
Report, hw905014.2002-05-01-Post ROD Summary

16350 Park Ten Place, Suite 140 • Houston, Texas 77084 Telephone (281) 578-5800 • Fax (281) 578-5875

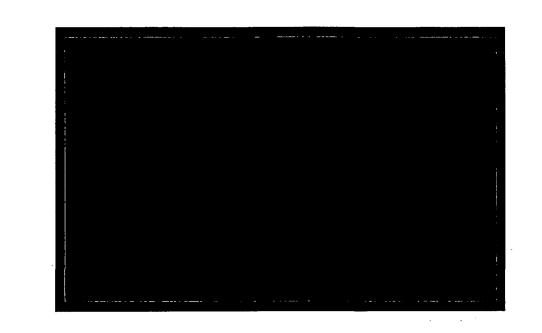
May 1, 2002

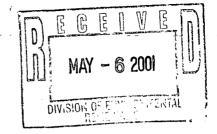
Chief, New York Remediation Branch Attention: Mr. Michael A. Walters, Superfund Site Remedial Project Manager Emergency and Remedial Response Division U.S. Environmental Protection Agency, Region II 290 Broadway, 20th Floor New York, New York 10007-1866

CERTIFIED MAIL –

Re: Alcas Cutlery Facility Olean Well Field Superfund Site, Olean, New York Post ROD Summary Report

Dear Mr. Walters:


Per your request, ENVIRONEERING, on behalf of our client Alcoa, has prepared the above referenced report. The enclosed report summarizes the findings of the Phase I, II, III and IV investigations at the Alcas site. All data collected in those investigations were utilized in the preparation of this report, with the exception of geological cross-sectional data previously used in the Phase II report. These data have been superseded by data collected in the Phase III and IV investigations.


Should you have any questions or comments concerning this matter, please do not hesitate to contact Mr. Robert Prezbindowski with Alcoa at 865-977-3811 or me.

Sincerely, ENVIRONEERING, Inc.

Timothy H. White, REM Principal

cc: Robert Prezbindowski – Alcoa Vivek Nattanmai - NYSDEC

POST ROD SUMMARY REPORT

ALCAS CUTLERY CORPORATION PROPERTY OLEAN WELL FIELD SUPERFUND SITE OLEAN, NEW YORK

May 1, 2002

Prepared for

Alcoa Remediation Alcoa, Tennessee

Prepared by

ENVIRONEERING, INC 16350 Park Ten Place, Suite 140 Houston, Texas 77084 281-578-5800

TABLE OF CONTENTS

1.0 INTR	ODUCTION	1
1.1	Alcas Property Operations and Solvent Release History	1
1.2	Site Background	1
1.3	Objective	
2.0 HYD	ROGEOLOGICAL DESCRIPTION	5
2.1	Regional Geology	
2.2	Regional Hydrology	
2.3	Site Geology	
2.4	Site Hydrology	
	STIGATIVE RESULTS	
3.1	Soil Sampling Results	
3.1.1		
3.1.2		
3.2	Groundwater Sampling Results	
3.2.1	- r r	
3.2.2		
3.3	Soil-Gas Sampling Results	
4.0 DISC	USSION OF RESULTS	
4.1	Understanding DNAPL Releases	
4.2	Soil Data	
4.3	Soil-Gas Data	
4.4	Groundwater Data	
4.4.		
4.4.2		
5.0 REM	EDY SELECTION	24

- Appendix A Geotechnical Data Summaries
- Appendix B Analytical Soil Data Summaries
- Appendix C Groundwater Sampling Results Upper Zone
- Appendix D Groundwater Sampling Results City Aquifer
- Appendix E Soil-Gas Sampling Results
- Appendix F ENSAFE Review of VER Pilot Test
- Appendix G Boring Logs and Well Construction Details
- Appendix H EPA Publication 9355.4-07FS

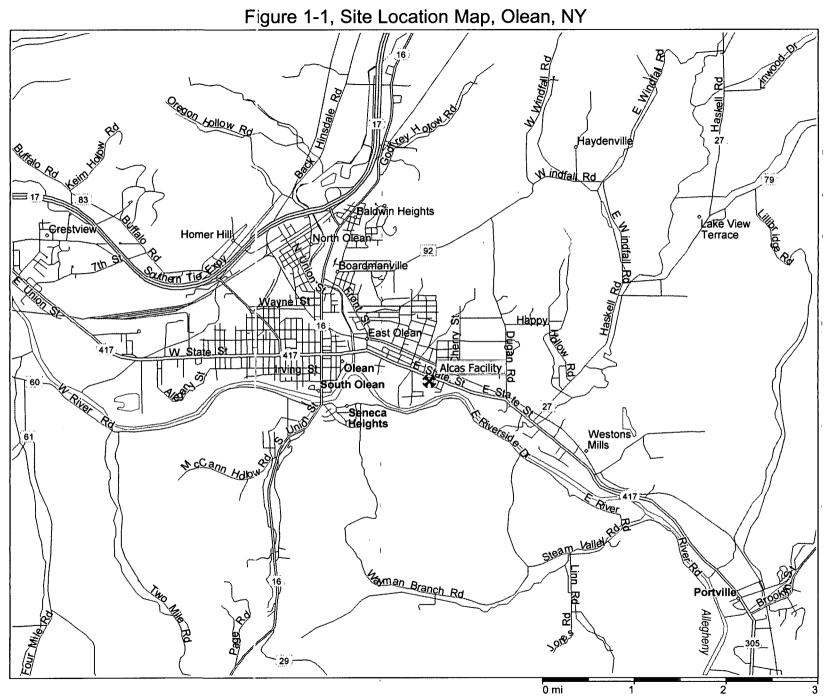
1.0 INTRODUCTION

1.1 Alcas Property Operations and Solvent Release History

The Alcas Cutlery Corporation facility (*hereinafter referred to as "Alcas"*) has manufactured cutlery and sporting knives at the Olean site since 1949. The plant used Trichloroethylene ("*TCE*") in vapor degreasers as part of the finishing operation. The quantity of TCE used annually has been estimated at 4,000 gallons to 6,500 gallons in the late 1970's and early 1980's. Beginning in the mid 1980's usage decreased to 4,000 to 5,000 gallons per year until 1989 when TCE usage stopped. The quantity of distillation residues disposed of from 1949 to 1980 was approximately one 55-gallon drum per month containing approximately 10 percent TCE.

New TCE was shipped and stored in 55-gallon drums in an area along the eastern portion of the main building. The plant operated five vapor degreasers in the main building. Reportedly, during normal manufacturing operations *de minimis* loses of TCE occurred to the floor of the building. In addition, more significant loses of TCE are believed to have occurred periodically from the vapor degreasers. One degreaser in particular, located in the southwest portion of the main building, was reported to leak. Historically, spilled TCE would normally be collected in floor drains, which discharged into the sanitary sewer system. The sanitary sewer lines generally drained southward to a trunk line that ran westward along the south perimeter of the main building. The sanitary line exits the site from a manhole located at the southwest corner of the main building through the southern edge of the property. Possible TCE release points beneath the main building exit throughout the floor drainage system, along the sanitary sewer line and through cracks and seams in the floor.

Exterior to the building, waste TCE was reportedly used as a weed killer along the fence on the northern side of the plant from 1975 to 1979. The quantity applied was estimated at 25 to 40 gallons per year. The leftover waste TCE used for weed killing was most likely disposed of at various points at or around the storage building. The number or specific location of these entry points is unknown.


1.2 Site Background

The Olean Well Field Superfund Site (*hereinafter referred to as the "Site"*) is located in the eastern portion of the City of Olean and east and south of the City in the Towns of Olean and Portville in Cattaraugus County, New York as shown in Figure 1-1. The Olean Well Field Superfund Site incorporates three municipal wells, and spans approximately 800 acres of property principally occupied by industrial facilities. The Allegheny River flows through the southwest and southern portions of the Olean Well Field Superfund Site, and State Routes 16 and 417 provide access to the area.

Municipal wells 18M, 37M, and 38M began pumping in 1960, and continued in operation until 1979 when TCE was detected in water samples from these wells. The wells were shut down, and a former surface water treatment facility was reactivated to supply the City of Olean with water. These wells were shut in and not used again until 1990 when the water produced from these wells was treated using air strippers installed at the well locations.

Following an investigation of the Site, the U.S. Environmental Protection Agency ("*EPA*") added the Olean Well Field to the National Priorities List in September 1983. Between 1983 and 1985, the EPA conducted additional investigations of the Site and undertook some early removal actions and supplied carbon adsorption filters to owners of impacted private wells. The EPA additionally implemented a broad-scale remedial investigation and feasibility study ("*RI/FS*") and implemented initial remedial

1

Copyright © 1988-2000 Microsoft Corp. and/or its suppliers. All rights reserved. http://www.microsoft.com/Streets © Copyright 1999 by Geographic Data Technology, Inc. All rights reserved. © 1999 Navigation Technologies. All rights reserved. This data includes information taken with permission from Canadian authorities © Her Majesty the Queen in Right of Canada. © Copyright 1999 by Compusearch Micromarketing Data and Systems Ltd. Page 1

measures, including regular monitoring of private wells and installation of carbon adsorption units as needed. It was determined that soils and groundwater were contaminated with TCE and other chlorinated constituents, with established pathways of migration to the Site's Upper Water Bearing Zone and Lower Aquifer (*hereinafter referred to as the "City Aquifer*").

Potentially Responsible Parties ("*PRPs*") residing within the Site boundaries and found to be contributing to the groundwater problem include the Alcas Cutlery Corporation (*hereinafter referred to as "Alcas"*) formerly owned and operated by the Alcoa Inc., AVX Corporation, and McGraw-Edison, currently owned by Cooper Industries.

Based on the results of the early studies and interim actions, the EPA issued the Record of Decision for the First Operable Unit ("*OU1 ROD*") in September 1985. The OU1 ROD required six principle actions:

- Installation of air strippers at municipal wells 18M and 37M/38M;
- Extension of the City's public water supply;
- Inspection/repair of an industrial sewer at McGraw-Edison; \mathcal{C}_{ϵ}
 - Recommendation of institutional controls to restrict withdrawal of contaminated groundwater;
 - Institution of a Site Monitoring Plan; and
 - Initiation of a Supplemental RI/FS to evaluate source control measures at PRP facilities.

The EPA issued a unilateral administrative order in February 1986, requiring the PRPs to carry out the actions in the OU1 ROD. To implement the Supplemental RI/FS, the PRPs conducted investigation of their respective facilities and the EPA conducted studies of 10 additional properties. The Supplemental RI/FS identified four areas within the Site as apparent sources of VOC contamination to the groundwater: the Alcas property, AVX, McGraw-Edison, and Loohn's Dry Cleaners and Launderers.

Following implementation of the OU1 ROD, the EPA issued the Record of Decision for the Second Operation Unit ("OU2 ROD") in September 1996. The OU2 ROD set forth selected remedies for the four source areas identified. The remedies involved combinations of Vacuum Enhanced Recovery ("VER"), groundwater pump-and-treat, excavation technologies and implementation of groundwater use restrictions. The selected remedial action for Alcas was VER for the soils and Upper Water-Bearing Zone with no additional groundwater treatment necessary (due to the groundwater capture of 18M in the City 2 Aquifer.)

After the issuance of the OU2 ROD, and for the purpose of obtaining better site definition, a pre-design investigation was performed at Alcas. This investigation was conducted in two phases. The Phase 1 investigation was performed in accordance with Section 4 and Appendix B of the Remedial Design/Remedial Action Work Plan for the Alcas Property (ICF Kaiser, March 1999). Soil samples were collected for Target Compound List (TCL) VOCs. Groundwater samples were collected from each boring for analysis of TCL VOCs, metals, and inorganics. The metals and inorganic compounds were analyzed because they would be indicative of potential equipment fouling. The results of the Phase 1 predesign investigation were transmitted to the EPA on August 31, 1999.

Because the results of the Phase 1 investigation did not sufficiently enable characterization of source constituents and impacted media and suggested that geological conditions at the facility are inconsistent with the original site conceptual model inferred in the ROD, Alcoa submitted a work plan for a Phase 2 investigation of the site on September 19, 1999. Phase 2 investigation activities included a screening-level passive soil gas survey. Passive soil gas detectors were installed on approximate 100-foot center grid pattern throughout the area south of the main plant building. Additional borings were also drilled,

and several existing borings were extended to the top of the City Aquifer. Also, the new soil borings were located to coincide with selected passive soil gas sampling locations. Each soil boring was continually logged and selected samples were collected for TCL VOC and geotechnical analysis. The field investigation included the collection of groundwater samples from wells both on and off the facility, screened in both the Upper and City Aquifers, for VOC analysis. Five of the groundwater wells sampled were also monitored for parameters that would measure the presence of chlorinated compounds. Results of the Phase 2 pre-design investigation were transmitted to the EPA on December 7, 1999. Overall, the pre-design (Phase 1 & 2) investigation consisted of 19 soil borings, 98 soil samples, 43 passive soil gas sampling modules, and 13 groundwater wells samples, eight open bore hole water samples, and 19 geotechnical soil samples.

After review of the Phase 1 and Phase 2 data it was becoming obvious to Alcoa that the governing source of TCE in the Upper Water Bearing Zone and the City Aquifer was not from the shallow soils at the rear of the property as inferred in the OU2 ROD. Furthermore it became obvious that fundamental problems existed with the selected remedy for the Alcas site. Alcoa presented a request for a remedy update in January 2000. At the same time Alcoa also presented to the EPA a document entitled "*Site Evaluation and Conceptual Model Report*". This document presented an updated conceptual model of the Alcas site and presented the case that the governing source of the chlorinated compounds found in the Upper and City aquifers was from residual DNAPL located underneath the main building.

EPA requested that Alcoa present data to substantiate their claim that a "residual DNAPL"¹ was present underneath the main building at Alcas. A Phase III investigative workplan was developed and implemented. A total of 12 micro-wells were installed on and off-site to define the direction of groundwater flow in the Upper Water Bearing Zone, to verify that affected groundwater is migrating from under the main manufacturing building, and to delineate the down gradient extent of the Upper Water Bearing Zone affected groundwater.

The results of the Phase III investigation did not show the complete delineation of the Upper Water Bearing Zone plume in the southerly and northeasterly directions. In addition, the EPA raised a concern during a July 2001 meeting at their offices, regarding the extent of the plume in the westerly direction. To further delineate the extent of impact and further characterize the hydrogeologic conditions at the site a Phase IV investigation was proposed and implemented.

1.3 **Objective**

The purpose of this document is to provide a comprehensive technical report that summarizes all the Post-ROD data collection for the Alcas site.

¹ "Residual DNAPL is a DNAPL held in soil pore spaces by capillary forces (negative pressure on DNAPL). Residual will remain trapped within the pores of the porous media unless the viscous forces (caused by the dynamic force of water against the DNAPL) are greater than the capillary forces holding the DNAPL in the pore." USEPA, "Estimating Potential for Occurrence of DNAPL at Superfund Sites". Publication 9355.407FS, January 1992. See Appendix H.

2.0 HYDROGEOLOGICAL DESCRIPTION

2.1 Regional Geology

The following discussion of regional geology is based on "Olean Well Field Remedial Investigation and Feasibility Study, Town and City of Olean, New York", prepared by Engineering-Science, May 1985.

The City of Olean is located in the Appalachian Highland Physiographic province, an upland of moderate relief underlain by sedimentary rocks dipping south at approximately 2 degrees. Several continental ice sheets covered most of this region during the Pleistocene Epoch (1,600,000 to 10,000 years before the present). The glaciers, however, never progressed south of the Allegheny River Valley in western New York. The nonglaciated area, called the Salamanca Re-entrant, is the northernmost area in the eastern United States to escape Pleistocene glaciation.

Geologic and geophysical analysis of borehole data reveal that the upper 100 feet of sediment can be divided into 5 lithologic units, distinguished primarily on the basis of color, texture, grain size, and mode of deposition. These units are identified as Units A through E, from oldest to youngest (deepest to shallowest) and discussed below.

With the exception of Unit E, the sediments described are probably associated with a late Wisconsinian glaciation. Unit A is primarily glacio-lacustrine clays directly above the bedrock. Unit B is likely a glacial outwash associated with the melting of large blocks of disintegrating (stagnant) ice. The unsorted sand, gravel, and silt portion of the unit may actually be a melt-out till. The sandier lenses, some of which measures, are stratified, reflect channelized deposition from braided streams.

The till unit (Unit C) is identified by its olive to olive-gray appearance and poorly sorted texture. Grain size curves, from wet sieve and hydrometer analysis, clearly distinguish Unit B as much coarser than Unit C with Unit C containing a large percentage (>50 percent) of silt and clay in addition to gravel and sands.

The sequence of sediments deposited above Unit C appears to be fluvial in origin although the sequence can be subdivided into 2 units. Unit D is a coarse sandy gravel directly overlying Unit C that has been classified as glacio-fluvial materials. Fine sands and silts and occasional clay or gravel deposits make up Unit E, and have been grouped as recent alluvium, implying deposition by modern river processes of the Allegheny River.

2.2 Regional Hydrology

Hydrogeologic units are units of consistent hydraulic properties. They may be composed of one lithologic unit, a group of lithologic units, or parts of a unit. Consequently, lithologic and hydrologic units may not coincide.

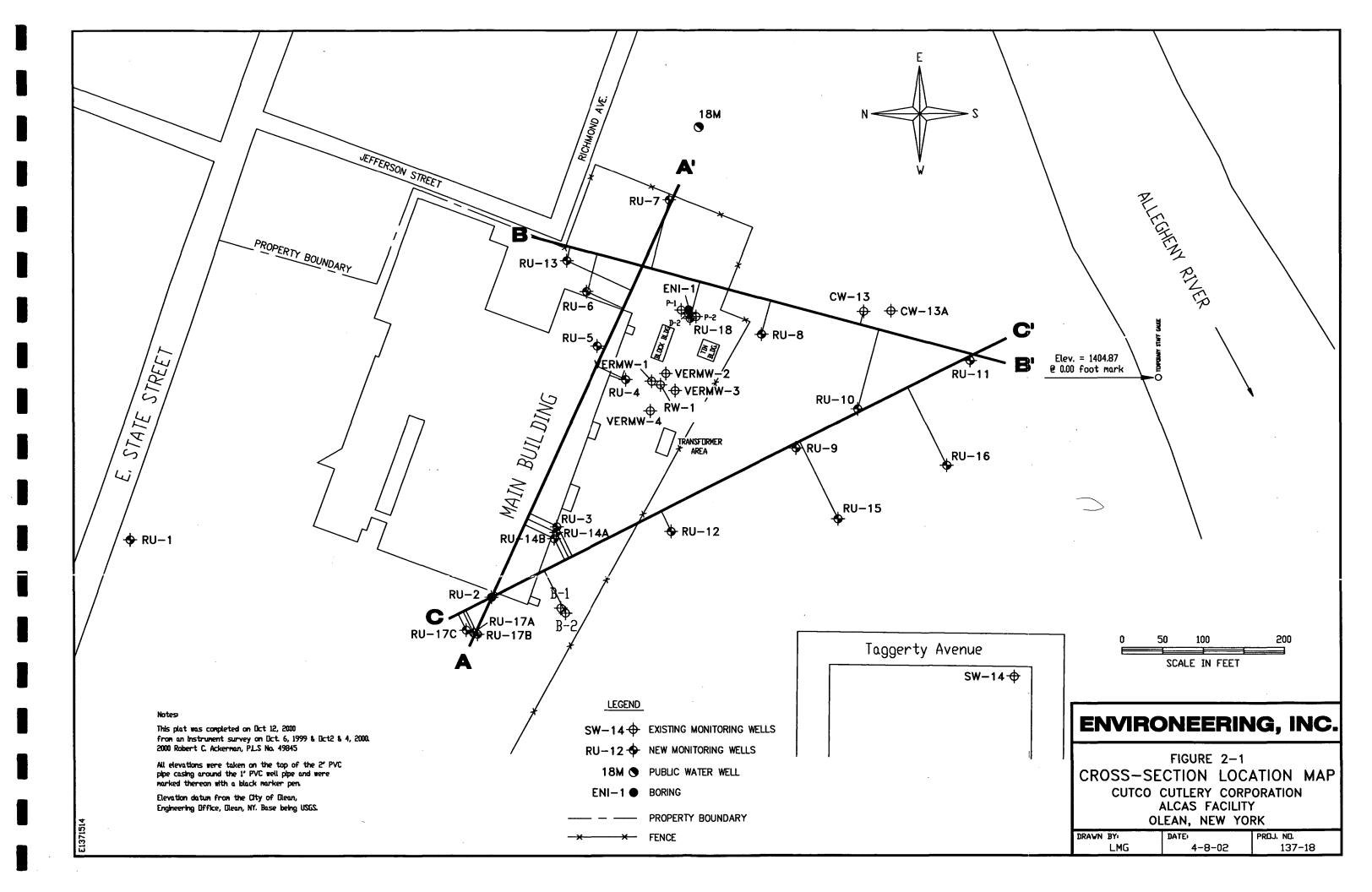
The five lithologic units identified in the area have been grouped into four hydrologic units: Upper Water-Bearing Zone, Lower Aquifer, Upper Aquitard, and Lower Aquitard. Unit D (glacial fluvial sands and gravel) and Unit E (recent fluvial deposits including fine sands and silts and some fill) comprise the Upper Water-Bearing Zone, although local clay lenses may act as discontinuous semi-confining layers. Unit B (glacial outwash) combined with sandy lenses in the upper part of Unit A, forms the City Aquifer.

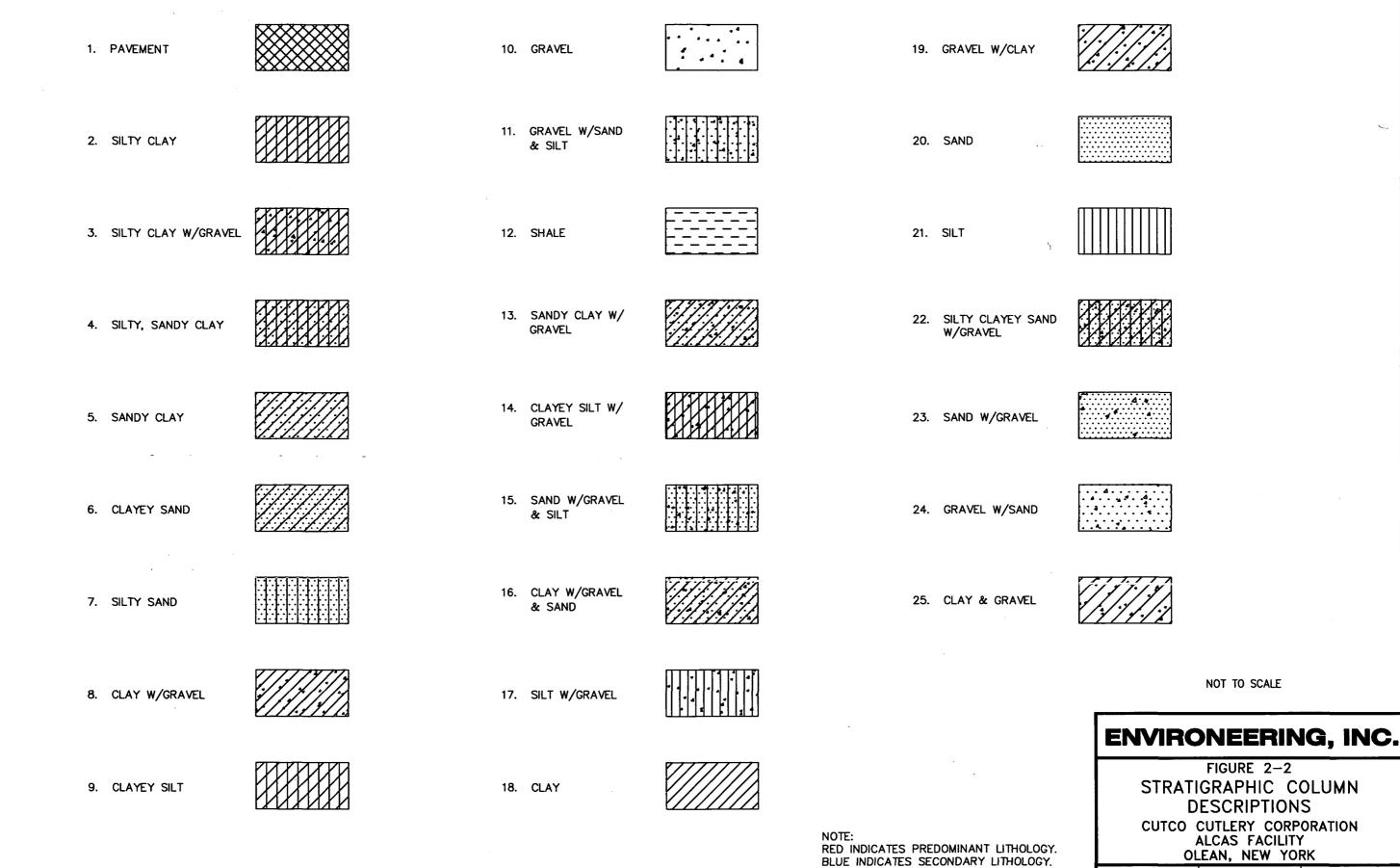
Unit C (till, perhaps more specifically a lodgment till) comprises the Upper Aquitard, which separates the two water-bearing units. The layered glacio-lacustrine silts and clays of Unit A form a Lower Aquitard beneath the City Aquifer separating this aquifer from the underlying bedrock.

2.3 Site Geology

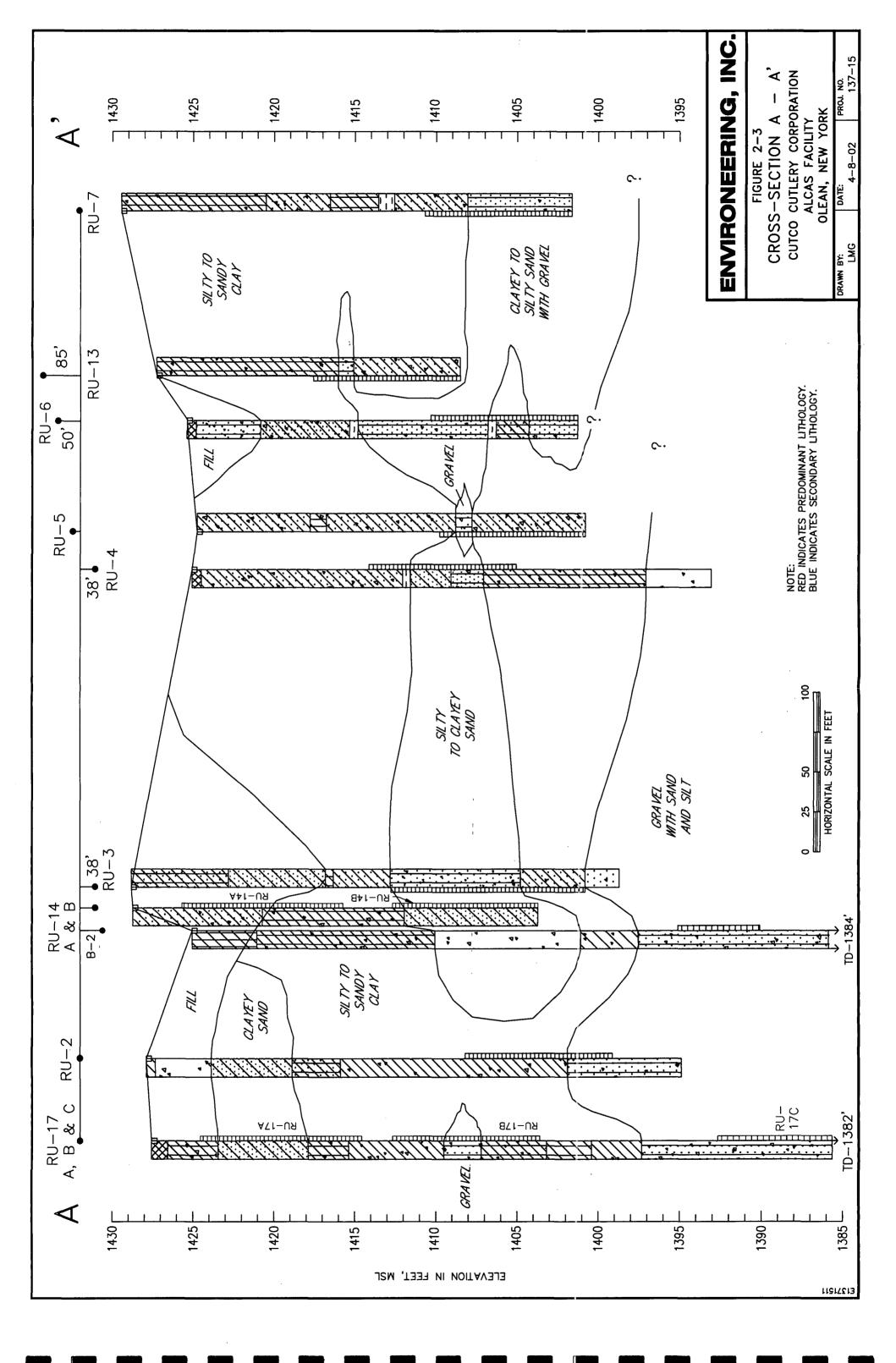
The Site geology generally follows the regional geology described in Section 2.1. At the Site, four of the five lithologic units have been identified. To illustrate the Site geology, three geological cross sections were constructed. The location of the cross sections is shown in Figure 2-1. The symbols representing the different stratigraphies used in the cross sections are shown in Figure 2-2. The lithologic units logged during this investigation are shown in Cross-Section A-A', B-B', and C-C' in Figures 2-3, 2-4, and 2-5, respectively.

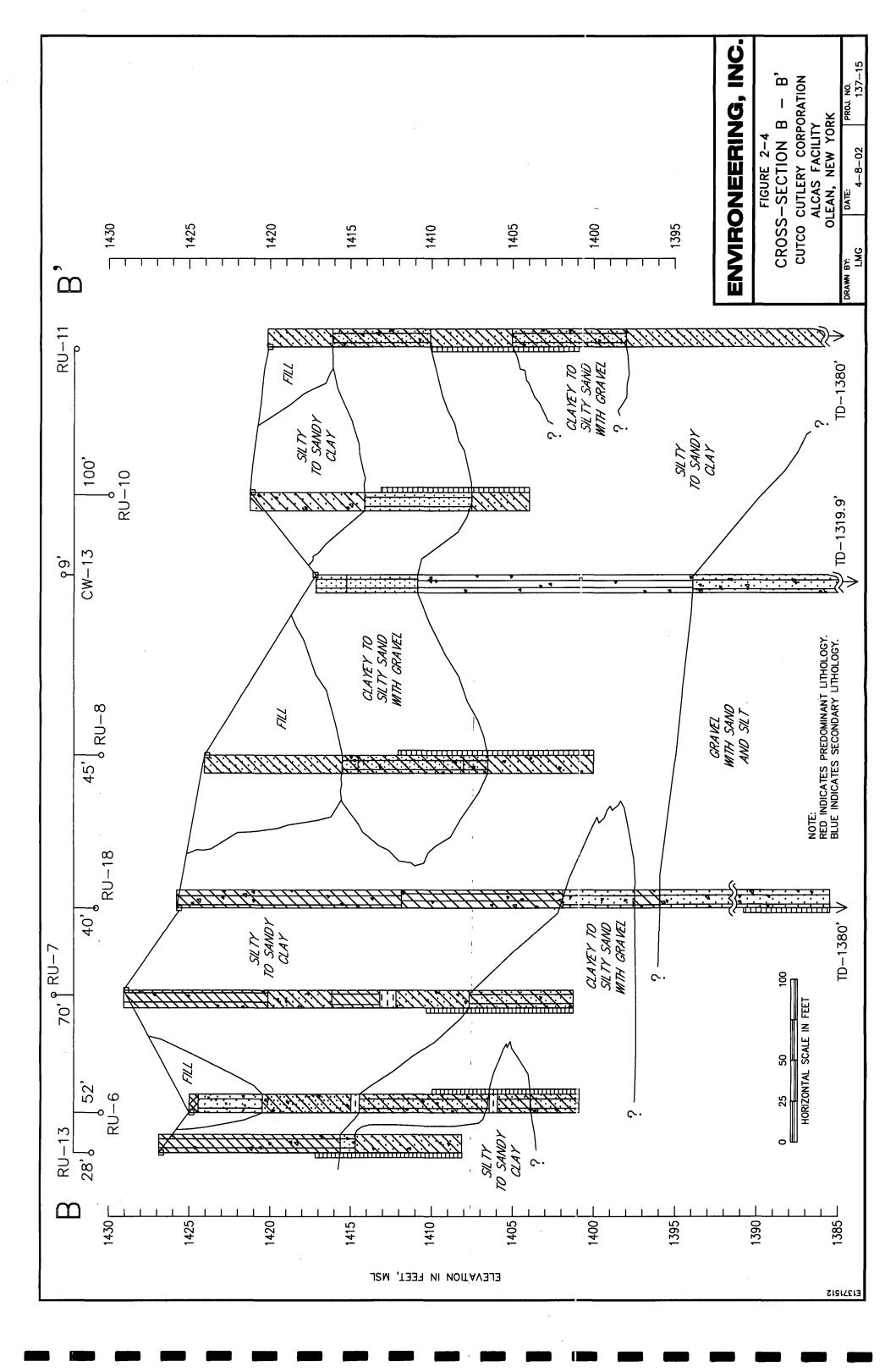
The field logging compared very favorably to the lithologic descriptions derived from the geotechnical laboratory data. Of the 67 geotechnical samples collected, only 10 had a different lithological classification than was logged in the field. Generally, the field descriptions for these samples were in agreement with the percentages of sands and clays. Where a difference between the field and the laboratory description occurred, the laboratory description is the one used in this report. Most of the discrepancies were when the sample contained 45 to 50 percent sand, but was logged in the field as a clay, or vice versa.

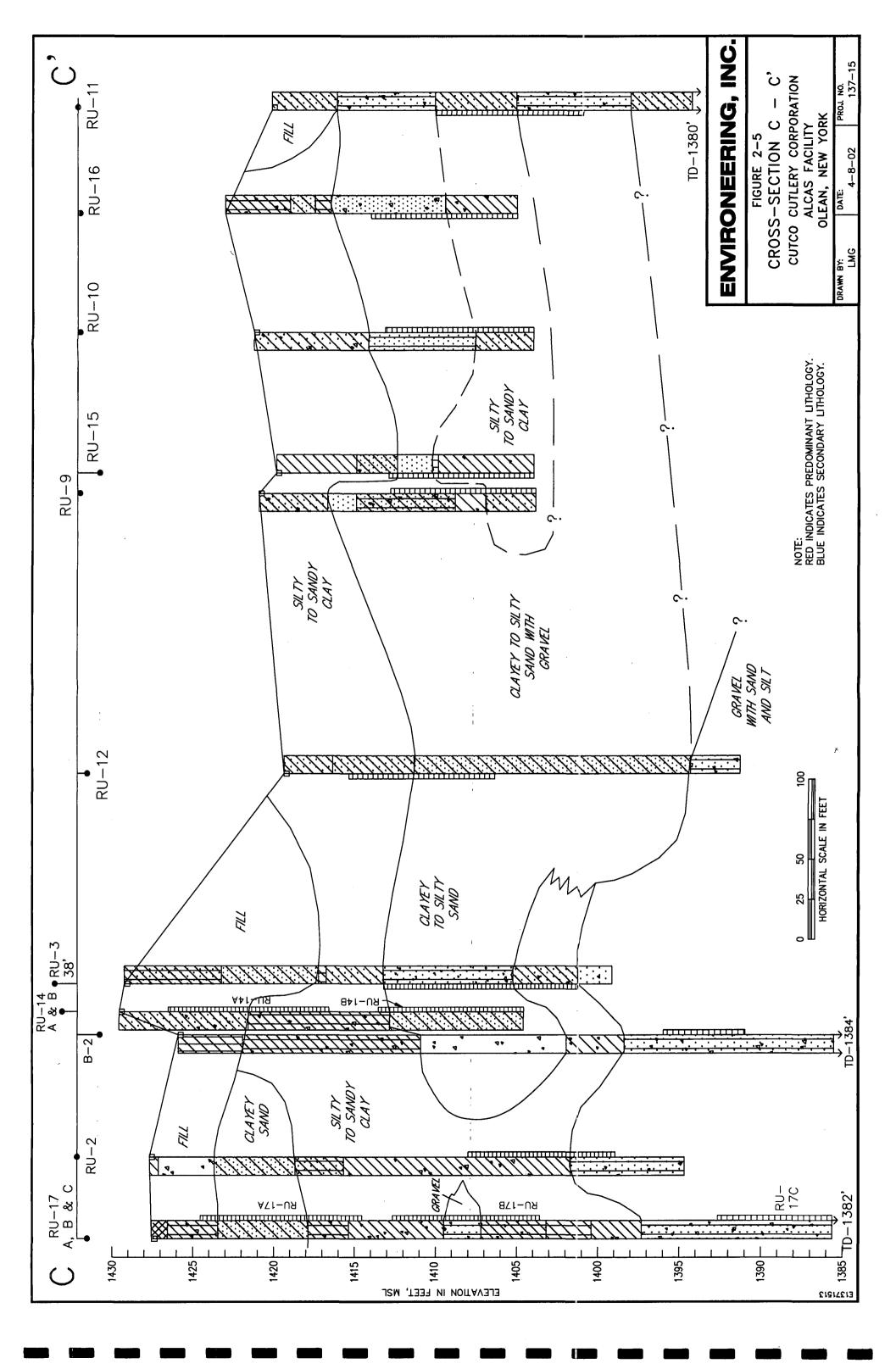

The lowest unit encountered during this investigation is the City Aquifer (Unit B), which is predominately gravel with sand and clay. Based on the sieve analyses, the percentage of sand in this unit ranged from 92 to 95 percent sand. This unit is very permeable, and yields significant quantities of water. The top of the City Aquifer is 25 to 30 feet deep (approximate elevation of 1400 feet) in the western portion of the Site dipping to the east and south. The top of the City Aquifer was not encountered at a depth of 40 feet (elevation of 1380 feet) in RU-11.


The Upper Aquitard (Unit C) is silty clay with gravel, and was identified by its olive gray color and/or the gravel content. This unit contained 50 to 97 percent clay based on the sieve analyses. The thickness of this unit is highly variable across the Site.

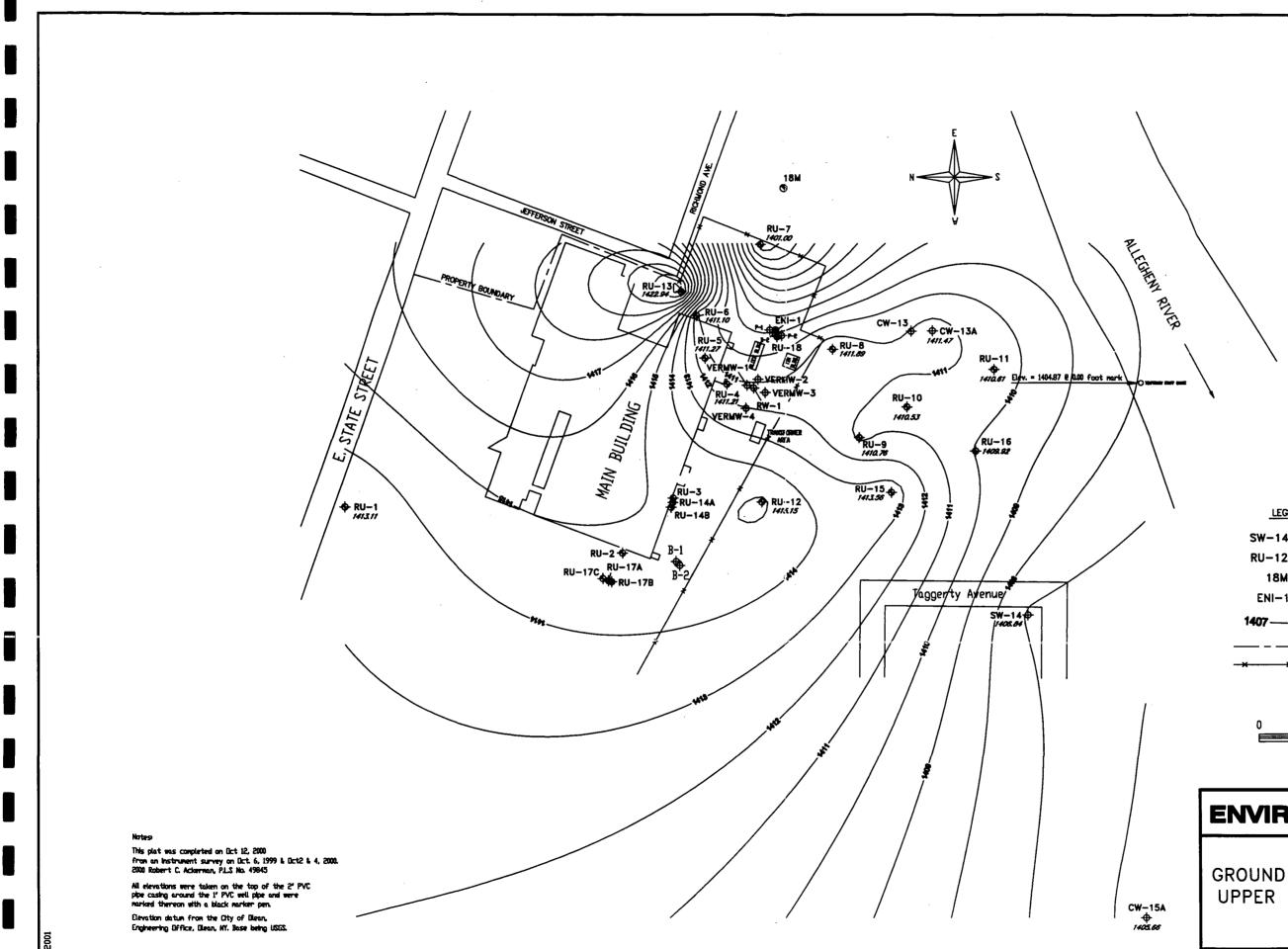
As discussed in the Section 2.2 Site Geology, the Upper Water-Bearing Zone appears to be channelized stream deposits between the Section B-B' line on the east and a north-south line through RU-2. This channel ranges from 2 to 10 feet thick along the southern end of the Alcas Facility building as shown in Section A-A'. Of the eight borings within the channel, only two contained any clay in the Upper Water-Bearing Zone. This means that the hydraulic conductivity of this zone is increased significantly over the sediments outside the channel containing clay.


As shown in Section B-B', Upper Water-Bearing Zone is discontinuous, and is not at a consistent elevation within the Units D and E. In addition, five of the eight borings show that the Upper Water-Bearing Zone contains a significant portion of clay. This suggests that this section line is on the edge or outside of the channel.


Section C-C' clearly shows a thick (15 to 20 feet) of silty sand in the south of the Alcas Facility. Of the nine southern-most borings on this cross section, only three contain any clay in the Upper Water-Bearing Zone. This thicker and coarser sequence of sediments provides a preferential pathway for water and constituent migration.



	OLEAN, NEW YO	
DRAWN BY:	DATE:	PROJ. NO.
LMG	4-8-02	137–18


2.4 Site Hydrology

Groundwater flow in the Upper Water-Bearing Zone is depicted in the water table contour map in Figure 2-6. Based on this water table contour map, groundwater is flowing to the east near the Alcas Building and toward the south in the southern part of the study area. A groundwater divide exists along the line immediately from the southwest corner of the Alcas building to RU-15, between RU-10 and RU-16, to immediately north of RU-11. The shape of the water table contour map clearly indicates the pumping from 18M, 37M, and/or 38M.

Historically, Municipal wells 18M, 37M, and 38M began pumping in 1960, and continued in operation until 1979 when TCE was detected in water samples from these wells. These wells were shut in and not used again until 1990. The chlorinated solvents migrated through the unsaturated zone under the building, through the Upper Water Bearing Zone and into the City Aquifer. Pumping from 18M caused groundwater flow to reverse in the City Aquifer back toward 18M from under the main building at Alcas. In addition, a cone of depression was created in the Upper Water Bearing Zone that was a subdued replica of the cone of depression in the City Aquifer.

The capture zone for 18M in the Upper Water-Bearing Zone is north and east of the groundwater divide and it extends north or the Alcas building. The northern extent may extend as far north as East State Street.

An area of high water appears in the vicinity of RU-13. This mound of high water does not appear to be a natural occurrence, but rather caused by some man-made source. It appears the source of this mound is likely from a release from a nearby surface water line or storm/sewer line. Several city lines have been identified in the area, which line and how long it has been leaking is currently unknown.

0 7	5 150	3	00				
SCALE IN FEET							
ENVIRO	NEE	NING	INC				
		.					
	FIGURE 2	2-6					
GROUND V	VATER C	ONTOU	R MAP				
UPPER W							
ALCAS FACILITY							
OLEAN, NEW YORK							
DRAWN BY	DATE	PROJ.					
LMG	4-26-0		37-20				

LEGEND	
S₩-14�	EXISTING MONITORING WELLS
RU-12 🔶	NEW MONITORING WELLS
18M 👁	PUBLIC WATER WELL
ENI−1 ●	BORING
1407	GROUNDWATER CONTOUR IN FEET
	PROPERTY BOUNDARY
	FENCE

3.0 INVESTIGATIVE RESULTS

Investigative data collected from 1999 to date is summarized below. This data summary consists of soil, soil-gas and groundwater sampling results. Data summary tables and figures are provided in the referenced appendices. The data was presented in this manner to follow the sequence of the investigations and for ease of presentation and mutual understanding.

3.1 Soil Sampling Results

Geotechnical (*physical*) and analytical data are summarized as follows in the order of collection. Corresponding boring location maps are included for orientation purposes.

3.1.1 Geotechnical Data Summaries

Geotechnical data is provided in Appendix A in the following order.

- Phase II Investigation (October, 1999)
 - Data Summary Table (Table 3-1)
 - Laboratory Data Sheets
- Phase III Investigation (September, 2000)
 - Laboratory Results
- Phase IV Investigation (September, 2001)
 - Laboratory Results
- Composite Boring Location Map (Figure 3.1.1)

Geotechnical data was not collected during the Phase I Investigation.

3.1.2 Analytical Data Summaries

Analytical soil data summaries are provided in Appendix B in the following order.

- Phase I Investigation (July, 1999)
 - Analytical Summary Table (Table 3-2)
 - Analytical Soil Data Location Map (Figure 3.1.2)
- Phase II Investigation (*October*, 1999)
 - Analytical Summary Table (Table 3-3)

- Analytical Soil Data Location Maps (Figures 3.1.3 and 3.1.4)
- Phase IV Investigation (September, 2001)
 - Analytical Summary Table (Table 3-4)
 - Boring Location Map (See Figure 3.1.1)

Analytical soil data was not collected during the Phase III Investigation.

3.2 Groundwater Sampling Results

Groundwater analytical data are summarized as follows in the order of collection. Corresponding well location maps are included for orientation purposes.

3.2.1 Upper Zone Data

Groundwater sampling data for the Upper Zone is provided in Appendix C in the following order.

- Phase I Investigation (July, 1999)
 - Analytical Summary Table (Table 3-5)
 - Boring Locations & Data Plot (Figure 3.2.1)
- Phase II Investigation (October, 1999)
 - Field and Analytical Data Summary Table (Table 3-6)
 - Well/Boring Locations & Data Plot (Figure 3.2.2)
- Phase III Investigation (October, 2000)
 - Analytical Summary Table (Table 3-7)
- Phase IV Investigation (September, 2001)
 - Analytical Summary Table (Table 3-8)
 - Well Locations & Data Plot (Composite of Phase III & IV Work) (See Figure 3.2.3)

3.2.2 City Aquifer Data

Groundwater sampling data for the Lower Zone is provided in Appendix D in the following order.

- Phase II Investigation (October, 1999)
 - Field and Analytical Data Summary Table (Table 3-9)
 - Well/Boring Locations & Data Plot (See Figure 3.2.2)

- Phase III Investigation (October, 2000)
 - Analytical Summary Table (Table 3-10)
- Phase IV Investigation (September, 2001)
 - Analytical Summary Table (Table 3-11)
 - Well Locations & Data Plot (Composite of Phase III & IV Work) (See Figure 3.2.3)

Groundwater samples were not collected in the Lower Zone during the Phase I Investigation.

A composite of all well data for both the Upper and Lower Zones is provided in Table 3-12 at the end of Appendix D.

3.3 Soil-Gas Sampling Results

Soil gas sampling data collected during the Phase II investigation is summarized in Appendix E as follows.

- Tabulated Summaries of GORE-SORBER[®] Screening Survey Data (Tables 3-13 & 3-14)
- GORE-SORBER[®] Screening Survey Plots for PERC, TCE, and cis- & trans-1,2-DCE

4.0 DISCUSSION OF RESULTS

4.1 **DNAPL Releases**

When released into the environment, chlorinated organic solvents that are heavier than water are commonly referred to as dense nonaqueous phase liquids or DNAPLs. Because they are heavier than water, DNAPLs can readily migrate downward and through groundwater into the subsurface. DNAPL can exist in the subsurface as free and residual DNAPL. When released, DNAPL will move downward through the subsurface under the force of gravity or laterally along the surface of sloping fine-grained soil units.² The DNAPL must overcome the capillary forces to continue its movement. Point release types of equal mass, will typically travel much deeper than release types that are spread over greater surface areas. DNAPLs will distribute in the subsurface as both disconnected blobs and ganglia of liquid referred to as "residual", and in larger accumulations referred to as "pools". The portion of the subsurface where DNAPLs are located, either free or residual, is commonly referred to as the DNAPL zone. The DNAPL zone is that portion of the subsurface where the released immiscible liquids (via free-phase DNAPL migration and chemical diffusion) are present within the subsurface media.

Free DNAPL refers to the presence of DNAPL at saturation higher that residual DNAPL. Free DNAPL is distinctive from residual DNAPL in that free DNAPL is still potentially capable of traveling in the environment if it can overcome capillary forces.

The trailing end of a migrating DNAPL being trapped in pore spaces or fractures by capillary forces forms residual DNAPL. The amount of residual DNAPL contained in the subsurface is a function of the DNAPL density, viscosity, and interfacial tension and the geologic characteristics of the site such as, soil pore size, permeability, capillary pressure, root holes, small fractures, and slickensides found in silt, clay layers, etc. The subsurface DNAPL distribution is typically impossible to locate or delineate accurately. DNAPL migrates preferentially through selected pathways, and is affected by small-scale changes in the stratigraphy. Therefore, the ultimate path taken by DNAPL can be very difficult to characterize and predict.

Both free and residual DNAPL give rise to contaminant vapors in the unsaturated zone and can cause a dissolved phase plume in the saturated zone (below the water table). Ground water flowing past the DNAPL slowly dissolves soluble components of the DNAPL, forming a dissolved or aqueous phase plume zone downgradient of the DNAPL zone. Contributing to evaporation and aqueous dissolution, with time some chemical diffusion of the DNAPL can occur into the surrounding soil matrix. These DNAPL depleting mechanisms typically operate very slowly under natural conditions; thus, subsurface DNAPL tends to persist as a long-term source of dissolved phase derivatives into groundwater. Complete dissolution of DNAPL in the saturated zone can take decades or centuries due to the limits on chemical solubility, groundwater velocity, and vertical dispersion.

The aqueous plume zone is that portion of the groundwater surrounding and downgradient of the DNAPL zone where DNAPLs are not present. The plume zone originates from and extends beyond the DNAPL zone as it progressively migrates with ground water flow for as long as the DNAPL zones persist. From a mass perspective, typically the mass of free or residual DNAPL significantly exceeds that which is sorbed to soils, dissolved in the groundwater or present as vapors in the vadose zone. Depending on the volume of the release and site-specific subsurface characteristics, the plume zone may extend over a large distance

² USEPA, "Estimating Potential for Occurrence of DNAPL at Superfund Sites". Publication 9355.407FS, January 1992.

from the entry zone and the underlying DNAPL zone. The migration of constituents in these plumes is subject to advection, dispersion, sorption, and degradation.

The plume zone will often include a light vapor phase just above the water table. The volatilization of the residual DNAPL and from the dissolved plume will form a sinking, density driven vapor plume that can condense on the surface of the water table. The time for volatilization of DNAPL to occur is highly variable and will fluctuate with changing site conditions (e.g., dry/wet soils, discontinuous channels, voids, and coarse/fine-grained soils).

The DNAPL zone is typically the source area of dissolved and vapor phase transport of chlorinated compounds, which affect soils within the plume zones to the extent the plume migrates. While it represents a fraction of contaminant mass and vehicle for continuing transport of dissolved phase compounds, the plume-affected media is not the governing source component at chlorinated sites in terms of generation and persistence, except where all residual liquids in the origin DNAPL zone have dissipated.

4.2 Soil Data

The soil data is extensive both horizontally and vertically south of the building footprint, in the "backyard" area of the Alcas site (See Figure 3.1.4). The data reflects soils affected in this area, from near surface to a depth of approximately 46 feet below grade. However, based on the latest methods to determine the presence of DNAPL in soils, the detected soil concentrations do not indicate the presence of residual DNAPL in this portion of the site. The latest methods to determine the presence of residual DNAPL in soil is included in EPA Pub 9355.4-07FS, attached as Appendix H.

Instead, the concentrations suggest the soils are within a plume zone, impacted by the transport of dissolved phase derivatives migrating from residual DNAPL, upgradient of the area. According to Cohen and Mercer, the erratic nature of the concentrations found in soils, which corresponds to groundwater data in the same area, and vicinity soil gas data, indicate that a DNAPL zone is nearby³. While it is possible that some of the "backyard" soils may be affected by trace amounts of source residual from minor, episodic surface releases in the area, the data does not reflect such occurrences.

The current method of assessing the presence of residual DNAPL using concentrations in soil samples, is based on soil/water partitioning relationships. The partitioning calculation tests the assumption that all organics in the subsurface are either dissolved in groundwater or adsorbed to soil. If the calculation results in dissolved phase concentrations that are greater than the effective solubility or pure phase solubility, then DNAPL presence is likely in the area of the sample⁴. An example of the calculation, per EPA guidance in Attachment 1, can be shown as follows.

Partitioning Equation – $C_w = (C_t \times \rho b) \div (Kd \times \rho b + \theta_w)$; where,

 C_w = theoretical pore water concentration assuming no DNAPL (mg/l) C_t = measured concentration of organic compound in soil (mg/kg) ρb = dry bulk density of the soil (typical range from 1.8 to 2.1 kg/l) Kd = partition coefficient between pore water and soil = K_{oc} x f_{oc}

³ R.M. Cohen and J.W. Mercer, <u>DNAPL Site Evaluation</u>, R.S. Kerr Environmental Research Laboratory, U.S. EPA, Ada. OK, John Matthews-EPA Project Officer, C.K. Smoley, Boca Raton, Florida, 1993. (*Section 7, Table 7-4*).

⁴ R.M. Cohen and J.W. Mercer, <u>DNAPL Site Evaluation</u>, R.S. Kerr Environmental Research Laboratory, U.S. EPA, Ada, OK, John Matthews-EPA Project Officer, C.K. Smoley, Boca Raton, Florida, 1993. (*Section 7, pages 7-1 through 7-11*

 K_{oc} = organic carbon-water partition coefficient

$$f_{oc}$$
 = fraction of organic carbon in soil (mg/mg)

 $\theta_{\rm w}$ = water-filled porosity of soil

 C_w is then compared to the pure phase solubility (S_i) of TCE, to assess the likelihood of DNAPL presence in the area of the sample. (The S_i of TCE is 1,100 mg/l.)

For the most conservative analysis using site-specific data, or in other words the hypothetical worst case scenario, the variables are developed as follows.

 $C_t = 120 \text{ mg/kg} = \text{the maximum concentration detected in the soil samples (This value is anomalous and well above representative concentrations found in site soils. The soil data averages well below 2.5 mg/kg.)$

 $\rho b = 1.8 \text{ kg/l} = \text{the lowest bulk density value in the typical range}$ (Typical range is from 1.8 to 2.1 kg/l.)

K_{oc} = 125.9 for TCE (from the literature)

 $f_{oc} = 0.005 =$ the lowest organic content detected in the soil samples

Kd = 125.9 x 0.005 = 0.63

 $\theta_w = 0.184 = minimum$ porosity value determined from the soil samples

Therefore, the worst case, theoretical pore water concentration is determined:

 $C_w = (120 \text{ x } 1.8) + (0.63 \text{ x } 1.8) + 0.184 = 163.9 \text{ mg/l}$

163.9 << S_i for TCE (1,100); therefore suggesting the absence of DNAPL in the area of the soil samples.

The calculation represents an overly conservative, worst-case scenario, primarily because the concentrations detected in site soil samples average below 2.5 mg/kg that is well below the maximum value of 120 mg/kg used in the calculation. If a representative soil concentration was used, say 2.5 mg/kg, the calculation would result in a C_w value of 3.4 mg/l. In any case, the soil concentrations found at the site, clearly and uniformly suggest the absence of DNAPL in the area of the soil samples.

Therefore, in summary, the soil data supports that the DNAPL zone and governing (if not sole) source of dissolved and vapor phase derivatives lies under the building and not in the area of the soil samples.

4.3 Soil-Gas Data

Many DNAPLs, including most halogenated solvents, have high vapor pressures and will volatilize in the vadose zone to form a vapor plume around a DNAPL source. Volatile organic compounds (VOCs) dissolved in groundwater can also volatilize at the capillary fringe into soil gas.⁵

⁵ USEPA, <u>DNAPL Site Characterization</u>. Publication 9355.4-16FS, EPA/540/F-94/049, PB94-963317. September 1994.

The Phase II soil gas investigation indicated the presence of vapor phase mass of several chlorinated compounds (PCE, TCE, and DCE) at the site. The data clearly illustrates an area of concentration in the "backyard" in the form of a continuous "band", extending from the southeastern corner area of the building, south-southeasterly through the corner of the property (See figures presented in Appendix E). The data also illustrates another possible, yet smaller "band" area to the west-side of the "backyard". These vapor masses represent vapor phase derivatives from dissolved phase transport in groundwater and/or unsaturated source areas.

The two "band" areas of soil gas extend or sequence in north-south configurations south of the building and are comparable to the Upper Zone groundwater flow direction. These two bands also appear to align with the areas most likely to have leaks or solvent release points at the facility property, namely the degreasers and the sewer lines under the building. The areas also could be indicative of potential episodic, surface release points outside of the building.

When evaluating the more concentrated "band" area to the east, the TCE vapor data which stems from the parent compound at the site, is clearly a continuous formation in terms of vapor mass. The DCE data, which is the next order product of TCE, coincides with the parent TCE and is continuous to a lesser degree. As expected, the PCE vapor, likely derived from a commercial grade fraction of the TCE solvent used at the facility, is not detected in the same continuous formation. These data patterns present two key observations related to site characterization:

- 1. Because the parent compound and its first order product reflect continuous mass that coincides with the core of the Upper Zone groundwater plume migrating from beneath the building, and preferential transmissive areas apparent within the fluvial zone; this data likely reflects vapor phase mass associated with dissolved phase transport from an upgradient source area; and
- 2. Because the PCE source is likely a small, commercial grade fraction of the parent compound used at the facility (TCE), PCE vapor mass would be expected to be small, isolated and short-lived. PCE would not be expected to be found in a continuous, sustained formation in association with (overlying) dissolved phase transport in groundwater. Therefore, the PCE vapor mass likely represents detection of small, isolated, and episodic surface releases (i.e., spills, weed-killing spray, etc.) in the "backyard" area.

The soil-gas data is consistent with other Post ROD data collected at the Alcas site, and adds definition to site characterization. The data supports the evidence of a governing DNAPL zone under the main plant building, and adds possible explanation and definition for potential minor releases that could have occurred episodically and surficially in the "backyard" area.

4.4 Groundwater Data

When 1 percent of the aqueous solubility of a DNAPL compound is detected in the groundwater, it is highly suggestive that DNAPL is present in the aquifer. The 1 percent aqueous solubility limit is considered to be the strongest indicator of DNAPL presence in the saturated zone in accordance with the current state of practice, EPA guidance⁶, and the latest research by Dr. John A. Cherry at the Waterloo Center for Groundwater Research. As shown in the data tables provided in Section 3, groundwater concentrations in the Upper and City Aquifers exceed 1 percent of the aqueous solubility for TCE. This

⁶ USEPA, "Estimating Potential for Occurrence of DNAPL at Superfund Sites". Publication 9355.407FS, January 1992.

