

FOCUSED FEASABILITY STUDY

FOR THE

THE ALCAS SOURCE AREA, INCLUDING THE ALCAS FACILITY AND PARCEL B PROPERTIES OLEAN, NEW YORK

Prepared for

ALCOA, Inc. Alcoa, Tennessee

Original: January 31, 2013 Revised: July 14, 2014

Prepared by

ENI Engineering, LLC

TABLE OF CONTENTS

1.0	Introduction	. 1
1.1	Purpose	. 1
1.2	Report Organization	. 1
2.0	Alcas Source Area Conditions	. 3
2.1	Site History	. 3
2.2	Alcas Source Area Geology	. 6
2.3	Alcas Source Area Hydrogeology	. 6
2.4	Soil/DNAPL Assessment Summary	13
2.5	Groundwater Assessment Summary	13
2.	5.1 Upper Water Bearing Zone	16
2.	5.2 City Aquifer	16
2.6	Alcas Source Area Conceptual Model	19
2.7	Summary of Treatability Investigation	20
3.0	Basis for Remediation	21
3.1	Remedial Action Objectives	21
3.2	Applicable or Relevant and Appropriate Requirements (ARARs), To-Be Considered,	,
or C	ther Guidance	22
3.3	Remediation Implementation and Optimization Strategy	23
4.0	Identification & Screening of Remedial Technologies	29
5.0	Development of Remedial Action Alternatives	30
6.0	Detailed Analysis of Alternatives	31
6.1	Detailed Analysis of Alternatives to Address Soil and Groundwater Contamination a	t
the .	Alcas Facility	32
6.	1.1 Alternative A.1 - No Action	32
	6.1.1.1 Overall Protection of Human Health and the Environment	33
	6.1.1.2 Compliance with ARARs	33
	6.1.1.3 Long-Term Effectiveness and Permanence	33
	6.1.1.4 Reduction of Mobility, Toxicity, or Volume	33
	6.1.1.5 Short-Term Effectiveness	33
	6.1.1.6 Implementability	33
	6.1.1.7 Cost	33
	6.1.1.8 Phase Time Estimation	33
6.	<i>1.2</i> Alternative A.2 - Excavation of Shallow Impacted Soils	33
	6.1.2.1 Overall Protection of Human Health and the Environment	34
	6.1.2.2 Compliance with ARARs	34
	6.1.2.3 Long-Term Effectiveness and Permanence	34
	6.1.2.4 Reduction of Mobility, Toxicity, or Volume	34
	6.1.2.5 Short-Term Effectiveness	34
	6.1.2.1 Implementability	34
	6.1.2.2 Cost	36
	6.1.2.3 Phase Time Estimation	36
6.	<i>1.3</i> Alternative A.3 - Vacuum Enhanced Recovery of Contaminated Soil	36
	6.1.3.1 Overall Protection of Human Health and the Environment	38
	6.1.3.2 Compliance with ARARs	38

6.1.3.3	Long-Term Effectiveness and Permanence	39	
6.1.3.4	Reduction of Mobility, Toxicity, or Volume		
6.1.3.5	Short-Term Effectiveness		
6.1.3.6	Implementability		
6.1.3.7	Cost	40	
6.1.3.8	Phase Time Estimation	40	
6.1.4 Alte	ernative A.4 - Groundwater Extraction and Treatment of Intercepted		
Groundwat	er Flow from the Source Area Using a Collection Trench	40	
6.1.4.1	Overall Protection of Human Health and the Environment	43	
6.1.4.2	Compliance with ARARs	43	
6.1.4.3	Long-Term Effectiveness and Permanence	43	
6.1.4.4	Reduction of Mobility, Toxicity, or Volume	43	
6.1.4.5	Short-Term Effectiveness	44	
6.1.4.6	Implementability	44	
6.1.4.7	Cost	44	
6.1.4.8	Phase Time Estimation	44	
6.1.5 Alte	ernative A.5 - Groundwater Extraction and Treatment of Intercepted		
Groundwat	er Flow from the Source Area Using Vertical or Horizontal Extraction Wells	44	
6.1.5.1	Overall Protection of Human Health and the Environment	46	
6.1.5.2	Compliance with ARARs	46	
6.1.5.3	Long-Term Effectiveness and Permanence	48	
6.1.5.4	Reduction of Mobility, Toxicity, or Volume	48	
6.1.5.5	Short-Term Effectiveness	48	
6.1.5.6	Implementability	48	
6.1.5.7	Cost	48	
6.1.5.8	Phase Time Estimation	48	
6.1.6 Alte	ernative A.6 - ZVI Permeable Reactive Barrier using Fracing Method to Trea	ıt	
Intercepted	Groundwater Flow from the Source Area	49	
6.1.6.1	Overall Protection of Human Health and the Environment	49	
6.1.6.2	Compliance with ARARs	49	
6.1.6.3	Long-Term Effectiveness and Permanence	49	
6.1.6.4	Reduction of Mobility, Toxicity, or Volume	51	
6.1.6.5	Short-Term Effectiveness	51	
6.1.6.6	Implementability	51	
6.1.6.7	Cost	51	
6.1.6.8	Phase Time Estimation	51	
6.1.7 Alte	ernative A.7 - Barrier Wall Containment to Prevent Impacted Groundwater fr	rom	
the Upper A	Aquitard from Migration to the City Aquifer	52	
6.1.7.1	Overall Protection of Human Health and the Environment	52	
6.1.7.2	Compliance with ARARs	52	
6.1.7.3	Long-Term Effectiveness and Permanence	52	
6.1.7.4	Reduction of Mobility, Toxicity, or Volume	54	
6.1.7.5	Short-Term Effectiveness	54	
6.1.7.6	Implementability	54	
6.1.7.7	Cost	54	
6.1.7.8	Phase Time Estimation	54	

6.1.8 Alte	ernative A.8 - Multiple ZVI Treatment Zones using Fracing Method to Treat	the
Source Are	as beneath the Main Building	54
6.1.8.1	Overall Protection of Human Health and the Environment	55
6.1.8.2	Compliance with ARARs	55
6.1.8.3	Long-Term Effectiveness and Permanence	55
6.1.8.4	Reduction of Mobility, Toxicity, or Volume	56
6.1.8.5	Short-Term Effectiveness	56
6.1.8.6	Implementability	56
6.1.8.7	Cost	56
6.1.8.8	Phase Time Estimation	56
6.1.9 Alte	ernative A.9a - ISCO using Activated Persulfate	56
6.1.9.1	Overall Protection of Human Health and the Environment	57
6.1.9.2	Compliance with ARARs	59
6.1.9.3	Long-Term Effectiveness and Permanence	59
6.1.9.4	Reduction of Mobility, Toxicity, or Volume	59
6.1.9.5	Short-Term Effectiveness	59
6.1.9.6	Implementability	59
6.1.9.7	Cost	60
6.1.9.8	Phase Time Estimation	60
6.1.10 A	Alternative A.9b - ISCO using Activated Persulfate with Excavation	60
6.1.10.1	Overall Protection of Human Health and the Environment	61
6.1.10.2	Compliance with ARARs	61
6.1.10.3	Long-Term Effectiveness and Permanence	61
6.1.10.4	Reduction of Mobility, Toxicity, or Volume	61
6.1.10.5	Short-Term Effectiveness	61
6.1.10.6	Implementability	62
6.1.10.7	Cost	62
6.1.10.8	Phase Time Estimation	62
6.2 Detail	ed Analysis of Alternatives to Address Groundwater Contamination in the U	Jpper
Aquitard on P	Parcel B	
6.2.1 Alte	ernative B.1 - No Action	
6.2.1.1	Overall Protection of Human Health and the Environment	
6.2.1.2	Compliance with ARARs	63
6.2.1.3	Long-Term Effectiveness and Permanence	63
6.2.1.4	Reduction of Mobility, Toxicity, or Volume	63
6.2.1.5	Short-Term Effectiveness	63
6.2.1.6	Implementability	63
6.2.1.7	Cost	63
6218	Phase Time Estimation	63
622 Alte	ernative B 2 - ISCO using Persulfate	64
6221	Overall Protection of Human Health and the Environment	64
6222	Compliance with ARARs	64
6223	Long-Term Effectiveness and Permanence	04
6224	Reduction of Mobility Toxicity or Volume	
6225	Short-Term Effectiveness	66
6226	Implementability	66
0.2.2.0	impromontuoning	

6.2.2.7	Cost	66
6.2.2.8	Phase Time Estimation	66
6.2.3 Alte	rnative B.3 - ISCO using Ozone	67
6.2.3.1	Overall Protection of Human Health and the Environment	67
6.2.3.2	Compliance with ARARs	67
6.2.3.3	Long-Term Effectiveness and Permanence	68
6.2.3.4	Reduction of Mobility, Toxicity, or Volume	68
6.2.3.5	Short-Term Effectiveness	68
6.2.3.6	Implementability	68
6.2.3.7	Cost	68
6.2.3.8	Phase Time Estimation	69
6.2.4 Alte	rnative B.4 - Monitored Natural Attenuation	69
6.2.4.1	Overall Protection of Human Health and the Environment	69
6.2.4.2	Compliance with ARARs	69
6.2.4.3	Long-Term Effectiveness and Permanence	69
6.2.4.4	Reduction of Mobility, Toxicity, or Volume	70
6.2.4.5	Short-Term Effectiveness	70
6.2.4.6	Implementability	70
6.2.4.7	Cost	70
6.2.4.8	Phase Time Estimation	70
6.2.5 Alte	rnative B.5 - Enhanced Anaerobic Bioremediation	70
6.2.5.1	Overall Protection of Human Health and the Environment	73
6.2.5.2	Compliance with ARARs	73
6.2.5.3	Long-Term Effectiveness and Permanence	73
6.2.5.4	Reduction of Mobility, Toxicity, or Volume	73
6.2.5.5	Short-Term Effectiveness	73
6.2.5.6	Implementability	74
6.2.5.7	Cost	74
6.2.5.8	Phase Time Estimation	74
7.0 Compara	tive Analysis of Alternatives	75
7.1 Compa	arative Analysis of Alternatives for the Alcas Facility	75
7.1.1 Ove	rall Protection of Human Health and the Environment	75
7.1.2 Con	pliance with ARARs	76
7.1.3 Lon	g-Term Effectiveness and Permanence	76
7.1.4 Red	uction of Mobility, Toxicity, or Volume	76
7.1.5 Shor	rt-Term Effectiveness	77
7.1.6 Imp	lementability	77
7.1.7 Cost	ts	77
7.2 Compa	arative Analysis of Alternatives for Parcel B	78
7.2.1 Ove	rall Protection of Human Health and the Environment	78
7.2.2 Con	pliance with ARARs	78
7.2.3 Lon	g-Term Effectiveness and Permanence	78
7.2.4 Red	uction of Mobility, Toxicity, or Volume	78
7.2.5 Shor	rt-Term Effectiveness	79
7.2.6 Imp	lementability	79
7.2.7 Cost		79

8.0	References	80	0
-----	------------	----	---

List of Figures

- Figure 2-1 Alcas Source Area Location Map
- Figure 2-2 Lines of Geologic Cross Section
- Figure 2-3 Stratigraphic Column Descriptions
- Figure 2-4 Generalized Geologic Cross Section A-A'
- Figure 2-5 Generalized Geologic Cross Section B-B'
- Figure 2-6 Generalized Geologic Cross Section C-C'
- Figure 2-7 Upper City Groundwater Contours (2-14-2012)
- Figure 2-8 Upper Water Bearing Zone Groundwater Contours (2-14-2012)
- Figure 2-9 Soil Boring Location Map in Main Building
- Figure 2-10 TCE Concentration Isopleths in the UWBZ
- Figure 2-11 TCE Concentration Isopleths in the UC
- Figure 6-1 Excavation of Shallow Impacted Soils
- Figure 6-2 VER Layout from March 1999 Conceptual Design
- Figure 6-3 Groundwater Extraction and Treatment Collection Trench
- Figure 6-4 Conceptual Cross Section of Groundwater Collection Trench
- Figure 6-5 Groundwater Extraction and Treatment Vertical Extraction Wells
- Figure 6-6 Groundwater Extraction and Treatment Horizontal Extraction Well
- Figure 6-7 ZVI PBR to Treat Intercepted Groundwater Flow from the Source Area
- Figure 6-8 Barrier Wall Containment
- Figure 6-9 ISCO with Persulfate to Treat the Sources in the UA
- Figure 6-10 ISCO with Persulfate Parcel B
- Figure 6-11 Enhanced Anaerobic Bioremediation Parcel B

List of Tables

- Table 3-1Remediation Goals for Groundwater
- Table 3-2Remediation Goals for Soil
- Table 3-3Chemical-specific ARARs, TBCs and other Guidelines
- Table 3-4
 Action-specific ARARs, TBCs and other Guidelines
- Table 3-5
 Location-specific ARARs, TBCs and other Guidelines

List of Appendices

- Appendix A: Alternative Costing Details
- Appendix B: Modeling Report for Evaluation of Groundwater Extraction as a Remedial Alternative and Olean Groundwater Model Calibration and Capture Simulation Memorandum
- Appendix C: Data Evaluation for ISCO Pilot Study
- Appendix D: Draft Bench-scale Test Summary Report
- Appendix E: Groundwater Characterization for Evaluation of Natural Attenuation
- Appendix F: Enhanced Anaerobic Bioremediation Pilot Study

1.0 Introduction

On behalf of Alcoa Remediation, ENI, LLC. in conjunction with CDM Smith, Inc., has prepared this Focused Feasibility Study ("*FFS*") Report for the Alcas property ("*Alcas Source Area*") located in Olean, Cattaraugus County, New York. The Alcas Source Area is located within the Olean Well Field Superfund Site ("*Site*").

The development of the FFS study was conducted in three parts that included:

- The development and screening of remedial technologies, submitted to the USEPA on February 27, 2009 as *Part 1: Development and Screening of Remedial Technologies*
- Evaluation of data needs and implementation of treatability investigation, and
- The detailed analysis of alternatives.

This FFS Report utilizes the results from the treatability investigation to analyze treatment alternatives against evaluation criteria outlined in the detailed analysis of alternatives.

1.1 **Purpose**

The purpose of the FFS report was to gather sufficient information to support an informed risk management decision regarding remedial alternatives at the Alcas Source Area that sufficiently accomplish the defined remedial action objectives.

1.2 **Report Organization**

This FFS Report follows the Guidance for Conducting Remedial Investigations and Feasibility Studies Under CERCLA (EPA/540/G-89/004, Office of Emergency and Remedial Response, October 1988).

This FFS Report is organized as follows:

- Section 1 Introduction: This section describes the purpose and objectives of the report and outlines the organization of the report.
- Section 2 Alcas Source Area Conditions: This section provides a historical perspective of the Olean Well Field Superfund Site along with Alcas Source Area-specific geological and hydrogeological conditions. This section also provides a Soil/DNAPL and groundwater assessment at the Alcas Source Area and a summary of the treatability investigation results.
- Section 3 Basis for Remediation: Remedial Action Objectives are established, as well as applicable or relevant and appropriate requirements
- Section 4 Identification and Screening of Remedial Technologies: This section describes the screening criteria and preliminary screening evaluation.
- Section 5 Development of Remedial Action Alternatives: This section provides a summary of the development and screening of remedial technologies.
- Section 6 Detailed Analysis of Alternatives: This section describes the detailed evaluation of remedial alternatives that passed the initial screening process. The detailed analysis evaluates alternatives against seven evaluation criteria.

- Section 7 Comparative Analysis of Alternatives: This section compares each alternative against the other alternatives.
- Section 8 References.

2.0 Alcas Source Area Conditions

This section describes the conditions at the Alcas Source Area, including: history; geology; hydrogeology; soil, DNAPL, and groundwater assessment; and a summary of pre-remedial design characterization.

For ease of understanding, the Alcas Source Area consists of two parts, the Alcas Facility and Parcel B properties. The Alcas Facility consists of the Main Building and associated land and structures located at 1116 East State Street, Olean, New York. The Alcas Facility is currently owned and occupied by Cutco Corporation. Parcel B is located south of the Alcas Facility at the following legal description:

ALL THAT TRACT OR PARCEL OF LAND, situate in the City of Olean, Cattaraugus County, State of New York, bounded and described as follows:

BEGINNING at a point on the north Right of Way line of Billington Avenue where it intersects with the centerline of Taggerty Avenue extended thence N 88-45-18 W along the north Right of Way line of Billington Avenue, a distance of 125.42' to a point; thence N 01-14-42 W through lands now or formerly of Murphy Properties, Inc., a distance of 311.96' to a point; thence south easterly on a curve to the left, along the southerly bounds of Cutco Cutlery Corp., with a radius of 1981 .29' and an arc length of 611.56' to an iron pin; thence S 68-53-05 E along the southerly bounds of Cutco Cutlery Corp., a distance of 8.72' to an iron pin; thence S 05-24-27 W along the easterly bounds of Louise Butler, a distance of 420.17' to a point on the river bank of the Allegheny River; thence S 61-05-11 W along the river bank of the Allegheny River, a distance of 27.22' to a point; thence N 29-32-29 W along the westerly bounds of Randolph V. Price and David Muir, a distance of 461.74' to a point; thence the following courses through lands now or formerly of Murphy Properties Inc.:

N 29-04-08 W, a distance of 97.63' to an iron pin set;

N 89-11-12 W, a distance of 77.36' to an iron pin set;

S 00-40-08 W, a distance of 62.81 ' to the point of beginning.

2.1 Site History

The Olean Well Field Superfund Site (the "Site") is located in the eastern portion of the City of Olean ("City") and west and northwest of the Towns of Olean and Portville in Cattaraugus County, New York as shown in Figure 2-1. The Site incorporates three municipal wells ("City Production Wells"), and spans approximately 800 acres of property principally occupied by industrial facilities. The Allegheny River flows through the southwest and southern portions of the Site. State Routes 16 and 417 provide access to the area. A portion of the Alcas Source Area was formerly occupied by the Alcas Cutlery Corporation, and is currently occupied by the Cutco Corporation. Cutlery and sporting knives have been manufactured at the facility since 1949. As part of the manufacturing process, the facility formerly used trichloroethene ("TCE") in on site vapor degreasers.

Following initial investigation activities, the U.S. Environmental Protection Agency ("*EPA*") added the Site to the National Priorities List in September 1983. Between 1983 and 1985, the

This plat was completed on Oct 12, 2000 from an instrument survey on Oct. 6, 1999 & Oct2 & 4, 2000. 2000 Robert C. Ackerman, P.L.S No. 49845

All elevations were taken on the top of the 2" PVC pipe casing around the 1" PVC well pipe and were marked thereon with a black marker pen.

Elevation datum from the City of Olean, Engineering Office, Olean, NY. Base being USGS.

37/38M

EPA conducted additional investigations at the Site and initiated early remedial actions including the supply of carbon adsorption filters to owners of impacted private wells. It was determined that soils and groundwater were impacted by several chemicals of concern ("*COCs*") including TCE and its degradation products, with established pathways of migration to the Site's Upper Aquifer ("*Upper Aquitard*" or "UA") and Lower Aquifer ("*City Aquifer*"). Targeted daughter, or degradation, products for TCE include cis-1,2-dichloroethene ("*cDCE*") and vinyl chloride ("*VC*"). Tetrachloroethene ("*PCE*"), a parent product for TCE, has also been detected at the Site and is most likely derived from a commercial grade fraction of the TCE solvent.

On September 30, 1996, EPA issued a Record of Decision for operable unit 2 at the Site which addressed the sources of volatile organic compound (VOC) contamination to groundwater, including the Alcas Source Area. The major components of the selected remedy for OU2 for the Alcas source area included the vacuum enhanced recovery (VER) of VOCs from contaminated soil, upgradient and downgradient groundwater monitoring and implementation of groundwater use restrictions.

As part of the 1998 Operable Unit 2 Consent Decree, Institutional Controls were implemented at the Site. They include:

- Refrain from installing or using any groundwater wells at or downgradient of the Source Area, except for any production wells or monitoring wells currently being used at the Property, monitoring wells required for implementation of the Work, or as approved by EPA. This restriction will terminate upon the recording in the County Clerk's Office of EPA's Certification of Completion of the Work pursuant to Paragraph 50b [of the Consent Decree];
- Refrain from installing or using any groundwater wells upgradient of the Source Area, except for any production wells or monitoring wells currently being used at the Property, monitoring wells required for implementation of the Work, or as approved by EPA. This restriction will terminate upon the recording in the County Clerk's Office of EPA's Certification of Completion of the Work pursuant to Paragraph 50b [of the Consent Decree];
- Refrain from increasing the rate of withdrawal from production wells currently being used at the Property unless for routine business operations or as approved by EPA. This restriction will terminate upon the recording in the County Clerk's Office of EPA's Certification of Completion of the Work pursuant to Paragraph 50b [of the Consent Decree];
- Refrain from excavating the Affected Property, other than any and all excavation required for the Remedial Action, for the maintenance, repair or removal of utility facilities or as otherwise approved by EPA. This restriction will terminate upon the completion of the Remedial Action; and
- Refrain from constructing or erecting any temporary or permanent structure over the Affected Property, other than that required for the Remedial Action or as approved by EPA. This restriction will terminate upon the completion of the Remedial Action.

2.2 Alcas Source Area Geology

The geology at the Alcas Source Area is characteristic of glacial deposit. Alcas Source Area soils transition downward from primarily a finer sediment unit typical of glacial till near land surface to a coarse glacial outwash unit of high permeability, to a glacio-lacustrine clay encountered in boreholes at 82 to 97 feet below land surface ("*bls*"). To illustrate the Alcas Source Area geology, three geological cross sections were constructed. The location of the cross sections is shown in Figure 2-2. The symbols representing the different stratigraphies used in the cross sections are shown in Figure 2-3. The lithologic units logged during this investigation are shown in Cross-Section A-A', B-B', and C-C' in Figures 2-4, 2-5, and 2-6, respectively.

The overlying glacial till unit was encountered at approximately 0 to 12 feet bls, and varies in thickness across a majority of the Alcas Source Area between 16 and 29 feet. The till unit was identified by its olive gray color and/or the gravel content and is commonly referred to as the Upper Aquitard based on its generally low permeability. This unit contained 50 to 97 percent clay in the historical sieve analyses. The thickness of the till is highly variable across the Alcas Source Area. Within this unit, a discontinuous thicker and somewhat coarser sequence of sediments may provide preferential pathways for water and constituent migration, and this discontinuous lens (or lenses) is referred to in this document as the Upper Water Bearing Zone.

The glacial outwash has been encountered below the Upper Aquitard from approximately 25 to 35 feet bls, and varies in thickness between 54 and 72 feet across the Alcas Source Area. This unit is very permeable, and yields significant quantities of water. The City Aquifer hydrogeologic unit is primarily contained within the glacial outwash geologic unit at the Alcas Source Area. As noted above, glacio-lacustrine clays provide an effective bottom boundary to the City Aquifer between roughly 80 and 100 feet bls.

2.3 Alcas Source Area Hydrogeology

The groundwater elevations for the upper and lower portions of the City Aquifer wells were contoured. Figure 2-7 shows the upper City Aquifer contours. The contours for the upper and lower portions of the City Aquifer show groundwater generally flowing to the east toward City Production Well 18M. These maps show that City Production Well 18M's controlling influence potentially extends beyond the westward boundary of the Main Building, thus capturing affected groundwater in the City Aquifer.

Based on these groundwater elevations, groundwater flow in the City Aquifer appears consistent and uniform. This was expected since City Production Well 18M has been in continuous service since 1990. Given City Production Well 18M has been pumping for the last 15 years and the consistent and uniform surrounding groundwater flow, the flow system in the City Aquifer can be assumed to be at steady state. This means that the shape of the contours and complete capture of affected groundwater in the City Aquifer will not change unless the pumping in City Production Well 18M is reduced or stopped.

Most of the wells used for measuring groundwater elevations in the UWBZ are located around the perimeter of the Alcas Facility and to the south on Parcel B. Groundwater elevations in these wells are all much shallower than those in City Aquifer wells, indicating a significant downward

28. SILTY CLAYEY SANDY GRAVEL

- 29. CLAYEY SANDY GRAVEL
- 30. SANDY SILT

NOT TO SCALE

NOTE: RED INDICATES PREDOMINANT LITHOLOGY. BLUE INDICATES SECONDARY LITHOLOGY.

ENVIRONEERING, INC.			
	FIGL	JRE 2-3	
STRATI	STRATIGRAPHIC COLUMN		
DESCRIPTIONS			
ALCAS PROPERTY OLEAN, NEW YORK			
DRAWN BY: AF	DATE:	09/05/2013	PROJ. NO. 137 – 192

gradient between the UWBZ and the City Aquifer. Two potential exceptions to this are wells UA-4 and RU-7 located east of the Alcas Facility, just over halfway to 18M.

Groundwater elevations in these wells are almost 10 feet deeper than UWBZ wells, consistent with those in the City Aquifer; however, the screens were intended to target the UWBZ based on field observations during drilling. Figure 2-8 shows groundwater elevations contours for the UWBZ, but with solid lines stopping just east of the Alcas Facility to indicate how they would be drawn without including UA-4 and RU-7. This results in a hydraulic gradient that is primarily to the south and southeast, potentially reflecting the influences of both the regional topography sloping toward the river and the pumping at 18M. The dashed lines on the figure indicate how the contour lines would be drawn if UA-4 and RU-7 are included in the UWBZ data set. This results in a very strong easterly gradient in the UWBZ on the east side of the Alcas Facility. As it is not clear whether the groundwater elevations in these two wells represent the UWBZ or the upper City Aquifer, both possibilities will be considered in the Alcas Source Area conceptual model discussion in Section 2.6.

2.4 Soil/DNAPL Assessment Summary

Early investigations at the Alcas Source Area involved the collection of soil samples from the southern/southeast portion of the Alcas Facility. However, the concentrations in the soil samples do not indicate residual DNAPL in this portion of the Alcas Facility. It is possible that some of the affected soils may be associated with small, nearby releases (*i.e.*, weed killing activities).

The majority of impacted soils at the Alcas Source Area are beneath the Main Building. Varying concentrations of COCs were detected in the soil samples collected from the borings installed within the Main Building. Figure 2-9 shows the location of the soil borings advanced within the Main Building. Concentrations of TCE as high as 280 milligrams per kilogram (mg/kg) were detected in boring B-3 at 9-10 feet depth.

This concentration represents the highest soil sample concentration of TCE detected at the Alcas Source Area to date. The presence of this concentration of TCE beneath the Main Building further substantiates the hypothesis that the source area is under the Main Building.

2.5 Groundwater Assessment Summary

In 2004, vertical profiling of the groundwater at the Alcas Source Area was conducted. Groundwater samples were collected at 10 foot intervals from two borings at depths ranging from approximately 30 feet to approximately 100 feet below grade.

Of the COCs at the Alcas Source Area, TCE and PCE were the most prevalent. The profile data show that TCE had migrated vertically from beneath the Main Building through the Upper Aquitard then traveled horizontally. Profiling samples from the bottom of the City Aquifer provide a characterization of water quality and determine that no free DNAPL existed at the bottom of this unit. Results suggest that the source of the material impacting 18M exists as a residual DNAPL in the Upper Aquitard not as a "pooled DNAPL" in the City Aquifer. The profiling further demonstrates that concentrations are decreasing from the UWBZ into the Upper City Aquifer and then further decease from the Upper City into the Lower City Aquifer.

	LEGEND	
	PROPERTY BOUNDARY	
	+ BORING LOCATION	
ENVI	RONEERING, INC.	
	FIGURE 2-9	
SOIL E II	30RING LOCATION MAP N MAIN BUILDING	
	ALCAS PROPERTY OLEAN, NEW YORK	
RAWN BY: AF	DATE: PROJ. NO. 05/09/2014 137 - 192	

2.5.1 Upper Water Bearing Zone

The sampling results show several key components of the plume distribution at the Alcas Source Area. The wells around the southeast corner of the Main Building (RU-4, RU-5, and RU-6) have TCE concentrations that exceed 1 percent of the solubility of TCE in water (solubility limit). This suggests the presence of a current or historical DNAPL source at this location, or a short distance up gradient. This places the likely source of DNAPL under the Main Building. Figure 2-10 illustrates the TCE in the Upper Water Bearing Zone.

The dissolved-phase plume extends from the southeast corner toward the river generally to the south. This direction of contaminant migration would have predominated during the periods before Well 18M was installed and during the shutdown of 18M during the 1970s. During the 1960s and post 1980, a portion of the groundwater flow is likely toward 18M. The portion of the Alcas Source Area that has flow toward 18M in the Upper Water Bearing Zone is from under the eastern half of the Main Building. As shown in Figure 2-8, it is unclear how far the influence of 18M extends to the south of the Alcas Source Area. The groundwater concentrations are decreasing from the Main Building toward the south with TCE concentrations in RU-8 and RU-9 at 0.120 mg/L and 0.00087 mg/L, respectively. Closer to the river, the TCE concentration increases to 1.3 mg/L (results from the September 2007 sampling event) in RU-10. This higher concentration in RU-10 might represent the migration of TCE that predominated prior to the installation of 18M and during the shutdown of 18M during the 1970s. Given the vicinity of RU-10 is clearly outside the capture zone of 18M (Figure 2-8), concentrations in this area seem to have remained relatively unchanged for several years. The hydraulic gradient south of RU-10 flattens out considerably suggesting that any flow in the UWBZ in that area would be extremely slow.

2.5.2 City Aquifer

The top of the City Aquifer is generally located 25 to 35 feet below grade in the western portion of the Alcas Source Area, dipping to the east and south. To assist in the assessment of groundwater quality in the upper portion of the City Aquifer, five monitor wells (UC-1 through UC-5) were installed at the Alcas Source Area. To assess groundwater quality in the lower portion of the City Aquifer, five monitor wells (BC-1 through BC-5) were installed at the Alcas Source Area. In addition, monitor wells D-2, CW-13, B-2, RU-17C, RU-18 and UC-1 through UC-5 have been used to assess the impact to the upper portion of the City Aquifer.

City well 18M is located east of the Alcas Facility. Currently, TCE concentrations in 18M are approximately 0.020 mg/L. The highest concentration of TCE (10-16 mg/L) has been found in D2. Monitor wells UC-1 – UC4 contain TCE concentrations ranging from <0.001 mg/L to 0.055 mg/L. Figure 2-11 illustrates the TCE concentrations of the upper city aquifer. In the lower portion of the City Aquifer no detectable concentrations of TCE above the drinking water standard have been observed.

In 1991, the EPA issued unilateral administrative order OU1 to the PRPs. As part of the OU1 order, EPA required groundwater samples be collected from selected wells around the Olean Well Field on a quarterly and semi-annual basis. Alcas D-2 and CW-13 are the two closest wells to the Alcas Facility. D-2 has a concentration of approximately 16 mg/L, and CW-13 has a concentration of approximately 0.00015 mg/L. The concentration of TCE in these wells has

37/38M

37/38M

ſ	LE	GEND		
	UA-1 🔶	ALCAS MONIT	ORING WELLS	
	SW-14 ↔	EXISTING MON	ITORING WELLS	
	18M 👁	PUBLIC WATE	R WELL	
	ENI−1 ●	BORING		
		PROPERTY BO	OUNDARY	
	o	FENCE		
	0.026	TCE CONCEN IN THE UPPI TRANSITION	ITRATION ER CITY AND UPPI ZONE (mg/L)	ER CITY
		TCE CONTOU For contouri minimum de used for no	IR INTERVAL (mg/ ng purposes, the stection limit (MDL n-detects (ND)	'L) .) was
	SAMPLES COLLECTED	IN NOVEMBER (& DECEMBER 2011	
	0 75	150	300	
	SC	ALE IN FEET	-	
NVIF	RONEE	RING	i, INC.	
	FIGURE 2 TCE	2-11		
oncen ty an	tration ls d Upper ALCAS PRO OLEAN, NEW	opleth City T PERTY / YORK	Map ransition	Zone
	DATE: 09	/05/2013	proj. no. 137-	-192

remained relatively unchanged for the past 15 years, indicating that while 18M is in operation, a stable plume exists in the City Aquifer.

2.6 Alcas Source Area Conceptual Model

Decisions regarding the effectiveness of remedial actions must be based on a thorough understanding of the physical and chemical conditions of a site. The conceptual model serves as a method of evaluating the restoration potential of a site, relating governing parameters to sitespecific data. The conceptual model can be summarized as follows:

- The source material is composed of chlorinated solvents originally released as DNAPL, but now present as immobilized, residual DNAPL, high concentrations sorbed to soil, and/or high concentrations dissolved in groundwater in the Upper Aquitard/UWBZ.
- At the Alcas Source Area, The UWBZ is a discontinuous unit comprising predominantly sand, primarily appearing as localized stream deposits and fill material within the Upper Aquitard;
- The Upper Aquitard is a very heterogeneous unit comprising predominantly silty/clayey units with intermixed sandy units, characterized by low permeabilities, thereby acting as an aquitard overlying the City Aquifer;
- A strong vertical hydraulic gradient exists between the UWBZ and the City Aquifer, indicating they are generally not in strong hydraulic communication;
- Horizontal groundwater flow is the primary component of groundwater flow, and vertical groundwater flow is a secondary component, as indicated by the rapidly decreasing COC concentrations with depth in the City Aquifer;
- At the Alcas Source Area, horizontal flow of groundwater in the Upper Aquifer is generally directed to the south toward the Allegheny River, though the pumping of 18M might exert a southeasterly influence at least under the eastern half of the Alcas Facility;
- The primary source area consisting of one or more entry zones and associated residual DNAPL zones is located below the Main Building; and
- Dissolved phase concentrations in the UWBZ/Upper Aquitard south of the Main Building are stable due to the flat hydraulic gradient in this area and the lack of influence of 18M.

This information suggests a probable residual material is under the Main Building that will persist and continue to generate dissolved phase derivatives for unknown lengths of time as long as the material persists. Overall, the residual material under the Main Building identified by the updated conceptual model includes a significantly larger area than originally specified in the OU2 ROD.

It is important to note that this conceptual model identifies both the residual DNAPL source and the dissolved phase concentrations outside the influence of 18M to the south as separate areas that need to be addressed by remedial alternatives. Mass removal in the residual source area will decrease any COC flux both to the City Aquifer and through the Upper Aquitard to the south and southeast, while mass removal in the southern dissolved concentration area will accelerate

restoration of groundwater there. These two areas will both be considered in the detailed evaluation of alternatives in Section 6.

2.7 Summary of Treatability Investigation

Investigation activities were conducted to collect characterization data and assess applicability, removal efficiency, and implementability of in-situ remediation technologies. The activities outlined in the *Part II Phase 2 Data Collection Work Plan (revised June 2011)* consisted of:

- The collection of groundwater elevation data and aquifer testing to simulate remedial alternative and hydrogeologic conditions with a groundwater flow model,
- The collection of groundwater samples to update Alcas Source Area characterization data and evaluate natural attenuation as a remedial alternative,
- Administered a bench-scale study on ISCO treatment technologies,
- Conducted field pilot test of ISCO using activated sodium persulfate, and
- Conducted field pilot test of enhanced anaerobic bioremediation.

The results of the treatability investigation are included as:

- Appendix B: Modeling Report for Evaluation of Groundwater Extraction as a Remedial Alternative and Olean Groundwater Model Calibration and Capture Simulation Memorandum;
- Appendix C: Data Evaluation for ISCO Pilot Study;
- Appendix D: Bench-scale Test Summary Report;
- Appendix E: Groundwater Characterization for Evaluation of Natural Attenuation; and
- Appendix F: Enhanced Anaerobic Bioremediation Pilot Study.

3.0 Basis for Remediation

The identification and screening of appropriate remedial alternatives requires that remedial goals and requirements be established as the basis for remediation. In this section, Remedial Action Objectives are established, as well as applicable or relevant and appropriate requirements (ARARs). With these identified, alternatives with the potential to meet them can be developed.

3.1 Remedial Action Objectives

The Record of Decision ("ROD") for the second operable unit ("OU2") for the Site considered risks on both a human health and ecological basis. The human health assessment addressed potential risk by identifying several potential exposure pathways by which the public may be exposed to under current and future land-use conditions. The baseline risk assessment evaluated the health effects that would result from exposure to groundwater containing constituents of concern through three pathways; namely, ingestion, dermal contact and inhalation of volatilized constituents during showering. Risk as a result of constituents in surface and subsurface soils was calculated for an exposure scenario of ingestion or inhalation by construction workers. A residential exposure scenario was not calculated because the property is zoned and operated as industrial/commercial, and was expected to continue as such in the future.

The baseline risk assessment results indicated that ingestion of and dermal contact with untreated groundwater at the Site poses the only unacceptable risks to human health. Risks due to the inhalation of constituents from untreated groundwater during showering were within EPA's acceptable risk range. Risks calculated for ingestion and inhalation of surface and subsurface soils by construction workers were found to be acceptable at the Alcas Source Area.

The ecological risk assessment concluded that there are no significant habitats present at the Alcas Source Area which could potentially support indigenous wildlife receptor species.

The groundwater RAOs for the Alcas Source Area (Alcas Facility and Parcel B) include:

- Restore the City Aquifer beneath the Alcas Source Area to its beneficial use as a source of drinking water by reducing contaminant levels to the more stringent of federal MCLs or New York State standards;
- Minimize, contain and/or eliminate sources of VOC contaminants already in the shallow groundwater at the Alcas Source Area; and
- Minimize and/or eliminate the potential for future human exposure to Alcas Source Area contaminants via contact with contaminated groundwater.

The groundwater preliminary remediation goals are identified in Table 3-1.

Chemicals of Potential Concern (COPCs)	NYS Groundwater Quality Standards (ppb)	NYS Drinking Water Quality Standards (ppb)	National Primary Drinking Water Standards (ppb)
cis- 1,2-DCE	5	5	70
trans-1,2-DCE	5	5	100
TCE	5	5	5
PCE	5	5	5
Vinyl Chloride	2	2	2
Xylene	5	5	10,000

Table 3-1: Remediation Goals for Groundwater

The soil RAOs for the Alcas Facility include:

- Minimize, contain and/or eliminate VOC contaminants from soils at the Alcas Source Area that are leaching into the groundwater; and
- Minimize and/or eliminate the potential for human exposure to Alcas Source Area contaminants via contact with contaminated soil.

To satisfy these RAOs, soil remediation goals for addressing the Alcas soil contamination are identified in Table 3-2.

Chemicals of Potential Concern (COPCs)	Soil Remediation Goals (ppm)
cis- 1,2-DCE	0.25
trans-1,2-DCE	0.19
Vinyl Chloride	0.02
TCE	0.47
PCE	1.3
Xylene	1.6

Table 3-2: Remediation Goals for Soil

Soil remediation goals were developed as a function of the State Remedial Program Soil Cleanup Objectives (6 NYCRR Subpart 375-6) as discussed below.

3.2 Applicable or Relevant and Appropriate Requirements (ARARs), To-Be Considered, or Other Guidance

ARARs are classified into three categories: (1) chemical-specific, (2) location-specific, and (3) action-specific, depending on whether the requirement is triggered by the presence or emission of a chemical, by a vulnerable or protected location, or by a particular action.

Chemical-specific ARARs are typically health- or risk-based numerical values or methodologies which, when applied to site-specific conditions, are expressed as numerical values that represent

cleanup standards (i.e., the acceptable concentration of a chemical at the site). Location-specific ARARs are restrictions on the concentration of constituents or the conduct of activities in environmentally sensitive areas. Action-specific ARARs are usually technology- or activity-based requirements or limitations on actions or conditions taken with respect to specific constituents. Action-specific ARARs do not determine the remedial alternative; rather, they indicate how a selected alternative must be achieved.

According to published EPA guidance (EPA540-R-98-020), ARARs may be waived under certain circumstances during on-site response actions. In other cases, the response may incorporate environmental policies or proposals that are not ARARs, but do address site- specific concerns. Such to-be-considered ("*TBCs*") standards may be used in determining the cleanup levels necessary for protection of human health and the environment. These TBCs include nonpromulgated criteria, advisories, guidance, and proposed standards.

Tables 3-3 through 3-5 identify action, chemical, and location-specific ARARs, TBCs, or other guidance considered for this Alcas Source Area.

3.3 Remediation Implementation and Optimization Strategy

The selected remedy for the Alcas Source Area must account for the details of the Alcas Source Area conceptual model outlined in Section 2.6, as well as the RAOs and site-specific constraints discussed in Section 3.1. Doing this will require some flexibility in remedy implementation that incorporates new data as they are collected, evaluates them in the context of progress toward cleanup objectives and cost, and facilitates optimization of the remedy through modifying operations, capitalizing on new opportunities for cost-effective mass removal, transitioning from aggressive to passive technologies, and/or reevaluating cleanup targets.

Some of the key Alcas Source Area conditions and constraints that will affect the remediation implementation include:

- The source material present at the Alcas Source Area comprises immobilized, residual DNAPL, high concentrations sorbed to soil, and/or high concentrations dissolved in groundwater in a large area located under the southeast corner of the Main Building;
- The soils of the UWBZ, where the constituent mass is contained, are highly heterogeneous; and
- Preventing detrimental impacts to municipal well 18M will be of primary importance to remedy implementation.

In Sections 5 and 6, remedial alternatives with the potential to meet the RAOs are developed and evaluated as a conceptual design. A major objective, per the RAOs, is to remove or control source material remaining at the Alcas Source Area. As such, some technologies are considered that are focused primarily on containment (or control) of the source material, while others are considered that have the potential to remove some or all of the source. In general EPA guidance expresses a preference for removal of source material over containment when possible; i.e., a reduction in toxicity, mobility, or volume. Therefore, special attention is given to alternatives employing these technologies in the development of a remediation strategy for the Alcas Source Area.

Table 3-3 Chemical-specific ARARs, TBCs, and other Guidance Alcas Property Olean, Cattaraugus County, New York				
Regulatory Level	Regulatory Authority and Citation	Requirement Synopsis		
Federal	National Primary Drinking Water Standards-Maximum Contaminant Levels (MCLs) and Maximum Contaminant Level Goals (MCLGs) (42 U.S.C. § 300f et seq and 40 CFR Part 141, Subpart F)	Establishes health-based standards for public drinking water systems. Also establishes drinking water quality goals set at levels at which no adverse health effects are anticipated, with an adequate margin of safety.		
State	New York State Department of Health Drinking Water Standards (10 NYCRR Part 5)	Sets MCLs for public drinking water supplies.		
State	New York Remedial Program Soil Cleanup Objectives (6 NYCRR Part 375.6)	Establish standards for soil cleanups.		
State	New York DEC Commissioner Policy 51 (CP-51 /Soil Cleanup Guidance)	Provides the framework and procedures for the selection of soil cleanup levels appropriate for each of the remedial programs		
State	New York Surface Water and Groundwater Quality Standards and Groundwater Effluent Limitations (6 NYCRR Part 703)	Establish numerical standards for groundwater and surface water cleanups.		

Table 3-4 Action-specific ARARs, TBCs and other Guidance					
	Alcas Property Olean, Cattaraugus County, New York				
Regulatory Level	Regulatory Authority and Citation	Requirement Synopsis			
General Requirement fo	r Site Remediation				
Federal	(29 CFR 1904)	This regulation outlines the record keeping and reporting requirements for an employer under OSHA.			
Federal	OSHA—General Industry Standards (29 CFR 1910)	These regulations specify an 8-hour time-weighted average concentration for worker exposure to various organic compounds. Training requirements for workers at hazardous waste operations are specified in 29 CFR 1910-120			
Federal	OSHA—Construction Industry Standards (29 CFR 1926)	This regulation specifies the type of safety equipment and procedures to be followed during site remediation.			
Federal	RCRA Identification and Listing of Hazardous Wastes (40 CFR 261)	Describes methods for identifying hazardous wastes and lists known hazardous wastes.			
Federal	RCRA Standards Applicable to Generators of Hazardous Wastes (40 CFR 262)	Describes standards applicable to generators of hazardous wastes.			
Federal	RCRA—Preparedness and Prevention (40 CFR 264.30-264.31)	This regulation outlines the requirements for safety equipment and spill control.			
Federal	RCRA—Contingency Plan and Emergency Procedures (40 CFR 264.50–264.56)	This regulation outlines the requirements for emergency procedures to be used following explosions, fires, etc.			
State	New York Hazardous Waste Management System – General (6 NYCRR Part 370)	This regulation provides definition of terms and general standards applicable to hazardous wastes management system.			
State	New York Identification and Listing of Hazardous Waste (6 NYCRR Part 371)	Describes methods for identifying hazardous wastes and lists known hazardous wastes.			
State	New York Hazardous Waste Management Facilities (6 NYCRR Part 373)	Regulates treatment, storage, and disposal of hazardous waste.			
State	New York Management of Specific Hazardous Waste (6 NYCRR Part 374)	Establishes standards for the management of specific hazardous wastes.			
State	New York Environmental Remediation Programs (6 NYCRR Part 375)	Identifies process for investigation and remedial action at state funded Registry site; provides exception from NYSDEC permits			
State	New York DEC Commissioner Policy 51 (CP-51 /Soil Cleanup Guidance)	Provides the framework and procedures for the selection of soil cleanup levels appropriate for each of the remedial programs			
State	New York Solid Waste Management Regulations (6 NYCRR	Sets standards and criteria for all solid waste management facilities, including design, construction, operation, and closure			
Waste Transportation	(300)	requirements for the municipal solid waste landmits.			
Federal	Department of Transportation (DOT) Rules for Transportation of Hazardous Materials (49 CFR Parts 107, 171, 172, 177 to 179)	This regulation outlines procedures for the packaging, labeling, manifesting, and transporting hazardous materials.			
Federal	RCRA Standards Applicable to Transporters of Hazardous Waste (40 CFR 263)	Establishes standards for hazardous waste transporters.			
State	New York Hazardous Waste Manifest System and Related Standards for Generators, Transporters and Facilities (6 NYCRR Part 372)	Establishes record keeping requirements and standards related to the manifest system for hazardous wastes.			
State	New York Waste Transporter Permit Program (6 NYCRR Part 364)	Establishes permit requirements for transportations of regulated waste.			
Disposal					
Federal	RCRA Land Disposal Restrictions (40 CFR 268)	Identifies hazardous wastes restricted from land disposal and provides treatment standards under which an otherwise prohibited waste may be land disposed.			
State	New York Standards for Universal Waste (6 NYCRR Part 374- 3) and Land Disposal Restrictions (6 NYCRR Part 376)	These regulations establish standards for treatment and disposal of hazardous wastes.			
Groundwater Discharge					
Federal	Clean Water Act (CWA [40 CFR 122, 125)	National Pollutant Discharge Elimination System (NPDES) permit requirements for point source discharges must be met, including the NPDES Best Management Practice (BMP) Program. These regulations include, but are not limited to, requirements for compliance with water quality standards. a discharge monitoring system, and records maintenance.			
Federal	Clean Water Act (Federal Ambient Water Quality Criteria [FAWOC] and Guidance Values [40 CFR 131.36])	Establishes criteria for surface water quality based on toxicity to aquatic organisms and human health.			
Federal	Safe Drinking Water Act – Underground Injection Control	Establish performance standards, well requirements, and permitting requirements for groundwater re-injection wells.			
State	New York Regulations on State Pollution Discharge Elimination	This permit governs the discharge of any wastes into or adjacent to State waters that may alter the physical, chemical, or			
State	System (SPDES) (6 NYCRR parts 750-757) New York Surface Water and Groundwater Quality Standards	biological properties of State waters, except as authorized pursuant to a NPDES or State permit. Establish numerical criteria for groundwater treatment before discharee.			
	and Groundwater Effluent Limitations (6 NYCRR Part 703) New York State Ambient Water Quality Standards and				
State	Guidance Values and Groundwater Effluent Limitations (TOGS 1.1.1)	Provides groundwater effluent limitations for use where there are no standards.			
Off-Gas Management	Clean Air Act (CAA)-National Ambient Air Quality Standards				
Federal	(NAAQs) (40 CFR 50)	These provide air quality standards for particulate matter, lead, NO ₂ , SO ₂ , CO, and volatile organic matter.			
Federal	Federal Directive – Control of Air Emissions from Superfund Air Strippers (OSWER Directive 9355.0-28)	These provide guidance on the use of controls for superfund site air strippers as well as other vapor extraction techniques in attainment and non-attainment areas for ozone.			
State	New York Air Quality Standards/ DER-10 (6 NYCRR Part 257)	This regulation requires that maximum 24-hour concentrations for particulate matter not be exceeded more than once per year. Fugitive dust emissions from site excavation activities must be maintained below 250 micrograms per cubic meter ($\mu g/m^3$).			
State	New York State Department of Environmental Conservation (DAR-1) Air Guide 1, Guidelines for the Control of Toxic Ambient Contaminants	This policy provides guidance for the control of toxic ambient air contaminants and outlines the procedures for evaluating sources.			
State	New York Permits and Certificates (6 NYCRR Part 201)	Permits may be exempted for listed trivial activities.			
State State	New York Emissions Verification (6 NYCRR Part 202) New York General Prohibitions (6 NYCRR Part 211)	Specifies the sampling and documentation requirements for off-gas emissions. Prohibition applies to any particulate, fime, gas, mist, odor, smoke, vanor, pollen, toxic or deleterious emissions			
State	New York General Process Emission Sources (6 NYCRR Part 212)	Sets the treatment requirements for certain emission rates.			

Table 3-5 Location-specific ARARs, TBCs and other Guidance Alcas Property Olean, Cattaraugus County, New York		
Regulatory Level	Citation	Requirement Synopsis
Federal	National Historic Preservation Act (16 U.S.C. §470 et seq. and 36 CFR Part 800)	Establishes procedures to provide for preservation of historical and archeological data that might be destroyed through alteration of terrain as a result of a federal construction project or a federally licensed activity or program.
Federal	Endangered Species Act (16 U.S.C.§ 1531 et seq., 50 CFR Part 200)	Requires that the continued existence of any endangered or threatened species and/or its habitat not be impacted by a federal activity
Federal	Clean Water Act Section 404; 40 CFR Parts 230; 33 CFR Parts 320-330	Prohibits discharge into wetlands.
Federal	Clean Water Act ; 40 CFR Part 6 Appendix A, section 4	Avoids adverse effects, minimize potential harm, preserve, and enhance wetlands.
Federal	Floodplain Management; 40 CFR 6.302 (b) (2005)	Regulates activities in a floodplain.
State	Endangered and Threatened Species of Fish and Wildlife (6 NYCRR Part 182)	Standards for the protection of threatened and endangered species
State	Freshwater Wetlands; 6 NYCRR 663-665	Establishes permit requirement regulations, wetland maps, and classifications.
State	Floodplain Management; 6 NYCRR 500	Describes development permitting requirements for areas in floodplains
State	Use and Protection of Waters; 6 NYCRR 608	Regulates the modification or disturbance of streams
State	Wild, Scenic, and Recreational Rivers; 6 NYCRR 666	Regulations for administration and management.
State	Floodplains; 6 NYCRR 502	Contains floodplain management criteria for state projects.

As will be discussed in subsequent sections, several technologies hold promise for removing source and dissolved constituent mass at the Alcas Source Area. However, the Alcas Source Area conditions and constraints listed above provide an important context for implementation of those technologies. First, the proximity of well 18M is a limiting factor for in situ treatment technologies employing injection of treatment reagents. Such injections must be implemented such that no detrimental impact to well 18M water quality is realized. This means that injections cannot employ overly large volumes and cannot be extended over too long a time period.

Second, the locations of the source material under the Main Building provide a formidable challenge for delivery of any technology. The fact that the Main Building houses an active, large manufacturing operation congested with large pieces of equipment which cannot be moved further limits accessibility.

Third, the nature of the source material, the heterogeneity of the soils is a constraining factor. Based on the collective experience of practitioners over the last two decades, it is highly unlikely that complete removal of the source material can be achieved cost-effectively under these conditions in a short time period by any of the technologies available (e.g., NRC 2012).

These constraints do not prevent cost-effective use of source removal technologies for significant benefit, but they do mean that a combination of aggressive, short-term mass removal technologies and passive, long-term attenuation processes should be employed in the context of achieving "faster, cleaner, greener, and cheaper" cleanups.

Following remedy selection (to be specified in a Record of Decision Amendment), the Remedial Design phase will proceed. Following the design, the remedy will be constructed. During construction, additional subsurface information will be obtained that might suggest conditions are somewhat different than expected during the conceptual design phase, and some optimization of the remedial design is required before completing construction or beginning operations. Once any required modifications to the construction design or operations strategy are implemented, remedial operations will begin.

Performance monitoring data will be collected routinely to determine whether the system is operating as designed, and whether progress is being made toward cleanup objectives. These data will be used to update the Alcas Source Area conceptual model as appropriate. Armed with the performance monitoring data and updated Alcas Source Area conceptual model, the effectiveness of the remedy can be evaluated. The appropriate frequency of these evaluations will depend on the remedy selected, and the evaluations will be conducted in accordance with EPA guidance (Groundwater Completion Strategy, U.S. EPA OSWER directive 9200.2-144, May 2014).

In the case of aggressive source removal technologies, the transition will be to long-term, ongoing attenuation processes resulting from the active remedy. A performance monitoring strategy will be developed for the attenuation processes that include performance benchmarks based on numerical modeling using the updated Alcas Source Area conceptual model. The performance timeframe for attenuation processes is expected to be significantly longer than that of the source removal technology(ies), so the frequency of evaluation will likely be lower. In any

case, performance monitoring data will be collected in order to update the Alcas Source Area conceptual model, and the effectiveness of attenuation processes will be evaluated following the same process as for the source removal portion of the remedy.

4.0 Identification & Screening of Remedial Technologies

Screening of remedial technologies and technology process options was conducted in two stages. The first stage evaluated technologies based on technical implementability and compliance with site-specific constraints. The second stage evaluated technologies based on effectiveness, implementability, and cost.

Based on the Alcas Source Area conceptual model outlined in Section 2 and the RAOs developed in Section 3, the Alcas Source Area has been divided into two primary areas to be targeted for remedial action. The first area is the residual source area underneath and immediately adjacent to the Alcas Facility. The second primary area is the dissolved phase concentrations on Parcel B.

Remedial alternatives based on available remedial technologies were developed for each target area. Those technologies are described and evaluated in the ENI report Focused Feasibility Study *Part 1: Development and Screening of Remedial Technologies* submitted to the US EPA on February 27, 2009. The technologies held for further evaluation are discussed in Section 5.0.

5.0 Development of Remedial Action Alternatives

The following technologies are held for further evaluation to address soil and groundwater contamination at the Alcas Facility.

- Alternative A.1 No Action;
- Alternative A.2 Excavation of Shallow Impacted Soils;
- Alternative A.3 Vacuum Enhanced Recovery of Contaminated Soil;
- Alternative A.4 Groundwater Extraction and Treatment of Intercepted Groundwater Flow from the Source Area Using a Collection Trench;
- Alternative A.5 Groundwater Extraction and Treatment of Intercepted Groundwater Flow from the Source Area Using Vertical or Horizontal Extraction Wells;
- Alternative A.6 ZVI Permeable Reactive Barrier using Fracing Method to Treat Intercepted Groundwater Flow from the Source Area;
- Alternative A.7 Barrier Wall Containment to Prevent Impacted Groundwater from the Upper Aquitard from Migration to the City Aquifer;
- Alternative A.8 Multiple ZVI Treatment Zones using Fracing Method to Treat the Source Areas Beneath the Main Building; and
- Alternative A.9a ISCO using Activated Persulfate to Treat the Source Areas Beneath the Main Building; and
- Alternative A.9b ISCO using Activated Persulfate with Excavation to Treat the Source Areas Beneath the Main Building.

The following technologies are held for further evaluation to address groundwater contamination at Parcel B.

- Alternative B.1 No Action;
- Alternative B.2 ISCO using Persulfate;
- Alternative B.3 ISCO using Ozone;
- Alternative B.4 Enhanced Anaerobic Bioremediation; and
- Alternative B.5 Monitored Natural Attenuation.
6.0 Detailed Analysis of Alternatives

This section presents a detailed analysis of each remedial alternative identified in Section 5.0. The detailed analysis will present relevant information that will aid in the selection of an alternative that satisfies the RAOs, complies with ARARs, is cost effective, provides a permanent solution, and reduces toxicity, mobility, or volume.

In accordance with 40 CFR §300.430 RI/FS Selection of Remedy and US EPA *Guidance for Conduction Remedial Investigations and Feasibility Studies Under CERCLA* (USEPA 1988), each alternative will be assessed against nine evaluation criteria that include:

- 1. Overall Protection of Human Health and the Environment: Alternatives are assessed to determine whether they can adequately protect human health and the environment, in both the short and long term.
- 2. Compliance with ARARs: Alternatives are assessed to determine whether they attain ARARs.
- 3. Long-term effectiveness and permanence: Alternatives are assessed for long-term effectiveness and permanence, along with the degree of certainty that they provide for success. The magnitude of risk remaining from untreated or treated residual waste is also examined along with the adequacy and reliability of controls that may be necessary to manage untreated or treated residual waste.
- 4. Reduction of toxicity, mobility or volume: Alternatives are assessed to the degree to which they can reduce toxicity, mobility, or volume. The evaluation will analyze the treatment process and the materials treated, the amount of material treated, the degree to which the treatment is irreversible, the type and quantity of residual waste following treatment, and whether the alternative utilizes treatment as a principal element.
- 5. Short-term effectiveness: Alternatives are assessed based on the risk imposed to the community, workers, and environment during implementation and the time required until protection is achieved.
- 6. Implementability: The technical and administrative feasibility of implementing the alternative is assessed along with the availability of services and materials required for implementation. Aspects of technical feasibility includes difficulties with construction and operation, ease of undertaking additional remedial actions, and the ability to monitor the effectiveness of the remedy. Aspects of administrative feasibility include activities needed to coordinate with other offices and agencies.
- 7. Cost: Alternatives are assessed on capital costs, annual operation and maintenance (O&M) costs, and analysis of net present value of all costs. Capital costs consist of direct and indirect costs. Direct costs include expenditure for equipment, labor, and materials necessary to install the remedy. Indirect costs include expenditure for engineering, financial, and any other service that is not part of the actual installation activities but is required to complete the installation.

Annual O&M costs are post-construction costs necessary to ensure the continued effectiveness of a remedy. They include, operating labor costs, maintenance material costs, auxiliary materials and energy costs, disposal, sampling and laboratory costs,

administrative costs, insurance and taxes costs, contingency, rehabilitation costs, and costs to conduct periodic reviews.

A present worth analysis was used to evaluate expenditures that occur at different time periods to allow for a comparison on the basis of a single sum representing the amount that, if invested in the base year and disbursed as needed, would be sufficient to cover all costs associated with the remedy.

Estimated costs were developed using EPA guidance, and are based on the best available data at the time of the conceptual design. Estimated costs may be modified during the remedial design and/or the long-term monitoring results.

The information in the cost estimate summary tables is based on the best available information regarding the anticipated scope of the remedial alternative. Changes in the cost elements are likely to occur as a result of new information and data collected during the engineering design of the remedial alternative. Major changes may be documented in the form of a memorandum in the administrative record file, an explanation of significant differences, or a ROD amendment. This is an order-of-magnitude engineering cost estimate that is expected to be within -30 to +50 percent of the actual project cost.

- 8. State acceptance: This assessment evaluates the technical and administrative issues and concerns the State may have regarding each of the alternatives. This criterion will be addressed following the submittal of the FFS Report.
- 9. Community acceptance: This assessment evaluates the issues and concerns that the public may have regarding each of the alternatives. This criterion will be addressed following the submittal of the FFS Report.

The detailed analysis consists of a description of each alternative followed by an evaluation of each alternative against evaluation criteria 1 through 7.

Finally, for each of the alternative, the following time frames has been estimated:

- Construction Phase;
- Implementation Phase; and
- Remedial Action Objectives Phase.

Phase time estimates are based on the conceptual design, current conditions, and available technologies, and are subject to change.

6.1 Detailed Analysis of Alternatives to Address Soil and Groundwater Contamination at the Alcas Facility

Nine remedial alternatives were retained for detailed analysis to address soil and groundwater contamination at the Alcas Facility. The detailed analysis of the remedial alternatives is presented in the following sections.

6.1.1 Alternative A.1 - No Action

The following sections present a detailed analysis of conducting no action to shallow impacted soils or impacted groundwater. This alternative was retained to provide a baseline for comparison to all other alternatives

6.1.1.1 Overall Protection of Human Health and the Environment

The No Action alternative does not reduce existing concentrations in soil or groundwater or minimize migration of COCs to the City Aquifer. However, it would not incorporate implementing activities that would present exposure risks to the community, workers, or the environment. This alternative does not include monitoring or institutional controls. The No Action Alternative does not achieve RAOs.

6.1.1.2 Compliance with ARARs

This alternative would not comply with chemical-, location-, or action-specific ARARs.

6.1.1.3 Long-Term Effectiveness and Permanence

No remedial action is associated with this alternative; therefore, no long-term effectiveness or permanence will be achieved.

6.1.1.4 Reduction of Mobility, Toxicity, or Volume

This action offers no reduction of toxicity, mobility, or volume through treatment.

6.1.1.5 Short-Term Effectiveness

The No Action alternative does not include any implementation activities and thus poses no risks to the community, workers or the environment.

6.1.1.6 Implementability

Since no remedial actions are associated with this alternative, this alternative would be technically and administratively feasible and not cause a disruption to operations at the existing Cutco Corporation facility.

6.1.1.7 <u>Cost</u>

The capital and O&M costs associated with this alternative are \$0 since there are no remedial actions associated with this alternative. The total present value costs for this alternative are likewise estimated to be \$0 in 2012 dollars.

6.1.1.8 Phase Time Estimation

Phase time estimates are based on the conceptual design, current conditions, and available technologies, and are subject to change.

Phase	Time
Construction	0 years
Implementation	0 years
Remedial Action Objectives	Does Not Reach

6.1.2 Alternative A.2 - Excavation of Shallow Impacted Soils

Under the conceptual design for excavation, soil in the vadose zone with COC concentrations exceeding risk-based levels will be excavated and transported off-site for proper disposal. Excavation areas will be located outside the footprint of the Main Building and outside major access roads at the Alcas Source Area. The excavation area will extend to a maximum depth of

8 feet below ground surface. The estimated volume of soil to be removed is 2,245 cubic yards. Excavation areas will be backfilled with clean fill from an off-site location. The location of excavation areas is shown on Figure 6-1.

6.1.2.1 Overall Protection of Human Health and the Environment

Excavation of shallow impacted soils would effectively remove some contaminant mass from the excavated areas. However, excavation of impacted soils beneath the Main Building, where most of the mass is suspected to reside, cannot be accomplished without significant impact and disturbance to the ongoing manufacturing operations at the existing Cutco Corporation facility. The contaminants in soils located under and adjacent to the Main Building would continue to impact the groundwater and therefore, the reduction of COC flux to the City Aquifer will likely be minor and RAOs would not be achieved.

6.1.2.2 Compliance with ARARs

The alternative would not comply with chemical-specific ARARs for soil or groundwater as the alternative would have minimal or no effectiveness in remediating, controlling or abating the contamination source situated underneath the Main Building.

6.1.2.3 Long-Term Effectiveness and Permanence

The migration of COCs from the Alcas Source Area to the City Aquifer is unlikely to be impacted by the removal of shallow impacted soils. The excavation of impacted shallow soils would remove source material that contributes to the contamination of the UWBZ through groundwater recharge. However, source material located underneath the Main Building will remain unabated, and continue to contribute COCs to the UWBZ. The magnitude of source material underneath the Main Building is unknown, but is believed to be the primary source of COCs to the UWBZ.

6.1.2.4 <u>Reduction of Mobility, Toxicity, or Volume</u>

Excavation of shallow impacted soils would effectively remove some COC mass from the excavated areas. However, migration of COCs to the City Aquifer cannot be minimized without the removal of impacted soils beneath the Main Building.

6.1.2.5 Short-Term Effectiveness

Excavation of shallow soils would result in minimal exposure risks to the community, workers, and the environment, which would be managed by worker training. Waste generated during the activity would be managed using approved methods.

6.1.2.1 Implementability

Excavation of shallow soils is technically feasible, as the technology is conventional. Storm and sanitary sewer lines are known to be buried along the perimeter of the Main Building and excavation could be adequately conducted around buried utilities. Shallow excavation depths of 8 feet will have minimal impacts to the current manufacturing operations. No administrative difficulties are foreseen.

6.1.2.2 <u>Cost</u>

Capital costs include the excavation and management of shallow impacted soils. The capital costs for this alternative are \$309,317. There are no further actions to be implemented and therefore no O&M costs associated with this alternative. The total present value costs for this alternative are estimated to be approximately \$309,317 in 2012 dollars. A detailed cost analysis is included in Appendix A.

6.1.2.3 Phase Time Estimation

Phase time estimates are based on the conceptual design, current conditions, and available technologies, and are subject to change.

Phase	Time
Construction	1 year
Implementation	1 year
Remedial Action Objectives	Greater than 30 years

6.1.3 Alternative A.3 - Vacuum Enhanced Recovery of Contaminated Soil

Vacuum enhanced recovery (VER) was the original remedy selected in the October 1996 OU2 ROD for the Alcas Source Area. The conceptual model understood at that time did not include site-specific characterization of the Alcas Source Area in terms of underlying Alcas Source Area geology, hydrogeology, or source constituents and associated phase-derivatives. A Site Evaluation and Conceptual Model Report was submitted to the USEPA on January 17, 2000, for purposes of updating the Alcas Source Area conceptual model of the Alcas Source Area. This submittal was followed by a formal letter on January 25, 2000, to present significant new information and provide an update of the Alcas remedy decision in order to enable remedial progress in accordance with statutory requirements. The Alternatives and Analysis Report and Formal Request for a Remedy Decision Update was submitted on July 14, 2000, to provide analysis of remedy update alternatives in order to substantiate the request for a remedy decision update. A Remedy Update was granted by the USEPA in February 2003.

As documented in these reports, significant new information has become available through additional investigations that substantiates that the original Alcas Source Area conceptual model was incomplete and inaccurate. The original remedy decision was based on the concept that affected soils in the UWBZ represented the source of affected groundwater whereas, the updated Alcas Source Area conceptual model suggests a probable long-term DNAPL zone under the Main Building that will persist and continue to generate dissolved phase constituents to the UWBZ if left uncontrolled. The updated Alcas Source Area conceptual model rendered VER ineffective at achieving RAOs.

The original remedy proposed that the affected soils in the UWBZ would be remediated through a one-step application of VER which would lead to the permanent restoration of the lower aquifer. A schematic of the original VER alternative as proposed in the March 1999 Remedial Design and Remedial Action Workplan is provided as Figure 6-2. In an effort to incorporate the updated Alcas Source Area conceptual model, the VER alternative being evaluated in this report has been modified from the original alternative outlined in the 1996 ROD. Specifically, the VER technology would be utilized to function as an UWBZ interceptor system within the UWBZ

CONCEPTUAL DESIGN AS PROVIDED IN THE MARCH 1999 REMEDIAL DESIGN AND REMEDIAL ACTION WORKPLAN FOR THE ALCAS FACILITY BY ICF KAISER ENGINEERS, INC.

	FIGURE 6-2	
	VER LAYOUT FROM	
	1999 CONCEPTUAL DESIGN	
	ALCAS PROPERTY	
١	OLEAN, NEW YORK	

ENVIRONEERING, INC.

DRAWN BY: DATE: PROJ. NO. мw 05/30/2014 137 - 192

plume zone, immediately down gradient of the governing source DNAPL zone under the Main Building. The system would operate full time as opposed to a one-step operation, for as long as the source DNAPL persists. However, because of the heterogeneous soil conditions and the presence of DNAPL under the building.VER is not expected to achieve the RAOs for the Alcas Source Area.

This alternative consists of VER of contaminated soil to treat the residual source area. An estimated 2,245 cubic yards of contaminated soil will be treated using the proposed alternative. A VER system uses negative air pressure which is applied to a series of recovery wells. The negative pressure, which is generated by a high vacuum pump, causes the movement of soil vapor and some groundwater towards the wells for recovery. The vapor recovery causes desorption (removal of contaminants which are adsorbed onto soil particles) and volatilization of VOCs by continuously removing contaminated vapors and forcing clean air into the contaminated areas. An off-gas treatment system will use granular activated carbon (GAC) to remove contaminants which are above federal and New York State air emissions levels. Any groundwater recovered with the soil vapor, would also be treated with GAC prior to discharge.

This alternative also includes the following components:

- long-term monitoring to ensure that groundwater quality improves following implementation of the selected remedy until cleanup levels are achieved.
- institutional controls in the form of proprietary controls, such as deed restrictions for groundwater and soil use, existing governmental controls, such as well permit requirements, and informational devices, such as publishing advisories in local newspapers and issuing advisory letters to local governmental agencies regarding groundwater use in the impacted area.
- a Site Management Plan ("SMP") would be developed to provide for the proper management of the Alcas Source Area remedy post-construction, such as through the use of institutional controls until RAOs are met, and will also include long-term groundwater monitoring, periodic reviews and certifications. Until the RAOs are achieved, the SMP would also provide for the proper management of any contaminated unsaturated soils remaining beneath the concrete slab of the building.

6.1.3.1 Overall Protection of Human Health and the Environment

VER would not be effective in the treatment of VOC contamination beneath the Main Building where most of the mass is suspected to reside and, therefore would not be protective of human health and the environment. Based on Alcas Source Area geological conditions and the presence of DNAPL under the building, a VER system would not be effective in removing contaminant mass and reducing COC flux to the City Aquifer.

6.1.3.2 Compliance with ARARs

Regardless of configuration, this alternative would not comply with chemical-specific ARARs, since VER would not be effective in reducing VOC contamination in inaccessible areas beneath the main building. Only limited quantities of contaminants in both the soil and groundwater would be removed, and reductions of contaminants to the City Aquifer would be minimal.

6.1.3.3 Long-Term Effectiveness and Permanence

In general, a VER system can remove COCs from the contaminated source area, including source area below the water table. However, Alcas Source Area geology indicates that the dominant permeability of the upper aquitard is in the range of approximately 10⁻⁸ cm/sec. It is also expected that these low permeability clays are saturated to within 5 to 7 feet of the till surface. A VER system would be required to dewater the tight clays, provide uniform airflow fields void of preferential pathways and gradients, and maintain a pressure gradient sufficient to remove contaminant mass across the treatment zone. Based on the geological conditions at the Alcas Source Area, VER application would be very difficult if not impracticable to operate effectively in this low permeability environment regardless of configuration.

Due to the Alcas Source Area geological conditions, it can be expected that most residual source areas will be contacted by the VER operation, and the media that is treated will continue to be impacted by remaining source areas left under the Main Building. Vapor and dissolved phase plumes will redevelop from untreated source areas to similar extents and magnitudes that existed prior to system start-up. This rebounding condition of mass transport will continue as long as unaltered, residual source persists.

6.1.3.4 Reduction of Mobility, Toxicity, or Volume

The Alcas Source Area geology in the upper aquitard is not conducive to in-situ treatment involving advection, airflow technology. The airflow fields will not be uniform and will be dominated by preferential pathways and gradients that will limit system performance and comprehensive treatment. Where functional, the system will also be inefficient in terms of effectively dewatering the low permeability clay units and pulling a vacuum through the subsurface. In this geoenvironment, it is unreasonable to expect advective treatment effects throughout all source area media. It is also unreasonable to expect efficient advective recovery over time. To the extent source area media is not contacted by VER airflow, diffusion rates of the Alcas Source Area source will not be altered and the source will persist unabated. Therefore, COC flux into City Aquifer will not be impacted by the application of VER.

A VER system extending to the base of the upper aquitard would encounter significant upwelling of water from the lower City Aquifer. As upwelling occurs, dewatering potential above is deceased and the VER technology would be limited further. The increased penetration depths would also increase risk of further contaminants spreading into the City Aquifer.

6.1.3.5 Short-Term Effectiveness

VER may have potential short-term impacts to the community, workers, and the environment which would be managed by engineering controls and worker training. Measures would be implemented to mitigate potential impacts to workers and the community through the use of personnel protective equipment and standard health and safety practices. Waste generated during the installation of extraction wells would be managed using approved methods.

6.1.3.6 Implementability

The presence of DNAPL beneath the main building at the Alcas facility poses significant access challenges because of the existing manufacturing operations at the facility. The DNAPL source under the building cannot be addressed by VER and therefore cannot be implemented to address

this source. The materials and services necessary for the installation of VER wells are readily available. The remedial technology is conventional and proven to treat Alcas Source Area COCs.

6.1.3.7 <u>Cost</u>

The cost estimate provided includes costs for operating the VER system for an estimated 30 years. Capital costs include installation of VER wells and associated treatment system. Total capital costs are estimated to be approximately \$338,000 for the remediation system. O&M costs include the O&M of the system and groundwater monitoring. Annual O&M costs are estimated to average \$100,000 per year over 30 years. The total present value life cycle costs of this alternative using a discount rate of 7 percent is \$1,400,000. A detailed cost analysis is included in Appendix A.

6.1.3.8 Phase Time Estimation

For cost-estimating and planning purposes, phase time estimates are based on the conceptual design, current conditions, and available technologies, and are subject to change.

Phase	Time
Construction	1 year
Implementation	30 years
Remedial Action Objectives	Greater than 30 years

6.1.4 Alternative A.4 - Groundwater Extraction and Treatment of Intercepted Groundwater Flow from the Source Area Using a Collection Trench

For the purposes of this report, a conceptual system design was developed. A Remedial Design document would be developed and approved should this alternative be selected. The conceptual system developed for this report consists of a collection trench excavated along the southeast portion of the Alcas Facility. The system would operate at an extraction rate of approximately 10 gpm. The construction of a collection trench that is 160 feet long, 32 feet deep, and 2 feet wide would create a more permeable zone where groundwater would be extracted and provide a large area of hydraulic capture. The location of the collection trench is illustrated on Figure 6-3 and a cross section depicting the basic details of the alternative relative to the geology is shown on Figure 6-4. A description of the groundwater model used to develop the conceptual design of this alternative is included in Appendix B.

Extracted groundwater will be treated with an air stripper and discharged to an NPDES outfall. System installation would require 3-4 weeks of significant disruption and over the long-term the treatment system would require regular operational maintenance and monitoring. The treatment system is expected to operate for 30 years.

Soils will be disposed of in accordance with RCRA Hazardous Waste generator, transporter, treatment and disposal requirements. Air emissions will comply with State and Federal air emissions standards. Treated groundwater requiring discharge will comply with National and State pollution discharge elimination system requirements.

Components of this technology include the following:

- Identify and isolate subsurface utilities that are present at the proposed trench location.
- Install a groundwater collection trench made up of biodegradable biopolymer slurry in the transition zone along the southeast portion of the Alcas Source Area to intercept COCs from the upper source area.
- An air stripper will treat extracted groundwater and discharge to a NPDES outfall.
- Excavated materials from the top 35 feet will be used to refill the trench without any need of treatment or off-site disposal, and the excavated materials below the top 35 feet will be handled and treated as hazardous waste until tested and determined to be non-hazardous.
- Installation would be conducted in a phased approach; supplemental investigation would be performed during the initial phase, followed by full system installation during the final phase.

6.1.4.1 Overall Protection of Human Health and the Environment

Groundwater extraction and treatment would result in minimal exposure risks to the community, workers, and the environment which would be managed by engineering controls and worker training. Operation of a collection trench and groundwater treatment system would significantly reduce the flux of Alcas Source Area COCs to the City Aquifer. This alternative would be protective of human health and the environment by reducing the flux of COC mass to the City Aquifer, which will decrease both the concentration at well 18M and the operational timeframe of the treatment system at 18M.

6.1.4.2 Compliance with ARARs

The alternative would not comply with chemical-specific ARARs for soil or groundwater as the alternative would have minimal or no effectiveness in remediating, controlling or abating the contamination source situated underneath the Main Building.

6.1.4.3 Long-Term Effectiveness and Permanence

Groundwater extraction and treatment of intercepted groundwater flow from the source area would control the hydraulic gradient at the Alcas Source Area and prevent additional flux of COCs to the City Aquifer, reducing influent concentrations at 18M. Long-term O&M of the groundwater pump and treat system would be required. Given the very high concentrations of residual DNAPL under the Main Building, it will take in excess of 50 years for the groundwater collection trench to remediate the soil contamination underneath the Main Building and reduce the flux of COCs from the residual source to be reduced to the point that natural attenuation processes are sufficient to prevent unacceptable concentrations of COCs from reaching 18M. The actual remediation duration for this alternative is unknown.

6.1.4.4 <u>Reduction of Mobility, Toxicity, or Volume</u>

The alternative will reduce the mobility, toxicity, and volume of COC in the upper water bearing zone at the Alcas Source Area. Migration of COCs will be controlled through hydraulic gradients, and COCs would be treated with an air stripper, which would not destroy the COCs, but would transfer them to the atmosphere at concentrations well below unacceptable levels.

6.1.4.5 Short-Term Effectiveness

Groundwater extraction and treatment would result in minimal exposure risks to the community, workers, and the environment which would be managed by engineering controls and worker training. Waste generated during the installation of extraction wells would be managed using approved methods.

6.1.4.6 Implementability

Implementation of this alternative is both technically and administratively feasible. The collection trench would be installed using common trenching installation methods. The materials and services necessary for the installation are readily available. The remedial technology is conventional and proven to treat Alcas Source Area COCs.

6.1.4.7 <u>Cost</u>

Capital costs include installation of extraction trench and associated treatment system. Total capital costs are estimated to be approximately \$1,005,010 for the remediation system. O&M costs include the O&M of the system and groundwater monitoring. Annual O&M costs are estimated to average between \$136,900 per year over 30 years. The total present value life cycle costs of this alternative using a discount rate of 7 percent is \$2,700,000. A detailed cost analysis is included in Appendix A.

6.1.4.8 Phase Time Estimation

Phase time estimates are based on the conceptual design, current conditions, and available technologies, and are subject to change.

Phase	Time
Construction	2-3 years
Implementation	30 years
Remedial Action Objectives	Greater than 30 years

6.1.5 Alternative A.5 - Groundwater Extraction and Treatment of Intercepted Groundwater Flow from the Source Area Using Vertical or Horizontal Extraction Wells

For the purposes of this report, a conceptual system design was developed to intercept groundwater from the source area using vertical or horizontal extraction wells. The final orientation and configuration of the extraction well network would be determined during the Remedial Design phase should this alternative be selected.

The conceptual vertical well system developed for this report consists of 8 vertical extraction wells installed along the southeast portion of the Alcas Facility. The system would operate at an extraction rate of approximately 8 gallons per minute (gpm). The extraction wells would extend to 40 feet deep and provide a large area of hydraulic capture. The locations of the extraction wells are illustrated on Figure 6-5. A description of the groundwater model used to develop the conceptual design of this alternative is included in Appendix B.

The conceptual horizontal well system developed for this report consists of a horizontal extraction well installed along the southeast portion of the Alcas Facility that would extend beneath the Main Building. The system would operate at an extraction rate of approximately 10 gpm. The extraction well would extend 160 feet at a depth of 40 feet, providing a large area of hydraulic capture. The location of the extraction well is illustrated on Figure 6-6. A description of the groundwater model used to develop the conceptual design of this alternative is included in Appendix B.

Extracted groundwater will be treated with an air stripper and discharged to an NPDES outfall. System installation would require 3-4 weeks of significant disruption, and over the long-term the treatment system would require regular operational maintenance and monitoring.

Soils will be disposed of in accordance with RCRA Hazardous Waste generator, transporter, treatment and disposal requirements. Air emissions will comply with State and Federal air emissions standards. Treated groundwater requiring discharge will comply with National and State pollution discharge elimination system requirements.

Components of this technology include the following:

- Conduct Geotechnical Study of feasibility of this technology.
- Identify and isolate subsurface utilities that are present at the proposed well locations.
- Install a groundwater extraction and treatment system in the transition zone along the southeast portion of the Alcas Facility to intercept COCs from the upper source area.
- Excavated materials below the top 35 feet will be handled and treated as hazardous waste until tested and determined to be non-hazardous.
- An air stripper will treat extracted groundwater and discharge to an NPDES outfall.
- Installation would be conducted in a phased approach; supplemental investigation would be performed during the initial phase, followed by full system installation during the final phase.

6.1.5.1 Overall Protection of Human Health and the Environment

Groundwater extraction and treatment would result in minimal exposure risks to the community, workers, and the environment which would be managed by engineering controls and worker training. Operation of the extraction wells and groundwater treatment system would significantly reduce the flux of Alcas Source Area COCs to the City Aquifer. This alternative would be protective of human health and the environment by reducing the flux of COC mass to the City Aquifer, which will decrease both the concentration at well 18M and the operational timeframe of the treatment system at 18M.

6.1.5.2 Compliance with ARARs

This alternative will remove Alcas Source Area COCs in the Upper Aquitard groundwater before they can spread to the City Aquifer but is not expected to reduce groundwater concentrations to below regulatory standards. Therefore, this alternative will not comply with chemical-specific ARARs for COCs in the groundwater in the Upper Aquitard.

6.1.5.3 Long-Term Effectiveness and Permanence

Groundwater extraction and treatment of intercepted groundwater flow from the source area would control the hydraulic gradient at the Alcas Source Area and prevent additional flux of COCs to the City Aquifer, reducing influent concentrations at 18M. Long-term O&M of the groundwater pump and treat system would be required. For the purpose of this report it is assumed that it will take a minimum of 30 years for the flux of COCs from the residual source to be reduced to the point that natural attenuation processes are sufficient to prevent unacceptable concentrations of COCs from reaching 18M. The actual remediation duration for this alternative might be longer.

6.1.5.4 <u>Reduction of Mobility, Toxicity, or Volume</u>

The alternative will reduce the mobility, toxicity, and volume of COC in the upper water bearing zone at the Alcas Source Area. Migration of COCs will be controlled through hydraulic gradients, and COCs would be treated with an air stripper, which would not destroy the COCs, but would transfer them to the atmosphere at concentrations well below unacceptable levels.

6.1.5.5 Short-Term Effectiveness

Groundwater extraction and treatment would result in minimal exposure risks to the community, workers, and the environment which would be managed by engineering controls and worker training. Waste generated during the installation of extraction wells would be managed using approved methods.

6.1.5.6 Implementability

Implementation of this alternative is both technically and administratively feasible. The extraction wells would be installed using common installation techniques. The materials and services necessary for the installation are readily available. The remedial technology is conventional and proven to treat Alcas Source Area COCs.

6.1.5.7 <u>Cost</u>

Capital costs include system design, installation of extraction wells, and associated treatment system. Total capital costs are estimated to be between \$764,757 and \$963,600 for the remediation system. O&M costs include the O&M of the system and groundwater monitoring. Annual O&M costs are estimated to average \$165,000 per year over 30 years. The total present value life cycle costs of this alternative using a discount rate of 7 percent is between \$2,810,000 and \$3,010,000. A detailed cost analysis is included in Appendix A.

6.1.5.8 Phase Time Estimation

Phase time estimates are based on the conceptual design, current conditions, and available technologies, and are subject to change.

Phase	Time
Construction	2-3 years
Implementation	30 years
Remedial Action Objectives	Greater than 30 years

6.1.6 Alternative A.6 - ZVI Permeable Reactive Barrier using Fracing Method to Treat Intercepted Groundwater Flow from the Source Area

Under the conceptual design for a ZVI PRB, approximately thirty-six frac boreholes will be installed in two rows in the southeast portion of the Alcas Facility. Within each borehole, an estimated 7 fractures will be created and filled with ZVI. The fracing process generates a minimal amount of aquifer material requiring disposal, but some residual water/guar used in the injection mixing tanks may require off-site disposal. The effective ZVI thickness is estimated to be only 3 inches for this alternative. Soils will be disposed of in accordance with RCRA Hazardous Waste generator, transporter, treatment and disposal requirements. Figure 6-7 is provided to show the configuration of this alternative.

Components of this technology include the following:

- Install approximately of 36 frac boreholes (in two rows with borehole spacing of approximately 15 feet within each row) to a depth of 50 feet bgs.
- Within each borehole a total of 7 fractures will be created for ZVI emplacement, one fracture to be initiated every 2.5 feet from 50 feet bgs to 35 feet bgs.
- Installation of up to six new monitoring wells for performance monitoring
- To limit potential hazards associated with fracing and potential spreading of contaminants to the City Aquifer, the depth of the fracing borehole will be limited to no closer than 3 feet from the City Aquifer transition zone.

6.1.6.1 Overall Protection of Human Health and the Environment

Implementation of this alternative would result in minimal exposure risk to the community, workers, and the environment. This alternative will comply with chemical-specific ARARs for COCs in the groundwater in the Upper Aquitard by providing actual in-situ treatment. The treatment will result in irreversible dechlorination of Alcas Source Area COCs that would reduce the contaminant volume in the Upper Aquitard and prevent mobility to the Upper City Aquifer. Groundwater monitoring would be used to assess achievement of RAOs. This alternative would be protective of human health and the environment by reducing the flux of COC mass to the City Aquifer, which will decrease both the concentration at well 18M and the operational timeframe of the treatment system at 18M.

6.1.6.2 Compliance with ARARs

The alternative would not comply with chemical-specific ARARs for soil or groundwater as the alternative would have minimal or no effectiveness in remediating, controlling or abating the contamination source situated underneath the Main Building. As long as the source area persists underneath the Main Building, RAOs would likely never be achieved. As soon as this alternative is removed or the ZVI was exhausted, groundwater concentrations would rebound to pre-remedial action levels given the remaining source area. This alternative will not lead to achievement of MCLs in groundwater.

6.1.6.3 Long-Term Effectiveness and Permanence

TCE has been shown to be reduced by ZVI, provided that sufficient contaminant residence time is allowed through the iron barrier (EPA/600/F-97/008 July 1997). In recent studies conducted by Naval Facilities Engineering Service Center (NFESC), the longevity of ZVI PRBs were found to be performing as designed with a predicted performance duration of at least 30 years. The

NFESC study found that the longevity of the reactivity of the iron deteriorates progressively with exposure to groundwater and there is a potential of decreasing permeability through the wall due to precipitation over time (Battelle, 2002).

The release of soluble iron into the groundwater would not impact wellhead treatment at 18M and/or 37/38M, as increased iron concentrations typically do not extend more than a few feet down gradient of the PRB except in low pH conditions.

6.1.6.4 Reduction of Mobility, Toxicity, or Volume

This alternative would provide actual in-situ COC treatment resulting in irreversible dechlorination of Alcas Source Area COCs that would result in reducing the contaminant volume in the Upper Aquitard and reduce mobility to the City Aquifer. This alternative does not transfer COCs to other media

6.1.6.5 Short-Term Effectiveness

Implementation of this alternative would result in minimal exposure risk to the community, workers, and the environment which would be managed by worker training. There is minimal potential for cross-media contamination as contaminants are treated in-situ and not brought to the surface. Waste generated during the installation of frac boreholes and additional monitoring wells would be managed using approved methods.

6.1.6.6 Implementability

Installing ZVI filled frac boreholes would be technically feasible. No administrative implementation obstacles are expected. The materials and services necessary for the installation of frac boreholes and for the injection of the ZVI slurry are readily available. It is estimated that this alternative can be implemented within 5 years at which time groundwater monitoring can begin. The duration of groundwater monitoring will be determined during the Remedial Design phase.

6.1.6.7 <u>Cost</u>

The periodic monitoring of performance-monitoring wells, initial disposal of excavated borehole soil, and comparably low O&M costs compared to other technologies has contributed to a relative low cost for this technology. Total capital costs are estimated to be approximately \$1,018,373. Annual O&M costs are estimated to average \$14,730 per year over years 1 through 8. The total periodic cost is estimated to be \$22,035 for monitoring well abandonment when RAOs are achieved. The total present value life cycle costs of this alternative using a discount rate of 7 percent is \$1,200,000. A detailed cost analysis is included in Appendix A.

6.1.6.8 Phase Time Estimation

Phase time estimates are based on the conceptual design, current conditions, and available technologies, and are subject to change.

Phase	Time
Construction	1-2 years
Implementation	3-5 years
Remedial Action Objectives	Greater than 30 years

6.1.7 Alternative A.7 - Barrier Wall Containment to Prevent Impacted Groundwater from the Upper Aquitard from Migration to the City Aquifer

For the purposes of this report, a conceptual system design was developed. A Remedial Design document would be developed and approved should this alternative be selected. Horizontal boreholes will be installed beneath the Main Building and filled with bentonite slurry. The horizontal boreholes would be installed with zero to minimal spacing between wells. An L-shaped containment trench is installed downgradient of horizontal groundwater flow and filled with bentonite slurry. The trench is positioned around the source area beneath the Main Building. System installation would require 3-4 weeks of significant disruption. Soils will be disposed of in accordance with RCRA Hazardous Waste generator, transporter, treatment and disposal requirements. Figure 6-8 is provided to show the location of this alternative.

Components of this technology include the following:

- Identify and isolate subsurface utilities that are present at the proposed trench location.
- An L-shaped containment trench is installed down to the Upper Aquitard, positioned downgradient of groundwater flow around the Main Building.
- Horizontal boreholes filled with bentonite will be installed beneath the Main Building to prevent vertical groundwater flow.
- The trench and horizontal wells will be filled with bentonite slurry to contain the source area beneath the Main Building.
- Installation would be conducted in a phased approach; supplemental investigation would be performed during the initial phase, followed by full system installation during the final phase.

6.1.7.1 Overall Protection of Human Health and the Environment

Implementation of this alternative would result in minimal exposure risks to the community, workers, and the environment which would be managed by engineering controls and worker training. If constructed successfully, this alternative would be protective of human health and the environment by preventing groundwater migration from the source area, thereby decreasing both the concentration of COCs, and the operational timeframe at 18M.

6.1.7.2 Compliance with ARARs

The alternative would not comply with chemical-specific ARARs for soil or groundwater as the alternative would have minimal or no effectiveness in remediating, controlling or abating the contamination source situated underneath the Main Building.

6.1.7.3 Long-Term Effectiveness and Permanence

If constructed successfully, this alternative would prevent the migration of Alcas Source Area COCs from the residual source area to the City Aquifer. However, no guarantee can be given to the precision of constructing horizontal wells with minimal spacing. Thus, due to difficulty with installation, the degree of certainty in constructing a successful bottom barrier is low. Impact to municipal wellhead treatment at 18M or 37/38M is not expected.

6.1.7.4 <u>Reduction of Mobility, Toxicity, or Volume</u>

Provided that the bottom barrier is constructed successfully, the bentonite filled trench and horizontal wells will create a barrier around the source area beneath the Main Building, preventing the migration of dissolved phase COCs to the upper water bearing zone and the underlying City Aquifer. No reduction in toxicity or volume is expected.

6.1.7.5 Short-Term Effectiveness

Implementation of this alternative would result in minimal exposure risks to the community, workers, and the environment which would be managed by engineering controls and worker training. Waste generated during the installation of barrier wall would be managed using approved methods.

6.1.7.6 Implementability

The alternative is administratively feasible. The technical implementability of this alternative relies solely on the installation of horizontal wells beneath the Main Building with minimal spacing between boreholes to effectively construct bottom containment. The services and material necessary to construct horizontal wells are readily available but the required precision to reduce spacing between boreholes to properly construct the bottom barrier is not easily accomplished. Thus, no guarantee can be given to the successful construction of a bottom barrier. The installation of the trench and horizontal wells would require at a minimum, 6-8 weeks of construction, causing significant disruption to the operations at the existing Cutco Corporation facility.

6.1.7.7 <u>Cost</u>

Capital costs include system design, installation of horizontal boreholes, and installation of bentonite slurry trench. Total capital costs are estimated to be approximately \$7,352,067 for the remediation system. O&M costs include the groundwater monitoring. Annual O&M costs are estimated to average \$30,565 per year over 30 years. The total present value life cycle costs of this alternative using a discount rate of 7 percent is \$7,730,000. A detailed cost analysis is included in Appendix A.

6.1.7.8 Phase Time Estimation

Phase time estimates are based on the conceptual design, current conditions, and available technologies, and are subject to change.

Phase	Time
Construction	1-2 years
Implementation	30 years
Remedial Action Objectives	Does not meet

6.1.8 Alternative A.8 - Multiple ZVI Treatment Zones using Fracing Method to Treat the Source Areas beneath the Main Building

Under the conceptual design for ZVI treatment zones, approximately thirty-seven frac boreholes will be installed in multiple rows in the source area under the Main Building. Within each borehole, 8 fractures will be created and filled with ZVI. The effective ZVI thickness is estimated to be only 3 inches for this alternative. The fracing process generates a minimal

amount of aquifer material requiring disposal, but some residual water/guar used in the injection mixing tanks may require off-site disposal. Soils will be disposed of in accordance with RCRA Hazardous Waste generator, transporter, treatment and disposal requirements.

Components of this technology include the following:

- Identify and isolate subsurface utilities that are present at the proposed trench location.
- Install approximately 37 frac boreholes (in multiple rows with borehole spacing of approximately 20 feet within each row) to a depth of 28 feet bgs.
- Excavated materials below the top 35 feet will be handled and treated as hazardous waste until tested and determined to be non-hazardous.
- Within each borehole a total of 8 fractures will be created for ZVI emplacement, one fracture to be initiated every 2.5 feet from 25.5 feet bgs to 8 feet bgs.
- No new monitoring wells required for performance monitoring.

6.1.8.1 Overall Protection of Human Health and the Environment

Implementation of this alternative would result in minimal exposure risk to the community, workers, and the environment. This alternative will comply with chemical-specific ARARs for COCs in the saturated zone beneath the Main Building by providing actual in-situ contaminant treatment. The treatment will result in irreversible dechlorination of Alcas Source Area COCs that would reduce the contaminant volume underneath the Main Building and prevent mobility to the upper aquitard. Groundwater monitoring would be used to assess achievement of RAOs. This alternative would be protective of human health and the environment by reducing COC mass and flux from the source area, thereby decreasing both the concentration of COCs and the operational timeframe at 18M.

6.1.8.2 Compliance with ARARs

This alternative will comply with chemical-specific ARARs for COCs in the saturated zone beneath the Main Building by dechlorinating Alcas Source Area COCs before they can spread in the Upper Aquitard.

6.1.8.3 Long-Term Effectiveness and Permanence

TCE has been shown to be reduced by ZVI, provided that sufficient contaminant residence time is allowed through the iron barrier (EPA/600/F-97/008 July 1997). In recent studies conducted by Naval Facilities Engineering Service Center, the longevity of ZVI PRBs were found to be performing as designed with a predicted performance duration of at least 30 years. The NFESC study found that the longevity of the reactivity of the iron deteriorates progressively with exposure to groundwater however, because it is a relatively new technology, there is limited field data documenting potential loss of permeability due to precipitation (Battelle, 2002).

The release of soluble iron into the groundwater would not impact wellhead treatment at 18M and/or 37/38M, as increased iron concentrations typically do not extend more than a few feet down gradient of the PRB except in low pH conditions.

The timeframe for completion and attainment of RAOs cannot accurately be determined since the exact quantity of contaminant underneath the Main Building is unknown.

6.1.8.4 <u>Reduction of Mobility, Toxicity, or Volume</u>

This alternative would provide actual in-situ COC treatment resulting in irreversible dechlorination of Alcas Source Area COCs that would result in reducing the contaminant volume underneath the Main Building and mobility to the upper aquitard. This alternative does not transfer COCs to other media.

6.1.8.5 Short-Term Effectiveness

Implementation of this alternative would result in minimal exposure risk to the community, workers, and the environment which would be managed by worker training. There is minimal potential for cross-media contamination as contaminants are treated in-situ and not brought to the surface. Waste generated during the installation of frac boreholes would be managed using approved methods.

6.1.8.6 Implementability

Treating the residual sources in the Upper Aquitard by installing ZVI filled frac boreholes would be technically feasible; however, accessibility of drilling equipment inside the Main Building is a limiting factor. The time and access required to implement this alternative under the Main Building would likely be quite disruptive to operations at the existing Cutco Corporation facility. No administrative implementation obstacles are expected. The materials and services necessary for the installation of frac boreholes and for the injection of the ZVI slurry are readily available.

6.1.8.7 <u>Cost</u>

The periodic monitoring of performance-monitoring wells, initial disposal of excavated borehole soil, and comparably low O&M costs compared to other technologies has contributed to a relatively low cost for this technology. Capital costs include system design and injection of ZVI. The total capital costs are estimated to be approximately \$1,201,269. There are no further actions to be implemented and therefore, no O&M costs. A Remedial Action Completion Report will be prepared at the end of the 30th year at \$22,000. The total present value cost is estimated to be \$1,200,000. A detailed cost analysis is included in Appendix A.

6.1.8.8 Phase Time Estimation

Phase time estimates are based on the conceptual design, current conditions, and available technologies, and are subject to change.

Phase	Time
Construction	1-2 years
Implementation	3-5 years
Remedial Action Objectives	30 years

6.1.9 Alternative A.9a - ISCO using Activated Persulfate

As part of the conceptual design for ISCO using activated persulfate, approximately eight (8) injection wells will be installed within the Main Building and adjacent to the southern portion of the Main Building at the source area. The injection wells will be used to deliver a solution of alkaline-activated sodium persulfate to the UWBZ beneath the Main Building to treat the

residual source area. Soils and water generated during well installation will be disposed of in accordance with RCRA Hazardous Waste generator, transporter, treatment and disposal requirements.

The conceptual design includes the following components:

- Installation of injection wells within the source area adjacent to and beneath the Main Building.
- Three injection events with activated sodium persulfate over a period of up to 5 years.
- Installation of additional new monitoring wells for performance monitoring. A monitoring well network will be developed during the Remedial Design phase but for the purposes of developing a cost estimate for this alternative, 3 new monitoring wells were used.

A conceptual layout of the ISCO design is included as Figure 6-9. A pilot study utilizing activated sodium persulfate was completed at the Alcas Source Area as part of this FFS. The report summarizing the pilot study results is presented in Appendix C. Injection locations on Figure 6-9 are based both on the distribution of sodium persulfate observed in the pilot study, and on the constraints imposed by the operating equipment within the Main Building. The pilot test suggested that amendments could be reliably distributed to an effective radius of at least 5 to 10 feet. The conceptual design will be updated, if necessary, based on additional data collected during the Remedial Design phase.

This alternative also includes the following components:

- Long-term monitoring of the VOC contamination transformation resulting from the ISCO injections and the attenuation processes to ensure that the groundwater quality improves until the cleanup levels are achieved.
- Groundwater sampling would also monitor degradation by-products generated by the treatment processes to ensure that drinking water quality standards are met at the nearby municipal water supply well 18M.
- Institutional controls in the form of proprietary controls, such as deed restrictions for groundwater and soil use, existing governmental controls, such as well permit requirements, and informational devices, such as publishing advisories in local newspapers and issuing advisory letters to local governmental agencies regarding groundwater use in the impacted area.
- A Site Management Plan ("SMP") would be developed to provide for the proper management of the Alcas Source Area remedy post-construction, such as through the use of institutional controls until RAOs are met, and will also include long-term groundwater monitoring, periodic reviews and certifications. Until the RAOs are achieved, the SMP would also provide for the proper management of any contaminated unsaturated soils remaining beneath the concrete slab of the building.

6.1.9.1 Overall Protection of Human Health and the Environment

This alternative would be protective of human health and the environment. Protectiveness under this alternative requires a combination of actively reducing contaminant concentrations and limiting exposure to residual contaminants through institutional controls until RAOs are met.

FIGURE 6-9 ISCO WITH PERSULFATE TO TREAT THE SOURCE IN THE UA ALCAS PROPERTY OLEAN, NEW YORK

NOTE:

THIS GRAPHIC WAS CREATED TO ILLUSTRATE THE CONCEPTUAL COMPONENTS OF THE REMEDIAL ACTION ALTERNATIVE. ACTUAL REMEDY COMPONENTS WOULD BE CHOSEN DURING THE REMEDIAL DESIGN.

6.1.9.2 Compliance with ARARs

This alternative will comply with chemical-, location-, and action-specific ARARs.

6.1.9.3 Long-Term Effectiveness and Permanence

Long-term effectiveness and permanence would be achieved using the ISCO alternative. The pilot study, included as Appendix C, determined that the oxidant can oxidize dissolved phase TCE in the groundwater and indicated that the oxidant can impact residual nonaqueous TCE. This alternative will significantly reduce COC mass in the shallow groundwater, which will significantly reduce the flux into the upper City Aquifer.

6.1.9.4 Reduction of Mobility, Toxicity, or Volume

This alternative would provide actual in-situ COC treatment resulting in irreversible oxidation of Alcas Source Area COCs that would result in reducing the contaminant mass and mobility to the upper aquitard. As much as a 50 percent reduction in TCE concentrations was observed in the pilot study within the treatment area when compared to historical concentrations. Also the pilot study indicated that the oxidant can oxidize a portion of the residual nonaqueous TCE. This alternative does not transfer COCs to other media.

6.1.9.5 Short-Term Effectiveness

This alternative may have potential short-term impacts to the community, workers, and the environment which would be managed by engineering controls and worker training. Measures would be implemented to mitigate potential impacts to workers and the community through the use of personnel protective equipment and standard health and safety practices. Some potential for volatilization of COCs exists due to the exothermic nature of the chemical oxidation reaction. While this is not expected to be a significant concern, indoor air monitoring should be considered during injections if this alternative is selected. Waste generated during the injection of oxidants would be managed using approved methods. In addition, the proximity of well 18M is a limiting factor for in situ treatment technologies employing injection of treatment reagents. Such injections must be implemented such that no detrimental impact to well 18M water quality is realized.

6.1.9.6 Implementability

Treating the sources underneath the Main Building by injecting activated persulfate would be technically feasible; however, accessibility of drilling equipment inside the Main Building is a limiting factor. No administrative implementation obstacles are expected. The materials and services necessary for the installation of injection wells and for the injection of the chemical oxidant are readily available. The well installation and injection activities can be sequenced in a manner that will allow for minimal disruption to manufacturing activities at the existing Cutco Corporation facility. Additionally, injection lines to a majority of the wells inside the Main Building can be trenched in place to allow for injection to occur without disruption of existing Cutco Corporation facility operations.

The effectiveness of the ISCO will be controlled by the ability to distribute the oxidant in the subsurface. The challenge distribution presents was demonstrated during the pilot test. However, through injection of sufficient oxidant volumes at locations spaced throughout the

source area, distribution of chemical oxidant in the subsurface can be achieved at the Alcas Source Area.

6.1.9.7 <u>Cost</u>

Capital costs include injection system design, installation of injection and monitoring wells and injection infrastructure, and injection of activated persulfate solution. Total capital costs are estimated to be approximately \$484,000 for the remediation system, including two full-scale injection events completed during Year 0. Periodic costs include the injection of persulfate solution after the first year of implementation and well maintenance. Total periodic costs are estimated to \$299,000. Total monitoring costs are estimated to be \$422,000. Annual O&M costs are estimated to average \$82,994 per year over years 1 through 6. The total present value life cycle costs of this alternative using a discount rate of 7 percent is \$1,101,000. A detailed cost analysis is included in Appendix A.

6.1.9.8 Phase Time Estimation

Phase time estimates are based on the conceptual design, current conditions, and available technologies, and are subject to change.

Phase	Time
Construction	1-2 years
Implementation	3-5 years
Remedial Action Objectives	20 years

6.1.10 Alternative A.9b - ISCO using Activated Persulfate with Excavation

This alternative includes the remedial measures included in Section 6.1.9 above (ISCO using activated persulfate), and adds excavation of what is estimated to be approximately 70 cubic yards of soils if, subsequent to treatment with ISCO, soils remain beneath or adjacent to the main building at the Alcas facility at concentrations that are impacting the ability to achieve the groundwater RAOs using ISCO alone, and if and when a determination is made that it is not inappropriate to access the material based upon factors including the use of the building. Excavation would remove remaining contaminated soils serving as a source material to the groundwater contamination of the upper aquifer.

This alternative also includes the following components:

- Long-term monitoring of the VOC contamination transformation resulting from the ISCO injections and the attenuation processes to ensure that the groundwater quality improves until the cleanup levels are achieved.
- Groundwater sampling would also monitor degradation by-products generated by the treatment processes to ensure that drinking water quality standards are met at the nearby municipal water supply well 18M.
- Institutional controls in the form of proprietary controls, such as deed restrictions for groundwater and soil use, existing governmental controls, such as well permit requirements, and informational devices, such as publishing advisories in local

newspapers and issuing advisory letters to local governmental agencies regarding groundwater use in the impacted area.

• A Site Management Plan ("*SMP*") would be developed to provide for the proper management of the Alcas Source Area remedy post-construction, such as through the use of institutional controls until RAOs are met, and will also include long-term groundwater monitoring, periodic reviews and certifications. Until the RAOs are achieved, the SMP would also provide for the proper management of any contaminated unsaturated soils remaining beneath the concrete slab of the building.

6.1.10.1 Overall Protection of Human Health and the Environment

This alternative would be protective of human health and the environment. Protectiveness under this alternative requires a combination of actively reducing contaminant concentrations and limiting exposure to residual contaminants through institutional controls until RAOs are met.

6.1.10.2 Compliance with ARARs

This alternative would comply with chemical-, location, and action-specific ARARs. Excavation would be conducted only after efforts to remediate using ISCO with persulfate no longer demonstrate an ability to reduce VOC to concentrations that no longer impact the City Aquifer and such excavation is feasible. Excavation of contaminated soils could be performed at any time during implementation of ISCO, if it is determined that accessibility is no longer an issue and the soil excavation would reduce the time frame to meet the RAOs.

6.1.10.3 Long-Term Effectiveness and Permanence

This alternative would achieve long-term effectiveness and permanence. Excavation activities, if necessary could be performed thereby eliminating additional contaminated soils. Off-site treatment/disposal of the contaminated soil at a secure, permitted hazardous waste facility is reliable because these types of facilities are designed with safeguards to secure the waste material.

6.1.10.4 **Reduction of Mobility, Toxicity, or Volume**

This alternative would provide actual in-situ COC treatment resulting in irreversible oxidation of Alcas Source Area COCs that would result in reducing the contaminant mass and mobility to the upper aquitard. As much as a 50 percent reduction in TCE concentrations was observed in the pilot study within the treatment area when compared to historical concentrations. Also the pilot study indicated that the oxidant can oxidize a portion of the residual nonaqueous TCE. In addition, if this excavation is performed, this alternative provides a reduction in the volume of the soil contamination through removal and disposal at an approved off-site facility of some of the contaminated soils.

6.1.10.5 Short-Term Effectiveness

This alternative may have potential short-term impacts to the community, workers, and the environment which would be managed by engineering controls and worker training. Measures would be implemented to mitigate potential impacts to workers and the community through the use of personnel protective equipment and standard health and safety practices. Some potential for volatilization of COCs exists due to the exothermic nature of the chemical oxidation reaction. While this is not expected to be a significant concern, indoor air monitoring should be considered

during injections if this alternative is selected. Waste generated during the injection of oxidants would be managed using approved methods. In addition, removal of contaminated soil under this alternative presents short-term risk because of the potential for exposure associated with excavation and transportation of contaminated soil. However, measures would be implemented to mitigate potential impacts to workers and the community through the use of personnel protective equipment and standard health and safety practices. Under this alternative, appropriate transportation safety measures would be required during the shipping of the contaminated soil to the off-site disposal facility.

6.1.10.6 Implementability

The locations of the source material under the Main Building provide a formidable challenge for delivery of any technology. The fact that the Main Building houses an active, large manufacturing operation congested with large pieces of equipment which cannot be moved further limits accessibility. Excavation has implementation challenges due to the limited accessibility underneath the existing operating facility. Excavation activities determined to be necessary to achieve the groundwater RAOs under this alternative requires a significant amount of coordination given the existing manufacturing operations at the Alcas Facility. Existing operations at the Alcas Facility would be negatively impacted by the excavation alternative as certain areas of the building critical to the manufacturing process would need to be fully or partially demolished. However if future operations change, or for instance if the portion of the building overlying the contamination is no longer in use or demolished, impacts resulting from excavation may not be significant; in fact, if the building is demolished excavation would be more readily implementable and be more important as unsaturated soils may be more amenable to leaching if the slab is compromised.

6.1.10.7 <u>Cost</u>

For cost estimating and planning purposes, 70 cubic yards of soil from a single excavation area was assumed. In addition to the costs provided in Section 6.1.9a, total capital costs for the excavation portion of the alternative are estimated to be approximately \$190,000. There are no periodic costs included in the conceptual design for this alternative. A detailed cost analysis is included in Appendix A.

6.1.10.8 **Phase Time Estimation**

For cost-estimating and planning purposes, excavation activities would be conducted subsequent to the implementation of the ISCO injections.

Phase	Time
Construction	3- 6 months
Implementation	Undetermined
Remedial Action Objectives	20 years

6.2 Detailed Analysis of Alternatives to Address Groundwater Contamination in the Upper Aquitard on Parcel B.

Five remedial alternatives were retained for detailed analysis to reduce the dissolved phase COC concentrations in the upper aquitard on Parcel B. The detailed analysis of the remedial alternatives is presented in the following sections.

6.2.1 Alternative B.1 - No Action

The following sections present a detailed analysis of conducting no action to the dissolved phase COCs in the upper aquitard located on Parcel B. This alternative was retained to provide a baseline for comparison to all other alternatives

6.2.1.1 Overall Protection of Human Health and the Environment

The No Action alternative does not reduce existing concentrations in groundwater or minimize migration of COCs to the City Aquifer. However, it would not incorporate implementing activities that would present exposure risks to the community, workers, or the environment. This alternative does not include monitoring or institutional controls. The No Action alternative does not achieve groundwater RAOs.

6.2.1.2 Compliance with ARARs

This alternative would not comply with chemical-, action-, or location-specific ARARs.

6.2.1.3 Long-Term Effectiveness and Permanence

No remedial action is associated with this alternative therefore, no long-term effectiveness or permanence will be achieved.

6.2.1.4 <u>Reduction of Mobility, Toxicity, or Volume</u>

This action offers no reduction of toxicity, mobility, or volume through treatment.

6.2.1.5 Short-Term Effectiveness

The No Action alternative does not include any implementation activities, and thus poses no risks to the community, workers or the environment.

6.2.1.6 Implementability

Since no remedial actions are associated with this alternative, this alternative would be technically and administratively feasible and not cause a disruption to operations at the existing Cutco Corporation facility. No difficulties are foreseen in regards to the availability of services and materials.

6.2.1.7 <u>Cost</u>

The capital and O&M costs associated with this alternative are \$0 since there are no remedial actions associated with this alternative. The total costs for this alternative are estimated to be approximately \$0 in 2012 dollars.

6.2.1.8 Phase Time Estimation

Phase time estimates are based on the conceptual design, current conditions, and available technologies, and are subject to change.

Phase	Time
Construction	0 years
Implementation	0 years
Remedial Action Objectives	Does not meet

6.2.2 Alternative B.2 - ISCO using Persulfate

ISCO would be implemented in select locations on Parcel B, generally targeting areas where high concentrations of COCs have historically been observed, specifically, where concentrations of TCE exceed 100 μ g/L. ISCO would be implemented using temporary injection to inject oxidant into the subsurface. Three new monitoring wells will be installed to monitor the persulfate treatment. Performance monitoring would be conducted to monitor oxidation of COCs. Disruption will occur during the first three years when implementing the injections, but the impact to the existing Cutco Corporation facility would be minimal. Soils will be disposed of in accordance with RCRA Hazardous Waste generator, transporter, treatment and disposal requirements.

Components of this technology include the following:

- Install temporary injection points (in multiple rows with borehole spacing of approximately 40 feet within each row) to a depth of 20 feet bgs. The injection point network will be developed during the Remedial design phase but for the purposes of developing a cost estimate for this alternative, 13 temporary injection points were used.
- Multiple injection events with activated persulfate.
- Install new monitoring wells for performance monitoring. A monitoring well network will be developed during the Remedial design phase but for the purposes of developing a cost estimate for this alternative, 3 new monitoring wells were used.

The locations of the injection points are located on Figure 6-10.

6.2.2.1 Overall Protection of Human Health and the Environment

This alternative is not expected to result in exposure risks to the community, workers, or the environment. ISCO using activated persulfate has been determined to adequately oxidize Alcas Source Area COCs in a reasonable time period but it is not expected to reduce groundwater concentrations to below MCLs. The alternative would, however, reduce COC concentrations such that the time required for natural attenuation processes to restore groundwater will be significantly reduced.

6.2.2.2 Compliance with ARARs

This alternative would comply with chemical-specific ARARs by oxidizing Alcas Source Area COCs and reducing concentrations in groundwater south of the Main Building.

6.2.2.3 Long-Term Effectiveness and Permanence

Long-term effectiveness and permanence would be achieved through the ISCO alternative. The pilot study determined that the oxidant can oxidize dissolved phase TCE in the groundwater. This alternative will therefore decrease the timeframe for groundwater restoration by natural attenuation processes.

The pilot test evaluated constituents evaluated as having a potential to affect water quality, included dissolved metals and bromate. The pilot study concluded that within the treatment zone, a temporary increase in dissolved metals concentration can be expected immediately following oxidant injection, but that the effects are short-lived and the metals are likely to

FIGURE 6-10 ISCO WITH PERSULFATE - PARCEL B ALCAS PROPERTY OLEAN, NEW YORK

attenuate following depletion of the oxidant. Hexavalent chromium and bromate were not found to be present at levels detrimental to water quality.

6.2.2.4 Reduction of Mobility, Toxicity, or Volume

This alternative would provide actual in-situ COC treatment resulting in irreversible oxidation of Alcas Source Area COCs. The pilot study indicates that activated persulfate can be effective for oxidizing Alcas Source Area COCs. As much as a 50 percent reduction in TCE concentrations was observed in the pilot study within the treatment area when compared to historical concentrations.

6.2.2.5 Short-Term Effectiveness

Implementation of this alternative would result in minimal exposure risk to the community, workers, and the environment which would be managed by worker training. Waste generated during the injection of electron donor would be managed using approved methods.

6.2.2.6 Implementability

Treating the dissolved phase plume in the upper aquitard south of the Main Building by injecting activated persulfate would be technically feasible and would have minimal impact to operations at Cutco. No administrative implementation obstacles are expected. The materials and services necessary for the installation of injection wells and for the injection of the chemical oxidant are readily available.

The effectiveness of the ISCO will be controlled by the ability to distribute the oxidant in the subsurface, and to achieve adequate mixing with dissolved TCE. The challenge distribution presents was demonstrated during the pilot test. However, through sequenced injection of sufficient oxidant volumes at appropriate spacing throughout the treatment area, distribution of chemical oxidant in the subsurface can be achieved at the Alcas Source Area.

6.2.2.7 <u>Cost</u>

Capital costs include system design, installation of injection wells, and waste disposal. Total capital costs are estimated to be approximately \$524,000 for the remediation system. Additional costs include multiple rounds of injections and groundwater monitoring. Total additional costs are estimated to \$488,670. Annual O&M costs are estimated to average \$81,444 per year over years 1 through 6. The total present value life cycle costs of this alternative using a discount rate of 7 percent is \$1,010,000. A detailed cost analysis is included in Appendix A.

6.2.2.8 Phase Time Estimation

Phase time estimates are based on the conceptual design, current conditions, and available technologies, and are subject to change.

Phase	Time
Construction	1-2 years
Implementation	3-5 years
Remedial Action Objectives	20 years
6.2.3 Alternative B.3 - ISCO using Ozone

Under the conceptual design for ISCO using ozone, ozone gas would be injected into the upper aquitard to treat the dissolved phase plume south of the Main Building. This alternative would be implemented in select locations on Parcel B, generally targeting areas where higher concentrations of COCs have historically been observed; specifically where TCE concentrations exceed 100 μ g/L. One hundred and seventy injection points would be installed to the south of the Main Building to a depth of 20 feet bgs. The injection points would be aligned in multiple rows with borehole spacing of approximately 10 feet between each row. Three new monitoring wells will be installed to monitor the ozone treatability. This alternative also includes the following components:

- performance monitoring would be conducted to monitor oxidation of COCs.
- Long-term monitoring of the VOC contamination transformation resulting from the ISCO injections and the attenuation processes to ensure that the groundwater quality improves until the cleanup levels are achieved.
- Groundwater sampling would also monitor degradation by-products generated by the treatment processes to ensure that drinking water quality standards are met at the nearby municipal water supply well 18M.
- Institutional controls in the form of proprietary controls, such as deed restrictions for groundwater and soil use, existing governmental controls, such as well permit requirements, and informational devices, such as publishing advisories in local newspapers and issuing advisory letters to local governmental agencies regarding groundwater use in the impacted area.
- A Site Management Plan ("SMP") would be developed to provide for the proper management of the Alcas Source Area remedy post-construction, such as through the use of institutional controls until RAOs are met, and will also include long-term groundwater monitoring, periodic reviews and certifications.

6.2.3.1 Overall Protection of Human Health and the Environment

Ozone is a powerful oxidant, stronger than persulfate or permanganate, and readily reacts with toxic organics, including chlorinated ethenes. Significant quantities of gas are expected during the oxidation process creating the potential for stripping of VOCs from the groundwater into unsaturated soils at the Alcas Source Area. The off-gas generated during the stripping process might present a potential risk to workers, via the inhalation of off-gas, and the environment, via the spread of contaminants from the groundwater to unsaturated soils. For this reason, air monitoring for COCs during injection operations would be an important aspect of implementing this alternative. If safe breathing levels were exceeded, mitigation would be required, which could include the use of respirators, or even installation of a vapor extraction system. ISCO using ozone would be likely to adequately oxidize Alcas Source Area COCs. Protectiveness and limiting exposure to residual contaminants through institutional controls until RAOs are met.

6.2.3.2 Compliance with ARARs

This alternative would comply with chemical-, location-, and action-specific ARARs.

6.2.3.3 Long-Term Effectiveness and Permanence

ISCO using ozone involves the introduction of ozone gas to degrade organic contaminants. The bench scale treatability test conducted to assess the feasibility of ISCO technology in oxidizing dissolved phase COCs with chemical oxidants, included as Appendix D, determined that ozone generated significant quantities of gas during the oxidation process. This proved difficult to manage during initial bench scale testing. The test determined that approximately 5 to 10 ozone applications were required to completely oxidize high concentrations of dissolved phase TCE. Like most injection technologies, dissolved contaminants concentrations may rebound weeks or months following treatment. Additional injection rounds may be required to maintain RAOs.

Once decayed, ozone leaves no taste or odor in water and thus, not expected to impact wellhead treatment at 18M or 38/38M.

6.2.3.4 <u>Reduction of Mobility, Toxicity, or Volume</u>

This alternative would provide actual in-situ COC treatment resulting in irreversible oxidation of Alcas Source Area COCs. Injecting ozone is expected to reduce VOC mass near the injection points. However, the ozone gas is expected to cause stripping of contaminants from the groundwater that may spread to unsaturated soils and off-gas.

6.2.3.5 Short-Term Effectiveness

The quantity of ozone gas required to remove dissolved phase contaminates is believed to have the potential to generate stripping of VOCs from the groundwater into unsaturated soils at the Alcas Source Area. This alternative may have potential short-term impacts to remediation workers, the public, and the environment during implementation. Drilling activities, including the installation of monitoring and injection wells, could produce contaminated liquids that present some risk to remediation workers at the Alcas Source Area. However, measures would be implemented to mitigate exposure risks through the use of personnel protective equipment and standard health and safety practices. The off-gas generated during the stripping process would present a potential risk to workers, via the inhalation of off-gas, and the environment, via the spread of contaminants from the groundwater to unsaturated soils.

6.2.3.6 Implementability

The implementation of oxidant injections is technically feasible with no foreseen administrative impediments. The injection of ozone gas is seen as problematic because of the highly heterogeneous soils that would prevent uniform distribution of the gas. Ozone gas that does contact COCs is expected to react rapidly, hindering ozone's ability to travel laterally, thus creating a limited radius of influence.

The proximity of public drinking water supply well 18M to the treatment area also increases the design challenges with ISCO using ozone. However, the proper placement of injection wells and management of ozone gas quantities is not expected to impact the public supply wells.

6.2.3.7 Cost

Capital costs include system design, installation of injection wells, and waste disposal. Total capital costs are estimated to be approximately \$524,000 for the remediation system. Additional costs include multiple rounds of injections and groundwater monitoring. Total additional costs

are estimated to \$488,670. Annual O&M costs are estimated to average \$81,444 per year over years 1 through 6. The total present value life cycle costs of this alternative using a discount rate of 7 percent is \$1,010,000. A detailed cost analysis is included in Appendix A.

6.2.3.8 Phase Time Estimation

Phase time estimates are based on the conceptual design, current conditions, and available technologies, and are subject to change.

Phase	Time
Construction	1-2 years
Implementation	3-5 years
Remedial Action Objectives	20 years

6.2.4 Alternative B.4 - Monitored Natural Attenuation

Under the conceptual design for MNA, three new monitoring wells will be installed to monitor Alcas Source Area conditions. Following installation, eight quarterly monitoring events will be conducted in the first two years. Assuming EPA approval to a reduction of the monitoring frequency, annual monitoring events will be conducted for the next 28 years. Soils will be disposed of in accordance with RCRA Hazardous Waste generator, transporter, treatment and disposal requirements.

The results of the Monitored Natural Attenuation demonstration are included as Appendix E.

6.2.4.1 Overall Protection of Human Health and the Environment

This alterative is not expected to result in exposure risks to the community, workers, or the environment. Given the Alcas Source Area conditions geochemistry, it will take in excess of 30 years for the MNA to remediate the groundwater to below MCLs. Other MNA mechanisms such as dilution and dispersion are also not expected to reduce groundwater concentrations to below MCLs if the source area persists. Monitored natural attenuation alone is not likely to reduce Alcas Source Area COCs in a reasonable time period and thus the alternative does not comply with chemical specific ARARs for groundwater.

6.2.4.2 Compliance with ARARs

This alternative by itself would not comply with chemical specific ARARs because it is not believed to reduce Alcas Source Area COCs within a reasonable time period.

6.2.4.3 Long-Term Effectiveness and Permanence

The natural attenuation evaluation determined that although evidence of biodegradation is observed, the lack of available electron donors at the Alcas Source Area inhibits effective degradation of Alcas Source Area COCs in a reasonable time period. Degradation byproducts are not expected to impact wellhead treatment at municipal wells. Natural attenuation as a remedial alternative by itself is not believed to be able of attaining Alcas Source Area-specific remediation objectives.

6.2.4.4 <u>Reduction of Mobility, Toxicity, or Volume</u>

The Natural attenuation alternative will reduce Alcas Source Area COCs toxicity and volume but not affect mobility. The biodegradation of Alcas Source Area COCs is permanent and irreversible. Complete degradation is expected to exceed 30 years, leaving residual COCs at concentrations above chemical specific ARARs beyond that time.

6.2.4.5 Short-Term Effectiveness

Implementation of this alternative would result in minimal exposure risk to the community, workers, and the environment which would be managed by worker training. Waste generated during the installation of additional monitoring wells would be managed using approved methods.

6.2.4.6 Implementability

Implementation of this alternative is technically feasible, as the technology to install additional monitoring wells and collect groundwater samples is well established. The materials and services to necessary for the installation of additional monitoring wells and for the collection and analysis of groundwater samples are readily available. The installation and sampling activities are not expected to significantly impact operations at the existing Cutco Corporation facility.

6.2.4.7 <u>Cost</u>

Capital costs include system design, installation of additional monitoring wells, and waste disposal. Total capital costs are estimated to be approximately \$307,000. O&M costs include groundwater monitoring. Annual O&M costs are estimated to average \$14,700 per year over 30 years. The total present value life cycle costs of this alternative using a discount rate of 7 percent is \$460,000. A detailed cost analysis is included in Appendix A

6.2.4.8 Phase Time Estimation

Phase time estimates are based on the conceptual design, current conditions, and available technologies, and are subject to change.

Phase	Time
Construction	0 years
Implementation	30 years
Remedial Action Objectives	To Be Determined

6.2.5 Alternative B.5 - Enhanced Anaerobic Bioremediation

The Enhanced Anaerobic Bioremediation ("*EAB*") pilot study completed at the Alcas Source Area (Appendix F) indicates that Alcas Source Area COCs can be effectively degraded using this technology. Under the conceptual design for EAB, selected locations on Parcel B would be generally targeting areas where higher concentrations of COCs have historically been observed; specifically where TCE concentrations exceed 100 μ g/L. EAB would be implemented using temporary injection points to inject slow-release electron donor solutions into the subsurface. Based on the pilot study, bioaugmentation will likely be necessary in order to supplement the existing bacterial community at the Alcas Source Area in order for EAB to be effective.

Disruption will occur periodically during the first six years when implementing the injections. Soils will be disposed of in accordance with RCRA Hazardous Waste generator, transporter, treatment and disposal requirements.

Components of this technology include the following:

- Install temporary injection points (in multiple rows with borehole spacing of approximately 40 feet within each row) to depths between 10 and 40 feet bgs. The injection point network will be developed during the Remedial design phase but for the purposes of developing a cost estimate for this alternative, 13 temporary injection points were used.
- Inject 100 gallons of slow-release electron donor amendment per vertical foot of injection interval at each point.
- Assume three rounds of injection (one every two years).
- Install new monitoring wells for performance monitoring. A monitoring well network will be developed during the Remedial design phase but for the purposes of developing a cost estimate for this alternative, 3 new monitoring wells were used.

Figure 6-11 presents the conceptual layout of the EAB injection points. While the effective radius of influence for each injection well is expected to be 8 to 10 feet based on the pilot test, the use of multiple, staggered rows of injection wells allows the spacing to be doubled while still establishing a complete treatment zone. It is expected that the large quantity of electron donor distributed over the area illustrated in Figure 6-11 will be sufficient to maintain strongly reducing conditions for up to 2 years. This is longer than the pilot test because in that case the injection zone was much smaller, which allowed untreated water to move through the treatment zone much more rapidly than will be the case during a full-scale application. Performance monitoring data will be used to determine whether the injection layout is achieving objectives or needs to be modified. This alternative also includes the following components:

- performance monitoring would be conducted to monitor oxidation of COCs.
- Long-term monitoring of the VOC contamination transformation and the attenuation processes to ensure that the groundwater quality improves until the cleanup levels are achieved.
- Groundwater sampling would also monitor degradation by-products generated by the treatment processes to ensure that drinking water quality standards are met at the nearby municipal water supply well 18M.
- Institutional controls in the form of proprietary controls, such as deed restrictions for groundwater and soil use, existing governmental controls, such as well permit requirements, and informational devices, such as publishing advisories in local newspapers and issuing advisory letters to local governmental agencies regarding groundwater use in the impacted area.
- A Site Management Plan ("SMP") would be developed to provide for the proper management of the Alcas Source Area remedy post-construction, such as through the use of institutional controls until RAOs are met, and will also include long-term groundwater monitoring, periodic reviews and certifications.

FIGURE 6-11 ENHANCED ANAEROBIC BIOREMEDIATION - PARCEL B ALCAS PROPERTY OLEAN, NEW YORK

6.2.5.1 Overall Protection of Human Health and the Environment

This alternative would restore groundwater quality within a reasonable timeframe. Protectiveness under this alternatives requires a combination of actively reducing contaminant concentrations and limiting exposure to residual contaminants through institutional controls until RAOs are met.

6.2.5.2 Compliance with ARARs

This alternative would comply with chemical-, location-, and action-specific ARARs.

6.2.5.3 Long-Term Effectiveness and Permanence

Long-term effectiveness and permanence would be achieved through an enhanced anaerobic bioremediation treatment alternative. The pilot study determined that reductive dechlorination conditions can be achieved through the injection of an electron donor allowing for the biodegradation of chlorinated ethenes.

Metals become more soluble under reducing conditions and several metals exhibited slight increases in concentration during the pilot study. While slight increases in dissolved metals concentrations were observed following electron donor injection, these increases are not expected to lead to migration of metals outside of the treatment area, as the metals become more immobile as redox conditions become less reducing outside of the treatment area. Treatment byproducts are not expected to impact wellhead treatment at municipal wells.

The electron donor did have a slight effect on hydraulic conductivity in the immediate vicinity of the injection points. As the overall decrease in conductivity attributable to electron donor injection was less than one order of magnitude, and the conductivity should increase over time as electron donor is depleted, the long-term effect on hydraulic conductivity is not expected to be significant.

6.2.5.4 Reduction of Mobility, Toxicity, or Volume

This alternative would provide actual in-situ COC treatment resulting in irreversible reduction of Alcas Source Area COCs. Based on the results of the pilot study, included as Appendix F, it was concluded that redox condition will shift in areas impacted directly by the electron donor injection, and that the conditions are favorable for reductive dechlorination. The pilot study determined that reductive dechlorination occurred with a reduction in TCE concentration of approximately 95 percent and a reduction in total chloroethenes of approximately 85 percent. The remaining chloroethene mass was predominantly composed of vinyl chloride and ethene. This transformation would need to be monitored and managed to prevent exposure via drinking contaminated water or inhalation through the vapor intrusion pathway. Given the 5-month duration of the pilot study and the observation that methanogenesis was only just beginning, it is likely that additional ethene generation will occur over the long term.

6.2.5.5 Short-Term Effectiveness

This alternative may have potential short-term impacts to remediation workers, the public, and the environment during implementation. Drilling activities, including the installation of monitoring and injection wells, could produce contaminated liquids that present some risk to remediation workers at the Alcas Source Area. However, measures would be implemented to

mitigate exposure risks through the use of personnel protective equipment and standard health and safety practices. Methane will be generated in the subsurface during EAB. If injections are performed under buildings, or immediately adjacent to them, periodic monitoring of air or subslab soil gas should be considered to ensure concentrations do not exceed occupational safety levels. In the case of the treatment area illustrated in Figure 6-11, the area is open and undeveloped with no buildings that would allow for accumulation of methane or other gases, so this will not be an issue. No difficulties are foreseen with the required quantity of the injection material needed for this alternative, as it is nonhazardous. Waste generated during the injection of electron donor would be managed using approved methods.

6.2.5.6 Implementability

Implementation of this alternative is technically feasible, as the technology to inject electron donor is well established. The materials and services to necessary for the injection are readily available. The enhanced biodegradation activities are not expected to significantly impact operations at the existing Cutco Corporation facility.

The results of the pilot test indicate that effective electron donor distribution can be achieved using DPT injection techniques. Due to the relatively low, but highly variable, permeability of the aquifer formations at the Alcas Source Area, pressurized DPT injection using a top-down approach is an effective method for distributing the electron donor bother horizontally and vertically at the Alcas Source Area.

6.2.5.7 <u>Cost</u>

Capital costs include injection design, installation of temporary injection points, and initial injection of electron donor. Total capital costs are estimated to be approximately \$294,000 for the implementation, first electron donor injection, and bioaugmentation. Periodic costs include two subsequent electron donor injection events and maintenance. Total periodic costs are estimated to be \$348,000. Monitoring costs are estimated to be \$649,000. Annual O&M costs are estimated to average \$101,000 per year during years 1 through 8. The total present value life cycle costs of this alternative using a discount rate of 7 percent is \$1,103,000. A detailed cost analysis is included in Appendix A.

6.2.5.8 Phase Time Estimation

Phase time estimates are based on the conceptual design, current conditions, and available technologies, and are subject to change.

Phase	Time
Construction	1-2 years
Implementation	3-5 years
Remedial Action Objectives	30 years

7.0 Comparative Analysis of Alternatives

This section will present a comparative analysis of alternatives address soil and groundwater contamination at the Alcas Facility and Parcel B. The analysis will compare the relative performance of each alternative in relation to each specific evaluation criterion. This analysis will identify the advantages and disadvantages of each alternative relative to one another so that the key tradeoffs can be identified. The USEPA has categorized the nine evaluation criteria into three groups, which have varying levels of importance in the selection of the remedial alternative.

- Threshold Criteria Overall protection of human health and the environment and compliance with ARARs are threshold requirements that each alternative must meet in order to be eligible for selection.
- Balancing Criteria The five primary balancing criteria are long-term effectiveness and permanence; reduction of toxicity, mobility, or volume through treatment; short-term effectiveness; Implementability; and cost. The alternative that is protective of human health and the environment, complies with ARARs, and affords the most favorable balancing criteria will be identified as the preferred remedial alternative.
- Modifying Criteria State and community acceptance are modifying criteria that shall be considered in the remedy selection. State and community acceptance will be addressed after comments to this FFS Report are received.

7.1 Comparative Analysis of Alternatives for the Alcas Facility

This section provides a comparative analysis of the expected performances of each alternative to identify the most suitable alternative to minimizing the migration of COCs from the Alcas Source Area to the City Aquifer

7.1.1 Overall Protection of Human Health and the Environment

Each alternative, with the exception of the No Action alternative, provides protection of human health and the environment and achieves some measure of the RAOs. The means of achieving protection is somewhat different for each alternative. Alternative A.4 (Groundwater Extraction via Trench) and Alternative A.5 (Groundwater Extraction via Wells) provide protection by intercepting COCs before they reach the City Aquifer. The degree of containment is high, but the mass removal is low. Alternative A.9 (ISCO with Activated Persulfate) provides protection by decreasing mass to a much larger extent, which will in turn reduce mass flux of COCs to the City Aquifer. Similarly, Alternative A.9b (ISCO with Activated Persulfate) and excavation provides protection by actively reducing contaminant concentrations and limiting exposure to residual contaminants through institutional controls until RAOs are met. The degree of mass reduction is high, but the degree of containment is potentially somewhat lower. Alternative A.6 (ZVI PRB) and Alternative A.8 (ZVI Treatment Zones) provide somewhat greater containment than Alternative A.7 (Barrier Wall), and Alternative A.2 (Excavation) provide the least containment and mass reduction of the alternatives.

7.1.2 Compliance with ARARs

Only three alternatives, Alternative A.8 (ZVI Treatment Zones), Alternative A.9a (ISCO with Activated Persulfate) and Alternative A.9b (ISCO with Activated Persulfate and Excavation) will comply with chemical-specific ARARs for COCs in the saturated zone beneath the Main Building by oxidizing or dechlorinating Alcas Source Area COCs before they can spread in the Upper Aquitard. The remainder of alternatives would not comply with chemical-specific ARARs for soil or groundwater as the alternatives would have minimal or no effectiveness in remediating, controlling or abating the contamination source situated underneath the Main Building.

7.1.3 Long-Term Effectiveness and Permanence

The long-term effectiveness and permanence is similar for Alternative A.4 (Groundwater Extraction via Trench), Alternative A.5 (Groundwater Extraction via Wells) and Alternative A.9 (ISCO with Activated Persulfate), although differences exist. In the case of Alternative A.4 (Groundwater Extraction via Trench) and Alternative A.5 (Groundwater Extraction via Wells), the alternatives are well understood and proven to provide hydraulic containment, and the systems can be maintained for decades with periodic maintenance. However, the residual COC mass left in place is much higher for Alternative A.4 (Groundwater Extraction via Trench) and Alternative A.5 (Groundwater Extraction via Trench) and Alternative A.5 (Groundwater Extraction via Wells) than for Alternative A.9a (ISCO with Activated Persulfate), which provides a permanent reduction in residual COC mass, but perhaps less certainty with respect to the immediate COC flux reduction. Alternative A.9b (ISCO with Activated Persulfate and Excavation) could potentially provide the highest degree of long-term effectiveness and permanence since additional excavation activities could be performed in the future, if necessary.

Alternative A.8 (ZVI Treatment Zones) follows Alternative A.4 (Groundwater Extraction via Trench), Alternative A.5 (Groundwater Extraction via Wells) and Alternative A.9 (ISCO with Activated Persulfate) for this criterion. This alternative provides less certainty regarding mass flux reduction than groundwater extraction, and less mass reduction (i.e., more residual COC mass) than Alternative A.9 (ISCO with Activated Persulfate), though it provides both. The Alternative A.6 (ZVI PRB) would be next as again, the certainty of containment is less than for groundwater extraction, but the mass removal would likely be similar.

Alternative A.7 (Barrier Wall) would provide long-term effectiveness if constructed successfully. However, since certainty of successfully constructing the barrier is low, and residual COC mass is high, the alternative does not provide a high degree of certainty for long-term effectiveness. Alternative A.2 (Excavation) and Alternative A.3 (VER) have the least long-term effectiveness due to the residual risk from remaining, unexcavated or untreated soil impacts underneath the Main Building and the lack of flux reduction.

7.1.4 Reduction of Mobility, Toxicity, or Volume

Alternative A.9b (ISCO with Activated Persulfate and Excavation) in and around the Main Building would provide the largest reduction of constituent mass, mobility, and toxicity, followed by Alternative A.9a (ISCO with Activated Persulfate) and the Alternative A.8 (ZVI Treatment Zones). Alternative A.4 (Groundwater Extraction via Trench), Alternative A.5 (Groundwater Extraction via Wells) and Alternative A.6 (ZVI PRB) would also reduce

contaminant mobility, but will have less of an impact on mass and toxicity due to the residual source material underneath the Main Building. In addition, Alternative A.4 (Groundwater Extraction via Trench) and Alternative A.5 (Groundwater Extraction via Wells) does not provide COC destruction, but instead transfers them to the atmosphere, albeit at levels below regulatory limits. Alternative A.7 (Barrier Wall) will prevent mobility but will not reduce mass or toxicity. Alternative A.2 (Excavation) is not expected to significantly reduce mobility, toxicity or volume. Alternative A.3 (VER) will likely remove some mass but has the potential to increase mobility of COC to the City Aquifer if upwelling occurs.

7.1.5 Short-Term Effectiveness

The implementation of each alternative analyzed would result in minimal exposure risks to the community, workers, and the environment. These risks would be limited through engineering controls and worker training.

7.1.6 Implementability

Alternative A.3 (VER), Alternative A.4 (Groundwater Extraction via Trench) and Alternative A.5 (Groundwater Extraction via Wells), Alternative A.6 (ZVI PRB), Alternative A.9 (ISCO with Activated Persulfate) and Alternative A.2 (Excavation) are technically and administratively feasible. However, the groundwater extraction and treatment alternatives would result in the most risk through the continuous operation of a treatment system that is susceptible to potential The services and material necessary to implement each malfunctions and shut-downs. alternative discussed are readily available. More care will be required when working within the existing Cutco Corporation facility to access the source material underneath the Main Building. For this reason, Alternative A.8 (ZVI Treatment Zones) is not likely implementable. Alternative A.7 (Barrier Wall) is the most difficult to implement as a great deal of precision will be required to construct the bottom barrier. The level of detail for the bottom barrier extends well beyond the ordinary requirements for a horizontal well installation. Alternative A.9b (ISCO with Activated Persulfate) and excavation has implementation challenges due to the limited accessibility underneath the existing operating facility. Excavation activities determined to be necessary to achieve the groundwater RAOs under this alternative would require a significant amount of coordination given the existing manufacturing operations at the Alcas Facility. Existing operations at the Alcas Facility would be negatively impacted by the excavation alternative as certain areas of the building critical to the manufacturing process would need to be fully or partially demolished. However if future operations change, or for instance if the portion of the building overlying the contamination is no longer in use or demolished, impacts resulting from excavation may not be significant; in fact, if the building is demolished excavation would be more readily implementable and be more important as unsaturated soils may be more amenable to leaching if the slab is compromised.

7.1.7 Costs

The No Action alternative with no cost is the most economical option. Alternative A.2 (Excavation) is the next most economical at an estimated present value cost of \$309,000. Alternative A.3 (VER), Alternative A.6 (ZVI PRB), Alternative A.9a (ISCO with Activated Persulfate) and Alternative A.9b (ISCO with Activated Persulfate with Excavation) are all estimated to have relatively similar costs, between \$1 and 1.5 million. The construction of Alternative A.7 (Barrier Wall) and installation of multiple horizontal boreholes to construct the

bottom barrier makes the barrier wall alternative the most expensive alternatives at an estimated present worth value of \$7,730,000. Alternative A.4 (Groundwater Extraction via Trench) and Alternative A.5 (Groundwater Extraction via Wells) have a costs range between 2.8 and 3.2 million due to the costs associated with operating the treatment system. The least expensive of the three extraction alternatives is by Alternative A.4 (Groundwater Extraction via Trench), followed by Alternative A.5 (Groundwater Extraction via Wells) by vertical wells, and then Alternative A.5 (Groundwater Extraction via Wells) by horizontal wells.

7.2 Comparative Analysis of Alternatives for Parcel B

This section provides a comparative analysis of the expected performances of each alternative to identify the most suitable alternative to reduce the dissolved phase COC Concentrations in the upper aquitard south of the Alcas Source Area.

7.2.1 Overall Protection of Human Health and the Environment

As no exposure pathways currently exist, all of the alternatives are protective of human health and the environment. Alternative B.2 (ISCO using Persulfate) and Alternative B.4 (EAB) could achieve the RAO through destruction and degradation of Alcas Source Area COCs. Alternative B.3 (ISCO using Ozone) would oxidize constituent mass in the subsurface and achieve the RAO but would lead to the generation of off-gas that would present a potential risk to workers and the environment. Alternative B.5 (MNA) alone is not expected to reduce contaminants within a reasonable time period. However, used in conjunction with Alternative B.4 (EAB) and potentially the ISCO alternatives, Alternative B.5 (MNA) may prove successful.

7.2.2 Compliance with ARARs

Each of the alternatives, with the exception of No Action, would attain ARARs in the long-term. The timeframe for Alternative B.5 (MNA) on its own to achieve ARARs might not be acceptable however.

7.2.3 Long-Term Effectiveness and Permanence

Long-term effectiveness and permanence would be achieved by both Alternative B.4 (EAB) and Alternative B.2 (ISCO using Persulfate). However, Alternative B.4 (EAB) will likely reduce long-term risk more than Alternative B.2 (ISCO using Persulfate). Alternative B.4 (EAB) will create a bacterial community that will continue to degrade COCs for some time after active treatment, providing more long-term COC destruction and facilitating attenuation processes that will reduce the overall cleanup timeframe. Alternative B.3 (ISCO using Ozone) provides less certainty than either of these alternatives regarding effectiveness.

7.2.4 Reduction of Mobility, Toxicity, or Volume

Alternative B.2 (ISCO using Persulfate), Alternative B.3 (ISCO using Ozone), and Alternative B.4 (EAB) would reduce constituent mass through in situ destruction and prevent the further migration of COCs. Alternative B.4 (EAB) is estimated to achieve a higher reduction in constituent mass than Alternative B.2 (ISCO using Persulfate) and Alternative B.3 (ISCO using Ozone). Alternative B.5 (MNA) alone is not expected to reduce contaminants within a reasonable time period.

7.2.5 Short-Term Effectiveness

Alternative B.2 (ISCO using Persulfate) and Alternative B.4 (EAB) would result in minimal exposure risk to the community and the environment. Both alternatives require similar remedial actions to implement and have limited O&M activities; however, handling of chemical oxidants does pose more risk to workers. In particular the use of ozone may require air monitoring for COCs during injection operations. If safe breathing levels were exceeded, mitigation would be required, which could include the use of respirators, or even installation of a vapor extraction system. Alternative B.5 (MNA) would also be highly rated in this category. Alternative B.3 (ISCO using Ozone) is the lowest rated for short-term effectiveness because its implementation would have the most risk.

7.2.6 Implementability

Alternative B.4 (EAB) and Alternative B.2 (ISCO using Persulfate) are technically and administratively feasible. Both alternatives require similar remedial actions to implement and have limited O&M activities. Limited separation exists between the two alternatives with regard to implementability. Alternative B.5 (MNA) is also straightforward to implement. Alternative B.3 (ISCO using Ozone) has the most implementation challenges.

7.2.7 Cost

Alternative B.2 (ISCO using Persulfate) and Alternative B.3 (ISCO using Ozone) have an estimated present value total cost of \$1,010,000. Alternative B.4 (EAB) has an estimate present value total cost of \$1,103,000 and Alternative B.5 (MNA) has the lowest estimated present value cost of \$460,000.

8.0 References

Arnold, W., Roberts, L., 2000. "Pathways and Kinetics of Chlorinated Ethylene and Chlorinated Acetylene Reaction with Fe(0) Particles". Environ. Sci. Technol. 34(2), 1794-1805.

