

Prepared by:

Geomatrix Consultants, Inc. 338 Harris Hill Road, Suite 201 Williamsville, New York 14221 (716) 565-0624

Benchmark Environmental Engineering & Science, PLLC

50 Fountain Plaza, Suite 1350 Buffalo, New York 14202 (716) 856-0599

Revised November 2003 November 2002

ي

1.041.021

3...7

5.1.1.1 11

an entre a con

Ya tu

uner ar ear

.

-÷.,

the second s

de jo

APPENDIX A

Historic Site Manufacturing

Process Features

ð

ı

APPENDIX B Historic Analytical Data

. •

·::

- --

• • •

· .

.

·..

ander ange an anderskingen ander angen a gen angen gingen an angen angen gingen ander angen angen an angen ang angen ang

.....

Stor Zator of

· . . .

APPENDIX B-1 Phase I Results

. .

an Anti-Antonio anti-Antonio anti-Antonio Antonio Antonio

ecology and environment

PLIER COOPER CORPORATION

NEW YORK STATE SUPERFUND PHASE I SUMMARY REPORT

FINAL

Nomvember 28, 1983

Prepared By:

Recra Research, Inc. 4248 Ridge Lea Road Amherst, New York 14226

For:

New York State Department of Environmental Conservation 50 Wolf Road Albany, New York 12233-0001 PETER COOPER CORPORATION NEW YORK STATE SUPERFUND PHASE É SUMMARY REPORT

.

.

:

:

TABLE OF CONTENTS

•

÷

Page No.

.

1.0	Exec	utive Summary	1
2.0	Site	Description	2
3.0	Prel	iminary Hazard Ranking System Score	· -
	3.1	Documentation Records for Hazard Ranking System	••
	3.2	EPA Preliminary Assessment (Form 2070-12)	•-
	3.3	EPA Site Inspection Report (Form 2070-13)	
4.0	Site	History	8
5.0	Site	Data	10
	5.1	Site Area Surface Features	10
		5.1.1 Topography and Drainage	11
		5.1.2 Environmental Setting	11
	5.2	Site Hydrogeology	11
		5.2.1 Geology	11
		5.2.2 Soils	11
	.بر.	5.2.3 Groundwater	12
•	5.3	Previous Sampling and Analyses	12
		5.3.1 Groundwater Quality Data	12
		5.3.2 Surface Water Quality Data	12
		5.3.3 Air Quality Data	13
		5.3.4 Other Analytical Data	13

6.0	Adeq	uacy of Available Data 1	4
7.0	Prop	osed Phase II Work Plan 1	5
	7.1	Objectives 1	5
	7.2	Scope of Work 1	5
		7.2.1 Geophysical Exploration 1	6
		7.2.2 Subsurface Investigation 1	.7
		7.2.3 Monitoring Well Installation 2	20
		7.2.4 Sampling and Analysis 2	!1
		7.2.4.1 Groundwater 2	24
		7.2.4.2 Surface Water 2	!5
		7.2.4.3 Soil 2	!6
		7.2.5 Chemical Analytical Methods 2	!7
		7.2.6 Quality Assurance Program 2	28
		7.2.7 Engineering Evaluation Report/HRS Score 2	28
	7.3	Estimated Costs 2	?9

APPENDIX A - Data Sources and References APPENDIX B - Revised "Hazardous Waste Disposal Site Report"

LIST OF FIGURES

- -

		Page
Figure 1A	Vicinity Map of Plant Facility	4
Figure 2A	Vicinity Map of Markhams Site	5
Figure 1B	Site Map of Plant Facility	6
Figure 2B	Site Map of Markhams Site	7
Figure 3	Sampling and Well Locations - Plant Facility	18
Figure 4	Sampling and Well Locations - Markhams Site	19
Figure 5	Monitoring Well Construction	22

.

recycled paper

ecology and environment

LIST OF TABLES

·

· · · ·

.

.

· · · ·

.

1.0 EXECUTIVE SUMMARY

The Peter Cooper Corporation Superfund site is composed of two (2) study areas; (1) the Gowanda Plant Facility including the old disposal area and, (2) the Markhams landfill site.

Currently the plant facility is operating a small adhesive division. From 1925 to 1972 the plant mainly manufactured animal glue. The waste sludges resulting from this process were landfilled at the Markhams site which is presently inactive.

Prior to 1971, residual sludges from the glue division were surface piled at the plant facility adjacent to Cattaraugus Creek. This practice was discontinued in compliance with a court order which required the removal of the waste piles from the Gowanda site due to their close proximity to Cattaraugus Creek. Consequently, a portion of the sludge material was moved to the landfill site in Markhams, New York. The remaining material at the Gowanda site was capped and seeded. It has been estimated that 38,600 tons of sludge was moved to the Markhams site.

Leachate seeps were observed at both sites. Seeps located at the Gowanda site were observed entering Cattaraugus Creek.

2.0 SITE DESCRIPTION

The Peter Cooper Corporation site is composed of two (2) areas: the plant facility including an old disposal area located on Palmer Street in Gowanda, New York (Figure 1A) and the landfill which is located in the hamlet of Markhams, six (6) miles south of Gowanda (Figure 2A).

The Gowanda plant is situated on approximately fifty (50) acres of land adjacent to Cattaraugus Creek (Figure 1B). Most of the original plant buildings have been razed and the area is presently grass covered, showing little evidence of past activities. In the northwest section, a fifteen (15) to twenty (20) foot rise in topography is attributed to remaining surface piled material which has been capped and seeded. The mound is generally well vegetated with low grasses and scrubs. The eastern perimeter of the surface mound had several leachate seeps and outbreaks. Some of thee seeps were observed discharging into the Cattaraugus Creek. Discoloration of the soil and rocks by leachate was evident. In some cases a whitish-yellow precipitate was noted associated with these leachate areas as was a distinct noxious, organic odor.

The Markhams site encompasses ninety-one (91) acres (Figure 28). Of this area, fifteen (15) acres were utilized for landfill activities. Five (5) acres are designated as protected wetlands, however, no landfilling has occurred in this area. The surrounding area is rural and sparsely populated. Farms are located to the north and east of the site.

-2-

ł

1

1

ł

4.0 SITE HISTORY

The Peter Cooper Corporation's animal glue division was operational from 1925 to 1972. During this period of activity, the plant utilized raw mater als and tannery wastes which were acquired from a local tannery. The resulting residue sludges were surface piled in the northwest section of the plant adjacent to Cattaraugus Creek. The sludges were classified as spent collagenous protein sludge, Cookhouse sludge (the residue remaining on process equipment) and Vacuum filter sludge from the wastewater treatment plant (Reference 2).

The surface piling of residue sludges adjacent to the Creek was discontinued in 1971 in compliance with a Court order requiring the removal of the material from the creek banks. A portion of this material was moved to Markhams, New York, a ninety-one (91) acre lot, 6 miles south of Gowanda. However, surface piled material which has been capped and seeded still remains on the plant site.

At the Markhams site, approximately fifteen (15) acres were utilized for landfilling operations. The site is situated on thick glacial gravels which extend to great depths and limit the occurrence of natural cover material. Due to the lack of natural cover material the spent collagenous protein sludge was utilized for cover. This material becomes a granular powder as it stabilizes and is supportive of vegetations (Reference 1). Reportedly, farmers in the area have used this material as fertilizer (Reference 5). It has been estimated that 38,600 tons of sludges were disposed of at Markhams along wit an undetermined amount of plant debris collected during maintenance (Reference

1).

On November 30, 1981, soil and surface water samples were collected at the two (2) Peter Cooper sites by the New York State Department of Environmental Conservation. Sampling locations are illustrated in Figures 1B and 2B. Analysis of these samples indicated contamination of heavy metals, particularly t-chromium, in the soil samples from both sites.

5.0 SITE DATA

5.1 Site Area Surface Features

5.1.1 <u>Topography and Drainage</u> - the Gowanda plant site is located on the floodplain of Cattaraugus Creek. Slope of the area is 0% as determined from U.S.G.S. topographic map (Reference 6). Surface water runoff is directed toward Cattaraugus Creek which is a Class C water resource (Reference 13).

The Markhams site is located in the Conewango Creek Basin. Slope of this area is approximately 2% to the south (Reference 6). Surface water runoff appears to be directed toward the wecland area and Slab City Creek southwest of the site. Slab City Creek is a Class C water resource and flows southeast to discharge into Conewango Creek (Reference 13).

5.1.2 <u>Environmental Setting</u> - the Peter Cooper plant is located in an urban/commercial section of Gowanda, New York along Cattaraugus Creek. The creek banks showed signs of public use (e.g., wellbeaten foot paths, bottles, cans). Leachate seeps were evident along this section of the creek. No critical habitats of endangered species or wildlife refuges are in the site vicinity.

ecology and environment

recycled paper

The Markhams site is in a rural and sparsely populated area. A designated protected wetland (CK, PEI Detter-Markham) is located on the site property. No disposal activities have taken place in this area. There are no critical habitats of endangered species or wildlife refuges in the site vicinity.

5.2 Hydrogeology

- 5.2.1 <u>Geology</u> The Peter Cooper Sites are located in the glaciated southern New York Uplands of the Allegheny Plateau. The overburden materials consist of aluvial and glacial deposits; mainly gravel outwash and lacustrine sediments. The bedrock is composed of interbedded marine shales and siltstone, which are associated with the Upper Devonian Clastic Wedge. Bedrock is reported dipping to the south at approximately 8 meters-/kilometers (Reference 3).
- 5.2.2 <u>Soils</u> The surficial soil at the Gowanda site is classified as Chenango Gravelly loam (Reference 7). This soil has 8 inches of a loose gravelly loam underlain by firm silt loam or gravelly loam to a depth of approximately 20 inches. These gravels are non-clastic in origin.

The Markhams site soil was identified by Onondaga Soil Testing, Inc. as primarily gravel outwash underlain by lacustrine sediments of silt and sand. These lacustrine sediments are

301201

-11-.

reported as extending to a great depth and being well drained. The wetland area, which is reported to be a glacial kettle, is underlain by fine sand and silt loam soils (Reference 1).

5.2.3 <u>Groundwater</u> - The Village of Gowanda is serviced by a public water supply. Water is mainly drawn from the Point Peter Watershed located to the south of the site. During seasonal fluctuations this source is supplemented by two (2) town wells located upgrade from the village. These wells are screened in the bedrock aquifer at a depth of approximately 380 feet (Reference 8). See attached figures.

At the Markhams site, groundwater is believed to be located in the gravel aquifer due to its extended depth. Although the areas surrounding the site rely on groundwater as their sole drinking water source, it appears that there are no wells in hydraulic connection with the area of concern (Reference 1).

5.3 Previous Sampling and Analysis

5.3.1 Groundwater Quality Data - No analytical testing performed.

10

5.3.2 <u>Surface Water Quality Data</u> - On November 31, 1981 the NYSDEC conducted sampling at both the Gowanda and Markhams sites. Analytical results indicated detectable levels of heavy metals particularly t-Chromium. Results appear on the following

ecology and environment

pages. Sampling points are located in Figures 1B and 2B.

- 5.3.3 Air Quality Data No testing of this nature performed.
- 5.3.4 Other Analytical Data Soil samples were collected simultaneously with the surface water samples on November 30, 1981. Analytical results indicate contamination of soil with heavy metals and specifically t-chromium. Also, trace concentrations of organics were detected in a halogenated organic scan. Results are presented on the following pages.

ANALYTICAL, RESULTS NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION ATOMIC ABSORPTION PRIORITY POLLUTANT ANALYSES SOIL ANALYSES

- 7 - N

Beport Date: 12/30/81

		HETALS EL	3		
	A DATE OF STREET	SAMPLE IDENTIFICATION (DATE)			
	UNITS OF	R-001-01	R-001-08	R-001-12	
COMPOUND	MEASURE	(11/30/81)	(11/30/81)	*(11/30/81)	
Total antimony	ug/g dry		240	×30	
Total arsenic	ug/g dry	761	\$\$4,600	58	
Total beryllium	ug/g dry	31.6°4	15 22 S R. F.	E-4.3	
Total cadmium	ug/g dry	£0.8 -		く0_7 ン	
Total chromium	ug/g dry	2,700	1,800	78	
Total copper	ug/g dry	160	5-1-93 - CHAR	18 7.9	
Total lead	ug/g dry		52 52	38	
Total mercury	ug/g dry		·马马"(中文文	÷0.8	
Total nickel	ug/g dry	*84	宗教17年关	110	
Total selenium	ug/g dry				
Total silver	ug/g dry	1.6	这一个 样的	JAL-1: 3 253	
Total thallium	ug/g dry	* 20	<20	· · · · · · · · · · · · · · · · · · ·	
•Total zinc	ug/g dry	660	1,500	590	
Dry Weight		14	9.5	12	

COMMENTS: Comments pertain to data on one or all pages of this report. Samples were received at Recra on 11/30/81.

FOR RECRA RESEARCH, INC. HOUM D Manchul

DATE //////

2 11.0

1.

I.D. #81_1001

301204

32-A (S 75)

ANALYTICAL RESULTS

DEPARTMENT OF ENVIRONMENTAL CONSERVATION

PRIORITY POLLUTANT ANALYSES

Report Data: 12/30/8

DE SHED SHE SHE - 100 ME

1			
	and the state of the state		-SAMPLE IDENTIFICATION (DATE)
		UNITS OF.	carate -002-01 → C 7-2-002-02 → c
	COMPOUND THE	MEASURE	27(11/30/81)天年年(11/30/81) 三
10	Total antimony	ug/g dry	
	Total arsenic	ug/g dry	······································
	Total beryllium	ug/g dry	
	Total cadmium	ug/g dry	1000-5月11日の15日のかい
	Total chromium	ug/g dry	66 31,000
	Total copper	ug/g dry	140 TRE # 2569 300 1
	Total lead	ug/g dry	32 3 20 20 Y
*	Total mercury	ug7g dry	2.7 美教 王武0.9
	Total nickel	ug/g dry	5.4.76
	Total selenium	ug/g dry	ない、「ないない」で、
	Total silver	ug/g dry	
	Total thallium	ug/g dry	20 1 240
Ŧ.	Total zinc	ug/g dry	500
	Dry Weight		

COMMENTS: All results for soil analyses are being reported on a dry weight basis.

FOR RECRA RESEARCH, INC. Rown 0 97 une

DATE 7011615

301205

A ST. LASH & ANGER STATISTICS

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION ATOMIC ABSORPTION PRIORITY POLLUTANT ANALYSES WATER ANALYSES

NALYTICAL RESULTS

2/30/8 Report Date: eceived: 11/30/8

		HETALS .	150 2	2 3 W
a ser an the second	\$ 75 (A.	SAMPLE 1	DENTIFICATIO	N (DATE)
·····································	UNITS OF		R-001-05-	- B-001-09
COMPOUND	MEASURE	(11/30/81)	(11/30/81)	$(11/30/81)^2$
Total antimony	mg/1	1×0.2	20.2	×0.2
Total arsenic	µg/1	12-13	221	-74,400
Total beryllium	mg/1	0:01	<0.01	₹0.01
Total cadmium	mg/1	0.008	0.010	<0.005
Total chromium	mg/1	0.070	5 D. 346	0.266
Total copper	mg/1	0.014	<0.010	5 0.060 T
Total lead	mg/1	<0.03	××0:03	0.04
Total mercury	ug/1	1. 1. 1. 1.	i i i i i i i i i i i i i i i i i i i	2:21*238
Total nickel	mg/l	* =<0.03	0.06	0.05
Total selenium	ug/1 -	14	- 24	= <20
Total silver	mg/1	<0.008	0.016	<0.008
Total thallium	mg/1	.0.2	<0.1	<0.1
Total zinc	ing/1	0.005	<0.005	1.28

COMMENTS: Values reported as "less than" (<) indicate the working detection limit for the particular sample and/or parameter.

DATE

and the second second

FOR RECRA RESEARCH, INC. Than D march

301206

CALCH .: I.D. #81-1091

ANALYTICAL RESULTS

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION PRIORITY POLLUTANT AMALYS WATER ANALYSES

port Date:

ଟ	and the second second second	the state of the second state	HETALS L		
	A PROVIDE AND A PROVIDA AND A		SAMPLE .I	DENTIFICATION.	(DATE)
		UNITS OF	A-002-03	sta -002-06	R-002-09 6
	COMPOUND	MEASURE	(11730/81)-	Z117307817	(11/30/81)
	Total antimony	mg/1	¥40.2		0.2
1	Total arsenic	₩8/1 ÷52		P#126 75 58	
	Total beryllium	mg/1	0.01 H	0:01	\$0.01 ···
-	Total cadmium	mg/I	0.005 S	7.0.008	×ð.005-**
	Total chromium	mg/1	5.336	17.892	3 0.010 A
	Total copper	mg/1 当社	0.026	19.11	0.018
	Total lead	mg/1 9		0.06	40.03
	Total mercury	· · · · · · · · · · · · · · · · · · ·			
	Total nickel	mg/1	×0.03	120723 4 K	<0.03
	Total seleníum	ug/1	1×20	SALIG SEL	nti si si
	Total silver	mg/1	0.008	3.0.009 E	50.012
	Total thallium	mg/1	0.1 F	10.1°	¥×0.1
À	Total zinc	mg/1	· 517.8.85	32926.0°946	0.006

COMMENTS: All analyses were performed according to U.S. Environmental Protection Agency methodologies where applicable.

FOR RECRA RESEARCH, INC.

301207

ANALYTICAL RESULTS NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

SOIL ANALYSES

Report Date: 12/30/81.

Dare Received: 11/30/81

		GAS	CHRONATOGRAPHY	
10-11-1-10-10-10-10-10-10-10-10-10-10-10	ALL		PARAMETER (UNITS OF MEASUR	E)
MER OT	SAMPLE IDENTIFICATION	SAMPLE DATE	HALOGENATED ORGANIC SCAN (ECD) LUG/g DRY AS CHLORINE; LINDANE STANDARD)	DRY VEIGHT (Z)
CACPE -	R-001-01	11/30/81	10-75 TANK & F.	344
This	R-001-08	11/30/81	······································	
	R-001-12	11/30/81	0.38	12 TEL
S'NE OF SH	R-002-01	11/30/81	-A	14
NE OFR	R-002-02	11/30/81	0.75	1125

COMMENTS: Ha

Halogenated Organic Scan results are used for screening purposes only and are not designed for qualification or quantification of any specific organic compound. Results are calculated based upon the chlorine content and the response factor of Lindane but do not imply either the presence or absence of Lindane itself. Halogenated Organic Scan results do not include volatile organic constituents.

FOR RECRA RESEARCH, INC.

- 16 Kay

DATE

6.0 ADEQUACY OF AVAILABLE DATA

In compiling the Hazardous Ranking Score, the Peter Cooper Corporation sites were found to have the following scores for migration potential (Sm). Gowanda Plant 52.3. Markham Site 36.5. However, due to a certain degree of subjectivity in scoring route rating factors, a range for Sm was developed. For the Gowanda plant the range for Sm is 10.0 to 50.0. For the Markhams site the range is 32.5 to 40.5. Data inadequacies are as follows:

- o Currently, Cattaraugus County is undergoing a soil survey and as a result, information regarding surficial soils was limite
- o Population in the area of the Markhams site was difficult to determine and therefore estimated from the topographic map of the area.
- o Population serviced by groundwater was estimated based on information provided by the water superintendent.

recycled paper

7.0 PROPOSED PHASE II WORK PLAN

7.1 Objectives

As per the inadequacies of the data base that were itemized in the preceding section, a work plan has been developed which, to the extent practical, will provide the information required to address the following list.

o Potential environmental effects of the landfills.

- The extent and magnitude of contamination, based on site specific hydrogeologic conditions.
- o The data inputs necessary to effectuate the development and recommendation of cost effective remedial actions.

Detailed descriptions of the elements of this work plan are herein provided.

7.2 Scope of Work

The primary purpose of this work element is to fill the data gaps identified in the preliminary assessment so as to permit a complete site characterization/ranking (HRS) and engineering evaluation of remedial alternatives. The preliminary field investigation includes the following items:

- o Geophysical Exploration Plant Site
- o Subsurface Investigation
- o: Monitoring Well Installation
- o Sampling and Analysis

Throughout the investigative effort, field activities will be performed in strict accordance with established safety protocol, presented in Recra Research, Inc.'s <u>Operation Manual - Field and Analytical</u> <u>Services</u> (previously submitted to NYSDEC by Recra as part of a prequalifying submission).

7.2.1 Geophysical Exploration - Due to the adequacy of data a geophysical exploration is not considered necessary for the Peter Cooper Plant site. However, after initial assessment of the ambient air quality at the Markhams site, a geophysical program will be conducted to determine the limits of the disposal area, aid in determining the possibility and extent of groundwater contamination. supplement the site-specific and data on geology. The method proposed for the Markhams site is a VLF-EM Terrain Conductivity Survey. This survey will be performed by recording continuous conductivity measurements on an EM-31 terrain conductivity meter equipped with a strip chart recorder. These measurements will be taken on a grid pattern established using a tape and level, in the area of the disposal site.

-16-

7.2.2 <u>Subsurface Investigation</u> - Four (4) monitoring wells will be installed at the Gowanda Plant Site per the attached rawing. The estimated depth of each will be twenty (20) feet. At the Markhams site, a similar pjrogram of four (4) well installations to twenty (20) feet is expected. Additionally at the plan site, three (3) hand auger samples will be collected. Seven (7) hand augers are to be taken at the Markhams site. See Figure 3 and 4 for sampling and well locations.

The borings at both sides will be drilled with a truck, trailer, and/or all-terrain-mounted auger rig using hollow stem augers. During construction of the borings, split spoon samples will be obtained at five (5) foot intervals and/or when noticeable changes in lithology or drilling characteristics occur. If the unconsolidated material is found to be extremely heterogeneous, all borings will be continuously sampled.

The acquired samples will be visually identified in the field following the procedure set forth in ASTM-D-2488, noted appropriately on the boring logs with the sample number and recorded standard penetration test results (ASTM-D-1586), and placed in pre-cleaned, teflon-lined, screw-cap glass jars for return to Recra Research, Inc.'s Tonawanda, New York laboratory.

-17-

301214

@- Previous Sampling

In order to avoid possible cross-contamination during construction of the borings, the apparent upgradient borings will be completed first; then the downgradient holes will be drilled. Between each boring, the augers will be cleaned with water obtained from a known noncontaminated source. Also, between each split spoon sample, the split spoon will be cleaned with water, acetone and distilled water. All spent water/acetone liquid accumulated during this process will be disposed of in an on-site drum. Upon completion of each boring to bedrock, the boring will be backfilled with cement bentonite grout to approximately five (5) to six (6) feet below the first encountered water level, in order to avoid the possible vertical migration of contaminated groundwater from the first encountered water-bearing zone to bedrock. Prior to leaving the site, the drill rig will be decontaminated using high pressure water.

7.2.3 <u>Monitoring Well Installation</u> - The monitoring wells will be constructed of two-inch I.D. cast iron riser pipe with a fivefoot long galvanized, wire-wound-wrapped steel screen. Although the use of PVC casing and screens would be less expensive, the possible presence of solvents suggests the use of galvanized steel screens and risers. The screen will be placed just below the encountered water table. The annulus between the casing/screen and boring well will be properly sand-packed

-20-
301216

ecology and environment

recycled paper

and sealed (cement/bentonite and cement) to the ground surface and the well provided with a locking cap. A typical monitoring well in unconsolidated material is illustrated in Figure 4.

Upon completion of well construction, all monitoring wells will be properly developed, and all test borings and/or top of well casings will be surveyed to determine their location and elevation above sea level. At that time, variable head tests will be performed on the wells around the site to estimate the insitu permeability of the screened interval.

All field activity will be under the direct supervision of a qualified geologist and/or hydrogeologist.

7.2.4 Sampling and Analysis - The following procedures will encompass the sampling and analyses from the newly installed wells and surface water and sediment, sampling and analyses of the samples obtained during air monitoring, and analyses of selected samples from the boring program. If desired, all samples will be split with the owner of the site. Also, upon completion of the analytical program, the owner will be notified of the results if he so requests. All groundwater and surface water samples will be analyzed for the parameters listed in Table 1.

-21-

ligule .

MONITORING WELL DETAIL

In Unconsolidated Formation

TABLE 1: ANALYTICAL PARAMETERS

pН

Specific Conductance

Chloride

Total Metals

+Arsenic

+Beryllium

+Chromium (t)

+Copper

+Lead

+Mercury

+Nickel

+Silver

+Zinc

+Halogenated Organic Scan

+Volatile Halogenated Organic Scan

Dry Weight (soils only)

Grain size and Atterberg limits (10 samples)

+Indicates analyses also done on soils.

7.2.4.1 <u>Groundwater</u> - Following equilibrium of water levels within the installed wells, water elevations will be measured to determine the water table surface. Representative groundwater samples will then be collected after the wells have been fully evacuated or a volume of three times the well contents have been removed.

> Evacuation of water from the wells and the acquisition of the samples will be accomplished with an ISCO Model 1580 peristaltic pump, using separate low-density polyethylene

ccology and environment

tubing for each well and changing the silicon rubber tubing within the ISCO between wells. An exception to this procedure will be employed when obtaining the required volume of sample for volatile organic analysis. This will be accomplished using small volume galvanized steel bailers that have been separately designated for each well.

Upon collection of the samples, field pH, temperature and conductivity measurements will be recorded. The samples will be placed in appropriate precleaned bottles/septa vials, labelled, chilled and immediately returned to Recra's Tonawanda, New York laboratory for preservation and analyses of previously listed chemical parameters. If the samples cannot be returned to Recra's laboratory in a timely fashion due to the distance between the site and Recra's laboratory, field preservation will be performed prior to chilling.

7.2.4.2 <u>Surface Water</u> - The sampling of surface water at the Plant site will entail collecting water and sediment at two (2) locations in the wetland west of the landfill and water samples only at three (3) locations in Cattaraugus Creek. The creek samples will be taken upstream of, adjacent to, and downstream of the landfill. Sampling locations are illustrated in Figure 3.

The sampling of surface water at the Markhams site will entail collecting water and sediment samples from three (3) locations in the wetland located north of the landfill. Sampling locations for this site are illustrated in Figure 4.

The samples will be obtained using a pond sampler with separate sampling bottles designated for each sampling location. Sediment samples will be taken using a two (2) foot gravity type sampler. All sediment samples will be placed in precleaned, teflon-lined, screw capped glass jars, labelled, chilled and returned to Recra for analysis. The same procedures as determined for groundwater will be followed after acquisition of the surface water samples and the samples will be analyzed for the previously listed parameters.

7.2.4.3 <u>Soil</u> - Selected subsurface soil samples will undergo both physical and chemical analyses. The remaining samples will be archived by Recra Research, Inc. for a period of 6 months after completion of the contract.

-26-

The physical analysis will aid in the characterization of the underlying unconsolidated material. The physical parameters of concern during this investigation are grain size distribution (ASTM-D-422), and classification

(ASTM-D-248). The number of samples to undergo analysis for the above parameters is dependent on the homogeneity of the subsurface conditions underlying the bottom of the uncontrolled hazardous waste landfill. The results from these tests, in conjunction with Standard Penetration Test results, will aid in the design and evaluation of remedial programs.

Chemical analyses of selected samples will be used to characterize attenuation by on-site soils. A sample from the unsaturated zone and a sample from the saturated zone will generally be utilized from each test boring.

- 7.2.5 <u>Chemical Analytical Methods</u> The procedures to be utilized for analyses of water, stream sediment and soil samples during this investigation are in basic accordance with one or more of the following reference texts:
 - <u>Methods for Chemical Analysis of Water and Wastes</u>, United
 States Environmental Protection Agency,
 - <u>NIOSH Manual of Analytical Methods</u>, 2nd Edition, United States Department of Health, Education and Welfare,
 - <u>Standard Methods</u> for the <u>Examination</u> of <u>Water</u> and <u>Wastewater</u>, 14th Edition, APHA, AWWA, WPCF.

- 7.2.6 <u>Quality Assurance Program</u> An overall Quality Assurance Program is essential for the production of high-quality analytical data. Such a program requires precise control of laboratory activities. For the Quality Assurance Program in effect at the laboratories of Recra Research, Inc., the reader is referred to a document previously submitted by Recra Research, Inc. to NYSDEC, entitled <u>"Operations Manual - Field and</u> Analytical Services".
- 7.2.7 <u>Engineering Evaluation Report/HRS Score</u> The purpose of this evaluation report is to compile all existing and newlydeveloped information concerning the sites, and utilize this information to:
 - Evaluate feasible remedial alternatives at the sites and prepare budget-level cost estimates for these alternatives.
 - Based upon this evaluation, recommend the most costeffective and environmentally sound course of remedial action.
 - Prepare a Hazard Ranking System (HRS) score for the sites.

It is presently anticipated that the output from this Evaluation Report will consist of a single bound report, subdivided into at least the following sections:

-28-

<u>HRS Score</u> - Utilizing USEPA's formal method of presentation (Federal Register/Vol. 47, No. 137/Friday, July 16, 1982, the following completed work sheets will be included in this opening section: HRS Cover Sheet; Groundwater Route Work Sheet; Surface Water Route Work Sheet; Air Route Work Sheet; Fire and Explosion Work Sheet; and Direct Contact Work Sheet.

Background

Summary of Project Activities

- Identification and Evaluation of Remedial Alternatives
- Recommendations
- Appendix Complete Site Data Base

7.3 Estimated Costs

The estimated costs per individual element of the preceding scope of work are listed as follows:

0	Geophysical Exploration	\$ 3,309.12
0	Subsurface Investigation	14,286.86
0	Sampling and Analysis	10,822.00
0	Engineering Evaluation	13,119.64
	TOTAL	\$ 41.537.62

recycled paper

APPENDIX A

REFERENCES

- 1.) O'Brien and Gere Report, November 1, 1971. Solid Waste Management.
- O'Brien and Gere Report, September, 1971. Interim Report Solid Waste Management.
- 3.) Calkin, P.E. and Muller E.H. Geologic Setting and Glacial Overview of the Upper Cattaraugus Basin, Southwestern New York.
- 4.) Letter from Peter Cooper Corporation Office regarding a brief history of the site and the existence of the engineering reports, April 20, 1983.
- 5.) Richard Orth, plant purchasing agent. Personal interview June 18, 1983.
- 6.) U.S.G.S. Topographic Map Gowanda Quad 1963 and Perrysburg Quad, 1954.
- 7.) Soil Conservation Survey conversation with a soil technician regarding site soils. May 27, 1983.
- 8.) Roger Overfield, water superintendent for the Village of Gowanda. Personal interview, April 29, 1983.
- 9.) Ehmke Drillers. Conversation with Mr. Ehmke regarding domestic wells. May 4, 1983.

10.) NYSDEC Report regarding site and samples collected on November 30, 1981.

11.) Industrial Chemical Survey, January 19, 1977 list of chemicals on-site.

τć,

- 12.) NYSDEC. Conversation with a staff biologist regarding wetland classification. June 2, 1983.
- 13.) Codes, Rules and Regulations of the State of New York, Vol. 6(C), Sec. 838.6, pg. 1669, 1967.

seckcled paper

APPENDIX B

HAZARDOUS WASTE DISPOSAL SITE REPORT REVISED

Code: E

Site Code: 905003

Name of Site: Peter Cooper Corp. - Gowanda Site

Region: 9

County: Cattaraugus

Town/City: Gowanda

Street Address: Palmer Street

Status of Site:

 Animal glue division is inactive, a small adhesive process is in operation today.

o Suburban community. Flat topography.

Nearest body of water: Cattaraugus Creek less than 10 feet.

o Water supply: Village of Gowanda has a public water supply.

o Soil type: Chenango gravelly loam.

o Leachate outbreaks observed.

Type of Site: Manufacturing plant/landfill.

Estimated Size: 50 acres

Hazardous Waste Disposed? yes

<u>Type and Quantity of Hazardous Waste:</u> The industrial sludges surface piled at this site may have contained metals such as chromium. The actual constituents listed in Reference 1 indicate Chromium contamination of soils. Estimated quantity of sludge is 38,600 tons.

Present Owner: Peter Cooper Corp.

Time Period Site Was Used: 1925 to 1971

Site Status: Glue division is inactive, adhesive division is still active.

Type of Samples: None

<u>Remedial Action</u>: Some of the material that was originally landfilled has been removed and transferred to the company's Markhams site.

Status of Legal Action: None

Permits Issued: None

٠.

<u>Assessment of Environmental Problems:</u> Leachate outbreaks evident along the creek banks.

Assessment of Health Problems: None known.

ecology and environment

secAcied paper

APPENDIX B

HAZARDOUS WASTE DISPOSAL SITE REPORT REVISED

Code: Unknown

Site Code: Unknown

Name of Site: Peter Cooper Corp. Markhams Site

Region: 9

County: Cattaraugus

Town/City: Markhams in the Town of Dayton

Street Address: Bentley Road

Status of Site:

o Site is inactive.

o Ruralarea.

o Nearest body of water: Slab City Creek approximately 9,000 ft. from site.

o Water supply: Private wells on Bentley Road.

o Soil type: Gravelly silt loam.

Leachate outbreaks observed.

o Site is located within a designated wetland (EK, PE1, Dexter-Markham) no landfilling in this area.

Type of Site: landfill

Estimated Size: 91 acres/15 acres used for landfilling

Hazardous Waste Disposed? Yes

Type and Quantity of Hazardous Waste: Sludges from the plant were landfilled, estimated amount of sludge is 38,600 tons.

Present Owner: Peter Cooper Corp.

Time Period Site Was Used: 1971 - ?

Site Status: Inactive active.

Type of Samples: None

Remedial Action: None

Permits Issued None

<u>Assessment of Environmental Problems:</u> Leachate outbreaks observed entering the wetlands.

Assessment of Health Problems: None known.

recycled paper

REFERENCE NO. 9

/

APPENDIX B-2 Phase II Results

.

·

> . مەرى

<u>.</u>....

.

. .

you shall any second second

ren de la companya de

ecology and environment secheled paper WALL I M D P 40 R.001-R-031 CATT. Cr. Peter Cooper Co. R-001 R-211-11 30 81 ן מ WATER Sih - S'the light 18" gravel + 42" with stene plus soil isachale breakout STREET 22 - watthe - ground wareet leachate #3 - soil - silf second leachate breakont #s - warea - leachale breakout 49 - soil - joft total dept. - obstruction 5 Top soil 15" Clay Eill 48" black conters & bollowersh us" glacial till eccasional store CINCHITE Abutment R-001.+1 - adjacent to concerte HEADMAR & CREW - @ 125' south case of site of 3" real R-001-41 en. 400 🔎 🖬 📕 67 4 R-oop-43 - 10 300' southear of cile of 30' from a 87 and deesed book 301233 Stat term adverse for a st RR the R. 201 - 44

ŧ.

ANALYTICAL RESULTS

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION ATOMIC ABSORPTION PRIORITY POLLUTANT ANALYSES SOIL ANALYSES GOWANDA SITE

Report Date:	12/30/81
Date Received:	11/30/81

.

r						
		SAMPLE IDENTIFICATION (DATE)				
		WAIER ST.	WAIER ST.	WATER ST.		
· · · ·		SUIL 5.	SUIL D.	SUIL 5'		
•				AUJ TO CONC		
COMPOLINDS	MEASURE	WALL & UNEEN		WALL & UKEEN		
CON 00005	ILAJONE	<u>F1</u>				
Total antimony	ug/g dry	<30	<40	<30		
Total arsenic	ug/g dry	61	4,600	58		
Total beryllium	ug/g dry	1.6	<2	4.3		
Total cadmium	ug/g dry	0.8	<1	<0.7		
Total chromium	ug/g dry	2,700	1,800	78		
Total copper	ug/g dry	160	93	18		
Total lead	ug/g dry	94	52	38		
Total mercury	ug/g dry	<0.7	3.4	<0.8		
Total nickel	ug/g dry	84	41	110		
Total selenium	ug/g dry	<1	<2	<1 -		
Total silver	ug/g dry	1.6	<2	1.3		
Total thallium	ug/g dry	<20	<20	<10		
Total zinc	ug/g dry	660	1,500	590		
Dry Weight	x	14	9.5	12		

METALS

COMMENTS: Comments pertain to data on one or all pages of this report. Samples were received at Recra on 11/30/81.

· · .

FOR RECRA RESEARCH, INC.

DATE

38

натиочита bna узоюта

ANALYTICAL RESULTS

recycled paper

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION ATOMIC ABSORPTION PRIORITY POLLUTANT ANALYSES SUIL ANALYSES GOWANDA SITE

Report Date: 12/30/81 Date Received: 11/30/81

			· · · · · · · · · · · · · · · · · · ·			
		SAMPLE IDENTIFICATION (DATE)				
		WATER ST	WATER ST	WATER ST		
		3" PIPE E	3" PIPE E	3" PIPE E		
COMPOLINDS				CRK BK		
COMPOUNDS	MEASURE	# ↓	#2	#3		
Total antimony	ug/g dry	<0.2	<0.2	<0.2		
Total arsenic	ug/g dry	13	24	4,400		
Total beryllium	ug/g dry	<0.01	<0.01	<0.01		
Total cadmium	ug/g dry	0.008	0.010	<0.005		
Total chromium	ug/g dry	0.070	0.246	0.266		
Total copper	ug/g dry	0.014	<0.010	0.060		
Total lead	ug/g dry	<0.03	<0.03	0.04		
Total mercury	ug/g dry	<1	<1	<1		
Total nickel	ug/g dry	<0.03	0.06	0.05		
Total selenium	ug/g dry	<4	<4	<20		
Total silver	ug/g dry	<0.008	0.016	<0.008		
Total thallium	ug/g dry	<0.2	<0.2	<0.1		
Total zinc	ug/g dry	0.02	<0.1	<0.1		
Dry Weight	x	<0.005	<0.005	1.28		

METALS

COMMENTS: Values reported as "less than" (<) indicate the working detection limit for the particular sample and/or parameter.

. .. .

FOR RECRA RESEARCH, INC.

DATE

80

ANALYTICAL RESULTS

- - ---

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION ATOMIC ABSORPTION PRIORITY POLLUTANT ANALYSES SOIL ANALYSES MARKHAMS SITE

Report Date: 12/30/81 Date Received: 11/30/81

]	SAMPLE IDENTIFICATION (DATE)				
COMPOUNDS	UNITS OF MEASURE	MARKHAM SWAMP H20	MARKHAM SWAMP H20	MARKHAM SWAMP H20		
Total antimony	ug/g dry	<0.2	<0.2	<0.2		
Total arsenic	ug/g dry	<8	20	<8		
Total beryllium	ug/g dry	<0.01	<0.01	<0.01		
Total cadmium	ug/g dry	<0.005	0.008	<0.005		
Total chromium	ug/g dry	0.336	77.6	0.010		
Total copper	ug/g dry	0.026	3.18	0.018		
Total lead	ug/g dry	<0.03	0.06	<0.03		
Total mercury	ug/g dry	<1	<1	<i< td=""></i<>		
Total nickel	ug/g dry	<0.03	0.23	<0.03		
Total selenium	ug/g dry	<20	<20	<4		
Total silver	ug/g dry	0.008	0.009	0.012		
Total thallium	ug/g dry	<0.1	<0.1	<0.1		
Total zinc	ua/a dry	0.416	26.0	0.006		

METALS

COMMENTS: All analyses were performed according to U.S. Environmental Protection Agency methodologies where applicable.

. . .

FOR RECRA RESEARCH, INC.

DATE

9C

ANALYTICAL RESULTS

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION ATOMIC ABSORPTION PRIORITY POLLUTANT ANALYSES SOIL ANALYSES MARKHAMS SITE

Report Date: 12/30/81 Date Received: 11/30/81

		SAMPLE IDENTIFICATION (DATE)			
COMPOUNDS	UNITS OF MEASURE	MARKHAM SOIL - 25' OF SHED	MARKHAM SOIL - 100' NE OF ROY		
Total antimony	ug/g dry	<30	<80		
Total arsenic	ug/g dry	49	84		
Total beryllium	ug/g dry ·	<2	<4		
Total cadmium	ug/g dry	1.2	2.5		
Total chromium	ug/g dry	66	31,000		
Total copper	ug/g dry	140	69		
Total lead	ug/g dry	32	120		
Total mercury	ug/g dry	<0.7	<0.9		
Total nickel	ug/g dry	76	21		
Total selenium	ug/g dry	<1	<2		
Total silver	ug/g dry	1.4	4.1		
Total thallium	ug/g dry	<20	<40		
Total zinc	ug/g dry	500	1,300		
Dry Weight	x	14	11		

METALS

COMMENTS: All results for soil analyses are being reported on a dry weight basis.

FOR RECRA RESEARCH, INC.

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION SOIL ANALYSIS

Report Date:	12/30/81
Date Received:	11/30/81

92

301238

ſ			
		PARAMETER (UNITS OF MEASURE)	
SAMPLE IDENTIFICATION	SAMPLE DATE	HALOGENATED ORGANIC SCAN (ECD) (ug/g DRY AS CHLORINE; LINDANE STANDARD)	DRY WEIGHT (%)
R-001-01	11/30/81	0.45	14
R-001-08	11/30/81	0.57	9.5
R-001012	11/30/81	0.38	12
R-002-01	11/30/81	0.35	14
R-002-02	11/30/81	0.75	11

GAS CHROMATOGRAPHY

COMMENTS: Halogenated Organic Scan results are used for screening purposes only and are not designed for qualification or quantification of any specific organic compound. Results are calculated based upon the chlorine content and the response factor of lindane but do not imply either the presence or absence of Lindane itself. Halogenated Organic Scan results do no include volatile organic constituents.

FOR RECRA RESEARCH, INC.

DATE

•

.

.

.

•

GEOTECHNICAL DATA

۰.

· · .

301239

·

ANALYTICAL PROCEDURES NYS DEC SUPERFUND

Peter Cooper Corporation Gowanda, New York Markhams, New York

Report Date: 8-13-84

Soil samples, which were received by Recra Geotechnical Laboratory, were prepared and tested in accordance with the procedures from the American Society for Testing and Materials (ASTM), <u>Annual Book of ASTM Standards:</u> <u>Part 19 Natural Building Stones, Soil, and Rock, c-1982.</u> The following standard methods were utilized in whole or in part:

- <u>ASTM D 2216-80</u> Laboratory Determination of Water (Moisture) Content of Soil, Rock, and Soil-Aggregate Mixtures.
- o <u>ASTM D 421-58</u> Dry Preparation of Soil Samples for Particle-Size Analysis and Determination of Soil Constants.
- o <u>ASTM D 1140-54</u> Amount of Material in Soils Finer Than the No. 200 (0.075 mm) Seive.
- o ASTM D 422-63 Particle-Size Analysis of Soils.
- o ASTM D 423-66 Liquid Limit of Soils.
- o ASTM D 424-59 Plastic Limit and Plasticity Index of Soils.
- 0 ASTM D 2487-69 Classification of Soils for Engineering Purposes.

Carmin M. Carucud FOR RECRA GEOTECHNICAL LABORATORY

DATE 8-13-84

I.D. # 2EM84001.5000

Peter Cooper Corporation Markhams, New York

Report Date: 8-13-84

	UNITS	SAMPLE IDENTIFICATION			
PARAMETER	OF MEASURE	B2 S-9	B3 S-6	B4 S-4	B4 S-7
Moisture Content					
(As Received)	<u>×</u>	19.7	_24.6	18.7	16.3
(> 4.75 mm).	<u>×</u>	0.0	6.6	0.0	0.6
Sand (4.75 mm > and > 0.075 mm)	<u>x</u>	27.6	78.9	65.1	71.7
Silt and Clay (< 0.075 mm)	x	72.4	14.5	34.9	27.8
Coefficient of Uniformity (Cu)	-	-	-	-	-
Coefficient of Curvature (Cz)	-	-	-	-	-
Liquid Limit	x	19.5	NP	17.5	NP
Plastic Limit	<u>×</u>	15.1	NP	15.5	NP
Plasticity Index	<u>×</u>	4.4	NP	2.0	 NP
Flow Index (Fw)	x	-	_	-	• –
Soil Classification		CL-ML	SM	SM	<u>SM</u>

Additional Sample Information

8-2-84	8-2-84	8-2-84
9_9_94	9 0 94	8-0-84
-	0-9-04	-
	8-2-84 8-9-84 -	8-2-84 8-2-84 8-9-84 8-9-84 - 8-10-84

۰.

FOR RECRA GEOTECHNICAL LABORATORY Camen M. Panuccus

DATE _ 0-13-84

I.D.# 2EM84001.5000

3/907

90

Peter Cooper Corporation Gowanda, New York

Report Date: 8-13-84

	UNITS	SAMPLE IDENTIFICATION			ION I
	OF		1	[
PARAMETER	MEASURE	MW1A S-5	MW3 S-1	Ì	
Moisture Content			r		
(As Received)	x	8.97	11.6	Í	
Gravel					
(> 4.75 mm)	× X	55.9	29.5	İ İ	
Sand	•				
(4.75 mm > and > 0.075 mm)	*	29.3	30.3	1	i i
Silt and Clay			4		
(< 0.075 mm)	x	14.8	40.2	1	
Coefficient of					
Uniformity (Cu)	-	-			
Coefficient of					
Curvature (Cz)	-	-		l	
		1			
Liquid Limit	<u>×</u>	NP	20.7	<u> </u>	
				ļ	
Plastic Limit	<u> </u>	NP	15.2	L	
	~			ļ	
Plasticity index	<u> </u>	<u>NP</u>	5.5		
Elev. Index	~	-	-		
riow index				J	·
Soil Classification	_	CM			
JUIT CLASSIFICACIÓN				I	L

Additional Sample Information

	··· 1	1 1	
Sample Date	5-21-84	5-23-84	
Analysis Date: Moisture Content	8-2-84	8-2-84	
Analysis Date: Particle Size	8-9-84	8-9-84	
Analysis Date: Atterberg Limits	-	8-10-84	

÷.,

FOR RECRA GEOTECHNICAL LABORATORY Carmen M. Parucced DATE 8-13-84

I.D. # 2EM84001.5000

Peter Cooper Corporation Markhams, New York

QUALITY CONTROL

Report Date: 8-13-84

REPLICATE ANALYSIS OF SAMPLE B4 S-4

PARAMETER	UNITS OF MEASURE	VALUE	VALUE 2	VALUE 3	MEAN	STANDARD DEVIATION	PERCENT COEFFICIENT OF VARIATION
Liquid Limit	x	17.6	17.4		17.5	0.1	0.8

Values 1 and 2 are each from a one-point method.

REPLICATE ANALYSIS OF SAMPLE B2 S-9

	UNITS OF	VALUE	VALUE	VALUE		STANDARD	PERCENT COEFFICIENT
PARAMETER	MEASURE	1	2	3	MEAN	DEVIATION	OF VARIATION
Liquid Limit	×	19.9	19.2		19.5	0.5	2.5

Values 1 and 2 are each from a one-point method.

FOR RECRA GEOTECHNICAL LABORATORY Camon M. Canucció

DATE 8-13-84

I.D.# 2EM84001.5000

recycled paper

ANALYTICAL NOTATIONS NYS DEC SUPERFUND

Peter Cooper Corporation Gowanda, New York Markhams, New York

Report Date: 8-13-84

- 1. The one-point liquid limit method was utilized for Samples B2 S-9, B4 S-4, B1 S-7, and MW3 S-1 due to limited sample weight.
- 2. A quantitative determination of the Atterberg Limits (liquid limit and plastic limit) for Samples B1 S-6, B2 S-2, B2 S-5, B3 S-6, B4 S-7, and MW3 S-1 was not possible due to insufficient sample weight or due to the texture of the material. Qualitative techniques were utilized to determine the plasticity characteristics of material passing the No. 40 seive (0.42 mm). Samples were deemed either plastic or nonplastic (NP) for soil classification purposes.
- 3. Soil Samples B2 S-2, B3 S-6, MW1A S-5, and MW3 S-1 contained an appreciable amount of gravel. The amount of material, which was avilable to perform the particle size analysis, was less than that required by ASTM; hence, textural delineations should be considered approximate.
- 4. Particle size curves for the sand and gravel fractions are provided for all samples except Bl S-7, B2 S-9, and B4 S-4 (disposed of prior to dry stack seiving). Note that the particle size curves are not required for classification purposes.

FOR RECRA GEOTECHNICAL LABORATORY ('armin M Garuced)

DATE 8-13-84

I.D.# 2EM84001.5000

301244

PETER COOPER CORPORATION MARKHAMS, NEW YORK

SOLL GRADATION CURVE

O:B1 S-6 (10-12 feet)

FOR RECRA CEOFECHNICAL LABORATORY

Camer nº Garucud 8.13.84

2EM84001.5000 1.10.

DATE

301245

PETER COOPER CORPORATION MARKHAMS, NEW YORK

SOTE GRADATION CURVES

cology and environment

PETER COOPER CORPORATION MARKHAMS, NEW YORK

SOIL GRADATION CURVE

O: B3 S-6 (10-12 feet)

301247

301

FOR BECRA CLOTECHNECKI, EABORATORY

Carmen M. Ganucud 8-13-84

•

1.0. 2EM84001.5000

PETER COOPER CORPORATION MARKHAMS, NEW YORK

SOLL GRADATION CURVE

FOR RECRA CEOTECHNICAL LABORATORY

301248

102

Camon M Ganuccio 8-13-84

2EM84001.5000 1.0.1

DATE

recycled paper

ecology and environmen

PETER COOPER CORPORATION GOWANDA, NEW YORK

SOLL GRADATION CURVE

1.0...

2EM84001.5000

7 ů Ţ

PETER COOPER CORPORATION GOWANDA, NEW YORK

SOIL GRADATION CURVE

301250

<u>10</u>2

recycled paper

PHASE II ANALYTICAL DATA

· · · · ·
KEY TO ANALYTICAL SAMPLES FOR PETER COOPER AND GOWANDA SITES 2EMS4001.5000

:1-S Surface Soil Gowanda /2-S Surface Soil Gowanda 3-S Surface Soil Gowanda Surface Soil Markhams 4-S 5-S Surface Soil Markhams Surface Soil Markhams 6-S 7-5 Surface Soil Markhams Surface Soil Markhams 8-S 9-5 Surface Soil Markhams 10-S Surface Soil Markhams

1-C Surface Water Sample with Sediment Gowanda (sediment portion)
 2-C Surface Water Sample with Sediment Gowanda (sediment portion)
 3-C Surface Water Sample with Sediment Markhams (sediment portion)
 4-C Surface Water Sample with Sediment Markhams (sediment portion)
 5-C Surface Water Sample with Sediment Markhams (sediment portion)

1-W Surface Water with Sediment Gowanda (water portion)
 2-W Surface Water with Sediment Gowanda (water portion)
 3-W Surface Water with Sediment Markhams (water portion)
 4-W Surface Water with Sediment Markhams (water portion)
 5-W Surface Water with Sediment Markhams (water portion)

B-1 Ground Water Markhams
B-2 Ground Water Markhams
B-3 Ground Water Markhams
B-4 Ground Water Markhams
B-5 Ground Water Markhams

MW-1 Ground Water Gowanda MW-2 Ground Water Gowanda MW-3 Ground Water Gowanda MW-4 Ground Water Gowanda SW-1 Surface Water Gowanda SW-2 Surface Water Gowanda

SW-3 Surface Water Gowanda

B-1 S#4 6-8' Split Spoon Sample Markhams S#8 14-16' Split Spoon Sample Markhams B-1 B-2 S#3 4-6' Split Spoon Sample Markhams S#8 14-16' Split Spoon Sample Markhams **B-2** 6-8' Split Spoon Sample Markhams B-3 S#4 S#9 16-18' Split Spoon Sample Markhams B-3 4-6' B-4 Split Spoon Sample Markhams S#3 S#8 14-16' Split Spoon Sample Markhams B-4 4-6" (MW-1A S#3 Split Spoon Sample Gowanda MW-3 S#2 2-4' Split Spoon Sample Gowanda

PETER COOPER CORPORATION GOWANDA AND MARKHAMS, N.Y.

Report Date: 7/31/84

COMMENTS:

Comments pertain to data on one or all pages of this report.

The samples were collected by Recra personnel on the date specified below each sample identification.

Analyses were performed according to U.S. Environmental Protection Agency Methodologies where applicable.

Halogenated Organic Scan (ECD) results are used for screening purposes only and are not designed for qualification or quantification of any specific organic compound. Results are calculated based upon the chlorine content and response factor of Lindane but do not imply either the presence or absence of Lindane itself. Halogenated Organic Scan results do not include volatile organic constituents.

Volatile Halogenated Organic Scan (Coulson's) results are used for screening purposes only and are not designed for qualification or quantification of specific organic compounds. Results are calculated based upon the chlorine content and response factor or Carbon Tetrachloride, but do not imply either the presence or absence of the compound itself.

Values reported as "less than" (<) indicate the working detection limit for the particular sample and/or parameter.

Results of the analysis of soils are corrected for moisture content and reported on a dry weight basis.

FOR RECRA ENVIRONMENTAL LABORATORIES	pleborah T- Francio
DATE	7/31/84

PETER COOPER CORPORATION GOWANDA AND MARKHAMS, N.Y.

Report Date: 7/31/84

		SAMPLE IDENTIFICATION (DATE)			
PARAMETER	UNITS OF MEASURE	B-1 (6/6/84)	B-2 (6/4/84)	B-3 (6/1/84)	B-4 (6/1/84)
Chloride	mg/1	39	1.8	6.8	5.4
Soluble Arsenic	mg/l [:]	<0.005	<0.005	<0.005	<0.005
Soluble Bervllium	mg/1	<0.005	<0.005	<0.005	<0.005
Soluble Chromium	mg/1 ·	0.026	<0.01	<0.01	0.023
Soluble Copper	mg/l	<0.01	<0.01	<0.01	0.013
Soluble Lead	mg/1	<0.005	<0.005	<0.005	<0.005
Soluble Mercury	mg/l	<0.001	<0.001	<0.001	<0.001
Soluble Silver	mg/1	<0.006	0.015	<0.006	<0.006
Soluble Zinc	mg/1	38.3	0.791	0.315	5.00'

FOR RECRA ENVIRONMENTAL LABORATORIES D.J.D. For R.Y. Finn DATE 7/31/84

-- -- ...

PETER COOPER CORPORATION GOWANDA AND MARKHAMS, N.Y.

1	1 L	SAMPLE IDENTIFICATION (DATE)			
	UNITS OF	<u>MW-1</u>		1 <u>MW-3</u>	<u>MW-4</u>
PARAMETER	MEASURE	(6/6/84)	(6/6/84)	(6/7/84)	(6/7/84)
Chloride	mg/1	1.0	635	609	<u> </u>
Soluble Arsenic	mg/1	<0.005	0.013	0.015	<0.005
Soluble Bervllium	mg/1	<0.005	<0.005	<0.005	<0.005
Soluble Chromium	mg/1	<0.01	0.863 .	0.362	0.223
Soluble Copper	mg/1	<0.01	<0.01	<0.01	<0.01
Soluble Lead	mg/1	<0.005	<0.005	<0.005	<0.005
Soluble Mercury	mg/1	<0.001	<0.001	<0.001	<0.001
Soluble Silver	mg/l	<0.006	<0.006	<0.006	0.006
Soluble Zinc	mg/1	16.4	<0.005	0.018	0.065

FOR RECRA ENVIRONMENTAL LABORATORIES D.J. D. for R.Y. Simm DATE <u>7/31/84</u>

J

recycled paper

ANALYTICAL RESULTS

÷

PETER COOPER CORPORATION GOWANDA AND MARKHAMS, N.Y.

Report Date: 7/31/84

	1 1	SAMPLE IDENTIFICATION (DATE)			
PARAMETER	UNITS OF MEASURE	SW-1 (6/7/84)	SW-2 (6/7/84)	S₩-3 (6/7/84)	
Chloride	mg/l	16	18	25	
Total Arsenic	mg/l	<0.005	<0.005	<0.005	
Total Bervllium	mg/1	<0.005	<0.005	<0.005	
Total Chromium	mg/1	<0.01	<0.01	<0.01	
Total Copper	mg/l	<0.01	<0.01	<0.01	
Total Lead	mg/1 !	<0.005	÷ <0.005	<0.005	
Total Mercury	mg/1	<0.001	<0.001	<0.001	
Total Silver	mg/1 :	<0.006	0.008	<0.006	
Total Zinc	mg/1 .	0.013	<0.005	<0.005	

FOR RECRA ENVIRONMENTAL LABORATORIES D.J. D for R.V. Finn DATE 7/31/84

· ··.

.

- --

PETER COOPER CORPORATION GOWANDA AND MARKHAMS, N.Y.

	1	SAM	PLE IDENTIFICATION	(DATE)
PARAMETER	UNITS OF MEASURE	1-W (6/7/84)	2-W (6/7/84)	3-W (6/11/84)
Chloride	mg/1	31	31	1.6
Total Arsenic	mg/l	0.006	0.006	0.006
Total Bervllium	mg/l	<0.005	<0.005	<0.005
Total Chromium	mg/l	0.019	<0.01	0.092 🖌
Total Copper	mg/1	<0.01	<0.01	0.017
Total Lead	mg/1	<0.005	<0.005	<0.005
Total Mercury	mg/1	<0.001	<0.001	<0.001
Total Silver	mg/1	<0.006	<0.007	<0.004
Total Zinc	mg/1	0.037	0.013	0.054

FOR RECRA ENVIRONMENTAL LABORATORIES D. J. D. FOR R.V. Finn DATE 7/31/84

· · .

PETER COOPER CORPORATION GOWANDA AND MARKHAMS, N.Y.

Report Date: 7/31/84

		SAMPLE IDENTIFICATION (DATE)		
	UNITS OF	4-W	5-16	
PARAMETER	MEASURE	(6/11/84)	(6/12/84)	
Chloride	mg/1	2.4	4.2	
Total Arsenic	mg/1	0.006	<0.005	
Total Bervllium	mg/1	<0.005	<0.005	
Total Chromium	mg/1	0.118 •	0.637	
Total Copper	i mg/1	0.022	0.018	
Total Lead	mg/1	<0.005	<0.005	
Total Mercury	mg/1	<0.001	<0.001	
Total Silver	mg/1	<0.004	<0.007	
Total Zinc	mg/l	0.070	0.114	

FOR RECRA ENVIRONMENTAL LABORATORIES D.J.D. for R.V. Finn DATE 7/31/84

.

PETER COOPER CORPORATION GOWANDA AND MARKHAMS, N.Y.

				AMPLE IDENTIE	ICATION (DAT	E)	1
PARAME	TER	UNITS OF MEASURE	1-5 (6/11/84)	$\begin{vmatrix} 2-5\\(6/11/84)\end{vmatrix}$	3-S (6/11/84)	4-S (6/12/84)	
Total	Arsenic	ug/g drv	11.5	11.1	10.5	13.6	
Tetal	Bervllium	ug/g dry	<0.5	<0.5	<0.5	<0.5	
Total	Chromium	ug/g dry	13.8	49.7	50.2	437	_
Total	Copper	ug/g dry	-18.9	25.9	25.7	34.1	
Total	Lead	ug/g dry	7.3	20.6	6.6 ¹	20.4	
Total	Mercury	ug/g dry	<0.05	<0.05	<0.06	0.11	
Total	Silver	ug/g dry	1 0.85	<0.4	<0.5	<0.5	
Total	Zinc	ug/g dry	67.1	104	100	156	

FOR RECRA ENVIRONMENTAL LABORATORIES D. J. D. for R.V. Finn

DATE 7/31/84

LecAcjeq babel

ANALYTICAL RESULTS

PETER COOPER CORPORATION GOWANDA AND MARKHAMS, N.Y.

Report Date: 7/31/84

		SAMPLE IDENTIFICATION (DATE)		
PARAMETER	UNITS OF MEASURE	5-S (6/12/84)	6-5 (6/12/84)	7-S (6/12/84)
Total Arsenic	ug/g drv	15.5	16.2	9.2
Total Bervllium	ug/g drv	<0.6	<0.5	<0.8
Total Chromium	ug/g drv	955 🎽	42.7	25,400 -
Total Copper	ug/g dry	50.1	24.4	124
Total Lead	ug/g dry	30.1	9.4	60.8
Total Mercury	ug/g drv	0.12	<0.06	0.91
Total Silver	ug/g drv	<0.5	0.54	<0.8
Total Zinc	ug/g drv	380	119	991

FOR RECRA ENVIRONMENTAL LABORATORIES D.J.D. for Q.V. Finne

.....

DATE 7/31/84

recycled paper

ANALYTICAL RESULTS

PETER COOPER CORPORATION GOWANDA AND MARKHAMS, N.Y.

Report Date: 7/31/84

		SAMPLE IDENTIFICATION (DATE)		
PARAMETER	UNITS OF MEASURE	8-5 (6/12/84)	9-5 (6/12/84)	10-S (6/12/84)
Total Arsenic	ug/2 drv	9.9	20.2	14.8
Total Beryllium	ug/g drv	<0.5	<0.6	<0.5
Total Chromium	ug/g drv	2,340	1,850 - i	162
Total Copper	ug/g drv	32.4	43.3	45.1
Total Lead	ug/g dry	8.8	11.4	12.4
Total Mercury	ug/g dry	<0.06	0.32	<0.05
Total Silver	ug/g drv	<0.5	<0.6	<0.5
Total Zinc	ug/g drv	135	168	467

FOR RECRA ENVIRONMENTAL LAGORATORIES D.J.D for R.Y. Finn DATE 7/31/84

PETER COOPER CORPORATION GOWANDA AND MARKHAMS, N.Y.

	l [SAMPLE	IDENTIFICATION	(DATE)	
PARAMETER	UNITS OF MEASURE	1-C (6/7/84)	2-C (6/7/84)	3-C (6/11/84)	
Total Arsenic	ug/g dry	8.6	11.2	3.9	
Total Bervllium	ug/g drv	<0.9	<u> <0.5</u>	<0.9	
Total Chromium	ug/g drv	63,600	57.9	27.2	
Total Copper	ug/g drv	76.9	20.1	55.3	
Total Lead	ug/g dry	7.6	41.9	144	
Total Mercury	ug/g dry	1.9	<0.06	<0.1	
Total Silver	ug/g dry	<0.4	4.1	<0.4	·
Total Zinc	ug/g drv	245	503	867	

FOR RECRA ENVIRONMENTAL LABORATORIES D.J. D for R.Y. Finn DATE 7/31/64

. . .

301262

1:

PETER COOPER CORPORATION GOWANDA AND MARKHAMS, N.Y.

Report Date: 7/31/84

[SAMPLE IDENTIFICATION (DATE)		
PARAMETER	UNITS OF MEASURE	4-C (6/11/84)	5-C (6/12/84)	
Total Arsenic	ug/g drv	2.7	3.0	
Total Bervllium	ug/g drv	<2	<0.9	
Total Chromium	ug/g dry	134 +	100 •	
Total Copper	ug/g dry	85.2	25.6	
Total Lead	ug/g drv	5.8	5.3	
Total Mercury	ug/g drv	<0.3	<0.2	
Total Silver	ug/g dry	6.7	<0.5	
Total Zinc	ug/g drv '	161	91.5	

R.Y. Finn FOR RECRA ENVIRONMENTAL LABORATORIES D.J.D. for • . DATE 7/31/24

.

PETER COOPER CORPORATION GOWANDA AND MARKHAMS, N.Y.

Report Date: 7/31/84

		SAMPLE IDENTIFICATION (DATE)		
PARAMETER	UNITS OF MEASURE	B-1, SB-4 (6-8') (5/24/84)	B-1, SB-8 (14-16') (5/24/84)	
Total Arsenic	ug/g drv	7.8	8.2	
Total Beryllium	ug/g drv	<0.5	<0.5	
Total Chromium	ug/g drv	1,290 🖌	13.0	
Total Copper	ug/g drv	41.7	16.7	
Total Lead	ug/g dry	18.8	2.1	
Total Mercury	ug/g drv i	<0.05	<0.05	
Total Silver	ug/g drv 1	0.63	2.9	
Total Zinc	ug/g drv	131	104	

. FOR RECRA ENVIRONMENTAL LABORATORIES D.J. D for R.V. Finn DATE 7/31/84

.

PETER COOPER CORPORATION GOWANDA AND MARKHAMS, N.Y.

	1	SAMPLE IDENTIF	ICATION (DATE)
PARAMETER	UNITS OF MEASURE	B-2, SB-3 (4-6') (5/24/84)	B-2, SB-8 (14-16') (5/24/84)
Total Arsenic	ug/g drv	8.6	7.5
Total Bervllium	ug/g drv	<0.5	<0.5
Total Chromium	ug/g drv	56.1	6.4
Total Copper	ug/g drv	31.3	15.3
Total Lead	ug/g drv	6.7	1.6
Total Mercury	ug/g drv	<0.05	<0.05
Total Silver	ug/g dry	<0.3	0.77
Total Zinc	ug/g dry	141	87.2

R.V. Finn FOR RECRA ENVIRONMENTAL LABORATORIES D.J. D for DATE 7/31/84

PETER COOPER CORPORATION GOWANDA AND MARKHAMS, N.Y.

Report Date: 7/31/84

	1	SAMPLE IDENT	IFICATION (DATE)
PARAMETER	UNITS OF MEASURE	B-3, SB-4 (6-8') (5/25/84)	B-3, SB-9 (16-18') (5/25/84)
Total Arsenic	ug/g drv	11.5	5.2
Total Bervllium	ug/g drv	<0.4	<0.5
Total Chromium	ug/g dry	13.7	4.9
Total Copper	ug/g drv	43.4	14.5
Total Lead	ug/g drv	7.6	4.9
Total Mercurv	ug/g drv	<0.04	<0.07
Total Silver	ug/g drv [!]	<0.4	<0.3
Total Zinc	ug/g drv	269	224

FOR RECRA ENVIRONMENTAL LABORATORIES D.J. D for R.Y. Fimm • . DATE 7/31/84

• • •

recycled paper

PETER COOPER CORPORATION GOWANDA AND MARKHAMS, N.Y.

Report Date: 7/31/84

		SAMPLE IDE	NTIFI	CATION (DATE)
PARAMETER	UNITS OF MEASURE	B-4, SB-3 (4-6') (5/29/84)	i	B-4, SB-8 (14-16') (5/29/84)
Total Arsenic	ug/g drv	9.1	i	11.7
Total Bervllium	ug/g drv	<0.4		<0.4
Total Chromium	ug/g drv	21.9	•	10.1
Total Copper	ug/g dry	27.9		24.4
Total Lead	ug/g drv	2.2		1.7
Total Mercury	ug/g drv	<0.08		<0.07
Total Silver	ug/g drv	<0.3		0.66
Total Zinc	ug/g drv	83.3		73.4

FOR RECRA ENVIRONMENTAL LABORATORIES D.J. D for V. Finn DATE <u>7/31/84</u>

PETER COOPER CORPORATION GOWANDA AND MARKHAMS, N.Y.

Report Date: 7/31/84

[SAMPLE IDENT	IFICATION (DATE)	
PARAMETER	UNITS OF MEASURE	MW-1A, SB-3 (4-6') (5/21/84)	MW-3, SB-2 (2-4') (5/22/84)	
Total Arsenic	ug/g drv	8.9	10.7	
Total Bervllium	ug/g drv	<0.4	<0.5	
Total Chromium	ug/g drv	11.9	3,650	
Total Copper	ug/g dry	15.9	100	
Total Lead	ug/g dry	1.2	5.9	
Total Mercury	ug/g drv	<0.06	0.42	
Total Silver	ug/g dry i	<0.3	<0.5	
Total Zinc	ug/g drv	56.8	773	

FOR RECRA ENVIRONMENTAL LABORATORIES D.J.D. for R.Y. Finn

DATE 7/31/84

. -

301268

Leckcjeg babel

ANALYTICAL RESULTS

PETER COOPER CORPORATION GOWANDA AND MARKHAMS, N.Y.

Report Date: 7/31/84

· · · · · · · · · · · · · · · · · · ·		SAMPLE IDENTIFICATION (DATE)			
PARAMETER	UNITS OF MEASURE	B-1 (6/6/84)	B-2 (6/4/84)	B-3 (6/1/84)	B-4 (6/1/84)
Halogenared Organic Scan (ECD)	ug/l as Chlorine; Lindane Standard	<0.5	<0.5	< 0.5	< 0.5
Volatile Halogenated Organic Scan	ug/l as Carbon Tetrachloride		;		
(Coulson's)	. Standard	< 5	62	18	27

FOR RECRA ENVIRONMENTAL LABORATORIES <u>Aleboro by Francia</u> DATE <u>7/31/54</u>

.. .

RECRA ENVIRONMENTAL LABORATORIES I.D. #84-560

126

PETER COOPER CORPORATION GOWANDA AND MARKHAMS, N.Y.

Report Date: 7/31/84

	1	SAMPLE IDENTIFICATION (DATE)			
PARAMETER	UNITS OF MEASURE	MW-1 (6/6/84)	<u>MW-2</u> (6/6/84)	MW-3 (6/7/84)	MW-4 (6/7/84)
Halogenated Organic Scan (ECD)	µg/l as Chlorine; Lindane Standard	<0.5	<0.5	<0.5	<0.5
Volatile Halogenated Organic Scan (Coulson's)	ug/l as Carbon Tetrachloride - Standard	30	<5	540	2.000

FOR RECRA ENVIRONMENTAL LABORATORIES <u>Alebolahi J. Pravio</u> DATE 7/31/84

DATE ____7/31

recycled paper

PETER COOPER CORPORATION GOWANDA AND MARKHAMS, N.Y.

Report Date: 7/31/84

1	l	SAMPLE	IDENTIFICATION	(DATE)
PARAMETER	UNITS OF MEASURE	SW-1 (6/7/84)	SW-2 (6/7/84)	SW-3 (6/7/84)
Halogenated Organic Scan (ECD)	µg/l as Chlorine; Lindane Standard	<0.5	<0.5	<0.5
Volatile Halogenated Organic Scan (Coulson's)	ug/l as Carbon Tetrachloride Standard	34	50	54

FOR RECRA ENVIRONMENTAL LABORATORIES <u>Lliborahig Marin</u> DATE <u>7/31/84</u>

.

RECRA ENVIRONMENTAL LABORATORIES T.D. #84-560

PETER COOPER CORPORATION GOWANDA AND MARKHAMS, N.Y.

Report Date: 7/31/84

	1	SAMP	LE IDENTIFICATION	(DATE)
PARAMETER	UNITS OF MEASURE	1-W (6/7/84)	2-W (6/7/84)	3-W
Halogenated Organic Scan (ECD)	ug/l as Chlorine; Lindane Standard	<0.5	<0.5	<0.5
Volatile Halogenated Organic Scan (Coulson's)	ug/l as Carbon Tetrachloride Standard	26	33	30

FOR RECRA ENVIRONMENTAL LABORATORIES <u>Aleborah: J-Maulo</u> DATE <u>7/3/84</u>

.

12

recycled paper

PETER COOPER CORPORATION GOWANDA AND MARKHAMS, N.Y.

Report Date: 7/31/84

<u> </u>	l	SAMPLE IDENTIF	ICATION (DATE)
PARAMETER	UNITS OF MEASURE	4-W (6/11/84)	5-W (6/12/84)
Halogenated Organic Scan (ECD)	ug/l as Chlorine; Lindane Standard	<0.5	0.5
Volatile Halogenated Organic Scan (Coulson's)	يg/l as Carbon Terrachloride . Standard	58	10

FOR RECRA ENVIRONMENTAL LABORATORIES <u>L'éliorahi F. Aracus</u> DATE <u>7/31/84</u>

351

,

PETER COOPER CORPORATION GOWANDA AND MARKHAMS, N.Y.

Report Date: 7/31/84

	1	SAMPLE IDENTIFICATION (DATE)			
PARAMETER	UNITS OF MEASURE	1-5 (6/11/84)	$\frac{2-S}{(6/11/84)}$	3-S (6/11/84)	4-S (6/12/84)
Halogenated Organic Scan (ECD)	<pre>µg/g dry as Chlorine; Lindane Standard</pre>	<0.5	<0.5	0.5	<0.5
Volatile Halogenated Organic Scan Coulson's)	ug/g dry as Chlorine: Carbon Tetrachloride Standard	<1	<1	<1	<1
free Weight (103°C)		93	92	91	81

FOR RECRA ENVIRONMENTAL LABORATORIES <u>Aleborah F. Praruo</u> DATE <u>7/31/84</u>

PETER COOPER CORPORATION GOWANDA AND MARKHAMS, N.Y.

Report Date: 7/31/84

	1	SAMPL	E IDENTIFICATION (DATE)
PARAMETER	UNITS OF MEASURE	5-5 (6/12/84)	6-S (6/12/84)	7-S (6/12/84)
Halogenated Organic Scan (ECD)	ug/g dry as Chlorine; Lindane Standard	<0.5	<0.5	<0.5
Volatile Halogenated Organic Scan (Coulson's)	ug/g dry as Chlorine; Carbon Tetrachloride Standard	<1	<1	<1
Drv Weight (103°C)	-	76	88	46

۰.

FOR RECRA ENVIRONMENTAL LABORATORIES <u>Melodaki J. Aracus</u> DATE <u>7/31/84</u>

.....

PETER COOPER CORPORATION GOWANDA AND MARKHAMS, N.Y.

Report Date: 7/31/84

	1	SAMPLE IDENTIFICATION (DATE)		
PARAMETER	UNITS OF MEASURE	8-S (6/12/84)	9-5 (6/12/84)	10-S (6/12/84)
Halogenated Organic Scan (ECD)	ug/g dry as Chlorine; Lindane Standard	<0.5	<0.5	<0.5
Volatile Halogenated Organic Scan (Coulson's)	ug/g dry as Chlorine; Carbon Tetrachloride Standard	<1	<1	<1
Dry Weight (103°C)	7	84	81	90

FOR RECRA ENVIRONMENTAL LABORATORIES

J Ararico <u> 1/31/8</u> DATE

131

PETER COOPER CORPORATION GOWANDA AND MARKHAMS, N.Y.

Report Date: 7/31/84

· · · · · · · · · · · · · · · · · · ·	1	SAMPLE IDENTIFICATION (DATE)		
PARAMETER	UNITS OF MEASURE	1-C (6/7/84)	2-C (6/7/84)	3-C (6/11/84)
Halogenated Organic Scan (ECD)	µg/g dry as Chlorine; Lindane Standard	<1	<0.5	.0.5
Volatile Halogenated Organic Scan (Coulson's)	ug/g dry as Chlorine; Carbon Tetrachloride Standard	< 3	<2	< 3
Dry Weight (103°C)	, 	37	66	42

FOR RECRA ENVIRONMENTAL LABORATORIES <u>Melonany Anaria</u> DATE <u>7/31/84</u>

•

132

RECRA ENVIRONMENTAL LABORATORIES T.D. #84-560

·· -

PETER COOPER CORPORATION GOWANDA AND MARKHAMS, N.Y.

Report Date: 7/31/84

	1	SAMPLE IDENTIFICATION (DATE)		
DADANETED	UNITE OF MEASURE	4-C (6/11/8/)	5-0	
Halogenated Organic	ug/g dry as Chlorine;	(0/11/04)	(6/42/84)	
Scan (ECD)	Lindane Standard	<1	<0.5	
Organic Scen	ug/g dry as Chlorine; Carbon Tetrachloride	•		
(Coulson's)	Standard	<6	i <u>3</u>	
Dry Weight (103°C)	7.	18	44	

FOR RECRA ENVIRONMENTAL LABORATORIES <u>Meliorahi J-Marub</u> DATE <u>7/31/84</u>

. ..

PETER COOPER CORPORATION GOWANDA AND MARKHAMS, N.Y.

Report Date: 7/31/84

	1	SAMPLE IDENTIFICATION (DATE)		
	Ι	B-1, SB-4 (6-8')	B-1, SB-8 (14-16')	
PARAMETER	UNITS OF MEASURE	(5/24/84)	(5/24/84)	
Halogenared Organic	ug/g dry as Chlorine;			
Scan (ECD)	Lindane Standard	<0.5	<0.5	
Volatile Halogenated	ug/g dry as Chlorine;			
Organic Scan	Carbon Terrachloride			
(Coulsen's)	Standard	<1	<u> </u>	
Dry Weight (103°C)	3	86	87	

DATE <u>7/31/84</u> FOR RECRA ENVIRONMENTAL LABORATORIES

.

134

- -----

PETER COOPER CORPORATION GOWANDA AND MARKHAMS, N.Y.

Report Date: 7/31/84

	1	SAMPLE IDENTIFICATION (DATE)		
PARAMETER	UNITS OF MEASURE	B-2, SB-3 (4-6') (5/24/84)	B-2, SB-8 (14-16') (5/24/84)	
Halogenated Organic Scan (ECD)	ug/g dry as Chlorine; Lindane Standard	<0.5	<0.5	
Volatile Halogenated Organiz Scan	ug/g dry as Chlorine; Carbon Tetrachloride	······································	· · · · · · · · · · · · · · · · · · ·	
(Coulson's)	Standard	<1	<1	
Drv Weight (103°C)	7	84	81	

FOR RECRA ENVIRONMENTAL LABORATORIES <u>Alborato</u> DATE <u>7/31/84</u>

. .. .

Sec.

PETER COOPER CORPORATION GOWANDA AND MARKHAMS, N.Y.

Report Date: 7/31/84

	1	SAMPLE IDENTIFICATION (DATE)		
PARAMETER	UNITS OF MEASURE	B-3, SB-4 (6-8') (5/25/84)	B-3, SB-9 (16-18') (5/25/84)	
Halogenated Organic Scan (ECD)	ug/g dry as Chlorine; Lindane Standard	<0.5		
Volatile Halogenated Organic Scan	ug/g dry as Chlorine; Carbon Tetrachloride			
(Coulson's)	Standard	<1	<1	
Dry Weight (103°C)	*	86	76	

FOR RECRA ENVIRONMENTAL LABORATORIES

· · · · ·

<u> 1/3, 184</u> DATE

RECRA ENVIRONMENTAL LABORATORIES I.D. #84-560

130

.

PETER COOPER CORPORATION GOWANDA AND MARKHAMS, N.Y.

Report Date: 7/31/84

	1	SAMPLE IDENTIFICATION (DATE)		
		B-4, 5B-3 (4-6')	B-4. SB-8 (14-16*)	
PARAMETER	UNITS OF MEASURE	(5/29/84)	(5/29/84)	
Halogenated Organic	ug/g dry as Chlorine;			
Scan (ECD)	Lindane Standard	<0.5		
Volatile Halogenated	ug/g dry as Chlorine;			
Organic Scan	Carbon Tetrachloride			
(Coulson's)	Standard	<1	<1	
			27	
Dry Weight (103°C)		87	84	

FOR RECRA ENVIRONMENTAL LABORATORIES <u>Alboro hig Fraeino</u> DATE <u>7/31/84</u>

RECRA ENVIRONMENTAL LABORATORIES

recycled paper

ANALYTICAL RESULTS

PETER COOPER CORPORATION GOWANDA AND MARKHAMS, N.Y.

Report Date: 7/31/84

	1	SAMPLE IDENTIFICATION (DATE)		
PARAMETER	UNITS OF MEASURE	MW-1A, SB-3 (4-6') (5/21/84)	MW-3, $SB-2$ (2-4') (5/22/84)	
Halogenated Organic Scan (ECD)	<pre>µg/g dry as Chlorine; Lindane Standard</pre>	<0.5	<0.5	
Volatile Halogenated Organic Scan	µg/g dry as Chlorine; Carbon Tetrachloride		· · · · · · · · · · · · · · · · · · ·	
(Coulson's)	Standard	<1	<u>~1</u>	
Dry Weight (103°C)		90	80	

FOR RECRA ENVIRONMENTAL LABORATORIES <u>Melorahigenauno</u> DATE <u>7/31/84</u>

· · .

RECRA ENVIRONMENTAL LABORATORIES

,

·· -

PETER COOPER CORPORATION GOWANDA AND MARKHAMS, N.Y. QUALITY CONTROL

Report Date: 7/31/84

SAAPLE AW-5, SB-2 (2-4)						
	UNITS OF	VALUE	VALUE		STANDARD	PERCENT COEFFICIENT
PARAMETER	MEASURE	1	2	MEAN	DEVIATION	OF VARIATION
Halogenated Organic	g/g dry as Chlorine;					
Scan (ECD)	Lindane Standard	1.2	1.4	1.3	0.14	11

REPLICATE ANALYSIS OF SAMPLE MUL3 SB-2 (2-/1)

FOR RECRA ENVIRONMENTAL LABORATORIES <u>Alchoration Fracuo</u> DATE <u>7/31/54</u>

· · ·

PETER COOPER CORPORATION COWANDA AND MARKHAMS, N.Y. QUALITY CONTROL

Report Date: 7/31/84

RECOVERY ANALYSIS OF SOIL METHOD BLANK COMPOUND ng OF ng ... IDENTIFICATION SPIKE RECOVERED RECOVERY Lindane 0.24 0.20 83

RECOVERY ANALYSIS OF

SOIL	METHOD	BLANK
------	--------	-------

COMPOUND	ng OF	ng	Z	_
IDENTIFICATION	SPIKE	RECOVERED	RECOVERY	
Lindane	0.24	0.20	83	

RECOVERY ANALYSIS OF

SOIL METHOD BLANK					
COMPOUND IDENTIFICATION	ng OF SPIKE	ng RECOVERED	Z RECOVERY		
Lindane	0.13	0.12	: 92		

۰.

DRIES <u>Aleborah Joranuo</u> DATE <u>7/31/84</u> FOR RECRA ENVIRONMENTAL LABORATORIES

RECRA ENVIRONMENTAL LABORATORIES

140

_----

PETER COOPER CORPORATION GOWANDA AND MARKHAMS, N.Y. QUALITY CONTROL

Report Date: 7/31/84

RECOVERY ANALYSIS OF WATER METHOD BLANK

WATER HEINOD DEANR					
COMPOUND	ng OF	ng	7		
IDENTIFICATION	SPIKE	RECOVERED	RECOVERY		
Lindane	0.24	0.26	108		

RECOVERY ANALYSIS OF WATER METHOD BLANK

COMPOUND	ng OF	ng	Z	
IDENTIFICATION	SPIKE	RECOVERED	RECOVERY	
Lindane	0.24	0.22	92	

RECOVERY ANALYSIS OF

WATER METHOD BLANK								
COMPOUND IDENTIFICATION	ng OF SPIKE	ng RECOVERED	Z RECOVERY					
Lindane	0.24	0.23	96					

Trazuo FOR RECRA ENVIRONMENTAL LABORATORIES ileboro Ş DATE 7/31/84

• • •

Ş

14:

PETER COOPER CORPORATION GOWANDA AND MARKHAMS, N.Y. QUALITY CONTROL

Report Date: 7/31/84

REPLICATE ANALYSIS OF SAMPLE B-4

	LINITS OF	VALUE	VATUE		STANDARD	PERCENT		
DADAMETER		TALLE	VALUE 2	MENN	DENTATION			
PARAMETER	MEASURE	: 1	2	MEAN	DEVIATION	OF VARIATION		
Volatile Halogenated	ug/l as Chlorine;		:	i	÷			
Organic Scan	Carbon Tetrachloride		:		ĺ	i		
(Coulson's)	Standard	31	22	27	6.4	24		

fle ruo FOR RECRA ENVIRONMENTAL LABORATORIES 7/31 DATE

· .

301287
·· - ---

PETER COOPER CORPORATION GOWANDA AND MARKHAMS, N.Y. QUALITY CONTROL

Report Date: 7/31/84

SAMPLE SW-1								
COMPOUND	ng OF	ng		Ī				
IDENTIFICATION	SPIKE	RECOVERED	RECOVERY	ł				
Carbon Tetrachloride	100	120	120	:				

RECOVERY ANALYSIS OF

RECOVERY ANALYSIS OF

	SAMPLE MM			
COMPOUND	ng OF	ng	· 2	
IDENTIFICATION	SPIKE	RECOVERED	RECOVERY	
	i 1	1		
Carbon Tetrachloride	16	18	113	

FOR RECRA ENVIRONMENTAL LABORATORIES

DRIES <u>Allora ki 7- Ararico</u> DATE <u>7/31/84</u>

٠.

14C 301288

PETER COOPER CORPORATION GOWANDA AND MARKHAMS, N.Y. QUALITY CONTROL

Report Date: 7/31/84

RECOVERY ANALYSIS OF

SAMPLE 8-5								
COMPOUND IDENTIFICATION	ng OF SPIKE	ng RECOVERED	چ RECOVERY					
Carbon Tetrachloride	73	71	97					

RECOVERY ANALYSIS OF SAMPLE NW-3 SB-2 (2-4')

COMPOUND IDENTIFICATION	ng OF SPIKE	ng RECOVERED	RECOVERY	
Carbon Tetrachloride	16	12	75	

1.3+ Lebora FOR RECRA ENVIRONMENTAL LABORATORIES DATE _ 7/31

. ...

.

PETER COOPER CORPORATION GOWANDA AND MARKHAMS, N.Y. QUALITY CONTROL

Report Date: 7/31/84

PARAMETER	SAMPLE	UNITS OF	VALUE	VALUE	MEAN	STANDARD DEVIATION	PERCENT COEFFICIENT OF VARIATION
	B-3	mg/1	6.7	7.0	6.85	0.21	3.1
Chloride	2-W	mg/l	31.5	31.5	31.5	0	0
	<u>B-1</u>	mg/l	<0.005	<0.005	<0.005	-	
Soluble Arsenic	2-W	mg/l	0.006	0.006	0.006	0	0
	2-W	mg/1	<0.005	<0.005	<0.005		
Soluble Bervllium	5-W	mg/1	<0.005	<0.005	<0.005		
	<u>2-W</u>	mg/1	<0.01	<u>' <0.01</u>	<0.01	-	
Soluble Chromium	5-W	mg/1	0.660	0.613	0.637	0.033	5.2
	2-W	mg/1	<0.01	<0.01	<0.01		
Soluble Copper	5-W	mg/l	0.019	0.017	0.018	0.0014	7.9
·	<u>2-W</u>	mg/l	<0.005	<0.005	<0.005		_ \
Soluble Lead	5-W	mg/1	<0.005	<0.005	<0.005	-	
	<u> </u>	' mg/l	<0.001	<0.001	<0.001		
Soluble Mercury	2-W	mg/l	<0.001	<0.001	<0.001	-	-
	<u>B-2</u>	mg/l	0.014	0.016	0.015	0.0014	9.4
Soluble Silver	2-W	mg/l	<0.007	<0.007	<0.007		i
	2-W	mg/l	0.014	0.011	0.0125	0.0021	17
Soluble Zinc	5-W	mg/l	0.114	0.113	0.1135	0.0007	0.62

REPLICATE ANALYSES

FOR RECRA ENVIRONMENTAL LABORATORIES D.J.D. FOR K.

.. .

DATE 7/31/84

145

.

Finn

PETER COOPER CORPORATION GOWANDA AND MARKHAMS, N.Y. QUALITY CONTROL

Report Date: 7/31/84

RECOVERY ANALYSIS							
PARAMETER	SAMPLE IDENTIFICATION	_g OF SPIKE	-g RECOVERED	# RECOVERY			
	B-3	2,500	2,462	98.5			
Chloride	2-W	2,500	2,497	99.9			
	B-4	100	97	97			
Soluble Arsenic	<u>1-W</u>	100	113	113			
	<u>MW-2</u>	1,000	1,020	102			
Soluble Bervllium	4-W	1,000	930	93			
	B-2	1,000	1,030	103			
Soluble Chromium	4-W	1,000	950	95			
	B-2	1,000	1,020	102			
Soluble Copper	4-W	1,000	940	94			
Soluble Lead	B-2	100	99	99			
	MW-2	0.4	0.308	77			
Soluble Mercury	1-W	0.4	0.384	96			
	B-4	1,000	870	87			
Soluble Silver	1-W	1,000	920	92			
	B-2	1,000	990	99			
Soluble Zinc	1-W	1,000	1,010	101			

FOR RECRA ENVIRONMENTAL LABORATORIES D.J.D. for R.Y. Finn

· .

DATE <u>7/31/84</u>

RECRA ENVIRONMENTAL LABORATORIES I.D. #84-560

....

PETER COOPER CORPORATION GOWANDA AND MARKHAMS, N.Y. QUALITY CONTROL

Report Date: 7/31/84

REPLICATE ANALYSES							
PARAMETER	SAMPLE IDENTIFICATION	UNITS OF MEASURE	VALUE 1	VALUE 2	MEAN	STANDARD DEVIATION	PERCENT COEFFICIEN OF VARIATIO
	<u> </u>	_g/g drv	18.8	13.7	16.2	3.6	22
	<u> </u>	:_g/g drv	2.95	3.09	3.02	0.098	3.3
Total Arsenic	B-3, SB-9 (16-18')	_g/g drv	4.88	5.44	5.16	0.40	7.8
	<u>6-S</u>	ug/g drv	<0.5	<0.5	<0.5		
	<u>5-C</u>	ug/g dry	≺0.9	<0.9	<0.9	-	
Total Bervllium	B-3, SB-9 (16-18')	ug/g dry	<0.5	<0.5	<0.5	. –	
	<u>6-5</u>	ug/g drv	40.8	44.5	42.6	2.6	6.2
:	5-C	ug/g dry	123	77.5	100	32	32
Total Chromium	B-3, SB-9 (16-18')	ug/g drv	4.66	5.07	4.87	0.29	6.0
	6-S	ug/g dry	23.97	24.18	24.07	0.15	0.
•	5-C	ug/g dry	26.56	24.68	25.63	1.3	5.2
Total Copper	B-3, SB-9 (16-18')	ug/g dry	14.4	14.56	14.47	0.13	0.90
	. 6 - S	ug/g drv	9.3	9.5	9.4	0.14	1.5
	5-C	ug/g dry	4.15	6.41	5.28	1.59	30
Total Lead	B-3, SB-9 (16-18')	ug/g drv	2.82	7.12	4.94	3.0	61
	6-S	ug/g drv	<0.06	<0.06	-0.06	- .	-
	5-C	ug/g dry	-0.2	<0.2	<0.2	-	-
Total Mercury	B-3, SB-9 (16-18')	ug/g dry	<0.07	<0.07	<0.07	-	-
	6-S	ug/g dry	0.45	0.62	0.535	0.12	22
	5-C	ug/g dry	<0.5	-0.5	<0.5	-	· _
Total Silver	B-3, SB-9 (16-18')	ug/g dry	<0.3	<0.3	<0.3	-	-
	6-S	ug/g dry	119	117	118	1.4	1.2
	5-C	ug/g dry	94.8	88.4	91.5	4.49	4.9
Total Zinc	B-3, SB-9 (16-18')	ug/g dry	200	249	224	34.4	15

FOR RECRA ENVIRONMENTAL LABORATORIES D.J.D for R.Y. Fimm

DATE 7/31/84

301292

147

RECRA ENVIRONMENTAL LABORATORIES

....

-

ANALYTICAL RESULTS

PETER COOPER CORPORATION GOWANDA AND MARKHAMS, N.Y. QUALITY CONTROL

Report Date: 7/31/84

RÉCOVERY ANALYSIS								
PARAMETER	SAMPLE IDENTIFICATION	SPIKE	-g RECOVERED	Z RECOVERY				
1	5-S	100	98	98				
Total Arsenic	MW-3, SB-2 (2-4')	100	99	99				
	5 - S	1,000	930	93				
	10-5	1,000	990	99				
Total Bervllium	5-C	1,000	950	95				
	5-S	1,000	970	97				
	5-C	1,000	1,090	109				
Total Chromium	B-3, SB-9 (16-18')	1,000	1,080	108				
	5 - S	1,000	1,040	104				
· .	10-S	1,000	970	97				
Total Copper	MW-3, SB-2 (2-4')	1,000	900	90				
	5 - S	. 100	140	140				
	5-C	100	71	7.1				
Total Lead	MW-3, SB-2 (2-4')	100	108	108				
	5-S	0.4	0.464	116				
	B-3, SB-9 (16-18')	0.4	0.412	103				
Total Mercury	MW-3, SB-2 (2-4')	0.4	0.412	103				
	5-S	1,000	1,020	102				
	10-S	1,000	1,040	104				
Total Silver	5 - C	1,000	970	97				
	5-S	1,000	950	95				
Total Zinc	5-C	1,000	980	98				

FOR RECRA ENVIRONMENTAL LABORATORIES D.J. D for R. Y. Firm DATE 7/31/ F4

APPENDIX B-3 1989 O'Brien & Gere RI Results

PETER COOPER CORP. GOWANDA SITE PLAN

• • LEGEND

GROUNDWATER MONITORING WELL BOIL/SEDIMENT BAMPLE LOCATION

SURFACE WATER SAMPLE LOCATION

REMISTIVITY MEASUREMENT

LEACHATE/SEEP SAMPLE LOCATION

1 113 ELECTROMAGNETIC SURVEY TRAVERSE

NOFILL BORING LOCATION

301295

dit.

TABLE 1 GOWANDA SITE WASTE CHARACTERIZATION

Sample <u>Date</u>	Total <u>Chromium</u> (mg/kg) ⁽¹⁾	Total <u>Arsenic</u> (mg/kg) ⁽¹⁾	Total Zinc (mg/kg) ⁽¹⁾	EP <u>Chromium</u> (mg/l) ⁽²⁾	EP <u>Arsenic</u> (mg/l) ⁽²⁾	EP Zinc (mg/l) ⁽²⁾
8/30/88	(3)	(3)	(3)	0.32	LT 0.5	0.44
7/11/88	52	ÌÍ	71	LT 0.5	LT 0.5	0.29
7/11/88	44,000	6.5	840	LT 0.5	LT 0.5	0.44
8/30/88	(3)	(3)	(3)	0.06	LT 0.5	0.50
7/12/88	23	Ì 6	62	LT 0.5	LT 0.5	0.44
8/30/88	(3)	(3)	(3)	0.06	LT 0.5	0.22
) CFR 261)	13,000	9.8	620	0.20 5 0	LT 0.5	0.39 No limit
	Sample <u>Date</u> 8/30/88 7/11/88 7/11/88 8/30/88 7/12/88 8/30/88	Sample Date Total Chromium (mg/kg) ⁽¹⁾ 8/30/88 (3) 7/11/88 52 7/11/88 44,000 8/30/88 (3) 7/12/88 23 8/30/88 (3) 7/12/88 23 8/30/88 (3) 7/12/88 23 8/30/88 (3) 13,000	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

.

ţ.

(1) Expressed on a dry weight basis

(2) Expressed in milligrams/liter in leachate per 40 CFR 261

(3) See Appendix A for composite waste analyses

TABLE 3 GOWANDA SITE INFILTROMETER TEST DATA

Test	Total Tipperd	Cum	ulative	Calc	culated
lest	Elapsed	Liquid P	vagea (mi)	Infiltrati	ion Rate (cm/sec)
<u>No.</u>	Time (sec)	_inner_	<u>Outer</u>	<u>Inner</u>	Outer
1	0				
	480	1700	4300		
	1860	2050	5850		
	7260	2340	6850		
	65580	2540	8650		
	149880	3090	10400		
	259380	3190	11350		
	329880	3440	12850	1.4E-5	1.8E-5
2	0				
	10860	280	260		
•	69 000	1385	260		
	154560	2255	910		
	168240	2255	1070	1.8E-5	2.9E-6
3	0				
•	10560	0	1590		
	68700	875	7865		
	153180	1725	13795		
	167640	1725	14635	1.4E-5	4.0E-5

AVERAGE CAP INFILTRATION RATE 1.8E-5 cm/sec

1

Ċŋ

No. No.

l,

TABLE 4 GOWANDA SITE SOIL ANALYSES¹

6

U

Ľ

U

Ц

ר -|-|-

Î

Î

Ĩ

	(7)			Total	Hexavalent
Location ⁽²⁾	Depth ⁽³⁾	Zinc ⁽⁴⁾	<u>Arsenic</u>	<u>Chromium</u>	<u>Chromium</u> (5)
14	3	NA	65	6.5	LT 0.09
15	3	NA	32	481	12
16	3	NA	9.6	96	3.7 ·
17	3	NA	6.1	51	1.1
18	3	NA	1.6	113	1.8
19	3	NA	17	14	0.11
20	3	NA	18	40	0.29
21	3	NA	24	70	0.77
22	3	NA	34	186	7.8
23	3	NA	19	16	0.090
24	3	NA	29	14	LT 0.08
25	3	NA	23	80	1.9
26	3	NA	21	115	2.0
27	3	NA	36	14	0.014
28	3	NA	9.5	26	0.45
29	3	NA	18	12	0.10
30	3	NA	417	801	· 17
31	3	NA	14	6.0	LT 0.08
. 32	3	NA	28	19	LT 0.08
33	3	NA	27	43	0.61
34	3	NA	10	409	4
34 25	12	NA	3.3	470	16
25	3 10	INA NA	8.2	383	0.2
35	12	INA. NA	1.1	1,430	24
36	3	INA NA	4.0	21	LI 0.2
30 27	12	INA NA	3.0	14	LI 0.2
37	3 12	INA NA	11	88 70	0.4
38	2	NA NA	0.Y 2 7	12	U.31
38	12	NA NA	3.7	13	
30	12	INA NA	3.0 0.6	13	LI 0.23
30	12	NA NA	9.0	512	1.5
40	12	NA NA	0.8	130	
40	12	NA	2.0	15	LI 0.09
40	3	NA	3.Z 24	15 16	LI 0.19
41	12	NA	34 25	10	0.22
42	3	NA NA	<u>ل</u> ا 107	10	0.21
42	12	NA NA	9./ 19	. 17	0.15
42	3	NA	10	50	0.19
43	12	NA NA	11	166	U./9 IT 0 12
44	3	NA NA	10	3 610	52
44	12	NA	10	2 120	J.2 1 6
45	3	NA	10	3,420 17	1.0
45	12	NA NA	10	17	U.1J IT 0.07
J.	12	11H	12	12	LI 0.07

TABLE 4 GOWANDA SITE SOIL ANALYSES¹ (continued)

....

(3)	(7)			Lotal	Hexavalent
Location ⁽²⁾	Depth ⁽³⁾	Zinc ⁽⁴⁾	<u>Arsenic</u>	<u>Chromium</u>	<u>Chromium</u> (5)
46	3	NA	10	62	1.8
46	12	NA	14	33	0.78
57	3	80	11	28	LT 0.1
58	3	72	18	17	LT 0.1
59	3	84	18	34	LT 0.1
60	3	240	16	1,400	LT 0.1
60	12	120	7.4	600	LT 0.1
61	3	390	20	720	LT 0.1
61	12	140	15	520	LT 0.1
62	3	310	28	330	LT 0.1
62	12	480	19	33,000	LT 0.1
63	3	390	23	530	LT 0.1
63	12	390	16	12,000	LT 0.1
64	36	77	11	100	LT 0.1
65	3	1100	12	120	LT 0.1
65	12	300	13	70	LT 0.1
66	3	200 `	20	820	LT 0.1
66	12	170	9.1	2000	LT 0.1
67	3	61	8.7	29	LT 0.1
67	12	- 64	12	16	LT 0.1
68	3	91	12	21	LT 0.1
68	12	54	8.1	14	LT 0.1

(1) All concentrations reported in milligrams/kilogram on a dry weight basis (2) I contions noted on Figure 2

Locations noted on Figure 2

E.

i I I

Ë.,

E I

(3) All "3" indicates core of 0 to 3 inches below grade, a "12" indicates core of 9 to 12 inches below grade, a "36" indicates core of 33 to 36 inches below grade

(4) NA represents "Not Analyzed"
 (5) I T represents "I can Then"

LT represents "Less Than"

TABLE 5 GOWANDA SITE BACKGROUND CONCENTRATIONS - SOIL⁽¹⁾

Location ⁽²⁾	Depth ⁽³⁾	<u>Zinc</u> ⁽⁴⁾	Arsenic	Total <u>Chromium</u>	Hexavalent <u>Chromium</u> ⁽⁵⁾
57 58 59	3 3 3	80 72 84	11 18 18	28 17 34	LT 0.1 LT 0.1 LT 0.1
No. Of Observa Mean Standard Devia	ations tion	3 79 6	3 16 4	3 26 9	3 LT 0.1 0

LT = Less Than

(1) (2)

All concentrations reported in milligrams/kilogram on a dry weight basis Locations noted on Figure 2 All "3" indicates core of 0 to 3 inches below grade, a "12" indicates core of 9 to 12 inches (3) below grade (4)

NA represents "Not Analyzed" LT represents "Less Than"

(5)

1

Π

Γ

Γ

Monitoring			SPCOND		<i></i> .	Hexavalent	~.	~	- 10
Well	Date	pH	<u>(umhos/cm)</u>	Arsenic	<u>Chromium</u> .	Chromium	Zinc	Chloride	Sulfate
1-Shallow (Abandon)							. sto	≈ कर्क	
1R Shallow	4/13/87	6.5	290	0.13	0.16	0.006	869		•••
1R Shallow	7/12/88	6.0	425	LT 0.005	0.09	0.108 (2)	11	***	
1-Deep	9/9/86	8.5	725	200		5=0	200 0	666	
1-Deep	4/13/87	6.8	650	0.011	0.017	0.007		64a	
1-Deep (Dup)	4/13/87	6.9	680	0.009	0.018	0.005		.844	
1-Deep	7/12/88	6.0	460	LT 0.005	LT 0.01	0.012	0.02		
1-Deep (Dup)	7/12/88	6.2	425	LT 0.005	LT 0.01	LT 0.010	0.02		
2-Deep	9/9/86	6.5	5000			***	•		
2-Deep (Dup)	9/9/86	6.5	5000					***	
2-Deep	4/13/87	6.5	4600	0.026	0.064	0.029			

TABLE 7 GOWANDA SITE GROUND WATER QUALITY RESULTS - INORGANIC ANALYSES⁽¹⁾

7 -3

Monitoring Well	Date	pH_	SPCOND (umhos/cm)	Arsenic	Chromium	Hexavalent Chromium	Zinc	Chloride	<u>Sulfate</u>
			1'	•					
4-Deep	9/9/86		***	~~~					
4-Deep	4/13/87	9.3	780	0.17	0.44	LT 0.005		75	180
4-Deep	7/12/88	8.2				***			
5	9/9/86	6.7	1800			<i>~~~</i>		•••	
5	4/13/87	6.6	1370	0.06	0.14	LT 0.005		91-03 GÅ	
6	9/9/86	7.4	2800						
6	4/13/87	7.1	2300	0.02	0.051	0.009		12	LT 1
6	7/11/88	6.5	2750	0.045	0.37	0.416 (2)	0.50		

TABLE 7 GOWANDA SITE GROUND WATER QUALITY RESULTS - INORGANIC ANALYSES⁽¹⁾

(1) Results reported in mg/l (ppm)
 (2) Fined grained soils resulted in recovered groundwater turbidities greater than 100 NTU. Turbid samples cause interferences with colorimetric analyses. See Filterable Analyses on Table 8.

TABLE 8 GOWANDA SITE GROUND WATER QUALITY FILTERABLE METALS ANALYSES⁽¹⁾

Monitoring Samp		Sample		Hexavalent					
Well	Date	Arsenic	Chromium	Chromium	Zinc	Calcium	Magnesium	Sodium	
1-Shallow (Abandon)		•	800 800						
1R-Shallow	4/13/87	***				•••• •••			
1R Shallow	7/12/88	LT 0.005	0.01	LT 0.010	0.22	•	***	•	
1-Deep	9/9/86	LT 0.005	0.008	0.006	0.019	4.54			
1-Deep	4/13/87		•			\$\$ *			
1-Deep (Dup)	4/13/87			• **					
1-Deep	7/12/88	LT 0.005	LT 0.01	LT 0.010	0.02				
1-Deep (Dup)	7/12/88	LT 0.005	LT 0.01	LT 0.010	0.01		***		
2-Deep	9/9/86	0.055	0.079	0.018	0.039	, · ***			
2-Deep (Dup)	9/9/86	LT 0.005	0.014	0.016	0.016			••-	
2-Deep	4/13/87	•••		• •		 .			
4-Deep	9/9/86	LT 0.005	0.014	LT 0.005	0.016			•••	
4-Deep	4/13/87		0.009			4.8	0.98	170	
4-Deep	7/12/88	0.027	LT 0.01		0.02				

فرحمور در

weeg.

!

TABLE 8 GOWANDA SITE GROUND WATER QUALITY FILTERABLE METALS ANALYSES⁽¹⁾

1

1 . .

Monitoring	Sample		Chromium					
Well	Date	Arsenic	Chromium	Hex	Zinc	Calcium	<u>Magnesium</u>	Sodium
5	9/9/86	LT 0.005	LT 0.005	LT 0.005				
5	4/13/87		****				***	
6	9/9/86	0.036	0.033	LT 0.005	0.033	***		
6	4/13/87		0.024			92	92	15
6	7/11/88	0.014	0.04	LT 0.010	LT 0.01			

• .

(1) All samples field filtered through 0.45 micron membrane filter. Results reported in mg/l (ppm).

.

[

withing the first the firs

TABLE 9GOWANDA SITEGROUND WATER QUALITYSPECIFIC ORGANIC ANALYSES (1)(2)

- · -•·-

. N

Ì

İ.

i i

i.

PARAMETER	WELL <u>IS</u>	WELL 1D	WELL <u>ID (Dup)</u>	WELL <u>4D</u>	WELL
2-Chlorophenol	LT I	LT 1	LT I	LT I	LT I
2-Nitrophenol	LT I	LT 1	LT I	LT I	LT I
Phenol	LT 1	LT I	LT 1	LT I	LT 1
2,4-Dimethylphenol	LT 5	LT 5	LT 5	LT 5	LT 5
2,4-Dichlorophenol	LT 5	LT 5	· LT 5	LT 5	LT 5
2,4,6-Trichlorophenol	LT 5	LT 5	LT 5	LT 5	LT 5
4-Chloro-3-Methylphenol	LT 5	LT 5	LT 5	LT 5	LT 5
2,4-Dinitrophenol	LT 50	LT 50	LT 50	LT 50	LT 50
2-Methyl-4,6-Dinitrophenol	LT 50	LT 50	LT 50	LT 50	LT 50
Pentachlorophenol	LT 50	LT 50	LT 50	LT 50	LT 50
4-Nitrophenol	LT 50	LT 50	LT 50	LT 50	LT 50
Chloromethane	LT 1	LT 1	LT 1	LT I	LT I
Bromomethane	LT I	LT 1	LT I	LT 1	LT I
Vinyl Chloride	LT 1	LT 1	LT I	LT I	LT 1
Chloroethane	LT 1	LT 1	LT 1	LT 1	LT 1
Methylene Chloride	LT I	LT I	LT I	LT I	LT 1
1,1-Dichloroethene	LT I	LT I	LT 1	LT I	LT 1
1,2-Dichloroethane	LT 1	LT I	LT I	LT I	LT I
t-1,2-Dichloroethene	LT I	LT I	LT I	LT I	LT 1
Chloroform	LT I	LT 1	LT I	LT 1	LT I
1,2-Dichloroethane	LT I	LT1.	LT I	LT I	LT 1
1,1,1-Trichloroethane	LT 1	LT I	LT I	LT I	LT I
Carbon Tetrachloride	LT 1	LT I	LT I	LT I	LT I
Bromodichloromethane	LT 1	LT I	LT I	LT I	LT I
1,2-Dichloropropane	LT I	LT 1	LT 1	LT 1	LT I
t-1,3-Dichloropropene	LT I	LT 1	LT I	LT 1	LT I
Trichloroethene	LT 1	LT 1	LT I	LT I	LT I
Benzene	LT 1	LT 1	LT 1	LT 1	LT I
Dibromochloromethane	LT I	LT 1	LT 1	LT I	LT 1
1,1,2-Trichloroethane	LT 1	LT 1	LT I	LT 1	LT 1
c-1,3-Dichloropropene	LT I	LT 1	LT 1	LT I	
2-Chloroethylvinyl Ether	LT 10	LT 10	LT 10	LT 100	LT 100
Bromoform	LT 10	LT 10	LT 10	LT 100	LT 100
1,1,2,2-Tetrachloroethane	LT 1	LT 1	LT I	LT I	LT 1
Tetrachloroethene	LT I	LT I	LT 1	LT 1	LT 1
Toluene	LT I	LT I	LT 1	LT 1	LT 1
Chlorobenzene	LT 1	LTI	LTI	-LT 1	26
Dichlorobenzene	LTI	LTI	LT I		LT I
Ethylbenzene	ĪΤ i	LTI	LT I	LT i	LT I
Xvlenes	LT I	LTI	ĨT I	LTI	LT I
1.3-Dichlorobenzene	LT H			LT 20	LT 11
1.4- Dichlorobenzene	LT II		LT H	LT 20	
1.2-Dichlorobenzene	LT II			LT 20	LT 11
Hexachloroethane	LT II		ĨT II	LT 20	LT 11
Bis (2-chloroethvl) ether	LT II	LT 11		LT 20	LT II
Bis (2-chloroisopropyl)	~1 11		<u> </u>		
ether	LT 11	LT 11	LT 11	LT 20	LT 11
N-Nitrosodi-n-propylamine	LT 11	LT 11	LT 11	LT 20	LT 11
Nitrobenzene	LT 11	LT 11	LT 11	LT 20	LT 11
Hexachlorobutadiene	LT 11	LT 11	LT 11	LT 20	LT 11

TABLE 9 GOWANDA SITE GROUND WATER QUALITY SPECIFIC ORGANIC ANALYSES (1)(2)

and the second se

.]

	WELL	WELL	WELL	WELL	WELL
PARAMETER	<u>_1S</u>	<u>_1D</u>	1D (Dup)	<u>4D</u>	<u>6S</u>
		1 7 1 1	T 77 1 1	1 7 20	1 7 11
1,2,4-1 richlorobenzene					
Isophorone					
Naphinalene				L1 20	
Bis (2-chloroethoxy)	1 7 11	* ** * *	7 - 7 11	1 7 20	17.11
				LT 20	
2 Chloromonthelano					
				LT 20	
Acenaphthypene					
Dimethyl phthelate				LT 20	
2.6 Dipitrotoluano				LT 20	
Z,0-Dimuoloidene					
A Chlorophenyl phenyl				LI 20	
ather	1711	1 T 11	1711	IT 20	1711
2 4-Dinitrotoluene				LT 20	
1.2-Dinhenvlhydrazine	L 1 11 *	LI II *	±111 •	LI 20 *	±1 11 +
Diethvlohthalate	1711	1711	1711	IT 20	тти
N_nitrosodinhenvlamine				LT 20	
Herachlorohenzene				LT 20	
A-Bromonbenyl phenyl					
ather	IT11	ΤΤΊΙ	1711	IT 20	1711
Phenanthrene				LT 20	
Anthracene				LT 20	LT II
Di-n-buyl nhthalate	IT 11(08)(B)	TT II (08VB)	IT 11 (2)(R)	LT 20	
Fluoranthene	LT 11(.03)(D)	LT 11		LT 20	
Pyrene	LT 11	LT 11	LTII	LT 20	ĨŤ II
Benzidine	*	*	*	*	, *
Butyl benzyl phthalate	1.7.11	LT 11	LT 11	LT 20	LT 11
Bis(2-ethylhexy)	2	21 11	2	21 20	2
phthalate	LT 11 (6)(B)	20 (B)	LT 11 (8)(B)	LT 20	LT 11
Chrysene	LT 11		IT 11	LT 20	LT II
Benzo(a)anthracene	LT II	LT 11		LT 20	· LT II
3 3-Dichlorobenzidine	LT 21	UT 21	IT 21	LT 40	LT 21
Di-n-octylphthalate	IT 11			IT 20	
Benzo(b)fluoranthene				IT 20	
Benzo(k)fluoranthene				IT 20	ÎT II
Benzo(a)nyrene				1 T 20	
Indeno (1.2.3-cd)pyrene				IT 20	Î.T.II
Dibeno(a h)anthracene				IT 20	
Benzo(g h i)pervlene				LT 20	
N-Nitrosodimethyl Amine	*	±111 *	*	±120 •	*
Benzyl Alcohol	IT 53	TT 53	LT 11	LT 20	LT 11
2-Methyl Phenol				LT 20	LT II
4-Methyl Phenol				LT 20	
Benzoic Acid			1 T 53	IT 100	IT 53
4-Chloroaniline			LT 33	IT 20	
2-Methylnanhthalana				IT 20	<u>ГТ 11</u>
2 4 5-Trichlorophenol			1 T 52	IT 100	1 T 53
2-Nitroaniline	LI JJ	LI JJ I T 52	1 7 52	IT 100	IT 53
3-Nitroaniline	LI 33	1 T <2	IT 53	LT 100	LT 53
2 INTRODUNDÇ	LL JJ	L I J J	1,1 JJ		

•

TABLE 9GOWANDA SITEGROUND WATER QUALITYSPECIFIC ORGANIC ANALYSES (1)(2)

	WELL	WELL	WELL	WELL	WELL
PARAMETER	<u>_1S_</u>	<u>_1D</u>	<u>1D (Dup)</u>	<u>4D</u>	<u>_6S</u>
Dibenzofuran	LT 11	LT 11	LT 11	LT 20	LT 11
4-Nitroaniline	LT 53	LT 53	LT 53	LT 100	LT 53
α-BHC	LT 0.05	LT 0.05	LT 0.05	LT 0.05	LT 0.05
λ -BHC	LT 0.05	LT 0.05	LT 0.05	LT 0.05	LT 0.05
β-BHC	LT 0.05	LT 0.05	LT 0.05	LT 0.05	LT 0.05
Heptachlor	LT 0.05	LT 0.05	LT 0.05	LT 0.05	LT 0.05
δ -BHC	LT 0.05	LT 0.05	LT 0.05	LT 0.05	LT 0.05
Aldrin	LT 0.05	LT 0.05	LT 0.05	LT 0.05	LT 0.05
Heptachlor Epoxide	LT 0.05	LT 0.05	LT 0.05	LT 0.05	LT 0.05
Endosulfan I	LT 0.05	LT 0.05	LT 0.05	LT 0.05	LT 0.05
4,4'-DDE	LT 0.1	LT 0.1	LT 0.1	LT 0.1	LT 0.1
Dieldrin	LT 0.1	LT 0.1	LT 0.1	LT 0.1	LT 0.1
Endrin	LT 0.1	LT 0.1	LT 0.1	LT 0.1	LT 0.1
4,4-'DDD	LT 0.1	LT 0.1	LT 0.1	LT 0.1	LT 0.1
Endosulfan II	LT 0.1	LT 0.1	LT 0.1	LT 0.1	LT 0.1
4,4'-DDT	LT 0.1	LT 0.1	LT 0.1	LT 0.1	LT 0.1
Endosulfan Sulfate	LT 0.1	LT 0.1	LT 0.1	LT 0.1	LT 0.1
Endrin Aldehyde	LT 0.1	LT 0.1	LT 0.1	LT 0.1	LT 0.1
Methoxychlor	LT 0.5	LT 0.5	LT 0.5	LT 0.5	LT 0.5
Endrin Ketone	LT 0.1	LT 0.1	LT 0.1	LT 0.1	LT 0.1
Chlordane	LT 0.5	LT 0.5	LT 0.5	LT 0.5	LT 0.5
Toxaphene	LT 1	LT 1	LT I	LT 1	LT I
PCB-1221	LT 0.5	LT 0.5	LT 0.5	LT 0.5	LT 0.5
PCB-1232	LT 0.5	LT 0.5	LT 0.5	LT 0.5	LT 0.5
PCB-1016/1242	LT 0.5	LT 0.5	LT 0.5	LT 0.5	LT 0.5
PCB-1248	LT 0.5	LT 0.5	LT 0.5	LT 0.5	, LT 0.5
PCB-1254	LT I	LT 1	LT I	LT 1	LT 1
PCB-1260	LT I	LT 1	LT I	LT I	LT 1

(1) Concentrations in micrograms/liter (parts per billion). LT means less than the method detection limit for the matrix tested.
 (2) Samples collected July 11 12 1099 mith the ansatise of the state.

(2) Samples collected July 11,12, 1988 with the exception of 4S which was collected September 1, 1988

* Not included in HSL list

(B) Also detected in Blank

5

l

		•		Hexavalent	7'	Ostalaan	N (
T		Arsenic	Chromium	Cnromium	Linc	Calcium	Magnesium
Location	Date	<u>(mg/1)</u>	<u>_(mg/1_)</u>	<u>(mg/1)</u>	<u>(mg/1)</u>	<u>(mg/1)</u>	<u>(mg/1)</u>
11	9/86	LT 0.005	0.006	LT 0.006	0.039		
11	4/87	LT 0.005	LT 0.005	LT 0.005	0.11	37	6.2
11	7/88	LT 0.005	0.01	LT 0.01	LT 0.01		
11 *	7/88	LT 0.005 *	LT 0.01 *		LT 0.01 *		
11	8/88	LT 0.005	LT 0.01	LT 0.01	LT 0.01		***
11 *	8′/88	LT 0.005 *	LT 0.01 *	LT 0.01 *	0.01 *		
10	0/86	τ Τ 0 00 5	0.012	0.011	0.026		19 B
12	3/00 x/07		U.012		0.030	20	62
12	4/0/		0.01		U.U14 ITC001	30	0.5
12 *	7/00		0.01 *	LI 0.01			
12	8/88	LT 0.005	0.01	ΙΤ 0 01			
12 *	8/88	LT 0.005	LT 0.01 *	LT 0.01 *	LT 0.01 +		
	0,00	L I 0.000	21 0.01	DI 0.01	DI 0.01		
13	9/86	LT 0.005	0.019	0.016	0.033	802	***
13 (Dup)	9/86	LT 0.005	0.014	0.010	0.028		***
13	4/87	LT 0.005	0.008	LT 0.005	0.015	38	6.2
13	7/88	LT 0.005	LT 0.01	LT 0.01	LT 0.01		
13 *	7/88	LT 0.005 *	LT 0.01 *		0.09 *		
13	8/88	LT 0.005	LT 0.01	LT 0.01	0.01		
13 *	8/88	LT 0.005 *	LT 0.01 *	LT 0.01 *	LT 0.01 *		·
34	4/87	LT 0.005	. 0.008	LT 0.005	0.043	100	16
35	4/87	LT 0.005	0.006	LT 0.005	0.034	120	15

Acid Soluble Results

(1) The chromium standard is based on total hardness, as described in Section 6.03.01

LT = Less Than

301308

.

TABLE 11 GOWANDA SITE LEACHATE WATER QUALITY INORGANIC ANALYSIS

·· · ·

Sample	Leachat	e Compos	ite	Seep Com	posite
Date	9/86	4/87	7/88	9/86	4/87
pH	7.4	7.9	7.0	6.9	7.3
SPCOND (umhos/cm)	5100	6200	8000	230	2000
Total Arsenic (mg/l)	0.080	0.088	0.110	0 .015	LT 0.005
Total Chromium (mg/l)	0.206	0.270	0.290	0.235	LT 0.005
Total Hexavalent Chromium (mg/l)	0.091	0.098	0.090	0.116	LT 0.005
Total Zinc (mg/l)	0.033	0.024	0.06	0.052	0.029
Ammonia (mg NH ₃ -N/l)	789	880	900	5 52	22
Biochemical Oxygen Demand (5) (mg/l)	60	68	290	165	LT 10
Biochemical Oxygen Demand (28) (mg/l)			1300		
Nitrate (mg NH ₂ -N/l)	1.26	LT 0.05		0.44	0.14
Nitrite (mg NO ₂ -N/l)	0.027	LT .01		1.37	LT 0.01
Total Kjeldahl Nitrogen (mg/l)	831	1050		575	26
Calcium (mg/l)		208			270
Magnesium (mg/l)		117			27

E 12 GOW. A SITE GROUND WATER QUALITY SPECIFIC ORGANIC ANALYSES (1)(2)

PARAMETER	WELL _4S_	LEACHATE	<u>SUMP</u>
1.2.4-Trichlorobenzene	LT 11	LT 23	LT 18
Isophorone	ĨT II	LT 23	LT 18
Naphthalene	LT II	LT 23	LT 18
Bis (2-chloroethoxy)			
methane	LT 11	1 1 23	LT 18
Hexachlorocyclopentadiene	LT 11 -	23	LT 18
2-Chloronaphthalene	LT 11	1 23	LT 18
Acenaphthylene	LT 11	L 🗄 23	LT 18
Acenaphthene		LT 23	LT 18
Dimethyl phthalate	LT 11	LT 23	LT 18
2,6-Dinitrotoluene		LT 23	
Fluorene		L1 23	L1 16
ather	1 . 11	1 T 22	1718
2 A-Dinitrotoluene		LI 23 IT 23	LI 18
1.2-Dinhenvlhydrazine	± 11	*	*
Diethylphthalate	LT 11	LT 23	LT 18
N-nitrosodiphenvlamine		LT 23	LT 18
Hexachlorobenzene	LT II	LT 23	LT 18
4-Bromophenyl phenyl		4	
ether	LT 11	LT 23	LT 18
Phenanthrene	LT 11	LT 23	LT 18
Anthracene	LT 11	LT 23	LT 18
Di-n-buyl phthalate	LT 11 (1)(B) ·	LT 23	LT 18
Fluoranthene	LT 11	LT 23	LT 18
Pyrene	LT 11	LT 23	LT 18
Benzidine	*	*	*
Butyl benzyl phthalate	LT 11	LT 23	LT 18
Bis(2-ethylhexy)			
phthalate		LT 23	LI 18
Chrysene		LI 23	LI 18 17 19
2 2 Dichlorohangidian			LI 10 IT 27
5,5-Dichiorobenzidine		L1 40 IT 22	LI 37
Di-ii-Octyphinalate Banzo(h)fluoranthana		LI 23 IT 23	LT 10 TT 18
Benzo(k)fluoranthene			1 T 18
Benzo(a)pyrene		LT 23	LT 18
Indeno (1.2.3-cd)ovrene		LT 23	LT 18
Dibeno(a b)anthracene		LT 23	LT 18
Benzo(g h i)perviene		IT 23	IT 18
N-Nitrosodimethyl Amine	*	*	*
Benzyl Alcohol	LT 11	LT 23	LT 18
2-Methyl Phenol	ĨT II	LT 23	LT 18
4-Methyl Phenol		800	LT 18
Benzoic Acid	LT 53	5000	LT 92
4-Chloroaniline	LT II	LT 23	LT 18
2-Methylnaphthalene	LT II	LT 23	LT 18
2,4,5-Trichlorophenol	LT 53	LT 120	LT 92
2-Nitroaniline	LT 53	LT 120	LT 92
3-Nitroaniline	LT 53	LT 120	LT 92

TABLE 12 **GOWANDA SITE** GROUND WATER QUALITY SPECIFIC ORGANIC ANALYSES (1)(2)

	WELL		
PARAMETER	<u>4S</u>	LEACHATE	<u>SUMP</u>
Dibenzofuran	LT 11	LT 23	LT 18
4-Nitroaniline	LT 53	LT 120	LT 92
α -BHC	LT 0.05	LT 0.5	LT 0.05
λ -BHC	LT 0.05	LT 0.5	LT 0.05
β -BHC	LT 0.05	LT 0.5	LT 0.05
Heptachlor	LT 0.05	LT 0.5	LT 0.05
δ -BHC	LT 0.05	LT 0.5	LT 0.05
Aldrin	LT 0.05	LT 0.5	LT 0.05
Heptachlor Epoxide	LT 0.05	LT 0.5	LT 0.05
Endosulfan I	LT 0.05	LT 0.5	LT 0.05
4,4'-DDE	LT 0.1	LT 1	LT 0.1
Dieldrin	LT 0.1	LT 1	LT 0.1
Endrin	LT 0.1	LT I	LT 0.1
4,4-'DDD	LT 0.1	LT 1	LT 0.1
Endosulfan II	LT 0.1	LT 1	LT 0.1
4,4'-DDT	LT 0.1	LT 1	LT 0.1
Endosulfan Sulfate	LT 0.1	LT I	LT 0.1
Endrin Aldehyde	LT 0.1	LT I	LT 0.1
Methoxychlor	LT 0.5	LT 5	LT 0.5
Endrin Ketone	LT 0.1	LT I	LT 0.1
Chlordane	LT 0.5	LT 5	LT 0.1
Toxaphene	LT I	LT 10	LT I
PCB-1221	LT 0.5	LT 5	LT 0.5
PCB-1232	LT 0.5	LT 5	LT 0.5
PCB-1016/1242	LT 0.5	LTS	LT 0.5
PCB-1248	LT 0.5	LT 5	LT 0.5
PCB-1254		LTIO	IT I
PCB-1260			ÎT I

(1) Concentrations in micrograms/liter (parts per billion). LT means less than the method detection limit for the matrix tested.
 (2) Samples collected July 11 12 1988 with the exception of sump liquid which was collected August

Samples collected July 11,12, 1988 with the exception of sump liquid which was collected August 30, 1988

(3) 1400 ppb by Method 8040
Not included in HSL list

(B) Also detected in Blank

TABLE 13 GOWANDA SITE LEACHATE WATER QUALITY RESULTS - INORGANIC ANALYSES⁽¹⁾

Monitoring Well ⁽²⁾	Date	pH	SPCOND (umhos/cm)	Arsenic	Chromium	Hexavalent Chromium	Zinc	Chloride	Sulfate
2-Shallow	9/9/86	7.1	10,000	634	•••	•			
2-Shallow	4/13/87	7.6	10,000	0.18	0.96	0.42		400	22
4-Shallow	9/9/86	6.8	4300					***	
4-Shallow	4/13/87	7.6	4300	0.0121	0.20	0.075			
4-Shallow	7/11/88	6.8	4450	0.022	0.16	0.036	9.4		

(1) Results reported in mg/l (ppm)

(2) Wells 2S and 4S are screened in fill material; consequently, the analytical results for these wells were interpreted with the results for leachate samples.

TABLE 14 GOWANDA SITE LEACHATE WATER QUALITY FILTERABLE METALS ANALYSES⁽¹⁾

Monitoring Well ⁽²⁾	Sample Date	Arsenic	Chromium	Hexavalent Chromium	Zinc	Calcium	Magnesium	Sodium
2-Shallow	.9/9/86	0.124	0.448	0.19	0.045			***
2-Shallow	4/13/87		0.61		***	100	260	49
4-Shallow	9/9/86	0.009	0.106	0.006	0.153			
4-Shallow	7/11/88	LT 0.005	0.08	0.020	0.02		9-11	***

(1) All samples field filtered through 0.45 micron membrane filter. Results reported in mg/l (ppm).

(2) Wells 2S and 4S are screened in fill material; consequently, the analytical results for those wells will be interpreted with results for leachate samples

· . ·

APPENDIX B-4 1996 Weston Investigation Results

Barry the to a site of the state

...

242

.....

301314

- Car

····

Table 3-2 Waste Characterization Samples For Peter Cooper Landfill Site Gowanda, New York

Sample no.		305455	N 1	-6-52	S-100 (G-54	G-56
Date collected	08/30/88	07/11/88	07/11/88	08/30/88	07/12/88	08/30/88
Units	m	merter	m // C	Emie/ke	in mg/kg	Sming/kg
Read and the second						
COMPOUND	1				1	1
					1	
Chromium	11,400 (2)	52	44,000	(2)	23	(2)
Arsenic	8.42 (2)	11	6.5	(2)	16	(2)
Zinc	921 (2)	71	840	(2)	62	(2)
	1					
					1	······································

(1) - Expressed on a dry weight basis.(2) - See Appendix A for composite waste analyses.

SOURCE: O'BRIEN AND GERE, 1989

3.7.4.245.4.1 ····

TABLE 3-3 RESULTS OF CHROMIUM, HEXAVALENT CHROMIUM AND ARSENIC ANALYSES IN SOIL PETER COOPER LANDFILL GOWANDA, NY DECEMBER 1996

		DECEMBER	. 1990	
SAMPLE ID	LOCATION	(ng/kg)	Total Cr	Cr(+6)
		STIRFACE SOIL		
001	Bank 0	12 000	750 000	5 900 u
	Bank 70	7 100	350.000	6 300 u
003	Bank 100	4 900	27.000	5 900 u
004	Bank 200	25.000	32.000	5 800 u
005	Bank 300	6.600	620.000	7.900 µ
006	Bank 400	6.700	210.000	5.700 u
007	Bank \$00	6.700	94.000	5.800 u
008	Wetland 1	5,100	10.00 u	5.500 u
009	Wetland 2	6.700	27.000	5.700 u
		SEDIMENT		
012	Sediment 2	6,300	12,000	68,00 u
013	Sediment 3	7.000	11,000	6,100 u
014	Sediment 4	4,800	10,000 u	6,100 u
015	Sediment 5	5,700	10,000 u	6,200 u
011	Sediment 6	5,600	11,000	7,400 u
<u>.</u>		ANDFILL WAST		
010	HA-01	20,000	13,000,000	7,000 u
032	HA MW-02D	6.200	3,000,000	9.200 u
033	HA MW-03	7,500	2,900,000	5.800 u
034	HA MW-04	6,800	6,800,000	6.800 u
038	HA SB-70	33,000	11,000,000	10,000 u
036	HA SB-71	10,000	27,000,000	8,300 u
037	HASB-71DUP	11,000	37,000,000	8,400 u
039	HA SB-72	11,000	27,000,000	9.200 u
	5	UBSURFACE SOI	Long the second second	
035	HA MW-05	4.600	26,000	5.500 u
040	HA MW-73	5,600	240,000	9.100 u
041	HA SB-74	17,000	460,000	5,600 u
042	HA SB-75	5,300	23,000	5,700 u
043	HASB-76	19.000	73.000	6 000 #

Boldface values are above the U.S.EPA Soil Screening Levels for Potential impact to Groundwater ug/Kg=micrograms per kilogram

u= at or below Method Detection Limit (MDL) - MDL shown

NA=sample note analyzed for that parameter

Source: Roy F. Weston, 1996

TABLE 3-4 SUMMARY OF BNA ANALYSIS FOR WATER AND SOIL PETER COOPER LANDFILL SITE GOWANDA, NY

an house being the state of the second

A STATE OF THE STATE

	GR	DUNDWAT	TER	和精制。	SEDIMENT		建 制的 - 通信中的	NISURFA	CE SOIL	一一的教育
COMPOUND	MW-025	MW-03	MW-06	SED-2	SED-3	SED-6	BANK 0	BANK 70	BANK 400	BANK 500
Non-Chlorinated Phenols		• <u>•</u> ••••••••••••••••••••••••••••••••••			···· · · · ·					· · ·
Phenol	8000 J	99 J				· ·				
2-Methylphenol	69 J							-		
4-Methylphenol	42000 J	1200 J								
Base-Neutrals										
Bis (2-ethylhexyl)phthalate				32 J		65 J	75 J	•		
Di-n-octylphthalate						200 J		-		
Naphthalene	16 J		1 J							110 J
2-Methylnaphthalene						 		Ţ		130 J
Phenanthrene				44 J		50 J	180 J	1		490
Anthracene		ļ		 						100 J
Carbazole	•				4					52 J
Fluoranthene				95 J		110 J	260 J		55 J	950
Pyrene				55 J		68 J	210 J			730
Benzo(a)anthracene			•	32 J	28 J	65 J	130 J	61 J		370 J
Chrysene	9]			57 J	25 J 🚽	55 J	190 J	•	74 J	430
Benzo(b)fluoranthene				41 J		34 J	120 J	:		350 J

TABLE 3-4 SUMMARY OF BNA ANALYSIS FOR WATER AND SOIL PETER COOPER LANDFILL SITE GOWANDA, NY

÷...

