/200613:24PMDibenzo(a,h)anthraceneND3800UG/KG827012/26/200613:24PMDibenzofuranND3800UG/KG827012/26/200613:24PMDiethyl phthalateND3800UG/KG827012/26/200613:24PMDiethyl phthalateND3800UG/KG827012/26/200613:24PMDibenzofuranND3800UG/KG8	Benzo(ghi)perylene	ND		3800	UG/KG	8270	12/26/2006 13:24	PM
BiphenylND3800UG/KG827012/26/200613:24PMBis(2-chloroethoxy) methaneND3800UG/KG827012/26/200613:24PMBis(2-chloroethyl) etherND3800UG/KG827012/26/200613:24PMBis(2-ethylhexyl) phthalateND3800UG/KG827012/26/200613:24PMButyl benzyl phthalateND3800UG/KG827012/26/200613:24PMCaprolactamND3800UG/KG827012/26/200613:24PMCarbazoleND3800UG/KG827012/26/200613:24PMChryseneND3800UG/KG827012/26/200613:24PMDi-n-butyl phthalateND3800UG/KG827012/26/200613:24PMDi-n-butyl phthalateND3800UG/KG827012/26/200613:24PMDi-n-octyl phthalateND3800UG/KG827012/26/200613:24PMDibenzo(a,h)anthraceneND3800UG/KG827012/26/200613:24PMDiethyl phthalateND3800UG/KG827012/26/200613:24PMDiethyl phthalateND3800UG/KG827012/26/200613:24PMDiethyl phthalateND3800UG/KG827012/26/200613:24PMDiethyl phthalateND3800UG/KG82	Benzo(k)fluoranthene	ND		3800	UG/KG	8270	12/26/2006 13:24	PM
Bis(2-chloroethoxy) methaneND3800UG/KG827012/26/200613:24PMBis(2-chloroethyl) etherND3800UG/KG827012/26/200613:24PMBis(2-ethylhexyl) phthalateND3800UG/KG827012/26/200613:24PMButyl benzyl phthalateND3800UG/KG827012/26/200613:24PMCaprolactamND3800UG/KG827012/26/200613:24PMCarbazoleND3800UG/KG827012/26/200613:24PMChryseneND3800UG/KG827012/26/200613:24PMDi-n-butyl phthalateND3800UG/KG827012/26/200613:24PMDi-n-octyl phthalateND3800UG/KG827012/26/200613:24PMDibenzo(a,h)anthraceneND3800UG/KG827012/26/200613:24PMDiethyl phthalateND3800UG/KG827012/26/200613:24PMDibenzofuranND3800UG/KG827012/26/200613:24PMDiethyl phthalateND3800UG/KG827012/26/200613:24PMDiethyl phthalateND3800UG/KG827012/26/200613:24PMDiethyl phthalateND3800UG/KG827012/26/200613:24PMDiethyl phthalateND3800UG/KG8	Biphenyl	ND		3800	UG/KG	8270	12/26/2006 13:24	PM
Bis(2-chloroethyl) ether ND 3800 UG/KG 8270 12/26/2006 13:24 PM Bis(2-ethylhexyl) phthalate ND 3800 UG/KG 8270 12/26/2006 13:24 PM Butyl benzyl phthalate ND 3800 UG/KG 8270 12/26/2006 13:24 PM Caprolactam ND 3800 UG/KG 8270 12/26/2006 13:24 PM Carbazole ND 3800 UG/KG 8270 12/26/2006 13:24 PM Di-n-butyl phthalate ND 3800 UG/KG 8270 12/26/2006 13:24 PM Di-n-butyl phthalate ND 3800 UG/KG 8270 12/26/2006 13:24 PM Di-n-octyl phthalate ND 3800 UG/KG 8270 12/26/2006 13:24 PM Dibenzo(a,h)anthracene ND 3800 UG/KG 8270 12/26/2006 13:24 PM Dibenzofuran ND 3800 UG/KG 8270 12/26/2006 13:24 PM Diethyl phthalate ND <td>Bis(2-chloroethoxy) methane</td> <td>ND</td> <td></td> <td>3800</td> <td>UG/KG</td> <td>8270</td> <td>12/26/2006 13:24</td> <td>PM</td>	Bis(2-chloroethoxy) methane	ND		3800	UG/KG	8270	12/26/2006 13:24	PM
Bis (2-ethylhexyl) phthalateND3800UG/KG827012/26/200613:24PMButyl benzyl phthalateND3800UG/KG827012/26/200613:24PMCaprolactamND3800UG/KG827012/26/200613:24PMCarbazoleND3800UG/KG827012/26/200613:24PMChryseneND3800UG/KG827012/26/200613:24PMDi-n-butyl phthalateND3800UG/KG827012/26/200613:24PMDi-n-octyl phthalateND3800UG/KG827012/26/200613:24PMDibenzo(a,h)anthraceneND3800UG/KG827012/26/200613:24PMDibenzofuranND3800UG/KG827012/26/200613:24PMDiethyl phthalateND3800UG/KG827012/26/200613:24PMDibenzofuranND3800UG/KG827012/26/200613:24PMDiethyl phthalateND3800UG/KG827012/26/200613:24PMDimethyl phthalateND3800UG/KG827012/26/200613:24PMDimethyl phthalateND3800UG/KG827012/26/200613:24PMDimethyl phthalateND3800UG/KG827012/26/200613:24PMDimethyl phthalateND3800UG/KG827012/26	Bis(2-chloroethyl) ether	ND		3800	UG/KG	8270	12/26/2006 13:24	PM
Butyl benzyl phthalateND3800UG/KG827012/26/200613:24PMCaprolactamND3800UG/KG827012/26/200613:24PMCarbazoleND3800UG/KG827012/26/200613:24PMChryseneND3800UG/KG827012/26/200613:24PMDi-n-butyl phthalateND3800UG/KG827012/26/200613:24PMDi-n-octyl phthalateND3800UG/KG827012/26/200613:24PMDibenzo(a,h)anthraceneND3800UG/KG827012/26/200613:24PMDibenzofuranND3800UG/KG827012/26/200613:24PMDiethyl phthalateND3800UG/KG827012/26/200613:24PMDibenzofuranND3800UG/KG827012/26/200613:24PMDiethyl phthalateND3800UG/KG827012/26/200613:24PMDimethyl phthalateND3800UG/KG827012/26/200613:24PM	Bis(2-ethylhexyl) phthalate	ND		3800	UG/KG	8270	12/26/2006 13:24	PM
CaprolactamND3800UG/KG827012/26/200613:24PMCarbazoleND3800UG/KG827012/26/200613:24PMChryseneND3800UG/KG827012/26/200613:24PMDi-n-butyl phthalateND3800UG/KG827012/26/200613:24PMDi-n-octyl phthalateND3800UG/KG827012/26/200613:24PMDibenzo(a,h)anthraceneND3800UG/KG827012/26/200613:24PMDibenzofuranND3800UG/KG827012/26/200613:24PMDiethyl phthalateND3800UG/KG827012/26/200613:24PMDibenzofuranND3800UG/KG827012/26/200613:24PMDiethyl phthalateND3800UG/KG827012/26/200613:24PMDimethyl phthalateND3800UG/KG827012/26/200613:24PM	Butyl benzyl phthalate	ND		3800	UG/KG	8270	12/26/2006 13:24	PM
CarbazoleND3800UG/KG827012/26/200613:24PMChryseneND3800UG/KG827012/26/200613:24PMDi-n-butyl phthalateND3800UG/KG827012/26/200613:24PMDi-n-octyl phthalateND3800UG/KG827012/26/200613:24PMDibenzo(a,h)anthraceneND3800UG/KG827012/26/200613:24PMDibenzofuranND3800UG/KG827012/26/200613:24PMDiethyl phthalateND3800UG/KG827012/26/200613:24PMDiethyl phthalateND3800UG/KG827012/26/200613:24PMDimethyl phthalateND3800UG/KG827012/26/200613:24PMDimethyl phthalateND3800UG/KG827012/26/200613:24PM	Caprolactam	ND		3800	UG/KG	8270	12/26/2006 13:24	PM
Chrysene ND 3800 UG/KG 8270 12/26/2006 13:24 PM Di-n-butyl phthalate ND 3800 UG/KG 8270 12/26/2006 13:24 PM Di-n-octyl phthalate ND 3800 UG/KG 8270 12/26/2006 13:24 PM Dibenzo(a,h)anthracene ND 3800 UG/KG 8270 12/26/2006 13:24 PM Dibenzofuran ND 3800 UG/KG 8270 12/26/2006 13:24 PM Diethyl phthalate ND 3800 UG/KG 8270 12/26/2006 13:24 PM Dibenzofuran ND 3800 UG/KG 8270 12/26/2006 13:24 PM Diethyl phthalate ND 3800 UG/KG 8270 12/26/2006 13:24 PM Dimethyl phthalate ND 3800 UG/KG 8270 12/26/2006 13:24 PM	Carbazole	ND		3800	UG/KG	8270	12/26/2006 13:24	PM
Di-n-butyl phthalate ND 3800 UG/KG 8270 12/26/2006 13:24 PM Di-n-octyl phthalate ND 3800 UG/KG 8270 12/26/2006 13:24 PM Dibenzo(a,h)anthracene ND 3800 UG/KG 8270 12/26/2006 13:24 PM Dibenzofuran ND 3800 UG/KG 8270 12/26/2006 13:24 PM Diethyl phthalate ND 3800 UG/KG 8270 12/26/2006 13:24 PM Diethyl phthalate ND 3800 UG/KG 8270 12/26/2006 13:24 PM Dimethyl phthalate ND 3800 UG/KG 8270 12/26/2006 13:24 PM	Chrysene	ND		3800	UG/KG	8270	12/26/2006 13:24	PM
Di-n-octyl phthalate ND 3800 UG/KG 8270 12/26/2006 13:24 PM Dibenzo(a,h)anthracene ND 3800 UG/KG 8270 12/26/2006 13:24 PM Dibenzofuran ND 3800 UG/KG 8270 12/26/2006 13:24 PM Diethyl phthalate ND 3800 UG/KG 8270 12/26/2006 13:24 PM Dimethyl phthalate ND 3800 UG/KG 8270 12/26/2006 13:24 PM	Di-n-butyl phthalate	ND		3800	UG/KG	8270	12/26/2006 13:24	PM
Dibenzo(a,h)anthracene ND 3800 UG/KG 8270 12/26/2006 13:24 PM Dibenzofuran ND 3800 UG/KG 8270 12/26/2006 13:24 PM Diethyl phthalate ND 3800 UG/KG 8270 12/26/2006 13:24 PM Dimethyl phthalate ND 3800 UG/KG 8270 12/26/2006 13:24 PM	Di-n-octyl phthalate	ND		3800	UG/KG	8270	12/26/2006 13:24	PM
Dibenzofuran ND 3800 UG/KG 8270 12/26/2006 13:24 PM Diethyl phthalate ND 3800 UG/KG 8270 12/26/2006 13:24 PM Dimethyl phthalate ND 3800 UG/KG 8270 12/26/2006 13:24 PM	Dibenzo(a,h)anthracene	ND		3800	UG/KG	8270	12/26/2006 13:24	PM
Diethyl phthalate ND 3800 UG/KG 8270 12/26/2006 13:24 PM Dimethyl phthalate ND 3800 UG/KG 8270 12/26/2006 13:24 PM	Dibenzofuran	ND		3800	UG/KG	8270	12/26/2006 13:24	PM
Dimethyl phthalate ND 3800 UG/KG 8270 12/26/2006 13:24 PM	Diethyl phthalate	ND		3800	UG/KG	8270	12/26/2006 13:24	PM
	Dimethyl phthalate	ND		3800	UG/KG	8270	12/26/2006 13:24	PM

NYSDEC - REGION 9 REMEDIATION/SPILLS CONTRACT NYSDEC Spills - Reed Rd. landfill: Site#902018

Sample ID: FOUNDRY SAND Lab Sample ID: A6F35101 Date Collected: 12/07/2006 Time Collected: 12:00

,

			Detection			Date/Time	-
Parameter	Result	Flag	Limit	Units	Method	Analyzed	Analyst
NYSDEC -S-SW8463 8270 - TCL SVOA ORGANICS							
Fluoranthene	ND		3800	UG/KG	8270	12/26/2006 13:24	PM
Fluorene	ND		3800	UG/KG	8270	12/26/2006 13:24	PM
Hexachlorobenzene	ND		3800	UG/KG	8270	12/26/2006 13:24	F PM
Hexachlorobutadiene	ND		3800	UG/KG	8270	12/26/2006 13:24	F PM
Hexachlorocyclopentadiene	ND		3800	UG/KG	8270	12/26/2006 13:24	F PM
Hexachloroethane	ND		3800	UG/KG	8270	12/26/2006 13:24	∔ PM
Indeno(1,2,3-cd)pyrene	ND		3800	UG/KG	8270	12/26/2006 13:24	∔ PM
Isophorone	ND		3800	UG/KG	8270	12/26/2006 13:24	FM FM
N-Nitroso-Di-n-propylamine	ND		3800	UG/KG	8270	12/26/2006 13:24	PM
N-nitrosodiphenylamine	ND		3800	UG/KG	8270	12/26/2006 13:24	PM
Naphthalene	3700	J	3800	UG/KG	8270	12/26/2006 13:24	PM
Nitrobenzene	ND		3800	UG/KG	8270	12/26/2006 13:24	PM
Pentachlorophenol	ND		18000	UG/KG	8270	12/26/2006 13:24	PM
Phenanthrene	ND		3800	UG/KG	8270	12/26/2006 13:24	PM
Phenol	12000		3800	UG/KG	8270	12/26/2006 13:24	PM
Pyrene	ND		3800	UG/KG	8270	12/26/2006 13:24	PM
NYSDEC-SPILLS - SOIL-SW8463 8082 - PCBS							
Aroclor 1016	ND		19	UG/KG	8082	12/26/2006 13:46	GFD
Aroclor 1221	ND		19	UG/KG	8082	12/26/2006 13:46	GFD
Aroclor 1232	ND		19	UG/KG	8082	12/26/2006 13:46	GFD
Aroclor 1242	5.6	J	19	UG/KG	8082	12/26/2006 13:46	GFD
Aroclor 1248	ND		19	UG/KG	8082	12/26/2006 13:46	GFD
Aroclor 1254	ND		19	UG/KG	8082	12/26/2006 13:46	6 GFD
Aroclor 1260	ND		19	UG/KG	8082	12/26/2006 13:46	6 GFD
Metals Analysis							
Aluminum - Total	1600		10.9	MG/KG	6010	12/28/2006 01:08	B AK
Antimony - Total	ND		16.3	MG/KG	6010	12/28/2006 01:08	3 AK
Arsenic – Total	4.0		2.2	MG/KG	6010	12/28/2006 01:08	B AK
Barium - Total	16.4		0.54	MG/KG	6010	12/28/2006 01:08	B AK
Beryllium - Total	ND		0.22	MG/KG	6010	12/28/2006 01:08	B AK
Cadmium - Total	ND		0.22	MG/KG	6010	12/28/2006 01:08	B AK
Calcium - Total	557		54.4	MG/KG	6010	12/28/2006 01:08	B AK
Chromium - Total	183		0.54	MG/KG	6010	12/28/2006 01:08	B AK
Cobalt – Total	4.0		0.54	MG/KG	6010	12/28/2006 01:08	AK
Copper – Total	59.8		1.1	MG/KG	6010	12/28/2006 01:08	B AK
Iron – Total	37100		10.9	MG/KG	6010	12/28/2006 01:08	3 AK
Lead - Total	5.2		1.1	MG/KG	6010	12/28/2006 01:08	B AK
Magnesium – Total	516		21.8	MG/KG	6010	12/28/2006 01:08	B AK
Manganese – Total	449		0.22	MG/KG	6010	12/28/2006 01:08	3 AK
Mercury - Total	0.066		0.020	MG/KG	7471	12/27/2006 14:42	LH
Nickel – Total	68.8		0.54	MG/KG	6010	12/28/2006 01:08	B AK
Potassium – Total	315		32.6	MG/KG	6010	12/28/2006 01:08	B AK
Selenium - Total	ND		4.4	MG/KG	6010	12/28/2006 01 : 08	З АК
Silver – Total	ND		0.54	MG/KG	6010	12/28/2006 01:08	3 АК
Sodium - Total	ND		152	MG/KG	6010	12/28/2006 01 : 08	3 ак
Thallium - Total	ND		6.5	MG/KG	6010	12/28/2006 01:08	B AK
Vanadium - Total	12.6		0.54	MG/KG	6010	12/28/2006 01:08	B AK

NYSDEC - REGION 9 REMEDIATION/SPILLS CONTRACT NYSDEC Spills - Reed Rd. landfill: Site#902018

Date Received: 12/21/2006 Sample ID: FOUNDRY SAND Lab Sample ID: A6F35101 Project No: NY5A946109 Date Collected: 12/07/2006 Client No: L10190 Site No: Time Collected: 12:00 ----Date/Time-Detection Parameter Result Flag Limit Units Method Analyzed <u>Analyst</u> Metals Analysis MG/KG 12/28/2006 01:08 Zinc - Total 14.6 1.1 6010 AK Wet Chemistry Analysis Total Recoverable Phenolics 37.3 28.7 MG/KG 9066 12/23/2006 08:28 RLG

NYSDEC - REGION 9 REMEDIATION/SPILLS CONTRACT NYSDEC Spills - Reed Rd. landfill: Site#902018

			Detection			Date/Time	Analyst
Parameter	Result	<u>Flag</u>	Limit	Units	Method	Analyzed	
NYSDEC - AQUEOUS-SW8463 TCL 8260							
1,1,1-Trichloroethane	ND		1.0	UG/L	8260	12/28/2006 21:14	BJ
1,1,2,2-Tetrachloroethane	ND		1.0	UG/L	8260	12/28/2006 21:14	ВJ
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		1.0	UG/L	8260	12/28/2006 21:14	ВJ
1,1,2-Trichloroethane	ND		1.0	UG/L	8260	12/28/2006 21:14	BJ
1,1-Dichloroethane	ND		1.0	UG/L	8260	12/28/2006 21:14	BJ
1,1-Dichloroethene	ND		1.0	UG/L	8260	12/28/2006 21:14	BJ
1,2,4-Trichlorobenzene	ND		1.0	UG/L	8260	12/28/2006 21:14	ВJ
1,2-Dibromo-3-chloropropane	ND		1.0	UG/L	8260	12/28/2006 21:14	BJ
1,2-Dibromoethane	ND		1.0	UG/L	8260	12/28/2006 21:14	BJ
1,2-Dichlorobenzene	ND		1.0	UG/L	8260	12/28/2006 21:14	ВJ
1,2-Dichloroethane	ND		1.0	UG/L	8260	12/28/2006 21:14	BJ
1,2-Dichloropropane	ND		1.0	UG/L	8260	12/28/2006 21:14	BJ
1,3-Dichlorobenzene	ND		1.0	UG/L	8260	12/28/2006 21:14	BJ
1,4-Dichlorobenzene	ND		1.0	UG/L	8260	12/28/2006 21:14	BJ
2-Butanone	ND		5.0	ug/L	8260	12/28/2006 21:14	8.1
2-Hexanone	ND		5.0	ug/1	8260	12/28/2006 21:14	B.I
4-Methyl-2-pentanone	ND		5.0	ug/L	8260	12/28/2006 21:14	BJ
Acetone	ND		5.0	ug/i	8260	12/28/2006 21:14	B.I
Benzene	ND		1.0	ug/L	8260	12/28/2006 21:14	BJ
Bromodichloromethape	ND		1.0	ug/i	8260	12/28/2006 21:14	BJ
Bromoform	ND		1.0	ug/i	8260	12/28/2006 21:14	BJ
Bromomethane	ND		1.0	ug/i	8260	12/28/2006 21:14	BI
Carbon Disulfide	ND		1.0	ug/i	8260	12/28/2006 21:14	BJ
Carbon Tetrachloride	ND		1.0	ug/i	8260	12/28/2006 21:14	BI
Chlorobenzene	ND		1.0	ug/i	8260	12/28/2006 21:14	BI
Chloroethane	ND		1.0	ug/i	8260	12/28/2006 21:14	R I
Chloroform	ND		1.0	ug/i	8260	12/28/2006 21:14	BI
Chloromethane	ND		1.0	ug/i	8260	12/28/2006 21:14	B1
cis-1.2-Dichloroethene	ND		1.0	ug/i	8260	12/28/2006 21:14	BI
cis-1.3-Dichloropropene	ND		1.0	ug/i	8260	12/28/2006 21:14	BI
Cyclobexane	ND		1.0	ug/i	8260	12/28/2006 21:14	81
Dibromochloromethane	ND		1.0	us/i	8260	12/28/2006 21:14	BI
Dichlorodifluoromethane	ND		1.0	ug/i	8260	12/28/2006 21:14	BI
Ethylbenzene	ND		1.0	us/i	8260	12/28/2006 21:14	BI
	ND		1.0	ug/1	8260	12/28/2006 21:14	BI
Methyl acetate	ND		1.0	ug/i	8260	12/28/2006 21:14	BI
Methyl-t-Butyl Ether (MTBE)	ND		1.0	ug/i	8260	12/28/2006 21:14	BI
Methylcyclohexane	ND		1.0	us/i	8260	12/28/2006 21:14	BI
Methylene chlaride	ND		1.0	us/i	8260	12/28/2006 21.14	BI
Styrepe	ND		1.0	ug/1	8260	12/28/2006 21.14	BI
Tetrachloroethene	ND		1.0	us/i	8260	12/28/2006 21-14	BJ
Toluene	ND		1.0	ug/i	8260	12/28/2006 21:14	BJ
Total Xylenes	ND		3.0	ug/i	8260	12/28/2006 21:14	B.I
trans-1.2-Dichloroethene	ND		1.0	ug/1.	8260	12/28/2006 21:14	BJ
trans-1,3-Dichloropropene	ND		1.0	UG/L	8260	12/28/2006 21:14	B.I
Trichloroethene	ND		1.0	UG/L	8260	12/28/2006 21:14	
Trichlorofluoromethane	ND		1.0	UG/L	8260	12/28/2006 21:14	 В,I
Vinyl chloride	ND		1.0	UG/L	8260	12/28/2006 21:14	= -
-						.,,	

NYSDEC - REGION 9 REMEDIATION/SPILLS CONTRACT NYSDEC Spills - Reed Rd. landfill: Site#902018