Battelle, 2002. Evaluating the Longevity of Hydraulic Performance of Permeable Reactive Barriers at Department of Defense Sites. Final Report prepared for NFESC, April 24.

Lookman, R., Bastiaens, L., Borremans, B., Maesen, M., Gemoets, J., Diels, L., 2004. "Batchtest study on the dechlorination of 1,1,1-trichloroethane in contaminated aquifer material by zero-valent iron". J. Cont. Hydrol. 74. 133-144.

National Research Council, 2012. Alternatives for Managing the Nation's Complex Contaminated Groundwater Sites. National Academies Press, Washington, D.C. 326 pp.

United States Environmental Protection Agency, 1988. Guidance for Conduction Remedial Investigations and Feasibility Studies Under CERCLA EPA/540/G-89/004 OSWER Directive 9355-3-01, October.

United States Environmental Protection Agency, 1997. Permeable Reactive Subsurface Barriers for the Interception and Remediation of Chlorinated Hydrocarbon and Chromium (VI) Plumes in Groundwater. EPA 600/F-97/008, July.

United States Environmental Protection Agency, 1999. A Guide for Preparing for Preparing Superfund Proposed Plans, Records of Decision, and Other Remedy Selection Decision Documents. EPA 540/R-98/031, July.

United States Environmental Protection Agency, 2000. A Guide to Developing and Documenting Cost Estimates during the Feasibility Study. EPA 540-R-00-002, July.

United States Environmental Protection Agency, 2011. Groundwater Road Map Recommended Process for Restoring Contaminated Groundwater at Superfund Sites. OSWER 9283.1-34

United States Environmental Protection Agency, 2012. National Strategy to Expand Superfund Optimization Practices from Site Assessment to Site Completion. OSWER Directive 9200.3-75

United States Environmental Protection Agency, 2014. Groundwater Remedy Completion Strategy. OSWER directive 9200.2-144, May.

Appendix A

Alternative Costing Details

Excavation Cost Estimate Summary
Alcas Facility - Olean, NY

Item No.	Item Description	Quantity	U	nit Cost	Unit	I	Extension
CAPITA	L COSTS		-				
1.Manag	ement, Design, and Planning						
	Project Management and Engineering Support	1	\$	36,635	LS	\$	36,635
	System Design	1	\$	-	LS	\$	-
	Remediation Plans and Regulatory Approval	1	\$	31,096	LS	\$	31,096
	Permitting	1	\$	6,240	LS	\$	6,240
	Total Management, Design, and Planning Costs					\$	73,971
2. Supple	emental Investigation / Phased Implementation						
	Total Transition Zone investigation/Phased Implementation Costs	1	\$	-	LS	\$	-
3. Ssyten	n Installation						
3a.	Excavation of Shallow Soils	1	\$	195,000	LS	\$	195,000
		1	\$	-	LS	\$	-
		1	\$	-	LS	\$	-
	Total System Installation Costs					\$	195,000
	SUBTOTAL CAPITAL COSTS					\$	268,971
4.	Overhead and Profit (15%)					\$	40,346
	TOTAL CAPITAL COST					\$	309,317
OPERA	TION, MONITORING, & MAINTENANCE (OM&M) COSTS						
5a.	Project Management	1	\$	-	LS	\$	-
5b.	Groundwater Monitoring	1	\$	-	LS	\$	-
		1	\$	-	LS	\$	-
	Subtotal Annual OM&M Cost					\$	-
-						^	
6.	OM&M Overhead and Profit (10%)					\$	-
	TOTAL ANNUAL OM&M COST					\$	-
	PRESENT WORTH OF TOTAL OM&M COST					\$	-
DDDG							
PRESE	VI VALUE					¢	200 217
	IUIAL IKESENI VALUE (1% DISCOUNI KAIE)					\$	309,317

SAY \$ 300,000

Item No.	Item Description	Quantity	U	nit Cost	Unit		Extension
CAPITA	L COSTS						
1.General	Conditions						
	General Administrative Conditions	1	\$	13,000	LS	\$	13,000
	Permitting	1	\$	13,000	LS	\$	13,000
	Survey	1	\$	26,000	LS	\$	26,000
	Total General Conditions Costs					\$	52,000
2. Constri	uction Costs						
2a.	Mobilization	1	\$	13,000	LS	\$	13,000
2b.	VER Well Installation	1	\$	100,000	LS	\$	100,000
2c.	Vacuum Pump System	1	\$	80,000	LS	\$	80,000
2d.	Institutional Control	1	\$	-	LS	\$	-
	Total Construction Costs					\$	193,000
3. Transp	ortation & Disposal (T&D)						
3a.	Hazardous, Subtitle C	0	\$	142	CY	\$	-
3b.	Non Hazardous, Subtitle D	0	\$	98	CY	\$	-
3c.	Non Hazardous, Concrete and Debris	0	\$	98	CY	\$	-
	Total T&D Costs					\$	-
4. Treatm	ent (NOT APPLICABLE)					\$	-
	SUBTOTAL CAPITAL COSTS					\$	245,000
5.	Pre-construction Sampling/Delineation	1	\$	26,000	LS	\$	26,000
6.	Design Engineering (5% capital cost)					\$	12,250
7.	General Contractor Overhead and Profit (20% GC & Construction, 10% T&D)					\$	49,000
8.	Resident Engineering (2.5% capital cost)					\$	6,125
	TOTAL CAPITAL COST					\$	338,375
ODEDAT							
OPERAL	ION & MAINTENANCE (U&M) COSTS					_	
Annual C	VBM Costs	-	+				
9.	Total Annual OM&M Cost (Year 1-30)	1	\$	100,000	LS	\$	100,000
Davia dia (Contra						
10	Site restoration (at the and 30th year)	1	¢	4 622	IS	¢	4 622
10.	Bemodial Action Benort	1	ф Ф	4,022		ф ф	4,022
11.	Kemediai Action Keport	1	¢	22,033	Lo	φ	22,035
-	PRESENT WORTH OF TOTAL O&M COST					\$	1,063,557
PRESEN	T VALUE						
	TOTAL PRESENT VALUE (7% DISCOUNT RATE)					\$	1,401,932

Vacuum Enhanced Recovery Treatment Cost Estimate Summary Alcas Facility - Olean, NY

SAY \$ 1,400,000

2

Hydraulic Control System Cost Estimate Summary Collection Trench Alcas Facility - Olean, NY

CAPITAL COSTS Image of the system of the syste	Item No. Iter	n Description	Quantity	U	nit Cost	Unit]	Extension
CAPITAL COSTS Imagement, Design, and Planning Imagement, Design, and Planning Project Management and Engineering Support 1 \$ 36,635 LS \$ 36,635 System Design 1 \$ 36,635 LS \$ 86,503 Remediation Plans and Regulatory Approval 1 \$ 31,096 LS \$ 31,09 Permitting 1 \$ 6,240 LS \$ 6,244 Total Management, Design, and Planning Costs 1 \$ 6,240 LS \$ 6,244 Z. Supplemental Investigation / Phased Implementation 1 \$ 6,240 LS \$ 89,330 LS \$ 89,330 3. System Installation 1 \$ 89,330 LS \$ 89,330 LS \$ 89,330 LS \$ 89,330 LS \$ 80,335,627 LS \$ 30,5627 LS \$ 30,5627 LS \$ 228,491 S \$ 624,11								
I.Management, Design, and Planning Project Management and Engineering Support 1 \$ 36,635 LS \$ 36,635 System Design 1 \$ 36,635 LS \$ 36,635 Remediation Plans and Regulatory Approval 1 \$ 31,096 LS \$ 31,096 Permitting 1 \$ 6,240 LS \$ 6,240 Total Management, Design, and Planning Costs 1 \$ 6,240 LS \$ 6,240 2. Supplemental Investigation / Phased Implementation 1 \$ 6,240 LS \$ 6,240 3. System Installation 1 \$ 89,330 LS \$ 89,330 LS \$ 89,333 3. System Installation 1 \$ 395,627 LS \$ 395,627 LS \$ 228,491 LS \$ 27,268 LS \$ 73,92 Voerhead and Profit (15%) 1 \$ 27,268 LS \$ 27,268 LS \$ 27,265 S 13	CAPITAL CO	OSTS						
Project Management and Engineering Support 1 \$ 36,633 I.S \$ 36,633 System Design 1 \$ 86,503 I.S \$ 86,503 Remediation Plans and Regulatory Approval 1 \$ 31,096 I.S \$ 31,096 Permitting 1 \$ 6,240 I.S \$ 6,24 Total Management, Design, and Planning Costs 1 \$ 6,240 I.S \$ 160,47 2. Supplemental Investigation /Phased Implementation 1 \$ 89,330 I.S \$ 89,330 3. System Installation 1 \$ 395,627 I.S \$ 395,627 3a. Hydraulic Collection Trench 1 \$ 395,627 I.S \$ 228,491 Total System Installation 1 \$ 228,491 I.S \$ 228,491 Supplemental Installation Costs 1 \$ 228,491 I.S \$ 228,491 Supplemental Installation Costs 1 \$ 228,491 I.S \$ 228,491 Goverhead and Profit (15%) 1 \$ 27,268 I.S \$ 1,005,01 Overhead and Profit (15%) 1 \$ 36,122 I.S \$ 27,268 5. Groundwater Monitoring	1.Management	t, Design, and Planning						
System Design 1 \$ 86,503 1.S. \$ 86,503 Remediation Plans and Regulatory Approval 1 \$ 31,096 1.S. \$ 31,096 Permitting 1 \$ 6,240 1.S. \$ 6,240 Total Management, Design, and Planning Costs 1 \$ 6,240 1.S. \$ 6,240 2. Supplemental Investigation / Phased Implementation 5 6,240 1.S. \$ 80,30 3. System Installation 1 \$ 89,330 1.S. \$ 89,330 3. System Installation 1 \$ 395,627 1.S. \$ 395,627 3b. System Installation Costs 1 \$ 295,627 1.S. \$ 395,627 3b. System Installation Costs 1 \$ 295,627 1.S. \$ 395,627 4. Overhead and Profit (15%) 1 \$ 22,8491 1.S. \$ 624,111 5 SUBTOTAL CAPITAL COSTS <td< td=""><td>Pro</td><td>ject Management and Engineering Support</td><td>1</td><td>\$</td><td>36,635</td><td>LS</td><td>\$</td><td>36,635</td></td<>	Pro	ject Management and Engineering Support	1	\$	36,635	LS	\$	36,635
Remediation Plans and Regulatory Approval 1 \$ 31.096 LS \$ 31.09 Permitting 1 \$ 6.240 LS \$ 6.24 Total Management, Design, and Planning Costs - - - - 2. Supplemental Investigation / Phased Implementation - - - - 3. System Installation - - - - - 3. System Installation 1 \$ 395.627 LS \$ 395.627 LS \$ 395.627 3b. System Installation 1 \$ 228,491 LS \$ 228,491 LS \$ 228,491 Total System Installation Costs 1 \$ 228,491 LS \$ 624,111 - SUBTOTAL CAPITAL COSTS - - - - - - 4. Overhead and Profit (15%) - \$ 131.08 - - - - - 5. Groundwater Monitring 1 \$ 27.268 LS \$ 27.26 - - - - - - - - - - - - - -	Syst	tem Design	1	\$	86,503	LS	\$	86,503
Permitting 1 \$ 6,240 LS \$ 6,241 Total Management, Design, and Planning Costs \$ 160,47 2. Supplemental Investigation / Phased Implementation Total Transition Zone investigation/Phased Implementation Costs 1 \$ 89,330 LS \$ 89,330 3. System Installation 1 \$ 395,627 LS \$ 395,627 3a. Hydraulic Collection Trench 1 \$ 395,627 LS \$ 228,491 Subtrotal System Installation Costs 1 \$ 228,491 LS \$ 228,491 SUBTOTAL CAPITAL COSTS \$ \$ 624,119 TOTAL CAPITAL COSTS \$ 131,08 TOTAL CAPITAL COST \$ 130,05,01 GPERATION, MONITORING, & MAINTENANCE (OM&M) COSTS \$ 1,005,01 5a. Project Management 1 \$ 27,268 LS \$ 27,268 LS \$ <td< td=""><td>Ren</td><td>nediation Plans and Regulatory Approval</td><td>1</td><td>\$</td><td>31,096</td><td>LS</td><td>\$</td><td>31,096</td></td<>	Ren	nediation Plans and Regulatory Approval	1	\$	31,096	LS	\$	31,096
Total Management, Design, and Planning Costs\$ 160,472. Supplemental Investigation / Phased Implementation	Peri	mitting	1	\$	6,240	LS	\$	6,240
2. Supplemental Investigation / Phased Implementation	Tot	al Management, Design, and Planning Costs					\$	160,475
2. Supplemental Investigation / Phased Implementation Total Transition Zone investigation/Phased Implementation Costs 1 \$ 89,330 LS \$ 89,33 3. System Installation 1 \$ 395,627 LS \$ 395,627 3a. Hydraulic Collection Trench 1 \$ 395,627 LS \$ 228,491 3b. System Installation 1 \$ 228,491 LS \$ 228,491 Total System Installation Costs 1 \$ 228,491 LS \$ 624,11 SUBTOTAL CAPITAL COSTS 1 \$ 131,08 - - 4. Overhead and Profit (15%) 1 \$ 131,08 - TOTAL CAPITAL COST \$ 1,005,01 - - - 4. Overhead and Profit (15%) 1 \$ 27,268 LS \$ 27,266 5a. Project Management 1 \$ 36,122 LS \$ 36,122 5b. Groundwater Monitoring 1 \$ 61,065 LS \$ 61,065 5c. Maintenance and System Compliance 1 \$ 61,065								
Total Transition Zone investigation/Phased Implementation Costs 1 \$ 89,330 LS \$ 89,330 3. System Installation 1 \$ 395,627 LS \$ 395,627 3b. System Installation 1 \$ 395,627 LS \$ 395,627 3b. System Installation 1 \$ 228,491 LS \$ 228,491 Total System Installation Costs 1 \$ 228,491 LS \$ 228,491 SUBTOTAL CAPITAL COSTS \$ \$ 624,111	2. Supplemente	al Investigation / Phased Implementation						
3. System Installation 1 \$ 395,627 LS \$ 395,627 3b. System Installation 1 \$ 228,491 LS \$ 228,491 Total System Installation Costs 1 \$ 228,491 LS \$ 624,11 SUBTOTAL CAPITAL COSTS 1 \$ 624,11 \$ \$ 624,11 SUBTOTAL CAPITAL COSTS 1 \$ 624,11 \$ \$ 624,11 4. Overhead and Profit (15%) 1 \$ 131,08 \$ \$ 131,08 TOTAL CAPITAL COST \$ 1 \$ 1,005,01 \$ \$ 131,08 OPERATION, MONITORING, & MAINTENANCE (OM&M) COSTS 5 \$ 1,005,01 \$ 1,005,01 Solution and System Compliance 1 \$ 27,268 LS \$ 27,26 5a. Project Management 1 \$ 27,268 LS \$ 27,26 5b. Groundwater Monitoring 1 \$ 61,065 LS \$ 61,06 Subtotal Annual OM&M Cost 5 124,45 \$ 124,44 \$ 124,44 6. OM&M Overhead and Profit (10%) \$ 124,44 \$ 124,45 7 7 \$ 136,90 \$ 126,90 \$	Tot	al Transition Zone investigation/Phased Implementation Costs	1	\$	89,330	LS	\$	89,330
3a. Hydraulic Collection Trench 1 \$ 395,627 LS \$ 395,627 3b. System Installation 1 \$ 228,491 LS \$ 228,491 Total System Installation Costs - \$ 624,11 - - SUBTOTAL CAPITAL COSTS - \$ 873,92 - - - 4. Overhead and Profit (15%) - \$ 131,08 - - - 4. Overhead and Profit (15%) - \$ 1,005,01 - - - - 5a. Project Management 1 \$ 27,268 LS \$ 27,266 - - - 5a. Project Management 1 \$ 27,268 LS \$ 27,26 - <td>3. Ssytem Insta</td> <td>illation</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	3. Ssytem Insta	illation						
3b. System Installation 1 \$ 228,491 LS \$ 228,491 Total System Installation Costs \$ 624,11 SUBTOTAL CAPITAL COSTS \$ 873,92 4. Overhead and Profit (15%) \$ 131,08 TOTAL CAPITAL COST \$ 131,005,01 Overhead and Profit (15%) \$ 1,005,01 TOTAL CAPITAL COST \$ 1,005,01 OPERATION, MONITORING, & MAINTENANCE (OM&M) COSTS 5a. Project Management 1 \$ 27,268 LS \$ 27,26 5b. Groundwater Monitoring 1 \$ 36,122 LS \$ 36,12 5c. Maintenance and System Compliance 1 \$ 61,065 LS \$ 61,06 Subtotal Annual OM&M Cost 6. OM&M Overhead and Profit (10%) \$ 124,45 TOTAL ANNUAL OM&M COST \$ 136,90 PRESENT WORTH OF TOTAL OM&M COST \$ 136,90 PRESENT WORTH OF TOTAL OM&M COST </td <td>3a. Hyd</td> <td>Iraulic Collection Trench</td> <td>1</td> <td>\$</td> <td>395,627</td> <td>LS</td> <td>\$</td> <td>395,627</td>	3a. Hyd	Iraulic Collection Trench	1	\$	395,627	LS	\$	395,627
Total System Installation Costs \$ 624,11 SUBTOTAL CAPITAL COSTS \$ 873,92 4. Overhead and Profit (15%) \$ 131,08 TOTAL CAPITAL COST \$ 1,005,01 TOTAL CAPITAL COST \$ 1,005,01 OPERATION, MONITORING, & MAINTENANCE (OM&M) COSTS \$ 1,005,01 5a. Project Management 1 \$ 27,268 5b. Groundwater Monitoring 1 \$ 36,122 LS \$ 27,266 5c. Maintenance and System Compliance 1 \$ 61,065 LS \$ 61,066 Subtotal Annual OM&M Cost \$ 124,45 \$ 124,45 \$ 124,45 \$ 124,45 For TOTAL ANNUAL OM&M COST \$ 136,90 \$ 136,90 \$ 136,90 PRESENT WORTH OF TOTAL OM&M COST \$ 1,698,79 \$ 1,698,79	3b. Syst	tem Installation	1	\$	228,491	LS	\$	228,491
SUBTOTAL CAPITAL COSTS \$ 873,92 4. Overhead and Profit (15%) \$ 131,08 TOTAL CAPITAL COST \$ 1,005,01 TOTAL CAPITAL COST \$ 1,005,01 OPERATION, MONITORING, & MAINTENANCE (OM&M) COSTS \$ 1,005,01 5a. Project Management 1 5b. Groundwater Monitoring 1 \$ 27,268 LS \$ 27,26 5b. Groundwater Monitoring 1 \$ 36,122 LS \$ 36,12 5c. Maintenance and System Compliance 1 \$ 61,065 LS \$ 61,06 6. OM&M Overhead and Profit (10%) \$ 12,44 \$ 12,44 \$ 12,44 TOTAL ANNUAL OM&M COST \$ 136,90 \$ 136,90 \$ 136,90	Tot	al System Installation Costs					\$	624,117
A. Overhead and Profit (15%) \$ 131,08 Image: Constraint of the c	SU	BTOTAL CAPITAL COSTS					\$	873.922
4. Overhead and Profit (15%) \$ 131,08 TOTAL CAPITAL COST TOTAL CAPITAL COST OPERATION, MONITORING, & MAINTENANCE (OM&M) COSTS 5a. Project Management 1 \$ 27,268 LS \$ 27,266 5b. Groundwater Monitoring 1 \$ 36,122 LS \$ 36,122 5c. Maintenance and System Compliance 1 \$ 61,065 LS \$ 61,066 Subtotal Annual OM&M Cost 6. OM&M Overhead and Profit (10%) \$ 12,44 TOTAL ANNUAL OM&M COST PRESENT WORTH OF TOTAL OM&M COST							Ŧ	
TOTAL CAPITAL COST \$ 1,005,01 OPERATION, MONITORING, & MAINTENANCE (OM&M) COSTS \$ 1 \$ 27,268 LS \$ 27,268 5a. Project Management 1 \$ 27,268 LS \$ 27,268 5b. Groundwater Monitoring 1 \$ 36,122 LS \$ 36,122 5c. Maintenance and System Compliance 1 \$ 61,065 LS \$ 61,065 Subtotal Annual OM&M Cost \$ 124,45 6. OM&M Overhead and Profit (10%) \$ 12,44 TOTAL ANNUAL OM&M COST \$ 136,90 PRESENT WORTH OF TOTAL OM&M COST \$ 1,698,79	4. Ove	erhead and Profit (15%)					\$	131,088
OPERATION, MONITORING, & MAINTENANCE (OM&M) COSTS	ТО	TAL CAPITAL COST					\$	1,005,010
OPERATION, MONITORING, & MAINTENANCE (OM&M) COSTS I \$ 27,268 LS \$ 27,268 5a. Project Management 1 \$ 27,268 LS \$ 27,268 5b. Groundwater Monitoring 1 \$ 36,122 LS \$ 36,122 5c. Maintenance and System Compliance 1 \$ 61,065 LS \$ 61,066 Subtotal Annual OM&M Cost I \$ 61,065 LS \$ 124,45 6. OM&M Overhead and Profit (10%) I \$ 12,44 TOTAL ANNUAL OM&M COST PRESENT WORTH OF TOTAL OM&M COST I \$ 1,698,79								
5a. Project Management 1 \$ 27,268 LS \$ 27,266 5b. Groundwater Monitoring 1 \$ 36,122 LS \$ 36,12 5c. Maintenance and System Compliance 1 \$ 61,065 LS \$ 61,066 Subtotal Annual OM&M Cost 1 \$ 61,065 LS \$ 61,066 6. OM&M Overhead and Profit (10%) \$ 12,445 TOTAL ANNUAL OM&M COST 9 9 \$ 136,900 9 9 \$ 1,698,79	OPERATION	, MONITORING, & MAINTENANCE (OM&M) COSTS						
5b. Groundwater Monitoring 1 \$ 36,122 LS \$ 36,12 5c. Maintenance and System Compliance 1 \$ 61,065 LS \$ 61,066 Subtotal Annual OM&M Cost 1 \$ 61,065 LS \$ 124,45 6. OM&M Overhead and Profit (10%) \$ 12,44 \$ 12,44 TOTAL ANNUAL OM&M COST 9 PRESENT WORTH OF TOTAL OM&M COST \$ 1,698,79	5a. Proj	ject Management	1	\$	27,268	LS	\$	27,268
5c. Maintenance and System Compliance 1 \$ 61,065 LS \$ 61,065 Subtotal Annual OM&M Cost \$ 124,45 6. OM&M Overhead and Profit (10%) \$ 124,45 TOTAL ANNUAL OM&M COST \$ 12,44 PRESENT WORTH OF TOTAL OM&M COST \$ 136,90 \$ 136,90 \$ \$ 136,90 \$ 136,90 \$ \$ \$ 136,90 \$ \$ \$ \$ 136,90 \$	5b. Gro	undwater Monitoring	1	\$	36,122	LS	\$	36,122
Subtotal Annual OM&M Cost \$ 124,45 6. OM&M Overhead and Profit (10%) \$ 12,44 TOTAL ANNUAL OM&M COST PRESENT WORTH OF TOTAL OM&M COST \$ 1,698,79	5c. Mai	intenance and System Compliance	1	\$	61,065	LS	\$	61,065
6. OM&M Overhead and Profit (10%) \$ 12,44 TOTAL ANNUAL OM&M COST \$ 136,90 PRESENT WORTH OF TOTAL OM&M COST \$ 1,698,79	Sub	ototal Annual OM&M Cost					\$	124,454
TOTAL ANNUAL OM&M COST \$ 136,90 PRESENT WORTH OF TOTAL OM&M COST \$ 1,698,79	6. OM	&M Overhead and Profit (10%)					\$	12.445
TOTAL ANNUAL OM&M COST \$ 136,90 PRESENT WORTH OF TOTAL OM&M COST \$ 1,698,79								
PRESENT WORTH OF TOTAL OM&M COST \$ 1,698,79	TO	TAL ANNUAL OM&M COST					\$	136,900
PRESENT WORTH OF TOTAL OM&M COST \$ 1,698,79								
	PR	ESENT WORTH OF TOTAL OM&M COST					\$	1,698,793
PRESENT VALUE	PRESENT VA	ALUE						
TOTAL PRESENT VALUE (7% DISCOUNT RATE) \$ 2,703,80	TO	TAL PRESENT VALUE (7% DISCOUNT RATE)					\$	2,703,803

SAY \$ 2,700,000

Hydraulic Control System Cost Estimate Summary Vertical Extraction Wells Alcas Facility - Olean, NY

Item No	. Item Description	Quantity	U	Init Cost	Unit		Extension
CAPITA	AL COSTS						
1.Manag	gement, Design, and Planning						
	Project Management and Engineering Support	1	\$	36,635	LS	\$	36,635
	System Design	1	\$	86,503	LS	\$	86,503
	Remediation Plans and Regulatory Approval	1	\$	31,096	LS	\$	31,096
	Permitting	1	\$	6,240	LS	\$	6,240
	Total Management, Design, and Planning Costs					\$	160,475
2. Suppl	emental Investigation / Phased Implementation						
	Total Transition Zone investigation/Phased Implementation Costs	1	\$	89,330	LS	\$	89,330
3. Ssvten	n Installation						
3a.	Extraction and Monitoring Well Installation	1	\$	123,505	LS	\$	123,505
3b.	System Installation	1	\$	260,991	LS	\$	260,991
3c.	Waste Management and Disposal	1	\$	30,706	LS	\$	30,706
-	Total System Installation Costs					\$	415,202
	SUBTOTAL CAPITAL COSTS					\$	665,006
4.	Overhead and Profit (15%)					\$	99,751
	TOTAL CAPITAL COST					\$	764,757
OPERA	TION, MONITORING, & MAINTENANCE (OM&M) COSTS						
5a.	Project Management	1	\$	27,268	LS	\$	27,268
5b.	Groundwater Monitoring	1	\$	36,122	LS	\$	36,122
5c.	Maintenance and System Compliance	1	\$	87,065	LS	\$	87,065
	Subtotal Annual OM&M Cost					\$	150,454
6.	OM&M Overhead and Profit (10%)					\$	15,045
	TOTAL ANNUAL OM&M COST					\$	165,500
_						¢	2.052.002
	rkesent wokth of total um&m cost					\$	2,053,092
PRESE	NT VALUE						
	TOTAL PRESENT VALUE (7% DISCOUNT RATE)					\$	2,818,449

SAY \$ 2,810,000

Hydraulic Control System Cost Estimate Summary Horizontal Extraction Wells Alcas Facility - Olean, NY

Item No.	Item Description	Quantity	U	nit Cost	Unit]	Extension
CAPITA	L COSTS						
1.Manag	ement, Design, and Planning						
	Project Management and Engineering Support	1	\$	36,635	LS	\$	36,635
	System Design	1	\$	86,503	LS	\$	86,503
	Remediation Plans and Regulatory Approval	1	\$	31,096	LS	\$	31,096
	Permitting	1	\$	6,240	LS	\$	6,240
	Total Management, Design, and Planning Costs					\$	160,475
2. Supple	emental Investigation / Phased Implementation						
	Total Transition Zone investigation/Phased Implementation Costs	1	\$	89,330	LS	\$	89,330
3. Ssyten	Installation						
3a.	Extraction and Monitoring Well Installation	1	\$	296,412	LS	\$	296,412
3b.	System Installation	1	\$	260,991	LS	\$	260,991
3c.	Waste Management and Disposal	1	\$	30,706	LS	\$	30,706
	Total System Installation Costs					\$	588,109
	SUBTOTAL CAPITAL COSTS					\$	837,914
4.	Overhead and Profit (15%)					\$	125,687
	TOTAL CAPITAL COST					\$	963,601
OPERA	TION, MONITORING, & MAINTENANCE (OM&M) COSTS						
5a.	Project Management	1	\$	27,268	LS	\$	27,268
5b.	Groundwater Monitoring	1	\$	36,122	LS	\$	36,122
5c.	Maintenance and System Compliance	1	\$	87,065	LS	\$	87,065
	Subtotal Annual OM&M Cost					\$	150,454
6.	OM&M Overhead and Profit (10%)					\$	15,045
	TOTAL ANNUAL OM&M COST					\$	165,500
	PRESENT WORTH OF TOTAL OM&M COST					\$	2,053,692
PRESEN	VT VALUE					+	
	TOTAL PRESENT VALUE (7% DISCOUNT RATE)					\$	3,017,292

SAY \$ 3,010,000

Item No	o. Item Description	Quantity	U	nit Cost	Unit]	Extension
CAPIT	AL COSTS					_	
1.Gener	al Conditions						
	General Administrative Conditions	1	\$	39,000	LS	\$	39,000
	Permitting	1	\$	13,000	LS	\$	13,000
	Survey	1	\$	26,000	LS	\$	26,000
	Total General Conditions Costs		-			\$	78,000
2. Const	ruction Costs						
	Total Construction Costs (with 10% Contingency)					\$	579,547
3. Trans	portation & Disposal (T&D)		-				
3a.	Hazardous, Subtitle C	0	\$	142	Ton	\$	-
3b.	Non Hazardous, Subtitle D	0	\$	98	Ton	\$	-
3c.	Non Hazardous, Concrete and Debris	0	\$	98	Ton	\$	-
	Total T&D Costs					\$	-
4. Treat	ment (NOT APPLICABLE)					\$	-
	SUBTOTAL CAPITAL COSTS					\$	657,547
5.	Pre-construction Sampling/Delineation	1	\$	180,000	LS	\$	180,000
6.	Design Engineering (5% capital cost)					\$	32,877
7.	General Contractor Overhead and Profit (20% GC & Construction, 10% T&D)					\$	131,509
8.	Resident Engineering (2.5% capital cost)					\$	16,439
	TOTAL CAPITAL COST					\$	1,018,373
OPERA	TION & MAINTENANCE (O&M) COSTS						
9.	Total Annual OM&M Cost	1	\$	14,730	LS	\$	14,730
Periodia	e Costs						
10.	Site Restoration				LS	\$	-
11.	Remedial Action Report (at the end of 30th year)	1	\$	22,035	LS	\$	22,035
	• • • • ·						,
	PRESENT WORTH OF TOTAL OM&M COST					\$	185,684
PRESE	NT VALUE						
	TOTAL PRESENT VALUE (7% DISCOUNT RATE)					\$	1,204,056
p							, , ,

ZVI Permeable Reactive Barrier to treat intercepted flow Cost Estimate Summary (Frac Method) Alcas Facility - Olean, NY

SAY \$ 1,200,000

Item No. Item Description	Quantity	Uı	nit Cost	Unit]	Extension
CAPITAL COSTS						
1.Management, Design, and Planning						
Project Management and Engineering Support	1	\$	28,181	LS	\$	28,181
System Design	1	\$	66,541	LS	\$	66,541
Remediation Plans and Regulatory Approval	1	\$	23,920	LS	\$	23,920
Permitting	1	\$	4,800	LS	\$	4,800
Total Management, Design, and Planning Costs					\$	123,442
2. Supplemental Investigation / Phased Implementation						
Total Transition Zone investigation/Phased Implementation Costs	1	\$	89,330	LS	\$	89,330
3. Ssytem Installation						
3a. Hydraulic Collection Trench	1	\$	304,328	LS	\$	304,328
Horizontal Wells	25	\$	228,010	LS	\$	5,700,240
3b. System Installation	1	\$	175,762	LS	\$	175,762
Total System Installation Costs					\$	6,180,330
SUBTOTAL CAPITAL COSTS					\$	6,393,102
4. Overhead and Profit (15%)					\$	958,965
TOTAL CAPITAL COST					\$	7,352,067
OPERATION, MONITORING, & MAINTENANCE (OM&M) COSTS						
5a. Project Management	1	\$	-	LS	\$	-
5b. Groundwater Monitoring	1	\$	27,786	LS	\$	27,786
5c. Maintenance and System Compliance	1	\$	-	LS	\$	-
Subtotal Annual OM&M Cost					\$	27,786
6. OM&M Overhead and Profit (10%)					\$	2,779
TOTAL ANNUAL OM&M COST					\$	30,565
PRESENT WORTH OF TOTAL OM&M COST					\$	379,277
PRESENT VALUE						
TOTAL PRESENT VALUE (7% DISCOUNT RATE)					\$	7,731,345

Barrier Wall Containment System Cost Estimate Summary Alcas Facility - Olean, NY

SAY \$ 7,730,000

-

CAPITAL COSTS Image: Construction of the second secon	Item No	. Item Description	Quantity	Uı	nit Cost	Unit]	Extension
CAPITAL COSTS								
1.General Conditions	CAPITA	AL COSTS						
General Administrative Conditions 1 \$ 39,000 LS \$ 39,000 Permitting 1 \$ 13,000 LS \$ 26,000 LS \$ 26,000 Total General Conditions Costs 26,000 LS \$ 78,000 \$ 78,000 2. Construction Costs \$ 78,000 \$ 78,000 3. Transportation & Disposal (T&D) 3. Transportation & Disposal (T&D) 3. Transportation & Disposal (T&D) 0 \$ 142 Ton \$ 3. Transportation & Disposal (T&D) 0 \$ 98 Ton \$ 3. Transportation & Disposal (T&D) 0 \$ 98 Ton \$ 3. Transportation & Disposal (T&D) 0 \$ 98 Ton \$	1.Gener	al Conditions						
Permitting 1 \$ 13,000 LS \$ 13,000 Survey 1 \$ 26,000 LS \$ 26,000 Total General Conditions Costs		General Administrative Conditions	1	\$	39,000	LS	\$	39,000
Survey 1 \$ 26,000 LS \$ 78,000 Total General Conditions Costs \$ 78,000 2. Construction Costs \$ \$ 78,000 3. Transportation & Disposal (T&D) \$ </td <td></td> <td>Permitting</td> <td>1</td> <td>\$</td> <td>13,000</td> <td>LS</td> <td>\$</td> <td>13,000</td>		Permitting	1	\$	13,000	LS	\$	13,000
Total General Conditions Costs \$ 78,000 2. Construction Costs - \$ 843,780 3. Transportation & Disposal (T&D) - - 3a. Hazardous, Subtitle C 0 \$ 142 Ton \$ - 3b. Non Hazardous, Concrete and Debris 0 \$ 98 Ton \$ - 3c. Non Hazardous, Concrete and Debris 0 \$ 98 Ton \$ - 3c. Non Hazardous, Concrete and Debris 0 \$ 98 Ton \$ - 4. Treatment (NOT APPLICABLE) \$ \$ - \$ \$ \$ \$ - \$ \$ \$ \$ - 5 SUBTOTAL CAPTTAL COSTS \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$		Survey	1	\$	26,000	LS	\$	26,000
2. Construction Costs Total Construction Costs (with 10% Contingency) \$ 843,780 3. Transportation & Disposal (T&D) 0 \$ 142 Ton \$ - 3a. Hazardous, Subtitle C 0 \$ 142 Ton \$ - 3b. Non Hazardous, Subtitle D 0 \$ 98 Ton \$ - 3c. Non Hazardous, Concrete and Debris 0 \$ 98 Ton \$ - 3c. Non Hazardous, Concrete and Debris 0 \$ 98 Ton \$ - 3c. Non Hazardous, Concrete and Debris 0 \$ 98 Ton \$ - 5. Non Hazardous, Concrete and Debris 0 \$ 98 Ton \$ - 4. Treatment (NOT A PPLICABLE) \$ 98 Ton \$ - 5. Pre-construction Sampling/Delineation 1 \$ 26,000 LS \$ 26,000 6. Design Engineering (5% capital cost) \$ 142,056 \$ 46,089 7. General Contractor Overhead and Profit (20% GC & Construction, 10% T&D) \$ 184,356 \$ 23,044 7 TOTAL CAPITAL COST \$ 1,201,269 \$ 1,201,269 OPERATION & MAINTENANCE (0&M) COSTS \$ - \$ 1,201,269 9. Total Annual OM&M Cost<		Total General Conditions Costs					\$	78,000
Total Construction Costs (with 10% Contingency) \$ \$ 843,780 3. Transportation & Disposal (T&D) 0 \$ 142 Ton \$	2. Const	ruction Costs						
3. Transportation & Disposal (T&D) - - 3a. Hazardous, Subtitle C 0 \$ 142 Ton \$ - 3b. Non Hazardous, Subtitle D 0 \$ 98 Ton \$ - 3c. Non Hazardous, Subtitle D 0 \$ 98 Ton \$ - 3c. Non Hazardous, Subtitle D 0 \$ 98 Ton \$ - 3c. Non Hazardous, Subtitle D 0 \$ 98 Ton \$ - 3c. Non Hazardous, Subtitle D 0 \$ 98 Ton \$ - 3c. Non Hazardous, Subtitle D 0 \$ 98 Ton \$ - 4. Treatment (NOT APPLICABLE) \$ 921,780 \$ -		Total Construction Costs (with 10% Contingency)					\$	843,780
3a. Hazardous, Subtitle C 0 \$ 142 Ton \$ - 3b. Non Hazardous, Subtitle D 0 \$ 98 Ton \$ - 3c. Non Hazardous, Concrete and Debris 0 \$ 98 Ton \$ - Total T&D Costs 0 \$ 98 Ton \$ - 4. Treatment (NOT APPLICABLE) \$ - \$ - 5. Pre-construction Sampling/Delineation 1 \$ 26,000 LS \$ 26,000 6. Design Engineering (5% capital cost) 1 \$ 26,000 LS \$ 184,356 7. General Contractor Overhead and Profit (20% GC & Construction, 10% T&D) \$ 184,356 8. Resident Engineering (2.5% capital cost) \$ 12,01,269 7. TOTAL CAPITAL COST \$ 1,201,269 9. Total Annual OM&M Cost 1 \$ - 9. Total Annual OM&M Cost 1 \$ - 9. Total Annual OM&M	3. Trans	portation & Disposal (T&D)						
3b. Non Hazardous, Subitile D 0 \$ 98 Ton \$ - 3c. Non Hazardous, Concrete and Debris 0 \$ 98 Ton \$ - Total T&D Costs \$ 98 Ton \$ - 4. Treatment (NOT APPLICABLE) \$ \$ - \$ - SUBTOTAL CAPITAL COSTS \$ 921,780 \$ - \$ 921,780 \$ 4.6089 \$ 4.6089 \$ 4.6089 \$ 4.6089 \$ 4.6089 \$ 4.6089 \$ 1 \$ 26,000 LS \$ 23,044 \$ 45,089 \$ 46,089 \$ 1 \$ 23,044 \$ 45,089 \$ 1 \$ 1 \$ 23,044 \$ 1 \$ 1 \$ 23,044 \$ 1 \$ 1 \$ 1 \$ 1 \$ 1 \$ 1 \$ 1 \$ 1 \$ 1 \$ 1 \$ 1	3a.	Hazardous, Subtitle C	0	\$	142	Ton	\$	-
3c. Non Hazardous, Concrete and Debris 0 \$ 98 Ton \$ - Total T&D Costs \$ - \$ - \$ - 4. Treatment (NOT APPLICABLE) \$ - \$ - - - SUBTOTAL CAPITAL COSTS \$ \$ 921,780 \$ \$ 26,000 LS \$ 26,000 6. Design Engineering (5% capital cost) 1 \$ 26,000 LS \$ 26,000 7. General Contractor Overhead and Profit (20% GC & Construction, 10% T&D) \$ \$ 184,356 8. Resident Engineering (2.5% capital cost) \$ \$ 23,044 TOTAL CAPITAL COST \$ \$ 1,201,269 OPERATION & MAINTENANCE (0&M) COSTS \$ \$ - 9. Total Annual OM&M Cost 1 \$ - IS \$ 9. Total Annual OM&M Cost 1 \$ - IS \$ - 10. Site Restoration ILS \$ \$ 22,035 ILS \$ 22,035	3b.	Non Hazardous, Subtitle D	0	\$	98	Ton	\$	-
Total T&D Costs \$ - 4. Treatment (NOT APPLICABLE) \$ \$ - 5. Pre-construction Sampling/Delineation 1 \$ 26,000 LS \$ 921,780 5. Pre-construction Sampling/Delineation 1 \$ 26,000 LS \$ 26,000 6. Design Engineering (5% capital cost) 1 \$ 26,000 LS \$ 46,089 7. General Contractor Overhead and Profit (20% GC & Construction, 10% T&D) \$ \$ 184,356 8. Resident Engineering (2.5% capital cost) \$ \$ 23,044	3c.	Non Hazardous, Concrete and Debris	0	\$	98	Ton	\$	-
4. Treatment (NOT APPLICABLE) \$ - \$ - SUBTOTAL CAPITAL COSTS \$ \$ 921,780 \$ \$ 921,780 5. Pre-construction Sampling/Delineation 1 \$ 26,000 LS \$ 26,000 6. Design Engineering (5% capital cost) 1 \$ 26,000 LS \$ 46,089 7. General Contractor Overhead and Profit (20% GC & Construction, 10% T&D) \$ \$ 184,356 8. Resident Engineering (2.5% capital cost) \$ \$ 23,044 TOTAL CAPITAL COST \$ \$ 23,044 TOTAL CAPITAL COST \$ \$ 1,201,269 TOTAL CAPITAL COST \$ \$ 1,201,269 TOTAL CAPITAL COST \$ \$ 1,201,269 OPERATION & MAINTENANCE (0&M) COSTS \$ \$ 1,201,269 9. Total Annual OM&M Cost 1 \$ - LS \$ - Periodic Costs \$ \$ 1 \$ 2,2035 \$ - - 1 \$ 2,2035 <		Total T&D Costs					\$	-
SUBTOTAL CAPITAL COSTS \$ 921,780 5. Pre-construction Sampling/Delineation 1 \$ 26,000 LS \$ 26,000 6. Design Engineering (5% capital cost) 1 \$ 26,000 S 46,089 7. General Contractor Overhead and Profit (20% GC & Construction, 10% T&D) \$ 184,356 \$ 184,356 8. Resident Engineering (2.5% capital cost) \$ 23,044 \$ 23,044 TOTAL CAPITAL COST \$ 1,201,269 OPERATION & MAINTENANCE (0&M) COSTS \$ 1,201,269 9. Total Annual OM&M Cost 1 \$ - LS \$ - Periodic Costs 10. Site Restoration LS \$ - 11. \$ 22,035 LS \$ 22,035 12. \$ - - - - 9. Total Annual OM&M Cost 1 \$ - LS \$ - 9. Total Annual OM&M Cost 1 \$ 22,035 LS \$ 22,035 10. Site Restoration LS \$ - - - 11.	4. Treati	nent (NOT APPLICABLE)					\$	-
SUBTOTAL CAPITAL COSTS \$ 921,780 5. Pre-construction Sampling/Delineation 1 \$ 26,000 LS \$ 26,000 6. Design Engineering (5% capital cost) 1 \$ 26,000 LS \$ 26,000 7. General Contractor Overhead and Profit (20% GC & Construction, 10% T&D) \$ 184,356 \$ 184,356 8. Resident Engineering (2.5% capital cost) \$ 23,044 \$ 23,044 TOTAL CAPITAL COST \$ 1,201,269 \$ 1,201,269 OPERATION & MAINTENANCE (0&M) COSTS \$ 1 \$ - 9. Total Annual OM&M Cost 1 \$ - 9. Total Annual OM&M Cost 1 \$ - 10. Site Restoration LS \$ - 11. Remedial Action Report (at the end of 30th year) 1 \$ 22,035 \$ 2,227 PRESENT WORTH OF TOTAL OM&M COST \$ 22,035 \$ 2,227 \$ 2,227 PRESENT VALUE \$ 1,203,496 \$ 1,203,496 \$ 1,203,496								
5. Pre-construction Sampling/Delineation 1 \$ 26,000 LS \$ 26,000 6. Design Engineering (5% capital cost) \$ 46,089 7. General Contractor Overhead and Profit (20% GC & Construction, 10% T&D) \$ 184,356 8. Resident Engineering (2.5% capital cost) \$ 23,044 - - \$ 23,044 - - \$ 23,044 - - - TOTAL CAPITAL COST \$ 1,201,269 - - - OPERATION & MAINTENANCE (O&M) COSTS - - 9. Total Annual OM&M Cost 1 \$ - 10. Site Restoration ILS \$ - 11. Remedial Action Report (at the end of 30th year) 1 \$ 22,035 - - - - - - - PRESENT WORTH OF TOTAL OM&M COST - - - - - - - - - - 11. Remedial Action Report (at the end of 30th year) 1 \$ 22,035 LS \$ 2,227 - - -		SUBTOTAL CAPITAL COSTS					\$	921,780
6. Design Engineering (5% capital cost) \$ 46,089 7. General Contractor Overhead and Profit (20% GC & Construction, 10% T&D) \$ 184,356 8. Resident Engineering (2.5% capital cost) \$ 23,044 TOTAL CAPITAL COST \$ 23,044 TOTAL CAPITAL COST \$ 1,201,269 OPERATION & MAINTENANCE (0&M) COSTS 9. Total Annual OM&M Cost 1 \$ - LS \$ - 9. Total Annual OM&M Cost 1 \$ - LS \$ - 10. Site Restoration LLS \$ -	5.	Pre-construction Sampling/Delineation	1	\$	26,000	LS	\$	26,000
7. General Contractor Overhead and Profit (20% GC & Construction, 10% T&D) \$ 184,356 8. Resident Engineering (2.5% capital cost) \$ 23,044 TOTAL CAPITAL COST 9. TOTAL CAPITAL CO&M) COSTS \$ 1,201,269 9. Total Annual OM&M Cost 1 \$ - 9. Total Annual OM&M Cost 1 \$ - 9. Total Annual OM&M Cost 1 \$ - 9. Total Annual OM & Most 1 \$ - 9. Total Annual OM & Most 1 \$ - 9. Total Annual OM & Most 1 \$ - 9. Total Annual OM & Most 1 \$ - 9. Total Annual OM & Most 1 \$ - 9. Total Annual OM & Most 1 \$ - 9. Total Annual OM & Most 1 \$ - 10. Site Restoration LS \$ - 11. Remedial Action Report (at the end of 30th year) 1 \$ 22,035 LS \$ 2,227	6.	Design Engineering (5% capital cost)					\$	46,089
8. Resident Engineering (2.5% capital cost) TOTAL CAPITAL COST OPERATION & MAINTENANCE (O&M) COSTS 9. Total Annual OM&M Cost 1 \$ - LS \$ - Periodic Costs 10. Site Restoration 11. Remedial Action Report (at the end of 30th year) 11. Remedial Action Report (at the end of 30th year) 11. Remedial Action Report (at the end of 30th year) PRESENT WORTH OF TOTAL OM&M COST PRESENT WORTH OF TOTAL OM&M COST TOTAL PRESENT VALUE (7% DISCOUNT RATE) 8 23,044 8 23,044 9 23,044 9 23,045 10 2000 10 2000	7.	General Contractor Overhead and Profit (20% GC & Construction, 10% T&D)					\$	184,356
TOTAL CAPITAL COST\$1,201,269OPERATION & MAINTENANCE (O&M) COSTS9.Total Annual OM&M Cost1\$-9.Total Annual OM&M Cost1\$9.Total Annual OM1\$9.Site Restoration10.Site RestorationI\$22,035LS\$11.Remedial Action Report (at the end of 30th year)1\$22,035LS\$22,03511.PRESENT WORTH OF TOTAL OM&M COSTPRESENT VALUETOTAL PRESENT VALUE (7% DISCOUNT RATE)\$1,203,496\$1,203,496	8.	Resident Engineering (2.5% capital cost)					\$	23,044
TOTAL CAPITAL COST\$ 1,201,269OPERATION & MAINTENANCE (O&M) COSTS9. Total Annual OM&M Cost1\$ -LS9. Total Annual OM1\$ -LS\$ -9. Total Annual OM1\$ 22,035LS\$ 22,03510. Site Restoration1\$ 22,035LS\$ 22,03511. Remedial Action Report (at the end of 30th year)1\$ 22,035LS\$ 2,227PRESENT WORTH OF TOTAL OMS\$ 2,227\$ 2,227PRESENT VALUEII\$ 2,235I10. TOTAL PRESENT VALUE (7% DISCOUNT RATE)\$ 1,203,496\$ 1,203,496								
OPERATION & MAINTENANCE (O&M) COSTS - - - 9. Total Annual OM&M Cost 1 \$ - LS \$ - 9. Total Annual OM&M Cost 1 \$ - LS \$ - Periodic Costs - - - - 10. Site Restoration LS \$ - - - 11. Remedial Action Report (at the end of 30th year) 1 \$ 22,035 LS \$ 22,035 PRESENT WORTH OF TOTAL OM&M COST - - - - PRESENT VALUE - - - - TOTAL PRESENT VALUE (7% DISCOUNT RATE) \$ 1,203,496 \$ 1,203,496 -		TOTAL CAPITAL COST					\$	1,201,269
OPERATION & MAINTENANCE (0&M) COSTS -								
9. Total Annual OM&M Cost 1 \$ - LS \$ - Periodic Costs <t< td=""><td>OPERA</td><td>TION & MAINTENANCE (O&M) COSTS</td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	OPERA	TION & MAINTENANCE (O&M) COSTS						
Periodic Costs Image: Costs 10. Site Restoration ILS \$ - 11. Remedial Action Report (at the end of 30th year) 1 \$ 22,035 LS \$ 22,035 PRESENT WORTH OF TOTAL OM&M COST Image: Cost S Image: Cost S Image: Cost S Image: Cost S PRESENT WORTH OF TOTAL OM&M COST Image: Cost S Image: Cost S Image: Cost S Image: Cost S PRESENT VALUE Image: Cost S PRESENT WORTH OF TOTAL OM&M COST Image: Cost S Image: Cost S Image: Cost S Image: Cost S PRESENT VALUE Image: Cost S Image: Cost S TOTAL PRESENT VALUE (7% DISCOUNT RATE) Image: Cost S Image: Cost S Image: Cost S	9.	Total Annual OM&M Cost	1	\$	-	LS	\$	-
10. Site Restoration LS \$ - 11. Remedial Action Report (at the end of 30th year) 1 \$ 22,035 LS \$ 22,035 PRESENT WORTH OF TOTAL OM&M COST PRESENT WORTH OF TOTAL OM&M COST PRESENT VALUE TOTAL PRESENT VALUE (7% DISCOUNT RATE) \$ 1,203,496	Pariodia	Costs						
International definition International definition <thinternational definition<="" th=""> <thinternati< td=""><td>10</td><td>Site Destaration</td><td></td><td></td><td></td><td>IS</td><td>¢</td><td></td></thinternati<></thinternational>	10	Site Destaration				IS	¢	
PRESENT WORTH OF TOTAL OM&M COST \$ 22,055 PRESENT VALUE \$ 2,227 TOTAL PRESENT VALUE (7% DISCOUNT RATE) \$ 1,203,496	10.	Demodial Action Deport (at the and of 30th year)	1	¢	22.035		¢	22.035
PRESENT WORTH OF TOTAL OM&M COST \$ 2,227 PRESENT VALUE	11.	Keniculai Action Report (at the end of 50th year)	1	φ	22,035	Lo	φ	22,033
PRESENT VALUE \$ 1,203,496		PRESENT WORTH OF TOTAL OM&M COST					\$	2,227
PRESENT VALUE Image: style="text-align: center;">1,203,496 TOTAL PRESENT VALUE (7% DISCOUNT RATE) \$1,203,496							Ψ	,
TOTAL PRESENT VALUE (7% DISCOUNT RATE) \$ 1,203,496	PRESE	NT VALUE						
		TOTAL PRESENT VALUE (7% DISCOUNT RATE)					\$	1,203,496

Multiple ZVI Treatment Zones using Frac Method to Treat Source Area Cost Estimate Summary Alcas Facility - Olean, NY

SAY \$ 1,200,000

Dissolved Phase Plume in Aquitard ISCO Treatment Cost Estimate Summary Using Persulfate or Ozone Alcas Facility - Olean, NY

Item No.	Item Description	Quantity	Unit Cost	Unit	E	xtension
CAPITA	L COSTS					
1.Genera	l Conditions					
	General Administrative Conditions	1	\$19,500.00	LS	\$	19,500
	Permitting	1	\$13,000.00	LS	\$	13,000
	Survey	1	\$26,000.00	LS	\$	26,000
	Total General Conditions Costs				\$	58,500
2. Constru	uction Costs				+	
2a.	Mobilization	1	\$ 13,000.00	LS	\$	13,000
2b.	Well Installation	1	\$ 16,035.50	LS	\$	16,036
2c.	Amendment Injection	1	\$ 303,388.80	LS	\$	303,389
	Total Construction Costs				\$	332,424
3. Transp	ortation & Disposal (T&D)					
3a.	Hazardous, Subtitle C	0	\$ 142.00	Ton	\$	-
3b.	Non Hazardous, Subtitle D	0	\$ 98.00	Ton	\$	-
3c.	Non Hazardous, Concrete and Debris	0	\$ 98.00	Ton	\$	-
	Total T&D Costs				\$	-
4. Treatm	ent (NOT APPLICABLE)				\$	-
	SUBTOTAL CAPITAL COSTS				\$	390,924
5.	Pre-construction Sampling/Delineation	1	\$ 26,000	LS	\$	26,000
6.	Design Engineering (5% capital cost)				\$	19,546
7.	General Contractor Overhead and Profit (20% GC & Construction, 10% T&D)				\$	78,185
8.	Resident Engineering (2.5% capital cost)				\$	9,773
	TOTAL CAPITAL COST				\$	524,428
OPERAT	FION & MAINTENANCE (O&M) COSTS					
Annual C	D&M Costs					
9.	Semi-annual Bioremediation Monitoring (Year 1)	1	\$ 28,587	LS	\$	28,587
10.	Annual Bioremediation Monitoring (Year 2-6)	1	\$ 14,294	LS	\$	14,294
Pariodia	Costs					
11	Second round injection at the end of 2nd year	1	\$ 303 389	IS	\$	303 380
11.	Third round injection at the end of 4th year	1	\$ 151.694		¢	151 604
12.	Site restoration (at the and 6th year)	1	\$ 151,094		ф ¢	151,094
13.	Bamadial Action Banart	1	\$ 4,022		¢	22.025
14.	Kemediai Action Report	1	\$ 22,033	LS	Φ	22,035
	PRESENT WORTH OF TOTAL EAB O&M COST				\$	488,667
PRESEN	TVALUE					
	TOTAL PRESENT VALUE (7% DISCOUNT RATE)				\$	1.013.095
<u> </u>					٣	1,010,090

SAY \$ 1,010,000

-

CAPTTAL COSTS Imagement, Design, and Planning Imagement, Design, and Regulatory Approval Imagement, Design, and Regulatory Approval Imagement, Design, and Regulatory Approval Imagement, Design, and Planning Costs Imagement, Design, and Plan	Item No	. Item Description	Quantity	U	nit Cost	Unit	I	Extension
CAPITAL COSTS								
I.Management, Design, and Planning	CAPITA	AL COSTS						
Project Management and Engineering Support 1 \$ 36,635 LS \$ 36,635 Remediation Plans and Regulatory Approval 1 \$ 31,096 LS \$ 31,096 Permitting 1 \$ 31,096 LS \$ 31,096 Total Management, Design, and Planning Costs 1 \$ 6,240 LS \$ 6,240 Total Transition Zone investigation/Phased Implementation 1 \$ 6,240 LS \$ 73,971 2. Supplemental Investigation/Phased Implementation 1 \$ 1.5 \$ 73,971 3. Limited Excavation of Shallow Soils (70 Cubic Yards) 1 \$. 1 \$ 1.5,000 LS \$ 1.5,000 3. Off-site transportation & disposal 1 \$ 21,000 LS \$ 1.5,000 3 1.5 \$ 1.5,000 3 1.5,000 3 1.5,000 3 1.5,000 3 1.5,000 3 1.5,000 3 3.1,000 3 3.1,000 3 3.1,000 3 3.1,000 3 3.1,000 3	1.Manag	ement, Design, and Planning						
System Design 1 S - LS S - Remediation Plans and Regulatory Approval 1 \$ 31.096 LS \$ 31.096 Permitting 1 \$ 6.240 LS \$ 6.240 Total Management, Design, and Planning Costs 1 \$ 6.240 LS \$ 6.240 2. Supplemental Investigation / Phased Implementation 1 \$ 6.240 LS \$ 7.3971 2. Supplemental Investigation / Phased Implementation Costs 1 \$		Project Management and Engineering Support	1	\$	36,635	LS	\$	36,635
Remediation Plans and Regulatory Approval 1 \$ 31,096 LS \$ 31,096 Permitting 1 \$ 6,240 LS \$ 6,240 Total Management, Design, and Planning Costs 1 \$ 6,240 LS \$ 6,240 Supplemental Investigation / Phased Implementation 1 \$ 6,240 LS \$ 73,971 Supplemental Investigation / Phased Implementation 1 \$ - LS \$ - - 3. Excavation Installation 1 \$ 15,000 LS \$ 15,000 3b. Off-site transportation & disposal 1 \$ 15,000 LS \$ 1,800 LS \$		System Design	1	\$	-	LS	\$	-
Permitting 1 \$ 6.240 LS \$ 6.240 Total Management, Design, and Planning Costs \$ 73,971 2. Supplemental Investigation / Phased Implementation Total Transition Zone investigation/Phased Implementation Costs 1 \$ - 3. Excavation Installation 3a. Limited Excavation of Shallow Soils (70 Cubic Yards) 1 \$ 1,500 LS \$ 1,500 3b. Off-site transportation & disposal 1 \$ 1,800 LS \$ 1,800 3c. Excavation sampling 1 \$ 1,800 LS \$ 1,800 3c. Demolition activities 1 \$ 1,800 LS \$ 1,800 3c. Restoration activities 1 \$ 35,000 LS \$ 35,000 3c. Restoration activities 1 \$ 35,000 LS \$ 92,390 Total Excavation Installation Costs \$ \$ \$		Remediation Plans and Regulatory Approval	1	\$	31,096	LS	\$	31,096
Total Management, Design, and Planning Costs \$ 73,971 2. Supplemental Investigation / Phased Implementation 1 \$ 1 <td></td> <td>Permitting</td> <td>1</td> <td>\$</td> <td>6,240</td> <td>LS</td> <td>\$</td> <td>6,240</td>		Permitting	1	\$	6,240	LS	\$	6,240
2. Supplemental Investigation / Phased Implementation - Total Transition Zone investigation/Phased Implementation Costs 1 \$ LS \$ 3. Excavation Installation - - - - - 3a. Limited Excavation of Shallow Soils (70 Cubic Yards) 1 \$ 15,000 LS \$ 15,000 3b. Off-site transportation & disposal 1 \$ 21,000 LS \$ 21,000 3c. Prost excavation sampling 1 \$ 4,500 LS \$ 4,500 3d. Backfill 1 \$ 1,890 LS \$ 1,890 3e. Demolition activities 1 \$ 15,000 LS \$ 1,890 3f. Restoration activities 1 \$ 35,000 LS \$ 92,300 SUBTOTAL CAPITAL COSTS \$ \$ 92,300 \$ \$ 166,361 - TOTAL CAPITAL COST \$ \$ 191,315 \$ OPERATION, MONITORING, & MAINTENANCE (OM&M) COSTS<		Total Management, Design, and Planning Costs					\$	73,971
C. Supplemental Investigation / Phased Implementation Implementation Total Transition Zone investigation/Phased Implementation Costs 1 \$ I.S I.S \$ - Implementation Implem	2 6 1							
Total Transition Zone investigation/Phased Implementation Costs 1 \$ - LS \$ - 3. Excavation Installation - <	2. Suppl	emental Investigation / Phased Implementation					.	
3. Excavation Installation 1 \$ 15,000 LS \$ 15,000 3a. Limited Excavation of Shallow Soils (70 Cubic Yards) 1 \$ 15,000 LS \$ 15,000 3b. Off-site transportation & disposal 1 \$ 21,000 LS \$ 21,000 3c. Post excavation sampling 1 \$ 4,500 LS \$ 4,500 3d. Backfill 1 \$ 1,890 LS \$ 1,890 3e. Demolition activities 1 \$ 1,5,000 LS \$ 15,000 3f. Restoration activities 1 \$ 35,000 LS \$ 35,000 3f. Restoration activities 1 \$ 35,000 LS \$ 35,000 3f. Restoration activities 1 \$ 35,000 LS \$ 35,000 3f. Restoration activities 1 \$ 35,000 LS \$ 35,000 3f. Restoration activities 1 \$ 166,361 \$ \$ 166,361 4. Overhead and Profit (15%) 1 <t< td=""><td></td><td>Total Transition Zone investigation/Phased Implementation Costs</td><td>1</td><td>\$</td><td>-</td><td>LS</td><td>\$</td><td>-</td></t<>		Total Transition Zone investigation/Phased Implementation Costs	1	\$	-	LS	\$	-
3a. Limited Excavation of Shallow Soils (70 Cubic Yards) 1 \$ 15,000 LS \$ 15,000 3b. Off-site transportation & disposal 1 \$ 21,000 LS \$ 21,000 3c. Post excavation sampling 1 \$ 4,500 LS \$ 4,500 3d. Backfill 1 \$ 1,890 LS \$ 4,500 3d. Benolition activities 1 \$ 1,890 LS \$ 1,890 3e. Demolition activities 1 \$ 1,5000 LS \$ 15,000 3f. Restoration activities 1 \$ 35,000 LS \$ 15,000 3f. Restoration activities 1 \$ 35,000 LS \$ 15,000 Total Excavation Installation Costs 1 \$ 35,000 LS \$ 166,361 Total CAPITAL COSTS \$ \$ 24,954 OPERATION, MONITORING, & MAINTENANCE (OM&M) COSTS \$ - LS \$ -	3. Excav	ation Installation						
3b. Off-site transportation & disposal 1 \$ 21,000 LS \$ 21,000 3c. Post excavation sampling 1 \$ 4,500 LS \$ 4,500 3d. Backfill 1 \$ 1.890 LS \$ 1,890 3e. Demolition activities 1 \$ 15,000 LS \$ 15,000 3f. Restoration activities 1 \$ 15,000 LS \$ 35,000 Total Excavation Installation Costs 1 \$ 35,000 LS \$ 35,000 SUBTOTAL CAPITAL COSTS 1 \$ 35,000 LS \$ 35,000 Coverhead and Profit (15%) 1 \$ 166,361 Coverhead and Profit (15%) 5 24,954 Coverhead and Profit (15%) \$ 1 \$ 191,315 OPERATION, MONITORING, & MAINTENANCE (OM&M) COSTS 5 - 1 \$ - LS \$ Subtotal Annual OM&M Cost 1 \$ - L	3a.	Limited Excavation of Shallow Soils (70 Cubic Yards)	1	\$	15,000	LS	\$	15,000
3c. Post excavation sampling 1 \$ 4,500 LS \$ 4,500 3d. Backfill 1 \$ 1,890 LS \$ 1,890 3e. Demolition activities 1 \$ 15,000 LS \$ 1,890 3e. Demolition activities 1 \$ 15,000 LS \$ 15,000 3f. Restoration activities 1 \$ 35,000 LS \$ 35,000 3f. Restoration activities 1 \$ 35,000 LS \$ 35,000 3f. Restoration activities 1 \$ 35,000 LS \$ 35,000 SUBTOTAL CAPITAL COSTS 1 \$ 166,361 TOTAL CAPITAL COST \$ \$ 24,954 OPERATION, MONITORING, & MAINTENANCE (OM&M) COSTS \$ 1 \$ 191,315 5a. Project Management 1 \$ - LS \$ - 5b. Groundwater Monitoring 1 \$ - LS	3b.	Off-site transportation & disposal	1	\$	21,000	LS	\$	21,000
3d. Backfill 1 \$ 1,890 LS \$ 1,890 3e. Demolition activities 1 \$ 15,000 LS \$ 15,000 3f. Restoration activities 1 \$ 15,000 LS \$ 35,000 3f. Restoration activities 1 \$ 35,000 LS \$ 35,000 3c. Other activities 1 \$ 35,000 LS \$ 35,000 3c. Overhead and Profit (15%) 1 \$ 166,361 -	3c.	Post excavation sampling	1	\$	4,500	LS	\$	4,500
3e. Demolition activities 1 \$ 15,000 LS \$ 15,000 3f. Restoration activities 1 \$ 35,000 LS \$ 35,000 Total Excavation Installation Costs 1 \$ 35,000 LS \$ 35,000 SUBTOTAL CAPITAL COSTS 1 \$ 35,000 LS \$ 92,390 4. Overhead and Profit (15%) 1 \$ 166,361 1 166,361 TOTAL CAPITAL COSTS TOTAL CAPITAL COST \$ 24,954 OPERATION, MONITORING, & MAINTENANCE (OM&M) COSTS Sa. Project Management 1 \$ - LS \$ - 5b. Groundwater Monitoring 1 \$ - LS \$ - 6. OM&M Overhead and Profit (10%) 1 \$ - LS \$ - TOTAL ANNUAL OM&M COST \$ - - - - - - - OM&M Overhead and Profit (10%) \$ <td>3d.</td> <td>Backfill</td> <td>1</td> <td>\$</td> <td>1,890</td> <td>LS</td> <td>\$</td> <td>1,890</td>	3d.	Backfill	1	\$	1,890	LS	\$	1,890
3f. Restoration activities 1 \$ 35,000 LS \$ 35,000 Total Excavation Installation Costs \$ 92,390	3e.	Demolition activities	1	\$	15,000	LS	\$	15,000
Total Excavation Installation Costs\$ 92,390SUBTOTAL CAPITAL COSTS\$ 166,3614. Overhead and Profit (15%)\$ 24,954TOTAL CAPITAL COST\$ 191,315OPERATION, MONITORING, & MAINTENANCE (OM&M) COSTS5a. Project Management1\$ -LS\$ -5b. Groundwater Monitoring1\$ -LS\$ -6. OM&M Overhead and Profit (10%)\$ -6. OM&M Overhead and Profit (10%)\$ -7TOTAL ANNUAL OM&M COST\$ -9PRESENT WORTH OF TOTAL OM&M COST\$ -9PRESENT VALUE\$ -9TOTAL PRESENT VALUE (7% DISCOUNT RATE)\$ 191,315	3f.	Restoration activities	1	\$	35,000	LS	\$	35,000
SUBTOTAL CAPITAL COSTS \$ 166,361 4. Overhead and Profit (15%) \$ 24,954 TOTAL CAPITAL COST \$ 24,954 TOTAL CAPITAL COST \$ 191,315 OPERATION, MONITORING, & MAINTENANCE (OM&M) COSTS \$ 191,315 Sa. Project Management 1 \$ - Sb. Groundwater Monitoring 1 \$ - LS \$ - Sb. Groundwater Monitoring 1 \$ - LS \$ - 6. OM&M Overhead and Profit (10%) \$ - \$ - - - TOTAL ANNUAL OM&M COST \$ - \$ - - - - PRESENT WORTH OF TOTAL OM&M COST \$ - \$ - -		Total Excavation Installation Costs					\$	92,390
SUBTOTAL CAPITAL COSTS \$ 166,361 4. Overhead and Profit (15%) \$ 24,954 TOTAL CAPITAL COST \$ 191,315 OPERATION, MONITORING, & MAINTENANCE (OM&M) COSTS \$ 191,315 5a. Project Management 1 \$ - LS 5b. Groundwater Monitoring 1 \$ - LS 6. OM&M Cost \$ \$ 6. OM&M Overhead and Profit (10%) \$ \$ 7OTAL ANNUAL OM&M COST \$ \$ PRESENT WORTH OF TOTAL OM&M COST \$ \$ PRESENT VALUE \$ \$ TOTAL PRESENT VALUE (7% DISCOUNT RATE) \$ 191,315								
4. Overhead and Profit (15%) \$ 24,954 TOTAL CAPITAL COST \$ 191,315 OPERATION, MONITORING, & MAINTENANCE (OM&M) COSTS \$ 191,315 5a. Project Management 1 \$ - LS \$ - 5b. Groundwater Monitoring 1 \$ - LS \$ - 5b. Groundwater Monitoring 1 \$ - LS \$ - 6. OM&M Cost 1 \$ - LS \$ - 6. OM&M Overhead and Profit (10%) 1 \$ - - - 7 TOTAL ANNUAL OM&M COST 1 \$ - - - 9 PRESENT WORTH OF TOTAL OM&M COST 1 \$ - - - 9 PRESENT WORTH OF TOTAL OM&M COST \$ - - - - - 9 PRESENT VALUE 1 1 1 - - - 9 PRESENT VALUE (7% DISCOUNT RATE) \$ 191,315 191,315 - - -		SUBTOTAL CAPITAL COSTS					\$	166,361
4. Overhead and Profit (15%) \$ 24,954 TOTAL CAPITAL COST \$ 191,315 OPERATION, MONITORING, & MAINTENANCE (OM&M) COSTS \$ 191,315 5a. Project Management 1 \$ - LS \$ - 5b. Groundwater Monitoring 1 \$ - LS \$ - 5b. Groundwater Monitoring 1 \$ - LS \$ - 6. OM&M Overhead and Profit (10%) \$ - \$ - \$ - 6. OM&M Overhead and Profit (10%) \$ - \$ - \$ - 7 TOTAL ANNUAL OM&M COST \$ - \$ - \$ - 9 PRESENT WORTH OF TOTAL OM&M COST \$ - \$ - - 9 PRESENT VALUE (7% DISCOUNT RATE) \$ 191,315 \$ 191,315	4						<i>•</i>	24.054
TOTAL CAPITAL COST\$ 191,315OPERATION, MONITORING, & MAINTENANCE (OM&M) COSTS-5a.Project Management15b.Groundwater Monitoring11\$-1\$-5b.Groundwater Monitoring11\$-1\$1\$	4.	Overhead and Profit (15%)					\$	24,954
OPERATION, MONITORING, & MAINTENANCE (OM&M) COSTS -		TOTAL CAPITAL COST					\$	191.315
OPERATION, MONITORING, & MAINTENANCE (OM&M) COSTS I \$ I \$ - LS \$ - 5a. Project Management 1 \$ - LS \$ - 5b. Groundwater Monitoring 1 \$ - LS \$ - 5b. Groundwater Monitoring 1 \$ - LS \$ - 5b. Groundwater Monitoring 1 \$ - LS \$ - 5b. Groundwater Monitoring 1 \$ - LS \$ - 5b. Groundwater Monitoring 1 \$ - LS \$ - 5b. Subtotal Annual OM&M Cost 1 \$ -								
5a. Project Management 1 \$ - LS \$ - 5b. Groundwater Monitoring 1 \$ - LS \$ - 5b. Groundwater Monitoring 1 \$ - LS \$ - 5b. Groundwater Monitoring 1 \$ - LS \$ - 5b. Subtotal Annual OM&M Cost 1 \$ - LS \$ - 6. OM&M Overhead and Profit (10%) - </td <td>OPERA</td> <td>TION, MONITORING, & MAINTENANCE (OM&M) COSTS</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	OPERA	TION, MONITORING, & MAINTENANCE (OM&M) COSTS						
5b. Groundwater Monitoring 1 \$ - LS \$ - 1 \$ - LS \$ - <	5a.	Project Management	1	\$	-	LS	\$	-
1 \$ LS \$ - Subtotal Annual OM&M Cost \$ - \$ - 6. OM&M Overhead and Profit (10%) \$ \$ - - TOTAL ANNUAL OM&M COST \$ -	5b.	Groundwater Monitoring	1	\$	-	LS	\$	-
Subtotal Annual OM&M Cost \$ - 6. OM&M Overhead and Profit (10%) \$ - TOTAL ANNUAL OM&M COST \$ - PRESENT WORTH OF TOTAL OM&M COST \$ - PRESENT VALUE \$ - TOTAL PRESENT VALUE (7% DISCOUNT RATE) \$ 191,315			1	\$	-	LS	\$	-
6. OM&M Overhead and Profit (10%) \$ - 6. OM&M Overhead and Profit (10%) \$ - TOTAL ANNUAL OM&M COST \$ - PRESENT WORTH OF TOTAL OM&M COST \$ - PRESENT VALUE \$ - TOTAL PRESENT VALUE (7% DISCOUNT RATE) \$ 191,315		Subtotal Annual OM&M Cost					\$	-
b. OM&M Overhead and Profit (10%) S - TOTAL ANNUAL OM&M COST \$ - PRESENT WORTH OF TOTAL OM&M COST \$ - PRESENT VALUE \$ - TOTAL PRESENT VALUE (7% DISCOUNT RATE) \$ 191,315	6						¢	
TOTAL ANNUAL OM&M COST \$ - PRESENT WORTH OF TOTAL OM&M COST \$ - PRESENT VALUE \$ - TOTAL PRESENT VALUE (7% DISCOUNT RATE) \$ 191,315	6.	OM&M Overhead and Profit (10%)					\$	
PRESENT WORTH OF TOTAL OM&M COST \$ - PRESENT VALUE \$ TOTAL PRESENT VALUE (7% DISCOUNT RATE) \$ 191,315		TOTAL ANNUAL OM&M COST					\$	-
PRESENT VALUE TOTAL PRESENT VALUE (7% DISCOUNT RATE) \$ 191,315		PRESENT WORTH OF TOTAL OM&M COST					\$	
PRESENT VALUE 191,315 TOTAL PRESENT VALUE (7% DISCOUNT RATE) \$ 191,315								
TOTAL PRESENT VALUE (7% DISCOUNT RATE) \$ 191,315	PRESE	NT VALUE						
		TOTAL PRESENT VALUE (7% DISCOUNT RATE)					\$	191,315

ISCO with Excavation Cost Estimate Summary (Excavation Only) Alcas Facility - Olean, NY

SAY \$ 190,000

CAPTTAL COSTS Image: Control of the second sec	Item No	. Item Description	Quantity	U	nit Cost	Unit]	Extension
CAPITAL COSTS Image: Conditions <								
I.General Administrative Conditions 1 \$ 13,000 LS \$ 13,000 General Administrative Conditions 1 \$ 13,000 LS \$ 13,000 Survey 1 \$ 13,000 LS \$ 13,000 Total General Conditions Costs	CAPITA	AL COSTS						
General Administrative Conditions 1 \$ 13,000 LS \$ 13,000 Survey 1 \$ 23,000 LS \$ 26,000 Total General Conditions Costs 1 \$ 26,000 LS \$ 26,000 2. Construction Costs 1 \$ 12,063 LS \$ 12,063 2. Monitoring Well Installation 1 \$ 12,063 LS \$ 12,063 2. Custurely Monitored Natural Attenuation Sampling (Year 1-2) 8 \$ 14,730 LS \$ 39,000 2d. Institutional Control 1 \$ 39,000 LS \$ 39,000 2d. Institutional Control 1 \$. LS \$ - 3d. Hazardous, Subtitle D 0 \$ 98 CY \$ - 3d. Mazardous, Soubrite D 0 \$ 98 CY \$ - 3d. Mazardous, Soubrite D 0 \$ 98 CY \$ -	1.Genero	al Conditions						
Permitting 1 \$ 13,000 LS \$ 13,000 Survey 1 \$ 26,000 LS \$ 26,000 2. Construction Costs - - \$ \$ 52,000 2. Construction Costs - - - - - 2a. Monitored Natural Attenuation Sampling (Year 1-2) 8 \$ 14,730 LS \$ 11,7842 2c. Evaluation of Monitored Natural Attenuation Sampling & Modeling 1 \$ - 1.5 \$ 39,000 2d. Institutional Control 1 \$ - 1.5 \$ - 3. Transportation & Disposed (T&D) - - \$ 168,905 -		General Administrative Conditions	1	\$	13,000	LS	\$	13,000
Survey 1 \$ 26,000 LS \$ 22,000 2. Construction Costs 1 \$ 12,063 LS \$ 12,063 2a. Monitoring Well Installation 1 \$ 12,063 LS \$ 11,7842 2b. Quarterly Monitored Natural Attenuation Sampling (Year 1-2) 8 \$ 14,730 LS \$ 11,7842 2c. Evaluation of Monitored Natural Attenuation Sampling (Year 1-2) 8 \$ 14,063 LS \$ 13,000 2d. Institutional Control 1 \$ - LS \$ 17,842 2e. Evaluation of Monitored Natural Attenuation Sampling (Year 1-2) 8 \$ 14,59,000 LS \$ 39,000 LS \$ 15,003 168,905 . - 15,003 15,003 . . . 158,003 		Permitting	1	\$	13,000	LS	\$	13,000
Total General Conditions Costs \$ 2.0 0.0		Survey	1	\$	26,000	LS	\$	26,000
2. Construction Costs		Total General Conditions Costs					\$	52,000
2a. Monitoring Well Installation 1 \$ 12.063 LS \$ 12.063 2b. Quarterly Monitored Natural Attenuation Sampling (Year 1-2) 8 \$ 14.730 LS \$ 117.842 2c. Evaluation of Monitored Natural Attenuation Sampling & Modeling 1 \$ 39.000 LS \$ 39.000 2d. Institutional Control 1 \$ - LS \$ - Total Construction Costs 1 \$ - LS \$ - 3a. Hazardous, Subtite C 0 \$ 142 CY \$ - 3b. Non Hazardous, Subtite D 0 \$ 98 CY \$ - 4. Treatment (NOT APPLICABLE) - \$ \$ - \$ - 5. Pre-construction Sampling/Delineation 1 \$ 26,000 LS \$ 220,905 7. General Contractor Overhead and Profit (20% GC & Construction, 10% T&D) \$ \$ \$ 5,523 7. General Contractor Overhead and Profit (20% GC & Construction, 10% T&D)	2. Const	ruction Costs						
2b. Quarterly Monitored Natural Attenuation Sampling (Year 1-2) 8 \$ 14,730 LS \$ 17,842 2c. Evaluation of Monitored Natural Attenuation Sampling & Modeling 1 \$ 39,000 LS \$ 39,000 2d. Institutional Control 1 \$ - LS \$ - Total Construction Costs 1 \$ - LS \$ - - 8 168,905 3. Hazardous, Subtitle C 0 \$ 142 CY \$ - <td< td=""><td>2a.</td><td>Monitoring Well Installation</td><td>1</td><td>\$</td><td>12,063</td><td>LS</td><td>\$</td><td>12,063</td></td<>	2a.	Monitoring Well Installation	1	\$	12,063	LS	\$	12,063
2c. Evaluation of Monitored Natural Attenuation Sampling & Modeling 1 \$ 39,000 LS \$ 39,000 2d. Institutional Control 1 \$ - LS \$ - Total Construction Costs 1 \$ - LS \$ - 3. Transportation & Disposal (T&D) 0 \$ 142 CY \$ - 3a. Hazardous, Subtitle D 0 \$ 98 CY \$ - 3c. Non Hazardous, Concrete and Debris 0 \$ 98 CY \$ - 4. Treatment (NOT APPLICABLE) 1 \$ 26,000 LS \$ 220,005 5. Pre-construction Sampling/Delineation 1 \$ 26,000 LS \$ 26,000 6. Design Engineering (5% capital cost) 1 \$ 26,000 LS \$ 26,000 7. General Contractor Overhead and Profit (20% GC & Construction, 10% T&D) \$ \$ 5,523	2b.	Quarterly Monitored Natural Attenuation Sampling (Year 1-2)	8	\$	14,730	LS	\$	117,842
2d. Institutional Control 1 \$ - LS \$ - Total Construction Costs . \$ 168,905 3. Transportation & Disposal (T&D) 3a. Hazardous, Subtitle C 0 \$ 142 CY \$. 3b. Non Hazardous, Subtitle D 0 \$ 98 CY \$. 3c. Non Hazardous, Concrete and Debris 0 \$ 98 CY \$. G. Non Hazardous, Concrete and Debris 0 \$ 98 CY \$.	2c.	Evaluation of Monitored Natural Attenuation Sampling & Modeling	1	\$	39,000	LS	\$	39,000
Total Construction Costs \$ 168,905 3. Transportation & Disposal (T&D) 0 \$ 142 CY \$ - 3a. Hazardous, Subtitle C 0 \$ 142 CY \$ - 3b. Non Hazardous, Subtitle D 0 \$ 98 CY \$ - 3c. Non Hazardous, Concrete and Debris 0 \$ 98 CY \$ - Total T&D Costs 0 \$ 98 CY \$ - 4. Treatment (NOT APPLICABLE) \$ \$ - \$ -	2d.	Institutional Control	1	\$	-	LS	\$	-
3. Transportation & Disposal (T&D) 0 \$ 142 CY \$ - 3a. Hazardous, Subtitle C 0 \$ 98 CY \$ - 3b. Non Hazardous, Subtitle D 0 \$ 98 CY \$ - 3c. Non Hazardous, Subtitle D 0 \$ 98 CY \$ - 3c. Non Hazardous, Concrete and Debris 0 \$ 98 CY \$ - Total T&D Costs 0 \$ 98 CY \$ - - 4. Treatment (NOT APPLICABLE) 1 \$ 26,000 LS \$ 220,905 5 Pre-construction Sampling/Delineation 1 \$ 26,000 LS \$ 220,905 6. Design Engineering (5% capital cost) 1 \$ 26,000 LS \$ 220,905 7. General Contractor Overhead and Profit (20% GC & Construction, 10% T&D) \$ \$ 44,181 8. Resident Engineering (2.5% capital cost) \$ \$ 5,523 9. Ann		Total Construction Costs					\$	168,905
3a. Hazardous, Subtitle C 0 \$ 142 CY \$ - 3b. Non Hazardous, Subtitle D 0 \$ 98 CY \$ - 3c. Non Hazardous, Concrete and Debris 0 \$ 98 CY \$ - Total T&D Costs 0 \$ 98 CY \$ - 4. Treatment (NOT APPLICABLE) * </td <td>3. Trans</td> <td>portation & Disposal (T&D)</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	3. Trans	portation & Disposal (T&D)						
3b. Non Hazardous, Subitle D 0 \$ 98 CY \$ - 3c. Non Hazardous, Concrete and Debris 0 \$ 98 CY \$ - 3c. Non Hazardous, Concrete and Debris 0 \$ 98 CY \$ - 4. Treatment (NOT APPLICABLE) \$. \$. \$. 4. Treatment (NOT APPLICABLE) \$. \$. . \$.	3a.	Hazardous, Subtitle C	0	\$	142	CY	\$	-
3c. Non Hazardous, Concrete and Debris 0 \$ 98 CY \$ - Total T&D Costs \$ \$ - \$ - 4. Treatment (NOT APPLICABLE) \$ \$ - \$ - SUBTOTAL CAPITAL COSTS \$ \$ 220,905 \$ 26,000 LS \$ 220,905 5. Pre-construction Sampling/Delineation 1 \$ 26,000 LS \$ 26,000 6. Design Engineering (5% capital cost) 1 \$ 26,000 LS \$ 21,045 7. General Contractor Overhead and Profit (20% GC & Construction, 10% T&D) \$ \$ 44,181 8. Resident Engineering (2.5% capital cost) \$ \$ \$ 5,523 TOTAL CAPITAL COST \$ \$ \$ \$ \$ 5,523 OPERATION & MAINTENANCE (O&M) COSTS \$ \$ \$ 4,730 \$ \$ 1,622 \$ \$ 14,730 9. Annual O&M Costs \$ \$ 1 \$ 1,622 \$ \$	3b.	Non Hazardous, Subtitle D	0	\$	98	CY	\$	-
Total T&D Costs \$ - 4. Treatment (NOT APPLICABLE) \$ \$ 4. Treatment (NOT APPLICABLE) \$ \$ SUBTOTAL CAPITAL COSTS \$ \$ 5. Pre-construction Sampling/Delineation 1 \$ 26,000 LS \$ 220,905 5. Pre-construction Sampling/Delineation 1 \$ 26,000 LS \$ 26,000 6. Design Engineering (5% capital cost) 1 \$ 26,000 LS \$ 26,000 7. General Contractor Overhead and Profit (20% GC & Construction, 10% T&D) \$ \$ 44,181 8. Resident Engineering (2.5% capital cost) \$ \$ 5,523 7 TOTAL CAPITAL COST \$ \$ 5,523 6 OPERATION & MAINTENANCE (0&M) COSTS \$ \$ 44,181 7 OPERATION & MAINTENANCE (0&M) COSTS \$ \$ 47,300 9. Annual ONA Monitoring (Year 3.30) 1 \$ 14,730 \$ \$ 9. Annual ONA Monitoring (Year 3.30) 1 \$ 4,622 LS \$ 4,622 10. Site restoration (at the	3c.	Non Hazardous, Concrete and Debris	0	\$	98	CY	\$	-
4. Treatment (NOT APPLICABLE) \$ \$ - SUBTOTAL CAPITAL COSTS \$ \$ 220,905 5. Pre-construction Sampling/Delineation 1 \$ 26,000 LS \$ 220,905 6. Design Engineering (5% capital cost) 1 \$ 26,000 LS \$ 26,000 7. General Contractor Overhead and Profit (20% GC & Construction, 10% T&D) \$ \$ \$ 44,181 8. Resident Engineering (2.5% capital cost) \$ \$ \$ \$ 5,523 TOTAL CAPITAL COST \$ \$ \$ \$ \$ 5,523 OPERATION & MAINTENANCE (0&M) COSTS \$ \$ \$ \$ \$ 9. Annual O&M Costs - - - - - - 9. Annual MNA Monitoring (Year 3-30) 1 \$ 14,730 LS \$ 14,730 9. Annual MNA Monitoring (Year 3-30) 1 \$ 14,730 LS \$ 4,622 10. Site restoration (at the end 30th year) 1 \$ 4,622 LS \$ 4,622 11. Remedial Action Report		Total T&D Costs					\$	-
SUBTOTAL CAPITAL COSTS Image: Construction Sampling/Delineation Image: Sampling/Delineation I	4. Treatr	nent (NOT APPLICABLE)					\$	-
SUBTOTAL CAPITAL COSTS \$ 220,905 5. Pre-construction Sampling/Delineation 1 \$ 26,000 LS \$ 26,000 6. Design Engineering (5% capital cost) 1 \$ 26,000 LS \$ 26,000 7. General Contractor Overhead and Profit (20% GC & Construction, 10% T&D) \$ \$ 44,181 8. Resident Engineering (2.5% capital cost) \$ \$ \$ 5,523 - - - \$ \$ \$ 5,523 -								
5. Pre-construction Sampling/Delineation 1 \$ 26,000 LS \$ 26,000 6. Design Engineering (5% capital cost) \$ 11,045 \$ 11,045 7. General Contractor Overhead and Profit (20% GC & Construction, 10% T&D) \$ 44,181 8. Resident Engineering (2.5% capital cost) \$ 5,523 7. TOTAL CAPITAL COST \$ 307,654 7. TOTAL CAPITAL COST \$ 307,654 9. Annual MNA Monitoring (Year 3-30) 1 \$ 14,730 LS \$ 14,730 9. Annual MNA Monitoring (Year 3-30) 1 \$ 14,730 LS \$ 14,730 9. Annual MNA Monitoring (Year 3-30) 1 \$ 14,730 LS \$ 14,730 9. Annual MNA Monitoring (Year 3-30) 1 \$ 14,730 LS \$ 14,730 9. Annual MNA Monitoring (Year 3-30) 1 \$ 14,730 LS \$ 14,730 9. Annual MNA Monitoring (Year 3-30) 1 \$ 14,730 LS \$ 14,730 9. Annual MNA Monitoring (Year 3-30) 1 \$ 14,730 LS \$ 14,730 10. Site restoration (at the end 30th year)		SUBTOTAL CAPITAL COSTS					\$	220,905
6. Design Engineering (5% capital cost) \$ 11,045 7. General Contractor Overhead and Profit (20% GC & Construction, 10% T&D) \$ 44,181 8. Resident Engineering (2.5% capital cost) \$ 5,523 TOTAL CAPITAL COST TOTAL CAPITAL COST OPERATION & MAINTENANCE (0&M) COSTS Annual O&M Costs - 9. Annual MNA Monitoring (Year 3-30) 1 \$ 14,730 LS \$ 14,730 Periodic Costs - </td <td>5.</td> <td>Pre-construction Sampling/Delineation</td> <td>1</td> <td>\$</td> <td>26,000</td> <td>LS</td> <td>\$</td> <td>26,000</td>	5.	Pre-construction Sampling/Delineation	1	\$	26,000	LS	\$	26,000
7. General Contractor Overhead and Profit (20% GC & Construction, 10% T&D) \$ 44,181 8. Resident Engineering (2.5% capital cost) \$ 5,523 TOTAL CAPITAL COST TOTAL CAPITAL COST OPERATION & MAINTENANCE (0&M) COSTS Annual O&M Costs	6.	Design Engineering (5% capital cost)					\$	11,045
8. Resident Engineering (2.5% capital cost) \$ 5,523 TOTAL CAPITAL COST 0 \$ 307,654 OPERATION & MAINTENANCE (O&M) COSTS \$ - Annual O&M Costs \$ - 9. Annual MNA Monitoring (Year 3-30) 1 \$ 14,730 LS \$ 14,730 Periodic Costs - 10. Site restoration (at the end 30th year) 1 \$ 4,622 LS \$ 4,622 11. Remedial Action Report 1 \$ 22,035 LS \$ 22,035 PRESENT WORTH OF TOTAL MNA O&M COST \$ 159,652 - - PRESENT VALUE - - - TOTAL PRESENT VALUE (7% DISCOUNT RATE) \$ 467,306 - -	7.	General Contractor Overhead and Profit (20% GC & Construction, 10% T&D)					\$	44,181
TOTAL CAPITAL COST \$ 307,654 OPERATION & MAINTENANCE (0&M) COSTS - Annual O&M Costs - 9. Annual MNA Monitoring (Year 3-30) 1 1 \$ 14,730 LS Periodic Costs - - 10. Site restoration (at the end 30th year) 1 \$ 4,622 LS \$ 4,622 11. Remedial Action Report 1 \$ 22,035 LS \$ 22,035 PRESENT WORTH OF TOTAL MNA O&M COST - - - PRESENT VALUE - - - TOTAL PRESENT VALUE (7% DISCOUNT RATE) \$ 467,306 \$ 467,306	8.	Resident Engineering (2.5% capital cost)					\$	5,523
TOTAL CAPITAL COST\$ 307,654OPERATION & MAINTENANCE (O&M) COSTS								
OPERATION & MAINTENANCE (O&M) COSTSImage: Cost of the second		TOTAL CAPITAL COST					\$	307,654
OF EXATION & MARTENANCE (O&M) COSTS	ODEDA	TION & MAINTENANCE (O.S.M) COSTS						
9. Annual MNA Monitoring (Year 3-30) 1 \$ 14,730 LS \$ 14,730 Periodic Costs 1 \$ 14,730 LS \$ 14,730 10. Site restoration (at the end 30th year) 1 \$ 4,622 LS \$ 4,622 11. Remedial Action Report 1 \$ 22,035 LS \$ 22,035 PRESENT WORTH OF TOTAL MNA 0&M COST PRESENT VALUE \$ 159,652 PRESENT VALUE \$ 467,306	OF EKA	OSIM Costa						
9. Annual MNA Monitoring (Year 3-30) 1 \$ 14,730 LS \$ 14,730 Periodic Costs - - - - - - 10. Site restoration (at the end 30th year) 1 \$ 4,622 LS \$ 4,622 11. Remedial Action Report 1 \$ 22,035 LS \$ 22,035 PRESENT WORTH OF TOTAL MNA O&M COST - - - - - PRESENT VALUE - - - - - TOTAL PRESENT VALUE (7% DISCOUNT RATE) - \$ 467,306	Annuui		1	¢	14.720	I.C.	۵	14 520
Periodic Costs Image: Cost	9.	Annual MNA Monitoring (Year 3-30)	1	\$	14,730	LS	\$	14,730
10. Site restoration (at the end 30th year) 1 \$ 4,622 LS \$ 4,622 11. Remedial Action Report 1 \$ 22,035 LS \$ 22,035 Image: PRESENT WORTH OF TOTAL MNA O&M COST Image: Present VALUE Image: Present VALUE Image: Present VALUE Image: Present VALUE Image: Present VALUE (7% DISCOUNT RATE)	Periodic	Costs						
11. Remedial Action Report 1 \$ 22,035 LS \$ 22,035 PRESENT WORTH OF TOTAL MNA O&M COST \$ 159,652 PRESENT VALUE \$ 159,652 TOTAL PRESENT VALUE (7% DISCOUNT RATE) \$ 467,306	10.	Site restoration (at the end 30th year)	1	\$	4,622	LS	\$	4,622
PRESENT WORTH OF TOTAL MNA O&M COST \$ 159,652 PRESENT VALUE TOTAL PRESENT VALUE (7% DISCOUNT RATE) \$ 467,306	11.	Remedial Action Report	1	\$	22,035	LS	\$	22,035
PRESENT WORTH OF TOTAL MNA O&M COST \$ 159,652 PRESENT VALUE TOTAL PRESENT VALUE (7% DISCOUNT RATE) \$ 467,306								
PRESENT VALUE Image: Constraint of the second sec		PRESENT WORTH OF TOTAL MNA O&M COST					\$	159,652
PRESENT VALUE 467,306 TOTAL PRESENT VALUE (7% DISCOUNT RATE) \$ 467,306	DDECE							
101AL PRESENT VALUE (1% DISCOUNT KATE)	PRESE	NI VALUE	-				¢	467 206
	<u> </u>	IUIAL PKESENT VALUE (7% DISCOUNT KATE)					\$	467,306

Dissolved Phase Plume in Aquitard Monitored Natural Attenuation Cost Estimate Summary Alcas Facility - Olean, NY

SAY \$ 460,000

In Situ Ch	nemical Oxidation (ISCO) Alt	ernative					COST ESTIMATE SUMMARY
Site: Location: Phase: Base Year: Date:	Alcas Cutlery Corporation Facility Olean, New York Feasibility Study 2012 November 2012	Description:	This alternative Aquitard. A con access mud rota activities to occ and dropped do	involves treating ceptual layout of t ary rigs. Where a ur without disruption own to the injection	groundwater beneat the remedy compone ccessible, shallow tr on to operations insi n well using flexible t	h the CUTCO facility u: ents for this alternative renches would be insta ide the building. In plac tubing. Long-term grou	sing In Situ Chemical Oxidation (ISCO) to address the Source Area in the Upper is presented in Figure 1. The 2- inch injection wells would be installed using limited lled within the concrete to enclose the injection piping, to allow for injection ces where access is prohibitive, the injection piping would be hung from the ceiling ndwater monitoring would be implemented to monitor changes in site conditions.
CAPITAL COST	S: (Assumed to be Incurred During Year 0)						
DESCRIPTION		WORKSHEET	QTY	UNIT(S)	UNIT COST	TOTAL	NOTES
Injection Well Ins	stallation	CW-ISCO-1	1	EA	\$57,975	\$57,975	
Monitoring Well	Installation	CW-ISCO-2	1	EA	\$16,576	\$16,576	
Full Scale Injecti	ion Event (9 Wells)	CW-ISCO-3	2	EA	\$103,774	\$207,548	
					SUBTOTAL	\$282,099	
Contingency (Sc	cope and Bid)		20%			\$56,420	10% Scope, 10% Bid (Low end of the recommended range in EPA 540-R-00-002).
					SUBTOTAL	\$338,519	
Project Manager	ment		8%			\$27,082	Recommended range from EPA 540-R-00-002 was used.
Remedial Design	n		15%			\$50,778	Recommended range from EPA 540-R-00-002 was used.
Construction Ma	inagement		10%			\$33,852	Recommended range from EPA 540-R-00-002 was used.
Technical Suppo	ort		10%			\$33,852	-
					TOTAL	\$484,083	
				TOTAL	CAPITAL COST	\$484,000	Total capital cost is rounded to the nearest \$1,000.
INJECTION PER	RIODIC COSTS: (Assumed to be Incurred Duri	ng Year 1)					
DESCRIPTION		WORKSHEET	QTY	UNIT(S)	UNIT COST	TOTAL	NOTES
Full Scale Injecti	ion Event (9 wells)	CW-ISCO-3	1	EA	\$103,774	\$103,774	
Polishing Injection	on Event (3 wells)	CW-ISCO-4	1	EA	\$43,943	\$43,943	
					SUBTOTAL	\$147,717	
Contingency (Sc	cope and Bid)		20%		SUBTOTAL	\$29,543 \$177,260	10% Scope, 10% Bid (Low end of the recommended range in EPA 540-R-00-002).
Project Manager	ment		8%			\$14.181	The low end of the recommended range in EPA 540-R-00-002 was used.
Technical Suppo	ort		15%			\$26,589	Middle value of the recommended range in EPA 540-R-00-002 was used.
					TOTAL	\$218,030	
				TOTAL IN	JECTION COST	\$218,000	Total periodic injection cost is rounded to the nearest \$1,000.

COST ESTIMATE SUMMARY In Situ Chemical Oxidation (ISCO) Alternative Site: Alcas Cutlery Corporation Facility Description: This alternative involves treating groundwater beneath the CUTCO facility using In Situ Chemical Oxidation (ISCO) to address the Source Area in the Upper Location: Olean, New York Aquitard. A conceptual layout of the remedy components for this alternative is presented in Figure 1. The 2- inch injection wells would be installed using limited Feasibility Study Phase: access mud rotary rigs. Where accessible, shallow trenches would be installed within the concrete to enclose the injection piping, to allow for injection Base Year: 2012 activities to occur without disruption to operations inside the building. In places where access is prohibitive, the injection piping would be hung from the ceiling Date: November 2012 and dropped down to the injection well using flexible tubing. Long-term groundwater monitoring would be implemented to monitor changes in site conditions. INJECTION PERIODIC COSTS: (Assumed to be Incurred During Year 2) DESCRIPTION WORKSHEET OTY UNIT(S) UNIT COST TOTAL NOTES Polishing Injection Event (3 wells) CW-ISCO-4 1 ΕA \$43,943 \$43,943 SUBTOTAL \$43,943 Contingency (Scope and Bid) 20% \$8.789 10% Scope, 10% Bid (Low end of the recommended range in EPA 540-R-00-002). SUBTOTAL \$52.732 \$5.273 Project Management 10% The low end of the recommended range in EPA 540-R-00-002 was used. Technical Support Middle value of the recommended range in EPA 540-R-00-002 was used. 15% \$7,910 TOTAL \$65,915 TOTAL INJECTION COST \$66,000 Total periodic injection cost is rounded to the nearest \$1,000. QUARTERLY MONITORING ANNUAL COSTS: (Assumed to be Incurred During Year 0) QTY UNIT(S) TOTAL NOTES DESCRIPTION WORKSHEET UNIT COST Miscellaneous Requirements for Sampling CW-ISCO-5 ΕA \$17,658 \$17,658 1 Groundwater Sampling Event CW-ISCO-6 \$19.382 \$77.528 4 EΑ Groundwater Monitoring Event Report Preparation CW-ISCO-7 4 ΕA \$2,878 \$11,512 SUBTOTAL \$106.698 Contingency (Scope and Bid) 20% \$21,340 10% Scope, 10% Bid (Low end of the recommended range in EPA 540-R-00-002). SUBTOTAL \$128.038 8% \$10,243 Project Management Middle value of the recommended range in EPA 540-R-00-002 was used. 15% Technical Support \$19,206 Middle value of the recommended range in EPA 540-R-00-002 was used. TOTAL \$157,487 TOTAL QUARTERLY MONITORING COST \$157,000 Total quarterly monitoring cost is rounded to the nearest \$1,000. SEMIANNUAL MONITORING ANNUAL COSTS: (Assumed to be Incurred During Year 1) DESCRIPTION WORKSHEET OTY UNIT(S) UNIT COST TOTAL NOTES Groundwater Sampling Event CW-ISCO-6 2 ΕA \$19,382 \$38,764 CW-ISCO-7 Groundwater Monitoring Event Report Preparation 2 ΕA \$2,878 \$5,756 SUBTOTAL \$44.520 Contingency (Scope and Bid) 20% \$8.904 10% Scope, 10% Bid (Low end of the recommended range in EPA 540-R-00-002). SUBTOTAL \$53.424 Project Management 10% \$5,342 The high end of the recommended range in EPA 540-R-00-002 was used. Technical Support 15% \$8,014 Middle value of the recommended range in EPA 540-R-00-002 was used. TOTAL \$66.780 TOTAL SEMIANNUAL MONITORING COST \$67,000 Total semiannual monitoring cost is rounded to the nearest \$1,000.

In Situ Chemical Oxidation (ISCO) Alt	ernative					COST ESTIMATE SUMMARY
Site:Alcas Cutlery Corporation FacilityLocation:Olean, New YorkPhase:Feasibility StudyBase Year:2012Date:November 2012	Description:	This alternati Aquitard. A c access mud r activities to o and dropped	ve involves treating onceptual layout of t rotary rigs. Where a ccur without disrupti down to the injection	groundwater beneat the remedy compone ccessible, shallow tr on to operations insi n well using flexible t	h the CUTCO facility of ents for this alternative enches would be inst de the building. In pla ubing. Long-term grou	using In Situ Chemical Oxidation (ISCO) to address the Source Area in the Upper e is presented in Figure 1. The 2- inch injection wells would be installed using limited alled within the concrete to enclose the injection piping, to allow for injection acces where access is prohibitive, the injection piping would be hung from the ceiling undwater monitoring would be implemented to monitor changes in site conditions.
ANNUAL MONITORING ANNUAL COSTS: (Assumed to be Ind	curred During Year 2 thro	ugh the end	I of the Period of E	valuation)		
DESCRIPTION	WORKSHEET	QTY	UNIT(S)	UNIT COST	TOTAL	NOTES
Groundwater Sampling Event Groundwater Monitoring Event Report Preparation	CW-ISCO-6 CW-ISCO-7	1 1	EA EA	\$19,382 \$2,878 SUBTOTAL	\$19,382 \$2,878 \$22,260	
Contingency (Scope and Bid)		20%		SUBTOTAL	\$4,452 \$26,712	10% Scope, 10% Bid (Low end of the recommended range in EPA 540-R-00-002).
Project Management Technical Support		10% 15%		TOTAL	\$2,671 \$4,007 \$33,390	The high end of the recommended range in EPA 540-R-00-002 was used. Middle value of the recommended range in EPA 540-R-00-002 was used.
		то	TAL ANNUAL MON	ITORING COST	\$33,000	Total annual monitoring cost is rounded to the nearest \$1,000.
MONITORING WELL MAINTENANCE PERIODIC COSTS (Year	⁻ 10 and 20)					
DESCRIPTION Monitoring Well Maintenance	WORKSHEET CW-ISCO-8	QTY 1	UNIT(S) LS	UNIT COST \$4,326 SUBTOTAL	TOTAL \$4,326 \$4.326	NOTES
Contingency (Scope and Bid)		20%		SUBTOTAL	\$865 \$5,191	10% Scope, 10% Bid (Low end of the recommended range in EPA 540-R-00-002).
Project Management Technical Support		10% 15%		TOTAL	\$519 \$779 \$6,489	The high end of the recommended range in EPA 540-R-00-002 was used. Middle value of the recommended range in EPA 540-R-00-002 was used.
	TOTAL MONITO	RING WELI	MAINTENANCE P	ERIODIC COST	\$6,000	Periodic cost is rounded to the nearest \$1,000.
FUTURE CAPITAL COSTS: (Assumed to be Incurred in Last	Year of Period of Evaluat	ion)				
DESCRIPTION	WORKSHEET	ΟΤΥ	UNIT(S)	UNIT COST	TOTAL	NOTES
Well Abandonment	CW-ISCO-9	1	EA	\$1,805 SUBTOTAL	\$1,805 \$1,805	
Contingency (Scope and Bid)		20%		SUBTOTAL	\$361 \$2,166	10% Scope, 10% Bid (Low end of the recommended range in EPA 540-R-00-002).
Project Management		10%			\$217	Recommended range from EPA 540-R-00-002 was used.
Remedial Design Construction Management		20% 15%		TOTAL	\$433 <u>\$325</u> \$3,141	Recommended range from EPA 540-R-00-002 was used. Recommended range from EPA 540-R-00-002 was used.
			TOTAL FUTURE	CAPITAL COST	\$3,000	Total future capital cost is rounded to the nearest \$1,000.

COST ESTIMATE SUMMARY In Situ Chemical Oxidation (ISCO) Alternative Site: Alcas Cutlery Corporation Facility Description: This alternative involves treating groundwater beneath the CUTCO facility using In Situ Chemical Oxidation (ISCO) to address the Source Area in the Upper Location: Olean, New York Aquitard. A conceptual layout of the remedy components for this alternative is presented in Figure 1. The 2- inch injection wells would be installed using limited Phase: Feasibility Study access mud rotary rigs. Where accessible, shallow trenches would be installed within the concrete to enclose the injection piping, to allow for injection Base Year: 2012 activities to occur without disruption to operations inside the building. In places where access is prohibitive, the injection piping would be hung from the ceiling Date: November 2012 and dropped down to the injection well using flexible tubing. Long-term groundwater monitoring would be implemented to monitor changes in site conditions.

Notes:

Percentages used for indirect costs are based on guidance from Section 5.0 of "A Guide to Developing and Documenting Cost Estimates During the Feasibility Study", EPA 2000. Costs presented for this alternative are expected to have an accuracy between -30% to +50% of actual costs, based on the scope presented. They are prepared solely to facilitate relative comparisons between alternatives for FS evaluation purposes.

Abbreviations:

ΕA Each

QTY Quantity LS

Lump Sum

In Situ Cl	n Situ Chemical Oxidation (ISCO) Alternative PRESENT VALUE ANALYSIS									
Site:	Alcas Cutlery Corpor	ation Facility				Discount Rate:	7.00%			
Location: Phase: Base Year:	Olean, New York Feasibility Study 2012									
		ANNUAL COSTS	PERIOD	IC COSTS	Total Annual					
Year ¹	Capital Costs ²	Monitoring Costs	Injection Costs	Well Maintenance	Expenditure ³	Discount Factor	Present Value ^{4,5}			
0	\$484,000	\$157,000	\$0	\$0	\$641,000	1.0000	\$641,000			
1	\$0	\$67,000	\$218,000	\$0	\$285,000	0.9346	\$266,361			
2	\$0	\$33,000	\$66,000	\$0	\$99,000	0.8734	\$86,467			
3	\$0	\$33,000	\$0	\$0	\$33,000	0.8163	\$26,938			
4	\$0	\$33,000	\$0	\$0	\$33,000	0.7629	\$25,176			
5	\$0	\$33,000	\$0	\$0	\$33,000	0.7130	\$23,529			
6	\$0	\$33,000	\$0	\$0	\$33,000	0.6663	\$21,988			
7	\$0	\$0	\$0	\$0	\$0	0.6227	\$0			
8	\$0	\$0	\$0	\$0	\$0	0.5820	\$0			
9	\$0	\$0	\$0	\$0	\$0	0.5439	\$0			
10	\$0	\$0	\$0	\$6,000	\$6,000	0.5083	\$3,050			
11	\$0	\$0	\$0	\$0	\$0	0.4751	\$0			
12	\$0	\$0	\$0	\$0	\$0	0.4440	\$0			
13	\$0	\$0	\$0	\$0	\$0	0.4150	\$0			
14	\$0	\$0	\$0	\$0	\$0	0.3878	\$0			
15	\$0	\$0	\$0	\$0	\$0	0.3624	\$0			
16	\$0	\$0	\$0	\$0	\$0	0.3387	\$0			
17	\$0	\$0	\$0	\$0	\$0	0.3166	\$0			
18	\$0	\$0	\$0	\$0	\$0	0.2959	\$0			
19	\$0	\$0	\$0	\$0	\$0	0.2765	\$0			
20	\$0	\$0	\$0	\$6,000	\$6,000	0.2584	\$1,550			
21	\$0	\$0	\$0	\$0	\$0	0.2415	\$0			
22	\$0	\$0	\$0	\$0	\$0	0.2257	\$0			
23	\$0	\$0	\$0	\$0	\$0	0.2109	\$0			
24	\$0	\$0	\$0	\$0	\$0	0.1971	\$0			
25	\$0	\$0	\$0	\$0	\$0	0.1842	\$0			
26	\$0	\$0	\$0	\$0	\$0	0.1722	\$0			
27	\$0	\$0	\$0	\$0	\$0	0.1609	\$0			
28	\$0	\$0	\$0	\$0	\$0	0.1504	\$0			
29	\$0	\$0	\$0	\$0	\$0	0.1406	\$0			
30	\$0	\$33,000	\$0	\$3,000	\$36,000	0.1314	\$4,730			
TOTALS:	\$484,000	\$422,000	\$284,000	\$15,000	\$1,205,000		\$1,100,789			
		TOTAL P	RESENT VALUE OF ISCO	ALTERNATIVE			\$1,101,000			

Notes:

1 - Duration is assumed to be 30 years for present value analysis.

2 - Capital costs, for purposes of this analysis, are assumed to be distributed as indicated on the ISCO Cost Estimate Summary

3 - Total annual expenditure is the total cost per year with no discounting.

4 - Present value is the total cost per year including a discount factor for that year. See Table PV-ADRFT for details.

5 - Total present value is rounded to the nearest \$1,000. Depreciation is excluded from the present value cost.

Costs presented for this alternative are expected to have an accuracy between -30% to +50% of actual costs, based on the scope presented.

Site:

Date:

COST ESTIMATE SUMMARY Enhanced Anaerobic Bioremediation (EAB) Alternative Alcas Cutlery Corporation Facility Description: This alternative involves treating groundwater using In Situ Enhanced Anaerobic Bioremediation (EAB) to focus on the dissolved phase plume in the UWBZ Location: Olean, New York south of the source area to provide TCE mass removal and act as a treatment barrier to reduce or eliminate migration of affected groundwater. Figure 2 Phase: Feasibility Study presents a conceptual layout of the EAB injection wells focusing on the elevated concentrations of TCE in the off-Site area south of the facility. A direct push Base Year: 2012 technology (DPT) drill rig will be used to complete electron donor injections. The electron donor will be a slow-release, vegetable oil-based electron donor November 2012 similar to that used during the pilot study. Long-term groundwater monitoring would be implemented to monitor changes in site conditions. CAPITAL COSTS: (Assumed to be Incurred During Year 0) NOTES DESCRIPTION WORKSHEET QTY UNIT(S) UNIT COST TOTAL Monitoring Well Installation CW-EAB-1 1 LS \$18,055 \$18,055 EAB Injection Event CW-EAB-2 ΕA \$117,755 \$117,755 1 Bioaugmentation Injection Event (Initial Event) CW-EAB-3 1 ΕA \$48,466 \$48,466 SUBTOTAL \$184,276 Contingency (Scope and Bid) 20% \$36,855 10% Scope, 10% Bid (Low end of the recommended range in EPA 540-R-00-002). SUBTOTAL \$221.131 8% \$17,690 Recommended range from EPA 540-R-00-002 was used. Project Management Remedial Design 15% \$33 170 Recommended range from EPA 540-R-00-002 was used

Construction Management 10% TOTAL \$22,113 \$294,104 Recommended range from EPA 540-R-00-002 was used. TOTAL CAPITAL COST \$294,104 Total capital cost is rounded to the nearest \$1,000. INJECTION PERIODIC COSTS: (Assumed to be Incurred Durning Years 2 and 4) TOTAL \$294,000 Total capital cost is rounded to the nearest \$1,000. DESCRIPTION WORKSHEET QTY UNIT(S) UNIT COST TOTAL NOTES EAB Injection Event CW-EAB-2 1 EA \$117,755 SUBTOTAL \$117,755 \$117,755 Contingency (Scope and Bid) 20% SUBTOTAL \$23,551 \$141,306 10% Scope, 10% Bid (Low end of the recommended range in EPA 540-R-00-002 was use the recommended range in EPA 540	rtemediai Design		1070			φου, πο	
TOTAL \$294,104 TOTAL CAPITAL COST \$294,000 Total capital cost is rounded to the nearest \$1,000. INJECTION PERIODIC COSTS: (Assumed to be Incurred Durning Years 2 and 4) DESCRIPTION WORKSHEET QTY UNIT(S) UNIT COST TOTAL Total capital cost is rounded to the nearest \$1,000. INJECTION PERIODIC COSTS: (Assumed to be Incurred Durning Years 2 and 4) NOTES DESCRIPTION WORKSHEET QTY UNIT (S) UNIT COST TOTAL NOTES EAB Injection Event CW-EAB-2 1 EA \$\$117,755 \$\$117,755 Contingency (Scope and Bid) 20% SUBTOTAL \$\$113,04 The low end of the recommended range in EPA 540-R-00-002 was used to the recommended range in EPA 540-R-00-002 was used to the recommended range in EPA 540-R-00-002 was used to the recommended range in EPA 540-R-00-002 was used to the recommended range in EPA 540-R-00-002 was used to the recommended range in EPA 540-R-00-002 was used to the recommended range in EPA 540-R-00-002 was used to the recommended range in EPA 540-R-00-002 was used to the recommended range in EPA 540-R-00-002 was used to the recommended r	Construction Management		10%			\$22,113	Recommended range from EPA 540-R-00-002 was used.
TOTAL CAPITAL COST \$294,000 Total capital cost is rounded to the nearest \$1,000. INJECTION PERIODIC COSTS: (Assumed to be Incurred Durning Years 2 and 4) WORKSHEET QTY UNIT(S) UNIT COST TOTAL NOTES EAB Injection Event CW-EAB-2 1 EA \$117,755 \$117,306 \$10% Scope, 10% Bid (Low end of the recommended range in EPA 540, R-00-002 was used to the nearest \$1,000. \$117,306 \$117,306 Middle value of the recommended range in EPA 540-R-00-002 was used to the nearest \$1,000. \$174,000 Total periodic injection cost is rounded to the nearest \$1,000.					TOTAL	\$294,104	
INJECTION PERIODIC COSTS: (Assumed to be Incurred Durning Years 2 and 4) DESCRIPTION WORKSHEET QTY UNIT(S) UNIT COST TOTAL NOTES EAB Injection Event CW-EAB-2 1 EA \$117,755 \$117,755 \$117,755 Contingency (Scope and Bid) 20% 20% \$23,551 10% Scope, 10% Bid (Low end of the recommended range in EPA 540 Project Management 8% \$11,304 The low end of the recommended range in EPA 540-R-00-002 was used \$21,196 Tottal INJECTION COST \$173,806 Total periodic injection cost is rounded to the nearest \$1,000.				TOTAL	CAPITAL COST	\$294,000	Total capital cost is rounded to the nearest \$1,000.
DESCRIPTION WORKSHEET QTY UNIT(S) UNIT COST TOTAL NOTES EAB Injection Event CW-EAB-2 1 EA \$117,755 SUBTOTAL \$117,755 \$117,755 \$117,755 \$117,755 Contingency (Scope and Bid) 20% 20% SUBTOTAL \$23,551 \$141,306 10% Scope, 10% Bid (Low end of the recommended range in EPA 540-R-00-002 was ust \$141,306 Project Management Technical Support 8% 15% TOTAL \$11,304 \$173,806 The low end of the recommended range in EPA 540-R-00-002 was ust \$173,806 TOTAL INJECTION COST \$174,000 Total periodic injection cost is rounded to the nearest \$1,000.	INJECTION PERIODIC COSTS: (Assumed to be Incurred	Durning Years 2 and 4)					
EAB Injection Event CW-EAB-2 1 EA \$117,755 SUBTOTAL \$117,755 \$117,755 Contingency (Scope and Bid) 20% \$23,551 SUBTOTAL 10% Scope, 10% Bid (Low end of the recommended range in EPA 540 \$141,306 Project Management 8% Technical Support \$11,304 15% The low end of the recommended range in EPA 540-R-00-002 was use \$21,196 TOTAL INJECTION COST \$173,806 Total periodic injection cost is rounded to the nearest \$1,000.	DESCRIPTION	WORKSHEET	QTY	UNIT(S)	UNIT COST	TOTAL	NOTES
Contingency (Scope and Bid) 20% \$23,551 10% Scope, 10% Bid (Low end of the recommended range in EPA 540, R-00-002 was used to the recommended range in EPA 540-R-00-002 was used to the reco	EAB Injection Event	CW-EAB-2	1	EA	\$117,755 SUBTOTAL	\$117,755 \$117,755	
Project Management 8% \$11,306 Project Management 8% \$11,304 Technical Support 15% \$21,196 TOTAL \$173,806 TOTAL INJECTION COST \$174,000 Total periodic injection cost is rounded to the nearest \$1,000.	Contingency (Scope and Bid)		20%			\$23,551	10% Scope, 10% Bid (Low end of the recommended range in EPA 540-R-00-002).
Project Management 8% \$11,304 The low end of the recommended range in EPA 540-R-00-002 was us \$21,196 Middle value of the recommended range in EPA 540-R-00-002 was us \$173,806 TOTAL \$173,806 TOTAL INJECTION COST \$174,000 Total periodic injection cost is rounded to the nearest \$1,000.					SUBIDIAL	\$141,306	
Technical Support 15% \$21,196 Middle value of the recommended range in EPA 540-R-00-002 was us TOTAL \$173,806 TOTAL INJECTION COST \$174,000 Total periodic injection cost is rounded to the nearest \$1,000.	Project Management		8%			\$11,304	The low end of the recommended range in EPA 540-R-00-002 was used.
TOTAL INJECTION COST \$174,000 Total periodic injection cost is rounded to the nearest \$1,000.	Technical Support		15%		TOTAL	\$21,196 \$173,806	Middle value of the recommended range in EPA 540-R-00-002 was used.
				TOTAL IN	JECTION COST	\$174,000	Total periodic injection cost is rounded to the nearest \$1,000.

Enhanced Anaerobic Bioremediation (EAB) Alternative

COST ESTIMATE SUMMARY

Site: Location: Phase: Base Year: Date:	Alcas Cutlery Corporation Facility Olean, New York Feasibility Study 2012 November 2012	Description:	This alternative south of the so presents a con echnology (DF similar to that u	e involves treating urce area to prov ceptual layout of PT) drill rig will be used during the pi	groundwater using ide TCE mass remo the EAB injection w used to complete e lot study. Long-ter	In Situ Enhanced Ana oval and act as a treatm rells focusing on the ele electron donor injections m groundwater monitor	erobic Bioremediation (EAB) to focus on the dissolved phase plume in the UWBZ nent barrier to reduce or eliminate migration of affected groundwater. Figure 2 evated concentrations of TCE in the off-Site area south of the facility. A direct push s. The electron donor will be a slow-release, vegetable oil-based electron donor ing would be implemented to monitor changes in site conditions.
QUARTERLY MO	ONITORING ANNUAL COSTS: (Assumed to I	be Incurred During Yea	r 0)				
DESCRIPTION Miscellaneous Re Groundwater Sar Groundwater Mor	equirements for Sampling mpling Event nitoring Event Report Preparation	WORKSHEET CW-EAB-4 CW-EAB-5 CW-EAB-6	QTY 1 4 4	UNIT(S) EA EA EA	UNIT COST \$17,658 \$22,976 \$2,641 SUBTOTAL	TOTAL \$17,658 \$91,904 \$10,564 \$102,468	NOTES
Contingency (Sco	ope and Bid)		20%		SUBTOTAL	\$20,494 \$122,962	10% Scope, 10% Bid (Low end of the recommended range in EPA 540-R-00-002).
Project Managem Technical Suppor	nent rt		8% 15%		TOTAL	\$9,837 <u>\$18,444</u> \$151,243	The high end of the recommended range in EPA 540-R-00-002 was used. Middle value of the recommended range in EPA 540-R-00-002 was used.
			TOTAL Q	UARTERLY MON	IITORING COST	\$151,000	Total quarterly monitoring cost is rounded to the nearest \$1,000.
SEMIANNUAL M	IONITORING ANNUAL COSTS: (Assumed to	be Incurred During Yea	ars 1 through	4)			
DESCRIPTION Groundwater Sar Groundwater Mor	npling Event nitoring Event Report Preparation	WORKSHEET CW-EAB-5 CW-EAB-6	QTY 2 2	UNIT(S) EA EA	UNIT COST \$22,976 \$2,641 SUBTOTAL	TOTAL \$45,952 \$5,282 \$51,234	NOTES
Contingency (Sco	ope and Bid)		20%		SUBTOTAL	\$10,247 \$61,481	10% Scope, 10% Bid (Low end of the recommended range in EPA 540-R-00-002).
Project Managem Technical Suppor	nent rt		10% 15%		TOTAL	\$6,148 \$9,222 \$76,851	The high end of the recommended range in EPA 540-R-00-002 was used. Middle value of the recommended range in EPA 540-R-00-002 was used.
			TOTAL SE	MIANNUAL MON	IITORING COST	\$77,000	Total semiannual monitoring cost is rounded to the nearest \$1,000.
ANNUAL MONIT	ORING ANNUAL COSTS: (Assumed to be In	curred During Year 5 th	nrough 8)				
DESCRIPTION Groundwater Sar Groundwater Mor	npling Event nitoring Event Report Preparation	WORKSHEET CW-EAB-5 CW-EAB-6	QTY 1 1	UNIT(S) EA EA	UNIT COST \$22,976 \$2,641 SUBTOTAL	TOTAL \$22,976 \$2,641 \$25,617	NOTES
Contingency (Sco	ope and Bid)		20%		SUBTOTAL	\$5,123 \$30,740	10% Scope, 10% Bid (Low end of the recommended range in EPA 540-R-00-002).
Project Managem Technical Suppor	nent rt		10% 15%		TOTAL	\$3,074 \$4,611 \$38,425	The high end of the recommended range in EPA 540-R-00-002 was used. Middle value of the recommended range in EPA 540-R-00-002 was used.
			ΤΟΤΑ	L ANNUAL MON	IITORING COST	\$38,000	Total annual monitoring cost is rounded to the nearest \$1,000.

COST ESTIMATE SUMMARY Enhanced Anaerobic Bioremediation (EAB) Alternative Site: Alcas Cutlery Corporation Facility Description: This alternative involves treating groundwater using In Situ Enhanced Anaerobic Bioremediation (EAB) to focus on the dissolved phase plume in the UWBZ Location: Olean, New York south of the source area to provide TCE mass removal and act as a treatment barrier to reduce or eliminate migration of affected groundwater. Figure 2 Phase: Feasibility Study presents a conceptual layout of the EAB injection wells focusing on the elevated concentrations of TCE in the off-Site area south of the facility. A direct push Base Year: 2012 technology (DPT) drill rig will be used to complete electron donor injections. The electron donor will be a slow-release, vegetable oil-based electron donor Date: November 2012 similar to that used during the pilot study. Long-term groundwater monitoring would be implemented to monitor changes in site conditions. WELL MAINTENANCE PERIODIC COSTS (Year 10 and 20) DESCRIPTION WORKSHEET QTY UNIT(S) UNIT COST TOTAL NOTES Monitoring Well Maintenance CW-EAB-7 \$4.598 \$4.598 1 LS SUBTOTAL \$4,598 Contingency (Scope and Bid) 20% \$920 10% Scope, 10% Bid (Low end of the recommended range in EPA 540-R-00-002). SUBTOTAL \$5,518 10% \$552 Project Management The high end of the recommended range in EPA 540-R-00-002 was used. Technical Support 15% \$828 Middle value of the recommended range in EPA 540-R-00-002 was used. TOTAL \$6,898 TOTAL WELL MAINTENANCE PERIODIC COST \$7,000 Periodic cost is rounded to the nearest \$1,000. FUTURE CAPITAL COSTS: (Assumed to be Incurred During Year 30) DESCRIPTION WORKSHEET QTY UNIT(S) UNIT COST TOTAL NOTES Monitoring Well Abandonment CW-EAB-8 29 ΕA \$611 \$17.719 SUBTOTAL \$17,719 Contingency (Scope and Bid) 20% \$3.544 10% Scope, 10% Bid (Low end of the recommended range in EPA 540-R-00-002). SUBTOTAL \$21,263 Project Management 10% \$2,126 Recommended range from EPA 540-R-00-002 was used. Remedial Design 20% \$4.253 Recommended range from EPA 540-R-00-002 was used. Construction Management 15% \$3,189 Recommended range from EPA 540-R-00-002 was used. TOTAL \$30,831 \$31,000 TOTAL FUTURE CAPITAL COST Total future capital cost is rounded to the nearest \$1,000.

Notes:

Percentages used for indirect costs are based on guidance from Section 5.0 of "A Guide to Developing and Documenting Cost Estimates During the Feasibility Study", EPA 2000. Costs presented for this alternative are expected to have an accuracy between -30% to +50% of actual costs, based on the scope presented. They are prepared solely to facilitate relative comparisons between alternatives for FS evaluation purposes.

Abbreviations:

EA Each

QTY Quantity

LS Lump Sum

ALCAS Cutlery Corporation Facility Site, Olean, New York

Feasibility Study Cost Estimate

ite:	Alcas Cutlery Corpo	viation Eacility				Real Discount Rate:	7.00%
ocation: hase: lase Year:	Olean, New York Feasibility Study 2012			I			
Year ¹	Capital Costs ²	ANNUAL COSTS Monitoring Costs	PERIOD Injection Costs	C COSTS Well Maintenance	Total Annual Expenditure ³	Discount Factor	Present Value ^{4,5}
0	\$294,000	\$151,000	\$0	\$0	\$445,000	1.0000	\$445,000
1	\$0	\$77,000	\$0	\$0	\$77,000	0.9346	\$71,964
2	\$0	\$77,000	\$174,000	\$0	\$251,000	0.8734	\$219,223
3	\$0	\$77,000	\$0	\$0	\$77,000	0.8163	\$62,855
4	\$0	\$77,000	\$174,000	\$0	\$251,000	0.7629	\$191,488
5	\$0	\$38,000	\$0	\$0	\$38,000	0.7130	\$27,094
6	\$0	\$38,000	\$0	\$0	\$38,000	0.6663	\$25,319
7	\$0	\$38,000	\$0	\$0	\$38,000	0.6227	\$23,663
8	\$0	\$38,000	\$0	\$0	\$38,000	0.5820	\$22,116
9	\$0	\$0	\$0	\$0	\$0	0.5439	\$0
10	\$0	\$0	\$0	\$7,000	\$7,000	0.5083	\$3,558
11	\$0	\$0	\$0	\$0	\$0	0.4751	\$0
12	\$0	\$0	\$0	\$0	\$0	0.4440	\$0
13	\$0	\$0	\$0	\$0	\$0	0.4150	\$0
14	\$0	\$0	\$0	\$0	\$0	0.3878	\$0
15	\$0	\$0	\$0	\$0	\$0	0.3624	\$0
16	\$0	\$0	\$0	\$0	\$0	0.3387	\$0
17	\$0	\$0	\$0	\$0	\$0	0.3166	\$0
18	\$0	\$0	\$0	\$0	\$0	0.2959	\$0
19	\$0	\$0	\$0	\$0	\$0	0.2765	\$0
20	\$0	\$0	\$0	\$7,000	\$7,000	0.2584	\$1,809
21	\$0	\$0	\$0	\$0	\$0	0.2415	\$0
22	\$0	\$0	\$0	\$0	\$0	0.2257	\$0
23	\$0	\$0	\$0	\$0	\$0	0.2109	\$0
24	\$0	\$0	\$0	\$0	\$0	0.1971	\$0
25	\$0	\$0	\$0	\$0	\$0	0.1842	\$0
26	\$0	\$0	\$0	\$0	\$0	0.1722	\$0
27	\$0	\$0	\$0	\$0	\$0	0.1609	\$0
28	\$0	\$0	\$0	\$0	\$0	0.1504	\$0
29	\$0	\$0	\$0	\$0	\$0	0.1406	\$0
30	\$0	\$38,000	\$0	\$31,000	\$69,000	0.1314	\$9,067
TOTALS:	\$294,000	\$649,000	\$348,000	\$45,000	\$1,336,000		\$1,103,156
		TOTAL PR	RESENT VALUE OF EA	B ALTERNATIVE			\$1.103.000

Notes:

1 - Duration is assumed to be 30 years for present value analysis.

2 - Capital costs, for purposes of this analysis, are assumed to be distributed as indicated on the EAB Cost Estimate Summary

3 - Total annual expenditure is the total cost per year with no discounting.

4 - Present value is the total cost per year including a discount factor for that year. See Table PV-ADRFT for details.

5 - Total present value is rounded to the nearest \$1,000. Depreciation is excluded from the present value cost.

Costs presented for this alternative are expected to have an accuracy between -30% to +50% of actual costs, based on the scope presented.

TABLE PV-ADRFT											
ANNUAL DISCOUNT RATE FACTORS TABLE											
Site:	Alcas Cutlery Corpo	ration Facility									
Location:	Olean, New York										
Phase: Feasibility Study											
Base Year:	Base Year: 2012										
Discount	Rate (Percent):	7.00%									
Year	Discount Factor ^{1,2}	Year	Discount Factor ^{1,2}	Year	Discount Factor ^{1,2}						
0	1.0000	34	0.1002	68	0.0100						
1	0.9346	35	0.0937	69	0.0094						
2	0.8734	36	0.0875	70	0.0088						
3	0.8163	37	0.0818	71	0.0082						
4	0.7629	38	0.0765	72	0.0077						
5	0.7130	39	0.0715	73	0.0072						
6	0.6663	40	0.0668	74	0.0067						
7	0.6227	41	0.0624	75	0.0063						
8	0.5820	42	0.0583	76	0.0058						
9	0.5439	43	0.0545	77	0.0055						
10	0.5083	44	0.0509	78	0.0051						
11	0.4751	45	0.0476	79	0.0048						
12	0.4440	46	0.0445	80	0.0045						
13	0.4150	47	0.0416	81	0.0042						
14	0.3878	48	0.0389	82	0.0039						
15	0.3624	49	0.0363	83	0.0036						
16	0.3387	50	0.0339	84	0.0034						
17	0.3166	51	0.0317	85	0.0032						
18	0.2959	52	0.0297	86	0.0030						
19	0.2765	53	0.0277	87	0.0028						
20	0.2584	54	0.0259	88	0.0026						
21	0.2415	55	0.0242	89	0.0024						
22	0.2257	56	0.0226	90	0.0023						
23	0.2109	57	0.0211	91	0.0021						
24	0.1971	58	0.0198	92	0.0020						
25	0.1842	59	0.0185	93	0.0019						
26	0.1722	60	0.0173	94	0.0017						
27	0.1609	61	0.0161	95	0.0016						
28	0.1504	62	0.0151	96	0.0015						
29	0.1406	63	0.0141	97	0.0014						
30	0.1314	64	0.0132	98	0.0013						
31	0.1228	65	0.0123	99	0.0012						
32	0.1147	66	0.0115	100	0.0012						
33	0.1072	67	0.0107								

Notes:

¹ Annual discount factors were calculated using the formulas and guidance presented in Section 4.0 of *A Guide to Developing and Documenting Cost Estimates During the Feasibility Study*, EPA 2000.

² The discount rate used to determine the present value was used based based on *A Guide to Developing and Documenting Cost Estimates During the Feasibility Study*, EPA 2000.
Appendix B

Modeling Report for Evaluation of Groundwater Extraction as a Remedial Alternative

And

Olean Groundwater Model Calibration and Capture Simulations Memorandum

Modeling Report for Evaluation of Groundwater Extraction as a Remedial Alternative

FOR THE

ALCAS CUTLERY CORPORATION FACILITY SITE OLEAN, NEW YORK

Prepared for

ALCOA, Inc. Alcoa, Tennessee

January 31, 2013

Prepared by

ENI Engineering, LLC

Groundwater Modeling

To assist with FS development, ENVIRONEERING developed a 3-D groundwater flow model of the Site. This model was calibrated to recent groundwater level data which was taken in February 2012. The modeling was performed using Visual MODFLOW Premium Version 4.6.0.160 ("VMOD[©]"). VMOD[©] is copyrighted by Waterloo Hydrogeologic, Inc.

The modeling effort included model setup, model calibration, and remediation scenario evaluation using the calibrated model.

Model Setup

The first step in groundwater modeling is to develop a node point grid so that the Site's physical properties could be adequately depicted over the area of interest. Within the area of interest node point grid spacing is critical in achieving simulation resolution to show effects of a groundwater containment system or over all flow within the surficial aquifer. A map showing the area modeled is presented as **Figure B-1**. A 2-foot by 2-foot grid was used at Site and surrounding areas encompassing all existing monitoring wells, resulting in a 250 cell by 250 cell area centered at the Site. This small grid spacing was selected so that various remedial scenarios could be evaluated. Spacing between grid lines extended to 5 feet for the next 20 cells outside of this area, to 10 feet for the next 20 cells beyond, to 20 feet for the next 20 cells beyond, to 40 feet for the next 20 cells beyond, and to 80 feet for the remaining cells. The final model encompassed an area of 6,700' by 9,000' (1,384 acres), and was subdivided to 450 rows and 490 columns (220,500 cells for each layer).

The model grid is presented on **Figure B-2**. The model grid was oriented orthogonal to groundwater flow. Primary groundwater flow in the UWBZ is believed to be north to south. Primary groundwater flow in the UC and BC is believed to be east to west. The model is based on the assumption that the major axis of the model grid is parallel to groundwater flow and to the hydraulic conductivity tensor.

The model was set up to contain four layers to simulate groundwater flow. The top layer was used to simulate the UWBZ. Southern limits for the UWBZ were set at the Allegany River. The second layer was used to simulate the UA/UCTZ. The third layer was used to simulate the UC, and the bottom layer was used to simulate the BC.

The thickness of each zone was determined from geologic cross-sections and boring logs from the Site and surrounding areas. Outside of the lines of cross-section, surveyed site maps and available boring logs were used to construct top layer surficial elevations. Outside of the Site, boring logs from adjacent properties were used to construct the layers. Where data was not present, approximate surficial elevations were estimated from the USGS National Map database and estimated unit thicknesses were used. Contour maps of the top of each layer are shown on **Figures B-3 through B-6**.

The initial parameters selected for all layers were:

Parameter	Value	Units
Specific Storage	3.048 x 10 ⁻⁶	ft^{-1}
Specific Yield	$1 \ge 10^{-2}$	Unitless
Effective Porosity	0.15	Unitless
Total Porosity	0.30	Unitless
Recharge	0	in/year
Evapotranspiration	0	in/year
cm/sec - centimeters per second		

ft - feet

in/year - inches per year

Constant head boundaries were used in the UWBZ, UC, and BC to impose the regional hydraulic gradient on the model. The UWBZ extended from the top of the model (north of the Site) to the Allegany River (south of the Site). The UC and BC extended from the right side of the model (east of the Site) to the left side of the model (west of the Site).

Based on the pumping test data, initial conductivities for each layer was set as follows:

Layer	Unit	Conductivity-K _{horizontal} (cm/sec)	Conductivity-K _{vertical} (cm/sec)
Layer 1	UWBZ	0.005	0.005
Layer 2	UA/UCTZ	1 x 10 ⁻⁶	1 x 10 ⁻⁶
Layers 3 and 4	UC/BC	0.0005	0.0005

cm/sec - centimeters per second

Municipal Wells

A portion of the Olean municipal well field was included in the model since these wells are active pumping wells. The two municipal wells, 18M and 37M/38M, were simulated in the model using historical pumping rates provided by the City of Olean Public Works Department. The pumping rates for the municipal wells used in the model were:

Well	Modeled Pumping Rate (gpm)
18M	615
37M/38M	609

gpm - gallons per minute

Correspondence with the City of Olean indicated that the wells are screened in the lower ten feet of the City Aquifer.

Flow Model Engine

The above VMOD[©] inputs were translated and processed by the USGS MODular threedimensional finite-difference ground-water FLOW model, version 2005 (MODFLOW) engine. MODFLOW can simulate steady state and transient state flow in irregularly shaped flow systems

including external stresses to the flow system, such as flow to wells, areal recharge, evapotranspiration, flow to drains, and flow through river beds.

MODFLOW solves the ground water flow equation using the finite-difference approximation. The flow region is subdivided into cells in which the medium properties are assumed to be uniform. In plan view, the cells are made from the previously described grid, and a flow equation is written for each cell. Several solvers are provided by the software for solving the resulting matrix problem.

For the purpose of this modeling effort, the WHS Solver was selected for use. The WHS solver is a proprietary solver developed by Waterloo Hydrogeologic Inc., and uses a Bi-Conjugate Gradient Stabilized acceleration routine implemented with Stone incomplete decomposition for preconditioning of the ground water flow partial differential equations. This solver, as all iterative solvers, approaches the solution of a large set of partial differential equations iteratively through an approximate solution. Because the matrix equation for ground water flow is initially "ill-conditioned", effective pre-conditioning of these matrices is necessary for an efficient solution.

The WHS solver works on a two-tier approach to a solution at one time step. Outer iterations are used to vary the factorized parameter matrix in an approach toward the solution. An outer iteration is where the hydrogeologic parameters of the flow system are updated (i.e., transmissivity, saturated thickness, storativity) in the factorized set of matrices. Different levels of factorization allow these matrices to be initialized differently to increase the efficiency of solution and model stability. Inner iterations are used to iteratively solve the matrices created in the outer iterations.

After completion of the ground water simulation using the MODFLOW engine and WHS solver, the resultant outputs were compared to collected data from the site to assess model calibration.

Model Calibration

Model calibration is a process where the aquifer properties are modified until the modeled hydraulic heads equal the measured hydraulic heads. In practice, the modeled heads never exactly equal measured heads. The modeled heads should be a close approximation of the measured heads. This is accomplished by comparing potentiometric surface contour maps of measured vs. modeled heads. When these two maps have the same or similar shape contours and the value of the contours are the same, the model is considered calibrated.

In order to calibrate this model, hydraulic conductivity, recharge, river, and constant heads were modified in various parts of the model. The distribution of layer hydraulic conductivities for the calibrated model is shown in the Table below.

Layer	Unit	Conductivity-K _{horizontal} (cm/sec)	Conductivity-K _{vertical} (cm/sec)
Layer 1	UWBZ	0.004	0.004
Layer 2	UA/UCTZ	1 x 10 ⁻⁷	1 x 10 ⁻⁷

Layer	Unit	Conductivity-K _{horizontal} (cm/sec)	Conductivity-K _{vertical} (cm/sec)
Layers 3 and 4	UC/BC	0.6	0.6

cm/sec - centimeters per second

Recharge over model was calibrated to 3.5 inches per year. Multiple modeling runs were performed with variation in value and distribution of recharge. Modeling outputs showed significant effects of recharge over the final calibrated UWBZ flow field, and very little effects over the final calibrated UC and BC flow fields.

Properties of the river boundary condition were additionally input and modified. The river boundary condition was assigned using a line object in the model, and calculated conductance each cell. During model construction, elevation data indicated that the Allegany River has incised through the UWBZ. As a result, modeling outputs showed no influence of the river system over the final calibrated UWBZ flow field, and localized effects to the UC and BC flow fields.

Initial Output

All parameters were input, and the model was allowed to run to steady state. The output heads were compared with a known data set to assess for calibration. Multiple model runs were conducted by modifying hydraulic conductivity, recharge, river, and constant heads.

Although the gradient in the UC/BC could be simulated, initial model outputs indicated that the actual drawdown effected by the municipal wells in the UWBZ could not be reproduced. The modeled maximum drawdown achieved in the UWBZ had to be less than the drawdown achieved in the UC and BC. Using groundwater elevation data, an estimated drawdown of more than 8 to 10 feet appears to be occurring in the UWBZ. An estimated drawdown of 3 to 5 feet appears to be occurring in the BC. Since more actual drawdown occurs in the non-pumped UWBZ versus the pumped BC, an alternative was sought to increase the modeled drawdown in the UWBZ while maintaining the modeled drawdown in the UC and BC.

Two scenarios were proposed to actively increase drawdown the UWBZ in the vicinity of 18M. The first scenario included a leaky municipal well, 18M. In this scenario, the pumping rate from 18M would be subdivided to allow for pumping from the UWBZ, the UC, and the BC, thus simulating a leaky well casing. The subdivided well pumping scenario presented encouraging results, however it could not fully simulate the increased UWBZ drawdown near the municipal well without drying out the pumped UWBZ cells.

The second scenario simulated an absence of the UA in the vicinity of 18M. In this scenario, the conductivity values of the second layer, which includes the UA and UCTZ, were increased to 10⁻⁴ cm/sec to simulate a more permeable unit in the vicinity of 18M. This increased conductivity zone is in the UA/UCTZ layer only, and extends approximately 100 feet from the well head. A map showing the conductivity zone surrounding 18M is presented as **Figure B-7**.

Laver/Zone	Unit	Conductivity-K _{horizontal}	Conductivity-K _{vertical}
Layer/Zone	Unit	(cm/sec)	(cm/sec)
1	UWBZ	0.004	0.004
2	UA/UCTZ	$1 \ge 10^{-7}$	1 x 10 ⁻⁷
3	UC/BC	0.6	0.6
18M Permeability Zone	UA/UCTZ	1 x 10 ⁻⁶	0.0008

cm/sec - centimeters per second

The 18M permeability zone scenario demonstrated the best results. Groundwater gradients near 18M in the UWBZ were much steeper than in previous model runs.

Final Steady State Model Run

Since each model has different objectives and must be calibrated to different conditions, the acceptability of calibration can be generally subjective. However, there are some generally accepted methods of evaluating and interpreting the model calibration using both qualitative and quantitative measures.

All parameters were finalized, and the model was allowed to run to steady state using the MODFLOW 2005 engine with WHS Solver Package. The output heads were compared with a known data set to assess for calibration. Calibrated model hydraulic head contour maps that overlie the February 2012 groundwater contour map are presented as **Figures B-8 though B-10**. Qualitatively, the calibrated hydraulic head data reasonably fit the observed head data.

Several statistical inferences were employed to provide a good measure of the overall goodness of fit of the model, which include the Calibrated Residual, the Absolute Residual Mean, the Normalized Root Mean Square, and the Correlation Coefficient.

Calibrated Residual

The Calibration Residual (R_i) is defined as the difference between the calculated results (X_{cal}, or Model Calculated Head) and the observed results (X_{obs}, or Observed Head) at selected data points $i \rightarrow n$ (as shown in the following equation):

$$R_i = X_{cal} - X_{obs}$$

Well	Unit	X _{obs} - Observed Head (ft amsl)	X _{cal} - Model Calculated Head (ft amsl)	R _i - Calibration Residual (ft)
CW-13A	UWBZ	1413.72	1413.585	-0.13467
RU-1	UWBZ	1422.22	1422.957	0.737275
RU-11	UWBZ	1414.87	1414.326	-0.54444
RU-13R	UWBZ	1416.51	1414.18	-2.32958
RU-15	UWBZ	1414.94	1415.945	1.005312
RU-16	UWBZ	1414.47	1415.07	0.599702

		X _{obs} - Observed	X _{cal} - Model	R _i - Calibration
Well	Unit	Head	Calculated Head (ft	Residual
		(ft amsl)	amsl)	(ft)
RU-17A	UWBZ	1419.75	1419.921	0.171265
RU-4	UWBZ	1416.61	1415.689	-0.92091
RU-5	UWBZ	1416.57	1415.125	-1.44512
RU-6	UWBZ	1416.46	1414.511	-1.94938
RU-7	UWBZ	1407.95	1408.666	0.71626
RU-8	UWBZ	1417.97	1413.387	-4.58279
RU-9	UWBZ	1415.61	1415.456	-0.15407
UA-2	UWBZ	1414.56	1415.297	0.736509
UA-3	UWBZ	1414.88	1414.871	-0.00866
UA-4	UWBZ	1406.69	1410.073	3.382998
UA-5	UWBZ	1416.57	1415.323	-1.24688
UC-1	UC	1406.59	1406.719	0.129116
UC-2	UC	1406.77	1406.856	0.086079
UC-3	UC	1406.59	1406.702	0.111782
UC-4	UC	1406.42	1406.579	0.159346
UC-5	UC	1406.28	1406.459	0.179473
BC-1	BC	1406.63	1406.72	0.09021484
BC-2	BC	1406.61	1406.746	0.1357275
BC-3	BC	1406.59	1406.703	0.1132471
BC-4	BC	1406.39	1406.579	0.1892236
BC-5	BC	1406.28	1406.465	0.1848438
B-1	BC	1419.8	1418.886	-0.91414
18M	BC	1402	1403.08	1.079834
CW-13	BC	1406.26	1406.542	0.282481

ft amsl - feet above mean sea level

The Residual Mean (\bar{R}) is a measure of the average Calibration Residual value defined by the equation:

$$\overline{R} = \frac{1}{n} \sum_{i=1}^{n} R_i$$

The average of the residuals at the measurement points is generally a good indicator of how well the model was calibrated. However, positive and negative residual values can either negate each other or produce residual mean values lower than actually present. This can lead to a false interpretation of model calibration. A better interpretation of model calibration, using Absolute Residual Mean, is used as a more adequate indication of calibration than the Residual Mean.