Andrea Start

1178-14-14-14-14-14-14-14-14-14-14-14-14-14-	A GRO	UNDWAT	ER	Ant erial de la	SEDIMENT	的特别的	機關納計	SURFA	CE SOIL	前行為出現的論
COMPOUND	MW-025	MW-03	MW-06	SED-2	SED-3	SED-6	BANK 0	BANK 70	BANK 400	BANK 500
Benzo(k)fluoranthene				49 J			120 J			480
Benzo(a)pyrene	· · · · · · · · · · · · · · · · · · ·			41 J	<u> </u>	40 J	130 J			440
Indeno(1,2,3-cd)pyrene) 	25 J			65 J			250 J
Dibenzo(a,h)anthracene										73 J
Benzo(g,h,i)perylene				23 J			73 J			270 J
Total Estimated TICs	9175 J	490 J	582 J	5480 J	18780 J	24200 J	17480 J	13960 J	25980 J	7870 J

Aqueous sample analytes reported in micrograms per liter (ug/L) Solid sample analytes reported in micrograms per kilogram (ug/Kg) J - values are considered estimated

TIC - Tentatively identified compound

SOURCE: ROY F. WESTON 1996

新州市和地址。相一

TABLE 3-4 SUMMARY OF BNA ANALYSIS FOR WATER AND SOIL PETER COOPER LANDFILL SITE GOWANDA, NY

SURFACE SO	ILS (cont)	制改进的	Nithan)		LANDFIL	L WASTE	exchieten (*	Notes :	SUBS	URFACE	SOIL
COMPOUND	Wetlandi	Wetland 2	HA1	HA MW-02D	HA MW-03	HA MW-04	HA SB-70	HA SB-71	HA SB-74	HA SB-75	HA SB-76
Non-Chlorinated Phenols							1				
Phenol					[.] 790				•		
4-Methylphenol				6400 J							
Chlorinated Phenols											
4-Chloro-3-methylphenol				3600 J							
Base-Neutrals											
Bis(2ethylhexyl)phthalate										76 J	
Naphthalene				8600 J				}			
Phenanthrene	64 J		3500J	4700 J		3600 J/	12000 J	3800 J	970 J		
Fluoranthene	96 J	56 J	4200J	3100 J		3000 J	26000 J	3000 J	1100 J	70 J	
Pyrene	76 J	43 J	4500J	2800 J			18000 J	2700 J	960 J	59 J	430 J
Benzo(a)anthracene			3200J	1700 J			13000 J		640 J		
Chrysene	54 J	42 J	3600J	2200 J			13000 J		790 J		

Table 3-5 Surface Water Quality Results For Peter Cooper Landfill Site Gowanda, New York

Sample no.			i i i i i i i i i i i i i i i i i i i		Statility and the second	
Date collected	9/86	C-187	7/88	7/68	8/88	8/88 9
Units	mp/l	. me/i		myl	-mella	mgAreas
COMPOUND		L		 		
Arsenic	ND	ND	ND	ND	ND	ND
Chromium	0.006	ND	0.01	ND	ND	ND
Hex. chromium	ND	ND	ND	****	ND	ND
Zinc	0.039	0.11		ND	ND	0.01
Calcium	· •••	37		· · · · · · · · · · · · · · · · · · ·	· ••••	***
Magnesium	•	6.2			· · · · · · · · · · · · · · · · · · ·	
Sample no.	122	12	T D	Le La Cartera de la Cartera de	12	12 12 12
Date collected	9/86	4/87/	- 7/88	7/88	8/88	8/88
Units	me/l	_10011		107/L	THE ALL	mg/l
COMPOUND		1			1	1
Arsenic	ND	ND	ND	ND	ND	ND
Chromium	0.012	ND	0.01	0.01	0.01	ND
Hex. chromium	0.011	ND	ND		ND	ND +
Zinc	0.036	0.014	ND	ND	ND	ND
Calcium		38				
Magnesium		6.3		***		
and the second discourse of the second second		al an ing the same of the second second second second second second second second second second second second s		Annes Han in Dr. House State	Second of the second	and the second
Sample no.		10	7/90		1.5	0100
Date contected		201	1100		0/00	0/00
COMPOUND		2000 10 10 10 10 10 10 10 10 10 10 10 10				
Amania	NID	NTD	ND	NT)	NTD	
Chamine	0.010		ND			ND
Unionnum Hav absorbing	0.019	<u> </u>				
Ties. Chronnum	0.010	0.015	ND			ND
Calcium	0.033	28	ND	0.09	0.01	
Magnacium		30				
magnesium		L L L				
n		6.2				
Samplemo		6.2				
Sampleno. Datercollestrat		6.2				
Sampleno Datercollectrit		6.2				
Sampleno Date collected Units COMPOUND	321 	6.2	्र <u>भ</u> 			
Sampleno Datercollectrol Units COMPOUND Arsenic	SEI A/K7/ MITF/I	6.2	<u></u>			
Sample no: Date collected Units COMPOUND Arsenic Chromium		6.2	55 387/ 可が ND 0.006			
Sample no Date collected Units COMPOUND Arsenic Chromium Hex. chromium	ND ND	6.2	<u>э</u> 5 Элт тэл ND 0.006 ND			
Sample no Date collected Units COMPOUND Arsenic Chromium Hex. chromium Zinc	ND 0.008 ND 0.043	6.2				
Sample no Date collected Units COMPOUND Arsenic Chromium Hex. chromium Zinc Calcium	SH A/K7/ MIP/I ND 0.008 ND 0.043 100	6.2	ND 0.006 ND 0.034 120			
Sample no Date collected Units COMPOUND Arsenic Chromium Hex. chromium Zinc Calcium Magnesium	ND 0.043 100 16	6.2	ND 0.006 ND 0.034 120 15			

Footnotes: ND - Not found above detection limit, non-detection. --- refers to no analysis reported. SOURCE: O'BRIEN AND GERE 1989

TABLE 3-6 RESULTS OF CHROMIUM, HEXAVALENT CHROMIUM AND ARSENIC ANAYSES IN WATER PETER COOPER AND FILL GOWANDA, NY DECEMBER, 1996

		As (ug/L)	Total Cr	Cris	Total Suspended
Sample ID	Sample Location			(ug/L)	Solids (mg/L)
	an an an an an an an an an an an an an a	GROUND	WATER		<u>_</u>
017	MW-02S	100	350	15	190
017B	MW-02S Dissolved	100	340	NA	NA
018	MW-02D	33	74	. 8	. 15
018C	MW-02D Dissolved	34	73	NA	NA
025	MW-03	100	1100	: 60	310
025B	Mw-03 Dissolved	52	890	NA	NA
024	MW-045	36	310	16	110
024B	MW-04S Dissolved	13	270	NA	NA
023	MW-04D	37	8	8	110
023B	MW-04 Dissolved	34	4	NA	NA
019	MW-05	2	4	8	270
019B	MW-05 Dissolved	2 U	4	NA	NA
020	MW-06	33	47	8	83
020B	MW-06-Dissolved	32	26	NA	NA
022	MW-06 DUP	35	61	8	NA
022B	W-06 DUP Dissolve	28	23	NA	NA
		SURFACE	WATER		
026	STREAMWATER I	4.6	9	8	NA
027	STREAMWATER 2	2.3	7	8	NA
028	STREAMWATER 3	3.1	8	8	NA
029	STREAMWATER 4	4.2	8	8	NA
030	STREAMWATER 5	2.8	9	8	NA
031	STREAMWATER 6	3.1	6	8	NA

Boldface values are above the NYSDEC Ambient Water Quality Standards

ug/L = micrograms per Liter

mg/L = milligrams per Liter

u = below Method Detection Limit (MDL) - MDL shown

NA = sample not analyzed for that parameter

Source: Roy F. Weston, 1996

Table 3-7Ground Water Quality Results - Filterable MetalsFor Peter Cooper Landfill SiteGowanda, New York

See footnote 1 below.

Sample no.		-MWEIRE(S)	-WWAND.	WWHID	MWED
Date collected		7/12/88	9/09/86	2/1k/07	7/12/88
Units		ment	me/least	a mp/i	mellas
COMPOUND	L	<u> </u>	L		
Arsenic	<u> </u>	ND	ND		ND
Chromium	·	0.01	0.008		ND .
Hex. chromium	<u> </u>	ND	0.006		ND
Zinc	<u>i</u>	0.22	0.019		0.02
Sample nozarez	SMW52DD		MW24D	MWELD	MW4DE
Date collected	9/09/86		9/09/86	4/13/87	7/12/88
Units	ine)		men	meji	ment
COMPOUND	-				
Arsenic	0.055		ND		0.027
Chromium	0.079		0.014	0.009	ND
Hex. chromium	0.018		ND .		
Zinc	0.039		0.016		0.02
Calcium				4.8	
Magnesium				0.98	
Sodium				170	•
Sampleinos	C MAR		- WWEG	MW20	N. A. Star
Date collected	9/09/86		9/09/86	4/13/87	7/11/88
Jinita-	e myj		mph		
COMPOUND					
Arsenic	ND	•	0.036		0.014
Chromium	ND		0.033	0.024	0.04
Hex. chromium	ND		ND		ND
Zinc			0.033		ND
Calcium				92	
Magnesium				92	
Sodium				15	
(

Footnotes: ND - Not found above detection limit, non-detection. --- refers to no analysis reported. S refers to shallow well depth. D refers to deep well depth.

Footnote 1: All samples field filtered through a 0.45 micron membrane filter.

SOURCE: O'BRIEN AND GERE 1989

TAB3-7.WK4 301322

and the second state of th

and an and the

1 p. 1

A MANUTAL CARE CARE

APPENDIX C Geophysical Survey Methods and Results

· · · · · · · · · · · ·

· · ·

GEOPHYSICAL DATA COLLECTION METHODOLOGY

The geophysical surveys at the Inactive Landfill Area consisted of surface and downhole techniques. The surface geophysical investigation utilized shallow investigating EM equipment (EM31). The downhole geophysical survey utilized EM induction logging tools (EM39).

Surface EM Techniques

The Geonics EM-31 device was used to map the apparent electrical conductivity of shallow soils from the ground surface to a depth of 15 feet. A reference grid was installed over the area that was geophysically surveyed. The grid consisted of alternating orange and yellow pin flags spaced to facilitate data acquisition along lines spaced 12.5 feet apart. Select grid coordinates were marked to assure that grid coordinates could be reoccupied if necessary. Surface features were annotated on-site to assist with geophysical data interpretation.

The terrain conductivity (quadrature) component of the EM field is a measurement of the apparent ground conductivity. All readings were taken with the instrument oriented parallel to the direction of travel, in the vertical dipole mode and with the instrument at waist height. The depth of investigation with the instrument in this configuration is approximately 15 feet. Readings were automatically stored in a solid state memory data logger during the survey. The data logger was interfaced to a portable computer and the data were transferred to a floppy disk for subsequent processing and interpretation.

The terrain conductivity data were initially edited and then plotted as profile lines for interpretation. A contour map of the data was then constructed and utilized for final interpretation. The geophysical data are presented in final form as a color contour map in the Appendix. The color contour map allow for a complete and rapid illustration of detected anomalies that are associated with anomalously conductive materials.

The EM instrument was calibrated daily following the instructions outlined in the operations manual. Calibration was performed in an area believed to be free of anthropogenic features, fill or other sources of potential signal interference. The instrument was returned to the calibration area at the beginning and end of each day of data collection to monitor instrument drift and insure against equipment malfunction. None were observed during this investigation.

Preliminary data reduction and analysis was performed using the instrument manufacturer's DAT31 software. Final data reduction and interpretation were performed using GEOSOFT

software. GEOSOFT was used to edit, grid and filter the data. Data are color contoured and presented in plan view.

Downhole Geophysical Techniques - EM Induction Logging

Landfill leachate usually promotes an increase in the total dissolved solids (TDS) concentration of ground water. The elevated values of TDS create higher than background values of electrical conductance. EM conductivity logging was performed for the purpose of mapping formation conductivity. Electromagnetic surveys map the distribution of conductivity in the subsurface. For this technique to locate a contaminant plume it is necessary that the plume exhibit an anomalous conductivity response. The EM instrument will also respond to changes in overburden lithology and one must be able to recognize and distinguish between anomalies due to a plume vs lithology changes for this technique to be successful.

The EM probe measures the bulk electrical conductivity of soils and ground water in the vicinity of the borehole. The probe uses a process of magnetic induction to create EM eddy currents in the surrounding soils. The strength and phase of these currents are measured and are proportional to the conductivity of the soil and fluid. The process is not influenced by PVC casing, allowing the probe to measure soil and fluid conductivity in both screened and unscreened intervals of the borehole. The Geonics EM39 probe was used in this investigation. The Geonics EM39 induction probe measures the apparent conductivity (in units of milliSiemens per meter (mS/m)) of the formation. The induction probe can measure the vertical extent of a contaminant plume where the ground water has a higher specific conductance than background conditions. The induction probe measures these zones of high electrical conductivity approximately one to two feet from the probe which ensures the response is related to the geologic formation. There is a negligible effect from the specific conductance of the ground water in the monitoring well on the instrument response. The measured conductivity is proportional to the conductivity of the pore fluid and soil matrix. Sands typically exhibit low conductivity, while clays exhibit higher conductivity owing to their structure and composition. Fresh meteoric water exhibits low conductivity while leachate contaminated fluids and brine rich bedrock fluids exhibit high conductivity.

Data were acquired with the Mount Sopris MGX Logging System. It is a portable digital borehole geophysical logging system designed for shallow (1,000 feet or less) environmental and engineering projects. The system is computer driven with a Pentium notebook computer using the manufacturer's software. The system consists of a motorized winch with a digital

depth encoder attached to a component console. Downhole conductivity data are graphically displayed on a computer screen during data acquisition such that anomalous responses can be immediately identified and revisited, if necessary.

GEOPHYSICAL SURVEY RESULTS

The geophysical conductivity data from the surface EM31 survey are presented in the attached color contour map in Figure A and the results from the downhole EM39 survey are presented in Figure B.

Surface terrain conductivity values at the site measured with the EM31 were observed to range from below 5 mS/m to over 400 mS/m. These large variations in conductivity may be related to any one or combination of the following conditions:

- A change in soil/fill type. For example, an increase in relative clay content may increase the measured conductivity;
- A change in soil moisture. Moisture content would be expected to increase in areas of low topographic elevation as more saturated sediments lie within the depth of investigation of the EM instrument;
- A change in pore fluid specific conductance. For example, the presence of salt-impacted water within the pore space of the shallow soil will increase the measured conductivity primarily due to the presence of chloride ions; or
- Interference from surface metallic anthropogenic features such as metal debris and other miscellaneous metallic objects that were observed on site.

It is likely that a significant component of the conductivity variations observed with the surface EM data set is due to the presence of railroad ballast material observed scattered widely across the surface of the site.

The results of the downhole geophysical survey are presented in Figure B. The figures include the gamma and conductivity logs plotted in two columns on the left of the page, followed by a summary of the core description.

In general, the correlation between the conductivity log with the geologic descriptions found in the borehole logs are good. It is unlikely that variations in the conductivity are related to pore fluid quality, rather these variations are more likely related to lithologic variations. The resistive (low conductivity) zone at approximately 25 ft corresponds with notes in the geologic log indicating a more massive/competent rock.

	PROJE	CT:	Pe Ge	eter C owanc	ooper da, Ne	Inactive Landfill RI/FS w York	Lo	og of V	Vell No	. MW-4D2
	BORIN	IG L	CA		N: See	RI Figures for Boring Locations	TOP OF C 766.4	ASING E	LEVATION	IDATUM:
	DRILL	NG	COI	NTRA	CTOR	: Nothnagle Drilling	DATE STA 9/28/00	ARTED:		DATE FINISHED:
	DRILL	NG	ME	THOE): HS	A (4 1/4" I.D.)/HQ Coring	TOTAL DE	PTH:		SCREEN INTERVAL
	DRILL	NG	EQI	JIPM	ENT:	CME-75	DEPTH TO	D FIRST	COMPL	CASING:
ŀ	SAMP	LING	, ME	тно	D: 2"	dia. Stainless Steel Split Spoons/ HQ Coring	LOGGED I	BY:	!	12-11101 PVC
ł	HAMM	ER	NE	GHT	: 140	DROP: 30"	RESPONS		OFESSIO	NAL: REG. NO.
ł	oTH et)	HAMMER WEIGHT: 140 DROP: 30" T () SAMPLES DESCRIPTION NAME (USCS Symbol): Codor, moist, % by weight, plast., structure, cementation, react. w/HQ, geo, inter. Surface Elevation: 765.1 OVERBURDEN: (see stratigraphy for well MV						WE	ELL CONST	RUCTION DETAILS
	DEP (fee							┤╴┍╸		
┟								6002		
										Concrete (0-1)
1								-866		
										Cement/Bentonite
										4" diameter Black
								-868		Steel Casing (0-12)
1	5- BEDROCK: SHALE: grey, horizontal to near									
	5-	 BEDROCK: SHALE: grey, horizontal to nea horizontal bedding planes, thinly bedded (1-thistle in places, moderately soft to soft, occ horizontal fractures, 								
	6-					borizontal bedding planes, thinly bedded (1-2)	mm)			
						thistle in places, moderately soft to soft, occas	sional			P" diamotor
	0 horizontal bedding planes, thinly bedded (1- thistle in places, moderately soft to soft, occ horizontal fractures, 8- 9- 10- 10-									borehole (0-12)
								-888		
}'										•
1										
								-866		
ł	10- 11- 12- Run #1 - 12' to 15.5' Rec 100% RQD 32% 13- Run #2 - 15.5' to 20.5' Rec 100% RQD 639 14- Run #3 - 20.5' to 25.5' Rec 100% RQD 759 15-						1			
I										•
						Due #4 4014-45 51 Dec 400% DOD 20%				
						Run #1 - 12 to 15.5 Rec 100% RQU 32%		-2003		
						Run #2 - 15.5' to 20.5' Rec 100% RQD 63%				4" diameter corehole (12 0-40 5)
1						Due #2 00 Elde 05 El Dee 400% DOD 75%				(12.0 40.0)
						Run #3 - 20.5 to 25.5 Rec 100% RQD 75%		->>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>		
							· · · · · · · · · · · · · · · · · · ·			
	12 Run #1 - 12' to 15.5' Rec 100% RQD 32% 13- Run #2 - 15.5' to 20.5' Rec 100% RQD 63% 14- Run #3 - 20.5' to 25.5' Rec 100% RQD 75% 15- - 16- - 17- - 18- - - -									
								-888		
										Bentonite (5-27)
	40	9- 10- 11- 12- Run #1 - 12' to 15.5' Rec 100% RQD 32 Run #2 - 15.5' to 20.5' Rec 100% RQD 14- Run #3 - 20.5' to 25.5' Rec 100% RQD 15- 16- 17- 18- 19- 20- -soft, fractured -soft, fractured -soft, fractured -soft, fractured								
	-81	4- 5- 6- 7- 8- 9- 10- 11- 12- 13- 13- 14- 15- 16- 17- 18- 19- 14- 15- 16- 17- 18- 19- 20- 21- 22- 23- 24- 25-								
	19-					-soft, fractured		-2000		
	-	17- 18- 19- 20- 21-								
	19- -soft, fractured 20- -horizontal fracture									
	20							-		
						-soft, fractured				
	23-	1				-darker grey, silty, harder, massive				
	24-	1								Riser (+2-30)
		$\left \right $								
	25-			•	· · · · · · · · · · · · · · · · · · ·					WELL_OVM MW4D2.GPJ (11/02)
	Proje	ct No	. 57	71		Geomatrix C	onsultants			Figure

Log Sol Sol Sol Media (DSC Speed) 66, mod. While, four. WELL CONSTRUCTION DETAILS AND/OR DRILLING REMARKS 26- 27- 28- 30- 30- 30- 30- 31- 32- 33- 34- 34- 35- 35- 35- 35- 35- 36- 39- 40- 41- 42- 44- 44- 45- 55- 51- 52- 53- 54- 54- 54- 54- 54- 54- 54- 54- 54- 54	SAMPLES			
26- 27- 28- 29- 30- 30- 31- 32- 33- 34- 34- 35- 36- 37- 35- 36- 37- 39- 39- 39- 39- 39- 39- 39- 39- 39- 39	DEPTH (feet) (feet) Sample No. Sample Blows/ Blows/ Blows/	WAO WAO	DESCRIPTION NAME (USCS Symbol): color, moist, % by weight, plast., structure, cementation, react. w/HCl, geo. inter.	WELL CONSTRUCTION DETAILS AND/OR DRILLING REMARKS
27- 28- 29- 30- 30- 31- 32- 33- 34- 34- 35- 36- 36- 37- 36- 39- 40- 41- 42- 42- 42- 42- 43- 44- 44- 44- 44- 44- 44- 44- 44- 44	26-			
28- 29- 30- 30- 31- 32- 33- 34- 35- 36- 37- 40- 41- 42- 43- 44- 45- 46- 47- 47- 48- 49- 50- 51- 52- 53- 53- 54- 54- 54- 54- 54- 54- 54- 54- 54- 54	27-			
29- 30- 31- 32- 33- 33- 34- 35- 36- 36- 37- 40- 40- 41- 42- 43- 40- 41- 42- 43- 40- 41- 42- 43- 40- 41- 42- 43- 40- 41- 42- 43- 44- 44- 45- 50- 50- 50- 50- 50- 50- 50- 50- 50- 5	28-			#00N Sand (27-40
30- soft, fractured 31- soft, fractured 32- Run #4 - 25.5' to 30.5' Rec 98%, RQD 78% 33- Run #4 - 25.5' to 30.5' Rec 98%, RQD 78% 34- Run #5 - 30.5' to 35.5' Rec 98%, RQD 88% 35- No water loss 36- softer, fissile (37-39) 38- softer, fissile (37-39) 38- softer, fissile (37-39) 38- softer, fissile (37-39) 38- softer, fissile (37-39) 39- softer, fissile (37-39) 44- softer, fissile (37-39) 47- softer, fissile (37-39) 48- softer, fissile (37-39) 50- softer, fissile (37-39) 51- softer, fissile (37-39)	29-		-soft, fractured	
31- -soft, fractured 32- Run #4 - 25.5' to 30.5' Rec 95% RQD 78% 33- Run #5 - 30.5' to 35.5' Rec 97% RQD 67% 36- No water loss 37- -softer, fissile (37-39) 38- -softer, fissile (37-39) 39- -softer, fissile (37-39) 44- -softer, fissile (37-39) 44- -softer, fissile (37-39)	30-		-soft, fractured	
32- -soft, fractured -soft, fractured 33- Run #4 - 25.5' to 30.5' Rec 98%, RQD 78%, - 34- Run #5 - 30.5' to 35.5' Rec 97%, RQD 60%, - 35- No water loss - 37- -softer, fissile (37-39) - 38- - - 41- - - 42- - - 43- - - 44- - - 45- - - 46- - - 47- - - 48- - - 49- - - 50- - - 51- - - 52- - - 53- - - 54- - -	31-			4" diameter coreh
33- Run #4 - 25.5' to 30.5' Rec 98% RQD 78% 34- Run #5 - 30.5' to 35.5' Rec 97% RQD 67% 36- Run #6 - 35.5' to 40.5' Rec 100% RQD 80% 37- -softer, fissile (37-39) 38- -softer, fissile (37-39) 40- -softer, fissile (37-39) 41- -softer, fissile (37-39) 42- -softer, fissile (37-39) 44- -softer, fissile (37-39) 55- -softer, fissile (37-39) 56- -softer, fissile (37-39) 57- -softer, fissile (37-39) 58- -softer, fissile (37-39) 59- -softer, fissile (37-39) 50- -softer, fissile (37-39)	32-		-soft, fractured	(12.0-40.5)
34- 34- 35- 36- 37- 39- 40- 41- 42- 43- 44- 45- 46- 46- 46- 46- 46- 46- 46- 46- 46- 46	33-		Run #4 - 25.5' to 30.5' Rec 98% RQD 78%	
35- Run #6 - 35.5' to 40.5' Rec 100% RQD 80% -2° diameter PV 36- -softer, fissile (37-39) -softer, fissile (37-39) 40- -softer, fissile (37-39) -softer, fissile (37-39) 41- -softer, fissile (37-39) -softer, fissile (37-39) 42- - - 43- - - 44- - - 45- - - 46- - - 47- - - 50- - - 50- - - 50- - - 50- - - 50- - - 50- - - 50- - - 51- - - 52- - - 53- - - 54- - - 54- - -	34-		Run #5 - 30.5' to 35.5' Rec 97% RQD 67%	
36 37 37 <	35-		Run #6 - 35.5' to 40.5' Rec 100% RQD 80%	- 2" diameter PV/C
37 -softer, fissile (37-39) 40- 41- 42- 43- 44- 45- 46- 47- 48- 49- 50- 51- 52- 53- 54-	36-		No water loss	Slot Screen
-softer, fissile (37-39) -softer, fissile (37-			
39 40 40 41 41 42 43 44 45 46 46 1 47 1 50 1 50 1 51 1 52 1 53 1	38-		-softer, fissile (37-39)	
30 40 41 42 43 44 45 44 45 46 1 1 48 1 10 1 50 1 51 1 52 1 53 1 54 1	30-			
41- 42- 43- 43- 44- 45- 46- 47- 48- 49- 50- 51- 52- 53-				
41 42 43 43 44 45 46 47 48 48 50 51 52 53 54				
42- - 43- - 44- - 45- - 46- - 47- - 48- - 50- - 51- - 52- - 53- - 54- -		*		
43- - 44- - 45- - 46- - 46- - 47- - 48- - 48- - 50- - 51- - 52- - 53- - 54- -	42-	1	м 1	
44- - 45- - 46- - 47- - 48- - 50- - 50- - 51- - 52- - 53- - 54- -	43-			
45- - 46- - 47- - 48- - 49- - 50- - 51- - 52- - 53- - 54- -	44-			-
46- - 47- - 48- - 49- - 50- - 50- - 51- - 52- - 53- - 54- - - -	45-			
47- - 48- - 49- - 50- - 51- - 52- - 53- - 54- -	46-			
48- - 49- - 50- - 51- - 51- - 52- - 53- - 54- - - -	47-			
49- - 50- - 51- - 51- - 52- - 53- - 53- - 54- - - - - - - - - - - - - - - - - - - - - - - - - - - - - -	48-			
50- - 51- - 52- - 53- - 54- - - -	49-			
51- - 52- - 53- - 54- - - -	50-			
52- - 53- - 54- - - -	51-			
53	52-	4		
	53-	1	1997 - 1997 -	
	54-			
	55			

and E

Well Name: MW-4D2 File Name: D:\PROJ\PETERCOO\LOGGING\MW2DOWN.HDR Location: Peter Cooper Site, Gowanda, NY Elevation: 0 Reference: Ground Surface

GDS

APPENDIX D

301333

- ---

. .

. .

. .

. .

.

.

APPENDIX D Soil Descriptions from Landfill Cover Evaluation and Test Pits

INACTIVE LANDFILL SUBSURFACE SOIL SAMPLING FIELD LOGS

Date	Test Pit #	Layers (fbg)	Brief Description of Lithology	Depth Samples Collected	PID Reading (ppm)	Comments, Including Water Conditions
10/09/00	TP-1/SUB	0-0.5	Black cindery fill material w/gravel and rootlets.		0	Very little topsoil/cover soils
		0.5-1	Light brown sand and gravel with slag pieces and small coal chunks			
		1-7.5	Various fill layers of slag, ballast, ash, coal, lt. brown sand, and red-brown sand	6.5-7.0 ft.		Water in hole at 7.5 ft
10/09/00	TP-2/SUB	0-1	Brown silt and sand fill, small round stone		0	
1		1-2	Grey dry silt fill with round stone, some wood debris	1		
		2-3	Black cindery and gravelly ballast fill with some brick fragments			
		3-4	Grey & brown silt with little round stone	1		
		4-10	Black ash/cinder fill with gravel, ash pieces 3-6" diameter			Odor detected
		10-12.5	Grey fine sand with silt, moist, native material	12.5 ft		No water encountered
10/09/00	TP-3/SUB	0-0.5	Brown topsoil material with round and angular gravel		0	
		0.5-2	Grey silt fill with round & angular stone, some large boulders, 2-3 ft diameter			Railroad tie at 2 ft
		2-9.5	Black cinders & ballast, angular stone small to medium size 1/2"-1"dia	8.5-9.0 ft		Water in hole at 9.5 ft, odor detected
10/09/00	TP-4/SUB	0-0.5	Black cinders, very little topsoil material		0	
		0.5-4.5	Fill layers black ash/cinders, clinkers and gravel, rust-colored gravel/sand, slag at 4.5 ft, refactory brick pieces			
		4.5-8	Grey silty clay, fill with round gravel, some staining & mixing of black ash/cinder material	7.0 ft		Tar/petroleum oder detected, water in hole at 8 ft

.

APPENDIX

INACTIVE LANDFILL SUBSURFACE SOIL SAMPLING FIELD LOGS

Date	Test Pit #	Layers (fbg)	Brief Description of Lithology	Depth Samples Collected	PID Reading (ppm)	Comments, Including Water Conditions
10/10/00	TP-5/SUB	0-0.5	Brown sandy loam & topsoil with organic plant material		0	
		0.5-1.5	Light brown silt with gravel and small stone			
		1.5-10	Grey silt & some clay, round & flat stone, some woody debris	9.5 ft		Backhoe scraped rock or concrete settling basin structure, no fill detected, water ponding in hole at 10 ft
10/10/00	TP-6/SUB	0-0.5	Brown sandy loam topsoil with rootlets		2.1	
		0.5-1.5	Brown sand & silt cover soil with round gravel slightly moist			
		1.5-6	Black ash & sludge material, very brittle, gravel and wood debris	5 ft		Material saturated at 6 ft, odor detected
10/06/00	TP-7/SUB	0-2	Lt. brown clayey silt with round stone some, rust staining in clay		0	
		2-2.5	Rust-colored medium sand with round and angular stone/gravel			
		2.5-3	Grey clayey silt "cover type" soils			
		3-4.5	Black cindery ballast-type material, angular gravel	3-4.5 ft		Water in hole at 4.5 ft. slight odor detected
10/06/00	TP-8/SUB	0-0.5	Black & brown topsoil, organic rootlet material mixed with some cindery gravel		0	
		0.5-1	Black cindery material, small gravel, ballast-like material			
		1-2	Light brown/tan sand & round gravel, some cinders/brick fragments			
		2-5	Black cinders, round gravel, some slag pieces/ railroad ballast & coal tar/creosote pieces	4.5 ft		Water in hole at 5 ft

APPENDIX

Page 3 of 4

INACTIVE LANDFILL SUBSURFACE SOIL SAMPLING FIELD LOGS

Date	Test Pit #	Layers (fbg)	Brief Description of Lithology	Depth Samples Collected	PID Reading (ppm)	Comments, Including Water Conditions
10/06/00	TP-9/SUB	0-0.5	Light brown topsoil, rootlet material with some round stone and sand		0	
		0.5-3	Light brown silt with some sand, slightly moist	1		
		3-6	Round cobbles, 2-4" diameter and small stone mixed with coarse brown sand, moist			
		6-6.5	Layer of coarse black sand			
		6.5-7.5	Light brown/tan medium/coarse sand with some silt	6.5 ft		Saturated soil at 7.5 ft
10/12/00	TP-10	0-1	Topsoil material, silt, some round stone/gravel, refusal at sluiceway base	Surface	0	Sample collected from sluiceway entrance
10/10/00	Settling Basin/SUB	0-3	Lt. brown silt with clay, round stone & gravel, shale pieces		· ·	
		3-8	Grey silt & clay with round stone, 1-6" diameter, woody plant material	7.0 ft.		Scraped concrete at 8 ft., possible settling basin floor. No fill detected Water ponding in bottom of hole at 8 ft
10/04/00	TP-1/G	0-1.5	Light brown cover soil, sand and some clay, round gravel. Moist	`	0	
		1.5-6	Black sludge-like material with wood debris. Bedrock encountered at 6 fbgs.		100	Odor detected, Scraped rock at 6 ft
10/04/00	TP-2/G	0-2.5	Topsoil & cover soil - Lt brown sand, fine to med., round gravel, small to medsized		0	
		2.5-6	Black sludge with weathered rock pieces and wood debris. Weathered bedrock encountered at 6 fbgs.		15	Scraped rock at 6 ft, water in hole at 6 ft

APPENDIX

INACTIVE LANDFILL SUBSURFACE SOIL SAMPLING FIELD LOGS

.

Date	Test Pit #	Layers (fbg)	Brief Description of Lithology	Depth Samples Collected	PID Reading (ppm)	Comments, Including Water Conditions
10/04/00	TP-3/G	0-4	Various-sized gravel, round base-type fill, grey round gravel and sand			
		4-6	Black sludge mixed with gravel and round stone, small to medium size. Wet			Water entering hole at 4ft
		6-7	Round gravel and stone 1"-6" diameter, with some black sludge intermixed			Test pit walls slumping in at 6-7 ft. Stop digging at 7.0 ft
10/04/00	TP-4/G	0-0.75	Topsoil with sand, some gravel, organic matter			
		0.75	Geotextile fabric material encounted			
		0.75-3	Sand and gravel fill with red brick fragments Dry			
		3-7	Lt. brown/tan sand w/ wood pieces, 0-1 ft long, gravel, some lg. stone, >12" diam.			Water in hole at 7 ft
10/04/00	TP-5/G	0-1	Light brown sand and gravel with organic matter, some clay			
		1-4	Brown sand with wood material, some round gravel			
		4-12	Black sludge like material intermixed with grey sand, sand stain impacted by black sludge. Woody material also mixed with sludge material. Sand content increasing with depth.			Water in hole at 12 ft

I:VProject

· •

Group Point Cooper NPL/RI report/Tabler/APPENDIX Interior and Crestable test Pit Lo

Test Hole	Cover Soil Thickness	Test Hole Depth	Depth Range	Description of Lithology
No.	(inches)	(inches)	(inches)	
TH-1	13	> 13	0-13" 13-?"	Grayish Brown silty sand, trace gravel & sand Waste cinders
771.0	10	20	0-18"	Gray sandy silt, trace clay, gravel
1H-2	18		18-30"	Dark brown sand & gravel fill with little brick, wood
			0-18"	Gray silt & fine sand
TH-3	18	44	18-32"	Brown sandy waste material
			32-44"	Black waste with sand & brick
TH-4	22	32	0-22"	Olive gray sandy silt, trace clay & gravel
			22-32"	Brown and rust colored fill with wood, glass, gravel
TH-5	7	10	0-7"	Gray silt and sand, trace clay and gravel
			7-10"	Black sludge, very strong odor
TH-6	12	13	0-12	Gray & dark gray silt and sand, trace clay and gravel
J			12-13	Black sludge
TH-7	48	53	49 52"	Block shudge
 			46-33	Olive grav candy silt trace clay & gravel
TH-8	38	43	38-43"	Black sludge
			0-18"	Gray silty sand with trace clay and gravel
TH-9	18	21	18-21"	Black sludge
₿			0-14.4"	Olive brown to gray silt with trace clay, little sand
TH-10	14.4	16.8	14.4-16.8"	Gravish black sandy material with odor
			0-18"	Gray silt and sand, trace gravel
TH-11	18	> 18	18-?"	Black waste
			0-15"	Silt and fine sand, trace gravel
IH-12	12	>15	15-?"	Black waste
711.12	19	24	0-18"	Gray fine sand and silt with trace gravel
111 -15	10	24	18-24"	Black sludge
TUIA	18	> 19	0-18"	Sand and gray silt, trace gravel
111-14	10	> 16	18-?"	Black sludge with odor
TH-15	73	26	0-23"	Gray silt and sand, trace clay and gravel
		20	23-26"	Black sludge
TH-16	32	34	0-32"	Gray silt and sand, trace clay and trace-little gravel
111-10			32-34"	Black sludge
TH-17	31.2	31.2	0-31.2"	Brownish gray sandy silt with little gravel & silty sand
ļ			31.2"	Refusal on metal, likely bottom of 'cover'
TH-18	17	20	0-17"	Brownish gray/gray sandy silt w/trace clay & gravel
			17-20"	Black waste
TH-19	12	>12	0-12"	Gray/brown fine sand and silt, trace gravel
			12-?"	Black waste sludge with odor
TH-20	24	26	0-24"	Gray sand and silt
			24-26"	Black sludge
TH-21	18	> 18	0-18"	Silt and time sand, trace gravel
	L		18-?"	Black sludge waste
TH-22	22	25	0-22"	Gray sandy silt with trace clay and gravel
J			22-25"	Black sludge
TH-23	41	44	0-41"	Uray sin and line sand, little gravel, trace clay
	<u> </u>		41-44"	Diack studge
TH-24	20	25	0-20"	Gray sandy she with trace clay and gravel
L			20-25"	Linders

APPENDIX E

N N N N N

р

APPENDIX E Boring Logs and Well Completion Details

		ton faces		-		PEr Salit Socon		195	ĨĤ	BATE 5/14	87	BEV.	2
		ter toope			FA	LL: 30 ³		FIL	E NO. :	1171.005.130)		~
BORIN FONEN UBG 5	5 CO. ; AN: EDLOGI	Parratt Mark Be ST: Pete	-Holfe sk r Bogardus				BORING LOCATION; GELIND ELEVATION; DATES: STARTED: 12/1	Unin adi 1777.40 7/87	ient		E	ØED: 1	IS.
	T		SAMPLE]	cheni z			STR IT INCOUT	FIA	J) 7E	ñ
Depth	No.	DEPTH	16"	PENETRIN	"N" VALLE		DESCRIPTION		DEPTH	INSTALLED	99L. 0/00	SP. Condi,	Į
0						Not Sampled (Same TB)							Ī
		·						•					ł
			L				•			オセ	1		Į
									1				
					\$]			I	Į
5									1				ļ
			h										
												1	ł
							-					1	1
													l
	+												l
	-+		<u>`</u>										l
											1		ĺ
													Ì
15	-+	{			{								Ì
	-+							•		1	1		ļ
+										1		.	
-†	+												
-	-+	+			{			ļ					
								1			- [Į	
												1	
			~				•	I					
	T										ł		
	T	1						.		}			
								[[i			
	T									}		1	
	Τ		1						ł	ł			
Ī	T									i		1	
								ļ]]]	
T			1					}			-	1	
5 of 7 of 2 of 1.5 o	scree sand Bento f cens	m install pack from mite pell mt/pentor	ed from 10. 10.5 - 3.1 lets from 3. lite growt	.4 - 5.4 5 5 - 1.5 1.5 - 0									
120	f cens	nt/bentof	lite growt	1.5 - 0									

•

0" Br		ERE INC.			TEST B File Nam	RING LOG 2: PODDIB, BL	Rep	ort of Boring Sheet 1	No. 1 of 1	4-1D	
2010	t Locat	ion: Bouar	via, NY		Type: SPLIT SPIDN	PLER	Bround Hat	ter Dapth 766. Depth 766.	28 Dat 19 Dat	# 12/1 # 4/13	578 786
lient	: Peter	Cooper			Hanner: 140 lbs. Fall: 30"		File No. 1	1171-005-130			
oria	Do.: A	arratt-Hol Beck	fe			Boring Location: UPG Broand Elevation: 77 Dates: Started:08/19	14401ENT 19.00 1/85			Endeda	08/
	0108125		Sample		E		Stratus	Equipment	Fig	d Test	tin
epth	ngin Valor	Penetral	Depth	Blows /6"	Beac	ription	Depth	- Installed	Bal. 0/00	So. Cond.	11
0	VALUE					•					1
5	12	15	5 6 .5	3-12 14	Moist silt and fine s Fine gravel, Fine to (Met at 7	end Coarse sand, come silt					-
10	59+	12	9, 2- 10	28-30/3	Bedrock Brey wathered shale,	set casing at 124					
ឆ						•					
20					_						
B					Hani 25-27						
30		-				-					
5					Hard 34						
						5- (- 5-					
					•						

P.004 09/24/99 12:02 TX/RX NO.0764

301343

 PROJ	ECT	Pe _G	eter C owan	ooper da, Ne	RI/FS ew York	Lo	g of V	Nell N	lo. N	W-2S(R)
BORIN	IG L	ock		N: 10	feet E. of MW-2S - Replacement Well for MW-2S	OP OF C 70.9	ASING	ELEVAT	ION E	DATUM: msl
DRILL	ING	col	NTR/	CTOF	R: Nothnagle Drilling D/ 7/	ATE STA 11/00	ARTED:		C 7	DATE FINISHED: /11/00
DRILL	ING	ME	ГНОС): HS	GA (4 1/4" I.D.) TO 8.	OTAL DE 7 feet bg	EPTH: Is		S 4	CREEN INTERVAL: .5 to 8.5
DRILL	ING	EQI	JIPM	ENT:	CME-55 - ATV	EPTH TO	D FIRST 5.5 fe	CON	IPL. C	CASING: -inch PVC
SAMP		S ME	тнс	D: 2	" dia. Stiainless Steel Split Spoon C/	DGGED AL	BY:	<u> </u>		
HAMM	IER	WE	IGHT	: 140	Ib. DROP: 30" RI	ESPONS	SIBLE PI	ROFESS	IONA	L: REG. NO.
SAMPLES SAMPLES SAMPLES Set Set Set Set Set Set Set Se								VELL CON AND/OR	NSTRU DRILLI	CTION DETAILS NG REMARKS
DE 1	Same	Sam Sam	Blow 6 Inct	οê	Surface Elevation: 768.2	····	╢║		4" Ste 3' Cas	el Protective Casing, sing
1 - 2 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3	1 2 3 4 5		21 59 >158 >100		TOPSOIL: dark brown, dry to moist, organic roots present SILT with GRAVEL (ML); dark brown, dry, 75% fine 10% coarse angular to subangular gravel, 5% fine subangular gravel, 10% fine sand, low plasticity [FI] POORLY GRADED SAND with SILT and GRAVEL; black, moist to wet, 50% fine to medium sand, 30% coarse angular to subangular gravel, 10% fine subangular to rounded gravel, 10% low plasticity fir [FILL], strong septic type odor No sample 2-4'; cobbles, rig chattered BEDROCK; gray; very fissile; shale/shaley limeston	is, LLJ nes.				 -2-inch diameter Schedule 40 PVC riser pipe Bentonite Pellets -Transition Sand (#00 sand) -Filter Pack (#00N sand) -2-inch diameter Schedule 40 PVC, 0.010-inch slotted well screen End Cap
18- 19- 20- 21- 22- 23- 23- 24- 25- 26- 27- 28- 29-										
30-	<u> </u>	l	I	I	I				WELI	L_OVM MW2SR.GPJ (11/02)
Proje	ct No	. 57	71		Geomatrix Consu	ultants				Figure

12005/0;	18

Angueti Lacation: Bounds, M' Type: EAIT SADA Berning Location: on mound fills 20 ⁻¹ Arring Co., Perreit-Molfe formation of the boot Status 20 ⁻¹ Baring Location: on mound Environ Classifier Status 20 ⁻¹ Arring Co., Perreit-Molfe formation of the boot Status 20 ⁻¹ Baring Location: on mound Environ Classifier Status 20 ⁻¹ Arring Loc, Perreit-Molfe formation of the boot Status 20 ⁻¹ Baring Location: on mound Environ Classifier Status 20 ⁻¹ Arring Loc, Perreit-Molfe formation of the boot Nulle Barin Perreing Location: on mound Environ Classifier Status 20 ⁻¹ Arring Loc, Perreit-Molfe formation of the boot Nulle Barin Perreing Location: on mound Environ Classifier Status 20 ⁻¹ Status Barine Value Barine Perreing Location Nulle Barine Perreing Location Environ En	U BR	IEN & B	ERE INC.			TEST BL File Name	RING LOG : PD00211.BL	je	port of Br She	ring No. Het 1 of 1	Ni-el	
If the two is and it is an is a full is an is a f	Proyec	t Locat	ian: Gowan	da, NY		TYDE: SPLIT SPOON	PLER	Ground 4	later Depti Depti	755.51 D 755.64 D	ate 12/ ute 4/1	17
Boring Co.: Perrett-Molfe Growenii Hark Brit Berning Locking: 20.1 Brit Berning Locking: 20.14 Description Boring Locking: 20.14 Description: 20.19765 Jone Besting Will Besting Total Will Besting Total Besting Total Will Besting Total Besting Total Will Besting Total Besting Total Besting Total Description Field Total Besting Dock Field Field Total Besting Dock Field Field Total Besting Dock Field Field Total Besting Dock Field Total Besting Dock Field Total Besting Dock </th <th>Client</th> <th>1 Peter</th> <th>Cooper</th> <th></th> <th></th> <th>Hammer: 140 lbs. Fall: 30"</th> <th></th> <th>File ND.</th> <th>1171-005-</th> <th>-130</th> <th></th> <th></th>	Client	1 Peter	Cooper			Hammer: 140 lbs. Fall: 30"		File ND.	1171-005-	-130		
Bigs Example Sample Sample </th <th>loring Foreing</th> <th>Co. : P n: Kark</th> <th>Beck</th> <th>fe naritus</th> <th></th> <th></th> <th>Boring Locations Ground Elevations Dates: Started:08</th> <th>on sciond 781,14 /19/86</th> <th></th> <th></th> <th>Ended</th> <th>1:0</th>	loring Foreing	Co. : P n: Kark	Beck	fe naritus			Boring Locations Ground Elevations Dates: Started:08	on sciond 781,14 /19/86			Ended	1:0
Meeter Person / Begin		atadier	FEREI DO	Sample		5		Stratos	Envir	FI	eld Te	st:
0 7 6" 0-2 2-3 Derry moist silt 3 5 5" 2-4 2-3 Derry moist silt 3 5 27 6" 4-6 2-70 Black moist - dry cinders 13 6" 6-6 7-7 Black moist - dry cinders 14 6" 6-6 7-7 Black moist - dry cinders 15 NR 10-12 10-6 Het black hide and fine wood chanks 15 NR 10-12 10-6 See as shove granular 15 30 6" 16-16 5-7 See as shove granular 15 30 5" 14-16 5-7 Brey black shale 19" set casing st 22" 80 22 Bedrock Brey black shale 19" set casing st 22" 4 80 23 30 30 30 30 30 40 30 30 30 30 30 30 30 50 4 4 4 4 4 4 50 4 4 4 4 4	eeth	wys Value	Penetrn/ Recovery	Depth	Bions /6"	Descr	iption	Depth	Insta	11ed 3a1 0/0	. 9a. O Comt.	
5 6" 2-4 2-3 2-4 2-3 2-4 2-3 2-4 2-3 2-4 2-3 2-4 2-3 2-4<		7	6"	0-2	3-3	Bray moist silt		3		4		
5 27 6* 4+6 2-70 17-7 Black moist - dry cinders 10 6 6* 8-10 9-2 9-2 Met black hide and fire wood cheats 10 15 MR 10-12 10-6 9-2 Same as above granular 11 6* 12-14 6-6 9-2 Same as above granular 15 38 6* 14-15 14-15 15 29 6* 14-15 14-15 16-18 16-18 20-22 Belevek Same as above granular 20 15-18 20-22 Belevek Same as above granular 20 15-18 20-22 Belevek Same as above granular 20 15-18 20-22 Belevek Same as above granular 21 15-18 20-22 Belevek Same as above granular 23 15-18 16-18 16-12 16-12 30 16 16 16 16 16 30 16 16 16 16 16 30 16 16 16 16 1	•	5	6-	E-4	4-3 5-3	Black moist tanning hi	des			·	1	ł
13 6° 6-6 10°	5	27	54	4-6	2-10		•	1			1	ŀ
10 6 6* 8-10 2.2 15 MR 10-12 10-12 10-12 11 6* 12-14 5-7 15 29 8* 14-15 14-19 16* 14-16 14-19 20-22 16* 16-18 20-22 Besive stating and time wood chunks 17 8* 14-16 14-19 20 16-18 20-22 Besive ck 80 6* 16-18 8* 80 6* 16************************************		13	6-	66	7-7	Black moist - dry cind	ers		1		1	
10 15 MR 10-12 10-6 11 6* 12-14 5*5 15 29 6* 14-15 15 29 6* 14-15 16-18 15-18 20-22 20 15-18 20-22 20 15-18 20-22 20 15-18 20-22 21 15-18 20-22 25 16-18 10-12 26 16-18 19* set table 19* set table 19* set 22* 26 16 16 30 16 16 30 16 16 30 16 16 30 16 16 30 17 20 30 18 19* set 19* set 12* 30 18 18 30 19 10 31 10 10 32 10 10 33 10 10 34 10 10 35 10 10		6	6"	8-10	2-2	Het black hide and fir	e wood chanks	}				
11 6* 12-14 5-7 Same as above granular 15 29 8* 14-16 14-19 Bray woist silty sand, trace of clay 20 15-18 20-22 Bedrock Bedrock Bedrock 20 16-18 16-18 Bedrock Bedrock 20 16-18 16-18 Bedrock Bedrock 20 16 16 16 Bedrock 21 16 16 16 Bedrock 25 16 16 16 17 30 16 16 16 16 30 16 16 16 16 30 16 16 16 16 30 16 16 16 16 30 16 16 16 16 30 16 16 16 16 30 16 16 16 16 30 16 16 16 16 30 16 16 16 16 <td< td=""><td>10</td><td>. 15</td><td>NR</td><td>10-12</td><td>10-8</td><td></td><td>-</td><td>1</td><td></td><td>. • •</td><td>1</td><td></td></td<>	10	. 15	NR	10-12	10-8		-	1		. • •	1	
15 29 8° 14-16 14-16 14-16 14-16 14-16 15 15-18 15-18 20-22 Beinrock Berry black shale 19° set casing st 22° 20 6rey weat/arred shale 19° set casing st 22° 30 6rey weat/arred shale 30 8.0.E		11	6°	1 2- 14	6-6 5-7	Same as above granular	•	ł	[7]	A.	1	1
20 16-18 Beivrock Grey black shale 19" set cating at 22" 25 6rey weathered shale 30 7 30 8 31 8 32 8 33 8 34 8 35 8 36 8 37 8 38 <	15	39	δ [*]	14-15	14-19	Grey moist silty sand,	trace of clay				1	
ED ED ED ES SO SO SO SO Grey weathered shale Grey weathered shale So B. Q. R. SO SO SO SO			ş [16-18		Begrock	· · · · · · · · · · · · · · · · · · ·					
ES Brey weathered shale 30 35 40 45 50	_					Grey black shale 19"	et casing at 22"		1.1	· [·]		
55 30 35 40 45 50								ļ	A .		}	
25 30 35 40 45 50				1		Grey weathered shale					1	İ
30 35 40 45 50	es										1	ł
30 35 40 45 50							•				1	
30 35 40 45 50												
55 40 45 50	30										}	ł
55 40 45 50												
40 45 50	হ											ł
40 45 50	•							38		122		ł
45 50	امر						B.	G.B.		Į		
45 50	*							1	}			1
45 50			{ }					1	1	į	1	
50	45							{	ł	ł		
50								ł			1	1
	50									İ		
									Į.	ŀ		
		i I								}		
55	55											

PROJECT: Peter Cooper RI/FS Gowanda, New York Log of Well No. MW-3						MW-3(R)								
BORI	NG L	oc		N: 10	feet E	E. of MW-3 - Replacement Well for MW-3		TOP OF 770.7	CA	SING	ELE	VAT	ION	DATUM: fmsl
DRILL	ING	col	NTR/	сто	R: N	othnagle Drilling		DATE ST 7/11/00	ΓAF	RTED	:			DATE FINISHED: 7/11/00
DRILL	ING	MET	THOE): HS	6A (4	1/4° I.D.)		TOTAL D 9.2 feet b	DEF xgs	PTH:				SCREEN INTERVAL: 4.5 to 9.0
DRILL	ING	EQ	JIPM	ENT:	CME	E-55 - ATV		DEPTH WATER:	ro	FIRS 5.0 f	T eet	СОМ	PL.	CASING: 2-inch PVC
SAMF	LING	g Me	ETHC	D: 2	" dia.	Stiainless Steel Split Spoon		LOGGEL CAL) B	Y:				
НАМ	IER	WE	GHT	: 140	lb.	DROP: 30"		RESPON Richard I	1511 1. F	BLE F Frappa	PROF	FESS		AL: REG. NO.
PTH ()	<u>S/</u>	MPL 8	ES is	(md		DESCRIPTION NAME (USCS Symbol): color, moist, % by weight, sinchure, comparation, react, wHCL one late	plast.,			, 		L CON D/OR I	ISTRI DRILI	JCTION DETAILS LING REMARKS
	Sami	Sen	Blow 6 Inc l	oē		Surface Elevation: 768.1							4" St 2" St	eel Protective Casing, ickup
1-	1		5		<u>\</u> _	TOPSOIL; dark brown; dry to moist; organ present SILT with SAND (ML); black, moist, 70% plasticity fines, 20% fine sand, 20% wood miscellaneous fill material (hair, wood, fly	nic; root mediun i and ash, el	ts n-low tc)						-2-inch diameter Schedule 40 PVC riser pipe
4-		М	0			[FILL], strong septic odor	NA .							
5-	3		10			black, wet, 80% fine to medium sand, 10% plasticity fines, trace wood fragments, loo dense, 10% coarse gravel INATIVE, stm	% iow se to m na sep	edium tic type	₽				• 	(#00 sand) Filter Pack (#00 sand)
7	4	\mathbb{N}	47			odor								2-inch diameter Schedule 40 PVC,
8-	5	Й	>137	}		BEDROCK; gray; very fissile, shale/shale	y limes	tone						0.010-inch slotted well screen
10													d	End Cap
11									-					
12-														
14	- - -					· · · ·								
15	-										2			
16-									-	- - -				
17														
19														
20														
21	4								-					
22														
23	4													
25	1													
26														
27									-	ł				
28										1				
30										<u> </u>				11 OVAN MWZSR CP.1 (11/02)
Proj	ect N	o. 57	771		1	Geomat	rix Co	nsultants	5				vve	Figure

PROJECT: Peter Cooper RI/FS Gowanda, New York							Log of Well No. MW-4S(R)						
BORIN	IG L	00/	ATIO	N: 8 fe	et W	. of MW-4S - Replacement Well for MW-4	S T	OP OF C 67.0	ASIN	G EL	EVATIO	DN DA	TUM:
DRILL	ING	col	NTR/	СТОР	R: N	othnagle Drilling	D. 7/	ATE STA	RTE):		DA1 7/13	TE FINISHED:
DRILL	ING	ME	ТНО	D: HS	A (4	1/4" I.D.)		OTAL DE	PTH:			SCF	REEN INTERVAL
DRILL	ING	EQI	JIPM	ENT:	CME	E-55	D	EPTH TO		ST	COMF	2L. CAS	SING:
SAMP		S ME	ЕТНС	D: 2	' dia.	Stiainless Steel Split Spoon		DGGED I	3Y:	leel	L	12-111	
HAMM	IER	WEI	GHT	: 140	lb.	DROP: 30"	R	AL ESPONS	IBLE	PRO	FESSI	DNAL:	REG. NO.
Ξę	SA	MPL	ES	58		DESCRIPTION NAME (USCS Symbol): color, moist, % by weight, p	olast.,	ichard H.		WEL AN	L CONS	TRUCT	ION DETAILS REMARKS
DEP (fee	Sample No.	Sample	Blows/ 5 inches	NO (structure, cementation, react. wHCl, geo. inter	r.		4			" Steel f	Protective Casing,
						TOPSOIL: dark brown, organic material			╢			"Sticku	p
1-	1	Х	7			FILL					┝┛╌┼╎	2 S	-inch diameter Schedule 40 PVC
2	2	\square	18			SILTY Sand with Gravel (SM); black (1 G wet; 40% fine to medium sand; 20% coars	LEY 2.5/N se gravel,	v);	*			E	Sentonite Pellets
4-		\mathbb{A}				10% fine gravel; 30% low plasticity fines						T	ransition Sand
5_	3		>103		_			۲ الر				•••••	ilter Pack (#00N
6-		Ħ				BEDROCK (weathered) at 5.5' bgs; light g	irey (1	/ :				s	and)
7-	4	\backslash				GLEY 7/N); dry; intensley weathered shale fissile	e, powder	у, - -				2 S	-inch diameter Schedule 40 PVC, 010 inch slatted
0- - 9-	5	\boxtimes	>100				<u> </u>					. U	vell screen
10-						Bottom of Boring 9' bgs		-	-			E	ind Cap
11-								-					
12-								-					
13-								-					•
14-			i					-	4				
15-								-	1				
10-								-					
18-								-					
19-								-					
- 20-								-	1				
21-													
22-													
23-		ŀ						-					
24-								-	1				
25-								-	1				
26-]								-				
2/-]]				
20- - 29-									-				
30-	1				<u> </u>				1				AL MA/25D CD 1 (11/02)
	···				<u></u>							WELL_O	VM MVV23FLOFJ (1102)

-

P	PROJECT: Peter Cooper RI/FS Gowanda, New York						Log of Well No. MW-4D(R)		
. в	ORIN	IG L)CA		N: 8 fe	eet East of MW-4D - Replacement well for	MW-40 766 36		
D	RILLI	NG	COI	NTRA	CTOR	: Nothnagle Drilling	DATE STARTED: DATE FINISHED: 7/12/00 7/12/00		
D	RILLI	NG	MET	ГНОГ): HS/	A (4 1/4" I.D.)/HQ Coring	TOTAL DEPTH:SCREEN INTERVAL:23.0 fbgs18 to 23 fbgs		
D	RILLI	NG	EQI	JIPM	ENT:	CME-55	DEPTH TO FIRST COMPL. CASING: WATER: 2-inch PVC		
s	AMP	LING	ME	тнс	D: HO	Q Coring	LOGGED BY:		
Н	AMM	ER	VE	GHT	NA	DROP: NA	RESPONSIBLE PROFESSIONAL: REG. NO. Bichard H. Franna, P.G. PA-0969		
	н С	SA •	MPL	ES	₹Ê	DESCRIPTION NAME (USCS Symbol): color, moist, % by weigh	WELL CONSTRUCTION DETAILS AND/OR DRILLING REMARKS		
	ц Э.	Sampl No.	Sampl	Blows	98	cementation, react. wHQ, geo, in Surface Elevation: 70	4" Steel Protective Casing,		
+			-			FILL	DS.UU		
	1 1 1 1 1 1 1 1 1 1	1- 2- SILTY Sand with Gravel (SM); black (1 GLEY 2.5/N); wet; 40% fine to medium sand; 20% coarse gravel, 10% fine gravel, 30% kow plasticity fines 1							
	6- 7-					WEATHERED BEDROCK; SHALE	- 4-inch diameter black steel casing (0-12 feet)		
	9- 10- 11- 12-					COMPETENT BEDROCK; dark grey SHALE; fresh to slightly weathered, i laminations (1-2 mm in thickness), fr (~3 feet), moderately fractured and s slightly opened fractures, partly heal	(1 GLEY 4/N); moderately soft, acture frequency spaced, thin and ed fractures, (clay		
	13_ 14_ 15_ 16_					Infilling visible), no HCL reaction Run 1 - From: 12 feet To: 17 feet Recovery 100%; RQD 36%	- Bentonite Pellets - Transition Sand (#00 sand)		
	17- 18- 19-					dry fracture fillings more evident	Filter Pack (#00N sand)		
	20- 21- 22-					Run 2 - From: 17 feet To: 22 feet Recovery 94%; RQD 34%	Schedule 40 PVC, 0.010-inch slotted well screen 4-inch diameter core-hole (12-23		
	23- 24- 25-					Run 3 - From: 22 feet 10: 23 feet Recovery 83%; RQD 38% Bottom of Boring at 23 feet bgs	feel) End Cap		
	26- 27- 28- 29-					Average drill rate - 2 min/ft			
	30-		1	I	1		WELL_OVM MW4DR.GPJ (10/00)		
	Proje	ct No	. 57	771		Geo	omatrix Consultants Page 1 of 1		

PROJECT	: Pe G	eter C owan	cooper da, Ne	Inactive Landfill RI/FS	L	og of W	Vell No	. MW-4D2
BORING L	_OC/	ATIO	N: See	e RI Figures for Boring Locations	TOP OF (CASING EL	EVATION	DATUM:
DRILLING	co	NTR/	ACTOR	R: Nothnagle Drilling	DATE ST	ARTED:		DATE FINISHED:
DRILLING	ME	тнос	D: HS	A (4 1/4" I.D.)/HQ Coring	TOTAL D	EPTH:		SCREEN INTERVAL
DRILLING	EQ	UIPM	ENT:	CME-75	DEPTH T	0 FIRST	COMPL.	CASING:
SAMPLIN	G MI	ЕТНС	D: 2"	" dia. Stainless Steel Split Spoons/ HQ Coring	LOGGED	BY:	· I	
HAMMER	WE	IGHT	: 140	DROP: 30"	RESPON	SIBLE PRO	FESSION	AL: REG. NO.
PTH 3et) %	AMPI	ES 2 Se	MV (md	DESCRIPTION NAME (USCS Symbol): color, moist, % by weight, plast., structure, cementation, march, wHC, one, inter		WE At		RUCTION DETAILS
	Sam	Blow 6 Inct	٥ē	Surface Elevation: 765.1				
	+			OVERBURDEN: (see stratigraphy for well MV	/-4D)			
1-								Concrete (0-1)
2-								Cement/Bentonite
2								Grout (0-12)
-						-		Steel Casing (0-12)
4-								
5-						-		
6-			ſ	BEDROCK: SHALE: grey, horizontal to near				
				horizontal bedding planes, thinly bedded (1-2 thistle in places, moderately soft to soft, occas	mm), isional	-		
				horizontal fractures,				
8-						-		
9-								
-								
10-								
11-					1	-		•
12-								
-				Run #1 - 12' to 15.5' Rec 100% RQD 32%		-		
13-				Run #2 - 15.5' to 20.5' Rec 100% RQD 63%				4" diameter corehole (12.0-40.5)
14-				Run #3 - 20.5' to 25.5' Rec 100% RQD 75%		-		
15-								
-						-		
16-								
17-								Bentonite (5-27)
18-				-soft, fractured				
19-				-soft, fractured		-		
						-		
20-				-horizontal fracture				
21-								
22				-soft, fractured				
				-darker grey, silty, harder, massive				
								Riser (+2-30)
24					}			
25					l			ELL_OVM MW4D2.GPJ (11/02)
Project No	o. 57	71		Geomatrix C	onsultants			Figure

• • ••••

PROJECT: Peter Cooper Inactive Landfill RI/FS Log of Well No. MW-4D2 (cont'd) Gowanda, New York SAMPLES DEPTH (feet) Semple No. DESCRIPTION WNO (mdd) WELL CONSTRUCTION DETAILS Blows/ 6 Inches NAME (USCS Symbol): color, moist, % by weight, plast., Sample AND/OR DRILLING REMARKS structure, cementation, react. w/HCl, geo. inter. 26 27-28-+#00N Sand (27-40) -soft, fractured 29--soft, fractured 30-4" diameter corehole 31 (12.0-40.5) -soft, fractured 32-Run #4 - 25.5' to 30.5' Rec 98% RQD 78% 33-Run #5 - 30.5' to 35.5' Rec 97% RQD 67% 34-Run #6 - 35.5' to 40.5' Rec 100% RQD 80% 35-2* diameter PVC Slot Screen No water loss 36-37--softer, fissile (37-39) 38-39-40-Rock 41-42-43-44-45-46-47 48-49 50· 51· 52-53 54 55 WELL_OVM MW4D2.GPJ (11/02) **Geomatrix Consultants** Figure (cont.) Project No. 5771

015	RIEN & E	ERE INC.		_	TEST E File Nam	oring lob ne: Pcdo4r. R.	Res	ort of Boring Sheet 1	No. of 1	NH-5	Ξŧ.
Proje	t Locat	ion; Souar Cooper	ada, NY		Type: SALIT SPOON Hammer: 140 lbs. Fall: 30"	MALER	Groand Ha	ter Depth 772. Depth 771.	,33 Da 60 Da	ite 12/1 ite 4/1	15/8
: Forin 196 G	i Co.s P m: Mark cologist	ernett-Hol Besk : Peter Bo	ife gardus			Boring Location: east Ground Elevation: 778. Dates: Started:08/20/1	of fill an 98	êa	•	Endeda	
			Sample	غر . الشعب والمشعون			Stratum		Fie	ld Tes	tin
lept h	"N" Value	Penetra/ Recovery	Depth	Blows /5*	Desc	riation	Depth	Installed	Sal. 0/00	Sc. Cond	HOR
0	•	12	0-2		Dry brown silt and gra	avel, root hairs (fill)	1				F
5	11	14	5-7	8-5 5-3	Black dry cinders, so	m silt pieces of wood					.4
10	18	14	10-12	10-8 11-6	Drange - red, fine to gravel, chunks of ceme wet at 8 ¹ - hard at 10	course sand and fine and wood					2
15	50+	12	15-16	50/0	Wet sand and gravel, c oxide stain.	hundes of cenent, iron					-1
-					Brey Weathered Shale	17	ĺ				
20						B.C.B.				ĺ	
~	Í					•					
		t.	1							ļ	
30											
			ĺ			-			ĺ	i	
35											
									l		İ
	{										i
65											
											Ì
50											!
5							Ì			ļ	
- 1	1		ł	1		1			İ	1	:

· · · · · · · · .* ۰.

24007/018

PROJECT: Peter Cooper RI/FS Gowanda, New York Log of Well No. MW-51					
BORING LOCATION: See R	Figures for Boring Locations	TOP OF CASING ELEVATION	DATUM:		
DRILLING CONTRACTOR:	Nothnagle Drilling	DATE STARTED:	DATE FINISHED:		
DRILLING METHOD: HSA (SCREEN INTERVAL				
DRILLING EQUIPMENT: CI	ME-75	DEPTH TO FIRST COMPL.	CASING:		
SAMPLING METHOD: 2" di	a. Stainless Steel Split Spoon/ HQ Coring	LOGGED BY:			
HAMMER WEIGHT: 140 lbs	DROP: 30"	RESPONSIBLE PROFESSION	AL: REG. NO.		
SAMPLES	DESCRIPTION	Richard H. Frappa WELL CONSTR	UCTION DETAILS		
DEPTH (feet) (feet) (feet) No. No. No. OVM (ppm)	NAME (USCS Symbol): color, moist, % by weight, plast., structure, cementation, react. w/HCl, geo, inter.				
	Surface Elevation: 779.3				
	ORGANIC SILT (OL/OH): olive brown 2.5Y 4/3, v 75% fines, 10% organic matter/roots, 5-10% gra 5-10% fine sand, high plasticity, soft SILT and FINE SAND (SM-ML): olive 5Y 5/6, dn	wet, $ -$			
3-2 16 0	slightly moist, 45-50% fines, 45-50% fine sand, 6 gravel, medium plasticity, firm, fill -grades to grey 10YR 5/1, more gravel	0-5%	4* diameter Black Steel Casing (0-15)		
5-370	ORGANIC SILT (OL/OH): greenish black 1 FOR GLEY 2.5/1 5GY, moist to wet, 75% fines/organi matter, 10-15% sand, 5-10% gravel, slight septid	c c odor,			
	fill, [Sludge?] MIXED FILL: moist, 25% wood pieces, 25% gra 25% sand, 25% medium plasticity fines	vel,	Riser (+2-18.5) 		
9 5 88 0	SILT and SAND (SM-ML): black 1 FOR GLEY 2 wet to saturated, 50% coarse sand/fine gravel w metal slag pieces 50% fines, slight odor	.5/N,	Bentonite (5-16)		
	-pieces of railroad track				
	WEATHERED SHALE/BEDROCK: dark grey 1 F	OR -	Grout (0-15)		
13-7 59 0	GLEY 4/N,dry, slight odor				
14					
	BEDROCK: SHALE: light grey to grey, horizonta near horizontal bedding planes, thinly bedded (1	al to			
	mm), fissile in places, moderately soft to soft, occassional horizontal fractures, turbidation rare				
18-	-water bearing fractures Run # 1 - 15 to 20 feet Rec 86%, RQD 7%, 20%	Water			
19-	loss				
	-silty, more massive (20-24) Run #2 - 20 to 25 feet Rec 90% ROD 79% 100		25 diameter DVC		
	water loss		Slot Screen (18.5-28.5)		
23-			(
24	-water bearing fractures				
25-	Run # 3 - 25 to 27 feet Rec 100%, RQD 46%, 50	Ŋ% │	#00N Sand (16.0-28.5)		
	water loss -water bearing fractures				
28-	Run #4 - 27 to 28.5 feet Rec 100%, RQD 34%, water loss	50%			
29-			(15.0-28.5)		
307			VELL_OVM MW5D.GPJ (11/02)		
Project No. 5771	Geomatrix Con	nsultants	Figure		

ENGI	NEERS,	ERE INC.			TEST BORING LOG File Name: PC005B.BL	Rep	ort of Boring No. Sheet 1 of 1	MH-6
rojec lient	t Locat : Peter	ion: Gowan Cooper	da, NY		SAMPLER Type: SPLIT SPOON Hammer: 140 lbs. Fall: 30"	Ground Wat	ter Depth 773.4 D. Depth 773.01 D.	ate 12/15/1 ate 4/13/6
oring oreman 36 Ge	Co.: P n: Mark ologist	arratt-Wol Beck : Peter Bo	fe gardus		Boring Location: edge Ground Elevation: 781. Dates: Started:08/20/	of fill mat .38 36	erial	Ended:08/2
			Sample		6amla	Stratum	Fi	eld Testing
epth	"N" Value	Penetrn/ Recovery	Depth	Blows /6"	Description	Depth	Installed Sal.	So. Cond. HNU
0			0-2		Dry brown silt and fine sand, root hairs, medium sand and gravel3'			
-5	7	6 *	3-5	3-5	Odor present, no return			.2
-6	1	12"	5-6	HOH 1-WOH	Brey-black silt same coarse gravel, trace of clay		A	2.
-10	9	12"	8-10	5-4	Wet black cinder fuel odor, sandy			1.
0	8	12"	10-12	7-5 3-6	Same as above, piece of shale stuck in nose		· · · · · · · · · · · · · · · · · · ·	1.
	1	6*	13-15	Noh Noh	Black gravel met, odor, silt and clay in	· .		6:
5	2		15-17	HOH-1	Brev wet silt, and fine sand, trace clay,			1.
	45	15.	18-20	18-19 26-25	fine to medium sand 18'			1.
					Grey Weathered Shale			
5								
				, i			-	
			•					
					· · · · · · · · · · · · · · · · · · ·			
5								
			•					
0			· •					
5			-					
·								
0			r.					
					:			
ឆ								
						ļ	j l	

.

ne in nonerement with the second second in the second second second second second second second second second s

. . .

÷

.

PRO	JECT	: P G	eter C owan	ooper da, Ne	RI/FS ew York	Log of Well No. MW-7S			
BOR	INGL	.oc	ATIO	N: See	e RI Figures for Boring Locations	TOP OF CASING ELEVATION DATUM: 787.8 [ms]			
DRIL	LING	co	NTRA	CTOF	R: Nothnagle Drilling	DATE STARTED: DATE FINISH 9/26/00 9/26/00	IED:		
DRIL	LING	ME	тно): HS	GA (4 1/4" I.D.)	TOTAL DEPTH: SCREEN INT 16.6 feet bgs 4.0-16.5	ERVAL		
DRIL	LING	EQ	UIPM	ENT:	CME-75	DEPTH TO FIRST COMPL. CASING: WATER: 2-inch PVC			
SAM	PLIN	ЗM	ETHC	D: 2	dia. Stainless Steel Split Spoons	LOGGED BY: JV			
НАМ	MER	WE	IGHT	140	Ibs. DROP: 30"	RESPONSIBLE PROFESSIONAL: REG. Richard H. Frappa	NO.		
EPTH (set)	S/	AMP	LES	WVC (mda	DESCRIPTION NAME (USCS Symbol): color, moist, % by weight, pla structure, cemeritation, react. whicl, geo. inter.	ast. WELL CONSTRUCTION DETAI	LS S		
	Las S	San	Blo ^r 6 Inc	03	Surface Elevation: 786.1	[]			
	_				See log for MW-7D for soil description				
1	1					Concrete (0	-2.3)		
2	4					-2" diameter	PVC		
3	7					Bentonite (2	.3-3.5)		
	1								
	-								
5	1								
6									
7	-								
8]						CV Slot		
19						Screen (4.0-	16.5)		
10	-								
	-								
11	-								
12	1								
13	-								
14	-								
15	-					(3.5-16.6)			
16									
17	_		ļ			borehole (0-	16.6)		
18	-								
	-								
19									
20									
21	1								
22	:								
23						1-1			
1 24									
25	;土								
Pro	iect N	o. 5	771		Geomatri	x Consultants Figure	·J (11/UZ)		
Ľ'' ⁰		ים . א	013	54			b		

	G	eter (owan	cooper da, Ne	RI/FS w York	Log of Well No. MW-7D					
30RING L	_OC/	ATIO	N: Se	RI Figures for Boring Locations	TOP OF CASING ELEVA	TION DATUM:				
ORILLING	CO	NTR/	ACTOF	R: Nothnagle Drilling	DATE STARTED: 9/27/00	DATE FINISHED:				
ORILLING	ME	тно	D: HS	A (4 1/4" I.D.)/HQ Coring	TOTAL DEPTH: 35.5 feet bas	SCREEN INTERVAL				
RILLING	EQ	UIPM	ENT:	CME-75	DEPTH TO FIRST CC	MPL. CASING: 2-inch PVC				
	G M	ETHC	DD: 2	dia. Stainless Steel Split Spoons/HQ Coring	LOGGED BY: JV					
IAMMER	WE	IGHT	: 140	lbs. DROP: 30"	RESPONSIBLE PROFES Richard H. Frappa	SSIONAL: REG. NO.				
EPTH (feet) Mole Vo.		ows/ HT	(mdd)	DESCRIPTION NAME (USCS Symbol): color, moist, % by weight, plast., structure, cementation, react. w/HCl, geo. inter.	WELL CO AND/O	ONSTRUCTION DETAILS R DRILLING REMARKS				
<u> </u>	- S	9 1 1		Surface Elevation: 785.8						
- 1- 1	\mathbb{R}	12	0	SILT (ML): dark olive brown 2.5Y 3/3, moist, 90 fines, 0-5% roots/organic matter, 0-5% fine san medium plasticity	D-95% _	dia dia matan Dia sh				
2 3 2	\mathbb{A}	33	0.2	WELL GRADED SAND with GRAVEL (SW): da olive grey 5Y 3/2, dry, 80% sand, 15-20% grave	rk	Steel Casing (0-19.5)				
4-	\mathbb{R}	15	60	low plasticity fines, fill WOOD/FILL: dark brown 10YR 3/3, moist, 80%		 B" diameter borehole (0-19.5) 				
5] 3 6-	\boxtimes	15	60	slight odor, fill WELL GRADED SAND with GRAVEL (SW):		Cement/Bentonite				
7- 4 8-	\square	3	10	greenish grey 1 FOR GLEY 6/1, dry, 80-90% sa 10-20% gravel, 0-5% low plasticity fines, fill moist (4 5-6 0)	and, / -	Grout (0-19.5) 2" diameter PVC Riser (+2-25.5) Portection (2.1)				
9- 5	\square	3	3	SILT (ML): dark greenish grey 1 FOR GLEY 3/ 10GY, wet, 80-90% fines, 10-20% fine sand 0-5 gravel, trace rootlets, high plasticity, soft, odor	1	Bentonite(5-21)				
10- - 11- 6	\sum	2	10	SILT (ML): dark grey 1 FOR GLEY 4/N, 90-959 fines, 0-5% fine sand, 0-5% fine gravel, high pla	asticity.					
12- 13- 7	$\left \right\rangle$	4	10	soft, odor						
14-	\mathbb{X}			SILT with GRAVEL (ML): very dark grey 1 FOF GLEY 3/N, wet, 50-70% fines, 25-30% gravel, t wood pieces, slight odor, trace sheep	race /-					
15- ⁸		2	50	SILT with CLAY (ML): wet, 0-95% fines, 0-5% sand, 0-5% fine gravel, high plasticity, soft						
17 - 9	\square	68	50	CLAY/WEATHERED BEDROCK: moist to dry, f	irm/					
18- 19-				horizontal bedding planes, thinly bedded (1-2 m moderately soft to soft, occassional horizontal f	m), ractures					
20				Run # 1 - 19.5 to 20.5 feet Rec 75% RQD 33%		◄4" diameter corehole (19.5-35.5)				
21-				Run # 2 - 20.5 to 25.5 feet Rec 100% RQD 58%		A HOON Sond				
22 23-						(21.0-35.5)				
24										
25- 26-				Run # 3 - 25.5 to 30.5 feet Rec 97% RQD 82%		2" diameter Slot				
20 - 27 -						Screen (25.5-35.5)				
28										
29-										
						WELL_OVM MW7D.GPJ (11/02)				

·

EAMPLES DESCRIPTION WELL CONSTRUCTION DETAIL 31 55 55 100	PROJ	ECT:	P(G	eter C owan	ooper da, Nev	RI/FS w York	Log of Well No. MW-7D (cont'd)			
1 1 <th></th> <th>SA</th> <th>MPI</th> <th>ES</th> <th></th> <th></th> <th>L</th> <th></th>		SA	MPI	ES			L			
31 Run # 4 - 30.5 to 35.5 tel Rec 98% ROD 48% 32 Little water loss 33 -coarser grained (35.0-35.2) 36 -coarser grained (35.0-35.2) 37 - 38 - 39 - 41 - 42 - 43 - 44 - 45 - 46 - 47 - 48 - 50 - 51 - 52 - 53 - 54 - 55 - 56 - 57 - 58 - 59 - 60 - 61 - 62 - 63 - 64 - 65 - 64 - 65 - 64 -	DEPTI- (feet)	Semple No.	Sample	Blows/ 6 inches	(mqq)	DESCRIPTION NAME (USCS Symbol): color, moist, % structure, comentation, react. w/HC	by weight, plast., X, geo. inter.	WELL CONSTRUCTION DETAILS AND/OR DRILLING REMARKS		
32 Little water loss 33- -coarser grained (35.0-35.2) 36- -coarser grained (35.0-35.2) 36- -coarser grained (35.0-35.2) 37- - 38- - 39- - 40- - 41- - 42- - 43- - 44- - 45- - 46- - 47- - 48- - 49- - 50- - 51- - 53- - 53- - 54- - 55- - 56- - 57- - 58- - 59- - 60- - 61- - 62- - 63- - 64- - 65- - 64- - 65- - 65- - 65- - 65- - 65- - 65- - 65- -	31-					Run # 4 - 30.5 to 35.5 feet Rec 989	% RQD 48%			
33- coarser grained (35.0-35.2) 36- coarser grained (35.0-35.2) 37- coarser grained (35.0-35.2) 38- coarser grained (35.0-35.2) 39- coarser grained (35.0-35.2) 40- coarser grained (35.0-35.2) 40- coarser grained (35.0-35.2) 40- coarser grained (35.0-35.2) 40- coarser grained (35.0-35.2) 40- coarser grained (35.0-35.2) 40- coarser grained (35.0-35.2) 40- coarser grained (35.0-35.2) 40- coarser grained (35.0-35.2) 40- coarser grained (35.0-35.2) 41- coarser grained (35.0-35.2) 42- coarser grained (35.0-35.2) 43- coarser grained (35.0-35.2) 44- coarser grained (35.0-35.2) 53- coarser grained (35.0-35.2) 54- coarser grained (35.0-35.2) 55- coarser grained (35.0-35.2) 56- coarser grained (35.0-35.2) 57- coarser grained (35.0-35.2) 58- coarser grained (35.0-35.2) 59- coarser grained (35.0-35.2) 61- coarser grained (35.0-35.2) 62- coarser grained (35.0-35.2) 63-<	32-					Little water loss				
34- -coarser grained (35.0-35.2) 36- -coarser grained (35.0-35.2) 37- - 38- - 39- - 40- - 41- - 42- - 43- - 44- - 43- - 44- - 45- - 47- - 48- - 49- - 50- - 51- - 52- - 53- - 54- - 55- - 56- - 57- - 58- - 59- - 60- - 61- - 62- - 63- - 64- - 65- - 64- - 65- - 64- - 65- - 64- - 65- - 64- - 65- - 64- - 64- - 6	33-									
35- 36- 37- 38- 39- 40- 40- 41- 42- 43- 44- 44- 45- 46- 47- 48- 48- 49- 50- 50- 51- 52- 53- 53- 54- 55- 56- 56- 56- 56- 56- 57- 58- 58- 58- 59- 60- 61- 61- 61- 62- 63- 64- 64- 65- 64- 65- 64- 65- 64- 65- 64- 65- 64- 64- 65- 64- 65- 64- 65- 64- 65- 64- 64- 65- 64- 65- 64- 64- 65- 64- 64- 65- 64- 64- 65- 64- 64- 65- 64- 64- 65- 64- 64- 65- 64- 64- 65- 64- 64- 65- 64- 64- 64- 64- 64- 65- 64- 64- 64- 65- 64- 64- 64- 64- 64- 64- 64- 64- 64- 64	34-									
36- 37- 38- 39- 40- 41- 42- 43- 44- 45- 46- 47- 48- 49- 50- 51- 52- 53- 54- 55- 56- 57- 58- 59- 60- 61- 62- 63- 64- 65-	35-					-coarser grained (35.0-35.2)				
37- . 38- . 39- . 40- . 41- . 42- . 43- . 44- . 45- . 46- . 47- . 48- . 49- . 50- . 51- . 52- . 53- . 54- . 55- . 56- . 57- . 58- . 60- . 61- . 62- . 63- . 64- . 65- . 64- . 65- . 61- . 62- . 63- . 64- . 65- . 64- . 65- .	36-							-		
38-	37-							-		
39-	38-									
40- 41- 42- 43- 44- 45- 46- 46- 47- 48- 49- 50- 50- 51- 52- 53- 54- 55- 56- 56- 57- 58- 59- 60- 61- 61- 62- 63- 64- 65- 66- 61- 65- 66- 61- 65- 66- 61- 65- 66- 61- 61- 65- 66- 61- 65- 66- 80- 80- 80- 80- 80- 80- 80- 80	39-							-		
41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66	40-							-		
42- 43- 44- 44- 44- 45- 46- 47- 48- 48- 49- 50- 50- 51- 52- 53- 53- 54- 55- 56- 56- 56- 57- 58- 58- 59- 60- 61- 61- 62- 63- 64- 65- 66- - 50 -	41-									
43-1 1 44-1 1 45-1 1 46-1 1 47-1 1 48-1 1 48-1 1 50-1 1 50-1 1 51-1 1 52-1 1 53-1 1 54-1 1 55-1 1 56-1 1 57-1 1 58-1 1 59-1 1 60-1 1 61-1 1 62-1 1 63-1 1 64-1 1 65-1 1 66-1 1	42-							-		
44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66										
	44-]								
47- 48- 49- 50- 51- 52- 53- 54- 55- 56- 57- 58- 59- 60- 61- 62- 63- 64- 65- 66-	45							_		
48- 49- 50- 51- 52- 53- 54- 55- 56- 56- 57- 58- 59- 60- 61- 62- 63- 64- 65- 66- - - 60- 61- 62- 63- 64- 65- 66- - - - 61- 62- 63- 64- 65- 66- - - - 62- 63- 64- 65- 66- - - - - 64- 65- 66- - - - - -	47-									
49- - 50- - 51- - 52- - 53- - 54- - 55- - 56- - 57- - 58- - 60- - 61- - 62- - 63- - 64- - 65- - 66- -								-		
50- - 51- - 52- - 53- - 54- - 55- - 56- - 57- - 58- - 59- - 60- - 61- - 62- - 63- - 64- - 65- - 66- -	49-							-		
51- 52- 53- 54- 55- 56- 57- 58- 59- 60- 61- 62- 63- 64- 65- 66-	50-									
52- 53- 54- 55- 56- 57- 58- 59- 60- 61- 62- 63- 64- 65- 66- WELL_OVM MW7D GPJ	51-									
53- 54- 55- 56- 56- 57- 58- 59- 60- 61- 62- 63- 64- 65- 66- Well_COM MW7D.GPJ	52-									
54- - 55- - 56- - 57- - 58- - 59- - 60- - 61- - 62- - 63- - 64- - 65- - 66- -	53-						-			
55- - 56- - 57- - 58- - 59- - 60- - 61- - 62- - 63- - 64- - 65- - 66- -	54-							-		
56- - 57- - 58- - 59- - 60- - 61- - 62- - 63- - 64- - 65- - 66- -	55-									
57- 58- 59- 60- 61- 62- 63- 64- 64- 65- 66- WELL_OVM MW7D.GPJ	56-									
58- - 59- - 60- - 61- - 62- - 63- - 64- - 65- - 66- -	57-						• •			
59- - 60- - 61- - 62- - 63- - 64- - 65- - 66- -	58-							-		
60- 61- 62- 63- 64- 65- 66- WELL_OVM MW7D.GPJ	59-	1						-		
61 - 62 - 63 - 64 - 65 - 66 - 66 - 66 - 66 - 66 - 66	60-							-		
62 - 63 - 64 - 65 - 66 - 66 - 66 - 66 - 66 - 66	61-	4						-4· -1		
63 - 64 - 65 - 66	62-							-		
64 - 65 - 66	63-	1						4		
65	64-	4						-		
66	65-	1						-		
WELL_OVM MW7D.GPJ	66-	1	<u> </u>				·	1		
Descrite E774				74	Т	<u>~~</u> ~-	omatrix Canada	WELL_OVM MW7D.GPJ (11/02		

·

ORING LOCATION: See RI Figures for Boring Locations T77.4 Imal RILLING CONTRACTOR: Nothinagle Drilling DATE STARTED: DATE STARTED: DATE STARTED: RILLING METHOD: HSA (4 114*1D.) TOTAL DEPTH: SSCREEN INTERVA E4-16 RILLING METHOD: HSA (4 114*1D.) TOTAL DEPTH: SSCREEN INTERVA E4-16 RILLING METHOD: TotAL DEPTH: COMPL CASING: E4-16 E4-16 AMMER WEIGHT: 140 Ibs. DROP: 30* IDGGED BY: IZanch PVC SMMER WEIGHT: 140 Ibs. DROP: 30* Regard H. Frappa REGARDER INTERVA Starting S	PROJE	CT:	Peter C Gowan	cooper da, Ne	RI/FS w York	· · · · · ·		Log of Well No. MW-8S				
RILLING CONTRACTOR: Nothengie Drilling DATE STARTED: S2800 DATE FINISHED: 12200 DATE FINISHED: 12200 DATE FINISHED: 12200 DATE FINISHED: 12200 DATE FINISHED: 12200 DATE FINISHED: 12200 DATE FINISHED: 12000 DATE FINISHED: 120000 DATE FINISHED: 120000 DATE FINISHED: 120000 DATE FINISHED: 120000 DATE FINISHED: 120000 DATE FINISHED: 1200000 DATE FINISHED: 12000000 DATE FINISHED: 120000000000	BORIN	GLO	CATIO	N: See	e RI Figure	s for Boring Locations		TOP OF C/ 777.4	ASING ELEVATIO	N DATUM: fmsl		
RILLING METHOD: HSA (4 1/4* I.D.) TOTAL DEPTH: Border das Border	DRILLI		ONTRA	ACTOR	R: Nothna	gle Drilling		DATE STA 9/28/00	RTED:	DATE FINISHED: 9/28/00		
Billing EQUIPMENT: CME.75 DEPTH TO [FIRST COME.12] CASING: AMMER WEIGHT: 140 lbs. DROP: 30* N RESPONSIBLE PROPESSIONAL: REG. NO. Total Total Total Total N RESPONSIBLE PROPESSIONAL: REG. NO. Total Total Total Total RESPONSIBLE PROPESSIONAL: REG. NO. Total Total Total Surface Elevation: 776.1 Surface Elevation: 776.1 Total To	ORILLI		ETHO	D: HS	A (4 1/4" I	D.)	· · · · · ·	TOTAL DE 16.0 feet bo	PTH: Js	SCREEN INTERVAL 6-16		
AMPLING METHOD: 2* dia. Stainless Steel Split Spoons LOGGED BY: W AMMER WEIGHT: 140 lbs. DROP: 30* RESPONSIBLE PROFESSIONAL: REG. NO. Responsible PROFESSIONAL: REG. NO. Responsible PROFESSIONAL: REG. NO. Responsible PROFESSIONAL: RESPONSIBLE PROFESIONAL: <	DRILLI			ENT:	CME-75			DEPTH TO WATER:	FIRST COMP	L. CASING: 2-inch PVC		
AMMER WEIGHT: 140 bs. DROP: 30* RESPONSIBLE PROFESSIOAL:	SAMPL	ING I	NETHO	DD: 2"	' dia. Stain	ess Steel Split Spoons		LOGGED B JV	9Y: 			
SAMPLES SAMPLES DESCRIPTION Multicipies Spread (cf. mick is your), fail Multicipies Spread (cf.	HAMMI		EIGHT	: 140	lbs.	DROP: 30"		RESPONSI Richard H.	BLE PROFESSIC	NAL: REG. NO.		
1 1 1 1 See log for MW-8D for soll description	EPTH (feet)	SAM	PLES	(mqq)		DESCRIPTIO NAME (USCS Symbol): color, moist, structure, cementation, react. w	N % by weight, plast., 1+Cl, geo. inter.		WELL CONS AND/OR DF	TRUCTION DETAILS RILLING REMARKS		
1 See log for MW-8D for soil description 2 3 4 Description 5 Description 6 Description 7 Description 8 Description 9 Description 10 Description 11 Description 12 Description 13 Description 14 Description 15 Description 16 Description 17 Description 18 Description 19 Description 20 Description 21 Description 22 Description 23 Description 24 Description 25 Description 26 Description 27 Description 28 Description 29 Description		8 0	8 8			Surface Elevation	: 778.1					
29- 30 WELL_OVM MW85.GPJ (11/02) WELL_OVM MW85.GPJ (11/02)	$\begin{array}{c}1\\-\\-\\-\\-\\-\\-\\-\\-\\-\\-\\-\\-\\-\\-\\-\\-\\-\\-\\-$									 8" diameter borehole (0-16) Bentonite (2.5-5.0) 2" diameter PV/C Riser (+2-6) #00N Sand (5-16) 2" diameter Slot Screen (6-16) 		
WELL_OVM MW8S.GPJ (11/02)	29- 30-											
	Proise	t No	5771				Geomatrix Con	sultante		WELL_OVM MW8S.GPJ (11/02) Figure		

· - ---

PROJECT: Peter Coope Gowanda, N	r RI/FS ew York	Log of Well No. MW-8D			
BORING LOCATION: Se	e RI Figures for Boring Locations	TOP OF CASING ELEVATION 777.6	DATUM: fmsl		
IRILLING CONTRACTO	R: Nothnagle Drilling	DATE STARTED: 9/28/00	DATE FINISHED: 9/29/00		
DRILLING METHOD: H	SA (4 1/4" I.D.)/ HQ Coring	TOTAL DEPTH: 45.5 feet bgs	SCREEN INTERVAL 35-45		
DRILLING EQUIPMENT:	СМЕ-75	DEPTH TO FIRST COMPL.	CASING: 2-inch PVC		
SAMPLING METHOD: 2	" dia. Stainless Steel Split Spoons/ HQ Coring	LOGGED BY: JV			
HAMMER WEIGHT: 140) Ib DROP: 30"	RESPONSIBLE PROFESSION Richard H. Frappa	AL: REG. NO.		
H L D D D D D D D D D D D D D D D D D D	DESCRIPTION NAME (USCS Symbol): color, moist, % by weight, plast., structure, cementation, react. wHCl, geo. inter.	WELL CONSTR AND/OR DRIL	RUCTION DETAILS LING REMARKS		
	Surface Elevation: 778.0				
	POORLY GRADED SAND with GRAVEL (SP): d				
	brown 10YR 3/3, dry, 70-75% fine sand, 25% fin gravel, 0-5% low plasticity fines, fill, [GRAVELL] SANDY SILT (ML): very dark brown 10YR 2/2, d	ie <u>/ FiLL]</u> /			
3 2 12 0	75% fines, 20% fine sand, 5% gravel, medium plasticity, soft, fill				
	SILT with CLAY (ML): yellowish brown 10YR 5/ to slightly moist, 80-90% fines, 10-20% sand, hig	4, dry gh / -			
	WELL GRADED SAND with GRAVEL (SW): dark		Cement/Bentonite Grout (0-21)		
	5% low plasticity fines, flang (MU) wells the base				
8-	10YR 5/8, moist, 50% fines, 25-40% gravel, 10-2	25%			
9 5 58 0	-moist to wet				
	FOR GLEY 5/N, wet to saturated, 75% angular g 15-25% well graded sand, 10-15% low plasticity	fines	4		
	CLAY (CL): grey 5YR 6/1, dry, 100% fines, high plasticity, firm to hard				
13 7 >100 0	CLAY with SILT (CL): grey 5YR 6/1, dry, 90% his plasticity fines, 10% well graded gravel, hard	igh			
14	-grades to grey 1 FOR GLEY 5/1				
17- 9 >100 0			4" diameter Steel		
18-			Casing (0-21) 8" diameter		
19 10 >100 0	WEATHERED SHALE BEDROCK		borehole (0-21)		
20					
	Run # 1 - 21' to 25.5' Rec 11% RQD 0%		4" diamatar aarabala		
			(21-45.5)		
24-					
25					
	Run # 2 - 25.5' to 30.5' Rec 40% RQD 0%				
29					
30	l				
Project No. 5771	Geomatrix Cor	nsultants	Figure		

ROJECT: Peter Cooper RI/FS Gowanda, New York						Log of Well No. MW-8D (cont'd)			
(feet)	SAMPLES DESCRIPTION DESCRIPTION DESCRIPTION NAME (USCS Symbol): color, mois structure, cementation, react.				DESCRIPTION NAME (USCS Symbol): color, moist, % by structure, cementation, react. w/HCl,	N WELL CON K by weight, plast., AND/OR I		ISTRUCTION DETAILS DRILLING REMARKS	
31- 32- 33- 34- 35- 36- 37- 38- 39- 40-	2				BEDROCK: SHALE: grey, horizonta horizontal bedding planes, thinly bed moderately soft to soft, occassional -weathered rock/fractured zone, clay 32.0, 33.5, 37.5) Run # 3 - 30.5' to 35.5' Rec 80% R Run # 4 - 35.5' to 40.5' Rec 97% R	l to near ided (1-2 mm), horizontal fractures deposits (31.0, 2 QD 24% QD 77%		2" diameter Slot Screen (35-45) #00N Sand (34-45.5)	
41- 42- 43- 44- 45-					Run # 5 - 40.5' to 45.5' Rec 100% F No water loss -soft, fissile (41.0-41.2 and 42.1-42.3 -soft (45.0-45.1)	RQD 80%			
46- 47- 48- 49-					·				
50- 51- 52- 53-								•	
55- 56- 57- 58-									
59- 59- 60- 61- 62-									
62 - 63 - 64 - 65 - 65 -									
							WELL	OVM MW8D.GPJ (11/02)	
Project No. 5771				T	Ceo	matrix Consultants		Figure (cont.)	

- -----
PROJECT: Peter Cooper Gowanda, Ne	RI/FS ew York	Log of Well No. MWFP-1D			
BORING LOCATION: See	e RI Figures for Boring Locations	TOP OF CASING ELEVATION DATUM: 787.3			
DRILLING CONTRACTOR	R: Nothnagle Drilling	DATE STARTED: DATE FINISHED: 10/3/00 10/5/00			
DRILLING METHOD: HS	SA (4 1/4" I.D.)/ HQ Coring	TOTAL DEPTH:SCREEN INTERV22.5 feet bgs12.5-22.5			
DRILLING EQUIPMENT:	CME-75	DEPTH TO FIRST COMPL. CASING: WATER: 2-inch PVC			
SAMPLING METHOD: 2"	" dia. Stainless Steel Split Spoon/ HQ Coring	LOGGED BY: JV			
HAMMER WEIGHT: 140	Ib DROP: 30"	RESPONSIBLE PROFESSIONAL: REG. NO.			
Empt 2 Construction of the section o	DESCRIPTION NAME (USCS Symbol): color, moist, % by weight, plast., structure, cementation, react. w/HCl, geo. inter.	WELL CONSTRUCTION DETAILS AND/OR DRILLING REMARKS			
	Surface Elevation: 785.2				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	ORGANIC SILT (OL/OH): very dark greyish bro 2.5Y 3/2, moist, 80% fines, 10% fine sand, 10% organic matter, high plasticity POORLY GRADED SAND with GRAVEL (SP): 6 brown 2.5Y 4/4, dry, 75% fine sand, 20% grave low plasticity fines, slight musty/organic odor, fil	Dwn Concrete (0-1) 6 / - olive - - al, 5% - -			
5 - 3 >100 3 6 - 7 - 8 - 9 - 10 - 11 - 12 - 13 - 14 - 15 - 16 - 17 - 18 - 19 - 20 - 21 - 22 - 23 - 24 - 25 - 26 - 27 - 28 - 28	WEATHERD SHALE BEDROCK BEDROCK: SHALE: grey, horizontal to near horizontal bedding planes, thinly bedded (1-2 m fissile in places, moderately soft to soft, occass horizontal fractures Run # 1 - 8.5' to 9.5' Rec 100% RQD 46% Run # 2 - 9.5' to 14.5' Rec 97% RQD 75% Run # 3 - 14.5' to 15.5' Rec 100% RQD 62% Run # 4 - 15.5' to 19.5' Rec 94 % RQD 25% Run # 5 - 19.5' to 22.5' Rec 100% RQD 90% Minimal water loss				
Project No. 5771	Geomatrix Co	wELL_OVM MWFP10.GPJ (11/02 onsultants Figure			

301361

PROJECT: Peter Cooper Gowanda, Ne	RI/FS w York	Log of Well No. MWFP-2D
BORING LOCATION: See	RI Figures for Boring Locations	TOP OF CASING ELEVATION DATUM:
DRILLING CONTRACTOR	: Nothnagle Drilling	DATE STARTED: DATE FINISHED: 10/3/00 10/4/00
DRILLING METHOD: HC	Coring	TOTAL DEPTH:SCREEN INTERVAL:28.0 feet bgs18-28
DRILLING EQUIPMENT:	CME-75	DEPTH TO FIRST COMPL. CASING: WATER: 2-inch PVC
SAMPLING METHOD: H	Q Coring	LOGGED BY: JV
HAMMER WEIGHT: 140	lbs. DROP: 30"	RESPONSIBLE PROFESSIONAL: REG. NO. Richard H. Frappa
DEPTH (feet) No. Sample Blows/ Blows/ Blows/ Blows/ COVM	DESCRIPTION NAME (USCS Symbol): color, moist, % by weight, p structure, cementation, read, wHCl, geo, inter Surface Elevation: 784.1	WELL CONSTRUCTION DETAILS AND/OR DRILLING REMARKS
$ \begin{array}{c} 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ 12 \\ 13 \\ 14 \\ 15 \\ 16 \\ 17 \\ 18 \\ 19 \\ 20 \\ 21 \\ 22 \\ 23 \\ 24 \\ 25 \\ 26 \\ 27 \\ 28 \\ \end{array} $	OVERBURDEN: (see stratigraphy for well MWFP-2S) BEDROCK: SHALE: grey to dark grey/bla horizontal to near horizontal bedding plane bedded (1-2 mm), occassional horizontal f -lighter grey (13.5-16.0) -alternating dark grey and grey bedding (11 -soft zones (16.5, 17.8, 22.5) Run # 1 - 12.5' to 15.5' Rec 100% RQD 7 Run # 2 - 15.5' to 20.5' Rec 100% RQD 42 Run # 3 - 20.5' to 25.5' Rec 97% RQD 42 Run # 4 - 25.5' to 28.0' Rec 99% RQD 579 No water loss Runs 1-3, lost 10 gallons at -several potentially water bearing horizonta (26.0-26.5)	ck, s, thinly actures 3-28) CRun # 4 Il fractures
		1-1
29-		

· .___

PROJECT: Peter Cooper RI/FS Gowanda, New York								Log of Well No. MWFP-3S			
BORIN	IG LC	CA		N: See	e RI Figures	s for Boring Locations		TOP OF CASING ELEVATION DATUM: 780.7			DATUM:
ORILL	ING (COI	NTRA	CTOF	R: Nothnag	gle Drilling		DATE STARTED: DATE FINISHED: 10/3/00			DATE FINISHED: 10/3/00
RILL		MET	гног): HS	A (4 1/4" I.	D.)	1	TOTAL DEPTH: SCREEN INTERVA			SCREEN INTERVAL
RILL	ING E	EQI	JIPM	ENT:	CME-75			DEPTH TO	FIRST	COMPL	CASING: 2-inch PVC
SAMPLING METHOD: 2" dia. Stainless Steel Split Spoons						ess Steel Split Spoons	i		BY:	_1	
HAMMER WEIGHT: 140 lbs. DROP: 30"					A A A A A A A A A A A A A A A A A A A	RESPONS	IBLE PRO	FESSION	NAL: REG. NO.		
Η¢	SA	MPL	ES	52		DESCRIPTION NAME (USCS Symbol): color, moist, % by weight	L, plast.,		WEI AN	L CONST	RUCTION DETAILS
DEP (fee	Sample No.	Sample	Blows/	NV d		structure, comentation, react. wHCl, geo. in	ter.				
$\begin{array}{c} 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ 12 \\ 13 \\ 14 \\ 15 \\ 16 \\ 17 \\ 18 \\ 19 \\ 21 \\ 12 \\ 23 \\ 24 \\ 25 \\ 25$					See	og for well MWFP-3D for soil descr	iption.				 Concrete Pad (0-2) Bentonite (2-4) #00N Sand (4.0-11.5) 2" diameter Slot Screen (5.0-11.5) 8" diameter borehole (0-11.5)
26- 27- 28- 29-											
30-					ļ,				1		FLL OVM MWEP3S GP.L (11/02)
Broio	ot No.	57	71			Geomat	trix Cons	ultants	<u> </u>		Figure

-

PROJECT: Peter Cooper RI/FS Gowanda, New York	Log of Well No. MWFP-3D					
BORING LOCATION: See RI Figures for Boring L	TOP OF CASING ELEV	ATION DATUM:				
DRILLING CONTRACTOR: Nothnagle Drilling	DATE STARTED: 10/3/00	DATE FINISHED: 10/4/00				
DRILLING METHOD: HSA (4 1/4" I.D.)/ HQ Cori	TOTAL DEPTH: 27.0 feet bgs	SCREEN INTERVAL				
DRILLING EQUIPMENT: CME-75	DRILLING EQUIPMENT: CME-75					
SAMPLING METHOD: 2" dia. Stainless Steel Sp	lit Spoons/ HQ Coring	LOGGED BY: JV				
HAMMER WEIGHT: 140 lb DROP: 3	80"	RESPONSIBLE PROFE Richard H. Frappa	ESSIONAL: REG. NO.			
H (JSCS H (Ja)	DESCRIPTION Symbol): color, moist, % by weight, plast., cementation, react. w/HCl, geo. inter.		CONSTRUCTION DETAILS OR DRILLING REMARKS			
1 1 24 200 ORGANIC SILT (0 2 20 20 4/2, dry to moist, 5% organic matter pOORLY GRADE 3 2 20 20 5% organic matter moist, 80% fines, plasticity, fill, IGR 5 3 14 0 SILT and FINE SZ 6 36 0 SILT and FINE SZ 7 4 36 0 SILT and FINE SZ 9 5 32 0 SILT and FINE SZ 10 5/2, moist to wet, 10-20% gravel, trace 5/2, moist to wet, 10-20% gravel, medium plasticity fines 9 5 32 0 SILT with GRAVE 4/N, moist, 50% fisand, medium plasticity fines Silt with GRAVE 4/N, moist, 50% fisand, medium plasticity fines 12 10 0 Silt with GRAVE 4/N, moist, 50% fisand, medium plasticity fines 13 14 0 Silt with GRAVE 4/N, moist, 10-20% gravel, medium plasticity fines 14 5 100 0 Silt with GRAVE 4/N, moist, 10-20% gravel, medium plasticity fines 14 5 10 0 Silt medium plasticity fines 5/2 <t< td=""><th> DL/OH): dark greyish brown 2.5 So% fines, 40% fine sand, 5% gr, medium plasticity D SAND (SP): black 2.5Y 2.5/1 and, 10% gravel, 10% low plast intains metal pieces, cinders an GRAVEL (ML): grey 2.5Y 6/1, 30% fine sand, 30% gravel, low AVELLY FILL] ND (SM-ML): greyish brown 2. bedium plasticity fines, 45% fine rootlets D SAND with GRAVEL: olive ry, 70% fine sand, 20% gravel, 50% fines, 40-50% fine sand, 20% gravel, 51% fines, 35% gravel, 15% well gravel, 55% gravel, 15% well gravel, 15% well gravel, 15% grey/black to grey, horizontal beding planes, thinly fissile in places, moderately schorizontal fractures, turbidation ered bedrock, mud and clay in .5) 1 fractures (15.0-15.5) s, weathered bedrock, mud and clay in .5) 4.5' Rec 80% RQD 58% 19.5' REC 97% RQD 38% 24.5' Rec 100% RQD 78% 27' Rec 80% RQD 92% 75% </th><td>bY - gravel, / - icity /</td><td>8" diameter borehole (0-11) 4" diameter Black Steel Casing (+2-11) Cement/Bentonite Grout (0-11) Bentonite (5-15) 2" diameter PVC Riser (+2-16) 4" diameter Corehole (11-27) 2" diameter Corehole (11-27) 50 51 51 51 51 51 51 51 51 51 51 51 51 51</td></t<>	 DL/OH): dark greyish brown 2.5 So% fines, 40% fine sand, 5% gr, medium plasticity D SAND (SP): black 2.5Y 2.5/1 and, 10% gravel, 10% low plast intains metal pieces, cinders an GRAVEL (ML): grey 2.5Y 6/1, 30% fine sand, 30% gravel, low AVELLY FILL] ND (SM-ML): greyish brown 2. bedium plasticity fines, 45% fine rootlets D SAND with GRAVEL: olive ry, 70% fine sand, 20% gravel, 50% fines, 40-50% fine sand, 20% gravel, 51% fines, 35% gravel, 15% well gravel, 55% gravel, 15% well gravel, 15% well gravel, 15% grey/black to grey, horizontal beding planes, thinly fissile in places, moderately schorizontal fractures, turbidation ered bedrock, mud and clay in .5) 1 fractures (15.0-15.5) s, weathered bedrock, mud and clay in .5) 4.5' Rec 80% RQD 58% 19.5' REC 97% RQD 38% 24.5' Rec 100% RQD 78% 27' Rec 80% RQD 92% 75% 	bY - gravel, / - icity /	8" diameter borehole (0-11) 4" diameter Black Steel Casing (+2-11) Cement/Bentonite Grout (0-11) Bentonite (5-15) 2" diameter PVC Riser (+2-16) 4" diameter Corehole (11-27) 2" diameter Corehole (11-27) 50 51 51 51 51 51 51 51 51 51 51 51 51 51			
Project No. 5771	Geomatrix Con	sultants	Figure			
301364						

ROJECT: Peter Coop Gowanda,	er RI/FS lew York	Log of Well I	No. PZ-1
BORING LOCATION: S	ee RI Figures for Boring Locations	TOP OF CASING ELEVATION	
RILLING CONTRACT	DR: Nothnagle Drilling	DATE STARTED: 10/10/00	DATE FINISHED: 10/10/00
RILLING METHOD: 1	ISA (4 1/4" I.D.)	TOTAL DEPTH: 14.0 feet bgs	SCREEN INTERVA
RILLING EQUIPMENT	: CME-75	DEPTH TO FIRST COMPL WATER:	CASING: 2-inch PVC
SAMPLING METHOD:	4' stainless steel barrel with acetate sleeve	LOGGED BY: JV	
AMMER WEIGHT: 14	0 lbs. DROP: 30"	RESPONSIBLE PROFESSION Richard H. Frappa	NAL: REG. NO.
SAMPLES	DESCRIPTION NAME (USCS Symbol): color, moist, % by weight, plast. structure, cementation, react. wHCl, geo. inter.	WELL CONST AND/OR DRI	RUCTION DETAILS LLING REMARKS
	Surface Elevation: 770.0		
	ORGANIC SILT (OL/OH): dark greyish brown 4/2, 75% fines, 10% fine sand, 10% gravel, 5 matter, medium plasticity WELL GRADED SAND with SILT and GRAVE (SW-SM): dark greyish brown 10YR 4/2, dry slightly moist, 70% sand, 15% gravel, 15% to plasticity fines fill	2.5Y % organic	Concrete (0-2) Bentonite (2-3)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			2" diameter PVC Riser (+2-4) 8" diameter borehole (0-14)
8- 9- 10-3- 11- 0	-wet to saturated WELL GRADED SAND with SILT (SW-SM): E FOR GLEY 2.5/N, wet to saturated, 80-90% s 10-20% low plasticity fines	plack 1 sand,	#00N Sand (3-14)
12- 13- 14- 15- 10	SILT (ML): black 1 FOR GLEY 2.5/N, wet to saturated, 80-90% fines, 0-10% fine sand, 0- gravel, high plasticity, [Sludge Fill]		2" diameter Slot Screen (4-14)
16- 17- 18-			
19- 20-			
21			
22-			
23			
25			
26			
27-			
28			
29-			

PROJ	ECT:	Pe Go	eter C owan	ooper da, Ne	RI/FS w York	Log of Well No. DP-1			
BORIN	ig Lo	DCA	TIO	V: See	RI Figures for Boring Locations	TOP OF CASING ELEVATION DATUM: 761.4 fmsl			
DRILL	ING (NTRA	CTOR	: Nothnagle Drilling	DATE STARTED: 10/10/00	DATE FINISHED:		
DRILL	ING I	MET	THOE): Dir	ect Push Drive Point	TOTAL DEPTH:	SCREEN INTERVAL		
DRILL	RILLING EQUIPMENT: NA					DEPTH TO FIRST COMPL.	CASING:		
SAMP	LING	ME	ТНО	D: N	Α	LOGGED BY:	r-incristainiess steel		
HAMN		VEI	GHT	NA	DROP: NA	RESPONSIBLE PROFESSION	L: REG. NO.		
et)	SA	MPL	ES	₹£	DESCRIPTION NAME (USCS Symbol): color, moist, % by weight, plast.,	Richard H. Frappa WELL CONSTRU AND/OR DRILL	ICTION DETAILS ING REMARKS		
ШФ.	Samp No.	Samp	Blow 6 Inch	ÓĒ	Surface Elevation: 759.2				
					Drive point- not sampled for lithology		1" diameter Steel Riser (+2.0-2.5) 1" diameter Stainless Steel Slot Screen (2.5-4.5) Drive Point (4.5-5.0)		
15		•	·	······			WELL_OVM PZ2.GPJ (11/02)		
Project No. 5771					Geomatrix Co	onsultants	Figure		

PROJECT: Peter Cooper Gowanda, NY		Log of Well No. SB-1			
BORING LOCATION:		TOP OF CASING ELEVATION DATUM:			
PRILLING CONTRACTOR	R: Nothnagle	DATE STARTED: DATE FINISHED: 10/5/00 10/5/00			
DRILLING METHOD: Ge	oprobe/Direct Push w/ HSA	TOTAL DEPTH: SCREEN INTERVAL: 10.0 feet bgs			
DRILLING EQUIPMENT:	CME-75	DEPTH TO FIRST COMPL. CASING:			
SAMPLING METHOD: G	ieoprobe/Direct Push w/ HSA	LOGGED BY:			
HAMMER WEIGHT: NA	DROP: NA	RESPONSIBLE PROFESSIONAL: REG. NO.			
EPTH feet) nple swar thes thes thes	DESCRIPTION NAME (USCS Symbol): color, moist, % by weight, plast., structure, cementation, react. w/HCl, geo. inter.	WELL CONSTRUCTION DETAILS AND/OR DRILLING REMARKS			
Bic Sar ()	Surface Elevation: 789.9				
$ \begin{array}{c} - \\ 1 - \\ - \\ 2 - \\ - \\ - \\ 3 - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\$	 moist, 50% fines, 25% sand, 25% gravel, medius plasticity, fill POORLY GRADED SAND with GRAVEL (SP): brown 10YR 5/3, moist, 75% sand, 20% gravel, 4 plasticity fines, fill, [gravelly fill] SILT (ML): greyish brown 10YR 5/2, moist to we 90% high plasticity fines, 10% fine sand, fill WELL GRADED SAND and GRAVEL (SW-GW): black, 50% sand, 50% angular gravel and metall fill SILT and FINE SAND (SP-ML): greyish-brown 10 5/2, moist to wet, 50% fines, 50% fine sand, med plasticity, soft, fill WELL GRADED SAND (SW): greyish-brown 10Y 5/2, 80-100% sand, 0-20% fine gravel, loose, fill SILT and FINE SAND (SP-ML): greyish-brown 10Y 5/2, moist to wet, 50% fines, 50% fine sand, med plasticity, soft, fill WELL GRADED SAND (SP-ML): greyish-brown 10Y 5/2, moist to wet, 50% fines, 50% fine sand, med plasticity, soft, fill WELL GRADED SAND with SILT and GRAVEL (SW-SM): yellowish-brown 10yr 5/4, 40% sand, gravel, 30% medium plasticity fines, fill, [GRAVE FILL] 	m 5% low tt, tic slag, DYR dium DYR dium A DYR >A A			
10- - 11- 12- - 13- - 14- - 15-	BEDROCK				
Project No. 005771.001 Tas	k A Ceomatrix Cor	nsultants Figure			

	301371				
PROJECT: Peter Coop Gowanda, N	er 17		Log of Well	No. SB-2	
BORING LOCATION:		TOP OF O	CASING ELEVATIO	N DATUM:	
DRILLING CONTRACTO	DR: Nothnagle	DATE ST 10/5/00	ARTED:	DATE FINISHED: 10/5/00	
DRILLING METHOD: 0	Geoprobe/Direct Push w/ HSA	TOTAL D 8.0 feet b	EPTH:	SCREEN INTERVAL	
DRILLING EQUIPMENT	: CME-75	DEPTH T WATER:	OFIRST COMP	L. CASING:	
SAMPLING METHOD:	Geoprobe/Direct Push w/ HSA	LOGGED JMH, JSV	BY:		
HAMMER WEIGHT: NA	A DROP: NA	RESPON Rick Frap	SIBLE PROFESSIO	NAL: REG. NO.	
SAMPLES HLD H H H H H H H H H H H H H H H H H H	DESCRIPTION NAME (USCS Symbol): color, moist, % by weigh structure, cementation, react, w/HQ, geo, in	n, plast., iter.	WELL CONS AND/OR DF	TRUCTION DETAILS RILLING REMARKS	
DE San Contraction	Surface Elevation: 784.0		-		
$ \begin{array}{c} - \\ 1 - \\ - \\ 2 - G^{p-1} \\ NA \\ - \\ 3 - \\ - \\ 4 - \\ - \\ 5 - \\ - \\ 6 - G^{p-2} \\ NA \\ - \\ 7 - \\ - \\ 8 - \\ - \\ 9 - \\ - \\ 10 - \\ - \\ 11 - \\ - \\ 12 - \\ - \\ 13 - \\ - \\ 14 - \\ - \\ - \\ - \\ 14 - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\$	SANDY SILT with GRAVEL (ML): dark g 4/1, moist, 50% fines, 30-40% sand (wei 10-20% gravel, medium plasticity, fill -very dark grey 2.5Y 3/1 SILT and FINE SAND (SM-ML): light oliv 2.5Y 3/1, moist, 40-60% fine sand, 40-60 plasticity fines, soft -very dark grey 2.5Y 3/1 SANDY SILT with GRAVEL (ML): light o 2.5Y 5/3, moist, 50% fines, 25% sand (w 25% angular gravel, low plasticity, fill [GI FILL] BEDROCK	prey 2.5Y Il graded), //e brown 0% high llive grey /ell graded), RAVELLY		Direct Push (0-8') Bentonite (0-8') Native Material	
15	1	I		WELL_OVM SB-2.GPJ (11/02)	
Project No. 005771.001 T	ask A Ceomat	trix Consultants		Figure	

.

PROJECT: Peter Cooper Gowanda, NY		Log of Well No. SB-3			
BORING LOCATION:		TOP OF CASING ELEVATION DATUM			
DRILLING CONTRACTOR	: Nothnagle	DATE STARTED: DATE FINISHED: 10/5/00 10/5/00			
DRILLING METHOD: Geo	oprobe/Direct Push w/ HSA	TOTAL DEPTH: SCREEN INTERVAL: 8.0 feet bgs			
DRILLING EQUIPMENT:	CME-75	DEPTH TO FIRST COMPL. CASING:			
SAMPLING METHOD: Ge	eoprobe/Direct Push w/ HSA	LOGGED BY: JMH, JSV			
HAMMER WEIGHT: NA	DROP: NA	RESPONSIBLE PROFESSIONAL: REG. NO. Rick Frappa			
EPTH feet) npie o ches ches ches	DESCRIPTION NAME (USCS Symbol): color, moist, % by weight, plast., structure, cementation, react. w/HCl, geo. inter.	WELL CONSTRUCTION DETAILS AND/OR DRILLING REMARKS			
	Surface Elevation: 782.0				
	CONCRETE FOUNDATION				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	 SANUT SILI (ML): Olive brown 2.5Y 4/3, 50-6 fines, dry, 30-40% sand, 10% gravel, high plast WELL GRADED SAND (SW): olive brown 2.5Y moist, 80-90% sand, 10-20% fine gravel/cours SANDY SILT (ML): olive brown 2.5Y 4/3, 50-6 fines, dry, 30-40% sand, 10% gravel, high plast-sand seam (1.6-1.8) -moist to wet SILT (ML): light olive brown 2.5Y 5/3, moist to 90-100% high plasticity fines, 0-5% fine sand, gravel, fill POORLY GRADED SAND (SP): dark reddish to 5YR 3/4, moist to wet 90-100% medium grain 0-10% low plasticity fines, 0-5% fine sand, gravel, fill SILT (ML): light olive brown 2.5Y 5/3, moist to 90-100% high plasticity fines, 0-5% fine sand, gravel, native SILTY GRAVEL withSAND (GM): dark bluish g FOR GLEY 4/1, wet, 50% gravel, 25% well gras sand, 25% medium plasticity fines, native 	ours asticity, fill over asticity, fill over , 0-5% brown ned sand, 0.5% grey 2 aded 			
13-					
		WELL_OVM SB-3.GPJ (11/02)			
Project No. 005771.001 Tas	k A //CE Geomatrix C	Jonsultants Figure			

		-	•
30137	5		

ROJECT: Peter Gowa	Cooper nda, NY			Log of Well No. SB-6			
ORING LOCATIO	DN:			TOP OF CASING ELEVATION DATUM:			
RILLING CONTR	ACTOR: Nothna	gle	DATE ST/	DATE STARTED: DATE FINISH			
	D: Geoprobe/Di	rect Push w/ HSA	TOTAL DE 8.0 feet bo	TOTAL DEPTH: SCREEN INTERV			
RILLING EQUIPMENT: CME-75				O FIRST COMPL. 4.3 feet	CASING:		
AMPLING METH	OD: Geoprobe/D	irect Push w/ HSA	LOGGED JMH, JSV	BY:			
AMMER WEIGH	T: NA	DROP: NA	RESPONS Rick Frap	SIBLE PROFESSION	AL: REG. NO.		
SAMPLES	- (inde	DESCRIPTION NAME (USCS Symbol): color, moist, % by wei structure, cementation, react. wHCl, geo.	ight, plast., . inter.	WELL CONSTR AND/OR DRIL	RUCTION DETAILS		
		Surface Elevation: 780	3	1			
	CON WOO GRA WEL mois plas woo SILT fines GRA satu med	ICRETE FOUNDATION DD BOARDS VELLY FILL L GRADED SAND with GRAVEL (st to wet, 60% sand, 30% gravel, 1 ticity fines, black fibrous material (d), fill with SAND (ML): black, wet to sa 5, 15% fine sand, 5% gravel, mediu VELLY SILT with SAND (ML): bla rated, 50% fines, 35% gravel, 15% ium plasticity, soft	SW): black, 0% medium decomposing aturated, 80% um plasticity, fill ck, wet to 5 fine sand,		Direct Push (0-8') Bentonite (0-8')		
9- 10- 11-							
15	<u> </u>			1	WELL OVM SB-6 CP. (11/02)		

PROJECT: Pe Go	eter Coop owanda, N	er IY	Log of We	ell No. SB-7
BORING LOCA	TION:		TOP OF CASING ELEVA	TION DATUM:
DRILLING CON	TRACTO	DR: Nothnagle	DATE STARTED:	DATE FINISHED:
		eonrobe/Direct Push w/ HSA	TOTAL DEPTH:	SCREEN INTERVA
			12.0 feet bgs DEPTH TO FIRST CO	MPL. CASING:
		: CME-75	WATER: 4.6	feet
SAMPLING ME	THOD:	Geoprobe/Direct Push w/ HSA	JMH, JSV	
HAMMER WEI	GHT: N/	A DROP: NA	RESPONSIBLE PROFES	SIONAL: REG. NO.
PTTH feet)	ms/ Ches (mg)	DESCRIPTION NAME (USCS Symbol): color, moist, % by weight, plast., structure, cementation, react. w/HCl, geo. inter.	WELL CC AND/OF	NSTRUCTION DETAILS
	Bla Bla Di	Surface Elevation: 789.9		
- 1- - 2- GP-1 - 3- - 4- - 5- - 6- GP-2 - 7- - 8- 9- 9-	NA	 URGANIC SILT (ULON): grey 2.5Y 5/1, moist, 80-90% fines, 10% fine sand, 0-10% organic/vegatative matter, high plasticity, fill SILT and FINE SAND with GRAVEL (SP-SM): of grey 2.5Y 4/1, moist, 40% fines, 40% fine sand gravel and brick pieces, trace wood, medium p fill -grades to black 2.5Y 2.5/1 SILT with CLAY (ML/CL): dark grey 5Y 3/1, 70 fines, 10-15% fine sand, 10-15% gravel, high p soft, fill -brick pieces WELL GRADED SAND with GRAVEL (SW): bla 5Y 2.5/1, 75% sand, 15-20% fine gravel, 5-10% plasticity fines, fill SILT with SAND (ML): dark grey 2.5Y 4/1, moit 70% fines, 20% sand (fine to coarse), 10% gramedium plasticity, fill WELL GRADED SAND and GRAVEL (SW-GW): 	dark 1, 20% lasticity, $\frac{1}{7}$ 1	Direct Push (0-12') Bentonite (0-12') Native Material
10-GP3 	NA	black 5Y 2.5/1, moist, 50% sand, 50% gravel a slag pieces, fill -becomes dark reddish brown 5YR WELL GRADED SAND and GRAVEL (SW-GW): black 5Y 2.5/1, moist, 50% sand, 50% gravel a slag pieces, fill	nd metal	
13- 14-				
15-1				WELL_OVM SB-7.GPJ (11/02)
Project No. 005	5771.001 T	ask A Ceomatrix Co	onsultants	Figure

Log of Well No. SB-8 Covering, AV National Structure Anter Structure Anter Structure Anter Structure Anter Structure Covering Cov		301377									
ORING LOCATION: NA DOP OF CASING ELEVATION DATUM: RILLING CONTRACTOR: Na DATE STARTED: DATE FINISHED UGROD LOGGO LOGGO LOGGO RILLING CONTRACTOR: Na SCREEN INTER RILLING EQUIPMENT: CME-75 DEPTH TO FIRST ICOMPL. GASING: AMPEN WEIGHT: NA DROP: NA Rich Finishies AMMER WEIGHT: NA DROP: NA Rich Finishies SAMPLEX Sufface Elevation: 77.6 Sufface Elevation: 77.6 Sameter Sufface Elevation: 77.6 Sufface Elevation: 77.6 Sameter Sufface Elevation: 77.6 Sufface Elevation: 77.6 Sameter Sufface Elevation: 77.6 Sufface Elevation: 77.6 Sameter Sufface Elevation: 77.6 Sufface Elevation: 77.6 Sameter Sufface Elevation: 77.6 Sufface Elevation: 77.6 Sameter Sufface Elevation: 70.6 Sufface Elevation: 77.6 Sufface Sufface Sufface Sufface Elevation: 70.6 Sufface Elevation: 70.6 Sufface Elevation: Sufface Elevation: 70.6 Sufface Elevation: 70.6 Sufface Elevation: Sufface Elevation: <	PROJECT: Peter Cooper Gowanda, NY			Log of Well	No. SB-8						
RILLING CONTRACTOR: Notimagie DATE STARTED: DATE FINISHEE RRILING METHOD: Geoprobe/Direct Push w/ HSA TOTAL DEPTH: SCREEN INTER RRILING EQUIPMENT: CME-75 WATER: Is feet AMPLING METHOD: Geoprobe/Direct Push w/ HSA UCGGED BY: AMPLING METHOD: Geoprobe/Direct Push w/ HSA UCGGED BY: AMPLING METHOD: Geoprobe/Direct Push w/ HSA UCGGED BY: AMMER WEIGHT: NA DEOR: NA RECEPONSIBLE PROFESSIONAL: I REG. NC Example SAMPLES Same service and and and an and and and and and and	BORING LOCATION:		TOP OF	TOP OF CASING ELEVATION DAT							
RILLING METHOD: Geoprobe/Direct Push w/ HSA 12 0 feet bg. GORPTH: RILLING EQUIPMENT: CME-75 VATRE 20 feet bg. GORPTH: RILLING GEUIPMENT: CME-75 VATRE 20 feet bg. GORPTH: RILLING GEUIPMENT: CME-75 VATRE 20 feet bg. GORPTH: AMPLING METHOD: Geoprobe/Direct Push w/ HSA JAN/CME PROFESSIONAL: REG. NC RILLING RETHOD: Geoprobe/Direct Push w/ HSA JAN/CME PROFESSIONAL: REG. NC RESPONSIBLE PROFESSIONAL: REG. NC RESPONSIONAL RESPONSIBLE PROFESSIONAL: REG. NC RESPONSIONAL RE	RILLING CONTRACTOR	: Nothnagle	DATE S	TARTED:	DATE FINISHED:						
RILLING EQUIPMENT: CME-75 DEPTH TO IFIRST FCOMPL CASING: WATER: 18 feet AMPLING METHOD: Geoprobe/Direct Push w/ HSA AMMER WEIGHT: NA DROP: NA RESPONSIBLE PROFESSIONAL: REG. NC Responsible PROFESSIONAL: REG. NC Rick Frappa MME (SCS Strend Comment, by were, see. Sufficience Elevation: Ref. Were, Strend Comment, by were, see. Sufficience Elevation: Ref. Were, Strend Comment, by were, see. Sufficience Elevation: Ref. Were, Strend Comment	RILLING METHOD: Geo	pprobe/Direct Push w/ HSA	TOTAL I	DEPTH:	SCREEN INTERVAL						
AMPLING METHOD: Geoprobe/Direct Push w/ HSA Lind M- JSV AMMER WEIGHT: NA DROP: NA RESPONSIBLE PROFESSIONAL: / REG. NC Rick Frappa SAMPLES SAMPL	RILLING EQUIPMENT:	CME-75	DEPTH	TO FIRST COMP	PL. CASING:						
AMMER WEIGHT: NA DROP: NA RESCRIPTION Rick Frappa RESCRIPTION Rick Frappa 1<	AMPLING METHOD: Ge	eoprobe/Direct Push w/ HSA	LOGGE	D BY: V							
SAMPLES B <t< td=""><td>AMMER WEIGHT: NA</td><td>DROP: NA</td><td>RESPON</td><td>NSIBLE PROFESSIO</td><td>ONAL: REG. NO.</td></t<>	AMMER WEIGHT: NA	DROP: NA	RESPON	NSIBLE PROFESSIO	ONAL: REG. NO.						
B 3 2 3 2 3 2 3	SAMPLES	DESCRIPTION NAME (USCS Symbol): color, moist, % by weig structure, cementation, react. w/HCl, geo. i	ht, plast., nter.	WELL CONS AND/OR D	STRUCTION DETAILS RILLING REMARKS						
ORGANIC SILT (OL/OH): dark grey 10YR 4/1, 90% matter, high plasticity matter, high plasticity matter, high plasticity matter, high plasticity fines, 0-10% fines, and, 20-25% gravel, medium plasticity, fill -dark greenish grey 1 FOR GLEY 4/1, slight odor -wood pieces -wood		Surface Elevation: 787.6	}								
WELL_OVM SB-8.GPJ (11	$ \begin{array}{c} \\ \\ \\ $	 CROANC SILT (CLOR). Gark grey to black with dark sandy inclusion: fines, 0-10% fine sand, 0-10% organic/matter, high plasticity SILT with FINE SAND and GRAVEL (MI greyish brown 10YR 4/2, moist, 50-60% fine sand, 20-25% gravel, medium plast -dark greenish grey 1 FOR GLEY 4/1, s -wood pieces 	vegatative L): dark 5 fines, 20-25% ticity, fill light odor rey 2FOR sand (coarse tive soil)		Direct Push (0-12') Bentonite (0-12') Native Material						
Project No. 005/(1.001 lask A Geomatic Consultants Figure	10 Project No. 005771 001 Tad	KA Geoma	atrix Consultants		WELL_OVM SB-8.GPJ (11/02) Figure						

3	0	1	3	7	8
---	---	---	---	---	---

PROJECT: Peter Coope Gowanda, N		Log of Well No. SB-9
BORING LOCATION:		TOP OF CASING ELEVATION DATUM:
ORILLING CONTRACTO	R: Nothnagle	DATE STARTED: DATE FINISHED:
DRILLING METHOD: G	eoprobe/Direct Push w/ HSA	TOTAL DEPTH: SCREEN INTERVAL 12.0 feet bgs
DRILLING EQUIPMENT:	CME-75	DEPTH TO FIRST COMPL. CASING: WATER: 9.1 feet
SAMPLING METHOD: (Geoprobe/Direct Push w/ HSA	LOGGED BY: JMH, JSV
HAMMER WEIGHT: NA	DROP: NA	RESPONSIBLE PROFESSIONAL: REG. NO. Rick Frappa
Part of the second seco	DESCRIPTION NAME (USCS Symbol): color, moist, % by weight, plast., structure, cementation, react. wrHCl, geo. inter.	WELL CONSTRUCTION DETAILS AND/OR DRILLING REMARKS
	Surface Elevation: 778.4	
- 1- 2- GP-1 NA	ORGANIC SILT (OL/OH): grey 2.5Y 5/1, moist, 7 fines, 10-15% fine sand, 10-15% gravel, 10% on matter, medium plasticity, fill WELL GRADED SAND (SW): black 2.5Y 2.5/1, moist, 80% sand, 10% low plasticity fines, 10% g brick pieces, and metal slag, fill	75% ganic
3- - 4- 5- 6-GP-2 NA	WEATHERED ROCK/BOULDER SILT and FINE SAND (SM-ML): dark greyish bro 2.5Y 4/2, moist, 40-45% fines, 40-45% fine sand 10-20% gravel, medium plasticity, trace roots an	wn d wood
- 7- - 8- - 9- -	SILTY SAND with GRAVEL (SM): light olive brow 2.5Y 5/4, 80% well graded sand, 10-15% gravel, 10-15% medium plasticity fines	MU
10-GP-3 NA - 11- 12- 13-	SILTY SAND with GRAVEL (SM): light onve brow 2.5Y 5/6, wet, 40% well graded sand, 30% grave medium plasticity fines	Vn
Project No. 005771.001 Ta	isk A Geomatrix Cor	WELL_OVM SB-9.GPJ (11/02)
		l'iguio

				301379										
PROJ	ECT:	Peter Gowar	Coope nda, N	r Y		Log of Well No. SB-10								
BORIN	IG LO	CATIO	N:		TOP OF NA	CASING ELEVAT	TION DATUM:							
DRILL	ING C	ONTR	АСТО	R: Nothnagle	DATE S 10/6/00	STARTED:	DATE FINISHED: 10/6/00							
DRILL	ING M	ETHO	D: Ge	eoprobe/Direct Push w/ HSA	TOTAL 12.0 fee	DEPTH: et bas	SCREEN INTERVAL							
DRILL	ING E	QUIPN	ENT:	CME-75	DEPTH WATER	TO FIRST COM R: 8 feet	MPL. CASING:							
SAMP	LING	METH	DD: G	Geoprobe/Direct Push w/ HSA	LOGGE JMH, JS	D BY: SV								
НАММ	IER W	EIGHT	: NA	DROP: NA	RESPO Rick Fra	NSIBLE PROFESS	SIONAL: REG. NO.							
EPTH feet)	SAM		(mqq	DESCRIPTION NAME (USCS Symbol): color, moist, % by weigh structure, cementation, react. w/HCl, geo, in	nt, plast., nter.	WELL CO AND/OR	NSTRUCTION DETAILS DRILLING REMARKS							
ЦС ЦС	San	BI BI BI		Surface Elevation: 779.3										
- 1- 2- 3- 4- 5-	GP-1	NA		brown 2.5Y 5/3, moist, 40% fines, 40% fiss, 40% fiss, 15-20% gravel, 0-5% organic mat SILTY SAND with GRAVEL (SM): black moist, 70% well graded sand, 15% grav slag pieces, 15% low plasticity fines, fill, FILL]	well graded ter, fill 5YR 2.5/1, el and metal , [GRANULAR		Direct Push (0-12') Bentonite (0-12')							
6- - 7- 8-	GP-2	NA		-black staining (7.5-8.0) SILT (ML): dark greenish grey 1 FOR G to saturated, 90% fines, 10% fine sand,	eenish grey 40-60% fine 5LEY 4/1, wet medium		Native Material							
9- - 10- - 11- - 12- -	GP-3	A		WELL GRADED SAND with GRAVEL an (SM): greyish brown 2.5Y 5/2, wet to sa sand, 15-20% angular gravel, 5-10% me fines	d SILT turated, 75% edium plasticity									
13- 							WELL_OVM SB-10.GPJ (11/02)							
Projec	t No. (005771.	001 Ta	sk A // Geoma	trix Consultants	5	Figure							

· - ----

. .

1

ð

ĉ

APPENDIX F Data Validation Report/Initial Groundwater Sampling Analytical Results for COPC Selection

Brees in the Am

Data Validation Services

120 Cobble Creek Road P. O. Box 208 North Creek, N. Y. 12853 Phone 518-251-4429

October 18, 2000

Jennifer Hagen Geomatrix Consultants 336 Harris Hill Rd. Williamsville, NY 14221

RE: Validation of Peter Cooper Site Data Packages CAS Submission No. R20003355

Dear Ms. Hagen:

Review has been completed for the data package generated by Columbia Analytical Services, pertaining to samples collected at the Peter Cooper site on August 14, 2000. Five aqueous samples were analyzed for TCL volatiles, TCL semivolatiles, TAL metals, and hexavalent chromium. Matrix spikes/duplicates and a trip blank were also processed. Methodologies utilized are those of the USEPA SW846.

Data validation was performed with g idance from the most current editions of the USEPA CLP National Functional Guidelines for Organic and Inorganic Data Review and the USEPA Region 2 SOPs HW-2 and HW-6. The following items were reviewed:

- * Data Completeness
- * Custody Documentation
- * Holding Times
- * Surrogate and Internal Standard Recoveries
- * Matrix Spike Recoveries/Duplicate Correlations
- * Preparation/Calibration Blanks
- * Control Spike/Laboratory Control Samples
- * Instrumental Tunes
- * Calibration Standards
- * Instrument IDLs
- * Method Compliance
- * Sample Result Verification

Those items showing deficiencies are discussed in the following sections of this report. All others were found to be acceptable as outlined in the above-mentioned validation procedures, and as applicable for the methodology. Unless noted specifically in the following text, reported results are substantiated by the raw data, and generated in compliance with protocol requirements.

In summary, results for most analyte; are usable as reported, or with minor qualification as estimated due to typical matrix or processing effects. Results for two semivolatile analytes are not usable due to apparent matrix effect. Edits to, and qualification of, reported results are indicated. These issues are discussed in the following analytical sections.

Data Completeness

No resubmissions were required of the laboratory.

Volatile Analyses by EPA 8260

Holding times, instrumental tunes, internal and surrogate standard recoveries, and blank responses were within required limits.

As indicated by presence in the associated trip blank, detections of carbon disulfide in the samples are considered contamination, and should be edited to nondetection at the CRDL (i.e. "10 U").

The reported value for chlorobenzene in 081400-005 should be derived from the dilution analysis (200 ug/L). All other analyte results for the sample can be used from the initial, undiluted run.

Reported results for bromomethane, a zetone, 2-butanone, 2-hexanone, and 4-methyl-2-pentanone should be considered estimated ("J" and "UJ"), possibly biased low, in all samples, due to low responses in the calibration standard (27%D to 34%D). The bias is not expected to be great.

Matrix spikes of 081400-001 showed acceptable accuracy and precision.

Semivolatile Analyses by EPA 8270

Holding times, instrumental tunes, internal and surrogate standard recoveries, and blank responses were within required limits.

The reported values for those analytes flagged in the initial analyses as "E" by the laboratory should be derived from the dilution analyses. All other analyte results for those samples can be used from the initial, undiluted runs.

Reported results for 2,2'-oxybis(2-chl propropane) should be considered estimated ("UJ"), possibly biased low, in all samples, due to low response in the calibration standard (46%D).

Matrix spikes of 081400-001 showed acceptable accuracy and precision, with the exception that pentachlorophenol produced low, erratic recoveries (6% and 30%), and hexachlorocyclopentadiene produced no recovery. Results for those anal ites in sample 081400-001 are therefore rejected ("R") and not usable. Phenol produced slightly low recoveries, and the result for phenol in the sample may have a slight low bias. Spiked blank recoveries were acceptable.

The extraction log had incorrect entries for "conc date" and "date done."

Metals and Hexavalent Chromium Analyses

The matrix spike of 081400-001 produced a slightly low recovery for selenium (73%), and results for that element in the samples are considered estimated ("J" and "UJ"), with a possible slight low bias. Duplicate correlations for the meta s were acceptable.

The duplicate correlation for hexavalent chromium showed variance with detection at 104 ug/L, versus nondetection at 100 ug/L. Results for this analyte in the samples should therefore be considered estimated ("J").

The results for lead and thallium in the samples are to be qualified estimated ("J" and "UJ"), with a slight low bias, as indicated by low recoveries of the low concentration CRI standard (68% and 76%). No corrective action was required of the laboratory.

The serial dilution determination for (81400-001 was acceptable.

Please do not hesitate to contact me if questions or comments arise during your review of this report.