Parameter Health Linit Units Method Analyzed Analyzed 1,2,4-br (chloroberzne NO 9 up/L 2270 1226/2000 190.0 PM 1,2-bi(horoberzne NO 9 up/L 2270 1226/2006 190.0 PM 1,2-bi(horoberzne NO 9 up/L 2270 1226/2006 190.0 PM 1,2-bi(horoberzne NO 9 up/L 2270 1226/2006 190.2 PM 2,4-br (chlorophenol NO 9 up/L 2270 1226/2006 190.2 PM 2,4-br (chlorophenol NO 9 up/L 2270 1226/2006 190.2 PM 2,4-br (chlorophenol NO 9 up/L 2270 1226/2006 190.2 PM 2,4-br (chlorophenol NO 9 up/L 2270 1226/2006 190.2 PM 2,4-br (chlorophenol NO 9 up/L 2270 1226/2000 190.2				Detection	Date/Time				
HTTPE Add State State <thstate< th=""> State State</thstate<>	Parameter	Result	<u>Flag</u>	Limit	Units	Method	Analyzed	<u>Analyst</u>	
1,2,4-richlorobenzene ND 9 UG/L 8270 12/26/206 19:02 PM 1,2-bichlorobenzene ND 9 UG/L 8270 12/26/206 19:02 PM 1,4-bichlorobenzene ND 9 UG/L 8270 12/26/206 19:02 PM 2,20.5ybis1-Chlorophenol ND 9 UG/L 8270 12/26/206 19:02 PM 2,4-5-Trichlorophenol ND 9 UG/L 8270 12/26/206 19:02 PM 2,4-5Trichlorobenzitine ND 9 UG/L 8270 12/26/206 19:02 PM 2,4-5Trichlorobenzitine ND 9 <td>NYDEC AQ- SW8463 8270 - TCL SVOA ORGANIC</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	NYDEC AQ- SW8463 8270 - TCL SVOA ORGANIC								
1,2-bickloroberzene ND 9 UV/L 8270 12/56/206 19/20 PM 1,3-bickloroberzene ND 9 UV/L 8270 12/56/206 19/22 PM 2,4-colitiroberzene ND 9 UV/L 8270 12/56/206 19/22 PM 2,4-colitiroberzene ND 9 UV/L 8270 12/56/206 19/22 PM 2,4-colitirophenol ND 9 UV/L 8270 12/56/206 19/22 PM 2,4-colitirophenol ND 9 UV/L 8270 12/56/206 19/22 PM 2,4-colitirosolume ND 9 UV/L 8270 12/56/206 19/22 PM 2,-colitirosolume ND 9 UV/L 8270 12/56/206 19/22 PM 2,-colitirosolume ND 9 UV/L 8270 12/56/206 19/22 PM 2,-colitirosolume ND 9 UV/L 8270 12/56/206 19/2	1,2,4-Trichlorobenzene	ND		9	UG/L	8270	12/26/2006 19:02	PM	
1,3-pbichlorobenzene ND 9 UB/L 8270 12/56/2006 19:02 PM 2,4-boltorobenzene ND 9 UB/L 8270 12/56/2006 19:02 PM 2,4-5-TrichLorophonol ND 9 UB/L 8270 12/56/2006 19:02 PM 2,4-6-TrichLorophonol ND 9 UB/L 8270 12/56/2006 19:02 PM 2,4-5 TrichLorophonol ND 9 UB/L 8270 12/56/2006 19:02 PM 2,4-5 TrichLorophonol ND 9 UB/L 8270 12/56/2006 19:02 PM 2,4-5 TrichLorophonol ND 9 UB/L 8270 12/56/2006 19:02 PM 2,4-5 TrichLorophonol ND 9 UB/L 8270 12/56/2006 19:02 PM 2,4-6 TrichLorophonol ND 9 UB/L 8270 12/56/2006 19:02 PM 2,4-6 TrichLoroph	1,2-Dichlorobenzene	ND		9	UG/L	8270	12/26/2006 19:02	PM	
1, A-bichtorobenzene ND 9 Us/L 8270 12/2s/2006 19/02 PM 2, A-sprist-1-Chicorophenol ND 9 Us/L 8270 12/2s/2006 19/02 PM 2, A-sprist-Intorophenol ND 9 Us/L 8270 12/2s/2006 19/02 PM 2, A-sprist-Intorophenol ND 9 Us/L 8270 12/2s/2006 19/02 PM 2, A-sprist-Intorophenol ND 9 Us/L 8270 12/2s/2006 19/02 PM 2, A-sprist-Intorophenol ND 9 Us/L 8270 12/2s/2006 19/02 PM 2, A-sprist-Intorobuene ND 9 Us/L 8270 12/2s/2006 19/02 PM 2, A-sprist-Intorobuene ND 9 Us/L 8270 12/2s/2006 19/02 PM 2, A-sprist-Intorobuene ND 9 Us/L 8270 12/2s/2006 19/02 PM 2-shttirophenol ND 9 Us/L 8270 12/2s/2006 19/02 PM 2-shttorophenol ND	1,3-Dichlorobenzene	ND		9	UG/L	8270	12/26/2006 19:02	PM	
2,2-oxybis(1-chlorophenol ND 9 Us/L 8270 12/2s/2006 19:02 PM 2,4,5-Trichlorophenol ND 9 Us/L 8270 12/2s/2006 19:02 PM 2,4-5-Trichlorophenol ND 9 Us/L 8270 12/2s/2006 19:02 PM 2,4-50 introphenol ND 9 Us/L 8270 12/2s/2006 19:02 PM 2,4-50 introphenol ND 9 Us/L 8270 12/2s/2006 19:02 PM 2,4-50 introphenol ND 9 Us/L 8270 12/2s/2006 19:02 PM 2,4-50 introphenol ND 9 Us/L 8270 12/2s/2006 19:02 PM 2-chlorophenol ND 9 Us/L 8270 12/2s/2006 19:02 PM 2-mitrophenol ND 9 Us/L 8270 12/2s/2006 19:02 PM 2-mitrophenol ND 9 Us/L 8270 12/2s/2006 19:02 PM 2-mitrophenol ND 9 Us/L 82	1,4-Dichlorobenzene	ND		9	UG/L	8270	12/26/2006 19:02	PM	
2,4,5-Trichlorophenol ND 9 Us/L 8270 12/2s/2006 19:02 PM 2,4,6-Trichlorophenol ND 9 Us/L 8270 12/2s/2006 19:02 PM 2,4-0-Trichlorophenol ND 9 Us/L 8270 12/2s/2006 19:02 PM 2,4-0-Trictoluene ND 9 Us/L 8270 12/2s/2006 19:02 PM 2,4-0-Trictoluene ND 9 Us/L 8270 12/2s/2006 19:02 PM 2,6-0-Trictoluene ND 9 Us/L 8270 12/2s/2005 19:02 PM 2,6-0-Trictoluene ND 9 Us/L 8270 12/2s/2005 19:02 PM 2-Methylaphthalene ND 9 Us/L 8270 12/2s/2006 19:02 PM 2-Methylaphthalene ND 9 Us/L 8270 12/2s/2006 19:02 PM 2-Methylaphthalene ND 9 Us/L 8270 12/2s/2006 19:02 PM 2-Methylaphthalene ND 9 Us/L	2,2'-Oxybis(1-Chloropropane)	ND		9	UG/L	8270	12/26/2006 19:02	PM	
2,4-b-trictorophanol ND 9 UU/L 8270 12/26/2006 19:02 PM 2,4-b-thicrophanol ND 9 UG/L 8270 12/26/2006 19:02 PM 2,4-b-thicrophanol ND 9 UG/L 8270 12/26/2006 19:02 PM 2,4-b-thicrophanol ND 9 UU/L 8270 12/26/2006 19:02 PM 2,4-b-thicrophanol ND 9 UU/L 8270 12/26/2006 19:02 PM 2,4-b-thicrophanol ND 9 UU/L 8270 12/26/2006 19:02 PM 2-thicrophanol ND 9 UU/L 8270	2,4,5-Trichlorophenol	ND		9	UG/L	8270	12/26/2006 19:02	PM	
2,4-0 ich Larophenol ND 9 UU/L 8270 12/26/2006 19:02 PM 2,4-0 initrophenol ND 47 UB/L 8270 12/26/2006 19:02 PM 2,4-0 initrophenol ND 9 UB/L 8270 12/26/2006 19:02 PM 2,6-0 initrophenol ND 9 UB/L 8270 12/26/2006 19:02 PM 2,6-0 initrophenol ND 9 UB/L 8270 12/26/2006 19:02 PM 2-chloronphthalene ND 9 UB/L 8270 12/26/2006 19:02 PM 2-metry Laphthalene ND 9 UB/L 8270 12/26/2006 19:02 PM 2-metry Laphthalene ND 9 UB/L 8270 12/26/2006 19:02 PM 2-metry Laphthalene ND 9 UB/L 8270 12/26/2006 19:02 PM 2-metry Laphthalene ND 9 UB/L 8270 12/26/2006 19:02 PM 2-metry Laphenol ND 9 UB/L	2,4,6-Trichlorophenol	ND		9	UG/L	8270	12/26/2006 19:02	PM	
2, 4Dinitrophenol ND 9 UG/L 8270 12/26/2006 19:02 PM 2, 4Dinitrophenol ND 9 UG/L 8270 12/26/2006 19:02 PM 2, 4Dinitrotoluene ND 9 UG/L 8270 12/26/2006 19:02 PM 2, 4-Dinitrotoluene ND 9 UG/L 8270 12/26/2006 19:02 PM 2Chlorophenol ND 9 UG/L 8270 12/26/2006 19:02 PM 2Hothyphhalene ND 9 UG/L 8270 12/26/2006 19:02 PM 2Hothyphhalene ND 9 UG/L 8270 12/26/2006 19:02 PM 2Hothyphenol ND 9 UG/L 8270 12/26/2006 19:02 PM 3, 3'=0ihloroberzidine ND 9 UG/L 8270 12/26/2006 19:02 PM 4,-6-Dinitroz-methyphenol ND 9 UG/L 8270 12/26/2006 19:02 PM 4,-Chloroanitine ND 9 UG/L	2,4-Dichlorophenol	ND		9	UG/L	8270	12/26/2006 19:02	PM	
2,4-Dinitrophenol ND 47 UG/L 8270 12/26/2006 19:02 PM 2,6-Dinitrotoluene ND 9 UG/L 8270 12/26/2006 19:02 PM 2,6-Dinitrotoluene ND 9 UG/L 8270 12/26/2006 19:02 PM 2-chloronaphhalene ND 9 UG/L 8270 12/26/2006 19:02 PM 2-motophenol ND 9 UG/L 8270 12/26/2006 19:02 PM 2-motophenol ND 9 UG/L 8270 12/26/2006 19:02 PM 2-mitrophenol ND 9 UG/L 8270 12/26/2006 19:02 PM 2-mitrophenol ND 9 UG/L 8270 12/26/2006 19:02 PM 3.3'- 50 intorobanzidine ND 9 UG/L 8270 12/26/2006 19:02 PM 4,6-0 initro-2-methylphenol ND 9 UG/L 8270 12/26/2006 19:02 PM 4,6-toinorbenzidine ND 9 UG/L 8270 12/26/2006 19:02 PM 4,6-toinitro-2-methylphenol ND 9<	2,4-Dimethylphenol	ND		9	UG/L	8270	12/26/2006 19:02	РМ	
2, 4-D initrotoluene ND 9 UG/L 8270 12/26/2006 19:02 PM 2, 6-D initrotoluene ND 9 UG/L 8270 12/26/2006 19:02 PM 2-chlorophenol ND 9 UG/L 8270 12/26/2006 19:02 PM 2-netoryphenol ND 9 UG/L 8270 12/26/2006 19:02 PM 2-methylphenol ND 9 UG/L 8270 12/26/2006 19:02 PM 2-Mitrophenol ND 9 UG/L 8270 12/26/2006 19:02 PM 2-Mitrophenol ND 9 UG/L 8270 12/26/2006 19:02 PM 3,-5*0ichlorobenzidine ND 19 UG/L 8270 12/26/2006 19:02 PM 4,6-0*0intro-2-methylphenol ND 9 UG/L 8270 12/26/2006 19:02 PM 4,6-0*0intro-2-methylphenol ND 9 UG/L 8270 12/26/2006 19:02 PM 4-chlorophenyl phenyl ether ND 9 UG	2,4-Dinitrophenol	ND		47	UG/L	8270	12/26/2006 19:02	PM	
2,6-Pinitrotoluene ND 9 UG/L 8270 12/26/2006 19:0.2 PM 2-Chloronaphthalene ND 9 UG/L 8270 12/26/2006 19:0.2 PM 2-mborophonl ND 9 UG/L 8270 12/26/2006 19:0.2 PM 2-methylnaphthalene ND 9 UG/L 8270 12/26/2006 19:0.2 PM 2-mitroaniline ND 9 UG/L 8270 12/26/2006 19:0.2 PM 3,3'' ofichordbenzidine ND 9 UG/L 8270 12/26/2006 19:0.2 PM 4,6-binitro-Z=methylphenol ND 47 UG/L 8270 12/26/2006 19:0.2 PM 4,6-binitro-Z=methylphenol ND 9 UG/L 8270 12/26/2006 19:0.2 PM 4,-chloroshnitine ND 9 UG/L 8270 12/26/2006 19:0.2 PM 4-chloroshnitine ND 9 UG/L 8270 12/	2,4-Dinitrotoluene	ND		9	UG/L	8270	12/26/2006 19:02	PM	
2-chloronaphthalene ND 9 US/L 8270 12/26/2006 19:02 PM 2-rhethylaphthalene ND 9 UG/L 8270 12/26/2006 19:02 PM 2-methylaphthalene ND 9 UG/L 8270 12/26/2006 19:02 PM 2-methylaphthalene ND 9 UG/L 8270 12/26/2006 19:02 PM 2-mitronaltine ND 9 UG/L 8270 12/26/2006 19:02 PM 3.5'-oichlorobenzialine ND 19 UG/L 8270 12/26/2006 19:02 PM 4-Bromophenyl phenol ND 9 UG/L 8270 12/26/2006 19:02 PM 4-Chloros-mitine ND 9 UG/L 8270 12/26/2006 19:02 PM 4-chloroshenyl phenyl ether ND 9 UG/L 8270 12/26/2006 19:02 PM 4-chloroshenyl phenyl ether ND 9 UG/L 8270 1	2,6-Dinitrotoluene	ND		9	UG/L	8270	12/26/2006 19:02	PM	
2-thlorophenol ND 9 UG/L 8270 12/6/2006 19:02 PM 2-Methylaphtalene ND 9 UG/L 8270 12/26/2006 19:02 PM 2-Methylaphenol ND 9 UG/L 8270 12/26/2006 19:02 PM 2-Mitrophenol ND 9 UG/L 8270 12/26/2006 19:02 PM 3.3'-orichlorobenzidine ND 9 UG/L 8270 12/26/2006 19:02 PM 3.4'-orichlorobenzidine ND 9 UG/L 8270 12/26/2006 19:02 PM 4.6-Dinitro-Z-methylphenol ND 9 UG/L 8270 12/26/2006 19:02 PM 4-chloros-methylphenol ND 9 UG/L 8270 12/26/2006 19:02 PM 4-chlorosphenyl phenyl ether ND 9 UG/L 8270 12/26/2006 19:02 PM 4-mitrophenol ND 9 UG/L 8270 12/26/2006 19:02 PM 4-chlorosphenyl phenyl ether ND 9	2-Chloronaphthalene	ND		9	UG/L	8270	12/26/2006 19:02	PM	
2-Methylphenel ND 9 UG/L 8270 12/26/2006 19:02 PM 2-Methylphenel ND 9 UG/L 8270 12/26/2006 19:02 PM 2-Metronalline ND 9 UG/L 8270 12/26/2006 19:02 PM 3.5'-Dichlorobenzidine ND 19 UG/L 8270 12/26/2006 19:02 PM 3Nitroanline ND 47 UG/L 8270 12/26/2006 19:02 PM 4Groinitro-2-methylphenol ND 47 UG/L 8270 12/26/2006 19:02 PM 4Chloro-3-methylphenol ND 9 UG/L 8270 12/26/2006 19:02 PM 4Chloro-3-methylphenol ND 9 UG/L 8270 12/26/2006 19:02 PM 4Methylphenol ND 9 UG/L 8270 12/26/2006 19:02 PM 4Methylphenol ND 9 UG/L 8270 12/26/2006 19:02 PM 4Mitroaniline ND 9 UG/L	2-Chlorophenol	ND		9	UG/L	8270	12/26/2006 19:02	PM	
2-Methylphenol ND 9 UG/L 8270 12/26/2006 19:02 PM 2-Nitrophenol ND 47 Us/L 8270 12/26/2006 19:02 PM 3.5'-Dichlorobenzidine ND 19 Us/L 8270 12/26/2006 19:02 PM 3.4'Itroaniline ND 47 Us/L 8270 12/26/2006 19:02 PM 4.6-Dinitro-2-methylphenol ND 47 Us/L 8270 12/26/2006 19:02 PM 4.6-Dinitro-2-methylphenol ND 9 Us/L 8270 12/26/2006 19:02 PM 4-Chloroa-smethylphenol ND 9 Us/L 8270 12/26/2006 19:02 PM 4-Chloroaniline ND 9 Us/L 8270 12/26/2006 19:02 PM 4-Nitroaniline ND 9 Us/L 8270 12/26/2006 19:02 PM 4-Nitroaniline ND 9 Us/L 8270 12/26/2006 19:02 PM 4-Nitroaniline ND 9 Us/L	2-Methylnaphthalene	ND		9	UG/L	8270	12/26/2006 19:02	PM	
2-Nitroaniline ND 47 UG/L 8270 12/26/2006 19:02 PM 2-Nitrophenol ND 9 US/L 8270 12/26/2006 19:02 PM 3.5' - 5ichorobenzidine ND 47 UG/L 8270 12/26/2006 19:02 PM 4.6-Dinitro-2-methylphenol ND 47 UG/L 8270 12/26/2006 19:02 PM 4-chloro-3-methylphenol ND 9 UG/L 8270 12/26/2006 19:02 PM 4-chloro-3-methylphenol ND 9 UG/L 8270 12/26/2006 19:02 PM 4-chloro-benyl phenyl ether ND 9 UG/L 8270 12/26/2006 19:02 PM 4-Mitrophenol ND 9 UG/L 8270 12/26/2006 19:02 PM 4-Mitrophenol ND 47 UG/L 8270 12/26/2006 19:02 PM Acenaphthylene ND 9 UG/L 8270 12/26/2006	2-Methylphenol	ND		9	UG/L	8270	12/26/2006 19:02	PM	
2-Hitrophenol ND 9 UG/L 8270 12/26/2006 19:02 PM 3.7*Dichlorobenzidine ND 19 UG/L 8270 12/26/2006 19:02 PM 4.6-Dinitro-2-methylphenol ND 47 UG/L 8270 12/26/2006 19:02 PM 4.6-Dinitro-2-methylphenol ND 9 UG/L 8270 12/26/2006 19:02 PM 4-Chloro-3-methylphenol ND 9 UG/L 8270 12/26/2006 19:02 PM 4-Chloro-3-methylphenol ND 9 UG/L 8270 12/26/2006 19:02 PM 4-Chlorophenyl phenyl ether ND 9 UG/L 8270 12/26/2006 19:02 PM 4-Nitrophenol ND 9 UG/L 8270 12/26/2006 19:02 PM Acenaphthene ND 9 UG/L 8270 12/26/2006 19:02 PM Acenaphthylene ND 9 UG/L 8270 12/	2-Nitroaniline	ND		47	UG/L	8270	12/26/2006 19:02	РМ	
3,3'-Dichlorobenzidine ND 19 UG/L 8270 12/26/2006 19:02 PM 3-Mitroaniline ND 47 UG/L 8270 12/26/2006 19:02 PM 4,6-briniron-2-methylphenol ND 47 UG/L 8270 12/26/2006 19:02 PM 4-Bromophenyl phenyl ether ND 9 UG/L 8270 12/26/2006 19:02 PM 4-chloro-3-methylphenol ND 9 UG/L 8270 12/26/2006 19:02 PM 4-chlorophenyl phenyl ether ND 9 UG/L 8270 12/26/2006 19:02 PM 4-rethylphenol ND 9 UG/L 8270 12/26/2006 19:02 PM 4-rethylphenol ND 9 UG/L 8270 12/26/2006 19:02 PM Acenaphthene ND 9 UG/L 8270 12/26/2006 19:02 PM Acenaphthene ND 9 UG/L 8270 12/26/200	2-Nitrophenol	ND		9	UG/L	8270	12/26/2006 19:02	РМ	
3-Nitroaniline ND 47 UG/L 8270 12/26/2006 19:02 PM 4,6-Dinitro-Z-methylphenol ND 47 UG/L 8270 12/26/2006 19:02 PM 4-Gromophenyl phenyl ether ND 9 UG/L 8270 12/26/2006 19:02 PM 4-Chloro-3-methylphenol ND 9 UG/L 8270 12/26/2006 19:02 PM 4-Chlorophnyl phenyl ether ND 9 UG/L 8270 12/26/2006 19:02 PM 4-chlorophenyl phenyl ether ND 9 UG/L 8270 12/26/2006 19:02 PM 4-heithylphenol ND 9 UG/L 8270 12/26/2006 19:02 PM Acenaphthene ND 9 UG/L 8270 12/26/2006 19:02 PM Acenaphthylene ND 9 UG/L 8270 12/26/2006 19:02 PM Acenaphthylene ND 9 UG/L 8270 12/26/2006 19:02 PM Benzo(a)anthracene ND 9 <	3,3'-Dichlorobenzidine	ND		19	UG/L	8270	12/26/2006 19:02	PM	
4,6-Dinitro-2-methylphenol ND 47 UG/L 8270 12/26/2006 19:02 PM 4-BromophenyL phenyl ether ND 9 UG/L 8270 12/26/2006 19:02 PM 4-chloro-3-methylphenol ND 9 UG/L 8270 12/26/2006 19:02 PM 4-chloro-anitine ND 9 UG/L 8270 12/26/2006 19:02 PM 4-chlorophenyL phenyl ether ND 9 UG/L 8270 12/26/2006 19:02 PM 4-witroaniline ND 9 UG/L 8270 12/26/2006 19:02 PM 4-witroaniline ND 47 UG/L 8270 12/26/2006 19:02 PM 4-witroaniline ND 9 UG/L 8270 12/26/2006 19:02 PM Acenaphthene ND 9 UG/L 8270 12/26/2006 19:02 PM Acenaphthylene ND 9 UG/L 8270 12/26/2006 19:02 PM Benzo(a)anthracene ND 9 UG/L <td>3-Nitroaniline</td> <td>ND</td> <td></td> <td>47</td> <td>UG/L</td> <td>8270</td> <td>12/26/2006 19:02</td> <td>РМ</td>	3-Nitroaniline	ND		47	UG/L	8270	12/26/2006 19:02	РМ	
4-Bromophenyl phenyl ether ND 9 UG/L 8270 12/26/2006 19:02 PM 4-chloro-3-methylphenol ND 9 UG/L 8270 12/26/2006 19:02 PM 4-chlorophenyl phenyl ether ND 9 UG/L 8270 12/26/2006 19:02 PM 4-chlorophenyl phenyl ether ND 9 UG/L 8270 12/26/2006 19:02 PM 4-methylphenol ND 9 UG/L 8270 12/26/2006 19:02 PM 4-nitroaniline ND 9 UG/L 8270 12/26/2006 19:02 PM 4-nitrophenol ND 47 UG/L 8270 12/26/2006 19:02 PM Accenaphthene ND 9 UG/L 8270 12/26/2006 19:02 PM Actenaphthylene ND 9 UG/L 8270 12/26/2006 19:02 PM Benzo(a)pyrene ND 9 UG/L 8270 12/26/2006	4,6-Dinitro-2-methylphenol	ND		47	UG/L	8270	12/26/2006 19:02	РМ	
4-Chloro-3-methylphenol ND 9 UG/L 8270 12/26/206 19:02 PM 4-Chloroaniline ND 9 UG/L 8270 12/26/206 19:02 PM 4-Chlorophenyl phenyl ether ND 9 UG/L 8270 12/26/206 19:02 PM 4-Methylphenol ND 9 UG/L 8270 12/26/206 19:02 PM 4-Netrophenol ND 9 UG/L 8270 12/26/206 19:02 PM Acenaphthene ND 47 UG/L 8270 12/26/206 19:02 PM Acenaphthene ND 9 UG/L 8270 12/26/206 19:02 PM Acenaphthylene ND 9 UG/L 8270 12/26/206 19:02 PM Acenaphthylene ND 9 UG/L 8270 12/26/206 19:02 PM Benzofa)anthracene ND 9 UG/L 8270 12/26/206 19:02 PM Benzofa)thuranthene ND 9 UG/L 8270 12	4-Bromophenyl phenyl ether	ND		9	UG/L	8270	12/26/2006 19:02	PM	
4-chloroaniline ND 9 UG/L 8270 12/26/2006 19:02 PM 4-chlorophenyl phenyl ether ND 9 UG/L 8270 12/26/2006 19:02 PM 4-methylphenol ND 9 UG/L 8270 12/26/2006 19:02 PM 4-mitroaniline ND 47 UG/L 8270 12/26/2006 19:02 PM 4-nitroaniline ND 47 UG/L 8270 12/26/2006 19:02 PM Acenaphthene ND 9 UG/L 8270 12/26/2006 19:02 PM Acenaphthylene ND 9 UG/L 8270 12/26/2006 19:02 PM Acenaphthylene ND 9 UG/L 8270 12/26/2006 19:02 PM Benzo(a)anthracene ND 9 UG/L 8270 12/26/2006 19:02 PM Benzo(sh'looranthene ND 9 UG/L 8270 12/26/2006 19:02 PM Bis(2-chloroethxyl methane ND 9 UG/L 8270	4-Chloro-3-methylphenol	ND		9	UG/L	8270	12/26/2006 19:02	PM	
4-chlorophenyl phenyl ether ND 9 UG/L 8270 12/26/2006 19:02 PM 4-methylphenol ND 9 UG/L 8270 12/26/2006 19:02 PM 4-Nitroaniline ND 47 UG/L 8270 12/26/2006 19:02 PM 4-Nitrophenol ND 47 UG/L 8270 12/26/2006 19:02 PM Acenaphthene ND 9 UG/L 8270 12/26/2006 19:02 PM Acenaphthylene ND 9 UG/L 8270 12/26/2006 19:02 PM Acenaphthylene ND 9 UG/L 8270 12/26/2006 19:02 PM Acenaphthylene ND 9 UG/L 8270 12/26/2006 19:02 PM Benzo(a)pyrene ND 9 UG/L 8270 12/26/2006 19:02 PM Benzo(shiluoranthene ND 9 UG/L 8270 12/26/2006 19:02 PM Bis(2-chloroethyl) methane ND 9 UG/L 8270	4-Chloroaniline	ND		9	UG/L	8270	12/26/2006 19:02	PM	
4-Methylphenol ND 9 UG/L 8270 12/26/2006 19:02 PM 4-Nitrophenol ND 47 UG/L 8270 12/26/2006 19:02 PM Acenaphthene ND 47 UG/L 8270 12/26/2006 19:02 PM Acenaphthene ND 9 UG/L 8270 12/26/2006 19:02 PM Acenaphthylene ND 9 UG/L 8270 12/26/2006 19:02 PM Anthracene ND 9 UG/L 8270 12/26/2006 19:02 PM Benzo(a)anthracene ND 9 UG/L 8270 12/26/2006 19:02 PM Benzo(a)pyrene ND 9 UG/L 8270 12/26/2006 19:02 PM Benzo(b)fluoranthene ND 9 UG/L 8270 12/26/2006 19:02 PM Benzo(k)fluoranthene ND 9 UG/L 8270 12/26/2006 19:02 PM Bis(2-chloroethxy) methane ND 9 UG/L 8270 <td< td=""><td>4-Chlorophenyl phenyl ether</td><td>ND</td><td></td><td>9</td><td>UG/L</td><td>8270</td><td>12/26/2006 19:02</td><td>PM</td></td<>	4-Chlorophenyl phenyl ether	ND		9	UG/L	8270	12/26/2006 19:02	PM	
4-Nitroaniline ND 47 UG/L 8270 12/26/2006 19:02 PM 4-Nitrophenol ND 47 UG/L 8270 12/26/2006 19:02 PM Acenaphthene ND 9 UG/L 8270 12/26/2006 19:02 PM Acenaphthylene ND 9 UG/L 8270 12/26/2006 19:02 PM Anthracene ND 9 UG/L 8270 12/26/2006 19:02 PM Benzo(a)anthracene ND 9 UG/L 8270 12/26/2006 19:02 PM Benzo(a)anthracene ND 9 UG/L 8270 12/26/2006 19:02 PM Benzo(a)anthracene ND 9 UG/L 8270 12/26/2006 19:02 PM Benzo(b)fluoranthene ND 9 UG/L 8270 12/26/2006 19:02 PM Benzo(k)fluoranthene ND 9 UG/L 8270 12/26/2006 19:02 PM Bis(2-chloroethyl) methale ND 9 UG/L 8270	4-Methylphenol	ND		9	UG/L	8270	12/26/2006 19:02	PM	
4-Nitrophenol ND 47 UG/L 8270 12/26/2006 19:02 PM Acenaphthene ND 9 UG/L 8270 12/26/2006 19:02 PM Acenaphthylene ND 9 UG/L 8270 12/26/2006 19:02 PM Anthracene ND 9 UG/L 8270 12/26/2006 19:02 PM Benzo(a)anthracene ND 9 UG/L 8270 12/26/2006 19:02 PM Benzo(a)aptrene ND 9 UG/L 8270 12/26/2006 19:02 PM Benzo(a)pyrene ND 9 UG/L 8270 12/26/2006 19:02 PM Benzo(a)iperylene ND 9 UG/L 8270 12/26/2006 19:02 PM Benzo(k)fluoranthene ND 9 UG/L 8270 12/26/2006 19:02 PM Bis(2-chloroethoxy) methane ND 9 UG/L 8270 12/26/2006 19:02 PM Bis(2-ethylhexyl) phthalate ND 9 UG/L 8270 </td <td>4-Nitroaniline</td> <td>ND</td> <td></td> <td>47</td> <td>UG/L</td> <td>8270</td> <td>12/26/2006 19:02</td> <td>РМ</td>	4-Nitroaniline	ND		47	UG/L	8270	12/26/2006 19:02	РМ	
Acenaphthene ND 9 UG/L 8270 12/26/2006 19:02 PM Acenaphthylene ND 9 UG/L 8270 12/26/2006 19:02 PM Anthracene ND 9 UG/L 8270 12/26/2006 19:02 PM Benzo(a)anthracene ND 9 UG/L 8270 12/26/2006 19:02 PM Benzo(a)apyrene ND 9 UG/L 8270 12/26/2006 19:02 PM Benzo(b)fluoranthene ND 9 UG/L 8270 12/26/2006 19:02 PM Benzo(b)fluoranthene ND 9 UG/L 8270 12/26/2006 19:02 PM Benzo(k)fluoranthene ND 9 UG/L 8270 12/26/2006 19:02 PM Bis(2-chloroethxy) methane ND 9 UG/L 8270 12/26/2006 19:02 PM Bis(2-chloroethyl) ether ND 9 UG/L 8270 12/26/2006	4-Nitrophenol	ND		47	UG/L	8270	12/26/2006 19:02	PM	
Acenaphthylene ND 9 UG/L 8270 12/26/2006 19:02 PM Anthracene ND 9 UG/L 8270 12/26/2006 19:02 PM Benzo(a)anthracene ND 9 UG/L 8270 12/26/2006 19:02 PM Benzo(a)anthracene ND 9 UG/L 8270 12/26/2006 19:02 PM Benzo(a)pyrene ND 9 UG/L 8270 12/26/2006 19:02 PM Benzo(b)fluoranthene ND 9 UG/L 8270 12/26/2006 19:02 PM Benzo(k)fluoranthene ND 9 UG/L 8270 12/26/2006 19:02 PM Bis(2-chloroethoxy) methane ND 9 UG/L 8270 12/26/2006 19:02 PM Bis(2-chloroethyl) ether ND 9 UG/L 8270 12/26/2006 19:02 PM Garbazole ND 9 UG/L 8270 12/26/2006 1	Acenaphthene	ND		9	UG/L	8270	12/26/2006 19:02	PM	
Anthracene ND 9 UG/L 8270 12/26/2006 19:02 PM Benzo(a)anthracene ND 9 UG/L 8270 12/26/2006 19:02 PM Benzo(a)pyrene ND 9 UG/L 8270 12/26/2006 19:02 PM Benzo(a)pyrene ND 9 UG/L 8270 12/26/2006 19:02 PM Benzo(b)fluoranthene ND 9 UG/L 8270 12/26/2006 19:02 PM Benzo(ghi)perylene ND 9 UG/L 8270 12/26/2006 19:02 PM Benzo(k)fluoranthene ND 9 UG/L 8270 12/26/2006 19:02 PM Benzo(k)fluoranthene ND 9 UG/L 8270 12/26/2006 19:02 PM Bis(2-chloroethoxy) methane ND 9 UG/L 8270 12/26/2006 19:02 PM Bis(2-chloroethyl) ether ND 9 UG/L 8270 12/26/2006 19:02 PM Bis(2-chloroethyl) pthalate ND 9 UG	Acenaphthylene	ND		9	UG/L	8270	12/26/2006 19:02	PM	
Benzo(a)anthracene ND 9 UG/L 8270 12/26/2006 19:02 PM Benzo(a)pyrene ND 9 UG/L 8270 12/26/2006 19:02 PM Benzo(b)fluoranthene ND 9 UG/L 8270 12/26/2006 19:02 PM Benzo(ghi)perylene ND 9 UG/L 8270 12/26/2006 19:02 PM Benzo(k)fluoranthene ND 9 UG/L 8270 12/26/2006 19:02 PM Benzo(k)fluoranthene ND 9 UG/L 8270 12/26/2006 19:02 PM Bis(2-chloroethoxy) methane ND 9 UG/L 8270 12/26/2006 19:02 PM Bis(2-chloroethyl) ether ND 9 UG/L 8270 12/26/2006 19:02 PM Bis(2-chloroethyl) phthalate ND 9 UG/L 8270 12/26/2006 19:02 PM Carbazole ND 9 UG/L 8270 12/26	Anthracene	ND		9	UG/L	8270	12/26/2006 19:02	РМ	
Benzo(a)pyrene ND 9 UG/L 8270 12/26/2006 19:02 PM Benzo(b)fluoranthene ND 9 UG/L 8270 12/26/2006 19:02 PM Benzo(ghi)perylene ND 9 UG/L 8270 12/26/2006 19:02 PM Benzo(k)fluoranthene ND 9 UG/L 8270 12/26/2006 19:02 PM Bis(2-chloroethoxy) methane ND 9 UG/L 8270 12/26/2006 19:02 PM Bis(2-chloroethyl) ether ND 9 UG/L 8270 12/26/2006 19:02 PM Bis(2-ethylhexyl) phthalate ND 9 UG/L 8270 12/26/2006 19:02 PM Butyl benzyl phthalate ND 9 UG/L 8270 12/26/2006 19:02 PM Carbazole ND 9 UG/L 8270 12/26/2006 19:02 PM Di-n-butyl phthalate ND 9 UG/L 8270 12	Benzo(a)anthracene	ND		9	UG/L	8270	12/26/2006 19:02	РМ	
Benzo(b)fluoranthene ND 9 UG/L 8270 12/26/2006 19:02 PM Benzo(ghi)perylene ND 9 UG/L 8270 12/26/2006 19:02 PM Benzo(k)fluoranthene ND 9 UG/L 8270 12/26/2006 19:02 PM Bis(2-chloroethoxy) methane ND 9 UG/L 8270 12/26/2006 19:02 PM Bis(2-chloroethoxy) methane ND 9 UG/L 8270 12/26/2006 19:02 PM Bis(2-chloroethyl) ether ND 9 UG/L 8270 12/26/2006 19:02 PM Bis(2-ethylhexyl) phthalate ND 9 UG/L 8270 12/26/2006 19:02 PM Garbazole ND 9 UG/L 8270 12/26/2006 19:02 PM Chrysene ND 9 UG/L 8270 12/26/2006 19:02 PM Di-n-octyl phthalate ND 9 UG/L 8270 12/	Benzo(a)pyrene	ND		9	UG/L	8270	12/26/2006 19:02	РМ	
Benzo(ghi)perylene ND 9 UG/L 8270 12/26/2006 19:02 PM Benzo(k)fluoranthene ND 9 UG/L 8270 12/26/2006 19:02 PM Bis(2-chloroethoxy) methane ND 9 UG/L 8270 12/26/2006 19:02 PM Bis(2-chloroethyl) ether ND 9 UG/L 8270 12/26/2006 19:02 PM Bis(2-ethylhexyl) phthalate ND 9 UG/L 8270 12/26/2006 19:02 PM Butyl benzyl phthalate ND 9 UG/L 8270 12/26/2006 19:02 PM Carbazole ND 9 UG/L 8270 12/26/2006 19:02 PM Chrysene ND 9 UG/L 8270 12/26/2006 19:02 PM Di-n-butyl phthalate ND 9 UG/L 8270 12/26/2006 19:02 PM Dibenzo(a,h)anthracene ND 9 UG/L 8270 12/26/	Benzo(b)fluoranthene	ND		9	UG/L	8270	12/26/2006 19:02	РМ	
Benzo(k)fluoranthene ND 9 UG/L 8270 12/26/2006 19:02 PM Bis(2-chloroethoxy) methane ND 9 UG/L 8270 12/26/2006 19:02 PM Bis(2-chloroethyl) ether ND 9 UG/L 8270 12/26/2006 19:02 PM Bis(2-chloroethyl) ether ND 9 UG/L 8270 12/26/2006 19:02 PM Bis(2-ethylhexyl) phthalate ND 9 UG/L 8270 12/26/2006 19:02 PM Butyl benzyl phthalate ND 9 UG/L 8270 12/26/2006 19:02 PM Carbazole ND 9 UG/L 8270 12/26/2006 19:02 PM Di-n-butyl phthalate ND 9 UG/L 8270 12/26/2006 19:02 PM Di-n-octyl phthalate ND 9 UG/L 8270 12/26/2006 19:02 PM Dibenzo(a,h)anthracene ND 9 UG/L 8270	Benzo(ghi)perylene	ND		9	UG/L	8270	12/26/2006 19:02	РМ	
Bis(2-chloroethoxy) methane ND 9 UG/L 8270 12/26/2006 19:02 PM Bis(2-chloroethyl) ether ND 9 UG/L 8270 12/26/2006 19:02 PM Bis(2-ethylhexyl) phthalate ND 9 UG/L 8270 12/26/2006 19:02 PM Butyl benzyl phthalate ND 9 UG/L 8270 12/26/2006 19:02 PM Carbazole ND 9 UG/L 8270 12/26/2006 19:02 PM Chrysene ND 9 UG/L 8270 12/26/2006 19:02 PM Di-n-butyl phthalate ND 9 UG/L 8270 12/26/2006 19:02 PM Di-n-octyl phthalate ND 9 UG/L 8270 12/26/2006 19:02 PM Dibenzo(a,h)anthracene ND 9 UG/L 8270 12/26/2006 19:02 PM Dibenzofuran ND 9 UG/L 8270 12/26/2006 19:02 PM Diethyl phthalate ND 9 UG/L </td <td>Benzo(k)fluoranthene</td> <td>ND</td> <td></td> <td>9</td> <td>UG/L</td> <td>8270</td> <td>12/26/2006 19:02</td> <td>РМ</td>	Benzo(k)fluoranthene	ND		9	UG/L	8270	12/26/2006 19:02	РМ	
Bis(2-chloroethyl) ether ND 9 UG/L 8270 12/26/2006 19:02 PM Bis(2-ethylhexyl) phthalate ND 9 UG/L 8270 12/26/2006 19:02 PM Butyl benzyl phthalate ND 9 UG/L 8270 12/26/2006 19:02 PM Carbazole ND 9 UG/L 8270 12/26/2006 19:02 PM Chrysene ND 9 UG/L 8270 12/26/2006 19:02 PM Di-n-butyl phthalate ND 9 UG/L 8270 12/26/2006 19:02 PM Di-n-octyl phthalate ND 9 UG/L 8270 12/26/2006 19:02 PM Dibenzo(a,h)anthracene ND 9 UG/L 8270 12/26/2006 19:02 PM Dibenzofuran ND 9 UG/L 8270 12/26/2006 19:02 PM Diethyl phthalate ND 9 UG/L 8270 12/26/2006 19:02 PM Diethyl phthalate ND 9 UG/L	Bis(2-chloroethoxy) methane	ND		9	UG/L	8270	12/26/2006 19:02	PM	
Bis(2-ethylhexyl) phthalate ND 9 UG/L 8270 12/26/2006 19:02 PM Butyl benzyl phthalate ND 9 UG/L 8270 12/26/2006 19:02 PM Carbazole ND 9 UG/L 8270 12/26/2006 19:02 PM Chrysene ND 9 UG/L 8270 12/26/2006 19:02 PM Di-n-butyl phthalate ND 9 UG/L 8270 12/26/2006 19:02 PM Di-n-butyl phthalate ND 9 UG/L 8270 12/26/2006 19:02 PM Di-n-octyl phthalate ND 9 UG/L 8270 12/26/2006 19:02 PM Dibenzo(a,h)anthracene ND 9 UG/L 8270 12/26/2006 19:02 PM Dibenzofuran ND 9 UG/L 8270 12/26/2006 19:02 PM Diethyl phthalate ND 9 UG/L 8270 12/26/2006 19:02 PM Dimethyl phthalate ND 9 UG/L <td< td=""><td>Bis(2-chloroethyl) ether</td><td>ND</td><td></td><td>9</td><td>UG/L</td><td>8270</td><td>12/26/2006 19:02</td><td>РМ</td></td<>	Bis(2-chloroethyl) ether	ND		9	UG/L	8270	12/26/2006 19:02	РМ	
Butyl benzyl phthalate ND 9 UG/L 8270 12/26/2006 19:02 PM Carbazole ND 9 UG/L 8270 12/26/2006 19:02 PM Chrysene ND 9 UG/L 8270 12/26/2006 19:02 PM Di-n-butyl phthalate ND 9 UG/L 8270 12/26/2006 19:02 PM Di-n-octyl phthalate ND 9 UG/L 8270 12/26/2006 19:02 PM Di-n-octyl phthalate ND 9 UG/L 8270 12/26/2006 19:02 PM Dibenzo(a,h)anthracene ND 9 UG/L 8270 12/26/2006 19:02 PM Dibenzofuran ND 9 UG/L 8270 12/26/2006 19:02 PM Diethyl phthalate ND 9 UG/L 8270 12/26/2006 19:02 PM Dimethyl phthalate ND 9 UG/L 8270 12/26/2006 19:02 PM Dimethyl phthalate ND 9 UG/L 8270 <td>Bis(2-ethylhexyl) phthalate</td> <td>ND</td> <td></td> <td>9</td> <td>UG/L</td> <td>8270</td> <td>12/26/2006 19:02</td> <td>РМ</td>	Bis(2-ethylhexyl) phthalate	ND		9	UG/L	8270	12/26/2006 19:02	РМ	
Carbazole ND 9 UG/L 8270 12/26/2006 19:02 PM Chrysene ND 9 UG/L 8270 12/26/2006 19:02 PM Di-n-butyl phthalate ND 9 UG/L 8270 12/26/2006 19:02 PM Di-n-octyl phthalate ND 9 UG/L 8270 12/26/2006 19:02 PM Dibenzo(a,h)anthracene ND 9 UG/L 8270 12/26/2006 19:02 PM Dibenzofuran ND 9 UG/L 8270 12/26/2006 19:02 PM Diethyl phthalate ND 9 UG/L 8270 12/26/2006 19:02 PM Diethyl phthalate ND 9 UG/L 8270 12/26/2006 19:02 PM Dimethyl phthalate ND 9 UG/L 8270 12/26/2006 19:02 PM Dimethyl phthalate ND 9 UG/L 8270 12/26/2006 19:02 PM Fluoranthene ND 9 UG/L 8270 1	Butyl benzyl phthalate	ND		9	UG/L	8270	12/26/2006 19:02	РМ	
Chrysene ND 9 UG/L 8270 12/26/2006 19:02 PM Di-n-butyl phthalate ND 9 UG/L 8270 12/26/2006 19:02 PM Di-n-octyl phthalate ND 9 UG/L 8270 12/26/2006 19:02 PM Dibenzo(a,h)anthracene ND 9 UG/L 8270 12/26/2006 19:02 PM Dibenzofuran ND 9 UG/L 8270 12/26/2006 19:02 PM Diethyl phthalate ND 9 UG/L 8270 12/26/2006 19:02 PM Diethyl phthalate ND 9 UG/L 8270 12/26/2006 19:02 PM Dimethyl phthalate ND 9 UG/L 8270 12/26/2006 19:02 PM Fluoranthene ND 9 UG/L 8270 12/26/2006 19:02 PM	Carbazole	ND		9	UG/L	8270	12/26/2006 19:02	PM	
Di-n-butyl phthalate ND 9 UG/L 8270 12/26/2006 19:02 PM Di-n-octyl phthalate ND 9 UG/L 8270 12/26/2006 19:02 PM Dibenzo(a,h)anthracene ND 9 UG/L 8270 12/26/2006 19:02 PM Dibenzofuran ND 9 UG/L 8270 12/26/2006 19:02 PM Diethyl phthalate ND 9 UG/L 8270 12/26/2006 19:02 PM Diethyl phthalate ND 9 UG/L 8270 12/26/2006 19:02 PM Dimethyl phthalate ND 9 UG/L 8270 12/26/2006 19:02 PM Fluoranthene ND 9 UG/L 8270 12/26/2006 19:02 PM	Chrysene	ND		9	UG/L	8270	12/26/2006 19:02	PM	
Di-n-octyl phthalate ND 9 UG/L 8270 12/26/2006 19:02 PM Dibenzo(a,h)anthracene ND 9 UG/L 8270 12/26/2006 19:02 PM Dibenzofuran ND 9 UG/L 8270 12/26/2006 19:02 PM Diethyl phthalate ND 9 UG/L 8270 12/26/2006 19:02 PM Dimethyl phthalate ND 9 UG/L 8270 12/26/2006 19:02 PM Fluoranthene ND 9 UG/L 8270 12/26/2006 19:02 PM	Di-n-butyl phthalate	ND		9	UG/L	8270	12/26/2006 19:02	PM	
Dibenzo(a,h)anthracene ND 9 UG/L 8270 12/26/2006 19:02 PM Dibenzofuran ND 9 UG/L 8270 12/26/2006 19:02 PM Diethyl phthalate ND 9 UG/L 8270 12/26/2006 19:02 PM Dimethyl phthalate ND 9 UG/L 8270 12/26/2006 19:02 PM Fluoranthene ND 9 UG/L 8270 12/26/2006 19:02 PM	Di-n-octyl phthalate	ND		9	UG/L	8270	12/26/2006 19:02	РМ	
Dibenzofuran ND 9 UG/L 8270 12/26/2006 19:02 PM Diethyl phthalate ND 9 UG/L 8270 12/26/2006 19:02 PM Dimethyl phthalate ND 9 UG/L 8270 12/26/2006 19:02 PM Fluoranthene ND 9 UG/L 8270 12/26/2006 19:02 PM	Dibenzo(a,h)anthracene	ND		9	UG/L	8270	12/26/2006 19:02	PM	
Diethyl phthalate ND 9 UG/L 8270 12/26/2006 19:02 PM Dimethyl phthalate ND 9 UG/L 8270 12/26/2006 19:02 PM Fluoranthene ND 9 UG/L 8270 12/26/2006 19:02 PM	Dibenzofuran	ND		9	UG/L	8270	12/26/2006 19:02	PM	
Dimethyl phthalate ND 9 UG/L 8270 12/26/2006 19:02 PM Fluoranthene ND 9 UG/L 8270 12/26/2006 19:02 PM	Diethyl phthalate	ND		9	UG/L	8270	12/26/2006 19:02	PM	
Fluoranthene ND 9 UG/L 8270 12/26/2006 19:02 PM	Dimethyl phthalate	ND		9	UG/L	8270	12/26/2006 19:02	PM	
	Fluoranthene	ND		9	UG/L	8270	12/26/2006 19:02	РМ	

