Annual Report

Peter Cooper Gowanda Site

(Zoar Valley Gateway Park) Gowanda, New York

Prepared for

Gowanda Area Redevelopment Corporation

Gowanda, New York

April 2020

Peter Cooper Gowanda Site (Zoar Valley Gateway Park) Gowanda, New York

Annual Report

April 2020

Prepared For:

Gowanda Area Redevelopment Corporation Gowanda, New York

Prepared By:

Barton & Loguidice, D.P.C. 443 Electronics Parkway Liverpool, New York 13088

CERTIFICATION

I, Scott D Nostrand, P.E. of Barton & Loguidice, D.P.C. at 443 Electronics Parkway, Liverpool, New York 13088, am currently a registered professional engineer licensed by the State of New York. I certify that all information and statements in this Annual Summary Report for the Peter Cooper Gowanda Site (a.k.a. Zoar Valley Gateway Park) are true. I make this certification on behalf of the Site Owner, Gowanda Area Redevelopment Corporation (GARC), and have been authorized and designated by GARC to sign this certification for the site.

P.E. Stamp/Signature

April 10, 2020

Date

TABLE OF CONTENTS

Section	<u>on</u>		<u>Page</u>
1.0	BACK	GROUND AND SITE DESCRIPTION	1
	1.1	Remedial Construction	
	1.2	Post-Remedial Operation, Maintenance, and Monitoring	_
	1.3	Regulatory Status	
2.0	SUMN	MARY OF SITE REMEDY PERFORMANCE	ε
	2.1	Elevated Fill Subarea Cover System	6
	2.2	Monitoring Wells and Gas Vents	6
	2.3	Groundwater and Surface Water Quality	6
	2.4	Emerging Contaminant Groundwater Quality	6
	2.5	Groundwater/Seep Collection and Pretreatment	7
3.0	SITE II	MPROVEMENTS	
	3.1	2019 Repairs and Improvements	8
	3.2	Planned Future Improvements	8
4.0	OPER	ATION AND MAINTENANCE COSTS	9
Table	s		
Table	1	SUI Permit Discharge Monitoring Summary	
Figure	es		
Figure	e 1	Site Location Map	
Figure		Site Plan	
Appe	ndices		
Appe	ndix A	2019 Site Inspection Report and Photos	
	ndix B	Emerging Contaminant Sampling Report	
	ndix C	SIU Permit Requirements	
	ndix D	Laboratory Data – SIU Permit Compliance Sampling	
	ndix E	O&M Cost Summary	

1.0 BACKGROUND AND SITE DESCRIPTION

The Subject Site is an approximate 26-acre property located off Palmer Street, in the Village of Gowanda, Cattaraugus County, New York (see Figures 1 and 2). The Site is bordered to the north by Cattaraugus Creek; to the south by Palmer Street; to the west by a former hydroelectric dam and wetland area; and to the east by residential properties.

The Site was previously used to manufacture animal glue and industrial adhesives. Peter Cooper Corporation (PCC) and/or its predecessors, Eastern Tanners Glue Company, manufactured animal glue at the Site from 1904 to 1972. When the animal glue product line was terminated, PCC continued to produce synthetic industrial adhesives until the plant closed in 1985. Between 1925 and October 1970, PCC used the northwest portion of the property (a 5-acre area known as the "Elevated Fill Subarea") to pile sludge remaining after the animal glue manufacturing process. These wastes, known as "cookhouse sludge" because of a cooking cycle that occurred just prior to extraction of the glue, were derived from animal hides, some of which were chrome-tanned hides obtained from tanneries. The waste material has been shown to contain elevated levels of chromium, arsenic, zinc, and several organic compounds.

In 1998, EPA prepared a Hazard Ranking System Model score for the Site and added it to the National Priority List (NPL) on April 6, 1998. In April 2000, EPA issued a Unilateral Administrative Order (UAO) CERCLA-02-2000-2014 to fourteen potentially responsible parties (PRPs) directing that they complete a remedial investigation and feasibility study (RI/FS) for the Site.

The UAO became effective May 1, 2000. The RI/FS was performed on behalf of the PRPs by Benchmark Environmental Engineering and Science, PLLC (Benchmark) and its sub-consultant, Geomatrix, Inc. The RI field investigation activities were performed from August 2000 to April 2001, and the final RI report was submitted to EPA in November 2003. The FS was substantially completed by the PRPs in July 2004, and was finalized in June 2005.

Concurrent with completion of RI activities, the Village of Gowanda in association with the University at Buffalo developed a Reuse Assessment and Concept Plan for the Site that concluded that the "highest and best use" of the remainder of the property outside of the 5-acre Elevated Fill Subarea after cleanup would be as a multi-use recreational facility, specifically a public park incorporating elements such as a walking/biking trail, fishing access, outdoor picnic areas, and athletic fields. The New York State Department of Environmental Conservation and the USEPA agreed that use in this capacity would require placement of clean cover soils one foot of cover placed in passive recreational areas and two feet placed in active recreational areas.

Based upon the results of the RI/FS, a Record of Decision (ROD) was signed on September 30, 2006. Specifically, the ROD called for:

• Excavating three "hot spot" soil areas identified across the Site and consolidating them within the Elevated Fill Subarea, followed by capping the 5-acre Elevated Fill Subarea of the inactive landfill area with a 12-inch low permeability soil cap, followed by 6-inches of topsoil and seed.

- Collecting leachate/groundwater seeps that were observed discharging from the Elevated Fill
 Subarea to Cattaraugus Creek. The collected leachate is pumped through a pretreatment
 building where it may be pretreated, if necessary, with hydrogen peroxide to remove hydrogen
 sulfide prior to discharge to the sanitary sewer for final treatment at the local Publicly Owned
 Treatment Works (POTW).
- Stabilizing the bank of Cattaraugus Creek along the Elevated Fill Area with a poly liner and heavy riprap stone.
- Installing a groundwater diversion system to limit groundwater migration through the Elevated Fill Subarea. (Subsequent engineering analyses by Benchmark and Geomatrix demonstrated that this element would not provide additional benefit. USEPA agreed and ultimately removed this requirement from the remedial design).
- Installing a passive gas venting system for proper venting of the 5-acre Elevated Fill Subarea.
- Performing long-term operation and maintenance of the remedial measures including inspections and repairs of the landfill cap, gas venting, and leachate collection and pretreatment systems;
- Performing post-remedial surface water and groundwater quality monitoring; and
- Evaluating Site conditions at least once every five years to determine if the remedy remains protective.

This remedy also includes certain institutional controls, including an environmental easement which limits future use of the Site and the groundwater to ensure that the implemented remedial measures will not be disturbed and that the Site will not be redeveloped for purposes other than a park. A Site Management Plan was also required to ensure appropriate handling of subsurface soils during redevelopment and to formalize the post-remedial operation, maintenance and monitoring requirements.

Following issuance of the ROD, the Village of Gowanda and the PRPs entered into discussions concerning the Village's redevelopment goals. An agreement was reached whereby the Gowanda Area Redevelopment Corporation (GARC) took ownership of the Site and agreed to perform certain post-remedial operation, maintenance and monitoring activities in exchange for provision of specific non-remedial site enhancements and funding by the PRPs to facilitate park redevelopment.

On February 12, 2009, a Consent Decree stipulating the required remedial construction elements was entered in United States District Court. On March 15, 2009, Benchmark was approved by EPA as the supervising contractor to conduct the remedial design and construction work at the Site.

1.1 Remedial Construction

Conditional approval to start site preparation and hotspot removal was issued to Benchmark in July 2009. The remedial measures and above-described non-remedial enhancements were substantially completed by December 2009; the final Elevated Fill Subarea cover system topsoil and seeding work was completed in summer of 2010.

On September 9, 2010, a final inspection was conducted by the USEPA. Based on the results of the inspection, it was determined that the required remedial construction was complete. The only outstanding element was the placement of clean cover soil over the remainder of the site, which has since been completed by GARC.

1.2 Post-Remedial Operation, Maintenance, and Monitoring

Post-Remedial Operation, Maintenance and Monitoring (OM&M) responsibilities were initially shared by the PRPs who undertook the remedial work (deemed the cooperating PRPs, or cPRPs) and GARC in accordance with the September 2010 Site Management Plan (SMP) prepared by Benchmark. In general, the responsibilities include:

- Semi-annual sampling of five onsite monitoring wells and three surface water locations with associated reporting to EPA (cPRPs);
- Semi-annual inspection of the landfill cover system and creek bank (cPRPs);
- Cover system mowing and maintenance (GARC);
- Leachate/groundwater collection and pretreatment, including sampling of the pretreatment system effluent per a discharge permit issued by the POTW (GARC);
- Other site maintenance (GARC).

Semi-annual post-remedial groundwater monitoring began in July 2011 and continued through June 2013. The groundwater monitoring were consistently favorable, indicating no adverse impact to Cattaraugus Creek from the Site and few parameters above the NY State groundwater quality standards. Based upon these results USEPA approved a request by the cPRPs to reduce the monitoring frequency from semi-annual to annual. Annual groundwater monitoring reports submitted by the cPRPs since that time have shown similar favorable results.

Similarly, visual inspections of the final cover indicate that the vegetation is well established, with no evidence of erosion. There are no indications of leachate breakouts or staining on the cover system. The gas venting system continues to mitigate any gas build up beneath the cover system. Inspections of the creek bank indicate no washouts where stabilization was constructed as part of the remedial activities.

Concerning the groundwater/seep collection and pretreatment system, the Village of Gowanda, on behalf of GARC, collects effluent samples that routinely demonstrate conformance with Significant Industrial User (SIU) permit limits. In addition, pretreatment with peroxide has not

been necessary to achieve sulfide discharge limits since the collection system was started up in 2010.

1.3 Regulatory Status

On September 17, 2010 EPA issued a Preliminary Close Out Report (PCOR) which determined that construction activities at the Peter Cooper Landfill Superfund site have been completed in accordance with the Close-Out Procedures for National Priorities List Sites (OSWER Directive 9320.2-09A-P). The New York State Department of Environmental Conservation, which had previously listed the Site as a "Class 2" Site (indicating it poses a significant threat to public health and the environment) due to its federal NPL status, subsequently reclassified the site to "Class 4" (i.e., properly closed – requires continued management).

The first five-year review for the Site was undertaken by the USEPA in October 2014. The purpose of the five-year review is to determine if the remedy is and will continue to be protective of human health and the environment. The triggering action for the statutory five-year review is the initiation of on-site remedial construction, which began at the Site in late 2009.

The 5 year review Report was issued by the USEPA in April 2015. The report concluded "based upon reviews of the Record of Decision, annual groundwater sampling results, and site inspection reports as prepared by the potentially responsible parties, as well as a site visit conducted by United States Environmental Protection Agency personnel on October 30, 2014, the remedy is functioning as intended by the decision document and is protective of human health and the environment. An environmental easement has been placed on the site property to address any future uses of the property which would impact contaminated soil left in place, and to prohibit groundwater use unless groundwater quality standards are met. The site management plan requires continued monitoring of the site. There are no recommendations or follow-up actions identified in this five-year review."

The site remained on the NPL pending completion of clean cover placement in the planned park redevelopment area outside of the Elevated Fill Subarea, which was completed in 2017. Subsequently, on May 1, 2019, USEPA issued a Final Close Out Report (FCOP). The FCOP stated "The Site meets all the Site-completion requirements as specified in Close Out Procedures for National Priorities List Sites (OSWER Directive 9320.2-22, May 2011). Specifically, the implemented remedy achieved the degree of cleanup specified in the ROD for all pathways of exposure. The remedy, remedial action objectives, and associated cleanup goals are consistent with agency policy and guidance. No further Superfund response action is needed to protect human health and the environment.

The only continuing remedial efforts at the Site are the ongoing maintenance of the landfill cap, the groundwater and surface water monitoring and insuring that the institutional controls in the form of restrictive covenant to restrict the use of on-Site groundwater as a source of potable or process water and to restrict activities on the Site that could compromise the integrity of the cap

remain in place and continue to be effective. Five-year reviews will continue to be performed to ensure the remedy remains protective." NYSDEC issued a concurrence letter on June 25, 2019, and USEPA delisted the site from the NPL on July 30, 2019.