Very truly yours,

Judy Harry

SDG #: 08140	0-001	BATCH C	OMPLETE: yes	DATE REVISED:									
SUBMISSIO	R2003355	DISKETT	E REQUESTED: Y N x	DATE DUE: 09/12/00									
CLIENT:	Geomatrix Consultants Inc.	DATE: 08	/15/00		PROTOCOL: SW846								
CLIENT REP:	Janice Jaeger	CUSTOD	Y SEAL: PRESENT/ABSENT:										
PROJECT:	PETER COOPER SITE	CHAIN OF CUSTODY: PRESENT/ABSENT:											
CAS JOB #	CLIENT/EPA ID	MATRIX	REQUESTED PARAMETERS	DATE	DATE	pН	%	REMARKS					
				SAMPLE	RECEIVE	(SOLIDS)	SOLIDS	AMPLE CONDITIO					
401572QC	081400-001	WATER	8260,8270,TAL MET,CR6	8/14/00	8/15/00								
401573	081400-002	WATER	8260,8270,TAL MET,CR6	8/14/00	8/15/00								
401574	081400-003	WATER	8260,8270,TAL MET,CR6	8/14/00	8/15/00								
401575	081400-004	WATER	8260,8270,TAL MET,CR6	8/14/00	8/15/00								
401576	081400-005	WATER	8260,8270,TAL MET,CR6	8/14/00	8/15/00								
401577	TRIP BLANK	WATER	8260,8270,TAL MET,CR6	8/14/00	8/15/00								
	· · · · · · · · · · · · · · · · · · ·												
			······································										
			······································										
					 								
					ļ								
			· · · · · · · · · · · · · · · · · · ·										
	·												
			· · · · · · · · · · · · · · · · · · ·		ļ								
	·				1								
			· · · · · · · · · · · · · · · · · · ·										
					ļ								
					ļ	l							
	-				L								
					[
	· · · · · · · · · · · · · · · · · · ·				<u> </u>	i							
:				_	, ·								

•

CASE NARRATIVE

COMPANY: Geomatrix Consultants, Inc. Peter Cooper Site SUBMISSION #: R2003355

Geomatrix samples were collected on 08/14/00 and received at CAS on 08/15/00 in good condition at cooler temperatures of 1-2 C.

INORGANIC ANALYSIS

Five water samples were analyzed for the TAL Metals by methods 6010B/7000 from SW-846 and Hexavalent Chromium by method 7196.

Job specific QC was performed on 081400-001 as requested. All MS recoveries were within limits except Selenium and has been flagged with an "N". All Blank Spike recoveries were within QC limits. All RPD's were within limits.

No other analytical or QC problems were encountered with these analyses.

VOLATILE ORGANICS

Five water samples and one trip blank were analyzed for new TCL list of Volatiles by method 8260 from SW-846.

All Tuning criteria for BFB were met.

All the initial and continuing calibration criteria were met for all analytes.

All internal standard areas were within QC limits.

All surrogate standard recoveries were within acceptance limits for all samples.

Job specific QC was performed on 081400-001 as requested. All MS/MSD's and Reference Spike recoveries were within limits. All RPD's were within limits.

Chlorobenzene for 081400-005 has been flagged with an "E" as being outside the calibration range of the instrument. The sample was repeated at a dilution and both sets of data have been reported out.

Thr trip blank contained a small hit of Carbon Disulfide.

The Laboratory Blanks associated with these analyses were free of contamination.

All samples were analyzed within required holding times.

No other analytical or QC problems were encountered.

301386

Geomatrix - submission #R2003355 - page 2

SEMIVOLATILE ORGANICS

Five water samples were analyzed for the new TCL list of Semivolatiles by method 8270 from SW846.

All surrogate standard recoveries were within limits.

Job specific QC was performed on 081400-001 as requested. All MS/MSD recovereis were within limits unless flagged with an "*". All Blank Spike recoveries were within limits. All RPD's were within limits except Pentachlorophenol and has been flagged with an "*".

Several compounds for 081400-002 and 081400-003 have been flagged with an "E" as being outside the calibration range of the instrument. The samples are in the process of being repeated at dilutions and will be reported in the Semivolatile package being sent as an addendum

The Laboratory Blanks associated with these analyses were free of contamination.

All samples were extracted and analyzed within required holding times.

No other analytical or QC problems were encountered.

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hard copy package has been authorized by the Laboratory Manager or his designee, as verified by the following signature.

S. . .

CASE NARRATIVE

COMPANY: Geomatrix Consultants, Inc. Peter Cooper Site SUBMISSION #: R2003355

Geomatrix samples were collected on 08/14/00 and received at CAS on 08/15/00 in good condition at cooler temperatures of 1-2 C.

SEMIVOLATILE ORGANICS

Five water samples were analyzed for the new TCL list of Semivolatiles by method 8270 from SW846.

All Tuning criteria for DFTPP were met.

All initial and continuing calibration criteria were met.

All surrogate standard recoveries were within limits except 081400-002DL and 081400-003DL. All surrogates were diluted out and have been flagged with a "D".

Job specific QC was performed on 081400-001 as requested. All MS/MSD recovereis were within limits unless flagged with an "*". All Blank Spike recoveries were within limits. All RPD's were within limits except Pentachlorophenol and has been flagged with an "*".

Several compounds for 081400-002 and 081400-003 have been flagged with an "E" as being outside the calibration range of the instrument. The samples were repeated at dilutions and both sets of data have been reported out.

The Laboratory Blanks associated with these analyses were free of contamination.

All samples were extracted and analyzed within required holding times.

No other analytical or QC problems were encountered.

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hard copy package has been authorized by the Laboratory Manager or his designee, as verified by the following signature.

00002

1 Mustard Street, Suire 250 = Rochester, NY 14609-6925 = Telephone (716) 288-5380 = Fax (716) 288-8475

September 12, 2000

Ms. Jennifer Hagen Geomatrix Consultants, Inc. 338 Harris Hill Road, Suite 201 Williamsville, NY 14221

Columbia Analytical An Employee-Owned Company

Re: Peter Cooper Site Submission # R2003355 SDG # 081400-001

Dear Ms. Hagen:

Enclosed is the analytical data report for the above referenced facility. A total of six samples were received by our laboratory on August 15, 2000.

Only the sample data has been provided for the Semivolatile analysis. The package would have been delayed if the raw data had been included, so at your request, the package is being sent out as mentioned above. The Semivolatile package will be submitted as an addendum at a later date.

Any problems encountered with this project are addressed in a case narrative section which is presented later in this report.

This report consists of two (2) packages: the sample data package and the sample data summary package. Both packages have been mailed to Judy Harry at your request, with only a copy of the summary package being mailed to Geomatrix. All data presented in this package has been reviewed prior to report submission. If you should have any questions or concerns, please contact me at (716) 288-5380.

Thank you for your continued use of our services.

Sincerely,

COLUMBIA ANALYTICAL SERVICES Jaédei **Project Chemist**

enc.

cc: Ms. Judy Harry Data Validation Services 120 Cobblecreek Road North Creek, NY 12853

1 Mustard ST. Suite 250 Rochester, NY 14609

THIS IS AN ANALYTICAL TEST REPORT FOR:

Client :	Geomatrix Consultants	Inc.
Project Reference:	PETER COOPER SITE	
Lab Submission # :	R2003355	
Reported :	09/12/00	

Report Contains a total of 45 pages

The results reported herein relate only to the samples received by the laboratory. This report may not be reproduced except in full, without the approval of Columbia Analytical Services.

This package has been reviewed by Columbia Analytical Services' QA Department/Laboratory Director to comply with NELAC standards prior to report submittal.

v0001

CASE NARRATIVE

COMPANY: Geomatrix Consultants, Inc. Peter Cooper Site SUBMISSION #: R2003355

Geomatrix samples were collected on 08/14/00 and received at CAS on 08/15/00 in good condition at cooler temperatures of 1-2 C.

INORGANIC ANALYSIS

Five water samples were analyzed for the TAL Metals by methods 6010B/7000 from SW-846 and Hexavalent Chromium by method 7196.

Job specific QC was performed on 081400-001 as requested. All MS recoveries were within limits except Selenium and has been flagged with an "N". All Blank Spike recoveries were within QC limits. All RPD's were within limits.

No other analytical or QC problems were encountered with these analyses.

VOLATILE ORGANICS

Five water samples and one trip blank were analyzed for new TCL list of Volatiles by method 8260 from SW-846.

All Tuning criteria for BFB were met.

All the initial and continuing calibration criteria were met for all analytes.

All internal standard areas were within QC limits.

All surrogate standard recoveries were within acceptance limits for all samples.

Job specific QC was performed on 081400-001 as requested. All MS/MSD's and Reference Spike recoveries were within limits. All RPD's were within limits.

Chlorobenzene for 081400-005 has been flagged with an "E" as being outside the calibration range of the instrument. The sample was repeated at a dilution and both sets of data have been reported out.

Thr trip blank contained a small hit of Carbon Disulfide.

The Laboratory Blanks associated with these analyses were free of contamination.

All samples were analyzed within required holding times.

No other analytical or QC problems were encountered.

Geomatrix - submission #R2003355 - page 2

SEMIVOLATILE ORGANICS

Five water samples were analyzed for the new TCL list of Semivolatiles by method 8270 from SW846.

All surrogate standard recoveries were within limits.

Job specific QC was performed on 081400-001 as requested. All MS/MSD recovereis were within limits unless flagged with an ***. All Blank Spike recoveries were within limits. All RPD's were within limits except Pentachlorophenol and has been flagged with an ***.

Several compounds for 081400-002 and 081400-003 have been flagged with an "E" as being outside the calibration range of the instrument. The samples are in the process of being repeated at dilutions and will be reported in the Semivolatile package being sent as an addendum

The Laboratory Blanks associated with these analyses were free of contamination.

All samples were extracted and analyzed within required holding times.

No other analytical or QC problems were encountered.

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hard copy package has been authorized by the Laboratory Manager or his designee, as verified by the following signature.

SDG #: 08140	0-001	BATCH C	OMPLETE: yes	DATE REVISED:									
SUBMISSIO	R2003355	DISKETT	E REQUESTED: Y N X	DATE DUE: 09/12/00									
CLIENT:	Geomatrix Consultants Inc.	DATE: 08	/15/00		PROTOCOL: SW846								
CLIENT REP:	Janice Jaeger	CUSTOD	Y SEAL: PRESENT/ABSENT:		SHIPPING No.:								
PROJECT:	PETER COOPER SITE	CHAIN O	F CUSTODY: PRESENT/ABSENT	T:									
CAS JOB #	CLIENT/EPA ID	MATRIX	REQUESTED PARAMETERS	DATE	DATE	pН	%	REMARKS					
				SAMPLE	RECEIVE	(SOLIDS)	SOLIDS	AMPLE CONDITIO					
401572QC	081400-001	WATER	8260,8270,TAL MET,CR6	8/14/00	8/15/00								
401573	081400-002	WATER	8260,8270,TAL MET,CR6	8/14/00	8/15/00								
401574	081400-003	WATER	8260,8270,TAL MET,CR6	8/14/00	8/15/00								
401575	081400-004	WATER	8260,8270,TAL MET,CR6	8/14/00	8/15/00								
401576	081400-005	WATER	8260,8270,TAL MET,CR6	8/14/00	8/15/00								
401577	TRIP BLANK	WATER	8260,8270,TAL MET,CR6	8/14/00	8/15/00								
						_	_						
_	l												
						ļ							
					I								
						L							
			•										

ł

Effective 04/01/96

CAS LIST OF QUALIFIERS

(The basis of this proposal are the EPA-CLP Qualifiers)

- U Indicates compound was analyzed for but was not detected. The sample quantitation limit must be corrected for dilution and for percent moisture.
- J Indicates an estimated value. For further explanation see case narrative / cover letter.
- B This flag is used when the analyte is found in the associated blank as well as in the sample.
- E This flag identifies compounds whose concentrations exceed the calibration range.
- A This flag indicates that a TIC is a suspected aldol-condensation product.
- N Spiked sample recovery not within control limits.
 (Flag the entire batch Inorganic analysis only)
- * Duplicate analysis not within control limits.
 (Flag the entire batch Inorganic analysis only)
 - Also used to qualify Organics QC data outside limits.
- D Spike diluted out.
- S Reported value determined by Method of Standard Additions. (MSA)
- X As specified in the case narrative.

CAS Lab ID # for State Certifications

NY ID # in Rochester:	10145	NJ ID # in Rochester:	73004
CT ID # in Rochester:	PH0556	RI ID # in Rochester:	158
MA ID # in Rochester:	M-NY032	NH ID # in Rochester:	294198-A
OH EPA # in Rochester:	VAP	AIHA # in Rochester:	7889

An Employee-Owned Company

CHAIN OF CUSTODY/LABORATORY ANALYSIS REQUEST FORM

DATE AUG 14, 2000 PAGE 1 OF 1.

PROJECT NAME PETER COOPER SITE							ANALYSIS REQUESTED																				
PROJECT MANAGER/CONTACT RICK FRAPPA					Τ						s	٩/	lit ON										PRES	ERVA	TION		
COMPANY/ADDRESS	ACOMATE	X CONS	ULTANTS				2 E	0 95-1	0 95-2	22	s [] 95-3	voa's P	SVOA'	Vs DH	ERIZATI s. [] 19	TAL)	/ED	2 2 2 2 2	ह								
550 HARLIS MIL	L SUIII	E = 201	WILLIAN	<u>4511</u>	<u>- 141</u>	21		24	V's 25	01/6(PCB 08	8021 J TCL	8270 1 TCL	TALS SVO4	ACT) SOL	<u>54</u>	치								
TEL ([16) 265-0004 FAX (16) 565-0625						0×.0	0% 0%	9 				M M M	H H H H H H H H H H H H H H H H H H H	001	LOW	Ň											
SAMPLER'S SIGNATUR	XIIII	MIG	XIA-	·		ŭ	5	MS / 260	MS 270	V0A	STICI 081	AR'S OTAI	AR'S OTAI	0Å's	STE (TALS 3T BE	TALS ST BE	19	8						< 2.0	12	Ъ
SAMPLE I.D.	DATE	TIME	FOR OFFICE USE LAB 1,D	ONLY	SAMPL MATRIX	E 3	¥	G	3	ပ္ပံ္ထ	μ α Π	1 I I	ST 1	μų	Ĭ₹□	UE WE	ME (LIG	ວັ	Ha						Hd	F	₿
081400-001 (M41	10) 8-14-00	1430	4015	12	WATER		7	X	X							Х		X	X		*	Vor	\$ 1	1/1	CI		
081400-002	8-14-00	1615		3	WATER	2	7	Х	X							X		X	X		¥	Me	ALS	w	HN	03)	
081400-003	13-14-00	1630		14	WATER	2 -	7	X	X							X		X	X		¥	Men	CUE)	5	HN	>3	
081400-004	0-14-00	1725	7	5	WATER	2 .	Ŧ	×	X		ļ				ļ	X		X	X								
081400-005	8-14-00	1830		26	WATE	e :	2	X	X					L		X		X	X								
TRIP BLANK	8-14-00		<u></u>	17	WATER	2 3	3	×	X		Ì				ļ	X		X	X		<u> </u>						
							_										<u> </u>					 	 	[
							_				ļ				ļ						 	ļ					
									 		ļ	 	<u> </u>	 							ļ	 					ļ
	1									ENTS		POPT	PEOU	PENE					OPMA						BECEI		L
	3Y:	Hyy	RECEIVED B	Y: Úm		24 hr.	48 hr. 5 day1. Routine Report						JAMPLE HECEIPI:														
SPOENNIER HACHEN	1	Signature	regarde	<u>E</u> 31	nerian X	K Standa	rd (10	0-15 wo	orking da	iys)	- ²	Routine Narrath	9 Rep. w /e	CASE		P.O. I	: 0 <i>0</i> 5 . A<	771. Ar	.000 NE	.0		Shipp	ing Via:	HAN	<u>) </u>	LIVER	2
Firm AUG 15 2001	7 B: 25	Firm X-	· CA	5	5 -	Provide	e Vert	bal Prei	iminary i	Results	<u>}</u> ∆3	EPA Le Validata	vel III able Pac	B :kage			··					Temp	erature:		2°		
Date/Time		Date/Time				Provide	FAX	Prelim	inary Re	sults	-4	N.J. Re Deliver:	duced ables Le	wel IV										p-	1.3:	255	-
	3Y:		RECEIVED B	Y:		lequested	нерс	on Date	·		5. 6.	NY ASI	P/CLP D ecific Q(leliverab C.	les							Subm	ission N	0: <u> </u>	<u>, </u>	20	
Signature Printed Name		Signature Printed Nam	9		 	SPECI/	AL II	NSTR	UCTI	ONS/	COMN	ENTS				<u> </u>						 _		•			
Firm		Firm				METAL	s.																				1.5
Date/Time		Date/Time						<u>. п</u>	TCI				Only			, n	Spec	ol Liet									108
RELINQUISHED BY: RECEIVED BY: ORG													.3 9														
Signature		Signature																						-		-	U
Printed Name		Printed Nam			<u> </u>				(•								- 1			_	
rimi —																								-			
		Co Coole	lumbia A er Receipt	nalytical Service And Preservatio	s Inc. m Check For	rm .																					
---	---	---	---	---	-----------------------	--	--------																				
Project/Client_	<u>eomatri</u>	Χ		Subm	uission Numb	er_R2-335	5																				
Cooler received on	8-15-00	by:	¢C	OURIER: CAS	UPS FE	DEX CD&L	CLIENT																				
 Were custod Were custod Did all bottl Did any VO Were Ice or Where did th Temperature 	ly seals on out: ly papers prope es arrive in goo A vials have si Ice packs pres he bottles origin c of cooler(s) up	side of co crly filled od condit gnificant ent? nate? pon recei	ooler? l out (ink, ion (unbro air bubbl pt:	signed, etc.)? oken)? es?		S (NO S) NO S) NO S (NO) N/A S) NO S/ROC CLIE	NT																				
Is the temperat	ure within 0° - 6°	C?:	Ye	s Yes X	Yes 🗆	Yes 🛛 Ye	× 🗆																				
lf No, Explain	Below		No		No 🗖	No 🗆 No																					
Date/Time T	emperatures Ta	aken:	8-15-	00 @ 9	:40																						
Thermomete	TD:_61	(Temp Bla	nk Sample Bot	tle Cooler	Temp. IR. G	un ·																				
If out of Temperature.	Client Approval	to Run Sa	mples																								
 Did all bottle Were correct Air Samples: Explain any discrepa 	containers used Cassettes / T ncies:	d for the ubes Inta	tests indic	y papers? ated? nisters Pressurized	Y Tedlar	ES NO ES NO Bags Inflated	N/A																				
		YES	NO	Sample I.D.	Reagent	Vol. Add	ed																				
рН	Reagent																										
12	NaOH																										
2	HNO,	V		401572,573,574 575	HND3	<u>3m</u>																					
2	H ₂ SO ₄	<u> </u>																									
5-9*	P/PCBs																										
	(608 only)			<u></u>																							
YES = All samples OK • If pH adjustment is require	NO = Sar d, use NaOH and/o	nples were 1 H,SO,	preserved a	lab as listed	PC OK to adjus	t pH																					
VOC (Tes Fo Ex	Vial pH Verification ted after Analysis) llowing Samples chibited pH > 2	n																									
						·· <u></u>																					
						<u></u>																					
L			l		<u> </u>																						

٠

.

• پر ش

•

CLIENT NAME: Geomatrix Consultants Inc.

SDG#:

301397

80000

SUBMISSION: R2003355 DATE REC'D: 08/15/00 08:35

	ORDER # (# OF CONTAINERS	RELINQUISHED BY	RECEIVED BY	DATE TIME P	STORAGE H LOCATION	SCHEDULED LTS DATE
8260B	401572 Q	c G	HE	(R)	8-15-00 1400 -	72 CI	09/14/00
8260B	401573	3	1]	11		09/14/00
8260B	401574	3					09/14/00
8260B	401575	3					09/14/00
8260B	401576	3					09/14/00
8260B	401577	3		V	t V	42 2	09/14/00
						(II	

INTERNAL CHAINS

CLIENT NAME: Geomatrix Consultants Inc.

	ORDER #	# OF CONTAINERS	RELINQUISHED BY	RECEIVED BY	DATE TIME	STORAGE LOCATION	SCHEDULED LTS DATE
METALS	401572	oc 3	HE	im	8-15-00 1500	A-1	09/14/00
METALS	401573			1			09/14/00
METALS	401574	1					09/14/00
METALS	401575						09/14/00
METALS	401576	1	4	V		- V	09/14/00

INTERNAL CHAINS

Geomatrix Consultants Inc. CLIENT NAME:

SDG#:

SUBMISSION: R2003355 DATE REC'D: 08/15/00 08:35

	# OF ORDER # CONTAINERS	RELINQUISHED S BY	RECEIVED BY	DATE TIME	STORAGE LOCATION	SCHEDULED LTS DATE
HG	401572 QC 3	ME.	ŚM	8-15-00 1500	C-3	09/14/00
HG	401573					09/14/00
HG	401574					09/14/00
HG	401575					09/14/00
HG	401576	₩	J	V V	$\overline{\mathbf{v}}$	09/14/00
	<u></u>	T		· · · · · · · · · · · · · · · · · · ·	<u></u>	

301399

CLIENT NAME: Geomatrix Consultants Inc.

SDG#:		S	UBMISSION	: R2003355 E	ATE REC'D: 08	/15/00 08:35		
		ORDER #	# OF CONTAIN	RELINQUISHED ERS BY	RECEIVED BY	DATE TIME	STORAGE LOCATION	SCHEDULED LTS DATE
HEXAVALENT	CHROM	401572	oc 3	JE.	375	8-15-60 14:15	C-2	09/14/00
HEXAVALENT	CHROM	401573	; [1	1	09/14/00
HEXAVALENT	CHROM	401574						09/14/00
HEXAVALENT	CHROM	401575	; \					09/14/00
HEXAVALENT	CHROM	401576	5	₩	4	A A	1	09/14/00
			·					· · · · · · · · · · · · · · · · · · ·
,,		<u> </u>	· · · · · · · · · · · · · · · ·		<u> </u>	· · · · · · · · · · · · · · · · · · ·		
	<u></u>	. <u></u>	· · · · · · · · · · · · · · · · · · ·		. <u></u>	· · · · · · · · · · · · · · · · · · ·	<u></u>	
								و .
30								
140								
0								
C D C								

COLUMBIA ANALYTICAL SERVICES	VOLATI METHOI Report	LE ORGANICS 0 8260B ed: 09/12/00						
Geomatrix Consultants Inc. Project Reference: PETER COOPER SITE Client Sample ID : 081400-001								
Date Sampled : 08/14/00 14:30 Order # Date Received: 08/15/00 Submission #	: 401572 : R2003355	Sample Matrix: Analytical Run	WATER 54773					
ANALYTE	PQL	RESULT	UNITS					
DATE ANALYZED : 08/16/00 ANALYTICAL DILUTION: 1.00								
ACETONE	10	12	UG/L					
BENZENE	10	10 U	UG/L					
BROMODICHLOROMETHANE	10	10 U	UG/L					
BROMOFORM	10	10 U	UG/L					
BROMOMETHANE	10	10 U	UG/L					
2-BUTANONE (MEK)	10	10 U	UG/L					
METHYL TERT-BUTYL ETHER	10	10 U	UG/L					
CARBON DISULFIDE	10	2.3 J	UG/L					
CARBON TETRACHLORIDE	10	10 U	UG/L					
CHLOROBENZENE	10	68	UG/L					
CHLOROETHANE	10	10 U	UG/L					
CHLOROFORM	10	10 U	UG/L 👝					
CHLOROMETHANE	10	10 U	UG/L					
1,2-DIBROMO-3-CHLOROPROPANE	10	10 U	UG/L					
CYCLOHEXANE	10	10 U	UG/L					
DIBROMOCHLOROMETHANE	10	10 U	UG/L					
1,2-DIBROMOETHANE	10	10 U	UG/L					
1,2-DICHLOROBENZENE	10	6.6 J	' UG/L					
1,4-DICHLOROBENZENE	10	4.0 J	UG/L					
1,3-DICHLOROBENZENE	10	10 U	UG/L					
DICHLORODIFLUOROMETHANE	10	10 U	UG/L					
1,1-DICHLOROETHANE	10	10 U	UG/L					
1,2-DICHLOROETHANE	10	10 U	UG/L					
1,1-DICHLOROETHENE	10	10 U	UG/L					
TRANS-1,2-DICHLOROETHENE	10	10 U	UG/L					
CIS-1,2-DICHLOROETHENE	10	10 U	UG/L					
1,2-DICHLOROPROPANE	10	10 U	UG/L					
TRANS-1, 3-DICHLOROPROPENE	10	10 U	UG/L					
CIS-1, 3-DICHLOROPROPENE	10	10 U	UG/L					
ETHYLBENZENE	10	10 U	UG/L					
2-HEXANONE	10	10 U	UG/L					
ISOPROPYLBENZENE	10	10 U	UG/L					
METHYL ACETATE	10	10 U	UG/L					
METHYLCYCLOHEXANE	10	10 U	UG/L					
METHYLENE CHLORIDE	10	10 U	UG/L					
4-METHYL-2-PENTANONE	10	10 U	UG/L					
STYRENE	10	10 U	UG/L					
1,1,2,2-TETRACHLOROETHANE	10	10 U	UG/L					
TETRACHLOROETHENE	10	10 U	UG/L					
TOLUENE	10	2.8 J	UG/L					
1,2,4-TRICHLOROBENZENE	10	10 U	UG/L					
1,1,1-TRICHLOROETHANE	10	10 U	UG/L					
1,1,2-TRICHLOROETHANE	10	10 U	UG (HO 012					
TRICHLOROETHENE	10	10 U	UG/L					

TRICHLOROETHENE ···-

301401

MW-45CR)

COLUMBIA ANALYTICAL SERVICES	VOLATI METHOD Report	LE ORGANICS 8260B ed: 09/12/00	
Geomatrix Consultants Inc. Project Reference: PETER COOPER SI Client Sample ID : 081400-001	TE		
Date Sampled : 08/14/00 14:30 Order Date Received: 08/15/00 Submission	#: 401572 #: R2003355	Sample Matrix: Analytical Run	WATER 54773
ANALYTE	PQL	RESULT	UNITS
DATE ANALYZED : 08/16/00 ANALYTICAL DILUTION: 1.00			
TRICHLOROFLUOROMETHANE	10	10 U	UG/L
L, 1, 2-TRICHLORO-1, 2, 2-TRIFLUOROETH	10	10 U	UG/L
VINYL CHLORIDE	10	10 U	UG/L
1+P-XYLENE	10	10 U	UG/L UC/I
J-VI DENG	10	10 0	06/1
SURROGATE RECOVERIES QC LI	IMITS		
BROMOFLUOROBENZENE (86 -	- 115 %)	89	8
FOLUENE-D8 (88 -	- 110 %)	100	*
DIBROMOFLUOROMETHANE (86 -	· 118 %)	100	*

COLUMBIA ANALYTICAL SERVICES	VOLATI METHOI Report	LE ORGANICS 8260B ed: 09/12/00						
Geomatrix Consultants Inc. Project Reference: PETER COOPER SITE Client Sample ID : 081400-002								
Date Sampled : 08/14/00 16:15 Order #: Date Received: 08/15/00 Submission #:	401573 R2003355	Sample Matrix: Analytical Run	WATER 54773					
ANALYTE	PQL	RESULT	UNITS					
DATE ANALYZED : 08/16/00 ANALYTICAL DILUTION: 1.00								
ACETONE	10	11	UG/L					
BENZENE	10	10 U	UG/L					
BROMODICHLOROMETHANE	10	10 U	UG/L					
BROMOFORM	10	10 U	UG/L					
BROMOMETHANE	10	10 U	UG/L					
2-BUTANONE (MEK)	10	10 U	UG/L					
METHYL TERT-BUTYL ETHER	10	10 U	UG/L					
CARBON DISULFIDE	10	1.2 J	UG/L					
CARBON TETRACHLORIDE	10	10 U	UG/L					
CHLOROBENZENE	10	10 U	UG/L					
CHLOROETHANE	10	10 U	UG/L					
CHLOROFORM	10	10 U	UG/L					
CHLOROMETHANE	10	10 U	UG/L					
1,2-DIBROMO-3-CHLOROPROPANE	10	10 U	UG/L					
CYCLOHEXANE	10	10 U	UG/L					
DIBROMOCHLOROMETHANE	10	10 U	UG/L					
1,2-DIBROMOETHANE	10	10 U	UG/L					
1,2-DICHLOROBENZENE	10		UG/L NG/L					
1,4-DICHLOROBENZENE	10	10 0						
1,3-DICHLOROBENZENE	10							
DICHLORODIFLUOROMETHANE	10	10 0						
1, 1-DICHLOROETHANE	10							
1, 2-DICHLOROETHANE	10							
T, I-DICHLOROETHEME	10							
TRANS-1, 2-DICHLOROETHENE	10							
1 2 DICHLOROBINE	10							
TRANS-1 3-DICHLOROPROPENE	10	10 U						
CIS-1 3-DICHLOROPROPENE	10	10 U	UG/L					
ETHYLBENZENE	10	1.6 J	UG/L					
2-HEXANONE	10	3.0 J	UG/L					
TSOPROPYLBENZENE	10	10 U	UG/L					
METHYL ACETATE	10	10 U	UG/L					
METHYLCYCLOHEXANE	10	10 U	UG/L					
METHYLENE CHLORIDE	10	10 U	UG/L					
4 - METHYL - 2 - PENTANONE	10	3.8 J	UG/L					
STYRENE	10	10 U	UG/L					
1,1,2,2-TETRACHLOROETHANE	10	10 U	UG/L 👝					
TETRACHLOROETHENE	10	10 U	UG/L 😈					
TOLUENE	10	14	UG/L -					
1,2,4-TRICHLOROBENZENE	10	10 U	UG/L					
1,1,1-TRICHLOROETHANE	10	10 U	UG/L					
1,1,2-TRICHLOROETHANE	10	10 U	UG(1)014					
TRICHLOROETHENE	10	10 U	UG7L					

·· - --·

301403

Mill-3

		VOLAT METHOL Report	ILE ORGANICS D 8260B Led: 09/12/00	
Geomatrix Consultants Inc. Project Reference: PETER COOPE Client Sample ID : 081400-002	R SITE	1		
Date Sampled : 08/14/00 16:15 Or Date Received: 08/15/00 Submiss	der #: ion #:	401573 R2003355	Sample Matrix: Analytical Rur	WATER 54773
ANALYTE		PQL	RESULT	UNITS
DATE ANALYZED : 08/16/00 ANALYTICAL DILUTION: 1.00				
IRICHLOROFLUOROMETHANE	тн	10 10	10 U 10 U	UG/L UG/L
VINYL CHLORIDE		10	10 U	UG/L
M+P-XYLENE		10	10 U	UG/L
)-XYLENE		10	10 U	UG/L
SURROGATE RECOVERIES	QC LIM	ITS		
BROMOFLUOROBENZENE	B6 -	115 %)	91	*
TOLUENE-D8 ()	88 -	110 %)	100	¥
DIBROMOFLUOROMETHANE ()	B6 -	118 %)	102	¥

	•	Maria 1		
			MUN-D dup.	
COLUMBIA ANALYTICAL SERVICES			1	
•	VOLATI	LE ORGANICS		
	METHOI	8260B		
	Report	ed: 09/12/00		
Geometrix Conquitents Tre				
Geomatrix Consultants Inc. Project Reference: PETER COOPER SITE				
Client Sample TD : 081400-003				
			•	
Date Sampled : 08/14/00 16:30 Order #:	401574	Sample Matrix:	WATER	
Date Received: 08/15/00 Submission #:	R2003355	Analytical Run	54773	
ANALYTE	PQL	RESULT	UNITS	
DATE ANALYZED : US/16/00				
ANALYTICAL DILUTION: 1.00	,			
ACETONE	10	11	$\Pi G/T$	
BENZENE	10			
BROMODICHLOROMETHANE	10	10 11	UG/I.	
BROMOFORM	10	10 11	UG/I	
BROMOMETHANE	10	10 11	UG/1.	
2-BITANONE (MEK)	10		UC/I.	
METHYL TERT-BUTYL ETHER	10	10 11		
CAPBON DISID.FIDE	10	10 11		
CARDON TETRACHLORIDE	10	10 U		
CHLODOBENZENE	10	10 11		
CULODOFTUNNE	10	10 11		
CHLOROETHANE	10	10 11		
CHLOROFORM	10			
1 2-DIBROMO-3-CHLOROPROPANE	10	10 U		
T, Z-DIBROMO-J-CHLOROFROFANE	10	10 0		
CICHOMEANE DIBOMOCULODOMETUANE	10	10 11		
	10			
1,2-DICHLOROBENZENE	10	10 1		
1, 2-DICHLOROBENZENE	10	10 11		
1 3-DICHLOROBENZENE	10	10 11		
DICULOPODIFILIOPOMETHANE	10			
1 1-DICHLOPOETHANE	10	10 11		
1 2 DICHLOROFTHANE	10	10 11		
1 1_DICHLOROFTHENE	10	10 11		
T, I-DICHLOROBIHENE	10			
CIS-1-2-DICHLOPOFTHENE	10	10 U		
1 2-DICHLORODRODANE	10	10 11		
T, Z DICHDOROFROFAND TONNE_1 3_DICHLOROPROPENE	10			
CIS-1 3-DICHLOROPROPENE	10	10 11		
CIS-I, S-DICHDOROFROFBIND ETUVI.DENZENE	10	19.7		
einidensene 2 - Veynnone	10	10 11		
Z - MERENUNE T CODRODVI.BENZENE	10	10 11	UG/L	
METEVI. ACETATE	10	10 11	UG/T	
METHID ACEIAIS	10	10 11	UG/L	
METULUCIONE OULOENE METULUCIONEANE	10	10 U	UG/T.	
ΜΕΤΠΙΠΕΝΕ ΟΠΟΛΙΠΕ Λ-ΜΕΨΕΥΙ-2- ΠΕΝΨΛΝΟΝΕ	10	υυ τ. φ.	11G/T.	
CUADDND CLADDND	10	10 TT		
SIIRENE 1 1 2 2 TETEDACUI ADAETUANE	10	10 0		
1, 1, 2, 2-151KACHDURUEIHANE	10			
TETRACHLOROETHENE	10			
TOLUENE		01 77 01		
1, 2, 4 - TRICHLOROBENZENE	10			
1, 1, 1-TRICHLOROETHANE	UL D			
1, 1, 2-TRICHLOROETHANE	10	10 U 10 TT		
TRICHLORUETHEINE	TO	10 0	21010	

COLUMBIA ANALYTICAL SERV	<u>SERVICES</u> VOLATILE ORGANICS METHOD 8260B Reported: 09/12/00					
Geomatrix Consultants In Project Reference: PETER Client Sample ID : 08140	C. COOPER SIT 0-003	E				
Date Sampled : 08/14/00 16 Date Received: 08/15/00 S	:30 Order # ubmission #	: 401574 : R2003355	Sample Matrix: Analytical Run	WATER 54773		
ANALYTE		PQL	RESULT	UNITS		
DATE ANALYZED : 08/1 ANALYTICAL DILUTION:	6/00 1.00					
RICHLOROFLUOROMETHANE		10	10 U	UG/L		
,1,2-TRICHLORO-1,2,2-TRIF	LUOROETH	10	10 U	UG/L		
INYL CHLORIDE		10	10 U	UG/L		
+P-XYLENE		10	10 U	UG/L		
-XYLENE		10	10 U	UG/L		
SURROGATE RECOVERIES	QC LI	MITS				
BROMOFLUOROBENZENE	(86 -	115 %)	89	¥		
OLUENE-D8	(88 -	110 %)	100	¥		
IBROMOFLUOROMETHANE	(86 -	118 %)	99	¥		

COLUMBIA ANALYTICAL SERVICES	VOLATI METHOI Report	MW-2S(R)	
Geomatrix Consultants Inc. Project Reference: PETER COOPER SITE Client Sample ID : 0 81400-004			
Date Sampled : 08/14/00 17:25 Order #: Date Received: 08/15/00 Submission #:	401575 R2003355	Sample Matrix: Analytical Run	WATER 54773
ANALYTE	PQL	RESULT	UNITS
DATE ANALYZED : 08/16/00 ANALYTICAL DILUTION: 1.00			
ACETONE	10	10 U	
BENZENE	10	10 U	UG/L
BROMODICHLOROMETHANE	10	10 U	UG/L
BROMOFORM	10	10 U	UG/L
BROMOMETHANE	10	10 U	UG/L
2-BUTANONE (MEK)	10	10 U	UG/L
METHYL TERT-BUTYL ETHER	10	10 U	UG/L
CARBON DISULFIDE	10	10 U	UG/L
CARBON TETRACHLORIDE	10	10 U	UG/L
CHLOROBENZENE	10	10 U	UG/L
CHLOROETHANE	10	10 U	UG/L
CHLOROFORM	10	10 U	UG/L
CHLOROMETHANE	10	10 U	UG/L
1,2-DIBROMO-3-CHLOROPROPANE	10	10 U	UG/L
CYCLOHEXANE	10	10 U	UG/L
DIBROMOCHLOROMETHANE	10	10 U	UG/L
1,2-DIBROMOETHANE	10	10 U	UG/L
1,2-DICHLOROBENZENE	10	10 0	UG/L
1,4-DICHLOROBENZENE	10	10 U	UG/L
1,3-DICHLOROBENZENE	10	10 0	UG/L
DICHLORODIFLUOROMETHANE	10	10 U	UG/L
1, 1-DICHLOROETHANE	10		UG/L UG/L
1, 2-DICHLOROETHANE	10		
I, I-DICHLOROETHENE	10		
CIC-1 2-DICHLOROETHENE) I U		
1 2 DICHLOROBODINE	10		
TRANG 1 3-DICHLOROPROPENE	10	10 1	
CIS-1 3-DICHLOROPROPENE	10	10 U	
ETHVI.BENZENE	10	10 U	UG/L
2-HEYANONE	10	10 U	UG/L
I SODDODVI.BENZENE	1.0	10 U	UG/L
METHYL ACETATE	10	10 U	UG/L
METHYLCYCLOHEXANE	10	10 U	UG/L
METHYLENE CHLORIDE	10	10 U	UG/L
4 - METHYL - 2 - PENTANONE	10	10 U	UG/L
STYRENE	10	10 U	UG/L
1,1,2,2-TETRACHLOROETHANE	10	10 U	UG/L 🦱
TETRACHLOROETHENE	10	10 U	UG/L 🖤
TOLUENE	10	3.8 J	UG/L
1,2,4-TRICHLOROBENZENE	10	10 U	UG/L
1,1,1-TRICHLOROETHANE	10	10 U	UG/L
1,1,2-TRICHLOROETHANE	10	10 U	UG/L
TRICHLOROETHENE	10	10 U	ug(H)018

COLUMBIA ANALYTICAL SERVICES VOLATILE ORGANICS METHOD 8260B Reported: 09/12/00					
Geomatrix Consultants Inc. Project Reference: PETER COOPER SITE Client Sample ID : 081400-004	3				
Date Sampled : 08/14/00 17:25 Order #: Date Received: 08/15/00 Submission #:	401575 R2003355	Sample Matrix: Analytical Run	WATER 54773		
ANALYTE	PQL	RESULT	UNITS		
DATE ANALYZED : 08/16/00 ANALYTICAL DILUTION: 1.00					
TRICHLOROFLUOROMETHANE	10	10 U	UG/L		
, 1, 2-TRICHLORO-1, 2, 2-TRIFLUOROETH	10	10 U	UG/L		
INYL CHLORIDE	10	10 U	UG/L		
I+P-XYLENE	10	- 10 U	UG/L		
-XYLENE	10	10 U	UG/L		
SURROGATE RECOVERIES QC LIM	ITS				
BROMOFLUOROBENZENE (86 -	115 %)	88	z		
'OLUENE-D8 (88 -	110 %)	100	ę		
DIBROMOFLUOROMETHANE (86 -	118 %)	98	÷		

	VOLATI METHOI Report		
Geomatrix Consultants Inc. Project Reference: PETER COOPER SITE Client Sample ID : 081400-005			•
Date Sampled : 08/14/00 18:30 Order #: Date Received: 08/15/00 Submission #:	401576 R2003355	Sample Matrix: Analytical Run	WATER 54773
ANALYTE	PQL	RESULT	UNITS
DATE ANALYZED : 08/16/00 ANALYTICAL DILUTION: 1.00			
ACETONE	10	10 U	UG/L
BENZENE	10	1.4 J	UG/L
BROMODICHLOROMETHANE	10	10 U	UG/L
BROMOFORM	10	10 U	UG/L
BROMOMETHANE	10	10 U	UG/L
2-BUTANONE (MEK)	10	10 U	UG/L
METHYL TERT-BUTYL ETHER	10	10 U	UG/L
CARBON DISULFIDE	10		UG/L
CARBON TETRACHLORIDE	10	10 U	
CHLOROBENZENE	10	210 E	
CHLOROETHANE	10		
CHLOROFORM	10		
CHLOROMETHANE	10		
1, 2-DIBROMO-3-CHLOROPROPANE	10		
CICLOHEAANE DIDDOMOCUI ODOMETUNE	10		
	10	10 U	
1,2-DIDROMOEINAME	10		
1, 2-DICHLOROBENZENE	10	56.7	
1 3-DICHLOROBENZENE	10	10 U	
T, S'DICHDOROBENDENE DICULOPODIFILIOPOMETHANE	10	10 U	
1 1 DICULOROFTUANE	10	10 U	UG/L
1, 2-DICHLOROFTHANE	10	10 U	
1,2-DICHLOROEINAND	10		
TONNE_1_2_DICHLOROETHENE	10	10 U	UG/L
CIC-1 2-DICHLOROFTHENE	10	10 U	
1 2-DICHLOROPANE	10	10 U	UG/L
TRANS-1 3-DICHLOROPROPENE	10	10 U	UG/L
CIS-1 3-DICHLOROPROPENE	10	10 U	UG/L
ETHYLBENZENE	10	10 U	UG/L
2-HEXANONE	10	10 U	UG/L
ISOPROPYLBENZENE	10	10 U	UG/L
METHYI, ACETATE	10	10 U	UG/L
METHYL.CYCLOHEXANE	10	10 U	UG/L
METHYLENE CHLORIDE	10	10 U	UG/L
4-METHYL-2-PENTANONE	10	10 U	UG/L
STYRENE	10	10 U	UG/L
1.1.2.2-TETRACHLOROETHANE	10	10 U	UG/L
TETRACHLOROETHENE	10	10 U	UG/L 🖤
TOLUENE	10	10 U	UG/L
1.2.4-TRICHLOROBENZENE	10	10 U	UG/L
1.1.1-TRICHLOROETHANE	10	10 U	UG/L
1.1.2-TRICHLOROETHANE	10	10 U	UG/L
TRICHLOROETHENE	10	10 U	UG/1020

· __.

COLUMBIA ANALYTICAL SERVICES

COLUMBIA ANALYTICAL SERVICES VOLATILE ORGANICS METHOD 8260B Reported: 09/12/00					
Geomatrix Consultants Inc. Project Reference: PETER COOPER Client Sample ID : 081400-005	SITE				
Date Sampled : 08/14/00 18:30 Orde Date Received: 08/15/00 Submissio	r #: n #:	401576 R2003355	Sample Matrix: Analytical Run	WATER 54773	
ANALYTE		PQL	RESULT	UNITS	
DATE ANALYZED : 08/16/00 ANALYTICAL DILUTION: 1.00					
TRICHLOROFLUOROMETHANE		10	10 U	UG/L	
,1,2-TRICHLORO-1,2,2-TRIFLUOROETH		10	10 U	UG/L	
INYL CHLORIDE		10	10 U	UG/L	
I+P-XYLENE		10	10 U	UG/L	
)-XYLENE		10	10 U	UG/L	
SURROGATE RECOVERIES QC	LIMJ	ITS			
BROMOFLUOROBENZENE (86	-]	115 %)	91	¥	
TOLUENE-D8 (88	- 1	L10 %)	99	ક	
DIBROMOFLUOROMETHANE (86	- 1	L18 %)	102	*	

COLUMBIA ANALYTICAL SERVICES	VOLATI METHOL Report		
Geomatrix Consultants Inc. Project Reference: PETER COOPER SIT Client Sample ID : 081400-005	E		
Date Sampled : 08/14/00 18:30 Order # Date Received: 08/15/00 Submission #	: 401576 : R2003355	Sample Matrix: Analytical Run	WATER 54773
ANALYTE	PQL	RESULT	UNITS
DATE ANALYZED : 08/16/00 ANALYTICAL DILUTION: 2.00		· · · · · · · · · · · · · · · · · · ·	
ACETONE	10	20 U	UG/L
BENZENE	10	20 U	UG/L
BROMODICHLOROMETHANE	10	20 U	UG/L
BROMOFORM	10	20 U	UG/L
BROMOMETHANE	10	20 U	UG/L
2-BUTANONE (MEK)	10	20 U	UG/L
METHYI, TERT-BUTYI, ETHER	10	20 U	UG/L
CARBON DISILETDE	10	20 U	
CARDON DIDONIIDA	10	20 11	
CHIODOBENZENE	10	200	
CHIOROBENZENE CUI ODOFTUNNE	10	200	
CHLOROEINANE	10		
CHLOROFORM	10	20 0	
CHLOROMEINANE	10		
1, 2-DIBROMO-3-CHLOROPROPANE	10	20 0	
	10	20 U	
DIBROMOCHLOROMETHANE	10	20 U	
1,2-DIBROMOETHANE	10	20 0	
1,2-DICHLOROBENZENE	10	20 0	UG/L
1,4-DICHLOROBENZENE	10	6.1 J	UG/L
1,3-DICHLOROBENZENE	10	20 U	UG/L
DICHLORODIFLUOROMETHANE	10	20 U	UG/L
1,1-DICHLOROETHANE	10	20 U	UG/L
1,2-DICHLOROETHANE	10	20 U	UG/L
1,1-DICHLOROETHENE	10	20 U	UG/L
TRANS-1, 2-DICHLOROETHENE	10	20 U	UG/L
CIS-1,2-DICHLOROETHENE	10	20 U	UG/L
1,2-DICHLOROPROPANE	10	20 U	UG/L
TRANS-1.3-DICHLOROPROPENE	10	20 U	UG/L
CIS-1.3-DICHLOROPROPENE	10	20 U	UG/L
ETHYLBENZENE	10	20 U	UG/L
2-HEXANONE	10	20 U	UG/L
I SODDODVI.BENZENE	10	20 11	UG/L
METUVI. ACETATE	10	20 1	
METHID ACEIAIE METHIVI CYCI AUEYANE	10	20 1	
	10		
METHILENE CHLORIDE	10		
4 - Metri 1 l- 2 - Pentanone Gruppine			
STIKENE	10		
1, 1, 2, 2-TETRACHLOROETHANE	10	20 U	
TETRACHLOROETHENE	10	20 U	
TOLUENE	10	20 U	UG/L ТС /г
1,2,4-TRICHLOROBENZENE	10	20 U	UG/L
1,1,1-TRICHLOROETHANE	10	20 U	UG/L
1,1,2-TRICHLOROETHANE	10	20 U	UG/L
TRICHLOROETHENE	10	20 U	UG/G-22

.....

301411

10101-6

VOLATILE ORGANICS METHOD 8260B Reported: 09/12/00

Geomatrix Consultants Inc. **Project Reference:** PETER COOPER SITE **Client Sample ID :** 081400-005

Date Sampled : 08/14/00 18:30 Order #: 401576 Sample Matrix: WATER Date Received: 08/15/00 Submission #: R2003355 Analytical Run 54773

ANALYTE			PQL	RESULT	UNITS	
DATE ANALYZED : 08/16/	00			······································	<u></u>	<u> </u>
ANALYTICAL DILUTION:	2.00					
TRICHLOROFLUOROMETHANE			10	20 U	UG/L	
1,1,2-TRICHLORO-1,2,2-TRIFLU	OROETH		10	20 U	UG/L	
VINYL CHLORIDE			10	20 U	UG/L	
M+P-XYLENE			10	20 U	UG/L	
O-XYLENE			10	20 U	UG/L	
SURROGATE RECOVERIES	QC I	LIMITS				
BROMOFLUOROBENZENE	(86	- 115	8)	88	*	
TOLUENE-D8	(88)	- 110	*)	99	¥	
DIBROMOFLUOROMETHANE	(86	- 118	8)	101	ક	

COLUMBIA ANALYTICAL SERVICES VOLATILE ORGANICS						
	METHOD Report	8260B ed: 09/12/00				
Geomatrix Consultants Inc. Project Reference: PETER COOPER SITE Client Sample ID : TRIP BLANK	<u></u>					
Date Sampled : 08/14/00 Order #: Date Received: 08/15/00 Submission #:	401577 R2003355	Sample Matrix: Analytical Run	WATER 54773			
ANALYTE	PQL	RESULT	UNITS			
DATE ANALYZED : 08/16/00 ANALYTICAL DILUTION: 1.00						
ACETONE	10	10 U	UG/L			
BENZENE	10	10 0				
BROMODICHLOROMETHANE	10	10 U	UG/L			
BROMOFORM	10	10 U	UG/L			
BROMOMETHANE	10	10 U	UG/L			
2-BUTANONE (MEK)	10	10 U	UG/L			
METHYL TERT-BUTYL ETHER	10	10 U	UG/L			
CARBON DISULFIDE	10	1.1 J	UG/L			
CARBON TETRACHLORIDE	10	10 U ·	UG/L			
CHLOROBENZENE	10	10 U	UG/L			
CHLOROETHANE	10	10 U	UG/L			
CHLOROFORM	10	10 U	UG/L 👝			
CHLOROMETHANE	10	10 U	UG/L			
1,2-DIBROMO-3-CHLOROPROPANE	10	10 U	UG/L			
CYCLOHEXANE	10	10 U	UG/L			
DIBROMOCHLOROMETHANE	10	10 U	UG/L			
1.2-DIBROMOETHANE	10	10 U	UG/L			
1 2-DICHLOROBENZENE	10	10 11	UG/L			
1 4-DICHLOROBENZENE	10	10 U	UG/L			
1 3-DICHLOROBENZENE	10	10 11				
DICHLORODIFLUOROMETHANE	10	10 11				
	10	10 U				
1 2-DICHLOROFTHANE	10	10 1				
1 1-DICULOPOETHENE	10					
TONNE-1-2-DICULOPOETHENE	10					
	10					
	10					
	10	10 U				
IRANS-1, 3-DICHLOROPROPENE	10					
CIS-1, 3-DICHLOROPROPENE	10					
ETHYLBENZENE	10					
2-HEXANONE	10					
ISOPROPYLBENZENE	10	10 0	UG/L			
METHYL ACETATE	10	10 0				
METHYLCYCLOHEXANE	10	10 0	UG/L			
METHYLENE CHLORIDE	10	10 0	UG/L			
4-METHYL-2-PENTANONE	10	10 U				
STYRENE	10	10 U				
1,1,2,2-TETRACHLOROETHANE	10	10 U				
TETRACHLOROETHENE	10	10 U				
TOLUENE	10	10 U	UG/L			
1,2,4-TRICHLOROBENZENE	10	10 U	UG/L			
1,1,1-TRICHLOROETHANE	10	10 U	UG/L			
1,1,2-TRICHLOROETHANE	10	10 U	UG/HC2A			
TRICHLOROETHENE	10	10 U	UGYEUL4			

-

.

301413

trip.

-

	VOLATILE ORGANICS METHOD 8260B Reported: 09/12/00						
Geomatrix Consultants Inc. Project Reference: PETER COOPER SITE Client Sample ID : TRIP BLANK							
Date Sampled : 08/14/00 Date Received: 08/15/00 Su	Order #: bmission #:	: 401577 : R2003355	Sample Matrix: Analytical Rur	WATER 54773			
ANALYTE		PQL	RESULT	UNITS			
DATE ANALYZED : 08/16 ANALYTICAL DILUTION:	/00 1.00						
TRICHLOROFLUOROMETHANE		10	10 U	UG/L			
L, 1, 2-TRICHLORO~1, 2, 2-TRIFL	UOROETH	10	10 U	UG/L UC/I			
ATD-XVI.ENE		10					
)-XYLENE		10	10 U	UG/L			
SURROGATE RECOVERIES	QC LIM	IITS					
BROMOFLUOROBENZENE	(86 -	115 %)	90	*			
FOLUENE-D8	(88 -	110 %)	100	¥			
DIBROMOFLUOROMETHANE	(86 -	118 %)	101	e			

VOLATILE ORGANICS METHOD 8260B Reported: 09/12/00

_

Date Sampled : Date Received:	Order # Submission #	: 405771 :	Sample Matrix: Analytical Run	WATER 54773
ANALYTE		PQL	RESULT	UNITS
DATE ANALYZED : 08 ANALYTICAL DILUTION:	3/16/00 1.00			
ACETONE		10	10 U	UG/L
BENZENE		10	10 U	UG/L
BROMODICHLOROMETHANE		10	10 U	UG/L
BROMOFORM		10	10 U	UG/L
BROMOMETHANE		10	10 U	UG/L
2-BUTANONE (MEK)		10	10 U	UG/L
METHYL TERT-BUTYL ETHER		10	10 U	
CARBON DISILFIDE		10	10 U	UG/T
TARBON TETRACHLORIDE		10	10 U	
CHLOROBENZENE	,	10	10 11	
TULODOFTHANE		10		
		10	10 11	
		10	10 0	
LALOROMETHANE	7.3177	10		
I, 2-DIBROMO-3-CHLOROPROP	ANE	10		
		10	10 0	
DIBROMOCHLOROMETHANE		10		
L, 2-DIBROMOETHANE		10		0G/L
L, 2-DICHLOROBENZENE		10 -	10 0	UG/L
1,4-DICHLOROBENZENE		10	10 0	UG/L
L, 3-DICHLOROBENZENE		10	10 U	UG/L
DICHLORODIFLUOROMETHANE		10	10 U	UG/L
l,1-DICHLOROETHANE		10	10 U	UG/L
1,2-DICHLOROETHANE		10	10 U	UG/L
1,1-DICHLOROETHENE		10	10 U	UG/L
TRANS-1,2-DICHLOROETHENE		10	10 U	UG/L
CIS-1,2-DICHLOROETHENE		10	10 U	UG/L
L, 2-DICHLOROPROPANE		10	10 U	UG/L
TRANS-1,3-DICHLOROPROPEN	E	10	10 U	UG/L
CIS-1,3-DICHLOROPROPENE		10	10 U	UG/L
THYLBENZENE		10	10 U	UG/L
2-HEXANONE		10	10 U	UG/L
SOPROPYLBENZENE		10	10 U	UG/L
IETHYL ACETATE		10	10 U	UG/L
IETHYLCYCLOHEXANE		10	10 U	UG/L
ETHYLENE CHLORIDE		10	10 U	UG/L
-METHYI2-PENTANONE		10	10 U	UG/L
TYPENE		10	10 U	
1 2 2-ΤΕΤΡΔΟΗΙ.ΟΡΟΕΤΗΔΝ	E	10	10 U	
PTDACHLODOFTUENE		10	10 11	
IT THENE		10	10 11	UC/I
		10		
., 2, 4 - TRICHLOROBENZENE		10		
L, I, I-TRICHLOROETHANE		TO		
1, 2 - TRICHLOROETHANE		10		
IRICHLOROETHENE		10	10 U	.9002
IRICHLOROFLUOROMETHANE		10	10 U	UG7L

·· · · · · · · ·

VOLATILE ORGANICS METHOD 8260B

Reported: 09/12/00

Project Reference: Client Sample ID : METHOD BLANK

Date Sampled : Date Received:	Order Submission	#: 4 #:	05771	Sample Matrix Analytical Ru	: WATER n 54773
ANALYTE			PQL	RESULT	UNITS
DATE ANALYZED : C ANALYTICAL DILUTION:	08/16/00 1.00		<u></u>		
1,1,2-TRICHLORO-1,2,2-7 VINYL CHLORIDE M+P-XYLENE O-XYLENE	TRIFLUOROETH		10 10 10 10	10 U 10 U 10 U 10 U	UG/L UG/L UG/L UG/L
SURROGATE RECOVERIES	QC	LIMIT	S		
BROMOFLUOROBENZENE TOLUENE-D8 DIBROMOFLUOROMETHANE	(86 (88 (86	- 11! - 110 - 110	- 5 %) 0 %) 8 %)	87 97 99	અન્ . અન્

QUALITY CONTROL SUMMARY MATRIX SPIKE/MATRIX SPIKE DUPLICATE RECOVERY WATER

Spiked Order No. : 401572 Geomatrix Consultants Inc.

Client ID: 081400-001

Test: 8260B

Analytical Units: UG/L

Run Number : 54773

			MATRIX	SPIKE	MATRIX	SPIKE D	UP.		QC LIMITS
ANALYTE	SPIKE ADDED	SAMPLE -	FOUND	X REC.	FOUND	X REC.	RPD	RPD	REC.
BENZENE	50.0	0	52.0	104	55.0	110	6	111	76 - 127
CHLOROBENZENE	50.0	68.0	110	84	120	104	9	13	70 - 130
1,1-DICHLOROETHENE	50.0	0	47.0	94	49.0	98	4	14	61 - 145
TOLUENE	50.0	2.80	55.0	104	58.0	110	5	13	76 - 125
TRICHLORDETHENE	50.0	0	48.0	96	51.0	102	6	14	71 - 120

301417

. . .

VOLATILE ORGANICS METHOD: 8260B

LABORATORY REFERENCE SPIKE SUMMARY

REFERENCE ORDER #: 405772	ANALYT	ICAL RUN # :	54773
ANALYTE	TRUE VALUE	& RECOVERY	QC LIMITS
DATE ANALYZED : 8/16/2000 ANALYTICAL DILUTION: 1.0			
ANALYTICAL DILUTION: 1.0 ACETONE BENZENE BROMODICHLOROMETHANE BROMOMETHANE 2-BUTANONE (MEK) METHYL TERT-BUTYL ETHER CARBON DISULFIDE CARBON TETRACHLORIDE CHLOROBENZENE CHLOROFETHANE 1,2-DIBROMO-3-CHLOROPROPANE CYCLOHEXANE DIBROMOCHLOROMETHANE 1,2-DIBROMOETHANE 1,2-DICHLOROBENZENE 1,4-DICHLOROBENZENE 1,3-DICHLOROBENZENE 1,3-DICHLOROBENZENE 1,2-DICHLOROBENZENE 1,2-DICHLOROBENZENE 1,2-DICHLOROBENZENE 1,2-DICHLOROETHANE 1,2-DICHLOROETHANE 1,2-DICHLOROETHANE 1,2-DICHLOROETHENE 1,2-DICHLOROETHENE 1,2-DICHLOROETHENE 1,2-DICHLOROETHENE 1,2-DICHLOROETHENE 1,2-DICHLOROETHENE 1,2-DICHLOROETHENE 1,2-DICHLOROETHENE 1,2-DICHLOROETHENE 1,2-DICHLOROETHENE	20 20 20 20 20 20 20 20 20 20 20 20 20 2	98 98 90 67 81 92 81 87 93 92 104 92 104 92 110 58 101 78 78 93 93 93 97 121 94 88 97 121 94 88 92 94 92 98	21 - 165 37 - 151 35 - 155 45 - 169 10 - 242 25 - 162 45 - 148 45 - 148 70 - 140 37 - 160 53 - 149 51 - 138 10 - 273 50 - 150 45 - 148 53 - 149 50 - 150 45 - 148 53 - 149 50 - 150 18 - 190 18 - 155 49 - 155 10 - 234 54 - 156 54 - 156 10 - 210
CIS-1,3-DICHLOROPROPENE ETHYLBENZENE 2-HEXANONE ISOPROPYLBENZENE METHYL ACETATE METHYLCYCLOHEXANE METHYLENE CHLORIDE 4-METHYL-2-PENTANONE STYRENE 1,1,2,2-TETRACHLOROETHANE TETRACHLOROETHENE TOLUENE 1,2,4-TRICHLOROBENZENE	20 20 20 20 20 20 20 20 20 20 20 20 20 2	81 98 81 106 70 99 92 64 101 80 92 95 84	17 - 103 $10 - 227$ $37 - 162$ $22 - 155$ $60 - 140$ $60 - 140$ $60 - 140$ $10 - 221$ $46 - 157$ $66 - 144$ $46 - 157$ $64 - 157$ $64 - 148$ $47 - 150$ $60 - 140$

REFERENCE-1

VOLATILE ORGANICS METHOD: 8260B

LABORATORY REFERENCE SPIKE SUMMARY

REFERENCE ORDER #: 405772	ANALYTICAL RUN # : 54773		
ANALYTE	TRUE VALUE	<pre>% RECOVERY</pre>	QC LIMITS
DATE ANALYZED : 8/16/2000 ANALYTICAL DILUTION: 1.0			
1,1,1-TRICHLOROETHANE 1,1,2-TRICHLOROETHANE TRICHLOROETHENE TRICHLOROFLUOROMETHANE 1,1,2-TRICHLORO-1,2,2-TRIFLUOROETH VINYL CHLORIDE M+P-XYLENE	20 20 20 20 40 20	95 80 89 92 93 105 93	52 - 162 $52 - 150$ $71 - 157$ $17 - 181$ $45 - 148$ $10 - 251$ $71 - 135$ $71 - 135$

COLUMBIA ANALYTICAL SERVICES			NW-45(R)
	EXTRAC METHOD Report	TABLE ORGANICS8270C SEMIVOLAed:09/12/00	TILES
Geomatrix Consultants Inc. Project Reference: PETER COOPER SIT Client Sample ID : 081400-001	E		
Date Sampled : 08/14/00 14:30 Order # Date Received: 08/15/00 Submission #	: 401572 : R2003355	Sample Matrix: Analytical Run	WATER 55144
ANALYTE	PQL	RESULT	UNITS
DATE EXTRACTED : 08/17/00 DATE ANALYZED : 09/08/00 ANALYTICAL DILUTION: 1.00			
ACENADHTHENE	10	10 11	$\Pi G/I$
ACENAPHTHYLENE	10	10 U	UG/L
ACETOPHENONE	10	10 U	UG/L
ANTHRACENE	10	10 U	UG/L
ATRAZINE	10	10 U	UG/L
BENZALDEHYDE	10	10 U	UG/L
BENZO (A) ANTHRACENE	10	10 U	UG/L
BENZO (A) PYRENE	10	10 U	UG/L
BENZO (B) FLUORANTHENE	10	10 U	UG/L
BENZO (G, H, I) PERYLENE	10	10 U 10 U	
BENZU (K) FLUUKANTHENE	10		
L, L'-BIPHENIL DITTVI DENIZVI. DUTTVALATE	10		
DI-N-BUTYLPHTHALATE	10	1.4 J	UG/L
CAPROLACTAM	10	10 U	UG/L
CARBAZOLE	10	10 U	UG/L
INDENO(1,2,3-CD)PYRENE	10	10 U	UG/L
4-CHLOROANILINE	10	10 U	UG/L
BIS (-2-CHLOROETHOXY) METHANE	10	10 U	UG/L
BIS (2 - CHLOROETHYL) ETHER	10	10 U	UG/L
2 - CHLORONAPHTHALENE	10	10 U	UG/L
2-CHLOROPHENOL 2.2. OVVDIC (1. CHLORODDODNNE)	10		
CUDVCENE	10		
DIBENZO (A H) ANTHRACENE	10	10 U	
DIBENZOFURAN	10	10 U	UG/L
3,3'-DICHLOROBENZIDINE	10	10 U	UG/L
2,4-DICHLOROPHENOL	10	10 U	UG/L
DIETHYLPHTHALATE	10	10 U	UG/L
DIMETHYL PHTHALATE	10	10 U	UG/L
2,4-DIMETHYLPHENOL	10	10 U	UG/L
2,4-DINITROPHENOL	25	25 U	UG/L
2,4-DINITROTOLUENE	10	10 U	UG/L
2,6-DINITROTOLUENE	10	10 U	UG/L
BIS (Z-ETHYLHEXYL) PHTHALATE ELHODANTEURNE	10		
FIJODENE FIJODENE	10		
HEXACHLOROBENZENE	10	10 U	UG/L
HEXACHLOROBUTADIENE	10	10 U	UG/L
HEXACHLOROCYCLOPENTADIENE	10	10 U	UG/L
HEXACHLOROETHANE	10	10 U	UG/L
ISOPHORONE	10	10 U	UG/L
2-METHYLNAPHTHALENE	10	10 U	UG/J-031
301420			

		EXTRAC METHOD Report	TABLE ORGANICS 8270C SEMIVOLAT ed: 09/12/00	FILES		
Geomatrix Consultants Inc. Project Reference: PETER COOPER SITE Client Sample ID : 081400-001						
Date Sampled : 08/14/00 14:30 Date Received: 08/15/00 Submit	Order #: 40 ission #: R2	1572 003355	Sample Matrix: Analytical Run	WATER 55144		
ANALYTE		PQL	RESULT	UNITS		
DATE EXTRACTED : 08/17/00 DATE ANALYZED : 09/08/00 ANALYTICAL DILUTION: 1.)) .00					
4,6-DINITRO-2-METHYLPHENOL 4-CHLORO-3-METHYLPHENOL 2-METHYLPHENOL 4-METHYLPHENOL MAPHTHALENE 2-NITROANILINE 3-NITROANILINE 4-NITROANILINE NITROBENZENE 2-NITROPHENOL 4-NITROPHENOL N-NITROSODIPHENYLAMINE DI-N-OCTYL PHTHALATE PENTACHLOROPHENOL PHENANTHRENE PHENOL 4-BROMOPHENYL-PHENYLETHER 4-CHLOROPHENYL-PHENYLETHER N-NITROSO-DI-N-PROPYLAMINE PYRENE 2,4,6-TRICHLOROPHENOL 2.4.5-TRICHLOROPHENOL		25 10 10 10 25 25 25 25 10 10 25 10 10 25 10 10 10 10 10 10 10	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	UG/L UG/L UG/L UG/L UG/L UG/L UG/L UG/L		
SURROGATE RECOVERIES	QC LIMITS					
TERPHENYL-d14 NITROBENZENE-d5 PHENOL-d6 2-FLUOROBIPHENYL 2-FLUOROPHENOL 2,4,6-TRIBROMOPHENOL	(33 - 141) (35 - 114) (10 - 94) (43 - 116) (21 - 110) (10 - 123)	음) 음) 음) 음) 음) 음)	62 73 27 73 32 74	مېن مېن مېن مېن		

.

· ----

COLUMBIA ANALYTICAL SERVICES

301421

	EXTRACTABLI METHOD 827(Reported: (E ORGANICS DC SEMIVOLATILES D9/13/00	
Geomatrix Consultants Inc. Project Reference: PETER COOPER SI Client Sample ID : 081400-002	[TE		
Date Sampled : 08/14/00 16:15 Order Date Received: 08/15/00 Submission	#: 401573 # #: R2003355	Sample Matrix: Analytical Run:	WATER 55144
ANALYTE	PQL	RESULT	UNITS
DATE EXTRACTED : 08/17/00 DATE ANALYZED : 09/08/00 ANALYTICAL DILUTION: 1.0			
ACENAPHTHENE ACENAPHTHYLENE ACETOPHENONE ANTHRACENE ATRAZINE BENZO (A) ANTHRACENE BENZO (A) ANTHRACENE BENZO (A) PYRENE BENZO (B) FLUORANTHENE BENZO (C, H, I) PERYLENE BENZO (C, H, I) PERYLENE BENZO (C, FLUORANTHENE 1, 1'-BIPHENYL BUTYL BENZYL PHTHALATE DI-N-BUTYLPHTHALATE CAPROLACTAM CARBAZOLE INDENO (1, 2, 3 - CD) PYRENE 4 - CHLOROANILINE BIS (-2 - CHLOROETHOXY) METHANE BIS (2 - CHLOROETHOXY) METHANE BIS (2 - CHLOROETHOXY) METHANE BIS (2 - CHLOROETHYL) ETHER 2 - CHLORONAPHTHALENE 2 - CHLOROPHENOL 2, 2' - OXYBIS (1 - CHLOROPROPANE) CHRYSENE DIBENZO (A, H) ANTHRACENE DIBENZOFURAN 3, 3' - DICHLOROBENZIDINE 2, 4 - DICHLOROPHENOL DIETHYLPHTHALATE DIMETHYL PHTHALATE 2, 4 - DINITROPHENOL 2, 4 - DINITROPHENOL 2, 4 - DINITROTOLUENE BIS (2 - ETHYLHEXYL) PHTHALATE FLUORANTHENE FLUORANTHENE FLUORENE	10 10	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	UG/L UG/L UG/L UG/L UG/L UG/L UG/L UG/L
HEXACHLOROBUTADIENE HEXACHLOROCYCLOPENTADIENE HEXACHLOROETHANE	10 10 10	10 U 10 U 10 U	UG/L UG/L UG/L

MNJ-3

EXTRACTABLE ORGANICS METHOD 8270C SEMIVOLATILES Reported: 09/13/00						
Geomatrix Consultants Inc. Project Reference: PETER COOPER SITE Client Sample ID : 081400-002						
Date Sampled : 08/14/00 16:15 Orde Date Received: 08/15/00 Submission	er #: 401573 on #: R2003355	Sample Matrix: Analytical Run:	WATER 55144			
ANALYTE	PQL	RESULT	UNITS			
DATE EXTRACTED : 08/17/00 DATE ANALYZED : 09/08/00 ANALYTICAL DILUTION: 1.0	· · ·					
ISOPHORONE 2-METHYLNAPHTHALENE 4,6-DINITRO-2-METHYLPHENOL 4-CHLORO-3-METHYLPHENOL 2-METHYLPHENOL 4-METHYLPHENOL NAPHTHALENE 2-NITROANILINE 3-NITROANILINE 4-NITROBENZENE 2-NITROPHENOL 4-NITROPHENOL 4-NITROPHENOL M-NITROSODIPHENYLAMINE DI-N-OCTYL PHTHALATE PENTACHLOROPHENOL PHENANTHRENE PHENOL 4-BROMOPHENYL-PHENYLETHER 4-CHLOROPHENYL-PHENYLETHER N-NITROSO-DI-N-PROPYLAMINE PYRENE 2,4,6-TRICHLOROPHENOL 2,4,5-TRICHLOROPHENOL	10 10 25 10 10 10 25 25 25 25 10 10 10 25 10 10 10 25 10 10 10 10 10 10 25	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	UG/L UG/L UG/L UG/L UG/L UG/L UG/L UG/L			
SURROGATE RECOVERIES QC	LIMITS					
TERPHENYL-d14 (33 NITROBENZENE-d5 (35 PHENOL-d6 (10 2-FLUOROBIPHENYL (43 2-FLUOROPHENOL (21 2,4,6-TRIBROMOPHENOL (10	- 141) - 114) - 94) - 116) - 110) - 123)	67 84 28 85 30 74	مه مه مه مه			

_ _

COLUMBIA ANALYTICAL SERVICES

301423

COLUMBIA ANALYTICAL SERVICES	EXTRACTABLE ORGANICS METHOD 8270C SEMIVOLATE Reported: 09/13/00	MW-3 (dil.20)
Geomatrix Consultants Inc. Project Reference: PETER COOPER SITE Client Sample ID : 081400-002		
Date Sampled : 08/14/00 16:15 Order # Date Received: 08/15/00 Submission #	: 401573 Sample Mat : R2003355 Analytical	rix: W ATER Run: 0
ANALYTE	PQL RESULT	UNITS
DATE EXTRACTED : DATE ANALYZED : 09/12/00 ANALYTICAL DILUTION: 20.0		3
ACENAPHTHENE	10 200 U	UG/L
ACENAPHTHYLENE	10 200 U	UG/L
ACETOPHENONE	10 200 U	UG/L
ANTHRACENE	10 200 U	UG/L
ATRAZINE	10 200 U	UG/L
BENZALDEHYDE		UG/L
		UG/L UC/I
BENZO (R) FLUORANTHENE	10 200 U	
BENZO(G, H, I) PERYLENE	10 200 U	UG/L
BENZO(K) FLUORANTHENE	10 200 U	UG/L
1,1'-BIPHENYL	10 200 U	UG/L
BUTYL BENZYL PHTHALATE	10 200 U	UG/L
DI-N-BUTYLPHTHALATE		UG/L
CAPROLACIAM		
INDENO(1,2,3-CD) PYRENE	10 200 U	
4-CHLOROANILINE	10 200 U	UG/L
BIS (-2-CHLOROETHOXY) METHANE	10 200 U	UG/L
BIS (2-CHLOROETHYL) ETHER	10 200 U	UG/L
2-CHLORONAPHTHALENE	10 200 U	UG/L
2-CHLOROPHENOL	10 200 U	UG/L
2,2'-UXIBIS (I-CHLOROPROPANE)	10 200 U	UG/L UC/L
DIBENZO (A H) ANTHRACENE	10 200 0	
DIBENZOFURAN	10 200 U	UG/L
3,3'-DICHLOROBENZIDINE	10 200 U	UG/L
2,4-DICHLOROPHENOL	10 200 U	UG/L
DIETHYLPHTHALATE	10 200 U	UG/L
DIMETHYL PHTHALATE	10 200 U	UG/L
2,4-DINITTOONENOL		UG/L
2.4-DINITROTOLUENE		TIC/T.
2,6-DINITROTOLUENE	10 200 U	UG/L
BIS (2-ETHYLHEXYL) PHTHALATE	10 200 U	UG/L
FLUORANTHENE	10 200 U	UG/L
FLUORENE	10 200 U	UG/L
HEXACHLOROBENZENE	10 200 U	UG/L
HEXACHLOROBUTADIENE		
HEXACHIODOETHANE HEXACHIODOETHANE		
		0.6/1
	301424	00035

COLUMBIA ANALYTICAL SERVICES	EXTRACTABLE METHOD 827(Reported: (E ORGANICS DC SEMIVOLATILES D9/13/00	
Geomatrix Consultants Inc. Project Reference: PETER COOPER SITE Client Sample ID : 081400-002	S		
Date Sampled : 08/14/00 16:15 Order # Date Received: 08/15/00 Submission #	401573 R2003355	Sample Matrix: Analytical Run:	WATER 0
ANALYTE	PQL	RESULT	UNITS
DATE EXTRACTED : DATE ANALYZED : 09/12/00 ANALYTICAL DILUTION: 20.0			
ISOPHORONE 2-METHYLNAPHTHALENE 4, 6-DINITRO-2-METHYLPHENOL 4-CHLORO-3-METHYLPHENOL 2-METHYLPHENOL 4-METHYLPHENOL NAPHTHALENE 2-NITROANILINE 3-NITROANILINE 3-NITROANILINE NITROBENZENE 2-NITROPHENOL 4-NITROPHENOL 4-NITROPHENOL 1-N-OCTYL PHTHALATE PENTACHLOROPHENOL PHENANTHRENE PHENOL 4-BROMOPHENYL-PHENYLETHER 4-CHLOROPHENYL	10 10 25 10 10 10 25 25 25 25 10 10 10 25 10 10 25 10 10 10 10 10 10 10 10 25	200 U 200 U 200 U 200 U 200 U 200 U 200 U 500 U 200 U	UG/L UG/L UG/L UG/L UG/L UG/L UG/L UG/L
TERPHENYL-d14(33 -NITROBENZENE-d5(35 -PHENOL-d6(10 -2-FLUOROBIPHENYL(43 -2-FLUOROPHENOL(21 -2,4,6-TRIBROMOPHENOL(10 -	141) 114) 94) 116) 110) 123)	D D D D D D	ماه ماه ماه ماه ماه

- -----

301425

00036

=

COLUMBIA ANALYTICAL SERVICES	EXTRACTABLI METHOD 8270 Reported: (E ORGANICS DC SEMIVOLATILES D9/13/00	Min-3 day.
Geomatrix Consultants Inc. Project Reference: PETER COOPER SITE Client Sample ID : 081400-003			
Date Sampled : 08/14/00 16:30 Order # Date Received: 08/15/00 Submission #	: 401574 : R2003355	Sample Matrix: Analytical Run:	WATER 55144
ANALYTE	PQL	RESULT	UNITS
DATE EXTRACTED : 08/17/00 DATE ANALYZED : 09/08/00 ANALYTICAL DILUTION: 1.0			
ACENAPHTHENE ACENAPHTHYLENE ACETOPHENONE ANTHRACENE ATRAZINE BENZALDEHYDE BENZO(A) ANTHRACENE BENZO(A) PYRENE BENZO(A) PYRENE BENZO(B) FLUORANTHENE BENZO(G, H, I) PERYLENE BENZO(G, H, I) PERYLENE BENZO(K) FLUORANTHENE 1, 1'-BIPHENYL BUTYL BENZYL PHTHALATE DI-N-BUTYLPHTHALATE CAPROLACTAM CARBAZOLE INDENO(1, 2, 3 - CD) PYRENE 4 - CHLOROANILINE BIS(-2 - CHLOROETHOXY) METHANE BIS(-2 - CHLOROETHOXY) METHANE BIS(2 - CHLOROETHOXY) METHANE BIS(2 - CHLOROETHOXY) METHANE BIS(2 - CHLOROETHOXY) METHANE DISENZO(A, H) ANTHRACENE DIBENZOFURAN 3, 3' - DICHLOROBENZIDINE 2, 4 - DICHLOROPHENOL 2, 4 - DINITROPHENOL 2, 4 - DINITROPHENOL 2, 4 - DINITROTOLUENE BIS(2 - ETHYLHEXYL) PHTHALATE FLUORENE	10 10 10 10 10 10 10 10 10 10 10 10 10 1	10 U 10 U	UG/L UG/L UG/L UG/L UG/L UG/L UG/L UG/L
HEXACHLOROBENZENE HEXACHLOROBUTADIENE HEXACHLOROCYCLOPENTADIENE HEXACHLOROCTHANE	10 10 10 10	10 U 10 U 10 U 10 U 10 U	UG/L UG/L UG/L UG/L

	EXTRACTABLE METHOD 827(Reported: (E ORGANICS DC SEMIVOLATILES D9/13/00				
Geomatrix Consultants Inc. Project Reference: PETER COOPER SITE Client Sample ID : 081400-003						
Date Sampled : 08/14/00 16:30 Order # Date Received: 08/15/00 Submission #	: 401574 : R2003355	Sample Matrix: Analytical Run:	WATER 55144			
ANALYTE	PQL	RESULT	UNITS			
DATE EXTRACTED : 08/17/00 DATE ANALYZED : 09/08/00 ANALYTICAL DILUTION: 1.0						
ISOPHORONE 2-METHYLNAPHTHALENE 4,6-DINITRO-2-METHYLPHENOL 4-CHLORO-3-METHYLPHENOL 2-METHYLPHENOL 4-METHYLPHENOL NAPHTHALENE 2-NITROANILINE 3-NITROANILINE 4-NITROANILINE 4-NITROBENZENE 2-NITROPHENOL 4-NITROPHENOL 4-NITROPHENOL N-NITROSODIPHENYLAMINE DI-N-OCTYL PHTHALATE PENTACHLOROPHENOL PHENANTHRENE PHENOL 4-BROMOPHENYL-PHENYLETHER 4-CHLOROPHENYL-PHENYLETHER N-NITROSO-DI-N-PROPYLAMINE PYRENE 2,4,6-TRICHLOROPHENOL 2,4,5-TRICHLOROPHENOL	$ \begin{array}{r} 10 \\ 10 \\ 25 \\ 10 \\ 10 \\ 10 \\ 25 \\ 25 \\ 25 \\ 25 \\ 10 \\ 10 \\ 25 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 25 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 25 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 25 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 25 \\ 10 \\$	10 U 10 U 25 U 10 U 33 950 E 7.4 J 25 U 25 U 25 U 10 U 10 U 25 U 10 U 10 U 25 U 10 U 10 U 10 U 25 U 10 U 10 U 25 U 10 U 25 U 10 U 25 U 10 U 25 U 10 U 25 U 10 U 25 U 10 U 25 U 10 U 25 U 10 U 10 U 25 U 10 U 25 U 10 U 10 U 25 U 10 U 10 U 25 U 10 U 10 U 25 U 10 U 10 U 25 U 10 U 10 U 10 U 25 U 10 U 10 U 10 U 10 U 25 U 10 U 10 U 10 U 25 U 10 U 10 U 10 U 25 U 10 U 10 U 25 U 10 U 10 U 25 U 10 U 10 U 25 U 10 U 10 U 25 U 10 U 10 U 25 U 10 U 10 U 25 U 10 U 10 U 25 U 10 U 10 U 25 U 10 U 10 U 25 U 10 U 10 U 25 U 10 U	UG/L UG/L UG/L UG/L UG/L UG/L UG/L UG/L			
SURROGATE RECOVERIES QC LIMI	TS		·			
TERPHENYL-d14 (33 - 1 NITROBENZENE-d5 (35 - 1 PHENOL-d6 (10 - 9 2-FLUOROBIPHENYL (43 - 1 2-FLUOROPHENOL (21 - 1 2,4,6-TRIBROMOPHENOL (10 - 1	41) 14) 4) 16) 10) 23)	67 86 27 88 33 72	ماه ماه ماه ماه			

·· - ---

COLUMBIA ANALYTICAL SERVICES

301427

COLIMBIA ANALYTICAL SERVICES			MW-3dwg
<u>CONDINA MILLI DELL'UNICOLO</u>	EXTRACTABLI METHOD 8270 Reported: 0	E ORGANICS DC SEMIVOLATILES D9/13/00	(del 20)
Geomatrix Consultants Inc. Project Reference: PETER COOPER SITE Client Sample ID : 081400-003			
Date Sampled : 08/14/00 16:30 Order # Date Received: 08/15/00 Submission #	: 401574 : R2003355	Sample Matrix: Analytical Run:	WATER 0
ANALYTE	PQL	RESULT	UNITS
DATE EXTRACTED : DATE ANALYZED : 09/12/00 ANALYTICAL DILUTION: 20.0			
ACENAPHTHENE	10	200 U	UG/L
ACENAPHTHYLENE	10	200 U	UG/L
	10	200 U	UG/L
ANTHRACENE	10	200 0	UG/L
AIRAZINE	10	200 0	UG/L
BENZALDEMIDE DENZO (2) 2 XUDUD 2 CENE	10	200 0	UG/L
BENZU (A) ANTHRACENE	10	200 0	UG/L
BENZO (A) PYRENE	10	200 0	UG/L
BENZO (B) FLUORANTHENE	10	200 0	UG/L
BENZO (G, H, I) PERYLENE	10	200 0	UG/L
BENZO (K) FLUORANTHENE	10	200 0	UG/L
1,1'-BIPHENYL	10	200 0	UG/L
BUTYL BENZYL PHTHALATE	10	200 0	UG/L
DI-N-BUTYLPHTHALATE	10	200 0	UG/L
CAPROLACTAM	10	200 U	UG/L
CARBAZOLE	10	200 U	UG/L
INDENO(1,2,3-CD) PYRENE	10	200 0	UG/L
4-CHLOROANILINE	10	200 U	UG/L
BIS (-2-CHLOROETHOXY) METHANE	10	200 U	UG/L
BIS (2-CHLOROETHYL) ETHER	10	200 U	UG/L
2-CHLORONAPHTHALENE	10	200 U	UG/L
2-CHLOROPHENOL	10	200 U	UG/L
2,2'-OXYBIS(1-CHLOROPROPANE)	10	200 U	UG/L
CHRYSENE	10	200 U	UG/L
DIBENZO (A, H) ANTHRACENE	10	200 U	UG/L
DIBENZOFURAN	10	200 U	UG/L
3,3'-DICHLOROBENZIDINE	10	200 U	UG/L
2,4-DICHLOROPHENOL	10	200 U	UG/L
DIETHYLPHTHALATE	10	200 U	UG/L
DIMETHYL PHTHALATE	10	200 U	UG/L
2,4-DIMETHYLPHENOL	10	200 U	UG/L
2,4-DINITROPHENOL	25	500 U	UG/L
2,4-DINITROTOLUENE	10	200 U	UG/L
2,6-DINITROTOLUENE	10	200 U	UG/L
BIS (2-ETHYLHEXYL) PHTHALATE	10	200 11	UG/I
FLUORANTHENE	10	200 11	
FLUORENE	10	200 0	
HEXACHLOROBENZENE	10		
HEXACHLOROBUTADIENE	10		
	10		
HEXACHLOROCYCLOPENTADIENE	111		
HEXACHLOROCYCLOPENTADIENE HEXACHLOROETHANE	10		

	EXTRACTABLE METHOD 827(Reported: (E ORGANICS OC SEMIVOLATILES O9/13/00	
Geomatrix Consultants Inc. Project Reference: PETER COOPER SITE Client Sample ID : 081400-003			
Date Sampled : 08/14/00 16:30 Order # Date Received: 08/15/00 Submission #	: 401574 : R2003355	Sample Matrix: Analytical Run:	WATER 0
ANALYTE	PQL	RESULT	UNITS
DATE EXTRACTED : DATE ANALYZED : 09/12/00 ANALYTICAL DILUTION: 20.0			
ISOPHORONE 2-METHYLNAPHTHALENE 4,6-DINITRO-2-METHYLPHENOL 4-CHLORO-3-METHYLPHENOL 2-METHYLPHENOL 4-METHYLPHENOL NAPHTHALENE 2-NITROANILINE 3-NITROANILINE 4-NITROANILINE VITROBENZENE 2-NITROPHENOL 4-NITROPHENOL 4-NITROPHENOL N-NITROSODIPHENYLAMINE DI-N-OCTYL PHTHALATE PENTACHLOROPHENOL PHENANTHRENE PHENOL 4-BROMOPHENYL-PHENYLETHER 4-CHLOROPHENYL-PHENYLETHER N-NITROSO-DI-N-PROPYLAMINE PYRENE 2,4,6-TRICHLOROPHENOL 2,4,5-TRICHLOROPHENOL	10 10 25 10 10 10 25 25 25 25 10 10 10 25 10 10 10 10 10 10 10 10 10	200 U 200 U 200 U 200 U 200 UD 780 D 200 U 500 U 500 U 200 U	UG/L UG/L UG/L UG/L UG/L UG/L UG/L UG/L
SURROGATE RECOVERIES QC LIMI	TS		
TERPHENYL-d14 (33 - 1 NITROBENZENE-d5 (35 - 1 PHENOL-d6 (10 - 9 2-FLUOROBIPHENYL (43 - 1 2-FLUOROPHENOL (21 - 1 2,4,6-TRIBROMOPHENOL (10 - 1	41) 14) 4) 16) 10) 23)	D D D D D D	مه مه مه مه

.....

COLUMBIA ANALYTICAL SERVICES

	COLUMBIA ANALYTICAL SERVICES			$M_W - 2S(R)$
		METHOD Report	8270C SEMIVOLAT ed: 09/12/00	TILES
	Geomatrix Consultants Inc. Project Reference: PETER COOPER SITE Client Sample ID : 081400-004			
]	Date Sampled : 08/14/00 17:25 Order #: Date Received: 08/15/00 Submission #:	401575 R2003355	Sample Matrix: Analytical Run	WATER 55144
-	ANALYTE	PQL	RESULT	UNITS
-	DATE EXTRACTED : 08/17/00 DATE ANALYZED : 09/08/00 ANALYTICAL DILUTION: 1.00			
j	ACENAPHTHENE	10	10 U	UG/L
Ż	ACENAPHTHYLENE	10	10 U	UG/L
1	ACETOPHENONE	10	10 U	UG/L
1	ANTHRACENE	10	10 U	UG/L
1	ATRAZINE	10	10 U	UG/L
]	BENZALDEHYDE	10	10 U	UG/L
]	BENZO (A) ANTHRACENE	10	10 U	UG/L
1	BENZO (A) PYRENE	10		
נ ר	$\frac{3}{2} \frac{3}{2} \frac{1}$	10		
1	SENZO (G, R, I) PERIDENE SENZO (K) ELUODANTHENE	10		
	1 1'-BIDHENVI.	10	10 U	
	SUTYL BENZYL PHTHALATE	10	10 U	
	DI-N-BUTYLPHTHALATE	10	2.9 J	UG/L
Ō	CAPROLACTAM	10	10 U	UG/L
(CARBAZOLE	10	10 U	UG/L
-	INDENO (1,2,3-CD) PYRENE	10	10 U	UG/L
4	4 - CHLOROANILINE	10	10 U	· UG/L
I	BIS (-2-CHLOROETHOXY) METHANE	10	10 U	UG/L
I	BIS (2 - CHLOROETHYL) ETHER	10	10 U	UG/L
2	2 - CHLORONAPHTHALENE	10	10 U	UG/L
	2-CHLOROPHENOL	10	10 U	UG/L
	2,2'-OXYBIS(1-CHLOROPROPANE)	10	10 U	UG/L
(CHRYSENE	10	10 U	UG/L
i T	DIBENZO (A, H) ANTHRACENE	10	10 U 10 U	
1		10		
	A DICHLOROBENZIDINE	10		
4 T	TETHYI.DUTHALATE	10		
T	TMETHYI, PHTHALATE	10	10 U	
5	2.4-DIMETHYLPHENOL	10		
-	2 4 - DINTTROPHENOL	25	25 U	
2	2.4-DINITROTOLUENE	10	10 U	UG/L
2	2.6-DINITROTOLUENE	10	10 U	UG/L
E	BIS (2 - ETHYLHEXYL) PHTHALATE	10	10 U	UG/L
F	FLUORANTHENE	10	10 U	UG/L
F	LUORENE	10	10 U	UG/L
F	IEXACHLOROBENZENE	10	10 U	UG/L
ŀ	IEXACHLOROBUTADIENE	10	10 U	UG/L
ŀ	HEXACHLOROCYCLOPENTADIENE	10	10 U	UG/L
ŀ	IEXACHLOROETHANE	10	10 U	UG/L
נ	SOPHORONE	10	10 U	UG/L
2	2-METHYLNAPHTHALENE	10	10 U	UG <u>/16</u> 641

COLUMBIA ANALYTICAL SERVICES	EXTRACTABLE ORGANICS METHOD 8270C SEMIVOLATILES Reported: 09/12/00			
Geomatrix Consultants Inc. Project Reference: PETER COOPER SIT Client Sample ID : 081400-004	Έ		•	
Date Sampled : 08/14/00 17:25 Order # Date Received: 08/15/00 Submission #	• 401575 • R2003355	Sample Matrix: Analytical Run	WATER 55144	
ANALYTE	PQL	RESULT	UNITS	
DATE EXTRACTED : 08/17/00 DATE ANALYZED : 09/08/00 ANALYTICAL DILUTION: 1.00				
4.6-DINITRO-2-METHYLPHENOL	25	25 U	UG/L	
4 - CHLORO - 3 - METHYLPHENOL	10	10 U	UG/L	
2-METHYLPHENOL	10	1.9 J	UG/L	
4-METHYLPHENOL	10	8.8 J	UG/L	
NAPHTHALENE	10	1.4 J	UG/L	
2-NITROANILINE	25	25 U	UG/L	
3-NITROANILINE	25	25 U	UG/L	
4-NITROANILINE	25	25 U	UG/L	
NITROBENZENE	10	10 U	UG/L	
2-NITROPHENOL	10	10 U	UG/L	
4-NITROPHENOL	25	25 U	UG/L	
N-NITROSODIPHENYLAMINE	10	10 U		
DI-N-OCTYL PHTHALATE	10			
PENTACHLOROPHENOL	25	25 U		
DUENOL	10	10 0		
A-BROMODHENVI DHENVI.FTHER	10	10 II		
4 - CHLOROPHENYL - PHENYLETHER	10	10 U		
N-NITROSO-DI-N-PROPYLAMINE	10	10 U	UG/L	
PYRENE	10	10 U	UG/L	
2,4,6-TRICHLOROPHENOL	10	10 U	UG/L	
2,4,5-TRICHLOROPHENOL	25	25 U	UG/L	
SURROGATE RECOVERIES QC LI	MITS			
TERPHENYL-d14 (33 -	141 %)	68	e	
NITROBENZENE-d5 (35 -	114 %)	84	8	
PHENOL-d6 (10 -	94 %)	25	8	
2-FLUOROBIPHENYL (43 -	116 %)	85	*	
2-FLUOROPHENOL (21 -	110 %)	32	*	
2,4,6-TRIBROMOPHENOL (10 -	123 %)	65	*	

.
COLOMBIA ANALITICAL SERVICES	EXTRACTABLE ORGANICS METHOD 8270C SEMIVOLATILES Reported: 09/12/00			
Geomatrix Consultants Inc. Project Reference: PETER COOPER SITE Client Sample ID : 081400-005	2			
Date Sampled : 08/14/00 18:30 Order #: Date Received: 08/15/00 Submission #:	401576 R2003355	Sample Matrix: Analytical Run	WATER 55144	
ANALYTE	PQL	RESULT	UNITS	
DATE EXTRACTED : 08/17/00 DATE ANALYZED : 09/08/00 ANALYTICAL DILUTION: 1.00				
ACENAPHTHENE	10	10 U	UG/L	
ACENAPHTHYLENE	10	10 U	UG/L	
ACETOPHENONE	10	10 U	UG/L	
ANTHRACENE	10	10 U	UG/L	
ATRAZINE	10	10 U	UG/L	
BENZALDEHYDE	10	10 U	UG/L NG/L	
BENZO (A) ANTHRACENE	10			
DENZO (A) FIKENE DENZO (D) EI HODNITHENE	10			
BENZO (C H I) DERVIENE	10	10 U		
BENZO (K) FLUORANTHENE	10	10 U	UG/L	
1.1'-BIPHENYL	10	10 U	UG/L	
BUTYL BENZYL PHTHALATE	10	10 U	UG/L	
DI-N-BUTYLPHTHALATE	10	1.5 J	UG/L	
CAPROLACTAM	10	10 U	UG/L	
CARBAZOLE	10	10 U	UG/L	
INDENO(1,2,3-CD)PYRENE	10	10 U	UG/L	
4 - CHLOROANILINE	10	10 U	UG/L	
BIS (-2-CHLOROETHOXY) METHANE	10	10 U	UG/L	
BIS (2-CHLOROETHYL) ETHER	10	10 U	UG/L	
2 - CHLORONAPHTHALENE	10		UG/L ·	
2-CHLOROPHENOL	10	2.1 J	UG/L UG/L	
Z, Z'-UXIBIS (I-CHLOROPROPANE)	10			
CIRISENE DIDENICO (A. U.) ANTEUDACENE	10			
DIBENZO (A, H) ANI HRACENE	10	10 U 10 U		
3 3'-DICHLOROBENZIDINE	10	10 U		
2.4-DICHLOROPHENOL	10	10 U	UG/L	
DIETHYLPHTHALATE	10	10 U	UG/L	
DIMETHYL PHTHALATE	10	10 U	UG/L	
2,4-DIMETHYLPHENOL	10	10 U	UG/L	
2,4-DINITROPHENOL	25	25 U	UG/L	
2,4-DINITROTOLUENE	10	10 U	UG/L	
2,6-DINITROTOLUENE	10	10 U	UG/L	
BIS (2-ETHYLHEXYL) PHTHALATE	10	10 U	UG/L	
FLUORANTHENE	10	10 U	UG/L	
FLUORENE	10	10 U	UG/L	
HEXACHLOROBENZENE	10	10 U	UG/L	
HEXACHLOROBUTADIENE	10	10 U	UG/L 110/1	
HEXACHLOROCICLOPENTADIENE	10			
LEVACUTOKOE I LANG LEVACUTOKOE I LANG	10			
J-WETHAT ND DRUHN I ENE TOCEUCKONE	10		11C/1.	
			60043	

OLUMBIA ANALYTICAL SERVICES

301432

Miy -6

COLUMBIA ANALYTICAL SERVICES	ICAL SERVICES EXTRACTABLE ORGANICS METHOD 8270C SEMIVOLATILES Reported: 09/12/00					
Geomatrix Consultants Inc. Project Reference: PETER COOPER S Client Sample ID : 081400-005	ITE		•			
Date Sampled : 08/14/00 18:30 Order Date Received: 08/15/00 Submission	#: 401576 #: R2003355	Sample Matrix: Analytical Run	WATER 55144			
ANALYTE	PQL	RESULT	UNITS			
DATE EXTRACTED : 08/17/00 DATE ANALYZED : 09/08/00 ANALYTICAL DILUTION: 1.00						
4,6-DINITRO-2-METHYLPHENOL 4-CHLORO-3-METHYLPHENOL 2-METHYLPHENOL 4-METHYLPHENOL NAPHTHALENE 2-NITROANILINE 3-NITROANILINE 4-NITROANILINE NITROBENZENE 2-NITROPHENOL 4-NITROPHENOL N-NITROSODIPHENYLAMINE DI-N-OCTYL PHTHALATE PENTACHLOROPHENOL PHENANTHRENE PHENOL 4-BROMOPHENYL-PHENYLETHER 4-CHLOROPHENYL-PHENYLETHER 4-CHLOROPHENYL-PHENYLETHER N-NITROSO-DI-N-PROPYLAMINE PYRENE 2,4,6-TRICHLOROPHENOL 2,4,5-TRICHLOROPHENOL	25 10 10 10 25 25 25 25 10 10 10 25 10 10 10 10 10 10 10 10 10 10 10 10 10	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	UG/L UG/L UG/L UG/L UG/L UG/L UG/L UG/L			
SURROGATE RECOVERIES QC L	IMITS					
TERPHENYL-d14(33NITROBENZENE-d5(35PHENOL-d6(102-FLUOROBIPHENYL(432-FLUOROPHENOL(212,4,6-TRIBROMOPHENOL(10	- 141 %) - 114 %) - 94 %) - 116 %) - 110 %) - 123 %)	90 89 22 85 35 33	منه منه منه منه			

EXTRACTABLE ORGANICS METHOD 8270C SEMIVOLATILES Reported: 09/12/00

Project Reference: Client Sample ID : MET	HOD BLANK					
Date Sampled : Date Received:	Order Submission	#: #:	407787	Sample M Analytic	Matrix: cal Run	WATER 55144
ANALYTE			PQL	RI	ESULT	UNITS
DATE EXTRACTED : 08	/17/00					
DATE ANALYZED : 09	/08/00					
ANALYTICAL DILUTION:	1.00					
ACENADUTUENE			10	-		
ACENAPHIHENE ACENA DUTHYLENE	,		10	-		
ACENAPHINIDENE			10	-		
ANTURACENE			10	-		UG/L UG/L
ANT INACENE ATDAZINE			10	-		UG/L IIC/L
DENGAL DEUVDE			10			UG/L
			10	-		UG/L
DENZO (A) ANIARACENE DENZO (A) DYDENE			10	-		UG/L
DENZO (D) EL LIODANEUENE			10	-		UG/L
DENZO (B) FLUORANTHENE			10	L -		UG/L
DENZO (G, H, 1) PERILENE			10	ر 		UG/L
BENZO (K) FLUORANTHENE			10]		UG/L
I, I'-BIPHENIL				1		UG/L
BUTYL BENZYL PHTHALATE			10]		UG/L
DI-N-BUTYLPHTHALATE			10]		UG/L
CAPROLACTAM			10	1	.0 U	UG/L
CARBAZOLE			10	· 1	U 0.	UG/L
INDENO (1,2,3-CD) PYRENE			10	נ	.0 U	UG/L
4 - CHLOROANILINE			10	1	.0 U	UG/L
BIS (-2-CHLOROETHOXY) METH	ANE		10	- 1	.0 U	UG/L
BIS (2-CHLOROETHYL) ETHER			10	1	.0 U	UG/L
2 - CHLORONAPHTHALENE			10	1	.0 U	UG/L
2 - CHLOROPHENOL			10	1	.0 U	UG/L
2,2'-OXYBIS (1-CHLOROPROP)	ANE)		10	1	.0 U	UG/L
CHRYSENE			10	1	.0 U	UG/L
DIBENZO (A, H) ANTHRACENE			10	1	.0 U	UG/L
DIBENZOFURAN			10	1	.0 U	UG/L
3,3'-DICHLOROBENZIDINE			10	1	.0 U	UG/L
2,4-DICHLOROPHENOL			10	1	.0 U	UG/L
DIETHYLPHTHALATE			10	1	.0 U	UG/L
DIMETHYL PHTHALATE			10	1	.0 U	UG/L
2,4-DIMETHYLPHENOL			10	1	0 U	UG/L
2,4-DINITROPHENOL			25	2	5 U	UG/L
2,4-DINITROTOLUENE			10	1	0 U	UG/L
2,6-DINITROTOLUENE			10	1	0 11	UG/L
BIS (2 - ETHYLHEXYL) PHTHALAT	E		10	1	0 11	
FLUORANTHENE			10	1	0 11	
FLUORENE			10	· 1	0 11	
HEXACHLOROBENZENE			10	' 1		
HEXACHLOROBUTADIENE			10	1		
HEXACHLOROCYCLOPENTADIENE	1		10	۲. ۲		
HEXACHLOROFTHANF	•		10			
TSOPHORONE			10	1		
2 - METHYI,ND DHTHAI.FNF			10	-		
4 6-DINTTRO. 2-METHVI.DUENO	ιŤ.		2E	1		
-, - DINTIKO-2-METHIDPHENU	L. L. L. L. L. L. L. L. L. L. L. L. L. L		40	2	5 0	06040645

.

.

EXTRACTABLE ORGANICS METHOD 8270C SEMIVOLATILES Reported: 09/12/00

Date Sampled : Date Received: Su	Order # bmission #	: 407787 :	Sample Matrix: Analytical Run	WATER 55144
ANALYTE		PQL	RESULT	UNITS
DATE EXTRACTED : 08/17	/00			
DATE ANALYZED : 09/08	/00			
ANALYTICAL DILUTION:	1.00			
4 - CHLORO - 3 - METHYLPHENOL		10	10 U	UG/L
2-METHYLPHENOL		10	10 U	UG/L
4 - METHYLPHENOL		10	10 U	UG/L
NAPHTHALENE	· '.	10	10 U	UG/L
2-NITROANILINE		25	25 U	UG/L
3-NITROANILINE		25	25 U	UG/L
4-NITROANILINE		25	25 U	UG/L
NITROBENZENE		10	10 U	UG/L
Z-NITROPHENOL		10	10 U 25 U	UG/L
		25	25 U 10 U	
N-NIIROSODIPHENILAMINE		10		
DI-N-OCIID PHILALAID		25	25 II	
PHENANTHRENE		10	10 U	
PHENOL		10	10 U	UG/L
4 - BROMOPHENYL - PHENYLETHER		10	10 U	UG/L
4 - CHLOROPHENYL - PHENYLETHER		10	10 U	ŬĠ/L
N-NITROSO-DI-N-PROPYLAMINE		10	10 U	UG/L
PYRENE		10	10 U	· UG/L
2,4,6-TRICHLOROPHENOL		10	10 U	UG/L
2,4,5-TRICHLOROPHENOL		25	25 U	UG/L
SURROGATE RECOVERIES	QC LI	MITS		
TERPHENYL-d14	(33 -	141 %)	105	e F
NITROBENZENE-d5	(35 -	114 %)	78	8
PHENOL-d6	(10 -	94 %)	30	¥
2-FLUOROBIPHENYL	(43 -	116 %)	68	¥
2 - FLUOROPHENOL	(21 -	110 %)	41	¥
2,4,6-TRIBROMOPHENOL	(10 -	123 %)	59	¥

Project Reference: Client Sample ID : METHOD BLAN

QUALITY CONTROL SUMMARY MATRIX SPIKE/MATRIX SPIKE DUPLICATE RECOVERY WATER

Spiked Order No. : 401572 Geomatrix Consultants Inc.

Client ID: 081400-001

Test: 8270C SEMIVOLATILES

Analytical Units: UG/L

Run Number : 55144

			MATRIX	SPIKE	MATRIX	SPIKE DUP.	į	QC LIMITS
ANALYTE	ADDED CONCENT.	FOUND	X REC.	FOUND	X REC. RPD	RPD	REC.	
ACENAPHTHENE	100	0	68.0	68	77.0	77 12	19	31 - 137
2-CHLOROPHENOL	200	0	66.0	33	75.0	38 13	50	25 - 102
2,4-DINITROTOLUENE	100	0	87.0	87	94.0	94 8	38	28 - 89
4-CHLORO-3-METHYLPHENOL	200	0	87.0	44	92.0	46 6	33	26 - 103
4-NITROPHENOL	200	0	43.0	22	37.0	19 15	50	11 - 114
PENTACHLOROPHENOL	200	0	60.0	30	12.0	6 * 133	^t 47	17 - 109
PHENOL	200	0	48.0	24*	46.0	23* 4	35	26 - 90
N-NITROSO-DI-N-PROPYLAMINE	100		58.0	58	67.0	67 14	38	41 - 126
PYRENE	100	jo j	92.0	92	95.0	95 3	36	35 - 142

. .

EXTRACTABLE ORGANICS METHOD: 8270C SEMIVOLATILES

LABORATORY REFERENCE SPIKE SUMMARY

REFERENCE ORDER #: 407788	B8 ANALYTICAL RUN # : 5514			
ANALYTE	TRUE VALUE	<pre>% RECOVERY</pre>	QC LIMITS	
DATE ANALYZED : 9/ 8/2000 ANALYTICAL DILUTION: 1.0				
ACENAPHTHENE	100	79	47 - 145	
ACENAPHTHYLENE	100	82	33 - 145	
ACETOPHENONE	100	NA	50 - 150	
ANTHRACENE	100	93	27 - 133	
ATRAZINE	100	NA	50 - 150	
BENZALDEHYDE	100	NA	50 - 150	
BENZO (A) ANTHRACENE	100	94	33 - 143	
BENZO (A) PYRENE	100	90	17 - 163	
BENZO (B) FLUORANTHENE	100	93	24 - 159	
BENZO (G. H. I) PERYLENE	100	56	10 - 219	
BENZO (K) FLUORANTHENE	100	93	11 - 162	
1.1'-BTPHENYL	100	NA	50 - 150	
BUTYL BENZYL PHTHALATE	100	80	10 - 152	
DI-N-BUTYLPHTHALATE	100	85	10 - 118	
CAPROLACTAM	100	NA	50 - 150	
CARBAZOLE	100	87	10 - 160	
TNDENO(1,2,3-CD) PYRENE	100	60	10 - 171	
4 - CHLOROANTLINE	100	82	10 - 160	
BIS(-2-CHLOROETHOXY)METHANE	100	74	33 - 184	
BIS (2-CHLOROETHYL) ETHER	100	67	12 - 158	
2-CHLORONADHTHALENE	100	76	60 - 118	
2 - CHLOROPHENOL	200	41	23 - 134	
2 2 1 - 0 YVBTS (1 - CHLOROPROPANE)	100	41	36 - 166	
CHDVGENE	100	93	17 - 168	
DIBENZO (A H) ANTHDACENE	100	94	10 - 227	
DIDENZO (A, N/ ANINKACENE DIDENZOEIDAN	100	95	10 - 160	
2 2 DICULORODENZIDINE	100	05	10 - 262	
2, A DICHLOROBENZIDINE	100	90	20 125	
	100	90	39 - 135	
DIETHILPHIRALATE	100	71	10 - 114	
DIMETHYL PHTHALATE	100	37	10 - 112	
2,4-DIMETHYLPHENOL	100	63	32 - 119	
2,4-DINITROPHENOL	100	78	10 - 191	
2,4-DINITROTOLUENE	100	99	39 - 139	
2,6-DINITROTOLUENE	100	92	50 - 158	
BIS (2-ETHYLHEXYL) PHTHALATE	100	85	10 - 158	
FLUORANTHENE	100	97	26 - 137	
FLUORENE	100	88	59 - 121	
HEXACHLOROBENZENE	100	95	10 - 152	
HEXACHLOROBUTADIENE	100	80	24 - 116	
HEXACHLOROCYCLOPENTADIENE	100	53	10 - 110	
HEXACHLOROETHANE	100	59	40 - 113	

EXTRACTABLE ORGANICS METHOD: 8270C SEMIVOLATILES

LABORATORY REFERENCE SPIKE SUMMARY

REFERENCE ORDER #: 407788	ANALYT:	ANALYTICAL RUN # :		
ANALYTE	TRUE VALUE	<pre>% RECOVERY</pre>	QC LIMITS	
DATE ANALYZED : 9/ 8/2000 ANALYTICAL DILUTION: 1.0				
ISOPHORONE	100	81	21 - 196	
2-METHYLNAPHTHALENE	100	75	10 - 160	
4.6-DINITRO-2-METHYLPHENOL	100	89	10 - 181	
4 - CHLORO - 3 - METHYLPHENOL	200	44	22 - 147	
2-METHYLPHENOL	100	70	10 - 160	
4-METHYLPHENOL	100	68	10 - 160	
NAPHTHALENE	100	70	21 - 133	
2-NITROANILINE	100	72	10 - 160	
3-NITROANILINE	100	85	10 - 160	
4-NITROANILINE	100	86	10 - 160	
NITROBENZENE	100	70	35 - 180	
2-NITROPHENOL	100	88	29 - 182 👝	
4-NITROPHENOL	200	18	10 - 132	
N-NITROSODIPHENYLAMINE	100	87	11 - 102	
DI-N-OCTYL PHTHALATE	100	84	10 - 146	
PENTACHLOROPHENOL	200	38	14 - 176	
PHENANTHRENE	100	93	54 - 120	
PHENOL	200	23	i0 - 112	
4 - BROMOPHENYL - PHENYLETHER	100	93	53 - 127	
4 - CHLOROPHENYL - PHENYLETHER	100	93	25 - 158	
N-NITROSO-DI-N-PROPYLAMINE	100	70	10 - 230	
PYRENE	100	99	52 - 115	
2,4,6-TRICHLOROPHENOL	100	89	37 - 144	
2,4,5-TRICHLOROPHENOL	100	93	10 - 160	

- - ---

Case No.:

WATER

LOW

METALS

-1-

INORGANIC ANALYSIS DATA SHEET

SAMPLE NO.

081400-001

Contract: R2003355

Level (low/med):

Lab Code:

SAS No.:

SDG NO.: 081400-001

Matrix (soil/water)	:
---------------------	---

Lab Sample ID: 401572

Date Received: 08/15/00

Concentration Units (ug/L or mg/kg dry weight): μ G/L

CAS No.	Analyte	Concentration		Q	м
7429-90-5	Aluminum	437	1		P
7440-36-0	Antimony	60.0	U		P
7440-38-2	Arsenic	115		1	P
7440-39-3	Barium	237			P
7440-41-7	Beryllium	5.0	U		P
7440-43-9	Cadmium	5.0	U		P
7440-70-2	Calcium	180000			P
7440-47-3	Chromium	337		l	P
7440-48-4	Cobalt	50.0	U		P
7440-50-8	l Copper	20.0	U		P
7439-89-6	Iron	3110		1	P
7439-92-1	Lead	5.0	U		P
7439-95-4	Magnesium	99800			P
7439-96-5	Manganese	277			P
7439-97-6	Mercury	0.30	U	<u> </u>	cv
7440-02-0	Nickel	40.0	ט 🛛		P
7440-09-7	Potassium	10600			P
7782-49-2	Selenium	5.0	ע	N	P
7440-22-4	Silver	10.0	U		P
7440-23-5	Sodium	29700			P
7440-28-0	Thallium	10.0	U		P
7440-62-2	Vanadium	50.0	U		P
7440-66-6	Zinc	24.8			P

Comments:

.

Columbia Analytical Services, Inc

Case No.:

WATER

METALS

-1-

.....

INORGANIC ANALYSIS DATA SHEET

SAMPLE NO.

081400-002

Contract: R2003355

SAS No.:

SDG NO.: 081400-001

Matrix (soil/water):

Lab Code:

Lab Sample ID: 401573

Level (low/med): LOW

Date Received: 08/15/00

Concentration Units (ug/L or mg/kg dry weight): µG/L

CAS No.	Analyte	Concentration		Q	M
7429-90-5	Aluminum	161			P
7440-36-0	Antimony	60.0	U		P
7440-38-2	Arsenic	34.2			P
7440-39-3	Barium	154			P
7440-41-7	Beryllium	5.0	ט	1	P
7440-43-9	Cadmium	5.0	U		P
7440-70-2	Calcium	117000		l	P
7440-47-3	Chromium	433			P
7440-48-4	Cobalt	50.0	U	l	P
7440-50-8	Copper	20.0	U		P
7439-89-6	Iron	520			P
7439-92-1	Lead	5.0	U		P
7439-95-4	Magnesium	114000			P
7439-96-5	Manganese	66.5	1		P
7439-97-6	Mercury	0.30	ט		CV
7440-02-0	Nickel	40.0	U		P
7440-09-7	Potassium	4650			P
7782-49-2	Selenium	5.0	U	N	P
7440-22-4	Silver	10.0	U		P
7440-23-5	Sodium	14100			P
7440-28-0	Thallium	10.0	U		P
7440-62-2	Vanadium	50.0	U		P
7440-66-6	Zinc	21.4			P

Color	Before:	YELLOW	Clarity Before:	CLOUDY	Texture:
Color	After:	COLORLESS	Clarity After:	CLEAR	Artifacts:

Case No.:

METALS

-1-

INORGANIC ANALYSIS DATA SHEET

SAMPLE NO.

081400-003

Contract: R2003355

Lab Code:

SAS No.:

SDG NO.: 081400-001

Matrix (soil/water): WATER

Lab Sample ID: 401574

Level (low/med): LOW

Date Received: 08/15/00

Concentration Units (ug/L or mg/kg dry weight): μ G/L

CAS No.	Analyte	Concentration	С	Q	M
7429-90-5	Aluminum	145	1	i	P
7440-36-0	Antimony	60.0	U	1	P
7440-38-2	Arsenic	32.8	1		P
7440-39-3	Barium	152			P
7440-41-7	Beryllium	5.0	0		P
7440-43-9	Cadmium	5.0	ע		P
7440-70-2	Calcium	117000		l	P
7440-47-3	Chromium	427	1	I	P
7440-48-4	Cobalt	50.0	U		P
7440-50-8	Copper	20.0	U		P
7439-89-6	Iron	495	l		P
7439-92-1	Lead	5.0	U		P
7439-95-4	Magnesium	113000			P
7439-96-5	Manganese	66.2			P
7439-97-6	Mercury	0.30	U	I	CV
7440-02-0	Nickel	40.0	ט		P
7440-09-7	Potassium	4380			P
7782-49-2	Selenium	5.0	ט	N	P
7440-22-4	Silver	10.0	U		P
7440-23-5	Sodium	14400		l	P
7440-28-0	Thallium	10.0	U		P
7440-62-2	Vanadium	50.0	ט		P
7440-66-6	Zinc	20.0	U		P

Color Before:	YELLOW	Clarity Before:	CLOUDY	Texture:
Color After:	COLORLESS	Clarity After:	CLEAR	Artifacts:

Columbia Analytical Services, Inc

Case No.:

METALS

-1-

- -----

INORGANIC ANALYSIS DATA SHEET

SAMPLE NO.

301442

081400-004

Contract:	R2003355

Level (low/med):

SDG NO.: 081400-001

Lab Code: Matrix (soil/water): SAS No.:

WATER

LOW

Lab Sample ID: 401575

Date Received: 08/15/00

CAS No.	Analyte	Concentration	С	Q	M
7429-90-5	Aluminum	746	1		P
7440-36-0	Antimony	60.0	U		P
7440-38-2	Arsenic	163		l	P
7440-39-3	Barium	279			P
7440-41-7	Beryllium	5.0	U		P
7440-43-9	Cadmium	5.0	ע	[P
7440-70-2	Calcium	158000			P
7440-47-3	Chromium	174			P
7440-48-4	Cobalt	50.0	υ		P
7440-50-8	Copper	20.0	U		P
7439-89-6	Iron	2080			P
7439-92-1	Lead	5.0	U		P
7439-95-4	Magnesium	98200			P
7439-96-5	Manganese	117			P
7439-97-6	Mercury	0.30	U		cv
7440-02-0	Nickel	40.0	U		P
7440-09-7	Potassium	5920			P
7782-49-2	Selenium	5.0	U	N	P
7440-22-4	Silver	10.0	U	1	P
7440-23-5	Sodium	17300			P
7440-28-0	Thallium	10.0	U		P
7440-62-2	Vanadium	50.0	ש ו		P
7440-66-6	Zinc	35.6			P

Concentration Units (ug/L or mg/kg dry weight): µG/L

Color Before:	YELLOW	Clarity Before:	CLOUDY	Texture:
Color After:	COLORLESS	Clarity After:	CLEAR	Artifacts:
Comments:				

METALS

-1-

INORGANIC ANALYSIS DATA SHEET

SAMPLE NO.

081400-005

Contract: R2003355

SAS No.:

SDG NO.: 081400-001

Lab Code:

Case No.:

Lab Sample ID: 401576

Level (low/med): LOW

Matrix (soil/water): WATER

Date Received: 08/15/00

Concentration Units (ug/L or mg/kg dry weight): μ G/L

CAS No.	Analyte	Concentration	С	Q	м
7429-90-5	Aluminum	185		1	P
7440-36-0	Antimony	60.0	ט	1	P
7440-38-2	Arsenic	30.2		1	P
7440-39-3	Barium	259			P
7440-41-7	Beryllium	5.0	U	1	P
7440-43-9	Cadmium	5.0	U		P
7440-70-2	Calcium	176000	<u> </u>		P
7440-47-3	Chromium	36.8			P
7440-48-4	Cobalt	50.0	ש		P
7440-50-8	Copper	20.0	ע	l	P
7439-89-6	Iron	12800			P
7439-92-1	Lead	5.0	U		P
7439-95-4	Magnesium	60700			P
7439-96-5	Manganese	821	1		P
7439-97-6	Mercury	0.30	U	l	CV
7440-02-0	Nickel	40.0	ט		P
7440-09-7	Potassium	5580			P
7782-49-2	Selenium	5.0	U	N	P
7440-22-4	Silver	10.0	U	1	P
7440-23-5	Sodium	5580		1	P
7440-28-0	Thallium	10.0	U		P
7440-62-2	Vanadium	50.0	U		P
7440-66-6	Zinc	29.1			P

Color Befor	re: COLORLESS	Clarity Before	e: CLEAR	Texture:
Jolor After	colorless	Clarity After	: CLEAR	Artifacts:

Case No.:

METALS -5A-

SPIKE SAMPLE RECOVERY

···· ` •

SAMPLE NO.

081400-001s

Contract: R2003355

Lab Code:

SAS No.:

SDG NO.: 081400-001

Level (low/med):

): LOW

% Solids for Sample: 0.0

Matrix (soil/water):WATER

	Con	centration Units (u	ug/	'L or mg/kg dry w	eig	ght): µG/L	•		
31	Control	Spiked Sample		Sample		Spike			
Analyte	Limit %R	Result (SSR)	С	Result (SR)		Added (SA)	8 R	Q	M
Aluminum	75 - 125	2384.8774	1	436.8666		2000.00	97.4		P
Antimony	75 - 125	474.3399		60.0000	ש	500.00	94.9		P
Arsenic	75 - 125	148.6508		115.2536	}	40.00	83.5		P
Barium	75 - 125	2153.5161		237.4171		2000.00	95.8		P
Beryllium	75 - 125	46.8271	1	5.0000	ע	50.00	93.7		P
Cadmium	75 - 125	47.8913		5.0000	U	50.00	95.8		P
Calcium	ł	184111.7188		179710.3438		2000.00	220.1		P
Chromium	75 - 125	540.2316		337.3292		200.00	101.5		P
Cobalt	75 - 125	485.3653		50.0000	U	500.00	97.1		P
Copper	75 - 125	240.1883		20.0000	U	250.00	96.1		P
Iron	75 - 125	4203.9355	Ī	3112.3345		1000.00	109.2		P
Lead	75 - 125	493.1261		5.0000	U	500.00	98.6		₽
Magnesium	1	103590.2578		99770.8750		2000.00	191.0		P
Manganese	75 - 125	795.4236	Ī	276.8601		500.00	103.7		P
Mercury	75 - 125	1.1466		0.3000	U	1.00	114.7		CV
Nickel	75 - 125	476.1078	Ī	40.0000	U	500.00	95.2		P
Potassium	75 - 125	29400.0000	1	10610.0000		20000.00	93.9		P
Selenium	75 - 125	741.6597	Ī	5.0000	U	1010.00	73.4	N	P
Silver	75 - 125	48.8937	Ī	10.0000	U	50.00	97.8		P
Sodium	75 - 125	49630.0000	Ī	29650.0000		20000.00	99.9		P
Thallium	75 - 125	2043.3383	1	10.0000	U	2000.00	102.2		P
Vanadium	75 - 125	491.0418	Ī	50.0000	υ	500.00	98.2		P
Zinc	75 - 125	473.7790	Í	24.8416		500.00	89.8		P

METALS -5B-

- - ---

POST DIGEST SPIKE SAMPLE RECOVERY

				SA	MPLE NO.
Contract: R2003355					081400-001A
Lab Code:	Case No.:	SAS No.:	<u></u>	SDG NO.:	081400-001
Matrix (soil/water):	WATER		Level	(low/med):	LOW

	Co	ncentration Units:	υg	J/L			•		
Analyte	Control Limit %R	Spiked Sample Result (SSR)	с	Sample Result (SR)	с	Spike Added(SA)	\$R	Q	м
Aluminum	1	2543.57		436.87		2000.0	105.3		P
Antimony	1	499.59		60.00	U	500.0	99.9		P
Arsenic	1	154.24		115.25		40.0	97.5		P
Barium	1	2273.21		237.42		2000.0	101.8		P
Beryllium	1	49.15		5.00	υ	50.0	98.3		P
Cadmium	1	49.56		5.00	U	50.0	99.1		P
Calcium	1	184005.53		179710.34		2000.0	214.8		P
Chromium		551.09		337.33		200.0	106.9		₽
Cobalt		509.39		50.00	U	500.0	101.9		P
Copper	!	254.56		20.00	U	250.0	101.8		P
Iron		4209.88		3112.33		1000.0	109.8		P
Lead	1	519.49		5.00	υ	500.0	103.9		P
Magnesium		103097.83		99770.88		2000.0	166.3		P
Manganese	1	824.20		276.86		500.0	109.5		P
Nickel	I	507.81		40.00	U	500.0	101.6		P
Potassium	1	30230.00		10610.00		20000.0	98.1		P
Selenium		1107.10		5.00	ט	1010.0	109.6		P
Silver		48.63	1	10.00	ប	50.0	97.3		P
Sodium	1	50510.00		29650.00		20000.0	104.3		P
Thallium		2194.74		10.00	U	2000.0	109.7		₽
Vanadium		519.77	1	50.00	U	500.0	104.0		P
Zinc		497.15		24.84		500.0	94.5		P

Columbia	Analytical .	Services, Inc					
			METALS				
			-6-		·		
			DUPLICATES				
						SAMPLE NO.	1
Contract:	R2003355					081400-001D	
Lab Code:		Case No.:	SAS No.:		SDG P	NO.: 081400-001	
Matrix (so	<pre>pil/water):</pre>	WATER		Level	(low/med)	: LOW	
<pre>% Solids 1</pre>	for Sample:	0.0	8 :	Solids for	Duplicate	•:	

• -----

	Concer	ntration Units (ug/L	or	mg/kg dry weight):	μG/	'L		
Analyte	Control Limit	Sample (S)	с	Duplicate (D)	с	RPD	Q	м
Aluminum		436.8666		419.2622	1	4.1		P
Antimony	1 }	60.0000	U	60.0000	U			P
Arsenic		115.2536		111.2349		3.5		P
Barium		237.4171		242.2745		2.0		P
Beryllium		5.0000	U	5.0000	ט			P
Cadmium		5.0000	U	5.0000	ש	1		₽
Calcium		179710.3438		182414.6719		1.5		P
Chromium	Ī	337.3292		346.1164		2.6		P
Cobalt	1 [50.0000	U	50.0000	U	1		P
Copper	1	20.0000	U	20.0000	U	i i		P
Iron		3112.3345		3123.8289		0.4		P
Lead		5.0000	U	5.0000	ט			P
Magnesium		99770.8750		102995.9453		3.2		P
Manganese		276.8601		283.7223		2.4		P
Mercury		0.3000	U	0.3000	υ			CV
Nickel		40.0000	U	40.0000	U	1		P
Potassium		10610.0000		10370.0000		2.3		P
Selenium		5.0000	υ	5.0000	U			P
Silver		10.0000	ע	10.0000	U	1		P
Sodium		29650.0000		29920.0000		0.9		P
Thallium		10.0000	U	10.0000	U	Í Í		P
Vanadium		50.0000	U	50.0000	U	1		P
Zinc		24.8416		24.9996		0.6		P

.

Case No.:

METALS

-7-

LABORATORY CONTROL SAMPLE

Contract: R2003355

Lab Code:

SAS No.:

SDG NO.: 081400-001

Solid LCS Source:

Aqueous LCS Source: CPI

	Aqueou	us (ug/L)		Solid (mg/kg)				
Analyte	True	Found	ŧR	True	Found	С	Limits	ŧR
Aluminum	2000.0	1825.55	91.3					
Antimony	500.0	464.70	92.9					
Arsenic	40.0	36.54	91.3					
Barium	2000.0	1927.95	96.4			1		
Beryllium	50.0	47.34	94.7			Τ		
Cadmium	50.0	50.57	101.1			Τ		
Calcium	2000.0	2041.40	102.1					
Chromium	200.0	192.49	96.2			1		
Cobalt	500.0	500.50	100.1					
Copper	250.0	243.47	97.4			1		
Iron	1000.0	1058.55	105.9			Π		
Lead	500.0	511.25	102.3					
Magnesium	2000.0	1987.77	99.4			1		
Manganese	500.0	515.95	103.2					
Mercury	1.0	1.12	112.0			T		
Nickel	500.0	494.54	98.9			1		
Potassium	20000.0	18860.00	94.3					
Selenium	1010.0	1033.18	102.3			T		
Silver	50.0	47.37	94.7					
Sodium	20000.0	18770.00	93.8			1		
Thallium	2000.0	2092.56	104.6			T		
Vanadium	500.0	472.00	94.4			TI	1 1	
Zinc	500.0	512.95	102.6					i

Reported: 09/12/00

Geomatrix Consultants Inc. Project Reference: PETER COOPER SITE Client Sample ID : 081400-001

Date Sampled : 08/14/00 14:30 Date Received: 08/15/00		Order Submission	#: 401572 #: R2003355		Sample Matrix: WATER			
ANALYTE	METHO	D PQL	RESULT	UNITS	DATE ANALYZED	TIME ANALYZED	DILUTION	
HEXAVALENT CHROM	IUM 71962	A 0.0100	0.104	MG/L	08/15/00	11:39	10.0	

Reported: 09/12/00

00060

301449

Geomatrix Consultants Inc. Project Reference: PETER COOPER SITE Client Sample ID : 081400-002

Date Sampled : 08/14/0 Date Received: 08/15/0	00 16:15 00	Order Submission	#: 401573 #: R2003355	Sample Matrix: WATER			
ANALYTE	METHOD	PQL	RESULT	UNITS	DATE TIME ANALYZED ANALYZED DILUTION		
HEXAVALENT CHROMIUM	7196A	0.0100	0.0400 U	MG/L	08/15/00 11:39 4.0		

Reported: 09/12/00

Geomatrix Consultants Inc. Project Reference: PETER COOPER SITE Client Sample ID : 081400-003

Date Sampled : 08/14/00 16:3 Date Received: 08/15/00			Order Submission	#: #:	401574 R2003355	·	Sample Mat	rix: WATE	R
ANALYTE		METHOD	PQL	J	RESULT	UNITS	DATE ANALYZED	TIME ANALYZED	DILUTION
HEXAVALENT CHRO	MIUM	7196A	0.0100	0	.0400 U	MG/L	08/15/00	11:39	4.0

.

Reported: 09/12/00

Geomatrix Consultants Inc. Project Reference: PETER COOPER SITE Client Sample ID : 081400-004

Date Sampled : 08/14/00 17:25 Date Received: 08/15/00		Order Submission	#: 401575 #: R2003355	Sample Matrix: WATER			
ANALYTE	METHOD	PQL	RESULT	UNITS	DATE TIME ANALYZED ANALYZED DILUTION		
HEXAVALENT CHROMIUM	7196A	0.0100	0.103	MG/L	08/15/00 11:39 4.0		

Reported: 09/12/00

Geomatrix Consultants Inc. Project Reference: PETER COOPER SITE Client Sample ID : 081400-005

Date Sampled : 08/14/00 18:30 Order #: 401576 Date Received: 08/15/00 Submission #: R2003355			Sample Matrix: WATER				
ANALYTE	METHOD	PQL	RESULT	UNITS	DATE TIME ANALYZED ANALYZED DILUTION		
HEXAVALENT CHROMIUM	7196A	0.0100	0.0400 U	MG/L	08/15/00 11:39 4.0		

- -----

INORGANIC QUALITY CONTROL SUMMARY

Report Date : 09/12/00 CAS Order # : 401572 - 081400-001 Client : Geomatrix Consultants Inc. PETER COOPER SITE Reported Units: MG/L Run # : 5411

: 54111

PR	EC	I	SI	ON:
----	----	---	----	-----

ACCURACY

	ORIGINAL	DUPLICATE	RPD	FOUND	ADDED	% REC.	LIMITS
HEXAVALENT CHROMIUM	0.104	0.100 U	NC	0.824	1.00	72	70 - 130

INORGANIC BLANK SPIKE SUMMARY

· .

CAS Submission #: R2003355 Client: Geomatrix Consultants Inc. PETER COOPER SITE

BLANK	FOUND	ADDED	% REC	LIMITS	RUN	UNITS
0.0100 U	0.0980	0.100	98	70 - 130	54111	MG/L

BLANK SPIKES

HEXAVALENT CHROMIUM

September 27, 2000

Ms. Jennifer Hagen Geomatrix Consultants, Inc. 338 Harris Hill Road, Suite 201 Williamsville, NY 14221

Re: Peter Cooper Site Submission # R2003355 SDG # 081400-001 8270 Addendum

Dear Ms. Hagen:

Enclosed is the analytical data report for the above referenced facility. A total of six samples were received by our laboratory on August 15, 2000.

This data package contains only the Semivolatile analysis. The rest of the parameters were mailed to you on September 24, 2000.

Any problems encountered with this project are addressed in a case narrative section which is presented later in this report.

This report consists of two (2) packages: the sample data package and the sample data summary package. Both packages have been mailed to Judy Harry at your request, with only a copy of the summary package being mailed to Geomatrix. All data presented in this package has been reviewed prior to report submission. If you should have any questions or concerns, please contact me at (716) 288-5380.

Thank you for your continued use of our services.

Sincerely,

enc.

cc: Ms. Judy Harry Data Validation Services 120 Cobblecreek Road North Creek, NY 12853

1 Mustard ST. Suite 250 Rochester, NY 14609

THIS IS AN ANALYTICAL TEST REPORT FOR:

Client	:	Geomatrix Consultants	Inc.
Project Reference	:	PETER COOPER SITE	
Lab Submission #	:	R2003355	
Reported	:	09/27/00	

Report Contains a total of $\frac{34}{24}$ pages

The results reported herein relate only to the samples received by the laboratory. This report may not be reproduced except in full, without the approval of Columbia Analytical Services.

This package has been reviewed by Columbia Analytical Services' QA Department/Laboratory Director to comply with NELAC standards prior to report submittal.

CASE NARRATIVE

COMPANY: Geomatrix Consultants, Inc. Peter Cooper Site SUBMISSION #: R2003355

Geomatrix samples were collected on 08/14/00 and received at CAS on 08/15/00 in good condition at cooler temperatures of 1-2 C.

SEMIVOLATILE ORGANICS

Five water samples were analyzed for the new TCL list of Semivolatiles by method 8270 from SW846.

All Tuning criteria for DFTPP were met.

All initial and continuing calibration criteria were met.

All surrogate standard recoveries were within limits except 081400-002DL and 081400-003DL. All surrogates were diluted out and have been flagged with a "D".

Job specific QC was performed on 081400-001 as requested. All MS/MSD recovereis were within limits unless flagged with an "*". All Blank Spike recoveries were within limits. All RPD's were within limits except Pentachlorophenol and has been flagged with an "*".

Several compounds for 081400-002 and 081400-003 have been flagged with an "E" as being outside the calibration range of the instrument. The samples were repeated at dilutions and both sets of data have been reported out.

The Laboratory Blanks associated with these analyses were free of contamination.

All samples were extracted and analyzed within required holding times.

No other analytical or QC problems were encountered.

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hard copy package has been authorized by the Laboratory Manager or his designee, as verified by the following signature.