Absolute Residual Mean

The Absolute Residual Mean $|\bar{R}|$ is similar to the Residual Mean except that it is a measure of the average absolute Residual value defined by the equation:

$$\left|\overline{R}\right| = \frac{1}{n} \sum_{i=1}^{n} \left|R_{i}\right|$$

The overall Absolute Residual Mean, as well as the Absolute Residual Mean of each unit is presented below:

	Unit	Value
X _{obs} - max	Overall	1422.22
${ m X}_{ m obs}$ - ${ m min}$	Overall	1402
Abs. Residual Mean	Overall	0.81
Abs. Residual Mean	UWBZ	0.94
Abs. Residual Mean	UC	0.13
Abs. Residual Mean	BC	0.17

The Absolute Residual Mean of the current model illustrates that on an average, the discrepancy between measured and simulated heads is 0.81 feet. For model calibration, the Absolute Residual Mean divided by the range in head at all targets should be less than 10 percent. The overall model calibrated to 4 percent for all targets, which is an indicator of good model calibration.

Normalized Root Mean Squared

The Root Mean Squared error (RMS) is defined by the following equation:

$$RMS = \sqrt{\frac{1}{n} \sum_{i=1}^{n} R_i^2}$$

The Normalized Root Mean Squared is the RMS divided by the maximum difference in the observed head values, and is expressed by the following equation:

$$NormalizedRMS = \frac{RMS}{(X_{obs})_{max} - (X_{obs})_{min}}$$

The Normalized RMS is expressed as a percentage, and is a more representative measure of the fit than the standard RMS, as it accounts for the scale of the potential range of data values.

The overall RMS and Normalized RMS are presented below:

	Unit	Value
X _{obs} - max	Overall	1422.22
${ m X}_{ m obs}$ - ${ m min}$	Overall	1402
RMS	Overall	1.31 feet
Normalized RMS	Overall	6.50%

In the current model, an RMS of 1.31 feet was determined, which is approximately 0.1 percent of the simulated heads in the model. For model calibration, the normalized RMS should be less

than 10 percent. During calibration, a normalized RMS of 6.50 percent was calculated, which signifies an acceptable model fit.

Correlation Coefficient

The Correlation Coefficient (*Cor*) is calculated as the covariance (*Cov*) between the calculated results (X_{cal}) and the observed results (X_{obs}) at selected data points divided by the product of their standard deviations. The correlation coefficient is calculated using the following equation:

$$Cor(X_{cal}, X_{obs}) = \frac{Cov(X_{cal}, X_{obs})}{\sigma_{cal} \cdot \sigma_{obs}}$$

The covariance is calculated using the following equation:

$$Cov(X_{cal}, X_{obs}) = \frac{1}{n} \sum_{i=1}^{n} (X_i - \mu_{cal})(X_i - \mu_{obs})$$

Where μ_{cal} and μ_{obs} are the mean values of calculated and observed results, respectively.

$$\mu_{cal} = \frac{1}{n} \sum_{i=1}^{n} X_{cal}$$
$$\mu_{obs} = \frac{1}{n} \sum_{i=1}^{n} X_{obs}$$

The standard deviations are calculated by the equations:

$$\sigma_{cal} = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (X_{cal} - \mu_{cal})^2}$$

$$\sigma_{obs} = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (X_{obs} - \mu_{obs})^2}$$

Correlation Coefficients range in value from -1.0 to 1.0. The Correlation Coefficient determines whether two ranges of data move together. A Correlation Coefficient of 1.0 would indicate a perfect fit of the data.

In the current model, a Correlation Coefficient of 0.973 feet was determined, which is indicative of large values of one data set associated with large values of the other data set (positive correlation). This Correlation Coefficient signifies an acceptable model fit.

As the result of qualitative and quantitative measures supporting a model calibration, the model was approved for remedial scenario modeling.

Remedial Scenario Modeling

A groundwater containment system was evaluated to capture groundwater flow migrating from the Site towards 18M. Multiple remediation scenarios were input into the calibrated model to

assess the efficiency in capturing the Plume Zone. A map showing the modeled remediation scenarios is presented as **Figure B-11**.

Vertical Recovery Well Scenario

To approximate a recovery well scenario, pumping wells were constructed in the model along the southeastern boundary, and downgradient flow side, of the Site. To cover the Plume Zone, eight pumping wells (numbered PW-1 through PW-8 from northeast to southwest) were spaced approximately 20 to 25 feet apart. Each pumping well was screened across the entire thickness of the UWBZ.

To simulate capture of the Plume Zone, the eight wells were pumped to steady state. A pumping rate for each well was selected, and subsequently changed until the Plume Zone was captured without the pumped node going dry. Based on this procedure, the following pumping rates for each well captured the Plume Zone, and are:

Well	Pumping Rate (gpm)	Well	Pumping Rate (gpm)
PW-1	0.75	PW-5	1.0
PW-2	0.75	PW-6	1.1
PW-3	0.8	PW-7	1.25
PW-4	1.0	PW-8	1.25
	Total		7.9

gpm - gallons per minute

A map showing the modeled UWBZ groundwater contours with eight recovery wells pumping is presented as **Figure B-12**. The eight recovery well scenario indicated that Plume Zone capture from underneath the building is occurring. The recovery well scenario effectively prevents impacted UWBZ groundwater from entering 18M.

These eight wells pumping from the UWBZ also capture groundwater flow across the Plume zone in the UA/UCTZ as shown in **Figure B-13.** Groundwater flow in the City Aquifer was not affected by this pumping.

Horizontal Recovery Trench Scenario

A horizontal recovery trench was modeled using the drain package in MODFLOW. The recovery trench was placed in the same location as the vertical recovery well along the southeastern boundary of the Site between the Site and 18M. The drain was constructed as part of the UWBZ, with the base slightly above the base of the UWBZ and screened for the entire thickness of the UWBZ. Total length of the drain was approximately 160 feet.

The horizontal recovery trench model was run to steady state at an elevation of 1406 feet amsl. The maximum modeled flow rate for the horizontal recovery trench scenario was approximately 9.6 gpm.

The horizontal recovery trench scenario indicated that Plume Zone capture from underneath the building is occurring. The recovery trench effectively prevents impacted UWBZ groundwater from entering 18M. A map showing the modeled UWBZ groundwater contours with horizontal recovery trench pumping is presented as **Figure B-14**.

The recovery trench pumping from the UWBZ also captures groundwater flow across the Plume Zone in the UA/UCTZ as shown in **Figure B-15.** Groundwater flow in the City Aquifer was not affected by this pumping.

Figures

Grou Finite ORAWN BY:		En.
FIGURE B-2 undwater Model e Difference Grid ALCAS FACILITY DLEAN, NEW YORK AF DATE: 11/14/2012 PROJ. NO. 137-154	UA-1 ↔ ALCAS MONITORING WELLS SW-14 ↔ EXISTING MONITORING WELLS 18M ♥ PUBLIC WATER WELL ENI-1 ● BORING PROPERTY BOUNDARY FENCE This plot was completed on Jan. 2012 D. Mitchel Canada P.L.S. No. 49245 Elevation datum from the City of Olean, Engineering Office, Olean, NY. Base being USGS.	

DRAWN BY: AF	Calibrated with February ALCA: OLEAN,	ENVIRON FIGU			Saura Sa
DATE: 11/29/2012 137–154	UWBZ Flow / 2012 Contours s FACILITY NEW YORK	EERING, INC. RE B-8	Notes: Dis plot was completed on Jan. 2012 D. Michoel Canada P.L.S. No. 49245 Elevation datum from the City of Olean, Engineering Office, Olean, NY. Base being USSS. 75 150 300 SCALE IN FEET	LEGEND UA-1 ↔ ALCAS MONITORING WELLS SW-14 ↔ EXISTING MONITORING WELLS 18M ♥ PUBLIC WATER WELL ENI-1 ● BORING 	37/38M ()

DRAWN BY: AF	ALCA OLEAN	with Februar	Calibrat	FIGI	ENVIRON	 							
DATE: 11/29/2012 137-154	AS FACILITY 1, NEW YORK	y 2012 Contours	ed BC Flow	URE B-10	JEERING, INC.	SCALE IN FEET	75 150 300	Notes: This plat was completed on Jan. 2012 D. Michael Canada P.L.S. No. 49245 Elevation datum from the City of Olean, Engineering Office, Olean, NY. Base being USGS.	MODELED CONTOURS FEBRUARY 2012 CONTOURS	ENI-1 BORING PROPERTY BOUNDARY	18M 👁 PUBLIC WATER WELL	SW-14 CXISTING MONITORING WELLS	37/38M

Modeled Re DRAWN BY:				Z T S
GURE B-11 emediation Scenari LCAS FACILITY LAN, NEW YORK	75 150 300 SCALE IN FEET	ENVIOUS PROPERTY BOUNDARY FENCE Remediation Well Remediation Trench This plat was completed on Jan. 2012 D. Wichel Canada PLS. No. 49245 Elevation datum from the City of Glean, Engineering Office, Olean, NY. Base being USSS.	UA-1 ↔ ALCAS MONITORING WE SW-14 ↔ EXISTING MONITORING 18M ④ PUBLIC WATER WELL	37/38M

Memorandum

То:	Robert Prezbindowski - Alcoa
From:	Michael J. Hoffman, PG, C.HG Michael J. Smith, PhD – CDM Smith Inc. Kent S. Sorenson, Jr., PhD, PE – CDM Smith Inc.
Date:	December 17, 2012
Subject:	Olean Groundwater Model Calibration and Capture Simulations

This memorandum summarizes modifications to the Olean Groundwater Model (Model) described in Appendix B in order to represent a different conceptual site model. Calibration of a numerical groundwater model will almost always generate a non-unique solution, and in some cases, multiple conceptual site models could be used to produce a numerical model calibration that reasonably reproduces observed hydraulic heads. Given that this was the case for this Site, the project team felt it was important to run simulations for a second conceptual site model scenario to ensure that a wide range of possible outcomes was represented.

The model calibration described in Appendix B achieved a reasonable match to observed hydraulic head data in the Upper Water Bearing Zone (UWBZ) through inclusion of a relatively high permeability vertical communication zone around the city production well, 18M. An alternative interpretation of the observed data would be that two of the wells on the east side of the Site previously interpreted to be screened in the UWBZ are actually completed in lower permeability soils consistent with the upper aquitard (UA). This would explain the significant head difference in that area relative the other UWBZ wells without requiring the high permeability zone around 18M.

In August and September of 2012, CDM Smith obtained from Environeering the Model described in Appendix B. CDM Smith evaluated the model, performed modifications of the model structure based on this alternative interpretation of the boring logs, performed a steady state recalibration of the modified Model using the February 2012 water level data, and performed extraction well and trench capture simulations. In addition, the transport of sulfate potentially produced from in situ chemical oxidation at the facility was simulated with both calibrations in order to determine whether it might detrimentally impact the production well, 18M.

Existing Model Modifications

The initial changes involved modifications to the model framework to avoid extreme aspect ratios on the grid geometry. This was done to minimize potential numerical solution issues when the model is used for transport analysis. These modifications maintained the number of rows and columns within the limits of the graphical user interface. In addition, the aquitard separating the upper and lower aquifers was subdivided into two layers simply to facilitate transport simulations. The properties of the two layers remained identical to each other. Boring logs in the area of interest were evaluated, and the elevations of the top and bottom of the aquifer were modified in the model to conform to this interpretation. Areas outside of the facility area were maintained at their values in the original model. Comparisons of simulated and observed heads used the alternate interpretation of the zone in which the wells were completed

The hydraulic properties in the model were assumed to be uniform within each layer, with the exception of the upper aquifer, where an additional property zone was added in the area near UA-4, UC-5 and CW-13, since the more permeable UWBZ material appears to be absent in this area.

Numerical Groundwater Model Design

The following section describes the Model design including the Model code, grid, boundary conditions, wells, hydraulic parameters, and calibration targets.

Model Code Selection

For consistency, the groundwater flow was simulated using the same code as the original model, the U.S. Geological Survey model code MODFLOW-2005; a standard, widely available open source code model. This 3-dimensional, finite difference, groundwater flow model is capable of simulating all of the processes that are included in the Site conceptual model. MODFLOW-2005 uses a variety of solution techniques that can effectively simulate most natural systems. As in the original Model, the WHS Solver was selected for use. The WHS solver is a proprietary solver developed by Schlumberger that facilitates solving of the flow equations in the model.

Model Grid and Stress Periods

The computational grid for this model is constructed with 325 rows, 365 columns, and 5 layers. The row and column spacing start at 80 feet by 80 feet at the edges of the grid and reduce to 40 ft x 40 ft, 20 ft x 20 ft, 5 ft x 5 ft moving inwards. The row and column spacing was refined to 4 feet by 4 feet over the plant area. The grid represents an area 9,000 ft by 6,700 feet (1,384 acres). The grid size selected was based on maintaining sufficient discretization to obtain a numerical solution that converged and was in mass balance with reasonable execution times. The Model grid in its entirety is shown on Figure 1 and a close up of the plant area is shown in Figure 2.

Layer 1 represents the UWBZ, Layers 2 and 3 represent the upper aquitard and upper City transition zone (UA/UCTZ), Layer 4 represents the Upper City Aquifer (UC), and Layer 5 represents the Bottom City aquifer (BC). CDM Smith interpreted the layer thicknesses and elevations in the plant area from the existing boring logs.

All flow simulations were conducted as steady-state, with no changes in storage, to represent long-term average conditions.

Boundary Conditions

Constant head boundaries were used in the UWBZ, UC, and BC to impose the regional hydraulic gradient on the model. The UWBZ extended from the top of the model (north of the Site) to the Allegany River (south of the Site). The boundary cells for the UWBZ and UC/BC are shown on Figures 3 and 4.

Recharge

Recharge was not changed from the original Model, with a recharge rate of 3.5 in/year applied to the uppermost saturated layer.

Municipal Wells

There are two municipal wells in the model, 18M and 37M/38M, both of which are screened in the bottom 10 feet of the UC. The wells are currently being operated at 615 gallons per minute (gpm) and 609 gpm, respectively. Well 18M is of primary concern as is has the potential to pull in constituents and remediation breakdown products. Well 37M/38M is located south of the Allegany River and has minimal impact on flow at the site. The locations of the municipal wells are shown on Figure 5.

Head Observation Wells

Thirty onsite wells are used as head observation (monitoring) wells in the model. There are 15 monitoring wells in the UWBZ, seven in the UC, and eight in the BC. Table 1 summarizes the head observation wells. The locations of the head observation wells are shown on Figure 6.

Well	Unit	Well	Unit
CW-13A	UWBZ	UA-3	UWBZ
RU-1	UWBZ	UA-4	UA/UCTZ
RU-11	UWBZ	UA-5	UWBZ
RU-13R	UWBZ	UC-1	UC
RU-15	UWBZ	UC-2	UC
RU-16	UWBZ	UC-3	UC
RU-17A	UWBZ	UC-4	UC
RU-3	UWBZ	UC-5	UC
RU-4	UWBZ	BC-1	BC
RU-5	UWBZ	BC-2	BC
RU-6	UWBZ	BC-3	BC
RU-7	UA/UCTZ	BC-4	BC
RU-8	UWBZ	BC-5	BC
RU-9	UWBZ	B-1	BC
UA-2	UWBZ	CW-13	BC

Table 1Head Observation Wells

Hydraulic Parameters

The properties of hydraulic conductivity were assigned to zones, and a zone was assigned to the entire layer with the exception of the UWBZ which has two hydraulic conductivity zones to account for the area near UA-4, UC-5 and CW-13 since the more permeable upper aquifer material appears to be limited in this area. Table 2 summarizes the initial hydraulic properties. The hydraulic conductivity zones for the UWBZ are shown in Figure 7.

Layer(s)	Unit	Kx (cm/sec)	Kz (cm/sec)
1	UWBZ	0.004	0.004
2 and 3	UA/UCTZ	1e-07	1e-07
4	UC	0.6	0.6
5	BC	0.6	0.6

Table 2Initial Model Hydraulic Properties

Calibration

Calibration to the supplied steady-state water level data set was done using automated (using the parameter estimation program PEST) and heuristic (manual) methods to determine the final

hydraulic conductivity values. A uniform ratio of 10:1 was specified for the horizontal to vertical hydraulic conductivity in all layers. The calibrated hydraulic properties are summarized in Table 3.

Layer(s)	Unit	Kx (cm/sec)	Kz (cm/sec)
1	UWBZ	0.0057 to 0.0044	0.00057 to
			0.00044
2 and 3	UA/UCTZ	5e-05	5e-06
4	UC	0.6	0.6
5	BC	0.6	0.6

Table 3Calibrated Model Hydraulic Properties

Table 4 summarizes the observed, simulated and residual values from the monitoring wells. The model statistics are summarized in Table 5, and the calibration graph of observed versus simulated heads is shown in Figure 8.

Fate and Transport Simulations

CDM Smith performed fate and transport simulations of sulfate (a remediation byproduct) using the code MT3DMS to access the impact of these chemicals on municipal well 18M. The initial sulfate concentration in the source area was 28,000 mg/L based on conceptual sodium persulfate injection concentrations. Sulfate was not considered a constant source. No sorption or degradation was assumed. Peak conditions were reached at 440 days. The constituents in the source area are rapidly transported east towards well 18M. Dilution in the lower aquifer limits the simulated sulfate concentrations detected in well 18M. The peak simulated sulfate concentration at well 18M was approximately 0.18 mg/L. Figure 9 shows the results of the fate and transport simulations.

Capture Scenarios

The purpose of the capture zone analyses is to determine whether the source area can be hydraulically contained to prevent transport of constituents in groundwater associated with the source area near the facility to municipal well 18M. Two capture scenarios were simulated with the calibrated steady state Model; a horizontal recovery trench scenario and an extraction wells scenario. Capture zone analyses were performed by placing a line of particles in Layer 1 (UWBZ) on each side of the trench or wells between the source area and the 18M. The particles were then simulated backwards in time using the program MODPATH, outlining a capture zone. Each case is discussed below.

Woll	Unit	Observed Head	Simulated Head	Residual
wen	UIII	(feet MSL)	(feet MSL)	(feet)
CW-13A	UWBZ	1413.72	1414.807	-1.087
RU-1	UWBZ	1422.22	1420.427	1.793
RU-11	UWBZ	1414.87	1414.726	0.144
RU-13R	UWBZ	1416.51	1417.371	-0.861
RU-15	UWBZ	1414.94	1415.481	-0.541
RU-16	UWBZ	1414.47	1414.986	-0.516
RU-17A	UWBZ	1419.75	1417.98	1.77
RU-3	UWBZ	1412.54	1414.701	-2.161
RU-4	UWBZ	1416.61	1416.875	-0.265
RU-5	UWBZ	1416.57	1416.958	-0.388
RU-6	UWBZ	1416.46	1417.221	-0.761
RU-7	UA/UCTZ	1407.95	1408.655	-0.705
RU-8	UWBZ	1417.97	1415.798	2.172
RU-9	UWBZ	1415.61	1415.627	-0.017
UA-2	UWBZ	1414.56	1415.101	-0.541
UA-3	UWBZ	1414.88	1414.856	0.024
UA-4	UA/UCTZ	1406.69	1408.81	-2.12
UA-5	UWBZ	1416.57	1417.573	-1.003
UC-1	UC	1406.59	1406.842	-0.252
UC-2	UC	1406.77	1407.048	-0.278
UC-3	UC	1406.59	1406.783	-0.193
UC-4	UC	1406.42	1406.482	-0.062
UC-5	UC	1406.28	1406.241	0.039
BC-1	BC	1419.8	1417.431	2.369
BC-2	BC	1406.63	1406.847	0.217
BC-3	BC	1406.61	1406.872	0.262
BC-4	BC	1406.59	1406.791	0.201
BC-5	BC	1406.39	1406.466	0.076
B-1	BC	1406.28	1406.239	0.041
CW-13	BC	1406.26	1406.371	0.111

Table 4Calibration Statistics

Minimum Residual (feet)	-2.16
Maximum Residual (feet)	2.17
Residual Mean (feet)	-0.27
Absolute Residual Mean (feet)	0.58
Standard Deviation (feet)	0.86
Sum of Squares (feet)	21.29
Number of Observations	27
Range (feet)	4.33
% Error (abs res mean/range x 100)	13.44

Table 5 Calibration Statistics

Horizontal Recovery Trench Scenario

Drain-type boundary cells were introduced into Layer 1 (UWBZ) of the Model to simulate the trench scenario. The trench trends southwest to northeast. The drain is confined in Layer 1 (UWBZ) and the elevation varies from 1,412.8 ft MSL to 1,414.7 ft MSL and the conductance varies from 408 ft/day to 1,293 ft/day. The total flow rate from the trench is 2.3 gpm. A capture zone was estimated using reverse particle tracking and demonstrates the trench effectively captures the source area. Figure 10 illustrates the particle tracking analysis for the recovery trench scenario.

Extraction Wells Scenario

Well boundary cells were introduced into Layer 1 (UWBZ) of the Model to simulate the extraction wells scenario. The wells are position in a line oriented southwest to northeast, as was the recovery trench. The wells are screened in Layer 1 (UWBZ). The extraction wells' pumping rates are summarized in Table 6. The pumping rates were determined by using the maximum extraction rate in each well that would not generate dry cells in Layer 1. A capture zone was estimated using reverse particle tracking and demonstrates the trench effective captures the source area. Figure 11 illustrates the particle tracking analysis for the extraction wells scenario.

Well Name	Pumping Rate (gpm)	Well
PW-1	0.75	PV
PW-2	0.5	PV
PW-3	0.25	PV
PW-4	0.12	PV

	Table 6	
Extraction	Well Pum	ping Rates

Well Name	Pumping Rate (gpm)	
PW-5	0.12	
PW-6	0.12	
PW-7	0.25	
PW-8	0.5	

Summary and Conclusions

CDM Smith modified and recalibrated the Olean steady state groundwater model. Two capture scenarios were simulated using the calibrated, steady state model to assess the ability to contain dissolved constituents in groundwater near the facility such that they would not impact municipal well 18M; a horizontal recovery trench and a linear, extraction well barrier. Particle tracking was performed to assess the capture effectiveness of each scenario. The simulated flow from the recovery trench scenario is 2.3 gpm. The simulated combined flow from the extraction wells is 2.6 gpm. The simulated capture zones from each scenario appear to be similar. Generally, a horizontal recovery trench has greater effectiveness in intercepting contamination than an extraction well barrier, but both appear to meet the objective of hydraulic containment. Further field testing would be required to determine actual sustainable flow rates.

In addition, the recalibrated model was used to simulate the potential remediation byproduct of in situ chemical oxidation, sulfate, to determine whether it might detrimentally impact 18M. The simulation indicated a peak sulfate concentration in the well of just 0.18 mg/L, even with no attenuation of sulfate in the system. This small increase would not pose a concern of exceeding the secondary maximum contaminant level for sulfate of 250 mg/L.

cc: Tim White – Environeering, Inc.
ENI, LLC

Appendix C

Data Evaluation for ISCO Pilot Study

fax: 303-308-3003

October 4, 2012

Mr. Robert Prezbindowski Alcoa, Inc. 2300 North Wright Road Alcoa, Tennessee 37701

Subject: Data Evaluation for the In-Situ Chemical Oxidation Pilot Study, Alcas Cutlery Corporation Facility, Olean, New York

Dear Mr. Prezbindowski:

CDM Smith Inc. (CDM Smith) conducted an In-Situ Chemical Oxidation Pilot Study at the former Alcas Cutlery Corporation Facility in Olean, New York in support of the focused feasibility study. The pilot study was completed in accordance with the approved In-Situ Chemical Oxidation Pilot Study Work Plan dated March 29, 2012 (CDM Smith 2012a). The purpose of the pilot study was to evaluate the potential for chemical oxidation using activated sodium persulfate to reduce concentrations of trichloroethene (TCE) near a source area at the manufacturing building on site. Prior bench-scale tests completed by CDM Smith (CDM Smith 2012b) indicated that sodium persulfate activated using high pH (sodium hydroxide) at a concentration of 5% by weight was effective at reducing TCE mass and concentration in groundwater.

The pilot study injection of activated persulfate was completed between April 18 and April 20, 2012. Following the injection, performance groundwater monitoring events were completed on May 2 and May 24, 2012. These data were summarized in the Preliminary Data Evaluation report for the pilot study activities dated June 22, 2012 (CDM Smith 2012c). This letter report presents the results of groundwater monitoring completed at the site on June 27 – 29, 2012 and September 6, 2012, and presents conclusions from the pilot study and an evaluation of the feasibility of activated persulfate as a remedial technology for the site.

June Sampling Results

The field activities associated with implementation of the activated persulfate injection pilot study at the Cutco facility prior to May 24, 2012 were summarized in the Preliminary Data Evaluation report (CDM Smith 2012c). Following completion of the preliminary data evaluation, two subsequent groundwater sampling events have been completed in order to evaluate whether concentrations of TCE had rebounded to an equilibrium concentration following exhaustion of the oxidant from the initial activated persulfate injection during the pilot study. As described in the

preliminary data summary report, it is likely that the baseline groundwater sample collected from RU-4 contained an artificially low concentration of TCE (44 mg/L) when compared to historical values, which ranged from 130 milligrams per liter (mg/L) to over 300 mg/L. Most importantly, the sample collected during November 2011 contained TCE at 150 mg/L. At the time of the preliminary data evaluation report, TCE concentrations were exhibiting an increase at well RU-4 following exhaustion of the oxidant from the pilot study, and a recommendation was made to complete additional sampling to evaluate when TCE concentrations at RU-4 reached an equilibrium, at which time a determination could be made whether additional injection of persulfate would be necessary to complete the evaluation of in-situ chemical oxidation as a potential remediation technology for the site.

The groundwater monitoring event between June 27 and 29, 2012 was completed approximately ten weeks after completion of injection activities. This event included monitoring at a total of eight wells on the Alcas property, and included sampling of wells outside of the pilot study cell to evaluate whether impacts occurred in the surrounding aquifer. Of greatest interest for this report were the results from wells RU-4, RU-22A, and RU-22B within the pilot study cell. Attachment A presents the data from these three monitoring wells throughout the pilot study, and presents volatile organic compounds (VOCs) in both mass and molar concentrations. All analytical data collected during the pilot study are presented in Tables 1 and 2.

The TCE concentration at RU-4 increased from 56 mg/L on May 24, 2012 to 74 mg/L on June 27, 2012, and the trend at this well had exhibited a nearly linear increase between May 2 and June 27, 2012. The results indicated that an equilibrium concentration had not yet been reached at that location. Concentrations of cis-1,2-dichloroethene (cis-DCE) and vinyl chloride (VC) increased at this location as well. Given that RU-4 appears to be located in close proximity to residual nonaqueous TCE based on high historical concentrations, a rebounding trend was expected to occur following depletion of the oxidant. The increasing trend in VOCs coincided with an increase in chloride concentrations. The increase in chloride from 271 mg/L to 1250 mg/L observed in RU-4 on May 24 may be the result of destruction of chlorinated VOCs by the activated persulfate. Chloride remained elevated in June, at a concentration of 949 mg/L. Sulfate concentrations, however, decreased significantly from 841 mg/L on May 24 to 209 mg/L on June 27. This result indicates that sulfate decreased to below the secondary MCL of 250 mg/L approximately 10 weeks after injection, even in a well directly impacted during activated persulfate injection. Due to the continued increase in VOC concentrations in RU-4 during the sampling event in June 2012, an additional groundwater sampling event was recommended to evaluate equilibrium concentrations following injection activities.

At RU-22B, the previously observed decreasing trend in VOC concentrations continued during the June 2012 sampling event, with TCE decreasing from 10 mg/L to 5.7 mg/L, a decrease of about 87% compared to the baseline concentration of 43 mg/L at this location. This result is encouraging, as it

appears that TCE concentrations were significantly reduced by the injected oxidant at this location, and that reduced concentrations continued to persist (and even drop further) more than two months after injection. The relative concentrations of cis-DCE and VC increased during the June sampling event. These data are likely indicative of reductive biological degradation of TCE, which has been observed on the fringes of chemical oxidation injections at other sites. This is typically attributed to increased dissolved organic carbon in groundwater that results from the partial oxidation of natural organic matter. The decrease in overall chlorinated VOC concentrations at this well is accompanied by a slight increasing trend in chloride concentrations, which provides another line of evidence that chlorinated VOCs have been destroyed in the vicinity of this well.

VOC concentrations at well RU-22A, screened between 10 and 15 feet bgs, have exhibited lower VOC concentrations throughout the pilot study when compared to RU-22B and RU-4. RU-22A has also exhibited higher molar concentrations of cis-DCE and VC compared to TCE, which differs from the other pilot study monitoring wells, suggesting that different geochemical conditions existed at this location from the outset. At RU-22A, an increase in TCE concentration from 2.8 mg/L to 4.6 mg/L was observed during the June sampling event; however, the overall molar concentrations of chlorinated VOCs remained relatively unchanged. As described in the preliminary data summary report, little influence from the persulfate injection was observed at well RU-22A.

One of the objectives of the pilot study was to evaluate the potential for adverse secondary impacts to groundwater quality due to the activated persulfate injection activities. The constituents evaluated as having potential to affect water quality were dissolved metals, hexavalent chromium, and bromate. Additionally, sulfate concentrations are being evaluated due to potential to exceed secondary MCLs due to utilization of the sodium persulfate oxidant. Table 2 presents the data for metals, hexavalent chromium, and bromate during the pilot study. At RU-4, which was directly impacted by the persulfate injection, several dissolved metals, notably aluminum, arsenic, total chromium, and vanadium, increased during the monitoring event two weeks after injection. Additionally, sodium increased significantly from 154 mg/L to 3,590 mg/L at two weeks postinjection; this result was expected due to breakdown of the sodium persulfate oxidant. However, concentrations of these metals decreased during sampling five weeks post-injection, and had returned to approximately baseline concentrations by ten weeks post-injection. These results indicate that within the treatment zone, a temporary increase in dissolved metals can be expected immediately following oxidant injection, but that the effects are short-lived and the metals are likely to attenuate following depletion of the oxidant. Bromate was not detected at any wells at the site during either baseline sampling or 10 months post-injection. Hexavalent chromium was not detected at concentrations above 0.01 mg/L during any monitoring events. While hexavalent chromium was detected in four samples during sampling in June 2012, all concentrations were barely above the detection limit. These results indicate that there is minimal potential for detrimental water quality impacts resulting from chemical oxidation byproducts at the site.

September Sampling Results

As described above, an additional groundwater sampling event was determined to be necessary to evaluate whether an equilibrium concentration of VOCs had been re-established, and the magnitude of the new equilibrium. The proposed sampling program was presented in a letter to EPA dated August 27, 2012. The additional sampling was approved during a project conference call with EPA on August 30, 2012. Wells RU-4 and RU-22B were sampled for VOCs and anions (sulfate and chloride) on September 6, 2012.

At RU-4, the TCE concentration decreased from 74 mg/L in June 2012 to 59 mg/L, and other VOC concentrations decreased in a similar manner as indicated in the attached charts. The total molar concentration of chlorinated VOCs decreased slightly from June to September. This result, approximately four months after the oxidant from the pilot study was exhausted, likely indicates that a new equilibrium TCE concentration has been established, and is at least 50% lower than historical concentrations. This result is very encouraging, as it appears to indicate that the oxidant destroyed a portion of the residual nonaqueous TCE present near RU-4, thereby decreasing the equilibrium TCE concentration in groundwater. Sulfate and chloride concentrations have also continued to decrease, with sulfate decreasing from 209 mg/L to 139 mg/L, and chloride decreasing from 949 mg/L to 797 mg/L.

The analytical results from RU-22B indicated an increase in TCE concentration, from 5.7 mg/L to 9.1 mg/L, while other chlorinated VOC concentrations decreased. Although TCE increased during the September sampling event, the total molar concentration of chlorinated VOCs actually decreased slightly, down more than 70% from the peak concentration measured on May 2, 2012. This result is also encouraging, as the decrease in VOC concentrations since the baseline sampling event appears to be sustained four months after the oxidant has been exhausted, and the September concentrations represent a decrease in total VOCs of 70% at this location.

Summary and Conclusions

The analytical results described above were discussed in a project conference call on September 21, 2012. The lower equilibrium concentration observed at RU-4, approximately 50 percent below historical concentrations, along with the significant reduction of total VOCs at RU-22B indicate that activated persulfate can be effective for destroying TCE at the site. However, it is important to note that implementation of this technology at full-scale in the source areas at the site will not result in reduction of groundwater concentrations to below MCLs. What it appears the technology can do is dramatically reduce the mass of VOCs in the shallow groundwater, which will significantly reduce their flux into the Upper City Aquifer from the site.

The effectiveness of in situ chemical oxidation will be controlled by the ability to distribute the injected oxidant into the heterogeneous subsurface at the site, which includes the variable presence of low-permeability soils in the vicinity of the source area. The challenge this presents was demonstrated during the pilot study, as little to no effect of activated persulfate injection was observed at well RU-22A, located roughly the same distance from the injection well as RU-22B, but screened in the upper 5 feet of the 10-ft injection zone rather than the lower 5 feet. During remedial design, options would be evaluated to better distribute oxidant throughout the treatment area (e.g., recirculation during injection, additional injections will result in a smaller reduction in VOC concentrations, leading to a point of diminishing returns for subsequent injection activities. It is important to set realistic objectives for performance of in situ chemical oxidation as a remedy for the site, such as a target percentage (e.g., 70 to 80 percent) reduction in VOC mass within the source area, rather than expecting this technology to reduce concentrations to MCLs in groundwater in the upper water-bearing zone at the Alcas facility.

While the September 2012 sampling results show promise for chemical oxidation as a potential remediation technology for high TCE concentrations in groundwater near the facility, it is important to note that numerical modeling will need to be completed to evaluate the potential for transport of sulfate from injection activities toward the municipal supply well. This evaluation will be included in the focused feasibility study document that presents the remediation technologies considered for the site.

Please feel free to contact us if you have any questions regarding this report at 303-383-2300, or at <u>smithnl@cdmsmith.com</u> or <u>sorensonks@cdmsmith.com</u>.

Sincerely

Neil L. Smith, P.E. Environmental Engineer CDM Smith Inc.

Kent Storensong

Kent S. Sorenson, Jr., PhD, P.E. Senior Vice President CDM Smith Inc.

cc: Mr. Timothy White (ENI, LLC) Mr. Michael Walters (U.S. Environmental Protection Agency)

Attachment A – VOC Mass and Molar Charts Attachment B – References

		VOC - Mass Concentrations					Redox Conditions			IS	General Chemistry							
Well ID	Sample Date	PCE	TCE	cis-1,2-DCE	trans-1,2-DCE	Vinyl Chloride	1,1-DCE	Total Organic Carbon	Dissolved Oxygen	ORP	Sulfate	Hexavalent Chromium	Hd	Conductivity	Temperature	Turbidity	Chloride	Alkalinity
	Units	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mV	mg/L	mg/L	s.u.	uS/cm	deg C	NTU	mg/L	mg/L
D2	4/12/2012	0.0041	4.1	0.091	0.0026	0.0041	0.0023	0.74	8.78	-49	9.4	< 0.005	11.98	1325	11.67	23	NS	420
	6/28/2012	< 0.036	16	0.34	<0.09	<0.09	<0.029	0.46	6.85	-12.4	35.7	< 0.005	10.81	498	14.04	10.3	NS	180
RU22A	4/13/2012	0.012	1.4	2.4	0.026	4.2	<0.0058	13.8	7.51	340.7	5.4	< 0.005	6.44	4990	14.04	4.15	203	220
	5/2/2012	<0.014	3.4	3.1	< 0.036	3.7	<0.012	NS	0	232.2	7.6	NS	7.69	4628	14.6	6.5	195	280
	5/24/2012	0.027	2.8	2.7	< 0.036	3.6	<0.012	NS	3.77	86	65.3	NS	6.52	4750	13.09	9.7	2020	260
	6/27/2012	0.029	4.6	3.2	< 0.036	3.4	<0.012	4.4	1.23	70.4	51	< 0.005	6.58	4898	18.61	10.1	1770	500
RU22B	4/18/2012	0.072	43	14	0.088	4.4	0.041	10.2	6.48	146.6	65	< 0.005	6.97	3020	14.79	2.8	1000	460
	5/2/2012	<0.14	23	24	<0.36	17	<0.12	NS	0	180.8	2.8	NS	6.77	3515	16.47	4.12	25.9	460
	5/24/2012	< 0.045	10	9.4	<0.11	7.7	< 0.036	NS	1.46	37.4	112	NS	6.61	3589	13.69	3.28	1240	540
	6/27/2012	< 0.045	5.7	12	<0.11	9.1	< 0.036	7.3	1.21	52.1	73.8	0.0051	6.67	3857	17.07	7.7	1310	500
	9/6/2012	0.085	9.1	6.4	0.048	2.9	0.015	NS	1.12	57.3	99.4	NS	6.41	4268	21.91	6.3	832	NS
RU4	4/13/2012	0.083	44	5.5	0.13	1.1	0.078	2.8	0.56	90.9	42.2	< 0.005	7.09	1320	13.64	31	271	300
	5/2/2012	0.77	41	6.8	<0.72	1.5	<0.23	NS	0	-6.9	3570	NS	11.06	9795	16.01	9.51	790	390
	5/24/2012	0.55	56	13	<0.72	5.5	<0.23	NS	0.7	77.6	841	NS	9.7	4336	13.42	4.38	1250	440
	6/27/2012	<0.29	74	9	<0.72	1.9	<0.23	4.1	9.06	154.4	209	0.0059	7.8	3361	19.14	1.24	949	480
	9/6/2012	<0.29	59	9.3	0.1	2.9	0.037	NS	0.82	131.3	139	NS	6.69	2991	22.05	3.5	797	NS
RU5	4/13/2012	0.12	65	0.2	0.0094	0.003	0.012	0.68	1.26	344.7	30.6	< 0.005	7.17	629	16.85	33.4	94.8	260
	6/29/2012	< 0.09	19	<0.2	<0.23	<0.23	< 0.073	0.45	0.51	17.9	29	0.0091	7.26	749	17.15	9.2	NS	220
RU8	11/17/2011	0.00052	0.28	0.012	< 0.0009	0.0017	< 0.00029	0.5	0.1	2	42.7	NS	7.52	566	11.34	58.8	10.5	391
	5/2/2012	< 0.00036	0.077	0.003	< 0.0009	< 0.0009	< 0.00029	0.67	1.42	72.2	38.1	NS	7.4	461	11.28	8.2	12.2	380
RW1	4/12/2012	0.047	17	0.39	0.0038	0.23	0.0038	11	0.58	153.7	48.6	< 0.005	6.29	740	10.77	4.81	NS	220
	6/28/2012	<0.072	29	0.28	<0.18	0.34	<0.058	5.8	0.74	109.1	46.7	0.0051	6.39	803	14.51	9.1	NS	260
UC4	4/13/2012	< 0.00036	0.056	0.0051	< 0.0009	< 0.0009	< 0.00029	0.84	1.21	329.7	35.4	< 0.005	7.23	714	15.79	51.6	148	220
	6/29/2012	< 0.00036	0.048	0.0023	< 0.0009	< 0.0009	< 0.00029	<0.43	2.21	67.1	37.9	< 0.005	7.5	929	22.5	10.2	NS	220
UC5	4/11/2012	< 0.00072	0.19	0.0019	<0.0018	<0.0018	<0.00058	0.53	1.54	83.2	36.9	< 0.005	7.59	597	12.76	81.2	NS	240
	6/28/2012	<0.00072	0.16	0.0023	<0.0018	<0.0018	<0.00058	<0.43	0.46	44.9	38.7	< 0.005	7.47	640	13.36	10.1	NS	240

		Dissolved Metals																						
Well ID	Sample Date	Aluminum	Antimony	Arsenic	Barium	Beryllium	Cadmium	Calcium	Chromium	Cobalt	Copper	Iron	Lead	Magnesium	Manganese	Mercury (total)	Nickel	Potassium	Selenium	Silver	Sodium	Thallium	Vanadium	Zinc
	Units	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
D2	4/12/2012	0.24	<0.0068	<0.0056	0.11	< 0.0003	< 0.0005	156	0.003	< 0.00063	0.0028	<0.019	0.0079	0.77	< 0.0004	< 0.00012	<0.0013	7	<0.0087	<0.0017	27.2	<0.01	<0.0015	<0.0015
	6/28/2012	<0.06	<0.0068	<0.0056	0.17	< 0.0003	< 0.0005	58.2	<0.001	< 0.00063	<0.0016	<0.019	< 0.003	29.1	0.012	< 0.00012	0.003	2.8	<0.0087	<0.0017	52.8	<0.01	<0.0015	0.0023
RU22A	4/13/2012	< 0.06	<0.0068	< 0.0056	0.64	< 0.0003	< 0.0005	468	0.0025	0.0096	0.006	< 0.019	0.0058	82.9	28.3	< 0.00012	0.25	8	0.012	< 0.0017	838	0.015	< 0.0075	0.01
	5/2/2012	< 0.06	<0.0068	<0.0056	0.64	< 0.0003	0.0007	521	0.0018	0.0037	0.0045	<0.019	< 0.003	93.9	9.1	< 0.00012	0.17	12	<0.0087	< 0.0017	721	0.013	<0.0015	0.0042
-	5/24/2012	<0.06	<0.0068	<0.0056	0.74	<0.0003	0.0011	484	0.0046	0.0053	0.0062	<0.019	0.0039	92	17.5	<0.00012	0.2	12.1	<0.0087	<0.0017	8/4	0.015	0.014	0.0036
DLIDOD	0/27/2012	<0.06	<0.0060	<0.0056	0.57	<0.0003	0.00077	206	<0.001	0.0031	0.0039	0.029	<0.003	61.1	10.6	<0.00012	0.15	6.9	<0.0007	<0.0017	/ 30	<0.01	0.0025	0.0049
RU22B	5/2/2012	<0.00	<0.0068	<0.0056	0.38	<0.0003	<0.0005	386	<0.0015	0.0001	0.0003	<0.019	<0.003	66.6	0.00	<0.00012	0.099	5.1	<0.0087	<0.0017	493	<0.01	<0.0015	0.0004
	5/24/2012	<0.00	<0.0000	<0.0056	0.50	<0.0003	<0.0005	377	0.0013	0.0042	0.0057	<0.019	<0.003	71.3	1.2	<0.00012	0.11	53	<0.0007	<0.0017	563	<0.01	<0.0015	0.000
	6/27/2012	<0.06	<0.0068	<0.0056	0.43	<0.0003	<0.0005	350	<0.001	0.0079	0.0047	0.069	<0.003	64.2	2.4	<0.00012	0.12	4.9	<0.0087	<0.0017	643	<0.01	0.002	0.0052
-	9/6/2012	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
RU4	4/13/2012	< 0.06	<0.0068	< 0.0056	0.24	< 0.0003	< 0.0005	124	< 0.001	0.0025	< 0.0016	< 0.019	< 0.003	20.3	1.2	< 0.00012	0.017	3	<0.0087	< 0.0017	154	< 0.01	< 0.0015	< 0.0015
-	5/2/2012	3.3	<0.0068	0.35	0.18	< 0.0003	< 0.0005	44.3	0.16	0.002	0.0039	<0.019	< 0.003	1.3	0.00067	< 0.00012	0.053	5.4	<0.0087	< 0.0017	3590	< 0.01	0.088	0.0061
	5/24/2012	0.38	< 0.0068	0.032	0.073	< 0.0003	< 0.0005	31	0.021	0.0073	0.007	< 0.019	< 0.003	5.3	0.076	< 0.00012	0.15	2.7	< 0.0087	< 0.0017	1470	< 0.01	0.0079	< 0.0015
	6/27/2012	< 0.06	< 0.0068	< 0.0056	0.29	< 0.0003	< 0.0005	196	0.0044	0.0061	0.0061	0.06	< 0.003	42.1	0.49	< 0.00012	0.14	5.2	<0.0087	< 0.0017	742	< 0.01	< 0.0015	0.0024
	9/6/2012	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
RU5	4/13/2012	<0.06	<0.0068	< 0.0056	0.12	< 0.0003	< 0.0005	101	< 0.001	< 0.00063	<0.0016	<0.019	< 0.003	15.3	0.066	< 0.00012	< 0.0013	1.8	<0.0087	<0.0017	29.7	<0.01	< 0.0015	<0.0015
	6/29/2012	<0.06	<0.0068	< 0.0056	0.12	< 0.0003	< 0.0005	104	< 0.001	< 0.00063	<0.0016	<0.019	< 0.003	16	0.079	< 0.00012	< 0.0013	2.1	<0.0087	<0.0017	37.8	< 0.01	< 0.0015	0.0018
RU8	11/17/2011	<0.06	<0.0068	<0.0056	0.11	< 0.0003	< 0.00033	104	< 0.00087	< 0.00063	0.0019	<0.019	< 0.003	21.5	0.28	< 0.00012	<0.0013	1.7	<0.0087	<0.0017	17.6	< 0.01	<0.0011	0.0058
	5/2/2012	<0.06	<0.0068	<0.0056	0.13	< 0.0003	< 0.0005	117	<0.001	< 0.00063	0.0017	<0.019	< 0.003	22.5	0.48	< 0.00012	<0.0013	1.8	<0.0087	<0.0017	12.7	<0.01	<0.0015	0.0086
RW1	4/12/2012	<0.06	<0.0068	< 0.0056	0.12	< 0.0003	< 0.0005	97.5	0.0019	0.0042	0.0048	<0.019	< 0.003	12.9	5.5	< 0.00012	0.018	5.8	<0.0087	<0.0017	90.1	<0.01	< 0.0015	0.005
	6/28/2012	<0.06	<0.0068	< 0.0056	0.11	< 0.0003	< 0.0005	96	< 0.001	0.0042	0.0092	0.079	< 0.003	13.6	6.4	< 0.00012	0.021	5.2	<0.0087	< 0.0017	79.7	<0.01	< 0.0015	0.034
004	4/13/2012	<0.06	<0.0068	<0.0056	0.17	<0.0003	<0.0005	91.9	0.0025	<0.00063	0.0022	0.08	< 0.003	14.1	1.1	<0.00012	0.0015	2.8	<0.0087	<0.0017	64.2	<0.01	<0.0015	<0.0015
1105	6/29/2012	<0.06	<0.0068	<0.0056	0.2	<0.0003	<0.0005	106	<0.001	<0.00063	<0.0016	<0.019	<0.003	16.5	1.3	<0.00012	<0.0013	2.6	<0.0087	<0.0017	59.1	<0.01	<0.0015	0.0035
005	4/11/2012	<0.06	<0.0068	<0.0056	0.14	0.00032	<0.0005	96	<0.001	<0.00063	0.0018	0.2	<0.003	10.0	0.63	<0.00012	<0.0013	2	<0.0087	<0.0017	21.1	<0.01	<0.0015	0.0016
	0/20/2012	<0.06	<0.0068	<0.0050	0.2	<0.0003	<0.0005	106	<0.001	<0.00063	<0.0016	<0.019	<0.003	10	0.57	< 0.00012	<0.0013	2.1	<0.0087	<0.0017	20.9	<0.01	<0.0015	0.0026

Attachment A VOC Mass and Molar Charts

RU4 VOC Molar Concentrations

■ PCE ■ TCE ■ Total DCE ■ Vinyl Chloride ■ Ethene

RU4 VOC Mass Concentrations

ISCO Pilot Study Alcas Cutlery Corporation, Olean, New York

RU22A VOC Molar Concentrations

■ PCE ■ TCE ■ Total DCE ■ Vinyl Chloride ■ Ethene

ISCO Pilot Study Alcas Cutlery Corporation, Olean, New York

RU22B VOC Molar Concentrations

■ PCE ■ TCE ■ Total DCE ■ Vinyl Chloride ■ Ethene

Date

Attachment B - References

CDM Smith Inc. (CDM Smith). 2012a. In-Situ Chemical Oxidation Pilot Study Work Plan, Alcas Cutlery Corporation Facility, Olean, New York. March.

CDM Smith. 2012b. Draft Bench-Scale Test Summary Report, Alcas Cutlery Corporation Facility, Olean, New York. February.

CDM Smith. 2012c. Preliminary Data Evaluation for the In Situ Chemical Oxidation Pilot Study, Alcas Cutlery Corporation Facility, Olean, New York. June.

ENI, LLC

Appendix D

Bench-Scale Test Summary Report

February 8, 2012

Mr. Michael Walters U.S. Environmental Protection Agency, Region II 290 Broadway, 20th Floor New York, New York 10007

Subject: Draft Bench-Scale Test Summary Report Alcas Cutlery Corporation Facility, Olean, New York

Dear Mr. Walters:

On behalf of Alcoa, CDM Smith is pleased to submit this Draft Bench-Scale Test Summary Report for the Alcas Cutlery Corporation Facility in Olean, New York. The bench-scale studies were completed as part of the Focused Feasibility Study for the site to evaluate the effectiveness of *in-situ* chemical oxidation at remediating chlorinated organic compounds present in groundwater beneath and near the manufacturing building on the site.

The results of the bench-scale studies indicated that sodium persulfate, activated using sodium hydroxide, was most effective at degrading chlorinated constituents while reducing likelihood for generation of by-products. In order to validate the results of the bench-scale tests and to evaluate the ability to implement the technology on a larger scale at the site, a small-scale pilot study using activated persulfate may be necessary at a location adjacent to the manufacturing building on site.

We look forward to receiving your feedback regarding this report. Should you have any questions, please do not hesitate to contact Robert Prezbindowski with Alcoa at 865-977-3811 or myself at 303-383-2300.

Very truly yours,

Levet Storensons

Kent S. Sorenson, Jr., Ph.D., P.E. Senior Vice President CDM Smith Inc.

G

Mr. Michael Walters February 8, 2012

Page 2

Enclosure

cc: Mr. Vivek Nattanmai, NYDEC (4 copies) Mr. Eric W. Wohlers, Cattaraugus County Health Department (1 copy) Mr. Robert Prezbindowski, Alcoa (no enclosure)

	DRAFT BENCH- SCALE TEST SUMMARY REPORT
Alcas Cutlery Corporation Facility Diean, New York	<section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header>

Table of Contents

Section 1 –Introduction

1.1	Project Background	.1-1
1.2	Chemistry of Persulfate (S ₂ 0 ₈ ²⁻)	.1-1
1.3	Study Objectives	.1-2

Section 2 – Methods

2.1	Groundwater and Soil Samples Receipt	.2-1
2.2	Titration of Soil, Groundwater, and Persulfate	.2-1
2.3	Experimental Setup	.2-2

Section 3–Results

3.1	VOC 0	xidation	3-1
	3.1.1	Unactivated Persulfate with Sodium Bicarbonate (Test A)	
	3.1.2	Activated Persulfate with Sodium Hydroxide (Test B)	3-1
3.2	pH, Di	ssolved Metals, and Oxidized Byproducts	3-1
	3.2.1	Unactivated Persulfate with Bicarbonate	3-4
	3.2.2	Activated Persulfate with Sodium Hydroxide	3-4
3.3	Total (Dxidant Demand	3-4
		te en esta presenta de trans	

Section 4–Conclusions and Recommendations

4.1	Conclustions	1
4.2	Recommendations	1

Section 5–References

Appendix A	VOC Analytical Data
Appendix B	Laboratory Analytical Data
Appendix C	Summary of Sulfate Data

Figures

- 3-1 Concentrations of PCE, TCE, cis-1,2-DCE and VC in Persulfate + Bicarbonate Treatments
- 3-2 Concentrations of PCE, TCE, cis-1,2-DCE and VC in Persulfate + Hydroxide Treatments
- 3-3 pH in Persulfate + Bicarbonate Treatments
- 3-4 Final Concentrations of Hexavalent Chromium, Bromate, an Dissolved Metals in Persulfate + Bicarbonate Treatments
- 3-5 pH in Persulfate + Hydroxide Treatments
- 3-6 Final Concentrations of Hexavalent Chromium, Bromate, an Dissolved Metals in Persulfate + Hydroxide Treatments
- 3-7 Sulfate Concentrations in Test A (Persulfate + Bicarbonate) and Test B (Persulfate + Hydroxide)

Tables

i

- 2-1 Sample Log
- 2-2 Persulfate Titration Test Hydroxide Needed to Titrate to pH 11
- 2-3 Test Conditions and Setup
- 2-4 Analytical Methods and Sampling Frequencies
- 3-1 Total Oxidant Demand for Persulfate Activated with Hydroxide

Acronyms

μg/L	micrograms per liter
CASLabs	Columbia Analytical Services
ETL	Environmental Treatability Laboratory
g	grams
ISCO	In situ chemical oxidation
kg	kilograms
L	liter
М	molar
mg/L	milligrams per liter
mL	milliliters
Site	Alcas Cutlery Corporation Facility Site
SOD	soil oxidant demand
ТСЕ	trichloroethene
TOD	total oxidant demand
VOCs	volatile organic compounds
	-

THIS PAGE INTENTIONALLY LEFT BLANK

Section 1 Introduction

1.1 Project Background

In situ chemical oxidation (ISCO) is being considered as part of a Focused Feasibility Study to screen potential remedial options for the Alcas Cutlery Corporation Facility Site (Site) located in Olean, Cattaraugus County, New York. The primary constituents of concern at the Site are chlorinated organic compounds consisting primarily of trichloroethene (TCE). Elevated levels of chlorinated organic compounds are located underneath the main building and have persisted in shallow groundwater at the site. The remedial effort objective is to control or reduce mass flux of chlorinated organic compounds from the shallow aquifer to the deeper City Aquifer.

As ISCO is a technology that requires site-specific consideration, a bench-scale treatability study was conducted at the CDM Smith Environmental Treatability Laboratory (ETL) located in Bellevue, Washington, to assess the feasibility of this treatment technology for this site. ISCO technology involves injecting chemical oxidant into the subsurface to oxidize organic compounds. As the oxidation process is not selective, sufficient oxidant must be provided to overcome the oxidant demand of soils and groundwater as well in order to oxidize the constituents of concern, thus reducing their mass. Oxidants generally used in ISCO for remediation of soil and groundwater include permanganate, persulfate, hydrogen peroxide, and ozone. Hydrogen peroxide generates significant quantities of gas during the oxidation process. This proved difficult to manage during initial bench-scale testing, and could create problems in a field application occurring underneath a structure. Similarly, the injection of ozone gas beneath the manufacturing facility at the Site could prove problematic both because of the highly heterogeneous soils that would prevent uniform distribution of the gas, and because of the potential for stripping VOCs from groundwater into the unsaturated soils under the building foundation. Therefore, persulfate with bicarbonate and persulfate with sodium hydroxide were determined to be most applicable to the Site and were the focus of this treatability study.

1.2 Chemistry of Persulfate (S₂O₈²⁻)

Persulfate is available as ammonium persulfate $[(NH_4)_2 S_2O_8]$, sodium persulfate $(Na_2S_2O_8)$, and potassium persulfate $(K_2S_2O_8)$. Use of potassium persulfate in ISCO applications is less common because of its low solubility. Injection of ammonium persulfate may lead to an undesirably elevated concentration of ammonia in groundwater. As a result, sodium persulfate was selected for use in this study.

In the pH range of 3 to 7, the half-reaction equation of persulfate is:

$$S_2 O_8^{2-} + 2H_2 O \rightarrow 2H^+ + 2SO_4^{2-} + H_2 O_2$$
 (Standard potential = 2.1 volts)

Generation of H+ can lead to significant pH reductions and metals mobilization when persulfate is used. The use of alkaline activation or a buffer such as bicarbonate is sometimes used with persulfate. While persulfate is reactive by itself, its reactivity is greatly enhanced by activation and the resultant production of free radicals (Interstate Technology & Regulatory Council 2005). Activated persulfate forms a more powerful oxidant in the form of a sulfate radical (SO₄·-). The sulfate radical has a 2.6 V oxidation potential which is greater than the persulfate at 2.1 V and can degrade a wider range of compounds at faster rates by initiating a series of radical propagation and termination chain reactions. Heat, high pH, ferrous or chelated iron, and hydrogen peroxide are common persulfate activators. Sodium hydroxide (high pH) was chosen as the persulfate activator for this treatability study.

Not all of the oxidation potential will be available for degradation of the constituents of concern. Total oxidant demand (TOD) is defined as the amount of oxidant consumed by soil, groundwater, and the target constituents. The majority of the TOD required for ISCO is associated with the soil oxidant demand (SOD). Thus, the oxidant dose requirements can depend strongly on SOD.

As with all oxidants, metals mobilization may occur due to changed oxidation states as well as lowered pH. Therefore, metals mobilization is a concern even when alkaline activation or buffering is used with persulfate. Furthermore, oxidized byproducts such as bromate and hexavalent chromium can be formed. It is important to assess the potential for formation of these products, particularly where drinking water aquifers or supply wells may be impacted.

1.3 Study Objectives

The objectives of this bench-scale study are to:

- 1. Evaluate degradation of the constituents of concern by persulfate and activated persulfate, using Site soil and groundwater as the test matrix.
- 2. Evaluate the rate of breakdown of the persulfate and activated persulfate during the treatment test.
- 3. Evaluate the potential formation of any undesirable byproducts of the *in situ* treatments, such as oxidized metals, that could negatively impact the City Aquifer and 18M municipal supply well.
- 4. Determine if persulfate with or without activation is applicable for Site source treatment, and if any additional testing (e.g., a small scale, short-term pilot test near the Site source area) is needed to confirm feasibility.

Section 2 Methods

2.1 Groundwater and Soil Samples Receipt

Approximately 2.5 kilograms (kg) of Site soil from borehole RU4 were collected on 4 August 2011 and received at CDM Smith's ETL on 5 August 2011. Five liters of groundwater were collected from RU4 on 10 October 2011 and received at the ETL on 11 October 2011. Upon receipt by CDM Smith, all samples were recorded on CDM Smith's electronic inventory system and kept in a cold room at 4 degrees Celsius until setup. The treatability study sample information is summarized in **Table 2-1**. Prior to use, the soil was sieved through a #4 sieve.

Sample ID	Sample Date	Sampled From	Received Date	Amount Received
Site soil	8/4/11	RU4	8/5/11	2.5 kg
Site groundwater	10/10/11	RU5	10/11/11	5 L

Notes:

kg – kilogram

L – liter

2.2 Titration of Soil, Groundwater, and Persulfate

Prior to experimental setup, mixtures of soil and groundwater with varying concentrations of persulfate were titrated to pH 11 with sodium hydroxide. The results of the titration test were used to calculate the volume of sodium hydroxide to use during the experimental setup. The mixtures were allowed to equilibrate overnight, then titrated back up to pH 11. The total volumes of sodium hydroxide necessary to titrate the mixtures are shown in **Table 2-2**.

Table 2-2 Tersunate Intration Test—Ifythoxide Needed to Intrate to pit 11									
Soil (g) Groundwater (mL)		Persulfate Concentration	NaOH used (µL of 1.0						
			M)						
		0%	1900						
30	150	1%	2450						
		5%	3050						
		10%	3300						

Notes:

g – gram

mL – milliliters

μL – microliters

M – molar

2.3 Experimental Setup

The bench-scale study tested the use of unactivated persulfate with bicarbonate buffer (Test A) and activated persulfate with sodium hydroxide (Test B). Each of these tests included four oxidant concentrations (i.e., 0 percent, 1 percent, 3 percent, and 10 percent on a volume basis). The test bottles were designated A1 through A4 and B1 through B4, as shown in **Table 2-3**.

Table 2-3 Test conditions and Setup							
Test	Target	Soil	Ground-	Deionized	Persulfate	Bicarbonate	NaOH
Condition	persulfate	(g)	water	water	solution	(as	(1.0 M;
Code	concentration		(mL)	(mL)	(400 g	NaHCO3; g)	μL)
	(%)				persulfate/L;		
					mL)		
A1	0	60	220	80.0	0	0	
	°	00		00.0	Ŭ	С С	
A2	1	60	220	72.5	7.5	2.6	
A3	5	60	220	42.5	37.5	13.1	
A.4	10	60	220	5.0	75.0	26.2	
A4	10	00	220	5.0	75.0	20.3	
B1	0	60	220	80.0	0		0
B2	1	60	220	70.1	7.5		2450
B3	5	60	220	39.5	37.5		3050
B4	10	60	220	1.7	75.0		3300

Table 2-3	Test	Conditions	and	Setur
Table 2-5	rest	conuntions	anu	Juli

Notes:

g – grams mL – milliliter

 μ L – microliter

. M – molar

Reaction vessels were 1 liter (L) media bottles with a teflon-coated septum held in place by an open-top lid. To prevent excess pressure in the event of gas production, the reaction vessels were connected to a 1-L Tedlar bag as an expansion chamber. The bag was connected to a needle via a Luer-Lok/barb adapter and Tygon tubing; the needle was secured in place in the septum of the reaction vessel throughout the experiment.

For each condition, 60 grams (g) of Site soil and 220 milliliters (mL) of groundwater were added to the bottle. Persulfate, buffer or activator, and deionized water were added to each condition as indicated in Table 2-3. Deionized water was added to equalize the total liquid volume to 300 mL in each condition; the deionized water volume depended on the volumes of persulfate and sodium hydroxide. The amounts of bicarbonate added in Test A (persulfate with bicarbonate) were determined as the stoichiometric amount of buffer needed to neutralize the acidity generated by persulfate decomposition. The amounts of 1 molar (M) sodium hydroxide added in Test B (persulfate with sodium hydroxide) were based on the titration test described in Section 2.2. Materials were added to the bottles in the following order: soil, bicarbonate (if any), distilled water, groundwater, persulfate, and sodium hydroxide (if any). This order was chosen to minimize the time that the persulfate and sodium hydroxide were reacting with the soil and groundwater prior to the first sampling event. The bottles were capped immediately after the final addition, and analyses began immediately after capping.

Groundwater from each bottle was sampled as indicated in **Table 2-4**. Analyses of VOCs, pH, and sulfate were conducted by ETL at several time points for all the experimental bottles. In addition, samples from bottles A1, A4, B1, and B4 were sent to Columbia Analytical Services (CASLabs) for analyses of bromate, hexavalent chromium, and dissolved metals. Bottles A1 and B1 were selected for analysis as negative controls, while A4 and B4 had the highest oxidant loadings and could be assumed to present the greatest probability of forming undesirable byproducts.

	• • • • • •			-
Analyte	Method	Time Points Sampled	Test Conditions	Laboratory
		(hours from test	Sampled	
		initiation) ¹		
VOCs	EPA 8260-M	0, 12, 23, 41, 46	All	ETL
рН	Standard method	0, 12, 23, 41, 46	All	ETL
	4500			
Sulfate	HACH 8051	0, 12, 23, 41, 46	All	ETL
Bromate	EPA 300.1 / BrO3	46	A1, A4, B1, B4	CASLabs
Hexavalent	EPA 7199	46	A1, A4, B1, B4	CASLabs
chromium				
Dissolved metals	6010B LL / Metals	46	A1, A4, B1, B4	CASLabs
	7470A / Hg			

 Table 2-4 Analytical Methods and Sampling Frequencies

Notes:

VOCs – Volatile organic compounds

EPA - U.S. Environmental Protection Agency

ETL - CDM Smith's Environmental Treatability Laboratory

CASLabs - Columbia Analytical Services Laboratory

¹: The time point shown was the time of sampling; Due to instrument limitations the GC-MS analysis occurred 2-9 hours after sampling.

THIS PAGE INTENTIONALLY LEFT BLANK

Section 3 Results

3.1 VOC Oxidation

3.1.1 Unactivated Persulfate with Sodium Bicarbonate (Test A)

The graphs in **Figure 3-1** show the removal of PCE, TCE, cis-1,2-DCE, and VC using 1 percent, 5 percent, and 10 percent concentrations of unactivated persulfate with bicarbonate buffer. VOC levels declined in the controls in both this test and in Test B. The average percent reductions in the VOCs for the two controls were PCE: 66 percent; TCE: 29 percent; cis-1,2-DCE: 28 percent, and VC: 69 percent. The 1 percent dosage in this test showed little improvement compared to the control. The 5 percent and 10 percent dosage sperformed similarly to each other and better than the control, with the 10 percent dosage generally facilitating slightly faster and more thorough VOC removal than the 5 percent dosage. In the 2.5-day period of the experiment, VOC removal was not complete even in the 10 percent dosage. In this dosage, PCE was reduced by 79 percent, TCE by 84 percent, cis-1,2-DCE by 78 percent, and VC by 98 percent. The VOC data for these tests are presented in Appendix A.

3.1.2 Activated Persulfate with Sodium Hydroxide (Test B)

The graphs in **Figure 3-2** show the removal of PCE, TCE, *cis*-1,2-DCE, and VC using 1 percent, 5 percent, and 10 percent concentrations of persulfate activated with sodium hydroxide. Similarly to persulfate with bicarbonate, persulfate with hydroxide performed better at the 5 percent and 10 percent dosages than at 1 percent. In contrast to test A, the 1 percent dosage in test B did perform better than the control. Furthermore, the 5 percent and 10 percent dosages with hydroxide performed substantially better than the corresponding doses in test A. In the 10 percent dosage, PCE was reduced by 90 percent, TCE by 96 percent, *cis*-1,2-DCE by 98 percent, and VC by 99 percent. The VOC data for these tests are also presented in Appendix A.

3.2 pH, Dissolved Metals, and Oxidized Byproducts

Addition of strong oxidizers often results in decreased pH values, potentially leading to increases in dissolved metals such as cadmium, chromium, and lead. Furthermore, the oxidizers can lead to the formation of undesirable byproducts such as bromate and hexavalent chromium. Thus, the pH of all test conditions was monitored throughout the experiment, and analyses of dissolved metals along with bromate and hexavalent chromium were performed on samples from selected conditions by Columbia Analytical Services. Detailed results of these analyses are presented in Appendix B. It should be noted that a low matrix-spike recovery for bromate indicated possible matrix interference and the chromatograms for samples A1, B1, and B4 indicated non-target background components, resulting in an elevated reporting limit of 100 micrograms per liter (μ g/L).

Figure 3-1 Concentrations of PCE , TCE, cis-1,2-DCE & VC in Persulfate + Bicarbonate Treatments

3.2.1 Unactivated Persulfate with Bicarbonate

As shown in **Figure 3-3**, bicarbonate effectively maintained the pH of the test conditions at slightly above neutral for all persulfate dosages. Despite the near-neutral pH, many of the dissolved metals concentrations were elevated in test A4 (10 percent persulfate) compared to the control, as shown in **Figure 3-4**. The relative difference was greatest for iron (elevated by a factor of 430x compared to the control), sodium (260x), total chromium (110x), copper (30x), vanadium (30x), aluminum (20x), arsenic (20x), and cobalt (10x). Several metals were elevated to levels several times greater than the New York state groundwater or drinking-water quality standards, including aluminum, arsenic, cobalt, iron, sodium, and vanadium (based on Part 703 summary tables, <u>http://www.dec.ny.gov/regs/4590.html</u>). Barium and total chromium also exceeded the standards, though not by as great a factor. The hexavalent chromium concentration did not measurably increase in test A4 compared to the control. However, the bromate concentration was higher in test A4 by a factor of more than 400x, at approximately 43,000 µg/L. The EPA drinking water standard is 10 µg/L. These results indicate that this treatment could have multiple adverse impacts on the quality of the shallow groundwater.

3.2.2 Activated Persulfate with Sodium Hydroxide

Figure 3-5 shows that pH was initially elevated to approximately 10.5 in test conditions with persulfate and sodium hydroxide. The pH declined to less than 9 within the first 12 hours of the test, but remained above neutral for the full duration. **Figure 3-6** shows that most metals concentrations did not increase substantially in test B4 compared to the control. The greatest increases occurred for sodium (150x), total chromium (100x), and potassium (5x). Neither bromate nor hexavalent chromium were measurably elevated in test B4 compared to the control. A few metals were elevated to levels above the New York state groundwater or drinking-water quality standards, including total chromium, selenium, and sodium. However, chromium and selenium did not exceed the standards by much (chromium: 63 µg/L vs. 50 µg/L; selenium 12.8 µg/L vs. 10 µg/L), suggesting that the impact of this treatment on the shallow groundwater would be far less than the impact of persulfate with bicarbonate.

3.3 Total Oxidant Demand

The sulfate production for both test A and test B are shown in **Figure 3-7**; detailed results of these are in Appendix C. In test B, increased persulfate dosages resulted in higher sulfate concentrations, although the relationship was not linear. The sulfate results in test A do not follow this trend. Sulfate concentrations were highest in A2 (1 percent persulfate with bicarbonate), while the higher persulfate dosages did not generally produce any more sulfate than the control. However, the VOC-removal data indicate that oxidation was occurring in conditions A3 and A4. This suggests an interference to the sulfate assay at the higher dosages of persulfate with bicarbonate. None of the known interfering substances were present in the samples at concentrations of concern, but other interferences may exist. Because of the destructive nature of the analyses, re-analysis of the samples to identify or avoid the interference was not possible.

TOD values calculated from sulfate production in test B ranged from 1.2 to 6.8 g/kg; these values are shown in **Table 3-1**. The oxidant demand increased with increasing persulfate dosages, indicating that the measured oxidant demand is dependent on the dose applied, which is consistent with observations reported by Huling and Pivetz (2006). Also, the sulfate concentration was still increasing at the completion of the test period, suggesting that the calculated TOD would be higher with a longer period of observation.

Condition	Soil	Total Water	Control Sulfate	Final Sulfate	Oxidant	Total
	Mass (g)	Volume	Concentration	Concentration	Consumed	Oxidant
		(mL)	(mg/L)	(mg/L)	(mg/L)	Demand
						(g/kg)
B1 (1%)	60	300	40	280	240	1.2
B2 (5%)	60	300	40	750	710	3.5
B3 (10%)	60	300	40	1400	1360	6.8

Table 3-1 Total Oxidant Demand for Persulfate Activated with Hydroxide

Notes: Total oxidant demand (in g/kg) is equal to the oxidant consumed (in mg/L), times the total water volume (in L), divided by the sum of the soil mass (in g) and the water volume (in mL; assumes a density of 1g/mL).

g – gram

mL - milliliter

mg/L – milligrams per liter

g/kg – grams per kilogram

Figure 3-4 Final Concentrations of Hexavalent Chromium, Bromate, and Dissolved Metals in Persulfate + Bicarbonate Treatments

Notes:

The method detection limit (MDL) and method reporting limit (MRL) were higher in A4 than A1 because dilution was necessary for analysis of A4.

Lighter color indicates the MDL in non-detect samples.

An asterisk indicates an estimated value between the MDL and MRL.

Figure 3-5 pH in Persulfate + Hydroxide Treatments

Notes:

Lighter color indicates the method detection limit (MDL) in non-detect samples. An asterisk indicates an estimated value between the MDL and method reporting limit (MRL).

Figure 3-7 Sulfate Concentrations in Test A (Persulfate + Bicarbonate) and Test B (Persulfate + Hydroxide)

THIS PAGE INTENTIONALLY LEFT BLANK

Section 4 Conclusions and Discussion

4.1 Conclusions

The results from this treatability study suggest the following conclusions:

- Both unactivated persulfate buffered with bicarbonate and persulfate activated with hydroxide were capable of substantially oxidizing TCE, *cis*-1,2-DCE, and VC when applied at 5 percent and 10 percent dosages.
- For both unactivated and activated persulfate, the 10 percent dosage was more effective than the 5 percent. Unactivated persulfate had little or no effect at a 1 percent dosage, while activated persulfate was somewhat effective at this dosage.
- For each of the dosages tested, hydroxide-activated persulfate provided better removal of VOCs than unactivated persulfate.
- The bicarbonate dosage rates chosen were sufficient to maintain a slightly alkaline pH. However, substantial increases in the dissolved metals concentrations occurred and bromate reached a concentration of 43 milligrams per liter (mg/L) with the 10 percent dosage.
- Activated persulfate dosed at 10 percent had much less impact on dissolved metals concentrations than did unactivated persulfate, and it did not lead to measurable increases in the hexavalent chromium or bromate concentrations.
- Activated persulfate did cause an immediate increase in the pH to 10.5, but this impact diminished over time.
- The calculated TOD values for activated persulfate indicate a dependence of TOD on the oxidant dosage applied. The TOD could not be calculated for unactivated persulfate, due to presumed analytical interference.

4.2 Discussion of Findings

The performance of activated persulfate was superior to unactivated persulfate in this study for two reasons:

- 1. For each dosage tested, the activated persulfate more effectively oxidized the VOCs.
- 2. At the highest dosage, the unactivated persulfate resulted in high concentrations of the byproduct bromate, whereas activated persulfate did not.

For activated persulfate, a 1 percent dosage provided some removal of the VOCs, but less than 60 percent of the high-concentration TCE and *cis*-1,2-DCE. The 10 percent dosage provided 90 – 99 percent removal of the four VOCs tested, and initial removal rates were faster than in the 5 percent dosage. However, the VOC removal in the 5 percent dosage approached that of the 10 percent dosage by the end of the test, ranging from 85 to 98 percent. Furthermore, it appears that removal was still occurring at that time for both TCE and *cis*-1,2-DCE. Thus it appears that a dosage of activated persulfate of approximately 5 percent will provide the optimum balance between effective VOC removal and cost, without the formation of undesirable oxidized byproducts.

The applicability of ISCO via alkaline-activated persulfate at the Site depends on the treatment goals. The bench-scale results demonstrate that substantial mass removal can be achieved with this technology under the ideal mixing conditions of the laboratory; however, even in those conditions, final VOC concentrations were above federal drinking water standards. This suggests that in a field application at a heterogeneous site where significant VOC mass is likely to be located in low permeability soil lenses, treatment to drinking water standards would not be possible even with multiple oxidant applications. If, on the other hand, the treatment goal were to achieve a specified mass removal in a specific area, this technology appears promising.

Section 5 References

Huling, S. G., and Pivetz, B. Z, 2006. *In-Stu Chemical Oxidation*. United States Environmental Protection Agency (EPA). Engineering Issue. EPA 600-R-06-072, 2006.

Interstate Technology & Regulatory Council. 2005. *Technical and Regulatory Guidance for In Situ Chemical Oxidation of Contaminated Soil and Groundwater*. Second Edition. January 2005.

THIS PAGE INTENTIONALLY LEFT BLANK

Appendix A

Appendix A: Summary of VOC Results

		Persulfate	Time			cis-1,2-DCE	
Test	Condition	Concentration	(hours)	PCE (ug/L)	TCE (ug/L)	(ug/L)	VC (ug/L)
			3.28	78	54,691	9,807	2,049
			16.08	40	45,512	6,975	952
Ð	A1	0	28.10	34	37,976	6,775	664
at			44.48	29	40,896	6,968	610
Ŭ			53.03	25	37,808	6,440	628
0			2.65	61	49,364	8,064	1,485
- d			15.45	45	46,267	7,428	935
al	A2	0.01	27.47	34	36,206	5,998	586
ic.			43.85	33	37,688	6,408	493
В			52.4	29	36,002	6,076	392
+			2.13	70	51,097	7,995	1,615
Ð			14.93	40	40,936	5,840	808
аţ	A3	0.05	26.95	30	26,115	4,410	330
lf 2			43.33	19	16,655	3,603	140
n			51.88	17	14,896	3,265	119
S			1.68	78	53,128	9,565	1,647
ē			14.48	43	34,184	5,109	464
	A4	0.1	26.5	36	20,660	3,937	157
LE A4		42.88	19	10,877	2,696	36	
			51.43	16	8,955	2,125	46
			5.62	67	50,881	8,853	1,868
			18.42	38	44,199	7,138	970
	B1	0	30.43	32	38,632	6,961	693
de l			46.82	29	39,488	7,178	633
ci c			55.38	24	37,412	6,903	602
Ô			5.05	70	49,665	8,774	1,834
Ľ			17.85	37	37,136	6,122	729
p	B2	0.01	29.87	27	28,573	4,870	425
Í			46.25	25	27,995	4,529	322
			54.82	21	25,094	3,857	323
			4.53	66	48,451	8,417	1,568
te			17.33	29	27,357	3,911	334
<u>a</u>	B3	0.05	29.35	19	15,333	1,929	112
H			45.73	13	7,601	833	25
SL			54.3	10	5,467	513	39
S			4.02	58	45,917	7,064	1,363
۲ ۲			16.82	32	20,270	2,487	183
	B4	0.1	28.83	19	7,671	882	40
			45.22	9	1,964	177	8
			53.78	7	2,010	159	13

Appendix B

	Persulfa	te +	Bicarbonat	е	Persulf	ate -	+ Hydroxide	;
	A1		A4		B1		B2	
Analyte	ug/L		ug/L		ug/L		ug/L	
Chromium VI	0.4	J	0.3	U	0.4	J	0.3	U
Bromate	100	iU	42800		100	iU	100	iU
Aluminum	14.6		325		16.5		45.5	
Antimony	3	U	15	iU	3	U	3	U
Arsenic	4	U	72		4	U	4.3	J
Barium	209		1460		183		329	
Beryllium	0.09	U	0.45	iU	0.09	U	0.09	U
Cadmium	0.3	U	1.5	iU	0.3	U	0.3	U
Calcium	143000		16800		141000		191000	
Chromium	0.6	U	65		0.6	U	62.6	
Cobalt	1.3		15		1.3		2	
Copper	3.1		102		4		1	J
Iron	7.8	J	3330		5	J	11.8	
Lead	4	U	20	iU	4	U	4	U
Magnesium	17100		28500		16200		21500	
Manganese	390		19		405		0.2	J
Mercury	0.02	U	0.02	iU	0.02	U	0.02	U
Nickel	19.6		11		21.3		2.6	
Potassium	10800		56600		10700		50700	
Selenium	5	U	25	iU	5	U	12.8	J
Silver	0.7	U	3.5	iU	0.7	U	0.7	U
Sodium	142000		37100000		148000		22200000	
Thallium	2	U	10	iU	2	U	2	U
Vanadium	2.5		85		3.3		1.6	J
Zinc	7.2		35		4		9.1	

Appendix B: Summary of Metals and Bromate Results

Flags:

J The result is an estimated value

U Non-detect at or above the MRL/MDL

i

The MRL/MDL is elevated due to a matrix interference or necessary sample dilution.

Note: All samples taken at end of experimental period

LABORATORY REPORT

November 16, 2011

Diane Nelson Camp Dresser & McKee, Incorporated (CDM) 14432 SE Eastgate Way, Suite 100 Bellevue, WA 98007

RE: Olean / 88146.TSK2.Bench

Dear Diane:

Enclosed are the results of the samples submitted to our laboratory on November 11, 2011. For your reference, these analyses have been assigned our service request number P1104402.

All analyses were performed according to our laboratory's NELAP and DoD-ELAP-approved quality assurance program. The test results meet requirements of the current NELAP and DoD-ELAP standards, where applicable, and except as noted in the laboratory case narrative provided. For a specific list of NELAP and DoD-ELAP-accredited analytes, refer to the certifications section at www.caslab.com. Results are intended to be considered in their entirety and apply only to the samples analyzed and reported herein.

Columbia Analytical Services, Inc. is certified by the California Department of Health Services, NELAP Laboratory Certificate No. 02115CA; Arizona Department of Health Services, Certificate No. AZ0694; Florida Department of Health, NELAP Certification E871020; New Jersey Department of Environmental Protection, NELAP Laboratory Certification ID #CA009; New York State Department of Health, NELAP NY Lab ID No: 11221; Oregon Environmental Laboratory Accreditation Program, NELAP ID: CA20007; The American Industrial Hygiene Association, Laboratory #101661; United States Department of Defense Environmental Laboratory Accreditation Program (DoD-ELAP), Certificate No. L10-3-R2; Pennsylvania Registration No. 68-03307; TX Commission of Environmental Quality, NELAP ID T104704413-11-2; Minnesota Department of Health, NELAP Certifications listed above have an explicit Scope of Accreditation that applies to specific matrices/methods/analytes; therefore, please contact me for information corresponding to a particular certification.

If you have any questions, please call me at (805) 526-7161.

Respectfully submitted,

Columbia Analytical Services, Inc.

ne Juderta

Sue Anderson Project Manager

Client:Camp Dresser & McKee, Incorporated (CDM)CAS Project No:P1104402Project:Olean / 88146.TSK2.Bench

CASE NARRATIVE

The samples were received intact under chain of custody on November 11, 2011 and were stored in accordance with the analytical method requirements. Please refer to the sample acceptance check form for additional information. The results reported herein are applicable only to the condition of the samples at the time of sample receipt.

Hexavalent Chromium Analysis

The samples were analyzed for hexavalent chromium in accordance with EPA Method 7199 and analyzed by Ion Chromatography.

Due to limited sample volume submitted the samples were diluted prior to analysis; therefore, the reporting limits have been elevated accordingly.

The results of analyses are given in the attached laboratory report. All results are intended to be considered in their entirety, and Columbia Analytical Services, Inc. (CAS) is not responsible for utilization of less than the complete report.

Use of Columbia Analytical Services, Inc. (CAS) Name. Client shall not use CAS's name or trademark in any marketing or reporting materials, press releases or in any other manner ("Materials") whatsoever and shall not attribute to CAS any test result, tolerance or specification derived from CAS's data ("Attribution") without CAS's prior written consent, which may be withheld by CAS for any reason in its sole discretion. To request CAS's consent, Client shall provide copies of the proposed Materials or Attribution and describe in writing Client's proposed use of such Materials or Attribution. If CAS has not provided written approval of the Materials or Attribution within ten (10) days of receipt from Client, Client's request to use CAS's name or trademark in any Materials or Attribution shall be deemed denied. CAS may, in its discretion, reasonably charge Client for its time in reviewing Materials or Attribution requests. Client acknowledges and agrees that the unauthorized use of CAS's name or trademark may cause CAS to incur irreparable harm for which the recovery of money damages will be inadequate. Accordingly, Client acknowledges and agrees that a violation shall justify preliminary injunctive relief. For questions contact the laboratory.

B4

....

P1104402-004 Water 11/10/2011

X

			DE	ETAIL SUM	MARY REPORT		
Client:	Camp Dresser &	z McKee,	Incorporated	d (CDM)	Se	rvice Request: P1104402	
Project ID:	Olean / 88146.T	SK2.Bend	ch				
Date Received:	11/11/2011						
Time Received:	08:00						
						9	
						O I	
			Date	Time		66	
Client Sample ID	Lab Code	Matrix	Collected	Collected		71	
A1	P1104402-001	Water	11/10/2011	15:33		Х	
B1	P1104402-002	Water	11/10/2011	15:15		Х	
A4	P1104402-003	Water	11/10/2011	15:30		Х	

15:22

Analytical Services	N.	Þ	ir - Chain	of Custody I	Record & An	alytical Ser	vice Requ	est	-	^o age	of
2655 Park Center Drive, Suite A Simi Vallev. California 93065											
Phone (805) 526-7161 Fax (805) 526-7270			Become and a second s	Requested Turnaro 1 Day (100%) 2 Day	und Time in Busin / (75%) 3 Day (50%	ess Days (Surch 5) 4 Day (35%) 5	arges) please c Day (25%) 10 [i rcle Day-Standar		CAS Project	04402
Company Name & Address (Reporting	Information)			Project Name							
14432 SE Enstgate	Way St	e 100		Proiect Number	NN.	Jan			Anaiysis	Methoa	
Bellevie WA 980	700			88	146. TSK2.	Bench			*********		
Project Manager Lyans				P.O. # / Billing Inform	nation	DAN			N SOLUTION CONTRACTOR		Comments
Phone 425-519-8300	Fax										e.g. Actual Preservative or
Email Address for Result Reporting	NOV.			Sampler (Print & Sign)	Ser Du		le la		199		
Client Sample ID	Laboratory ID Number	Date Collected	Time Collected	Canister ID (Bar code # - AC, SC, etc.)	Flow Controller ID (Bar code #- FC #)	Canister Start Pressure "Hg	Canister End Pressure "Hg/psig	Sample Volume	と立		
A)	NIA	11/0/11	1232					10ml	X,		filtered/
R)			1515						\times		not buffered
AY			1530						$\left \times\right $		an and a second s
BY	Ł	¢	1522					<	\times		¢
							-				
Report Tier Levels - please select Tier I - Results (Default if not specified)			Tier III (Result	s + QC & Calibration Su	immaries)			EDD requir	ed (Yes / 1	20	Project Requirements
Tier II (Results + QC Summaries)			Tier IV (Data \	ralidation Package) 10%	Surcharge			Type:			(MIRLS, WAPP)
Relinquished by: (Signature)			Date: ////0/11	Time: /5:97	Received by: (Signa	Marin 1	wun		Mullu	Time:	bertre
Relinquished by: (Signature)			Date:	Time:	Received by: (Signa	ture)			Jate:	Lime;	

4 of 7

Sample Acceptance Check Form

Client:	Camp Dresser	t & McKee, Incorpora	ted (CDM)		01001201202	Work order: P	1104402	21.227		
Project:	: Olean / 88146).TSK2.Bench			·	-				
Sample((s) received on:	11/11/11		- J	Date opened:	11/11/11	by:	MZAN	10RA	
Note: This	form is used for <u>all</u>	samples received by CAS.	Γhe use of this for	rm for custody sea	.ls is strictly mear	nt to indicate presence/ab	sence and not a	as an indic	ation of	
compliance	or nonconformity.	Thermal preservation and p	H will only be eva	aluated either at th	ie request of the c	client and/or as required t	by the method/s	SOP. Yes	No	N/A
1	Were sample	containers properly r	narked with c!	lient sample II)?			X		
2	Container(s) s	supplied by CAS?		1	•			X		
3	Did sample c	ontainers arrive in go	od condition?					X		
4	Were chain-o	f-custody papers used	and filled out	t?				X		
5	Did sample ce	ontainer labels and/o	r tags agree w	ith custody par	pers?			X		
6	Was sample v	volume received adequ	late for analys	sis?				X		
7	Are samples v	within specified holdir	ig times?					X		
8	Was proper te	emperature (thermal J	preservation) (of cooler at rec	eipt adhered	to?		X		
	Cooler Terr	nperature: °C Blan	k Temperature	e: 5° C		Gel Pack	۸S			
9	Was a trip bl a	ank received?								X
10	Were custody	seals on outside of co	ooler/Box?					X		
		Location of seal(s)?	Top of cooler	t, down the fro	nt.	Se	ealing Lid?	X		
	Were signatur	e and date included?						X		
	Were seals int	tact?						X		
	Were custody	seals on outside of sa	mple containe	r?					X	
		Location of seal(s)?	-			S	ealing Lid?			X
	Were signatur	e and date included?								X
	Were seals int	tact?								X
11	Do container	rs have appropriate pr	ceservation, a	ccording to me	ethod/SOP or	Client specified inf	ormation?	X		
	Is there a clie	nt indication that the s	submitted sam	ples are pH p	preserved?	-				X
	Were <u>VOA v</u>	/ials checked for prese	nce/absence o	of air bubbles?						X
	Does the clier	nt/method/SOP require	e that the analy	vst check the s	ample pH and	d if n <u>ecessary</u> alter i	it?			X
12	Tubes:	Are the tubes cap	ped and intact	ι?	* *					X
		Do they contain r	noisture?							X
13	Badges:	Are the badges p	roperly cappe	d and intact?						X
		Are dual bed bad	ges separated :	and individual	ly capped and	1 intact?				X
Lab	Sample ID	Container	Required	Received	Adjusted	VOA Headspace	Receiv	nt / Pres	ervatior	
	Sum P	Description	pH *	pH	pH	(Presence/Absence)		Comme	nts	
P110440	2-001.01	125mL Plastic NP								
P110440	2-002.01	125mL Plastic NP	[]		<u> </u>					
P110440	2-003.01	125mL Plastic NP	1 '	1	1 '					ļ

Each bottle contains very limited sample volume.

Explain any discrepancies: (include lab sample ID numbers):

125mL Plastic NP

RSK - MEEPP, HCL (pH<2); RSK - CO2, (pH 5-8); Sulfur (pH>4)

P1104402-004.01

P1104402 Cam	n Dresser McKee	Incornorated (C	DM) Olean	88146 TSK2 Bench vls -	Page 1 of 1
1 1104402_Cum	p Diesser menee,	meorporated (C.		00140.10It2.Denen.Als	1 age 1 of 1

COLUMBIA ANALYTICAL SERVICES, INC.

Analytical Report

Client :Camp Dresser & McKee, Incorporated (CDM)Service ReProject Name :OleanDate CollProject Number :88146.TSK2.BenchDate RecSample Matrix :WATERDate Rec

Chromium, Hexavalent

Prep Method : None Analysis Method : 7199 Test Notes : Service Request : P1104402 Date Collected : 11/10/11 Date Received : 11/11/11

> Units : ug/L (ppb) Basis : NA

				Dilution	Date	Date/Time		Result
Sample Name	Lab Code	PQL	MDL	Factor	Extracted	Analyzed	Result	Notes
A1	P1104402-001	1.0	0.3	10	NA	11/11/11 13:50	0.4	J
B1	P1104402-002	1.0	0.3	10	NA	11/11/11 14:03	0.4	J
A4	P1104402-003	1.0	0.3	10	NA	11/11/11 14:17	ND	
B4	P1104402-004	1.0	0.3	10	NA	11/11/11 14:30	ND	
Method Blank	P1104402-MB	0.10	0.03	1	NA	11/11/11 12:57	ND	

J

Estimated concentration. The result is less than the PQL but greater than the MDL.

Approved By	have	RMA	Date :	11/15/11	

COLUMBIA ANALYTICAL SERVICES, INC.

QA/QC Report

Client :	Camp Dresser & McKee, Incorporated (CDM)
Project Name :	Olean
LCS Matrix :	WATER

Service Request : P1104402 Date Collected : NA Date Received : NA Date Extracted : NA Date Analyzed : 11/11/11

Laboratory Control Sample/Duplicate Laboratory Control Sample Summary Inorganic Parameters

Sample Name :	Duplicate Laboratory Contro	ol Sample		
Lab Code :	P1104402-LCS	P1104402-DLCS	Basis :	NA

		Analysis	True	Value	Re	sult			CAS Accentance	Relative Percent	Dogult
Analyte	Units	Method	LCS	DLCS	LCS	DLCS	LCS	DLCS	Limits	Difference	Notes
Chromium, Hexavalent	ug/L (ppb)	7199	2.00	2.00	2.01	2.01	101	101	90-110	<1	

Approved By	Kauc	Run	Date :	11/15/11	
		0			

December 22, 2011

Analytical Report for Service Request No: K1111126 Revised Service Request No: K1111126.01

Diane Nelsen CDM 14432 SE Eastgate Way Suite 100 Poulsbo, WA 98370

RE: Olean/88146.TSK2.Bench

Dear Diane:

Enclosed are the revised report pages for the samples submitted to our laboratory on November 15, 2011. For your reference, these analyses have been assigned our service request number K1111126.

The Metals report has been revised to the MDL per your request.

Analyses were performed according to our laboratory's NELAP-approved quality assurance program. The test results meet requirements of the current NELAP standards, where applicable, and except as noted in the laboratory case narrative provided. For a specific list of NELAP-accredited analytes, refer to the certifications section at www.caslab.com. All results are intended to be considered in their entirety, and Columbia Analytical Services, Inc. (CAS) is not responsible for use of less than the complete report. Results apply only to the items submitted to the laboratory for analysis and individual items (samples) analyzed, as listed in the report.

Please call if you have any questions. My extension is 3275. You may also contact me via Email at CLeaf@caslab.com.

Respectfully submitted,

Columbia Analytical Services, Inc.

Chris L'eaf Project Chemist

CL/lb

Page 1 of 3

Relinquished By: Rev Signature Multicle Manuelle Manuel	Report Requirements Invoice Information I. Routine Report. Method P.O.#_20////00/// Blank, Surrogate, as required P.O.#_20////00/// X. II. Report Dup., MS, MSD as required 111 To: COM_AHA_K obe_ III. Report Dup., MS, MSD as required 111/20////20/// III. Report Dup., MS, MSD as required 111/20///20///20///20/// III. Data Validation Report (includes all raw data) 111/20//24 hr. V. CLP Deliverable Report 24 hr. V. EDD X. V. EDD	Project Manager Company Name Company Adress Refer to the strength of the stren	Froject Number Of 11/1 TC//7 Rp. 4
ceived By: q 20 Relinquished By: 11115111 G 20 Date/Time Date/Time Signature Date/Time Firm Frinted Name Firm	Circle which meta Total Metals: Al As Sb Ba Be B Ca Cd Co Cr Cu F Dissolved Metals: Al As Sb Ba Be B Ca Cd Co Cr Cu F Special Instructions/Comments: "Indicate State Hydrocarbon Sample Shipment contains USDA regulated soil samples (check box if	Image: Second state	AIN OF CUSTODY
le Signature Date/Time Printed Name Firm	s <u>are to be analyzed</u> e Pb Mg Mn Mo Ni K Ag Na Se Sr Ti Sn V Zn Hg 珍 函 Mb Mo 低 农 Ag Mg Sg Sr ① Sn ⑦ ⑦ 伊 Procedure: AK CA WI Northwest Other(Circle One) applicable)		SR# coc setof Page 1 OF 1 COC#

Columbia Analytical Services, Inc. Cooler Receipt and Preservation Form	PC_	Ü	_
Client / Project: <u>CDM</u> Service Request K11	-4		<u></u>
Received: 1115/11 Opened: 1115/11 By: BT Unloaded: 1115/11	By:	B	٢
1. Samples were received via? Mail Fed Ex UPS DHL PDX Courier Hand Deliver	ed		
2. Samples were received in: (circle) Cooler Box Envelope Other		NA	
3. Were <u>custody seals</u> on coolers? NA \bigotimes N If yes, how many and where? <u>1</u> + <u>1</u>	B		
If present, were custody seals intact? \bigvee N If present, were they signed and dated?	.7	(\mathfrak{Y})	N
Cooler Temp Thermometer Cooler/COC		ΝΔ	Filed
2.6 4.5 318			
	wa 70000 a a la a a a a a a a a a a a a a a		
7. Packing material used. Inserts Baggies Bubble Wrap Gel Packs Wet Ice Sleeves Other			J
8. Were custody papers properly filled out (ink, signed, etc.)?	NA	(Ŷ)	N
9. Did all bottles arrive in good condition (unbroken)? Indicate in the table below.	NA	$\widecheck{\otimes}$	N
10. Were all sample labels complete (i.e analysis, preservation, etc.)?	NA	\mathfrak{D}	N
11. Did all sample labels and tags agree with custody papers? Indicate major discrepancies in the table on page 2.	NA	Ð	N
12. Were appropriate bottles/containers and volumes received for the tests indicated?	NA	Ŷ	N
13. Were the pH-preserved bottles (see SMO GEN SOP) received at the appropriate pH? Indicate in the table below	NA	Y	\odot
14. Were VOA vials received without headspace? Indicate in the table below.	NA	Y	N
15. Was C12/Res negative?	NA)	Y	N
Sample ID on Bottle Sample ID on COC Identified b	ıy:		
Bottle Count Out of Head-	Lot		
Sample ID Bottle Type Temp space Broke pH Reagent added Number	er In	itials	Time

.5mL	RE1-18-0	BT	12:20
		ł	

.

З

- 1 -INORGANIC ANALYSIS DATA PACKAGE

Client:	CDM Federal Programs Corporation	Service Request:	K1111126
Project No.:	88146.TSK2.Bench	Date Collected:	11/10/11
Project Name:	Olean	Date Received:	11/15/11
Matrix:	WATER	Units:	ug/L
		Basis:	NA

Sample Name: A1

Lab Code:

K1111126-001DISS

Analyte	Analysis Method	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Result	с	Q
Aluminum	6010B	2.00	0.50	1.0	11/21/11	12/01/11	14.6		x
Antimony	6010B	10.0	3.0	1.0	11/21/11	11/30/11	3.0	U	
Arsenic	6010B	10.0	4.0	1.0	11/21/11	11/30/11	4.0	U	
Barium	6010B	2.0	0.4	1.0	11/21/11	11/30/11	209		
Beryllium	6010B	0.20	0.09	1.0	11/21/11	11/30/11	0.09	U	
Cadmium	6010B	0.5	0.3	1.0	11/21/11	11/30/11	0.3	U	
Calcium	6010B	50.0	6.0	1.0	11/21/11	11/30/11	143000		
Chromium	6010B	2.0	0.6	1.0	11/21/11	11/30/11	0.6	U	
Cobalt	6010B	1.0	0.4	1.0	11/21/11	11/30/11	1.3		
Copper	6010B	2.0	0.8	1.0	11/21/11	11/30/11	3.1		
Iron	6010B	10.0	3.0	1.0	11/21/11	12/01/11	7.8	J	
Lead	6010B	10.0	4.0	1.0	11/21/11	11/30/11	4.0	U	
Magnesium	6010B	20.0	2.0	1.0	11/21/11	11/30/11	17100		
Manganese	6010B	0.6	0.2	1.0	11/21/11	11/30/11	390		
Mercury	7470A	0.20	0.02	1.0	11/16/11	11/17/11	0.02	U	
Nickel	6010B	2.0	0.7	1.0	11/21/11	11/30/11	19.6		
Potassium	6010B	100	50.0	1.0	11/21/11	11/30/11	10800		
Selenium	6010B	20.0	5.0	1.0	11/21/11	11/30/11	5.0	U	
Silver	6010B	2.0	0.7	1.0	11/21/11	11/30/11	0.7	U	
Sodium	6010B	200	20.0	1.0	11/21/11	11/30/11	142000		
Thallium	6010B	10.0	2.0	1.0	11/21/11	11/30/11	2.0	U	
Vanadium	6010B	2.0	1.0	1.0	11/21/11	11/30/11	2.5		
Zinc	6010B	2.00	0.70	1.0	11/21/11	11/30/11	7.20		

đ

- 1 -INORGANIC ANALYSIS DATA PACKAGE

Client:	CDM Federal Programs Corporation	Service Request:	K1111126
Project No.:	88146.TSK2.Bench	Date Collected:	11/10/11
Project Name:	Olean	Date Received:	11/15/11
Matrix:	WATER	Units:	ug/L
		Basis:	NA

Sample Name: B1

Lab Code: K1111126-002DISS

Analyte	Analysis Method	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Result	С	Q
Aluminum	6010B	2.00	0.50	1.0	11/21/11	12/01/11	16.5		x
Antimony	6010B	10.0	3.0	1.0	11/21/11	11/30/11	3.0	U	
Arsenic	6010B	10.0	4.0	1.0	11/21/11	11/30/11	4.0	U	
Barium	6010B	2.0	0.4	1.0	11/21/11	11/30/11	183		
Beryllium	6010B	0.20	0.09	1.0	11/21/11	11/30/11	0.09	U	
Cadmium	6010B	0.5	0.3	1.0	11/21/11	11/30/11	0.3	U	
Calcium	6010B	50.0	6.0	1.0	11/21/11	11/30/11	141000		
Chromium	6010B	2.0	0.6	1.0	11/21/11	11/30/11	0.6	U	
Cobalt	6010B	1.0	0.4	1.0	11/21/11	11/30/11	1.3		
Copper	6010B	2.0	0.8	1.0	11/21/11	11/30/11	4.0		
Iron	6010B	10.0	3.0	1.0	11/21/11	12/01/11	5.0	J	
Lead	6010B	10.0	4.0	1.0	11/21/11	11/30/11	4.0	U	
Magnesium	6010B	20.0	2.0	1.0	11/21/11	11/30/11	16200		
Manganese	6010B	0.6	0.2	1.0	11/21/11	11/30/11	405		
Mercury	7470A	0.20	0.02	1.0	11/16/11	11/17/11	0.02	υ	
Nickel	6010B	2.0	0.7	1.0	11/21/11	11/30/11	21.3		
Potassium	6010B	100	50.0	1.0	11/21/11	11/30/11	10700		
Selenium	6010B	20.0	5.0	1.0	11/21/11	11/30/11	5.0	υ	
Silver	6010B	2.0	0.7	1.0	11/21/11	11/30/11	0.7	U	
Sodium	6010B	200	20.0	1.0	11/21/11	11/30/11	148000		
Thallium	6010B	10.0	2.0	1.0	11/21/11	11/30/11	2.0	U	
Vanadium	6010B	2.0	1.0	1.0	11/21/11	11/30/11	3.3		
Zinc	6010B	2.00	0.70	1.0	11/21/11	11/30/11	4.00		

- 1 -

INORGANIC ANALYSIS DATA PACKAGE

Client:	CDM Federal Programs Corporation	Service Request:	K1111126
Project No.:	88146.TSK2.Bench	Date Collected:	11/10/11
Project Name:	Olean	Date Received:	11/15/11
Matrix:	WATER	Units:	ug/L
		Basis:	NA

Sample Name:

A4

Lab Code: K1111126-003DISS

đ

Analyte	Analysis Method	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Result	С	Q
Aluminum	6010B	8.96	2.24	1.0	11/21/11	12/01/11	325		
Antimony	6010B	50.0	15.0	1.0	11/21/11	11/30/11	15.0	U	
Arsenic	6010B	50.0	20.0	1.0	11/21/11	11/30/11	72.0		
Barium	6010B	10.0	2.0	1.0	11/21/11	11/30/11	1460		
Beryllium	6010B	1.00	0.45	1.0	11/21/11	11/30/11	0.45	U	
Cadmium	6010B	2.5	1.5	1.0	11/21/11	11/30/11	1.5	U	
Calcium	6010B	250	30.0	1.0	11/21/11	11/30/11	16800		
Chromium	6010B	10.0	3.0	1.0	11/21/11	11/30/11	65.0		
Cobalt	6010B	5.0	2.0	1.0	11/21/11	11/30/11	15.0		
Copper	6010B	10.0	4.0	1.0	11/21/11	11/30/11	102		
Iron	6010B	44.8	13.4	1.0	11/21/11	12/01/11	3330		
Lead	6010B	50.0	20.0	1.0	11/21/11	11/30/11	20.0	U	
Magnesium	6010B	100	10.0	1.0	11/21/11	11/30/11	28500		
Manganese	6010B	3.0	1.0	1.0	11/21/11	11/30/11	19.0		
Mercury	7470A	0.20	0.02	1.0	11/16/11	11/17/11	0.02	U	
Nickel	6010B	10.0	3.5	1.0	11/21/11	11/30/11	11.0		
Potassium	6010B	500	250	1.0	11/21/11	11/30/11	56600		
Selenium	6010B	100	25.0	1.0	11/21/11	11/30/11	25.0	U	
Silver	6010B	10.0	3.5	1.0	11/21/11	11/30/11	3.5	U	
Sodium	6010B	100000	10000	100.0	11/21/11	11/30/11	37100000		
Thallium	6010B	50.0	10.0	1.0	11/21/11	11/30/11	10.0	U	
Vanadium	6010B	10.0	5.0	1.0	11/21/11	11/30/11	85.0		
Zinc	6010B	10.0	3.50	1.0	11/21/11	11/30/11	35.0		

- 1 -

INORGANIC ANALYSIS DATA PACKAGE

Client:	CDM Federal Programs Corporation	Service Request:	K1111126
Project No.:	88146.TSK2.Bench	Date Collected:	11/10/11
Project Name:	Olean	Date Received:	11/15/11
Matrix:	WATER	Units:	ug/L
		Basis:	NA

Sample Name: B4

Lab Code: K1111126-004DISS

s,

	Analysis			Dilution	Date	Date			
Analyte	Method	MRL	MDL	Factor	Extracted	Analyzed	Result	С	Q
Aluminum	6010B	2.00	0.50	1.0	11/21/11	12/01/11	45.5		х
Antimony	6010B	10.0	3.0	1.0	11/21/11	11/30/11	3.0	U	
Arsenic	6010B	10.0	4.0	1.0	11/21/11	11/30/11	4.3	J	
Barium	6010B	2.0	0.4	1.0	11/21/11	11/30/11	329		
Beryllium	6010B	0.20	0.09	1.0	11/21/11	11/30/11	0.09	U	
Cadmium	6010B	0.5	0.3	1.0	11/21/11	11/30/11	0.3	υ	
Calcium	6010B	50.0	6.0	1.0	11/21/11	11/30/11	191000		
Chromium	6010B	2.0	0.6	1.0	11/21/11	11/30/11	62.6		
Cobalt	6010B	1.0	0.4	1.0	11/21/11	11/30/11	2.0		
Copper	6010B	2.0	0.8	1.0	11/21/11	11/30/11	1.0	J	
Iron	6010B	10.0	3.0	1.0	11/21/11	12/01/11	11.8		
Lead	6010B	10.0	4.0	1.0	11/21/11	11/30/11	4.0	υ	
Magnesium	6010B	20.0	2.0	1.0	11/21/11	11/30/11	21500		
Manganese	6010B	0.6	0.2	1.0	11/21/11	11/30/11	0.2	J	
Mercury	7470A	0.20	0.02	1.0	11/16/11	11/17/11	0.02	U	
Nickel	6010B	2.0	0.7	1.0	11/21/11	11/30/11	2.6		
Potassium	6010B	100	50.0	1.0	11/21/11	11/30/11	50700		
Selenium	6010B	20.0	5.0	1.0	11/21/11	11/30/11	12.8	J	
Silver	6010B	2.0	0.7	1.0	11/21/11	11/30/11	0.7	υ	
Sodium	6010B	20000	2000	100.0	11/21/11	11/30/11	22200000		
Thallium	6010B	10.0	2.0	1.0	11/21/11	11/30/11	2.0	U	
Vanadium	6010B	2.0	1.0	1.0	11/21/11	11/30/11	1.6	J	
Zinc	6010B	2.00	0.70	1.0	11/21/11	11/30/11	9.10		

- 1 -INORGANIC ANALYSIS DATA PACKAGE

Client:	CDM Federal Programs Corporation	Service Request:	K1111126
Project No.:	88146.TSK2.Bench	Date Collected:	
Project Name:	Olean	Date Received:	
Matrix:	WATER	Units:	ug/L
		Basis:	NA

Sample Name: Method

Method Blank 1

K1111126-MB1

Lab Code:

- Annalasta	Analysis	MDI	MDI	Dilution	Date	Date	Posult	C	0
Analyte	Methoa	MRL		Factor	Exclacted	Anaryzed	Result		
Aluminum	6010B	2.00	0.50	1.0	11/21/11	12/01/11	3.70		
Antimony	6010B	10.0	3.0	1.0	11/21/11	11/30/11	3.0	U	
Arsenic	6010B	10.0	4.0	1.0	11/21/11	11/30/11	4.0	U	
Barium	6010B	2.0	0.4	1.0	11/21/11	11/30/11	0.4	U	
Beryllium	6010B	0.20	0.09	1.0	11/21/11	11/30/11	0.09	U	
Cadmium	6010B	0.5	0.3	1.0	11/21/11	11/30/11	0.3	U	
Calcium	6010B	50.0	6.0	1.0	11/21/11	11/30/11	16.2	J	
Chromium	6010B	2.0	0.6	1.0	11/21/11	11/30/11	0.6	U	
Cobalt	6010B	1.0	0.4	1.0	11/21/11	11/30/11	0.4	U	
Copper	6010B	2.0	0.8	1.0	11/21/11	11/30/11	1.9	J	
Iron	6010B	10.0	3.0	1.0	11/21/11	12/01/11	3.0	U	
Lead	6010B	10.0	4.0	1.0	11/21/11	11/30/11	4.0	U	
Magnesium	6010B	20.0	2.0	1.0	11/21/11	11/30/11	2.5	J	
Manganese	6010B	0.6	0.2	1.0	11/21/11	11/30/11	0.2	U	
Mercury	7470A	0.20	0.02	1.0	11/16/11	11/17/11	0.02	U	
Nickel	6010B	2.0	0.7	1.0	11/21/11	11/30/11	0.7	U	
Potassium	6010B	100	50.0	1.0	11/21/11	11/30/11	50.0	U	
Selenium	6010B	20.0	5.0	1.0	11/21/11	11/30/11	5.0	U	
Silver	6010B	2.0	0.7	1.0	11/21/11	11/30/11	0.7	U	
Sodium	6010B	200	20.0	1.0	11/21/11	11/30/11	20.0	U	
Thallium	6010B	10.0	2.0	1.0	11/21/11	11/30/11	2.0	U	
Vanadium	6010B	2.0	1.0	1.0	11/21/11	11/30/11	1.0	U	
Zinc	6010B	2.00	0.70	1.0	11/21/11	11/30/11	0.70	U	

Comments:

¢

- 1 -**INORGANIC ANALYSIS DATA PACKAGE**

Client:	CDM Federal Programs Corporation	Service Request:	K1111126
Project No.:	88146.TSK2.Bench	Date Collected:	
Project Name:	Olean	Date Received:	
Matrix:	WATER	Units:	ug/L
		Basis:	NA

Sample Name: Method Blank 2

K1111126-MB2

Lab Code:

	Analysis			Dilution	Date	Date	D] +	C	
Analyte	Method	MRL	MDL	Factor	Extracted	Analyzed	Result	C	Ŷ
Aluminum	6010B	2.00	0.50	1.0	11/21/11	12/01/11	0.90	J	
Antimony	6010B	10.0	3.0	1.0	11/21/11	11/30/11	3.0	U	
Arsenic	6010B	10.0	4.0	1.0	11/21/11	11/30/11	4.0	U	
Barium	6010B	2.0	0.4	1.0	11/21/11	11/30/11	0.4	U	
Beryllium	6010B	0.20	0.09	1.0	11/21/11	11/30/11	0.09	U	
Cadmium	6010B	0.5	0.3	1.0	11/21/11	11/30/11	0.3	U	
Calcium	6010B	50.0	6.0	1.0	11/21/11	11/30/11	9.7	J	
Chromium	6010B	2.0	0.6	1.0	11/21/11	11/30/11	0.6	U	
Cobalt	6010B	1.0	0.4	1.0	11/21/11	11/30/11	0.4	U	
Copper	6010B	2.0	0.8	1.0	11/21/11	11/30/11	1.0	J	
Iron	6010B	10.0	3.0	1.0	11/21/11	12/01/11	3.0	U	
Lead	6010B	10.0	4.0	1.0	11/21/11	11/30/11	4.0	U	
Magnesium	6010B	20.0	2.0	1.0	11/21/11	11/30/11	2.0	J	
Manganese	6010B	0.6	0.2	1.0	11/21/11	11/30/11	0.2	U	
Nickel	6010B	2.0	0.7	1.0	11/21/11	11/30/11	0.7	U	
Potassium	6010B	100	50.0	1.0	11/21/11	11/30/11	50.5	J	
Selenium	6010B	20.0	5.0	1.0	11/21/11	11/30/11	5.0	U	
Silver	6010B	2.0	0.7	1.0	11/21/11	11/30/11	0.7	U	
Sodium	6010B	200	20.0	1.0	11/21/11	11/30/11	103	J	
Thallium	6010B	10.0	2.0	1.0	11/21/11	11/30/11	2.0	U	
Vanadium	6010B	2.0	1.0	1.0	11/21/11	11/30/11	1.0	U	
Zinc	6010B	2.00	0.70	1.0	11/21/11	11/30/11	0.70	U	

Metals - 5A -

SPIKE SAMPLE RECOVERY

Client:	CDM Federal Programs Corporation	Service Request:	K1111126
Project No.:	88146.TSK2.Bench	Units:	UG/L
Project Name:	Olean	Basis:	NA
Matrix:	WATER	<pre>% Solids:</pre>	0.0

Sample Name: A1S

Lab Code: K1111126-001DISSS

Analyte	Control Limit %R	Spike Result C	Sample Result C	Spike Added	%R	Q Method
Mercury	76 - 126	0.94	0.02 U	1.00	94.0	7470A

Metals - 5A -

SPIKE SAMPLE RECOVERY

Client:	CDM Federal Programs Corporation	Service Request:	K1111126
Project No.:	88146.TSK2.Bench	Units:	UG/L
Project Name:	Olean	Basis:	NA
Matrix:	WATER	<pre>% Solids:</pre>	0.0

Sample Name: Batch QC1S

Lab Code: K1111260-001S

Analyte	Control Limit %R	Spike Result	с	Sample Result	с	Spike Added	%R	Q	Method
Aluminum	79 - 125	2500		344		2000.00	107.8		6010B
Antimony	86 - 116	485		3.0	U	500.00	97.0		6010B
Arsenic	79 - 121	998		4.0	U	1000.00	99.8		6010B
Barium	80 - 124	2140		16.4		2000.00	106.2		6010B
Beryllium	87 - 114	49.7		0.09	υ	50.00	99.4		6010B
Cadmium	71 - 142	51.1		0.3	บ	50.00	102.2		6010B
Calcium	75 - 125	13100		2460		10000.00	106.4		6010B
Chromium	89 - 117	215		2.8		200.00	106.1		6010B
Cobalt	88 - 117	493		0.4	U	500.00	98.6		6010B
Copper	86 - 113	251		8.2		250.00	97.1		6010B
Iron	72 - 131	1760		642		1000.00	111.8		6010B
Lead	75 - 130	515		8.8	J	500.00	101.2		6010B
Magnesium	75 - 125	9890		403		10000.00	94.9		6010B
Manganese	77 - 113	549		15.9		500.00	106.6		6010B
Nickel	86 - 120	511		1.1	J	500.00	102.0		6010B
Potassium	75 - 125	10400		282		10000.00	101.2		6010B
Selenium	82 - 119	974		5.0	υ	1000.00	97.4		6010B
Silver	79 - 120	49.6		0.7	ט	50.00	99.2		6010B
Sodium	75 - 125	12600		2990		10000.00	96.1		6010B
Thallium	75 - 125	977		2.0	ע	1000.00	97.7		6010B
Vanadium	89 - 115	558		1.8	J	500.00	111.2		6010B
Zinc	77 - 112	665		168		500.00	99.4		6010B

- 6 -

DUPLICATES

Client:	CDM Federal Programs Corporation	Service Request:	К1111126
Project No.:	88146.TSK2.Bench	Units:	UG/L
Project Name:	Olean	Basis:	NA
Matri x :	WATER	<pre>% Solids:</pre>	0.0

Sample Name:	A1D	Lab Code:	K1111126-001DISS	D
	n+n-]			

Analyte	Control Limit	Sample (S)	С	Duplicate (D)	с	RPD	Q	Method
Mercury		0.0	υ	0.0	U			7470A

- 6 -

DUPLICATES

Client:	CDM Federal Programs Corporation	Service Request:	K1111126
Project No.:	88146.TSK2.Bench	Units:	UG/L
Project Name:	Olean	Basis:	NA
Matri x :	WATER	<pre>% Solids:</pre>	0.0

٩

Sample Name: Ba	tch QC1D
-----------------	----------

Lab Code: K1111260-001D

Analyte	Control Limit	Sample (S)	с	Duplicate (D)	с	RPD	Q	Method
Aluminum	20	344		371		7.6		6010B
Antimony		3	υ	3	U			6010B
Arsenic		4	υ	4	U			6010B
Barium	20	16.4		16.9		3.0		6010B
Beryllium		0.1	υ	0.1	U			6010B
Cadmium		0.3	υ	0.3	J	200.0		6010B
Calcium	20	2460		2540		3.2		6010B
Chromium		2.8		2.7		3.6		6010B
Cobalt		0.4	υ	0.4	U			6010B
Copper		8.2		8.2		0.0		6010B
Iron	20	642		709		9.9		6010B
Lead		9	J	9	J	0.0		6010B
Magnesium	20	403		414		2.7		6010B
Manganese	20	15.9		16.6		4.3		6010B
Nickel		1.1	J	1.2	J	8.7		6010B
Potassium		282		353		22.4		6010B
Selenium		5	U	5	υ			6010B
Silver		0.7	υ	0.7	U			6010B
Sodium	20	2990		3070		2.6		6010B
Thallium		2	U	2	U			6010B
Vanadium		1.8	J	1.3	J	32.3		6010B
Zinc	20	168		173		2.9		6010B

An empty field in the Control Limit column indicates the control limit is not applicable.

Appendix C

		Persulfate	Time		
Test	Condition	Concentration	(hours)	рН	Sulfate (mg/L)
	A1	0%	3.28	7.70	30
			16.08	7.57	35
Persulfate + Bicarbonate			28.10	7.50	30
			44.48	7.49	45
			53.03	7.70	45
	A2	1%	2.65	7.55	65
			15.45	7.87	195
			27.47	7.78	250
			43.85	7.73	320
			52.4	7.74	340
	A3	5%	2.13	7.63	0
			14.93	8.04	5
			26.95	7.97	5
			43.33	7.95	15
			51.88	7.92	10
	A4	10%	1.68	7.42	15
			14.48	7.90	0
			26.5	7.87	15
			42.88	7.88	15
			51.43	8.01	170
Persulfate + Hydroxide	B1	0%	5.62	8.14	30
			18.42	7.67	40
			30.43	7.67	40
			46.82	7.38	50
			55.38	7.78	40
	B2	1%	5.05	10.29	95
			17.85	8.84	200
			29.87	8.41	240
			46.25	7.87	240
			54.82	7.97	280
	B3	5%	4.53	10.22	315
			17.33	8.71	490
			29.35	8.11	550
			45.73	7.65	700
			54.3	7.59	750
	B4	10%	4.02	10.41	600
			16.82	8.48	850
			28.83	7.89	1050
			45.22	7.43	1250
			53.78	7.43	1400

Appendix C: Summary of pH and Sulfate Results

ENI, LLC

Appendix E

Groundwater Characterization for Evaluation of Natural Attenuation
Groundwater Characterization for Evaluation of Natural Attenuation as a Remedial Alternative

FOR THE

ALCAS CUTLERY CORPORATION FACILITY SITE OLEAN, NEW YORK

Prepared for

ALCOA, Inc.

Alcoa, Tennessee

January 31, 2013

Prepared by

ENI Engineering, LLC Houston, Texas

Contents

1.0	Introd	luction1
1.1	Pro	cesses of Natural Attenuation1
1.2	Stu	dy Objectives1
2.0	Metho	ods2
2.1	San	nple Collection
3.0	Result	ts
3.1	Vol	atile Organic Compounds
3.2	Tota	al Organic Carbon (TOC)
3.3	Eleo	ctron Acceptors
3	.3.1	Dissolved Oxygen (DO)
3	.3.2	Nitrate
3	.3.3	Sulfate/Sulfide
3	.3.4	Ferrous Iron
3	.3.5	Methane
3.4	Bio	degradation Indicators
3	.4.1	Chloride
3	.4.2	Alkalinity
3	.4.3	ORP
3	.4.4	pH, Temp, and Specific Conductivity
4.0	Concl	usions7

List of Tables

Table 3-1	Volatile Organic Constituents in Groundwater
Table 3-2	General Chemistry Parameters in Groundwater
Table 3-3	General Chemistry in Groundwater (Field Parameters)

List of Figures

- Figure 2-1 Sample Location Map
- Figure 3-1 TCE Concentration Isopleth Map in the UWBZ
- Figure 3-2 TCE Concentration Isopleth Map in the UCTZ/UC
- Figure 3-3 PCE Concentration Isopleth Map
- Figure 3-4 cis-1,2-DCE Concentration Isopleth Map
- Figure 3-5 Vinyl Chloride Concentration Isopleth Map
- Figure 3-6 Chloride Concentration Isopleth Map
- Figure 3-7 Alkalinity Isopleth Map

1.0 Introduction

Groundwater at the Alcas facility has been impacted by historic operations where Trichloroethene ("TCE") and its degradation products, have migrated to the Superfund Site's Upper Aquifer (*hereinafter referred to as the "Upper Aquitard or UA"*) and Lower Aquifer (*hereinafter referred to as the "City Aquifer"*). Targeted daughter, or degradation, products for TCE include cis-1,2-dichloroethene ("*cDCE*") and vinyl chloride ("*VC*"). Tetrachloroethene ("*PCE*"), a parent product for TCE, has also been detected at the Site and is most likely derived from a commercial grade fraction of the TCE solvent.

A site-specific determination was made to analyze natural attenuation as a sufficient remedial technology. Natural attenuation in groundwater results from several attenuation mechanisms that include sorption, dispersion, dilution, volatilization, and biodegradation. As part of the FFS data collection initiative, additional water quality and geochemical samples were collected in December 2011 to better understand the interactions between chlorinated volatile organic compounds, natural existing carbon, and inorganic electron acceptors at the Site. For the purposes of this study, natural attenuation was evaluated for the UWBZ and the Upper City Aquifer.

1.1 Processes of Natural Attenuation

Chlorinated organic compounds may be used as electron acceptors or electron donors during biodegradation. The most common process of biodegradation of highly chlorinated solvents is through reductive dechlorination. During this process, the chlorinated hydrocarbon is used as an electron acceptor and a chlorine atom is removed and replaced with a hydrogen atom sequentially from PCE to TCE to DCE to VC to ethene. An electron donor is required to facilitate this reaction in the form of naturally existing organic carbon or anthropogenic carbon. In this process, the availability of other electron acceptors, DO, Nitrate, Iron (III), and Sulfate plays an important role as they compete with chlorinated organic compounds for reduction. Reductive dechlorination has been demonstrated under nitrate and iron reducing conditions but is most effective under sulfate reducing and methanogenic conditions.

1.2 Study Objectives

The objectives of this natural attenuation evaluation are to:

- Evaluate the water quality of the water bearing units through groundwater sampling and analysis, and
- Determine whether natural attenuation is capable of attaining site-specific remediation objectives in a reasonable time period.

2.0 Methods

Field personnel collected groundwater samples for analysis. Locations of the wells selected for groundwater sampling are shown on Figure 2-1. Any well not sampled within the last 12 months was redeveloped prior to sampling. Otherwise, a groundwater sample was collected using the EPA recommended Low Flow Sampling protocols.

All wells were sampled for TCL VOCs. Fifteen of those wells, (RU-3, RU-4, RU-6, RU-8, RU-9, UA-1, UA-2, UA-3, UA-4, UA-5, UC-1, UC-2, UC-3, UC-4 and UC-5), were also sampled for General Chemistry parameters; ethane, ethene, methane, sulfate, sulfide, chloride, alkalinity, TOC, COD, and nitrate.

2.1 Sample Collection

During the sampling event, each well was gauged from the top of casing with an electronic resistivity probe, which measures the groundwater level. The water levels were measured in all wells before any actions are performed on the well which may affect water levels. Measurements were made to a precision of +/-0.01 ft. The measuring device was decontaminated prior to use in each well.

The majority of well in the Alcas well network had not been sampled in the prior year. These wells were redeveloped and sampled immediately following development without any additional purging. Procedures for redevelopment of the wells will follow EPA Guidance entitled Monitoring Well Development Guidelines for Superfund Project Managers.

The few monitoring wells that had been sampled in the last 12 months or been recently installed as replacement for existing damaged wells, were sampled using Low Flow Sampling protocols. Low-flow/low-stress monitoring well sampling procedures and protocols were followed as outlined in the USEPA Region II guidance document entitled "Groundwater Sampling Procedure, Low Stress (Low Flow) Purging and Sampling." Generally, the low-flow/low-stress purging was conducted prior to sampling by evacuating groundwater at a rate of less than 500 milliliters per minute until stabilization of the field parameters occurred. Purging was conducted using a 2-inch submersible pump, which was connected to dedicated tubing in each well.

Immediately prior to sampling, field parameters were collected and recorded in the field notes. The field parameters consisted of Dissolved ("DO"), Oxidation/Reduction Potential ("ORP"), Ferrous Iron, pH, Temperature, specific conductivity ("SC"), nitrate, and turbidity.

Precautions were taken so that sampling materials did not contact the ground or other potentially contaminated surfaces. Contents were retrieved from the sampling location and placed into a clean sample container. Upon completion of the field measurements, samples were collected from the sample location for laboratory analyses, and placed in laboratory-prepared containers appropriate for the analyses. Trip and equipment blanks (not required if dedicated equipment are used), and replicate samples were collected for analyses. Each sample container was labeled with the sample number; the identity of the sampler; the time and date of collection; the preservatives (if any); and the desired analyses. All samples collected were placed into laboratory-prepared containers and preserved.

3.0 Results

Biodegradation of organic compounds brings about measurable changes in the groundwater chemistry. Those changes in COC concentration, TOC, available electron acceptors, and biodegradation indications were measured and analyzed to evaluate natural attenuation at the Site.

3.1 Volatile Organic Compounds

TCE is the predominant chlorinated volatile organic compound at the Site found in the UWBZ, UCTZ, Upper City Aquifer, and Lower City Aquifer. Detected concentrations of TCE, as shown on Figures 3-1 and 3-2, range from approximately 150,000 μ g/L at RU-4 next to the Main Building to 0.6 μ g/L at RU-15 at the former Bailey property. PCE, a parent product of TCE, is also found across the Site, but at much lower concentrations as shown on Figure 3-3. The presence of PCE is most likely derived from commercial grade fraction of the TCE solvent formerly used as part of the manufacturing process.

Evidence of biodegradatoin is observed with the accumulation of TCE daughter products. The two isomers of DCE were measured and it was found that cis-1,2-DCE was the prevailing intermediate observed across the Site with detected concentrations ranging from 16,000 μ g/L at RU-4 to 1.1 μ g/L at RU-1, as shown on Figure 3-4. Concentrations of VC were not found as widespread across the Site as compared to TCE or cis-1,2-DCE with detected concentrations ranging from 2,700 μ g/L at RU-4 to 3.5 μ g/L at RU-12, as shown on Figure 3-5. Volatile organic compound results are reported in Table 3-1

3.2 Total Organic Carbon (TOC)

Reductive dechlorination is described as an electron-donor-limited process. Without an electron donor source reductive dechlorination cannot occur. Total Organic Carbon (TOC) concentrations were measured from 15 locations across the Site. The concentrations ranged from 14.4 mg/L at UA-1 to non-detect (<1 mg/L) at UA-4 in the UWBZ and from 1.1 mg/L in UC-3 to 0.45 mg/L at UC-2 in the Upper City Aquifer. This concentration coincides with the City of Olean's 2011 Consumer Confidence Report that reported TOC concentrations between 0.92 mg/L to 1.7 mg/L from various City Production wells withdrawn from the City Aquifer. TOC concentrations are reported in Table 3-2.

3.3 Electron Acceptors

During biodegradation, organic carbon is used as an electron donor and dissolved oxygen is used first as the primary electron acceptor. After DO is consumed, anaerobic bacteria will utilize nitrate, ferric iron, sulfate, and carbon dioxide, in that order, as additional electron acceptors.

3.3.1 Dissolved Oxygen (DO)

Anaerobic bacteria generally cannot function at dissolved oxygen concentrations greater than 0.5 mg/L and at concentrations greater than 0.5 mg/L reductive dechlorination will not occur. DO concentrations ranged at the Site from 9.4 mg/L at RU-1 to 0.63 mg/L at UA-1 in the UWBZ and from 4.68 mg/L in Alcas D-2 to 0.8 mg/L in UC-4 in the Upper City Aquifer. The majority of

DO concentrations measured were greater than 0.5 mg/L in the UWBZ and the Upper City Aquifer. DO concentrations are reported in Table 3-3.

3.3.2 Nitrate

After DO has been depleted, anaerobic bacteria prefer to use Nitrate an electron acceptor for biodegradation of organic carbon. In order for reductive dechlorination to occur, nitrate concentrations need to be less than 1.0 mg/L. Nitrate concentrations ranged at the Site from 2.5 mg/L at RU-9 to non-detect (<0.1 mg/L) at RU-3 and UA-1 in the UWBZ and from 2.3 mg/L in UC-2 to 0.56 mg/L at UC-5 in the Upper City Aquifer. This concentration coincides with the City of Olean's 2011 Consumer Confidence Report that reported Nitrate concentrations between 0.39 mg/L to 1.32 mg/L from various City Production wells withdrawn from the City Aquifer. The majority of Nitrate concentrations measured were greater than 1.0 mg/L in the UWBZ and the Upper City Aquifer. Nitrate concentrations are reported in Table 3-2.

3.3.3 Sulfate/Sulfide

After DO and Nitrate have been depleted, sulfate will be used as the electron acceptor for anaerobic biodegradation. The process of sulfate reduction will generate sulfide. Unlike DO and Nitrate, reductive dechlorination of chlorinated organic compounds can occur under sulfate reducing conditions, but concentrations of sulfate greater than 20 mg/L may still cause a competitive exclusion to chlorinated dechlorination. Sulfate concentrations ranged at the Site from 56.6 mg/L at RU-4 to 9.3 mg/L at RU-9 in the UWBZ and from 39.9 mg/L in UC-5 to 24.0 mg/L at UC-3 in the Upper City Aquifer. The majority of Sulfate concentrations measured were greater than 20.0 mg/L in the UWBZ and the Upper City Aquifer. The City of Olean's 2011 Consumer Confidence Report reported Sulfate concentrations between 11.3 mg/L to 23.5 mg/L from various City Production wells withdrawn from the City Aquifer. Sulfide was not detected at any well across the site in the UWBZ or Upper City Aquifer. Sulfate and Sulfide concentrations are reported in Table 3-2.

3.3.4 Ferrous Iron

Ferrous Iron or Iron (II) (Fe^{+2}) will be produced when Ferric Iron (Fe^{+3}) is used as an electron acceptor during anaerobic biodegradation. Thus, ferrous Iron can be used as an indicator of biodegradation as a metabolic by-product when the ferrous iron concentration is greater than 1.0 mg/L. Ferrous Iron concentrations ranged at the Site from 1.98 mg/L at RU-12 to non-detect at several location in the UWBZ and from 1.9 mg/L in B-2 to non-detect at UC-1 and Alcas D-2 in the Upper City Aquifer. The majority of Ferrous Iron concentrations measured were less than 1.0 mg/L in the UWBZ and the Upper City Aquifer. Ferrous Iron concentrations are reported in Table 3-3.

3.3.5 Methane

Methanogenesis occurs after oxygen, nitrate, and sulfate have been depleted in the treatment zone. During methanogenesis, carbon dioxide is used as the electron acceptor and is reduced to methane. Therefore, the presence of methane in ground water is indicative of strongly reducing conditions and indicated with methane concentrations exceeding 0.5 mg/L. Methane concentrations were measured from 15 locations across the Site. The concentrations ranged from 0.9 mg/L at RU-4 to non-detect (<0.002 mg/L) at several wells in the UWBZ and from 0.0003 J mg/L at UC-3 to non-detect (<0.002 mg/L) at UC-1 and UC-2 in the Upper City Aquifer. The

majority of methane concentrations measured were less than 0.5 mg/L in the UWBZ and the Upper City Aquifer. Methane concentrations are reported in Table 3-2.

3.4 Biodegradation Indicators

Biodegradation of chlorinated organic compounds alters the groundwater chemistry in the affected area. Analysis of these changes allows for a quantitative evaluation of the ongoing natural attenuation at the Site. The following paragraphs analyzes chloride alkalinity, ORP, pH, Temp, and Specific Conductivity as natural attenuation indicators.

3.4.1 Chloride

Biodegradation of chlorinated hydrocarbons releases chloride into the ground water. This results in elevated chloride concentrations in and around the contaminant plume relative to background chloride levels. Chloride concentrations were measured from 15 locations across the Site. The concentrations ranged from 566 mg/L at RU-4 to 3.2 mg/L at UA-1 and UA-3 in the UWBZ and from 165 mg/L at UC-4 to 88.1 mg/L at UC-2 in the Upper City Aquifer. In areas around the contaminant plume, chloride concentrations were observed to be less than 100 mg/L in the UWBZ and Upper City Aquifer. This concentration coincides with the City of Olean's 2011 Consumer Confidence Report that reported chloride concentrations between 35.0 mg/L to 51.2 mg/L from various City Production wells withdrawn from the City Aquifer. Chloride concentrations were observed to be greater than 100 mg/L at RU-4, RU-3, and RU-6 in the UWBZ and at UC-4 and UC-5 in the Upper City Aquifer. As illustrated on Figure 3-6, these areas are located in the heart of the contaminant plume. Chloride concentrations are reported in Table 3-2.

3.4.2 Alkalinity

Similar to chloride, a positive correlation has been noted with biodegradation and increased alkalinity. Alkalinity measured at twice the background concentration is indicative of methanogenic conditions as the generated carbon dioxide increases the alkalinity. Alkalinity concentrations were measured from 15 locations across the Site. The concentrations ranged from 352 mg/L at RU-3 to 61.3 mg/L at UA-2 in the UWBZ and from 293 mg/L at UC-3 to 184 mg/L at UC-2 in the Upper City Aquifer. In areas around the contaminant plume, alkalinity concentrations were observed to be less than 100 mg/L in the UWBZ and between 300 and 200 mg/L in the Upper City Aquifer. Alkalinity concentrations were observed to be greater than 100 mg/L at RU-4, RU-3, RU-6, RU-8, UA-1, UA-4 and UA-5 in the UWBZ. As illustrated on Figure 3-7, these areas are located in the heart of the contaminant plume in the UWBZ. Alkalinity concentrations are reported in Table 3-2.

3.4.3 ORP

The Oxidation-Reduction Potential (ORP) is a measure of electron activity and is an indicator of a solutions preference to accept or transfer electrons. The ORP is influenced by the nature of the biological availability of an electron acceptor. The ORP of groundwater may range from more than 800 mV to less than -400 mV. Generally, ORP measurements less than 50 mV indicate that reductive dechlorination is possible. ORP measurements ranged at the Site from 199.8 mV at RU-6 to -131.5 mV at RU-5 in the UWBZ and from 196.5 mV at UC-5 to 144.4 at Alcas D-2 in the Upper City Aquifer. The majority of ORP measurements were greater than 50 mV in the UWBZ and the Upper City Aquifer. ORP is reported in Table 3-3.

3.4.4 pH, Temp, and Specific Conductivity

Microbes capable of degrading chlorinated organic compounds generally prefer pH values between 6 and 8 standard units. The pH measured across the Site ranged from 7.44 to 4.7 standard units in the UWBZ and from 8.53 to 5.19 standard units in the Upper City Aquifer. The pH was me asured below 6 standard units at RU-14B, RU-16, RU-17B, and UA2 in the UWBZ. The pH was measured below 6 standard units at RU-18 and Alcas D-2 and was measured above 8 standard units at UC-1, UC-3, and UC-4 in the Upper City Aquifer. Groundwater temperature was measured across the site and ranged from 16 °C to 9 °C in the UWBZ and the Upper City Aquifer. Conductivity measures a solutions ability to conduct electricity and relates to the concentration of dissolved ions. Specific Conductivity was measured across the site and ranged from 73 μ S/cm to 2773 μ S/cm in the UWBZ and 375 μ S/cm to 1138 μ S/cm in the Upper City Aquifer. pH, temperature, and specific conductivity are reported in Table 3-3.

4.0 Conclusions

The results from the natural attenuation evaluation suggest the following conclusions:

- Evidence of biodegradation is observed with the accumulation of TCE daughter products, DCE and VC. Degradation products are observed more readily at high TCE concentration areas but are not as prevalent in areas of low TCE concentration.
- The Site does not contain sufficient electron donors, TOC, to drive dechlorination. The process is Electron donor limiting at the Site.
- The Site has a low Reducing potential based on availability of DO, Nitrate, Sulfate and ORP field measurements.
- Chloride and Alkalinity concentrations confirm that some amount of biodegradation is occurring at high TCE concentration areas.

Tables

Alcas Cutlery Corporation Olean, New York

	Client S	ample ID	B-1		B-2		BC-1		BC-2	BC-3		BC-4	BC-5	CW-13	CW-13A	D-2
	Collect	ion Date	11/29/2011	14:00	11/29/2011 1	8:00	12/2/2011 18:0	06	12/2/2011 13:45	12/2/2011 18:30		12/2/2011 12:00	12/2/2011 15:45	12/2/2011 9:10	12/1/2011 11:30	12/2/2011 8:00
	Anal	ysis Date	12/10/2011	13:40	12/9/2011 11	L:38	12/13/2011 17:	:45	12/13/2011 16:58	12/13/2011 18:09		12/13/2011 16:34	12/13/2011 17:22	12/14/2011 20:43	12/13/2011 3:05	12/13/2011 5:02
	Analysis	Method	8260B		8260B		8260B		8260B	8260B		8260B	8260B	8260B	8260B	8260B
	Dilutio	on Factor	1		20		1		1	1		1	1	1	1	1
CAS	Analyte	Unit	Result	:	Result		Result		Result	Result		Result	Result	Result	Result	Result
71-55-6	1,1,1-Trichloroethane	ug/L	< 1	U	< 20	U	< 1	U	< 1 U	< 1	U	< 1 U	< 1 U	< 1 U	< 1 U	1.2
79-34-5	1,1,2,2-Tetrachloroethane	ug/L	< 1	U	< 20	U	< 1	U	< 1 U	< 1	U	< 1 U	< 1 U	< 1 U	< 1 U	< 1 U
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane	ug/L	< 1	U	< 20	U	< 1	U	< 1 U	< 1	U	< 1 U	< 1 U	< 1 U	0.46 J	< 1 U
79-00-5	1,1,2-Trichloroethane	ug/L	< 1	U	< 20	U	< 1	U	< 1 U	< 1	U	< 1 U	< 1 U	< 1 U	< 1 U	2.4
75-34-3	1,1-Dichloroethane	ug/L	< 1	U	< 20	U	< 1	U	< 1 U	< 1	U	< 1 U	< 1 U	< 1 U	< 1 U	< 1 U
75-35-4	1,1-Dichloroethene	ug/L	< 1	U	< 20	U	< 1	U	< 1 U	< 1	U	< 1 U	< 1 U	< 1 U	< 1 U	6.9
120-82-1	1,2,4-Trichlorobenzene	ug/L	< 1	U	< 20	U	< 1	U	< 1 U	< 1	U	< 1 U	< 1 U	< 1 U	< 1 U	< 1 U
96-12-8	1,2-Dibromo-3-Chloropropane	ug/L	< 1	U	< 20	U	< 1	U	< 1 U	< 1	U	< 1 U	< 1 U	< 1 U	< 1 U	< 1 U
106-93-4	1,2-Dibromoethane	ug/L	< 1	U	< 20	U	< 1	U	< 1 U	< 1	U	< 1 U	< 1 U	< 1 U	< 1 U	< 1 U
95-50-1	1,2-Dichlorobenzene	ug/L	< 1	U	< 20	U	< 1	U	< 1 U	< 1	U	< 1 U	< 1 U	< 1 U	< 1 U	< 1 U
107-06-2	1,2-Dichloroethane	ug/L	< 1	U	< 20	U	< 1	U	< 1 U	< 1	U	< 1 U	< 1 U	< 1 U	< 1 U	< 1 U
78-87-5	1,2-Dichloropropane	ug/L	< 1	U	< 20	U	< 1	U	< 1 U	< 1	U	< 1 U	< 1 U	< 1 U	< 1 U	< 1 U
541-73-1	1,3-Dichlorobenzene	ug/L	< 1	U	< 20	U	< 1	U	< 1 U	< 1	U	< 1 U	< 1 U	< 1 U	< 1 U	< 1 U
106-46-7	1,4-Dichlorobenzene	ug/L	< 1	U	< 20	U	< 1	U	< 1 U	< 1	U	< 1 U	< 1 U	< 1 U	< 1 U	< 1 U
78-93-3	2-Butanone (MEK)	ug/L	< 10	U	< 200	U	< 10	U	< 10 U	< 10	U	< 10 U	< 10 U	< 10 U	< 10 U	< 10 U
591-78-6	2-Hexanone	ug/L	< 5	U	< 100	U	< 5	U	< 5 U	< 5	U	< 5 U	< 5 U	< 5 U	< 5 U	< 5 U
108-10-1	4-Methyl-2-pentanone (MIBK)	ug/L	< 5	U	< 100	U	< 5	U	< 5 U	< 5	U	< 5 U	< 5 U	< 5 U	< 5 U	< 5 U
67-64-1	Acetone	ug/L	< 10	U	< 200	U	< 10	U	< 10 U	< 10	U	< 10 U	< 10 U	3.2 J	< 10 U	< 10 U
/1-43-2	Benzene	ug/L	< 1	0	< 20	U	< 1	<u>U</u>	< 1 U	< 1	0	< 1 0	< 1 U	< 1 0	< 1 U	0.45 J
75-27-4	Bromodichloromethane	ug/L	< 1	0	< 20	U	< 1	0	<1 U	< 1	<u>U</u>	<1 U	<1 U	<1 U	<1 U	<1 U
75-25-2	Bromotorm	ug/L	< 1	0	< 20	U	< 1	0	<1 U	< 1	<u>U</u>	<1 U	<1 U	<1 U	<1 U	<1 U
74-83-9	Bromometnane	ug/L	< 1	U	< 20	U	< 1	0	<1 U	< 1	0	<1 U	<1 U	<1 U	<1 0	<1 U
75-15-0	Carbon disulfide	ug/L	< 1	0*	< 20	0*	< 1	0	<1 U	< 1		<1 U	<1 U	<1 U	1./	<1 U
56-23-5	Carbon tetrachioride	ug/L	< 1	0	< 20	0	< 1	0	<1 U	< 1		<1 U	<1 U	<1 U	<1 U	<1 U
108-90-7	Chloropenzene	ug/L	< 1	0	< 20	0	< 1	0	<1 U	< 1		<1 U	<1 U	<1 U		< <u> </u>
75-00-5	Chloroform	ug/L	< 1	<u> </u>	< 20	0	< 1									0.31 J
7/-87-3	Chloromethane	ug/L		<u> </u>	< 20	<u> </u>	< 1			< 1		<1 0				<pre>0.77 J</pre>
156-59-2	cis-1 2-Dichloroethene	ug/L		<u> </u>	190	0	< 1	U			U I	13			29	<1 0 140 D
10061-01-5	cis-1 3-Dichloropropene		< 1	U	< 20	U	< 1	U	<1 U	< 1	U	< 1 U	<1 U	<1 U	< 1 U	<1 U
110-82-7	Cyclobexane	ug/l	< 1	<u> </u>	< 20	<u> </u>	< 1	<u> </u>	<1 U	< 1	Ŭ	<1 U	<1	<1 U		<1 U
124-48-1	Dibromochloromethane	ug/l	< 1	<u> </u>	< 20	U	< 1	U	<1 U	< 1	Ŭ	<1 U	<1 U	<1 U	<1 U	<1 U
75-71-8	Dichlorodifluoromethane	ug/L	< 1	U	< 20	U	< 1	U	<1 U	< 1	U	<1 U	<1 U	<1 U	< 1 U	<1 U
100-41-4	Ethylbenzene	ug/L	< 1	U	< 20	U	< 1	U	< 1 U	< 1	U	< 1 U	< 1 U	< 1 U	< 1 U	< 1 U
98-82-8	Isopropylbenzene	ug/L	< 1	U	< 20	U	< 1	U	< 1 U	< 1	U	< 1 U	< 1 U	< 1 U	< 1 U	< 1 U
79-20-9	Methyl acetate	ug/L	< 1	U	< 20	U	< 1	U	< 1 U	< 1	U	< 1 U	< 1 U	< 1 U	< 1 U	< 1 U
1634-04-4	Methyl tert-butyl ether	ug/L	< 1	U	< 20	U	< 1	U	< 1 U	< 1	U	< 1 U	< 1 U	< 1 U	< 1 U	< 1 U
108-87-2	Methylcyclohexane	ug/L	< 1	U	< 20	U	< 1	U	< 1 U	< 1	U	< 1 U	< 1 U	< 1 U	< 1 U	< 1 U
75-09-2	Methylene Chloride	ug/L	< 1	U	< 20	U	< 1	U	< 1 U	< 1	U	< 1 U	< 1 U	< 1 U	< 1 U	< 1 U
100-42-5	Styrene	ug/L	< 1	U	< 20	U	< 1	U	< 1 U	< 1	U	< 1 U	< 1 U	< 1 U	< 1 U	< 1 U
127-18-4	Tetrachloroethene	ug/L	< 1	U	< 20	U	< 1	U	< 1 U	< 1	U	< 1 U	0.83 J	< 1 U	< 1 U	8.7
108-88-3	Toluene	ug/L	< 1	U	< 20	U	< 1	U	< 1 U	< 1	U	< 1 U	< 1 U	< 1 U	< 1 U	< 1 U
156-60-5	trans-1,2-Dichloroethene	ug/L	< 1	U	< 20	U	< 1	U	< 1 U	< 1	U	< 1 U	< 1 U	< 1 U	< 1 U	8.1
10061-02-6	trans-1,3-Dichloropropene	ug/L	< 1	U	< 20	U	< 1	U	< 1 U	< 1	U	< 1 U	< 1 U	< 1 U	< 1 U	< 1 U
79-01-6	Trichloroethene	ug/L	< 1	U	2900	D	5.5		0.98 J	< 1	U	14	5	1.5	95	16000 D
75-69-4	Trichlorofluoromethane	ug/L	< 1	U	< 20	U	< 1	U	< 1 U	< 1	U	< 1 U	< 1 U	< 1 U	< 1 U	< 1 U
75-01-4	Vinyl chloride	ug/L	< 1	U	26		< 1	U	< 1 U	< 1	U	< 1 U	< 1 U	< 1 U	< 1 U	51
1330-20-7	Xylenes, Total	ug/L	< 2	U	< 40	U	< 2	U	< 2 U	< 2	U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U

U - Analyzed for but not detected.