The site is owned by GARC. Following delisting of the site, the cPRPs responsibility for monitoring of the site has ended, and GARC has retained Barton & Loguidice D.P.C. to perform monitoring activities. Ongoing maintenance of the cap and other components of the remedy, plus the operation of the leachate collection and treatment system is performed by the Village of Gowanda.

2.0 SUMMARY OF SITE REMEDY PERFORMANCE

2.1 Elevated Fill Subarea Cover System

Great Lakes Environmental & Safety Consultants, Inc., under contract to GARC, performed an annual inspections in April 2019 (See Appendix A). The reports indicated that vegetation on the elevated Fill Subarea remains well established, with no evidence of erosion. There was some evidence of traffic and rutting was observed in multiple locations. Damage appeared to be attributed to truck and ATV traffic on the capped area, and some ponded water was observed. There are no signs of leachate breakouts or staining on the cover system. Inspections of the creek bank identified no washouts where stabilization was constructed as part of the remedial activities. However, large trees and shrubs were observed to be growing out of the rip rap area along the creek.

2.2 Monitoring Wells and Gas Vents

MW-2S(R) was observed to not be capped or locked. There were no signs of damage to the gas vents nor stressed vegetation around vents.

2.3 Groundwater and Surface Water Quality

The final groundwater and surface water sampling event to be collected on an annual basis was performed in October 2018. Since that sampling, USEPA has agreed to a sampling interval of 15 months, with the next sampling event scheduled for winter 2020. Therefore, no groundwater or surface water samples were collected during this reporting period.

2.4 Emerging Contaminant Groundwater Quality

Pursuant to the request of NYSDEC, a one-time testing of the groundwater for 1,4-dioxane and per- and polyfluoroalkyl substances (PFAS) was performed by Benchmark on behalf of the cPRPs on April 1, 2019. The sampling report is attached as Appendix B. The document reports that all samples fall below NYSDEC guidance of 70 ng/L for total PFOA and PFOS compounds and 500 ng/L for total PFAS. The remaining PFAS were reported as non-detect. 1,4-Dioxane was reported as non-detect at all monitoring locations.

Since this report was issued, NYSDEC has released additional PFAS guidance (Guidelines for Sampling and Analysis of PFAS under NYSDEC's Part 375 Remedial Programs, January 2020) recommending evaluating PFOA and PFOS concentrations to a screening level of 10 ng/L and other PFAS compounds to a screening level of 100 ng/L. All samples were below these new screening levels.

2.5 Groundwater/Seep Collection and Pretreatment

Concerning the groundwater/seep collection and pretreatment system, the Village of Gowanda, on behalf of GARC, performs semi-annual monitoring of discharges to the sanitary sewer in accordance with the SIU permit for the facility (rev. January 2013 – see Appendix C).

Data collected during the 2019 calendar year are summarized in Table 1 and presented in Appendix D. The results show conformance with permit limits. (A second semi-annual sample was inadvertently not collected) Pretreatment with peroxide was not necessary to achieve sulfide discharge limits during the reporting period.

3.0 SITE IMPROVEMENTS

3.1 2019 Repairs and Improvements

During 2019, the following repairs were made at the site:

- The Village of Gowanda replaced a leachate collection pump that had failed.
- Small trees growing at the location of the stream bank stabilization areas were removed by an outside contractor retained by the Village of Gowanda.
- The ruts observed on the landfill cap were filled and reseeded by an outside contractor retained by the Village of Gowanda.

3.2 Planned Future Improvements

Planned improvements for the upcoming 2020 reporting period include:

- Construction of kayak access point.
- Construction of a creekside amphitheater

4.0 OPERATION AND MAINTENANCE COSTS

Costs incurred by the Village of Gowanda are detailed in Appendix E. The summary of the costs is provided below:

	1/2019- 3/2019	4/2019- 5/2019	6/2019- 10/2019	11/2019- 12/2019
Leachate Pump Station Electric	\$580.35	\$247.63	\$3,287.16	\$290.35
Sampling Labor	\$504.30	\$605.16	\$1,008.60	\$379.28
Mowing		\$200.00		
Microbac Testing		\$789.25		
Monitoring System Annual Fee	\$56.25			
Admin Expense Monitoring & Processing		\$37.50	\$93.75	\$37.50
Leachate Flow	\$301.17	\$217.92	\$302.25	\$180.26
Chemicals		\$47.90		
Pump Replacement		\$2,483.34		
Good Neighbor Tree Removal			\$3,000.00	
Great Lakes Environmental (2019 PRR)				\$5,100.00
M.W. Offhause & Sons Fill &Cover Ruts			\$430.00	
Gernatt Asphalt Classifier Silt Fill			\$71.83	
Total	\$1,442.07	\$4,628.70	\$8,193.59	\$5,987.39

TABLE 1 SUI Permit Discharge Monitoring Summary

Table 1
SIU Permit Compliance Summary
2019

	PH	_	D.O. Min.	Totalizer Meter	Average	Total Daily		Suspended				Sulfides		Tot. Org.	BOD	Sus. Solids	Phenol	Amonia	Sulfides
	Min. 5.0 Max. 10.5	Temp.	2.0 Daily	Reading		Flow MGD	5-day BOD	Solids	Phenois	TKN	Sulfates	(Outside Lab)	Amonia	Halogens	Loading	Load	Loading	Loading	(in house results)
Date	SU	Deg C	mg/l	gpd	gpd	MGD	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	lbs/day	lbs/day	lbs/day	lbs/day	mg/l
Daily maximum	5.0-10.5		2 mg/L		30,000 gpd									0.1 mg/l	200 lbs/day	181 lbs/day	0.78 lbs/day	75 lbs/day	9 mg/l
1/1/2019				7,287,533.00	13,927.00	0.013927													
1/7/2019	7.46	50.40	5.80	7,370,245.00	82,712.00	0.082712													
1/14/2019	7.35	52.30	4.30	7,461,292.00	91,047.00	0.091047													
1/21/2019	7.35	47.30	5.30	7,521,020.00	59,728.00	0.059728													
1/28/2019	7.29	49.30	2.60	7,591,848.00	70,828.00	0.070828													
1/31/2019				7,617,472.00	25,624.00	0.025624													
2/1/2019				7,623,271.00	5,799.00	0.005799													
2/4/2019	7.24	53.30	4.60	7,644,623.00	21,352.00	0.021352													
2/11/2019	7.16	49.60	3.90	7,721,658.00	77,035.00	0.077035													\Box
2/18/2019	7.28	48.00	2.40	7,782,968.00	61,310.00	0.061310													igspace
2/25/2019	7.38	51.50	3.60	7,783,000.00	32.00	0.000032													
2/28/2019				7,791,621.00	8,621.00	0.008621													
3/1/2019				7,794,335.00	2,714.00	0.002714													
3/4/2019	7.04	50.30	3.00	7,797,570.00	3,235.00	0.003235													
3/11/2019	7.38	47.50	3.60	7,814,740.00	17,170.00	0.017170													igspace
3/18/2019	7.34	48.30	3.60	7,832,475.00	17,735.00	0.017735													
3/25/2019	7.36	51.80	3.70	7,853,218.00	20,743.00	0.020743													
3/31/2019				7,875,964.00	22,746.00	0.022746													igwdown
4/1/2019	7.32	54.90	4.10	7,875,969.00	5.00	0.000005			0.00==	100.00	000.00	4.00	100.00		0.00	0.40	0.000	10.01	\longrightarrow
4/4/2019	7.04	50.50	4.00	7.040.000.00	10,338.00	0.010338	7.00	5.00	0.0055	186.00	263.00	1.00	188.00		0.60	0.43	0.0005	16.21	
4/8/2019	7.24	56.50	4.30	7,912,606.00	36,637.00	0.036637													
4/15/2019	7.10	48.70	4.40	7,941,075.00	28,469.00	0.028469													
4/22/2019	7.29 7.28	56.50	4.30	8,013,860.00	72,785.00	0.072785													
4/29/2019	1.20	58.90	5.90	8,070,139.00	56,279.00	0.056279 0.000000													
4/30/2019 5/1/2019				8,070,139.00 8,077,634.00	0.00 7,495.00	0.000000													\vdash
5/6/2019	7.30	55.30	4.60	8,123,776.00	46,142.00	0.007493													
5/13/2019	7.30	57.10	3.20	8,183,776.00		0.040142													
5/20/2019	7.22	59.80	5.60	8,250,955.00	67,179.00	0.067179													
5/27/2019	7.29	59.30	3.30	8,288,544.00	37,589.00	0.007179													
5/31/2019	1.20	59.50	5.50	8,301,453.00	12,909.00	0.037389													
6/1/2019				8,301,453.00	0.00	0.000000													
6/3/2019	7.34	58.90	2.60	8,301,453.00	0.00	0.000000													
6/10/2019	7.27	62.70	4.50	8,344,282.00	42,829.00	0.042829													\vdash
6/17/2019	7.21	60.50	3.60	8,377,013.00	32,731.00	0.032731													
6/24/2019	7.23	64.80	4.90	8,445,380.00	68,367.00	0.068367													
6/30/2019	0	000		8,485,020.00	39,640.00	0.039640													
7/1/2019	7.30	67.30	4.40	8,488,766.00	3,746.00	0.003746													
7/8/2019	7.29	66.60	3.70	8,537,176.00	48,410.00	0.048410													
7/15/2019	7.21	65.90	4.00	8,566,650.00	29,474.00	0.029474													
7/22/2019	7.33	65.20	5.40	8,600,456.00	33,806.00	0.033806													
7/29/2019	7.07	65.20	3.10	8,625,554.00	25,098.00	0.025098													
7/31/2019				8,632,868.00	7,314.00	0.007314													
8/1/2019				8,636,671.00	3,803.00	0.003803													

Table 1
SIU Permit Compliance Summary
2019

	PH Min. 5.0	Temp.	D.O. Min.	Totalizer Meter	Average	Total Daily	5-day BOD	Suspended	Phenols	TKN	Sulfates	Sulfides (Outside	Amonia	Tot. Org.	BOD	Sus. Solids	Phenol	Amonia	Sulfides (in house
	Max. 10.5	i o.i.ipi	2.0 Daily	Reading	Daily Flow	Flow MGD	o day 202	Solids	1 11011010		Gunatoo	Lab)	7111101110	Halogens	Loading	Load	Loading	Loading	results)
Date	SU	Deg C	mg/l	gpd	gpd	MGD	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	lbs/day	lbs/day	lbs/day	lbs/day	mg/l
Daily maximum	5.0-10.5		2 mg/L		30,000 gpd									0.1 mg/l	200 lbs/day	181 lbs/day	0.78 lbs/day	75 lbs/day	9 mg/l
8/5/2019	7.16	66.50	3.80	8,649,186.00	12,515.00	0.012515													
8/12/2019	7.16	68.50	4.40	8,672,854.00	23,668.00	0.023668													
8/19/2019	7.11	66.60	2.70	8,694,769.00	21,915.00	0.021915													
8/26/2019	7.14	67.30	2.70	8,717,384.00	22,615.00	0.022615													
8/31/2019				8,731,270.00	13,886.00	0.013886													
9/1/2019				8,734,440.00	3,170.00	0.003170													
9/2/2019	7.16	70.90	3.30	8,736,029.00	1,589.00	0.001589													
9/9/2019	7.19	65.90	3.40	8,756,535.00	20,506.00	0.020506													
9/16/2019	7.17	68.00	3.30	8,779,169.00	22,634.00	0.022634													
9/23/2019	7.20	67.50	5.00	8,795,884.00	16,715.00	0.016715													
9/30/2019	7.20	68.00	3.90	8,812,768.00	16,884.00	0.016884													
10/1/2019				8,815,472.00	2,704.00	0.002704													
10/7/2019	7.22	64.20	3.40	8,830,081.00	14,609.00	0.014609													
10/15/2019	7.39	61.50	4.00	8,850,735.00	20,654.00	0.020654													
10/21/2019	7.30	65.90	3.80	8,871,401.00	20,666.00	0.020666													
10/28/2019	7.21	63.20	3.70	8,896,150.00	24,749.00	0.024749													
10/31/2019				8,905,973.00	9,823.00	0.009823													
11/1/2019				8,911,126.00	5,153.00	0.005153													
11/4/2019	7.15	60.80	5.00	8,930,807.00	19,681.00	0.019681													
11/11/2019	7.24	58.60	5.70	8,973,113.00	42,306.00	0.042306													
11/18/2019	7.41	52.10	6.20	9,007,234.00	34,121.00	0.034121													
11/25/2019	7.17	54.30	4.00	9,013,808.00	6,574.00	0.006574													
11/30/2019				9,039,742.00	25,934.00	0.025934													
12/1/2019				9,043,885.00	4,143.00	0.004143													
12/2/2019	7.01	56.70	3.50	9,050,741.00	6,856.00	0.006856													
12/9/2019	7.48	52.90	6.20	9,100,176.00	49,435.00	0.049435													
12/16/2019	7.12	50.50	5.00	9,156,832.00	56,656.00	0.056656													
12/23/2019	7.35	51.10	2.50	9,208,491.00	51,659.00	0.051659													
12/30/2019	7.23	56.90	3.20	9,259,679.00	51,188.00	0.051188													
12/31/2019				9,266,511.00	6,832.00	0.006832													