0-001	BATCH C	OMPLETE:yes		DATE REV	ISED:		
R2003355	DISKETT	E REQUESTED: Y NX		DATE DUE	: 09/12/00		
Geomatrix Consultants Inc.	DATE: 08	/15/00		PROTOCO	L: SW846		
Janice Jaeger	CUSTOD	Y SEAL: PRESENT/ABSENT:		SHIPPING	No.:		
PETER COOPER SITE	CHAIN O	F CUSTODY: PRESENT/ABSENT	T:				
CLIENT/EPA ID	MATRIX	REQUESTED PARAMETERS	DATE	DATE	pН	%	REMARKS
		<u>e</u>	SAMPLE	RECEIVE	(SOLIDS)	SOLIDS	AMPLE CONDITION
081400-001	WATER	8260,8270,TAL MET,CR6	8/14/00	8/15/00			
081400-002	WATER	8260,8270,TAL MET,CR6	8/14/00	8/15/00			
081400-003	WATER	8260,8270,TAL MET,CR6	8/14/00	8/15/00			
081400-004	WATER	8260,8270,TAL MET,CR6	8/14/00	8/15/00			
081400-005	WATER	8260,8270,TAL MET,CR6	8/14/00	8/15/00			
TRIP BLANK	WATER	8260,8270,TAL MET,CR6	8/14/00	8/15/00			
				1			
			<u> </u>	L			
				1,			
							Υ.
)	1						
	R2003355 Geomatrix Consultants Inc. Janice Jaeger PETER COOPER SITE CLIENT/EPA ID 081400-001 081400-002 081400-003 081400-004 081400-005 TRIP BLANK	BATOTIC BATOTIC R2003355 DISKETT Geomatrix Consultants Inc. DATE: 08 Janice Jaeger CUSTOD PETER COOPER SITE CHAIN O CLIENT/EPA ID MATRIX 081400-001 WATER 081400-002 WATER 081400-003 WATER 081400-005 WATER 081400-005 WATER 081400-005 WATER 081400-005 WATER 081400-005 WATER 081400-005 WATER 081400-005 WATER 081400-005 WATER 081400-005 WATER 081400-005 WATER 081400-005 UATER 01 DATGINE Consultants Reconsists DISKETTE REQUESTED: YNx_ Geomatrix Consultants Inc. DATE: 08/15/00 Janice Jaeger CUSTODY SEAL: PRESENT/ABSENT: PETER COOPER SITE CHAIN OF CUSTODY: PRESENT/ABSENT: CLIENT/EPA ID MATRIX REQUESTED PARAMETERS 081400-001 WATER 081400-002 WATER 081400-003 WATER 081400-004 WATER 081400-005 WATER 081400-004 WATER 081400-005 WATER 8260,8270,TAL MET,CR6 081400-004 081400-005 WATER 8260,8270,TAL MET,CR6 081400-005 WATER 8260,8270,TAL MET,CR6 081400-004 WATER 081400-005 WATER 08260,8270,TAL MET,CR6 D 081400-005 WATER 081400-005 WATER 081400-005 WATER 081400-005 USA 081400-005 USA 081400-006 USA 081400-007 USA 081400-008<	0-001 DISKETTE REQUESTED: YN_x_ Geomatrix Consultants Inc. DATE: 08/15/00 Janice Jaeger CUSTODY SEAL: PRESENT/ABSENT: CLIENT/EPA ID MATRIX REQUESTED PARAMETERS DATE 081400-001 WATER 8260,8270,TAL MET,CR6 8/14/00 081400-002 WATER 8260,8270,TAL MET,CR6 8/14/00 081400-003 WATER 8260,8270,TAL MET,CR6 8/14/00 081400-004 WATER 8260,8270,TAL MET,CR6 8/14/00 081400-005 WATER 8260,8270,TAL MET,CR6 8/14/00 081400-005 WATER 8260,8270,TAL MET,CR6 8/14/00 081400-005 WATER 8260,8270,TAL MET,CR6 8/14/00 081400-005 WATER 8260,8270,TAL MET,CR6 8/14/00 0 Image: State Stat	0-001 DISKETTE REQUESTED: Y N_x_ DATE DUE Geomatrix Consultants Inc. DATE: 08/15/00 PROTOCC Janice Jaeger CUSTODY SEAL: PRESENT/ABSENT: SHIPPING PETER COOPER SITE CHAIN OF CUSTODY: PRESENT/ABSENT: CLIENT/EPA ID MATRIX REQUESTED PARAMETERS DATE 081400-001 WATER 8260,8270,TAL MET,CR6 8/14/00 8/15/00 081400-002 WATER 8260,8270,TAL MET,CR6 8/14/00 8/15/00 081400-003 WATER 8260,8270,TAL MET,CR6 8/14/00 8/15/00 081400-004 WATER 8260,8270,TAL MET,CR6 8/14/00 8/15/00 081400-005 WATER 8260,8270,TAL MET,CR6 8/14/00 8/15/00 081400-005 WATER 8260,8270,TAL MET,CR6 8/14/00 8/15/00 081400-005 WATER 8260,8270,TAL MET,CR6 8/14/00 8/15/00 081400-005 WATER 8260,8270,TAL MET,CR6 8/14/00 8/15/00 0 Internet Internet Internet Internet 0	Order Diskette ReQUESTED: YN_X DATE DUE (0.00000000000000000000000000000000000	0-001 DATE 1004/fi CH1 DATE 1004/fi CH104/D2 Geomatrix Consultants Inc. DATE: 08/15/00 PROTOCOL: \$V\846 Janice Jaeger CUSTODY SEAL: PRESENT/ABSENT: SHIPPING No.: PETER COOPER SITE CHAIN OF CUSTODY: PRESENT/ABSENT: SAMPLE PRCTOCOL: \$V\846 CLIENT/EPA ID MATRIX REQUESTED PARAMETERS DATE: 08/12/00 SAMPLE 081400-001 WATER 8260,8270,TAL MET,CR6 8/14/00 8/15/00 SOLIDS 081400-002 WATER 8260,8270,TAL MET,CR6 8/14/00 8/15/00 08 081400-003 WATER 8260,8270,TAL MET,CR6 8/14/00 8/15/00 08 081400-005 WATER 8260,8270,TAL MET,CR6 8/14/00 8/15/00 08 081400-005 WATER 8260,8270,TAL MET,CR6 8/14/00 8/15/00 0 081400-005 WATER 8260,8270,TAL MET,CR6 8/14/00 8/15/00 0 081400-005 WATER 8260,8270,TAL MET,CR6 8/14/00 8/15/00 0 0 081400-005 WATER 8260,8270,TAL MET,CR6 8/14/00 8/15/00 0 0	

BATCHILLXLS

8/1

Effective 04/01/96

CAS LIST OF QUALIFIERS

(The basis of this proposal are the EPA-CLP Qualifiers)

- U Indicates compound was analyzed for but was not detected. The sample quantitation limit must be corrected for dilution and for percent moisture.
- J Indicates an estimated value. For further explanation see case narrative / cover letter.
- B This flag is used when the analyte is found in the associated blank as well as in the sample.

E - This flag identifies compounds whose concentrations exceed the calibration range.

A - This flag indicates that a TIC is a suspected aldol-condensation product.

- N Spiked sample recovery not within control limits. (Flag the entire batch - Inorganic analysis only)
- * Duplicate analysis not within control limits.
 (Flag the entire batch Inorganic analysis only)
 - Also used to qualify Organics QC data outside limits.
- D Spike diluted out.
- S Reported value determined by Method of Standard Additions. (MSA)
- X As specified in the case narrative.

CAS Lab ID # for State Certifications

NY ID # in Rochester:	10145	NJ ID # in Rochester:	73004
CT ID # in Rochester:	PH0556	RI ID # in Rochester:	158
MA ID # in Rochester.	M-NY032	NH ID # in Rochester:	294198-A
OH EPA # in Rochester	VAP	AIHA # in Rochester:	7889

EXTRACTABLE ORGANICS

METHOD 8270C SEMIVOLATILES Reported: 09/27/00

Geomatrix Consultants Inc. Project Reference: PETER COOPER SITE Client Sample ID : 081400-001			
Date Sampled : 08/14/00 14:30 Order #: Date Received: 08/15/00 Submission #:	401572 R2003355	Sample Matrix: Analytical Run:	WATER 55144
ANALYTE	PQL	RESULT	UNITS
DATE EXTRACTED : 08/17/00 DATE ANALYZED : 09/08/00 ANALYTICAL DILUTION: 1.0			
ACENAPHTHENE	10	10 U	UG/L
ACENAPHTHYLENE	10	10 U -	UG/L
ACETOPHENONE	10	10 U -	UG/L
ANTHRACENE	10	10 U	UG/L
ATRAZINE	10	10 U	UG/L
BENZALDEHYDE	10	10 U	UG/L
BENZO (A) ANTHRACENE	10	10 U	UG/L
BENZO (A) PYRENE	10	10 U	UG/L
BENZO(B) FLUORANTHENE	10		UG/L VG/L
BENZO(G, H, I) PERYLENE	10		
BENZO (K) FLUORANTHENE	10		
L, L'-BIPHENYL DIWYI DENZVI DUWUNINWE	10		
BUIIL BENZIL PHIRALAIE	10	1 4 .T	
	10		
CAPROLACIAM CAPROZOLE	10		
INDENO(1 2 3-CD) PYRENE	10	10 U	UG/L
4-CHLOROANTLINE	10	10 U	UG/L
BIS (-2-CHLOROETHOXY) METHANE	10	10 U	UG/L
BIS (2-CHLOROETHYL) ETHER	10	10 U	UG/L
2 - CHLORONAPHTHALENE	10	10 U	UG/L
2-CHLOROPHENOL	10	10 U	UG/L
2.2'-OXYBIS (1-CHLOROPROPANE)	10	10 U	UG/L
CHRYSENE	10	10 U	UG/L
DIBENZO (A, H) ANTHRACENE	10	10 U	UG/L
DIBENZOFURAN	10	10 U	UG/L
3,3'-DICHLOROBENZIDINE	10	10 U	UG/L
2,4-DICHLOROPHENOL	10	10 U	UG/L
DIETHYLPHTHALATE	10	10 U	UG/L
DIMETHYL PHTHALATE	10	10 U	UG/L
2,4-DIMETHYLPHENOL	10	10 U	UG/L UG/L
2,4-DINITROPHENOL	25	25 U	
2,4-DINITROTOLUENE	10		
2,6-DINITROIOLUENE	10		UG/L UC/L
EI HODANTHENE BIS (Z-EIHIDHEXID) PHIHADATE	10		
FLIORENE	10		
F DOORDNE HEXACHLOROBENZENE	10		UG/L
HEXACHLOROBUTADIENE	10	10 U	UG/L
HEXACHLOROCYCLOPENTADIENE	10	10 U	UG/L
HEXACHLOROETHANE	10	10 U	UG/L
ISOPHORONE	10	10 U	00005

EXTRACTABLE ORGANICS

METHOD 8270C SEMIVOLATILES Reported: 09/27/00

Geomatrix Consultants Inc. Project Reference: PETER COOD Client Sample ID : 0 81400-003	PER SITE	·		
Date Sampled : 08/14/00 14:30 Date Received: 08/15/00 Subm:	Order #: ission #:	401572 R2003355	Sample Matri Analytical Ru	x: WATER n: 55144
ANALYTE		PQL	RESULT	UNITS
DATE EXTRACTED : 08/17/00 DATE ANALYZED : 09/08/00 ANALYTICAL DILUTION:	1.0			
2-METHYLNAPHTHALENE 4,6-DINITRO-2-METHYLPHENOL 4-CHLORO-3-METHYLPHENOL 2-METHYLPHENOL 4-METHYLPHENOL NAPHTHALENE 2-NITROANILINE 3-NITROANILINE 4-NITROANILINE NITROBENZENE 2-NITROPHENOL 4-NITROPHENOL N-NITROSODIPHENYLAMINE DI-N-OCTYL PHTHALATE PENTACHLOROPHENOL PHENANTHRENE PHENOL 4-BROMOPHENYL-PHENYLETHER 4-CHLOROPHENYL-PHENYLETHER 4-CHLOROPHENYL-PHENYLETHER N-NITROSO-DI-N-PROPYLAMINE PYRENE 2,4,6-TRICHLOROPHENOL 2,4,5-TRICHLOROPHENOL		10 25 10 10 10 25 25 25 25 10 10 25 10 10 25 10 10 10 10 10 10 25	10 U 25 U 10 U 10 U 10 U 2.2 J 25 U 25 U 25 U 10 U 10 U 10 U 10 U 10 U 10 U 10 U 10 U 10 U 10 U 10 U 25 U 10 U 10 U 25 U 10 U 10 U 25 U 10 U 10 U 25 U 10 U 10 U 25 U 10 U 10 U 25 U 10 U 10 U 25 U 10 U 10 U 25 U 10 U 10 U 10 U 25 U 10 U 10 U 10 U 25 U 10 U 10 U 10 U 25 U 10 U 10 U 10 U 10 U 25 U 10 U 10 U 10 U 10 U 10 U 25 U 10 U	UG/L UG/L UG/L UG/L UG/L UG/L UG/L UG/L
SURROGATE RECOVERIES	QC LIMIT	ſS		·
TERPHENYL-d14 NITROBENZENE-d5 PHENOL-d6 2-FLUOROBIPHENYL 2-FLUOROPHENOL 2,4,6-TRIBROMOPHENOL	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	 41) 14) 4) 16) 10) 23)	62 73 27 73 32 74	ماه ماه ماه ماه

EXTRACTABLE ORGANICS

.

. - ...

METHOD 8270C SEMIVOLATILES Reported: 09/27/00

Geomatrix Consultants Inc. **Project Reference:** PETER COOPER SITE **Client Sample ID :** 081400-002

Date Sampled : 08/14/00 16:15 Order #: Date Received: 08/15/00 Submission #:	401573 R2003355	Sample Matrix: Analytical Run:	WATER 55144
ANALYTE	PQL	RESULT	UNITS
DATE EXTRACTED : 08/17/00			
DATE ANALYZED : 09/08/00			
ANALYTICAL DILUTION: 1.0			
ACENAPHTHENE	10	10 U	UG/L
ACENAPHTHYLENE	10	10 U -	UG/L
ACETOPHENONE	10	10 U -	UG/L
ANTHRACENE	10	10 U	UG/L
ATRAZINE	10	10 U	UG/L
BENZALDEHYDE	10	10 U	UG/L
BENZO (A) ANTHRACENE	10	10 U	UG/L
BENZO (A) PYRENE	10	10 U	UG/L
BENZO (B) FLUORANTHENE	10	10 U	UG/L
BENZO (G, H, I) PERYLENE	10	10 U	UG/L 👝
BENZO (K) FLUORANTHENE	10	10 U	UG/L
1,1'-BIPHENYL	10	10 U	UG/L
BUTYL BENZYL PHTHALATE	10	10 U	UG/L
DI-N-BUTYLPHTHALATE	10	1.8 J	UG/L
CAPROLACTAM	10	10 U	UG/L
CARBAZOLE	10	10 U	UG/L
INDENO(1,2,3-CD)PYRENE	10	10 U	UG/L
4-CHLOROANILINE	10	10 U	UG/L
BIS (-2-CHLOROETHOXY) METHANE	10	10 U	UG/L
BIS (2-CHLOROETHYL) ETHER	10	10 U	UG/L
2 - CHLORONAPHTHALENE	10	10 U	UG/L
2-CHLOROPHENOL	10	10 U	UG/L
2,2'-OXYBIS(1-CHLOROPROPANE)	10	10 U	UG/L
CHRYSENE	10	10 U	UG/L
DIBENZO (A, H) ANTHRACENE	10	10 U	UG/L
DIBENZOFURAN	10	10 U	UG/L
3,3'-DICHLOROBENZIDINE	10	10 U	UG/L
2,4-DICHLOROPHENOL	10	10 U	UG/L
DIETHYLPHTHALATE	10	10 U	UG/L
DIMETHYL PHTHALATE	10	10 U	· UG/L
2,4-DIMETHYLPHENOL	10	3.2 J	UG/L
2,4-DINITROPHENOL	25	25 0	
2,4-DINITROTOLUENE	10	10 U	UG/L UG/L
2,6-DINITROTOLUENE	10		UG/L
BIS (2-ETHYLHEXYL) PHTHALATE	10		
FLUORANTHENE	10		
FLUORENE	10	10 0	
HEXACHLOROBENZENE	10		
HEXACHLOROBUTADIENE	10	10 01	
HEXACHLOROCYCLOPENTADIENE	10		
HEXACHLOROETHANE	10		50007
ISOPHORONE	10	TU U	

.

EXTRACTABLE ORGANICS METHOD 8270C SEMIVOLATILES Reported: 09/27/00

Geomatrix Consultants Inc. Project Reference: PETER COOPI Client Sample ID : 081400-002	ER SITE			
Date Sampled : 08/14/00 16:15 (Date Received: 08/15/00 Submis	Order #: ssion #:	401573 R2003355	Sample M Analytica	Matrix: WATER
ANALYTE		PQL	RESULT	UNITS
DATE EXTRACTED : 08/17/00 DATE ANALYZED : 09/08/00 ANALYTICAL DILUTION:	1.0			
2 - ΜΕΤΗΥΙ.ΝΆ ΟΗΤΗΛΙ.ΕΝΓ		10	10	
4 6-DINITRO-2-METHYLPHENOL		25	25	II - IIG/I
4-CHLORO-3-METHYLPHENOL		10	1.4	J = UG/L
2-METHYLPHENOL		10	35	UG/L
4-METHYLPHENOL		10	1100	E UG/L
NAPHTHALENE		10	7.7	J UG/L
2-NITROANILINE		25	25	U UG/L
3-NITROANILINE		25	25	U UG/L
4-NITROANILINE		25	25	U UG/L
NITROBENZENE		10	10	U UG/L
2-NITROPHENOL		10	10	U UG/L
4-NITROPHENOL		25	25	U UG/L
N-NITROSODIPHENYLAMINE		10	10	U UG/L
DI-N-OCTYL PHTHALATE		10	10	U UG/L
PENTACHLOROPHENOL		25	25	U UG/L
PHENANTHRENE		10	10	U UG/L
PHENOL		10	180	E UG/L
4 - BROMOPHENYL - PHENYLETHER		10	10	U UG/L
4 - CHLOROPHENYL - PHENYLETHER		10	10	U UG/L
N-NITROSO-DI-N-PROPYLAMINE		10	10	
PYRENE		10	10	U UG/L
2,4,6-TRICHLOROPHENOL		10	10	
2,4,5-TRICHLOROPHENOL		25	25	
SURROGATE RECOVERIES	QC LIMIT	rs		
TERPHENYId14	(33 - 14)		67	8
NITROBENZENE-d5	(35 - 11	L4)	84	2 2
PHENOL-d6	(10 - 94	, 1)	28	3
2 - FLUOROBIPHENYL	(43 - 12	LG)	85	5
2 - FLUOROPHENOL	(21 - 1)	LO)	30	*
2,4,6-TRIBROMOPHENOL	(10 - 12)	23)	74	*

COLOMBIA ANALYTICAL SERVICES	EXTRACTABLE ORGANICS METHOD 8270C SEMIVOLATILES Reported: 09/27/00					
Geomatrix Consultants Inc. Project Reference: PETER COOPER SITE Client Sample ID : 081400-002						
Date Sampled : 08/14/00 16:15 Order #: Date Received: 08/15/00 Submission #:	401573 R2003355	Sample Matrix: Analytical Run	WATER 0			
ANALYTE	PQL	RESULT	UNITS			
DATE EXTRACTED : 08/17/00 DATE ANALYZED : 09/12/00 ANALYTICAL DILUTION: 20.00						
ACENAPHTHENE ACENAPHTHYLENE ACETOPHENONE ANTHRACENE	10 10 10 10	200 U 200 U 200 U 200 U 200 U -	UG/L UG/L UG/L UG/L			
ATRAZINE BENZALDEHYDE BENZO (A) ANTHRACENE BENZO (A) PYRENE	10 10 10 10	200 U 200 U 200 U 200 U 200 U	UG/L UG/L UG/L UG/L			
BENZO (B) FLUORANTHENE BENZO (G, H, I) PERYLENE BENZO (K) FLUORANTHENE 1, 1'-BIPHENYL	10 10 10 10	200 U 200 U 200 U 200 U	UG/L UG/L UG/L UG/L			
BUTYL BENZYL PHTHALATE DI-N-BUTYLPHTHALATE CAPROLACTAM CARBAZOLE	10 10 10 10	200 U 200 U 200 U 200 U	UG/L UG/L UG/L UG/L			
INDENO(1,2,3-CD) PYRENE 4-CHLOROANILINE BIS(-2-CHLOROETHOXY) METHANE BIS(2-CHLOROETHYL) ETHER	10 10 10 10	200 U 200 U 200 U 200 U	UG/L UG/L UG/L UG/L			
2-CHLORONAPHTHALENE 2-CHLOROPHENOL 2,2'-OXYBIS(1-CHLOROPROPANE) CHRYSENE	10 10 10 10	200 U 200 U 200 U 200 U 200 U	UG/L UG/L UG/L UG/L			
DIBENZO (A, H) ANTHRACENE DIBENZOFURAN 3,3'-DICHLOROBENZIDINE	10 10 10	200 U 200 U 200 U 200 U	UG/L UG/L UG/L UG/L			
DIETHYLPHTHALATE DIMETHYL PHTHALATE 2,4-DIMETHYLPHENOL	10 10 10	200 U 200 U 200 U 200 U	UG/L UG/L UG/L			
2,4-DINITROPHENOL 2,4-DINITROTOLUENE 2,6-DINITROTOLUENE BIS (2-ETHYLHEXYL) PHTHALATE	25 10 10 10	500 U 200 U 200 U 200 U	UG/L UG/L UG/L UG/L			
FLUORANTHENE FLUORENE HEXACHLOROBENZENE HEXACHLOROBUTADIENE	10 10 10	200 U 200 U 200 U 200 U	UG/L UG/L UG/L			
HEXACHLOROCYCLOPENTADIENE HEXACHLOROETHANE ISOPHORONE	10 10 10	200 U 200 U 200 U 200 U	UG/L UG/L UG/L			
2-METHYLNAPHTHALENE	10	200 U	^{UG/} ð0009			

COLUMBIA ANALYTICAL SERVICES		EXTRAC METHOD Report	TABLE ORGANICS 8270C SEMIVOL ed: 09/27/00	ATILES	
Geomatrix Consultants Inc. Project Reference: PETER COOPE Client Sample ID : 081400-002	R SITE	-			
Date Sampled : 08/14/00 16:15 Or Date Received: 08/15/00 Submiss	der #: ion #:	401573 R2003355	Sample Matrix Analytical Run	: WATER n O	
ANALYTE		PQL	RESULT	UNITS	
DATE EXTRACTED : 08/17/00 DATE ANALYZED : 09/12/00 ANALYTICAL DILUTION: 20.00					
4,6-DINITRO-2-METHYLPHENOL 4-CHLORO-3-METHYLPHENOL 2-METHYLPHENOL 4-METHYLPHENOL NAPHTHALENE 2-NITROANILINE 3-NITROANILINE 4-NITROANILINE MITROBENZENE 2-NITROPHENOL 4-NITROPHENOL N-NITROSODIPHENYLAMINE DI-N-OCTYL PHTHALATE PENTACHLOROPHENOL PHENANTHRENE PHENOL 4-BROMOPHENYL-PHENYLETHER 4-CHLOROPHENYL-PHENYLETHER N-NITROSO-DI-N-PROPYLAMINE PYRENE 2,4,6-TRICHLOROPHENOL 2,4,5-TRICHLOROPHENOL		25 10 10 10 25 25 25 25 10 10 10 25 10 10 10 10 10 10 10 10 10 10 10	500 U 200 U 31 J 920 D = 200 U 500 U 500 U 200 U 200 U 200 U 200 U 200 U 200 U 200 U 200 U 200 U 200 U 200 U 200 U 200 U 200 U 200 U 200 U 200 U 200 U	UG/L UG/L UG/L UG/L UG/L UG/L UG/L UG/L	
SURROGATE RECOVERIES	QC LIMI	ITS			
TERPHENYL-d14(3)NITROBENZENE-d5(3)PHENOL-d6(3)2-FLUOROBIPHENYL(4)2-FLUOROPHENOL(2)2,4,6-TRIBROMOPHENOL(3)	33 - 1 35 - 1 10 - 9 43 - 1 21 - 1 10 - 1	L41 %) L14 %) 94 %) L16 %) L10 %) L23 %)	ם ס ס ס ס	ماه ماه ماه ماه	:

EXTRACTABLE ORGANICS

METHOD 8270C SEMIVOLATILES

_

Reported: 09/27/00

÷

• ••••

Geomatrix Consultants Inc. Project Reference: PETER COOPER SITE Client Sample ID : 081400-003			
Date Sampled : 08/14/00 16:30 Order #: Date Received: 08/15/00 Submission #:	401574 R2003355	Sample Matrix: Analytical Run:	WATER 55144
ANALYTE	PQL	RESULT	UNITS
DATE EXTRACTED : 08/17/00			
DATE ANALYZED : 09/08/00 ANALYTICAL DILUTION: 1.0			
ACENAPHTHENE	10	10 U	UG/L
ACENAPHTHYLENE	10	10 U -	UG/L
ACETOPHENONE	10	10 U ⁻	UG/L
ANTHRACENE	10	10 U	UG/L
ATRAZINE	10	10 U ["]	UG/L
BENZALDEHYDE	10	10 U	UG/L
BENZO (A) ANTHRACENE	10	10 U	UG/L
BENZO (A) PYRENE	10	10 U	UG/L
BENZO (B) FLUORANTHENE	10	10 U	UG/L
BENZO (G, H, T) PERYLENE	10	10 U	UG/L
BENZO (K) FLUORANTHENE	10	10 U	UG/L
1 1' - BTPHENYL	10	10 U	UG/L
BUTYL BENZYL PHTHALATE	10	10 U	UG/L
DI-N-BUTYLPHTHALATE	10	1.9 J	UG/L
CAPROLACTAM	10	10 U	UG/L
CARBAZOLE	10	10 U	UG/L
INDENO (1 2 3-CD) PYPENE	10	10 U	
4-CHLOROANTLINE	10	10 U	UG/L
BIS (-2-CHLOROETHOXY) METHANE	10	10 U	
BIS (2-CHLOROFTHYL) FTHER	10	10 U	
2 - CHLOROND PHTHALENE	10	10 U	UG/L
2 - CHLOROPHENOL	10	10 U	
2 2' = OXVRTS(1 = CHLOROPROPANE)	10	10 U	
CHRYSENE	10	10 U	UG/L
DIBENZO (A H) ANTHRACENE	10	10 U	
DIBENZOFURAN	10	10 U	UG/L
3 3'-DICHLOROBENZIDINE	10	10 U	UG/L
2 4-DICHLOROPHENOL	10	10 U	UG/L
DIETHVI.PHTHALATE	10	10 U	UG/L
DIMETHVI. PHTHALATE	10	10 U	UG/L
2 4 - DIMETHYLPHENOL	10	3.6 J	UG/L
2,4 DINETRIDERENOL	25	25 11	
2,4-DINITROPHENOL	10		UG/L
2 C-DINITROTOLUENE	10	10 U	UG/L
RIC (2-FTHVI.HEXVI.) DHTHAI.ATE	10	10 11	UG/L
FLUORANTHENE	10		UG/L
FLUORENE	10		UG/L
	10		UG/L
HEXACHLOROBUTADI ENE	10		UG/L
HEALOROCVCLOPENTADIENE	10	10 U	UG/L
NEXPORTOROCICEOLENIADIENE	10	10 11	UGMMMMM
TSOPHORONE	10	10 U	UG/L
		—	

EXTRACTABLE ORGANICS

METHOD 8270C SEMIVOLATILES Reported: 09/27/00

Geomatrix Consultants Inc. Project Reference: PETER CC Client Sample ID : 081400-0	OPER SIT	Έ					
Date Sampled : 08/14/00 16:3 Date Received: 08/15/00 Sub	0 Order mission	#: 401574 #: R2003355	Sample Matrix: Analytical Run:	WATER 55144			
ANALYTE		PQL	RESULT	UNITS			
DATE EXTRACTED : 08/17/0 DATE ANALYZED : 09/08/0	0			,, <u>,, ,, ,, ,, , , , , , , , , , , , ,</u>			
ANALYTICAL DILUTION:	1.0						
2-METHYLNAPHTHALENE		10	10 U	UG/L			
4,6-DINITRO-2-METHYLPHENOL		25	25 U	UG/L			
4-CHLORO-3-METHYLPHENOL		10	10 U	UG/L			
2-METHYLPHENOL		10	33	UG/L			
4-METHYLPHENOL		10	950 E	UG/L			
NAPHTHALENE		10	7.4 J	UG/L			
2-NITROANILINE		25	25 U	UG/L UG/L			
3-NITROANILINE		25	25 U				
4 - NITROANILINE		25	25 U				
NIIROBENZENE 2 - NITRODUENOI		10					
		25					
N-NITPOSODI DURNVLAMINE		10					
DI-N-OCTVI. PHTHALATE		10	10 U	UG/L			
PENTACHLOROPHENOL		25	25 U	UG/L			
PHENANTHRENE		10	10 U	· UG/L			
PHENOL		10	150	UG/L			
4-BROMOPHENYL-PHENYLETHER		10	10 U	UG/L			
4 - CHLOROPHENYL - PHENYLETHER		10	10 U	UG/L			
N-NITROSO-DI-N-PROPYLAMINE		10	10 U	UG/L			
PYRENE		10	10 U	UG/L			
2,4,6-TRICHLOROPHENOL		10	10 U	UG/L			
2,4,5-TRICHLOROPHENOL		25	25 U	UG/L			
SURROGATE RECOVERIES	QC LI	MITS					
TERPHENYL-d14	(33 -	141)	67	e			
NITROBENZENE-d5	(35 -	114)	86	°F			
PHENOL-d6	(10 -	94)	27	\$			
2-FLUOROBIPHENYL	(43 -	116)	88	010			
2 - FLUOROPHENOL	(21 -	110)	33	96			
2,4,6-TRIBROMOPHENOL	(10 -	123)	72	o to			
COLUMBIA ANALYTICAL SERVICES EXTRACTABLE ORGANICS METHOD 8270C SEMIVOLATILES Reported: 09/27/00							
--	--------------------	----------------------------------	------------	--	--	--	--
Geomatrix Consultants Inc. Project Reference: PETER COOPER SITE Client Sample ID : 081400-003							
Date Sampled : 08/14/00 16:30 Order #: Date Received: 08/15/00 Submission #:	401574 R2003355	Sample Matrix: Analytical Run	WATER O				
ANALYTE	PQL	RESULT	UNITS				
DATE EXTRACTED : 08/17/00 DATE ANALYZED : 09/12/00 ANALYTICAL DILUTION: 20.00							
ΔΥΈΝΑ ΡΗΨΗΈΝΕ	10	200 II	IIC/I.				
ACENAPHTHYLENE	10	200 U					
ACETOPHENONE	10	200 U	UG/L				
ANTHRACENE	10	200 U -	UG/L				
ATRAZINE	10	200 U	UG/L				
BENZALDEHYDE	10	200 U	UG/L				
BENZO (A) ANTHRACENE	10	200 U	UG/L				
BENZO (A) PYRENE	10	200 U	UG/L				
BENZO (B) FLUORANTHENE	10	200 U	UG/L				
BENZO (G, H, I) PERYLENE	10	200 U	UG/L				
BENZO(K) FLUORANTHENE	10	200 U	UG/L				
1,1'-BIPHENYL	10	200 U	UG/L				
BUTYL BENZYL PHTHALATE	10	200 U	UG/L				
DI-N-BUTYLPHTHALATE	10	200 U	UG/L				
CAPROLACTAM	10	200 U	UG/L				
CARBAZOLE	10	200 U	UG/L				
INDENO(1,2,3-CD) PYRENE	10	200 U	ŲG/L				
4 - CHLOROANILINE	10	200 U	UG/L				
BIS (-2-CHLOROETHOXY) METHANE	10	200 U	UG/L				
BIS (2-CHLOROETHYL) ETHER	10	200 U	UG/L				
2 - CHLORONAPHTHALENE	10	200 U	UG/L				
2-CHLOROPHENOL	10	200 U	UG/L				
2,2'-OXYBIS (1-CHLOROPROPANE)	10	200 U	UG/L				
CHRYSENE	10	200 U	UG/L				
DIBENZO (A, H) ANTHRACENE	10	200 0					
DIBENZOFUKAN	10						
2 A DICHLOROBENZIDINE	10						
	10						
DIMETHVI. DHTHALATE	10	200 0					
2 4-DIMETHYLPHENOL	10	200 U 200 U					
2.4-DINITROPHENOL	25	200 U 500 U					
2.4-DINTTROTOLUENE	10	200 U	UG/L				
2.6-DINITROTOLUENE	10	200 U	UG/L				
BIS (2 - ETHYLHEXYL) PHTHALATE	10	200 U	UG/L				
FLUORANTHENE	10	200 U	UG/L				
FLUORENE	10	200 U	UG/L				
HEXACHLOROBENZENE	10	200 U	UG/L				
HEXACHLOROBUTADIENE	10	200 U	UG/L				
HEXACHLOROCYCLOPENTADIENE	10	200 U	UG/L				
HEXACHLOROETHANE	10	200 U	UG/L				
ISOPHORONE	10	200 U	UG/L				
2-METHYLNAPHTHALENE	10	200 U	UG/013				

· · ___

		EXTRAC METHOD Report	CTABLE ORGAN 0 8270C SEM 1 6270C SEM 1 6270C SEM	NICS IVOLAT DO	FILES		
Geomatrix Consultants Inc. Project Reference: PETER COOPER SITE Client Sample ID : 081400-003							
Date Sampled : 08/14/00 16:30 Date Received: 08/15/00 Submi	Order #: 40 ssion #: R2	01574 2003355	Sample Mat Analytica	trix: l Run	WATER O		
ANALYTE		PQL	RESI	JLT	UNITS		
DATE EXTRACTED : 08/17/00 DATE ANALYZED : 09/12/00 ANALYTICAL DILUTION: 20.	00	- <u></u>					
4 6-DINITRO-2-METHYLPHENOL		25	500	U	UG/L		
4 - CHLORO - 3 - METHYLPHENOL		10	200	Ū	UG/L		
2-METHYLPHENOL		10	26	J	UG/L		
4-METHYLPHENOL		10	780	D :	UG/L		
NAPHTHALENE		10	. 200	U	UG/L		
2-NITROANILINE		25	500	U	UG/L		
3-NITROANILINE		25	500	U	UG/L		
4-NITROANILINE		25	500	U	UG/L		
NITROBENZENE		10	200	U	UG/L		
2-NITROPHENOL		10	200	U	UG/L		
4-NITROPHENOL		25	500	0	UG/L		
N-NITROSODIPHENYLAMINE		10	200	U	UG/L		
DI-N-OCTYL PHTHALATE		10	200	U	UG/L		
PENTACHLOROPHENOL		25	500				
PHENANTHRENE		10	200	U T			
A - BDOMODUENVI DUENVI. ETUED		10	200				
4 - CHLOPODHENYL, DHENYLETHER		10	200	U U			
N-NTTROSO-DT-N-PROPYLAMINE		10	200	U			
PYRENE		10	200	U			
2.4.6 - TRTCHLOROPHENOL		10	200	Ŭ	UG/L		
2,4,5-TRICHLOROPHENOL		25	500	Ū	UG/L		
SURROGATE RECOVERIES	QC LIMITS	3					
TERPHENYL-d14	(33 - 141	~ %)		D	0/0		
NITROBENZENE-d5	(35 - 114	l %)		D	ê		
PHENOL-d6	(10 - 94	8)		D	ê		
2 - FLUOROBIPHENYL	(43 - 116	5 8)		D	00	-	
2 - FLUOROPHENOL	(21 - 110) 응)		D	Ŷ		
2,4,6-TRIBROMOPHENOL	(10 - 123	3 %)		D	¥		

EXTRACTABLE ORGANICS

METHOD 8270C SEMIVOLATILES Reported: 09/27/00

•

Geomatrix Consultants Inc. Project Reference: PETER COOPER SITE Client Sample ID : 081400-004			
Date Sampled : 08/14/00 17:25 Order #: Date Received: 08/15/00 Submission #:	401575 R2003355	Sample Matrix: Analytical Run:	WATER 55144
ANALYTE	PQL	RESULT	UNITS
DATE EXTRACTED : 08/17/00			
DATE ANALYZED : 09/08/00 ANALYTICAL DILUTION: 1.0			
ACENAPHTHENE	10	10 U	UG/L
ACENAPHTHYLENE	10	10 U -	UG/L
ACETOPHENONE	10	10 U -	UG/L
ANTHRACENE	10	10 U	UG/L
ATRAZINE	10	10 U	UG/L
BENZALDEHYDE	10	10 U	UG/L
BENZO (A) ANTHRACENE	10	10 U	UG/L
BENZO (A) PYRENE	10	10 U	UG/L
BENZO (B) FLUORANTHENE	10	10 U	UG/L
BENZO (G. H. T.) PERYLENE	10	10 U	UG/L
BENZO (K) FLUORANTHENE	10	10 U	UG/L
$1 \cdot 1' - BIPHENYL$	10	10 U	UG/L
BUTYL BENZYL PHTHALATE	10	10 11	
DT-N-BUTYLPHTHALATE	10	2.9 J	UG/L
CAPROLACTAM	10	10 U	UG/L
CARBAZOLE	10	10 U	UG/L
TNDENO $(1, 2, 3 - CD)$ PYRENE	10	10 U	UG/L
4-CHLOROANTLINE	10	10 U	UG/L
BIS (-2-CHLOROETHOXY) METHANE	10	10 U	UG/L
BIS (2-CHLOROETHYL) ETHER	10	10 U	UG/L
2 - CHLORONAPHTHALENE	10	10 U	UG/L
2 - CHLOROPHENOL	10	10 U	UG/L
2 2' - OXYBIS (1 - CHLOROPROPANE)	10	10 U	UG/L
CHRYSENE	10	10 U	UG/L
DTBENZO (A H) ANTHRACENE	10	10 U	UG/L
DIBENZOFURAN	10	10 U	UG/L
3 3'-DICHLOROBENZIDINE	10	10 U	
2 4 - DICHLOROPHENOL	10	10 U	UG/L
DIETHYLPHTHALATE	10	10 U	UG/L
DIMETHYL PHTHALATE	10	10 U	UG/L
2.4-DIMETHYLPHENOL	10	10 U	UG/L
2.4-DINITROPHENOL	25	25 U	UG/L
2,4-DINITROTOLUENE	10	10 U	UG/L
2.6-DINITROTOLUENE	10	10 U	UG/L
BIS (2-ETHYLHEXYL) PHTHALATE	10	10 U	UG/L
FLUORANTHENE	10	10 U	UG/L
FLUORENE	10	10 U	UG/L
HEXACHLOROBENZENE	10	10 U	UG/L
HEXACHLOROBUTADIENE	10	10 U	UG/L
HEXACHLOROCYCLOPENTADIENE	10	10 U	UG/L
HEXACHLOROETHANE	10	10 U	UGAA015
ISOPHORONE	10	10 U	UG7L

EXTRACTABLE ORGANICS METHOD 8270C SEMIVOLATILES Reported: 09/27/00

Geomatrix Consultants Inc. Project Reference: PETER COOPER SIT Client Sample ID : 081400-004	E		
Date Sampled : 08/14/00 17:25 Order Date Received: 08/15/00 Submission	#: 401575 #: R2003355	Sample Matrix Analytical Run	: WATER : 55144
ANALYTE	PQL	RESULT	UNITS
DATE EXTRACTED : 08/17/00 DATE ANALYZED : 09/08/00 ANALYTICAL DILUTION: 1.0			
2 - METHYLNAPHTHALENE 4 , 6 - DINITRO - 2 - METHYLPHENOL 4 - CHLORO - 3 - METHYLPHENOL 2 - METHYLPHENOL A - METHYLPHENOL NAPHTHALENE 2 - NITROANILINE 3 - NITROANILINE 4 - NITROANILINE NITROBENZENE 2 - NITROPHENOL 4 - NITROPHENOL N - NITROSODIPHENYLAMINE DI - N - OCTYL PHTHALATE PENTACHLOROPHENOL PHENANTHRENE PHENOL 4 - BROMOPHENYL - PHENYLETHER 4 - CHLOROPHENYL - PHENYLETHER N - NITROSO - DI - N - PROPYLAMINE PYRENE 2 , 4 , 6 - TRICHLOROPHENOL 2 , 4 , 5 - TRICHLOROPHENOL	10 25 10 10 10 25 25 25 25 10 10 10 25 10 10 10 10 10 10 10 10 10	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	UG/L UG/L UG/L UG/L UG/L UG/L UG/L UG/L
SURROGATE RECOVERIES QC LI	MITS		, -
TERPHENYL-d14(33 -NITROBENZENE-d5(35 -PHENOL-d6(10 -2-FLUOROBIPHENYL(43 -2-FLUOROPHENOL(21 -2.4.6-TRIBROMOPHENOL(10 -	141) 114) 94) 116) 110) 123)	68 84 25 85 32 65	ماه ماه ماه ماه

UQ/01017

COLUMBIA ANALYTICAL SERVICES

Geomatrix Consultants Inc.

ISOPHORONE

Project Reference: PETER COOPER SITE

EXTRACTABLE ORGANICS

METHOD 8270C SEMIVOLATILES Reported: 09/27/00

Date Sampled : 08/14/00 18:30 Orde: Date Received: 08/15/00 Submission	r #: 401576 n #: R2003355	Sample Matrix: Analytical Run:	WATER 55144
ANALYTE	PQL	RESULT	UNITS
DATE EXTRACTED : 08/17/00			
DATE ANALYZED : 09/08/00			
ANALYTICAL DILUTION: 1.0			
ACENADUTHENE	10	10 []	UG/L
ACENALITIENE	10	10 U -	
ACENALITITITI	10	10 U	
ANTHRACENE	10	10 U	UG/L
ATRAZINE	10	10 U	UG/L
BENZALDEHYDE	10	10 U	UG/L
BENZO (A) ANTHRACENE	10	10 U	UG/L
BENZO (A) PYRENE	10	10 U	UG/L
BENZO (B) FLUORANTHENE	10	10 U	UG/L
BENZO (G, H, I) PERYLENE	10	10 U	UG/L
BENZO (K) FLUORANTHENE	10	10 U	UG/L
1,1'-BIPHENYL	10	10 U	UG/L
BUTYL BENZYL PHTHALATE	10	10 U	UG/L
DI-N-BUTYLPHTHALATE	10	1.5 J	UG/L
CAPROLACTAM	10	10 U	UG/L
CARBAZOLE	10	10 U	UG/L
INDENO(1,2,3-CD) PYRENE	10	10 U	UG/L
4-CHLOROANILINE	10	10 U	UG/L
BIS (-2-CHLOROETHOXY) METHANE	10	10 U	UG/L
BIS (2-CHLOROETHYL) ETHER	10	10 U	UG/L
2 - CHLORONAPHTHALENE	10	10 U	UG/L
2-CHLOROPHENOL	10	2.1 J	UG/L
2,2'-OXYBIS(1-CHLOROPROPANE)	10	10 U	UG/L
CHRYSENE	10	10 U	UG/L
DIBENZO (A, H) ANTHRACENE	10	10 U	UG/L
DIBENZOFURAN	10	10 U	UG/L
3,3'-DICHLOROBENZIDINE	10	10 U	UG/L
2,4-DICHLOROPHENOL	10	10 U	UG/L
DIETHYLPHTHALATE	10	10 U	UG/L
DIMETHYL PHTHALATE	10	10 U	UG/L
2,4-DIMETHYLPHENOL	10	10 U	UG/L
2,4-DINITROPHENOL	. 25	25 U	UG/L
2,4-DINITROTOLUENE	10	10 U	UG/L
2,6-DINITROTOLUENE	10	10 U	UG/L
BIS (2-ETHYLHEXYL) PHTHALATE	10	10 U	UG/L
FLUORANTHENE	10	10 U	UG/L
FLUORENE	10	10 U	
HEXACHLOROBENZENE	10	10 U	UG/L
HEXACHLOROBUTADIENE	10	10 U	UG/L
HEXACHLOROCYCLOPENTADIENE	10	10 U	
HEXACHLOROETHANE	10	10 U	UG/L

10

10 U

EXTRACTABLE ORGANICS METHOD 8270C SEMIVOLATILES Reported: 09/27/00

Geomatrix Consultants Inc. Project Reference: PETER COOPER SITE Client Sample ID : 081400-005 Date Sampled : 08/14/00 18:30 Order #: 401576 Sample Matrix: WATER Analytical Run: 55144 Date Received: 08/15/00 Submission #: R2003355 RESULT ANALYTE POL UNITS DATE EXTRACTED : 08/17/00 : 09/08/00 DATE ANALYZED ANALYTICAL DILUTION: 1.0 10 U UG/L 2-METHYLNAPHTHALENE 10 25 U -UG/L 25 4,6-DINITRO-2-METHYLPHENOL 4 - CHLORO - 3 - METHYLPHENOL 10 10 U UG/L 10 10 U UG/L 2-METHYLPHENOL 10 U UG/L 4-METHYLPHENOL 10 2.6 J UG/L NAPHTHALENE 10 25 25 U UG/L 2-NITROANILINE 25 U UG/L 3-NITROANILINE 25 25 25 U UG/L 4-NITROANILINE 10 U UG/L 10 NITROBENZENE 2-NITROPHENOL 10 10 U UG/L 25 U UG/L 4-NITROPHENOL 25 N-NITROSODIPHENYLAMINE 10 10 U UG/L 10 U DI-N-OCTYL PHTHALATE 10 UG/L 25 25 U UG/L PENTACHLOROPHENOL 10 U UG/L 10 PHENANTHRENE 10 U UG/L PHENOL 10 UG/L 4-BROMOPHENYL-PHENYLETHER 10 10 U 4 - CHLOROPHENYL - PHENYLETHER 10 10 U UG/L UG/L N-NITROSO-DI-N-PROPYLAMINE 10 10 U 10 U UG/L PYRENE 10 10 U UG/L 2,4,6-TRICHLOROPHENOL 10 2,4,5-TRICHLOROPHENOL 25 25 U UG/L SURROGATE RECOVERIES OC LIMITS TERPHENYL-d14 (33)- 141) 90 % - 114)89 ÷ NITROBENZENE-d5 (35 ¥ PHENOL-d6 (10 - 94) 22 ÷ - 116) 2-FLUOROBIPHENYL (43 85 % 35 2 - FLUOROPHENOL (21 -110)¥ (10 -123)33 2,4,6-TRIBROMOPHENOL

QUALITY CONTROL SUMMARY MATRIX SPIKE/MATRIX SPIKE DUPLICATE RECOVERY WATER

Spiked Order No. : 401572 Geomatrix Consultants Inc.

Client ID: 081400-001

Test: 8270C SEMIVOLATILES

Analytical Units: UG/L

Run Number : 55144

	1	1	MATRIX	SPIKE	MATRIX	SPIKE D	OUP.	 	QC LIMITS
ANALYTE	ADDED	CONCENT.	FOUND	* REC.	FOUND	* REC.	RPD	RPD	REC.
ACENAPHTHENE	100	0	68.0	68	77.0	7 7	12	19	31 - 137
2-CHLOROPHENOL	200	0	66.0	33	75.0	ј ЗВ	113	50	25 - 102
2,4-DINITROTOLUENE	100	0	87.0	87	94.0	94	8	38	28 - 89
4 - CHLORO - 3 - METHYLPHENOL	200	0	87.0	44	92.0	46	6	33	26 - 103
4-NITROPHENOL	200	0	43.0	22	37.0	19	15	50	11 - 114
PENTACHLOROPHENOL	200	0	60.0	30	12.0	6*	133*	47	17 - 109
PHENOL	200	0	48.0	24*	46.0	23*	4	35	26 - 90
N-NITROSO-DI-N-PROPYLAMINE	100	0	58.0	58	67.0	67	14	38	41 - 126
PYRENE	100	0	92.0	92	95.0	95	3	36	35 - 142

·· · ···

-

EXTRACTABLE ORGANICS

•

METHOD 8270C SEMIVOLATILES Reported: 09/27/00

Project	: Refere	ence	::		
Client	Sample	ID	:	MATRIX	SPIKE

Date Sampled : Date Received: Submi	Order #: .ssion #:	407785	Sample Matrix: Analytical Run	WATER 55144
ANALYTE		PQL	RESULT	UNITS
DATE EXTRACTED : 08/17/00 DATE ANALYZED : 09/08/00 ANALYTICAL DILUTION: 1.	00			
ANALYTICAL DILUTION: 1. ACENAPHTHENE ACENAPHTHYLENE ACETOPHENONE ANTHRACENE ATRAZINE BENZALDEHYDE BENZO (A) ANTHRACENE BENZO (A) PYRENE BENZO (A) PYRENE BENZO (B) FLUORANTHENE BENZO (G, H, I) PERYLENE BENZO (G, H, I) PERYLENE BENZO (K) FLUORANTHENE 1, 1'-BIPHENYL BUTYL BENZYL PHTHALATE DI-N-BUTYLPHTHALATE CAPROLACTAM CARBAZOLE INDENO (1, 2, 3 - CD) PYRENE 4 - CHLOROANILINE BIS (-2 - CHLOROETHOXY) METHANE BIS (2 - CHLOROETHOXY) METHANE BIS (2 - CHLOROETHYL) ETHER 2 - CHLOROAPHTHALENE 2 - CHLOROPHENOL 2, 2' - OXYBIS (1 - CHLOROPROPANE) CHRYSENE DIBENZO (A, H) ANTHRACENE DIBENZOFURAN 3, 3' - DICHLOROBENZIDINE 2, 4 - DICHLOROPHENOL 2, 4 - DINITROPHENOL 2, 4 - DINITROPHENOL 2, 4 - DINITROTOLUENE	00	10 10 10 10 10 10 10 10 10 10 10 10 10 1	68 72 10 U 80 10 U 10 U 86 82 81 88 86 10 U 84 85 10 U 84 85 10 U 76 54 65 60 52 66 66 32 86 89 74 66 77 82 78 75 62 87	UG/L UG/L UG/L UG/L UG/L UG/L UG/L UG/L
2,6-DINITROTOLUENE BIS(2-ETHYLHEXYL)PHTHALATE FLUORANTHENE FLUORENE HEXACHLOROBENZENE		10 10 10 10	81 82 80 78 82	UG/L UG/L UG/L UG/L UG/L
HEXACHLOROBUTADIENE HEXACHLOROCYCLOPENTADIENE HEXACHLOROETHANE ISOPHORONE 2-METHYLNAPHTHALENE		10 10 10 10 10	57 10 U 38 66 65	UG/L UG/L UG/L UG/L UG/L

EXTRACTABLE ORGANICS

METHOD 8270C SEMIVOLATILES Reported: 09/27/00

Project Reference: Client Sample ID : MATRIX SPIKE

Date Sampled : Date Received:	Order Submission	#: 407785 #:	Sample Matrix: Analytical Run	WATER 55144
ANALYTE		PQL	RESULT	UNITS
DATE EXTRACTED : 0	8/17/00			
DATE ANALYZED : 0	9/08/00			
ANALYTICAL DILUTION:	1.00			
4,6-DINITRO-2-METHYLPHE	NOL	25	76	UG/L
4 - CHLORO - 3 - METHYLPHENOL		10	87	UG/L
2-METHYLPHENOL		10	65 -	UG/L
4-METHYLPHENOL		10	70 -	UG/L
NAPHTHALENE		10	57	UG/L
2-NITROANILINE		25	64	UG/L
3-NITROANILINE		25	76	UG/L
4-NITROANILINE		25	77	UG/L
NITROBENZENE		10	56	UG/L
2-NITROPHENOL		10	74	UG/L
4-NITROPHENOL		25	43	UG/L
N-NITROSODIPHENYLAMINE		10	74	UG/L
DI-N-OCTYL PHTHALATE		10	80	UG/L
PENTACHLOROPHENOL		25	60	UG/L
PHENANTHRENE		10	81	UG/L
PHENOL		10	48	ŲG/L
4 - BROMOPHENYL - PHENYLETH	ER	10	80	UG/L
4 - CHLOROPHENYL - PHENYLET	HER	10	82	UG/L
N-NITROSO-DI-N-PROPYLAM	INE	10	58	UG/L
PYRENE		10.	92	UG/L
2,4,6-TRICHLOROPHENOL		10	88	UG/L
2,4,5-TRICHLOROPHENOL		25	94	UG/L
SURROGATE RECOVERIES	QC I	LIMITS		
TERPHENYL-d14	(33	- 141 %)	88	8
NITROBENZENE-d5	(35	- 114 %)	63	010
PHENOL-d6	(10	- 94 %)	35	9 6
2-FLUOROBIPHENYL	(43	- 116 %)	71	2
2-FLUOROPHENOL	(21	- 110 %)	34	o'o
2,4,6-TRIBROMOPHENOL	(10	- 123 %)	69	°10

·· · ·

•

EXTRACTABLE ORGANICS METHOD 8270C SEMIVOLATILES Reported: 09/27/00

Project Reference: Client Sample ID : MATRIX SPIKE DUPLICATE

Date Sampled : Order #: Date Received: Submission #:	407786	Sample Matrix: Analytical Run	WATER 55144
ANALYTE	PQL	RESULT	UNITS
DATE EXTRACTED : 08/17/00			
DATE ANALYZED : 09/08/00			
ANALYTICAL DILUTION: 1.00			
ACENADHTHENE	10	77	UG/L
ACENAPHTHYLENE	10	81	UG/L
ACETOPHENONE	10	10 U -	UG/L
ANTHRACENE	10	87 -	UG/L
ATRAZINE	10	10 U	UG/L
BENZALDEHYDE	10	10 ບຶ	UG/L
BENZO (A) ANTHRACENE	10	89	UG/L
BENZO (A) PYRENE	10	85	UG/L
BENZO (B) FLUORANTHENE	10	86	UG/L
BENZO(G,H,I)PERYLENE	10	93	UG/L
BENZO (K) FLUORANTHENE	10	90	UG/L
1,1'-BIPHENYL	10	10 U	UG/L
BUTYL BENZYL PHTHALATE	10	89	UG/L
DI-N-BUTYLPHTHALATE	10	91	UG/L
CAPROLACTAM	10	10 U	UG/L
CARBAZOLE	10	83	UG/L
INDENO(1,2,3-CD)PYRENE	10	51	UG/L
4-CHLOROANILINE	10	76	UG/L
BIS (-2-CHLOROETHOXY) METHANE	10	70	UG/L UG/L
BIS (2-CHLOROETHYL) ETHER	10	62	UG/L UG/L
2 - CHLORONAPHTHALENE	10	12	
2 - CHLOROPHENOL	10	75	
2, 2'-OXYBIS (I-CHLOROPROPANE)	10	39	
CHRISENE DIDDNGO (D. U.) DNEUDD CENE	10	88	
DIBENZO (A, H) ANIHRACENE	10	23	
	10	0,2	
3,3,-DICHLOROBENGI	10	86	
2,4-ΔΙζΗΔΟΚΟΡΗΔΝΟΔ ΩΤΕΤΕΥΙΛΙ,ΔΕΓΕ	10	85	
DIEINIDENINADAIE DIMETUVI, DUTUALATE	10	70	
2 A-DIMETHVI.PHENOL	10	88	
2 4 - DINITROPHENOI	25	35	UG/L
2 4 - DINITROTOLUENE	10	94	UG/L
2.6-DINITROTOLUENE	10	88	UG/L
BIS (2-ETHYLHEXYL) PHTHALATE	10	87	UG/L
FLUORANTHENE	10	85	UG/L
FLUORENE	10	85	UG/L
HEXACHLOROBENZENE	10	87	UG/L
HEXACHLOROBUTADIENE	10	69	UG/L
HEXACHLOROCYCLOPENTADIENE	10	10 U	UG/L
HEXACHLOROETHANE	10	50	UG/L
ISOPHORONE	10	74	UG/hnng?
2-METHYLNAPHTHALENE	10	73	UG/DUULL

.

EXTRACTABLE ORGANICS METHOD 8270C SEMIVOLATILES

Reported: 09/27/00

Project Reference: Client Sample ID : MATRIX SPIKE DUPLICATE

Date Sampled : Date Received:	Order Submission	#: 407786 #:	Sample Matrix: Analytical Run	WATER 55144
ANALYTE		PQL	RESULT	UNITS
DATE EXTRACTED : 08 DATE ANALYZED : 09 ANALYTICAL DILUTION:	3/17/00 9/08/00 1.00			
4,6-DINITRO-2-METHYLPHEN 4-CHLORO-3-METHYLPHENOL 2-METHYLPHENOL 4-METHYLPHENOL NAPHTHALENE 2-NITROANILINE 3-NITROANILINE 4-NITROANILINE 1-NITROBENZENE 2-NITROPHENOL 4-NITROPHENOL N-NITROSODIPHENYLAMINE DI-N-OCTYL PHTHALATE PENTACHLOROPHENOL PHENANTHRENE PHENOL 4-BROMOPHENYL-PHENYLETHE 4-CHLOROPHENYL-PHENYLETHE 4-CHLOROPHENYL-PHENYLETHE N-NITROSO-DI-N-PROPYLAMI PYRENE 2,4,6-TRICHLOROPHENOL 2,4,5-TRICHLOROPHENOL	IOL CR IER INE	25 10 10 10 25 25 25 25 10 10 10 25 10 10 10 10 10 10 10 10 10 25	67 92 72 - 69 67 70 81 83 65 83 37 84 85 25 U 87 46 88 88 88 67 95 91 100	UG/L UG/L UG/L UG/L UG/L UG/L UG/L UG/L
SURROGATE RECOVERIES TERPHENYL-d14 NITROBENZENE-d5 PHENOL-d6 2-FLUOROBIPHENYL 2-FLUOROPHENOL 2,4,6-TRIBROMOPHENOL	QC L: (33 - (35 - (10 - (43 - (21 - (10 -	IMITS - 141 %) - 114 %) - 94 %) - 116 %) - 110 %) - 123 %)	61 73 33 84 39 67	

EXTRACTABLE ORGANICS METHOD: 8270C SEMIVOLATILES

-

LABORATORY REFERENCE SPIKE SUMMARY

REFERENCE ORDER #: 407788	ANALYI	55144	
ANALYTE	TRUE VALUE	% RECOVERY	QC LIMITS
DATE ANALYZED : 9/ 8/2000			
ANALYTICAL DILUTION: 1.0			
ΔΟΈΝΔ ΡΗΤΗΈΝΕ	100	79	47 - 145
ACENAPHTHYLENE	100	82	33 - 145
ACETOPHENONE	100	NA	-50 - 150
ANTHRACENE	100	93	27 - 133
ATRAZINE	100	NA	
BENZALDEHYDE	100	NA	50 - 150
BENZO (A) ANTHRACENE	100	94	33 - 143
BENZO (A) PYRENE	100	90	17 - 163
BENZO (B) FLUORANTHENE	100	93	24 - 159
BENZO (G H I) PERYLENE	100	56	10 - 219
ENZO (K) FLUORANTHENE	100	93	11 - 162
1.1'-BIPHENYL	100	NA	50 - 150
BUTYL BENZYL PHTHALATE	100	80	10 - 152
DI-N-BUTYI.PHTHALATE	100	85	10 - 118
CAPROLACTAM	100	AN	50 - 150
CAPBAZOLE	100	87	10 - 160
INDENO(1, 2, 3, CD) DVDENE	100	60	10 - 171
A-CHLOPONNILINE	100	82	10 - 160
BIC (2 CUI ODOETHOYY) METUNNE	100	74	33 - 184
BIS (2-CHLOROETHOXI) METHANE BIS (2-CHLOROETHVI) FTHER	100	67	12 - 158
2 - CULORONDUTUDI ENE	100	76	60 - 118
2 CHLORONAFHIHADENE 2 - CHLORODUENOL	200	41	23 - 134
2 - CHEOROPHENOL 2 - 2 I - OXVETS (1 - CULOBODDANE)	200	41	25 - 154
CHOVERNE	100	22	17 - 168
	100	· 01	10 - 227
DIDENZO (A, H) ANIRACENE DIDENZOEUDAN	100	27	10 - 160
DIBENZOFUKAN	100	00	10 - 160
3, 3 - DICHLOROBENZIDINE	100	90	10 - 262
	100	90	39 - 135
DIETHYLPHTHALATE	100	71	10 - 114
DIMETHYL PHTHALATE	100	37	10 - 112
2,4-DIMETHYLPHENOL	100	53	32 - 119
2,4-DINITROPHENOL	100	78	10 - 191
2,4-DINITROTOLUENE	100	99	39 - 139
2,6-DINITROTOLUENE	100	92	50 - 158
BIS (2-ETHYLHEXYL) PHTHALATE	100	85	1058
YLUORANTHENE	100	97	2637
FLUORENE	100	88	59 - 121
HEXACHLOROBENZENE	100	95	10 - 152
HEXACHLOROBUTADIENE	100	80	24 - 116
HEXACHLOROCYCLOPENTADIENE	100	53	10 - 110
HEXACHLOROETHANE	100	59	40 - 113

EXTRACTABLE ORGANICS METHOD: 8270C SEMIVOLATILES

LABORATORY REFERENCE SPIKE SUMMARY

REFERENCE ORDER #: 407788	ANALYTIC	CAL RUN # :	55144
ANALYTE	TRUE VALUE	% RECOVERY	QC LIMITS
DATE ANALYZED : 9/ 8/2000 ANALYTICAL DILUTION: 1.0			
ISOPHORONE 2-METHYLNAPHTHALENE 4, 6-DINITRO-2-METHYLPHENOL 4-CHLORO-3-METHYLPHENOL 2-METHYLPHENOL 4-METHYLPHENOL NAPHTHALENE 2-NITROANILINE 3-NITROANILINE 3-NITROANILINE MITROBENZENE 2-NITROPHENOL 4-NITROPHENOL 4-NITROPHENOL N-NITROSODIPHENYLAMINE DI-N-OCTYL PHTHALATE PENTACHLOROPHENOL PHENANTHRENE PHENOL 4-BROMOPHENYL-PHENYLETHER 4-CHLOROPHENYL-PHENYLETHER N-NITROSO-DI-N-PROPYLAMINE PYRENE 2.4.6-TRICHLOROPHENOL	100 100 200 100 100 100 100 100 100 100	81 75 89 44 70 68 70 72 85 86 70 88 18 87 84 38 93 23 93 93 93 70 99 89	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
2,4,5-TRICHLOROPHENOL	100	93	10 - 160

EXTRACTABLE ORGANICS METHOD 8270C SEMIVOLATILES

Reported: 09/27/00

•

Project Reference:

Client Sample ID : LABORATORY CONTROL SAMPLE

Date Sampled : Order	#: 407788	Sample Matrix:	WATER
Date Received: Submission	#:	Analytical Run	55144
ANALYTE	PQL	RESULT	UNITS
DATE EXTRACTED : 08/17/00 DATE ANALYZED : 09/08/00 ANALYTICAL DILUTION: 1.00			
ACENAPHTHENE ACENAPHTHYLENE ACETOPHENONE ANTHRACENE ATRAZINE BENZALDEHYDE BENZO(D) ANTHRACENE	10 10 10 10 10 10	79 82 10 U 93 10 U 10 U	UG/L UG/L UG/L UG/L UG/L UG/L
BENZO (A) PYRENE	10	90	UG/L
BENZO (B) FLUORANTHENE	10	93	UG/L
BENZO (G, H, I) PERYLENE	10	56	UG/L
BENZO (K) FLUORANTHENE	10	93	UG/L
1, 1'-BIPHENYL	10	10 U	UG/L
BUTYL BENZYL PHTHALATE	10	80	UG/L
DI-N-BUTYLPHTHALATE CAPROLACTAM CARBAZOLE INDENO(1,2,3-CD)PYRENE 4-CHLOROANILINE BIS(-2-CHLOROETHOXY)METHANE	10 10 10 10 10	85 10 U 87 60 82 74	UG/L UG/L UG/L UG/L UG/L
BIS (2-CHLOROETHYL) ETHER	10	67	UG/L
2-CHLORONAPHTHALENE	10	76	UG/L
2-CHLOROPHENOL	10	82	UG/L
2,2'-OXYBIS (1-CHLOROPROPANE)	10	41	UG/L
CHRYSENE	10	93	UG/L
DIBENZO (A, H) ANTHRACENE DIBENZOFURAN 3,3'-DICHLOROBENZIDINE 2,4-DICHLOROPHENOL DIETHYLPHTHALATE	10 10 10 10 10	94 85 96 90 71 37	UG/L UG/L UG/L UG/L UG/L
2,4-DIMETHYLPHENOL	10	63	UG/L
2,4-DINITROPHENOL	25	78	UG/L
2,4-DINITROTOLUENE	10	99	UG/L
2,6-DINITROTOLUENE	10	92	UG/L
BIS (2-ETHYLHEXYL) PHTHALATE	10	85	UG/L
FLUORANTHENE	10	97	UG/L
FLUORENE	10	88	UG/L
HEXACHLOROBENZENE	10	95	UG/L
HEXACHLOROBUTADIENE	10	80	UG/L
HEXACHLOROCYCLOPENTADIENE	10	53	UG/L
HEXACHLOROETHANE	10	59	UG/L
ISOPHORONE	10	81	UG/L
2-METHYLNAPHTHALENE	10	74	UG/L 00026

_ and the second s

EXTRACTABLE ORGANICS METHOD 8270C SEMIVOLATILES

Reported: 09/27/00

Project Reference: Client Sample ID : LABORATORY CONTROL SAMPLE

Date Date	Sampled : Received:	Order Submission	#: 40778 #:	8	Sample Matrix: Analytical Run	WATER 55144	
ANA	LYTE		P	QL	RESULT	UNITS	
DAT DAT DAT ANA 4,6- 2-ME 2-ME 2-ME 2-NE 2-NI 3-NI 2-NI 3-NI 4-NI NITR 2-NI NITR 2-NI 14-NI DI-N PHEN PHEN 4-BR 4-BR 4-BR 4-BR 2,4,5	E EXTRACTED : E ANALYZED : LYTICAL DILUTION: DINITRO-2-METHYLPH LORO-3-METHYLPHENC THYLPHENOL THYLPHENOL THALENE TROANILINE TROANILINE TROANILINE DBENZENE TROPHENOL TROPHENOL TROPHENOL TROSODIPHENYLAMINE -OCTYL PHTHALATE ACHLOROPHENOL ANTHRENE DL OMOPHENYL-PHENYLET LOROPHENYL-PHENYLET LOROPHENYL-PHENYLET TROSO-DI-N-PROPYLA NE 6-TRICHLOROPHENOL 5-TRICHLOROPHENOL	08/17/00 09/08/00 1.00 HENOL DL		25 10 10 10 25 25 25 10 10 25 10 10 25 10 10 10 10 10 10 25	89 89 70 - 68 70 72 85 86 70 88 35 87 84 76 93 47 93 93 47 93 93 70 99 89 93	UG/L UG/L UG/L UG/L UG/L UG/L UG/L UG/L	
SURI TERPI NITRO PHENO 2-FLI 2-FLI 2,4,0	ROGATE RECOVERIES HENYL-d14 DBENZENE-d5 DL-d6 JOROBIPHENYL UOROPHENOL 6-TRIBROMOPHENOL	QC 1 (33 (35 (10 (43 (21 (10	LIMITS - 141 %) - 114 %) - 94 %) - 116 %) - 110 %) - 123 %)		101 79 32 85 43 74	ato ato ato ato ato	÷

ŀ

				4B			EPA S	SAMPLE NO.
		SEMIV	OLATILE N	IETHOD B	LANK SUM	IMARY		
Lab Name:	Columbia Analytical Services			Contract:	GEOMATRI		SBLK1	
Lab Code:	10145		Case No.:	R200335	SAS No	.: S	DG No.:	081400-00
Lab File ID:	BC7	96.D			Lat	Sample ID:	407787	
Instrument ID):	HP5	973-B		Da	te Extracted:	8/17/00	
Matrix: (soil/w	vater)	WATE	R		. Dai	te Analyzed:	9/8/00	
Level: (low/m	ned)	LOW	<u></u>		Tim	ne Analyzed:	17:13	

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, MS AND MSD:

_					
	EPA	LAB	LAB	DATE	
	SAMPLE NO.	SAMPLE ID	FILE ID	ANALYZED	
01	SBLK1MS	407788	BC797.D	ⁱ 9/8/00	
02	081400-001	401572	BC798.D	9/8/00	
03	081400-001MS	407785	BC799.D	9/8/00	•
04	08140-001MSD	407786	BC800.D	9/8/00	
05	081400-002	401573	BC801.D	9/8/00	
06	081400-003	401574	BC802.D	9/8/00	
07	081400-004	401575	BC803.D	9/8/00	
08	081400-005	401576	BC804.D	9/8/00	
09	081400-002DL	401573 1/20	BC817.D	9/12/00	
10	081400-003DL	401574 1/20	BC818.D	9/12/00	

COMMENTS:

EXTRACTABLE ORGANICS METHOD 8270C SEMIVOLATILES

Reported: 09/27/00

Date Sampled : Date Received:	Order Submission	#: #:	407787	Samp] Analy	e Mai tica	trix: l Run	WATE R 55144
ANALYTE			PQL		RESU	JLT	UNITS
DATE EXTRACTED : 08/	17/00						
DATE ANALYZED : 09/	08/00						
ANALYTICAL DILUTION:	1.00						
ACENAPHTHENE			10		10	U	UG/L UG/L
ACENAPHTHYLENE			10		10	U	UG/L UG/L
ACETOPHENONE			10		10	11	UG/L
ANTHRACENE			10		10	U -	UG/L UG/L
ATRAZINE			10		10	U	UG/L NG/L
BENZALDEHYDE			10		10	U	UG/L
BENZO (A) ANTHRACENE			10		10	0	UG/L
BENZO (A) PYRENE			10		10	U	UG/L
BENZO (B) FLUORANTHENE			10		10	U	UG/L
BENZO (G, H, I) PERYLENE			10		10	U ·	UG/L
BENZO (K) FLUORANTHENE			10		10	U	UG/L
1,1'-BIPHENYL			10		10	U	UG/L
BUTYL BENZYL PHTHALATE			10		10	U	UG/L
DI-N-BUTYLPHTHALATE			10		10	Ŭ	UG/L
CAPROLACTAM			10		10	U	UG/L
CARBAZOLE			10		10	U	UG/L
INDENO(1,2,3-CD)PYRENE			10		10	U	UG/L
4-CHLOROANILINE			10		10	U	UG/L
BIS (-2-CHLOROETHOXY) METHA	NE		10		10	U	UG/L
BIS (2-CHLOROETHYL) ETHER			10		10	U	UG/L
2-CHLORONAPHTHALENE			10		10	U	UG/L
2-CHLOROPHENOL			10		10	U	UG/L
2,2'-OXYBIS (1-CHLOROPROPA	NE)		10		10	U	UG/L
CHRYSENE			10		10	U	UG/L
DIBENZO (A, H) ANTHRACENE			10		10	U	UG/L
DIBENZOFURAN			10		10	U	UG/L
3,3'-DICHLOROBENZIDINE			10		10	U	UG/L
2,4-DICHLOROPHENOL			10		10	U	UG/L
DIETHYLPHTHALATE			10		10	U	UG/L
DIMETHYL PHTHALATE			10		10	U	UG/L
2.4-DIMETHYLPHENOL			10		10	U	UG/L
2.4-DINITROPHENOL			25		25	U	UG/L
2 4 - DINITROTOLUENE			10		10	U	UG/L
2 6-DINITROTOLUENE			10		10	U	UG/L
BIS (2-ETHYLHEXYL) PHTHALAT	'E		10		10	Ū	UG/L
FLUORANTHENE	_		10		10	U	UG/L
FLUORENE			10		10	U	UG/L
HEXACHLOROBENZENE			10		10	U	UG/L
HEXACHLOROBUTADIENE			10		10	U	UG/L
HEXACHLOROCYCLOPENTADIENE			10		10	Ū	UG/L
HEXACHLOROFTHANF			10		10	Ū	UG/L
			10		10	т П	
1 OVENUTURE 2 METUVI NADUTURI ENE			10		10	Ŭ	
2 - MEINIENAFRIRALENE	ιT		25		10 25	11	
			27				

EXTRACTABLE ORGANICS

METHOD 8270C SEMIVOLATILES Reported: 09/27/00

Date Sampled : Date Received:	Order Submission	#: 407787 #:	Sample Matrix: Analytical Rur	WATER 1 55144
ANALYTE		PQL	RESULT	UNITS
DATE EXTRACTED	: 08/17/00			
DATE ANALYZED	: 09/08/00			
ANALYTICAL DILUTION	: 1.00			
4-CHLORO-3-METHYLPHE	NOL	10	10 U	UG/L
2-METHYLPHENOL		10	10 U	UG/L
1-METHYLPHENOL		10	10 U	UG/L
JAPHTHALENE		10	10 U	UG/L
2-NITROANILINE		25	25 U	UG/L
3-NITROANILINE		25	25 U	UG/L
-NITROANILINE		25	25 U	UG/L
IITROBENZENE		10	10 U	UG/L
2-NITROPHENOL		10	10 U	UG/L
I-NITROPHENOL		25	25 U	UG/L
I-NITROSODIPHENYLAMI	NE	10	10 U	UG/L
)I-N-OCTYL PHTHALATE		10	10 U	UG/L
ENTACHLOROPHENOL		25	25 U	UG/L UC/L
HENANTHRENE		10		
PHENOL DUENNI DUENNI		10		
-BROMOPHENIL-PHENIL	EIRER I FWURD	10	10 U	
I NITROSO DI N DRODY		10		UC/L
A-NIIKO2O-DI-N-AKOAI	THUTINE	10		
A C.TRICHLORODURNO	т.	10		
2, 4, 5 - TRICHLOROPHENO 2 4 5 - TRICHLOROPHENO	ц Т.	25	25 II	
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	<u>ب</u>	2 3	25 0	00/1
SURROGATE RECOVERIE	S QC L	IMITS		
TERPHENYL-d14	(33	- 141 %)	105	ofo
IITROBENZENE-d5	(35	- 114 %)	78	010
'HENOL-d6	(10	- 94 %)	30	010
2-FLUOROBIPHENYL	(43	- 116 %)	68	00
2-FLUOROPHENOL	(21	- 110 %)	41	0
2,4,6-TRIBROMOPHENOL	(10	- 123 %)	59	010

8B

SEMIVOLATILE INTERNAL STANDARD AREA AND RT SUMMARY

Lab Name:	Columbia A	nalytical Services	Contract:	GEOMATRIX	
Lab Code:	10145	Case No.: R200335	SAS No.	: SDG No	o.: <u>081400-00</u>
Lab File ID (Standard):	BC788.D		Date Analyzed:	9/8/00
Instrument IE	D: HP5973-	В		Time Analyzed:	12:15

		IS1(DCB)		IS2(NPT)		IS3(ANT)	
		AREA #	RT #	AREA #	RT #	AREA #	RT #
	12 HOUR STD	71757	5.62	285053	7.37	164181	10.59
	UPPER LIMIT	143514	6.12	570106	7.87	328362	11.09
	LOWER LIMIT	35879	5.12	142527	6.87	82091	10.09
	EPA SAMPLE NO.	· · · · · · · · · · · · · · · · · · ·					
01	SBLK1	66572	5.62	237028	7.37	146273	10.59
02	SBLK1MS	67818	5.62	259786	7.37	148657	10.58
03	081400-001	69024	5.62	264024	7.37	150820	- 10.59
04	081400-001MS	70705	5.62	282591	7.37	167008	10.59
05	08140-001MSD	73634	5.62	289710	7.37	166663	10.59
06	081400-002	68419	5.62	278540	7.37	159994	10.59
07	081400-003	65973	5.62	268843	7.37	150611	10.59
80	081400-004	64555	5.62	250651	7.37	148038	10.59
09	081400-005	57751	5.62	211119	7.37	125142	10.58

- IS1 (DCB) = d4-1,4-Dichlorobenzene
- IS2 (NPT) = d8-Naphthalene
- IS3 (ANT) = d10-Acenaphthene
- IS4 (PHN) = d10-Phenanthrene
- IS5 (CRY) = d12-Chrysene
- IS6 (PRY) = d12-Perylene

AREA UPPER LIMIT = +100% of internal standard area AREA LOWER LIMIT = - 50% of internal standard area RT UPPER LIMIT = +0.50 minutes of internal standard RT RT LOWER LIMIT = -0.50 minutes of internal standard RT

Column to be used to flag values outside QC limit with an asterisk.

* Values outside of contract required QC limits

8C

SEMIVOLATILE INTERNAL STANDARD AREA AND RT SUMMARY

Lab Name:	Columbia A	nalytical Service	es	Contract:	GEOMATRIX	_
Lab Code:	10145	Case No.:	R200335	SAS No.	: SDG N	o.: 081400-00
Lab File ID (S	Standard):	BC788.D	-		Date Analyzed:	09/08/00
Instrument ID): HP5973-	В			Time Analyzed:	12:15

		IS4(PHN)		IS5(CRY)		IS6(PRY)	
		AREA #	RT #	AREA #	RT #	AREA #	RT #
	12 HOUR STD	312421	13.66	335869	19.54	303 929	23,0°)
	UPPER LIMIT	624842	14.16	671738	20.04	ଦୋଟ୍ଟର	23.57
	LOWER LIMIT	156210	13.16	167934	19.04	151964	22.57
	EPA SAMPLE NO.					·	
01	SBLK1	274569	13.66	271441	19.53	260788	23.06
02	SBLK1MS	273703	13.66	283126	19.54	269835	-23.06
03	081400-001	293911	13.67	289894	19.54	263458	23.07
04	081400-001M	322265	13.67	299206	19.55	275045	· 23.07
05	08140-001MS	309849	13.67	294979	19.55	270823	23.07
06	081400-002	299386	13.67	292010	19.54	262544	23.07
07	081400-003	292932	13.66	281973	19.54	253140	23.07
08	081400-004	272199	13.67	280698	19.54	256033	23.07
09	081400-005	245374	13.66	263060	19.54	243019	23.06

1

IS1	(DCB)	=	d4-1,4-Dichlorobenzene
IS2	(NPT)	=	d8-Naphthalene
IS 3	(ANT)	=	d10-Acenaphthene
IS4	(PHN)	=	d10-Phenanthrene
IS5	(CRY)	Ξ	d12-Chrysene

IS6 (PRY) = d12-Perylene

AREA UPPER LIMIT = +100% of internal standard area AREA LOWER LIMIT = - 50% of internal standard area RT UPPER LIMIT = +0.50 minutes of internal standard RT RT LOWER LIMIT = -0.50 minutes of internal standard RT

Column to be used to flag values outside QC limit with an asterisk.

* Values outside of contract required QC limits

8B

SEMIVOLATILE INTERNAL STANDARD AREA AND RT SUMMARY

	Lab Name:	Columbia A	Analytica	Co	ontract:	GEO	MAT	RIX	_				
	Lab Code:	10145	Ca	ase No.:	R20	0335	SAS N	o.:		SDG N	o.: <u>0</u>	81400-00	ł
	Lab File ID (S	Standard):	BC812	2.D				Dat	Date Analyzed:			9/12/00	
	Instrument ID	: HP5973-	B					Tim	e An	alyzed:	15:2	6	
		IS1(D	DCB)			IS2(NP	T)			IS3(Al	NT)		
		AR	EA #	RT	#	AREA	#	RT	#	AREA	#	RT	#
	12 HOUR ST	TD 57	010	5.58	3	21493	3	7.32	2	1100	99	10.5	2
ļ	UPPER LIM	T 114	020	6.08	3	42986	6	7.82	2	2201	98	11.0	2
	LOWER LIM	IT 28	505	5.08	3	10746	57	6.82	2	550	50	10.02	<u>}</u>
	EPA SAMPL NO.	E											
01	081400-002DL	52	332	5.58		19851	8	7.32	1	1051	83	10.51	
02	081400-003DL	52	085	5.58		20038	6	7.32		1046	91	10.52	

- IS1 (DCB) = d4-1,4-Dichlorobenzene
- IS2 (NPT) = d8-Naphthalene
- IS3 (ANT) = d10-Acenaphthene
- IS4 (PHN) = d10-Phenanthrene
- IS5 (CRY) = d12-Chrysene
- IS6 (PRY) = d12-Perylene

AREA UPPER LIMIT = +100% of internal standard area AREA LOWER LIMIT = - 50% of internal standard area RT UPPER LIMIT = +0.50 minutes of internal standard RT RT LOWER LIMIT = -0.50 minutes of internal standard RT

Column to be used to flag values outside QC limit with an asterisk.

* Values outside of contract required QC limits

8C

SEMIVOLATILE INTERNAL STANDARD AREA AND RT SUMMARY

Lab Name:	Columbia A	nalytical Service	es	Contract:	GEOMATRIX	
Lab Code:	10145	Case No.:	R200335	SAS No.	: SDG No	0.: 081400-00
Lab File ID (S	Standard):	BC812.D	_		Date Analyzed:	09/12/00
Instrument ID): <u>HP5973-</u>	<u>B</u>			Time Analyzed:	15:26

ſ		IS4(PHN)		IS5(CRY)		IS6(PRY)	
		AREA #	RT #	AREA #	RT #	AREA #	RT #
Ī	12 HOUR STD	182215	13.59	193902	19.46	184813	22.93
	UPPER LIMIT	364430	13.09	387804	18.96	369626	22.43
ĺ	LOWER LIMIT	91108	14.09	96951	19.96	92407	23.43
	EPA SAMPLE NO.					······································	
)1	081400-002DL	172217	13.58	175181	19.44	171895	22.92
)2	081400-003DL	172493	13.59	179267	19.45	172556	22.93

- IS1 (DCB) = d4-1,4-Dichlorobenzene
- IS2 (NPT) = d8-Naphthalene
- IS3 (ANT) = d10-Acenaphthene
- IS4 (PHN) = d10-Phenanthrene
- IS5 (CRY) = d12-Chrysene
- IS6 (PRY) = d12-Perylene

AREA UPPER LIMIT = +100% of internal standard area AREA LOWER LIMIT = - 50% of internal standard area RT UPPER LIMIT = +0.50 minutes of internal standard RT RT LOWER LIMIT = -0.50 minutes of internal standard RT

Column to be used to flag values outside QC limit with an asterisk.

* Values outside of contract required QC limits

ļ

•

•

. .

.

.

.

APPENDIX G Letter dated September 28, 2000 to U.S. EPA Regarding COPC Selection

338 Hamis Hill Road, Suite 201 Williamsville, New York (1422) (716) 565-0624 • FAX (716) 565-0625

September 28, 2000 5771.001

Ms. Sherrel Henry Remedial Project Manager U.S. Environmental Protection Agency 290 Broadway – 20th Floor New York, NY 10007-1866

Subject: Peter Cooper Site Gowanda, New York Administrative Order Index No. CERCLA-02-2000-2014

Dear Ms. Henry:

This letter summarizes the results of the initial groundwater sampling event at the Peter Cooper Site in Gowanda, New York to refine the list of constituents of potential concern (COPCs) of the Inactive Landfill Area. This activity was described in the Remedial Investigation/Feasibility Study Work Plan for the Inactive Landfill Area, Peter Cooper Site, Gowanda, New York (Work Plan), prepared by Geomatrix and Benchmark, revised March 2000, amended August, 2000.

On June 15, 2000, Geomatrix Consultants, Inc. (Geomatrix) conducted a groundwater monitoring well integrity program of the existing wells at the Inactive Landfill Area to determine the usability of each well for the Remedial Investigation. All wells were located to ascertain well integrity by evaluating the condition of the protective casing, access to the well, and quality of groundwater samples that would be collected from the well. An attempt was made to re-develop each well however, wells MW-2, MW-3, MW-4S, and MW-4D, were determined unusable for groundwater sample collection as a result of obstructions in the well or failure to produce adequate water. These four wells were abandoned and replaced during the week of July 10 - 14, 2000. The newly installed wells were subsequently developed. The groundwater monitoring well abandonment, installation, and development was conducted in accordance with the field operating procedures (FOPs) of the Quality Assurance Project Plan (QAPP), prepared by Geomatrix and Benchmark Environmental Engineering and Science, PLLC (Benchmark), Revised August 2000.

On August 14, 2000, four groundwater monitoring wells (MW-2S(R), MW-3, MW-4S, and MW-6) screened in or immediately below waste were sampled and analyzed to refine the list of COPCs defined in the Work Plan for the Inactive Landfill Area. Sampling was conducted in accordance with the FOPs of the QAPP. Groundwater samples were analyzed by Columbia Analytical Laboratory in Rochester, New York for target compound list volatile organic compounds (TCL VOCs), target compound list semi-volatile organic compounds (TCL VOCs), target compound list semi-volatile organic compounds (TCL VOCs), and target analyte list (TAL) inorganics plus hexavalent chromium.

Geomatrix Consultants, Inc.

Engineers, Geologists, and Environmental Scientists

Ms. Sherrel Henry U.S. Environmental Protection Agency September 28, 2000 Page 2 of 3

Analytical data packages were validated by a third party certified data validator (Data Validation Services). The data validation determined the data usable with minor qualifications and satisfied the data quality objectives. The data validation report is attached. The attached Table 1 summarizes the constituents detected in the groundwater samples. New York State Department of Environmental Conservation (NYSDEC) Class GA Groundwater Quality Standards or guidance values and EPA Region 9 preliminary remediation goals (PRGs) (groundwater criteria) are provided for comparison. VOCs were detected at 3 of the 4 well locations at concentrations above groundwater criteria. Chlorobenzene was detected in samples collected and analyzed from monitoring wells MW-4S(R) and MW-6 at concentrations of 68 and 200 ug/l, respectively. Benzene, 1,2-dichlorobenzene, 1,4-dichlorobenzene and toluene were also detected at concentrations and qualified by the laboratory.

As anticipated based on historic groundwater sample analytical results, acid extractable semivolatile organic compounds were detected at elevated levels compared to historic background concentrations and groundwater criteria. Metals parameters detected at concentrations above groundwater criterion include: chromium, iron, magnesium, manganese, sodium, arsenic and hexavalent chromium.

The results of the initial groundwater sampling of monitoring wells screened in or below known landfill waste confirm the presence of acid extractable SVOCs and select metals in the groundwater. These results compare favorably with previous data used to define these compounds as COPCs at the Inactive Landfill Area. However, the initial groundwater sampling results also identified the presence of aromatic hydrocarbon VOCs above groundwater criteria (primarily chlorobenzene). Therefore, Geomatrix and Benchmark propose to add analysis for aromatic hydrocarbons by EPA Method 8021 to the list of analytes defined as COPCs for the Inactive Landfill Area of the Peter Cooper Site. Inclusion of aromatic hydrocarbons as COPCs satisfies the data quality objectives of the remedial investigation requiring an evaluation of the nature and extent of chemical constituents derived from the site. The VOC analyte list and the corresponding contract required quantitation limits (CRQLs) for water and soil matrices are presented in the following table.

Ms. Sherrel Henry U.S. Environmental Protection Agency September 28, 2000 Page 3 of 3

PROPOSED ADDITIONAL COPC ANALYTES

	Gowanda, New York											
Aromatic Hydrocarbon VOC	CRQL Water (ug/l)	CRQL Soils (ug/kg)										
Benzene	2	2										
Ethylbenzene	2	2										
Toluene	2	2										
Total Xylene	2	2										
Chlorobenzene	2	2										
1,2-Dichlorobenzene	2	2										
1,4-Dichlorobenzene	2	2										

Inactive Landfill Area Peter Cooper Site

The revised COPC list for the Inactive Landfill Area presented in Table 4 of the QAPP is attached to this letter. Upon USEPA approval, the revised list of COPCs for the Inactive Landfill Area will include aromatic hydrocarbon VOCs.

Please contact either of the undersigned if you have questions.

Sincerely yours, GEOMATRIX CONSULTANTS, INC.

Richard H. Frapp'a, P.G. Senior Hydrogeologist

h Stage for Thomas H. Forbes, P.E

Project Manager

P:\Project\005771 PRP Group Peter Cooper NPL\letters\add VOCs memo.doc

Enclosure

- J. Wittenborn (Collier Shannon) cc:
 - K. McMahon (Collier Shannon)
 - S. Davis (Huber Lawrence)
 - G. Shanahan (USEPA)(w/o Enclosure)

M. Graham (Phillips Lytle) K. Hogan (Phillips Lytle) J. Simone (NYSEG) (w/o Enclosure)

BENCHMARK ENVIRONMENTAL ENGINEERING & SCIENCE, PLLC

.. . ..

ANALYTICAL RESULTS SUMMARY INACTIVE LANDFILL AREA COPCS SAMPLING

Peter Cooper Site

Gowanda, New York

Constituent Units NYSDEC Region 9 MW-45(R) MW-3 MW-3 DUP MW-25(R) MW-6 Valatile Organic Compounds, EPA Method 82608		1	Groundwate	er Criteria (1)		Const	ituent Concen	tration	
Valatile Organic Compounds. EPA Method 82608 ACETONE ug/l 50 610 121 111 111 CHLOROBENZENE ug/l 1 0.41	Constituent	Units	NYSDEC	Region 9	MW-4S(R)	MW-3	MW-3 DUP	MW-2S(R)	MW-6
ACETONE ug/l 50 610 12J 11J 11J 11J BENZENE ug/l 1 0.41	Volatile Organic Compounds, EPA Method 8260B								
BENZENE ug/l 1 0.41	ACETONE	ug/l	50	610	121	111	113		·
CHLOROBENZENE ug/l 5 110 68 200 1.2-DICHLOROBENZENE ug/l 3 370 6.60	BENZENE	ug/l	1	0.41					1.4J
1.2-DICHLOROBENZENE ug/l 3 370 6.6J 5 1.4-DICHLOROBENZENE ug/l 3 0.5 4.00 5 5.0 ETHYLEBNZENE ug/l 5 1300 1.6J 1.9J 5 2-HEXANONE ug/l 50 - 3.0J - 5 2-HEXANONE ug/l 5 720 2.8J 14 16 3.8J 4.8J COLUENE ug/l 5 720 2.8J 14 16 3.8J - Semi-Volatile Organic Compounds. EPA Method 8270C	CHLOROBENZENE	ug/l	5	110	68	·			20 0
1.4-DICHLOROBENZENE ug/l 3 0.5 4.0J 56J ETHYLBENZENE ug/l 50 - 3.0J - 2-HEXANONE ug/l 50 - 3.0J - 4-METHYL-2-PENTANONE ug/l 160 3.8J 4.8J - TOLUENE ug/l 160 3.8J 4.8J - Semi-Volatile Organic Compounds, EPA Method 8270C 3600 1.4 J 1.8J 1.9J 2.9J 1.5J 2-CHLOROPHENOL ug/l 3600 1.4 J 1.8J 1.9J 2.9J 1.5J 2-CHLOROPHENOL ug/l 300 - 2.1J 2.4DMETHYLPHENOL ug/l - 2.1J 2-METHYLPHENOL ug/l 1.4J - - 2.1J 2.4DMETHYLPHENOL ug/l 2.2J 7.7J 7.4J 1.4J 2.6J 2-METHYLPHENOL ug/l 1800 35 33 1.9J - - - 2.2J 7.7J 7.4J <t< td=""><td>1.2-DICHLOROBENZENE</td><td>ug/l</td><td>3</td><td>370</td><td>6.6J</td><td></td><td></td><td></td><td></td></t<>	1.2-DICHLOROBENZENE	ug/l	3	370	6.6J				
ETHYLBENZENE ug/l 5 1300 1.6.1 1.9.1 2.HEXANONE ug/l 50 - 3.0.1	1.4-DICHLOROBENZENE	ug/l	3	0.5	4.0J				5.6J
2:HEXANONE ug/l 50 - 3.01 4:METHYL2:PENTANONE ug/l 160 3.81 4.81 TOLUENE ug/l 5 720 2.81 14 16 3.81 Semi-Volatile Organic Compounds, EPA Method 8270C 300 .	ETHYLBENZENE	ug/1	5	1300		1.6J	1.93		
4-METHYL-2-PENTANONE ug/l 160 3.8.J 4.8.J	2-HEXANONE	ug/l	50	-		3.0J			
TOLUENE ug/l 5 720 2.8J 14 16 3.8J Semi-Volatile Organic Compounds, EPA Method 8270C DI-N-BUTYLPHTHALATE ug/l 3600 1.4 J 1.8J 1.9J 2.9J 1.5J Z-CHLOROPHENOL ug/l 30 - 2.1J 2.1J 2.4-DIMETHYLPHTHALATE ug/l 30 3.2J 3.6J - - 1.4J - - - 1.4J - - - - 1.4J -	4-METHYL-2-PENTANONE	ug/l		160		3.8J	4.8J		
Semi-Volatile Organic Compounds, EPA Method 8270C DI-N-BUTYLPHTHALATE ug/l 3600 1.4 J 1.8 J 1.9 J 2.9 J 1.5 J 2.4-DIMETHYLPHTHALATE ug/l 30 - 2.1 J 2.4-DIMETHYLPHENOL ug/l 30 - 2.1 J 2.4-DIMETHYLPHENOL ug/l 1.4 J - - 2.METHYLPHENOL ug/l 1.4 J - 1.4 J 1.4 J - - - - 1.6 J -	TOLUENE	ug/l	5	720	2.8J	14	16	3.8J	
Semi-Volatile Organic Compounds, EPA Method 8270C DI-N-BUTYLPHTHALATE ug/l 3600 1.4 J 1.8J 1.9J 2.9J 1.5J 2-CHLOROPHENOL ug/l 300 2.0J 2.1J 2-CHLOROPHENOL ug/l 50 730 3.2J 3.6J 2-CHLORO-3-METHYLPHENOL ug/l 1.4J 2-METHYLPHENOL ug/l 1800 35 33 1.9J 2-METHYLPHENOL ug/l 1800 35 33 1.9J 2-METHYLPHENOL ug/l 180 920D 780D 8.8J NAPHTHALENE ug/l 10 2.2J 7.7J 7.4J 1.4J 2.6J PHENOL ug/l 1 2000 150 4.5J Method 60108 0.437 0.161 0.145 0.746 0.185 <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>									
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Semi-Volatile Organic Compounds, EPA Method 8	2700	·						
2-CHLOROPHENOL ug/l 30 3.21 3.61 2.13 2.4-DIMETHYLPHENOL ug/l 50 730 3.21 3.61 1.41 1.41 1.41 1.41 1.41 1.41 1.40 1.41 1.41 <	DI-N-BUTYLPHTHALATE	ug/l		3600	1.4 J	1.8J	1.9J	2.9J	1.51
2.4.DIMETHYLPHENOL ug/l 50 730 3.21 3.61 4.CHLORO-3.METHYLPHENOL ug/l 1.41 2.METHYLPHENOL ug/l 1.800 35 33 1.91 2.METHYLPHENOL ug/l 1800 920D 780D 8.8J 4.METHYLPHENOL ug/l 10 2.2J 7.71 7.4J 1.4J 2.6J NAPHTHALENE ug/l 10 2.2J 7.71 7.4J 1.4J 2.6J PHENOL ug/l 1 22000 200D 150 4.5J Metals. EPA Method 6010B 0.437 0.161 0.145 0.746 0.185 BARIUM mg/l 180 117 117 158 176 CHROMIUM mg/l 180 117 117 0.368 176 CHROMIUM mg/l 0.050 55 0.337 0.433 0.427 0.174 0.0368 IRO	2-CHLOROPHENOL	ug/l		30	l				2.IJ
4-CHLORO-3-METHYLPHENOL ug/l 1.4J 1.4J 2-METHYLPHENOL ug/l 1800 35 33 1.9J 4-METHYLPHENOL ug/l 1800 920D 780D 8.8J NAPHTHALENE ug/l 10 2.2J 7.7J 7.4J 1.4J 2.6J PHENOL ug/l 1 22000 200D 150 4.5J Metals. EPA Method 6010B 0.437 0.161 0.145 0.746 0.185 BARIUM mg/l 180 117 117 158 176 CHROMIUM mg/l 180 117 117 158 176 CHROMIUM mg/l 0.050 55 0.337 0.433 0.427 0.174 0.0368 RON mg/l 0.300 3.11 0.520 0.495 2.08 12.8 MAGNESFUM mg/l 0.300 99.8 114 1	2.4-DIMETHYLPHENOL	ug/l	50	730	L	3.2J	3.6J		
2-METHYLPHENOL ug/l 1800 35 33 1.91 4-METHYLPHENOL ug/l 180 920D 780D 8.8J NAPHTHALENE ug/l 10 2.2J 7.7J 7.4J 1.4J 2.6J PHENOL ug/l 1 22000 200D 150 4.5J Metals, EPA Method 6010B mg/l - - 0.437 0.161 0.145 0.746 0.185 BARIUM mg/l - - 0.437 0.154 0.152 0.279 0.258 CALCIUM mg/l - 180 117 117 158 176 CHROMIUM mg/l 0.050 55 0.337 0.433 0.427 0.174 0.0368 IRON mg/l 0.300 - 3.11 0.520 0.495 2.08 12.8 MAGNESFUM mg/l 0.300 - 99.8 114 113 98.2	4-CHLORO-3-METHYLPHENOL	ug/l		-		1.4J			
4·METHYLPHENOL ug/l 180 920D 780D 8.8J NAPHTHALENE ug/l 10 2.2J 7.7J 7.4J 1.4J 2.6J PHENOL ug/l 1 22000 200D 150 4.5J Metals. EPA Method 6010B mg/l 0.437 0.161 0.145 0.746 0.185 BARIUM mg/l 1.0 2.6 0.237 0.154 0.152 0.279 0.258 CALCIUM mg/l - 180 117 117 158 176 CHROMIUM mg/l 0.050 55 0.337 0.433 0.427 0.174 0.0368 IRON mg/l 0.300 3.11 0.520 0.495 2.08 12.8 MAGNESIUM mg/l 0.300 0.277 0.0665 0.0662 0.117 0.820 POTASSIUM mg/l 10.6 <t< td=""><td>2-METHYLPHENOL</td><td>ug/l</td><td></td><td>1800</td><td></td><td>35</td><td>33</td><td>1.91</td><td></td></t<>	2-METHYLPHENOL	ug/l		1800		35	33	1.91	
NAPHTHALENE ug/l 10 - 2.2J 7.7J 7.4J 1.4J 2.6J PHENOL ug/l 1 22000 200D 150 4.5J - Metals. EPA Method 6010B 0.437 0.161 0.145 0.746 0.185 BARIUM mg/l 0.437 0.152 0.279 0.258 CALCIUM mg/l 180 117 117 158 176 CHROMIUM mg/l 0.050 55 0.337 0.433 0.427 0.174 0.0368 IRON mg/l 0.0300 3.11 0.520 0.495 2.08 12.8 MAGNESFUM mg/l 35.0 99.8 114 113 98.2 60.7 MANGANESE mg/l 0.300 0.277 0.0665 0.0662 0.117 0.820 POTASSIUM mg/l - 10.6 <td>4-METHYLPHENOL</td> <td>ug/l</td> <td></td> <td>180</td> <td></td> <td>920D</td> <td>780D</td> <td>8.8J</td> <td></td>	4-METHYLPHENOL	ug/l		180		920D	780D	8.8J	
PHENOL ug/l 1 22000 200D 150 4.5J Metals. EPA Method 6010B ALUMINUM mg/l 0.437 0.161 0.145 0.746 0.185 BARIUM mg/l 1.0 2.6 0.237 0.154 0.152 0.279 0.258 CALCIUM mg/l - 180 117 117 158 176 CHCOMIUM mg/l 0.050 55 0.337 0.433 0.427 0.174 0.0368 IRON mg/l 0.0300 - 3.11 0.520 0.495 2.08 12.8 MAGNESFUM mg/l 35.0 - 99.8 114 113 98.2 60.7 MANGANESE mg/l 0.300 - 0.277 0.0665 0.0662 0.117 0.820 POTASSIUM mg/l - - 10.6 4.65 4.38 5.92 5.58 SODIUM	NAPHTHALENE	ug/l	10		2.2J	7.71	7.4J	1.4J	2.6J
Metals. EPA Method 6010B ALUMINUM mg/l 0.437 0.161 0.145 0.746 0.185 BARIUM mg/l 1.0 2.6 0.237 0.154 0.152 0.279 0.258 CALCIUM mg/l - 180 117 117 158 176 CHROMIUM mg/l 0.050 55 0.337 0.433 0.427 0.174 0.0368 IRON mg/l 0.0300 - 3.11 0.520 0.495 2.08 12.8 MAGNESFUM mg/l 35.0 - 99.8 114 113 98.2 60.7 MANGANESE mg/l 0.300 - 0.277 0.0665 0.0662 0.117 0.820 POTASSIUM mg/l - - 10.6 4.65 4.38 5.92 5.58 SODIUM mg/l 2.0 11 0.0248 0.0214 0.0356 0.0290 ARSENIC <	PHENOL	ug/l	1	22000		200D	150	4.5J	
mg/l 0.437 0.161 0.145 0.746 0.185 BARIUM mg/l 1.0 2.6 0.237 0.154 0.152 0.279 0.258 CALCIUM mg/l - 180 117 117 158 176 CHROMIUM mg/l 0.050 55 0.337 0.433 0.427 0.174 0.0368 IRON mg/l 0.300 - 3.11 0.520 0.495 2.08 12.8 MAGNESFUM mg/l 35.0 - 99.8 114 113 98.2 60.7 MANGANESE mg/l 0.300 - 0.277 0.0665 0.0662 0.117 0.820 POTASSIUM mg/l - - 10.6 4.65 4.38 5.92 5.58 SODIUM mg/l 2.0 - 29.6 14.1 14.4 17.2 5.58 ZINC mg/l 2.0 11 0.0248	Marcia EPA Method 6010B								
ALCONTOM mg/l 1.0 2.6 0.121 0.112 0.112 0.113 0.114 0.0368 117 117 1158 176 CHROMIUM mg/l 0.050 55 0.337 0.433 0.427 0.174 0.0368 IRON mg/l 0.300 - 3.11 0.520 0.495 2.08 12.8 MAGNESEUM mg/l 0.300 - 0.277 0.0665 0.0662 0.117 0.820 POTASSIU	ALLIMINEIM	me/l			0.437	0.161	0.145	0 746	0.185
BARKON mg/l 180 117 117 158 176 CALCIUM mg/l - 180 117 117 158 176 CHROMIUM mg/l 0.050 55 0.337 0.433 0.427 0.174 0.0368 IRON mg/l 0.300 - 3.11 0.520 0.495 2.08 12.8 MAGNESFUM mg/l 35.0 - 99.8 114 113 98.2 60.7 MANGANESE mg/l 0.300 0.277 0.0665 0.0662 0.117 0.820 POTASSIUM mg/l - 10.6 4.65 4.38 5.92 5.58 SODIUM mg/l 20.0 29.6 14.1 14.4 17.2 5.58 ZINC mg/l 2.0 11 0.0248 0.0214 0.0356 0.0290 ARSENIC mg/l 0.025 4.5E.05 <td>RARIIIM</td> <td>me/l</td> <td>10</td> <td>26</td> <td>0 2 3 7</td> <td>0.154</td> <td>0.152</td> <td>0 279</td> <td>0.258</td>	RARIIIM	me/l	10	26	0 2 3 7	0.154	0.152	0 279	0.258
CHROMIUM mg/l 0.050 55 0.337 0.433 0.427 0.174 0.0368 RON mg/l 0.300 - 3.11 0.520 0.495 2.08 12.8 MAGNESFUM mg/l 35.0 - 99.8 114 113 98.2 60.7 MANGANESE mg/l 0.300 0.277 0.0665 0.0662 0.117 0.820 POTASSIUM mg/l - 10.6 4.65 4.38 5.92 5.58 SODIUM mg/l 20.0 - 29.6 14.1 14.4 17.2 5.58 ZINC mg/l 2.0 11 0.0248 0.0214 0.0356 0.0290 ARSENIC mg/l 0.025 4.5E-05 0.115 0.0342 0.0328 0.163 0.0302		mg/l			180	117	117	158	176
IRON mg/l 0.300 - 3.11 0.520 0.495 2.08 12.8 IRON mg/l 0.300 - 3.11 0.520 0.495 2.08 12.8 MAGNESIUM mg/l 35.0 - 99.8 114 113 98.2 60.7 MANGANESE mg/l 0.300 - 0.277 0.0665 0.0662 0.117 0.820 POTASSIUM mg/l - - 10.6 4.65 4.38 5.92 5.58 SODIUM mg/l 20.0 - 29.6 14.1 14.4 17.2 5.58 ZINC mg/l 2.0 11 0.0248 0.0214 0.0356 0.0290 ARSENIC mg/l 0.025 4.5E-05 0.115 0.0342 0.0328 0.163 0.0302	CHROMIUM	mg/l	0.050	55	0.337	0.433	0.427	0.174	0.0368
mg/l 35.0 - 99.8 114 113 98.2 60.7 MAGNESFUM mg/l 35.0 - 99.8 114 113 98.2 60.7 MANGANESE mg/l 0.300 0.277 0.0665 0.0662 0.117 0.820 POTASSIUM mg/l - - 10.6 4.65 4.38 5.92 5.58 SODIUM mg/l 20.0 - 29.6 14.1 14.4 17.2 5.58 ZINC mg/l 2.0 11 0.0248 0.0214 0.0356 0.0290 ARSENIC mg/l 0.025 4.5E-05 0.115 0.0328 0.163 0.0302	IRON	mg/1	0.300		3.11	0.520	0.495	2.08	12.8
MANGANESE mg/l 0.300 0.277 0.0665 0.0662 0.117 0.820 POTASSIUM mg/l - 10.6 4.65 4.38 5.92 5.58 SODIUM mg/l 20.0 29.6 14.1 14.4 17.2 5.58 ZINC mg/l 2.0 11 0.0248 0.0214 0.0356 0.0290 ARSENIC mg/l 0.025 4.5E-05 0.115 0.0342 0.0328 0.163 0.0302	MAGNESTUM	mo/1	35.0		99.8	114	113	98.2	60.7
mctorAlsc mg/l - - 10.6 4.65 4.38 5.92 5.58 SODIUM mg/l 20.0 - 29.6 14.1 14.4 17.2 5.58 ZINC mg/l 2.0 11 0.0248 0.0214 0.0356 0.0290 ARSENIC mg/l 0.025 4.5E-05 0.115 0.0342 0.0328 0.163 0.0302	MANGANESE	mo/1	0 300		0.277	0.0665	0.0662	0117	0.820
SODIUM mg/l 20.0 - 29.6 14.1 14.4 17.2 5.58 SODIUM mg/l 2.0 11 0.0248 0.0214 0.0356 0.0290 ARSENIC mg/l 0.025 4.5E-05 0.115 0.0342 0.0328 0.163 0.0302	ΡΟΤΑςςημη	mg/l	0.500		10.6	4.65	4 38	5.92	5 58
SODICINI Ingri 20.0 21.0 12.1 11.1 11.2 23.0 ZINC mg/l 2.0 11 0.0248 0.0214 0.0356 0.0290 ARSENIC mg/l 0.025 4.5E-05 0.115 0.0342 0.0328 0.163 0.0302	SODIUM	me/l	20.0		29.6	14 1	144	172	5 58
ARSENIC mg/l 0.025 4.5E-05 0.115 0.0342 0.0328 0.163 0.0302			20.0		0.0248	0.021.1	14.4	0.0356	0.0200
AKSENIC Ingr 0.025 4.5E-05 0.115 0.0542 0.0526 0.105 0.0502	ADSENIC	mg/i	0.025	4 55.05	0.0248	0.0214	0.0378	0.0350	0.0270
		mu/	0.025	4.52-05	0.104	0.0074	0.0520	0.103	0.0302

NOTES:

1. Groundwater criteria based on NYSDEC's "Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations". Reissued June 1998. for class GA groundwater and EPA Region 9 Preliminary Remediation Goals "Tap Water Value".

2. "--" indicates no groundwater criteria.

3. Blank cells indicates parameter not detected above method detection limit.

4. J values indicates an estimated value.

5. D values indicated spike diluted out.

p:/project/05771/well sampling/inactive landfill area 4 wells

•

ANALYTICAL PROGRAM SUMMARY

Peter Cooper Site Gowanda, New York

Sample Type/Location	Matrix	Parameter ""	Quantity ⁽²⁾	Container Typ e	Minimum Volume	Preservation (Cool to 4" >2 "C for all samples)	Holding Time from Sample Dat
Inactive Landfill Area	water	TAL Metals (1948)	4	plastic	600 ml	HNO, to pH< 2	6 months
Groundwater		TCL VOCs	4	glass vial	2-40 ml	HCI to pH<2, Zero Headspace	14 days
(Preliminary Screening to develop COPCs)		TCL SVOCs	4	amber glass	2 liters	Cool to 4 " < 2"C	14 days
Inactive Landfill Area	soil	Aromatic Hydrocarbon VOCs ⁽¹³⁾	31	EnCore S	ampler	Cool to 4 " <2 "C. Zero Headspace	14 days ⁽¹²⁾
Surface (20) and Subsurface (11)		Arsenic	31	glass	16 oz.	Cool to 4 " < 2"C	6 months
	1	Chromium ⁽⁷⁾	31	glass	16 oz.	Cool to 4 " < 2"C	6 months
	[Hex. Chromium ⁽⁷⁾	31	glass	8 oz.	Cool to 4 " < 2"C	24 hours(11)
	1	Zinc	31	glass	16 oz.	Coot to 4 " < 2"C	6 months
		pH	31	glass	8 oz.	Cool to 4 " < 2"C	24 hours
		тос	31	glass	4 oz.	Cool to 4 " < 2"C	28 days
Former Manufacturing Plant Area	soil	TAL Metals (2210)	24	glass	16 oz.	Cool 10 4 " < 1"C	6 months
Surface (12) and Subsurface (12)		TCL VOCs'"	24	EnCore S	ampler	Coul to 4 " <2 "C. Zero Headspace	14 days ⁽¹²⁾
	{	TCL SVOCs"	24	glass	16 oz.	Cool to 4 " < 2"C	6 months
		pH	24	glass	8 oz.	Coot to 4 " < 2"C	24 hours
		TOC	24	glass	4 vz.	Cout to 4" < 2"C	28 days
Creek Surface Water (4)	water	TAL Metals Control	8	plastic	600 ml	HNO, to pH<2	6 months
(2 sampling rounds)	ļ	Aromatic Hydrocarbon VOCs ⁽¹³⁾	8	glass vial	2-40 mi	HCI to pH<2. Zero Headspace	14 days
		TCL SVOCs ^{ee}	8	amber glass	2 liters	Coul to 4 " < 2"C	14 days
	Į.	Alkalinity	8	plastic	100 ml	Cout to 4 " < 2"C	14 days
		Alk (bi-carb)	8	plastic	100 mil	Cool to 4 " < 2"C	14 days
	1	Alk (carb)	8	plastic	100 ml	Cout to 4 " < 2"C	I4 days
		Ammonia	8	plastic	500 ml	H ₂ SO ₂ to pH=2	28 days
	{	Chloride	8	plastic	50 ml	Cool to 4 " < 2"C	28 days
		DO	8	NA	NA	NA	NA
	1	DOC	8	amber glass	250 mł	Coal to 4 " < 2"C	28 days
		ORP	8	NA	NA	NA	NA
		Total Hardness	8	plastic	100 ml	H ₂ SO ₄ to pH<2	6 months
		Nitrate	8	plastic	100 ml	H _: SO, to pH<2	48 hours
	1	Sulfate	8	plastic	50 ml	Cool to 4 " < 2"C	28 days
		Sulfide	8	plastic	500 mi	NaOH, 20 drops Zinc Acetate to pH>9, Coul to 4 "C	7 days
1		Ferrous Iron	8 ¹⁰	plastic	8 UZ.	Cool to 4 " < 2"C	upon receipt
		TDS	8	plastic	100 ml	Cool to 4 " < 2"C	7 days
l	L	ТКМ	8	plastic	500 ml	H ₂ SO, to pH<2	28 days

.

Sample		Damara (II)		Container	Minimum	Preservation	Holding Time
Type/Location	Maine	1.7t.7tietet	Quantity	Туре	Volume	(Cool to 4" >2 "C for all samples)	fioni Sample Date
Creek Surface Water (4)	water	TSS	8	plastic	100 ml	Coul to 4 " < 2"C	7 days
(continued)		TOC	8	plastic	(3) 40 ml	H _s SO, to pH<2	28 days
Seep Water	water	Aromatic Hydrocarbon VOCs ⁽¹³⁾	6	glass vial	2-40 mi	HC1 to pH<2. Zero Headspace	14 days
Inactive Landfill Area		SVOCs ""	6	amber glass	2 liters	Cuol to 4 " < 2"C	14 days
(2 sampling rounds)		Arsenic ^{()*4}	6	plastic	600 mt	HNO, to pH<2	6 months
		Chromium ⁽¹³⁴⁾	6	plastic	600 ml	HNO, to pH<2	6 months
		Hex. Chromium ^{()x#}	6	plastic	400 ml	Cool to 4 " < 2"C	24 hours
	ļ	Zinc ⁽¹⁾⁴⁾	6	plastic	600 ml	HNO, to pH<2	6 months
		Calcium ⁽¹⁾	6	plastic	600 ml	HNO, to pH<2	6 months
		Iron ⁽³⁾	6	plastic	600 ml	HNO, to pH<2	6 months
		Potassium ⁽³⁾	6	plastic	600 ml	HNO1 to pH<2	6 months
		Magnesium ⁽¹⁾	6	plastic	600 ml	HNO, to pH<2	6 months
		Sodium®	6	plastic	600 ml	HNO1 10 pH<2	6 months
	j	Alkalinity	6	plastic	100 ml	Cool to 4 " < 2"C	14 days
		Alk (bi-carb)	6	plastic	100 ml	Cool to 4 " < 2"C	14 days
		Alk (carb)	6	plastic	100 ml	Cool to 4 " < 2"C	14 days
		Ammonia	6	plastic	500 ml	H ₂ SO, to pH<2	28 days
		Chloride	6	plastic	50 ml	Cool to 4 " < 2"C	28 days
		DO	6	NA	NA	NA	NA
		DOC	6	amber glass	250 ml	Coul to 4 * < 2"C	28 days
		ORP	6	NA	NA	NA	NA
		Total Hardness	6	plastic	100 mi	H,SO, to pH<2	6 months
		Nitrate	6	plastic	100 ml	H ₂ SO, to pH<2	48 hours
		Sulfate	6	plastic	50 ml	Cool to 4 " < 2"C	28 days
		Sulfide	6	plastic	500 ml	NaOH, 20 drops Zinc Accelate to pH>9. Coot to 4 "C	7 days
		Ferrous Iron	610	plastic	8 oz.	Cool to ‡" < "C	upon receipt
		TDS	Ú	plastic	100 ml	Cool to 4 "≤ 2"C	7 days
	1	TKN	6	plastic	500 mil	H ₃ SO, to pH<2	28 days
		TSS	6	plastic	lm 001	Cout to 4 " < 2"C	7 days
		тос	6	glass	(3) 40 ml	H _: SO, to pH<2	28 days
Wetland (10) Sediment	sediment	Aromatic Hydrocarbon VOCs ⁽¹³⁾	10	EnCore Sa	ampler	Cool to 4 " <2 "C. Zero Headspace	14 days ⁽¹²⁾
Inactive Landfill Area	}	Arsenic	10	glass	- 16 oz.	Cool to 4 " < 2"C	6 months
		Chromium ⁽¹⁾	10	Blass	16 oz.	Cool to 4 " < 2"C	6 months
	ļ	Hex. Chromium ⁽¹⁾	10	glass	8 oz.	Cout to 4 " < 2"C	24 hours(11)
	1	Zinc	10	glass	16 oz.	Cool 10 4 " < 2"C	6 months
		pli	10	glass	8 oz.	Cool to 4 " < 2"C	24 hours
	1	TOC	10	plastic	50 ml	H _s SO, to pH<2	28 days

ANALYTICAL PROGRAM SUMMARY

÷

ANALYTICAL PROGRAM SUMMARY

Sample Type/Location	Matrix	Parameter	Quantity (2)	Container Type	Minimum Volume	Preservation (Cool to 4" >2 "C for all samples)	Holding Time from Sample Date
Creek Sediments (4)	sediment	TAL Metals (11/20)	4	glass	16 oz.	Cool to 4 " < 2"C	6 months
		TCL VOCs ^a	4	EnCore Sa	Impler	Coul to 4 " <2 "C. Zero Headspace	14 days(12)
		TCL SVOCs"	4	glass	16 oz.	Cool to 4 " < 2"C	6 months
		pH	4	glass	8 oz.	Cool to 4 " < 2"C	24 hours
		TOC	4	glass	4 oz.	Cool to 4 " < 2"C	28 days
Groundwater (6)	water	TAL Metals "X'3"	12	plastic	600 m)	HNO, 10 pH<2	6 months
Former Manufacturing Plant Area		TCL VOCs'"	12	glass vial	2-40 mi	HCI to pH<2. Zero Headspace	14 days
(2 sampling rounds)		TCL SVOCs"	12	amber glass	2 liters	Coat to 4 " < 2"C	14 days
Groundwater (6)	water	Alk (bi-carb)	6	plastic	100 ml	Cool to 4 " < 2"C	I4 days
Former Manufacturing Plant Area		Alk (carb)	6	plastic	100 ml	Cool to 4 " < 2"C	14 days
(included in first sampling round only)		DO	6	NA	NA	NA	NA
		DOC	6	amber glass	250 ml	Cool to 4 " < 2"C	28 days
		ORP	6	NA	NA	NA	NA
		Sulfate	6	plastic	50 mt	Coot 10 4 " < 2"C	28 days
		Sulfide	6	plastic	500 ml	NaOH, 20 drops Zinc Accuate to pH>9. Coul to 4 oC	7 days
		Feirous Iron	6 ¹⁰	plastic	8 uz.	Cool 10 4 " < 2"C	upon receipt
		TDS	6	plastic	100 ml	Cout to 4 " < 2"C	7 days
		тос	6	glass	(3) 40 ml	H ₋ SO ₄ to pH<2	28 days
Groundwater (15)	water	Aromatic Hydrocarbon VOCs ⁽¹³⁾	30	glass viat	2-40 ml	HCI to pHS2. Zero Headspace	14 days
Inactive Landfill Area	1	SVOCs **	30	amber glass	2 liters	Coal to 4 " < 2"C	14 days
(2 sampling rounds)		Arsenic	30	plastic	600 ml	HNO, to pH<2	6 months
		Chromium"14	30	plustic	600 ml	HNO, to pH<2	6 months
		Hex. Chromiuni ^(**)	30	plastic	400 ml	Cupt to 4 " < 2"C	24 hours
		Zinc ⁽¹⁴⁾	30	plastic	600 ml	HNO1 to pH<2	6 months
		Calcium th	30	plastic	600 ml	HNO, to pH<2	6 months
		Iron ⁽³⁾	30	plastic	600 ml	HNO, 10 pH<2	6 months
		Potassium ⁽¹⁾	30	plastic	600 ml	HNO, 10 pH<2	6 months
		Magnesium	30	plastic	600 ml	HNO, to pH<2	6 months
		Sođium''	30	plastic	600 ml	HNO, to pH<2	6 months
ll la la la la la la la la la la la la l		Alk (bi-carb)	30	plastic	100 ml	Cool 10 4 " < 2"C	14 days
		Alk (carb)	30	plastic	100 ml	Cool to 4 "< 2"C	14 days
		Animonia	30	plastic	500 ml	H,SO, to pH<2	28 days
	1	Chloride	30	plastic	50 ml	Cool to 4 " < 2"C	28 days
		DO	30	NA	NA	NA	NA
	1	DOC	30	amber glass	250 ml	Coul to 4 " < 2"C	28 days
		ORP	30	NA	NA	NA	NA

ANALYTICAL PROGRAM SUMMARY

Sample Type/Location	Matrix	Parameter "	Quantity (?)	Container Type	Minimum Volume	Preservation (Cool to 4" >2 "C for all samples)	Holding Time from Sample Date
Groundwater (15)	water	Nitrate	30	plastic	100 ml	H ₂ SO, to pH<2	48 hours
(continued)		Sulfate	30	plastic	50 mł	Coof to 4 " < 2"C	28 days
		Sulfide	.30	plastic	500 ml	NaOH. 20 drops Zinc Accure to pH>9. Cost to 4 oC	7 days
		Ferrous Iron	3010	plastic	8 oz.	Cool to 4 " < 2"C	upon receipt
		TDS	30	plastic	100 ml	Cool 10 4 " < 2"C	7 days
		TKN	30	plastic	500 ml	H ₂ SO ₄ to pH<2	28 days
		тос	30	glass	(3) 40 mł	H ₂ SO, to pH<2	28 days
Waste/Fill	soil	TCL VOCs	3	EnCore Sa	mpler	Cool to 4 " <2 "C, Zero Headspace	14 days ⁽¹²⁾
]	TCL SVOCs		amber glass	16 oz.	Cool to 4 " < 2"C	14 days
		TAL Metals ⁽³¹⁷⁾		glass	16 oz.	Cool to 4 " < 2"C	6 months
Landfill Gas	air	VOCs	3	summa canister	6 liters	None	14 days
		Carbon Dioxide	3	summa canister	6 liters	None	14 days
b	1	Oxygen	3	summa canister	6 liters	None	14 days
		Methane	J	summa canister	6 liters	None	14 days
		Nitrogen	3	summa canister	6 liters	None	14 days

Sample	1		}	Container	Minimum]	Preservation	Holding Time
Type/Location	Matrix	Geotechnical Parameter	Quantity	Туре	Volume		from Sample Date
Waste/Fill	waste	Atterberg Limits TOC Grain Size Distribution Shear Strength		5 gal bucket	5 gal.	NA	NA
	Ľ.	Insitu Permeability	1	Shelby Tube	3-inch tube	NA	NA
Inactive Landfill Area Surface Soil	soit	Grain Size Distribution Atterberg Limits Modified Proctor Recompacted Perm. Shear Strength	6	5 gal bucket	5 gal.	NA	NA
		Moisture Content Insitu Permeability	6	Shelby Tube	3-inch tube	NA	NA
Wetland	Sediment	Grain Size Distribution	3	Polyethylene	8 oz (*)	NA	NA
Creek	Sediment	Grain Size Distribution	4	Polyethylene	8 oz. ⁽⁹⁾	NA	NA
Former Manufacturing Plant Area Surface Soils	Soil	Grain Size Distribution	20	Polvethylene	8 oz. ^(*)	NA	NA

.

References: (1) Test Methods for Evaluating Solid Wastes, USEPA SW-846, revised 1991. (2) Code of Federal Regulations Chapter 40 Part 136

Page 4 of 5

-

ANALYTICAL PROGRAM SUMMARY

Sample Type/Location	Matrix	Parameter **	Quantity ⁽²⁾	_Container Type	Minimum Volum e	Preservation (Cool to 4" >2 "C for all samples)	Holding Time from Sample Date
-------------------------	--------	--------------	-------------------------	--------------------	-------------------------------	--	----------------------------------

Notes

Parameter list includes anticipated chemical constituents of concern and is subject to revision based on initial groundwater analysis for inactive landfill area. EPA-approved methods published in References 1 and 2 above may be used. The list of analytes, laboratory method and the method detection limit for each parameter.

are included in Tables 1-3 of the QAPP for each matrix

2 Sample quantity does not include QA/QC samples Sample frequency of QA/QC samples is detailed in Section 3 and Section 8 of the QAPP

3 Metals analysis will be for Total metals

4. Metals analysis will be for Soluble metals when water turbidity is field measured greater than 50 NTU

5 Includes Hexavalent Chromium [Cr VI]

6 SVOC analysis for acid extractables only.

4. Includes Hexavalent Chromium [Cr VI].

7. Per Method 3060A, Mg¹² in a phosphate buffer will be added to the alkaline extraction solution to suppress oxidation of soluble Cr (11) to Cr (VI).

8 The specific analyte list for the second sampling event will be established after COPCs are developed

9 Assumes no gravel present. If significant gravel is present, collect 1 gallon.

10 Ferrous iron analysis will be conducted in the field. Ten percent (10%) of the total number of ferrous iron samples will be submitted to the laboratory for assessment of precision and accuracy

11 Laboratory indicates a hold time of 28 days for hexavalent chromium in sediments and soils.

12 Samples must be transferred out of the EnCore Samplers within 48 hours of sample collection at the laboratory

13 Aromatic hydrocarbon VOCs analyzed by EPA Method 8021 to include benzene, ethylbenzene, toluene, total xylene, chlorobenzene, 1,2-Dichlorobenzene and 1,4-Dichlorobenzene.

Acronyms

 Alk (bi-carb) = Bi-carbonate alkalinity
 DOC = Dissolved Organic Carbon

 Alk (carb) = Carbonate alkalinity
 TOC = Total Organic Carbon

 DO = Dissolved Oxygen (field measured)
 TSS = Total Suspended Solids

 SVOC = Semi-Volatile Organic Compounds
 VOC = Volatile Organic Compounds

Geotechnical Parameter Methods.

Atterberg Limit=American Society of Testing and Materials (ASTM) D4318 TOC=Walkey Black Method Grainstze Distribution=ASTM D421, 422 Shear Strength=ASTM D5084 Insitu Permeability=ASTM D5084 Modified Proctor=ASTM D1557 Recompacted Permeability=ASTM D5084 Moisture Content=ASTM D2216 Page 5 of 5

APPENDIX H

2

1

ř

APPENDIX H Hydraulic Conductivity Testing Data

and the second second second second second second second second second second second second second second second

• 4

. :

1. e. se

. 1.

Subject Packartest Quantitative Evaluation Project No. 5771.01 Task No. Checked By By RHF File No.____S_D 1113/02 Date 10/31/02 Date Sheet_ of T = transmassivity (m²/day) Q = injection Pala (m²/day) Thirm Equation 0 1-(º/,) Pi = nut injustion Prassure (m) The bouchold radius (m) 2 A- P: R radius of influence P: Combinal Prossnic head 1-plh tomator + Sange Praismon + Gangehight (assume feletim loss is naglisible) For Justinkerval 18-23 Q= Flow 1.42 = 0.36 ypm on 1.925 m3/Ling 16 = 0.04m R= 5m 1.925 - Huy In (7604) P:= 20.5ft + 3.5ft + 35psi Pi- 521si 211-31.9-1psi= 0.703/m 160 R= 4 IF+ H10= 0.4335 PSI 1.925 14.4.9 P: 24F+ ~ 10.4PSI+ 35pSI P:= 454 Psi 200.33 m Pi: 31.9m 1= 0.04708 m2/day K= T/Estintend +154, mind = 5 Ft a 1.52 K= 0.03097 m/day K= 3.6 ×10-5 cm/sec 18-23 For tast interval 28-337 Pi= 30.5ft + 55psi Q= 0.24 spm n 1.302 m3/dig P: = 13,22 PSI + 5 5PSI $P_{i} = 68.22 P_{5}i$ 1. 302 " Hay x 1. (5/0 04) P: 47.97 m 2Tr × 47.17~ T= 6.38 m / Ay 301.23 m T= 0.02118 m 1/day 1.52 m test interval k = 0.0139 m/dig or (1.6× 10 5 cm/sec 28-33

301503

GEOMATRIX CONSULTANTS
	Project: 1000 Corde	Site:	d Elev.: Total D	Date: <u>10/2/00</u> epth:	Boring No.: <u>MW-4DZ</u> 7 Top of Rock: Depth:
	Contractor: NoTHNALLE	Driller	: NOAL SADAT	Inspector: 75V	Chek'd By:
	Water Level: Depth 12.75	Elevation:	Water Pipe Length		Water Pipe I.D.:
	Flow Meter No.	Pressure Gauge No.:	Test Interval: Dep	th: <u>18-23</u>	Elevation:
ł	Gauge Pressure: 10	Gauge Pressure: 20	Gauge Pressure: 36-35	Gauge Pressure:	Test Configuration
	Packer Infil't'n Press.:	Packer Infl't'n Press.: 225	Packer Infil't'n Press.: 285		
	Elapsed Flow Δ Time Reading Flow	Elapsed Flow Δ Time Reading Flow	Elapsed Flow \triangle Time Reading Flow	Elapsed Flow Time Reading (min.) (gallons)	Flow
t	2 58864.15	0 (4.40	U		
	0.30	0,30 64,40 0	- 0° 20] †	
ł	1:70 (4.15)	1100	7:00 44.19 0][
ł	2:00	3100	3.00 -64.75 0		
	2:10(21.15 0	4000 (4.40)	4:00 .64.80 0.09		
┝	3° 64.6 0	5	5:00 .4.90 <u>0.10</u>][
	<u></u>		7:00 65.10 0.10		
-			8:00 65,25 0.15		<u> </u>
+			9100 65.45 0.30][
Ē			11:00 (6.15 U.H.D		
	Remarks:	Remarks:	Remarks: (6.55 0.40	Remarks:	
ļ			13:00 65.90 0.75		² ² [−]
			14:00 60.49 0.99		
ł			15:00 68.70 0.60		
			16:00 69.40 0.70		
			18:00 10.20 0.80	}	
			14200 71.20 1.00		
					Tape/Rule No.

: . .

.

•

GEOMATRIX Project: PETCR COPPER Location: GOWANDA, N	P 2 Site: V Ground	PRESSURE TEST REPO	DRT 	Page of Boring No.: $Mw - 4D2$ Top of Rock: Depth:
Contractor: <u>Normunal</u> Water Level: Depth <u>13-75</u> Flow Meter No. <u>509861</u>	G Driller: Elevation: Pressure Gauge No.:	Next 5 rop- Water Pipe Length Test Interval: Dep	Inspector: <u>75/</u> :	Chek'd By: Water Pipe I.D.: Elevation:
Gauge Pressure: 18 Packer Infl't'n Press.: 225 Elapsed Flow Δ Time Reading Flow (min.) (gallons) Flow \bigcirc 739.540 Δ \bigcirc 739.540 Δ \bigcirc 739.540 Δ \bigcirc 739.540 Δ \bigcirc 53.590 0.05 \bigcirc 53.590 0.05 \bigcirc $53.95.90$ 0.05 \bigcirc $53.95.90$ 0.05 \bigcirc $53.95.90$ 0.05 \bigcirc $53.95.95$ 0 \bigcirc $$	Gauge Pressure: 30 Packer Infl't'n Press.: 225 Elapsed Flow Δ Time Reading Flow (min.) (gallons) ∂ ∂ 58866.00 ∂ ∂ :30 66.00 ∂ $2:0^{2}$ 66.00 ∂ $2:0^{2}$ 66.00 ∂ $3!^{\circ}\Delta$ 66.05 ∂ $5!^{\circ}\Delta$ 66.05 ∂ $5!^{\circ}\Delta$ 66.05 ∂ $5!^{\circ}\Delta$ 66.05 ∂ $5!^{\circ}\Delta$ 66.05 ∂ $5!^{\circ}\Delta$ 66.05 ∂	Gauge Pressure: 50 Packer Infl't'n Press.:ElapsedFlow Δ TimeReading (min.)flow(min.)(gations) 0.05 0.30 $$	Gauge Pressure: Packer Infl't'n Press.: Elapsed Flow Time Reading (min.) (gallons)	Test Configuration
Remarks:	Remarks:	Remarks:	Remarks:	SINGLE DOUBI.E Tape/Rule No.

J5.5- 12. 1 .

...

301505

1

•

GEOMATRIX	

PRESSURE TEST REPORT

Page	 oſ

Location: Gova ON Ground			J Elev.: Total Depth:			Top of Rock: Depth:				
Contractor: NOTHDAG		Driller	NAC 1	Neter D	ine Length	_ inspecto	r: <u> </u>	Weter D		
vater Level; Depth	EI			Test Inte	me Length	. 18.3	2'0/5	Flouotion	ne 1.D.:	
10w Meter No.	_ Pressure Gau	ge 140.:			rvai: Dep		7 100/	LICVALIO	n:	
auge Pressure: LU	Gauge Pressur	e: 40	Gauge P	ressure:	50 "50	Gauge Pi	ressure: 🗩	55	Test Configurati	ion
acker Infl't'n Press.: 225	Packer Infl't'n	Press.: 221	Packer I	nfl't'n Press.:	329	Packer Ir	nfl't'n Press.:			\bigcirc
apsed Flow A	Elapsed F	low A	Elapsed	Flow	Δ	Elapsed	Flow	^		
Time Reading Flow	Time Rea	ading Flow	Time	Reading	Flow	Time	Reading	Flow	"-T-7888	0,0000
(min.) (gallons)	(min.) (ga	llons)	(min.)	(gallons)		(min.)	(gallons)			
0 67 68 6	0 586	× 25	0:20	5006	0.05	N'30	10 cc	0.05		
104 52.95 0	1:06 5	4 30	1:00	SUSD	0.05	1100	(9.6)-	0.05		
104 53.95 0	1170 50	1.30	- 2:00	54.59	0.05	1:33	6875	0.15	E CK	⊻ -
100 : 53.95	2:00 .5	Y. 35	- 3:00	54.60	0.05	2:00	68.85	0.10		ll ru
	2:30 5	4.35	4100	54.70	0.10	2:10	68,95-	0.10		28
50 . 77.95	3104 5	4.35	5100	54.90	0.20	7:00	69.05-	0,10		
	3:10 . 5	1.35	6:00	55.00	<u> </u>	3:10	69.15-	0,0		
	4100	1.35	- 7''	55.15	0.10	4:36	69.30-	0,1		
	5	. 35	- 8:00	55.30	0.15	5,00	69.40-	0.10	1-1-30K	731
			- 10:1%	55.45	0	10.00	69.55	0.15		
			15.	57.47	J	7100	69.70	0.15		
emarks [.]	Remarks:		Remarks	<u>, 77.95</u>		Remarks	67.07			93
	Nonial (3)	•		1		CIOU	70.05	0.20		100 yc
98 1			TLaur	16/6K C		10:00	70.30	0.25	+- [ጣ" —
			CLEAN	out Me	CTER.	11:06	70.55	0.25		×
			+ 78	Y BOA	IN.	12:00	70.85	0.30		XXX
						13100	71.10	U .25		
			ļ			14:00	71.40	0.76	'	,
						15'02	סך.וך	0.30	SINGLE	
			ľ			16:05	72.60	0.70		
			Ł			00151	72.30	0.70	Tape/Rule No.	
0 -1	······································					18:00	72.65	0.35		
· /ma= (30.5-1275) x.	2.3:40.8					19100	72.99	0.30	ω <i>[[~ (</i>	
	· •					20:00	72.25	0.30	u/L@ \$10=	11.65 NO C

GE	OMATE				P	RESSUI	RE TES	T REPO	RT			Pag	ge of	
roject:	PETER	Compe			Site:				Date: <u>](</u>	102/00	_ Boring I	No.: <u>MW.41</u>)7	
ocation.	:	- <u>-</u>			Ground	Elev.:		Total De	epth:	·	Topof	Rock: Depth: _		-
Contract	lor: <u>1966</u>	40 - 201			Driller:	151. Iu.:			Inspecto	r:		_ Chek'd By:		
Vater L	evel: Deptl	n 12.74	<u>e 1043</u>	_ Elevation	n:		Water P	ipe Length	:	30	_ Water F	Pipe I.D.:		
'low Me	ter No. <u>5</u>	8853.6	_ Pressure	e Gauge No.	:		_ Test Inte	erval: Depi	lh: <u>33</u>	00 B65	_ Elevatio	n:		
auge Pr	essure: 15		Gauge P	ressure: <u></u>	Ú	Gauge P	ressure:		Gauge Pr	essure:		Test Configu	uration	
acker In	fl't'n Press.:	150225	Packer I	nfl't'n Press.:	225	Packer In	nfl't'n Press.	:	Packer In	fl't'n Press.:			\bigcirc	
lapsed	Flow		Elapsed	Flow		Elapsed	Flow		Elapsed	Flow		1	<u> </u>	
Time	Reading		Time	Reading	Δ Flow	Time	Reading		Time	Reading				
mín.)	(gallons)	FIUW	(min.)	(gallons)	LIOM	(min.)	(gallons)		(min.)	(gallons)			Я∥;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;	
	78833.6			58853.65	0									39
1:00		D	1:04	580 11.07	0	·								
2:07)	- 53.65	0	2:00		<u>0</u>							19 e	≚	لہ
:00		0	3.00		0			}						-
	53.65	Ö	4100	57.65	<u>し</u>								-	
5:00	- · · · · · · · · · · · · · · · · · · ·													
i.														
												<u>¥ ¥</u>		ļ
			. <u></u>							{				9
		e national 1531015. gadag taser 15								[na na jini kata kuna ka a sa sa sa sa sa sa sa sa sa sa sa sa			1
emarks:			Remarks	لــــــــــــــــــــــــــــــــــــ	hannin hann a liga karannin aanna 1	Remarks:		kinen olas in failandii (1997) (1	Remarks:	<i>[</i>	en der Ablick and die en die Bed			
												4 € 4	. 40' -	
												6"		
											· · ·		XXXX - 4	0.5
												;	- u"	
									ŀ			SINGLE		
		1												
			L			L		Í				Tape/Rule No.		