NYSDEC - REGION 9 REMEDIATION/SPILLS CONTRACT NYSDEC Spills - Reed Rd. landfill: Site#902018

	Detection					Date/Time	
Parameter	Result	Flag	Limit	<u>Units</u>	Method	Analyzed	<u>Analyst</u>
NYDEC AQ- SW8463 8270 - TCL SVOA ORGANIC							
Fluorene	ND		9	UG/L	8270	12/26/2006 19:02	PM
Hexachlorobenzene	ND		9	UG/L	8270	12/26/2006 19:02	PM
Hexachlorobutadiene	ND		9	UG/∟	8270	12/26/2006 19:02	PM
Hexachlorocyclopentadiene	ND		42	UG/L	8270	12/26/2006 19:02	PM
Hexachloroethane	ND		9	UG/L	8270	12/26/2006 19:02	PM
Indeno(1,2,3-cd)pyrene	ND		9	UG/L	8270	12/26/2006 19:02	РМ
Isophorone	ND		9	UG/L	8270	12/26/2006 19:02	РМ
N-Nitroso-Di-n-propylamine	ND		9	UG/L	8270	12/26/2006 19:02	PM
N-nitrosodiphenylamine	ND		9	UG/L	8270	12/26/2006 19:02	PM
Naphthalene	ND		9	UG/L	8270	12/26/2006 19:02	ΡM
Nitrobenzene	ND		9	UG/L	8270	12/26/2006 19:02	РМ
Pentachlorophenol	ND		47	UG/L	8270	12/26/2006 19:02	PM
Phenanthrene	ND		9	UG/L	8270	12/26/2006 19:02	PM
Phenol	ND		9	UG/L	8270	12/26/2006 19:02	PM
Pyrene	ND		9	UG/L	8270	12/26/2006 19:02	РМ
NYSDEC - AQUEOUS-SW8463 8081 - TCL PESTICIDES							
4,4'-DDD	ND		0.047	UG/L	8081	12/27/2006 20:35	тсн
4,4'-DDE	ND		0.047	UG/L	8081	12/27/2006 20:35	тсн
4,4'-DDT	ND		0.047	UG/L	8081	12/27/2006 20:35	тсн
Aldrin	ND		0.047	UG/L	8081	12/27/2006 20:35	тсн
alpha-BHC	ND		0.047	UG/L	8081	12/27/2006 20:35	TCH
alpha-Chlordane	ND		0.047	UG/L	8081	12/27/2006 20:35	тсн
beta-BHC	ND		0.047	UG/L	8081	12/27/2006 20:35	тсн
delta-BHC	ND		0.047	UG/L	8081	12/27/2006 20:35	тсн
Dieldrin	ND		0.047	UG/L	8081	12/27/2006 20:35	тсн
Endosulfan I	ND		0.047	UG/L	8081	12/27/2006 20:35	TCH
Endosulfan II	ND		0.047	UG/L	8081	12/27/2006 20:35	TCH
Endosulfan Sulfate	ND		0.047	UG/L	8081	12/27/2006 20:35	ТСН
Endrin	ND		0.047	UG/L	8081	12/27/2006 20:35	TCH
Endrin aldehyde	ND		0.047	UG/L	8081	12/27/2006 20:35	тсн
Endrin ketone	ND		0.047	UG/L	8081	12/27/2006 20:35	TCH
gamma-BHC (Lindane)	ND		0.047	UG/L	8081	12/27/2006 20:35	TCH
gamma-Chlordane	ND		0.047	UG/L	8081	12/27/2006 20:35	TCH
Heptachlor	ND		0.047	UG/L	8081	12/27/2006 20:35	тсн
Heptachlor epoxide	ND		0.047	UG/L	8081	12/27/2006 20:35	TCH
Methoxychlor	ND		0.047	UG/L	8081	12/27/2006 20:35	тсн
Toxaphene	ND		0.95	UG/L	8081	12/27/2006 20:35	TCH
NYSDEC-AQ-SW8463 8082 - PCBS							
Aroclor 1016	ND		0.47	UG/L	8082	12/26/2006 20:12	GFD
Aroclor 1221	ND		0.47	UG/L	8082	12/26/2006 20:12	GFD
Aroclor 1232	ND		0.47	UG/L	8082	12/26/2006 20:12	GFD
Aroclor 1242	ND		0.47	UG/∟	8082	12/26/2006 20:12	GFD
Aroclor 1248	ND		0.47	UG/L	8082	12/26/2006 20:12	GFD
Aroclor 1254	ND		0.47	UG/L	8082	12/26/2006 20:12	GFD
Aroclor 1260	ND		0.47	UG/L	8082	12/26/2006 20:12	GFD

Date: 01/08/2007 Time: 10:54:03 NYSDEC

NYSDEC - REGION 9 REMEDIATION/SPILLS CONTRACT NYSDEC Spills - Reed Rd. landfill: Site#902018

	Detection				Date/Time				
Parameter	Result	Flag	Limit	Units	Method	Analyze	d	Analyst	
NYSDEC - AQ-SW8463 8151 - HERBICIDES (3 COMPO									
2,4,5-T	ND		0.47	UG/L	8151	01/04/2007	06:05	тсн	
2,4,5-TP (Silvex)	ND		0.47	UG/L	8151	01/04/2007	06:05	тсн	
2,4-D	ND		0.47	UG/L	8151	01/04/2007	06:05	тсн	
Metals Analysis									
Aluminum — Total	2.6		0.20	MG/L	6010	12/27/2006	19:07	AK	
Antimony - Total	ND		0.020	MG/L	6010	12/27/2006	19:07	AK	
Arsenic – Total	ND		0.010	MG/L	6010	12/27/2006	19 : 07	AK	
Barium - Total	0.046		0.0020	MG/L	6010	12/27/2006	19:07	AK	
Beryllium - Total	ND		0.0020	MG/L	6010	12/27/2006	19:07	AK	
Cadmium - Total	ND		0.0010	MG/L	6010	12/27/2006	19 : 07	AK	
Calcium - Total	25.9		0.50	MG/L	6010	12/27/2006	19:07	AK	
Chromium – Total	0.0040		0.0040	MG/∟	6010	12/27/2006	19:07	AK	
Cobalt - Total	ND		0.0040	MG/L	6010	12/27/2006	19:07	AK	
Copper - Total	ND		0.010	MG/L	6010	12/27/2006	19:07	AK	
Iron - Total	1.7		0.050	MG/∟	6010	12/27/2006	19:07	AK	
Lead – Total	ND		0.0050	MG/∟	6010	12/27/2006	19 : 07	AK	
Magnesium - Total	11.4		0.20	MG/L	6010	12/27/2006	19 : 07	AK	
Manganese – Total	0.37		0.0030	MG/L	6010	12/27/2006	19 : 07	AK	
Mercury – Total	ND		0.00020	MG/L	7470	12/27/2006	12:57	LH	
Nickel – Total	0.011		0.010	MG/L	6010	12/27/2006	19 : 07	AK	
Potassium – Total	2.9		0.50	MG/L	6010	12/27/2006	19 : 07	AK	
Selenium - Total	ND		0.015	MG/L	6010	12/27/2006	19:07	AK	
Silver – Total	ND		0.0030	MG/L	6010	12/27/2006	19:07	AK	
Sodium - Total	9.0		1.0	MG/L	6010	12/27/2006	19:07	AK	
Thallium — Total	ND		0.020	MG/L	6010	12/27/2006	19:07	AK	
Vanadium – Total	ND		0.0050	MG/L	6010	12/27/2006	19:07	AK	
Zinc - Total	ND		0.010	MG/L	6010	12/27/2006	19 : 07	AK	
Wet Chemistry Analysis									
Total Recoverable Phenolics	0.017		0.0050	MG/L	420.2	12/23/2006	08 : 28	RLG	

NYSDEC - REGION 9 REMEDIATION/SPILLS CONTRACT

NYSDEC Spills - Reed Rd. landfill: Site#902018

Sample	ID:	MW-2
Sample	ID:	A6F35106
Collect	ed:	12/20/2006
Collect	ed:	11:30
	Sample Sample Collect Collect	Sample ID: Sample ID: Collected: Collected:

		Detection				Date/Time				
Parameter		Limit	Units	Method	Analyzed	<u>Analyst</u>				
Metals Analysis										
Aluminum — Total	12.0	0.20	MG/L	6010	12/27/2006 18:52	AK				
Antimony - Total	ND	0.020	MG/L	6010	12/27/2006 18:52	AK				
Arsenic - Total	ND	0.010	MG/L	6010	12/27/2006 18:52	AK				
Barium - Total	0.20	0.0020	MG/L	6010	12/27/2006 18:52	AK				
Beryllium – Total	ND	0.0020	MG/L	6010	12/27/2006 18:52	AK				
Cadmium — Total	ND	0.0010	MG/L	6010	12/27/2006 18:52	AK				
Calcium — Total	23.2	0.50	MG/L	6010	12/27/2006 18:52	AK				
Chromium - Total	0.012	0.0040	MG/∟	6010	12/27/2006 18:52	AK				
Cobalt - Total	0.017	0.0040	MG/L	6010	12/27/2006 18:52	AK				
Copper – Total	ND	0.010	MG/L	6010	12/27/2006 18:52	AK				
Iron - Total	12.7	0.050	MG/L	6010	12/27/2006 18:52	AK				
Lead - Total	0.0060	0.0050	MG/L	6010	12/27/2006 18:52	AK				
Magnesium - Total	10.6	0.20	MG/L	6010	12/27/2006 18:52	AK				
Manganese – Total	0.55	0.0030	MG/L	6010	12/27/2006 18:52	AK				
Mercury - Total	ND	0.00020	MG/L	7470	12/27/2006 12:54	LH				
Nickel – Total	0.013	0.010	MG/L	6010	12/27/2006 18:52	AK				
Potassium – Total	9.2	0.50	MG/L	6010	12/27/2006 18:52	AK				
Selenium - Total	ND	0.015	MG/L	6010	12/27/2006 18:52	AK				
Silver - Total	ND	0.0030	MG/L	6010	12/27/2006 18:52	AK				
Sodium - Total	7.2	1.0	MG/L	6010	12/27/2006 18:52	AK				
Thallium — Total	ND	0.020	MG/L	6010	12/27/2006 18:52	AK				
Vanadium - Total	0.015	0.0050	MG/L	6010	12/27/2006 18:52	AK				
Zinc - Total	0.033	0.010	MG/L	6010	12/27/2006 18:52	AK				
Wet Chemistry Analysis										
Total Recoverable Phenolics	0.0090	0.0050	MG/L	420.2	12/23/2006 08:28	RLG				

NYSDEC - REGION 9 REMEDIATION/SPILLS CONTRACT NYSDEC Spills - Reed Rd. landfill: Site#902018

	Detection			Date/Time				
Parameter	Result Flag	Limit	Units	Method	Analyzed	Analyst		
Metals Analysis								
Aluminum - Total	0.31	0.20	MG/L	6010	12/27/2006 18:57	AK		
Antimony - Total	ND	0.020	MG/L	6010	12/27/2006 18:57	AK		
Arsenic - Total	ND	0.010	MG/∟	6010	12/27/2006 18:57	AK		
Barium – Total	0.042	0.0020	MG/L	6010	12/27/2006 18:57	AK		
Beryllium - Total	ND	0.0020	MG/L	6010	12/27/2006 18:57	AK		
Cadmium - Total	ND	0.0010	MG/L	6010	12/27/2006 18:57	AK		
Calcium - Total	5.2	0.50	MG/L	6010	12/27/2006 18:57	AK		
Chromium - Total	ND	0.0040	MG/L	6010	12/27/2006 18:57	AK		
Cobalt – Total	ND	0.0040	MG/L	6010	12/27/2006 18:57	AK		
Copper – Total	ND	0.010	MG/L	6010	12/27/2006 18:57	AK		
Iron - Total	0.31	0.050	MG/L	6010	12/27/2006 18:57	AK		
Lead – Total	ND	0.0050	MG/L	6010	12/27/2006 18:57	AK		
Magnesium - Total	3.0	0.20	MG/L	6010	12/27/2006 18:57	AK		
Manganese – Total	0.080	0.0030	MG/L	6010	12/27/2006 18:57	AK		
Mercury - Total	ND	0.00020	MG/L	7470	12/27/2006 12:55	LH		
Nickel – Total	ND	0.010	MG/L	6010	12/27/2006 18:57	AK		
Potassium - Total	1.0	0.50	MG/L	6010	12/27/2006 18:57	AK		
Selenium - Total	ND	0.015	MG/L	6010	12/27/2006 18:57	AK		
Silver – Total	ND	0.0030	MG/L	6010	12/27/2006 18:57	AK		
Sodium – Total	2.7	1.0	MG/L	6010	12/27/2006 18:57	AK		
Thallium - Total	ND	0.020	MG/L	6010	12/27/2006 18:57	AK		
Vanadium - Total	ND	0.0050	MG/L	6010	12/27/2006 18:57	AK		
Zinc - Total	ND	0.010	MG/L	6010	12/27/2006 18:57	AK		
Wet Chemistry Analysis								
Total Recoverable Phenolics	0.0080	0.0050	MG/L	420.2	12/23/2006 08:28	RLG		
NYSDEC - REGION 9 REMEDIATION/SPILLS CONTRACT NYSDEC Spills - Reed Rd. landfill: Site#902018

			Detection			Date/Time	
Parameter	Result	Flag	Limit	<u>Units</u>	Method	Analyzed	Analyst
NYSDEC - AQUEOUS-SW8463 TCL 8260							
1,1,1-Trichloroethane	ND		1.0	UG/L	8260	12/28/2006 20:49	BJ
1,1,2,2-Tetrachloroethane	ND		1.0	UG/L	8260	12/28/2006 20:49	BJ
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		1.0	UG/L	8260	12/28/2006 20:49	BJ
1,1,2-Trichloroethane	ND		1.0	UG/L	8260	12/28/2006 20:49	ВJ
1,1-Dichloroethane	1.1		1.0	UG/L	8260	12/28/2006 20:49	BJ
1,1-Dichloroethene	ND		1.0	UG/L	8260	12/28/2006 20:49	ВJ
1,2,4-Trichlorobenzene	ND		1.0	UG/L	8260	12/28/2006 20:49	BJ
1,2-Dibromo-3-chloropropane	ND		1.0	UG/L	8260	12/28/2006 20:49	ВJ
1,2-Dibromoethane	ND		1.0	UG/L	8260	12/28/2006 20:49	ВJ
1,2-Dichlorobenzene	ND		1.0	UG/L	8260	12/28/2006 20:49	ВJ
1,2-Dichloroethane	ND		1.0	UG/L	8260	12/28/2006 20:49	BJ
1,2-Dichloropropane	ND		1.0	UG/L	8260	12/28/2006 20:49	BJ
1,3-Dichlorobenzene	ND		1.0	UG/L	8260	12/28/2006 20:49	ВJ
1,4-Dichlorobenzene	ND		1.0	UG/L	8260	12/28/2006 20:49	BJ
2-Butanone	ND		5.0	UG/L	8260	12/28/2006 20:49	BJ
2-Hexanone	ND		5.0	UG/L	8260	12/28/2006 20:49	BJ
4-Methyl-2-pentanone	ND		5.0	UG/L	8260	12/28/2006 20:49	ВJ
Acetone	ND		5.0	UG/L	8260	12/28/2006 20:49	BJ
Benzene	ND		1.0	UG/L	8260	12/28/2006 20:49	BJ
Bromodichloromethane	ND		1.0	UG/L	8260	12/28/2006 20:49	BJ
Bromoform	ND		1.0	UG/L	8260	12/28/2006 20:49	ВJ
Bromomethane	ND		1.0	UG/L	8260	12/28/2006 20:49	ВJ
Carbon Disulfide	ND		1.0	UG/L	8260	12/28/2006 20:49	ВJ
Carbon Tetrachloride	ND		1.0	, UG/L	8260	12/28/2006 20:49	BJ
Chlorobenzene	ND		1.0	UG/L	8260	12/28/2006 20:49	ВJ
Chloroethane	ND		1.0	, UG/L	8260	12/28/2006 20:49	BJ
Chloroform	ND		1.0	, UG/L	8260	12/28/2006 20:49	BJ
Chloromethane	ND		1.0	, UG/L	8260	12/28/2006 20:49	BJ
cis-1,2-Dichloroethene	ND		1.0	UG/L	8260	12/28/2006 20:49	BJ
cis-1,3-Dichloropropene	ND		1.0	UG/L	8260	12/28/2006 20:49	BJ
Cyclohexane	ND		1.0	UG/L	8260	12/28/2006 20:49	BJ
Dibromochloromethane	ND		1.0	, UG/L	8260	12/28/2006 20:49	BJ
Dichlorodifluoromethane	ND		1.0	UG/L	8260	12/28/2006 20:49	BJ
Ethylbenzene	ND		1.0	UG/L	8260	12/28/2006 20:49	BJ
Isopropylbenzene	ND		1.0	UG/L	8260	12/28/2006 20:49	BJ
Methyl acetate	ND		1.0	UG/L	8260	12/28/2006 20:49	BJ
Methyl-t-Butyl Ether (MTBE)	ND		1.0	UG/L	8260	12/28/2006 20:49	BJ
Methylcyclohexane	ND		1.0	UG/L	8260	12/28/2006 20:49	BJ
Methylene chloride	ND		1.0	UG/L	8260	12/28/2006 20:49	BJ
Styrene	ND		1.0	UG/L	8260	12/28/2006 20:49	BJ
Tetrachloroethene	ND		1.0	, UG/L	8260	12/28/2006 20:49	BJ
Toluene	ND		1.0	UG/L	8260	12/28/2006 20:49	ВJ
Total Xylenes	ND		3.0	UG/L	8260	12/28/2006 20:49	ВJ
trans-1,2-Dichloroethene	ND		1.0	UG/L	8260	12/28/2006 20:49	BJ
trans-1,3-Dichloropropene	ND		1.0	UG/L	8260	12/28/2006 20:49	ВJ
Trichloroethene	ND		1.0	UG/L	8260	12/28/2006 20:49	BJ
Trichlorofluoromethane	ND		1.0	UG/L	8260	12/28/2006 20:49	ВJ
Vinyl chloride	ND		1.0	UG/L	8260	12/28/2006 20:49	BJ

NYSDEC - REGION 9 REMEDIATION/SPILLS CONTRACT NYSDEC Spills - Reed Rd. landfill: Site#902018

			Detection			Date/Time	
Parameter	Result	<u>Flag</u>	Limit	Units	Method	Analyzed	Analyst
NYDEC AQ- SW8463 8270 - TCL SVOA ORGANIC							
1,2,4-Trichlorobenzene	ND		9	UG/L	8270	12/26/2006 18:38	PM
1,2-Dichlorobenzene	ND		9	UG/L	8270	12/26/2006 18:38	PM
1,3-Dichlorobenzene	ND		9	UG/L	8270	12/26/2006 18:38	PM
1,4-Dichlorobenzene	ND		9	UG/L	8270	12/26/2006 18:38	PM
2,2'-0xybis(1-Chloropropane)	ND		9	UG/L	8270	12/26/2006 18:38	PM
2,4,5-Trichlorophenol	ND		9	UG/L	8270	12/26/2006 18:38	PM
2,4,6-Trichlorophenol	ND		9	UG/L	8270	12/26/2006 18:38	РМ
2,4-Dichlorophenol	ND		9	UG/∟	8270	12/26/2006 18:38	PM
2,4-Dimethylphenol	ND		9	UG/L	8270	12/26/2006 18:38	PM
2,4-Dinitrophenol	ND		47	UG/L	8270	12/26/2006 18:38	PM
2,4-Dinitrotoluene	ND		9	UG/L	8270	12/26/2006 18:38	PM
2,6-Dinitrotoluene	ND		9	UG/L	8270	12/26/2006 18:38	PM
2-Chloronaphthalene	ND		9	UG/L	8270	12/26/2006 18:38	PM
2-Chlorophenol	ND		9	UG/L	8270	12/26/2006 18:38	PM
2-Methylnaphthalene	ND		9	UG/L	8270	12/26/2006 18:38	PM
2-Methylphenol	ND		9	UG/L	8270	12/26/2006 18:38	PM
2-Nitroaniline	ND		47	UG/L	8270	12/26/2006 18:38	PM
2-Nitrophenol	ND		9	UG/L	8270	12/26/2006 18:38	PM
3,3'-Dichlorobenzidine	ND		19	UG/L	8270	12/26/2006 18:38	PM
3-Nitroaniline	ND		47	UG/L	8270	12/26/2006 18:38	PM
4,6-Dinitro-2-methylphenol	ND		47	UG/L	8270	12/26/2006 18:38	PM
4-Bromophenyl phenyl ether	ND		9	UG/L	8270	12/26/2006 18:38	PM
4-Chloro-3-methylphenol	ND		9	UG/L	8270	12/26/2006 18:38	РМ
4-Chloroaniline	ND		9	UG/L	8270	12/26/2006 18:38	PM
4-Chlorophenyl phenyl ether	ND		9	UG/L	8270	12/26/2006 18:38	РМ
4-Methylphenol	ND		9	UG/L	8270	12/26/2006 18:38	РМ
4-Nitroaniline	ND		47	UG/L	8270	12/26/2006 18:38	PM
4-Nitrophenol	ND		47	UG/L	8270	12/26/2006 18:38	PM
Acenaphthene	ND		9	UG/L	8270	12/26/2006 18:38	РМ
Acenaphthylene	ND		9	UG/L	8270	12/26/2006 18:38	PM
Anthracene	ND		9	UG/L	8270	12/26/2006 18:38	РМ
Benzo(a)anthracene	ND		9	UG/L	8270	12/26/2006 18:38	РМ
Benzo(a)pyrene	ND		9	UG/L	8270	12/26/2006 18:38	РМ
Benzo(b)fluoranthene	ND		9	UG/L	8270	12/26/2006 18:38	РМ
Benzo(ghi)perylene	ND		9	UG/L	8270	12/26/2006 18:38	PM
Benzo(k)fluoranthene	ND		9	UG/L	8270	12/26/2006 18:38	PM
Bis(2-chloroethoxy) methane	ND		9	UG/L	8270	12/26/2006 18:38	PM
Bis(2-chloroethyl) ether	ND		9	UG∕L	8270	12/26/2006 18:38	PM
Bis(2-ethylhexyl) phthalate	ND		9	UG/L	8270	12/26/2006 18:38	PM
Butyl benzyl phthalate	ND		9	UG∕L	8270	12/26/2006 18:38	PM
Carbazole	ND		9	UG/L	8270	12/26/2006 18:38	PM
Chrysene	ND		9	UG/L	8270	12/26/2006 18:38	PM
Di-n-butyl phthalate	ND		9	UG/L	8270	12/26/2006 18:38	PM
Di-n-octyl phthalate	ND		9	UG/L	8270	12/26/2006 18:38	РМ
Dibenzo(a,h)anthracene	ND		9	UG/L	8270	12/26/2006 18:38	PM
Dibenzofuran	ND		9	UG/L	8270	12/26/2006 18:38	PM
Diethyl phthalate	ND		9	UG/L	8270	12/26/2006 18:38	PM
Dimethyl phthalate	ND		9	UG/L	8270	12/26/2006 18:38	PM
Fluoranthene	ND		9	UG/L	8270	12/26/2006 18:38	РМ
				/		·, · · , · · · · · · · · · · · · · · ·	

NYSDEC - REGION 9 REMEDIATION/SPILLS CONTRACT NYSDEC Spills - Reed Rd. landfill: Site#902018