* - MS, MSD, LCS or LCSD exceeds the control limit.

J - Indicates an estimated value.

D - Result determined from Secondary Dultion Factor.

E - Compound concentration exceeds the upper level of the calibration range of the instrument.

Alcas Cutlery Corporation Olean, New York

	Client Sa	ample ID	P-1		P-2		RU-1	RU-3		RU-4		RU-5		RU-6		RU-7		RU-8		RU-9	
	Collect	tion Date	12/1/2011 16	:30	12/1/2011 11:	:30	12/1/2011 15:00	11/30/2011	15:15	11/30/2011 10	5:30	12/1/2011 17:0	0	11/30/2011 14:	00	12/1/2011 9:00	11/30)/2011 9:	:30	11/30/2011 1	1:00
	Analy	vsis Date	12/13/2011 0	:44	12/13/2011 1:	:08	12/13/2011 2:41	12/12/2011	14:37	12/10/2011 1	7:23	12/13/2011 3:5	1	12/12/2011 14:	59	12/13/2011 1:31	12/10	/2011 19):14	12/12/2011 1	3:31
	Analysis	Method	8260B		8260B		8260B	82608		8260B		8260B	-	8260B		8260B		, 8260B		8260B	
	Dilutio	on Factor	1		1		1	4		1		1		500		1		1		1	
CAS	Analyte	Unit	Result		Result		Result	Result		Result		Result		Result		Result		Result		Result	
71-55-6	1.1.1-Trichloroethane	ug/L	< 1	U	< 1	U	< 1 U	< 4	U	< 1	U	7.3		< 500	U	< 1	U <	1	U	< 1	U
79-34-5	1.1.2.2-Tetrachloroethane	ug/L	< 1	U	< 1	U	<1 U	< 4	U	< 1	U	< 1	U	< 500	U	< 1	- U <	1	U	< 1	U
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane	ug/L	< 1	U	< 1	U	< 1 U	< 4	U	< 1	U	0.83	J	< 500	U	0.4	<	1	U	< 1	U
79-00-5	1,1,2-Trichloroethane	ug/L	< 1	U	< 1	U	< 1 U	< 4	U	< 1	U	6.6		< 500	U	< 1	U <	1	U	< 1	U
75-34-3	1,1-Dichloroethane	ug/L	< 1	U	< 1	U	< 1 U	< 4	U	0.66	J	< 1	U	< 500	U	< 1	U <	1	U	< 1	U
75-35-4	1,1-Dichloroethene	ug/L	< 1	U	< 1	U	< 1 U	< 4	U	100	E	15		< 500	U	< 1	U <	1	U	< 1	U
120-82-1	1,2,4-Trichlorobenzene	ug/L	< 1	U	< 1	U	< 1 U	< 4	U	< 1	U	< 1	U	< 500	U	< 1	U <	1	U	< 1	U
96-12-8	1,2-Dibromo-3-Chloropropane	ug/L	< 1	U	< 1	U	< 1 U	< 4	U	< 1	U	< 1	U	< 500	U	< 1	U <	1	U	< 1	U
106-93-4	1,2-Dibromoethane	ug/L	< 1	U	< 1	U	< 1 U	< 4	U	< 1	U	< 1	U	< 500	U	< 1	U <	1	U	< 1	U
95-50-1	1,2-Dichlorobenzene	ug/L	< 1	U	< 1	U	< 1 U	< 4	U	< 1	U	< 1	U	< 500	U	< 1	U <	1	U	< 1	U
107-06-2	1,2-Dichloroethane	ug/L	< 1	U	< 1	U	< 1 U	< 4	U	< 1	U	< 1	U	< 500	U	< 1	U <	1	U	< 1	U
78-87-5	1,2-Dichloropropane	ug/L	< 1	U	< 1	U	< 1 U	< 4	U	< 1	U	< 1	U	< 500	U	< 1	U <	1	U	< 1	U
541-73-1	1,3-Dichlorobenzene	ug/L	< 1	U	< 1	U	< 1 U	< 4	U	< 1	U	< 1	U	< 500	U	< 1	U <	1	U	< 1	U
106-46-7	1,4-Dichlorobenzene	ug/L	< 1	U	< 1	U	< 1 U	< 4	U	< 1	U	< 1	U	< 500	U	< 1	U <	1	U	< 1	U
78-93-3	2-Butanone (MEK)	ug/L	< 10	U	< 10	U	< 10 U	< 40	U	< 10	U	< 10	U	< 5000	U	< 10	U <	10	U	< 10	U
591-78-6	2-Hexanone	ug/L	< 5	U	< 5	U	< 5 U	< 20	U	< 5	U	< 5	U	< 2500	U	< 5	U <	5	U	< 5	U
108-10-1	4-Methyl-2-pentanone (MIBK)	ug/L	< 5	U	< 5	U	< 5 U	< 20	U	< 5	U	< 5	U	< 2500	U	< 5	U <	5	U	< 5	U
67-64-1	Acetone	ug/L	< 10	U	< 10	U	< 10 U	< 40	U	< 10	U	< 10	U	< 5000	U	< 10	U <	10	U	< 10	U
71-43-2	Benzene	ug/L	< 1	U	< 1	U	< 1 U	< 4	U	4.9		0.54	J	< 500	U	< 1	U <	1	U	< 1	U
75-27-4	Bromodichloromethane	ug/L	< 1	U	< 1	U	< 1 U	< 4	U	< 1	U	< 1	U	< 500	U	< 1	U <	1	U	< 1	U
75-25-2	Bromoform	ug/L	< 1	U	< 1	U	< 1 U	< 4	U	< 1	U	< 1	U	< 500	U	< 1	U <	1	U	< 1	U
74-83-9	Bromomethane	ug/L	< 1	U	< 1	U	< 1 U	< 4	U	< 1	U	< 1	U	< 500	U	< 1	U <	1	U	< 1	U
75-15-0	Carbon disulfide	ug/L	< 1	U	< 1	U	< 1 U	< 4	U *	< 1	U *	< 1	U	< 500	U *	< 1	U <	1	U *	< 1	U *
56-23-5	Carbon tetrachloride	ug/L	< 1	U	< 1	U	< 1 U	< 4	U	< 1	U	1.7		< 500	U	< 1	U <	1	U	< 1	U
108-90-7	Chlorobenzene	ug/L	< 1	U	< 1	U	< 1 U	< 4	U	< 1	U	< 1	U	< 500	U	< 1	U <	1	U	< 1	U
75-00-3	Chloroethane	ug/L	< 1	U	< 1	U	< 1 U	< 4	U	11		< 1	U	< 500	U	< 1	U <	1	U	< 1	U
67-66-3	Chloroform	ug/L	< 1	U	< 1	U	< 1 U	2.1	J	0.98	J	2.1		< 500	U	< 1	U <	1	U	< 1	U
74-87-3	Chloromethane	ug/L	< 1	U	< 1	U	< 1 U	< 4	U	< 1	U	< 1	U	< 500	U	< 1	U <	1	U	< 1	U
156-59-2	cis-1,2-Dichloroethene	ug/L	11		< 1	U	1.1	31		16000	D	270	E	< 500	U	< 1	U	5.7		< 1	U
10061-01-5	cis-1,3-Dichloropropene	ug/L	< 1	U	< 1	U	< 1 U	< 4	U	< 1	U	< 1	U	< 500	U	< 1	U <	1	U	< 1	U
110-82-7	Cyclohexane	ug/L	< 1	U	< 1	U	< 1 U	< 4	U	< 1	U	< 1	U	< 500	U	< 1	U <	1	U	< 1	U
124-48-1	Dibromochloromethane	ug/L	< 1	U	< 1	U	< 1 U	< 4	U	< 1	U	< 1	U	< 500	U	< 1	U <	1	U	< 1	U
75-71-8	Dichlorodifluoromethane	ug/L	< 1	U	< 1	U	< 1 U	< 4	U	< 1	U	< 1	U	< 500	U	< 1	U <	1	U	< 1	U
100-41-4	Ethylbenzene	ug/L	< 1	U	< 1	U	< 1 U	< 4	U	< 1	U	< 1	U	< 500	U	< 1	U <	1	U	< 1	U
98-82-8	Isopropylbenzene	ug/L	< 1	U	< 1	U	< 1 U	< 4	U	< 1	U	< 1	U	< 500	U	< 1	U <	1	U	< 1	U
79-20-9	Methyl acetate	ug/L	< 1	U	< 1	U	< 1 U	< 4	U	< 1	U	< 1	U	< 500	U	< 1	U <	1	U	< 1	<u> </u>
1634-04-4	Methyl tert-butyl ether	ug/L	< 1	U	< 1	U	< 1 U	< 4	U	< 1	U	< 1	U	< 500	U	< 1	U <	1	U	< 1	<u> </u>
108-87-2	Methylcyclohexane	ug/L	< 1	U	< 1	U	< 1 U	< 4	U	< 1	U	< 1	U	< 500	U	< 1	U <	1	U	< 1	<u> </u>
75-09-2	Methylene Chloride	ug/L	< 1	U	< 1	U	< 1 U	< 4	U	9.9		< 1	U	< 500	U	< 1	U <	1	U	< 1	<u> </u>
100-42-5	Styrene	ug/L	< 1	U	< 1	U	< 1 U	< 4	U	< 1	U	< 1	U	< 500	U	< 1	<	1	U	< 1	0
127-18-4	Teleses	ug/L	< 1	U	< 1	0	< 1 U	< 4	0	140	E	100	E	< 500	U	< 1	<	1	0	< 1	U
108-88-3	Toruene	ug/L	< 1	U	< 1	U	< 1 U	< 4	0	14	-	< 1	U	< 500	U	< 1	<	1	U	< 1	U
150-60-5	trans-1,2-Dichloroperators	ug/L	< 1	U	< 1	0	<1 U	< 4	0	200	E	11		< 500	0	< 1	<pre>v < </pre>	1	0	< 1	
70.01.6	Trichloroothono	ug/L	< 1	U	< 1	U		< 4	U	< 1	0	< 1	U	< 500	U	< I	<	120	U	< 1	
79-01-0	Trichlorofluoromothana	ug/L	1/		1.0		0.0	210		13000	E	80000	0	31000		9.4		120		0.8/	
75-09-4	Vipul chloride	ug/L	< 1 2 E	U	< 1			< 4	U	>700	D	< <u>1</u>	U	< 500	U			1	U	< 1	0
1220 20 7	Vulopos Total	ug/L	2.5		< 1	0		13		2700	U	13		< 1000				1	0	< 1	
1330-20-7	Ayrenes, Toldi	ug/L	< 2	U	< 2	U	< 2 U	<u>× ۵</u>	U	3.1		< 2	U	< 1000	U	< Z	~	- Z	U	< 2	U

U - Analyzed for but not detected.

* - MS, MSD, LCS or LCSD exceeds the control limit.

J - Indicates an estimated value.

D - Result determined from Secondary Dultion Factor.

Alcas Cutlery Corporation Olean, New York

	Client Sa	mple ID	RU-11		RU-12		RU-13		RU-14A		RU-14B		RU-15	RU-16	RU-17A	RU-17B	RU-170	С
	Collecti	ion Date	11/29/2011 1	14:11	11/29/2011	17:00	12/2/2011 9:	55	12/1/2011 12:3	30	12/2/2011 11:4	10	11/29/2011 15:52	12/1/2011 13:45	12/1/2011 13:30	12/2/2011 13:33	11/29/2011	16:35
	Analy	sis Date	12/10/2011 1	14:47	12/10/2011	15:09	12/14/2011 19	9:55	12/13/2011 2:1	18	12/13/2011 15:2	24	12/10/2011 15:32	12/13/2011 3:28	12/13/2011 1:54	12/13/2011 15:47	12/10/2011	14:03
	Analysis	Method	8260B		8260B		8260B		8260B		8260B		8260B	8260B	8260B	8260B	8260B	3
	Dilutio	n Factor	1		1		1		1		5		1	1	1	4	1	
CAS	Analyte	Unit	Result		Result		Result		Result		Result		Result	Result	Result	Result	Result	t
71-55-6	1,1,1-Trichloroethane	ug/L	< 1	U	< 1	U	< 1	U	< 1	U	< 5	U	< 1 U	< 1 U	< 1	U < 4 L	< 1	U
79-34-5	1,1,2,2-Tetrachloroethane	ug/L	< 1	U	< 1	U	< 1	U	< 1	U	< 5	U	< 1 U	< 1 U	< 1	U < 4 L	< 1	U
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane	ug/L	< 1	U	< 1	U	< 1	U	< 1	U	< 5	U	< 1 U	< 1 U	< 1	U < 4 L	< 1	U
79-00-5	1,1,2-Trichloroethane	ug/L	< 1	U	< 1	U	< 1	U	< 1	U	< 5	U	< 1 U	< 1 U	< 1	U < 4 L	< 1	U
75-34-3	1,1-Dichloroethane	ug/L	< 1	U	< 1	U	< 1	U	< 1	U	< 5	U	< 1 U	< 1 U	< 1	U < 4 L	< 1	U
75-35-4	1,1-Dichloroethene	ug/L	< 1	U	< 1	U	< 1	U	< 1	U	< 5	U	< 1 U	< 1 U	< 1	U < 4 L	< 1	U
120-82-1	1,2,4-Trichlorobenzene	ug/L	< 1	U	< 1	U	< 1	U	< 1	U	< 5	U	< 1 U	< 1 U	< 1	U < 4 L	< 1	U
96-12-8	1,2-Dibromo-3-Chloropropane	ug/L	< 1	U	< 1	U	< 1	U	< 1	U	< 5	U	< 1 U	< 1 U	< 1	U < 4 L	< 1	U
106-93-4	1,2-Dibromoethane	ug/L	< 1	U	< 1	U	< 1	U	< 1	U	< 5	U	< 1 U	< 1 U	< 1	U < 4 L	< 1	U
95-50-1	1,2-Dichlorobenzene	ug/L	< 1	U	< 1	U	< 1	U	< 1	U	< 5	U	< 1 U	< 1 U	< 1	U < 4 L	< 1	U
107-06-2	1,2-Dichloroethane	ug/L	< 1	U	< 1	U	< 1	U	< 1	U	< 5	U	< 1 U	< 1 U	< 1	U < 4 L	< 1	U
78-87-5	1,2-Dichloropropane	ug/L	< 1	U	< 1	U	< 1	U	< 1	U	< 5	U	< 1 U	< 1 U	< 1	U < 4 L	< 1	U
541-73-1	1,3-Dichlorobenzene	ug/L	< 1	U	< 1	U	< 1	U	< 1	U	< 5	U	< 1 U	< 1 U	< 1	U < 4 L	< 1	U
106-46-7	1,4-Dichlorobenzene	ug/L	< 1	U	< 1	U	< 1	U	< 1	U	< 5	U	< 1 U	< 1 U	< 1	U < 4 L	< 1	U
78-93-3	2-Butanone (MEK)	ug/L	< 10	U	< 10	U	< 10	U	< 10	U	< 50	U	< 10 U	< 10 U	< 10	U < 40 L	< 10	U
591-78-6	2-Hexanone	ug/L	< 5	U	< 5	U	< 5	U	< 5	U	< 25	U	< 5 U	< 5 U	< 5	<u> </u>	< 5	U
108-10-1	4-Methyl-2-pentanone (MIBK)	ug/L	< 5	U	< 5	0	< 5	U	< 5	0	< 25	0	< 5 U	< 5 U	< 5	0 < 20 L	< 5	U
67-64-1	Acetone	ug/L	< 10	U	< 10	0	< 10	0	< 10	0	< 50	0	< 10 U	3./ J	< 10	<u> </u>	< 10	U
71-43-2	Benzene	ug/L	< 1	0	< 1	0	< 1	0	< 1	0	< 5	0	<1 U	<1 U	< 1	<u> </u>	< 1	U
75-27-4	Bromodichioromethane	ug/L	< 1	0	< 1	0	< 1	0	< 1		< 5	0	<1 U	<1 U	< 1		< 1	0
75-25-2	Bromomothana	ug/L	< 1	0	< 1	0	< 1	0	< 1		< 5	0	<1 U	<1 U	< 1		< 1	0
74-83-9	Bromometnane	ug/L	< 1	U 11 *	< 1	0	< 1	0	< 1		< 5	0	<1 U		< 1		< 1	U 11 *
75-15-0		ug/L	< 1	0	< 1	0.	< 1	0	< 1		< 5		<1 U	0.57 J	< 1		< 1	0 ·
108 00 7	Chlorobonzono	ug/L	< 1	0	< 1	0	< 1		< 1		< 5		<1 U				< 1	0
75-00-3	Chloroethane	ug/L	< 1	0	< 1	0	< 1		< 1		< 5				< 1		< 1	0
67-66-3	Chloroform	ug/L	< 1	0	< 1	0	< 1		< 1		< 5				< 1		< 1	U
74-87-3	Chloromethane	ug/L	< 1	U	< 1	U U	< 1		< 1		< 5		<1 U		< 1		< 1	U
156-59-2	cis-1 2-Dichloroethene		14	Ű	35	Ű	< 1	Ŭ	< 1	U U	46	-	<1	11	< 1	<u> </u>	< 1	U
10061-01-5	cis-1,3-Dichloropropene		< 1	U	< 1	U	< 1	U	< 1	U	< 5	U	<1 U	<1 U	< 1	U < 4 U	< 1	U
110-82-7	Cyclohexane	ug/I	< 1	U	< 1	U	< 1	U	< 1	U	< 5	U	<1 U	<1 U	< 1	U < 4 U	< 1	U
124-48-1	Dibromochloromethane	ug/L	< 1	U	< 1	U	< 1	U	< 1	U	< 5	U	<1 U	<1 U	< 1	U < 4 U	< 1	U
75-71-8	Dichlorodifluoromethane	ug/L	< 1	U	< 1	U	< 1	U	< 1	U	< 5	U	< 1 U	< 1 U	< 1	U < 4 L	< 1	U
100-41-4	Ethylbenzene	ug/L	< 1	U	< 1	U	< 1	U	< 1	U	< 5	U	< 1 U	< 1 U	< 1	U < 4 U	< 1	U
98-82-8	Isopropylbenzene	ug/L	< 1	U	< 1	U	< 1	U	< 1	U	< 5	U	< 1 U	< 1 U	< 1	U < 4 L	< 1	U
79-20-9	Methyl acetate	ug/L	< 1	U	< 1	U	< 1	U	< 1	U	< 5	U	< 1 U	< 1 U	< 1	U < 4 L	< 1	U
1634-04-4	Methyl tert-butyl ether	ug/L	< 1	U	< 1	U	< 1	U	< 1	U	< 5	U	< 1 U	< 1 U	< 1	U < 4 L	< 1	U
108-87-2	Methylcyclohexane	ug/L	< 1	U	< 1	U	< 1	U	< 1	U	< 5	U	< 1 U	< 1 U	< 1	U < 4 L	< 1	U
75-09-2	Methylene Chloride	ug/L	< 1	U	< 1	U	< 1	U	< 1	U	< 5	U	< 1 U	< 1 U	< 1	U < 4 L	< 1	U
100-42-5	Styrene	ug/L	< 1	U	< 1	U	< 1	U	< 1	U	< 5	U	< 1 U	< 1 U	< 1	U < 4 L	< 1	U
127-18-4	Tetrachloroethene	ug/L	< 1	U	< 1	U	< 1	U	1.7		< 5	U	< 1 U	< 1 U	< 1	U < 4 L	< 1	U
108-88-3	Toluene	ug/L	< 1	U	< 1	U	< 1	U	< 1	U	< 5	U	< 1 U	< 1 U	< 1	U < 4 L	< 1	U
156-60-5	trans-1,2-Dichloroethene	ug/L	< 1	U	< 1	U	< 1	U	< 1	U	< 5	U	< 1 U	< 1 U	< 1	U < 4 L	< 1	U
10061-02-6	trans-1,3-Dichloropropene	ug/L	< 1	U	< 1	U	< 1	U	< 1	U	< 5	U	< 1 U	< 1 U	< 1	U < 4 L	< 1	U
79-01-6	Trichloroethene	ug/L	< 1	U	1.5		6.2		0.55	J	330		0.6 J	43	< 1	U 330	< 1	U
75-69-4	Trichlorofluoromethane	ug/L	< 1	U	< 1	U	< 1	U	< 1	U	< 5	U	< 1 U	< 1 U	< 1	U < 4 L	< 1	U
75-01-4	Vinyl chloride	ug/L	1.1		3.5		< 1	U	< 1	U	18		< 1 U	< 1 U	< 1	U 3.7 J	< 1	U
1330-20-7	Xylenes, Total	ug/L	< 2	U	< 2	U	< 2	U	< 2	U	< 10	U	< 2 U	< 2 U	< 2	U < 8 L	< 2	U

U - Analyzed for but not detected.

* - MS, MSD, LCS or LCSD exceeds the control limit.

J - Indicates an estimated value.

D - Result determined from Secondary Dultion Factor.

Alcas Cutlery Corporation Olean, New York

	Client Sa	mple ID	RU-18		UA-1		UA-2		UA-3		UA-4		UA5		UC-1		UC-2		UC-3	
	Collecti	on Date	12/2/2011 8:	:30	11/30/2011 1	7:11	11/30/2011	15:30	11/30/2011 13:45		11/30/2011 11:	35	11/30/2011 9	:15	11/30/2011 1	L8:00	11/30/2011 10	0:00	11/30/2011	16:35
	Analy	sis Date	12/13/2011 4	:38	12/12/2011 1	3:52	12/10/2011	20:20	12/10/2011 19:58		12/10/2011 15:	54	12/9/2011 12	:00	12/10/2011 1	L7:00	12/12/2011 13	3:08	12/10/2011	16:38
	Analysis	Method	8260B		8260B		8260B		8260B		8260B		8260B		8260B		8260B		8260B	
	Dilution	n Factor	1		1		1		1		1		1		1		1		1	
CAS	Analyte	Unit	Result		Result		Result		Result		Result		Result		Result		Result		Result	-
71-55-6	1,1,1-Trichloroethane	ug/L	< 1	U	< 1	U	< 1	U	< 1 U		< 1	U	< 1	U	< 1	U	< 1	U	< 1	U
79-34-5	1,1,2,2-Tetrachloroethane	ug/L	< 1	U	< 1	U	< 1	U	< 1 U		< 1	U	< 1	U	< 1	U	< 1	U	< 1	U
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane	ug/L	< 1	U	< 1	U	< 1	U	< 1 U		< 1	U	< 1	U	< 1	U	< 1	U	< 1	U
79-00-5	1,1,2-Trichloroethane	ug/L	0.77	J	< 1	U	< 1	U	< 1 U		< 1	U	< 1	U	< 1	U	< 1	U	< 1	U
75-34-3	1,1-Dichloroethane	ug/L	< 1	U	< 1	U	< 1	U	< 1 U		< 1	U	< 1	U	< 1	U	< 1	U	< 1	U
75-35-4	1,1-Dichloroethene	ug/L	5.8		< 1	U	< 1	U	< 1 U		< 1	U	< 1	U	< 1	U	< 1	U	< 1	U
120-82-1	1,2,4-Trichlorobenzene	ug/L	< 1	U	< 1	U	< 1	U	< 1 U		< 1	U	< 1	U	< 1	U	< 1	U	< 1	U
96-12-8	1,2-Dibromo-3-Chloropropane	ug/L	< 1	U	< 1	U	< 1	U	< 1 U		< 1	U	< 1	U	< 1	U	< 1	U	< 1	U
106-93-4	1,2-Dibromoethane	ug/L	< 1	U	< 1	U	< 1	U	< 1 U		< 1	U	< 1	U	< 1	U	< 1	U	< 1	U
95-50-1	1,2-Dichlorobenzene	ug/L	< 1	U	< 1	U	< 1	U	< 1 U		< 1	U	< 1	U	< 1	U	< 1	U	< 1	U
107-06-2	1,2-Dichloroethane	ug/L	< 1	U	< 1	U	< 1	U	< 1 U		< 1	U	< 1	U	< 1	U	< 1	U	< 1	U
78-87-5	1,2-Dichloropropane	ug/L	< 1	U	< 1	U	< 1	U	< 1 U		< 1	U	< 1	U	< 1	U	< 1	U	< 1	U
541-73-1	1,3-Dichlorobenzene	ug/L	< 1	U	< 1	U	< 1	U	< 1 U		< 1	U	< 1	U	< 1	U	< 1	U	< 1	U
106-46-7	1,4-Dichlorobenzene	ug/L	< 1	U	< 1	U	< 1	U	< 1 U		< 1	U	< 1	U	< 1	U	< 1	U	< 1	U
78-93-3	2-Butanone (MEK)	ug/L	< 10	U	< 10	U	< 10	U	< 10 U		< 10	U	< 10	U	< 10	U	< 10	U	< 10	U
591-78-6	2-Hexanone	ug/L	< 5	U	< 5	U	< 5	U	< 5 U		< 5	U	< 5	U	< 5	U	< 5	U	< 5	U
108-10-1	4-Methyl-2-pentanone (MIBK)	ug/L	< 5	U	< 5	U	< 5	U	< 5 U		< 5	U	< 5	U	< 5	U	< 5	U	< 5	U
67-64-1	Acetone	ug/L	< 10	U	< 10	U	< 10	U	< 10 U		< 10	U	< 10	U	< 10	U	< 10	U	< 10	U
71-43-2	Benzene	ug/L	0.41	J	< 1	U	< 1	U	< 1 U		< 1	U	< 1	U	< 1	U	< 1	U	< 1	U
75-27-4	Bromodichloromethane	ug/L	< 1	U	< 1	U	< 1	U	< 1 U		< 1	U	< 1	U	< 1	U	< 1	U	< 1	U
75-25-2	Bromoform	ug/L	< 1	U	< 1	U	< 1	U	< 1 U		< 1	U	< 1	U	< 1	U	< 1	U	< 1	U
74-83-9	Bromomethane	ug/L	< 1	U	< 1	U	< 1	U	< 1 U		< 1	U	< 1	U	< 1	U	< 1	U	< 1	U
75-15-0	Carbon disulfide	ug/L	0.98	J	< 1	U *	< 1	U *	< 1 U ³	*	< 1	U *	< 1	U *	< 1	U *	< 1	U *	< 1	U *
56-23-5	Carbon tetrachloride	ug/L	< 1	U	< 1	U	< 1	U	< 1 U		< 1	U	< 1	U	< 1	U	< 1	U	< 1	U
108-90-7	Chlorobenzene	ug/L	< 1	U	< 1	U	< 1	U	< 1 U		< 1	U	< 1	U	< 1	U	< 1	U	< 1	U
75-00-3	Chloroethane	ug/L	0.51	J	< 1	U	< 1	U	< 1 U		< 1	U	< 1	U	< 1	U	< 1	U	< 1	U
67-66-3	Chloroform	ug/L	< 1	U	< 1	U	< 1	U	< 1 U		< 1	U	< 1	U	< 1	U	< 1	U	< 1	U
74-87-3	Chloromethane	ug/L	< 1	U	< 1	U	< 1	U	< 1 U		< 1	U	< 1	U	< 1	U	< 1	U	< 1	U
156-59-2	cis-1,2-Dichloroethene	ug/L	1700	D	49		9.3		3.1		< 1	U	< 1	U	< 1	U	< 1	U	< 1	U
10061-01-5	cis-1,3-Dichloropropene	ug/L	< 1	U	< 1	U	< 1	U	< 1 U		< 1	U	< 1	U	< 1	U	< 1	U	< 1	U
110-82-7	Cyclohexane	ug/L	< 1	U	< 1	U	< 1	U	< 1 U		< 1	U	< 1	U	< 1	U	< 1	U	< 1	U
124-48-1	Dibromochloromethane	ug/L	< 1	U	< 1	U	< 1	U	< 1 U		< 1	U	< 1	U	< 1	U	< 1	U	< 1	U
75-71-8	Dichlorodifluoromethane	ug/L	< 1	U	< 1	U	< 1	U	< 1 U		< 1	U	< 1	U	< 1	U	< 1	U	< 1	U
100-41-4	Ethylbenzene	ug/L	< 1	U	< 1	U	< 1	U	< 1 U		< 1	U	< 1	U	< 1	U	< 1	U	< 1	U
98-82-8	Isopropylbenzene	ug/L	< 1	U	< 1	U	< 1	U	< 1 U		< 1	U	< 1	U	< 1	U	< 1	U	< 1	U
79-20-9	Methyl acetate	ug/L	< 1	U	< 1	U	< 1	U	< 1 U		< 1	U	< 1	U	< 1	U	< 1	U	< 1	U
1634-04-4	Methyl tert-butyl ether	ug/L	< 1	U	< 1	U	< 1	U	< 1 U		< 1	U	< 1	U	< 1	U	< 1	U	< 1	U
108-87-2	Methylcyclohexane	ug/L	< 1	U	< 1	U	< 1	U	< 1 U		< 1	U	< 1	U	< 1	U	< 1	U	< 1	U
75-09-2	Methylene Chloride	ug/L	< 1	U	< 1	U	< 1	U	< 1 U		< 1	U	< 1	U	< 1	U	< 1	U	< 1	U
100-42-5	Styrene	ug/L	< 1	U	< 1	U	< 1	U	< 1 U		< 1	U	< 1	U	< 1	U	< 1	U	< 1	U
127-18-4	Tetrachloroethene	ug/L	2.9		< 1	U	< 1	U	< 1 U		< 1	U	< 1	U	< 1	U	< 1	U	< 1	U
108-88-3	Toluene	ug/L	< 1	U	< 1	U	< 1	U	< 1 U		< 1	U	< 1	U	< 1	U	< 1	U	< 1	U
156-60-5	trans-1,2-Dichloroethene	ug/L	9.3		< 1	U	< 1	U	< 1 U		< 1	U	< 1	U	< 1	U	< 1	U	< 1	U
10061-02-6	trans-1,3-Dichloropropene	ug/L	< 1	U	< 1	U	< 1	U	< 1 U		< 1	U	< 1	U	< 1	U	< 1	U	< 1	U
79-01-6	Trichloroethene	ug/L	4600	D	0.91	J	13		29		5.6		18		13		< 1	U	7.2	
75-69-4	Trichlorofluoromethane	ug/L	< 1	U	< 1	U	< 1	U	< 1 U		< 1	U	< 1	U	< 1	U	< 1	U	< 1	U
75-01-4	Vinyl chloride	ug/L	43		8.3		< 1	U	< 1 U		< 1	U	< 1	U	< 1	U	< 1	U	< 1	U
1330-20-7	Xylenes, Total	ug/L	< 2	U	< 2	U	< 2	U	< 2 U		< 2	U	< 2	U	< 2	U	< 2	U	< 2	U

U - Analyzed for but not detected.

* - MS, MSD, LCS or LCSD exceeds the control limit.

J - Indicates an estimated value.

D - Result determined from Secondary Dultion Factor.

Alcas Cutlery Corporation Olean, New York

		. 1	-		-	I	-			
	Client Sa	ample ID	UC-4		UC-5		EQUIP BLANK		TRIP BLAN	١K
	Collect	ion Date	11/30/2011 1	4:30	11/30/2011 1	2:30	12/3/2011 8:0	0	12/3/2011	8:00
	Analy	sis Date	12/10/2011 1	6:16	12/12/2011 1	2:46	12/13/2011 18:	32	12/13/2011	18:56
	Analysis	Method	8260B		8260B		8260B		8260B	
	Dilutio	n Factor	1		1		1			1
CAS	Analyte	Unit	Result		Result		Result		Result	
71-55-6	1,1,1-Trichloroethane	ug/L	< 1	U	< 1	U	< 1	U	< 1	U
79-34-5	1,1,2,2-Tetrachloroethane	ug/L	< 1	U	< 1	U	< 1	U	< 1	U
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane	ug/L	< 1	U	< 1	U	< 1	U	< 1	U
79-00-5	1,1,2-Trichloroethane	ug/L	< 1	U	< 1	U	< 1	U	< 1	U
75-34-3	1,1-Dichloroethane	ug/L	< 1	U	< 1	U	< 1	U	< 1	U
75-35-4	1,1-Dichloroethene	ug/L	< 1	U	< 1	U	< 1	U	< 1	U
120-82-1	1,2,4-Trichlorobenzene	ug/L	< 1	U	< 1	U	< 1	U	< 1	U
96-12-8	1,2-Dibromo-3-Chloropropane	ug/L	< 1	U	< 1	U	< 1	U	< 1	U
106-93-4	1,2-Dibromoethane	ug/L	< 1	U	< 1	U	< 1	U	< 1	U
95-50-1	1,2-Dichlorobenzene	ug/L	< 1	U	< 1	U	< 1	U	< 1	U
107-06-2	1,2-Dichloroethane	ug/L	< 1	U	< 1	U	< 1	U	< 1	U
78-87-5	1,2-Dichloropropane	ug/L	< 1	U	< 1	U	< 1	U	< 1	U
541-73-1	1,3-Dichlorobenzene	ug/L	< 1	U	< 1	U	< 1	U	< 1	l
106-46-7	1,4-Dichlorobenzene	ug/L	< 1	U	< 1	U	< 1	U	< 1	l
78-93-3	2-Butanone (MEK)	ug/L	< 10	U	< 10	U	< 10	U	< 10	U
591-78-6	2-Hexanone	ug/L	< 5	U	< 5	U	< 5	U	< 5	U
108-10-1	4-Methyl-2-pentanone (MIBK)	ug/L	< 5	U	< 5	U	< 5	U	< 5	U
67-64-1	Acetone	ug/L	< 10	U	< 10	U	6.6	J	6.9	J
71-43-2	Benzene	ug/L	< 1	U	< 1	U	< 1	U	< 1	U
75-27-4	Bromodichloromethane	ug/L	< 1	U	< 1	U	< 1	U	< 1	U
75-25-2	Bromoform	ug/L	< 1	U	< 1	U	< 1	U	< 1	U
74-83-9	Bromomethane	ug/L	< 1	U	< 1	U	< 1	U	< 1	U
75-15-0	Carbon disulfide	ug/L	< 1	U *	< 1	U *	< 1	U	< 1	U
56-23-5	Carbon tetrachloride	ug/L	< 1	U	< 1	U	< 1	U	< 1	U
108-90-7	Chlorobenzene	ug/L	< 1	U	< 1	U	< 1	U	< 1	l
75-00-3	Chloroethane	ug/L	< 1	U	< 1	U	< 1	U	< 1	l
67-66-3	Chloroform	ug/L	< 1	U	< 1	U	< 1	U	< 1	U
74-87-3	Chloromethane	ug/L	< 1	U	< 1	U	< 1	U	< 1	U
156-59-2	cis-1,2-Dichloroethene	ug/L	1.8		0.93	J	< 1	U	< 1	U
10061-01-5	cis-1,3-Dichloropropene	ug/L	< 1	U	< 1	U	< 1	U	< 1	U
110-82-7	Cyclohexane	ug/L	< 1	U	< 1	U	< 1	U	< 1	U
124-48-1	Dibromochloromethane	ug/L	< 1	U	< 1	U	< 1	U	< 1	U
75-71-8	Dichlorodifluoromethane	ug/L	< 1	U	< 1	U	< 1	U	< 1	U
100-41-4	Ethylbenzene	ug/L	< 1	U	< 1	U	< 1	U	< 1	L
98-82-8	Isopropylbenzene	ug/L	< 1	U	< 1	U	< 1	U	< 1	L
79-20-9	Methyl acetate	ug/L	< 1	U	< 1	U	< 1	U	< 1	L
1634-04-4	Methyl tert-butyl ether	ug/L	< 1	U	< 1	U	< 1	U	< 1	U
108-87-2	Methylcyclohexane	ug/L	< 1	U	< 1	U	< 1	U	< 1	U
75-09-2	Methylene Chloride	ug/L	< 1	U	< 1	U	< 1	U	< 1	l
100-42-5	Styrene	ug/L	< 1	U	< 1	U	< 1	U	< 1	L
127-18-4	Tetrachloroethene	ug/L	< 1	U	< 1	U	< 1	U	< 1	U
108-88-3	Toluene	ug/L	< 1	U	< 1	U	< 1	U	< 1	U
156-60-5	trans-1,2-Dichloroethene	ug/L	< 1	U	< 1	U	< 1	U	< 1	U
10061-02-6	trans-1,3-Dichloropropene	ug/L	< 1	U	< 1	U	< 1	U	< 1	U
79-01-6	Trichloroethene	ug/L	55		95		< 1	U	< 1	U
75-69-4	Trichlorofluoromethane	ug/L	< 1	U	< 1	U	< 1	U	< 1	U
75-01-4	Vinyl chloride	ug/L	< 1	U	< 1	U	< 1	U	< 1	U
1330-20-7	Xylenes, Total	ug/L	< 2	U	< 2	U	< 2	U	< 2	U

U - Analyzed for but not detected.

* - MS, MSD, LCS or LCSD exceeds the control limit.

J - Indicates an estimated value.

D - Result determined from Secondary Dultion Factor.

Table 3-2 General Chemistry Parameters in Groundwater

Alcas Cutlery Corporation Olean, New York

	Client S	ample ID	Departing	RU-3	RU-4	RU-6	RU-8	RU-9	UA-1	UA-2	UA-3	UA-4
	Collect	ion Date	Limit	11/30/2011	11/30/2011	11/30/2011	11/30/2011	11/30/2011	11/30/2011	11/30/2011	11/30/2011	11/30/2011
	Anal	ysis Date	LIIIIIL	12/12/2011	12/10/2011	12/12/2011	12/10/2011	12/12/2011	12/12/2011	12/10/2011	12/10/2011	12/10/2011
CAS	Analyte	Unit										
74-84-0	Ethane	mg/L	0.003	0.0068	0.2	U	0.00091 J	U	0.0005 J	U	U	U
74-85-1	Ethene	mg/L	0.004	0.013	0.27 J	U	0.00076 J	U	U	U	U	U
74-82-8	Methane	mg/L	0.002	0.14	0.9	0.0041	0.013	U	0.11	U	0.00049 J	U
16887-00-6	Chloride	mg/L	1	244	566	140	11.7	9.1	3.2	11.1	3.2	50.9
14808-79-8	Sulfate	mg/L	2	46	56.6	31.7	39.4	9.3	47.6	27.9	13.8	29.8
14797-55-8	Nitrate as N	mg/L	0.1	U	0.025 J	1.3	0.36	2.5	U	1.8	0.88	2.4
	COD	mg/L	10	U	41.8	6.7 J	U	21.2	34.8	14.9	U	U
	Alkalinity	mg/L	5	352	342	227	352	75.1	163	61.3	89.4	251
18496-25-8	Sulfide	mg/L	1	U	U	U	U	U	U	U	U	U
7440-44-0	TOC	mg/L	1	3.4	5.8	1.2	1.2	1.5	14.4	5.7	10.8	U

U - Analyzed for but not detected.

J - Indicates an estimated value.

Table 3-2 General Chemistry Parameters in Groundwater

Alcas Cutlery Corporation Olean, New York

	Client Sa	ample ID	Departing	UA-5	UC-1	UC-2	UC-3	UC-4	UC-5
	Collect	ion Date	Limit	11/30/2011	11/30/2011	11/30/2011	11/30/2011	11/30/2011	11/30/2011
	Analy	ysis Date	LIIIIIL	12/9/2011	12/10/2011	12/12/2011	12/10/2011	12/10/2011	12/12/2011
CAS	Analyte	Unit							
74-84-0	Ethane	mg/L	0.003	U	U	U	U	U	U
74-85-1	Ethene	mg/L	0.004	U	U	U	U	U	U
74-82-8	Methane	mg/L	0.002	U	U	U	0.0003 J	0.00023 J	0.00023 J
16887-00-6	Chloride	mg/L	1	59.7	97.4	88.1	90.3	165	109
14808-79-8	Sulfate	mg/L	2	30	24.6	32.3	24	38.9	39.9
14797-55-8	Nitrate as N	mg/L	0.1	2.4	1.7	2.3	1.3	1.4	0.056 J
	COD	mg/L	10	U	U	U	U	U	U
	Alkalinity	mg/L	5	238	244	184	293	221	205
18496-25-8	Sulfide	mg/L	1	U	U	U	U	U	U
7440-44-0	TOC	mg/L	1	0.64 J	0.84 J	0.45 J	1.1	0.47 J	0.56 J

U - Analyzed for but not detected.

J - Indicates an estimated value.

Table 3-3General Chemistry in Groundwater (Field Parameters)

Alcas Cutlery Corporation Olean, New York

Well ID	Dissolved	Ferrous	ORP	рН	Temp	SC
	Oxygen	mg/l		<u></u>	°c	C./area
	IIIg/L	IIIg/ L	mv	50	C	μs/cm
RU-1	9.4	0	156.3	6.82	12.4	837
RU-3	3.63	0	164.8	6.16	13.9	1264
RU-4	3.47	0.06	154.2	6.39	14.5	2116
RU-5	3.07	0	-131.5	6.49	16.6	618
RU-6	5.06	0	199.8	7.13	12.3	152
RU-7	3.46	0.23	193.2	7.12	10.3	669
RU-8	0.97	0.05	-17	7.02	9.4	419
RU-9	0.97	0.06	23.6	6.84	16.3	73
RU-10	ND	ND	ND	ND	ND	ND
RU-11	ND	0.51	ND	7.35	13.9	424
RU-12	ND	1.98	ND	6.08	13.1	448
RU-13	1.28	0.41	152.3	6.1	15.9	781
RU-14A	7.23	0.16	169.2	7.23	13.7	634
RU-14B	2.11	0	144	5.39	15.0	1464
RU-15	ND	0.58	ND	6.15	12.9	137
RU-16	2.66	0.1	-106.6	4.7	11.5	187
RU-17A	9.27	0.09	154.7	6.6	15.5	2773
RU-17B	1.8	0	136.2	5.43	13.8	2647
UA-1	0.63	0.81	-30.7	6.18	11.4	291
UA-2	0.9	0	42.5	5.93	9.8	141
UA-3	0.69	0.03	20.3	6.38	10.9	111
UA-4	3.56	0.18	127.5	7.44	12.2	583
UA-5	4.71	0.16	162	7.43	14.8	546
B-1	3.92	1.9	165.2	5.97	15.1	1540
P-1	5.07	ND	130.9	7.4	10.4	511
P-2	6.02	0.42	171.6	6.79	13.3	539
CW-13A	3.57	1.49	-72	6.39	9.4	406
RU-2	ND	ND	ND	ND	ND	ND
RU-17C	2.86	0.02	194.3	7.07	14.0	782
RU-18	2.65	0.24	144.7	5.93	12.0	692
UC-1	1.64	0	175.3	8.14	10.8	698
UC-2	3.68	0.14	188.6	7.39	10.9	605
UC-3	1.17	0.2	160.7	8.09	10.7	734
UC-4	0.8	0.01	161.5	8.53	14.4	870
UC-5	2.5	0.07	196.5	7.28	9.0	375
B-2	3.01	1.9	168.4	6.54	14.9	1138
Alcas D2	4.68	0	144.4	5.19	9.1	807
BC-1	3.58	0.1	-62.9	8.14	9.9	0.507
BC-2	3.46	0.12	-53.3	8.31	10.9	0.422
BC-3	0.32	ND	168.6	10.27	8.1	0.672

Table 3-3General Chemistry in Groundwater (Field Parameters)

Alcas Cutlery Corporation Olean, New York

Well ID	Dissolved Oxygen	Ferrous Iron	ORP	рН	Temp	SC
	mg/L	mg/L	mV	SU	°C	μS/cm
BC-4	0.516	0	-43.8	8.39	11.4	0.45
BC-5	ND	0.19	ND	8.65	10.4	0.403
CW-13	6.4	0	170.6	7.98	7.9	0.472

ND- Parameter Not determined.

Figures

Image: Normal State St	
--	--

FIGURE 3–1 TCE Concentration Isopleth Map Upper Water Bearing Zone ALCAS FACILITY OLEAN, NEW YORK DRAWN BY: DATE: PROJ. NO. 137–154	SAMPLES COLLECTED IN DECEMBER 2011	LEGEND UA-1 ALCAS MONITORING WELLS SW-14 EXISTING MONITORING WELLS 18M PUBLIC WATER WELL ENI-1 BORING — — — PROPERTY BOUNDARY — — — FENCE O.0011 TCE CONCENTRATION IN THE UPPER WATER BEARING ZONE mg/L	37/38M
--	------------------------------------	--	--------

	FIGURE 3 TCE Concentration Is City and Upper ALCAS FAN OLEAN, NEW	ENVIRONEE	0 7	SAMPLES C	0.026	UA−1 � SW−14 � 18M @ ENI−1 ●	6	Z Z V V
	3–2 sopleth Maj City Trans CILITY V YORK	RING, IN	5 150 SCALE IN FEET	COLLECTED IN DECEMBER 2	TCE CONCENTRATION IN THE UPPER CITY TRANSITION ZONE m	ALCAS MONITORING WE EXISTING MONITORING PUBLIC WATER WELL BORING PROPERTY BOUNDARY FENCE	EGEND	37/38M
137–154	p sition Zone	<u>VC.</u>	300	011	AND UPPER CITY	WELLS		

DRAWN BY: AF	FIGUF P Concentratio ALCAS OLEAN,	ENVIRON	0 7	0.026	0.0011	ENI-1 ●	UA−1 💠 SW−14 🔶 18M 👁	6	
DATE: 11/13/2012 137-154	RE 3–3 CE 'n Isopleth Map FACILITY NEW YORK	EERING, INC.	SCALE IN FEET	PCE CONCENTRATION IN THE UPPER WATER BEARING ZONE mg/L SAMPLES COLLECTED IN DECEMBER 2011	FENCE PCE CONCENTRATION IN THE UPPER CITY AND UPPER CITY TRANSITION ZONE mg/L	BORING PROPERTY BOUNDARY	- ALCAS MONITORING WELLS EXISTING MONITORING WELLS PUBLIC WATER WELL	EGEND	37/38M

DRAWN BY: AF	FIGUR Chlo Concentratio ALCAS OLEAN,	ENVIRONI	0 7		0.026		UA−1 4 SW−14 0 18M ④	LEGENE	
DATE: 11/13/2012 137-154	RE 3–6 oride n Isopleth Map FACILITY NEW YORK	EERING, INC.	SCALE IN FEET	SAMPLES COLLECTED IN DECEMBER 2011	cis-1,2-DCE CONCENTRATION IN THE UPPER CITY AND UPPER CITY TRANSITION ZONE mg/L cis-1,2-DCE CONCENTRATION IN THE	PROPERTY BOUNDARY FENCE	 ALCAS MONITORING WELLS EXISTING MONITORING WELLS PUBLIC WATER WELL 	μ	37/38M

AF 11/13/2012 137-154	FIGURE 3-7 Alkalinity Concentration Isopleth Map ALCAS FACILITY OLEAN, NEW YORK	SCALE IN FEET	0.026 ALKALINITY CONCENTRATION IN THE UPPER CITY AND UPPER CITY TRANSITION ZONE mg/L 0.0011 ALKALINITY CONCENTRATION IN THE UPPER WATER BEARING ZONE mg/L	PROPERTY BOUNDARY FENCE	UA-1 ALCAS MONITORING WELLS SW-14 EXISTING MONITORING WELLS 18M PUBLIC WATER WELL	LEGEND	37/38M
-----------------------	---	---------------	---	----------------------------	---	--------	--------

Appendix F

Enhanced Anaerobic Bioremediation Pilot Study

Report

Enhanced Anaerobic Bioremediation Pilot Study Alcas Cutlery Corporation Facility, Olean, New York

Prepared by:

CDM Smith 555 17th Street, Suite 1100 Denver, Colorado 80202

Prepared for:

ALCOA INC. 2300 North Wright Rd. Alcoa TN, 37701

Attn: Mr. Robert Prezbindowski

May 2012

Table of Contents

Section 1	Introduct	tion	
1.1	Project	and Regulatory Background	
1.2	Objectiv	/es	1-1
1.3	Technol	logy Description	
	1.3.1	EAB	
	1.3.2	Electron Donors	
	1.3.3	Redox Conditions	
	1.3.4	Bioaugmentation	
1.4	Data Qu	ality Objectives	
	1.4.1	Problem Statement	
	1.4.2	Decision Questions	
	1.4.3	Inputs to the Decision	
	1.4.4	Boundaries of the Study	
	1.4.5	Decision Rules	
	1.4.6	Limits on Decision Errors	
1.5	Report	Organization	
Section 2	Summary	v of Activities	
2.1	Implem	entation of EAB Pilot Study	2-1
	2.2.1	Well Installation	2-1
	2.2.2	Electron Donor Injection	
	2.2.3	Bioaugmentation	
2.3	Ground	water Monitoring	
Section 3	Electron	Donor Delivery and Distribution	
3.1	Delivery	۷	
3.2	Distribu	, Ition	
	3.2.1	TOC and Organic Acid Concentrations	
	3.2.2	Summary of Distribution	
3.3	Hydrau	lic Conductivity Testing	
Section 4	EAB Resu	ılts	
4.1	Redox (Conditions	
	4.1.1	Oxidation-Reduction Potential	
	4.1.2	Inorganic Electron Acceptors	
		4.1.2.1 Nitrate	
		4.1.2.2 Ferrous Iron	
		4.1.2.3 Sulfate	
		4.1.2.4 Methane	
	4.1.3	Redox Summary	
4.2	Dechlor	ination	4-6
	4.2.1	Injection Area	4-6
	4.2.2	Monitoring Wells	4-8
	4.2.3	Dechlorination Summary	4-14
43	Bioaugr	nentation	
4.4	Dissolv	ed Metals	4-15
	~ 1000101		

Section 5 Pilot Scale Summary and Conclusions

Section 6 References

List of Figures

- 1-1 Alcas Facility Layout
- 2-1 Pilot Study Layout

List of Tables

- 3-1 Hydraulic Conductivity Testing Summary
- 4-1 Analytical Results Summary
- 4-2 Dehalococcoides Spp. Analytical Results
- 4-3 Dissolved Metals Concentrations

Appendices

Appendix A	Boring Logs and Well Construction Diagrams
Appendix B	Laboratory Data
Appendix C	Hydraulic Conductivity Testing Results

Exhibits

3-1A	RU-21 Electron Donor Data	3-2
3-1B	RU-10 Electron Donor Data	
3-1C	RU-19 Electron Donor Data	3-3
3-1D	RU-20 Electron Donor Data	3-3
3-1E	RU-8 Electron Donor Data	3-4
4-1A	RU-21 Electron Acceptor Data	4-2
4.1B	RU-10 Electron Acceptor Data	4-2
4.1C	RU-19 Electron Acceptor Data	4-3
4-1D	RU-20 Electron Acceptor Data	4-3
4-1E	RU-8 Electron Acceptor Data	4-4
4-2A	RU-21 VOC Molar Concentrations	
4-2B	RU-21 VOC Mass Concentrations	4-7
4-3A	RU-10 VOC Molar Concentrations	
4-3B	RU-10 VOC Mass Concentrations	4-9
4-4A	RU-19 VOC Molar Concentrations	4-10
4-4B	RU-19 VOC Mass Concentrations	4-10
4-5A	RU-20 VOC Molar Concentrations	4-11
4-5B	RU-20 VOC Mass Concentrations	4-12
4-6A	RU-8 VOC Molar Concentrations	4-13
4-6B	RU-8 VOC Mass Concentrations	4-13

Acronyms

bgs	below ground surface
bls	below land surface
DCE	dichloroethene
deg C	degrees Celsius
DNA	deoxyribonucleic acid
DNAPL	dense non-aqueous phase liquid
DO	dissolved oxygen
DPT	direct push technology
DQO	Data Quality Objectives
EAB	enhanced anaerobic bioremediation
EPA	U.S. Environmental Protection Agency
FFS	Focused Feasibility Study
mg/L	milligrams per liter
ORP	oxidation reduction potential
0U1	Operable Unit 1
PCE	tetrachloroethene
psi	pounds per square inch
ROD	Record of Decision
ROI	radius of influence
Site	Alcas Cutlery Corporation Facility Site
TCE	trichloroethene
ТОС	total organic carbon
UWBZ	upper water bearing zone
VC	vinyl chloride
VFA	volatile fatty acid
VOCs	volatile organic compounds

Section 1

Introduction

This report presents the results of the enhanced anaerobic bioremediation (EAB) pilot study completed to support evaluation and selection of *in-situ* treatment technologies "short listed" in Part I of the Focused Feasibility Study (FFS) for the Alcas Cutlery Corporation Facility Site (Site) Olean, Cattaraugus County, New York. Part II of the FFS includes a pilot test to evaluate EAB to treat dissolved-phase trichloroethene (TCE) present at the Site. This introductory section provides an overview of the project background, the report objectives, and the technology description.

1.1 Project and Regulatory Background

The U.S. Environmental Protection Agency (EPA) added the Olean Well Field to the National Priorities List in September 1983 when TCE and other solvents were detected above drinking water standards in the City of Olean municipal supply wells. Based on the results of the early studies and interim actions, EPA issued the Record of Decision (ROD) for the First Operable Unit (OU1 ROD) in September 1985, which included installation of an air stripper to treat chlorinated solvents at well 18M, located near the Site. **Figure 1-1** illustrates the features of the Alcas property, including the estimated extent of the TCE plumes. Previous investigations have determined that the governing source of the chlorinated volatile organic compounds (VOCs) found in the Upper and City aquifers was from residual dense non-aqueous phase liquid (DNAPL) located underneath the main building.

Part II Phase 2 of the FFS for the Site includes the scope of work defined in the Pilot and Bench Study Remedial Action Plan (CDM Smith 2011) to implement bench and pilot testing at the Site. This testing is focused on obtaining targeted parameters to evaluate the technologies that were "short listed" in the previously submitted Part I of the FFS. Technology selection will be detailed during the Part II Phase 3 of the FFS effort, following completion of Phase 2 field characterization, bench testing, and pilot testing activities.

Several previous investigations have identified and characterized the presence of chlorinated VOCs in soil and groundwater at the Site, including an offsite area to the south. EAB with bioaugmentation is being considered as a potential remedy for the TCE groundwater plume. The findings of this pilot study will be used to assess the viability of EAB for larger-scale application and to compare it to other alternatives.

Additional Site background information is presented in the final Pilot and Bench Study Remedial Action Plan (CDM Smith 2011).

1.2 Objectives

The overall objectives of the pilot testing were to collect data to evaluate the efficacy of EAB to treat the Site plume and to ensure whatever is done in the field at the Site will "do no harm" to the City Aquifer or existing municipal well treatment system. Specific objectives of the pilot test were as follows:

- 1. Demonstrate whether bioremediation with bioaugmentation can successfully dechlorinate TCE to non-hazardous byproducts, e.g., ethene.
- 2. Determine injection parameters needed for full-scale design, including amendment dosing rates, and lag time before onset of efficient dechlorination.
- 3. Determine hydraulic parameters needed for a full-scale design, including target depth intervals, feasible injection rates, and radius of influence through a single injection point.
- 4. Evaluate production and mitigation of secondary water quality factors, such as total organic carbon (TOC), and dissolved metals (e.g., iron and manganese) to ensure no impacts to the 18M municipal supply well.

1.3 Technology Description

1.3.1 EAB

During EAB, TCE will be completely transformed to innocuous products following the reductive dechlorination pathway: TCE \rightarrow dichloroethene (DCE) \rightarrow vinyl chloride (VC) \rightarrow ethene (Freedman and Gossett 1989). EAB is generally facilitated through the addition of fermentable carbon compounds that serve as "electron donors" for subsurface bacteria that use the chloroethenes as "electron acceptors." The hydrogen produced during fermentation reactions is the primary electron donor for dechlorinating bacteria and drives EAB. This electron transfer process provides the bacteria with energy for population growth and metabolic activity.

The two primary requirements for successful implementation of EAB are: 1) adequate spatial distribution of the electron donor to achieve strongly reducing conditions, and 2) a microbial community capable of complete reductive dechlorination of the chlorinated compounds. Meeting both of these requirements is therefore the focus of this pilot study.

1.3.2 Electron Donors

Electron donors come in two basic types: aqueous and "slow-release." Aqueous electron donors are generally miscible and of a viscosity similar to water, and are therefore relatively easy to distribute in the subsurface, and are very quickly used by the microbial community. They have the disadvantage that they typically last only a few months in the subsurface, and therefore have to be reinjected periodically. Slow-release donors are typically high-viscosity liquids or solids that last much longer than aqueous donors, but are more difficult to distribute in subsurface soils. At this Site, slow-release donors are appropriate at least for the more permeable soils for a couple reasons. First, the shallow depth of the target treatment zone (up to about 25 feet below land surface [bls]) and the unconsolidated soils allow emplacement of a large amount of electron donor using a grid of direct-push injection points. Second, the residential land use in the area makes it desirable to minimize the number of injections. However, the less permeable Site soils will make distribution of viscous compounds challenging. Therefore, the electron donor used for the pilot study will be a combination of aqueous and slow-release donors, to maximize the longevity of the amendment, but take advantage of better distribution and reduced lag time before onset of microbial activity.

Although a variety of electron donor compounds are available, their impact on groundwater conditions will generally be quite similar. In almost all cases fermentation, hydrolysis, or a

combination of both will transform the electron donor compounds into smaller, volatile fatty acid (VFA) compounds such as acetate, propionate, and butyrate. The relative proportions of the VFAs will depend on the donor and the indigenous microbial community. The VFAs are then transformed into hydrogen, carbon dioxide, and hydrogen ions (protons). The hydrogen is utilized by a wide variety of anaerobic microbes, including dechlorinators, methanogens, sulfate-reducers, etc. Metals that become more soluble under reducing conditions, such as iron and manganese, are likely to increase in concentration in the active treatment zone, but are typically precipitated within a short distance down gradient as conditions become less reducing.

1.3.3 Redox Conditions

The most important aspect of groundwater chemistry with respect to the fate of chlorinated hydrocarbons is the oxidation-reduction, or redox, conditions. Chlorinated hydrocarbons serve as electron acceptors in microbially-mediated redox reactions during reductive dechlorination (including EAB). Therefore, they have to compete with naturally occurring electron acceptors in groundwater. The use of electron acceptors is generally governed by the available free energy from redox reactions. In order of decreasing energy available, some common, naturally occurring electron acceptors are oxygen, nitrate, iron-III, sulfate, and carbon dioxide. At a minimum, oxygen and nitrate must be depleted for any reductive dechlorination to occur. Dechlorination of tetrachloroethene (PCE) and TCE to DCE generally occurs under iron-reducing to sulfate-reducing conditions. Complete dechlorination to ethene typically occurs under methanogenic conditions (carbon dioxide is the only remaining naturally occurring electron acceptor.) Thus, understanding redox conditions (aerobic, nitrate-reducing, iron-reducing, sulfate-reducing, or methanogenic) provides key insight into the potential for reductive dechlorination to occur at a site. The more electron donor present, the more reducing the conditions will be.

1.3.4 Bioaugmentation

EAB can be accomplished through either biostimulation or bioaugmentation. Biostimulation involves only the addition of electron donors, and potentially nutrients such as nitrogen and phosphorous, relying on indigenous microorganisms to carry out the desired reactions. Bioaugmentation on the other hand is the introduction of non-indigenous microorganisms as well as electron donors into site groundwater to provide a metabolic capability that either is not present in the native community, or can be significantly enhanced. The dechlorinating bacteria, *Dehalococcoides spp.*, have been found to be very important for achieving complete dechlorination of PCE and TCE to ethene in groundwater (Hendrickson et al. 2002). While these bacteria are fairly common, they are not present at every site, and their absence can lead to the stall of dechlorination at DCE. Several studies have now been performed to demonstrate that these bacteria can be added to an aquifer to facilitate complete dechlorination (e.g., Ellis et al. 2000, Major et al. 2002, Lendvay et al. 2003). As these bacteria only grow in the presence of chlorinated hydrocarbons, their long-term impact on the microbiological community is negligible.

1.4 Data Quality Objectives

The EPA's Data Quality Objectives (DQO) process was used to help frame the "problem" to be addressed by the EAB pilot study at the Site, and to define the associated data needs. This section restates the DQOs developed in the work plan (CDM Smith 2011).

1.4.1 Problem Statement

Historical operations at the Site have resulted in impacted soils and groundwater with TCE and other chlorinated products. An EAB pilot study was completed at the Site for the purpose of determining its potential viability for full-scale application for remediation of the plume.

1.4.2 Decision Questions

The decisions to be made based on the EAB pilot study pertain to the performance of the technology as a whole. Specific decision questions include the following:

- Can electron donor be effectively distributed at the Site to affect the reducing conditions necessary to support complete dechlorination?
- Assuming a limited presence of indigenous microorganisms that have a capability for complete dechlorination, can bioaugmentation be used to provide that capability?
- Does injection of electron donor within the upper water bearing zone (UWBZ) present any risk of undesired effects within the City Aquifer?
- Assuming complete dechlorination is achieved using EAB, will the selected electron donor provide the most cost-effective treatment?

1.4.3 Inputs to the Decision

The data collected during the pilot study are considered inputs to the decision questions. The various data required are grouped here into categories roughly corresponding to the most relevant questions:

- Electron donor distribution electron donor concentrations (measured as TOC and VFAs), biological activity indicators (measured as alkalinity and pH), and redox conditions (measured as oxidation reduction potential [ORP], dissolved oxygen [DO], dissolved iron, sulfate, methane, and TAL metals).
- Bioaugmentation effectiveness chlorinated hydrocarbon and ethene trends over time (measured as PCE, TCE, DCE, VC, and ethene); and growth and proliferation of *Dehalococcoides spp.* bacteria over time (measured as increases in *Dehalococcoides spp.* DNA in groundwater samples).
- Electron donor selection raw electron donor cost; electron donor mass required, distribution strategy, and longevity (based on electron donor distribution measurements over time); and effectiveness for stimulating efficient reductive dechlorination (based on the same measurements as bioaugmentation effectiveness).

1.4.4 Boundaries of the Study

In this context, the term "boundaries" refers both to spatial and temporal boundaries for the pilot study. The pilot study was completed in an area south of the Alcas facility, in the vicinity of well RU-10. The pilot study included three injection locations in the vicinity of newly installed well RU-21, approximately 10 feet apart on centers. Vertically, all injections and monitoring wells targeted the UWBZ (observed between 10 and 20 feet bls in the pilot study location). The pilot study duration (including baseline sampling), was planned for a maximum of 6 months.

1.4.5 Decision Rules

Decision rules identify the actions to be taken for a given answer to each of the questions in Section 3.2. In some cases the decision rules are qualitative in nature due to the multiple lines of evidence that must be considered to evaluate this technology.

- If the electron donor tested cannot be effectively distributed at the Site, then an assessment of
 additional alternatives would need to be made. This should be evident very early in the pilot
 study and would prevent the use of EAB for full-scale remediation.
- If bioaugmentation does not facilitate complete dechlorination in the treatment zones, EAB would be precluded from full-scale application.
- If the rates of biodegradation are not sufficient to meet cleanup objectives, EAB would be precluded from full-scale application.

Once it is determined that electron donor can be distributed effectively and EAB achieves the desired degradation, an electron donor (or some combination of electron donors) must be selected for full-scale implementation. A decision regarding the most cost-effective electron donor will depend upon the ease of distribution, the rate of biodegradation, the cost of the electron donor, the mass of electron donor required, and the longevity of the electron donor in the subsurface. All of these factors will be considered to develop cost estimates for a potential full-scale implementation approach.

1.4.6 Limits on Decision Errors

Limits on allowable errors for decision inputs ensure that data quality will be sufficient for the intended purpose. Total study error consists of two types of decision errors: sampling design errors and measurement errors. Because a judgmental sampling design is being followed in the pilot test, statistically derived limits on sampling design error are not quantifiable.

The judgmental sampling approach is designed to limit the probability of sampling design errors by:

- Collecting data from multiple lines of evidence (electron donor concentrations, biological activity indicators, redox conditions, TCE and degradation products, and bacterial deoxyribonucleic acid [DNA]) to ensure an internally consistent data set.
- Collecting data at a sufficient frequency to demonstrate reproducibility of results.
- Locating monitoring wells so as to maximize the potential for influence by the electron donor injections.
- Designing the pilot study based on successful pilot studies at other sites.

Measurement errors are limited by selecting appropriate analytical procedures, detection limits, and quality control acceptance criteria (precision and accuracy). These parameters were presented in Table 3-1 of the Bench and Pilot Study Work Plan (CDM Smith 2011).

1.5 Report Organization

The report is organized in keeping with the objectives of assessing electron donor delivery and distribution and presents results regarding the overall effectiveness of EAB in this pilot study. Section 2 provides an overview of field activities performed at the site. Section 3 summarizes the results pertaining to electron donor delivery and subsequent distribution. Section 4 presents the results for EAB, including redox conditions, dechlorination, and bioaugmentation. A summary of the conclusions of the pilot study is provided in Section 5, and references are presented in Section 6.

Notes:

This plat was completed on Oct 12, 2000 from an instrument survey on Oct. 6, 1999 & Oct2 & 4, 2000. 2000 Robert C. Ackerman, P.L.S No. 49845

All elevations were taken on the top of the 2" PVC pipe casing around the 1" PVC well pipe and were marked thereon with a black marker pen.

Elevation datum from the City of Olean, Engineering Office, Olean, NY. Base being USGS.

LEGEND	
BC-1 🛑	LOWER (BOTTOM) CITY AQUIFER WELLS
UC—1 🌰	UPPER CITY AQUIFER WELLS
UA−1 隊	UPPER AQUITARD WELLS
SW-14⊕	EXISTING MONITORING WELLS
RU-12 🔶	NEW MONITORING WELLS
18M 👁	PUBLIC WATER WELL
ENI−1 ●	BORING
	PROPERTY BOUNDARY
	FENCE
	APPROXIMATE EXTENT OF DISSOLVED PHASE TCE IN THE UWBZ
	APPROXIMATE EXTENT OF DISSOLVED

37/38M

Section 2

Summary of Activities

This section provides a timeline of activities performed, followed by a brief description of those activities.

2.2 Implementation of EAB Pilot Study

Implementation of the EAB pilot study at the Site commenced in November of 2011. The following subsections describe the activities completed at the Site during the pilot study, including details regarding injection of the electron donor solutions, bioaugmentation, and groundwater monitoring events.

2.2.1 Well Installation

Prior to commencing electron donor injections, a total of three new monitoring wells were installed within the pilot study area. The three wells (RU-19, RU-20, and RU-21) were necessary to evaluate electron donor distribution adequately within the pilot study cell. The monitoring well locations are presented on **Figure 2-1**. Boring logs and well construction diagrams for the wells used during the pilot study are presented in Appendix A.

The wells were installed from November 14 to November 16, 2011 using hollow-stem auger drilling techniques. Based on lithology encountered during drilling, monitoring wells RU-19 and RU-21 were screened between 10 and 20 feet bls, and well RU-20 was screened between 30 and 40 feet bls. Clayey silt and silty clay were encountered between 17 and 23 feet bls, and gravelly clay was encountered between 23 and 31 feet bls, which was assumed to act as a low-permeability barrier between the shallow portion of the UWBZ and the upper portion of the City Aquifer. It is likely that RU-20 is screened within a transition zone between the UWBZ and upper City Aquifer. Based on lithology observed during well installation, concentrations of chlorinated VOCs, and the depth to groundwater in the UWBZ, the target interval for electron donor injection was determined to be between 10 and 20 feet bls.

2.2.2 Electron Donor Injection

Injection of electron donor solutions was conducted using direct-push technology (DPT) pressurized injection techniques. Injection of high-carbon electron donor was completed in the pilot study cell between November 21 and November 22, 2012. Injection was completed at the points shown on Figure 2-1. Injection was completed using a hydraulic pump and DPT drill rig. Injection was completed in a "top-down" fashion using a direct-push injection tool with a retractable injection screen manufactured by AMS. The injection tool was driven to the initial target depth of approximately 10 feet bls, and the DPT rods were retracted to expose a 1-foot long injection screen. Electron donor was then pumped through the DPT rods at pressures sufficient to facilitate electron donor distribution through lower-permeability zones in the subsurface. Typical injection pressures were between 30 and 50 pounds per square inch (psi) during injection, and pressures typically decreased during injection, likely indicative of hydraulic fracturing of the soil matrix. Electron donor pumping continued until planned volumes of electron donor had been injected at the depth interval.

No surfacing of electron donor was observed during injection activities. Injection flow rates were generally between 1.5 and 3 gallons per minute.

After injection at each depth, the retractable screen on the injection tool was closed and the injection tool was driven to the next target depth. Injection was targeted at approximately 3-foot vertical intervals within each DPT injection point through the treatment zone to a maximum depth of approximately 19 feet bls, which is above the gravelly clay interval identified in lithologic logs. Approximately 270 gallons of electron donor were injected at INJ-01, 205 gallons at INJ-02, and 285 gallons at INJ-03, resulting in a total volume of 760 gallons of electron donor injected into the pilot study cell. The injection boreholes were abandoned using hydrated bentonite.

2.2.3 Bioaugmentation

Concentrations of chlorinated VOCs at the Site indicated a lack of TCE degradation products, suggesting that the existing bacterial community at the Site may not be capable of complete dechlorination. Bioaugmentation of the pilot study cell was completed on November 22, 2012 to introduce an appropriate bacterial community within the pilot study cell. Baseline groundwater sampling indicated that existing conditions in the UWBZ were generally reducing and anaerobic at the time of electron donor injection and bioaugmentation. Augmentation with a commercially available dechlorinating culture (Shaw's SDC-9) was completed at a single injection point adjacent to INJ-02 as presented on Figure 2-1. An expendable point was driven to a depth of approximately 16 feet, and the rods were then retracted to approximately 14 feet, leaving 3 feet of open hole in which to inject the culture. Approximately 19 liters of culture was injected into the injection location through the direct-push rods. Following inoculation of the direct-push point, approximately 50 gallons of anaerobic water (created by mixing sodium lactate with potable water at a concentration of 3 percent) was added to the injection point to push the dechlorinating culture out of the direct-push point and into the surrounding formation.

2.3 Groundwater Monitoring

Baseline groundwater samples were collected on November 17, 2012 from wells planned for evaluation during the extended pilot study. Data collected at this time was used to establish baseline concentrations of constituents and other geochemical and water quality parameters at the Site. Following injection activities in November of 2011, groundwater sampling events were conducted on January 4, February 29, and May 1, 2012 in accordance with the work plan. All groundwater samples were collected using low-flow sampling techniques, in accordance with procedures presented in the Bench and Pilot Study Work Plan (CDM Smith 2011). Sample locations, quantities, and analytes were in accordance with Tables 5-1, 5-2, and 5-3 of the Bench and Pilot Study Work Plan (CDM Smith 2011). Data from these monitoring events are summarized in the following sections of this report. Analytical data reports are included in Appendix B.

Figure 2-1 Pilot Study Layout

Section 3

Electron Donor Delivery and Distribution

This section provides a description of the delivery methods used to inject each electron donor, along with a discussion of the apparent effectiveness of delivery and distribution based upon electron donor concentrations in the monitoring wells. The results in this section address the first decision question in the data quality objectives section of the pilot study work plan (CDM Smith 2011): "Can electron donor be effectively distributed at the Site to affect the reducing conditions necessary to support complete dechlorination?"

3.1 Delivery

A high-carbon electron donor was injected at the Site using DPT delivery methods. The electron donor was injected one time at the start of the extended pilot study. The electron donor was prepared and delivered to the Site in drums; no dilution of the electron donor was conducted on-Site prior to injection.

The depth interval targeted for injection during this pilot study extended from approximately 10 to 20 feet bls in the pilot study cell. As described in Section 2.2.2, the target volume of electron donor was injected at each vertical interval in the pilot study cell using a top-down DPT injection technique. The top-down approach utilized during the pilot study provides greater confidence that electron donor was actually delivered to the target depth interval, as this technique does not create a preferential injection pathway through the open borehole as would be the case with a bottom-up injection approach. Based on observations during this extended pilot study, DPT injection is an efficient and cost-effective method to distribute electron donor at the Site.

3.2 Distribution

The distribution of the electron donor was monitored by measuring the concentrations of organic acids (initial breakdown products of biodegradation of the electron donors) and TOC in the monitoring wells. These data are used to answer the decision question posed in the work plan: "Can electron donor(s) be effectively distributed at the Site to affect the reducing conditions necessary to support complete dechlorination of constituents?" This section presents the organic acid and TOC data for each monitoring well evaluated during this pilot study.

3.2.1 TOC and Organic Acid Concentrations

Exhibits 3-1A through 3-1D illustrate the concentrations of TOC and organic acids measured in the monitoring wells in the pilot study cell. Concentrations of TOC and organic acids were measured at four locations in the cell: RU-21 (Exhibit 3-1A), RU-10 (Exhibit 3-1B), RU-19 (Exhibit 3-1C), and RU-20 (Exhibit 3-1D). Data from up gradient well RU-8 are shown on Exhibit 3-1E). RU-21 is discussed first, as the electron donor injection points are spaced surrounding this monitoring well and it is most likely to be influenced by the donor injections.

Exhibit 3-1B. RU-10 Electron Donor Data

RU19 Electron Donor Data

RU20 Electron Donor Data

Exhibit 3-1D. RU-20 Electron Donor Data

Exhibit 3-1E. RU-8 Electron Donor Data

TOC concentrations reached a maximum in January 2012 at RU-21 (2,040 milligrams per liter [mg/L]), RU-10 (205 mg/L), and RU-19 (7.1 mg/L), but peaked during February 2012 at RU-20 (171 mg/L). RU-21 was observed to have been directly impacted by the electron donor by the time monitoring activities commenced. TOC concentration gradually declined at RU-21, but was still observed at 751 mg/L in May 2012. As expected, TOC concentrations were somewhat lower at well RU-10, which is slightly further away from the injection points and screened several feet shallower (8-17 feet bls), and RU-19 appears to have been minimally impacted by electron donor injection. Surprisingly, increases in TOC were observed at RU-20 following injection activities, despite the deeper screen interval of the well. The elevated TOC and detected organic acids at this location indicate that there is hydraulic connection between the two units in which the wells are screened. This observation, combined with the VOC data presented in Section 4, indicate that the deeper well RU-20 is screened within either a lower portion of the UWBZ or within the transition between the UWBZ and upper City Aquifer, rather than being screened within the upper City Aquifer itself.

The primary contributors to TOC during the January and March 2012 events were acetic acid and propionic acid. As propionic acid fermentation produces hydrogen, and dechlorinating bacteria have been shown to grow on acetic acid and hydrogen, the production of these compounds from the electron donor solution was a promising result. Concentrations of organic acids decreased along with the TOC concentrations, and propionic acid concentrations decreased more rapidly than acetic acid. It is typical for propionic:acetic acid ratios to be highest near the injection point, and to decrease with time and distance following an injection, which is exactly what we observe here. Butyric acid (which

is also fermented to produce hydrogen) concentrations increased at well RU-21 by February 2012, but were low relative to acetic and propionic acids.

Overall, TOC concentrations increased notably immediately following injection, and declined over time thereafter. TOC concentrations above 500 mg/L were sustained within the area under direct influence of the electron donor injection after nearly 6 months. While TOC concentrations at RU-10 were lower than at RU-21, and RU-10 is screened shallower than RU-21, increases in TOC at this well indicate that distribution of electron donor is possible to distances of at least 8 feet using the DPT injection technique and the volumes injected. A greater radius is likely if a larger volume of electron donor can be emplaced at each vertical interval.

3.2.2 Summary of Distribution

Overall, the results indicate that effective electron donor distribution was achieved at the Site using the injection techniques described in the work plan. Within the area directly influenced by the injections, TOC concentrations were sustained greater than 500 mg/L during the pilot study, and significant quantities of acetic acid and propionic acid were generated. Wells throughout the pilot study cell exhibited measurable increases in TOC and organic acid concentrations, indicating that the injections have had at least some effect on the aquifer at distances of up to 20 feet from the injection point. Additionally, there appears to be vertical hydraulic communication between the shallow injection interval and the deeper interval where well RU-20 is screened. This delayed reaction, combined with the much lower relative increase in TOC and organic acid concentrations at RU-19, suggest that electron donor may slowly be migrating throughout all portions of the UWBZ.

The analytical data from monitoring wells presented above, as well as observations made during electron donor injection, indicate that an electron donor radius of influence (ROI) of approximately 8 to 10 feet is possible from the injection point when using DPT injection techniques at the Site. Larger ROI may be achievable if a greater volume of electron donor is injected at each discrete depth interval. Vertical distribution of the electron donor is optimized by using a "top-down" injection approach with injections completed at 2-3 foot vertical intervals throughout the treatment zone. It is important to note that distribution of electron donors injected using pressurized DPT techniques may be quite heterogeneous, as high injection pressures may induce fracturing of the soil matrix at the injection point, and electron donors may travel more readily through natural or man-made preferential pathways in the subsurface; however, no real anomalies in electron donor distribution were observed in this portion of the Site.

3.3 Hydraulic Condictivity Testing

In order to evaluate potential for electron donor injections to reduce aquifer permeability, slug tests were performed before electron donor injections as well as approximately five months post-injection. Slug tests were completed in wells RU-19 and RU-21, which are both screened within the vertical interval targeted with electron donor injections (between 10 and 20 feet bls). Well RU-21 is located directly within the electron donor injection area, while RU-19 is located outside of the area impacted by electron donor injection. Testing at these two wells allow for comparison of measured hydraulic conductivity changes both due to electron donor injection. Table 3-1 summarizes the slug testing results, and analyses are presented in Appendix C.

At RU-19, the measured hydraulic conductivity decreased slightly from November 2011 to April 2012, though the change was less than one order of magnitude. This slight decrease is likely explained by the lower potentiometric surface observed during April 2012, as no notable impacts from electron

donor were observed at this well. A greater decrease in hydraulic conductivity was observed at RU-21, where the measured hydraulic conductivity decreased by one order of magnitude. While a portion of this decrease is likely attributable to a lower potentiometric surface, the greater decrease in conductivity at RU-21 compared to RU-19 indicates that the electron donor did have a slight effect on hydraulic conductivity in the immediate vicinity of the injections. As the overall decrease in conductivity attributable to electron donor injection was less than one order of magnitude, and the conductivity should increase over time as electron donor is depleted, the long-term effect on hydraulic conductivity is not expected to be significant.

Woll	-			Dising H	ad Slug Tost	Overall Average				
		Falling Head S	lua Tost (cm/soc)		au olug rest					
		T anning fiead 5		(0						
		Pre-injection	Post-injection	Pre- injection	Post- injection	Pre- Injection	Post- Injection			
RU-	Test									
19	Test 1	1.302E-03	7.997E-04	1.45E-03	1.023E-03					
	Test 2	1.331E-03	7.163E-04	1.49E-03	9.738E-04					
	Average	1.317E-03	7.580E-04	1.468E-03	9.984E-04	1.392E-03	8.782E-04			
RU-	Test 1									
21	16301	1.02E-03	1.782E-04	9.606E-04	1.439E-04					
	Test 2	8.952E-04	1.321E-04	4.55E-03	1.461E-04					
	Average	9.551E-04	1.552E-04	2.757E-03	1.450E-04	1.856E-03	1.501E-04			

Table 3-1 Hydraulic Conductivity Testing Summary

Section 4

EAB Results

In order for complete reductive dechlorination of TCE to ethene to occur, electron donor must be adequately distributed, redox conditions must be sufficiently reducing, and appropriate microbial populations must be present and active. The electron donor distribution was discussed in the previous section. The redox conditions, microbial populations, and dechlorination results are discussed in this section.

4.1 Redox Conditions

Redox conditions are frequently monitored by measuring the ORP. It is a simple indicator of redox conditions and can be easily measured on-Site during the field activities. However, it is not the most accurate parameter in assessing the actual redox conditions, and if considered alone can sometimes be misleading. Thus, it is required to monitor concentrations of certain inorganic electron acceptors in addition to ORP in order to assess the redox conditions at a site accurately.

4.1.1 Oxidation-Reduction Potential

ORP values over time for each treatment cell are presented in **Table 4-1**. An ORP of -100 mV to -300 mV is within the appropriate range to facilitate reductive dechlorination. The ORP should be viewed as a screening parameter because the electrodes often require long periods of exposure to water to register an accurate reading. Initial values generally ranged from about +102 mV to 130 mV within the pilot study cell wells. Following electron donor injections, ORP readings at one month post-injection were inconsistent, with ORP in RU-10 decreasing from approximately 102 mV to 2 mV, and the remaining pilot study wells exhibiting increases in ORP. At 3 months after injection, all wells exhibited strongly negative ORP values, ranging from -177 mV to -216 mV, which is within the range appropriate for reductive dechlorination. Finally, ORP increased at all wells at 5 months post-injection, with some values becoming positive. It is not clear why this occurred as the increases are not consistent with electron donor concentrations presented in Section 3 or electron acceptor data shown in Section 4.1.2. Given that ORP values fluctuated throughout the pilot study and are inconsistent with other redox conditions observed, it is suspected that higher values may have been due to an error with the instrument. In general, however, an obvious and significant drop in ORP was observed after injection as expected.

4.1.2 Inorganic Electron Acceptors

As discussed earlier, the more reliable indicator of redox conditions is the aqueous concentrations of inorganic electron acceptors and their reduced products. As discussed in the work plan, redox conditions typically progress from aerobic \rightarrow nitrate reducing \rightarrow iron reducing \rightarrow sulfate reducing \rightarrow methanogenic following addition of a sufficient supply of electron donor. The data indicate that this progression has occurred in all the areas impacted by electron donor injection.

The redox parameters measured during the course of the pilot study at each well are presented on Exhibits 4-1A through 4-1D, with data from the up gradient monitoring well RU-8 presented on Exhibit 4-1E. The observed trends for nitrate, ferrous iron, sulfate, and methane within the pilot study cell are described in the following subsections.

Exhibit 4-1B. RU-21 Electron Acceptor Data

RU19 Electron Acceptor Data

Exhibit 4-1C RU-19 Electron Acceptor Data

RU20 Electron Acceptor Data

Exhibit 4-1D RU-20 Electron Acceptor Data

Exhibit 4-1E.RU-8 Electron Acceptor Data

4.1.2.1 Nitrate

Nitrate concentrations during the pilot study are indicated as red lines on Exhibits 4-1A through 4-1E. Nitrate concentrations were generally low during baseline sampling at the site, with the maximum concentration being 1.4 mg/L at RU-20. Nitrate concentrations decreased during the pilot study, with the most marked decreases at wells RU-10 and RU-19, which are within the depth interval targeted for injection. Nitrate concentrations at these wells all decreased by at least one order of magnitude. Nitrate also decreased at RU-20, the deeper-screened well within the pilot study cell. Nitrate at RU-21 was measured at 0.026 mg/L during baseline sampling, which was the lowest detected nitrate concentration during baseline sampling, and nitrate was not detected at RU-21 during the remainder of the pilot study.

4.1.2.2 Ferrous Iron

Ferrous iron is the product of ferric iron reduction. Ferrous iron (indicated by purple lines on Exhibits 4-1A through 4-1E) was not detected at the site during baseline sampling, but was eventually detected within all wells except RU-8 following electron donor injection.

At RU-21, where the electron donor was injected, ferrous iron concentrations increased to a maximum concentration of 6.4 mg/L 3 months after injection, and remained elevated (2.9 mg/L) 5 months after injection. Ferrous iron was also detected at RU-10, with a maximum concentration of 1.8 mg/L, RU-19 with a maximum concentration of 0.4 mg/L, and RU-20 with a maximum concentration of 1.0 mg/L. Observed ferrous iron concentrations correlated well with COD and organic acid results. The lower magnitude increases in ferrous iron at RU-19 and RU-20 are expected, given their greater distances from the injection point.

4.1.2.3 Sulfate

Exhibits 4-1A through 4-1E show sulfate concentrations over time in green at the wells within the pilot study cell. Pre-injection concentrations of sulfate ranged from 11.9 mg/L to 61.1 mg/L within the cell. Sulfate concentrations decreased at wells RU-20 and RU-21 over the course of the pilot study, while sulfate remained steady or increased slightly at RU-10 and RU-19. RU-21 exhibited the greatest change in sulfate, decreasing from 61.1 mg/L to 4.4 mg/L three months into the study, and to 2.4 mg/L by the end of the study. The sulfate decrease was less pronounced at RU-20, with sulfate decreasing from 41.4 mg/L during baseline to 9.9 mg/L 3 months after injection, then increasing slightly at 5 months after injection. As expected, these trends correlate inversely to the observed TOC and organic acid concentrations at this well, which increased at 3 months post injection and started to decrease at the 5-month sampling event.

Overall, the injected electron donor was effective at producing sulfate-reducing conditions in the subsurface in the vicinity of the injection point. The sulfate concentrations suggest that strongly reducing conditions were established near the injection point within approximately 3 to 5 months after injection. The decrease in sulfate at RU-20 corresponding with the increase in TOC concentrations is also an indicator that the electron donor is capable of producing strongly reducing conditions at some distance from the injection point.

4.1.2.4 Methane

Methane provides an indication of conditions most conducive to complete reductive dechlorination of TCE to ethene. Methane concentrations over time for the pilot study wells are shown in blue on Exhibits 4-1A through 4-1E.

Baseline methane concentrations ranged from 0.021 to 0.19 mg/L. Other than a slight increase in RU-10 immediately after injection, methane concentrations within the pilot study cell remained relatively unchanged from baseline conditions during the first 3 months of the pilot study. Five months after injection, methane concentrations increased by nearly an order of magnitude at RU-21, increasing from 0.3 mg/L at 3 months post-injection to 1.7 mg/L at 5 months post-injection. This result is promising, as it indicates the likely onset of methanogenesis within 5 months of electron donor injection.

Slight increases in methane were also observed at RU-20 and RU-10 during the pilot study; however, the methane concentrations at these locations remained below 0.2 mg/L, which are not indicative of significant methanogenesis occurring at these locations. This result is consistent with the fact that sulfate was never fully depleted at these locations.

No notable changes in redox conditions were observed at well RU-8, located up gradient of the pilot study cell, before and after completion of the pilot study.

4.1.3 Redox Summary

Based on the results discussed in this section it can be concluded that redox conditions have shifted in the areas impacted directly by the electron donor injection, and that conditions are generally favorable for reductive dechlorination where the electron donor is present, especially near RU-21. This is supported by the increases in concentration of ferrous iron, decreases in sulfate, and increases in methane generation observed at well RU-21, indicating the presence of strongly reducing conditions near the electron donor injection points.

4.2 Dechlorination

The concentrations of organic acids and redox conditions only indicate whether conditions are favorable for reductive dechlorination to progress at the Site. Of course the concentrations of chloroethenes and ethene provide direct evidence of the removal of chloroethenes, which are the constituents of concern at the Site. Molar concentrations are used in the exhibits in this section so that an evaluation of mass balance can be made (1 mole of DCE is produced from reductive dechlorination of 1 mole of TCE, 1 mole of VC is produced from 1 mole of DCE, and so on). The molar concentrations were used to calculate a chlorine number for each monitoring well. The chlorine number is a measure of the average number of chlorine atoms associated with the chloroethenes (and ethene) in groundwater. Chlorine numbers also need to be interpreted in the context of concentration data, as chlorine numbers are based on proportions of contaminants present. Chlorine numbers range from four (PCE is the only chloroethene present) to zero (only ethene is present). At the Site, because TCE was the original primary contaminant, it would be anticipated that the chlorine number for most wells would be approximately three under baseline conditions. However, as TCE is dechlorinated to DCE, VC, and finally ethene, the chlorine number decreases. As the concentrations of VOCs decline and approach zero, mass balance is often lost. Thus, it is not uncommon for chlorine numbers to increase as contaminant concentrations become very low. In addition, exhibits indicating concentrations in mass units have been provided to enable comparison to regulatory limits.

4.2.1 Injection Area

The molar and mass concentrations of chlorinated ethenes at RU-21 are shown on Exhibits 4-2A and 4-2B, respectively.

RU21 VOC Molar Concentrations

Exhibit 4-2A. RU-21 VOC Molar Concentrations

Exhibit 4-2B. RU-21 VOC Mass Concentrations

Total chloroethene concentrations exhibited an overall decline at RU-21 following injection. Initially, it was assumed that this may have been partially due to dilution during injection or partitioning of some portion of TCE into the electron donor (vegetable oil) phase, as the monitoring well RU-21 was directly impacted by the donor. While TCE and *cis*-DCE concentrations decreased substantially by one month, molar concentrations of VC and ethene both increased substantially by one month. The majority of chloroethene molar mass present during the remainder of the pilot study was present as VC and ethene. The baseline chlorine number during the pilot study was 2.59, which decreased to a low of 1.03 by one month after injection, and then increasing slightly to 1.25 by the end of the pilot study. These results indicate that the majority of chloroethene mass was present as TCE and DCE at the start of the pilot study, and that the majority of mass remaining at the end of the pilot study was present as VC. These results indicate that reductive dechlorination is occurring within the injection area.

While ethene increased from baseline conditions, the ethene concentrations are not as high as would be expected after methanogenesis has been established and significant reductive dechlorination is occurring. Lab and field studies published in the literature have shown that significant ethene production does not typically occur until after the onset of methanogenesis. Given the duration of the pilot study of approximately 5 months, and the fact that methanogenesis has just begun to be established in the injection area, it is likely that ethene generation will accelerate at this location within the next several months. However, the observed increases in VC and ethene, combined with the observed redox conditions described previously and the bacterial populations described in Section 4.3, indicate that reductive dechlorination is occurring within the treatment area.

With regard to chloroethene mass concentrations, TCE decreased significantly from 1.5 mg/L to 0.041 mg/L at one month, and DCE decreased from 0.49 mg/L to 0.052 mg/L, VC increased from 0.058 to 0.120 mg/L, and ethene increased from 0.0017 mg/L to 0.026 mg/L. At 5 months post-injection, TCE had increased only slightly, to 0.069 mg/L, DCE had increased slightly to 0.071 mg/L, and VC increased to 0.17 mg/L. Mass concentrations have generally remained unchanged since one month post-injection.

4.2.2 Monitoring Wells

Chloroethene molar and mass concentrations at well RU-10, adjacent to the injection zone, are presented on Exhibits 4-3A and 4-3B, concentrations at well RU-19 are presented on Exhibits 4-4A and 4-4B, and concentrations at RU-20 are presented on Exhibits 4-5A and 4-5B. Molar and mass results from up gradient well RU-8 are presented on Exhibits 4-6A and 4-6B, respectively. At all wells, baseline molar concentrations indicated that the majority of chloroethenes were present as TCE and *cis*-DCE, with only minor amounts of VC present.

RU10 VOC Molar Concentrations

Exhibit 4-3A. RU-10 VOC Molar Concentrations

Exhibit 4-3B. RU-10 VOC Mass Concentrations

At well RU-10, VOC concentrations increased throughout the course of the pilot study. The reason for this increase is unclear; however, it is worth noting that while concentrations in RU-10 increased over time, the concentrations during the pilot study remained lower than the observed concentrations when RU-10 was sampled during 2001, when the TCE concentration at RU-10 was 2.8 mg/L, and DCE was 1 mg/L. It is possible that the VOC concentration observed during baseline sampling in November 2011 was representative of a seasonal low. Molar concentrations of TCE, DCE, and VC all increased, though VC appears to have increased at a slightly higher rate when compared to baseline conditions. This is indicated by a slight decrease in the chlorine number from 2.62 to a low of 2.35 one month after injection, which coincided with an increase in TOC and organic acid concentrations. Significant formation of degradation products was not observed following the one month sampling event, coinciding with declines in TOC and organic acid concentrations.

Exhibit 4-4A. RU-19 VOC Molar Concentrations

Exhibit 4-4B. RU-19 VOC Mass Concentrations

At well RU-19, approximately 20 feet down gradient of the injection locations, very little change was observed in chloroethene molar and mass concentrations. The chlorine number at this well remained constant (2.56 to 2.57) throughout the pilot study, indicating that the majority of mass is present as TCE and DCE, with no notable formation of breakdown products by reductive dechlorination. Mass concentrations of TCE increased slightly, from 0.79 mg/L to 1.1 mg/L, DCE concentrations increased slightly from 0.3 mg/L to 0.4 mg/L, and VC concentrations increased from 0.033 mg/L to 0.049 mg/L. The lack of significant change is not surprising, given the distance from injection points, the observation that no significant quantity of electron donor migrated to this well following injection, and that redox conditions have not changed significantly since injection activities.

RU20 VOC Molar Concentrations

Exhibit 4-5A. RU-20 VOC Molar Concentrations

Exhibit 4-5B. RU-20 VOC Mass Concentrations

Well RU-20 contained the highest chloroethene concentrations throughout the pilot study, with a TCE concentration of 3 mg/L at baseline, decreasing to a low of 1.9 mg/L 3 months after injection, and increasing slightly at 5 months. As described in the previous sections, some electron donor was observed to reach this location following injection, and slight changes in redox conditions were observed. However, while chloroethene concentrations did decrease slightly from baseline conditions, no notable reductive dechlorination was observed to occur as degradation products were not observed to increase. The chlorine number ranged from 2.90 to 2.96 throughout the pilot study, indicating that the chloroethene mass is predominantly TCE and that there was virtually no change in the relative molar concentrations of TCE, DCE, VC, and ethene over time. It is likely that while some influence from electron donor injections was observed at RU-20, either insufficient donor or an inadequate bacterial population, or a combination of these, were present at RU-20 to support reductive dechlorination. Given the distance to this location from the injection, both horizontally and vertically, no enhancement of reductive dechlorination was expected at RU-20 as a result of the pilot test injection.

Exhibit 4-6A. RU-8 VOC Molar Concentrations

RU8 VOC Mass Concentrations

Exhibit 4-6B. RU-8 VOC Mass Concentrations

At RU-8, located up gradient of the pilot study, a decrease in VOC molar and mass concentrations was observed between the start of the pilot study and 5 months post-injection. The chlorine number observed at this well increased slightly, from 2.86 to 2.95, between November 2011 and May 2012. This indicates that reductive dechlorination has not occurred at this location, and that these mass concentration decreases are not associated with the EAB pilot study.

4.2.3 Dechlorination Summary

Overall, the data indicate that reductive dechlorination is occurring at the locations where electron donor was injected and well distributed during the pilot study. In addition to an overall decrease in TCE concentration at RU-21, the remaining chloroethene mass was predominantly composed of VC and ethene formed by reductive dechlorination. While this process is occurring in the area of the Site affected by electron donor injection, significant formation of ethene has not been produced to date. Given the 5-month duration of the pilot study and the observation that methanogenesis is only just beginning in the pilot study cell at 5 months, it is likely that additional ethene generation will occur during the next several months as methanogenesis continues. One additional consideration is groundwater temperature. The measured temperature at well RU-21 in the treatment zone was 12.8 degrees Celsius (deg C) during baseline sampling, and ranged from 9.43 to 9.84 deg C during post-injection monitoring. Biological activity decreases at lower temperatures, which likely explains the lag time for the onset of methanogenesis, as well as the time required to achieve complete dechlorination. Regardless, the data from RU-21 indicate that the electron donor has created appropriate redox conditions to support reductive dechlorination, and the chloroethene results indicate that reductive dechlorination has occurred in the treatment zone.

4.3 Bioaugmentation

While it is sometimes possible to stimulate indigenous *Dehalococcoides spp.* bacteria through electron donor injections alone, in order to evaluate the potential for reductive dechlorination to occur at the Site during the relatively short duration of the pilot study, the pilot study cell was bioaugmented with a commercially available dechlorinating culture (Shaw's SDC-9) immediately following electron donor injection. The bioaugmentation procedure was described in Section 2.2.3. DNA samples for *Dehalococcoides spp.* were collected from all wells in the pilot study during the baseline sampling event to evaluate whether *Dehalococcoides spp.* bacteria may be indigenous in the groundwater at the Site. If indigenous *Dehalococcoides spp.* are present, future scale-up of enhanced bioremediation activities at the Site might be able to be completed without bioaugmentation. Additionally, DNA samples were collected at the 5-month post-injection sampling event to confirm whether the bioaugmentation was successful and to evaluate the populations of *Dehalococcoides spp.* and the functional genes necessary for dechlorination.

Total *Dehalococcoides spp.* concentrations of at least 106 gene copies per liter are generally required to achieve rapid dechlorination. The results of *Dehalococcoides spp.* samples collected from the Site are summarized in Table 4-2. *Dehalococcoides spp.* were not detected during the baseline sampling event at any of the pilot study monitoring wells. The table contains concentrations of Dehalococcoides, as well as three functional genes that are necessary for dechlorination to occur. The tceA gene is responsible for degradation of TCE to DCE, while the bvcA and vcrA genes encode for two different enzymes that degrade DCE to ethene. The DNA results at RU-21 confirm that the added dechlorinating bacteria are thriving in the injection area at the Site, and combined with the observed dechlorination and VC production during the pilot study, indicate that the microbial community in these areas is more than sufficient to support complete dechlorination. Additionally, the detected

Dehalococcoides spp. at RU-19, located approximately 20 feet down gradient of the treatment zone within the same subsurface interval, are an encouraging result indicating that transport of *Dehalococcoides spp.* within the subsurface at the site is occurring.

4.4 Dissolved Metals

Dissolved metals were measured at site monitoring wells during both the baseline monitoring event and the 5-month post-injection event. The purpose was to evaluate the potential for increases in dissolved metals concentrations in groundwater in response to changed redox conditions in the aquifer following injection activities. Dissolved metals concentrations are presented in Table 4-3.

Several metals exhibited increases in concentration after injection activities when compared to baseline concentrations. In general the greatest increases were observed at RU-21, within the area influenced by the electron donor injection. Arsenic increased from less than 0.005 mg/L to 0.023 mg/L, which is still below the New York groundwater standard of 0.025 mg/L. Slight increases in aluminum, barium, chromium, cobalt, nickel, and sodium. Iron and manganese concentrations increased in the vicinity of the electron donor injection activities; however this is expected as iron and manganese act as electron acceptors for reducing bacteria.

While slight increases in some dissolved metals concentrations were observed following electron donor injection, these increases are not expected to lead to migration of metals outside of the treatment area, as the metals become more immobile as redox conditions become less reducing outside of the EAB treatment area.

		VOC - Mass Concentrations										Donor Redox Conditions						General Chemistry								
Well ID	Sample Date	PCE	TCE	cis-1,2-DCE	trans-1,2-DCE	Vinyl Chloride	Ethene	Ethane	1,1-DCE	Chlorine Number	Total Organic Carbon	Acetic Acid	Propionic Acid	Butyric Acid	Dissolved Oxygen	ОКР	Nitrate + Nitrite (as N)	Ferrous Iron	Sulfate	Methane	Н	Conductivity	Temperature	Turbidity	Chloride	Alkalinity
	Units	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L		mg/L	mg/L	mg/L	mg/L	mg/L	mV	mg/L	mg/L	mg/L	mg/L	s.u.	uS/cm	deg C	NTU	mg/L	mg/L
RU10	11/17/2011	< 0.00036	0.072	0.024	<0.0009	0.0022	< 0.00052	< 0.00049	< 0.00029	2.62	<0.43	<0.15	<0.17	<0.16	4.07	101.8	1.2	0	11.9	0.0074	7.14	126	12.69	14.3	1.8	68
	1/4/2012	< 0.00036	0.12	0.094	0.0011	0.012	<0.00052	0.004	0.00059	2.35	205	39.6	57	<0.16	0.7	2.7	0.47	0	29.9	0.12	7.09	90	8.3	36.1	9.3	425
	2/29/2012	0.00046	0.33	0.2	0.0025	0.019	0.00054	0.0057	0.0013	2.44	17.2	1.4	1/./	<0.16	2.48	-1/6.8	0.56	1.8	23.2	0.12	6.81	292	7.99	12.6	11.1	323
	5/1/2012	0.001	0.5	0.29	0.0038	0.032	0.0014	0.0087	0.0018	2.43	8.6	10.9	<0.17	< 0.16	0.16	-64.3	0.034	1.4	27.3	0.11	6.96	415	10.14	48	17.1	320
RU19	11/1//2011	0.0017	0.79	0.3	0.0035	0.033	< 0.00052	0.0078	0.0021	2.57	0.95	<0.15	<0.17	<0.16	1.49	8.7	0.55	0	38.4	0.13	7.29	450	12.98	15.5	1/	272
	1/4/2012	0.0013	0.58	0.23	0.0028	0.024	<0.00052	0.007	0.0014	2.56	7.1	2.7	3.7	< 0.16	0.84	67.2	0.68	0.4	30	0.19	6.99	403	9.91	2	14.3	221
	2/29/2012	< 0.0036	1.1	0.41	<0.009	0.045	0.00057	0.0049	<0.0029	2.57	2.4	<0.15	<0.17	< 0.16	2.58	-188.7	< 0.02	0	44.9	0.15	6.81	483	9.24	1.9	26	340
DUIDO	5/1/2012	< 0.0036	1.1	0.4	< 0.009	0.049	0.0015	0.0099	<0.0029	2.56	2.5	<0.15	<0.17	< 0.16	0.11	85.2	0.037	0.1	47.2	0.17	6.82	436	11.13	10.7	24.4	320
RU20	11/1//2011	0.0038	3	0.1	0.0015	<0.0009	< 0.00052	<0.00049	0.0012	2.96	0.75	<0.15	<0.17	<0.16	0.17	-130.4	1.4	0	41.4	0.0021	1.47	653	11.86	33.2	83.5	272
	1/4/2012	0.0022	2.1	0.086	0.0013	<0.0009	0.0073	0.0026	0.00095	2.90	48.5	11.3	7.0	<0.16	0.15	-108.2	0.26	0	50.6	0.0069	8.96	761	10.35	12.7	79.6	238
	2/29/2012	<0.009	1.9	0.075	<0.023	<0.023	0.0035	0.0019	<0.0073	2.93		67.4	20.0	<0.10	0.85	-210.3	0.24	0	9.9	0.0046	7.01	615	10.08	19.1	71.1	391
DU01	3/1/2012	<0.018	Z. I	0.077	<0.045	<0.045	0.0076	0.0078	<0.015	2.91	/5.5	03.0	33	<0.10	-0.03	-25.5	0.00	1	22.8	0.06	7.24	503	10.76	13.9	71.0	340
RUZI	1/1/2011	0.0020	1.5	0.49	0.0062	0.058	0.0017	0.012	0.0036	2.59	2	<0.15	<0.17	<0.16	0.24	-50.5	0.026	0	01.1	0.19	6.25	7622	12.70	22.0	20.0	323
	1/4/2012	<0.00072	0.041	0.052	<0.0018	0.12	0.020	0.011	<0.00056	1.00	2040	920	1090	10.9	2.56	50.9 105 1	<0.011	3.0	23.7	0.21	0.20	7033	9.43	5	23.0	2120
	5/1/2012	<0.00072	0.000	0.05	<0.0010	0.15	0.023	0.0004	<0.00058	1.13	751	650	770	40 57	-2.50	-100.1	<0.02	2.4	4.4	17	6.45	2091	9.01	0.2	36.6	1600
	11/17/2012	<0.00072 0.00052	0.009	0.071	<0.0018	0.17	0.015	0.010	<0.00038	2.86	0.5	<0.15	-0.17	-0.16	0.14	2	<0.02 0.50	2.9	2.4 12.7	0.027	7.52	2009	9.04	58.8	10.5	201
1.00	5/2/2012		0.20	0.012				0.0020		2.00	0.5	<0.15	<0.17	<0.10	1.42	2 72.2	0.39	0	38.1	0.037	7.52	461	11.34	8.2	12.2	380
Notes:	5/2/2012	<0.00030	0.077	0.003	NOUD	<0.0009	<0.000JZ	0.0014	NU.00029	2.35	0.07	<u><0.13</u>	<u> <u></u> <u></u></u>	<u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u>	1.42	12.2	0.10	U	50.1	0.0031	1.4	401	11.20	0.2	12.2	500

< - indicates analyte not detected at concentration greater than the detection limit indicated

mg/L - milligrams per liter mV - millivolt

s.u - standard unit

deg C - degrees Celsius

NTU - nephelometric turbidity unit

PCE - tetrachloroethene

TCE - trichloroethene

DCE - dichloroethene

ORP - oxidation-reduction potential

Table 4-1 - Analytical Results Summary Bioremediation Pilot Study Alcas Cutlery Corporation Facility, Olean, NY

Well	Date	Total Dehalococcoides spp. (gene copies/L)	Functional Gene tceA (gene copies/L)	Functional Gene bvcA (gene copies/L)	Functional Gene vcrA (gene copies/L)
RU-8	11/17/2012	ND	ND	ND	ND
	5/2/2012	ND	ND	ND	ND
RU-10	11/17/2012	ND	ND	ND	ND
	5/1/2012	ND	ND	ND	ND
RU-19	11/17/2012	ND	ND	ND	ND
	5/1/2012	6.79 x 10 ⁶	4.18 x 10 ⁶	ND	1.74 x 10 ⁶
RU-20	11/17/2012	ND	ND	ND	ND
	5/1/2012	ND	ND	ND	ND
RU-21	11/17/2012	ND	ND	ND	ND
	5/1/2012	1.16 x 10 ⁹	6.74 x 10 ⁸	ND	2.39 x 10 ⁸

Table 4-2 Dehalococcoides Spp. Analytical Results

Notes:

ND – not detected L - liter

												Dis	solved Met	als										
Well ID	Sample Date	Aluminum	Antimony	Arsenic	Barium	Beryllium	Cadmium	Calcium	Chromium	Cobalt	Copper	Iron	Lead	Magnesium	Manganese	Mercury (total)	Nickel	Potassium	Selenium	Silver	Sodium	Thallium	Vanadium	Zinc
	Units	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
RU10	11/17/2011	<0.06	<0.0068	<0.0056	0.051	<0.0003	<0.00033	22.1	<0.00087	< 0.00063	0.004	<0.019	<0.003	3.6	0.0063	<0.00012	<0.0013	0.56	<0.0087	<0.0017	2.4	<0.01	<0.0011	0.0026
	1/4/2012	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS NC	NS	NS	NS	NS	NS
	2/29/2012	NS	NS -0.0069	NS 0.012	NS 0.19	NS -0.0002	NS 10.0005	NS 70.6	NS	NS	NS 10.0016	NS	NS	10.0	NS 2.2	NS NC	NS	1.2	NS	NS 10.0017	19.6	NS 10.01	NS 10.0015	NS
PI 110	3/1/2012	0.075	<0.0008	<0.013	0.10	<0.0003	<0.0005	79.0	<0.0020	0.0052	<0.0010	-0.010	<0.003	11.2	0.45		0.0044	1.2	<0.019	<0.0017	13.6	<0.01	<0.0013	0.020
1013	1/1/2011	NS	<0.0000 NS	NS	0.052 NS	<0.0003 NS	NS	NS	NS	NS	0.0047 NS	<0.019 NS	<0.003 NS	 NS	0.43 NS	NS	0.0024 NS	NS	<0.0007 NS	NS	NS	NS	NS	NS
	2/29/2012	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	5/1/2012	<0.06	<0.0068	< 0.0056	0.065	< 0.0003	<0.0005	95.1	<0.001	0.0011	< 0.0016	0.11	< 0.003	15.2	2.6	<0.00012	0.0023	1.5	<0.0087	< 0.0017	18.2	< 0.01	< 0.0015	0.0033
RU20	11/17/2011	< 0.06	< 0.0068	< 0.0056	0.14	< 0.0003	< 0.00033	107	< 0.00087	< 0.00063	0.0034	< 0.019	< 0.003	16.6	0.098	< 0.00012	0.0015	2.4	< 0.0087	< 0.0017	31.6	< 0.01	< 0.0011	0.0031
	1/4/2012	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	2/29/2012	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	5/1/2012	<0.06	<0.0068	0.0069	0.12	< 0.0003	< 0.0005	98	0.0012	< 0.00063	<0.0016	0.42	<0.003	15.2	0.85	< 0.00012	0.0016	4.7	<0.0087	<0.0017	64.2	<0.01	<0.0015	<0.0015
RU21	11/17/2011	<0.06	<0.0068	< 0.0056	0.06	< 0.0003	0.00043	114	<0.00087	0.0011	0.0043	<0.019	< 0.003	16.7	0.45	< 0.00012	0.0032	2.3	<0.0087	<0.0017	20	<0.01	<0.0011	0.0032
	1/4/2012	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	2/29/2012	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	5/1/2012	0.1	<0.0068	0.023	0.46	<0.0003	0.00052	83.1	0.0028	0.01	<0.0016	18.7	<0.003	16.3	17.1	< 0.00012	0.0086	1.5	0.0098	<0.0017	524	0.02	<0.0015	0.0029
RU8	11/17/2011	<0.06	<0.0068	< 0.0056	0.11	< 0.0003	< 0.00033	104	<0.00087	< 0.00063	0.0019	<0.019	<0.003	21.5	0.28	< 0.00012	<0.0013	1.7	<0.0087	<0.0017	17.6	<0.01	<0.0011	0.0058
	5/2/2012	<0.06	<0.0068	<0.0056	0.13	<0.0003	<0.0005	117	<0.001	< 0.00063	0.0017	<0.019	<0.003	22.5	0.48	<0.00012	<0.0013	1.8	<0.0087	<0.0017	12.7	<0.01	<0.0015	0.0086

Notes:

< - indicates analyte not detected at concentration greater than the detection limit indicated mg/L - milligrams per liter mV - millivolt

s.u - standard unit

deg C - degrees Celsius

NTU - nephelometric turbidity unit

Table 4-3 - Dissolved Metals Concentrations **Bioremediation Pilot Study** Alcas Cutlery Corporation Facility, Olean, NY

Section 5

Pilot Scale Summary and Conclusions

The primary objective of the pilot study, determining whether bioremediation with bioaugmentation is a viable, cost-effective remedy for off-Site chlorinated solvent impacts in groundwater, was successfully accomplished, and answered in the affirmative. The electron donor was effectively distributed using the DPT injection method and in the presence of the bioaugmentation culture, reductive dechlorination occurred with a reduction in TCE concentration of approximately 95 percent, and a reduction in total chloroethenes of approximately 85 percent.

In terms of electron donor distribution, the donor was successfully distributed within the aquifer using low-pressure DPT injection techniques. Due to the relatively low, but highly variable, permeability of the aquifer formations at the Site, pressurized DPT injection using a "top-down" approach is an effective method for distributing electron donor both horizontally and vertically at the Site. This method was facilitated through the use of the AMS retractable remediation injection tool. Given the conditions observed during the pilot study, it is anticipated that up to approximately 800 – 1,000 gallons of electron donor might be able to be injected in a single day using one DPT rig with this injection tool.

The pilot study cell showed strongly reducing conditions following electron donor injection, and in general these favorable reducing conditions have been maintained throughout the duration of the pilot study. It is clear that the bioaugmentation in the cell was successful based on the results of groundwater DNA samples, and contributed to the development of an efficient dechlorinating culture in the pilot study cell. While ethene formation has been limited to date, the recent onset of methanogenesis combined with the presence of electron donor and appropriate dechlorinating bacteria 5 months after injection, suggest that ethene production will likely increase in the coming months.

The pilot study results demonstrate that EAB can be stimulated for cost-effective treatment of the chlorinated VOC constituents in groundwater at the Site. These results may be used as the basis for scaling up the EAB treatment in phases to achieve treatment in other areas of the site.

Section 6

References

CDM Smith Inc. 2011. Pilot and Bench Study Remedial Action Plan, Alcas Cutlery Corporation Facility, Olean, New York. September.

Ellis, D. E.; E. J. Lutz; J. M. Odom; R. J. Buchanan, Jr.; C. L. Bartlett. 2000. *Environmental Science and Technology* 34(11): 2254-2260.

Environeering, Inc. 2008. Updated Site Evaluation and Conceptual Model Report, Alcas Cutlery Corporation Property, Olean Well Field Superfund Site, Olean, New York.

Environeering, Inc. 2011. Part II Phase 2 Data Collection Work Plan for the Focused Feasibility Study ("FFS") Alcas Cutlery Corporation Facility Site, Olean, New York.

Freedman, D. L.; Gossett, J. M. 1989. *Applied and Environmental Microbiology* 55, 2144-2151.

Hendrickson, E. R., J. A. Payne, R. M. Young, M. G. Starr, M. P. Perry, S. Fahnestock, D. E. Ellis, and R. C. Ebersole. 2002. *Applied and Environmental Microbiology* 68: 485-495.

Lendvay, J. M., F. E. Loeffler, M. Dollhopf, M. R. Aiello, G. Daniels, B. Z. Fathepure, M. Gebhard, R. Heine, R. Helton, J. Shi, R. Krajmalnik-Brown, C. L. Major, M. J. Barcelona, E. Petrovskis, R. Hickey, J. M. Tiedje, and P. Adriaens. 2003. *Environmental Science and Technology*, 37:1422-1431.

Major, D. W., M. L. McMaster, E. E. Cox, E. A. Edwards, S. M. Dworatzek, E. R. Hendrickson, M. G. Starr, J. A. Payne, and L. W. Buonamici. 2002. *Environmental Science and Technology*, 36(23):5106-5116.

U.S. Environmental Protection Agency. 1998. Technical Protocol for Evaluating Natural Attenuation of Chlorinated Solvents in Ground Water. Report EPA/600/R-98/128

Appendix A

Boring Logs and Well Construction Diagrams

					DRILLIN	IG LOG					HOLE NO.:		RU-19				
1. COMPAN	Y NAME:						2. DRILLING SUBCONTRACTOR: SHEET 1 OF 1 SHEETS										
CDM Smi	ith						SJB				01121		1 511213				
3. PROJECT:	cromediation P	Not Stur	4.,				4. LOCATION										
5. NAME OF	DRILLER:	1101 3141	Jy				6. MANUFAC	TURER'S DESI	GNATION C	OF DRILL:							
							CME550 ATV										
7. SIZES/TYP	PES OF DRILLING & SA Hollow-Stem A	AMPLING EC	QUIPMEN	NT:			8. HOLE LOCATION:										
		4961					9. SURFACE ELEVATION (Elevation top of hole):										
							10. DATE STA	RTED:		11. DATE COMP	ETED:						
12 01/50011							11/15/2012 11/15/2011 15. DEPTH GROUNDWATER ENCOUNTERED:										
12. OVERBU 20 ft	IRDEN THICKNESS:						8 ft bgs										
13. DEPTH D	DRILLED INTO ROCK:						16. DIRECTION OF HOLE:										
NA							Vertical										
14. TOTAL D	DEPTH OF HOLE:						17. TOTAL NUMBER OF CORE BOXES										
20 ft bgs			DIST				NA 19. TOTAL #(c.							
NA	INICAL SAMPLES.		DIST	UNBLD.	OND	ISTONDED.	4	JI JELI JEO	JN SAMPLE								
20. SAMPLE	S FOR CHEMICAL	8 RCRA	VOC's	SVOC's	ТРН	Ph	Pest/PCB's	Herbs	RAD's	Triaxial	Other	21. TOT	AL CORE				
ANALYSIS:	TCLP	METALS X	X				,			Permeability	Physical	RECOVE	RY:				
22. DISPOSI	TION OF HOLE:	BACKF	ILLED	MONIT	ORING WELL	OTHER (S	PECIFY)	23. INSPECT	OR:								
					х			Neil Smith									
DEDTU	DECOUDT		TEDIALC		FIELD	GEOTECH	ANALYTICAL	BLOW		DEMAD	/ C		Well				
DEPTH	DESCRIPT	ION OF MA	ATERIALS		RESULTS	BOX NO.	SAMPLE NO.	COUNT		KEIVIARI	5		Details				
b.		с.			d.	e.	f.	g.		h.			i.				
·	Sandy silt	cuttings	to 5 fe	et	0 ppm								4				
	コート									Cement gro	ut w/3%	_	1				
2	4									bentor	nite						
	+											_	4				
4	1									2" CCU 40 F	VC ricor	1					
	-									2 3CH 40 P	VC HSEI						
_	Sandy silt (ML),	sl clayey	, moist	, brown	1			4/5/10/1	1								
6	C'III		00/					3		Bentonit	e seal						
_	Slity san	10 (SIVI), 1 d fine m	10% gra	avei, rown								_					
	Jubroun	a, me, m	10131, 01	own	1								-				
8	Few grave	els 7-9 ft v	while d	Irilling													
	1									Filter Pack Sa	nd 7.5-20) _					
10	Silty sand (SM).	Fine-me	d. few	gravels.	4			2/4/5/5		ft (#0))		4				
	w	et, browr	n	8 ,				5/4/5/5				_	1 🗖				
12	Silt	lens 11.5	5 ft														
	-																
	1											_					
14	-									2" CCH 40 D	Cereen		┥ ┝─┥				
_								E /0 / 4 / E		2 SCH 40 PV 0 01-S	lot	_	-				
16	Sand (SW), gra	velly, wei	t, Fine-	coarse,				5/8/4/5		0.01 5	101		4 -				
10	Silt (ML), sa	ndy, fine	beddir	ng, wet,									1 🖂				
	\land	brown	1									_					
18	-																
	1											_	1 🗖				
20	-												-				
	Silt, clayey, fin	e beddin	g, mois	st, gray				2/2/2/2					-				
.,.,	1												1				
COMMENTS	<u> </u> :					1	1						1				
PROJECT:											HOLE NO.:						
Olean Bi	ioremediation	Pilot St	udv										RU-19				
					DRI	LLIN	IG LOG					HOLE NO.:			RH	20	
-------------------	--------------------	--------------	---------------	------------	---------	--------------	-------------	--------------------------	-----------------	-------------	---------------------	-----------	----------	---------	--------	-------------	
1. COMPAN	Y NAME:							2. DRILLING S	UBCONTRAC	TOR:		СПЕВ	T 1 OF 1	с с ц с		20	
CDM Smi	th							SJB				SHEE		2 3010	EIS		
3. PROJECT:								4. LOCATION	:								
Alcas - Bi	oremediation P	Pilot Stuc	dy					Olean, NY									
5. NAME OF	DRILLER:							6. MANUFAC	TURER'S DESI	GNATION O	F DRILL:						
				<u>лт.</u>													
CME550	Hollow-Stem A	uger	JUIPIVIEI	NI:				8. HOLE LOCA	ATION.								
								9. SURFACE E	LEVATION (EI	evation top	of hole):						
								10. DATE STA	RTED:		11. DATE COMP	LETED:					
12. OVERBU	RDEN THICKNESS:							11/14/201	11 ROUNDWATE	R ENCOUNT	11/15/2011 ERED:						
40 ft								8 ft bgs									
13. DEPTH D ΝΔ	DRILLED INTO ROCK:							16. DIRECTIO Vertical	N OF HOLE:								
14. TOTAL D	EPTH OF HOLE:							17. TOTAL NU	JMBER OF CO	RE BOXES							
40 ft bgs								NA									
18. GEOTEC	HNICAL SAMPLES:		DIST	URBED:		UNDI	STURBED:	19. TOTAL # 0	OF SPLIT SPOO	ON SAMPLES	S:						
NA								18									
20. SAMPLE	S FOR CHEMICAL	8 RCRA	VOC's	SVOC's	т	рн	Ph	Pest/PCB's	Herbs	RAD's	Triaxial	Other	21. TOT/	AL COR	E		
ANALYSIS:		METALS		51005				1 050 1 05 5		10.00	Permeability	Physical	RECOVER	₹Y:			
	TCLP	Х	Х														
22. DISPOSI	TION OF HOLE:	BACKF	ILLED	MONIT	ORING	WELL	OTHER (S	PECIFY)	23. INSPECT	OR:							
					X FI	FLD	GEOTECH		Neil Smith					,	الم//		
DEPTH	DESCRIPT	ION OF MA	TERIALS		SCRE	ENING	SAMPLE/CORE	SAMPLE	COUNT		REMARI	۲S		Cons	tructi	on	
					RES	ULTS	BOX NO.	NO.						D	etails		
b.		C.	0	• •		d.	e.	f.	g.		h.			L_r	i.		
	Clayey sand ((SC), silty,	, tine, n	noist,	0 p	opm I			1/2/2/3								
	brown, ro	ots, iron	deposi	its													
2	Silt (ML) clow	ov moist	brow	n tan	-				2/2/7/0								
	SIIL (IVIL), Claye	ey, moist,	, DIOWI +c	n, tan,					2/3/7/9								
		in deposit	15														
4	1								4/6/9/ 10								
]								., ., ., .,								
	Sand silty	(SM) fine	few.c	lav							Cement gro	ut w/3%					
	nodules, few	v coarse s	and gr	ains.					1/11/12/		bentonit	e and					
	mc	oist. brow	/n						13		Microbond	additive					
8	1																
	4	Wet at 8	l ft						3/5/4/4								
	1																
10	1								0/0/5/0								
	1								2/2/5/9				_				
	V. silty 9.5-	10 ft and	11.5-1	2 ft							2" SCH 40 E	N/C risor					
12	-								9/9/21/2		2 3CH 40 P	venser					
	1								1								
	Conducation	/anoual /	MI) da						1								
14	Sandy slit w	/gravel (I	iviL),de	nse,					7/12/7/1								
	subround gra	vei, wei,	brown	, gray					1								
16	- V sa	ndv 14 5	_15														
	Sand, silty (SM)	, 5% grav	vel (sub	round),					7/8/9/ 11								
	Silt (ML), sl. Cl	avev. sl. 9	Sandy.	moist.									_				
18		brown	canay,														
	-								3/3/4/5								
20	Color cha	nge at 19) ft - gra	av	、 、	\downarrow											
		0.000	- 0. '	,	I	•											
CONTRACTOR 13																	
PROJECT:												HOLE NO.:					
Olean Bi	oremediation	Pilot St	udv											1	RU-	20	
	oremetriation	1 1101 31	uuy									<u> </u>			1.0-	<u> 2</u> 0	

					DRI	LLIN	g log					HOLE NO.:			RU-20
1. COMPAN	Y NAME:							2. DRILLING S	SUBCONTRAC [®]	TOR:		SHEE	T 2 OF	2 SHE	FTS
CDM Smi	th							SJB				51122	1201	2 3112	
3. PROJECT:								4. LOCATION	:						
Alcas - Bi	oremediation P	lot Stud	y					Olean, NY							
5. NAME OF	DRILLER:							6. MANUFAC	TURER'S DESI	GNATION O	F DRILL:				
7 SIZES/TYP	ES OF DRILLING & SA	MPLING FO		ντ·				8. HOLE LOCA	ATION:						
CME550	Hollow-Stem A	uger	2011 1121					0. CUDEACE E			- f - -).				
								9. SURFACE E	LEVATION (EI	evation top	of hole):				
								10. DATE STA	RTED: 1 1		11. DATE COMPI	LETED:			
12. OVERBU	RDEN THICKNESS:							15. DEPTH GF	ROUNDWATE	RENCOUNT	ERED:				
40 ft 13. DEPTH D	RILLED INTO ROCK:							8 ft bgs 16. DIRECTIO	N OF HOLE:						
NA								Vertical							
14. TOTAL D	EPTH OF HOLE:							17. TOTAL NU	JMBER OF CO	RE BOXES					
40 ft bgs			-					NA							
18. GEOTECH	HNICAL SAMPLES:		DIST	URBED:		UNDI	STURBED:	19. TOTAL # 0	OF SPLIT SPOC	ON SAMPLES	S:				
NA				1			1	18	1	1					
20. SAMPLES	S FOR CHEMICAL	8 RCRA	VOC's	SVOC's	Т	РН	Ph	Pest/PCB's	Herbs	RAD's	Triaxial Permeability	Other Physical	21. TOT	AL COR	ίΕ
ANALISIS.	TCLP	X	x								Termeability	Thysical	NECOVE		
22. DISPOSIT	TION OF HOLE:	BACKF	ILLED	MONIT	ORING	WELL	OTHER (S	PECIFY)	23. INSPECT	OR:					
					х				Neil Smith						
					FIE	LD	GEOTECH	ANALYTICAL	BLOW					,	Well
DEPTH	DESCRIPT	ION OF MA	TERIALS		SCRE	ENING	SAMPLE/CORE	SAMPLE	COUNT		REMARK	(S		Cons	truction
b.		c.			RES	d.	e.	NO. f.	g.		h.			U	i.
20	Silt (ML), sl. Cl	ayey, sl. S	Sandy,	moist,	0 p	pm			2/2/3/4						
		brown			, i	ĺ					Cement gro	ut w/3%			
	Clay (CL) w/	silt lense	s, fine-	med							bentonit	e and		-	
22	bedding, r	moist, gra	ay-brov	vn					8/11/9/1		Microbond	additive			
									0				_		
	Clay (CL), g	ravelly, s	ubrour	nd -					-					-	
	subangu	ular, mois	st, gray						6/8/8/ 11						
	ł													-	
26	Moro gra		h danti	h							Dontonito C				
	wore gra	aveny with	nuepu						10/11/		27 E	eal 25.5-			
_	1								17/16		27.5			-	00000000
28	4								C IT IA A IA					-	
	1								6///11/1					-	
	Į								5					-	
30	1								10/11/					-	
									14/27		Sand filter p	ack 27.5-	_	-	
	Gravel (GW)	, sandy, f	ine-coa	arse,					,		40 ft bgs	s - #0		-	
32	subround - su	ubangula	r, wet,	gray,					14/16/					1	
-	†	orown							35/33						
34	1													1	
—	4								8/6/5/7	2" diam	eter SCH 40 P\	/C screen			
	1										0.01-slot		_	1	
36	+														
-	1														
_	ł													1	
38	†								<u> </u>						
_	1												_		
40	4					/									
COMMENTS:					•				•						
												NOLL NU.:			
Olean Bi	oremediation	Pilot St	udy												<u>кU-20</u>

					DR	ILLIN	G LOG					HOLE NO.:		R	≀U-21
1. COMPAN	Y NAME:							2. DRILLING S	SUBCONTRAC	FOR:		SHEE	T 1 OF 1		TS
CDM Smi	ith							SJB				51121		. JIILL	15
3. PROJECT:								4. LOCATION	:						
Alcas - Bi	oremediation F	Pilot Stud	ly					Olean, NY							
5. NAME OF	DRILLER:							6. MANUFAC	TURER'S DESI	GNATION O	F DRILL:				
				<u>ит.</u>											
CME550	Hollow-Stem A	uger	LOIPIVIER	NI.				8. HOLL LOCA	anon.						
								9. SURFACE E	ELEVATION (EI	evation top	of hole):				
								NA							
								10. DATE STA	ARTED: 11		11. DATE COMPI 11/16/2011	LETED:			
12. OVERBU	IRDEN THICKNESS:							15. DEPTH G	ROUNDWATE	RENCOUNT	ERED:				
20 ft								8 ft bgs							
13. DEPTH D	DRILLED INTO ROCK:							16. DIRECTIO	N OF HOLE:						
ΝΑ 14. ΤΟΤΑΙ Γ	EPTH OF HOLE							Vertical	IMBER OF CO	RF BOXES					
20 ft bgs								NA		NE DOXES					
18. GEOTEC	HNICAL SAMPLES:		DIST	URBED:		UNDI	STURBED:	19. TOTAL # (OF SPLIT SPOC	ON SAMPLES	S:				
NA								10							
20. SAMPLE	S FOR CHEMICAL	8 RCRA	VOC's	SVOC's	т	ΡН	Ph	Pest/PCB's	Herbs	RAD's	Triaxial	Other	21. TOT	AL CORE	
ANALYSIS:	TCLP	IVIE TALS	x								Permeability	Physical	RECOVER	(Y)	
22. DISPOSI	TION OF HOLE:	BACKF	LLED	MONIT	ORING	WELL	OTHER (S	PECIFY)	23. INSPECT	OR:					
221 0101 001					X				Neil Smith						
		1			FI	ELD	GEOTECH	ANALYTICAL	BLOW					W	/ell
DEPTH	DESCRIPT	ION OF MA	TERIALS		SCRE	ENING	SAMPLE/CORE	SAMPLE	COUNT		REMARK	(S		Constr	ruction
h		C			RES	SULTS d	BOX NO.	NO. f	σ		h			Det	tails i
0	Silty clay (CL). sandv.	soft. m	oist.	0	opm	ς.	ı.	<u>ة.</u> 0/1/1/1						<u>.</u>
		brown			Ű				0, 1, 1, 1						
	4	5.0									Cement gro	ut w/3%			
2									3/6/8/ 10		bentor	nite			
	Silt (ML), sl. Cla	yey, stiff,	moist,	brown,											
4	tan,	iron depo	sits												
·	4								3/6/9/ 11		2" SCH 40 P	vC riser			
	Sand. silty (S	M). fine. f	few gra	avels.											
6	m	pist, brow	'n	,					12/11/		Bentonit	ادم، د			
	1	,							12/11/		Dentonito	c scar			
	Sand finer wi	th depth,	few th	in silt					12/10						
8	4	lenses							3/5/6/5						
	7								-, -, -, -						
10	4										Filter Pack Sa	nd 7.5-20			
10	7								0/1/21/		ft (#C))			_
	Gravelly silt (M	II) Sandy	wet	hrown					16					-	—
12	subround-	-subangul	ar grav	/el											
	Subround	Subungu	ui Biui						17/14/					-	—
	1								19/20						
14	4								0/0/11/						—
	1								8/9/11/		2" SCH 40 PV	C Screen			
	4								10		0.01-S	lot			_
16	Gravelly sar	nd (SW) s	l siltv v	wet					10/10/					-	—
	eraren, sa	hrown	,)						14/16						
	Silt (ML), sl g	gravelly, v	vet, bro	own,					1.710					-	_
18	subro	ounded gr	avel						3/5/8/6						-
	1								5/5/6/0						
	Silt (ML), sl o	clayey, fin	e bedo	ding,										-	_
20 COMMENTS	m	noist, gray	/			\vee									
PROJECT															
I NOJECI.												INULE INU.:			
Olean Bi	ioremediation	Pilot St	udy											R	≀U-21

Appendix B

Laboratory Data

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Buffalo 10 Hazelwood Drive Amherst, NY 14228-2298 Tel: (716)691-2600

TestAmerica Job ID: 480-12940-1 Client Project/Site: Olean Pilot Study

For:

Camp Dresser & McKee Inc 555 17th Street Suite 1100 Denver, Colorado 80202

Attn: Neil Smith

Eberry

Authorized for release by: 12/6/2011 2:35:24 PM Eve Berry Project Administrator eve.berry@testamericainc.com

Designee for

Peggy Gray-Erdmann Project Manager II peggy.gray-erdmann@testamericainc.com

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Detection Summary	5
Client Sample Results	8
Surrogate Summary	24
QC Sample Results	25
QC Association Summary	35
Lab Chronicle	38
Certification Summary	41
Method Summary	42
Sample Summary	43
Chain of Custody	44
Receipt Checklists	45

3

Qualifiers

CC	/M/C	VO	Λ
90	1113		-

GC/INS VUA		
Qualifier	Qualifier Description	
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.	5
*	LCS or LCSD exceeds the control limits	
Н	Sample was prepped or analyzed beyond the specified holding time	
Metals		
Qualifier	Qualifier Description	
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.	
В	Compound was found in the blank and sample.	9
4	MS, MSD: The analyte present in the original sample is 4 times greater than the matrix spike concentration; therefore, control limits are not	
	applicable.	C
General Cher	nistry	
Qualifier	Qualifier Description	
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.	
Glossary		-1
Abbreviation	These commonly used abbreviations may or may not be present in this report.	
¢.	Listed under the "D" column to designate that the result is reported on a dry weight basis	
%R	Percent Recovery	
CNF	Contains no Free Liquid	
DL, RA, RE, IN	Indicates a Dilution, Reanalysis, Re-extraction, or additional Initial metals/anion analysis of the sample	
EDL	Estimated Detection Limit	
EPA	United States Environmental Protection Agency	
MDL	Method Detection Limit	
ML	Minimum Level (Dioxin)	

- ND Not detected at the reporting limit (or MDL or EDL if shown)
- Practical Quantitation Limit PQL
- RL Reporting Limit Relative Percent Difference, a measure of the relative difference between two points RPD
- TEF Toxicity Equivalent Factor (Dioxin)
- TEQ Toxicity Equivalent Quotient (Dioxin)

Job ID: 480-12940-1

Laboratory: TestAmerica Buffalo

Narrative

Job Narrative 480-12940-1

Receipt

All samples were received in good condition within temperature requirements.

GC/MS VOA

Method(s) 8260B: The following samples were diluted due to the abundance of target analytes: RU19-111711 (480-12940-3)
RU21-111711 (480-12940-5), RU8-111711 (480-12940-4). Elevated reporting limits (RLs) are provided.

Method(s) 8260B: The following sample were diluted due to the abundance of target analytes: RU20-111711 (480-12940-1). Elevated reporting limits (RLs) are provided.

Method(s) 8260B: The following sample required a dilution which was performed outside of the analytical holding time: RU20-111711 (480-12940-1).

No other analytical or quality issues were noted.

Ion Chromatography

No analytical or quality issues were noted.

GC VOA

No analytical or quality issues were noted.

Metals

No analytical or quality issues were noted.

General Chemistry

No analytical or quality issues were noted.