W129.3 1wr (37,5-12,50 x 2.3

PROJECT INFORMATION

Company: <u>Geomatrix</u> Client: <u>Peter Cooper PRP</u> Project: <u>005771.001 Task A</u> Test Location: <u>Gowanda, NY</u> Test Date: <u>10/30/00</u>

AQUIFER DATA

Saturated Thickness: 5. ft

Aniastrony Datis (

Anisotropy Ratio (Kz/Kr): <u>1.</u>

WELL DATA (MW-2DR)

Initial Displacement: <u>1.5</u> ft Casing Radius: <u>0.0833</u> ft Screen Length: <u>5.</u> ft Water Column Height: <u>10.</u> ft Wellbore Radius: <u>0.1666</u> ft Gravel Pack Porosity: <u>0.33</u>

SOLUTION

Aquifer Model: Confined

K = 0.001231 cm/sec

Solution Method: Bouwer-Rice

y0 = 1.435 ft

K = 0.0006562 cm/sec

Solution Method: Bouwer-Rice

y0 = 0.7462 ft

 Data Set:
 I:\Project\005771 PRP Group Peter Cooper NPL\working\slug test data\mw4sr.aqt

 Date:
 05/26/01
 Time:
 12:24:39

PROJECT INFORMATION

Company: <u>Geomatrix</u> Client: <u>Peter Cooper PRP</u> Project: <u>005771.001 Task A</u> Test Location: <u>Gowanda, NY</u> Test Date: <u>10/19/00</u>

AQUIFER DATA

Saturated Thickness: 6.5 ft

Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (MW-4SR)

Initial Displacement: <u>1.5</u> ft Casing Radius: <u>0.0833</u> ft Screen Length: <u>4.5</u> ft Water Column Height: <u>6.5</u> ft Wellbore Radius: <u>0.1666</u> ft Gravel Pack Porosity: 0.33

SOLUTION

Aquifer Model: Unconfined

K = 0.0003801 cm/sec

Solution Method: Bouwer-Rice

y0 = 1.685 ft

Initial Displacement: <u>1.5</u> ft Casing Radius: <u>0.0833</u> ft Screen Length: <u>5.</u> ft Water Column Height: <u>12.</u> ft Wellbore Radius: <u>0.1666</u> ft Gravel Pack Porosity: 0.33

SOLUTION

Aquifer Model: Confined

K = 0.0001079 cm/sec

Solution Method: Bouwer-Rice

y0 = 1.777 ft

Saturated Thickness: 10. ft

Anisotropy Ratio (Kz/Kr): <u>1.</u>

WELL DATA (MW-4D2)

Initial Displacement: <u>1.5</u> ft Casing Radius: <u>0.0833</u> ft Screen Length: <u>10.</u> ft Water Column Height: <u>29.</u> ft Wellbore Radius: <u>0.1666</u> ft Gravel Pack Porosity: <u>0.33</u>

SOLUTION

Aquifer Model: Confined

K = 5.547E-06 cm/sec

Solution Method: Bouwer-Rice

y0 = 1.414 ft

WELL TEST ANALYSIS

 Data Set:
 I:\Project\005771 PRP Group Peter Cooper NPL\working\slug test data\mw5d.aqt

 Date:
 05/26/01

 Time:
 12:24:49

PROJECT INFORMATION

Company: <u>Geomatrix</u> Client: <u>Peter Cooper PRP</u> Project: <u>005771.001 Task A</u> Test Location: <u>Gowanda, NY</u> Test Date: <u>10/23/00</u>

AQUIFER DATA

Saturated Thickness: 10. ft

Anisotropy Ratio (Kz/Kr): 1.

Alisotopyi

WELL DATA (MW-5D)

Initial Displacement: <u>1.5</u> ft Casing Radius: <u>0.0833</u> ft Screen Length: <u>10.</u> ft Water Column Height: <u>20.</u> ft Wellbore Radius: <u>0.1666</u> ft Gravel Pack Porosity: <u>0.33</u>

SOLUTION

Aquifer Model: Confined

K = 0.03395 cm/sec

Solution Method: Bouwer-Rice

y0 = 7.724 ft

Initial Displacement: <u>1.5</u> ft Casing Radius: <u>0.0833</u> ft Screen Length: <u>5. ft</u> Water Column Height: <u>9.</u> ft Wellbore Radius: <u>0.1666</u> ft Gravel Pack Porosity: 0.33

SOLUTION

Aquifer Model: Unconfined

K = 0.03329 cm/sec

Solution Method: Bouwer-Rice

y0 = 2.73 ft

PROJECT INFORMATION

Company: <u>Geomatrix</u> Client: <u>Peter Cooper PRP</u> Project: <u>005771.001 Task A</u> Test Location: <u>Gowanda, NY</u> Test Date: <u>10/23/00</u>

AQUIFER DATA

Saturated Thickness: 10. ft

Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (MW-7D)

Initial Displacement: <u>1.5</u> ft Casing Radius: <u>0.0833</u> ft Screen Length: <u>10.</u> ft Water Column Height: <u>15.</u> ft Wellbore Radius: <u>0.1666</u> ft Gravel Pack Porosity: <u>0.33</u>

SOLUTION

Aquifer Model: Confined

K = 0.001342 cm/sec

Solution Method: Bouwer-Rice

y0 = 1.635 ft

 WELL TEST ANALYSIS

 Data Set:
 I:\Project\005771 PRP Group Peter Cooper NPL\working\slug test data\mw8s.aqt

 Date:
 05/26/01

PROJECT INFORMATION

Company: <u>Geomatrix</u> Client: <u>Peter Cooper PRP</u> Project: <u>005771.001 Task A</u> Test Location: <u>Gowanda, NY</u> Test Date: <u>10/23/00</u>

AQUIFER DATA

Saturated Thickness: 8.5 ft

Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (MW-8S)

Initial Displacement: <u>1.5</u> ft Casing Radius: <u>0.0833</u> ft Screen Length: <u>10.</u> ft Water Column Height: <u>8.5</u> ft Wellbore Radius: <u>0.1666</u> ft Gravel Pack Porosity: 0.33

SOLUTION

Aquifer Model: Unconfined

K = 0.001826 cm/sec

Solution Method: Bouwer-Rice

y0 = 0.9522 ft

K = 0.0004131 cm/sec

y0 = 1.828 ft

APPENDIX I Letter dated April 12, 2001 to U.S. EPA Regarding Second Round COPC Selection for the Former Manufacturing Plant Area

338 Harris Hill Road, Suite 201 Williamsville, New York 14221 (716) 565-0624 • FAX (716) 565-0625

April 12, 2001 Project 5976.001

Ms. Sherrel Henry Remedial Project Manager U.S. Environmental Protection Agency 290 Broadway – 20th Floor New York, New York 10007-1866

Subject: Peter Cooper Site – Proposed Target Analytes for the Second Environmental Sample Collection Event Gowanda, New York Administrative Order Index No. CERCLA-02-2000-2014

Dear Ms. Henry:

This letter identifies the proposed Target Analytes for the second environmental sample collection event at the Peter Cooper Site in Gowanda, New York. The selection of the Target Analytes for this sampling event is described in Section 2.3.1 and Section 4.4.1 of the Remedial Investigation/Feasibility Study Work Plan, Inactive Landfill Area (revised March 2000) and Section 2.1.6 and 4.2.10 in the Addendum to Remedial Investigation/Feasibility Study Work Plan Scope of Work to Address the Former Manufacturing Plant Area (revised August 2000) prepared by Benchmark Environmental Engineering and Science, PLLC (Benchmark) and Geomatrix Consultants, Inc. (Geomatrix).

Surface soil, subsurface soil, groundwater, landfill seeps, surface water, and landfill gas samples were collected from the Peter Cooper Site during October and November 2000. At the Former Manufacturing Plant Area, aqueous samples were analyzed for Target Compound List (TCL) Volatile Organic Compounds (VOCs), TCL Semi-Volatile Organic Compounds (SVOCs), and Target Analyte List (TAL) Metals (including hexavalent chromium). Aqueous samples collected from the Inactive Landfill Area were analyzed for select petroleum aromatic hydrocarbons, acid extractable SVOCs, arsenic, chromium, hexavalent chromium, and zinc. Samples collected from both areas were also analyzed for select water quality parameters. Sampling was conducted in accordance with the Field Operating Procedures (FOPs) of the Quality Assurance Project Plan (QAPP), prepared by Benchmark and Geomatrix, revised August 2000. Groundwater split samples were collected by TAMS at monitoring well locations MWFP-2D, MWFP-3S, MWFP-3D, MW-3R, and MW-6.

Sample results were validated by a third party certified data validator (Data Validation Services). The validated analytical results for the first round of comprehensive sampling were submitted to the United States Environmental Protection Agency (USEPA) as part of the February 15, 2001 Progress Report.

The validated analytical results were used in the Pathways Analysis Report (PAR), submitted March 2, 2001 that presented the approach to the Human Health Risk Assessment (HHRA) and

Geomatrix Consultants, Inc.

Engineers, Geologists, and Environmental Scientists

the Ecological Risk Assessment (ERA). As part of that approach, the site characteristics and analytical data were evaluated to identify Chemicals of Potential Concern (COPCs) for evaluation of potential risk.

The HHRA COPCs for the Peter Cooper Site were identified for each environmental medium by comparing detected concentrations to risk-based screening criteria. A chemical was selected as a COPC if the maximum detected concentration exceeded its respective risk-based screening criterion or if the maximum reporting limit exceeded the criterion. Risk-based screening criterion for soil samples were compared to USEPA Region 9 Preliminary Remediation Goals (PRGs) for industrial land use while groundwater samples (overburden and bedrock) were compared to USEPA Region 9 PRGs for tap water. The comparisons are presented in RAGS Part D tables for surface soil, subsurface soil, and groundwater.

The COPCs identified in the PAR have been selected as proposed Target Analytes for the second groundwater sampling event within the Former Manufacturing Plant Area. The Target Analytes for the Inactive Landfill Area (groundwater and seeps) were defined in a September 28, 2000 letter to the USEPA and will remain the same for the second sampling event. The COPCs for surface water samples have been revised to include the Target Analytes of the Inactive Landfill Area and the Target Analytes of the Former Manufacturing Plant Area. The proposed revised Analytical Program Summary for media to be sampled during the second sampling event is attached to this letter.

Upon USEPA approval, the revised Analytical Program Summary will be used in the second groundwater and surface water sampling event. We have tentatively scheduled this sampling event for the week of April 30, 2001 to collect samples during a high water table condition.

Please contact either of the undersigned if you have questions.

Sincerely yours, GEOMATRIX CONSULTANTS, INC.

Richard H. Frappa, P.G. Senior Hydrogeologist

P:\Project\005771 PRP Group Peter Cooper NPL\letters\COPCs plant area

Enclosure

cc: J. Wittenborn (Collier Shannon) K. McMahon (Collier Shannon) S. Davis (Huber Lawrence) G. Shanahan (USEPA) BENCHMARK ENVIRONMENTAL ENGINEERING & SCIENCE, PLLC

Mr. Duyn for

Thomas H. Forbes, P.E Project Manager

M. Graham (Phillips Lytle) K. Hogan (Phillips Lytle) J. Simone (NYSEG)

ANALYTICAL PROGRAM SUMMARY PROPOSED SECOND SAMPLING EVENT TARGET ANALYTES

Peter Cooper Site Gowanda, New York

Former Manufacturing	Inactive	Cattaraugus	Inactive
Plant Area	Landfill Area	Creek	Landfill
Groundwater	Groundwater/Seeps	Surface Water	Gas ⁽¹⁾
Benzene	Benzene	Benzene	Total VOCs
Carbon Tetrachloride	Ethylbenzene	Ethylbenzene	Hydrogen Sulfide
Chloroform	Toluene	Toluene	Methane
Tetrachloroethene	Total Xylene	Total Xylene	Carbon Monoxide
Trichloroethene	Chlorobenzene	Chlorobenzene	Oxygen
Benzo(a)anthracene	1,2-Dichlorobenzene	1,2-Dichlorobenzene	
Benzo(a)pyrene	1,4-Dichlorobenzene	1,4-Dichlorobenzene	
Benzo(b)fluoranthene	Acid extractable SVOCs	Carbon Tetrachloride	
Indeno(1,2,3-cd)pyrene	Arsenic ¹²	Chloroform	
Benzo(a,h)anthracene	Chromium ⁽²⁾	Tetrachloroethene	
Iron ⁽²⁾	Hex. Chromium ⁽²⁾	Trichloroethene	
Manganese ⁽²⁾	Zinc ⁽²⁾	Acid extractable SVOCs	
Lead ⁽²⁾	Iron ⁽²⁾	Benzo(a)anthracene	
Calcium ⁽²⁾	Calcium ⁽²⁾	Benzo(a)pyrene	
Potassium ⁽²⁾	Potassium ⁽²⁾	Benzo(b)fluoranthene	
Magnesium ⁽²⁾	Magnesium ⁽²⁾	Indeno(1,2,3-cd)pyrene	
Sodium ⁽²⁾	Sodium ⁽²⁾	Benzo(a,h)anthracene	
Alk (bi-carb)	Alkalinity	Arsenic ⁽²⁾	
Alk (carb)	Alk (bi-carb)	Chromium ⁽²⁾	
Chloride	Alk (carb)	Hex. Chromium ⁽²⁾	
Sulfate	Ammonia	Zinc ⁽²⁾	
DOC	Chloride	Iron ⁽²⁾	
Sulfide	DOC	Manganese ⁽²⁾	
Ferrous Iron ⁽³⁾	Nitrate	Lead ⁽²⁾	
TDS	Sulfate	Calcium ⁽²⁾	
TOC	Sulfide	Potassium ⁽²⁾	
Field Measured Parameters ⁽⁴⁾	Ferrous Iron ⁽³⁾	Magnesium ⁽²⁾	
	TKN	Alkalinity	
	TOC	Alk (bi-carb)	
	Field Measured Parameters ⁽⁴⁾	Alk (carb)	
		Chloride	
		Total Hardness	
		Nitrate	
1		Sultate	
		Suilide	
		TKN	
1		TSS	
		TOC	
		DOC	
		Ferrous Iron ⁽³⁾	
ł		Ammonia	
		Field Measured Parameters ⁽⁴⁾	

Notes:

- 1. Landfill Gas to be field screened with hand held insturments.
- 2. Metals analysis will be for Total metals when field measured turbidity is less than 50 NTU, metals analysis will be for Soluble metals when field measured turbidity is greater than 50 NTU.
- Ferrous iron analysis will be conducted in the field. Ten percent (10%) of the total number of ferrous iron samples will be submitted to the laboratory for assessment of precision and accuracy.
- Field measured parameters for aqueous samples include: pH, specific conductance, oxidation-reduction potential, temperature, dissolved oxygen, turbidity, and ferrous iron.

VOCs = Volatile Organic Compounds

SVOCs = Semi-Volatile Organic Compounds DOC = Dissolved Organic Carbon TDS = Total Dissolved Solids

TOC = Total Organic Carbon

TKN = Total Kjeklahl Nitrogen TSS = Total Suspended Solids Alk (bi-carb) = Bi-carbonate Alkalinity Alk (carb) = Carbonate Alkalinity

APPENDIX J

301533

---- ----

APPENDIX J QA/QC Variance Log

. .

.

Variance Log Updated: October 2000 Peter Cooper Site RI/FS – Gowanda, New York

Geomatrix elected to perform the following variances from the scope, methods, or procedures designated in the RI/FS Work Plan, Addendum, and/or Quality Assurance Plan, based on field conditions or new information. These variances are not anticipated to negatively impact project objectives and were performed in accordance with EPA contractor oversite (TAMS) concurrence.

- Monitoring well cluster MWFP-1 was to be installed at the former manufacturing plant area and include a shallow well (monitoring the overburden groundwater) and a deep well (monitoring the shallow bedrock groundwater). Drilling activities at this location showed bedrock to be 4.3 feet below ground surface. Since the overburden material was dry and too shallow to install a typical monitoring well, the shallow well was not installed at this location.
- 2) Three groundwater wells (MW-4D2, MW-7S, and MW-8D) exhibited extremely slow recharge rates during development. After purging these groundwater wells, recovery to static conditions can require in excess of 24 hours. These wells were pumped and/or bailed dry many times (over several days) during the well development program. Due to the slow recharge at these wells, the water quality stabilization and volume requirements as stipulated in SOP 23 of the QAPP (stabilization of water quality parameters, turbidity at 5 NTUs, and removal of 10 well volumes) were not achievable. These wells are considered fully developed for the following reasons:

a.) During the development program, the water in well MW-4D2 was completely evacuated on four separate occasions between October 19 and October 23, removing 15.5 gallons of water, or approximately 3 well casing volumes. In addition, 50 gallons of water were removed prior to installing the PVC screen and riser pipe on October 10 to remove sediment in the open corehole and any water injected during the pressure packer testing. Turbidity values remained high most likely because a bailer was used to purge the water column, which continuously surged the water column. The other measured water quality parameters were somewhat variable, depending on the amount of time the water column had been allowed to recover between purges, but were not indicative of continuous change in groundwater quality. Therefore representative formation water was being purged. Initial turbidities were much lower than those measured after purging the well, therefore a non-turbid groundwater sample will be possible, provided the water column is allowed to settle after purging.

b.) Well MW-7S was completely evacuated on 6 separate occasions between October 18 and October 23, with approximately 7.5 gallons being removed, or approximately 9 well volumes being removed. As with MW-4D2, a bailer was used for much of the purging, and is reflected in the turbidity measurements. Initial turbidity values were low and increased continuously as the well was surged with the bailer. Other water quality parameters were also somewhat variable, depending on the amount of time the water column had been allowed to

Variance Log Updated: October 2000 Peter Cooper Site RI/FS – Gowanda, New York

recover between purges, but were not indicative of a continuous change in groundwater quality. Therefore representative formation water was being purged. The final groundwater appearance was clear with a pale yellowish-brown color. As this is an overburden well, no drill water was added during installation. The water color and turbidity are not a result of suspended sediments, but of representative formation water at this location.

c.) Well MW-8D was completely evacuated on 7 separate occasions between October 19 and October 23, with approximately 20 gallons being removed, or 3.5 well volumes being removed. The initial water quality was very silty, with a pH of 10.76, indicating the potential for grout influence in the well. The rock core at this location showed several silt and clay zones throughout the cored interval, indicating potential preferential pathways for grout migration. Low pumping rates during development to evacuate the borehole resulted in decreasing groundwater pH measurements that stabilized for a substantial time period after the initial water column was removed. Lower turbidity and pH values were obtained after development. It was agreed upon with TAMS personnel that allowing the water column to recover with settling of suspended fines in the water column during sampling would allow a representative groundwater sample to be obtained during groundwater sampling.

APPENUIX R

÷

Ĉ

APPENDIX K RI Laboratory Analytical Data Validation Reports

January 12, 2001 Data Validation Report
Data Validation Services

120 Cobble Creek Road P. O. Box 208 North Creek, N. Y. 12853 Phone 518-251-4429 Facsimile 518-251-4428

January 12, 2001

Jennifer Hagen Geomatrix Consultants 336 Harris Hill Rd. Williamsville, NY 14221

RE: Validation of Peter Cooper Site Data Packages CAS SDG Nos. 0030, 0070, and 0083 Performance Analytical Inc. data package report date 11-13-00

Dear Ms. Hagen:

Review has been completed for the data packages generated by Columbia Analytical Services and Performance Analytical Inc. pertaining to samples collected at the Peter Cooper site October 10, 2000 through October 19, 2000. Forty four soil samples were analyzed for arsenic, chromium, zinc, TOC, and hexavalent chromium. All but two of these, and three additional soil samples, were processed for site-specific volatiles. Soil matrix spikes/duplicates were also processed. Methodologies utilized are those of the USEPA SW846. Four air samples were processed for four gases and TCL volatiles by USEPA TO-14A.

Data validation was performed with guidance from the most current editions of the USEPA CLP National Functional Guidelines for Organic and Inorganic Data Review and the USEPA Region 2 SOPs HW-2 and HW-6. The following items were reviewed:

- * Data Completeness
- Custody Documentation
- Holding Times
- * Surrogate and Internal Standard Recoveries
- Matrix Spike Recoveries/Duplicate Correlations
- * Field Duplicate Correlation
- Preparation/Calibration Blanks
- * Control Spike/Laboratory Control Samples
- * Instrumental Tunes
- Calibration Standards
- Instrument IDLs
- * Method Compliance
- Sample Result Verification

Pg. 2/3

Those items showing deficiencies are discussed in the following sections of this report. All others were found to be acceptable as outlined in the above-mentioned validation procedures, and as applicable for the methodology. Unless noted specifically in the following text, reported results are substantiated by the raw data, and generated in compliance with protocol requirements.

In summary, most results for volatile analytes are qualified as estimated in value due to low surrogate standard and/or internal standard recovery. Two volatiles analytes in two samples, and four in another are rejected due to the severity of the low recoveries. No qualifications are required for volatiles in air, metals, or TOC. Results for hexavalent chromium in eleven samples are qualified as estimated due to matrix. These issues are discussed in the following analytical sections. The laboratory procedure of utilizing only the sample suffixes for the client ID is also followed within this report.

Attached to this narrative are copies of laboratory case narratives. Also included in this submission are red-ink edited client results tables, reflecting validation qualifiers.

General

Sample 0068 and its matrix spikes were added to the chain of custody following laboratory receipt.

Volatile Analyses by EPA 8260

Most samples produced low surrogate BFB recoveries, and some showed outlying recoveries for one or both of the other surrogates. The low surrogate recovery indicates that all reported detected values and reporting limits for the affected samples be considered quantitatively estimated (qualifiers "J" and "UJ"). Many of those samples also exhibited low responses for one or more of the internal standards. The outliers occured with multiple analyses of the samples. In most cases, the recoveries were, although low, high enough that the level of bias of the reported values and limits is not extreme. However, there were three samples which showed sufficiently low internal standard responses that certain of the reported analyte results are rejected, and not usable. In summary, results for **all** sample results **except** the following are to be qualified as estimated. The following are also qualified as indicated:

- 1. 0054, 0061, 0062, and 0071 for whom no qualification is required
- 2. 0047, 0065, and 0066 -only results for 1,2-dichlorobenzene and 1,4-dichlorobenzene are to be qualified as estimated
- 3. 0064 and 0084--results for 1,2-dichlorobenzene and 1,4-dichlorobenzene are rejected ("R"); other analyte results are estimated.

Most low surrogate recoveries were above 45%. Instrument sensitivity and reported MDL values, which are generally orders of magnitude below the reporting limits used for the project, indicate good sensitivity. Although many nondetected results of these project samples are qualified as estimated (indicating uncertainty of detection at those concentrations), the instrument sensitivity shows that if the analytes were present at the reporting limits, some low level detection would probably been observed in many cases.

Holding times, instrumental tunes, and blank responses were within required limits. Calibration standard responses were within action guidelines, or pertained to analyte values already qualified.

pg. 3/3

Matrix spikes of site-specific volatiles in samples 0047 and 0068 showed acceptable accuracy and precision. Spiked blank recoveries were also acceptable.

Field duplicate correlations for 0052 and 0053 were acceptable.

Volatile Analyses by TO-14

Holding times and instrumental performance were acceptable. Calibration standards met protocol/validation requirements.

Lab duplicates of 0082 (gases) and 0080 (TCL list) showed good correlation. Matrix spike evaluations are not applicable. Spiked control recoveries were acceptable.

Preliminary confirmation of detected analyte identifications is based, for this review, upon chromatographic retention time, software spectral fit values, and analyst evaluation.

Metals Analyses

Accuracy and precision evaluations were performed on 0047 and 0068, and showed acceptable recoveries and duplicate correlations. ICP serial dilution evaluations of the same samples showed no matrix effect resulting in qualification.

Field duplicate correlations for 0052 and 0053, and for 0063 and 0069 were acceptable.

Processing was compliant, and sample reported results are substantiated by the raw data.

Hexavalent Chromium and TOC Analyses

Holding times met method requirements. The reanalysis result for each sample was used, due to a processing error in the initial analysis.

Accuracy and precision for 0047 was acceptable. The recovery for the matrix spike of 0068 was low, at 21%. The reporting limits for the associated samples (SDG 070) are qualified estimated ("J" and "UJ"). Field duplicate correlations for 0052 and 0053, and for 0063 and 0069 were acceptable.

Please do not hesitate to contact me if questions or comments arise during your review of this report.

Very truly yours,

Judy Harry

بالمراجع المعقها والمعاقب

			water and the second second second second second second second second second second second second second second	and the second s	The second second second second second second second second second second second second second second second s		where the second second second second second second second second second second second second second second se	and the second second second second second second second second second second second second second second second
SDG #: 0030		BATCH C	OMPLETE:yes		DATE REV	ISED:		
SUBMISSIO	R2004209	DISKETTI	E REQUESTED: Y N	•	DATE DUE	:11/08/00		
CLIENT:	Geomatrix Consultants Inc.	DATE: 10/	/12/00		PROTOCO	L: SW846		
CLIENT REP:	Janice Jaeger	CUSTOD	Y SEAL: PRESENT/ABSENT:		SHIPPING	No.:		
PROJECT:	PETER COOPER SITE	CHAIN OI	F CUSTODY: PRESENT/ABSEN1	r <u>:</u>				
CAS JOB #	CLIENT/EPA ID	MATRIX	REQUESTED PARAMETERS	DATE	DATE	pН	%	REMARKS
······				SAMPLE	RECEIVE	(SOLIDS)	SOLIDS	AMPLE CONDITIO
415296QC	0047	SOIL	8260,CR6,TOC,AS,CR,ZN	10/10/00	10/11/00			
415297	0048	SOIL	8260,CR6,TOC,AS,CR,ZN	10/10/00	10/11/00			
415298	0049	SOIL	826U,CR6,TOC,AS,CR,ZN	10/10/00	10/11/00			
415299	0050	SOIL	8260,CR6,TOC,AS,CR,ZN	10/10/00	10/11/00			
415300	0051	SOIL	8260,CR6,TOC,AS,CR,ZN	10/10/00	10/11/00			
415301	0052	SOIL	8260,CR6,TOC,AS,CR,ZN	10/10/00	10/11/00			
415302	0053	SOIL	8260, CR6, TOC, AS, CR, ZN	10/10/00	10/11/00			
415303	0054	SOIL	8260,CR6,TOC,AS,CR,ZN	10/10/00	10/11/00			1
415304	0055	SOIL	8260,CR6,TOC,AS,CR,ZN	10/10/00	10/11/00			. 1
415305	0056	SOIL	8260,CR6,TOC,AS,CR,ZN	10/10/00	10/11/00			
415306	0057	SOIL	8260,CR6,TOC,AS,CR,ZN	10/10/00	10/11/00			
415307	0030	SOIL	8260,CR6,TOC,AS,CR,ZN	10/10/00	10/11/00			
415308	0058	SOIL	8260,CR6,TOC,AS,CR,ZN	10/10/00	10/11/00			
415309	0059	SOIL	8260,CR6,TOC,AS,CR,ZN	10/10/00	10/11/00			
415310	0060	SOIL	8260,CR6,TOC,AS,CR,ZN	10/10/00	10/11/00			
415311	0061	SOIL	8260,CR6,TOC,AS,CR,ZN	10/10/00	10/11/00			
415312	0062	SOIL	8260, CR6, TOC, AS, CR, ZN	10/10/00	10/11/00			
415313	0063	SOIL	8260,CR6,TOC,AS,CR,ZN	10/10/00	10/11/00			
415314	0064	SOIL	8260,CR6,TOC,AS,CR,ZN	10/10/00	10/11/00			
415315	0065	SOIL	8260, CR6, TOC, AS, CR, ZN	10/10/00	10/11/00			
415316	0066	SOIL	8260,CR6,TOC,AS,CR,ZN	10/11/00	10/11/00			
415317	0067	SOIL	8260, CR6, TOC, AS, CR, ZN	10/11/00	10/11/00			
415318	0069	SOIL	-8260, CR6, TOC, AS, CR, ZN	10/11/00	10/11/00	1		
							1	
]		•				1	
	[1	
· · · · · · · · · · · · · · · · · · ·	1	1		1	1	1	1	-

.

.

	SDG #: 007	0	BATCH CC	MPLETE: Ves		DATE REVI	SED:		
Щİ	SUBMISSION	R2004215	DISKETTE	REQUESTED: Y N X		DATE DUE:	11/2/00		и Г
.₩	CLIENT:	Geomatrix Consultants Inc.	DATE: 10	0/25/00		PROTOCOL	SW-846		C
	CLIENT REP:	Janice Jaeger	CUSTODY	SEAL: PRESENT/ABSENT:		SHIPPING	No.:		· ·
	PROJECT :	PETER COOPER SITE	CHAIN OF	CUSTODY: PRESENT/ABSENT:					
	CAS JOB #	CLIENT/EPA ID	MATRIX	REQUESTED PARAMETERS	DATE	DATE	На	÷	REMARKS
1				······································	SAMPLED	RECEIVED	(SOLIDS	SOLIDS	SAMPLE CONDITION
;	415528	0070	SOIL	See Below*	10/11/00	10/12/00			
Í	415529	0071	SOIL	See Below*	10/11/00	10/12/00			
>//	415530	0072	SOIL	See Below*	10/11/00	10/12/00		· · · · ·	
Щ.	415531	0073	SOIL	See Below*	10/11/00	10/12/00			
7	415532	0074	SOIL	See Below*	10/11/00	10/12/00			
Ê.	415533	0075	SOIL	See Below*	10/11/00	10/12/00			
₩ Į	415534	0076	SOIL	See Below*	10/11/00	10/12/00			
H	415535	0077	SOIL	See Below*	10/11/00	10/12/00			
¥.	41565526	0068	SOIL	See Below* QC	10/11/00	10/12/00			
⊲	415802	0078 -	SOIL	See Below*	10/12/00	10/13/00			
A	415803	0031	SOIL	See Below*	10/12/00	10/13/00			
					1				
1					1				
- L				*% Sol, Cr+6, TOC (WB), pH					
Ļ				As (LL), Cr, ZN,	T				
Ļ				8260 -special list					
Ļ									
Ļ				REPORT to CRQL's					
		· · · · · · · · · · · · · · · · · · ·		2 WEEK RUSH!					
128									
4									
122									
8									
۳L									
F									
29									
~¦-									
- -								<u> </u>	
ഖ									
13	_ <u> </u>			· · · · · · · · · · · · · · · · · · ·			<u></u>	ļ	
ΞL		•			L	<u> </u>		<u> </u>	
1	Minuin								

415

1

CAS ASP/CLP BATCHING FORM / LOGIN SHEET

SUBMISSION CLIENT: CLIENT REP PROJECT:	I R2004338 Geomatrix Consultants Inc. Janice Jaeger PETER COOPER SITE	BATCH C DISKETT DATE: 10 CUSTOD CHAIN O	OMPLETE: <u>yes</u> E REQUESTED: Y N_x /20/00 Y SEAL: PRESENT/ABSENT: F CUSTODY: PRESENT/ABSEN'	Т:	DATE REVI DATE DUE PROTOCC SHIPPING	SED: : 11/17/00 SW846 No.:		
CAS JOB #	CLIENT/EPA ID	MATRIX	REQUESTED PARAMETERS	DATE SAMPLED	DATE RECEIVED	pH (SOLIDS)	% SOLIDS	REMARKS
417655	0083	SOIL	8260	10/19/00	10/20/00			
417656	0084	SOIL	8260	10/19/00	10/20/00			
417657	0085	SOIL	8260	10/19/00	10/20/00			
······································								
				1				
		_						
·								
				· · · · · · · · · · · · · · · · · · ·				
·								
						+		

-

.

87

PAGE

01/14/2001

301546

CASE NARRATIVE

COMPANY: Geomatrix Consultants, Inc. Peter Cooper Site SUBMISSION #: R2004209

Geomatrix samples were collected on 10/10-11/00 and received at CAS on 10/11/00 in good condition at a cooler temperature of 5 C.

INORGANIC ANALYSIS

Twenty three soil samples were analyzed for Arsenic, Chromium and Zinc by method 6010B from SW-846, TOC by the Walkley Black Titration and Hexavalent Chromium by method 7196.

Job specific QC was performed on 0047 as requested. All MS and Blank Spike recoveries were within limits. All RPD's were within limits.

During the original analysis of Hexavalent Chromium, the Mg+2 in a phosphate buffer was not added to the alkaline extraction solution as requested. The samples were repeated within the recommended holding time with the addition of the buffer, and both sets of data have been reported out.

No other analytical or QC problems were encountered with these analyses.

VOLATILE ORGANICS

Twenty soil samples were analyzed for a site specific list of Volatiles by method 8260 from SW-846.

All Tuning criteria for BFB were met.

All the initial and continuing calibration criteria were met for all analytes.

Many internal standard areas were outside QC limits. All samples were repeated except 0049 and most of internal standards were still outside limits. Most of these replicates were analyzed outside the recommended holding time of 14 days. The contents of 2 encore samplers were placed into 1 low level vial for 0049 and the client resampled this location for 8260 only. All outlying internal standards have been flagged with an "*".

Many surrogate standard recoveries were outside acceptance limits. All samples were repeated except 0049 and many of the surrogates were still outside limits. 0049 could not be repeated for the reason mentioned above.

Job specific QC was performed on 0047 as requested. All MS/MSD's and Reference Spike recoveries were within limits. All RPD's were within limits.

The Laboratory Blanks associated with these analyses were free of contamination.

All samples were analyzed within required holding times except as mentioned above.

No other analytical or QC problems were encountered.

Geomatrix - submission #R2004209 - page 2

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hard copy package has been authorized by the baboratory Manager or his designee, as verified by the following signature.

DATA VALIDATION SERV

CASE NARRATIVE

COMPANY: Geomatrix Consultants, Inc. Peter Cooper Site SUBMISSION #: R2004215

Geomatrix samples were collected on 10/11-12/00 and received at CAS on 10/12-13/00 in good condition at cooler temperatures of 3-6 C.

INORGANIC ANALYSIS

Eleven soil samples were analyzed for Arsenic, Chromium and Zinc by method 6010B from SW-846, TOC by the Walkley Black Titration, pH by method 9045 and Hexavalent Chromium by method 7196.

Job specific QC was performed on sample 0068 as requested. All matrix spike recoveries were within limits except Hexavalent Chromium which has been flagged with an "N". The matrix spike recovery for the repeat Hexavalent chromium analysis done on sample 0077 was within QC limits. All Blank Spike recoveries were within limits. All RPD's were within limits.

During the original analysis of Hexavalent Chromium, the Mg+2 in a phosphate buffer was not added to the alkaline extraction solution as requested. The samples were repeated within the recommended holding time with the addition of the buffer, and both sets of data have been reported out.

No other analytical or QC problems were encountered with these analyses.

VOLATILE ORGANICS

Eleven soil samples were analyzed for a site specific list of Volatiles by method 8260 from SW-846.

All Tuning criteria for BFB were met.

All the initial and continuing calibration criteria were met for all analytes.

Many internal standard areas were outside QC limits. All samples were repeated except 0070 and all of internal standards were still outside limits. All of these replicates were analyzed outside the recommended holding time of 14 days. Sample 0070 was set up on an automated sequence during the evening analytical run. MS failure occurred during the analysis of this sample, therefore no results are available and the vial that contained this sample could not be reanalyzed. The second vial was analyzed but the internal standards could not be confirmed since no sample remained. All outlying internal standards have been flagged with an "*".

Many surrogate standard recoveries were outside acceptance limits. All samples were repeated except 0070 and all of the surrogates were still outside limits. 0070 could not be repeated for the reason mentioned above.

301548

Geomatrix - submission #R2004215 - page 2

Job specific QC was performed on 0068 as requested. All MS/MSD's and Reference Spike recoveries were within limits.

The Laboratory Blanks associated with these analyses were free of contamination.

All samples were analyzed within required holding times except as mentioned above.

No other analytical or QC problems were encountered.

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hard copy package has been authorized by the Laboratory Manager or his designee, as verified by the following signature.

00003

CASE NARRATIVE

COMPANY: Geomatrix Consultants, Inc Peter Cooper Site SUBMISSION #: R2004338 SDG #10083

Geomatrix samples were collected on 10/19/00 and received at CAS on 10/20/00 in good condition.

VOLATILE ORGANICS

Three soil samples were analyzed for the new TCL list of Volatiles by method 8260 from SW-846.

All Tuning criteria for BFB were met.

All the initial and continuing calibration criteria were met for all analytes.

All internal standard areas were within QC limits except 0083, 0084 and 0085. The samples were repeated and again the internal standards were outside limits and have been flagged with an "*".

All surrogate standard recoveries were within acceptance limits for all samples except 0083, 0084 and 0085. The samples were repeated and again the surrogates were outside limits and have been flagged with an "*".

Site specific QC was not requested on these samples. All Reference Spike recoveries were within limits.

The Laboratory Blanks associated with these analyses were free of contamination.

All samples were analyzed within required holding times.

No other analytical or QC problems were encountered.

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in the hard copy package has been authorized by the Laboratory Manager or his designee, as verified by the following signature.

4 Hurtard Streat Suite 250 . Rochester. NY 14609-6925 . Telephone (716) 288-5380 . Fax (716) 288-8475

Performance Analytical Inc. Air Quality Laboratory A Division of Columbia Analytical Services, Inc. An Employee Owned Company

LABORATORY REPORT

"101200079"	"101200080"	"101200081"	"101200082"	
Four (4) Stain	less Steel Summa Canisters lab	beled:		
Client Project	ID: Peter Cooper Site		New York ELAP ID:	11221
Contact:	Mr. Rick Frappa		Purchase Order:	Verbal
	Williamsville, NY 14221		PAI Project No:	P2002780
Address:	338 Harris Hill Road, Suite	201	Date Received:	10/17/00
Client:	GEOMATRIX CONSULT	ANTS, INC.	Date of Report:	11/13/00

The samples were received at the laboratory under chain of custody on October 17, 2000. The samples were received intact. The dates of analyses are indicated on the attached data sheets.

Oxygen/Argon, Nitrogen, Methane and Carbon Dioxide Analysis

The samples were analyzed for Oxygen/Argon, Nitrogen, Methane and Carbon dioxide according to ASTM D1946 using a gas chromatograph equipped with a thermal conductivity detector (TCD).

The results of analyses are given in the attached data package.

Reviewed and Approved:

Ku-Jih Chen Principal Chemist

Reviewed and Approved:

Chris Parnell

Senior Chemist

Performance Analytical Inc.

Air Quality Laboratory A Division of Columbia Analytical Services, Inc. An Employee Owned Company

Volatile Organic Compound Analysis

The samples were analyzed by combined gas chromatography/mass spectrometry (GC/MS) for volatile organic compounds. The analyses were performed according to the methodology outlined in EPA Method TO-14A. The analyses were performed by gas chromatography/mass spectrometry, utilizing a direct cryogenic trapping technique. The analytical system used was comprised of a Hewlett Packard Model 5973 GC/MS/DS interfaced to a Tekmar AutoCan Elite whole air inlet system/cryogenic concentrator. A 100% Dimethylpolysiloxane capillary column (RT_x -1, Restek Corporation, Bellefonte, PA) was used to achieve chromatographic separation.

The edited Form I data sheets from data validation have been submitted to USEPA and NYSDEC under separate cover.

January 20, 2001 Data Validation Report

Data Validation Services

120 Cobble Creek Road P. O. Box 208 North Creek, N. Y. 12853 Phone 518-251-4429 Facsimile 518-251-4428

January 20, 2001

Jennifer Hagen Geomatrix Consultants 336 Harris Hill Rd. Williamsville, NY 14221

RE: Validation of Peter Cooper Site Data Packages CAS SDG Nos. 0020, 0021, 0023, 0086, 0092, 0097, 0102, and 0110

Dear Ms. Hagen:

Review has been completed for the data packages generated by Columbia Analytical Services pertaining to samples collected at the Peter Cooper site October 6, 2000 through November 11, 2000. Soil and aqueous samples were analyzed for various combinations of TCL or site-specific volatiles by EPA 8260B, TCL or acid analytes by EPA 8270C, TAL or site-specific metals by EPA 6000/7000, hexavalent chromium, TOC, and/or water quality parameters. Matrix spikes/duplicates were also processed.

Data validation was performed with guidance from the most current editions of the USEPA CLP National Functional Guidelines for Organic and Inorganic Data Review and the USEPA Region 2 SOPs HW-2 and HW-6. The following items were reviewed:

- * Data Completeness
- Custody Documentation
- * Holding Times
- * Surrogate and Internal Standard Recoveries
- * Matrix Spike Recoveries/Duplicate Correlations
- * Field Duplicate Correlation
- * Preparation/Calibration Blanks
- * Control Spike/Laboratory Control Samples
- * Instrumental Tunes
- * Calibration Standards
- Instrument IDLs
- * Method Compliance
- * Sample Result Verification

Those items showing deficiencies are discussed in the following sections of this report. All others were found to be acceptable as outlined in the above-mentioned validation procedures, and as applicable for the methodology. Unless noted specifically in the following text, reported results are substantiated by the raw data, and generated in compliance with protocol requirements.

In summary, most results for volatile analytes in soil samples are qualified as estimated in value, primarily due to matrix effect. Acid semivolatile compound results for two samples are not usable (also due to matrix), and results for two base/neutral analytes in several samples are also not usable. The hexavalent chromium result for one sample is rejected, and some of the TOC/SOC detections in aqueous samples are considered contamination. Most of the remaining semivolatile, metals, and wet chemistry data are usable as reported, or with qualification as estimated due to matrix effect or processing concerns. These issues are discussed in the following analytical sections. The laboratory procedure of utilizing only the sample suffixes for the client ID is also followed within this report.

Attached to this narrative are copies of laboratory case narratives, and resubmission communications. Also included in this submission are red-ink edited laboratory sample report forms, reflecting validation qualifiers.

Volatile Analyses by EPA 8260

The tops of the Encore samplers received for sample 0029 were off when received (see case narrative for SDG 023). Additionally, the caps for samples 0020, 0021, 0022, 0025, 0026, 0027, and 0028 were loose when received. Due to potential losses, results for all samples noted above except 0029 are considered estimated ("J" and "UJ"), with a possible low bias. Sample 0029 reported low concentrations of five of the eight analytes, and those values should be estimated, considered as potentially having an extreme low bias. The results for the three nondetected analytes in 0029 are rejected ("R"), and not usable.

Some of the soil samples exhibited inconsistent concentrations of several analytes when repeat analyses were performed. These analytes include acetone, 2-butanone, methylacetate, and carbon disulfide. The lab narratives discuss the potential for contribution of ketones from reactions with the preservative used with Encore samplers. Results for these analytes in the samples should be used with caution. Low level acetone values for some samples are considered contamination (discussed below).

Results for analytes initially reported with the "E" flag should be derived from the dilution analysis of the given sample. All other results for the given sample can be used from the initial analysis, unless noted otherwise herein.

The result for tetrachloroethene in 0039, although flagged as "E", should be derived from the initial analysis and qualified estimated. The dilution analysis of that sample followed one from which carryover of that analyte may have occurred.

Most soil samples produced low surrogate BFB recoveries, and some showed outlying recoveries for one or both of the other surrogates. The low surrogate recovery indicates that all reported detected values and reporting limits for the affected samples be considered quantitatively estimated (qualifiers "J" and "UJ"). Many of those samples also exhibited low responses for one or more of the internal standards. The outliers occured with multiple analyses of the samples. In most cases, the recoveries were, although low, high enough that the level of bias of the reported values and limits is not extreme. In summary, results for **all** sample results **except** the following are to be derived from the initial analysis, and qualified as estimated ("J" and "UJ"). The following are also qualified as indicated:

- 1. 0009 -- for whom no qualification is required
- 2. 0012, 0017, 0035 -- results for 1,2-dichlorobenzene, 1,3-dichlorobenzene, 1,4-dichlorobenzene, 1,2,4-trichlorobenzene, 1,1,2,2-tetrachloroethane, and 1,2-dibromo-3-chloropropane are qualified estimated.
- 3. 0016 -- all analyte results estimated, but use the reanalysis preferentially over the initial.
- 4. 0045 -- all results are estimated, and the results for 1,2-dichlorobenzene, 1,3-dichlorobenzene, 1,4-dichlorobenzene, 1,2,4-trichlorobenzene, 1,1,2,2-tetrachloroethane, and 1,2-dibromo-3-chloropropane are to be derived from the reanalysis (which had higher reporting limits).

Most low surrogate recoveries were above 45%. Instrument sensitivity and reported MDL values, which are generally orders of magnitude below the reporting limits used for the project, indicate good sensitivity. Although many nondetected results of these project samples are qualified as estimated (indicating uncertainty of detection at those concentrations), the instrument sensitivity shows that if the analytes were present at the reporting limits, some low level detection would probably been observed in many cases.

Although outlying surrogate recoveries are generally attributed to matrix effect, it is observed that the trip blank (and cancelled field blank) in SDG 023 also showed low BFB recoveries (76%, below 86% aqueous limit, above 74% soil limit).

Due to the lack of available sample for the moisture determinations, the results for samples 0042, 0043, and 0045 were calculated using the solids content of 0046, which is a composite of the three samples. That solids value may not accurately reflect the solids of its components. These sample results are estimated due to matrix, as noted above.

Holding times, instrumental tunes, and blank responses were within required limits. Calibration standard responses were within action guidelines, or pertained to analyte values already qualified, with the following exceptions: bromomethane in all soil samples in SDG 023 methyl acetate detections in soil samples in SDG 023

Matrix spikes of site-specific volatiles in soil sample 0020, and TCL analytes in soil samples 0010, 0038, and 0092 showed acceptable accuracy and precision. Matrix spikes of aqueous sample 0097 were also acceptable. Recoveries for only five matrix spike compounds were reported on the summary forms for those associated with the TCL analyses. Raw data shows most analytes were spiked, and unless noted specifically herein, showed generally acceptable responses. Although reported as nondetection on the Form 1 for the matrix spike duplicate of 0092, raw data shows good response for analyte carbon tetrachloride. Project spiked blank recoveries were also acceptable.

Field duplicate correlations for soil sample sets 0015/00116, 0040/0041 and 0026/0027, and for aqueous sample sets 0088/0089, 0093/0094, and 0098/0099 were acceptable.

Although not detected in the blank associated with 0016, 1,2,4-trichlorobenzene (detected in 0016) was detected in a method blank on another day's analysis. The detection should be regarded with caution. This analyte was also detected in some of the soil sample reanalyses, but not initial analyses.

Weights of samples taken in the Encore samplers often fell below 4.5 grams. This results in elevated reporting limits.

Aqueous samples 0108, 0109, and 0117 were analysed at tenfold dilution, although little matrix interference was noted in the chromatograms. This can result in unnecessarily elevated reporting limits.

Semivolatile Analyses

Holding times, instrumental tunes, and blank responses were within required limits.

There are no usable results for the acid compounds in samples 0089 and 0120 ("R" qualifier) due to failed acid surrogate standard recoveries (below 10%). The samples were reinjected, but could not be reextracted due to limited sample volume. Therefore it is unknown if the failures were matrix or processing related. Base/neutral compound data for 0089 are not affected. The QC summary Form 8 for the reanalysis of 0089 should have shown sample ID of 0089, not 0091.

Due to low recovery of internal standard d12-perylene, results for the following analytes in 0007, 0046, and 0094 should be qualified estimated ("UJ" and "J"); the reanalysis results should be used: di-n-octylphthalate, benzo(b)fluoranthene, benzo(k)fluoranthene, benzo(a)anthracene, dibenz(a,h)anthracene, indeno(1,2,3-cd)pyrene, and benzo(g,h,i)perylene.

Due to failure to recover in the associated QC check samples (spiked blanks), the results for 3-nitroaniline in the soil samples in SDG 021 and SDG 023, and for 3,3'-dichlorobenzidine in those in SDG 023, are rejected ("R"), and not usable.

The result for pentachlorophenol in sample 0046 should have been reported as 6800 ug/kg, as indicated in the raw data. It was reported as nondetection.

Results for analytes initially reported with the "E" flag should be derived from the dilution analysis of the given sample. All other results can be used from the initial analysis.

Matrix spikes of soil sample 0010 showed significant variance between the concentrations of the target analytes detected in the sample itself and the concentrations produced in the matrix spikes. The analytes native to the sample, primarily PAHs, showed concentrations about tenfold higher in the matrix spikes than in the sample itself. The spiking only contributed a small fraction of those responses. This is evidenced by the recovery of pyrene in the matrix spikes (637% and 1350%). The results for the detected analytes in the sample 0010 are therefore qualified estimated, due to possible nonhomgeneity of the sample.

Matrix spikes of aqueous samples 0086 and 0097 produced low recoveries for phenol (16% to 20%) and pentachlorophenol (13% and 15%). Although not qualified, results for these analytes in the samples of similar matrix should be considered as having a possible low bias.

Matrix spikes reported for semivolatiles in soil sample 0092 showed acceptable accuracy and precision.

Recoveries for only nine matrix spike compounds were reported for those samples associated with the TCL analyses. Raw data shows most analytes were spiked, and showed generally good responses, with the exception that 3,3'-dichlorobenzidine did not recover in one of the spikes of 0092. Results for this analyte should be used with caution.

Spiked blank recoveries were also acceptable, with the exceptions of those noted within this report.

Field duplicate correlations for soil sample sets 0015/0016 and 0040/0041, and for aqueous sample sets 0088/0089 and 0098/0099 were acceptable.

Due to copresence in the associated blank, detected results for di-nbutylphthalate in samples in SDG 092 are considered contamination, and edited to nondetection at the CRDL. The presence of phthalates in the other project samples are also suspect.

Calibration standard responses are within action guidelines, or pertaine to analyte values already qualified, with the following exceptions:

- 1. Hexachlorocyclopentadiene reporting limits should be increased by a factor of five in samples in SDG 023 due to poor response in low concentration initial calibration standard (48%RSD, low RRF = 0.035).
- 2. 2,4-dinitrophenol and 4-nitrophenol results in sample 0046 are qualified estimated
- 3. Hexachlorocyclopentadiene and benzaldehyde in samples in SDG 092 are qualified estimated
- 4. 2,4-dinitrophenol in sample 0109 and those in SDG 102 and SDG 110 are qualified estimated

Metals Analyses

Accuracy and precision evaluations were performed for soil samples on 0020, 0010, 0038, and 0092 showed recoveries and duplicate correlations within the validation guidelines, with the following exceptions. Associated sample element results are qualified as estimated:

Sample Spiked	Outlying low recovery	Samples Affected
0020	zinc	all in SDG 020
0010	antimony and lead	all in SDG 021
0038	antimony	all in SDG 023
0092	antimony, arsenic, and silver	all in SDG 092

Accuracy and precision evaluations were performed for aqueous samples on 0097 and 0118 (and on the filtered fraction of a field blank 0113), and showed acceptable recoveries and duplicate correlations.

Some sample exhibited outlying recoveries for post-digest spikes on analytes processed by graphite furnace. Those samples showed no detection for those elements, and no qualification is required.

Due to outlying recoveries of the CRI standards, results for the following sample analytes are qualified estimated, with a possible bias as stated:

chromium in 0026 and 0027, biased high selenium in samples in SDG 023, biased low

ICP serial dilution evaluations of soil samples 0020, 0010, 0038, and 0092 showed no matrix effect resulting in qualification, with the exception of zinc in 0010 and iron in 0038. Zinc results for all samples in SDG 021, and those for iron in the samples in SDG 023, are qualified as estimated.

ICP serial dilution evaluations of aqueous samples 0091, 0097, and 0118 showed no matrix effect resulting in qualification.

It is noted that the evaluation is performed only to the reported project CRDLs. The laboratory reports IDLs (QC summary Form 10) that are equal to CRDLs for many of the data packages. Evaluation to actual lower instrument IDLs, which are not provided with this data, involves a more strict evaluation of matrix effect at low analyte concentrations. As reported, the samples exhibited little matrix effect at elevated concentrations.

Field duplicate correlations for soil sample sets 0040/0041 and 0026/0027, and for aqueous sample sets 0088/0089, 0093/0094, and 0098/0099 were acceptable. The correlations for three metals in the soil samples 0015/0016 exceeded validation criteria of >+-2XCRDL of 100%RPD. Therefore results for calcium, chromium, and mercury in 0015 and 0016 are qualified as estimated. Caution should be used in the evaluation of these elements' data in samples of similar matrix to those field duplicates.

Processing was compliant, and sample reported results are substantiated by the raw data.

Hexavalent Chromium, TOC, and other Wet Chemistry Analyses

Review was conducted for method compliance, holding times, transcription, calculations, standard and blank acceptability, accuracy and precision, etc., as applicable to each procedure. All were acceptable unless noted below.

Holding times met method requirements, with the exception of the following:

- 1. Hexavalent chromium analysis of 0118 was performed at more than four days from collection (holding time is 24 hour). The result for this analyte in the sample is rejected.
- 2. Hexavalent chromium analyses of 0116 and 116-soluble were performed one and twenty two hours past that allowed. Results for this analyte in the two sample are qualified estimated, with a possible low bias.
- 3. Nitrate analyses of samples 0110, 0111, 0112, and 0114. Results for these are qualified as estimated, with a possible low bias. The holding time exceedence was minor (1 to 3.5 hours beyond the 48 hours allowed).

Some soil samples were processed twice for hexavalent chromium, due to a processing error in the initial analysis. The reanalysis results should be used.

The field blank 0113, associated with the aqueous samples, showed detection of TOC above the CRDL (at 2.3 mg/L). Therefore all aqueous sample detections of TOC or SOC at or below 11.5 mg/L

are considered contamination and are edited to nondetection at elevated reporting limits corresponding to the originally reported concentrations.

One sulfide method blank showed response at the CRDL. Associated samples showed no detection of that analyte.

A summary form entry showing a noncompliant elevated method blank response (2.94 mg/L) was not substantiated by raw data. Sample results are associated with compliant blanks.

The hexavalent chromium result for the dissolved fraction of 0116 was slightly above the reporting limit, while that fraction showed no total chromium. Additionally, the unfiltered fraction showed no hexavalent chromium. The result for total and hexavalent chromium in the dissolved fraction are qualified estimated.

Accuracy and precision for hexavalent chromium and TOC, and duplicate correlation for pH and moisture, in soil samples 0020, 0038, and 0092 were all acceptable.

Accuracy and precision for wet chemistry parameters in aqueous sample 0097 were acceptable.

The matrix spike of hexavalent chromium on soil sample 0010 had only 24% recovery. Results for that analyte in the soil samples in SDG 021 are therefore qualified as estimated, with a possible low bias.

The matrix spike for the ferrous iron analysis associated with sample 0108 was low (76%). The result for that analyte in the sample is therefore qualified estimated, with a possible slight low bias.

Field duplicate correlations for soil sample sets 0015/0016 and 0040/0041, and for aqueous sample sets 0088/0089 and 0093/0094 were acceptable. The correlations for TOC in soil samples 0026/0027 showed variance exceeding the validation action limit of >2X+-CRDL. Results for TOC in those two samples are therefore considered estimated, and the end-users of the data should consider that other samples of similar matrix may show variance at low TOC concentrations. Similarly, the Total Suspended Solids contents of aqueous field duplicates 0098/0099 varied by more than +-CRDL, results for that analyte in those two samples are also qualified as estimated, and consideration of this variance should be used when evaluating other samples of similar matrix.

Raw data for the sulfide and hardness analyses of the samples in SDG 097 were not located within that data package, but can be found in SDG 0102.

General

Some of the sample collection custody forms have uninitialed writeovers and strikeovers. All edits should have been dated and initialed.

The case narrative for SDG 0021 should state the receive date of 10/6/00, not 10/11/00.

Please do not hesitate to contact me if questions or comments arise during your review of this report.

Very truly yours,

SDG #: 0020		BATCH C			DATE REV	SED:		
SUBMISSION	R2004153	DISKETT	E REQUESTED: Y NX		DATEDUE	: 11/03/00		
CLIENT:	Geomatrix Consultants Inc.	UATE: 10			PRUTUCO	L: 599846		
CLIENT REP:	Janice Jaeger	CUSTOD	Y SEAL: PRESENT/ABSENT:	-	SHIPPING	NO.:		
PROJECT:	PETER COOPER SITE	CHAIN O	F CUSTODY: PRESENT/ABSENT					
CAS JOB #	CLIENT/EPA ID	MATRIX	REQUESTED PARAMETERS	DATE	DATE	рН	%	REMARKS
			·	SAMPLEL	RECEIVED	(SOLIDS)	SOLIDS	AMPLE CONDITIO
414444QC	10060020	SOIL	8260, TOC, AS, CR, ZN, PH, Ur	<u>10/6/00</u>	10/6/00	· · · · · · · · · · · · · · · · · · ·		
414452	100600021	SOIL	8260,TOC,AS,CR,ZN,PH ,Cr	<u>10/6/00</u>	10/6/00			
414453	100600022	SOIL	8260, TOC, AS, CR, ZN, PH, Cr	<u>, 10/6/00</u>	10/6/00			
								·
L	1 			l				
				ļ			· · · · · · · · · · · · · · · · · · ·	i
				<u> </u>				
				ļ	I		<u> </u>	
				<u> </u>				
					<u> </u>			<u>.</u>
								·
					<u> </u>			
							<u> </u>	
	ſ							
							•	
		1						
		1			1			
		1		1	1			
	<u>}</u>	†		1.	1	1	1	1
÷		+		1	1	1		1
}	<u>}</u>	+		1	1	1		1
		 		1		1	1	
				+	+	<u> </u>	1	1

04 414444

Ls

CAS ASP/CLP BATCHING FORM / LOGIN SHEET

SDG #: 0021		BATCH	COMPLETE:yes		DATE REV	ISED:		
SUBMISSION	R2004151	DISKETT	E REQUESTED: Y Nx		DATE DUE	: 11/03/00		
CLIENT:	Geomatrix Consultants Inc.	DATE: 10)/24/00		PROTOCO	L: SW846		
CLIENT REP:	Janice Jaeger	CUSTOD	Y SEAL: PRESENT/ABSENT:		SHIPPING	No.:		
PROJECT:	PETER COOPER SITE	CHAIN O	F CUSTODY: PRESENT/ABSEN	Γ:				
CAS JOB #	CLIENT/EPA ID	MATRIX	REQUESTED PARAMETERS	DATE	DATE	pН	%	REMARKS
				SAMPLED	RECEIVED	(SOLIDS)	SOLIDS	AMPLE CONDITION
414418	100500006	SOIL	8260,8270,TAL MET,CR6,TOC	10/5/00	10/6/00			
414420	100500007	SOIL	8260,8270,TAL MET,CR6,TOC	10/5/00	10/6/00			
414421	100500008	SOIL	8260,8270,TAL MET,CR6,TOC	10/5/00	10/6/00			
414422	100500009	SOIL	8260,8270,TAL MET,CR6,TOC	10/5/00	10/6/00			
414423QC	100500010	SOIL	8260,8270,TAL MET,CR6,TOC	10/5/00	10/6/00		-	
414424	100500011	SOIL	8260,8270,TAL_MET,CR6,TOC	10/5/00	10/6/00			
414425	100600012	SOIL	8260,8270,TAL MET,CR6,TOC	10/6/00	10/6/00			
414426	100600013	SOIL	8260,8270,TAL MET,CR6,TOC	10/6/00	10/6/00			
414427	100600014	SOIL	8260,8270,TAL MET,CR6,TOC	10/6/00	10/6/00			
414428	100600015	SOIL	8260,8270,TAL MET,CR6,TOC	10/6/00	10/6/00			
414429	100600016	SOIL	8260,8270,TAL MET,CR6,TOC	10/6/00	10/6/00			
414430	100600017	SOIL	8260,8270,TAL MET,CR6,TOC	10/6/00	10/6/00			
414431	100600018	SOIL	8260,8270,TAL MET,CR6,TOC	10/6/00	10/6/00			
414432	100600019	SOIL	8260,8270,TAL MET,CR6,TOC	10/6/00	10/6/00			
414433	100600032	SOIL	8260,8270,TAL MET,CR6,TOC	10/6/00	10/6/00			
414434	100600033	SOIL	8260,8270,TAL MET,CR6,TOC	10/6/00	10/6/00			
414447	100600034	SOIL	8260,8270,TAL MET,CR6,TOC	10/6/00	10/6/00			
414448	100600035	SOIL	8260,8270,TAL MET,CR6,TOC	10/6/00	10/6/00			
414449	100600036	SOIL	8260,8270,TAL MET,CR6,TOC	10/6/00	10/6/00			
414450	100600037	SOIL	8260,8270,TAL MET,CR6,TOC	10/6/00	10/6/00			
	· · · · · · · · · · · · · · · · · · ·							
*	· · · · · · · · · · · · · · · · · · ·							

ł

10/24/00

									+
SDG #: 000	23	BATCH CO	MPLETE:yes	· · _ · _ · _ · _ · · _ · · · · · · · · ·	DATE REVI	SED:			0
SUBMISSION	R2004164	DISKETTE	E REQUESTED: YN_x		DATE DUE:	11/6/00			
CLIENT :	Geomatrix Consultants Inc.	DATE: 06	5/28/00		PROTOCOL:	CLP			
CLIENT REP:	Janice Jaeger	CUSTODY	SEAL: PRESENT/ABSENT:		SHIPPING	No.:			
PROJECT :	PETER COOPER SITE	CHAIN OF	CUSTODY: PRESENT/ABSENT:						
CAS JOB #	CLIENT/EPA ID	MATRIX	REQUESTED PARAMETERS	DATE	DATE	рН	÷	REMA	RKS
				SAMPLED	RECEIVED	(SOLIDS	SOLIDS	SAMPLE C	ONDITION
414653	00023	SOIL	See Below *	10/9/00	10/9/00				
414654	00024	SOIL	See Below *	10/9/00	10/9/00				
414667QL	00038	SOIL	See Below * QC	10/9/00	10/9/00				
414668	00039	SOIL	See Below *	10/9/00	10/9/00				
414669	00040	SOIL	See Below *	10/9/00	10/9/00				
414670	00041	SOIL	See Below *	10/9/00	10/9/00				
414975	0025	SOIL	See Below *	10/9/00	10/10/00				
414976	0026	SOIL	See Below *	10/9/00	10/10/00				
414977	0027	SOIL	See Below *	10/9/00	10/10/00				
414978	0042	SOIL	See Below *	10/9/00	10/10/00				
414979	0043	SOIL	See Below *	10/9/00	10/10/00		[**************************************
414980	0044	WATER	See Below *	10/9/00	10/10/00		[[
414981	TRIP BLANK	WATER	See Below *	10/9/00	10/10/00	1	1		
414982	0045	SOIL	See Below *	10/9/00	10/10/00		T		
414983	0046	SOIL	See Below *	10/9/00	10/10/00			1	·
414984	0028	SOIL	See Below *	10/10/00	10/10/00			T	·····
414985	0029	SOIL	See Below *	10/10/00	10/10/00			1	
			* %Sol, Cr=6, TOC (WB), pH					T	
			As (LL), CR, Zn,	[
<i>i</i>			B260 - Special list, update	1			1.		
		1	Report to CLP PQL's	[1		1	1	
		1	Some have new CLP list		1		1	1	
		1				1	1	1	
		1		1	1	1			·····
						1	1		
		1		1	1	1	1	1	** <u>****</u> ***
		1		1	1		1	1	- <u></u> ,
J	1	1		1	1		1		
		1							

10/25/00

BATC

.XLS

301564

;

CAS ASP/CLP BATCHING FORM / LOGIN SHEET

SDG #: 0086		BATCH C	COMPLETE: yes		DATE REV	ISED:		
SUBMISSION	R2004604	DISKETT	E REQUESTED: Y NX		DATE DUE	: 12/05/00		
CLIENT:	Geomatrix Consultants Inc.	DATE: 11	/13/00		PROTOCO	L: SW846		
CLIENT REP:	Janice Jaeger	CUSTOD	Y SEAL: PRESENT/ABSENT:		SHIPPING	No.:		
PROJECT:	PETER COOPER SITE - PROJEC	CHAIN O	F CUSTODY: PRESENT/ABSENT	-				
CAS JOB #	CLIENT/EPA ID	MATRIX	REQUESTED PARAMETERS	DATE	DATE	pН	%	REMARKS
				SAMPLED	RECEIVED	(SOLIDS)	SOLIDS	AMPLE CONDITION
422386	0086	WATER	8260,8270,TAL MET,WET*	11/6/00	11/7/00			
422387	0086 SOLUBLE	WATER	SOC	11/6/00	11/7/00			
422388	0086-1	WATER	CR6	11/6/00	11/7/00			
422389	0087	WATER	8260,8270,TAL MET,CR6,WET*	11/6/00	11/7/00			
422390	0088	WATER	8260,8270,TAL MET,CR6,WET*	11/7/00	11/7/00			
422391	0089	WATER	8260,8270,TAL MET,CR6,WET*	11/7/00	11/7/00			
422392	0090	WATER	8260,8270,TAL MET,CR6,WET*	11/7/00	11/7/00			
422393	0091	WATER	8260,8270,MET*,WET**	11/7/00	11/7/00			
422394	TB1107	WATER	8260	11/7/00	11/7/00			
422395	0087 SOLUBLE	WATER	SOC	11/7/00	11/7/00			
422396	0088 SOLUBLE	WATER	SOC	11/7/00	11/7/00			
422397	0089 SOLUBLE	WATER	SOC	11/7/00	11/7/00			
422398	0090 SOLUBLE	WATER	SOC	11/7/00	11/7/00			
422399	0091 SOLUBLE	WATER	SOC	11/7/00	11/7/00			
			WET*=TDS,SO4,ALK,CARB,SULF					
[BICARB, TOC					
			WET**=NH3,CL,HARD,TSS,NO3					
			TKN, TDS, SO4, ALK, BICARB					
			CARB,CR6,SULF,TOC					
	· · ·		MET*=CA,CR,FE,MG,K,NA,ZN,AS					
							,	
			•					

422386.XLS

0.4

11/13/00

1.1

SDG #: 0092		BATCH C	COMPLETE:yes		DATE REV	ISED:		
SUBMISSION	R2004630	DISKETT	E REQUESTED: Y NX		DATE DUE	: 12/06/00		
CLIENT:	Geomatrix Consultants Inc.	DATE: 11	1/13/00		PROTOCO	L:SW846		
CLIENT REP:	Janice Jaeger	CUSTOD	Y SEAL: PRESENT/ABSENT:		SHIPPING	No.:		
PROJECT:	PETER COOPER SITE PROJEC	CHAIN O	F CUSTODY: PRESENT/ABSENT	:				
CAS JOB #	CLIENT/EPA ID	MATRIX	REQUESTED PARAMETERS	DATE	DATE	pН	%	REMARKS
				SAMPLED	RECEIVED	(SOLIDS)	SOLIDS	AMPLE CONDITIO
422878QC	0092	SOIL	8260,8270,TAL MET,CR6,TOC*	11/7/00	11/8/00			
422879	0093	SOIL	8260,8270,TAL MET,CR6,TOC*	11/7/00	11/8/00			
422880	0094	SOIL	8260,8270,TAL MET,CR6,TOC*	11/7/00	11/8/00			
422881	0095	SOIL	8260,8270,TAL MET,CR6,TOC*	11/7/00	11/8/00			
422882	0096	SOIL	8260,8270,TAL MET,CR6,TOC*	11/8/00	11/8/00			
		L						
						ļ		,
		ļ	*PH					
		ļ			l	<u> </u>		
		L				<u> </u>	L	
L	· · · · · · · · · · · · · · · · · · ·	<u> </u>				<u> </u>	ļ	
		<u> </u>			<u> </u>			
		<u> </u>			<u> </u>		 	
		ļ					ļ	
		ļ		· · · · · · · · · · · · · · · · · · ·		l	Į	
					·	ļ	ļ	
		·						
L	· · · · · · · · · · · · · · · · · · ·	L				ļ		
	<u></u>	<u> </u>				ļ	·]
L	ļ	<u> </u>			ļ	ļ	l	
L	<u> </u>	L			ļ	<u> </u>	ļ	
L		ļ		L	<u> </u>	<u></u>	<u> </u>	
				L	<u> </u>	<u> </u>	ļ	
L					<u> </u>	<u> </u>	<u> </u>	
				L	<u> </u>		ļ	
		T	•					

04

:

.

CAS ASP/CLP BATCHING FORM / LOGIN SHEET

SDG #:0097		BATCH C	OMPLETE: yes		DATE REV	ISED:		
SUBMISSION	R2004629	DISKETT	E REQUESTED: YN_X_		DATE DUE	:12/06/00		
CLIENT:	Geomatrix Consultants Inc.	DATE: 11	/13/00		PROTOCO	L: SW846		
CLIENT REP:	Janice Jaeger	CUSTOD	Y SEAL: PRESENT/ABSENT:		SHIPPING	No.:		·
PROJECT:	PETER COOPER SITE PROJEC	CHAIN O	F CUSTODY: PRESENT/ABSENT	:				
CAS JOB #	CLIENT/EPA ID	MATRIX	REQUESTED PARAMETERS	DATE	DATE	pН	%	REMARKS
				SAMPLED	RECEIVED	(SOLIDS)	SOLIDS	AMPLE CONDITION
422823QC	0097	WATER	CL,NO3,SO4,CR6,TDS	11/7/00	11/8/00			
422824	0099	WATER	CL,NO3,SO4,CR6,TDS	11/7/00	11/8/00			
422825	0098	WATER	CL,NO3,SO4,CR6,TDS	11/7/00	11/8/00			
422826	0100	WATER	CL,NO3,SO4,CR6,TDS	11/7/00	11/8/00			
422827	0106	WATER	CR6	11/7/00	11/8/00			
422828	0105	WATER	CR6	11/7/00	11/8/00			
422829	0100	WATER	8260,8270,TAL MET,WET*	11/7/00	11/8/00		_	
422830	0101	WATER	8260,8270,TAL MET,WET**	11/8/00	11/8/00			
422831	0098	WATER	8260,8270,TAL MET,WET*	11/7/00	11/8/00			
422832	0099	WATER	8260,8270,TAL MET,WET*	11/7/00	11/8/00			
422833QC	0097	WATER	8260,8270,TAL MET,WET*	11/7/00	11/8/00			
422834	0105	WATER	8260,8270,MET*,WET***	11/7/00	11/8/00			
422835	0106	WATER	8260,8270,TAL MET,WET****	11/7/00	11/8/00			
422836	0107	WATER	8260,8270,CR6,MET*,WET***	11/8/00	11/8/00			
422837	0108	WATER	8260,8270,CR6,MET*,WET***	11/8/00	11/8/00			
422838	0109	WATER	8260,8270,CR6,MET*,WET***	11/8/00	11/8/00			
422839	TB1108	WATER	8260	11/7/00	11/8/00			
422840	105 SOLUBLE	WATER	SOC	11/7/00	11/8/00			
422841	106 SOLUBLE	WATER	SOC	11/7/00	11/8/00			
422842	107 SOLUBLE	WATER	SOC	11/8/00	11/8/00			
422843	108 SOLUBLE	WATER	SOC	11/8/00	11/8/00	WET****=	TDS,SO4	,ALK,BICARB,CARE
422844	109 SOLUBLE	WATER	SOC	11/8/00	11/8/00	SULF, TO	C	
422845	102	WATER	8270,CR6,MET*,WET***	11/8/00	11/8/00			
422846	103	WATER	8270,CR6,MET*,WET***	11/8/00	11/8/00			
422847	104	WATER	270,CR6,MET*,WET***LESS TO	11/8/00	11/8/00	WET***=	TDS,CL,N	O3,SO4,ALK,CARB
422848	102 SOLUBLE	WATER	MET*,CR6	11/8/00	11/8/00	BICARB,	NH3,TKN,	SULF.TOC
422849	103 SOLUBLE	WATER	MET*,CR6,SOC	11/8/00	11/8/00			
422850	104 SOLUBLE	WATER	MET*,CR6,SOC	11/8/00	11/8/00			
			ET*=TSS,ALK,CARB,BICARB,NH			WET**=T	DS,SS,CL	NO3,SO4,ALK
			TKN,SULF,HARD			BICARB,	CARB,NH	3,TKN,CR6,SULF,TC
			MET*=CA,CR,FE,MG,K,NA,ZN,AS			HARD		

DATONIC VIA

CAS ASP/CLP BATCHING FORM / LOGIN SHEET

			:						I
SDG #: 0102		BATCH C	COMPLETE:yes		DATE REV	SED:			T T
SUBMISSION	R2004670	DISKETT	E REQUESTED: Y N		DATE DUE	: 12/07/00			
CLIENT:	Geomatrix Consultants Inc.	DATE: 11	/13/00		PROTOCO	L: SW846			1
CLIENT REP:	: Janice Jaeger	CUSTOD	Y SEAL: PRESENT/ABSENT:		SHIPPING	No.:			
PROJECT:	PETER COOPER SITE PROJEC	CHAIN O	F CUSTODY: PRESENT/ABSEN	ſ:					
CAS JOB #	CLIENT/EPA ID	MATRIX	REQUESTED PARAMETERS	DATE	DATE	рН	%	REMARKS	1
				SAMPLED	RECEIVED	(SOLIDS)	SOLIDS	AMPLE CONDITIO	<u>}</u>
423389	0110	WATER	8260,8270,MET*,WET*	11/8/00	11/9/00				
423390	0111	WATER	8270,MET*,WET*	11/9/00	11/9/00				
423391	0112	WATER	8270,MET*,WET*,FE+2	11/9/00	11/9/00			l	
423392	0113 SOLUBLE	WATER	MET*,CR6,SOC	11/9/00	11/9/00				
423393	0114	WATER	8270,MET*,WET*	11/9/00	11/9/00				1
423394	TB1109	WATER	8260	11/9/00	11/9/00				
423395	0102	WATER	8260	11/8/00	11/9/00				
423396	0103	WATER	8260	11/8/00	11/9/00				1
423397	0104	WATER	8260	11/8/00	11/9/00				1
423398	0102 SOLUBLE	WATER	SOC	11/8/00	11/9/00				1
423399	0110 SOLUBLE	WATER	SOC	11/8/00	11/9/00				1
423400	0111 SOLUBLE	WATER	SOC	11/9/00	11/9/00				1
423401	0112 SOLUBLE	WATER	SOC	11/9/00	11/9/00				1
423402	0114 SOLUBLE	WATER	SOC	11/9/00	11/9/00				1
]
			MET*=AS,CA,CR,FE,K,MG,NA,ZI						1
			WET*=TDS,CL,NO3,SO4,ALK						1
			CARB, BICARB. NH3, TKN, TOC						1
			SULFIDE,CR6						1
									1
									1
									1
									1
									1
									•
							·		•••
									•
									•
									'
			•						

BAT

/00

SDG #: 0110		BATCH COMPLETE: ves		DATE REVISED:				
SUBMISSION R2004632		DISKETTE REQUESTED: Y N X		DATE DUE: 12/11/00				
CLIENT:	Geomatrix Consultants Inc.	DATE: 11	/13/00	PROTOCOL: SW846				
CLIENT REP:	Janice Jaeger	CUSTOD	Y SEAL: PRESENT/ABSENT:		SHIPPING	No.:		
PROJECT: PETER COOPER SITE PROJEC CHAIN OF CUSTODY: PRESENT/ADSENT.								
CAS JOB #	CLIENT/EPA ID	MATRIX	REQUESTED PARAMETERS	DATE	DATE	pН	%	REMARKS
				SAMPLED	RECEIVED	(SOLIDS)	SOLIDS	AMPLE CONDITIO
422901	0110	WATER	CR6	11/8/00	11/9/00			
423844	0118	WATER	8260,8270,FE+2,MET*,WET*	11/10/00	11/10/00			
423845	0115	WATER	CR6	11/10/00	11/10/00			· · · · · · · · · · · · · · · · · · ·
423846	0116	WATER	8260,8270,MET*,WET*	11/9/00	11/10/00			
423847	0117	WATER	8260,8270,MET*,WET**	11/10/00	11/10/00			
423848	0112	WATER	8260	11/9/00	11/10/00			
423849	0111	WATER	8260	11/9/00	11/10/00			
423850	0114	WATER	8260	11/9/00	11/10/00			
423855	0115	WATER	8260,8270,MET*,WET*	11/9/00	11/10/00			
423858	0118 SOLUBLE	WATER	MET*,SOC,CR6	11/10/00	11/10/00			
423859	0117 SOLUBLE	WATER	SOC	11/10/00	11/10/00			
423860	0115 SOLUBLE	WATER	SOC	11/9/00	11/10/00			
423861	0120	WATER	8260,8270,MET*,WET*	11/10/00	11/11/00			
423862	0119	WATER	8260,8270,MET*,WET*	11/10/00	11/11/00			
423863	0116	WATER	8260	11/9/00	11/11/00			
423864	TB1111	WATER	8260	11/10/00	11/11/00			
423865	0120 SOLUBLE	WATER	SOC	11/10/00	11/11/00			
423866	0119 SOLUBLE	WATER	SOC,CR6,MET*_	11/10/00	11/11/00			
423867	0116 SOLUBLE	WATER	SOC,CR6,MET*	11/9/00	11/11/00			
			MET*=AS,CA,CR,FE,K,MG,NA,ZN					
								<u> </u>
			WET*=TDS,CL,NO3,SO4,ALK				Ĺ	Í
			ARB, BICARB, NH3, TKN, CR6, TO					
			SULFIDE					
[WET**=ALK,CARB,BICARB,CR6					
			SULFIDE, TOC					
· · · · · · · · · · · · · · · · · · ·								

...

CASE NARRATIVE

COMPANY: Geomatrix Consultants, Inc. Peter Cooper Site SUBMISSION #: R2004153

Geomatrix samples were collected on 10/06/00 and received at CAS on 10/06/00 in good condition at cooler temperatures of 3-6 C.

INORGANIC ANALYSIS

Three soil samples were analyzed for Arsenic, Chromium and Zinc by method 6010B from SW-846, TOC by the Walkley Black Titration and Hexavalent Chromium by method 7196.

Job specific QC was performed on 10060020 as requested. All MS recoveries were within limits except Zinc and has been flagged with an "N". All Blank Spike recoveries were within QC limits. All RPD's were within limits.

During the original analysis of Hexavalent Chromium, the Mg+2 in a phosphate buffer was not added to the alkaline extraction solution as requested. The samples were repeated within the recommended holding time with the addition of the buffer, and both sets of data have been reported out.

No other analytical or QC problems were encountered with these analyses.

VOLATILE ORGANICS

Three soil samples were analyzed for a site specific list of Volatiles by method 8260 from SW-846.

All Tuning criteria for BFB were met.

All the initial and continuing calibration criteria were met for all analytes.

All internal standard areas were within QC limits except 100600021 and 100600022. 100600021 was repeated and the internal standard was still outside limits. Only 2 useable encores were received for 100600021. One encore was placed in a low level vial and the other was placed in a medium level vial, therefore this sample could not be repeated low level. All outlying internal standards have been flagged with an "*".

All surrogate standard recoveries were within acceptance limits for all samples except Bromofluorobenzene for 100600021 and 100600022. 100600022 was repeated and again the surrogate was outside limits. 100600021 could not be repeated for the reason mentioned above.

Please note: All of the tops were loose on the encore samplers received and contained less than 4.5 grams of soil (many contained 3 grams or less).

Job specific QC was performed on 100600020 as requested. All MS and Reference Spike recoveries were within limits. All outlying MSD recoveries have been flagged with an "*". All RPD's were ouside limits and have been flagged with an "*".

The Laboratory Blanks associated with these analyses were free of contamination.

All samples were analyzed within required holding times.

No other analytical or QC problems were encountered.

Geomatrix - submission #R2004153 - page 2

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hard copy package has been autoorized by the Laboratory Manager or his designee, as verified by the following signature.

CASE NARRATIVE

COMPANY: Geomatrix Consultants, Inc. Peter Cooper Site SUBMISSION #: R2004151

Geomatrix samples were collected on 10/05-06/00 and received at CAS on 10/11/00 in good condition at cooler temperatures of 3-6 C.

INORGANIC ANALYSIS

Twenty soil samples were analyzed for TAL metals by methods 6010B/7000 from SW-846, TOC by the Walkley Black Titration and Hexavalent Chromium by method 7196.

Job specific QC was performed on 100500010 as requested. All Blank Spike recoveries were within limits. All MS recoveries were within limits except Antimony, Lead and Hexavalent Chromium and have been flagged with an "N". All RPD's were within limits except Arsenic, Barium, Copper, Iron and Zinc and have been flagged with an "*".

Zinc has been flagged with an "E" as being an estimated value due to the presence of interferences.

Thallium for 100600035 and 100600037 has been flagged with a "W" due to the Post digestion spike being outside control limits while the sample absorbance is less than 50% of the spike absorbance.

During the original analysis of Hexavalent Chromium, the Mg+2 in a phosphate buffer was not added to the alkaline extraction solution as requested. The samples were repeated within the recommended holding time with the addition of the buffer, and both sets of data have been reported out. The original analysis of 100500011 had a hit of Hexavalent Chromium while the repeat analysis did not. It is possible that the hit in the original analysis was a false positive since the buffer was not added.

No other analytical or QC problems were encountered with these analyses.

VOLATILE ORGANICS

Twenty soil samples were analyzed for the new TCL list of Volatiles by method 8260 from SW-846.

All Tuning criteria for BFB were met.

All the initial and continuing calibration criteria were met for all analytes.

Many internal standard areas were outside QC limits. All samples were repeated and most of internal standards were still outside limits. Some of these replicates were analyzed outside the recommended holding time of 14 days. All outlying internal standards have been flagged with an "*".

Many surrogate standard recoveries were outside acceptance limits. All samples were repeated and many of the surrogates were still outside limits. All outlying surrogates have been flagged with an "*".

Job specific QC was performed on 100500010 as requested. All MS/MSD's and Reference Spike recoveries were within limits. All RPD's were within limits.

Geomatrix - submission #R2004151 - page 2

The Laboratory Blanks associated with these analyses were free of contamination except the blank from 10/19/00 contained a small hit of 1,2,4 Trichlorobenzene.

Acetone for 100600013RE, 100600034 and 100600034RE has been flagged with an "E" as being outside the calibration range of the instrument. The initial analysis of 100600013 had a hit of Acetone within the calibration range of the instrument. 100600034 was analyzed medium level on a non-compliant run and approximately 3 ppb of Acetone was present. The sample was repeated low level and the low level data has been reported out.

All samples were analyzed within required holding times except as mentioned above.

No other analytical or QC problems were encountered.

SEMIVOLATILE ORGANICS

Twenty soil samples were analyzed for the new TCL list of Semivolatiles by method 8270 from SW-846.

All the Tuning criteria for DFTPP was met.

All the initial and continuing calibration criteria were met for all analytes.

All internal standard areas were within QC limits except 100500007. The sample was repeated and again the internal standard was outside limits and has been flagged with an "*".

All surrogate standard recoveries were within limits.

Job specific QC was performed on 100500010 as requested. All MS recoveries were within limits except Acenaphthene. All MSD recoveries were within limits except Pyrene. All Reference spike recoveries were within limits except 3-Nitroaniline. All RPD's were within limits except Acenaphthene and Pyrene. All outlying QC has been flagged with an "*".

The Laboratory blanks associated with these samples were free of contamination except the blank from 10/09/00 contained a small hit of Di-n-butylphthalate.

All samples were extracted and analyzed within the recommended holding times.

No other analytical or QC problems were encountered.

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hard copy package has been authorized by the Laboratory Manager or his designee, as verified by the following signature.

CASE NARRATIVE

COMPANY: Geomatrix Consultants, Inc. Peter Cooper Site SUBMISSION #: R2004164

Geomatrix samples were collected on 10/05-06/00 and received at CAS on 10/11/00 in good condition at cooler temperatures of 3-6 C.

INORGANIC ANALYSIS

Five soil samples and one water sample were analyzed for TAL metals by methods 6010B/7000 from SW-846 and seven soil samples were analyzed for Arsenic, Chromium and Zinc by methods 6010B/7000. Twelve soil samples were analyzed for TOC by the Walkley Black Titration; pH by method 9045; and Hexavalent Chromium by method 7196.

Job specific QC was performed on 00038 as requested. All Blank Spike recoveries were within limits. All MS recoveries were within limits except Antimony and Thallium and have been flagged with an "N". All RPD's were within limits except Vanadium and has been flagged with an "*".

Iron has been flagged with an "E" since the ICP serial dilution was outside QC limits.

Thallium for 0038 has been flagged with a "W" due to the Post digestion spike being outside control limits while the sample absorbance is less than 50% of the spike absorbance.

During the original analysis of Hexavalent Chromium, the Mg+2 in a phosphate buffer was not added to the alkaline extraction solution as requested. The samples were repeated within the recommended holding time with the addition of the buffer, and both sets of data have been reported out.

No other analytical or QC problems were encountered with these analyses.

VOLATILE ORGANICS

Eight soil samples and one water sample were analyzed for the new TCL list of Volatiles by method 8260 from SW-846 and seven soil samples were analyzed for a site specific list of Volatiles by method 8260.

All Tuning criteria for BFB were met.

All the initial and continuing calibration criteria were met for all analytes.

Many internal standard areas were outside QC limits. All samples were repeated and most of internal standards were still outside limits. Some of these replicates were analyzed outside the recommended holding time of 14 days. All outlying internal standards have been flagged with an "*".

Many surrogate standard recoveries were outside acceptance limits. All samples were repeated and many of the surrogates were still outside limits. All outlying surrogates have been flagged with an "*".

301574

Geomatrix - submission #R2004164 - page 2

Job specific QC was performed on 00038 as requested. All MS/MSD's and Reference Spike recoveries were within limits. All RPD's were within limits.

The Laboratory Blanks associated with these analyses were free of contamination.

The Trip Blank contained a small hit of Acetone.

Various compounds for 0039, 0040RE, 0041RE, 0042, 0043 and 0045 have been flagged with an "E" as being outside the calibration range of the instrument. The initial analysis of 0040 and 0041 had a hit of Acetone within the calibration range of the instrument.

Please note: Studies show that Acetone and 2-Butanone can be formed when samples that have a high Total Organic Carbon content combine with the Sodium Bisulfate contained in the low level vials. This could explain why 0042, 0043 and 0045 had higher Acetone and 2-Butanone in the low level analysis as compared to the medium level analysis.

Sample 0044 was originally analyzed on a soil analytical run on 10/21/00. It was unknown whether this sample was a blank associated with the soils or a true water sample so the sample was repeated on water analytical run outside the recommeded holding time of 14 days. Both sets of data have been reported out.

Please note: All of the tops were off the encore samplers when received for 0029 and all the tops were loose on the encore samplers for 0027, 0026, 0025 and 0028.

All samples were analyzed within required holding times except as mentioned above.

No other analytical or QC problems were encountered.

SEMIVOLATILE ORGANICS

Five soil samples and one water sample were analyzed for the new TCL list of Semivolatiles by method 8270 from SW-846.

All the Tuning criteria for DFTPP was met.

All the initial and continuing calibration criteria were met for all analytes.

All internal standard areas were within QC limits.

All surrogate standard recoveries were within limits except 0046DL. All surrogates were diluted out and have been flagged with a "D".

Job specific QC was performed on sample 00038 as requested. All MS/MSD recoveries were within limits. All Reference spike recoveries were within limits except 3,3' Dichlorobenzidine and 3-Nitroaniline. All RPD's were within limits. All outlying QC has been flagged with an "*".

4-Methylphenol has been flagged with an "E" as being outside the calibration range of the instrument. The sample was repeated at a dilution and both sets of data have been reported out.

301575
Geomatrix - submission #R2004164 - page 3

The Laboratory blanks associated with these samples were free of contamination.

All samples were extracted and analyzed within the recommended holding times.

No other analytical or QC problems were encountered.

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hard copy package has been authorized by the Caboratory Manager or his designee, as verified by the following signature.

COMPANY: Geomatrix Consultants, Inc. Peter Cooper Site SUBMISSION #: R2004604

Geomatrix samples were collected on 11/06-07/00 and received at CAS on 11/07/00 in good condition.

INORGANIC ANALYSIS

Eight water samples were analyzed for a site specific list of inorganic analytes. Please see attached data pages for analysis and method numbers.

Job specific QC was not requested for these samples. All Blank Spike recoveries were within limits.

Hexavalent Chromium for 0086-1 and 0087 were analyzed between 5-35 minutes outside the recommended holding time of 24 hours.

No other analytical or QC problems were encountered with these analyses.

VOLATILE ORGANICS

Five water samples and one trip blank were analyzed for the new TCL list of Volatiles by method 8260 from SW-846. One water sample was also analyzed for a site specific list of compounds by method 8260.

All Tuning criteria for BFB were met.

All the initial and continuing calibration criteria were met for all analytes.

All internal standard areas were within QC limits.

All surrogate standard recoveries were within acceptance limits.

Job specific QC was not requested for these samples. All Reference Spike recoveries were within limits.

The Laboratory Blanks associated with these analyses were free of contamination.

All samples were analyzed within required holding times.

No other analytical or QC problems were encountered.

Geomatrix - submission #R2004604 - page 2

SEMIVOLATILE ORGANICS

Five water samples were analyzed for the new TCL list of Semivolatiles by method 8270 from SW-846. One water sample was also analyzed for Acid Extractables by method 8270.

All the Tuning criteria for DFTPP was met.

All the initial and continuing calibration criteria were met for all analytes.

All internal standard areas were within QC limits.

All surrogate standard recoveries were within limits except 0089. The sample was repeated and still the surrogates were outside limits. All outlying surrogates have been flagged with an "*". No extra sample remained to reextract and reanalyze.

Job specific QC was not requested for these samples, however was perfromed on 0086. All outlying MS/MSD recoveries have been flagged with an "*". All Reference spike recoveries were within limits. All outlying RPD's have been flagged with an "*".

The Laboratory blank associated with these samples was free of contamination.

All samples were extracted and analyzed within the recommended holding times.

No other analytical or QC problems were encountered.

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hard copy package has been authorized by the Laboratory Manager or his designee, as verified by the following signature.

COMPANY: Geomatrix Consultants, Inc. Peter Cooper Site SUBMISSION #: R2004630

Geomatrix samples were collected on 11/07/00 and received at CAS on 11/08/00 in good condition.

INORGANIC ANALYSIS

Five soil samples were analyzed for TAL metals by methods 6010B/7000 from SW-846, TOC by the Walkley Black Titration; pH by method 9045; and Hexavalent Chromium by method 7196.

Job specific QC was performed on 0092 as requested. All Blank Spike recoveries were within limits. All MS recoveries were within limits except Antimony, Arsenic and Silver and have been flagged with an "N". All RPD's were within limits except Sodium and has been flagged with an "*".

No other analytical or QC problems were encountered with these analyses.

VOLATILE ORGANICS

Five soil samples were analyzed for the new TCL list of Volatiles by method 8260 from SW-846.

All Tuning criteria for BFB were met.

All the initial and continuing calibration criteria were met for all analytes.

All internal standard areas were within QC limits.

All surrogate standard recoveries were within acceptance limits.

Job specific QC was performed on 00092 as requested. All MS/MSD's and Reference Spike recoveries were within limits. All RPD's were within limits.

The Laboratory Blanks associated with these analyses were free of contamination.

All samples were analyzed within required holding times except as mentioned above.

No other analytical or QC problems were encountered.

5780 - E-V (746) DRR RA75

Geomatrix - submission #R2004630 - page 2

SEMIVOLATILE ORGANICS

Five soil samples were analyzed for the new TCL list of Semivolatiles by method 8270 from SW-846.

All the Tuning criteria for DFTPP was met.

All the initial and continuing calibration criteria were met for all analytes.

All internal standard areas were within QC limits except 0094 and 0095. The samples were repeated and 0094RE was still outside limits and 0095RE was within limits. All outlying internal standards have been flagged with an "*".

All surrogate standard recoveries were within limits.

Job specific QC was performed on sample 0092 as requested. All MS/MSD and Reference spike recoveries were within limits. All RPD's were within limits.

The Laboratory blank associated with these samples contained small hits for Di-nbutylphthalate and bis(2-ethylhexly)phthalate. All affected data has been flagged with a "B".

All samples were extracted and analyzed within the recommended holding times.

No other analytical or QC problems were encountered.

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hard copy package has been authorized by the Laboratory Manager or his designee, as verified by the following signature.

COMPANY: Geomatrix Consultants, Inc. Peter Cooper Site SUBMISSION #: R2004629

Geomatrix samples were collected on 11/07-08/00 and received at CAS on 11/08/00 in good condition.

INORGANIC ANALYSIS

Twenty seven water samples were analyzed for a site specific list of inorganic analytes. Please see attached data pages for analysis and method numbers.

Job specific QC was performed on 0097 as requested. All MS/MSD recoveries were within limits. All Blank Spike recoveries were within limits except Ferrous Iron which has been flagged with an "N". All RPD's were within limits except TKN which has been flagged with an "*". The QC was repeated for TKN and the results were confirmed. Both sets of raw data have been included.

Hexavalent Chromium for 0097 was analyzed 5 minutes outside the recommended holding time of 24 hours.

No other analytical or QC problems were encountered with these analyses.

VOLATILE ORGANICS

Six water samples and one trip blank were analyzed for the new TCL list of Volatiles by method 8260 from SW-846. Four water samples were also analyzed for a site specific list of compounds by method 8260.

All Tuning criteria for BFB were met.

All the initial and continuing calibration criteria were met for all analytes.

All internal standard areas were within QC limits.

All surrogate standard recoveries were within acceptance limits.

Job specific QC was performed on 0097 as requested. All MS/MSD and Reference Spike recoveries were within limits. All RPD's were within limits.

0107 and 0108 were analyzed at dilutions due to the matrix of the sample.

The Laboratory Blanks associated with these analyses were free of contamination.

All samples were analyzed within required holding times.

No other analytical or QC problems were encountered.

Geomatrix - submission #R2004629 - page 2

SEMIVOLATILE ORGANICS

Six water samples were analyzed for the new TCL list of Semivolatiles by method 8270 from SW-846. Seven water samples were also analyzed for Acid Extractables by method 8270.

All the Tuning criteria for DFTPP was met.

All the initial and continuing calibration criteria were met for all analytes.

All internal standard areas were within QC limits.

All surrogate standard recoveries were within limits.

Job specific QC was performed on 0097 as requested. All outlying MS/MSD recoveries have been flagged with an "*". All Reference spike recoveries were within limits. All RPD's were within limits.

Caprolactum for 0106 has been flagged with an "E" as being outside the calibration range of the instrument. The sample was repeated at a dilution and both sets of data have been reported out.

The Laboratory blank associated with these samples was free of contamination.

All samples were extracted and analyzed within the recommended holding times.

No other analytical or QC problems were encountered.

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hard copy package has been authorized by the Laboratory Manager or his designee, as verified by the following signature.

۰.-

COMPANY: Geomatrix Consultants, Inc. Peter Cooper Site SUBMISSION #: R2004670

Geomatrix samples were collected on 11/08/00 and received at CAS on 11/09/00 in good condition.

INORGANIC ANALYSIS

Ten water samples were analyzed for a site specific list of inorganic analytes. Please see attached data pages for analysis and method numbers.

Job specific QC was not requested for these samples, however, was performed on 0113 Soluble for the Metals fraction. All MS and Blank Spike recoveries were within limits. All RPD's were within limits.

Nitrate for samples 0110, 0111, 0112 and 0114 was analyzed several hours outside the recommended holding time of 48 hours.

No other analytical or QC problems were encountered with these analyses.

VOLATILE ORGANICS

Four water samples and one trip blank were analyzed for a site specific list of compounds by method 8260 from SW-846.

All Tuning criteria for BFB were met.

All the initial and continuing calibration criteria were met for all analytes.

All internal standard areas were within QC limits.

All surrogate standard recoveries were within acceptance limits.

Job specific QC was not requested for these samples. All Reference Spike recoveries were within limits.

The Laboratory Blanks associated with these analyses were free of contamination.

All samples were analyzed within required holding times.

No other analytical or QC problems were encountered.

301583

. 2

Geomatrix - submission #R2004670 - page 2

SEMIVOLATILE ORGANICS

Four water samples were analyzed for Acid Extractables by method 8270 from SW-846.

All the Tuning criteria for DFTPP was met.

All the initial and continuing calibration criteria were met for all analytes.

All internal standard areas were within QC limits.

All surrogate standard recoveries were within limits.

Job specific QC was not requested on these samples. All Reference spike recoveries were within limits.

The Laboratory blank associated with these samples was free of contamination.

All samples were extracted and analyzed within the recommended holding times.

No other analytical or QC problems were encountered.

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hard copy package has been authorized by the Laboratory Manager or his designee, as verified by the following signature.

COMPANY: Geomatrix Consultants, Inc. Peter Cooper Site SUBMISSION #: R2004632

Geomatrix samples were collected on 11/08-10/00 and received at CAS on 11/09-11/00 in good condition.

INORGANIC ANALYSIS

Fourteen water samples were analyzed for a site specific list of inorganic analytes. Please see attached data pages for analysis and method numbers.

Job specific QC was not requested for these samples, however, was performed on 0118 for the Metals fraction. All MS and Blank Spike recoveries were within limits. All RPD's were within limits.

Hexavalent Chromium for samples 0118, 0116, 0116 Soluble, 0119 and 0119 Soluble was analyzed between 2 minutes and 3 days outside the recommended holding time of 24 hours. 0116 Soluble was received outside the holding time and due to a Laboratory error, the Hexavalent Chromium for 0118 was not brought into the Wet Chemistry Laboratory within holding time.

No other analytical or QC problems were encountered with these analyses.

VOLATILE ORGANICS

Ten water samples and one trip blank were analyzed for a site specific list of compounds by method 8260 from SW-846.

All Tuning criteria for BFB were met.

All the initial and continuing calibration criteria were met for all analytes.

All internal standard areas were within QC limits.

All surrogate standard recoveries were within acceptance limits.

Job specific QC was not requested for these samples. All Reference Spike recoveries were within limits.

0117 was analyzed at a dilution due to matrix interferences.

The Laboratory Blanks associated with these analyses were free of contamination.

All samples were analyzed within required holding times.

No other analytical or QC problems were encountered.

Geomatrix - submission #R2004632 - page 2

SEMIVOLATILE ORGANICS

Six water samples were analyzed for Acid Extractables by method 8270 from SW-846.

All the Tuning criteria for DFTPP was met.

All the initial and continuing calibration criteria were met for all analytes.

All internal standard areas were within QC limits.

All surrogate standard recoveries were within limits except 0120. The sample was repeated and again the surrogates were outside limits and have been flagged with an "*". No extra sample remained to reextract and reanalyze.

Job specific QC was not requested on these samples. All Reference spike recoveries were within limits.

The Laboratory blank associated with these samples was free of contamination.

All samples were extracted and analyzed within the recommended holding times.

No other analytical or QC problems were encountered.

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hard copy package has been authorized by the Laboratory Manager or his designee, as verified by the following signature. M_{Harder} K-

Data Validation Services

120 Cobble Creek Road P. O. Box 208 North Creek, NY 12853 Phone (518) 251-4429 Facsimile (518) 251-4428

Facsimile Transmission

TO:

Michael Perry

716 288 8475

1

CAS

COMPANY:

FAX NUMBER:

FROM:

Judy Harry

01-17-01

DATE:

No. of pages (including cover):

COMMENTS: RE: Geomatrix Consultants --Peter Cooper site

SGD 0030 Sub No. R2004164

- 1. The following numbered pages were not present in the data package. Please forward for review:80, 149, and 150
- 2. Please review the methyl acetate results for the initial analysis (10/20) of sample 0042 (lab ID 414978), which was reported as nondetection. The quant report shows detection not rejected by the analyst, but there is no spectrum provided. The reanalysis of the sample shows detection of the analyte. Please forward the spectrum for review, and a revised report page if applicable.

An urgent reply is respectfully requested. Please send to the fax number above, with copies of all communications to Jennifer Hagan at Geomatrix.

Thank you.

IMPORTANT NOTICE:

The documents accompanying this transmission may contain information which is legally privilaged and/or confidential. The information is intended only for the use of the inivindual or entity named above. If you are not the intended recipient, or the person responsible for delivering it to the intended recipient, you are hereby notified that any disclosure, copying, distributing, or use of any information contained in this transmission is strictly PROHIBITED. If you have received this transmission in error, please immediately notify us by telephone and mail the original transmission to us. Thank you for your cooperation and assistance.

The edited Form I data sheets from data validation have been submitted to USEPA and NYSDEC under separate cover.

- -

July 6, 2001 Data Validation Report

Data Validation Services

120 Cobbie Creek Road P. O. Box 208 North Creek, N. Y. 12853 Phone 518-251-4429

July 6, 2001

Jennifer Hagen Geomatrix Consultants 336 Harris Hill Rd. Williamsville, NY 14221

RE: Validation of Peter Cooper Site Data Packages CAS Sub Nos. R2106774, R2106788, and R2106792

Dear Ms. Hagen:

Review has been completed for the data packages generated by Columbia Analytical Services pertaining to samples collected at the Peter Cooper site April 30, 2001 through May 4, 2001. Aqueous samples were analyzed for various combinations of site-specific volatiles by EPA 8260B, site-specific or acid analytes by EPA 8270C, TAL or site-specific metals by EPA 6000/7000, and/or various water quality parameters. Equipment and trip blanks, and matrix spikes/duplicates were also processed.

Data validation was performed with guidance from the most current editions of the USEPA CLP National Functional Guidelines for Organic and Inorganic Data Review and the USEPA Region 2 SOPs HW-2 and HW-6. The following items were reviewed:

- Data Completeness
- * Custody Documentation
- * Holding Times
- * Surrogate and Internal Standard Recoveries
- * Matrix Spike Recoveries/Duplicate Correlations
- * Field Duplicate Correlation
- * Preparation/Calibration Blanks
- * Control Spike/Laboratory Control Samples
- * Instrumental Tunes
- * Calibration Standards
- * Instrument IDLs
- * Method Compliance
- * Sample Result Verification

Those items showing deficiencies are discussed in the following sections of this report. All others were found to be acceptable as outlined in the above-mentioned validation procedures, and as applicable for the methodology. Unless noted specifically in the following text, reported results are substantiated by the raw data, and generated in compliance with protocol requirements.

In summary, most results are usable as reported, or with minor edits or qualification as estimated. However, due to apparent matrix effect, all hexavalent chromium results reporting nondetection are rejected, and detected values are estimated. These issues are discussed in the following analytical sections.

Attached to this narrative are summaries of sample identification/requirements, and copies of laboratory case narratives. Also included in this submission are red-ink edited client results tables, reflecting validation qualifiers.

General

Samples reported with a client ID of "05030141" and "05030142" should have shown identities of "050301141" and "050301142", respectively.

Accuracy and precision determinations were acceptable for all fractions, with the exception of that for hexavalent chromium, which showed no spike recovery.

Blind field duplicates were processed as 050201133 and 050201134, 050301141 and 050301142, and 050101126 and 050101127, and involved evaluation of volatiles, semivolatiles, four total and soluble metals (up to four), and two wet chemistry analytes. All correlations were acceptable, with the exception of one analyte in one set (noted below).

Volatile Analyses by EPA 8260

Although preserved, some samples were received at pHs above 2, but processed beyond a 7 day allowable technical holding time. The results are therefore considered estimated, with a possible low bias ("U" or "UJ" qualifiers). The affected samples are 050201136, 050201138, and 050201139.

Surrogate standard recoveries, internal standard responses, instrumental tunes, and blank responses were within required limits. Calibration standard responses were within action guidelines, with the exception of one elevated response for tetrachloroethene (29%D) in a standard associated with samples reporting either nondetection or values already qualified estimated. Sample reported results are not affected.

Matrix spikes of samples 040301121, 050201128, and 050301141 showed acceptable accuracy and precision. Laboratory Control Sample (LCS) recoveries were also acceptable.

Semivolatile Analyses by EPA 8270C

Holding times, surrogate standard recoveries, internal standard responses, instrumental tunes, calibration standard responses, and blank responses were within required limits.

Results for analytes initially reported with the "E" flag should be derived from the dilution analysis of the given sample. All other results can be used from the initial analysis.

Matrix spikes of samples 040301121, 050201128, and 050301141 showed acceptable accuracy and precision. Laboratory Control Sample (LCS) recoveries were also acceptable.

One of the report Forms 1 for an LCS incorrectly shows nondetection of an analyte.

Metals Analyses

Accuracy and precision evaluations were performed for 043001121 and 050201128, and for arsenic on 050301146 (not reported in the package), and showed acceptable recoveries and duplicate correlations.

ICP serial dilution evaluations of 043001121, 043001122 soluble, 050201128, and 050201130, and showed acceptable results, with the exception of that for iron (10.6%D) in 050201128. The result for iron in sample 050201124 is therefore qualified estimated, with a possible slight low bias.

It is noted that the evaluation is performed only to the reported project CRDLs. The laboratory reports IDLs for one instrument (QC summary Form 10) that are equal to CRDLs. Evaluation to actual lower instrument IDLs, which are not provided with this data, involves a more strict evaluation of matrix effect at low analyte concentrations.

Due to elevated recoveries of the low level standard (CRI), results for arsenic in 050201136 and 050301146 are qualified estimated ("J"), with a possible high bias.

Total and dissolved fraction results correlated well, with the exception of the values for arsenic and zinc in 50201136. For those elements, dissolved fractions showed concentrations greater than 110% of those of the unfiltered fraction. Results for arsenic and zinc in both fractions of that sample are therefore considered estimated ("J").

Some of the arsenic and zinc results were reported at elevated reporting limits due to elevated blank responses. Those for arsenic in some samples were re-reported from the elevated limits to lower ones, better reflecting the low sample concentrations (resubmitted forms are attached).

Hexavalent Chromium, TOC, and other Wet Chemistry Analyses

Review was conducted for method compliance, holding times, transcription, calculations, standard and blank acceptability, accuracy and precision, etc., as applicable to each procedure. All were acceptable unless noted below.

Hexavalent chromium matrix spikes of 043001121, 050201128, 050301143, and 050401152 showed no recovery (some with multiple evaluations), indicating that all sample results reporting nondetection of that analyte are unusable ("R" qualifier), and detected values may have a serious low bias ("J"). The lack of recovery appears to be matrix related, as all surrounding laboratory QC was acceptable. One additional sample showed no recovery on the initial sets of matrix spikes (with matrix interference), but improved recovery on reanalysis, indicating a possible variance in matrix effect. Results for those samples which show no detection of chromium in the metals analysis are not significantly affected, as one would expect no hexachrome to be present (because it would also have been detected a total chromium). Holding times met method requirements, with the exception of that for hexavalent chromium in 050101126 Soluble and 043001122, which were performed one day beyond the allowable 24 hours from collection.

It is noted that samples 043001122 Soluble, 050401149, and 050401151 reported hexavalent chromium with detections just above the reporting limit, although no total chromium was detected in the metals analysis at the same limit. Therefore results for chromium and hexavalent chromium in both samples are to be qualified as estimated ("J" or "UJ").

The following nitrate results should edited as indicated:

Sample ID	<u>Nitrate as N. mg/L</u>
050201136	0.0500 U
050201137	0.545
050201138	0.0500 U
050201139	1.745
050201141	0.454
050201146	0.715

All but one of the LCSs for total sulfide produced recoveries (33% and 42%) below allowable limit. Therefore, results for associated samples are to be qualified estimated ("J" or "UJ"). Those affected are all in Sub Nos. R2106788 and R2106792, and samples 050201136, 050301143, 050301144, 050301145, 050301146, 050301145 Soluble, 050401148, 050401149, 050401151, and 050401152.

Accuracy and precision for wet chemistry parameters in 043001121 and 050201128 were acceptable, with the exception of that for hexachrome, noted above.

Field duplicates 050201133 and 050201134 showed an outlying correlation for bicarbonate alkalinity (and therefore total alkalinity) of 83%RPD. Results for those analytes in the two samples are therefore qualified estimated.

Total and dissolved fraction results correlated well, with the exception of that for TOC/SOC in the samples 050101124, 05050301145, and 050301146, where the filtered fraction showed higher concentrations than the unfiltered. Results for TOC/SOC in those samples are therefore qualified estimated ("J").

Total sulfide reporting limits for some samples were elevated twofold higher due to blank responses.

Please do not hesitate to contact me if questions or comments arise during your review of this report.

Very truly yours,

Judy Harry

SDG #:	50201130	BATCH C	OMPLETE: yes		DATE REV	SED.		
SUBMISSION	R2106792	DISKETT	E REQUESTED: Y N X		DATE DUE	: 5/31/01		
CLIENT:	Geomatrix Consultants Inc.	DATE: 05	5/07/01		PROTOCO	L:SW846	1	
CLIENT REP:	Janice Jaeger	CUSTOD	Y SEAL: PRESENT/ABSENT:		SHIPPING	No.:		
PROJECT:	PETER COOPER-CATTARAUGU	CHAIN O	F CUSTODY: PRESENT/ABSENT	:				}
CAS JOB #	CLIENT/EPA ID	MATRIX	REQUESTED PARAMETERS	DATE	DATE	Ha	%	REMARKS
				SAMPLE	RECEIVED	(SOLIDS)	SOLIDS	AMPLE CONDITION
460342	050201130	WATER	8260,8270,SULF,TOCQ,FE2*	5/2/01	5/2/01			
460343	050201131	WATER	8260,8270,SULF,TOCQ*	5/2/01	5/2/01	······		
460344	050201132	WATER	8260,8270,SULF,TOCQ*	5/2/01	5/2/01			
460345	TB050201	WATER	8260	5/2/01	5/2/01			
460581	050201133	WATER	8260,8270,SULF,TOCQ*	5/2/01	5/3/01			
460583	050201134	WATER	8260,8270,SULF,TOCQ*	5/2/01	5/3/01			
460830	TB050301	WATER	8260	5/3/01	5/3/01			
			HARD, TDS, TSS, CL, NO3, SO4, AL					
			BICARB,CARB,NH3,TKN,CR6,AS					
			CA,CR,FE,K,MG,MN,PB,ZN					
							•	
	· · · · · · · · · · · · · · · · · · ·							

.

5/7/01

•

301595

1

-ASIA

and the second of the second of the

CAS ASP/CLP BATCHING FORM / LOGIN SHEET

SDG #:	50101125	BATCH C	OMPLETE: yes		DATE REV	ISED:		
SUBMISSION	R2106788	DISKETT	E REQUESTED: Y N x		DATE DUE	: 5/31/01		
CLIENT:	Geomatrix Consultants Inc.	DATE: 05	/07/01		PROTOCO	L: SW846		
CLIENT REP:	Janice Jaeger	CUSTOD	Y SEAL: PRESENT/ABSENT:		SHIPPING	No.:		
PROJECT:	PETER COOPER-FORMER MAN	CHAIN O	F CUSTODY: PRESENT/ABSEN	Г:				
CAS JOB #	CLIENT/EPA ID	MATRIX	REQUESTED PARAMETERS	DATE	DATE	pН	%	REMARKS
				SAMPLE	RECEIVED	(SOLIDS)	SOLIDS	AMPLE CONDITIO
460197	050101125	WATER	8260,8270,SULF,TOCQ*	5/1/01	5/2/01			
460198	050101126	WATER	8260,8270,SULF,TOCQ*	5/1/01	5/2/01			
460199	050101127	WATER	CR6,CR,FE,MN,PB,8260,8270	5/1/01	5/2/01			
460200	050101126 SOLUBLE	WATER	CR6,CR,FE,MN,PB,DOCQ	5/1/01	5/2/01			
460201	050101127 SOLUBLE	WATER	CR,CR,FE,MN,PB	5/1/01	5/2/01			
460332QC	050201128	WATER	8260,8270,SULF,TOCQ,FE2*	5/2/01	5/2/01			
460333	050201129	WATER	CR6,CR,FE,MN,PB,8260,8270	5/2/01	5/2/01			
460602	050201135	WATER	82608270,SULF,TOCQ*	5/2/01	5/3/01			
460874	050301140	WATER	8260,8270,SULF,TOCQ*	5/3/01	5/3/01			
				1				
			*CR6,CR,FE,MN,PB,CA,K,MG					
			NA,ALK,BICARB,CARB,CL,SO4					
			TDS			[
	· · · · · · · · · · · · · · · · · · ·				T			
	· · · · ·							
{	· · · · · · · · · · · · · · · · · · ·							
					1			
				1	1		T	
[t						
		1		1		1		
		t		1				
]	1		1				
		1		1				
				1	1			

SDG #:	43001121	BATCH C	OMPLETE:yes		DATE REV	ISED:		
SUBMISSION	R2106774	DISKETT	E REQUESTED: YN_X		DATE DUE	: 6/04/01		
CLIENT:	Geomatrix Consultants Inc.	DATE: 05	/07/01		PROTOCO	L: SW846		
CLIENT REP:	Janice Jaeger	CUSTOD	Y SEAL: PRESENT/ABSENT:		SHIPPING	No.:		
PROJECT:	PETER COOPER -INACTIVE LAN	CHAIN O	F CUSTODY: PRESENT/ABSENT	·:				
CAS JOB #	CLIENT/EPA ID	MATRIX	REQUESTED PARAMETERS	DATE	DATE	рН	%	REMARKS
				SAMPLED	RECEIVED	(SOLIDS)	SOLIDS	AMPLE CONDITION
459770QC	043001121	WATER	AS,CR,ZN	4/30/01	5/1/01			
459771QC	043001121	WATER	CR6	4/30/01	5/1/01			
459778	043001122	WATER	CR6,AS,CR,ZN	4/30/01	5/1/01			
459779	043001122 SOLUBLE	WATER	CR6,AS,CR,ZN	4/30/01	5/1/01			
459939QC	043001121	WATER	8260,8270,SULF,TOCQ,CL,NO3*	4/30/01	5/1/01			
459940	043001122	WATER	8260,8270,SULF,TOCQ,CL,NO3*	4/30/01	5/1/01			
459941	TB043001	WATER	8260	4/30/01	5/1/01			
459942	050101123	WATER	8260,8270,SULF,TOCQ,FE2**	5/1/01	5/1/01			
459943	050101124	WATER	8260,8270,SULF,TOCQ**	5/1/01	5/1/01			
459944	043001121 SOLUBLE	WATER		4/30/01	5/1/01			
459945	043001122 SOLUBLE	WATER	DOCQ	4/30/01	5/1/01			
459940	050101123 SOLUBLE	WATER		5/1/01	5/1/01			
459947	050101124 SOLUBLE	WATER	DOCQ	5/1/01	5/1/01			
460603	050201137	WATER	8260,8270,SULF,TOCQ**	5/2/01	5/3/01			
460604	050201138	WATER	8260,8270,SULF,TOCQ**	5/2/01	5/3/01			
460605	050201139	WATER	8260,8270,SULF,TOCQ**	5/2/01	5/3/01			
460606	050201136	WATER	8260,8270,SULF,TOCQ**	5/2/01	5/3/01			
460607	050201137 SOLUBLE	WATER	CR6	5/2/01	5/3/01			
460608	050201138 SOLUBLE	WATER	CR6	5/2/01	5/3/01			
460610	050201136 SOLUBLE	WATER	CR6,AS,CR,ZN,DOCQ	5/2/01	5/3/01			
460857	05030141	WATER	8260,8270,SULF,TOCQ,FE2**	5/3/01	5/3/01			
460858	05030142	WATER	8260,8270,AS,CR,ZN,CR6	5/3/01	5/3/01			
460937	050301143	WATER	8260,8270,SULF,TOCQ**	5/3/01	5/4/01			
460938	050301144	WATER	8260,8270,SULF,TOCQ**	5/3/01	5/4/01			
460939	050301145	WATER	8260,8270,SULF,TOCQ**	5/3/01	5/4/01			
460940	050301146	WATER	8260,8270,SULF,TOCQ**	5/3/01	5/4/01			
460941	050301145 SOLUBLE	WATER	CR6,AS,CR,ZN,DOCQ	5/3/01	5/4/01			
460942	050301146 SOLUBLE	WATER	CR6,AS,CR,ZN,DOCQ	5/3/01	5/3/01			
461140	TB050401	WATER	8260	5/4/01	5/4/01			
461146	050401147	WATER	8260,8270,SULF,TOCQ**	5/4/01	5/4/01			
461147	050401148	WATER	8260,8270,SULF,TOCQ**	5/4/01	5/4/01			

SDG #: SUBMISSION R2106774 43001121 BATCH COMPLETE: __yes____ DISKETTE REQUESTED: Y __ N___X DATE REVISED: DATE DUE: 6/04/01

DATCHINI YIS

CAS ASP/CLP BATCHING FORM / LOGIN SHEET

CLIENT:	Geomatrix Consultants Inc.	DATE: 05	5/07/01	•	PROTOCO	L: SW846		
CLIENT REP:	Janice Jaeger	CUSTOD	Y SEAL: PRESENT/ABSENT:		SHIPPING	No.:		
PROJECT:	PETER COOPER -INACTIVE LAN	CHAIN O	F CUSTODY: PRESENT/ABSEN	T:				
CAS JOB #	CLIENT/EPA ID	MATRIX	REQUESTED PARAMETERS	DATE	DATE	pН	%	REMARKS
				SAMPLED	RECEIVED	(SOLIDS)	SOLIDS	AMPLE CONDITION
461148	050401149	WATER	8260,8270,SULF,TOCQ**	5/4/01	5/4/01			
461149	050401150	WATER	8260,8270,CR6.AS,CR,ZN	5/4/01	5/4/01			
461151	050401151	WATER	8260,8270,SULF,TOCQ**	5/4/01	5/4/01			
461152	050401152	WATER	8260,8270,SULF,TOCQ**	5/4/01	5/5/01			
461153	TB050501	WATER	8260	5/4/01	5/5/01			
				}				
			*SO4,ALK,BICARB,CARB					
	-		NH3,TKN,CA,FE,K,MG,NA					
			**SO4,ALK,BICARB,CARB,NH3,					
			TKN,CA,FE,K,MG,NA,AS,CR					
			ZN,CR6,CL,NO3					
J	· · · · · · · · · · · · · · · · · · ·							
	·				<u> </u>			
	· · · · · · · · · · · · · · · · · · ·							
					[1	
						L		<u> </u>
				<u> </u>		ļ		
								
						ļ		<u></u>
							<u>.</u>	
·								
							<u> </u>	
			•					
						1	·	

J

COMPANY: Geomatrix Consultants, Inc. Peter Cooper - Cattaraugus Creek - 5771.001 SUBMISSION #: R2106792

Geomatrix samples were collected on 05/02-03/01 and received at CAS on 05/02-03/01 in good condition.

INORGANIC ANALYSIS

Five water samples were analyzed for a site specific list of paramters. Please see attached data pages for method numbers.

Job specific QC was not requested for these samples. All Blank Spike recoveries were within limits except Sulfide and has been flagged with an "*". The Blank Spike/samples were not repeated due to a laboratory error.

No other analytical or QC problems were encountered with these analyses.

VOLATILE ORGANICS

Five water samples and two trip blanks were analyzed for a site specific list of Volatiles by method 8260 from SW-846.

All Tuning criteria for BFB were met.

All the initial and continuing calibration criteria were met for all analytes.

All internal standard areas were within QC limits.

All surrogate standard recoveries were within acceptance limits.

Job specific QC was not requeted for these samples. All Reference Spike recoveries were within limits.

The Laboratory Blanks associated with these analyses were free of contamination.

All samples were analyzed within required holding times.

No other analytical or QC problems were encountered.

02.

Geomatrix - submission #R2106792 - page 2

SEMIVOLATILE ORGANICS

Five water samples were analyzed for a site specific list of Semivolatiles by method 8270 from SW-846.

All the Tuning criteria for DFTPP was met.

All the initial and continuing calibration criteria were met for all analytes.

All internal standard areas were within QC limits.

All surrogate standard recoveries were within limits.

Job specific QC was not requested for these samples. All Reference spike recoveries were within limits.

The Laboratory blanks associated with these samples were free of contamination.

All samples were extracted and analyzed within the recommended holding times.

No other analytical or QC problems were encountered.

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hard copy package has been authorized by the Laboratory Manager or his designee, as verified by the following signature.

COMPANY: Geomatrix Consultants, Inc. Peter Cooper - Former Manufacturing Plant - 5771.001 SUBMISSION #: R2106788

Geomatrix samples were collected on 05/01-03/01 and received at CAS on 05/02-03/01 in good condition.

INORGANIC ANALYSIS

Nine water samples were analyzed for a site specific list of paramters. Please see attached data pages for method numbers.

Job specific QC was performed on 050201128 as requested. All MS/MSD recoveries were within limits except Hexavalent Chromium and has been flagged with an "N". The matrix spike was repeated and again it was outside limits. All Blank Spike recoveries were within limits except Sulfide and has been flagged with an "N". The Blank Spike/samples were not repeated due to a laboratory error.

Due to a laboratory error, 050101126 Soluble and 050101127 were analyzed outside the recommended holding time of 24 hours for Hexavalent Chromium.

Iron has been flagged with an "E" as an estimated value due to the presence of interferences.

No other analytical or QC problems were encountered with these analyses.

VOLATILE ORGANICS

Seven water samples were analyzed for a site specific list of Volatiles by method 8260 from SW-846.

All Tuning criteria for BFB were met.

All the initial and continuing calibration criteria were met for all analytes.

All internal standard areas were within QC limits.

All surrogate standard recoveries were within acceptance limits.

Job specific QC was performed on 050201128 as requested. All MS/MSD and Reference Spike recoveries were within limits. All RPD's were within limits.

The Laboratory Blanks associated with these analyses were free of contamination.

All samples were analyzed within required holding times.

No other analytical or QC problems were encountered.

Geomatrix - submission #R2106788 - page 2

SEMIVOLATILE ORGANICS

Seven water samples were analyzed for a site specific list of Semivolatiles by method 8270 from SW-846.

All the Tuning criteria for DFTPP was met.

All the initial and continuing calibration criteria were met for all analytes.

All internal standard areas were within QC limits.

All surrogate standard recoveries were within limits.

Job specific QC was performed on 050201128 as requested. All MS/MSD and Reference spike recoveries were within limits. All RPD's were within limits.

The Laboratory blanks associated with these samples were free of contamination.

All samples were extracted and analyzed within the recommended holding times.

No other analytical or QC problems were encountered.

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hard copy package has been authorized by the Laboratory Manager or his designee, as verified by the following signature.

А

COMPANY: Geomatrix Consultants, Inc. Peter Cooper - Inactive Landfill Area - 5771.001 SUBMISSION #: R2106774

Geomatrix samples were collected on 04/30/01-05/04/01 and received at CAS on 05/01-05/01 in good condition.

INORGANIC ANALYSIS

Thirty-one water samples were analyzed for a site specific list of parameters. Please see attached data pages for method numbers.

Job specific QC was performed on 043001121 as requested. All MS/MSD recoveries were within limits except Hexavalent Chromium and has been flagged with an "N". The matrix spike was repeated and again it was outside limits. All Blank Spike recoveries were within limits except Sulfide and which has been flagged with an "N". The Blank Spike/samples were not repeated due to a laboratory error.

050301146, 050301145 soluble, 050301146 soluble, 050401147, 050401148, 050401149, 050401150050401151, 050401152 and 050201136 soluble were digested twice and analyzed on seven separate occasions. The ICP analysis had internal standard drift for Arsenic and Zinc due to matrix interferences and the CCB's also failed for Arsenic. The PQL's for Arsenic and Zinc have been raised due to this.

No other analytical or QC problems were encountered with these analyses.

VOLATILE ORGANICS

Twenty water samples and three trip blanks were analyzed for a site-specific list of Volatiles by method 8260 from SW-846.

All Tuning criteria for BFB were met.

All the initial and continuing calibration criteria were met for all analytes.

All internal standard areas were within QC limits.

All surrogate standard recoveries were within acceptance limits.

Job specific QC was performed on 043001121 as requested. All MS/MSD and Reference Spike recoveries were within limits. All RPD's were within limits.

The Laboratory Blanks associated with these analyses were free of contamination

Samples 050201137, 050201138, 050201139, 050201136, 050301143, 050301144, 050301145, 050401147, 050401148, 050401152 all had a pH of greater than 2.

All samples were analyzed within required holding times.

No other analytical or QC problems were encountered. 301603

Geomatrix - submission #R2106774 - page 2

SEMIVOLATILE ORGANICS

Twenty water samples were analyzed for a site-specific list of Semivolatiles by method 8270 from SW-846.

All the Tuning criteria for DFTPP was met.

All the initial and continuing calibration criteria were met for all analytes.

All internal standard areas were within QC limits.

All surrogate standard recoveries were within limits except 050201136DL and 050401147. These surrogates were diluted out and have been flagged with a "D".

Job specific QC was performed on 043001121 as requested. All MS/MSD were within limits. All Reference spike recoveries were within limits. All RPD's were within limits.

Various compounds for 050201136 and 050401147 have been flagged with an "E" as being outside the calibration range of the instrument. The samples were repeated at dilutions and both sets of data have been reported out.

The Laboratory blanks associated with these samples were free of contamination.

All samples were extracted and analyzed within the recommended holding times.

No other analytical or QC problems were encountered.

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hard copy package, has been authorized by the Laboratory Manager or his designee, as verified by the following signature.

~

CASE NARRATIVE

COMPANY: Geomatrix Consultants, Inc. Peter Cooper - Inactive Landfill Area - 5771.001 SUBMISSION #: R2106774

Geometrix samples were collected on 04/30/01-05/04/01 and received at CAS on 05/01-05/01 in good condition.

HEXAVALENT CHROMIUM

Water samples were enalyzed for Hexavelent Chromium by EPA Method 7196A.

These samples were analyzed on three separate days as follows:

Analyzed 5/1/01 043001121 043001122 043001122 soluble 050101123 050101124 050101124 soluble

Analyzed 5/3/01 050201137 050201138 050201139 050201136 050201137 soluble 050201138 soluble 050201138 soluble

For each analytical run all QA/QC criteria used to demonstrate a compliant analysis were within limits. This includes the initial calibration which demonstrates linearity and linear range, continuing calibration checks which demonstrate that the initial calibration is still accurate and precise, LCS (Blank Spikes) which demonstrate that the analyte has been recovered from a DI water matrix sufficiently, and Method blanks that demonstrate that the analyte has not been detected above the Reporting limit in blank water.

1 Mustard Street, Suite 250 = Rochester, NY 14609-6925 = Telephone (716) 288-5380 = Fax (716) 288-8475

Case Narrative R2106774 Page 2

Duplicate and Matrix Spike QC was performed each day of sample analysis. For 5/1/01, QC was performed on 043001121. Recovery was 0% for each of two analysis of this sample. All blank spike recoveries were within QC limits. Negative interferences are suspected. Substances which can reduce Cr (VI) upon acidification (e.g. Cyanides, Thiosulfate, organic matter) will cause negative interferences in the determination of Cr (VI).

For analysis on 6/3/01, batch QC was performed on a sample not associated with this project. Matrix spike recovery was within limits at 104%, and all blank spike recoveries were also within limits.

For analysis on 5/4/01, QC was performed on sample 050401148. Matrix spike recovery was 71%, outside the limits of 85-115%. All blank spike recoveries were within QC limits. Again, negative interferences are suspected, however not to the extent that the recovery was affected for the analysis on 5/1/01.

07/03/01 13:23 27162868475

CAS ROCHESTER

Columbia Analytical Services

AT WORD DATA CUPTT		
ALISES DATA SHEET		AMPLE NO.
	a	SOSO1145 SOLUBLE
	Ľ	
SAS No.:	SDG ND.	: 43001121
Lab Sample ID:	460941	
Date Received;	05/04/01	
	SAS No.: Leb Sample ID: Date Received;	SAS No.: SDG ND.: Lab Sample ID: 460941 Date Received; 05/04/01

Concentration Units (ug/L or mg/kg dry weight): pG/L

CAS No.	Analyte	Concentration	C	Q	×
7440-38-2	Arsenis	25.0	σ		1 2
7440-47-3	Chromium	82.1			P
7440-66-6	lZinc	30.0	D		P

Color Befo	EC: YELLOW	Clarity Before:	CLEAR	Taxture:
Color Afte	r: Colorless	Clarity After:	CLEAR	Artifacts:
Comments:				

Form I - IN

		METALS		
		-1-		
	INORGA	NIC ANALYSIS DATA SH	eet _	SAMPLE NO.
			Γ	050301146 BOLUBLE
ntract: R20067	74		L	
b, Code:	Case No.:	535 No.:	SDG NO.	: 43001121
	E): WATER	Lab Sample	ID: 460942	
trix (soil/wate				

CAS No.	Analyte	Concentration	C	Q	M
7440-38-2	Arsenic	25.0			P
7440-47-3	Chromium	11.4			P
7440-66-6	I Zinc	78.4			P

.