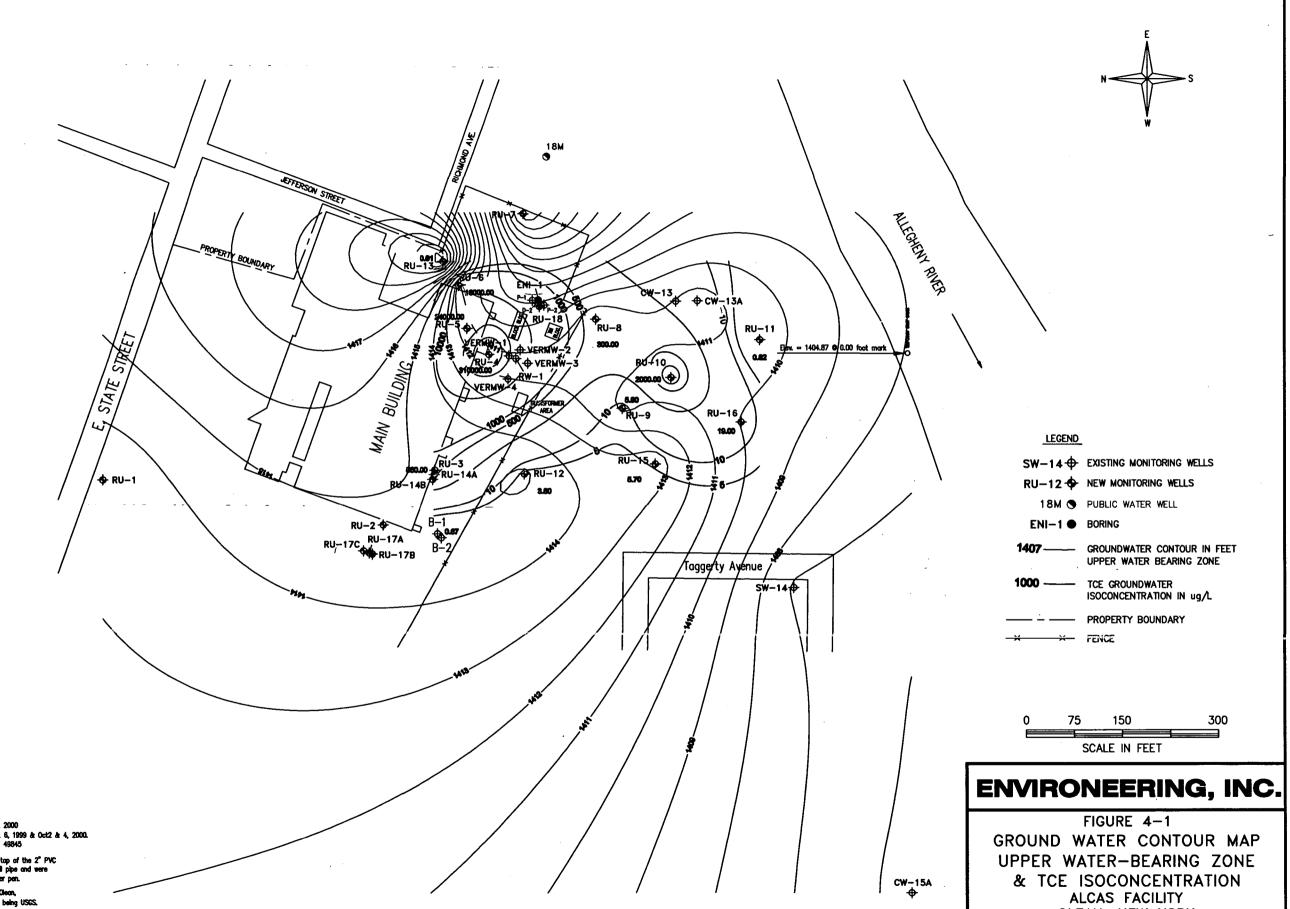
data, when combined with groundwater flow direction, indicates a DNAPL source zone beneath the main building.

4.4.1 Upper Water Bearing Zone Groundwater

The Phase III and IV groundwater sampling results show several key components of the contaminant distribution at the Alcas facility. The wells around the southeast corner of the building (RU-4, RU-5, and RU-6, see Figure 3.2.3) have TCE concentrations that exceed 1 percent of the solubility of TCE in water. This indicates that at or up gradient of this location is a DNAPL source. This places this source of DNAPL under the building.

The dissolved-phase plume is shown to be off site having migrated generally to the south with the direction of groundwater flow. The extent of affected ground water is not completely delineated as the TCE concentration in RU-10 and RU-12 exceeds the MCL. Detectable concentrations of chlorinated compounds are also present in RU-15 and RU-16.

To understand the present day distribution of contaminants in the Upper Water Bearing Zone the entire TCE usage and groundwater pumping history must be taken into consideration. As previously stated, Municipal wells 18M, 37M, and 38M began pumping in 1960, and continued in operation until 1979 when TCE was detected in water samples from these wells. These wells were shut in and not used again until 1990 when the water produced from these wells was treated using air strippers installed at the well locations. Alcas bean using TCE as a cleaning solvent in 1949. The plant stopped using TCE in 1989. Most likely, leakage under the main building through sewers and cracks in the cement floor began in the early 1950s. The chlorinated solvents migrated through the unsaturated zone under the building, through the Upper Water Bearing Zone and into the City Aquifer. Pumping from 18M caused groundwater flow to reverse in the City Aquifer back toward 18M from under the main building at Alcas. In addition, a cone of depression was created in the Upper Water Bearing Zone that was a subdued replica of the cone of depression in the City Aquifer.


Beginning in 1979 with 18M shut in, the cone of depression began to recover and flow returned to natural conditions. The Upper Water Bearing Zone plume migrated south of the plant, most likely toward the river to the south. In 1990, the three Municipal wells were brought back on-line. A portion of the Upper Water Bearing Zone plume was pulled backed toward 18M with the majority of the "escaped" dissolved phase mass quite possibly controlled within the cone of depression for Wells 37M and 38M. Figure 4-1 shows a TCE Isopleth with the groundwater contours.

4.4.2 City Aquifer Groundwater

Data from monitor wells in the City Aquifer (D2, B2, CW-13, CW-1, RU-17C, and RU-18) show a wide array of results ranging from below detection levels up to 17 mg/L of TCE (Tables 3-9, 3-10, 3-11 and Figure 3.2.3). Concentration ranges of TCE from the Lower Zone data down gradient from the building can be summarized as follows, relative to 1 percent aqueous solubility levels.

Dissolved Phase Derivative	Concentration Range Down Gradient of the Source Area (mg/L)	1 % OF AQUEOUS SOLUBILITY (mg/L)
TCE	3.4 - 17 (MW-18 and D2)	11

As illustrated above City Aquifer groundwater concentrations reflect the presence of a DNAPL zone from an area below the main plant building, common with that reflected by the Upper Zone data. When combining all data, the composite suggests DNAPL has reached the City Aquifer.

This plot was completed on Oct 12, 2000 from an instrument survey on Oct. 6, 1999 & Oct2 & 4, 2000. 2000 Robert C. Ackerman, P.L.S No. 49845

All elevations were taken on the top of the 2° PVC pipe casing around the 1° PVC well pipe and were ean with a black marker pen.

Elevation datum from the City of Olean, Engineering Office, Olean, NY. Base being USGS.

0	75	150	300						
SCALE IN FEET									

EINVINC	MEENIN	IG, INC.								
	FIGURE 4-1									
GROUND	GROUND WATER CONTOUR MAP									
UPPER W	UPPER WATER-BEARING ZONE									
& TCE	& TCE ISOCONCENTRATION									
	ALCAS FACILITY									
OL	EAN, NEW YO	RK								
DRAWN BY:	DATE:	PROJ. NO.								
LMG	4-30-02	137-20								

5.0 REMEDY SELECTION

The selected remedial action for Alcas was VER for the soils and Upper Water-Bearing Zone with no additional groundwater treatment necessary due to the groundwater capture of 18M in the City Aquifer. The remedy decision was selected based on the premise that the source area for the Alcas site was limited to surface releases of spent solvent at the rear of the property.

The OU2 ROD states in a response to comment in Appendix V, page V-9, "Comment #19: How much time it will take to implement the remedies at the source area properties. EPA's Response: After the design work is completed, EPA expects that is will take approximately one construction season to excavate all of the soil at AVX, and approximately five years to complete the soil treatment at Alcas and Loohn's. EPA expects that it will take approximately four additional years for the groundwater underlying these properties to be below drinking water standards. The four-year period represents the amount of time for three volumes of groundwater to travel or flush from the properties to the municipal wells."

The OU2 ROD also states on page 40 that "A pilot test conducted in November 1994 confirmed that vacuum enhanced recovery (VER) could effectively desorb VOCs from the contaminated subsurface. Effective mass removal of VOCs was observed during the test for both the vapor and the dissolved phases."

A recent review of the pilot test results was conducted by EnSafe Inc. of Memphis, Tennessee. A copy of that review is attached. The review found that the conclusion of the 1994 pilot test was inconsistent with the results of the test. Several critical parameters are estimated during a pilot test. These include the -radius of influence,-intrinsic soil gas permeability, maximum attainable drawdown, and soil heterogeneity. The pilot test did not evaluate these parameters effectively. Furthermore, estimates of these critical parameters were either improper or exaggerated. As a result, the recommendation for the use of this technology in full-scale remediation does not appear to be valid.

APPENDIX A

Geotechnical Data Summaries

- Phase II Investigation (October, 1999)
 - Data Summary Table (Table 3-1)
 - Laboratory Data Sheets
- Phase III Investigation (September, 2000)
 - Laboratory Results
- Phase IV Investigation (September, 2001)
 - Laboratory Results
- Composite Boring Location Map (Figure 3.1.1)

TABLE 3-1Geotechnical Data SummaryAlcas-Cutco Cutlery Corporation Facility SiteOlean, New York

Sample Location		B-10A	1	B-	B-11A H		B-13A	
Sample Depth	6.0-7.0	14.0-15.0	24.0-25.0	15.0-16.0	19.0-20.0	29.0-30.0	37.0-38.0	
Parameter (units)		ļ			ļ			
Hydraulic Conductivity (cm/sec)	2.2E-05	8.0E-08	2.7E-08					
Initial Water Content (%)	14.4	9.7	12.3					
Final Water Content (%)	14.3	8.4	11.9					
Initial Dry Density (g/cm ³)	1.784	2.193	2.045					
Final Dry Density (g/cm ³)	1.814	2.243	2.006					
Final Degree Saturation (%)	81	100	91					
Total Back Pressure (psi)	_ 55	45	45					
Maximum Effective Stress (psi)	5	5	5					
Hydraulic Gradient	12	_20	19					
Intrinsic Permeability ^(a)	2.2E-10	8.2E-13	2.8E-13					
Volume Water Content (cm ³ /cm ³)	0.258	0.214	0.253					
Porosity	0.334	0.184	0.248					
Organic Content	0.012	0.008	0.013	0.013	0.010	0.012	0.005	
Specific Gravity	2.686	2.693	2.727	2.748	2.729	2.752	2.735	
Moisture Content (%)				<u> </u>	12	12	9	
Grain Size Distribution (% passing No	14	45	90	52	78	67	3	
Density, Moisture Content (%)				148.5	143.9	146.0	155.0	
Density, Unit Wet Weight (pcf)				11.4	12.3	12.5	7.1	
Atterberg Limit, Liquid Limit	Not Plastic	Not Enough	25	24	24	25		
Atterberg Limit, Plastic Limit	11011103110	Sample	15	15	14	17	······································	
Description	Silty Sand, brown	Silty Clay, olive gray w/gravel	Sandy Clay, brown w/gravel	Silty Clay, brown & olive gray w/gravel	Silty Clay, olive gray w/gravel & silt seams	Silty Clay, olive gray w/gravel & silt seams	Gravel, olive gray	

Note: Blank cells indicate parameter was not analyzed.

^(a) Property of the media only. Together with the physical propoerty of the fluid, permits the calculation of permeability to any permeant (water, air, etc.)

TABLE 3-1Geotechnical Data SummaryAlcas-Cutco Cutlery Corporation Facility SiteOlean, New York

Sample Location		. В-	14A		B-15A	E	3-19
Sample Depth	7.0-8.0	9.5-10.3	14.5-15.4	21.2-22.0	15.0-16.0	6.5-7.3	30.0-31.0
Parameter (units)							
Hydraulic Conductivity (cm/sec)		2.0E-08		2.9E-08	1.6E-08		
Initial Water Content (%)		12.4	1	12.6	10.3		
Final Water Content (%)		11.7		11.4	11.1		
Initial Dry Density (g/cm ³)		2.068		2.110	2.385		
Final Dry Density (g/cm ³)		2.063		2.087	2.382		
Final Degree Saturation (%)		100		100	100		
Total Back Pressure (psi)		45		45	65		
Maximum Effective Stress (psi)		5		5	5		
Hydraulic Gradient		20		20	26		
Intrinsic Permeability ^(a)		2.1E-13		3.0E-13	1.6E-13		
Volume Water Content (cm ³ /cm ³)		0.257		0.266	0.224		
Porosity		0.236		0.227	0.209		
Organic Content	0.012	0.018	0.012	0.014	0.015	0.009	0.010
Specific Gravity	2.703	2.714	2.728	2.738	2.739	2.718	2.738
Moisture Content (%)	12		10			13	12
Grain Size Distribution (% passing No	15	53	24	49	60	60	35
Density, Moisture Content (%)	154.8		143.7			138.2	142.9
Density, Unit Wet Weight (pcf)	9.6		9.0			14.6	11.2
Atterberg Limit, Liquid Limit		22	23	25	27		23
Atterberg Limit, Plastic Limit		16	16	16	17		16
Description	Gravel, red w/feroous stains	Sandy Clay, olive gray w/gravel	Silty Clay, olive gray w/gravel	Silty Clay, brown w/gravel	Sandy Clay, brown w/gravel	Sandy Silt, brown	Silty Clay, olive gray w/gravel

Note: Blank cells indicate parameter was not analyzed.

^(a) Property of the media only. Together with the physical propoerty of the fluid, permits the calculation of permeability to any permeant (water, air, etc.)

.

TABLE 3-1Geotechnical Data Summary

Alcas-Cutco Cutlery Corporation Facility Site

Olean, New York

Sample Location	B-20	B-24	1	B-27	
Sample Depth	15.0-15.7	19.0-20.0	4.6-4.9	7.4-8.0	25.4-26.3
Parameter (units)					
Hydraulic Conductivity (cm/sec)		3.4E-08			
Initial Water Content (%)		13.5		 	
Final Water Content (%)		13.0			
Initial Dry Density (g/cm ³)		1.984			
Final Dry Density (g/cm ³)		2.004			
Final Degree Saturation (%)		100			
Total Back Pressure (psi)		45			
Maximum Effective Stress (psi)		5			
Hydraulic Gradient		17			
Intrinsic Permeability ^(a)		3.5E-13			
Volume Water Content (cm ³ /cm ³)		0.271			
Porosity	-	0.268			
Organic Content	0.011	0.010	0.033	0.015	0.009
Specific Gravity	2.736	2.716	2.654	2.745	2.708
Moisture Content (%)	9		24	12	11
Grain Size Distribution (% passing No	10	62	72	51	35
Density, Moisture Content (%)					143.2
Density, Unit Wet Weight (pcf)					8.7
Atterberg Limit, Liquid Limit		26			26
Atterberg Limit, Plastic Limit		17			16
Description	Gravel, olive gray	Silty Clay, olive gray & brown w/gravel	Clayey Silt, olive gray	Silty Clay, brown & olive gray w/gravel	Silty Clay, brown & olive gray w/grave

Note: Blank cells indicate parameter was not analyzed.

^(a) Property of the media only. Together with the physical propoerty of the fluid, permits the calculation of permeability to any permeant (water, air, etc.)

TEST REPORT

leport No.:	0401-1314	November 23,1999
Material:	Soil Samples	Page 1 of 7
, Client:	IT Corporation	-
Project:	Project Name-Alcoa, Alcas	
Sampled By:	Client	
Attention:	Robert Halden	

HYDRAULIC CONDUCTIVITY ASTM D 5084							
Sample Identification	B-10A 6.0'-7.0'	B-10A 14.0'-15.0'	B-10A 24.0'-25.0'	B-14A 9.5'-10.3'			
Hydraulic Conductivity (cm/sec)	2.2 E-05	8.0E-08	2.7 E-08	2.0 E-08			
Initial Water Content (%)	14.4	9.7	12.3	12.4			
Final Water Content (%)	14.3	8.4	11.9	11.7			
Initial Dry Density (g/cm^3)	1.784	2.193	2.045	2.068			
Final Dry Density (g/cm^3)	1.814	2.243	2.006	2.063			
Final Degree Saturation (%)	81	100 -	91	100			
Total Back Pressure (psi)	55	45	45	45			
Maximum Effective Stress (psi)	5	5	5	5			
Hydraulic Gradiant	12	20	19	20			
Intrinsic Permeability	2.2E-10	8.2 E-13	<u>2.8 E-13</u>	2.1 E-13			
Volumetric Water Content (cm^3/cm^3)	0.258	0.214	0.253	0.257			
Porosity	0.334	0.184	0.248	0.236			
Organic Content	0.012	0.008	0.013	0.018			
Specific Gravity	2.686	2.693	2.727	2.714			

TEST REPORT

Report No.: Material: Client: Project: Sampled By: Attention:	0401-1314 Soil Samples IT Corporation Project Name-Alcoa, Alcas Client Robert Halden			November 23,1999 Page 2 of 7	
		HYDRAULIC C ASTM I			
Sample Identification		B-14A 21.2'-22.0'	B-15A 15.0'-16.0'	B-24 19.0'-20.0'	
Hydraulic Conductivity (cm/sec)		2.9 E-08	1.6 E-08	3.4 E-08	
Initial Water Content (%)		12.6	10.3	13.5	
Final Water Content (%)		11.4	11.1	13.0	
Initial Dry Density (g/cm^3)		2.110	2.385	1.984	
Final Dry Density (g/cm^3)		2.087	2.382	2.004	
Final Degree Saturation (%)		100	100	100	
Total Back Pressure (psi)		45	65	45	
Maximum Effective Stress (psi)		5	5	5	
Hydraulic Gradiant		20	26	17	
Intrinsic Permeability		3.0 E-13	1.6 E-13	3.5 E-13	
Volumetric Water Content (cm^3/cm^3)		0.266	0.224	0.271	
Porosity		0.227	0.209	0.268	
Organic Content		0.014	0.015	0.010	
Specific Gravity		2.738	2.739	2.716	

TEST REPORT

leport No.:	0401-1314		
Material:	Soil Samples		
Client:	IT Corporation		
Project:	Project Name-Alcoa, Alcas		
Sampled By:	Client		
Attention:	Robert Halden		

November 23, 1999 Page 3 of 7

MOISTURE CONTENT ASTM D 2216/2488

Sample Identification	Depth	Sample Description M	oisture Content(%)
B-11A	15.0'-16.0'	Sandy lean clay (CL) Clay, brown and olive gray w/gravel	11
B-11A	19.0'-20.0'	Sandy lean clay with sand (CL) Clay, olive gray w/gravel and silt seams	12
B-13A	29.0'-30.0'	Sandy lean clay (CL) , olive gray w/gravel and silt seams	12
B-13A	37.0'-38.0'	well-graded gravel w/ sand (CW), olive gray	9
B-14A	7.0'-8.0'	silty sand w/ gravel (SM), red w/ferrous stains	12
B-14A	14.5'-15.4'	Silty sand w/ gravel (SM) Clay, olive gray w/gravel	10
B-19	6.5'-7.3'	Sandy Silt,(ML) brown	13
B-19	30.0'-31.0'	clayey sand w/ gravel (SC) Clay, olive gray w/gravel	12
B-20	15.0'-15.7'	well graded sand with silt and gravel (SW-SM), olive	gray 9
B-27	4.6'-4.9'	Clayey Silt, olive gray	24
B-27	7.4'-8.0'	Silty Clay, brown and olive gray w/gravel	12
B-27	25.4'-26.3'	clayey sand w/ gravel (SC), brown and olive gray	11

SPECIFIC GRAVITY **ASTM D 854**

Depth	
15.0'-16.0'	2.748
19.0'-20.0'	2.729
29.0'-30.0'	2.752
	15.0'-16.0' 19.0'-20.0'

THE ABOVE TEST RESULTS APPLY ONLY TO THE ITEMS TESTED. THIS REPORT SHALL NOT BE REPRODUCED EXCEPT IN FULL WITHOUT THE APPROVAL OF FUGRO SOUTH, INC.

Semple identification Depth B-13A 37.0°-38.0° 2.735 B-14A 7.0°-8.0° 2.703 B-14A 7.0°-8.0° 2.703 B-14A 7.0°-8.0° 2.736 B-19 6.5'-7.3' 2.718 B-19 6.5'-7.3' 2.738 B-27 4.6°-4.9' 2.654 B-27 7.4'-8.0' 2.745 B-27 7.4'-8.0' 2.745 B-27 2.5.4'-26.3 2.708 CRGANIC CONTENT ASTM D 2974 2.708 B-11A 15.0'-16.0' 0.013 B-11A 15.0'-36.0' 0.012 B-13A 29.0'-30.0' 0.012 B-14A 19.0'-20.0' 0.011 B-13A 29.0'-30.0' 0.012 B-14A 19.0'-20.0' 0.012 B-13A 29.0'-30.0' 0.012 B-14A 19.0'-20.0' 0.012 B-14A 19.0'-20.0' 0.012 B-13A 37.0'-38.0' 0.005	Report No.: Material: Client: Project: Sampled By: Attention:	0401-1314 Soil Samples IT Corporation Project Name-A Client Robert Halden	coa, Alcas		November 23, 1999 Page 4 of 7
B-13A 37.0'-38.0' 2.735 B-14A 7.0'-8.0' 2.703 B-14A 14.5'-15.4' 2.728 B-19 6.5'-7.3' 2.718 B-19 30.0'-31.0' 2.735 B-20 15.0'-15.7' 2.736 B-27 4.6'-4.9' 2.654 B-27 7.4'-8.0' 2.745 B-27 25.4'-26.3 2.708 ORGANIC CONTENT ASTM D 2974 Sample Identification Depth B-11A 15.0'-16.0' 0.013 B-11A 19.0'-20.0' 0.010 B-13A 29.0'-30.0' 0.012 B-13A 19.0'-20.0' 0.012 B-14A 14.5'-15.4' 0.012 B-13A 37.0'-38.0' 0.005 B-14A 7.0'-8.0' 0.012 B-19 6.5'-7.3' 0.009 B-19 3.0.0'-31.0' 0.010 B-20 15.0'-15.7' 0.011 B-27 4.6'-4.9' 0.03					
B-13A 37.0'-38.0' 2.735 B-14A 7.0'-8.0' 2.703 B-14A 14.5'-15.4' 2.728 B-19 6.5'-7.3' 2.718 B-19 30.0'-31.0' 2.735 B-20 15.0'-15.7' 2.736 B-27 4.6'-4.9' 2.654 B-27 7.4'-8.0' 2.745 B-27 25.4'-26.3 2.708 ORGANIC CONTENT ASTM D 2974 0.013 B-11A 15.0'-16.0' 0.013 B-11A 15.0'-20.0' 0.010 B-13A 29.0'-30.0' 0.012 B-13A 29.0'-30.0' 0.012 B-14A 14.5'-15.4' 0.012 B-13A 37.0'-38.0' 0.005 B-14A 7.0'-8.0' 0.012 B-19 6.5'-7.3' 0.009 B-19 30.0'-31.0' 0.010 B-20 15.0'-15.7' 0.011 B-27 4.6'-4.9' 0.033 B-27 4.6'-4.9' </td <td>Sample Identificati</td> <td>on</td> <td>Denth</td> <td></td> <td></td>	Sample Identificati	on	Denth		
B-14A 7.0'-8.0' 2.703 B-14A 14.5'-15.4' 2.728 B-19 6.5'-7.3' 2.718 B-19 30.0'-31.0' 2.738 B-20 15.0'-15.7' 2.736 B-27 4.6'-4.9' 2.664 B-27 7.4'-8.0' 2.745 B-27 25.4'-26.3 2.708 ORGANIC CONTENT ASIM D 2974 Sample Identification 0.013 B-11A 19.0'-20.0' 0.010 B-13A 29.0'-30.0' 0.012 B-14A 15.0'-16.0' 0.012 B-11A 19.0'-20.0' 0.010 B-13A 29.0'-30.0' 0.012 B-14A 15.0'-16.0' 0.012 B-13A 29.0'-30.0' 0.012 B-14A 19.0'-20.0' 0.012 B-14A 19.0'-20.0' 0.012 B-13A 37.0'-38.0' 0.012 B-14A 14.5'-15.4' 0.012 B-19 6.5'-7.3' 0.009 B-19 6.5'-7.3' 0.011 <td></td> <td></td> <td></td> <td></td> <td>2 735</td>					2 735
B-14A 14.5'-15.4' 2.728 B-19 6.5'-7.3' 2.718 B-19 30.0'-31.0' 2.738 B-20 15.0'-15.7' 2.736 B-27 4.6'-4.9' 2.654 B-27 7.4'-8.0' 2.745 B-27 2.5.4'-26.3 2.708 ORGANIC CONTENT ASTM D 2974 2.708 B-11A 15.0'-16.0' 0.013 B-11A 19.0'-20.0' 0.010 B-13A 29.0'-30.0' 0.012 B-14A 15.0'-16.0' 0.012 B-14A 19.0'-20.0' 0.010 B-13A 29.0'-30.0' 0.012 B-14A 15.0'-16.0' 0.012 B-13A 37.0'-38.0' 0.012 B-14A 19.0'-20.0' 0.012 B-14A 14.5'-15.4' 0.012 B-14A 14.5'-15.4' 0.012 B-19 6.5'-7.3' 0.009 B-19 30.0'-31.0' 0.011 B-27 4.6'4.9' 0.033					
B-19 6.5'-7.3' 2.718 B-19 30.0'-31.0' 2.738 B-20 15.0'-15.7' 2.736 B-27 4.6'-4.9' 2.654 B-27 7.4'-8.0' 2.745 B-27 25.4'-26.3 2.708 ORGANIC CONTENT ASTM D 2974 Sample Identification Depth B-11A 15.0'-16.0' 0.013 B-11A 19.0'-20.0' 0.010 B-13A 29.0'-30.0' 0.012 B-13A 37.0'-38.0' 0.005 B-14A 14.5'-15.4' 0.012 B-19 6.5'-7.3' 0.009 B-19 6.5'-7.3' 0.009 B-19 30.0'-31.0' 0.011 B-20 15.0'-15.7' 0.011 B-27 4.6'-4.9' 0.033 B-27 7.4'-8.0' 0.015 B-27 25.4'-26.3' 0.009 B-27 25.4'-26.3' 0.009 B-27 25.4'-26.3' 0.009 B-27 25.4'-26.3' 0.009 B-27 25.4'-26.3'					
B-19 30.0°-31.0° 2.738 B-20 15.0°-15.7° 2.736 B-27 4.6°-4.9° 2.654 B-27 7.4°-8.0° 2.745 B-27 25.4°-26.3 2.708 ORGANIC CONTENT B-27 25.4°-26.3 2.708 ORGANIC CONTENT ASTM D 2974 ASTM D 2974 Sample Identification Depth B-11A 15.0°-16.0° 0.013 B-11A 19.0°-20.0° 0.010 B-13A 29.0°-30.0° 0.012 B-13A 29.0°-30.0° 0.012 B-13A 37.0°-38.0° 0.005 B-14A 14.5°-15.4° 0.012 B-14A 14.5°-15.4° 0.012 B-19 6.5°-7.3° 0.009 B-19 30.0°-31.0° 0.010 B-20 15.0°-15.7° 0.011 B-27 7.4°-8.0° 0.033 B-27 7.4°-8.0° 0.015 B-27 25.4°-26.3° 0.009 GRAIN-SIZE 0.015 0.029					
B-20 15.0'-15.7' 2.736 B-27 4.6'-4.9' 2.654 B-27 7.4'-8.0' 2.745 B-27 25.4'-26.3 2.708 ORGANIC CONTENT ASTM D 2974 Sample Identification Depth B-11A 15.0'-16.0' 0.013 B-11A 19.0'-20.0' 0.010 B-13A 29.0'-30.0' 0.012 B-13A 37.0'-38.0' 0.005 B-14A 7.0'-8.0' 0.012 B-19 6.5'-7.3' 0.009 B-19 30.0'-31.0' 0.011 B-27 4.6'-4.9' 0.033 B-27 7.4'-8.0' 0.015 B-27 25.4'-26.3' 0.009					
B-27 4.6'-4.9' 2.654 B-27 7.4'-8.0' 2.745 B-27 25.4'-26.3 2.708 ORGANIC CONTENT ASTM D 2974 Sample Identification Depth B-11A 15.0'-16.0' 0.013 B-11A 19.0'-20.0' 0.010 B-13A 29.0'-30.0' 0.012 B-13A 37.0'-38.0' 0.005 B-14A 7.0'-8.0' 0.012 B-14A 7.0'-8.0' 0.012 B-14A 14.5'-15.4' 0.012 B-19 6.5'-7.3' 0.009 B-19 30.0'-31.0' 0.010 B-20 15.0'-15.7' 0.011 B-27 4.6'-4.9' 0.033 B-27 7.4'-8.0' 0.015 B-27 25.4'-26.3' 0.009 B-27 25.4'-26.3' 0.009 B-27 25.4'-26.3' 0.009 B-27 25.4'-26.3' 0.009					
B-27 7.4'-8.0' 2.745 B-27 25.4'-26.3 2.708 ORGANIC CONTENT ASTIN D 2974 2.708 Sample Identification Depth 0.013 B-11A 15.0'-16.0' 0.013 B-11A 19.0'-20.0' 0.010 B-13A 29.0'-30.0' 0.012 B-14A 19.0'-20.0' 0.012 B-13A 29.0'-30.0' 0.012 B-14A 14.5'-15.4' 0.012 B-14A 7.0'-8.0' 0.012 B-14A 14.5'-15.4' 0.012 B-14A 14.5'-15.4' 0.012 B-14A 16.5'-7.3' 0.009 B-19 30.0'-31.0' 0.010 B-20 15.0'-15.7' 0.011 B-27 4.6'-4.9' 0.033 B-27 7.4'-8.0' 0.015 B-27 25.4'-26.3' 0.009 B-27 </td <td></td> <td></td> <td></td> <td></td> <td></td>					
B-27 25.4'-26.3 ORGANIC CONTENT ASTM D 2974 2.708 Sample Identification Depth 0.013 B-11A 15.0'-16.0' 0.013 B-11A 19.0'-20.0' 0.010 B-13A 29.0'-30.0' 0.012 B-14A 7.0'-8.0' 0.012 B-14A 7.0'-8.0' 0.012 B-14A 14.5'-15.4' 0.012 B-19 6.5'-7.3' 0.009 B-19 3.0.0'-31.0' 0.011 B-20 15.0'-15.7' 0.011 B-27 4.6'-4.9' 0.033 B-27 7.4'-8.0' 0.015 B-27 25.4'-26.3' 0.009 B-27 25.4'-26.3' 0.009					
ORGANIC CONTENT ASTM D 2974Sample IdentificationDepthB-11A15.0'-16.0'0.013B-11A19.0'-20.0'0.010B-13A29.0'-30.0'0.012B-13A37.0'-38.0'0.005B-14A7.0'-8.0'0.012B-14A14.5'-15.4'0.012B-196.5'-7.3'0.009B-1930.0'-31.0'0.011B-2015.0'-15.7'0.011B-274.6'-4.9'0.033B-277.4'-8.0'0.015B-2725.4'-26.3'0.009GRAIN-SIZE					
ASTM D 2974Sample IdentificationDepthB-11A15.0'-16.0'B-11A19.0'-20.0'B-13A29.0'-30.0'B-13A29.0'-30.0'B-13A37.0'-38.0'B-14A7.0'-8.0'B-14A14.5'-15.4'B-196.5'-7.3'B-196.5'-7.3'B-1930.0'-31.0'B-2015.0'-15.7'B-274.6'-4.9'B-277.4'-8.0'B-2725.4'-26.3'B-2725.4'-26.3'B-270.009B-2725.4'-26.3'B-270.009B-2725.4'-26.3'B-270.009B-2725.4'-26.3'B-270.009B-2725.4'-26.3'B-270.009B-2725.4'-26.3'B-270.009B-2725.4'-26.3'B-270.009B-2725.4'-26.3'B-2725.4'-26.3'B-2725.4'-26.3'B-2725.4'-26.3'B-2725.4'-26.3'B-2725.4'-26.3'B-2725.4'-26.3'B-2725.4'-26.3'B-2725.4'-26.3'B-2725.4'-26.3'B-2725.4'-26.3'B-2725.4'-26.3'B-2725.4'-26.3'B-2725.4'-26.3'B-2725.4'-26.3'B-2725.4'-26.3'B-2725.4'-26.3'B-2725.4'-26.3'B-2725.4'-26.3'B-2725.4'-		- .		ITENT	2.700
Sample Identification Depth B-11A 15.0'-16.0' 0.013 B-11A 19.0'-20.0' 0.010 B-13A 29.0'-30.0' 0.012 B-13A 29.0'-30.0' 0.012 B-13A 37.0'-38.0' 0.005 B-14A 7.0'-8.0' 0.012 B-14A 7.0'-8.0' 0.012 B-14A 14.5'-15.4' 0.012 B-19 6.5'-7.3' 0.009 B-19 30.0'-31.0' 0.010 B-20 15.0'-15.7' 0.011 B-27 4.6'-4.9' 0.033 B-27 7.4'-8.0' 0.015 B-27 25.4'-26.3' 0.009 B-27 25.4'-26.3' 0.009					
B-11A 15.0'-16.0' 0.013 B-11A 19.0'-20.0' 0.010 B-13A 29.0'-30.0' 0.012 B-13A 37.0'-38.0' 0.005 B-14A 7.0'-8.0' 0.012 B-14A 14.5'-15.4' 0.012 B-19 6.5'-7.3' 0.009 B-19 30.0'-31.0' 0.010 B-20 15.0'-15.7' 0.011 B-27 4.6'-4.9' 0.033 B-27 7.4'-8.0' 0.015 B-27 25.4'-26.3' 0.009 B-27 25.4'-26.3' 0.009	Sample Identificat	ion		<u> </u>	
B-11A 19.0'-20.0' 0.010 B-13A 29.0'-30.0' 0.012 B-13A 37.0'-38.0' 0.005 B-14A 7.0'-8.0' 0.012 B-14A 14.5'-15.4' 0.012 B-19 6.5'-7.3' 0.009 B-19 30.0'-31.0' 0.010 B-20 15.0'-15.7' 0.011 B-27 4.6'-4.9' 0.033 B-27 7.4'-8.0' 0.015 B-27 25.4'-26.3' 0.009 B-27 25.4'-26.3' 0.009		<u></u>			0 013
B-13A 29.0'-30.0' 0.012 B-13A 37.0'-38.0' 0.005 B-14A 7.0'-8.0' 0.012 B-14A 7.0'-8.0' 0.012 B-14A 14.5'-15.4' 0.012 B-19 6.5'-7.3' 0.009 B-19 30.0'-31.0' 0.010 B-20 15.0'-15.7' 0.011 B-27 4.6'-4.9' 0.033 B-27 7.4'-8.0' 0.015 B-27 25.4'-26.3' 0.009					
B-13A37.0'-38.0'0.005B-14A7.0'-8.0'0.012B-14A14.5'-15.4'0.012B-196.5'-7.3'0.009B-1930.0'-31.0'0.010B-2015.0'-15.7'0.011B-274.6'-4.9'0.033B-277.4'-8.0'0.015B-2725.4'-26.3'0.009GRAIN-SIZE					
B-14A 7.0'-8.0' 0.012 B-14A 14.5'-15.4' 0.012 B-19 6.5'-7.3' 0.009 B-19 30.0'-31.0' 0.010 B-20 15.0'-15.7' 0.011 B-27 4.6'-4.9' 0.033 B-27 7.4'-8.0' 0.015 B-27 25.4'-26.3' 0.009 B-27 25.4'-26.3' 0.009					
B-14A 14.5'-15.4' 0.012 B-19 6.5'-7.3' 0.009 B-19 30.0'-31.0' 0.010 B-20 15.0'-15.7' 0.011 B-27 4.6'-4.9' 0.033 B-27 7.4'-8.0' 0.015 B-27 25.4'-26.3' 0.009 B-27 6.5'-7.3' 0.015 B-27 7.4'-8.0' 0.015 B-27 25.4'-26.3' 0.009 B-27 6RAIN-SIZE 0.009	.				,
B-19 6.5'-7.3' 0.009 B-19 30.0'-31.0' 0.010 B-20 15.0'-15.7' 0.011 B-27 4.6'-4.9' 0.033 B-27 7.4'-8.0' 0.015 B-27 25.4'-26.3' 0.009 GRAIN-SIZE					
B-19 30.0'-31.0' 0.010 B-20 15.0'-15.7' 0.011 B-27 4.6'-4.9' 0.033 B-27 7.4'-8.0' 0.015 B-27 25.4'-26.3' 0.009 GRAIN-SIZE					
B-20 15.0'-15.7' 0.011 B-27 4.6'-4.9' 0.033 B-27 7.4'-8.0' 0.015 B-27 25.4'-26.3' 0.009 GRAIN-SIZE Unitset					
B-27 4.6'-4.9' 0.033 B-27 7.4'-8.0' 0.015 B-27 25.4'-26.3' 0.009 GRAIN-SIZE					
B-27 7.4'-8.0' 0.015 B-27 25.4'-26.3' 0.009 GRAIN-SIZE					
B-27 25.4'-26.3' 0.009 GRAIN-SIZE					
GRAIN-SIZE					
ASTM D 422				E	
			<u>ASTM D 42</u>	<u>2</u>	
Sample IdentificationDepthPassing No. 200 (%)Clay Fraction 0.002 mm (%)	Sample Identificat	tion Depth		Passing No. 200 (%)	Clay Fraction 0.002 mm (%)
B-10A 6.0'-7.0 14 -			ŀ	14	-
B-10A 14.0'-15.0' 45 3	B-10A	14.0'-15.	0'	45	3
B-10A 24.0'-25.0' 90 5	B-10A	24.0'-25.	0'	90	5
B-11A 15.0'-16.0' 52 11 THE ABOVE TEST RESULTS APPLY ONLY TO THE ITEMS TESTED.	B-11A				

THE ABOVE TEST RESULTS APPLY ONLY TO THE ITEMS TESTED. THIS REPORT SHALL NOT BE REPRODUCED EXCEPT IN FULL WITHOUT THE APPROVAL OF FUGRO SOUTH, INC.

B-19 B-20

B-24

B-27

B-27

B-27

Report No.: Material: Client: Project: Sampled By: Attention:	0401-1314 Soil Samples IT Corporation Project Name-Alcoa Client Robert Halden	a, Alcas	
		<u>GRAIN-SIZE</u> ASTM D 422	
Sample Identification		Passing No. 200 (%)	
B-11A	19.0'-20.0'	78	
B-13A	29.0'-30.0'	67	
B-13A	37.0'-38.0'	[*] 3	
B-14A	7.0'-8.0'	15	
B-14A	9.5'-10.3'	53	
B-14A	14.5'-15.4'	24	
B-14A	21.2'-22.0'	49	
B-15A	15.0'-16.0'	60	
B-19	6.5'-7.3'	60	

30.0'-31.0'

15.0'-15.7'

19.0'-20.0'

4.6'-4.9'

7.4'-8.0'

25.4'-26.3'

November 23,1999 Page 5 of 7

Clay fraction 0.02mm (%)

7

-

13 12

12

8

Please see attached	plate(s) f	or grain	size curves
---------------------	------------	----------	-------------

35

10

62

72

51

35

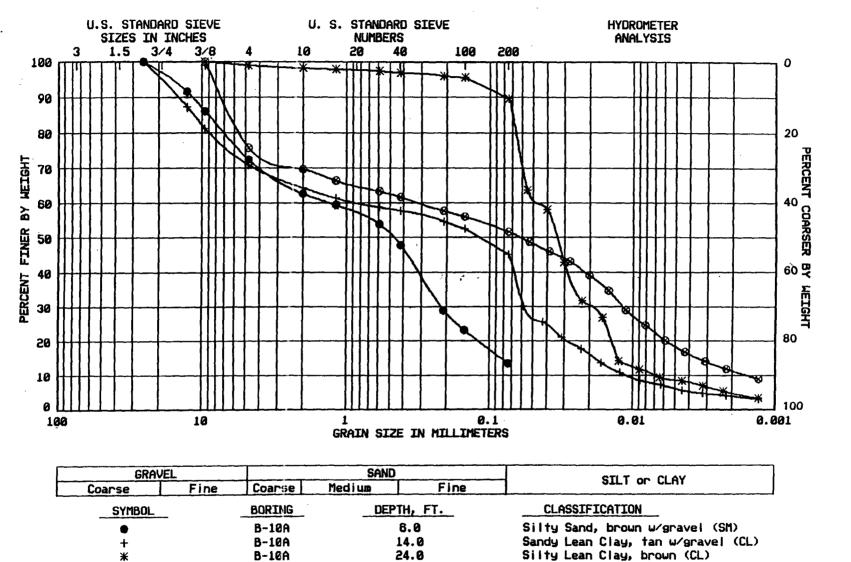
ATTERBERG LIMIT A

STM D 4318

Sample Identification	Sample Description	<u>Depth</u>	Liquid Limit	Plastic Limit
B-10A S	Silty Sand w/ gravel (SM)	6.0'-7.0'	Non-Plastic	
	Brown			
B-10A san	dy lean clay w/ gravel (CL)	14.0'-15.0'	Not Enough Sample	
	olive gray w/gravel			
B-10A Sil	ty iean ciay w/ gravel (CL)	24.0'-25.0'	25	15
	brown w/gravel			
B-11A Sar	ndy lean Clay (CL) w/gravel	15.0'-16.0'	24	15
br	own & olive gray w/gravel			
B-11A	Silty lean ciay	19.0'-20.0'	24	14
brown &	olive gray w/gravel & silt seams			
B-13A	Sandy lean Clay (CL)	29.0'-30.0'	25	17
oliv	e gray w/ gravel silt seams			

THE ABOVE TEST RESULTS APPLY ONLY TO THE ITEMS TESTED.

THIS REPORT SHALL NOT BE REPRODUCED EXCEPT IN FULL WITHOUT THE APPROVAL OF FUGRO SOUTH, INC.


Report No.: Material: Client: Project: Sampled By: Attention:	0401-1314 Soil Samples IT Corporation Project Name-Alcoa, Alcas Client Robert Halden			November 23,1999 Page 6 of 7
	ATTERBERG L	IMIT		
F	<u>ASTM D 43</u>	<u>18</u>		
Sample Identificati	on Sample Description	Depth	Liquid Limit	Plastic Limit
B-13A	Gravel	37.0'-38.0'	Non-Plastic	
	olive gray			
B-14A	Silty Sand	7.0'-8.0'	Non-Plastic	
F	brown			
B-14A	lean Clay w/ sand (CL) olive gray w/gravel	9.5'-10.3'	22	16
	onve gray wygraver			
B-14A	Silty sand w/ gravel SM)	14.5'-15.4'	23	16
	olive gray w/gravel			
B-14A	Clay sand (SC)	21.2'-22.0'	25	16
	brown w/gravel			
B-15A	Sandy lean Clay (CL)	15.0'-16.0'	27	17
	brown w/gravel			••
B-19	Sandy Silt	6.5'-7.3'	Non-Plastic	
	brown w/gravel			
B-19	Clayey sand w/ gravel (CL)	30.0'-31.0'	23	16
Ţ	olive gray w/grave			
B-20well g	raded sand w/ silt and gravel (SW-SM)	15.0'-15.7'	Non-Plastic	
	w/gravel	,		
B-24	lean clay w/ sand (CL)	19.0'-20.0'	26	17
	olive gray & brown w/gravel			
B-27	Clayey Silt	4.6'-4.9'	Not Enough Sampl	e
	olive gray			
B-27	Silty Clay	7.4'-8.0'	Not Enough Sampl	e
	brown & olive gray			10
B-27	Clayey sand with gravel (SC)	25.4'-26.3'	26	16
	brown & olive gray w/gravel			

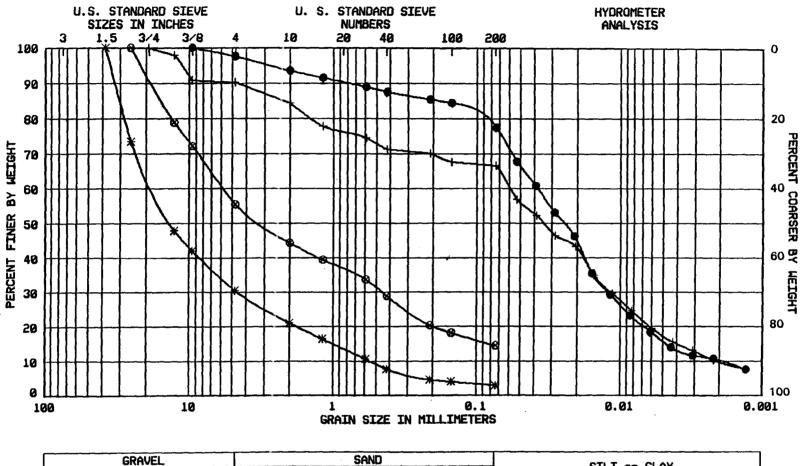
Report No.: Material: Client: Project: Sampled By: Attention:	0401-1314 Soil Samples IT Corporation Project Name-Alc Client Robert Halden	coa, Alcas		November 23,1999 Page 7 of 7
		DENSITY		
		<u>ASTM D 2166</u>		
Sample Identifica	<u>ition</u>	Depth	Unit Wet Weight (pcf)	Moisture Content (%)
B-11A		15.0'-16.0'	148.5	11.4
B-11A		19.0'-20.0'	143.9	12.3
B-13A		29.0'-30.0'	146.0	12.5
B-13A		37.0'-38.0'	155.0	7.1
B-14A		7.0'-8.0	154.8	9.6
B-14A		14.5'-15.4'	143.7	9.0
B-19		6.5'-7.3'	138.2	14.6
B-19		30.0'-31.0'	142.9	11.2
B-27		25.4'-26.3'	143.2	8.7

Fugro South, Inc.

Bill DeGroff Geotechnical Laboratory Manager

Report No. 0401-1314

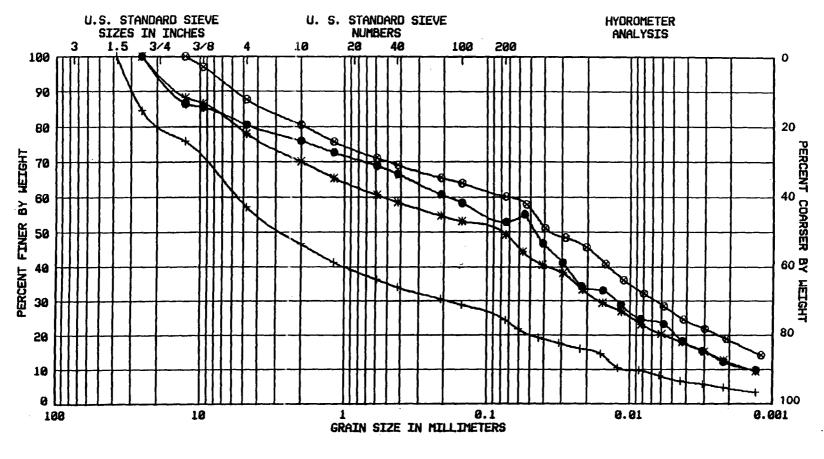
PLATE 1


8

B-11A

GRAIN SIZE CURVES

15.0


Sandy Lean Clay, brown & olive gray w/gravel (CL)

Report No. 0401-1314

SILT or CLAY Fine Coanse Medium Fine Coarse CLASSIFICATION BORING DEPTH, FT. SYMBOL 19.0 **B-11A** Silty Lean Clay, olive gray (CL) ۲ B-13A 29.0 Sandy Lean Clay, olive gray (CL) +Weil-Graded Gravel, olive gray w/sand (CW) ж B-13A 37.0 0 B-14A 7.0 Silty Sand red w/gravel & ferrous stains (SM)

GRAIN SIZE CURVES

GRAVEL Coarse Fine			SAND		SILT or CLAY		
		Coarse	Medium Fine		SILI UI CLAT		
SYMBOL		BORING	DEPTH, FT.		CLASSIFICATION		
•		B-14A	9.5		Sandy Lean Clay, olive gray w/sand (Cl		
+		B-14A	14.5		Silty Sand, olive gray w/gravel (SM)		
*		B-14A	21.2		Clayey Sand, olive gray (SC)		
8		B-15A	15.0		Sandy Lean Clay, olive gray (CL)		

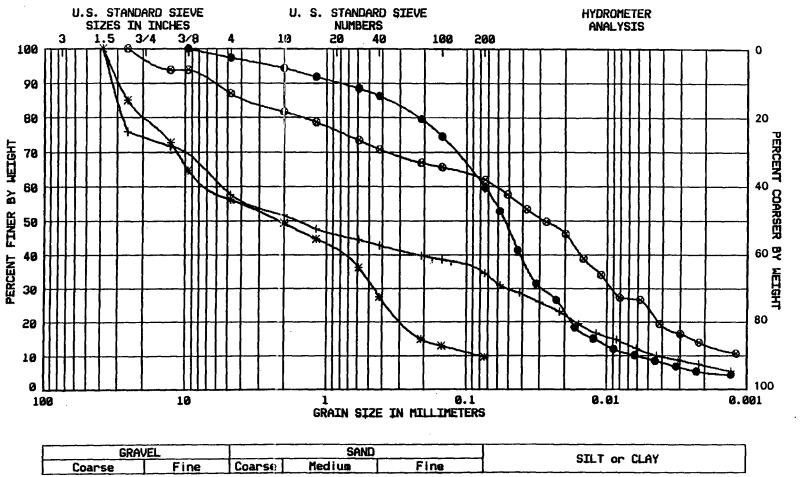
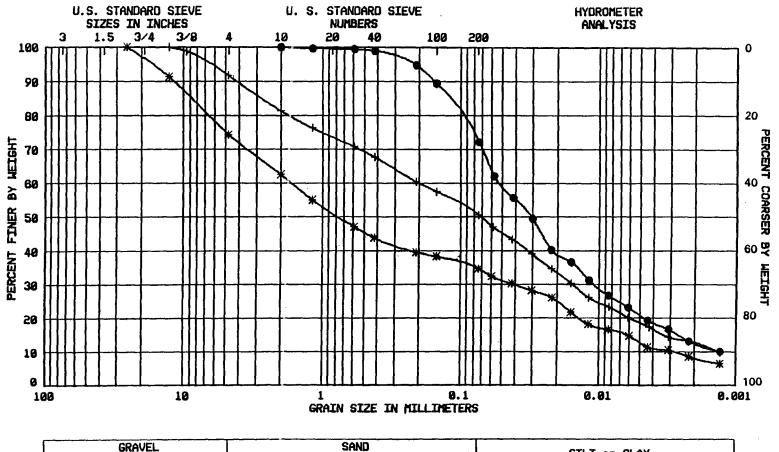

GRAIN SIZE CURVES

PLATE 3

,

Report No. 0401-1314


.