FIGURE 1
Site Location Map

1 inch = 2,000 feet

Site Location Map

Erie and Cattaraugus Counties March 2020 New York

Project No. 2310.001 FIGURE 2 Site Plan

APPENDIX A 2019 Site Inspection Report and Photos

Field Inspection Report Peter Cooper Gowanda Landfill Site

Date of Inspection: Mon Apr 29, 2019

On-Site Inspector: Mark Mol

P.E.: Ken Kloeber, PE

erty Access	Photo ID
Paved areas, parking lot and walking path, were not in need of repair.	N/A
A small informational sign for the park users was observed between the park area and the capped landfill	1, 2
No reports of trespassing were communicated to the inspector during the inspection. However, the capped area is not fenced off and access from all sides is unimpeded. The inspector observed ATV tracks on the cap.	3

Final Surface Cover/Vegetation	Photo ID						
Cover is in place, but damaged in a few locations. The cover is not a wild vegetative cover, but ar agricultural hay blend. Mike Hutchinson said that a farmer hays the field once a year.							
No evidence of erosion or distressed vegetation was observed.	N/A						
Evidence of traffic and rutting was observed in multiple locations. Damage appeared to be attributed to truck and ATV traffic on the capped area.	3, 4, 5, 6, 7						
Water ponding on the cap was observed in two locations.	8,9						

Gas '	Vent System	Photo ID				
	No signs of stressed vegetation around gas vents, no damage to vents, and Mike Hutchinson said	N/A				
	that regular maintenance tasks involving these vents were being completed.					

Grou	indwater Monitoring	Photo ID
	MW-2S(R) was observed to not be capped or locked. Mike Hutchinson gave the inspector a lock and plug to place on this well. The plug was the wrong size and did not fit, but the inspector did close and lock the well.	10, 11

Not	es	Photo ID					
	Sulfurous odors were observed when standing next to the middle gas vent and at the northwest corner of the property.	N/A					
	Mike Hutchinson detailed that Pump #1 was replaced April 25-26, 2019. An issue with the floats and pump controller was the cause. The pump was replaced by RP Mechanical. The electrical work was completed by electrician Roger Burzak.						
	Large trees and shrubs were observed to be growing out of the rip rap area along the creek.	12, 13					
	Leachate treatment building - cell antenna for pump alarm system is exposed and located in an area susceptible to vandalism.	14					

Photo 1 – Small posting next to asphalt walking path.

Photo 2 – Clearer view of posting.

Photo 3 – ATV tracks on cap.

Photo 4 – Truck ruts on cap.

Photo 5 – Truck ruts on cap.

Photo 6 – Fresh tire tracks on cap.

Photo 7 – Tire tracks on cap.

Photo 8 – Ponding water on cap.

Photo 9 – Ponding water on cap.

Photo 10 – MW-2S(R) found uncapped and unlocked.

Photo 13 – View upstream from rip rap at concrete wall beginning showing trees and shrub growth.

Photo 14 – Treatment Building – Alarm cell antenna location and mount susceptible to vandalism.

Photo 11 – MW-2S(R) with wrong size cap, MW-5S lid was locked by Great Lakes.

Photo 12 – View upstream from lift station manhole with visible trees and shrubs growing in rip rap.

Peter Cooper Superfund Site **Corrective Actions** Palmer Street - Gowanda NY (Site SMP / Site S/FMP / Site OM&MP / Site Agreement) **Property:** GARC NYSEG Date prepared: 8/26/2019 Preparer's Name: Ken Kloeber PE <u>Describe issue(s) to be addressed</u> [include sketches, photos, location information as appropriate]: Mature woody vegetation well-rooted in rip-rap along the creek (new rip-rap section,) During inspection various truck, ATV ruts observed on landfill cap. MW plug needs replacing with proper size (MW-2R at creek bank.) See 4/29/2019 site inspection report and photo log for locations. The Environmental Inspection of the noted property determined the need for corrective action. This form documents that the required corrective action(s) were completed. Corrective Action(s) taken; include Dates (addressed) / By (staff or contractor name):

CERTIFICATION [include photos, sketches, locations as appropriate to show action(s) taken]

I hereby certify that the corrective action(s) described were completed according to all relevant requirements of the Site Management Plan and Soil/Fill Management Plan, Site OM&M Plan, Site Agreement and all other applicable documents.

By:

Signature

Position or Title

Τ.

Date __

1/13/19

APPENDIX B Emerging Contaminant Sampling Report

August 26, 2019

Mr. Maurice Moore Professional Geologist 1 NYSDEC Division of Environmental Remediation 270 Michigan Avenue Buffalo, NY 14203

Emerging Contaminants Groundwater Sampling Report

Peter Cooper Gowanda Site, Gowanda, NY

NYSDEC Site No. 905003a

Dear Mr. Moore:

Re:

On behalf of the cooperating Potentially Responsible Parties (cPRPs), Benchmark Environmental Engineering and Science, PLLC (Benchmark) has prepared this emerging contaminant groundwater sampling report for the above referenced Site. The groundwater sampling was performed in general accordance with the NYSDEC-approved May 30, 2019 Work Plan, which was prepared in response to a letter the cPRPs received on March 18, 2019 from the Department requiring that the Site be sampled for 1,4-dioxane and per- and polyfluoroalkyl substances (PFAS).

PREPARATION

On April 1st, 2019 Benchmark removed dedicated low-density polyethylene (LDPE) tubing from the wells and redeveloped them using PVC bailers with nylon bailer cord. Wells designated for emergent contaminant sampling, including upgradient monitoring wells MW-1SR & MW-7S and down gradient monitoring wells MWFP-2S, MWFP-3S & MW-5S (See Attached Figures 1&2), were purged of 3 well volumes (or to dryness) to mitigate potential positive PFAS bias. Redevelopment notes are presented in Attachment 1.

SAMPLING PROCEDURE

Benchmark field personnel performed the sampling event on June 21st, 2019. Prior to sampling, a field blank/equipment blank was prepared for the groundwater monitoring event. The blank was compromised of laboratory supplied PFAS-free water which was poured over and/or brought into direct contact with all sampling equipment (bailer, rope, tubing, gloves water level tape, etc.). The uncapped blank was then placed near the field crew while preparations for well purge and sampling took place (prepare bottle set, calibrate groundwater quality meters, prepare bailers for sampling). This is intended to capture ambient PFAS

Strong Advocates, Effective Solutions, Integrated Implementation

www.benchmarkees.com

compounds that may emanate from the field crew or equipment during typical preparations associated with groundwater sampling. The equipment blank was then sealed and returned to the cooler on ice.

The groundwater wells were purged and sampled using dedicated disposable PVC bailers and nylon bailer cord, except for MW-1SR and MWFP-3 (both wells have slight bends in their PVC risers at approximately 3 ft that precludes use of a bailer). Accordingly, these wells were purged and sampled with a peristaltic pump using silicon tubing. Starting with the upgradient locations first, groundwater quality parameters (pH, temperature, turbidity, ORP, specific conductance) were periodically recorded and three (3) well volume were removed. Upgradient monitoring location MW-7S has appeared to have been damaged and groundwater samples could not be collected from that location. Upon removal of three well volumes, groundwater samples for the emergent contaminants were collected. Samples for PFAS analysis were collected first and transferred to laboratory provided containers: two (2) 250 ml plastic bottles unpreserved for each well location. Samples collected for 1,4-dioxine analysis were placed into laboratory provided containers comprised of two (2) one-liter unpreserved amber bottles per well location. In addition to the above-described blank, quality assurance/quality control (QA/QC) samples collected during the event included one (1) site-specific blind duplicate (BD) sample collected at MW-5S and one (1) matrix spike/matrix spike duplicate (MS/MSD) sample collected from MW-1SR.

Before groundwater samples were collected, sampling personnel donned nitrile gloves while handling empty sample containers, filling sample containers, sealing sample containers, and placing containers into sample coolers. New gloves were donned at each sample location. Samples were placed on ice prior to transportation to the laboratory. All purge water was run through granular activated carbon prior to discharge on the ground surface. Field data sheets are in Attachment 1.

SAMPLE ANALYSIS

Groundwater samples were sent under chain of custody command to Eurofins TestAmerica, Buffalo, an ELAP certified laboratory which provided a Category B deliverable package for preparation of a Data Validation Usability Summary Report (DUSR) by a third-party data validator.

Samples for PFAS analysis were analyzed via a modified EPA Method 537 with targeted reporting limits of 2 nanograms per liter (ng/l). Due to matrix interferences in downgradient sample locations dilution was required during analysis, raising laboratory reporting limits. As further discussed below, the elevated reporting limits for these locations did not affect the ability to evaluate the data against current guidance levels.

Samples collected for 1,4-dioxine were analyzed via EPA Method 8270 Selective Ion Monitoring (SIM) mode to achieve reporting limits of 0.28 micrograms per liter (µg/l).

ANALYTICAL RESULTS

Analytical results are summarized on Table 1; the analytical data package is presented in Attachment 2. Non-detect results are noted with their corresponding reporting limit. Several PFAS were detected in the laboratory method blank and were flagged with B qualifiers.

As indicated in Table 1, all samples fall below NYSDEC guidance of 70 ng/L for total PFOA and PFOS compounds and 500 ng/L for total PFAS. The remaining PFAS were reported as non-detect. 1,4 – Dioxane was reported as non-detect at all monitoring locations.

Data Validation Services reviewed and validated the analytical data. The Data Usability Summary Report (DUSR) is included in Attachment 3. Of note, perfluorooctane sulfonic acid (PFOA) was validated as non-detect at monitoring points MW-1SR, MWFP-2, and MW-5S.

CONCLUSIONS

Concentrations for both total PFOA and PFOS & total PFAS fell well below the NYSDEC Emergent Contaminant thresholds. Although matrix interference raised reporting limits at downgradient monitoring locations, the sum of the detected concentrations and reporting limits for non-detect parameters also fall below both NYSDEC thresholds for these compounds.

Based on these sampling results, no further sampling for emerging contaminants is proposed.

We are presently uploading the data in electronic data delivery (EDD) format to NYSDEC's EQuIS database. In the interim, please feel free to contact me with any questions.

Sincerely,

Benchmark Environmental Engineering & Science, PLLC

Thomas H. Forbes, P.E.