Concentration Units (ug/L os mg/kg dry weight): pG/L

Color	Before	YELLOW	Clarity Before:	CLEAR	Texture:
Color	After:	COLORLESS	Clarity After:	CLEAR	Artifacts:
Comme	ats:				

Form I - IN

572

•

07/03/01 13:24 37162888475

CAS ROCHESTER

Columbia Analytical Services

	INORGAN	METALS -1- TIC ANALYSIS DATA SHEET	<u>-</u>	5AMPLE NC. 050401148
Contract: R200677	4		L	· · · ·
Lab Code:	Çase No.:	SAB No.:	SDG NO.	: 43001121
Matrix (soil/wate:	c): MATER	Lab Sample ID:	461147	
Lovel (low/med):	LOW	Date Received:	05/04/01	

CAS No.	Analyte	Concentration	C	Q	M
7440-38-2	Arsenic	28.3			P
7440-70-2	Calcium	252000			2
7440-47-3	Chromium	55.1	I T		P
7439-89-6	Iron	1 115			P
7439-95-4	Magnesium	107000			P
7440-09-7	Potassium	25200	1 1		P
7440-23-5	Sodium	297000			12
7440-66-6	Izino	30.0	U		12

Concentration Units (pg/L or pg/kg dry weight) : pg/L

Color Before:	YELLOW	Clarity J	Before:	CLEAR	Texture:
Color After:	COLORLESS	Clarity P	After:	CLEAR	Artifacts:
Comments:					

Form I - IN

Ø004

07/03/01 1 Columbia Analyti	5:24 B7182888475 cal Services	CAS ROCEESTE	3	Ø 005
		METALS -1-		
	INORGA	NIC ANALYSIS DATA SH	LEET SAMPLE NO.	· · · · · · · · · · · · · · · · · · ·
Contract: \$200677	4		050401149	
Lab Code:	Care No.:	SAS No. :	SDG NC.: 430011	21
Matrix (soil/wate:	c): MATER	_ Lab Sample	TD: 461148	
Level (low/med): LOW		Date Rece	ved: 05/04/01	

CAS No.	Apalyte	Concentration	-	8	м
7440-36-2	Arsenic	25.0	 		2
7440-70-2	Calcium	84000			2
7440-47-3	Chromium	10.0	0		2
7439-89-6	IIIOD	1810	$\left[\right]$		P
7439-95-4	Magnesium	15700			P
7440-09-7	Potassium	4690			P
7440-23-5	Sodium	347000			P
7440-66-5	Zinc	30.0	V		P

Concentration Units (ug/L or mg/kg dry Weight) : pG/L

Color	Before:	Colorless	Clarity Before:	CLEAR	Texture:
Color	After:	COLORLESS	Clarity After:	CLEAR	Artifacts;
Contact	ntsi				

Form I - IN

577

•

07/03/01 13:25 237152865475 Columbia Analytical Services

CAS ROCHESTER

METALS -1-INORGANIC ANALYSIS DATA SHEET SAMPLE NO. D50401150 Contract: R2006774 SAS No.: Lab Code: Case No.: SDG NO.: 43001121 Matrix (soil/water): WATER Lab Sample ID: 461149 Level (low/med): LOW Date Received: 05/04/01

concentration onlice (sdir or sdikd ord werduc): i							
CAS No.	Analyte	Concentration	c	ð	M		
7440-38-2	Arsenic	25.0	0				
7440-47-3	Chromium	10.0	U		P		
7440-66-6	Zine	30.0	0		P		

Concentration Units (ng/L or ng/kg dry weight): 'nG/L

Color	Before	COLORLESS	Clarity B	Before:	CLEAR	Texture:
Color .	After:	COLOFLESS	Clarity A	ftez:	CLEAR	Artifacts:
Coursen	ts:					

Form I - IN

578
07/03/01	13:25	27162868473
Columbia Analy	vtical Se	ervices

CAS ROCHESTER

- - ----

2007

METALS
-1-
INORGANIC ANALYSIS DATA SHEET

1	SANDLE NC.	
	050401151	

-

Contract: \$2005774					J
Lab Coda:	Case No. ;	SAS No.:	SDG	NO.:	43001121
Matrix (soil/water)	: WATER	Lab Sample ID:	461151		
Level (low/med):	LOW	Date Received:	05/04/0	1	

Concentration Units (ug/L or mg/kg dry weight):									
CAS No.	Analyte	Concentration	c	ç	м				
7440-38-2	Arsenic	25.0	U		P				
7440-70-2	Calcium	235000			P				
7440-47-3	Chromium	10.0			2				
7439-89-6	Iron	2290	1		P				
7439-95-4	Magnesium	34000	1		P				
7440-09-7	Potassium	22200			2				
7440-23-5	Sodium	229000			1 2				
7440-66-6	Zinc	30.0	0		P				

Concentration Units (ug/L or mg/kg dry weight): µG/L

Color Bofe	re: COLORLESS	Clarity Before:	CLEAR	Texture:
Color Afte	T; COLORLESS	Clarity After:	CLEAR	Artifacts:
Couments:				

Form I - IN

579

•

CAS RUCHESTER

Calu m hia	Analytical	Services
<i>Columnua</i>	anayuna	DEIMLES

METALS -1 INORGANIC ANALYSIS DATA SHEET SAMPLE NO. OSO 401152 ... OSO 401152 ... Date Received: 05/05/01

CAS No.	Analyte	Concentration	C	Q	R
7440-38-2	Arsenic	23,9	10	·-·	₽
7440-70-2	Celcium	213000			P
7440-47-3	Chromium	22.8	11		12
7439-89-6	Iron	16600			P
7439-95-4	Magnesium	61900			P
7440-09-7	Potassium	4670			P
7440-23-5	Sodium	6000	01		P
7440-66-6	Izinc	30.0	101		P

Concentration Units (ug/L or mg/kg dry weight): pG/L

Color Before: COLORLESS Color After: COLORLESS Comments: Clarity Before: CLEAR Clarity After: CLEAR

Form I - IN

Texture: Artifacts:

07/03/01 13:48 **5**7162888475 Columbia Analytical Services

CAS ROCHESTER

METALS

-3-

BLANKS

Contract: \$2006774

Lab Code:

SAS No.:

SDG NO.: 43001121

Ø001

Preparation Blank Matrix (coil/water): WATER

Preparation Blank Concentration Units (bg/L or mg/kg): UG/L

Case No .:

	Initial Calib. Blank		Continuing Calibration Blank (ug/L)						Preparation Blank			
Analyte	(bg/L)	¢	1	C	2	C	3	c		¢		м
Arsenic	25.0	ש	25.		25.0	U	25.0	U	25.000	U	ĪĪ	P
Calcian	500.0	ש	500.	ΟU	500.0	ש	500.0	ס	500.000	υ	Ĩ	P
Chromium	10.0	D I	10.	υΙσ	10.0	0	10.0	σ	10.000	U	ĪĪ	₽
Iron_	100,0	υ	100.		100.0	V	100.0	D	100.000	D	ĪĪ	P
Magnesium	500.0	ש	500.	0 0	500.0	ש	500.0	σ	500,000	U	ĨĨ	2
Fotassiun	2000.0	σ	2000.	οjσ	2000.0	4	Z000,0	U	2000.000	υ	Ū	P
Sodium	5000.0	ש	5000.	010	5000.0	0	5000.0	σ	5000,000	U	ĪĪ	P
Linc	30.0	0	30.	0 0	30.0	Ī	30.0	σ	30.000	σ	$\overline{\Pi}$	R

07/03/01 13:49 57162888475

CAS ROCHESTER

Columbia Analytical Services

METALS

-3-

BLANKS

Contract: R2006774

Lab Code:

SAS No.:

SDG NO.: 43001121

Freparation Blank Matrix (poil/water): WATER

Preparation Blank Concentration Units (ug/L or mg/kg): UG/L

Case No.:

	Initial Calib. Blank			00	ntinuing C Blank (u	ali g/I	bration ,}		Preparation Blank			
Analyte	(ug/L)	C	1	¢	2	c	3	с	1	С		M
Arsenic	l		25	0 U		Ĩ			J		Ī	P
Calcium		11	500	0 01	500,0	σ	l			1	Ū	- 12
Chromium		11	10,	00					<u> </u>	L		P
Iron		1	100.	0 1	100.0	ש			<u> </u>			2
Magnesium			500.	0 0	500.0	0					Ľ	P
Potassium			2000	0101	2000.0	D			1]		•
Sodium			5000.	0 0	5000.0	0		1	1			P
Zino			30.	0 0		1			1		U	P

594

Ø 002

·· -

Inactive Landfill Area Peter Cooper Site Gowanda, New York

	1	·					· · · · · · · · · · · · · · · · · · ·					
		1108001	02 110	500103	11080	0104	5020	1137	5020	11138	5020	1139
CONSTITUENT	UNIT	L-1 SEE	P L-2	SEEP	L-38	EEP_		SELP	L-2 :	SEEP	1~3	SLEP
BENZENE	ug/l	-10 U		00	-10	U	-10	U	-10	0 5	-10	U T
CHLOROBENZENE	ug/i	-10 U	-	0 U	-10	U	-10	U	-10	0	-10	U ;
1,2-DICHLOROBENZENE	ug/l	-10 U	-	10 U	-10	U	-10	0	-10	0	-10	U
1,4-DICHLOROBENZENE	ug/1	-10 U	-	0 U	-10	U	-10	U	-10	U	-10	U
ETHYLBENZENE	ug/i	-10 U		0 U	-10	U	-10	U	-10	U	-10	0
TOLUENE	ug/l	3.1 J	2	.0 J	-10	U	2.8	J	3.5	J	-10	U
M+P-XYLENE	ug/l	-10 U	-	U	-10	υ	-10	υ	-10	U	-10	U I,
O-XYLENE	ug/1	-10 U	-	U_U	-10	Ū	-10	U	-10	U V	-10	υŊ
SOLUBLE ORGANIC CARBONS (1)	MG/L	100	83	.0	31.0		D&		<u>na</u>	l	na	
SOLUBLE ORGANIC CARBONS (2)	MG/L	97.4	81	.2	31.3		па		na		na	
SOLUBLE ORGANIC CARBONS (3)	MG/L	99 .6	81	.7	31.0		Dă		Da	1	na	
SOLUBLE ORGANIC CARBONS (4)	MG/L	94.5	81	.8	30.8		па		na		na	
Semi-Volatile Compounds												
2-CHLOROPHENOL	ug/l	-10 U	-1	0 U	-10	υ	-9.4	U	-10	U	-16	U
2,4-DICHLOROPHENOL	ug/l	-10 U		0 U	-10	υ	-9.4	U	-10	υ	-16	U
2,4-DIMETHYLPHENOL	ug/l	-10 U		0 U	-10	υ	-9.4	υ	-10	U	-16	U
2,4-DINTROPHENOL	ug/l	-50 U	-	10 U	-50	Ū	-24	U	-25	U	-40	U
4,6-DINITRO-2-METHYLPHENOL	ug/l	-50 U		θU	-50	U	-24	U	-25	υ	-40	U
4-CHLORO-3-METHYLPHENOL	ug/1	-10 U	-	0 0	-10	υ	-9.4	U	-10	υ	-16	U
2-METHYLPHENOL	ug/l	-10 U	-	0 0	-10	U	-9.4	U	-10	υ	-16	U
4-METHYLPHENOL	ug/l	-10 U	-	0 0	-10	υ	-9.4	U	-10	U	-16	U
2-NITROPHENOL	ug/1	-10 U		0 0	-10	U	-9.4	U	-10	U	-16	υ
4-NITROPHENOL	ug/1	-50 U	-	OU	-50	U	-24	U	-25	U	-40	U
PENTACHLOROPHENOL	<u> </u>	-50 U		0.0	-50	U	-24	U	-25	U	-40	υ
PHENOL		-10/11		81	18	1	-9.4	Ū	-10	Ū	-16	Ū
2 4 6-TRICHI OROBUTNOI	<u> </u>	-1011		011	-10	11	-9.4	Ŭ	-10	Ŭ	-16	Ū
2.4.5-TRICHLOROPHENOL	<u>ug/1</u>	-10 [1]		011	-10		-24	ū	-25	ŭ	-40	Ū.
Total Metals		-1010		40		-						
		15(000			116000		171000		156000		170000	
	<u>ug/1</u>	130000	15000		110000	——	1/1000		130000	{	170000	
	ug/1	3/4			200		1190	<u> </u>	100	11	123	
	<u>ug/1</u>	3010	2800		390		102000		122000	0	00500	
MAGNESIUM	<u>ug/i</u>	190000	10300		2440	<u> </u>	7710		4190		4120	
	ug/1	10900	8/5		3360		18100		18700		4120	
SODIUM	<u>ug/l</u>	26800	197		1/500	7.7	18100		18500	11	18000	
	<u>ug/1</u>	-20 0	/4	./	-20		-20	0	-20	0	-20	<u> </u>
AKSENIC		71.0	- 32	0	02.1		52.1		36.1		31.4	
	MG/L	891	73	4	381		627	<u></u>	6/8		393	- 0
HEXAVALENT CHROMIUM	MG/L	-0.04 0	-0.0	4 0	-0.01	U			-0.01		0.01	
rate and Transport Parameters					ļ							
TOTAL ORGANIC CARBON (1)	MG/L	102	83	3		nz	56.1		62.9		38.7	
TOTAL ORGANIC CARBON (2)	MG/L	98.7	84	1		na	54.6		66.2		38.6	
TOTAL ORGANIC CARBON (3)	MG/L	100	77	5	.	D8	55.4		65.4		38.5	
TOTAL ORGANIC CARBON (4)	MG/L	102	80	8		na	56.0		65		37.9	
TOTAL DISSOLVED SOLIDS	MG/L	1060	103	0	855							
TOTAL SULFIDE	MG/L	9.00	3.7	0	-1	U	5.9		5.2		- 1	
CARBONATE ALKALINITY	MG/L	-2 U		2 U	-2	U	-2	U	-2	U	-2	U
CHLORIDE	MG/L	33.9	29	9	17.5		17.3		. 20.6		20.3	
NITRATE NITROGEN	MG/L	2.35	0.74	6	2.84	0	5459576	<u> </u>	0.0573	u	1.74 .2.04	
SULFATE	MG/L	241	15	7	595		242		150		632	
TOTAL HARDNESS	MG/L	1100	80	0	608							
TOTAL ALKALINITY	MG/L	4000	315	0	1340		2800		3100		1550	
BICARBONATE ALKALINITY	MG/L	4000	315	0	1340		2800		3100		1550	
TOTAL KJELDAHL NITROGEN	MG/L	836	72	1	380		602		667		392	
Soluble Metals												
CALCIUM	ug/l	155000	13200	0	113000		na		na		Da	
CHROMIUM	11g/l	369	32	5	96.9		na		na		D.S.	
IRON	ug/l	4780	91	4	107		DS		na		Da	
MAGNESIUM	ug/1	184000	14400	0	84100		114		na		na	
POTASSIUM	ug/l	10500	640	0	3700		D.R		118		na	
SODIUM	ue/l	26000	1960	ю	17000		na		D.B.		na	
ZINC	ug/i	-20 11	-	0 U	-20	U	DA		Dā		na	
ARSENIC	up/1	66.5	52	.8	59.9	<u> </u>	па		ра		па	
HEXAVALENT CHROMIUM	мол	-0.04 11		410	-0.04	U	-0.01	U-12	-0.01	U-R	0.01	ü- R
				+	1							
		<u>├</u>										
· · · · · · · · · · · · · · · · · · ·		<u>├</u>	<u>_</u>	-+								·
		\vdash		+	l							

•

ì

ANALYTICAL SUMMARY OF SHALLOW GROUNDWATER

Former Manufacturing Plant Area Peter Cooper Site Gowanda, New York

		088	090	-178	-106	-140
			11/7/00	5/2/01	11/7/00	\$/3/01
Compound	UNIT	MWFP_3S	MWFD 26	MWFD 3S	MWFP-2S	MWFP.2S
ACENAPHTHENE	UNII	10 U	_10 U	NA NA	-10 U	NA NA
ACENAPHTHYI ENE	ug/1	10 U	-10 11	NA NA	-10 U	NA NA
ACETOPHENONE		-10 U	-10 U	NA NA	-10 U	NA
ANTHDACENE	ug/1	-10 U	-10 U	NA	-10 U	NA
ATRAZINE	ug/1	-10 U	-10 U		-10 U	NA
BENZALDEHYDE	<u>ug/1</u>	-10 U	-10 U	NA	-10 U	NA
BENZOVA)ANTHRACENE	110/	-10 U	-10 11	-94U	-10 11	-9511
BENZO(A)PYRENE	110/1	-10 U	-10 U	-9.4 U	-10 U	-9 5 U
BENZO(B)FLUORANTHENE	110/	-10 U	-10 U	-9.4 U	-10 U	-9.5 U
BENZO(G.H.I)PERYLENE	ug/l	-10 U	-10 U	NA	-10 U	NA
BENZOK)FLUORANTHENE	ug/]	-10 U	-10 U	NA	-10 U	NA
1.1'-BIPHENYL	ug/l	-10 U	-10 U	NA	-10 U	NA
BUTYL BENZYL PHTHALATE	ue/l	-10 U	-10 U	NA	-10 U	NA
DI-N-BUTYLPHTHALATE	ug/l	1.1 J	-10 U	NA	-10 U	NA
CAPROLACTAM	ug/l	-10 U	-10 U	NA	290 D	NA
CARBAZOLE	ug/l	-10 U	-10 U	NA	-10 U	NA
INDENO(1,2,3-CD)PYRENE	ug/l	-10 U	-10 U	-9.4 U	-10 U	-9.5 U
4-CHLOROANILINE	ug/l	-10 U	-10 U	NA	-10 U	NA
BIS(-2-CHLOROETHOXY)METHANE	ug/l	-10 U	-10 U	NA	-10 U	NA
BIS(2-CHLOROETHYL)ETHER	ug/i	-10 U	-10 U	NA	-10 U	NA
2-CHLORONAPHTHALENE	ug/l	-10 U	-10 U	NA	-10 U	NA
2-CHLOROPHENOL	ug/l	-10 U	R	NA	-10 U	NA
2,2'-OXYBIS(1-CHLOROPROPANE)	ug/l	-10 U	-10 U	NA	-10 U	NA
CHRYSENE	ug/l	-10 U	-10 U	NA	-10 U	NA
DIBENZO(A,H)ANTHRACENE	ug/l	-10 U	-10 U	-9.4 U	-10 U	-9.5 U
DIBENZOFURAN	ug/l	-10 U	-10 U	NA	-10 U	NA ·
3,3'-DICHLOROBENZIDINE	ug/l	-10 U	-10 U	NA	-10 U	NA
2,4-DICHLOROPHENOL	ug/l	-10 U	R	NA	-10 U	NA
DIETHYLPHTHALATE	ug/l	-10 U	-10 U	NA	-10 U	NA
DIMETHYL PHTHALATE	ug/l	-10 U	-10 U	NA	-10 U	NA
2.4-DIMETHYLPHENOL	ug/l	-10 U	R	NA	-10 U	NA
2,4-DINITROPHENOL	ug/l	-25 U	R	NA	25 U	NA
2,4-DINITROTOLUENE	ug/l	-10 U	- <u>10 U</u>	NA	-10 U	NA
2,6-DINITROTOLUENE	ug/l	-10 U	-10 U	NA	-10 U	NA
BIS(2-ETHYLHEXYL)PHTHALATE	ug/l	-10 U	-10 U	NA	4.0 J	NA
FLUORANTHENE	ug/l	-10 U	-10 U	NA	-10 U	NA
FLUORENE	ug/l	-10 U	-10 U	NA	10 U	NA
HEXACHLOROBENZENE	ug/l	-10 U	-10 U	NA	-10 U	NA
HEXACHLOROBUTADIENE	ug/l	-10 U	-10 U	NA	-10 U	NA
HEXACHLOROCYCLOPENTADIENE	ug/l	-10 U	-10 U	NA	-10 U	NA
HEXACHLOROETHANE	ug/l	-10 U	-10 U	NA	10 U	NA
ISOPHORONE	ug/l	-10 U	-10 U	NA	10 U	NA
2-METHYLNAPHTHALENE	ug/l	-10 U	-10 U	NA	-10 U	NA
4,6-DINITRO-2-METHYLPHENOL	ug/l	<u>-25 U</u>	<u>R</u>	NA	-25 U	NA
4-CHLORO-3-METHYLPHENOL	ug/i	-10 U	R	NA	-10 U	NA
2-METHYLPHENOL	ug/l	-10 U	R	NA	-10 U	NA
4-METHYLPHENOL	ug/i	-10 U	R	NA	-10 U	NA
NAPHTHALENE	ug/l	-10 U	-10 U	NA	-10 U	NA
2-NITROANILINE	ug/l	-25 U	-25 U	NA	-25 U	NA
3-NITROANILINE	ug/l		-25 U	NA	-25 U	NA
4-NITROANILINE	ug/l	-25 U	-25 U	NA	-25 U	NA
NITROBENZENE	ug/l	-10 U	-10 U	NA	-10 U	NA
2-NITROPHENOL	ug/l	-10 U	R	NA	-10 U	NA
4-NITROPHENOL	ug/l	-25 U	R	NA	-25 U	NA

·· · ····

ANALYTICAL SUMMARY OF SHALLOW GROUNDWATER

Former Manufacturing Plant Area Peter Cooper Site Gowanda, New York

		-088	-089	-128	-106	-140
		11/7/00	11/7/00	5/2/01	11/7/00	5/3/01
	UNIT	MWFP-3S	MWFP-3S	MWFP-3S	MWFP-25	MWFP-25
N-NITROSODIPHENYLAMINE	ug/l	-10 U	-10 U	NA	-10 U	NA
DI-N-OCTYL PHTHALATE	ug/l	-10 U	-10 U	NA	-10 U	NA
PENTACHLOROPHENOL	ug/l	-25 U	R	NA	-25 U	NA
PHENANTHRENE	ug/l	-10 U	-10 U	NA NA	-10 U	NA
PHENOL	ug/l	-10 U	R	NA	-10 U	NA
4-BROMOPHENYL-PHENYLETHER	ug/l	-10 U	-10 U	NA	-10 U	NA
4-CHLOROPHENYL-PHENYLETHER	ug/l	-10 U	-10 U	NA	-10 U	NA
N-NITROSO-DI-N-PROPYLAMINE	ug/l	-10 U	-10 U	NA	-10 U	NA
PYRENE	ug/l	-10 U	-10 U	NA	-10 U	NA
2,4,6-TRICHLOROPHENOL	ug/l	-10 U	<u>R</u>	NA	-10 U	NA
2,4,5-TRICHLOROPHENOL	ug/l	-25 U	R	NA	-25 U	NA
METALS				ł		
ALUMINUM	ug/l	406	557	NA	331	NA
ANTIMONY	ug/1	-60 U	-60 U	NA	<u>-60 U</u>	NA
BARIUM	ug/l	103	99.6	NA	112	NA
BERYLLIUM	ug/l	-5 U	-5 U	NA	-5 U	NA
CADMIUM	ug/l	-5 U	-5 U	NA	-5 U	NA
CALCIUM	ug/l	_360000	344000	312000	313000	337000
CHROMIUM	ug/l	-10 U	-10 U	-10 U	11.4	
COPPER	ug/I	-20 U	-20 U	NA	-20 U	NA
IRON	ug/l	16000	14800	5510	535	4210
LEAD	ug/1	-5 U	-5 U	-5 U	-5 U	-5 U
MAGNESIUM	ug/l	17500	16700	17000	32800	26400
MANGANESE	ug/l	2080	2240	1490	430	680
NICKEL	ug/l	-40 U	-40 U	NA	-40 U	NA
POTASSIUM	ug/l	6600	6630	4630	10700	6410
SELENIUM	ug/l	6.10	-5 U	NA	-5 U	NA
<u>SILVER</u>	ug/l	-10 U	-10 U	NA	-10 U	NA
SODIUM	ug/l	122000	115000	45900	18700	998 0
THALLIUM	ug/l	-10 U	-10 U	NA	-10 U	NA
ZINC	ug/1	55.1	41.2	NA	124	NA
VANADIUM	ug/l	-50 U	-50 U	NA	-50 U	NA
COBALT	ug/l	-50 U	-50 U	NA	-50 U	NA
MERCURY	ug/l	-0.3 U	-0.3 U	NA	-0.3 U	NA
ARSENIC	ug/l	-10 U	-10 U	NA	-10 U	NA
VOCS						
ACETONE	ug/l	-10 U	-10 U	NA	22	NA
BENZENE	ug/l	-10 U	-10 U	-10 U	-10 U	-10 U
BROMODICHLOROMETHANE	ug/l	-10 U	-10 U	NA	-10 U	NA
BROMOFORM	ug/i	-10 U	-10 U	NA	-10 U	NA
BROMOMETHANE	ug/l	-10 U	-10 U	NA	-10 U	NA
2-BUTANONE (MEK)	ug/l	-10 U	-10 U	NA	-10 U	NA
METHYL TERT-BUTYL ETHER	ug/l	-10 U	-10 U	NA	-10 U	NA
CARBON DISULFIDE	ug/l	-10 U	-10 U	NA	-10 U	NA
CARBON TETRACHLORIDE	ug/l	-10 U	-10 U	-10 U	-10 U	-10 U
CHLOROBENZENE	ug/l	-10 U	-10 U	NA	-10 U	NA
CHLOROETHANE	ug/l	-10 U	-10 U		-10 U	
CHLOROFORM	ug/l	-10 U	-10 U	-10 U	-10 U	-10 U
CHLOROMETHANE	ug/l	-10 U	-10 U	NA	-10 U	NA
1,2-DIBROMO-3-CHLOROPROPANE	ug/l	-10 U	-10 U	NA	-10 U	NA
CYCLOHEXANE	ug/I	-10 U	-10 U	NA	11	NA
DIBROMOCHLOROMETHANE	ug/l	-10 U	-10 U	NA	-10 U	NA
1,2-DIBROMOETHANE	ug/i	-10 U	-10 U	NA	-10 U	NA
1,2-DICHLOROBENZENE	ug/l	-10 U	-10 U	NA	-10 U	NA

Page 2 of 3

ANALYTICAL SUMMARY OF SHALLOW GROUNDWATER

Former Manufacturing Plant Area Peter Cooper Site Gowanda, New York

n Tan, Timu, Tuga, Anna, Arta, Con Tuga, Anna		-088	-089	-128	-106	-140
		11/7/00	11/7/00	5/2/01	11/7/00	5/3/01
Compound	UNIT	MWFP-3S	MWFP-3S	MWFP-3S	MWFP-2S	MWFP-2S
1,4-DICHLOROBENZENE	ug/l	-10 U	-10 U	NA	-10 U	NA
1.3-DICHLOROBENZENE	ug/l	-10 U	-10 U	NA	-10 U	NA
DICHLORODIFLUOROMETHANE	ug/l	-10 U	-10 U	NA	-10 U	NA
1,1-DICHLOROETHANE	ug/l	2.0 J	2.1 J	NA	-10 U	NA
1,2-DICHLOROETHANE	ug/l	-10 U	-10 U	NA	-10 U	NA
1,1-DICHLOROETHENE	ug/l	-10 U	-10 U	NA	-10 U	NA
TRANS-1,2-DICHLOROETHENE	ug/l	-10 U	-10 U	NA	-10 U	NA
CIS-1,2-DICHLOROETHENE	ug/l	5.0 J	5.1 J	NA	-10 U	NA
1,2-DICHLOROPROPANE	ug/l	-10 U	-10 U	NA	-10 U	NA
TRANS-1,3-DICHLOROPROPENE	ug/l	-10 U	-10 U	NA	-10 U	NA
CIS-1,3-DICHLOROPROPENE	ug/l	-10 U	-10 U	NA	-10 U	NA
ETHYLBENZENE	ug/l	-10 U	-10 U	NA	-10 U	NA
2-HEXANONE	ug/l	-10 U	-10 U	NA	-10 U	NA
ISOPROPYLBENZENE	ug/l	-10 U	-10 U	NA	-10 U	NA
METHYL ACETATE	ug/1	-10 U	-10 U	NA	-10 U	NA
METHYLCYCLOHEXANE	ug/l	-10 U	-10 U	NA	16	NA
METHYLENE CHLORIDE	ug/l	-10 U	-10 U	NA	-10 U	NA
4-METHYL-2-PENTANONE	ug/l	-10 U	-10 U	NA	-10 U	NA
STYRENE	ug/l	-10 U	-10 U	NA	-10 U	NA -
1,1,2,2-TETRACHLOROETHANE	ug/l	-10 U	-10 U	NA	-10 U	NA
TETRACHLOROETHENE	ug/l	5.5 J	5.6 J	3.1 J	-10 U	-10 U
TOLUENE	ug/l	-10 U	-10 U	NA	-10 U	NA
1,2,4-TRICHLOROBENZENE	ug/l	-10 U	-10 U	NA	-10 U	NA
1,1,1-TRICHLOROETHANE	ug/l	-10 Ü	-10 U	NA	-10 U	NA
1,1,2-TRICHLOROETHANE	ug/I	-10 U	-10 U_	NA	-10 U	NA
TRICHLOROETHENE	ug/l	2.9 J	2.2 J	3.6 J	-10 U	-10 U .
TRICHLOROFLUOROMETHANE	ug/l	-10 U	-10 U	NA	-10 U	NA
1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE	ug/l	-10 U	-10 U_	NA	-10 U	NA
VINYL CHLORIDE	ug/I	-10 U	-10 U	NA	-10 U	NA
M+P-XYLENE	ug/l	-10 U	-10 U	NA	4.6	NA
O-XYLENE	ug/l	-10 U	-10 U	NA	1,9	NA
OTHER				NA		NA
TOTAL ORGANIC CARBON (1)	mg/l	5.28 U	4.98 U	3.18 U	8.53 U	4.68 U
TOTAL ORGANIC CARBON (2)	mg/l	5.28 U	5.28 U	3.14 U	8.67 U	4.88 U
TOTAL ORGANIC CARBON (3)	mg/l	5.12 U	5.36 U	3.16 U	8.68 U	4.95 U
TOTAL ORGANIC CARBON (4)	mg/l	5.06 U	5.29 U	3.12 U	8.67 U	4.56 U
TOTAL DISSOLVED SOLIDS	mg/l	1570	1590	1180	1190	.1170
TOTAL SULFIDE	mg/l	-1.1 U	-1.1 U	-1.3 U 🥒	-1 U	105
CARBONATE ALKALINITY	mg/l	-2 U	-2 U	-2 U	-2 U	-2 U
SULFATE	mg/l	651	631	448	346	301
TOTAL ALKALINITY	mg/l	558	550	435	700	680
BICARBONATE ALKALINITY	mg/l	558	550	435	700	680
SOLUBLE ORGANIC CARBONS (1)	mg/l	5.38 U	5.62 U	NA	9.22 U	NA
SOLUBLE ORGANIC CARBONS (2)	mg/l	5.41 U	5.42 U	NA	9.26 U	NA
SOLUBLE ORGANIC CARBONS (3)	mg/l	5.28 U	5.39 U	NA	9.17 U	NA
SOLUBLE ORGANIC CARBONS (4)	mg/l	5.55 U	5.26 U	NA _	9.23 U	NA
HEXAVALENT CHROMIUM	mg/l	-0.01 U	-0.01 U	-0.01 U-R	-0.01 U	_0.021U

1. Data qualifications reflect 100% data validation performed by Data Validation Services.

301619

 f_{-1}

Page 3 of 3

ANALYTICAL SUMMARY OF DEEP GROUNDWATER

Former Manufacturing Plant Area Peter Cooper Site Gowanda, New York

		-886	-125	-987	-135	-090	-126	-127
Comment	INT	11/6/00	5/1/01	11/6/08	5/2/01	11///00	5/1/91 MIN/20 1D	5/1/91
Composed	UNII	MWFP-10	MWIT-ID	MWFY-2D	MWFF-20	MWITSD	MWIT-SU	NWFF-SU
ACEN ADHTHENE	1 IGA	1011	NA	-1011	I NAI	-10117	NA	NA
ACENAPHTHYLENE	UGA	-1011	NA	-1011	NA	-1010	NA	NA
ACETOPHENONE	UGA	-10 U	NA	-1010	NA	-10 U	NA	NA
ANTHRACENE	UGA.	-10 U	NA	-1010	NA	-10 U	NA	NA
ATRAZINE	UGIL	-10 U	NA	-10 U	NA	-10 U	NA	NA
BENZALDEHYDE	UG/L	-10 U	NA	-10 U	NA	-10 U	NA	NA
BENZO(A)ANTHRACENE	UGAL	-10 U	-9:4 U	-10 U	-9.5 U	-10 U	-9.4 U	-9.4 U
BENZO(A)PYRENE	UG/L	-10 U	-9.4 U	-10 U	-9.5 U	-10 U	-9.4 U	-9.4 U
BENZO(B)FLUORANTHENE	UG/L	-10 U	9.4 U	-10 U	-9.5 U	-10 U	-9.4 U	-9.4 U
BENZO(G,H,I)PER YLENE	UG/L	-10 U	NA	-10 U	NA	-10 U	NA	NA
BENZO(K)FLUORANTHENE	UG/L	-10 U	NA	-10 U	NA	-10 U	NA	NA
I,I'-BIPHENYL	UGAL	-10 0	NA	-10 U	NA	-10U	NA	NA
BUTYL BENZYL PHTHALATE	UG/L	-10 0	NA	-10 0	NA	-10/U	NA	NA
		-1010		-10/0	NA	-10/01		NA
CAPRAZOLE	1/6/1	-10/0	NA		NA	-1010	NA	NA
NIDENOU 2 3-CDIEVEENE	LICA	-1010	-9411	-1010	0511	-1011	-9411	-9411
4-CHI OROANII INF	116/1	-1010	NA	-10 U	NA	-10 U	NA	NA
BIS -2-CHLOROETHOXYMETHANE	UGA.	-1010	NA	-10 U	NA	-10 U	NA	NA
BIS(2-CHLOROETHYL)ETHER	UG/L	-10 U	NA	-10 U	NA	-10U	NA	NA
2-CHLORONAPHTHALENE	UGA	-10 U	NA	-10 U	NA	-10 U	NA	NA
2-CHLOROPHENOL	UG/L	-10 U	NA	-10 U	NA	-10 U	NA	NA
2,2'-OXYBIS(1-CHLOROPROPANE)	UG/L	-10 U	NA	-10 U	NA	-10 U	NA	NA
CHRYSENE	UG/L	-10 U	NA	-10 U	NA	-10 U	NA	NA
DIBENZO(A,H)ANTHRACENE	UG/L	-10 U	-9.4 U	-10 U	-9.5 U	-10 U	-9.4 U	-9.4 U
DIBENZOFURAN	UGA	-10 U	NA	-10 U	NA	-10 U	NA	NA
3,3'-DICHLOROBENZIDINE	UG/L	-10 U	NA	-10 U	NA	-10 U	NA	NA
2.4-DICHLOROPHENOL	UG/L	-10 U	NA	-10 U	NA	-10 U	NA	NA
DIETHYLPHTHALATE	UG/L	-10 U	NA	-10 U	NA	-10 U	NA	NA
DIMETHYL PHTHALATE	UG/L	-10 U	NA	-10 U	NA	-10 U	NA	NA
2,4-DIMETHYLPHENOL	UG/L	-10 U	<u>NA</u>	-10 U	NA	-10 U	NA	
2,4-DINITROPHENOL	UGA	-25 U	NA	-25 U	NA	-25 U	NA NA	
24-DINITROTOLUENE	UG/L	-10 U	NA	-10 U	NA NA	-10 U	NA	NA
26-DINITROTOLUENE	UG/L	-10 U	NA	-10 0	NA	-10 U	NA	
FLUOR ANTINENE	UGA	-1010	NA	-1011	NA	-10/11	NA NA	
FLIORENE	116/1	-1010	NA	-10/11	NA	-1011	NA	NA
HEXACHLOROBENZENE	UGA	-10 U	NA	-10 U	NA	-1010	NA	NA
HEXACHLOROBUTADIENE	UGA	-10 U	NA	-10 U	NA	-10 U	NA	NA
HEXACHLOROCYCLOPENTADIENE	UG/L	-10 U	NA	-10 U	NA	-10U	NA	NA
HEXACHLOROETHANE	UG/L	-10 U	NA	-10 U	NA	-10 U	NA	NA
ISOPHORONE	UGA	-10 U	NA	-10 U	NA	-10 U	NA	NA
2-METHYLNAPHTHALENE	UG/L	-10 U	NA	-10 U	NA	-10 U	NA	NA
4,6-DINTIRO-2-METHYLPHENOL	UG/L	-25 U	NA	-25 U	NA	-25 U	NA	NA
4-CHLORO-3-METHYLPHENOL	UG/L	-10 U	NA	-10 U	NA	-10 U	NA	NA
2-METHYLPHENOL	UG/L	-10 U	NA	-10 U	NA	-10 U	NA	NA
4-METHYLPHENOL	UGAL	-10 U	NA	-10 U	NA	-10 U	NA	NA
NAPHTHALENE	UG/L	-10 U	NA	-10 U	NA	-10 U	NA	NA
2-NITROANILINE	UG/L	-25 U	NA	-25 U	NA	-25 U	NA	NA
3-NITROANILINE	UGAL	-25 U	NA	-25 U	NA	-25 U	NA	<u>NA</u>
4-NITROANILINE	UG/L	-25 U	NA	-25 U	NA	-25 U		NA
NITROBENZENE	UG/L	-1010		-1010	NA	-1010	NA	
4 NTROPHENOL	UGA	-1010	NA	-10 0	NA	-1010	- NA	
	TIGA	-1011	NA	-10 U	NA	-25/0	NA	
DINLOCTVI PHTHALATE	UG/	-10/11	NA	-10 U	NA	-1010	NA	NA
PENTACHLOROPHENOL	116/	-2511	NA	-25 U	NA	-2511	NA	
PHENANTHRENE	UGA	-1010	NA	-1010	NA	-1010	NA	NA
PHENOL	UG/L	-10 U	NA	-10 U	NA	-10U	NA	NA
4-BROMOPHENYL-PHENYLETHER	UG/L	-10 U	NA	-10 U	NA	-10U	NA	NA
4-CHLOROPHENYL-PHENYLETHER	UG/L	-10 U	ŇĂ	-10 U	NA	-10 U	NA	NA
N-NTIROSO-DI-N-PROPYLAMINE	UG/L	-10 U	NA	-10 U	NA	-10 U	NA	NA
PYRENE	UG/L	-10 U	NA	-10 U	NA	-10 U	NA	NA
2,4,6-TRICHLOROPHENOL	UGAL	-10 U	NA	-10 U	NA	-10 U	NA	NA
2,4,5-TRICHLOROPHENOL	UG/L	-25 U	NA	-25 U	NA	-25 U	NA	NA

ANALYTICAL SUMMARY OF DEEP GROUNDWATER

Former Manufacturing Plant Area Peter Cooper Site Gowanda, New York

		-086	-125	-887	-135	-890	-126	-127
		11/6/90	5/1/01	11/6/99	5/2/01	11/7/00	5/1/91	5/1/01
Compound	UNIT	MWFP-1D	MWFP-1D	MWFP-2D	MWFP-2D	MWFP-3D	MWFP-3D	MWFP-3D
Metals								
ALUMINUM	UG/L	120	NA	641	NA	116	NA	NA
ANTIMONY	UG/L	-60 U	NA	-60 U	NA	-60 U	NA	NA
BARIUM	UG/L	275	NA	77.5	NA	72.2	NA	NA
BERYLLIUM	UG/L	-5 U	NA	-5 U	NA	-5 U	NA	NA
CADMIUM	UG/L	-5 U	NA	5 U	NA	-5 U	NA	NA
CALCIUM	UG/L	62000	64500	18900	28800	370000	348000	NA
CHROMIUM	UG/L	-10 U	-10 U	-10 U	-10 U	-10 U	-10 U	-10 U
COPPER	UG/L	-20 U	NA	-20 U	NA	-20 U	NA	NA
IRON	UG/L	417	211	1890	348	21500	17700	17600
LEAD	UG/L	-5 U	-5 U	-5 U	-5 U	-5 U	-5 U	-5 U
MAGNESIUM	UG/L	11000	10600	4250	5970	18700	17900	NA
MANGANESE	UG/L	112	122	44.6	57.9	2060	1960	1960
MERCURY	UG/L	-0.3 U	NA	-0.3 U	NA	-0.3 U	NA	NA
NICKEL	UG/L	-40 U	NA	-40 U	NA	-40 U	NA	NA
POTASSIUM	UG/L	-2000 U	-2000 U	3720	3040	7040	5680	5680
SELENIUM	UG/L	-5 U	NA	- 5 U	NA	-5 U	NA	NA
SILVER	UG/L	-10 U	NA	-10 U	NA	-10 U	NA	
SODIUM	UG/L	26700	25000	293000	352000	119000	78900	NA
THALLIUM	UG/L	-10 U	NA	-10 U	NA	-10 U	NA	NA
ZINC	UG/L	-20 U	NA	-20 U	NA	-20 U	NA	NA
VANADIUM	UG/L	-50 U	NA	-50 U	NA	-50 U	NA	NA
COBALT	UG/L	-50 U	NA	-50 U	NA	-50 U	NA	NA
ARSENIC	UG/L	-10 U	NA	-10 U	NA	-10 U	NA	NA
VOCs		· · · · · ·				······		· · · ·
ACETONE	UG/L	-10 U	NA	80	NA	6.7 J	NA	NA
BENZENE	UGA	-10 U	-10 U	3.6 J	2.4 J	-10 U	1.2 J	1.5 J
BROMODICHLOROMETHANE	UG/L	-10U	NA	-10 U	NA	-10 U	NA	NA
BROMOFORM	UG1	-10 U	NA	-10 U	NA	-10 U	NA	NA
BROMOMETHANE	UG/L	-10 U	NA	-10 U	NA	-10 U	NA	NA
2-BUTANONE (MEK)	UG/L	-10 U	NA	-10 U	NA	-10 U	NA	NA
METHYL TERT-BUTYL ETHER	UG/L	-10 U	NA	-10 U	NA	-10 U	NA	NA
CARBON DISULFIDE	UG/L	-10 U	NA	1.3 J	NA	-10 U	NA	NA
CARBON TETRACHLORIDE	UG/L	-10 U	-10 U	-10 U	-10 U	-10 U	-10 U	-10 U
CHLOROBENZENE	UGAL	-10 U	NA	-10 U	NA	-10 U	NA	NA
CHLOROETHANE	UG/L	-10 U	NA	-10 U	NA	-10 U	NA	NA
CHLOROFORM	UG/L	-10 U	`.NA	-10 U	-10 U	-10 U	-10 U	-10 U
CHLOROMETHANE	UG/L	-10 U	NA	-10 U	NA	-10 U	NA	NA
1,2-DIBROMO-3-CHLOROPROPANE	UG/L	-10 U	NA	-10 U	NA	-10 U	NA.	NA
CYCLOHEXANE	UG/L	-10 U	NA]4	NA	8.8 J	NA	NA
DIBROMOCHLOROMETHANE	UG/L	-10 U	NA	-10 U	NA	-10 U	NA	NA
1.2-DIBROMOETHANE	UGAL	-10 U	NA	-10 U	NA	-10 U	NA	NA
1,2-DICHLOROBENZENE	UGAL	-10 Ū	NA	-10 U	NA	-10 U	NA	NA
1,4-DICHLOROBENZENE	UG/L	-10 U	NA	-10 U	NA	-10 U	NA	NA
1,3-DICHLOROBENZENE	UG/L	-10 U	NA	-10 U	NA	-10 U	NA	NA
DICHLORODIFLUOROMETHANE	UG/L	-10U	NA	-10 U	NA	-10 U	NA	NA
1,1-DICHLOROETHANE	UG/L	-10 U	NA	-10 U	NA	2.3]	NA	NA
1.2-DICHLOROETHANE	UGAL	-10 U	NA	-10 U	NA	-10 U	NA	NA,
1,1-DICHLOROETHENE	UG/L	-10 U	NA	-10 U	NA	-10 U	NA	NA
TRANS-1,2-DICHLOROETHENE	UG/L	-10 U	NA	-10 U	NA	-10 U	NA	NA
CIS-1,2-DICHLOROETHENE	UGAL	-10 U	NA	-10 U	NA	8.2 J	NA	NA
1,2-DICHLOROPROPANE	UG/L	-10 U	NA	-10 U	NA	-10 U	NA	NA
TRANS-1,3-DICHLOROPROPENE	UG/L	-10 U	NA	-10 U	NA	-10 U	NA	NA
CIS-1,3-DICHLOROPROPENE	UG/L	-10 U	NA	-10 U	NA	-10 U	NA	NA

.

ANALYTICAL SUMMARY OF DEEP GROUNDWATER

Former Manufacturing Plant Ares Peter Cooper Site Gowanda, New York

		-886		-125	Т	-08	7	-13	5	-090)	-126		-127	
		11/6/00		5/1/01		11/6/	100	5/2/0	1	11/7/	00	5/1/0	L į	5/1/01	
Compound	UNIT	MWFP-1	DM	WFP-	1D	MWF	P-20	MWFP	-2D	MWFP	-3D	MWFP-	3D	MWFP-	3D
ETHYLBENZENE	UG/L	-10	υT	NA		-10	U	NA		-10	υ	NA		NA	1
2-HEXANONE	UG/L	-10	U	NA		-10	U	NA		-10	U	NA		NA	· [
ISOPROPYLBENZENE	UG/L	-10	U	NA		-10	U	NA	1	-10	U	NA		NA	1
METHYL ACETATE	UG/L	-10	U	NA		-10	U	NA	1	-10	U	NA		NA	
METHYLCYCLOHEXANE	UGA	-10	U	NA		15		NA	1	4.9	1	NA		NA	
METHYLENE CHLORIDE	UG/L	-10	U	NA		-10	U	NA	1	-10	U	NA		NA	
4-METHYL-2-PENTANONE	UG/L	-10	U	NA		-10	U	NA	Ţ	-10	υ	NA		NA	
STYRENE	UG/L	-10	U	NA		-10	U	NA		-10	U	NA		NA	_
1,1,2,2-TETRACHLOROETHANE	UG/L	-101	u	NA		-10	U	NA	T	-10	U	NA NA		NA	\Box
TETRACHLOROETHENE	UG/L	-10	J	-10	U	-10	U	-10	U	-10	U	-10	U	-10	U
TOLUENE	UG/L	-10	J	NA		6.8	J	NA		-10	U	NA		NA	
1,2,4-TRICHLOROBENZENE	UG/L	-101	U I	NA		-10	υ	NA	Γ	-10	U	NA		NA	
1,1,1-TRICHLOROETHANE	UG/L	-101	J	NA		-10	υ	ŇĂ	1	-10	υ	NA		NA	- T-
1,1,2-TRICHLOROETHANE	UG/L	-101	J	NA		-10	U	NA		-10	U	NA		NA	· [_]
TRICHLOROETHENE	UG/1.	-10 1	J	-10	U	-10	U	-10	U	-10	U	-10	U	-10	U
TRICHLOROFLUOROMETHANE	UG/L	-101	J	NA		-10	U	NA	T	-10	U	NA		NA	
1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE	UGI	-10	J	NA		-10	U	NA	T	-10	U	NA		NA	
VINYL CHLORIDE	UG/L	-10 1	J	NA		-10	U	NA		-10	U	NA		NA	
M+P-XYLENE	UG/L	-10 [J	NA		6.4	3	NA		-10	υ	NA		NA	
O-XYLENE	UG/L	-101	5	NA		3.7	J	NA	1	-10	Ū	NA		NA	1
Other					······			• • • • • • • • • • • • • • • • • • • •							_
TOTAL ORGANIC CARBON (1)	MG/L	1.32	1	1.84	U	3.40	υ	6.75	U	5.24	υ	4.41	U	NA	
TOTAL ORGANIC CARBON (2)	MG/L	1.30 (J	1.79	U	3.37	U	6.63	U	5.10	υ	4.35	υ	NA	
TOTAL ORGANIC CARBON (3)	MG/L	1.25	J	1.73	U	3.37	U	5.99	U	4.86	U	4.37	U	NA	
TOTAL ORGANIC CARBON (4)	MG/L	1.281	J	1.76	υΙ	3.47	U	6.27	U	4.89	υ	4.29	υ	NA	
TOTAL DISSOLVED SOLIDS	MG/L	290		293		917	1	1000	1.	1660		1350		NA	
TOTAL SULFIDE	MG/L	-1.11	<u>, </u>	-1	UJ	-1.1	U	-1.1	UJ	-1.1	υ	-1	υJ	NA	
CARBONATE ALKALINITY	MG/L	-21	ī T	-2	U	-2	U	-2	U	-2	U	-2	U	NA	
SULFATE	MG/L	45.5	1.	NA		56.7		241		695		544		NA	
TOTAL ALKALINITY	MG/L	200		47:2		288		355		575		480		NA	
BICARBONATE ALKALINITY	MGA	200		187		288		355	1.	575		480		NA	
SOLUBLE ORGANIC CARBONS (1)	MG/L	9.001	J	NA	-	3.6	U	NA		5.96	U	NA		NA	
SOLUBLE ORGANIC CARBONS (2)	MG/L	9.001	J	NA	-	3.27	U	NA		6.08	υ	NA		NA	
SOLUBLE ORGANIC CARBONS (3)	MG/L	9.22 (1	NA		3.24	U	NA	11	6.01	υ	NA	- 1	NA	
SOLUBLE ORGANIC CARBONS (4)	MG/L	9.21	J	NA	-	3,14	υ	NA		6.01	υ	- NA		NA	
HEXAVALENT CHROMIUM	MG/L	-0.01 (anil	U-R	-0.01	U	-0.01	W -4	K -0.01	U	- 0.01	UR	-0.01	Ē

1. Data qualifications reflect 100% data validation performed by Data Validation Services.

project/3771/sampling/addated tables man plant water deep ads

n

÷...;

an 1947 - 194

L Bach

.

. .

TABLE X

ANALYTICAL SUMMARY OF SHALLOW GROUNDWATER

Inactive Landfill Area Peter Cooper Site Gowarda, New York

		-108	-147	-109	-136	-110	-152	-112	-143	-116	-151	-117	-144	-120	-123	-091	-121
		11/7/00	5/4/01	11/7/09	\$/2/01	11/7/00	5/4/01	11/9/00	5/3/01	11/10/00	5/4/01	11/10/00	5/3/01	11/10/00	5/1/01	11/8/00	4/30/01
Compound	UNIT	MW-2SR	MW-2SR	MW-JSR	MW-3SR	MW-65	MW-65	MW-5S	MW-5S	MW-75	MW-78	MW-49	MW-48	MW-18	MW-15	MW-85	MW-85
2-CHLOROPHENOL	001	-1010		-20 U	-9.70			-10 U	9.4 U		940	-10 U	-94 U		-9.4 U	- 1010	
2,4-DICHLOROPHENOL	ins	-1010				-10 0	.9411					-1011				.1010	
2.4-DIMETRIFICHENOL	001.	- 59[1]	- 24 U	-100111	-24 11	-10 10	.2410	- 50 111	-74 11	-10 10	-24 U	-30 122	.24 10			-10 0	-24 U
4 6-DINITRO-2-METHYLPHENOL	Uar	- 10 U	-24 U	-100 U	-24 U	- 50 U	-24 U	· 50 U	-24.0	-50 U	-24 U	-10 U	-24 U		-24 U	.30 ()	-24 U
4-CHLORO-3-METHYLPHENOL	vor	-10 U	-9.4 U	-20 U	9.1 U	-10 U	-9.4 U	-10 U	-94 U	-10 U	-94 U	-10 U	-9.4 U	R	-9.4 U	-10 U	-9.4 U
2-METHYLPHENOL	UOL	1.37	8.2 J	LU 1	0.17	-10 U	·94 U	-10 U	-94 U	-10 U	-94 U	- to U	-94 U	X	-9.4 U	-10 U	-94 U
4-METHYLPHENOL	001.	%	HIU -	210	14/1) 200 F	-10 U	-9.4 U	-10 U	.94 U	-10 U	-94 1	-10 (/	-94 U	R	-9.4 U	-10 U	-94 U
2-NITROPHENOL	UO1.	-10 U	-9.4 U	-20 U	-9.7 U	-10 U	-9.4 U	-10 U	-9.4 U	-10 U	.94 U	-10 U	-94 U	<u> </u>	-94 U	-10 U	-9.4 U
4-NITROPHENOL	001	- 50 U	-24 U	-100 U	-24 U	-50 U	-24 U	-50 U	-24.U	-50 U	-24 U	- 30 U	-24 U		·24 U	·30 U	-24 U
PENTACHLOROPHENOL	001	-30 U	24 0	-100[U	24 U		24 U	-30 U	-24 U			-5010	-24 U		-24 U	-90 U	-24 U
PHENOL	1001		2.2.0	38	18Ume		.9.40	-100		-10 U	.9.4 U	-100	.940	┝ <u>──-{</u> ╬	-9.4 U	-1010	
1 A STRICKLOROPHENOL	1001	-10 U	-74 11	2010	.74 11	1010	.24 U	10 17	.7411			100			.24 U	-100	-9.4 0
CALCUM	UOL	160000	209000	127000	164000	203000	213000	323000	473000	106000	235000	116000	209000	285000	213000	179000	167000
CHROMIUM	UGA,	143	251	436	366	29.3	22.0	-10 U	-10 U	13.7	-10 U	209	371	-10 U	-10 U	-10 U	-10 U
IRON	UGI.	107	-100 U	-100 U	130	13400	16600	23000	41000	9040	2290	- L00 U	140	-100 U	-100 U	10,900	11700
MAGNESIUM	UGL	90200	154000	167000	136000	73900	61800	41600	37000	22900	34000	\$6300	150000	25000	16800	23700	20700
POTASSIUM	UOL	4070	5740	5830	5930	5850	4670	9860	7870	37600	72200	0165	9490	6400	4280	9100	4280
SODIUM	001.	17600	22100	20900	18500	#310	- 5000 U	25800	12400	1670000	229000	22100	26100	11600	9080	21200	28600
ZINC	UOIL	20.8	-30 U	·201U	23.4 🗍	-20 U	-30 U	170	20 U	151	- 30 U	20 U	-20 U	<u>n</u> 1	29 7	63.6	204
ARSENIC	1001	151	196	62.1	47.9		33.00		3.550	17.2		1.4	38.2		-3.55 U		-10 U
CHI OROBENIZENE	000	-10010		.10010		1.0	1.51	100	-100		1010	-10010				100	-100
L 2-DICHLOROBENZENE	UN.	-100 U	-10 U	-100 1/		-1011	1011	-10 U	.1011	-10-0	-1010		101	-10 11	1001	.1011	-1010
14-DICHLOROBENZENE	UON	-100 U	-10 U	-100 U	-10 U	-10 U	10 U	-10 U	-10 U	-101U	-10 U	-100.0	2.41	-1011	-10 U	-1010	-10 U
ETHYLBENZENE	UGA	-100 U	- t0 U	-100 U	1.6.1	-10 U	10 U	-10 U	-10 U	-19 U	-10 U	-100 U	-10 U	-10 U	-10 U	-10 U	-10 U
TOLUENE	UGA	-100 U	10	171	10	-10 U	U 01	-10 U	-10 U	-10 U	- LO U	-100 U	3.2 1	-10 U	-10 U	-10 U	-10 U
M+P-XYLENE	UOA.	-100 U	10 U	-100 U	-10 U	-to U	10 U	-10 U	-10 U	-10 U	-10 U	-100 U	1.0 J	-10 U	10 U	-10 U	-10 U
O-XYLENE	001	-100 U	10 U	-100 U	-10 U		U 01	-10 U	10 U	-10 U	-10 U	U00 U	-10 U	-10 U	-10 U	-10 U	-10 U
AMMONIA	MG/L	923	633	837	693	219	153	23.9	6.32	151	93.7	•	810	3.26	1.03	2.49	2.29
HEXAVALENT CHROMIUM	MUL	-0010_	101	-0.0410		141		A 001 U	-0.01 64	-00100	0.0172	0.0215		-0010			
TOTAL ORGANIC CARBON	MOL	17.1	186	110	100	114	12.2	1 99 11	7.44	20.0	21.5			20011	2.12	3.45	
TOTAL ORGANIC CARBON	MOAL	33.4	187	114	103	15.0	11.9	5.73 U	7.53	69 6	21.2	56.3	89.1	2.94 U	2.34	3.3510	2.41
TOTAL ORDANIC CARBON	MKIL	370	186	112	t04	11.9	11.9	5.75 U	7.57	70 6	21.1	54.5	90.5	275 U	2.52	3.28 U	2,39
TOTAL DISSOLVED SOLIDS	MOUL	729		995		\$39		1290		4900				1070		770	
TOTAL SULFIDE	MGU.	38.0	55 *	92.0	37.0	-1 U	-1 U	10	10.1	-1 U	• UI-	34.0	19 7	·1 U	1 00	-110	1.10
CARBONATE ALKALINITY	MKH.	·2 U	-2 U	·2 U	-2 U	-1 U	-2 U	-2 U	-2 U	-2 U	-2 U	-2 U	-2 U	-2 U	-2 U	-2 U	2 U
FERROUS IRON	MOL	0.12B J													-010		
CHLORIDE	MKIL	<u>n.</u> 7	17.2	32 0		106	3.92	6.02	6.9	2010	567		26 4	1 .13	974	22.3	61.5
NISRATE NITROUEN	MOL	-0.5 0	49.2	-0.30	-0.0510	-0.5 01	4 17	-0.5 (0)			116				1.72	-0.5 U	-0.3 0
	MOL	7150	1700	1720	110	2.04	4.22	A22		12/	1000	2170	209	410		250	
BICARDONATE ALKALINITY	MOL	2250	1200	3720	2350	16101	1280	622	410	1490	1000	2570	34 50	469			
TOTAL KJELDAHL NITROGEN	MOL	494	625	762	691	221	149	22.8	6 41	165	903		839	3 20	1.91	2.17	2.61
SOLUBLE OROANIC CARBONS (1)	MOIL	\$7,9		114	103	16.5		6.11 U		77.3		58.1		445 U		5.79 U	
SOLUBLE ORUANIC CARBONS (2)	MOL	\$5.7		114	102	158		5.81 U		\$1.0		57.8		4 23 U		3 70 U	
SOLUBLE ORGANIC CARBONS (3)	MOL	13 8		112	101	164		1.96 U		79.1		56.9		4140		5 69 U	
SOLUBLE ORGANIC CARBONS (4)	мси.	34 5		111	104	17.4	I	6 02 U	L	75.6		\$6,7		4 05 11		5 68 U	
CALCIUM (soluble)	UOL			<u>├</u>				├	┠╍╍╍┝╍	114000				┟───┼━┨			
CHROMIUM (noinble)	- un		· - · · · · - 	╞━━╍╼╶┟╌		· · · · ·		 	<u>∤</u> }	-10 00				╞╼══╌╉╌┉╂			
LACINERIUM (addition)	1000			<u>├</u>	{				╏────┤──	21700				┝╼╼┉┈╾╄╶╴╄			
POTASSIUM (ankbia)	UOL		1	<u>├</u> /	t				<u>├───</u>	38500				┝╼╼╾┧╍┤			
SODIUM (soluble)	UOL			1	1				t	1630000						┝───┼┤	
ZINC (soluble)	UCIL				105 🤳					79							
ARSENIC (soluble)	UGL				53.4					14.5							
HEXAVALENT CHROMIUM (soluble)	MOL					K				0 0130 3							
TOTAL HARDNESS	MGIL		1	L				└─── │ ──	├	I				└───┤─┨		970	
TOTAL SUSPENDED SOLIDS	I MON		. <u>.</u>		James and Land	li			L	L	ليسا يستحي	L		L I		13.1	
1. Data qualifications reflects 100% data validation partie	rand by Data 1	falidatina Servisas.			150NTU												

an 1775 waland a birafaadaa birahawa ku

Page 1 of 1

ł

Peter Cooper Site Generate, New York

	T	110700097	110700070	110700077	110700100	110700101	90201134	58201133	56201130	50201131	58201132
omi Velatile Organic Compande	UNIT	Crieft Water M	Creek Water #3	Creek Water #3 day	Creek Water #2	Creek Water #1	Creat Water 11	Credit Water #1 days	Creat Water #2	Creek vister #3	Crock Water
CENAPHTHENE		-10 U	-10 U	-1010	-10 U	-10 U					i
CETOPHENONE	1	-101U	-10 U	-10 U	-10 0	-10 U					
NTHRACENE		-10 U	-10 U	-10 U	-10 U	-10 U					I
SENZALDEHYDE		-10 U -10 U	-10 U	-10 U	-10 U	-10 U		<u> </u>		<u></u>	├── │ ──
SENZO(A)ANTHRACENE		-10 U	-10 U	-10 U	-10 U	-10 U	-9.5 U	-10 U	-10 U	-10 U	-9.5 U
SENZO(A)PYRENE		-10 U	-10 U	-10 U	-10 U	-1010	-9.5 U	-1010	-10 U	-10 U	-950 -950
ENZO(G,H,)PER YLENE	eg/1	-10 U	-1010	-10 U	-10 U	-10 U					
BENZOK SELUORANTHENE		-10 0	-10 U	-10 U	-10 U	-10 U					┟┼
UTYL BENZYL PHTHALATE		-10 U	-10 U	-10 U	-10 U	-1010				├ ──	t
N-N-BUTYLPHTHALATE		-10 U	-10 U	-10 U	-10 U	-1010					
APROLACTAM		-10 U	-10 U	-10 U	-10 U	-10 U	<u> </u>				i
NDENO(1,2,3-CD)FYRENE	us/1	-10 U	-1010	-1010	-10 U	-10 U	-9.5 U	-10 U	-10 U	-10 U	-9.5IU
CHLOROANILINE		-10 U	-10 U	-10 U	-10 U	-10 U					·
ISC-2-CHLOROETHOXYIMETHANE		-10/0	-10 U	-10 U	-10 U	-10 0					
CHLORONAPHTHALENE		-10 U	-10 U	-10 U	-10 U	-10 U					
CHLOROPHENOL		-1010	-10 U	-10 U	-10 U	-1010	- 4.510	-10 0	-10 U	-10 U	
HRYSENE	1	-10 U	-10 U	-10 U	-10 U	-10 U					
BENZOAHANTHRACENE	ug /1	-10 U	-10 U	-10 U	-10 U	-10 U	-9.5 U	-10 U	-10 U	-10 U	-9.5 U
J-DICHLOROBENZIDINE		-10 U	-10 U	-10 U	-1010	U 01-				<u> </u>	·
4-DICHLOROPHENOL	- Mg.1	-10 U	-10 U	-10 U	-10 U	-10 U	-9.5 U	-10 U	-10 U	-10 U	-9.5 U
ETHYLPHTHALATE	- teg/1	-10 U	-10 U	-10 U	-10 U	-10 ¹ U	<u>}</u> -	↓		├ ───- ├ ───	┢──┼─
DIMETHYLPHENOL		-10 U	-10 U	-10 U	-10 U	-10 U	-9.5 U	-10 U	-10 U	-10 U	-9.5 U
4-DINTROPHENOL	100/1	-25 U	-25 U	-25 U	-25 U	-25 U	-24 U	-25 U	-25 U	-25 U	-24 U
-DIMITROTOLUENE		-10/U	-10/0	-1010	-10/U	-1010	├───┼ ───	├ i		f	
SZ-ETHYLHEXYL WITHALATE	wg/1	-10 U	-10 U	-10 U	-10 U	-10 U					
LIORANTHENE	we/1	-10 U	-10 U	-10 U	-10 U	-10 U					
XACHLOROBENZENE		-1010	-1010	-1010	-10 0	-10 U	<u> </u>				
XACHLOROBUTADIENE	- mg/1	-10 U	-10 U	-10 U	-10 U	-10 U					
XACHLOROCYCLOPENTADIENE	- wg/1	-10 U	-10 U	-10 U	-10 U	-10 U				 	·
DPHORONE	<u>ug/1</u> ugs/1	-10 U	-1010	-10 U	-10 0	-10 U		·· -			
AETHYLNAPHTHALENE	- 46/1	-10 U	-10 U	-10 U	-10 U	-10 U					
-DINITRO-2-METHYLPHENOL	ug/	-25 U	-25 U	-25 U		-25 U	-24 U	-25 U	-25 U	-25 U	-24 U
TETHYLPHENOL	- ug/1	-10 U	-1010	-1010	-10 U	-10 U	-9.5 U	-10 U	-10 U	-10 U	-9.5 U
METHYLPHENOL	ug/1	-10 U	-10 U	-10 U	-10 U	-10 U	-9.5 U	-10 U	-10 U	-10 U	4.5 U
PHTHALENE	ng/1	-10 U	-10 U	-10 U	-10 U	-10 U					
VITROANILINE		-25 U	-25 U	-23 U	-25 U	-25 U					
NITROANILINE	14g/1	-25 U	-25 U	-25 U	-25 U	-25 U					
TROBENZENE	<u>ug/</u>	-1010	-10 U	-1010	-10 U	-10/U	-9.5 (1	-10 U	-10 U	-10 U	120
NITROPHENOL	198/1	-25 U	-25 U	-25 U	-25 U	-25 U	-24 U	-25 U	-25 U	-25 U	-24 U
NTROSODIPHENYLAMENE	<u>ue1</u>	-10 U	-10 U	-10 U	-10 U	-10 U					
NTACHLOROPHENOL		-10 U	-25 U	-25 U	-25 U	-10 0	-24 U	-25 U	-25 U	-25 U	-24 U
ENANTHRENE	•eg/1	-10 U	-10 U	-10 U	-10 U	-10 U					
ENOL		-10/U	-10 U	-10 U	-10 U	-10 U	-9.5 0	-10 U	-10 0	-10 U	-9.5 U
CHLOROPHENYL-PHENYLETHER	wg/1	-10 U	-10 U	-10 U	-10 U	-10 U					
NTROSO-DI-N-PROPYLAMINE	840/1	-10 U	-10 U	-10 U	-10 U	-10 U					····
6-TRICHLOROPHENOI	<u></u>	-10 U	-10 0	-10 U	-1010	-10 U	-9.5 U	-10	-10	-10	-9.5 U
S-TRICHLOROPHENOL	eg/1	-25 U	-25 U	-25 U	-25 U	-25 U	-24 U	-25	-25	-25	-24 U
		100 11									_
(TIMONY	 	-10010	-100 0	-100 U	-100 0	-100 D -60 U					
RIUM	- eg.1	69.3	61.8	63.1	64.7	64.1					
		-5 U	-5 U	-5 U	-510	<u>-3U</u>				┠───┤───┥	
LCIUM	1	59100	58300	57600	59600	57800	56600	54100	51900	\$3400	56600
IROMUM	sug/1	-10 U	-10 U	-10 U	-10 U	-10 U	-10 U	-10	-10 U	-10 U	-10 U
PPER		-0.01 U -201U	-0.01U -201U	-0.01 U -20 11	-20 U	-0.04 U -20 U		<u>├</u>			
ON N	-	151	EH	134	126	129	. 344	413	403	470	344
AD CONTENTING		-5 U	-5 U	-5 U	-5 U	-5 U	-5 U		-5 U	-5 U	-5 U
NGANESE	ang/1	18.4	12.9	13.1	13.8	11.5	20.6	16.5	14.9	21.6	20.6
CKEL		-40 U	-40 U	-40 U	- 40 U	-40 U					
		-2000 U -5 U	-2000 U		-2000 U	-2000 U	·2000 U	-2000 0	-2000 U	-2000 0	-2000 U
VER		-10 U	-10 U	-10 U	-10 U	-10 U					
DIUM	we/1	16200	13400	13200	13900	13700					
кс	/ /	-30 U	-20 U	-10 U	-20 U	-20 U	-20 U	-20 U	-20 U	-20 U	-20 U
NADRJM	•g/1	-50 U	-50 U	-50 U	-50 U	-50 U					
RCURY	1,82/1	-50 U	-50 U	-50 U	-3010	-50 U -0.3 11				├──-┼┼	
SENIC		-10 U	-10 U	-10 U	-10 U	-10 U	-10 U	-10 U	-10 U	-10 U	-10 U
atile Organic Components											
NZENE	- 1980/1 - 1980/1	-10 U	-10 U -10 U	-10 U	-10 U	-10 U	-10 U	-10 U	-10 U	-10 U	-10 U
OMODICHLOROMETHANE	-	-10 U	-10 U	-10 U	-10 U	-10 U	· · · · · · · · · · · · · · · · · · ·				
OMOFORM		-10 U	-10 U	-10 U	-10 U	-10 U					
UTANONE (MEK)	<u>ug/</u>	-1010	-10 U	-1010	-1010	-10 0	├	┝─────┤╌──┨		┝╼╼╁╼═╉	
THYL TERT-BUTYL ETHER		-10 U	-10 U	-10 U	-10 U	-10 U					
RBON DISULFIDE		-10 U	-10 U	-10 U	-10 U	-10 U					
LOROBENZENE	1 eg/1	-101U	-10 U	-10 U	-10 U	-10 U	-10 U -10 U	-10/U	-10(U	-1010	-10 U
LOROETHANE	1	-10 U	-10 U	-1010	-10 U	-10 U	¥				
LOROFORM	ug/ 1	-10 U	-10 U	-10 U	-10 U	-10 U	-10 U	-10 U	-10 U	-10 U	-10 U
DIBROMO-3-CHLOPOPPOPANE	- PR/1	-10 U	-10 U	-10 U	-10 U	-1010	├ ───┤────┤	┟╼╼╌╌┤╾╌┦			
CLOHEXANE	- mg/1	-10 U	-10 U	-10 U	-10 U	-10 U					
BROMOCHLOROMETHANE		-10 U	-10 U	-10 U	-10 U	-10 U					
2-DICHLOROBENZENE		-10/0	-10 U	-10 U	-10 U	-1010	-1011		-10//	-10/11	

TABLE X ANALYTICAL SUMMARY OF SURFACE WATER SAMPLING

Peter Cooper Site Gowanda, New York

	, <u> </u>	110700077	2 307700000	2 347 7000000	110700101	230700107	68783334	1 100001111	99791239	\$4701131	90201117
COMPOUND	UND	Oreak Water fit	Crack Water #3	Orack Water #1	Creat Water 57	Orach Water #1	Orach Water #1	Cruck Water II	Cruck Water #7	Create Water of	Creat Water #4
1 AJNOHI OROBENZENE		1	10111			-10/14		-10111	-10111		.10/11
1 3-DICHLOROBENZENE		-10/11	-1011	-1010	1011	-1010					
DICHLORODELLOROMETHANE		-10/11	10 10	-1010		-10/1		(i			
1.1-DICHLOROETHANE		-10 U	-10 U	-10 [1]	10 11	-1010	t	·			
1,2-DICHLOROETHANE	- 1	-10 U	-10 U	-10 U	-10 U	-10 U					
1,1-DICHLOROETHENE	wg/1	-10 U	-10 U	-10 U	-10 U	-10 U 4					
TRANS-1,2-DICHLOROETHENE		-10 U	-10 U	-10 U	-10 U	-10 U					
CIS-1,2-DICHLOROETHENE	ug/ 1	-10 U	-10 U	-10 U	-10 U	2.7 1					
1,2-DICHLOROPROPANE		-10 U	-10 U	-10 U	-10 U	-10 U	l				
TRANS-1,3-DICHLOROPROPENE	 /	10 U	-10 U	-10 U	-10 U	-10 U	L				
CIS-1,3-DICHLOROPROPENE		-10 0	-10 U	-10 U	-10 U	-10 U					
ETHYLBENZENE		-1010	-10 U	-10 U	-1010	-1010	-1010	-10 0		-10 0	-10 0
ISOBORYI REALTENE			-1010	-10 0		-1010	↓				
METHYL ACETATE		-10 11	-1010	-1010	-1010	-1010					
METHYLCYCLOHEXANE		JOLU	-10 U	-10 0	1100		<u> </u> -				
METHYLENE CHLORIDE	ug/1	-10 U	-10 U	-10 U	-10 U	-10 U					
4-METHYL-2-PENTANONE	98 /1	-10 U	-10 U	-10 U	-10 U	-10 U					
STYRENE	mg/1	-10 U	-10 U	-10 U	+10 U	-10 U					
1,1,2.2-TETRACHLOROETHANE	 /	-10 U	-10 U	-10 U	-10 U	-10 U				<u> </u>	
TETRACHLOROETHENE		10 U	-10 U	-10 U	-10 U	-1010	-10 U	-101U	-10 U	-10 U	-10 U
I DLUENE	- 100/1	-10 0	-10/U	-10 U	-10 U	-10 U	-10 U	-10 U	-10 U	-10 0	-1010
1.1.+ TRICHLOROBENZENE		-1010	-10/0	-10(0	-10/0	-1010	↓ • • • • • • • • • • • • • • • • • • •			·	
1,1,1-TRICHLOROETHANE		-1010	-10 U	-10 U	-10 0	-1010	┝╾╼╌┥╌═╾┥	·			
TRACHLOROFTHENE	- 1/1 	-1010	-1011	-1010	-1010	-1010					.10 11
TRICHLOROFI LIOROMETHANE		-1011		-10/11	-1010	-10 11					
1.1.2-TRICHLORO-1.2.2-TRIFLUOROETHANE	we/1	-10/U	-10 U	-1010	-10 U	-1010	1				
VINYL CHLORIDE	est/l	-10 U	-10 U	-1010	-10 U	-10 U					
M+P-XYLENE	MR/1	-10 U	-10 U	-10/1/	-10 U	-10 U	-10 U	-10 U	-10 U	-10 U	-10 U
O-XYLENE	mgz/1	-10 U	-10 U	-10 U	-10 U	-10 U	-10 U	-10 U	-10 U	-10 U	+10 U
Fate and Transport Parameters											
AMMONIA	mg/1	0.170	0.234	0.234	-0.05 U	-0 05 U	040	-0 05 U	-0.05 U	0.306	0.442
TOTAL ORGANIC CARBON (1)	mg/1	1.98 U	211 U	2.02 U	1.97 U	1.96 U	1.1	1.79	1.74	1.68	1.78
TUTAL ORGANIC CARBON (2)	ang/1	2.00 U	2.14 U	2.00 U	1.89 U	2.00 U	<u>.</u>	1.75	1.64	1.69	1.73
TOTAL ORGANIC CARBON (3)		1.98 U	2.15 U	1.97 U	1.87 U	1.98 U		1.73	1.63	1.66	
TOTAL DISSOLVED SOLUS	mg/ ?	1.99 0	2.14 U	1.96 U	1.82 U	1.96 U		1.03	1.0	716	1.68
CHI ORIDE	Del	233	73.4	234	250	24.0	- A 9	26.5	71	27 1	46.9
NURATE NUROGEN	mar/1	190	181	1 70	111	1.71	12	1.04		1.07	1.12
SULFATE		28.5	27.5	27.6	27.6	28.8	28	24.7	25.9	24.9	28
TOTAL SUSPENDED SOLIDS	ung/1	1.90	1.30 1	2.76 J	160	1.30	4.9	64	- 7.1	8.2	4.9
TOTAL SULFIDE	mg/1	-1 U	-1 U	-1 U	- <u></u>	-1 U	110	-iu J	13 2		-10 3
CARBONATE ALKALINITY	my/1	-2 U	-2 U	-2 U	-2 U	-2 U	-2 U	-2 U	-210	-2 10	-2 0
TOTAL HARDNESS	mg/l	200	195	191	198	191	175	165	164	161	175
TOTAL ALKALINITY	- mg/1	169	164	164	166	167		112	133 00	135	140
BICARBONATE ALKALINITY		169	164	164	166	167	300	<u>112</u> J	133	135	140
HEYAVALENT CHRONILING	100/1	0.344	9417	0.239	0.412	802.0	0.64	- Day		R	
L Date subfaction = 0 at 100b. det		u Dura Validan - 🕈		<u> </u>							
1. Dese qualifications resource 1007% data visidabite p	Carried C	V LINER V RECEIDER S		<u>} ···~_</u> }·							
······································				┟────┤							
		1		فيصبعك والمستعجب			ل جد الجي ا	استيك مترجب			
									,		
· ·									.n.o / //		
									1 45		
						Sect			6 Ver		
						\sim	-			· 12	
						1.2	\mathbf{N}		VC	in aves	
					٠. ٨	1 N 1	U ^{rr}		10	N.M.	
					יצ	N _ VV	r		3 121	ω	
					~\	· NEV	0. v		aur	-	•
						- V ⁻ -	hr x		(U ²)	10 J.	
						(h	AL.			30	
						-		•			
							. N				
							. 19			55	
						(C∕¥			•	

these walker were were were

Inactive Landfill Area Peter Cooper Site Gowanda, New York

Compound	UNIT	-105 11/7/00 MW-7D	-149 5/4/01 MW-7D	-107 11/8/00 MW-2D	-148 5/4/01 MW-2D	-111 11/9/00 MW-5D	-141 5/3/01 MW-5D	-142 5/3/01 MW-5D	-114 11/9/00 MW-8D	-122 4/30/01 MW-8D	-115 11/9/00 MW-4D2	-146 5/3/01 MW-4D2	-118 11/10/00 MW-4DR	-145 5/3/01 MW-4DR	-119 11/10/00 MW-1D	-124 5/1/01 MW-1D
2-CHLOROPHENOL	UOAL	-10 U	-9.4 U	-10 U	-9.4 U	-10 U	-9.4 U	-9.4 U	-10 U	-9.4 U	-10 U	-10 U	-10 U	-9.4 U	-10 U	-9.4 U
2,4-DICHLOROPHENOL	UGAL	-10 U	-9.4 U	-10 U	-9.4 U	-10 U	-9.4 U	-9.4 U	-10 U	-9.4 U	-10 U	-10 U	-10 U	-9.4 U	-10 U	-9.4 U
2,4-DIMETHYLPHENOL	UG1	-10 ប	-9,4 U	-10 U	-9.4 U	-10 U	-9.4 U	-9,4 U	-10 U	-9.4 U	-10 U	-10 U	-10 U	-9.4 U	-10 U	-9.4 U
2,4-DINITROPHENOL	UO/L	-50 U	-24 U			-50 UJ	-24 U	-24 U	-50 UJ	-24 U	-50 UJ	-26 U	- - 50 UJ	-24 U	-50 UJ	-24 U
4,6-DINITRO-2-METHYLPHENOL	UG/L	-50 U	24 U		-24 U	-50 U	-24 U	-24 U		-24 U	-50 U	-26 U	-50 U	-24 U		-24 U
I-CHLORO-3-METHYLPHENOL	00/L	-1010	-9.410		-9.4 U	-1010	-940	-9.410	-10,0	-9.4 0		-10 0	-10 0			
A METHYLPHENOL	00/L	-1010	.9411	-1010	-9,4 U	1011	-9.4	-9.4 (1	1001.		1010	-1010	-1010			
1-METROPHENOL	10/	-10 11	-94 U	-1010	-94 U	-10 11	.94 U	-94 U	-10 U	-9.411	1010	-10/11		-9411	-1011	-9411
4-NITROPHENOL	UU/L	-50 U	-24 U	-50 U	-24 U	-50 U	-24 U	-24 U	-50 U	-24 U	-30 U	-26 U	- 3 0 U	-24 U	-50 U	-24 U
PENTACHLOROPHENOL	UOA.	-50 U	-24 U	-50 U	-24 U	-50 U	-24 U	-24 U	-50 U	-24 U	- 3 0 U	-26 U	-50 U	-24 U	-50 U	-24 U
PHENOL	UOAL	-10 U	-9.4 U	-10 U	-9.4 U	-10 U	-9.4 U	-9.4 U	-10 U	-9,4 U	-10 U	-10 U	-10 U	-9.4 U	-10 U	-9.4 U
2,4,6-TRICHLOROPHENOL	UGAL	-10 U	-9.4 U	-10 U	-9.4 U	-10 U	.94 U	-94 U	-10 U	-9,4 U	-10 U	-10 U	-10 U	-9.4 U	-10 U	-9.4 U
2,4,5-TRICHLOROPHENOL	U0/L	-10 U	-24 U	-10 U	-24 U	-10 U	-24 U	-24 U	-10 U	-24 U		-26 U	-10 U	-24 U	-10 U	-24 U
CALCIUM	UGA	21600	54000	232000	252000	562000	596000		27500	45200	49900	59800	206000	211000	18900	28300
CHROMIUM	00/L	100	-1014			-1010	-1010	-100	-100		13.4	49.2	133	58.0	-10 0	
MAGNESI	100/L	5840	15700	104000	107000	36000	35400		9050	2600	11900	23500	89400	75200	6810	10100
POTASSIUM	UGIL	3330	4690	24300	25200	3430	3760		4240	5280	7690	13900	23700	20800	2590	2660
SODIUM	UQAL	384000	347000	295000	297000	21200	27000		163000	109000	950000	1030000	19700	185000	154000	144000
ZINC	UG/L	-20 U	- 30 U	140	-30 U	34.8	-20 U	22.6	65.5		118	416	-20 U	45.1	42	65.2
ARSENIC	UO/L	-10 U	U DA 25	24.8	38 10	-10 U	-3.55 U	-3.55 U	-10 U		-10 U	48.3 3	19.2	-3.55 U	-10 U	-3.55 U
BENZENE	UG/L	-10 U	-10 U	-10 U	-10 U	-10 U	-10 U	-10 U	-10 U	-10 U	-10 U	-10 U	-10 U	-10 U	-10 U	-10 U
CHLOROBENZENE	UG/L	-10 U	-10 U	-10 U	-10 U	-10 U	-10 U	-10 U	10 U	-10 U	-10 U	-10 U	10	6.8 /	-10 U	-10 U
1,2-DICHLOROBENZENE	UGAL	-1010	-10 U	-10 U	-10 U	-10 U	-10 U	-10 0	-10 U	-10 U	-10 U	-10 U	-10 U	-10 U	-10 U	-10 U
1.4-DICHLOROBENZENE	UGAL	-1010	1010	-10 0	-1010	-1010	-1010	-1010			-1010	-1010			-10 U	
TOLUENE		-1010	.1011	.1010	.1011	-1010	-1011	-10[1]	-1011	-10/0		-1010	-10/0		-1010	-10.0
M+P-XYLENE	100/L	-10 U	-10 U	-10 U	-10 U	-10 U	-10 U	-10 U	-10 U	-10/U	-10 U	-1010	-10 U	-10 U	-10/01	10 0
O-XYLENE	UGAL	-10 U	-10 U	-10 U	-10 U	-10 U	-10 U	-10 U	-10 U	-10 U	-10 U	-10 U	-10 U	-10 U	10 U	-10 U
AMMONIA	MO/L	1.31	1.80	353	349	10.4	10.5		0.762	0.716	9.35	8.99	241	196	0 826	0.800
HEXAVALENT CHROMIUM	MOL	-001 U	0.0225	-004 U	0.0592	-0.01 U	-001 01	P UT	< 0.01 U		-0.01 U	-00101	R		L0.01 U	-001 U K
TOTAL ORGANIC CARBON	MO/L	3.79 U	5.71	39.7	37.7	3.83 U	5.53		1.59 U	15.4	11.8	10.7 5	43.3	32.2	-1.07 U	3.22 5
TOTAL ORGANIC CARBON	MO/L	3.60 U	5.49	37.2	37.1	3.72 U	5.08	<u> </u>	1.65 U	15.5		10.6	41.4	31.5	-1.07 U	
TOTAL ORGANIC CARBON	MO/L	3 80 10	3.44		37.4	3.68 U	5.32	╏╍┈╼╴┠╌	1.39 U	15.5	11.8	10.6	42.9	<u> <u>14</u></u>	-1.04 U	
TOTAL DISSOLVED SOLIDS	MU/L	1070	<u>>.</u> ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1930		3.30 0		<u> </u>	1.01 0	15.4	1.9	10.5	19.5		-1.00	
TOTAL DISSOLVED SOLIDS	MO/L	.111	172	970	64 3	111					1780		11/0	613		
CARBONATE ALKALINITY	MG/L	-2 U	-210	-2 U	20	-2 U	-2 U		-2 U	853	30	-2 10	.210	-210		.2 11
FERROUS IRON	MOL		1				22.0				<u> *-</u>		0.524	1		
CHLORIDE	MOL	249	464	177	148	14.2	11.0		87.1	148	579	914	62.5	44.6	111	98.5
NITRATE NTIROGEN	MO/L	_0.5 U	0.0753	-0.5 U	0 0 548	-05 UI	454 9.00		-0.5 (1)	0.548	-0.5 U	JUS 0957	-05 U	-0.05 U	-0.5 U	-0.5 U
SULFATE	MO/L	30.5	50.8	715	745	1620	1460		17.4	30.7	13.2	3.4	162	266	2.07	10.4
TOTAL ALKALINITY	MOL	902	620	1980	1980	289	275	 	350	90	1100	2000	2010	1550	274	260
BICARBONATE ALKALINITY	MOL	902	620	1980	1980	289	275	<u>↓</u> ↓	350	4.67	1100	2000	2010	1550	274	260
TOTAL KIELDAHL NITROGEN	MUL	2.06		390		101	10.2	╂╾╌╌╍╌┠╶─	24111	2.05		10.4	238	1 181	1.37	
SOLUBLE ORGANIC CARBONS (2)	MOL	181	╀╺╼╼╾╂╼	41 8	<u> </u>	3.50 0	<u> -</u>	<u>↓ </u>	2.610	15.8	12.1	<u>140</u>	42.4	30.7	1.40 U	7.00
SOLUBLE ORGANIC CARBONS (1)	MOA	3.82 U		43.2	1	3.56 U			2.53 U	15.9	12.2	12.6	39.4	19.0	143 U	7 78
SOLUBLE ORGANIC CARBONS (4)	MG/L	3.81 U		40.2		3.43 U			2.57 U	16.9	12.6	12.6	41.8	38.9	1.37 U	7.62
CALCIUM (soluble)	UOAL	11	1										209000		14900	
CHROMIUM (sotuble)	UG/L			1			I			-10 U-	2	11.4	ЦИ	82.1	-10 U	-10 U
IRON (soluble)	UOA.			f	↓ ↓								926		708	
MAGNESIUM (soluble)	UOIL	<u>├</u>	╆╼━━╋	+	┟╍──┟─┤	<u>├</u>	┞	┟ ┠	}}	<u> </u>	├ ───┤──		90800	↓	4760	
POTASSIUM (soluble)	UGAL	┟╌╌╍╌╴┠╍	┼───┼	┼╍╍╶┥╍	╉╼╍╍┥┥┥		<u> </u>	┠	┠	┟ ┠	┠────┟──	├ ──- ├ ─	24400	┟┈┈┥╴	-2000 U	
SODIUM (soluble)	004	┟╌╍╌╂╼	┽╶╌╍╸╂╸	++	╂╼╍╍╍┠╍┥	┝╼╍╍╍┥	<u>├</u>	┨╌╌╴╂╌╸	┠		╂═╾╍╌┠╌		203000	+	154000	<u> </u>
ARSENIC (poluble)	100/L	<u>├</u>	+	++-			<u>├</u>	<u>├</u>	<u>├</u> ──┼─		<u>↓</u>	36 10	-2010	125 00	-1011	23.0
HEXAVALENT CHROMIUM (soluble)	MOAL	1								0.0118	f	0.0103		6 -aulu-	A anima	E . 0.01 (J. ()
1. Data qualifications reflect 100% data validation p entruvent	erformed by D	uin Validation Serv	ż a										no	J		
													r.	Leta		

ili watar daapiish

301626

.

The edited Form I data sheets from data validation have been submitted to USEPA and NYSDEC under separate cover.

and the second second second second second second second second second second second second second second second

.

APPENDIX L Village of Gowanda Zoning Map Presented in the **1999 Master Plan**

t

·• • •••••

.

.

. .

. . . .

,

•

- "

in de la

in States

301632

APPENDIX M Floodplain Map

ne naty our

- <u>3</u>- - , -

÷

ALC: NOT THE OWNER

.

.

Darcy Flux to Creek

301635

APPENDIX N

Subject Grandmeter Discharge Pate to Crack Project No. 5771.01 Task No. RHF Checked By 4 By ٢D File No. Date 4/13/12 ____of___4 11/02/02 Sheet_ Date Rote of Disday (Flux) from Site to Creek \bigcirc ÷ 12 N I = transmissivity (ft /day gradient (hydraelic) <u>i</u> = Lingth of Segment Ft \mathcal{M} . T= K & B K= hydraute Contruction B: Saturatel Thickness noctive Longfill Aren Courburden B = 4ftQ = FH 3/Lag K= 2.9ft/dy - Geometric men of Alt Q= TiW menn of ALL On-sila Walls T= 2.9ft/dxy x4ft = mw-1s to mw-4s T=11.6 Ft2/dup Feb 2001 WL. Anta 773 to 763 Q= 11.6 ft x 0.02 x 1,150ft AH= 10 FF 61- 450Ft 0.02 67 Q=266.8 ft / day 1150ft 17 -2: 2 000 gellow / day

Subject Project No. Task No. **Checked By** By File No. 2 Sheet_ of 4 Date Date Former Munufacturing Plant Aven Coverburghn) B = 6Ft Jz K= 2.9ft/day 29 Ft/day × 6Ft estimate since quabunder is unsitenced OFMP-1D 4 ft - / day T z 1 = 7.4 ft x 0.01 x 1600 ft 1- 0.0 Q_{2} W= 1,600 ft Q=278.4 4+3/1.17 2080 gallos / day Site OVerburch rom = Qualfill Aren + QFMPA 267+278 F13/dy $s_{it} = \frac{545}{9} \frac{f_{i}}{f_{sit}} \frac{1}{2}$ Dathe 2 0.006 ft3/sec

Subject Project No. Task No. Checked By By File No. Sheet__3 of__ 4 Date Date Inactive Lanfill Aren (Bedrock) M2 TiW B= 35 ft K=1 Ft/day IF+/dy x 35 Ft Geometric man of all Sing test data 7 ? T= 35 ft _____ L = MW-10 to 4D(R) Fib 2001 LL Q= 35 ft / x 0.029x 1150 ft 767.7 10 754.3 Q = 1167 Ft3/day DH = 13.4 DL= 450ff Q- 8,700 gallons /day L = 0.029W. 1,150 ft ormer Manufactury Plant Aran (Bedirete) Q= TiV B= 35Ft 2: 35 fl/ x 0.024 x 1600 ft K= IFt/dy = FRAD to FA2D Q= 1344 ft3/by 777.14 1. 772.4 Q= 10,050 gallos/dag AH=4.74 DL= 200 dista 2+ron Sih Bidrock L = 0.024W= 1600 ft Derth = QLanktillAran + QEMPA Q Site = 1/67 Ft3/ + 1,344 Ft3/dy Q= 2,510 ft 3/day ash = 0.029 ft / sec

GEOMATRIX CONSULTANTS

$\frac{TOTAL}{Q_{total}} = \frac{Q_{(0,rborder)}}{Q_{(0,rborder)}} + \frac{Q_{rotal}}{Q_{rotal}} = \frac{S}{45} \frac{F^3/h_0}{f^2} + \frac{2510}{F^2/h_0} \frac{F^2/h_0}{f^2}$ $\frac{Q_{(rotal)}}{Q_{(rotal)}} = \frac{3.05}{5} \frac{F^3/h_0}{f^2} + \frac{2510}{F^2/h_0} \frac{F^2/h_0}{f^2}$	Subject By Date	Checked By Date	Project No Task No File No Sheet4of_4
$\frac{1014L}{(total)} = 1000000000000000000000000000000000000$			
$Q_{total} = Q_{(overbach)} + Q_{advert}$ $Q_{total} = 5.45 \text{ f}^{3}/\text{log} + 2.510 \text{ f}^{3}/\text{log}$ $Q_{(vol)} = 3.055 \text{ f}^{3}/\text{log}$ $Q_{(vol)} = 0.035 \text{ f}^{3}/\text{log}$		101AL Groundanter 1-hur f	» Criek
$\frac{(t_{0}, u_{1})}{(t_{0}, u_{1})} = \frac{C(0, v_{0}, u_{1}, u_{1})}{(t_{0}, u_{1})} + \frac{C(0, u_{1}, u_{1})}{(t_{0}, u_{1})}$ $\frac{Q_{1}}{(t_{0}, u_{1})} = \frac{3,055}{(t_{0}, u_{1})} + \frac{2,510}{(t_{0}, u_{1})}$ $\frac{Q_{1}}{(t_{0}, u_{1})} = \frac{3,055}{(t_{0}, u_{1})} + \frac{1}{(t_{0}, u_{1})}$			
$Q_{n+4} = 54543/h_{2} + 2510443/h_{2}$ $Q_{T-1} = 3.055643/h_{2}$ $Q_{T-1} = 0.035443/h_{2}$		(Total) = (Overburchin) +	(Badrock)
$Q_{n+4} = 54543/L_{2} + 25104/J_{2}$ $Q_{-} = 3,05564^{3}/L_{2}$ $Q_{-} = 100000000000000000000000000000000000$			
$\frac{Q_{totd}}{Q_{totd}} = \frac{545 \text{H}^3/\text{L}_2 + 2510 \text{H}^3/\text{L}_2}{Q_{totd}}$			
$Q_{\frac{1}{2}nl} = 3,055, ft^{3}/l.y$		(Tota) = 545 ft3/dig	+ 25/0 ++3/dy
$Q_{\overline{T}} = 3,0555, ft^3/2.7$			
$Q_{(T,rel)} = 3,03,5,77/4.7$			
and the second s		(Tited) 3,030 (T/day	
Careful O. 0.3.5 FF 3/544			
Quere C. O. 3.5. FE/sec			
<u>Chord</u> <u>O.035</u> <u>F</u> <u>F</u> <u>/sc</u>	د مدهد مدر ادر بری میدوند ^ا مراهد. ا و موموهر در دومانی مورومی در بردین		
		(41+1) 0.035 ft /sec	4
	د همه ۱۹۰۰ وی وی وی وی وی وی وی وی وی وی وی وی وی		
	· · · · · · · · · · · · · · · · · · ·		
	-		· · · · · · · · · · · · · · · · · · ·
	and a second second second second second second second second second second second second second second second		
	· • • • • • • • • • • • • • • • • • • •	······································	
	ال المحمد ويتركن على والمحمد التي ويتر		
	· · · · · · · · · · · · · · · · · · ·		
	میں اور ایس اور ایس میں اور اور ایس اور اور اور اور اور اور اور اور اور اور		
1. The second s second se second sec second sec			··· · · · · · · · · · · · · · · · · ·
and the second second second second second second second second second second second second second second second	:	n an an an an an an an an an an an an an	· · · · · · · · · · · · · · · · · · ·

- - -----

APPENDIX O Geotechnical Testing of Site Fill/Soil/Sediment

LABORATORY TEST REPORT

December 4, 2000

Project No. 00306-01

Ms. Jeanne M. Asquith Benchmark Environmental Engineering & Science 50 Fountain Plaza Suite 1350 Buffalo, NY 14202

RE: Soils Testing : Peter Cooper

Transmitted herein are the results of the soils testing performed for the above referenced project, verified on the Project Verification Form, submitted November 15, 2000. The testing was performed in general accordance with the ASTM methods listed on the enclosed data sheets. The remaining sample materials for this project will be retained for a minimum of 90 days as directed by the Geotechnics' Quality Program.

Disclaimer

The test results are believed to be representative of the samples submitted but are indicative only of the specimens which were evaluated. Geotechnics has no direct knowledge of the origin of the samples, implies no position with regard to the disposition of the test results, i.e., pass/fail, and makes no claims as to the suitability of the material-for its intended use.

The test data and all associated project information provided shall be held in strict confidence and disclosed to other parties only with authorization of the Client and Geotechnics. The test data submitted herein is considered integral with this report and is not to be reproduced except in whole and only with the authorization of the Client and Geotechnics.

We are pleased to provide these testing services. Should you have any questions or if we may be of further assistance, please do not hesitate to contact our office.

Respectively submitted,

David R. Backstrom Laboratory Director

FINAL PERMEABILITY REPORT

Project Name:	Peter Cooper-Gowanda	Date	01/15/01
Project No.:	00-005	Tested By:	јма
Sample No.:	ST#1	Check By:	RD
Sample I.D.:	00-177	Date of Test:	10/12/00
Laboratory Metho	od: ASTM D5084, Method C	Date Test Comple	te: 19/14/00
		CHELL NUL	

INITIAL SAMPLE DATA:

FINAL SAMPLE DATA:

Height, in.:	2.302
Diameter, in .:	2.832
Moisture Content,%:	15.90

Height, in.:

Diameter, in.: Moisture Content,%:

41/13/01		
ЈМА		
ŔD		
10/12/00		
lete:	19/14/00	
	2	
	10/12/00 RD 10/12/00 kete:	IMA RD 10/12/00 kre: 19/14/00 2

135.9 Wet Density, pcE Dry Density, pcf: 117.2 NA Compaction, %: 134.1 Wet Density, pcf: 115.5 Dry Density, pcf:

SATURATION AND CONSOLIDATION DATA:

2.324

2.850

16.10

Consolidation Pressure: 83 pai Backpressure: 80 pai Saturation (B parameter): 95%

AVERAGE PERMEABILITY RESULT (average of last 4 readings, K, cm/s):

Trial #	Ter	ung Press (psi)	UICS	Q (ml/sec)	Final K (cm/s)
	1	2	3		
1	83	81.2	80	6.28E-03	1.1E-05
2	83	81	80	5_50E-03	1.1E-05
3	83	81	80	4.94E-03	1.0E-05
4	83	81	80	5.50E-03	1.1E-05

1.1E-05 Average K

301643

WA42:11 E0-81-VON

FINAL PERMEABILITY REPORT

Project Name:	Peter Cooper-Gowanda	Date:	01/15/01
Project No.:	00-005	Tested By:	<u>јма</u>
Sample No.:	ST#2	Check By:	RD
Sample I.D.:	00-178	Date of Test:	10/17/00
Laboratory Metho	od: ASTM D5084, Method C	Date Test Compl	ete: 10/19/00
		CELL NO.:	1

INITIAL SAMPLE DATA: Height, in.: 2.376 Wet Density, pcf. 127.2 Diameter, in.: 2.813 Dry Density, pcf: 105.6 Moisture Content,%: 20.40 Compaction, %: NA FINAL SAMPLE DATA: Height, in.: 2.343 Wet Density, pcf: 127.1 2.841 102.1 Diameter, in.: Dry Density, pcf:

SATURATION AND CONSOLIDATION DATA:

24.50

Cossolidation Pressure: 83 psi Backpressure: 80 psi Saturation (B parameter): 99%

Moisture Content,%:

AVERAGE PERMEABILITY RESULT (average of last 4 readings, K, cm/s);

Trial #	Tes	ting Press (psi)	lurca	Q Final K (ml/sec) (um/s)	
	1	2	3	(
1	83.1	81.1	80	4.58E-04	8.6E-07
2	83.1	81	79.8	4.35E-04	7.5E-07
3	83.1	81.1	79.8	4.17E-04	6.6E-07
4	83.1	81	79.8	4.17E-04	7.2E-07

1.0E-06 🕱 9.0E-07 g 8.0E-07 Conductivity 7.0F.07 6.0E-07 5.0E-07 4.0E-07 3.0E-07 H 2.0E-07 4.0E-07 1.0E-07 1000 2000 3000 4000 0 5000 6000) Time (seconds)

301644

PAGE 3

WA22:11 ED-81-VON

SENT BY: 3RD ROCK, LLC;

. . . .

FINAL PERMEABILITY REPORT

Project Name:	Peter Cooper-Gowanda	Date:	01/15/01	
Project No .:	00-005	Tested By:	JMA	
Sample No.:	ST#3	Check By:	RD	
Sample I.D.:	Q0-18 0	Date of Test	10/17/00	
Laboratory Metho	od: ASTM D5084, Method C	Date Test Comp	lete: 10/19/00	
		CELL NO ·	2	~

INITIAL SAMPLE DATA:

FINAL SAMPLE DATA:

Height, in.:	2.809
Diameter, in.;	2.796
Moistore Content,%:	19.10

Diameter, in.;

Moisture Content,%:

Tested By:	ЈМА	
Check By:	RD	
Date of Test	10/17/00	
Date Test Compl	ete:	10/19/00
CELL NO .:		2

Wet Density, pcf:	134.0	
Dry Density, pcf:	112.5	
Compaction, %:	NA	
 Wet Density, pcl:	137.9	
 Wet Density, pcf: Dry Density, pcf:	137.9 119.2	

SATURATION AND CONSOLIDATION DATA:

Height, in.: 2.720

2.807

15.70

Consolidation Pressure: 83.5 psi Backpressure: 80 pei Saturation (B parameter): 98%

AVERAGE PERMEABILITY RESULT (average of last 4 readings, K. cm/s):

Trial #	Tee	Testing Pressures Q (psi) (ml/sec)		Q (ml/sec)	Final K (cm/s)
	1	2	3		(
1	83.5	81.7	79.8	7.81E-05	10 E-0 7
2	83.5	81.6	79.5	8.24E-05	9.7E-08
3	83.5	81.6	79.5	6.10E-05	7.1E-08
4	83.5	81.6	79.5	7.81E- 85	9,2E-08

301645

PAGE 4/7

MA22:11 E0-81-VON

SENT BY: 3RD ROCK, LLC;

FINAL PERMEABILITY REPORT

Project Name:	Peter Couper-Gowanda
Project No.;	00-005
Sample No.:	ST#4
Sample I.D.:	00-181
Laboratory Method:	ASTM D5084, Method C

01/15/01		
JMA		
RD		_
10/26/00		
cte:	10/29/00	
	2	
	01/15/01 JMA RD 10/26/00 kte:	01/15/01 JMA RD 10/26/00 kcte: 10/29/00 2

.

				the second second second second second second second second second second second second second second second se	
INITIAL SAMPLE DATA:					
Height, in.:	2.467	Wet Density, pcf:	129.7		
Dismeter, in.:	2.823	Dry Density, pcf:	107.6		
Moisture Content,%:	29.50	Compection, %:	NA		
FINAL SAMPLE DATA:					
Height, ia.:	2.373	Wet Density, pet	132.5		
Dismeter, in.:	2.852	Dry Density, pcf:	114.3		
Moisture Content.%:	15.90				

SATURATION AND CONSOLIDATION DATA:

Consolidation Pressure: 83.1 psi Backpressure: 80 psi Saturation (B parameter): 98%

AVERAGE PERMEABILITY RESUL'I (average of last 4 readings, K, cm/s):

Trial #	Testing Pressures (psi)			Q (ml/sec)	Final K (cm/s)
	1	2	3		
1	83.1	81	79.8	6.38E-04	1.1E-06
2	B3.1	81	79.8	5.57E-04	9.7E-07
3	83.1	81	79.8	5.46E-04	9.5E-07
4	83.1	81	79.8	5.55E-04	9.6E-07

Average K 1.0E-06

301646

PAGE 5/7

WA33: 11 E0-81-VON

FINAL PERMEABILITY REPORT

Project Name:	Peter Cooper-Gowanda	Date: 01/15/
Project No .:	00-005	Tested By: JMA
Sample No.:	ST#5	Check By: RD
Sample I.D.:	00-182	Date of Test: 12/04/
Laboratory Meth	od: ASTM D5084, Method C	Date Test Complete:

INITIAL SAMPLE DATA:

FINAL SAMPLE DATA:

Height, in.:	2.653
Diameter, ia.:	2.845
Moisture Content,%:	11,00

Height, in .:

Check By:	RD
Date of Test:	12/04/00
Date Test Comp	lete: 12/06/00
CELL NO .:	1

Wet Density, pcf:	140.1
Dry Density, pcf:	126.2
Compaction, %:	NA
Wet Density, pef:	140 .1
D-Donainy and	197 0

Diameter, in.: 2.831 Moisture Content,%: 13.10

SATURATION AND CONSOLIDATION DATA:

2.626

Consolidation Pressure: 83.0 psi Backpressure: 80 psi Saturation (B parameter): 95%

AVERAGE PERMEABILITY RESULT (average of last 4 readings, K. cm/s);

Trial #	Testing Pressures (psi)			Q (ml/sec)	Final K (cm/s)
	1	2	3		<
1	83	81	79.6	1.47E-04	2.5E-07
2	83	81	79.6	141E-04	2.4E-07
3	83	81	79.6	148E-04	2.5E-07
4	83	81	79.6	1.37E-04	2.3E-07

7\8 30A9

FINAL PERMEABILITY REPORT

Project Name:	Peter Cooper-Gowanda	Date:	01/15/01
Project No.:	00-005	Tested By:	JMA
Sample No.:	\$T#6	Check By:	RD
Sample 1.D.:	04-183	Date of Test	10/12/00
Laboratory Meth	od: ASTM D5084, Method C	Date Test Com	Hete: 10/14/00
		CELL NO .:	1

INITIAL SAMPLE DATA:			
Height, in.:	2.411	Wet Density, pef-	123.1
Diameter, in.:	2.833	Dry Density, pcf:	103.0
Moisture Content,%:	19.50	Compaction, %:	NA
FINAL SAMPLE DATA:			
Hcight, in.;	2.399	Wet Density, pcf:	126.5
Diameter, in .:	2.804	Dry Density, pcf.	105.1
Moisture Content,%:	20.40		

SATURATION AND CONSOLIDATION DATA:

Consolidation Pressure: 83.1 psi Backpressure: 80 psi Saturation (B parameter): 99%

AVERAGE PERMEABILITY RESULT (average of last 4 readings, K. cm/s):

Trial #	Tes	ting Pres (psi)	ILINES	Q (ml/sec)	Final K	
	1	2	3		(/*)	
1	83.1	81	79.9	1.67E-02	3.3E-05	
2	83.1	81	80.3	1.27E-02	3.9E-05	
3	83.1	81	80.2	1.27E-02	3.5E-05	
4	83.1	81	80.3	1.20E-02	3.7E-05	

301648

PAGE 7/7

WA92:11 E0-81-VON

 DCN:
 CT-S21

 DATE:
 07/21/00

 REVISION:
 4

.

DIRECT SHEAR

ASTM D 3080-90 (SOP-S21)

Client	BENCHMARK ENV.	Boring No.	NA
Client Reference	PETER COOPER	Depth (ft)	NA
Project No.	00306-01	Sample No.	ST-3
Lab ID	00306-01.001	Visual Description	GRAY CLAY WITH GRAVEL

- - ----

Sample Conditions: UNDISTURBED, INUNDATED AND DOUBLE DRAINED

Maximum S Stress	hear	Normal Stress	Ove	erall F	egressio	n Analysis
0 3.59 4.36 7.40	Origin (1) (2) (3)	0 3.05 6.22 8.8	Slope С Ф	=	0.77 0.35 37.70	degrees
Selected Points	Shear Stress	Normai Stress	Select	ed Po	ints Regr	ession
Origin 2	0.00 4.36	0 6.22	Slope C Ф	2	0.70 0.00 35.1	degrees

SHEAR STRESS vs. NORMAL STRESS

544 Braddock Avenue • East Pittsburgh, PA 15112 • Phone (412) 823-7600 • Fax (412) 823-8999

 DCN:
 CT-S21

 DATE:
 07/21/00

 REVISION:
 4

DIRECT SHEAR

ASTM D 3080-90 (SOP-S21)

Gotechnics

Client	
Client Reference	
Project No.	
Lab ID	

BENCHMARK ENV. PETER COOPER 00306-01 00306-01.001 Boring No. Depth (ft) Sample No. Visual Description

NA NA ST-3 GRAY CLAY WITH GRAVEL

Sample Conditions: UNDISTURBED, INUNDATED AND DOUBLE DRAINED

SHEAR STRESS vs. HORIZONTAL DISPLACEMENT

page 2 of 5

C:\My Documents\DSHEAR\BENCHMARKST3.xls]PLOT

CT-S21 DCN: DATE: 07/21/00 REVISION: 4

eotechnics

DIRECT SHEAR

ASTM D 3080-90 (SOP-S21)

Client	BENCHMARK ENV.	Boring No.	NA
Client Reference	PETER COOPER	Depth (ft)	NA
Project No.	00306-01	Sample No.	ST-3
Lab ID	00306-01.001	Visual Description	GRAY CLAY WITH GRAVEL

Sample Conditions: UNDISTURBED, INUNDATED AND DOUBLE DRAINED

SHEAR BOX DATA

Wt.of Wet Specimen & Ring(gm)	288.17	Specific Gravity (Assumed)	2.70
Weight of Ring (gm)	110.72	Volume of Solids(cc)	57.2
Weight of Wet Specimen (gm)	177.45	Initial Consolidation Dial Reading	0
Initial Specimen Height(in)	1	Final Consolidation Dial Reading	50.1
Specimen Diameter(in)	2.5	Corrected Final Cons. Reading	44.1
Wet Density(pcf)	137.7	Void Ratio Before Consolidation	0.41
Dry Density(pcf)	119.8	Void Ratio After Consolidation	0.40

Moisture Content	Before Test	After Test	Testing Param	eters
Tare ID	444	170		
Wt. Wet Soil & Tare (gm)	222.41	185.55	Normal Stress(psi)	3.05
Wt. Dry Soil & Tare (gm)	206.49	161.97		
Wt. Tare (gm)	99.85	8.18	Strain Rate(in/min)	0.00144
Wt. of Water (gm)	15.92	23.58		
Wt. of Dry Soil (gm)	106.64	153.79	Machine Deflection(div)	6
Moisture Content (%)	14.9	15.3		

							vertical	•	
	Horizontal	Horizontal	Proving Ring	Shear	Shear	Vertical Dial	Displacement	Shear To	
	Dial Reading	Displacement	Reading	Force	Stress	Reading	(+)incr,(-)decr	Normal	
	1 div=0.001"	(in)	1 div=0.0001"	(lbs)	(psi)	1 div= 0.0001"	(in)	Ratio	
	0.0	0.000	0.0	0.0	0.00	50.1	0.0000	0.00	
	5.0	0.004	15.0	6.2	1.26	52.1	-0.0002	0.41	-
	10.0	0.008	19.5	7.2	1.46	53.0	-0.0003	0.48	
-	15.0	0.013	22.6	7.8	1.60	53.4	-0.0003	0.52	
	20.0	0.017	25.7	8.5	1.73	52.4	-0.0002	0.57	
	25.0	0.022	28.8	9.2	1.87	51.3	-0.0001	0.61	
	50.0	0.045	48.2	13.4	2.72	31.4	0.0019	0.89	
	75.0	0.069	63.0	16.5	3.37	1.1	0.0049	1.10	
	100.0	0.093	68.1	17.6	3.59	-28.1	0.0078	1.18	
	125.0	0.119	62.0	16.3	3.32	-39.3	0.0089	1.09	
	150.0	0.145	53.8	14.6	2.97	-40.8	0.0091	0.97	
	175.0	0.170	49.4	13.6	2.77	-41.9	0.0092	0.91	
	200.0	0.195	47.6	13.2	2.69	-44.1	0.0094	0.88	
	250.0	0.246	44.8	12.6	2.57	-49.9	0.0100	0.84	
	275.0	0.271	43.7	12.4	2.52	-51.9	0.0102	0.83	
	325.0	0.321	41.6	11.9	2.43	-55.7	0.0106	0.80	
	350.0	0.346	41.0	11.8	2.40	-56.9	0.0107	0.79	
	375.0	0.371	40.3	11.6	2.37	-57.9	0.0108	0.78	
	400.0	0.396	39.4	11.5	2.33	-59.1	0.0109	0.77	
	425.0	0.421	39.7	11.5	2.35	-59.9	0.0110	0.77	
	450.0	0.446	39.3	11.4	2.33	-61.1	0.0111	0.76	
	500.0	0.496	39.3	11.4	2.33	-63.4	0.0114	0.76	
	Tested By	ТМ	Date	11/16/00	Checked E	BYGU	Date 11-18	-00	
page 3 of 5							C:Wy Documents/DSI	HEARVBENCHM	ARKST3.xls]FIRST

544 Braddock Avenue • East Pittsburgh, PA 15112 • Phone (412) 823-7600 • Fax (412) 823-8999

DCN: CT-S21 DATE: 07/21/00 REVISION: 4

DIRECT SHEAR

ASTM D 3080-90 (SOP-S21)

Client	BENCHMARK ENV.	Boring No.	NA
Client Reference	PETER COOPER	Depth (ft)	NA
Project No.	00306-01	Sample No.	ST-3
Lab ID	00306-01.001	Visual Description	GRAY CLAY WITH GRAVEL

- - ----

Sample Conditions: UNDISTURBED, INUNDATED AND DOUBLE DRAINED

SHEAR BOX DATA

Wt.of Wet Specimen & Ring(gm)	287.42	Specific Gravity (Assumed)	2.70
Weight of Ring (gm)	110.73	Volume of Solids(cc)	57.0
Weight of Wet Specimen (gm)	176.69	Initial Consolidation Dial Reading	0
Initial Specimen Height(in)	1	Final Consolidation Dial Reading	82.5
Specimen Diameter(in)	2.5	Corrected Final Cons. Reading	65.5
Wet Density(pcf)	137.1	Void Ratio Before Consolidation	0.41
Dry Density(pcf)	119.3	Void Ratio After Consolidation	0.40

Moisture Content	Before Test	After Test	Testing Parameters		
Tare ID	1393	11170			
Wt. Wet Soil & Tare (gm)	177.36	271.04	Normal Stress(psi)	6.22	
Wt. Dry Soil & Tare (gm)	160.90	247.67			
Wt. Tare (gm)	50.49	94.05	Strain Rate(in/min)	0.00144	
Wt. of Water (gm)	16.46	23.37			
Wt. of Dry Soil (gm)	110.41	153.62	Machine Deflection(div)	17	
Moisture Content (%)	14.9	15.2			

							Vertical	·
	Horizontal	Horizontal	Proving Ring	Shear	Shear	Vertical Dial	Displacement	Shear To
	Dial Reading	Displacement	Reading	Force	Stress	Reading	(+)incr,(-)decr	Normal
	1 div=0.001"	(in)	1 div=0.0001"	(lbs)	(psi)	1 div= 0.0001"	(in)	Ratio
	0.0	0.000	0.0	0.0	0.00	82.5	0.0000	0.00
	5.0	0.004	10.1	5.2	1.05	86.3	-0.0004	0.17
	10.0	0.008	18.5	6.9	1.42	89.2	-0.0007	0.23
	15.0	0.013	24.2	8.2	1.67	91.2	-0.0009	0.27
	20.0	0.017	30.4	9.5	1.94	92.6	-0.0010	0.31
	25.0	0.021	35.6	10.6	2.17	93.8	-0.0011	0.35
	50.0	0.045	52.7	14.3	2.92	93.5	-0.0011	0.47
	75.0	0.068	70.1	18.1	3.68	83,5	-0.0001	0.59
	100.0	0.092	83.5	21.0	4.27	70.1	0.0012	0.69
	125.0	0.117	83.2	20.9	4.25	58.4	0.0024	0.68
	150.0	0.142	82.5	20.7	4.22	54.6	0.0028	0.68
	175.0	0.167	83.5	20.9	4.27	50.4	0.0032	0.69
	200.0	0.192	83.7	21.0	4.28	45.7	0.0037	0.69
	225.0	0.217	82.6	20.8	4.23	40.2	0.0042	0.68
	275.0	0.267	78.8	19.9	4.06	33.0	0.0050	0.65
	300.0	0.292	77.6	19.7	4.01	30.9	0.0052	0.64
	325.0	0.317	77.5	19.7	4.01	30.4	0.0052	0.64
	375.0	0.367	84.1	21.1	4.30	33.9	0.0049	0.69
	400.0	0.391	85.7	21.4	4.36	33.4	0.0049	0.70
	425.0	0.417	84.9	21.3	4.33	31.3	0.0051	0.70
	475.0	0.467	83.5	21.0	4.27	26.4	0.0056	0.69
	500.0	0.492	82.6	20.8	4.23	24.3	0.0058	0.68
<u></u>	Tested By	ТМ	Date	11/17/00	Checked	ByGU	Date 11-19	-00
page 4 of 5						C:V	My Documents\DSHE	ARVBENCHMARKST3.xIsJSEC

DCN:	CT-S21
DATE:	07/21/00
REVISION:	4

DIRECT SHEAR

eotechnics

ASTM D 3080-90 (SOP-S21)

Client	BENCHMARK ENV.	Boring No.	NA
Client Reference	PETER COOPER	Depth (ft)	NA
Project No.	00306-01	Sample No.	ST-3
Lab ID	00306-01.001	Visual Description	GRAY CLAY WITH GRAVEL

- -

Sample Conditions: UNDISTURBED, INUNDATED AND DOUBLE DRAINED

SHEAR BOX DATA

Wt.of Wet Specimen & Ring(gm)	272.49	Specific Gravity (Assumed)	2.70
Weight of Ring (gm)	110.73	Volume of Solids(cc)	49.8
Weight of Wet Specimen (gm)	161.76	Initial Consolidation Dial Reading	0
Initial Specimen Height(in)	1	Final Consolidation Dial Reading	245.1
Specimen Diameter(in)	2.5	Corrected Final Cons. Reading	222.1
Wet Density(pcf)	125.5	Void Ratio Before Consolidation	0.62
Dry Density(pcf)	104.4	Void Ratio After Consolidation	0.58

Moisture Content	Before Test	After Test	Testing Parameters		
Tare ID	1310	40			
Wt. Wet Soil & Tare (gm)	173.73	250.33	Normal Stress(psi)	8.8	
Wt. Dry Soil & Tare (gm)	161.74	224.61			
Wt. Tare (gm)	102.64	101.53	Strain Rate(in/min)	0.00144	
Wt. of Water (gm)	11.99	25.72			
Wt. of Dry Soil (gm)	59.1	123.08	Machine Deflection(div)	23	
Moisture Content (%)	20.3	20.9			

. .

							ventical	-
	Horizontal	Horizontal	Proving Ring	Shear	Shear	Vertical Dial	Displacement	Shear To
	Dial Reading	Displacement	Reading	Force	Stress	Reading	(+)incr,(-)decr	Normal
	1 div=0.001"	(in)	1 div=0.0001"	(lbs)	(psi)	1 div= 0.0001"	(in)	Ratio
	0.0	0.000	0.0	0.0	0.00	245.1	0.0000	0.00
	5.0	0.002	32.2	9.9	2.02	247.1	-0.0002	0.23
	10.0	0.005	49.7	13.7	2.79	251.7	-0.0007	0.32
	15.0	0.009	62.1	16.4	3.33	256.6	-0.0011	0.38
	20.0	0.013	71.6	18.4	3.75	260.6	-0.0015	0.43
	25.0	0.017	80.5	20.3	4.14	264.3	-0.0019	0.47
	50.0	0.038	116.7	28.1	5.73	276.7	-0.0032	0.65
	75.0	0.061	141.6	33.5	6.82	282.0	-0.0037	0.77
	100.0	0.085	154.0	36.1	7.36	281.1	-0.0036	0.84
	125.0	0.110	154.9	36.3	7.40	279.0	-0.0034	0.84
	150.0	0.135	153.8	36.1	7.35	281.7	-0.0037	0.84
	175.0	0.160	153.5	36.0	7.34	287.7	-0.0043	0.83
	200.0	0.185	152.9	35.9	7.32	295.2	-0.0050	0.83
	225.0	0.210	153.0	35.9	7.32	303.5	-0.0058	0.83
	250.0	0.235	153.6	36.0	7.34	310.7	-0.0066	0.83
	300.0	0.285	153.2	36.0	7.33	324.0	-0.0079	0.83
	325.0	0.310	151.8	35.7	7.26	328.7	-0.0084	0.83
	375.0	0.360	149.0	35.1	7.14	338.3	-0.0093	0.81
	400.0	0.385	147.7	34.8	7.09	342.8	-0.0098	0.81
	450.0	0.435	145.5	34.3	6.99	350.1	-0.0105	0.79
	500.0	0.486	141.9	33.5	6.83	355.4	-0.0110	0.78
	525.0	0.511	140.1	33.1	6.75	357.7	-0.0113	0.77
	Tested By	ТМ	Date	11/18/00	Checked By	GU.	Date // - /	1-00
page 5 of 5							C:\My Documents\DSi	HEARVBENCHMARKST3.xls]THIRD

eotechnics

 DCN:
 CT-S21

 DATE:
 07/20/00

 REVISION:
 3

DIRECT SHEAR

ASTM D 3080-90 (SOP-S21)

Client	BENCHMARK ENV.	Boring No.	NA
Client Reference	PETER COOPER	Depth (ft)	NA
Project No.	00306-01	Sample No.	ST-4
Lab ID	00306-01.002	Visual Description	BROWNISH GRAY CLAY WITH GRAVEL

Sample Conditions: UNDISTURBED, INUNDATED AND DOUBLE DRAINED

Stress	hear	Stress	Ov	erall	Regressio	n Analysis
5.05	(1)	3	Siope	=	0.62	
7.70	(2)	6	С	=	3.46	
8.76	(3)	9	Φ	=	31.7	dearees

Selected Points	Shear Stress	Normal Stress	Selected Points Regression	
1	5.05	3	Slope = 0.62	
3	8.76	9	C = 3.20	
			Φ = 31.7 degrees	

SHEAR STRESS vs. NORMAL STRESS

Note: Graph not to scale

C:\My Documents\DSHEAR\BENCHMARKST4.xls]FINAL PLOT

.

 DCN:
 CT-S21

 DATE:
 07/20/00

 REVISION:
 3

DIRECT SHEAR

ASTM D 3080-90 (SOP-S21)

Gotechnics

ClientBENCHMARK ENV.Client ReferencePETER COOPERProject No.00306-01Lab ID00306-01.002

Boring No. Depth (ft) Sample No. Visual Description NA NA ST-4 BROWNISH GRAY CLAY WITH GRAVEL

Sample Conditions: UNDISTURBED, INUNDATED AND DOUBLE DRAINED

SHEAR STRESS vs. HORIZONTAL DISPLACEMEN

page 2 of 5

544 Braddock Avenue · East Pittsburgh, PA 15112 · Phone (412) 823-7600 · Fax (412) 823-8999

C:Wy Documents OSHEAR (BENCHMARKST4 xis)PLOT

DCN: DATE: REVISION: CT-S21 07/20/00 3

DIRECT SHEAR

ASTM D 3080-90 (SOP-S21)

Client Client Reference Project No. Lab ID	BENCHMA PETER CO 00306-01 00306-01.00	RK ENV. OPER 02	Boring No. Depth (ft) Sample No. Visual Description	NA NA ST- 4 BROWNISH GRAY (CLAY WITH GRAVEL
Sample Conditions:	UNDISTUR	BED, INUNDATE	D AND DOUBLE DRAINED)	
		SHEAR E	BOX DATA		
Wt.of Wet Specimen & I	Ring(gm)	395.00	Specific Gravity (Ass	umed)	2.70
Weight of Ring (gm)		214.36	Volume of Solids(cc)		59.2
Weight of Wet Specime	n (gm)	180.64	Initial Consolidation Dial Reading		0.0
Initial Specimen Height(in)	1	Final Consolidation D	ial Reading	70.0
Specimen Diameter(in)		2.5	Corrected Final Cons	. Reading	55.8
Wet Density(pcf)		140.2	Void Ratio Before Consolidation		0.36
Dry Density(pcf)		124.0	Void Ratio After Consolidation		0.35

Moisture Content	Before Test	After Test	Testing Parameters		
Tare ID	24	40			
Wt. Wet Soil & Tare (gm)	159.8 1	282.61	Normal Stress(psi)	3	
Wt. Dry Soil & Tare (gm)	151.90	261.52			
Wt. Tare (gm)	91.21	101.55	Strain Rate(in/min)	0.00144	
Wt. of Water (gm)	7.91	21.09			
Wt. of Dry Soil (gm)	60.69	159.97	Machine Deflection(div)	14	
Moisture Content (%)	13.0	13.2			

						Vertical	
Horizontal		Shear		Shear	Vertical Dial	Displacement	Shear To
Displacemen	t _.	Force		Stress	Reading	(+)incr,(-)decr *	Normal
(in)	,	(lbs)		(psi)	1 div= 0.0001	" (in)	Ratio
0.000		0.0		0.00	0.0	0.0000	0.00
0.005		3.3		0.67	0.0	0.0000	0.22
0.010		5.7		1.16	3.0	-0.0003	0.39
0.015		7.2		1.47	4.0	-0.0004	0.49
0.020		8.7		1.77	4.0	-0.0004	0.59
0.025		10.0		2.04	4.0	-0.0004	0.68
0.041		14.4		2.93	-2.0	0.0002	0.98
0.056		18.8		3.83	-17.0	0.0017	1.28
0.081		23.6		4.81	-47.0	0.0047	1.60
0.106		24.8		5.05	-80.0	0.0080	1.68
0.132		23.1		4.71	-102.0	0.0102	1.57
0.157		20.6		4.20	-113.0	0.0113	1.40
0.182		18.9		3.85	-120.0	0.0120	1.28
0.208		18.2		3.71	-124.0	0.0124	1.24
0.233		17.6		3.59	-130.0	0.0130	1.20
0.259		17.1		3.48	-137.0	0.0137	1.16
0.284		16.5		3.36	-142.0	0.0142	1.12
0.300		1 6.1		3.28	-144.0	0.0144	1.09
0.326		15.8		3.22	-150.0	0.0150	1.07
0.351		15.5		3.16	-152.0	0.0152	1.05
0.376		15.6		3.18	-154.0	0.0154	1.06
0.402		15.7		3.20	-158.0	0.0158	1.07
0.453		14.8		3.02	-165.0	0.0165	1.01
0.478		14.5		2.95	-167.0	0.0167	0.98
0.504		14.1		2.87	-167.0	0.0167	0.96
	Tested By	TM	Date	11/16/00	Checked By GL	Date 11-19-00	

544 Braddock Avenue · East Pittsburgh, PA 15112 · Phone (412) 823-7600 · Fax (412) 823-8999

C:Wy Documents/DSHEARVBENCHMARKST4.xis)FIRST

 DCN:
 CT-S21

 DATE:
 07/20/00

 REVISION:
 3

eotechnics

DIRECT SHEAR

ASTM D 3080-90 (SOP-S21)

Client Client Reference Project No. Lab ID	BENCHN PETER 0 00306-01 00306-01	IARK ENV. COOPER .002	Boring No. Depth (ft) Sample No. Visual Description	NA NA ST-4 BROWNISH	GRAY CLAY WITH GRAVEL
Sample Conditions:	UNDIST	IRBED, INUNDATE	O AND DOUBLE DRAINED		
		SHEAR E	BOX DATA		
Wt.of Wet Specimen &	Ring(gm)	389.34	Specific Gravity (Assu	ımed)	2.70
Weight of Ring (gm)		214.32	Volume of Solids(cc)		55.0
Weight of Wet Specime	n (gm)	175.02	Initial Consolidation D	ial Reading	0.0
Initial Specimen Height(i	in)	1	Final Consolidation Di	al Reading	213.0
Specimen Diameter(in)		2.5	Corrected Final Cons.	Reading	176.4
Wet Density(pcf)		135.8	Void Ratio Before Co	nsolidation	0.46
Dry Density(pcf)		115.3	Void Ratio After Con	solidation	0.44
Moisture Content		Before Test	After Test		Testing Parameters

Moisture Content	Before Test	After Test	Testing Paran	neters
Tare ID	1393	19	e n 11.	
Wt. Wet Soil & Tare (gm)	108.61	265.42	Normal Stress(psi)	9
Wt. Dry Soil & Tare (gm)	99.82	241.23		
Wt. Tare (gm)	50.49	90.95	Strain Rate(in/min)	0.00144
Wt. of Water (gm)	8.79	24.19		
Wt. of Dry Soil (gm)	49.33	150.28	Machine Deflection(div)	37
Moisture Content (%)	17.8	16.1		

						ventical	
Horizontal		Shear		Shear	Vertical Dia	Displacement	Shear To
Displacement		Force		Stress	Reading	(+)incr,(-)decr·	Normal
(in)		(lbs)		(psi)	1 div≈ 0.0001	" (in)	Ratio
0.000		0.0		0.00	0.0	0.0000	0.00
0.003		3.4		0.69	-2.0	0.0002	0.08
0.005		6.5		1.32	-2.0	0.0002	0.15
0.007		9.6		1.96	1.0	-0.0001	0.22
0.010		12.6		2.57	4.0	-0.0004	0.29
0.014		15.7		3.20	9.0	-0.0009	0.36
0.025		24.8		5.05	15.0	-0.0015	0.56
0.039		33.9		6.91	15.0	-0.0015	0.77
0.064		40.7		8.29	4.0	-0.0004	0.92
0.090		42.5		8.66	-1.0	0.0001	0.96
0.115		43.0		8.76	-14.0	0.0014	0.97
0.140		42.8		8.72	-28.0	0.0028	0.97
0.166		42.6		8.68	-38.0	0.0038	0.96
0.191		41.8		8.52	-45.0	0.0045	0.95
0.216		38.5		7.84	-50.0	0.0050	0.87
0.242		36.9		7.52	-52.0	0.0052	0.84
0.267		36.3		7.39	-55.0	0.0055	0.82
0.293		35.7		7.27	-55.0	0.0055	0.81
0.318		35.2		7.17	-56.0	0.0056	0.80
0.343		34.8		7.09	-56.0	0.0056	0.79
0.394		33.8		6.89	-57.0	0.0057	0.77
0.435		33.2		6.76	-57.0	0.0057	0.75
0.461		32.8		6.68	-57.0	0.0057	0.74
0.486		33.0		6.72	-57.0	0.0057	0.75
0.502		32.7		6.66	-57.0	0.0057	0.74
	Tested By	TM	Date	11/18/00	Checked By GU	Date 11-19-00	
page 5 of 5						C:Wy Documents\DSHEARVBENCHM	ARKST4.xisjTHIRD

DCN: DATE: REVISION:

CT-S21 07/20/00 3

DIRECT SHEAR

eotechnics

ASTM D 3080-90 (SOP-S21)

Client Client Reference Project No. Lab ID	BENCHM/ PETER C(00306-01 00306-01.	ARK ENV. DOPER 002		Boring No. Depth (ft) Sample No Visual Desc	ription	NA NA ST-4 BROWNISH GRAY CLAY WITH	H GRAVEL
Sample Conditions:	UNDISTURBED, INUNDATED AN		ATED AN	ID DOUBLE DRAINED			
		SHE	AR BOX	DATA			
Wt.of Wet Specimen & Ri	ing(gm)	392.16		Specific Gra	avity (Assume	ed)	2.70
Weight of Ring (gm)		214.34		Volume of S	Solids(cc)		58.4
Weight of Wet Specimen	(gm)	177.82		Initial Conso	olidation Dial	Reading	0.0
Initial Specimen Height(in))	1		Final Conso	didation Dial I	Reading	166.0
Specimen Diameter(in)		2.5		Corrected F	inal Cons. R	leading	139.2
Wet Density(pcf)		138.0		Void Ratio	Before Conso	blidation	0.38
Dry Density(pcf)		122.3		Void Ratio	After Conso	lidation	0.36
Moisture Content	•	Before Test		After Test		Testing Parame	ters
Tare ID		1310		40			
Wt. Wet Soil & Tare (gm)		190.00		261.88		Normal Stress(psi)	6
Wt. Dry Soil & Tare (gm)		180.07		241.80			
Wt. Tare (gm)		102.70		101.56		Strain Rate(in/min)	0.00144
Wt. of Water (gm)		9.93		20.08			<u></u>
Wt. of Dry Soil (gm)		11.37		140.24		Machine Deflection(div)	27
Moisture Content (%)	<u></u>	12.8		14.3			
Horizontal	Shear		Shear		Vertical Dial	Vertical Displacement	Shear To
Displacement	Force		Stress		Reading	(+)incr.(-)decr	Normal
. (in)	(lbs)		(psi)		1 div= 0.0001"	(in)	Ratio
0.000	0.0		0.00		0.0	0.0000	0.00
0.003	3.6		0.73		0.0	0.0000	0.12
0.006	6.7		1.36		4.0	-0.0004	0.23
0.009	9.8		2.00		10.0	-0.0010	0.33
0.014	12.9		2.63		14.0	-0.0014	0.44
0.019	15.8		3.22		18.0	-0.0018	0.54
0.034	23.5		4./9		20.0	-0.0020	0.80
0.049	30.8		0.27		20.0	-0.0020	1.05
0.075	31.3		7.00		-3.0	0.0003	1.27
0.100	31.0		6 4 4		-20.0	0.0020	1.20
0.123	30.2		6 1 5		-32.0	0.0032	1.07
0.176	29.9		6.09		-35.0	0.0035	1.00
0.201	29.5		6.01		-38.0	0.0038	1.00
0.227	29.0		5.91		-39.0	0.0039	0.98
0.252	28.7		5.85		-43.0	0.0043	0.97
0.278	28.5		5.81		-43.0	0.0043	0.97
0.303	28.3		5.77		-44.0	0.0044	0.96
0.329	28.0		5.70		-47.0	0.0047	0.95
0.354	27.9		5.68		-50.0	0.0050	0.95
0.380	27.9		5.68		-50.0	0.0050	0.95
0.405	28.0		5.70		-50.0	0.0050	0.95
0.456	27.5	·	5.60		-50.0	0.0050	0.93
0.481	26.8		5.46		-53.0	0.0053	0.91
0.50/	<u></u>	Dete	5.12	Charlind D	-54.0	0.0054	0.95
page 4 of 5	1 1/1		11/1//00	Uneckea B		Wy Documents DSHEAR VBENCHMAR	RKST4.xis]SECOND

 DCN:
 CT-S21

 DATE:
 07/26/00

 REVISION:
 3

DIRECT SHEAR

ASTM D 3080-90 (SOP-S21)

Client	BENCHMARK ENV.	Boring No.	NA
Client Reference	PETER COOPER	Depth (ft)	NA
Project No.	00306-01	Sample No.	ST-5
Lab ID	00306-01.003	Visual Description	BROWN CLAY WITH GRAVEL

- -

Sample Conditions: UNDISTURBED, INUNDATED AND DOUBLE DRAINED

Maximum Shear Stress		Normal Stress	Overall Regression Analysis
5.13	(1)	3	Slope = 0.85
7.18	(2)	6	C = 2.40
10.25	(3)	9	Φ = 40.5 degrees

Selected Points	Shear Stress	Normal Stress	Se	lected	Points Reg	ression		
1	5.13	3	Sk	ope =	0.69			ľ
2	7.18	6	C	=	3.07			-
			Φ	=	34.4	degrees		

SHEAR STRESS vs. NORMAL STRESS

Note: Graph not to scale

o

 DCN:
 CT-S21

 DATE:
 07/26/00

 REVISION:
 3

DIRECT SHEAR

ASTM D 3080-90 (SOP-S21)

Client	BE
Client Reference	PE
Project No.	00
Lab ID	00

ENCHMARK ENV. ETER COOPER 0306-01 0306-01.003 Boring No. Depth (ft) Sample No. Visual Description NA NA ST-5 BROWN CLAY WITH GRAVEL

Sample Conditions: UNDISTURBED, INUNDATED AND DOUBLE DRAINED

12.0 10.0 8.0 Shear Stress (psi) 6.0 4.0 2.0

SHEAR STRESS vs. HORIZONTAL DISPLACEMENT

0.0 ♣ → 0.000

0.050

0.100

•3

0.150

0.200

Horizontal Displacement (in)

-6

0.250

0.300

0.350

-9

0.400

0.450

 DCN:
 CT-S21

 DATE:
 07/26/00

 REVISION:
 3

eotechnics

DIRECT SHEAR

0

ASTM D 3080-90 (SOP-S21)

Client Client Reference Project No. Lab ID	BENCHM PETER C 00306-01 00306-01	ARK ENV. OOPER .003		Boring No. Depth (ft) Sample No Visual Desc	cription	NA NA ST-5 BROWN CLAY WITH	GRAVEL
Sample Conditions:	UNDISTU	RBED, INUND	ATED AI		DRAINED		
		SHEA	R BOX	DATA			
Wt.of Wet Specimen &	Ring(gm)	208.58		Specific Gr	avity (Assu	med)	2.70
Weight of Ring (gm)		76.67		Volume of S	Solids(cc)		43.4
Weight of Wet Specime	en (gm)	131.91		Initial Cons	olidation Re	eading (in.)	0
Initial Specimen Height	(in)	0.75		Final Conso	lidation Re	eading (in.)	0.0053
Specimen Diameter(in)		2.5		Corrected F	inal Cons.	Reading	0.0026
Wet Density(pcf)		136.5		Void Ratio I	Before Con	solidation	0.39
Dry Density(pcf)		121.2		Void Ratio	After Cons	olidation	0.39
Moisture Content		Before Test		After Test		Testing Parame	ters
Tare ID	-	1393		444			
Wt. Wet Soil & Tare (or	n)	130.00		234 60		Normal Stress(psi)	3
Wt Dry Soil & Tare (ar		121.07		217 55			-
Wit Tore (am)	'	50.51		00.85		Strain Pate(in/min)	0.00144
Wt. of Water (gm)		8 93		17.05		ou an i vale (m/min)	0.00144
Mit of Dry Soil (am)		70.55		117 7		Machine Deflection(in)	0 0027
Moisture Content (%)		127		14.5			0.0027
		۱ <i>۲</i> ۰۱		14.5			
11	01		01		· \ / = = 4 = = = 1	Vertical	01 T -
Horizontal	Shear		Shear		Ventical		Shear io
			Juess		Keading	(+)Incr,(-)decr	Potio
		·················	(psi)		(inches)	(in)	Rauo
0.000	0.0		0.00		0.0053	0.0000	0.00
0.005	0.5		0.10		0.0134	-0.0081	0.03
0.010	5.8		1.18		0.0138	-0.0085	0.39
0.015	9.2		1.8/		0.0145	-0.0093	0.02
0.020	11.4		2.33		0.0151	-0.0090	0.78
0.025	15.0		3.06		0.0148	-0.0099	1.02
0.050	24.0		4.89		0.0130	-0.0078	1.63
0.075	25.2		5.13		0.0084	-0.0032	1.71
0.100	22.2		4.51		0.0052	0.0001	1.50
0.125	20.2		4.12		0.0043	0.0009	1.37
0.150	19.9		4.04		0.0032	0.0021	1.35
0.175	19.9		4.04		0.0023	0.0030	1.35
0.200	19.7		4.01		0.0016	0.0036	1.34
0.225	20.1		4.09		0.0007	0.0046	1.36
0.250	20.2		4.12		0.0001	0.0052	1.37
0.275	19.7		4.01		-0.0006	0.0059	1.34
0.300	20.3		4.13		-0.0015	0.0068	1.30
0.325	19.9		4.04		-0.0022	0.0075	1.30
0.300	19.9		4.05		-0.0029	0.0002	1.35
0.373	10.1		3 80		-0.0033	0.0000 0.0088	1 30
0.425	19.1		3.89		-0.0037	0.0090	1.30

 DCN:
 CT-S21

 DATE:
 07/26/00

 REVISION:
 3

page 4 of 5

DIRECT SHEAR

ASTM D 3080-90 (SOP-S21)

Client Client Reference Project No. Lab ID	BENCHM, PETER C 00306-01 00306-01.	ENCHMARK ENV.Boring No.NETER COOPERDepth (ft)N0306-01Sample No.S0306-01.003Visual DescriptionB		NA NA ST-5 BROW	N CLAY WITH	GRAVEL		
Sample Conditions:	UNDISTURBED, INUNDATED A		DATED AN	ID DOUBLE D	RAINED			
		SHE	AR BOX I	DATA				
Wt.of Wet Specimen & F	Ring(gm)	209.45		Specific Grav	vity (Assu	med)		2.70
Weight of Ring (gm)		76.64		Volume of S	olids(cc)			44.8
Weight of Wet Specime	n (gm)	132.81		Initial Conso	lidation Re	eading (in	.)	0
Initial Specimen Height(i	n)	0.75		Final Consol	idation Re	ading (in	.)	0.0174
Specimen Diameter(in)		2.5		Corrected Fi	nal Cons.	Reading		0.0131
Wet Density(pcf)		137.4		Void Ratio B	efore Con	solidatior	Ì	0.35
Dry Density(pcf)		125.0		Void Ratio A	fter Cons	olidation		0.32
Moisture Content		Before Test		After Test		Te	sting Parame	ters
Tare ID		24	•	444				
Wt. Wet Soil & Tare (gm)	186.52		235.04		Normal	Stress(psi)	6
Wt. Dry Soil & Tare (gm))	177.93		219.06				
Wt. Tare (gm)		91.21		99.85		Strain F	Rate(in/min)	0.00144
Wt. of Water (gm)		8.59		15.98			· ·	
Wt. of Dry Soil (gm)		86.72		119.21		Machine	Deflection(in.)	0.0043
Moisture Content (%)		9.9		13.4				
		<u> </u>					Vertical	
Horizontal	Shear		Shear		Vertical		Displacement	Shear To
Displacement	Force		Stress		Reading		(+)incr,(-)decr	Normal
(IN)	(Ibs)		(psi)		(inches)		(in)	Ratio
0.000	0.0		0.00		0.0174		0.0000	0.00
0.003	1.8		0.37		0.0181		-0.0007	0.06
0.004	3.5		0.72		0.0181		-0.0007	0.12
0.005	3.7		0.75		0.0182		-0.0008	0.13
0.010	0.3		1.23		0.0100		-0.0010	0.21
0.013	14.4		2.51		0.0191		-0.0017	0.42
0.020	17.6		3.59		0.0192		-0.0010	0.49
0.030	20.4		4.16		0.0193		-0.0019	0.69
0.050	26.8		5.47		0.0177		-0.0002	0.91
0.075	32.7		6.66		0.0150		0.0025	1.11
0.100	35.3		7.18		0.0130		0.0044	1.20
0.125	35.3		7.18		0.0118		0.0056	1.20
0.150	33.4		6.80		0.0115		0.0060	1.13
0.175	33.4		6.80		0.0115		0.0060	1.13
0.200	31.3		6.39		0.0114		0.0060	1.06
0.225	31.0		6.32		0.0113		0.0061	1.05
0.250	30.ŏ		0.27		0.0113		0.0061	1.04
0.275	30.4		0.19		0.0113		0.0001	1.03
0.300	20 5		6 00					
11 425	29.5 29.6		6.00 6.04		0.0110		0.0059	1.00
0.325	29.5 29.6 29.5		6.00 6.04 6.00		0.0117		0.0059 0.0057 0.0053	1.00
0.325 0.350 0.375	29.5 29.6 29.5 30.0		6.00 6.04 6.00 6.11		0.0118 0.0117 0.0122 0.0124		0.0059 0.0057 0.0053 0.0050	1.00 1.00 1.00 1.02
0.325 0.350 0.375 0.400	29.5 29.6 29.5 30.0 30.4		6.00 6.04 6.00 6.11 6.19		0.0118 0.0117 0.0122 0.0124 0.0127		0.0059 0.0057 0.0053 0.0050 0.0048	1.00 1.00 1.02 1.03
0.325 0.350 0.375 0.400 0.425	29.5 29.6 29.5 30.0 30.4 28.9		6.00 6.04 6.00 6.11 6.19 5.88		0.0118 0.0117 0.0122 0.0124 0.0127 0.0128		0.0059 0.0057 0.0053 0.0050 0.0048 0.0046	1.01 1.00 1.02 1.03 0.98

544 Braddock Avenue • East Pittsburgh, PA 15112 • Phone (412) 823-7600 • Fax (412) 823-8999

eotechnics

 DCN:
 CT-S21

 DATE:
 07/26/00

 REVISION:
 3

DIRECT SHEAR

ASTM D 3080-90 (SOP-S21)

544 Braddock Avenue · East Pittsburgh, PA 15112 · Phone (412) 823-7600

C:Wy Documents/DSHEARVBENCHMARKST5.xls]Third • Fax (412) 823-8999

eotechnics

 DCN:
 CT-S21

 DATE:
 07/20/00

 REVISION:
 3

DIRECT SHEAR

ASTM D 3080-90 (SOP-S21)

Client Client Reference	BENCHMARK ENV. PETER COOPER	Boring No. Depth (ft)	
Project No.	00306-01	Sample No.	ST-6
Lab ID	00306-01.004	Visual Description	BROWN SILTY CLAY WITH GRAVEL

Sample Conditions: UNDISTURBED, INUNDATED AND DOUBLE DRAINED

Maximum Sh Stress	iear	Normal Stress	Overall Regression Analysis
3.48	(1)	3	Slope = 0.71
5.46	(2)	6	C = 1.30
7.74	(3)	9	Φ = 35.4 degrees

Selected Points	Shear Stress	Normal Stress	Selected	d Po	ints Reg	ression
1	3.48	3	Slope :	=	0.66	
2	5.46	6	C =	=	1.51	
			Φ =	=	33.4	degrees

SHEAR STRESS vs. NORMAL STRESS

Note: Graph not to scale

page 1 of 5

C:\My Documents\DSHEAR\BENCHMARKST6.xisjFiNAL PLOT

.