Report No. 0401-1314

DEPTH, FT. CLASSIFICATION BORING SYMBOL. B-19 6.5 Sandy Silt, brown • Clayey Sand, olive gray u/gravel (SC) + B-19 30.0 15.0 Well-Graded Sand, olive gray w/silt & gravel(SW & SM) B-20 Ж 19.0 Lean Clay, olive gray w/sand (CL) B-24 8

GRAIN SIZE CURVES

Report No. 0401-1314

j î	GRAVEL			SAND		SILT or CLAY		
	Coarse	Fine	ine Coarse Medium Fin		Fine	STEL OF CENT		
••••	SYMBOL		BORING	DEP	TH, FT.	CLASSIFICATION		
	•		8-27		4.6	Clayey Silt, olive gray		
	+		8-27		7.4	Silty Clay, brown & olive gra	ıy µ∕gravel	
	*		B-27	i	25.4	Clayey Sand, brown w/gravel ((SC)	

GRAIN SIZE CURVES

	INDEX OR PHYSICAL PROPERTY TEST							
	Liquid	Plasticity	Passing	Passing	Passing	Passing	Finer	USCS
Sample	Limit,	Index,	No. 4	No. 10	No. 40	No. 200	0.002	Group
Identification	LL	PI	Sieve (%)	Sieve (%)	Sieve (%)	Sieve (%)	mm (%)	Symbol
RV1-SL-0102	36	12	88	82	72	50	9	CL
RV1-SL-0405	29	11	81	78	72	52	12	CL
RV1-SL-0910	23	6	70	52	23	8	7	SW-SC
RV1-SL-1213	20	5	81	75	64	46	10	SC-SM
RV1-SL-2122	Non -	Plastic	31	26	18	12	-	GC-GM
RV1-SL-2526	26	9	73	68	58	48	12	SC-SM
RV1-SL-3132	26	9	77	71	61	50	13	CL
RV2-SL-0102	Non -	Plastic	34	28	21	9	-	GP-GC
RV2-SL-0506	32	14	56	31	21	7	7	SP-SC
RV2-SL-0910	24	7	100	98	8 5	77	8	CL-ML
RV2-SL-1314	26	9	85	78	66	54	12	CL-ML
RV2-SL-2526	25	10	82	74	64	52	14	CL-ML
RV2-SL-3233	Non -	Plastic	4 6	33	18	8		GP-GC

Sample		Grain
Identification	Sample Description	Size
RV1-SL-0102	Sandy lean clay, olive gray w/ gravel	Plate 8
RV1-SL-0405	Sandy lean clay, brown and olive gray w/ gravel and ferrous nodules	Plate 8
RV1-SL-0910	Well graded sand, olive gray w/ clay pockets and grave!	Plate 8
RV1-SL-1213	Silty, clayey sand, olive gray w/ gravel	Plate 8
RV1-SL-2122	Silty, clayey gravel, olive gray w/ sand	Plate 8
RV1-SL-2526	Clayey sand, olive gray w/ gravel	Plate 8
RV1-SL-3132	Sandy lean clay, olive gray w/ gravel	Piate 8
RV2-SL-0102	Poorty graded gravel, brown w/ silty clay and sand	Plate 9
RV2-SL-0506	Poorty graded sand, olive gray w/ clay and gravel	Plate 9
RV2-SL-0910	Sandy silty clay, olive gray	Plate 9
RV2-SL-1314	Sandy lean clay, olive gray w/ gravel	Plate 9
RV2-SL-2526	Sandy lean clay, olive gray w/ gravel	Plate 9
RV2-SL-3233	Poorly graded gravel, olive gray w/ silty clay and sand	Plate 9

	INDEX OR PHYSICAL PROPERTY TEST							
	Liquid	Plasticity	Passing	Passing	Passing	Passing	Finer	USCS
Sample	Limit,	Index,	No. 4	No. 10	No. 40	No. 200	0.002	Group
Identification	LL	Pi	Sieve (%)	Sieve (%)	Sieve (%)	Sieve (%)	mm (%)	Symbol
RV3-SL-0203	Non -	Plastic	94	90	81	58	10	CL-ML
RV3-SL-0506	Non -	Plastic	85	79	68	51	7	CL-ML
RV3-SL-0809	27	12	68	53	35	26	7	SC
RV3-SL-1314	24	9	81	75	65	51	13	CL-ML
RV3-SL-1920	Non -	Plastic	48	37	22	14	-	GM
RV3-SL-2425	27	10	81	74	64	55	14	CL-ML
RV3-SL-2627	27	9	87	81	66	57	13	CL-ML
RV4-SL-0102	24	8	94	89	80	54	12	CL
RV4-SL-0506	29	9	88	83	72	55	13	CL
RV4-SL-1415	Non -	Plastic	64	59	53	35	6	SC
RV4-SL-1617	Non -	Plastic	68	62	52	43	11	SC-SM
RV4-SL-1819	26	6	89	79	66	56	6	CL
RV4-SL-2829	Non -	Plastic	42	30	14	5	-	GW-GM

Sample		Grain
_ Identification	Sample Description	Size
RV3-SL-0203	Sandy silty clay, olive gray w/ gravel	Plate 10
RV3-SL-0506	Sandy silty clay, olive gray w/ gravel	Plate 10
RV3-SL-0809	Clayey sand, olive gray w/ gravel	Plate 10
RV3-SL-1314	Sandy lean clay, olive gray w/ gravel	Plate 10
RV3-SL-1920	Silty gravel, brown w/ sand	Plate 10
RV3-SL-2425	Sandy lean clay, olive gray w/ gravel	Plate 10
RV3-SL-2627	Sandy lean clay, olive gray w/ gravel	Plate 10
RV4-SL-0102	Sandy lean clay, brown	Plate 11
RV4-SL-0506	Sandy lean clay, brown	Plate 11
RV4-SL-1415	Clayey sand, brown w/ gravel	Plate 11
RV4-SL-1617	Silty, clayey sand, olive gray w/ gravel	Plate 11
RV4-SL-1819	Graveliy lean clay, brown w/ sand	Plate 11
RV4-SL-2829	Well graded gravel, brown w/ clay and sand	Plate 11

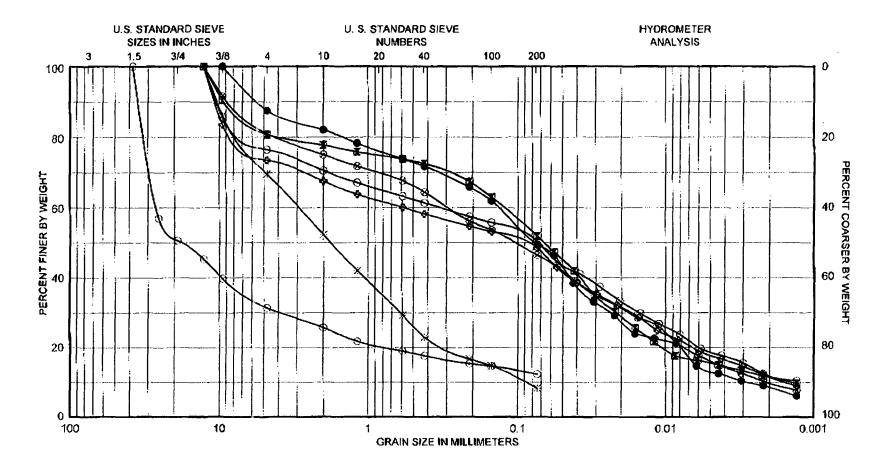
		INDE	X OR PH	SICAL PR	OPERTY	TEST		
	Liquid	Plasticity	Passing	Passing	Passing	Passing	Finer	USCS
Sample	Limit,	Index,	No. 4	No. 10	No. 40	No. 200	0.002	Group
Identification	LL	PI	Sieve (%)	Sieve (%)	Sieve (%)	Sieve (%)	mm (%)	Symbol
RV5-SL-0203	26	7	90	88	83	4 9	10	CL-ML
RV5-SL-0809	28	12	85	78	68	56	15	CL
RV5-SL-1617	Non -	Plastic	38	24	10	6	-	GW-GC
RV5-SL-1718	2 5	9	88	73	62	54	14	CL
							_	
RV6-SL-0102	Non -	Plastic	46	36	21	11		GW-GM
RV6-SL-0506	Non -	Plastic	92	91	88	71	4	CL-ML
RV6-SL-1112	23	8	87	80	68	51	11	ĊL
RV6-SL-1213	22	7	81	74	64	48	10	SC-SM
RV6-SL-2021	Non -	Plastic	100	99	98	76	5	CL-ML
RV6-SL-2122	27	9	73	64	53	45	10	SC
							-	

Sample		Grain
Identification	Sample Description	Size
RV5-SL-0203	Sandy silty clay, red	Plate 12
RV5-SL-0809	Sandy lean clay, gray	Plate 12
RV5-SL-1617	Well graded gravel, olive gray w/ clay and sand	Plate 12
RV5-SL-1718	Sandy lean clay, gray	Plate 12
RV6-SL-0102	Well graded gravel, brown w/ silt and sand	Plate 13
RV6-SL-0506	Sandy silty clay, brown	Plate 13
RV6-SL-1112	Sandy lean clay, gray	Plate 13
RV6-SL-1213	Silty, clayey sand, gray w/ gravel	Plate 13
RV6-SL-2021	Sandy silty clay, brown	Plate 13
RV6-SL-2122	Clayey sand w/ gravel, olive gray	Plate 13

		INDE	X OR PH	SICAL PR	OPERTY	TEST		
	Liquid	Plasticity	Passing	Passing	Passing	Passing	Finer	USCS
Sample	Limit,	Index,	No. 4	No. 10	No. 40	No. 200	0.002	Group
Identification	LL	PI	Sieve (%)	Sieve (%)	Sieve (%)	Sieve (%)	mm (%)	Symbol
RV7-SL-0102	33	15	100	100	100	9 9	18	CL
RV7-SL-0910	Non -	Plastic	97	96	94	61	4	CL
RV7-SL-1314	23	7	83	74	63	48	10	SC-SM
RV7-SL-1718	25	11	85	79	70	55	14	CL
RV7-SL-2425	25	8	58	45	30	23	4	SC-SM
RV8-SL-0203	29	8	96	92	85	52	9	CL
RV8-SL-0910	Non -	Plastic	81	76	66	42	3	SM
RV8-SL-1213	Non -	Plastic	82	71	57	40	5	SC-SM
RV8-SL-1617	Non -	Plastic	64	52	40	28	3	SC
RV8-SL-1819	26	10	100	100	100	96	212	CL

Sample		Grain
Identification	Sample Description	Size
RV7-SL-0102	Silty lean clay, red	Plate 14
RV7-SL-0910	Sandy lean clay, red	Plate 14
RV7-SL-1314	Silty, clayey sand, gray w/ gravel	Plate 14
RV7-SL-1718	Sandy lean clay, brown w/ gravel	Plate 14
RV7-SL-2425	Clayey sand, olive gray w/ gravel	Plate 14
RV8-SL-0203	Sandy lean clay, red	Plate 15
RV8-SL-0910	Silty sand, red w/ grave!	Plate 15
RV8-SL-1213	Silty, clayey sand, brown w/ gravel	Plate 15
RV8-SL-1617	Clayey sand, gray w/ gravel	Plate 15
RV8-SL-1819	Sandy lean clay, olive gray	Plate 15

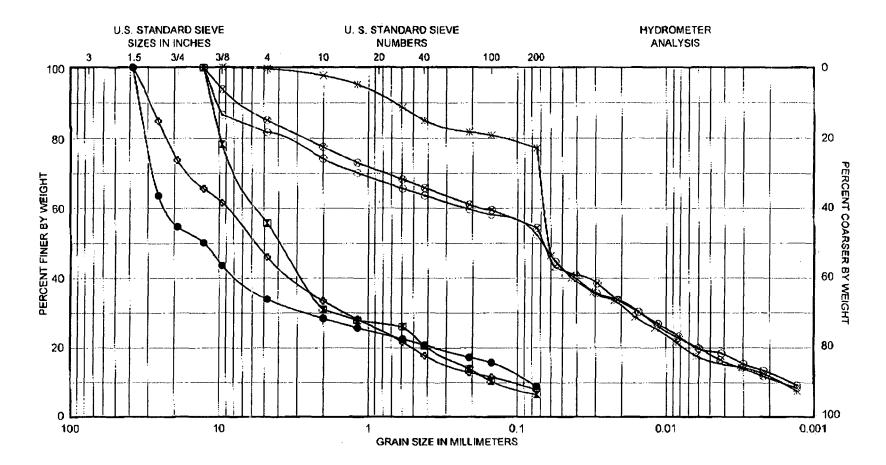
		INDE	EX OR PHY	SICAL PR	OPERTY	TEST		
	Liquid	Plasticity	Passing	Passing	Passing	Passing	Finer	USCS
Sample	Limit,	Index,	No. 4	No. 10	No. 40	No. 200	0.002	Group
Identification	LL_	PI	Sieve (%)	Sieve (%)	Sieve (%)	Sieve (%)	mm (%)	Symbol
RV9-SL-0203	28	8	100	100	99	68	12	CL
RV9-SL-0607	Non -	Plastic	9 6	96	94	21	4	SC-SM
RV9-SL-1213	Non -	Plastic	70	56	38	22	3	SC-SM
RV9-SL-1516	32	12	100	100	99	97	30	CL
RV10-SL-0102	32	10	100	99	94	59	13	CL
RV10-SL-0708	Non -	Plastic	100	99	88	13	2	SC-SM
RV10-SL-1617	21	3	97	94	91	62	8	CL

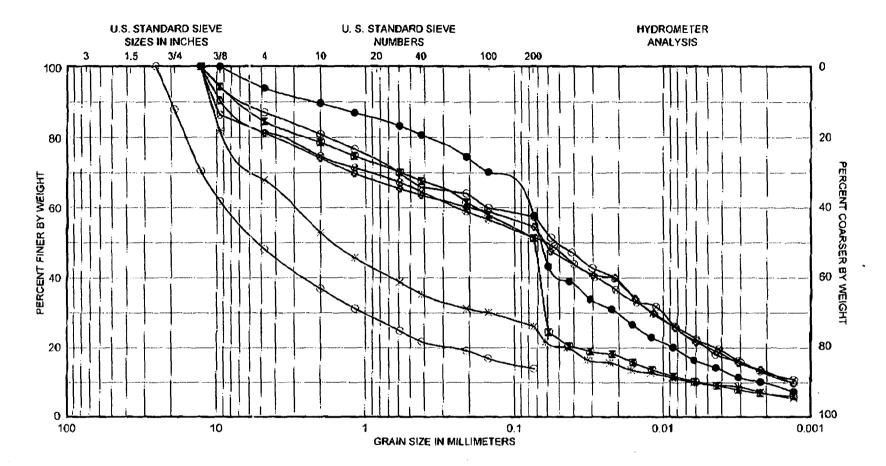

Sample		Grain
Identification	Sample Description	Size
RV9-SL-0203	Sandy lean clay, brown	Plate 16
RV9-SL-0607	Silty, clayey sand, red	Plate 16
RV9-SL-1213	Silty, clayey sand, red w/ gravel	Plate 16
RV9-SL-1516	Sandy lean clay, red	Plate 16
RV10-SL-0102	Sandy lean clay, red	Plate 17
RV10-SL-0708	Silty, clayey sand, red	Plate 17
RV10-SL-1617	Sandy lean clay, red	Plate 17
· · · · ·		

		INDE	X OR PH	SICAL PR	OPERTY	FEST		
	Liquid	Plasticity	Passing	Passing	Passing	Passing	Finer	USCS
Sample	Limit,	Index,	No. 4	No. 10	No. 40	No. 200	0.002	Group
Identification	LL	Pl	Sieve (%)	Sieve (%)	Sieve (%)	Sieve (%)	mm (%)	Symbol
RV11-SL-0203	25	7	100	99	87	61	16	CL
RV11-SL-0405	24	6	94	90	82	41	10	SC-SM
RV11-SL-1011	Non -	Plastic	99	98	98	92	7	CL
RV11-SL-1617	Non -	Plastic	66	56	45	32	7	SC
RV11-SL-2223	23	8	87	81	70	54	11	CL
RV12-SL-0203	32	13	100	99	97	73	19	ÇL
RV12-SL-0506	Non -	Plastic	97	95	93	50	6	CL
RV12-SL-0910	26	9	88	71	51	40	11	SC
					· · · · · · · · · · · · · · · · · · ·			

Sample		Grain
Identification	Sample Description	Size
RV11-SL-0203	Sandy lean clay, brown	Plate 18
RV11-SL-0405	Silty, clayey sand, red	Plate 18
RV11-SL-1011	Sandy lean clay, brown	Plate 18
RV11-SL-1617	Clayey sand, olive gray w/ gravel	Plate 18
RV11-SL-2223	Sandy lean clay, olive gray	Plate 18
RV12-SL-0203	Sandy lean clay, olive gray w/ organics	Plate 19
	Sandy lean clay, brown	Plate 19
RV12-SL-0910	Clayey sand, gray	Plate 19

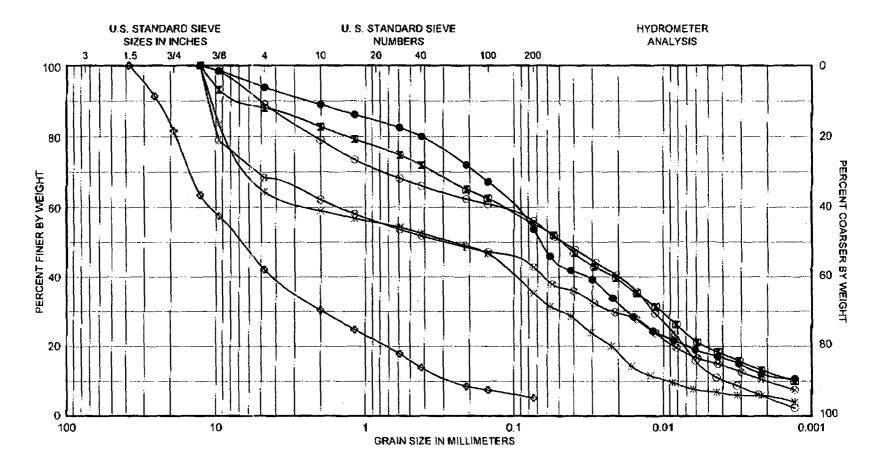
		INDE	X OR PHY	SICAL PR	OPERTY	TEST		
	Liquid	Plasticity	Passing	Passing	Passing	Passing	Finer	USCS
Sample	Limit,	Index,	No. 4	No. 10	No. 40	No. 200	0.002	Group
Identification	LL	PI	Sieve (%)	Sieve (%)	Sieve (%)	Sieve (%)	mm (%)	Symbol
ENI1-SL-0102	26	8	100	99	96	71	15	CL
ENI1-SL-0809	23	8	83	76	64	50	13	CL
ENI1-SL-1920	23	8	85	80	69	52	12	CL
ENI1-SL-2425	25	7	89	80	61	49	10	SC-SM
ENI1-SL-2526	Non -	Plastic	57	52	40	17	-	SC-SM
ENI1-SL-3031	24	7	83	75	62	50	10	CL


Sample Identification	Sample Description	Grain Size
ENI1-SL-0102	Sandy lean clay, red w/ ferrous stains	Plate 20
ENI1-SL-0809	Sandy lean clay, gray w/ gravel	Plate 20
ENI1-SL-1920	Sandy lean clay, gray w/ gravel	Plate 20
ENI1-SL-2425	Silty, clayey sand, brown	Plate 20
ENI1-SL-2526	Silty, clayey sand, brown w/ gravel	Plate 20
ENI1-SL-3031	Sandy lean clay, gray w/ gravel	Plate 20

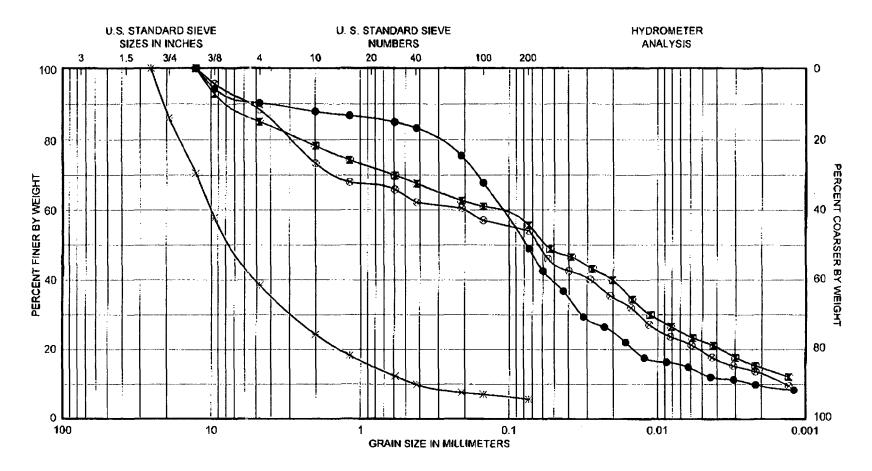

		SAND		EL	GRAV
SILT or CLAY	Fine	Medium	Coarse	Fine	Coarse
CLASSIFICATION	FT.	DEPTH, F	BORING	-	SYMBOL
Please See Plate 1 for Classification		102.0	RV1-SL		•
Please See Plate 1 for Classification		405.0	RV1-SL		1
Please See Plate 1 for Classification		910.0	RV1-SL		ж
Please See Plate 1 for Classification	•	1213.0	RV1-SL		3
Please See Plate 1 for Classification	•	2122.0	RV1-SL		Ø
Please See Plate 1 for Classification)	2526.0	RV1-SL		0
Please See Plate 1 for Classification	j –	3132.0	RV1-SL		C

GRAIN SIZE CURVES

,

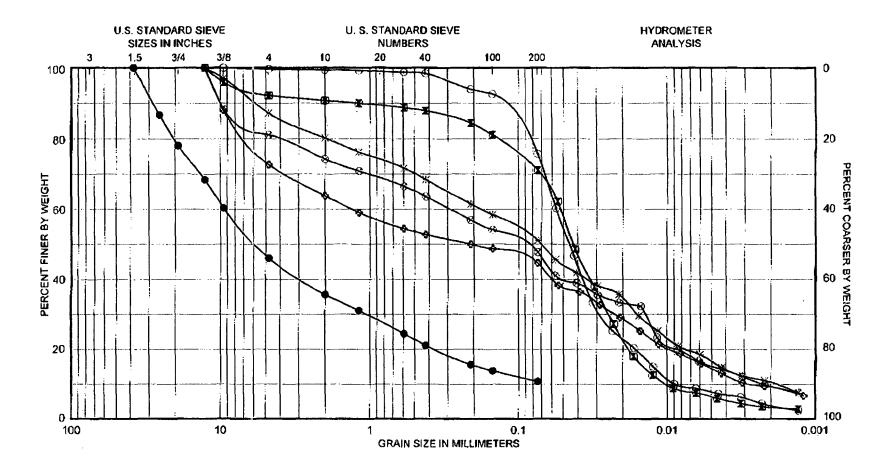


SILT or CLAY	SAND			GRAVEL	
	Fine	Medium	Coarse	Fine	Coarse
CLASSIFICATION	PTH, FT.	DE	BORING		SYMBOL
Please See Plate 1 for Classification	102.0		RV2-SL		•
Please See Plate 1 for Classification	506.0		RV2-SL		(X)
Please See Plate 1 for Classification	910.0		RV2-SL		ж
Please See Plate 1 for Classification	1314.0		RV2-SL		3
Please See Plate 1 for Classification	2526.0	:	RV2-SL		3
Please See Plate 1 for Classification	3233.0	:	RV2-SL		0

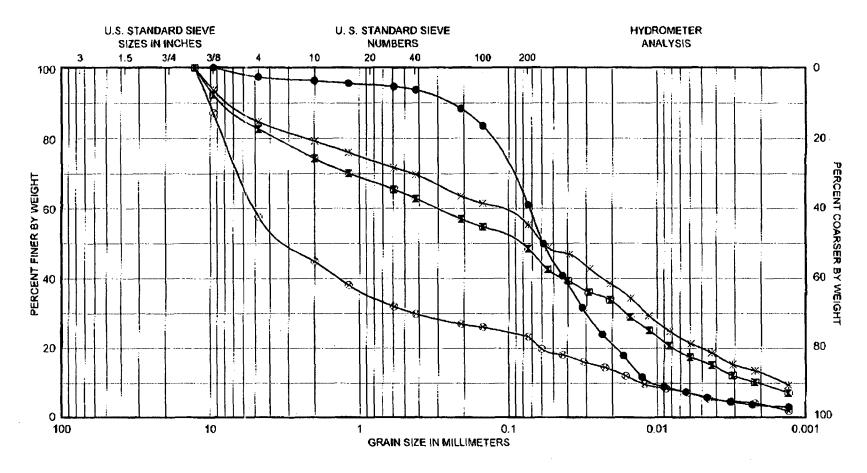


GRAVEL	1	SAND		SILT or CLAY CLASSIFICATION Please See Plate 2 for Classification Please See Plate 2 for Classification Please See Plate 2 for Classification
Coarse Fin	e Coarse	Medium	Fine	
SYMBOL	BORING	DEP	TH, FT.	CLASSIFICATION
•	RV3-SL	20	J 3.D	Please See Plate 2 for Classification
Xi	RV3-SL	50	06.0	Please See Plate 2 for Classification
Ж	RV3- SL	8	9.0	Please See Plale 2 for Classification
⊗	RV3-SL	13	14.0	Please See Plate 2 for Classification
Θ	RV3-SL	19	20.0	Please See Plate 2 for Classification
•	RV3-SL	24	25.0	Please See Plate 2 for Classification
. O	RV3-SL	26	27.0	Please See Plate 2 for Classification

GRAIN SIZE CURVES

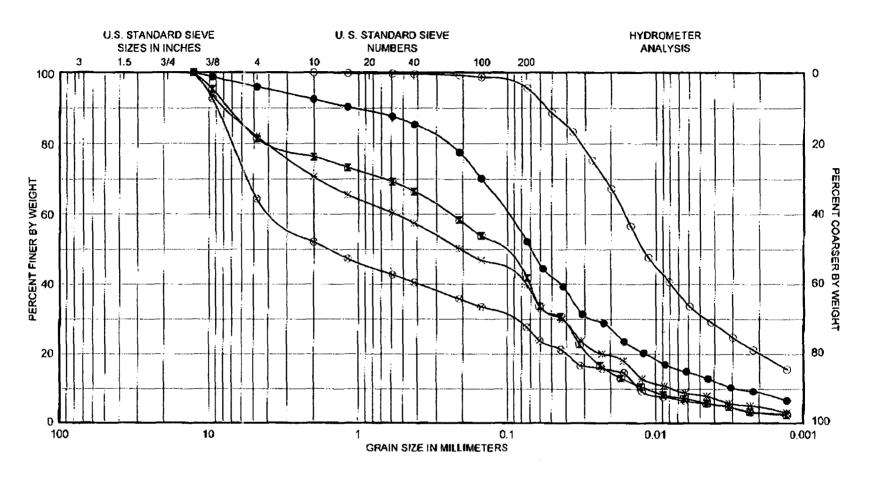


		SAND			GRAVEL
SILT or CLAY	Fine	Medium	Coarse	Fine	Coarse
CLASSIFICATION	PTH, FT.	DE	BORING		SYMBOL
Please See Plate 2 for Classification	102.0		RV4-SL		•
Please See Plate 2 for Classification	506.0		RV4-SL		X
Please See Plate 2 for Classification	1415.0		RV4-SL		ж
Please See Plate 2 for Classification	1617.0		RV4-SL		8
Please See Plate 2 for Classification	1819.0		RV4-SL		\odot
Please See Plate 2 for Classification	2829.0		RV4-SL		\$



		SAND		L	GRAVE
SILT or CLAY	Fine	Medium	Coarse	Fine	Coarse
CLASSIFICATION	РТН, FT .	DEF	BORING		SYMBOL
Please See Plate 3 for Classification	203.0	2	RV5-SL		•
Please See Plate 3 for Classification	809.0	ε	RV5-SL		¥)
Please See Plate 3 for Classification	617.0	1	RV5-SL		Ж
Please See Plate 3 for Classification	718.0	1	RV5-SL		8

PLATE 12


GRAVEL		SAND		
Coarse Fine	Coarse	Medium	Fine	SILT or CLAY
SYMBOL	BORING	DEP	TH, FT.	CLASSIFICATION
•	RV6-SL	14	02.0	Please See Plate 3 for Classification
X	RV6-SL	54	06.0	Please See Plate 3 for Classification
*	RV6-SL	11	12.0	Please See Plate 3 for Classification
8	RV6-SL	12	13.0	Please See Plate 3 for Classification
©	RV6-SL	20	21.0	Please See Plate 3 for Classification
0	RV6-SL	21	22.0	Please See Plate 3 for Classification

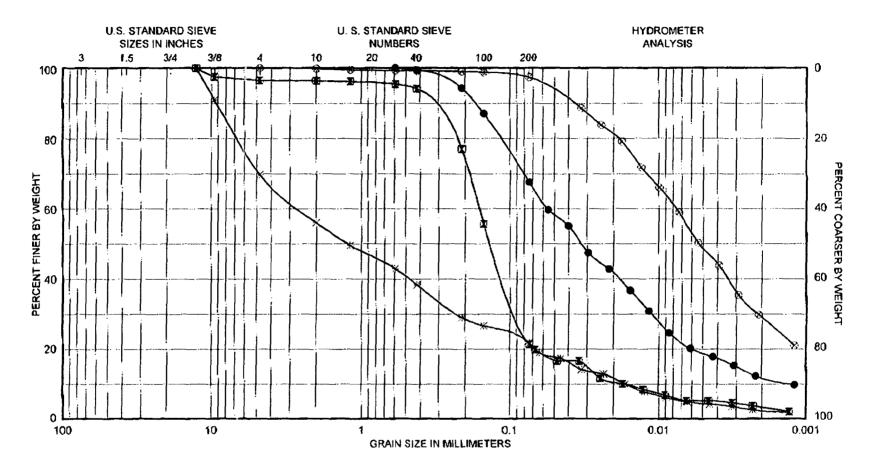
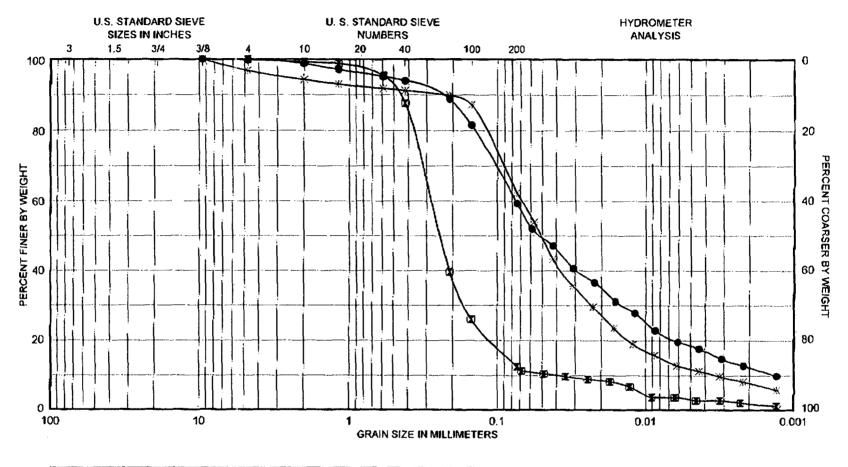
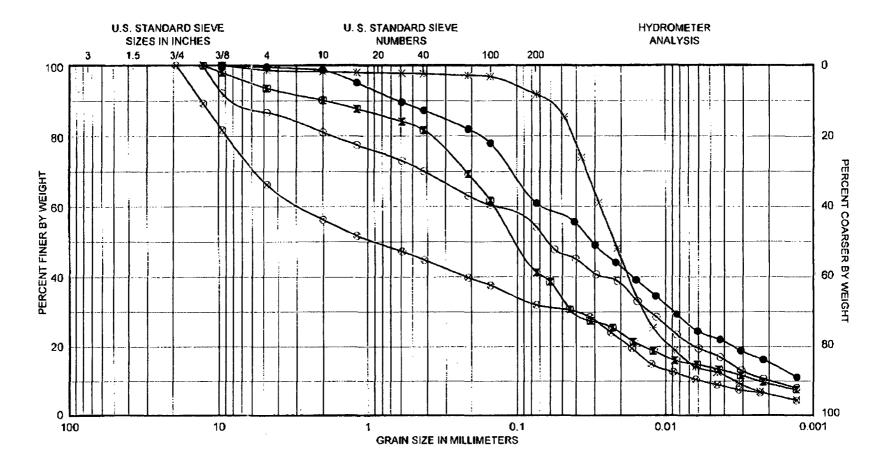

SILT or CLAY	SAND		GRAVEL		
	Medium Fine	Coarse	Fine	Coarse	
CLASSIFICATION	DEPTH, FT.	BORING		SYMBOL	
Please See Plate 4 for Classification	910.0	RV7-SL		•	
Please See Plate 4 for Classification	1314.0	RV7-SL		1	
Please See Plate 4 for Classification	1718.0	RV7-SL		ж	
Please See Plate 4 for Classification	2425.0	RV7-SL		8	

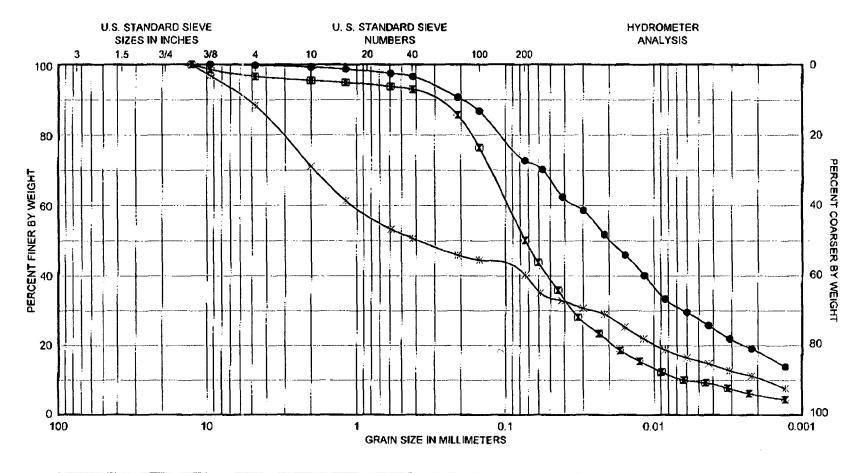
PLATE 14



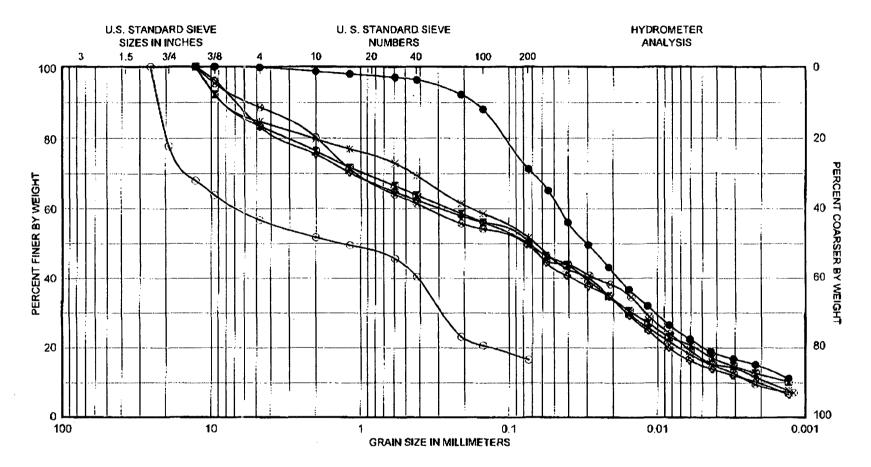
GRAV	EL		SAND		
Coarse	Fine	Coarse	Medium	Fine	SILT or CLAY
SYMBOL		BORING	DEF	TH, FT.	CLASSIFICATION
٠		RV8-SL	2	0 3.0	Please See Plate 4 for Classification
(1)		RV8-SL	9	10.0	Please See Plate 4 for Classification
ж		RV8-SL	1	213.0	Please See Plate 4 for Classification
8		RV8-SL	10	617.0	Please See Plate 4 for Classification
Θ		RV8-SL	14	819.0	Please See Plate 4 for Classification



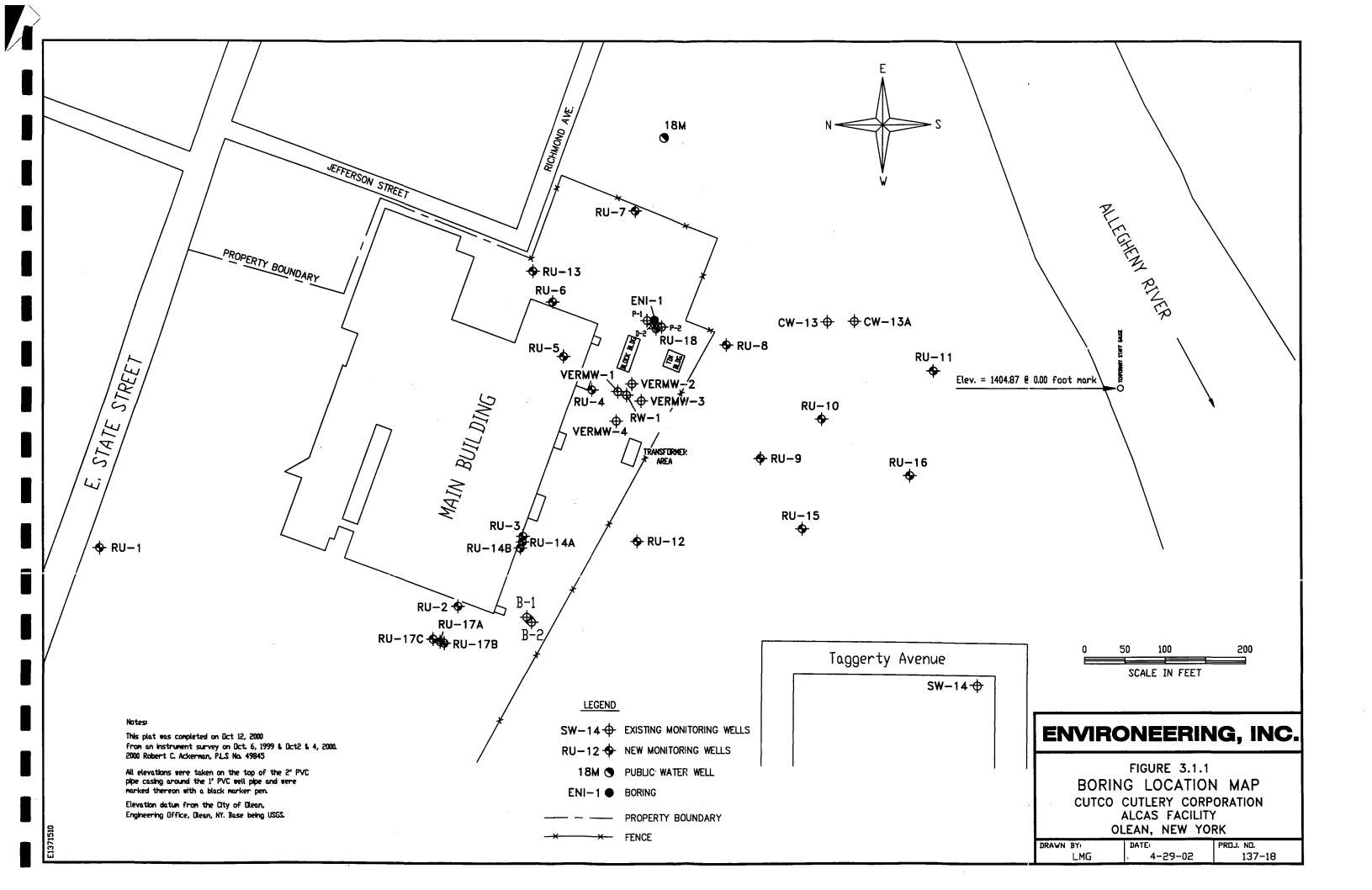
GRAV	EL		SAND)	
Coarse	Fine	Coarse	Medium	Fine	
SYMBOL		BORING	DI	EPTH, FT.	CLASSIFICATION
•		RV9-SL		203.0	Please See Plate 5 for Classification
Œ		RV9-SL		607.0	Please See Plate 5 for Classification
Ж		RV9-SL		1213.0	Please See Plate 5 for Classification
*		RV9-SL		1516.0	Please See Plate 5 for Classification



GRAVE	GRAVEL		SAND	
Coarse	Fine	Coarse	Medlum Fine	SILT or CLAY
SYMBOL		BORING	DEPTH, FT.	CLASSIFICATION
•		RV10-SL	102.0	Please See Plate 5 for Classification
		RV10-SL	708.0	Please See Plate 5 for Classification
*		RV10-SL	1617.0	Please See Plate 5 for Classification


.

SILT or CLAY	SAND			GRAVEL	
SILT OF CLAT	Fine	Medium	Coarse	Fine	Coarse
CLASSIFICATION	PTH, FT.	DEF	BORING		SYMBOL
Please See Plate 6 for Classification	203.0	:	RV11-SL		•
Please See Plate 6 for Classification	405.0		RV11-SL		<u> </u>
Please See Plate 6 for Classification	011.0	1	RV11-SL		×
Please See Plate 6 for Classification	617.0	1	RV11-SL		0
Please See Plate 6 for Classification	223.0	2	RV11-SL		©



GRAVEL	-)	
Coarse	Fine	Coarse	Medium	Fine	SILT or CLAY
SYMBOL		BORING	D	EPTH, FT.	CLASSIFICATION
•		RV12-SL		203.0	Please See Plate 6 for Classification
(RV12-SL		506.0	Please See Plate 6 for Classification
ж		RV12-SL		910.0	Please See Plate 6 for Classification

	SAND			GRAVEL	
SILT or CLAY	Fine	Medium	Coarse	Fine	Coarse
CLASSIFICATION	TH, FT.	DE	BORING		SYMBOL
Please See Plate 7 for Classification	02.0	102.0			•
Please See Plate 7 for Classification	0.0		ENI1-SL		T
Please See Plate 7 for Classification	20.0		ENI1-SL		ж
Please See Plate 7 for Classification	25.0		ENII-SL		8
Please See Plate 7 for Classification	26.0		ENI1-SL		0
Please See Plate 7 for Classification	31.0		ENI1-SL		٥

PLATE 20

APPENDIX B

Analytical Soil Data Summaries

• Phase I Investigation (July, 1999)

- Analytical Summary Table (Table 3-2)
- Analytical Soil Data Location Map (Figure 3.1.2)

• Phase II Investigation (October, 1999)

- Analytical Summary Table (Table 3-3)
- Analytical Soil Data Location Maps (Figures 3.1.3 and 3.1.4)
- Phase IV Investigation (September, 2001)
 - Analytical Summary Table (Table 3-4)

TABLE 3-2 Analytical Results for Soil Sampling Alcas-Cutco Cutlery Corporation Facility Site Olean, New York

Sample Identification Number	B10-SL-0001	B10-SL-0708	B10-SL-1718	B11-SL-0001	B11-SL-0405	B11-SL-1112	B12-SL-0001
Field Duplicate Identification							
Laboratory Dilution Number	14569A-20DL	14569A-19-DL				14629-4-DL	
Laboratory Number	14569A-20	14569A-19	14569B-1	14629-8	14629-9	14629-4	14629-6
Vinyl Chloride (µg/kg)		4.8 J ¹				15	
Methylene Chloride (µg/kg)							
Acetone (µg/kg)				100	59 J		72
Carbon Disulfide (µg/kg)							
l, l-Dichloroethene (µg/kg)							
Cis/Trans-1,2-Dichloroethene (µg/kg)		6.4				170	48
2-Butanone (MEK) (µg/kg)							
1,1,1-Trichloroethane (µg/kg)		11					
Trichloroethene (µg/kg)	120000	200 J	1200	85	110	ND	180
1,1,2-Trichloroethane (µg/kg)							
Benzene (µg/kg)							
Tetrachloroethene (µg/kg)		85					
Toluene (µg/kg)		4.0 J					3.0 J
Styrene (µg/kg)							
Ethylbenzene (µg/kg)							<u></u>
Xylene (Total) (µg/kg)							
Total VOCs	120000	311.2	1200	185	169	185	303

"J" designation denotes an estimated value

"E" designation denotes a serial dilution of the sample

"B" designation denotes a detection in laboratory blanks.

Shaded cells denote analytical values exceeding the OU2 ROD soil clean-up objectives. 1.1

Non Detect ND

Soil Clean-up Oblective; Table 1, OU2 ROD USEPA Region II, September, 1996⁴

Borehole Description:

(2)

(3)

B10 - Borehole Location

SL - Soil Sample

Compound	Soil Clean-up Objective*
Vinyl Chloride (µg/kg)	200
Cis/Trans-1,2-Dichloroethene (µg/kg)	300
2-Butanone (MEK) (µg/kg)	300
1,1,1-Trichloroethane (µg/kg)	800
Trichloroethene (µg/kg)	700
Benzene (µg/kg)	60
Tetrachloroethene (µg/kg)	1400
Toluene (µg/kg)	1500
Ethylbenzene (µg/kg)	5500
Xylene (Total) (µg/kg)	1200

TABLE 3-2 Analytical Results for Soil Sampling Alcas-Cutco Cutlery Corporation Facility Site Olean, New York

Sample Identification Number	B12-SL-0607	B12-SL-1415	B13-SL-0001	B13-SL-0708	B13-SL-1618	B14-SL-0001	B14-SL-0508
Field Duplicate Identification							
Laboratory Dilution Number			14569A-1-DL		14569A-3-DL	14569A-4-DL	14569A-5-DL
Laboratory Number	14629-7	14629-5	14569A-1	14569A-2	14569A-3	14569A-4	14569A-5
Vinyl Chloride (µg/kg)		80		32	95		
Methylene Chloride (µg/kg)							
Acetone (µg/kg)			160	81	22 J	350	63
Carbon Disulfide (µg/kg)							
1,1-Dichloroethene (μg/kg)					3.5 J		
Cis/Trans-1,2-Dichloroethene (µg/kg)	2.2 J	180	97	130	670 E ²	7.6	14
2-Butanone (MEK) (µg/kg)						32	
1,1,1-Trichloroethane (µg/kg)							
Trichloroethene (µg/kg)	4.4 J	79	3600	250 E	120 J	840	
1,1,2-Trichloroethane (µg/kg)							
Benzene (µg/kg)							
Tetrachloroethene (µg/kg)			46			4.9 J	11
Toluene (µg/kg)							
Styrene (µg/kg)							
Ethylbenzene (µg/kg)	2.2 J						
Xylene (Total) (µg/kg)							
Total VOCs	8.8	339	3903	493	910.5	1234.5	88

"J" designation denotes an estimated value

"E" designation denotes a serial dilution of the sample

"B" designation denotes a detection in laboratory blanks.

Shaded cells denote analytical values exceeding the OU2 ROD soil clean-up objectives.

ND Non Detect

Soil Clean-up Oblective; Table 1, OU2 ROD USEPA Region II, September, 1996

Borehole Description:

(1)

(2)

(3)

B10 - Borehole Location

SL - Soil Sample

Compound	Soil Clean-up Objective*		
Vinyl Chloride (µg/kg)	200		
Cis/Trans-1,2-Dichloroethene (µg/kg)	300		
2-Butanone (MEK) (µg/kg)	300		
l, l, l-Trichloroethane (μg/kg)	800		
Trichloroethene (µg/kg)	700		
Benzene (µg/kg)	60		
Tetrachloroethene (µg/kg)	1400		
Toluene (µg/kg)	1500		
Ethylbenzene (µg/kg)	5500		
Xylene (Total) (µg/kg)	1200		

TABLE 3-2 Analytical Results for Soil Sampling Alcas-Cutco Cutlery Corporation Facility Site Olean, New York

Sample Identification Number		B14-SL-1820	B15-SL-0001	B15-SL-0607	B15-SL-1314	B16-SL-0001	B16-SL-0607
Field Duplicate Identification	B14D-SL-0508						
Laboratory Dilution Number	14569A-6-DL	14569A-7-DL		14569A-9-DL	14569A-10-DL		14569A-12-DL
Laboratory Number	14569A-6	14569A-7	14569A-8	14569A-9	14569A-10	14569A-11	14569A-12
Vinyl Chloride (µg/kg)		15	56	270 E	160		77
Methylene Chloride (µg/kg)		2.8 J ²					
Acetone (µg/kg)	36 J	56	130	34 J	62	84	
Carbon Disulfide (µg/kg)		4.2 J					
l,l-Dichloroethene (µg/kg)		12		2.4 J	3.3 J		
Cis/Trans-1,2-Dichloroethene (µg/kg)	10	640 E ²		420 E	250		180
2-Butanone (MEK) (µg/kg)							
1,1,1-Trichloroethane (µg/kg)					·		
Trichloroethene (µg/kg)	170 J	13000	30 B ³	440 E	4900	7.0	580 BE
1,1,2-Trichloroethane (µg/kg)							
Benzene (µg/kg)		6			4.2 J		
Tetrachloroethene (µg/kg)	9.4	2.8 J		12	17		
Toluene (µg/kg)		81			3.7 J		
Styrene (µg/kg)			7.9	2.9 J	4.0 J		
Ethylbenzene (µg/kg)							
Xylene (Total) (µg/kg)		3.3 J					
Total VOCs	22.5.4	13823.1	223.9	1181.3	5404.2	91	837

"J" designation denotes an estimated value

"E" designation denotes a serial dilution of the sample

"B" designation denotes a detection in laboratory blanks.

Shaded cells denote analytical values exceeding the OU2 ROD soil clean-up objectives.

ND Non Detect

Soil Clean-up Oblective; Table 1, OU2 ROD USEPA Region II, September, 1996

Borehole Description:

B10 - Borehole Location

SL - Soil Sample

(1)

(2)

(3)

Compound	Soil Clean-up Objective*
Vinyl Chloride (µg/kg)	200
Cis/Trans-1,2-Dichloroethene (µg/kg)	300
2-Butanone (MEK) (µg/kg)	300
1,1,1-Trichloroethane (µg/kg)	800
Trichloroethene (µg/kg)	700
Benzene (µg/kg)	60
Tetrachloroethene (µg/kg)	1400
Toluene (µg/kg)	1500
Ethylbenzene (µg/kg)	5500
Xylene (Total) (µg/kg)	1200

4

TABLE 3-2 Analytical Results for Soil Sampling Alcas-Cutco Cutlery Corporation Facility Site Olean, New York

Sample Identification Number	B16SL-0910	B16-SL-1819	B17-SL-0001	B17-SL-0607	B17-SL-1112	B17-SL-1718	B18-SL-0001
Field Duplicate Identification							
Laboratory Dilution Number	14569A-13-DL				14569-A-17-DL	14569A-18-DL	
Laboratory Number	14569A-13	14569A-14	14569A-15	14569A-16	14569A-17	14569A-18	14629-1
Vinyl Chloride (µg/kg)	130	2.8 J		62	130	5.3 J ¹	11
Methylene Chloride (µg/kg)							
Acetone (µg/kg)			50 J	33 J			24 J
Carbon Disulfide (µg/kg)							16
1,1-Dichloroethene (µg/kg)	2.8 J				3.8 J		
Cis/Trans-1,2-Dichloroethene (µg/kg)	700 E ²	4.3 J		280 E	350 E	15	38
2-Butanone (MEK) (µg/kg)			27 J			3.7 J	
1,1,1-Trichloroethane (µg/kg)							
Trichloroethene (µg/kg)	890	25	17 B	140 B	1900	420	24
1,1,2-Trichloroethane (µg/kg)	3.8 J						
Benzene (µg/kg)			7.6		5.4		
Tetrachloroethene (µg/kg)	3						
Toluene (µg/kg)					3.4 J		
Styrene (µg/kg)							
Ethylbenzene (µg/kg)							
Xylene (Total) (µg/kg)							
Total VOCs	1734.6	32.1	101.6	515	2392.6	444	113

(1)

(2)

(3)

"J" designation denotes an estimated value

"E" designation denotes a serial dilution of the sample

"B" designation denotes a detection in laboratory blanks.

Shaded cells denote analytical values exceeding the OU2 ROD soil clean-up objectives.

ND Non Detect

Soil Clean-up Oblective; Table 1, OU2 ROD USEPA Region II, September, 1996

Borehole Description:

B10 - Borehole Location

SL - Soil Sample

Compound	Soil Clean-up Objective*
Vinyl Chloride (µg/kg)	200
Cis/Trans-1,2-Dichloroethene (µg/kg)	300
2-Butanone (MEK) (µg/kg)	300
1,1,1-Trichloroethane (µg/kg)	800
Trichloroethene (µg/kg)	700
Benzene (µg/kg)	60
Tetrachloroethene (µg/kg)	1400
Toluene (µg/kg)	1500
Ethylbenzene (µg/kg)	5500
Xylene (Total) (µg/kg)	1200

TABLE 3-2 Analytical Results for Soil Sampling Alcas-Cutco Cutlery Corporation Facility Site Olean, New York

18-SL-0607	B18-SL-1415
14629-2	14629-3
66	
87	
41	
	2.1 J
194	2.1
	194

ENVIRONEERING, INC.

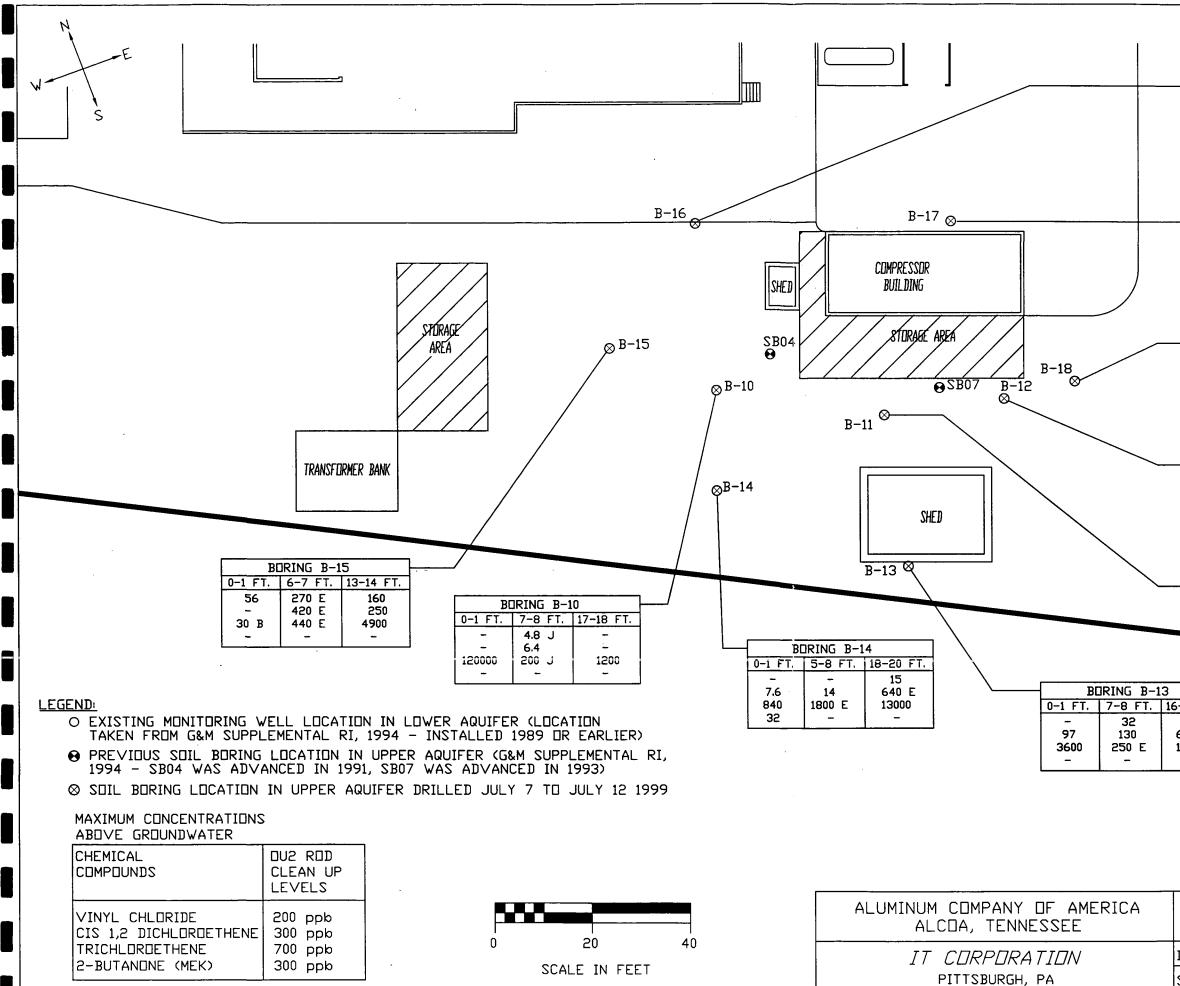
"J" designation denotes an estimated value

(2) "E" designation denotes a serial dilution of the sample (3)

"B" designation denotes a detection in laboratory blanks.

Shaded cells denote analytical values exceeding the OU2 ROD soil clean-up objectives.

Non Detect ND


Soil Clean-up Oblective; Table 1, OU2 ROD USEPA Region II, September, 1996

Borehole Description:

B10 - Borehole Location

SL - Soil Sample

Compound	Soil Clean-up Objective*		
Vinyl Chloride (µg/kg)	200		
Cis/Trans-1,2-Dichloroethene (µg/kg)	300		
2-Butanone (MEK) (µg/kg)	300		
1,1,1-Trichloroethane (µg/kg)	800		
Trichloroethene (µg/kg)	700		
Benzene (µg/kg)	60		
Tetrachloroethene (µg/kg)	1400		
Toluene (µg/kg)	1500		
Ethylbenzene (µg/kg)	5500		
Xylene (Total) (µg/kg)	1200		

	JOB NO.: 70724	00200 PLOT	SCALE:1=250
	STARTED DN: 8/	20/99 RE∨IS	ED 8/30/99
D-5 ⁰	B 0-1 FT. 6-7	DRING B-16 FT. 9-10 FT.	18-19 FT.
	- 7	7 130	2.8 J
	7.0 580		4.3 J 25
	<u> </u>		-
		PERTY NDARY	
		DRING B-17	
		FT. 11-12 FT.	17-18 FT.
	- 66	2 130 DE 110 J	5.3 J 15
	17 B 140		420
	27 J -		3.7 J
		·	_
		5 B-18 FT. 14-15 FT.	- ·
	11 6	6 –	-
		7 – 1 –	
		- -	
	BORINO	5 B-12	ן ר
	0-1 FT. 6-7	FT. 14-15 FT.]
		- 80 J 180	
	180 4.4	J 79 - –	
	L		J
		- D_11	_ ا
	0-1 FT. 4-5	5 B-11 FT. 11-12 FT.	
		· 15 · 170	
	85 11		
5-18 FT.			
95 670 E			
120 J			
J			
			212
		FIGURE 3	
AN ALCAS	ALYTICAL R FACILITY -	ESULTS FO - OLEAN, N	R SOILS IEW YORK
DATE:	8/20/99	DR.: B. SI	NYDER
SCALE:	AS NOTED	FILE NAME	20153019

TABLE 3-3 Analytical Results for Soil Sampling Alcas-Cutco Cutlery Corporation Facility Site Olean, New York

Sample Identificati	on Number	B10A-23.4-23.8	B10A-25.0-25.3	B10A-28.3-28.7	B11A-15.0-15.3	B11A-21.5-21.8
	g Depth (ft)	23.4 - 23.8	25.0 - 25.3	28.3 - 28.7	15.0 - 15.3	21.5 - 21.8
Field Duplicate Id	entification					
Laboratory Diluti				S916985A-11-DL	S916985-10-DL	S916985-9-DL
Laborato	ry Number	S916985A-9	S916985A-10	S916985A-11	S916985-10	S916985-9
Parameter (units)	SCO					
1,1,1-Trichloroethane (ug/kg)	800					
1,1-Dichloroethane (ug/kg)						
1,1-Dichloroethene (ug/kg)						
1,2-Dichloroethane (ug/kg)						
2-Butanone (MEK) (ug/kg)	300					
Acetone (ug/kg)					45 J	
Benzene (ug/kg)	60			4.6 J	5.4 J	
Carbon disulfide (ug/kg)						
Chloroethane (ug/kg)						· · · · · · · · · · · · · · · · · · ·
Chloromethane (ug/kg)						
Cis/Trans-1,2-Dichloroethene (ug/kg)	300			5.1 J	95	12
Ethylbenzene (ug/kg)	5500					
Methylene chloride (Dichloromethane) (ug/kg)						
Styrene (ug/kg)						
Tetrachloroethene (ug/kg)	1400				6.5 J	
Toluene (ug/kg)	1500			5.7		
Trichloroethene (ug/kg)	700	530	2400	160 JD	150 JD	120 JD
Vinyl chloride (ug/kg)	200				12 J	
Xylenes, Total (ug/kg)	1200			3.4 J		
Total Volatiles		530	2400	179	321.9	132

Notes:

 Shaded cells denote analytical values exceeding the OU2 ROD soil clean-up objectives (SCOs), from Table 1 of the OU2 ROD, USEPA Region II, September, 1996.

2. Blank cells denote nondetected values.

- 3. Values in parentheses are for undiluted sample analyses when parameter was not detected during the analysis of the dilution.
- 4. Parameters not listed were not detected in any of the samples.

Qualifiers:

D = Value derived from analysis of a dilution.

E = Value estimated, exceeds the calibration range.

J = Value estimated, below quantitation limit.

TABLE 3-3 Analytical Results for Soil Sampling Alcas-Cutco Cutlery Corporation Facility Site Olean, New York

Sample Identificat	tion Number	B11A-27.2-27.7	B11A-30.3-30.7	B13A-24.2-24.7	B13A-35.4-36.2	B14A-24.1-24.6
Samplir	ng Depth (ft)	27.2 - 27.7	30.3 - 30.7	24.2 - 24.7	35.4 - 36.2	24.1 - 24.6
Field Duplicate lo	dentification		S916985-12-DL		S916985-8-DL	
Laboratory Dilut		S916985-11-DL		S916985-7-DL		
Laborat	ory Number	\$916985-11	\$916985-12	\$916985-7	S916985-8	S916985A-2
Parameter (units)	SCO					
1,1,1-Trichloroethane (ug/kg)	800					
1,1-Dichloroethane (ug/kg)						
1,1-Dichloroethene (ug/kg)			6.8			
1,2-Dichloroethane (ug/kg)						
2-Butanone (MEK) (ug/kg)	300					
Acetone (ug/kg)		32 J			43 J	
Benzene (ug/kg)	60	3.7 J	3.4 J			
Carbon disulfide (ug/kg)						
Chloroethane (ug/kg)						
Chloromethane (ug/kg)						
Cis/Trans-1,2-Dichloroethene (ug/kg)	300	67	83	12	15	
Ethylbenzene (ug/kg)	5500					
Methylene chloride (Dichloromethane) (ug/kg)						
Styrene (ug/kg)						
Tetrachloroethene (ug/kg)	1400					
Toluene (ug/kg)	1500					
Trichloroethene (ug/kg)	700	200 JD	1800 D	220 UD (320 E)	330 D	13
Vinyl chloride (ug/kg)	200	9.3 J	13			
Xylenes, Total (ug/kg)	1200					
Total Volatiles		312	1906.2	332	388	13

Notes:

 Shaded cells denote analytical values exceeding the OU2 ROD soil clean-up objectives (SCOs), from Table 1 of the OU2 ROD, USEPA Region II, September, 1996.

2. Blank cells denote nondetected values.

- 3. Values in parentheses are for undiluted sample analyses when parameter was not detected during the analysis of the dilution.
- 4. Parameters not listed were not detected in any of the samples.

Qualifiers:

D = Value derived from analysis of a dilution.

E = Value estimated, exceeds the calibration range.

J = Value estimated, below quantitation limit.

TABLE 3-3 Analytical Results for Soil Sampling Alcas-Cutco Cutlery Corporation Facility Site Olean, New York

Sample Identificat	on Number	B14A-30.4-30.8	B15A-23.2-23.5	B15A-27.1-27.5	<u>, </u>	B194562
	g Depth (ft)	30.4 - 30.8	23.2 - 23.5	27.1 - 27.5	27.1 - 27.5	0.45 - 0.62
Field Duplicate Id				\$917074-1-DL	B15A-27.1-27.5-DUP	
Laboratory Dilut		S916985A-1-DL	S917074-3-DL		S917074-2-DL	\$916985-4-DL
Laborate	ry Number	S916985A-1	S917074-3	\$917074-1	S917074-2	S916985-4
Parameter (units)	SCO					
1,1,1-Trichloroethane (ug/kg)	800					
1,1-Dichloroethane (ug/kg)						
1,1-Dichloroethene (ug/kg)				6.1		
1,2-Dichloroethane (ug/kg)						
2-Butanone (MEK) (ug/kg)	300					
Acetone (ug/kg)						30 J
Benzene (ug/kg)	60		5.5 J	4 J		
Carbon disulfide (ug/kg)						4.6 J
Chloroethane (ug/kg)						
Chloromethane (ug/kg)						
Cis/Trans-1,2-Dichloroethene (ug/kg)	300		220 UD (640 E)	220 UD (390 E)		
Ethylbenzene (ug/kg)	5500					
Methylene chloride (Dichloromethane) (ug/kg)						
Styrene (ug/kg)						
Tetrachloroethene (ug/kg)	1400		27	5 J		
Toluene (ug/kg)	1500			2.8 J		
Trichloroethene (ug/kg)	700	500	920 D	2200 D	2300	16
Vinyl chloride (ug/kg)	200		190	61		
Xylenes, Total (ug/kg)	1200					
Total Volatiles		500	1782.5	2668.9	2300	50.6

Notes:

 Shaded cells denote analytical values exceeding the OU2 ROD soil clean-up objectives (SCOs), from Table 1 of the OU2 ROD, USEPA Region II, September, 1996.

2. Blank cells denote nondetected values.

- 3. Values in parentheses are for undiluted sample analyses when parameter was not detected during the analysis of the dilution.
- 4. Parameters not listed were not detected in any of the samples.

Qualifiers:

D = Value derived from analysis of a dilution.

E = Value estimated, exceeds the calibration range.

J = Value estimated, below quantitation limit.

TABLE 3-3 Analytical Results for Soil Sampling Alcas-Cutco Cutlery Corporation Facility Site Olean, New York

Sample Identification	on Number	B19-5.7-6.0	B19-15.0-15.3	B19-23.2-23.6	B19-27.0-27.4	B19-31.4-31.7
	g Depth (ft)	5.7 - 6.0	15.0 - 15.3	23.2 - 23.6	27.0 - 27.4	31.4 - 31.7
Field Duplicate Ide	entification					
Laboratory Dilution Number		\$916985-2-DL	S916985-5-DL	\$916985-3-DL	\$916985-6-DL	\$916985-1-DL
Laborato	ry Number	S916985-2	S916985-5	S916985-3	S916985-6	S916985-1
Parameter (units)	SCO					
1,1,1-Trichloroethane (ug/kg)	800					
1,1-Dichloroethane (ug/kg)						
1,1-Dichloroethene (ug/kg)						
1,2-Dichloroethane (ug/kg)						5.7 J
2-Butanone (MEK) (ug/kg)	300					
Acetone (ug/kg)				32 J		
Benzene (ug/kg)	60		1.9 J			
Carbon disulfide (ug/kg)						
Chloroethane (ug/kg)						
Chloromethane (ug/kg)						
Cis/Trans-1,2-Dichloroethene (ug/kg)	300		80	160	110	7.6
Ethylbenzene (ug/kg)	5500					
Methylene chloride (Dichloromethane) (ug/kg)						
Styrene (ug/kg)						
Tetrachloroethene (ug/kg)	1400			5.8 J		
Toluene (ug/kg)	1500					
Trichloroethene (ug/kg)	700	16	230 UD (1800 E)	580 D	840 D	220 JD
Vinyl chloride (ug/kg)	200		11	30	19	
Xylenes, Total (ug/kg)	1200					
Total Volatiles		16	1892.9	807.8	969	233.3

Notes:

 Shaded cells denote analytical values exceeding the OU2 ROD soil clean-up objectives (SCOs), from Table 1 of the OU2 ROD, USEPA Region II, September, 1996.

2. Blank cells denote nondetected values.

3. Values in parentheses are for undiluted sample analyses when parameter was not detected during the analysis of the dilution.

4. Parameters not listed were not detected in any of the samples.

Qualifiers:

D = Value derived from analysis of a dilution.

E = Value estimated, exceeds the calibration range.

J = Value estimated, below quantitation limit.