Client Sample ID: RU20-111711

Lab Sample ID: 480-12940-1

Lab Sample ID: 480-12940-2

Lab Sample ID: 480-12940-3

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D Method	Prep Type
1,1,2-Trichloroethane	0.52	J	1.0	0.23	ug/L	1	8260B	Total/NA
1,1,2-Trichloro-1,2,2-trifluoroethane	0.66	J	1.0	0.31	ug/L	1	8260B	Total/NA
1,1-Dichloroethene	1.2		1.0	0.29	ug/L	1	8260B	Total/NA
Tetrachloroethene	3.8		1.0	0.36	ug/L	1	8260B	Total/NA
trans-1,2-Dichloroethene	1.5		1.0	0.90	ug/L	1	8260B	Total/NA
cis-1,2-Dichloroethene - DL	100	н	50	41	ug/L	50	8260B	Total/NA
Trichloroethene - DL	3000	Н	50	23	ug/L	50	8260B	Total/NA
Methane	2.1		1.0	0.22	ug/L	1	RSK-175	Total/NA
Barium	0.14		0.0020	0.00050	mg/L	1	6010B	Dissolved
Calcium	107		0.50	0.10	mg/L	1	6010B	Dissolved
Copper	0.0034	J	0.010	0.0015	mg/L	1	6010B	Dissolved
Magnesium	16.6		0.20	0.043	mg/L	1	6010B	Dissolved
Manganese	0.098	В	0.0030	0.00030	mg/L	1	6010B	Dissolved
Nickel	0.0015	J	0.010	0.0013	mg/L	1	6010B	Dissolved
Potassium	2.4		0.50	0.20	mg/L	1	6010B	Dissolved
Sodium	31.6		1.0	0.32	mg/L	1	6010B	Dissolved
Zinc	0.0031	J	0.010	0.0017	mg/L	1	6010B	Dissolved
Chloride	83.5		0.50	0.28	mg/L	1	300.0	Total/NA
Sulfate	41.4		2.0	0.35	mg/L	1	300.0	Total/NA
Nitrate Nitrite as N	1.4		0.050	0.020	mg/L	1	353.2	Total/NA
Total Organic Carbon	0.75	J	1.0	0.43	mg/L	1	SM 5310D	Total/NA

Client Sample ID: RU10-111711

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac D	Method	Prep Type
cis-1,2-Dichloroethene	24		1.0	0.81	ug/L	1	8260B	Total/NA
Trichloroethene	72		1.0	0.46	ug/L	1	8260B	Total/NA
Vinyl chloride	2.2		1.0	0.90	ug/L	1	8260B	Total/NA
Methane	7.4		1.0	0.22	ug/L	1	RSK-175	Total/NA
Barium	0.051		0.0020	0.00050	mg/L	1	6010B	Dissolved
Cadmium	0.00033	J	0.0010	0.00033	mg/L	1	6010B	Dissolved
Calcium	22.1		0.50	0.10	mg/L	1	6010B	Dissolved
Copper	0.0040	J	0.010	0.0015	mg/L	1	6010B	Dissolved
Magnesium	3.6		0.20	0.043	mg/L	1	6010B	Dissolved
Manganese	0.0063	В	0.0030	0.00030	mg/L	1	6010B	Dissolved
Potassium	0.56		0.50	0.20	mg/L	1	6010B	Dissolved
Sodium	2.4		1.0	0.32	mg/L	1	6010B	Dissolved
Zinc	0.0026	J	0.010	0.0017	mg/L	1	6010B	Dissolved
Chloride	1.8		0.50	0.28	mg/L	1	300.0	Total/NA
Sulfate	11.9		2.0	0.35	mg/L	1	300.0	Total/NA
Nitrate Nitrite as N	1.2		0.050	0.020	mg/L	1	353.2	Total/NA

Client Sample ID: RU19-111711

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
1,1,2-Trichloro-1,2,2-trifluoroethane	0.52	J	1.0	0.31	ug/L	1	_	8260B	Total/NA
1,1-Dichloroethene	2.1		1.0	0.29	ug/L	1		8260B	Total/NA
Tetrachloroethene	1.7		1.0	0.36	ug/L	1		8260B	Total/NA
trans-1,2-Dichloroethene	3.5		1.0	0.90	ug/L	1		8260B	Total/NA
Vinyl chloride	33		1.0	0.90	ug/L	1		8260B	Total/NA
cis-1,2-Dichloroethene - DL	300		10	8.1	ug/L	10		8260B	Total/NA
Trichloroethene - DL	790		10	4.6	ug/L	10		8260B	Total/NA
Ethane	7.8		1.5	0.49	ug/L	1		RSK-175	Total/NA
Methane	130		10	2.2	ug/L	10		RSK-175	Total/NA

Lab Sample ID: 480-12940-3

Lab Sample ID: 480-12940-4

5

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D Method	Prep Type
Barium	0.052		0.0020	0.00050	mg/L	1	6010B	Dissolved
Cadmium	0.00041	J	0.0010	0.00033	mg/L	1	6010B	Dissolved
Calcium	73.3		0.50	0.10	mg/L	1	6010B	Dissolved
Cobalt	0.00087	J	0.0040	0.00063	mg/L	1	6010B	Dissolved
Copper	0.0047	J	0.010	0.0015	mg/L	1	6010B	Dissolved
Magnesium	11.2		0.20	0.043	mg/L	1	6010B	Dissolved
Manganese	0.45	В	0.0030	0.00030	mg/L	1	6010B	Dissolved
Nickel	0.0024	J	0.010	0.0013	mg/L	1	6010B	Dissolved
Potassium	1.7		0.50	0.20	mg/L	1	6010B	Dissolved
Sodium	13.6		1.0	0.32	mg/L	1	6010B	Dissolved
Zinc	0.0038	J	0.010	0.0017	mg/L	1	6010B	Dissolved
Chloride	17.0		0.50	0.28	mg/L	1	300.0	Total/NA
Sulfate	38.4		2.0	0.35	mg/L	1	300.0	Total/NA
Nitrate Nitrite as N	0.55		0.050	0.020	mg/L	1	353.2	Total/NA
Total Organic Carbon	0.95	J	1.0	0.43	mg/L	1	SM 531	0D Total/NA

Client Sample ID: RU8-111711

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
cis-1,2-Dichloroethene	12		1.0	0.81	ug/L	1	_	8260B	Total/NA
Tetrachloroethene	0.52	J	1.0	0.36	ug/L	1		8260B	Total/NA
Vinyl chloride	1.7		1.0	0.90	ug/L	1		8260B	Total/NA
Trichloroethene - DL	280		5.0	2.3	ug/L	5		8260B	Total/NA
Ethane	2.6		1.5	0.49	ug/L	1		RSK-175	Total/NA
Ethene	1.5		1.5	0.52	ug/L	1		RSK-175	Total/NA
Methane	37		1.0	0.22	ug/L	1		RSK-175	Total/NA
Barium	0.11		0.0020	0.00050	mg/L	1		6010B	Dissolved
Calcium	104		0.50	0.10	mg/L	1		6010B	Dissolved
Copper	0.0019	J	0.010	0.0015	mg/L	1		6010B	Dissolved
Magnesium	21.5		0.20	0.043	mg/L	1		6010B	Dissolved
Manganese	0.28	В	0.0030	0.00030	mg/L	1		6010B	Dissolved
Potassium	1.7		0.50	0.20	mg/L	1		6010B	Dissolved
Sodium	17.6		1.0	0.32	mg/L	1		6010B	Dissolved
Zinc	0.0058	J	0.010	0.0017	mg/L	1		6010B	Dissolved
Chloride	10.5		0.50	0.28	mg/L	1		300.0	Total/NA
Sulfate	42.7		2.0	0.35	mg/L	1		300.0	Total/NA
Nitrate Nitrite as N	0.59		0.050	0.020	mg/L	1		353.2	Total/NA
Total Organic Carbon	0.50	J	1.0	0.43	mg/L	1		SM 5310D	Total/NA

Client Sample ID: RU21-111711

Lab Sample ID: 480-12940-5

 Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
1,1,2-Trichloro-1,2,2-trifluoroethane	0.88	J	1.0	0.31	ug/L	1	_	8260B	Total/NA
1,1-Dichloroethene	3.6		1.0	0.29	ug/L	1		8260B	Total/NA
Cyclohexane	0.59	J	1.0	0.18	ug/L	1		8260B	Total/NA
Tetrachloroethene	2.6		1.0	0.36	ug/L	1		8260B	Total/NA
trans-1,2-Dichloroethene	6.2		1.0	0.90	ug/L	1		8260B	Total/NA
Vinyl chloride	58		1.0	0.90	ug/L	1		8260B	Total/NA
cis-1,2-Dichloroethene - DL	490		25	20	ug/L	25		8260B	Total/NA
Trichloroethene - DL	1500		25	12	ug/L	25		8260B	Total/NA
Ethane	12		1.5	0.49	ug/L	1		RSK-175	Total/NA
Ethene	1.7		1.5	0.52	ug/L	1		RSK-175	Total/NA
Methane	190		10	2.2	ug/L	10		RSK-175	Total/NA
Barium	0.060		0.0020	0.00050	mg/L	1		6010B	Dissolved

Client Sample ID: RU21-111711 (Continued)

Lab Sample ID: 480-12940-5

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Cadmium	0.00043	J	0.0010	0.00033	mg/L	1	_	6010B	Dissolved
Calcium	114		0.50	0.10	mg/L	1		6010B	Dissolved
Cobalt	0.0011	J	0.0040	0.00063	mg/L	1		6010B	Dissolved
Copper	0.0043	J	0.010	0.0015	mg/L	1		6010B	Dissolved
Magnesium	16.7		0.20	0.043	mg/L	1		6010B	Dissolved
Manganese	0.45	В	0.0030	0.00030	mg/L	1		6010B	Dissolved
Nickel	0.0032	J	0.010	0.0013	mg/L	1		6010B	Dissolved
Potassium	2.3		0.50	0.20	mg/L	1		6010B	Dissolved
Sodium	20.0		1.0	0.32	mg/L	1		6010B	Dissolved
Zinc	0.0032	J	0.010	0.0017	mg/L	1		6010B	Dissolved
Chloride	26.6		0.50	0.28	mg/L	1		300.0	Total/NA
Sulfate	61.1		2.0	0.35	mg/L	1		300.0	Total/NA
Nitrate Nitrite as N	0.026	J	0.050	0.020	mg/L	1		353.2	Total/NA
Total Organic Carbon	2.0		1.0	0.43	mg/L	1		SM 5310D	Total/NA

Client Sample ID: DUP-111711

Lab Sample ID: 480-12940-6

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
cis-1,2-Dichloroethene	24		1.0	0.81	ug/L	1	_	8260B	Total/NA
Trichloroethene	72		1.0	0.46	ug/L	1		8260B	Total/NA
Vinyl chloride	2.4		1.0	0.90	ug/L	1		8260B	Total/NA
Methane	8.1		1.0	0.22	ug/L	1		RSK-175	Total/NA
Barium	0.052		0.0020	0.00050	mg/L	1		6010B	Dissolved
Calcium	22.9		0.50	0.10	mg/L	1		6010B	Dissolved
Copper	0.0029	J	0.010	0.0015	mg/L	1		6010B	Dissolved
Magnesium	3.7		0.20	0.043	mg/L	1		6010B	Dissolved
Manganese	0.0063	В	0.0030	0.00030	mg/L	1		6010B	Dissolved
Potassium	0.54		0.50	0.20	mg/L	1		6010B	Dissolved
Sodium	2.5		1.0	0.32	mg/L	1		6010B	Dissolved
Zinc	0.0020	J	0.010	0.0017	mg/L	1		6010B	Dissolved
Chloride	1.9		0.50	0.28	mg/L	1		300.0	Total/NA
Sulfate	11.9		2.0	0.35	mg/L	1		300.0	Total/NA
Nitrate Nitrite as N	1.3		0.050	0.020	mg/L	1		353.2	Total/NA

Client Sample ID: RB-111711

No Detections

Client Sample ID: TRIP BLANK

No Detections

Lab Sample ID: 480-12940-8

Lab Sample ID: 480-12940-7

Client Sample ID: RU20-111711

Date Collected: 11/17/11 09:50 Date Received: 11/18/11 09:30

Method: 8260B - Volatile Organi	c Compounds	(GC/MS)				_	<u> </u>		
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	DII Fac
1,1,1-1 richloroethane	ND		1.0	0.82	ug/L			12/01/11 01:38	1
1,1,2,2- i etrachioroethane	ND		1.0	0.21	ug/L			12/01/11 01:38	1
1,1,2-Trichloroethane	0.52	J	1.0	0.23	ug/L			12/01/11 01:38	
1,1,2-Trichloro-1,2,2-trifluoroetha	0.66	J	1.0	0.31	ug/L			12/01/11 01:38	1
ne 1,1-Dichloroethane	ND		1.0	0.38	ug/L			12/01/11 01:38	1
1,1-Dichloroethene	1.2		1.0	0.29	ug/L			12/01/11 01:38	1
1,2,4-Trichlorobenzene	ND		1.0	0.41	ug/L			12/01/11 01:38	1
1,2-Dibromo-3-Chloropropane	ND		1.0	0.39	ug/L			12/01/11 01:38	1
1,2-Dibromoethane	ND		1.0	0.73	ug/L			12/01/11 01:38	1
1,2-Dichlorobenzene	ND		1.0	0.79	ug/L			12/01/11 01:38	1
1,2-Dichloroethane	ND		1.0	0.21	ug/L			12/01/11 01:38	1
1,2-Dichloropropane	ND		1.0	0.72	ug/L			12/01/11 01:38	1
1,3-Dichlorobenzene	ND		1.0	0.78	ug/L			12/01/11 01:38	1
1,4-Dichlorobenzene	ND		1.0	0.84	ug/L			12/01/11 01:38	1
2-Hexanone	ND		5.0	1.2	ug/L			12/01/11 01:38	1
2-Butanone (MEK)	ND		10	1.3	ua/L			12/01/11 01:38	1
4-Methyl-2-pentanone (MIBK)	ND		5.0	2.1	ua/L			12/01/11 01:38	1
Acetone	ND		10	3.0	ua/L			12/01/11 01:38	1
Benzene	ND		1.0	0.41	ua/L			12/01/11 01:38	1
Bromodichloromethane	ND		1.0	0.39	ua/l			12/01/11 01:38	1
Bromoform	ND		1.0	0.26	ua/L			12/01/11 01:38	1
Bromomethane	ND	*	1.0	0.69	ua/L			12/01/11 01:38	1
Carbon disulfide	ND		1.0	0.19	ua/L			12/01/11 01:38	1
Carbon tetrachloride	ND		1.0	0.27	ug/L			12/01/11 01:38	1
Chlorobenzene	ND		1.0	0.75	ua/L			12/01/11 01:38	1
Dibromochloromethane	ND		1.0	0.32	ua/L			12/01/11 01:38	1
Chloroethane	ND		1.0	0.32	ua/L			12/01/11 01:38	1
Chloroform	ND		1.0	0.34	ua/L			12/01/11 01:38	1
Chloromethane	ND		1.0	0.35	ua/L			12/01/11 01:38	1
cis-1.3-Dichloropropene	ND		1.0	0.36	ua/L			12/01/11 01:38	1
Cyclohexane	ND		1.0	0.18	ug/L			12/01/11 01:38	1
Dichlorodifluoromethane	ND		1.0	0.68	ug/L			12/01/11 01:38	1
Ethylbenzene	ND		1.0	0.74	ug/L			12/01/11 01:38	1
Isopropylbenzene	ND		1.0	0.79	ug/L			12/01/11 01:38	1
Methyl acetate	ND		1.0	0.50	ug/L			12/01/11 01:38	1
Methyl tert-butyl ether	ND		1.0	0.16	ug/L			12/01/11 01:38	1
Methylcyclohexane	ND		1.0	0.16	ug/L			12/01/11 01:38	1
Methylene Chloride	ND		1.0	0.44	ug/L			12/01/11 01:38	1
Styrene	ND		1.0	0.73	ug/L			12/01/11 01:38	1
Tetrachloroethene	3.8		1.0	0.36	ug/L			12/01/11 01:38	1
Toluene	ND		1.0	0.51	ug/L			12/01/11 01:38	1
trans-1,2-Dichloroethene	1.5		1.0	0.90	ug/L			12/01/11 01:38	1
trans-1,3-Dichloropropene	ND		1.0	0.37	ug/L			12/01/11 01:38	1
Trichlorofluoromethane	ND		1.0	0.88	ug/L			12/01/11 01:38	1
Vinyl chloride	ND		1.0	0.90	ug/L			12/01/11 01:38	1
Xylenes, Total	ND		2.0	0.66	ug/L			12/01/11 01:38	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	112		66 - 137			-		12/01/11 01:38	1

Lab Sample ID: 480-12940-1

Matrix: Water

3 4 5 6 7 8 9 10 11

Client Sample ID: RU20-111711 Date Collected: 11/17/11 09:50 Date Received: 11/18/11 09:30

Lab Sample ID: 480-12940-1 Matrix: Water

Surrogate	%Recoverv	Qualifier	Limits				Prepared	Analvzed	Dil Fac
Toluene-d8 (Surr)			71_126					12/01/11 01:38	1
4-Bromofluorobenzene (Surr)	100		73_120					12/01/11 01:38	1
	100		10 - 120					12/01/11/01:00	,
Method: 8260B - Volatile Orga	nic Compounds	(GC/MS) - D	L						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
cis-1,2-Dichloroethene	100	н	50	41	ug/L			12/02/11 13:16	50
Trichloroethene	3000	н	50	23	ug/L			12/02/11 13:16	50
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	116		66 - 137					12/02/11 13:16	50
Toluene-d8 (Surr)	108		71 - 126					12/02/11 13:16	50
4-Bromofluorobenzene (Surr)	102		73 - 120					12/02/11 13:16	50
- Method: RSK-175 - Dissolved	Gases (GC)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ethane	ND	· · · · · · · · · · · · · · · · · · ·	1.5	0.49	ug/L		·	11/22/11 10:29	1
Ethene	ND		1.5	0.52	ua/L			11/22/11 10:29	1
Methane	2.1		1.0	0.22	ug/L			11/22/11 10:29	1
Mathadi (040D Matala (10D)	Discoluted								
Analyte	- DISSOIVED Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	ND		0.20	0.060	mg/L		11/21/11 09:15	11/21/11 22:40	1
Antimony	ND		0.020	0.0068	mg/L		11/21/11 09:15	11/21/11 22:40	1
Arsenic	ND		0.010	0.0056	mg/L		11/21/11 09:15	11/21/11 22:40	1
Barium	0.14		0.0020	0.00050	mg/L		11/21/11 09:15	11/21/11 22:40	1
Beryllium	ND		0.0020	0.00030	mg/L		11/21/11 09:15	11/22/11 17:11	1
Cadmium	ND		0.0010	0.00033	mg/L		11/21/11 09:15	11/21/11 22:40	1
Calcium	107		0.50	0.10	mg/L		11/21/11 09:15	11/21/11 22:40	1
Chromium	ND		0.0040	0.00087	mg/L		11/21/11 09:15	11/21/11 22:40	1
Cobalt	ND		0.0040	0.00063	mg/L		11/21/11 09:15	11/21/11 22:40	1
Copper	0.0034	J	0.010	0.0015	ma/L		11/21/11 09:15	11/21/11 22:40	1
Iron	ND		0.050	0.019	ma/L		11/21/11 09:15	11/21/11 22:40	1
Lead	ND		0.0050	0.0030	ma/L		11/21/11 09:15	11/21/11 22:40	1
Magnesium	16.6		0.20	0.043	ma/L		11/21/11 09:15	11/21/11 22:40	1
Manganese	0.098	в	0.0030	0.00030	ma/L		11/21/11 09:15	11/21/11 22:40	1
Nickel	0.0015	J	0.010	0.0013	ma/L		11/21/11 09:15	11/21/11 22:40	1
Potassium	2.4		0.50	0.20	ma/l		11/21/11 09:15	11/21/11 22:40	1
Selenium			0.015	0.0087	ma/l		11/21/11 09:15	11/21/11 22:40	1
Silver			0.0030	0.0007	mg/L		11/21/11 09:15	11/21/11 22:40	1
Sodium	21.6		1.0	0.0017	mg/L		11/21/11 09:15	11/21/11 22:40	· · · · · · · · 1
Thallium			0.020	0.02	mg/L		11/21/11 09:15	11/21/11 22:40	1
Vanadium			0.020	0.010	mg/L		11/21/11 09:15	11/21/11 22:40	1
Zinc	0.0031		0.0000	0.0017	mg/L		11/21/11 09:15	11/21/11 22:40	י 1
-	0.0001	•	0.010	0.0017			1112111100.10	11/2 // 11 22:10	·
Method: 7470A - Mercury (CV/	AA) - Dissolved	Qualifier			11	_	Drensus	A	
	Result	Qualifier		MDL		D	Prepared	Analyzed	
	ND		0.00020	0.00012	mg/∟		11/23/11 11:20	11/23/11 15:20	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	83.5		0.50	0.28	mg/L			12/02/11 04:47	1

5

6

Client Sample ID: RU20-111711 Date Collected: 11/17/11 09:50

Date Received: 11/18/11 09:30

General Chemistry (Continued)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Sulfate	41.4		2.0	0.35	mg/L			12/02/11 04:47	1
Nitrate Nitrite as N	1.4		0.050	0.020	mg/L			12/02/11 14:32	1
Total Organic Carbon	0.75	J	1.0	0.43	mg/L			11/22/11 19:48	1
Acetic acid	ND		1.0	0.15	mg/L			12/04/11 05:31	1
Butyric acid	ND		1.0	0.16	mg/L			12/04/11 05:31	1
Propionic acid	ND		1.0	0.17	mg/L			12/04/11 05:31	1

Client Sample ID: RU10-111711

Date Collected: 11/17/11 11:00

Date Received: 11/18/11 09:30

Cvclohexane

Ethylbenzene

Methyl acetate

Isopropylbenzene

Dichlorodifluoromethane

Method: 8260B - Volatile Organic Compounds (GC/MS) Dil Fac Result Qualifier MDL Unit Analyte RL D Prepared Analyzed ND 1.0 1,1,1-Trichloroethane 0.82 ug/L 12/01/11 02:01 1 ND 1.0 12/01/11 02:01 1,1,2,2-Tetrachloroethane 0.21 ug/L 1 1,1,2-Trichloroethane ND 1.0 0.23 12/01/11 02:01 ug/L 1 1,1,2-Trichloro-1,2,2-trifluoroethane ND 1.0 0.31 ug/L 12/01/11 02:01 1 1,1-Dichloroethane ND 1.0 0.38 ug/L 12/01/11 02:01 1 1-Dichloroethene ND 10 0.29 ug/L 12/01/11 02.01 1 1,2,4-Trichlorobenzene ND 1.0 0.41 ug/L 12/01/11 02:01 1,2-Dibromo-3-Chloropropane ND 1.0 0.39 ug/L 12/01/11 02:01 1 1,2-Dibromoethane ND 1.0 0.73 ug/L 12/01/11 02:01 1 1,2-Dichlorobenzene ND 1.0 0.79 ug/L 12/01/11 02:01 1 1,2-Dichloroethane ND 1.0 0.21 ug/L 12/01/11 02:01 1 1,2-Dichloropropane ND 1.0 0.72 ug/L 12/01/11 02:01 1 ND 0.78 ug/L 1.3-Dichlorobenzene 1.0 12/01/11 02:01 1 1,4-Dichlorobenzene ND 1.0 0.84 ug/L 12/01/11 02:01 1 2-Hexanone ND 5.0 1.2 ug/L 12/01/11 02:01 1 2-Butanone (MEK) ND 10 12/01/11 02:01 1.3 ug/L 4-Methyl-2-pentanone (MIBK) ND 5.0 2.1 12/01/11 02:01 ug/L 1 Acetone ND 10 3.0 ug/L 12/01/11 02:01 1 Benzene ND 1.0 0.41 ug/L 12/01/11 02.01 1 Bromodichloromethane ND 1.0 0.39 ug/L 12/01/11 02:01 1 ND Bromoform 1.0 0.26 ug/L 12/01/11 02:01 1 ND Bromomethane 1.0 0.69 ug/L 12/01/11 02:01 1 Carbon disulfide ND 1.0 0.19 ug/L 12/01/11 02:01 1 Carbon tetrachloride ND 1.0 0.27 ug/L 12/01/11 02:01 ND 12/01/11 02:01 Chlorobenzene 1.0 0.75 ug/L Dibromochloromethane ND 1.0 0.32 ug/L 12/01/11 02:01 1 Chloroethane ND 1.0 0.32 ug/L 12/01/11 02:01 Chloroform ND 1.0 0.34 ug/L 12/01/11 02:01 1 Chloromethane ND 1.0 0.35 12/01/11 02:01 ug/L 1 1.0 0.81 ug/L 24 12/01/11 02:01 cis-1,2-Dichloroethene 1 cis-1,3-Dichloropropene ND 1.0 0.36 ug/L 12/01/11 02:01

TestAmerica Job ID: 480-12940-1

Lab Sample ID: 480-12940-1 Matrix: Water

Lab Sample ID: 480-12940-2

Matrix: Water

1

1

1

1

12/01/11 02:01

12/01/11 02:01

12/01/11 02:01

12/01/11 02:01

12/01/11 02:01

1.0

1.0

1.0

1.0

1.0

0.18 ug/L

0.79 ug/L

0.50 ug/L

0.68 ug/L

0.74 ug/L

ND

ND

ND

ND

ND

RL

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

2.0

RL

1.5

1.5

Limits

66 - 137

71 - 126

73 - 120

MDL Unit

0.16 ug/L

0.44 ug/L

0.73 ug/L

ug/L

0.16 ug/L

0.36

0.51 ug/L

0.90 ug/L

0.37 ug/L

0.46 ug/L

0.88 ug/L

0.90 ug/L

0.66 ug/L

MDL Unit

ug/L

0.49

0.52 ug/L D

Prepared

Date Collected: 11/17/11 11:00

Date Received: 11/18/11 09:30

Analyte

Styrene

Toluene

Methyl tert-butyl ether

Methylcyclohexane

Methylene Chloride

Tetrachloroethene

Trichloroethene

Vinyl chloride

Xylenes, Total

Toluene-d8 (Surr)

Surrogate

Analyte

Ethane

Ethene

Thallium

Vanadium

Zinc

trans-1,2-Dichloroethene

Trichlorofluoromethane

1,2-Dichloroethane-d4 (Surr)

4-Bromofluorobenzene (Surr)

Method: RSK-175 - Dissolved Gases (GC)

trans-1,3-Dichloropropene

Client Sample ID: RU10-111711

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Result Qualifier

ND

ND

ND

ND

ND

ND

ND

ND

72

ND

2.2

ND

112

104

98

ND

ND

ND

ND

0.0026 J

Result Qualifier

Qualifier

%Recovery

TestAmerica Job ID: 480-12940-1

Lab Sample ID: 480-12940-2

Analyzed

12/01/11 02:01

12/01/11 02:01

12/01/11 02:01

12/01/11 02:01

12/01/11 02:01

12/01/11 02:01

12/01/11 02:01

12/01/11 02:01

12/01/11 02:01

12/01/11 02:01

12/01/11 02:01

12/01/11 02:01

Analyzed

12/01/11 02:01

12/01/11 02:01

12/01/11 02:01

Matrix: Water

Dil Fac

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

Dil Fac

6

D Prepared Analyzed Dil Fac 11/22/11 10:46 11/22/11 10:46

11/21/11 09:15

11/21/11 09:15

11/21/11 09:15

Prepared

Methane	7.4		1.0	0.22	ug/L			11/22/11 10:46	1
- Method: 6010B - Metals ((ICP) - Dissolved								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	ND		0.20	0.060	mg/L		11/21/11 09:15	11/21/11 22:42	1
Antimony	ND		0.020	0.0068	mg/L		11/21/11 09:15	11/21/11 22:42	1
Arsenic	ND		0.010	0.0056	mg/L		11/21/11 09:15	11/21/11 22:42	1
Barium	0.051		0.0020	0.00050	mg/L		11/21/11 09:15	11/21/11 22:42	1
Beryllium	ND		0.0020	0.00030	mg/L		11/21/11 09:15	11/22/11 17:13	1
Cadmium	0.00033	J	0.0010	0.00033	mg/L		11/21/11 09:15	11/21/11 22:42	1
Calcium	22.1		0.50	0.10	mg/L		11/21/11 09:15	11/21/11 22:42	1
Chromium	ND		0.0040	0.00087	mg/L		11/21/11 09:15	11/21/11 22:42	1
Cobalt	ND		0.0040	0.00063	mg/L		11/21/11 09:15	11/21/11 22:42	1
Copper	0.0040	J	0.010	0.0015	mg/L		11/21/11 09:15	11/21/11 22:42	1
Iron	ND		0.050	0.019	mg/L		11/21/11 09:15	11/21/11 22:42	1
Lead	ND		0.0050	0.0030	mg/L		11/21/11 09:15	11/21/11 22:42	1
Magnesium	3.6		0.20	0.043	mg/L		11/21/11 09:15	11/21/11 22:42	1
Manganese	0.0063	в	0.0030	0.00030	mg/L		11/21/11 09:15	11/21/11 22:42	1
Nickel	ND		0.010	0.0013	mg/L		11/21/11 09:15	11/21/11 22:42	1
Potassium	0.56		0.50	0.20	mg/L		11/21/11 09:15	11/21/11 22:42	1
Selenium	ND		0.015	0.0087	mg/L		11/21/11 09:15	11/21/11 22:42	1
Silver	ND		0.0030	0.0017	mg/L		11/21/11 09:15	11/21/11 22:42	1
Sodium	2.4		1.0	0.32	mg/L		11/21/11 09:15	11/21/11 22:42	1

0.020

0.0050

0.010

0.010 mg/L

0.0011 mg/L

0.0017 mg/L

1

1

1

11/21/11 22:42

11/21/11 22:42

11/21/11 22:42

RL

RL

0.50

2.0

1.0

1.0

1.0

1.0

0.050

0.00020

Result Qualifier

Result Qualifier

ND

1.8

11.9

1.2

ND

ND

ND

ND

MDL Unit

MDL Unit

0.28 mg/L

0.35 mg/L

0.020 mg/L

0.43 mg/L

0.15 mg/L

0.16 mg/L

0.17 mg/L

0.00012 mg/L

D

D

Prepared

11/23/11 11:20

Prepared

Client Sample ID: RU10-111711

Method: 7470A - Mercury (CVAA) - Dissolved

Date Collected: 11/17/11 11:00 Date Received: 11/18/11 09:30

Analyte

Mercury

Analyte

Chloride

Acetic acid

Butyric acid

Propionic acid

Sulfate

General Chemistry

Nitrate Nitrite as N

Total Organic Carbon

Lab Sample ID: 480-12940-2 Matrix: Water

Analyzed

11/23/11 15:22

Analyzed

12/02/11 04:57

12/02/11 04:57

12/02/11 14:33

11/22/11 20:08

Water 4 Dil Fac 6 Dil Fac 7 Dil Fac 7 1 81 9 1 10 1 10

Client Sample ID: RU19-111711

Date Collected: 11/17/11 12:15 Date Received: 11/18/11 09:30

Method: 8260B - Volatile Organ	ic Compounds ((GC/MS)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		1.0	0.82	ug/L			12/01/11 02:25	1
1,1,2,2-Tetrachloroethane	ND		1.0	0.21	ug/L			12/01/11 02:25	1
1,1,2-Trichloroethane	ND		1.0	0.23	ug/L			12/01/11 02:25	1
1,1,2-Trichloro-1,2,2-trifluoroetha	0.52	J	1.0	0.31	ug/L			12/01/11 02:25	1
ne									
1,1-Dichloroethane	ND		1.0	0.38	ug/L			12/01/11 02:25	1
1,1-Dichloroethene	2.1		1.0	0.29	ug/L			12/01/11 02:25	1
1,2,4-Trichlorobenzene	ND		1.0	0.41	ug/L			12/01/11 02:25	1
1,2-Dibromo-3-Chloropropane	ND		1.0	0.39	ug/L			12/01/11 02:25	1
1,2-Dibromoethane	ND		1.0	0.73	ug/L			12/01/11 02:25	1
1,2-Dichlorobenzene	ND		1.0	0.79	ug/L			12/01/11 02:25	1
1,2-Dichloroethane	ND		1.0	0.21	ug/L			12/01/11 02:25	1
1,2-Dichloropropane	ND		1.0	0.72	ug/L			12/01/11 02:25	1
1,3-Dichlorobenzene	ND		1.0	0.78	ug/L			12/01/11 02:25	1
1,4-Dichlorobenzene	ND		1.0	0.84	ug/L			12/01/11 02:25	1
2-Hexanone	ND		5.0	1.2	ug/L			12/01/11 02:25	1
2-Butanone (MEK)	ND		10	1.3	ug/L			12/01/11 02:25	1
4-Methyl-2-pentanone (MIBK)	ND		5.0	2.1	ug/L			12/01/11 02:25	1
Acetone	ND		10	3.0	ug/L			12/01/11 02:25	1
Benzene	ND		1.0	0.41	ug/L			12/01/11 02:25	1
Bromodichloromethane	ND		1.0	0.39	ug/L			12/01/11 02:25	1
Bromoform	ND		1.0	0.26	ug/L			12/01/11 02:25	1
Bromomethane	ND	*	1.0	0.69	ug/L			12/01/11 02:25	1
Carbon disulfide	ND		1.0	0.19	ug/L			12/01/11 02:25	1
Carbon tetrachloride	ND		1.0	0.27	ug/L			12/01/11 02:25	1
Chlorobenzene	ND		1.0	0.75	ug/L			12/01/11 02:25	1
Dibromochloromethane	ND		1.0	0.32	ug/L			12/01/11 02:25	1
Chloroethane	ND		1.0	0.32	ug/L			12/01/11 02:25	1
Chloroform	ND		1.0	0.34	ug/L			12/01/11 02:25	1
Chloromethane	ND		1.0	0.35	ug/L			12/01/11 02:25	1
cis-1,3-Dichloropropene	ND		1.0	0.36	ug/L			12/01/11 02:25	1
Cyclohexane	ND		1.0	0.18	ug/L			12/01/11 02:25	1

Lab Sample ID: 480-12940-3

Matrix: Water

Client Sample ID: RU19-111711 Date Collected: 11/17/11 12:15 Date Received: 11/18/11 09:30

Lab Sample ID: 480-12940-3 Matrix: Water

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Dichlorodifluoromethane	ND		1.0	0.68	ug/L			12/01/11 02:25	1
Ethylbenzene	ND		1.0	0.74	ug/L			12/01/11 02:25	1
Isopropylbenzene	ND		1.0	0.79	ug/L			12/01/11 02:25	1
Methyl acetate	ND		1.0	0.50	ug/L			12/01/11 02:25	1
Methyl tert-butyl ether	ND		1.0	0.16	ug/L			12/01/11 02:25	1
Methylcyclohexane	ND		1.0	0.16	ug/L			12/01/11 02:25	1
Methylene Chloride	ND		1.0	0.44	ug/L			12/01/11 02:25	1
Styrene	ND		1.0	0.73	ug/L			12/01/11 02:25	1
Tetrachloroethene	1.7		1.0	0.36	ug/L			12/01/11 02:25	1
Toluene	ND		1.0	0.51	ug/L			12/01/11 02:25	1
trans-1,2-Dichloroethene	3.5		1.0	0.90	ug/L			12/01/11 02:25	1
trans-1,3-Dichloropropene	ND		1.0	0.37	ug/L			12/01/11 02:25	1
Trichlorofluoromethane	ND		1.0	0.88	ug/L			12/01/11 02:25	1
Vinyl chloride	33		1.0	0.90	ug/L			12/01/11 02:25	1
Xylenes, Total	ND		2.0	0.66	ug/L			12/01/11 02:25	1
Surrogata	% Decevery	Qualifian	Lincita				Dremariad	Analyzad	

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	116		66 - 137		12/01/11 02:25	1
Toluene-d8 (Surr)	108		71 - 126		12/01/11 02:25	1
4-Bromofluorobenzene (Surr)	101		73 - 120		12/01/11 02:25	1

Method: 8260B - Volatile Organic Compounds (GC/MS) - DL

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
cis-1,2-Dichloroethene	300		10	8.1	ug/L			12/01/11 13:55	10
Trichloroethene	790		10	4.6	ug/L			12/01/11 13:55	10
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	115		66 - 137			-		12/01/11 13:55	10
Toluene-d8 (Surr)	110		71 - 126					12/01/11 13:55	10
4-Bromofluorobenzene (Surr)	106		73 - 120					12/01/11 13:55	10

Method: RSK-175 - Dissolved Gases (GC)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ethane	7.8		1.5	0.49	ug/L			11/22/11 11:03	1
Ethene	ND		1.5	0.52	ug/L			11/22/11 11:03	1
Methane	130		10	2.2	ug/L			11/22/11 12:20	10

Method: 6010B - Metals (ICP) - Dissolved

Analyte	Result	Qualifier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	ND	0.20	0.060	mg/L		11/21/11 09:15	11/21/11 22:45	1
Antimony	ND	0.020	0.0068	mg/L		11/21/11 09:15	11/21/11 22:45	1
Arsenic	ND	0.010	0.0056	mg/L		11/21/11 09:15	11/21/11 22:45	1
Barium	0.052	0.0020	0.00050	mg/L		11/21/11 09:15	11/21/11 22:45	1
Beryllium	ND	0.0020	0.00030	mg/L		11/21/11 09:15	11/22/11 17:15	1
Cadmium	0.00041	J 0.0010	0.00033	mg/L		11/21/11 09:15	11/21/11 22:45	1
Calcium	73.3	0.50	0.10	mg/L		11/21/11 09:15	11/21/11 22:45	1
Chromium	ND	0.0040	0.00087	mg/L		11/21/11 09:15	11/21/11 22:45	1
Cobalt	0.00087	J 0.0040	0.00063	mg/L		11/21/11 09:15	11/21/11 22:45	1
Copper	0.0047	J 0.010	0.0015	mg/L		11/21/11 09:15	11/21/11 22:45	1
Iron	ND	0.050	0.019	mg/L		11/21/11 09:15	11/21/11 22:45	1
Lead	ND	0.0050	0.0030	mg/L		11/21/11 09:15	11/21/11 22:45	1

RL

0.20

0.0030

0.010

0.50

0.015

0.0030

1.0

0.020

0.0050

0.010

RL

MDL Unit

0.043 mg/L

0.00030 mg/L

0.0013 mg/L

0.0087 mg/L

0.0017 mg/L

0.32 mg/L

0.010 mg/L

0.0011 mg/L

0.0017 mg/L

MDL Unit

0.20 mg/L

D

D

Prepared

11/21/11 09:15

11/21/11 09:15

11/21/11 09:15

11/21/11 09:15

11/21/11 09:15

11/21/11 09:15

11/21/11 09:15

11/21/11 09:15

11/21/11 09:15

11/21/11 09:15

Prepared

Client Sample ID: RU19-111711

Method: 6010B - Metals (ICP) - Dissolved (Continued)

Method: 7470A - Mercury (CVAA) - Dissolved

Result Qualifier

11.2

0.0024 J

1.7

ND

ND

13.6

ND

ND

0.0038 J

Result Qualifier

0.45 B

TestAmerica Job ID: 480-12940-1

Lab Sample ID: 480-12940-3

Analyzed

11/21/11 22:45

11/21/11 22:45

11/21/11 22:45

11/21/11 22:45

11/21/11 22:45

11/21/11 22:45

11/21/11 22:45

11/21/11 22:45

11/21/11 22:45

11/21/11 22:45

Analyzed

Lab Sample ID: 480-12940-4

Matrix: Water

Date Collected: 11/17/11 12:15 Date Received: 11/18/11 09:30

Analyte

Nickel

Magnesium

Manganese

Potassium

Selenium

Silver

Sodium

Thallium

Vanadium

Zinc

Analyte

Mercury

Analyte Chloride Sulfate

Acetic acid Butyric acid Propionic acid

General Chemistry

Nitrate Nitrite as N **Total Organic Carbon**

Matrix:	Wate

6

Dil Fac

	3

ND		0.00020	0.00012	mg/L		11/23/11 11:20	11/23/11 15:28	1	
Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
17.0		0.50	0.28	mg/L			12/02/11 05:07	1	
38.4		2.0	0.35	mg/L			12/02/11 05:07	1	
0.55		0.050	0.020	mg/L			12/02/11 14:34	1	
0.95	J	1.0	0.43	mg/L			11/22/11 20:28	1	
ND		1.0	0.15	mg/L			12/04/11 07:28	1	
ND		1.0	0.16	mg/L			12/04/11 07:28	1	
ND		1.0	0.17	mg/L			12/04/11 07:28	1	

Client Sample ID: RU8-111711

Date Collected: 11/17/11 14:30 Date Received: 11/18/11 09:30

Method: 8260B - Volatile Organic	ethod: 8260B - Volatile Organic Compounds (GC/MS)											
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac			
1,1,1-Trichloroethane	ND		1.0	0.82	ug/L			12/01/11 02:49	1			
1,1,2,2-Tetrachloroethane	ND		1.0	0.21	ug/L			12/01/11 02:49	1			
1,1,2-Trichloroethane	ND		1.0	0.23	ug/L			12/01/11 02:49	1			
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		1.0	0.31	ug/L			12/01/11 02:49	1			
1,1-Dichloroethane	ND		1.0	0.38	ug/L			12/01/11 02:49	1			
1,1-Dichloroethene	ND		1.0	0.29	ug/L			12/01/11 02:49	1			
1,2,4-Trichlorobenzene	ND		1.0	0.41	ug/L			12/01/11 02:49	1			
1,2-Dibromo-3-Chloropropane	ND		1.0	0.39	ug/L			12/01/11 02:49	1			
1,2-Dibromoethane	ND		1.0	0.73	ug/L			12/01/11 02:49	1			
1,2-Dichlorobenzene	ND		1.0	0.79	ug/L			12/01/11 02:49	1			
1,2-Dichloroethane	ND		1.0	0.21	ug/L			12/01/11 02:49	1			
1,2-Dichloropropane	ND		1.0	0.72	ug/L			12/01/11 02:49	1			
1,3-Dichlorobenzene	ND		1.0	0.78	ug/L			12/01/11 02:49	1			
1,4-Dichlorobenzene	ND		1.0	0.84	ug/L			12/01/11 02:49	1			
2-Hexanone	ND		5.0	1.2	ug/L			12/01/11 02:49	1			
2-Butanone (MEK)	ND		10	1.3	ug/L			12/01/11 02:49	1			
4-Methyl-2-pentanone (MIBK)	ND		5.0	2.1	ug/L			12/01/11 02:49	1			
Acetone	ND		10	3.0	ug/L			12/01/11 02:49	1			
Benzene	ND		1.0	0.41	ug/L			12/01/11 02:49	1			

Client Sample ID: RU8-111711 Date Collected: 11/17/11 14:30 Date Received: 11/18/11 09:30

Lab Sample ID: 480-12940-4 Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Bromodichloromethane	ND		1.0	0.39	ug/L			12/01/11 02:49	· · ·
Bromoform	ND		1.0	0.26	ug/L			12/01/11 02:49	
Bromomethane	ND	*	1.0	0.69	ug/L			12/01/11 02:49	· · · · · · · ·
Carbon disulfide	ND		1.0	0.19	ug/L			12/01/11 02:49	
Carbon tetrachloride	ND		1.0	0.27	ug/L			12/01/11 02:49	
Chlorobenzene	ND		1.0	0.75	ug/L			12/01/11 02:49	· · · · · · · · ·
Dibromochloromethane	ND		1.0	0.32	ug/L			12/01/11 02:49	
Chloroethane	ND		1.0	0.32	ug/L			12/01/11 02:49	
Chloroform	ND		1.0	0.34	ug/L			12/01/11 02:49	
Chloromethane	ND		1.0	0.35	ug/L			12/01/11 02:49	
cis-1,2-Dichloroethene	12		1.0	0.81	ug/L			12/01/11 02:49	
cis-1,3-Dichloropropene	ND		1.0	0.36	ug/L			12/01/11 02:49	
Cyclohexane	ND		1.0	0.18	ug/L			12/01/11 02:49	
Dichlorodifluoromethane	ND		1.0	0.68	ug/L			12/01/11 02:49	
Ethylbenzene	ND		1.0	0.74	ug/L			12/01/11 02:49	
sopropylbenzene	ND		1.0	0.79	ug/L			12/01/11 02:49	
Methyl acetate	ND		1.0	0.50	ug/L			12/01/11 02:49	
Methyl tert-butyl ether	ND		1.0	0.16	ug/L			12/01/11 02:49	
Methylcyclohexane	ND		1.0	0.16	ug/L			12/01/11 02:49	
Methylene Chloride	ND		1.0	0.44	ug/L			12/01/11 02:49	
Styrene	ND		1.0	0.73	ug/L			12/01/11 02:49	
Fetrachloroethene	0.52	J	1.0	0.36	ug/L			12/01/11 02:49	
Toluene	ND		1.0	0.51	ug/L			12/01/11 02:49	
rans-1,2-Dichloroethene	ND		1.0	0.90	ug/L			12/01/11 02:49	
rans-1,3-Dichloropropene	ND		1.0	0.37	ug/L			12/01/11 02:49	
Frichlorofluoromethane	ND		1.0	0.88	ug/L			12/01/11 02:49	
/inyl chloride	1.7		1.0	0.90	ug/L			12/01/11 02:49	
Kylenes, Total	ND		2.0	0.66	ug/L			12/01/11 02:49	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
1,2-Dichloroethane-d4 (Surr)	113		66 - 137			-		12/01/11 02:49	
Toluene-d8 (Surr)	108		71 - 126					12/01/11 02:49	
4-Bromofluorobenzene (Surr)	101		73 _ 120					12/01/11 02:49	

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Trichloroethene	280		5.0	2.3	ug/L			12/01/11 14:19	5
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	112		66 - 137			-		12/01/11 14:19	5
Toluene-d8 (Surr)	108		71 - 126					12/01/11 14:19	5
4-Bromofluorobenzene (Surr)	107		73 - 120					12/01/11 14:19	5

Method: RSK-175 - Dissolved Gases (GC)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ethane	2.6		1.5	0.49	ug/L			11/22/11 11:20	1
Ethene	1.5		1.5	0.52	ug/L			11/22/11 11:20	1
Methane	37		1.0	0.22	ug/L			11/22/11 11:20	1

Client: Camp Dresser & McKee Inc Project/Site: Olean Pilot Study

Client Sample ID: RU8-111711 Date Collected: 11/17/11 14:30 Date Received: 11/18/11 09:30

Lab Sample ID: 480-12940-4 Matrix: Water

Analyzed

11/21/11 23:00

11/21/11 23:00

11/21/11 23:00

11/21/11 23:00

Prepared

11/21/11 09:15

11/21/11 09:15

11/21/11 09:15

11/21/11 09:15

D

6

Dil Fac

1

1

1 1

Analyte	Result	Qualifier	RL	MDL	Unit
Aluminum	ND		0.20	0.060	mg/L
Antimony	ND		0.020	0.0068	mg/L
Arsenic	ND		0.010	0.0056	mg/L
Barium	0.11		0.0020	0.00050	mg/L
Beryllium	ND		0.0020	0.00030	mg/L
Cadmium	ND		0.0010	0.00033	mg/L
Calcium	104		0.50	0.10	mg/L
Chromium	ND		0.0040	0.00087	mg/L
Cobalt	ND		0.0040	0.00063	mg/L
Copper	0.0019	J	0.010	0.0015	mg/L
Iron	ND		0.050	0.019	mg/L
Lead	ND		0.0050	0.0030	mg/L
Magnesium	21.5		0.20	0.043	mg/L
Managanaga	0.29	P	0 0030	0 00030	ma/l

Beryllium	ND	0.0020	0.00030	mg/L	11/21/11 09:15	11/22/11 17:27	1
Cadmium	ND	0.0010	0.00033	mg/L	11/21/11 09:15	11/21/11 23:00	1
Calcium	104	0.50	0.10	mg/L	11/21/11 09:15	11/21/11 23:00	1
Chromium	ND	0.0040	0.00087	mg/L	11/21/11 09:15	11/21/11 23:00	1
Cobalt	ND	0.0040	0.00063	mg/L	11/21/11 09:15	11/21/11 23:00	1
Copper	0.0019 J	0.010	0.0015	mg/L	11/21/11 09:15	11/21/11 23:00	1
Iron	ND	0.050	0.019	mg/L	11/21/11 09:15	11/21/11 23:00	1
Lead	ND	0.0050	0.0030	mg/L	11/21/11 09:15	11/21/11 23:00	1
Magnesium	21.5	0.20	0.043	mg/L	11/21/11 09:15	11/21/11 23:00	1
Manganese	0.28 B	0.0030	0.00030	mg/L	11/21/11 09:15	11/21/11 23:00	1
Nickel	ND	0.010	0.0013	mg/L	11/21/11 09:15	11/21/11 23:00	1
Potassium	1.7	0.50	0.20	mg/L	11/21/11 09:15	11/21/11 23:00	1
Selenium	ND	0.015	0.0087	mg/L	11/21/11 09:15	11/21/11 23:00	1
Silver	ND	0.0030	0.0017	mg/L	11/21/11 09:15	11/21/11 23:00	1
Sodium	17.6	1.0	0.32	mg/L	11/21/11 09:15	11/21/11 23:00	1
Thallium	ND	0.020	0.010	mg/L	11/21/11 09:15	11/21/11 23:00	1
Vanadium	ND	0.0050	0.0011	mg/L	11/21/11 09:15	11/21/11 23:00	1
Zinc	0.0058 J	0.010	0.0017	mg/L	11/21/11 09:15	11/21/11 23:00	1

Method: 7470A - Mercury	(CVAA) - Dissolved
-------------------------	--------------------

Analyte R	esult	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	ND		0.00020	0.00012	mg/L		11/23/11 11:20	11/23/11 15:29	1
General Chemistry									
Analyte R	esult	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	10.5		0.50	0.28	mg/L			12/02/11 05:17	1
Sulfate	42.7		2.0	0.35	mg/L			12/02/11 05:17	1
Nitrate Nitrite as N	0.59		0.050	0.020	mg/L			12/02/11 14:35	1
Total Organic Carbon	0.50	J	1.0	0.43	mg/L			11/22/11 20:48	1
Acetic acid	ND		1.0	0.15	mg/L			12/04/11 07:57	1
Butyric acid	ND		1.0	0.16	mg/L			12/04/11 07:57	1
Propionic acid	ND		1.0	0.17	mg/L			12/04/11 07:57	1

Client Sample ID: RU21-111711 Date Collected: 11/17/11 15:30 Date Received: 11/18/11 09:30

Method: 8260B - Volatile Organic Compounds (GC/MS)										
Analyte	Result Qualifier	RL	MDL Unit	D Prepared	Analyzed	Dil Fac				
1,1,1-Trichloroethane	ND	1.0	0.82 ug/L		12/01/11 03:12	1				
1,1,2,2-Tetrachloroethane	ND	1.0	0.21 ug/L		12/01/11 03:12	1				
1,1,2-Trichloroethane	ND	1.0	0.23 ug/L		12/01/11 03:12	1				
1,1,2-Trichloro-1,2,2-trifluoroetha	0.88 J	1.0	0.31 ug/L		12/01/11 03:12	1				
ne 1,1-Dichloroethane	ND	1.0	0.38 ug/L		12/01/11 03:12	1				
1,1-Dichloroethene	3.6	1.0	0.29 ug/L		12/01/11 03:12	1				

Lab Sample ID: 480-12940-5

Matrix: Water

Client Sample ID: RU21-111711 Date Collected: 11/17/11 15:30 Date Received: 11/18/11 09:30

Lab Sample ID: 480-12940-5 Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2,4-Trichlorobenzene	ND		1.0	0.41	ug/L			12/01/11 03:12	1
1,2-Dibromo-3-Chloropropane	ND		1.0	0.39	ug/L			12/01/11 03:12	1
1,2-Dibromoethane	ND		1.0	0.73	ug/L			12/01/11 03:12	1
1,2-Dichlorobenzene	ND		1.0	0.79	ug/L			12/01/11 03:12	1
1,2-Dichloroethane	ND		1.0	0.21	ug/L			12/01/11 03:12	1
1,2-Dichloropropane	ND		1.0	0.72	ug/L			12/01/11 03:12	1
1,3-Dichlorobenzene	ND		1.0	0.78	ug/L			12/01/11 03:12	1
1,4-Dichlorobenzene	ND		1.0	0.84	ug/L			12/01/11 03:12	1
2-Hexanone	ND		5.0	1.2	ug/L			12/01/11 03:12	1
2-Butanone (MEK)	ND		10	1.3	ug/L			12/01/11 03:12	1
4-Methyl-2-pentanone (MIBK)	ND		5.0	2.1	ug/L			12/01/11 03:12	1
Acetone	ND		10	3.0	ug/L			12/01/11 03:12	1
Benzene	ND		1.0	0.41	ug/L			12/01/11 03:12	1
Bromodichloromethane	ND		1.0	0.39	ug/L			12/01/11 03:12	1
Bromoform	ND		1.0	0.26	ug/L			12/01/11 03:12	1
Bromomethane	ND	*	1.0	0.69	ua/L			12/01/11 03:12	1
Carbon disulfide	ND		1.0	0.19	ua/L			12/01/11 03:12	1
Carbon tetrachloride	ND		1.0	0.27	ua/L			12/01/11 03:12	1
Chlorobenzene	ND		1.0	0.75	ua/L			12/01/11 03:12	1
Dibromochloromethane	ND		1.0	0.32	ua/L			12/01/11 03:12	1
Chloroethane	ND		1.0	0.32	ua/l			12/01/11 03.12	1
Chloroform	ND		1.0	0.34	ua/l			12/01/11 03:12	
Chloromethane	ND		1.0	0.35	ua/l			12/01/11 03:12	1
cis-1 3-Dichloropropene	ND		1.0	0.36	ua/l			12/01/11 03:12	1
Cyclobexane	0.59		1.0	0.00	ug/L			12/01/11 03:12	· · · · · · · · · · · · 1
Dichlorodifluoromethane		°	1.0	0.68	ua/l			12/01/11 03:12	1
Ethylbenzene	ND		1.0	0.00	ug/L			12/01/11 03:12	1
Isonronvlhenzene	ND		1.0	0.79	ug/L			12/01/11 03:12	· · · · · · · · · · · · · · · · · · ·
Methyl acetate			1.0	0.70	ug/L			12/01/11 03:12	1
Methyl tert-butyl ether	ND		1.0	0.00	ug/L			12/01/11 03:12	1
Methylcyclohexane	ND		1.0	0.16	ug/L			12/01/11 03:12	
Methylene Chloride			1.0	0.10	ug/L			12/01/11 03:12	1
Styrene			1.0	0.73	ug/L			12/01/11 03:12	1
	2 6		1.0	0.70	ug/L			12/01/11 03:12	
Toluene			1.0	0.50	ug/L			12/01/11 03:12	1
trans 1.2 Dichloroothono	6.2		1.0	0.01	ug/L			12/01/11 03:12	1
trans-13-Dichloropropene			1.0	0.30	ug/L			12/01/11 03:12	
			1.0	0.07	ug/L			12/01/11 03:12	1
Vinul chloride	59		1.0	0.00	ug/L			12/01/11 03:12	1
Vilenes Total	50 NIN		2.0	0.50	ug/L			12/01/11 03:12	
	ND		2.0	0.00	ug/L			12/01/11/03.12	'
Surrogate	%Recovery	Qualifier	Limits			_	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	117		66 - 137					12/01/11 03:12	1
Toluene-d8 (Surr)	110		71 - 126					12/01/11 03:12	1
1 Dramafluarahanzana (Surr)	102		73 - 120					12/01/11 03.12	1

metriou. 62660 - Volatile Organic Compounds (GC/MS) - DE											
Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac				
cis-1,2-Dichloroethene	490	25	20 ug/L			12/01/11 14:42	25				
Trichloroethene	1500	25	12 ua/L			12/01/11 14:42	25				

Limits

66 - 137

71 - 126

73 - 120

RL

1.5

1.5

10

MDL Unit

0.49 ug/L

0.52 ug/L

2.2 ug/L

%Recovery Qualifier

115

106

104

12

1.7

190

Result Qualifier

Date Collected: 11/17/11 15:30

Date Received: 11/18/11 09:30

1,2-Dichloroethane-d4 (Surr)

4-Bromofluorobenzene (Surr)

Surrogate

Analyte

Ethane

Ethene

Methane

Toluene-d8 (Surr)

Client Sample ID: RU21-111711

Prepared

Prepared

D

Lab Sample ID: 480-12940-5

Analyzed

12/01/11 14:42

12/01/11 14:42

12/01/11 14:42

Analyzed

11/22/11 11:37

11/22/11 11:37

11/22/11 13:11

Matrix: Water

Dil Fac

Dil Fac

25

25

25

1

1

10

6

-					
Method:	6010B -	Metals	(ICP)	- Dissolved	

Method: RSK-175 - Dissolved Gases (GC)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	ND		0.20	0.060	mg/L		11/21/11 09:15	11/21/11 23:02	1
Antimony	ND		0.020	0.0068	mg/L		11/21/11 09:15	11/21/11 23:02	1
Arsenic	ND		0.010	0.0056	mg/L		11/21/11 09:15	11/21/11 23:02	1
Barium	0.060		0.0020	0.00050	mg/L		11/21/11 09:15	11/21/11 23:02	1
Beryllium	ND		0.0020	0.00030	mg/L		11/21/11 09:15	11/22/11 17:29	1
Cadmium	0.00043	J	0.0010	0.00033	mg/L		11/21/11 09:15	11/21/11 23:02	1
Calcium	114		0.50	0.10	mg/L		11/21/11 09:15	11/21/11 23:02	1
Chromium	ND		0.0040	0.00087	mg/L		11/21/11 09:15	11/21/11 23:02	1
Cobalt	0.0011	J	0.0040	0.00063	mg/L		11/21/11 09:15	11/21/11 23:02	1
Copper	0.0043	J	0.010	0.0015	mg/L		11/21/11 09:15	11/21/11 23:02	1
Iron	ND		0.050	0.019	mg/L		11/21/11 09:15	11/21/11 23:02	1
Lead	ND		0.0050	0.0030	mg/L		11/21/11 09:15	11/21/11 23:02	1
Magnesium	16.7		0.20	0.043	mg/L		11/21/11 09:15	11/21/11 23:02	1
Manganese	0.45	В	0.0030	0.00030	mg/L		11/21/11 09:15	11/21/11 23:02	1
Nickel	0.0032	J	0.010	0.0013	mg/L		11/21/11 09:15	11/21/11 23:02	1
Potassium	2.3		0.50	0.20	mg/L		11/21/11 09:15	11/21/11 23:02	1
Selenium	ND		0.015	0.0087	mg/L		11/21/11 09:15	11/21/11 23:02	1
Silver	ND		0.0030	0.0017	mg/L		11/21/11 09:15	11/21/11 23:02	1
Sodium	20.0		1.0	0.32	mg/L		11/21/11 09:15	11/21/11 23:02	1
Thallium	ND		0.020	0.010	mg/L		11/21/11 09:15	11/21/11 23:02	1
Vanadium	ND		0.0050	0.0011	mg/L		11/21/11 09:15	11/21/11 23:02	1
Zinc	0.0032	J	0.010	0.0017	mg/L		11/21/11 09:15	11/21/11 23:02	1

Method: 7470A - Mercury (CVA	A) - Dissolved								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	ND		0.00020	0.00012	mg/L		11/23/11 11:20	11/23/11 15:31	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	26.6		0.50	0.28	mg/L			12/02/11 06:08	1
Sulfate	61.1		2.0	0.35	mg/L			12/02/11 06:08	1
Nitrate Nitrite as N	0.026	J	0.050	0.020	mg/L			12/02/11 14:36	1
Total Organic Carbon	2.0		1.0	0.43	mg/L			11/22/11 21:47	1
Acetic acid	ND		1.0	0.15	mg/L			12/04/11 08:26	1
Butyric acid	ND		1.0	0.16	mg/L			12/04/11 08:26	1
Propionic acid	ND		1.0	0.17	ma/L			12/04/11 08:26	1

Client Sample ID: DUP-111711

Lab Sample ID: 480-12940-6 Matrix: Water

Date Collected: 11/17/11 11:30 Date Received: 11/18/11 09:30

Method: 8260B - Volatile Organic	Compounds	(GC/MS)				_	- ·		
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	DILFac
1,1,1-Irichloroethane	ND		1.0	0.82	ug/L			12/01/11 03:35	1
1,1,2,2-I etrachloroethane	ND		1.0	0.21	ug/L			12/01/11 03:35	1
1,1,2-Trichloroethane	ND		1.0	0.23	ug/L			12/01/11 03:35	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		1.0	0.31	ug/L			12/01/11 03:35	1
1,1-Dichloroethane	ND		1.0	0.38	ug/L			12/01/11 03:35	1
1,1-Dichloroethene	ND		1.0	0.29	ug/L			12/01/11 03:35	1
1,2,4-Trichlorobenzene	ND		1.0	0.41	ug/L			12/01/11 03:35	1
1,2-Dibromo-3-Chloropropane	ND		1.0	0.39	ug/L			12/01/11 03:35	1
1,2-Dibromoethane	ND		1.0	0.73	ug/L			12/01/11 03:35	1
1,2-Dichlorobenzene	ND		1.0	0.79	ug/L			12/01/11 03:35	1
1,2-Dichloroethane	ND		1.0	0.21	ug/L			12/01/11 03:35	1
1,2-Dichloropropane	ND		1.0	0.72	ug/L			12/01/11 03:35	1
1,3-Dichlorobenzene	ND		1.0	0.78	ug/L			12/01/11 03:35	1
1,4-Dichlorobenzene	ND		1.0	0.84	ug/L			12/01/11 03:35	1
2-Hexanone	ND		5.0	1.2	ug/L			12/01/11 03:35	1
2-Butanone (MEK)	ND		10	1.3	ug/L			12/01/11 03:35	1
4-Methyl-2-pentanone (MIBK)	ND		5.0	2.1	ug/L			12/01/11 03:35	1
Acetone	ND		10	3.0	ug/L			12/01/11 03:35	1
Benzene	ND		1.0	0.41	ug/L			12/01/11 03:35	1
Bromodichloromethane	ND		1.0	0.39	ug/L			12/01/11 03:35	1
Bromoform	ND		1.0	0.26	ug/L			12/01/11 03:35	1
Bromomethane	ND	*	1.0	0.69	ug/L			12/01/11 03:35	1
Carbon disulfide	ND		1.0	0.19	ug/L			12/01/11 03:35	1
Carbon tetrachloride	ND		1.0	0.27	ug/L			12/01/11 03:35	1
Chlorobenzene	ND		1.0	0.75	ug/L			12/01/11 03:35	1
Dibromochloromethane	ND		1.0	0.32	ug/L			12/01/11 03:35	1
Chloroethane	ND		1.0	0.32	ug/L			12/01/11 03:35	1
Chloroform	ND		1.0	0.34	ug/L			12/01/11 03:35	1
Chloromethane	ND		1.0	0.35	ug/L			12/01/11 03:35	1
cis-1,2-Dichloroethene	24		1.0	0.81	ug/L			12/01/11 03:35	1
cis-1,3-Dichloropropene	ND		1.0	0.36	ug/L			12/01/11 03:35	1
Cyclohexane	ND		1.0	0.18	ug/L			12/01/11 03:35	1
Dichlorodifluoromethane	ND		1.0	0.68	ug/L			12/01/11 03:35	1
Ethylbenzene	ND		1.0	0.74	ug/L			12/01/11 03:35	1
Isopropylbenzene	ND		1.0	0.79	ug/L			12/01/11 03:35	1
Methyl acetate	ND		1.0	0.50	ug/L			12/01/11 03:35	1
Methyl tert-butyl ether	ND		1.0	0.16	ug/L			12/01/11 03:35	1
Methylcyclohexane	ND		1.0	0.16	ug/L			12/01/11 03:35	1
Methylene Chloride	ND		1.0	0.44	ug/L			12/01/11 03:35	1
Styrene	ND		1.0	0.73	ug/L			12/01/11 03:35	1
Tetrachloroethene	ND		1.0	0.36	ug/L			12/01/11 03:35	1
Toluene	ND		1.0	0.51	ug/L			12/01/11 03:35	1
trans-1.2-Dichloroethene	ND		1.0	0.90	ug/L			12/01/11 03:35	1
trans-1.3-Dichloropropene	ND		1.0	0.37	ua/L			12/01/11 03:35	1
Trichloroethene	72		1.0	0.46	ua/L			12/01/11 03:35	1
Trichlorofluoromethane			1.0	0.88	ua/L			12/01/11 03:35	· · · · · · · · · · · · · · · · · · ·
Vinyl chloride	2.4		1.0	0.00	ua/l			12/01/11 03:35	1
Xvlenes Total	2.4 ND		2.0	0.00	ug/l			12/01/11 03:35	1
Aylonos, rotar	ND		2.0	0.00	ug/L			12/01/11/03.33	1

Client Sample ID: DUP-111711 Date Collected: 11/17/11 11:30 Date Received: 11/18/11 09:30

Total Organic Carbon

Acetic acid

Butyric acid

Propionic acid

Lab	Sam	ple	ID:	48	0-12	940-6
				Ma	atrix:	Wate

Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)			66 - 137					12/01/11 03:35	1
Toluene-d8 (Surr)	106		71 - 126					12/01/11 03:35	1
4-Bromofluorobenzene (Surr)	103		73 - 120					12/01/11 03:35	1
Method: RSK-175 - Dissolved G	ases (GC)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ethane	ND		1.5	0.49	ug/L			11/22/11 11:54	1
Ethene	ND		1.5	0.52	ug/L			11/22/11 11:54	1
Methane	8.1		1.0	0.22	ug/L			11/22/11 11:54	1
Method: 6010B - Metals (ICP) - E	Dissolved								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	ND		0.20	0.060	mg/L		11/21/11 09:15	11/21/11 23:04	1
Antimony	ND		0.020	0.0068	mg/L		11/21/11 09:15	11/21/11 23:04	1
Arsenic	ND		0.010	0.0056	mg/L		11/21/11 09:15	11/21/11 23:04	1
Barium	0.052		0.0020	0.00050	mg/L		11/21/11 09:15	11/21/11 23:04	1
Beryllium	ND		0.0020	0.00030	mg/L		11/21/11 09:15	11/22/11 17:31	1
Cadmium	ND		0.0010	0.00033	mg/L		11/21/11 09:15	11/21/11 23:04	1
Calcium	22.9		0.50	0.10	mg/L		11/21/11 09:15	11/21/11 23:04	1
Chromium	ND		0.0040	0.00087	mg/L		11/21/11 09:15	11/21/11 23:04	1
Cobalt	ND		0.0040	0.00063	mg/L		11/21/11 09:15	11/21/11 23:04	1
Copper	0.0029	J	0.010	0.0015	mg/L		11/21/11 09:15	11/21/11 23:04	1
Iron	ND		0.050	0.019	mg/L		11/21/11 09:15	11/21/11 23:04	1
Lead	ND		0.0050	0.0030	mg/L		11/21/11 09:15	11/21/11 23:04	1
Magnesium	3.7		0.20	0.043	mg/L		11/21/11 09:15	11/21/11 23:04	1
Manganese	0.0063	в	0.0030	0.00030	mg/L		11/21/11 09:15	11/21/11 23:04	1
Nickel	ND		0.010	0.0013	mg/L		11/21/11 09:15	11/21/11 23:04	1
Potassium	0.54		0.50	0.20	mg/L		11/21/11 09:15	11/21/11 23:04	1
Selenium	ND		0.015	0.0087	mg/L		11/21/11 09:15	11/21/11 23:04	1
Silver	ND		0.0030	0.0017	mg/L		11/21/11 09:15	11/21/11 23:04	1
Sodium	2.5		1.0	0.32	mg/L		11/21/11 09:15	11/21/11 23:04	1
Thallium	ND		0.020	0.010	mg/L		11/21/11 09:15	11/21/11 23:04	1
Vanadium	ND		0.0050	0.0011	mg/L		11/21/11 09:15	11/21/11 23:04	1
Zinc	0.0020	J	0.010	0.0017	mg/L		11/21/11 09:15	11/21/11 23:04	1
Method: 7470A - Mercury (CVAA	A) - Dissolved								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	ND		0.00020	0.00012	mg/L		11/23/11 11:20	11/23/11 15:33	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	1.9		0.50	0.28	mg/L			12/02/11 06:18	1
Sulfate	11.9		2.0	0.35	mg/L			12/02/11 06:18	1
Nitrate Nitrite as N	1.3		0.050	0.020	mg/L			12/02/11 14:37	1

1

1

1

1

11/22/11 22:07

12/04/11 08:55

12/04/11 08:55

12/04/11 08:55

1.0

1.0

1.0

1.0

0.43 mg/L

0.15 mg/L

0.16 mg/L

0.17 mg/L

ND

ND

ND

ND

Vinyl chloride

Xylenes, Total

Lab Sample ID: 480-12940-7 Matrix: Water

Method: 8260B - Volatile Organic Analyte	Compounds Result	(GC/MS) Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		1.0	0.82	ug/L			12/01/11 03:59	1
1,1,2,2-Tetrachloroethane	ND		1.0	0.21	ug/L			12/01/11 03:59	1
1,1,2-Trichloroethane	ND		1.0	0.23	ug/L			12/01/11 03:59	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		1.0	0.31	ug/L			12/01/11 03:59	1
1,1-Dichloroethane	ND		1.0	0.38	ug/L			12/01/11 03:59	1
1,1-Dichloroethene	ND		1.0	0.29	ug/L			12/01/11 03:59	1
1,2,4-Trichlorobenzene	ND		1.0	0.41	ug/L			12/01/11 03:59	1
1,2-Dibromo-3-Chloropropane	ND		1.0	0.39	ug/L			12/01/11 03:59	1
1,2-Dibromoethane	ND		1.0	0.73	ug/L			12/01/11 03:59	1
1,2-Dichlorobenzene	ND		1.0	0.79	ug/L			12/01/11 03:59	1
1,2-Dichloroethane	ND		1.0	0.21	ug/L			12/01/11 03:59	1
1,2-Dichloropropane	ND		1.0	0.72	ug/L			12/01/11 03:59	1
1,3-Dichlorobenzene	ND		1.0	0.78	ug/L			12/01/11 03:59	1
1,4-Dichlorobenzene	ND		1.0	0.84	ug/L			12/01/11 03:59	1
2-Hexanone	ND		5.0	1.2	ug/L			12/01/11 03:59	1
2-Butanone (MEK)	ND		10	1.3	ug/L			12/01/11 03:59	1
4-Methyl-2-pentanone (MIBK)	ND		5.0	2.1	ug/L			12/01/11 03:59	1
Acetone	ND		10	3.0	ug/L			12/01/11 03:59	1
Benzene	ND		1.0	0.41	ug/L			12/01/11 03:59	1
Bromodichloromethane	ND		1.0	0.39	ug/L			12/01/11 03:59	1
Bromoform	ND		1.0	0.26	ug/L			12/01/11 03:59	1
Bromomethane	ND	*	1.0	0.69	ug/L			12/01/11 03:59	1
Carbon disulfide	ND		1.0	0.19	ug/L			12/01/11 03:59	1
Carbon tetrachloride	ND		1.0	0.27	ug/L			12/01/11 03:59	1
Chlorobenzene	ND		1.0	0.75	ug/L			12/01/11 03:59	1
Dibromochloromethane	ND		1.0	0.32	ug/L			12/01/11 03:59	1
Chloroethane	ND		1.0	0.32	ug/L			12/01/11 03:59	1
Chloroform	ND		1.0	0.34	ug/L			12/01/11 03:59	1
Chloromethane	ND		1.0	0.35	ug/L			12/01/11 03:59	1
cis-1,2-Dichloroethene	ND		1.0	0.81	ug/L			12/01/11 03:59	1
cis-1,3-Dichloropropene	ND		1.0	0.36	ug/L			12/01/11 03:59	1
Cyclohexane	ND		1.0	0.18	ug/L			12/01/11 03:59	1
Dichlorodifluoromethane	ND		1.0	0.68	ug/L			12/01/11 03:59	1
Ethylbenzene	ND		1.0	0.74	ug/L			12/01/11 03:59	1
Isopropylbenzene	ND		1.0	0.79	ug/L			12/01/11 03:59	1
Methyl acetate	ND		1.0	0.50	ug/L			12/01/11 03:59	1
Methyl tert-butyl ether	ND		1.0	0.16	ug/L			12/01/11 03:59	1
Methylcyclohexane	ND		1.0	0.16	ug/L			12/01/11 03:59	1
Methylene Chloride	ND		1.0	0.44	ug/L			12/01/11 03:59	1
Styrene	ND		1.0	0.73	ug/L			12/01/11 03:59	1
Tetrachloroethene	ND		1.0	0.36	ug/L			12/01/11 03:59	1
Toluene	ND		1.0	0.51	ug/L			12/01/11 03:59	1
trans-1,2-Dichloroethene	ND		1.0	0.90	ug/L			12/01/11 03:59	1
trans-1,3-Dichloropropene	ND		1.0	0.37	ug/L			12/01/11 03:59	1
Trichloroethene	ND		1.0	0.46	ug/L			12/01/11 03:59	1
Trichlorofluoromethane	ND		1.0	0.88	ug/L			12/01/11 03:59	1

1

1

12/01/11 03:59

12/01/11 03:59

1.0

2.0

0.90 ug/L

0.66 ug/L

ND

ND

Lab	Sam	ple II): 480-	12940	-7
			Matr	ix: Wat	er

TestAmerica Job ID: 480-12940-1

Lab Sample ID: 480-12940-8

Matrix: Water

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	113		66 - 137		12/01/11 03:59	1
Toluene-d8 (Surr)	108		71 _ 126		12/01/11 03:59	1
4-Bromofluorobenzene (Surr)	103		73 - 120		12/01/11 03:59	1

Client Sample ID: TRIP BLANK

Date Collected: 11/17/11 00:00

Date Received: 11/18/11 09:30

Method: 8260B - Volatile Organi Analyte	c Compounds Result	(GC/MS) Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		1.0	0.82	ug/L			12/01/11 04:22	1
1,1,2,2-Tetrachloroethane	ND		1.0	0.21	ug/L			12/01/11 04:22	1
1,1,2-Trichloroethane	ND		1.0	0.23	ug/L			12/01/11 04:22	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		1.0	0.31	ug/L			12/01/11 04:22	1
1,1-Dichloroethane	ND		1.0	0.38	ug/L			12/01/11 04:22	1
1,1-Dichloroethene	ND		1.0	0.29	ug/L			12/01/11 04:22	1
1,2,4-Trichlorobenzene	ND		1.0	0.41	ug/L			12/01/11 04:22	1
1,2-Dibromo-3-Chloropropane	ND		1.0	0.39	ug/L			12/01/11 04:22	1
1,2-Dibromoethane	ND		1.0	0.73	ug/L			12/01/11 04:22	1
1,2-Dichlorobenzene	ND		1.0	0.79	ug/L			12/01/11 04:22	1
1,2-Dichloroethane	ND		1.0	0.21	ug/L			12/01/11 04:22	1
1,2-Dichloropropane	ND		1.0	0.72	ug/L			12/01/11 04:22	1
1,3-Dichlorobenzene	ND		1.0	0.78	ug/L			12/01/11 04:22	1
1,4-Dichlorobenzene	ND		1.0	0.84	ug/L			12/01/11 04:22	1
2-Hexanone	ND		5.0	1.2	ug/L			12/01/11 04:22	1
2-Butanone (MEK)	ND		10	1.3	ug/L			12/01/11 04:22	1
4-Methyl-2-pentanone (MIBK)	ND		5.0	2.1	ug/L			12/01/11 04:22	1
Acetone	ND		10	3.0	ug/L			12/01/11 04:22	1
Benzene	ND		1.0	0.41	ug/L			12/01/11 04:22	1
Bromodichloromethane	ND		1.0	0.39	ug/L			12/01/11 04:22	1
Bromoform	ND		1.0	0.26	ug/L			12/01/11 04:22	1
Bromomethane	ND	*	1.0	0.69	ug/L			12/01/11 04:22	1
Carbon disulfide	ND		1.0	0.19	ug/L			12/01/11 04:22	1
Carbon tetrachloride	ND		1.0	0.27	ug/L			12/01/11 04:22	1
Chlorobenzene	ND		1.0	0.75	ug/L			12/01/11 04:22	1
Dibromochloromethane	ND		1.0	0.32	ug/L			12/01/11 04:22	1
Chloroethane	ND		1.0	0.32	ug/L			12/01/11 04:22	1
Chloroform	ND		1.0	0.34	ug/L			12/01/11 04:22	1
Chloromethane	ND		1.0	0.35	ug/L			12/01/11 04:22	1
cis-1,2-Dichloroethene	ND		1.0	0.81	ug/L			12/01/11 04:22	1
cis-1,3-Dichloropropene	ND		1.0	0.36	ug/L			12/01/11 04:22	1
Cyclohexane	ND		1.0	0.18	ug/L			12/01/11 04:22	1
Dichlorodifluoromethane	ND		1.0	0.68	ug/L			12/01/11 04:22	1
Ethylbenzene	ND		1.0	0.74	ug/L			12/01/11 04:22	1
Isopropylbenzene	ND		1.0	0.79	ug/L			12/01/11 04:22	1
Methyl acetate	ND		1.0	0.50	ug/L			12/01/11 04:22	1
Methyl tert-butyl ether	ND		1.0	0.16	ug/L			12/01/11 04:22	1
Methylcyclohexane	ND		1.0	0.16	ug/L			12/01/11 04:22	1
Methylene Chloride	ND		1.0	0.44	ug/L			12/01/11 04:22	1
Styrene	ND		1.0	0.73	ug/L			12/01/11 04:22	1

Analyte

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Result Qualifier

Lab Sample ID: 480-12940-8 Matrix: Water

Analyzed

6 13

Dil Fac

Tetrachloroethene	ND		1.0	0.36	ug/L		12/01/11 04:22	1
Toluene	ND		1.0	0.51	ug/L		12/01/11 04:22	1
trans-1,2-Dichloroethene	ND		1.0	0.90	ug/L		12/01/11 04:22	1
trans-1,3-Dichloropropene	ND		1.0	0.37	ug/L		12/01/11 04:22	1
Trichloroethene	ND		1.0	0.46	ug/L		12/01/11 04:22	1
Trichlorofluoromethane	ND		1.0	0.88	ug/L		12/01/11 04:22	1
Vinyl chloride	ND		1.0	0.90	ug/L		12/01/11 04:22	1
Xylenes, Total	ND		2.0	0.66	ug/L		12/01/11 04:22	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	118		66 - 137				12/01/11 04:22	1
Toluene-d8 (Surr)	107		71 - 126				12/01/11 04:22	1
4-Bromofluorobenzene (Surr)	102		73 - 120				12/01/11 04:22	1

RL

MDL Unit

D

Prepared

Matrix: Water

Method: 8260B - Volatile Organic Compounds (GC/MS)

Prep Type: Total/NA

_				Percent Surro	ogate Recover
		12DCE	TOL	BFB	J
Lab Sample ID	Client Sample ID	(66-137)	(71-126)	(73-120)	
480-12940-1	RU20-111711	112	106	100	
480-12940-1 - DL	RU20-111711	116	108	102	
480-12940-2	RU10-111711	112	104	98	
480-12940-3	RU19-111711	116	108	101	
480-12940-3 - DL	RU19-111711	115	110	106	
480-12940-4	RU8-111711	113	108	101	
480-12940-4 - DL	RU8-111711	112	108	107	
480-12940-5	RU21-111711	117	110	102	
480-12940-5 - DL	RU21-111711	115	106	104	
480-12940-6	DUP-111711	114	106	103	
480-12940-7	RB-111711	113	108	103	
480-12940-8	TRIP BLANK	118	107	102	
LCS 480-42381/4	Lab Control Sample	109	110	101	
LCS 480-42419/4	Lab Control Sample	110	109	102	
LCS 480-42630/4	Lab Control Sample	112	108	102	
MB 480-42381/5	Method Blank	113	108	106	
MB 480-42419/5	Method Blank	106	109	107	
MB 480-42630/5	Method Blank	110	105	101	
Surrogate Legend					

12DCE = 1,2-Dichloroethane-d4 (Surr)

TOL = Toluene-d8 (Surr)

BFB = 4-Bromofluorobenzene (Surr)

Client Sample ID: Method Blank

Prep Type: Total/NA

2 3 4 5

							-
Method:	8260B	- Volatile	Organic	Com	nounds	(GC/MS)	۱
mouroar	01000	V Olatilo	ergunie		Joanao		,

Lab Sample ID: MB 480-42381/5	
Matrix: Water	

Analysis Batch: 42381

	MB	MB						
Analyte	Result	Qualifier	RL	MDL	Unit	D Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		1.0	0.82	ug/L		11/30/11 23:50	1
1,1,2,2-Tetrachloroethane	ND		1.0	0.21	ug/L		11/30/11 23:50	1
1,1,2-Trichloroethane	ND		1.0	0.23	ug/L		11/30/11 23:50	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		1.0	0.31	ug/L		11/30/11 23:50	1
1,1-Dichloroethane	ND		1.0	0.38	ug/L		11/30/11 23:50	1
1,1-Dichloroethene	ND		1.0	0.29	ug/L		11/30/11 23:50	1
1,2,4-Trichlorobenzene	ND		1.0	0.41	ug/L		11/30/11 23:50	1
1,2-Dibromo-3-Chloropropane	ND		1.0	0.39	ug/L		11/30/11 23:50	1
1,2-Dibromoethane	ND		1.0	0.73	ug/L		11/30/11 23:50	1
1,2-Dichlorobenzene	ND		1.0	0.79	ug/L		11/30/11 23:50	1
1,2-Dichloroethane	ND		1.0	0.21	ug/L		11/30/11 23:50	1
1,2-Dichloropropane	ND		1.0	0.72	ug/L		11/30/11 23:50	1
1,3-Dichlorobenzene	ND		1.0	0.78	ug/L		11/30/11 23:50	1
1,4-Dichlorobenzene	ND		1.0	0.84	ug/L		11/30/11 23:50	1
2-Hexanone	ND		5.0	1.2	ug/L		11/30/11 23:50	1
2-Butanone (MEK)	ND		10	1.3	ug/L		11/30/11 23:50	1
4-Methyl-2-pentanone (MIBK)	ND		5.0	2.1	ug/L		11/30/11 23:50	1
Acetone	ND		10	3.0	ug/L		11/30/11 23:50	1
Benzene	ND		1.0	0.41	ua/L		11/30/11 23:50	1
Bromodichloromethane	ND		1.0	0.39	ua/L		11/30/11 23:50	1
Bromoform	ND		1.0	0.26	ua/L		11/30/11 23:50	1
Bromomethane	ND		10	0.69	ua/l		11/30/11 23:50	1
Carbon disulfide	ND		1.0	0.19	ua/l		11/30/11 23:50	1
Carbon tetrachloride	ND		1.0	0.27	ua/L		11/30/11 23:50	1
Chlorobenzene	ND		1.0	0.75	ua/l		11/30/11 23:50	· · · · · · · · · · · · · · · · · · ·
Dibromochloromethane	ND		1.0	0.32	ua/l		11/30/11 23:50	1
Chloroethane	ND		1.0	0.32	ug/L		11/30/11 23:50	1
Chloroform	ND		1.0	0.34	ug/l		11/30/11 23:50	· · · · · · · · 1
Chloromethane	ND		1.0	0.35	ug/L		11/30/11 23:50	1
cis-1 2-Dichloroethene	ND		1.0	0.81	ug/L		11/30/11 23:50	1
cis-1,3-Dichloropropene	ND		1.0	0.36	ug/L		11/30/11 23:50	· · · · · · · · · · · · · · · · · · ·
Cyclobexane	ND		1.0	0.00	ug/L		11/30/11 23:50	1
Dichlorodifluoromethane	ND		1.0	0.10	ug/L		11/30/11 23:50	1
Ethylbenzene	ND		1.0	0.00			11/30/11 23:50	1
			1.0	0.74	ug/L		11/30/11 23:50	1
Methyl acetate			1.0	0.75	ug/L		11/30/11 23:50	1
Mothyl tort hutyl othor			1.0	0.00	ug/L		11/30/11 23:50	1
Methylovelobexape			1.0	0.10	ug/L		11/30/11 23:50	1
Methylene Chleride			1.0	0.10	ug/L		11/20/11 23:50	1
Strong			1.0	0.44	ug/L		11/20/11 22:50	1
Tetraphorothono			1.0	0.73	ug/L		11/30/11 23:50	1
Teluare	ND		1.0	0.50	uy/L		11/30/11 23.50	1
Toluene	ND		1.0	0.51	ug/L		11/30/11 23:50	
	ND		1.0	0.90	ug/L		11/30/11 23:50	1
	ND		1.0	0.37	ug/L		11/30/11 23:50	1
	ND		1.0	0.46	ug/L		11/30/11 23:50	1
	ND		1.0	0.88	ug/L		11/30/11 23:50	1
Vinyl chloride	ND		1.0	0.90	ug/L		11/30/11 23:50	1
Xylenes, Total	ND		2.0	0.66	ug/L		11/30/11 23:50	1

Limits

66 - 137

71 - 126

73 - 120

Lab Sample ID: MB 480-42381/5

Matrix: Water

Analysis Batch: 42381

Analyzed

11/30/11 23:50

11/30/11 23:50

11/30/11 23:50

Prep Type: Total/NA

Client Sample ID: Lab Control Sample

Prepared

2 3 4 5 6 7

8

Client Sample ID: Method Blank Prep Type: Total/NA

Dil Fac

1

1

1

MBMBSurrogate%RecoveryQualifier1,2-Dichloroethane-d4 (Surr)113113Toluene-d8 (Surr)1084-Bromofluorobenzene (Surr)106

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 480-42381/4 Matrix: Water

Analysis Batch: 42381

· ···· , ··· · ·····	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,1-Dichloroethane		25.0		ug/L		100	71 - 129	
1,1-Dichloroethene	25.0	27.7		ug/L		111	65 - 138	
1,2-Dichlorobenzene	25.0	23.5		ug/L		94	77 _ 120	
1,2-Dichloroethane	25.0	25.0		ug/L		100	75 - 127	
Benzene	25.0	25.0		ug/L		100	71 - 124	
Chlorobenzene	25.0	23.3		ug/L		93	72 ₋ 120	
cis-1,2-Dichloroethene	25.0	24.5		ug/L		98	74 ₋ 124	
Ethylbenzene	25.0	23.6		ug/L		94	77 _ 123	
Methyl tert-butyl ether	25.0	21.2		ug/L		85	64 - 127	
Tetrachloroethene	25.0	24.0		ug/L		96	74 ₋ 122	
Toluene	25.0	24.1		ug/L		96	70 ₋ 122	
trans-1,2-Dichloroethene	25.0	24.0		ug/L		96	73 ₋ 127	
Trichloroethene	25.0	23.8		ug/L		95	74 - 123	

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	109		66 - 137
Toluene-d8 (Surr)	110		71 - 126
4-Bromofluorobenzene (Surr)	101		73 - 120

Lab Sample ID: MB 480-42419/5 Matrix: Water

Analysis Batch: 42419

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		1.0	0.82	ug/L			12/01/11 11:58	1
1,1,2,2-Tetrachloroethane	ND		1.0	0.21	ug/L			12/01/11 11:58	1
1,1,2-Trichloroethane	ND		1.0	0.23	ug/L			12/01/11 11:58	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		1.0	0.31	ug/L			12/01/11 11:58	1
1,1-Dichloroethane	ND		1.0	0.38	ug/L			12/01/11 11:58	1
1,1-Dichloroethene	ND		1.0	0.29	ug/L			12/01/11 11:58	1
1,2,4-Trichlorobenzene	ND		1.0	0.41	ug/L			12/01/11 11:58	1
1,2-Dibromo-3-Chloropropane	ND		1.0	0.39	ug/L			12/01/11 11:58	1
1,2-Dibromoethane	ND		1.0	0.73	ug/L			12/01/11 11:58	1
1,2-Dichlorobenzene	ND		1.0	0.79	ug/L			12/01/11 11:58	1
1,2-Dichloroethane	ND		1.0	0.21	ug/L			12/01/11 11:58	1
1,2-Dichloropropane	ND		1.0	0.72	ug/L			12/01/11 11:58	1
1,3-Dichlorobenzene	ND		1.0	0.78	ug/L			12/01/11 11:58	1
1,4-Dichlorobenzene	ND		1.0	0.84	ug/L			12/01/11 11:58	1
2-Hexanone	ND		5.0	1.2	ug/L			12/01/11 11:58	1
2-Butanone (MEK)	ND		10	1.3	ug/L			12/01/11 11:58	1

Client Sample ID: Method Blank Prep Type: Total/NA

RL

5.0

10

MDL Unit

ug/L

2.1

3.0 ug/L

D

Prepared

2 3 4 5

Dil Fac

1

1

1

1

1

1

1

1

1

1

1

1

1 1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

Dil Fac

	6

Analyzed

12/01/11 11:58

12/01/11 11:58

12/01/11 11:58

12/01/11 11:58

12/01/11 11:58

12/01/11 11:58

12/01/11 11:58

12/01/11 11:58

12/01/11 11:58

12/01/11 11:58

12/01/11 11:58

12/01/11 11:58

12/01/11 11:58

12/01/11 11:58 12/01/11 11:58

12/01/11 11:58

12/01/11 11:58

12/01/11 11:58

12/01/11 11:58

12/01/11 11:58

12/01/11 11:58

12/01/11 11:58

12/01/11 11:58

12/01/11 11:58

12/01/11 11:58

12/01/11 11:58

12/01/11 11:58

12/01/11 11:58

12/01/11 11:58

12/01/11 11:58

12/01/11 11:58

12/01/11 11:58

Analyzed 12/01/11 11:58

Method: 8260B - Volat	ile Organic Compounds	s (GC/MS) (Continued)
-----------------------	-----------------------	-----------------------

MB MB

ND

ND

Result Qualifier

Lab Sample ID: MB 480-42419/5 Matrix: Water

Analysis Batch: 42419

4-Methyl-2-pentanone (MIBK)

Analyte

Acetone

Toluene-d8 (Surr)	109		71 - 126		
1,2-Dichloroethane-d4 (Surr)	106		66 - 137		
Surrogate	%Recovery	Qualifier	Limits		
	МВ	МВ			
Xylenes, Total	ND		2.0	0.66	ug/L
Vinyl chloride	ND		1.0	0.90	ug/L
Trichlorofluoromethane	ND		1.0	0.88	ug/L
Trichloroethene	ND		1.0	0.46	ug/L
trans-1,3-Dichloropropene	ND		1.0	0.37	ug/L
trans-1,2-Dichloroethene	ND		1.0	0.90	ug/L
Toluene	ND		1.0	0.51	ug/L
Tetrachloroethene	ND		1.0	0.36	ug/L
Styrene	ND		1.0	0.73	ug/L
Methylene Chloride	ND		1.0	0.44	ug/L
Methylcyclohexane	ND		1.0	0.16	ug/L
Methyl tert-butyl ether	ND		1.0	0.16	ug/L
Methyl acetate	ND		1.0	0.50	ug/L
Isopropylbenzene	ND		1.0	0.79	ug/L
Ethylbenzene	ND		1.0	0.74	ug/L
Dichlorodifluoromethane	ND		1.0	0.68	ug/L
Cyclohexane	ND		1.0	0.18	ug/L
cis-1,3-Dichloropropene	ND		1.0	0.36	ug/L
cis-1,2-Dichloroethene	ND		1.0	0.81	ug/L
Chloromethane	ND		1.0	0.35	ug/L
Chloroform	0.968	J	1.0	0.34	ug/L
Chloroethane	ND		1.0	0.32	ug/L
Dibromochloromethane	ND		1.0	0.32	ug/l
Chlorobenzene	ND		1.0	0.75	ua/l
Carbon tetrachloride	ND		1.0	0.27	ua/l
Carbon disulfide	ND		1.0	0.19	ua/l
Bromomethane	ND		1.0	0.69	ua/l
Bromoform	ND		1.0	0.26	ua/l
Bromodichloromethane	ND		1.0	0.39	ug/l
Benzene	ND		10	0 41	ua/l

107

12/01/11 11:58 1 12/01/11 11:58 1 Client Sample ID: Lab Control Sample

Prepared

Lab Sample ID: LCS 480-42419/4 Matrix: Water Analysis Batch: 42419

4-Bromofluorobenzene (Surr)

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,1-Dichloroethane	25.0	24.3		ug/L		97	71 _ 129	
1,1-Dichloroethene	25.0	24.0		ug/L		96	65 ₋ 138	
1,2-Dichlorobenzene	25.0	23.3		ug/L		93	77 - 120	
1,2-Dichloroethane	25.0	24.1		ug/L		96	75 _ 127	
Benzene	25.0	24.2		ug/L		97	71 - 124	
Chlorobenzene	25.0	22.9		ug/L		92	72 _ 120	

73 - 120

Prep Type: Total/NA

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Type: Total/NA

Client Sample ID: Lab Control Sample

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 480-42419/4

Matrix: Water

Analysis Batch: 42419								
	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
cis-1,2-Dichloroethene	25.0	23.7		ug/L		95	74 - 124	
Ethylbenzene	25.0	23.1		ug/L		92	77 ₋ 123	
Methyl tert-butyl ether	25.0	21.1		ug/L		84	64 _ 127	
Tetrachloroethene	25.0	23.1		ug/L		92	74 ₋ 122	
Toluene	25.0	23.4		ug/L		94	70 - 122	
trans-1,2-Dichloroethene	25.0	24.0		ug/L		96	73 - 127	
Trichloroethene	25.0	23.9		ug/L		96	74 ₋ 123	

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)			66 - 137
Toluene-d8 (Surr)	109		71 - 126
4-Bromofluorobenzene (Surr)	102		73 - 120

Lab Sample ID: MB 480-42630/5 Matrix: Water Analysis Batch: 42630

	MB	МВ							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		1.0	0.82	ug/L			12/02/11 12:41	1
1,1,2,2-Tetrachloroethane	ND		1.0	0.21	ug/L			12/02/11 12:41	1
1,1,2-Trichloroethane	ND		1.0	0.23	ug/L			12/02/11 12:41	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		1.0	0.31	ug/L			12/02/11 12:41	1
1,1-Dichloroethane	ND		1.0	0.38	ug/L			12/02/11 12:41	1
1,1-Dichloroethene	ND		1.0	0.29	ug/L			12/02/11 12:41	1
1,2,4-Trichlorobenzene	ND		1.0	0.41	ug/L			12/02/11 12:41	1
1,2-Dibromo-3-Chloropropane	ND		1.0	0.39	ug/L			12/02/11 12:41	1
1,2-Dibromoethane	ND		1.0	0.73	ug/L			12/02/11 12:41	1
1,2-Dichlorobenzene	ND		1.0	0.79	ug/L			12/02/11 12:41	1
1,2-Dichloroethane	ND		1.0	0.21	ug/L			12/02/11 12:41	1
1,2-Dichloropropane	ND		1.0	0.72	ug/L			12/02/11 12:41	1
1,3-Dichlorobenzene	ND		1.0	0.78	ug/L			12/02/11 12:41	1
1,4-Dichlorobenzene	ND		1.0	0.84	ug/L			12/02/11 12:41	1
2-Hexanone	ND		5.0	1.2	ug/L			12/02/11 12:41	1
2-Butanone (MEK)	ND		10	1.3	ug/L			12/02/11 12:41	1
4-Methyl-2-pentanone (MIBK)	ND		5.0	2.1	ug/L			12/02/11 12:41	1
Acetone	ND		10	3.0	ug/L			12/02/11 12:41	1
Benzene	ND		1.0	0.41	ug/L			12/02/11 12:41	1
Bromodichloromethane	ND		1.0	0.39	ug/L			12/02/11 12:41	1
Bromoform	ND		1.0	0.26	ug/L			12/02/11 12:41	1
Bromomethane	ND		1.0	0.69	ug/L			12/02/11 12:41	1
Carbon disulfide	ND		1.0	0.19	ug/L			12/02/11 12:41	1
Carbon tetrachloride	ND		1.0	0.27	ug/L			12/02/11 12:41	1
Chlorobenzene	ND		1.0	0.75	ug/L			12/02/11 12:41	1
Dibromochloromethane	ND		1.0	0.32	ug/L			12/02/11 12:41	1
Chloroethane	ND		1.0	0.32	ug/L			12/02/11 12:41	1
Chloroform	ND		1.0	0.34	ug/L			12/02/11 12:41	1
Chloromethane	ND		1.0	0.35	ug/L			12/02/11 12:41	1
cis-1,2-Dichloroethene	ND		1.0	0.81	ug/L			12/02/11 12:41	1
cis-1,3-Dichloropropene	ND		1.0	0.36	ug/L			12/02/11 12:41	1

TestAmerica Buffalo 12/6/2011

Lab Sample ID: MB 480-42630/5

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

2 3 4 5

Client Sample ID: Method Blank
Prep Type: Total/NA

Matrix: Water

Analysis Batch: 4263	0
----------------------	---

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cyclohexane	ND		1.0	0.18	ug/L			12/02/11 12:41	1
Dichlorodifluoromethane	ND		1.0	0.68	ug/L			12/02/11 12:41	1
Ethylbenzene	ND		1.0	0.74	ug/L			12/02/11 12:41	1
Isopropylbenzene	ND		1.0	0.79	ug/L			12/02/11 12:41	1
Methyl acetate	ND		1.0	0.50	ug/L			12/02/11 12:41	1
Methyl tert-butyl ether	ND		1.0	0.16	ug/L			12/02/11 12:41	1
Methylcyclohexane	ND		1.0	0.16	ug/L			12/02/11 12:41	1
Methylene Chloride	ND		1.0	0.44	ug/L			12/02/11 12:41	1
Styrene	ND		1.0	0.73	ug/L			12/02/11 12:41	1
Tetrachloroethene	ND		1.0	0.36	ug/L			12/02/11 12:41	1
Toluene	ND		1.0	0.51	ug/L			12/02/11 12:41	1
trans-1,2-Dichloroethene	ND		1.0	0.90	ug/L			12/02/11 12:41	1
trans-1,3-Dichloropropene	ND		1.0	0.37	ug/L			12/02/11 12:41	1
Trichloroethene	ND		1.0	0.46	ug/L			12/02/11 12:41	1
Trichlorofluoromethane	ND		1.0	0.88	ug/L			12/02/11 12:41	1
Vinyl chloride	ND		1.0	0.90	ug/L			12/02/11 12:41	1
Xylenes, Total	ND		2.0	0.66	ug/L			12/02/11 12:41	1
	МВ	MB							

Surrogate	%Recovery	Qualifier	Limits	Pre	epared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	110		66 - 137			12/02/11 12:41	1
Toluene-d8 (Surr)	105		71 - 126			12/02/11 12:41	1
4-Bromofluorobenzene (Surr)	101		73 - 120			12/02/11 12:41	1

Lab Sample ID: LCS 480-42630/4 Matrix: Water Analysis Batch: 42630

Client Sample ID: Lab Control Sample Prep Type: Total/NA

-	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,1-Dichloroethane	25.0	25.1		ug/L		100	71 - 129	
1,1-Dichloroethene	25.0	25.8		ug/L		103	65 ₋ 138	
1,2-Dichlorobenzene	25.0	23.0		ug/L		92	77 - 120	
1,2-Dichloroethane	25.0	24.2		ug/L		97	75 ₋ 127	
Benzene	25.0	24.4		ug/L		98	71 - 124	
Chlorobenzene	25.0	22.7		ug/L		91	72 _ 120	
cis-1,2-Dichloroethene	25.0	23.3		ug/L		93	74 _ 124	
Ethylbenzene	25.0	22.5		ug/L		90	77 - 123	
Methyl tert-butyl ether	25.0	21.9		ug/L		88	64 _ 127	
Tetrachloroethene	25.0	22.4		ug/L		90	74 - 122	
Toluene	25.0	23.4		ug/L		94	70 - 122	
trans-1,2-Dichloroethene	25.0	23.1		ug/L		92	73 _ 127	
Trichloroethene	25.0	23.5		ug/L		94	74 _ 123	

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	112		66 - 137
Toluene-d8 (Surr)	108		71 - 126
4-Bromofluorobenzene (Surr)	102		73 - 120

RL

1.5

1.5

1.0

Spike

Added

7.21

6.73

3.88

MDL Unit

0.49 ug/L

0.52 ug/L

0.22 ug/L

LCS LCS

8.91

8.44

5.20

Result Qualifier

D

Unit

ug/L

ug/L

ug/L

Prepared

D

%Rec

124

125

134

MB MB Result Qualifier

ND

ND

ND

Lab Sample ID: MB 480-41469/2

Lab Sample ID: LCS 480-41469/3

Lab Sample ID: LCSD 480-41469/4

Matrix: Water

Matrix: Water

Analyte

Ethane

Ethene

Methane

Analyte

Ethane

Ethene

Methane

Matrix: Water

Analysis Batch: 41469

Analysis Batch: 41469

Method: RSK-175 - Dissolved Gases (GC)

Client Sample ID: Method Blank

Analyzed

11/22/11 09:06

11/22/11 09:06

11/22/11 09:06

Client Sample ID: Lab Control Sample

%Rec.

Limits

41 - 176

62 - 143

67 _ 140

Prep Type: Total/NA

Prep Type: Total/NA

Dil Fac

1

1

1

7 8 9 10 11

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

Analysis Batch: 41469									
	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Ethane	7.21	8.59		ug/L		119	41 - 176	4	50
Ethene	6.73	8.16		ug/L		121	62 - 143	3	50
Methane	3.88	5.02		ug/L		129	67 _ 140	4	50

Method: 6010B - Metals (ICP)

Lab Sample ID: MB 480-40883/13-	·B								c	lient Sa	ample ID: Meth	od Blank
Matrix: Water											Prep Type: D	issolved
Analysis Batch: 41660											Prep Bato	h: 41171
-		MB N	ИB									
Analyte	R	esult C	Qualifier	RL	. N	IDL Unit		D	Pre	pared	Analyzed	Dil Fac
Beryllium		ND		0.0020	0.000	030 mg/L			11/21/	11 09:15	11/22/11 17:02	1
	1-B							С	lient S	Sample	ID: Lab Contro	I Sample
Matrix: Water											Prep Type: D	issolved
Analysis Batch: 41660											Prep Bato	h: 41171
				Spike	LCS	LCS					%Rec.	
Analyte				Added	Result	Qualifier	Unit		D	%Rec	Limits	
Beryllium				0.200	0.203		mg/L			101	80 - 120	
Lab Sample ID: 480-12940-3 MS										Client S	ample ID: RU1	9-111711
Matrix: Water											Prep Type: D	issolved
Analysis Batch: 41538											Prep Bato	h: 41171
	Sample	Sample	е	Spike	MS	MS					%Rec.	
Analyte	Result	Qualifi	ier	Added	Result	Qualifier	Unit		D	%Rec	Limits	
Aluminum	ND			10.0	10.52		mg/L			105	75 - 125	
Antimony	ND			0.200	0.208		mg/L			104	75 ₋ 125	
Arsenic	ND			0.200	0.208		mg/L			104	75 ₋ 125	
Barium	0.052			0.200	0.262		mg/L			105	75 - 125	
Cadmium	0.00041	J		0.200	0.208		mg/L			104	75 ₋ 125	
Calcium	73.3			10.0	86.15	4	mg/L			128	75 ₋ 125	
Chromium	ND			0.200	0.205		ma/L			103	75 - 125	

Spike

Added

0.200

0.200

10.0

0.200

10.0

0.200

0.200

10.0

0.200

0.0500

10.0

0.200

0.200

0.200

0.200

MS MS

0.197

0.208

10.33

0.201

21.28

0.636

0.215

12.15

0.199

0.0510

24.00

0.204

0.200

0.211

0.202

Result Qualifier

Unit

mg/L

D

%Rec

98

102

103

101

101

95

106

104

100

102

104

102

100

104

101

Lab Sample ID: 480-12940-3 MS

Matrix: Water

Analyte

Cobalt

Copper

Iron

Lead

Nickel

Silver

Sodium

Thallium

Zinc

Vanadium

Beryllium

Magnesium

Manganese

Potassium

Selenium

Analysis Batch: 41538

Method: 6010B - Metals (ICP) (Continued)

Sample Sample

0.00087 J

0.0047 J

ND

ND

11.2

0.0024 J

1.7

ND

ND

13.6

ND

ND

0.0038 J

ND

0.45 B

Result Qualifier

Client Sample ID: RU19-111711

%Rec.

Limits

75 - 125

75 - 125

75 - 125

75 - 125

75 - 125

75 - 125

75 - 125

75 - 125 75 - 125

75 - 125

75 - 125

75 - 125

75 - 125

75 - 125

75 - 125

Client Sample ID: RU19-111711

Prep Type: Dissolved

Prep Type: Dissolved

Prep Batch: 41171

. 1013-111/11	
pe: Dissolved	
o Batch: 41171	

Lab Sample ID: 480-12940-3 MS							(Client Sa	ample ID: RU19-111711 Pren Type: Dissolved
Analysis Batch: 41660									Prep Batch: 41171
	Sample	Sample	Spike	MS	MS				%Rec.
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits

Lab Sample ID: 480-12940-3 MSD Matrix: Water Analysis Ratch: 41538

Analysis Batch: 41538									Prep	Batch:	41171
-	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Aluminum	ND		10.0	10.48		mg/L		105	75 _ 125	0	20
Antimony	ND		0.200	0.210		mg/L		105	75 _ 125	1	20
Arsenic	ND		0.200	0.212		mg/L		106	75 - 125	2	20
Barium	0.052		0.200	0.261		mg/L		105	75 _ 125	0	20
Cadmium	0.00041	J	0.200	0.209		mg/L		104	75 - 125	0	20
Calcium	73.3		10.0	85.20	4	mg/L		119	75 _ 125	1	20
Chromium	ND		0.200	0.208		mg/L		104	75 _ 125	1	20
Cobalt	0.00087	J	0.200	0.197		mg/L		98	75 - 125	0	20
Copper	0.0047	J	0.200	0.209		mg/L		102	75 _ 125	1	20
Iron	ND		10.0	10.31		mg/L		103	75 _ 125	0	20
Lead	ND		0.200	0.202		mg/L		101	75 _ 125	0	20
Magnesium	11.2		10.0	21.29		mg/L		101	75 - 125	0	20
Manganese	0.45	В	0.200	0.634		mg/L		94	75 - 125	0	20
Nickel	0.0024	J	0.200	0.215		mg/L		106	75 _ 125	0	20
Potassium	1.7		10.0	12.05		mg/L		103	75 _ 125	1	20
Selenium	ND		0.200	0.204		mg/L		102	75 _ 125	2	20
Silver	ND		0.0500	0.0508		mg/L		102	75 _ 125	0	20
Sodium	13.6		10.0	23.58		mg/L		100	75 - 125	2	20
Thallium	ND		0.200	0.205		mg/L		103	75 _ 125	1	20
Vanadium	ND		0.200	0.203		mg/L		101	75 _ 125	1	20
Zinc	0.0038	J	0.200	0.212		ma/L		104	75 - 125	1	20
Method: 6010B - Metals (ICP) (Continued)

Lab Sample ID: 480-12940-3 M	SD							Client S	ample ID:	RU19-1	11711
Matrix: Water									Prep Typ	be: Diss	olved
Analysis Batch: 41660									Prep	Batch:	41171
	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Beryllium	ND		0.200	0.200		mg/L		100	75 - 125	1	20

Method: 7470A - Mercury (CVAA)

Lab Sample ID: MB 480-41430/1-C Matrix: Water Analysis Batch: 41761	мв	МВ						Client Sa	mple ID: Metho Prep Type: Di Prep Batcl	d Blank ssolved n: 41702
Analyte	Result	Qualifier	RL	м	DL Unit		D Pi	epared	Analyzed	Dil Fac
Mercury	0.000137	J	0.00020	0.000	12 mg/L		11/2	3/11 11:20	11/23/11 14:47	1
Lab Sample ID: LCS 480-41430/2-C Matrix: Water Analysis Batch: 41761			Snike	LCS	LCS		Client	Sample I	D: Lab Control Prep Type: Di Prep Batcl	Sample ssolved n: 41702
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits	
Mercury			0.00667	0.00690		mg/L		103	80 - 120	

Method: 300.0 - Anions, Ion Chr	omatogr	aphy											
Lab Sample ID: MB 480-42462/52										c	lient Sa	ample ID: Metho	d Blank
Matrix: Water												Prep Type: 1	Total/NA
Analysis Batch: 42462													
-	МВ	МВ											
Analyte	Result	Qualifier		RL	м	DL	Unit		D	Pre	pared	Analyzed	Dil Fac
Chloride	ND			0.50	0	.28	mg/L					12/02/11 01:55	1
Sulfate	ND			2.0	0	.35	mg/L					12/02/11 01:55	1
- Lab Sample ID: LCS 480-42462/51									CI	ient S	Sample	ID: Lab Control	Sample
Matrix: Water												Prep Type: 1	Γotal/NA
Analysis Batch: 42462													
			Spike		LCS	LCS	S					%Rec.	
Analyte			Added		Result	Qua	alifier	Unit		D	%Rec	Limits	
Chloride			20.0		20.20			mg/L			101	90 - 110	
Sulfate			20.0		20.00			mg/L			100	90 - 110	
- Lab Sample ID: MB 480-42464/76										c	lient Sa	ample ID: Metho	od Blank
Matrix: Water												Prep Type: 1	Total/NA
Analysis Batch: 42464													
-	MB	МВ											
Analyte	Result	Qualifier		RL	м	DL	Unit		D	Pre	pared	Analyzed	Dil Fac
Chloride	ND			0.50	0	.28	mg/L					12/02/11 05:58	1
Sulfate	ND			2.0	0	.35	mg/L					12/02/11 05:58	1
- Lab Sample ID: LCS 480-42464/75									CI	ient S	Sample	ID: Lab Control	Sample
Matrix: Water												Prep Type: 1	Fotal/NA
Analysis Batch: 42464													
-			Spike		LCS	LCS	S					%Rec.	
Analyte			Added		Result	Qua	alifier	Unit		D	%Rec	Limits	
Chloride			20.0		20.20			mg/L			101	90 - 110	

5

8	8	3	}
	g		
1			3

ethod Blank	
pe: Total/NA	

Lah Sample ID: LCS 480-42464/75	

Method: 300.0 - Anions, Ion Chromatography (Continued)

Lab Sample ID: LCS 480-42464/75					Client	Sample	D: Lab Control Sample
Matrix: Water							Prep Type: Total/NA
Analysis Batch: 42464							
	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Sulfate	20.0	19.80		mg/L		99	90 - 110

Method: 353.2 - Nitrogen, Nitrate-Nitrite

Method: SM 5310D - Organic Carbon, Total (TOC)

Lab Sample ID: MB 480-42696/4 Matrix: Water								Client Sa	mple ID: Metho Prep Type: T	d Blank otal/NA
Analysis Batch: 42696										
	MB	MB								
Analyte	Result	Qualifier	RL	ME	L Unit		D Pi	repared	Analyzed	Dil Fac
Nitrate Nitrite as N	ND		0.050	0.02	20 mg/L				12/02/11 14:30	1
Lab Sample ID: LCS 480-42696/5							Client	Sample	ID: Lab Control	Sample
Matrix: Water									Prep Type: T	otal/NA
Analysis Batch: 42696										
		Spike		LCS	LCS				%Rec.	
Analyte		Added		Result	Qualifier	Unit	D	%Rec	Limits	
Nitrate Nitrite as N		1.50		1.50		mg/L		100	90 - 110	

Lab Sample ID: MB 480-41694/3 **Client Sample ID: M** Matrix: Water Prep Ty Analysis Batch: 41694 MB MB Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac Total Organic Carbon ND 1.0 0.43 mg/L 11/22/11 17:48 1 Lab Sample ID: LCS 480-41694/4 **Client Sample ID: Lab Control Sample** Matrix: Water Prep Type: Total/NA Analysis Batch: 41694 LCS LCS Spike %Rec. Added Result Qualifier Analyte Unit D %Rec Limits Total Organic Carbon 30.0 28.58 mg/L 95 90 - 110

Method: VFA-IC - Volatile Fatty Acids, Ion Chromatography

Lab Sample ID: MB 480-42700/28 Matrix: Water						Client S	ample ID: Metho Prep Type: T	d Blank 'otal/NA	
Analysis Batch: 42700									
	MB	МВ							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acetic acid	ND		1.0	0.15	mg/L			12/04/11 01:38	1
Butyric acid	ND		1.0	0.16	mg/L			12/04/11 01:38	1
Propionic acid	ND		1.0	0.17	mg/L			12/04/11 01:38	1

Method: VFA-IC - Volatile Fatty Acids, Ion Chromatography (Continued)

Lab Sample ID: LCS 480-42700/27 Matrix: Water Analysis Batch: 42700					Client	Sample	ID: Lab Control Sample Prep Type: Total/NA
Analysis Balch. 42700	Spike Added	LCS Result	LCS Qualifier	Unit	р	%Rec	%Rec. Limits
Acetic acid	<u></u>	9.92				99	80 - 120
Butyric acid	10.0	9.97		mg/L		100	80 - 120
Propionic acid	10.0	9.92		ma/L		99	80 - 120

GC/MS VOA

Analysis Batch: 42381

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-12940-1	RU20-111711	Total/NA	Water	8260B	
480-12940-2	RU10-111711	Total/NA	Water	8260B	
480-12940-3	RU19-111711	Total/NA	Water	8260B	
480-12940-4	RU8-111711	Total/NA	Water	8260B	
480-12940-5	RU21-111711	Total/NA	Water	8260B	
480-12940-6	DUP-111711	Total/NA	Water	8260B	
480-12940-7	RB-111711	Total/NA	Water	8260B	
480-12940-8	TRIP BLANK	Total/NA	Water	8260B	
LCS 480-42381/4	Lab Control Sample	Total/NA	Water	8260B	
MB 480-42381/5	Method Blank	Total/NA	Water	8260B	

Analysis Batch: 42419

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-12940-3 - DL	RU19-111711	Total/NA	Water	8260B	
480-12940-4 - DL	RU8-111711	Total/NA	Water	8260B	
480-12940-5 - DL	RU21-111711	Total/NA	Water	8260B	
LCS 480-42419/4	Lab Control Sample	Total/NA	Water	8260B	
MB 480-42419/5	Method Blank	Total/NA	Water	8260B	
└─ Analysis Batch: 4263 ┌─	30				

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-12940-1 - DL	RU20-111711	Total/NA	Water	8260B	
LCS 480-42630/4	Lab Control Sample	Total/NA	Water	8260B	
MB 480-42630/5	Method Blank	Total/NA	Water	8260B	

GC VOA

Analysis Batch: 41469

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-12940-1	RU20-111711	Total/NA	Water	RSK-175	
480-12940-2	RU10-111711	Total/NA	Water	RSK-175	
480-12940-3	RU19-111711	Total/NA	Water	RSK-175	
480-12940-3	RU19-111711	Total/NA	Water	RSK-175	
480-12940-4	RU8-111711	Total/NA	Water	RSK-175	
480-12940-5	RU21-111711	Total/NA	Water	RSK-175	
480-12940-5	RU21-111711	Total/NA	Water	RSK-175	
480-12940-6	DUP-111711	Total/NA	Water	RSK-175	
LCS 480-41469/3	Lab Control Sample	Total/NA	Water	RSK-175	
LCSD 480-41469/4	Lab Control Sample Dup	Total/NA	Water	RSK-175	
MB 480-41469/2	Method Blank	Total/NA	Water	RSK-175	

Metals

Prep Batch: 41171

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-12940-1	RU20-111711	Dissolved	Water	3005A	
480-12940-2	RU10-111711	Dissolved	Water	3005A	
480-12940-3	RU19-111711	Dissolved	Water	3005A	
480-12940-3 MS	RU19-111711	Dissolved	Water	3005A	
480-12940-3 MSD	RU19-111711	Dissolved	Water	3005A	
480-12940-4	RU8-111711	Dissolved	Water	3005A	
480-12940-5	RU21-111711	Dissolved	Water	3005A	

Prep Type

Dissolved

Dissolved

Dissolved

Prep Type

Dissolved

Dissolved

Dissolved

Dissolved

Dissolved

Dissolved

Dissolved

Dissolved

Matrix

Water

Water

Water

Matrix

Water

Water

Water

Water

Water

Water

Water

Water

Prep Batch: 41171 (Continued)

Client Sample ID

Lab Control Sample

DUP-111711

Method Blank

Client Sample ID

RU20-111711

RU10-111711

RU19-111711

RU19-111711

RU19-111711

RU8-111711

RU21-111711

DUP-111711

Metals (Continued)

Lab Sample ID

Lab Sample ID

480-12940-1

480-12940-2

480-12940-3

480-12940-4

480-12940-5

480-12940-6

480-12940-3 MS

480-12940-3 MSD

Analysis Batch: 41660

LCS 480-40883/14-B

Analysis Batch: 41538

MB 480-40883/13-B

480-12940-6

Method

3005A

3005A

3005A

Method

6010B

6010B

6010B

6010B

6010B

6010B

6010B

6010B

Prep Batch

Prep Batch

41171

41171

41171

41171

41171

41171

41171

41171

10 11 12 13

9

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-12940-1	RU20-111711	Dissolved	Water	6010B	41171
480-12940-2	RU10-111711	Dissolved	Water	6010B	41171
480-12940-3	RU19-111711	Dissolved	Water	6010B	41171
480-12940-3 MS	RU19-111711	Dissolved	Water	6010B	41171
480-12940-3 MSD	RU19-111711	Dissolved	Water	6010B	41171
480-12940-4	RU8-111711	Dissolved	Water	6010B	41171
480-12940-5	RU21-111711	Dissolved	Water	6010B	41171
480-12940-6	DUP-111711	Dissolved	Water	6010B	41171
LCS 480-40883/14-B	Lab Control Sample	Dissolved	Water	6010B	41171
MB 480-40883/13-B	Method Blank	Dissolved	Water	6010B	41171

Prep Batch: 41702

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-12940-1	RU20-111711	Dissolved	Water	7470A	
480-12940-2	RU10-111711	Dissolved	Water	7470A	
480-12940-3	RU19-111711	Dissolved	Water	7470A	
480-12940-4	RU8-111711	Dissolved	Water	7470A	
480-12940-5	RU21-111711	Dissolved	Water	7470A	
480-12940-6	DUP-111711	Dissolved	Water	7470A	
LCS 480-41430/2-C	Lab Control Sample	Dissolved	Water	7470A	
MB 480-41430/1-C	Method Blank	Dissolved	Water	7470A	

Analysis Batch: 41761

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
480-12940-1	RU20-111711	Dissolved	Water	7470A	41702
480-12940-2	RU10-111711	Dissolved	Water	7470A	41702
480-12940-3	RU19-111711	Dissolved	Water	7470A	41702
480-12940-4	RU8-111711	Dissolved	Water	7470A	41702
480-12940-5	RU21-111711	Dissolved	Water	7470A	41702
480-12940-6	DUP-111711	Dissolved	Water	7470A	41702
LCS 480-41430/2-C	Lab Control Sample	Dissolved	Water	7470A	41702
MB 480-41430/1-C	Method Blank	Dissolved	Water	7470A	41702

General Chemistry

Analysis Batch: 41694

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-12940-1	RU20-111711	Total/NA	Water	SM 5310D	
480-12940-2	RU10-111711	Total/NA	Water	SM 5310D	
480-12940-3	RU19-111711	Total/NA	Water	SM 5310D	
480-12940-4	RU8-111711	Total/NA	Water	SM 5310D	
480-12940-5	RU21-111711	Total/NA	Water	SM 5310D	
480-12940-6	DUP-111711	Total/NA	Water	SM 5310D	
LCS 480-41694/4	Lab Control Sample	Total/NA	Water	SM 5310D	
MB 480-41694/3	Method Blank	Total/NA	Water	SM 5310D	

Analysis Batch: 42462

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-12940-1	RU20-111711	Total/NA	Water	300.0	
480-12940-2	RU10-111711	Total/NA	Water	300.0	
480-12940-3	RU19-111711	Total/NA	Water	300.0	
480-12940-4	RU8-111711	Total/NA	Water	300.0	
LCS 480-42462/51	Lab Control Sample	Total/NA	Water	300.0	
MB 480-42462/52	Method Blank	Total/NA	Water	300.0	

Analysis Batch: 42464

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
480-12940-5	RU21-111711	Total/NA	Water	300.0	
480-12940-6	DUP-111711	Total/NA	Water	300.0	
LCS 480-42464/75	Lab Control Sample	Total/NA	Water	300.0	
MB 480-42464/76	Method Blank	Total/NA	Water	300.0	

Analysis Batch: 42696

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
480-12940-1	RU20-111711	Total/NA	Water	353.2	
480-12940-2	RU10-111711	Total/NA	Water	353.2	
480-12940-3	RU19-111711	Total/NA	Water	353.2	
480-12940-4	RU8-111711	Total/NA	Water	353.2	
480-12940-5	RU21-111711	Total/NA	Water	353.2	
480-12940-6	DUP-111711	Total/NA	Water	353.2	
LCS 480-42696/5	Lab Control Sample	Total/NA	Water	353.2	
MB 480-42696/4	Method Blank	Total/NA	Water	353.2	

Analysis Batch: 42700

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-12940-1	RU20-111711	Total/NA	Water	VFA-IC	
480-12940-2	RU10-111711	Total/NA	Water	VFA-IC	
480-12940-3	RU19-111711	Total/NA	Water	VFA-IC	
480-12940-4	RU8-111711	Total/NA	Water	VFA-IC	
480-12940-5	RU21-111711	Total/NA	Water	VFA-IC	
480-12940-6	DUP-111711	Total/NA	Water	VFA-IC	
LCS 480-42700/27	Lab Control Sample	Total/NA	Water	VFA-IC	
MB 480-42700/28	Method Blank	Total/NA	Water	VFA-IC	

Client Sample ID: RU20-111711

Lab Sample ID: 480-12940-1 Matrix: Water

Date Collected: 11/17/11 09:50 Date Received: 11/18/11 09:30

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		1	42381	12/01/11 01:38	LH	TAL BUF
Total/NA	Analysis	8260B	DL	50	42630	12/02/11 13:16	LH	TAL BUF
Total/NA	Analysis	RSK-175		1	41469	11/22/11 10:29	JM	TAL BUF
Dissolved	Prep	3005A			41171	11/21/11 09:15	SS	TAL BUF
Dissolved	Analysis	6010B		1	41538	11/21/11 22:40	JRK	TAL BUF
Dissolved	Analysis	6010B		1	41660	11/22/11 17:11	JRK	TAL BUF
Dissolved	Prep	7470A			41702	11/23/11 11:20	MM	TAL BUF
Dissolved	Analysis	7470A		1	41761	11/23/11 15:20	MM	TAL BUF
Total/NA	Analysis	SM 5310D		1	41694	11/22/11 19:48	KAC	TAL BUF
Total/NA	Analysis	300.0		1	42462	12/02/11 04:47	KAC	TAL BUF
Total/NA	Analysis	353.2		1	42696	12/02/11 14:32	JR	TAL BUF
Total/NA	Analysis	VFA-IC		1	42700	12/04/11 05:31	KAC	TAL BUF

Client Sample ID: RU10-111711 Date Collected: 11/17/11 11:00 Date Received: 11/18/11 09:30

—	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		1	42381	12/01/11 02:01	LH	TAL BUF
Total/NA	Analysis	RSK-175		1	41469	11/22/11 10:46	JM	TAL BUF
Dissolved	Prep	3005A			41171	11/21/11 09:15	SS	TAL BUF
Dissolved	Analysis	6010B		1	41538	11/21/11 22:42	JRK	TAL BUF
Dissolved	Analysis	6010B		1	41660	11/22/11 17:13	JRK	TAL BUF
Dissolved	Prep	7470A			41702	11/23/11 11:20	MM	TAL BUF
Dissolved	Analysis	7470A		1	41761	11/23/11 15:22	MM	TAL BUF
Total/NA	Analysis	SM 5310D		1	41694	11/22/11 20:08	KAC	TAL BUF
Total/NA	Analysis	300.0		1	42462	12/02/11 04:57	KAC	TAL BUF
Total/NA	Analysis	353.2		1	42696	12/02/11 14:33	JR	TAL BUF
Total/NA	Analysis	VFA-IC		1	42700	12/04/11 06:59	KAC	TAL BUF

Client Sample ID: RU19-111711 Date Collected: 11/17/11 12:15 Date Received: 11/18/11 09:30

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		1	42381	12/01/11 02:25	LH	TAL BUF
Total/NA	Analysis	8260B	DL	10	42419	12/01/11 13:55	LH	TAL BUF
Total/NA	Analysis	RSK-175		10	41469	11/22/11 12:20	JM	TAL BUF
Total/NA	Analysis	RSK-175		1	41469	11/22/11 11:03	JM	TAL BUF
Dissolved	Prep	3005A			41171	11/21/11 09:15	SS	TAL BUF
Dissolved	Analysis	6010B		1	41538	11/21/11 22:45	JRK	TAL BUF
Dissolved	Analysis	6010B		1	41660	11/22/11 17:15	JRK	TAL BUF

Lab Sample ID: 480-12940-2

Lab Sample ID: 480-12940-3

Matrix: Water

Matrix: Water

Lab Sample ID: 480-12940-3 Matrix: Water

Client Sample ID: RU19-111711 Date Collected: 11/17/11 12:15

Date Received: 11/18/11 09:30

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Dissolved	Prep	7470A			41702	11/23/11 11:20	MM	TAL BUF
Dissolved	Analysis	7470A		1	41761	11/23/11 15:28	MM	TAL BUF
Total/NA	Analysis	SM 5310D		1	41694	11/22/11 20:28	KAC	TAL BUF
Total/NA	Analysis	300.0		1	42462	12/02/11 05:07	KAC	TAL BUF
Total/NA	Analysis	353.2		1	42696	12/02/11 14:34	JR	TAL BUF
Total/NA	Analysis	VFA-IC		1	42700	12/04/11 07:28	KAC	TAL BUF

Client Sample ID: RU8-111711 Date Collected: 11/17/11 14:30 Date Received: 11/18/11 09:30

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		1	42381	12/01/11 02:49	LH	TAL BUF
Total/NA	Analysis	8260B	DL	5	42419	12/01/11 14:19	LH	TAL BUF
Total/NA	Analysis	RSK-175		1	41469	11/22/11 11:20	JM	TAL BUF
Dissolved	Prep	3005A			41171	11/21/11 09:15	SS	TAL BUF
Dissolved	Analysis	6010B		1	41538	11/21/11 23:00	JRK	TAL BUF
Dissolved	Analysis	6010B		1	41660	11/22/11 17:27	JRK	TAL BUF
Dissolved	Prep	7470A			41702	11/23/11 11:20	MM	TAL BUF
Dissolved	Analysis	7470A		1	41761	11/23/11 15:29	MM	TAL BUF
Total/NA	Analysis	SM 5310D		1	41694	11/22/11 20:48	KAC	TAL BUF
Total/NA	Analysis	300.0		1	42462	12/02/11 05:17	KAC	TAL BUF
Total/NA	Analysis	353.2		1	42696	12/02/11 14:35	JR	TAL BUF
Total/NA	Analysis	VFA-IC		1	42700	12/04/11 07:57	KAC	TAL BUF

Client Sample ID: RU21-111711 Date Collected: 11/17/11 15:30 Date Received: 11/18/11 09:30

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		1	42381	12/01/11 03:12	LH	TAL BUF
Total/NA	Analysis	8260B	DL	25	42419	12/01/11 14:42	LH	TAL BUF
Total/NA	Analysis	RSK-175		10	41469	11/22/11 13:11	JM	TAL BUF
Total/NA	Analysis	RSK-175		1	41469	11/22/11 11:37	JM	TAL BUF
Dissolved	Prep	3005A			41171	11/21/11 09:15	SS	TAL BUF
Dissolved	Analysis	6010B		1	41538	11/21/11 23:02	JRK	TAL BUF
Dissolved	Analysis	6010B		1	41660	11/22/11 17:29	JRK	TAL BUF
Dissolved	Prep	7470A			41702	11/23/11 11:20	MM	TAL BUF
Dissolved	Analysis	7470A		1	41761	11/23/11 15:31	MM	TAL BUF
Total/NA	Analysis	SM 5310D		1	41694	11/22/11 21:47	KAC	TAL BUF
Total/NA	Analysis	300.0		1	42464	12/02/11 06:08	KAC	TAL BUF
Total/NA	Analysis	353.2		1	42696	12/02/11 14:36	JR	TAL BUF

5 6 7 8 9 10 11 12 13

Lab Sample ID: 480-12940-4 Matrix: Water

Lab Sample ID: 480-12940-5

Matrix: Water

Lab Sample ID: 480-12940-6

Lab Sample ID: 480-12940-7

Lab Sample ID: 480-12940-8

Matrix: Water

Matrix: Water

Matrix: Water

Matrix: Water

1 2 3 4 5 6 7 8 9 10 11 11

Lab Sample ID: 480-12940-5

Client Sample ID: RU21-111711 Date Collected: 11/17/11 15:30 Date Received: 11/18/11 09:30

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	VFA-IC		1	42700	12/04/11 08:26	KAC	TAL BUF

Client Sample ID: DUP-111711 Date Collected: 11/17/11 11:30 Date Received: 11/18/11 09:30

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		1	42381	12/01/11 03:35	LH	TAL BUF
Total/NA	Analysis	RSK-175		1	41469	11/22/11 11:54	JM	TAL BUF
Dissolved	Prep	3005A			41171	11/21/11 09:15	SS	TAL BUF
Dissolved	Analysis	6010B		1	41538	11/21/11 23:04	JRK	TAL BUF
Dissolved	Analysis	6010B		1	41660	11/22/11 17:31	JRK	TAL BUF
Dissolved	Prep	7470A			41702	11/23/11 11:20	MM	TAL BUF
Dissolved	Analysis	7470A		1	41761	11/23/11 15:33	MM	TAL BUF
Total/NA	Analysis	SM 5310D		1	41694	11/22/11 22:07	KAC	TAL BUF
Total/NA	Analysis	300.0		1	42464	12/02/11 06:18	KAC	TAL BUF
Total/NA	Analysis	353.2		1	42696	12/02/11 14:37	JR	TAL BUF
Total/NA	Analysis	VFA-IC		1	42700	12/04/11 08:55	KAC	TAL BUF

Client Sample ID: RB-111711

Date Collected: 11/17/11 16:30

Date Received: 11/18/11 09:30

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		1	42381	12/01/11 03:59	LH	TAL BUF

Client Sample ID: TRIP BLANK

Date Collected: 11/17/11 00:00

Date Received: 11/18/11 09:30

_	Batch	Batch		Dilution	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		1	42381	12/01/11 04:22	LH	TAL BUF

Laboratory References:

TAL BUF = TestAmerica Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

Certification Summary

Client: Camp Dresser & McKee Inc Project/Site: Olean Pilot Study

5
8
9
11
13

LaboratoryArkonsyProgramEPA RegionCertification IDTestAmerica BuffaloArkanasaState Program66868TestAmerica BuffaloCalifomiaNELAC991169CATestAmerica BuffaloConnecticutState Program188878TestAmerica BuffaloGeorgiaGeorgia EPD4N/A88TestAmerica BuffaloGeorgiaState Program4956956TestAmerica BuffaloIlnoisNELAC500325 / 20003TestAmerica BuffaloIlnoisNELAC78100325 / 20003TestAmerica BuffaloKanasaNELAC78100326 / 20003TestAmerica BuffaloKanasaNELAC6020311TestAmerica BuffaloKentuckyState Program390029TestAmerica BuffaloLouisanaNELAC602031TestAmerica BuffaloMarylandState Program39937TestAmerica BuffaloMarylandState Program39937TestAmerica BuffaloMarylandState Program39937TestAmerica BuffaloMonesotaNELAC10459937TestAmerica BuffaloMonesotaNELAC20028TestAmerica BuffaloNew HampshireNELAC20028TestAmerica BuffaloNew HampshireNELAC20028TestAmerica BuffaloNew HampshireNELAC20028 <th></th> <th></th> <th></th> <th></th> <th></th>					
TestAmerica BuffaloAtkansasState Program688-0686TestAmerica BuffaloCaliforniaNELAC91169CATestAmerica BuffaloConnecticutState Program1PH-0568TestAmerica BuffaloGeorgiaGeorgia EPD4N/ATestAmerica BuffaloGeorgiaState Program4956TestAmerica BuffaloIllinoisNELAC5100325 / 20003TestAmerica BuffaloIllinoisNELAC5100325 / 20003TestAmerica BuffaloKansasNELAC7E-10187TestAmerica BuffaloKansasNELAC300TestAmerica BuffaloKentuckyKentucky UST430TestAmerica BuffaloKentuckyState Program490029TestAmerica BuffaloLouisianaNELAC602031TestAmerica BuffaloMareState Program3294TestAmerica BuffaloMarylandState Program3937TestAmerica BuffaloMarylandState Program59337TestAmerica BuffaloMarylandState Program5937TestAmerica BuffaloMinesotaNELAC168-00281TestAmerica BuffaloNew HampshireNELAC168-00281TestAmerica BuffaloNew HampshireNELAC2NY455TestAmerica BuffaloNew HampshireNELAC168-00281TestAmerica BuffaloNew HampshireNELAC36-00281 <th>Laboratory</th> <th>Authority</th> <th>Program</th> <th>EPA Region</th> <th>Certification ID</th>	Laboratory	Authority	Program	EPA Region	Certification ID
TestAmerica BuffaloCaliforniaNELAC91169CATestAmerica BuffaloConnecticutState Program1PH-0568TestAmerica BuffaloGeorgiaGeorgia EPD4N/ATestAmerica BuffaloGeorgiaState Program4956TestAmerica BuffaloGeorgiaState Program4956TestAmerica BuffaloIllinoisNELAC5100325 / 20003TestAmerica BuffaloIllinoisNELAC7E-10187TestAmerica BuffaloKansasNELAC7E-10187TestAmerica BuffaloKentuckyState Program490029TestAmerica BuffaloKentuckyState Program490029TestAmerica BuffaloKentuckyState Program1NY044TestAmerica BuffaloMaineState Program3294TestAmerica BuffaloMarsachusettsState Program1M-NY044TestAmerica BuffaloMichiganState Program59937TestAmerica BuffaloMichiganState Program5936-99-337TestAmerica BuffaloMichiganNELAC168-00281TestAmerica BuffaloNew HampshireNELAC210026TestAmerica BuffaloNew HampshireNELAC210026TestAmerica BuffaloNew HampshireNELAC36-00281TestAmerica BuffaloNew HampshireNELAC210026TestAmerica BuffaloNew HampshireNELAC <td< td=""><td>TestAmerica Buffalo</td><td>Arkansas</td><td>State Program</td><td>6</td><td>88-0686</td></td<>	TestAmerica Buffalo	Arkansas	State Program	6	88-0686
TestAmerica BuffaloConnecticutState Program1PH-0568TestAmerica BuffaloGeorgiaGeorgiaGeorgiaBa7672TestAmerica BuffaloGeorgiaGeorgiaGeorgiaNATestAmerica BuffaloGeorgiaState Program4956TestAmerica BuffalolilnoisNELAC5100325 / 200003TestAmerica BuffalolowaState Program7374TestAmerica BuffaloKentuckyKentucky UST430TestAmerica BuffaloKentuckyState Program490029TestAmerica BuffaloKentuckyState Program490029TestAmerica BuffaloLouisianaNELAC602031TestAmerica BuffaloMaineState Program1MNV044TestAmerica BuffaloMarylandState Program3294TestAmerica BuffaloMichiganState Program59937TestAmerica BuffaloMichiganState Program59937TestAmerica BuffaloMichiganState Program690281TestAmerica BuffaloNew HampshireNELAC188-00281TestAmerica BuffaloNew HampshireNELAC19026TestAmerica BuffaloNew YorkNELAC210026TestAmerica BuffaloNew YorkNELAC19421TestAmerica BuffaloNew YorkNELAC19421TestAmerica BuffaloNew YorkNELAC19421<	TestAmerica Buffalo	California	NELAC	9	1169CA
TestAmerica BuffaloFloridaNELAC4E772TestAmerica BuffaloGeorgiaGeorgia (EPD)4N/ATestAmerica BuffaloGeorgiaState Program4966TestAmerica BuffaloIllinoisNELAC5100325 / 20003TestAmerica BuffaloIllinoisNELAC5100325 / 20003TestAmerica BuffaloKansasNELAC7E-10187TestAmerica BuffaloKentuckyKentucky UST430TestAmerica BuffaloKentuckyState Program490029TestAmerica BuffaloMaineState Program490029TestAmerica BuffaloMaineState Program1NY0044TestAmerica BuffaloMarylandState Program3294TestAmerica BuffaloMarylandState Program39937TestAmerica BuffaloMinesotaNELAC59937TestAmerica BuffaloMinesotaNELAC12337TestAmerica BuffaloMinesotaNELAC12337TestAmerica BuffaloNew HampshireNELAC100269TestAmerica BuffaloNew JerseyNELAC2NY455TestAmerica BuffaloNew JerseyNELAC10026TestAmerica BuffaloNew JerseyNELAC10026TestAmerica BuffaloNew JerseyNELAC2NY455TestAmerica BuffaloNew JerseyNELAC10026TestAmerica Buffalo <td< td=""><td>TestAmerica Buffalo</td><td>Connecticut</td><td>State Program</td><td>1</td><td>PH-0568</td></td<>	TestAmerica Buffalo	Connecticut	State Program	1	PH-0568
TestAmerica BuffaloGeorgiaGeorgia EPD4N/ATestAmerica BuffaloGeorgiaState Program4956TestAmerica BuffalolinoisNELAC5100325 / 20003TestAmerica BuffalolowaState Program7374TestAmerica BuffaloKonasaNELAC7E-10187TestAmerica BuffaloKentuckyKentucky UST430TestAmerica BuffaloKentuckyState Program490029TestAmerica BuffaloLouisianaNELAC602031TestAmerica BuffaloMarieState Program3294TestAmerica BuffaloMarylandState Program3294TestAmerica BuffaloMarylandState Program59937TestAmerica BuffaloMichiganState Program59937TestAmerica BuffaloMinesotaNELAC12337TestAmerica BuffaloNew HampshireNELAC12337TestAmerica BuffaloNew HampshireNELAC210026TestAmerica BuffaloNew JerseyNELAC210026TestAmerica BuffaloNew JerseyNELAC38e-0281TestAmerica BuffaloNew JerseyNELAC38e-0281TestAmerica BuffaloNew JerseyNELAC210026TestAmerica BuffaloNew JerseyNELAC38e-0281TestAmerica BuffaloNew JerseyNELAC38e-0281TestAmerica Buffa	TestAmerica Buffalo	Florida	NELAC	4	E87672
TestAmerica BuffaloGeorgiaState Program4956TestAmerica BuffaloIllinoisNELAC5100325 / 20003TestAmerica BuffaloIowaState Program7374TestAmerica BuffaloKanasaNELAC7E-10187TestAmerica BuffaloKentuckyKentucky UST430TestAmerica BuffaloKentuckyState Program490029TestAmerica BuffaloLouisianaNELAC602031TestAmerica BuffaloMaineState Program3294TestAmerica BuffaloMarylandState Program3294TestAmerica BuffaloMarylandState Program59937TestAmerica BuffaloMiniganState Program5036-999-337TestAmerica BuffaloMiniganNELAC12337TestAmerica BuffaloNew HampshireNELAC12337TestAmerica BuffaloNew HampshireNELAC1237TestAmerica BuffaloNew HampshireNELAC2NY455TestAmerica BuffaloNew HampshireNELAC1242TestAmerica BuffaloNew YorkNELAC36e-0221TestAmerica BuffaloNew YorkNELAC2NY455TestAmerica BuffaloNew YorkNELAC36e-0221TestAmerica BuffaloNetotaState Program69421TestAmerica BuffaloOregonNELAC36e-0221TestAmerica Buffal	TestAmerica Buffalo	Georgia	Georgia EPD	4	N/A
TestAmerica BuffaloIllinoisNELAC5100325 / 200003TestAmerica BuffaloIowaState Program7374TestAmerica BuffaloKansasNELAC7E-10187TestAmerica BuffaloKentuckyKentucky UST430TestAmerica BuffaloKentuckyState Program490029TestAmerica BuffaloLouisianaNELAC602031TestAmerica BuffaloMaineState Program3294TestAmerica BuffaloMarylandState Program3294TestAmerica BuffaloMassachusettsState Program59937TestAmerica BuffaloMichiganState Program59937TestAmerica BuffaloMichiganState Program59937TestAmerica BuffaloNew HampshireNELAC12337TestAmerica BuffaloNew HampshireNELAC168-00281TestAmerica BuffaloNew HampshireNELAC2NY455TestAmerica BuffaloNew HampshireNELAC2NY455TestAmerica BuffaloNew HampshireNELAC1002610026FestAmerica BuffaloNew HampshireNELAC36TestAmerica BuffaloNew HampshireNELAC2NY455TestAmerica BuffaloNew HampshireNELAC1002610026FestAmerica BuffaloOklahomaState Program69421TestAmerica BuffaloOregonNELAC368-00281 </td <td>TestAmerica Buffalo</td> <td>Georgia</td> <td>State Program</td> <td>4</td> <td>956</td>	TestAmerica Buffalo	Georgia	State Program	4	956
TestAmerica BuffaloIowaState Program7374TestAmerica BuffaloKansasNELAC7E-10187TestAmerica BuffaloKentuckyState Program490029TestAmerica BuffaloLouisianaNELAC602031TestAmerica BuffaloMaineState Program3294TestAmerica BuffaloMarylandState Program3294TestAmerica BuffaloMarylandState Program39937TestAmerica BuffaloMichiganState Program59937TestAmerica BuffaloMichiganState Program59937TestAmerica BuffaloMichiganNELAC12337TestAmerica BuffaloNew HampshireNELAC168-00281TestAmerica BuffaloNew HampshireNELAC2NY455TestAmerica BuffaloNew YorkNELAC2NY455TestAmerica BuffaloNew YorkNELAC1002610026TestAmerica BuffaloNew YorkNELAC368-00281TestAmerica BuffaloNew YorkNELAC368-00281TestAmerica BuffaloNethotaState Program69421TestAmerica BuffaloNethotaState Program69421TestAmerica BuffaloOregonNELAC368-00281TestAmerica BuffaloOregonNELAC368-00281TestAmerica BuffaloNethotaState Program69421TestAmerica Buf	TestAmerica Buffalo	Illinois	NELAC	5	100325 / 200003
TestAmerica BuffaloKansasNELAC7E-10187TestAmerica BuffaloKentuckyKentucky UST4300TestAmerica BuffaloKentuckyState Program490029TestAmerica BuffaloLouisianaNELAC602031TestAmerica BuffaloMaineState Program1NY0044TestAmerica BuffaloMarylandState Program3294TestAmerica BuffaloMassachusettsState Program59337TestAmerica BuffaloMineostaNELAC5036-999-337TestAmerica BuffaloNew HampshireNELAC12337TestAmerica BuffaloNew HampshireNELAC12337TestAmerica BuffaloNew HampshireNELAC2NY455TestAmerica BuffaloNew HampshireNELAC210026TestAmerica BuffaloNew JerseyNELAC210026TestAmerica BuffaloNew JorkNELAC210026TestAmerica BuffaloNew JorkNELAC34214TestAmerica BuffaloOklahomaState Program69421TestAmerica BuffaloOklahomaState Program69421TestAmerica BuffaloOklahomaState Program69421TestAmerica BuffaloPennsylvaniaNELAC368-00281TestAmerica BuffaloOklahomaState Program69421TestAmerica BuffaloTennesseeState Program41104704412-08-	TestAmerica Buffalo	Iowa	State Program	7	374
TestAmerica BuffaloKentuckyKentucky UST430TestAmerica BuffaloKentuckyState Program490029TestAmerica BuffaloLouisianaNELAC602031TestAmerica BuffaloMaineState Program1NY0044TestAmerica BuffaloMarylandState Program3294TestAmerica BuffaloMassachusettsState Program1M-NY044TestAmerica BuffaloMichiganState Program59937TestAmerica BuffaloMinnesotaNELAC5036-999-337TestAmerica BuffaloNew HampshireNELAC12337TestAmerica BuffaloNew HampshireNELAC168-00281TestAmerica BuffaloNew JerseyNELAC210026TestAmerica BuffaloNew YorkNELAC210026TestAmerica BuffaloNew YorkNELAC368-00281TestAmerica BuffaloNew YorkNELAC210026TestAmerica BuffaloNorth DakotaState Program69421TestAmerica BuffaloOregonNELAC368-00281TestAmerica BuffaloOregonNELAC368-00281TestAmerica BuffaloOregonNELAC368-00281TestAmerica BuffaloOregonNELAC368-00281TestAmerica BuffaloOregonNELAC368-00281TestAmerica BuffaloTennesseeState Program4TN02970	TestAmerica Buffalo	Kansas	NELAC	7	E-10187
TestAmerica BuffaloKentuckyState Program490029TestAmerica BuffaloLouisianaNELAC602031TestAmerica BuffaloMaineState Program1NY0044TestAmerica BuffaloMarylandState Program3294TestAmerica BuffaloMassachusettsState Program1M-NY044TestAmerica BuffaloMinesotaNELAC5036-999-337TestAmerica BuffaloMinesotaNELAC12337TestAmerica BuffaloNew HampshireNELAC168-00281TestAmerica BuffaloNew HampshireNELAC2NY455TestAmerica BuffaloNew JerseyNELAC2NY455TestAmerica BuffaloNew JerseyNELAC210026TestAmerica BuffaloNew YorkNELAC38421TestAmerica BuffaloOregonNELAC100290TestAmerica BuffaloOregonNELAC10026TestAmerica BuffaloOregonNELAC368-00281TestAmerica BuffaloOregonNELAC368-00281TestAmerica BuffaloOregonNELAC368-00281TestAmerica BuffaloOregonNELAC368-00281TestAmerica BuffaloOregonNELAC368-00281TestAmerica BuffaloOregonNELAC368-00281TestAmerica BuffaloUsbANELAC368-00281TestAmerica BuffaloUsbA	TestAmerica Buffalo	Kentucky	Kentucky UST	4	30
TestAmerica BuffaloLouisianaNELAC602031TestAmerica BuffaloMaineState Program1NY0044TestAmerica BuffaloMarylandState Program3294TestAmerica BuffaloMassachusettsState Program3294TestAmerica BuffaloMichiganState Program59937TestAmerica BuffaloMinnesotaNELAC5036-999-337TestAmerica BuffaloNew HampshireNELAC12337TestAmerica BuffaloNew HampshireNELAC168-00281TestAmerica BuffaloNew HampshireNELAC2NY455TestAmerica BuffaloNew YorkNELAC210026TestAmerica BuffaloNew YorkNELAC210026TestAmerica BuffaloNorth DakotaState Program69421TestAmerica BuffaloOregonNELAC10NY20003TestAmerica BuffaloOregonNELAC10NY20003TestAmerica BuffaloPennsylvaniaNELAC368-00281TestAmerica BuffaloOregonNELAC10NY20003TestAmerica BuffaloOregonNELAC10NY20003TestAmerica BuffaloVisiniaNELAC6T104704412-08-TXTestAmerica BuffaloVisiniaNELAC6T104704412-08-TXTestAmerica BuffaloVisiniaNELAC6T104704412-08-TXTestAmerica BuffaloVisiniaNELAC6T104704412-08-T	TestAmerica Buffalo	Kentucky	State Program	4	90029
TestAmerica BuffaloMaineState Program1NY0044TestAmerica BuffaloMarylandState Program3294TestAmerica BuffaloMassachusettsState Program1M-NY044TestAmerica BuffaloMichiganState Program59937TestAmerica BuffaloMinnesotaNELAC5036-999-337TestAmerica BuffaloNew HampshireNELAC12337TestAmerica BuffaloNew HampshireNELAC168-00281TestAmerica BuffaloNew HampshireNELAC210026TestAmerica BuffaloNew JerseyNELAC210026TestAmerica BuffaloNew VorkNELAC210026TestAmerica BuffaloNew YorkNELAC210026TestAmerica BuffaloNorth DakotaState Program69421TestAmerica BuffaloOregonNELAC10NY200003TestAmerica BuffaloOregonNELAC368-00281TestAmerica BuffaloTennesseeState Program69421TestAmerica BuffaloTennesseeState Program69421TestAmerica BuffaloTennesseeState Program4TN02970TestAmerica BuffaloUSDAUSDAUSDAP330-08-00242TestAmerica BuffaloUSDAUSDAState Program3278TestAmerica BuffaloVirginiaNELAC Secondary AB3460185TestAmerica BuffaloVirginiaState Pro	TestAmerica Buffalo	Louisiana	NELAC	6	02031
TestAmerica BuffaloMarylandState Program3294TestAmerica BuffaloMassachusettsState Program1M-NY044TestAmerica BuffaloMichiganState Program59937TestAmerica BuffaloMinesotaNELAC5036-999-337TestAmerica BuffaloNew HampshireNELAC12337TestAmerica BuffaloNew HampshireNELAC168-00281TestAmerica BuffaloNew JerseyNELAC2NY455TestAmerica BuffaloNew JerseyNELAC210026TestAmerica BuffaloNew JerseyNELAC210026TestAmerica BuffaloNew JerseyNELAC210026TestAmerica BuffaloNorth DakotaState Program8R-176TestAmerica BuffaloOregonNELAC10NY20003TestAmerica BuffaloOregonNELAC10NY20003TestAmerica BuffaloPennsylvaniaNELAC368-00281TestAmerica BuffaloTennesseeState Program4TN02970TestAmerica BuffaloTexasNELAC368-00281TestAmerica BuffaloTexasNELAC368-00281TestAmerica BuffaloVirginiaNELAC368-00281TestAmerica BuffaloTexasNELAC368-00281TestAmerica BuffaloVirginiaNELAC368-00281TestAmerica BuffaloVirginiaNELAC368-00281Tes	TestAmerica Buffalo	Maine	State Program	1	NY0044
TestAmerica BuffaloMassachusettsState Program1M-NY044TestAmerica BuffaloMichiganState Program59937TestAmerica BuffaloMinnesotaNELAC5036-999-337TestAmerica BuffaloNew HampshireNELAC12337TestAmerica BuffaloNew HampshireNELAC168-00281TestAmerica BuffaloNew HampshireNELAC2NY455TestAmerica BuffaloNew JerseyNELAC210026TestAmerica BuffaloNew YorkNELAC210026TestAmerica BuffaloNorth DakotaState Program8R-176TestAmerica BuffaloOklahomaState Program69421TestAmerica BuffaloOregonNELAC10NY20003TestAmerica BuffaloPennsylvaniaNELAC368-00281TestAmerica BuffaloPennsylvaniaNELAC368-00281TestAmerica BuffaloPennsylvaniaNELAC386-00281TestAmerica BuffaloVisonaNELAC386-00281TestAmerica BuffaloUSDATiot704120-8-TXP330-08-00242TestAmerica BuffaloVirginiaNELAC Secondary AB3460185TestAmerica BuffaloVirginiaState Program3278TestAmerica BuffaloVirginiaState Program3278TestAmerica BuffaloVirginiaState Program3998310390	TestAmerica Buffalo	Maryland	State Program	3	294
TestAmerica BuffaloMichiganState Program59937TestAmerica BuffaloMinnesotaNELAC5036-999-337TestAmerica BuffaloNew HampshireNELAC12337TestAmerica BuffaloNew HampshireNELAC168-00281TestAmerica BuffaloNew JerseyNELAC2NY455TestAmerica BuffaloNew YorkNELAC210026TestAmerica BuffaloNorth DakotaState Program8R-176TestAmerica BuffaloOklahomaState Program69421TestAmerica BuffaloOklahomaState Program69421TestAmerica BuffaloOregonNELAC10NY20003TestAmerica BuffaloPennsylvaniaNELAC368-00281TestAmerica BuffaloTennesseeState Program4TN02970TestAmerica BuffaloTennesseeState Program4TN02970TestAmerica BuffaloTexasNELAC6T104704412-08-TXTestAmerica BuffaloUSDAUSDAP330-08-00242TestAmerica BuffaloVirginiaNELAC Secondary AB3460185TestAmerica BuffaloVirginiaState Program3278TestAmerica BuffaloWashingtonState Program10C1677TestAmerica BuffaloWashingtonState Program5998310390	TestAmerica Buffalo	Massachusetts	State Program	1	M-NY044
TestAmerica BuffaloMinnesotaNELAC5036-999-337TestAmerica BuffaloNew HampshireNELAC12337TestAmerica BuffaloNew HampshireNELAC168-00281TestAmerica BuffaloNew JerseyNELAC2NY455TestAmerica BuffaloNew YorkNELAC210026TestAmerica BuffaloNorth DakotaState Program8R-176TestAmerica BuffaloOklahomaState Program69421TestAmerica BuffaloOregonNELAC10NY20003TestAmerica BuffaloOregonNELAC368-00281TestAmerica BuffaloTennesseeState Program4TN02970FestAmerica BuffaloTennesseeNELAC6T104704412-08-TXFestAmerica BuffaloUSDAUSDAP330-08-00242P330-08-00242FestAmerica BuffaloVirginiaNELAC secondary AB3460185FestAmerica BuffaloVirginiaState Program3278FestAmerica BuffaloVirginiaState Program10C1677FestAmerica BuffaloWashingtonState Program5998310390	TestAmerica Buffalo	Michigan	State Program	5	9937
TestAmerica BuffaloNew HampshireNELAC12337TestAmerica BuffaloNew HampshireNELAC168-00281TestAmerica BuffaloNew JerseyNELAC2NY455TestAmerica BuffaloNew YorkNELAC210026TestAmerica BuffaloNorth DakotaState Program8R-176TestAmerica BuffaloOklahomaState Program69421TestAmerica BuffaloOregonNELAC10NY200003TestAmerica BuffaloOregonNELAC368-00281TestAmerica BuffaloPennsylvaniaNELAC368-00281TestAmerica BuffaloTennesseeState Program4TN02970TestAmerica BuffaloUSDAUSDAP330-08-00242P330-08-00242TestAmerica BuffaloVirginiaNELAC Secondary AB3460185TestAmerica BuffaloVirginiaState Program3278TestAmerica BuffaloWashingtonState Program10C1677TestAmerica BuffaloWashingtonState Program5998310390	TestAmerica Buffalo	Minnesota	NELAC	5	036-999-337
TestAmerica BuffaloNew HampshireNELAC168-00281TestAmerica BuffaloNew JerseyNELAC2NY455TestAmerica BuffaloNew YorkNELAC210026TestAmerica BuffaloNorth DakotaState Program8R-176TestAmerica BuffaloOklahomaState Program69421TestAmerica BuffaloOregonNELAC10NY200003TestAmerica BuffaloPennsylvaniaNELAC368-00281TestAmerica BuffaloPennsylvaniaNELAC368-00281TestAmerica BuffaloTennesseeState Program4TN02970TestAmerica BuffaloUSDAUSDAP330-08-002427930-08-00242TestAmerica BuffaloVirginiaNELAC Secondary AB3460185TestAmerica BuffaloVirginiaState Program3278TestAmerica BuffaloWashingtonState Program10C1677TestAmerica BuffaloWashingtonState Program5998310390	TestAmerica Buffalo	New Hampshire	NELAC	1	2337
TestAmerica BuffaloNew JerseyNELAC2NY455TestAmerica BuffaloNew YorkNELAC210026TestAmerica BuffaloNorth DakotaState Program8R-176TestAmerica BuffaloOklahomaState Program69421TestAmerica BuffaloOregonNELAC10NY200003TestAmerica BuffaloPennsylvaniaNELAC368-00281TestAmerica BuffaloTennesseeState Program4TN02970TestAmerica BuffaloTexasNELAC6T104704412-08-TXTestAmerica BuffaloUSDAUSDAP330-08-00242TestAmerica BuffaloVirginiaNELAC Secondary AB3460185TestAmerica BuffaloVirginiaState Program3278TestAmerica BuffaloWashingtonState Program10C1677FestAmerica BuffaloWisconsinState Program5998310390	TestAmerica Buffalo	New Hampshire	NELAC	1	68-00281
TestAmerica BuffaloNew YorkNELAC210026TestAmerica BuffaloNorth DakotaState Program8R-176TestAmerica BuffaloOklahomaState Program69421TestAmerica BuffaloOregonNELAC10NY200003TestAmerica BuffaloPennsylvaniaNELAC368-00281TestAmerica BuffaloTennesseeState Program4TN02970TestAmerica BuffaloTexasNELAC61104704412-08-TXTestAmerica BuffaloUSDAUSDAP30-08-00242TestAmerica BuffaloVirginiaNELAC Secondary AB3460185TestAmerica BuffaloVirginiaState Program10C1677FestAmerica BuffaloWashingtonState Program5998310390	TestAmerica Buffalo	New Jersey	NELAC	2	NY455
TestAmerica BuffaloNorth DakotaState Program8R-176TestAmerica BuffaloOklahomaState Program69421TestAmerica BuffaloOregonNELAC10NY200003TestAmerica BuffaloPennsylvaniaNELAC368-00281TestAmerica BuffaloTennesseeState Program4TN02970TestAmerica BuffaloTexasNELAC6T104704412-08-TXTestAmerica BuffaloUSDAUSDAP330-08-00242TestAmerica BuffaloVirginiaNELAC Secondary AB3460185TestAmerica BuffaloVirginiaState Program10C1677TestAmerica BuffaloWashingtonState Program5998310390	TestAmerica Buffalo	New York	NELAC	2	10026
TestAmerica BuffaloOklahomaState Program69421TestAmerica BuffaloOregonNELAC10NY200003TestAmerica BuffaloPennsylvaniaNELAC368-00281TestAmerica BuffaloTennesseeState Program4TN02970TestAmerica BuffaloTexasNELAC6T104704412-08-TXTestAmerica BuffaloUSDAUSDAP330-08-00242TestAmerica BuffaloVirginiaNELAC Secondary AB3460185TestAmerica BuffaloVirginiaState Program3278TestAmerica BuffaloWashingtonState Program10C1677FestAmerica BuffaloWisconsinState Program5998310390	TestAmerica Buffalo	North Dakota	State Program	8	R-176
TestAmerica BuffaloOregonNELAC10NY200003TestAmerica BuffaloPennsylvaniaNELAC368-00281TestAmerica BuffaloTennesseeState Program4TN02970TestAmerica BuffaloTexasNELAC6T104704412-08-TXTestAmerica BuffaloUSDAUSDAP330-08-00242TestAmerica BuffaloVirginiaNELAC Secondary AB3460185TestAmerica BuffaloVirginiaState Program3278TestAmerica BuffaloWashingtonState Program10C1677FestAmerica BuffaloWisconsinState Program5998310390	TestAmerica Buffalo	Oklahoma	State Program	6	9421
TestAmerica BuffaloPennsylvaniaNELAC368-00281TestAmerica BuffaloTennesseeState Program4TN02970TestAmerica BuffaloTexasNELAC6T104704412-08-TXTestAmerica BuffaloUSDAUSDAP330-08-00242TestAmerica BuffaloVirginiaNELAC Secondary AB3460185TestAmerica BuffaloVirginiaState Program3278TestAmerica BuffaloWashingtonState Program10C1677FestAmerica BuffaloWisconsinState Program5998310390	TestAmerica Buffalo	Oregon	NELAC	10	NY200003
TestAmerica BuffaloTennesseeState Program4TN02970TestAmerica BuffaloTexasNELAC6T104704412-08-TXFestAmerica BuffaloUSDAUSDAP330-08-00242TestAmerica BuffaloVirginiaNELAC Secondary AB3460185FestAmerica BuffaloVirginiaState Program3278FestAmerica BuffaloWashingtonState Program10C1677FestAmerica BuffaloWisconsinState Program5998310390	TestAmerica Buffalo	Pennsylvania	NELAC	3	68-00281
TestAmerica BuffaloTexasNELAC6T104704412-08-TXTestAmerica BuffaloUSDAUSDAP330-08-00242FestAmerica BuffaloVirginiaNELAC Secondary AB3460185TestAmerica BuffaloVirginiaState Program3278TestAmerica BuffaloWashingtonState Program10C1677FestAmerica BuffaloWisconsinState Program5998310390	TestAmerica Buffalo	Tennessee	State Program	4	TN02970
TestAmerica BuffaloUSDAP330-08-00242TestAmerica BuffaloVirginiaNELAC Secondary AB3460185TestAmerica BuffaloVirginiaState Program3278TestAmerica BuffaloWashingtonState Program10C1677FestAmerica BuffaloWisconsinState Program5998310390	TestAmerica Buffalo	Texas	NELAC	6	T104704412-08-TX
TestAmerica BuffaloVirginiaNELAC Secondary AB3460185TestAmerica BuffaloVirginiaState Program3278TestAmerica BuffaloWashingtonState Program10C1677FestAmerica BuffaloWisconsinState Program5998310390	TestAmerica Buffalo	USDA	USDA		P330-08-00242
TestAmerica BuffaloVirginiaState Program3278TestAmerica BuffaloWashingtonState Program10C1677FestAmerica BuffaloWisconsinState Program5998310390	TestAmerica Buffalo	Virginia	NELAC Secondary AB	3	460185
TestAmerica BuffaloWashingtonState Program10C1677FestAmerica BuffaloWisconsinState Program5998310390	TestAmerica Buffalo	Virginia	State Program	3	278
TestAmerica BuffaloWisconsinState Program5998310390	TestAmerica Buffalo	Washington	State Program	10	C1677
	TestAmerica Buffalo	Wisconsin	State Program	5	998310390

Accreditation may not be offered or required for all methods and analytes reported in this package. Please contact your project manager for the laboratory's current list of certified methods and analytes.