Praneter Regult Flag Linit Method Analyzed Analyzed MPDE: A0- SU46A SE70 - TGL SVAA ORGANIC ND 9 US/L 8270 12/26/2006 18:38 PM Havachlorobenzene ND 9 US/L 8270 12/26/2006 18:38 PM Hexachlorocycl opentadiene ND 9 US/L 8270 12/26/2006 18:38 PM Hexachlorocycl opentadiene ND 9 US/L 8270 12/26/2006 18:38 PM Indeno(1, 2, 3-cdDyprene ND 9 US/L 8270 12/26/2006 18:38 PM N=htrosodiphenylamine ND 9 US/L 8270 12/26/2006 18:38 PM Nitrosodiphenylamine ND 9 US/L 8270 12/26/2006 18:38 PM Nitrosodiphenylamine ND 9 US/L 8270 12/26/2006 18:38 PM Prinosodiphenylamine ND 9 US/L 8270				Detection			Date/Time	
NUMBER Carl NBA 9 U6/L 8270 12/26/2006 18:38 PM HexachLorobenzene ND 9 U6/L 8270 12/26/2006 18:38 PM HexachLorozethane ND 9 U6/L 8270 12/26/2006 18:38 PM N=MT traceolin-mpropylatine ND 9 U6/L 8270 12/26/2006 18:38 PM N=MT traceolin-mpropylatine ND 9 U6/L 8270 12/26/2006 18:38 PM N=T traceolin-mpropylatine ND 9 U6/L 8270 12/26/2006 18:38 PM N=T traceolin-mpropylatine ND 0 04/L 8270	Parameter	Result	Flag	Limit	Units	Method	Analyzed	Analyst
Fluorance ND 9 Us/L 8270 12/26/2006 18:38 PM Hexachlorobergene ND 9 US/L 8270 12/26/2006 18:38 PM Hexachlorobergic pontatione ND 42 US/L 8270 12/26/2006 18:38 PM Hexachlorobergic pontatione ND 9 US/L 8270 12/26/2006 18:38 PM Indencit J.2.5-cdlyprene ND 9 US/L 8270 12/26/2006 18:38 PM N=ntricosoflyprulanine ND 9 US/L 8270 12/26/2006 18:38 PM Phenolthrene ND 9 US/L 8270 <t< td=""><td>NYDEC AQ- SW8463 8270 - TCL SVOA ORGANIC</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	NYDEC AQ- SW8463 8270 - TCL SVOA ORGANIC							
Hexachlorobencene ND 9 Ub/L 8270 12/62/2006 18:38 PM Hexachlorocytlopentatione ND 9 Ub/L 8270 12/26/2006 18:38 PM Horosopin-mproprumine ND 9 Ub/L 8270 12/26/2006 18:38 PM Naphtalene ND 9 Ub/L 8270 12/26/2006 18:38 PM Phenot 9 Ub/L 8270 12/26/2006 18:38 PM Phenot 9 Ub/L 8270 12/26/2006 18:38 PM Phenot 9 Ub/L 8270 12/26/2006 18:38 PM Phenot<	Fluorene	ND		9	UG/L	8270	12/26/2006 18:38	PM
Hexachlorobutadiane ND 9 UD/L 8270 12/26/2006 18.38 PM Hexachlorobutadiane ND 9 UB/L 8270 12/26/2006 18.38 PM Indenci1,2,3cdpyrae ND 9 UB/L 8270 12/26/2006 18.38 PM Isophorae ND 9 UB/L 8270 12/26/2006 18.38 PM N=ntrosoftemylamine ND 9 UB/L 8270 12/26/2006 18.38 PM Naphthalene ND 9 UB/L 8270 12/26/2006 18.38 PM Naphthalene ND 9 UB/L 8270 12/26/2006 18.38 PM Phenathrene ND 9 UB/L 8270 12/26/2006 18.38 PM Phenot ND 9 UB/L 8270 12/26/2006 18.38 PM Phenoth ND 9 UB/L 8270 12/26/2006 18.38 PM	Hexachlorobenzene	ND		9	UG/L	8270	12/26/2006 18:38	PM
Hexachlorocyclopantaliana ND 42 UG/L 8270 12/26/2006 18:38 PM Hexachlorochlane ND 9 UG/L 8270 12/26/2006 18:38 PM Laghorone ND 9 UG/L 8270 12/26/2006 18:38 PM Arestrosorbin-propularino ND 9 UG/L 8270 12/26/2006 18:38 PM Nentitosorbin-propularino ND 9 UG/L 8270 12/26/2006 18:38 PM Napithalone ND 9 UG/L 8270 12/26/2006 18:38 PM Pentathorephenol ND 9 UG/L 8270 12/26/2006 18:38 PM Phenol 9 UG/L 8270 12/26/2006 18:38 PM Pyrene ND 9 UG/L 8270 12/26/2006 18:38 PM Pyrene ND 0.047 UG/L 8081 12/27/2006 19:58 TCH	Hexachlorobutadiene	ND		9	UG/L	8270	12/26/2006 18:38	PM
Heachloroethane ND 9 Us/L 8270 12/2k/2006 18:38 PM Indero(1, 2, 3-cd)pyrene ND 9 UG/L 8270 12/2k/2006 18:38 PM Isophorone ND 9 UG/L 6270 12/2k/2006 18:38 PM N-Hitroso-Di-no-propylanine ND 9 UG/L 6270 12/2k/2006 18:38 PM N-nitrosodiphenylamine ND 9 UG/L 6270 12/2k/2006 18:38 PM Naphtholene ND 9 UG/L 6270 12/2k/2006 18:38 PM Pentachlorophenol ND 9 UG/L 8270 12/2k/2006 18:38 PM Phenol ND 9 UG/L 8270 12/2k/2006 18:38 PM Pyrene ND 0.047 UG/L 8081 12/2k/2006 19:58 TCH 4,4'-DDE Autorin ND 0.047 UG/L 8081 12/2k/2006	Hexachlorocyclopentadiene	ND		42	UG/L	8270	12/26/2006 18:38	PM
Index(1,2,3=cd)pyrene ND 9 UG/L 8270 12/26/2006 18:38 PM Isophorone ND 9 UG/L 8270 12/26/2006 18:38 PM N=Nt (roso=)i=n-propylamine ND 9 UG/L 6270 12/26/2006 18:38 PM N=troso=Di=n-propylamine ND 9 UG/L 6270 12/26/2006 18:38 PM Naphthalene ND 9 UG/L 6270 12/26/2006 18:38 PM Phenatherene ND 9 UG/L 8270 12/26/2006 18:38 PM Phenatherene ND 9 UG/L 8270 12/26/2006 18:38 PM Pyrene ND 9 UG/L 8281 12/27/2006 18:38 PM Pyrene ND 0.047 UG/L 8281 12/27/2006 19:58 TCH 4,4'=DDT ND 0.047 UG/L 8081 12/27/2006 19:58 TCH <td>Hexachloroethane</td> <td>ND</td> <td></td> <td>9</td> <td>UG/L</td> <td>8270</td> <td>12/26/2006 18:38</td> <td>РМ</td>	Hexachloroethane	ND		9	UG/L	8270	12/26/2006 18:38	РМ
Lapphorene ND 9 Us/L 8270 12/2s/2006 18:38 PM N=N troso-Din-proprudnine ND 9 UG/L 8270 12/2s/2006 18:38 PM N=n troso-Din-proprudnine ND 9 UG/L 8270 12/2s/2006 18:38 PM Naphthalene ND 9 UG/L 8270 12/2s/2006 18:38 PM Pentachlorophenol ND 9 UG/L 8270 12/2s/2006 18:38 PM Phenol ND 9 UG/L 8270 12/2s/2006 18:38 PM Phenol ND 9 UG/L 8270 12/2s/2006 18:38 PM Pyrene ND 0.047 UG/L 8081 12/2r/2006 19:58 TCH 4,4'-DOC ND 0.047 UG/L 8081 12/2r/2006 19:58 TCH 4,4'-DOC ND 0.047 UG/L 8081 12/2r/2006 19:58 TCH <td>Indeno(1,2,3-cd)pyrene</td> <td>ND</td> <td></td> <td>9</td> <td>UG/L</td> <td>8270</td> <td>12/26/2006 18:38</td> <td>РМ</td>	Indeno(1,2,3-cd)pyrene	ND		9	UG/L	8270	12/26/2006 18:38	РМ
N=mitraso-bis-propyLamine ND 9 UG/L 8270 12/26/2006 18:38 PM N=nitrosodiphenyLamine ND 9 UG/L 8270 12/26/2006 18:38 PM NapithaLene ND 9 UG/L 8270 12/26/2006 18:38 PM Nitrobenzene ND 9 UG/L 8270 12/26/2006 18:38 PM Phenanthrene ND 9 UG/L 8270 12/26/2006 18:38 PM Phenathrene ND 9 UG/L 8270 12/26/2006 18:38 PM Pyrene ND 0 0.47 UG/L 8271 12/26/2006 18:38 PM A/4*-DDE ND 0.047 UG/L 8081 12/27/2006 19:58 TCH A/4*-DDE ND 0.047 UG/L 8081 12/27/2006 19:58 TCH A/4*-DDE ND 0.047 UG/L 8081 12/27/2006 19:58	Isophorone	ND		9	UG/L	8270	12/26/2006 18:38	РМ
N=nitrosodiphenyLamine ND 9 UG/L 8270 12/26/2006 18:38 PM Naphthalene ND 9 UG/L 8270 12/26/2006 18:38 PM Nitrobenzene ND 9 UG/L 8270 12/26/2006 18:38 PM PentachLorophenol ND 9 UG/L 8270 12/26/2006 18:38 PM Phenol ND 9 UG/L 8270 12/26/2006 18:38 PM Phenol ND 9 UG/L 8270 12/26/2006 18:38 PM VSDEC - AQUEQUS-SW8463 8081 - TCL PESTICIPES 12/27/2006 19:58 TCH 4,4' -DDE ND 0.047 UG/L 8081 12/27/2006 19:58 TCH 4,4'-DDT ND 0.047 UG/L 8081 12/27/2006 19:58 TCH Aldrin ND 0.047 UG/L 8081 12/27/2006 19:58 TCH Aldr	N-Nitroso-Di-n-propylamine	ND		9	UG/L	8270	12/26/2006 18:38	PM
Naphthalene ND 9 US/L 8270 12/22/2006 18:38 PM Nitrobenzene ND 9 US/L 8270 12/22/2006 18:38 PM Pentachlorophenol ND 7 US/L 8270 12/22/2006 18:38 PM Phenanthrene ND 9 US/L 8270 12/22/2006 18:38 PM Phenol ND 9 US/L 8270 12/22/2006 18:38 PM Pyrene ND 0.047 US/L 8081 12/27/2006 19:58 TCH 4,4'-DDC ND 0.047 US/L 8081 12/27/2006 19:58 TCH 4,4'-DDT ND 0.047 US/L 8081 12/27/2006 19:58 TCH Aldrin ND 0.047 US/L 8081 12/27/2006 19:58 TCH Aldrin ND 0.047 US/L 8081 12/27/2006 19:58 TCH	N-nitrosodiphenylamine	ND		9	UG/L	8270	12/26/2006 18:38	PM
Nitrobenzene ND 9 UG/L 8270 12/26/2006 18:38 PM Pentachlorophenol ND 47 Uo/L 8270 12/26/2006 18:38 PM Phenathrene ND 9 UG/L 8270 12/26/2006 18:38 PM Pyrene ND 9 UG/L 8270 12/26/2006 18:38 PM NYSEC - AQUEOUS-SW8463 8081 TCL PESTICIDES - <td< td=""><td>Naphthalene</td><td>ND</td><td></td><td>9</td><td>UG/L</td><td>8270</td><td>12/26/2006 18:38</td><td>PM</td></td<>	Naphthalene	ND		9	UG/L	8270	12/26/2006 18:38	PM
PentachLorophenol ND 47 UG/L 8270 12/26/2006 18:38 PM Phenanthrene ND 9 Ug/L 8270 12/26/2006 18:38 PM Phenol ND 9 Ug/L 8270 12/26/2006 18:38 PM Pyrene ND 9 Ug/L 8270 12/26/2006 18:38 PM NYSEC - AQUEOUS-SW8463 8081 - TCL PESTICIDES 8081 12/27/2006 19:58 TCH 4,4'-DDE ND 0.047 Ug/L 8081 12/27/2006 19:58 TCH Aldrin ND 0.047 Ug/L 8081 12/27/2006 19:58 TCH Aldrin ND 0.047 Ug/L 8081 12/27/2006 19:58 TCH Alpha-DhC ND 0.047 Ug/L 8081 12/27/2006 19:58 TCH Alpha-DhC ND 0.047 Ug/L 8081 12/27/2006 19:58 TCH	Nitrobenzene	ND		9	UG/L	8270	12/26/2006 18:38	PM
Phensnthrene ND 9 UG/L 8270 12/26/2006 18:38 PM Pyrene ND 9 UG/L 8270 12/26/2006 18:38 PM NYSDEC - AQUEOUS-SW8463 8081 - TCL PESTICIDES 12/26/2006 18:38 PM A/4 '-DDD ND 0.047 UG/L 8081 12/27/2006 19:58 TCH 4/4 '-DDE ND 0.047 UG/L 8081 12/27/2006 19:58 TCH 4/4 '-DDE ND 0.047 UG/L 8081 12/27/2006 19:58 TCH A/4 '-DDT ND 0.047 UG/L 8081 12/27/2006 19:58 TCH alpha-BHC ND 0.047 UG/L 8081 12/27/2006 19:58 TCH alpha-BHC ND 0.047 UG/L 8081 12/27/2006 19:58 TCH delta-BHC ND 0.047 UG/L 8081 12/27/2006 19:58 TCH	Pentachlorophenol	ND		47	UG/L	8270	12/26/2006 18:38	PM
Phenol ND 9 UG/L 8270 12/26/2006 18:38 PM NYSDEC - AQUEOUS-SW8463 8081 - TCL PESTICIDES	Phenanthrene	ND		9	UG/L	8270	12/26/2006 18:38	PM
Pyrene ND 9 UG/L 8270 12/26/2006 18:38 PM NYSECC - AQUEOUS-SW8463 8081 - TCL PESTICIDES ND 0.047 UG/L 8081 12/27/2006 19:58 TCH 4,4'-DDE ND 0.047 UG/L 8081 12/27/2006 19:58 TCH 4,4'-DDT ND 0.047 UG/L 8081 12/27/2006 19:58 TCH Aldrin ND 0.047 UG/L 8081 12/27/2006 19:58 TCH alpha-BHC ND 0.047 UG/L 8081 12/27/2006 19:58 TCH alpha-Chlordane ND 0.047 UG/L 8081 12/27/2006 19:58 TCH beta-BHC ND 0.047 UG/L 8081 12/27/2006 19:58 TCH Dieldrin ND 0.047 UG/L 8081 12/27/2006 19:58 TCH Endsulfan I ND 0.047 UG/L 8081 12/27/2006	Phenol	ND		9	UG/L	8270	12/26/2006 18:38	РМ
NYSDEC - AQUEOUS-SW8463 8081 - TCL PESTICIDES 4,4'-DDT ND 0.047 UG/L 8081 12/27/2006 19:58 TCH 4,4'-DDE ND 0.047 UG/L 8081 12/27/2006 19:58 TCH 4,4'-DDT ND 0.047 UG/L 8081 12/27/2006 19:58 TCH Aldrin ND 0.047 UG/L 8081 12/27/2006 19:58 TCH alpha-BHC ND 0.047 UG/L 8081 12/27/2006 19:58 TCH alpha-Chlordane ND 0.047 UG/L 8081 12/27/2006 19:58 TCH beta-BHC ND 0.047 UG/L 8081 12/27/2006 19:58 TCH Dieldrin ND 0.047 UG/L 8081 12/27/2006 19:58 TCH Diedrin ND 0.047 UG/L 8081 12/27/2006 19:58 TCH Endsulfan I ND 0.047 UG/L 8081 12/27/2006 19:58 TCH Endrin ND 0.047 </td <td>Pyrene</td> <td>ND</td> <td></td> <td>9</td> <td>UG/L</td> <td>8270</td> <td>12/26/2006 18:38</td> <td>PM</td>	Pyrene	ND		9	UG/L	8270	12/26/2006 18:38	PM
4,4'-DDD ND 0.047 UG/L 8081 12/27/2006 19:58 TCH 4,4'-DDE ND 0.047 UG/L 8081 12/27/2006 19:58 TCH 4,4'-DDT ND 0.047 UG/L 8081 12/27/2006 19:58 TCH Aldrin ND 0.047 UG/L 8081 12/27/2006 19:58 TCH alpha-BHC ND 0.047 UG/L 8081 12/27/2006 19:58 TCH alpha-Chlordane ND 0.047 UG/L 8081 12/27/2006 19:58 TCH beta-BHC ND 0.047 UG/L 8081 12/27/2006 19:58 TCH Dieldrin ND 0.047 UG/L 8081 12/27/2006 19:58 TCH Endosulfan I ND 0.047 UG/L 8081 12/27/2006 19:58 TCH Endosulfan Sulfate ND 0.047 UG/L 8081 12/27/2006 19:58 TCH Endrin aldehyde ND 0.047 UG/L 8081 12/27	NYSDEC - AQUEOUS-SW8463 8081 - TCL PESTICIDES							
4,4'-DDE ND 0.047 UG/L 8081 12/27/2006 19:58 TCH 4,4'-DDT ND 0.047 UG/L 8081 12/27/2006 19:58 TCH Aldrin ND 0.047 UG/L 8081 12/27/2006 19:58 TCH alpha-BHC ND 0.047 UG/L 8081 12/27/2006 19:58 TCH alpha-Chlordane ND 0.047 UG/L 8081 12/27/2006 19:58 TCH beta-BHC ND 0.047 UG/L 8081 12/27/2006 19:58 TCH bieldrin ND 0.047 UG/L 8081 12/27/2006 19:58 TCH Endosulfan I ND 0.047 UG/L 8081 12/27/2006 19:58 TCH Endsulfan Sulfate ND 0.047 UG/L 8081 12/27/2006 19:58 TCH Endrin ND 0.047 UG/L 8081 12/27/2006 19:58 TCH gamma-Bht C Lindane) ND 0.047 UG/L 8081 12/	4,4'-DDD	ND		0.047	UG/L	8081	12/27/2006 19:58	тсн
4,4'-DDT ND 0.047 UG/L 8081 12/27/2006 19:58 TCH Aldrin ND 0.047 UG/L 8081 12/27/2006 19:58 TCH alpha-BHC ND 0.047 UG/L 8081 12/27/2006 19:58 TCH alpha-CHLordane ND 0.047 UG/L 8081 12/27/2006 19:58 TCH beta-BHC ND 0.047 UG/L 8081 12/27/2006 19:58 TCH beta-BHC ND 0.047 UG/L 8081 12/27/2006 19:58 TCH Dieldrin ND 0.047 UG/L 8081 12/27/2006 19:58 TCH Endosulfan I ND 0.047 UG/L 8081 12/27/2006 19:58 TCH Endosulfan Sulfate ND 0.047 UG/L 8081 12/27/2006 19:58 TCH Endrin aldehyde ND 0.047 UG/L 8081 12/27/2006 19:58 TCH gama-Chlordane ND 0.047 UG/L 8081 <td< td=""><td>4,4'-DDE</td><td>ND</td><td></td><td>0.047</td><td>UG/L</td><td>8081</td><td>12/27/2006 19:58</td><td>тсн</td></td<>	4,4'-DDE	ND		0.047	UG/L	8081	12/27/2006 19:58	тсн
Aldrin ND 0.047 UG/L 8081 12/27/2006 19:58 TCH alpha=BHC ND 0.047 UG/L 8081 12/27/2006 19:58 TCH alpha=Chlordane ND 0.047 UG/L 8081 12/27/2006 19:58 TCH beta=BHC ND 0.047 UG/L 8081 12/27/2006 19:58 TCH delta=BHC ND 0.047 UG/L 8081 12/27/2006 19:58 TCH Dieldrin ND 0.047 UG/L 8081 12/27/2006 19:58 TCH Endosulfan I ND 0.047 UG/L 8081 12/27/2006 19:58 TCH Endosulfan Sulfate ND 0.047 UG/L 8081 12/27/2006 19:58 TCH Endrin aldehyde ND 0.047 UG/L 8081 12/27/2006 19:58 TCH gamma-Chlordane ND 0.047 UG/L 8081 12/27/2006 19:58	4,4'-DDT	ND		0.047	, UG/L	8081	12/27/2006 19:58	тсн
alpha-BHC ND 0.047 UG/L 8081 12/27/2006 19:58 TCH alpha-Chlordane ND 0.047 UG/L 8081 12/27/2006 19:58 TCH beta-BHC ND 0.047 UG/L 8081 12/27/2006 19:58 TCH delta-BHC ND 0.047 UG/L 8081 12/27/2006 19:58 TCH delta-BHC ND 0.047 UG/L 8081 12/27/2006 19:58 TCH bitdirin ND 0.047 UG/L 8081 12/27/2006 19:58 TCH Endosulfan II ND 0.047 UG/L 8081 12/27/2006 19:58 TCH Endosulfan Sulfate ND 0.047 UG/L 8081 12/27/2006 19:58 TCH Endrin ketone ND 0.047 UG/L 8081 12/27/2006 19:58 TCH gamma-BhC (Lindane) ND 0.047 UG/L 8081 12/27/2006 19:58	Aldrin	ND		0.047	, UG/L	8081	12/27/2006 19:58	тсн
alpha-Chlordane ND 0.047 UG/L 8081 12/27/2006 19:58 TCH beta-BHC ND 0.047 UG/L 8081 12/27/2006 19:58 TCH delta-BHC ND 0.047 UG/L 8081 12/27/2006 19:58 TCH delta-BHC ND 0.047 UG/L 8081 12/27/2006 19:58 TCH Dieldrin ND 0.047 UG/L 8081 12/27/2006 19:58 TCH Endosulfan II ND 0.047 UG/L 8081 12/27/2006 19:58 TCH Endosulfan Sulfate ND 0.047 UG/L 8081 12/27/2006 19:58 TCH Endrin aldehyde ND 0.047 UG/L 8081 12/27/2006 19:58 TCH gamma-BHC (Lindane) ND 0.047 UG/L 8081 12/27/2006 19:58 TCH gamma-Chlordane ND 0.047 UG/L 8081 12/27/2006 <	alpha-BHC	ND		0.047	, UG/L	8081	12/27/2006 19:58	тсн
beta-BHC ND 0.047 UG/L 8081 12/27/2006 19:58 TCH delta-BHC ND 0.047 UG/L 8081 12/27/2006 19:58 TCH Dieldrin ND 0.047 UG/L 8081 12/27/2006 19:58 TCH Endosulfan I ND 0.047 UG/L 8081 12/27/2006 19:58 TCH Endosulfan Sulfate ND 0.047 UG/L 8081 12/27/2006 19:58 TCH Endosulfan Sulfate ND 0.047 UG/L 8081 12/27/2006 19:58 TCH Endrin aldehyde ND 0.047 UG/L 8081 12/27/2006 19:58 TCH gamma-Chlordane ND 0.047 UG/L 8081 12/27/2006 19:58 TCH Heptachlor ND 0.047 UG/L 8081 12/27/2006 19:58 TCH Mgamma-Chlordane ND 0.047 UG/L 8081 12/27/2006 <	alpha-Chlordane	ND		0.047	, UG∕L	8081	12/27/2006 19:58	тсн
delta=BHC ND 0.047 Ug/L 8081 12/27/2006 19:8 TCH Dieldrin ND 0.047 UG/L 8081 12/27/2006 19:58 TCH Endosulfan I ND 0.047 UG/L 8081 12/27/2006 19:58 TCH Endosulfan II ND 0.047 UG/L 8081 12/27/2006 19:58 TCH Endosulfan Sulfate ND 0.047 UG/L 8081 12/27/2006 19:58 TCH Endosulfan Sulfate ND 0.047 UG/L 8081 12/27/2006 19:58 TCH Endrin aldehyde ND 0.047 UG/L 8081 12/27/2006 19:58 TCH gamma-BHC (Lindane) ND 0.047 UG/L 8081 12/27/2006 19:58 TCH gamma-BHC (Lindane) ND 0.047 UG/L 8081 12/27/2006 19:58 TCH gamma-BHC (Lindane) ND 0.047 UG/L 8081 12/27	beta-BHC	ND		0.047	, UG∕L	8081	12/27/2006 19:58	тсн
Dieldrin ND 0.047 UG/L 8081 12/27/2006 19:58 TCH Endosulfan I ND 0.047 UG/L 8081 12/27/2006 19:58 TCH Endosulfan II ND 0.047 UG/L 8081 12/27/2006 19:58 TCH Endosulfan Sulfate ND 0.047 UG/L 8081 12/27/2006 19:58 TCH Endosulfan Sulfate ND 0.047 UG/L 8081 12/27/2006 19:58 TCH Endrin ND 0.047 UG/L 8081 12/27/2006 19:58 TCH Endrin Aldehyde ND 0.047 UG/L 8081 12/27/2006 19:58 TCH gamma-BHC (Lindane) ND 0.047 UG/L 8081 12/27/2006 19:58 TCH gamma-Chlordane ND 0.047 UG/L 8081 12/27/2006 19:58 TCH Heptachlor ND 0.047 UG/L 8081 12/27/2006	delta-BHC	ND		0.047	, UG/L	8081	12/27/2006 19:58	тсн
Endosulfan I ND 0.047 UG/L 8081 12/27/2006 19:58 TCH Endosulfan II ND 0.047 UG/L 8081 12/27/2006 19:58 TCH Endosulfan Sulfate ND 0.047 UG/L 8081 12/27/2006 19:58 TCH Endrin ND 0.047 UG/L 8081 12/27/2006 19:58 TCH Endrin ND 0.047 UG/L 8081 12/27/2006 19:58 TCH Endrin ketone ND 0.047 UG/L 8081 12/27/2006 19:58 TCH gamma-BHC (Lindane) ND 0.047 UG/L 8081 12/27/2006 19:58 TCH gamma-Chlordane ND 0.047 UG/L 8081 12/27/2006 19:58 TCH Heptachlor ND 0.047 UG/L 8081 12/27/2006 19:58 TCH Methoxychlor ND 0.047 UG/L 8081 12/27/2006 19	Dieldrin	ND		0.047	, UG/L	8081	12/27/2006 19:58	тсн
Endosulfan II ND 0.047 UG/L 8081 12/27/2006 19:58 TCH Endosulfan Sulfate ND 0.047 UG/L 8081 12/27/2006 19:58 TCH Endosulfan Sulfate ND 0.047 UG/L 8081 12/27/2006 19:58 TCH Endrin ND 0.047 UG/L 8081 12/27/2006 19:58 TCH Endrin aldehyde ND 0.047 UG/L 8081 12/27/2006 19:58 TCH gamma-BHC (Lindane) ND 0.047 UG/L 8081 12/27/2006 19:58 TCH gamma-Chlordane ND 0.047 UG/L 8081 12/27/2006 19:58 TCH Heptachlor ND 0.047 UG/L 8081 12/27/2006 19:58 TCH Methoxychlor ND 0.047 UG/L 8081 12/27/2006 19:58 TCH Motoclor 1221 ND 0.047 UG/L 8081 12/27/2006	Endosulfan I	ND		0.047	UG/L	8081	12/27/2006 19:58	тсн
Endosulfan Sulfate ND 0.047 UG/L 8081 12/27/2006 19:58 TCH Endrin ND 0.047 UG/L 8081 12/27/2006 19:58 TCH Endrin ND 0.047 UG/L 8081 12/27/2006 19:58 TCH Endrin ketone ND 0.047 UG/L 8081 12/27/2006 19:58 TCH gamma-BHC (Lindane) ND 0.047 UG/L 8081 12/27/2006 19:58 TCH gamma-Chlordane ND 0.047 UG/L 8081 12/27/2006 19:58 TCH Heptachlor ND 0.047 UG/L 8081 12/27/2006 19:58 TCH Heptachlor ND 0.047 UG/L 8081 12/27/2006 19:58 TCH Heptachlor ND 0.047 UG/L 8081 12/27/2006 19:58 TCH Methoxychlor ND 0.047 UG/L 8081 12/27/2006 19:58 TCH NYSDEC-AQ-SW8463 8082 - PCBS ND 0.48 <td< td=""><td>Endosulfan II</td><td>ND</td><td></td><td>0.047</td><td>UG/L</td><td>8081</td><td>12/27/2006 19:58</td><td>тсн</td></td<>	Endosulfan II	ND		0.047	UG/L	8081	12/27/2006 19:58	тсн
Endrin ND 0.047 UG/L 8081 12/27/2006 19:58 TCH Endrin aldehyde ND 0.047 UG/L 8081 12/27/2006 19:58 TCH Endrin ketone ND 0.047 UG/L 8081 12/27/2006 19:58 TCH gamma-BHC (Lindane) ND 0.047 UG/L 8081 12/27/2006 19:58 TCH gamma-Chlordane ND 0.047 UG/L 8081 12/27/2006 19:58 TCH Heptachlor ND 0.047 UG/L 8081 12/27/2006 19:58 TCH Heptachlor epoxide ND 0.047 UG/L 8081 12/27/2006 19:58 TCH Methoxychlor ND 0.047 UG/L 8081 12/27/2006 19:58 TCH NYSDEC-AQ-SW8463 8082 - PCBS ND 0.047 UG/L 8081 12/27/2006 19:57 GFD Aroclor 1016 ND 0.48 UG/L 8082 12/26/2006 19:57 GFD Aroclor 1221 ND 0.48 <td>Endosulfan Sulfate</td> <td>ND</td> <td></td> <td>0.047</td> <td>UG/L</td> <td>8081</td> <td>12/27/2006 19:58</td> <td>тсн</td>	Endosulfan Sulfate	ND		0.047	UG/L	8081	12/27/2006 19:58	тсн
Endrin aldehyde ND 0.047 UG/L 8081 12/27/2006 19:58 TCH Endrin ketone ND 0.047 UG/L 8081 12/27/2006 19:58 TCH gamma-BHC (Lindane) ND 0.047 UG/L 8081 12/27/2006 19:58 TCH gamma-Chlordane ND 0.047 UG/L 8081 12/27/2006 19:58 TCH Heptachlor ND 0.047 UG/L 8081 12/27/2006 19:58 TCH Methoxychlor ND 0.047 UG/L 8081 12/27/2006 19:58 TCH NYSDEC-AQ-SW8463 8082 PCBS Aroclor 1016 ND 0.48	Endrin	ND		0.047	UG/L	8081	12/27/2006 19:58	тсн
Endrin ketone ND 0.047 UG/L 8081 12/27/2006 19:58 TCH gamma-BHC (Lindane) ND 0.047 UG/L 8081 12/27/2006 19:58 TCH gamma-Chlordane ND 0.047 UG/L 8081 12/27/2006 19:58 TCH Heptachlor ND 0.047 UG/L 8081 12/27/2006 19:58 TCH Heptachlor ND 0.047 UG/L 8081 12/27/2006 19:58 TCH Heptachlor ND 0.047 UG/L 8081 12/27/2006 19:58 TCH Methoxychlor ND 0.047 UG/L 8081 12/27/2006 19:58 TCH Toxaphene ND 0.047 UG/L 8081 12/27/2006 19:58 TCH NYSDEC-AQ-SW8463 8082 - PCBS ND 0.047 UG/L 8081 12/26/2006 19:57 GFD Aroclor 1221 ND 0.48 UG/L 8082 12/26/2006 19:57 GFD Aroclor 1232 ND 0.48 <	Endrin aldehyde	ND		0.047	UG/L	8081	12/27/2006 19:58	тсн
gamma-BHC (Lindane) ND 0.047 UG/L 8081 12/27/2006 19:58 TCH gamma-Chlordane ND 0.047 UG/L 8081 12/27/2006 19:58 TCH Heptachlor ND 0.047 UG/L 8081 12/27/2006 19:58 TCH Heptachlor ND 0.047 UG/L 8081 12/27/2006 19:58 TCH Heptachlor epoxide ND 0.047 UG/L 8081 12/27/2006 19:58 TCH Methoxychlor ND 0.047 UG/L 8081 12/27/2006 19:58 TCH Toxaphene ND 0.047 UG/L 8081 12/27/2006 19:58 TCH NYSDEC-AQ-SW8463 8082 - PCBS ND 0.047 UG/L 8082 12/26/2006 19:57 GFD Aroclor 1016 ND 0.48 UG/L 8082 12/26/2006 19:57 GFD Aroclor 1221 ND 0.48 UG/L 8082 12/26/2006 19:57 GFD Aroclor 1232 ND 0.48	Endrin ketone	ND		0.047	ug/1	8081	12/27/2006 19:58	тсн
gamma-Chlordane ND 0.047 UG/L 8081 12/27/2006 19:58 TCH Heptachlor ND 0.047 UG/L 8081 12/27/2006 19:58 TCH Heptachlor ND 0.047 UG/L 8081 12/27/2006 19:58 TCH Heptachlor epoxide ND 0.047 UG/L 8081 12/27/2006 19:58 TCH Methoxychlor ND 0.047 UG/L 8081 12/27/2006 19:58 TCH Toxaphene ND 0.047 UG/L 8081 12/27/2006 19:58 TCH NYSDEC-AQ-SW8463 8082 - PCBS ND 0.95 UG/L 8081 12/27/2006 19:57 GFD Aroclor 1016 ND 0.48 UG/L 8082 12/26/2006 19:57 GFD Aroclor 1221 ND 0.48 UG/L 8082 12/26/2006 19:57 GFD Aroclor 1232 ND 0.48 UG/L 8082 12/26/2006 19:57 GFD Aroclor 1242 ND 0.48	gamma-BHC (Lindane)	ND		0.047	UG/L	8081	12/27/2006 19:58	тсн
Heptachlor ND 0.047 UG/L 8081 12/27/2006 19:58 TCH Heptachlor epoxide ND 0.047 UG/L 8081 12/27/2006 19:58 TCH Methoxychlor ND 0.047 UG/L 8081 12/27/2006 19:58 TCH Toxaphene ND 0.047 UG/L 8081 12/27/2006 19:58 TCH NYSDEC-AQ-SW8463 8082 PCBS ND 0.95 UG/L 8081 12/27/2006 19:57 GFD Aroclor 1016 ND 0.48 UG/L 8082 12/26/2006 19:57 GFD Aroclor 1221 ND 0.48 UG/L 8082 12/26/2006 19:57 GFD Aroclor 1232 ND 0.48 UG/L 8082 12/26/2006 19:57 GFD Aroclor 1242 ND 0.48 UG/L 8082 12/26/2006 19:57 GFD Aroclor 1248 ND 0.48 UG/L 8082 12/26/2006 19:57 GFD Aroclor 1254 ND 0.48	gamma-Chlordane	ND		0.047	UG/L	8081	12/27/2006 19:58	тсн
Heptachlor epoxide ND 0.047 UG/L 8081 12/27/2006 19:58 TCH Methoxychlor ND 0.047 UG/L 8081 12/27/2006 19:58 TCH Toxaphene ND 0.047 UG/L 8081 12/27/2006 19:58 TCH NYSDEC-AQ-SW8463 8082 - PCBS 0.95 UG/L 8081 12/26/2006 19:57 GFD Aroclor 1016 ND 0.48 UG/L 8082 12/26/2006 19:57 GFD Aroclor 1221 ND 0.48 UG/L 8082 12/26/2006 19:57 GFD Aroclor 1232 ND 0.48 UG/L 8082 12/26/2006 19:57 GFD Aroclor 1242 ND 0.48 UG/L 8082 12/26/2006 19:57 GFD Aroclor 1248 ND 0.48 UG/L 8082 12/26/2006 19:57 GFD Aroclor 1254 ND 0.48 UG/L 8082 12/26/2006 19:57 GFD	Heptachlor	ND		0.047	ug/L	8081	12/27/2006 19:58	тсн
Methoxychlor ND 0.047 UG/L 8081 12/27/2006 19:58 TCH Toxaphene ND 0.95 UG/L 8081 12/27/2006 19:58 TCH NYSDEC-AQ-SW8463 8082 - PCBS 0.95 UG/L 8082 12/26/2006 19:57 GFD Aroclor 1016 ND 0.48 UG/L 8082 12/26/2006 19:57 GFD Aroclor 1221 ND 0.48 UG/L 8082 12/26/2006 19:57 GFD Aroclor 1232 ND 0.48 UG/L 8082 12/26/2006 19:57 GFD Aroclor 1242 ND 0.48 UG/L 8082 12/26/2006 19:57 GFD Aroclor 1248 ND 0.48 UG/L 8082 12/26/2006 19:57 GFD Aroclor 1248 ND 0.48 UG/L 8082 12/26/2006 19:57 GFD Aroclor 1254 ND 0.48 UG/L 8082 12/26/2006 19:57 GFD	Heptachlor epoxide	ND		0.047	ug/L	8081	12/27/2006 19:58	тсн
Including interview Including interview<	Methoxychlor	ND		0.047	ug/i	8081	12/27/2006 19:58	тсн
NYSDEC-AQ-SW8463 8082 - PCBS Aroclor 1016 ND 0.48 UG/L 8082 12/26/2006 19:57 GFD Aroclor 1221 ND 0.48 UG/L 8082 12/26/2006 19:57 GFD Aroclor 1232 ND 0.48 UG/L 8082 12/26/2006 19:57 GFD Aroclor 1242 ND 0.48 UG/L 8082 12/26/2006 19:57 GFD Aroclor 1248 ND 0.48 UG/L 8082 12/26/2006 19:57 GFD Aroclor 1254 ND 0.48 UG/L 8082 12/26/2006 19:57 GFD	Toxaphene	ND		0.95	UG/L	8081	12/27/2006 19:58	тсн
Aroclor 1016 ND 0.48 UG/L 8082 12/26/2006 19:57 GFD Aroclor 1221 ND 0.48 UG/L 8082 12/26/2006 19:57 GFD Aroclor 1232 ND 0.48 UG/L 8082 12/26/2006 19:57 GFD Aroclor 1232 ND 0.48 UG/L 8082 12/26/2006 19:57 GFD Aroclor 1242 ND 0.48 UG/L 8082 12/26/2006 19:57 GFD Aroclor 1248 ND 0.48 UG/L 8082 12/26/2006 19:57 GFD Aroclor 1254 ND 0.48 UG/L 8082 12/26/2006 19:57 GFD	NYSDEC-AQ-SW8463 8082 - PCBS							
Aroclor 1221 ND 0.48 UG/L 8082 12/26/2006 19:57 GFD Aroclor 1232 ND 0.48 UG/L 8082 12/26/2006 19:57 GFD Aroclor 1242 ND 0.48 UG/L 8082 12/26/2006 19:57 GFD Aroclor 1248 ND 0.48 UG/L 8082 12/26/2006 19:57 GFD Aroclor 1248 ND 0.48 UG/L 8082 12/26/2006 19:57 GFD Aroclor 1254 ND 0.48 UG/L 8082 12/26/2006 19:57 GFD	Aroclor 1016	ND		0.48	ug/i	8082	12/26/2006 19:57	GED
Aroclor 1232 ND 0.48 UG/L 8082 12/26/2006 19:57 GFD Aroclor 1242 ND 0.48 UG/L 8082 12/26/2006 19:57 GFD Aroclor 1248 ND 0.48 UG/L 8082 12/26/2006 19:57 GFD Aroclor 1254 ND 0.48 UG/L 8082 12/26/2006 19:57 GFD	Aroclor 1221	ND		0.48	ug/1	8082	12/26/2006 19:57	GFD
Aroclor 1242 ND 0.48 UG/L 8082 12/26/2006 19:57 GFD Aroclor 1248 ND 0.48 UG/L 8082 12/26/2006 19:57 GFD Aroclor 1254 ND 0.48 UG/L 8082 12/26/2006 19:57 GFD	Aroclor 1232	ND		0.48	UG/1	8082	12/26/2006 19:57	GFD
Aroclor 1248 ND 0.48 UG/L 8082 12/26/2006 19:57 GFD Aroclor 1254 ND 0.48 UG/L 8082 12/26/2006 19:57 GFD	Aroclor 1242	ND		0.48	ug/1	8082	12/26/2006 19:57	GFD
Aroclor 1254 ND 0.48 UG/L 8082 12/26/2006 19:57 GFD	Aroclor 1248	ND		0.48	UG/L	8082	12/26/2006 19:57	GFD
	Aroclor 1254	ND		0.48	ug/i	8082	12/26/2006 19:57	GED
Aroclor 1260 ND 0.48 UG/I 8082 12/26/2006 19•57 GED	Aroclor 1260	ND		0.48	ug/1	8082	12/26/2006 19:57	GFD