TABLE 3-3 Analytical Results for Soil Sampling Alcas-Cutco Cutlery Corporation Facility Site Olean, New York

Sample Identifica	tion Number	B2047	B20-3.6-4.0	B20-11.0-11.3	B20-15.0-15.6	B20-23.6-24.0
	ng Depth (ft)	0.4 - 0.7	3.6 - 4.0	11.0 - 11.3	15.0 - 15.6	23.6 - 24.0
Field Duplicate I	dentification					
Laboratory Dilu	tion Number			S916985A-14-DL	S916985A-15-DL	
Labora	tory Number	S916985A-12	S916985A-13	S916985A-14	S916985A-15	S916985A-16
Parameter (units)	SCO					
1,1,1-Trichloroethane (ug/kg)	800					
1,1-Dichloroethane (ug/kg)						
1,1-Dichloroethene (ug/kg)						
1,2-Dichloroethane (ug/kg)						
2-Butanone (MEK) (ug/kg)	300					
Acetone (ug/kg)				30 J		
Benzene (ug/kg)	60	3.1 J			<u>3,5 J</u>	
Carbon disulfide (ug/kg)						
Chloroethane (ug/kg)						
Chloromethane (ug/kg)						
Cis/Trans-1,2-Dichloroethene (ug/kg)	300	110	5.5 J	220	78	
Ethylbenzene (ug/kg)	5500					
Methylene chloride (Dichloromethane) (ug/kg)						
Styrene (ug/kg)						
Tetrachloroethene (ug/kg)	1400				6.1 J	
Toluene (ug/kg)	1500				4.8 J	
Trichloroethene (ug/kg)	700	85	7.9	230 UD (660 E)	220 UD (1300 E)	1400
Vinyl chloride (ug/kg)	200			32	21	
Xylenes, Total (ug/kg)	1200				3.1 J	
Total Volatiles		198.1	13.4	942	1416.5	1400

Notes:

 Shaded cells denote analytical values exceeding the OU2 ROD soil clean-up objectives (SCOs), from Table 1 of the OU2 ROD, USEPA Region II, September, 1996.

2. Blank cells denote nondetected values.

- 3. Values in parentheses are for undiluted sample analyses when parameter was not detected during the analysis of the dilution.
- 4. Parameters not listed were not detected in any of the samples.

Qualifiers:

-

- D = Value derived from analysis of a dilution.
- E = Value estimated, exceeds the calibration range.
- J = Value estimated, below quantitation limit.

TABLE 3-3 Analytical Results for Soil Sampling Alcas-Cutco Cutlery Corporation Facility Site Olean, New York

Sample Identificat	ion Number	B20-24.5-24.8	B21-0.0-0.5	B21-3.7-4.0	B21-14,7-15.0	B21-22.7-23.0
	g Depth (ft)	24.5 - 24.8	0.0 - 0.5	3.7 - 4.0	14.7 - 15.0	22.7 - 23.0
Field Duplicate Io			S917074A-20-DL			
Laboratory Dilut					· ·	
	ory Number	S916985A-17	S917074A-20	S917074B-1	S917074B-2	S917074B-3
Parameter (units)	SCO					
1,1,1-Trichloroethane (ug/kg)	800		220 UD (500 E)			
1,1-Dichloroethane (ug/kg)			32			
1,1-Dichloroethene (ug/kg)						
1,2-Dichloroethane (ug/kg)						
2-Butanone (MEK) (ug/kg)	300		50			
Acetone (ug/kg)			380	140	31 J	
Benzene (ug/kg)	60					
Carbon disulfide (ug/kg)						
Chloroethane (ug/kg)						
Chloromethane (ug/kg)						
Cis/Trans-1,2-Dichloroethene (ug/kg)	300				3.5 J	
Ethylbenzene (ug/kg)	5500		11			
Methylene chloride (Dichloromethane) (ug/kg)			12			
Styrene (ug/kg)						
Tetrachloroethene (ug/kg)	1400		8.5			
Toluene (ug/kg)	1500		10			
Trichloroethene (ug/kg)	700	250	3.2 J		84	3.8 J
Vinyl chloride (ug/kg)	200					13
Xylenes, Total (ug/kg)	1200		51			
Total Volatiles		250	1057.7	140	118.5	16.8

Notes:

 Shaded cells denote analytical values exceeding the OU2 ROD soil clean-up objectives (SCOs), from Table 1 of the OU2 ROD, USEPA Region II, September, 1996.

2. Blank cells denote nondetected values.

3. Values in parentheses are for undiluted sample analyses when parameter was not detected during the analysis of the dilution.

4. Parameters not listed were not detected in any of the samples.

Qualifiers:

D = Value derived from analysis of a dilution.

E = Value estimated, exceeds the calibration range.

J = Value estimated, below quantitation limit.

TABLE 3-3 Analytical Results for Soil Sampling Alcas-Cutco Cutlery Corporation Facility Site Olean, New York

Sample Identificat	tion Number	B21-25.5-25.8	B22-0.0-0.5	B22-4.0-4.4	B22-15.1-15.4	B22-22.7-23.0
Samplir	ng Depth (ft)	25.5 - 25.8	0.0 - 0.5	4.0 - 4.4	15.1 - 15.4	22.7 - 23.0
Field Duplicate Ic	dentification			1		
Laboratory Dilut						
Laborat	tory Number	S917074B-4	S917074A-15	S917074A-16	S917074A-17	S917074A-18
Parameter (units)	SCO					
1,1,1-Trichloroethane (ug/kg)	800					
1,1-Dichloroethane (ug/kg)						
I,I-Dichloroethene (ug/kg)						
1,2-Dichloroethane (ug/kg)						
2-Butanone (MEK) (ug/kg)	300		18 J			
Acetone (ug/kg)			120	78	28 J	
Benzene (ug/kg)	60			5.2 J		
Carbon disulfide (ug/kg)						
Chloroethane (ug/kg)						
Chloromethane (ug/kg)			12			
Cis/Trans-1,2-Dichloroethene (ug/kg)	300		4.8 J	5 J	19	7.8
Ethylbenzene (ug/kg)	5500					
Methylene chloride (Dichloromethane) (ug/kg)						
Styrene (ug/kg)						
Tetrachloroethene (ug/kg)	1400					
Toluene (ug/kg)	1500					
Trichloroethene (ug/kg)	700	59	17	8.2	28	10
Vinyl chloride (ug/kg)	200				26	
Xylenes, Total (ug/kg)	1200					
Total Volatiles		59	171.8	96.4	101	17,8

Notes:

 Shaded cells denote analytical values exceeding the OU2 ROD soil clean-up objectives (SCOs), from Table 1 of the OU2 ROD, USEPA Region II, September, 1996.

2. Blank cells denote nondetected values.

- Values in parentheses are for undiluted sample analyses when parameter was not detected during the analysis of the dilution.
- 4. Parameters not listed were not detected in any of the samples.

Qualifiers:

D = Value derived from analysis of a dilution.

E = Value estimated, exceeds the calibration range.

J = Value estimated, below quantitation limit.

TABLE 3-3 Analytical Results for Soil Sampling Alcas-Cutco Cutlery Corporation Facility Site Olean, New York

Sample Identification	on Number	B22-25.4-25.7	B23-0.0-0.5	B23-3.7-4.0	B23-6.5-6.8	
Sampling	g Depth (ft)	25.4 - 25.7	0.0 - 0.5	3.7 - 4.0	6.5 - 6.8	6.5 - 6.8
Field Duplicate Ide	entification					B23-6.5-6.8-DUP
Laboratory Dilution	Laboratory Dilution Number			S917074-17-DL		
Laborato	ry Number	S917074A-19	S917074-16	S917074-17	S917074-18	S917074-19
Parameter (units)	SCO					
1,1,1-Trichloroethane (ug/kg)	800					
1,1-Dichloroethane (ug/kg)						
1,1-Dichloroethene (ug/kg)				5.7 J		
1,2-Dichloroethane (ug/kg)						
2-Butanone (MEK) (ug/kg)	300					
Acetone (ug/kg)				34 J		
Benzene (ug/kg)	60					
Carbon disulfide (ug/kg)						
Chloroethane (ug/kg)						
Chloromethane (ug/kg)						
Cis/Trans-1,2-Dichloroethene (ug/kg)	300		7100	240 UD (2100 E)		
Ethylbenzene (ug/kg)	5500					
Methylene chloride (Dichloromethane) (ug/kg)						
Styrene (ug/kg)						
Tetrachloroethene (ug/kg)	1400					
Toluene (ug/kg)	1500				-	
Trichloroethene (ug/kg)	700	420	510	240 UD (530 E)	600	590
Vinyl chloride (ug/kg)	200		460	480 UD (540 E)		
Xylenes, Total (ug/kg)	1200					<u> </u>
Total Volatiles		. 420	8070	3209.7	600	590

Notes:

 Shaded cells denote analytical values exceeding the OU2 ROD soil clean-up objectives (SCOs), from Table 1 of the OU2 ROD, USEPA Region II, September, 1996.

2. Blank cells denote nondetected values.

- 3. Values in parentheses are for undiluted sample analyses when parameter was not detected during the analysis of the dilution.
- 4. Parameters not listed were not detected in any of the samples.

Qualifiers:

D = Value derived from analysis of a dilution.

E = Value estimated, exceeds the calibration range.

J = Value estimated, below quantitation limit.

TABLE 3-3 Analytical Results for Soil Sampling Alcas-Cutco Cutlery Corporation Facility Site Olean, New York

Sample Identi	ification Number	B23-15.0-15.3	B23-24.3-24.5	B23-25.1-25.3	B24-0.0-0.5	B24-3.7-4.0
Sar	npling Depth (ft)	15.0 - 15.3	24.3 - 24.5	25.1 - 25.3	0.0 - 0.5	3.7 - 4.0
Field Duplics	ate Identification		\$917074A-2-DL	1		
	Dilution Number					
	oratory Number	S917074A-1	S917074A-2	S917074A-3	S917074-11	S917074-12
Parameter (units)	SCO					
,1,1-Trichloroethane (ug/kg)	800					
, I-Dichloroethane (ug/kg)						
, I-Dichloroethene (ug/kg)						
,2-Dichloroethane (ug/kg)					5.9 J	
-Butanone (MEK) (ug/kg)	300				34 J	
Acetone (ug/kg)	T				130	44 J
Benzene (ug/kg)	60				3.6 J	3.2 J
Carbon disulfide (ug/kg)						
hloroethane (ug/kg)						8.2 J
hloromethane (ug/kg)						
Cis/Trans-1,2-Dichloroethene (ug/kg)	300					8.1
thylbenzene (ug/kg)	5500					
Aethylene chloride (Dichloromethane) (ug/kg	<u>z)</u>					
tyrene (ug/kg)					3.9 J	
etrachloroethene (ug/kg)	1400					
oluene (ug/kg)	1500					
richloroethene (ug/kg)	700	2/1000	3100	3900	42	9.8
/inyl chloride (ug/kg)	200					29
ylenes, Total (ug/kg)	1200				5.3 J	
Total Volatiles		24000	3100	3900	224.7	102.3

Notes:

 Shaded cells denote analytical values exceeding the OU2 ROD soil clean-up objectives (SCOs), from Table 1 of the OU2 ROD, USEPA Region II, September, 1996.

2. Blank cells denote nondetected values.

- 3. Values in parentheses are for undiluted sample analyses when parameter was not detected during the analysis of the dilution.
- 4. Parameters not listed were not detected in any of the samples.

Qualifiers:

D = Value derived from analysis of a dilution.

E = Value estimated, exceeds the calibration range.

J = Value estimated, below quantitation limit.

TABLE 3-3 Analytical Results for Soil Sampling Alcas-Cutco Cutlery Corporation Facility Site Olean, New York

Sample Identificati	on Number	B24-15.2-15.5	B24-22.8-23.1	B24-26.2-26.6	B25-0.0-0.5	B25-3.7-4.0
	g Depth (ft)		22.8 - 23.1	26.2 - 26.6	0.0 - 0.5	3.7 - 4.0
Field Duplicate Id				1		
Laboratory Dilut	Laboratory Dilution Number			\$917074-15-DL		
Laborate	ry Number	S917074-13	S917074-14	S917074-15	S917074A-4	S917074A-5
Parameter (units)	SCO					
1,1,1-Trichloroethane (ug/kg)	800					
1,1-Dichloroethane (ug/kg)						
1,1-Dichloroethene (ug/kg)				7.5		
1,2-Dichloroethane (ug/kg)						
2-Butanone (MEK) (ug/kg)	300					19 J
Acetone (ug/kg)					180	170
Benzene (ug/kg)	60			4.4 J		
Carbon disulfide (ug/kg)						
Chloroethane (ug/kg)						
Chloromethane (ug/kg)						
Cis/Trans-1,2-Dichloroethene (ug/kg)	300			230 UD (350 E)		3.5 J
Ethylbenzene (ug/kg)	5500					
Methylene chloride (Dichloromethane) (ug/kg)						
Styrene (ug/kg)					•	
Tetrachloroethene (ug/kg)	1400					
Toluene (ug/kg)	1500					
Trichloroethene (ug/kg)	700	3700	2200	1600 D	17	29
Vinyl chloride (ug/kg)	200			62		
Xylenes, Total (ug/kg)	1200					
Total Volatiles		3700	2200	2023.9	197	221.5

Notes:

 Shaded cells denote analytical values exceeding the OU2 ROD soil clean-up objectives (SCOs), from Table 1 of the OU2 ROD, USEPA Region II, September, 1996.

2. Blank cells denote nondetected values.

- 3. Values in parentheses are for undiluted sample analyses when parameter was not detected during the analysis of the dilution.
- 4. Parameters not listed were not detected in any of the samples.

Qualifiers:

- D = Value derived from analysis of a dilution.
- E = Value estimated, exceeds the calibration range.
- J = Value estimated, below quantitation limit.

TABLE 3-3 Analytical Results for Soil Sampling Alcas-Cutco Cutlery Corporation Facility Site Olean, New York

Sample Identifica	tion Number	B25-15.6-16.0		B25-20.8-21.2	B25-26.7-27.0	B26-0.0-0.5
	ng Depth (ft)		15.6 - 16.0	20.8 - 21.2	26.7 - 27.0	0.0 - 0.5
Field Duplicate I			B25-15.6-16.0-DUP			
	Laboratory Dilution Number				<u></u>	
	tory Number		S917074A-7	S917074A-8	S917074A-9	S917074A-10
Parameter (units)	sco					
1,1,1-Trichloroethane (ug/kg)	800					
1,1-Dichloroethane (ug/kg)						
1,1-Dichloroethene (ug/kg)						
1,2-Dichloroethane (ug/kg)						
2-Butanone (MEK) (ug/kg)	300					17 J
Acetone (ug/kg)					22 J	190
Benzene (ug/kg)	60					
Carbon disulfide (ug/kg)						
Chloroethane (ug/kg)						
Chloromethane (ug/kg)						23
Cis/Trans-1,2-Dichloroethene (ug/kg)	300				2.9 J	
Ethylbenzene (ug/kg)	5500					
Methylene chloride (Dichloromethane) (ug/kg)						
Styrene (ug/kg)						
Tetrachloroethene (ug/kg)	1400					
Toluene (ug/kg)	1500					
Trichloroethene (ug/kg)	700	4000	4500	1900	16	<u>5.3</u> J
Vinyl chloride (ug/kg)	200					
Xylenes, Total (ug/kg)	1200					
Total Volatiles		4000	4500	1900	40.9	235.3

Notes:

 Shaded cells denote analytical values exceeding the OU2 ROD soil clean-up objectives (SCOs), from Table 1 of the OU2 ROD, USEPA Region II, September, 1996.

2. Blank cells denote nondetected values.

3. Values in parentheses are for undiluted sample analyses when parameter was not detected during the analysis of the dilution.

4. Parameters not listed were not detected in any of the samples.

Qualifiers:

D = Value derived from analysis of a dilution.

E = Value estimated, exceeds the calibration range.

J = Value estimated, below quantitation limit.

TABLE 3-3 Analytical Results for Soil Sampling Alcas-Cutco Cutlery Corporation Facility Site Olean, New York

Sample Identificat	tion Number	B26-3.7-4.0	B26-15.7-16.0	B26-21.5-21.8	B26-27.5-27.8	B2716
Samplir	ng Depth (ft)	3.7 - 4.0	15.7 - 16.0	21.5 - 21.8	27.5 - 27.8	0.1 - 0.6
Field Duplicate Id	dentification					
Laboratory Dilut	ion Number					
Laborat	ory Number	S917074A-11	S917074A-12	S917074A-13	S917074A-14	S916985A-3
Parameter (units)	SCO					
1,1,1-Trichloroethane (ug/kg)	800					
1,1-Dichloroethane (ug/kg)						
1,1-Dichloroethene (ug/kg)						
1,2-Dichloroethane (ug/kg)						
2-Butanone (MEK) (ug/kg)	300					
Acetone (ug/kg)		58 J		20 J	23 J	
Benzene (ug/kg)	60					
Carbon disulfide (ug/kg)						
Chloroethane (ug/kg)						
Chloromethane (ug/kg)						
Cis/Trans-1,2-Dichloroethene (ug/kg)	300					
Ethylbenzene (ug/kg)	5500					
Methylene chloride (Dichloromethane) (ug/kg)						
Styrene (ug/kg)						
Tetrachloroethene (ug/kg)	1400					
Toluene (ug/kg)	1500					
Trichloroethene (ug/kg)	700	6.2 J	450	10	6.8	1200
Vinyl chloride (ug/kg)	200			12		
Xylenes, Total (ug/kg)	1200					
Total Volatiles		64.2	450	42	29.8	1200

Notes:

 Shaded cells denote analytical values exceeding the OU2 ROD soil clean-up objectives (SCOs), from Table 1 of the OU2 ROD, USEPA Region II, September, 1996.

2. Blank cells denote nondetected values.

- 3. Values in parentheses are for undiluted sample analyses when parameter was not detected during the analysis of the dilution.
- 4. Parameters not listed were not detected in any of the samples.

Qualifiers:

- D = Value derived from analysis of a dilution.
- E = Value estimated, exceeds the calibration range.
- J = Value estimated, below quantitation limit.

TABLE 3-3 Analytical Results for Soil Sampling Alcas-Cutco Cutlery Corporation Facility Site Olean, New York

Sample Identificati	on Number	B27-4.0-4.4	B27-15.5-15.9	B27-21.2-21.6	B27-31.8-32.3	B27-33.2-33.6
Samplin	g Depth (ft)	4.0 - 4.4	15.5 - 15.9	21.2 - 21.6	31.8 - 32.3	33.2 - 33.6
Field Duplicate Id						
Laboratory Diluti	Laboratory Dilution Number		S916985A-5-DL			
Laborato	ry Number	S916985A-4	S916985A-5	S916985A-6	S916985A-7	S916985A-8
Parameter (units)	SCO					
1,1,1-Trichloroethane (ug/kg)	800					
1,1-Dichloroethane (ug/kg)						
1, I-Dichloroethene (ug/kg)						
1,2-Dichloroethane (ug/kg)						
2-Butanone (MEK) (ug/kg)	300					
Acetone (ug/kg)						
Benzene (ug/kg)	60			5.4 J		
Carbon disulfide (ug/kg)						
Chloroethane (ug/kg)						
Chloromethane (ug/kg)						
Cis/Trans-1,2-Dichloroethene (ug/kg)	300	270	17	10		5.6 J ·
Ethylbenzene (ug/kg)	5500					
Methylene chloride (Dichloromethane) (ug/kg)						
Styrene (ug/kg)						
Tetrachloroethene (ug/kg)	1400					
Toluene (ug/kg)	1500			3.7 J	1	
Trichloroethene (ug/kg)	700	1300	120	11	1600	98
Vinyl chloride (ug/kg)	200					
Xylenes, Total (ug/kg)	1200					
Total Volatiles		1570	187	30.11	1600	103.6

Notes:

 Shaded cells denote analytical values exceeding the OU2 ROD soil clean-up objectives (SCOs), from Table I of the OU2 ROD, USEPA Region II, September, 1996.

2. Blank cells denote nondetected values.

- 3. Values in parentheses are for undiluted sample analyses when parameter was not detected during the analysis of the dilution.
- 4. Parameters not listed were not detected in any of the samples.

Qualifiers:

- D = Value derived from analysis of a dilution.
- E = Value estimated, exceeds the calibration range.

J = Value estimated, below quantitation limit.

TABLE 3-3 Analytical Results for Soil Sampling Alcas-Cutco Cutlery Corporation Facility Site Olean, New York

Sample Identificat	ion Number	B28-0.0-0.5	B28-4.0-4.4	B28-15.5-15.8	B28-19.1-19.3	
Samplin	g Depth (ft)	0.0 - 0.5	4.0 - 4.4	15.5 - 15.8	19.1 - 19.3	19.1 - 19.3
Field Duplicate Ic	lentification					B28-19.1-19.3-DUP
Laboratory Dilut	ion Number	S917074-4-DL	DL \$917074-5-DL	S917074-6-DL	\$917074-7-DL	
Laborat	ory Number	S917074-4	\$917074-5	S917074-6	\$917074-7	S917074-8
Parameter (units)	SCO					
1,1,1-Trichloroethane (ug/kg)	800					
1,1-Dichloroethane (ug/kg)						
1,1-Dichloroethene (ug/kg)						
1,2-Dichloroethane (ug/kg)						
2-Butanone (MEK) (ug/kg)	300	49 J				
Acetone (ug/kg)		270		32 J		
Benzene (ug/kg)	60	24		5 J		
Carbon disulfide (ug/kg)						
Chloroethane (ug/kg)				L		
Chloromethane (ug/kg)						
Cis/Trans-1,2-Dichloroethene (ug/kg)	300	120	12	29		· · · · · · · · · · · · · · · · · · ·
Ethylbenzene (ug/kg)	5500	19				
Methylene chloride (Dichloromethane) (ug/kg)						
Styrene (ug/kg)						
Tetrachloroethene (ug/kg)	1400			8.9		
Toluene (ug/kg)	1500	74		6.9 J		
Trichloroethene (ug/kg)	700	280 D	84	190 JD	1600	1600
Vinyl chloride (ug/kg)	200					
Xylenes, Total (ug/kg)	1200	96				
Total Volatiles		932	96	271.8	1600	1600

Notes:

 Shaded cells denote analytical values exceeding the OU2 ROD soil clean-up objectives (SCOs), from Table I of the OU2 ROD, USEPA Region II, September, 1996.

2. Blank cells denote nondetected values.

- 3. Values in parentheses are for undiluted sample analyses when parameter was not detected during the analysis of the dilution.
- 4. Parameters not listed were not detected in any of the samples.

Qualifiers:

D = Value derived from analysis of a dilution.

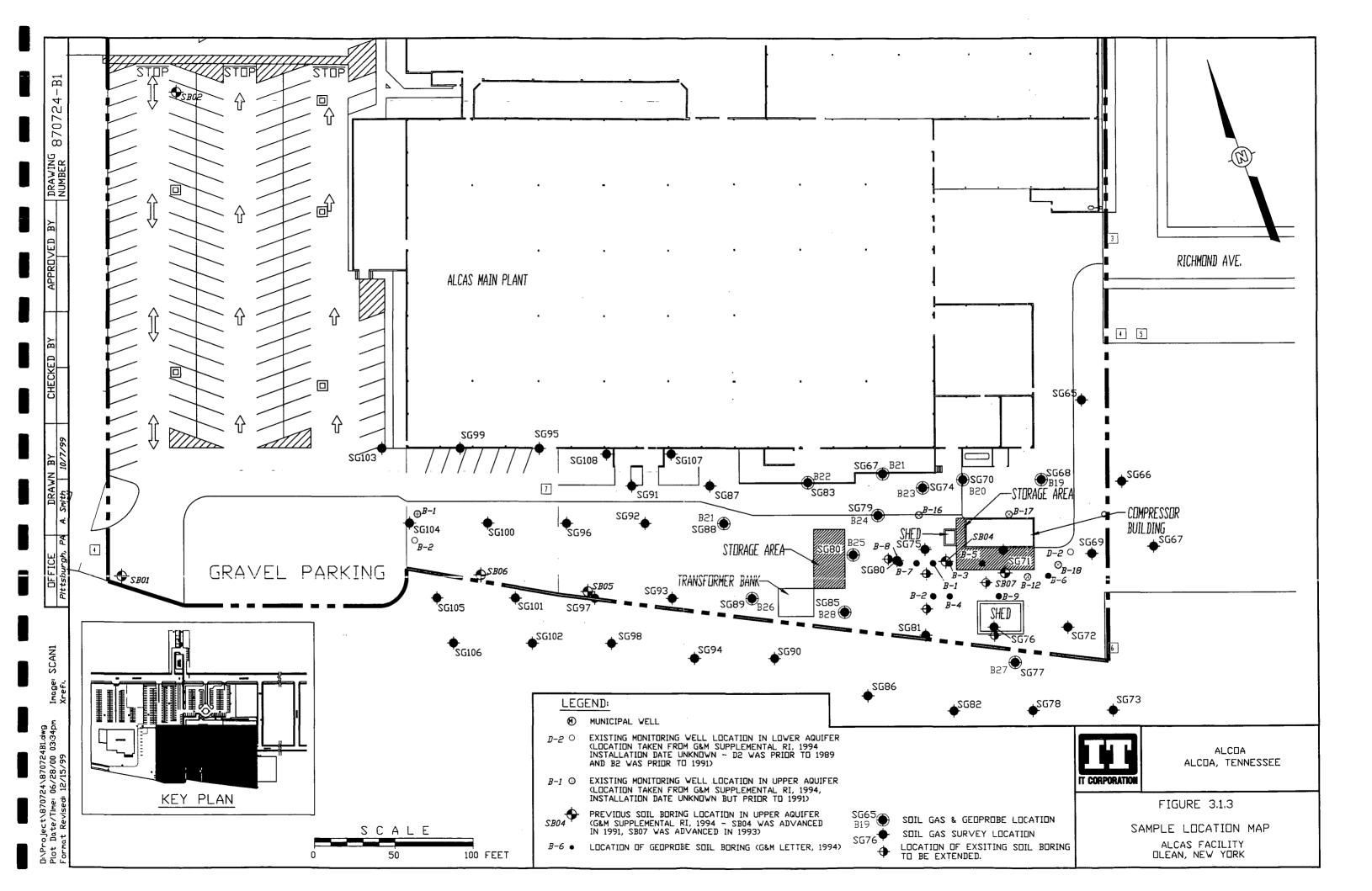
E = Value estimated, exceeds the calibration range.

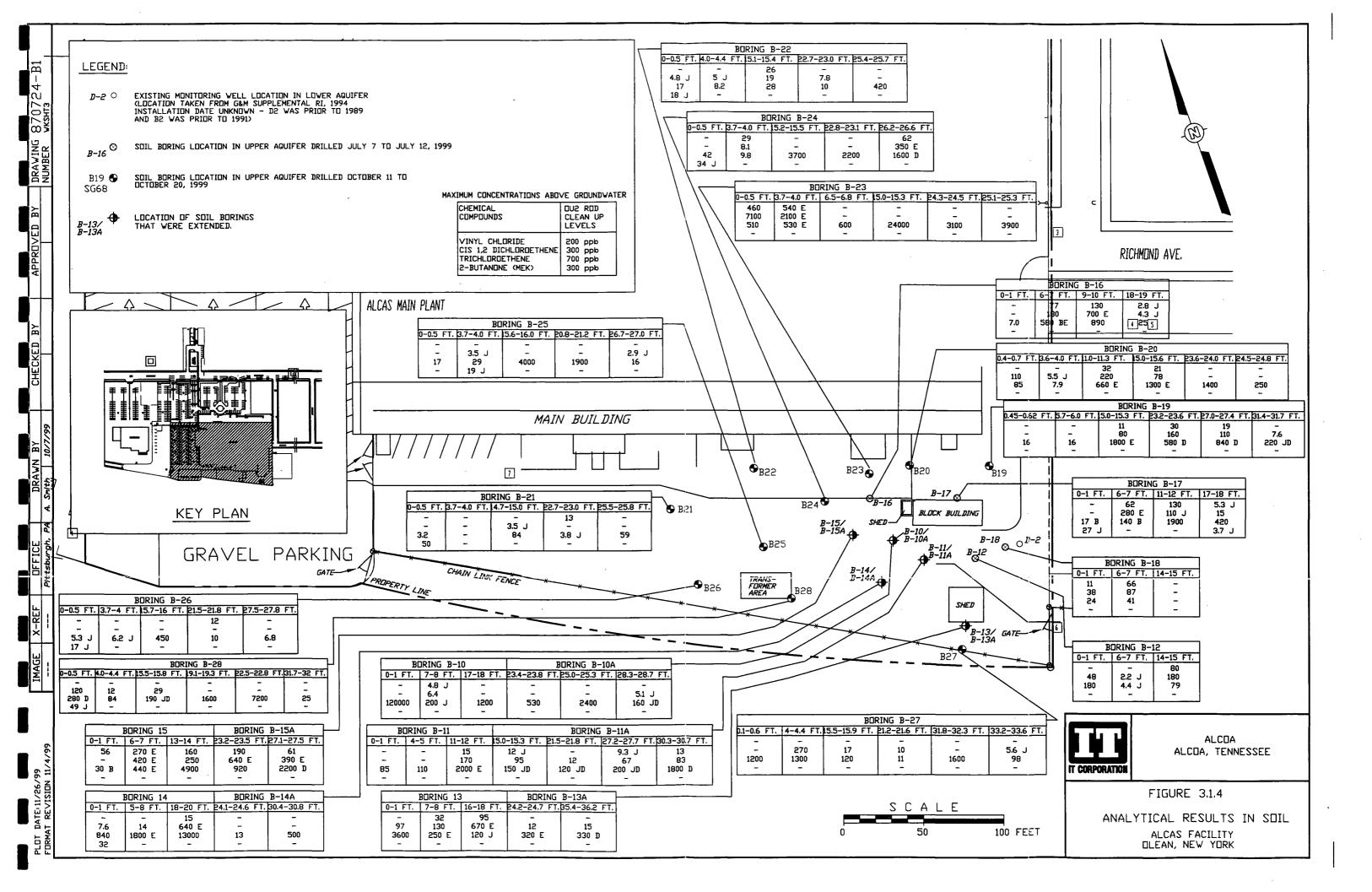
J = Value estimated, below quantitation limit.

TABLE 3-3 Analytical Results for Soil Sampling Alcas-Cutco Cutlery Corporation Facility Site Olean, New York

Sample Identificat	Sample Identification Number			
Samplin	ng Depth (ft)	22.5 - 22.8	31.7 - 32.0	
Field Duplicate Ic	dentification			
Laboratory Dilut	tion Number			
Laborat	ory Number	S917074-9	S917074-10	
Parameter (units)	SCO			
1,1,1-Trichloroethane (ug/kg)	800			
1,1-Dichloroethane (ug/kg)			· · · · · · · · · · · · · · · · · · ·	
1,1-Dichloroethene (ug/kg)	1			
1,2-Dichloroethane (ug/kg)				
2-Butanone (MEK) (ug/kg)	300			
Acetone (ug/kg)				
Benzene (ug/kg)	60			
Carbon disulfide (ug/kg)				
Chloroethane (ug/kg)				
Chloromethane (ug/kg)				
Cis/Trans-1,2-Dichloroethene (ug/kg)	300			
Ethylbenzene (ug/kg)	5500			
Methylene chloride (Dichloromethane) (ug/kg)				
Styrene (ug/kg)				
Tetrachloroethene (ug/kg)	1400			
Toluene (ug/kg)	1500			
Trichloroethene (ug/kg)	700	J200	25	
Vinyl chloride (ug/kg)	200			
Xylenes, Total (ug/kg)	1200			
Total Volatiles		7200	25	

Notes:


 Shaded cells denote analytical values exceeding the OU2 ROD soil clean-up objectives (SCOs), from Table 1 of the OU2 ROD, USEPA Region II, September, 1996.


2. Blank cells denote nondetected values.

- 3. Values in parentheses are for undiluted sample analyses when parameter was not detected during the analysis of the dilution.
- 4. Parameters not listed were not detected in any of the samples.

Qualifiers:

- D = Value derived from analysis of a dilution.
- E = Value estimated, exceeds the calibration range.
- J = Value estimated, below quantitation limit.

TABLE 3-4Soil Sampling Analytical Result SummaryAlcas Facility SiteOlean, New YorkSeptember 2001

Sample Identification Number		RU-13 9'	RU-13 20'	RU14-SL-8	RU14-SL-25		RU-17C 5'	RU-17C 25'
Dilution Identification Number						RU14-SL-25DL		
Laboratory Number		913008-006	913008-07	913008-001	913008-002	913008-023	913008-017	913008-018
	units							
Tetrachloroethene	ug/Kg	5.9 U	5.6 U	6.3 U	5.7 U	57 U	5.1 U	5.1 U
Trichloroethene	ug/Kg	2.0 J	5.6 U	9.4	1900 E	1600 D	3.3	20
cis-1,2-Dichloroethene	ug/Kg	5.9 U	5.6 U	1.0 J	40	24 JD	5.1 U	0.53 J
trans-1,2-Dichloroethene	ug/Kg	5.9 U	5.6 U	6.3 U	3.2 J	57 U	5.1 U	5.1 U
Vinyl chloride	ug/Kg	12 U	11 U	13 U	11 U	110 U	10 U	10 U

"J" denotes an estimated value

"E" denotes sample result exceeds calibration range

"U" denotes compound less than detection limit

"D" denotes analyte value from diluted sample

"*" denotes duplicate analyses not within control limit.

.

TABLE 3-4Soil Sampling Analytical Result SummaryAlcas Facility SiteOlean, New YorkSeptember 2001

Sample Identification Number		RU-17C 46'	RU18-SL-05	RU18-SL-25		RU18-SL-46
Dilution Identification Number					RU18-SL-25DL	
Laboratory Number		913008-019	913008-003	913008-004	913008-024	913008-005
	units					
Tetrachloroethene	ug/Kg	5.4 U	6.2 U	5.8 U	29 U	5.9 U
Trichloroethene	ug/Kg	2.4 J	2.9 J	490 E	330 D	150
cis-1,2-Dichloroethene	ug/Kg	5.4 U	0.66* J	9.5	4.4 JD	4.3 J
trans-1,2-Dichloroethene	ug/Kg	5.4 U	6.2 U	5.8 U	29 U	5.9 U
Vinyl chloride	ug/Kg	11 U	13 U	12 U	58 U	12 U

"J" denotes an estimated value

"E" denotes sample result exceeds calibration ra

"U" denotes compound less than detection limit

"D" denotes analyte value from diluted sample

"*" denotes duplicate analyses not within control

APPENDIX C

Groundwater Sampling Results – Upper Zone

• Phase I Investigation (July, 1999)

- Analytical Summary Table (Table 3-5)
- Boring Locations & Data Plot (Figure 3.2.1)

• Phase II Investigation (October, 1999)

- Field and Analytical Data Summary Table (Table 3-6)
- Well/Boring Locations & Data Plot (Figure 3.2.2)

• Phase III Investigation (October, 2000)

• Analytical Summary Table (Table 3-7)

• Phase IV Investigation (September, 2001)

- Analytical Summary Table (Table 3-8)
- Well Locations & Data Plot (Composite of Phase III & IV Work) (Figure 3.2.3)

TABLE 3-5 - Analytical Results for Groundwater Sampling Alcas-Cutco Cutlery Corporation Facility Site Olean, New York

Sample Identification Number	B10-GW-189	B11-GW-193	B12-GW-193	B13-GW-188	B14-GW-188		B15-GW-188	B16-GW-188	B17-GW-189
Field Duplicate Identification						B14D-GW-188			
Laboratory Dilution Number	14569-9-DL			14569-3DL					
Laboratory Number	14569-9	14629A-2	14629A-1	14569-3	14569-1	14569-2	14569-4	14569-5	14629-7
Vinyl Chloride (µg/L) ¹	260 J		120	220			500 J		460J
Cis/Trans-1,2-Dichloroethene (µg/L)	1900	110	830	3100	· 368 73	68	2100	1500	2700
Trichloroethene (µg/L)	20000	860	280	1600	1600	1300	9700	5200	12000
Phenanthrene (µg/L)		11							
Fluoranthene (µg/L)		12							
Pyrene (µg/L)		9.4 J	· · · · · ·						
Carbazole (µg/L)		6.9 J							

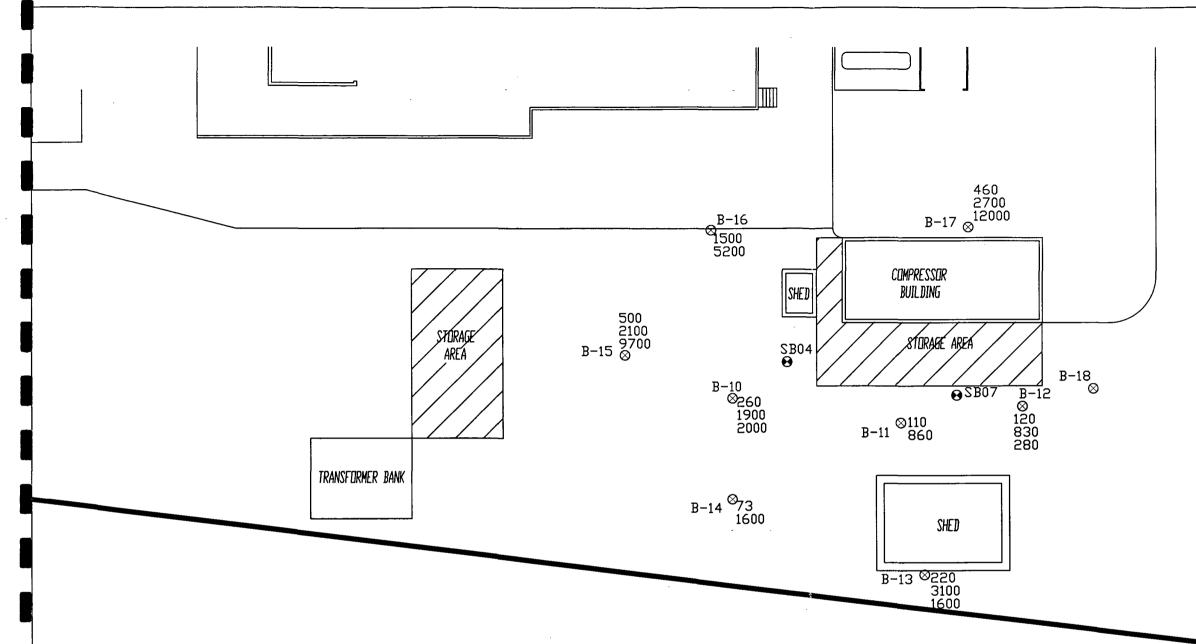
Notes:

⁽¹⁾ All analytical results are in μ g/L or parts per billion

⁽²⁾ "J" designation denotes an estimated value

⁽³⁾ "E" designation denotes a serial dilution of the sample

Shaded cells denote analytical values exceeding the OU2 ROD groundwater clean-up objectives. See below:


Compound	MCL ⁴
Vinyl Chloride (µg/L)	2
Cis/Trans-1,2-Dichloroethene (µg/L)	70
Trichloroethene (µg/L)	5

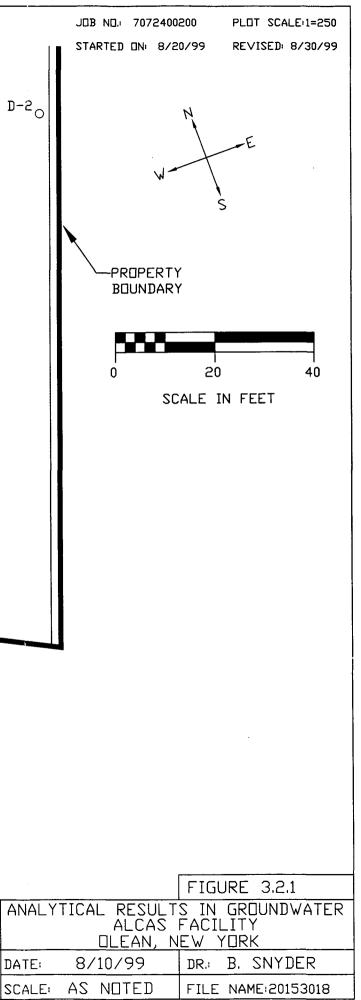
⁽⁴⁾ Maximum Contaminant Level (MCL); Table 1, OU2 ROD USEPA Region II, September, 1996

Note: Borehole Description

B10 - Borehole Location

- GW Groundwater
- 193 Calender Date

<u>LEGEND:</u>


- O EXISTING MONITORING WELL LOCATION IN LOWER AQUIFER (LOCATION TAKEN FROM G&M SUPPLEMENTAL RI, 1994 - INSTALLED 1989 OR EARLIER)
- \otimes SOIL BORING LOCATION IN UPPER AQUIFER DRILLED JULY 7 TO JULY 12 1999

MAXIMUM CONCENTRATIONS IN GROUNDWATER

CHEMICAL COMPOUNDS	DU2 RDD CLEAN UP LE∨ELS
VINYL CHLORIDE CIS 1,2 DICHLORDETHENE TRICHLORDETHENE	2 ррю 70 ррю 5 ррю

ALUMINUM COMPANY OF AMERICA ALCOA, TENNESSEE

> IT CORPORATION PITTSBURGH, PA

TABLE 3-6 Data Summary for UZ Groundwater Samples Alcas-Cutco Cutlery Corporation Facility Site Olean, New York

Sample Identificatio	n Number	B-1	CW-13A	CW-15A	P1 (Depth Unknown)	P2 (Depth Unknown)	RW-1	SW-14	VERMW1
Parameter (units)	SCO								
Volatile Organics							·····		
Benzene (ug/l)		0.93 J	ND ND	ND	NA	ND	ND	ND	NA
1,1-Dichloroethene (ug/l)		ND	ND	ND	NA	0.64 J	ND	ND	NA
Chloroethane (ug/l)		ND	ND	ND	NA	ND	ND	ND	NA
cis-1,2-Dichloroethene (ug/l)	70	1.8	ND	1.8	NA	ND	3700	9.5	NA
Methylene chloride (ug/l)		ND	ND	ND	NA	ND	ND	ND	NA
Tetrachloroethene (ug/l)		0.63 J	1	24	NA	0.55 J	ND	22	NA
trans-1,2-Dichloroethene (ug/l)		ND	ND	ND	NA	1.7	29 J	ND	NA
Trichloroethene (ug/l)	5	ND	ND	ND	NA	21	.39000	ND	NA
Vinyl chloride (ug/l)	2	1	ND	ND	NA	12		0.66 J	NA
Total Volatiles		4.36	1 1	25.8	0	35.89	44129	32,16	0
Natural Attenuation Parameters									
Alkalinity (mg/l)		360	NA	NA	NA	160	310	NA	NA
Ammonia (mg/l)		8	NA	NA	NA	0.059	0.51	NA	NA
Chloride (mg/l)		100	NA	NA	NA	13	290	NA	NA
Iron (2+) (mg/l)		1.7	NA	NA	NA	ND	ND	NA	NA
Manganese (mg/l)		6.5	NA	NA	NA	ND	4.1	NA	NA
Nitrate (mg/l)		ND	NA	NA	NA	4.7	0.9	NA	N.A
Totlal Kjeldahl Nitrogen (mg/l)		8	NA	NA	NA	0.7	1.3	NA	NA
Total Phosphorus (mg/l)		0.15	NA	NA	NA	ND	ND	NA	NA
Ortho Phosphate (mg/l)		0.12	NA	NA	NA	0.15	0.14	NA	NA
Sulfate (mg/l)		ND	NA	NA	NA	60	62	NA	NA
Sulfide (mg/l)		ND	NA	NA	NA	ND	ND	NA	NA
Dissolved Gases - Methane (mg/l)		35	NA	NA	NA	ND	0.11	NA	NA
Dissolved Gases - Ethane (mg/l)		ND	NA	NA	NA	ND	0.022	NA	NA
Dissolved Gases - Ethene (mg/l)		ND	NA	NA	NA	ND	0.043	NA	NA
Field Parameters									
Water Level (feet below Top of Casing)		9.1	9.26	21.6	5.67	4.44	11.26	17.13	<u>9.9</u> 6
Total Depth (feet below Top of Casing)		16.15	18.85	41.15	13.13	9.28	19.23	21.23	19.35
Dissolved Oxygen (mg/l)		0.5	***	1	NA	***	1.4	4.4	NA
Specific Conductivity (ms/cm)	_	106	42 ***	22.9	NA	49 ***	154	41	NA
pH		6.4	6.9 ***	5.32	NA	6.66 ***	6.67	66	NA
Temperature (Celsius)		15.5	10.9 ***	12.1	NA	14.9 ***	16.5	13.5	NA
Turbidity (NTU)		10	160 ***	14.2	NA	>999 ***	18	<u> </u>	NA
Oxidation-Reduction Potential (mV)		122	-48 ***	84	NA	204 ***	126	240	NA
Total Dissolved Solids (g/l)		0.7	0.27	0.15	NA	0.32 ***	1	NA	NA
Survey Data (Plant Coordinate System)									
Northing		71.20	-339.98	-674.29	-80.60	-99.18	-54.27	-490.63	-43.18
Easting		-401.35	-36.05	-964.32	-35.18	-43.26	-127.34	-485.94	-122,90
Ground Elevation (ft-amsl)		1427.53	1416.32	1416.00	1425.90	1425.55	1424.30	1421.33	1424,58
Casing Elevation (ft-amsi)		1428.43	1419.75	1418.50	1425.90	1425.55	1424.30	1423.83	1424.58

Notes:

 Shaded cells denote analytical values exceeding the OU2 ROD soil clean-up objectives (SCOs), from Table 1 of the OU2 ROD, USEPA Region II, September, 1996.

Qualifiers:

J = Value estimated, below quantitation limit.

NA = Not analyzed.

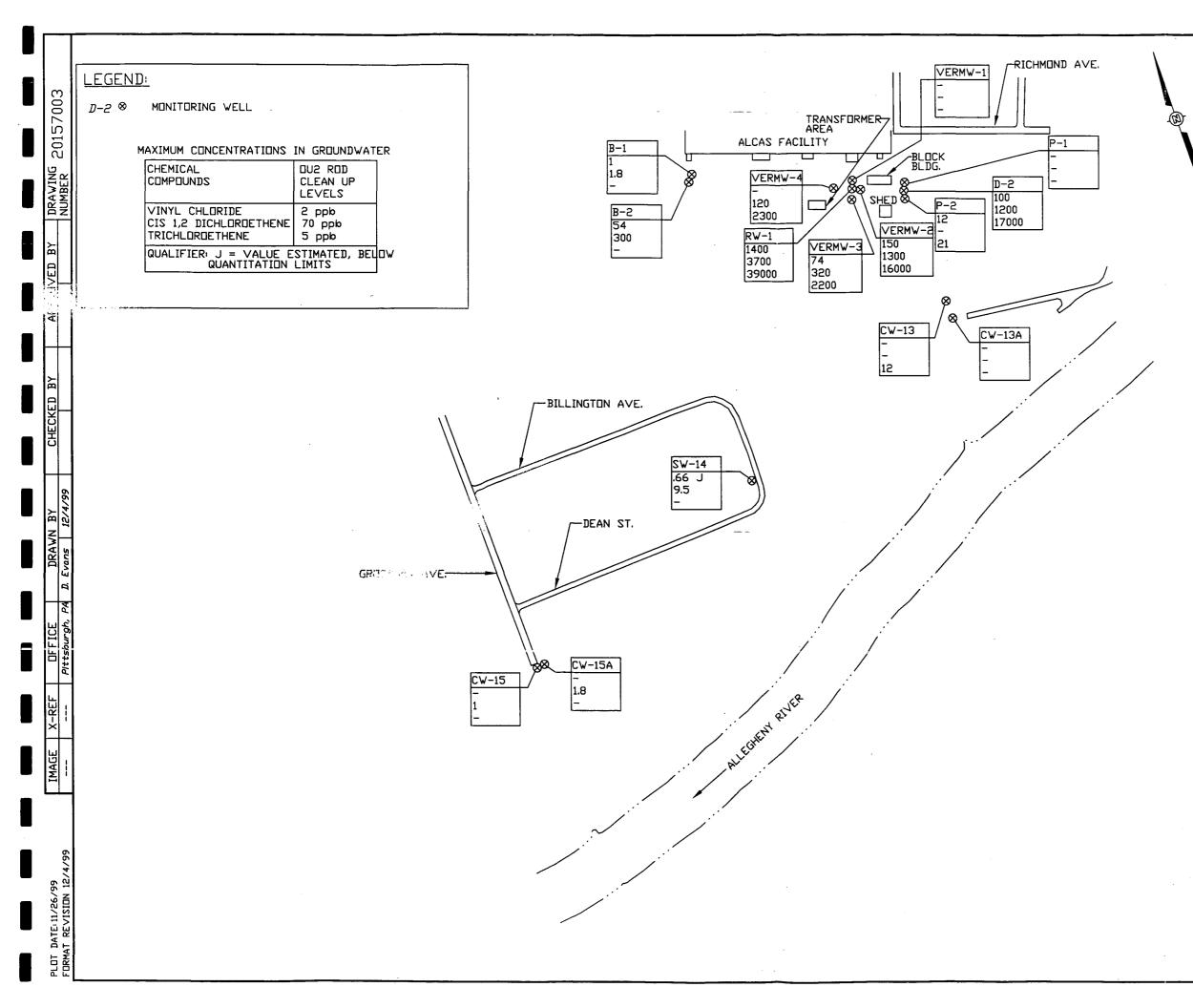
ND = Not Detected.

*** = Well purged dry.

TABLE 3-6 Data Summary for UZ Groundwater Samples Alcas-Cutco Cutlery Corporation Facility Site Olean, New York

1 600			VERMW4	
<u>SCO</u>				
1	ND	ND	ND	
	19 J	ND	ND	
	35 J	ND	ND	
70	1300	> 320	120	
	ND	ND	ND	
	58 J	ND	22	
	16 J	ND	ND	
5	16000	2200	2300	
2	150	74	ND	
i i	17578	2594	2442	
	<u></u>		· · · · ·	
1	NA	NA	NA	
	NA	NA	NA	
	NA	NA	NA	
			NA	
_			NA	
			NA	
-+			NA	
			NA	
			NA	
— <u>+</u> :	7 56	7.19	7.82	
			19.79	
	0.2	4.6	2.6	
	78	80	73	
	6.2	6.5	7.2	
	16	15.9	14.8	
	84	8	33	
- -	220	39	87	
-1		0.51	0.47	
	-61.10	-72.84	-41.50	
			-159.30	
_			1424.70	
_	1424.74	1424.20	1424.70	
	5	19 J 35 J 70 35 J 70 1300 58 J 16 J 5 16 J 2 17578	19 J ND 35 J ND 70 1300 320 ND ND ND 58 J ND 2200 2 150 74 17578 2594 NA NA NA NA	

Notes:


 Shaded cells denote analytical values exceeding the OU2 ROD soil clean-up objectives (SCOs), from Table 1 of the OU2 ROD, USEPA Region II,

September, 1996.

Qualifiers:

J = Value estimated, below quantitation limit.

- NA = Not analyzed.
- ND = Not Detected.
- *** = Well purged dry.

ALUMINUM COMPANY OF AMERICA ALCOA, TENNESSEE

FIGURE 3.2.2

ANALYTICAL RESULTS IN GROUNDWATER ALCAS FACILITY OLEAN, NEW YORK

TABLE 3-7 PHASE III - UPPER ZONE DATA Ground Water Sampling Analytical Result Summary Alcas Facility Site - Olean, New York October, 2000

Sample Identification N	Dilution Identification	Laboratory Number		Units Tetrachloroeth.	Trichloroethan	cis-1,2-Dichlornos	trans-1,2-Dichlor.	Vinyl chlorid.	an:
RU-1		06098-01	ug/L	1.0 U	67	1	1.0 U	1.0 U	
RU-4		06098-04	ug/L	500U	130,000 D	4,600	110 J(500)	1,100	
RU-5		06098-05	ug/L	19.0 J	54,000 D	170	50 U	33.0 J(50)	
RU-6		06098-06	ug/L	52	67,000	420	12.0 J(50)	14.0 J(50)	
RU-7		06098-07	ug/L	1.0 U	3	1.0 U	1.0 U	1.0 U	
RU-8		06098-08	ug/L	2.0 U	360 D	39	2.0 U	10	·
RU-9		06098-09	ug/L	1.0 U	4	1.0 U	1.0 U	1.0 U	
RU-10		06098-10	ug/L	20 U	2,800	1,000	17.0 J(20)	130	
RU-11		06098-11	ug/L	1.0 U	0.40 J(1.0)	1.0 U	1.0 U	1.0 U	
RU-12		06098-12	ug/L	1.0 U	3	10	0.50 J(1.0)	6	
TRIP BLANK		06098-16	ug/L	1 U	0.3 J	1 U	1 U	1 U	

"J" denotes an estimated value

.

"E" denotes sample result exceeds calibration range

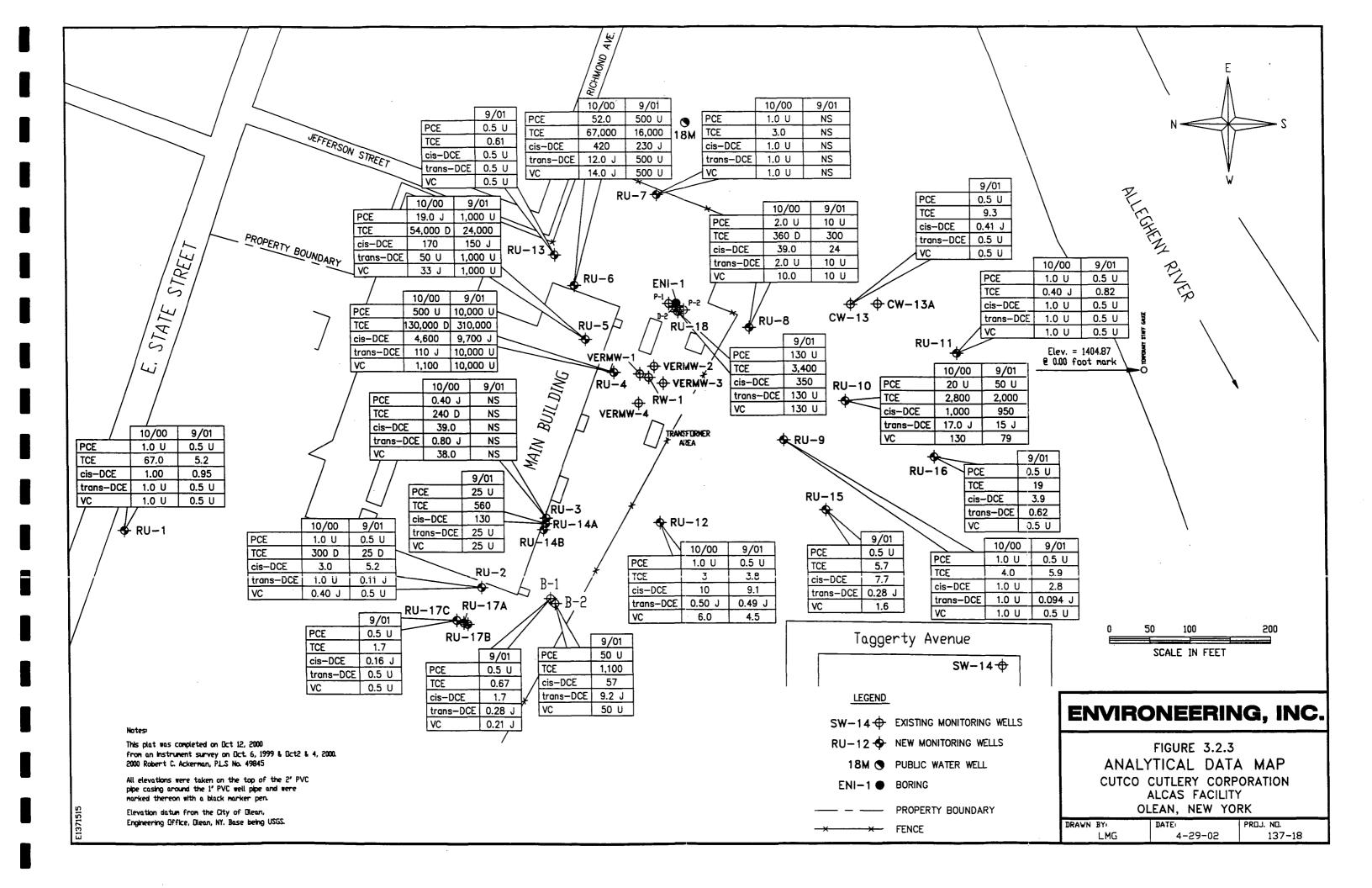
"U" denotes compound less than detection limit

"D" denotes analyte value from diluted sample

"*" denotes duplicate analyses not withing control limit.

TABLE 3-8PHASE IV - UPPER ZONE DATAGround Water Sampling Analytical Result SummaryAlcas Facility Site - Olean, New YorkSeptember 2001

Sample Identification N	Dilution Identify.	Laboratory Number		Units Tetrachloroeth.	Trichloroethan	cis-1,2-Dichlorman	trans-1,2-Dichlor	Vinyl chloris	any.
RU-1		913001-001	ug/L	0.5 U	5.2	0.95	0.5 U	0.5 U	ł
RU-4		913091-007	ug/L	10,000 U	310,000	9,700 J	10,000 U	10,000 U	
RU-5		913091-008	ug/L	1,000 U	24,000	150 J	1,000 U	1,000 U	Į
RU-6		913001-002	ug/L	500 U	16,000	230 J	500 U	500 U	
RU-8		913001-003	ug/L	10 U	300	24	10 U	10 U	
RU-9		913091-012	ug/L	<u>0.5 U</u>	5.9	2.8	0.094 J	0.5 U	
RU-10		913091-005	ug/L	50 U	2,000	950	15 J	79	
RU-11		913091-009	ug/L	0.5 U	0.82	0.5 U	0.5 U	0.5 U	
RU-12		913091-006	ug/L	0.5 U	3.8	9.1	0.49 J	4.5	
RU-13		913091-004	ug/L	0.5 U	0.61	0.5 U	0.5 U	0.5 U]
RU-14		913091-002	ug/L	25 U	560	130	25 U	25 U]
RU-15		913091-016	ug/L	0.5 U	5.7	7.7	0.28 J	1.6]
RU-16		913091-011	ug/L	0.5 U	19	3.9	0.62	0.5 U]
B-1		913091-001	ug/L	0.5 U	0.67	1.7	0.28 J	0.21 J]
TRIP BLANK		913001-004	ug/L	0.5 U	0.022 J	0.5 U	0.5 U	0.5 U]


"J" denotes an estimated value

"E" denotes sample result exceeds calibration range

"U" denotes compound less than detection limit

"D" denotes analyte value from diluted sample

"*" denotes duplicate analyses not withing control limit.

					Т	E V E R N R E N T Gervices				
5102 LaPacha Aver	nue • Savannah, GA 31404 • Tel:	012 254 7858 · F	STL Savannah							
	nue • Savannan, GA 31404 • Tei	912 304 7806 • F	ax. 912 352 0165 •	www.su-inc.com	LOG NO Received	D: S0-06908 1: 06 OCT 00 1: 26 OCT 00	0			
Mr. And	lrew Harper				-					
Environ	eering, Inc.									
	Park Ten Place Ste	e 140								
Houston	n, TX 77084									
				Project: ALCAS/137-08 Sampled By: Client Code: 180701025						
		REPORT	OF RESULTS			Page 1				
				DATE/						
OG NO	SAMPLE DESCR	TIM	SAMPLED	SDG						
6908-1	RU1-GW-2780					04-00/12:30				
6908-2	RU2-GW-2790 RU2-GW-2790					05-00/14:00 05-00/14:00				
	RU2-GW-2790 RU3-GW-2780					05-00/14:00				
6908-3-DL						04-00/11:00				
	RUS-GW-2780									
ARAMETER		06908-1	06908-2	06908-2-DL						
Olatiles (CLP-	.10/92)									
Tetrachloroeth		1U	10	211	0.4J	20				
Trichloroether		67	270E	300D	210E	240D				
	proethene, ug/l									
-	nloroethene, ug/l		10	2U	0.8J	1DJ				
Vinyl chloride	· + ·			2D		•				
Dilution Facto	or	1	1	2	1	2				
Analysis Date		10.16.00	10.15.00	10.16.00	10.15.00	10.16.00				
Batch ID		2B1016	1B1015	2B1016	1B1015	2B1016				

.