Client: Camp Dresser & McKee Inc Project/Site: Olean Pilot Study

lethod	Method Description	Protocol	Laboratory
260B	Volatile Organic Compounds (GC/MS)	SW846	TAL BUF
RSK-175	Dissolved Gases (GC)	RSK	TAL BUF
010B	Metals (ICP)	SW846	TAL BUF
470A	Mercury (CVAA)	SW846	TAL BUF
00.0	Anions, Ion Chromatography	MCAWW	TAL BUF
53.2	Nitrogen, Nitrate-Nitrite	MCAWW	TAL BUF
SM 5310D	Organic Carbon, Total (TOC)	SM	TAL BUF
/FA-IC	Volatile Fatty Acids, Ion Chromatography	TestAmerica SOP	TAL BUF

Protocol References:

MCAWW = "Methods For Chemical Analysis Of Water And Wastes", EPA-600/4-79-020, March 1983 And Subsequent Revisions.

RSK = Sample Prep And Calculations For Dissolved Gas Analysis In Water Samples Using A GC Headspace Equilibration Technique, RSKSOP-175, Rev. 0, 8/11/94, USEPA Research Lab

SM = "Standard Methods For The Examination Of Water And Wastewater",

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

TestAmerica SOP = TestAmerica, Inc., Standard Operating Procedure

Laboratory References:

TAL BUF = TestAmerica Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

Sample Summary

Client: Camp Dresser & McKee Inc Project/Site: Olean Pilot Study

TestAmerica Job ID: 480-12940-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
480-12940-1	RU20-111711	Water	11/17/11 09:50	11/18/11 09:30
480-12940-2	RU10-111711	Water	11/17/11 11:00	11/18/11 09:30
480-12940-3	RU19-111711	Water	11/17/11 12:15	11/18/11 09:30
480-12940-4	RU8-111711	Water	11/17/11 14:30	11/18/11 09:30
480-12940-5	RU21-111711	Water	11/17/11 15:30	11/18/11 09:30
480-12940-6	DUP-111711	Water	11/17/11 11:30	11/18/11 09:30
480-12940-7	RB-111711	Water	11/17/11 16:30	11/18/11 09:30
480-12940-8	TRIP BLANK	Water	11/17/11 00:00	11/18/11 09:30

TestAmerica Buffalo 12/6/2011

TestAmerica Bulfalo 10 Hazeheood Dive Amheris IV 14228-2298		Chain o	of Custody Record	(Y)	TestAmerica
	Same A12 1 5 11 1		an Ar Fedmann Pereu	imer Trackag No(s).	COC No 4601 5073 516 5
	Protection 1 and 1				
Meil Smith	7373 871 51	3	gy.gray-erdmann@testamencainc.com		raps. Page 1 b12
Campany. Camp Dresser & McKee Inc			Analysia Reque	ested	Jobb #.
Aggress. 555 17th Street Suite 1100	Due Date Requestad				Preservation Codes:
Crty Denver	TAT Requested (days).			· mr	
Sele. 74 CO, 80202	324777045		14		D - NAME Acid P - MagOdis F - MarkSOM D - Na2505 F - MARCH D - NA2505
Phone 303-383-2447(Tel)	Point Purchase Order not requir				G. Arrondor R. Markaus G. Arrondor S. HISON M. Autoritic Acti T. T.S. Occurring the
Emait StriithNL @cclm.com	.1 CM		yod hoon hoon hoon boon	9J 02 09 "	I-kot U Acetyre V-DitValer V-MEXAA
MORENT MONTE FOR STUDY PLAT PLAT	Propet # 48005099		10 (70) 10	A1818	K-EDTA W-Ent4-5 L-EDA Z-OMeirleonechy)
** Oliter	-MOSS		dme8 seeten ou too ou too		Other
	s sample (c	Type Leven Type Leven Scomp, stringer	bit Fillend Fillend F	1.40167,801 1.40167,801	
Sample Identification	Sample Data Tima G	=qrab)			Special Instructions/Note:
P.J. 20-111-11	11-111 950	(-) Water			Metels Sculd Filters
R-0-11-11	0.01	Naler	XXXXXXX		
2014 -11711	1 25	Water	XXXXXXX		
1208-11171	1430	Water	XXXXXXX		
112-11-12 rd	10.5%	Water	XXXXXXXX		
Intrin - and	130	Water	X X X X X X X X		-7
11-11-27	4 162		× ×	-	
TTP BISK	+		¥		
		Solid			
		Solid			
		Solid			
Possible Hazard Identification	ison B TET Unknown	diological	Sample Disposal (A fee may be ass Return To Client Disp	essed if samples are retain possi By tab	red longer than 1 month) have For Months
Deliverable Requested: I, II, III, IV, Other (specify)			Special Instructions/OC Requirements		
Empty Kut Relited	Date:		Time:	Mothod of Snopment.	
	1000000 11 11 200	o CDA	r Feder ,	ракалите 🖉	Company
RePortsched by 1	Date:Tare:	Controliny	Har even of	DeterTime.	bggo Tra
Geingushed by	Delea Trae:	Company	Receved by		Company
Custody Seals Intact: Custody Seal No.: A Yes A No			Cooler Temperature(s) °C and Citizer Remain	× (2.7	
			1 12 13 14 14	7 8 9 1	1 2 3 4 5
			1 2 3 4		

Client: Camp Dresser & McKee Inc

Login Number: 12940 List Number: 1

Creator: Janish, Carl

Question	Answer	Comment
Radioactivity either was not measured or, if measured, is at or below background	True	
The cooler's custody seal, if present, is intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the sample IDs on the containers and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	True	
If necessary, staff have been informed of any short hold time or quick TAT needs	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Sampling Company provided.	True	CDM
Samples received within 48 hours of sampling.	True	
Samples requiring field filtration have been filtered in the field.	True	
Chlorine Residual checked.	N/A	

Job Number: 480-12940-1

List Source: TestAmerica Buffalo

Alcoa Site in Olean, New York Quantitative PCR Analytical Summary

December 12, 2011

Overview:

The objective of this project was to quantify the number of *Dehalococcoides sp.* (DHC) 16S rRNA gene copies and reductase functional genes (*tceA*, *vcrA*, and *bvcA* copies) contained in groundwater collected from the Alcoa Site in Olean, New York using quantitative polymerase chain reaction (QPCR). The client is CDM. Table 1 describes the sample matrix and the condition of the samples upon arrival to the analytical laboratory.

Sample ID	Matrix	Date Sampled	Condition Received	Volume Filtered (L)
RU20-111711	Groundwater	11/17/11	Bottle Intact, 4°C	0.5
RU10-111711	Groundwater	11/17/11	Bottle Intact, 4°C	0.5
RU19-111711	Groundwater	11/17/11	Bottle Intact, 4°C	0.5
RU8-111711	Groundwater	11/17/11	Bottle Intact, 4°C	0.35
RU21-111711	Groundwater	11/17/11	Bottle Intact, 4°C	0.5

Table 1. Description of samples and volume filtered for DNA extraction.

The samples arrived in good condition at 4 degrees C. Upon arrival, the sample groundwater was filtered. The filter was frozen for storage at -80°C until the DNA extraction was performed. Following DNA extraction, the sample was first subjected to polymerase chain reaction (PCR) using probes in order to verify that amplifiable DNA was present in the sample. The results of these studies are described in this report.

Methods:

DNA Extraction: For groundwater shipped to the laboratory, the groundwater volume indicated in Table 1 was filtered using a sterile 0.2-µm acetate filter. The filter was frozen at -80°C and then shattered. Next, the sample tube was amended with 2 mL of DNA-free water, vortexed vigorously for 5 minutes, and the liquid volume was partitioned into DNA extraction tubes. The DNA extraction was performed using the Bio101 DNA Extraction Kit according to the manufacturer's instructions. DNA product was cleaned with ethanol precipitation. Community DNA was eluted in 100 µL of 0.1x Tris HCL and stored at -20°C.

Detection of Dehalococcoides: The QPCR methods for assessing the 16S rRNA gene, and the reductase genes *tceA*, *bvcA*, and *vcrA*, are very sensitive in detecting specific DNA fragments. A mixed laboratory culture containing *Dehalococcoides* was used to obtain the quantitative standards used in these analyses. Plasmid DNA containing DNA inserts of targets 16S rRNA gene, *tceA*, *bvcA*, and *vcrA* from *Dehalococcoides* were purified and quantified fluorometrically. Based on the known size of the plasmid and insert, DNA concentrations were converted to insert copy numbers. A dilution series spanning seven orders of magnitude was generated using known concentrations of each plasmid. Amplification and

detection of the DNA was performed using a BIO-RAD Chromo4 Real Time Detector System. The acceptance criterion for the standard curve is a linear R^2 value of greater than 0.995.

TaqMan Protocol. The 16S rRNA gene, and reductase genes *tceA*, *bvcA*, and *vcrA*, QPCR reactions were performed using TaqMan chemistry. The Taqman probes for the 16S rRNA gene and for the *tceA* gene were synthesized using the FAM label on the 5-foot end and the BHQ quencher (Biosearch Technologies). For the *bvcA* gene probe, a Cy5 label is used on the 5-foot end and for the *vcrA* gene probe, a HEX label is used on the 5-foot end, both are coupled to the BHQ quencher. Reaction volumes of 25 μ L contained forward and reverse primers at a concentration of 700 nM, a probe at a concentrations of 200 nM, 1 x TaqMan Universal PCR Master Mix(Roche) and 5 μ L of sample DNA. The BIO-RAD Chromo 4 Real Time Detector System was used for all reactions. The settings for cycle number and reaction conditions used for all runs were 95°C for 10 minutes, and 45 cycles of 95°C for 15 seconds and 58°C for 1 minute. Standards and unknowns were run in triplicate to ensure reproducibility. Cycle thresholds (C_t) were set to minimize the standard deviation of standard curve triplicate C_t values, and also to obtain a standard curve slope as close to negative 3.5 as possible.

Amplification of Bacteria: For samples that did not amplify during QPCR reactions, universal PCR was used to amplify nearly full-length 16S rDNA genes from *Bacteria* in order to verify that amplifiable DNA was present. Each 25-μL PCR reaction includes a final reagent concentration of: 1X GoTaq Hot Start Green Master Mix (Promega), 0.25μM 8F and 0.25μM 1492R primers (Invitrogen), 1μL genomic DNA, and molecular-grade water (Promega). Each reaction was repeated using 5μL of genomic DNA with 20μL of PCR master mix and a third time with 1μL of genomic DNA, 1μL of 8F/1492R plasmid DNA as a matrix spike and 23μL of PCR master mix. Amplification was performed on a BIO-RAD DNA Engine Dyad and Disciple Peltier Thermal Cycler using the following regime: 94°C (5 min) followed by 40 cycles of 94°C (1 min), 53.5°C (1 min), and 72°C (1 min). The reaction was finished with an additional 7 minutes at 72°C. PCR products were examined in a 1.0% agarose gel stained with ethidium bromide to confirm specificity of the amplification reactions.

Results:

Table 2 summarizes the QPCR analysis of the samples. The DNA extraction negative control and all PCR negative controls did not amplify any product. In addition, all calibration control checks were within acceptable values.

Sample ID	DNA (ng/L ground water)	Univer sal PCR [#]	<i>Dehalococcoides</i> 16S rRNA (copy/L groundwater)	Dehalococcoides tceA (copy/L groundwater)	<i>Dehalococcoides</i> bvcA (copy/L groundwater)	Dehalococcoides vcrA (copy/L groundwater)
RU20-111711	294	+	7.15E+02* ± 8.72E+01	0.0 ±	1.23E+02* ± 4.40E+01	0.0 ±
RU10-111711	694	+	2.06E+03* ± 3.19E+02	0.0 ±	0.0 ±	0.0 ±
RU19-111711	346	+	7.30E+02* ± 2.32E+02	0.0 ±	0.0 ±	0.0 ±
RU8-111711	631	+	0.0 ±	0.0 ±	0.0 ±	0.0 ±
RU21-111711	360	+	0.0 ±	0.0 ±	0.0 ±	0.0 ±

Table 2. Results of molecular analyses for the samples.

*: indicates that the value presented is below the reporting limit

#: a '+' sign indicates that amplification of *Bacteria* was successful, and a '-' sign indicates that amplification was not successful, N/A: (not applicable) means the analysis wasn't performed.

The DNA concentration of the DNA extraction (in ng/L of groundwater) is reported as an indicator of relative biomass levels for the samples so that relative comparisons can be made. *Dehalococcoides* 16S was detected below the reporting limit in three samples RU20-111711, RU10-111711 and RU19-111711. The reductase gene bvcA was detected below the reporting limit for sample RU20-111711.

The data presented in this report are produced using lab-specific methods. All results are intended to be used as a screening tool and should not be used as definitive data. Users should verify the suitability of the data for their own specific purpose.

North Wind

NORTH WIND, INC. CHAIN-OF-CUSTODY RECORD

	Company Name:			Sampler:				Analys	es Reques	ted	Page /	of /
	G.	1		N	2.15	n.th		- 3			Date:	
	Address: 555	17th St	Stello	Phone: 3	3-383	2447 Fax:		3				
	City:			Email: 5	methal	Q chances	2	3			COC #:	
	State:	Zip:	2	Project Mana	ger: 1/21	S. H		5				
	Project Name:		2	Phone:	NES	Fax:		L L			Carrier/Airbil	#:
	O	ean						€ €				
	Project Location:	DIEGO NIY		Email:				と			Type, Volum	ie,
	Sample Number	Sample Location	Date	Time	Depth	Sample Preservative	Sample Matrix	Ã			and No. of Containers	Remarks/Special Instructions:
5	RU20-11171		1/12/11	950	-	-	Water	\times				
2	12010-111711		1) mla	1100	-	-	1	\times				
Ą.	2-19-11711	Approx	11/17/4	1215	-	~		\times				
2	RU8-11711		1/17/1	1430	`	-		X				
۲	RU21-1/1711		ululu	1530		,	\perp	X				- 1
						-				-		
	Possible Hazard Id	entification				Sam	ole Disposal		0	her Co	mments	
	Non-Hazardous	Skin Irritant	Rad 🔲 Fl	ammable	Poison	Unknown R	eturn to Client	Disposal by	Lab			
	Relinquished/by: (Signature/Company	y)		Received	By: (Signature/Co	ompany)		Date		Time	Ship to:
	LV/	\leq			\wedge	Fedex			whi	14	2000	
	Relinquished by	Signature/Company	y)		Received	By: (Signature/Co	ompany)		Date		Time	
	pa	t				MAH	M		11-1	8-ll	10:35	
	Relinquished by: (Signature Company	y)	(Received	By: (Signature/Co	ompany)		Date		Time	
				4								

Distribution: White copy accompanies samples during transfer of custody; Yellow copy is retained by customer.

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Buffalo 10 Hazelwood Drive Amherst, NY 14228-2298 Tel: (716)691-2600

TestAmerica Job ID: 480-14696-1 Client Project/Site: New York state project

For:

CDM Smith, Inc. 555 17th Street Suite 1100 Denver, Colorado 80202

Authorized for release by: 1/12/2012 8:53:50 AM

eve.berry@testamericainc.com

Project Administrator

Attn: Neil Smith

Eberry

Eve Berry

Designee for Peggy Gray-Erdmann Project Manager II peggy.gray-erdmann@testamericainc.com

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Detection Summary	5
Client Sample Results	7
Surrogate Summary	18
QC Sample Results	19
QC Association Summary	25
Lab Chronicle	27
Certification Summary	29
Method Summary	30
Sample Summary	31
Chain of Custody	32
Receipt Checklists	33

United States Environmental Protection Agency

Not detected at the reporting limit (or MDL or EDL if shown)

Relative Percent Difference, a measure of the relative difference between two points

Method Detection Limit Minimum Level (Dioxin)

Practical Quantitation Limit

Toxicity Equivalent Factor (Dioxin)

Toxicity Equivalent Quotient (Dioxin)

Quality Control

Reporting Limit

3

Quaimers

EPA

MDL

ML ND

PQL

QC

RL

RPD

TEF TEQ

GC/MS VOA		4
Qualifier	Qualifier Description	
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.	5
GC VOA		0
Qualifier	Qualifier Description	6
В	Compound was found in the blank and sample.	
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.	
General Cher	nistry	
Qualifier	Qualifier Description	8
Н	Sample was prepped or analyzed beyond the specified holding time	
E	Result exceeded calibration range.	9
Glossary		1
Abbreviation	These commonly used abbreviations may or may not be present in this report.	
¢	Listed under the "D" column to designate that the result is reported on a dry weight basis	
%R	Percent Recovery	
CNF	Contains no Free Liquid	
DL, RA, RE, IN	Indicates a Dilution, Reanalysis, Re-extraction, or additional Initial metals/anion analysis of the sample	11
EDL	Estimated Detection Limit	

Job ID: 480-14696-1

Laboratory: TestAmerica Buffalo

Narrative

Job Narrative 480-14696-1

Receipt

All samples were received in good condition within temperature requirements.

GC/MS VOA

Method(s) 8260B: The following samples were diluted due to the abundance of target analytes: DUP-010412 (480-14696-6), RU-10-010412 (480-14696-4), RU-19-010412 (480-14696-1), RU-20-010412 (480-14696-2), RU-21-010412 (480-14696-3). Elevated reporting limits (RLs) are provided.

Method(s) 8260B: The following sample submitted for volatiles analysis was received with insufficient preservation (pH >2): RU-21-010412 (480-14696-3). Analysis occurred within the seven day holding time for unpreserved volatiles samples.

No other analytical or quality issues were noted.

Ion Chromatography

Method(s) 300.0: In batch 47318, the following sample was diluted due to the abundance of non-target analytes: RU-21-010412 (480-14696-3). Elevated reporting limits (RLs) are provided.

Method(s) VFA-IC: Due to the high concentration of Acetic Acid, the matrix spike / matrix spike duplicate (MS/MSD) for batch 47126 could not be evaluated for accuracy and precision. The associated laboratory control sample (LCS) met acceptance criteria.

Method(s) VFA-IC: In batch 47492, the following samples were diluted due to the abundance of target analytes: DUP-010412 (480-14696-6), RU-10-010412 (480-14696-4), RU-21-010412 (480-14696-3). Elevated reporting limits (RLs) are provided.

No other analytical or quality issues were noted.

GC VOA

Method(s) RSK-175: The following samples were diluted due to the abundance of target analytes: RU-19-010412 (480-14696-1), RU-21-010412 (480-14696-3). Elevated reporting limits (RLs) are provided.

Method(s) RSK-175: The following sample submitted for volatiles analysis was received with insufficient preservation (pH >2): RU-21-010412 (480-14696-3).

No other analytical or quality issues were noted.

General Chemistry

Method(s) 353.2: The following samples were received outside of holding time: DUP-010412 (480-14696-6), RU-10-010412 (480-14696-4).

Method(s) 353.2: The following samples were received with greater than 50% of holding time expired: RU-19-010412 (480-14696-1), RU-20-010412 (480-14696-2), RU-21-010412 (480-14696-3). As such, the laboratory had insufficient time remaining to perform the analysis within holding time.

Method(s) Nitrate by calc: The following samples were received with greater than 50% of holding time expired: RU-19-010412 (480-14696-1), RU-20-010412 (480-14696-2), RU-21-010412 (480-14696-3). As such, the laboratory had insufficient time remaining to perform the analysis within holding time.

Method(s) Nitrate by calc: The following samples were received outside of holding time: DUP-010412 (480-14696-6), RU-10-010412 (480-14696-4).

No other analytical or quality issues were noted.

Client Sample ID: RU-19-010412

Lab Sample ID: 480-14696-1

5

Analyte	Result Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
1,1-Dichloroethene	1.4	1.0	0.29	ug/L	1	_	8260B	Total/NA
Tetrachloroethene	1.3	1.0	0.36	ug/L	1		8260B	Total/NA
trans-1,2-Dichloroethene	2.8	1.0	0.90	ug/L	1		8260B	Total/NA
Vinyl chloride	24	1.0	0.90	ug/L	1		8260B	Total/NA
cis-1,2-Dichloroethene - DL	230	10	8.1	ug/L	10		8260B	Total/NA
Trichloroethene - DL	580	10	4.6	ug/L	10		8260B	Total/NA
Ethane	7.0	1.5	0.49	ug/L	1		RSK-175	Total/NA
Methane	190	50	11	ug/L	50		RSK-175	Total/NA
Chloride	14.3	0.50	0.28	mg/L	1		300.0	Total/NA
Sulfate	30.0	2.0	0.35	mg/L	1		300.0	Total/NA
Nitrate as N	0.68 H	0.050	0.011	mg/L	1		353.2	Total/NA
Total Organic Carbon	7.1	1.0	0.43	mg/L	1		SM 5310D	Total/NA
Acetic acid	2.7	1.0	0.15	mg/L	1		VFA-IC	Total/NA
Propionic acid	3.7	1.0	0.17	mg/L	1		VFA-IC	Total/NA

Client Sample ID: RU-20-010412

Lab Sample ID: 480-14696-2

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
1,1-Dichloroethene	0.95	J	1.0	0.29	ug/L	1	_	8260B	Total/NA
2-Butanone (MEK)	1.3	J	10	1.3	ug/L	1		8260B	Total/NA
Acetone	7.2	J	10	3.0	ug/L	1		8260B	Total/NA
cis-1,2-Dichloroethene	86		1.0	0.81	ug/L	1		8260B	Total/NA
Tetrachloroethene	2.2		1.0	0.36	ug/L	1		8260B	Total/NA
trans-1,2-Dichloroethene	1.3		1.0	0.90	ug/L	1		8260B	Total/NA
Trichloroethene - DL	2100		40	18	ug/L	40		8260B	Total/NA
Ethane	2.6		1.5	0.49	ug/L	1		RSK-175	Total/NA
Ethene	7.3		1.5	0.52	ug/L	1		RSK-175	Total/NA
Methane	6.9	В	1.0	0.22	ug/L	1		RSK-175	Total/NA
Chloride	79.6		0.50	0.28	mg/L	1		300.0	Total/NA
Sulfate	50.6		2.0	0.35	mg/L	1		300.0	Total/NA
Nitrate as N	0.26	Н	0.050	0.011	mg/L	1		353.2	Total/NA
Total Organic Carbon	48.5		1.0	0.43	mg/L	1		SM 5310D	Total/NA
Acetic acid	11.3		1.0	0.15	mg/L	1		VFA-IC	Total/NA
Propionic acid	7.6		1.0	0.17	mg/L	1		VFA-IC	Total/NA

Client Sample ID: RU-21-010412

Lab Sample ID: 480-14696-3

Analyte	Result (Qualifier	RL	MDL	Unit	Dil Fac	D Method	Prep Type
2-Hexanone	60		10	2.5	ug/L	2	8260B	Total/NA
2-Butanone (MEK)	66		20	2.6	ug/L	2	8260B	Total/NA
Acetone	82		20	6.0	ug/L	2	8260B	Total/NA
Carbon disulfide	1.7 、	J	2.0	0.38	ug/L	2	8260B	Total/NA
cis-1,2-Dichloroethene	52		2.0	1.6	ug/L	2	8260B	Total/NA
Trichloroethene	41		2.0	0.92	ug/L	2	8260B	Total/NA
Vinyl chloride	120		2.0	1.8	ug/L	2	8260B	Total/NA
Ethane	11		1.5	0.49	ug/L	1	RSK-175	Total/NA
Ethene	26		1.5	0.52	ug/L	1	RSK-175	Total/NA
Methane	210		50	11	ug/L	50	RSK-175	Total/NA
Chloride	23.8		2.5	1.4	mg/L	5	300.0	Total/NA
Sulfate	23.7		10.0	1.7	mg/L	5	300.0	Total/NA
Total Organic Carbon	2040		40.0	17.4	mg/L	40	SM 5310D	Total/NA
Acetic acid	920		50.0	7.5	mg/L	50	VFA-IC	Total/NA
Butyric acid	10.9		1.0	0.16	mg/L	1	VFA-IC	Total/NA
Propionic acid	1690		50.0	8.5	mg/L	50	VFA-IC	Total/NA

Client Sample ID: RU-10-010412

Lab Sample ID: 480-14696-4

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
1,1-Dichloroethene	0.59	J	1.0	0.29	ug/L	1	_	8260B	Total/NA
2-Butanone (MEK)	4.4	J	10	1.3	ug/L	1		8260B	Total/NA
Acetone	18		10	3.0	ug/L	1		8260B	Total/NA
cis-1,2-Dichloroethene	94		1.0	0.81	ug/L	1		8260B	Total/NA
trans-1,2-Dichloroethene	1.1		1.0	0.90	ug/L	1		8260B	Total/NA
Vinyl chloride	12		1.0	0.90	ug/L	1		8260B	Total/NA
Trichloroethene - DL	120		2.0	0.92	ug/L	2		8260B	Total/NA
Ethane	4.0		1.5	0.49	ug/L	1		RSK-175	Total/NA
Methane	120	В	1.0	0.22	ug/L	1		RSK-175	Total/NA
Chloride	9.3		0.50	0.28	mg/L	1		300.0	Total/NA
Sulfate	29.9		2.0	0.35	mg/L	1		300.0	Total/NA
Nitrate as N	0.47	Н	0.050	0.011	mg/L	1		353.2	Total/NA
Total Organic Carbon	205		10.0	4.3	mg/L	10		SM 5310D	Total/NA
Acetic acid	39.6		1.0	0.15	mg/L	1		VFA-IC	Total/NA
Propionic acid	57.0		2.0	0.34	mg/L	2		VFA-IC	Total/NA

Client Sample ID: TRIP BLANK-010412

No Detections

Client Sample ID: DUP-010412

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
2-Butanone (MEK)	4.3	J	10	1.3	ug/L	1	_	8260B	Total/NA
Acetone	17		10	3.0	ug/L	1		8260B	Total/NA
cis-1,2-Dichloroethene	89		1.0	0.81	ug/L	1		8260B	Total/NA
trans-1,2-Dichloroethene	0.95	J	1.0	0.90	ug/L	1		8260B	Total/NA
Vinyl chloride	12		1.0	0.90	ug/L	1		8260B	Total/NA
Trichloroethene - DL	120		2.0	0.92	ug/L	2		8260B	Total/NA
Ethane	3.9		1.5	0.49	ug/L	1		RSK-175	Total/NA
Methane	120	В	1.0	0.22	ug/L	1		RSK-175	Total/NA
Chloride	9.5		0.50	0.28	mg/L	1		300.0	Total/NA
Sulfate	29.9		2.0	0.35	mg/L	1		300.0	Total/NA
Nitrate as N	0.48	Н	0.050	0.011	mg/L	1		353.2	Total/NA
Total Organic Carbon	213		10.0	4.3	mg/L	10		SM 5310D	Total/NA
Acetic acid	39.7		1.0	0.15	mg/L	1		VFA-IC	Total/NA
Propionic acid	77.0		20.0	3.4	mg/L	20		VFA-IC	Total/NA
-									

Client Sample ID: FIIELD BLANK-010412 Lab Sample ID: 480-14696-7 Analyte Result Qualifier RL MDL Unit Dil Fac D Method Prep Type Acetone 4.3 J 10 3.0 ug/L 1 D Method Prep Type

4	
	5
	8
	9

Lab Sample ID: 480-14696-5

Lab Sample ID: 480-14696-6

TestAmerica Buffalo

1/12/2012

Client Sample ID: RU-19-010412

Date Collected: 01/04/12 13:00 Date Received: 01/06/12 09:30

Method: 8260B - Volatile Organi	c Compounds	(GC/MS)	DI	MDI	Unit	р	Bronarod	Analyzod	Dil Eac
		Quaimer		0.82			Frepareu	01/06/12 23:55	
			1.0	0.02	ug/L			01/06/12 23:55	1
			1.0	0.21	ug/L			01/06/12 23:55	1
1,1,2 Triphore 1,2,2 trifluoreethane			1.0	0.23	ug/L			01/06/12 23:55	1
1,1,2-Thchloro-1,2,2-thluoroethane	ND		1.0	0.31	ug/L			01/06/12 23.55	1
	ND		1.0	0.30	ug/L			01/06/12 23:55	1
1,1-Dichloroetnene	1.4		1.0	0.29	ug/L			01/00/12 23:55	
1,2,4- I IICHIOIODENZENE	ND		1.0	0.41	ug/L			01/06/12 23.55	1
1,2-Dibromo-3-Chioropropane	ND		1.0	0.39	ug/L			01/06/12 23:55	1
1,2-Dibromoetnane	ND		1.0	0.73	ug/L			01/06/12 23:55	1
	ND		1.0	0.79	ug/L			01/06/12 23:55	1
	ND		1.0	0.21	ug/L			01/06/12 23:55	1
1,2-Dichloropropane	ND		1.0	0.72	ug/L			01/06/12 23:55	1
1,3-Dichlorobenzene	ND		1.0	0.78	ug/L			01/06/12 23:55	1
1,4-Dichlorobenzene	ND		1.0	0.84	ug/L			01/06/12 23:55	1
2-Hexanone	ND		5.0	1.2	ug/L			01/06/12 23:55	1
2-Butanone (MEK)	ND		10	1.3	ug/L			01/06/12 23:55	1
4-Methyl-2-pentanone (MIBK)	ND		5.0	2.1	ug/L			01/06/12 23:55	1
Acetone	ND		10	3.0	ug/L			01/06/12 23:55	1
Benzene	ND		1.0	0.41	ug/L			01/06/12 23:55	1
Bromodichloromethane	ND		1.0	0.39	ug/L			01/06/12 23:55	1
Bromoform	ND		1.0	0.26	ug/L			01/06/12 23:55	1
Bromomethane	ND		1.0	0.69	ug/L			01/06/12 23:55	1
Carbon disulfide	ND		1.0	0.19	ug/L			01/06/12 23:55	1
Carbon tetrachloride	ND		1.0	0.27	ug/L			01/06/12 23:55	1
Chlorobenzene	ND		1.0	0.75	ug/L			01/06/12 23:55	1
Dibromochloromethane	ND		1.0	0.32	ug/L			01/06/12 23:55	1
Chloroethane	ND		1.0	0.32	ug/L			01/06/12 23:55	1
Chloroform	ND		1.0	0.34	ug/L			01/06/12 23:55	1
Chloromethane	ND		1.0	0.35	ug/L			01/06/12 23:55	1
cis-1,3-Dichloropropene	ND		1.0	0.36	ug/L			01/06/12 23:55	1
Cyclohexane	ND		1.0	0.18	ug/L			01/06/12 23:55	1
Dichlorodifluoromethane	ND		1.0	0.68	ug/L			01/06/12 23:55	1
Ethylbenzene	ND		1.0	0.74	ug/L			01/06/12 23:55	1
Isopropylbenzene	ND		1.0	0.79	ug/L			01/06/12 23:55	1
Methyl acetate	ND		1.0	0.50	ug/L			01/06/12 23:55	1
Methyl tert-butyl ether	ND		1.0	0.16	ug/L			01/06/12 23:55	1
Methylcyclohexane	ND		1.0	0.16	ug/L			01/06/12 23:55	1
Methylene Chloride	ND		1.0	0.44	ug/L			01/06/12 23:55	1
Styrene	ND		1.0	0.73	ug/L			01/06/12 23:55	1
Tetrachloroethene	1.3		1.0	0.36	ug/L			01/06/12 23:55	1
Toluene	ND		1.0	0.51	ug/L			01/06/12 23:55	1
trans-1,2-Dichloroethene	2.8		1.0	0.90	ug/L			01/06/12 23:55	1
trans-1,3-Dichloropropene	ND		1.0	0.37	ug/L			01/06/12 23:55	1
Trichlorofluoromethane	ND		1.0	0.88	ug/L			01/06/12 23:55	1
Vinyl chloride	24		1.0	0.90	ug/L			01/06/12 23:55	1
Xylenes, Total	ND		2.0	0.66	ug/L			01/06/12 23:55	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	90		66 - 137			-		01/06/12 23:55	1
Toluene-d8 (Surr)	101		71 - 126					01/06/12 23:55	1

Lab Sample ID: 480-14696-1 Matrix: Water

Limits

Limits

66 - 137

71 106

73 - 120

RL

10

10

MDL Unit

4.6 ug/L

0.15 mg/L

0.16 mg/L

0.17 mg/L

8.1 ug/L

Surrogate

Analyte

Surrogate

Acetic acid

4-Bromofluorobenzene (Surr)

cis-1,2-Dichloroethene

1,2-Dichloroethane-d4 (Surr)

Trichloroethene

Client Sample ID: RU-19-010412 Date Collected: 01/04/12 13:00 Date Received: 01/06/12 09:30

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Method: 8260B - Volatile Organic Compounds (GC/MS) - DL

%Recovery Qualifier

Result Qualifier

Qualifier

102

230

580

90

2.7

%Recovery

Lab Sample ID: 480-14696-1 Matrix: Water

Analyzed

01/06/12 23:55

Analyzed

01/07/12 13:56

01/07/12 13:56

Analyzed

01/07/12 13:56

01/07/10 10.56

Prepared

Prepared

Prepared

D

6

Dil Fac

Dil Fac

Dil Fac

1

10

10

10

10

10

1

1

1

Toluene-d8 (Surr)	102		71 - 126					01/07/12 13:56	10
4-Bromofluorobenzene (Surr)	104		73 - 120					01/07/12 13:56	10
- Method: RSK-175 - Dissolved Ga	ses (GC)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ethane	7.0		1.5	0.49	ug/L			01/06/12 17:19	1
Ethene	ND		1.5	0.52	ug/L			01/06/12 17:19	1
Methane	190		50	11	ug/L			01/10/12 16:09	50
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	14.3		0.50	0.28	mg/L			01/09/12 18:47	1
Sulfate	30.0		2.0	0.35	mg/L			01/09/12 18:47	1
Nitrate as N	0.68	н	0.050	0.011	mg/L			01/06/12 19:05	1
Total Organic Carbon	7.1		1.0	0.43	mg/L			01/10/12 15:39	1

1.0

1.0

1.0

Butyric acid ND **Propionic acid** 3.7 Client Sample ID: RU-20-010412

Lab Sample ID: 480-14696-2 Matrix: Water

01/06/12 17:36

01/06/12 17:36

01/06/12 17:36

Date Collected: 01/04/12 15:15 Date Received: 01/06/12 09:30

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND	1.0	0.82	ug/L			01/07/12 00:18	1
1,1,2,2-Tetrachloroethane	ND	1.0	0.21	ug/L			01/07/12 00:18	1
1,1,2-Trichloroethane	ND	1.0	0.23	ug/L			01/07/12 00:18	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	1.0	0.31	ug/L			01/07/12 00:18	1
1,1-Dichloroethane	ND	1.0	0.38	ug/L			01/07/12 00:18	1
1,1-Dichloroethene	0.95 J	1.0	0.29	ug/L			01/07/12 00:18	1
1,2,4-Trichlorobenzene	ND	1.0	0.41	ug/L			01/07/12 00:18	1
1,2-Dibromo-3-Chloropropane	ND	1.0	0.39	ug/L			01/07/12 00:18	1
1,2-Dibromoethane	ND	1.0	0.73	ug/L			01/07/12 00:18	1
1,2-Dichlorobenzene	ND	1.0	0.79	ug/L			01/07/12 00:18	1
1,2-Dichloroethane	ND	1.0	0.21	ug/L			01/07/12 00:18	1
1,2-Dichloropropane	ND	1.0	0.72	ug/L			01/07/12 00:18	1
1,3-Dichlorobenzene	ND	1.0	0.78	ug/L			01/07/12 00:18	1
1,4-Dichlorobenzene	ND	1.0	0.84	ug/L			01/07/12 00:18	1
2-Hexanone	ND	5.0	1.2	ug/L			01/07/12 00:18	1
2-Butanone (MEK)	1.3 J	10	1.3	ug/L			01/07/12 00:18	1

Client Sample ID: RU-20-010412 Date Collected: 01/04/12 15:15 Date Received: 01/06/12 09:30

Lab Sample ID: 480-14696-2 Matrix: Water

Dil Fac

Method: 8260B - Volatile Orga	anic Compounds		ontinuea)	MD	Unit		Dropered	Anolyzed	
Analyte		Qualifier	RL			U	Prepared	Analyzed	
			5.0	2.1	ug/L			01/07/12 00:18	1
Acetone	7.2 ND	J	10	0.41	ug/L			01/07/12 00:18	ا 1
Dramadiableremethane	ND		1.0	0.41	ug/L			01/07/12 00.18	1
Bromoform	ND		1.0	0.39	ug/L			01/07/12 00.18	1
Bromomothone			1.0	0.20	ug/L			01/07/12 00:18	
Bromomethane	ND		1.0	0.09	ug/L			01/07/12 00.18	1
	ND		1.0	0.19	ug/L			01/07/12 00.18	1
	ND		1.0	0.27	ug/L			01/07/12 00:18	1
Chiorobenzene	ND		1.0	0.75	ug/L			01/07/12 00:18	1
Dibromocniorometnane	ND		1.0	0.32	ug/L			01/07/12 00:18	1
Chioroethane	ND		1.0	0.32	ug/L			01/07/12 00:18	
Chloroform	ND		1.0	0.34	ug/L			01/07/12 00:18	1
Chloromethane	ND		1.0	0.35	ug/L			01/07/12 00:18	1
cis-1,2-Dichloroethene	86		1.0	0.81	ug/L			01/07/12 00:18	1
cis-1,3-Dichloropropene	ND		1.0	0.36	ug/L			01/07/12 00:18	1
Cyclohexane	ND		1.0	0.18	ug/L			01/07/12 00:18	1
Dichlorodifluoromethane	ND		1.0	0.68	ug/L			01/07/12 00:18	1
Ethylbenzene	ND		1.0	0.74	ug/L			01/07/12 00:18	1
Isopropylbenzene	ND		1.0	0.79	ug/L			01/07/12 00:18	1
Methyl acetate	ND		1.0	0.50	ug/L			01/07/12 00:18	1
Methyl tert-butyl ether	ND		1.0	0.16	ug/L			01/07/12 00:18	1
Methylcyclohexane	ND		1.0	0.16	ug/L			01/07/12 00:18	1
Methylene Chloride	ND		1.0	0.44	ug/L			01/07/12 00:18	1
Styrene	ND		1.0	0.73	ug/L			01/07/12 00:18	1
Tetrachloroethene	2.2		1.0	0.36	ug/L			01/07/12 00:18	1
Toluene	ND		1.0	0.51	ug/L			01/07/12 00:18	1
trans-1,2-Dichloroethene	1.3		1.0	0.90	ug/L			01/07/12 00:18	1
trans-1,3-Dichloropropene	ND		1.0	0.37	ug/L			01/07/12 00:18	1
Trichlorofluoromethane	ND		1.0	0.88	ug/L			01/07/12 00:18	1
Vinyl chloride	ND		1.0	0.90	ug/L			01/07/12 00:18	1
Xylenes, Total	ND		2.0	0.66	ug/L			01/07/12 00:18	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	90		66 - 137			-		01/07/12 00:18	1

Surrogate	%Recovery	Qualifier Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	90	66 - 137		01/07/12 00:18	1
Toluene-d8 (Surr)	102	71 - 126		01/07/12 00:18	1
4-Bromofluorobenzene (Surr)	104	73 - 120		01/07/12 00:18	1

D

Prepared

Method: 8260B - Volatile Organic Compounds (GC/MS) - DL										
Analyte	Result	Qualifier	RL	MDL	Unit					
Trichloroethene	2100		40	18	ug/L					

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	91		66 - 137		01/07/12 14:18	40
Toluene-d8 (Surr)	104		71 - 126		01/07/12 14:18	40
4-Bromofluorobenzene (Surr)	104		73 - 120		01/07/12 14:18	40

Method: RSK-175 - Dissolved Gases (GC)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ethane	2.6		1.5	0.49	ug/L			01/06/12 17:36	1
Ethene	7.3		1.5	0.52	ug/L			01/06/12 17:36	1
Methane	6.9	В	1.0	0.22	ug/L			01/06/12 17:36	1

Analyzed

01/07/12 14:18

Client Sample ID: RU-20-010412 Date Collected: 01/04/12 15:15

Date Received: 01/06/12 09:30

General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	79.6		0.50	0.28	mg/L			01/09/12 18:57	1
Sulfate	50.6		2.0	0.35	mg/L			01/09/12 18:57	1
Nitrate as N	0.26	н	0.050	0.011	mg/L			01/06/12 19:07	1
Total Organic Carbon	48.5		1.0	0.43	mg/L			01/10/12 15:56	1
Acetic acid	11.3		1.0	0.15	mg/L			01/06/12 18:05	1
Butyric acid	ND		1.0	0.16	mg/L			01/06/12 18:05	1
Propionic acid	7.6		1.0	0.17	mg/L			01/06/12 18:05	1

Date Collected: 01/04/12 11:30

Date Received: 01/06/12 09:30

Method: 8260B - Volatile Organic	Compounds (GC/MS) Result Qualifier	RI	мы	Unit	р	Prenared	Analyzed	Dil Fac
1.1.1-Trichloroethane	ND	2.0	1.6	ua/L			01/07/12 14:40	2
1.1.2.2-Tetrachloroethane	ND	2.0	0.42	ua/L			01/07/12 14:40	2
1.1.2-Trichloroethane	ND	2.0	0.46	ua/L			01/07/12 14:40	2
1.1.2-Trichloro-1.2.2-trifluoroethane	ND	2.0	0.62	ua/L			01/07/12 14:40	2
1.1-Dichloroethane	ND	2.0	0.76	ua/L			01/07/12 14:40	2
1,1-Dichloroethene	ND	2.0	0.58	ug/L			01/07/12 14:40	2
1.2.4-Trichlorobenzene	ND	2.0	0.82	ua/L			01/07/12 14:40	2
1.2-Dibromo-3-Chloropropane	ND	2.0	0.78	ug/L			01/07/12 14:40	2
1.2-Dibromoethane	ND	2.0	1.5	ug/L			01/07/12 14:40	2
1.2-Dichlorobenzene	ND	2.0	1.6	ug/L			01/07/12 14:40	2
1,2-Dichloroethane	ND	2.0	0.42	ug/L			01/07/12 14:40	2
1.2-Dichloropropane	ND	2.0	1.4	ug/L			01/07/12 14:40	2
1,3-Dichlorobenzene	ND	2.0	1.6	ug/L			01/07/12 14:40	2
1,4-Dichlorobenzene	ND	2.0	1.7	ug/L			01/07/12 14:40	2
2-Hexanone	60	10	2.5	ug/L			01/07/12 14:40	2
2-Butanone (MEK)	66	20	2.6	ug/L			01/07/12 14:40	2
4-Methyl-2-pentanone (MIBK)	ND	10	4.2	ug/L			01/07/12 14:40	2
Acetone	82	20	6.0	ug/L			01/07/12 14:40	2
Benzene	ND	2.0	0.82	ug/L			01/07/12 14:40	2
Bromodichloromethane	ND	2.0	0.78	ug/L			01/07/12 14:40	2
Bromoform	ND	2.0	0.52	ug/L			01/07/12 14:40	2
Bromomethane	ND	2.0	1.4	ug/L			01/07/12 14:40	2
Carbon disulfide	1.7 J	2.0	0.38	ug/L			01/07/12 14:40	2
Carbon tetrachloride	ND	2.0	0.54	ug/L			01/07/12 14:40	2
Chlorobenzene	ND	2.0	1.5	ug/L			01/07/12 14:40	2
Dibromochloromethane	ND	2.0	0.64	ug/L			01/07/12 14:40	2
Chloroethane	ND	2.0	0.64	ug/L			01/07/12 14:40	2
Chloroform	ND	2.0	0.68	ug/L			01/07/12 14:40	2
Chloromethane	ND	2.0	0.70	ug/L			01/07/12 14:40	2
cis-1,2-Dichloroethene	52	2.0	1.6	ug/L			01/07/12 14:40	2
cis-1,3-Dichloropropene	ND	2.0	0.72	ug/L			01/07/12 14:40	2
Cyclohexane	ND	2.0	0.36	ug/L			01/07/12 14:40	2
Dichlorodifluoromethane	ND	2.0	1.4	ug/L			01/07/12 14:40	2
Ethylbenzene	ND	2.0	1.5	ug/L			01/07/12 14:40	2
Isopropylbenzene	ND	2.0	1.6	ug/L			01/07/12 14:40	2

Lab Sample ID: 480-14696-2

Lab Sample ID: 480-14696-3

Matrix: Water

Matrix: Water

2 3 4 5 6 7 8 9 10 11

TestAmerica Buffalo 1/12/2012

RL

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

4.0

Limits

66 - 137

71 - 126

73 - 120

MDL Unit

0.32 ug/L

0.32 ug/L

0.88 ug/L

1.5 ug/L

0.72 ug/L

1.0 ug/L

0.74 ug/L

0.92 ug/L

1.8 ug/L

1.8 ug/L

1.3 ug/L

1.8

ug/L

1.0 ug/L D

Prepared

Prepared

Analyte

Styrene

Toluene

Methyl acetate

Methyl tert-butyl ether

Methylcyclohexane

Methylene Chloride

Tetrachloroethene

Trichloroethene

Vinyl chloride

Xylenes, Total

Toluene-d8 (Surr)

Surrogate

trans-1,2-Dichloroethene

trans-1,3-Dichloropropene

Trichlorofluoromethane

1,2-Dichloroethane-d4 (Surr)

4-Bromofluorobenzene (Surr)

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Result Qualifier

ND

ND

ND

ND

ND

ND

ND

ND

ND

41

ND

120

ND

90

102

104

Qualifier

%Recovery

Lab Sample ID: 480-14696-3 Matrix: Water

Analyzed

01/07/12 14:40

01/07/12 14:40

01/07/12 14:40

01/07/12 14:40

01/07/12 14:40

01/07/12 14:40

01/07/12

01/07/12

01/07/12 01/07/12

01/07/12

01/07/12

01/07/12

01/07/12

01/07/12

01/07/12

Lab Sample ID: 480-14696-4

Matrix: Water

6

/07/12 14:40	2	C
/07/12 14:40	2	
/07/12 14:40	2	
/07/12 14:40	2	
/07/12 14:40	2	
/07/12 14:40	2	
/07/12 14:40	2	
Analyzed	Dil Fac	
/07/12 14:40	2	
/07/12 14:40	2	
/07/12 14:40	2	

Dil Fac

2

2

2 2

2 2

lyzed	Dil Fac	
10 17.50		

Method: RSK-175 - Dissolved Gases (GC)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ethane	11		1.5	0.49	ug/L			01/06/12 17:53	1
Ethene	26		1.5	0.52	ug/L			01/06/12 17:53	1
Methane	210		50	11	ug/L			01/10/12 16:26	50
_									

General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	23.8		2.5	1.4	mg/L			01/09/12 19:07	5
Sulfate	23.7		10.0	1.7	mg/L			01/09/12 19:07	5
Nitrate as N	ND	н	0.050	0.011	mg/L			01/06/12 19:09	1
Total Organic Carbon	2040		40.0	17.4	mg/L			01/10/12 16:14	40
Acetic acid	920		50.0	7.5	mg/L			01/10/12 17:57	50
Butyric acid	10.9		1.0	0.16	mg/L			01/06/12 18:35	1
Propionic acid	1690		50.0	8.5	mg/L			01/10/12 17:57	50

Client Sample ID: RU-10-010412

Date Collected: 01/04/12 09:30

Date Received: 01/06/12 09:30

Method: 8260B - Volatile Organic Compounds (GC/MS)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		1.0	0.82	ug/L			01/07/12 01:02	1
1,1,2,2-Tetrachloroethane	ND		1.0	0.21	ug/L			01/07/12 01:02	1
1,1,2-Trichloroethane	ND		1.0	0.23	ug/L			01/07/12 01:02	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		1.0	0.31	ug/L			01/07/12 01:02	1
1,1-Dichloroethane	ND		1.0	0.38	ug/L			01/07/12 01:02	1
1,1-Dichloroethene	0.59	J	1.0	0.29	ug/L			01/07/12 01:02	1
1,2,4-Trichlorobenzene	ND		1.0	0.41	ug/L			01/07/12 01:02	1
1,2-Dibromo-3-Chloropropane	ND		1.0	0.39	ug/L			01/07/12 01:02	1
1,2-Dibromoethane	ND		1.0	0.73	ug/L			01/07/12 01:02	1

RL

1.0

MDL Unit

0.79 ug/L

D

Prepared

Analyte

1,2-Dichlorobenzene

Client Sample ID: RU-10-010412 Date Collected: 01/04/12 09:30 Date Received: 01/06/12 09:30

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Result Qualifier

ND

Lab Sample ID: 480-14696-4 Matrix: Water

Analyzed

01/07/12 01:02

Dil Fac

1

Analyte	Result	Qualifier		MDL	Unit	D Prepared	Analyzed	Dil Fac
Method: 8260B - Volatile Orga	anic Compounds (GC/MS) - D	L					
4-Bromofluorobenzene (Surr)	103		73 - 120				01/07/12 01:02	1
Toluene-d8 (Surr)	101		71 _ 126				01/07/12 01:02	1
1,2-Dichloroethane-d4 (Surr)	90		66 - 137				01/07/12 01:02	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
Xylenes, Total	ND		2.0	0.66	ug/L		01/07/12 01:02	1
Vinyl chloride	12		1.0	0.90	ug/L		01/07/12 01:02	1
Trichlorofluoromethane	ND		1.0	0.88	ug/L		01/07/12 01:02	1
trans-1,3-Dichloropropene	ND		1.0	0.37	ug/L		01/07/12 01:02	1
trans-1,2-Dichloroethene	1.1		1.0	0.90	ug/L		01/07/12 01:02	1
Toluene	ND		1.0	0.51	ug/L		01/07/12 01:02	1
Tetrachloroethene	ND		1.0	0.36	ug/L		01/07/12 01:02	1
Styrene	ND		1.0	0.73	ug/L		01/07/12 01:02	1
Methylene Chloride	ND		1.0	0.44	ug/L		01/07/12 01:02	1
Methylcyclohexane	ND		1.0	0.16	ug/L		01/07/12 01:02	1
Methyl tert-butyl ether	ND		1.0	0.16	ug/L		01/07/12 01:02	1
Methyl acetate	ND		1.0	0.50	ug/L		01/07/12 01:02	1
Isopropylbenzene	ND		1.0	0.79	ug/L		01/07/12 01:02	1
Ethylbenzene	ND		1.0	0.74	ug/L		01/07/12 01:02	1
Dichlorodifluoromethane	ND		1.0	0.68	ug/L		01/07/12 01:02	1
Cyclohexane	ND		1.0	0.18	ug/L		01/07/12 01:02	1
cis-1,3-Dichloropropene	ND		1.0	0.36	ug/L		01/07/12 01:02	1
cis-1,2-Dichloroethene	94		1.0	0.81	ug/L		01/07/12 01:02	1
Chloromethane	ND		1.0	0.35	ug/L		01/07/12 01:02	1
Chloroform	ND		1.0	0.34	ug/L		01/07/12 01:02	1
Chloroethane	ND		1.0	0.32	ug/L		01/07/12 01:02	1
Dibromochloromethane	ND		1.0	0.32	ug/L		01/07/12 01:02	1
Chlorobenzene	ND		1.0	0.75	ug/L		01/07/12 01:02	1
Carbon tetrachloride	ND		1.0	0.27	ug/L		01/07/12 01:02	1
Carbon disulfide	ND		1.0	0.19	ug/L		01/07/12 01:02	1
Bromomethane	ND		1.0	0.69	ug/L		01/07/12 01:02	1
Bromoform	ND		1.0	0.26	ug/L		01/07/12 01:02	1
Bromodichloromethane	ND		1.0	0.39	ug/L		01/07/12 01:02	1
Benzene	ND		1.0	0.41	ug/L		01/07/12 01:02	1
Acetone	18		10	3.0	ug/L		01/07/12 01:02	1
4-Methyl-2-pentanone (MIBK)	ND		5.0	2.1	ug/L		01/07/12 01:02	1
2-Butanone (MEK)	4.4	J	10	1.3	ug/L		01/07/12 01:02	1
2-Hexanone	ND		5.0	1.2	ua/L		01/07/12 01:02	1
1.4-Dichlorobenzene	ND		1.0	0.84	ua/L		01/07/12 01:02	1
1.3-Dichlorobenzene	ND		1.0	0.72	ug/L		01/07/12 01:02	1
1.2-Dichloropropane			1.0	0.21	ug/L		01/07/12 01:02	1
1.2-Dichloroethane	ND		1.0	0.21	ua/L		01/07/12 01:02	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Trichloroethene	120		2.0	0.92	ug/L			01/07/12 15:03	2
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	91		66 - 137			-		01/07/12 15:03	2
Toluene-d8 (Surr)	103		71 - 126					01/07/12 15:03	2

Limits

73 - 120

RL

1.5

1.5

1.0

RL

0.50

2.0

0.050

10.0

1.0

1.0

2.0

MDL Unit

0.49 ug/L

0.52 ug/L

0.22 ug/L

MDL Unit

0.35 mg/L

0.011 mg/L

4.3 mg/L

0.15 mg/L

0.16 mg/L

0.34 mg/L

0.28 mg/L

Surrogate

Analyte

Ethane

Ethene

Methane

Analyte

Chloride

Nitrate as N

Acetic acid

Butyric acid

Propionic acid

Sulfate

4-Bromofluorobenzene (Surr)

General Chemistry

Total Organic Carbon

Client Sample ID: RU-10-010412 Date Collected: 01/04/12 09:30 Date Received: 01/06/12 09:30

Method: RSK-175 - Dissolved Gases (GC)

Method: 8260B - Volatile Organic Compounds (GC/MS) - DL (Continued)

%Recovery Qualifier

Result Qualifier

в

Result Qualifier

104

4.0

ND

120

9.3

29.9

205

39.6

ND

57.0

0.47 H

Lab Sample ID: 480-14696-4 Matrix: Water

Analyzed

01/07/12 15:03

Analyzed

01/06/12 18:10

01/06/12 18:10

01/06/12 18:10

Analyzed

01/09/12 19:17

01/09/12 19:17

01/06/12 19:11

01/10/12 16:32

01/06/12 19:04

01/06/12 19:04

01/10/12 18:55

Prepared

Prepared

Prepared

D

D

6

Dil Fac

Dil Fac

Dil Fac

2

1

1

1

1

1

1

10

1

1

2

Client Sample ID: TRIP BLANK-010412 N

Lab Sample ID: 480-14696-5

Matrix:	Water	

Date	Collected:	01/04/12	00:00
Date	Received:	01/06/12	09:30

Method: 8260B - Volatile Organic	Compounds (G	iC/MS)							
Analyte	Result C	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		1.0	0.82	ug/L			01/07/12 01:24	1
1,1,2,2-Tetrachloroethane	ND		1.0	0.21	ug/L			01/07/12 01:24	1
1,1,2-Trichloroethane	ND		1.0	0.23	ug/L			01/07/12 01:24	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		1.0	0.31	ug/L			01/07/12 01:24	1
1,1-Dichloroethane	ND		1.0	0.38	ug/L			01/07/12 01:24	1
1,1-Dichloroethene	ND		1.0	0.29	ug/L			01/07/12 01:24	1
1,2,4-Trichlorobenzene	ND		1.0	0.41	ug/L			01/07/12 01:24	1
1,2-Dibromo-3-Chloropropane	ND		1.0	0.39	ug/L			01/07/12 01:24	1
1,2-Dibromoethane	ND		1.0	0.73	ug/L			01/07/12 01:24	1
1,2-Dichlorobenzene	ND		1.0	0.79	ug/L			01/07/12 01:24	1
1,2-Dichloroethane	ND		1.0	0.21	ug/L			01/07/12 01:24	1
1,2-Dichloropropane	ND		1.0	0.72	ug/L			01/07/12 01:24	1
1,3-Dichlorobenzene	ND		1.0	0.78	ug/L			01/07/12 01:24	1
1,4-Dichlorobenzene	ND		1.0	0.84	ug/L			01/07/12 01:24	1
2-Hexanone	ND		5.0	1.2	ug/L			01/07/12 01:24	1
2-Butanone (MEK)	ND		10	1.3	ug/L			01/07/12 01:24	1
4-Methyl-2-pentanone (MIBK)	ND		5.0	2.1	ug/L			01/07/12 01:24	1
Acetone	ND		10	3.0	ug/L			01/07/12 01:24	1
Benzene	ND		1.0	0.41	ug/L			01/07/12 01:24	1
Bromodichloromethane	ND		1.0	0.39	ug/L			01/07/12 01:24	1
Bromoform	ND		1.0	0.26	ug/L			01/07/12 01:24	1
Bromomethane	ND		1.0	0.69	ug/L			01/07/12 01:24	1
Carbon disulfide	ND		1.0	0.19	ug/L			01/07/12 01:24	1
Carbon tetrachloride	ND		1.0	0.27	ug/L			01/07/12 01:24	1
Chlorobenzene	ND		1.0	0.75	ug/L			01/07/12 01:24	1

Client Sample ID: TRIP BLANK-010412 Date Collected: 01/04/12 00:00 Date Received: 01/06/12 09:30

ate Received: 01/06/12 09:30								
Method: 8260B - Volatile Organ	ic Compounds ((GC/MS) (Cont	inued)					
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed
Dibromochloromethane	ND		1.0	0.32	ug/L			01/07/12 01:24

Chloroethane	ND		1.0	0.32	ug/L		01/07/12 01:24	1
Chloroform	ND		1.0	0.34	ug/L		01/07/12 01:24	1
Chloromethane	ND		1.0	0.35	ug/L		01/07/12 01:24	1
cis-1,2-Dichloroethene	ND		1.0	0.81	ug/L		01/07/12 01:24	1
cis-1,3-Dichloropropene	ND		1.0	0.36	ug/L		01/07/12 01:24	1
Cyclohexane	ND		1.0	0.18	ug/L		01/07/12 01:24	1
Dichlorodifluoromethane	ND		1.0	0.68	ug/L		01/07/12 01:24	1
Ethylbenzene	ND		1.0	0.74	ug/L		01/07/12 01:24	1
Isopropylbenzene	ND		1.0	0.79	ug/L		01/07/12 01:24	1
Methyl acetate	ND		1.0	0.50	ug/L		01/07/12 01:24	1
Methyl tert-butyl ether	ND		1.0	0.16	ug/L		01/07/12 01:24	1
Methylcyclohexane	ND		1.0	0.16	ug/L		01/07/12 01:24	1
Methylene Chloride	ND		1.0	0.44	ug/L		01/07/12 01:24	1
Styrene	ND		1.0	0.73	ug/L		01/07/12 01:24	1
Tetrachloroethene	ND		1.0	0.36	ug/L		01/07/12 01:24	1
Toluene	ND		1.0	0.51	ug/L		01/07/12 01:24	1
trans-1,2-Dichloroethene	ND		1.0	0.90	ug/L		01/07/12 01:24	1
trans-1,3-Dichloropropene	ND		1.0	0.37	ug/L		01/07/12 01:24	1
Trichloroethene	ND		1.0	0.46	ug/L		01/07/12 01:24	1
Trichlorofluoromethane	ND		1.0	0.88	ug/L		01/07/12 01:24	1
Vinyl chloride	ND		1.0	0.90	ug/L		01/07/12 01:24	1
Xylenes, Total	ND		2.0	0.66	ug/L		01/07/12 01:24	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	88		66 - 137				01/07/12 01:24	1
Toluene-d8 (Surr)	102		71 - 126				01/07/12 01:24	1
4-Bromofluorobenzene (Surr)	103		73 - 120				01/07/12 01:24	1

Client Sample ID: DUP-010412

Date Collected: 01/04/12 00:00

Date Received: 01/06/12 09:30

Method: 8260B - Volatile Organic	Compounds ((GC/MS)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		1.0	0.82	ug/L			01/07/12 01:46	1
1,1,2,2-Tetrachloroethane	ND		1.0	0.21	ug/L			01/07/12 01:46	1
1,1,2-Trichloroethane	ND		1.0	0.23	ug/L			01/07/12 01:46	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		1.0	0.31	ug/L			01/07/12 01:46	1
1,1-Dichloroethane	ND		1.0	0.38	ug/L			01/07/12 01:46	1
1,1-Dichloroethene	ND		1.0	0.29	ug/L			01/07/12 01:46	1
1,2,4-Trichlorobenzene	ND		1.0	0.41	ug/L			01/07/12 01:46	1
1,2-Dibromo-3-Chloropropane	ND		1.0	0.39	ug/L			01/07/12 01:46	1
1,2-Dibromoethane	ND		1.0	0.73	ug/L			01/07/12 01:46	1
1,2-Dichlorobenzene	ND		1.0	0.79	ug/L			01/07/12 01:46	1
1,2-Dichloroethane	ND		1.0	0.21	ug/L			01/07/12 01:46	1
1,2-Dichloropropane	ND		1.0	0.72	ug/L			01/07/12 01:46	1
1,3-Dichlorobenzene	ND		1.0	0.78	ug/L			01/07/12 01:46	1
1,4-Dichlorobenzene	ND		1.0	0.84	ug/L			01/07/12 01:46	1
2-Hexanone	ND		5.0	1.2	ug/L			01/07/12 01:46	1

Page 14 of 33

Lab Sample ID: 480-14696-6

Matrix: Water

Lab Sample ID: 480-14696-5 Matrix: Water

6

6

Dil Fac

1

RL

10

5.0

MDL Unit

ug/L

1.3 ug/L

2.1

D

Prepared

Client Sample ID: DUP-010412 Date Collected: 01/04/12 00:00 Date Received: 01/06/12 09:30

Analyte

2-Butanone (MEK)

4-Methyl-2-pentanone (MIBK)

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Result Qualifier

J

4.3

ND

Lab Sample ID: 480-14696-6 Matrix: Water

Analyzed

01/07/12 01:46

01/07/12 01:46

6

Dil Fac

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

2

2

2

2

Dil Fac

Dil Fac

Dil Fac

Acetone	17		10	3.0	ug/L			01/07/12 01:46
Benzene	ND		1.0	0.41	ug/L			01/07/12 01:46
Bromodichloromethane	ND		1.0	0.39	ug/L			01/07/12 01:46
Bromoform	ND		1.0	0.26	ug/L			01/07/12 01:46
Bromomethane	ND		1.0	0.69	ug/L			01/07/12 01:46
Carbon disulfide	ND		1.0	0.19	ug/L			01/07/12 01:46
Carbon tetrachloride	ND		1.0	0.27	ug/L			01/07/12 01:46
Chlorobenzene	ND		1.0	0.75	ug/L			01/07/12 01:46
Dibromochloromethane	ND		1.0	0.32	ug/L			01/07/12 01:46
Chloroethane	ND		1.0	0.32	ug/L			01/07/12 01:46
Chloroform	ND		1.0	0.34	ug/L			01/07/12 01:46
Chloromethane	ND		1.0	0.35	ug/L			01/07/12 01:46
cis-1,2-Dichloroethene	89		1.0	0.81	ug/L			01/07/12 01:46
cis-1,3-Dichloropropene	ND		1.0	0.36	ug/L			01/07/12 01:46
Cyclohexane	ND		1.0	0.18	ug/L			01/07/12 01:46
Dichlorodifluoromethane	ND		1.0	0.68	ug/L			01/07/12 01:46
Ethylbenzene	ND		1.0	0.74	ug/L			01/07/12 01:46
Isopropylbenzene	ND		1.0	0.79	ug/L			01/07/12 01:46
Methyl acetate	ND		1.0	0.50	ug/L			01/07/12 01:46
Methyl tert-butyl ether	ND		1.0	0.16	ug/L			01/07/12 01:46
Methylcyclohexane	ND		1.0	0.16	ug/L			01/07/12 01:46
Methylene Chloride	ND		1.0	0.44	ug/L			01/07/12 01:46
Styrene	ND		1.0	0.73	ug/L			01/07/12 01:46
Tetrachloroethene	ND		1.0	0.36	ug/L			01/07/12 01:46
Toluene	ND		1.0	0.51	ug/L			01/07/12 01:46
trans-1,2-Dichloroethene	0.95	J	1.0	0.90	ug/L			01/07/12 01:46
trans-1,3-Dichloropropene	ND		1.0	0.37	ug/L			01/07/12 01:46
Trichlorofluoromethane	ND		1.0	0.88	ug/L			01/07/12 01:46
Vinyl chloride	12		1.0	0.90	ug/L			01/07/12 01:46
Xylenes, Total	ND		2.0	0.66	ug/L			01/07/12 01:46
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed
1,2-Dichloroethane-d4 (Surr)	90		66 - 137			-		01/07/12 01:46
Toluene-d8 (Surr)	100		71 - 126					01/07/12 01:46
4-Bromofluorobenzene (Surr)	101		73 - 120					01/07/12 01:46
- Method: 8260B - Volatile Orga	nic Compounds ((GC/MS) - D)L					
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed
Trichloroethene	120		2.0	0.92	ug/L			01/07/12 15:25
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed
1,2-Dichloroethane-d4 (Surr)			66 - 137			-		01/07/12 15:25
Toluene-d8 (Surr)	102		71 - 126					01/07/12 15:25
4-Bromofluorobenzene (Surr)	102		73 - 120					01/07/12 15:25
Method: RSK-175 - Dissolved (Gases (GC)							

Method: RSK-175 - Dissolved Gase	s (GC)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ethane	3.9		1.5	0.49	ug/L			01/06/12 18:27	1
Ethene	ND		1.5	0.52	ug/L			01/06/12 18:27	1

RL

1.0

RL

0.50

2.0

0.050

10.0

1.0

1.0

20.0

MDL Unit

MDL Unit

0.35 mg/L

0.011 mg/L

4.3 mg/L

0.15 mg/L

0.16 mg/L

3.4 mg/L

0.22 ug/L

0.28 mg/L

D

D

Prepared

Prepared

Client Sample ID: DUP-010412

Method: RSK-175 - Dissolved Gases (GC) (Continued)

Result Qualifier

Result Qualifier

120 B

9.5

29.9

213

39.7

ND

77.0

0.48 H

Date Collected: 01/04/12 00:00 Date Received: 01/06/12 09:30

Analyte

Analyte

Chloride

Nitrate as N

Acetic acid

Butyric acid

Propionic acid

Sulfate

Methane

General Chemistry

Total Organic Carbon

Lab Sample ID: 480-14696-6 Matrix: Water

Analyzed

01/06/12 18:27

Analyzed

01/09/12 19:27

01/09/12 19:27

01/06/12 19:13

01/10/12 16:49

01/06/12 19:33

01/06/12 19:33

01/10/12 19:53

Lab Sample ID: 480-14696-7

Matrix: Water

Dil Fac

Dil Fac

1

1

1

1

10

1

1

20

Date Collected: 01/04/12 16:30 Date Received: 01/06/12 09:30

Client Sample ID: FIIELD BLANK-010412

_ Method: 8260B - Volatile Organic	: Compounds (GC/MS)							
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND	1.0	0.82	ug/L			01/07/12 02:08	1
1,1,2,2-Tetrachloroethane	ND	1.0	0.21	ug/L			01/07/12 02:08	1
1,1,2-Trichloroethane	ND	1.0	0.23	ug/L			01/07/12 02:08	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	1.0	0.31	ug/L			01/07/12 02:08	1
1,1-Dichloroethane	ND	1.0	0.38	ug/L			01/07/12 02:08	1
1,1-Dichloroethene	ND	1.0	0.29	ug/L			01/07/12 02:08	1
1,2,4-Trichlorobenzene	ND	1.0	0.41	ug/L			01/07/12 02:08	1
1,2-Dibromo-3-Chloropropane	ND	1.0	0.39	ug/L			01/07/12 02:08	1
1,2-Dibromoethane	ND	1.0	0.73	ug/L			01/07/12 02:08	1
1,2-Dichlorobenzene	ND	1.0	0.79	ug/L			01/07/12 02:08	1
1,2-Dichloroethane	ND	1.0	0.21	ug/L			01/07/12 02:08	1
1,2-Dichloropropane	ND	1.0	0.72	ug/L			01/07/12 02:08	1
1,3-Dichlorobenzene	ND	1.0	0.78	ug/L			01/07/12 02:08	1
1,4-Dichlorobenzene	ND	1.0	0.84	ug/L			01/07/12 02:08	1
2-Hexanone	ND	5.0	1.2	ug/L			01/07/12 02:08	1
2-Butanone (MEK)	ND	10	1.3	ug/L			01/07/12 02:08	1
4-Methyl-2-pentanone (MIBK)	ND	5.0	2.1	ug/L			01/07/12 02:08	1
Acetone	4.3 J	10	3.0	ug/L			01/07/12 02:08	1
Benzene	ND	1.0	0.41	ug/L			01/07/12 02:08	1
Bromodichloromethane	ND	1.0	0.39	ug/L			01/07/12 02:08	1
Bromoform	ND	1.0	0.26	ug/L			01/07/12 02:08	1
Bromomethane	ND	1.0	0.69	ug/L			01/07/12 02:08	1
Carbon disulfide	ND	1.0	0.19	ug/L			01/07/12 02:08	1
Carbon tetrachloride	ND	1.0	0.27	ug/L			01/07/12 02:08	1
Chlorobenzene	ND	1.0	0.75	ug/L			01/07/12 02:08	1
Dibromochloromethane	ND	1.0	0.32	ug/L			01/07/12 02:08	1
Chloroethane	ND	1.0	0.32	ug/L			01/07/12 02:08	1
Chloroform	ND	1.0	0.34	ug/L			01/07/12 02:08	1
Chloromethane	ND	1.0	0.35	ug/L			01/07/12 02:08	1
cis-1,2-Dichloroethene	ND	1.0	0.81	ug/L			01/07/12 02:08	1
cis-1,3-Dichloropropene	ND	1.0	0.36	ug/L			01/07/12 02:08	1
Cyclohexane	ND	1.0	0.18	ug/L			01/07/12 02:08	1

Client Sample ID: FIIELD BLANK-010412 Date Collected: 01/04/12 16:30 Date Received: 01/06/12 09:30

Lab Sample ID: 480-14696-7 Matrix: Water

Mothod: 9260P Volatilo Orga	nic Compounds		antinued)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Dichlorodifluoromethane	ND		1.0	0.68	ug/L			01/07/12 02:08	1
Ethylbenzene	ND		1.0	0.74	ug/L			01/07/12 02:08	1
Isopropylbenzene	ND		1.0	0.79	ug/L			01/07/12 02:08	1
Methyl acetate	ND		1.0	0.50	ug/L			01/07/12 02:08	1
Methyl tert-butyl ether	ND		1.0	0.16	ug/L			01/07/12 02:08	1
Methylcyclohexane	ND		1.0	0.16	ug/L			01/07/12 02:08	1
Methylene Chloride	ND		1.0	0.44	ug/L			01/07/12 02:08	1
Styrene	ND		1.0	0.73	ug/L			01/07/12 02:08	1
Tetrachloroethene	ND		1.0	0.36	ug/L			01/07/12 02:08	1
Toluene	ND		1.0	0.51	ug/L			01/07/12 02:08	1
trans-1,2-Dichloroethene	ND		1.0	0.90	ug/L			01/07/12 02:08	1
trans-1,3-Dichloropropene	ND		1.0	0.37	ug/L			01/07/12 02:08	1
Trichloroethene	ND		1.0	0.46	ug/L			01/07/12 02:08	1
Trichlorofluoromethane	ND		1.0	0.88	ug/L			01/07/12 02:08	1
Vinyl chloride	ND		1.0	0.90	ug/L			01/07/12 02:08	1
Xylenes, Total	ND		2.0	0.66	ug/L			01/07/12 02:08	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	89		66 - 137			-		01/07/12 02:08	1
Toluene-d8 (Surr)	101		71 - 126					01/07/12 02:08	1
4-Bromofluorobenzene (Surr)	102		73 - 120					01/07/12 02:08	1
ep Type: Total/NA

Method: 8260B - \	Volatile Organic Compour	nds (GC/MS)			
Matrix: Water					Pre
_				Percent Surrogate	Recovery (Acceptance Limits)
		12DCE	TOL	BFB	
Lab Sample ID	Client Sample ID	(66-137)	(71-126)	(73-120)	
480-14696-1	RU-19-010412	90	101	102	
480-14696-1 - DL	RU-19-010412	90	102	104	
480-14696-2	RU-20-010412	90	102	104	
480-14696-2 - DL	RU-20-010412	91	104	104	
480-14696-3	RU-21-010412	90	102	104	
480-14696-4	RU-10-010412	90	101	103	
480-14696-4 - DL	RU-10-010412	91	103	104	
480-14696-5	TRIP BLANK-010412	88	102	103	
480-14696-6	DUP-010412	90	100	101	
480-14696-6 - DL	DUP-010412	88	102	102	
480-14696-7	FIIELD BLANK-010412	89	101	102	
LCS 480-47185/4	Lab Control Sample	91	100	103	
LCS 480-47214/4	Lab Control Sample	89	102	104	
MB 480-47185/5	Method Blank	91	102	102	

89

102

103

Surrogate Legend

MB 480-47214/5

12DCE = 1,2-Dichloroethane-d4 (Surr)

Method Blank

TOL = Toluene-d8 (Surr)

BFB = 4-Bromofluorobenzene (Surr)

Lab Sample ID: MB 480-47185/5

Method: 8260B - Volatile Organic Compounds (GC/MS)

Client Sample ID: Method Blank Prep Type: Total/NA

Matrix: Water Analysis Batch: 47185

MB	MB						
Analyte Result	Qualifier RI	L MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane ND	1.0	0.82	ug/L			01/06/12 19:41	1
1,1,2,2-Tetrachloroethane ND	1.0	0.21	ug/L			01/06/12 19:41	1
1,1,2-Trichloroethane ND	1.0	0.23	ug/L			01/06/12 19:41	1
1,1,2-Trichloro-1,2,2-trifluoroethane ND	1.(0.31	ug/L			01/06/12 19:41	1
1,1-Dichloroethane ND	1.0	0.38	ug/L			01/06/12 19:41	1
1,1-Dichloroethene ND	1.0	0.29	ug/L			01/06/12 19:41	1
1,2,4-Trichlorobenzene ND	1.(0.41	ug/L			01/06/12 19:41	1
1,2-Dibromo-3-Chloropropane ND	1.0	0.39	ug/L			01/06/12 19:41	1
1,2-Dibromoethane ND	1.0	0.73	ug/L			01/06/12 19:41	1
1,2-Dichlorobenzene ND	1.(0.79	ug/L			01/06/12 19:41	1
1,2-Dichloroethane ND	1.0	0.21	ug/L			01/06/12 19:41	1
1,2-Dichloropropane ND	1.0	0.72	ug/L			01/06/12 19:41	1
1,3-Dichlorobenzene ND	1.(0.78	ug/L			01/06/12 19:41	1
1,4-Dichlorobenzene ND	1.0	0.84	ug/L			01/06/12 19:41	1
2-Hexanone ND	5.0	0 1.2	ug/L			01/06/12 19:41	1
2-Butanone (MEK) ND	10	0 1.3	ug/L			01/06/12 19:41	1
4-Methyl-2-pentanone (MIBK) ND	5.0	0 2.1	ug/L			01/06/12 19:41	1
Acetone ND	10	3.0	ug/L			01/06/12 19:41	1
Benzene ND	1.(0.41	ug/L			01/06/12 19:41	1
Bromodichloromethane ND	1.0	0.39	ug/L			01/06/12 19:41	1
Bromoform ND	1.0	0.26	ug/L			01/06/12 19:41	1
Bromomethane ND	1.(0.69	ug/L			01/06/12 19:41	1
Carbon disulfide ND	1.0	0.19	ug/L			01/06/12 19:41	1
Carbon tetrachloride ND	1.0	0.27	ug/L			01/06/12 19:41	1
Chlorobenzene ND	1.(0.75	ug/L			01/06/12 19:41	1
Dibromochloromethane ND	1.0	0.32	ug/L			01/06/12 19:41	1
Chloroethane ND	1.0	0.32	ug/L			01/06/12 19:41	1
Chloroform ND	1.(0.34	ug/L			01/06/12 19:41	1
Chloromethane ND	1.0	0.35	ug/L			01/06/12 19:41	1
cis-1,2-Dichloroethene ND	1.0	0.81	ug/L			01/06/12 19:41	1
cis-1,3-Dichloropropene ND	1.(0.36	ug/L			01/06/12 19:41	1
Cyclohexane ND	1.0	0.18	ug/L			01/06/12 19:41	1
Dichlorodifluoromethane ND	1.0	0.68	ug/L			01/06/12 19:41	1
Ethylbenzene ND	1.(0.74	ug/L			01/06/12 19:41	1
Isopropylbenzene ND	1.0	0.79	ug/L			01/06/12 19:41	1
Methyl acetate ND	1.0	0.50	ug/L			01/06/12 19:41	1
Methyl tert-butyl ether ND	1.(0.16	ug/L			01/06/12 19:41	1
Methylcyclohexane ND	1.0	0.16	ug/L			01/06/12 19:41	1
Methylene Chloride ND	1.0	0.44	ug/L			01/06/12 19:41	1
Styrene ND	1.(0.73	ug/L			01/06/12 19:41	1
Tetrachloroethene ND	1.(0.36	ug/L			01/06/12 19:41	1
Toluene ND	1.0	0.51	ug/L			01/06/12 19:41	1
trans-1,2-Dichloroethene ND	1.(0.90	ug/L			01/06/12 19:41	1
trans-1,3-Dichloropropene ND	1.(0 0.37	ug/L			01/06/12 19:41	1
Trichloroethene ND	1.0	0 0.46	ug/L			01/06/12 19:41	1
Trichlorofluoromethane ND	1.(0.88	ug/L			01/06/12 19:41	1
Vinyl chloride ND	1.0	0.90	ug/L			01/06/12 19:41	1
Xylenes, Total ND	2.0	0.66	ug/L			01/06/12 19:41	1

Lab Sample ID: MB 480-47185/5

Analyzed

01/06/12 19:41

01/06/12 19:41

01/06/12 19:41

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Type: Total/NA

Client Sample ID: Lab Control Sample

Prepared

2 3 4 5 6 7 8

Client Sample ID: Method Blank Prep Type: Total/NA

Dil Fac

1

1

1

Matrix: Water

Analysis Batch: 47185

	MB	МВ	
Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	91		66 - 137
Toluene-d8 (Surr)	102		71 - 126
4-Bromofluorobenzene (Surr)	102		73 - 120

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 480-47185/4 Matrix: Water

Analysis Batch: 47185

Analysis Baten. 47100								
	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,1-Dichloroethane	25.0	23.5		ug/L		94	71 - 129	
1,1-Dichloroethene	25.0	23.5		ug/L		94	65 ₋ 138	
1,2-Dichlorobenzene	25.0	25.2		ug/L		101	77 _ 120	
1,2-Dichloroethane	25.0	23.3		ug/L		93	75 - 127	
Benzene	25.0	24.2		ug/L		97	71 ₋ 124	
Chlorobenzene	25.0	25.6		ug/L		102	72 - 120	
cis-1,2-Dichloroethene	25.0	24.5		ug/L		98	74 ₋ 124	
Ethylbenzene	25.0	25.2		ug/L		101	77 ₋ 123	
Methyl tert-butyl ether	25.0	23.4		ug/L		94	64 - 127	
Tetrachloroethene	25.0	24.9		ug/L		100	74 ₋ 122	
Toluene	25.0	25.5		ug/L		102	70 ₋ 122	
trans-1,2-Dichloroethene	25.0	25.0		ug/L		100	73 ₋ 127	
Trichloroethene	25.0	24.2		ug/L		97	74 ₋ 123	

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	91		66 - 137
Toluene-d8 (Surr)	100		71 - 126
4-Bromofluorobenzene (Surr)	103		73 - 120

Lab Sample ID: MB 480-47214/5 Matrix: Water

Analysis Batch: 47214

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		1.0	0.82	ug/L			01/07/12 12:36	1
1,1,2,2-Tetrachloroethane	ND		1.0	0.21	ug/L			01/07/12 12:36	1
1,1,2-Trichloroethane	ND		1.0	0.23	ug/L			01/07/12 12:36	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		1.0	0.31	ug/L			01/07/12 12:36	1
1,1-Dichloroethane	ND		1.0	0.38	ug/L			01/07/12 12:36	1
1,1-Dichloroethene	ND		1.0	0.29	ug/L			01/07/12 12:36	1
1,2,4-Trichlorobenzene	ND		1.0	0.41	ug/L			01/07/12 12:36	1
1,2-Dibromo-3-Chloropropane	ND		1.0	0.39	ug/L			01/07/12 12:36	1
1,2-Dibromoethane	ND		1.0	0.73	ug/L			01/07/12 12:36	1
1,2-Dichlorobenzene	ND		1.0	0.79	ug/L			01/07/12 12:36	1
1,2-Dichloroethane	ND		1.0	0.21	ug/L			01/07/12 12:36	1
1,2-Dichloropropane	ND		1.0	0.72	ug/L			01/07/12 12:36	1
1,3-Dichlorobenzene	ND		1.0	0.78	ug/L			01/07/12 12:36	1
1,4-Dichlorobenzene	ND		1.0	0.84	ug/L			01/07/12 12:36	1
2-Hexanone	ND		5.0	1.2	ug/L			01/07/12 12:36	1
2-Butanone (MEK)	ND		10	1.3	ug/L			01/07/12 12:36	1

Client Sample ID: Method Blank

2 3 4 5

7 8 9 10

	2

Mathadu	0260D	Valatila	Orgonia	Compoundo	(CC/MC)	(Continued)
wiethou:	02000 -	·volatile	Organic	Compounds	(66/103)	(Continued)

Lab Sample ID: MB 480-47214/5 Matrix: Water

Matrix: Water								Prep Type: 1	otal/NA
Analysis Batch: 47214									
-	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
4-Methyl-2-pentanone (MIBK)	ND		5.0	2.1	ug/L			01/07/12 12:36	1
Acetone	ND		10	3.0	ug/L			01/07/12 12:36	1
Benzene	ND		1.0	0.41	ug/L			01/07/12 12:36	1
Bromodichloromethane	ND		1.0	0.39	ug/L			01/07/12 12:36	1
Bromoform	ND		1.0	0.26	ug/L			01/07/12 12:36	1
Bromomethane	ND		1.0	0.69	ug/L			01/07/12 12:36	1
Carbon disulfide	ND		1.0	0.19	ug/L			01/07/12 12:36	1
Carbon tetrachloride	ND		1.0	0.27	ug/L			01/07/12 12:36	1
Chlorobenzene	ND		1.0	0.75	ug/L			01/07/12 12:36	1
Dibromochloromethane	ND		1.0	0.32	ug/L			01/07/12 12:36	1
Chloroethane	ND		1.0	0.32	ug/L			01/07/12 12:36	1
Chloroform	ND		1.0	0.34	ug/L			01/07/12 12:36	1
Chloromethane	ND		1.0	0.35	ug/L			01/07/12 12:36	1
cis-1,2-Dichloroethene	ND		1.0	0.81	ug/L			01/07/12 12:36	1
cis-1,3-Dichloropropene	ND		1.0	0.36	ug/L			01/07/12 12:36	1
Cyclohexane	ND		1.0	0.18	ug/L			01/07/12 12:36	1
Dichlorodifluoromethane	ND		1.0	0.68	ug/L			01/07/12 12:36	1
Ethylbenzene	ND		1.0	0.74	ug/L			01/07/12 12:36	1
Isopropylbenzene	ND		1.0	0.79	ug/L			01/07/12 12:36	1
Methyl acetate	ND		1.0	0.50	ug/L			01/07/12 12:36	1
Methyl tert-butyl ether	ND		1.0	0.16	ug/L			01/07/12 12:36	1
Methylcyclohexane	ND		1.0	0.16	ug/L			01/07/12 12:36	1
Methylene Chloride	ND		1.0	0.44	ug/L			01/07/12 12:36	1
Styrene	ND		1.0	0.73	ug/L			01/07/12 12:36	1
Tetrachloroethene	ND		1.0	0.36	ug/L			01/07/12 12:36	1
Toluene	ND		1.0	0.51	ug/L			01/07/12 12:36	1
trans-1,2-Dichloroethene	ND		1.0	0.90	ug/L			01/07/12 12:36	1
trans-1,3-Dichloropropene	ND		1.0	0.37	ug/L			01/07/12 12:36	1
Trichloroethene	ND		1.0	0.46	ug/L			01/07/12 12:36	1
Trichlorofluoromethane	ND		1.0	0.88	ug/L			01/07/12 12:36	1
Vinyl chloride	ND		1.0	0.90	ug/L			01/07/12 12:36	1
Xylenes, Total	ND		2.0	0.66	ug/L			01/07/12 12:36	1
	MB	МВ							

Surrogate	%Recovery	Qualifier	Limits		Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	89		66 - 137	-		01/07/12 12:36	
Toluene-d8 (Surr)	102		71 _ 126			01/07/12 12:36	1
4-Bromofluorobenzene (Surr)	103		73 - 120			01/07/12 12:36	

Lab Sample ID: LCS 480-47214/4 Matrix: Water Analysis Batch: 47214

Spik	e LCS	LCS			%Rec.	
Analyte Adde	d Result	Qualifier Unit	D	%Rec	Limits	
1,1-Dichloroethane 25.	23.5	ug/L		94	71 - 129	
1,1-Dichloroethene 25.	0 20.9	ug/L		84	65 - 138	
1,2-Dichlorobenzene 25.	0 25.3	ug/L		101	77 - 120	
1,2-Dichloroethane 25.	0 22.6	ug/L		90	75 _ 127	
Benzene 25.	0 24.4	ug/L		98	71 - 124	
Chlorobenzene 25.	0 26.3	ug/L		105	72 - 120	

Prep Type: Total/NA

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

8

Client Sample ID: Lab Control Sample

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 480-47214/4 Matrix: Water

Analysis Batch: 47214

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
cis-1,2-Dichloroethene	25.0	23.8		ug/L		95	74 - 124	
Ethylbenzene	25.0	25.6		ug/L		102	77 ₋ 123	
Methyl tert-butyl ether	25.0	21.9		ug/L		88	64 - 127	
Tetrachloroethene	25.0	25.2		ug/L		101	74 ₋ 122	
Toluene	25.0	25.9		ug/L		104	70 ₋ 122	
trans-1,2-Dichloroethene	25.0	24.9		ug/L		100	73 - 127	
Trichloroethene	25.0	23.5		ug/L		94	74 ₋ 123	

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	89		66 - 137
Toluene-d8 (Surr)	102		71 - 126
4-Bromofluorobenzene (Surr)	104		73 - 120

Method: RSK-175 - Dissolved Gases (GC)

Lab Sample ID: MB 480-47160/2 Matrix: Water Analysis Batch: 47160						Client S	ample ID: Metho Prep Type: T	d Blank otal/NA	
-	MB	МВ							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ethane	ND		1.5	0.49	ug/L			01/06/12 16:02	1
Ethene	ND		1.5	0.52	ug/L			01/06/12 16:02	1
Methane	0.328	J	1.0	0.22	ug/L			01/06/12 16:02	1

Lab Sample ID: LCS 480-47160/3 Matrix: Water

Ana	lvsis	Batch:	47160
		Batom	

	Spike	LCS	LCS			%Rec.	
Analyte	Added	Result	Qualifier	Unit D	%Rec	Limits	
Ethane	7.21	7.81		ug/L	108	41 - 176	
Ethene	6.73	7.28		ug/L	108	62 _ 143	
Methane	3.88	5.11		ug/L	132	67 _ 140	

Lab Sample ID: LCSD 480-47160/4 Matrix: Water

Analysis Batch: 47160

	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Ethane	7.21	8.32		ug/L		115	41 - 176	6	50
Ethene	6.73	7.51		ug/L		112	62 _ 143	3	50
Methane	3.88	5.25		ua/L		135	67 - 140	3	50

Lab Sample ID: MB 480-47480/2

Matrix: Water Analysis Batch: 47480

	MB	МВ							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ethane	ND		1.5	0.49	ug/L			01/10/12 15:02	1
Ethene	ND		1.5	0.52	ug/L			01/10/12 15:02	1
Methane	ND		1.0	0.22	ug/L			01/10/12 15:02	1

Prep Type: Total/NA

Prep Type: Total/NA

Client Sample ID: Method Blank

Client Sample ID: Lab Control Sample

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

LCS LCS

LCSD LCSD

8.61

8.08

5.16

Result Qualifier

8.15

7.54

4.67

Result Qualifier

Unit

ug/L

ug/L

ug/L

Unit

ug/L

ug/L

ug/L

D

D

%Rec

113

112

120

%Rec

119

120

133

Spike

Added

7.21

6.73

3.88

Spike

Added

7.21

6.73

3.88

Lab Sample ID: LCS 480-47480/3

Lab Sample ID: LCSD 480-47480/4

Matrix: Water

Matrix: Water

Analyte

Ethane

Ethene

Methane

Analyte

Ethane

Ethene

Methane

Analysis Batch: 47480

Analysis Batch: 47480

Prep Type: Total/NA

Prep Type: Total/NA

RPD

5

7

10

Client Sample ID: Lab Control Sample

%Rec.

Limits

41 - 176

62 - 143

67 - 140

%Rec.

Limits

41 - 176

62 - 143

67 _ 140

Client Sample ID: Lab Control Sample Dup

2 3 4 5 6 7

8 9 10 11

RPD

Limit

50

50

50

Method: 300.0 - Anions, Ion Chromatography

Method: RSK-175 - Dissolved Gases (GC) (Continued)

Lab Sample ID: MB 480-47318/28 Matrix: Water Analysis Batch: 47318							Client S	ample ID: Metho Prep Type: T	d Blank otal/NA
	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	ND		0.50	0.28	mg/L			01/09/12 18:37	1
Sulfate	ND		2.0	0.35	mg/L			01/09/12 18:37	1
Lab Sample ID: LCS 480-47318/27						CI	ient Sample	ID: Lab Control	Sample
Matrix: Water								Prep Type: T	'otal/NA
Analysis Batch: 47318									
			Cuilto	100 10	NO			0/ Dee	

	Spike	LCS	LCS			%Rec.	
Analyte	Added	Result	Qualifier Unit	D	%Rec	Limits	
Chloride	20.0	20.50	mg/L	. –	103	90 - 110	
Sulfate	20.0	20.90	mg/L		105	90 _ 110	

Method: SM 5310D - Organic Carbon, Total (TOC)

Lab Sample ID: MB 480-47544/3 Matrix: Water Analysis Batch: 47544										С	lient Sa	ample ID: Me Prep Typ	thod Blank e: Total/NA
Analysis Baton. 47044	МВ	МВ											
Analyte	Result	Qualifier		RL	м	DL	Unit		D	Pre	pared	Analyzed	Dil Fac
Total Organic Carbon	ND			1.0	0	.43	mg/L					01/10/12 14:	28 1
									Clie	nt S	Sample	ID: Lab Con	trol Sample
Matrix: Water												Prep Typ	e: Total/NA
Analysis Batch: 47544													
			Spike		LCS	LCS	5					%Rec.	
Analyte			Added		Result	Qua	alifier	Unit		D	%Rec	Limits	
Total Organic Carbon			60.0		59.69			mg/L		_	99	90 - 110	

RL

1.0

1.0

1.0

Spike

Added

10.0

10.0

10.0

MDL Unit

0.15 mg/L

0.16 mg/L

0.17 mg/L

LCS LCS

10.50

10.40

10.70

Result Qualifier

D

Unit

mg/L

mg/L

mg/L

Prepared

%Rec

105

104

107

D

Lab Sample ID: MB 480-47126/4

Lab Sample ID: LCS 480-47126/3

Matrix: Water

Analyte

Analyte

Acetic acid

Butyric acid

Propionic acid

Matrix: Water

Acetic acid

Butyric acid

Propionic acid

Matrix: Water

Analysis Batch: 47126

Analysis Batch: 47126

Method: VFA-IC - Volatile Fatty Acids, Ion Chromatography

MB MB Result Qualifier

ND

ND

ND

TestAmerica Job ID: 480-14696-1

Client Sample ID: Method Blank

Analyzed

01/06/12 17:07

01/06/12 17:07

01/06/12 17:07

Client Sample ID: Lab Control Sample

%Rec.

Limits

80 - 120

80 - 120

80 - 120

Prep Type: Total/NA

Prep Type: Total/NA

Dil Fac

1

1

1

1 2 3 4 5 6 7 8

Client Sample ID: DUP-010412 Prep Type: Total/NA

Client Sample ID: DUP-010412

Client Sample ID: Method Blank

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Type: Total/NA

Prep Type: Total/NA

Analysis Batch: 47126										
	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Acetic acid	39.7		10.0	50.20	E	mg/L		105	80 - 120	
Butyric acid	ND		10.0	10.00		mg/L		100	80 - 120	

Lab Sample ID: 480-14696-6 MSD Matrix: Water

Lab Sample ID: 480-14696-6 MS

Analysis Batch: 47126

	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Acetic acid	39.7		10.0	51.20	E	mg/L		115	80 - 120	2	20
Butyric acid	ND		10.0	10.50		mg/L		105	80 - 120	5	20

Lab Sample ID: MB 480-47492/4 Matrix: Water

Analysis Batch: 47492

	MB	IVIB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acetic acid	ND		1.0	0.15	mg/L			01/10/12 17:27	1
Butyric acid	ND		1.0	0.16	mg/L			01/10/12 17:27	1
Propionic acid	ND		1.0	0.17	mg/L			01/10/12 17:27	1

Lab Sample ID: LCS 480-47492/3 Matrix: Water

Analysis Batch: 47492

	Spike	LCS	LCS			%Rec.	
Analyte	Added	Result	Qualifier U	nit D	%Rec	Limits	
Acetic acid	10.0	10.70	m	g/L	107	80 - 120	
Butyric acid	10.0	10.80	m	g/L	108	80 - 120	
Propionic acid	10.0	10.80	m	g/L	108	80 - 120	

GC/MS VOA

Analysis Batch: 47185

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-14696-1	RU-19-010412	Total/NA	Water	8260B	
480-14696-2	RU-20-010412	Total/NA	Water	8260B	
480-14696-4	RU-10-010412	Total/NA	Water	8260B	
480-14696-5	TRIP BLANK-010412	Total/NA	Water	8260B	
480-14696-6	DUP-010412	Total/NA	Water	8260B	
480-14696-7	FIIELD BLANK-010412	Total/NA	Water	8260B	
LCS 480-47185/4	Lab Control Sample	Total/NA	Water	8260B	
MB 480-47185/5	Method Blank	Total/NA	Water	8260B	

Analysis Batch: 47214

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-14696-1 - DL	RU-19-010412	Total/NA	Water	8260B	
480-14696-2 - DL	RU-20-010412	Total/NA	Water	8260B	
480-14696-3	RU-21-010412	Total/NA	Water	8260B	
480-14696-4 - DL	RU-10-010412	Total/NA	Water	8260B	
480-14696-6 - DL	DUP-010412	Total/NA	Water	8260B	
LCS 480-47214/4	Lab Control Sample	Total/NA	Water	8260B	
MB 480-47214/5	Method Blank	Total/NA	Water	8260B	

GC VOA

Analysis Batch: 47160

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-14696-1	RU-19-010412	Total/NA	Water	RSK-175	
480-14696-2	RU-20-010412	Total/NA	Water	RSK-175	
480-14696-3	RU-21-010412	Total/NA	Water	RSK-175	
480-14696-4	RU-10-010412	Total/NA	Water	RSK-175	
480-14696-6	DUP-010412	Total/NA	Water	RSK-175	
LCS 480-47160/3	Lab Control Sample	Total/NA	Water	RSK-175	
LCSD 480-47160/4	Lab Control Sample Dup	Total/NA	Water	RSK-175	
MB 480-47160/2	Method Blank	Total/NA	Water	RSK-175	

Analysis Batch: 47480

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-14696-1	RU-19-010412	Total/NA	Water	RSK-175	
480-14696-3	RU-21-010412	Total/NA	Water	RSK-175	
LCS 480-47480/3	Lab Control Sample	Total/NA	Water	RSK-175	
LCSD 480-47480/4	Lab Control Sample Dup	Total/NA	Water	RSK-175	
MB 480-47480/2	Method Blank	Total/NA	Water	RSK-175	

General Chemistry

Analysis Batch: 47126

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-14696-1	RU-19-010412	Total/NA	Water	VFA-IC	
480-14696-2	RU-20-010412	Total/NA	Water	VFA-IC	
480-14696-3	RU-21-010412	Total/NA	Water	VFA-IC	
480-14696-4	RU-10-010412	Total/NA	Water	VFA-IC	
480-14696-6	DUP-010412	Total/NA	Water	VFA-IC	
480-14696-6 MS	DUP-010412	Total/NA	Water	VFA-IC	
480-14696-6 MSD	DUP-010412	Total/NA	Water	VFA-IC	
LCS 480-47126/3	Lab Control Sample	Total/NA	Water	VFA-IC	

General Chemistry (Continued)

Analysis Batch: 47126 (Continued)

MB 480-47544/3

Method Blank

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
MB 480-47126/4	Method Blank	Total/NA	Water	VFA-IC	
– Analysis Batch: 4719	9				
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-14696-1	RU-19-010412	Total/NA	Water	353.2	
480-14696-2	RU-20-010412	Total/NA	Water	353.2	
480-14696-3	RU-21-010412	Total/NA	Water	353.2	
480-14696-4	RU-10-010412	Total/NA	Water	353.2	
480-14696-6	DUP-010412	Total/NA	Water	353.2	
Analysis Batch: 4731	8				
Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
480-14696-1	RU-19-010412	Total/NA	Water	300.0	
480-14696-2	RU-20-010412	Total/NA	Water	300.0	
480-14696-3	RU-21-010412	Total/NA	Water	300.0	
480-14696-4	RU-10-010412	Total/NA	Water	300.0	
480-14696-6	DUP-010412	Total/NA	Water	300.0	
LCS 480-47318/27	Lab Control Sample	Total/NA	Water	300.0	
MB 480-47318/28	Method Blank	Total/NA	Water	300.0	
Analysis Batch: 4749	2				
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-14696-3	RU-21-010412	Total/NA	Water	VFA-IC	
480-14696-4	RU-10-010412	Total/NA	Water	VFA-IC	
480-14696-6	DUP-010412	Total/NA	Water	VFA-IC	
LCS 480-47492/3	Lab Control Sample	Total/NA	Water	VFA-IC	
MB 480-47492/4	Method Blank	Total/NA	Water	VFA-IC	
Analysis Batch: 4754	4				
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-14696-1	RU-19-010412	Total/NA	Water	SM 5310D	
480-14696-2	RU-20-010412	Total/NA	Water	SM 5310D	
480-14696-3	RU-21-010412	Total/NA	Water	SM 5310D	
480-14696-4	RU-10-010412	Total/NA	Water	SM 5310D	
480-14696-6	DUP-010412	Total/NA	Water	SM 5310D	
LCS 480-47544/4	Lab Control Sample	Total/NA	Water	SM 5310D	

SM 5310D

Total/NA

Water

Client Sample ID: RU-19-010412

Lab Sample ID: 480-14696-1 Matrix: Water

Date Collected: 01/04/12 13:00 Date Received: 01/06/12 09:30

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		1	47185	01/06/12 23:55	DC	TAL BUF
Total/NA	Analysis	8260B	DL	10	47214	01/07/12 13:56	TRB	TAL BUF
Total/NA	Analysis	RSK-175		1	47160	01/06/12 17:19	JM	TAL BUF
Total/NA	Analysis	RSK-175		50	47480	01/10/12 16:09	JM	TAL BUF
Total/NA	Analysis	VFA-IC		1	47126	01/06/12 17:36	KAC	TAL BUF
Total/NA	Analysis	353.2		1	47199	01/06/12 19:05	EGN	TAL BUF
Total/NA	Analysis	300.0		1	47318	01/09/12 18:47	KAC	TAL BUF
Total/NA	Analysis	SM 5310D		1	47544	01/10/12 15:39	KAC	TAL BUF

Client Sample ID: RU-20-010412

Date Collected: 01/04/12 15:15 Date Received: 01/06/12 09:30

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		1	47185	01/07/12 00:18	DC	TAL BUF
Total/NA	Analysis	8260B	DL	40	47214	01/07/12 14:18	TRB	TAL BUF
Total/NA	Analysis	RSK-175		1	47160	01/06/12 17:36	JM	TAL BUF
Total/NA	Analysis	VFA-IC		1	47126	01/06/12 18:05	KAC	TAL BUF
Total/NA	Analysis	353.2		1	47199	01/06/12 19:07	EGN	TAL BUF
Total/NA	Analysis	300.0		1	47318	01/09/12 18:57	KAC	TAL BUF
Total/NA	Analysis	SM 5310D		1	47544	01/10/12 15:56	KAC	TAL BUF

Client Sample ID: RU-21-010412 Date Collected: 01/04/12 11:30 Date Received: 01/06/12 09:30

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		2	47214	01/07/12 14:40	TRB	TAL BUF
Total/NA	Analysis	RSK-175		1	47160	01/06/12 17:53	JM	TAL BUF
Total/NA	Analysis	RSK-175		50	47480	01/10/12 16:26	JM	TAL BUF
Total/NA	Analysis	VFA-IC		1	47126	01/06/12 18:35	KAC	TAL BUF
Total/NA	Analysis	353.2		1	47199	01/06/12 19:09	EGN	TAL BUF
Total/NA	Analysis	300.0		5	47318	01/09/12 19:07	KAC	TAL BUF
Total/NA	Analysis	VFA-IC		50	47492	01/10/12 17:57	KAC	TAL BUF
Total/NA	Analysis	SM 5310D		40	47544	01/10/12 16:14	KAC	TAL BUF

Client Samp	ent Sample ID: RU-10-010412 Lab Sample ID: 480-1469									
Date Collected	: 01/04/12 09:	30					-	Matrix: Water		
Date Received	: 01/06/12 09:3	30								
	Batch	Batch		Dilution	Batch	Prepared				
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab		
Total/NA	Analysis	8260B		1	47185	01/07/12 01:02	DC	TAL BUF		

Lab Sample ID: 480-14696-2

Matrix: Water

Lab Sample ID: 480-14696-3

Matrix: Water

Client Sample ID: RU-10-010412

Lab Sample ID: 480-14696-4 Matrix: Water

Date Collected: 01/04/12 09:30 Date Received: 01/06/12 09:30

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B	DL	2	47214	01/07/12 15:03	TRB	TAL BUF
Total/NA	Analysis	RSK-175		1	47160	01/06/12 18:10	JM	TAL BUF
Total/NA	Analysis	VFA-IC		1	47126	01/06/12 19:04	KAC	TAL BUF
Total/NA	Analysis	353.2		1	47199	01/06/12 19:11	EGN	TAL BUF
Total/NA	Analysis	300.0		1	47318	01/09/12 19:17	KAC	TAL BUF
Total/NA	Analysis	VFA-IC		2	47492	01/10/12 18:55	KAC	TAL BUF
Total/NA	Analysis	SM 5310D		10	47544	01/10/12 16:32	KAC	TAL BUF

Client Sample ID: TRIP BLANK-010412

Date Collected: 01/04/12 00:00

Date Received: 01/06/12 09:30

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		1	47185	01/07/12 01:24	DC	TAL BUF

Client Sample ID: DUP-010412 Date Collected: 01/04/12 00:00

Date Received: 01/06/12 09:30

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		1	47185	01/07/12 01:46	DC	TAL BUF
Total/NA	Analysis	8260B	DL	2	47214	01/07/12 15:25	TRB	TAL BUF
Total/NA	Analysis	RSK-175		1	47160	01/06/12 18:27	JM	TAL BUF
Total/NA	Analysis	VFA-IC		1	47126	01/06/12 19:33	KAC	TAL BUF
Total/NA	Analysis	353.2		1	47199	01/06/12 19:13	EGN	TAL BUF
Total/NA	Analysis	300.0		1	47318	01/09/12 19:27	KAC	TAL BUF
Total/NA	Analysis	VFA-IC		20	47492	01/10/12 19:53	KAC	TAL BUF
Total/NA	Analysis	SM 5310D		10	47544	01/10/12 16:49	KAC	TAL BUF

Client Sample ID: FIIELD BLANK-010412 Date Collected: 01/04/12 16:30 Date Received: 01/06/12 09:30

_								
	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		1	47185	01/07/12 02:08	DC	TAL BUE

Laboratory References:

TAL BUF = TestAmerica Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

Lab Sample ID: 480-14696-6 Matrix: Water

Lab Sample ID: 480-14696-7

Matrix: Water

Certification Summary

Client: CDM Smith, Inc. Project/Site: New York state project

1	
5	
8	
9	
11	
13	

Laboratory	Authority	Program	EPA Region	Certification ID
TestAmerica Buffalo	Arkansas	State Program	6	88-0686
TestAmerica Buffalo	California	NELAC	9	1169CA
TestAmerica Buffalo	Connecticut	State Program	1	PH-0568
TestAmerica Buffalo	Florida	NELAC	4	E87672
TestAmerica Buffalo	Georgia	Georgia EPD	4	N/A
TestAmerica Buffalo	Georgia	State Program	4	956
TestAmerica Buffalo	Illinois	NELAC	5	100325 / 200003
TestAmerica Buffalo	Iowa	State Program	7	374
TestAmerica Buffalo	Kansas	NELAC	7	E-10187
TestAmerica Buffalo	Kentucky	Kentucky UST	4	30
TestAmerica Buffalo	Kentucky	State Program	4	90029
TestAmerica Buffalo	Louisiana	NELAC	6	02031
TestAmerica Buffalo	Maine	State Program	1	NY0044
TestAmerica Buffalo	Maryland	State Program	3	294
TestAmerica Buffalo	Massachusetts	State Program	1	M-NY044
TestAmerica Buffalo	Michigan	State Program	5	9937
TestAmerica Buffalo	Minnesota	NELAC	5	036-999-337
TestAmerica Buffalo	New Hampshire	NELAC	1	2337
TestAmerica Buffalo	New Hampshire	NELAC	1	68-00281
TestAmerica Buffalo	New Jersey	NELAC	2	NY455
TestAmerica Buffalo	New York	NELAC	2	10026
TestAmerica Buffalo	North Dakota	State Program	8	R-176
TestAmerica Buffalo	Oklahoma	State Program	6	9421
TestAmerica Buffalo	Oregon	NELAC	10	NY200003
TestAmerica Buffalo	Pennsylvania	NELAC	3	68-00281
TestAmerica Buffalo	Tennessee	State Program	4	TN02970
TestAmerica Buffalo	Texas	NELAC	6	T104704412-08-TX
TestAmerica Buffalo	USDA	USDA		P330-08-00242
TestAmerica Buffalo	Virginia	NELAC Secondary AB	3	460185
TestAmerica Buffalo	Virginia	State Program	3	278
TestAmerica Buffalo	Washington	State Program	10	C1677
TestAmerica Buffalo	Wisconsin	State Program	5	998310390

Accreditation may not be offered or required for all methods and analytes reported in this package. Please contact your project manager for the laboratory's current list of certified methods and analytes.

Client: CDM Smith, Inc. Project/Site: New York state project

1	
_	
_	
	5
	8
	9
	12
	13

Method	Method Description Protoc	ol	Laboratory
8260B	Volatile Organic Compounds (GC/MS) SW840	6	TAL BUF
RSK-175	Dissolved Gases (GC) RSK		TAL BUF
300.0	Anions, Ion Chromatography MCAW	W	TAL BUF
353.2	Nitrate EPA		TAL BUF
SM 5310D	Organic Carbon, Total (TOC) SM		TAL BUF
VFA-IC	Volatile Fatty Acids, Ion Chromatography TestAr	nerica SOP	TAL BUF

Protocol References:

EPA = US Environmental Protection Agency

MCAWW = "Methods For Chemical Analysis Of Water And Wastes", EPA-600/4-79-020, March 1983 And Subsequent Revisions.

RSK = Sample Prep And Calculations For Dissolved Gas Analysis In Water Samples Using A GC Headspace Equilibration Technique, RSKSOP-175,

Rev. 0, 8/11/94, USEPA Research Lab

SM = "Standard Methods For The Examination Of Water And Wastewater",

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

TestAmerica SOP = TestAmerica, Inc., Standard Operating Procedure

Laboratory References:

TAL BUF = TestAmerica Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

Sample Summary

Client: CDM Smith, Inc. Project/Site: New York state project TestAmerica Job ID: 480-14696-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
480-14696-1	RU-19-010412	Water	01/04/12 13:00	01/06/12 09:30
480-14696-2	RU-20-010412	Water	01/04/12 15:15	01/06/12 09:30
480-14696-3	RU-21-010412	Water	01/04/12 11:30	01/06/12 09:30
480-14696-4	RU-10-010412	Water	01/04/12 09:30	01/06/12 09:30
480-14696-5	TRIP BLANK-010412	Water	01/04/12 00:00	01/06/12 09:30
480-14696-6	DUP-010412	Water	01/04/12 00:00	01/06/12 09:30
480-14696-7	FIIELD BLANK-010412	Water	01/04/12 16:30	01/06/12 09:30

	erica	موالارد المراجع				ſ	8	03	d alteringene		(ADBd)	T											-		Τ		Γ—	Π	J	T		
	stAm.	Elfe Line E-412-1-12	0295-5089 1	of 1		allon Codes;	H N. Mone Cetate O. Ashe	Cod P- Na20 Cod D- N-20 T- N-20	tor S. H250 the Acre J. 13P D	10 - ALMA 10 V - MCAA 14 - Dh 4-5	Z - piher (s		cial Instructions												n 1 monthi	Months		Compare	Codesaugh	Camberry		
) (الا		K-187		# 92	Presen	0-7-2 0-7-2		G - Amph H - Ascor I - Ice		tring Differ	н рагадши М	Total	X					\downarrow						lained longer tha	Archivo Fry		14 20	5-123 1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-	27		
	F	er Tracking Aufsj		ĺ) j																				lf samples are re	/1sb	d ef Shinmart	Delivitime		DehyT.rha	- - -	
	cord	Cerr		icainc.com	alysis Reques							2' 323'5 '2		~						- - 					ay he assessed	Urrements:	Afemo	1.1		+	Other Remarks	
	tody Rec	Pear		เหลากญาตรเลตคา	Å Å				904	epyone ouge ouge ouge	iu nepres Iri O, este Iri O, este Iri S, este Iri S, este Iri Iri S, este Iri Iri Iri Iri Iri Iri Iri Iri Iri Iri	A_16 - VFA Co 21900 - Total 2100 - Total 210 - Year 220 - Maille 220 - Maille 220 - Maille 2000 - VFA Co	152 . INS . 200			XXXXX			XXXX						lisposal (A fee m	structions/OC Req		E Cirle	d Er / / /) (Ale 1, (s)eurospeciule	
	n of Cus	Las PM [.] Gray-Érdmann.	F-Mail	Dia-April: Africad		T			40) 01 40	63 04 6 (7 68	14m55 14m55 14m57	etteres Shered Filtered Shered						X	X	XTT					Sample D	Special Inc.	Tame [.]	Mith Rucens	Receive	Recense	Cotler 7	
	Chai	, y	20				~					Type	Preservation Coc	Wale	Wats	Wate	Wale	Wate	W ate	Wate	Wate	Wate	Wate	Wate	diatonicat			Y- KDM S	Company	Company		
		0 20 12430	10-084		:Peqes	(daye):	0-0/0-0	der nöl recuired				Sample		1320	1515	1150	0450	1	4	1630							Data:	1 11:14	16:00		-	
		A Palmer	Phone:	2	Due Date Requ	TAT Requesting	У Т	HU#	WO#:	Project # 48005039	SSCW4.		Sample Da	2//17/1						+					Paison B			Date/firms	Data and a contract	Date Time:		
																		2/1/2		214						pecify)			4			
alo	1 ((716) 691- <u>7</u> 991													01041	010412	5/04/Z	21401	12-01	2120	12-010					cation	II, III, IV, Other (s)		Carlow -	7-14/06	2	Custody Seal No.	
vmerica Buff	ewood Drive (, NY 14228-7294 716) 891-2600 Fax	Information	ting the second s	recor & McKoo It				2647[[A])	@cdm.com	ine. A state project			klentification	0-19.	0.20	1-21-0	2-01-02	C. 10 6/4	10-20	eld Bla					ie Hazard Identifi n-Hazard Dia	ble Requested 1,	di Relinquished by	No In the	The Alter	ta pic	dy Seals Inted Yes A No	
TestA	Amhersi Phone (Client	Client Con	Commy Commy	Address	111 000	State Zp.	Phone.	E-rot. SmithM	Prevect Net	ä		Sample	×		2		i	2	لاتم						Delivera	Emply H	Reinquist	Reinquis	Reinquist	Custo	

Login Sample Receipt Checklist

Client: CDM Smith, Inc.

Login Number: 14696 List Number: 1

Creator: Janish, Carl

Question	Answer	Comment
Radioactivity either was not measured or, if measured, is at or below background	True	
The cooler's custody seal, if present, is intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the sample IDs on the containers and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	True	
If necessary, staff have been informed of any short hold time or quick TAT needs	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Sampling Company provided.	True	CDM
Samples received within 48 hours of sampling.	True	
Samples requiring field filtration have been filtered in the field.	N/A	
Chlorine Residual checked.	N/A	

Job Number: 480-14696-1

List Source: TestAmerica Buffalo

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Buffalo 10 Hazelwood Drive Amherst, NY 14228-2298 Tel: (716)691-2600

TestAmerica Job ID: 480-16799-1 Client Project/Site: New York state project

For:

CDM Smith, Inc. 555 17th Street Suite 1100 Denver, Colorado 80202

Attn: Neil Smith

Eberry

Authorized for release by: 3/15/2012 11:04:10 AM Eve Berry Project Administrator eve.berry@testamericainc.com

Designee for

Peggy Gray-Erdmann Project Manager II peggy.gray-erdmann@testamericainc.com

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Detection Summary	5
Client Sample Results	7
Surrogate Summary	17
QC Sample Results	18
QC Association Summary	25
Lab Chronicle	27
Certification Summary	29
Method Summary	30
Sample Summary	31
Chain of Custody	32
Receipt Checklists	33

Qualifiers

Qualifiers		3
GC/MS VOA		Л
Qualifier	Qualifier Description	
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.	5
GC VOA		
Qualifier	Qualifier Description	
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.	

Glossary

J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.	5
GC VOA		
Qualifier	Qualifier Description	
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.	
Glossary		
Abbreviation	These commonly used abbreviations may or may not be present in this report.	8
¢	Listed under the "D" column to designate that the result is reported on a dry weight basis	0
%R	Percent Recovery	3
CNF	Contains no Free Liquid	
DL, RA, RE, IN	Indicates a Dilution, Reanalysis, Re-extraction, or additional Initial metals/anion analysis of the sample	
EDL	Estimated Detection Limit	
EPA	United States Environmental Protection Agency	
MDL	Method Detection Limit	
ML	Minimum Level (Dioxin)	
ND	Not detected at the reporting limit (or MDL or EDL if shown)	
PQL	Practical Quantitation Limit	13
QC	Quality Control	
RL	Reporting Limit	
RPD	Relative Percent Difference, a measure of the relative difference between two points	
TEF	Toxicity Equivalent Factor (Dioxin)	
TEQ	Toxicity Equivalent Quotient (Dioxin)	

4

Job ID: 480-16799-1

Laboratory: TestAmerica Buffalo

Narrative

Job Narrative 480-16799-1

Receipt

All samples were received in good condition within temperature requirements.

GC/MS VOA

Method(s) 8260B: The following sample was diluted due to the abundance of target analytes: RU-19 (480-16799-1). Elevated reporting limits (RLs) are provided.

Method(s) 8260B: The following samples were diluted due to the abundance of target analytes: DUP-1 (480-16799-5), RU-10 (480-16799-2), RU-19 (480-16799-1), RU-20 (480-16799-3), RU-21 (480-16799-4). Elevated reporting limits (RLs) are provided.

No other analytical or quality issues were noted.

IC

Method(s) 300.0: In batch 54087, the following sample was diluted due to the abundance of target analytes: RU-21 (480-16799-4). Elevated reporting limits (RLs) are provided.

Method(s) 300.0: In batch 54605, the following sample was diluted due to the abundance of target analytes: RU-21 (480-16799-4). Elevated reporting limits (RLs) are provided.

Method(s) VFA-IC: In batch 54385, the following samples were diluted due to the abundance of target analytes: (480-16799-4 MS), (480-16799-4 MSD), RU-20 (480-16799-3), RU-21 (480-16799-4). Elevated reporting limits (RLs) are provided.

No other analytical or quality issues were noted.

GC VOA

Method(s) RSK-175: The following samples were diluted due to the abundance of target analytes: MW-12I (480-16712-12), MW-12I (480-16712-12, MSD). Elevated reporting limits (RLs) are provided.

Method(s) RSK-175: The following sample was diluted due to the abundance of target analytes: RU-21 (480-16799-4). Elevated reporting limits (RLs) are provided.

No other analytical or quality issues were noted.

General Chemistry

No analytical or quality issues were noted.