 DCN:
 CT-S21

 DATE:
 07/20/00

 REVISION:
 3

DIRECT SHEAR

ASTM D 3080-90 (SOP-S21)

Gotechnics

ClientBENCHMARK ENV.Client ReferencePETER COOPERProject No.00306-01Lab ID00306-01.004

Boring No. Depth (ft) Sample No. Visual Description NA

NA ST-6 BROWN SILTY CLAY WITH GRAVEL

Sample Conditions: UNDISTURBED, INUNDATED AND DOUBLE DRAINED

SHEAR STRESS vs. HORIZONTAL DISPLACEMEN

C:Wy Documents/DSHEARYBENCHMARKST6.xls}PLOT

DCN: DATE: REVISION: CT-S21 07/20/00 3

DIRECT SHEAR

eotechnics

ASTM D 3080-90 (SOP-S21)

Client Client Reference Project No. Lab ID	BENCHMARK ENV.Boring No.PETER COOPERDepth (ft)00306-01Sample No.00306-01.004Visual Description			iption	NA NA ST-6 BROWN SILTY CLAY WITH GRAVEL		
Sample Conditions:	UNDISTU	RBED, INUND	ATED AN	ND DOUBLE D	RAINED		
		SHE	AR BOX	DATA			
Wt.of Wet Specimen &	Ring(gm)	382.77		Specific Gra	vity (Assur	med)	2.70
Weight of Ring (gm)		214.29		Volume of S	olids(cc)		52.6
Weight of Wet Specime	en (gm)	168.48		Initial Conso	lidation Dia	al Reading	0.0
Initial Specimen Height((IN)	1		Final Consol	idation Dia	I Reading	82.0
Specimen Diameter(in)		∠.⊃ 120 P		Void Potio P	nal Cons.	Reading	67.8
Dry Density(pci)		130.0		Void Rauo B	erore Cons	solidation	0.53
Bry Density(per)		·····					0.52
Moisture Content	_	Before Test		After Test		Testing Parame	ters
Tare ID		444		11170		· · · · · ·	-
Wt. Wet Soil & Tare (gr	n)	1/5.09		246.30		Normal Stress(psi)	3
Wt. Dry Soli & Tare (gm	1)	103.23		222.30		Strain Data (in (min)	0.00144
With of Mater (gm)		33.07 11.86		94.04		Strain Rate(m/min)	0.00144
Wt of Dry Soil (am)		63.36		128.26		Machine Deflection(div)	14
Moisture Content (%)		18.7		18.7		Machine Delection(div)	14
						Vertical	
Horizontal	Shear		Shear	V	ertical Dial	Displacement	Shear To
	+orce		Stress		Reading	(+)incr,(-)decr	Normal
(III)	(iDS)	<u> </u>	(psi)		div= 0.0001	(IN)	Rauo
0.000	0.0		0.00		0.0	0.0000	0.00
0.003	5.4 5.1		0.09		3.0	-0.0003	0.23
0.013	6.5		1.32		19.0	-0.0019	0.44
0.018	7.8		1.59		22.0	-0.0022	0.53
0.023	8.9		1.81		22.0	-0.0022	0.60
0.038	12.1		2.46		22.0	-0.0022	0.82
0.053	15.0		3.06		18.0	-0.0018	1.02
0.079	17.1		3.48		-9.0	0.0009	1.16
0.104	10.0		3.30		-30.0	0.0030	1.13
0.154	14.2		2.89		-61.0	0.0055	0.96
0.180	13.7		2.79		-64.0	0.0064	0.93
0.205	13.3		2.71		-66.0	0.0066	0.90
0.231	12.9		2.63		-67.0	0.0067	0.88
0.256	12.7		2.59		-67.0	0.0067	0.85
0.201	12.0		2.57		-00.0	0.0008	0.00
0.332	12.1		2.46		-69.0	0 0069	0.82
0.358	11.9		2.42		-69.0	0.0069	0.81
0.383	11.8		2.40		-73.0	0.0073	0.80
0.409	11.7		2.38		-73.0	0.0073	0.79
0.460	11.6		2.36		-73.0	0.0073	0.79
U.400 0.505	11.3 11.4	,	2.30		-/3.U _73.0	0.0073	0.77 0.77
Tested Bv	<i>TM</i>	Date	12/1/00	Checked Bv	$\frac{10.0}{60}$	Date 12-4-00	
page 3 of 5					<u> </u>	My Documents/DSHEARVBENCHMA	RKST6.xlsjFlRST

544 Braddock Avenue · East Pittsburgh, PA 15112 · Phone (412) 823-7600 · Fax (412) 823-8999

eotechnics

DCN:	CT-S21
DATE:	07/20/00
REVISION:	3

DIRECT SHEAR

ASTM D 3080-90 (SOP-S21)

544 Braddock Avenue · East Pittsburgh, PA 15112 · Phone (412) 823-7600 . Fax (412) 823-8999

DCN: CT-S21 DATE: 07/20/00 REVISION: з

DIRECT SHEAR

eotechnics

ASTM D 3080-90 (SOP-S21)

Client Client Reference Project No. Lab ID	BENCHM PETER C 00306-01 00306-01.	ARK ENV. OOPER 004		Boring No. Depth (ft) Sample No. Visual Desc	niption	NA NA S T-6 BROWN SILTY CLAY WITH	VITH GRAVEL	
Sample Conditions:	UNDISTU	RBED, INUND		D DOUBLE D	RAINED			
		SHE	AR BOX	DATA				
Wt.of Wet Specimen & Ring(gm) 383.2				Specific Gra	avity (Assum	ed)	2.70	
Weight of Ring (gm)		214.34		Volume of S	Solids(cc)		53.9	
Weight of Wet Specimen	(gm)	168.89		Initial Conso	olidation Dial	Reading	0.0	
Initial Specimen Height(in))	1		Final Conso	lidation Dial	Reading	228.0	
Specimen Diameter(in)		2.5		Corrected F	inal Cons. F	Reading	191.4	
Wet Density(pcf)		131.1		Void Ratio E	Before Conso	olidation	0.49	
Dry Density(pcf)		113.0		Void Ratio	After Consc 	blidation	0.46	
Moisture Content	•	Before Test		After Test		Testing Para	neters	
Tare ID		11170		444				
Wt. Wet Soil & Tare (gm)		213.65		249.71		Normal Stress(psi)	9	
Wt. Dry Soli & Tare (gm)		197.10		228.83		Otrain Data (in India)	0.00144	
Wt. of Mater (gm)		94.00 16.40		39.04 20.88		Strain Rate(In/min)	0.00144	
Wt of Dry Soil (am)		103 1		128.00		Machine Deflection(div)	37	
Moisture Content (%)		16.0		16.2			57	
						Vertical		
Horizontal	Shear		Shear		Vertical Dial	Displacement	Shear To	
Displacement	Force		Stress	_	Reading	(+)incr,(-)decr	Normal	
(in)	(lbs)		(psi)		1 div= 0.0001"	(in)	Ratio	
0.000	0.0		0.00		0.0	0.0000	0.00	
0.003	3.6		0.73		0.0	0.0000	0.08	
0.004	6.6		1.34		1.0	-0.0001	0.15	
0.008	9.6		1.96		6.0	-0.0006	0.22	
0.013	12.6		2.57		11.0	-0.0011	0.29	
0.018	14.9		3,04		14.0	-0.0014	0.34	
0.033	20.7		4.22 5 4 2		24.0	-0.0024	0.47	
0.040	20.2		6 17		20.0	-0.0020	0.57	
0 099	32 7		6.66		32.0	-0.0032	0.00	
0.124	33.6		6.84		33.0	-0.0033	0.76	
0.149	33.8		6.89		33.0	-0.0033	0.77	
0.175	34.3		6,99		33.0	-0.0033	0.78	
0.200	34.9		7.11		33.0	-0.0033	0.79	
0.226	35.2		7.17		33.0	-0.0033	0.80	
0.251	35.4		7.21		33.0	-0.0033	0.80	
0.276	35.8		7.29		33.0	-0.0033	0.81	
0.302	35.9		7.31		33.0	-0.0033	0.81	
0.327	36.4		1.4Z		33.0	-0.0033	0.82	
U.303 0 378	30,3 27 A		1.44 7 E1		33.U 33.0	-0.0033	0.03	
0.373	37.0		7.34 7.58		33.U 32.D	-U.UU33 0.0033	0.04 0.8 <i>1</i>	
0.455	37 4		7.50		32.0	-0.003Z _0.0032	0.85	
0.480	37.1		7.56		32.0	-0.0032 -0.0032	0.84	
0.505	38.0		7.74		32.0	-0.0032	0.86	
Tested By	TM	Date	11/29/00	Checked B	160	Date 12-4-00		
page 5 of 5	· · · · · · · · · · · · · · · · · · ·					C:Wy Documents/DSHEARVBENCHMA	RKST6.xis]THIRD	

SOIL TESTING SUMMARY In-Situ Hydraulic Conductivity Testing Using Shelby Tube Samples

Peter Cooper RI/FS Gowanda, New York

Existing Cover Soli										
Sample	Dry D	ensity	Water (Content	Hydraulic					
Number	Р	cf	9	6	Conductivity					
	Before	After	Before	After	cm/s					
ST-1	117.2	115.5	15.9	16.1	1.1 E-5					
ST-2	105.6	102.1	20.4	24.5	7.5 E-7					
ST-3	112.5	119.2	19.1	15.7	9.0 E-8					
ST-4	107.6	114.3	20.5	15.9	1.0 E-6					
ST-5	126.2	123.9	11.0	13.1	2.4 E-7					
ST-6	103.0	105.1	19.5	20.4	3.6 E-5					

Existing Cover Soil

Waste Material Below Existing Cover Soil

CT O	64.0	F10	10.0	11.0	
1 51-2	D4.2	1 54.2	1 40.9	[4].0	1 1.7 6-5 1

. .

^{3rd} Rock, LLC 580 Olean Road East Aurora, NY 14052 (716)652-9646

SOIL TESTING SUMMARY

Peter Cooper RI/FS Gowanda, New York

·•	-e					Existing	Cover Soil		- Andrewski - Andrewski - Andrewski - Andrewski - Andrewski - Andrewski - Andrewski - Andrewski - Andrewski - A Andrewski - Andrewski			
Sample Number	Gravel	Sand	Silt	Clay	Liquid Limit	Plasticity Index	Maximum Dry Density	Optimum Water Content	Hydraulic Conductivity	Compaction	Water Content	USCS
	%	_%	%	%	%	%	pct	%	cm/s	% of MDD	%	
Comp-1, TH-1 through TH-4	6.6	38.3	45.1	10	27.4	7.3	125.7	10.3	1.1 E-6	88.5	12.5	CL-MIL
Comp-2, TH-5 through TH-8	4.8	26.2	52.6	16.4	25.4	7.9	125.9	10.4	3.9 E-7	89.4	11.3	CL-ML
Comp-3, TH-9 through TH-12	4.1	28.1	45.7	22.1	26.5	9.1	128.0	10.4	9.0 E-7	88.3	12.1	CL
Comp-4, TH-13 through TH-16	2.7	26.8	50.5	20.0	23.0	6.0	130.1	9.0	1.8 E-6	86.5	12.4	CL-ML
Comp-5, TH-17 through TH-20	5.3	36.7	40.8	17.2	23.9	4.7	124.7	11.4	3.2 E-6	85.9	11.6	CL-ML
Comp-6, TH-21 through TH-24	5.4	27.5	45.7	21.4	22.9	6.9	130.3	9.2	3.8 E-7	87.3	10.9	CL-ML

Waste Evaluation

#1	27.5	33.2	31.3	8	62.1	17.5

3rd Rock, LLC 580 Olean Road East Aurora, NY 14052 (716)652-9646

.

1/08/01

.....

·· ·· ····

3rd Rock, LLC

Project No.: 00-005

Plate

ť.

Peter Cooper RI/FS Gowanda, New York

Wetland Sediment						
Sample Number	Gravel %	Sand %	Silt %	Clay %		
Wetland Sediment #1	0.2	45.8	47.5	6.5		
Wetland Sediment #2	0.7	35.8	55.9	7.6		
Wetland Sediment #3	0.3	42.1	44.2	13.4		

Creek	Sediment	
-------	----------	--

Sample Number	Gravel %	Sand %	Silt & Clay %			
Creek Sediment #1	16.0	82.3	1.7			
Creek Sediment #2	20.1	78.9	1.0			
Creek Sediment #3	3.9	94.5	1.6			
Creek Sediment #4	0.3	95.4	4.3			

301691

^{3rd} Rock, LLC 580 Olean Road East Aurora, NY 14052 (716)652-9646

1/08/01

<u>_____</u>

SOIL TESTING SUMMARY

Peter Cooper RI/FS Gowanda, New York

Former Plant Site Soil/Fill

Sample	Gravel	Sand	Fines	
-			Silt	Clay
Number	%	%	%	%
SB-1, Surface	23.9	57.4	14.8	3.9
SB-1, 5-7'	27.0	61.1	11.9*	
SB-2, Surface	49.3	43.1	7.6*	
SB-2, 6-8'	42.4	43.5	14.1*	
SB-4, Surface	26.3	35.6	24.6	13.5
SB-4, 4-6'	32.5	57.2	10.3*	
SB-5, Surface	18.0	30.4	36.6	15.0
SB-5, 6-8'	17.5	62.1	16.4**	4.0**
SB-3, 3-5'	0.0	42.0	39.3	18.7
SB-6, Surface	10.6	24.2	38.4	26.8
MW-FP-2, 0.5-2.5'	56.3	28.9	14.8*	
MW-FP-2, 5-7'	17.9	69.9	12.2*	
SB-7, Surface	21.4	52.7	15.4	10.5
SB-7, 7-9'	15.0	58.8	16.2**	10.0**
SB-8, Surface	26.8	30.8	28.7	13.7
SB-8, 10-12'	11.8	35.2	39.0	14.0
SB-9, 0.5-2.5'	35.2	29.5	25.0	10.3
SB-9, 7-9'	1.1	58.2	32.7**	8**
SB-10, Surface	29.6	37.7	22.4	10.3
SB-10, 7-9'	0.0	56.6	35.2	8.2
MW-FP-3, 0.5-2.5'	39.5	40.5	16.0	4.0
MW-FP-3, 5-7'	17.1	54.0	23.9	5.0
SB-6, 4-6'	15.9	52.4	22.7	9.0

* Predominantly Silt

** Approximate percentages based on shape of curve.

3rd Rock, LLC 580 Olean Road East Aurora, NY 14052 (716)652-9646

1/08/01

- - -

.....

.....

÷

APPENDIX P Assessment of VOCs in Soil at MWFP-3 – Methodology and Results

APPENDIX P

SUPPLEMENTAL SOIL SAMPLING AT THE FORMER MANUFACTURING PLANT AREA

1.0 Background

RI data collected in October 2000 indicated the presence of a limited number of chlorinated volatile organic constituents in shallow soils collected at the MWFP-3 well cluster. As this finding was unique to the Site, additional sampling of soils in the vicinity of MWFP-3 was proposed to better delineate the extent of the VOC impacts. Details of the proposed investigation were described in correspondence to USEPA dated December 17, 2001 (Attachment 1). In general, the supplemental investigation involved advancement of a series of direct-push (Geoprobe®) borings in and around the MWFP-3 cluster with corresponding field screening of retrieved soils using a Photoionization Detector (PID) to provide an indication of the extent of VOC impacts. Once approximate the limits of the impacts were established based on the field screening results, confirmatory soil samples were strategically collected for laboratory analysis to verify the limits of VOC impacts in shallow soil. A detailed description of the supplemental investigation work and findings are presented below.

2.0 Methodology

2.1 Soil Borings

A total of sixteen (16) direct-push borings designated B-1 through B-16 were advanced within the Former Manufacturing Area of the Site in the vicinity of well cluster MWFP-3 (see Figure 1). All direct-push boreholes were advanced using 1.5-inch diameter samplers 4-feet in length. Geoprobe® services were provided by Benchmark's designated subcontractor, Zebra Environmental of Niagara Falls, New York. Continuous 4-foot sample cores were retrieved from the boring locations in clear polyethylene sleeves to allow for field characterization (i.e., visual, olfactory, PID scan and headspace) of the subsurface lithology and collection of unsaturated soil samples representative of overburden soil by an experienced project hydrogeologist. All field observation and soil descriptions were recorded on Field Borehole Logs presented in Attachment 2. For each four-foot core of soil, a new, dedicated sleeve was used. All non-dedicated drilling tools were decontaminated between boring locations using potable tap water and a phosphate-free detergent (i.e., AlconoxTM).

Borings B-1 through B-4 were advanced radially from well MWFP-3s approximately 10feet in all four compass directions. Boring B-5 was advanced immediately adjacent to monitoring well MWFP-3S. Borings were generally terminated at a depth of 8-feet below ground surface (bgs) due to the presence of groundwater at approximately 4 feet bgs (see Table 1). Benchmark personnel scanned each 4-foot core for total volatile

organic vapors with a Photovac 2020 Photoionization Detector (PID) equipped with a 10.6 eV lamp, noted visual and/or olfactory observations and collected an unsaturated soil sample for headspace evaluation. Borings B-1 through B-5 yielded no detectable PID readings or measurable headspace VOC concentrations. Boring B-6 was completed approximately 40 feet from MWFP-3S to verify that no other VOC source was present further south of MWFP-3s. Field measurements yielded similar findings as Borings B-1 through B-5 (i.e., no detectable PID readings or measurable headspace VOC concentrations).

Based on these findings, ten (10) additional borings were located further northeast toward MW-FP3D in an attempt to locate the source of the VOC concentrations detected in the MWFP-3 soil sample data. As indicated on Figure 1, PID headspace evaluations of unsaturated soil samples for the remaining boring locations detected the presence of VOCs exceeding background concentrations (i.e., 0.0 ppm) at five of the remaining 10 boring locations: B-7 (3.7 ppm); B-8 (24.5 ppm); B-11 (31.7 ppm); B-12 (0.5 ppm) and; B-13 (223 ppm). Surrounding borings B-9, B-10, B-14, B-15 and B-16 indicated no measurable VOCs in the sample headspace.

Pertinent field observations (i.e., lithology, total depths, PID scan and headspace results etc.) are summarized and presented in Table 1 and on the Field Borehole Logs (included in Attachment 2).

2.2 Confirmatory Soil Sampling

Direct grab soil samples were collected from the unsaturated zone at several boring locations outside of the area where elevated headspace concentrations were measured. Samples were collected with an EnCoreTM sampler and dedicated sleeves following the EnCoreTM sample collection procedure identified in the RI/FS Work Plan. Sample locations were field-selected to surround the impacted area in all compass directions and as requested by the New York State Department of Environmental Conservation, which had a representative on-site at the time of sample collection. Table 2 identifies boring locations where conformatory samples were collected All samples were cooled to 4 °C in the field and transported under chain-of-custody command to Columbia Analytical Services, located in Rochester, New York, for analysis of Target Compound List (TCL) volatile organic compounds (VOCs) in accordance with USEPA Method 8260B.

Following lithology description and soil sample collection completion at each boring, the annulus was backfilled to existing grade with boring spoils.

3.0 Investigation Findings

Analytical results are summarized in Table 2. Each compound that was analyzed is listed on the table with its associated result to provide a complete data summary. All samples analyzed during the supplemental investigation underwent third party data validation by Ms. Judy Harry of Data Validation Services. The results of the validation generally indicate compliance to protocol requirements and adherence to quality criteria. Data qualifications, where necessary, are indicated on Table 2. The data validation report and validated data are presented in Appendix B

Volatile organic compounds reported below the respective detection limit are presented in Table 2 as blank entries. For comparison purposes, Table 2 also presents the United States Environmental Protection Agency (USEPA) Region 9 Preliminary Remediation Goals (PRGs) for residential and industrial soils for each of the detected parameters. As presented in Table 2, several volatile organic compounds were detected at trace levels for all ten unsaturated soil samples, however at concentrations significantly lower than the corresponding USEPA residential and industrial PRGs. One exception was recorded for soil sample B-9 (0.5 - 1.5 fbgs) which indicated an elevated concentration of tetrachloroethene (15 mg/kg) at a concentration exceeding the residential PRG. However, this concentration is below the corresponding industrial soil PRG.

4.0 Summary

Based upon the field screening and confirmatory sampling results described above, the approximate extent of the VOC-impacted area is presented on Figure 2. The estimated volume of soils within the impacted area are shown of Figure 2.

TABLE 1

SUMMARY OF GEOPROBE BORING LOCATIONS

PETER COOPER CORPORATION - GOWANDA SITE COLLIER, SHANNON & SCOTT GOWANDA, NEW YORK

Location	Date of Advancement	Distance From MWFP-3S	Distance From MWFP-3D	Total Borehole Depth (fbgs)	Fill Interval (fbgs)	Fill Thickness (feet)	PID Scan (ppm)	PID Head Space ¹ (ppm)	Depth to Water ² (fbgs)	Sample Interval (fbgs)
B-1	04/16/02	10.00	18.50	8.0	0.4 - 2.2	1.8	0.0	0.0	4.0	2.0 - 4.0
B-2	04/16/02	9.15	8.40	4.0 (refusal)	0.5 - 2.0	1.5	0.0	0.0	4.0	2.0 - 4.0
B-3	04/16/02	10.00	3.90	8.0	0.7 - 2.6	1.9	0.0	0.0	4.5	$2.0 - 4.0^{3}$
	04/14/00	10.20	17 70	8.0	0 2 0 1	1.0	0.0	0.0	4.0	$2.0 - 4.0^4$
B-4	04/16/02	10.50	17.70	8.0	0.3 - 2.1	1.8	0.0	0.0	4.0	0.5 - 1.5 5
B-5	04/16/02	2.30	9.00	8.0	0.3 - 2.1	1.8	0.0	0.0	4.0	NA
B-6	04/16/02	42.30	46.20	8.0	0.4 - 4.6	4.2	0.0	0.0	4.0	NA
B-7	04/16/02	10.60	2.25	8.0	0.4 - 2.4	2.0	0.0	3.7	4.0	0.5 - 1.5
B-8	04/16/02	21.20	12.50	8.0	0.3 - 4.5	4.2	0.0	24.5	4.0	NA
B-9	04/17/02	26.20	17.50	8.0	0.0 - 4.5	4.5	0.0	0.0	4.5	0.5 - 2.5
B-10	04/17/02	35.25	26.00	4.0	0.2 - 2.5	2.3	0.0	0.0	4.0	NA
B-11	04/17/02	33.85	25.20	4.0	0.0 - 3.4	3.4	0.0	31.7	3.5	NA
B-12	04/17/02	42.05	34.35	4.0	0.3 - 2.5	2.2	0.0	0.5	3.5	NA
B-13	04/17/02	21.95	14.90	4.0	1.8 - 3.5	1.7	20.0 6	223	3.1	NA
B-14	04/17/02	31.15	29.60	1.6 (refusal)	NA	NA	0.0	0.0	NA	NA
B-15	04/17/02	47.10	38.50	4.0	0.3 - 2.2	1.9	0.0	0.0	3.0	0.5 - 1.5
B-16	04/17/02	56.00	51.15	4.0	1.9 - 2.8	0.9	0.0	0.0	2.0 7	0.7 - 1.1

Notes:

1. Headspace sample collected from unsaturated soils at each location only.

2. Initial depth to water indicates first groundwater encountered during boring advancement.

3. The QA/QC sample MS/MSD was collected at boring location B-3.

4. The QA/QC sample Blind Duplicate was collected at boring location B-4.

5. Soil sample collected as per NYSDEC request.

6. PID scan of boring B-13 was recorded from interval 2.5 - 3.5 fbgs.

7. Depth to water at boring location B-16 may indicate a perched water table.

TABLE 2

SUMMARY OF SOIL ANALYTICAL RESULTS

PETER COOPER CORPORATION - GOWANDA SITE COLLIER, SHANNON & SCOTT GOWANDA, NEW YORK

Parameter	B-1 (2.0 - 4.0 fbgs)	B-2 (2.0 - 4.0 fbgs)	B-3 (2.0 - 4.0 fbg*)	B-4 (2.0 - 4.0 fbgs)	Blind Duplicate B-4 (2.0 - 4.0 (bgs)	В-4 (0.5 - 1.5 Года)	B-7 (0.5 - I.5 fbgs)	B-9 (0.5 - 1.5 fbgs)	B-15 (0.5 - 1.5 (bgs)	B-16 (0.7 - 1.1 fbgs)	USEPA Residential Soil PRG (mg/kg)	USEPA Industrial Soil PRG (mg/kg)
TCL Volatile Organic Compounds (VOCs) -	mg/kg ²			_								
Acetone	0.02	0.023	0.031	0.029	0.023	0.019 B	0.014	0.15 j	0.036	0.021	1600	6000
Benzene					0.0033 J			0.00 24 J			0.6	1.3
Bromodichloromethane											0.82	1.8
Bromoform (tribromomethane)								L			62	220
Bromomethane (Methyl bromide)											3.9	13
2-Butanone (Methyl ethyl ketone)	0.0029 J			0.0046]	0.0045)			0.015	0.0026]		7300	27000
Methyl tertbutyl ether (MIBE)											62	160
Carbon disulfide				0.004 J	0.017			0.0017 J			360	720
Carbon tetrachloride	0.003 J	0.017	0.0095	0.00 8 J	0.014	0.018	0.00 85 J	0.021			0.25	0.55
Chlorobenzene	T					Γ					150	530
Chloroethane											3	6.5
Chloroform	0.0055 J	0.018	0.0049 J	0.003]	0.0042 J	0.0044]	0.015	0.014			3.6	12
Chloromethane				1	1]			1		1.2	2.6
1,2-1Dibromo-3-chloropropane				1				1			0.45	2
Cyclohexane				0.0021 J	0.011			0.00 52 J	0.0039 j		140	140
Dibromochloromethane				1	1	1		1	1		1.1	2.6
1,2-Dibromoethane											0.0069	0.028
1,2-Dichlorobenzene								T			370	370
1,4-Dichlorobenzene								0.0019 J			3.4	7.9
1,3-Dichlorobenzene					1	T		0.0016 J			16	63
Dichlorodifluoromethane	1					1	1	1	1		94	310
1,1-Dichloroethane		1					1	1			5 10	1700
1,2-Dichloroethane (EDC)						1		1			0.28	0.6
1,1-Dichloroethylene		1	1	1	1	1		1			120	410
1,2-Dichloroethylene (trans)					1			1			69	230
1,2-Dichloroethylene (cis)						1		1			43	150
1,2-Dichloropropane								1			0.34	0.74
trans-1,3-Dichloropropene	1				1							
cis-1,3-Dichloropropene			1					1				
Ethylbenzene			0.00 25 J	9.0017 J	0.0024 J			0.0086 J		<u> </u>	8.9	20
2-Hexanone (MBK)		1		0.0017 J				1				
Cumene (isopropylbenzene)					1		1	0. 45 J	0.0011 J		570	2000
Methyl acetate	T					1	1	1.1]	0.0028 J	1	22000	92000
Methylcyclohexane	1			0.0031 J	0.017		0.0011 J	0.0092]	0.0058]	0.00096 J	2600	8700

Table 2; Summary of Soil Analytical Results - revised Nov 2003

.

TABLE 2

SUMMARY OF SOIL ANALYTICAL RESULTS

PETER COOPER CORPORATION - GOWANDA SITE COLLIER, SHANNON & SCOTT GOWANDA, NEW YORK

Parameter	B-1 (2.0 - 4.0 fbgs)	B-2 (2.0 - 4.0 fbgs)	B-3 (2.0 - 4.0 (bgs)	B-4 (2.0 - 4.0 fbgs)	Blind Duplicate B-4 (2.0 - 4.0 fbgs)	B-4 (0.5 - 1.5 fbgs)	B-7 (0.5 - 1.5 Ռցո)	B-9 (0.5 - 1.5 fbgs)	B-15 (0.5 - 1.5 fbgs)	B-16 (0.7 - 1.1 (bgs)	USEPA Residential Soil PRG (mg/kg)	USEPA Industrial Soil PRG (mg/kg)
TCL Volatile Organic Compounds (VOCs) - n	ng/kg²											
Methylene chloride											9.1	21
Methyl isobutyl ketone (MIBK, 4-Methyl-2-Pentanone)									0.003 j	0.00 21 J	790	2800
Styrene											1700	1700
1,1,2,2-Tetrachloroethane											0.41	0.93
Tetrachloroethylene (PCE)	1.9	2.9	0.11	0.039	0.075	0.00 33 J	0,044	15	0.0011 J	0.031	1.5	3.4
Toluene				0.0015 J	0.0071]			3.7	0.0017 J		520	52 0
1,2,4-Trichlorobenzene		0.001 J						0.0035 J			650	3000
1,1,1-Trichloroethane	0.041	0.031	0.014	0.023	0.036	0.026	0.016	0.098	0.0024 J	0.0016 J	1200	1200
1,1,2-Trichloroethane											0.73	1.6
Trichloroethylene (TCE)	0.0025 J	0.0074 J	0.00 39 J	0.0011 J	0.0017 J		0.0026 J	0.0046 J			0.053	0.11
Trichlorofluoromethane											390	2000
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)											5600	5600
Vinyl chloride (child/adult) 3											0.079	0.75
m,p-Xylenes	0.0014 J		0.0097	0.0049 J	0.0048 J			5	0.0023	0.0016 J	270	420
o-Xylene			0.00 36 J		0.0036 J			0.0037 J			270	421)
TOTAL VOC.	1.9763	2.9974	0.1891	0.1267	0.2246	·· 0.0707	0.1001	23.5904	0.0627	0.05826	合。#4400	
HEADSPACE DETERMINATION (ppm)	0.0	0.0	0.0	0.0		0.0	3.7	0.0	0.0	0.0	And the second s	An and a start

Notes:

1. J = inicates an estimated value.

2. Analytical results were reported in ug/kg and converted to mg/kg for comparison to the USEPA PRG values.

3. Industrial soil PRG presented is for the average adult only.

4. A blank value indicates the compound was not detected above laboratory reporting limit.

5. Headspace determinations were performed in the field with a calibrated photoionization detector equipped with a 10.6 eV lamp.

BOLD = Indicates value has exceeded the USEPA residential soil PRG.

December 17, 2001

nvironmental

Engineering & Science, PLLC

Ms. Sherrel Henry Peter Cooper Landfill Superfund Site Project Coordinator U.S. Environmental Protection Agency Region II Emergency and Remedial Response Division 290 Broadway - 20th Floor New York, NY 10007-1866

Re: Peter Cooper Landfill Site RI/FS Proposed Supplemental Investigation Work in Former Manufacturing Plant Area

Dear Ms. Henry:

Benchmark Environmental Engineering & Science, PLLC and Geomatrix Consultants, Inc. have prepared this correspondence to document our plans for proposed supplemental RI investigation work in the Former Manufacturing Plant Area of the above-referenced site. Specifically, we intend to perform additional investigation of soils in the vicinity of the MWFP-3 well cluster, where RI data indicated the presence of a limited number of chlorinated organic constituents. Additional sampling of soils in this area will be helpful in characterizing the extent of the impacts for presentation and evaluation in the RI/FS.

Sampling work will be performed with a direct-push (Geoprobe®, or equivalent) rig using 1-1/2" diameter x 4-foot long stainless steel spoons fitted with acetate sleeves. Four sample locations will be located at distances of 10-feet from MWFP-3 in each of four compass directions. At each location, direct-push borings will be completed to a depth of 8-feet below grade. The project hydrogeologist will examine retrieved soil cores for visual and olfactory evidence of VOC contamination, and will screen each 4-foot section with a photoionization detector (PID) fitted with a 10.7 eV lamp. Field observations and PID readings will be recorded in a field notebook. PID calibration will be performed at the beginning of the sampling event in accordance with Field Operating Procedure (FOP) 31 of our approved RI/FS Work Plan.

If PID measurements and/or observations recorded for the initial four locations indicate the presence of VOCs, additional borings will be completed along the same compass direction as the impacted boring. The spacing of the additional borings will be field determined but generally will be established at 10-foot intervals. Once the extent of contamination appears to have been delineated in each compass direction, confirmatory soil samples will be collected from the approximately 6-inch to 12-inch zone at each of these four locations. The confirmatory VOC samples will be collected using EnCore[™] samplers in accordance with FOP 30 of our RI/FS Work Plan. Samples will be transmitted to our project-designated subcontract analytical laboratory, Columbia Analytical Services, for analysis of Target Compound List (TCL) VOCs in accordance with USEPA Method 8260. Applicable sample collection and analytical QA/QC procedures will be followed for the work in accordance with our approved Quality Assurance Project Plan (QAPP). As such, field QC samples will be collected for site-specific MS/MSD analysis. Dedicated plastic sleeves will be used for each boring, therefore equipment blanks are not proposed.

We would like initiate this work as soon as possible based on weather conditions and equipment availability. We will notify USEPA no less than 1-week in advance of the planned sample date. Please contact us if you have any questions or require additional information.

Sincerely,

Benchmark Environmental Engineering & Science, PLLC

how Fal

Thomas H. Forbes, P.E. Project Manager

enc.

C: J. Wittenborn (Collier Shannon) K. McMahon (Collier Shannon) M. Graham (Phillips Lytle) K. Hogan (Phillips Lytle) S. Davis (Huber Lawrence) J. Simone (NYSEG) R. Frappa (Geomatrix)

File: 0021-001-400, OG

M. Moore (NYSDEC - 2 copies) G. Shanahan (USEPA) E. Belmore (NYSDEC) E. Wohlers (Catt. County DOH) M. Hutchinson (V. Gowanda) D. Hettrick (NYSDOH) February 18, 2002

Ms. Sherrel Henry Peter Cooper Landfill Superfund Site Project Coordinator U.S. Environmental Protection Agency Region II Emergency and Remedial Response Division 290 Broadway - 20th Floor New York, NY 10007-1866

Re: Peter Cooper Landfill Superfund Site, Gowanda, New York Proposed Supplemental Investigation Work

Dear Ms. Henry:

Benchmark Environmental Engineering & Science, PLLC has reviewed USEPA's comments on the Proposed Supplemental Investigation Work with respect to the Former Manufacturing Plant Area for the above-referenced site. Our responses to each of the issues raised are presented below.

General Comments

Comment No. 1: To date, the EPA has received only limited data on the PRP remedial activities associated with the Peter Cooper Gowanda site. Since the EPA has not reviewed the draft remedial investigation (RI) report, it is difficult to fully evaluate the type and level of contaminants present at the Peter Cooper Gowanda site.

The EPA appreciates the proactive approach by the PRPs to perform additional field investigations, however this is not the normal procedure. Typically, the PRPs submit the draft RI report, and the EPA reviews and evaluates the report. The EPA then submits comments to the PRPs, which may include requirements for subsequent field investigations to further delineate zones/areas of contamination.

The PRPs may proceed with such proposed work, however this investigation may not preclude the PRPs from any future additional field work that may be required by the EPA.

RESPONSE: Acknowledged.

www.benchmarkees.com

Ms. Sherrel Henry USEPA

February 18, 2002 Page 2 of 4

Specific Comments

Comment No. 1: Please indicate how the depth of 8 feet (depth of soil sampling) was determined. At MWFP-3S the top of rock was encountered at a depth of approximately 11.5 feet bgs. It is recommended that a minimum of three (4-foot) split spoons be obtained at each boring, or until the top of rock is encountered.

RESPONSE: The depth of 8 feet was intended to characterize the depth of soil that might be encountered during future industrial or commercial redevelopment. As requested we will advance three 4-foot split spoons at each boring location to characterize soils to a depth of 12 feet bgs or refusal.

Comment No. 2: The letter indicates that the 4-foot section (soil sample) will be screened with a PID. However, due to the time of year (i.e., winter) that this investigation is planned, the potential release of VOCs from the soil is low. The PID is an acceptable method for screening the contaminants, however, a more detailed analytical program should be performed (see comment 3 below).

RESPONSE: Acknowledged. However, temperatures generally have been mild throughout the fall and winter at the site. While it is expected that the upper 0-12 inches of soil may be affected by weather conditions (i.e., frozen), deeper soils are not anticipated to be significantly impacted by the ambient conditions. To mitigate the effects of cold temperatures on PID measurements, field samples will be collected from each 4-foot interval and subjected to headspace analysis per FOP 7 of our approved RI/FS Work Plan. This procedure requires transferring field samples to plastic zip-lock bags followed by temporary storage of the samples in a warm location (e.g., the cab of the truck) for 30-60 minutes prior to measurement of headspace VOC concentrations.

Comment No. 3: The letter indicates that two 4-foot long stainless steel split spoons will be obtained at each of the four planned borings. The letter then indicates that the soil samples will be screened with a PID. However, the letter does not indicate that any of the samples will be sent for TCL analysis (only confirmatory samples collected at the 6 to 12-inch zone for each of the four borings).

In order to properly delineate a zone of contamination (both vertically and horizontally), soil samples should be obtained at a minimum of two per boring and transmitted to the analytical laboratory for TCL analysis. The two soil samples with the highest PID readings should be sent for analysis. If no PID readings are obtained, then a sample from the near surface (i.e., the proposed PRP confirmatory sample) and a sample from the two foot interval above the groundwater table or the two foot interval above the top of rock, whichever comes first, should be sent for TCL analysis.

Ms. Sherrel Henry USEPA

RESPONSE: There appears to be some confusion regarding the planned boring and confirmatory soil sampling program proposed under Benchmark's December 17, 2001 letter. Borings will start near MWFP-3S and proceed radially outward in each of four compass directions until field observations indicate no significant VOC contamination remains in the overburden soils and PID readings (measured as per response to comment 2, above) reach background. At that point, confirmatory samples will be collected in each compass direction from the closest boring to MWFP-3S that meets these criteria. The confirmatory samples will be analyzed for TCL volatiles to provide analytical verification that no significant VOCs remain in the overburden soils. Thus, confirmatory samples are intended to surround MWFP-3S with four overburden soil data points showing no significant VOC contamination, and will map the maximum extent of impacted soils surrounding MWFP-3S.

Per USEPA's request, we agree to modify the confirmatory sampling program to collect two samples from each of the four borings described above to satisfy concerns regarding delineation of both the aerial and vertical extent of contamination. The PID will not be used to select confirmatory sample intervals, as confirmatory samples will be collected from soils exhibiting no PID evidence of contamination. One sample from each boring will be collected from the 2-4' interval, and the second will be collected from the unsaturated soils located at the 10-12' interval or the 2-foot interval immediately above the bedrock or groundwater interface, whichever is encountered sooner. Each of the eight samples will be analyzed for TCL VOCs.

Comment No. 4: Equipment blanks will not be necessary, provided that the sampling utensils are not used to transfer or hold the soil sample prior to insertion within the sample container. Also, the stainless steel split spoons must be decontaminated between each boring utilizing a steam cleaner, and normal decontamination procedures.

RESPONSE: As indicated in the proposed scope of work, EnCore[™] samplers will be used to collect confirmatory VOC samples. Additional sampling utensils are not anticipated to be required to hold the samples prior to insertion within the sample container, therefore equipment blanks will not be needed.

Since new dedicated plastic sleeves will be used at each boring location, decontamination between borings is not anticipated to be necessary unless gross contamination is encountered. However, excavation equipment will be decontaminated prior to leaving the site.

Ms. Sherrel Henry USEPA February 18, 2002 Page 4 of 4

Please contact us if you have any questions concerning these responses.

Sincerely,

Benchmark Environmental Engineering & Science, PLLC

m Forbe

Thomas H. Forbes, P.E. Project Manager

enc.

C: J. Wittenborn (Collier Shannon) K. McMahon (Collier Shannon) A. Cramer (Collier Shannon M. Graham (Phillips Lytle) K. Hogan (Phillips Lytle) S. Davis (Huber Lawrence) J. Simone (NYSEG) R. Frappa (Geomatrix) M. Moore (NYSDEC - 2 copies) E. Belmore (NYSDEC) G. Shanahan (USEPA) D. Hettrick (NYSDOH) E. Wohlers (Catt. County DOH) M. Hutchinson (V. Gowanda) M. Derby (TAMS)

BENCHMARK

ATTACHMENT 2

ł

BOREHOLE LOGS

	NCHN	ARK							FI	ELD	BO	REF	IOLE	LOG	
Client	PC	C - Gowanda Site		Project Location:	Gowanda, Ne	w York		Boni	ng ID:	B	-1			1	~~~
Project N	ame:	Geoprobe Inv. of Well Cluste	r MWFP-3	Project Number:	0021-001-400		·	Usc	Inve	sugation					_
Surface E	ilev. (fi	DRILLING AND SA msl): NA	MPLING INFORM Total Dep	ATION th (fbgs): 8.0		Boring Loc	ztion: e-:5	•							-
Dalling (c: `omm	av Zebra Environmental 1	Inc.	le: 04/10/02		1 ↑	·. 6.0	_	e e e e e e e e e e e e e e e e e e e						1
Daller	:	Chris Donovan			<u> </u>		, 5 <u>-</u> 12.●	are e No	● F	.4 Fi	C	άτταρ		9	
Helper		none				1 '	·.		(. •)		Ŭ	CRI	EEK	J	
Logged B	y:	Bryan Hann				B-16 ●	•	6-15 • 225		•	-				
Drill Rig	Туре:	Geoprobe direct-push	ATV mule rig		. <u></u>	1	`		. 59 - 7	i ve Naser					
Drilling N	Aethod	1: Direct Push				1	834 •		60 K	6 , e.	8-4				
Borehole	Dame	eter (inches): 3.17	loove defact in leagth			· · ·	0.5		6.		- 00 N				
Water 1 e	Metho vel(s) ((fbos): 40 V	Vater Level(s) (fmsl)	NA	······				```	° . F	ORM	ER MA	NUFAC	TURING	3
MODIFI	ERS	The following Abbr	eviations should be us	ed in descriptions.						·•.		PLAN	T ARE	4	
GRADA	TION		CONSISTEN	CY: N-Value	PP			-6				i.			
1	% GR	LAVEL (fine, coarse)	V. S	OFT < 2	0-1	t		u.o				<u> </u>	<u> </u>		1
ļ	% SA	ND (fine, med., coarse)	SOI	·[2-4	0-1	Notes:	Sample colles	cted from	n 2.0 - 4.	0 fbgs an	id analyz	ed for T	1. VOCs	via	
DENST	Ve rii	NES (indicate plasucity)		M 3-8	2.3	(SEPA Metho	xd 82001	.						-
V.10	DSE	1-4	v.s	TIFF 16-30	2-3										-
LOOS	E	4 - 10	НА	RD > 31	3+	Weather:	Mostly sunn	, slight i	orecze (U	-5 mph,	N/NE),	60-80 °F		. <u> </u>	-
MED.	DENS	SE 10 - 30	• PP = Pocket	Penetrometer readin	ng in				`	.				· · · · ·	-
DENS	Е	30 - 50	tons/ft ² .												_
V. DE	NSE	> 50	PLASTICITY:			STRL	CTURE:								
MOISTU	<u>RE:</u>		NONPLASTIC	< 3 mm threa	d 	VA	RVED	1-1	2 mm	SLI	CKENS	IDED	glossy s	hearn	
	Y	absence of moisture	LOW PLASTICITY	rowed, but chu	motes	51	MINATED	5 r 6 r	nm (BL	JUKY		smail k	mps arter	
WE	T	visible free water	HIGH PLASTICIT	Y rolled several t	únes, no erumbline	FIS	SURED	shi	1111	HO	MOGE	NEOUS	annan b	AACD	
Note: L	se De	nsity with Cohesionless Soils a	and Consistency with	Cohesive Soils.		<u> </u>									1
									<u> </u>						7
z	EET	DESCRIPTION: T	he following order sh	ould be followed in d	lescribing sample:	s.	ЭС	ġ	R 6.	щ	ХЪЕ	z	pace	<u>_ Z</u>	
Ц Ч Ц Г Г Г	Z	NOIE: Depu	starts at the solid line	at the top of the des	conpuon area.	>	Ō	Ē	S PE	VTC	비	J) SC	pm)	REC	
(fr (fr	ртн	SOIL NAME,	COLOR, MOISTUR	E, GRADATION, P	LASTICITY,		SCS	AMP	Ň	N-N	IdW	Q 9	H S	E F	ł
ш	DE	DENSITY/C	ONSISTENCY, STR	UCTURE, OTHER I	FEATURES		5	S	BL		۶v		Id		
		0.0 - 0.4 <u>TOPSOIL:</u> I medium plasti 0.4 - 2.2 <u>FILL:</u> Black, 2.2 - 3.1 <u>SILTY SANI</u>	Dark brown, moist, 90 icity, soft with grass ro moist, ash, clinkers, ci <u>D</u> : Dark gr ee n/brown	% fines, 10% fine gra otlets, organics inders etc., very loose , moist, 60% fine san	ivel, low to : :d, 30%		OL/OH FILL SM	S1	NA	NA	GP	0.0	0.0	3.1/4.0	
]		non-plastic fu	nes, 10% fine angular g	ravel, medium dense											
NA	+														┨
	. 1	0.0 - 3.1 POORLY G	RADED SAND: Da	t orange/brown w/	orang e										ļ
		mottling, wet,	90% fine sand, 10% fi	ne angular gravel, me	dium		SP	62		МА			N 14	35/40	
		3.1 - 3.5 SILTY GRAV	VEL: Dark orange/b	rown, wet, 60% fine a	ngular		GM	32		NA	Gr	0.0	INA	5.5/4.0	
1		gravel, 40% no	on to low plasticity fine	es, loose	Ū.				1			[
NA	8								ļ						4
		END OF BORING A GROUNDWATER E	AT 8.0 Ibgs ENCOUNTERED A	PPROX. 4.0 FBGS									•		
NA	12														
		 					{			l					
1							i .	1		1					
1)	1	1	1	1				
NA	16	<u> </u>]				[
							l	l							

.

C BE ENCE	INCHM	ARK							FI	ELD	BO	REE	IOLE	LOG
Client	PCO	C - Gowanda Site		Project Location:	Gowanda, New	'York		Bori	ng ID:	В	-2			
Project N	ame:	Geoprobe Inv. of Well Clust	ter MWFP-3	Project Number:	0021-001-400			Use:	Inves	nganon				
		DRILLING AND S	AMPLING INFORM	NOTTON		Boring Loca	ation:			<u> </u>				
Surface B	ilev. (fr	nsī): NA	Total De		1	N	· · ·							~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Start Dat	e :	04/16/02	Finish D	ate: 04/16/02		Â.	- 15 6.0		- 6 -10					
Drilling (Compar	ny: Zebra Environmental	, inc.				6-j0, 🌰	B¦-11 ●	0 0 0					
Driller	:	Chris Donovan				1		37%	● E D	-9 0	С	ATTAF	RAUGU	S
Helper		Ronc Hann						24	.	<i>,</i> ?		CRI	EEK	
Doll Riv	Type:	Geoprobe direct-push	ATV muk ne			0.0	· · ·	225	₽ <u>-</u> 7 €	• °	-			
Drilling N	dethod	Direct Push				×.	-	<u>``</u>	- 3	້ 🥐 🖅				
Borehole	Diame	ter (inches): 3.0				· · · · ·	B-14 ● €_0			*	B-4 ⊒.0			
Sampling	Metho	d: 1.5-inch polyethylene :	sleeve 4-feet in length						6- ` (`	-1 0	ORM	FR MA		
Water Le	vel(s) (fbgs): 4.0 The following Abb	Water Level(s) (fmsl)	NA med in descriptions			· .					PLAN	IT ARE	4
GRADA	ERS: TION:	The following Aut	CONSISTE	NCY: N-Value	PP		۲. ۲.	6		×.		·		
	% GR	AVEL (fine, coarse)	v.	SOFT < 2	0-1			<u></u>			·	<u>.</u>	<u> </u>	
1	% SAI	ND (fine, med., coarse)	sc	0FT 2-4	0-1	Notes:	Sample colles	cted from	n 2.0 - 4.	0 fbgs an	d analyz	ed for T	I. VOCs	via
DENIEIT	% FIN	VES (indicate plasticity)		RM 5-8	1-2		SEPA Metho	od 8260F	B					
V.LO	L. OSE	1 - 4	v.	ST1FI: 16 - 30	2-3									
LOOS	E	4 - 10	н	ARD > 31	3+	Weather:	Mostly sunny	, slight l	meeze (I)	5 mph, 1	N/NE),	60-80 "I"		<u> </u>
MED.	DENS	E 10 - 30	* PP = Pock	et Penetrometer reading	gin									
DENS	E	30 - 50	tons/ft ² .	<u> </u>	İ			<u> </u>						
V. DE	NSE	> 50	PLASTICITY: NONPLASTIC	< 3 mm thread	1	SIRU	RVED	1.1	2.000	\$1.16	TYPNS	DED	eloeev e	-
DR	Y	absence of moisture	LOW' PLASTICIT	Y rolled, but crun	nbles	ST	RATIFIED	5 r	nm	BLC	CKY		smali lu	mps
мо	IST	damp, no visible water	MEDIUM PLAST	ICITY easily rolled, bu	t crumbles	LA	MINATED	. <	6 m m	LEN	SED		small po	xckets
WE	т	visible free water	HIGH PLASTIC	TY rolled several ti	mes, no crumbling	FIS	SURED	sha	213	но	MOGE	NEOUS		
Note: U	se Dei	nsity with Cohesionless Soils	and Consistency wi	th Cohesive Soils.										
7	L.	DESCRIPTION:	The following order s	hould be followed in de	scribing samples.		យ	ö	°,		34		2	7
ĨŎĬĹ ſ	L Z	NOTE: Dep	th starts at the solid hi	ne at the top of the desc	cription area.	\sim	DO DO	Z L	РЕЯ	INT	Ϋ́	Ϋ́́Υ Ω ε	ndspa E	LVE
EVA (f	Ē	SOIL NAME	, COLOR, MOISTU	RE, GRADATION, PL	ASTICITY,		ទ័	MPI	SWC	4-VA	Tap	g g	(pp	1. D. F
a	Ξ	DENSITY/	CONSISTENCY, ST	RUCTURE, OTHER F	EATURES		ő	SA	BL(2	SAI	£	IId	<u></u> " Ŀ
			De de bassar analise (08/ 5									_	
		0.0 - 0.5 <u>TOPSOLE</u> medium plas	Lark brown, moist, 9 sticity, soft with grass 1	rootlets, organics	vel, low to		OL/OH							
		0.5 2.0 FILL Black	k, moist, ash, clinkers,	cinders etc., very loose			FILL	S1	NA	NA	GP	0.0	0.0	3.1/4.0
		2.0 - 3.1 <u>SILTY SAN</u> low plasticity	<u>(D:</u> Dark green/brow v fines 10% fine angul	m, moist, 60% fine sand har gravel, medium dens	1, 30% non to c		SM							
NIA		···· [;	, <u> </u>											
NA.	ויו													
		REFLICAT O A FROM	NO BECOVERY											
ļ		GROUNDWATER I	N BOTTOM OF SPO	NOC										
								ļ						
NA									L					
	Ů								{					
		END OF BORING	AT A D Bros						l					
		GROUNDWATER	ENCOUNTERED	APPROX. 4.0 FBGS				1	ł					
NA	12								1	1	l l	1		
	[[[l		l		
]		
							1				1			
1														
NA	16								1			1		
							1	ļ	l	l	ļ	l	l	
							1		1					

ENCIN ENCIN ENCIN	CHMA	ARK							FI	ELD	BO	REF	IOLE	ELOG
Client:	PCC	- Gowanda Site		Project Location:	Gowanda, f	New York		Bori	ng ID:	B	3-3			1
Project Nar	me:	Geoprobe Inv. of Well Clust	er MWFP-3	Project Number.	0021-001-40	0u		Use:	Inves	ingation				
Project Nar Surface Ele Start Date: Driller. Hetper. Logged By: Drill Rig Ty Drill Rig Ty Drilling Me Borehole D Sampling M Water Leve MODIFIE: GRADATI % (M DENSITY:	me: v. (fm 0 mpany ppe: thod: Diamete dethod det(s) (ff RS: ION: 6 GR/ 6 SAN 6 FIN 1	Geoprobe Inv. of Well Clust DRILLING_AND_S/ isl): NA 14/16/02 y: Zebra Environmental, Chris Donovan nonc Bryan Hann Geoprobe direct-push Direct Push ter (inches): 3.0 d: 1.5-inch polyethylene s bgs): 4.5 The following Abb AVEL (fine, coarse) ID (fine, med., coarse) ES (indicate plasticity) N-Value	er MWFP-3 MPLING INFORM Total Deg Finish Da Inc. ATV mule rig Leeve 4-feet in length Water Level(s) (fms)): reviations should be u CONSISTER V. S SO FIR STI	Project Number: IATION oth (fbgs): 8.0 tt: 04/16/02 It:: 04/16/02 NA sed in descriptions. SCY: N-Value SOFT 2 FT 2 - 4 SM 5 - 8 FF 9 - 15	PP 0 - 1 0 - 1 1 - 2 2 - 3	Boring Loc N e-re 0.0 Notes:	B-14 B-14 C.D Sample collect USEPA Metholocation.	Use: = -11 = -11 24 2-15 223 - 223 - 6 - 6 - 6 - 6 - 6 - 6 - 6 - 6	Inves	B-C B-C B-C B-C B-C C B-C C B-C C B-C C B-C C B-C C C B-C C C B-C C C B-C C C B-C C C B-C C C B-C C C B-C C C C	C So C C So So So So So So So So So So So So So	ATTAF CRI ER MA PLAN ed for Tr collected	RAUGU EEK NUFAC IT ARE	
V. LOOSE LOOSE MED. D	DENSE	1 - 4 4 - 10 E 10 - 30 30 - 50	+ PP = Pocket $\cos^{-1/6^2}$	RD > 31 RD > 31	2-3 3+ ng in	Weather.	Mostly sunny	, slight b	oreeze (l)	5 mph, l	N/NE),	60-80 °F		
V. DEN MOISTUR DRY MOIS WET Note: Use	SE E ST d v	> 50 absence of moisture damp, no visible water visible free water sity with Cobesionless Soils	PLASTICITY: NONPLASTIC LOW PLASTICITY MEDIUM PLASTICIT HIGH PLASTICIT	< 3 mm threa Y rolled, but enu CITY easily rolled, b Y rolled several t the Cohesive Soils.	d imbles iut crumbles times, no crumbli	STRI V. ST L/ ing FI	ARVED RATIFIED AMINATED SSURED	l-1 5 n < (she	2 mm nm 5 mm sars	SLI BLC LEN HO	CKENS CKY NSED MOGEI	IDED NEOUS	glossy s small lu small po	hears mps ockets
(fmsl)	DEPTH IN FEET	DESCRIPTION: NOTE: Dept SOIL NAME DENSITY/O	The following order sh h starts at the solid lin , COLOR, MOISTUR CONSISTENCY, STR	ould be followed in d e at the top of the des E, GRADATION, P UCTURE, OTHER I	lescribing samp scription area. LASTICITY, FEATURES	iles.	USCS CODE	SAMPLE NO.	BLOWS PER 6"	N-VALUE	SAMPLE TYPE	PID SCAN (ppm)	PID Headspace (ppm)	FT. REC./ FT. DRIVEN
NA		0.0 - 0.7 <u>TOPSOIL:</u> medium plasti 0.7 - 2.6 <u>FILL:</u> Black 2.6 - 3.2 <u>SILTY SAN</u> non to kow pla koose when dis	Dark brown, moist, 90 city, soft with grass roc , moist, ash, clinkers, c <u>D:</u> Dark orange/brow sticity fines, 10% fine : ;rurbed	1% fines, 10% fine gra others, organics inders etc., very loose vn, moist, 60% fine sa angular gravel, medius	avel, low to und, 30% m dense,		OL/OH Fill SM	SI	NA	NA	GP	0.0	0.0	3.2/4.0
		SILTY GRAVEL: D funes, 10% fune sand, k	ark orange/brown, we bose	t, 60% fine angular gr	avel, 30% low j	plasticity	GM	\$2	NA	NA	GP	0.0	NA	0.3/4.0
NA	8 -	END OF BORING. GROUNDWATER	AT 8.0 fbgs ENCOUNTERED A	APPROX. 4.5 FBGS		. <u> </u>								
NA	12													
NA	16	_												

	INCHN IRONM INTERS	MARK							FI	ELL) BO	REF	IOLE	E LOG
Client	PC	C - Gowanda Site		Project Location:	Gowanda, No	w York	<u> </u>	Boni	ng ID:	В	-4			
Project N	lame:	Geoprobe Inv. of Well Clust	ter MWFP-3	Project Number:	0021-001-400)		Use:	Inve	stigation		_		
		DRILLING AND S	AMPLING INFORM	ATION		Boring Loc	ution:							
Surface E	lev. (f	inst): NA	Total De	pth (fbgs): 8.0										
Start Dat	e:	04/16/02	Finish D	ate: 04/16/02	·		`• ₽ − i5 (`•. 10.0	Ð	- Finiti					
Drilling (Compa	ny: Zebra Environmental,	, Inc.			1 T	Putts .	8-11 🖨	• 00					
Driller	:	Chris Donovan							● €- 3.	τ. Γ	С	ATTA	RAUGU	s
Helper	-	none	·····			_		۴. ۲.	≦●			CR	EEK	
Logged B	ly:	Bryan Hann	AT3/ 1'-			616 - 5.0	` `.	E-13. 223	8-7	•	-			
Dalling N	I ype:	Geoprobe direct-push							<	r Den Bert				
Borchok	Diam	eter (inches): 3.0					R-14 ● 0.0	· · ·	9.5	1. C.C.	B-4 an			
Sampling	Metho	od: 1.5-inch polyethylene	sleeve 4-fect in length	·		· · 、	•		E-	-j•(``	r			
Water Le	vel(s) ((fbgs): 4.0	Water Level(s) (fmsl):	NA			۰.		· · ·		ORM			TURING
MODIFI	ERS;	The following Abb	breviations should be u	used in descriptions.			<u>```</u> `````````````````````````````````			· .	·.		I ANE	`
GRADA		AVEL (Fine coarse)	CONSISTE	<u>NCY:</u> N-Value SOFT < 2	PP 0.1		٠	6-C 9.0			·. ·	•		
	% SA	ND (fine, med., coarse)	so	FT 2-4	0-1	Notes	Sample colle	cted fror	n 2.0 - 4.	0 fbgs an	id analyz	ed for T	L VOCs] via
	% F11	NES (indicate plasticity)	Fi	RM 5-8	1-2	(SEPA Metho	od 8260F	3. Soil sa	mple als	o collect	ed from ().5 - 1.5 fb	NCS
DENSIT	<u>Y:</u>	N-Value	ST	IFF 9 - 15	2 - 3	2	s per NYSDI	EC reque	st and an	alyzed fo	or same.			<u>v</u>
V. LO	OSE	1 - 4	V.	STIFF 16 - 30	2 - 3	B	lind Duplicat	e collect	ed from	2.0 - 4.0	fbgs and	analyzed	for same.	
LOOS	E	4 - 10	H/	ARD > 31	3+	Weather.	Mostly sunny	r, slight l	oreeze (0	-5 mph. i	N/NE),	60-80 °F		
MED.	DEN:	SE 10-30	* $PP = Pock$	et Penetrometer readi	ngin									
V DE	NSF	30 - 30 ≥ 50	PLASTICITY:			STRU	CTURE:			·	<u> </u>			
MOISTL	IRE:		NONPLASTIC	< 3 mm threa	ıd	VA	RVED	1-	12 mm	SLI	CKENS	IDED	glossy s	hears
DR	Y	absence of moisture	LOW PLASTICIT	Y rolled, but cru	umbies	ST	RATIFIED	5 r	ณา	BLC	оску		small lu	mps
мо	IST	damp, no visible water	MEDIUM PLAST	ICITY easily rolled, t	out crumbles	LA	MINATED	<	6 mm	LEI	NSED		smati po	ockets .
WE	Т	visible free water	HIGH PLASTICE	TY rolled several	times, no crumbling	3 F19	SURED	sh	-215	но	MOGE	NEOUS		
Note: U	se De	ensity with Cohesionless Soils	and Consistency with	th Cohesive Soils.										
z	ЗET	DESCRIPTION:	The following order s	hould be followed in a	lescribing sample	s.	щ	Ö	۲6°		ΡE	~	2 2	7
OLL (E Z	NOTE: Dep	th starts at the solid lin	e at the top of the de	scription area.	\searrow	00	Z щ	PEF	INT	L L	Ω G	dsba E	
EV) (آس	H	SOIL NAME	E, COLOR, MOISTUR	RE, GRADATION, P	LASTICITY,		S	MPI	SWC	1-V/	L L	ũ ŝ	Ъ Б Н	2 G
표	DEP	DENSITY/	CONSISTENCY, ST	UCTURE, OTHER	FEATURES		S	SA	BLG	4	SAN	4	PIL	-c
		0.0 - 0.3 TOPSOIL:	Dark brown, moist, 9	0% fines, 10% fine gr	avel, low to									
		medium plas	sticity, soft with grass a	ootlets, organics	.,		OL/OH							
		0.3 - 2.1 FILL: Black	k, moist, ash, clinkers, (cinders etc., very loose	t 71 : Dud		FILL	S1	NA	NA	GP	0.0	0.0	2.7/4.0
		brown, mois	st, 60% fine sand, 30%	fine angular gravel, 10	21. Late)% non-plastic		SP-SM							
		fines, medius	m dense		•			l						
NA	4	00-27 POORLY 0	GRADED SAND W/	SILT: Dark orange/	brown with									
		orange motti	ling, wet, 90% fine san	d, 10% non-plastic fir	res, loose,									
		rapid dilaten					SP-SM	S2	NA	NA	GP	0.0	NA	3.5/4.0
	[2.7 - 3.5 POORLY O	Wh. wet 60% fine sand	30% fine gravel, 10%	inon to low									
		plasticity fine	es, loose	5,11						ł	l			
NA	8			<u> </u>	<u> </u>			1	1	<u> </u>		<u> </u>		
1														
		END OF BORING	AT 8.0 fbgs	1000 cm 1					[l	l	Į		
		GROUNDWATER	ENCOUNTERED	APPROX. 4.0 FBGS	í									
1						1		I		1		1		
NA	12	}										ł		
	I							1						
	l							1				ł		
	1							1				1		
		1												1 1
NA	16	├ ──				<u></u>	1					1		
}	1	[1				1			
							!			1				

(fmal) (fmal)	DEPTH IN FEET	DESCRIPTION: The following order should be followed in describing samples. NOTE: Depth starts at the solid line at the top of the description area. SOIL NAME, COLOR, MOISTURE, GRADATION, PLASTICITY, DENSITY/CONSISTENCY, STRUCTURE, OTHER FEATURES	uscs code	SAMPLE NO.	BLOWS PER 6"	AALUE	SAMPLE TYPE	PID SCAN (gpm)	PID Headspace (ppm)	FT. REC/ FT. DRIVEN
NA	4	 0.0 - 0.3 TOPSOIL: Dark brown, moist, 90% fines, 10% fine gravel, low to medium plasticity, soft with grass rootlets, organics 0.3 - 2.1 FILL: Black, moist, ash, clinkers, cinders etc., very loose 2.1 - 2.8 POORLY GRADED SAND W/ SILT: Dark brown, moist, 80% fine sand, 10% fine angular gravel, 10% non-plastic fines, , medium dense 2.8 - 3.1 POORLY GRADED GRAVEL w/ SILT AND SAND: Light brown/tan, moist, 60% fine angular gravel, 30% fine sand, 10% non-plastic fines, loose 	OL/OH FILL SP-SM GP-SM	S1	NA	NA	GP	0.0	0.0	3.1/4.0
		Same as S1 (2.8 - 3.1) above, wet	GP-SM	S2	NA	NA	GP	0.0	NA	0.9/4.0
NA	8	END OF BORING AT 8.0 &gs GROUNDWATER ENCOUNTERED APPROX. 4.0 FBGS								
NA	12									
NA	16									

	INCHIN INCHIN	TIRNKEY									FI	ELD	во	REH	IOLE	E LOG
Client:	PC	C - Gowanda Site		Project Loc	ation:	Gowanda, No	ew York			Bon	ng ID:	В	-6	-		
Project N	amc:	Geoprobe Inv. of Well Clu	ister MWFP-3	Project Nu	mber.	0021-001-400	1			Use:	Inves	rigation				_
		DRILLING AND	SAMPLING INFOR	MATION			Boring	Loca	tion:	· · · .						
Surface E	lev. (fi	nsl): NA	Total D	epth (fbgs):	8.0											
Start Date	e:	04/16/02	Finish I	Date: (4/16	5/02			۰.	6-15 8.0		- #-10				,	
Drilling C	Compa	ny: Zebra Environmenta	al, Inc.			<u> </u>			rust 🔺 '	1g - 11 🖨	• 'en'					
Driller	:	Chris Donovan						۰.		23.00	• e - 0	. y 0	С		RAUGU	S
Helper		none							•	1	- E	2		CR	EEK	
Logged B	by:	Bryan Hann	1 ATT - 1 - 1				0,0			223 223	e-7 🗬	● 8-3 0.0	-			
Drill Rig	Type:	Geoprobe direct-pus	sh ATV mule ng			<u> </u>					्यत् भ ⊶>>●	200 B-5				
Borehole	Diam	ter (inches): 3.0	·····	·					834 ●	۰.	90 X	v 0.0	B-4 30			
Sampling	Metho	d: 1.5-inch polyethylend	c sleeve 4-feet in lengt	h			· ·	•.			6.		×			
Water Le	vel(s) (fbgs): -1.0	Water Level(s) (fms]): NA				`.				, F	ORM			
MODIFI	ERS:	The following At	breviations should be	used in description	ons.				<u>.</u>			<u>````</u>	•	PLAN	IT ARE?	n
GRADA	TION	AVEL (Geo coorte)	CONSIST	<u>SOFT</u>	alue 2	PP 0.1) ۲	3-C 9.0			•.			
	% SA	ND (fine, med., coarse)	s	OFT 2-	- 4	0-1	Notes:								<u></u>	· · · · · · · · · · · · · · · · · · ·
1	% F1	NES (indicate plasticity)	F	IRM 5-	- 8	1 - 2		<u>.</u>								·
DENSIT	Y:	N-Value	5	NFF 9-	15	2 - 3										
V. LO	OSE	1 - 4	v	. STIFF 16 -	- 30	2 - 3										
LOOS	E	4 - 10	н	IARD > 3	31	3+	Weathe	er.	Mostly sunny	, slight l	oreeze (II	5 mph, l	N/NE),	60-80 °F		
MED.	DEN	SE 10-30	* PP = Poc	ket Penetrometer	r reading	អា		<u> </u>								
UENS V DE	NCE	30 - 20 > 50				L		TRIN	CTURE:			·	····	·	·	
MOISTU	RE:		NONPLASTIC	< 3 m.n	m thread		ľ	VA	RVED	1-	12 mm	SLI	CKENS	IDED	giossy s	hears
DR	Y	absence of moisture	LOW PLASTIC	TY rolled, i	but crumb	oies		STR	ATIFIED	5 1	nm	BLC	ску		small iu	mps
мо	IST	damp, no visible water	MEDIUM PLAS	TICITY easily re	olled, but	crumbles	1	LA	MINATED	<	6 mm	LEI	SED		smali po	ockets
WE	т	visible free water	HIGH PLASTIC	ITY rolled s	several tim	es, no crumbling	g	FIS	SURED	sh	ears	но	MOGE	NEOUS		
Note: U	se De	nsity with Cohesionless Soil	ls and Consistency w	ith Cohesive Soi	ils.											
-	E	DESCRIPTION	The following order	should be followe	ed in des	cribing sample	:s.		ω	Ġ	6,		щ		8	
Í.	E E	NOTE: De	pth starts at the solid k	ine at the top of t	the descri	iption area.	\		GO	Ž	PER	CUE	ξ	N c	dspa (u	VEN /
N S	Ē				ON PLA	STICTTY			SC	ΨPLI	ws.	IV.	PLE	D S D	Hea (ppr	DRU DRU
ELI	СЦЭС	DENSITY.	CONSISTENCY, ST	RUCTURE, OT	HER FE	ATURES			nsi	SAA	BLO	Ż	WVS	Id	DID	- 5
	-							-+								
		0.0 - 0.4 <u>TOPSOIL</u> medium pla	asticity, soft with erass	rootlets, organics	iine grave s	el, low to										
		0.4 - 1.9 SANDY S	ILT W/ FILL: Brow	n/tan, moist, 60%	/o non to	low	_		OL/OH MI/FILL	51	NA	NIA	GP	0.0	00	35/40
		plasticity for	nes, 30% fine sand, 10	% fine angular gr	avel, med	Jium			FILL	5.			0.	0.0	0.0	5.57 4.0
		1.9 - 3.5 FILL: Bla	ck, moist-wet, ash, clin	ikers, cinders etc.,	, very loo	se										
NA	4		,													
		0.0 - 0.6 <u>F11.1.</u> 25 2 0.6 - 0.8 SILTY SA	ND w/ GRAVEL: D)ark orange/brow	vn, wet, 5	50% line										
		sand, 30%	fine angular gravel, 20	% non-plastic fine	es, mediu	am dense,			FILL							
1	ł	slow dilate	NCY CRADED SAND W	SII TO Dat					SM	67			C.D.		NIA	10/40
		0.8 · 2.3 <u>FOORL</u> orange/bro	own with orange mottl	ing, wet, 90% find	c-medium	n sand,	-		SP-SM	32			Or	0.0	NA.	3.07 4.0
		10% non-p	plastic fines, loose, rapi	d dilatency					SM					{ !		
		2.3 - 3.0 SILTY SA	<u>ND:</u> Dark blue/grey,	wet, 80% fine sau	nd, 20%	non to low									}	
NA NA	l °	piasocity in	pies, medium dense, se	ow unarcticy				ł				į .				
											 			 		
	1	END OF BORIN	G AT 8.0 fbgs										1			
	1	GROUNDWATE	R ENCOUNTEREL	APPROX. 4.0	FBGS		-				1	}	1			
NA	12	 					-	_]	
		L								1	l l	{		1	{	i 1
	1	1								l		1			1	
NA	16	 					-			l		l	Į	l I	1	1
										L	<u> </u>	L	I	L	L	L

Environmentaria Environmentaria Sciuwee, File			,			FIE	LD BOREH	OLE LOG
Client: PCC - Gowanda Site	Pro	ect Location:	Gowanda, New	York		Boring ID:	B-7	
Project Name: Geoprobe Inv. of Well Clu	ster MWFP-3 Pro	ject Number:	0021-001-400			Use: Investi	zation	
DRILLING AND	SAMPLING INFORMATION	4	1	Boring Lo	ocation:	·····		
Surface Elev. (fmsl): NA	Total Depth (fbg	s): 8.0	Г	N		··		
Start Date: 04/16/02	Finish Date:	04/16/02		À.	€-15 ● 0.0	- 5 -10		
Drilling Company: Zebra Environmenta	1, Inc.				: ··· • '9-:	● '6-6" n ●		
Driller: Chris Donovan		· · · · · · · · · · · · · · · · · · ·			્યું 🖓 🖓 😓	् 🔴 हु प्र	CATTAR	AUGUS
Helper: nonc	· · · · · · · · · · · · · · · · · · ·				·. ·	5. F. 24.5●	🤊 CRE	EK
Logged By: Bryan Hann	***			-16 🜑	`. * -	್ ್ರಿ	.e-t -	
Drill Rig Type: Geoprobe direct-pus	h ATV mule rig			0. 0		°`\#7 ₽ ₽	0.0	
Drilling Method: Direct Push					- ``	S 500 X	€ 6-1 o.c	
Borehole Diameter (inches): 3.0				· .	B~14● 3.0		² − θ− 3.0	
Sampling Method: 1.5-inch polyethylene	sleeve 4-feet in length			Ì.,		6-1 00	• • • • • • • • • • • • • • • • • • •	
Water Level(s) (fbgs): 4.0	Water Level(s) (fmsl): N.	A			• • ·		FORMER MAI	
MODIFIERS: The following Ab	breviations should be used in d	escriptions.			` `.	`.	, PLAN	IAREA
GRADATION:	CONSISTENCY:	N-Value	PP		_e_e			
% GRAVEL (fine, coarse)	V. SOFT	< 2	0-1		- B .P		· · · · · · · · · · · · · · · · · · ·	
% SAND (fine, med., coarse)	SOFT	2 - 4	0-1 1	Notes:	_Sample collected	l from 0.5 - 1.5 f	bgs and analyzed for TC	L VOCs via
% FINES (indicate plasticity)	FIRM	5 - 8	1-2		USEPA Method 8	260B.		
DENSITY: N-Value	STIFF	9 - 15	2 - 3					
V. LOOSE 1 - 4	V. STIFF	16 - 30	2 - 3					
LOOSE 4 - 10	" HARD	> 31	3+ V	Veather	Mostly sunny, sh	ight breeze (0-5	mph, N/NE), 60-80 °F	
MED. DENSE 10 - 30	* PP = Pocket Penetr	rometer reading	gin 📔 –					
DENSE 30 - 50	$tons/ft^2$.						<u></u>	
V. DENSE > 50	PLASTICITY:			STR	RUCTURE:			
MOISTURE	NONPLASTIC	< 3 mm thread		v	ARVED	1-12 mm	SLICKENSIDED	glossy shears
DRY absence of moisture	LOW PLASTICITY	rolied, but crun	ıbles	s	TRATIFIED	5 mm	BLOCKY	small lumps
MOIST damp, no visible water	MEDIUM PLASTICITY	easily rolled, bu	t crumbles	L	AMINATED	< 6 mm	LENSED	small pockets
WET visible free water	HIGH PLASTICITY	rolled several tit	mes, no crumbling	F	FISSURED	shears	HOMOGENEOUS	-
				_				

Note: Use Density with Cohesionless Soils and Consistency with Cohesive Soils.

VTION (I)	IN FEET	DESCRIPTION: The following order should be followed in describing samples. NOTE: Depth starts at the solid line at the top of the description area.	CODE	E NO.	PER 6"	TUE	Е ТҮРЕ	CAN m)	adspace m)	NEV.
щ) (тел	DEPTH	SOIL NAME, COLOR, MOISTURE, GRADATION, PLASTICITY, DENSITY/CONSISTENCY, STRUCTURE, OTHER FEATURES	uscs	SAMPI	BLOWS	17-N	SAMPL	da) S DI J	за) эн сца	FT. R FT. DI
24	4	0.0 - 0.4 TOPSOIL: Dark brown, moist, 90% fines, 10% fine gravel, low to medium plasticity, soft with grass rootlets, organics 0.4 - 2.4 FILL: Dark brown/black, moist, ash, clinkers, cinders etc., very loose	OL/OH FILL	SI	NA	NA	GP	0.0	3.7	2.4/4.0
NA		POORLY GRADED SAND W/ SILT AND GRAVEL: Dark orange/brown with orange mottling, wet, 60% fine-medium sand, 30% fine angular gravel, 10% low plasticity — fines, loose	- SP-SM	S2	NA	NA	GP	0.0	NA	2.2/4.0
		END OF BORING AT 8.0 fbgs GROUNDWATER ENCOUNTERED APPROX. 4.0 FBGS	-							
NA	12									
NA	16									

	ENCHM VIRONMI GINEERU IENCL P					FI	ELD) BO	REF	IOLE	LOG
Client:	PC	C - Gowanda Site Project Location: Gowanda, N	ew York		Bori	ng ID:	B	-8			
Project 1	lame:	Geoprobe Inv. of Well Cluster MWFP-3 Project Number: 0021-001-40	ð	·	Use:	Inve	stigation				
		DRILLING AND SAMPLING INFORMATION	Boring Loc	ation:							
Surface I	Elev. (fi	msl): NA Total Depth (fbgs): 8.0 04/16/02 Einith Date: 04/16/02	N		•						
Dolling (Comma	ny Zebra Environmental, Inc.		. 6.0		● ^{B=30} 00				منابع	í N
Drille	<u>г.</u>	Chris Donovan			ਸ਼ੁਮੁਹ 🖝	● e	9	C	ΔΤΤΔ	ALICII	
Helpe	r.	none	1	``.	E .	:ë●		U	CR	EEK	5
Logged I	By:	Bryan Hann	0-16 •	N .	8-13 • 223		-P-1		-		
Drill Rig	Турс:	Geoprobe direct-push ATV mule rig		``		্টা ব) = 0.0 ``				
Drilling	Method	: Direct Push	N.	B14 ●		9-2 - 99 N	P 0.6	B			
Borehole	Diame	eter (mches): 3.0		6.0		E-		0.0			
Sampling Weber Le	Metho	a: 1.5-auch polyculytiche sector 4-lect in tengun	` .			`````	<u>و</u> ۲	ORM	ER MA	NUFAC	TURING
MODIE	IERS	The following Abbreviations should be used in descriptions.					· ·	·. `	PLAN	T AREA	\
GRADA	TION	CONSISTENCY: N-Value PP		· · ·	8-6		``,		``		
ł	% GR	AVEL (fine, coarse) V. SOFT < 2 0 - 1	ŀ		eró			· · ·	<u>``</u>		
1	%SA	ND (fine, med., coarse) SOFT 2-4 0-1	Notes:								
	% F11	NES (indicate plasticity) FIRM 5-8 1-2									
DENSI	Y:	N-Value SIIFF 9-15 2-3	<u> </u>								
	IOSE IC	4 10 HADD > 11 3		Maril					(0.00 PT		
MED.		SE 10 * PP = Porket Penetrometer reading in	weather.	MOSUY SURN	, sagnt i	oreeze (0	-5 mpn,	in/ine.),	00-80 P		
DEN	SE	30 - 50 tons/ft ² .						·			
V. DE	ENSE	> 50 PLASTICITY:	STRU	CTURE:					· ·		
MOISTI	JRE	NONPLASTIC < 3 mm thread	V/	RVED	1-1	12 mm	SLH	CKENS	IDED	giossy s	hears
DR	Y.	absence of moisture LOW PLASTICITY rolled, but crumbles	ST	RATIFIED	5 r	nm	BLO	ЭСКҮ		smail iu	mps
мс	DIST	damp, no visible water MEDIUM PLASTICITY easily rolled, but crumbles	LA	MINATED	< (6 m m	LEI	VSED		small po	ckets
WE	<u></u>	visible free water HIGH PLASTICITY rolled several times, no cnumblin	g F1	SSURED	sh	cars	но	MOGE	NEOUS		
Note: L	lse De	nsity with Cohesioniess Soils and Consistency with Cohesive Soils.									
7	E	DESCRIPTION: The following order should be followed in describing sample	es.	ш	ö	.9		ΡE		t ce	7
D E C	Ez	NOTE: Depth starts at the solid line at the top of the description area.	\searrow	8	Ž	PER	LUE	Ϋ́	V V €	ed sp	NE C
N	Ë	SOULNAME COLOR MOISTURE GRADATION PLASTICITY		8	Ĩ	SM	N.	PLE	0 G	Hen (pp	DR. P.
E	DEP	DENSITY/CONSISTENCY, STRUCTURE, OTHER FEATURES		ns	SAN	BLO	Z	SAM	L L	DIG	"E
		0.0.03 TOPSOIL: Dark brown maint 90% first 10% for struct buy to									
1		medium plasticity, soft with grass rootlets, organics		OL/OH							
	1	0.3 - 1.5 FILL: Black, moist-wet, ash, clinkers, cinders etc., very loose		FILL	SI	NA	NA	GP	00	245	25/40
		1.5 - 2.5 POORLY GRADED SAND w/ SILT AND GRAVEL WITH		SP-SM/					0.0	2	237 1.0
		angular gravel, 10% non-plastic fines, with brick		FILL							
NA'	4			ļ	┨────						
		0.0 - 0.5 FILL: as above, wet		i							
1	·	0.5 - 1.9 <u>SILTY SAND</u> : Dark orange/brown with orange mottling, wet, 70%				1					
1		dense, rapid dilatency		SM	S2	NA	NA	GP	0.0	NA	24/4.0
		1.9 - 2.4 POORLY GRADED GRAVEL w/ SILT AND SAND: Dark		GP-GM				-			
		orange/brown, wet, 60% fine angular gravel, 30% fine sand,					1				
NA	8	10% low pasticity tines, loose					1				
				[ļ			
		END OF BORING AT 8.0 lbgs GROUNDWATER ENCOUNTERED APPROX. 4.0 FBGS		4							
1					Į	{	1	ł			
1	1.				ł	1	}				
	1 4			1		i i					
				I	1	I I	1				
1	1	}		1		l			1		
1		-		-	-						
						1					
NA	16					ł		l			
NA	16										

Environ Scill	NCHA	MARK							FI	ELD	BO	REH	IOLE	ELOG
Chent	PC	C · Gowanda Site		Project Location:	Gowanda, N	iew York		Bori	ng ID:	В	-9			
roject N	атте:	Geoprobe Inv. of Well Clus	ter MWTP-3	Project Number	0021-001-40	.0		Use:	Inve	stigation				
		DRILLING AND S	AMPLING INFORMAT	ION		Boring L	ocation:							
uríace E	lev. (fi	msl): NA	Total Depth	(fbgs): 8.0	<u> </u>	N	P-15	•						\mathbf{X}
eart Date	:	04/17/02	Finish Date:	04/17/02		•	0,0		6 5-30					
rilling C	iompa	ny: Zebra Environmental	, Inc.				° ₽-11× ●	8-11 🖨						
Daller.										a .	С	ATTAF	RAUGU	S
neiper		Broan Hann	····			Bast C) 8-03	.s.	, ¹		CR	EEK	
will Rive	Troe	Geoprobe direct-oush	ATV mulc ne			40	<u> </u>	1.5		€ 5.0 0.0		-		
nilling N	4ethod	I: Direct Push								20 8-1				
orchole	Diam	eter (inches): 3.0				1	8-34 🔴 0.0		. · ·	- 32	∎			
mpling	Metho	d: 1.5-inch polyethylene	sleeve 4-feet in length			· · .	· · · ·		× P	-1 Q	÷			
/ater Le	vel(s) ((fbgs): 4.5	Water Level(s) (fmsl):	NA			·			ζ Ì Į	FORM			TURING
ODIFI	ERS:	The following Abi	previations should be used	in descriptions.		ľ	N .			×.,	`~	CLAN		~
RADA			CONSISTENC	L N-Value	PP		•	8-6 a.c			·. ·.	•		
	% GF	ND (free med course)	V.SU SOFT	ri <2 2.4	0.1		Secolo - De				<u> </u>	A (_ T/	7. 100	
	% FT	NFS (indicate absticity)	FIRM	5-8	1.2	11005	JUSEDA Mark	- R760B	n 0.5 - 2.	o togs an	KI BIRLIYZ		1. 100.3	
FNSD	<u>v.</u>	N-Value	STIFE	9 - 15	2.3		COLI A MCIIN	1 0.001	·	··				
V. LO	OSE.	1 - 4	V.ST	FF 16-30	2.3									
LOOS	E	4 - 10	HARI	> > 31	3+	Weather	Summy shipht	breeze (0-5 moh	W/NW	65-85	۴		
MED.	DENS	SE 10 - 30	* PP = Pocket P	enetrometer readu	ngin		71-6				<u>,,,,,,,</u>	·		
DENS	E	30 - 50	tons/ft ²											
V. DE	NSE	> 50	PLASTICITY:			IZ	RUCTURE:							
IOISTU	RE:		NONPLASTIC	< 3 mm threa	d		VARVED	1.1	12 mm	SLI	CKENS	IDED	glossy s	hears
DRY	ŕ	absence of moisture	LOW PLASTICITY	rolied, but cru	embles		STRATIFIED	5 a	nm	BLO	ЭСКҮ		small h	mps
мо	IST	damp, no visible water	MEDIUM PLASTICF	IY easily rolled, b	out crumbles		LAMINATED	< (m m	LEI	NSED		small p	ockets
WE	T	visible free water	HIGH PLASTICITY	rolled several	times, no crumblin	8	FISSURED	she	ars	но	MOGE	NEOUS		
iote: U	se De	nsity with Cohesionless Soils	and Consistency with C	obesive Soils.										
-7	E	DESCRIPTION:	The following order shou	id be followed in a	tescribing sampl	les.	ω	o.	5		щ		ک	_
ίομ L	Z FE	NOTE: Dep	oth starts at the solid line a	t the top of the de:	scription area.	\ .	B	Ž ш	PER	I UE	2	NV e	idspi	
N L	Ē				ASTICTTY	N	– 2		MS I	N.	bre	(ppr	Her (ppr	N L
EL	Ша	DENSITY/	CONSISTENCY, STRUC	TURE, OTHER	FEATURES		nsc	SAN 1	l õ	z	W	Id	.01	۳Ę
				· · · · · · · · · · · · · · · · · · ·	·				├ ──		<u> </u>			
		FILL: Black, moist, a	ish, clinkers, cinders etc., v	ery loose			- FILL	S1	NA	NA	GP	0.0	. 0.0	2.6/4.0
			~					l	1					l
]					
NA						······		<u> </u>	<u>├</u> ──		<u> </u>			
		0.0 - 0.5 FILL: as ab	OVE	T: Dark onnor /	MONUN WAT				l		1			
		90% fine sa	nd, 10% low plasticity fine	s, loose, rapid dilat	tency		FILL				1			
		1.2 - 1.5 POORLY (RADED GRAVEL w/	SILT AND SANI	D: Dark		SP-SM					1		
		orange/bro	wn, wet, 60% fine angular . 	gravel, 30% fine sa	and, 10% low		GP-GM	S2	NA	NA	GP	0.0	NA	3.3/4.0
		1.5 - 3.0 Same as 0.5	- 1.2 above				SM	ł			1			1
		3.0 - 3.3 SILTY SAN	ID: Dark green/blue, mo	ist-wet, 80% fine s	and, 15% non-			I		1	l			
NA	8	plastic fines	, 5% fine angular gravel, m	edium dense				1						
	l				······	<i>-</i>		t	t	t	t	1		l

·· · ----

END OF BORING AT \$.0 fbgs GROUNDWATER ENCOUNTERED APPROX. 4.5 FBGS

NA 12

NA

	INCIEN IRONM	HARK										FI	ELI	во	REF	IOLE	C LOG
Chent.	PC	C - Gowanda Site			Pro	ject Location:	Gowanda,	New York			Bon	ng ID:	E	-10			
Project N	ame:	Geoprobe Inv. of Well Clust	ter M	WFP-3	Pro	ject Number	0021-001-4	00			Use:	Inve	stigation				
<u> </u>		DRILLING AND S	AMP	LING INFO	RMATIO	N	<u></u>	Borin	g Loc	ation:		·					
Surface E	lev. (f	msl): NA		Total	Depth (fbg	- 55): 4.0			<u> </u>	~							
Start Date	e:	04/17/02		Finish	Date:	(14/17/02				6-15 8.0							
Drilling (lompa	ny: Zebra Environmental,	, Inc.							8-1X. 🕳	5- 11 💭	• 00					
Driller	:	Chris Donovan									372	● E- 0	0	С	ATTA	RAUGU	s
Helper		Boran Hann						0-16		· .	2-13●	<u>2</u> •	* ³⁷		CR	EEK	
Logged b	Tror:	Geonrobe direct-nush	ATV	mule rie				0.0		``.	223	्य-7 🗬	• P=2 0.0		-		
Drilling N	fetho	i: Direct Push								_	<u>``</u>	∎	` • • • • • • •				
Borchole	Diam	eter (inches): 3.0								8-14 6 3.0		· · ·	جو آن میں ا	6-3 3.0			
Sampling	Meth	od: 1.5-inch polyethylene	sleeve	4-feet in leng	șth				· · .			، رە ە	-,•				THRING
Water Le	vel(s)	(fbgs): 4.0	Wate	r Level(s) (fm	sl): N					·			`•.	Orați	PLAN	IT ARE/	
GRADA	<u>eks:</u> Tion	i ne topowing Abb	DIEVE	CONSIST	EUSED IN C	N-Value	PP				°~C		۰.	<u>```</u>			
	% GI	AVEL (fine, coarse)			V. SOFT	< 2	0-1	ŀ			0.0			· · · · · ·			
1	% SA	ND (fine, med., coarse)		l	SOFT	2 - 4	0 - 1	Notes	:								
	% FI	NES (indicate plasticity)		1	FIRM	5 - 8	1-2										
VIO	L: OSE	N-Value 1 - 4			V STIFF	9 - 15 16 - 3 0	2.3										
LOOS	E	4 - 10			HARD	> 31	3+	Weath	er:	Sunny, slight	breeze	()-5 mph	.W/NW), 65-85	°F		
MED.	DEN	SE 10 - 30		* PP = Pc	ocket Pener	trometer readu	ngin							<u></u>			
DENS	E.	30 - 50	r	tons/fi	2												
V. DE	NSE	> 50		ASTICITY:		C 3			SIRL	JCTURE:			C 1.1	CVENC	1050		
MOISTU	V V	absence of moisture		ONPLASTIC	TTY .	< 3 mm mma	a mbles		97 51	RATIFIED	1- 5.	l∡mam mon	SLI BU	CKENS	IDED	giossy s	nears
MO	IST	damp, no visible water	м	EDIUM PLA	STICITY	easily rolled, b	ut crumbles		LA	MINATED	<	6 mm	LE	NSED		small p	ockets .
WE	т	visible free water	н	IGH PLASTI	CITY	rolled several	times, no crumb	ling	FIS	SSURED	sh	ears	HC	MOGE	NEOUS		
Note: U	ise De	nsity with Cohesionless Soils	and (Consistency	with Cohe	síve Soils.											
	E	DESCRIPTION	The f	following orde	r chould b	e followed in d	escebing same	oles				5		щ		v	
NOL	E	NOTE: Dep	th sta	rts at the solid	l line at the	top of the des	cription area.			ODE	N N	ER	Щ	4	NN (()	EN EN
TAV: VAT	Z F						I ASTICITY	X		ŭ X	IDFE	4 SA	AAL VAL	PLE	DS C	Неас (ррп	D.R.
ELE	DEPT	DENSITY/	CON	SISTENCY,	STRUCTU	RE, OTHER	FEATURES	•		กรด	SAL	BLO	Ż	SAM	Ыd	QId	ь Е
	-	0.0 - 0.2 TOPSOIL:	Dark	brown, mois	t, 90% fine	s, 10% fine gra	ivel, low to										
		medium plas	sticity,	soft with gra	ss rootlets,	organics				OL/OH		1	ļ				
		0.2 - 2.5 <u>FILL</u> : Black	k with JD:Г	orange, mois Dark brown n	t, ash, clink noist 70%	ters, cinders et fine sand 20%	c., very loose			FILL	S1	NA	NA	GP	0.0	0.0	2.8/4.0
		low plasticity	y fines	, 10% fine an	gular grave	l, medium den	se, with			SM							
].	rootletts											ļ				
NA												1					
1	{											1	\	{			
		END OF BORING	AT 4	1.0 fbgs COUNTERE	DAPPRO)X. 4.0 FBGS											
		DROCIND WATER	2110		274140					ļ			ļ	(
														ſ			
NA	8							•									
										ł				1			
										1	1	1		[· ۱		
												İ.	1	[
NA	12											ł	Į –				
														[
1										1							
	1											1	1				
	1											1	l			ł	
NA	16	<u> </u>								1		1	1	1	1	[
1												1	ł				
L	L									L	L	I	1	I	<u> </u>	I	

	NCH	AARK							FI	ELD) BO	REF	IOLE	LOG
Client	PC	CC · Gowanda Site		Project Location:	Gowanda, New	w York		Bori	ng ID:	B	8-11			
Project N	awc:	Geoprobe Inv. of Well Cluste	ar MWFP-3	Project Number:	0021-001-400			Use	Inve	ngation				
Surface E Start Date Drilling C Driller: Helper	lev. (fi :: ompa	DRILLING AND SA insl): NA 04/17/02 iny: Zebra Environmental, Chris Donovan none	MPLING INFORM Total De Finish Da Inc.	(ATION 5th (fbgs): 4.0 5te: 64/17/02		Boring Loc:	E-15	5-11 6 32 (€		c	ATTA	RAUGU	3
Logged B Drill Rig T Drilling M Borehole	y: Fype: lethoc Diam	Bryan Hann Geoprobe direct-push : Direct Push eter (inches): 3.0 	ATV mule rig			B-16 ● 7.0	B−14 ● 610	6-13 225		² = - 2 0.0 7 = 0 0 7 = 0 7	₿-4 Q0			
Water Lev MODIFII	nel(s) (ERS: 10N % GF % SA % FI)	(hgs): 3.5 (fillowing Abbridge): 3.5 (fillow	Vater Level(s) (fms): eviations should be u <u>CONSISTEN</u> V. S SO FIR	NA sed in descriptions. <u>ICY:</u> N-Value GOFT < 2 FT 2 - 4 LM 5 - 8	PP 0-1 0-1 1-2	Notes:	•	3-6 9.0	, °	۱, `` ``````````````````````````````````	FORM	ER MA PLAN		
DENSIT V. LOC LOOSI MED. DENSI	Ľ: DSE E DEN: E	N-Vatue 1 - 4 4 - 10 SE 10 - 30 30 - 50	STT V. S HA • PP = Pocke tons/ft ² .	FF 9 - 15 STIFF 16 - 30 RD > 31 H Penetrometer readin	2 - 3 2 - 3 3+ g in	Weather:	Sunny, slight	breeze ((1-5 mph	.w/nw), 65-85	•F		
V. DEI MOISTU DRY MO WE Note: U	NSE RE: (IST F <i>ec De</i>	> 50 absence of moisture damp, no visible water visible free water msity with Cobesionless Soils a	PLASTICITY: NONPLASTIC LOW PLASTICITY MEDIUM PLASTI HIGH PLASTICIT und Consistency with	< 3 mm thread (rolled, but cnur (ITY easily rolled, bu Y rolled several ti h Cohesive Soils.	nbles nbles ut crumbles urnes, no crumbling	STRU VA STI LA FIS	CTURE: RVED RATIFIED MINATED SURED	1-1 5 n < (she	2 mm nm 6 mm tars	SLI BLC LEI HO	CKENS DCKY NSED MOGE	IDED NEOUS	glossy si smali ke smali po	nears nps nckets
ELEVATION (fmsl)	DEPTH IN FEET	DESCRIPTION: 1 NOTE: Depti SOIL NAME, DENSITY/C	The following order sh in starts at the solid lim COLOR, MOISTUR ONSISTENCY, STR	ould be followed in de e at the top of the des E, GRADATION, PI UCTURE, OTHER F	escribing samples cription area. ASTICITY, EATURES		USCS CODE	SAMPLE NO.	BLOWS PER 6"	N-VALUE	SAMPLE TYPE	PID SCAN (ppm)	PID Headspace (ppm)	FT. REC./ FT. DRIVEN
	_	0.0 - 3.4 FILL: Black, 3.4 - 3.8 SILTY SANI fine sand, 15% dense	moist, ash, clinkers, c D: Dark orange/brow 6 non-plastic fines, 5%	inders etc., very loose m with orange mottlin 6 fine angular gravel, n	ng, wet, 80% nedium		FILL SM	S1	NA	NA	GP	0.0	31.7	3.8/4.0
NA	4	END OF BORING	AT 4.0 Bgs ENCOUNTERED A	APPROX. 3.5 FBGS										
NA	8													
NA	12													
NA	16													

- - ----

.

	ENCHN VIRONM GINEERI RENGE P	MARK							FI	ELD	BO	REH	IOLE	LOG
Client:	РС	C - Gowanda Site		Project Location:	Gowanda, No	w York		Bon	ng ID:	B	-12			
Project N	lame:	Geoprobe Inv. of Well Clus	ter MWFP-3	Project Number:	0021-001-400	·		Use:	Inve	stigation				
		DRILLING AND S	AMPLING INFORM			Boring Loca	ation:							
Start Dat	e:	04/17/02	Finish Da	te: 04/17/02		N ·	6-15 (8.0	•						
Drilling (Compa	ny: Zebra Environmental	, Inc.			1 T		¥+11 🗰	• ⁸¹⁰					
Driller	r	Chris Donovan					- 1825 -	312	• e- a	ч 0	с	ATTAF	RAUGU	s
Helpe	г.	none					·	6 2		, ⁵		CRI	EEK	
Logged I	Ву:	Bryan Hann				8-16 C.O	`	8-13 223	8-7	9-3-3 0,6	-			
Drill Rig	Type:	Geoprobe direct-push	ATV mule ng						, 32 ™ > - >)) - 0 - 5				
Drilling I	Method	L' L'inect l'usa				1	8- ! + 🔴	``	a.a 🔨	۵.0 <u>ج</u> مه ارت	8-4			
Sampling	Meth	nd: 1.5-inch polyethylene	sleeve 4-feet in length		<u> </u>		a.9		6	-;• • ```	5.0 N.			
Water Le	vel(s)	(fbes): 3.5	Water Level(s) (fmsl):	NA					``` 0	° . F	ORM	ER MA	NUFAC	TURING
MODIF	IERS:	The following Abl	previations should be u	sed in descriptions.			1. N			·	ъ.	PLAN	IT ARE	`
GRADA	TION		CONSISTEN	NCY: N-Value	PP		` `	8-C			×.			
	% GF	AVEL (fine, coarse)	V. 9	SOFT < 2	0-1	t						<u> </u>	<u>.</u>	
	% 5A	ND (fine, med., coarse)	50	ri 2++ M 5-8	1.2	Notes:	·				·	·		
DENSIT	70111 Y	N-Value		FF 9-15	2 - 3	<u> </u>					·			
V. LO	OSE	1-4	v.s	5T1FF 16 - 30	2 - 3									
1009	SE	4 - 10	HA	RD > 31	3+	Weather:	Sunny, slight	breeze (0-5 mph). 65-85	°F		
MED.	DEN	SE 10 - 30	* PP = Pocke	t Penetrometer readir	ng in				·		<u></u>			
DENS	SE.	30 - 50	tons/ft ² .	<u></u>										
V. DE	INSE	> 50	PLASTICITY:			STRU	CTURE:							
MOISTL	<u>JRE:</u>		NONPLASTIC	< 3 mm thread	3	VA	RVED	1-	12 mm	SLI		IDED	glossy si	ican
	Y NCT	absence of moisture	LOW PLASTICITY	rolled, but crus	mbles ut mambles		MINATED	21	num (.enum	BLL			smalt ku	mps
MC W/E	nsi T	damp, no visible water	HIGH PLASTICIT	Y meterisevenalt	imes no combline		SURED			HO	NOGEL	NEOUS	smail po	ckets
Note: 1	Jee De	nsity with Cobesionless Soils	and Consistency with	h Cohesive Soils.								12000		
r		· · · · · · · · · · · · · · · · · · ·							·					
z	EET	DESCRIPTION:	The following order sh	ould be followed in d	escribing sample	s.	ЭG	ġ	.R 6"	ш	YPE	z	bace	~ 73
Ŭ.	z	NOTE: Dep	en sizers at the soud an	e at the top of the des	cription area.	>	Ö	Ĩ	S PE	ALU	ET	B SCA	pm)	REC
A 또	E	SOIL NAME	E, COLOR, MOISTUR	E, GRADATION, P	LASTICITY,		SS	₩.	Ň	> z	MPL	DI 9	нЫ	- C - F
ш ш	DE	DENSITY/	CONSISTENCY, STR	UCTURE, OTHER I	EATURES		n 	S	BL		SA		Id	
		0.0 - 0.3 TOPSOIL:	Dark brown, moist, 90	% fines, 10% fine gra	vel, low to									
	{	medium plas	sticity, soft with grass re	ootlets, organics			OL/OH							
		0.3 - 2.5 <u>FILL</u> ; Black	k, moist, ash, clinkers, c GRADED SAND w/	anders etc., very loose	l · Dark		FILL	S1	NA	NA	GP	0.0	0.5	3.2/4.0
		orange/brow	vn, moist-wet, 70% find	e sand, 20% fine sub-a	ingular and		SP-SM	Į	l					
		sub-rounded	l gravel, 10% low plasti	city fines, dense	•			1						
NA	4													
						i		1	1					
		END OF BORING	AT 4.0 fbgs					ł	{					
1	l l	GROUNDWATER	ENCOUNTERED /	APPROX. 3.5 FBGS						1				
]				
NA	8													<u> </u>
1								1						1
										1				
		<u> </u>						Į		ł				
	1													
NA	1 17									l				
	1	1					1	1	}	1	1			
		1					1	l			1			
	1							1	l I	l	l		t i	
]						l	ł		ł			
	1	1						1			ł			
NA	16						۱	1	١	1		1		
[1			1		[
		l					1		1	<u> </u>		I	<u> </u>	

C BE	INCHIN INCOMMISSINGER IS ENGL. P	AARK							FI	ELD	BO	REF	IOLE	LOG
Client	PC	C - Gowanda Site		Project Location:	Gowanda	, New York		Bori	ng ID:	B	-13			1
Project N	lamc:	Geoprobe Inv. of Well Clus	ster MWFP-3	Project Number:	0021-001	-400		Use:	Inve	stigation				
_		DRILLING AND S	AMPLING INFORM	ATION		Boring	Location:							
Surface E	Elev. (fi	msī): NA	Total Dep	oth (flogs): 4.0		N								N.
Start Dat	e:	04/17/02	Finish Da	ite: 04/17/02			· · · · · · · · · · · · · · · · · · ·		- B 30					
Drilling (Compa	ny: Zebra Environmenta	L Inc.				·	D A	0.00					
Driller		Chris Donovan			··		્, ⊽રે`.♥	<u>वरे</u> ष्	• E	ý.	С		RAUGU	s
Heipci	r.	BOUE						4 - 24	! •		-	CR	EEK	-
Logged B	By:	Bryan Hann				B−16 ●	``	€-€5 ●	-	e-3 -				
Drill Rig	Type:	Geoprobe direct-pus	h ATV mule rig				``	<u> </u>	्यः	0.0				
Drilling N	verhoo	I: Direct Push					-	6	-20	🥐 B-5 0.6				
Borehole	Diam	eter (inches): 3.0					B−1+ ● 0.0			3 , (B - 4 ⊃.0			
Sampling	Metho	od: 1.5-inch polyethylene	sleeve 4-feet in length			ì	``.		5.0	.; •	~. 			
Water Le	vel(s) ((fbgs): 3.1	Water Level(s) (fmsl):	NA					``	۱ × ا ب	-ORM			TURING
MODIFI	ERS:	The following Ab	breviations should be us	sed in descriptions.			· ·			Ì,	Ν.			•
GRADA	TION		CONSISTEN	ICY: N-Value	PP			-6			<u>,</u> ``.	٠,		
	% GF	LAVEL (fine, coarse)	V. 9	SOFT < 2	0-1	t					<u>.</u>	<u> </u>	·	
	% SA	ND (fine, med., coarse)	SOI	r1 Z-4	0-1	Notes:								
	% FI	NES (indicate plasticity)		M 5-8	1-2									
DENSIT	<u>Y:</u>	N-Value	SI	FF 9-15	2-3									
V. LO	OSE	1 - 4	V. 9	TIFF 16 - 30	2 - 3	<u></u>								·
LOOS	ε	4 - 10	нл	RD > 31	3+	Weath	er: Sunny, slight	breeze (0-5 mp h	W/NW), 65-85	°F		····
MED.	DEN	SE 10 - 30	* PP = Pocke	t Penetrometer readu	ng in									
DENS	SE.	30 - 50	tons/ft*.											
V. DE	NSE	> 50	PLASTICITY:			12	TRUCTURE:							
MOISTU	JRE:		NONPLASTIC	< 3 mm threa	d	- {	VARVED	1-1	2 mm	SLI	CKENS	IDED	glossy s	hears
DR	Y	absence of moisture	LOW PLASTICITY	rolled, but cru	imbles		STRATIFIED	5 n	n/ n	BLC	СКҮ		smail iu	mps
MC	DIST	damp, no visible water	MEDIUM PLASTI	CITY easily rolled, b	ut crumbles		LAMINATED	< 6	5 mm	LEN	ISED		small po	ckeu l
WE	<u>аг</u>	visible free water	HIGH PLASTICIT	Y rolled several (times, no chim	bling	FISSURED	she	215	НО	MOGE	NEOUS		
Note: L	isc De	nsity with Cohesionless Sails	and Consistency with	a Cobesive Soils.										
Z	EET	DESCRIPTION:	The following order sh	ould be followed in d	lescribing sar	nples.	Щ	ġ	R 6"	ய	ſΡΈ	z	ace	<u>, 7</u>
й Г. f	E. Z	NOTE: Dep	oth starts at the solid line	: at the top of the des	scription area		ğ	щ щ	PE	n	F ·	3 €	asba (f)	
(fm EVA	Ē	SOILNAM	E COLOR MOISTUR	E GRADATION P	LASTICITY		T ž	Ę	SVID	٨٧-	Па	Ω ĝ	H G	Ĩ. Ď
EL	DEP	DENSITY/	CONSISTENCY, STR	UCTURE, OTHER I	FEATURES	,	ŝ	SAP	BLO	z	SAM	Ы	PID	ч Е
		0.0 - 1.8 TOPSOIL:	Dark brown, moist, 90	% fines, 10% fine gr	ivel, low to									
		medium pla	sticity, soft with grass re	otlets, organics			OL/OH					1		
		1.8 - 3.5 FILL: Blac	k, moist-wet, ash, clinke	is, cinders etc., very	loose	_	- FILL	S1	NA	NA	GP	20.0	223	4.0/4.0
		5.5 - 4.0 <u>PUURLI</u> wet 00% for	araut 10% non-plass	(11.1; Dark orange/1	prown, moist c ranid	-	SP-SM					1		
		dilatency	ic and, 1070 non-pasts	- and, mornin della	~, mprov									
NA	4											╂────┤		
		END OF BORING	AT 4.0 fbgs			-								
	1	GROUNDWATER	ENCOUNTERED A	PPROX. 3.1 FBGS								1		ł

- - -----

NA

NA

NA

8

12

	INCHN SINDERS ENGE P	ARKANTAL CTURNKEY							FI	ELD	BO	REH	IOLE	LOG
Chent	PC	C - Gowanda Site		Project Location:	Gowanda, No	ew York	_	Boni	ng ID:	В	-14			
Project N	lame:	Geoprobe Inv. of Well Clus	ter MWFP-3	Project Number:	0021-001-400)		Use:	Inve	nderstein				
-		DRILLING AND S	AMPLING INFORM	IATION		Boring Loc	ation:					<u> </u>		
Surface E	ilev. (fi	msl): NA	Total Dep	oth (fbgs): 1.6		N								
Start Dat	e:	04/17/02	Finish Da	ite: 04/17/02		A C	. v⊊⊷isi 33.0		● P-10					
Drilling (ompa	ny: Zebra Environmental	Inc.				- 8:1 \●	B-17 🖨	• •					
Driller	: 	Chris Donovan			<u> </u>	11		E.	-t - []		C			S
Logged B	sv:	Bryan Hann				6-16		24 . €_=13 ●	.د. . د		_	UK		
Drill Rig	Туре:	Geoprobe direct-push	ATV mule rig			G-0	``.		्हर्	0.0				
Dailing I	Method	I: Direct Push				K	6-14 (Υ.	a−2 € 2.0 \	🥐 😳				
Borehole	Diam	eter (inches): 3.0	he of the head				C-0				0.0			
Sampling	Metho	A: Lo-inch polyethylene	sleeve 4-feet in length	NA		1			1	૾૽ૼૼૼૼૼૣ	ORM	ER MÁ	NUFAC	TURING
· MODIFI	ERS:	The following Ab	breviations should be u	sed in descriptions.	······		· • •			` .	· ·	PLAN	IT ARE	٩
GRADA	TION		CONSISTEN	NCY: N-Value	PP			F-6			<u>,</u> `.			
	% GI	AVEL (fine, coarse)	V. 1	SOFT < 2	0-1	<u>t</u>		u .u				<u>``</u>		
	% 5A	ND (me, men., coarse) NFS (melicate plasticity)	EIF	ri 2-4 LM 5-8	1-2	Notes:								
DENSI	<u>Y:</u>	N-Value	STI	IFF 9-15	2 . 3	·	,							
V.LO	OSE	1 - 4	V. :	STIFF 16 - 30	2 - 3									
1009	Æ	4 - 10	НА	RD > 31	3+	Weather:	Sunny, slight	breeze ((1-5 mph	W/NW), 65-85	۴F		
MED.	DEN	SE 10 - 30	* PP = Pocke	et Penetrometer readin	gin									
DENS	SE	30 - 50 > 50	tons/ft".		l	ISTRI	ICTI IRE.							
MOISTI	JRE	- 30	NONPLASTIC	< 3 mm thread	I	v/	RVED	1-1	12 mm	SLI	CKENS	IDED	giossy s	hears
DR	Y	absence of moisture	LOW PLASTICITY	Y rolled, but crur	nbies	ST	RATIFIED	5 r	ณา	BLC	ску		smali iu	mps
мс	DIST	damp, no visible water	MEDIUM PLAST	CITY easily rolled, bu	rt crumbies		MINATED	<	6 mm	LEI	NSED		small p	xtets
WE	T	visible free water	HIGH PLASTICIT	Y rolled several ti	ines, no crumblin	g F1	SURED	she	205	но	MOGE	NEOUS	· · · · ·	
Note: L	se De	ensity with Conesioniess Sous	and Consistency with											
z	EF	DESCRIPTION:	The following order sh	hould be followed in de	escribing sample	3 .	щ	ġ	۲6 ۲	ш	ΡE	7	ace	z
	Z	NOTE: Dep	th starts at the solid lin	e at the top of the des	cuption area.	<u>></u>	Ö	ц Ш	S PE	n n	ц Ц	W) (۳	adsp (mo	RIVE
(je v	Ē	SOIL NAME	E, COLOR, MOISTUR	E, GRADATION, PI	ASTICITY,		Ŋ	Ē	Ň	2-2	MPL	01	H G	1.0.1
<u> </u>	DE	DENSITY/	CONSISTENCY, STR	UCTURE, OTHER F	EATURES		2	ζ.	BL		SA		IJd	er.
			Dark hours maint 90	10% fines 10% fine am	and how to									
		medium plas	sticity, soft with grass r	ootlets, organics										
		0.5 - 1.6 GRAVELL	Y ELASTIC SILT: D	ark brown, moist, 60%	low plasticity		MH	S1	NA	NA	GP	0.0	0.0	1.6/1.6
		1.6 - ?? CONCRET	ine angular gravel, 10%. FE	the sand, tiem				[{ .					
· NA	4													
	[`								{					
		SEVERAL (5) ATT	EMPTS MADE IN T	THE VICINITY OF	B-14									
1	1	REFUSAL AT 1.6 A	bgs (concrete) AT EV	ERY LOCATION			1	1						
1	t –	NO GROUNDWA	IER ENCOUNTER	ΕD					ļ					
NA	R													
							1	1	}					
	1	— —					1		ļ					
1	1	ļ					Į	{	{		Į			
NIA.	1.,	L									I			
	1						}	1	1			1		
1	1						l	l			Į	ł	ł	
	1	 					1	1			·	1		
ł							1	1	}	1	{	ł	ļ	
NA	16						1					[Į	
	۳.						1	1	1	}]		1	}
		Į						1	ļ					1
1										1	A	1		

C BE	NCHM	ARK								F	IELI) BO	REF	IOLE	ELOG	
Client:	РC	C - Gowanda Site		Po	oject Location:	Gowanda, Ne	w York		В	oring ID:	F	8-15				
Project N	ame:	Geoprobe Inv. of Well Clust	er MX/FP-3	Pa	roject Number	0021-001-400			U	se: Inv	estigation					
		DRILLING AND SA	AMPLING IN	FORMATIC	<u>2N</u>		Boring L	ocation:								
Surface E	lev. (fi	nsl): NA	To	otal Depth (fb	ygs): 4 .0	<u>. </u>	N	·. `							X	
Start Date		04/17/02	Fi	nish Date:	04/17/02		▲		.0	• P-1	0					
Drilling C	ompa	ny: Zebra Environmental,	Inc.					. 8-12.	¥2−11						-	l
Doller.		Chris Donovan							· · · ·	••••	n,ti -	C	ATTA	RAUGU	s	
Helper		Bone Hang					8-16		5-13	-243♥ ●	*?" ⁵⁷		CR	EEK		i
Doll Rig	y Type	Georrobe direct-nush	ATV mulc rie		<u> </u>		0.0		225	ें <u></u> 7¶	€ ⁸⁻³ 0.0		-			ĺ
Drilling N	(ethod	Direct Push		- ··					×.	6-20	e-1	5			· · · [i i
Borehole	Diame	ter (inches): 3.0						6-14 C.0	•	.		● 8-4 0.0				ŕ
Sampling	Metho	d: 1.5-inch polyethylene s	ileeve 4-feet in	length			` .	٠.		~	5-3 €					
Water Lev	rel(s) (fbgs): 3.0	Water Level(s)	(fmsl): 1	NA			·		•		URM		IT ARE	AURING	
MODIFI	ERS:	The following Abb	reviations shou	uld be used in	descriptions.	90	1				\sim	À.,	<u> </u>			
STAUA	% GR	AVEL (fine, coarse)		V. SOFT	< 2	0-1	ļ		• 8-C			\sim		•.		1
	% SA	ND (fine, med., coarse)		SOFT	2 - 4	0-1	Notes:	Sample o	ollected i	rom 0.5 - 1	1.5 fbgs a	nd analy:	red for T	CL VOCs	via	
	% FII	NES (indicate plasticity)		FIRM	5 - 8	1 - 2		USEPA M	ethod 82	60B.						
DENSIT	<u>Y</u> :	N-Value		STIFF	9 - 15	2 - 3										
V.LOC	DSE	1-4		V. STIFF	16 - 30	2-3										
LOOS	E	4 - 10		HARD	> 31	3+	Weather.	Sunny, s	ight brees	е (0-5 тр	h, W/NW), 65-85	°F		<u> </u>	
DENS	DEN: F	10-30 30-50	• PP =	= Pocket l'ene	trometer readin	g n										
V. DEI	NSE	> 50	PLASTICIT	Y:			IST	RUCTURE								
MOISTU	RE:		NONPLAS	n c	< 3 mm thread	I		VARVED		1-12 mm	SLI	CKENS	IDED	glossy s	hears	
DRY	ŕ	absence of moisture	LOW PLAS	TICITY	roilled, but cruz	nbles		STRATIFIE	Ð	5 mm	BL	оску		small lu	mps	_
мо	IST	damp, no visible water	MEDIUM P	PLASTICITY	easily rolled, bu	rt crumbles		LAMINATI	Ð	< 6 mm	LE	NSED		small po	xkeu –	
WE	T	visible free water	HIGH PLA	STICITY	rolled several ti	imes, no crumbling		FISSURED		shears	НС	MOGE	NEOUS			-
Note: U	se De	nsity with Cohesionless Soils	and Consister	ncy with Cob	esive Soils.											
Z	EET	DESCRIPTION:	The following o	order should b	e followed in d	escribing samples	i.	DE	Ö	LR 6"	щ	YPE	z	pace	N N	
) TV (fill	Z	NOTE: Dept	n starts at the s	soud and all the	e top of the des	copuon srea.	<u>></u>	- ŝ	Ē	S PE	F		bm)	eads pm)	JAN	
A U	HL	SOIL NAME,	, COLOR, MO	DISTURE, GR	ADATION, PI	ASTICITY,		S	ŝ	No.	> z	W	DI 9	нд		
щ	DE	DENSITY/C	CONSISTENC	Y, SIRUCIL	JRE, OTHER F	EATURES			S	B		S		Id	-	
			Dark hours o	noise 90% 6m	er 10% fine om	well know to										
		medium plast	licity, soft with	grass rootlets.	, organics			OL/O	н							
		0.3 - 2.2 FILL: Black	, moist, ash, cli	inkers, cinders	etc., very loose			- FILL	. si	NA	NA	GP	0.0	0.0	3.0/4.0	
		2.2 - 3.0 SILTY SAN 80% fine san	<u>D:</u> Dark orang d. 20% non to	ge/brown will low plasticity	h orange mottun fines, loose-med	ig, moist-wet, lium dense		5M								
NA	Α															
ini i																
			AT 40A						I							
		GROUNDWATER	AI 4.0 10gs ENCOUNTE	RED APPR	OX. 3.0 FBGS			-			1	1			1	
							_									
NA	°								1							
{ {								4				{	1			i.
													1			
									ł				1			
NA	12											1	1			
								1		ł		1	1	l		ı
								4	ļ	l		ļ	ł.	ł		_
1								1	1				1			
												1		ļ		
NA	16							-1		1		1	1	l		
								1						I		ŗ
												L	<u> </u>		L	

·· ·· __

	ENCH VIRONM GINEERI IENGE, P		NURNKEY								FI	ELD	BO	REF	IOLE	ELOG
Chent:	PC	C - Gowan	da Site			Project Location:	Gowanda, I	New York		Bon	ng ID:	B	-16			
Project 1	Name:	Geopro	be Inv. of Well Clus	ster MWFP-:	3	Project Number.	0021-001-4	00		Use	Inve	tigation				
		D	RILLING AND S	SAMPLING	INFORMAT	ION		Boring Lo	ation:							
Surface I	Elev. (fi	msl):	NA		Total Depth	(fbgs): 4.0		N								
Start Da	te:	04/17/02			Finish Date:	04/17/02	·		· · · · · · · · · · · · · · · · · · ·		6-10					
Drilling	Compa	ny: Z	ebra Environmental	l, Inc.			<u>_</u>		. e-j×,●	8-11 -	• 50				1.1.1	` .]
Dalle	r	Chas D	000/20	. <u> </u>						-1.X E	-f •	0 	С	ATTA	RAUGU	S
Logged	n. Bv:	Bryan F	lann					B-16 ●	•	2 8-13	4.5 - 	2		CR	EEK	
Drill Rig	Type:		eoprobe direct-push	h ATV mule	: rig			0.0).	225.	्यः	0.6				
Drilling	Method	1: D	Direct Push						8-14	<u>``</u>	6-2 € ⊈D \	€_ 6.0	.		-	
Borebok	Diam	eter (inches): 3.0	1. 16					0.0				0.0			
Sampling Water L	g Metho	00: 1. (from):	2.0 (perched)	Water I eve	el/c) (fmcD:	NA					10	ૼ૾	ORM	ER MA	NUFAC	TURING
MODIF	IERS:	(1083).	The following Abi	breviations s	should be used	in descriptions.			· ` ` .			×	```	PLAN	it are/	4
GRADA	NOLL	:		2	ONSISTENCY	(: N-Value	PP		<u></u>	9-6		````	<u>``</u>			
1	% GF	ND /fee a	ie, coarse)		V. SOF	FT < 2	0-1	t					<u> </u>	<u>``</u>	<u>,</u>	
	% FI	NES (indica	te plasticity)		FIRM	5 - 8	1-2	Notes	USEPA Metho	ad 82601	<u>n U. / - 1.</u> 3.	i iogs an	id analyz	ed for 1		V12
DENSE	Y:		N-Value		STIFF	9 - 15	2 - 3				······					
V. LC	OSE		1 - 4	1	V. STI	FF 16 - 30	2 - 3									
100	SE		4 - 10		HARD	> > 31	3+	Weather.	Sunny, slight	breeze	()-5 mph	W/NW), 65-85	°F		
DEN	. DEN: SF	SE	10-30 30-50	1.	$PP \approx Pocket P_{f}$	enetrometer readi	ug in						<u>~</u>			. <u> </u>
V. DE	ENSE		> 50	PLASTI				STR	UCTURE.							
MOIST	JRE:			NONPL	ASTIC	< 3 mm threa	9	v	ARVED	1.	12 mm	SLI	CKENS	IDED	glossy s	hears
DP	ι Υ	absence of	moisture	LOW PI	LASTICITY	rolled, but cru	mbles	5	RATIFIED	5 1	THE	BLC	СКҮ		small lu	mps
MO	DIST T	damp, no	visible water	MEDIO		I'Y easily rolled, b	ut crumbles		AMINATED	<	6 mm	LEN	NOCE:		small p	ockets
					7 ASJR 117	miled several	imes no combi	~ F	CCI IP FD	*h	-		NO 1 8 - H	NECHIC		
Note: 1	Use De	nsity with	Cohesionless Soils	s and Consi	istency with C	rolled several Cohesive Solls.	imes, no crumbi	ng F	SSURED	\$h	ears	HO	MOGE	NEOUS		
Note: 1	Use De	nsity with	Cohesionless Soils	s and Consi	istency with C	rolled several	imes, no crumbi	ng F		sh			MOGE	NEOUS		
Note: 1	Use De	nsity with	Cohesionless Soils DESCRIPTION:	The following	istency with C	<i>Tolled several</i> <i>Tohesive Solls.</i> Id be followed in d	escribing samp	ng F		ci Z	-245 	HO E	APE -	Z	pace	- 3
	Land Z	nsity with	Cohesionless Soils DESCRIPTION: NOTE: Dep	The following the starts at t	istency with C ing order shoul the solid line at	roled several cohesive Solls. Id be followed in a the top of the det	escribing samp	ng F		JLE NO.	S PER 6"	ALUE	LE TYPE	SCAN	feadspace opm)	REC/ DRIVEN
Note: 1	Use De Laay NI HLda	nsity with	Cohesionless Solls DESCRIPTION: NOTE: Dep SOIL NAME DENSITY/	The following the starts at the construction of the starts at the construction of the starts at the construction of the starts at the starts a	ing order should the solid line at MOISTURE, (ENCY, STRUC	roled several cohesive Solls. Id be followed in a the top of the des GRADATION, P	escribing samp cription area.	ng F		SAMPLE NO.	LOWS PER 6"	N-VALUE	AMPLE TYPE	PID SCAN (ppm)	olD Headspace (ppm)	FT. REC/ FT. DRIVEN
Note: Note: NOILLYATE	Use De Laat Ni HLdag	nsity with	Cohesionless Soils DESCRIPTION: NOTE: Dep SOIL NAME DENSITY/	The following the starts at the color, construction of the starts at the color, construction of the starts at thes	istency with C ing order shoul the solid line at MOISTURE, (ENCY, STRUC	roled several cohesire Solls. Id be followed in a the top of the det GRADATION, P TURE, OTHER	escribing samp cription area LASTICITY, FEATURES	ing F	a d O S S S S	SAMPLE NO.	BLOWS PER 6"	N-VALUE	SAMPLE TYPE	PID SCAN (ppm)	PID Headspace (ppm)	FT. REC/ FT. DRIVEN
Note: Note: Note: Note: Note: Note: Note: Note: Note:	Use De Laay Ni Hildeg Q	nsity with	Cohesionless Soils DESCRIPTION: NOTE: Dep SOIL NAME DENSITY/ 0-0.3 TOPSOIL: medium play	The following of the fo	istency with C ing order shoul the solid line at MOISTURE, ENCY, STRUC	rolled several cohesive Solls. Id be followed in a the top of the des GRADATION, P TURE, OTHER fines, 10% fine gr	escribing samp cription area. LASTICITY, FEATURES	ng F	HIGO SSI SSURED	SAMPLE NO.	BLOWS PER 6"	N-VALUE	SAMPLE TYPE	PID SCAN (ppm)	PID Headspace (ppm)	FT. REC/ FT. DRIVEN
Note: Note:	Use De Land NI Hideo	nsity with	Cohesionless Solls DESCRIPTION: NOTE: Dep SOIL NAME DENSITY/ 0 - 0.3 TOPSOIL: medium plas 3 - 1.9 SANDY EL	The following of the fo	istency with C istency with C ing order should the solid line at MOISTURE, (ENCY, STRUC m, moist, 90% with grass rooth LT: Dark brow	rolled several inhesive Solls. Id be followed in a the top of the det GRADATION, P TURE, OTHER fines, 10% fune gr. iets, organics vn, moist, 60% loo	imes, no crumble escribing samp cription area. LASTICITY, FEATURES avel, low to v plasticity	ng F	SSURED B CO SS SS OL/OH	SAMPLE NO.	BLOWS PER 6"	N-VALUE	SAMPLE TYPE	PID SCAN (PPm) 50	PID Headspace (ppm)	FT. REC./ FT. DRIVEN
Note: Note: ((umi))	Lae De Laey NI HLdeo	nsity with	Cohesionless Soils DESCRIPTION: NOTE: Dep SOIL NAME DENSITY/ 0 - 0.3 TOPSOIL: medium plas 3 - 1.9 SANDY EL fines, 30% fi	The following th	istency with C ing order shoul the solid line at MOISTURE, (ENCY, STRUC m, moist, 90% with grass root LT: Dark brow % fine angular	rolled several ohesive Solls. Id be followed in a the top of the des GRADATION, P TURE, OTHER fines, 10% fune gr ets, organics wn, moist, 60% lon gravel, firm	imes, no crumble escribing samp cription area. LASTICITY, FEATURES ivel, low to v plasticity	ng F	OL/OH	st SAMPLE NO.	BLOWS PER 6"	N-VALUE	G SAMPLE TYPE	LiD SCAN (ppm) 0.0	PID Headspace (ppm)	FT: REC/ FT: DRIVEN
Note: I	Larly NI HLLJEO	nsity with	Cohesionless Soils DESCRIPTION: NOTE: Dep SOIL NAME DENSITY/ 0 - 0.3 TOPSOIL: medium pla: 3 - 1.9 SANDY El fines, 30% fi 9 - 2.8 FILL: Black 8 - 3.1 SILTY SAN	The following of the starts at the starts at the starts at the starts at the starts at the starts at the starts at the starts at the starts at the starts at the starts at the start starts at the start starts at the start starts at the start starts at the start starts at the start starts at the start starts at the start starts at the start starts at the start starts at the start	istency with C ing order shoul the solid line at MOISTURE, (ENCY, STRUC m, moist, 90% with grass root LT: Dark brow % fine angular clinkers, cinder ed/grey/brow	rolled several inhesive Solls. Id be followed in a the top of the des GRADATION, P TURE, OTHER fines, 10% fune gr. tets, organics wn, moist, 60% low gravel, firm s etc., very loose 1, moist, 60% fune	escribing samp cription area LASTICITY, FEATURES wel, low to v plasticity sand, 30% non	ng F	OL/OH MH FILL SM	an SAMPLE NO.	BLOWS PER 6"	N-VALUE	SAMPLE TYPE	LiD SCAN	PID Headspace (ppm)	LE DRIVEN 3.1/4.0
Note: I	Use De	0.000000000000000000000000000000000000	Cohesionless Soils DESCRIPTION: NOTE: Dep SOIL NAME DENSITY/ 0 - 0.3 TOPSOIL: medium plas 3 - 1.9 SANDY EL fines, 30% fi 9 - 2.8 FILL: Black 8 - 3.1 SILTY SAN to low plasti	The following the starts at the starts at the starts at the starts at the starts at the starts at the starts at the starts at the starts at the starts at the starts at the starts at the starts at the start start starts at the start start starts at the start starts at the start starts at the start start starts at the start start start starts at the start start starts at the start start start start starts at the start start start start start start start start starts at the start star	istency with C ing order shoul the solid line at MOISTURE, ENCY, STRUC m, moist, 90% with grass root LT: Dark brow % fine angular clinkers, cinder ed/grey/brown 0% fine angular	roled several inhesive Solls. Id be followed in a the top of the det GRADATION, P TURE, OTHER fines, 10% fine gr. iets, organics vn, moist, 60% long gravel, firm s etc., very loose n, moist, 60% fine r gravel, medium of	imes, no crumble lescribing samp cription area. LASTICITY, FEATURES wel, low to v plasticity sand, 30% non- lense, loose	ng F	OL/OH MIH FILL SM	standing sympler no.	BLOWS PER 6"	Z N-VALUE	B SAMPLE TYPE	LID SCAN (ppm)	PID Headspace (ppm)	VEL VEC
Note: 0 NOLLYAATA NA	Land Ni HLdago	0.00112	Cohesionless Soils DESCRIPTION: NOTE: Dep SOIL NAME DENSITY/ 0 - 0.3 TOPSOIL: medium plas 3 - 1.9 SANDY EL fines, 30% ff 9 - 2.8 FILL: Black 8 - 3.1 SILTY SAN to low plasti when disturb	The following the starts at the starts at the starts at the starts at the starts at the starts at the starts at the starts at the starts at the starts at the starts at the start start starts at the start start starts at the start start start start starts at the start start start start starts at the start start start start start starts at the start st	Istency with C ing order shoul the solid line at MOISTURE, (ENCY, STRUC m, moist, 90% with grass root LT: Dark brow % fine angular clinkers, sinder ed/grey/brown 0% fine angula	rolled several inhesive Solls. Id be followed in a the top of the det GRADATION, P TTURE, OTHER fines, 10% fune gra ets, organics wn, moist, 60% for gravel, firm s etc., very kose n, moist, 60% fine r gravel, medium of	imes, no crumble escribing samp cription area. LASTICITY, FEATURES ivel, kow to v plasticity sand, 30% non lense, koose	ng F	OL/OH MH FILL SM	SAMPLE NO.	BLOWS PER 6"		E E E E E E E E E E E E E E E E E E E	LiD SCAN (ppm)	PID Headspace (ppm)	FT. REC/ FT. DRIVEN
Note: 1 NOLLYATT	Laad Ni HLJ30	0.00112	Cohesionless Soils DESCRIPTION: NOTE: Dep SOIL NAME DENSITY/ 00.3 TOPSOIL: medium plas a.1.9 SANDY EL fines, 30% ff 92.8 FILL: Blact 83.1 SILTY SAN to low plasti when disturb	The following the starts at the following the starts at th	Istency with C ing order shoul the solid line at MOISTURE, (ENCY, STRUC m, moist, 90% with grass root LT: Dark brow % fine angular clinkers, cinder ed/grey/brown 0% fine angular	roled several inhesive Solls. Id be followed in a the top of the des GRADATION, P TURE, OTHER fines, 10% fine gr ets, organics vn, moist, 60% long gravel, firm s etc., very loose n, moist, 60% fine r gravel, medium of	imes, no crumble lescribing samp ccription area. LASTICITY, FEATURES ivel, low to v plasticity sand, 30% non lense, loose	ng F	OL/OH MH FTLL SM	S1	BLOWS PER 6"	N-VALUE	SAMPLE TYPE	Litp scan	PID Headspace (ppm)	HI. REC/
Note: 1 Note: 1 Note: 1 Note: 1 NA	Lary NI HLJ30	0 0 1 2	Cohesionless Soils DESCRIPTION: NOTE: Dep SOIL NAME DENSITY/ 0 - 0.3 TOPSOIL: medium plas 3 - 1.9 SANDY EL fines, 30% fi 9 - 2.8 FILL: Blac 8 - 3.1 SILTY SAN to low plasti when disturb	The following of the starts at the starts at the starts at the starts at the starts at the starts at the starts at the starts at the starts at the starts at the start start starts at the start start start starts at the start start start starts at the start start starts at the start start starts at the start start starts at the start start starts at the start start start start starts at the start start start start starts at the start s	Istency with C ing order shoul the solid line at MOISTURE, (ENCY, STRUC m, moist, 90% with grass root LT: Dark brow % fine angular clinkers, cinder ed/grey/brown 0% fine angula	roled several inhesive Solls. Id be followed in a the top of the des GRADATION, P TURE, OTHER fines, 10% fune gr. ets, organics wn, moist, 60% lon gravel, firm s etc., very kose a gravel, medium of	imes, no crumble cescribing samp cription area. LASTICITY, FEATURES wel, low to v plasticity sand, 30% non lense, loose	ng F	OL/OH MH FILL SM	SAMPLE NO.	BLOWS PER 6		SAMPLE TYPE	Lidon)	PID Hadspace (ppm)	LE DRIVEN 3.1/4.0
Note: 1 Note: 1 NA	Lary Ni Hidao	nsity with	Cohesionless Soils DESCRIPTION: NOTE: Dep SOIL NAME DENSITY/ 0-0.3 TOPSOIL: medium plas 3-1.9 SANDY EL fines, 30% fi 9-2.8 FILL: Blac 8-3.1 SILTY SAN to low plast when disturb END OF BORING ERCED GROUN	The following of the starts at the starts at the starts at the starts at the starts at the starts at the starts at the starts at the starts at the starts at the starts at the starts at the start start starts at the start start start starts at the start start starts at the start start starts at the start start starts at the start start starts at the start start starts at the start start starts at the start start starts at the start start start starts at the start start start start starts at the start start start start starts at the start start start start start starts at the start start start start start starts at the start s	Istency with C ing order shoul the solid line at MOISTURE, ENCY, STRUC m, moist, 90% with grass root LT: Dark brow % fine angular clinkers, cinder ed/grey/brown 0% fine angular	roled several inhesive Solls. Id be followed in a it the top of the des GRADATION, P TURE, OTHER fines, 10% fine gn rets, organics wn, moist, 60% long gravel, firm s etc., very loose n, moist, 60% fine r gravel, medium of SRED APPROX	imes, no crumble lescribing samp cription area. LASTICITY, FEATURES vvel, low to v plasticity sand, 30% non lense, loose 2.0 FBGS	ng F	OL/OH MIH FILL SM	SI	BLOWS PER 6		GP GP	LiD SCAN	PID Headspace (ppm)	NATURAL TE
Note: 1 Note: 1 NA	Line Dec	nsity with	Cohesionless Soils DESCRIPTION: NOTE: Dep SOIL NAME DENSITY/ 0 - 0.3 TOPSOIL: medium plas 3 - 1.9 SANDY EL fines, 30% f 9 - 2.8 FILL: Blac 8 - 3.1 SILTY SAN to low plasti when disturf END OF BORING ERCED GROUN	The following of the starts at the starts at the starts at the starts at the starts at the starts at the starts at the starts at the starts at the starts at the starts at the starts at the starts at the start starts at the start start starts at the start starts at the start starts at the start starts at the start starts at the start starts at the start starts at the start starts at the start starts at the	Istency with C ing order shoul the solid line at MOISTURE, ENCY, STRUC m, moist, 90% With grass rootl LT: Dark brow % fine angular clinkers, cinder ed/grey/brown 0% fine angular	roled several inhesive Solls. Id be followed in a the top of the det GRADATION, P TURE, OTHER fines, 10% fune gravels, firm s etc., very loose n, moist, 60% fune r gravel, firm s etc., very loose n, moist, 60% fune r gravel, medium of SRED APPROX	ines, no crumbles lescribing samp cription area. LASTICITY, FEATURES wel, low to v plasticity sand, 30% non ense, loose 2.0 FBGS	ng F	OL/OH MH FILL SM	ata Sample NO.	BLLOWS PER 6"		SAMPLE TYPE	LEOUS LEDUS CAN (ppm)	PID Headspace (ppm)	LE VEC/JUNAEN
	LIELAN HLABO		Cohesionless Soils DESCRIPTION: NOTE: Dep SOIL NAME DENSITY/ 0 - 0.3 TOPSOIL: medium plas 3 - 1.9 SANDY EL fines, 30% ff 9 - 2.8 FILL: Black 8 - 3.1 SILTY SAN to low plasti when disturi END OF BORING PERCED GROUN	The following of the fo	Istency with C ing order shoul the solid line at MOISTURE, (ENCY, STRUC m, moist, 90% with grass rooth LT: Dark brow % fine angular clinkers, cinder ed/grey/brown 0% fine angular	roled several inhesive Solls. Id be followed in a the top of the des GRADATION, P TURE, OTHER fines, 10% fine gr ets, organics wn, moist, 60% for gravel, firm s etc., very loose n, moist, 60% fine r gravel, medium of SRED APPROX	ines, no crumble lescribing samp cciption area. LASTICITY, FEATURES ivel, low to v plasticity sand, 30% non- lense, loose 2.0 FBGS	ng F	OL/OH MH FILL SM	S1	BLOWS PER 6"		E SAMPLE TYPE	Litpscan (ppm)	PID Haadspace (ppm)	HI. REC/
	LERLAN HLABO		Cohesionless Soils DESCRIPTION: NOTE: Dep SOIL NAME DENSITY/ 0 - 0.3 TOPSOIL: medium plas a: 1.9 SANDY EL fines, 30% fi 9 - 2.8 FILL: Blac 8 - 3.1 SILTY SAN to low plasti when disture END OF BORING PERCED GROUN	The following of the starts at the starts at the starts at the starts at the starts at the starts at the starts at the starts at the starts at the starts at the starts at the start start start starts and starts at the start start start start starts at the start start start starts at the start start start starts at the start start starts at the start start start starts at the start start starts at the start start starts at the start start starts at the start starts at the start starts at the start starts at the start starts at the start starts at the start starts at the start starts at the start start starts at the start start start starts at the start start start start starts at the start start start start start starts at the start star	Istency with C ing order shoul the solid line at MOISTURE, I ENCY, STRUC m, moist, 90% with grass rooti LT: Dark brow % fine angular clinkers, cinder ed/grey/brown 0% fine angular 25 ENCOUNTI	roled several inhesive Solls. Id be followed in a it the top of the des GRADATION, P TURE, OTHER fines, 10% fune gr tets, organics wn, moist, 60% low gravel, firm s etc., very loose a gravel, medium of SRED APPROX	ines, no crumble cescribing samp cription area. LASTICITY, FEATURES ivel, low to v plasticity sand, 30% non lense, loose 2.0 FBGS	ng F	OL/OH MH FILL SM	SI SI	BLOWS PER 6		SAMPLE TYPE	Lidon)	PID Hadspace (ppm)	LE DRIVEN 3.1/4.0
Note: 1 Note: 1 NA	Цае Dec Цары NI HL430 4		Cohesionless Soils DESCRIPTION: NOTE: Dep SOIL NAME DENSITY/ 0 - 0.3 TOPSOIL: medium plas 3 - 1.9 SANDY EL fines, 30% f 9 - 2.8 FILL: Blac 8 - 3.1 SILTY SAN to low plasti when disture END OF BORING PERCED GROUN	The following of the starts at the starts at the starts at the starts at the starts at the starts at the starts at the starts at the starts at the starts at the starts at the starts at the start start start starts, so fit will be start at the start start start start starts at the start start start starts at the start start starts at the start start starts at the start start starts at the start start starts at the start start starts at the start start start starts at the start start start start starts at the start start start start start starts at the start sta	Istency with C ing order shoul the solid line at MOISTURE, ENCY, STRUC m, moist, 90% with grass root LT: Dark brow % fane angular clinkers, cinder ed/grey/brown 0% fine angula	roled several inhesive Solls. Id be followed in a the top of the det GRADATION, P TURE, OTHER fines, 10% fine gn ets, organics wn, moist, 60% lon gravel, firm s etc., very loose n, moist, 60% fine r gravel, medium of SRED APPROX	ines, no crumble lescribing samp cription area. LASTICITY, FEATURES wel, low to v plasticity sand, 30% non lense, loose 2.0 FBGS	ng F	OL/OH MH FTLL SM	S1	PLOWS PER 6		GP GP	Lidonal (http://www.com	PID Headspace (ppm)	LI DRIVEN
Note: 1	Line Dec		Cohesionless Soils DESCRIPTION: NOTE: Dep SOIL NAME DENSITY/ 0 - 0.3 TOPSOIL: medium plas 3 - 1.9 SANDY EL fines, 30% f 9 - 2.8 FILL: Blac 8 - 3.1 SILTY SAN to low plasti when disturt END OF BORING PERCED GROUN	The following of the starts at the starts at the starts at the starts at the starts at the starts at the starts at the starts at the starts at the starts at the starts at the starts at the start starts at the start start starts at the start starts at the start starts at the start starts at the start starts at the start starts at the start starts at the start starts at the start starts at the start starts at the starts	Istency with C ing order shoul the solid line at MOISTURE, ENCY, STRUC m, moist, 90% with grass rooti LT: Dark brow % fine angular chinkers, cinder ed/grey/brown 0% fine angular	roled several inhesive Solls. Id be followed in a the top of the det GRADATION, P TURE, OTHER fines, 10% fine gr. iets, organics wn, moist, 60% low gravel, firm s etc., very loose n, moist, 60% fine r gravel, medium of SRED APPROX	ines, no crumblescribing samp cription area. LASTICITY, FEATURES wel, low to v plasticity sand, 30% non- lense, loose 2.0 FBGS	ng F	OL/OH MH FILL SM	ata Sample NO.	BLOWS PER 6		GP GP	LEOUS LEDUS LEDUS LEDUS LEDUS	PID Headspace (ppm)	VEAL AND THE 3.1/4.0
	LERAN NI HLABO		Cohesionless Soils DESCRIPTION: NOTE: Dep SOIL NAME DENSITY/ 0 - 0.3 TOPSOIL: medium plas 3 - 1.9 SANDY EL fines, 30% f 9 - 2.8 FILL: Black 8 - 3.1 SILTY SAN to low plasti when disturi	The following of starts at the following of starts at the following of starts at the following of starts at the following of the starts at the following sticity, soft with the start of th	Istency with C ing order shoul the solid line at MOISTURE, ENCY, STRUC m, moist, 90% with grass rooti LT: Dark brow % fine angular clinkers, cinder ed/grey/brown 0% fine angular	roled several inhesive Solls. Id be followed in a the top of the det GRADATION, P TURE, OTHER fines, 10% fune gravels, firm s etc., very loose n, moist, 60% fune r gravel, firm s etc., very loose n, moist, 60% fune r gravel, medium of SRED APPROX	ines, no crumble lescribing samp cription area. LASTICITY, FEATURES ivel, low to v plasticity sand, 30% non lense, loose 2.0 FBGS	ng F	OL/OH MH FILL SM	S1	BLLOWS PER 6"		SAMPLE TYPE		PID Headspace (ppm)	LE NAVEN
Note: 1 NOLLYATTE NA NA	LERLA NI HLLABO		Cohesionless Soils DESCRIPTION: NOTE: Dep SOIL NAME DENSITY/ 0 - 0.3 TOPSOIL: medium plas a: - 1.9 SANDY EL fines, 30% fi 9 - 2.8 FILL: Blac 8 - 3.1 SILTY SAN to low plasti when disture END OF BORING PERCED GROUND	The following of the starts at the starts at the starts at the starts at the starts at the starts at the starts at the starts at the starts at the starts at the start start start starts and starts at the start start start start starts at the start start start start starts at the start start start start starts at the start start start start starts at the start start start starts at the start start start starts at the start start start starts at the start start start starts at the start start start starts at the start start start starts at the start start start starts at the start start start starts at the start start start start starts at the start start start start starts at the start start start start starts at the start start start start starts at the start start start start start starts at the start st	Istency with C ing order shoul the solid line at MOISTURE, I ENCY, STRUC m, moist, 90% with grass root LT: Dark brow % fine angular clinkers, cinder ed/grey/brown 0% fine angular ss ENCOUNTI	roled several inhesive Solls. Id be followed in a it the top of the des GRADATION, P TTURE, OTHER fines, 10% fune gr tets, organics wn, moist, 60% lon gravel, firm s etc., very loose a gravel, medium of SRED APPROX	ines, no crumbl lescribing samp cription area. LASTICITY, FEATURES ivel, low to v plasticity sand, 30% non lense, loose	ng F	OL/OH MH FILL SM	SI SI	BLOWS PER 6		G G	Lidon)	PID Headspace (ppm)	LE DRIVEN 3.1/4.0
Note: 1 Note: 1 NA NA	Use Dec Цалы Л НЦ 30 4 8 8		Cohesionless Soils DESCRIPTION: NOTE: Dep SOIL NAME DENSITY/ 0 - 0.3 TOPSOIL: medium plas 3 - 1.9 SANDY EL fines, 30% f 9 - 2.8 FILL: Blac 8 - 3.1 SILTY SAN to low plasti when disture END OF BORING ERCED GROUN	The following of the starts at the starts at the starts at the starts at the starts at the starts at the starts at the starts at the starts at the starts at the starts at the starts at the start start starts, so fit will be start at the start start start start starts at the start start starts at the start start starts at the start start starts at the start start starts at the start start starts at the start start starts at the start start starts at the start start start start starts at the start start start start starts at the start sta	Istency with C ing order shoul the solid line at MOISTURE, I ENCY, STRUC m, moist, 90% with grass root LT: Dark brow % fane angular clinkers, cinder ed/grey/brown 0% fine angular	roled several inhesive Solls. Id be followed in a it the top of the det GRADATION, P TURE, OTHER fines, 10% fine gn ets, organics wn, moist, 60% lon gravel, firm s etc., very loose n, moist, 60% fine r gravel, medium of SRED APPROX	ines, no crumble escribing samp cription area. LASTICITY, FEATURES wel, low to v plasticity sand, 30% non lense, loose	ng F	OL/OH MH FTLL SM	S1	PLOWS PER 6		GP GP	Lidonal (ppm)	PID Headspace (ppm)	LI VEC/
Note: 1 Note: 1 Intervention NA NA	Land 12		Cohesionless Soils DESCRIPTION: NOTE: Dep SOIL NAME DENSITY/ 0 - 0.3 TOPSOIL: medium plas 3 - 1.9 SANDY EL fines, 30% f 9 - 2.8 FILL: Blac 8 - 3.1 SILTY SAN to low plast when disturb END OF BORING PERCED GROUN	The following of the stand Constitution of the starts at the starts at the starts at the starts at the starts at the starts at the starts at the starts at the starts at the start start starts at the start start starts at the start start starts at the start start starts at the start starts at the start starts at the start starts at the start starts at the start starts at the start starts at the start starts at the start starts at the starts at the start starts at the starts	Istency with C ing order shoul the solid line at MOISTURE, ENCY, STRUC m, moist, 90% with grass rootl LT: Dark brow % fine angular clinkers, cinder ed/grey/brown 0% fine angular	roled several inhesive Solls. Id be followed in a the top of the det GRADATION, P TURE, OTHER fines, 10% fine gn ets, organics vn, moist, 60% long gravel, firm s etc., very loose n, moist, 60% fine r gravel, medium of SRED APPROX	ines, no crumblescribing samp cription area. LASTICITY, FEATURES vvel, low to v plasticity gand, 30% non lense, loose 2.0 FBGS	ng F	OL/OH MH FILL SM	SI	PLOWS PER 6		GP GP	Lid SCAN	PID Headspace (ppm)	VEALER NEC
Note: 0 (inui) NA NA	Цяє Dec Цальні VI нЦі за 4 8 8		Cohesionless Soils DESCRIPTION: NOTE: Dep SOIL NAME DENSITY/ 0 - 0.3 TOPSOIL: medium plas 3 - 1.9 SANDY EL fines, 30% f 9 - 2.8 FILL: Blac 8 - 3.1 SILTY SAN to low plasti when disturt END OF BORING ERCED GROUN	The following of starts at the following of starts at the following of starts at the following of starts at the following of the starts at the following sticity, soft with the start of th	Istency with C ing order shoul the solid line at MOISTURE, ENCY, STRUC m, moist, 90% with grass root [LT: Dark brow % fine angular clinkers, cinder ed/grey/brown 0% fine angular	roled several <i>inhesive Solls</i> . Id be followed in a it the top of the det GRADATION, P TURE, OTHER fines, 10% fune gravel, firmes, 10% fune gravel, firm s etc., very loose n, moist, 60% fine r gravel, medium of <i>SRED APPROX</i> .	ines, no crumbles in the second secon		OL/OH MH FILL SM	ate symplete NO.	BLL 6"		GP GP		PID Headspace (ppm)	VEAL AND THE 3.1/4.0
Note: 1 Note: 1 International International	LIERA VI HLABO 4 12 16		Cohesionless Soils DESCRIPTION: NOTE: Dep SOIL NAME DENSITY/ 0 - 0.3 TOPSOIL: medium plas a.3 - 1.9 SANDY EL fines, 30% f 9 - 2.8 FILL: Black 8 - 3.1 SILTY SAN to low plasti when disturb END OF BORING ERCED GROUN	A HIGH P s and Coast The following th starts at the E, COLOR, (CONSISTE CONSISTE	Istency with C ing order shoul the solid line at MOISTURE, ENCY, STRUC m, moist, 90%, LT: Dark brow % fine angular clinkers, cinder ed/grey/brown 0% fine angular <i>ENCOUNTI</i>	roled several inhesive Solls. Id be followed in a it the top of the des GRADATION, P TTURE, OTHER fines, 10% fune gr tets, organics wn, moist, 60% long gravel, firm s etc., very loose a gravel, medium of SRED APPROX	ines, no crumble lescribing samp cription area. LASTICITY, FEATURES ivel, low to v plasticity sand, 30% non- lense, loose 2.0 FBGS		OL/OH MH FILL SM	SI SI	BLOWS PER 6		GP GP	LID SCAN	PID Headspace (ppm)	NANNA H 3.1/4.0

Data Validation Services

120 Cobble Creek Road P. O. Box 208 North Creek, N. Y. 12853 Phone 518-251-4429 Facsimile 518-251-4428

July 11, 2002

Tom Forbes Benchmark Environmental 50 Fountain Plaza Suite 1350 Buffalo, NY 14202

RE: Validation of the Peter Cooper Site Data Packages CAS Sub Nos.R2211551

Dear Mr. Forbes:

Review has been completed for the data packages generated by Columbia Analytical Services pertaining to samples collected at the Peter Cooper site. Ten soil samples collected in Encore samplers 4/16/02 and 4/17/02 were processed for volatiles by USEPA 8260B.