5102 LaRoche Av	enue • Savannah, GA 31404 • Tel:	912 354 7858 •	S E . T I SE STL Sav				
						: S0-06908 : 06 OCT 00	
						: 26 OCT 00	
	drew Harper				_		
	neering, Inc.						
	Park Ten Place Ste	e 140					
Housto	n, TX 77084						
					Project: A	LCAS/137-08	3
					-	By: Client	
					Code	: 180701025	5
		REPORT	OF RESULTS			Page 2	
100.00		-	DATE		~~~ "		
LOG NO	SAMPLE DESCR	IPTION , I	LIQUID SAMPL	55 		SAMPLED	
06908-4	RU4-GW-2780					4-00/18:30	
06908-4-DL	RU4-GW-2780				10-04	4-00/18:30	ALCA10
06908-5	RU5-GW-277 0				10-0	3-00/17:30	ALCA10
06908-5-DL	RU5-GW-2770					3-00/17:30	
06908-6	RU6-GW-2780				10-0	4-00/17:15	ALCA10
PARAMETER		06908-4	06908-4-DL	06908-5	06908-5-DL	06908-6	
Volatiles (CLP							
	hene, ug/l	5000	2500U	19Ј	500U	52	
Trichloroethe	ne, uq/1	190000E	130000D				
	oroethene, ug/1		4300D				
	hloroethene, ug/l		2500U		500U	12J	
Vinyl chlorid	le, ug/l	1100	2500U	33J	500U	14J	
Dilution Fact		500	2500	50	500	50	
Analysis Date	e e e e e e e e e e e e e e e e e e e	10.15.00	10.16.00	10.15.00	10.16.00	10.15.00	
Batch ID		1B1015	2B1016	1B1015	2B1016	1B1015	

.

. 4

,

					SE	VERN						
					Т	R E N T						
					S	ERVICES						
5102 LaRoche Aver	nue • Savannah, GA 31404 • Tel:	912 354 7858 • Fa	ax: 912 352 0165 • w	ww.stl-inc.com	STL Sa	/annah						
			· <u>··</u> ··			: S0-06908 : 06 OCT 00						
						: 26 OCT 00						
Mr. And	lrew Harper											
	eering, Inc.											
16350 P	ark Ten Place Ste	e 140										
Houston	, TX 77084											
					_ •							
					Project: A							
					-	By: Client						
		שפטטשים	OF RESULTS		Code	Code: 180701025 Page 3						
		REFORI	JF RESULTS	DATE								
LOG NO	SAMPLE DESCR	IPTION , LI	IQUID SAMPLE		SAMPLED	SDG#						
06908-6-DL	RU6-GW-2780				10-0	4-00/17:15	ALCA10					
06908-7	RU7-GW-2780 RU8-GW-2770					4-00/14:45						
06908-8	RU8-GW-2770					3-00/16:45						
06908-8-DL	RU8-GW-2770					3-00/16:45						
06908-9	RU9-GW-2770				10-0	3-00/14:40	ALCA10					
PARAMETER					06908-8-DL							
Volatiles (CLP-	.10/92)											
	uene, ug/l	50011	117	110	4U	10						
Trichloroethen	· <u>-</u> ·	67000D			360D							
	proethene, ug/l		10			10						
	loroethene, ug/l				4U							
Vinyl chloride		500U	1U			10						
Dilution Facto		500	1	2	4	1						
Analysis Date		10.16.00	10.15.00	10.16.00	10.16.00	10.15.00						
Batch ID		2 B1 016	1B1015	2B1016		1B1015						
•••••												

.

5102 LaRoche Avenue • Savannah, GA 31404 • Tel: 912 354 Mr. Andrew Harper Environeering, Inc. 16350 Park Ten Place Ste 140 Houston, TX 77084		x: 912 352 0165 • w	ww.stl-inc.com	SE STL Sav LOG NO Received	RENT IRVICES annah : S0-06903 : 06 OCT 06 : 26 OCT 06	5				
	Project: ALCAS/137-08 Sampled By: Client Code: 180701025 Page 4									
		OF RESULTS		DATE						
LOG NO SAMPLE DESCRIPTIO	N, LI	QUID SAMPL	S	TIME	SAMPLED	SDG#				
06908-10 RU10-GW-2770				10-0	3-00/15:00	ALCA10				
06908-11 RU11-GW-2770				10-03-00/15:30 ALCA10						
06908-12 RU12-GW-2770				10-03-00/14:15 ALCA1						
06908-13 RU4-GW-2780D				10-04	4-00/18:30	ALCA10				
06908-16 Trip Blank				10-0	5-00	ALCA10				
PARAMETER 0690	8-10	06908-11	06908-12	06908-13	06908-16					
Volatiles (CLP-10/92)										
Tetrachloroethene, ug/l	2017	10	1U	500U	10					
		0.4J		79000						
cis-1,2-Dichloroethene, ug/l		10	10		10					
	17J	1U	0.5J	500U	10					
	130	10	6	780						
	20		1							
Analysis Date 10.1	5.00	10.15.00	10.15.00	10.16.00	10.15.00					
Batch ID 1E	31015	1B1015	1B1015	2B1016	181015					

•

.

					ТІ	VERN RENT Ervices						
5102 LaRoche Avenue	e • Savannah, GA 31404 • Tel:	912 354 7858 • Fa	ax: 912 352 0165 • w	ww.stl-inc.com	STL Sav	annah						
					Received	: S0-0690 : 06 OCT 0 : 26 OCT 0	0					
	ew Harper											
	ering, Inc.											
	rk Ten Place Ste	e 140										
Houston,	TX 77084											
					Project: AI	LCAS / 137 - 0	8					
					-	By: Clien						
					-	: 18070102						
		REPORT (OF RESULTS		Page 5							
				DATE								
og no	SAMPLE DESCRIPTION , QC REPORT FOR LIQUID SAMPLES TIME SAMPLE											
	Method Blank						ALCA1					
6908-18	Method Blank Lab Control S	Standard %	Recovery				ALCA10 ALCA10					
6908-19	Method Blank Lab Control S LCS Accuracy	Standard %	Recovery				ALCA10 ALCA10 ALCA10					
6908-18 6908-19 6908-20	Method Blank Lab Control S LCS Accuracy Method Blank	Standard % Control Li	Recovery imit (%R)				ALCA10 ALCA10 ALCA10 ALCA10					
6908-18 6908-19 6908-20 6908-21	Method Blank Lab Control S LCS Accuracy Method Blank Lab Control S	Standard % Control Li Standard %	Recovery imit (%R) Recovery				ALCA10 ALCA10 ALCA10					
6908-18 6908-19 6908-20 6908-21	Method Blank Lab Control S LCS Accuracy Method Blank Lab Control S	Standard % Control Li Standard % 06908-17	Recovery imit (%R) Recovery 06908-18	06908-19	06908-20	06908-21	ALCA10 ALCA10 ALCA10 ALCA10 ALCA10					
6908-18 6908-19 6908-20 6908-21 ARAMETER	Method Blank Lab Control S LCS Accuracy Method Blank Lab Control S	Standard % Control Li Standard % 06908-17	Recovery imit (%R) Recovery 06908-18	06908-19	06908-20	06908-21	ALCA1(ALCA1(ALCA1(ALCA1(ALCA1(
6908-18 6908-19 6908-20 6908-21	Method Blank Lab Control S LCS Accuracy Method Blank Lab Control S	Standard % Control Li Standard % 06908-17	Recovery imit (%R) Recovery 06908-18	06908-19	06908-20	06908-21	ALCA1(ALCA1(ALCA1(ALCA1(ALCA1(
5908-18 5908-19 5908-20 5908-21 ARAMETER clatiles (CLP-1 Fetrachloroethe	Method Blank Lab Control S LCS Accuracy Method Blank Lab Control S 	Standard % Control Li Standard % 06908-17 1U	Recovery imit (%R) Recovery 06908-18	06908-19 60-140 %	06908-20 1U	06908-21 100 %	ALCA1(ALCA1(ALCA1(ALCA1(ALCA1(
6908-18 6908-19 6908-20 6908-21 ARAMETER Olatiles (CLP-1 Tetrachloroethe Trichloroethene	Method Blank Lab Control S LCS Accuracy Method Blank Lab Control S 	Standard % Control L Standard % 06908-17 1U 1U	Recovery imit (%R) Recovery 06908-18 140 % 100 %	06908-19 60-140 % 60-140 %	06908-20 1U	06908-21 100 % 100 %	ALCA1(ALCA1(ALCA1(ALCA1(ALCA1(
5908-18 5908-19 5908-20 5908-21 ARAMETER Diatiles (CLP-1 Fetrachloroethe Frichloroethene cis-1,2-Dichlor	Method Blank Lab Control S LCS Accuracy Method Blank Lab Control S 	Standard % Control Li Standard % 06908-17 1U 1U 1U 1U	Recovery imit (%R) Recovery 06908-18 140 % 100 %	06908-19 60-140 % 60-140 %	06908-20 1U 1U	06908-21 100 % 100 %	ALCA1(ALCA1(ALCA1(ALCA1(ALCA1(
5908-18 5908-19 5908-20 5908-21 ARAMETER Diatiles (CLP-1 Fetrachloroethene Frichloroethene cis-1,2-Dichlor trans-1,2-Dichlor	Method Blank Lab Control S LCS Accuracy Method Blank Lab Control S 	Standard % Control Li Standard % 06908-17 1U 1U 1U 1U 1U	Recovery imit (%R) Recovery 06908-18 140 % 100 %	06908-19 60-140 % 60-140 %	06908-20 1U 1U 1U 1U 1U	06908-21 100 % 100 %	ALCA1(ALCA1(ALCA1(ALCA1(ALCA1(
5908-18 5908-19 5908-20 5908-21 ARAMETER Diatiles (CLP-1 Fetrachloroethene Cis-1,2-Dichlor trans-1,2-Dichlor Vinyl chloride,	Method Blank Lab Control S LCS Accuracy Method Blank Lab Control S 	Standard % Control Li Standard % 06908-17 1U 1U 1U 1U 1U	Recovery imit (%R) Recovery 06908-18 140 % 100 %	06908-19 60-140 % 60-140 %	06908-20 1U 1U 1U 1U 1U	06908-21 100 % 100 % 140 %	ALCA1(ALCA1) ALCA1(ALCA1)					
6908-18 6908-19 6908-20 6908-21 ARAMETER olatiles (CLP-1 Tetrachloroethe Trichloroethene cis-1,2-Dichlor	Method Blank Lab Control S LCS Accuracy Method Blank Lab Control S 	Standard % Control Li Standard % 06908-17 1U 1U 1U 1U 1U 1U 1U	Recovery imit (%R) Recovery 06908-18 140 % 100 %	06908-19 60-140 % 60-140 % 60-140 %	06908-20 1U 1U 1U 1U 1U 1U 1U	06908-21 100 % 100 % 140 % 1	ALCA1(ALCA1(ALCA1(ALCA1(ALCA1(

NEW YORK LAB ID#10842

F

Steven J. White, Project Manager

Final Page Of Report

		1	-					-									ord
	ANALYSIS REQUEST AND CH/	IN OF CUSTODY	RE	COF	RD	-	•	510212	Roche Aver	ue Sa	vannah	GA 3140	1	Phone:	(912) 354-785	8 Fax	(912) 352-0165
							õ		dustrial Plaz						(850) 878-399		(850) 878-9504
Savannah Laboratories							0		eside Drive,						(334) 666-663		(334) 666-6696
a division of Severn Liout Laboratories, Inc.							\bigcirc	6712 Be	enjamin Rd.,	Suite 1	00, Tan	ipa, FL 33	634	Phone:	(813) 885-742	7 Fax:	(813) 885-7049
PROJECT REFERENCE	CE PROJECT NO. PROJECT LOCATION (STATE)							REQUIRED ANALYSES							PAGE 1		of J
STL (LAB) PROJECT MANAGER	P.O. NUMBER	CONTRACT NO.		TT	ETC)										STANDARD I DELIVERY	REPORT	0
CLIENT (SITE) PM	CLIENT PHONE 281 578 5800		CATE												DATE I	DUE	
CLIENT NAME		2815785875	IUNI (S		SOLVENT,	Α.									EXPEDITED DELIVERY		\bigcirc
ENI/ENUIRON	VEERING Tashite@envio	once singinc, w	B		LIQUID (OIL.	00									(SURCHARGE)		Ŭ
CLIENT ADDRESS	A4 44 44 44 1	Ter hhard	OH GI		anoi	7									DATEL	DUE	
COMPANY CONTRACTING THIS W	<u>Place 5 te 140 Houste</u> IORK (il applicable):	1 12 77084		SEMISOLID	Sn	Her			1 ····						NUMBER OF SHIPMENT:	COOLER	S SUBMITTED PER
SAMPLE			POSITE	SOLID OR S	AQUE	Hu						L			ļ		
DATE TIME	SAMPLE IDENTIFICAT	10N	COMP	SOL	AIR NON		N	UMBE	R OF CC		INERS	SUBM	ITTED			REMA	RKS
10/4/00 1230	RU1-GW-2780		G7	(3											
10/5/00 1400	RUZ-GW-2790																
10/4/00 1100	RU3-GW-2780		6)			3											
10/4/00 1830	RU4-GW-2780		Сx			3											
10/3/00 1730	RU5-GW-2770		GX	(3											
10/4/00 1715	RU6-GW-2780		G)			3											
10/4/00 1445	RU7-GW-2780		GX			3											
10/3/00 1645	RU8-GW-2770		G۲	(3											
10/3/00 1440	RU9-GW-2770		GI	1		3											
10/3/00 1500	RUIO-GW-2770		B X	1		3											
· · · · · · · · · · · · · · · · · · ·	RU11-GW-1530 2770		GX			3											
10/3/00 1415	RU12-GW-44+5270		GX	r	Π	3					_						<u></u>
RELINQUISHED BY: (91GNA	TURE) DATE TIME	RELINQUISHED BY:		ATURE	 ≣)		DATE	-lm	TIME 1400		RELIN	QUISHE	D BY: (s	GNATURE) DAT	E	TIME
RECEIVED RY: (SIGNATURE)		RECEIVED BY: (SIGNA	TURE	.)			DATE	12	TIME		RECEI	VED BY	: (SIGNAT	URE)	DAT	Ē	TIME
13yı 5	9/25/00 1600									1							
		LAE	30R/	ATOF		SE ON	LY			4			3) <u>538</u> 441			90 A.A	
RECEIVED FOR LABORAT				TOD		STL-S	L LOG	NO.	LABORA	TOR	YREN	ARKS:					
7165	16/00 8:55.6	YES	JLA			5\$.	de	308									

ALC: NICE

							/	-	H -			-9		-			นแมะเ	, , 10 20000				_2	otd
Labora	annah atories	ANALYSI	S REQUES	T AND CH	HAIN OF CUSTODY	/ RE	CC	DRE	כ		000	2846 In 900 Lak	LaRoche Av Industrial Pl akeside Driv Benjamin Re	Plaza Drív rive, Mobi	ive, Tallah bile, AL-36	hassee, F 86693	FL 32301		Phone: (i Phone: (i	(912) 354- (850) 878- (334) 666-6 (813) 885-7	-3994 F	Fax: (850) Fax: (334)	2) 352-0165 2) 878-9504 1) 666-6696 3) 885-7049
PROJECT REFER	RENCE		PROJECT NO.	 102	PROJECT LOGATION (STATE)	\top	MAT TYF	TRIX	Ţ	[REQ'	UIREI	D ANAL	YSES	. <u></u> ;	. <u></u>		PAGE	n	OF	F Q
STL (LAB) PROJEC			P.O. NUMBER		CONTRACT NO.	\mathbf{T}	T		ETC)				Ţ		1		Τ			STANDAF DELIVER	RD REPO		0
))	· ()	CLIENT PHONE	800	CLIENT FAX 2415785800 Peringine.com	G) INDICATE			VENT.										1	DA EXPEDITI DELIVER' (SURCHAR	ΥF		
ENL(E	NULKON	EERING) taihite	environee	eringine.com	I GRAB (ļ	_ _	nio) din	200			'								RGE) ATE DUE		
16350 Pc COMPANY CONT	TRACTING THIS V	Phase Ste VORK (if applicable	<u>, 140; Hous</u>	ton Tr.	<u>}</u> >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	COMPOSITE (C) OR GRAB (G) INI ACULECTIE AWATED)	DUS (WATEH)	OH SEINIUL	DUEOUS LIQI	70#							I	 		NUMBER SHIPMEN		LERS SU	UBMITTED PEF
	MPLE TIME	-		EIDENTIFICA	ATION	COMPC		SULIL	NONAC		1	NUMBI	ER OF (CONT	AINER	IS SUP	3MITTE	D			RE	MARKS	S
10/4/00	1830	RU4-GV	W-27800	>	·····	Сx	<u>r</u>		$\begin{bmatrix} \\ \\ \\ \\ \\ \end{bmatrix}$	3	<u> </u>				<u> </u>								
 						++	+	+1	H		<u> </u> '	\vdash	+/	 	+	<u> </u>	 '	 	┝──┤	[. <u></u>	
		+				++	+	++	Ħ			<u> </u>	+1	[+		+	1		<u> </u>		• <u></u>	<u></u>
						Ħ	t	t	Ħ	í		<u> </u>					<u> </u>						
						П					\Box		<u> </u>										
						\downarrow	_	\downarrow	\square	·′	ĺ'	<u> </u>	<u> </u> '	 		 	 '	<u> </u>		 			
	 					++	+	\downarrow	\square	·'	↓ ′	 	ļ'	 	'	 	· _	<u> </u>	$\left - \right $				
	 					₩	+	\downarrow	H	·'	–′		\vdash	 			 '	┣──┘		i			
		+	<u></u>			++	+	+	H	!	<u> </u> '	<u> </u>	+	['				$\left - \right $		<u></u>		<u></u>
++		1				++	+	++	H	!	['	 	++		[!]			┢───┦	 				
	ED BY: (SIGNA	TURE)	919/00	TIME	RELINQUISHED BY:			JRE)			DATE 10/5	' /	TIME (YC	Ø			HED B	,		D	DATE	TIN	ME
RECEIVED BY	BY (HIGNATURE)	, ,	DATE 9/25/00	TIME 1600	RECEIVED BY: (SIGN/	ATURE	<i>Ξ</i>)				DATE		TIME		RECE	IVED	BY: (sie	INATURE	E)	D	DATE	TIN	ME
										SE ON													
(SIGNATURE)			DATE 196 00	TIME 8:55		CUS SEA					5L LOG -069		1	-TATU	RY RE	МАнк	S:						

IVINICIL

FORM 1 VOLATILE ORGANICS ANALYSI	CLIENT SAMPLE NO.	
Lab Name: EN CHEM Contract: ALCA	RU-13 9	
Lab Code: ENCHEM Case No.:	SAS No.: SDG No.: 913008	
Matrix: (soil/water) SOIL	Lab Sample ID: 913008-006	
Sample wt/vol: 5.0 (g/mL) G	Lab File ID: C4460	
Level: (low/med) LOW	Date Received: 09/05/01	
% Moisture: not dec. 16.3	Date Analyzed: 09/18/01	
GC Column: RTX-624 ID: 0.18 (mm)	Dilution Factor: 1.0	
Soil Extract Volume:(mL)	Soil Aliquot Volume:(uL	
CAS NO. COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) UG/KG Q	
75-01-4VINYL CHLORIDE 12'U 156-60-5TRANS-1 2-DICHLOROETHENE 5.9 U 156-59-2CIS-1 2-DICHLOROETHENE 5.9 U 79-01-6TRICHLOROETHENE 2.0 J 127-18-4TETRACHLOROETHENE 5.9 U		

FORM 1 VOLATILE ORGANICS ANALYSI	CLIENT SAMPLE NO.
Lab Name: EN CHEM Contract: ALCA	RU-13 20
Lab Code: ENCHEM Case No.:	SAS No.: SDG No.: 913008
Matrix: (soil/water) SOIL	Lab Sample ID: 913008-007
Sample wt/vol: 5.0 (g/mL) G	Lab File ID: C4461
Level: (low/med) LOW	Date Received: 09/05/01
% Moisture: not dec. 11.2	Date Analyzed: 09/18/01
GC Column: RTX-624 ID: 0.18 (mm)	Dilution Factor: 1.0
Soil Extract Volume:(mL)	Soil Aliquot Volume:(uL
CAS NO. COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) UG/KG Q
75-01-4VINYL CHLORIDE 156-60-5TRANS-1 2-DICH 156-59-2CIS-1 2-DICHLO 79-01-6TRICHLOROETHEN 127-18-4TETRACHLOROETH	LOROETHENE 5.6 U ROETHENE 5.6 U E 5.6 U

FORM 1 VOLATILE ORGANICS ANALYS	CLIENT SAMPLE NO.	
Lab Name: EN CHEM Contract: ALC	CAS RU14-SL-8	
Lab Code: ENCHEM Case No.:	SAS No.: SDG No.: 913008	
Matrix: (soil/water) SOIL	Lab Sample ID: 913008-001	
Sample wt/vol: 4.9 (g/mL) G	Lab File ID: C4453	
Level: (low/med) LOW	Date Received: 09/05/01	
% Moisture: not dec. 20.0	Date Analyzed: 09/18/01	
GC Column: RTX-624 ID: 0.18 (mm)	Dilution Factor: 1.0	
Soil Extract Volume:(mL)	Soil Aliquot Volume:(uL	
CAS NO. COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) UG/KG Q	
75-01-4VINYL CHLORIDE 13' U 156-60-5TRANS-1 2-DICHLOROETHENE 6.3 U 156-59-2CIS-1 2-DICHLOROETHENE 1.0 J 79-01-6TRICHLOROETHENE 9.4 127-18-4TETRACHLOROETHENE 6.3 U		

.

.

FORM 1 VOLATILE ORGANICS ANALYSIS	CLIENT SAMPLE NO.	
Lab Name: EN CHEM Contract: ALCAS	RU14-SL-25	
Lab Code: ENCHEM Case No.:	SAS No.: SDG No.: 913008	
Matrix: (soil/water) SOIL	Lab Sample ID: 913008-002	
Sample wt/vol: 5.0 (g/mL) G	Lab File ID: C4454	
Level: (low/med) LOW	Date Received: 09/05/01	
% Moisture: not dec. 12.6	Date Analyzed: 09/18/01	
GC Column: RTX-624 ID: 0.18 (mm)	Dilution Factor: 1.0	
Soil Extract Volume:(mL)	Soil Aliquot Volume:(u	L
CAS NO. COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) UG/KG Q	
75-01-4VINYL CHLORIDE 156-60-5TRANS-1 2-DICH 156-59-2CIS-1 2-DICHLO 79-01-6TRICHLOROETHEN 127-18-4TETRACHLOROETH	LOROETHENE 3.2 J ROETHENE 40 E 1900 E	

FORM 1 VOLATILE ORGANICS ANALYSI	CLIENT SAMPLE NO.
Lab Name: EN CHEM Contract: ALCA	RU14-SL-25DL
Lab Code: ENCHEM Case No.:	SAS No.: SDG No.: 913008
Matrix: (soil/water) SOIL	Lab Sample ID: 913008-023
Sample wt/vol: 0.5 (g/mL) G	Lab File ID: C4476
Level: (low/med) LOW	Date Received: 09/05/01
% Moisture: not dec. 12.6	Date Analyzed: 09/19/01
GC Column: RTX-624 ID: 0.18 (mm)	Dilution Factor: 1.0
Soil Extract Volume:(mL)	Soil Aliquot Volume:(uL
CAS NO. COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) UG/KG Q
75-01-4VINYL CHLORIDE 156-60-5TRANS-1 2-DICH 156-59-2CIS-1 2-DICHLO 79-01-6TRICHLOROETHEN 127-18-4TETRACHLOROETH	ILOROETHENE 57 U DROETHENE 24 DJ DE 1600 D

FORM 1 VOLATILE ORGANICS ANALY	CLIENT SA	AMPLE NO.
Lab Name: EN CHEM Contract: AI	CAS	5
Lab Code: ENCHEM Case No.:	SAS No.: SDG No.: 9130	08
Matrix: (soil/water) SOIL	Lab Sample ID: 913091-017	
Sample wt/vol: 5.0 (g/mL) G	Lab File ID: F8932	
Level: (low/med) LOW	Date Received: 09/08,	/01
% Moisture: not dec. 2.4	Date Analyzed: 09/22,	/01
GC Column: RTX-624 ID: 0.18 (mm)	Dilution Factor: 1.0	
Soil Extract Volume:(uL)	Soil Aliquot Volume:	(uL
CAS NO. COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) UG/KG	Q
75-01-4VINYL CHLORI 156-60-5TRANS-1 2-DI 156-59-2CIS-1 2-DICH 79-01-6TRICHLOROETH 127-18-4TETRACHLOROET	CHLOROETHENE 5.1 (LOROETHENE 5.1 (ENE 3.3 (]]

•

FORM 1 VOLATILE ORGANICS ANA	
Lab Name: EN CHEM Contract:	RU-17C 25
Lab Code: ENCHEM Case No.:	SAS No.: SDG No.: 913008
Matrix: (soil/water) SOIL	Lab Sample ID: 913091-018
Sample wt/vol: 5.0 (g/mL)	G Lab File ID: F8933
Level: (low/med) LOW	Date Received: 09/08/01
% Moisture: not dec. 3.4	Date Analyzed: 09/22/01
GC Column: RTX-624 ID: 0.18 (m	m) Dilution Factor: 1.0
Soil Extract Volume:(uL)	Soil Aliquot Volume:(uL
CAS NO. COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) UG/KG Q
75-01-4VINYL CHLO 156-60-5TRANS-1 2- 156-59-2CIS-1 2-DI 79-01-6TRICHLOROE 127-18-4TETRACHLOR	DICHLOROETHENE 5.1 U CHLOROETHENE 0.53 J THENE 20

•

FORM 1 VOLATILE ORGANICS ANALYSI	CLIENT SAMPLE NO.
Lab Name: EN CHEM Contract: ALCA	RU-17C 46
Lab Code: ENCHEM Case No.:	SAS No.: SDG No.: 913008
Matrix: (soil/water) SOIL	Lab Sample ID: 913091-019
Sample wt/vol: 5.0 (g/mL) G	Lab File ID: F8934
Level: (low/med) LOW	Date Received: 09/10/01
% Moisture: not dec. 7.6	Date Analyzed: 09/22/01
GC Column: RTX-624 ID: 0.18 (mm)	Dilution Factor: 1.0
Soil Extract Volume:(uL)	Soil Aliquot Volume:(uL
CAS NO. COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) UG/KG Q
75-01-4VINYL CHLORIDE 11 U 156-60-5TRANS-1 2-DICHLOROETHENE 5.4 U 156-59-2CIS-1 2-DICHLOROETHENE 5.4 U 79-01-6TRICHLOROETHENE 2.4 J 127-18-4TETRACHLOROETHENE 5.4 U	

FORM 1 VOLATILE ORGANICS ANALYSIS DATA SHEET CLIENT SAMPLE NO.

	VOUALITI	CORGANICS ANALISI	DULU DUDDI	1		
Lab Na	me: EN CHEM	Contract: ALCA	S	RU18-SI	ù-05	
Lab Co	de: ENCHEM	Case No.:	SAS No.:	SDG No.: 913	3008	
Matrix	: (soil/water)	SOIL	Lab Sample ID:	913008-003		
Sample	wt/vol:	5.0 (g/mL) G	Lab Fil	e ID: C445	7	
Level:	(low/med)	LOW	Date Re	ceived: 09/01	7/01	
% Mois	ture: not dec	. 20.2	Date An	alyzed: 09/18	3/01	
GC Col	umn: RTX-624	ID: 0.18 (mm)	Dilutio	n Factor: 1.(ט	
Soil E	xtract Volume	:(mL)	Soil Al	iquot Volume	:	(uL
	CAS NO.	COMPOUND	CONCENTRATION (ug/L or ug/K		Q	
	156-60-5 156-59-2 79-01-6	VINYL CHLORIDE TRANS-1 2-DICH CIS-1 2-DICHLO TRICHLOROETHEN TETRACHLOROETH	LOROETHENE ROETHENE E	13 6.2 0.66 2.9 6.2	บ J* J	

FORM 1 VOLATILE ORGANICS ANALYSIS	CLIENT SAMPLE NO.
Lab Name: EN CHEM Contract: ALCAS	RU18-SL-25
Lab Code: ENCHEM Case No.:	SAS No.: SDG No.: 913008
Matrix: (soil/water) SOIL	Lab Sample ID: 913008-004
Sample wt/vol: 5.0 (g/mL) G	Lab File ID: C4458
Level: (low/med) LOW	Date Received: 09/07/01
% Moisture: not dec. 14.0	Date Analyzed: 09/18/01
GC Column: RTX-624 ID: 0.18 (mm)	Dilution Factor: 1.0
Soil Extract Volume:(mL)	Soil Aliquot Volume:(uL
CAS NO. COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) UG/KG Q
75-01-4VINYL CHLORIDE 156-60-5TRANS-1 2-DICH 156-59-2CIS-1 2-DICHLO 79-01-6TRICHLOROETHEN 127-18-4TETRACHLOROETH	LOROETHENE 5.8 U ROETHENE 9.5 E 490 E

FORM I VOA

FORM 1 VOLATILE ORGANICS ANALYSI	CLIENT SAMPLE NO.
Lab Name: EN CHEM Contract: ALCA	RU18-SL-25DL
Lab Code: ENCHEM Case No.:	SAS No.: SDG No.: 913008
Matrix: (soil/water) SOIL	Lab Sample ID: 913008-024
Sample wt/vol: 1.0 (g/mL) G	Lab File ID: C4479
Level: (low/med) LOW	Date Received: 09/05/01
% Moisture: not dec. 14.0	Date Analyzed: 09/19/01
GC Column: RTX-624 ID: 0.18 (mm)	Dilution Factor: 1.0
Soil Extract Volume:(mL)	Soil Aliquot Volume:(uL
CAS NO. COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) UG/KG Q
75-01-4VINYL CHLORIDE 156-60-5TRANS-1 2-DICH 156-59-2CIS-1 2-DICHLO 79-01-6TRICHLOROETHEN 127-18-4TETRACHLOROETH	LOROETHENE 29 U ROETHENE 4.4 DJ E 330 D

~

FORM 1 VOLATILE ORGANICS ANALYSI	CLIENT SAMPLE NO.	
Lab Name: EN CHEM Contract: ALCA	RU18-SL-46	
Lab Code: ENCHEM Case No.:	SAS No.: SDG No.: 913008	
Matrix: (soil/water) SOIL	Lab Sample ID: 913008-005	
Sample wt/vol: 5.0 (g/mL) G	Lab File ID: C4459	
Level: (low/med) LOW	Date Received: 09/07/01	
% Moisture: not dec. 15.9	Date Analyzed: 09/18/01	
GC Column: RTX-624 ID: 0.18 (mm)	Dilution Factor: 1.0	
Soil Extract Volume:(mL)	Soil Aliquot Volume:(uL	
CAS NO. COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) UG/KG Q	
75-01-4VINYL CHLORIDE 12 U 156-60-5TRANS-1 2-DICHLOROETHENE 5.9 U 156-59-2CIS-1 2-DICHLOROETHENE 4.3 J 79-01-6TRICHLOROETHENE 150 127-18-4TETRACHLOROETHENE 5.9 U		

.

-

•

FORM 1 VOLATILE ORGANICS ANALYSI:	CLIENT SAMPLE NO. S DATA SHEET
Lab Name: EN CHEM Contract: ALCA	TRIP BLANK
Lab Code: ENCHEM Case No.:	SAS No.: SDG No.: 913008
Matrix: (soil/water) WATER	Lab Sample ID: 913008-008
Sample wt/vol: 5.000 (g/mL) ML	Lab File ID: C4415
Level: (low/med) LOW	Date Received: 09/05/01
% Moisture: not dec.	Date Analyzed: 09/14/01
GC Column: RTX-624 ID: 0.18 (mm)	Dilution Factor: 1.0
Soil Extract Volume:(uL)	Soil Aliquot Volume:(uL
CAS NO. COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) UG/L Q
75-01-4VINYL CHLORIDE 156-60-5TRANS-1 2-DICH 156-59-2CIS-1 2-DICHLO 79-01-6TRICHLOROETHEN 127-18-4TETRACHLOROETH	LOROETHENE 1.0 U ROETHENE 1.0 U E 1.0 U*

1LCA

LOW CONCENTRATION WATER VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

\$

-1

		RU-1
Lab Name: EN CHEM	Contract: ALCAS	۱ <u>مسید میں میں میں میں میں میں میں میں میں میں</u>
Lab Code: ENCHEM Case No.:	Client No.: SD	G No.: 913001
Lab Sample ID: 913001-001	Date Rece	ived: 09/08/2001
Lab File ID: A2185	Date Anal	yzed: 09/17/2001
Purge Volume: 25.0(ML)	Dilution	Factor: 1.0
GC Column: RTX-624 ID:	0.18(MM) Length:	20.0(M)
CAS NO. COMPOUND	CONCENTRA (UG/L)	TION UNITS: Q

CAS NO.	COMPOUND	(UG/L)	Q
=======================================		=======================================	=====
	Vinyl Chloride trans-1,2-Dichloroethene	0.50	<u> </u>
	cis-1,2-Dichloroethene	0.95	
79-01-6	Trichloroethene	5.2	
127-18-4	Tetrachloroethene	0.50	U

FORM I LCV-1

LOW CONCENTRATION WATER VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS EPA SAMPLE NO.

			1	
				RU-1
Lab Name: EN CHEM		Contract: AL	CAS	
Lab Code: ENCHEM Case No.	:	Client No.:	SDG N	io.: 913001
Lab Sample ID: 913001-001			Date Receive	d: 09/08/2001
Lab File ID: A2185		:	Date Analyze	d: 09/17/2001
Purge Volume: 25.0(ML)		:	Dilution Fac	tor: 1.0
GC Column: RTX-624	ID:	0.18(MM)	Length: 2	0.0(M)

Number TICs found: 4

===	CAS NUMBER	COMPOUND NAME	RT	EST. CONC. (UG/L)	Q
01	354-23-4			0.81	
02		ETHANE, 1,2-DICHLORO-1,1,2-T CIS-1,3-DICHLOROPROPENE-D4	7.39	1.9	
03	124-19-6	NONANAL	14.27	1.1	ŊJ
04	112-31-2	DECANAL	15.53	0.59	NJ
05					
06		· · · · · · · · · · · · · · · · · · ·			
07					
08					
09					
10				· · · · · · · · · · · · · · · · · · ·	
11	·				
<u>12</u> 13					
$\frac{13}{14}$					
$\frac{14}{15}$				· · · · · · · · · · · · · · · · · · ·	
16					
17					
18					
19	· · · · · · · · · · · · · · · · · · ·				
20				······································	,
21					· · · · · · · · · · · · · · · · · · ·
22					
23					
24					
25					
26					
27					
28		· · · · · · · · · · · · · · · · · · ·			
29		· · · · · · · · · · · · · · · · · · ·			
30		<u> </u>			

FORM I LCV-TIC

LOW CONCENTRATION WATER VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

		1
		RU-2
Lab Name: EN CHEM	Contract: ALCAS	I
Lab Code: ENCHEM Case No.:	Client No.: 9DG	No.: 913001
Lab Sample ID: 913091-020	Date Recei	ved: 09/14/2001
Lab File ID: A2228	Date Analy	zed: 09/21/2001
Purge Volume: 25.0(ML)	Dilution F	actor: 1.0
GC Column: RTX-624 ID:	0.18(MM) Length:	20.0(M)
CAS NO. COMPOUND	CONCENTRAT (UG/L)	ION UNITS: Q

CAS NO.	COMPOUND	(UG/L)	Q
=============		=======================================	=====
	Vinyl Chloride	0.50	U
	trans-1,2-Dichloroethene	,0.11	J
	cis-1,2-Dichloroethene	5.2	
	Trichloroethene	37	Ε
127-18-4	Tetrachloroethene	0.50	_U

.

FORM I LCV-1

LOW CONCENTRATION WATER VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS EPA SAMPLE NO.

			RU-2
Lab Name: EN CHEM		Contract: A	LCAS
Lab Code: ENCHEM Case No.	:	Client No.:	SDG No.: 913001
Lab Sample ID: 913091-020		;	Date Received: 09/14/2001
Lab File ID: A2228			Date Analyzed: 09/21/2001
Purge Volume: 25.0(ML)			Dilution Factor: 1.0
GC Column: RTX-624	ID:	0.18(MM)	Length: 20.0(M)

Number TICs found: 5

===		COMPOUND NAME	RT	(UG/L)	Q
01		UNKNOWN	======= 1.70	2.0	===== J
02	67-64-1	ACETONE	2.89	0.69	NJ
03		CIS-1,3-DICHLOROPROPENE-D4-	7.40		JB
04	108-88-3	TOLUENE	7.77	4.2	NJ
05		UNKNOWN	13.16	0.60	J
06					
07					
08					l
09	· · · · · · · · · · · · · · · · · · ·				I
10	· · · · · · · · · · · · · · · · · · ·				
<u>11</u> 12					
$\frac{12}{13}$	· · · · · · · · · · · · · · · · · · ·				
$\frac{13}{14}$					
15	····				
16					
17					
18					
19					
20					
21					
22					
23					
24					
25					
26			<u> </u>		
$\frac{27}{28}$					
29					
30					

FORM I LCV-TIC

1LCA

LOW CONCENTRATION WATER VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

		RU-2DL
Lab Name: EN CHEM	Contract: ALCAS	I I
Lab Code: ENCHEM Case No.:	Client No.: 9DG	No.: 913001
Lab Sample ID: 913091-029	Date Receiv	ed: 09/14/2001
Lab File ID: A2232	Date Analyz	ed: 09/21/2001
Purge Volume: 25.0(ML)	Dilution Fa	ctor: 10.0
GC Column: RTX-624 ID:	0.18(MM) Length:	20.0(M)
	CONCENTRATI	ON UNITS:

	CAS NO.	COMPOUND	(UG/L)	Q
		Vinyl Chloride	5.0	U
-		trans-1,2-Dichloroethene	, 5.0	U
	156-59-2	cis-1,2-Dichloroethene	3.6	DJ
	79-01-6	Trichloroethene	25	D
	127-18-4	Tetrachloroethene	5.0_	<u> </u>

FORM I LCV-1

LOW CONCENTRATION WATER VOLATILE ORGANICS ANALYSIS

DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS EPA SAMPLE NO.

			·
			RU-2DL
Lab Name: EN CHEM		Contract: AI	JCAS
Lab Code: ENCHEM Case No.:		Client No.:	SDG No.: 913001
Lab Sample ID: 913091-029		:	Date Received: 09/14/2001
Lab File ID: A2232			Date Analyzed: 09/21/2001
Purge Volume: 25.0(ML)			Dilution Factor: 10.0
GC Column: RTX-624	ID:	0.18(MM)	Length: 20.0(M)

Number TICs found: 1

	CAS NUMBER	COMPOUND NAME	RT	EST. CONC. (UG/L)	Q
=== =					V ====
01		CIS-1, 3-DICHLOROPROPENE-D4	7.40		JBD
02					022
03					
04					
05		· · · · · · · · · · · · · · · · · · ·			
06					
07					
08					L
09					
10					
11					
12					
13					
14					
15					
16					
17					
18					L
19					
20					I
21					L
22					L
23					<u> </u>
24					ļ
25					ļ
26					
27			ļ		L
28			ļ		ļ
29					
30					<u> </u>

FORM I LCV-TIC

OLC03.2

- - -

1LCA

,

LOW CONCENTRATION WATER VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

1 -

		RU-4
Lab Name: EN CHEM	Contract: ALC	AS
Lab Code: ENCHEM Case No.:	Client No.:	SDG No.: 913001
Lab Sample ID: 913091-007	D	ate Received: 09/14/2001
Lab File ID: A2247	D	ate Analyzed: 09/21/2001
Purge Volume: 25.0(ML)	D	ilution Factor: 20000.0
GC Column: RTX-624 ID:	0.18(MM)	Length: 20.0(M)
		ONCENTED ATTACK TINTED

CAS NO.	COMPOUND	CONCENTRATION UNITS: (UG/L)	Q
		=======================================	=====
	Vinyl Chloride	10000	U
156-60-5	trans-1,2-Dichloroethene	10000	U
156-59-2	cis-1,2-Dichloroethene	9700	J
	Trichloroethene	310000	
127-18-4	Tetrachloroethene	10000	U

LOW CONCENTRATION WATER VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS EPA SAMPLE NO.

			RU-4
Lab Name: EN CHEM		Contract: AI	LCAS
Lab Code: ENCHEM Case No.:	:	Client No.:	3DG No.: 913001
Lab Sample ID: 913091-007		:	Date Received: 09/14/2001
Lab File ID: A2247			Date Analyzed: 09/21/2001
Purge Volume: 25.0(ML)			Dilution Factor: 20000.0
GC Column: RTX-624	ID:	0.18(MM)	Length: 20.0(M)

Number TICs found: 1

	CAS NUMBER	COMPOUND NAME	RT	EST. CONC. (UG/L)	Q
01		CIS-1,3-DICHLOROPROPENE-D4	7.39	36000	
02					
03					
04					
05					
06					
07					
08					
09					
10					
11					
12					
13	·····				
14					
15					
16					
17					
18					
19					
20					· ··
21		ļ			
22					
23					
24					
25					
26	······				
27		ļ			
28					
29	·		L		
30					

FORM I LCV-TIC

1LCA

LOW CONCENTRATION WATER VOLATILE ORGANICS ANALYSIS

DATA SHEET

EPA SAMPLE NO.

-1

1-

		RU-5
Lab Name: EN CHEM	Contract: ALCAS	l
Lab Code: ENCHEM Case No.:	Client No.:	SDG No.: 913001
Lab Sample ID: 913091-008	Date	Received: 09/14/2001
Lab File ID: A2246	Date	Analyzed: 09/21/2001
Purge Volume: 25.0(ML)	Dilu	tion Factor: 2000.0
GC Column: RTX-624 ID:	0.18(MM) Le	ngth: 20.0(M)
	CONC	ENTRATION UNITS:

	CAS NO.	COMPOUND	(UG/L)	Q
=	75-01-4	Vinyl Chloride	1000	U U
-	156-60-5	trans-1,2-Dichloroethene	1000	U
		cis-1,2-Dichloroethene	150	J
1-		Trichloroethene	24000	
1	127-18-4	Tetrachloroethene	1000	U

LOW CONCENTRATION WATER VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS EPA SAMPLE NO.

1

			RU-5
Lab Name: EN CHEM		Contract: AI	LCAS
Lab Code: ENCHEM Case No.:		Client No.:	SDG No.: 913001
Lab Sample ID: 913091-008		:	Date Received: 09/14/2001
Lab File ID: A2246			Date Analyzed: 09/21/2001
Purge Volume: 25.0(ML)			Dilution Factor: 2000.0
GC Column: RTX-624	ID:	0.18(MM)	Length: 20.0(M)

Number TICs found: 1

===	CAS NUMBER	COMPOUND NAME	RT	EST. CONC. (UG/L)	Q ======
01		CIS-1, 3-DICHLOROPROPENE-D4	7.40	3800	JB
02					
03					
04					
05	· · · · · · · · · · · · · · · · · · ·				
06					
07					
08					
09					
10					
11					
12					
13	·	· · · · · · · · · · · · · · · · · · ·			
14					
15	· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·	
16					
17					
18					
19					
20					
21		· · · · · · · · · · · · · · · · · · ·			
22					
23					
24					·
25					
26	·				
27				······································	
28					
29					
30					

FORM I LCV-TIC

1LCA

*

LOW CONCENTRATION WATER VOLATILE ORGANICS ANALYSIS DATA SHEET E

EPA SAMPLE NO.

		RU-6
Lab Name: EN CHEM	Contract: A	LCAS
Lab Code: ENCHEM Case No.:	Client No.:	SDG No.: 913001
Lab Sample ID: 913001-002	·	Date Received: 09/08/2001
Lab File ID: A2196		Date Analyzed: 09/17/2001
Purge Volume: 25.0(ML)		Dilution Factor: 1000.0
GC Column: RTX-624 ID:	0.18(MM)	Length: 20.0(M)
		CONCENTRATION UNITS:

CAS NO.	COMPOUND	(UG/L)	Q
75-01-4	Vinyl Chloride	500	U
156-60-5	trans-1,2-Dichloroethene	500	U
	cis-1,2-Dichloroethene	230	J
79-01-6	Trichloroethene	16000	
127-18-4	Tetrachloroethene	500	U

FORM I LCV-1

1LCF LOW CONCENTRATION WATER VOLATILE ORGANICS ANALYSIS DATA

A SHEET TENTATIVELY IDENTIFIED COMPOUNDS

			RU-6
Lab Name: EN CHEM		Contract: A	LCAS
Lab Code: ENCHEM Case No.	:	Client No.:	SDG No.: 913001
Lab Sample ID: 913001-002		:	Date Received: 09/08/2001
Lab File ID: A2196			Date Analyzed: 09/17/2001
Purge Volume: 25.0(ML)			Dilution Factor: 1000.0
GC Column: RTX-624	ID:	0.18(MM)	Length: 20.0(M)

Number TICs found: 1

	CAS NUMBER	COMPOUND NAME	RT	EST. CONC. (UG/L)	Q
01	=============================	CIS-1,3-DICHLOROPROPENE-D4	7.39	2000	===== JB
02					
03					
04					
05					
06	<u> </u>				
07					
08	•				
09					
$\left \frac{10}{11} \right $					
12					
13					
14					
15		·			
16					
17					
18					
19					
20					
21					
22 23					
24					
25					<u> </u>
26				· · · · · · · · · · · · · · · · · · ·	
27					
28					
29					
_30				·	

FORM I LCV-TIC

OLC03.2

•

LOW CONCENTRATION WATER VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

		RU-8
Lab Name: EN CHEM	Contract: AI	LCAS
Lab Code: ENCHEM Case No.:	Client No.:	SDG No.: 913001
Lab Sample ID: 913001-003	:	Date Received: 09/08/2001
Lab File ID: A2195		Date Analyzed: 09/17/2001
Purge Volume: 25.0(ML)		Dilution Factor: 20.0
GC Column: RTX-624 ID:	0.18(MM)	Length: 20.0(M)
CAS NO. COMPOUND		CONCENTRATION UNITS: (UG/L) Q

	(×
		=====
Vinyl Chloride	10	U
	, 10	Ū
	24	
Trichloroethene	300	
Tetrachloroethene	10	U
	trans-1,2-Dichloroethene cis-1,2-Dichloroethene Trichloroethene	trans-1,2-Dichloroethene10cis-1,2-Dichloroethene24Trichloroethene300

FORM I LCV-1

LOW CONCENTRATION WATER VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

RU-8

Lab Name: EN CHEM		Contract: A	LCAS
Lab Code: ENCHEM Case No.	:	Client No.:	STDG No.: 913001
Lab Sample ID: 913001-003		:	Date Received: 09/08/2001
Lab File ID: A2195			Date Analyzed: 09/17/2001
Purge Volume: 25.0(ML)			Dilution Factor: 20.0
GC Column: RTX-624	ID:	0.18(MM)	Length: 20.0(M)

Number TICs found: 1

	CAS NUMBER	COMPOUND NAME	RT	EST. CONC. (UG/L)	Q
01		CIS-1, 3-DICHLOROPROPENE-D4	7.39	======================================	===== JB
02	······································				
03					
04					
05					
06	······································			······	
08					
09				· · ·	
10					
11					
12					
13					
14					
<u>15</u> 16					
$\frac{10}{17}$					
18					<u> </u>
19					
20					
21					
22					
23					
24					
25					
26					
28					
29					
30				······································	

FORM I LCV-TIC

1LCA

LOW CONCENTRATION WATER VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

	RU-9			
Lab Name: EN CHEM Co	ntract: ALCAS			
Lab Code: ENCHEM Case No.: Cli	ent No.: SDG No.: 913001			
Lab Sample ID: 913091-012	Date Received: 09/14/2001			
Lab File ID: A2221 Date Analyzed: 09/20/2001				
Purge Volume: 25.0(ML)	Dilution Factor: 1.0			
GC Column: RTX-624 ID: 0.18(MM) Length: 20.0(M)			
CAS NO. COMPOUND	CONCENTRATION UNITS: (UG/L) Q			

CAS NO.	COMPOUND	(UG/L)	Q
	Vinyl Chloride	0.50	===== U
	trans-1,2-Dichloroethene	0.094	J
156-59-2	cis-1,2-Dichloroethene	2.8	
79-01-6	Trichloroethene	5.9	
127-18-4	Tetrachloroethene	0.50	U

.

FORM I LCV-1

LOW CONCENTRATION WATER VOLATILE ORGANICS ANALYSIS

DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS EPA SAMPLE NO.

			RU-9
Lab Name: EN CHEM		Contract: A	LCAS
Lab Code: ENCHEM Case No.:		Client No.:	SDG No.: 913001
Lab Sample ID: 913091-012		:	Date Received: 09/14/2001
Lab File ID: A2221			Date Analyzed: 09/20/2001
Purge Volume: 25.0(ML)			Dilution Factor: 1.0
GC Column: RTX-624 I	ID:	0.18(MM)	Length: 20.0(M)

Number TICs found: 6

	CAS NUMBER	COMPOUND NAME	RT	EST. CONC. (UG/L)	Q
===			=======	=================	=====
01		CIS-1, 3-DICHLOROPROPENE-D4	7.40	1.9	JB
02		UNKNOWN	15.39	0.85	J
03		UNKNOWN	15.44	2.0	J
04		UNKNOWN	<u> 15.53</u> 15.72.	2.3	
05		UNKNOWN UNKNOWN	15.72.	1.3	<u> </u>
06				1.0	J
07		· · · · · · · · · · · · · · · · · · ·			
10	<u> </u>			<u></u>	
	· · · · · · · · · · · · · · · · · · ·				
12	<u> </u>				
13			<u> </u>		i
14					<u> </u>
15	· · · · · · · · · · · · · · · · · · ·				
16					
17					
18					
_19					
20					
21					
_22					
_23					
24					
25					
26					
27					
28	· · · · · · · · · · · · · · · · · · ·				
29	· · · · · · · · · · · · · · · · · · ·				
_30		<u> </u>	L	·	

FORM I LCV-TIC .

1LCA

LOW CONCENTRATION WATER VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

	RU-10
Lab Name: EN CHEM Contract	: ALCAS
Lab Code: ENCHEM Case No.: Client No.	SDG No.: 913001
Lab Sample ID: 913091-005	Date Received: 09/14/2001
Lab File ID: A2241	Date Analyzed: 09/21/2001
Purge Volume: 25.0(ML)	Dilution Factor: 100.0
GC Column: RTX-624 ID: 0.18(MM)	Length: 20.0(M)
	CONCENTRATION UNITS:

	CAS NO.	COMPOUND	(UG/L)	Q
		Vinyl Chloride	79)
1-		trans-1,2-Dichloroethene	15	5 J
1-	156-59-2	cis-1,2-Dichloroethene	950	
-	79-01-6	Trichloroethene	2000	
	127-18-4	Tetrachloroethene	50) U

.

FORM I LCV-1

1LCF LOW CONCENTRATION WATER VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS EPA SAMPLE NO.

		RU-10
Lab Name: EN CHEM	Contract: Al	LCAS
Lab Code: ENCHEM Case No.:	Client No.:	SDG No.: 913001
Lab Sample ID: 913091-005		Date Received: 09/14/2001
Lab File ID: A2241		Date Analyzed: 09/21/2001
Purge Volume: 25.0(ML)		Dilution Factor: 100.0
GC Column: RTX-624 ID:	0.18(MM)	Length: 20.0(M)

Number TICs found: 1

	CAS NUMBER	COMPOUND NAME	RT	EST. CONC. (UG/L)	Q
01		CIS-1, 3-DICHLOROPROPENE-D4	7.40	190	
02					
03					
04					
05					
06					
07					
08					
09					
10					
11					
12					
13				<u> </u>	
14					
15					
16					
17					
18					
19					
20					
21					
22		· · · · · · · · · · · · · · · · · · ·			
23	<u></u>				· · · · · · · · · · · · · · · · · · ·
24					
25					
26					
27					
28					
29					
30					

FORM I LCV-TIC

1LCA LOW CONCENTRATION WATER VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

1

		RU-11
Lab Name: EN CHEM	Contract: ALCAS	· · · · · · · · · · · · · · · · · · ·
Lab Code: ENCHEM Case No.:	Client No.: SDG	No.: 913001
Lab Sample ID: 913091-009	Date Recei	ved: 09/14/2001
Lab File ID: A2230	Date Analy	zed: 09/21/2001
Purge Volume: 25.0(ML)	Dilution F	actor: 1.0
GC Column: RTX-624 ID:	0.18(MM) Length:	20.0(M)
	CONCENTRAT	TON UNITE

CAS NO	COMPOUND	(UG/L)	Q
75-01-	4 Vinyl Chloride	0.50	U U
156-60-	5 trans-1,2-Dichloroethene	0.50	U
156-59-	2 cis-1,2-Dichloroethene	0.50	U
79-01-	6 Trichloroethene	0.82	
127-18-	4 Tetrachloroethene	0.50	U

FORM I LCV-1

1LCF LOW CONCENTRATION WATER VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS EPA SAMPLE NO.

RU-11

Lab Name: EN CHEM		Contract: A	LCAS
Lab Code: ENCHEM Case No.:	:	Client No.:	SDG No.: 913001
Lab Sample ID: 913091-009		:	Date Received: 09/14/2001
Lab File ID: A2230			Date Analyzed: 09/21/2001
Purge Volume: 25.0(ML)			Dilution Factor: 1.0
GC Column: RTX-624	ID:	0.18(MM)	Length: 20.0(M)

Number TICs found: 1

	CAS NUMBER	COMPOUND NAME	RT	EST. CONC. (UG/L)	Q
01		CIS-1,3-DICHLOROPROPENE-D4	======= 7.40	=======================================	===== JB
02					
03					
04					
05		· · · · · · · · · · · · · · · · · · ·			
06					
07					
08					<u></u>
09				· · · · · · · · · · · · · · · · · · ·	
10			.~		
11	······			······································	
12					
13					
14					<u> </u>
16	······				
17					
$\frac{1}{18}$					
19					····
20					
21					
22					
23					
24					
25					
26					
27					
28					_
29					
30	· · · · · · · · · · · · · · · · · · ·	<u>1 </u>			L

FORM I LCV-TIC

LOW CONCENTRATION WATER VOLATILE ORGANICS ANALYSIS DATA SHEET EPA SAMPLE NO.

.

		RU-12
Lab Name: EN CHEM	Contract: A	LCAS
Lab Code: ENCHEM Case No.:	Client No.:	9DG No.: 913001
Lab Sample ID: 913091-006	:	Date Received: 09/14/2001
Lab File ID: A2225		Date Analyzed: 09/20/2001
Purge Volume: 25.0(ML)		Dilution Factor: 1.0
GC Column: RTX-624 ID:	0.18(MM)	Length: 20.0(M)
CAS NO. COMPOUND		CONCENTRATION UNITS: (UG/L) Q

CAS NO.	COMPOUND	(UG/L)	Q
	Vinyl Chloride	======================================	=====
	trans-1,2-Dichloroethene	,0.49	J
156-59-2	cis-1,2-Dichloroethene	9.1	· · · · ·
79-01-6	Trichloroethene	3.8	
127-18-4	Tetrachloroethene	0.50	U

LOW CONCENTRATION WATER VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS EPA SAMPLE NO.

			RU-12
Lab Name: EN CHEM		Contract: Al	LCAS
Lab Code: ENCHEM Case No.	:	Client No.:	SDG No.: 913001
Lab Sample ID: 913091-006		:	Date Received: 09/14/2001
Lab File ID: A2225			Date Analyzed: 09/20/2001
Purge Volume: 25.0(ML)			Dilution Factor: 1.0
GC Column: RTX-624	ID:	0.18(MM)	Length: 20.0(M)

Number TICs found: 7

	CAS NUMBER	COMPOUND NAME	RT	EST. CONC. (UG/L)	Q
===	==========================		========	===================	=====
01		CIS-1, 3-DICHLOROPROPENE-D4	7.41	1.9	JB
02		UNKNOWN	15.39	1.7	J
03		UNKNOWN	15.44	4.2	J
04		UNKNOWN	15.54	3.6	
05		UNKNOWN	15.67	0.54	J
06		UNKNOWN	15.72		J
07		UNKNOWN	15.83	2.9	<u>J</u>
08		· · · · ·			
09					
10					
$\frac{11}{12}$	· · · · · · · · · · · · · · · · · · ·				
13					
14	· · · · · · · · · · · · · · · · · · ·				
15					
16					
17	· · · · · · · · · · · · · · · · · · ·				
18					
19					
20	· · · · · · · · · · · · · · · · · · ·				
21				·· .	
22					
23					
24					
25					
26					
28		·····			
29					
30					
1-201	· · · · · · · · · · · · · · · · · · ·	l <u></u>	L	L	·

FORM I LCV-TIC

1LCA LOW CONCENTRATION WATER VOLATILE ORGANICS ANALYSIS DATA SHEET E

EPA SAMPLE NO.

,

		RU-13
Lab Name: EN CHEM	Contract: ALCAS	
Lab Code: ENCHEM Case No.:	Client No.: SDG	No.: 913001
Lab Sample ID: 913091-004	Date Receiv	ed: 09/14/2001
Lab File ID: A2220	Date Analyz	ed: 09/20/2001
Purge Volume: 25.0(ML)	Dilution Fa	ctor: 1.0
GC Column: RTX-624 ID:	0.18(MM) Length:	20.0(M)
	CONCENTRATT	ON INTER

CAS NO.	COMPOUND	(UG/L)	Q
	Vinyl Chloride	0.50	U
156-60-5	trans-1,2-Dichloroethene	, 0.50	υ
	cis-1,2-Dichloroethene	0.50	U
79-01-6	Trichloroethene	0.61	
127-18-4	Tetrachloroethene	0.50	Ŭ

FORM I LCV-1

1LCF LOW CONCENTRATION WATER VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS EPA SAMPLE NO.

		RU-13
Lab Name: EN CHEM	Contract: A	LCAS
Lab Code: ENCHEM Case No.:	Client No.:	SDG No.: 913001
Lab Sample ID: 913091-004		Date Received: 09/14/2001
Lab File ID: A2220		Date Analyzed: 09/20/2001
Purge Volume: 25.0(ML)		Dilution Factor: 1.0
GC Column: RTX-624 ID	0.18(MM)	Length: 20.0(M)

Number TICs found: 11

	CAS NUMBER	COMPOUND NAME	RT	EST. CONC. (UG/L)	, Q
01	75-15-0	CARBON DISULFIDE	2.91	0.76	===== NJ
02		CIS-1, 3-DICHLOROPROPENE-D4	7.39	2.0	
03	66-25-1	HEXANAL	8.81	0.61	
04	124-19-6	NONANAL	14.28	1.6	NJ
05		UNKNOWN	15.12	0.76	J
06		UNKNOWN	15.30	0.80	J
07		UNKNOWN	15.38	1.8	J
08		UNKNOWN	15.43	2.9	J
09		UNKNOWN	15.53	2.0	<u>J</u>
10		UNKNOWN	15.57	0.91	
11		UNKNOWN	15.83	0.92	J
12	<u> </u>	······································		······	
13	· · · · · · · · · · · · · · · · · · ·				
$\frac{14}{15}$					
16					
17	· · · · · · · · · · · · · · · · · · ·				
18					
19				······	
20	·				
21					
22					
23					
_24					
25					
26					
27				<u></u>	
28					
29					
30	l				

FORM I LCV-TIC

1LCA LOW CONCENTRATION WATER VOLATILE ORGANICS ANALYSIS DATA SHEET

.

EPA SAMPLE NO.