Principal Engineer

CC: S. Henry (USEPA)

W. D'Angelo

S. Davis

T. Blazicek

R. Biltekoff

File: 0021-010-500

TABLES

TABLE 1

SUMMARY OF EMERGING CONTAMINANTS GROUNDWATER ANALYTICAL RESULTS

PETER COOPER SITE GOWANDA, NEW YORK

	NYSDEC			Sampl	le Location an	d Date		
PARAMETERS 1	Emergent Contaminant	MW-1SR ³	MWFP-2	MWFP-3	MW-5S	MW-7S ⁴	Blind Dup ⁵	Field Blank
	Threshold ²	6/21/2019	6/21/2019	6/21/2019	6/21/2019	6/21/2019	6/21/2019	6/21/2019
1,4 Dioxane - ug/L								
1,4 Dioxane	0.35	ND < 0.01	ND < 0.01	ND < 0.01	ND < 0.01	NS	ND < 0.01	NA
Perfluorinated Alkyl Acids - ng/L								
Perfluorobutanoic acid (PFBA)		4	4.6 J	ND < 4.1	11	NS	13	ND < 0.89
Perfluoropentanoic acid (PFPeA)		0.94 J	4.8 J	ND < 2.6	2.9 J	NS	5.4 J	ND < 0.56
Perfluorobutanesulfonic acid (PFBS)	-	0.64 J	2.8 J	ND < 4.1	ND < 2.1	NS	2 J	ND < 0.44
Perflurorohexanoic acid (PFHxA)	-	ND < 0.62	7.9 J	4.7 J	ND < 3.3	NS	4.3 J	0.85 J
Perfluoroheptanoic acid (PFHpA)	-	0.94 J	ND < 3.7	ND < 3.7	ND < 3.9	NS	ND < 3.6	ND < 0.81
Perfluorohexanesulfonic acid (PFHxS)	-	ND < 0.65	10	5.5 J	ND < 3.5	NS	ND < 3.1	ND < 0.71
Perfluorooctanoic acid (PFOA)	-	ND < 0.51	ND < 2.6	ND < 2.6	ND < 2.7	NS	6.1 JB	0.62 JB
1H,1H,2H,2H-Perfluorooctanesulfonic acid (6:2FTS)	-	ND < 3.7	ND < 19	ND < 19	ND < 20	NS	ND < 18	ND < 4.1
Perfluoroheptanesulfonic acid (PFHpS)	-	ND < 0.77	ND < 3.9	ND < 3.9	ND < 4.1	NS	ND < 3.7	ND < 0.85
Perfluorononanoic acid (PFNA)	-	ND < 0.22	ND < 1.1	ND < 1.1	ND < 1.9	NS	2.3 J+	ND < 0.24
Perfluorooctanesulfonic acid (PFOS)	-	ND < 0.49	ND < 2.5	6.9 J+	ND < 2.6	NS	ND < 2.4	0.57 J+
Perfluorodecanoic acid (PFDA)		ND < 0.62	ND < 3.2	ND < 3.1	ND < 3.3	NS	ND < 3.0	ND < 0.69
1H,1H,2H,2H-Perfluorodecanesulfonic acid (8:2FTS)	-	ND < 2.4	ND < 12	ND < 12	ND < 13	NS	ND < 11	ND < 2.6
N-Methyl Perfluorooctanesulfonamidoacetic acid (NMeFOSAA)	-	ND < 1.4	ND < 7.0	ND < 6.9	ND < 7.3	NS	ND < 6.7	ND < 1.5
Perfluoroundecanoic Acid (PFUnA)	-	ND < 0.43	ND < 2.2	ND < 2.2	ND < 2.3	NS	ND < 2.1	ND < 0.47
Perfluorodecanesulfonic acid (PFDS)	-	ND < 0.73	ND < 3.7	ND < 3.7	ND < 3.9	NS	ND < 3.5	ND < 0.80
Perfluorooctanesulfonamide (FOSA)	-	ND < 8.1	ND < 41	ND < 41	ND < 43	NS	ND < 39	ND < 8.9
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	-	ND < 1.2	ND < 6.1	ND < 6.1	ND < 6.5	NS	ND < 5.9	ND < 1.3
Perfluorododecanoic Acid (PFDoA)	-	ND < 0.48	ND < 2.4	ND < 2.4	ND < 2.5	NS	2.4 J	ND < 0.53
Perfluorotridecanoic Acid (PFTriA)	-	ND < 0.49	ND < 2.5	ND < 2.4	ND < 2.6	NS	ND < 2.4	ND < 0.54
Perfluorotetradecanoic acid (PFTeA)	_	ND < 0.75	ND < 3.7	ND < 3.7	ND < 4.0	NS	ND < 3.6	ND < 0.82
Total PFOA and PFOS	70	0.0	0.0	6.9	0.0		6.1	1.2
Total PFAS	500	ND < 0.48 ND < 2.4 ND < 2.5 NS 2.4 J ND < 0.53 ND < 0.49						

Notes:

- 1. Only parameters detected at a minimum of one sample location are presented in this table; all other compounds were reported as non-detect.
- 2. Contaminant threshold values per NYSDEC Emergent Contaminant Initial Site Sampling Results Checklist.
- 3. MS/MSD was collected at MW-1SR.
- 4. MW-7S was not sampled due to well damage.
- 5. Blind duplicate sample was collected at MW-5S.

Definitions:

- ng/L = nanograms per liter
- ug/L = micrograms per liter
- "--" = No contaminant threshold value available for the parameter.
- NA = Sample not analyzed for parameter.
- NS = No sample collected due to well damage.
- ND < 3.7 = Parameter not detected above method detection limit.
- J = Estimated Value The target analyte concentration is below the Reporting Limit (RL) but above the the Method Detection Limit (MDL)
- J+ = The analyte was positively identified; the associated numerical value is an estimated quantity that may be biased high.
- B = Compound was found in the Blank and Sample.
- I = Value is EMPC (estimated maximum possible concentration).
- "*" = LCS or LCSD is outside acceptance limits

FIGURES

GROUNDWATER & SURFACE WATER MONITORING LOCATIONS - FORMER MANUFACTURING PLANT AREA GROUNDWATER MONITORING PLAN PETER COOPER GOWANDA SITE GOWANDA, NEW YORK

2558 HAMBURG TURNPIKE SUITE 300 BUFFALO, NEW YORK 14218 (716) 856-0599

/Environmental Engineering 8 Science, PLLC

JOB NO.: 0021-001-900

BENCHMARK

YORK 14218

PREPARED FOR RESPONDANTS FOR PETER COOPER GOWANDA SITE

FIGURE 1

ATTACHMENT 1

FIELD DATA SHEET

EQUIPMENT CALIBRATION LOG

PROJECT INFORMATION:	ON:	100			10	(10 Me		
Project No.:	0021-010-500	- 200 -500	Sowanua Site	Ce .	Date:	Charles and the second		
	Collect	Shaun	~~		Instrumer	Instrument Source:	☐ BM	Rental
METER TYPE	UNITS	TIME	MAKE/MODEL	SERIAL NUMBER	CAL. BY	STANDARD	POST CAL. READING	SETTINGS
pH meter	units		Myron L Company Ultra Meter 6P	606987 A 6212375		4.00 7.00 10.01	7.07	34 34 50 50 50 50 50 50 50 50 50 50 50 50 50
Turbidity meter	DTN		Hach 2100P Turbidimeter	06120C020523 □ 07110C026405 🔯	×	< 0.4 20 100 800	E. Calor	10.8 will to
Sp. Cond. meter	Sn		Myron L Company Ultra Meter 6P	606987 RF 6212375		25°C	6,495	7,000
OIA 🗆	mdd		MinRAE 2000			open air zero		MIBK response factor = 1.0
☐ Dissolved Oxygen	mdd		HACH Model HQ30d			100% Satuartion		
☐ Particulate meter	mg/m ₃					zero air		
Oxygen	%					open air		
☐ Hydrogen sulfide	mdd					open air		
☐ Carbon monoxide	mdd					open air		
O LEL	%					open air		
☐ Radiation Meter	uR/H					background area		
	<u>0</u>							
ADDITIONAL REMARKS:	.S.							-

PREPARED BY:

DATE: Ch

6/24/15

Peter Cooper Gowanda Site-Emerging Contaminants Sampling Date: 6/20/19 Project Name: Project No.: 0021-010-500 Field Team: RLD Location: Gowanda, NY

Well No	N//\	N-1SR	Diameter (in	ahaa\.	0.	Cample Det	n / Times C	121/19	10=0
		W-13h	Diameter (in	-	2"	Sample Date			1050
Product Dep	oth (fbTOR):	-	Water Colur	nn (ft): 🍝	68521	DTW when	Children Colored	Tre	
DTW (static	:) (fbTOR): 🏻 🕻	168	One Well Vo	olume (gal):	0.84	Purpose: L	Developmen	t Sample	Purge & Sample
Total Depth	(fbTOR):	1.89	Total Volum	e Purged (gal):	2.50	Purge Metho	od: Perist	altoc	
Time	Water Level (fbTOR)	Acc. Volume (gallons)	pH (units)	Temp. (deg. C)	SC (uS)	Turbidity (NTU)	DO (mg/L)	ORP (mV)	Appearance & Odor
	o Initial								
10.36	1705	0.75	6.91	15.2	7760	6.50		-43	Clar No Odor
1043	2 70	1.50	B.84	14,4	701.8	2,33	-	-54	Ce
1048	37.0	2.50	6.84	14.0	691.4	1.19	_	-43	06
	4								
	5								
	6								
	7								
	8								
	9								
	10								
Sample I	nformation:	Molm	SD G	leed				·	
1050	S1 7.0	-	6.93	13.4	690.5	1.23		-37	-
1114	S2 7 0	575	6.21	15.0	712.5	1.07	1	-87	

Well N	o. M	W-7S	Diameter (in	nches):	2"	Sample Date	/ Time:		
Product De	epth (fbTOR):		Water Colur	mn (ft): 🔥	LK .	DTW when s	ampled:		
DTW (stati	c) (fbTOR):	7.85	One Well Vo	olume (gal):		Purpose:	Development	Sample	✓ Purge & Sample
Total Dept	h (fbTOR): /C	0.0	Total Volum	e Purged (gal):		Purge Metho	d:		
Time	Water Level (fbTOR)	Acc. Volume (gallons)	pH (units)	Temp. (deg. C)	SC (uS)	Turbidity (NTU)	DO (mg/L)	ORP (mV)	Appearance & Odor
	o Initial								
	1								
	3								
	4								
	5								
	6								
	7								
	8								
	9								
	10			1 -					
Sample	Information:	No 5	ample	will I	Dany				
	81				U				
	S2								

REMARKS: Fusalbant water, all Damile Note: All water level measurements are in feet, distance from top of riser.