Data validation was performed using guidance from the most current editions of the USEPA Region II validation SOPs HW-24 and HW-6. The following items were reviewed:

- * Data Completeness
- * Custody Documentation
- * Holding Times
- * Surrogate Recoveries
- * Matrix Spike Recoveries/Duplicate Correlations
- * Preparation/Calibration Blanks
- * Instrumental Tunes
- * Control Spike/Laboratory Control Samples
- * Calibration Standards
- * Method Compliance
- * Sample Result Verification

Those items showing deficiencies are discussed in the following sections of this report. All others were found to be acceptable as outlined in the above-mentioned validation procedures, and as applicable for the methodology. Unless noted specifically in the following text, reported results are substantiated by the raw data, and generated in compliance with protocol requirements.

In summary, sample processing was primarily conducted with compliance to protocol requirements and with adherence to quality criteria, and most reported results are usable as reported, or with minor edit or qualification. The exception is that two samples exhibited a significant matrix effect on target analyte recoveries, resulting in elevated reporting limits and/or qualification as estimated for some compounds.

Copies of the laboratory case narratives are attached and should be reviewed in conjunction with this text. Also included in this submission are copies of the sample report forms, with recommended validation qualifiers and edits applied in red-ink.

Volatile Analyses by EPA 8260B

Four of the samples showed a matrix effect that quenched the response of one or more internal standards. For samples B-1(2-4) and B-2(2-4), the effect produced response for internal standard d5-chlorobenzene in the initial analyses which are just outside the allowable 50% limit (41% and 46%). Results for the six analytes associated with d4-1,4-dichlorobenzene, and used from have been qualified as estimated ("UJ" or "J"), as indicated on the attached edited report forms. The bias is not expected to be great.

Samples B-4(0.5-1.5) and B-9 (0.5-2.5) showed significant depression of responses of surrogate and internal standards in the undiluted analyses (20% for BFB and d5-chlorobenzene, and 6% for d4-1,4-dichlorobenzene).

Results for the seventeen analytes associated with those internal standards must be derived from the dilution analysis of B-9 (0.5-2.5), thus with elevated reporting limits. That sample reported large concentration values for some analytes (flagged as "E", also discussed below) in the initial analyses. However, very depressed internal standard responses can also result in falsely elevated quantitative values for associated detected analytes. The attached report form reflects edits and qualifications for that sample (combined from the two analyses) which best represent the constituency. All results from the initial analysis are qualified estimated due to outlying surrogate recoveries.

Sample B-4(0.5-1.5) was reanalyzed undiluted at 22 days, beyond the allowable holding time, and did not show the matrix effect, giving usable results for the seventeen analytes associated with poor internal standards. It also showed significantly lower concentrations in the reanalysis. The attached report form reflects edits and qualifications for that sample (combined from the two analyses) which best represent the constituency. All results are qualified estimated due to either matrix effect or holding time.

Results for analytes reported with the "E" flag are to be derived from the dilution analyses. Unless detailed otherwise within this report, all other results can be used from the initial analyses.

Acetone detections in B-2(2-4), B-7(0.5-1.5), and B-16(0.7-1.1) are considered contamination due to presence in the associated method blank, and results are edited to reflect nondetection. The results should have been flagged as "B" by the laboratory. Other low level acetone detections should be regarded with caution.
Matrix spike evaluations of all analytes were performed on B-3(2-4). Accuracy and precision were acceptable, with the exception of two elevated duplicate correlations (trichloroethene and chlorobenzene). Reported results are unaffected.

The blind field duplicate of B-4(2-4) showed consistently higher concentrations of detected analytes than the sample itself, but all were within 63%RPD, and no qualification to reported results is required.

Instrument tunes and calibration standard responses were acceptable. Reported results are substantiated by the raw data.

Please do not hesitate to contact me if questions or comments arise during your review of this report.

Very truly yours, Judy Harry

CAS ASP/CLP BATCHING FORM / LOGIN SHEET

SDG #	B-1 (2-4')	BATCH C	OMPLETE: ves		DATE REV	ISED: 4/22	2/02	
SUBMISSION	R2211551	DISKETT	E REQUESTED: Y N X		DATE DUE	: 5/16/02		
CLIENT:	Benchmark	DATE: 04	/17/02		PROTOCO	L:SW846		
CLIENT REP:	Janice Jaeger	CUSTOD	Y SEAL: PRESENT/ABSENT:		SHIPPING	No.:		
PROJECT:	PETER COOPER, GOWANDA P	CHAIN O	F CUSTODY: PRESENT/ABSENT	•				
CAS JOB #	CLIENT/EPA ID	MATRIX	REQUESTED PARAMETERS	DATE	DATE	рН	%	REMARKS
				SAMPLED	RECEIVED	(SOLIDS)	SOLIDS	AMPLE CONDITIO
544873	B-1 (2-4')	SOIL	8260	4/16/02	4/17/02	··		
544874	B-2 (2-4')	SOIL	8260	4/16/02	4/17/02			
544875QC	B-3 (2-4')	SOIL	8260	4/16/02	4/17/02			
544876	B-4 (0.5-1.5')	SOIL	8260	4/16/02	4/17/02			
544877	B-4 (2-4')	SOIL	8260	4/16/02	4/17/02			
544878	BLIND DUPLICATE	SOIL	8260	4/16/02	4/17/02			
544879	B-7 (0.5-1.5')	SOIL	8260	4/16/02	4/17/02			
545109	B-9 (0.5-2.5')	SOIL	8260	4/17/02	4/18/02			
545112	B-15 (0.5-1.5')	SOIL	8260	4/17/02	4/18/02		1	
545114	B-16 (0.7-1.1')	SOIL	8260	4/17/02	4/18/02			
			-		•			
					_			
		L						
		ļ					L	
							1	

.

301757

CASE NARRATIVE

COMPANY: Benchmark Peter Cooper, Gowanda Project #0021-001-400 SUBMISSION #: R2211551

Benchmark samples were collected on 04/16-17/02 in Encore sample devices and received at CAS on 04/17-18/02 in good condition.

VOLATILE ORGANICS

Ten soil samples were analyzed for a site-specific list of volatiles by method 8260 from SW-846.

All Tuning criteria for BFB were met.

All the initial and continuing calibration criteria were met for all analytes.

All internal standard areas were within QC limits except B-1 (2-4'), B-4 (0.5-1.5'), B-9 (0.5-2.5') and B-2 (2-4'). The samples were repeated as medium level dilutions and all internal standards were within limits. Due to a laboratory error, B-4 (0.5-1.5') was repeated outside the recommended holding time of 14 days. Both sets of data have been reported and all outlying internal standards have been flagged with an "*".

All surrogate standard recoveries were within acceptance limits for all samples except B-4 (0.5-1.5') and B-9 (0.5-2.5'). The samples were repeated and the surrogates were within limits. Due to a laboratory error, B-4 (0.5-1.5') was repeated outside the recommended holding time of 14 days. Both sets of data have been reported out and all outlying surrogates have been flagged with an "*".

Site specific QC was performed on B-3 (2-4'). All MSD and Reference spike recoveries were within limits. All RPD's were within limits except Chlorobenzene and Trichloroethene and have been flagged with an "*". All MS recoveries were within limits except Benzene and Trichloroethene and have been flagged with an "*".

The Laboratory Blanks associated with these analyses were free of contamination except some of the blanks contained Bromomethane, Tetrachloroethene and Acetone. All affected data has been flagged with a "B".

Various compounds for B-1 (2-4'), B-2 (2-4') and B-9 (0.5-2.5') have been flagged with an "E" as being outside the calibration range of the instrument. The samples were repeated at dilutions and both sets of data have been reported out.

All samples were analyzed within required holding times except as mentioned above.

No other analytical or QC problems were encountered.

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hard copy data package has been authorized by the Laboratory Manager or this designee, as verified by the following signature.

	VOLAI METHC Repor	TILE ORGANICS DD 8260B ted: 05/14/02		
Benchmark Project Reference: PETER COOPER, GC Client Sample ID : B-1 (2-4')	WANDA PROJECT #0021-001-400			
Date Sampled : 04/16/02 09:56 Order # Date Received: 04/17/02 Submission #	: 544873 : R2211551	Sample Matrix: Percent Solid:	SOIL/SEDIMENT 80.2	
ANALYTE	PQL	RESULT	UNITS	
DATE ANALYZED : 04/24/02 ANALYTICAL DILUTION: 0.79			Dry Weight	
ACETONE	10	20	UG/KG	
BENZENE	10	9.9 U	UG/KG	
BROMODICHLOROMETHANE	10	9.9 U	UG/KG	
BROMOFORM	10	9.9 U	UG/KG	
BROMOMETHANE	10	9.9 U	UG/KG	
2-BUTANONE (MEK)	10	2.9 J	UG/KG	
METHYL TERT-BUTYL ETHER	10	9.9 U	UG/KG	
CARBON DISULFIDE	10	9.9 U	UG/KG	
CARBON TETRACHLORIDE	10	3.0 J	UG/KG	
CHLOROBENZENE	10	9.9 U	UG/KG	
CHLOROETHANE	10	9.9 U	UG/KG	
CHLOROFORM	10	5.5 J	UG/KG	
CHLOROMETHANE	10	9.9 U	UG/KG	
1,2-DIBROMO-3-CHLOROPROPANE	10	9.9 U J	UG/KG	
CYCLOHEXANE	10	9.9 U	UG/KG	
DIBROMOCHLOROMETHANE	10	9.9 U	UG/KG	
1,2-DIBROMOETHANE	10	9.9 U	UG/KG	
1,2-DICHLOROBENZENE	10	9.9 U J	'UG/KG	
1,4-DICHLOROBENZENE	10	9.9 UJ	UG/KG	
1,3-DICHLOROBENZENE	10	9.9 UT	UG/KG	
DICHLORODIFLUOROMETHANE	10	9.9 ປັ	UG KG	
1,1-DICHLOROETHANE	10	9.9 U	UG/KG	
1,2-DICHLOROETHANE	10	9.9 U	UG/KG	
1,1-DICHLOROETHENE	10	9.9 U	UG/KG	
TRANS-1,2-DICHLOROETHENE	10	9.9 U	UG/KG	
CIS-1,2-DICHLOROETHENE	10	9.9 U	UG/KG	
1,2-DICHLOROPROPANE	10	9.9 U	UG/KG	
TRANS-1, 3-DICHLOROPROPENE	10	9.9 U	UG/KG	
CIS-1,3-DICHLOROPROPENE	10	9.9 U	UG/KG	
ETHYLBENZENE	10	9.9 Ŭ	UG/KG	
2-HEXANONE	10	9.9 U	UG/KG	
ISOPROPYLBENZENE	10	11 9.9		
METHYL ACETATE	10	9.9 11		
METHYLCYCLOHEXANE	10	9.9 11	UG/KG	
METHYLENE CHLORIDE	10	0,9 U	UG/KG	
4-METHYL-2-PENTANONE	10	9.9 11	UG/KG	
STYRENE	10	9.9 11		
1,1,2,2-TETRACHLOROETHANE	10	9.9 11 3		
TETRACHLOROETHENE	10	1900 520 F-		
TOLUENE	10	Q Q II		
1, 2, 4 - TRICHLOROBENZENE	10	0 0 11 T		
1, 1, 1 - TRICHLOROETHANE	10	2.5 UJ 11		
1.1.2-TRICHLOROETHANE	10	тт о <i>О</i> Т г		
TRICHLOROETHENE	10	ט פוע ד. ד	UG/KG DJ	
		<i>4</i> U		

- - ----

COLUMBIA ANALYTICAL SERVICES

COLUMBIA ANALYTICAL SERVICES

VOLATILE ORGANICS METHOD 8260B Reported: 05/14/02

Benchmark Project Reference: PETER COOPER, GOWANDA PROJECT #0021-001-400 Client Sample ID : B-1 (2-4')

Date Sampled : 04/16/02 09:56 Order #: 544873 Sample Matrix: SOIL/SEDIMENT Date Received: 04/17/02 Submission #: R2211551 Percent Solid: 80.2

ANALYTE				P	QL	RESULT	UNITS
DATE ANALYZED : 04/24, ANALYTICAL DILUTION:	/02 0.79						Dry Weight
TRICHLOROFLUOROMETHANE 1,1,2-TRICHLORO-1,2,2-TRIFLU VINYL CHLORIDE M+P-XYLENE O-XYLENE	JOROETH				10 10 10 10 10	9.9 U 9.9 U 9.9 U 1.4 J 9.9 U	UG/KG UG/KG UG/KG UG/KG UG/KG
SURROGATE RECOVERIES	QC	LIN	MITS				
BROMOFLUOROBENZENE TOLUENE-D8 DIBROMOFLUOROMETHANE	(42 (71 (70	-	149 128 127	웅) 응) 응)		55 84 90	95 95 95

	VOLAT METHC Repor	TILE ORGANICS D 8260B ted: 05/14/02				
Benchmark Project Reference: PETER COOPER, GOU Client Sample ID : B-2 (2-4')	Benchmark Project Reference: PETER COOPER, GOWANDA PROJECT #0021-001-400 Client Sample ID : B-2 (2-4')					
Date Sampled : 04/16/02 10:30 Order #: Date Received: 04/17/02 Submission #:	: 544874 : R2211551	Sample Matrix: Percent Solid:	SOIL/SEDIMENT 84.2			
ANALYTE	PQL	RESULT	UNITS			
DATE ANALYZED : 04/25/02 ANALYTICAL DILUTION: 0.78			Dry Weight			
ACETONE	10	23 U	UG/KG			
BENZENE	10	9.3 U	UG/KG			
BROMODICHLOROMETHANE	10	9.3 U	UG/KG			
BROMOFORM	10	9.3 Ū	UG/KG			
BROMOMETHANE	10	9.3 U				
2-BUTANONE (MEK)	10	9.3 U	UG/KG			
METHYL TERT-BUTYL ETHER	10	9.3 11				
CARBON DISULFIDE	10	9,3 11				
CARBON TETRACHLORIDE	10	17				
CHLOROBENZENE	10	9.3 11				
CHLOROETHANE	10	9311				
CHLOROFORM	10	18				
CHLOROMETHANE	10	93 11				
1.2-DIBROMO-3-CHLOROPROPANE	10	9311				
CYCLOHEXANE	10	2.2 0.2				
DIBROMOCHLOROMETHANE	10					
1 2-DIBROMOFTHANE	10	5.5 U				
1, 2 - DICKOROLITENE	10	9.30				
	10	9.3 0	, UG/KG			
	10	9.3 05	UG/KG			
1, 3-DICHLOROBENZENE	10	9.3 03	UG/KG			
	10	9.3 0	UG/KG			
1, 1-DICHLOROETHANE	. 10	9.3 0	UG/KG			
1,2-DICHLOROETHANE	10	9.3 U	UG/KG			
1, 1-DICHLOROETHENE	10	9.3 U	UG/KG			
TRANS-1, 2-DI CHLOROETHENE	. 10	9.3 U	UG/KG			
CIS-1,2-DICHLOROETHENE	10	9.3 U	UG/KG			
1,2-DICHLOROPROPANE	10	9.3 U	UG/KG			
TRANS-1, 3-DICHLOROPROPENE	10	9.3 U	UG/KG			
CIS-1,3-DICHLOROPROPENE	10	9.3 U	UG/KG			
ETHYLBENZENE	10	9.3 U	UG/KG			
2-HEXANONE	10	9.3 U	UG/KG			
ISOPROPYLBENZENE	10	9.3 U	UG/KG			
METHYL ACETATE	10	9.3 U	UG/KG			
METHYLCYCLOHEXANE	10	9.3 U	UG/KG			
METHYLENE CHLORIDE	10	9.3 11				
4-METHYL-2-PENTANONE	10	9.3 11	UG/KG			
STYRENE	10	931				
1,1,2,2-TETRACHLOROETHANE	10	93117				
TETRACHLOROETHENE	10	2900 FRO P	$\frac{10}{10}$			
TOLUENE	10					
1.2.4-TRICHLOROBENZENE	10	2.2 U 1 A T				
1 1 1 - TRICHLOROFTHANE	10	1.U U 27				
1 1 2 - TRICHLOROFTHANE	10	TC	$\frac{100}{100}$			
	10	9.3 U				
TUTCHIOUCETHENE	10	1.4 J	UG/KG			

·____.

COLUMBIA ANALYTICAL SERVICES

301761

COLUMBIA ANALYTICAL SERVICES

VOLATILE ORGANICS METHOD 8260B Reported: 05/14/02

Benchmark Project Reference: PETER COOPER, GOWANDA PROJECT #0021-001-400 Client Sample ID : B-2 (2-4')

Date Sampled : 04/16/02 10:30 Order #: 544874 Sample Matrix: SOIL/SEDIMENT Date Received: 04/17/02 Submission #: R2211551 Percent Solid: 84.2

·· - _--

ANALYTE		PQL	RESULT	UNITS
DATE ANALYZED : 04/25/ ANALYTICAL DILUTION:	02 0.78			Dry Weight
TRICHLOROFLUOROMETHANE 1,1,2-TRICHLORO-1,2,2-TRIFLU VINYL CHLORIDE M+P-XYLENE O-XYLENE	OROETH	10 10 10 10 10	9.3 U 9.3 U 9.3 U 9.3 U 9.3 U 9.3 U	UG/KG UG/KG UG/KG UG/KG UG/KG
SURROGATE RECOVERIES	QC LI	MITS		
BROMOFLUOROBENZENE TOLUENE-D8 DIBROMOFLUOROMETHANE	(42 - (71 - (70 -	149 %) 128 %) 127 %)	53 83 87	ક ક

COLUMBIA ANALYTICAL SERVICES	
'n	VOLATILE ORGANICS
	METHOD 8260B
	Reported: 05/14/02

Benchmark Project Reference: PETER COOPER, GOWANDA PROJECT #0021-001-400 Client Sample ID : B-3 (2-4')					
Date Sampled : 04/16/02 11:12 Order # Date Received: 04/17/02 Submission #	: 544875 : R2211551	Sample Matrix: Percent Solid:	SOIL/SEDIMENT 82.9		
ANALYTE	PQL	RESULT	UNITS		
DATE ANALYZED : 04/24/02 ANALYTICAL DILUTION: 0.75			Dry Weight		
ACETONE	10	31	UG/KG		
BENZENE	10	9.0 U	UG/KG		
BROMODICHLOROMETHANE	10	9.0 U	UG/KG		
BROMOFORM	10	9.0 U	UG/KG		
BROMOMETHANE	10	9.0 U	UG/KG		
2-BUTANONE (MEK)	10	9.0 U	UG/KG		
METHYL TERT-BUTYL ETHER	10	9.0 U	UG/KG		
CARBON DISULFIDE	10	9.0 U	UG/KG		
CARBON TETRACHLORIDE	10	9.5	UG/KG		
CHLOROBENZENE	10	9.0 U	UG/KG		
CHLOROETHANE	10	9.0 U	UG/KG		
CHLOROFORM	10	4.9 J	UG/KG		
CHLOROMETHANE	10	9.0 U	UG/KG		
1,2-DIBROMO-3-CHLOROPROPANE	10	9.0 U	UG/KG		
CYCLOHEXANE	10	9.0 U	UG/KG		
DIBROMOCHLOROMETHANE	10	9.0 U	UG/KG		
1,2-DIBROMOETHANE	10	9.0 U	UG/KG		
1,2-DICHLOROBENZENE	10	9.0 U	' UG/KG		
1,4-DICHLOROBENZENE	10	9.0 U	UG/KG		
1,3-DICHLOROBENZENE	10	9.0 U	UG/KG		
DICHLORODIFLUOROMETHANE	10	9.0 U	UG/KG		
1,1-DICHLOROETHANE	10	9.0 U	UG/KG		
1,2-DICHLOROETHANE	10	9.0 U	UG/KG		
1,1-DICHLOROETHENE	10	9.0 U	UG/KG		
TRANS-1,2-DICHLOROETHENE	10	9.0 U	UG/KG		
CIS-1,2-DICHLOROETHENE	10	9.0 U	UG/KG		
1,2-DICHLOROPROPANE	10	9.0 U	UG/KG		
TRANS-1, 3-DICHLOROPROPENE	10	9.0 U	UG/KG		
CIS-1,3-DICHLOROPROPENE	10	9.0 U	UG/KG		
ETHYLBENZENE	10	2.5 J	UG/KG		
2-HEXANONE	10	9.0 U	UG/KG		
ISOPROPYLBENZENE	10	9.0 U	UG/KG		
METHYL ACETATE	10	9.0 U	UG/KG		
METHYLCYCLOHEXANE	10	9.0 U	UG/KG		
METHYLENE CHLORIDE	10	9.0 U	UG/KG		
4-METHYL-2-PENTANONE	10	9.0 U	UG/KG		
STYRENE	10	9.0 U	UG/KG		
1, 1, 2, 2-TETRACHLOROETHANE	10	9.0 U	UG/KG		
TETRACHLOROETHENE	10	110	UG/KG		
TOLUENE	10	9.0 U	UG/KG		
1,2,4-TRICHLOROBENZENE	10	9.0 U	UG/KG		
1,1,1-TRICHLOROETHANE	10	14	UG/KG		
1,1,2-TRICHLOROETHANE	10	9.0 U	UG/KG 81		
TRICHLOROETHENE	10	3.9 J	UG/KG		

COLUMBIA ANALYTICAL SERVICES		VOLAT METHON Report		
Benchmark Project Reference: PETER COOPER Client Sample ID : B-3 (2-4')	R, GOWANDA	PROJI	ECT #0021-001-40	0
Date Sampled : 04/16/02 11:12 Ord Date Received: 04/17/02 Submissi	ler #: 544 on #: R22	875 11551	Sample Matrix: Percent Solid:	SOIL/SEDIMENT 82.9
ANALYTE		PQL	RESULT	UNITS
DATE ANALYZED : 04/24/02 ANALYTICAL DILUTION: 0.75				Dry Weight
TRICHLOROFLUOROMETHANE 1,1,2-TRICHLORO-1,2,2-TRIFLUOROET VINYL CHLORIDE M+P-XYLENE O-XYLENE	н	10 10 10 10 10	9.0 U 9.0 U 9.0 U 9.7 3.6 J	UG/KG UG/KG UG/KG UG/KG UG/KG
SURROGATE RECOVERIES Q	C LIMITS			
BROMOFLUOROBENZENE (4 TOLUENE-D8 (7 DIBROMOFLUOROMETHANE (7	2 - 149 % 1 - 128 % 0 - 127 %	;) ;) ;)	75 86 89	२ २ २

.

•

COLUMBIA ÀNALYTICAL SERVICES	VOLAT METHO Report	ILE ORGANICS D 8260B ted: 05/22/02	301765
<pre>P Benchmark Project Reference: PETER COOPER, GO Client Sample ID : B-4 (0.5-1.5')</pre>	owanda proji	ECT #0021-001-40	0
Date Sampled : 04/16/02 12:13 Order # Date Received: 04/17/02 Submission #	#: 544876 #: R2211551	Sample Matrix: Percent Solid:	SOIL/SEDIMENT 82.3
ANALYTE	PQL	RESULT	UNITS
DATE ANALYZED : 04/24/02 ANALYTICAL DILUTION: 1.33			Dry Weight
ACETONE	10	57 J	
BENZENE	10	2.2 J	UG/KG
BROMODICHLOROMETHANE	10	16 U	UG/KG
BROMOFORM	10	16 U	UG/KG
BROMOMETHANE	10	16 U	UG/KG
2-BUTANONE (MEK)	10	7.7 J	UG/KG
METHYL TERT-BUTYL ETHER	10	16 U	UG/KG
CARBON DISULFIDE	10	5.7 J	UG/KG
CARBON TETRACHLORIDE	10	220	UG/KG
CHLOROBENZENE	10	16 U	UG/KG
CHLOROETHANE	10	16 U	UG/KG
CHLOROFORM	10	84	UG/KG
CHLOROMETHANE	10	16 U	UG/KG
1,2-DIBROMO-3-CHLOROPROPANE	10	16 U	UG/KG
CYCLOHEXANE	10	16 U	UG/KG
DIBROMOCHLOROMETHANE	10	16 U	UG/KG
1, 2-DIBROMOETHANE	10	16 U	UG/KG
1, 2-DICHLOROBENZENE	10	2.9 J	UG/KG
1,4-DICHLOROBENZENE	10	4.1 J	, UG/KG
1, 3-DICHLOROBENZENE	10	3.4 J	UG/KG
DICHLORODIFLUOROMETHANE	10	16 U	UG/KG
1, 1-DICHLOROETHANE	10	2.2 J	UG/KG
1, Z-DICHLOROETHANE	10	16 U	UG/KG
T, I-DICHLOROETHENE	10	16 0	UG/KG
CIC 1 2 DICHLOROETHENE	10	16 0	UG/KG
	10	16 0	UG/KG
TEANS, 1, 2, DICHLOROPANE	10	16 U	UG/KG
CIC.1.2 DICULORODODENE	10	16 0	UG/KG
ETHYLEFNZENE	10	16 0	
2-HEXDNONE	10	1.9 0	
TSODPODYLBENZENE	10		
METHYL ACETATE	10		
METHYLCYCLOHEXANE	10		
METHYLENE CHLORIDE	10		
4 - METHYL, - 2 - PENTANONE	10		
STYRENE	10	7.4 U 16 TT	11C / KC
1.1.2.2-TETRACHLOROETHANE	10		
TETRACHLOROETHENE	10	100 21	
TOLUENE	10	2 / T	$\frac{100}{100}$
1.2.4-TRICHLOROBENZENE	10		
1.1.1-TRICHLOROETHANE	10	280	
1,1,2-TRICHLOROETHANE	10		IIG/KA ~
TRICULOROPHIENE	±•	- U U [,	

COLUMBIA ANALYTICAL SERVICES		VOLAT METHOI Report	ILE ORGANICS D 8260B Led: 05/22/02	301766
Benchmark Project Reference: PETER COOPH Client Sample ID : B-4 (0.5-1.	ER, GOWAL 5')	NDA PROJI	ECT #0021-001-40	0
Date Sampled : 04/16/02 12:13 Or Date Received: 04/17/02 Submiss	der #: 5 ion #: 1	544876 R2211551	Sample Matrix: Percent Solid:	SOIL/SEDIMENT 82.3
ANALYTE		PQL	RESULT	UNITS
DATE ANALYZED : 04/24/02 ANALYTICAL DILUTION: 1.33				Dry Weight
TRICHLOROFLUOROMETHANE 1,1,2-TRICHLORO-1,2,2-TRIFLUOROE VINYL CHLORIDE M+P-XYLENE O-XYLENE	тн	10 10 10 10	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	UG/KG UG/KG UG/KG UG/KG UG/KG
SURROGATE RECOVERIES	QC LIMI	rs		
BROMOFLUOROBENZENE (TOLUENE-D8 (DIBROMOFLUOROMETHANE ($\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	 19 %) 28 %) 27 %)	19 * 67 * 120	ata ata ata

	VOLAT METHO Repor	ILE ORGANICS D 8260B ted: 05/14/02	
Benchmark			
Client Sample ID : B-4 (2-4')	anda proj.	ECT #0021-001-40	0
Date Sampled : 04/16/02 12:05 Order #: Date Received: 04/17/02 Submission #:	544877 R2211551	Sample Matrix: Percent Solid:	SOIL/SEDIMEN 87.3
ANALYTE	PQL	RESULT	UNITS
DATE ANALYZED : 04/25/02 ANALYTICAL DILUTION: 0.79			Dry Weight
ACETONE	10	29	UG/KG
BENZENE	10	9.0 U	UG/KG
BROMODICHLOROMETHANE	10	9.0 U	UG/KG
BROMOFORM	10	9.0 U	UG/KG
BROMOMETHANE	10	9.0 U	UG/KG
2-BUTANONE (MEK)	10	4.6 J	UG/KG
METHYL TERT-BUTYL ETHER	10	9.0 U	UG/KG
CARBON DISULFIDE	10	4.0 J	UG/KG
CARBON TETRACHLORIDE	10	8.0 J	UG/KG
CHLOROBENZENE	10	9.0 0	UG/KG
CHLOROEOPM	10	9.0 0	UG/KG
CHLOROFORM	10	3.0 J	UG/KG
	10	9.0 0	UG/KG
CYCLOHEXANE	10	9.00	
DIBROMOCHLOROMETHANE	10		
1.2-DIBROMOETHANE	10	9.0 0	
1,2-DICHLOROBENZENE	10	9.0 0	
1.4-DICHLOROBENZENE	10	9 0 11	
1, 3-DICHLOROBENZENE	10	9.0 U	
DICHLORODIFLUOROMETHANE	10	9.0 U	UG/KG
1,1-DICHLOROETHANE	10	9.0 U	UG/KG
1,2-DICHLOROETHANE	10	9.0 U	UG/KG
1,1-DICHLOROETHENE	10	9.0 U	UG/KG
TRANS-1,2-DICHLOROETHENE	10	9.0 U	UG / KG
CIS-1,2-DICHLOROETHENE	10	9.0 U	UG/KG
1,2-DICHLOROPROPANE	10	9.0 U	UG/KG
TRANS-1,3-DICHLOROPROPENE	10	9.0 U	UG/KG
CIS-1, 3-DICHLOROPROPENE	10	9.0 U	UG/KG
ETHYLBENZENE	10	1.7 J	UG/K G
2-HEXANONE	10	1.7 J	UG/KG
ISOPROPYLBENZENE	10	9.0 U	UG/KG
METHYL ACETATE	10	9.0 U	UG/KG
METHYLCYCLOHEXANE	10	3.1 J	UG/KG
METHYLENE CHLORIDE	10	9.0 U	UG/KG
4 - METHYL-2 - PENTANONE	10	9.0 U	UG/KG
	10	9.0 U	UG/KG
1,1,2,2-1EIRACHLOKUEIHANE TETRACHLOROETUENE	10	9.0 U	UG/KG
TOLUENE	10	39	UG/KG
		1.5 J	
$1 1 - \operatorname{TRICHIORODOMODINO}$	10	9.0 U	
1.1.2-TRICHLOROETHANE	10		
TRICHLOROETHENE	10	1.1 J	UG/ RG

COLUMBIA ANALYTICAL_SERVICES

COLUMBIA	ANALYTICAL	SERVICES
----------	------------	----------

WOLATILE ORGANICS METHOD 8260B Reported: 05/14/02

Benchmark Project Reference: PETER COOPER, GOWANDA PROJECT #0021-001-400 Client Sample ID : B-4 (2-4')

Date Sampled : 04/16/02 12:05 Order #: 544877 Sample Matrix: SOIL/SEDIMENT Date Received: 04/17/02 Submission #: R2211551 Percent Solid: 87.3

-- -- -----

ANALYTE		PQL	RESULT	UNITS
DATE ANALYZED : 04/25 ANALYTICAL DILUTION:	/02 0.79			Dry Weight
TRICHLOROFLUOROMETHANE 1,1,2-TRICHLORO-1,2,2-TRIFL VINYL CHLORIDE M+P-XYLENE O-XYLENE	UOROETH	10 10 10 10 10	9.0 U 9.0 U 9.0 U 4.9 J 9.0 U	UG/KG UG/KG UG/KG UG/KG UG/KG
SURROGATE RECOVERIES	QC LIM	ITS		
BROMOFLUOROBENZENE TOLUENE-D8 DIBROMOFLUOROMETHANE	(42 - (71 - (70 -	149 %) 128 %) 127 %)	76 87 90	અ અ અ

	8260B ed: 05/14/02						
Benchmark Project Reference: PETER COOPER, GOWANDA PROJECT #0021-001-400 Client Sample ID : BLIND DUPLICATE							
Date Sampled : 04/16/02 Order #: Date Received: 04/17/02 Submission #:	544878 R2211551	Sample Matrix: Percent Solid:	SOIL/SEDIMEN 84.1				
ANALYTE	PQL	RESULT	UNITS				
DATE ANALYZED : 04/25/02 ANALYTICAL DILUTION: 0.77			Dry Weight				
ACETONE	10	23	UG/KG				
BENZENE	10	3.3 J	UG/KG				
BROMODICHLOROMETHANE	10	9.2 U	UG/KG				
BROMOFORM	10	9.2 U	UG/KG				
BROMOMETHANE	10	9.2 U	UG/KG				
2-BUTANONE (MEK)	10	4.5 J	UG/KG				
METHYL TERT-BUTYL ETHER	10	9.2 U	UG/KG				
CARBON DISULFIDE	10	17	UG/KG				
CARBON TETRACHLORIDE	10	14					
CHLOROBENZENE	10	9.2 11	UG/KG				
CHLOROETHANE	10	9.2 11					
CHLOROFORM	10	4.2 J					
CHLOROMETHANE	10	9 2 11					
1,2-DIBROMO-3-CHLOROPROPANE	10	9.2 11					
CYCLOHEXANE	10	11					
DIBROMOCHLOROMETHANE	10	9 2 11					
1.2-DIBROMOETHANE	10	921					
1.2-DICHLOROBENZENE	10	9 2 11					
1, 4-DICHLOROBENZENE	10	9.2.0					
1 3-DICHLOROBENZENE	10	ט 2.2 זו כ ם					
DICHLORODIFLUOROMETHANE	10						
1 1-DICHLOROFTHANE	10						
1, 2 DICHLOROFTUNE	10	9.2 0					
	10	9.2 0					
	10	9.2 0	UG/KG				
	10	9.2 0	UG/KG				
	10	9.2 0	UG/KG				
TRANC 1 2 DICULOROPROPRIE	10	9.2 0	UG/KG				
	10	9.2 0	UG/KG				
	10	9.2 0	UG/KG				
EINILDENGENE	10	2.4 J	UG/KG				
2-HEXANONE	10	9.2 U	UG/KG				
ISOPROPYLBENZENE	10	9.2 U	UG/KG				
METHYL ACETATE	10	9.2 U	UG/KG				
METHYLCYCLOHEXANE	10	17	UG/KG				
METHYLENE CHLORIDE	10	9.2 U	UG/KG				
4 - METHYL - 2 - PENTANONE	10	9.2 U	UG/KG				
STYRENE	10	9.2 U	UG/KG				
1,1,2,2-TETRACHLOROETHANE	10	9.2 U	UG/KG				
TETRACHLOROETHENE	10	75	UG/KG				
TOLUENE	10	7.1 J	UG/KG				
1,2,4-TRICHLOROBENZENE	10	9.2 U	UG/KG 1 25				
1,1,1-TRICHLOROETHANE	10	36	UG/KG				
1, 1, 2-TRICHLOROETHANE	10	9.2 U	UG/KG				
TRICHLOROETHENE	10	1.7 J	UG/KG				

- - -

COLUMBIA ANALYTICAL SERVICES

VOLATILE ORGANICS METHOD 8260B Reported: 05/14/02

COLUMBIA ANALYTICAL SERVICES			-
	VOLATI MET HOD Report	LE ORGANICS 8260B ed: 05/14/02	
Benchmark Project Reference: PETER COOPER, Client Sample ID : BLIND DUPLICAT	GOWANDA PROJE	CT #0021-001-40	0
Date Sampled : 04/16/02 Order Date Received: 04/17/02 Submission	: #: 544878 1 #: R2211551	Sample Matrix: Percent Solid:	SOIL/SEDIMENT 84.1
ANALYTE	PQL	RESULT	UNITS
DATE ANALYZED : 04/25/02 ANALYTICAL DILUTION: 0.77			Dry Weight
TRICHLOROFLUOROMETHANE 1,1,2-TRICHLORO-1,2,2-TRIFLUOROETH VINYL CHLORIDE M+P-XYLENE O-XYLENE	10 10 10 10 10	9.2 U 9.2 U 9.2 U 4.8 J 3.6 J	UG/KG UG/KG UG/KG UG/KG UG/KG
SURROGATE RECOVERIES QC	LIMITS		
BROMOFLUOROBENZENE (42 TOLUENE-D8 (71 DIBROMOFLUOROMETHANE (70	- 149 %) - 128 %) - 127 %)	70 87 84	୫ ୫ ୫

- - -----

.

	VOLAT METHO Repor	ILE ORGANICS D 8260B ted: 05/14/02	· .				
Benchmark Project Reference: PETER COOPER, GOWANDA PROJECT #0021-001-400 Client Sample ID : B-7 (0.5-1.5')							
Date Sampled : 04/16/02 15:09 Order # Date Received: 04/17/02 Submission #	: 544879 : R2211551	Sample Matrix: Percent Solid:	SOIL/SEDIME 87.3				
ANALYTE	PQL	RESULT	UNITS				
DATE ANALYZED : 04/25/02 ANALYTICAL DILUTION: 0.88			Dry Weight				
ACETONE	10	14 U	UG/KG				
BENZENE	10	10 U	UG/KG				
BROMODICHLOROMETHANE	10	10 U	UG/KG				
BROMOFORM	10	10 U	UG/KG				
BROMOMETHANE	10	10 U	UG/KG				
2-BUTANONE (MEK)	10	10 Ū	UG/KG				
METHYL TERT-BUTYL ETHER	10	10 U	UG/KG				
CARBON DISULFIDE	10	10 U	UG/KG				
CARBON TETRACHLORIDE	10	8.5 J	UG/KG				
CHLOROBENZENE	10	10 U	UG/KG				
CHLOROETHANE	10	10 U	UG/KG				
CHLOROFORM	10	15	UG/KG				
CHLOROMETHANE	10	10 U	UG/KG				
,2-DIBROMO-3-CHLOROPROPANE	10	10 U	UG/KG				
CYCLOHEXANE	10	10 U	UG/KG				
DIBROMOCHLOROMETHANE	10	10 U	UG/KG				
,2-DIBROMOETHANE	10	10 U .	UG/KG				
L, 2-DICHLOROBENZENE	10	10 U	UG/KG				
, 4 - DI CHLOROBENZENE	10	10 U	UG / KG				
L, 3-DICHLOROBENZENE	10	10 U	UG/KG				
DICHLORODIFLUOROMETHANE	10	10 U	UG/KG				
1,1-DICHLOROETHANE	10	10 U	UG/KG				
,2-DICHLOROETHANE	10	10 U	UG/KG				
,1-DICHLOROETHENE	10	10 U	UG/KG				
TRANS-1,2-DICHLOROETHENE	10	10 U	UG/KG				
CIS-1,2-DICHLOROETHENE	10	10 U	UG/KG				
, 2-DICHLOROPROPANE	10	10 U	UG/KG				
TRANS-1, 3-DICHLOROPROPENE	10	10 U	UG/KG				
CIS-1,3-DICHLOROPROPENE	10	10 U	UG/KG				
CTHYLBENZENE	10	10 U	UG/KG				
2-HEXANONE	10	10 U	UG/KG				
SOPROPYLBENZENE	10	10 U	UG/KG				
IETHYL ACETATE	10	10 U	UG/KG				
1ETHYLCYCLOHEXANE	10	1.1 J	UG/KG				
METHYLENE CHLORIDE	10	10 U	UG/KG				
-METHYL-2-PENTANONE	10	10 Ū	UG/KG				
STYRENE	1.0	10 U	UG/KG				
,1,2,2-TETRACHLOROETHANE	10	10 U	UG/KG				
TETRACHLOROETHENE	10	44	UG/KG				
NOLUENE	10	10 U	UG/KG				
, 2, 4 - TRICHLOROBENZENE	10	10 U	UG/KG				
1,1,1-TRICHLOROETHANE	10	16	UG/KC 27				
1,1,2-TRICHLOROETHANE	10	10 U	UG/KG				
FRICHLOROETHENE	10	2 6 .1					

ANALYTICAL SERVICES COLIMPTA

COLUMBIA ANALYTICAL SERVICES

VOLATILE ORGANICS METHOD 8260B Reported: 05/14/02

Benchmark

Project Reference: PETER COOPER, GOWANDA PROJECT #0021-001-400 Client Sample ID : B-7 (0.5-1.5')

Date Sampled : 04/16/02 15:09 Order #: 544879 Sample Matrix: SOIL/SEDIMENT Date Received: 04/17/02 Submission #: R2211551 Percent Solid: 87.3

ANALYTE				P	QL	RI	ESULT	UNITS
DATE ANALYZED : 04/25 ANALYTICAL DILUTION:	/02 0.88			,				Dry Weight
TRICHLOROFLUOROMETHANE 1,1,2-TRICHLORO-1,2,2-TRIFL VINYL CHLORIDE M+P-XYLENE O-XYLENE	UOROETH				10 10 10 10 10	נ נ נ נ	0 U 0 U 0 U 0 U 0 U	UG/KG UG/KG UG/KG UG/KG UG/KG
SURROGATE RECOVERIES	QC	LIN	MITS					
BROMOFLUOROBENZENE TOLUENE-D8 DIBROMOFLUOROMETHANE	(42 (71 (70	-	149 128 127	웅) 웅) 웅)		8 9 8	3 0 4	95 95 95 95

	VOLAT METHO Repor	TILE ORGANICS DD 8260B Ted: 05/22/02	
Benchmark Project Reference: PETER COOPER - Client Sample ID : B-9 (0.5-2.5')	GOWANDA PRO	JECT #0021-001-4	00
Date Sampled : 04/17/02 12:10 Order Date Received: 04/18/02 Submission	#: 545109 #: R2211551	Sample Matrix: Percent Solid:	SOIL/SEDIMENT 80.6
ANALYTE	PQL	RESULT	UNITS
DATE ANALYZED : 04/25/02 ANALYTICAL DILUTION: 1.10			Dry Weight
ACETONE	10	150 J	UG/KG
BENZENE	10	2.4 J	UG/KG
BROMODICHLOROMETHANE	10	14 UJ	UG/KG
BROMOFORM	10	1400 14-U	UG/KG
BROMOMETHANE	10	14 U J	UG/KG
2-BUTANONE (MEK)	10	15 \	UG/KG
METHYL TERT-BUTYL ETHER	10	14 U	UG/KG
CARBON DISULFIDE	. 10	1.7 J /	UG/KG
CARBON TETRACHLORIDE	10	21 🖌	UG/KG
CHLOROBENZENE	10	1400 UL 14 U	UG/KG
CHLOROETHANE	10	14 U J	UG/KG
CHLOROFORM	10		UG/KG
CHLOROMETHANE	10		UG/KG
1, 2-DIBROMO-3-CHLOROPROPANE	10	1400 U <u>14 U</u>	UG/KG
DIDDOMOCIU ODOMDENNE	10	5.2 J	
	10	1400 (L 14, U	UG/KG
1,2-DIBRUMUETHANE	10		UG/KG
1, 2-DICHLOROBENZENE	10		UG/KG
1,4-DICHLOROBENZENE	10		UG/KG
1, 3-DICHLOROBENZENE	10	1.6 J	UG/KG
	10	14 0	UG/KG
1, 1-DICHLOROETHANE	10	14 0	UG/KG
1,2-DICHLOROETHANE	10	14 0	UG/KG
1, 1-DICHLOROETHENE	10	14 0	UG/KG
TRANS-1, 2-DICHLOROETHENE	10	14 U	UG/KG
CIS-1, 2-DICHLOROETHENE	10	14 0	UG/KG
1, 2-DICHLOROPROPANE	10	14 U	UG/KG
TRANS-1, 3-DICHLOROPROPENE	10	14 U	UG/KG
CIS-1, 3-DICHLOROPROPENE	10		UG/KG
ETHYLBENZENE	10	8.6 J 🗸	UG/KG
2-HEXANONE	10	1400 U 14 U	UG/KG
ISOPROPYLBENZENE	10	14 U J	UG/KG
METHYL ACETATE	10	14 U	UG/KG
METHYLCYCLOHEXANE	10	9.2 J	UG/KG
METHYLENE CHLORIDE	10	14 U (,	UG/KG
4 - METHYL - 2 - PENTANONE	10	14 U V	UG/KG
STYRENE	10	1400 L = + - U	UG/KG
1,1,2,2-TETRACHLOROETHANE	10	1400 L 14 U	UG/KG
TETRACHLOROETHENE	10	15,000 740 E	UG/KG
TOLUENE	10	3700 11 J	UG/KG
1,2,4-TRICHLOROBENZENE	10	3.5 J T	UG/KG
1,1,1-TRICHLOROETHANE	10	98 (UG/KG
1,1,2-TRICHLOROETHANE	10	14 U	UG KOD
TRICHLOROETHENE	10	4.6 J 🖌	UG/KG

COLUMBIA ANALYTICAL SERVICES

		VOLATI METHOD Report		
Benchmark Project Reference: PETER COOPER - Client Sample ID : B-9 (0.5-2.5')	GO	WANDA PROJ	ECT #0021-001-40	00
Date Sampled : 04/17/02 12:10 Order Date Received: 04/18/02 Submission	#: #:	545109 R2211551	Sample Matrix: Percent Solid:	SOIL/SEDIMENT 80.6
ANALYTE		PQL	RESULT	UNITS
DATE ANALYZED : 04/25/02 ANALYTICAL DILUTION: 1.10				Dry Weight
TRICHLOROFLUOROMETHANE 1,1,2-TRICHLORO-1,2,2-TRIFLUOROETH VINYL CHLORIDE M+P-XYLENE O-XYLENE		10 10 10 10 10	14 U J 14 U J 14 U J 5000 35 3.7 J J	UG/KG UG/KG UG/KG UG/KG UG/KG
SURROGATE RECOVERIES QC	LIM	ITS		
BROMOFLUOROBENZENE (42 TOLUENE-D8 (71 DIBROMOFLUOROMETHANE (70	-	149 %) 128 %) 127 %)	19 * 70 * 110	

301774

COLUMBIA ANALYTICAL SERVICES

<i>,</i>			301775
COLUMBIA ANALYTICAL SERVICES	· .		
	VOLAT	ILE ORGANICS	
	METHO	D 8260B	
	kepor	tea: 05/14/02	
Benchmark			
Project Reference: PETER COOPER - C	SOWANDA PRO	JECT #0021-001-4	00
Client Sample ID : B-15 (0.5-1.5')			
Date Sampled $\cdot 04/17/02$ 11.02 Order t	. 545112	Comple Matrix	
Date Received: 04/18/02 Submission \$: R2211551	Percent Solid:	88.0
ANALYTE	PQL	RESULT	UNITS
DATE ANALYZED : 04/25/02 ANALYTICAL DILUTION 0 79			Demo Hard all
ANALIIICAL DIDOIION. 0.79			Dry weight
ACETONE	10	36	
BENZENE	10	9.0 U	UG/KG
BROMODICHLOROMETHANE	10	9.0 U	UG/KG
BROMOFORM	10	9.0 U	UG/KG
BROMOMETHANE	10	9.0 U	UG/KG
2-BUTANONE (MEK)	10	2.6 J	UG/KG
METHYL TERT-BUTYL ETHER	10	9.0 U	UG/KG
CARBON DISULFIDE	10	9.0 U	UG/KG
CARBON TETRACHLORIDE	10	9.0 U	UG/KG
CHLOROBENZENE	10	9.0 0	UG/KG
CHLOROEIHANE	10	9.0 0	UG/KG
CHLOROMETHANE	10	9.00	UG/KG
1 2-DIBROMO-3-CHLOROPROPANE	10	9.00	
CYCLOHEXANE	10	Э.00 Зат	
DIBROMOCHLOROMETHANE	10	9 0 11	
1,2-DIBROMOETHANE	10	9.0 1	
1,2-DICHLOROBENZENE	10	9.0 U	UG/KG
1,4-DICHLOROBENZENE	10	9.0 U	UG/KG
1,3-DICHLOROBENZENE	10	9.0 U	UG/KG
DI CHLORODI FLUOROMETHANE	10	9.0 U	UG/KG
1,1-DICHLOROETHANE	10	9.0 U	UG/KG
1,2-DICHLOROETHANE	10	9.0 U	UG/KG
1,1-DICHLOROETHENE	10	9.0 U	UG/KG
TRANS-1, 2-DICHLOROETHENE	10	9.0 U	UG/KG
CIS-1,2-DICHLOROETHENE	10	9.0 U	UG/KG
1,2-DICHLOROPROPANE	10	9.0 U	UG/KG
TRANS-1, 3-D1CHLOROPROPENE	10	9.0 U	UG/KG
CIS-1, 3-DICHLOROPROPENE	10	9.0 U	UG/KG
ETHYLBENZENE	10	9.0 0	UG/KG
Z-HEXANONE	10	9.0 0	
I SUPRUPILBENZENE METHUL DOFTDE	10		
METRIL ACEIALE	10	2.8 J	
METHULENE CHLORIDE	10	5.8 J	
4 - METHYL- 2 - PENTANONE	10	3.0 U 3.0 J	ווכ / אכ
STYRENE	10	ט ט.כ זו ח מ	
1,1,2,2-TETRACHLOROETHANE	10	9.0 11	
TETRACHLOROETHENE	10	ד. ר <u>.</u> ר	UG/KG
TOLUENE	10	1.7 J	UG/KG
1,2,4-TRICHLOROBENZENE	10	9.0 U	UG/KG
1, 1, 1-TRICHLOROETHANE	10	2.4 J	UG/KG
1,1,2-TRICHLOROETHANE	10	9.0 U	UG/KG17
TRICHLOROETHENE	10	9.0 U	UG/KG

,

COLUMBIA ANALYTICAL SERVICES	L SERVICES VOLATILE ORGANICS METHOD 8260B Reported: 05/14/02					
Benchmark Project Reference: PETER COOPE Client Sample ID : B-15 (0.5-1	R - GOV .5')	NANDA PROJ	JECT #0021-001-4	00		
Date Sampled : 04/17/02 11:02 Or Date Received: 04/18/02 Submiss	der #: ion #:	545112 R2211551	Sample Matrix: Percent Solid:	SOIL/SEDIMENT 88.0		
ANALYTE		PQL	RESULT	UNITS		
DATE ANALYZED : 04/25/02 ANALYTICAL DILUTION: 0.79	<u></u>			Dry Weight		
TRICHLOROFLUOROMETHANE 1,1,2-TRICHLORO-1,2,2-TRIFLUOROET VINYL CHLORIDE M+P-XYLENE O-XYLENE	ГН	10 10 10 10	9.0 U 9.0 U 9.0 U 2.3 J 9.0 U	UG/KG UG/KG UG/KG UG/KG UG/KG		
SURROGATE RECOVERIES	QC LIMI	TS				
BROMOFLUOROBENZENE (4 TOLUENE-D8 (7 DIBROMOFLUOROMETHANE (7	42 - 1 71 - 1 70 - 1	49 %) 28 %) 27 %)	64 85 90	ર સ્ટ		

.

- ----

COLUMBIA ANALYTICAL SERVICES	VOLAT METHO Repor	ILE ORGANICS D 8260B ted: 05/14/02				
Benchmark Project Reference: PETER COOPER - GOWANDA PROJECT #0021-001-400 Client Sample ID : B-16 (0.7-1.1')						
Date Sampled : 04/17/02 11:55 Order # Date Received: 04/18/02 Submission #	: 545114 : R2211551	Sample Matrix: Percent Solid:	SOIL/SEDIM 89.2			
ANALYTE	PQL	RESULT	UNITS			
DATE ANALYZED : 04/25/02 ANALYTICAL DILUTION: 0.84			Dry Weight			
ACETONE	10	21 U	UG/KG			
BENZENE	10	9.4 U	UG/KG			
BROMODICHLOROMETHANE	10	9.4 U	UG/KG			
BROMOFORM	10	9.4 U	UG/KG			
BROMOMETHANE	10	9.4 U	UG/KG			
2-BUTANONE (MEK)	10	9.4 U	UG/KG			
METHYL TERT-BUTYL ETHER	10	9.4 U	UG/KG			
CARBON DISULFIDE	10	9.4 U	UG/KG			
CARBON TETRACHLORIDE	10	9.4 U	UG/KG			
CHLOROBENZENE	10	9.4 U	UG/KG			
CHLOROETHANE	10	9.4 U	UG/KG			
CHLOROFORM	10	9.4 U	UG/KG			
CHLOROMETHANE	10	9.4 11	UG/KG			
1, 2-DIBROMO-3-CHLOROPROPANE	10	9.4 11	UG/KG			
CYCLOHEXANE	10	9.4 11	UG/KG			
DIBROMOCHLOROMETHANE	10	9.4 U	UG/KG			
1,2-DIBROMOETHANE	10	9.4 11	UG/KG			
1.2-DICHLOROBENZENE	10	9.4 11	UG/KG			
1.4~DICHLOROBENZENE	10	9 4 11				
1.3-DICHLOROBENZENE	10	9 4 11				
DICHLORODIFLUOROMETHANE	10	9 4 11				
1 1-DICHLOROETHANE	10	9 4 11				
1 2-DICHLOROFTHANE	10					
1 1-DICHLOPOFTHENE	10					
TRANS-1 2-DICHLOROFTHENE	10					
	10					
	10	9.4 U				
	10	9.4 0				
CIC 1 2 DICULOROPROPENE	10	9.4 0				
CIS-I, 3-DICHLOROPROPENE	10	9.4 0	UG/KG			
ETHYLBENZENE	10	9.4 U	UG/KG			
Z-HEXANUNE	10	9.4 U	UG/KG			
I SUPRUPILBENZENE	10	9.4 U	UG/KG			
METHYL ACETATE	10	9.4 U	UG/KG			
METHYLCYCLOHEXANE	10	0.96 J	UG/KG			
METHILENE CHLOKIDE	10	9.4 U	UG/KG			
4-METHIL-2-PENTANONE	10	2.1 J	UG/KG			
STIKENE	10	9.4 U	UG/KG			
1, 1, 2, 2-TETRACHLOROETHANE	10	9.4 U	UG/KG			
TETRACHLOROETHENE	10	31	UG/KG			
TOLUENE	10	9.4 U	UG/KG			
1,2,4-TRICHLOROBENZENE	10	9.4 U	UG/KG			
1,1,1-TRICHLOROETHANE	10	1.6 J	UG/KG ୍ସ୍ରି(
1,1,2-TRICHLOROETHANE	10	9.4 U	UG/KG			
TRICHLOROETHENE	10	9411	UG/KG			

COLUMBIA ANALYTICAL SERVICES	NALYTICAL SERVICES VOLATILE ORGANICS METHOD 8260B Reported: 05/14/02					
Benchmark Project Reference: PETER COOF Client Sample ID : B-16 (0.7-	PER - GOW	IANDA PROJ	ECT #0021-001-4	00		
Date Sampled : 04/17/02 11:55 C Date Received: 04/18/02 Submis	order #: sion #:	545114 R2211551	Sample Matrix: Percent Solid:	SOIL/SEDIMENT 89.2		
ANALYTE		PQL	RESULT	UNITS		
DATE ANALYZED : 04/25/02 ANALYTICAL DILUTION: 0.8	34			Dry Weight		
TRICHLOROFLUOROMETHANE 1,1,2-TRICHLORO-1,2,2-TRIFLUORC VINYL CHLORIDE M+P-XYLENE O-XYLENE	ETH	10 10 10 10 10	9.4 U 9.4 U 9.4 U 1.6 J 9.4 U	UG/KG UG/KG UG/KG UG/KG UG/KG		
SURROGATE RECOVERIES	QC LIMI	TS				
BROMOFLUOROBENZENE TOLUENE-D8 DIBROMOFLUOROMETHANE	(42 - 1 (71 - 1 (70 - 1	49 %) 28 %) 27 %)	75 87 89	90 90 96		

APPENUIX Q

APPENDIX Q Piper Hydrochemical Facies Plots

. . . .

·· · ----

APPENDIX R

ŧ

۵

~

APPENDIX R U.S. EPA RI Comments and Respondent Responses

338 Harris Hill Road, Suite 201 Williamsville, New York 14221 (716) 565-0624 - Fax (716) 565-0625

August 29, 2003 Project 5771

Mr. Kevin Lynch Section Chief United States Environmental Protection Agency Region II 290 Broadway, 20th Floor New York, NY 10007-1866

Subject: Responses to United States Environmental Protection Agency Comments Remedial Investigation Report Peter Cooper Landfill Site – AO No. CERCLA-022000-2014 Gowanda, New York

Dear Mr. Lynch:

Attached are responses to United States Environmental Protection Agency comments dated July 18, 2003 on the Remedial Investigation Report prepared by Geomatrix Consultants, Inc. (Geomatrix) and Benchmark Environmental Engineering & Science, PLLC for the Peter Cooper Landfill Site in Gowanda, New York.

Please contact us if you have questions.

Sincerely yours, GEOMATRIX CONSULTANTS, INC.

Richard H. Frappa, P.G. Senior Hydrogeologist

Enclosure

J. Wittenborn (Collier Shannon) A. Cramer (Collier Shannon) M. Graham (Phillips Lytle) K. Hogan (Phillips Lytle) S. Davis (Huber Lawrence) J. Simone (NYSEG) K. McMahon (Collier Shannon) G. Shanahan (USEPA) S. Henry (USEPA)

Geometrix Consultants, Inc. Engineers, Geologists, and Environmental Sciencists M. Moore (NYSDEC) E. Belmore (NYSDEC) E. Wohlers (Catt. County DOH) M. Hutchinson (V. Gowanda) D. Hettrick (NYSDOH) J. Mayo (CDM) T. Forbes (Benchmark)

Mr. Kevin Lynch USEPA Region 2 August 29, 2003 Page 2 of 31

RI Comment - Responses

1. The groundwater sampling procedure outlined in section 2.4.7 references the USEPA Region II Groundwater Sampling SOP, dated March 16, 1998, however, it appears that this procedure was not followed throughout the groundwater sampling program. Aside from the wells that were not suitable for low-flow sampling (i.e., MW-7S and MW-8D), sampling of several wells was completed using procedures not consistent with the USEPA Region II Groundwater Sampling SOP. For example, monitoring wells MW-2S(R), MW-3(R), and MW-6 were sampled initially using a peristaltic pump. The USEPA Region II Groundwater Sampling SOP states that peristaltic pumps may not be used for collection of volatile organic water samples. Any deviation from the QAPP/SOPs should be clearly explained. A new table that lists each well, sampling event, method used (i.e., low-flow with submersible, purge-and-bailer, etc.), and any deviations from QAPP would be useful.

Response:

The RI report text identifies wells that were not sampled in accordance with USEPA Region II Groundwater Sampling SOP, dated March 16, 1998. The referenced wells are located in the sludge fill area and were sampled in accordance with the USEPA approved RI work plan. The work plan specified using a peristaltic pump for purging to reduce sample turbidity. Actual groundwater samples were collected using a bailer not the peristaltic pump. The RI sampling protocols did not deviate from the work plan. However, the RI text will be revised to provide more specific information regarding the collection of groundwater samples not using the USEPA low flow sampling method.

2. Metal data from the 1996 EPA/Weston investigation was not utilized in the RI report. Data from this investigation is presented, but was not used. The result should be summarized and should be used to supplement data collect as part of the current RI.

Response:

The 1996 EPA/Weston metals data and other data collected during the investigation were presented in Appendix B-4 of the RI Report. Where appropriate, the metals data from this investigation will be used to supplement data discussed in the RI Report.

3. Sampling results for each media should be summarized in figures. For example, there should be a figure(s) corresponding to Figure 3-5A that summarizes groundwater concentrations for site COPCs for the November 2000 sampling event.

Mr. Kevin Lynch USEPA Region 2 August 29, 2003 Page 3 of 31

Response:

All analytical data is tabulated in the RI Report and a summary of constituents exceeding appropriate benchmark criteria summarized in the text. If the reader retains a figure showing sample locations and reads the summary provided in the report text, having analytical summaries presented on figures is not necessary.

4. In addition to the physical descriptions of the Sludge Fill and Cindery Fill areas included in the RI Report, an estimate of the total volume of Sludge Fill and Cindery Fill should be provided. This estimate should be based on historical info/data, RI geophysical work, test pits, soil borings, well installation logs, etc. A figure(s) should be included showing the estimated thickness of fill(s) using contour lines.

Response:

Volume estimates are necessary for evaluation of remedial alternatives for the feasibility study. The only practical remedial alternative involving the need for volume estimates is excavation and removal of the sludge fill. Therefore, a volume estimate and isopach map of the sludge fill will be provided in the revised RI Report.

- 5. There are several issues in Section 3.6.1 that need to be addressed and include:
 - a) The text indicates that the soil cover ranged from a thickness from 10 to 45 inches, and the soil thickness contours as presented on Figure 3-10. Exposed material is currently present at the site, and has been documented by previous investigators. The 1996 Weston report stated the following, "The landfill cap appeared to vary in thickness, and in some areas was missing completely". Exposed areas should be delineated and presented on a revised Figure 3-10. The text should also be revised to reflect actual range of soil cover thickness.

Response:

Figure 3-10 will be revised to show a small, localized area of the sludge fill area near gas monitoring well GMW-2 where the cover soils are absent. The text will be revised to present the range of cover thickness and will refer to the area where the cover has been eroded.

b) The text states (Section 3.6.1 - page 42 and 43) that the soil cover consists primarily of silts and clays. However, based on the information noted in

Mr. Kevin Lynch USEPA Region 2 August 29, 2003 Page 4 of 31

Tables 3-8 and 3-9, the primary cover soils consisted of silts and sands, with minor amounts of clay and gravel.

Response:

The percent of silt and clay (also known as percent fines) of the cover soil tested for grain size distribution ranged from 55 to 70.5%. Therefore the majority of the soil particle size covering the sludge fill is silt and clay. It is acknowledged that fine sand represents nearly a third of the soil matrix in most samples analyzed. Therefore, the description of the grain size distribution of the cover soil will be revised to "the cover soil material consists primarily of silt and clay with some fine sand and minor gravel".

c) The permeability values obtained from the Shelby tubes seem low. Review of the permeability (hydraulic conductivity) data could not be completed, as the permeability data was not included in the appendices of the report. Additionally, as stated in the second paragraph of Section 3.6.1., the sludge fill has a high liquid limit, indicating that the "cover" soils above the sludge fill are permeable. Lastly, the text indicates, along with the Soil Testing Summary" table of Appendix O, that the permeability/hydraulic conductivity testing is in-place and in-situ tests. Neither of these statements are correct, as these tests were performed in a soils laboratory.

Response:

Laboratory permeability data will be obtained from geotechnical testing lab and incorporated into Appendix O. Table 3-7 and the text in 3.6.1 will state that the vertical hydraulic conductivity of the cover soil was obtained from a Shelby tube and analyzed in the laboratory.

6. The RI should discuss the differences in the quality of groundwater samples collected upgradient and downgradient of the waste-fill area.

Response:

Acknowledged. Water quality differences between samples collected from upgradient and downgradient wells will be discussed in the revised RI Report.

Mr. Kevin Lynch USEPA Region 2 August 29, 2003 Page 5 of 31

Specific Comments.

1. <u>Cover Page</u>

The site name should be changed to: Peter Cooper Landfill Site.

Response: Acknowledged.

2. <u>Section 1.2.1, 3rd Paragraph, Page 2</u>

The source of the information pertaining to the installation of a 6-inch clay barrier layer and 18-30 inches of barrier protection soil vegetated with grass should be included in the Report.

Response:

Acknowledged. The referenced information was obtained from the O'Brien & Gere 1991 Feasibility Study Report. The appropriate reference will be made in the revised RI report.

3. Section 1.2.2, 6th Paragraph, Page 3

Results of the 1996 Weston report were not discussed in the RI report. These results of the 1996 Weston report should be summarized and discussed in this RI report.

Response:

The results of the 1996 Weston report are included in Appendix B and discussed in the RI/FS Work Plan in Section 2.1.5. This information will be reiterated in the RI Report.

4. <u>Section 2.0, Sampling locations and Rationale, 1st Paragraph, Page 6</u>

The Work Plan for the RI should be introduced in the first or second paragraph of this section.

Response: Acknowledged.

Mr. Kevin Lynch USEPA Region 2 August 29, 2003 Page 6 of 31

5. <u>Section 2.1.1.1, Geophysical Survey Methodology, Page 7</u>

A discussion on the findings of the downhole logging should be included. In formation should be provided detailing whether or not total dissolved solids (TDS) was detected. If so, did the value increase or decrease with depth. The TDS results should be presented somewhere in the report. Also, an explanation should be provided in the report to explain why this down-hole logging method was only performed in one well. In order to more accurately determine vertical extent of potential impacts to the bedrock groundwater, several wells should have been logged, including an upgradient bedrock well.

Response:

A detailed discussion of the downhole logging is included in Appendix C of the RI Report. Downhole logging data are also referred to as EM-39 results.

TDS data for the bedrock wells are included in Table 4-8 and are similar in the shallow and deeper bedrock. The conclusion from the downhole logging was that variations in lithology rather than pore water chemistry were responsible for variations in the vertical conductivity plots.

Downhole logging of the deepest downgradient well MW-4D2 was specified in the USEPA approved work plan. If the downhole logging proved to be a successful tool in assessing groundwater impacts, it would have been considered for use elsewhere on site. As shown in Figure 5-1, comparison of ammonia and sulfide concentrations and depth appears to be an accurate indicator of vertical groundwater impacts rather than conductivity.

6. <u>Section 2.1.3.2, Sludge Fill, Page 10</u>

The second to last sentence indicates that a discrete sample (ST-2) was collected for in-situ permeability. Please revise to indicate that the permeability test was performed in a soils laboratory.

Response: Acknowledged.

7. <u>Section 2.2.1.2, Former Manufacturing Plant Area, Page 11</u>

Mr. Kevin Lynch USEPA Region 2 August 29, 2003 Page 7 of 31

The map referenced in this section (located in Appendix A) is not discernible. Please provide a legible copy of the map.

Response: Acknowledged.

8. <u>Section 2.2.2.1, Inactive Landfill Area, Page 12</u>

The test should be revised to indicated that surface soil sampling was performed in October, not November.

Response: Acknowledged.

9. Section 2.2.4, Geotechnical Data, Page 13

Please state the dates of the soil sampling for the Former Manufacturing Plant Area.

Response:

Acknowledged. This section will be revised to indicate that the samples were collected on October 5, 6, and 9, 2000 during soil boring advancement and subsurface soil sample collection.

10. Section 2.3.1, Gas Sampling Methodology, 2nd Paragraph, Page 15

Please indicate that the purge water was drummed. Also, please indicate the section that the results are presented in.

Response:

Consistent with the work plan, purge water was discharged to the ground surface. The section will be revised to refer to Section 4.3 for gas sampling results.

11. Section 2.4.1;2.4.1.2 {no 2.4.1.1 was found]; 2.4.1.2, Pages 16-17

Section 2.4.1 states that four wells were unusable; and 2.4.1.2 states that four replacement wells were installed (corresponding to the list in 2.4.1). But section

Mr. Kevin Lynch USEPA Region 2 August 29, 2003 Page 8 of 31

2.4.1.2 states that five unusable wells (including MW-1S, which is not one of the four discussed previously) were unusable and abandoned. Please clarify.

Response:

The section heading of the RI text will be revised accordingly. The text in the report will be revised to reference that O'Brien & Gere (OBG) installed an additional shallow well at the MW-1 series location after finding the original well MW-1S unusable. Geomatrix decommissioned the shallow, unusable well that OBG did not abandon.

12. Section 2.4.3, Abandonment of Groundwater Monitoring Wells, Pages 17

An explanation should be provided in the RI report for the corroded condition of the decommissioned monitoring wells. This is a factor that would need to be included in any remedial alternative feasibility.

Response:

The decommissioned wells were installed in the early 1980s and are constructed of cast iron pipe with galvanized-iron wells screens. The rate of corrosion of iron well screens is in-part dependent on groundwater pH, dissolved oxygen concentration, and the concentration of dissolved iron in groundwater. Low concentrations of dissolved iron in overburden groundwater (typically 0 mg/l), coupled with varying concentrations of dissolved oxygen, lead to oxidation of the iron, and dissolution into the surrounding groundwater as the system attempts to attain equilibrium. This process has occurred over a period of approximately 20 years, which is beyond the typical life-expectancy of a galvanized-iron well screen under these conditions. Factors that contribute to the corrosion of metal well screens will be discussed in this section of the report and noted in the feasibility study.

13. Section 2.7.3, Methods of Chemical Analysis, Page 29

As the 'Walkley Black Titration Method' for TOC is not in common use a description should be provided. In addition, a statement should be provided to explain why the USEPA Region 2 (L Kahn) TOC method was not used.

Response:

The Walkley Black Titration method was specified in the approved work plan. The method has been accepted by the NYSDEC on State Superfund projects to determine TOC for chemical partitioning analysis in soil.

Mr. Kevin Lynch USEPA Region 2 August 29, 2003 Page 9 of 31

14. Section 2.8, OA/OC Measures, 2nd Paragraph, Page 30

It is not strictly accurate to say that hexavalent chromium is not present in samples in which total chromium was not detected. What is true is that it is unlikely that the hexavalent chromium concentration is greater than the detection (reporting) limit for total chromium in such samples. Please revise the paragraph accordingly.

Response:

Acknowledged. This paragraph will be revised to state that hexavalent chromium was not detected above the laboratory detection limit.

15. Section 2.8, OA/OC Measures, last Paragraph, Page 30

USEPA split samples constituted only a small fraction of the total number of samples collected and analyzed by Geomatrix and its laboratory. The fact that Cr+6 was not present at concentrations above groundwater standards in split samples analyzed by USEPA laboratories does not demonstrate that site groundwater concentrations of Cr+6 are below applicable criteria.

Response: Acknowledged.

16. Section 2.8, OA/OC Measures, Page 31

EPA disagrees that 'laboratory analyses met the data quality objectives of the remedial investigation'. The lack of usable or reliable hexavalent chromium data is a significant deficiency. To some extent this deficiency can be addressed through the use of the total chromium data; but this approach does not fully compensate for the lack of Cr+6 data.

Response:

The statement will be qualified to reflect that certain data rejections for hexavalent chromium occurred but the overall characterization of metal constituent concentrations in groundwater was not compromised based on the data quality of total chromium analysis.

17. <u>Section 3.2.1, Site Physiography, 2nd Paragraph, Page 33</u>

Mr. Kevin Lynch USEPA Region 2 August 29, 2003 Page 10 of 31

The Paragraph describes the five-acre fill area as being in the NE portion of the inactive landfill Area. However, as described on Page 1 of the RI Report, the fill is at the extreme NW corner of the landfill. Please clarify.

Response:

The sentence will be revised to indicate that the 5-acre fill area is located in the northwestern corner of the Inactive Landfill Area.

18. Section 3.4, (please note there are two section 3.4), Site Geology, Page 37

Bedrock outcrops should be identified on Figures 3-1A and 3-1B. The locations of the bedrock outcrops should also be included in the development of the bedrock contours for both figures. Also, the first sentence on page 38 states that the overburden is from a few feet to nearly 20 feet. Based in the data presented in Table 3-3, the overburden exceeds 23 feet (GMW-1). Please check and revise the text.

Response:

The bedrock outcrops are located on the hill, on the south side of Palmer Street, opposite the former manufacturing plant area. The outcrops are off-site and are on private property so mapping and elevation data were not obtained during the study. Therefore, the locations of the outcrops cannot be accurately shown on the figures.

The text will be revised to provide a maximum range of 23 feet.

19. Section 3.5.1, Hydraulic Properties, Page 40

The bedrock groundwater elevations shown on figures 3-6A and 3-8A do not represent the actual groundwater flow around MW-5D. The overburden groundwater elevation at MW-5S fits into the overall overburden groundwater flow regime. However, and EPA is in agreement, that the bedrock groundwater level for MW-5D is anomalously high, and does not "fit" into the bedrock groundwater flow regime. Based on experience, when the bedrock groundwater level is high and the groundwater bedrock does not fit into the groundwater flow pattern, this could indicate that the casing seal may be leaking.

Although this anomalously high reading may change the local bedrock groundwater flow regime around the MW-5D well, the overall regional bedrock groundwater flow seems to be towards the creek (based on the review of the bedrock groundwater contours of both the former manufacturing area and the inactive landfill area).

Mr. Kevin Lynch USEPA Region 2 August 29, 2003 Page 11 of 31

Figures 3-6A and 3-8A currently show the groundwater flow from MW-7D towards the creek, but does not take in consideration the actual groundwater elevation at MW-5D.

Response:

A plausible reason for the anomalously high water level was provided in the report. While a leaking casing is possible, it is not likely since the water level in the adjacent shallow well MW-5S was unaffected during well development of MW-5D which would be anticipated if the well seal was faulty.

Since the water level condition is anomalous, flow vectors were not drawn in the immediate vicinity of the well and the interpretation of flow shown on the figures is valid.

20. <u>Section 3.5.1, Hydraulic Properties, Page 40</u>

For Figure 3-6A the bedrock groundwater elevation of 668, 666, and 664 are missing. Therefore, the bedrock groundwater contour maps (both figures) should be revised to reflect the actual groundwater elevations. In order to achieve a better understanding of the bedrock flow regime, it is recommended that the bedrock groundwater maps of the former manufacturing area and the inactive landfill area be combined. Surface water elevations as well as their locations should also be presented on these two figures.

Response:

The bedrock groundwater elevations referred to above are not consistent with the groundwater elevations measured in on-site wells.

Based on the scale and length of the site, the breakup of the groundwater flow characterization based on area (Inactive Landfill Area and Former Manufacturing Plant Area) is appropriate, especially when groundwater is primarily toward the Creek.

The surface water elevation monitoring points are located at upstream and downstream sampling points which are located beyond the limits of mapping shown on the figures. However, the figures will be revised to identify the surface water elevation of the closest monitoring point in the creek

21. Section 3.5.2, Description of ... Groundwater Flow, 2nd Paragraph, Page 41

Mr. Kevin Lynch USEPA Region 2 August 29, 2003 Page 12 of 31

> This paragraph discusses groundwater contribution to surface water in Cattaraugus Creek. It is not clear why the contribution of groundwater flux is considered "inconsequential". If this is a simple comparison of groundwater flux to stream flow then of course the difference would be great, however, using the term "inconsequential" does not seem to apply given the fact that impacts to Cattaraugus Creek and sediments have occurred.

Response:

Acknowledged. The term "inconsequential" was used to compare the Site's groundwater contribution to the volume of stream flow in Cattaraugus Creek. The term will be changed to "minor".

22. Section 3.6.1, Characterization and Delineation of the Sludge Fill, Page 42

The limits of the sludge fill has not been defined from test pit TD-5 to the north west. The actual limits of the sludge material should be determined in this area.

Response:

Test pit TP-5/G identified sludge fill to a depth of 12 feet. The test pit is located approximately 25 east of the retaining wall of the former dam. It is assumed that the sludge extends westward up to the retaining wall of the former dam

23. <u>Section 3.6.1, Characterization andof the Sludge Fill, 3rd Paragraph, Page 42</u>

The paragraph describes soil cover 10 inches to 45 inches, with areas indicating a geotextile fabric below the soil cover- this suggests that the landfill was closed. Information should be provided to support this conclusion, since, the "landfill" was in fact not a landfill, but a sludge dumping ground. If there was in fact a cover of any sort that was put on the Inactive Landfill when the transfer of materials to Markhams was made around 1972, there should be more discussion in the RI report concerning what was done.

Response:

Sludge fill area closure information will be summarized in the RI Report.

24. Section 4.1, Sludge Fill, Page 45

Mr. Kevin Lynch USEPA Region 2 August 29, 2003 Page 13 of 31

> The sludge fill results for SVOCs and COPCs were determined from only one composite sample. The Work Plan did not call for any additional sampling because it was felt that historical data would be incorporated. Without inclusion of previous sample results the data presented is inadequate to characterize the sludge fill material.

Response:

Sludge fill characterization data obtained from previous investigations and presented in Appendix B of the RI Report will be discussed in revisions to Section 4.1.

25. Section 4.2, Solid, Page 46

The applicability of the TAGM 'background' values is questionable. First, the values in TAGM 4046 for inorganics are for the eastern US; the extent to which those ranges are applicable to native soils in Gowanda is unknown. Second, in all cases where the TAGM 4046 values are presented as a range of values, the high end of the range was used for comparison. Third, even assuming 'background' is a relevant comparison criterion, risk-based concentrations should also be discussed (e.g., Region 9 RBCs).

Response:

Since metals naturally occur in soil, a comparison of metals concentrations detected at the Peter Cooper Gowanda Site to a benchmark that provides some relative measure of the significance of the concentrations detected, taking into account the natural occurrence of these constituents, is justified. Since background metals data specific to the Village of Gowanda were not available, Site metals concentrations were compared with metals concentrations found naturally in the eastern U.S. Soils in western New York are glacially-derived and naturally contain wide variations in metals concentrations. Based on our experience, greenfield sites throughout western New York have metals concentrations that fall at both the low and high end of the range of metals found in eastern U.S. soils. The comparison of metals concentrations to eastern U.S. soils, as well as State specific background metals concentrations, is referenced in the New York Department of Environmental Conservation TAGM #4046. The identification of metals concentrations at the PCC Site above the range found in eastern U.S. soils is used only used for qualitative comparison in the RI Report and does not imply any assessment of risk. Risk of metals presence at the Site is addressed in the Human Health and Ecological Risk Assessment Reports. Section 4.2 of the RI

Mr. Kevin Lynch USEPA Region 2 August 29, 2003 Page 14 of 31

Report will be revised to provide rationale for the comparison of site metals data to the range of metals values presented in TAGM #4046.

1.

26. Section 4.2.1.1, Surface Soil, Page 47

Again, the background' values are the high end of the range. The low ends of the range for these metals (As - 3 mg/kg; Cr - 1.5 mg/kg; and Zn - 9 mg/kg) would indicate that the site concentrations exceed background in all samples. Risk-based concentration criteria for arsenic are even lower than the low end of the background range.

<u>Response:</u> See response to specific comment 31 above.

27. Section 4.2.2.1, Surface Soil, Page 48

The investigation of the area around MWFP-3 to determine the areal extent of VOC contamination was appropriate. However, the samples in which field instruments detected organic vapors should have been analyzed. It would have been especially useful to analyze a sample from B-13 (the highest PID reading) so that both the nature of the contamination and to determine whether the observed maximum might be higher than the concentrations in samples from MWFP-3.

Response:

The intent of the Supplemental Investigation program was to determine the approximate aerial and vertical extent of the VOC contamination in the vicinity of MWFP-3 to allow for evaluation of appropriate remedial measures specific to this subarea during the FS. While additional soil samples from borings exhibiting elevated PID readings may have exhibited different concentrations of VOCs than MWFP-3, it is unlikely that this data would change the outcome of the RI or subsequent evaluations in the FS. The remedial technologies applicable to such a small area of VOC-impacted soil are not substantially dependent on concentration.

28. <u>Section 4.2.21, Surface Soil, Page 48-49</u>

Mr. Kevin Lynch USEPA Region 2 August 29, 2003 Page 15 of 31

> The Region 9 'guidance values' cited for VOCs and SVOCs are no longer accurate. The industrial PRG for chloroform is now (October 2002) 12 mg/kg (3.6 mg/kg residential); and the industrial PRG for PCE is 3.4 mg/kg (1.5 mg/kg residential). Similarly, the PRGs for carcinogenic PAHs are about 25 percent lower than cited (e.g., the industrial PRG for benzo[a]anthracene is now 2.1 mg/kg, not 2.9 mg/kg).

Response:

The Region 9 PRGs referenced in tables and discussion of guidance value comparison in the RI Report will be revised to reflect changes to the Region 9 PRGs (October 2002) that occurred during preparation of the draft RI Report.

29. Section 4.2.21, Surface Soil, Page 49

According to Table 4-9, total Hexavalent chromium was detected at MW-2D (5/4/2001) at a an estimated concentration of 0.0592 mg/l. Please revise and highlight this value in Table-4-9.

Response: Acknowledged

30. Section 4.3, Landfill Gas, Pages 50-51

Some perspective on the concentrations listed (page 51) would be useful. Although the gas samples are not 'ambient air', comparison to ambient air screening criteria would at least provide some relative measure of the significance of the various VOCs detected. The highest reported concentrations of acetone, carbon disulfide, 2butanone, 4-methyl-2-pentanone; toluene; and xlyenes exceed the Region 9 ambient air screening criteria. All detections of benzene and ethylbenzene exceed those criteria. No criteria are exceeded by styrene, 2-hexanone, or trichlorofluoromethane (freon 13).

Response:

The direct comparison of soil gas VOC concentrations detected in the well headspace to ambient air criteria is not an appropriate benchmark for comparison since human exposure to these concentrations is not realistic.

31. Section 4.4, Groundwater, General, Page 51

Mr. Kevin Lynch USEPA Region 2 August 29, 2003 Page 16 of 31

The text references all NYSDEC criteria as 'guidance values'. Most of the values .cited are standards, only a few are guidance values. The text should also clearly state which values are used (i.e., for groundwater, the Class GA criteria). As with other matrices, the Region 9 PRGs should be referenced, as well as the NYSDEC criteria.

Response:

Acknowledged. The terminology referring to guidance values will be changed to standards with any guidance values identified. The presentation of New York State Class GA groundwater standards without Region 9 Tap Water PRGs is valid since the groundwater is not used as a source of drinking water, municipally-supplied water is available along Palmer Street, and risk-based comparisons are presented in the risk assessment.

32. <u>Section 4.4.1.1, Overburden, 3rd Paragraph, Page 52</u>

Although the phenol concentration (480 μ g/L) exceeds the NYSDEC class GA standard of 1 μ g/L, the detected concentration is below the Region 9 tap water PRG (2200 μ g/L for a hazard index of 0.1).

Response:

Acknowledged. The comparison to Region 9 PRGs is presented in the risk assessment.

33. Section 4.4.1.1, Overburden, 4th Paragraph, Page 52

The fact that the dissolved arsenic concentration exceeds 10 μ g/L in the only two samples in which it was analyzed should be included in the report.

Response:

The NYS Class GA Standards were used as the benchmark for comparison of chemical constituents detected in groundwater. The NYS Class GA Standard for arsenic is 25 ug/l.

34. Section 4.4.1.2, Bedrock, Page 54

Mr. Kevin Lynch USEPA Region 2 August 29, 2003 Page 17 of 31

As noted previously, most of the 'guidance values' are in fact standards; only the criterion shown for magnesium is in fact a guidance value. The discussion of the metals concentrations does not provide the whole picture. Total arsenic concentrations of 19 μ g/L or higher have been detected at least once in three of the seven bedrock wells. Wells 2D, 5D, and 7D have not been analyzed for dissolved arsenic; of the remaining four wells, dissolved arsenic has been detected at concentrations over 10 μ g/L in one (4DR), or detection limits are too high (25 μ g/L) to assess in another (4D2).

<u>Response:</u> See response to comment #31 and #33.

35. Section 4.4.1.2, FMPA, Overburden, Page 55

The comments regarding the guidance values and evaluation criteria (especially for arsenic) are also applicable to this section. It should also be noted in this section that the detection of PCE and other chlorinated organics in groundwater at MWFP-3S is consistent with the detection of PCE and other chlorinated organics in the surface soil in the MWFP-3S boring and in headspace of other borings in the vicinity.

Response:

See response to comment #31. The text will be revised to state that the detection of PCE in the groundwater at MWFP-3S is consistent with the presence of chlorinated aliphatic hydrocarbons in soil detected at that location.

36. <u>Section 4.5, Seeps, Page 58</u>

Several of the criteria (i.e., for chromium and zinc) are hardness-dependent. It is unclear from the text or Table 4-1 how the cited criteria were derived (no mention of the fact that they are hardness-dependent). EPA could reproduce the chromium criterion listed in the RI (422 μ g/L) using the average hardness value of the three seep samples (about 835 mg/L). However, as it is not the seep but the creek which is the Class C water body, it would be more appropriate to use the hardness of the creek. On this basis, the hardness in about 181 mg/L (average of the two sampling events - 196 mg/L in November 2000 and 166 mg/L in May 2001); and the resulting criterion for chromium is 120 μ g/L. However, EPA could not reproduce the zinc

Mr. Kevin Lynch USEPA Region 2 August 29, 2003 Page 18 of 31

> criterion regardless of what hardness value was used. However, a Class C criterion of 137 μ g/L was calculated using a hardness of 181 mg/L and criterion of about 500 μ g/L with hardness of 835 mg/L (the RI cites 17 μ g/L as the zinc criterion). With the EPA-calculated criteria (using creek hardness values), more chromium exceeds criteria but none of the zinc concentrations exceed.

Response:

Acknowledged. The Creek hardness value will be used to calculate benchmark criteria for comparison of seep water chemistry.

37. <u>Section 4.6, Surface Water, 2nd paragraph, last sentence, Page 59</u>

This sentence states that ammonia was not detected above guidance values. According to Table 4-13, ammonia was detected in Cattaraugus Creek Water sample #4 at 0.442 mg/l (5/2/2001), slightly above the guidance value. Please revise. Also, this value should be highlighted in Table 4-13.

Response:

Acknowledged. The detected concentration of 0.442 mg/l in Creek Water#4 sample slightly exceeds the hardness-based ammonia criteria calculated for the May 2, 2000 sampling event of 0.44 mg/l. The table and text will be revised.

38. <u>Section 4.7.1, Wetland Area, Page 52</u>

The basis for comparing wetland sediment data to industrial soil screening criteria is unclear; there are NYSDEC sediment criteria to which the data can be compared for potential ecological effects. (As both human and ecological receptors could be exposed to wetland sediments, discussing both criteria is warranted.) It is also worthy of note that BTEX compounds were detected in every wetland sediment sample analyzed; only the chlorobenzenes were not detected.

Response:

The wetland area is generally dry with standing water present only during seasonally wet periods. As a result, the area delineated as wetlands can be considered soils since it is heavily vegetated and some wetland type vegetation exists. Therefore, comparison to soil screening criteria is an appropriate benchmark. However, to acknowledge the potential ecological effects, NYSDEC sediment criteria will be added to the table for comparison and the text will be revised. The low concentration of BTEX is likely the result of urban runoff that is discharged to the wetland area from

Mr. Kevin Lynch USEPA Region 2 August 29, 2003 Page 19 of 31

the Village storm sewer south of Broadway. Other constituents detected in the wetland may be derived from urban runoff as well.

39. Section 4.7.2, Sediment, Cattaraugus Creek, last sentence, Page 60

This sentence states that "Metals concentrations were below guidance values including <u>hexavalent</u> chromium (present at concentrations ranging from 6.3 to 8.6 mg/kg)." According to Table 4-15, it appears that this statement applies to total chromium, not hexavalent. Please revise paragraph accordingly.

Also, according to Table 4-15, creek sediment samples exceeded the guidance value for arsenic in all samples. The guidance value for nickel was exceeded in Creek Sample #4. These values should be highlighted in Table 4-15.

Response:

Acknowledged. Hexavalent chromium was not detected in the samples and total chromium was detected within the specified range. The RI text will be revised.

40. Section 5.0, Chemical Migration Assessment, Leaching, Page 61

EPA concurs that this is a viable migration pathway. However, the relevant soil data should be compared to criteria for assessing this pathway (both the USEPA Soil Screening Levels and the Region 9 PRG tables have migration to groundwater criteria for many contaminants).

Response:

Comparing soil data to criteria such as USEPA Soil Screening Levels is appropriate to speculate on whether or not groundwater impacts are likely in the absence of groundwater quality data or when equilibrium chemical-soil partitioning has not been established. Since chemical presence in overburden groundwater derived from more than 30 years of leaching was assessed through collection and analysis of groundwater samples, the comparison to SSLs or similar criteria derived from theoretical partitioning equations is not necessary.

41. Section 5.2.1, Surface Water Runoff, Page 63

This section should be revised to indicate that while there are some relatively flat areas on the site, there are steep slopes (north side of the Inactive Landfill Area)

Mr. Kevin Lynch USEPA Region 2 August 29, 2003 Page 20 of 31

toward the creek, and toward the west at the edge of the landfill area (among other places).

Response:

Acknowledged. Section 5.2.1 will be revised to include a discussion of potentially higher runoff rates along the northern perimeter of the sludge fill area.

42. Section 5.2.2, Groundwater Migration, Page 64

The text states that the reason for the lack of hydrochemical impact in the deeper bedrock is likely caused by upward vertical hydraulic gradients in the bedrock. Although the initial groundwater level data (Table 3-4) of the well pair MW-4D(R)/MW-4D2 suggests an upward gradient, the last recorded reading (April 30, 2001) suggests the opposite (a downward gradient). Any additional elevation data that supports an upward gradient from the lower bedrock to the upper bedrock should be presented.

Response:

Cattaraugus Creek is the regional groundwater discharge boundary for the upper bedrock in the Zoar Valley/Gowanda area. Since the last major glacial event (approximately 12,000 years ago), stream flow in the creek has cut the streambed deep into bedrock. Upward vertical hydraulic gradients were measured in five of six water level monitoring events. The downward vertical hydraulic gradient identified on April 30, 2001 is anomalous compared to the other data. It is possible that short term gradient reversals occur but the data suggest that they would be short in duration.

43. Section 5.2.2, Groundwater Migration, Page 64

For PCE, the site chemistry does not support the fact that the site groundwater is amendable to reductive dechlorination and degradation of chlorinated aliphatic compounds. Although PCE was detected, the daughter products were not. The text should be clarified.

Response:

Anaerobic and reducing conditions in groundwater are amenable to reductive dechlorination of chlorinated aliphatic hydrocarbons. The lack of chemical constituents that are byproducts of partial degradation of PCE in groundwater suggests

Mr. Kevin Lynch USEPA Region 2 August 29, 2003 Page 21 of 31

that either conditions are suitable for complete degradation to CO2 and water or chemical degradation did not occur. The text will be revised to reflect both possibilities.

44. Section 5.2.2, Groundwater Migration, Page 64

Documentation should be provided to support the statement that trivalent chromium is less mobile than hexavalent chromium.

Response:

According to Table 4-15 in Hazardous Waste Management (LaGrega et al., 1994), chromium (+3) is relatively insoluble, and strongly adsorbs to surfaces (immobile), whereas chromium in the +6 oxidation state (hexavalent chromium) is relatively mobile. This reference will be added to the text.

45. Section 5.2.2, Groundwater Migration, Page 65

This section provides a good summary of how groundwater and contaminants flow into the Creek. However, there are statements in this section that attempt to minimize the Site impacts to the Creek, referencing natural attenuation and the obvious effects of stream dilution. What is not discussed in this section is the fact that there is impacts (Site COPCs including arsenic, chromium, and zinc) to the wetlands and Cattaraugus Creek sediments. A discussion of contaminant flux to the wetlands/sediments should be included in this section or separate section of this report.

Response:

Because chemical constituents were detected in groundwater above criteria used for comparison, a more detailed assessment of groundwater and surface water interaction was warranted. Potential chemical migration pathways affecting the quality of wetland and Creek sediments will be incorporated into the revised text. The discussion however cannot be accurately presented in terms of contaminant flux since site related impacts to these media are extremely limited, barely quantifiable, and likely not the only potential source of chemical constituents to these media (i.e. Village storm water runoff).

46. <u>Section 7 - References</u>

I:\Project\005771 PRP Group Peter Cooper NPL\EPA RI Comments\Fina response to EPA RI comments.doc

Mr. Kevin Lynch USEPA Region 2 August 29, 2003 Page 22 of 31

USEPA Region 9 PRGs should be updated to reflect the October 2002 revision (also, Region 9 should be added to the 'USEPA' citation).

The NOAA and NYSDEC TAGM 4046 references are undated.

NYSDEC references should include the sediment screening guidance document.

The source of the NY groundwater criteria should be referenced (i.e., either TOGS 1.1.1 or the NYCRR citations where the criteria published).

Response:

Acknowledged. Appropriate references will be added to the report.

Comments on Tables

47. <u>Table 2.3, Comparison of OA/OC Samples-Gas Media</u>

The relative percent difference can not be calculated when the analyte is not detected (U or UJ). Therefore, no numerical RPDs should be shown for most of samples for which RPDs are shown (page 1 of 9 - most VOCs; page 2; all TP-4 4 VOCs and most WSS-6 VOCs; pages 3, 4, and 5 - almost all organics; pages 5-6 metals [antimony, beryllium, cadmium, Cr+6, mercury, silver, and thallium in one or more samples]; pages 7, 8, and 9 most organics, many metals, and some 'other geotechnical parameters'). There are significant deviations between the landfill gas duplicate sample pair and this should be discussed in the report.

Response:

Acknowledged. The table will be modified not to show RPD values when concentrations are qualified with a U or UJ. The deviation between the soil gas sample and duplicate will be discussed in Section 2.8.

48. <u>Table 4.1, Analytical Results for Inactive Landfill...</u>

Data on this table were either not validated or qualifiers from validation were not applied. There should be no 'E' flag on validated data (e.g., acetone, 2-butanone). Based on the note for 'E' at the end of the table, the 'E' flag should be changed to 'J'.

Mr. Kevin Lynch USEPA Region 2 August 29, 2003 Page 23 of 31

Response:

The data on Table 4-1 were validated. The detected concentration of acetone and 2butanone qualified with an E should be reported as a J and will be changed on the table.

49. Table 4-5, Analytical Results for Surface Soil Samples...,

'E' flag should be changed to 'J'.

<u>Response:</u> Acknowledged. The E flag will be changed to a J on the table.

50. Table 4-6, Analytical Results for Subsurface Soils...,

Tetrachloroethene (PCE) value in MWFP-3 is shown as '1 EJ'. This sample should have been re-analyzed at a dilution. If the note is accurate (i.e., PCE was not detected in the dilution analysis) there is an analytical problem which has not been discussed - either the dilution factor in the re-analysis was too high; or there was an analytical problem in the dilution analysis (as the data in Appendix P clearly show that PCE is present in this area of the site; so PCE should have been detected).

Response:

The data should show a data validator qualified value of 1.0J mg/kg. The table will be revised.

<u>Plates</u>

PL-1 The approximate location of the sluiceway on Plate 1 is difficult to see. Please clarify the approximate location on the sluiceway.

Response:

Acknowledged. Plate 1 will be revised to better identify the location of the sluiceway, show wetland delineation flags, and improve the clarity of the topographic contours.

Mr. Kevin Lynch USEPA Region 2 August 29, 2003 Page 24 of 31

PL-2 The wetland delineation flags should be connected to clearly show the delineated wetland areas.

<u>Response:</u> Acknowledged. See response to PL-1.

PL-3 Elevation contours are difficult to decipher. Please darken the contours lines and expand the noted elevation numbers.

<u>Response:</u> Acknowledged. See response to PL-1.

Figures

F-1. General. Several of the figures contain sampling points that are not labeled. A detailed review of the drawings should be performed, and anomalous sampling points removed or labeled prior to the final submission of the reports.

Response:

Acknowledged. Figures will be reviewed and any unlabeled data points will be remove or named as appropriate

F-2. Figure 2-5A. This figure should be entitled. "Monitoring and Gas Well Locations".

Response:

The figure title will be revised accordingly.

F-3. Figure 2-5B. Please show the approximate location of the former Finished Product Warehouse and Storage Areas.

Response:

The locations of buildings are shown on the figure in Appendix A. As stated in response to specific comment #7, the figure will be revised to improve the quality of presentation.

F-4. Figures 3-1A and 3-1B. Bedrock outcrops should be identified on these two figures.

Mr. Kevin Lynch USEPA Region 2 August 29, 2003 Page 25 of 31

> <u>Response:</u> See response to comment #18.

F-5. Figures 3-3, 3-4 and 3-5. Above the "(Canadaway Formation)", please include the type of bedrock (i.e., shale).

<u>Response:</u> The figures will be revised to include the type of bedrock.

F-6. Figure 3-5A, through Figure 3-8B. If surface water elevations were obtained on the same day of the groundwater elevation measurements, then, elevations of surface water and measurement locations should be presented on the figures. If the rationale of the groundwater and surface water interaction cannot be determined, then both the overburden and bedrock contours should be inferred when drawn to the creek. Also, the 774 feet groundwater contour line (Figure 3-7B) should be inferred, as no overburden groundwater exists to the southwest (based on the boring log data from FPMW-1).

<u>Response:</u> Acknowledged. The figures will be revised appropriately.

Appendix A - Historic Site Manufacturing Process Features

A-1. The line between the FMPA and ILA does not accurately reflect former site use. The printing is too light to enable the building or structure names to be discerned. The source(s) of the drawing should be noted.

<u>Response:</u> Acknowledged. The figure will be revised per response to specific comment #7.

Appendix B - Historic Analytical Data

Mr. Kevin Lynch USEPA Region 2 August 29, 2003 Page 26 of 31

> General - although there are some problems with the historical (Recra Phase I and Phase II; O'Brien & Gere 1989 RI; 1996 Weston Investigation) data (discussed below), these data should be discussed in the RI report. The extent to which the more recent (RI) data are confirmed by these data, or are inconsistent with these data, should be discussed and explained.

Response:

Acknowledged. The historical data will be used where appropriate in the RI report.

Appendix B-1 (Recra Phase I results). The data show that there are high concentrations of arsenic and chromium in some water and soil samples. However, there are discrepancies between the data in this report (Phase I Report by Recra Research, 1981) and what appears to be the same data as cited in other reports.

Response:

Acknowledged. The validity of the non-EPA Weston data has been questioned previously and is only included for completeness of the RI Report.

Appendix B-2 (Phase 2 Results). The (1981) data on page '89' of B-2 appear to be the same as data (same sample date; same numerical values) in the Phase I Report; except that the sample IDs are different, and the matrix and is some cases the units are different (in the Phase I report, these numbers are for 'water samples' and are in mg/L or μ g/L depending on analyte; in B-2 the data are all soil samples in units of μ g/g [equivalent to mg/kg]). Most of the high metals concentrations in the Phase II data appear to be from samples from the Markhams site, not the Gowanda site.

Response:

Acknowledged. The value of these data is limited. The Markhams site was investigated concurrently by RECRA during the Phase II so some Markhams data is included in the data summaries.

Appendix B-3 (O'Brien & Gere 1989 Results). Although the note on Table 4 states that the sample locations are shown on Figure 2, a sample could not be located with numbers higher than 46 on Figure 2. The figure that is in the Appendix does not match the figure 2 that is in the 1989 RI by O'Brien & Gere. The figure in the RI omits the location of sample 60 -68. The data for 60 -68 is presented in the table and indicates that there are impacts in this wetland.

Mr. Kevin Lynch USEPA Region 2 August 29, 2003 Page 27 of 31

> The sample locations (e.g., where was sample G-50 [Table 1], which had chromium at 44,000 mg/kg, collected) could not be identified. Tables 7 shows high arsenic concentrations (over 100 μ g/L) in several samples, and Table 8 shows dissolved arsenic at concentrations greater than 25 μ g/L in several samples (MW-2D, MW-4D, MW-6). Table 11 shows hexavalent chromium detected in leachate composites and a seep composite at concentrations around 100 μ g/L (ranging from 90 to 116 μ g/L).

Response:

Acknowledged. The data tables from the 1989 OBG RI are provided for information purposes only. The quality of the data was discussed in the work plan and will be reiterated in the revised RI report.

Appendix B-4 (Weston 1996 Results). Table 3-3 shows very high chromium concentrations (greater than 1,000 mg/kg, with a maximum of 37,000 mg/kg) in 'Landfill Waste' samples. Arsenic concentrations over 25 μ g/l were detected in all wells (and usually in both the filtered and unfiltered analyses) except MW-05 (see Table 3-6; December 1996 data). Chromium concentrations were over 100 μ g/L in both the total and filtered samples from MS-2S; MW-3S; and MS-4S. Hexavalent chromium was detected in three of the groundwater samples: MW-02S, MW-3, and MW-04S at levels of 15, 60, and 16 μ g/l, respectively.

Response:

EPA low flow sampling procedures followed during the RI produces more reliable metals data than sampling using bailers and filtering the samples as was done during the Weston investigation.

<u>Appendix C</u>

C-1. Please include an introduction to this appendix. The introduction should include the dates of the investigation(s), and the goals of the geophysical programs.

Response:

An introduction and goals of the geophysical investigations are presented in Section 2.1.1. The date of the EM-31 survey will be included in Section 2.1.1. Reporting introductory information in the Appendix would be redundant.

C-2. The appendix states that it is likely that a significant component of the conductivity variations observed with the surface EM data set is due to the presence of railroad ballast material. According to the RI report several test pits were completed in the

Mr. Kevin Lynch USEPA Region 2 August 29, 2003 Page 28 of 31

> area in where the EM survey was performed. The text portion of the RI should include a summary on the correlation of EM survey data and test pit data. According to Figure A, areas of the highest conductivity were not investigated (with test pits).

Response:

Additional information will be included in the RI text correlating the finding of the EM-31 results and the test pits.

Appendices E

Overall we are in agreement with the information presented within the boring logs and well completion details. However, some minor inconsistencies have been noted (i.e., TAMS noted the N value at Well MW-5D [12-14' bgs] was >100, not 59, at well MWFP-3D, TAMS noted the recovery to run to be 89% [not 80%], etc.). These inconsistencies do not reflect the overall interpretation of the geologic and hydrogeologic conditions at the site. Please review and revise the boring logs and well completion details, and resubmit as necessary.

Response:

The field logs will be reviewed and any necessary revisions to the boring logs will be made accordingly.

Appendix H - Hydraulic Conductivity Testing Data

H-1. In general, we are in agreement with the second straight lines selected for the slug test data interpretation. However, the second straight lines chosen for three monitoring wells (MW-7S, MWFP-3D, and MWFP-3S) are questionable. In wells MWFP-3D and MWFP-3S the second straight line should be less steep, and at well MW-7S the second straight line should be steeper. Please review the hydraulic conductivity data from these wells, and resubmit hydraulic conductivity estimates. Also, please update Table 3-5 and the relevant sections of the text.

Response:

The straight lines chosen to represent the hydraulic conductivity estimates in monitoring wells MWFP-3S and MWFP-3D were applied after 90% of recovery had occurred in each well. Application of a less-steep line would incorporate data from the last 10 percent of recovery, and would not be representative of the true hydraulic properties of the surrounding material.

Mr. Kevin Lynch USEPA Region 2 August 29, 2003 Page 29 of 31

Monitoring well MW-7S only recovered to within approximately 60% of the original water level. The slope of the straight line was applied to data collected after 2 hours had passed. Applying the straight line curve to the early-time data (t< 8 min.) would most likely incorporate data reflective of filter-pack recharge, as the sand filter surrounding the monitoring well screen drains, and is not reflective of true formation hydraulic conductivity.

H-2. It was noted that for the shallow and deep bedrock wells that the confined aquifer model was utilized. Based on observed site geology there is no rationale for using the confined aquifer model. Please proved an explanation for using this model for the bedrock wells.

Response:

The confined aquifer model was utilized in the hydraulic conductivity estimates for both shallow and deep bedrock due to the fact that fractured bedrock geology behaves as a confined flow system at the scale of a slug test. Bedrock fracture aperture and fracture interconnectedness confines groundwater at this localized scale and application of the confined model is appropriate.

Appendix L - Village of Gowanda Zoning Map

The map should include the location of the Peter Cooper Inactive Landfill Area and the Former Manufacturing Area.

Response:

The map will be revised to show the two areas.

Appendix M - Floodplain Map

The map should include the location of the Peter Cooper Inactive Landfill Area and the Former Manufacturing Area.

<u>Response:</u> The map will be revised to show the two areas.

Appendix N -Darcy Flux to Creek

Mr. Kevin Lynch USEPA Region 2 August 29, 2003 Page 30 of 31

The flux calculations indicate that the groundwater from the site to the creek is approximately 3,055 ft³/day. If one more significant digit is used for the gradient value, then the flux rate increases to approximately 3,535 ft³/day (or 26,444 gallons/day). Please check the significant figures and results, and revise accordingly.

Response:

The variability of the parameter values used to calculate the flux rate is large. Performing a sensitivity analysis would show that the difference in calculating the flux using the upper and lower limits of a reasonable range of parameter values would produce a range of values that are larger than the 480 ft³/day difference obtained by carrying out the analysis to one more significant digit. Revising the calculation would have no consequence on the use of the flux rate in the analysis presented in the RI.

Appendix P - Assessment of VOCs in Soils at MWFP-3

P-1 As noted previously, none of the samples with positive field reading for organic vapors were analyzed. Therefore it could not be determined if all the VOCs present at the site have been identified; nor if the highest site concentrations have been determined (e.g., are VOC concentrations at B-13 higher than those at MWFP-3?). Despite the fact that only samples with no field reading of organic vapors were analyzed, high concentrations of chlorinated organics (over 1000 μg/kg PCE) were detected. It is possible that the full extent of VOCs at the site has not yet been fully delineated.

Response:

Soil at Boring B-7 exhibited a positive PID headspace reading and was also laboratory analyzed. The results indicated only low levels (below PRGs) of a small number of VOCs. As discussed in response to Specific Comment 27, additional soil samples from borings exhibiting elevated PID readings may have exhibited different concentrations of VOCs than MWFP-3, however it is unlikely that this data would change the outcome of the RI or subsequent evaluations in the FS. Furthermore, while it is possible that soils at some borings exhibiting non-detectable headspace VOC measurements may exhibit detectable VOCs when subjected to chemical analysis, soils with significant chlorinated VOC content would be expected to yield positive headspace results more often than not. The absence of positive headspace measurements at 11 additional borings surrounding MWFP-3 indicates that the impacted area is isolated to the approximate area shown on Figure 2 in Appendix P.

Mr. Kevin Lynch USEPA Region 2 August 29, 2003 Page 31 of 31

P-2 Table 2 at the beginning of this appendix has an error on the m+p-xylene concentration in B-9; the validated Form I shows the concentration to be 5000 μ g/kg (5.0 mg/kg), not 0.035 as shown on the table. The wrong data was plotted for B-9, (see data sheets) ie. tetrachloroethene and toluene.

Response:

Acknowledged. The corrected (validated) results will be presented in the revised report.

P-3 Figure 2 -The shaded area does not include results from B9. The actual sample results for B9 indicate that there is impacts in this area. If this table is meant to just include a representation of PID results, then an additional figure should be included with the actual analytical results.

Response:

Figure 2 in Appendix P represents headspace results. An additional Figure showing VOC concentrations is not likely to be useful, as the samples analyzed were generally outside the perimeter of anticipated impacts and, as expected, yielded non-detectable or low VOC results.

UNITED STATES ENVIRONMENTAL PROTECTION AGENCY REGION 2 290 BROADWAY NEW YORK, NY 10007-1866

OCT 29 2003

EXPRESS MAIL --

Mr. Tomas Forbes, P.E. Benchmark Environmental Engineering & Science 50 Fountain Plaza, Suite 1350 Buffalo, NY 14202

Re: <u>Comments on the responses to the Remedial Investigation and the Human Health Risk</u> <u>Assessment Reports, Peter Cooper Landfill Site, Gowanda, New York</u>

Dear Mr. Forbes:

Enclosed are comments from the U.S. Environmental Protection Agency (EPA) on the responses to EPA's comments on the Remedial Investigation and the Human Health Risk Assessment Reports prepared by Geomatrix Consultants, Inc. for the Peter Cooper Landfill Site, Gowanda, New York. Overall, the responses to EPA's comments were adequately addressed and require minor revisions.

In accordance with the Administrative Order for the Site, please incorporate the comments into the final RI and Human Health Risk Assessement Reports and provide EPA with copies of both documents within 30 days of receipt of this letter.

Should you have any questions or comments on the enclosed comments please do not hesitate to contact Sherrel Henry of my staff at (212) 637-4273.

Your cooperation is appreciated.

Sincerely yours

Keyin Lynch, Section Chief Western New York Remediation Section

Enclosures

cc:

M. Moore, NYSDEC J. Wittenborn, Collier Shannon M. Graham, Phillips Lytle S. Davis, Huber Lawrence J. Mayo, CDM

ENCLOSURE

RI Comment Number 25 and HHRA Comment Number 40

The use of regional (eastern US) background should be the last resort for evaluating soil contamination. TAGM 4046 (Appendix A Table 4) NYSDEC Recommended Soil Cleanup Objectives along with USEPA Region 9 PRGs should be used for comparison of the inorganic soil data. The lowest (most stringent) value of the NYSDEC Recommended Soil Cleanup Objectives, EPA Region 9 PRGs, and regional values should be used to evaluate the inorganic soil data. The Reports should be revised to include the relevant screening criteria cited above.

In addition, as stated in your response to HHRA comment 40, EPA agrees that background data from the Markhams site should be considered and is preferable to using the Eastern US background data. However, soil samples collected at depth from the Gowanda site should not be used.

The memorandum prepared by the EPA's ORD Lab in Las Vegas evaluating the arsenic data using appropriate statistical techniques is attached.

RI comment Number 40

Impact to groundwater screening criteria (EPA Soils, NY State soil cleanup levels to protect groundwater, and Region 9 PRGs) are applicable to the evaluation of soil contamination at the site. These values provide estimates based on partition theory and should not be considered speculative. The guidance values are widely used and generally accepted guidance values for evaluating impacts to groundwater resources based on soil contaminant levels (i.e., "To Be Considered" [TBCs] criteria). The response to EPA's comment assumes that 30 years is sufficient time for the contaminant soil/water partitioning to reach steady state. The assumption also implies that future groundwater contaminant levels won't change. Neither the RI nor the response to the comment provides any basis to support this assumption. Impact to groundwater screening criteria should be included as screening criteria for soils in the final RI Report.

Evaluation of Arsenic Site Data for Peter Cooper - Gowanda Site Gowanda, New York

prepared by: Dr. Anita Singh, Lockheed Martin May 27, 2003

In early May 2003, Dr. M. Olsen of Region 2 requested the assistance of Tech Support Center, NERL, Las Vegas, Nevada in comparing site arsenic concentrations with those of the background arsenic concentrations for the Peter Cooper Site. Arsenic is a contaminant of potential concern (COPC) for the Peter Cooper Site. The Peter Cooper Site has two main parts: the inactive landfill and a manufacturing plant. Soil surface and subsurface samples have been collected from both parts of the site. In a report prepared by Geomatrix Inc, it is stated that background level of arsenic concentration in eastern United States ranges from 3 to 12 mg/kg. For the purpose of the present report, it is assumed that the background level arsenic threshold concentration (e.g., maximum concentration limit=MCL) for the Peter Cooper Site is about 12 mg/kg. If the site arsenic concentrations (e.g., 95% upper prediction limit=95% UPL) are greater than 12 mg/kg, then obviously they are also greater than any number below 12 mg/kg. If arsenic site data are consistent with the background arsenic concentrations, then the 95% site UPL should fall below the upper range (=12 mg/kg) of the background concentrations. If the site arsenic 95% UPL exceeds 12, then the site arsenic concentrations may be considered to be impacted by the site-related activities.

An Excel data file, Gowanda.xls was provided by Dr. Olsen. This data file has surface and subsurface soil data collected from the inactive landfill and the manufacturing plant. Some sediment (=3) and seep water samples (=3) are also included in this data file. However, 3 samples are not enough to perform any statistical analysis. In this report, only surface and subsurface soil samples collected from the landfill and the manufacturing plant have been considered. The main objective of the present request is to evaluate whether arsenic concentrations from the site are consistent (belong to the same population) with the background arsenic concentrations. This can be achieved in more than one way (depending upon data availability) by using a hypothesis testing approach and/or upper prediction and tolerance limits. In this letter report, the procedure based upon the 95% UPLs as described in EPA 1992 (pages 51-59) has been used to perform this evaluation.

Since the site-specific background data are not available, for the purpose of the present study, it is assumed that the background level threshold arsenic concentration for the Peter Cooper Site is 12 mg/kg. Individual site observations or the 95% upper prediction limit (or the 95% upper tolerance limit) are then compared with the background threshold value of 12 mg/kg. It is observed that most of the surface (manufacturing plant data) and subsurface data sets (both landfill and manufacturing plant data) follow lognormal distributions. The prediction limit and tolerance limit approaches as described in EPA 1992 have been used to compare site concentrations with background level concentration of 12 mg/kg. The upper prediction limits have been computed using log-transformed data which are then compared with the background value of the natural logarithm of 12 mg/kg (ln12 = 2.48). If site concentrations are consistent with the background value of 2.48, then 95% upper prediction limit (UPL) based upon the site data (on log-transformed data) should

1

fall below 2.48. If the site 95% UPL based upon the site data falls below the background threshold value, then it can be considered that the site and background concentrations are from the same population. If the site 95% UPL is above the background threshold value of 2.48, then there is some evidence of contamination due to the site related activities.

For the present study, the subsurface soil arsenic data set also includes (as shown in spread sheets of the Gowanda.xls file provided by Dr. Olsen) the surface soil data. The 95% UPLs (parametric and non-parametric) have been computed separately for the landfill and the manufacturing plant. It is noted that all of the 95% UPLs for surface and subsurface soils (with and without outliers) are greater than ln(12)=2.48. It is also noted that for each of the four data sets, the maximum observed value (to be used when the data are not normal or lognormal) as given in Table 2 exceeds the background threshold value. The maximum (Max) value is used as an estimate of the upper prediction limit or upper tolerance limit (EPA 1992, pages 54-59) when data are non-parametric (e.g., neither normal nor lognormal). These statistics based upon the observed site surface and subsurface soil data are summarized in Tables 1 and 2 as follows, where n represents the number of observations used in the computation of a 95% UPL. All relevant statistics (generated by the Scout software package) including distributional conclusions are given in Appendix A. Kolmogorov-Smirnov test statistic has been used to determine the data distributions.

Table 1. 95% UPLs (on log-transformed data) for Arsenic in Surface and Subsurface Soil

	Landfill Surface	Landfill Subsurface	Plant Surface	Plant Subsurface
All data	4.84 (n=20)	4.69 (n=31)	4.82 (n=10)	3.96 (n=22)
Without outlier	rs 3.21 (n=18)	3.83 (n=29)	3.93 (n=9)	3.43 (n=21)

 Table 2. Non-parametric UPLs (Maximum observed value) for Arsenic in Surface and

 Subsurface Soil

	Landfill Surface	Landfill Subsurface	Plant Surface	Plant Subsurface
All data	6.82 (n=20)	6.82 (n=31)	5.12 (n=10)	5.12 (n=22)
Without outlier	rs 3.66 (n=18)	4.10 (n=29)	4.06 (n=9)	4.06 (n=21)

Since all computed site 95% UPLs (and also the maximum values as given in Table 2) are greater than the background value of 2.48, it is concluded that site arsenic concentrations in surface soil and subsurface soil are not consistent with the background arsenic concentrations. From the statistics as summarized in Tables 1 and 2, it can be concluded that the site arsenic concentrations are higher (even after removing high outlying values) than the background arsenic concentrations.

References

EPA (1992). Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities. Addendum to Interim Final Guidance. Office of Solid Waste. Permits and State Programs Division. July 1992.

Appendix A

Background Threshold Value = 12 mg/kg

Log(Background Threshold Value) = 2.4849

Title : Landfill Surface Soil Samples - Full Data Set (n=20) File=Fill-surface.dat Data are not normal or lognormal

Prediction Interval

Method = Classical Mean = 2.6289Standard Deviation = 1.2459T-Value = 1.7291DOF = 19.0000Lower Limit = 0.4214Upper Limit = 4.83640.90 Two Sided Limits Max value = $\ln(919)=6.82$

Title : Landfill Surface Soil Samples without two outliers - 919 and 128 (n=18) File: Fill-surface.dat Data are not normal or lognormal

Prediction Intervals

Method = Classical Mean = 2.2724Standard Deviation = 0.5241T-Value = 1.7396DOF = 17.0000Lower Limit = 1.3357Upper Limit = 3.20900.90 Two Sided Limits Max value = $\ln(38.8)=3.66$

Title : Landfill Sub-surface Soil Samples (includes surface samples) - Full data set (n=31) File: Fill-subsurface.dat Data are not normal or lognormal

Prediction Intervals

Method = Classical Mean = 2.8180Standard Deviation = 1.0851T-Value = 1.6973DOF = 30.0000Lower Limit = 0.9469Upper Limit = 4.68920.90 Two Sided Limits Max value= $\ln(919) = 6.82$

Title : Landfill Sub-surface Soil Samples (includes surface samples)- without outliers 919 and 128 File: Fill-subsurface.dat

Data set follows a lognormal distribution (n=29)

Prediction Intervals

Method = Classical Mean = 2.6098Standard Deviation = 0.7042T-Value = 1.7011DOF = 28.0000Lower Limit = 1.3913Upper Limit = 3.82820.90 Two Sided Limits Max value = $\ln(60.5)$ =4.10

4
Title : Plant Surface Soil - Full data set of size 10. File: Plant-surface.dat

Data set follows a lognormal distribution (n=10)

Prediction Intervals

Method = Classical Mean = 2.8603Standard Deviation = 1.0180T-Value = 1.8331DOF = 9.0000Lower Limit = 0.9031Upper Limit = 4.8175 0.90 Two Sided Limits Max value= $\ln(168)=5.12$

Title : Plant Surface Soil without outlier168 File: Plant-surface.dat

Data set follows a lognormal distribution (n=9)

Prediction Intervals

Method = Classical Mean = 2.6088Standard Deviation = 0.6739T-Value = 1.8595DOF = 8.0000Lower Limit = 1.2878Upper Limit = 3.92980.90 Two Sided Limits Max value = $\ln(57.9) = 4.06$ Title : Plant Subsurface Soil - Full Data set includes surface samples File: Plant-subsurface.dat

Combined data set follows a lognormal distribution (n=22)

Prediction Intervals

Method = Classical Mean = 2.4952Standard Deviation = 0.8300T-Value = 1.7207DOF = 21.0000Lower Limit = 1.0348Upper Limit = 3.9555 0.90 Two Sided Limits Max value = $\ln(168) = 5.12$

Title : Plant Subsurface Soil - Data set without outlier 168 includes surface samples File: Plant-subsurface.dat

Data set follows a lognormal distribution (n=21)

Prediction Intervals

Method = Classical Mean = 2.3700Standard Deviation = 0.6011T-Value = 1.7247DOF = 20.0000Lower Limit = 1.3088Upper Limit = 3.4312 0.90 Two Sided Limits Max value = $\ln(57.9) = 4.06$

GEOMATRIX OFFICES

WEST

- Oakland, California
 2101 Webster Street, 12th Floor
 Oakland, CA 94612
 Tel (510) 663-4100
 Fax (510) 663-4141
- Fresno, California 2444 Main Street, Suite 215 Fresno, CA 93721 Tel (559) 264-2535 Fax (559) 264-7431
- Sacramento, California 620 Coolidge Drive, Suite 185 Folsom, CA 95630 Tel (916) 353-2150 Fax (916) 353-2155
- Costa Mesa, California
 330 West Bay Street, Suite 140
 Costa Mesa, CA 92627
 Tel (949) 642-0245
 Fax (949) 642-4474
- Corona, California
 250 East Rincon Street, Suite 204
 Corona, CA 92879
 Tel (909) 273-7400
 Fax (909) 273-7420

NORTHWEST

Seattle, Washington
 One Union Square
 600 - University Street, Suite 1020
 Seattle, WA 98101
 Tel: (206) 342-1760
 fax: (206) 342-1761

CENTRAL

 Minneapolis, Minnesota 14525 Highway 7, Suite 104 Minneapolis, MN 55343 (952) 935-1010 Fax (952) 935-1254

www.geomatrix.com

. .

• Denver, Colorado 1401 17th Street, Suite 600 Denver, CO 80202 Tel (303) 534-8722 Fax (303) 534-8733

SOUTHWEST

- Austin, Texas
 5725 Highway 290 West, Suite 200-B
 Austin, TX 78735
 Tel (512) 494-0333
 Fax (512) 494-0334
- Houston, Texas

 Houston, Texas
 Lamar Street, Suite 1300
 Houston, TX 77002
 Tel (713) 460-5892
 Fax (713) 460-5896
- Phoenix, Arizona
 8777 E. Via De Ventura Suite 375
 Scottsdale, AZ 85258-3369
 Tel (480) 348-1244
 Fax (480) 348-1245

NORTHEAST

.

- Buffalo, New York 338 Harris Hill Road, Suite 201 Williamsville, NY 14221 Tel (716) 565-0624 Fax (716) 565-0625
- Waterloo, Ontario 420 Weber Street North, Unit G Waterloo, Ontario N2L 4E7 Tel (519) 886-7500 Fax (519) 886-7419

301830