			RU-14	1
Lab Name: EN CHEM	Contract: A	LCAS	<u> </u>	
Lab Code: ENCHEM Case No.:	Client No.:	9DG N	Io.: 91300	1
Lab Sample ID: 913091-002	:	Date Receive	ed: 09/14/2	2001
Lab File ID: A2240		Date Analyze	ed: 09/21/2	2001
Purge Volume: 25.0(ML)		Dilution Fac	tor: 50.0	
GC Column: RTX-624 ID:	0.18(MM)	Length: 2	20.0(M)	·
CAS NO COMPOLIND		CONCENTRATIC	N UNITS:	0

COMPOUND	(UG/L)	Q
	25	. U
	, 25	U
cis-1,2-Dichloroethene	130	
Trichloroethene	560	
Tetrachloroethene	25	U
	COMPOUND Vinyl Chloride trans-1,2-Dichloroethene cis-1,2-Dichloroethene Trichloroethene Tetrachloroethene	Vinyl Chloride25trans-1,2-Dichloroethene25cis-1,2-Dichloroethene130Trichloroethene560

.

FORM I LCV-1

LOW CONCENTRATION WATER VOLATILE ORGANICS ANALYSIS

DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS EPA SAMPLE NO.

			1
			RU-14
Lab Name: EN CHEM		Contract: AI	JCAS
Lab Code: ENCHEM Case No.	:	Client No.:	9DG No.: 913001
Lab Sample ID: 913091-002		:	Date Received: 09/14/2001
Lab File ID: A2240			Date Analyzed: 09/21/2001
Purge Volume: 25.0(ML)			Dilution Factor: 50.0
GC Column: RTX-624	ID:	0.18(MM)	Length: 20.0(M)

Number TICs found: 1

===	CAS NUMBER	COMPOUND NAME	RT	EST. CONC. (UG/L)	Q
01		CIS-1, 3-DICHLOROPROPENE-D4	7.41		JB
02				<u>_</u>	
03					
04					
05					
06					
07					
08					
09		· ·			
10					
11					
12		·			
13					
14					
15					
16					
17		·			
18					
19					
20					
21	·····				
22					
23					
24					
25					
26					
27					
_28					
29					
30					

FORM I LCV-TIC

1LCA

LOW CONCENTRATION WATER VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

2

		RU-15
Lab Name: EN CHEM	Contract: AL	CAS
Lab Code: ENCHEM Case No.:	Client No.:	9DG No.: 913001
Lab Sample ID: 913091-016	:	Date Received: 09/14/2001
Lab File ID: A2224		Date Analyzed: 09/20/2001
Purge Volume: 25.0(ML)		Dilution Factor: 1.0
GC Column: RTX-624 ID:	0.18(MM)	Length: 20.0(M)
		CONCENTRATION UNITS:

	CAS NO.	COMPOUND	(UG/L)	Q
===	==========		===============================	=====
	75-01-4	Vinyl Chloride	1.6	ł
	156-60-5	trans-1,2-Dichloroethene	, 0.28	J
	156-59-2	cis-1,2-Dichloroethene	7.7	
	79-01-6	Trichloroethene	5.7	
	127-18-4	Tetrachloroethene	0.50	U

FORM I LCV-1

LOW CONCENTRATION WATER VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS EPA SAMPLE NO.

			RU-15
Lab Name: EN CHEM		Contract: AL	CAS
Lab Code: ENCHEM Case No.:	:	Client No.:	SDG No.: 913001
Lab Sample ID: 913091-016			Date Received: 09/14/2001
Lab File ID: A2224			Date Analyzed: 09/20/2001
Purge Volume: 25.0(ML)			Dilution Factor: 1.0
GC Column: RTX-624	ID:	0.18(MM)	Length: 20.0(M)

Number TICs found: 11

	CAS NUMBER	COMPOUND NAME	RT	EST. CONC. (UG/L)	Q
===	**************			=======================================	=====
01	75-15-0	CARBON DISULFIDE	2.91	1.1	NJ
02		CIS-1, 3-DICHLOROPROPENE-D4	7.40	1.8	JB
03		UNKNOWN	14.64	0.90	J
04		UNKNOWN	15.12	0.54	J
05		UNKNOWN	15.31	0.64	J
06		UNKNOWN	15.36	0.94	
07		UNKNOWN	15.38	1.2	J
08		UNKNOWN	15.44	3.1	J
09		UNKNOWN -	15.54	2.5	J
10		UNKNOWN	15.72	1.0	
11		UNKNOWN	15.83	1.1	J
12					
13					
14					
15					
_16					
17					
18					
19					
20					
21					
22					
23					
24					
25					
26					
27	· · · · · · · · · · · · · · · · · · ·				
28					
29					
30	l	<u> </u>	l		

FORM I LCV-TIC

.

1LCA LOW CONCENTRATION WATER VOLATILE ORGANICS ANALYSIS DATA SHEET

.

EPA SAMPLE NO.

			RU-16
Lab Name: EN CHEM		Contract: A	ALCAS
Lab Code: ENCHEM Case No.	:	Client No.:	SDG No.: 913001
Lab Sample ID: 913091-011		:	Date Received: 09/14/2001
Lab File ID: A2231			Date Analyzed: 09/21/2001
Purge Volume: 25.0(ML)			Dilution Factor: 1.0
GC Column: RTX-624	ID:	0.18(MM)	Length: 20.0(M)

	CAS NO.	COMPOUND	CONCENTRATION UNITS: (UG/L)	Q
	======================================	Vinyl Chloride		===== U
1		trans-1,2-Dichloroethene	, 0.62	
1	156-59-2	cis-1,2-Dichloroethene	3.9	
	79-01-6	Trichloroethene	19	
	127-18-4	Tetrachloroethene	0.50	U

1

.

FORM I LCV-1

LOW CONCENTRATION WATER VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS EPA SAMPLE NO.

1

			RU-16
Lab Name: EN CHEM		Contract: AI	LCAS
Lab Code: ENCHEM Case No.:	:	Client No.:	SDG No.: 913001
Lab Sample ID: 913091-011		:	Date Received: 09/14/2001
Lab File ID: A2231			Date Analyzed: 09/21/2001
Purge Volume: 25.0(ML)			Dilution Factor: 1.0
GC Column: RTX-624	ID:	0.18(MM)	Length: 20.0(M)

Number TICs found: 3

	CAS NUMBER	COMPOUND NAME	RT	EST. CONC. (UG/L)	Q
=== === 01	***********	CIS-1,3-DICHLOROPROPENE-D4	7.40	1.9	==== JB
02 12	24-19-6	NONANAL	14.29	0.53	NJ
03 11	L2-31-2	DECANAL	15.53	1.1	ŊĴ
04					
05					
06					
07					
08					
09					
10					
11					
12 13					<u> </u>
$\frac{13}{14}$					
15					
16				· · · · · · · · · · · · · · · · · · ·	
17		· · · · · · · · · · · · · · · · · · ·			
18					
19				· · · · · · · · · · · · · · · · · · ·	
20					
21					
22					
23					
24					
25					_
26	·				
27					
28					
29					
30					

FORM I LCV-TIC

1LCA LOW CONCENTRATION WATER VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

1 -

- ,

	RU-17C
Lab Name: EN CHEM Contr	act: ALCAS
Lab Code: ENCHEM Case No.: Client	No.: SDG No.: 913001
Lab Sample ID: 913091-022	Date Received: 09/14/2001
Lab File ID: A2226	Date Analyzed: 09/20/2001
Purge Volume: 25.0(ML)	Dilution Factor: 1.0
GC Column: RTX-624 ID: 0.18(MM)	Length: 20.0(M)
	CONCENTRATION UNITS:

CAS NO.	COMPOUND	(UG/L)	UNITS:	Q
				=====
	Vinyl Chloride		0.50	U
156-60-5	trans-1,2-Dichloroethene		0.50	U
156-59-2	cis-1,2-Dichloroethene		0.16	J
79-01-6	Trichloroethene		1.7	
127-18-4	Tetrachloroethene		0.50	U

FORM I LCV-1

1LCF LOW CONCENTRATION WATER VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS EPA SAMPLE NO.

1

.

			RU-17C
Lab Name: EN CHEM		Contract: Al	LCAS
Lab Code: ENCHEM Case No.	:	Client No.:	SDG No.: 913001
Lab Sample ID: 913091-022			Date Received: 09/14/2001
Lab File ID: A2226			Date Analyzed: 09/20/2001
Purge Volume: 25.0(ML)			Dilution Factor: 1.0
GC Column: RTX-624	ID:	0.18(MM)	Length: 20.0(M)

Number TICs found: 4

===	CAS NUMBER	COMPOUND NAME	RT	EST. CONC. (UG/L)	Q
01		CIS-1, 3-DICHLOROPROPENE-D4	7.41	1.8	
02	108-88-3	TOLUENE	7.77	1.1	NJ
03	106-42-3	P-XYLENE	9.86	0.56	NJ
04		UNKNOWN	14.29	0.63	J
05					
06					
07					
-08					
_09					
10					
11					
12					
13					
14		· · · · · · · · · · · · · · · · · · ·			
15					
$\frac{16}{17}$					
$\frac{1}{18}$	· ·				
19		· · · · · · · · · · · · · · · · · · ·			
20					
21					
22					
23					
24					
25					
26					
27					
28					
29					
30					

FORM I LCV-TIC

1LCA

LOW CONCENTRATION WATER VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

. .

		RU-18
Lab Name: EN CHEM	Contract: ALCAS	I
Lab Code: ENCHEM Case No.:	Client No.: SDG N	No.: 913001
Lab Sample ID: 913091-003	Date Receive	ed: 09/14/2001
Lab File ID: A2244	Date Analyze	ed: 09/21/2001
Purge Volume: 25.0(ML)	Dilution Fac	ctor: 250.0
GC Column: RTX-624 ID: 0	.18 (MM) Length:	20.0(M)
	CONCENTRATIO	ON TINTTS . I

CAS NO.	COMPOUND	(UG/L)	JN115:	Q
	Vinyl Chloride		130	 U
	trans-1,2-Dichloroethene		, 130	U
156-59-2	cis-1,2-Dichloroethene		350	
	Trichloroethene		3400	
127-18-4	Tetrachloroethene		130	U

.

.

FORM I LCV-1

1LCF LOW CONCENTRATION WATER VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS EPA SAMPLE NO.

RU-18

Lab Name: EN CHEM		Contract: A	LCAS
Lab Code: ENCHEM Case No.	:	Client No.:	SDG No.: 913001
Lab Sample ID: 913091-003		:	Date Received: 09/14/2001
Lab File ID: A2244			Date Analyzed: 09/21/2001
Purge Volume: 25.0(ML)			Dilution Factor: 250.0
GC Column: RTX-624	ID:	0.18(MM)	Length: 20.0(M)

Number TICs found: 1

	CAS NUMBER	COMPOUND NAME	RT	EST. CONC. (UG/L)	Q =====
01		CIS-1, 3-DICHLOROPROPENE-D4	7.40	470	
02	<u> </u>				
03					
04		· · · · · · · · · · · · · · · · · · ·			
05					
06					
07					
08					
09					
10					
11					
12					
13					
14		<u> </u>			
15					
16					
17					
_18				·	
19					
20					
21					
22					
23				<u>-</u>	
24					
25					
_26					
27					
28					<u> </u>
29	· · · · · · · · · · · · · · · · · · ·				
_30				<u> </u>	

FORM I LCV-TIC

1LCA LOW CONCENTRATION WATER VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

1 -

.

— ,

	B-1
Lab Name: EN CHEM C	ontract: ALCAS
Lab Code: ENCHEM Case No.: Cl	ient No.: SDG No.: 913001
Lab Sample ID: 913091-001	Date Received: 09/14/2001
Lab File ID: A2222	Date Analyzed: 09/20/2001
Purge Volume: 25.0(ML)	Dilution Factor: 1.0
GC Column: RTX-624 ID: 0.18(M	M) Length: 20.0(M)
CAS NO. COMPOUND	CONCENTRATION UNITS: (UG/L) Q

CAS NO.	COMPOUND	(UG/L)	Q
======================================	Vinyl Chloride	0.21] ===== J
	trans-1,2-Dichloroethene	0.28	J
156-59-2	cis-1,2-Dichloroethene	1.7	
79-01-6	Trichloroethene	0.67	
127-18-4	Tetrachloroethene	0.50	Ū
		· · · · · · · · · · · · · · · · · · ·	

.

FORM I LCV-1

. `

LOW CONCENTRATION WATER VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS EPA SAMPLE NO.

B-1

Lab Name: EN CHEM		Contract: Al	LCAS
Lab Code: ENCHEM Case No.:		Client No.:	SDG No.: 913001
Lab Sample ID: 913091-001			Date Received: 09/14/2001
Lab File ID: A2222			Date Analyzed: 09/20/2001
Purge Volume: 25.0(ML)			Dilution Factor: 1.0
GC Column: RTX-624	ID:	0.18(MM)	Length: 20.0(M)

Number TICs found: 2

	CAS NUMBER	COMPOUND NAME	RT	EST. CONC. (UG/L)	Q
===				=======================================	=====
01	67-64-1	ACETONE	2.89	0.60	NJ
02		CIS-1,3-DICHLOROPROPENE-D4	7.40	1.9	JB
03		· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	
04		·····			
05	···	·	•		
06					
07	· · · · · · · · · · · · · · · · · · ·				
08		· · · · · · · · · · · · · · · · · · ·			
09			_		
10					
$\frac{11}{12}$					
$\frac{12}{13}$					
$\frac{13}{14}$					
15		· · · · · · · · · · · · · · · · · · ·			
16	· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·	
$\frac{10}{17}$	· · · · · · · · · · · · · · · · · · ·			······································	
18					
19					
20	·····				· · · · · ·
21					
22					· · · ·
23					
24					· · · · · · · · · · · · · · · · · · ·
25		· · · · · · · · · · · · · · · · · · ·			
26				İ	
27				1	<u> </u>
28					
29				<u> </u>	
30			1		

FORM I LCV-TIC

1LCA

LOW CONCENTRATION WATER VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

Lab Name: EN CHEM	Contract: ALCAS	B-2
Lab Code: ENCHEM Case No.:	Client No.:	SDG No.: 913001
Lab Sample ID: 913091-013	Date Re	ceived: 09/14/2001
Lab File ID: A2234	Date An	alyzed: 09/21/2001
Purge Volume: 25.0(ML)	Dilutio	n Factor: 100.0
GC Column: RTX-624 ID	0.18(MM) Lengt	h: 20.0(M)
CAS NO. COMPOUND	CONCENT (UG/L)	RATION UNITS:

COMPOUND	(UG/L)	Q
Vinyl Chloride	50	===== U
trans-1,2-Dichloroethene	9.2	J
	57	
Trichloroethene	1100	
Tetrachloroethene	50	U
	COMPOUND Vinyl Chloride trans-1,2-Dichloroethene cis-1,2-Dichloroethene Trichloroethene Tetrachloroethene	Vinyl Chloride50trans-1,2-Dichloroethene9.2cis-1,2-Dichloroethene57Trichloroethene1100

.

.

1LCF LOW CONCENTRATION WATER VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS EPA SAMPLE NO.

B-2

Lab Name: EN CHEM		Contract: A	
Lab Name: EN CHEM		Concract. A	
Lab Code: ENCHEM Case No.:	:	Client No.:	SDG No.: 913001
Lab Sample ID: 913091-013			Date Received: 09/14/2001
Lab File ID: A2234			Date Analyzed: 09/21/2001
Purge Volume: 25.0(ML)			Dilution Factor: 100.0
GC Column: RTX-624	ID:	0.18(MM)	Length: 20.0(M)

Number TICs found: 1

	CAS NUMBER	COMPOUND NAME	RT	EST. CONC. (UG/L)	Q
=== 01	******************	CIS-1,3-DICHLOROPROPENE-D4	=======================================	====== 190	
02		CIS-1, S-DICHEOROFROFENE-D4	7.40	190	ОВ
03					
04					
05			· · ·		
06					
07					
08	· · · · · · · · · · · · · · · · · · ·			·	
09					
10					
11	· · ·				
12					
13					
14					
15					
16					
17					
18			L	·	
19					
20					
21					
22					
23					
24					
25			ļ		
26				L	
27					
28					
29					
30					

FORM I LCV-TIC

LOW CONCENTRATION WATER VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

	B-2DUP
Lab Name: EN CHEM Contract: ALCAS	
Lab Code: ENCHEM Case No.: Client No.: SDG	No.: 913001
Lab Sample ID: 913091-014 Date Receiv	ved: 09/14/2001
Lab File ID: A2243 Date Analy:	zed: 09/21/2001
Purge Volume: 25.0(ML) Dilution Fa	actor: 200.0
GC Column: RTX-624 ID: 0.18(MM) Length:	20.0(M)
CAS NO. COMPOUND CONCENTRAT: (UG/L)	ION UNITS:

	CAS NO.	COMPOUND	(UG/L)	Q
=		Vinyl Chloride	42	 J
-		trans-1,2-Dichloroethene	/ 100	U
	156-59-2	cis-1,2-Dichloroethene	310	
	79-01-6	Trichloroethene	2800	
	127-18-4	Tetrachloroethene	100	ឋ

FORM I LCV-1

LOW CONCENTRATION WATER VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS EPA SAMPLE NO.

1

			B-2DUP
Lab Name: EN CHEM		Contract:	ALCAS
Lab Code: ENCHEM Case N	No.:	Client No.:	SDG No.: 913001
Lab Sample ID: 913091-01	L4		Date Received: 09/14/2001
Lab File ID: A2243			Date Analyzed: 09/21/2001
Purge Volume: 25.0(N	AL)		Dilution Factor: 200.0
GC Column: RTX-624	ID:	0.18(MM)	Length: 20.0(M)

Number TICs found: 1

	CAS NUMBER	COMPOUND NAME	RT	EST. CONC. (UG/L)	Q
01		CIS-1,3-DICHLOROPROPENE-D4	7.40	380	
02					
03		· · · · · · · · · · · · · · · · · · ·			
04					
05		· · · · · · · · · · · · · · · · · · ·	:	······································	
06					
07					
		·····			
10					
11					
12					
13					
14					
15	<u></u>				
16					
17					
<u>18</u> 19				<u> </u>	
20	<u>.</u>				
21					
22				· · · · · · · · · · · · · · · · · · ·	
23					
24					
25					
26					
27					
28	·····				· ·
29	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·			
30		1	l		L

FORM I LCV-TIC

1LCA

LOW CONCENTRATION WATER VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

		1
		CW-13
Lab Name: EN CHEM	Contract: A	LCAS
Lab Code: ENCHEM Case No.:	Client No.:	SDG No.: 913001
Lab Sample ID: 913091-010		Date Received: 09/14/2001
Lab File ID: A2223		Date Analyzed: 09/20/2001
Purge Volume: 25.0(ML)		Dilution Factor: 1.0
GC Column: RTX-624 ID:	0.18(MM)	Length: 20.0(M)
	· · · · · ·	CONCENTRATION UNITS:

	CAS NO.	COMPOUND	(UG/L)	Q
		Vinyl Chloride	0.50	
1	156-60-5	trans-1,2-Dichloroethene	, 0.50	U
	156-59-2	cis-1,2-Dichloroethene	0.41	J
ļ		Trichloroethene	9.3	
	127-18-4	Tetrachloroethene	0.50	U

• .

FORM I LCV-1

.

LOW CONCENTRATION WATER VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS EPA SAMPLE NO.

			CW-13
Lab Name: EN CHEM		Contract: A	ALCAS
Lab Code: ENCHEM Case No.	:	Client No.:	SDG No.: 913001
Lab Sample ID: 913091-010			Date Received: 09/14/2001
Lab File ID: A2223			Date Analyzed: 09/20/2001
Purge Volume: 25.0(ML)			Dilution Factor: 1.0
GC Column: RTX-624	ID:	0.18(MM)	Length: 20.0(M)

Number TICs found: 1

	CAS NUMBER	COMPOUND NAME	RT	EST. CONC. (UG/L)	Q
01		CIS-1,3-DICHLOROPROPENE-D4	======= 7.40	1.9	===== JB
02					<u> </u>
03					
04					
05		· · · · · · · · · · · · · · · · · · ·			
06				·	
07					
08					
09	······································				
	·····		i		
12					
13					
14					
_15					
16					
17					
18					
19					
20	·····	· · · · · · · · · · · · · · · · · · ·			<u> </u>
22		· · · · · · · · · · · · · · · · · · ·			<u> </u>
23			<u> </u>		<u> </u>
24					
25	·····				
26	······································				
27					
28					
29					
30					

FORM I LCV-TIC

LOW CONCENTRATION WATER VOLATILE ORGANICS ANALYSIS DATA SHEET EPA SAMPLE NO.

		CW-13 DUP
Lab Name: EN CHEM	Contract: A	LCAS
Lab Code: ENCHEM Case No.:	Client No.:	SDG No.: 913001
Lab Sample ID: 913091-015	· · ·	Date Received: 09/14/2001
Lab File ID: A2227		Date Analyzed: 09/20/2001
Purge Volume: 25.0(ML)		Dilution Factor: 1.0
GC Column: RTX-624 ID:	0.18(MM)	Length: 20.0(M)
	· · · · · · · · · · · · · · · · · · ·	CONCENTRATION UNITS:

	CAS NO.	COMPOUND	(UG/L)	ON115:	Q
-		Vinyl Chloride		0.50	===== ປ
-		trans-1,2-Dichloroethene		0.50	U
-		cis-1,2-Dichloroethene		0.42	J
1-	79-01-6	Trichloroethene		9.4	
1	127-18-4	Tetrachloroethene		0.50	U

FORM I LCV-1

.

OLC03.2

,

LOW CONCENTRATION WATER VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS EPA SAMPLE NO.

			,	
				CW-13 DUP
Lab Name: EN CHEM		Contract: A	LCAS	
Lab Code: ENCHEM Case No.	:	Client No.:	SDG N	ío.: 913001
Lab Sample ID: 913091-015			Date Receive	ed: 09/14/2001
Lab File ID: A2227			Date Analyze	d: 09/20/2001
Purge Volume: 25.0(ML)			Dilution Fac	tor: 1.0
GC Column: RTX-624	ID:	0.18(MM)	Length: 2	0.0(M)

Number TICs found: 1

	CAS NUMBER	COMPOUND NAME	RT	EST. CONC. (UG/L)	Q
01	===================	CIS-1,3-DICHLOROPROPENE-D4	7.41	1.9	===== JB
02					
03				· · · · · · · · · · · · · · · · · · ·	
04	· · · ·				
05					
06					
07					
08					
09				····.	
10					
$\frac{11}{12}$				· · · · · · · · · · · · · · · · · · ·	
$\frac{12}{13}$					
$\frac{13}{14}$					
$\frac{11}{15}$					
16					
17					······
18					
19					
20					
21					
22					
23					
24					
25					· · · · · · · · · · · · · · · · · · ·
26					
27					
<u>28</u> 29					
$\frac{29}{30}$					
1_{30}	<u> </u>		L		

FORM I LCV-TIC

LOW CONCENTRATION WATER VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

				STORAGE I	BLANK
Lab Name: EN CHEM		Contract: AL	CAS	I	
Lab Code: ENCHEM Case No.:		Client No.:	SDG 1	No.: 913001	L
Lab Sample ID: 913001-005		:	Date Receive	ed: 09/08/2	2001
Lab File ID: A2249			Date Analyze	ed: 09/21/2	2001
Purge Volume: 25.0(ML)			Dilution Fac	ctor: 1.0	
GC Column: RTX-624 I	CD: C).18(MM)	Length: 2	20.0(M)	
CAS NO. COMPOUND			CONCENTRATIC (UG/L)	ON UNITS:	Q

			=
	Vinyl Chloride	0.50	
	trans-1,2-Dichloroethene	.50	
156-59-2	cis-1,2-Dichloroethene	0.50	
	Trichloroethene	0.50	
127-18-4	Tetrachloroethene	0.50	

FORM I LCV-1

1LCF LOW CONCENTRATION WATER VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS EPA SAMPLE NO.

			I
			STORAGE BLANK
Lab Name: EN CHEM		Contract: ALC	AS
Lab Code: ENCHEM Case No.:	:	Client No.:	SDG No.: 913001
Lab Sample ID: 913001-005		D	ate Received: 09/08/2001
Lab File ID: A2249		. E	ate Analyzed: 09/21/2001
Purge Volume: 25.0(ML)		E	ilution Factor: 1.0
GC Column: RTX-624	ID:	0.18(MM)	Length: 20.0(M)

Number TICs found: 1

===	CAS NUMBER	COMPOUND NAME	RT	EST. CONC. (UG/L)	Q
01		CIS-1, 3-DICHLOROPROPENE-D4	7.39	=======================================	JB
02				<u> </u>	<u> </u>
03				<u> </u>	
04					
05		· · ·			
06					
07					
08					
09					
10					
11					
12					
13					
14					
_15					
16				· · · · · · · · · · · · · · · · · · ·	
_17					
18					
19					
20					
21					
22					
23		· · · · · · · · · · · · · · · · · · ·			
24					
25					
26					
27					
28					
29					
30	1	<u> </u>	l		

FORM I LCV-TIC

1LCA

LOW CONCENTRATION WATER VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

		TRIP BLANK
Lab Name: EN CHEM	Contract: ALCAS	l
Lab Code: ENCHEM Case No.:	Client No.:	SDG No.: 913001
Lab Sample ID: 913001-004	Date	e Received: 09/08/2001
Lab File ID: A2183	Date	e Analyzed: 09/17/2001
Purge Volume: 250(ML)	Dilu	ition Factor: 1.0
GC Column: RTX-624 ID:	0.18(MM) Le	ength: 20.0(M)
	100000	CENTRATION UNITS:

CAS NO.	COMPOUND	(UG/L)	Q
75-01-4	Vinvl Chloride	0,50	===== U
156-60-5	trans-1,2-Dichloroethene	, 0.50	Ū
	cis-1,2-Dichloroethene	0.50	U
	Trichloroethene	0.022	J
127-18-4	Tetrachloroethene	0.50	U

.

FORM I LCV-1

LOW CONCENTRATION WATER VOLATILE ORGANICS ANALYSIS

DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS EPA SAMPLE NO.

1 -

			TRIP BLANK
Lab Name: EN CHEM		Contract: Al	LCAS
Lab Code: ENCHEM Case No.:		Client No.:	SDG No.: 913001
Lab Sample ID: 913001-004		;	Date Received: 09/08/2001
Lab File ID: A2183			Date Analyzed: 09/17/2001
Purge Volume: 25.0(ML)			Dilution Factor: 1.0
GC Column: RTX-624	ID:	0.18(MM)	Length: 20.0(M)

Number TICs found: 1

	CAS NUMBER	COMPOUND NAME	RT	EST. CONC. (UG/L)	Q
=== = 01		CIS-1, 3-DICHLOROPROPENE-D4	7.39	1.8	
02					
03					
04					
05					
06					
07					
08					
09					
10					
11					
12					
13					
14					
15					
16					
17			·····		
18					
19					
20					
21					
22					
23					
24					
25					
26					
27		···			
28					
29			ļ		
30			l	l	

FORM I LCV-TIC

APPENDIX D

Groundwater Sampling Results – City Aquifer

- Phase II Investigation (October, 1999)
 - Field and Analytical Data Summary Table (Table 3-9)
- Phase III Investigation (October, 2000)
 - Analytical Summary Table (Table 3-10)
- Phase IV Investigation (September, 2001)
 - Analytical Summary Table (Table 3-11)
 - Composite Summary of Upper and Lower Zone Well Data (Table 3-12)

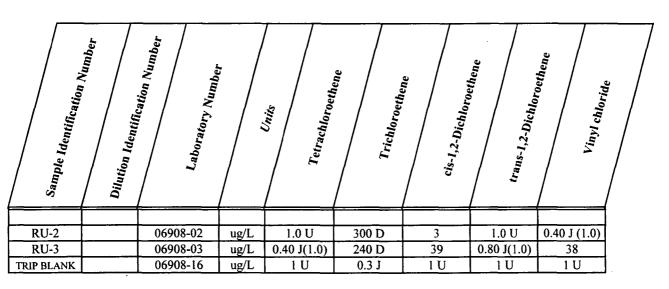
TABLE 3-9 Data Summary for LZ Groundwater Samples Alcas-Cutco Cutlery Corporation Facility Site Olean, New York

Sample Identificati	on Number	B-2	CW-13	CW-15	D2	P1 (Depth Unknown)	P2 (Depth Unknown)
Parameter (units)	SCO						
Volutile Organics							
Benzene (ug/l)		ND	ND	ND	ND	NA	ND
1,1-Dichloroethene (ug/l)		ND	ND	ND	18 J	NA	0.64 J
Chloroethane (ug/l)		ND	ND	ND	ND	NA	ND
cis-1,2-Dichloroethene (ug/l)	70	300	ND	1	1200	NA	ND
Methylene chloride (ug/l)		ND	ND	ND	160 J	NA	ND
Tetrachloroethene (ug/l)		3400	ND	11	180	NA	0.55 J
trans-1,2-Dichloroethene (ug/l)		ND	ND	ND	ND	NA	1.7
Trichloroethene (ug/l)	5	ND	12	ND	17000	NA	21
Vinyl chloride (ug/l)	2	54	ND	ND	100	NA	12
Total Volatiles		3754	12	12	18658	0	35.89
Natural Attenuation Parameters							<u>_</u>
Alkalinity (mg/l)		320	NA	NA	200	NA	160
Ammonia (mg/l)		0.07	NA	NA	0.074	NA	0.059
Chloride (mg/l)		96	NA	NA	140	NA	13
Iron (2+) (mg/l)		ND	NA	NA	ND	<u>NA</u>	ND
Manganese (mg/l)		1.2	NA	NA	0.023	NA	ND
Nitrate (mg/l)		0.26	NA	NA	2.3	NA	4.7
Totlal Kjeldahl Nitrogen (mg/l)		0.3	NA	NA	0.32	NA	0.7
Total Phosphorus (mg/l)		ND	NA	NA	ND	NA	ND
Ortho Phosphate (mg/l)		0.15	NA	NA	0.14	NA	0.15
Sulfate (mg/l)		80	NA	NA	48	NA	60
Sulfide (mg/l)		ND	NA	NA	ND	NA	ND
Dissolved Gases - Methane (mg/l)		35	<u>NA</u>	NA	0.0035	NA	ND
Dissolved Gases - Ethane (mg/l)		ND	NA	NA	0.00055	NA	ND
Dissolved Gases - Ethene (mg/l)		ND	NA	NA	0.00055	NA	ND
Field Parameters							
Water Level (feet below Top of Casing)	<u> </u>	26.92	19.08	17.34	25.62	5.67	4.44
Total Depth (feet below Top of Casing)		36.07	91.75	79.83	33.6	13.13	9.28
Dissolved Oxygen (mg/l)		1.5	5.3	0.4	***	NA	***
Specific Conductivity (ms/cm)		110	68.3	33.8	60 ***	NA	49 ***
pH		6.9	7.46	7.34	7.48 ***	NA	6.66 ***
Temperature (Celsius)		13.3	10.8	10.6	12.5	NA	14.9 ***
Turbidity (NTU)		49	8.2	0.5	660 ***	NA	>999 ***
Oxidation-Reduction Potential (mV)		126	145	-140	156 ***	NA	204 ***
Total Dissolved Solids (g/l)		0.7	0.43	0.22	0.54 ***	NA	0.32 ***
Summer Destrict (Director Constrained a Summer)						· · · · · · · · · · · · · · · · · · ·	
Survey Data (Plant Coordinate System) Northing		65.27	-306.36	-675.31	-90.01	-80.60	-99.18
Easting		-407.54	-36,70	-979.04	-40.13	-35.18	-43.26
Ground Elevation (ft-amsl)		1426.15	1416.90	1416.00	1425.70	1425.90	1425.55
Casing Elevation (ft-amsl)		1426.15	1410.90	1418.00	1425.70	1425.90	1425.55
Casing Dievation (It-ainst)		1427.03	1420.07	1910.29	1420.00	1423.30	I443.33

Notes:

 Shaded cells denote analytical values exceeding the OU2 ROD soil clean-up objectives (SCOs), from

Table 1 of the OU2 ROD, USEPA Region II,


September, 1996.

Qualifiers:

J = Value estimated, below quantitation limit.

- NA = Not analyzed.
- ND = Not Detected.
- *** = Well purged dry.

TABLE 3-10 PHASE III - CITY AQUIFER DATA (LZ) Ground Water Sampling Analytical Result Summary Alcas Facility Site - Olean, New York *October, 2000*

"J" denotes an estimated value

"E" denotes sample result exceeds calibration range

"U" denotes compound less than detection limit

"D" denotes analyte value from diluted sample

"*" denotes duplicate analyses not withing control limit.

TABLE 3-11PHASE IV - CITY AQUIFER DATAGround Water Sampling Analytical Result SummaryAlcas Facility Site - Olean, New YorkSeptember 2001

Sample Identification N	Dilution Identificant	Laboratory Number		Units Tetrachloroeth.	Trichloroether	cis-1,2-Dichlornoss	trans-1,2-Dichloro	Vinyl chlorid.	an
RU-2		913091-020	ug/L	0.5 U	37 E	5.2	0.11 J	0.5 U	
10-2	RU-2DL	913091-029	ug/L	5.0 U	25 D	3.6 DJ	5.0 U	5.0 U	
RU-17C		913091-022	ug/L	0.5 U	1.7	0.16 J	0.5 U	0.5 U	
RU-18		913091-003	ug/L	130 U	3,400	350	130 U	130 U	
B-2		913091-013	ug/L	50 U	1,100	57	9.2 J	50 U	
B-2 DUP		913091-014	ug/L	100 U	2,800	310	100 U	42 J	
CW-13		<u>91</u> 3091-010	ug/L	0.5 U	9.3	0.41 J	0.5 U	0.5 U	
CW-13 DUP		913091-015	ug/L	0.5 U	9.4	0.42 J	0.5 U	0.5 U	
TRIP BLANK		913001-004	ug/L	0.5 U	0.022 J	0.5 U	0.5 U	0.5 U	

"J" denotes an estimated value

"E" denotes sample result exceeds calibration range

"U" denotes compound less than detection limit

"D" denotes analyte value from diluted sample

"*" denotes duplicate analyses not withing control limit.

TABLE 3-12 Ground Water Sampling Analytical Result Summary Phase III & IV Investigations Alcas Facility Site - Olean, New York Upper and Lower Aquifers

Sample Identification A.	Dilution Identific.	Samplin.	Laboratory Number		Units Upper or Lower	Tetrachloroses.	Trichloroethen.	cis-1,2-Dichloroot.	trans-1,2-Dichloroo.	Vinyl chlorin.	
		10/1/2000	0.000.01						1.0.11		
RU-1		10/4/2000		ug/L	Upper	1.0 U	67.0	1.00	<u>1.0 U</u>	1.0 U	ł
RU-1		9/13/2001	913001-001	ug/L	Upper	0.5 U	5.2	0.95	0.5 U	0.5 U	1
<u>RU-2</u>	DUIODI	10/5/2000		ug/L	Lower (?)	1.0 U	270 E	3.00	1.0 U	0.4 J	1
	RU-2DL	10/5/2000		ug/L	Lower (?)	2.0 U	300 D	5.0 D	2.0 U	2.0 D	6
RU-2	DUIODI	9/13/2001	913091-020	ug/L	Lower (?)	0.5 U	37 E	5.2	0.11 J	0.5 U	1
- DU 2	RU-2DL	9/13/2001	913091-029	ug/L	Lower (?)	5.0 U	25 D	3.6 DJ	<u>5.0 U</u>	5.0 U	4
<u>RU-3</u>	DUADA	10/4/2000		ug/L	Lower (?)	0.4 J	210 E	39	0.8 J	38	4
	RU-3DL	10/4/2000		ug/L	Lower (?)	2 U	240 D	47 D	1 DJ	32 D	1
RU-4	DVI (DV	10/4/2000		ug/L	Upper	500 U	190000 E	4600	110 J	1100	1
	RU-4DL	10/4/2000		ug/L	Upper	2500 U	130000 D	4300 D	2500 U	2500 U	
RU-4		9/13/2001	913091-007	ug/L	Upper	10,000 U	310,000	9,700 J	10,000 U	10,000 U	1
RU-5		10/3/2000		ug/L	Upper	19 J	56000 E	170	50 U	33 J	
	RU-5DL	10/3/2000		ug/L	Upper	500 U	54000 D	260 DJ	500 U	500 U	1
RU-5		9/13/2001	913091-008	ug/L	Upper	1,000 U	24,000	150 J	1,000 U	1,000 U	
RU-6		10/4/2000		ug/L	Upper	52	58000 E	420	12 J	14 J	
	RU-6DL	10/4/2000		ug/L	Upper	500 U	67,000 D	570 D	500 U	500 U	
RU-6		9/13/2001	913001-002	ug/L	Upper	500 U	16,000	230 J	500 U	500 U	4
RU-7		10/4/2000		ug/L	Upper	1.0 U	3	1.0 U	1.0 U	1.0 U	1
<u>RU-8</u>		10/3/2000		ug/L	Upper	2 U	480 E	39	2 U	10	4
	RU-8DL	10/3/2000		ug/L	_Upper	<u>4 U</u>	360 D	30 D	_4 U	7 D	1
RU-8		9/13/2001	913001-003	ug/L	Upper	10 U	300	24	10 U	10 U	1
RU-9		10/3/2000		ug/L	Upper	1.0 U	4	1.0 U	1.0 U	1.0 U	4
RU-9		9/13/2001	913091-012	ug/L	Upper	0.5 U	5.9	2.8	0.094 J	0.5 U	
RU-10		10/3/2000		ug/L	Upper	20 U	2,800	1,000	17.0 J(20)	130	ļ
RU-10		9/13/2001	913091-005	ug/L	Upper	50 U	2,000	950	15 J	79	ł
RU-11	———	10/3/2000		ug/Ľ	Upper	1.0 U	0.40 J(1.0)	1.0 U	1.0 U	1.0 U	4
RU-11		9/13/2001	913091-009	ug/L	Upper	0.5 U	0.82	0.5 U	0.5 U	0.5 U	ł
RU-12	<u> </u>	10/3/2000	· · · · · · · · · · · · · · · · · · ·	ug/L	Upper	1.0 U	3	10	0.50 J(1.0)	6	ļ
RU-12		9/13/2001	913091-006	ug/L	Upper	0.5 U	3.8	9.1	0.49 J	4.5	4
RU-13		9/13/2001	913091-004	ug/L	Upper	0.5 U	0.61	0.5 U	0.5 U	0.5 U	•
RU-14		9/13/2001	913091-002	ug/L_	Upper	25 U	560	130	25 U	25 U	4
RU-15		9/13/2001		ug/L	Upper	0.5 U	5.7	7.7	0.28 J	1.6	{
RU-16		9/13/2001		ug/L	Upper	0.5 U	19	3.9	0.62	0.5 U	4
RU-17C		9/13/2001	913091-022	ug/L	Lower	0.5 U	1.7	0.16 J	0.5 U	0.5 U	ł
RU-18		9/13/2001		ug/L	Lower	130 U	3,400	350	130 U	130 U	1
B-1		9/13/2001		ug/L	Upper	0.5 U	0.67	1.7	0.28 J	0.21 J	4
B-2		9/13/2001		ug/L	Lower	50 U	1,100	57	9.2 J	50 U	ł
B-2 DUP	<u> </u>	9/13/2001		ug/L	Lower	100 U	2,800	310	100 U	42 J	-
CW-13		9/13/2001		ug/L	Lower	0.5 U	9.3	0.41 J	0.5 U	0.5 U	1
CW-13 DUP		9/13/2001		ug/L	Lower	0.5 U	9.4	0.42 J	0.5 U	0.5 U	4
TRIP BLANK	Ļ	10/5/2000		ug/L	NA	10	0.3 J	10	<u>1U</u>	<u>1U</u>	-
TRIP BLANK	L	9/13/2001	1 913001-004	ug/L	NA	0.5 U	0.022 J	0.5 U	0.5 U	0.5 U	1

"J" denotes an estimated value

"E" denotes sample result exceeds calibration range

"U" denotes compound less than detection limit

"D" denotes analyte value from diluted sample "*" denotes duplicate analyses not withing control limit.

APPENDIX E

Soil-Gas Sampling Results

- Tabulated Summaries of GORE-SORBER[®] Screening Survey Data (Tables 3-13 & 3-14)
 GORE-SORBER[®] Screening Survey Plots for PERC, TCE, and cis- & trans-1,2-DCE

TABLE 3-13 GORE SORBER SCREENING SURVEY ANALYTICAL RESULTS IT CORPORATION, MONROEVILLE, PA GORE CHLORINATED VOC (VCA10) ALCAS CUTLERY, OLEAN, NY SITE BET - PRODUCTION ORDER #10228929

S	ample Name	320221	320222	320223	320224	320225	320226	320227	320228	320229	320230
S	oil Gas Point	SG65	SG66	SG67	SG68	SG69	SG70	SG71	SG72	SG77	SG76
Parameter	MDL (ug)										
Chlorobenzene	0.02	nd									
1,2-Dichloroethene (total)		0.03	nd	nd	1.91	nd	32.62	0.43	7.09	62.24	13.33
trans-1,2-Dichloroethene	0.03	nd	nd	nd	0.33	nd	1.65	0.08	0.95	2.62	1.13
cis-1,2-Dichloroethene	0.02	0.03	nd	nd	1.57	nd	30.97	0.35	6.14	59.62	12.20
1,1-Dichloroethane	0.04	nd									
1,1,1-Trichloroethane	0.04	nd	0.09	nd	nd						
1,2-Dichloroethane	0.02	nd									
Trichloroethene	0.02	0.11	0.06	nd	8.67	0.39	14.80	5.34	520.95	882.85	360.01
Tetrachloroethene	0.03	nd	nd	nd	nd	nd	0.17	nd	51.80	43.45	0.14
1,4-Dichlorobenzene	0.02	nd									
Vinyl chloride	0.19	nd	_nd								
1,1-Dichloroethene	0.04	nd	nd	nd	nd	nd	0.20	nd	nd	nd	nd
Chloroform	0.03	nd	0.12	0.08	0.11						
Carbon tetrachloride	0.04	nd									
1,1,2-Trichloroethane	0.03	nd	0.72	nd							
1,1,1,2-Tetrachloroethane	0.04	nd									
1,1,2,2-Tetrachloroethane	0.02	bdl	nd								
1,3-Dichlorobenzene	0.03	nd									
1,2-Dichlorobenzene	0.03	nd	0.05	nd	nd						

TABLE 3-13 GORE SORBER SCREENING SURVEY ANALYTICAL RESULTS IT CORPORATION, MONROEVILLE, PA GORE CHLORINATED VOC (VCA10) ALCAS CUTLERY, OLEAN, NY SITE BET - PRODUCTION ORDER #10228929

S	ample Name	320231	320232	320233	320234	320235	320236	320237	320239	320240	320241
Se	oil Gas Point	SG75	SG80	SG74	SG79	SG81	SG85	SG84	SG89	SG88	SG87
Parameter	MDL (ug)										
Chlorobenzene	0.02	nd									
1,2-Dichloroethene (total)		21.77	2.23	297.59	9.43	23.59	2.44	35.71	1.96	2.15	2.99
trans-1,2-Dichloroethene	0.03	0.27	0.21	11.40	1.18	0.82	0.17	0.59	0.10	0.28	0.26
cis-1,2-Dichloroethene	0.02	21.50	2.02	286.20	8.25	22.77	2.27	35.12	1.86	1.86	2.73
1,1-Dichloroethane	0.04	nd	nd	nd	nd	nd	nd	0.20	nd	nd	nd
1,1,1-Trichloroethane	0.04	0.86	nd	1.22	nd	nd	nd	0.49	nd	nd	nd
1,2-Dichloroethane	0.02	nd									
Trichloroethene	0.02	911.95	9.56	797.35	5.08	475.18	121.09	146.94	42.15	1.53	18.19
Tetrachloroethene	0.03	101.60	nd	96.42	nd	1.70	0.09	2.25	nd	nd	13.92
1,4-Dichlorobenzene	0.02	nd									
Vinyl chloride	0.19	nd	nd	1.94	nd						
1,1-Dichloroethene	0.04	0.13	nd	0.41	nd	nd	nd	0.25	nd	nd	nd
Chloroform	0.03	0.13	nd	nd	nd	0.11	nd	0.10	nd	nd	nd
Carbon tetrachloride	0.04	nd									
1,1,2-Trichloroethane	0.03	2.50	nd	0.94	nd	0.05	nd	nd	nd	nd	nd
1,1,1,2-Tetrachloroethane	0.04	nd									
1,1,2,2-Tetrachloroethane	0.02	nd									
1,3-Dichlorobenzene	0.03	nd									
1,2-Dichlorobenzene	0.03	nd									

TABLE 3-13 GORE SORBER SCREENING SURVEY ANALYTICAL RESULTS IT CORPORATION, MONROEVILLE, PA GORE CHLORINATED VOC (VCA10) ALCAS CUTLERY, OLEAN, NY SITE BET - PRODUCTION ORDER #10228929

	Sample Name	320242	320243	320244	320245	320246	320247	320248	320249	320250	320251
	Soil Gas Point	SG93	SG92	SG91	SG96	SG95	SG100	SG99	SG104	SG103	SG73
Parameter	MDL (ug)										
Chlorobenzene	0.02	nd									
1,2-Dichloroethene (total)		2.80	1.65	2.50	108.62	nd	0.09	nd	2.91	nd	13.90
trans-1,2-Dichloroethene	0.03	0.80	0.06	0.22	1.83	nd	nd	nd	0.91	nd	1.00
cis-1,2-Dichloroethene	0.02	1.99	1.60	2.28	106.79	nd	0.09	nd	2.00	nd	12.89
1,1-Dichloroethane	0.04	nd									
1,1,1-Trichloroethane	0.04	nd									
1,2-Dichloroethane	0.02	nd									
Trichloroethene	0.02	0.29	4.38	5.20	62.85	62.59	0.07	0.60	4.35	0.23	88.21
Tetrachloroethene	0.03	nd	nd	nd	10.50	0.25	nd	0.15	nd	nd	0.95
1,4-Dichlorobenzene	0.02	nd	nd	0.10	nd						
Vinyl chloride	0.19	nd	nd	nd	0.19	nd	nd	nd	nd	nd	nd
1,1-Dichloroethene	0.04	nd	nd	nd	0.19	nd	nd	nd	nd	nd	nd
Chloroform	0.03	nd	nd	nd	nd	nd	0.97	nd	nd	nd	0.07
Carbon tetrachloride	0.04	nd									
1,1,2-Trichloroethane	0.03	nd									
1,1,1,2-Tetrachloroethane	0.04	nd									
1,1,2,2-Tetrachloroethane	0.02	bdl	nd								
1,3-Dichlorobenzene	0.03	nd									
1,2-Dichlorobenzene	0.03	nd									

TABLE 3-13 GORE SORBER SCREENING SURVEY ANALYTICAL RESULTS IT CORPORATION, MONROEVILLE, PA GORE CHLORINATED VOC (VCA10) ALCAS CUTLERY, OLEAN, NY SITE BET - PRODUCTION ORDER #10228929

Sa	mple Name	320252	320253	320254	320255	320256	320257	320258	320259	320260	320261
So	il Gas Point	SG78	SG86	SG82	SG102	SG106	SG105	SG101	SG90	SG94	SG98
Parameter	MDL (ug)										
Chlorobenzene	0.02	nd									
1,2-Dichloroethene (total)		23.02	nd	nd	nd	nd	nd	23.85	0.83	0.08	7.38
trans-1,2-Dichloroethene	0.03	1.16	nd	nd	nd	nd	nd	5.32	0.06	nd	0.61
cis-1,2-Dichloroethene	0.02	21.86	nd	nd	nd	nd	nd	18.53	0.77	0.08	6.77
1,1-Dichloroethane	0.04	nd									
1,1,1-Trichloroethane	0.04	nd									
1,2-Dichloroethane	0.02	nd									
Trichloroethene	0.02	201.61	0.17	0.61	0.13	0.08	7.34	130.66	0.19	nd	6.21
Tetrachloroethene	0.03	1.25	nd	nd	nd	nd	0.62	58.25	nd	nd	nd
1,4-Dichlorobenzene	0.02	nd									
Vinyl chloride	0.19	nd									
1,1-Dichloroethene	0.04	nd									
Chloroform	0.03	0.14	nd	0.13	nd	nd	0.11	0.12	nd	nd	nd
Carbon tetrachloride	0.04	nd									
1,1,2-Trichloroethane	0.03	nd									
1,1,1,2-Tetrachloroethane	0.04	nd									
1,1,2,2-Tetrachloroethane	0.02	nd									
1,3-Dichlorobenzene	0.03	nd									
1,2-Dichlorobenzene	0.03	nd									

TABLE 3-13 GORE SORBER SCREENING SURVEY ANALYTICAL RESULTS IT CORPORATION, MONROEVILLE, PA GORE CHLORINATED VOC (VCA10) ALCAS CUTLERY, OLEAN, NY SITE BET - PRODUCTION ORDER #10228929

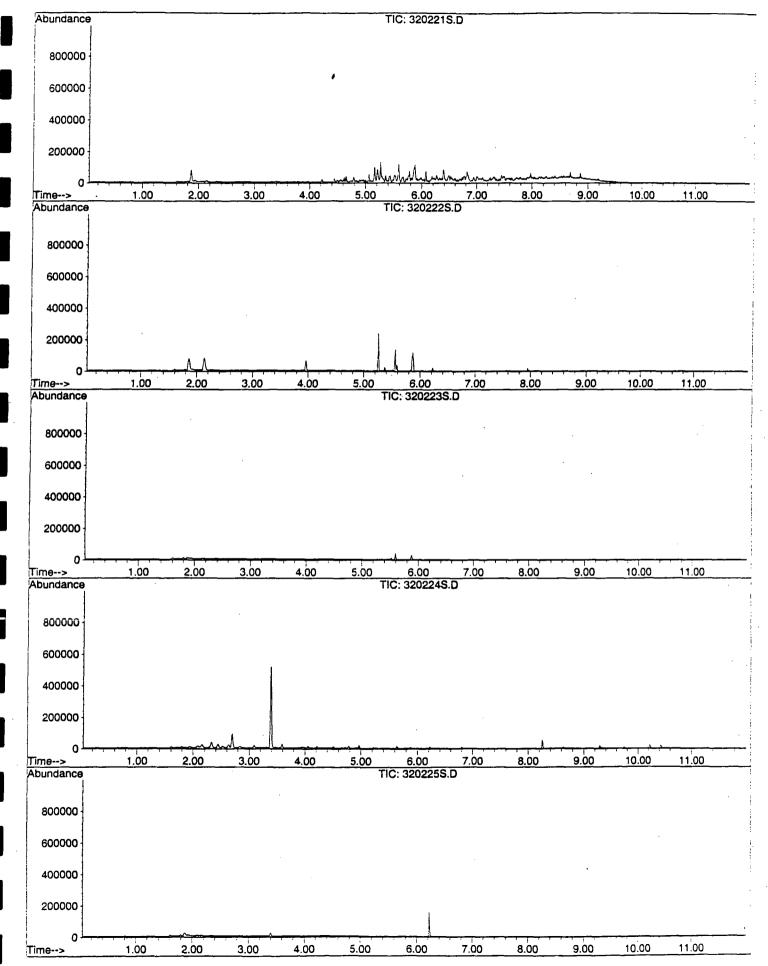
Sa	ample Name	320262	320263	320264	320265	320266	320267	320268	Method	Method	Maximum
So	il Gas Point	SG97	SG107	SG108		Trip I	Blanks		Blank	Blank	Detection
Parameter	MDL (ug)										
Chlorobenzene	0.02	nd	0.00								
1,2-Dichloroethene (total)		1.55	nd	0.12	nd	nd	nd	nd	nd	nd	297.59
trans-1,2-Dichloroethene	0.03	0.24	nd	nd	nd nd	nd	nd	nd	nd	nd	11.40
cis-1,2-Dichloroethene	0.02	1.30	nd	0.12	nd	nd	nd	nd	nd	nd	286.20
1,1-Dichloroethane	0.04	nd	0.20								
1,1,1-Trichloroethane	0.04	nd	1.22								
1,2-Dichloroethane	0.02	nd	0.00								
Trichloroethene	0.02	13.67	0.23	1.96	0.41	nd	nd	nd	nd	nd	911.95
Tetrachloroethene	0.03	1.53	nd	101.60							
1,4-Dichlorobenzene	0.02	nd	0.10								
Vinyl chloride	0.19	nd	1.94								
1,1-Dichloroethene	0.04	nd	0.41								
Chloroform	0.03	nd	0.97								
Carbon tetrachloride	0.04	nd	0.00								
1,1,2-Trichloroethane	0.03	nd	2.50								
1,1,1,2-Tetrachloroethane	0.04	nd	0.00								
1,1,2,2-Tetrachloroethane	0.02	nd	0.01								
1,3-Dichlorobenzene	0.03	nd	0.00								
1,2-Dichlorobenzene	0.03	nd	0.05								

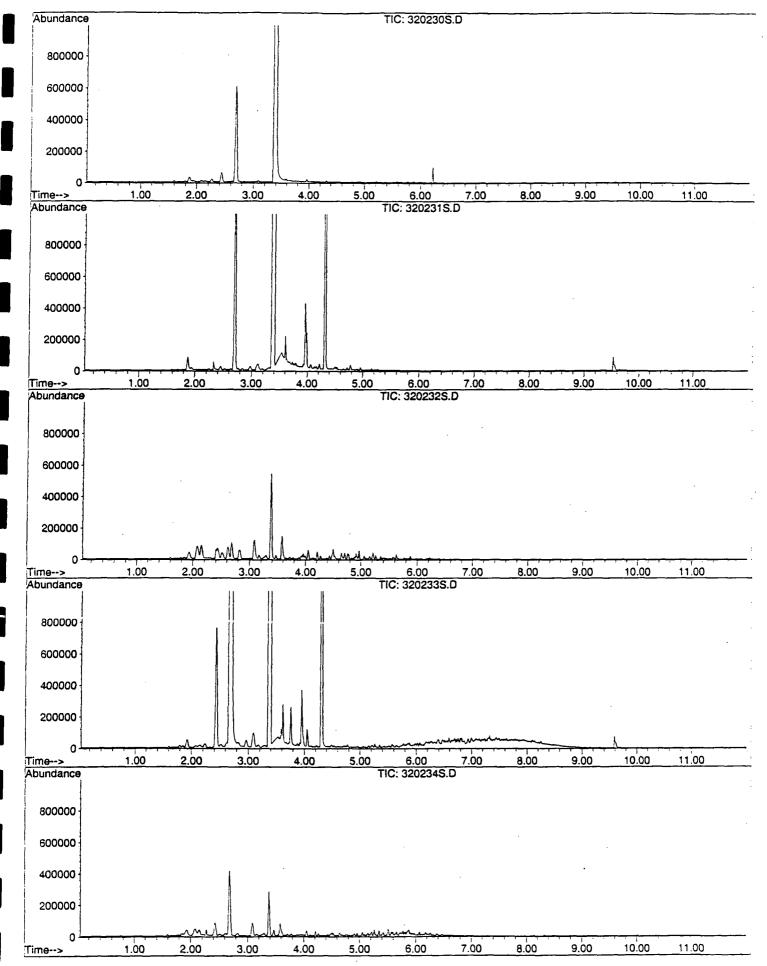
TABLE 3-13 GORE SORBER SCREENING SURVEY ANALYTICAL RESULTS IT CORPORATION, MONROEVILLE, PA GORE CHLORINATED VOC (VCA10) ALCAS CUTLERY, OLEAN, NY SITE BET - PRODUCTION ORDER #10228929

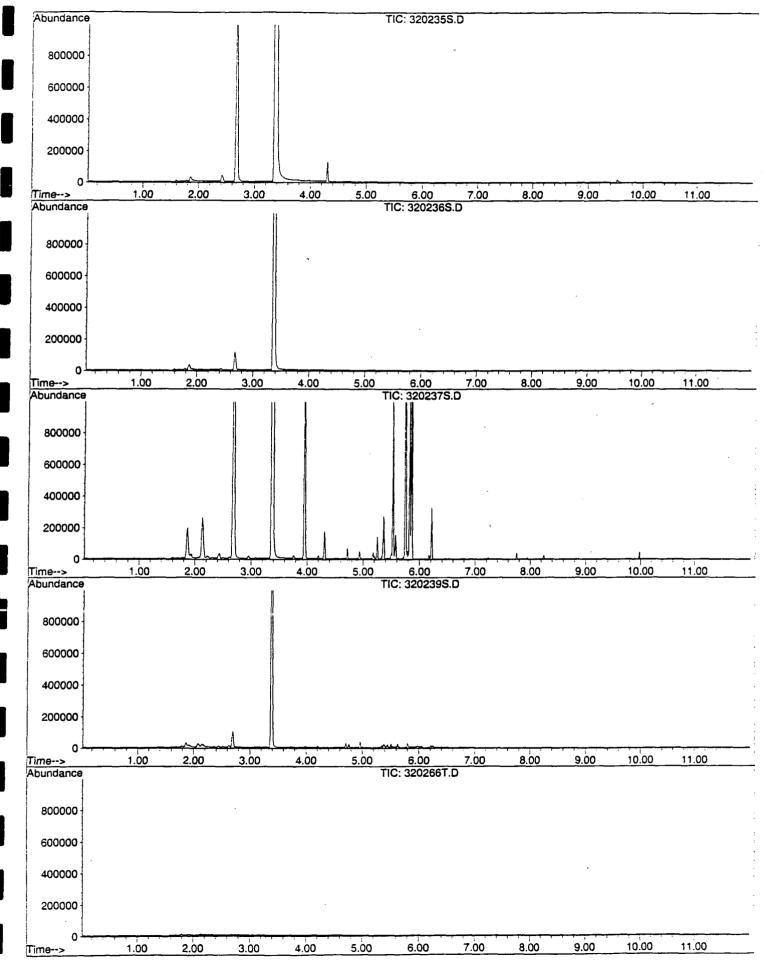
Ši Si	Standard	Maan		
Soil Gas Point		Deviation	Mean	
Parameter	MDL (ug)			
Chlorobenzene	0.02	0.00	0.00	
1,2-Dichloroethene (total)		55.74	22.80	
trans-1,2-Dichloroethene	0.03	1.91	0.80	
cis-1,2-Dichloroethene	0.02	46.51	15.64	
1,1-Dichloroethane	0.04	0.03	0.00	
1,1,1-Trichloroethane	0.04	0.23	0.06	
1,2-Dichloroethane	0.02	0.00	0.00	
Trichloroethene	0.02	240.27	114.28	
Tetrachloroethene	0.03	24.13	8.95	
1,4-Dichlorobenzene	0.02	0.02	0.00	
Vinyl chloride	0.19	0.30	0.05	
1,1-Dichloroethene	0.04	0.08	0.03	
Chloroform	0.03	0.15	0.05	
Carbon tetrachloride	0.04	0.00	0.00	
1,1,2-Trichloroethane	0.03	0.42	0.10	
1,1,1,2-Tetrachloroethane	0.04	0.00	0.00	
1,1,2,2-Tetrachloroethane	0.02	0.00	0.00	
1,3-Dichlorobenzene	0.03	0.00	0.00	
1,2-Dichlorobenzene	0.03	0.01	0.00	

11-8-99 No mdl is available for summed combinations of individual analytes. In summed columns (eg., BTEX), the reported values should be considered ESTIMATED if any of the individual compounds were reported as bdl.