Volume Calculation Diam. Vol. (g/ft) 0.041 2" 0.163 4" 0.653 1.469

Stabilization Criteria Parameter Criteria рΗ ± 0.1 unit SC ± 3% Turbidity ± 10% ± 0.3 mg/L DO ORP ± 10 mV

Project Nar	ne: Pet	ter Cooper G	aowanda Sit	e-Emerging	Contaminant	s Sampli	ng	Date: 6	6/20/19	
Location:		wanda, NY		Projec		21-010-5	_		eam: RLD	
			_							
Well No	o. N	IW-5S	Diameter (i		2*	Sample	e Date /		Clarle	
	pth (fbTOR):		Water Colu	mn (ft):	Les	DTW v	hen san	Althor the second		ample 🔽 Purge &
DTW (statio	c) (fbTOR):	11.98	One Well V	olume (gal):	2.75	Purpos	e:		~0	
Total Depth	(fbTOR):	16.63	Total Volun	ne Purged (gal)		Purge	Method:	Bu	ler	
Time	Water Level (fbTOR)	Acc. Volume (gallons)	pH (units)	Temp. (deg. C)	SC (uS)	Turbid (NTU		DO (mg/L)	ORP (mV)	Appearance & Odor
	o Initial	,				Ť –				
13.37	1 12.0	6.75	669	5-6	1566	981	1	-	-79	St 7412
1340	2/20	1,50	6.70	1700	1704	82		18	1-78	17
1344	3120	2.25	6.69	14.8	1621	960		~	-75	11
	4									
	5									
	6									
	7									
	8									
	9									
	10									
Sample	Information	Blind	Dua	*	*				/×	
1249	S1 120	- Is verys	6-69	18.0	1802	111		_	1-75	10
126	S2 1/) ()	-	6.75	16.3	19,2	VII	-		- e /	71
10) (1 40		0 . 0	10. ()	1 1 1 1			Ŋ		
						I			11.1.0	
Well No		VFP-3S	Diameter (ii		2"		Date /		8/2/119	
	pth (fbTOR):		Water Colu	The second secon		+	hen san		70	
DTW (station		78			-13	Purpos		Developmer		
Total Depth	T	3.73	Total Volum	ne Purged (gal)	3.00	Purge	Method:	17	erstalts	
Time	Water Level (fbTOR)	Acc. Volume (gallons)	pH (units)	Temp. (deg. C)	SC (uS)	Turbid (NTU		DO (mg/L)	ORP (mV)	Appearance & Odor
	o Initial		<u> </u>	10						
1252	17.0	1.0	6.75	16.5	584.9	5.92	2	-	-19	16
1300	27.0	225	6,66	15.1	628.0	3.5		-	Ò	18
1306	3 7.0	3.50	669	15.5	648-4	1.81			-[Lc
	4		100			-				
	5									
	6									
	7									
	8									
	9									
	10									
Sample I	Information:									
1369	S1 7.0	-	621	14.9	657.6	1.45		_	5	18
1316	82 7. O	-	6.69	16.0	Conc	LIK		_	Ý	· V
									Stabi	ilization Criteria
REMARK	S:						Volume	Calculation	1 —	
							Diam.	Vol. (g/ft)	1	± 0,1 unit
							1"	0.041	SC	± 3%
							2" 4"	0.163	Turbidi DO	± 10% ± 0.3 mg/L
Moto: All w	ater level me	acuremente	are in feet	dictance from	n top of riser		6"	1.469	ORP	

1455

GROUNDWATER FIELD FORM

Project Name: Peter Cooper Gowanda Site-Emerging Contaminants Sampling Date: 6/20/19

Location: Gowanda, NY Project No.: 0021-010-500 Field Team: RLD

Well No	. MW	/FP-2S	Diameter (in		2"	Sample Date	e / Time:	Charles	1206
Product Dep	oth (fbTOR):	→	Water Colur		222	DTW when	sampled:	11.91	
DTW (static) (fbTOR):	255	One Well Vo	olume (gal):	5.74	Purpose:	Developme		1
Total Depth	(fbTOR): /	1.10	Total Volum	e Purged (gal):		Purge Metho	od:	Howflow PV	1 Batter
Time	Water Level (bTON)	Acc. Volume (gallons)	pH (units)	Temp. (deg. C)	SC (uS)	Turbidity (NTU)	DO (mg/L)	ORP (mV)	Appearance & Odor
4	o Initia l	0.75	7.29	19.5	877.4	15.4	L	-109	Mood
1159	112.0	1.5	7.31	13.8	896.7	4.32	1	-117	
	21252	2.25	734	13 4	918.1	4.19	-	-118	
,,,,,	3								
	4								
	5								
	6								
	7								
	9								
	0								
	10								
Sample I	nformation:								
	S111.9.1	~~	7.31	13.8	908.4	4.80	_	-118	
214	82 2.90		7.34	13.4	928.0	7-35	~	-145	

Well No).		Diameter (in	nches):		Sample Dat	e / Time:		
Product Dep	oth (fbTOR):		Water Colur	mn (ft):		DTW when	sampled:		
DTW (static			One Well Vo	olume (gal):		Purpose:	Development	Sample	☑ Purge &
Total Depth			Total Volum	e Purged (gal):		Purge Metho	od:	lowfl	ow
Time	Water Level (fbTOR)	Acc. Volume (gallons)	pH (units)	Temp. (deg. C)	SC (uS)	Turbidity (NTU)	DO (mg/L)	ORP (mV)	Appearance & Odor
	o Initial								
	1								
	2								
	3								
	4								
	5				17.0				
	6								
	7								
	8								
	9								
	10								
Sample I	nformation			*					
, , , , , ,	S1								
	S2								

REMARKS:	
Note: All water level measurements are	in feet, distance from top of riser.

Volume Calculation

Diam. Vol. (g/ft)

1" 0.041

2" 0.163

4" 0.653

6" 1.469

 Stabilization Criteria

 Parameter
 Criteria

 pH
 ± 0.1 unit

 SC
 ± 3%

 Turbidity
 ± 10%

 DO
 ± 0.3 mg/L

 ORP
 ± 10 mV

PREPARED BY: RLD

roject Na ocation:	Cowand	cı		Project	No.:		Field T	eam:	
Well N	0. MW-	76	Diameter (i	nches): 2		Sample D	ate / Time:		
	epth (fbTOR):	13			9 >				
		7.41	Water Colu				n sampled: Note: Development	t 🗌 Sample	e 🔲 Purge & Sample
		0.38		/olume (gai): O	. 10				
Total Dept			Total Volum	ne Purged (gal):		Purge Met	thod: PVC Bo	riler W/nu	ylon role
Time	Water Level (fbTOR)	Acc. Volume (gallons)	pH (units)	Temp. (deg. C)	SC (uS)	Turbidity (NTU)	DO (mg/L)	ORP (mV)	Appearance & Odor
1000	o Initial	0.00					-		SE Turbiol . no
10 30	Dry	0.20				+	+	 	St Turbial, and
1400	2 D								
100	2 Dry	0.35							Turbidino
	3								ļ
	4								
	5								
	6								
	7								
	8								
	0					20	+		
	40								
	10								
Sample	Information:								
	S1				6		Î	1	
	S2								
VA7. II. N.I.						T			
Well No	O. Mufp	-25	Diameter (ir			Sample Da	ate / Time:		
Product De	pth (fbTOR):		Water Colu	mn (ft): 4.3	5	Sample Da			
Product De	pth (fbTOR): c) (fbTOR):	1.73	Water Colu		5	DTW when	n sampled: Development		
Product De	pth (fbTOR): c) (fbTOR):		Water Colu	mn (ft): 4.3	5	DTW when	n sampled: Development	: Sample	
Product De DTW (station	pth (fbTOR): c) (fbTOR):	1.73	Water Colu One Well Vo Total Volum	mn (ft): 4.3 folume (gal): 0 ne Purged (gal):	5 .71	DTW when Purpose:	n sampled: ☑ Development hod: PVC Bo	siles w/n	non repe
Product De DTW (station	pth (fbTOR): c) (fbTOR): Q (fbTOR): Water Level	Acc. Volume	Water Colum One Well Vo Total Volum pH	mn (ft): 4.3 olume (gal): 0 ne Purged (gal): Temp.	5 .71	DTW when Purpose: Purge Met	n sampled: Development hod: PVC Bo	ORP	Appearance &
Product De DTW (station Total Depth	pth (fbTOR): c) (fbTOR): q (fbTOR): Water	73 1.08 Acc.	Water Colu One Well Vo Total Volum	mn (ft): 4.3 folume (gal): 0 ne Purged (gal):	5 .71	DTW when Purpose:	n sampled: ☑ Development hod: PVC Bo	siles w/n	non repe
Product De DTW (station Total Depth Time	pth (fbTOR): c) (fbTOR): Q (fbTOR): Water Level	Acc. Volume (gallons)	Water Colum One Well Vo Total Volum pH	mn (ft): 4.3 olume (gal): 0 ne Purged (gal): Temp.	5 .71	DTW when Purpose: Purge Met	n sampled: Development hod: PVC Bo	ORP	Appearance & Odor
Product De DTW (station Total Depth Time	pth (fbTOR): c) (fbTOR): Water Level (fbTOR) Interpretation	Acc. Volume (gallons)	Water Colum One Well Vo Total Volum pH	mn (ft): 4.3 olume (gal): 0 ne Purged (gal): Temp.	5 .71	DTW when Purpose: Purge Met	n sampled: Development hod: PVC Bo	ORP	Appearance & Odor
Product De DTW (station Total Depth Time	pth (fbTOR): c) (fbTOR): Q (fbTOR): Water Level (fbTOR) Initial	Acc. Volume (gallons)	Water Colum One Well Vo Total Volum pH	mn (ft): 4.3 olume (gal): 0 ne Purged (gal): Temp.	5 .71	DTW when Purpose: Purge Met	n sampled: Development hod: PVC Bo	ORP	Appearance & Odor Struck of Oo
Product De DTW (station Total Depth Time	pth (fbTOR): c) (fbTOR): Q (fbTOR): Water Level (fbTOR) Initial Initial Initial Initial Initial	Acc. Volume (gallons)	Water Colum One Well Vo Total Volum pH	mn (ft): 4.3 olume (gal): 0 ne Purged (gal): Temp.	5 .71	DTW when Purpose: Purge Met	n sampled: Development hod: PVC Bo	ORP	Appearance & Odor Strucked Oo II II II
Product De DTW (station Total Depth Time	pth (fbTOR): c) (fbTOR): Q (fbTOR): Water Level (fbTOR) Initial	Acc. Volume (gallons)	Water Colum One Well Vo Total Volum pH	mn (ft): 4.3 olume (gal): 0 ne Purged (gal): Temp.	5 .71	DTW when Purpose: Purge Met	n sampled: Development hod: PVC Bo	ORP	Appearance & Odor Struck of Oo
Product De DTW (station Total Depth Time	pth (fbTOR): c) (fbTOR): Q (fbTOR): Water Level (fbTOR) Initial Initial Initial Initial Initial	Acc. Volume (gallons)	Water Colum One Well Vo Total Volum pH	mn (ft): 4.3 olume (gal): 0 ne Purged (gal): Temp.	5 .71	DTW when Purpose: Purge Met	n sampled: Development hod: PVC Bo	ORP	Appearance & Odor Strucked Oo II II II
Product De DTW (station Total Depth Time	pth (fbTOR): c) (fbTOR): Q (fbTOR): Water Level (fbTOR) Initial Initial Initial Initial Initial	Acc. Volume (gallons)	Water Colum One Well Vo Total Volum pH	mn (ft): 4.3 olume (gal): 0 ne Purged (gal): Temp.	5 .71	DTW when Purpose: Purge Met	n sampled: Development hod: PVC Bo	ORP	Appearance & Odor Strucked Oo II II II
Product De DTW (station Total Depth Time	pth (fbTOR): c) (fbTOR): Q (fbTOR): Water Level (fbTOR) Initial Initial Initial Initial Initial	Acc. Volume (gallons)	Water Colum One Well Vo Total Volum pH	mn (ft): 4.3 olume (gal): 0 ne Purged (gal): Temp.	5 .71	DTW when Purpose: Purge Met Turbidity	n sampled: Development hod: PVC Bo	ORP	Appearance & Odor Strucked Oo II II II
Product De DTW (station Total Depth Time	pth (fbTOR): c) (fbTOR): Q (fbTOR): Water Level (fbTOR) Initial Initial Initial Initial Initial	Acc. Volume (gallons)	Water Colum One Well Vo Total Volum pH	mn (ft): 4.3 olume (gal): 0 ne Purged (gal): Temp.	5 .71	DTW when Purpose: Purge Met Turbidity	n sampled: Development hod: PVC Bo	ORP	Appearance & Odor Strucked Oo II II II
Product De DTW (station Total Depth Time	pth (fbTOR): c) (fbTOR): Q (fbTOR): Water Level (fbTOR) Initial Initial Initial Initial Initial	Acc. Volume (gallons)	Water Colum One Well Vo Total Volum pH	mn (ft): 4.3 olume (gal): 0 ne Purged (gal): Temp.	5 .71	DTW when Purpose: Purge Met Turbidity	n sampled: Development hod: PVC Bo	ORP	Appearance & Odor Strucked Oo II II II
Product De DTW (station Total Depth Time	pth (fbTOR): c) (fbTOR): Water Level (fbTOR) Initial	Acc. Volume (gallons)	Water Colum One Well Vo Total Volum pH	mn (ft): 4.3 olume (gal): 0 ne Purged (gal): Temp.	5 .71	DTW when Purpose: Purge Met Turbidity	n sampled: Development hod: PVC Bo	ORP	Appearance & Odor Strucked Oo II II II
Product De DTW (station Total Depth Time	pth (fbTOR): c) (fbTOR): Q (fbTOR): Water Level (fbTOR) In Initial I	Acc. Volume (gallons)	Water Colum One Well Vo Total Volum pH	mn (ft): 4.3 olume (gal): 0 ne Purged (gal): Temp.	5 .71	DTW when Purpose: Purge Met Turbidity	n sampled: Development hod: PVC Bo	ORP	Appearance & Odor Strucked Oo II II II
Product De DTW (station Total Depth Time	pth (fbTOR): c) (fbTOR): Q (fbTOR): Water Level (fbTOR) Initial Initia	Acc. Volume (gallons) 0.00 1.00 3.00	Water Colum One Well Vo Total Volum pH	mn (ft): 4.3 olume (gal): 0 ne Purged (gal): Temp.	5 .71	DTW when Purpose: Purge Met Turbidity	n sampled: Development hod: PVC Bo	ORP	Appearance & Odor Strucked Oo II II II
Product De DTW (station Total Depth Time	pth (fbTOR): c) (fbTOR): Q (fbTOR): Water Level (fbTOR) In Initial I	Acc. Volume (gallons) 0.00 1.00 3.00	Water Colum One Well Vo Total Volum pH	mn (ft): 4.3 olume (gal): 0 ne Purged (gal): Temp.	5 .71	DTW when Purpose: Purge Met Turbidity	n sampled: Development hod: PVC Bo	ORP	Appearance & Odor Strucked Oo II II II
Product De DTW (station Total Depth Time 10-10 0-50 0-55	pth (fbTOR): c) (fbTOR): Q (fbTOR): Water Level (fbTOR) Initial Initia	Acc. Volume (gallons) 0.00 1.00 3.00	Water Colum One Well Vo Total Volum pH	mn (ft): 4.3 olume (gal): 0 ne Purged (gal): Temp.	5 .71	DTW when Purpose: Purge Met Turbidity	n sampled: Development hod: PVC Bo	ORP	Appearance & Odor Strucked Oo II II II
Product De DTW (station Total Depth Time 10-10 0-50 0-55	pth (fbTOR): c) (fbTOR): Q (fbTOR): Water Level (fbTOR) Initial Initia	Acc. Volume (gallons) 0.00 1.00 3.00	Water Colum One Well Vo Total Volum pH	mn (ft): 4.3 olume (gal): 0 ne Purged (gal): Temp.	5 .71	DTW when Purpose: Purge Met Turbidity	n sampled: Development hod: PVC Bo	ORP	Appearance & Odor Strucked Oo II II II
Product De DTW (station Total Depth Time	pth (fbTOR): c) (fbTOR): d) (fbTOR): Water Level (fbTOR) o Initial lacel	Acc. Volume (gallons) 0.00 1.00 3.00	Water Colum One Well Vo Total Volum pH	mn (ft): 4.3 olume (gal): 0 ne Purged (gal): Temp.	5 .71	DTW when Purpose: Purge Met Turbidity	n sampled: Development hod: PVC Bo	ORP (mV)	Appearance & Odor Strobed Oo II I' " Clear, no od II I' "
Product De DTW (static Total Depth Time	pth (fbTOR): c) (fbTOR): Water Level (fbTOR) In Initial In Initial Ini	Acc. Volume (gallons) O.OO 1.00 3.00	Water Colui One Well V Total Volum pH (units)	mn (ft): 4.3 olume (gal): 0 ne Purged (gal): Temp. (deg. C)	5 .71	DTW when Purpose: Purge Met Turbidity (NTU)	n sampled: Development hod: PVC Be DO (mg/L)	ORP (mV)	Appearance & Odor Strobod Oo II I' I' Clear, no od II III III
Product De DTW (static Total Depth Time	pth (fbTOR): c) (fbTOR): Water Level (fbTOR) In Initial In Initial Ini	Acc. Volume (gallons) O.OO 1.00 3.00	Water Colui One Well V Total Volum pH (units)	mn (ft): 4.3 olume (gal): 0 ne Purged (gal): Temp. (deg. C)	5 .71	DTW when Purpose: Purge Met Turbidity (NTU)	n sampled: Development hod: PVC Be DO (mg/L)	ORP (mV) Stab	Appearance & Odor Strob of Oo It is the Clear no ad It is the Cle
Product De DTW (station Total Depth Time 1040 1050 1005 1000 Sample	pth (fbTOR): c) (fbTOR): Water Level (fbTOR) In Initial In Initial Ini	Acc. Volume (gallons) 0.00 1.00 3.00	Water Colui One Well V Total Volum pH (units)	mn (ft): 4.3 olume (gal): 0 ne Purged (gal): Temp. (deg. C)	5 .71	DTW when Purpose: Purge Met Turbidity (NTU)	n sampled: Development hod: PVC Be DO (mg/L) ume Calculation iam. Vol. (g/ft)	ORP (mV) Stab Parame pH	Appearance & Odor Strob of Oo It is the Clear no ad It is the Cle
Product De DTW (static Total Depth Time	pth (fbTOR): c) (fbTOR): Water Level (fbTOR) In Initial In Initial Ini	Acc. Volume (gallons) O.OO 1.00 3.00	Water Colui One Well V Total Volum pH (units)	mn (ft): 4.3 olume (gal): 0 ne Purged (gal): Temp. (deg. C)	5 .71	DTW when Purpose: Purge Met Turbidity (NTU)	ume Calculation iam. Vol. (g/ft)	ORP (mV) Stab Parame pH SC	Appearance & Odor Strobod Oo Clear, no ad Illinia in the control of the contro
Product De DTW (station Total Depth Time 1040 1050 10055 1100	pth (fbTOR): c) (fbTOR): Water Level (fbTOR) In Initial In Initial Ini	Acc. Volume (gallons) O.OO 1.00 3.00	Water Colui One Well V Total Volum pH (units)	mn (ft): 4.3 olume (gal): 0 ne Purged (gal): Temp. (deg. C)	5 .71	DTW when Purpose: Purge Met Turbidity (NTU)	ume Calculation iam. Vol. (g/ft) 1" 0.041 2" 0.163	ORP (mV) Stab Parame pH SC Turbid	Appearance & Odor Strobod Oo Liting Clear, no ad Liting Clear, no ad Liting Clear, no ad Liting Liting Clear, no ad Liting
Product De DTW (static Total Depth Time 1040 1050 1055 1100 Sample	pth (fbTOR): c) (fbTOR): d) (fbTOR): Vater Level (fbTOR) 0 Initial 1 12 10 2 13.54 5 6 7 8 9 10 Information: S1 52	Acc. Volume (gallons) 0.00 1.00 3.00 3.00	Water Colum One Well V Total Volum pH (units)	mn (ft): 4.3 olume (gal): 0 ne Purged (gal): Temp. (deg. C)	SC (uS)	DTW when Purpose: Purge Met Turbidity (NTU)	ume Calculation iam. Vol. (g/ft)	ORP (mV) Stab Parame pH SC	Appearance & Odor Strobo Oo Liting Clear, road Liting Clear, road Liting Liting Clear, road Liting L