Date: 01/08/2007 Time: 10:54:03 NYSDEC

NYSDEC - REGION 9 REMEDIATION/SPILLS CONTRACT NYSDEC Spills - Reed Rd. landfill: Site#902018

			Detection			Date/Tim	ne	
Parameter	Result	Flag	Limit	Units	Method	Analyze	ed	<u>Analyst</u>
NYSDEC - AQ-SW8463 8151 - HERBICIDES (3 COMPO								
2,4,5-T	ND		0.47	UG/L	8151	01/04/2007	05 : 15	тсн
2,4,5-TP (Silvex)	ND		0.47	UG/∟	8151	01/04/2007	05 : 15	тсн
2,4-D	ND		0.47	UG/L	8151	01/04/2007	05 : 15	TCH
Metals Analysis								
Aluminum - Total	3.0		0.20	MG/L	6010	12/27/2006	19 : 02	AK
Antimony - Total	ND		0.020	MG/L	6010	12/27/2006	19:02	AK
Arsenic – Total	ND		0.010	MG/L	6010	12/27/2006	19 : 02	AK
Barium - Total	0.35		0.0020	MG/L	6010	12/27/2006	19:02	AK
Beryllium – Total	ND		0.0020	MG/L	6010	12/27/2006	19 : 02	AK
Cadmium - Total	ND		0.0010	MG/L	6010	12/27/2006	19 : 02	AK
Calcium — Total	38.0		0.50	MG/L	6010	12/27/2006	19:02	AK
Chromium – Total	ND		0.0040	MG/L	6010	12/27/2006	19 : 02	AK
Cobalt - Total	ND		0.0040	MG/L	6010	12/27/2006	19 : 02	AK
Copper – Total	ND		0.010	MG/L	6010	12/27/2006	19 : 02	AK
Iron - Total	2.1		0.050	MG/L	6010	12/27/2006	19 : 02	AK
Lead - Total	ND		0.0050	MG/L	6010	12/27/2006	19 : 02	AK
Magnesium - Total	21.3		0.20	MG/L	6010	12/27/2006	19 : 02	AK
Manganese – Total	1.6		0.0030	MG/L	6010	12/27/2006	19:02	AK
Mercury – Total	ND		0.00020	MG/L	7470	12/27/2006	12:56	LH
Nickel – Total	ND		0.010	MG/L	6010	12/27/2006	19 : 02	AK
Potassium - Total	4.2		0.50	MG/L	6010	12/27/2006	19 : 02	AK
Selenium - Total	ND		0.015	MG/L	6010	12/27/2006	19:02	AK
Silver – Total	ND		0.0030	MG/L	6010	12/27/2006	19:02	AK
Sodium – Total	28.9		1.0	MG/L	6010	12/27/2006	19:02	AK
Thallium - Total	ND		0.020	MG/L	6010	12/27/2006	19:02	AK
Vanadium - Total	ND		0.0050	MG/L	6010	12/27/2006	19 : 02	AK
Zinc - Total	0.015		0.010	MG/L	6010	12/27/2006	19 : 02	AK
Wet Chemistry Analysis								
Total Recoverable Phenolics	0.0060		0.0050	MG/L	420.2	12/23/2006	08:28	RLG

NYSDEC - REGION 9 REMEDIATION/SPILLS CONTRACT NYSDEC Spills - Reed Rd. landfill: Site#902018

Sample ID: MW-5 Lab Sample ID: A6F35110 Date Collected: 12/20/2006 Time Collected: 13:15

15

		Detection			Date/Time	
Parameter		Limit	Units	Method	Analyzed	<u>Analyst</u>
Metals Analysis						
Aluminum - Total	4.1	0.20	MG/∟	6010	12/27/2006 19:12	AK
Antimony – Total	ND	0.020	MG/L	6010	12/27/2006 19:12	AK
Arsenic - Total	ND	0.010	MG/L	6010	12/27/2006 19:12	AK
Barium - Total	0.16	0.0020	MG/L	6010	12/27/2006 19 : 12	AK
Beryllium - Total	ND	0.0020	MG/L	6010	12/27/2006 19:12	AK
Cadmium - Total	ND	0.0010	MG/L	6010	12/27/2006 19:12	AK
Calcium - Total	52.0	0.50	MG/L	6010	12/27/2006 19:12	AK
Chromium – Total	0.0043	0.0040	MG/∟	6010	12/27/2006 19:12	AK
Cobalt - Total	ND	0.0040	MG/L	6010	12/27/2006 19:12	AK
Copper – Total	ND	0.010	MG/∟	6010	12/27/2006 19:12	AK
Iron - Total	2.9	0.050	MG/L	6010	12/27/2006 19:12	AK
Lead – Total	ND	0.0050	MG/L	6010	12/27/2006 19:12	AK
Magnesium - Total	24.3	0.20	MG/L	6010	12/27/2006 19:12	AK
Manganese – Total	0.54	0.0030	MG/L	6010	12/27/2006 19:12	AK
Mercury – Total	ND	0.00020	MG/L	7470	12/27/2006 12:59	LH
Nickel - Total	ND	0.010	MG/L	6010	12/27/2006 19:12	AK
Potassium - Total	6.6	0.50	MG/L	6010	12/27/2006 19:12	AK
Selenium - Total	ND	0.015	MG/L	6010	12/27/2006 19:12	AK
Silver - Total	ND	0.0030	MG/L	6010	12/27/2006 19:12	AK
Sodium - Total	10.8	1.0	MG/L	6010	12/27/2006 19:12	AK
Thallium - Total	ND	0.020	MG/L	6010	12/27/2006 19:12	AK
Vanadium - Total	0.0054	0.0050	MG/L	6010	12/27/2006 19:12	AK
Zinc - Total	0.011	0.010	MG/L	6010	12/27/2006 19:12	AK
Wet Chemistry Analysis						
Total Recoverable Phenolics	0.040	0.0050	MG/L	420.2	12/23/2006 08:28	RLG

Date: 01/08/2007 Time: 10:54:03

NYSDEC

NYSDEC - REGION 9 REMEDIATION/SPILLS CONTRACT NYSDEC Spills - Reed Rd. Landfill: Site#902018

26/32 Page: 16 Rept: AN1178

Sample ID: POND SEDIMENT Lab Sample ID: A6F35102 Date Collected: 12/19/2006 Time Collected: 09:30

	Detection			Date/Time			
Parameter	Result	Flag	Limit	<u>Units</u>	Method	Analyzed	Analyst
NYSDEC-SPILLS - SOIL-SW8463 8082 - PCBS							
Aroclor 1016	ND		20	UG/KG	8082	12/26/2006 14:01	GFD
Aroclor 1221	ND		20	UG/KG	8082	12/26/2006 14:01	GFD
Aroclor 1232	ND		20	UG/KG	8082	12/26/2006 14:01	GFD
Aroclor 1242	ND		20	UG/KG	8082	12/26/2006 14:01	GFD
Aroclor 1248	ND		20	UG/KG	8082	12/26/2006 14:01	GFD
Aroclor 1254	ND		20	UG/KG	8082	12/26/2006 14:01	GFD
Aroclor 1260	ND		20	UG/KG	8082	12/26/2006 14:01	GFD
Metals Analysis							
Aluminum - Total	13300		12.7	MG/KG	6010	12/28/2006 01:13	AK
Antimony – Total	ND		19.0	MG/KG	6010	12/28/2006 01:13	AK
Arsenic – Total	15.1		2.5	MG/KG	6010	12/28/2006 01:13	AK
Barium – Total	100		0.63	MG/KG	6010	12/28/2006 01:13	AK
Beryllium – Total	0.77		0.25	MG/KG	6010	12/28/2006 01:13	AK
Cadmium - Total	ND		0.25	MG/KG	6010	12/28/2006 01:13	AK
Calcium - Total	1700		63.3	MG/KG	6010	12/28/2006 01:13	AK
Chromium - Total	15.3		0.63	MG/KG	6010	12/28/2006 01:13	AK
Cobalt – Total	13.1		0.63	MG/KG	6010	12/28/2006 01:13	AK
Copper – Total	17.7		1.3	MG/KG	6010	12/28/2006 01:13	AK
Iron – Total	31200		12.7	MG/KG	6010	12/28/2006 01:13	AK
Lead – Total	14.6		1.3	MG/KG	6010	12/28/2006 01:13	AK
Magnesium - Total	4190		25.3	MG/KG	6010	12/28/2006 01:13	AK
Manganese – Total	571		0.25	MG/KG	6010	12/28/2006 01:13	AK
Mercury – Total	ND		0.025	MG/KG	7471	12/27/2006 14:43	LH
Nickel – Total	25.8		0.63	MG/KG	6010	12/28/2006 01:13	AK
Potassium - Total	1320		38.0	MG/KG	6010	12/28/2006 01:13	AK
Selenium – Total	ND		5.1	MG/KG	6010	12/28/2006 01:13	AK
Silver – Total	ND		0.63	MG/KG	6010	12/28/2006 01:13	AK
Sodium – Total	ND		177	MG/KG	6010	12/28/2006 01:13	AK
Thallium — Total	ND		7.6	MG/KG	6010	12/28/2006 01:13	AK
Vanadium - Total	16.9		0.63	MG/KG	6010	12/28/2006 01:13	AK
Zinc - Total	65.2		1.3	MG/KG	6010	12/28/2006 01:13	AK

NYSDEC - REGION 9 REMEDIATION/SPILLS CONTRACT NYSDEC Spills - Reed Rd. landfill: Site#902018

Sample ID: POND WATER Lab Sample ID: A6F35103 Date Collected: 12/19/2006 Time Collected: 10:00

		Detection			Date/Time	
Parameter		Limit	Units	Method	Analyzed	Analyst
Metals Analysis						
Aluminum - Total	ND	0.20	MG/L	6010	12/27/2006 18:07	AK
Antimony - Total	ND	0.020	MG/L	6010	12/27/2006 18:07	AK
Arsenic - Total	ND	0.010	MG/L	6010	12/27/2006 18:07	AK
Barium – Total	0.072	0.0020	MG/L	6010	12/27/2006 18:07	AK
Beryllium – Total	ND	0.0020	MG/∟	6010	12/27/2006 18:07	AK
Cadmium - Total	ND	0.0010	MG/L	6010	12/27/2006 18:07	AK
Calcium - Total	36.4	0.50	MG/L	6010	12/27/2006 18:07	AK
Chromium - Total	ND	0.0040	MG/∟	6010	12/27/2006 18:07	AK
Cobalt - Total	ND	0.0040	MG/L	6010	12/27/2006 18:07	AK
Copper – Total	ND	0.010	MG/L	6010	12/27/2006 18:07	AK
Iron - Total	0.68	0.050	MG/L	6010	12/27/2006 18:07	AK
Lead - Total	ND	0.0050	MG/L	6010	12/27/2006 18:07	AK
Magnesium - Total	14.8	0.20	MG/L	6010	12/27/2006 18:07	AK
Manganese - Total	0.13	0.0030	MG/L	6010	12/27/2006 18:07	AK
Mercury - Total	ND	0.00020	MG/L	7470	12/27/2006 12:43	LH
Nickel – Total	ND	0.010	MG/L	6010	12/27/2006 18:07	AK
Potassium – Total	3.3	0.50	MG/L	6010	12/27/2006 18:07	AK
Selenium – Total	ND	0.015	MG/L	6010	12/27/2006 18:07	AK
Silver - Total	ND	0.0030	MG/L	6010	12/27/2006 18:07	AK
Sodium - Total	11.3	1.0	MG/L	6010	12/27/2006 18:07	AK
Thallium – Total	ND	0.020	MG/L	6010	12/27/2006 18:07	AK
Vanadium - Total	ND	0.0050	MG/L	6010	12/27/2006 18:07	AK
Zinc - Total	ND	0.010	MG/L	6010	12/27/2006 18:07	AK
Wet Chemistry Analysis						
Total Recoverable Phenolics	0.026	0.0050	MG/L	420.2	12/23/2006 08:28	RLG

NYSDEC - REGION 9 REMEDIATION/SPILLS CONTRACT NYSDEC Spills - Reed Rd. landfill: Site#902018

			Detection				
Parameter	Result	Flag	Limit	Units	Method	Analyzed	<u>Analyst</u>
NYSDEC - AQUEOUS-SW8463 TCL 8260							
1,1,1-Trichloroethane	ND		1.0	UG/L	8260	12/28/2006 20:24	BJ
1,1,2,2-Tetrachloroethane	ND		1.0	UG/L	8260	12/28/2006 20:24	ВJ
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		1.0	UG/L	8260	12/28/2006 20:24	ВJ
1,1,2-Trichloroethane	ND		1.0	UG/L	8260	12/28/2006 20:24	BJ
1,1-Dichloroethane	2.8		1.0	UG/L	8260	12/28/2006 20:24	ВJ
1,1-Dichloroethene	ND		1.0	UG/L	8260	12/28/2006 20:24	ВJ
1,2,4-Trichlorobenzene	ND		1.0	UG/L	8260	12/28/2006 20:24	BJ
1,2-Dibromo-3-chloropropane	ND		1.0	UG/L	8260	12/28/2006 20:24	BJ
1,2-Dibromoethane	ND		1.0	UG/L	8260	12/28/2006 20:24	BJ
1,2-Dichlorobenzene	ND		1.0	UG/L	8260	12/28/2006 20:24	BJ
1,2-Dichloroethane	ND		1.0	UG/L	8260	12/28/2006 20:24	BJ
1,2-Dichloropropane	ND		1.0	UG/L	8260	12/28/2006 20:24	ВJ
1,3-Dichlorobenzene	ND		1.0	UG/L	8260	12/28/2006 20:24	ВJ
1,4-Dichlorobenzene	ND		1.0	UG/L	8260	12/28/2006 20:24	BJ
2-Butanone	ND		5.0	UG/L	8260	12/28/2006 20:24	BJ
2-Hexanone	ND		5.0	UG/L	8260	12/28/2006 20:24	BJ
4-Methyl-2-pentanone	ND		5.0	UG/L	8260	12/28/2006 20:24	BJ
Acetone	ND		5.0	UG/L.	8260	12/28/2006 20:24	BJ
Benzene	0.54	J	1.0	UG/L	8260	12/28/2006 20:24	BJ
Bromodichloromethane	ND		1.0	UG/L	8260	12/28/2006 20:24	BJ
Bromoform	ND		1.0	UG/L	8260	12/28/2006 20:24	BJ
Bromomethane	ND		1.0	UG/L	8260	12/28/2006 20:24	BJ
Carbon Disulfide	ND		1.0	UG/L	8260	12/28/2006 20:24	BJ
Carbon Tetrachloride	ND		1.0	UG/L	8260	12/28/2006 20:24	ВJ
Chlorobenzene	ND		1.0	UG/L	8260	12/28/2006 20:24	BJ
Chloroethane	ND		1.0	UG/L	8260	12/28/2006 20:24	BJ
Chloroform	ND		1.0	UG/L	8260	12/28/2006 20:24	ВJ
Chloromethane	ND		1.0	UG/L	8260	12/28/2006 20:24	BJ
cis-1,2-Dichloroethene	ND		1.0	UG/L	8260	12/28/2006 20:24	вJ
cis-1,3-Dichloropropene	ND		1.0	UG/L	8260	12/28/2006 20:24	BJ
Cyclohexane	ND		1.0	UG/L	8260	12/28/2006 20:24	ВJ
Dibromochloromethane	ND		1.0	UG/L	8260	12/28/2006 20:24	BJ
Dichlorodifluoromethane	ND		1.0	UG/L	8260	12/28/2006 20:24	ВJ
Ethylbenzene	ND		1.0	UG/L	8260	12/28/2006 20:24	ВJ
Isopropylbenzene	2.4		1.0	UG/L	8260	12/28/2006 20:24	BJ
Methyl acetate	ND		1.0	UG/L	8260	12/28/2006 20:24	ВJ
Methyl-t-Butyl Ether (MTBE)	ND		1.0	UG/L	8260	12/28/2006 20:24	BJ
Methylcyclohexane	ND		1.0	UG/L	8260	12/28/2006 20:24	BJ
Methylene chloride	ND		1.0	UG/L	8260	12/28/2006 20:24	BJ
Styrene	ND		1.0	UG/L	8260	12/28/2006 20:24	BJ
Tetrachloroethene	ND		1.0	UG/L	8260	12/28/2006 20 : 24	BJ
Toluene	ND		1.0	UG/L	8260	12/28/2006 20 : 24	BJ
Total Xylenes	4.6		3.0	UG/L	8260	12/28/2006 20:24	ВJ
trans-1,2-Dichloroethene	ND		1.0	UG/L	8260	12/28/2006 20:24	BJ
trans-1,3-Dichloropropene	ND		1.0	UG/L	8260	12/28/2006 20:24	BJ
Trichloroethene	ND		1.0	UG/L	8260	12/28/2006 20:24	BJ
Trichlorofluoromethane	ND		1.0	UG/L	8260	12/28/2006 20:24	ВJ
Vinyl chloride	ND		1.0	UG/L	8260	12/28/2006 20:24	BJ

NYSDEC - REGION 9 REMEDIATION/SPILLS CONTRACT NYSDEC Spills - Reed Rd. landfill: Site#902018

	Detection					Date/Time	
Parameter	Result	Flag	Limit	<u>Units</u>	Method	Analyzed	<u>Analyst</u>
NYDEC AQ- SW8463 8270 - TCL SVOA ORGANIC							
1,2,4-Trichlorobenzene	ND		9	UG/L	8270	12/26/2006 18:14	PM
1,2-Dichlorobenzene	ND		9	UG/L	8270	12/26/2006 18:14	PM
1,3-Dichlorobenzene	ND		9	UG/L	8270	12/26/2006 18:14	PM
1,4-Dichlorobenzene	ND		9	UG/L	8270	12/26/2006 18:14	PM
2,2'-Oxybis(1-Chloropropane)	ND		9	UG/L	8270	12/26/2006 18:14	PM
2,4,5-Trichlorophenol	ND		9	UG/L	8270	12/26/2006 18:14	PM
2,4,6-Trichlorophenol	ND		9	UG/L	8270	12/26/2006 18:14	PM
2,4-Dichlorophenol	ND		9	UG/L	8270	12/26/2006 18:14	PM
2,4-Dimethylphenol	ND		9	UG/L	8270	12/26/2006 18:14	РМ
2,4-Dinitrophenol	ND		47	UG/L	8270	12/26/2006 18:14	РМ
2,4-Dinitrotoluene	ND		9	UG/L	8270	12/26/2006 18:14	РМ
2,6-Dinitrotoluene	ND		9	UG/L	8270	12/26/2006 18:14	РМ
2-Chloronaphthalene	ND		9	UG/L	8270	12/26/2006 18:14	PM
2-Chlorophenol	ND		9	UG/L	8270	12/26/2006 18:14	РМ
2-Methylnaphthalene	ND		9	UG/L	8270	12/26/2006 18:14	РМ
2-Methylphenol	ND		9	UG/L	8270	12/26/2006 18:14	РМ
2-Nitroaniline	ND		47	UG/L	8270	12/26/2006 18:14	PM
2-Nitrophenol	ND		9	UG/L	8270	12/26/2006 18:14	PM
3.3'-Dichlorobenzidine	ND		19	UG/L	8270	12/26/2006 18:14	PM
3-Nitroaniline	ND		47	UG/1	8270	12/26/2006 18:14	PM
4 6-Dipitro-2-methylphenol	ND		47	ug/1	8270	12/26/2006 18:14	PM
4-Bromonhenyl phenyl ether	ND		9	ug/1	8270	12/26/2006 18:14	PM
4-Chloro-3-methylphenol	ND		9	ug/1	8270	12/26/2006 18:14	PM
4-Chloroaniline	ND		9	ug/1	8270	12/26/2006 18:14	PM
4-Chlorophenyl phenyl ether	ND		9	ug/1	8270	12/26/2006 18:14	РМ
4 Chronophenyt phenyt ether	ND		9		8270	12/26/2006 18:14	DM
4 Netrophilipe	ND		47		8270	12/26/2006 18:14	DM
4 Nitrophenol	ND		47	us/1	8270	12/26/2006 18:14	DM
	ND		47	00/L	8270	12/26/2006 18:14	EN DM
	ND		9	UG/L	8270	12/26/2006 18:14	EN DM
Anthracono	ND		9	UG/L	8270	12/26/2006 18:14	DM
	ND		9	00/L	8270	12/26/2006 18:14	ED1 DM
	ND		9	uch	8270	12/26/2000 18:14	DM
Benzo(b)fluerenthene	ND		2	UG/L	8270	12/20/2000 10:14	
Benzo(dbi)perviene	ND		2	uc/u	8270	12/20/2000 18:14	
Benzo(k) fluorenthene	ND		2	uc/r	8270	12/20/2000 18:14	רויו הא
Benzo(k) (dol an thene	ND		7		0270	12/20/2000 10:14	E (1)
Bis(2-chloroethoxy) methane	ND		9		0270	12/20/2000 10:14	
Bis(2 - chioroethyl) ether	ND		7		0270	12/20/2000 10:14	PI'I DM
Bis(2-ethythexyt) phthatate	ND		2	00/L	0270	12/20/2000 10:14	P11
Butyl benzyl prinalate	ND		9	00/L	0270	12/20/2000 18:14	PPI
Carbazole	ND		9	06/L	8270	12/20/2006 18:14	PM
chrysene	ND		9	00/L	8270	12/20/2006 18:14	Pri
Di-n-butyl phthalate	ND		9	06/L	8270	12/26/2006 18:14	PM
Di-n-octyl phthalate	ND		9	UG/L	8270	12/26/2006 18:14	PM
Dibenzo(a,h)anthracene	ND		9	UG/L	8270	12/26/2006 18:14	PM
Dibenzoturan	ND		9	UG/L	8270	12/26/2006 18:14	PM
Diethyl phthalate	ND		9	UG/L	8270	12/26/2006 18:14	PM
Dimethyl phthalate	ND		9	UG/L	8270	12/26/2006 18:14	PM
Fluoranthene	ND		9	UG/L	8270	12/26/2006 18:14	PM

-

NYSDEC

NYSDEC - REGION 9 REMEDIATION/SPILLS CONTRACT NYSDEC Spills - Reed Rd. landfill: Site#902018

Date Received:	12/21/2006
Project No:	NY5A946109
Client No:	L10190
Site No:	