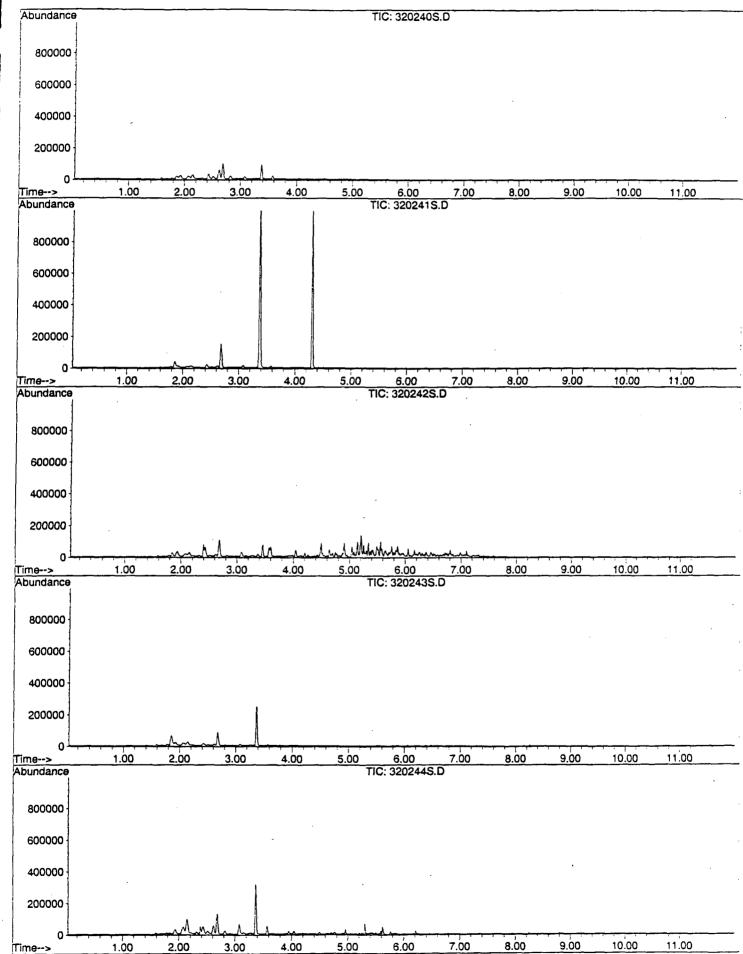
TABLE 3-14 GORE SORBER SCREENING SURVEY ANALYTICAL RESULTS IT CORPORATION, MONROEVILLE, PA GORE CHLORINATED VOC (VCA10) ALCAS CUTLERY, OLEAN, NY SITE BET - PRODUCTION ORDER #10228929

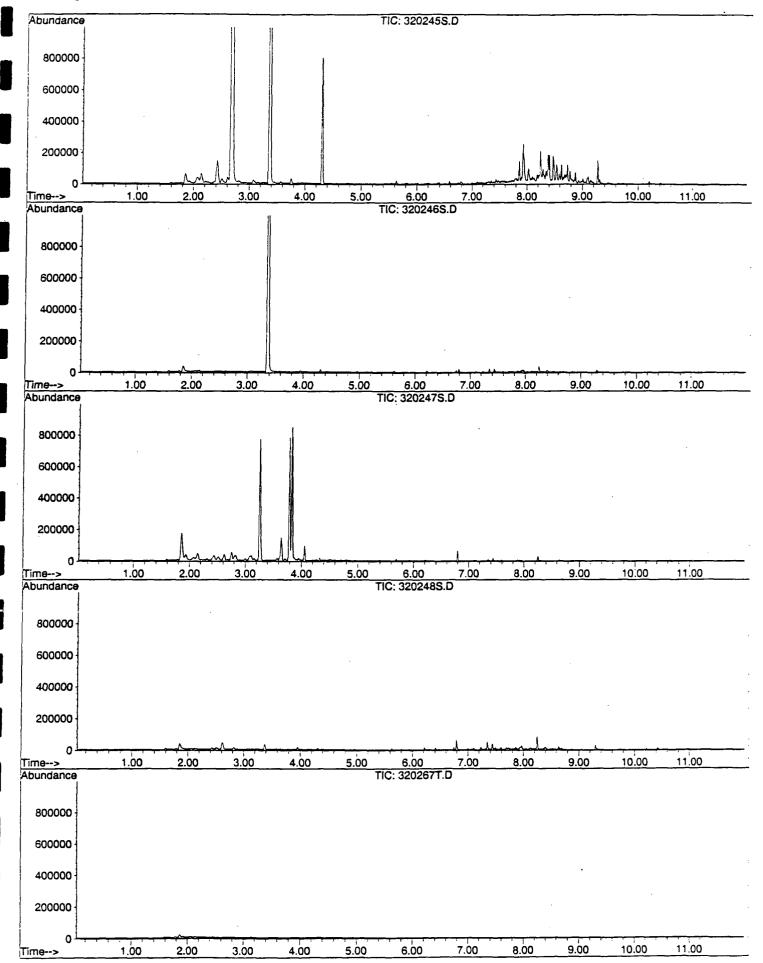

Soil Gas Point/Boring			SG-70/B-20	SG-77/B-27		SG-74/B-23		
Sample Number	320224	B19-5.7-6.0*SO	320226	B20-3.6-4.0*SO	320229	B27-4.0-4.4*SO	320233	B23-3.7-4.0*SO
Parameter	(ug)	(ug/kg)	(ug)	(ug/kg)	(ug)	(ug/kg)	(ug)	(ug/kg)
Chlorobenzene	nd	6.1 U	nd	7.4 U	nd	250 U	nd	6.1 U
1,2-Dichloroethene (total	1.91	6.1 U	32.62	5.5 J	62.24	270	297.59	240 UD (2100 E)
trans-1,2-Dichloroethene	0.33		1.65		2.62		11.40	
cis-1,2-Dichloroethene	1.57		30.97		59.62		286.20	
1,1-Dichloroethane	nd	6.1 U	nd	7.4 U	nd	250 U	nd	6.1 U
1,1,1-Trichloroethane	nd	6.1 U	nd	7.4 U	nd	250 U	1.22	6.1 U
1,2-Dichloroethane	nd	6.1 U	nd	7.4 U	nd	250 U	nd	6.1 U
Trichloroethene	8.67	16	14.80	7.9	882.85	1300	797.35	240 UD (530 E)
Tetrachloroethene	nd	6.1 U	0.17	7.4 U	43.45	250 U	96.42	6.1 U
1,4-Dichlorobenzene	nd		nd		nd		nd	
Vinyl chloride	nd	12 U	nd	15 U	nd	500 U	1.94	480 UD (540 E)
1,1-Dichloroethene	nd	6.1 U	0.20	7.4 U	nd	250 U	0.41	5.7 J
Chloroform	nd	6.1 U	nd	7.4 U	0.08	250 U	nd	6.1 U
Carbon tetrachloride	nd	6.1 U	nd	7.4 U	nd	250 U	nd	6.1 U
1,1,2-Trichloroethane	nd	6.1 U	nd	7.4 U	0.72	250 U	0.94	6.1 U
1,1,1,2-Tetrachloroethane	nd		nd		nd		nd	
1,1,2,2-Tetrachloroethane	nd	6.1 U	nd	7.4 U	nd	250 U	nd	6.1 U
1,3-Dichlorobenzene	nd		nd		nd		nd	
1,2-Dichlorobenzene	nd		nd		nd		nd	

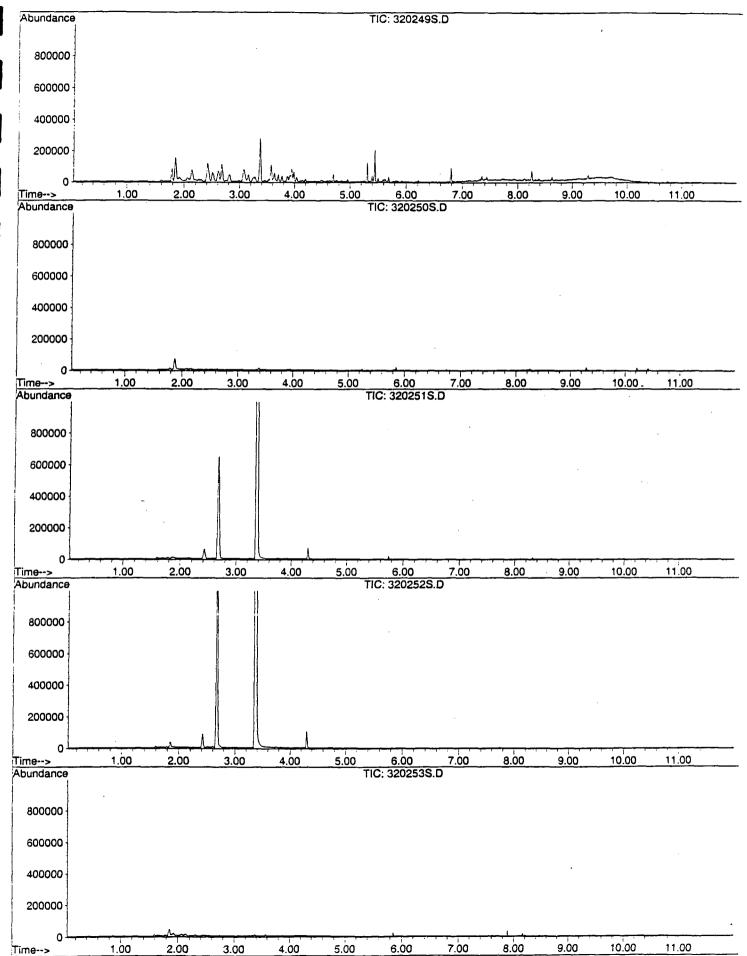

11-8-99 No mdl is available for summed combinations of individual analytes. In summed columns (eg., BTEX), the reported values should be considered ESTIMATED if any of the individual compounds were reported as bdl.


TABLE 3-14 GORE SORBER SCREENING SURVEY ANALYTICAL RESULTS IT CORPORATION, MONROEVILLE, PA GORE CHLORINATED VOC (VCA10) ALCAS CUTLERY, OLEAN, NY SITE BET - PRODUCTION ORDER #10228929

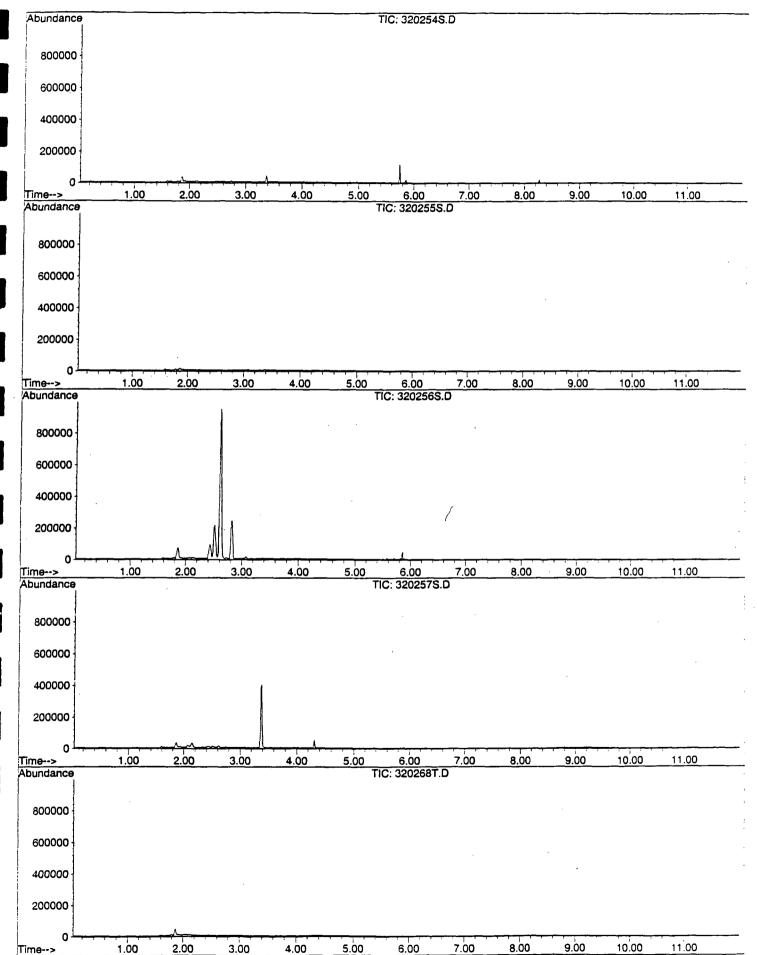
S	G-79/B-24	S	G-85/B-28	SG-84/B-25		SG-89/B-26		SG-88/B-21	
320234	B24-3.7-4.0*SO	320236	B28-4.0-4.4*SO	320237	B25-3.7-4.0	320239	B26-3.7-4.0	320240	B21-3.7-4.0*SO
(ug)	(ug/kg)	(ug)	(ug/kg)	(ug)	(ug/kg)	(ug)	(ug/kg)	(ug)	(ug/kg)
nd	5.6 U	nd	6.2 U	nd	7 U	nd	6.8 U	nd	8 .7 U
9.43	8.1	2.44	12	35.71	3.5 J	1.96	6.8 U	2.15	8.7 U
1.18		0.17		0.59		0.10		0.28	
8.25		2.27		35.12		1.86		1.86	
nd	5.6 U	nd	6.2 U	0.20	7 U	nd	6.8 U	nd	8.7 U
nd	5.6 U	nd	6.2 U	0.49	7 U	nd	6.8 U	nd	8.7 U
nd	5.6 U	nd	6.2 U	nd	7 U	nd	6.8 U	nd	8.7 U
5.08	9.8	121.09	84	146.94	29	42.15	6.2 J	1.53	8 .7 U
nd	5.6 U	0.09	6.2 U	2.25	7 U	nd	6.8 U	nd	8 .7 U
nd		nd		nd		nd		nd	
nd	29	nd	12 U	nd	• 14 U	nd	14 U	nd	17 U
nd	5.6 U	nd	6.2 U	0.25	7 U	nd	6.8 U	nd	8 .7 U
nd	5.6 U	nd	6.2 U	0.10	7 U	nd	6.8 U	nd	8.7 U
nd	5.6 U	nd	6.2 U	nd	7 U	nd	6.8 U	nd	8.7 U
nd	5.6 U	nd	6.2 U	nd	7 U	nd	6.8 U	nd	8.7 U
nd		nd		nd		nd		nd	
nd	5.6 U	nd	6.2 U	nd	7 U	nd	6.8 U	nd	8.7 U
nd		nd		nd		nd		nd	
nd		nd		nd		nd		nd	

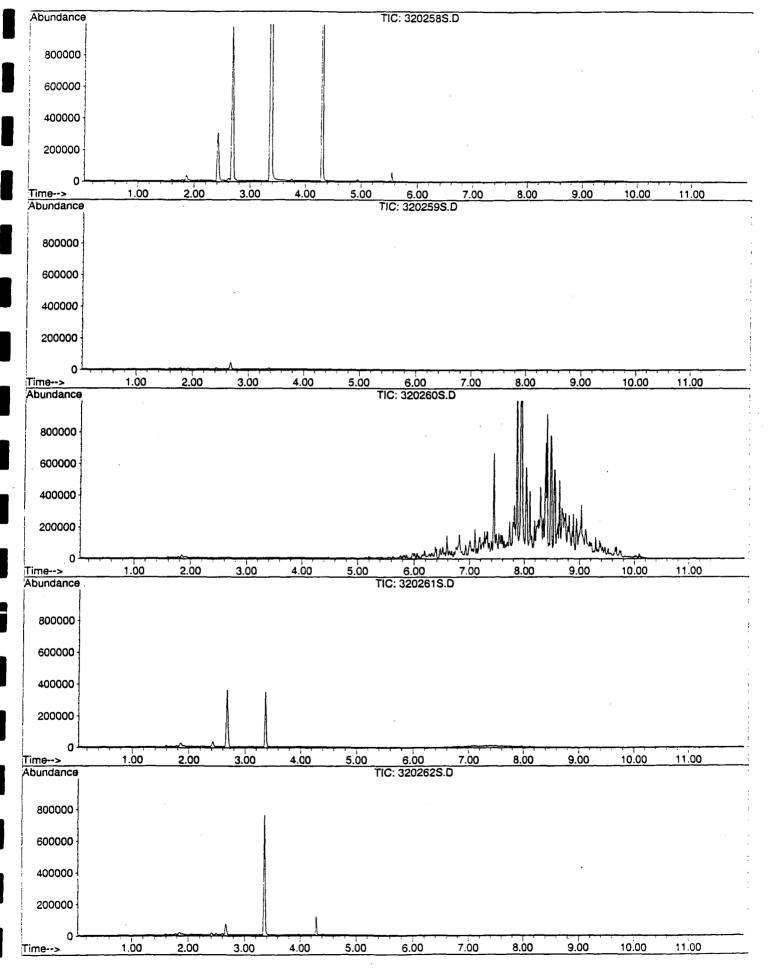

11-8-99 No mdl is available for summed combinations of individual analytes. In summed columns (eg., BTEX), the reported values should be considered ESTIMATED if any of the individual compounds were reported as bdl.



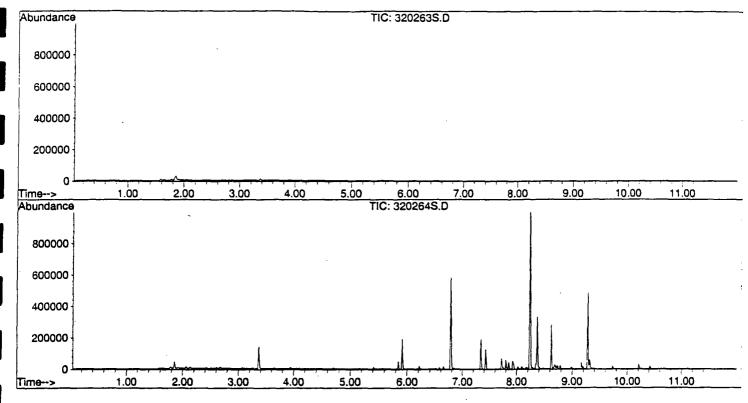


TIC - SITE BET - PRODUCTION ORDER #10228929 In Sequence Order

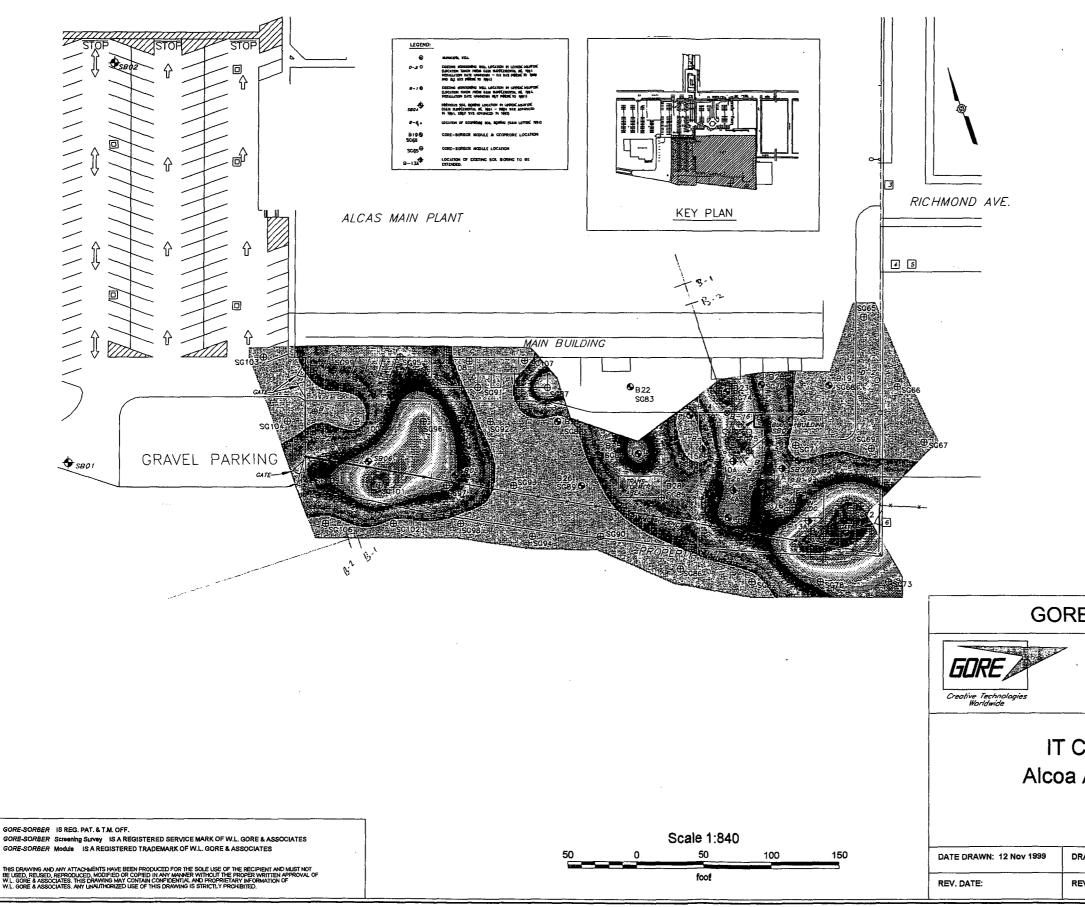




TIC - SITE BET - PRODUCTION ORDER #10228929 In Sequence Order



TIC - SITE BET - PRODUCTION ORDER #10228929 In Sequence Order



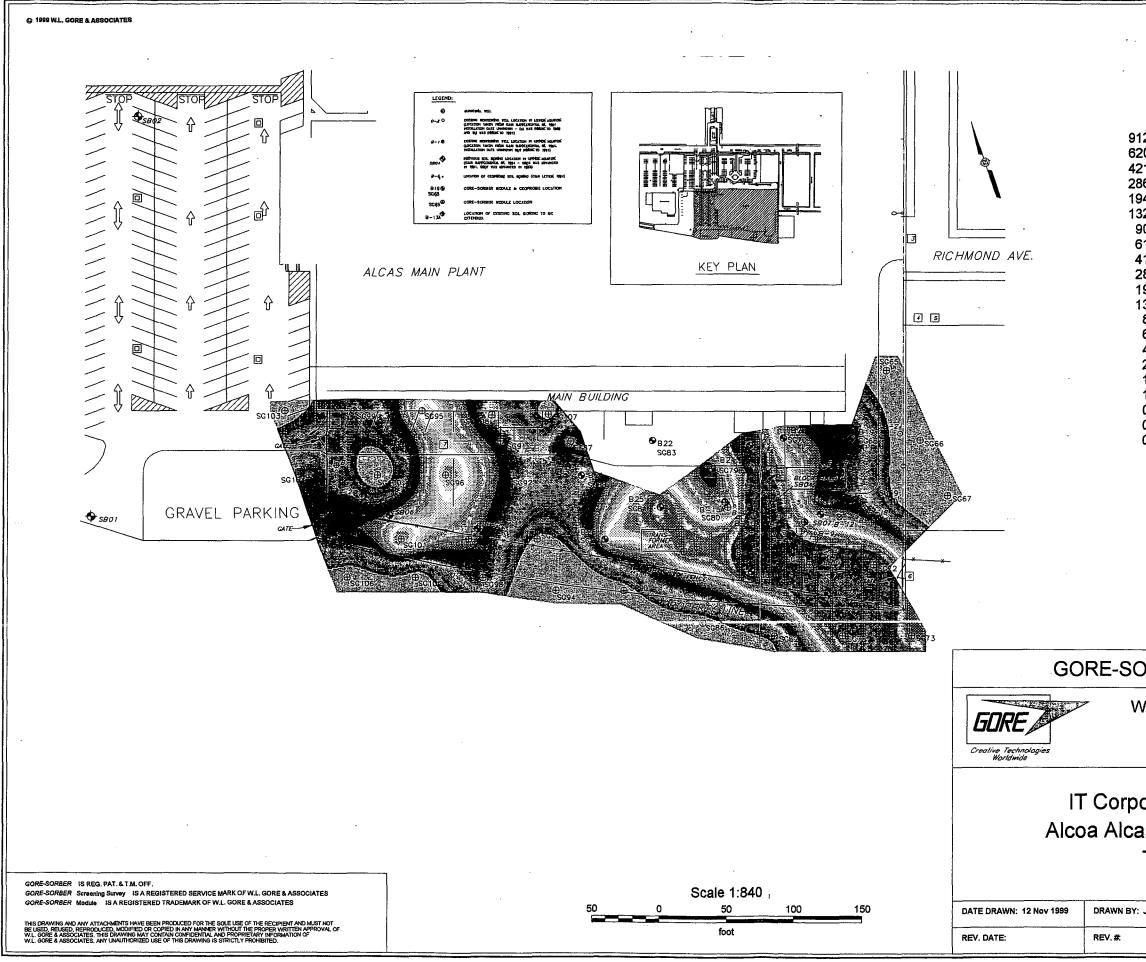
.

. .

•

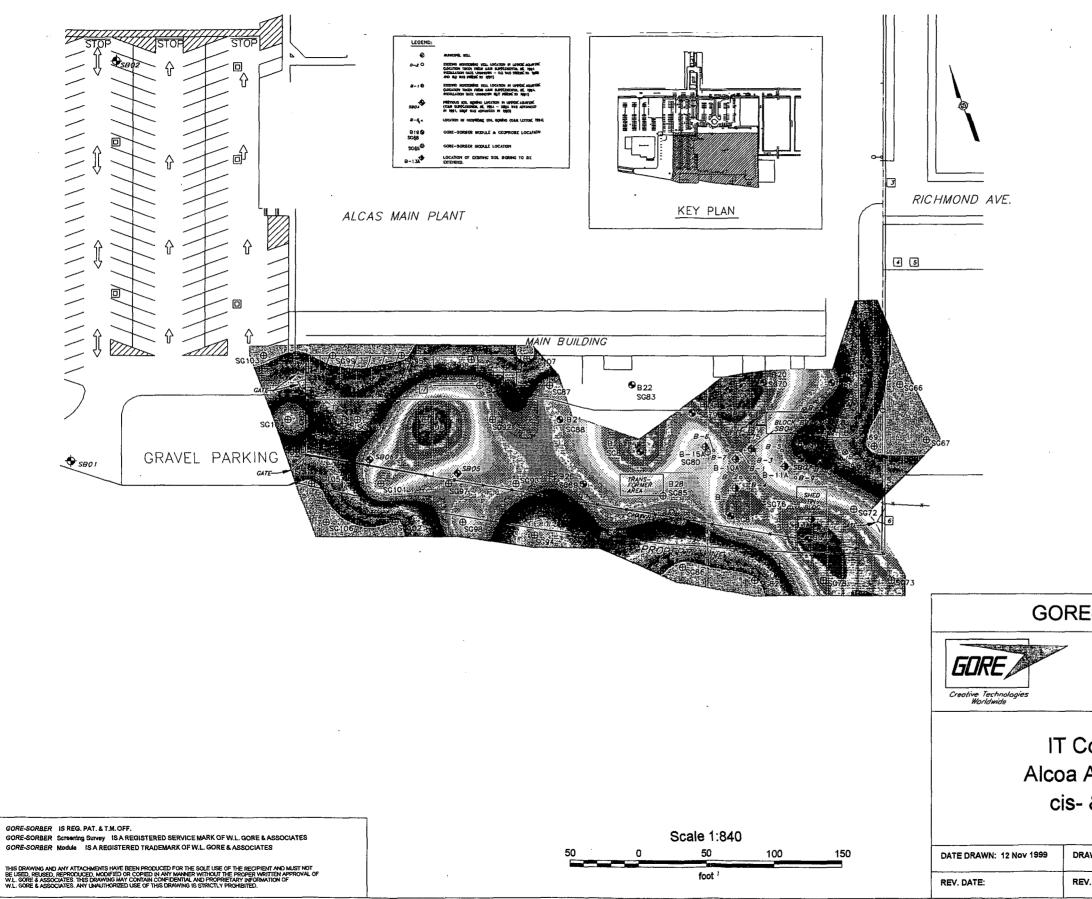
.

101.625	
67.686	
45.082	
30.026	2
19.999	
13.320	
8.872	
5.909	16.9 8
3.936	
2.621	*****
1.746	388 X
1.163	
0.774	
0.516	a present
0.344	
0.229	
0.152	
0.102	
0.068	
0.045	
0.030	22242277
P	CE
	[µg]

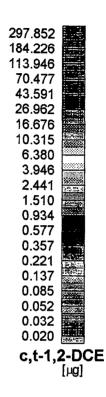

GORE-SORBER®Screening Survey

W.L. GORE & ASSOCIATES, INC.

100 CHESAPEAKE BOULEVARD ELKTON, MD, USA 21921 USA (410) 392-7600


IT Corporation, Monroeville, PA Alcoa Alcas/Cutco, Olean, New York Tetrachloroethene

DRAWN BY: JH	ORIG. CAD: WKSHT2.dwg	SITE CODE: BET
REV. #	PROJECT NUMBER: 10228929	



12.011 20.083 21.599 86.649 94.895 32.510 90.095 51.256 41.649 28.317 19.253 13.090 8.900 6.051 4.114 2.797 1.902 1.293 0.879 0.598 0.406 TCE [µg]	
ORBER®	Screening Survey
100 Ci	& ASSOCIATES, INC. HESAPEAKE BOULEVARD KTON, MD, USA 21921 USA (410) 392-7600
	Monroeville, PA , Olean, New York oethene
: JH	ORIG. CAD: WKSHT2.dwg SITE CODE: BET
•	PROJECT NUMBER: 10228929

W.L. GORE & ASSO

GORE-SORBER® Screening Survey

W.L. GORE & ASSOCIATES, INC. 100 CHESAPEAKE BOULEVARD ELKTON, MD, USA 21921 USA (410) 392-7600

IT Corporation, Monroeville, PA Alcoa Alcas/Cutco, Olean, New York cis- & trans-1,2-Dichloroethene

AWN BY: JH	ORIG. CAD: WKSHT2.dwg	SITE CODE: BET	
V. #.	PROJECT NUMBER: 10228929)	

APPENDIX F

· - - - -

ENSAFE Review of VER Pilot Test

TECHNICAL MEMORANDUM

_

_

-

1

-

-

Review of Vacuum-Enhanced Recovery Pilot Test Alcas Facility Olean, New York

Prepared for:

Alcoa Tennessee Operations 2300 North Wright Road Alcoa, Tennessee 37701

Prepared by:

EnSafe Inc. Summer Trees Drive Memphis, Tennessee 38134

April 2002

EXECUTIVE SUMMARY

EnSafe Inc. has been retained by Alcoa Tennessee Operations (Alcoa) to perform a technical review of a vacuum-enhanced recovery (VER) pilot test completed at the Alcas facility in Olean, New York. Geraghty and Miller, Inc. (GMCE) performed the pilot test in September 1994. Following the test, GMCE summarized the findings and recommendations in a May 1995 report, concluding that a VER system would be an effective remedial technology for the Alcas site.

EnSafe has reviewed GMCE's pilot study work plan and report. Based on our review, EnSafe concludes that a vacuum-enhanced recovery system is not an appropriate remedial solution for the site. VER systems are only feasible under specific geological conditions. Pilot systems are generally used to examine their feasibility under site-specific conditions before the technology is recommended for full-scale implementation. Several critical parameters are estimated during a pilot test. These include the radius of influence (ROI), intrinsic soil gas permeability, k, maximum attainable drawdown, and soil heterogeneity. GMCE's pilot test did not evaluate these parameters effectively. Furthermore, estimates of these critical parameters were either improper or exaggerated. As a result, the recommendation for the use of this technology in full-scale remediation does not appear to be valid. The following technical memorandum outlines EnSafe's conclusions on the inappropriateness of vacuum enhanced-recovery for the Alcas site.

INTRODUCTION

The following is a technical review of a vacuum-enhanced recovery (VER) pilot system, designed and installed by Geraghty & Miller, Inc. (GMCE) in 1994. The work was performed for the Olean Cooperating Industries at the Alcas facility in Olean, New York. The original work plan for the pilot test, which was submitted in May 1994, described two separate studies. The first was a traditional soil-vapor extraction (SVE) system and the second was a VER system. However, following additional investigation at the site later that year, a revised work plan was submitted in September 1994. It outlined site-specific hydrogeological reasons for abandoning the SVE system and implementing a single VER test.

Based on the new hydrogeological and geological information in 1994, the subsurface at the Alcas facility was re-stratified. A new cross-section indicated two separate water-bearing units in the top 100 feet of sediments. The lower aquifer was 60 feet thick and consisted of stratified sand and mixtures of gravel. The upper aquifer is 10 feet thick and consists of sand, gravel, and varying amounts of silt. The two aquifers are separated by an upper aquitard, a relatively impermeable layer of silty clay approximately 10 feet thick.

The revised work plan outlined the layout and design of the VER pilot test, which was conducted with a single recovery system (RW-1), surrounded by an array of monitoring wells in the upper water-bearing unit (upper aquifer). The recovery well was connected to a vacuum system with the capability of extracting both liquid and vapor phases from the subsurface. The extraction well and monitoring wells had the mechanical fittings required to measure critical parameters to evaluate the pilot system. These included pressure gauges and flow meters from the extraction well to measure vacuum influence and overall extraction flow rates, devices to measure water and vacuum levels in all wells, and sampling connectors to periodically measure VOC concentrations in the extracted soil and groundwater. The data were to be analyzed to study the effectiveness of the pilot study, the feasibility of a full-scale VER system, and the collection of design parameters for the system.

The VER pilot test was performed in November 1994. It lasted approximately 24 hours. Data collected from the test were summarized in a May 1995 report in which GMCE concluded that

the test had successfully demonstrated the feasibility of VER and endorsed its implementation as an effective remedial technology for the Alcas site.

TECHNICAL REVIEW

The following paragraphs review the test plan, results, and conclusions. After examining several key aspects of the pilot test, EnSafe has concluded that contrary to the conclusions in the report, vacuum extraction actually is unlikely to be a feasible remedy for the site. The key design parameters that were estimated during the pilot test and used to examine feasibility were the radius of influence (ROI), soil gas permeability, k, water table drawdown, and soil heterogeneity. Each of these will be discussed in greater detail to develop a better understanding of EnSafe's review and conclusions.

Soil Gas Permeability, k: Perhaps, the most important design parameter in determining VER feasibility is the soil gas permeability or intrinsic permeability (U.S. EPA, March 1991). Soil gas permeability, k, is defined as the soil's capacity for fluid flow, and varies according to grain size, soil uniformity, porosity, and moisture content. It is expressed in the units of cm² or darcy (1 darcy = 1 x 10^{-8} cm²). Generally, k values less than 10^{-8} cm² indicate that the soil may be too fine for a VER system to work efficiently. Soils with a permeability greater than 10^{-7} cm² are preferred, while soils with a k value less than 10^{-9} cm² are not recommended for this technology. The k value and the methodology to determine it are critical in deciding whether to recommend VER or SVE.

First, the pilot study used a solitary well MW-1 to determine the k value and estimated it to be greater than 10^{-6} cm². The other monitoring wells, which showed a much poorer response to vacuum influence, were not used in the estimations. MW-1 showed a gradual increase in vacuum level over time and an attainment of more than 20 inches H₂O vacuum at the end of the test. By comparison, the other two wells (MW-2 and MW-3) show a vacuum build-up of less than 1 inch H₂O. If these wells were used to estimate soil gas permeability, its value would likely have been much less than 10^{-6} cm². In all likelihood, a mean determination of k from these three wells would have put it in a critical range that actually indicated that the site is not feasible for remediation via a vacuum extraction system.

Second, the technique used to estimate soil gas permeability was probably inappropriate. A better estimate of soil gas permeability, k, could have been made from steady-state conditions using a different equation than the one used for the dynamic state response scenario. Estimations of k from steady state are preferred for extraction systems from relatively shallow soils (AFCEE, May 1992). In this case, there is less risk of arriving at a false positive, which appears to have occurred at this site, where the k value was estimated from the dynamic response at a single selected well. Therefore, not only does the estimated k value appear highly exaggerated, but the methodology by which it was determined may have been inappropriate.

Radius of Influence (ROI)

The radius of influence, R, or ROI, is the maximum distance from the extraction well where measurable vacuum occurs. The ROI at this site was also estimated based on the vacuum response from a single well (MW-1). The conclusion was that the ROI at this site is at least 35 feet. The response from MW-2 and MW-3 were not considered while making this determination. If all three wells were considered and a mean value determined, a meaningful ROI would probably have been much less than the estimated 35 feet, and probably closer to 15 feet. Smaller ROIs generally indicate that the number of extraction wells required for a full-scale extraction system would be too numerous for feasible implementation of the technology.

A better way to estimate ROI would have been to design a series of monitoring points along a single direction from the extraction well. In this case, a series of vacuum levels during steady state along a straight line could have been plotted on a graph and the ROI estimated. If required to provide an estimate of the area of influence, monitoring points could also have been located radially surrounding the extraction well. Based on these observations, it once again appears that the field-determined ROI was not only exaggerated, the method by which it was determined may not have been appropriate.

Water Table Drawdown: Water table drawdown in the extraction well and the surrounding monitoring wells is a good indicator of how much of the vadose zone can be made available for vapor extraction. The decrease in the water table demonstrated in this study varied tremendously

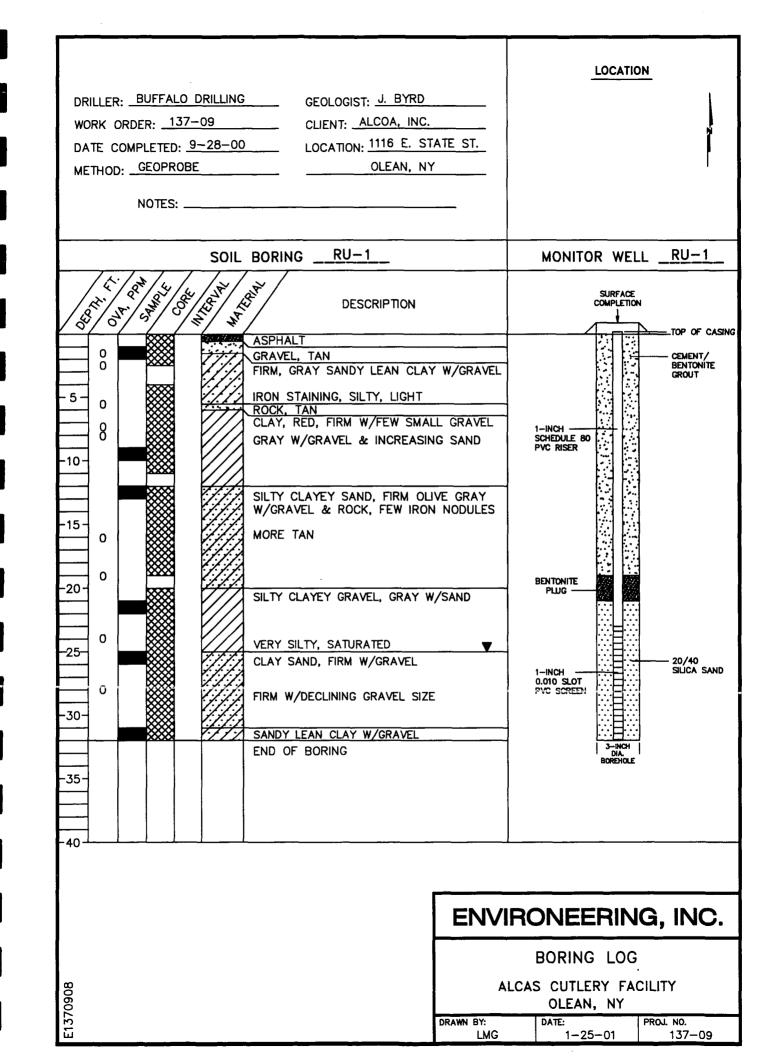
from well to well. Therefore, while groundwater extraction at isolated locations in the subsurface may actually result in an exposed vadose zone, much of the subsurface may not be amenable to achieving the kind of drawdown that makes a vacuum extraction system feasible. Judging from the vacuum response and the poor influence observed at MW-1 and MW-2, it may not be possible to achieve adequate drawdown to make a VER system feasible.

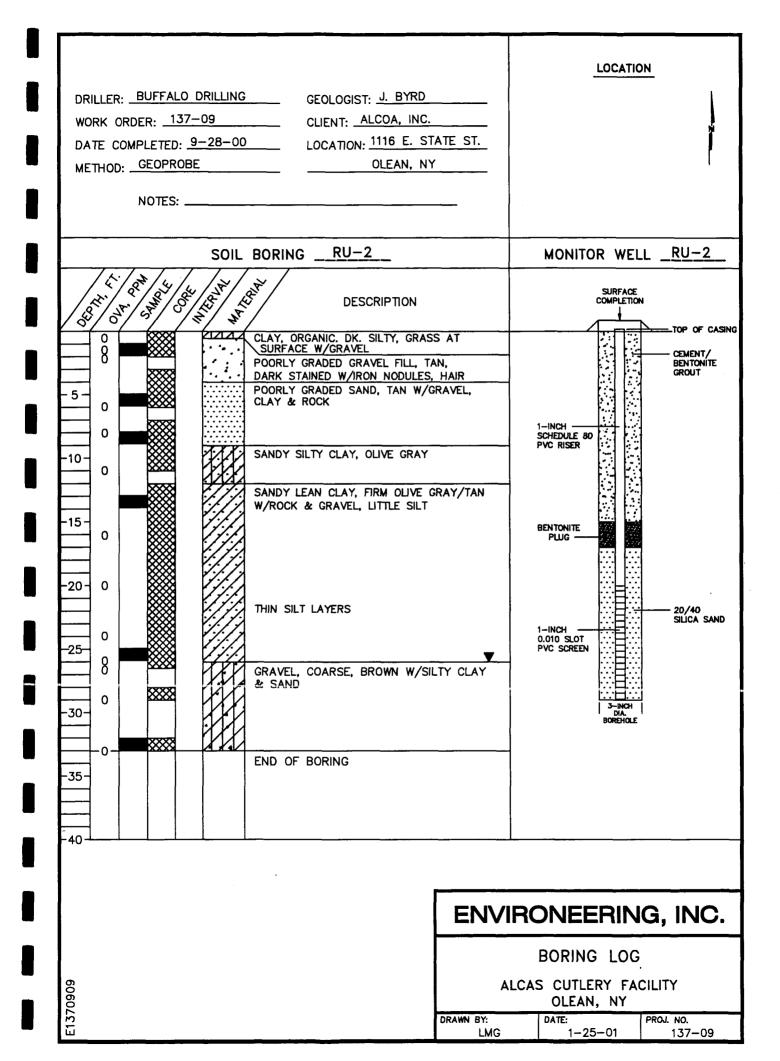
Soil Heterogeneity: An understanding of subsurface geology and hydrogeology is critical in VER testing and the implementation of this technology at the site. The geological cross-sections in the report do not appear to have considered soil heterogeneity. The variation in vacuum response in different radial directions from the vacuum extraction well strongly indicate that the subsurface is much more heterogeneous than depicted by the geological cross-sections. A description of the upper aquifer as silty sand is probably inappropriate. In all likelihood, there are several portions of the subsurface where finer soils such as silt predominate, making vacuum extraction infeasible, as observed from the highly variable vacuum responses. The presence of silts decreases the soil gas permeability, and limits vacuum removal to a diffusive, rather than the preferred advective process. The diffusion process (U.S. EPA, March 1991). Furthermore, the presence of substantial amounts of fines such as silts also makes the subsurface heterogeneous, a condition that makes vacuum extraction technology even more infeasible.

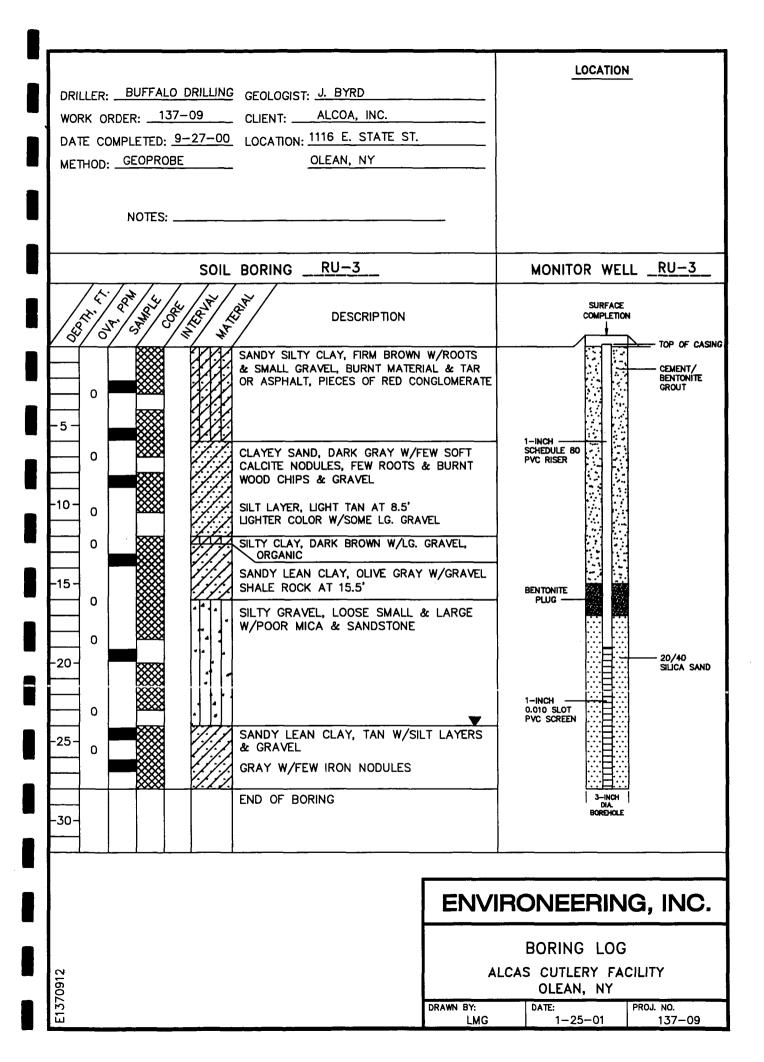
CONCLUSIONS

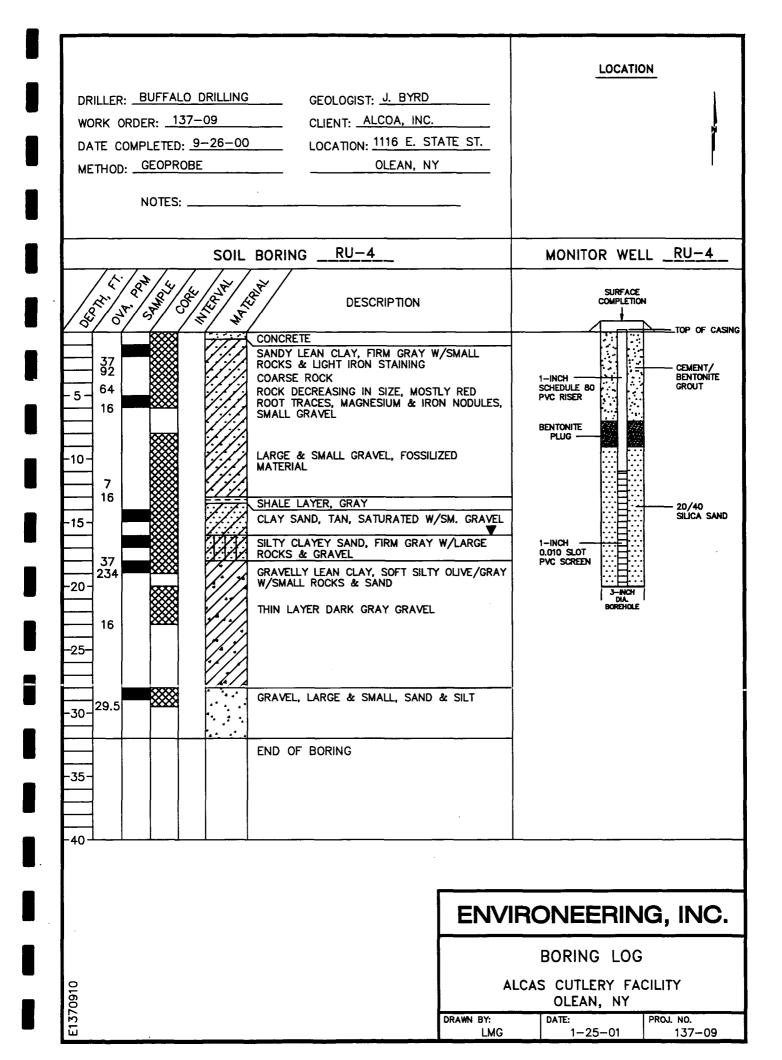
Based on EnSafe's review of significant parameters (radius of influence, ROI, and soil gas permeability, k) which are critical to the success of a vacuum-enhanced recovery system, it appears that this technology is not a viable option for the site. The techniques of determination did not lead to accurate estimates of these parameters. As a result, the radius of influence and soil gas permeability determined from this pilot test are likely to be exaggerated. If these parameters are accurately determined, it is very likely that the site will not be appropriate for vacuum extraction remediation. Finally, when site heterogeneity and the presence of silts are considered, it is unlikely that a VER/SVE system is applicable at this site.

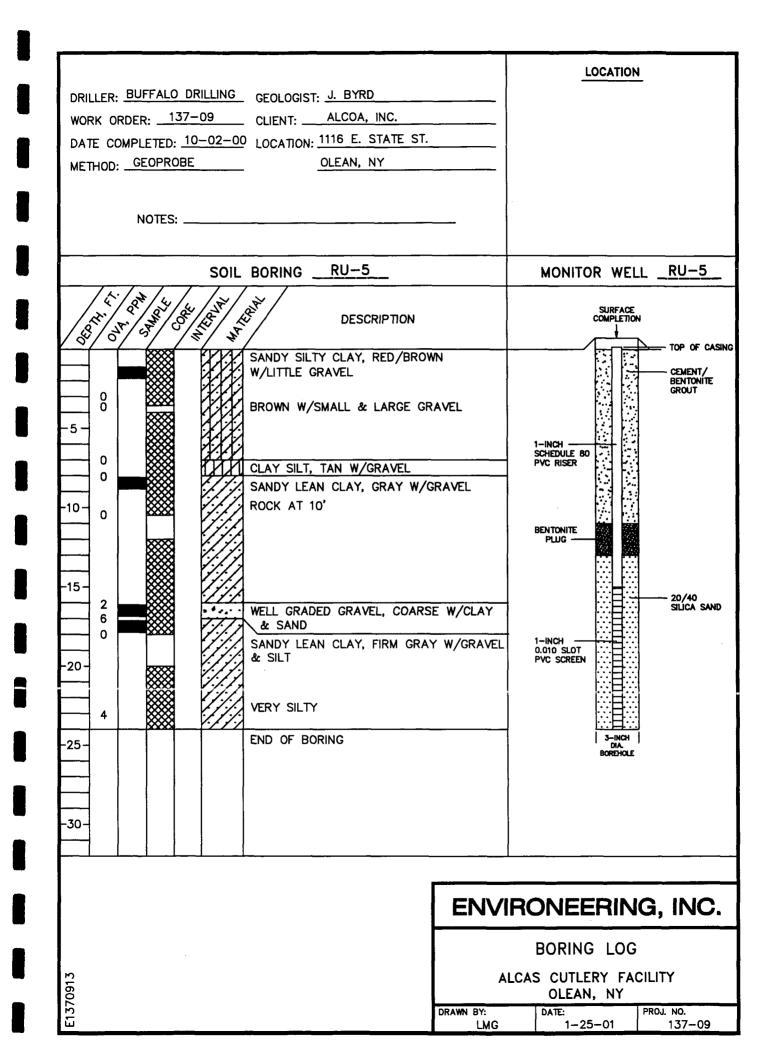
REFERENCES

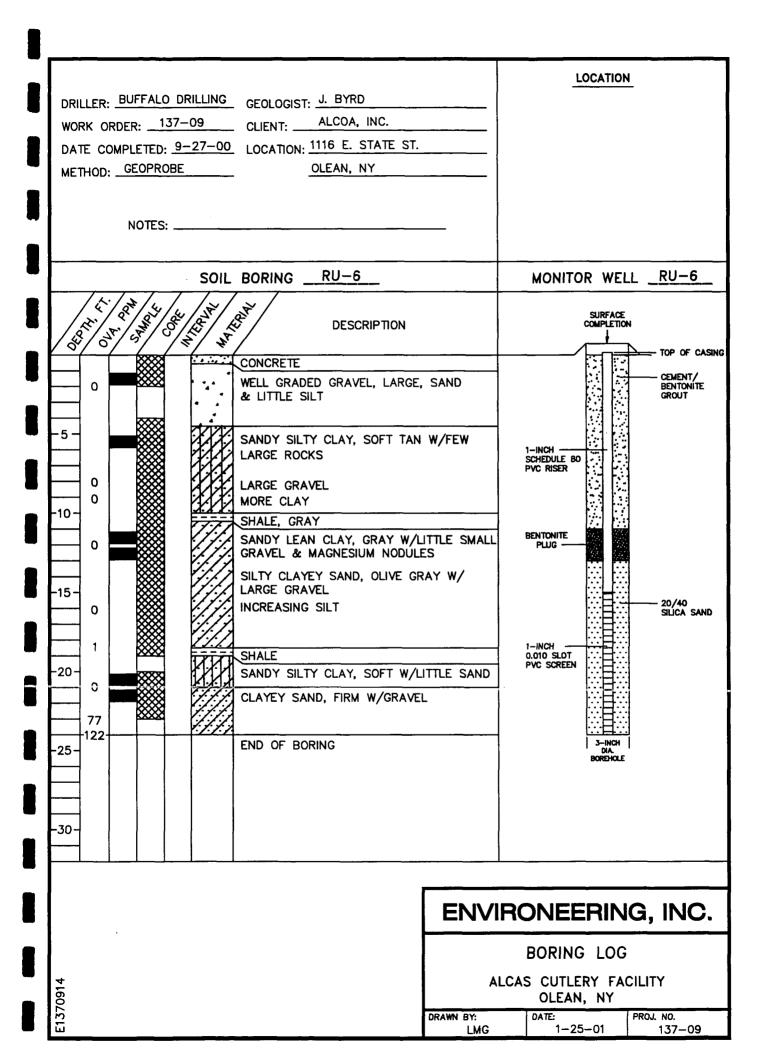

- U.S. EPA. Guide for Conducting Treatability Studies Under CERCLA: Soil Vapor Extraction. Washington, DC. March 1991.
- Air Force Center for Environmental Excellence (AFCEE). Test Plan and Protocol for a Field Treatability Test for Bioventing. Washington, DC. May 1992.