Client Sample ID: RU-19

Lab Sample ID: 480-16799-1

Lab Sample ID: 480-16799-2

5

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
cis-1,2-Dichloroethene	410		10	8.1	ug/L	10	_	8260B	Total/NA
Vinyl chloride	45		10	9.0	ug/L	10		8260B	Total/NA
Trichloroethene - DL	1100		20	9.2	ug/L	20		8260B	Total/NA
Ethane	4.9		1.5	0.49	ug/L	1		RSK-175	Total/NA
Ethene	0.57	J	1.5	0.52	ug/L	1		RSK-175	Total/NA
Methane	150		1.0	0.22	ug/L	1		RSK-175	Total/NA
Chloride	26.0		0.50	0.28	mg/L	1		300.0	Total/NA
Sulfate	44.9		2.0	0.35	mg/L	1		300.0	Total/NA
Total Organic Carbon	2.4		1.0	0.43	mg/L	1		SM 5310D	Total/NA

Client Sample ID: RU-10

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
1,1-Dichloroethene	1.3		1.0	0.29	ug/L	1	_	8260B	Total/NA
Acetone	7.0	J	10	3.0	ug/L	1		8260B	Total/NA
Tetrachloroethene	0.46	J	1.0	0.36	ug/L	1		8260B	Total/NA
trans-1,2-Dichloroethene	2.5		1.0	0.90	ug/L	1		8260B	Total/NA
Vinyl chloride	19		1.0	0.90	ug/L	1		8260B	Total/NA
cis-1,2-Dichloroethene - DL	200		5.0	4.1	ug/L	5		8260B	Total/NA
Trichloroethene - DL	330		5.0	2.3	ug/L	5		8260B	Total/NA
Ethane	5.7		1.5	0.49	ug/L	1		RSK-175	Total/NA
Ethene	0.54	J	1.5	0.52	ug/L	1		RSK-175	Total/NA
Methane	120		1.0	0.22	ug/L	1		RSK-175	Total/NA
Chloride	11.1		0.50	0.28	mg/L	1		300.0	Total/NA
Sulfate	23.2		2.0	0.35	mg/L	1		300.0	Total/NA
Nitrate Nitrite as N	0.56		0.050	0.020	mg/L	1		353.2	Total/NA
Total Organic Carbon	17.2		1.0	0.43	mg/L	1		SM 5310D	Total/NA
Acetic acid	7.4		1.0	0.15	mg/L	1		VFA-IC	Total/NA
Propionic acid	17.7		1.0	0.17	mg/L	1		VFA-IC	Total/NA

Client Sample ID: RU-20

Lab Sample ID: 480-16799-3

Lab Sample ID: 480-16799-4

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
cis-1,2-Dichloroethene	75		25	20	ug/L	25	_	8260B	Total/NA
Methyl acetate	13	J	25	13	ug/L	25		8260B	Total/NA
Trichloroethene	1900		25	12	ug/L	25		8260B	Total/NA
Ethane	1.9		1.5	0.49	ug/L	1		RSK-175	Total/NA
Ethene	3.5		1.5	0.52	ug/L	1		RSK-175	Total/NA
Methane	4.6		1.0	0.22	ug/L	1		RSK-175	Total/NA
Chloride	71.1		0.50	0.28	mg/L	1		300.0	Total/NA
Sulfate	9.9		2.0	0.35	mg/L	1		300.0	Total/NA
Nitrate Nitrite as N	0.24		0.050	0.020	mg/L	1		353.2	Total/NA
Total Organic Carbon	171		10.0	4.3	mg/L	10		SM 5310D	Total/NA
Acetic acid	67.4		2.0	0.30	mg/L	2		VFA-IC	Total/NA
Propionic acid	58.8		2.0	0.34	mg/L	2		VFA-IC	Total/NA

Client Sample ID: RU-21

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
2-Butanone (MEK)	100		20	2.6	ug/L	2	_	8260B	Total/NA
Acetone	95		20	6.0	ug/L	2		8260B	Total/NA
Chloroethane	0.64	J	2.0	0.64	ug/L	2		8260B	Total/NA
cis-1,2-Dichloroethene	50		2.0	1.6	ug/L	2		8260B	Total/NA
Trichloroethene	55		2.0	0.92	ug/L	2		8260B	Total/NA

Client Sample ID: RU-21 (Continued)

Lab Sample ID: 480-16799-4

Lab Sample ID: 480-16799-5

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Vinyl chloride	150		2.0	1.8	ug/L	2	_	8260B	Total/NA
Ethane	8.4		1.5	0.49	ug/L	1		RSK-175	Total/NA
Ethene	23		1.5	0.52	ug/L	1		RSK-175	Total/NA
Methane - DL	300		100	22	ug/L	100		RSK-175	Total/NA
Chloride	18.4		2.5	1.4	mg/L	5		300.0	Total/NA
Sulfate	4.4		2.0	0.35	mg/L	1		300.0	Total/NA
Total Organic Carbon	1070		40.0	17.4	mg/L	40		SM 5310D	Total/NA
Acetic acid	740		50.0	7.5	mg/L	50		VFA-IC	Total/NA
Butyric acid	40.0		1.0	0.16	mg/L	1		VFA-IC	Total/NA
Propionic acid	1370		50.0	8.5	mg/L	50		VFA-IC	Total/NA

Client Sample ID: DUP-1

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac D	Method	Prep Type
Acetone	14	J	40	12	ug/L	4	8260B	Total/NA
cis-1,2-Dichloroethene	190		4.0	3.2	ug/L	4	8260B	Total/NA
Trichloroethene	320		4.0	1.8	ug/L	4	8260B	Total/NA
Vinyl chloride	19		4.0	3.6	ug/L	4	8260B	Total/NA
Ethane	6.5		1.5	0.49	ug/L	1	RSK-175	Total/NA
Ethene	0.58	J	1.5	0.52	ug/L	1	RSK-175	Total/NA
Methane	150		1.0	0.22	ug/L	1	RSK-175	Total/NA
Chloride	10.4		0.50	0.28	mg/L	1	300.0	Total/NA
Sulfate	21.7		2.0	0.35	mg/L	1	300.0	Total/NA
Nitrate Nitrite as N	0.47		0.050	0.020	mg/L	1	353.2	Total/NA
Total Organic Carbon	16.0		1.0	0.43	mg/L	1	SM 5310D	Total/NA
Acetic acid	6.5		1.0	0.15	mg/L	1	VFA-IC	Total/NA
Propionic acid	14.6		1.0	0.17	mg/L	1	VFA-IC	Total/NA

Client Sample ID: FB-1		La	ab	Sample I	D: 480-16799-6				
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
	4.1	5	10	3.0	ug/L	Ĭ		0200D	TOLAI/INA

Client Sample ID: TRIP BLANK

No Detections

Lab Sample ID: 480-16799-7

Client Sample ID: RU-19

Date Collected: 02/29/12 13:50 Date Received: 03/02/12 11:30

Method: 8260B - Volatile Organi Analyte	ic Compounds Result	(GC/MS) Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		10	8.2	ug/L			03/06/12 16:29	10
1,1,2,2-Tetrachloroethane	ND		10	2.1	ug/L			03/06/12 16:29	10
1,1,2-Trichloroethane	ND		10	2.3	ug/L			03/06/12 16:29	10
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		10	3.1	ug/L			03/06/12 16:29	10
1,1-Dichloroethane	ND		10	3.8	ug/L			03/06/12 16:29	10
1,1-Dichloroethene	ND		10	2.9	ug/L			03/06/12 16:29	10
1,2,4-Trichlorobenzene	ND		10	4.1	ug/L			03/06/12 16:29	10
1,2-Dibromo-3-Chloropropane	ND		10	3.9	ug/L			03/06/12 16:29	10
1.2-Dibromoethane	ND		10	7.3	ug/L			03/06/12 16:29	10
1,2-Dichlorobenzene	ND		10	7.9	ug/L			03/06/12 16:29	10
1,2-Dichloroethane	ND		10	2.1	ug/L			03/06/12 16:29	10
1,2-Dichloropropane	ND		10	7.2	ug/L			03/06/12 16:29	10
1.3-Dichlorobenzene	ND		10	7.8	ua/L			03/06/12 16:29	10
1.4-Dichlorobenzene	ND		10	8.4	ug/L			03/06/12 16:29	10
2-Hexanone	ND		50	12	ug/L			03/06/12 16:29	10
2-Butanone (MEK)	ND		100	13	ua/L			03/06/12 16:29	10
4-Methyl-2-pentanone (MIBK)	ND		50	21	ua/L			03/06/12 16:29	10
Acetone	ND		100	30	ua/L			03/06/12 16:29	10
Benzene	ND		10	4.1	ua/L			03/06/12 16:29	10
Bromodichloromethane	ND		10	3.9	ua/l			03/06/12 16:29	10
Bromoform	ND		10	2.6	ua/l			03/06/12 16:29	10
Bromomethane	ND		10	6.9	ug/l			03/06/12 16:29	10
Carbon disulfide	ND		10	19	ug/l			03/06/12 16:29	10
Carbon tetrachloride	ND		10	27	ug/L			03/06/12 16:29	10
Chlorobenzene	ND		10	7.5	ug/L			03/06/12 16:29	10
Dibromochloromethane	ND		10	32	ug/L			03/06/12 16:29	10
Chloroethane	ND		10	3.2	ug/L			03/06/12 16:29	10
Chloroform	ND		10	3.4				03/06/12 16:29	10
Chloromethane	ND		10	3.5	ug/L			03/06/12 16:29	10
cis-1 2-Dichloroethene	410		10	8.1	ug/L			03/06/12 16:29	10
cis-1.3-Dichloropropene			10	3.6	ug/l			03/06/12 16:29	10
Cyclobexane	ND		10	1.8	ug/L			03/06/12 16:29	10
Dichlorodifluoromethane	ND		10	6.8	ug/l			03/06/12 16:29	10
Ethylbenzene	ND		10	7.4	ug/L			03/06/12 16:29	10
Isopropylbenzene	ND		10	7.9	ug/L			03/06/12 16:29	10
Methyl acetate	ND		10	5.0	ug/L			03/06/12 16:29	10
Methyl tert-butyl ether	ND		10	1.6	ug/L			03/06/12 16:29	10
Methylcvclohexane			10	1.5	ua/l			03/06/12 16:29	10
Methylene Chloride			10	4.4	ua/l			03/06/12 16:29	10
Styrene			10	7.3	ua/l			03/06/12 16:29	10
Tetrachloroethene			10	7.5 3.6	ua/l			03/06/12 16:29	10
Toluene	חא		10	5.0	ua/l			03/06/12 16:29	10
trans-1 2-Dichloroethene			10	0.1	ug/L			03/06/12 16:20	10
trans-1.3-Dichloropropene			10	3.0	ug/L			03/06/12 16:29	10
Trichlorofluoromethane			10	9.7 8.8	ug/L			03/06/12 16:29	10
Vinul ablarida			10	0.0	ug/L			03/06/12 10:29	10
	45 N		20	9.0 6.6	ug/L			03/06/12 10.29	10
Ayionos, Total	ND		20	0.0	ayrt			00/00/12 10.29	10
Surrogate	%Recovery	Qualifier	Limits			_	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	110		66 - 137					03/06/12 16:29	10
Toluene-d8 (Surr)	120		71 - 126					03/06/12 16:29	10

Lab Sample ID: 480-16799-1

Matrix: Water

3 4 5 6 7 8 9 10 11

Lab Sample ID: 480-16799-1

Matrix: Water

Client Sample ID: RU-19 Date Collected: 02/29/12 13:50

Date Received: 03/02/12 11:30

Method: 8260B - Volatile Organic	Compounds ((GC/MS) (Co	ontinued)						
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	110		73 - 120			-		03/06/12 16:29	10
Method: 8260B - Volatile Organic	Compounds ((GC/MS) - D	L						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Trichloroethene	1100		20	9.2	ug/L			03/07/12 00:12	20
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	111		66 - 137			-		03/07/12 00:12	20
Toluene-d8 (Surr)	120		71 - 126					03/07/12 00:12	20
4-Bromofluorobenzene (Surr)	108		73 - 120					03/07/12 00:12	20
Method: RSK-175 - Dissolved Gas	ses (GC)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Analyte Ethane	Result 4.9	Qualifier	RL 1.5	MDL 0.49	Unit ug/L	<u>D</u>	Prepared	Analyzed 03/04/12 13:38	Dil Fac
Analyte Ethane Ethene	Result 4.9 0.57	Qualifier	RL 1.5 1.5	MDL 0.49 0.52	Unit ug/L ug/L	<u>D</u>	Prepared	Analyzed 03/04/12 13:38 03/04/12 13:38	Dil Fac
Analyte Ethane Ethene Methane	Result 4.9 0.57 150	Qualifier J	RL 1.5 1.5 1.0	MDL 0.49 0.52 0.22	Unit ug/L ug/L ug/L	<u>D</u>	Prepared	Analyzed 03/04/12 13:38 03/04/12 13:38 03/04/12 13:38	Dil Fac 1 1 1
Analyte Ethane Ethene Methane General Chemistry	Result 4.9 0.57 150	Qualifier J	RL 1.5 1.5 1.0	MDL 0.49 0.52 0.22	Unit ug/L ug/L ug/L	<u>D</u>	Prepared	Analyzed 03/04/12 13:38 03/04/12 13:38 03/04/12 13:38	Dil Fac 1 1 1
Analyte Ethane Ethene Methane General Chemistry Analyte	Result 4.9 0.57 150 Result	Qualifier J Qualifier	RL 1.5 1.5 1.0 RL	MDL 0.49 0.52 0.22 MDL	Unit ug/L ug/L ug/L	D	Prepared	Analyzed 03/04/12 13:38 03/04/12 13:38 03/04/12 13:38 Analyzed	Dil Fac
Analyte Ethane Ethene Methane General Chemistry Analyte Chloride	Result 4.9 0.57 150 Result 26.0	Qualifier J Qualifier	RL 1.5 1.5 1.0 RL 0.50	MDL 0.49 0.52 0.22 MDL 0.28	Unit ug/L ug/L Unit mg/L	D	Prepared	Analyzed 03/04/12 13:38 03/04/12 13:38 03/04/12 13:38 03/04/12 13:38 Analyzed 03/07/12 16:42	Dil Fac 1 1 1 1 1 1 1 1 1 1
Analyte Ethane Ethene Methane General Chemistry Analyte Chloride Sulfate	Result 4.9 0.57 150 Result 26.0 44.9	Qualifier J Qualifier	RL 1.5 1.5 1.0 RL 0.50 2.0	MDL 0.49 0.52 0.22 MDL 0.28 0.35	Unit ug/L ug/L ug/L Unit mg/L mg/L	D	Prepared	Analyzed 03/04/12 13:38 03/04/12 13:38 03/04/12 13:38 03/04/12 13:38 Analyzed 03/07/12 16:42 03/07/12 16:42	Dil Fac 1 1 1 1 Dil Fac 1 1
Analyte Ethane Ethene Methane General Chemistry Analyte Chloride Sulfate Nitrate Nitrite as N	Result 4.9 0.57 150 Result 26.0 44.9 ND	Qualifier J Qualifier	RL 1.5 1.5 1.0 RL 0.50 2.0 0.050	MDL 0.49 0.52 0.22 MDL 0.28 0.35 0.020	Unit ug/L ug/L ug/L Unit mg/L mg/L mg/L	D	Prepared Prepared	Analyzed 03/04/12 13:38 03/04/12 13:38 03/04/12 13:38 03/04/12 13:38 Analyzed 03/07/12 16:42 03/07/12 16:42 03/07/12 17:20	Dil Fac 1 1 1 1 Dil Fac 1 1 1 1
Analyte Ethane Ethene Methane General Chemistry Analyte Chloride Sulfate Nitrate Nitrite as N Total Organic Carbon	Result 4.9 0.57 150 Result 26.0 44.9 ND 2.4	Qualifier J Qualifier	RL 1.5 1.5 1.0 RL 0.50 2.0 0.050 1.0	MDL 0.49 0.52 0.22 MDL 0.28 0.35 0.020 0.43	Unit ug/L ug/L ug/L	D	Prepared Prepared	Analyzed 03/04/12 13:38 03/04/12 13:38 03/04/12 13:38 03/04/12 13:38 Analyzed 03/07/12 16:42 03/07/12 16:42 03/07/12 17:20 03/08/12 23:43	Dil Fac 1 1 1 1 Dil Fac 1 1 1 1
Analyte Ethane Ethene Methane General Chemistry Analyte Chloride Sulfate Nitrate Nitrite as N Total Organic Carbon Acetic acid	Result 4.9 0.57 150 Result 26.0 44.9 ND 2.4 ND	Qualifier J Qualifier	RL 1.5 1.5 1.0 RL 0.50 2.0 0.050 1.0 1.0	MDL 0.49 0.52 0.22 MDL 0.28 0.35 0.020 0.43 0.15	Unit ug/L ug/L ug/L mg/L mg/L mg/L mg/L	D	Prepared	Analyzed 03/04/12 13:38 03/04/12 13:38 03/04/12 13:38 03/04/12 13:38 Analyzed 03/07/12 16:42 03/07/12 16:42 03/07/12 17:20 03/08/12 23:43 03/07/12 22:19	Dil Fac 1 1 1 1 1 Dil Fac 1 1 1 1 1
Analyte Ethane Ethene Methane General Chemistry Analyte Chloride Sulfate Nitrate Nitrite as N Total Organic Carbon Acetic acid Butyric acid	Result 4.9 0.57 150 Result 26.0 44.9 ND 2.4 ND ND	Qualifier J Qualifier	RL 1.5 1.5 1.0 RL 0.50 2.0 0.050 1.0 1.0 1.0	MDL 0.49 0.52 0.22 MDL 0.28 0.35 0.020 0.43 0.15 0.16	Unit ug/L ug/L ug/L mg/L mg/L mg/L mg/L mg/L	D	Prepared	Analyzed 03/04/12 13:38 03/04/12 13:38 03/04/12 13:38 03/04/12 13:38 Analyzed 03/07/12 16:42 03/07/12 16:42 03/07/12 17:20 03/08/12 23:43 03/07/12 22:19 03/07/12 22:19	Dil Fac 1 1 1 1 1 1 1 1 1 1 1 1 1

Client Sample ID: RU-10

Date Collected: 02/29/12 12:20 Date Received: 03/02/12 11:30

Lab Sample ID: 480-16799-2

Matrix: Water

Method: 8260B - Volatile Organic	Compounds (GC/MS)						
Analyte	Result Qualifie	r RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND	1.0	0.82	ug/L			03/06/12 16:50	1
1,1,2,2-Tetrachloroethane	ND	1.0	0.21	ug/L			03/06/12 16:50	1
1,1,2-Trichloroethane	ND	1.0	0.23	ug/L			03/06/12 16:50	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	1.0	0.31	ug/L			03/06/12 16:50	1
1,1-Dichloroethane	ND	1.0	0.38	ug/L			03/06/12 16:50	1
1,1-Dichloroethene	1.3	1.0	0.29	ug/L			03/06/12 16:50	1
1,2,4-Trichlorobenzene	ND	1.0	0.41	ug/L			03/06/12 16:50	1
1,2-Dibromo-3-Chloropropane	ND	1.0	0.39	ug/L			03/06/12 16:50	1
1,2-Dibromoethane	ND	1.0	0.73	ug/L			03/06/12 16:50	1
1,2-Dichlorobenzene	ND	1.0	0.79	ug/L			03/06/12 16:50	1
1,2-Dichloroethane	ND	1.0	0.21	ug/L			03/06/12 16:50	1
1,2-Dichloropropane	ND	1.0	0.72	ug/L			03/06/12 16:50	1
1,3-Dichlorobenzene	ND	1.0	0.78	ug/L			03/06/12 16:50	1
1,4-Dichlorobenzene	ND	1.0	0.84	ug/L			03/06/12 16:50	1
2-Hexanone	ND	5.0	1.2	ug/L			03/06/12 16:50	1
2-Butanone (MEK)	ND	10	1.3	ug/L			03/06/12 16:50	1
4-Methyl-2-pentanone (MIBK)	ND	5.0	2.1	ug/L			03/06/12 16:50	1
Acetone	7.0 J	10	3.0	ug/L			03/06/12 16:50	1
Benzene	ND	1.0	0.41	ug/L			03/06/12 16:50	1

Client Sample ID: RU-10 Date Collected: 02/29/12 12:20

Date Received: 03/02/12 11:30

	no oompoundo (minucuj						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Bromodichloromethane	ND		1.0	0.39	ug/L			03/06/12 16:50	
Bromoform	ND		1.0	0.26	ug/L			03/06/12 16:50	
Bromomethane	ND		1.0	0.69	ug/L			03/06/12 16:50	
Carbon disulfide	ND		1.0	0.19	ug/L			03/06/12 16:50	
Carbon tetrachloride	ND		1.0	0.27	ug/L			03/06/12 16:50	
Chlorobenzene	ND		1.0	0.75	ug/L			03/06/12 16:50	
Dibromochloromethane	ND		1.0	0.32	ug/L			03/06/12 16:50	
Chloroethane	ND		1.0	0.32	ug/L			03/06/12 16:50	
Chloroform	ND		1.0	0.34	ug/L			03/06/12 16:50	• • • • • •
Chloromethane	ND		1.0	0.35	ug/L			03/06/12 16:50	
cis-1,3-Dichloropropene	ND		1.0	0.36	ug/L			03/06/12 16:50	
Cyclohexane	ND		1.0	0.18	ug/L			03/06/12 16:50	
Dichlorodifluoromethane	ND		1.0	0.68	ug/L			03/06/12 16:50	
Ethylbenzene	ND		1.0	0.74	ug/L			03/06/12 16:50	
sopropylbenzene	ND		1.0	0.79	ug/L			03/06/12 16:50	· · · · · · · · ·
Methyl acetate	ND		1.0	0.50	ua/L			03/06/12 16:50	
Methyl tert-butyl ether	ND		1.0	0.16	ua/L			03/06/12 16:50	
Vethvlcvclohexane	ND		1.0	0.16	ua/L			03/06/12 16:50	
Vethvlene Chloride	ND		1.0	0.44	ua/L			03/06/12 16:50	
Styrene	ND		1.0	0.73	ua/L			03/06/12 16:50	
Fetrachloroethene	0.46		10	0.36	ua/l			03/06/12 16:50	
Toluene	ND	·	1.0	0.51	ua/L			03/06/12 16:50	
rans-1 2-Dichloroethene	2.5		1.0	0.90	ua/l			03/06/12 16:50	
rans-1.3-Dichloropropene	ND		1.0	0.37	ug/L			03/06/12 16:50	
	ND		1.0	0.88	ug/L			03/06/12 16:50	
Vinyl chlorida	10		1.0	0.00	ug/L			03/06/12 16:50	
Xylenes, Total	ND		2.0	0.66	ug/L			03/06/12 16:50	,
Surrogate	%Recoverv	Qualifier	Limits				Prepared	Analvzed	Dil Fa
1 2-Dichloroethane-d4 (Surr)			66 - 137			-		03/06/12 16:50	
Toluene-d8 (Surr)	118		71 - 126					03/06/12 16:50	
4-Bromofluorobenzene (Surr)	110		73 120					03/06/12 16:50	
	110		10 - 120					00,00,72 70.00	
Method: 8260B - Volatile Organ	nic Compounds	(GC/MS) - D	L						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
cis-1,2-Dichloroethene	200		5.0	4.1	ug/L		-	03/07/12 00:34	į
Frichloroethene	330		5.0	2.3	ug/L			03/07/12 00:34	ę
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
1,2-Dichloroethane-d4 (Surr)	109		66 - 137			-		03/07/12 00:34	
Toluene-d8 (Surr)	117		71 - 126					03/07/12 00:34	

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ethane	5.7		1.5	0.49	ug/L			03/04/12 13:55	1
Ethene	0.54	J	1.5	0.52	ug/L			03/04/12 13:55	1
Methane	120		1.0	0.22	ug/L			03/04/12 13:55	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	11.1		0.50	0.28	mg/L			03/07/12 16:53	1

Lab Sample ID: 480-16799-2 Matrix: Water

5

6

TestAmerica Buffalo 3/15/2012

Client Sample Results

Client: CDM Smith, Inc. Project/Site: New York state project

Client Sample ID: RU-10							Lab Sample ID: 480-16799-2				
Date Collected: 02/29/12 12:20								Matrix	: Water		
Date Received: 03/02/12 11:30									. Trator		
General Chemistry (Continued)		0.115				_	_ .				
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed			
Sulfate	23.2		2.0	0.35	mg/L			03/07/12 16:53	1		
Nitrate Nitrite as N	0.56		0.050	0.020	mg/L			03/07/12 17:22	1		
Total Organic Carbon	17.2		1.0	0.43	mg/L			03/09/12 00:00	1		
Acetic acid	7.4		1.0	0.15	mg/L			03/07/12 22:49	1		
Butyric acid	ND		1.0	0.16	mg/L			03/07/12 22:49	1		
Propionic acid	17.7		1.0	0.17	mg/L			03/07/12 22:49	1		
Client Sample ID: RU-20							Lab San	nple ID: 480-1	6799-3		
Date Collected: 02/29/12 15:05								Matrix	c: Water		
Date Received: 03/02/12 11:30											
 _											
Method: 8260B - Volatile Organic C	ompounds	(GC/MS)	ы	MDI	11		Drenered	Analyzad			
	Result	Qualifier	RL		Unit	U	Prepared		DII Fac		
1,1,1-I richloroethane	ND		25	21	ug/L			03/07/12 00:56	25		
1,1,2,2- I etrachloroethane	ND		25	5.3	ug/L			03/07/12 00:56	25		
1,1,2-Trichloroethane	ND		25	5.8	ug/L			03/07/12 00:56	25		
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		25	7.8	ug/L			03/07/12 00:56	25		
1,1-Dichloroethane	ND		25	9.5	ug/L			03/07/12 00:56	25		
1,1-Dichloroethene	ND		25	7.3	ug/L			03/07/12 00:56	25		
1,2,4-Trichlorobenzene	ND		25	10	ug/L			03/07/12 00:56	25		
1,2-Dibromo-3-Chloropropane	ND		25	9.8	ug/L			03/07/12 00:56	25		
1,2-Dibromoethane	ND		25	18	ug/L			03/07/12 00:56	25		
1,2-Dichlorobenzene	ND		25	20	ug/L			03/07/12 00:56	25		
1,2-Dichloroethane	ND		25	5.3	ug/L			03/07/12 00:56	25		
1,2-Dichloropropane	ND		25	18	ug/L			03/07/12 00:56	25		
1,3-Dichlorobenzene	ND		25	20	ug/L			03/07/12 00:56	25		
1,4-Dichlorobenzene	ND		25	21	ug/L			03/07/12 00:56	25		
2-Hexanone	ND		130	31	ug/L			03/07/12 00:56	25		
2-Butanone (MEK)	ND		250	33	ug/L			03/07/12 00:56	25		
4-Methyl-2-pentanone (MIBK)	ND		130	53	ug/l			03/07/12 00.56	25		
Acetone	ND		250	75	ug/l			03/07/12 00:56	25		
Benzene	ND		25	10	ug/l			03/07/12 00:56	25		
Bromodichloromethane			25	08	ug/L			03/07/12 00:56	25		
Bromoform			25	5.0	ug/L			03/07/12 00:56	25		
Bromomothana			25	17	ug/L			03/07/12 00:56	25		
	ND		25	17	ug/L			03/07/12 00.50	25		
	ND		25	4.8	ug/L			03/07/12 00:56	25		
Carbon tetrachioride	ND		25	0.8	ug/L			03/07/12 00:56	25		
Chlorobenzene	ND		25	19	ug/L			03/07/12 00:56	25		
Dibromochloromethane	ND		25	8.0	ug/L			03/07/12 00:56	25		
Chloroethane	ND		25	8.0	ug/L			03/07/12 00:56	25		
Chloroform	ND		25	8.5	ug/L			03/07/12 00:56	25		
Chloromethane	ND		25	8.8	ug/L			03/07/12 00:56	25		
cis-1,2-Dichloroethene	75		25	20	ug/L			03/07/12 00:56	25		
cis-1,3-Dichloropropene	ND		25	9.0	ug/L			03/07/12 00:56	25		
Cyclohexane	ND		25	4.5	ug/L			03/07/12 00:56	25		
Dichlorodifluoromethane	ND		25	17	ug/L			03/07/12 00:56	25		
Ethylbenzene	ND		25	19	ug/L			03/07/12 00:56	25		
Isopropylbenzene	ND		25	20	ug/L			03/07/12 00:56	25		
Methyl acetate	13	J	25	13	ug/L			03/07/12 00:56	25		
Methyl tert-butyl ether	ND		25	4.0	ug/L			03/07/12 00:56	25		
Methylcyclohexane	ND		25	4.0	ug/L			03/07/12 00:56	25		

14

Client Sample ID: RU-20 Date Collected: 02/29/12 15:05

Date Received: 03/02/12 11:30

Lab Sample ID: 480-16799-3 Matrix: Water

Method: 8260B - Volatile Org	anic Compounds	(GC/MS) (Co	ontinued)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Methylene Chloride	ND		25	11	ug/L			03/07/12 00:56	25
Styrene	ND		25	18	ug/L			03/07/12 00:56	25
Tetrachloroethene	ND		25	9.0	ug/L			03/07/12 00:56	25
Toluene	ND		25	13	ug/L			03/07/12 00:56	25
trans-1,2-Dichloroethene	ND		25	23	ug/L			03/07/12 00:56	25
trans-1,3-Dichloropropene	ND		25	9.3	ug/L			03/07/12 00:56	25
Trichloroethene	1900		25	12	ug/L			03/07/12 00:56	25
Trichlorofluoromethane	ND		25	22	ug/L			03/07/12 00:56	25
Vinyl chloride	ND		25	23	ug/L			03/07/12 00:56	25
Xylenes, Total	ND		50	17	ug/L			03/07/12 00:56	25
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	111		66 - 137			-		03/07/12 00:56	25
Toluene-d8 (Surr)	119		71 - 126					03/07/12 00:56	25
4-Bromofluorobenzene (Surr)	108		73 - 120					03/07/12 00:56	25
_ Method: RSK-175 - Dissolved	Gases (GC)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ethane	1.9		1.5	0.49	ug/L			03/04/12 14:12	1
Ethene	3.5		1.5	0.52	ug/L			03/04/12 14:12	1
Methane	4.6		1.0	0.22	ug/L			03/04/12 14:12	1
_ General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	71.1		0.50	0.28	mg/L			03/07/12 17:03	1
Sulfate	9.9		2.0	0.35	mg/L			03/07/12 17:03	1
Nitrate Nitrite as N	0.24		0.050	0.020	mg/L			03/07/12 17:23	1
Total Organic Carbon	171		10.0	4.3	mg/L			03/13/12 21:44	10
Acetic acid	67.4		2.0	0.30	mg/L			03/08/12 23:52	2
Butyric acid	ND		1.0	0.16	mg/L			03/07/12 23:18	1
Propionic acid	58.8		2.0	0.34	mg/L			03/08/12 23:52	2

Client Sample ID: RU-21

Date Collected: 02/29/12 16:40

-

Date Received: 03/02/12 11:30

Method: 8260B - Volatile Organic	lethod: 8260B - Volatile Organic Compounds (GC/MS)									
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac		
1,1,1-Trichloroethane	ND	2.0	1.6	ug/L			03/07/12 01:18	2		
1,1,2,2-Tetrachloroethane	ND	2.0	0.42	ug/L			03/07/12 01:18	2		
1,1,2-Trichloroethane	ND	2.0	0.46	ug/L			03/07/12 01:18	2		
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	2.0	0.62	ug/L			03/07/12 01:18	2		
1,1-Dichloroethane	ND	2.0	0.76	ug/L			03/07/12 01:18	2		
1,1-Dichloroethene	ND	2.0	0.58	ug/L			03/07/12 01:18	2		
1,2,4-Trichlorobenzene	ND	2.0	0.82	ug/L			03/07/12 01:18	2		
1,2-Dibromo-3-Chloropropane	ND	2.0	0.78	ug/L			03/07/12 01:18	2		
1,2-Dibromoethane	ND	2.0	1.5	ug/L			03/07/12 01:18	2		
1,2-Dichlorobenzene	ND	2.0	1.6	ug/L			03/07/12 01:18	2		
1,2-Dichloroethane	ND	2.0	0.42	ug/L			03/07/12 01:18	2		
1,2-Dichloropropane	ND	2.0	1.4	ug/L			03/07/12 01:18	2		
1,3-Dichlorobenzene	ND	2.0	1.6	ug/L			03/07/12 01:18	2		
1,4-Dichlorobenzene	ND	2.0	1.7	ug/L			03/07/12 01:18	2		

Lab Sample ID: 480-16799-4

Matrix: Water

Client Sample ID: RU-21 Date Collected: 02/29/12 16:40

Date Received: 03/02/12 11:30

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
2-Hexanone	ND		10	2.5	ug/L		•	03/07/12 01:18	2
2-Butanone (MEK)	100		20	2.6	ug/L			03/07/12 01:18	2
4-Methyl-2-pentanone (MIBK)	ND		10	4.2	ug/L			03/07/12 01:18	2
Acetone	95		20	6.0	ug/L			03/07/12 01:18	2
Benzene	ND		2.0	0.82	ug/L			03/07/12 01:18	2
Bromodichloromethane	ND		2.0	0.78	ua/L			03/07/12 01:18	2
Bromoform	ND		2.0	0.52	ua/L			03/07/12 01:18	2
Bromomethane	ND		2.0	1.4	ua/L			03/07/12 01:18	2
Carbon disulfide	ND		2.0	0.38	ua/L			03/07/12 01:18	2
Carbon tetrachloride	ND		2.0	0.54	ua/L			03/07/12 01:18	2
Chlorobenzene	ND		2.0	1.5	ua/L			03/07/12 01:18	2
Dibromochloromethane	ND		2.0	0.64	ua/L			03/07/12 01:18	2
Chloroethane	0.64	а	2.0	0.64	ua/l			03/07/12 01.18	2
Chloroform	ND		2.0	0.68	ug/l			03/07/12 01:18	
Chloromethane	ND		2.0	0.70	ua/l			03/07/12 01:18	2
cis 1.2 Dichloroothono	50		2.0	1.6	ug/L			03/07/12 01:18	2
cis-1 3-Dichloropropene			2.0	0.72				03/07/12 01:18	2
			2.0	0.72	ug/L			03/07/12 01:18	2
Dichlorodifluoromethane			2.0	1.4	ug/L			03/07/12 01:18	2
Ethylbonzono			2.0	1.4	ug/L			03/07/12 01:18	2 2
			2.0	1.5	ug/L			03/07/12 01:18	2
Methyl agetate	ND		2.0	1.0	ug/L			03/07/12 01.18	2
Methyl test butul ether			2.0	0.22	ug/L			03/07/12 01.18	
	ND		2.0	0.32	ug/L			03/07/12 01.18	2
Methylene Chleride	ND		2.0	0.32	ug/L			03/07/12 01.18	2
Shirepo			2.0	0.00	ug/L			03/07/12 01.18	
	ND		2.0	0.70	ug/L			03/07/12 01.18	2
Tetrachioroethene	ND		2.0	0.72	ug/L			03/07/12 01.18	2
Toluene			2.0	1.0	ug/L			03/07/12 01:18	2
trans-1,2-Dichloroethene	ND		2.0	1.8	ug/L			03/07/12 01:18	2
trans-1,3-Dichloropropene	UN		2.0	0.74	ug/L			03/07/12 01:18	2
Trichloroethene	55		2.0	0.92	ug/L			03/07/12 01:18	2
Irichlorofluoromethane	ND		2.0	1.8	ug/L			03/07/12 01:18	2
Vinyl chloride	150		2.0	1.8	ug/L			03/07/12 01:18	2
Xylenes, Total	ND		4.0	1.3	ug/L			03/07/12 01:18	2
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	108		66 - 137			-		03/07/12 01:18	2
Toluene-d8 (Surr)	116		71 - 126					03/07/12 01:18	2
4-Bromofluorobenzene (Surr)	105		73 - 120					03/07/12 01:18	2
Method: RSK-175 - Dissolved	Gases (GC)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ethane	8.4		1.5	0.49	ua/L			03/04/12 14:29	1
Ethene	23		1.5	0.52	ug/L			03/04/12 14:29	1
-					-				
Method: RSK-175 - Dissolved Analyte	Gases (GC) - DL Result	Qualifier	RL	MDI	Unit	D	Prepared	Analyzed	Dil Fac
Methane	300		100	22	ua/L			03/04/12 15:30	100
-	500		100					55.5 12 10.00	100
General Chemistry		• • • •				_	_ .	.	-
Analyte	Result	Qualifier	RL	MDL	Unit	<u>D</u>	Prepared	Analyzed	Dil Fac
Chloride	18.4		2.5	1.4	mg/L			03/07/12 17:43	5

Lab Sample ID: 480-16799-4 Matrix: Water

Client Sample Results

Client: CDM Smith, Inc. Project/Site: New York state project

Methylcyclohexane

5

6

Client Sample ID: RU-21							Lab Sample ID: 480-16799-4			
Date Collected: 02/29/12 16:40								Matrix	k: Water	
Date Received: 03/02/12 11:30										
Concret Chemistry (Continued)										
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
Sulfate	4.4		20	0.35	ma/l		Tioparou	03/14/12 12:57	1	
Nitrate Nitrite as N	ND		0.050	0.020	ma/L			03/07/12 17:24	1	
Total Organic Carbon	1070		40.0	17.4	ma/l			03/13/12 22:01	40	
Acetic acid	740		50.0	7.5	ma/L			03/09/12 00:21	50	
Butyric acid	40.0		1.0	0.16	ma/l			03/08/12 02:13	1	
Propionic acid	1370		50.0	8.5	mg/L			03/09/12 00:21	50	
Client Sample ID: DUP-1							Lab Sam	nple ID: 480-1	6799-5	
Date Collected: 02/29/12 00:00								Matrix	k: Water	
Date Received: 03/02/12 11:30										
Method: 8260B - Volatile Organic C	ompounds	(GC/MS)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
1,1,1-Trichloroethane	ND		4.0	3.3	ug/L			03/07/12 01:40	4	
1,1,2,2-Tetrachloroethane	ND		4.0	0.84	ug/L			03/07/12 01:40	4	
1,1,2-Trichloroethane	ND		4.0	0.92	ug/L			03/07/12 01:40	4	
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		4.0	1.2	ug/L			03/07/12 01:40	4	
1,1-Dichloroethane	ND		4.0	1.5	ug/L			03/07/12 01:40	4	
1,1-Dichloroethene	ND		4.0	1.2	ug/L			03/07/12 01:40	4	
1,2,4-Trichlorobenzene	ND		4.0	1.6	ug/L			03/07/12 01:40	4	
1,2-Dibromo-3-Chloropropane	ND		4.0	1.6	ug/L			03/07/12 01:40	4	
1,2-Dibromoethane	ND		4.0	2.9	ug/L			03/07/12 01:40	4	
1,2-Dichlorobenzene	ND		4.0	3.2	ug/L			03/07/12 01:40	4	
1,2-Dichloroethane	ND		4.0	0.84	ug/L			03/07/12 01:40	4	
1,2-Dichloropropane	ND		4.0	2.9	ug/L			03/07/12 01:40	4	
1,3-Dichlorobenzene	ND		4.0	3.1	ug/L			03/07/12 01:40	4	
1,4-Dichlorobenzene	ND		4.0	3.4	ug/L			03/07/12 01:40	4	
2-Hexanone	ND		20	5.0	ug/L			03/07/12 01:40	4	
2-Butanone (MEK)	ND		40	5.3	ug/L			03/07/12 01:40	4	
4-Methyl-2-pentanone (MIBK)	ND		20	8.4	ug/L			03/07/12 01:40	4	
Acetone	14	J	40	12	ug/L			03/07/12 01:40	4	
Benzene	ND		4.0	1.6	ug/L			03/07/12 01:40	4	
Bromodichloromethane	ND		4.0	1.6	ug/L			03/07/12 01:40	4	
Bromoform	ND		4.0	1.0	ug/L			03/07/12 01:40	4	
Bromomethane	ND		4.0	2.8	ug/L			03/07/12 01:40	4	
Carbon disulfide	ND		4.0	0.76	ug/L			03/07/12 01:40	4	
Carbon tetrachloride	ND		4.0	1.1	ug/L			03/07/12 01:40	4	
Chlorobenzene	ND		4.0	3.0	ug/L			03/07/12 01:40	4	
Dibromochloromethane	ND		4.0	1.3	ug/L			03/07/12 01:40	4	
Chloroethane	ND		4.0	1.3	ug/L			03/07/12 01:40	4	
Chloroform	ND		4.0	1.4	ug/L			03/07/12 01:40	4	
Chloromethane	ND		4.0	1.4	ug/L			03/07/12 01:40	4	
cis-1,2-Dichloroethene	190		4.0	3.2	ug/L			03/07/12 01:40	4	
cis-1,3-Dichloropropene	ND		4.0	1.4	ug/L			03/07/12 01:40	4	
Cyclohexane	ND		4.0	0.72	ug/L			03/07/12 01:40	4	
Dichlorodifluoromethane	ND		4.0	2.7	ug/L			03/07/12 01:40	4	
Ethylbenzene	ND		4.0	3.0	ug/L			03/07/12 01:40	4	
Isopropylbenzene	ND		4.0	3.2	ug/L			03/07/12 01:40	4	
Methyl acetate	ND		4.0	2.0	ug/L			03/07/12 01:40	4	
Methyl tert-butyl ether	ND		4.0	0.64	ug/L			03/07/12 01:40	4	

4 TestAmerica Buffalo 3/15/2012

03/07/12 01:40

4.0

0.64 ug/L

ND

Client Sample Results

Client: CDM Smith, Inc. Project/Site: New York state project

Client Sample ID: DUP-1 Date Collected: 02/29/12 00:00

Date Received: 03/02/12 11:30

Method: 8260B - Volatile Orga	hod: 8260B - Volatile Organic Compounds (GC/MS) (Continued)											
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac			
Methylene Chloride	ND		4.0	1.8	ug/L			03/07/12 01:40	4			
Styrene	ND		4.0	2.9	ug/L			03/07/12 01:40	4			
Tetrachloroethene	ND		4.0	1.4	ug/L			03/07/12 01:40	4			
Toluene	ND		4.0	2.0	ug/L			03/07/12 01:40	4			
trans-1,2-Dichloroethene	ND		4.0	3.6	ug/L			03/07/12 01:40	4			
trans-1,3-Dichloropropene	ND		4.0	1.5	ug/L			03/07/12 01:40	4			
Trichloroethene	320		4.0	1.8	ug/L			03/07/12 01:40	4			
Trichlorofluoromethane	ND		4.0	3.5	ug/L			03/07/12 01:40	4			
Vinyl chloride	19		4.0	3.6	ug/L			03/07/12 01:40	4			
Xylenes, Total	ND		8.0	2.6	ug/L			03/07/12 01:40	4			
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac			
1,2-Dichloroethane-d4 (Surr)	109		66 - 137			-		03/07/12 01:40	4			

1,2-Dichloroethane-d4 (Surr)	109	66 - 137
Toluene-d8 (Surr)	119	71 - 126
4-Bromofluorobenzene (Surr)	107	73 - 120

Method: RSK-175 - Dissolved Gases (GC)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ethane	6.5		1.5	0.49	ug/L			03/04/12 14:46	1
Ethene	0.58	J	1.5	0.52	ug/L			03/04/12 14:46	1
Methane	150		1.0	0.22	ug/L			03/04/12 14:46	1

General Chemistry								
Analyte Res	ult Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride 10	0.4	0.50	0.28	mg/L			03/07/12 17:53	1
Sulfate 2	.7	2.0	0.35	mg/L			03/07/12 17:53	1
Nitrate Nitrite as N 0.	47	0.050	0.020	mg/L			03/07/12 17:25	1
Total Organic Carbon 1	5.0	1.0	0.43	mg/L			03/09/12 00:51	1
Acetic acid	5.5	1.0	0.15	mg/L			03/08/12 02:42	1
Butyric acid	1D	1.0	0.16	mg/L			03/08/12 02:42	1
Propionic acid 14	.6	1.0	0.17	mg/L			03/08/12 02:42	1

Client Sample ID: FB-1

Date Collected: 02/29/12 15:30

Date Received: 03/02/12 11:30

Method: 8260B - Volatile Organic	Compounds (GC/MS)							
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND	1.0	0.82	ug/L			03/06/12 18:18	1
1,1,2,2-Tetrachloroethane	ND	1.0	0.21	ug/L			03/06/12 18:18	1
1,1,2-Trichloroethane	ND	1.0	0.23	ug/L			03/06/12 18:18	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	1.0	0.31	ug/L			03/06/12 18:18	1
1,1-Dichloroethane	ND	1.0	0.38	ug/L			03/06/12 18:18	1
1,1-Dichloroethene	ND	1.0	0.29	ug/L			03/06/12 18:18	1
1,2,4-Trichlorobenzene	ND	1.0	0.41	ug/L			03/06/12 18:18	1
1,2-Dibromo-3-Chloropropane	ND	1.0	0.39	ug/L			03/06/12 18:18	1
1,2-Dibromoethane	ND	1.0	0.73	ug/L			03/06/12 18:18	1
1,2-Dichlorobenzene	ND	1.0	0.79	ug/L			03/06/12 18:18	1
1,2-Dichloroethane	ND	1.0	0.21	ug/L			03/06/12 18:18	1
1,2-Dichloropropane	ND	1.0	0.72	ug/L			03/06/12 18:18	1
1,3-Dichlorobenzene	ND	1.0	0.78	ug/L			03/06/12 18:18	1
1,4-Dichlorobenzene	ND	1.0	0.84	ug/L			03/06/12 18:18	1

TestAmerica Job ID: 480-16799-1

Lab Sample ID: 480-16799-5

03/07/12 01:40

03/07/12 01:40

Matrix: Water

2 3 4 5 6 7 8 9 10 11

13 14 15

4

4

Lab Sample ID: 480-16799-6 Matrix: Water

Client Sample ID: FB-1 Date Collected: 02/29/12 15:30

Date Received: 03/02/12 11:30

Method: 8260B - Volatile Organ Analyte	nic Compounds Result	(GC/MS) (Co Qualifier	ontinued) RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
2-Hexanone	ND		5.0	1.2	ug/L			03/06/12 18:18	1
2-Butanone (MEK)	ND		10	1.3	ug/L			03/06/12 18:18	1
4-Methyl-2-pentanone (MIBK)	ND		5.0	2.1	ug/L			03/06/12 18:18	1
Acetone	4.1	J	10	3.0	ug/L			03/06/12 18:18	1
Benzene	ND		1.0	0.41	ug/L			03/06/12 18:18	1
Bromodichloromethane	ND		1.0	0.39	ug/L			03/06/12 18:18	1
Bromoform	ND		1.0	0.26	ug/L			03/06/12 18:18	1
Bromomethane	ND		1.0	0.69	ug/L			03/06/12 18:18	1
Carbon disulfide	ND		1.0	0.19	ug/L			03/06/12 18:18	1
Carbon tetrachloride	ND		1.0	0.27	ug/L			03/06/12 18:18	1
Chlorobenzene	ND		1.0	0.75	ug/L			03/06/12 18:18	1
Dibromochloromethane	ND		1.0	0.32	ug/L			03/06/12 18:18	1
Chloroethane	ND		1.0	0.32	ug/L			03/06/12 18:18	1
Chloroform	ND		1.0	0.34	ug/L			03/06/12 18:18	1
Chloromethane	ND		1.0	0.35	ug/L			03/06/12 18:18	1
cis-1,2-Dichloroethene	ND		1.0	0.81	ug/L			03/06/12 18:18	1
cis-1,3-Dichloropropene	ND		1.0	0.36	ug/L			03/06/12 18:18	1
Cyclohexane	ND		1.0	0.18	ug/L			03/06/12 18:18	1
Dichlorodifluoromethane	ND		1.0	0.68	ug/L			03/06/12 18:18	1
Ethylbenzene	ND		1.0	0.74	ug/L			03/06/12 18:18	1
Isopropylbenzene	ND		1.0	0.79	ug/L			03/06/12 18:18	1
Methyl acetate	ND		1.0	0.50	ug/L			03/06/12 18:18	1
Methyl tert-butyl ether	ND		1.0	0.16	ug/L			03/06/12 18:18	1
Methylcyclohexane	ND		1.0	0.16	ug/L			03/06/12 18:18	1
Methylene Chloride	ND		1.0	0.44	ug/L			03/06/12 18:18	1
Styrene	ND		1.0	0.73	ug/L			03/06/12 18:18	1
Tetrachloroethene	ND		1.0	0.36	ug/L			03/06/12 18:18	1
Toluene	ND		1.0	0.51	ug/L			03/06/12 18:18	1
trans-1,2-Dichloroethene	ND		1.0	0.90	ug/L			03/06/12 18:18	1
trans-1,3-Dichloropropene	ND		1.0	0.37	ug/L			03/06/12 18:18	1
Trichloroethene	ND		1.0	0.46	ug/L			03/06/12 18:18	1
Trichlorofluoromethane	ND		1.0	0.88	ug/L			03/06/12 18:18	1
Vinyl chloride	ND		1.0	0.90	ug/L			03/06/12 18:18	1
Xylenes, Total	ND		2.0	0.66	ug/L			03/06/12 18:18	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	109		66 - 137			-		03/06/12 18:18	1
Toluene-d8 (Surr)	117		71 - 126					03/06/12 18:18	1
4-Bromofluorobenzene (Surr)	108		73 - 120					03/06/12 18:18	1

Client Sample ID: TRIP BLANK Date Collected: 02/29/12 00:00

Date Received: 03/02/12 11:30

Method: 8260B - Volatile Organic	lethod: 8260B - Volatile Organic Compounds (GC/MS)										
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac		
1,1,1-Trichloroethane	ND		1.0	0.82	ug/L			03/06/12 18:39	1		
1,1,2,2-Tetrachloroethane	ND		1.0	0.21	ug/L			03/06/12 18:39	1		
1,1,2-Trichloroethane	ND		1.0	0.23	ug/L			03/06/12 18:39	1		
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		1.0	0.31	ug/L			03/06/12 18:39	1		
1,1-Dichloroethane	ND		1.0	0.38	ug/L			03/06/12 18:39	1		

TestAmerica Job ID: 480-16799-1

Lab Sample ID: 480-16799-6 Matrix: Water

5

6

Matrix: Water

Lab Sample ID: 480-16799-7

Client Sample ID: TRIP BLANK Date Collected: 02/29/12 00:00

Date Received: 03/02/12 11:30

Method: 8260B - Volatile Organi	c Compounds	(GC/MS) (C	ontinued)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethene	ND		1.0	0.29	ug/L			03/06/12 18:39	1
1,2,4-Trichlorobenzene	ND		1.0	0.41	ug/L			03/06/12 18:39	1
1,2-Dibromo-3-Chloropropane	ND		1.0	0.39	ug/L			03/06/12 18:39	1
1,2-Dibromoethane	ND		1.0	0.73	ug/L			03/06/12 18:39	1
1,2-Dichlorobenzene	ND		1.0	0.79	ug/L			03/06/12 18:39	1
1,2-Dichloroethane	ND		1.0	0.21	ug/L			03/06/12 18:39	1
1,2-Dichloropropane	ND		1.0	0.72	ug/L			03/06/12 18:39	1
1,3-Dichlorobenzene	ND		1.0	0.78	ug/L			03/06/12 18:39	1
1,4-Dichlorobenzene	ND		1.0	0.84	ug/L			03/06/12 18:39	1
2-Hexanone	ND		5.0	1.2	ug/L			03/06/12 18:39	1
2-Butanone (MEK)	ND		10	1.3	ug/L			03/06/12 18:39	1
4-Methyl-2-pentanone (MIBK)	ND		5.0	2.1	ug/L			03/06/12 18:39	1
Acetone	ND		10	3.0	ug/L			03/06/12 18:39	1
Benzene	ND		1.0	0.41	ug/L			03/06/12 18:39	1
Bromodichloromethane	ND		1.0	0.39	ug/L			03/06/12 18:39	1
Bromoform	ND		1.0	0.26	ug/L			03/06/12 18:39	1
Bromomethane	ND		1.0	0.69	ug/L			03/06/12 18:39	1
Carbon disulfide	ND		1.0	0.19	ug/L			03/06/12 18:39	1
Carbon tetrachloride	ND		1.0	0.27	ug/L			03/06/12 18:39	1
Chlorobenzene	ND		1.0	0.75	ug/L			03/06/12 18:39	1
Dibromochloromethane	ND		1.0	0.32	ug/L			03/06/12 18:39	1
Chloroethane	ND		1.0	0.32	ug/L			03/06/12 18:39	1
Chloroform	ND		1.0	0.34	ug/L			03/06/12 18:39	1
Chloromethane	ND		1.0	0.35	ug/L			03/06/12 18:39	1
cis-1,2-Dichloroethene	ND		1.0	0.81	ug/L			03/06/12 18:39	1
cis-1,3-Dichloropropene	ND		1.0	0.36	ug/L			03/06/12 18:39	1
Cyclohexane	ND		1.0	0.18	ug/L			03/06/12 18:39	1
Dichlorodifluoromethane	ND		1.0	0.68	ug/L			03/06/12 18:39	1
Ethylbenzene	ND		1.0	0.74	ug/L			03/06/12 18:39	1
Isopropylbenzene	ND		1.0	0.79	ug/L			03/06/12 18:39	1
Methyl acetate	ND		1.0	0.50	ug/L			03/06/12 18:39	1
Methyl tert-butyl ether	ND		1.0	0.16	ug/L			03/06/12 18:39	1
Methylcyclohexane	ND		1.0	0.16	ug/L			03/06/12 18:39	1
Methylene Chloride	ND		1.0	0.44	ug/L			03/06/12 18:39	1
Styrene	ND		1.0	0.73	ug/L			03/06/12 18:39	1
Tetrachloroethene	ND		1.0	0.36	ug/L			03/06/12 18:39	1
Toluene	ND		1.0	0.51	ug/L			03/06/12 18:39	1
trans-1,2-Dichloroethene	ND		1.0	0.90	ug/L			03/06/12 18:39	1
trans-1,3-Dichloropropene	ND		1.0	0.37	ug/L			03/06/12 18:39	1
Trichloroethene	ND		1.0	0.46	ug/L			03/06/12 18:39	1
Trichlorofluoromethane	ND		1.0	0.88	ug/L			03/06/12 18:39	1
Vinyl chloride	ND		1.0	0.90	ug/L			03/06/12 18:39	1
Xylenes, Total	ND		2.0	0.66	ug/L			03/06/12 18:39	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	110		66 - 137			-		03/06/12 18:39	1
Toluene-d8 (Surr)	120		71 - 126					03/06/12 18:39	1
4-Bromofluorobenzene (Surr)	109		73 - 120					03/06/12 18:39	1

Lab Sample ID: 480-16799-7 Matrix: Water

Prep Type: Total/NA

Method: 8260B - Volatile Organic Compounds (GC/MS)

Matrix: Water

				Percent Sur
		12DCE	TOL	BFB
Lab Sample ID	Client Sample ID	(66-137)	(71-126)	(73-120)
480-16799-1	RU-19	110	120	110
480-16799-1 - DL	RU-19	111	120	108
480-16799-2	RU-10	112	118	110
480-16799-2 - DL	RU-10	109	117	105
480-16799-3	RU-20	111	119	108
480-16799-4	RU-21	108	116	105
480-16799-5	DUP-1	109	119	107
480-16799-6	FB-1	109	117	108
480-16799-7	TRIP BLANK	110	120	109
LCS 480-54020/3	Lab Control Sample	108	118	109
LCS 480-54121/3	Lab Control Sample	108	119	107
MB 480-54020/4	Method Blank	110	119	109
MB 480-54121/4	Method Blank	109	117	107

Surrogate Legend

12DCE = 1,2-Dichloroethane-d4 (Surr)

TOL = Toluene-d8 (Surr)

BFB = 4-Bromofluorobenzene (Surr)

Lab Sample ID: MB 480-54020/4

Method: 8260B - Volatile Organic Compounds (GC/MS)

Client Sample ID: Method Blank Prep Type: Total/NA

Matrix: Water Analysis Batch: 54020

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		1.0	0.82	ug/L			03/06/12 12:04	1
1,1,2,2-Tetrachloroethane	ND		1.0	0.21	ug/L			03/06/12 12:04	1
1,1,2-Trichloroethane	ND		1.0	0.23	ug/L			03/06/12 12:04	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		1.0	0.31	ug/L			03/06/12 12:04	1
1,1-Dichloroethane	ND		1.0	0.38	ug/L			03/06/12 12:04	1
1,1-Dichloroethene	ND		1.0	0.29	ug/L			03/06/12 12:04	1
1,2,4-Trichlorobenzene	ND		1.0	0.41	ug/L			03/06/12 12:04	1
1,2-Dibromo-3-Chloropropane	ND		1.0	0.39	ug/L			03/06/12 12:04	1
1,2-Dibromoethane	ND		1.0	0.73	ug/L			03/06/12 12:04	1
1,2-Dichlorobenzene	ND		1.0	0.79	ug/L			03/06/12 12:04	1
1,2-Dichloroethane	ND		1.0	0.21	ug/L			03/06/12 12:04	1
1,2-Dichloropropane	ND		1.0	0.72	ug/L			03/06/12 12:04	1
1,3-Dichlorobenzene	ND		1.0	0.78	ug/L			03/06/12 12:04	1
1,4-Dichlorobenzene	ND		1.0	0.84	ug/L			03/06/12 12:04	1
2-Hexanone	ND		5.0	1.2	ua/L			03/06/12 12:04	1
2-Butanone (MEK)	ND		10	1.3	ua/L			03/06/12 12:04	1
4-Methyl-2-pentanone (MIBK)	ND		5.0	2.1	ua/L			03/06/12 12:04	1
Acetone	ND		10	3.0	ua/l			03/06/12 12:04	1
Benzene	ND		10	0.41	ug/l			03/06/12 12:04	
Bromodichloromethane	ND		1.0	0.39	ug/l			03/06/12 12:04	1
Bromoform	ND		1.0	0.00	ug/L			03/06/12 12:04	1
Bromomethane	ND		1.0	0.69	ug/L			03/06/12 12:04	
	ND		1.0	0.00	ug/L			03/06/12 12:04	1
	ND		1.0	0.10	ug/L			03/06/12 12:04	1
Chlorobenzene	ND		1.0	0.27	ug/L			03/06/12 12:04	
Dibromochloromethane			1.0	0.75	ug/L			03/06/12 12:04	1
Chloroethane			1.0	0.32	ug/L			03/06/12 12:04	1
Chloroform			1.0	0.34	ug/L			03/06/12 12:04	
Chloromothana			1.0	0.34	ug/L			03/06/12 12:04	1
	ND		1.0	0.35	ug/∟			03/06/12 12:04	1
	ND		1.0	0.01	ug/L			03/06/12 12:04	·····
Cis-1;3-Dichloropropene	ND		1.0	0.30	ug/∟			03/06/12 12:04	1
	ND		1.0	0.18	ug/L			03/06/12 12:04	1
	ND		1.0	0.68	ug/L			03/06/12 12:04	۱ م
	ND		1.0	0.74	ug/L			03/06/12 12:04	1
Isopropylbenzene	ND		1.0	0.79	ug/L			03/06/12 12:04	1
Methyl acetate	ND		1.0	0.50	ug/L			03/06/12 12:04	1
Methyl tert-butyl ether	ND		1.0	0.16	ug/L			03/06/12 12:04	1
Methylcyclohexane	ND		1.0	0.16	ug/L			03/06/12 12:04	1
Methylene Chloride	ND		1.0	0.44	ug/L			03/06/12 12:04	1
Styrene	ND		1.0	0.73	ug/L			03/06/12 12:04	1
Tetrachloroethene	ND		1.0	0.36	ug/L			03/06/12 12:04	1
Toluene	ND		1.0	0.51	ug/L			03/06/12 12:04	1
trans-1,2-Dichloroethene	ND		1.0	0.90	ug/L			03/06/12 12:04	1
trans-1,3-Dichloropropene	ND		1.0	0.37	ug/L			03/06/12 12:04	1
Trichloroethene	ND		1.0	0.46	ug/L			03/06/12 12:04	1
Trichlorofluoromethane	ND		1.0	0.88	ug/L			03/06/12 12:04	1
Vinyl chloride	ND		1.0	0.90	ug/L			03/06/12 12:04	1
Xylenes, Total	ND		2.0	0.66	ug/L			03/06/12 12:04	1

Limits

66 - 137

71 - 126

73 - 120

Lab Sample ID: MB 480-54020/4

Matrix: Water

Toluene-d8 (Surr)

Surrogate

Analysis Batch: 54020

1,2-Dichloroethane-d4 (Surr)

4-Bromofluorobenzene (Surr)

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

MB MB

%Recovery Qualifier

110

119

109

Analyzed

03/06/12 12:04

03/06/12 12:04

03/06/12 12:04

Prep Type: Total/NA

Client Sample ID: Lab Control Sample

Prepared

8

Client Sample ID: Method Blank Prep Type: Total/NA Dil Fac 1 1

1

Lab Sample ID: LCS 480-54020/3 Matrix: Water

Analysis Batch: 54020

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,1-Dichloroethane	25.0	24.1		ug/L		96	71 _ 129	
1,1-Dichloroethene	25.0	25.9		ug/L		104	65 ₋ 138	
1,2-Dichlorobenzene	25.0	25.4		ug/L		102	77 _ 120	
1,2-Dichloroethane	25.0	24.6		ug/L		98	75 - 127	
Benzene	25.0	24.9		ug/L		100	71 ₋ 124	
Chlorobenzene	25.0	26.5		ug/L		106	72 ₋ 120	
cis-1,2-Dichloroethene	25.0	24.8		ug/L		99	74 ₋ 124	
Ethylbenzene	25.0	27.5		ug/L		110	77 _ 123	
Methyl tert-butyl ether	25.0	23.5		ug/L		94	64 - 127	
Tetrachloroethene	25.0	27.8		ug/L		111	74 ₋ 122	
Toluene	25.0	26.2		ug/L		105	70 ₋ 122	
trans-1,2-Dichloroethene	25.0	26.3		ug/L		105	73 ₋ 127	
Trichloroethene	25.0	25.2		ug/L		101	74 - 123	

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	108		66 - 137
Toluene-d8 (Surr)	118		71 - 126
4-Bromofluorobenzene (Surr)	109		73 - 120

Lab Sample ID: MB 480-54121/4 Matrix: Water

Analysis Batch: 54121

	MB	мв							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		1.0	0.82	ug/L			03/06/12 21:49	1
1,1,2,2-Tetrachloroethane	ND		1.0	0.21	ug/L			03/06/12 21:49	1
1,1,2-Trichloroethane	ND		1.0	0.23	ug/L			03/06/12 21:49	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		1.0	0.31	ug/L			03/06/12 21:49	1
1,1-Dichloroethane	ND		1.0	0.38	ug/L			03/06/12 21:49	1
1,1-Dichloroethene	ND		1.0	0.29	ug/L			03/06/12 21:49	1
1,2,4-Trichlorobenzene	ND		1.0	0.41	ug/L			03/06/12 21:49	1
1,2-Dibromo-3-Chloropropane	ND		1.0	0.39	ug/L			03/06/12 21:49	1
1,2-Dibromoethane	ND		1.0	0.73	ug/L			03/06/12 21:49	1
1,2-Dichlorobenzene	ND		1.0	0.79	ug/L			03/06/12 21:49	1
1,2-Dichloroethane	ND		1.0	0.21	ug/L			03/06/12 21:49	1
1,2-Dichloropropane	ND		1.0	0.72	ug/L			03/06/12 21:49	1
1,3-Dichlorobenzene	ND		1.0	0.78	ug/L			03/06/12 21:49	1
1,4-Dichlorobenzene	ND		1.0	0.84	ug/L			03/06/12 21:49	1
2-Hexanone	ND		5.0	1.2	ug/L			03/06/12 21:49	1
2-Butanone (MEK)	ND		10	1.3	ug/L			03/06/12 21:49	1

Client Sample ID: Method Blank Prep Type: Total/NA

Client Sample ID: Method Blank

Prep Type: Total/NA

2 3 4 5

Method: 8260B	- Volatile	Organic	Compounds	(GC/MS)	(Continued)
	Volutilo	orgunio	oompoundo		(Continuou)

Lab Sample ID: MB 480-54121/4

Matri	x: W	/ater	
Analy	/sis	Batch:	54121

	МВ	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
4-Methyl-2-pentanone (MIBK)	ND		5.0	2.1	ug/L			03/06/12 21:49	1
Acetone	ND		10	3.0	ug/L			03/06/12 21:49	1
Benzene	ND		1.0	0.41	ug/L			03/06/12 21:49	1
Bromodichloromethane	ND		1.0	0.39	ug/L			03/06/12 21:49	1
Bromoform	ND		1.0	0.26	ug/L			03/06/12 21:49	1
Bromomethane	ND		1.0	0.69	ug/L			03/06/12 21:49	1
Carbon disulfide	ND		1.0	0.19	ug/L			03/06/12 21:49	1
Carbon tetrachloride	ND		1.0	0.27	ug/L			03/06/12 21:49	1
Chlorobenzene	ND		1.0	0.75	ug/L			03/06/12 21:49	1
Dibromochloromethane	ND		1.0	0.32	ug/L			03/06/12 21:49	1
Chloroethane	ND		1.0	0.32	ug/L			03/06/12 21:49	1
Chloroform	ND		1.0	0.34	ug/L			03/06/12 21:49	1
Chloromethane	ND		1.0	0.35	ug/L			03/06/12 21:49	1
cis-1,2-Dichloroethene	ND		1.0	0.81	ug/L			03/06/12 21:49	1
cis-1,3-Dichloropropene	ND		1.0	0.36	ug/L			03/06/12 21:49	1
Cyclohexane	ND		1.0	0.18	ug/L			03/06/12 21:49	1
Dichlorodifluoromethane	ND		1.0	0.68	ug/L			03/06/12 21:49	1
Ethylbenzene	ND		1.0	0.74	ug/L			03/06/12 21:49	1
Isopropylbenzene	ND		1.0	0.79	ug/L			03/06/12 21:49	1
Methyl acetate	ND		1.0	0.50	ug/L			03/06/12 21:49	1
Methyl tert-butyl ether	ND		1.0	0.16	ug/L			03/06/12 21:49	1
Methylcyclohexane	ND		1.0	0.16	ug/L			03/06/12 21:49	1
Methylene Chloride	ND		1.0	0.44	ug/L			03/06/12 21:49	1
Styrene	ND		1.0	0.73	ug/L			03/06/12 21:49	1
Tetrachloroethene	ND		1.0	0.36	ug/L			03/06/12 21:49	1
Toluene	ND		1.0	0.51	ug/L			03/06/12 21:49	1
trans-1,2-Dichloroethene	ND		1.0	0.90	ug/L			03/06/12 21:49	1
trans-1,3-Dichloropropene	ND		1.0	0.37	ug/L			03/06/12 21:49	1
Trichloroethene	ND		1.0	0.46	ug/L			03/06/12 21:49	1
Trichlorofluoromethane	ND		1.0	0.88	ug/L			03/06/12 21:49	1
Vinyl chloride	ND		1.0	0.90	ug/L			03/06/12 21:49	1
Xylenes, Total	ND		2.0	0.66	ug/L			03/06/12 21:49	1
	MB	МВ							

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	109		66 - 137
Toluene-d8 (Surr)	117		71 - 126
4-Bromofluorobenzene (Surr)	107		73 - 120

Lab Sample ID: LCS 480-54121/3 Matrix: Water Analysis Batch: 54121

•	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,1-Dichloroethane	25.0	22.7		ug/L		91	71 - 129	
1,1-Dichloroethene	25.0	22.4		ug/L		90	65 _ 138	
1,2-Dichlorobenzene	25.0	24.3		ug/L		97	77 - 120	
1,2-Dichloroethane	25.0	23.1		ug/L		92	75 _ 127	
Benzene	25.0	23.2		ug/L		93	71 - 124	
Chlorobenzene	25.0	24.3		ug/L		97	72 _ 120	

Analyzed

03/06/12 21:49

03/06/12 21:49

03/06/12 21:49

Prep Type: Total/NA

Client Sample ID: Lab Control Sample

Prepared

Dil Fac

1

1
Prep Type: Total/NA

Client Sample ID: Lab Control Sample

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 480-54121/3 Matrix: Water

man	IN. 1	ator	
Ana		Datah	E 4 4

Analysis Batch: 54121						
	Spike	LCS I	LCS		%Rec.	
Analyte	Added	Result (Qualifier Unit	D %Rec	Limits	
cis-1,2-Dichloroethene		22.7	ug/L	91	74 - 124	
Ethylbenzene	25.0	25.3	ug/L	101	77 _ 123	
Methyl tert-butyl ether	25.0	22.0	ug/L	88	64 _ 127	
Tetrachloroethene	25.0	24.9	ug/L	100	74 ₋ 122	
Toluene	25.0	24.3	ug/L	97	70 _ 122	
trans-1,2-Dichloroethene	25.0	22.9	ug/L	92	73 - 127	
Trichloroethene	25.0	22.5	ug/L	90	74 - 123	
,	65 165					

	LUS	LUS	
Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	108		66 - 137
Toluene-d8 (Surr)	119		71 - 126
4-Bromofluorobenzene (Surr)	107		73 - 120

Method: RSK-175 - Dissolved Gases (GC)

Lab Sample ID: MB 480-53795/2 Matrix: Water Analysis Batch: 53795							Client Sa	ample ID: Metho Prep Type: T	d Blank otal/NA
· ····· · ·····························	MB	МВ							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ethane	ND		1.5	0.49	ug/L			03/04/12 10:18	1
Ethene	ND		1.5	0.52	ug/L			03/04/12 10:18	1
Methane	ND		1.0	0.22	ug/L			03/04/12 10:18	1

Lab Sample ID: LCS 480-53795/3 Matrix: Water

Analysis Batch: 53795								
	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Ethane	14.4	15.6		ug/L		108	71 - 147	
Ethene	13.5	14.3		ug/L		106	71 ₋ 147	
Methane	7.77	8.27		ug/L		106	48 _ 174	

Method: 300.0 - Anions, Ion Chromatography

Lab Sample ID: MB 480-54087/28 Matrix: Water Analysis Batch: 54087							Client S	ample ID: Metho Prep Type: T	d Blank otal/NA
· · · · · , · · · · · · · · · · · · · · · · · · ·	МВ	МВ							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	ND		0.50	0.28	mg/L			03/07/12 15:52	1
Sulfate	ND		2.0	0.35	mg/L			03/07/12 15:52	1

Lab Sample ID: LCS 480-54087/27 **Client Sample ID: Lab Control Sample** Matrix: Water Prep Type: Total/NA Analysis Batch: 54087 LCS LCS Spike %Rec. Analyte Added Result Qualifier Unit D %Rec Limits Chloride 20.0 20.10 101 90 - 110 mg/L Sulfate 20.0 19.30 97 90 - 110 mg/L

8

TestAmerica Buffalo 3/15/2012

Method: 300.0 - Anions, Ion Chromatography (Continued)

Lab Sample D: 480-1679-3 MS Matrix: Water Sample Samp			J		~/								
Matrix: Water Prep Type: Total/NA Analysis Batch: 54037 Sample Semple Sprike Analysis MS MS MS Stree: Msee: Chinola 71.1 25.0 94.00 mpL 0 5.8 0.1015 0.1016 0.1015 0.1016 0.1015 0.1016 0.1015 0.1016 0.1015 0.1016 0.1015 0.1015 0.1015 0.1015	Lab Sample ID: 480-16799-3 MS										C	Client Sample I	D: RU-20
Analysis Batch: 54087 Sample Sample Sample Sample Added MS MS Vitec. Vitec. Unit D Vitec. Unit Unit Vitec. Unit Unit Vitec. Vitec. Unit Unit Vitec. Vitec	Matrix: Water											Prep Type:	Total/NA
Analytic Result Califier Add B No D Mate: Mate: Chierde 71.1 25.0 94.40 mgt. 0 96.6 01.730 Suitate 90 25.0 33.40 mgt. 0 96.6 01.730 Lab Sample ID: MB 480-54605/28 Matrix: Water Analysis Client Sample ID: McHod Blank Prepared Analyzes Dil Fac Analysis Batch: 5405 MS MB Client Sample ID: LCS 480-54605/27 Matrix: Water Analyse Spike LCS LCS KRee. Dil Fac Colorida 200 18.00 mgt. 0 McHo McHo Analyse Added Result Qualifier Unit Vite McHo McHo McHo Analyse Added Result Qualifier No 2.0 0.35 mgt. Client Sample ID: McHod Blank Matrix: Water Analyse Mab Result	Analysis Batch: 54087	Comula C		Calles		MC M						% Dee	
Note Note <th< th=""><th>Analyte</th><th>Result O</th><th>ualifior</th><th>Spike</th><th></th><th>Result Ou</th><th>o Ialifior</th><th>Unit</th><th></th><th>п</th><th>%Rec</th><th>/ordec.</th><th></th></th<>	Analyte	Result O	ualifior	Spike		Result Ou	o Ialifior	Unit		п	%Rec	/ordec.	
Suffer 9.9 20.0 33.40 mpt 94 60.120 Lab Sample ID: MB 480-54605/28 Matrix: Water Analysis Batch: 54005 MB Client Sample ID: Method Blank Prep Type: Total/NA Analysis Batch: 54005 DI Fac 0300/12 23:33 1 Lab Sample ID: LGS 480-54605/27 Matrix: Water Analysis Batch: 54005 ND 2.0 0.35 mgL 0 Prepared Analyze 0300/12 23:33 1 Lab Sample ID: LGS 480-54605/27 Matrix: Water Analysis Batch: 54005 ND 2.0 0.35 mgL 0 NRec. Result Quiller Di Fac 0300/12 23:33 1 Client Sample ID: LGS 480-54605/27 Matrix: Water Analysis Batch: 54005 Spike LCS LCS NRec. Result Quiller 0 NRec. Result Quiller Di MRec. NRec. MRec. NRec. MRec. NRec. MRec. NRec. MRec. NRec. NRec. NRec. NRec. NRec. NRec. NRec. NRec. NRec. NRec. NRec. NRec. NRec. NRec. Di MRec. NRec. NRec. NRec. NRec. NRec. NRec. Di MRec. NRec. NRec. NRec. NRec. NRec. NRec. NRec. NRec. NRE Di MRec. NREC. N		71 1		25.0		94.80	anner				95	80 120	
Lab Sample ID: MB 480-54605/28 Matrix: Water Analysis Batch: 54005 MB MB Analysis Batch: 55196 MB MB Analysis Batch: 54291 MB MB Analysis Batch: 542	Sulfate	9.9		25.0		33 40		ma/l			94	80 - 120	
Lab Sample 10: ME 480-54605/28 Client Sample 10: ME 480-54605/27 Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac Chionice ND 0.50 0.28 mg/L 0.0001223:33 1 Lab Sample 10: LCS 480-54605/27 ND 2.0 0.35 mg/L 0.0001223:33 1 Lab Sample 10: LCS 480-54605/27 Matrix: Water Client Sample 10: Lab Control Sample Prep Type: Total/NA Analyte Added Result Qualifier Rt Client Sample 10: Lab Control Sample Chionice 20.0 18.20 mg/L 0 %Rec Chionice 20.0 18.20 mg/L 9 %Rec Chionice 20.0 18.20 mg/L 9 %Rec Analyte Result Qualifier RL MDL MD 0.35 mg/L 0.314/12 12:47 1 Suffate ND 0.50 0.28 mg/L 0.33 mg/L 0.314/12 12:47 1 Suffate ND 2.0 0.35 mg/L 0.314/12 12:47 1 Suffate ND 0.20 <t< td=""><td></td><td>0.0</td><td></td><td>2010</td><td></td><td>00110</td><td></td><td></td><td></td><td></td><td>0.</td><td>00 - 120</td><td></td></t<>		0.0		2010		00110					0.	00 - 120	
Matrix: Water Analysis Batch: 54805 MB MB Analysis Batch: 54805 Prep Type: Total/NA Analysis Batch: 54805 ND 0.50 0.28 mgL D Depared Analyzet DIF rec Chiendé ND 2.0 0.35 mgL D308/12.23.33 1 Lab Sample ID: LCS 480-54605/27 Client Sample ID: LCS 480-54605/27 Client Sample ID: Lab Control Sample Prep Type: Total/NA Analysis Batch: 54605 Spike LOS LCS WRec. WRec. Analysis Batch: 54605 Spike LOS LCS WRec. WRec. Analysis Batch: 54905 Spike LOS LCS WRec. WRec. Analysis Batch: 55196 MB Result Qualifier Unit D Prep ared Analysis Analysis Batch: 55196 MB Result Qualifier RL MOL Unit D Prepared Analysis Chiendé ND 0.50 0.28 mgL 0.03/14/12.12.47 1 Suifale ND 0.50 0.28 mgL 0.03/14/12.12.47 1 Lab Sample ID: LCS 48	Lab Sample ID: MB 480-54605/28									C	lient Sa	mple ID: Meth	od Blank
Analysis Batch: 54605 MB MB MD MD Q.28 mpl. D Prepared Analyzed DIF Fac Sulfate ND 2.0 0.35 mgl. DIF Fac DIF Fac <td>Matrix: Water</td> <td></td> <td>Prep Type:</td> <td>Total/NA</td>	Matrix: Water											Prep Type:	Total/NA
Analyte NB is more Childide ND RL MDL Unit D Prepared Analyzed Dil Fac 0309/12 2333 1 Lab Sample ID: LCS 480-54605/27 Matrix: Water ND 2.0 0.35 mgL 0309/12 2333 1 Lab Sample ID: LCS 480-54605/27 Matrix: Water ND 2.0 0.35 mgL 0309/12 2333 1 Lab Sample ID: LCS 480-54605/27 Matrix: Water Analysis Client Sample ID: LCS 480-54605/27 Client Sample ID: LCS 480-54605/27 ViRec. Linits Analysis Batch: 54605 Spike LCS LCS mgL D %Rec. Linits Surfate 20.0 18.20 mgL D %Rec. Linits Lab Sample ID: MB 480-55196/4 Matrix: Water ND 2.0 0.35 mgL O314/12 12.47 1 Analysis Batch: 55196 ND 2.0 0.35 mgL O314/12 12.47 1 Sufate ND 2.0 0.35 mgL O314/12 12.47 1 Chioride ND 2.0 0.35 mgL O314/12 12.47 1 Sufate	Analysis Batch: 54605												
Analysis Not Not Out Out Out Propulor Analyzad On Pro- control Suifate ND 2.0 0.35 mgL 0309012 23.33 1 Lab Sample (D: LCS 480-54605/27 Matrix: Water ND 2.0 0.35 mgL 0309012 23.33 1 Lab Sample (D: LCS 480-54605/27 Matrix: Water Added Result Qualifier Unit D %Rec. MRec. Analysis Splite 20.0 19.10 mgL 9 90.110 MRec. Suifate 20.0 18.20 mgL 9 90.110 MRec. Lab Sample ID: MB 480-55196/4 Matrix: Water ND 0.50 0.28 mgL 03/41/12 12.47 1 Lab Sample ID: LCS 480-55196/3 Matrix: Water ND 0.50 0.28 mgL 03/41/12 12.47 1 Lab Sample ID: LCS 480-55196/3 Matrix: Water ND 0.50 0.28 mgL 03/41/12 12.47 1 Lab Sample ID: LCS 480-54291/4 Matrix: Water ND 0.50 0.28 mgL 03/41/12 12.47 1 Lab Sample ID: MB 480-5429	Analyta	IV Boo	IB NB		ы	MDI	Unit			Dror	ored	Analyzed	
Childhe ND 2.0 0.00 <th< td=""><td></td><td></td><td></td><td></td><td><u>RL</u> -</td><td>0.28</td><td></td><td></td><td></td><td>Fiet</td><td>Jareu</td><td>Analyzeu</td><td></td></th<>					<u>RL</u> -	0.28				Fiet	Jareu	Analyzeu	
Control Lob Lob Cub Mage Client Sample ID: LCS 480-54605/27 Analysis Batch: 54605 Spike LCS LCS LCS LCS LCS Prep Type: Total/NA Analysis Batch: 54605 20.0 19.10 mg/L 9 90.110 9 Lab Sample ID: MB 480-55196/4 20.0 18.20 mg/L 9 90.110 Lab Sample ID: MB 480-55196/4 Client Sample ID: MB 480-55196/4 Client Sample ID: Method Blank Prep Type: Total/NA Analysis Batch: 55196 MB MB Analysis Batch: 55196 Client Sample ID: Lab Control Sample Dil Fac Chondre ND 0.50 0.28 mg/L 0 Prepared Analyzed Dil Fac Chondre ND 2.0 0.35 mg/L D Prep Type: Total/NA Lab Sample ID: LCS 480-55196/3 MB Client Sample ID: Lab Control Sample Dil Fac Chondre 20.0 19.80 mg/L D %Rec. Analysis Batch: 55196 Spike LCS LCS Skee Vinte Vinte Vinte Sattate 20.0 19.80 mg/L D %Rec. Limits Chondre 20.0 19.80 mg/L D Yree V	Sulfate	N	חו		2.0	0.20	mg/L					03/09/12 23:33	1
Lab Sample ID: LCS 480-54605/27 Matrix: Water Client Sample ID: Lab Control Sample Prep Type: Total/NA Analysis Batch: 54605 Spike LCS LCS %Rec. Analysis Batch: 54605 90.110 90.110 90.110 Suitae 20.0 18.20 mg/L 91 90.110 Lab Sample ID: MB 480-55196/4 Matrix: Water MB Client Sample ID: Method Blank Prep Type: Total/NA Analysis Batch: 55196 MB MB Analysis Batch: 55196 Client Sample ID: Method Blank Prep Type: Total/NA Analyse ND 0.50 0.28 mg/L D Prepared Analyzed DIF ac 03/14/12/12/47 1 Sufate ND 0.50 0.28 mg/L D Prepared Analyzed DIF ac 03/14/12/12/47 1 Lab Sample ID: LCS 480-55196/3 MB Client Sample ID: Lab Control Sample Prep Type: Total/NA Analyse Spike LCS LCS Skec. NRec. Analyse Spike LCS LCS Skec. Skec. Analyse 20.0 19.80 mg/L 9 90.110 Sufate 20.0 19.80 mg/L					2.0	0.55	IIIg/L					03/09/12 23:33	1
Matrix: Water Analysis Batch: 54605 Prep Type: Total/NA Analysis Batch: 54605 Prep Type: Total/NA Analysis Batch: 54605 Analyse Chloride 20.0 18.20 mg/L D %Rec. Suffate 20.0 18.20 mg/L D %Rec. Lab Sample ID: MB 480-55196/4 Matrix: Water Analyses Batch: 55196 MB M Analyses D Prepared Analyzed Dil Fac 03/14/12 12.47 Dil Fac 03/14/12 12	Lab Sample ID: LCS 480-54605/27								Cli	ent S	ample	ID: Lab Contro	I Sample
Analysis Batch: 54605 Spike LCS LCS LCS Marker Limits Limits Limits Marker Ma	Matrix: Water											Prep Type:	Total/NA
Analyte Added Result Qualifier Unit D %Rec. Limits Chloride 20.0 19.10 mg/L 91 90.110 Sulfate 20.0 18.20 mg/L 91 90.110 Lab Sample ID: MB 480-55196/4 Cilient Sample ID: MB 480-55196/4 Cilient Sample ID: Method Blank Matrix: Water Result Qualifier RL MDL D Prepared Analyzed Dil Fac Chloride ND 0.50 0.26 mg/L D Prepared Analyzed Dil Fac Sulfate ND 2.0 0.35 mg/L 0.3/14/12 12:47 1 Lab Sample ID: LCS 480-55196/3 Keter Cilient Sample ID: Lab Control Sample Prepared Analyzed MIRec. Analysis Batch: 55196 Spike LCS LCS ViRec. Unit P %Rec. Mirka Sulfate 20.0 19.80 mg/L 9 90.110 MIRec Sulfate 20.0 19.80	Analysis Batch: 54605												
Analyte Added Result Qualifier Unit D %Rec Limits Sufidie 20.0 18.20 mg/L 91 90.110 Sufidie 20.0 18.20 mg/L 91 90.110 Lab Sample ID: MB 480-55196/4 MB MB MB Prep Type: Total/NA Analyte Result Qualifier RL MD L D Prepared Analyzed Dil Fac Chloride ND 0.50 0.28 mg/L D Prepared Analyzed Dil Fac Suffate ND 2.0 0.35 mg/L D Other/12 12-47 1 Suffate ND 2.0 0.35 mg/L D Other/14/12 12-47 1 Suffate ND 2.0 0.35 mg/L D Other/14/12 12-47 1 Suffate ND 2.0 0.35 mg/L D Ms/Rec. Linits Matrix: Water Analysed Added Resut				Spike		LCS LC	s					%Rec.	
Chloide 20.0 19.0 mgL 96 90 - 110 Lab Sample ID: MB 480-55196/4 Matrix: Water 20.0 18.20 mgL 91 90 - 110 Lab Sample ID: MB 480-55196/4 Matrix: Water MB MB Client Sample ID: Method Blank Prep Type: Total/NA Analysis Batch: 55196 MD 0.50 0.28 mgL D Prepared Analyzed DI Fac Sulfate ND 2.0 0.35 mgL D 03/14/12 12:47 1 Sulfate ND 2.0 0.35 mgL 03/14/12 12:47 1 Lab Sample ID: LCS 480-55196/3 Matrix: Water ND 2.0 0.35 mgL D %Rec. Analysis Batch: 55196 Analysis Batch: 55196 Client Sample ID: Lab Control Sample Sulfate 20.0 19.80 mgL D %Rec. YRec. Chionde 20.0 19.80 mgL 99 90.110 D Sulfate 20.0 19.80 mgL D MRec. Lininis	Analyte			Added		Result Qu	alifier	Unit			%Rec	Limits	
Sulfate 20.0 16.20 mg/L 91 90.110 Lab Sample ID: MB 480-55196/4 Matrix: Water Client Sample ID: Method Blank Prep Type: Total/NA Analyte Result Qualifier RL MDL Unit D Prepared Analyzed DI Fac Colloride ND 0.50 0.28 mg/L D Prepared Analyzed DI Fac Sulfate ND 0.50 0.28 mg/L D Vietar Sample ID: LCS 480-55196/3 Client Sample ID: Lab Control Sample Matrix: Water Analyte Added Result Qualifier Unit D %Rec. Analyte Added 20.0 19.80 mg/L 99 90.110 Sulfate 20.0 19.80 mg/L 99 90.110 Wethod: 353.2 - Nitrogen, Nitrate-Nitrite Client Sample ID: MB 480-54291/4 Client Sample ID: Method Blank Prep Type: Total/NA Analyte Result Qualifier RL MDL Unit D YkRec. Lab Sample ID: LCS 480-54291/4 MB MB Client Sample ID: Method Blank Prep Type: Total/NA Analyte Result Qualifier RL MDL Unit D Prepared Analyzed DI Fac Lab Sample ID: LCS	Chloride			20.0		19.10		mg/L			96	90 - 110	
Lab Sample ID: MB 480-55196/4 Client Sample ID: Method Blank Matrix: Water Prep Type: Total/NA Analysis Batch: 55196 MB Analyse Result Qualifier RL MDL Unit D Prepared Analyzed DII Fac Chionde ND 0.50 0.28 mgL 03/14/12/12:47 1 Lab Sample ID: LCS 480-55196/3 ND 2.0 0.35 mgL 03/14/12/12:47 1 Lab Sample ID: LCS 480-55196/3 Matrix: Water Client Sample ID: Lab Control Sample Prep Type: Total/NA Analysis Batch: 55196 Spike LCS LCS %Rec. Analysis Batch: 55196 Spike LCS LCS %Rec. Sulfate 20.0 19.80 mg/L 9 90.110 Wethod: 353.2 - Nitrogen, Nitrate-Nitrite Client Sample ID: MB 480-54291/4 Client Sample ID: Method Blank Analyse Result Qualifier RL MDL Unit D Prepared Analyzed DII Fac Lab Sample ID: MB 480-54291/4 ND 0.050 0.020 mg/L D Prep Typ: Total/NA Analyse <td>Sulfate</td> <td></td> <td></td> <td>20.0</td> <td></td> <td>18.20</td> <td></td> <td>mg/L</td> <td></td> <td></td> <td>91</td> <td>90 - 110</td> <td></td>	Sulfate			20.0		18.20		mg/L			91	90 - 110	
Lab Sample ID: MB 460-351964 Metrix: Water Prep Type: Total/NA Analysis Batch: 55196 MB MB Analyte Result Qualifier RL MDL Unit D Prepared Analyzed DI Fac Chloride ND 2.0 0.35 mg/L 03/14/12 12:47 1 Suffate ND 2.0 0.35 mg/L 03/14/12 12:47 1 Lab Sample ID: LCS 480-55196/3 Cilient Sample ID: Lab Control Sample Prep Type: Total/NA Analyte Added Result Qualifier Unit D %Rec. Analyte Added Result Qualifier Unit D %Rec. Analyte 20.0 19.80 mg/L 99 90.110 Sulfate 20.0 19.80 mg/L 99 90.110 Method: 353.2 - Nitrogen, Nitrate-Nitrite Cilient Sample ID: Method Blank Prep Type: Total/NA Analyte Result Qualifier RL MDL Unit D Prepared Analyzed DI Fac Lab Sample ID: LCS 480-54291/4 Matrix: Water MB MB MDL U	- Lab Cample ID: MD 490 55400/4									~	liant Ca		ed Dienk
Martix: Prep Type: Iotalivan Analysis Batch: 55196 MB MB Analysis Batch: 55196 ND 0.50 0.28 mg/L D Prepared Analyzed DI Fac Obloride ND 0.50 0.28 mg/L D 0.3141/12 12:47 1 Lab Sample ID: LCS 480-55196/3 ND 2.0 0.35 mg/L D Prepared Analyze DI Fac Analysis Batch: 55196 ND 2.0 0.35 mg/L D \$kRec: Himits Analysis Batch: 55196 Spike LCS LCS LS %Rec: Imits Analysis Batch: 55196 20.0 19.80 mg/L 9 90 110 Sulfate 20.0 19.80 mg/L 99 90 110 Wethod: 353.2 - Nitrogen, Nitrate-Nitrite Client Sample ID: Method Blank Prep Type: Total/NA Analysis Batch: 54291 MB MB Prep Type: Total/NA Analysis Batch: 54291 ND 0.050 0.020 mg/L D Prep Type: Total/NA Analysis Batch: 54291 ND 0.050 0.020 mg/L D Prepared Analyzed DI Fac Nitrate Nitrite as N ND <td< td=""><td>Lab Sample ID: MB 480-55196/4</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>C</td><td>lient Sa</td><td></td><td></td></td<>	Lab Sample ID: MB 480-55196/4									C	lient Sa		
Analysis batch: 39190 MB MB Analyte Result Qualifier RL MDL Unit D Prepared Analyzed DI Fac Chloride ND 2.0 0.35 mg/L 03/14/12 12:47 1 Lab Sample ID: LCS 480-55196/3 ND 2.0 0.35 mg/L 03/14/12 12:47 1 Lab Sample ID: LCS 480-55196/3 Client Sample ID: Lab Control Sample Prep Type: Total/NA Analysis Batch: 55196 Spike LCS %Rec. Analysis Batch: 55196 20.0 19.80 mg/L D %Rec. Sulfate 20.0 19.80 mg/L 99 90.110	Matrix: Water											Prep Type:	Total/NA
Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac Chloride ND 0.50 0.28 mg/L 03/14/12 12:47 1 Suffate ND 2.0 0.35 mg/L 03/14/12 12:47 1 Lab Sample ID: LCS 480-55196/3 Client Sample ID: Lab Control Sample Prep Type: Total/NA Matrix: Water Analyte Added Result Qualifier Unit D %Rec. Analyte Added 20.0 19.80 mg/L D %Rec. Limits Sulfate 20.0 19.80 mg/L 99 90 - 110 99 90 - 110 Method: 353.2 - Nitrogen, Nitrate-Nitrite 20.0 19.80 mg/L 99 90 - 110 Method: 353.2 - Nitrogen, Nitrate-Nitrite Client Sample ID: Method Blank Prep Type: Total/NA Analysis Batch: 54291 MB MB Prep Type: Total/NA Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac ND 0.050 0.020 mg/L 0 99 90 - 110 Di Fac Lab Sample ID: LCS 480-54291/5 MB MB	Analysis Batch. 55196	N	IR MR										
Choirde ND 0.50 0.28 mg/L 0.314/12 12:47 1 Suifate ND 2.0 0.35 mg/L 03/14/12 12:47 1 Suifate ND 2.0 0.35 mg/L 03/14/12 12:47 1 Lab Sample ID: LCS 480-55196/3 Client Sample ID: Lab Control Sample Prep Type: Total/NA Matrix: Water Analyte Added Result Qualifier Unit D %Rec. Choride 20.0 19.80 mg/L D %Rec. Limits	Analyte	Resi	ult Qualifier		RL	MDL	Unit		D	Prec	ared	Analyzed	Dil Fac
Sulfate ND 2.0 0.35 mg/L 03/14/12 12:47 1 Lab Sample ID: LCS 480-55196/3 Matrix: Water Client Sample ID: Lab Control Sample Prep Type: Total/NA Analysis Batch: 55196 Spike LCS KRec. Analyte Added Result Qualifier Unit D %Rec. Chloride 20.0 19.80 mg/L 99 90.110 Sulfate 20.0 19.80 mg/L 99 90.110 Method: 353.2 - Nitrogen, Nitrate-Nitrite Client Sample ID: MB 480-54291/4 Client Sample ID: Method Blank Prep Type: Total/NA Analyte Result Qualifier RL MDL D Prep Type: Total/NA Analyte Result Qualifier RL MDL D Prep Type: Total/NA Analyte Result Qualifier RL MDL D Prep Type: Total/NA Analyte Result Qualifier RL MDL D Prep Type: Total/NA ND 0.050 0.020 mg/L D Prep Type: Total/NA Analyte Result Qualifier RL MDL D Prep Type: Total/NA Analyte ND 0.050 0.020 mg/L D Prep Type: Total/N	Chloride	N	ID		0.50	0.28	ma/L					03/14/12 12:47	1
Lab Sample ID: LCS 480-55196/3 Matrix: Water Client Sample ID: Lab Control Sample Analysis Batch: 55196 Spike LCS LCS VRec. Analyte Added Result Qualifier Unit D %Rec. Analyte 20.0 19.80 mg/L 99 90.110 Suffate Sulfate 20.0 19.80 mg/L 99 90.110 Sulfate Method: 353.2 - Nitrogen, Nitrate-Nitrite Client Sample ID: MB 480-54291/4 Client Sample ID: Method Blank Prep Type: Total/NA Matrix: Water Analysis Batch: 54291 MB Prep Type: Total/NA Analyte Result Qualifier RL MDL Unit D Prep Type: Total/NA Nitrate Nitrite as N ND 0.050 0.020 mg/L DI Fac DI Fac Matrix: Water ND 0.050 0.020 mg/L Di Sample ID: Lab Control Sample Analyte Result Qualifier RL MDL Unit D Prep Type: Total/NA Nitrate Nitrite as N ND 0.050 0.020 mg/L DI Fac DI Fac <	Sulfate	Ν	ID		2.0	0.35	mg/L					03/14/12 12:47	1
Lab Sample ID: LCS 480-55196/3 Client Sample ID: Lab Control Sample Matrix: Water Prep Type: Total/NA Analyte Added Result Qualifier Unit D %Rec. Analyte Added Result Qualifier Unit D %Rec. Limits							-						
Matrix: Water Analysis Batch: 55196 Prep Type: Total/NA Analyte Spike LCS LCS VRec. Analyte Added Result Qualifier Unit D %Rec. Chloride 20.0 19.80 mg/L 99 90.110 Sulfate 20.0 19.80 mg/L 99 90.110 Method: 353.2 - Nitrogen, Nitrate-Nitrite Client Sample ID: MB 480-54291/4 Client Sample ID: Method Blank Matrix: Water Analyte Result Qualifier RL MDL Unit D Prep Type: Total/NA Analyte Result Qualifier RL MDL Unit D Matrix: Vater Analyte Result Qualifier RL MDL Unit D Prep ared Analyzed Dil Fac Nitrate Nitrite as N ND 0.050 0.020 mg/L 0/0/07/12 17:17 1 Lab Sample ID: LCS 480-54291/5 Client Sample ID: Lab Control Sample Client Sample ID: Lab Control Sample Matrix: Water Analysis Batch: 54291 Spike LCS KRec. Analysis Batch: 54291 Spike LCS VRec. Unit D %Rec. Analysis Batch: 54291 1.50 1.50<	Lab Sample ID: LCS 480-55196/3								Cli	ent S	ample	ID: Lab Contro	I Sample
Analysis Batch: 55196 Spike LCS LCS LCS Marce Analyte Added Result Qualifier Unit D %Rec. Limits	Matrix: Water											Prep Type:	Total/NA
Spike LCS LCS Mec. Analyte Added Result Qualifier Unit D %Rec. Chloride 20.0 19.80 mg/L 99 90.110 99 Sulfate 20.0 19.80 mg/L 99 90.110 99 Method: 353.2 - Nitrogen, Nitrate-Nitrite Client Sample ID: MB 480-54291/4 Client Sample ID: Method Blank Matrix: Water Analyte Result Qualifier Result Olient Prep Type: Total/NA Analyte Result Qualifier Result Qualifier 0.050 0.020 mg/L D Prepared Analyzed Dil Fac Nitrate Nitrite as N ND 0.050 0.020 mg/L D Prepared Analyzed Dil Fac Lab Sample ID: LCS 480-54291/5 ND 0.050 0.020 mg/L D Prepared Analyzed Pil Fac Lab Sample ID: LCS 480-54291/5 ND Client Sample ID: Lab Control Sample Prep Type: Total/NA Analyte Spike LCS LCS LS Kec. Mec.	Analysis Batch: 55196												
Analyte Added Result Qualifier Unit D %Rec Limits Sulfate 20.0 19.80 mg/L 99 90.110 99 90.110 Method: 353.2 - Nitrogen, Nitrate-Nitrite 20.0 19.80 mg/L 99 90.110 Method: 353.2 - Nitrogen, Nitrate-Nitrite Client Sample ID: MB 480-54291/4 Client Sample ID: Method Blank Prep Type: Total/NA Matrix: Water Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac Nitrate Nitrite as N ND 0.050 0.020 mg/L D Prepared Analyzed Dil Fac Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac Matrix: Water ND 0.050 0.020 mg/L D Prep Type: Total/NA Analyte ND 0.050 0.020 mg/L D Prep Type: Total/NA Matrix: Water ND 1.50 1.50 90, 110 00.00 0.020 90, 110				Spike		LCS LC	s					%Rec.	
Chloride 20.0 19.80 mg/L 99 90 - 110 Sulfate 20.0 19.80 mg/L 99 90 - 110 Method: 353.2 - Nitrogen, Nitrate-Nitrite 99 90 - 110 Lab Sample ID: MB 480-54291/4 Matrix: Water Client Sample ID: Method Blank Prep Type: Total/NA Analysis Batch: 54291 MB MB Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac Nitrate Nitrite as N ND 0.050 0.020 mg/L D O3/07/12 17:17 1 Lab Sample ID: LCS 480-54291/5 Matrix: Water ND 0.050 0.020 mg/L D Prep Type: Total/NA Analysis Batch: 54291 ND 0.050 0.020 mg/L D Prep Type: Total/NA Analysis Batch: 54291 Spike LCS LCS LCS %Rec. Analysis Batch: 54291 Spike LCS LCS LCS Unit D %Rec. Nitrate Nitrite as N 1.50 1.50 mg/L D %Re	Analyte			Added		Result Qu	alifier	Unit			%Rec	Limits	
Sulfate 20.0 19.80 mg/L 99 90 - 110 Method: 353.2 - Nitrogen, Nitrate-Nitrite Lab Sample ID: MB 480-54291/4 Client Sample ID: Method Blank Matrix: Water Prep Type: Total/NA Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac Nitrate Nitrite as N ND 0.050 0.020 mg/L 03/07/12 17:17 1 Lab Sample ID: LCS 480-54291/5 Matrix: Water Analysis Batch: 54291 Matrix: Water Spike LCS LCS Client Sample ID: Lab Control Sample Prep Type: Total/NA No	Chloride			20.0		19.80		mg/L			99	90 - 110	
Method: 353.2 - Nitrogen, Nitrate-Nitrite Lab Sample ID: MB 480-54291/4 Client Sample ID: Method Blank Matrix: Water Prep Type: Total/NA Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac Nitrate Nitrite as N ND 0.050 0.020 mg/L 03/07/12 17:17 1 Lab Sample ID: LCS 480-54291/5 Kesut Client Sample ID: Lab Control Sample Prep Type: Total/NA Matrix: Water ND 0.050 0.020 mg/L 03/07/12 17:17 1 Lab Sample ID: LCS 480-54291/5 Client Sample ID: Lab Control Sample Prep Type: Total/NA Matrix: Water Prep Type: Total/NA Prep Type: Total/NA Analysis Batch: 54291 Spike LCS LCS %Rec. Analyte Added Result Qualifier Unit D %Rec. Mitrate Nitrite as N 1.50 1.50 mg/L 100 90 - 110	Sulfate			20.0		19.80		mg/L			99	90 - 110	
Lab Sample ID: MB 480-54291/4 Matrix: Water Analysis Batch: 54291 MB MB Analyte Result Qualifier Result Qualifier REL MDL Unit D Prepared Analyzed Dil Fac ND 0.050 0.020 mg/L D Prepared Analyzed Dil Fac 03/07/12 17:17 1 Lab Sample ID: LCS 480-54291/5 Matrix: Water Analysis Batch: 54291 Spike LCS LCS VRec. Analyte Analyte Added Result Qualifier Unit D %Rec Limits Nitrate Nitrite as N 1.50 1.50 mg/L 000 90 - 110	Method: 353 2 - Nitrogen Nitr	ate-Nitrit	P										
Lab Sample ID: MB 480-54291/4 Client Sample ID: Method Blank Matrix: Water Prep Type: Total/NA Analysis Batch: 54291 MB MB Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac ND 0.050 0.020 mg/L D Prepared Analyzed Dil Fac Lab Sample ID: LCS 480-54291/5 ND 0.050 0.020 mg/L D Prep Type: Total/NA Matrix: Water ND 0.050 0.020 mg/L D Prep Type: Total/NA Analysis Batch: 54291 ND Spike LCS LCS Sample ID: Lab Control Sample Matrix: Water Prep Type: Total/NA Prep Type: Total/NA Prep Type: Total/NA Analysis Batch: 54291 Spike LCS LCS %Rec. Matrix: Water Added Result Qualifier Unit D %Rec. Analysis Batch: 54291 Spike LCS LCS %Rec. Matrix Nitrate Nitrite as N 1.50 1.50 Matrix D %Rec <t< td=""><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>			-										
Matrix: Water Prep Type: Total/NA Analysis Batch: 54291 MB MB Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac Nitrate Nitrite as N ND 0.050 0.020 mg/L D Prepared Analyzed Dil Fac Lab Sample ID: LCS 480-54291/5 ND Client Sample ID: Lab Control Sample Matrix: Water Prep Type: Total/NA Analysis Batch: 54291 Spike LCS LCS Kec. Analyte Added Result Qualifier Unit D %Rec. Nitrate Nitrite as N 1.50 1.50 mg/L 100 90 - 110	Lab Sample ID: MB 480-54291/4									C	lient Sa	mple ID: Meth	od Blank
Analysis Batch: 54291 MB MB Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac Nitrate Nitrite as N ND 0.050 0.020 mg/L D Prepared Analyzed Dil Fac Lab Sample ID: LCS 480-54291/5 ND Client Sample ID: Lab Control Sample Prep Type: Total/NA Matrix: Water Spike LCS LCS %Rec. Analyte Added Result Qualifier Unit D %Rec. Matrix Nitrite as N 1.50 1.50 mg/L 100 90 - 110	Matrix: Water											Prep Type:	Total/NA
MB MB MB Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac Nitrate Nitrite as N ND ND 0.050 0.020 mg/L D Prepared Analyzed Dil Fac Lab Sample ID: LCS 480-54291/5 ND Client Sample ID: Lab Control Sample Matrix: Water Prep Type: Total/NA Analyte Spike LCS KRec. Analyte Added Result Qualifier Unit D %Rec Limits Nitrate Nitrite as N 1.50 1.50 mg/L 100 90 - 110 100	Analysis Batch: 54291												
Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac Nitrate Nitrite as N ND 0.050 0.020 mg/L D O3/07/12 17:17 1 Lab Sample ID: LCS 480-54291/5 Client Sample ID: Lab Control Sample Prep Type: Total/NA Matrix: Water Spike LCS LCS %Rec. Analyte Added Result Qualifier Unit D %Rec Limits Nitrate Nitrite as N 1.50 1.50 mg/L 100 90 - 110 Prepared		N	IB MB										
Nitrate Nitrite as N ND 0.050 0.020 mg/L 03/07/12 17:17 1 Lab Sample ID: LCS 480-54291/5 Client Sample ID: Lab Control Sample Matrix: Water Prep Type: Total/NA Analysis Batch: 54291 Spike LCS LCS %Rec. Analyte Added Result Qualifier Unit D %Rec Limits Nitrate Nitrite as N 1.50 1.50 mg/L 100 90 - 110	Analyte	Resi	ult Qualifier		RL	MDL	Unit		D	Prep	bared	Analyzed	Dil Fac
Lab Sample ID: LCS 480-54291/5 Client Sample ID: Lab Control Sample Matrix: Water Prep Type: Total/NA Analysis Batch: 54291 Spike LCS Kec. Analyte Added Result Qualifier Unit D %Rec. Nitrate Nitrite as N 1.50 1.50 mg/L D %Rec	Nitrate Nitrite as N	Ν	ID	0	.050	0.020	mg/L	_	_	_		03/07/12 17:17	1
Matrix: Water Prep Type: Total/NA Analysis Batch: 54291 Spike LCS KRec. Analyte Added Result Qualifier Unit D %Rec. Nitrate Nitrite as N 1.50 1.50 mg/L 100 90 - 110									01	ont S	ample	ID: I ab Contro	Sample
Analysis Batch: 54291 Spike LCS LCS %Rec. Analyte Added Result Qualifier Unit D %Rec Limits Nitrate Nitrite as N 1.50 1.50 mg/L 100 90 - 110 —	Lab Salliple ID. LCS 400-54291/5 Matrix: Wator								CII	ent 3	ampie		Total/NA
Spike LCS LCS %Rec. Analyte Added Result Qualifier Unit D %Rec. Nitrate Nitrite as N 1.50 1.50 mg/L 100 90 - 110	Mauria, Waler Analysis Batch: 54201											Fieh Type:	ισται/ΙΝΑ
Analyte Added Result Qualifier Unit D %Rec Limits Nitrate Nitrite as N 1.50 1.50 mg/L 100 90 - 110 —	Analysis Daton. 34231			Spike		LCS LC	s					%Rec.	
Nitrate Nitrite as N 1.50 1.50 mg/L 100 90 - 110	Analyte			Added		Result Qu	alifier	Unit		D	%Rec	Limits	
	Nitrate Nitrite as N			1.50		1.50		mg/L			100	90 - 110	

TestAmerica Buffalo 3/15/2012

Method: SM 5310D - Organic Carbon, Total (TOC)

_ Lab Sample ID: MB 480-54596/32 Matrix: Water										С	lient Sa	mple ID: Metho Prep Type:	od Blank Total/NA
Analysis Batch: 54596													
	MB	MB											
Analyte	Result	Qualifier		RL	M	DL U	Jnit		D	Pre	pared	Analyzed	Dil Fac
Total Organic Carbon	ND			1.0	0.4	43 m	ng/L					03/08/12 19:13	1
									Cli	ent S	Sample	ID: Lab Control	I Sample
Matrix: Water												Prep Type:	Total/NA
Analysis Batch: 54596													
			Spike		LCS	LCS						%Rec.	
Analyte			Added		Result	Quali	ifier	Unit		D	%Rec	Limits	
Total Organic Carbon			60.0		59.84			mg/L			100	90 - 110	
										С	lient Sa	mple ID: Metho	od Blank
Matrix: Water												Prep Type:	Total/NA
Analysis Batch: 55266													
	MB	MB											
Analyte	Result	Qualifier		RL	M	DL U	Jnit		D	Pre	pared	Analyzed	Dil Fac
Total Organic Carbon	ND			1.0	0.4	43 m	ng/L					03/13/12 21:10	1
									Cli	ent S	Sample	ID: Lab Control	I Sample
Matrix: Water												Prep Type:	Total/NA
Analysis Batch: 55266													
			Spike		LCS	LCS						%Rec.	
Analyte			Added		Result	Quali	ifier	Unit		D	%Rec	Limits	
Total Organic Carbon			60.0		60.09			mg/L			100	90 - 110	

Method: VFA-IC - Volatile Fatty Acids, Ion Chromatography

o Sample ID: MB 480-53952/52 trix: Water							otal/NA
MB MB							
esult Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
ND	1.0	0.15	mg/L			03/07/12 14:04	1
ND	1.0	0.16	mg/L			03/07/12 14:04	1
ND	1.0	0.17	mg/L			03/07/12 14:04	1
24	MB MB Result Qualifier ND ND ND	MB MB Result Qualifier RL ND 1.0 ND 1.0 ND 1.0	MB MB Result Qualifier RL MDL ND 1.0 0.15 ND 1.0 0.16 ND 1.0 0.17	MB MB Result Qualifier RL MDL Unit ND 1.0 0.15 mg/L ND 1.0 0.16 mg/L ND 1.0 0.17 mg/L	MB MB Result Qualifier RL MDL Unit D ND 1.0 0.15 mg/L - - ND 1.0 0.16 mg/L - - ND 1.0 0.17 mg/L -	MB MB Result Qualifier RL MDL Unit D Prepared ND 1.0 0.15 mg/L	MB MB Result Qualifier RL MDL Unit D Prepared Analyzed ND 1.0 0.15 mg/L 03/07/12 14:04 03/07/12 14:04 ND 1.0 0.16 mg/L 03/07/12 14:04 ND 1.0 0.17 mg/L 03/07/12 14:04

Lab Sample ID: LCS 480-53952/51

Matrix: Water

Analysis Batch: 53952								
	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Acetic acid	10.0	9.65		mg/L		97	80 - 120	
Butyric acid	10.0	9.72		mg/L		97	80 - 120	
Propionic acid	10.0	9.83		mg/L		98	80 - 120	

Lab Sample ID: 480-16799-3 MS Matrix: Water

Matrix: Water									Prep T	ype: Tota	al/NA
Analysis Batch: 53952											
	Sample	Sample	Spike	MS	MS				%Rec.		
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits		
Butyric acid	ND		10.0	9.24		mg/L		92	80 - 120		

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Client Sample ID: RU-20

RL

1.0

1.0

1.0

Spike

Added

10.0

10.0

10.0

MDL Unit

0.15 mg/L

0.16 mg/L

0.17 mg/L

LCS LCS

9.64

9.66

9.95

Result Qualifier

D

Unit

mg/L

mg/L

mg/L

Prepared

D

%Rec

96

97

100

Lab Sample ID: MB 480-53953/76

Lab Sample ID: LCS 480-53953/75

Matrix: Water

Analyte

Analyte

Acetic acid

Butyric acid

Propionic acid

Matrix: Water

Analysis Batch: 54385

Acetic acid

Butyric acid

Propionic acid

Matrix: Water

Analysis Batch: 53953

Analysis Batch: 53953

Method: VFA-IC - Volatile Fatty Acids, Ion Chromatography (Continued)

MB MB Result Qualifier

ND

ND

ND

Client Sample ID: Method Blank

Analyzed

03/08/12 01:44

03/08/12 01:44

03/08/12 01:44

Client Sample ID: Lab Control Sample

%Rec.

Limits

80 - 120

80 - 120

80 - 120

Prep Type: Total/NA

Prep Type: Total/NA

Dil Fac

1

1

1

5

8

Client Sample ID: Method Blank Prep Type: Total/NA

	MB	МВ							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acetic acid	ND		1.0	0.15	mg/L			03/08/12 17:33	1
Butyric acid	ND		1.0	0.16	mg/L			03/08/12 17:33	1
Propionic acid	ND		1.0	0.17	mg/L			03/08/12 17:33	1
					-				

Lab Sample ID: LCS 480-54385/11 Matrix: Water

Lab Sample ID: MB 480-54385/12

Analysis Batch: 54385

	Spike	LCS	LCS			%Rec.	
Analyte	Added	Result	Qualifier Unit	D	%Rec	Limits	
Acetic acid	10.0	9.66	mg/L		97	80 - 120	
Butyric acid	10.0	9.77	mg/L	-	98	80 - 120	
Propionic acid	10.0	10.10	mg/L	-	101	80 - 120	

Lab Sample ID: 480-16799-4 MS

Matrix: Water

	Sample	Sample	Spike	MS	MS				%Rec.
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits
Acetic acid	740		500	1255	-	mg/L		103	80 - 120
Butyric acid	22.6		500	540.0		mg/L		103	80 - 120
Propionic acid	1370		500	1870		mg/L		100	80 - 120

Lab Sample ID: 480-16799-4 MSD

Matrix: Water Analysis Batch: 54385

	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Acetic acid	740		500	1260		mg/L		104	80 - 120	0	20
Butyric acid	22.6		500	535.0		mg/L		102	80 - 120	1	20
Propionic acid	1370		500	1885		mg/L		103	80 - 120	1	20

Analysis Batch: 54385

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Client Sample ID: RU-21

Prep Type: Total/NA

Client Sample ID: RU-21

Prep Type: Total/NA

GC/MS VOA

Analysis Batch: 54020

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-16799-1	RU-19	Total/NA	Water	8260B	
480-16799-2	RU-10	Total/NA	Water	8260B	
480-16799-6	FB-1	Total/NA	Water	8260B	
480-16799-7	TRIP BLANK	Total/NA	Water	8260B	
LCS 480-54020/3	Lab Control Sample	Total/NA	Water	8260B	
MB 480-54020/4	Method Blank	Total/NA	Water	8260B	
Analysis Batch: 5412 — Lab Sample ID	1 Client Sample ID	Prep Type	Matrix	Method	Prep Batch
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
400-10799-1 - DL	RU-19		water	02008	
480-16799-2 - DL	RU-10	I otal/NA	Water	8260B	
480-16799-3	RU-20	Total/NA	Water	8260B	
480-16799-4	RU-21	Total/NA	Water	8260B	
480-16799-5	DUP-1	Total/NA	Water	8260B	
LCS 480-54121/3	Lab Control Sample	Total/NA	Water	8260B	
MB 480-54121/4	Method Blank	Total/NA	Water	8260B	

GC VOA

Analysis Batch: 53795

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-16799-1	RU-19	Total/NA	Water	RSK-175	
480-16799-2	RU-10	Total/NA	Water	RSK-175	
480-16799-3	RU-20	Total/NA	Water	RSK-175	
480-16799-4	RU-21	Total/NA	Water	RSK-175	
480-16799-4 - DL	RU-21	Total/NA	Water	RSK-175	
480-16799-5	DUP-1	Total/NA	Water	RSK-175	
LCS 480-53795/3	Lab Control Sample	Total/NA	Water	RSK-175	
MB 480-53795/2	Method Blank	Total/NA	Water	RSK-175	

General Chemistry

Analysis Batch: 53952

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
480-16799-1	RU-19	Total/NA	Water	VFA-IC	
480-16799-2	RU-10	Total/NA	Water	VFA-IC	
480-16799-3	RU-20	Total/NA	Water	VFA-IC	
480-16799-3 MS	RU-20	Total/NA	Water	VFA-IC	
LCS 480-53952/51	Lab Control Sample	Total/NA	Water	VFA-IC	
MB 480-53952/52	Method Blank	Total/NA	Water	VFA-IC	

Analysis Batch: 53953

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method Prep Batch
480-16799-4	RU-21	Total/NA	Water	VFA-IC
480-16799-5	DUP-1	Total/NA	Water	VFA-IC
LCS 480-53953/75	Lab Control Sample	Total/NA	Water	VFA-IC
MB 480-53953/76	Method Blank	Total/NA	Water	VFA-IC

Analysis Batch: 54087

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-16799-1	RU-19	Total/NA	Water	300.0	
480-16799-2	RU-10	Total/NA	Water	300.0	

General Chemistry (Continued)

Analysis Batch: 54087 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-16799-3	RU-20	Total/NA	Water	300.0	
480-16799-3 MS	RU-20	Total/NA	Water	300.0	
480-16799-4	RU-21	Total/NA	Water	300.0	
480-16799-5	DUP-1	Total/NA	Water	300.0	
LCS 480-54087/27	Lab Control Sample	Total/NA	Water	300.0	
MB 480-54087/28	Method Blank	Total/NA	Water	300.0	

Analysis Batch: 54291

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-16799-1	RU-19	Total/NA	Water	353.2	
480-16799-2	RU-10	Total/NA	Water	353.2	
480-16799-3	RU-20	Total/NA	Water	353.2	
480-16799-4	RU-21	Total/NA	Water	353.2	
480-16799-5	DUP-1	Total/NA	Water	353.2	
LCS 480-54291/5	Lab Control Sample	Total/NA	Water	353.2	
MB 480-54291/4	Method Blank	Total/NA	Water	353.2	

Analysis Batch: 54385

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-16799-3	RU-20	Total/NA	Water	VFA-IC	
480-16799-4	RU-21	Total/NA	Water	VFA-IC	
480-16799-4 MS	RU-21	Total/NA	Water	VFA-IC	
480-16799-4 MSD	RU-21	Total/NA	Water	VFA-IC	
LCS 480-54385/11	Lab Control Sample	Total/NA	Water	VFA-IC	
MB 480-54385/12	Method Blank	Total/NA	Water	VFA-IC	

Analysis Batch: 54596

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method Prep Batch
480-16799-1	RU-19	Total/NA	Water	SM 5310D
480-16799-2	RU-10	Total/NA	Water	SM 5310D
480-16799-5	DUP-1	Total/NA	Water	SM 5310D
LCS 480-54596/33	Lab Control Sample	Total/NA	Water	SM 5310D
MB 480-54596/32	Method Blank	Total/NA	Water	SM 5310D

Analysis Batch: 54605

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
LCS 480-54605/27	Lab Control Sample	Total/NA	Water	300.0	
MB 480-54605/28	Method Blank	Total/NA	Water	300.0	

Analysis Batch: 55196

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
480-16799-4	RU-21	Total/NA	Water	300.0	
LCS 480-55196/3	Lab Control Sample	Total/NA	Water	300.0	
MB 480-55196/4	Method Blank	Total/NA	Water	300.0	

Analysis Batch: 55266

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
480-16799-3	RU-20	Total/NA	Water	SM 5310D	
480-16799-4	RU-21	Total/NA	Water	SM 5310D	
LCS 480-55266/4	Lab Control Sample	Total/NA	Water	SM 5310D	
MB 480-55266/3	Method Blank	Total/NA	Water	SM 5310D	

Lab Sample ID: 480-16799-1 Matrix: Water

Lab Sample ID: 480-16799-2

Client Sample ID: RU-19 Date Collected: 02/29/12 13:50 Date Received: 03/02/12 11:30

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		10	54020	03/06/12 16:29	RL	TAL BUF
Total/NA	Analysis	8260B	DL	20	54121	03/07/12 00:12	DC	TAL BUF
Total/NA	Analysis	RSK-175		1	53795	03/04/12 13:38	JM	TAL BUF
Total/NA	Analysis	VFA-IC		1	53952	03/07/12 22:19	KAC	TAL BUF
Total/NA	Analysis	300.0		1	54087	03/07/12 16:42	KAC	TAL BUF
Total/NA	Analysis	353.2		1	54291	03/07/12 17:20	KS	TAL BUF
Total/NA	Analysis	SM 5310D		1	54596	03/08/12 23:43	KAC	TAL BUF

Client Sample ID: RU-10 Date Collected: 02/29/12 12:20 Date Received: 03/02/12 11:30

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		1	54020	03/06/12 16:50	RL	TAL BUF
Total/NA	Analysis	8260B	DL	5	54121	03/07/12 00:34	DC	TAL BUF
Total/NA	Analysis	RSK-175		1	53795	03/04/12 13:55	JM	TAL BUF
Total/NA	Analysis	VFA-IC		1	53952	03/07/12 22:49	KAC	TAL BUF
Total/NA	Analysis	300.0		1	54087	03/07/12 16:53	KAC	TAL BUF
Total/NA	Analysis	353.2		1	54291	03/07/12 17:22	KS	TAL BUF
Total/NA	Analysis	SM 5310D		1	54596	03/09/12 00:00	KAC	TAL BUF

Client Sample ID: RU-20 Date Collected: 02/29/12 15:05 Date Received: 03/02/12 11:30

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		25	54121	03/07/12 00:56	DC	TAL BUF
Total/NA	Analysis	RSK-175		1	53795	03/04/12 14:12	JM	TAL BUF
Total/NA	Analysis	VFA-IC		1	53952	03/07/12 23:18	KAC	TAL BUF
Total/NA	Analysis	300.0		1	54087	03/07/12 17:03	KAC	TAL BUF
Total/NA	Analysis	353.2		1	54291	03/07/12 17:23	KS	TAL BUF
Total/NA	Analysis	VFA-IC		2	54385	03/08/12 23:52	KAC	TAL BUF
Total/NA	Analysis	SM 5310D		10	55266	03/13/12 21:44	KAC	TAL BUF

Client Sample ID: RU-21 Date Collected: 02/29/12 16:40 Date Received: 03/02/12 11:30

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		2	54121	03/07/12 01:18	DC	TAL BUF
Total/NA	Analysis	RSK-175		1	53795	03/04/12 14:29	JM	TAL BUF
Total/NA	Analysis	RSK-175	DL	100	53795	03/04/12 15:30	JM	TAL BUF

Lab Sample ID: 480-16799-3

Lab Sample ID: 480-16799-4

Matrix: Water

Matrix: Water

Client Sampl	e ID: RU-21					La	ab Sample	ID: 480-16799-4
Date Collected: Date Received:	02/29/12 16:4 03/02/12 11:3		_	Matrix: Water				
	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	VFA-IC		1	53953	03/08/12 02:13	KAC	TAL BUF
Total/NA	Analysis	300.0		5	54087	03/07/12 17:43	KAC	TAL BUF
Total/NA	Analysis	353.2		1	54291	03/07/12 17:24	KS	TAL BUF
Total/NA	Analysis	VFA-IC		50	54385	03/09/12 00:21	KAC	TAL BUF
Total/NA	Analysis	300.0		1	55196	03/14/12 12:57	KAC	TAL BUF
Total/NA	Analysis	SM 5310D		40	55266	03/13/12 22:01	KAC	TAL BUF

Lab Sample ID: 480-16799-5 Matrix: Water

Lab Sample ID: 480-16799-6

Matrix: Water

Date Collected: 02/29/12 00:00 Date Received: 03/02/12 11:30

Client Sample ID: DUP-1

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		4	54121	03/07/12 01:40	DC	TAL BUF
Total/NA	Analysis	RSK-175		1	53795	03/04/12 14:46	JM	TAL BUF
Total/NA	Analysis	VFA-IC		1	53953	03/08/12 02:42	KAC	TAL BUF
Total/NA	Analysis	300.0		1	54087	03/07/12 17:53	KAC	TAL BUF
Total/NA	Analysis	353.2		1	54291	03/07/12 17:25	KS	TAL BUF
Total/NA	Analysis	SM 5310D		1	54596	03/09/12 00:51	KAC	TAL BUF

Client Sample ID: FB-1

Date Collected: 02/29/12 15:30 Date Received: 03/02/12 11:30

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		1	54020	03/06/12 18:18	RL	TAL BUF

Client Samp	le ID: TRIP	BLANK				L	ab Sample	ID: 480-16799-7
Date Collected	I: 02/29/12 00	:00						Matrix: Water
Date Received: 03/02/12 11:30								
	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab

1

54020

03/06/12 18:39

RL

Laboratory References:

Total/NA

TAL BUF = TestAmerica Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

8260B

Analysis

TAL BUF

Certification Summary

Client: CDM Smith, Inc. Project/Site: New York state project

	5
	8
	9
1	1
	2

Laboratory	Authority	Program	EPA Region	Certification ID
TestAmerica Buffalo	Arkansas DEQ	State Program	6 88-0686	
TestAmerica Buffalo	California	NELAC	9	1169CA
TestAmerica Buffalo	Connecticut	State Program	1	PH-0568
TestAmerica Buffalo	Florida	NELAC	4	E87672
TestAmerica Buffalo	Georgia	State Program	4	956
TestAmerica Buffalo	Georgia	State Program	4	N/A
TestAmerica Buffalo	Illinois	NELAC	5	100325 / 200003
TestAmerica Buffalo	Iowa	State Program	7	374
TestAmerica Buffalo	Kansas	NELAC	7	E-10187
TestAmerica Buffalo	Kentucky	State Program	4	90029
TestAmerica Buffalo	Kentucky (UST)	State Program	4	30
TestAmerica Buffalo	Louisiana	NELAC	6	02031
TestAmerica Buffalo	Maine	State Program	1	NY0044
TestAmerica Buffalo	Maryland	State Program	3	294
TestAmerica Buffalo	Massachusetts	State Program	1	M-NY044
TestAmerica Buffalo	Michigan	State Program	5	9937
TestAmerica Buffalo	Minnesota	NELAC	5	036-999-337
TestAmerica Buffalo	New Hampshire	NELAC	1	2337
TestAmerica Buffalo	New Hampshire	NELAC	1	68-00281
TestAmerica Buffalo	New Jersey	NELAC	2	NY455
TestAmerica Buffalo	New York	NELAC	2	10026
TestAmerica Buffalo	North Dakota	State Program	8	R-176
TestAmerica Buffalo	Oklahoma	State Program	6	9421
TestAmerica Buffalo	Oregon	NELAC	10	NY200003
TestAmerica Buffalo	Pennsylvania	NELAC	3	68-00281
TestAmerica Buffalo	Tennessee	State Program	4	TN02970
TestAmerica Buffalo	Texas	NELAC	6	T104704412-08-TX
TestAmerica Buffalo	USDA	Federal		P330-08-00242
TestAmerica Buffalo	Virginia	NELAC Secondary AB	3	460185
TestAmerica Buffalo	Virginia	State Program	3	278
TestAmerica Buffalo	Washington	State Program	10	C1677
TestAmerica Buffalo	West Virginia DEP	State Program	3	252
TestAmerica Buffalo	Wisconsin	State Program	5	998310390

Accreditation may not be offered or required for all methods and analytes reported in this package. Please contact your project manager for the laboratory's current list of certified methods and analytes.

Client: CDM Smith, Inc. Project/Site: New York state project

1	
_	
_	
	5
	8
	9
	12

Method	Method Description	Protocol	Laboratory
8260B	Volatile Organic Compounds (GC/MS)	SW846	TAL BUF
RSK-175	Dissolved Gases (GC)	RSK	TAL BUF
300.0	Anions, Ion Chromatography	MCAWW	TAL BUF
353.2	Nitrogen, Nitrate-Nitrite	MCAWW	TAL BUF
SM 5310D	Organic Carbon, Total (TOC)	SM	TAL BUF
VFA-IC	Volatile Fatty Acids, Ion Chromatography	TestAmerica SOP	TAL BUF

Protocol References:

MCAWW = "Methods For Chemical Analysis Of Water And Wastes", EPA-600/4-79-020, March 1983 And Subsequent Revisions.

RSK = Sample Prep And Calculations For Dissolved Gas Analysis In Water Samples Using A GC Headspace Equilibration Technique, RSKSOP-175, Rev. 0, 8/11/94, USEPA Research Lab

SM = "Standard Methods For The Examination Of Water And Wastewater",

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

TestAmerica SOP = TestAmerica, Inc., Standard Operating Procedure

Laboratory References:

TAL BUF = TestAmerica Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

Sample Summary

Client: CDM Smith, Inc. Project/Site: New York state project TestAmerica Job ID: 480-16799-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
480-16799-1	RU-19	Water	02/29/12 13:50	03/02/12 11:30
480-16799-2	RU-10	Water	02/29/12 12:20	03/02/12 11:30
480-16799-3	RU-20	Water	02/29/12 15:05	03/02/12 11:30
480-16799-4	RU-21	Water	02/29/12 16:40	03/02/12 11:30
480-16799-5	DUP-1	Water	02/29/12 00:00	03/02/12 11:30
480-16799-6	FB-1	Water	02/29/12 15:30	03/02/12 11:30
480-16799-7	TRIP BLANK	Water	02/29/12 00:00	03/02/12 11:30

TestAmerica Buffalo												TactAr	narion
10 Hazelwood Drive Amberst, NY 14228-2298			Chain o	f Cu	stody	/ Rec	ord						
Phone (716) 691-2600 Fax (716) 691-7991	Samler	0	a ta	ż				Carri	ar Trackin.	(s)un r		COO Not	NAMES & CONTRACTOR - LANSING MARKANING STREAM
Client Information	ENICK	05 CM	Level Gray	-Erdman	n, Peggy			5		Veloci P		480-21577-5467.	_
Client Contact: Neil Smith	Phone 878 321	0 435		l: Iy.gray . er	dmann@	testamer	icainc.co	u				Page: Page 1 of 1	
Company: CDM Smith, Inc.						An	alysis I	sedue	sted			:# qor	
Adress: 555 17th Street Suite 1100	Due Date Requested:		¢	SUG9								Preservation Code	S: M - Hexane
City: Denver	TAT Requested (days):	1						••				B - NaOH C - Zn Acetabe	N - None 0 - AsNaO2
State, Zip: CO, 80202	not 1	aller.	~ 6		s							D - Nitric Acid E - NaHSQ4 E MOOU	P - Na204S Q - Na2SO3 P - Na3SSO3
Phone: 303-383-2447(Tel)	Por#: Purchase Order not re	quired		(a	ounodu							G - Amchlor H - Ascorbic Acid	S - H2SO4 1 - TSP Dodecahydrate
Email: smithnl@cdmsmith.com	# OM			NC) s ol N	no) A:	N 8 pout	pou					I - Ice J - DI Water	U - Acetone V - MCAA
Project Name: New York state project	Project #: 48005099			ر ع 20 58 01 (1 (78)	A.A.	isiM (sq Irifte ai	nic Cai ai Meth				enistr	K-EUIA L-EDA	W - ph 4-5 Z - ather (specify)
Site:	SSOW#:			A) asi dules	owaci i	in ster	0) Focs				103.30	Other:	
		Sample	Matrix (w-water, s=solid,	Milered Milered Milered		N - saud z	- 1012 - 1012			<u></u>	19dmin li		
Sample Identification	Sample Date Tin	ne G=grab	1, Orwestafoll,) BT=Trasue, ArrAir) Variori Code				RSS SWS	State 2 2 2 20 20 20 20 20 20 20 20 20 20 20			4101 X	Special Ins	tructions/Note:
$\mathcal{R}\mathcal{M} - \mathcal{M}$	2/00/in 17.	ン 	Water		×	X	X	Concession and the					
$\hat{\mathcal{R}}_{1}$ - $\hat{\mathcal{R}}_{2}$		20	Water							-		19 53 19	
. c2-0%	1	50	Water	X									
RU-21 .	1	<u>4</u> 2	Water										
10r-1			Water		1	i I	L L	-					
FB-1	15	30 1	Water									Res official	
Tripplank		-1	Water	ヘディ									
			Water	-								200	
			Water										
			Water										
			Water										
Possible Hazard Identification			iral	Sam	ole Dispe Retrum	osal (Af To Client	ee may t		ssed if s isal Rv I	amples ab	are retai	ned longer than 1 chive For	month) Months
Deliverable Requested: I, II, III, IV, Other (specify)				Speci	al instruc	ctians/QC	Require	ments:					
Empty Kit Relinquished by:	Date:			Time:	$\left \right $				Method p	f Shipmen			
Reinauisped by:	Date/Time://	1305	Сотралу	2	K	R	KS,			Date	ר ל	6-0	Company
Refinedistration Xun nacan	Date Times 1	\mathcal{R}	Company	ă.	scel and	RUCK			A		ו רק קייי	02:11 71-	Corpusity
Reinfoundstreed by:	Date/Time:		Company	<u></u>	aceiver by		•			Date/Tir	je:		Company
Custody Seals Intact: Custody Seal No.;				ŏ	ooler Temp	erature(s) *	C and Othe	ir Remark	5.6	r ∳₹			
				14	13	12	11	10	9	8	7	4 5 6	2

Login Sample Receipt Checklist

Client: CDM Smith, Inc.

Login Number: 16799 List Number: 1

Creator: May, Joel M

Question	Answer	Comment
Radioactivity either was not measured or, if measured, is at or below background	True	
The cooler's custody seal, if present, is intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the sample IDs on the containers and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	True	
If necessary, staff have been informed of any short hold time or quick TAT needs	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Sampling Company provided.	True	
Samples received within 48 hours of sampling.	True	
Samples requiring field filtration have been filtered in the field.	N/A	
Chlorine Residual checked.	N/A	

Job Number: 480-16799-1

List Source: TestAmerica Buffalo

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Buffalo 10 Hazelwood Drive Amherst, NY 14228-2298 Tel: (716)691-2600

TestAmerica Job ID: 480-19566-1 Client Project/Site: New York state project

For:

CDM Smith, Inc. 555 17th Street Suite 1100 Denver, Colorado 80202

Attn: Neil Smith

Eberry

Authorized for release by: 5/17/2012 2:20:39 PM Eve Berry Project Administrator eve.berry@testamericainc.com

Designee for

Peggy Gray-Erdmann Project Manager II peggy.gray-erdmann@testamericainc.com

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Detection Summary	6
Client Sample Results	10
Surrogate Summary	26
QC Sample Results	27
QC Association Summary	40
Lab Chronicle	44
Certification Summary	47
Method Summary	48
Sample Summary	49
Chain of Custody	50
Receipt Checklists	51

3

Qı	ıal	lifi	eı	ſS
_			•	-

CC	VOA
90	VUA

GC/MS VO	A	
Qualifier	Qualifier Description	
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.	5
GC VOA		•
Qualifier	Qualifier Description	
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.	
В	Compound was found in the blank and sample.	
Metals		
Qualifier	Qualifier Description	8
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.	
В	Compound was found in the blank and sample.	9
General Ch	nemistry	
Qualifier	Qualifier Description	
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.	
٨	ICV,CCV,ICB,CCB, ISA, ISB, CRI, CRA, DLCK or MRL standard: Instrument related QC exceeds the control limits.	
F	MS or MSD exceeds the control limits	

Glossary

These commonly used abbreviations may or may not be present in this report.	
Listed under the "D" column to designate that the result is reported on a dry weight basis	
Percent Recovery	
Contains no Free Liquid	
Indicates a Dilution, Reanalysis, Re-extraction, or additional Initial metals/anion analysis of the sample	
Estimated Detection Limit	
United States Environmental Protection Agency	
Method Detection Limit	
Minimum Level (Dioxin)	
Not detected at the reporting limit (or MDL or EDL if shown)	
Practical Quantitation Limit	
Quality Control	
Reporting Limit	
Relative Percent Difference, a measure of the relative difference between two points	
Toxicity Equivalent Factor (Dioxin)	
	These commonly used abbreviations may or may not be present in this report. Listed under the "D" column to designate that the result is reported on a dry weight basis Percent Recovery Contains no Free Liquid Indicates a Dilution, Reanalysis, Re-extraction, or additional Initial metals/anion analysis of the sample Estimated Detection Limit United States Environmental Protection Agency Method Detection Limit Minimum Level (Dioxin) Not detected at the reporting limit (or MDL or EDL if shown) Practical Quantitation Limit Quality Control Reporting Limit Relative Percent Difference, a measure of the relative difference between two points Toxicity Equivalent Factor (Dioxin)

TEQ Toxicity Equivalent Quotient (Dioxin)

Job ID: 480-19566-1

Laboratory: TestAmerica Buffalo

Narrative

Job Narrative 480-19566-1

Receipt

The samples were received on 5/3/2012 9:00 AM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 2.0° C.

Except:

The following sample was collected in an improper containers: RU10-050112 (480-19566-1). This sample's metals volume was received in a Nitric Acid pre-preserved bottles. The client requested that the volume be lab filtered. Pre-preserved nitric acid volumes are not applicable to lab filtration to attain a dissolved metal aliquot so that volume was discarded.

Approximately 60 mls of volume was obtained from the other unpreserved volumes and poured off into a 125 ml plastic (UP). This volume was submitted to metals for lab filtration and preservation.

GC/MS VOA

Method(s) 8260B: The following samples were diluted due to the abundance of target analytes: (480-19566-2 MS), (480-19566-2 MSD), RU10-050112 (480-19566-1), RU19-050112 (480-19566-2), RU20-050112 (480-19566-4), RU21-050112 (480-19566-7). Elevated reporting limits (RLs) are provided.

No other analytical or quality issues were noted.

IC

Method(s) 300.0: The method blank for batch 63060 contained sulfate above the method detection limit. This target analyte concentration was less than the reporting limit (RL); therefore, re-extraction and/or re-analysis of samples was not performed.

Method(s) 300.0: The matrix spike (MS) recoveries for batch 63060 were outside control limits. The associated laboratory control sample (LCS) recovery met acceptance criteria.

Method(s) 300.0: In batch 63060, the following sample was diluted due to the abundance of target analytes: RU21-050112 (480-19566-7). Elevated reporting limits (RLs) are provided.

Method(s) 300.0: In batch 64072, the following sample was diluted due to the abundance of target analytes: RU20-050112 (480-19566-4). Elevated reporting limits (RLs) are provided.

Method(s) 300.0: In batch 64536, the following samples were diluted due to the abundance of target analytes: (480-19566-7 MS), (480-19566-7 MSD), RU21-050112 (480-19566-7). Elevated reporting limits (RLs) are provided.

Method(s) 300.0: Due to the high concentration of Fluoride, the matrix spike / matrix spike duplicate (MS/MSD) for batch 64536 could not be evaluated for accuracy and precision. The associated laboratory control sample (LCS) met acceptance criteria.

Method(s) VFA-IC: The matrix spike / matrix spike duplicate (MS/MSD) recoveries associated with batch 64494 were outside control limits: (480-19566-8 MS). Matrix interference is suspected.

Method(s) VFA-IC: In batch 64729, the following samples were diluted due to the abundance of target analytes: RU20-050112 (480-19566-4), RU21-050112 (480-19566-7). Elevated reporting limits (RLs) are provided.

No other analytical or quality issues were noted.

GC VOA

Method(s) RSK-175: The following samples were diluted due to the abundance of target analytes: RU10-050112 (480-19566-1), RU19-050112 (480-19566-2), RU19D-050112 (480-19566-3), RU20-050112 (480-19566-4), RU21-050112 (480-19566-7), RU8-050112 (480-19566-8). Elevated reporting limits (RLs) are provided.

Job ID: 480-19566-1 (Continued)

Laboratory: TestAmerica Buffalo (Continued)

No other analytical or quality issues were noted.

Metals

Method(s) 6010B: The Method Blank for batch 480-63221 contained dissolved potassium and sodium above the method detection limits. These target analyte concentrations were less than the reporting limits (RLs); therefore, re-extraction and/or re-analysis of sample RU10-050112 (480-19566-1) was not performed.

No other analytical or quality issues were noted.

General Chemistry

No analytical or quality issues were noted.

Client Sample ID: RU10-050112

Lab Sample ID: 480-19566-1

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
1,1-Dichloroethene	1.8		1.0	0.29	ug/L	1	- 8	8260B	Total/NA
Acetone	8.0	J	10	3.0	ug/L	1	8	8260B	Total/NA
Chloroethane	3.0		1.0	0.32	ug/L	1	8	8260B	Total/NA
Tetrachloroethene	1.0		1.0	0.36	ug/L	1	8	8260B	Total/NA
trans-1,2-Dichloroethene	3.8		1.0	0.90	ug/L	1	8	8260B	Total/NA
Vinyl chloride	32		1.0	0.90	ug/L	1	8	8260B	Total/NA
cis-1,2-Dichloroethene - DL	290		10	8.1	ug/L	10	8	8260B	Total/NA
Trichloroethene - DL	500		10	4.6	ug/L	10	8	8260B	Total/NA
Ethane	8.7		1.5	0.49	ug/L	1	F	RSK-175	Total/NA
Ethene	1.4	J	1.5	0.52	ug/L	1	F	RSK-175	Total/NA
Methane - DL	110	В	10	2.2	ug/L	10	F	RSK-175	Total/NA
Aluminum	0.075	J	0.20	0.060	mg/L	1	6	6010B	Dissolved
Arsenic	0.013		0.010	0.0056	mg/L	1	6	6010B	Dissolved
Barium	0.18		0.0020	0.00070	mg/L	1	6	6010B	Dissolved
Calcium	79.6		0.50	0.10	mg/L	1	6	6010B	Dissolved
Chromium	0.0026	J	0.0040	0.0010	mg/L	1	6	6010B	Dissolved
Cobalt	0.0052		0.0040	0.00063	mg/L	1	6	6010B	Dissolved
Iron	3.4		0.050	0.019	mg/L	1	6	6010B	Dissolved
Magnesium	10.9		0.20	0.043	mg/L	1	6	6010B	Dissolved
Manganese	3.2		0.0030	0.00040	mg/L	1	6	6010B	Dissolved
Nickel	0.0044	J	0.010	0.0013	mg/L	1	6	6010B	Dissolved
Potassium	1.2	В	0.50	0.10	mg/L	1	6	6010B	Dissolved
Selenium	0.019		0.015	0.0087	mg/L	1	6	6010B	Dissolved
Sodium	18.6	В	1.0	0.32	mg/L	1	6	6010B	Dissolved
Zinc	0.028		0.010	0.0015	mg/L	1	6	6010B	Dissolved
Chloride	17.1		0.50	0.28	mg/L	1	3	300.0	Total/NA
Sulfate	27.3		2.0	0.35	mg/L	1	3	300.0	Total/NA
Nitrate Nitrite as N	0.034	J	0.050	0.020	mg/L	1	3	353.2	Total/NA
Total Organic Carbon	8.6		1.0	0.43	mg/L	1	5	SM 5310D	Total/NA
Total Organic Carbon - Duplicates	8.6		1.0	0.43	mg/L	1	5	SM 5310D	Total/NA
TOC Result 1	9.2		1.0	0.43	mg/L	1	5	SM 5310D	Total/NA
TOC Result 2	8.1		1.0	0.43	mg/L	1	5	SM 5310D	Total/NA
Acetic acid	10.9		1.0	0.15	mg/L	1	١	VFA-IC	Total/NA

Client Sample ID: RU19-050112

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
cis-1,2-Dichloroethene	400		10	8.1	ug/L	10	_	8260B	Total/NA
Vinyl chloride	49		10	9.0	ug/L	10		8260B	Total/NA
Trichloroethene - DL	1100		20	9.2	ug/L	20		8260B	Total/NA
Ethane	9.9		1.5	0.49	ug/L	1		RSK-175	Total/NA
Ethene	1.5		1.5	0.52	ug/L	1		RSK-175	Total/NA
Methane - DL	170	В	10	2.2	ug/L	10		RSK-175	Total/NA
Barium	0.065		0.0020	0.00070	mg/L	1		6010B	Dissolved
Calcium	95.1		0.50	0.10	mg/L	1		6010B	Dissolved
Cobalt	0.0011	J	0.0040	0.00063	mg/L	1		6010B	Dissolved
Iron	0.11		0.050	0.019	mg/L	1		6010B	Dissolved
Magnesium	15.2		0.20	0.043	mg/L	1		6010B	Dissolved
Manganese	2.6		0.0030	0.00040	mg/L	1		6010B	Dissolved
Nickel	0.0023	J	0.010	0.0013	mg/L	1		6010B	Dissolved
Potassium	1.5		0.50	0.10	mg/L	1		6010B	Dissolved
Sodium	18.2		1.0	0.32	mg/L	1		6010B	Dissolved
Zinc	0.0033	J	0.010	0.0015	ma/L	1		6010B	Dissolved

Lab Sample ID: 480-19566-2

5

Client Sample ID: RU19-050112 (Continued)

Lab Sample ID: 480-19566-2

Lab Sample ID: 480-19566-3

5

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Chloride	24.4		0.50	0.28	mg/L	1	_	300.0	Total/NA
Sulfate	47.2		2.0	0.35	mg/L	1		300.0	Total/NA
Nitrate Nitrite as N	0.037	J	0.050	0.020	mg/L	1		353.2	Total/NA
Total Organic Carbon	2.5		1.0	0.43	mg/L	1		SM 5310D	Total/NA
Total Organic Carbon - Duplicates	2.5		1.0	0.43	mg/L	1		SM 5310D	Total/NA
TOC Result 1	2.8		1.0	0.43	mg/L	1		SM 5310D	Total/NA
TOC Result 2	2.1		1.0	0.43	mg/L	1		SM 5310D	Total/NA

Client Sample ID: RU19D-050112

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
cis-1,2-Dichloroethene	360		10	8.1	ug/L	10	_	8260B	Total/NA
Trichloroethene	940		10	4.6	ug/L	10		8260B	Total/NA
Vinyl chloride	46		10	9.0	ug/L	10		8260B	Total/NA
Ethane	9.5		1.5	0.49	ug/L	1		RSK-175	Total/NA
Ethene	1.6		1.5	0.52	ug/L	1		RSK-175	Total/NA
Methane - DL	95	В	10	2.2	ug/L	10		RSK-175	Total/NA
Barium	0.064		0.0020	0.00070	mg/L	1		6010B	Dissolved
Calcium	96.2		0.50	0.10	mg/L	1		6010B	Dissolved
Cobalt	0.0012	J	0.0040	0.00063	mg/L	1		6010B	Dissolved
Iron	0.11		0.050	0.019	mg/L	1		6010B	Dissolved
Magnesium	15.2		0.20	0.043	mg/L	1		6010B	Dissolved
Manganese	2.6		0.0030	0.00040	mg/L	1		6010B	Dissolved
Nickel	0.0021	J	0.010	0.0013	mg/L	1		6010B	Dissolved
Potassium	1.5		0.50	0.10	mg/L	1		6010B	Dissolved
Sodium	18.1		1.0	0.32	mg/L	1		6010B	Dissolved
Zinc	0.0027	J	0.010	0.0015	mg/L	1		6010B	Dissolved
Chloride	24.6		0.50	0.28	mg/L	1		300.0	Total/NA
Sulfate	48.8		2.0	0.35	mg/L	1		300.0	Total/NA
Nitrate Nitrite as N	0.046	J	0.050	0.020	mg/L	1		353.2	Total/NA
Total Organic Carbon	2.3		1.0	0.43	mg/L	1		SM 5310D	Total/NA
Total Organic Carbon - Duplicates	2.3		1.0	0.43	mg/L	1		SM 5310D	Total/NA
TOC Result 1	2.6		1.0	0.43	mg/L	1		SM 5310D	Total/NA
TOC Result 2	2.1		1.0	0.43	mg/L	1		SM 5310D	Total/NA

Client Sample ID: RU20-050112

Lab Sample ID: 480-19566-4

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
cis-1,2-Dichloroethene	77		50	41	ug/L	50	_	8260B	Total/NA
Trichloroethene	2100		50	23	ug/L	50		8260B	Total/NA
Ethane	7.8	J	15	4.9	ug/L	10		RSK-175	Total/NA
Ethene	7.6	J	15	5.2	ug/L	10		RSK-175	Total/NA
Methane	60	В	10	2.2	ug/L	10		RSK-175	Total/NA
Arsenic	0.0069	J	0.010	0.0056	mg/L	1		6010B	Dissolved
Barium	0.12		0.0020	0.00070	mg/L	1		6010B	Dissolved
Calcium	98.0		0.50	0.10	mg/L	1		6010B	Dissolved
Chromium	0.0012	J	0.0040	0.0010	mg/L	1		6010B	Dissolved
Iron	0.42		0.050	0.019	mg/L	1		6010B	Dissolved
Magnesium	15.2		0.20	0.043	mg/L	1		6010B	Dissolved
Manganese	0.85		0.0030	0.00040	mg/L	1		6010B	Dissolved
Nickel	0.0016	J	0.010	0.0013	mg/L	1		6010B	Dissolved
Potassium	4.7		0.50	0.10	mg/L	1		6010B	Dissolved
Sodium	64.2		1.0	0.32	mg/L	1		6010B	Dissolved

5/17/2012

Client Sample ID: RU20-050112 (Continued)

Lab Sample ID: 480-19566-4

Lab Sample ID: 480-19566-5

Lab Sample ID: 480-19566-6

Lab Sample ID: 480-19566-7

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Chloride	71.6		0.50	0.28	mg/L	1	_	300.0	Total/NA
Sulfate	22.8		2.0	0.35	mg/L	1		300.0	Total/NA
Nitrate Nitrite as N	0.56		0.050	0.020	mg/L	1		353.2	Total/NA
Total Organic Carbon	75.5		1.0	0.43	mg/L	1		SM 5310D	Total/NA
Total Organic Carbon - Duplicates	75.5		1.0	0.43	mg/L	1		SM 5310D	Total/NA
TOC Result 1	73.1		1.0	0.43	mg/L	1		SM 5310D	Total/NA
TOC Result 2	77.8		1.0	0.43	mg/L	1		SM 5310D	Total/NA
Acetic acid	63.6		2.0	0.30	mg/L	2		VFA-IC	Total/NA
Propionic acid	33.0		1.0	0.17	mg/L	1		VFA-IC	Total/NA

Client Sample ID: FB-050112

_									
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Acetone	8.5	J	10	3.0	ug/L	1	_	8260B	 Total/NA
Xylenes, Total	1.1	J	2.0	0.66	ug/L	1		8260B	Total/NA

Client Sample ID: TRIP BLANK

No Detections

Client Sample ID: RU21-050112

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
2-Butanone (MEK)	46		20	2.6	ug/L	2	_	8260B	Total/NA
Acetone	47		20	6.0	ug/L	2		8260B	Total/NA
Carbon disulfide	1.0	J	2.0	0.38	ug/L	2		8260B	Total/NA
Chloroethane	9.7		2.0	0.64	ug/L	2		8260B	Total/NA
Chloromethane	0.72	J	2.0	0.70	ug/L	2		8260B	Total/NA
cis-1,2-Dichloroethene	71		2.0	1.6	ug/L	2		8260B	Total/NA
Ethylbenzene	1.5	J	2.0	1.5	ug/L	2		8260B	Total/NA
Methyl acetate	1.5	J	2.0	1.0	ug/L	2		8260B	Total/NA
Trichloroethene	69		2.0	0.92	ug/L	2		8260B	Total/NA
Vinyl chloride	170		2.0	1.8	ug/L	2		8260B	Total/NA
Ethane	16		15	4.9	ug/L	10		RSK-175	Total/NA
Ethene	18		15	5.2	ug/L	10		RSK-175	Total/NA
Methane - DL	1700	В	100	22	ug/L	100		RSK-175	Total/NA
Aluminum	0.10	J	0.20	0.060	mg/L	1		6010B	Dissolved
Arsenic	0.023		0.010	0.0056	mg/L	1		6010B	Dissolved
Barium	0.46		0.0020	0.00070	mg/L	1		6010B	Dissolved
Cadmium	0.00052	J	0.0010	0.00050	mg/L	1		6010B	Dissolved
Calcium	83.1		0.50	0.10	mg/L	1		6010B	Dissolved
Chromium	0.0028	J	0.0040	0.0010	mg/L	1		6010B	Dissolved
Cobalt	0.010		0.0040	0.00063	mg/L	1		6010B	Dissolved
Iron	18.7		0.050	0.019	mg/L	1		6010B	Dissolved
Magnesium	16.3		0.20	0.043	mg/L	1		6010B	Dissolved
Manganese	17.1		0.0030	0.00040	mg/L	1		6010B	Dissolved
Nickel	0.0086	J	0.010	0.0013	mg/L	1		6010B	Dissolved
Potassium	1.5		0.50	0.10	mg/L	1		6010B	Dissolved
Selenium	0.0098	J	0.015	0.0087	mg/L	1		6010B	Dissolved
Sodium	524		1.0	0.32	mg/L	1		6010B	Dissolved
Thallium	0.020		0.020	0.010	mg/L	1		6010B	Dissolved
Zinc	0.0029	J	0.010	0.0015	mg/L	1		6010B	Dissolved
Chloride	36.6		2.5	1.4	mg/L	5		300.0	Total/NA
Sulfate	2.4		2.0	0.35	mg/L	1		300.0	Total/NA

Client Sample ID: RU21-050112 (Continued)

Lab Sample ID: 480-19566-7

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Total Organic Carbon	751		40.0	17.4	mg/L	40	- 5	SM 5310D	Total/NA
Total Organic Carbon - Duplicates	751		40.0	17.4	mg/L	40	5	SM 5310D	Total/NA
TOC Result 1	712	٨	40.0	17.4	mg/L	40	5	SM 5310D	Total/NA
TOC Result 2	791		40.0	17.4	mg/L	40	5	SM 5310D	Total/NA
Acetic acid	650		20.0	3.0	mg/L	20	١	VFA-IC	Total/NA
n-Butyric Acid	57.0		20.0	3.2	mg/L	20	١	VFA-IC	Total/NA
Propionic acid	770		20.0	3.4	mg/L	20	`	VFA-IC	Total/NA

Client Sample ID: RU8-050112

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
cis-1,2-Dichloroethene	3.0		1.0	0.81	ug/L	1	_	8260B	Total/NA
Trichloroethene	77		1.0	0.46	ug/L	1		8260B	Total/NA
Ethane	1.4	J	1.5	0.49	ug/L	1		RSK-175	Total/NA
Methane	9.7	В	1.0	0.22	ug/L	1		RSK-175	Total/NA
Barium	0.13		0.0020	0.00070	mg/L	1		6010B	Dissolved
Calcium	117		0.50	0.10	mg/L	1		6010B	Dissolved
Copper	0.0017	J	0.010	0.0016	mg/L	1		6010B	Dissolved
Magnesium	22.5		0.20	0.043	mg/L	1		6010B	Dissolved
Manganese	0.48		0.0030	0.00040	mg/L	1		6010B	Dissolved
Potassium	1.8		0.50	0.10	mg/L	1		6010B	Dissolved
Sodium	12.7		1.0	0.32	mg/L	1		6010B	Dissolved
Zinc	0.0086	J	0.010	0.0015	mg/L	1		6010B	Dissolved
Chloride	12.2		0.50	0.28	mg/L	1		300.0	Total/NA
Sulfate	38.1		2.0	0.35	mg/L	1		300.0	Total/NA
Nitrate Nitrite as N	0.18		0.050	0.020	mg/L	1		353.2	Total/NA
Total Organic Carbon	0.67	J	1.0	0.43	mg/L	1		SM 5310D	Total/NA
Total Organic Carbon - Duplicates	0.67	J	1.0	0.43	mg/L	1		SM 5310D	Total/NA
TOC Result 1	0.95	J	1.0	0.43	mg/L	1		SM 5310D	Total/NA

Client Sample ID: RU10-050112

Date Collected: 05/01/12 11:15 Date Received: 05/03/12 09:00

Method: 8260B - Volatile Organi Analyte	c Compounds Result	(GC/MS) Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		1.0	0.82	ug/L			05/10/12 17:04	1
1,1,2,2-Tetrachloroethane	ND		1.0	0.21	ug/L			05/10/12 17:04	1
1,1,2-Trichloroethane	ND		1.0	0.23	ug/L			05/10/12 17:04	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		1.0	0.31	ug/L			05/10/12 17:04	1
1,1-Dichloroethane	ND		1.0	0.38	ug/L			05/10/12 17:04	1
1,1-Dichloroethene	1.8		1.0	0.29	ug/L			05/10/12 17:04	1
1,2,4-Trichlorobenzene	ND		1.0	0.41	ug/L			05/10/12 17:04	1
1,2-Dibromo-3-Chloropropane	ND		1.0	0.39	ug/L			05/10/12 17:04	1
1,2-Dibromoethane	ND		1.0	0.73	ug/L			05/10/12 17:04	1
1,2-Dichlorobenzene	ND		1.0	0.79	ug/L			05/10/12 17:04	1
1,2-Dichloroethane	ND		1.0	0.21	ug/L			05/10/12 17:04	1
1,2-Dichloropropane	ND		1.0	0.72	ug/L			05/10/12 17:04	1
1,3-Dichlorobenzene	ND		1.0	0.78	ug/L			05/10/12 17:04	1
1,4-Dichlorobenzene	ND		1.0	0.84	ug/L			05/10/12 17:04	1
2-Hexanone	ND		5.0	1.2	ug/L			05/10/12 17:04	1
2-Butanone (MEK)	ND		10	1.3	ug/L			05/10/12 17:04	1
4-Methyl-2-pentanone (MIBK)	ND		5.0	2.1	ug/L			05/10/12 17:04	1
Acetone	8.0	J	10	3.0	ug/L			05/10/12 17:04	1
Benzene	ND		1.0	0.41	ug/L			05/10/12 17:04	1
Bromodichloromethane	ND		1.0	0.39	ug/L			05/10/12 17:04	1
Bromoform	ND		1.0	0.26	ua/L			05/10/12 17:04	1
Bromomethane	ND		1.0	0.69	ug/L			05/10/12 17:04	1
Carbon disulfide	ND		1.0	0.19	ua/L			05/10/12 17:04	1
Carbon tetrachloride	ND		1.0	0.27	ug/L			05/10/12 17:04	1
Chlorobenzene	ND		1.0	0.75	ua/L			05/10/12 17:04	1
Dibromochloromethane	ND		1.0	0.32	ua/L			05/10/12 17:04	1
Chloroethane	3.0		1.0	0.32	ua/L			05/10/12 17:04	1
Chloroform	ND		1.0	0.34	ua/L			05/10/12 17:04	1
Chloromethane	ND		1.0	0.35	ua/L			05/10/12 17:04	1
cis-1.3-Dichloropropene	ND		1.0	0.36	ug/L			05/10/12 17:04	1
Cvclohexane	ND		1.0	0.18	ua/L			05/10/12 17:04	1
Dichlorodifluoromethane	ND		1.0	0.68	ua/L			05/10/12 17:04	1
Ethylbenzene	ND		1.0	0.74	ug/l			05/10/12 17:04	1
Isopropylbenzene	ND		1.0	0.79	ua/L			05/10/12 17:04	
Methyl acetate	ND		1.0	0.50	ua/L			05/10/12 17:04	1
Methyl tert-butyl ether	ND		1.0	0.16	ug/l			05/10/12 17:04	1
Methylcyclohexane	ND		1.0	0.16	ua/L			05/10/12 17:04	1
Methylene Chloride	ND		1.0	0.44	ug/l			05/10/12 17:04	1
Styrene	ND		1.0	0.73	ug/L			05/10/12 17:04	1
Tetrachloroethene	1.0		10	0.36	ug/l			05/10/12 17:04	
Toluene			1.0	0.51	ua/L			05/10/12 17:04	1
trans_1 2-Dichloroethene	3.8		1.0	0.90	ug/L			05/10/12 17:04	1
trans-1 3-Dichloropropene	3.0 NIN		1.0	0.37	ug/l			05/10/12 17:04	· · · · · · · · · · · · · · · · · · ·
Trichlorofluoromethane	חא		1.0	0.88	ua/l			05/10/12 17:04	1
Vinyl chloride	20		1.0	0.00	ug/l			05/10/12 17:04	1
Xylenes, Total	ND		2.0	0.66	ug/L			05/10/12 17:04	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	111		66 - 137			_		05/10/12 17:04	1
Toluene-d8 (Surr)	115		71 - 126					05/10/12 17:04	1
4-Bromofluorobenzene (Surr)	97		73 - 120					05/10/12 17:04	1

Lab Sample ID: 480-19566-1

Matrix: Water

Client Sample Results

Client Sample ID: RU10-050112

Lab Sample ID:	: 480-19566-1
	Matrix: Water

5

6

Date Collected: 05/01/12 11:15 Date Received: 05/03/12 09:00

Method: 8260B - Volatile Organic Compou Analyte F	nds (Result	(GC/MS) - D Qualifier	IL RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
cis-1.2-Dichloroethene	290		10	8.1	ug/L			05/11/12 15:20	10
Trichloroethene	500		10	4.6	ug/L			05/11/12 15:20	10
Surrogate %Rec	overy	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	107		66 - 137					05/11/12 15:20	10
Toluene-d8 (Surr)	114		71 - 126					05/11/12 15:20	10
4-Bromofluorobenzene (Surr)	94		73 - 120					05/11/12 15:20	10
- Method: RSK-175 - Dissolved Gases (GC)									
Analyte F	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acetylene	ND		1.5	0.47	ug/L			05/08/12 13:12	1
Ethane	8.7		1.5	0.49	ug/L			05/08/12 13:12	1
Ethene	1.4	J	1.5	0.52	ug/L			05/08/12 13:12	1
Propane	ND		3.0	1.5	ug/L			05/08/12 13:12	1
Butane	ND		3.0	1.5	ug/L			05/08/12 13:12	1
Method: RSK-175 - Dissolved Gases (GC)	- DL								
Analyte F	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Methane	110	В	10	2.2	ug/L			05/08/12 15:14	10
- Method: 6010B - Metals (ICP) - Dissolved									
Analyte F	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	0.075	J	0.20	0.060	mg/L		05/07/12 07:20	05/07/12 18:17	1
Antimony	ND		0.020	0.0068	mg/L		05/07/12 07:20	05/07/12 18:17	1
Arsenic	0.013		0.010	0.0056	mg/L		05/07/12 07:20	05/07/12 18:17	1
Barium	0.18		0.0020	0.00070	mg/L		05/07/12 07:20	05/07/12 18:17	1
Beryllium	ND		0.0020	0.00030	mg/L		05/07/12 07:20	05/07/12 18:17	1
Cadmium	ND		0.0010	0.00050	mg/L		05/07/12 07:20	05/07/12 18:17	1
Calcium	79.6		0.50	0.10	mg/L		05/07/12 07:20	05/07/12 18:17	1
Chromium 0	.0026	J	0.0040	0.0010	mg/L		05/07/12 07:20	05/07/12 18:17	1
Cobalt 0	.0052		0.0040	0.00063	mg/L		05/07/12 07:20	05/07/12 18:17	1
Copper	ND		0.010	0.0016	ma/L		05/07/12 07:20	05/07/12 18:17	1
Iron	3.4		0.050	0.019	mg/L		05/07/12 07:20	05/07/12 18:17	1
Lead	ND		0.0050	0.0030	ma/L		05/07/12 07:20	05/07/12 18:17	1
Magnesium	10.9		0.20	0.043	ma/L		05/07/12 07:20	05/07/12 18:17	1
Manganese	3.2		0.0030	0.00040	ma/L		05/07/12 07:20	05/07/12 18:17	1
Nickel 0	0044	a l	0.010	0.0013	ma/L		05/07/12 07:20	05/07/12 18:17	1
Potassium	1 2	R	0.50	0.10	ma/l		05/07/12 07:20	05/07/12 18:17	· · · · · · · · · 1
Selenium	0 019	-	0.015	0.0087	ma/l		05/07/12 07:20	05/07/12 18:17	1
Silver	ND		0.0030	0.0017	ma/l		05/07/12 07:20	05/07/12 18:17	1
Sodium	18.6	R	1.0	0.32	ma/l		05/07/12 07:20	05/07/12 18:17	· · · · · · · 1
Thallium			0.020	0.010	mg/L		05/07/12 07:20	05/07/12 18:17	1
Vanadium			0.020	0.015	mg/L		05/07/12 07:20	05/07/12 18:17	1
Zinc	0.028		0.010	0.0015	mg/L		05/07/12 07:20	05/07/12 18:17	1
- Mothod: 7470A Morecume (OVAA)									
Analyte F	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	ND		0.00020	0.00012	mg/L		05/16/12 10:00	05/16/12 13:35	1
-									
General Chemistry									
General Chemistry Analyte	Result	Qualifier	RL	MDI	Unit	D	Prepared	Analyzed	Dil Fac