			Detection			Date/Time	
Parameter	Result	<u>Flag</u>	Limit	Units	Method	Analyzed	<u>Analyst</u>
NYDEC AQ- SW8463 8270 - TCL SVOA ORGANIC							
Fluorene	ND		9	UG/L	8270	12/26/2006 18:14	РМ
Hexachlorobenzene	ND		9	UG/L	8270	12/26/2006 18:14	РМ
Hexachlorobutadiene	ND		9	UG/∟	8270	12/26/2006 18:14	PM
Hexachlorocyclopentadiene	ND		42	UG/L	8270	12/26/2006 18:14	PM
Hexachloroethane	ND		9	UG/L	8270	12/26/2006 18:14	РМ
Indeno(1,2,3-cd)pyrene	ND		9	UG/L	8270	12/26/2006 18:14	PM
Isophorone	ND		9	UG/L	8270	12/26/2006 18:14	PM
N-Nitroso-Di-n-propylamine	ND		9	UG/L	8270	12/26/2006 18:14	PM
N-nitrosodiphenylamine	ND		9	UG/∟	8270	12/26/2006 18:14	PM
Naphthalene	ND		9	UG/L	8270	12/26/2006 18:14	PM
Nitrobenzene	ND		9	UG/L	8270	12/26/2006 18:14	PM
Pentachlorophenol	ND		47	UG/L	8270	12/26/2006 18:14	PM
Phenanthrene	ND		9	UG/L	8270	12/26/2006 18:14	PM
Phenol	ND		9	UG/∟	8270	12/26/2006 18:14	РМ
Pyrene	ND		9	UG/L	8270	12/26/2006 18:14	РМ
NYSDEC - AQUEOUS-SW8463 8081 - TCL PESTICIDES							
4,4'-DDD	ND		0.047	UG/L	8081	12/27/2006 19:22	тсн
4,4'-DDE	ND		0.047	UG/L	8081	12/27/2006 19:22	тсн
4,4'-DDT	ND		0.047	UG/L	8081	12/27/2006 19:22	тсн
Aldrin	ND		0.047	UG/L	8081	12/27/2006 19:22	тсн
alpha-BHC	ND		0.047	UG/L	8081	12/27/2006 19:22	тсн
alpha~Chlordane	ND		0.047	UG/L	8081	12/27/2006 19:22	тсн
beta-BHC	ND		0.047	UG/L	8081	12/27/2006 19:22	тсн
delta-BHC	ND		0.047	UG/L	8081	12/27/2006 19:22	тсн
Dieldrin	ND		0.047	UG/L	8081	12/27/2006 19:22	тсн
Endosulfan I	ND		0.047	UG/L	8081	12/27/2006 19:22	тсн
Endosulfan II	ND		0.047	UG/L	8081	12/27/2006 19:22	тсн
Endosulfan Sulfate	ND		0.047	UG/L	8081	12/27/2006 19:22	тсн
Endrin	ND		0.047	UG/L	8081	12/27/2006 19:22	тсн
Endrin aldehyde	ND		0.047	UG/∟	8081	12/27/2006 19:22	тсн
Endrin ketone	ND		0.047	UG/∟	8081	12/27/2006 19:22	тсн
gamma-BHC (Lindane)	ND		0.047	UG/L	8081	12/27/2006 19:22	тсн
gamma-Chlordane	ND		0.047	UG/L	8081	12/27/2006 19:22	тсн
Heptachlor	ND		0.047	UG/L	8081	12/27/2006 19:22	тсн
Heptachlor epoxide	ND		0.047	UG/L	8081	12/27/2006 19:22	TCH
Methoxychlor	ND		0.047	UG/L	8081	12/27/2006 19:22	тсн
Toxaphene	ND		0.94	UG/L	8081	12/27/2006 19:22	TCH
NYSDEC-AQ-SW8463 8082 - PCBS							
Aroclor 1016	ND		0.47	UG/L	8082	12/26/2006 19:43	GFD
Aroclor 1221	ND		0.47	UG/L	8082	12/26/2006 19:43	GFD
Aroclor 1232	ND		0.47	UG/L	8082	12/26/2006 19:43	GFD
Aroclor 1242	ND		0.47	UG/L	8082	12/26/2006 19:43	GFD
Aroclor 1248	ND		0.47	UG/L	8082	12/26/2006 19:43	GFD
Aroclor 1254	ND		0.47	UG/L	8082	12/26/2006 19:43	GFD
Aroclor 1260	ND		0.47	UG/L	8082	12/26/2006 19:43	GFD

Date: 01/08/2007 Time: 10:54:03

_

NYSDEC NYSDEC - REGION 9 REMEDIATION/SPILLS CONTRACT NYSDEC Spills - Reed Rd. landfill: Site#902018

Date Received:	12/21/2006
Project No:	NY5A946109
Client No:	L10190
Site No:	

			Detection	Date/Time				
Parameter	Result	Flag	Limit	Units	Method	Analyze	ed	Analyst
NYSDEC - AQ-SW8463 8151 - HERBICIDES (3 COMPO								
2,4,5-T	ND		0.47	UG/L	8151	01/04/2007	04:24	TCH
2,4,5-TP (Silvex)	ND		0.47	UG/L	8151	01/04/2007	04:24	тсн
2,4-D	ND		0.47	UG/L	8151	01/04/2007	04:24	тсн
Metals Analysis								
Aluminum - Total	ND		0.20	MG/L	6010	12/27/2006	18:42	AK
Antimony - Total	ND		0.020	MG/L	6010	12/27/2006	18:42	AK
Arsenic - Total	ND		0.010	MG/L	6010	12/27/2006	18:42	AK
Barium - Total	0.090		0.0020	MG/L	6010	12/27/2006	18 : 42	AK
Beryllium - Total	ND		0.0020	MG/L	6010	12/27/2006	18 : 42	AK
Cadmium - Total	ND		0.0010	MG/L	6010	12/27/2006	18:42	AK
Calcium - Total	33.6		0.50	MG/L	6010	12/27/2006	18:42	AK
Chromium - Total	ND		0.0040	MG/L	6010	12/27/2006	18:42	AK
Cobalt – Total	ND		0.0040	MG/∟	6010	12/27/2006	18:42	AK
Copper – Total	ND		0.010	MG/L	6010	12/27/2006	18 : 42	AK
Iron - Total	6.2		0.050	MG/L	6010	12/27/2006	18 : 42	AK
Lead - Total	ND		0.0050	MG/L	6010	12/27/2006	18 : 42	AK
Magnesium - Total	10.6		0.20	MG/L	6010	12/27/2006	18:42	AK
Manganese – Total	0.42		0.0030	MG/L	6010	12/27/2006	18:42	AK
Mercury - Total	ND		0.00020	MG/L	7470	12/27/2006	12:51	LH
Nickel – Total	ND		0.010	MG/L	6010	12/27/2006	18 : 42	AK
Potassium - Total	2.5		0.50	MG/L	6010	12/27/2006	18:42	AK
Selenium - Total	ND		0.015	MG/L	6010	12/27/2006	18:42	AK
Silver – Total	ND		0.0030	MG/L	6010	12/27/2006	18:42	AK
Sodium - Total	10.3		1.0	MG/L	6010	12/27/2006	18 : 42	AK
Thallium - Total	ND		0.020	MG/L	6010	12/27/2006	18:42	AK
Vanadium - Total	ND		0.0050	MG/L	6010	12/27/2006	18:42	AK
Zinc - Total	ND		0.010	MG/L	6010	12/27/2006	18 : 42	AK
Wet Chemistry Analysis								
Total Recoverable Phenolics	0.050		0.0050	MG/L	420.2	12/23/2006	08:28	RLG

	Record
of	ą
ain	sto
Ч С Й	S C

1 1	11					1	I			I			I		1		I			3	2/32 	
Chain of Gustady Number	Page of	Special Instructions/	Conditions of Receipt	•												issessed if samples are retained	(UUI)		12/2/1/16 (6 0)	Date	Date	
12/20/06	/ A (O Analysis (Attach list if mate space is needed)	Slon. Subsi	121 20 20 20 20 20 20 20 20 20 20 20 20 20	121 121 121 121 121 121 121 121	XXXX	7		XXXXXXX	× ×		XX		XXXXXX	XXXXXXXX	XXX	(A fee may be a	vcnive For Months longer than 1 m	\mathcal{O} .	ZAS SAL		Se E. Low	original (all-out
STAN 15ZEWSKI rea code/Fax Number / JNUX 0 CL	21 - 1 adu / (Uhl) 201 Lab Contact	Cump Dr. d. N. I. Iscurcu	Containers & Preservatives	lios H2Od H2Od H0C3 H0C3 H0C1 H0C4 H0C4 H0C4 H0C4 H0C4 H0C4 H0C4 H0C4	2		2	6113					6113	6113		posal	To Cilent N Uisposai'ay Lab LA	VIV VIV	1001 1. Received By	ie 2. Received By	a 3. Received By	le not callected as per
CLONNE Warden Froject Manager	$\frac{11}{100} \frac{11}{100} \frac{11}{100$	AUS CarrierWaybill Numb Yor K	Matri	Date Time Air Aqueous Sed	N7106 1200		X 0001 90/61/8	3/19/06 1115 X	A119106 1215 X		AlaDID6 11 30 X	3130/06 1145 X	alablob lais X	31,30,00, 1345 X	2120100 1315 X	Sample Dis		21 Days X Other 10 du	Date Date	Date	Date	TOTAL PRemal some
Client Client Meur Jork State Dept. of Environment Address	OUTCHIGAN AVE	Project Name and Location (State) Re.E.d. Road (#902018) · New	Contract/Purchase Order/Ouote No.	Sample I.D. No. and Description (Containers for each sample may be combined on one line)	Foundry Sand	No. 1 Col	POND VATER 12	South Manhole	B-6		MW - Q	MW - 3	MW-4	MW-1	MW - 5	Possible Hazard Identification	Turn Around Time Required	24 Hours 48 Hours 7 Days 14 Days	1. Relignished By	2. Relinquished By	3. Relinquished By	Comments (1) TAL Metals sample 4(1)

SDG NARRATIVE

Job#: A07-2686

STL Project#: <u>NY5A946109</u> SDG#: <u>2686</u> Site Name: <u>NYSDEC - REGION 9 REMEDIATION/SPILLS CONTRACT</u>

<u>General Comments</u>

The enclosed data may or may not have been reported utilizing data qualifiers (Q) as defined on the Data Comment Page.

Soil, sediment and sludge sample results are reported on "dry weight" basis unless otherwise noted in this data package.

According to 40CFR Part 136.3, pH, Chlorine Residual, Dissolved Oxygen, Sulfite, and Temperature analyses are to be performed immediately after aqueous sample collection. When these parameters are not indicated as field (e.g. pH-Field), they were not analyzed immediately, but as soon as possible after laboratory receipt.

Sample dilutions were performed as indicated on the attached Dilution Log. The rationale for dilution is specified by the 3-digit code and definition.

Sample Receipt Comments_

A07-2686

Sample Cooler(s) were received at the following temperature(s); 2.0 °C The volume received for analysis of total phenols on sample 5361 Reed Rd was not preserved to a pH<2. This sample was preserved in sample control using 2.0 mls of sulfuric acid, VWR lot number 6248.

GC/MS Volatile Data_

No deviations from protocol were encountered during the analytical procedures.

GC/MS Semivolatile Data

No deviations from protocol were encountered during the analytical procedures.

<u>GC Extractable Data</u>

No deviations from protocol were encountered during the analytical procedures.

Metals Data

No deviations from protocol were encountered during the analytical procedures.

Wet Chemistry Data

No deviations from protocol were encountered during the analytical procedures.

The results presented in this report relate only to the analytical testing and condition of the sample at receipt. This report pertains to only those samples actually tested. All pages of this report are integral parts of the analytical data. Therefore, this report should be reproduced only in its entirety.

"I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this Sample Data package and in the electronic data deliverables has been authorized by the Laboratory Manager or his/her designee, as verified by the following signature."

Brian J. Pischer Project Manager

Date

NYSDEC - REGION 9 REMEDIATION/SPILLS CONTRACT NYSDEC Spills - Reed Rd. landfill: Site#902018

Sample ID: 5361 REED RD Lab Sample ID: A7268602 Date Collected: 03/21/2007 Time Collected: 16:00

			Detection			——Date/Time——	-
Parameter	Result	<u>Flag</u>	<u>Limit</u>	Units	Method	Analyzed	<u>Analyst</u>
NYSDEC - AQUEOUS-SW8463 TCL 8260							
1.1.1-Trichloroethane	ND		1.0	UG/L	8260	03/22/2007 18:0	6 ND
1.1.2.2-Tetrachloroethane	ND		1.0	UG/L	8260	03/22/2007 18:0	6 ND
1.1.2-Trichloro-1.2.2-trifluoroethane	ND		1.0	UG/L	8260	03/22/2007 18:0	6 ND
1.1.2-Trichloroethane	ND		1.0	UG/L	8260	03/22/2007 18:0	6 ND
1.1-Dichloroethane	ND		1.0	UG/L	8260	03/22/2007 18:0	6 ND
1.1-Dichloroethene	ND		1.0	UG/L	8260	03/22/2007 18:0	6 ND
1.2.4-Trichlorobenzene	ND		1.0	UG/L	8260	03/22/2007 18:0	6 ND
1.2-Dibromo-3-chloropropane	ND		1.0	UG/L	8260	03/22/2007 18:0	6 ND
1.2-Dibromoethane	ND		1.0	UG/L	8260	03/22/2007 18:0	16 ND
1 2-Dichlorobenzene	ND		1.0	UG/L	8260	03/22/2007 18:0	16 ND
1.2-Dichloroethane	ND		1.0	UG/L	8260	03/22/2007 18:0	16 ND
1 2-Dichloropropane	ND		1.0	UG/L	8260	03/22/2007 18:0	16 ND
1 3-Dichloropenzepe	ND		1.0	UG/L	8260	03/22/2007 18:0	06 ND
1 4-Dichlorobenzene	ND		1.0	UG/L	8260	03/22/2007 18:0)6 ND
2-Butanone	ND		5.0	UG/L	8260	03/22/2007 18:0)6 ND
	ND		5.0	UG/L	8260	03/22/2007 18:	06 ND
/-Methyl-2-pentanope	ND		5.0	UG/L	8260	03/22/2007 18:	06 ND
	ND		5.0	UG/L	8260	03/22/2007 18:	06 ND
Popzope	ND		1.0	UG/L	8260	03/22/2007 18:	06 ND
Premodiable comothere	ND		1.0	UG/L	8260	03/22/2007 18:	06 ND
Bromoform	ND		1.0	UG/L	8260	03/22/2007 18:	06 ND
Bronotorn	ND		1.0	UG/L	8260	03/22/2007 18:	06 ND
Bromone thane	ND		1.0	UG/L	8260	03/22/2007 18:	06 ND
	ND		1.0	UG/L	8260	03/22/2007 18:	06 ND
	ND		1.0	UG/L	8260	03/22/2007 18:	06 ND
Chlorobenzene	ND		1.0	UG/L	-8260	03/22/2007 18:	06 ND
	ND		1.0	UG/L	8260	03/22/2007 18:	D6 ND
Chionomothere	ND		1.0	UG/L	8260	03/22/2007 18:	06 ND
circal 2-Dichloroethene	ND		1.0	UG/L	8260	03/22/2007 18:	06 ND
cis-1,Z-Dichloropropene	ND		1.0	UG/L	8260	03/22/2007 18:	06 ND
	ND		1.0	UG/L	8260	03/22/2007 18:	06 ND
Dippersonal or omethane	ND		1.0	UG/L	8260	03/22/2007 18:	06 ND
	ND		1.0	UG/L	8260	03/22/2007 18:	06 ND
Ethyl honzone	ND		1.0	UG/L	8260	03/22/2007 18:	06 ND
	ND		1.0	UG/L	8260	03/22/2007 18:	06 ND
	ND		1.0	UG/L	8260	03/22/2007 18:	06 ND
Methyl aterate	ND		1.0	UG/L	8260	03/22/2007 18:	06 ND
Methylevel chexape	ND		1.0	UG/L	8260	03/22/2007 18:	06 ND
Methylene oblanido	ND		1.0	UG/L	8260	03/22/2007 18:	06 ND
	ND		1.0	UG/L	8260	03/22/2007 18:	06 ND
Styrene	ND		1.0	UG/L	8260	03/22/2007 18:	06 ND
Teluee	ND		1.0	UG/L	8260	03/22/2007 18:	06 ND
totuene	ND		3.0	UG/L	8260	03/22/2007 18:	06 ND
total Aylenes	ND		1.0	UG/L	8260	03/22/2007 18:	06 ND
trans 1 Z-Dichloropropo	ND		1.0	UG/L	8260	03/22/2007 18	06 ND
Tricklessethere	ND		1.0	UG/L	8260	03/22/2007 18	06 ND
Trichlenefluoremethere	ND		1.0	UG/L	8260	03/22/2007 18	06 ND
	ND		1.0	UG/L	8260	03/22/2007 18	06 ND
villyt circoriae							

NYSDEC - REGION 9 REMEDIATION/SPILLS CONTRACT NYSDEC Spills - Reed Rd. landfill: Site#902018

Sample ID: 5361 REED RD Lab Sample ID: A7268602 Date Collected: 03/21/2007 Time Collected: 16:00

			Detection		Date/Time			
Parameter	Result	Flag	Limit	Units	Method	Analyzed	<u>Analyst</u>	
NYDEC AQ- SW8463 8270 - TCL SVOA ORGANIC								
1,2,4-Trichlorobenzene	ND		9	UG/L	8270	03/26/2007 12:1	S MD	
1.2-Dichlorobenzene	ND		9	UG/L	8270	03/26/2007 12:1	3 MD	
1,3-Dichlorobenzene	ND		9	UG/L	8270	03/26/2007 12:1	3 MD	
1,4-Dichlorobenzene	ND		9	UG/L	8270	03/26/2007 12:1	3 MD	
2.2'-Oxybis(1-Chloropropane)	ND		9	UG/L	8270	03/26/2007 12:1	3 MD	
2,4,5-Trichlorophenol	ND		9	UG/L	8270	03/26/2007 12:1	3 MD	
2.4.6-Trichlorophenol	ND		9	UG/L	8270	03/26/2007 12:1	3 MD	
2.4-Dichlorophenol	ND		9	UG/L	8270	03/26/2007 12:1	3 MD	
2.4-Dimethylphenol	ND		9	UG/L	8270	03/26/2007 12:1	3 MD	
2.4-Dinitrophenol	ND		47	UG/L	8270	03/26/2007 12:1	3 MD	
2.4-Dinitrotoluene	ND		9	UG/L	8270	03/26/2007 12:1	3 MD	
2.6-Dinitrotoluene	ND		9	UG/L	8270	03/26/2007 12:1	3 MD	
2-Chloronaphthalene	ND		9	UG/L	8270	03/26/2007 12:1	3 MD	
2-Chlorophenol	ND		9	UG/L	8270	03/26/2007 12:1	3 MD	
2-Methylnaphthalene	ND		9	UG/L	8270	03/26/2007 12:1	3 MD	
2-Methylphenal	ND		9	UG/L	8270	03/26/2007 12:1	3 MD	
2-Nitroaniline	ND		47	UG/L	8270	03/26/2007 12:1	3 MD	
2-Nitrophenol	ND		9	UG/L	8270	03/26/2007 12:1	3 MD	
3 31-Dichlorobenzidine	ND		19	UG/L	8270	03/26/2007 12:1	3 MD	
3-Nitroaniline	ND		47	UG/1.	8270	03/26/2007 12:1	3 MD	
6-Dipitro-2-methylphenol	ND		47	UG/L	8270	03/26/2007 12:1	3 MD	
4-Bromonhenyl phenyl ether	ND		9	UG/L	8270	03/26/2007 12:1	3 MD	
4-Chloro-3-methyl phenol	ND		9	UG/L	8270	03/26/2007 12:1	3 MD	
4-Chloroaniline	ND		9	UG/L	8270	03/26/2007 12:1	3 MD	
4-Chlorophenyl phenyl etber	ND		9	UG/L	8270	03/26/2007 12:1	3 MD	
4-Methylphenol	ND		9	UG/L	8270	03/26/2007 12:	3 MD	
4-Nitroaniline	ND		47	UG/L	8270	03/26/2007 12:1	3 MD	
4-Nitrophenol	ND		47	UG/L	8270	03/26/2007 12:	3 MD	
Acenanbthene	ND		9	UG/L	8270	03/26/2007 12:	3 MD	
Acenaphthylene	ND		9	UG/L	8270	03/26/2007 12:	3 MD	
Anthracene	ND		9	UG/L	8270	03/26/2007 12:	3 MD	
Benzo(a)anthracene	ND		9	UG/L	8270	03/26/2007 12:	3 MD	
Benzo(a)pyrene	ND		9	UG/L	8270	03/26/2007 12:	I3 MD	
Benzo(b)fluoranthene	ND		9	UG/L	8270	03/26/2007 12:	3 MD	
Benzo(chi)nervlene	ND		9	UG/L	8270	03/26/2007 12:	13 MD	
Benzo(k)fluoranthene	ND		9	UG/L	8270	03/26/2007 12:	1 3 MD	
Bis(2-chloroethoxy) methane	ND		9	UG/L	8270	03/26/2007 12:	I3 MD	
Bis(2-chloroethyl) ether	ND		9	UG/L	8270	03/26/2007 12:	3 MD	
Bis(2-ethylberyl) phthalate	ND		9	UG/L	8270	03/26/2007 12:	IJ MD	
Butyl bonzyl phthalate	ND		9	UG/L	8270	03/26/2007 12:	13 MD	
Carbazola	ND		9	UG/L	8270	03/26/2007 12:	13 MD	
	ND		9	UG/L	8270	03/26/2007 12:	13 MD	
Dispublic onthalate	ND		9	UG/L	8270	03/26/2007 12:	13 MD	
Di-p-octyl phthalate	ND		9	UG/L	8270	03/26/2007 12:	13 MD	
	ND		9	UG/L	8270	03/26/2007 12:	13 MD	
	ND		9	UG/L	8270	03/26/2007 12:	1 3 MD	
Diothyl obthalate	ND		9	UG/L	8270	03/26/2007 12:	13 MD	
Dimethyl phthalate	ND		9	UG/L	8270	03/26/2007 12:	13 MD	
Fluoranthone	ND		9	UG/L	8270	03/26/2007 12:	13 MD	
	•••							

NYSDEC - REGION 9 REMEDIATION/SPILLS CONTRACT NYSDEC Spills - Reed Rd. Landfill: Site#902018

ł

Sample ID: 5361 REED RD Lab Sample ID: A7268602 Date Collected: 03/21/2007 Time Collected: 16:00

			Detection			——Date/Time——	
Parameter	Result	<u>Flag</u>	Limit	<u>Units</u>	Method	Analyzed	<u>Analyst</u>
NYDEC AQ- SW8463 8270 - TCL SVOA ORGANIC							
Fluorene	ND		9	UG/L	8270	03/26/2007 12:13	MD
Hexachlorobenzene	ND		9	UG/L	8270	03/26/2007 12:13	MD
Hexachlorobutadiene	ND		9	UG/L	8270	03/26/2007 12:13	MD
Hexachlorocyclopentadiene	ND		42	UG/L	8270	03/26/2007 12:13	MD
Hexachloroethane	ND		9	UG/L	8270	03/26/2007 12:13	MD
Indeno(1,2,3-cd)pyrene	ND		9	UG/L	8270	03/26/2007 12:13	MD
Isophorone	ND		9	UG/L	8270	03/26/2007 12:13	MD
N-Nitroso-Di-n-propylamine	ND		9	UG/L	8270	03/26/2007 12:13	MD
N-nitrosodiphenylamine	ND		9	UG/L	8270	03/26/2007 12:13	MD
Naphthalene	ND		9	UG/L	8270	03/26/2007 12:13	MD
Nitrobenzene	ND		9	UG/L	8270	03/26/2007 12:13	MD
Pentachlorophenol	ND		47	UG/L	8270	03/26/2007 12:13	MD
Phenanthrene	ND		9	UG/L	8270	03/26/2007 12:13	MD
Phenol	ND		9	UG/L	8270	03/26/2007 12:13	MD
Pyrene .	ND		9	UG/L	8270	03/26/2007 12:13	MD
NYSDEC - AQUEOUS-SW8463 8081 - TCL PESTICIDES							
4 4'-DDD	ND		0.047	UG/L	8081	03/23/2007 18:09	TCH
4 4 - DDF	ND		0.047	UG/L	8081	03/23/2007 18:09	р тсн
4,4 DDT	ND		0.047	UG/L	8081	03/23/2007 18:09	P TCH
Aldrin	ND		0.047	UG/L	8081	03/23/2007 18:09	P TCH
alpha-BHC	ND		0.047	UG/L	8081	03/23/2007 18:09	Y TCH
alpha-Chlordane	ND		0.047	UG/L	8081	03/23/2007 18:09	У ТСН
beta-BHC	ND		0.047	UG/L	8081	03/23/2007 18:09	O TCH
delta-BHC	ND		0.047	UG/L	8081	03/23/2007 18:09	TCH
Dieldrin	ND		0.047	UG/L	8081	03/23/2007 18:09) TCH
Endosul fan I	ND		0.047	UG/L	8081	03/23/2007 18:09	У ТСН
Endosul fan II	ND		0.047	UG/L	8081	03/23/2007 18:09	P TCH
Endosul fan Sul fate	ND		0.047	UG/L	8081	03/23/2007 18:09	Э ТСН
Endrin	ND		0.047	UG/L	8081	03/23/2007 18:09	TCH
Endrin aldehyde	ND		0.047	UG/L	8081	03/23/2007 18:09	Э ТСН
Endrin ketope	ND		0.047	UG/L	8081	03/23/2007 18:09	P TCH
namma-BHC (lindane)	ND		0.047	UG/L	8081	03/23/2007 18:09	9 тсн
gamma-Chlordane	ND		0.047	UG/L	8081	03/23/2007 18:09	Э ТСН
Kentechlor	ND		0.047	UG/L	8081	03/23/2007 18:09	Э ТСН
Hentachlor enoxide	ND		0.047	UG/L	8081	03/23/2007 18:09	9 TCH
Methoxychlor	ND		0.047	UG/L	8081	03/23/2007 18:09	Э ТСН
Toxaphene	ND		0.94	UG/L	8081	03/23/2007 18:09	9 TCH
NYSDEC-AQ-SW8463 8082 - PCBS							
Aroclor 1016	ND		0.47	UG/L	8082	03/24/2007 12:14	4 GFD
Aroclor 1221	ND		0.47	UG/L	8082	03/24/2007 12:14	4 GFD
Aroclor 1232	ND		0.47	UG/L	8082	03/24/2007 12:14	4 GFD
Aroclor 1242	ND		0.47	UG/L	8082	03/24/2007 12:14	4 GFD
Aroclor 1248	ND		0.47	UG/L	8082	03/24/2007 12:14	4 GFD
Aroclor 1254	ND		0.47	UG/L	8082	03/24/2007 12:1	4 GFD
Aroclor 1260	ND		0.47	UG/L	8082	03/24/2007 12:1	4 GFD