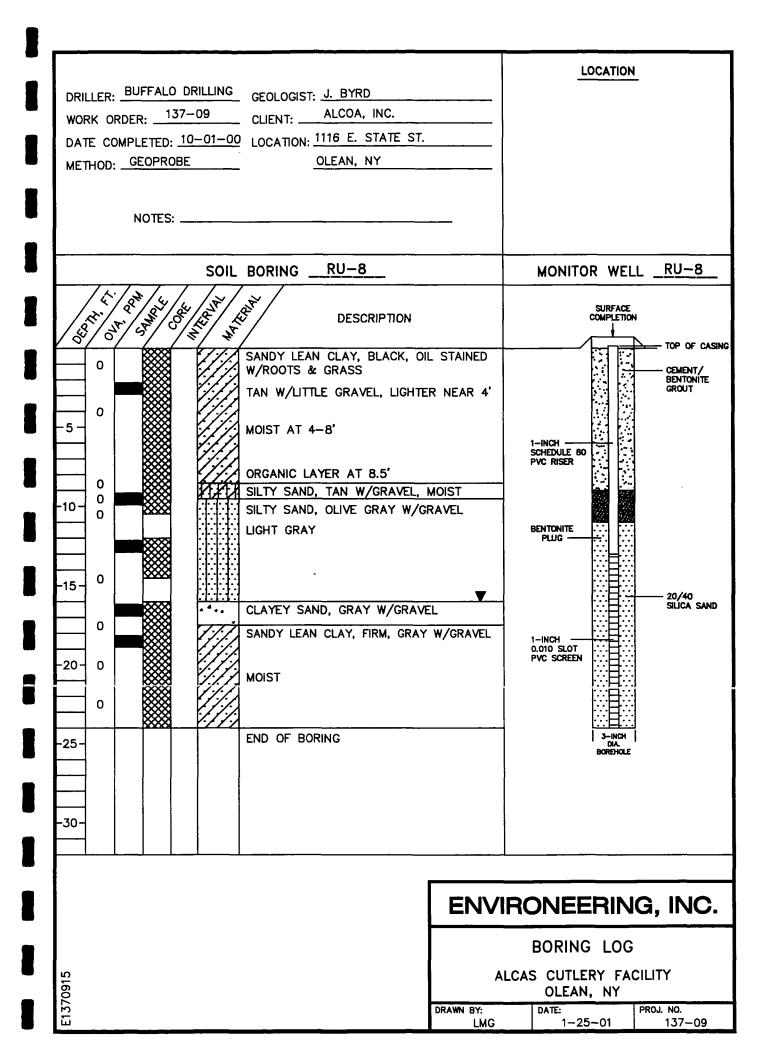

APPENDIX G

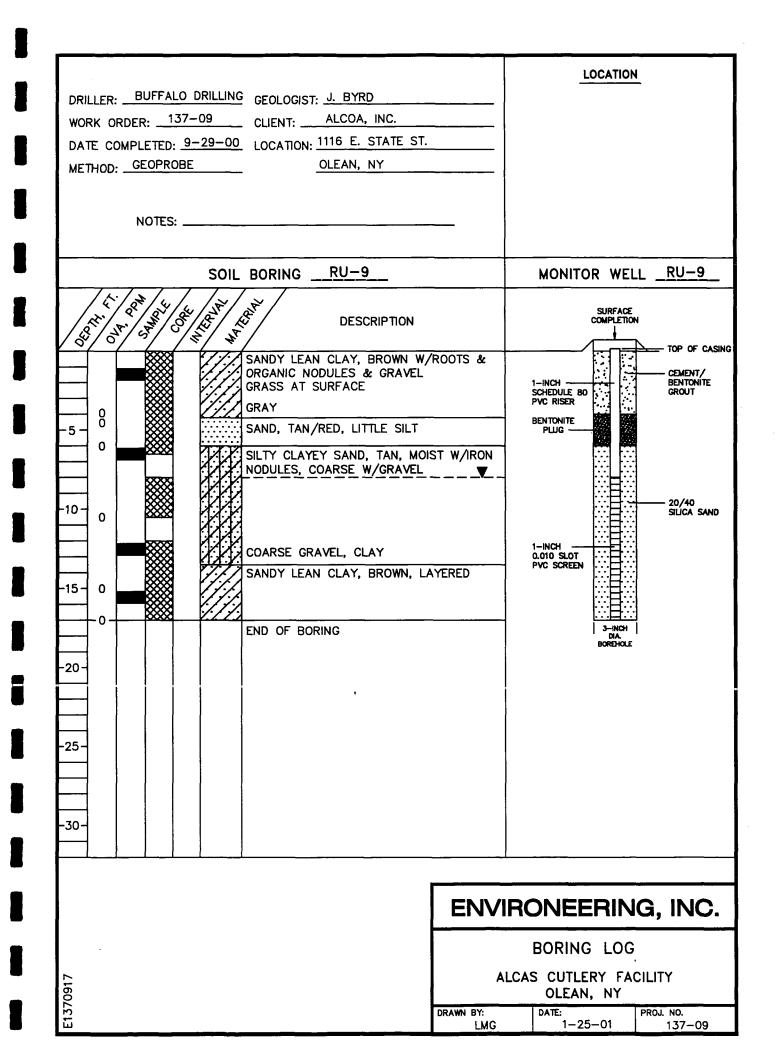

P

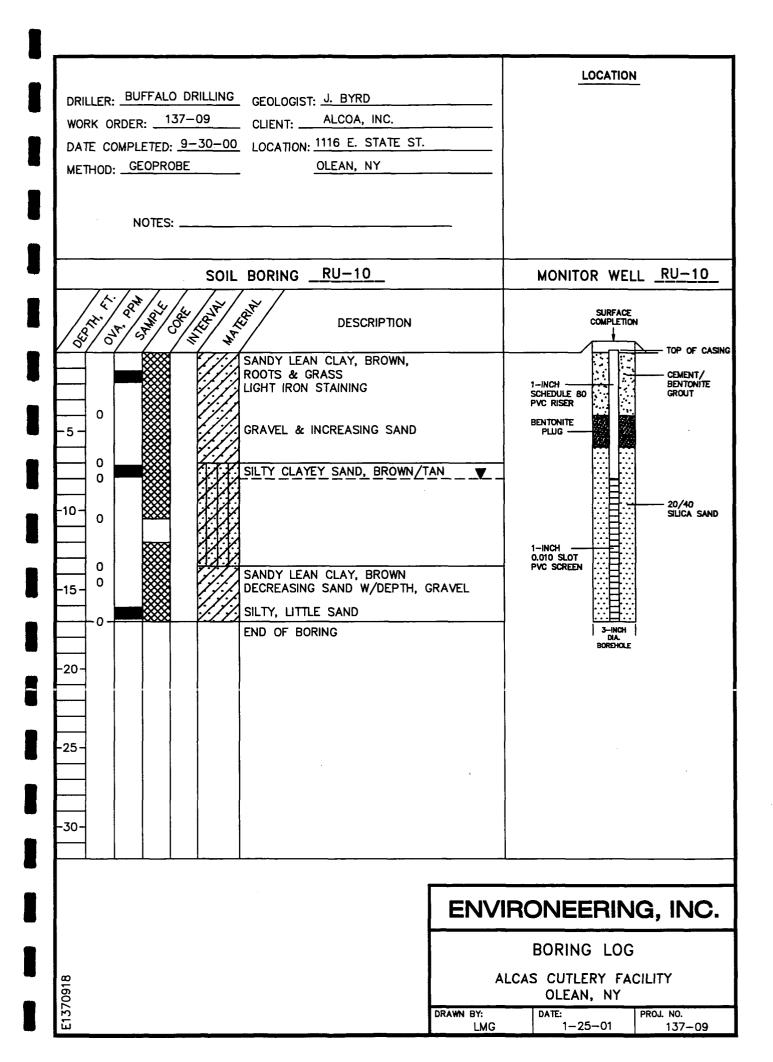

Boring Logs and Well Construction Details

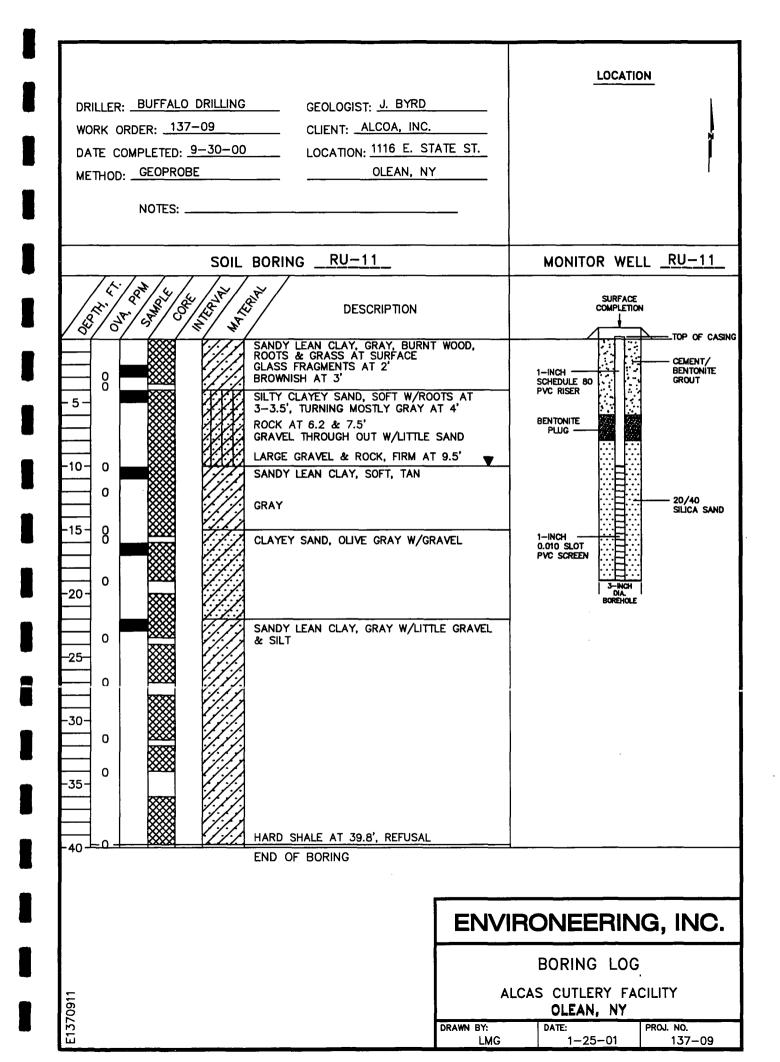

	LOCATION
DRILLER: BUFFALO DRILLING GEOLOGIST: J. BYRD	
WORK ORDER: 137-09 CLIENT: ALCOA, INC.	
DATE COMPLETED: 9-27-00 LOCATION: 1116 E. STATE ST.	Í
METHOD:OLEAN, NY	
NOTES:	
SOIL BORINGENI-1_	MONITOR WELL <u>NA</u>
Li Zi	
CLAY, DARK W/GRAVEL, GRASS & ROOTS	
SANDY LEAN CLAY, TAN W/ROOTS	
0 INCREASING CLAY	
-10- 0	
-20-0	
SHALE LAYER AT 23'	
0 SILTY CLAYEY SAND, COARSE W/SILT & LG. GRAVEL▼	- -
0 CLAY LAYER, TAN W/GRAVEL, SAND & SILT	
& ROCK	
0 SANDY LAYER	
-35- 0 COARSE SAND & GRAVEL	4
END OF BORING	
ENVIRG	ONEERING, INC.
	BORING LOG.
	S CUTLERY FACILITY OLEAN, NY
DRAWN BY:	DATE: PROJ. NO. 1-23-01 137-09

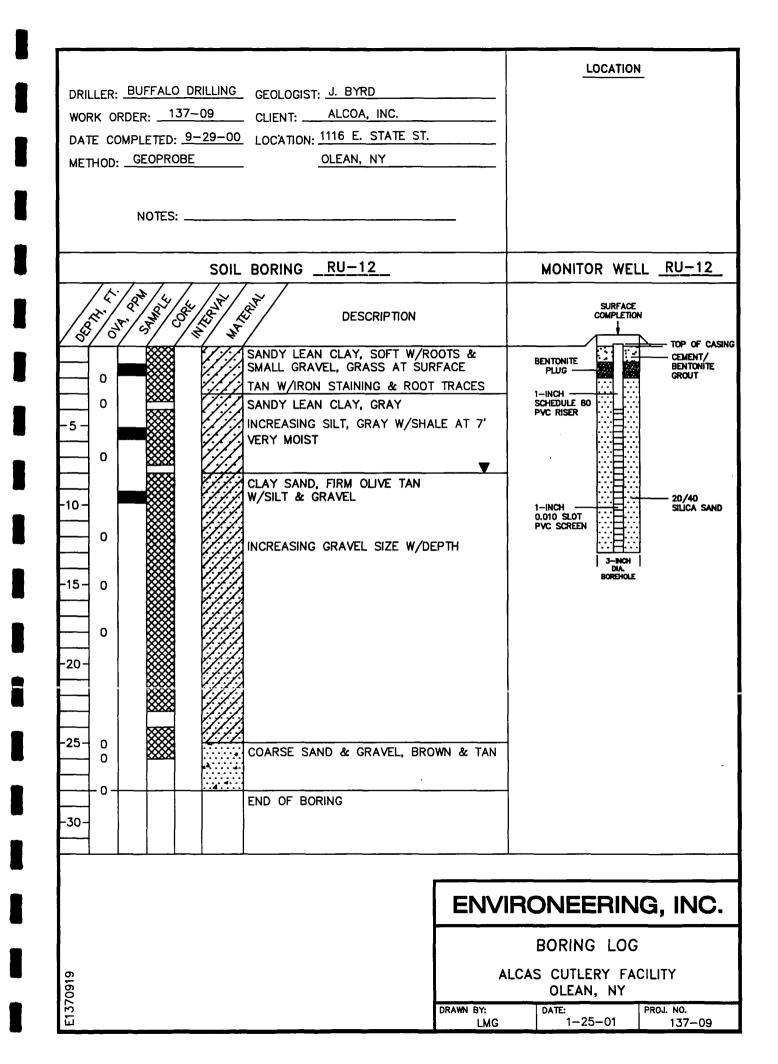


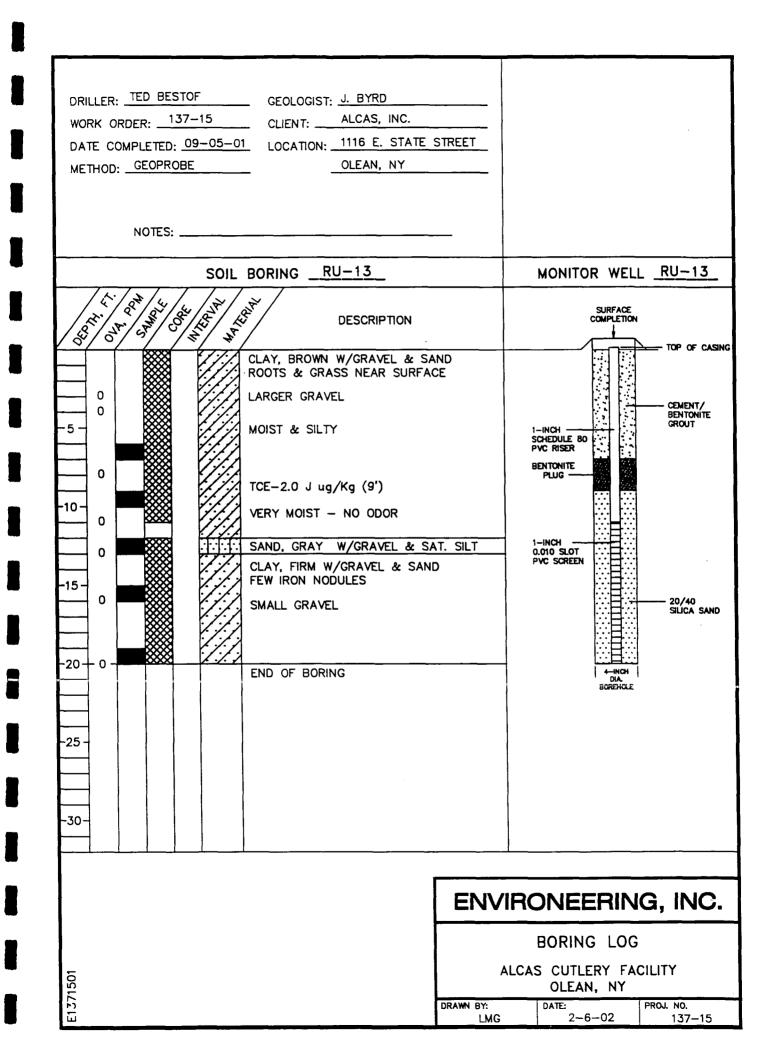


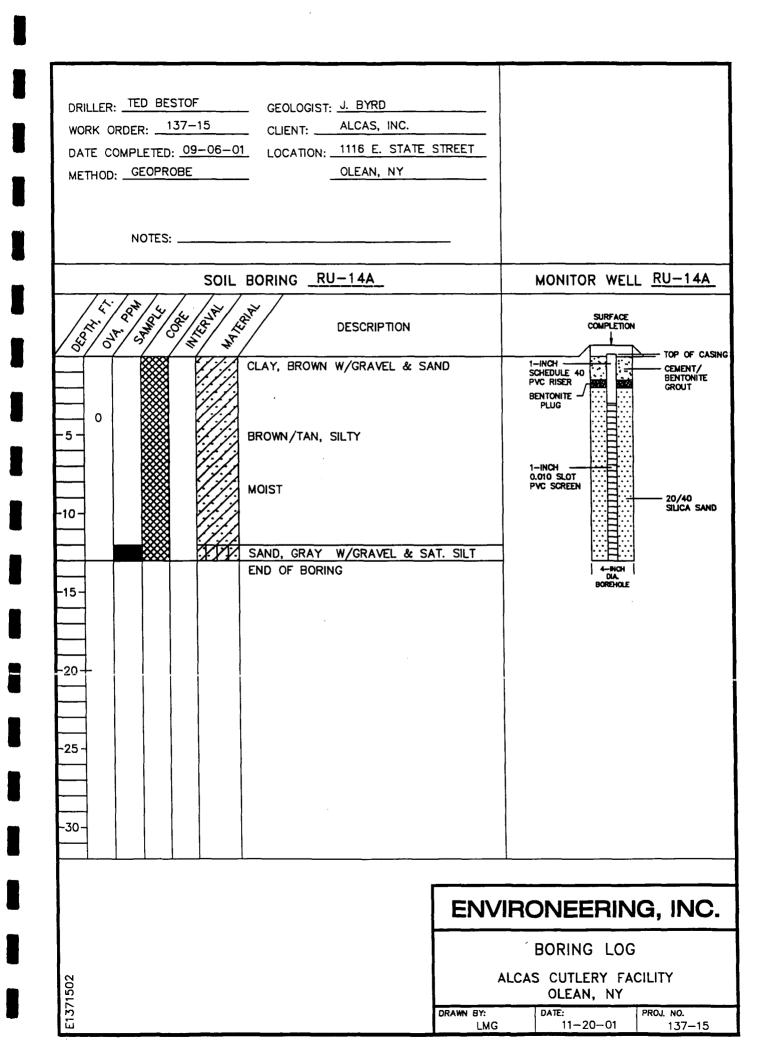


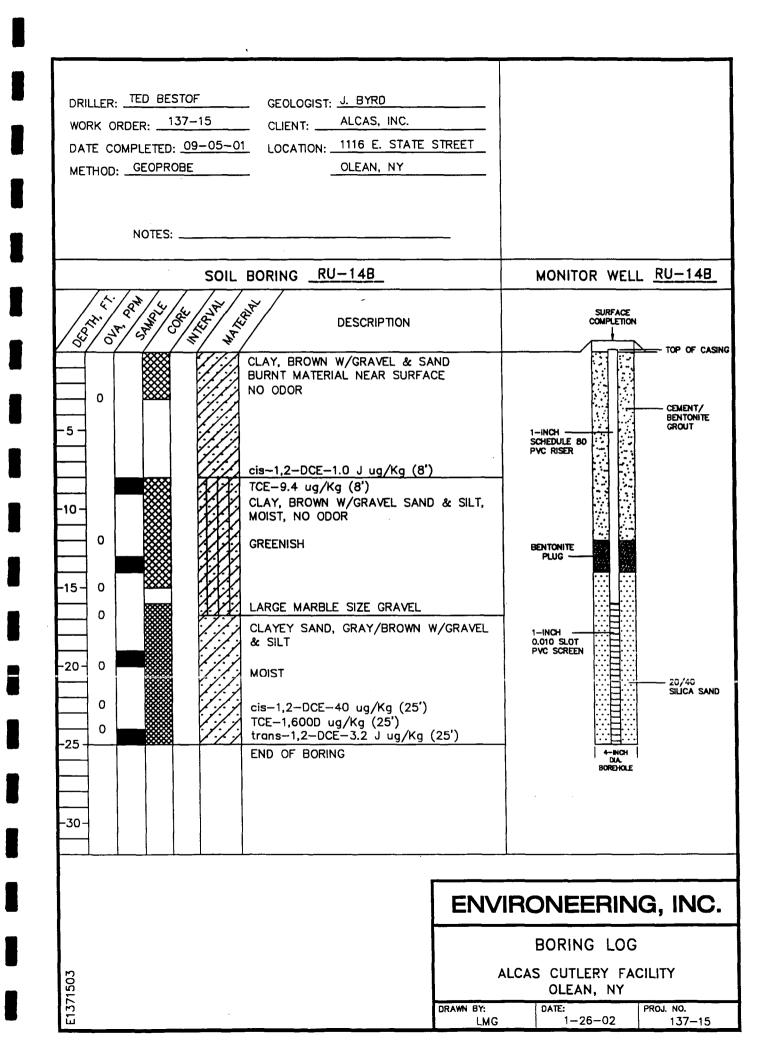


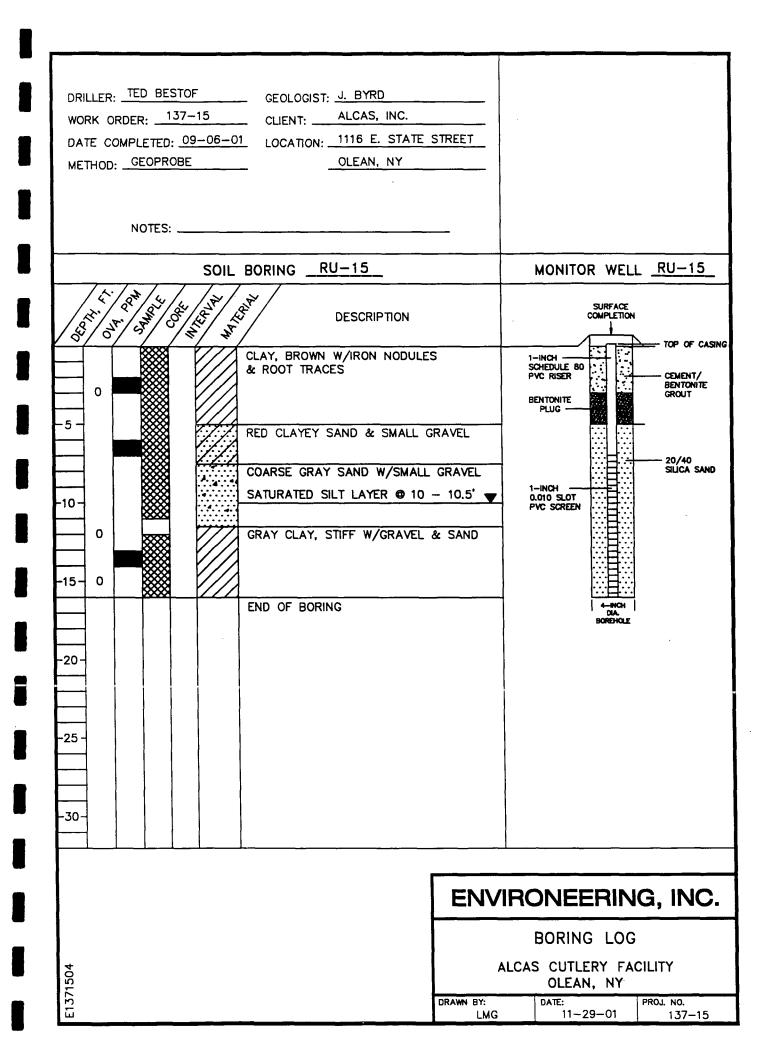


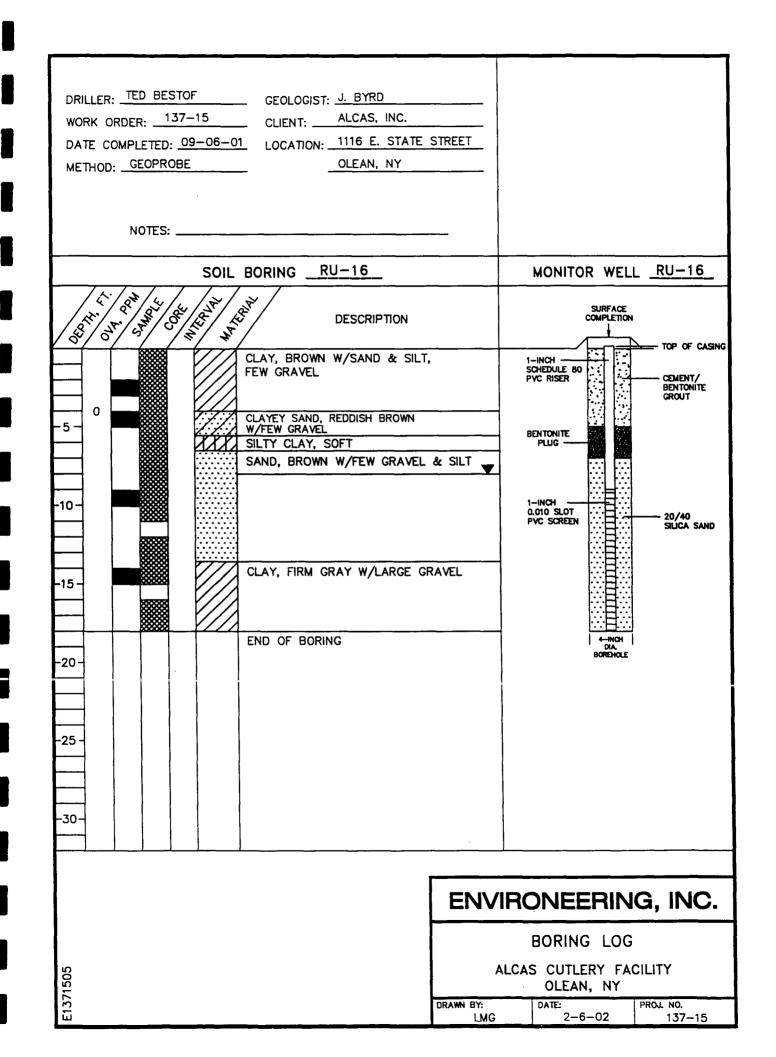

	LOCATION
DRILLER: BUFFALO DRILLING GEOLOGIST: J. BYRD	
WORK ORDER: 137-09 CLIENT: ALCOA, INC.	
DATE COMPLETED: 9-26-00 LOCATION: 1116 E. STATE ST.	
METHOD: GEOPROBE OLEAN, NY	
NOTES:	
SOIL BORING <u>RU-7</u>	MONITOR WELL RU-7
The second secon	
0 SILTY LEAN CLAY, OLIVE TAN W/GRASS & ROOTS AT SURFACE 0 SMALL & LARGE GRAVEL INCREASING MOISTURE & FEW 0 ORGANIC NODULES 0 SANDY LEAN CLAY, MOIST W/SMALL & LARGE ROCKS, RED -15- SILTY CLAYEY SAND W/GRAVEL, 0 OLIVE GRAY W/BROWN SHALE -15- SHALE, BROWN W/SANDY SILT 0 SANDY LEAN CLAY, OLIVE GRAY W/GRAVEL	1-INCH SCHEDULE 80 PVC RISER BENTONITE PLUG
-20- 0 SILT LAYER CLAY SAND, FIRM TAN W/FEW ROCKS & GRAVEL -25- 0 0 -25- 0 0 END OF BORING -30-	1-INCH 0.010 SLOT PVC SCREEN 3-INCH 3-INCH 3-INCH 3-INCH bla BOREHOLE
	BORING LOG
역 ALC 60 22 표 DRAWN BY: LMG	OLEAN, NY DATE: PROJ. NO. 1-25-01 137-09

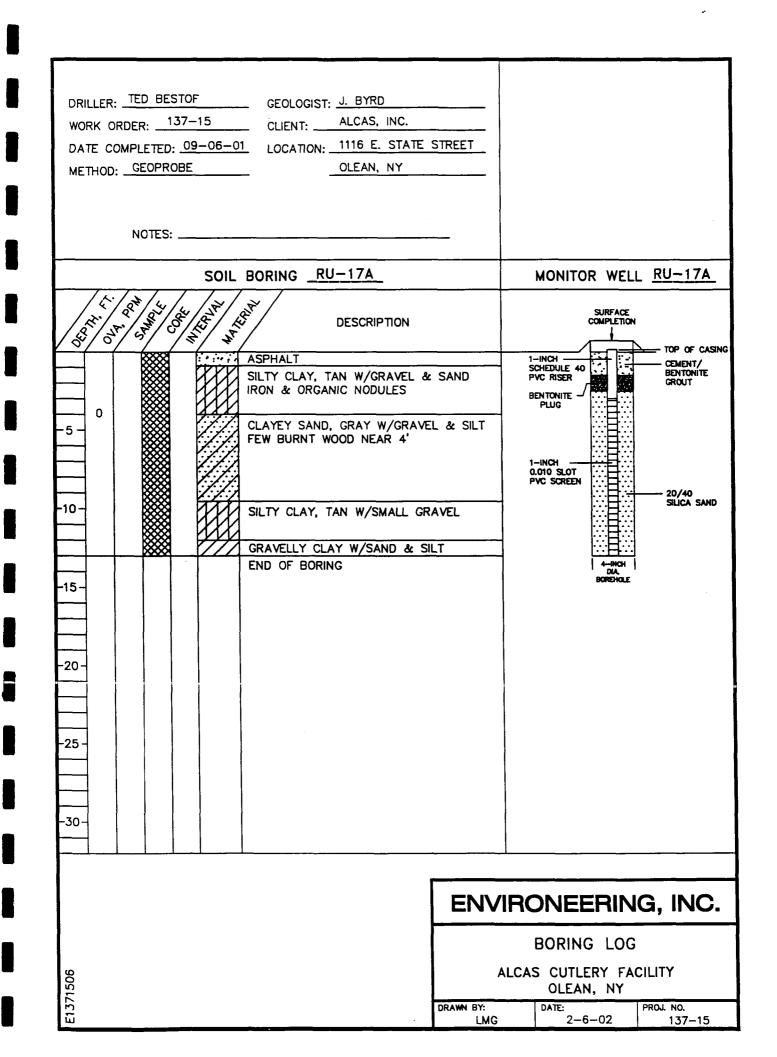


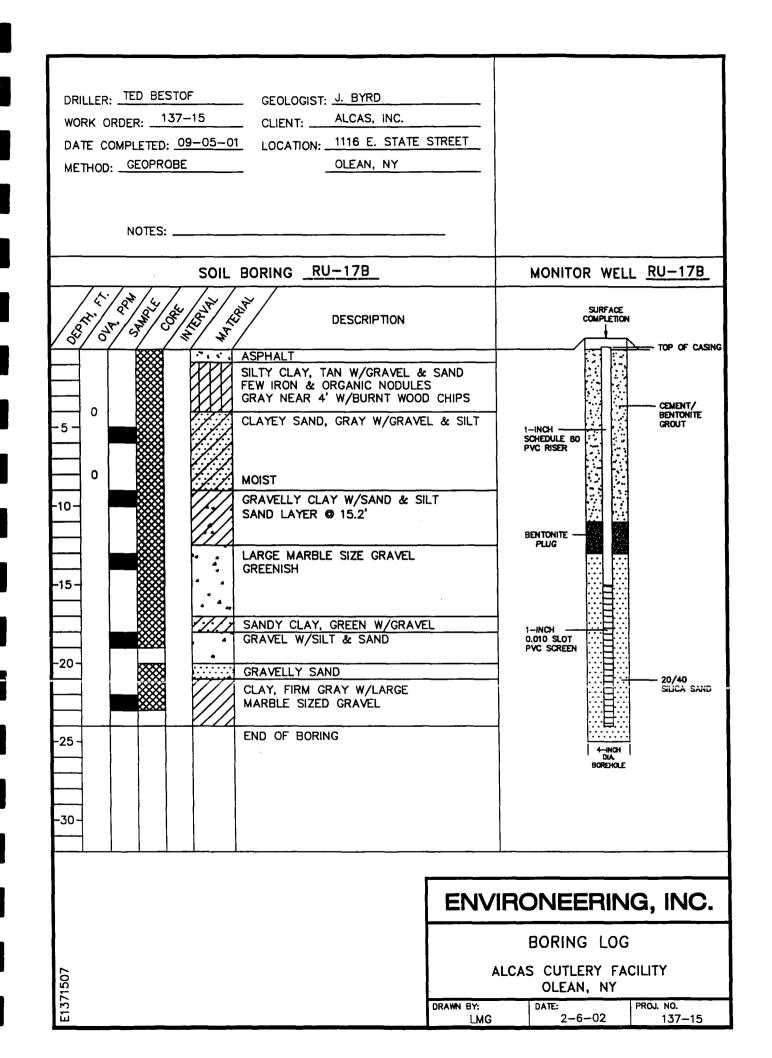


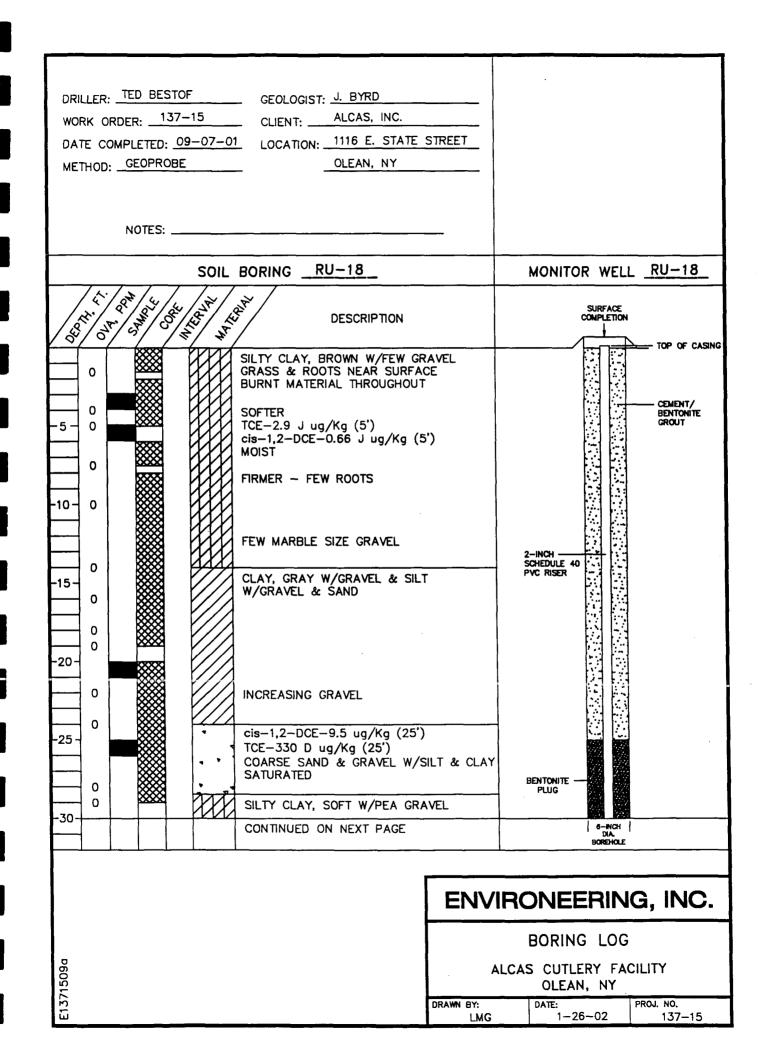












DRILLER:TED_BESTOF GEOLOGIST: J. BYRD WORK ORDER:137-15 CLIENT:ALCAS, INC. DATE COMPLETED: _09-05-01 LOCATION:1116 E. STATE STREET METHOD:GEOPROBE NOTES:	
SOIL BORING RU-17C	MONITOR WELL RU-17C
0 Image: State of the state	2-INCH
CLAYEY SILT, TAN, SATURATED W/GRAVEL & SAND CLAY, FIRM GRAY W/LARGE MARBLE SIZED GRAVEL	
CONTINUED ON NEXT PAGE	6-INCH DIA BOREHOLE
BOGSILS	/IRONEERING, INC. BORING LOG ALCAS CUTLERY FACILITY OLEAN, NY
DRAWN BY:	DATE: PROJ. NO.

DRILLER: TED BESTOF GEOLOGIST: J. BYRD WORK ORDER: 137–15 CLIENT: ALCAS, INC. DATE COMPLETED: 09–05–01 LOCATION: 1116 E. STATE STREE METHOD: GEOPROBE OLEAN, NY	ET
SOIL BORING <u>RU-17C (Continued)</u>	MONITOR WELL RU-17C (Cont.)
Image: Construction Image: Construction Imag	BENTONITE
-40- 0 0 -45- -55-	2-INCH 0.010 SLOT PVC SCREEN
-55 -	
E	ENVIRONEERING, INC.
DRAW	BORING LOG ALCAS CUTLERY FACILITY OLEAN, NY

ł

DRILLER: TED BESTOF GEOLOGIST: J. BYRD WORK ORDER: 137-15 CLIENT: ALCAS, INC. DATE COMPLETED: 09-07-01 LOCATION: 1116 E. STATE STREET METHOD: GEOPROBE OLEAN, NY NOTES:	
SOIL BORING <u>RU-18</u> (Continued)	MONITOR WELL RU-18 (Cont.)
Other Dominic Description 0 0 0 0 0 <td< td=""><td>BENTONITE</td></td<>	BENTONITE
EN	/IRONEERING, INC.
BORING LOG ALCAS CUTLERY FACILITY OLEAN, NY DRAWN BY: LMG 1-26-02 PROJ. NO. 137-15	

ENVIRONEERING, INC.

.

APPENDIX H

EPA Publication 9355.4-07FS Estimating Potential for Occurrence of DNAPL at Superfund Sites

United States Environmental Protection Agency

R.S. Kerr Office of S Environmental and Emerg Research Laboratory Response

Office of Solid Waste and Emergency Response

te Publication: 9355.4-07FS January 1992

₿EPA

Estimating Potential for Occurrence of DNAPL at Superfund Sites

Office of Emergency and Remedial Response Hazardous Site Control Division (OS-220W)

Quick Reference Fact Sheet

GOALS

The presence of Dense Nonaqueous Phase Liquids (DNAPL) in soils and aquifers can control the ultimate success or failure of remediation at a hazardous waste site. Because of the complex nature of DNAPL transport and fate, however, DNAPL may often be undetected by direct methods, leading to incomplete site assessments and inadequate remedial designs. Sites affected by DNAPL may require a different "paradigm," or conceptual framework, to develop effective characterization and remedial actions (2).

To help site personnel determine if DNAPL-based characterization strategies should be employed at a particular site, a guide for estimating the potential for DNAPL occurrence was developed. The approach, described in this fact sheet, requires application of two types of existing site information:

Historical Site Use Information

Site Characterization Data

By using available data, site decision makers can enter a system of two flowcharts and a classification matrix for estimating the potential for DNAPL occurrence at a site. If the potential for DNAPL occurrence is low, then conventional site assessment and remedial actions may be sufficient. If the potential for DNAPL is moderate or high, however, a different conceptual approach may be required to account for problems associated with DNAPL in the subsurface.

BACKGROUND

DNAPLs are separate-phase hydrocarbon liquids that are denser than water, such as chlorinated solvents (either as a single component or as mixtures of solvents), wood preservative wastes, coal tar wastes, and pesticides. Until recently, standard operating practice in a variety of industries resulted in the release of large quantities of DNAPL to the subsurface. Most DNAPLs undergo only limited degradation in the subsurface, and persist for long periods while slowly releasing soluble organic constituents to ground water through dissolution. Even with a moderate DNAPL release, dissolution may continue for hundreds of years or longer under natural conditions before all the DNAPL is dissipated and concentrations of soluble organics in ground water return to background levels.

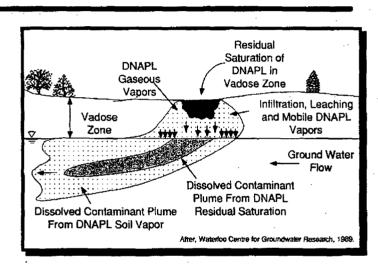
DNAPL exists in the soil/aquifer matrix as free-phase DNAPL and residual DNAPL. When released at the surface, freephase DNAPL moves downward through the soil matrix under the force of gravity or laterally along the surface of sloping fine-grained stratigraphic units. As the free-phase DNAPL moves, blobs or ganglia are trapped in pores and/or fractures by capillary forces (7). The amount of the trapped DNAPL, known as residual saturation, is a function of the physical properties of the DNAPL and the hydrogeologic characteristics of the soil/aquifer medium and typically ranges from 5% to 50% of total pore volume. At many sites, however, DNAPL migrates preferentially through small-scale fractures and heterogeneities in the soil, permitting the DNAPL to penetrate much deeper than would be predicted from application of typical residual saturation values (16).

Once in the subsurface, it is difficult or impossible to recover all of the trapped residual DNAPL. The conventional aquifer remediation approach, ground water pump-and-treat, usually removes only a small fraction of trapped residual DNAPL (11, 21, 26). Although many DNAPL removal technologies are currently being tested, to date there have been no field demonstrations where sufficient DNAPL has been successfully recovered from the subsurface to return the aquifer to drinking water quality. The DNAPL that remains trapped in the soil/aquifer matrix acts as a continuing source of dissolved contaminants to ground water, preventing the restoration of DNAPL-affected aquifers for many years.

びる Printed on Recycled Paper

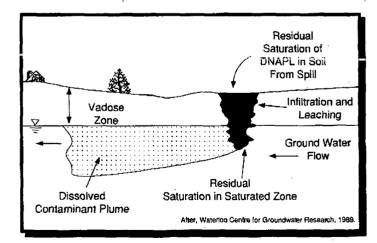
DNAPL TRANSPORT AND FATE - CONCEPTUAL APPROACHES

The major factors controlling DNAPL migration in the subsurface include the following (5):


- the volume of DNAPL released;
- the area of infiltration at the DNAPL entry point to the subsurface;
- the duration of release;
- properties of the DNAPL, such as density, viscosity, and interfacial tension;
- properties of the soil/aquifer media, such as pore size and permeability;
- general stratigraphy, such as the location and topography of low-permeability units;
- micro-stratigraphic features, such as root holes, small fractures, and slickensides found in silt/clay layers.

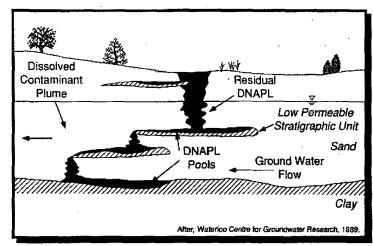
2

To describe the general transport and fate properties of DNAPL in the subsurface, a series of conceptual models (24) are presented in the following figures:

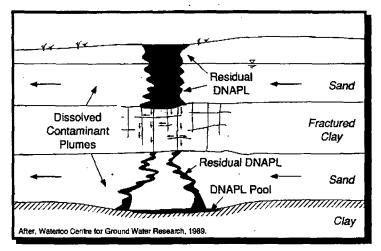

Case 1: DNAPL Release to Vadose Zone Only

After release on the surface, DNAPL moves vertically downward under the force of gravity and soil capillarity. Because only a small amount of DNAPL was released, all of the mobile DNAPL is eventually trapped in pores and fractures in the unsaturated zone. Infiltration through the DNAPL zone dissolves some of the soluble organic constituents in the DNAPL, carrying organics to the water table and forming a dissolved organic plume in the aquifer. Migration of gaseous vapors can also act as a source of dissolved organics to ground water (13).

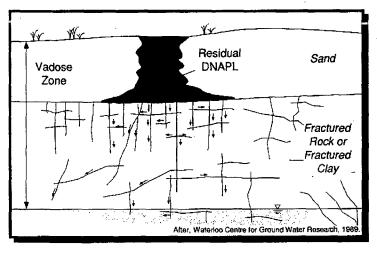
Case 2: DNAPL Release to Unsaturated and Saturated Zones


If enough DNAPL is released at the surface, it can migrate all the way through the unsaturated zone and reach a water-bearing unit. Because the specific gravity of DNAPL is greater than water, it continues downward until the mobile DNAPL is exhausted and is trapped as a residual hydrocarbon in the porous media. Ground water flowing past the trapped residual DNAPL dissolves soluble components of the DNAPL, forming a dissolved plume downgradient of the DNAPL zone. As with Case 1, water infiltrating down from the source zone also carries dissolved constituents to the aquifer and contributes further to the dissolved plume.

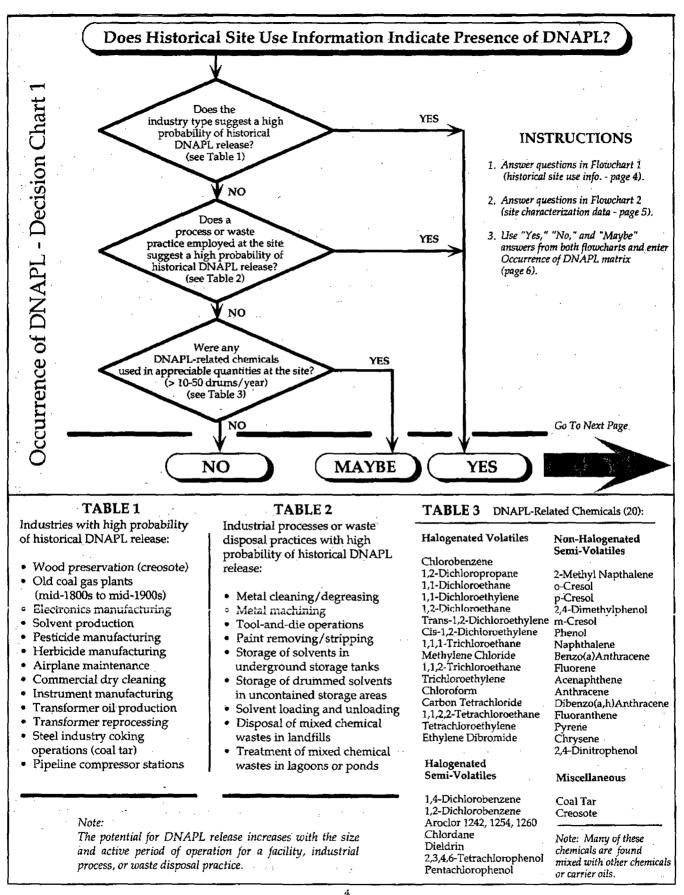
CONCEPTUAL APPROACHES - Continued

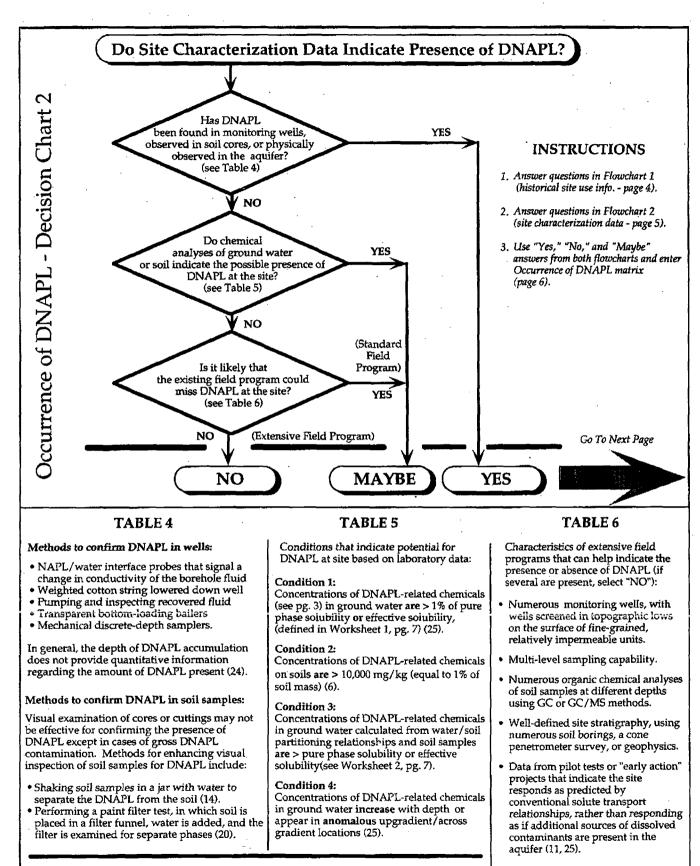

Case 3: DNAPL Pools and Effect of Low-Permeability Units

Mobile DNAPL will continue vertical migration until it is trapped as a residual hydrocarbon (Case 1 and Case 2) or until low-permeability stratigraphic units are encountered which create DNAPL "pools" in the soil/aquifer matrix. In this figure, a perched DNAPL pool fills up and then spills over the lip of the low-permeability stratigraphic unit. The spill-over point (or points) can be some distance away from the original source, greatly complicating the process of tracking the DNAPL migration.

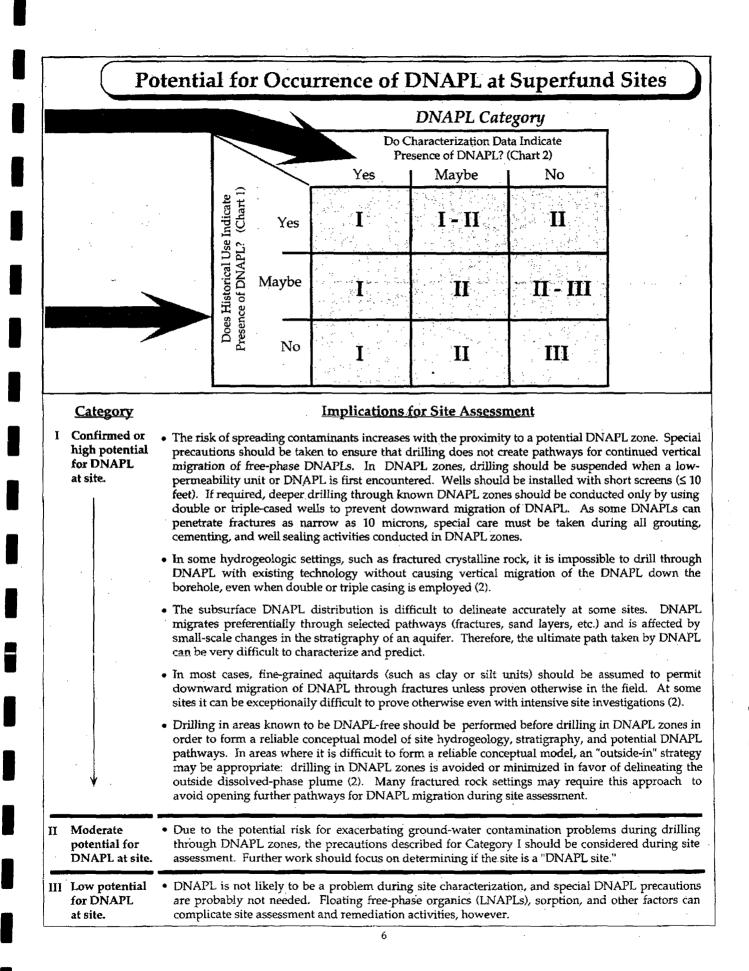

Case 4: Composite Site

In this case, mobile DNAPL migrates vertically downward through the unsaturated zone and the first saturated zone, producing a dissolved constituent plume in the upper aquifer. Although a DNAPL pool is formed on the fractured clay unit, the fractures are large enough to permit vertical migration downward to the deeper aquifer (see Case 5, below). DNAPL pools in a topographic low in the underlying impermeable unit and a second dissolved constituent plume is formed.




Case 5: Fractured Rock or Fractured Clay System

DNAPL introduced into a fractured rock or fractured clay system follows a complex pathway based on the distribution of fractures in the original matrix. The number, density, size, and direction of the fractures usually cannot be determined due to the extreme heterogeneity of a fractured system and the lack of economical aguifer characterization technologies. Relatively small volumes of DNAPL can penetrate deeply into fractured systems due to the low retention capacity of the fractures and the ability of some DNAPLs to migrate through very small (<20 microns) fractures. Many clay units, once considered to be relatively impermeable to DNAPL migration, often act as fractured media with preferential pathways for vertical and horizontal DNAPL migration.



з

Note: This procedure is designed primarily for hydrogeologic settings comprised of gravel, sand, silt, or clay and may not be be applicable to karst or fractured rock settings.

Worksheet 1: Calculation of Effective Solubility (from Shiu, 1988; Feenstra, Mackay, & Cherry, 1991)

For a single-component DNAPL, the pure-phase solubility of the organic constituent can be used to estimate the theoretical upper-level concentration of organics in aquifers or for performing dissolution calculations. For DNAPLs comprised of a mixture of chemicals, however, the effective solubility concept should be employed:

$$S_i^e = X_i S_i$$
 When

- $S_i^e =$ the effective solubility (the theoretical upper-level dissolved-phase concentration of a constituent in ground water in equilibrium with a mixed DNAPL; in mg/l)
 - = the mole fraction of component i in the DNAPL mixture (obtained from a lab analysis of a DNAPL sample or estimated from waste characterization data)
- S₁ = the pure-phase solubility of compound i in mg/l (usually obtained from literature sources)

For example, if a laboratory analysis indicates that the mole fraction of trichloroethylene (TCE) in DNAPL is 0.10, then the effective solubility would be 110 mg/l [pure phase solubility of TCE times mole fraction TCE: (1100 mg/l) * (0.10) = 110 mg/l]. Effective solubilities can be calculated for all components in a DNAPL mixture. Insoluble organics in the mixture (such as long-chained alkanes) will reduce the mole fraction and effective solubility of more soluble organics but will not contribute dissolved-phase organics to ground water. Please note that this relationship is approximate and does not account for non-ideal behavior of mixtures, such as co-solvency, etc.

Worksheet 2: Method for Assessing Residual NAPL Based on Organic Chemical Concentrations in Soil Samples (From Feenstra, Mackay, and Cherry, 1991)

To estimate if NAPLs are present, a partitioning calculation based on chemical and physical analyses of soil samples from the saturated zone (from cores, excavations, etc.) can be applied. This method tests the assumption that all of the organics in the subsurface are either dissolved in ground water or adsorbed to soil (assuming dissolved-phase sorption, not the presence of NAPL). By using the concentration of organics on the soil and the partitioning calculation, a theoretical porewater concentration of organics in ground water is determined. If the theoretical pore-water concentration is greater than the estimated solubility of the organic constituent of interest, then NAPL may be present at the site. A worksheet for performing this calculation is presented below; see Feenstra, Mackay, and Cherry (1991) for the complete methodology.

Step 1: Calculate S_i^e , the effective solubility of organic constituent of interest. See

See Worksheet 1, above.

Step 2: Determine Koc, the organic carbon-water partition coefficient from one of the following: A) Literature sources (such as 22) or

B) From empirical relationships based on **Kow**, the octanol-water partition coefficient, which is also found in the literature (22). For example, **Koc** can be estimated from **Kow** using the following expression developed for polyaromatic hydrocarbons (8):

Log Koc = 1.0 * Log Kow - 0.21

Other empirical relationships between Koc and Kow are presented in refs. 4 and 15.

Step 3: Determine foc, the fraction of organic carbon on the soil, from a laboratory analysis of clean soils from the site. Values for foc typically range from 0.03 to 0.00017 mg/mg (4). Convert values reported in percent to mg/mg.

Step 4: Determine or estimate ρb, the dry bulk density of the soil, from a soils analysis. Typical values range from 1.8 to 2.1 g/ml (kg/l). Determine or estimate φw, the water-filled porosity.

- Step 5: Determine Kd, the partition (or distribution) coefficient between the pore water (ground water) and the soil solids:
- Kd = Koc * foc

Step 6: Using Ct, the measured conc. of the organic compound in saturated soil in mg/kg, calculate the theoretical pore water conc. assuming no DNAPL (i.e., Cw in mg/l):

 $Cw = \frac{(Ct * \rho b)}{(Kd^*\rho b + \varphi w)}$

Step 7: Compare Cw and S_1^e (from Step 1):	$Cw > S_i^e$ suggests possible presence of DNAPL $Cw < S_i^e$ suggests possible absence of DNAPL	

GLOSSARY (adapted from Cherry, 1991):

DNAPL: A Dense Nonaqueous Phase Liquid. A DNAPL can be either a single-component DNAPL (comprised of only one chemical) or a mixed DNAPL (comprised of several chemicals). DNAPL exists in the subsurface as free-phase DNAPL or as residual DNAPL (see following definitions). DNAPL does not refer to chemicals that are dissolved in groundwater.

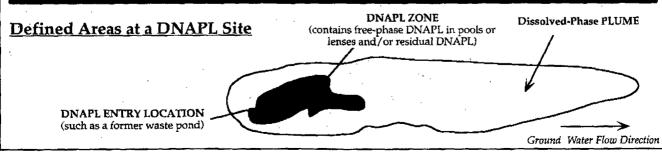
DNAPL ENTRY LOCATION: The area where DNAPL has entered the subsurface, such as a spill location or waste pond.

DNAPL SITE: A site where DNAPL has been released and is now present in the subsurface as an immiscible phase.

DNAPL ZONE: The portion of a site affected by free-phase or residual DNAPL in the subsurface (either the unsaturated zone or saturated zone). The DNAPL zone has organics in the vapor phase (unsaturated zone), dissolved phase (both unsaturated and saturated zone), and DNAPL phase (both unsaturated and saturated zone).

DISSOLUTION: The process by which soluble organic components from DNAPL dissolve in ground water or dissolve in infiltration water and form a ground-water contaminant plume. The duration of remediation measures (either clean-up or long-term containment) is determined by 1) the rate of dissolution that can be achieved in the field, and 2) the mass of soluble components in the residual DNAPL trapped in the aquifer.

EFFECTIVE SOLUBILITY: The theoretical aqueous solubility of an organic constituent in ground water that is in chemical equilibrium with a mixed DNAPL (a DNAPL containing several organic chemicals). The effective solubility of a particular organic chemical can be estimated by multiplying its mole fraction in the DNAPL mixture by its pure phase solubility (see Worksheet 1, page 7).


FREE-PHASE DNAPL: Immiscible liquid existing in the subsurface with a positive pressure such that it can flow into a well. If not trapped in a pool, free-phase DNAPL will flow vertically through an aquifer or laterally down sloping fine-grained stratigraphic units. Also called mobile DNAPL or continuous-phase DNAPL.

PLUME: The zone of contamination containing organics in the dissolved phase. The plume usually will originate from the DNAPL zone and extend downgradient for some distance depending on site hydrogeologic and chemical conditions. To avoid confusion, the term "DNAPL plume" should not be used to describe a DNAPL pool; "plume" should be used only to refer to dissolved-phase organics.

POOL and LENS: A pool is a zone of free-phase DNAPL at the bottom of an aquifer. A lens is a pool that rests on a finegrained stratigraphic unit of limited areal extent. DNAPL can be recovered from a pool or lens if a well is placed in the right location.

RESIDUAL DNAPL: DNAPL held in soil pore spaces or fractures by capillary forces (negative pressure on DNAPL). Residual will remain trapped within the pores of the porous media unless the viscous forces (caused by the dynamic force of water against the DNAPL) are greater than the capillary forces holding the DNAPL in the pore. At most sites the hydraulic gradient required to mobilize all of the residual trapped in an aquifer is usually many times greater than the gradient that can be produced by wells or trenches (26).

RESIDUAL SATURATION: The saturation (the fraction of total pore space containing DNAPL) at which DNAPL becomes discontinuous and is immobilized by capillary forces (14). In unsaturated soils, residual saturation typically ranges from 5% to 20% of total pore volume, while in the saturated zone the residual saturation is higher, with typical values ranging from 15% to 50% of total pore volume (14,17). At many sites, however, DNAPL migrates preferentially through small-scale fractures and heterogeneities in the soil, permitting the DNAPL to penetrate much deeper than would be predicted from application of typical residual saturation values (16).

References

ſ

	 Anderson, M.R., R.L. Johnson, and J.F. Pankow, The Dissolution of Residual Dense Non-Aqueous Phase Liquid (DNAPL) from a Saturated Porous Medium, <u>Proc.: Petrol. Hearb. and Org. Chemicals in Ground Water</u>, NWWA, Houston, TX, Nov., 1987. Cherry, J. A., written communication to EPA DNAPL Workshop, Dallas, TX, R. S. Kerr Environmental Research Laboratory, U.S. EPA, Ada, OK., Apr. 1991. 				
	 Connor, J.A., C.J. Newell, and D.K. Wilson, Assessment, Field Testing, and Conceptual Design for Managing Dense Nonaqueous Phase Liquids (DNAPL) at a Superfund Site, <u>Proc.: Petrol. Hcarb. Org. Chemicals in Ground Water</u>, NWWA, Houston, TX, 1989. Domenico, P.A. and F. W. Schwartz, <u>Physical and Chemical Hydrogeology</u>, Wiley, New York, NY, 1990. 				
	 Feenstra, S. and J.A. Cherry, Subsurface Contamination by Dense Non-Aqueous Phase Liquids (DNAPL) Chemicals, <u>International Groundwater Symposium</u>, International Assoc. of Hydrogeologists, Halifax, N.S., May 1-4, 1988. Feenstra, S., D. M. MacKay, and J.A. Cherry, A Method for Assessing Residual NAPL Based on Organic Chemical Concentrations in Soil Samples, <u>Groundwater Monitoring Review</u>, Vol. 11, No. 2, 1991. 				
	Hunt, J.R., N. Sitar, and K.D. Udell, Nonaqueous Phase Liquid Transport and Cleanup, <u>Water Res. Research</u> , Vol. 24 No. 8, 1991. Karickhoff, S.W., D.S. Brown, and T.A. Scott, Sorption of Hydrophobic Pollutants on Natural Sediments, <u>Water Res. R.</u> , Vol. 3, 1979.				
9	 Keller, C.K., G. van der Kamp, and J.A. Cherry, Hydrogeology of Two Saskatchewan Tills, <u>J. of Hydrology</u>, pp. 97-121, 1988. Kueper, B.H. and E. O. Frind, An Overview of Immiscible Fingering in Porous Media, <u>J. of Cont. Hydrology</u>, Vol. 2, 1988. 				
1	 Mackay, D.M. and J.A. Cherry, Ground-Water Contamination: Pump and Treat Remediation, <u>ES&T</u> Vol. 23, No. 6, 1989. Mackay, D.M., P.V. Roberts, and J.A. Cherry, Transport of Organic Contaminants in Ground Water, <u>ES&T</u>, Vol. 19, No. 5, 1985. 				
	 Mendoza, C.A. and T. A. McAlary, Modeling of Ground-Water Contamination Caused by Organic Solvent Vapors, <u>Ground Water</u>, Vol. 28, No. 2, 1990. Mercer, J.W. and R.M. Cohen, A Review of Immiscible Fluids in the Subsurface: Properties, Models, Characterization and Remediation, <u>J. of Cont. Hydrology</u>, Vol. 6, 1990. 				
	 Olsen, R.L. and A. Davis, Predicting the Fate and Transport of Organic Compounds in Groundwater, <u>HMC</u>, May/June 1990. Poulson, M. and B.H. Kueper, A Field Experiment to Study the Behavior of Perchloroethylene in Unsaturated Porous Medium. Submitted to <u>ES&T</u>, 1991. 				
	 Schwille, F., <u>Dense Chlorinated Solvents in Porous and Fractured Media: Model Experiments</u> (English Translation), Lewis Publishers, Ann Arbor, MI, 1988. Shiu, W.Y., A. Maijanen, A.L.Y. Ng, and D. Mackay, Preparation of Aqueous Solutions of Sparingly Soluble Organic Substances: II. Multicomponent System - Hydrocarbon Mixtures and Petroleum Products, <u>Environ. Toxicology & Chemistry</u>, Vol. 7, 1988. 				
	 Sitar, N., J.R. Hunt, and J.T. Geller, Practical Aspects of Multiphase Equilibria in Evaluating the Degree of Contamination, <u>Proc. of the Int. Asso. of Hydrog. Conf. on Subsurface Cont. by Immiscible Fluids</u>, April 18 - 20, Calgary, Alb., 1990. U.S. EPA, <u>Dense Nonaqueous Phase Liquids</u>, EPA Ground Water Issue Paper, EPA/540/4-91-002, 1991. 				
	 U.S. EPA, <u>Evaluation of Ground-Water Extraction Remedies</u>, <u>Volume 1 (Summary Report</u>), EPA/540/2-89/054, 1989. Verschueren, K., <u>Handbook of Environmental Data on Organic Chemicals</u>, Van Nostrand Reinhold, New York, NY, 1983. 				
	23. Villaume, J.F., Investigations at Sites Contaminated with Dense Non-Aqueous Phase Liquids (NAPLs), <u>Ground Water Monitoring</u> <u>Review</u> , Vol. 5, No. 2, 1985.				
2	 Waterloo Centre for Ground Water Research, University of Waterloo Short Course, <u>Dense Immiscible Phase Liquid Contaminants</u> in Porous and Fractured Media, Kitchener, Ont., Oct., 1991. 				
1	 Waterloo Centre for Ground Water Research, University of Waterloo Short Course, <u>Identification of DNAPL Sites: An Eleven</u> <u>Point Approach</u>, Kitchener, Ont., Oct., 1991. Wilson, J.L. and S.H. Conrad, Is Physical Displacement of Residual Hydrocarbons a Realistic Possibility in Aquifer Restoration?, <u>Proc.: Petrol. Hcarb. and Org. Chemicals in Ground Water</u>, NWWA, Houston, TX, NWWA, Nov. 5-7, 1984. 				
	NOTICE: The policies and procedures set out in this document are intended solely as guidance. They are not intended, nor can they be relied upon, to create any rights enforceable by any party in litigation with the United States. EPA officials may decide to follow the guidance provided in this memorandum, or to act at variance with the guidance, based on an analysis of specific site circumstances. The Agency also reserves the right to change this guidance at any time without public notice.				
	For more information, contact: Randall R. Ross R. S. Kerr Environmental Research Laboratory Office of Research and Development U.S. Environmental Protection Agency				
	Ada, Oklahoma 74820 Authors: Charles J. Newell, Groundwater Services, Inc., Houston, Texas				
·	Randall R. Ross, R. S. Kerr Environmental Research Laboratory				