PREPARED BY: CEN

Groundwater Field Formixls GWFF - BM

120 210 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	cation:	Gowand	c Coope	L zite	Project l	No.:			Field Te	am:	214	
Product Depth (PTOR): One Vertil Volume (agit): O.7 Purpose: Development: Sample Purgo & Sample Total Depth (PtOR): 3.3 Total Volume Purgod (gal): Purgo & Sample Purgo &	Well No) -= -0	76	Diameter (i	nobos): 3		Sampl	e Date / I	Fime:			
DTW Islands (16TOR):			- 33									
Total Depth (BTOR): 13, 5 Total Volume Purged (gal): Purge Method:							_		4	Com.	ala T	T Durgo & Cample
Time Water Water Water Water PH Temp (units) Temp (units) Ceg. C) (uS) Turbidity DO (myt.) ORP Appearance & Odor		-				0/						
Time	Total Depth	(fbTOR):	. 51	Total Volun	ne Purged (gal):		Purge	Method:	Prc Ba	ier 1a	to fresh.	inge
1.05	Time	Level	Volume					,			i,	
1.05	1110	n Initial	0.00				_				Tree	did as when
1							_					
Sample Information:												
Sample Information:	1406										- 11	
Sample Information:	153	37,06	3.75								1	91 82
Sample Information:		4										
Sample Information:		5										
Sample Information:		6										
Sample Information:	-	7									-	
Sample Information:							-				_	
Sample Information:		8										
Sample Information:		9										
Sample Date / Time Sample Date / Time Sample Date / Time Sample Date / Time Sample DTW (static) (fbTOR):		10					1					
Sample Date / Time Sample Date / Time Sample Date / Time Sample Date / Time Sample DTW (static) (fbTOR):							-					
Second	Sample I		-		F 7		_					
Well No.		S1										
Product Depth (fbTOR): Water Column (ft):		S2										
Time	DTW (static) (fbTOR):		One Well V	'olume (gal): 🧷		Purpos	se: 🛛 D	evelopment			
Time	Total Depth	(fbTOR): 14	0.65	Total Volun	ne Purged (gal):		Purge	Method: I	PUC Bai	IN WI	17510	A TOPE
12.03 100 11 11 11 11 11 11	Time	Level	Volume	1 '				·			1	
12.03 100 11 11 11 11 11 11	1910	o Initial	0.00					_			00	Mana SI +
1200 21300 200 300 St. Tuchid. Ma 4			-									
St Tuchid. No. St T		213.00			1		 					
Sample Information: S1											_	
Sample Information: S1		6 7										
Sample Information: S1		9										
S1 S2 Stabilization Criteria Parameter Criteria		10										
S1 S2 Stabilization Criteria Parameter Criteria	Sample I	nformation:	1/1	7	*		*				**	
Stabilization Criteria Parameter Criteria												
Diam. Volume Calculation Parameter Criteria		S2										
Diam. Volume Calculation Parameter Criteria			1/2				-1/			S	labilizati	on Criteria
Diam. Vol. (g/ft) pH ± 0.1 unit 1" 0.041 SC ± 3% 2" 0.163 Turbidity ± 10% 4" 0.653 DO ± 0.3 mg/L	EMADY	S 1	The de	Color Con	Marto Z	5		Volumo	Calculation	-		
1" 0.041 SC ± 3% 2" 0.163 Turbidity ± 10% 4" 0.653 DO ± 0.3 mg/L		s. used	CHICAL T	MILL FOL	Section 14 4 2	Code ^a						
2" 0.163 Turbidity ± 10% 4" 0.653 DO ± 0.3 mg/L								_				
4" 0.653 DO ± 0.3 mg/L									- 25			
ote: All water level measurements are in feet, distance from top of riser. 6" 1.469 ORP ± 10 mV									2			