Date: 03/28/2007 Time: 11:51:44

NYSDEC NYSDEC - REGION 9 REMEDIATION/SPILLS CONTRACT NYSDEC Spills - Reed Rd. landfill: Site#902018

Sample ID: 5361 REED RD Lab Sample ID: A7268602 Date Collected: 03/21/2007 Time Collected: 16:00

			Detection		——Date/Time——				
Parameter	Result	Flag	Limit	Units	Method	Analyze	ed	<u>Analyst</u>	
NYSDEC - AQ-SW8463 8151 - HERBICIDES (3 COMPO									
2.4.5-T	ND		0.47	UG/L	8151	03/27/2007	16:34	TCH	
2.4.5-TP (Silvex)	ND		0.47	UG/L	8151	03/27/2007	16:34	TCH	
2,4-D	ND		0.47	UG/L	8151	03/27/2007	16:34	ТСН	
Metals Analysis									
Aluminum - Total	ND		0.20	MG/L	6010	03/23/2007	17:16	TWS	
Antimony - Total	ND		0.020	MG/L	6010	03/23/2007	17:16	TWS	
Arsenic - Total	ND		0.010	MG/L	6010	03/23/2007	17:16	TWS	
Barium - Total	0.017		0.0020	MG/L	6010	03/23/2007	17:16	T₩S	
Beryllium - Total	ND		0.0020	MG/L	6010	03/23/2007	17:16	TWS	
Cadmium - Total	ND		0,0010	MG/L	6010	03/23/2007	17:16	TWS	
Calcium - Total	7.4		0.50	MG/L	6010	03/23/2007	17:16	TWS	
Chromium - Total	ND		0.0040	MG/L	6010	03/23/2007	17:16	TWS	
Cobalt - Total	ND		0.0040	MG/L	6010	03/23/2007	17:16	TWS	
Copper - Total	0.025		0.010	MG/L	6010	03/23/2007	17:16	TWS	
Iron - Total	0.18		0.050	MG/L	6010	03/23/2007	17:16	TWS	
Lead - Total	ND		0.0050	MG/L	6010	03/23/2007	17:16	o T₩S	
Magnesium - Total	2.5		0.20	MG/L	6010	03/23/2007	17:16	TWS	
Manganese - Total	0.0039		0.0030	MG/L	6010	03/23/2007	17:16	5 TWS	
Mercury - Total	ND		0.00020	MG/L	7470	03/23/2007	16:46	5 LH	
Nickel - Total	ND		0.010	MG/L	6010	03/23/2007	17:16	5 TWS	
Potassium - Total	0.58		0.50	MG/L	6010	03/23/2007	17:16	S TWS	
Selenium - Total	ND		0.015	MG/L	6010	03/23/2007	17:16	5 TWS	
Silver - Total	ND		0.0030	MG/L	6010	03/23/2007	17:16	5 TWS	
Sodium - Total	1.3		1.0	MG/L	6010	03/23/2007	17:16	5 TWS	
Thallium - Total	ND		0.020	MG/L	6010	03/23/2007	17:16	5 TWS	
Vanadium - Total	ND		0.0050	MG/L	6010	03/23/2007	17:16	5 TWS	
Zinc - Total	0.23		0.010	MG/L	6010	03/ 23/ 2007	17:16	5 TWS	
Wet Chemistry Analysis									
Total Recoverable Phenolics	ND		0.0050	MG/L	420.2	03/25/2007	07:44	+ KLG	

NYSDEC - REGION 9 REMEDIATION/SPILLS CONTRACT NYSDEC Spills - Reed Rd. landfill: Site#902018

Sample ID: AMISH HOME Lab Sample ID: A7268601 Date Collected: 03/21/2007 Time Collected: 14:00

		Detection				
Parameter	Result	 <u>Limit</u>	Units	Method	Analyzed	<u>Analyst</u>
NYSDEC - AQUEOUS-SW8463 TCL 8260						
1.1.1-Trichloroethane	ND	1.0	UG/L	8260	03/22/2007 17:43	ND
1,1,2,2-Tetrachloroethane	ND	1.0	UG/L	8260	03/22/2007 17:43	ND
1,1.2-Trichloro-1,2,2-trifluoroethane	ND	1.0	UG/L	8260	03/22/2007 17:43	ND
1.1.2-Trichloroethane	ND	1.0	UG/L	8260	03/22/2007 17:43	ND
1.1-Dichloroethane	ND	1.0	UG/L	8260	03/22/2007 17:43	ND
1.1-Dichloroethene	ND	1.0	UG/L	8260	03/22/2007 17:43	ND
1,2,4-Trichlorobenzene	ND	1.0	UG/L	8260	03/22/2007 17:43	ND
1.2-Dibromo-3-chloropropane	ND	1.0	UG/L	8260	03/22/2007 17:43	ND
1.2-Dibromoethane	ND	1.0	UG/L	8260	03/22/2007 17:43	S ND
1.2-Dichlorobenzene	ND	1.0	UG/L	8260	03/22/2007 17:43	5 ND
1.2-Dichloroethane	ND	1.0	UG/L	8260	03/22/2007 17:43	S ND
1.2-Dichloropropane	ND	1.0	UG/L	8260	03/22/2007 17:43	S ND
1.3-Dichlorobenzene	ND	1.0	UG/L	8260	03/22/2007 17:43	S ND
1.4-Dichlorobenzene	ND	1.0	UG/L	8260	03/22/2007 17:43	S ND
2-Butanone	ND	5.0	UG/L	8260	03/22/2007 17:43	S ND
2-Hexanone	ND	5.0	UG/L	8260	03/22/2007 17:43	S ND
4-Methyl-2-pentanone	ND	5.0	UG/L	8260	03/22/2007 17:43	S ND
Acetone	ND	5.0	UG/L	8260	03/22/2007 17:43	3 ND
Benzene	ND	1.0	UG/L	8260	03/22/2007 17:4	3 ND
Bromodichloromethane	ND	1.0	UG/L	8260	03/22/2007 17:4	3 ND
Bromoform	ND	1.0	UG/L	8260	03/22/2007 17:4	3 ND
Bromomethane	ND	1.0	UG/L	8260	03/22/2007 17:4	3 ND
Carbon Disulfide	ND	1.0	UG/L	8260	03/22/2007 17:4	3 ND
Carbon Tetrachloride	ND	1.0	UG/L	8260	03/22/2007 17:43	3 ND
Chlorobenzene	ND	1.0	UG/L	8260	03/22/2007 17:4	3 ND
Chloroethane	ND	1.0	UG/L	8260	03/22/2007 17:4	3 ND
Chloroform	ND	1.0	UG/L	8260	03/22/2007 17:4	3 ND
Chloromethane	ND	1.0	UG/L	8260	03/22/2007 17:4	3 ND
cis-1,2-Dichloroethene	ND	1.0	UG/L	8260	03/22/2007 17:4	3 ND
cis-1,3-Dichloropropene	ND	1.0	UG/L	8260	03/22/2007 17:4	3 ND
Cyclohexane	ND	1.0	UG/L	8260	03/22/2007 17:4	3 ND
Dibromochloromethane	ND .	1.0	UG/L	8260	03/22/2007 17:4	3 ND
Dichlorodifluoromethane	ND	1.0	UG/L	8260	03/22/2007 17:4	3 ND
Ethylbenzene	ND	1.0	UG/L	8260	03/22/2007 17:4	3 ND .
Isopropylbenzene	ND	1.0	UG/L	8260	03/22/2007 17:4	3 ND
Methyl acetate	ND	1.0	UG/L	8260	03/22/2007 17:4	3 ND
Methyl-t-Butyl Ether (MTBE)	ND	1.0	UG/L	8260	03/22/2007 17:4	3 ND
Methylcyclohexane	ND	1.0	UG/L	8260	03/22/2007 17:4	3 ND
Methylene chloride	ND	1.0	UG/L	8260	03/22/2007 17:4	3 ND
Styrene	ND	1.0	UG/L	8260	03/22/2007 17:4	3 ND
Tetrachloroethene	ND	1.0	UG/L	8260	03/22/2007 17:4	3 ND
Toluene	ND	1.0	UG/L	8260	03/22/2007 17:4	3 ND
Total Xylenes	ND	3.0	UG/L	8260	03/22/2007 17:4	3 ND
trans-1,2-Dichloroethene	ND	1.0	UG/L	8260	03/22/2007 17:4	3 ND
trans-1,3-Dichloropropene	ND	1.0	UG/L	8260	03/22/2007 17:4	3 ND
Trichloroethene	ND	1.0	UG/L	8260	03/22/2007 17:4	3 ND
Trichlorofluoromethane	ND	1.0	UG/L	8260	03/22/2007 17:4	3 ND
Vinyl chloride	ND	1.0	UG/L	8260	03/22/2007 17:4	3 ND

Fluoranthene

NYSDEC NYSDEC - REGION 9 REMEDIATION/SPILLS CONTRACT NYSDEC Spills - Reed Rd. landfill: Site#902018

Detection

Date Received: 03/22/2007 Project No: NY5A946109 Client No: L10190 Site No:

—_Date/Time-

Sample ID: AMISH HOME Lab Sample ID: A7268601 Date Collected: 03/21/2007 Fime Collected: 14:00

Parameter	Result	<u>Flag</u>	Limit	Units	Method	<u>Analyzed</u>	<u>Analyst</u>
NYDEC AQ- SW8463 8270 - TCL SVOA ORGANIC							
1,2,4-Trichlorobenzene	ND		9	UG/L	8270	03/26/2007 11:48	MD
1,2-Dichlorobenzene	ND		9	UG/L	8270	03/26/2007 11:48	MD .
1,3-Dichlorobenzene	ND		9	UG/L	8270	03/26/2007 11:48	S MD
1,4-Dichlorobenzene	ND		9	UG/L	8270	03/26/2007 11:48	S MD
2,2'-Oxybis(1-Chloropropane)	ND		9	UG/L	8270	03/26/2007 11:48	S MD
2,4,5-Trichlorophenol	ND		9	UG/L	8270	03/26/2007 11:48	MD MD
2,4,6-Trichlorophenol	ND		9	UG/L	8270	03/26/2007 11:48	S MD
2,4-Dichlorophenol	ND		9	UG/L	8270	03/26/2007 11:48	B MD
2,4-Dimethylphenol	ND		9	UG/L	8270	03/26/2007 11:48	S MD
2,4-Dinitrophenol	ND		47	UG/L	8270	03/26/2007 11:48	S MD
2,4-Dinitrotoluene	ND		9	UG/L	8270	03/26/2007 11:48	5 MD
2,6-Dinitrotoluene	ND		9	UG/L	8270	03/26/2007 11:48	S MD
2-Chloronaphthalene	ND		9	UG/L	8270	03/26/2007 11:48	B MD
2-Chlorophenol	ND		9	UG/L	8270	03/26/2007 11:48	B MD
2-Methylnaphthalene	ND		9	UG/L	8270	03/26/2007 11:48	B MD
2-Methylphenol	ND		9 ·	UG/L	8270	03/26/2007 11:48	B MD
2-Nitroaniline	ND		47	UG/L	8270	03/26/2007 11:48	B MD
2-Nitrophenol	ND		9	UG/L	8270	03/26/2007 11:48	B MD
3,3'-Dichlorobenzidine	ND		19	UG/L	8270	03/26/2007 11:48	3 MD
3-Nitroaniline	ND		47	UG/L	8270	03/26/2007 11:48	3 MD
4,6-Dinitro-2-methylphenol	ND		47	UG/L	8270	03/26/2007 11:48	3 MD
4-Bromophenyl phenyl ether	ND		9	UG/L	8270	03/26/2007 11:48	3 MD
4-Chloro-3-methylphenol	ND		9	UG/L	8270	03/26/2007 11:48	3 MD
4-Chloroaniline	ND		9	UG/L	8270	03/26/2007 11:48	3 MD
4-Chlorophenyl phenyl ether	ND		9	UG/L	8270	03/26/2007 11:48	S MD
4-Methylphenol	ND		9	UG/L	8270	03/26/2007 11:48	3 MD
4-Nitroaniline	ND		47	UG/L	8270	03/26/2007 11:48	3 MD
4-Nitrophenol	ND		47	UG/L	8270	03/26/2007 11:48	3 MD
Acenaphthene	ND		9	UG/L	8270	03/26/2007 11:48	3 MD
Acenaphthylene	ND		9	UG/L	8270	03/26/2007 11:48	3 MD
Anthracene	ND		9	UG/L	8270	03/26/2007 11:48	3 MD
Benzo(a)anthracene	ND		9	UG/L	8270	03/26/2007 11:48	3 MD
Benzo(a)pyrene	ND		9	UG/L	8270	03/26/2007 11:48	3 MD
Benzo(b)fluoranthene	ND		9	UG/L	8270	03/26/2007 11:48	3 MD
Benzo(ghî)perylene	ND		9	UG/L	8270	03/26/2007 11:48	3 MD
Benzo(k)fluoranthene	ND		9	UG/L	8270	03/26/2007 11:48	B MD
Bis(2-chloroethoxy) methane	ND		9	UG/L	8270	03/26/2007 11:48	3 MD
Bis(2-chloroethyl) ether	ND		9	UG/L	8270	03/26/2007 11:48	3 MD
Bis(2-ethylhexyl) phthalate	NÐ		9	UG/L	8270	03/26/2007 11:48	3 MD
Butyl benzyl phthalate	ND		9	UG/L	8270	03/26/2007 11:48	B MD
Carbazole	ND		9	UG/L	8270	03/26/2007 11:48	3 MD
Chrysene	ND		9	UG/L	8270	03/26/2007 11:48	3 MD
Di-n-butyl phthalate	ND		9	UG/L	8270	03/26/2007 11:48	3 MD
Di-n-octyl phthalate	ND		9	UG/L	8270	03/26/2007 11:48	3 MD
Dibenzo(a,h)anthracene	ND		9	UG/L	8270	03/26/2007 11:48	3 MD
Dibenzofuran	ND		9	UG/L	8270	03/26/2007 11:48	3 MD
Diethyl phthalate	ND		9	UG/L	8270	03/26/2007 11:48	3 MD
Dimethyl phthalate	ND		9	UG/L	8270	03/26/2007 11:48	B MD

ND

9

03/26/2007 11:48 MD

8270

UG/L

÷

NYSDEC - REGION 9 REMEDIATION/SPILLS CONTRACT NYSDEC Spills - Reed Rd. Landfill: Site#902018

Sample ID: AMISH HOME Lab Sample ID: A7268601 Date Collected: 03/21/2007 Time Collected: 14:00

			Detection			Date/Time	
Parameter	Result	Flag	Limit	Units	Method	Analyzed	<u>Analyst</u>
NYDEC AQ- SW8463 8270 - TCL SVOA ORGANIC							
Fluorene	ND		9	UG/L	8270	03/26/2007 11:48	MD
Hexachlorobenzene	ND		9	UG/L	8270	03/26/2007 11:48	MD
Hexachlorobutadiene	ND		9	UG/L	8270	03/26/2007 11:48	MD
Hexachlorocyclopentadiene	ND		42	UG/L	8270	03/26/2007 11:48	MD
Hexachloroethane	ND		9	UG/L	8270	03/26/2007 11:48	MD
Indeno(1,2,3-cd)pyrene	ND		9	UG/L	8270	03/26/2007 11:48	MD
Isophorone	ND		9	UG/L	8270	03/26/2007 11:48	MD
N-Nitroso-Di-n-propylamine	ND		9	UG/L	8270	03/26/2007 11:48	MD
N-nitrosodiphenylamine	ND		9	UG/L	8270	03/26/2007 11:48	MD
Naphthalene	ND		9	UG/L	8270	03/26/2007 11:48	MD
Nitrobenzene	ND		9	UG/L	8270	03/26/2007 11:48	MD
Pentachlorophenol	ND		47	UG/L	8270	03/26/2007 11:48	MD
Phenanthrene	ND		9	UG/L	8270	03/26/2007 11:48	MD
Phenol	ND		9	UG/L	8270	03/26/2007 11:48	S MD
Pyrene	ND		9	UG/L	8270	03/26/2007 11:48	MD
NYCOLO - ADUCOUS-SU8/63 8081 - TO DESTICIDES							
A (L-DDD	ND		0.047	UG/L	8081	03/23/2007 17:33	5 ТСН
4,4*-DDD	ND		0.047	UG/L	8081	03/23/2007 17:33	5 ТСН
	ND		0.047	UG/L	8081	03/23/2007 17:33	S TCH
4,4**001	ND		0.047	UG/L	8081	03/23/2007 17:33	S TCH
Alaha PKC	ND		0.047	UG/L	8081	03/23/2007 17:33	5 тсн
alpha-bhc	ND		0.047	UG/L	8081	03/23/2007 17:33	3 тсн
atpla-citto dane	ND		0.047	UG/L	8081	03/23/2007 17:33	тсн
	ND		0.047	UG/L	8081	03/23/2007 17:33	3 тсн
Dieldrin	ND		0.047	UG/L	8081	03/23/2007 17:33	5 тсн
	ND		0.047	UG/L	8081	03/23/2007 17:33	5 ТСН
	ND		0.047	UG/L	8081	03/23/2007 17:33	S TCH
Endosul fan Sul fate	ND		0.047	UG/L	8081	03/23/2007 17:33	3 ТСН
	ND		0.047	UG/L	8081	03/23/2007 17:33	3 ТСН
Endrin aldebyde	ND		0.047	UG/L	8081	03/23/2007 17:33	S TCH
Endrin ketone	ND		0.047	UG/L	8081	03/23/2007 17:33	3 TCH
germa-BHC (lindane)	ND		0.047	UG/L	8081	03/23/2007 17:33	3 ТСН
gamma-Chlordape	0.029	j	0.047	UG/L	8081	03/23/2007 17:3	3 ТСН
Hentachlor	ND		0.047	UG/L	8081	03/23/2007 17:3	3 TCH
Hentechlor enoxide	ND		0.047	UG/L	8081	03/23/2007 17:3	3 тсн
Methoxychlor	ND		0.047	UG/L	8081	03/23/2007 17:3	3 ТСН
Toxaphene	ND		0.94	UG/L	8081	03/23/2007 17:3	3 TCH
NTSDEL-AQ-SW0403 0002 - PCD3	ND		0.47	UG/L	8082	03/24/2007 11:5	9 GFD
	ND		0.47	UG/L	8082	03/24/2007 11:5	9 GFD
ALOULOF 1221	ND		0_47	UG/L	8082	03/24/2007 11:5	9 GFD
Aroutor 12/2	ND		0_47	UG/L	8082	03/24/2007 11:5	9 GFD
Aroulor 1242 Angelor 1268	סא		0.47	UG/L	8082	03/24/2007 11:5	9 GFD
ALOLUT 1240 American 1254	ND		0.47	UG/L	8082	03/24/2007 11:5	9 GFD
Angelon 1260	ND		0.47	UG/L	8082	03/24/2007 11:5	9 GFD

Date: 03/28/2007 Time: 11:51:44

NYSDEC NYSDEC - REGION 9 REMEDIATION/SPILLS CONTRACT NYSDEC Spills - Reed Rd. landfill: Site#902018

Sample ID: AMISH HOME Lab Sample ID: A7268601 Date Collected: 03/21/2007 Time Collected: 14:00

			Detection			Date/Time	_
Parameter	Result	Flag	Limit	Units	Method	Analyzed	Analyst
NYSDEC - AQ-SW8463 8151 - HERBICIDES (3 COMPO							
2.4.5-T	ND		0.47	UG/L	8151	03/27/2007 15:4	4 TCH
2.4.5-TP (Silvex)	ND		0.47	UG/L	8151	03/27/2007 15:4	4 ТСН
2,4-D	ND		0.47	UG/L	8151	03/27/2007 15:4	4 TCH
Metals Analysis						_	
Aluminum - Total	ND		0.20	MG/L	6010	03/23/2007 17:0	O TWS
Antimony - Total	ND		0.020	MG/L	6010	03/23/2007 17:0	DO TWS
Arsenic - Total	ND		0.010	MG/L	6010	03/23/2007 17:0	DO TWS
Barium - Total	0.038		0.0020	MG/L	6010	03/23/2007 17:0	00 TWS
Beryllium - Total	ND		0.0020	MG/L	6010	03/23/2007 17:0	0 TWS
Cadmium - Total	ND		0.0010	MG/L	6010	03/23/2007 17:0	DO TWS
Calcium - Total	19.2		0.50	MG/L	6010	03/23/2007 17:0	DO TWS
Chromium - Total	ND		0.0040	MG/L	6010	03/23/2007 17:0	DO TWS
Cobalt - Total	ND		0.0040	MG/L	6010	03/23/2007 17:0	DO TWS
Copper - Total	ND		0.010	MG/L	6010	03/23/2007 17:0	DO TWS
Iron - Total	ND		0.050	MG/L	6010	03/23/2007 17:0	00 TWS
Lead - Total	ND		0.0050	MG/L	6010	03/23/2007 17:	DO TWS
Magnesium - Total	8.8		0.20	MG/L	6010	03/23/2007 17:	DO TWS
Manganese - Total	0.007	8	0.0030	MG/L	6010	03/23/2007 17:	DO TWS
Mercurv - Total	ND		0.00020	MG/L	7470	03/23/2007 16:4	41 LH
Nickel - Total	ND		0.010	MG/L	6010	03/23/2007 17:	DO TWS
Potassium - Total	0.96		0.50	MG/L	6010	03/23/2007 17:	DO TWS
Selenium - Total	ND		0.015	MG/L	6010	03/23/2007 17:	DO TWS
Silver - Total	ND		0.0030	MG/L	6010	03/23/2007 17:	DO TWS
Sodium - Total	13.3		1.0	MG/L	60 10	03/23/2007 17:	00 TWS
Thallium - Total	ND		0.020	MG/L	6010	03/23/2007 17:	00 TWS
Vanadium - Total	ND		0.0050	MG/L	6010	03/23/2007 17:	00 TWS
Zinc - Total	ND		0.010	MG/L	6010	03/23/2007 17:	00 TWS
Wet Chemistry Analysis							// D LC
Total Recoverable Phenolics	ND .		0,0050	MG/L	420.2	03/25/2007 07:	44 RLG

100 Northpointe Parkv	vay Buffalo, New York	14228-1884	USA	Tel: (716) 505	-3300	Fax: (716) 505-3301
				C	Date:	March 26, 2007
				Transmission	No.:	······
		Numb	er of pages i	ncluding cover sl	neet:	1
		I	f Transmissio	on is incomplete,	call:	(716)505-3641
		Doc	cument will be	e sent via: 🔀 U.	S. Mail	24 Hour Delivery
TO:	Brian Fisher	<u></u>	<u></u> .	FROM:	Jonath	an Byrne
COMPANY:	Severn Trent Laboratori	es	E	DEPARTMENT:	Microb	iology
FAX NUMBER:	716-691-7991					
cc:						

MESSAGE:

Dear Brian,

The following are the latest results you requested:

(5107)081-0114	Amish Home
Total coliform	TNTC/100mL (TNTC = Too Numberous to Count)
Fecal coliform	< 2/100mL

(5107)081-0116	5361 Reed Rd
Total coliform	42/100mL
Fecal coliform	< <u>2</u> /100mL
E. coli	Positve

Best regards,

matto Jonathan P. Byrne

Supervisor, Microbiology Bureau Veritas Consumer Products Services, Inc.

This transmission is intended only for the use of the individual or entity to which it is addressed and may contain confidential Information that is privileged and exempt from disclosure under applicable law.

If you have received this transmission in error, please notify us immediately by telephone to arrange for its return. Thank you.

	2.0°(Comments
Date Time				Received By	<u>ب</u>	Time	ie .				3. Relinquished By
$\frac{Date}{Date}$ $\frac{1}{7}$		r altho	S	Received By	0 N		<u>Meen</u>			lamousle	2. Relinquished by
			s (specify)	C Hedmieiliens	\$	a hou	Other_7	Days	ys 🗌 21 l	aquireo 48 Hours 🔲 7 Days 🔲 14 D.	24 Hours
ssed if samples are retained h)	(A fee may be asse Months longer than 1 month	ive For I	ab Arch	Disposal By La	lient	Return To Ci			Poison B	Flammable Skin Irritant	Non-Hazard
											Precible Ustard Ide
											1
											*
											-
Lost preserva	XXXX	XXXX	a X	3	6			1601	3/allo	seed Rd	5361
	××××	X X X X	- X	 3				1 1 1 1 1 1	3/21/07	H HOME	AMIS
	81 42 Tol E.	TC TC 82 82	ZnAc/ NaOH	HNO3 HCI NaOH	Unpres. H2SO4	Sed.	Air	Time	Date	.D. No. and Description sample may be combined on one line)	Sample (Containers for each
Conditions of H	51 (20.2 20.2 20.2 20.2 20.2	L 8 L 1 083 081	es Me	Containers & Preservative	-	Matrix				DS	
Special Instruc	Her (Tak Life	326 327 (PC	Bile			r i vomoci		P(wy)	iendshi	LF (90a018) ; fr	Reed Rd
			TO 6010	85		TANISZE	HAD S		Hadz	I KN Q78	BUFF
Page of .	io Number	226	651-1			moer (Area C	7160		HVE	MICHIGAN I	Address 270
Chain of Custody Number 323225	03/22/07		LUSK	NISZP	STA	MAD	iect Manag	Pro		DEC	
	atories, Inc.	Frent Labor	Severn							ecord	Custody F
	L		TREN		î,						Chain of
			SEVE								

 λ_{i}

.

DISTRIBUTION: WHITE - Returned to Client with Report: CANARY - Stays with the Sample: PINK - Field Copy

•

Appendix G

Cover Soil Test Results

BUFFALO OFFICE

5167 South Park Avenue Hamburg, NY 14075 Phone: (716) 649-8110 Fax: (716) 649-8051

Particle Size Distribution Report

Project: REED ROAD LANDFILL

Client: NYSDEC

Project No.: BEV-05-037

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
2 in. 1.5 in. 1 in. .75 in. .5 in. #4 #10 #20 #40 #100 #200	100.0 100.0 95.7 94.2 89.9 87.4 82.1 77.7 75.7 73.6 70.7		

(no specification provided)

Plate

Cortland, NY (607) 758-7182 Rochester, NY (585) 359-2730