Client Sample ID: RU10-050112 Date Collected: 05/01/12 11:15

General Chemistry (Continued)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Sulfate	27.3		2.0	0.35	mg/L			05/08/12 14:12	1
Nitrate Nitrite as N	0.034	J	0.050	0.020	mg/L			05/03/12 18:10	1
Total Organic Carbon	8.6		1.0	0.43	mg/L			05/05/12 20:38	1
Total Organic Carbon - Duplicates	8.6		1.0	0.43	mg/L			05/05/12 20:38	1
TOC Result 1	9.2		1.0	0.43	mg/L			05/05/12 20:38	1
TOC Result 2	8.1		1.0	0.43	mg/L			05/05/12 20:38	1
Acetic acid	10.9		1.0	0.15	mg/L			05/16/12 06:56	1
Butyric acid	ND		1.0	0.16	mg/L			05/16/12 06:56	1
Propionic acid	ND		1.0	0.17	mg/L			05/16/12 06:56	1

Client Sample ID: RU19-050112

Date Collected: 05/01/12 14:15 Date Received: 05/03/12 09:00

Method: 8260B - Volatile Organic	Compounds	(GC/MS)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		10	8.2	ug/L			05/10/12 17:27	10
1,1,2,2-Tetrachloroethane	ND		10	2.1	ug/L			05/10/12 17:27	10
1,1,2-Trichloroethane	ND		10	2.3	ug/L			05/10/12 17:27	10
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		10	3.1	ug/L			05/10/12 17:27	10
1,1-Dichloroethane	ND		10	3.8	ug/L			05/10/12 17:27	10
1,1-Dichloroethene	ND		10	2.9	ug/L			05/10/12 17:27	10
1,2,4-Trichlorobenzene	ND		10	4.1	ug/L			05/10/12 17:27	10
1,2-Dibromo-3-Chloropropane	ND		10	3.9	ug/L			05/10/12 17:27	10
1,2-Dibromoethane	ND		10	7.3	ug/L			05/10/12 17:27	10
1,2-Dichlorobenzene	ND		10	7.9	ug/L			05/10/12 17:27	10
1,2-Dichloroethane	ND		10	2.1	ug/L			05/10/12 17:27	10
1,2-Dichloropropane	ND		10	7.2	ug/L			05/10/12 17:27	10
1,3-Dichlorobenzene	ND		10	7.8	ug/L			05/10/12 17:27	10
1,4-Dichlorobenzene	ND		10	8.4	ug/L			05/10/12 17:27	10
2-Hexanone	ND		50	12	ug/L			05/10/12 17:27	10
2-Butanone (MEK)	ND		100	13	ug/L			05/10/12 17:27	10
4-Methyl-2-pentanone (MIBK)	ND		50	21	ug/L			05/10/12 17:27	10
Acetone	ND		100	30	ug/L			05/10/12 17:27	10
Benzene	ND		10	4.1	ug/L			05/10/12 17:27	10
Bromodichloromethane	ND		10	3.9	ug/L			05/10/12 17:27	10
Bromoform	ND		10	2.6	ug/L			05/10/12 17:27	10
Bromomethane	ND		10	6.9	ug/L			05/10/12 17:27	10
Carbon disulfide	ND		10	1.9	ug/L			05/10/12 17:27	10
Carbon tetrachloride	ND		10	2.7	ug/L			05/10/12 17:27	10
Chlorobenzene	ND		10	7.5	ug/L			05/10/12 17:27	10
Dibromochloromethane	ND		10	3.2	ug/L			05/10/12 17:27	10
Chloroethane	ND		10	3.2	ug/L			05/10/12 17:27	10
Chloroform	ND		10	3.4	ug/L			05/10/12 17:27	10
Chloromethane	ND		10	3.5	ug/L			05/10/12 17:27	10
cis-1,2-Dichloroethene	400		10	8.1	ug/L			05/10/12 17:27	10
cis-1,3-Dichloropropene	ND		10	3.6	ug/L			05/10/12 17:27	10
Cyclohexane	ND		10	1.8	ug/L			05/10/12 17:27	10
Dichlorodifluoromethane	ND		10	6.8	ug/L			05/10/12 17:27	10
Ethylbenzene	ND		10	7.4	ug/L			05/10/12 17:27	10
Isopropylbenzene	ND		10	7.9	ug/L			05/10/12 17:27	10

TestAmerica Job ID: 480-19566-1

Lab Sample ID: 480-19566-1 Matrix: Water

Lab Sample ID: 480-19566-2

Matrix: Water

5 6

RL

10

10

10

10

10

10

10

10

10

10

10

20

Limits

66 - 137

71 - 126

73 - 120

MDL Unit

1.6 ug/L

4.4 ug/L

7.3 ug/L

ug/L

ug/L

ug/L

5.0 ug/L

1.6

3.6

5.1 ug/L

9.0 ug/L

3.7

8.8 ug/L

9.0 ug/L

6.6 ug/L

D

Prepared

Prepared

Analyte

Styrene

Toluene

Methyl acetate

Methyl tert-butyl ether

Methylcyclohexane

Methylene Chloride

Tetrachloroethene

trans-1,2-Dichloroethene

trans-1,3-Dichloropropene

1,2-Dichloroethane-d4 (Surr)

4-Bromofluorobenzene (Surr)

Trichlorofluoromethane

Vinyl chloride

Xylenes, Total

Toluene-d8 (Surr)

Surrogate

Client Sample ID: RU19-050112 Date Collected: 05/01/12 14:15 Date Received: 05/03/12 09:00

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Result Qualifier

ND

49

ND

107

111

92

Qualifier

%Recovery

Lab Sample ID: 480-19566-2 Matrix: Water

Analyzed

05/10/12 17:27

05/10/12 17:27

05/10/12 17:27

05/10/12 17:27

05/10/12 17:27

05/10/12 17:27

05/10/12 17:27

05/10/12 17:27

05/10/12 17:27

05/10/12 17:27

05/10/12 17:27

05/10/12 17:27

Analyzed

05/10/12 17:27

05/10/12 17:27

05/10/12 17:27

Analyzed

Dil Fac

Dil Fac

10

10

10

10

10

10

10

10

10

10

10

10

10

10

10

Dil Fac

Method: 8260B - Volatile Organ	ic Compounds	(GC/MS) - D	L						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Trichloroethene	1100		20	9.2	ug/L			05/11/12 15:43	20
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)			66 - 137			-		05/11/12 15:43	20
Toluene-d8 (Surr)	110		71 - 126					05/11/12 15:43	20
4-Bromofluorobenzene (Surr)	00		73 120					05/11/12 15:43	20

Method: RSK-175 - Dissolved Gases (GC)								
Analyte	Result (Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acetylene	ND		1.5	0.47	ug/L			05/08/12 13:29	1
Ethane	9.9		1.5	0.49	ug/L			05/08/12 13:29	1
Ethene	1.5		1.5	0.52	ug/L			05/08/12 13:29	1
Propane	ND		3.0	1.5	ug/L			05/08/12 13:29	1
Butane	ND		3.0	1.5	ug/L			05/08/12 13:29	1

Method: RSK-175 - Dissolved Gas	es (GC) - DL								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Methane	170	B	10	22	ua/l			05/08/12 15:31	10

RL

MDL Unit

D

Prepared

Method: 6010B - Metals (ICP) - Dis	solved		
Analyte	Result	Qualifier	
Aluminum	ND		

Aluminum	ND	0.20	0.060	mg/L	05/04/12 10:10	05/04/12 15:42	1
Antimony	ND	0.020	0.0068	mg/L	05/04/12 10:10	05/04/12 15:42	1
Arsenic	ND	0.010	0.0056	mg/L	05/04/12 10:10	05/04/12 15:42	1
Barium	0.065	0.0020	0.00070	mg/L	05/04/12 10:10	05/04/12 15:42	1
Beryllium	ND	0.0020	0.00030	mg/L	05/04/12 10:10	05/04/12 15:42	1
Cadmium	ND	0.0010	0.00050	mg/L	05/04/12 10:10	05/04/12 15:42	1
Calcium	95.1	0.50	0.10	mg/L	05/04/12 10:10	05/04/12 15:42	1
Chromium	ND	0.0040	0.0010	mg/L	05/04/12 10:10	05/04/12 15:42	1
Cobalt	0.0011	J 0.0040	0.00063	mg/L	05/04/12 10:10	05/04/12 15:42	1
Copper	ND	0.010	0.0016	mg/L	05/04/12 10:10	05/04/12 15:42	1
Iron	0.11	0.050	0.019	mg/L	05/04/12 10:10	05/04/12 15:42	1

Client: CDM Smith, Inc. Project/Site: New York state project

Client Sample ID: RU19-050112 Date Collected: 05/01/12 14:15

Date Received: 05/03/12 09:00

Method: 6010B - Metals (ICP) - D	issolved (Contir	nued)							
Analyte	Result (Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lead	ND		0.0050	0.0030	mg/L		05/04/12 10:10	05/04/12 15:42	1
Magnesium	15.2		0.20	0.043	mg/L		05/04/12 10:10	05/04/12 15:42	1
Manganese	2.6		0.0030	0.00040	mg/L		05/04/12 10:10	05/04/12 15:42	1
Nickel	0.0023	J	0.010	0.0013	mg/L		05/04/12 10:10	05/04/12 15:42	1
Potassium	1.5		0.50	0.10	mg/L		05/04/12 10:10	05/04/12 15:42	1
Selenium	ND		0.015	0.0087	mg/L		05/04/12 10:10	05/04/12 15:42	1
Silver	ND		0.0030	0.0017	mg/L		05/04/12 10:10	05/04/12 15:42	1
Sodium	18.2		1.0	0.32	mg/L		05/04/12 10:10	05/04/12 15:42	1
Thallium	ND		0.020	0.010	mg/L		05/04/12 10:10	05/04/12 15:42	1
Vanadium	ND		0.0050	0.0015	mg/L		05/04/12 10:10	05/04/12 15:42	1
Zinc	0.0033	J	0.010	0.0015	mg/L		05/04/12 10:10	05/04/12 15:42	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	ND		0.00020	0.00012	mg/L		05/04/12 09:15	05/04/12 15:35	1
- General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	24.4		0.50	0.28	mg/L			05/04/12 21:36	1
Sulfate	47.2		2.0	0.35	mg/L			05/08/12 14:22	1
Nitrate Nitrite as N	0.037	J	0.050	0.020	mg/L			05/03/12 18:11	1
Total Organic Carbon	2.5		1.0	0.43	mg/L			05/05/12 20:54	1
Total Organic Carbon - Duplicates	2.5		1.0	0.43	mg/L			05/05/12 20:54	1
TOC Result 1	2.8		1.0	0.43	mg/L			05/05/12 20:54	1
TOC Result 2	2.1		1.0	0.43	mg/L			05/05/12 20:54	1
Acetic acid	ND		1.0	0.15	mg/L			05/16/12 07:25	1
n-Butyric Acid	ND		1.0	0.16	mg/L			05/16/12 07:25	1

1.0

0.17 mg/L

ND

Client Sample ID: RU19D-050112 Date Collected: 05/01/12 14:20

Method: 7470A - Mercury (CVAA) - Dissolved

Date Received: 05/03/12 09:00

Propionic acid

Lab Sample ID: 480-19566-3

05/16/12 07:25

Matrix: Water

1

Method: 8260B - Volatile Organic	Compounds (G	GC/MS)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		10	8.2	ug/L			05/10/12 17:50	10
1,1,2,2-Tetrachloroethane	ND		10	2.1	ug/L			05/10/12 17:50	10
1,1,2-Trichloroethane	ND		10	2.3	ug/L			05/10/12 17:50	10
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		10	3.1	ug/L			05/10/12 17:50	10
1,1-Dichloroethane	ND		10	3.8	ug/L			05/10/12 17:50	10
1,1-Dichloroethene	ND		10	2.9	ug/L			05/10/12 17:50	10
1,2,4-Trichlorobenzene	ND		10	4.1	ug/L			05/10/12 17:50	10
1,2-Dibromo-3-Chloropropane	ND		10	3.9	ug/L			05/10/12 17:50	10
1,2-Dibromoethane	ND		10	7.3	ug/L			05/10/12 17:50	10
1,2-Dichlorobenzene	ND		10	7.9	ug/L			05/10/12 17:50	10
1,2-Dichloroethane	ND		10	2.1	ug/L			05/10/12 17:50	10
1,2-Dichloropropane	ND		10	7.2	ug/L			05/10/12 17:50	10
1,3-Dichlorobenzene	ND		10	7.8	ug/L			05/10/12 17:50	10
1,4-Dichlorobenzene	ND		10	8.4	ug/L			05/10/12 17:50	10
2-Hexanone	ND		50	12	ug/L			05/10/12 17:50	10
2-Butanone (MEK)	ND		100	13	ug/L			05/10/12 17:50	10
4-Methyl-2-pentanone (MIBK)	ND		50	21	ua/L			05/10/12 17:50	10

Lab Sample ID: 480-19566-2 Matrix: Water

5

6

Client Sample ID: RU19D-050112 Date Collected: 05/01/12 14:20

Date Received: 05/03/12 09:00

Method: 8260B - Volatile Organi	ic Compounds	(GC/MS) (C	ontinued)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acetone	ND		100	30	ug/L			05/10/12 17:50	10
Benzene	ND		10	4.1	ug/L			05/10/12 17:50	10
Bromodichloromethane	ND		10	3.9	ug/L			05/10/12 17:50	10
Bromoform	ND		10	2.6	ug/L			05/10/12 17:50	10
Bromomethane	ND		10	6.9	ug/L			05/10/12 17:50	10
Carbon disulfide	ND		10	1.9	ug/L			05/10/12 17:50	10
Carbon tetrachloride	ND		10	2.7	ug/L			05/10/12 17:50	10
Chlorobenzene	ND		10	7.5	ug/L			05/10/12 17:50	10
Dibromochloromethane	ND		10	3.2	ug/L			05/10/12 17:50	10
Chloroethane	ND		10	3.2	ug/L			05/10/12 17:50	10
Chloroform	ND		10	3.4	ug/L			05/10/12 17:50	10
Chloromethane	ND		10	3.5	ug/L			05/10/12 17:50	10
cis-1,2-Dichloroethene	360		10	8.1	ug/L			05/10/12 17:50	10
cis-1,3-Dichloropropene	ND		10	3.6	ug/L			05/10/12 17:50	10
Cyclohexane	ND		10	1.8	ug/L			05/10/12 17:50	10
Dichlorodifluoromethane	ND		10	6.8	ua/L			05/10/12 17:50	10
Ethvlbenzene	ND		10	7.4	ua/L			05/10/12 17:50	10
Isopropylbenzene	ND		10	79	ua/l			05/10/12 17:50	10
Methyl acetate	ND		10	5.0	ua/l			05/10/12 17:50	10
Methyl tert-butyl ether	ND		10	1.6	ug/L			05/10/12 17:50	10
Methylovclohexane			10	1.0	ug/L			05/10/12 17:50	10
			10	1.0	ug/L			05/10/12 17:50	10
Sturopo			10	4. 4 7.2	ug/L			05/10/12 17:50	10
Stylene	ND		10	7.5	ug/L			05/10/12 17.50	10
Tetrachioroethene	ND		10	3.0 E 1	ug/L			05/10/12 17.50	10
			10	J.1	uy/L			05/10/12 17:50	10
trans-1,2-Dichloroethene	ND		10	9.0	ug/L			05/10/12 17:50	10
trans-1,3-Dicnioropropene	ND		10	3.7	ug/L			05/10/12 17:50	10
Trichloroethene	940		10	4.6	ug/L			05/10/12 17:50	10
Irichlorofluoromethane	ND		10	8.8	ug/L			05/10/12 17:50	10
Vinyl chloride	46		10	9.0	ug/L			05/10/12 17:50	10
Xylenes, Total	ND		20	6.6	ug/L			05/10/12 17:50	10
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	110		66 - 137					05/10/12 17:50	10
Toluene-d8 (Surr)	117		71 - 126					05/10/12 17:50	10
4-Bromofluorobenzene (Surr)	96		73 - 120					05/10/12 17:50	10
- Method: RSK-175 - Dissolved G	ases (GC)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acetylene	ND		1.5	0.47	ug/L			05/08/12 13:46	1
Ethane	9.5		1.5	0.49	ug/L			05/08/12 13:46	1
Ethene	1.6		1.5	0.52	ug/L			05/08/12 13:46	1
Propane	ND		3.0	1.5	ug/L			05/08/12 13:46	1
Butane	ND		3.0	1.5	ug/L			05/08/12 13:46	1
- Method: RSK-175 - Dissolved G	ases (GC) - DL								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Methane	95	В	10	2.2	ug/L			05/08/12 15:48	10
- Method: 6010B - Metals (ICP) - I	Dissolved								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	ND		0.20	0.060	mg/L		05/04/12 10:10	05/04/12 15:44	1

Lab Sample ID: 480-19566-3 Matrix: Water

5

6

TestAmerica Buffalo 5/17/2012 Client: CDM Smith, Inc. Project/Site: New York state project

Client Sample ID: RU19D-050112 Date Collected: 05/01/12 14:20 Date Received: 05/03/12 09:00

_ _

Lab Sample ID: 480-19566-3 Matrix: Water

Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	ND		0.020	0.0068	mg/L		05/04/12 10:10	05/04/12 15:44	1
Arsenic	ND		0.010	0.0056	mg/L		05/04/12 10:10	05/04/12 15:44	1
Barium	0.064		0.0020	0.00070	mg/L		05/04/12 10:10	05/04/12 15:44	1
Beryllium	ND		0.0020	0.00030	mg/L		05/04/12 10:10	05/04/12 15:44	1
Cadmium	ND		0.0010	0.00050	mg/L		05/04/12 10:10	05/04/12 15:44	1
Calcium	96.2		0.50	0.10	mg/L		05/04/12 10:10	05/04/12 15:44	1
Chromium	ND		0.0040	0.0010	mg/L		05/04/12 10:10	05/04/12 15:44	1
Cobalt	0.0012	J	0.0040	0.00063	mg/L		05/04/12 10:10	05/04/12 15:44	1
Copper	ND		0.010	0.0016	mg/L		05/04/12 10:10	05/04/12 15:44	
on	0.11		0.050	0.019	mg/L		05/04/12 10:10	05/04/12 15:44	
ead	ND		0.0050	0.0030	mg/L		05/04/12 10:10	05/04/12 15:44	
lagnesium	15.2		0.20	0.043	mg/L		05/04/12 10:10	05/04/12 15:44	
langanese	2.6		0.0030	0.00040	mg/L		05/04/12 10:10	05/04/12 15:44	
lickel	0.0021	J	0.010	0.0013	mg/L		05/04/12 10:10	05/04/12 15:44	
otassium	1.5		0.50	0.10	mg/L		05/04/12 10:10	05/04/12 15:44	
elenium	ND		0.015	0.0087	mg/L		05/04/12 10:10	05/04/12 15:44	
ilver	ND		0.0030	0.0017	mg/L		05/04/12 10:10	05/04/12 15:44	
odium	18.1		1.0	0.32	mg/L		05/04/12 10:10	05/04/12 15:44	
hallium	ND		0.020	0.010	mg/L		05/04/12 10:10	05/04/12 15:44	
anadium	ND		0.0050	0.0015	mg/L		05/04/12 10:10	05/04/12 15:44	1
Linc	0.0027	J	0.010	0.0015	mg/L		05/04/12 10:10	05/04/12 15:44	

Method: 7470A - Mercury (CVAA) - Dissolved										
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
Mercury	ND		0.00020	0.00012	mg/L		05/04/12 09:15	05/04/12 15:37	1	

General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	24.6		0.50	0.28	mg/L			05/04/12 21:46	1
Sulfate	48.8		2.0	0.35	mg/L			05/08/12 14:32	1
Nitrate Nitrite as N	0.046	J	0.050	0.020	mg/L			05/03/12 18:12	1
Total Organic Carbon	2.3		1.0	0.43	mg/L			05/05/12 21:10	1
Total Organic Carbon - Duplicates	2.3		1.0	0.43	mg/L			05/05/12 21:10	1
TOC Result 1	2.6		1.0	0.43	mg/L			05/05/12 21:10	1
TOC Result 2	2.1		1.0	0.43	mg/L			05/05/12 21:10	1
Acetic acid	ND		1.0	0.15	mg/L			05/16/12 07:54	1
n-Butyric Acid	ND		1.0	0.16	mg/L			05/16/12 07:54	1
Propionic acid	ND		1.0	0.17	ma/L			05/16/12 07:54	1

Client Sample ID: RU20-050112

Date Collected: 05/01/12 17:20 Date Received: 05/03/12 09:00

Method: 8260B - Volatile Organic Compounds (GC/MS)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		50	41	ug/L			05/10/12 18:13	50
1,1,2,2-Tetrachloroethane	ND		50	11	ug/L			05/10/12 18:13	50
1,1,2-Trichloroethane	ND		50	12	ug/L			05/10/12 18:13	50
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		50	16	ug/L			05/10/12 18:13	50
1,1-Dichloroethane	ND		50	19	ug/L			05/10/12 18:13	50
1,1-Dichloroethene	ND		50	15	ug/L			05/10/12 18:13	50
1.2.4-Trichlorobenzene	ND		50	21	ua/L			05/10/12 18:13	50

Matrix: Water

Lab Sample ID: 480-19566-4

Ethane

Client Sample ID: RU20-050112 Date Collected: 05/01/12 17:20 Date Received: 05/03/12 09:00

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: 480-19566-4 Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2-Dibromo-3-Chloropropane	ND		50	20	ug/L			05/10/12 18:13	50
1,2-Dibromoethane	ND		50	37	ug/L			05/10/12 18:13	50
1,2-Dichlorobenzene	ND		50	40	ug/L			05/10/12 18:13	50
1,2-Dichloroethane	ND		50	11	ug/L			05/10/12 18:13	50
1,2-Dichloropropane	ND		50	36	ug/L			05/10/12 18:13	50
1,3-Dichlorobenzene	ND		50	39	ug/L			05/10/12 18:13	50
1,4-Dichlorobenzene	ND		50	42	ug/L			05/10/12 18:13	50
2-Hexanone	ND		250	62	ug/L			05/10/12 18:13	50
2-Butanone (MEK)	ND		500	66	ug/L			05/10/12 18:13	50
4-Methyl-2-pentanone (MIBK)	ND		250	110	ug/L			05/10/12 18:13	50
Acetone	ND		500	150	ug/L			05/10/12 18:13	50
Benzene	ND		50	21	ug/L			05/10/12 18:13	50
Bromodichloromethane	ND		50	20	ug/L			05/10/12 18:13	50
Bromoform	ND		50	13	ug/L			05/10/12 18:13	50
Bromomethane	ND		50	35	ug/L			05/10/12 18:13	50
Carbon disulfide	ND		50	9.5	ug/L			05/10/12 18:13	50
Carbon tetrachloride	ND		50	14	ug/L			05/10/12 18:13	50
Chlorobenzene	ND		50	38	ug/L			05/10/12 18:13	50
Dibromochloromethane	ND		50	16	ug/L			05/10/12 18:13	50
Chloroethane	ND		50	16	ug/L			05/10/12 18:13	50
Chloroform	ND		50	17	ug/L			05/10/12 18:13	50
Chloromethane	ND		50	18	ug/L			05/10/12 18:13	50
cis-1,2-Dichloroethene	77		50	41	ug/L			05/10/12 18:13	50
cis-1,3-Dichloropropene	ND		50	18	ug/L			05/10/12 18:13	50
Cyclohexane	ND		50	9.0	ug/L			05/10/12 18:13	50
Dichlorodifluoromethane	ND		50	34	ug/L			05/10/12 18:13	50
Ethylbenzene	ND		50	37	ug/L			05/10/12 18:13	50
Isopropylbenzene	ND		50	40	ug/L			05/10/12 18:13	50
Methyl acetate	ND		50	25	ug/L			05/10/12 18:13	50
Methyl tert-butyl ether	ND		50	8.0	ug/L			05/10/12 18:13	50
Methylcyclohexane	ND		50	8.0	ug/L			05/10/12 18:13	50
Methylene Chloride	ND		50	22	ug/L			05/10/12 18:13	50
Styrene	ND		50	37	ug/L			05/10/12 18:13	50
Tetrachloroethene	ND		50	18	ug/L			05/10/12 18:13	50
Toluene	ND		50	26	ug/L			05/10/12 18:13	50
trans-1,2-Dichloroethene	ND		50	45	ug/L			05/10/12 18:13	50
trans-1,3-Dichloropropene	ND		50	19	ug/L			05/10/12 18:13	50
Trichloroethene	2100		50	23	ug/L			05/10/12 18:13	50
Trichlorofluoromethane	ND		50	44	ug/L			05/10/12 18:13	50
Vinyl chloride	ND		50	45	ug/L			05/10/12 18:13	50
Xylenes, Total	ND		100	33	ug/L			05/10/12 18:13	50
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	112		66 - 137			-		05/10/12 18:13	50
Toluene-d8 (Surr)	116		71 - 126					05/10/12 18:13	50
4-Bromofluorobenzene (Surr)	96		73 - 120					05/10/12 18:13	50
Method: RSK-175 - Dissolved	Gases (GC)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acetylene	ND		15	4.7	ug/L			05/08/12 14:14	10

10

05/08/12 14:14

15

4.9 ug/L

7.8 J

Client Sample ID: RU20-050112 Date Collected: 05/01/12 17:20

Date Received: 05/03/12 09:00

Method: RSK-175 - Dissolv	ved Gases (GC) (Con	tinued)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ethene	7.6	J	15	5.2	ug/L			05/08/12 14:14	10
Methane	60	В	10	2.2	ug/L			05/08/12 14:14	10
Propane	ND		30	15	ug/L			05/08/12 14:14	10
Butane	ND		30	15	ug/L			05/08/12 14:14	10
Method: 6010B - Metals (IC	CP) - Dissolved								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	ND		0.20	0.060	mg/L		05/04/12 10:10	05/04/12 15:50	1
Antimony	ND		0.020	0.0068	mg/L		05/04/12 10:10	05/04/12 15:50	1
Arsenic	0.0069	J	0.010	0.0056	mg/L		05/04/12 10:10	05/04/12 15:50	1
Barium	0.12		0.0020	0.00070	mg/L		05/04/12 10:10	05/04/12 15:50	1
Beryllium	ND		0.0020	0.00030	mg/L		05/04/12 10:10	05/04/12 15:50	1
Cadmium	ND		0.0010	0.00050	mg/L		05/04/12 10:10	05/04/12 15:50	1
Calcium	98.0		0.50	0.10	mg/L		05/04/12 10:10	05/04/12 15:50	1
Chromium	0.0012	J	0.0040	0.0010	mg/L		05/04/12 10:10	05/04/12 15:50	1
Cobalt	ND		0.0040	0.00063	mg/L		05/04/12 10:10	05/04/12 15:50	1
Copper	ND		0.010	0.0016	mg/L		05/04/12 10:10	05/04/12 15:50	1
Iron	0.42		0.050	0.019	mg/L		05/04/12 10:10	05/04/12 15:50	1
Lead	ND		0.0050	0.0030	mg/L		05/04/12 10:10	05/04/12 15:50	1
Magnesium	15.2		0.20	0.043	mg/L		05/04/12 10:10	05/04/12 15:50	1
Manganese	0.85		0.0030	0.00040	mg/L		05/04/12 10:10	05/04/12 15:50	1
Nickel	0.0016	J	0.010	0.0013	mg/L		05/04/12 10:10	05/04/12 15:50	1
Potassium	4.7		0.50	0.10	mg/L		05/04/12 10:10	05/04/12 15:50	1
Selenium	ND		0.015	0.0087	mg/L		05/04/12 10:10	05/04/12 15:50	1
Silver	ND		0.0030	0.0017	mg/L		05/04/12 10:10	05/04/12 15:50	1
Sodium	64.2		1.0	0.32	mg/L		05/04/12 10:10	05/04/12 15:50	1
Thallium	ND		0.020	0.010	mg/L		05/04/12 10:10	05/04/12 15:50	1
Vanadium	ND		0.0050	0.0015	mg/L		05/04/12 10:10	05/04/12 15:50	1
Zinc	ND		0.010	0.0015	mg/L		05/04/12 10:10	05/04/12 15:50	1
Method: 7470A - Mercury ((CVAA) - Dissolved								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	ND		0.00020	0.00012	mg/L		05/04/12 09:15	05/04/12 15:40	1

General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	71.6		0.50	0.28	mg/L			05/04/12 21:56	1
Sulfate	22.8		2.0	0.35	mg/L			05/09/12 18:05	1
Nitrate Nitrite as N	0.56		0.050	0.020	mg/L			05/03/12 18:15	1
Total Organic Carbon	75.5		1.0	0.43	mg/L			05/05/12 21:27	1
Total Organic Carbon - Duplicates	75.5		1.0	0.43	mg/L			05/05/12 21:27	1
TOC Result 1	73.1		1.0	0.43	mg/L			05/05/12 21:27	1
TOC Result 2	77.8		1.0	0.43	mg/L			05/05/12 21:27	1
Acetic acid	63.6		2.0	0.30	mg/L			05/16/12 18:52	2
n-Butyric Acid	ND		1.0	0.16	mg/L			05/16/12 08:23	1
Propionic acid	33.0		1.0	0.17	mg/L			05/16/12 08:23	1

TestAmerica Job ID: 480-19566-1

Lab Sample ID: 480-19566-4 Matrix: Water

5 6

Client Sample ID: FB-050112 Date Collected: 05/01/12 00:00 Date Received: 05/03/12 09:00

Lab Sample ID: 480-19566-5 Matrix: Water

Method: 8260B - Volatile Organi Analyte	c Compounds Result	(GC/MS) Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		1.0	0.82	ug/L			05/10/12 18:36	1
1,1,2,2-Tetrachloroethane	ND		1.0	0.21	ug/L			05/10/12 18:36	1
1,1,2-Trichloroethane	ND		1.0	0.23	ug/L			05/10/12 18:36	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		1.0	0.31	ug/L			05/10/12 18:36	1
1,1-Dichloroethane	ND		1.0	0.38	ug/L			05/10/12 18:36	1
1,1-Dichloroethene	ND		1.0	0.29	ug/L			05/10/12 18:36	1
1,2,4-Trichlorobenzene	ND		1.0	0.41	ug/L			05/10/12 18:36	1
1,2-Dibromo-3-Chloropropane	ND		1.0	0.39	ug/L			05/10/12 18:36	1
1,2-Dibromoethane	ND		1.0	0.73	ug/L			05/10/12 18:36	1
1,2-Dichlorobenzene	ND		1.0	0.79	ug/L			05/10/12 18:36	1
1,2-Dichloroethane	ND		1.0	0.21	ug/L			05/10/12 18:36	1
1,2-Dichloropropane	ND		1.0	0.72	ug/L			05/10/12 18:36	1
1,3-Dichlorobenzene	ND		1.0	0.78	ug/L			05/10/12 18:36	1
1.4-Dichlorobenzene	ND		1.0	0.84	ua/L			05/10/12 18:36	1
2-Hexanone	ND		5.0	1.2	ua/L			05/10/12 18:36	1
2-Butanone (MEK)	ND		10	1.3	ua/L			05/10/12 18:36	
4-Methyl-2-pentanone (MIBK)			5.0	21	ua/L			05/10/12 18:36	1
Acetone	8.5	л	10	3.0	ug/l			05/10/12 18:36	1
Benzene		•	10	0.0				05/10/12 18:36	
Bromodichloromethane			1.0	0.39	ug/L			05/10/12 18:36	1
Bromoform			1.0	0.00	ug/L			05/10/12 18:36	1
Bromomethane			1.0	0.20	ug/L			05/10/12 18:36	1
			1.0	0.09	ug/L			05/10/12 10:30	1
			1.0	0.19	ug/L			05/10/12 10:30	1
			1.0	0.27	ug/L			05/10/12 10.30	ا م
Diverse at lease at the sec	ND		1.0	0.75	ug/L			05/10/12 18:36	1
	ND		1.0	0.32	ug/L			05/10/12 18:36	1
Chioroethane			1.0	0.32	ug/L			05/10/12 18:36	1
Chloroform	ND		1.0	0.34	ug/L			05/10/12 18:36	1
Chloromethane	ND		1.0	0.35	ug/L			05/10/12 18:36	1
cis-1,2-Dichloroethene	ND		1.0	0.81	ug/L			05/10/12 18:36	1
cis-1,3-Dichloropropene	ND		1.0	0.36	ug/L			05/10/12 18:36	1
Cyclohexane	ND		1.0	0.18	ug/L			05/10/12 18:36	1
Dichlorodifluoromethane	ND		1.0	0.68	ug/L			05/10/12 18:36	1
Ethylbenzene	ND		1.0	0.74	ug/L			05/10/12 18:36	1
Isopropylbenzene	ND		1.0	0.79	ug/L			05/10/12 18:36	1
Methyl acetate	ND		1.0	0.50	ug/L			05/10/12 18:36	1
Methyl tert-butyl ether	ND		1.0	0.16	ug/L			05/10/12 18:36	1
Methylcyclohexane	ND		1.0	0.16	ug/L			05/10/12 18:36	1
Methylene Chloride	ND		1.0	0.44	ug/L			05/10/12 18:36	1
Styrene	ND		1.0	0.73	ug/L			05/10/12 18:36	1
Tetrachloroethene	ND		1.0	0.36	ug/L			05/10/12 18:36	1
Toluene	ND		1.0	0.51	ug/L			05/10/12 18:36	1
trans-1,2-Dichloroethene	ND		1.0	0.90	ug/L			05/10/12 18:36	1
trans-1,3-Dichloropropene	ND		1.0	0.37	ug/L			05/10/12 18:36	1
Trichloroethene	ND		1.0	0.46	ug/L			05/10/12 18:36	1
Trichlorofluoromethane	ND		1.0	0.88	ug/L			05/10/12 18:36	1
Vinyl chloride	ND		1.0	0.90	ug/L			05/10/12 18:36	1
Xylenes, Total	1.1	J	2.0	0.66	ug/L			05/10/12 18:36	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac

1,2-Dichloroethane-d4 (Surr)

1

05/10/12 18:36

66 - 137

108

Client Sample Results

Client Sample ID: FB-050112 Date Collected: 05/01/12 00:00

Date Received: 05/03/12 09:00

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)
--	--------------------

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	111	71 - 126		05/10/12 18:36	1
4-Bromofluorobenzene (Surr)	93	73 - 120		05/10/12 18:36	1

Client Sample ID: TRIP BLANK Date Collected: 05/01/12 00:00

Date Received: 05/03/12 09:00

Method: 8260B - Volatile Organ Analyte	iic Compounds Result	(GC/MS) Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
1,1,1-Trichloroethane	ND		1.0	0.82	ug/L		•	05/10/12 18:59	
1,1,2,2-Tetrachloroethane	ND		1.0	0.21	ug/L			05/10/12 18:59	
1,1,2-Trichloroethane	ND		1.0	0.23	ug/L			05/10/12 18:59	
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		1.0	0.31	ug/L			05/10/12 18:59	· · · · · · · ·
1,1-Dichloroethane	ND		1.0	0.38	ug/L			05/10/12 18:59	
1,1-Dichloroethene	ND		1.0	0.29	ug/L			05/10/12 18:59	
1,2,4-Trichlorobenzene	ND		1.0	0.41	ug/L			05/10/12 18:59	
1,2-Dibromo-3-Chloropropane	ND		1.0	0.39	ug/L			05/10/12 18:59	
1,2-Dibromoethane	ND		1.0	0.73	ug/L			05/10/12 18:59	
1,2-Dichlorobenzene	ND		1.0	0.79	ug/L			05/10/12 18:59	
1,2-Dichloroethane	ND		1.0	0.21	ug/L			05/10/12 18:59	
1,2-Dichloropropane	ND		1.0	0.72	ug/L			05/10/12 18:59	
1,3-Dichlorobenzene	ND		1.0	0.78	ug/L			05/10/12 18:59	
1,4-Dichlorobenzene	ND		1.0	0.84	ug/L			05/10/12 18:59	
2-Hexanone	ND		5.0	1.2	ug/L			05/10/12 18:59	
2-Butanone (MEK)	ND		10	1.3	ug/L			05/10/12 18:59	
4-Methyl-2-pentanone (MIBK)	ND		5.0	2.1	ug/L			05/10/12 18:59	
Acetone	ND		10	3.0	ug/L			05/10/12 18:59	
Benzene	ND		1.0	0.41	ug/L			05/10/12 18:59	,
Bromodichloromethane	ND		1.0	0.39	ug/L			05/10/12 18:59	
Bromoform	ND		1.0	0.26	ug/L			05/10/12 18:59	
Bromomethane	ND		1.0	0.69	ug/L			05/10/12 18:59	
Carbon disulfide	ND		1.0	0.19	ug/L			05/10/12 18:59	
Carbon tetrachloride	ND		1.0	0.27	ug/L			05/10/12 18:59	
Chlorobenzene	ND		1.0	0.75	ug/L			05/10/12 18:59	
Dibromochloromethane	ND		1.0	0.32	ug/L			05/10/12 18:59	
Chloroethane	ND		1.0	0.32	ug/L			05/10/12 18:59	
Chloroform	ND		1.0	0.34	ug/L			05/10/12 18:59	
Chloromethane	ND		1.0	0.35	ug/L			05/10/12 18:59	
cis-1,2-Dichloroethene	ND		1.0	0.81	ug/L			05/10/12 18:59	
cis-1,3-Dichloropropene	ND		1.0	0.36	ug/L			05/10/12 18:59	
Cyclohexane	ND		1.0	0.18	ug/L			05/10/12 18:59	
Dichlorodifluoromethane	ND		1.0	0.68	ug/L			05/10/12 18:59	
Ethylbenzene	ND		1.0	0.74	ug/L			05/10/12 18:59	· · · · · · · ·
Isopropylbenzene	ND		1.0	0.79	ug/L			05/10/12 18:59	
Methyl acetate	ND		1.0	0.50	ug/L			05/10/12 18:59	
Methyl tert-butyl ether	ND		1.0	0.16	ug/L			05/10/12 18:59	
Methylcyclohexane	ND		1.0	0.16	ug/L			05/10/12 18:59	
Methylene Chloride	ND		1.0	0.44	ug/L			05/10/12 18:59	
Styrene	ND		1.0	0.73	ug/L			05/10/12 18:59	,
Tetrachloroethene	ND		1.0	0.36	ug/L			05/10/12 18:59	
Toluene	ND		1.0	0.51	ug/L			05/10/12 18:59	

TestAmerica Job ID: 480-19566-1

Lab Sample ID: 480-19566-6

6

Lab Sample ID: 480-19566-5 Matrix: Water

Matrix: Water

Client Sample ID: TRIP BLANK Date Collected: 05/01/12 00:00

Date Received: 05/03/12 09:00

Method: 8260B - Volatile Orga	nic Compounds	(GC/MS) (Co	ontinued)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
trans-1,2-Dichloroethene	ND		1.0	0.90	ug/L			05/10/12 18:59	1
trans-1,3-Dichloropropene	ND		1.0	0.37	ug/L			05/10/12 18:59	1
Trichloroethene	ND		1.0	0.46	ug/L			05/10/12 18:59	1
Trichlorofluoromethane	ND		1.0	0.88	ug/L			05/10/12 18:59	1
Vinyl chloride	ND		1.0	0.90	ug/L			05/10/12 18:59	1
Xylenes, Total	ND		2.0	0.66	ug/L			05/10/12 18:59	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	101		66 - 137			-		05/10/12 18:59	1
Toluene-d8 (Surr)	104		71 - 126					05/10/12 18:59	1
4-Bromofluorobenzene (Surr)	87		73 - 120					05/10/12 18:59	1

Client Sample ID: RU21-050112

Date Collected: 05/01/12 20:10

Date Received: 05/03/12 09:00

cis-1,2-Dichloroethene

cis-1,3-Dichloropropene

Dichlorodifluoromethane

Cyclohexane

Analyte	Result Qualifier	RI	MDI Unit	D Prenared	Analyzed	Dil Fac
1.1.1-Trichloroethane		2.0	1.6 ug/L		05/11/12 16:06	2
1,1,2,2-Tetrachloroethane	ND	2.0	0.42 ug/L		05/11/12 16:06	2
1.1.2-Trichloroethane	ND	2.0	0.46 ug/L		05/11/12 16:06	2
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	2.0	0.62 ug/L		05/11/12 16:06	2
1,1-Dichloroethane	ND	2.0	0.76 ug/L		05/11/12 16:06	2
1,1-Dichloroethene	ND	2.0	0.58 ug/L		05/11/12 16:06	2
1,2,4-Trichlorobenzene	ND	2.0	0.82 ug/L		05/11/12 16:06	2
1,2-Dibromo-3-Chloropropane	ND	2.0	0.78 ug/L		05/11/12 16:06	2
1,2-Dibromoethane	ND	2.0	1.5 ug/L		05/11/12 16:06	2
1,2-Dichlorobenzene	ND	2.0	1.6 ug/L		05/11/12 16:06	2
1,2-Dichloroethane	ND	2.0	0.42 ug/L		05/11/12 16:06	2
1,2-Dichloropropane	ND	2.0	1.4 ug/L		05/11/12 16:06	2
1,3-Dichlorobenzene	ND	2.0	1.6 ug/L		05/11/12 16:06	2
1,4-Dichlorobenzene	ND	2.0	1.7 ug/L		05/11/12 16:06	2
2-Hexanone	ND	10	2.5 ug/L		05/11/12 16:06	2
2-Butanone (MEK)	46	20	2.6 ug/L		05/11/12 16:06	2
4-Methyl-2-pentanone (MIBK)	ND	10	4.2 ug/L		05/11/12 16:06	2
Acetone	47	20	6.0 ug/L		05/11/12 16:06	2
Benzene	ND	2.0	0.82 ug/L		05/11/12 16:06	2
Bromodichloromethane	ND	2.0	0.78 ug/L		05/11/12 16:06	2
Bromoform	ND	2.0	0.52 ug/L		05/11/12 16:06	2
Bromomethane	ND	2.0	1.4 ug/L		05/11/12 16:06	2
Carbon disulfide	1.0 J	2.0	0.38 ug/L		05/11/12 16:06	2
Carbon tetrachloride	ND	2.0	0.54 ug/L		05/11/12 16:06	2
Chlorobenzene	ND	2.0	1.5 ug/L		05/11/12 16:06	2
Dibromochloromethane	ND	2.0	0.64 ug/L		05/11/12 16:06	2
Chloroethane	9.7	2.0	0.64 ug/L		05/11/12 16:06	2
Chloroform	ND	2.0	0.68 ug/L		05/11/12 16:06	2
Chloromethane	0.72 J	2.0	0.70 ug/L		05/11/12 16:06	2
cis-1.2-Dichloroethene	71	2.0	1.6 ua/L		05/11/12 16:06	2

2

2

2

Lab Sample ID: 480-19566-6 Matrix: Water

5 6

Lab Sample ID: 480-19566-7

Matrix: Water

05/11/12 16:06

05/11/12 16:06

05/11/12 16:06

2.0

2.0

2.0

1.6 ug/L

0.72 ug/L

0.36 ug/L

1.4 ug/L

71

ND

ND

ND

RL

MDL Unit

D

Prepared

Client Sample ID: RU21-050112 Date Collected: 05/01/12 20:10

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Result Qualifier

Date Received: 05/03/12 09:00

Analyte

Potassium

Selenium

Lab Sample ID: 480-19566-7 Matrix: Water

Analyzed

6

Dil Fac

Ethylbenzene	1.5	J	2.0	1.5	ug/L			05/11/12 16:06	2
Isopropylbenzene	ND		2.0	1.6	ug/L			05/11/12 16:06	2
Methyl acetate	1.5	J	2.0	1.0	ug/L			05/11/12 16:06	2
Methyl tert-butyl ether	ND		2.0	0.32	ug/L			05/11/12 16:06	2
Methylcyclohexane	ND		2.0	0.32	ug/L			05/11/12 16:06	2
Methylene Chloride	ND		2.0	0.88	ug/L			05/11/12 16:06	2
Styrene	ND		2.0	1.5	ug/L			05/11/12 16:06	2
Tetrachloroethene	ND		2.0	0.72	ug/L			05/11/12 16:06	2
Toluene	ND		2.0	1.0	ug/L			05/11/12 16:06	2
trans-1,2-Dichloroethene	ND		2.0	1.8	ug/L			05/11/12 16:06	2
trans-1,3-Dichloropropene	ND		2.0	0.74	ug/L			05/11/12 16:06	2
Trichloroethene	69		2.0	0.92	ug/L			05/11/12 16:06	2
Trichlorofluoromethane	ND		2.0	1.8	ug/L			05/11/12 16:06	2
Vinyl chloride	170		2.0	1.8	ug/L			05/11/12 16:06	2
Xylenes, Total	ND		4.0	1.3	ug/L			05/11/12 16:06	2
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	108		66 - 137					05/11/12 16:06	2
Toluene-d8 (Surr)	112		71 - 126					05/11/12 16:06	2
4-Bromofluorobenzene (Surr)	95		73 - 120					05/11/12 16:06	2
Mothod: PSK 175 - Dissolved Gase									
Analyte	Result	Qualifier	RL	MDL	Unit	р	Prepared	Analyzed	Dil Fac
Acetylene	ND		15	4 7				05/08/12 14:31	10
Ethane	16		15	4.9	ua/L			05/08/12 14:31	10
Ethene	18		15	52	ua/l			05/08/12 14:31	10
Pronane	ND		30	15	ug/L			05/08/12 14:31	10
Butane	ND		30	15	ug/L			05/08/12 14:31	10
Mothod: PSK 175 - Dissolved Gase									
Analyte	Result	Qualifier	RI	мы	Unit	п	Prenared	Analyzod	Dil Fac
Methane	1700	R	100	22				05/08/12 16:05	100
	1700		100	22	ugit			00/00/12 10:00	100
Method: 6010B - Metals (ICP) - Diss	olved								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	0.10	J	0.20	0.060	mg/L		05/04/12 10:10	05/04/12 15:53	1
Antimony	ND		0.020	0.0068	mg/L		05/04/12 10:10	05/04/12 15:53	1
Arsenic	0.023		0.010	0.0056	mg/L		05/04/12 10:10	05/04/12 15:53	1
Barium	0.46		0.0020	0.00070	mg/L		05/04/12 10:10	05/04/12 15:53	1
Beryllium	ND		0.0020	0.00030	mg/L		05/04/12 10:10	05/04/12 15:53	1
Cadmium	0.00052	J	0.0010	0.00050	mg/L		05/04/12 10:10	05/04/12 15:53	1
Calcium	83.1		0.50	0.10	mg/L		05/04/12 10:10	05/04/12 15:53	1
Chromium	0.0028	J	0.0040	0.0010	mg/L		05/04/12 10:10	05/04/12 15:53	1
Cobalt	0.010		0.0040	0.00063	mg/L		05/04/12 10:10	05/04/12 15:53	1
Copper	ND		0.010	0.0016	mg/L		05/04/12 10:10	05/04/12 15:53	1
Iron	18.7		0.050	0.019	mg/L		05/04/12 10:10	05/04/12 15:53	1
Lead	ND		0.0050	0.0030	mg/L		05/04/12 10:10	05/04/12 15:53	1
Magnesium	16.3		0.20	0.043	mg/L		05/04/12 10:10	05/04/12 15:53	1
Manganese	17.1		0.0030	0.00040	mg/L		05/04/12 10:10	05/04/12 15:53	1
Niekol	0 0096		0.010	0.0013	ma/l		05/04/12 10.10	05/04/12 15:53	1

1

1

05/04/12 15:53

05/04/12 15:53

05/04/12 10:10

05/04/12 10:10

0.50

0.015

1.5 0.0098 J 0.10 mg/L

0.0087 mg/L

Client Sample Results

Client: CDM Smith, Inc. Project/Site: New York state project

Client Sample ID: RU21-050112

Date Collected: 05/01/12 20:10 Date Received: 05/03/12 09:00

Method: 6010B - Metals	(ICP) - Dissolved (Cont	inued)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Silver	ND		0.0030	0.0017	mg/L		05/04/12 10:10	05/04/12 15:53	1
Sodium	524		1.0	0.32	mg/L		05/04/12 10:10	05/04/12 15:53	1
Thallium	0.020		0.020	0.010	mg/L		05/04/12 10:10	05/04/12 15:53	1
Vanadium	ND		0.0050	0.0015	mg/L		05/04/12 10:10	05/04/12 15:53	1
Zinc	0.0029	J	0.010	0.0015	mg/L		05/04/12 10:10	05/04/12 15:53	1
Method: 7470A - Mercur	y (CVAA) - Dissolved								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	ND		0.00020	0.00012	mg/L		05/04/12 09:15	05/04/12 15:41	1

General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	36.6		2.5	1.4	mg/L			05/04/12 22:06	5
Sulfate	2.4		2.0	0.35	mg/L			05/09/12 18:15	1
Nitrate Nitrite as N	ND		0.050	0.020	mg/L			05/03/12 18:16	1
Total Organic Carbon	751		40.0	17.4	mg/L			05/08/12 08:59	40
Total Organic Carbon - Duplicates	751		40.0	17.4	mg/L			05/08/12 08:59	40
TOC Result 1	712	^	40.0	17.4	mg/L			05/08/12 08:59	40
TOC Result 2	791		40.0	17.4	mg/L			05/08/12 08:59	40
Acetic acid	650		20.0	3.0	mg/L			05/16/12 19:21	20
n-Butyric Acid	57.0		20.0	3.2	mg/L			05/16/12 19:21	20
Propionic acid	770		20.0	3.4	mg/L			05/16/12 19:21	20

Client Sample ID: RU8-050112

Date Collected: 05/02/12 10:15 Date Received: 05/03/12 09:00

Method: 8260B - Volatile Organic Analyte	Compounds (Result	GC/MS) Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		1.0	0.82	ug/L			05/11/12 16:29	1
1,1,2,2-Tetrachloroethane	ND		1.0	0.21	ug/L			05/11/12 16:29	1
1,1,2-Trichloroethane	ND		1.0	0.23	ug/L			05/11/12 16:29	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		1.0	0.31	ug/L			05/11/12 16:29	
1,1-Dichloroethane	ND		1.0	0.38	ug/L			05/11/12 16:29	1
1,1-Dichloroethene	ND		1.0	0.29	ug/L			05/11/12 16:29	1
1,2,4-Trichlorobenzene	ND		1.0	0.41	ug/L			05/11/12 16:29	1
1,2-Dibromo-3-Chloropropane	ND		1.0	0.39	ug/L			05/11/12 16:29	1
1,2-Dibromoethane	ND		1.0	0.73	ug/L			05/11/12 16:29	1
1,2-Dichlorobenzene	ND		1.0	0.79	ug/L			05/11/12 16:29	1
1,2-Dichloroethane	ND		1.0	0.21	ug/L			05/11/12 16:29	1
1,2-Dichloropropane	ND		1.0	0.72	ug/L			05/11/12 16:29	1
1,3-Dichlorobenzene	ND		1.0	0.78	ug/L			05/11/12 16:29	1
1,4-Dichlorobenzene	ND		1.0	0.84	ug/L			05/11/12 16:29	1
2-Hexanone	ND		5.0	1.2	ug/L			05/11/12 16:29	1
2-Butanone (MEK)	ND		10	1.3	ug/L			05/11/12 16:29	1
4-Methyl-2-pentanone (MIBK)	ND		5.0	2.1	ug/L			05/11/12 16:29	1
Acetone	ND		10	3.0	ug/L			05/11/12 16:29	1
Benzene	ND		1.0	0.41	ug/L			05/11/12 16:29	1
Bromodichloromethane	ND		1.0	0.39	ug/L			05/11/12 16:29	1
Bromoform	ND		1.0	0.26	ug/L			05/11/12 16:29	1
Bromomethane	ND		1.0	0.69	ug/L			05/11/12 16:29	1
Carbon disulfide	ND		1.0	0.19	ug/L			05/11/12 16:29	1

Lab Sample ID: 480-19566-8 Matrix: Water

TestAmerica Job ID: 480-19566-1
Client Sample ID: RU8-050112 Date Collected: 05/02/12 10:15

Date Received: 05/03/12 09:00

Method: 8260B - Volatile Organ	nic Compounds	(GC/MS) (Cont	tinued)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Carbon tetrachloride	ND		1.0	0.27	ug/L			05/11/12 16:29	1
Chlorobenzene	ND		1.0	0.75	ug/L			05/11/12 16:29	1
Dibromochloromethane	ND		1.0	0.32	ug/L			05/11/12 16:29	1
Chloroethane	ND		1.0	0.32	ug/L			05/11/12 16:29	1
Chloroform	ND		1.0	0.34	ug/L			05/11/12 16:29	1
Chloromethane	ND		1.0	0.35	ug/L			05/11/12 16:29	1
cis-1,2-Dichloroethene	3.0		1.0	0.81	ug/L			05/11/12 16:29	1
cis-1,3-Dichloropropene	ND		1.0	0.36	ug/L			05/11/12 16:29	1
Cyclohexane	ND		1.0	0.18	ug/L			05/11/12 16:29	1
Dichlorodifluoromethane	ND		1.0	0.68	ug/L			05/11/12 16:29	1
Ethylbenzene	ND		1.0	0.74	ug/L			05/11/12 16:29	1
Isopropylbenzene	ND		1.0	0.79	ug/L			05/11/12 16:29	1
Methyl acetate	ND		1.0	0.50	ug/L			05/11/12 16:29	1
Methyl tert-butyl ether	ND		1.0	0.16	ug/L			05/11/12 16:29	1
Methylcyclohexane	ND		1.0	0.16	ug/L			05/11/12 16:29	1
Methylene Chloride	ND		1.0	0.44	ug/L			05/11/12 16:29	1
Styrene	ND		1.0	0.73	ug/L			05/11/12 16:29	1
Tetrachloroethene	ND		1.0	0.36	ug/L			05/11/12 16:29	1
Toluene	ND		1.0	0.51	ug/L			05/11/12 16:29	1
trans-1,2-Dichloroethene	ND		1.0	0.90	ug/L			05/11/12 16:29	1
trans-1,3-Dichloropropene	ND		1.0	0.37	ug/L			05/11/12 16:29	1
Trichloroethene	77		1.0	0.46	ug/L			05/11/12 16:29	1
Trichlorofluoromethane	ND		1.0	0.88	ug/L			05/11/12 16:29	1
Vinyl chloride	ND		1.0	0.90	ug/L			05/11/12 16:29	1
Xylenes, Total	ND		2.0	0.66	ug/L			05/11/12 16:29	1

Surrogate	%Recovery	Qualifier	Limits	Pi	repared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	110		66 - 137			05/11/12 16:29	1
Toluene-d8 (Surr)	114		71 - 126			05/11/12 16:29	1
4-Bromofluorobenzene (Surr)	95		73 - 120			05/11/12 16:29	1

Method: RSK-175 - Dissolve	ed Gases (GC)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acetylene	ND		1.5	0.47	ug/L			05/08/12 16:39	1
Ethane	1.4	J	1.5	0.49	ug/L			05/08/12 16:39	1
Ethene	ND		1.5	0.52	ug/L			05/08/12 16:39	1
Methane	9.7	В	1.0	0.22	ug/L			05/08/12 16:39	1
Propane	ND		3.0	1.5	ug/L			05/08/12 16:39	1
Butane	ND		3.0	1.5	ug/L			05/08/12 16:39	1

Method: 6010B - Metals (ICP) - Dissolved

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	ND		0.20	0.060	mg/L		05/04/12 10:10	05/04/12 15:55	1
Antimony	ND		0.020	0.0068	mg/L		05/04/12 10:10	05/04/12 15:55	1
Arsenic	ND		0.010	0.0056	mg/L		05/04/12 10:10	05/04/12 15:55	1
Barium	0.13		0.0020	0.00070	mg/L		05/04/12 10:10	05/04/12 15:55	1
Beryllium	ND		0.0020	0.00030	mg/L		05/04/12 10:10	05/04/12 15:55	1
Cadmium	ND		0.0010	0.00050	mg/L		05/04/12 10:10	05/04/12 15:55	1
Calcium	117		0.50	0.10	mg/L		05/04/12 10:10	05/04/12 15:55	1
Chromium	ND		0.0040	0.0010	mg/L		05/04/12 10:10	05/04/12 15:55	1
Cobalt	ND		0.0040	0.00063	mg/L		05/04/12 10:10	05/04/12 15:55	1
Copper	0.0017	J	0.010	0.0016	mg/L		05/04/12 10:10	05/04/12 15:55	1

Lab Sample ID: 480-19566-8 Matrix: Water

Client Sample ID: RU8-050112 Date Collected: 05/02/12 10:15

Method: 6010B - Metals (ICP) - Dissolved (Continued)

Date Received: 05/03/12 09:00

Lab Sample ID: 480-19566-8 Matrix: Water

5 6

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Iron	ND		0.050	0.019	mg/L		05/04/12 10:10	05/04/12 15:55	1
Lead	ND		0.0050	0.0030	mg/L		05/04/12 10:10	05/04/12 15:55	1
Magnesium	22.5		0.20	0.043	mg/L		05/04/12 10:10	05/04/12 15:55	1
Manganese	0.48		0.0030	0.00040	mg/L		05/04/12 10:10	05/04/12 15:55	1
Nickel	ND		0.010	0.0013	mg/L		05/04/12 10:10	05/04/12 15:55	1
Potassium	1.8		0.50	0.10	mg/L		05/04/12 10:10	05/04/12 15:55	1
Selenium	ND		0.015	0.0087	mg/L		05/04/12 10:10	05/04/12 15:55	1
Silver	ND		0.0030	0.0017	mg/L		05/04/12 10:10	05/04/12 15:55	1
Sodium	12.7		1.0	0.32	mg/L		05/04/12 10:10	05/04/12 15:55	1
Thallium	ND		0.020	0.010	mg/L		05/04/12 10:10	05/04/12 15:55	1
Vanadium	ND		0.0050	0.0015	mg/L		05/04/12 10:10	05/04/12 15:55	1
Zinc	0.0086	J	0.010	0.0015	mg/L		05/04/12 10:10	05/04/12 15:55	1
_ Method: 7470A - Mercury (CVAA) ·	Dissolved								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	ND		0.00020	0.00012	mg/L		05/04/12 09:15	05/04/12 15:43	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	12.2		0.50	0.28	mg/L			05/04/12 22:17	1
Sulfate	38.1		2.0	0.35	mg/L			05/08/12 16:03	1
Nitrate Nitrite as N	0.18		0.050	0.020	mg/L			05/03/12 18:17	1
Total Organic Carbon	0.67	J	1.0	0.43	mg/L			05/05/12 23:41	1
Total Organic Carbon - Duplicates	0.67	J	1.0	0.43	mg/L			05/05/12 23:41	1
TOC Result 1	0.95	J	1.0	0.43	mg/L			05/05/12 23:41	1
TOC Result 2	ND		1.0	0.43	mg/L			05/05/12 23:41	1
Acetic acid	ND		1.0	0.15	mg/L			05/16/12 09:22	1
n-Butyric Acid	ND		1.0	0.16	mg/L			05/16/12 09:22	1
Propionic acid	ND		1.0	0.17	mg/L			05/16/12 09:22	1

Prep Type: Total/NA

Method: 8260B - Volatile Organic Compounds (GC/MS)	
Matrix: Water	

				Percent Surrogate R	ecovery (Acceptance Limits)	
		12DCE	TOL	BFB		5
Lab Sample ID	Client Sample ID	(66-137)	(71-126)	(73-120)		5
480-19566-1	RU10-050112	111	115	97		
480-19566-1 - DL	RU10-050112	107	114	94		
480-19566-2	RU19-050112	107	111	92		_
480-19566-2 - DL	RU19-050112	104	110	90		
480-19566-2 MS	RU19-050112	112	119	100		
480-19566-2 MSD	RU19-050112	111	117	99		8
480-19566-3	RU19D-050112	110	117	96		
480-19566-4	RU20-050112	112	116	96		9
480-19566-5	FB-050112	108	111	93		
480-19566-6	TRIP BLANK	101	104	87		
480-19566-7	RU21-050112	108	112	95		
480-19566-8	RU8-050112	110	114	95		
LCS 480-63819/4	Lab Control Sample	109	118	97		
LCS 480-64011/4	Lab Control Sample	104	114	95		
MB 480-63819/5	Method Blank	115	121	99		
MB 480-64011/5	Method Blank	106	115	96		13
Surrogate Legend						

12DCE = 1,2-Dichloroethane-d4 (Surr)

TOL = Toluene-d8 (Surr)

BFB = 4-Bromofluorobenzene (Surr)

Client Sample ID: Method Blank

Method: 8260B - Volat	ile Organic Compoun	ds (GC/MS)

Matrix: Water								Prep Type: T	otal/NA
Analysis Batch: 63819									
	МВ	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-I richloroethane	ND		1.0	0.82	ug/L			05/10/12 11:24	1
1,1,2,2-I etrachloroethane	ND		1.0	0.21	ug/L			05/10/12 11:24	1
1,1,2-Trichloroethane	ND		1.0	0.23	ug/L			05/10/12 11:24	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		1.0	0.31	ug/L			05/10/12 11:24	1
1,1-Dichloroethane	ND		1.0	0.38	ug/L			05/10/12 11:24	1
1,1-Dichloroethene	ND		1.0	0.29	ug/L			05/10/12 11:24	1
1,2,4-Trichlorobenzene	ND		1.0	0.41	ug/L			05/10/12 11:24	1
1,2-Dibromo-3-Chloropropane	ND		1.0	0.39	ug/L			05/10/12 11:24	1
1,2-Dibromoethane	ND		1.0	0.73	ug/L			05/10/12 11:24	1
1,2-Dichlorobenzene	ND		1.0	0.79	ug/L			05/10/12 11:24	1
1,2-Dichloroethane	ND		1.0	0.21	ug/L			05/10/12 11:24	1
1,2-Dichloropropane	ND		1.0	0.72	ug/L			05/10/12 11:24	1
1,3-Dichlorobenzene	ND		1.0	0.78	ug/L			05/10/12 11:24	1
1,4-Dichlorobenzene	ND		1.0	0.84	ug/L			05/10/12 11:24	1
2-Hexanone	ND		5.0	1.2	ug/L			05/10/12 11:24	1
2-Butanone (MEK)	ND		10	1.3	ug/L			05/10/12 11:24	1
4-Methyl-2-pentanone (MIBK)	ND		5.0	2.1	ug/L			05/10/12 11:24	1
Acetone	ND		10	3.0	ug/L			05/10/12 11:24	1
Benzene	ND		1.0	0.41	ug/L			05/10/12 11:24	1
Bromodichloromethane	ND		1.0	0.39	ug/L			05/10/12 11:24	1
Bromoform	ND		1.0	0.26	ug/L			05/10/12 11:24	1
Bromomethane	ND		1.0	0.69	ug/L			05/10/12 11:24	1
Carbon disulfide	ND		1.0	0.19	ug/L			05/10/12 11:24	1
Carbon tetrachloride	ND		1.0	0.27	ug/L			05/10/12 11:24	1
Chlorobenzene	ND		1.0	0.75	ug/L			05/10/12 11:24	1
Dibromochloromethane	ND		1.0	0.32	ug/L			05/10/12 11:24	1
Chloroethane	ND		1.0	0.32	ug/L			05/10/12 11:24	1
Chloroform	ND		1.0	0.34	ug/L			05/10/12 11:24	1
Chloromethane	ND		1.0	0.35	ug/L			05/10/12 11:24	1
cis-1,2-Dichloroethene	ND		1.0	0.81	ug/L			05/10/12 11:24	1
cis-1,3-Dichloropropene	ND		1.0	0.36	ug/L			05/10/12 11:24	1
Cvclohexane	ND		1.0	0.18	ua/L			05/10/12 11:24	1
Dichlorodifluoromethane	ND		1.0	0.68	ua/L			05/10/12 11:24	1
Ethylbenzene	ND		1.0	0.74	ua/L			05/10/12 11:24	1
Isopropylbenzene	ND		1.0	0.79	ua/L			05/10/12 11:24	1
Methyl acetate	ND		1.0	0.50	ua/L			05/10/12 11:24	1
Methyl tert-butyl ether	ND		10	0.16	ua/l			05/10/12 11:24	1
Methylcyclohexane	ND		1.0	0.16	ua/l			05/10/12 11:24	1
Methylene Chloride	ND		1.0	0.44	ua/l			05/10/12 11:24	1
Styrene	ND		10	0.73	ug/l			05/10/12 11:24	
Tetrachloroethene	ND		1.0	0.76	ug/L			05/10/12 11:24	. 1
			1.0	0.50	ug/L			05/10/12 11:24	1
trans-1 2-Dichloroethene			1.0	0.01	ug/L			05/10/12 11:24	1
trans-1 3-Dichloropropene	םא חא		1.0	0.50	ug/L			05/10/12 11.24	1
Trichloroethene			1.0	0.57	ug/L			05/10/12 11.24	1
Trichlorofluoromethano			1.0	0.40 A 20	ug/L			05/10/12 11.24	ا • • • • • •
Vinyl chlorido			1.0	0.00	ug/L			05/10/12 11.24	1
			1.0	0.90	ug/L			05/10/12 11.24	1
Ayieries, Totai	ND		2.0	0.66	ug/L			05/10/12 11:24	1

Limits

66 - 137

71 - 126

73 - 120

Lab Sample ID: MB 480-63819/5

Matrix: Water

Toluene-d8 (Surr)

Surrogate

Analysis Batch: 63819

1,2-Dichloroethane-d4 (Surr)

4-Bromofluorobenzene (Surr)

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

MB MB %Recovery Qualifier

115

121

99

Client Sample ID: Method Blank

05/10/12 11:24

05/10/12 11:24

Client Sample ID: Lab Control Sample

Prepared

2 3 4 5 6 7

8

1

1

Analyzed Dil Fac 05/10/12 11:24 1

Prep Type: Total/NA

Lab Sample ID:	LCS 480-63819/4
Matrix: Water	

Analysis Batch: 63819

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,1-Dichloroethane		25.7		ug/L		103	71 - 129	
1,1-Dichloroethene	25.0	20.9		ug/L		84	65 - 138	
1,2-Dichlorobenzene	25.0	25.3		ug/L		101	77 - 120	
1,2-Dichloroethane	25.0	25.2		ug/L		101	75 - 127	
Benzene	25.0	26.1		ug/L		104	71 ₋ 124	
Chlorobenzene	25.0	26.4		ug/L		106	72 - 120	
cis-1,2-Dichloroethene	25.0	25.3		ug/L		101	74 ₋ 124	
Ethylbenzene	25.0	26.9		ug/L		108	77 - 123	
Methyl tert-butyl ether	25.0	24.0		ug/L		96	64 - 127	
Tetrachloroethene	25.0	27.2		ug/L		109	74 - 122	
Toluene	25.0	26.4		ug/L		106	70 - 122	
trans-1,2-Dichloroethene	25.0	26.7		ug/L		107	73 - 127	
Trichloroethene	25.0	25.4		ug/L		102	74 - 123	

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	109		66 - 137
Toluene-d8 (Surr)	118		71 - 126
4-Bromofluorobenzene (Surr)	97		73 - 120

Lab Sample ID: 480-19566-2 MS Matrix: Water

Analysis Batch: 63819

· ·····, · · · · · · · · · · · · · · ·	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,1-Dichloroethane	ND		250	261		ug/L		104	71 - 129	
1,1-Dichloroethene	ND		250	213		ug/L		85	65 - 138	
1,2-Dichlorobenzene	ND		250	259		ug/L		104	77 ₋ 120	
1,2-Dichloroethane	ND		250	255		ug/L		102	75 - 127	
Benzene	ND		250	256		ug/L		102	71 ₋ 124	
Chlorobenzene	ND		250	264		ug/L		106	72 ₋ 120	
cis-1,2-Dichloroethene	400		250	610		ug/L		86	74 ₋ 124	
Ethylbenzene	ND		250	261		ug/L		104	77 ₋ 123	
Methyl tert-butyl ether	ND		250	236		ug/L		94	64 - 127	
Tetrachloroethene	ND		250	267		ug/L		107	74 ₋ 122	
Toluene	ND		250	259		ug/L		104	70 ₋ 122	
trans-1,2-Dichloroethene	ND		250	271		ug/L		108	73 - 127	

	MS	MS	
Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	112		66 - 137
Toluene-d8 (Surr)	119		71 - 126

Client Sample ID: RU19-050112 Prep Type: Total/NA

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: 480-19566-2 MS Matrix: Water

Analysis Batch: 63819

	MS	MS	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	100		73 - 120

Lab Sample ID: 480-19566-2 MSD Matrix: Water

Analysis Batch: 63819

,	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1,1-Dichloroethane	ND		250	269		ug/L		108	71 - 129	3	20
1,1-Dichloroethene	ND		250	221		ug/L		88	65 _ 138	4	16
1,2-Dichlorobenzene	ND		250	260		ug/L		104	77 _ 120	0	20
1,2-Dichloroethane	ND		250	256		ug/L		102	75 _ 127	0	20
Benzene	ND		250	263		ug/L		105	71 - 124	3	13
Chlorobenzene	ND		250	266		ug/L		106	72 - 120	1	25
cis-1,2-Dichloroethene	400		250	619		ug/L		90	74 - 124	1	15
Ethylbenzene	ND		250	269		ug/L		108	77 - 123	3	15
Methyl tert-butyl ether	ND		250	240		ug/L		96	64 _ 127	2	37
Tetrachloroethene	ND		250	276		ug/L		110	74 _ 122	3	20
Toluene	ND		250	264		ug/L		106	70 - 122	2	15
trans-1,2-Dichloroethene	ND		250	270		ug/L		108	73 - 127	0	20

	MSD	MSD	
Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)			66 - 137
Toluene-d8 (Surr)	117		71 - 126
4-Bromofluorobenzene (Surr)	99		73 - 120

Lab Sample ID: MB 480-64011/5 Matrix: Water Analysis Batch: 64011

-	МВ	МВ							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		1.0	0.82	ug/L			05/11/12 10:36	1
1,1,2,2-Tetrachloroethane	ND		1.0	0.21	ug/L			05/11/12 10:36	1
1,1,2-Trichloroethane	ND		1.0	0.23	ug/L			05/11/12 10:36	
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		1.0	0.31	ug/L			05/11/12 10:36	
1,1-Dichloroethane	ND		1.0	0.38	ug/L			05/11/12 10:36	
1,1-Dichloroethene	ND		1.0	0.29	ug/L			05/11/12 10:36	
1,2,4-Trichlorobenzene	ND		1.0	0.41	ug/L			05/11/12 10:36	
1,2-Dibromo-3-Chloropropane	ND		1.0	0.39	ug/L			05/11/12 10:36	
1,2-Dibromoethane	ND		1.0	0.73	ug/L			05/11/12 10:36	1
1,2-Dichlorobenzene	ND		1.0	0.79	ug/L			05/11/12 10:36	
1,2-Dichloroethane	ND		1.0	0.21	ug/L			05/11/12 10:36	
1,2-Dichloropropane	ND		1.0	0.72	ug/L			05/11/12 10:36	
1,3-Dichlorobenzene	ND		1.0	0.78	ug/L			05/11/12 10:36	
1,4-Dichlorobenzene	ND		1.0	0.84	ug/L			05/11/12 10:36	
2-Hexanone	ND		5.0	1.2	ug/L			05/11/12 10:36	
2-Butanone (MEK)	ND		10	1.3	ug/L			05/11/12 10:36	,
4-Methyl-2-pentanone (MIBK)	ND		5.0	2.1	ug/L			05/11/12 10:36	
Acetone	ND		10	3.0	ug/L			05/11/12 10:36	
Benzene	ND		1.0	0.41	ug/L			05/11/12 10:36	• • • • • •

Client Sample ID: RU19-050112

Prep Type: Total/NA

1 2 3 4 5 6 7 8 9

Client Sample ID: RU19-050112 Prep Type: Total/NA

Client Sample ID:	Method Blank
Prep T	ype: Total/NA

Client Sample ID: Method Blank

Prep Type: Total/NA

2 3 4 5

12	
12	
49	
12	
	6

14

Lab Sample ID: MB 480-64011/5

Matrix: Water	
Analysis Batch: 64011	

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Bromodichloromethane	ND		1.0	0.39	ug/L			05/11/12 10:36	1
Bromoform	ND		1.0	0.26	ug/L			05/11/12 10:36	1
Bromomethane	ND		1.0	0.69	ug/L			05/11/12 10:36	1
Carbon disulfide	ND		1.0	0.19	ug/L			05/11/12 10:36	1
Carbon tetrachloride	ND		1.0	0.27	ug/L			05/11/12 10:36	1
Chlorobenzene	ND		1.0	0.75	ug/L			05/11/12 10:36	1
Dibromochloromethane	ND		1.0	0.32	ug/L			05/11/12 10:36	1
Chloroethane	ND		1.0	0.32	ug/L			05/11/12 10:36	1
Chloroform	ND		1.0	0.34	ug/L			05/11/12 10:36	1
Chloromethane	ND		1.0	0.35	ug/L			05/11/12 10:36	1
cis-1,2-Dichloroethene	ND		1.0	0.81	ug/L			05/11/12 10:36	1
cis-1,3-Dichloropropene	ND		1.0	0.36	ug/L			05/11/12 10:36	1
Cyclohexane	ND		1.0	0.18	ug/L			05/11/12 10:36	1
Dichlorodifluoromethane	ND		1.0	0.68	ug/L			05/11/12 10:36	1
Ethylbenzene	ND		1.0	0.74	ug/L			05/11/12 10:36	1
Isopropylbenzene	ND		1.0	0.79	ug/L			05/11/12 10:36	1
Methyl acetate	ND		1.0	0.50	ug/L			05/11/12 10:36	1
Methyl tert-butyl ether	ND		1.0	0.16	ug/L			05/11/12 10:36	1
Methylcyclohexane	ND		1.0	0.16	ug/L			05/11/12 10:36	1
Methylene Chloride	ND		1.0	0.44	ug/L			05/11/12 10:36	1
Styrene	ND		1.0	0.73	ug/L			05/11/12 10:36	1
Tetrachloroethene	ND		1.0	0.36	ug/L			05/11/12 10:36	1
Toluene	ND		1.0	0.51	ug/L			05/11/12 10:36	1
trans-1,2-Dichloroethene	ND		1.0	0.90	ug/L			05/11/12 10:36	1
trans-1,3-Dichloropropene	ND		1.0	0.37	ug/L			05/11/12 10:36	1
Trichloroethene	ND		1.0	0.46	ug/L			05/11/12 10:36	1
Trichlorofluoromethane	ND		1.0	0.88	ug/L			05/11/12 10:36	1
Vinyl chloride	ND		1.0	0.90	ug/L			05/11/12 10:36	1
Xylenes, Total	ND		2.0	0.66	ug/L			05/11/12 10:36	1

	MB	МВ				
Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	106		66 - 137		05/11/12 10:36	1
Toluene-d8 (Surr)	115		71 - 126		05/11/12 10:36	1
4-Bromofluorobenzene (Surr)	96		73 - 120		05/11/12 10:36	1

Lab Sample ID: LCS 480-64011/4 Matrix: Water Analysis Batch: 64011

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,1-Dichloroethane	25.0	23.9		ug/L		96	71 _ 129	
1,1-Dichloroethene	25.0	20.8		ug/L		83	65 _ 138	
1,2-Dichlorobenzene	25.0	24.6		ug/L		98	77 - 120	
1,2-Dichloroethane	25.0	23.9		ug/L		96	75 _ 127	
Benzene	25.0	25.2		ug/L		101	71 _ 124	
Chlorobenzene	25.0	25.8		ug/L		103	72 - 120	
cis-1,2-Dichloroethene	25.0	25.0		ug/L		100	74 - 124	
Ethylbenzene	25.0	26.3		ug/L		105	77 - 123	
Methyl tert-butyl ether	25.0	23.4		ug/L		94	64 - 127	

Prep Type: Total/NA

Client Sample ID: Lab Control Sample

05/08/12 08:39

05/08/12 08:39

05/08/12 08:39

Prep Type: Total/NA

Prep Type: Total/NA

Client Sample ID: Lab Control Sample

Client Sample ID: Lab Control Sample Dup

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

0.477 J

ND

ND

Lab Sample ID: LCS 480-64011 Matrix: Water Analysis Batch: 64011	/4						Client	Sample	ID: Lab C Prep T	ontrol Sample ype: Total/NA
Analysis Batch. 64011			Spike	LCS	LCS				%Rec.	
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits	
Tetrachloroethene			25.0	27.1		ug/L		108	74 - 122	
Toluene			25.0	25.9		ug/L		104	70 - 122	
trans-1,2-Dichloroethene			25.0	26.1		ug/L		104	73 - 127	
Trichloroethene			25.0	24.7		ug/L		99	74 ₋ 123	
	LCS	LCS								
Surrogate	%Recovery	Qualifier	Limits							
1,2-Dichloroethane-d4 (Surr)	104		66 - 137							
Toluene-d8 (Surr)	114		71 - 126							
4-Bromofluorobenzene (Surr)	95		73 - 120							

Method: RSK-175 - Dissolved Gases (GC)

Lab Sample ID: MB 480-63448/2 Matrix: Water Analysis Batch: 63448	MB	MB					Client Sa	ample ID: Metho Prep Type: T	d Blank otal/NA	
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
Acetylene	ND		1.5	0.47	ug/L			05/08/12 08:39	1	
Ethane	ND		1.5	0.49	ug/L			05/08/12 08:39	1	
Ethene	ND		1.5	0.52	ug/L			05/08/12 08:39	1	

1.0

3.0

3.0

0.22 ug/L

1.5 ug/L

1.5 ug/L

Lab Sample ID: LCS 480-63448/3 Matrix: Water

Analysis Batch: 63448

Methane

Propane

Butane

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Ethane	7.19	8.08		ug/L		112	71 - 147	
Ethene	6.73	7.48		ug/L		111	71 _ 147	
Methane	3.88	4.39		ug/L		113	48 ₋ 174	

Lab Sample ID: LCSD 480-63448/4 Matrix: Water

Analysis Batch: 63448									
	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Ethane	7.19	8.13		ug/L		113	71 - 147	1	50
Ethene	6.73	7.64		ug/L		114	71 ₋ 147	2	50
Methane	3.88	4.75		ug/L		122	48 - 174	8	50

Method: 6010B - Metals (ICP)

Lab Sample ID: MB 480-62826/13-B							Client Sa	mple ID: Metho	d Blank
Analysis Batch: 63282								Prep Type: Dis Prep Batch	ssolved 1: 63048
	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	ND		0.20	0.060	mg/L		05/04/12 10:10	05/04/12 15:02	1

1

1

1

0 7 8 9 10 11

13 14

1

Method: 6010B - Metals (ICP) (Continued)

Lab Sample ID: MB 480-62826/13-B Matrix: Water							Client Sa	mple ID: Metho Prep Type: Di	d Blank ssolved
Analysis Batch: 63282								Prep Batch	: 63048
	MB	МВ							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	ND		0.020	0.0068	mg/L		05/04/12 10:10	05/04/12 15:02	1
Arsenic	ND		0.010	0.0056	mg/L		05/04/12 10:10	05/04/12 15:02	1
Barium	ND		0.0020	0.00070	mg/L		05/04/12 10:10	05/04/12 15:02	1
Beryllium	ND		0.0020	0.00030	mg/L		05/04/12 10:10	05/04/12 15:02	1
Cadmium	ND		0.0010	0.00050	mg/L		05/04/12 10:10	05/04/12 15:02	1
Calcium	ND		0.50	0.10	mg/L		05/04/12 10:10	05/04/12 15:02	1
Chromium	ND		0.0040	0.0010	mg/L		05/04/12 10:10	05/04/12 15:02	1
Cobalt	ND		0.0040	0.00063	mg/L		05/04/12 10:10	05/04/12 15:02	1
Copper	ND		0.010	0.0016	mg/L		05/04/12 10:10	05/04/12 15:02	1
Iron	ND		0.050	0.019	mg/L		05/04/12 10:10	05/04/12 15:02	1
Lead	ND		0.0050	0.0030	mg/L		05/04/12 10:10	05/04/12 15:02	1
Magnesium	ND		0.20	0.043	mg/L		05/04/12 10:10	05/04/12 15:02	1
Manganese	ND		0.0030	0.00040	mg/L		05/04/12 10:10	05/04/12 15:02	1
Nickel	ND		0.010	0.0013	mg/L		05/04/12 10:10	05/04/12 15:02	1
Potassium	ND		0.50	0.10	mg/L		05/04/12 10:10	05/04/12 15:02	1
Selenium	ND		0.015	0.0087	mg/L		05/04/12 10:10	05/04/12 15:02	1
Silver	ND		0.0030	0.0017	mg/L		05/04/12 10:10	05/04/12 15:02	1
Sodium	ND		1.0	0.32	mg/L		05/04/12 10:10	05/04/12 15:02	1
Thallium	ND		0.020	0.010	mg/L		05/04/12 10:10	05/04/12 15:02	1
Vanadium	ND		0.0050	0.0015	mg/L		05/04/12 10:10	05/04/12 15:02	1
Zinc	ND		0.010	0.0015	mg/L		05/04/12 10:10	05/04/12 15:02	1

Lab Sample ID: LCS 480-62826/14-B Matrix: Water

Analysis Batch: 63282

Client Sample ID: Lab Control Sample

Prep Type: Dissolved Prep Batch: 63048

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Aluminum	10.0	10.50		mg/L		105	80 - 120	
Antimony	0.200	0.201		mg/L		100	80 - 120	
Arsenic	0.200	0.200		mg/L		100	80 - 120	
Barium	0.200	0.207		mg/L		104	80 - 120	
Beryllium	0.200	0.205		mg/L		103	80 - 120	
Cadmium	0.200	0.200		mg/L		100	80 - 120	
Calcium	10.0	9.97		mg/L		100	80 - 120	
Chromium	0.200	0.200		mg/L		100	80 - 120	
Cobalt	0.200	0.197		mg/L		98	80 - 120	
Copper	0.200	0.202		mg/L		101	80 - 120	
Iron	10.0	10.02		mg/L		100	80 - 120	
Lead	0.200	0.198		mg/L		99	80 - 120	
Magnesium	10.0	9.91		mg/L		99	80 - 120	
Manganese	0.200	0.201		mg/L		101	80 - 120	
Nickel	0.200	0.193		mg/L		97	80 - 120	
Potassium	10.0	10.26		mg/L		103	80 - 120	
Selenium	0.200	0.196		mg/L		98	80 - 120	
Silver	0.0500	0.0507		mg/L		101	80 - 120	
Sodium	10.0	10.30		mg/L		103	80 - 120	
Thallium	0.200	0.197		mg/L		99	80 - 120	
Vanadium	0.200	0.199		mg/L		99	80 - 120	
Zinc	0.200	0.208		mg/L		104	80 - 120	

2 3 4 5

5 6 7 8 9 10 11

Method: 6010B - Metals (ICP) (Continued)

Lab Sample ID: MB 480-63123/1-B							Client Sa	mple ID: Metho	d Blank
Matrix: Water								Prep Type: Di	ssolved
Analysis Batch: 63458								Prep Batch	n: 63221
	MB	МВ							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	ND		0.20	0.060	mg/L		05/07/12 07:20	05/07/12 17:39	1
Antimony	ND		0.020	0.0068	mg/L		05/07/12 07:20	05/07/12 17:39	1
Arsenic	ND		0.010	0.0056	mg/L		05/07/12 07:20	05/07/12 17:39	1
Barium	ND		0.0020	0.00070	mg/L		05/07/12 07:20	05/07/12 17:39	1
Beryllium	ND		0.0020	0.00030	mg/L		05/07/12 07:20	05/07/12 17:39	1
Cadmium	ND		0.0010	0.00050	mg/L		05/07/12 07:20	05/07/12 17:39	1
Calcium	ND		0.50	0.10	mg/L		05/07/12 07:20	05/07/12 17:39	1
Chromium	ND		0.0040	0.0010	mg/L		05/07/12 07:20	05/07/12 17:39	1
Cobalt	ND		0.0040	0.00063	mg/L		05/07/12 07:20	05/07/12 17:39	1
Copper	ND		0.010	0.0016	mg/L		05/07/12 07:20	05/07/12 17:39	1
Iron	ND		0.050	0.019	mg/L		05/07/12 07:20	05/07/12 17:39	1
Lead	ND		0.0050	0.0030	mg/L		05/07/12 07:20	05/07/12 17:39	1
Magnesium	ND		0.20	0.043	mg/L		05/07/12 07:20	05/07/12 17:39	1
Manganese	ND		0.0030	0.00040	mg/L		05/07/12 07:20	05/07/12 17:39	1
Nickel	ND		0.010	0.0013	mg/L		05/07/12 07:20	05/07/12 17:39	1
Potassium	0.236	J	0.50	0.10	mg/L		05/07/12 07:20	05/07/12 17:39	1
Selenium	ND		0.015	0.0087	mg/L		05/07/12 07:20	05/07/12 17:39	1
Silver	ND		0.0030	0.0017	mg/L		05/07/12 07:20	05/07/12 17:39	1
Sodium	0.772	J	1.0	0.32	mg/L		05/07/12 07:20	05/07/12 17:39	1
Thallium	ND		0.020	0.010	mg/L		05/07/12 07:20	05/07/12 17:39	1
Vanadium	ND		0.0050	0.0015	mg/L		05/07/12 07:20	05/07/12 17:39	1
Zinc	ND		0.010	0.0015	mg/L		05/07/12 07:20	05/07/12 17:39	1

Lab Sample ID: LCS 480-63123/2-B Matrix: Water

Analysis Batch: 63458

Client Sample ID: Lab Control Sample Prep Type: Dissolved Prep Batch: 63221

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Aluminum	10.0	10.42		mg/L		104	80 - 120	
Antimony	0.200	0.192		mg/L		96	80 - 120	
Arsenic	0.200	0.196		mg/L		98	80 - 120	
Barium	0.200	0.198		mg/L		99	80 - 120	
Beryllium	0.200	0.221		mg/L		110	80 - 120	
Cadmium	0.200	0.191		mg/L		95	80 - 120	
Calcium	10.0	10.65		mg/L		106	80 - 120	
Chromium	0.200	0.200		mg/L		100	80 - 120	
Cobalt	0.200	0.195		mg/L		98	80 - 120	
Copper	0.200	0.194		mg/L		97	80 - 120	
Iron	10.0	10.51		mg/L		105	80 - 120	
Lead	0.200	0.200		mg/L		100	80 - 120	
Magnesium	10.0	10.45		mg/L		105	80 - 120	
Manganese	0.200	0.206		mg/L		103	80 - 120	
Nickel	0.200	0.196		mg/L		98	80 - 120	
Potassium	10.0	10.35		mg/L		103	80 - 120	
Selenium	0.200	0.202		mg/L		101	80 - 120	
Silver	0.0500	0.0503		mg/L		101	80 - 120	
Sodium	10.0	10.51		mg/L		105	80 - 120	
Thallium	0.200	0.199		mg/L		100	80 - 120	
Vanadium	0.200	0.206		mg/L		103	80 - 120	
Zinc	0.200	0.221		mg/L		110	80 - 120	

Method: 7470A - Mercury (CVAA)

Lab Sample ID: MB 480-64638/1-A

Client Sample ID: Method Blank

0
7 8
8
8
8
8
8
8
7 8 9
7 8 9
8 9
8 9
8 9
8 9
8 9 10
7 8 9 10 11
7 8 9 10 11
7 8 9 10 11
8 9 10 11
7 8 9 10 11
8 9 10 11
7 8 9 10 11
7 8 9 10 11 12
7 8 9 10 11 12

lank	
lved 3037	
il Fac	
1	
lved	
5057	

Matrix: Water											Prep Type:	Total/NA
Analysis Batch: 64720	MD										Prep Batc	h: 64638
A v = h de	NIB Daavit	MB				11		-			A	D!!
	Result	Qualifier		KL 	MDL	Unit				repared	Analyzed	Dil Fac
Mercury	ND		0.000	20 0.0	0012	mg/L			05/1	6/12 10:00	05/16/12 12:50	1
Lab Sample ID: LCS 480-64638/2-A								С	lient	Sample	ID: Lab Contro	I Sample
Matrix: Water											Prep Type:	Total/NA
Analysis Batch: 64720											Prep Batc	h: 64638
			Spike	LCS	LCS						%Rec.	
Analyte			Added	Result	Qua	lifier	Unit		D	%Rec	Limits	
Mercury			0.00667	0.00665			mg/L			100	80 - 120	
Lab Sample ID: MB 480-62826/9-B										Client Sa	ample ID: Meth	od Blank
Matrix: Water											Prep Type: D	issolved
Analysis Batch: 63147											Prep Batc	h: 63037
	МВ	МВ										
Analyte	Result	Qualifier	I	RL	MDL	Unit		D	Р	repared	Analyzed	Dil Fac
Mercury	ND		0.000	20 0.0	0012	mg/L			05/0	4/12 09:15	05/04/12 15:12	1
Lab Sample ID: LCS 480-62826/10-B								с	lient	Sample	ID: Lab Contro	I Sample
Matrix: Water											Prep Type: D	issolved
Analysis Batch: 63147											Prep Batc	h: 63037
			Spike	LCS	LCS						• %Rec.	
Analyte			Added	Result	Qua	lifier	Unit		D	%Rec	Limits	
Mercury			0.00667	0.00660			mg/L			99	80 - 120	

Method: 300.0 - Anions, Ion Chromatography

Chloride

Lab Sample ID: MB 480-63060/28 Matrix: Water Analysis Batch: 63060												Client S	ample ID: Metho Prep Type: T	d Blank 'otal/NA
Analysis Baten. 00000		МВ	мв											
Analyte	R	esult	Qualifier		RL		MDL	Unit		D	P	repared	Analyzed	Dil Fac
Chloride		ND			0.50		0.28	mg/L					05/04/12 19:45	1
Sulfate		ND			2.0		0.35	mg/L					05/04/12 19:45	1
 Lab Sample ID: LCS 480-63060/27										Cli	ent	Sample	ID: Lab Control	Sample
Matrix: Water													Prep Type: 1	otal/NA
Analysis Batch: 63060														
				Spike		LCS	LCS						%Rec.	
Analyte			A	Added		Result	Qual	lifier	Unit		D	%Rec	Limits	
Chloride				20.0		19.20			mg/L			96	90 - 110	
Sulfate				20.0		18.20			mg/L			91	90 _ 110	
 Lab Sample ID: 480-19566-1 MS												Client	Sample ID: RU10	-050112
Matrix: Water													Prep Type: 1	otal/NA
Analysis Batch: 63060														
-	Sample	Sam	ple	Spike		MS	MS						%Rec.	
Analyte	Result	Qual	ifier A	Added		Result	Qual	lifier	Unit		D	%Rec	Limits	

40.10

mg/L

92

80 - 120

25.0

17.1

RL

0.50

MDL Unit

0.28 mg/L

D

Prepared

Lab Sample ID: MB 480-63359/124

Matrix: Water

Analyte

Chloride

Sulfate

Analysis Batch: 63359

Method: 300.0 - Anions, Ion Chromatography (Continued)

MB MB Result Qualifier

ND

Client Sample ID: Method Blank

Analyzed

05/08/12 11:50

Prep Type: Total/NA

8

Dil Fac

1

Sulfate		ND			2.0		0.35	mg/L					05/08/12 11:50	1
- Lab Sample ID: LCS 480-63359/123										Cli	ent	Sample	ID: Lab Control	Sample
Matrix: Water													Prep Type: T	otal/NA
Analysis Batch: 63359														
-				Spike		LCS	LCS						%Rec.	
Analyte				Added		Result	Qua	lifier	Unit		D	%Rec	Limits	
Chloride				20.0		19.60			mg/L		_	98	90 - 110	
Sulfate				20.0		20.20			mg/L			101	90 - 110	
Lab Sample ID: MB 480-63360/148												Client S	ample ID: Metho	d Blank
Matrix: Water													Prep Type: T	otal/NA
Analysis Batch: 63360														
		MB	MB											
Analyte	R	esult	Qualifier		RL		MDL	Unit		D	Р	repared	Analyzed	Dil Fac
Chloride		ND			0.50		0.28	mg/L					05/08/12 15:53	1
Sulfate		ND			2.0		0.35	mg/L					05/08/12 15:53	1
Lab Sample ID: LCS 480-63360/147 Matrix: Water										Cli	ent	Sample	ID: Lab Control Prep Type: T	Sample otal/NA
Analysis Batch: 63360														
				Spike		LCS	LCS						%Rec.	
Analyte				Added		Result	Qua	lifier	Unit		D	%Rec	Limits	
Chloride				20.0		20.20			mg/L		_	101	90 - 110	
Sulfate				20.0		20.70			mg/L			104	90 - 110	
Lab Sample ID: MB 480-63671/4												Client S	ample ID: Metho	d Blank
Matrix: Water													Prep Type: T	otal/NA
Analysis Batch: 63671														
		MB	MB											
Analyte	R	esult	Qualifier		RL		MDL	Unit		D	Р	repared	Analyzed	Dil Fac
Chloride		ND			0.50		0.28	mg/L					05/09/12 15:13	1
Sulfate		ND			2.0		0.35	mg/L					05/09/12 15:13	1
Lab Sample ID: LCS 480-63671/3										Cli	ent	Sample	ID: Lab Control	Sample
Matrix: Water													Prep Type: T	otal/NA
Analysis Batch: 63671														
				Spike		LCS	LCS						%Rec.	
Analyte				Added		Result	Qua	lifier	Unit		D	%Rec	Limits	
Chloride				20.0		19.30			mg/L			97	90 - 110	
Sulfate				20.0		19.80			mg/L			99	90 - 110	
Lab Sample ID: 480-19566-7 MS												Client	Sample ID: RU21	-050112
Matrix: Water													Prep Type: T	otal/NA
Analysis Batch: 63671														
	Sample	Sam	ple	Spike		MS	MS						%Rec.	
Analyte	Result	Qua	lifier	Added		Result	Qua	lifier	Unit		D	%Rec	Limits	

80 - 120

94

26.00

mg/L

25.0

2.4

Analyte

Method: 300.0 - Anions, Ion Chromatography (Continued)

_ Lab Sample ID: 480-19566-7 MSD												Client	Sample ID: R	U21-0	50112
Matrix: Water													Prep Typ	oe: To	tal/NA
Analysis Batch: 63671															
-	Sample	Sam	ple	Spike		MSD	MSE)					%Rec.		RPD
Analyte	Result	Qua	lifier	Added		Result	Qua	lifier	Unit		D	%Rec	Limits	RPD	Limit
Sulfate	2.4			25.0		26.90			mg/L		_	98	80 - 120	3	20
 Lab Sample ID: MB 480-64072/11												Client S	Sample ID: Mo	ethod	Blank
Matrix: Water													Prep Typ	be: To	tal/NA
Analysis Batch: 64072															
		MB	MB												
Analyte	R	esult	Qualifier		RL		MDL	Unit		D	Р	repared	Analyzed	I	Dil Fac
Chloride		ND			0.50		0.28	mg/L					05/11/12 15	:56	1
Sulfate		ND			2.0		0.35	mg/L					05/11/12 15	:56	1
Lab Sample ID: LCS 480-64072/10										CI	ient	t Sample	e ID: Lab Con	trol S	ample
Matrix: Water													Prep Typ	oe: To	tal/NA
Analysis Batch: 64072															
				Spike		LCS	LCS						%Rec.		
Analyte				Added		Result	Qua	lifier	Unit		D	%Rec	Limits		
Chloride				20.0		20.20			mg/L		_	101	90 - 110		
Sulfate				20.0		21.30			mg/L			107	90 _ 110		
 Lab Sample ID: MB 480-64536/4												Client S	Sample ID: M	ethod	Blank
Matrix: Water													Prep Typ	oe: To	tal/NA
Analysis Batch: 64536															
		ΜВ	МВ												
Analyte	R	esult	Qualifier		RL		MDL	Unit		D	Р	repared	Analyzed	I	Dil Fac
Chloride		ND			0.50		0.28	mg/L					05/15/12 16	:52	1
Sulfate		ND			2.0		0.35	mg/L					05/15/12 16	:52	1
_ Lab Sample ID: LCS 480-64536/3										CI	ient	t Sample	e ID: Lab Con	trol S	ample
Matrix: Water													Prep Tvr	e: To	tal/NA
Analysis Batch: 64536															
				Spike		LCS	LCS						%Rec.		
Analyte				Added		Result	Qua	lifier	Unit		D	%Rec	Limits		
Chloride				20.0		20.20			mg/L		—	101	90 - 110		
Sulfate				20.0		21.20			mg/L			106	90 ₋ 110		
Method: 353.2 - Nitrogen Nitra	ate-Nitr	rite													
Lab Sample ID: MB 480-62975/28												Client S	Sample ID: Mo	ethod	Blank
Matrix: Water													Prep Typ	be: To	tal/NA
Analysis Batch: 62975															
		MB	MB												

Nitrate Nitrite as N	ND		0.050	0.020 mg	g/L			05/03/12 18:0	03 1
Lab Sample ID: LCS 480-62975/29						Client	t Sample	e ID: Lab Cont	trol Sample
Matrix: Water								Prep Typ	e: Total/NA
Analysis Batch: 62975									
		Spike	LC	S LCS				%Rec.	
Analyte		Added	Resu	lt Qualifie	r Unit	D	%Rec	Limits	
Nitrate Nitrite as N		1.50	1.4	6	mg/L		97	90 _ 110	

RL

MDL Unit

D

Prepared

Result Qualifier

5 **8** 9

Dil Fac

Analyzed

RL

1.0

1.0

1.0

1.0

RL

1.0

1.0

1.0

1.0

MDL Unit

0.43 mg/L

0.43 mg/L

0.43 mg/L

0.43 mg/L

MDL Unit

0.43 mg/L

0.43 mg/L

0.43 mg/L

0.43 mg/L

D

D

Prepared

Prepared

Lab Sample ID: MB 480-63279/27

Matrix: Water

Total Organic Carbon

Analyte

TOC Result 1

TOC Result 2

Matrix: Water

Total Organic Carbon

Analyte

TOC Result 1

TOC Result 2

Matrix: Water

Analysis Batch: 63279

Total Organic Carbon - Duplicates

Lab Sample ID: LCS 480-63279/28

Analysis Batch: 63279

Total Organic Carbon - Duplicates

Lab Sample ID: MB 480-63279/3

Method: SM 5310D - Organic Carbon, Total (TOC)

MB MB Result Qualifier

ND

ND

ND

ND

МВ МВ

ND

ND

ND

ND

Result Qualifier

Client Sample ID: Method Blank

Analyzed

05/05/12 23:08

05/05/12 23:08

05/05/12 23:08

05/05/12 23:08

Analyzed

05/05/12 16:27

05/05/12 16:27

05/05/12 16:27

05/05/12 16:27

Prep Type: Total/NA

5

1 1 1 1 8 **Client Sample ID: Method Blank** Prep Type: Total/NA Dil Fac 1

Dil Fac

1 1

Client Sample ID	: Lab Control Sample
	Prep Type: Total/NA

Client Sample ID: Lab Control Sample

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Type: Total/NA

Analysis Batch: 63279								
	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Total Organic Carbon	60.0	59.66		mg/L		99	90 - 110	
Total Organic Carbon -	60.0	59.66		mg/L		99	90 _ 110	
Duplicates								
TOC Result 1	60.0	57.13		mg/L		95	90 _ 110	
TOC Result 2	60.0	62.19		mg/L		104	90 - 110	

Lab Sample ID: LCS 480-63279/4 Matrix: Water

Analysis Batch: 63279

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Total Organic Carbon	60.0	58.78		mg/L		98	90 - 110	
Total Organic Carbon -	60.0	58.78		mg/L		98	90 _ 110	
Duplicates								
TOC Result 1	60.0	56.11		mg/L		94	90 - 110	
TOC Result 2	60.0	61.45		ma/L		102	90 - 110	

Lab Sample ID: MB 480-63639/15 Matrix: Water

Analy	vsis	Batch:	63639
And		Duton	00000

	MB	МВ							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Organic Carbon	ND		1.0	0.43	mg/L			05/08/12 07:10	1
Total Organic Carbon - Duplicates	ND		1.0	0.43	mg/L			05/08/12 07:10	1
TOC Result 1	ND	٨	1.0	0.43	mg/L			05/08/12 07:10	1
TOC Result 2	ND		1.0	0.43	ma/L			05/08/12 07:10	1

Method: SM 5310D - Organic Carbon, Total (TOC) (Continued)

Lab Sample ID: LCS 480-63639/16 Matrix: Water Analysis Batch: 63639					Client	Sample	ID: Lab Con Prep Ty	ntrol Sample pe: Total/NA
	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Total Organic Carbon	60.0	57.03		mg/L		95	90 _ 110	
Total Organic Carbon -	60.0	57.03		mg/L		95	90 _ 110	
Duplicates TOC Result 1	60.0	54.35	٨	mg/L		91	90 - 110	
TOC Result 2	60.0	59.71		mg/L		100	90 - 110	

Method: VFA-IC - Volatile Fatty Acids, Ion Chromatography

Lab Sample ID: MB 480-64494/28	Lab Sample ID: MB 480-64494/28 Matrix: Water					Client Sample ID: Method Blank			
Matrix: Water								Prep Type: T	otal/NA
Analysis Batch: 64494									
	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acetic acid	ND		1.0	0.15	mg/L			05/16/12 05:58	1
Butyric acid	ND		1.0	0.16	mg/L			05/16/12 05:58	1
n-Butyric Acid	ND		1.0	0.16	mg/L			05/16/12 05:58	1
Propionic acid	ND		1.0	0.17	mg/L			05/16/12 05:58	1

Lab Sample ID: LCS 480-64494/27

Matrix: Water Analysis Batch: 64494

_

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Acetic acid	10.0	10.20		mg/L		102	80 - 120	
Butyric acid	10.0	9.60		mg/L		96	80 - 120	
n-Butyric Acid	10.0	9.60		mg/L		96	80 - 120	
Propionic acid	10.0	10.20		mg/L		102	80 - 120	

Lab Sample ID: 480-19566-8 MS

Matrix: Water

Analysis Batch: 64494										
	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Acetic acid	ND		10.0	10.40		mg/L		104	80 - 120	
Butyric acid	ND		10.0	9.42		mg/L		94	80 - 120	
n-Butyric Acid	ND		10.0	9.42		mg/L		94	80 - 120	
Propionic acid	ND		10.0	ND	F	mg/L		0	80 - 120	

Lab Sample ID: MB 480-64729/4 Matrix: Water

Analysis Batch: 64729

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acetic acid	ND		1.0	0.15	mg/L			05/16/12 18:23	1
n-Butyric Acid	ND		1.0	0.16	mg/L			05/16/12 18:23	1
Propionic acid	ND		1.0	0.17	mg/L			05/16/12 18:23	1

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Type: Total/NA

Client Sample ID: RU8-050112

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Method: VFA-IC - Volatile Fatty Acids, Ion Chromatography (Continued)

Lab Sample ID: LCS 480-64729/3 Matrix: Water				Client	Sample	e ID: Lab C Prep ⊺	ontrol Sample Type: Total/NA	
	Spike	LCS	LCS		_		%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Acetic acid	10.0	10.40		mg/L		104	80 - 120	
n-Butyric Acid	10.0	9.74		mg/L		97	80 - 120	
Propionic acid	10.0	10.50		mg/L		105	80 - 120	

GC/MS VOA

Analysis Batch: 63819

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-19566-1	RU10-050112	Total/NA	Water	8260B	
480-19566-2	RU19-050112	Total/NA	Water	8260B	
480-19566-2 MS	RU19-050112	Total/NA	Water	8260B	
480-19566-2 MSD	RU19-050112	Total/NA	Water	8260B	
480-19566-3	RU19D-050112	Total/NA	Water	8260B	
480-19566-4	RU20-050112	Total/NA	Water	8260B	
480-19566-5	FB-050112	Total/NA	Water	8260B	
480-19566-6	TRIP BLANK	Total/NA	Water	8260B	
LCS 480-63819/4	Lab Control Sample	Total/NA	Water	8260B	
MB 480-63819/5	Method Blank	Total/NA	Water	8260B	

Analysis Batch: 64011

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-19566-1 - DL	RU10-050112	Total/NA	Water	8260B	
480-19566-2 - DL	RU19-050112	Total/NA	Water	8260B	
480-19566-7	RU21-050112	Total/NA	Water	8260B	
480-19566-8	RU8-050112	Total/NA	Water	8260B	
LCS 480-64011/4	Lab Control Sample	Total/NA	Water	8260B	
MB 480-64011/5	Method Blank	Total/NA	Water	8260B	

GC VOA

Analysis Batch: 63448

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
480-19566-1	RU10-050112	Total/NA	Water	RSK-175	
480-19566-1 - DL	RU10-050112	Total/NA	Water	RSK-175	
480-19566-2	RU19-050112	Total/NA	Water	RSK-175	
480-19566-2 - DL	RU19-050112	Total/NA	Water	RSK-175	
480-19566-3	RU19D-050112	Total/NA	Water	RSK-175	
480-19566-3 - DL	RU19D-050112	Total/NA	Water	RSK-175	
480-19566-4	RU20-050112	Total/NA	Water	RSK-175	
480-19566-7	RU21-050112	Total/NA	Water	RSK-175	
480-19566-7 - DL	RU21-050112	Total/NA	Water	RSK-175	
480-19566-8	RU8-050112	Total/NA	Water	RSK-175	
LCS 480-63448/3	Lab Control Sample	Total/NA	Water	RSK-175	
LCSD 480-63448/4	Lab Control Sample Dup	Total/NA	Water	RSK-175	
MB 480-63448/2	Method Blank	Total/NA	Water	RSK-175	

Metals

Prep Batch: 63037

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
480-19566-2	RU19-050112	Dissolved	Water	7470A	
480-19566-3	RU19D-050112	Dissolved	Water	7470A	
480-19566-4	RU20-050112	Dissolved	Water	7470A	
480-19566-7	RU21-050112	Dissolved	Water	7470A	
480-19566-8	RU8-050112	Dissolved	Water	7470A	
LCS 480-62826/10-B	Lab Control Sample	Dissolved	Water	7470A	
MB 480-62826/9-B	Method Blank	Dissolved	Water	7470A	

Metals (Continued)

Prep Batch: 63048

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-19566-2	RU19-050112	Dissolved	Water	3005A	
480-19566-3	RU19D-050112	Dissolved	Water	3005A	
480-19566-4	RU20-050112	Dissolved	Water	3005A	
480-19566-7	RU21-050112	Dissolved	Water	3005A	
480-19566-8	RU8-050112	Dissolved	Water	3005A	
LCS 480-62826/14-B	Lab Control Sample	Dissolved	Water	3005A	
MB 480-62826/13-B	Method Blank	Dissolved	Water	3005A	

Analysis Batch: 63147

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-19566-2	RU19-050112	Dissolved	Water	7470A	63037
480-19566-3	RU19D-050112	Dissolved	Water	7470A	63037
480-19566-4	RU20-050112	Dissolved	Water	7470A	63037
480-19566-7	RU21-050112	Dissolved	Water	7470A	63037
480-19566-8	RU8-050112	Dissolved	Water	7470A	63037
LCS 480-62826/10-B	Lab Control Sample	Dissolved	Water	7470A	63037
MB 480-62826/9-B	Method Blank	Dissolved	Water	7470A	63037

Prep Batch: 63221

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
480-19566-1	RU10-050112	Dissolved	Water	3005A	
LCS 480-63123/2-B	Lab Control Sample	Dissolved	Water	3005A	
MB 480-63123/1-B	Method Blank	Dissolved	Water	3005A	

Analysis Batch: 63282

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-19566-2	RU19-050112	Dissolved	Water	6010B	63048
480-19566-3	RU19D-050112	Dissolved	Water	6010B	63048
480-19566-4	RU20-050112	Dissolved	Water	6010B	63048
480-19566-7	RU21-050112	Dissolved	Water	6010B	63048
480-19566-8	RU8-050112	Dissolved	Water	6010B	63048
LCS 480-62826/14-B	Lab Control Sample	Dissolved	Water	6010B	63048
MB 480-62826/13-B	Method Blank	Dissolved	Water	6010B	63048

Analysis Batch: 63458

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
480-19566-1	RU10-050112	Dissolved	Water	6010B	63221
LCS 480-63123/2-B	Lab Control Sample	Dissolved	Water	6010B	63221
MB 480-63123/1-B	Method Blank	Dissolved	Water	6010B	63221

Prep Batch: 64638

MB 480-64638/1-A

Method Blank

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
480-19566-1	RU10-050112	Total/NA	Water	7470A	
LCS 480-64638/2-A	Lab Control Sample	Total/NA	Water	7470A	
MB 480-64638/1-A	Method Blank	Total/NA	Water	7470A	
Analysis Batch: 64720)				
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-19566-1	RU10-050112	Total/NA	Water	7470A	64638
LCS 480-64638/2-A	Lab Control Sample	Total/NA	Water	7470A	64638

64638

Total/NA

Water

7470A

General Chemistry

Analysis Batch: 62975

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-19566-1	RU10-050112	Total/NA	Water	353.2	
480-19566-2	RU19-050112	Total/NA	Water	353.2	
480-19566-3	RU19D-050112	Total/NA	Water	353.2	
480-19566-4	RU20-050112	Total/NA	Water	353.2	
480-19566-7	RU21-050112	Total/NA	Water	353.2	
480-19566-8	RU8-050112	Total/NA	Water	353.2	
LCS 480-62975/29	Lab Control Sample	Total/NA	Water	353.2	
MB 480-62975/28	Method Blank	Total/NA	Water	353.2	

Analysis Batch: 63060

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-19566-1	RU10-050112	Total/NA	Water	300.0	
480-19566-1 MS	RU10-050112	Total/NA	Water	300.0	
480-19566-2	RU19-050112	Total/NA	Water	300.0	
480-19566-3	RU19D-050112	Total/NA	Water	300.0	
480-19566-4	RU20-050112	Total/NA	Water	300.0	
480-19566-7	RU21-050112	Total/NA	Water	300.0	
480-19566-8	RU8-050112	Total/NA	Water	300.0	
LCS 480-63060/27	Lab Control Sample	Total/NA	Water	300.0	
MB 480-63060/28	Method Blank	Total/NA	Water	300.0	

Analysis Batch: 63279

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-19566-1	RU10-050112	Total/NA	Water	SM 5310D	
480-19566-2	RU19-050112	Total/NA	Water	SM 5310D	
480-19566-3	RU19D-050112	Total/NA	Water	SM 5310D	
480-19566-4	RU20-050112	Total/NA	Water	SM 5310D	
480-19566-8	RU8-050112	Total/NA	Water	SM 5310D	
LCS 480-63279/28	Lab Control Sample	Total/NA	Water	SM 5310D	
LCS 480-63279/4	Lab Control Sample	Total/NA	Water	SM 5310D	
MB 480-63279/27	Method Blank	Total/NA	Water	SM 5310D	
MB 480-63279/3	Method Blank	Total/NA	Water	SM 5310D	

Analysis Batch: 63359

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-19566-1	RU10-050112	Total/NA	Water	300.0	
480-19566-2	RU19-050112	Total/NA	Water	300.0	
480-19566-3	RU19D-050112	Total/NA	Water	300.0	
LCS 480-63359/123	Lab Control Sample	Total/NA	Water	300.0	
MB 480-63359/124	Method Blank	Total/NA	Water	300.0	

Analysis Batch: 63360

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
480-19566-8	RU8-050112	Total/NA	Water	300.0	
LCS 480-63360/147	Lab Control Sample	Total/NA	Water	300.0	
MB 480-63360/148	Method Blank	Total/NA	Water	300.0	

Analysis Batch: 63639

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-19566-7	RU21-050112	Total/NA	Water	SM 5310D	
LCS 480-63639/16	Lab Control Sample	Total/NA	Water	SM 5310D	
MB 480-63639/15	Method Blank	Total/NA	Water	SM 5310D	

Prep Type

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Prep Type

Total/NA

Total/NA

Matrix

Water

Water

Water

Water

Water

Water

Matrix

Water

Water

Analysis Batch: 63671

Lab Sample ID

480-19566-4

480-19566-7

480-19566-7 MS

480-19566-7 MSD

LCS 480-63671/3

MB 480-63671/4

Lab Sample ID

LCS 480-64072/10

MB 480-64072/11

General Chemistry (Continued)

Client Sample ID

RU20-050112

RU21-050112

RU21-050112

RU21-050112

Method Blank

Client Sample ID

Method Blank

Lab Control Sample

Lab Control Sample

Method

300.0

300.0

300.0

300.0

300.0

300.0

Method

300.0

300.0

Prep Batch

Prep Batch

8 9 10 11 13 14

Analy	/sis	Batch:	64494

Analysis Batch: 64072

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-19566-1	RU10-050112	Total/NA	Water	VFA-IC	
480-19566-2	RU19-050112	Total/NA	Water	VFA-IC	
480-19566-3	RU19D-050112	Total/NA	Water	VFA-IC	
480-19566-4	RU20-050112	Total/NA	Water	VFA-IC	
480-19566-8	RU8-050112	Total/NA	Water	VFA-IC	
480-19566-8 MS	RU8-050112	Total/NA	Water	VFA-IC	
LCS 480-64494/27	Lab Control Sample	Total/NA	Water	VFA-IC	
MB 480-64494/28	Method Blank	Total/NA	Water	VFA-IC	

Analysis Batch: 64536

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
LCS 480-64536/3	Lab Control Sample	Total/NA	Water	300.0	
MB 480-64536/4	Method Blank	Total/NA	Water	300.0	
Analysis Batch: 6472	29				

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-19566-4	RU20-050112	Total/NA	Water	VFA-IC	
480-19566-7	RU21-050112	Total/NA	Water	VFA-IC	
LCS 480-64729/3	Lab Control Sample	Total/NA	Water	VFA-IC	
MB 480-64729/4	Method Blank	Total/NA	Water	VFA-IC	

Lab Sample ID: 480-19566-1

Matrix: Water

Client Sample ID: RU10-050112

Date Collected: 05/01/12 11:15 Date Received: 05/03/12 09:00

_	Batch	Batch		Dilution	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		1	63819	05/10/12 17:04	DC	TAL BUF
Total/NA	Analysis	8260B	DL	10	64011	05/11/12 15:20	DC	TAL BUF
Total/NA	Analysis	RSK-175		1	63448	05/08/12 13:12	CD	TAL BUF
Total/NA	Analysis	RSK-175	DL	10	63448	05/08/12 15:14	CD	TAL BUF
Dissolved	Prep	3005A			63221	05/07/12 07:20	SS	TAL BUF
Dissolved	Analysis	6010B		1	63458	05/07/12 18:17	LH	TAL BUF
Total/NA	Prep	7470A			64638	05/16/12 10:00	JRK	TAL BUF
Total/NA	Analysis	7470A		1	64720	05/16/12 13:35	MM	TAL BUF
Total/NA	Analysis	353.2		1	62975	05/03/12 18:10	KS	TAL BUF
Total/NA	Analysis	300.0		1	63060	05/04/12 20:56	KAC	TAL BUF
Total/NA	Analysis	SM 5310D		1	63279	05/05/12 20:38	KAC	TAL BUF
Total/NA	Analysis	300.0		1	63359	05/08/12 14:12	KAC	TAL BUF
Total/NA	Analysis	VFA-IC		1	64494	05/16/12 06:56	KAC	TAL BUF

Client Sample ID: RU19-050112 Date Collected: 05/01/12 14:15 Date Received: 05/03/12 09:00

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		10	63819	05/10/12 17:27	DC	TAL BUF
Total/NA	Analysis	8260B	DL	20	64011	05/11/12 15:43	DC	TAL BUF
Total/NA	Analysis	RSK-175		1	63448	05/08/12 13:29	CD	TAL BUF
Total/NA	Analysis	RSK-175	DL	10	63448	05/08/12 15:31	CD	TAL BUF
Dissolved	Prep	7470A			63037	05/04/12 09:15	JRK	TAL BUF
Dissolved	Analysis	7470A		1	63147	05/04/12 15:35	JRK	TAL BUF
Dissolved	Prep	3005A			63048	05/04/12 10:10	SS	TAL BUF
Dissolved	Analysis	6010B		1	63282	05/04/12 15:42	LH	TAL BUF
Total/NA	Analysis	353.2		1	62975	05/03/12 18:11	KS	TAL BUF
Total/NA	Analysis	300.0		1	63060	05/04/12 21:36	KAC	TAL BUF
Total/NA	Analysis	SM 5310D		1	63279	05/05/12 20:54	KAC	TAL BUF
Total/NA	Analysis	300.0		1	63359	05/08/12 14:22	KAC	TAL BUF
Total/NA	Analysis	VFA-IC		1	64494	05/16/12 07:25	KAC	TAL BUF

Client Sample ID: RU19D-050112 Date Collected: 05/01/12 14:20 Date Received: 05/03/12 09:00

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		10	63819	05/10/12 17:50	DC	TAL BUF
Total/NA	Analysis	RSK-175		1	63448	05/08/12 13:46	CD	TAL BUF
Total/NA	Analysis	RSK-175	DL	10	63448	05/08/12 15:48	CD	TAL BUF
Dissolved	Prep	7470A			63037	05/04/12 09:15	JRK	TAL BUF

2 3 4 5 6 7 8 9 10 11 12 13 14

Lab Sample ID: 480-19566-2 Matrix: Water

Lab Sample ID: 480-19566-3

ix: water

Matrix: Water

Date Collected: 05/01/12 14:20 Date Received: 05/03/12 09:00

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Dissolved	Analysis	7470A		1	63147	05/04/12 15:37	JRK	TAL BUF
Dissolved	Prep	3005A			63048	05/04/12 10:10	SS	TAL BUF
Dissolved	Analysis	6010B		1	63282	05/04/12 15:44	LH	TAL BUF
Total/NA	Analysis	353.2		1	62975	05/03/12 18:12	KS	TAL BUF
Total/NA	Analysis	300.0		1	63060	05/04/12 21:46	KAC	TAL BUF
Total/NA	Analysis	SM 5310D		1	63279	05/05/12 21:10	KAC	TAL BUF
Total/NA	Analysis	300.0		1	63359	05/08/12 14:32	KAC	TAL BUF
Total/NA	Analysis	VFA-IC		1	64494	05/16/12 07:54	KAC	TAL BUF

Client Sample ID: RU20-050112 Date Collected: 05/01/12 17:20

Date Received: 05/03/12 09:00

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		50	63819	05/10/12 18:13	DC	TAL BUF
Total/NA	Analysis	RSK-175		10	63448	05/08/12 14:14	CD	TAL BUF
Dissolved	Prep	7470A			63037	05/04/12 09:15	JRK	TAL BUF
Dissolved	Analysis	7470A		1	63147	05/04/12 15:40	JRK	TAL BUF
Dissolved	Prep	3005A			63048	05/04/12 10:10	SS	TAL BUF
Dissolved	Analysis	6010B		1	63282	05/04/12 15:50	LH	TAL BUF
Total/NA	Analysis	353.2		1	62975	05/03/12 18:15	KS	TAL BUF
Total/NA	Analysis	300.0		1	63060	05/04/12 21:56	KAC	TAL BUF
Total/NA	Analysis	SM 5310D		1	63279	05/05/12 21:27	KAC	TAL BUF
Total/NA	Analysis	300.0		1	63671	05/09/12 18:05	KAC	TAL BUF
Total/NA	Analysis	VFA-IC		1	64494	05/16/12 08:23	KAC	TAL BUF
Total/NA	Analysis	VFA-IC		2	64729	05/16/12 18:52	KAC	TAL BUF

Client Samp	ole ID: FB-05	0112				L	ab Sample	ID: 480-19566-5
Date Collected	d: 05/01/12 00:	00						Matrix: Water
Date Received	I: 05/03/12 09:0	00						
	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		1	63819	05/10/12 18:36	DC	TAL BUF
Client Samp	ole ID: TRIP	BLANK				L	ab Sample	ID: 480-19566-6
Date Collected	d: 05/01/12 00:	00						Matrix: Water
Date Received	I: 05/03/12 09:0	00						
_								

_	Batch	Batch		Dilution	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		1	63819	05/10/12 18:59	DC	TAL BUF

Lab Sample ID: 480-19566-3

Lab Sample ID: 480-19566-4

Matrix: Water

Matrix: Water

Date Collected: 05/01/12 20:10 Date Received: 05/03/12 09:00

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		2	64011	05/11/12 16:06	DC	TAL BUF
Total/NA	Analysis	RSK-175		10	63448	05/08/12 14:31	CD	TAL BUF
Total/NA	Analysis	RSK-175	DL	100	63448	05/08/12 16:05	CD	TAL BUF
Dissolved	Prep	7470A			63037	05/04/12 09:15	JRK	TAL BUF
Dissolved	Analysis	7470A		1	63147	05/04/12 15:41	JRK	TAL BUF
Dissolved	Prep	3005A			63048	05/04/12 10:10	SS	TAL BUF
Dissolved	Analysis	6010B		1	63282	05/04/12 15:53	LH	TAL BUF
Total/NA	Analysis	353.2		1	62975	05/03/12 18:16	KS	TAL BUF
Total/NA	Analysis	300.0		5	63060	05/04/12 22:06	KAC	TAL BUF
Total/NA	Analysis	SM 5310D		40	63639	05/08/12 08:59	KAC	TAL BUF
Total/NA	Analysis	300.0		1	63671	05/09/12 18:15	KAC	TAL BUF
Total/NA	Analysis	VFA-IC		20	64729	05/16/12 19:21	KAC	TAL BUF

Client Sample ID: RU8-050112 Date Collected: 05/02/12 10:15 Date Received: 05/03/12 09:00

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		1	64011	05/11/12 16:29	DC	TAL BUF
Total/NA	Analysis	RSK-175		1	63448	05/08/12 16:39	CD	TAL BUF
Dissolved	Prep	7470A			63037	05/04/12 09:15	JRK	TAL BUF
Dissolved	Analysis	7470A		1	63147	05/04/12 15:43	JRK	TAL BUF
Dissolved	Prep	3005A			63048	05/04/12 10:10	SS	TAL BUF
Dissolved	Analysis	6010B		1	63282	05/04/12 15:55	LH	TAL BUF
Total/NA	Analysis	353.2		1	62975	05/03/12 18:17	KS	TAL BUF
Total/NA	Analysis	300.0		1	63060	05/04/12 22:17	KAC	TAL BUF
Total/NA	Analysis	SM 5310D		1	63279	05/05/12 23:41	KAC	TAL BUF
Total/NA	Analysis	300.0		1	63360	05/08/12 16:03	KAC	TAL BUF
Total/NA	Analysis	VFA-IC		1	64494	05/16/12 09:22	KAC	TAL BUF

Laboratory References:

TAL BUF = TestAmerica Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

TestAmerica Job ID: 480-19566-1

Lab Sample ID: 480-19566-7

Matrix: Water

Lab Sample ID: 480-19566-8

Matrix: Water

Certification Summary

Client: CDM Smith, Inc. Project/Site: New York state project

1
5
6
8
9
11
13

Laboratory	Authority	Program	EPA Region	Certification ID
TestAmerica Buffalo	Arkansas DEQ	State Program	6	88-0686
TestAmerica Buffalo	California	NELAC	9	1169CA
TestAmerica Buffalo	Connecticut	State Program	1	PH-0568
TestAmerica Buffalo	Florida	NELAC	4	E87672
TestAmerica Buffalo	Georgia	State Program	4	956
TestAmerica Buffalo	Georgia	State Program	4	N/A
TestAmerica Buffalo	Illinois	NELAC	5	100325 / 200003
TestAmerica Buffalo	Iowa	State Program	7	374
TestAmerica Buffalo	Kansas	NELAC	7	E-10187
TestAmerica Buffalo	Kentucky	State Program	4	90029
TestAmerica Buffalo	Kentucky (UST)	State Program	4	30
TestAmerica Buffalo	Louisiana	NELAC	6	02031
TestAmerica Buffalo	Maine	State Program	1	NY0044
TestAmerica Buffalo	Maryland	State Program	3	294
TestAmerica Buffalo	Massachusetts	State Program	1	M-NY044
TestAmerica Buffalo	Michigan	State Program	5	9937
TestAmerica Buffalo	Minnesota	NELAC	5	036-999-337
TestAmerica Buffalo	New Hampshire	NELAC	1	2337
TestAmerica Buffalo	New Hampshire	NELAC	1	68-00281
TestAmerica Buffalo	New Jersey	NELAC	2	NY455
TestAmerica Buffalo	New York	NELAC	2	10026
TestAmerica Buffalo	North Dakota	State Program	8	R-176
TestAmerica Buffalo	Oklahoma	State Program	6	9421
TestAmerica Buffalo	Oregon	NELAC	10	NY200003
TestAmerica Buffalo	Pennsylvania	NELAC	3	68-00281
TestAmerica Buffalo	Tennessee	State Program	4	TN02970
TestAmerica Buffalo	Texas	NELAC	6	T104704412-08-TX
TestAmerica Buffalo	USDA	Federal		P330-08-00242
TestAmerica Buffalo	Virginia	NELAC	3	460185
TestAmerica Buffalo	Virginia	State Program	3	278
TestAmerica Buffalo	Washington	State Program	10	C1677
TestAmerica Buffalo	West Virginia DEP	State Program	3	252
TestAmerica Buffalo	Wisconsin	State Program	5	998310390

Accreditation may not be offered or required for all methods and analytes reported in this package. Please contact your project manager for the laboratory's current list of certified methods and analytes.

Client: CDM Smith, Inc. Project/Site: New York state project

Method	Method Description	Protocol	Laboratory
3260B	Volatile Organic Compounds (GC/MS)	SW846	TAL BUF
RSK-175	Dissolved Gases (GC)	RSK	TAL BUF
6010B	Metals (ICP)	SW846	TAL BUF
7470A	Mercury (CVAA)	SW846	TAL BUF
300.0	Anions, Ion Chromatography	MCAWW	TAL BUF
353.2	Nitrogen, Nitrate-Nitrite	MCAWW	TAL BUF
SM 5310D	Organic Carbon, Total (TOC)	SM	TAL BUF
VFA-IC	Volatile Fatty Acids, Ion Chromatography	TestAmerica SOP	TAL BUF

Protocol References:

MCAWW = "Methods For Chemical Analysis Of Water And Wastes", EPA-600/4-79-020, March 1983 And Subsequent Revisions.

RSK = Sample Prep And Calculations For Dissolved Gas Analysis In Water Samples Using A GC Headspace Equilibration Technique, RSKSOP-175, Rev. 0, 8/11/94, USEPA Research Lab

SM = "Standard Methods For The Examination Of Water And Wastewater",

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

TestAmerica SOP = TestAmerica, Inc., Standard Operating Procedure

Laboratory References:

TAL BUF = TestAmerica Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

Sample Summary

Client: CDM Smith, Inc. Project/Site: New York state project TestAmerica Job ID: 480-19566-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
480-19566-1	RU10-050112	Water	05/01/12 11:15	05/03/12 09:00
480-19566-2	RU19-050112	Water	05/01/12 14:15	05/03/12 09:00
480-19566-3	RU19D-050112	Water	05/01/12 14:20	05/03/12 09:00
480-19566-4	RU20-050112	Water	05/01/12 17:20	05/03/12 09:00
480-19566-5	FB-050112	Water	05/01/12 00:00	05/03/12 09:00
480-19566-6	TRIP BLANK	Water	05/01/12 00:00	05/03/12 09:00
480-19566-7	RU21-050112	Water	05/01/12 20:10	05/03/12 09:00
480-19566-8	RU8-050112	Water	05/02/12 10:15	05/03/12 09:00

0	
fa	
1	
СС С	
ũ	
ŗ	
Ē	
\leq	
Ğ	
Ē	

10 Hazelwood Drive

Chain of Custody Record

TestAmerica

v

ł

.

Į

ŗ

l ř

.

Amherst, NY 14228-2298 Phone (716) 691-2600 Fax (716) 691-7991)		5			5					Ē	E LEADER IN	I ENVIRONM	ENTAL TESTING
Client Information	Sampler. Clark	لح		Cray Gray	M: -Erdmanı	n, Peggy			ð	amier Trach	cing Na(s)		0.5	C No:)-24027-60	93.1	
Client Contact Neil Smith	Prone. 44/	- 3806		E-Mai pegg	: y.gray .e r	dmann@	testame	ricainc.	шx				Pag	e: je 1 of 1		
Comparty. CDM Smith. Inc.							An	alysis	Requ	ested			đor	ŧ		
Address: 555 17th Street Suite 1100	Due Date Requeste												E E	servation C	codes:	
ciry. Denver	TAT Requested (day												ະ ສ່ ບໍ່ ໂ	nuu NaOH Zn Acetate	M - H8X	ane 9 802
State. Zip CCO, 80202	anat	5			49(Ċ'n'n	Nitric Acid NaHSO4 MaCH	P - Na2(0 - Na2(1 Na2(04S \$03 \$2503
Phone: 303-383-2447(Tel)	Porte Order	not required			/ // (oj								ότ΄ NGS	Amchlor Ascorbic Acid	S-H2S 1 1-TSP	Dodecahydrate
Email: smithnl@cdmsmith.com	:# OM				No) 2 ot V		N 8						 	a Di Water	U - Acet	A A
Project Name: New York state project	Project #: 48005099				م (ده رُوا ۱۹ (۸۹	pou	6 03hutil	5.4C	por				initata F		Z - other	(specify)
Shern, NY	SSOW#:				U.OSP dwes	on Ben	N 91813	4 OLMC	ritaM la				. ot co			
Samole Identification	Sample Date	Sample Time	Sample Type (C=comp, G=grab)	Matrix (w-water, 9-action O-watchoa, A-Ak)	berefil Filtered	300.0_28D - Lo	363.2_Pres - N	SM6310D - Loc 8260B - TCL IIa	รอา - อรราวอร				edmuN latoT	Special	Instructio	ns/Note:
	1 1 1 1 1 1 1	X	Preservati	on Code.	Ř	Z	0	A A	× ۲	N)			X		a shirt mar	
RUIO-OSOIIZ	5/1/12	1115	G	Water	NN	X	X X	XX	\geq					Por to Fill	ter at	B metals ab.
RUM- esoliz	5/1/12	JUIS	ଦ	Water	VNY	X	X V	X	\times							
Ru19D-050112	c/1/2	1420	E	Water	ΥN>	Z Z Z	XX	X X	\times				IJ			
RUZO - 050112	s/1/12	1720	ঙ	Water	γN×	(X)	ر ۲	XX	X				[H			
FB- 050112	5/1/12		৫	Water	NN	_		X					3			
TRIP BLANK	5/1/12	AU/	ও	Water	N N			$\overline{\times}$					3			
The Blank RUZI - O'SOLIZ	5/1/2	2010	৫	Water	<u> </u>	Ŷ	X X	× 굿	X				/4			
RUB-050212	5/2/12	POIS	ઉ	Water	y ν >	XX	ΧХ	XX	×				H			
	-				-											
							_	_								
					_			-				_				
Possible Hazard Identification	ison B	0mu	Radiological		San San San San San San San San San San	Return	sal (A To Clien	fee ma)		<mark>essed i</mark> l posal By	' sampli	s ar s	tained fu Archive	onger than For	1 month) Mon	hs
Deliverable Requested: I, II, II, IV, Other (specify)					Speci	al Instruc	tions/Q(Requi	ements							
Empty Kit Relinquished by:		Date:			Time:					Methoo	t of Shipm	ent:				
Relipquished br.	Date/Time:/ 5/2/12			wy mount	j'r'	aceived by	Z	Ż			Date	112))	Ju	Company	. 1
intellinguisted by:	Dpte/Tjfne:		0	company	Ϋ́.	aceived by.		-			Date/	Tithe:			Company	
Relinquished by:	Date/Time:			company	<u>æ</u>	eceived by					Date	Time:			Company	
* Custody Seals Intact: Custody Seal No:	· .			· .	3	ooler Temp	erature(s)	C and O	her Rema	چ م	0 1	¥		19.00°	*	
					15	14		12		10	9	8	7	5	4	2 3

<u>5/17/2</u>012

Login Sample Receipt Checklist

Client: CDM Smith, Inc.

Login Number: 19566 List Number: 1

Creator: Janish, Carl

Question	Answer	Comment
Radioactivity either was not measured or, if measured, is at or below background	True	
The cooler's custody seal, if present, is intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the sample IDs on the containers and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	False	Metals volume for -01 received preserved, requires lab filtration, discarded
Sample bottles are completely filled.	False	Poured off ~50 mls UP volume for metals - lab to filter and preserve
Sample Preservation Verified	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	True	
If necessary, staff have been informed of any short hold time or quick TAT needs	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Sampling Company provided.	True	CDM
Samples received within 48 hours of sampling.	True	
Samples requiring field filtration have been filtered in the field.	True	
Chlorine Residual checked.	N/A	

List Source: TestAmerica Buffalo

Alcoa Site in Olean, New York Quantitative PCR Analytical Summary

May 21, 2012

Overview:

The objective of this project was to quantify the number of *Dehalococcoides sp.* (DHC) 16S rRNA gene copies and reductase functional genes (*tceA*, *vcrA*, and *bvcA* copies) contained in groundwater collected from the Alcoa Site in Olean, New York using quantitative polymerase chain reaction (QPCR). The client is CDM Smith. Table 1 describes the sample matrix and the condition of the samples upon arrival to the analytical laboratory.

Sample ID	Matrix	Date Sampled	Condition Received	Volume Filtered (L)
RU10-050112	Groundwater	5/1/2012	Bottle Intact, 4°C	0.3
RU19-050112	Groundwater	5/1/2012	Bottle Intact, 4°C	0.5
RU20-050112	Groundwater	5/1/2012	Bottle Intact, 4°C	0.5
RU21-050112	Groundwater	5/1/2012	Bottle Intact, 4°C	0.15
RU8-050212	Groundwater	5/2/2012	Bottle Intact, 4°C	0.5

Table 1. Description of samples and volume filtered for DNA extraction.

The samples arrived in good condition and were preserved with glycerol. Upon arrival, the sample groundwater was filtered. The filter was frozen for storage at -80°C until the DNA extraction was performed. Following DNA extraction, the samples were first subjected to quantitative polymerase chain reaction (QPCR) using probes in order to detect the presence and amount of *Dehalococcoides* in each sample. For samples that did not amplify during QPCR reactions, universal PCR was used to amplify nearly full-length 16S rDNA genes from *Bacteria* in order to verify that amplifiable DNA was present. The results of these studies are described in this report.

Methods:

DNA Extraction: For groundwater shipped to the laboratory, the groundwater volume indicated in Table 1 was filtered using a sterile 0.2- μ m acetate filter. The filter was frozen at -80°C and then shattered. Next, the sample tube was amended with 2 mL of DNA-free water, vortexed vigorously for 5 minutes, and the liquid volume was partitioned into DNA extraction tubes. The DNA extraction was performed using the Bio101 DNA Extraction Kit according to the manufacturer's instructions. DNA product was cleaned with ethanol precipitation. Community DNA was eluted in 100 μ L of 0.1x Tris HCL and stored at -20°C.

Detection of Dehalococcoides: The QPCR methods for assessing the 16S rRNA gene, and the reductase genes *tceA*, *bvcA*, and *vcrA*, are very sensitive in detecting specific DNA fragments. A mixed laboratory culture containing *Dehalococcoides* was used to obtain the quantitative standards used in these analyses. Plasmid DNA containing DNA inserts of targets 16S rRNA gene, *tceA*, *bvcA*, and *vcrA* from *Dehalococcoides* were purified and quantified fluorometrically. Based on the known size of the plasmid and insert, DNA concentrations were converted to insert copy numbers. A dilution series spanning seven

orders of magnitude was generated using known concentrations of each plasmid. Amplification and detection of the DNA was performed using a BIO-RAD Chromo4 Real Time Detector System. The acceptance criterion for the standard curve is a linear R^2 value of greater than 0.995.

TaqMan Protocol. The 16S rRNA gene, and reductase genes *tceA*, *bvcA*, and *vcrA*, QPCR reactions were performed using TaqMan chemistry. The Taqman probes for the 16S rRNA gene and for the *tceA* gene were synthesized using the FAM label on the 5-foot end and the BHQ quencher (Biosearch Technologies). For the *bvcA* gene probe, a Cy5 label is used on the 5-foot end and for the *vcrA* gene probe, a HEX label is used on the 5-foot end, both are coupled to the BHQ quencher. Reaction volumes of 25 μ L contained forward and reverse primers at a concentration of 700 nM, a probe at a concentrations of 200 nM, 1 x TaqMan Universal PCR Master Mix(Roche) and 5 μ L of sample DNA. The BIO-RAD Chromo 4 Real Time Detector System was used for all reactions. The settings for cycle number and reaction conditions used for all runs were 95°C for 10 minutes, and 45 cycles of 95°C for 15 seconds and 58°C for 1 minute. Standards and unknowns were run in triplicate to ensure reproducibility. Cycle thresholds (C_t) were set to minimize the standard deviation of standard curve triplicate C_t values, and also to obtain a standard curve slope as close to negative 3.5 as possible.

Amplification of Bacteria: For samples that did not amplify during QPCR reactions, universal PCR was used to amplify nearly full-length 16S rDNA genes from *Bacteria* in order to verify that amplifiable DNA was present. Each 25- μ L PCR reaction includes a final reagent concentration of: 1X GoTaq Hot Start Green Master Mix (Promega), 0.25 μ M 8F and 0.25 μ M 1492R primers (Invitrogen), 1 μ L genomic DNA, and molecular-grade water (Promega). Each reaction was repeated using 5 μ L of genomic DNA with 20 μ L of PCR master mix and a third time with 1 μ L of genomic DNA, 1 μ L of 8F/1492R plasmid DNA as a matrix spike and 23 μ L of PCR master mix. Amplification was performed on a BIO-RAD DNA Engine Dyad and Disciple Peltier Thermal Cycler using the following regime: 94°C (5 min) followed by 40 cycles of 94°C (1 min), 53.5°C (1 min), and 72°C (1 min). The reaction was finished with an additional 7 minutes at 72°C. PCR products were examined in a 1.0% agarose gel stained with ethidium bromide to confirm specificity of the amplification reactions.

Results:

Table 2 summarizes the QPCR analysis of the samples. The DNA extraction negative control and all PCR negative controls did not amplify any product. In addition, all calibration control checks were within acceptable values.

Sample ID	DNA (ng/L groundwater)	Universal PCR [#]	Dehalococcoides 16S rRNA (copy/L groundwater)	Dehalococcoides tceA (copy/L groundwater)	<i>Dehalococcoides</i> bvcA (copy/L groundwater)	<i>Dehalococcoides</i> vcrA (copy/L groundwater)
RU10-050112	4587	N/A	6.78E+03* ± 5.52E+02	±	±	±
RU19-050112	2188	N/A	$6.79E+06 \pm 1.20E+05$	$4.18E+06 \pm 6.60E+05$	0.0 ±	$1.74E+06 \pm 2.95E+05$
RU20-050112	3344	N/A	2.87E+03* ± 4.93E+02	±	±	±
RU21-050112	22520	N/A	1.16E+09 ± 1.70E+08	6.74E+08 ± 9.91E+07	0.0 ±	2.39E+08 ± 3.73E+07
RU8-050212	410	N/A	4.98E+02* ± 7.74E+01	±	±	±

Table 2. Results of molecular analyses for the samples.

*: indicates that the value presented is below the reporting limit

#: a '+' sign indicates that amplification of *Bacteria* was successful, and a '-' sign indicates that amplification was not successful, N/A: (not applicable) means the analysis wasn't performed.

The DNA concentration of the DNA extraction (in ng/L of groundwater) is reported as an indicator of relative biomass levels for the samples so that relative comparisons can be made. *Dehalococcoides* 16S was detected in samples RU19-050112 and RU21-050112 and was detected below the reporting limit in three samples RU10-050112, RU20-050112 and RU8-050212. The reductase genes tceA and vcrA were detected in samples RU19-050112 and RU21-050112.

The data presented in this report are produced using lab-specific methods. All results are intended to be used as a screening tool and should not be used as definitive data. Users should verify the suitability of the data for their own specific purpose.

Company Name:			Sampler:			-							1	1	
CDM S.	nith	_	5.0	leaver				Λ	nalys	es Re	queste	be	Page of	1	
Address:	Street STO	= 1100	Phone:	141-3806		Fax:		nes					Date: 5/2/	12	
City: Derve	C	- 11-0	Enail:	erswec	dinsmi	th. (0)	m	1 90					COC #:		
State:CO	Zip: COZ	.02	Project Ma	mager:				thin							
Alcoa Bior	emediation Pil	+ Study	Phone: (305)	383-7	447	Fax:		t fue					Carrier/Airbill# 12/20x060	: 77421467	
Project Location:	Y		Enail: Smithn	leansn	ith.co	m		HC					Type, Volume,		
Sample Number	Sample Location	Date	Time	Depth	Prese	mple rvative	Sample Matrix	A					and No. of Containers	of Remarks/Special Instructions:	
RU10-050112		5/1/12	1115	15'btoc	Glyc	erol	Water	X					11/1		
RU19-050112		5/1/12	1415	15 bloc	Glyc	erol	Water	×					ILX1		
RU20-050112		5/1/12	1720	35 btoc	Gly	erel	Water	X					ILXI		
RU21-050112		5/1/12	2010	15'broc	Gly	501	Water	X					ILXI		
RU8-050212		5/2/12	1015	15 % Tac	Glya	501	Water	X					ILX1		
		1.													
						_									
Possible Hazard Id	lentification					Sa	mple Disposal				Oth	er Co	mments		
Non-Hazardous	Skin Irritant	Rad 🗆 I	lamnable	Poison	Uakno	wn Lal	Return to Client	Dis	osal b	У					
Relinquished by:	(Signature/Compan	x)	15/2/1	2 IloOO	Receiv	ed By: (S	Signature Compa	ny)		1	Date	-12	Time 30 Sh	ip to: TTV: Erin	
Relinquished by:	(Signature/Compan	(y)	Date	Time	Receiv	d By: (S	Signature Compa	ny)		1	Date	-	Time	O'leaty-	
N.N. 11 11	(C		10	100		1.44	in the law			-	-			TOPSEN	

Distribution: White copy accompanies samples during transfer of custody; Yellow copy is retained by customer.

ENVF-021.1 Rev 2 Effective 01/01/11 Appendix C

Hydraulic Conductivity Testing Results