PREPARED BY: CEH

Groundwater Field Formixls GWFF - BM

SCIEN	NEERING & ICE, PLLC								
Project Na	ne: Peter	1 200000	C-1 e				Date:	4-1-20	19
Location:	Cowando	COOPER	214 6	Project	No.:		Field Te		
						1			1.10
	D. MW - 6	T 2 K	Diameter (in			Sample Date			
	pth (fbTOR):		Water Colur			DTW when		☐ Sample	☐ Purge & Sample
	c) (fbTOR): DC	31	One Well Vo				Development		
Total Depth	1		l otal Volum	e Purged (gal):		Purge Metho	oa: PVC 12	dilar /n	ylon role
Time	Water Level (fbTOR)	Acc. Volume (gailons)	pH (units)	Temp (deg. C)	SC (uS)	Turbidity (NTU)	DO (mg/L)	ORP (mV)	Appearance & Odor
	o Initial								
	1								
	2								
	3								
	4								
	5								
	6								
	7								
	8								
	9								
	10								
Sample	Information:								
Sample	S1			1					
	S2								
	1						-	L	
				2					
Well No	0. MW-	ISR	Diameter (ir			Sample Date			
	pth (fbTOR):			mn (ft): 5.7		DTW when			
	c) (fbTOR): 6,			olume (gal):	7.93		Development		
Total Depti	(fbTOR):	91	Total Volum	e Purged (gal):	r	Purge Metho	od: PVZ 13	arloc / 114	HOA rale
Time	Water Level (fbTOR)	Acc. Volume (gallons)	pH (units)	Temp. (deg. C)	SC (uS)	Turbidity (NTU)	DO (mg/L)	ORP (mV)	Appearance & Odor
1300	o Initial	0.00							eleocono odo
1318	1 6.41	1-00							F1 11 11
	2 6.51	2.00							9.8 00 3.8
1340	3 6 49	3-00		11 14					11 11 11
	4								
	5								
	6								
	7								
	8								
	9								
	10								
Sample	Information:								
Sample	Information.	<u> </u>							
	S2								
1	National Control of the Control of t							L	

sr Dry er for MW-15R

Volume (Calculation
Diam	Vol. (g/ft)
1"	0.041
2"	0.163
4"	0.653
6"	1.469

n Criteria
Criteria
± 0,1 unit
± 3%
± 10%
± 0.3 mg/L
± 10 mV

PREPARED BY: CEN

Groundwaler Field Form xls GWFF - BM

Project Na ∟ocation: (me: Pete Gowande	Coole	rsile	Project	No.:			Date: Field T		1-201	9	
Product De	pth (fbTOR):		Water Colu		I C . 66	DTW	le Date / when san		t	☐ Sample	Purge & Sampl	
	(fbTOR): 24			ne Purged (gal):				PVC 1				
Time	Water Level (fbTOR)	Acc Volume (gallons)	pH (units)	Temp. (deg. C)	SC (uS)	Turbic (NTL	dity	DO (mg/L)		ORP (mV)	Appearance & Odor	
1430	o Initial	0.00										
	2					-			1			
	3						-		+-	-		
	4					-	_		+-			
	5								1			
	6								T			
	7											
	8											
	9											
	10											
Sample	Information:											
	S1											
	S2											
Well No Product De	pth (fbTOR):		Diameter (ii Water Colu				e Date / 1					
DTW (statio) (fbTOR):		One Well V	olume (gal):		Purpos	se: 🔲 D	evelopment	[Sample	☐ Purge & Sampl	
Total Depth	(fbTOR):		Total Volum	ne Purged (gal):		Purge Method:						
Time	Water Level (fbTOR)	Acc. Volume (gallons)	pH (units)	Temp. (deg. C)	SC (uS)	Turbid (NTU		DO (mg/L)		ORP (mV)	Appearance & Odor	
	₀ Initial											
	2					-			_			
	3						-					
	4					-	-					
	5						_					
	6						_					
	7											
	В											
	9											
	10											
Sample I	nformation:					**						
	S1											
	92											
									-		ation Criteria	
EMARK	S:							Calculation	6	Parameter		
							Diam.	Vol. (g/ft) 0.041		pH SC	± 0.1 unit ± 3%	
							2"	0.041		Turbidity	± 3% ± 10%	
							4"	0.653		DO	± 0.3 mg/L	
to: All wa	ter level mes	suramente s	re in feet d	istance from t	on of ricar		6"	1,469		ORP	± 10 mV	

PREPARED BY: CEH

ATTACHMENT 2

EUROFINS TEST AMERICA LABORATORIES SAMPLE DATA SUMMARY PACKAGE

JUNE 2019

Environment Testing TestAmerica

ANALYTICAL REPORT

Eurofins TestAmerica, Buffalo 10 Hazelwood Drive Amherst, NY 14228-2298 Tel: (716)691-2600

Laboratory Job ID: 480-155323-1

Client Project/Site: Benchmark-Peter Cooper sites

Revision: 1

For:

Benchmark Env. Eng. & Science, PLLC 2558 Hamburg Turnpike Suite 300 Lackawanna, New York 14218

Attn: Mr. Tom Forbes

Authorized for release by: 8/9/2019 3:30:41 PM

Brian Fischer, Manager of Project Management (716)504-9835

brian.fischer@testamericainc.com

..... Links

Review your project results through

Total Access

Have a Question?

Visit us at: www.testamericainc.com

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Detection Summary	5
Client Sample Results	6
Isotope Dilution Summary	16
QC Sample Results	18
QC Association Summary	24
Lab Chronicle	25
Certification Summary	27
Method Summary	28
Sample Summary	29
Chain of Custody	30
Receipt Checklists	33

2

4

R

46

11

13

14

Definitions/Glossary

Client: Benchmark Env. Eng. & Science, PLLC Job ID: 480-155323-1 Project/Site: Benchmark-Peter Cooper sites

Qualifiers

	i VOA

Qualifier **Qualifier Description**

Result exceeded calibration range.

Qualifier Description

LCMS Qualifier

LCS or LCSD is outside acceptance limits. В Compound was found in the blank and sample.

Value is EMPC (estimated maximum possible concentration).

Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

Glossary

Abbreviation These commonly used abbreviations may or may not be present in this report.

Listed under the "D" column to designate that the result is reported on a dry weight basis

Percent Recovery %R CFL Contains Free Liquid **CNF** Contains No Free Liquid

DER Duplicate Error Ratio (normalized absolute difference)

Dil Fac **Dilution Factor**

DL Detection Limit (DoD/DOE)

Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample DL, RA, RE, IN

Decision Level Concentration (Radiochemistry) DLC

EDL Estimated Detection Limit (Dioxin) LOD Limit of Detection (DoD/DOE) LOQ Limit of Quantitation (DoD/DOE)

MDA Minimum Detectable Activity (Radiochemistry) MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit Minimum Level (Dioxin) MI

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

Practical Quantitation Limit PQL

QC **Quality Control**

Relative Error Ratio (Radiochemistry) **RER**

Reporting Limit or Requested Limit (Radiochemistry) RL

RPD Relative Percent Difference, a measure of the relative difference between two points

Toxicity Equivalent Factor (Dioxin) **TEF TEQ** Toxicity Equivalent Quotient (Dioxin)

Case Narrative

Client: Benchmark Env. Eng. & Science, PLLC Project/Site: Benchmark-Peter Cooper sites

Job ID: 480-155323-1

Job ID: 480-155323-1

Laboratory: Eurofins TestAmerica, Buffalo

Narrative

Job Narrative 480-155323-1

Comments

This report has been revised to re-format the report.

Receipt

The samples were received on 6/21/2019 4:11 PM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 5.9° C.

GC/MS Semi VOA

Method(s) 8270D SIM ID: The breakdown of 4,4'-DDT in the tuning evaluation exceeded 20%. Breakdown is not a criteria of the method but rather an internal check performed by the laboratory to evaluate the peak shape of 1,4-Dioxane and 1,4-Dioxane-d8. No adverse performance was observed and QC recoveries were in control. The data have been reported.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

LCMS

Method(s) 537 (modified): The method blank for preparation batch 200-144676 and analytical batch 200-145634 contained Perfluorooctanoic acid (PFOA) and Perfluorononanoic acid (PFNA) above the method detection limit. This target analyte concentration was less than half the reporting limit (1/2RL); therefore, re-extraction and/or re-analysis of samples was not performed.

Method(s) 537 (modified): Results for samples MWFP-3S (480-155323-1), MWFP-2S (480-155323-4), MWS-5S (480-155323-5) and BLIND DUP (480-155323-6) were reported from the analysis of a diluted extract due to high concentration of non-target analytes in the analysis of the undiluted extract. The dilution factor was applied to the labeled internal standard area counts and these area counts were within acceptance limits

Method(s) 537 (modified): The following samples were diluted due to the abundance of non-target analytes: MWFP-3S (480-155323-1), MWFP-2S (480-155323-4), MWS-5S (480-155323-5) and BLIND DUP (480-155323-6). A more concentrated analysis was not possible.

Method(s) 537 (modified): The laboratory control sample (LCS) associated with preparation batch 200-144676 and analytical batch 200-145634 was outside acceptance criteria for N-methylperfluorooctanesulfonamidoacetic acid (NMeFOSAA), N-ethylperfluorooctanesulfonamidoacetic acid (NEtFOSAA), Perfluorooctanesulfonic acid (PFOS) and Perfluorononanoic acid (PFNA). Re-extraction and/or re-analysis could not be performed; therefore, the data have been reported. The batch matrix spike/matrix spike duplicate (MS/MSD) was within acceptance limits and may be used to evaluate matrix performance.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Organic Prep

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

-5

4

5

6

1

0

10

11

4.0

14

Client: Benchmark Env. Eng. & Science, PLLC Project/Site: Benchmark-Peter Cooper sites

Client Sample ID: MWFP-3S

Job ID: 480-155323-1

Lab Sample ID: 480-155323-1

Lab Sample ID: 480-155323-3

Lab Sample ID: 480-155323-4

Lab Sample ID: 480-155323-5

Lab Sample ID: 480-155323-6

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D Method	Prep Type
Perfluorohexanoic acid (PFHxA)	4.7	J	8.1	3.1	ng/L	5	537 (modified)	Total/NA
Perfluorohexanesulfonic acid (PFHxS)	5.5	J	8.1	3.2	ng/L	5	537 (modified)	Total/NA
Perfluorooctanesulfonic acid (PFOS)	6.9	J B *	8.1	2.5	ng/L	5	537 (modified)	Total/NA

Client Sample ID: MW-1SR Lab Sample ID: 480-155323-2

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Perfluorobutanoic acid (PFBA)	4.0		1.6	0.81	ng/L	1	_	537 (modified)	Total/NA
Perfluoropentanoic acid (PFPeA)	0.94	J	1.6	0.51	ng/L	1		537 (modified)	Total/NA
Perfluorohexanoic acid (PFHxA)	1.4	J	1.6	0.62	ng/L	1		537 (modified)	Total/NA
Perfluoroheptanoic acid (PFHpA)	0.94	J	1.6	0.74	ng/L	1		537 (modified)	Total/NA
Perfluorooctanoic acid (PFOA)	2.7	В	1.6	0.51	ng/L	1		537 (modified)	Total/NA
Perfluorononanoic acid (PFNA)	0.33	J B *	1.6	0.22	ng/L	1		537 (modified)	Total/NA
Perfluorobutanesulfonic acid (PFBS)	0.64	J	1.6	0.40	ng/L	1		537 (modified)	Total/NA
Perfluorooctanesulfonic acid (PFOS)	1.7	I B *	1.6	0.49	ng/L	1		537 (modified)	Total/NA

Client Sample ID: FIELD BLANK

Analyte	Res	ult Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Perfluorohexanoic acid (F	PFHxA) 0.	B5 J	1.8	0.68	ng/L	1	_	537 (modified)	Total/NA
Perfluorooctanoic acid (P	FOA) 0.	62 JB	1.8	0.56	ng/L	1		537 (modified)	Total/NA
Perfluorooctanesulfonic a	cid (PFOS) 0.	57 JB*	1.8	0.54	ng/L	1		537 (modified)	Total/NA

Client Sample ID: MWFP-2S

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Perfluorobutanoic acid (PFBA)	4.6	J	8.2	4.1	ng/L	5	_	537 (modified)	Total/NA
Perfluoropentanoic acid (PFPeA)	4.8	J	8.2	2.6	ng/L	5		537 (modified)	Total/NA
Perfluorohexanoic acid (PFHxA)	7.9	J	8.2	3.1	ng/L	5		537 (modified)	Total/NA
Perfluorooctanoic acid (PFOA)	2.9	JB	8.2	2.6	ng/L	5		537 (modified)	Total/NA
Perfluorobutanesulfonic acid (PFBS)	2.8	J	8.2	2.0	ng/L	5		537 (modified)	Total/NA
Perfluorohexanesulfonic acid (PFHxS)	10		8.2	3.3	ng/L	5		537 (modified)	Total/NA

Client Sample ID: MWS-5S

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D Method	Prep Type
Perfluorobutanoic acid (PFBA)	11		8.6	4.3	ng/L	5	537 (modified)	Total/NA
Perfluoropentanoic acid (PFPeA)	2.9	J	8.6	2.7	ng/L	5	537 (modified)	Total/NA
Perfluorooctanoic acid (PFOA)	3.4	JB	8.6	2.7	ng/L	5	537 (modified)	Total/NA

Client Sample ID: BLIND DUP

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Perfluorobutanoic acid (PFBA)	13		7.9	3.9	ng/L	5	_	537 (modified)	Total/NA
Perfluoropentanoic acid (PFPeA)	5.4	J	7.9	2.5	ng/L	5		537 (modified)	Total/NA
Perfluorohexanoic acid (PFHxA)	4.3	J	7.9	3.0	ng/L	5		537 (modified)	Total/NA
Perfluorooctanoic acid (PFOA)	6.1	JB	7.9	2.5	ng/L	5		537 (modified)	Total/NA
Perfluorononanoic acid (PFNA)	2.3	J B *	7.9	1.1	ng/L	5		537 (modified)	Total/NA
Perfluorododecanoic acid (PFDoA)	2.4	J	7.9	2.3	ng/L	5		537 (modified)	Total/NA
Perfluorobutanesulfonic acid (PFBS)	2.0	J	7.9	1.9	ng/L	5		537 (modified)	Total/NA
Perfluorooctanesulfonic acid (PFOS)	3.6	J B *	7.9	2.4	ng/L	5		537 (modified)	Total/NA

This Detection Summary does not include radiochemical test results.

Eurofins TestAmerica, Buffalo

Client: Benchmark Env. Eng. & Science, PLLC Project/Site: Benchmark-Peter Cooper sites

Client Sample ID: MWFP-3S Lab Sample ID: 480-155323-1

Date Collected: 06/21/19 13:09

Matrix: Water

Date Received: 06/21/19 16:11

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,4-Dioxane	ND		0.20	0.10	ug/L		06/25/19 15:44	07/01/19 17:10	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,4-Dioxane-d8	27		15 - 110				06/25/19 15:44	07/01/19 17:10	1

Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fa
Perfluorobutanoic acid (PFBA)	ND		8.1		ng/L		07/02/19 11:25	07/30/19 11:50	
Perfluoropentanoic acid (PFPeA)	ND		8.1	2.6	ng/L		07/02/19 11:25	07/30/19 11:50	
Perfluorohexanoic acid (PFHxA)	4.7	J	8.1		ng/L		07/02/19 11:25	07/30/19 11:50	
Perfluoroheptanoic acid (PFHpA)	ND		8.1	3.7	ng/L		07/02/19 11:25	07/30/19 11:50	
Perfluorooctanoic acid (PFOA)	ND		8.1	2.6	ng/L		07/02/19 11:25	07/30/19 11:50	
Perfluorononanoic acid (PFNA)	ND	*	8.1	1.1	ng/L		07/02/19 11:25	07/30/19 11:50	
Perfluorodecanoic acid (PFDA)	ND		8.1	3.1	ng/L		07/02/19 11:25	07/30/19 11:50	
Perfluoroundecanoic acid (PFUnA)	ND		8.1	2.2	ng/L		07/02/19 11:25	07/30/19 11:50	
Perfluorododecanoic acid (PFDoA)	ND		8.1	2.4	ng/L		07/02/19 11:25	07/30/19 11:50	
Perfluorotridecanoic acid (PFTriA)	ND		8.1	2.4	ng/L		07/02/19 11:25	07/30/19 11:50	
Perfluorotetradecanoic acid (PFTeA)	ND		8.1	3.7	ng/L		07/02/19 11:25	07/30/19 11:50	
Perfluorobutanesulfonic acid (PFBS)	ND		8.1	2.0	ng/L		07/02/19 11:25	07/30/19 11:50	
Perfluorohexanesulfonic acid (PFHxS)	5.5	J	8.1	3.2	ng/L		07/02/19 11:25	07/30/19 11:50	
Perfluoroheptanesulfonic Acid (PFHpS)	ND		8.1	3.9	ng/L		07/02/19 11:25	07/30/19 11:50	
Perfluorodecanesulfonic acid (PFDS)	ND		8.1	3.7	ng/L		07/02/19 11:25	07/30/19 11:50	
Perfluorooctanesulfonic acid (PFOS)	6.9	JB*	8.1	2.5	ng/L		07/02/19 11:25	07/30/19 11:50	
Perfluorooctanesulfonamide (FOSA)	ND		41	41	ng/L		07/02/19 11:25	07/30/19 11:50	
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND	*	81	6.9	ng/L		07/02/19 11:25	07/30/19 11:50	
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND	*	81		ng/L		07/02/19 11:25	07/30/19 11:50	
6:2 FTS	ND		81	19	ng/L		07/02/19 11:25	07/30/19 11:50	
8:2 FTS	ND		81	12	ng/L		07/02/19 11:25	07/30/19 11:50	
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
13C8 FOSA	72		25 - 150				07/02/19 11:25	07/30/19 11:50	
13C4 PFBA	88		25 - 150				07/02/19 11:25	07/30/19 11:50	
13C5-PFPeA DNU	89		25 - 150				07/02/19 11:25	07/30/19 11:50	
13C2 PFHxA	100		50 - 150				07/02/19 11:25	07/30/19 11:50	
13C4 PFHpA	101		50 - 150				07/02/19 11:25	07/30/19 11:50	
13C4 PFOA	97		50 - 150				07/02/19 11:25	07/30/19 11:50	
13C5 PFNA	81		50 - 150				07/02/19 11:25	07/30/19 11:50	
13C2 PFDA	97		50 - 150				07/02/19 11:25	07/30/19 11:50	
13C2 PFUnA	77		50 - 150				07/02/19 11:25	07/30/19 11:50	
13C2 PFDoA	89		50 - 150				07/02/19 11:25	07/30/19 11:50	
13C2 PFTeDA	66		50 - 150				07/02/19 11:25	07/30/19 11:50	
13C3 PFBS	104		50 - 150				07/02/19 11:25	07/30/19 11:50	
1802 PFHxS	121		50 - 150				07/02/19 11:25	07/30/19 11:50	
13C4 PFOS	88		50 - 150				07/02/19 11:25	07/30/19 11:50	
d3-NMeFOSAA	71		50 - 150					07/30/19 11:50	
d5-NEtFOSAA	69		50 - 150					07/30/19 11:50	
M2-6:2 FTS	97		25 - 150					07/30/19 11:50	

Eurofins TestAmerica, Buffalo

_

Job ID: 480-155323-1

4

5

7

ŏ

10

12

. .

Client: Benchmark Env. Eng. & Science, PLLC Project/Site: Benchmark-Peter Cooper sites

Lab Sample ID: 480-155323-1

Client Sample ID: MWFP-3S

Date Collected: 06/21/19 13:09

Date Received: 06/21/19 16:11

Matrix: Water

Job ID: 480-155323-1

Method: 537 (modified) - Fluorinated Alkyl Substances (Continued)

Isotope Dilution%RecoveryQualifierLimitsPreparedAnalyzedDil FacM2-8:2 FTS8825 - 15007/02/19 11:2507/30/19 11:505

4

5

6

R

9

11

13

14

Client: Benchmark Env. Eng. & Science, PLLC Project/Site: Benchmark-Peter Cooper sites

M2-6:2 FTS

Client Sample ID: MW-1SR Lab Sample ID: 480-155323-2

Date Collected: 06/21/19 10:50 Matrix: Water Date Received: 06/21/19 16:11

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil F
1,4-Dioxane	ND		0.20	0.10	ug/L		06/25/19 15:44	07/01/19 16:46	
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil F
1,4-Dioxane-d8	33		15 - 110				06/25/19 15:44	•	
Method: 537 (modified) - Fluor				MDI	11:4	_	Dunmanad	A	D:: F
Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil F
Perfluorobutanoic acid (PFBA)	4.0		1.6		ng/L			07/30/19 11:58	
Perfluoropentanoic acid (PFPeA)	0.94		1.6		ng/L			07/30/19 11:58	
Perfluorohexanoic acid (PFHxA)	1.4		1.6		ng/L			07/30/19 11:58	
Perfluoroheptanoic acid (PFHpA)	0.94		1.6		ng/L			07/30/19 11:58	
Perfluorooctanoic acid (PFOA)	2.7	В	1.6	0.51	ng/L		07/02/19 11:25	07/30/19 11:58	
Perfluorononanoic acid (PFNA)	0.33	J B *	1.6	0.22	ng/L		07/02/19 11:25	07/30/19 11:58	
Perfluorodecanoic acid (PFDA)	ND		1.6	0.62	ng/L		07/02/19 11:25	07/30/19 11:58	
Perfluoroundecanoic acid (PFUnA)	ND		1.6	0.43	ng/L		07/02/19 11:25	07/30/19 11:58	
Perfluorododecanoic acid (PFDoA)	ND		1.6	0.48	ng/L		07/02/19 11:25	07/30/19 11:58	
Perfluorotridecanoic acid (PFTriA)	ND		1.6	0.49	ng/L		07/02/19 11:25	07/30/19 11:58	
Perfluorotetradecanoic acid (PFTeA)	ND		1.6	0.75	ng/L		07/02/19 11:25	07/30/19 11:58	
Perfluorobutanesulfonic acid	0.64	J	1.6	0.40	ng/L		07/02/19 11:25	07/30/19 11:58	
Perfluorohexanesulfonic acid (PFHxS)	ND		1.6	0.65	ng/L		07/02/19 11:25	07/30/19 11:58	
Perfluoroheptanesulfonic Acid	ND		1.6		ng/L			07/30/19 11:58	
PFHpS)					9. =				
Perfluorodecanesulfonic acid (PFDS)	ND		1.6	0.73	ng/L		07/02/19 11:25	07/30/19 11:58	
Perfluorooctanesulfonic acid	1.7	IB*	1.6	0.49	ng/L		07/02/19 11:25	07/30/19 11:58	
PFOS)					•				
Perfluorooctanesulfonamide (FOSA)	ND		8.1	8.1	ng/L		07/02/19 11:25	07/30/19 11:58	
I-methylperfluorooctanesulfonamidoa etic acid (NMeFOSAA)	ND	*	16	1.4	ng/L		07/02/19 11:25	07/30/19 11:58	
N-ethylperfluorooctanesulfonamidoac	ND	*	16	1.2	ng/L		07/02/19 11:25	07/30/19 11:58	
etic acid (NEtFOSAA)									
3:2 FTS	ND		16		ng/L		07/02/19 11:25	07/30/19 11:58	
3:2 FTS	ND		16	2.4	ng/L		07/02/19 11:25	07/30/19 11:58	
sotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil F
3C8 FOSA	77		25 - 150				07/02/19 11:25	07/30/19 11:58	
I3C4 PFBA	78		25 - 150				07/02/19 11:25	07/30/19 11:58	
13C5-PFPeA DNU	84		25 - 150				07/02/19 11:25	07/30/19 11:58	
13C2 PFHxA	99		50 - 150				07/02/19 11:25	07/30/19 11:58	
13C4 PFHpA	96		50 ₋ 150					07/30/19 11:58	
13C4 PFOA	93		50 - 150					07/30/19 11:58	
I3C5 PFNA	75		50 - 150					07/30/19 11:58	
I3C2 PFDA	73 89		50 - 150 50 - 150					07/30/19 11:58	
3C2 PFUnA	78		50 - 150 50 - 150					07/30/19 11:58	
3C2 PFDoA	91		50 ₋ 150					07/30/19 11:58	
13C2 PFTeDA	67		50 ₋ 150					07/30/19 11:58	
I3C3 PFBS	100		50 - 150					07/30/19 11:58	
1802 PFHxS	120		50 - 150					07/30/19 11:58	
13C4 PFOS	83		50 - 150					07/30/19 11:58	
d3-NMeFOSAA	72		50 - 150				07/02/19 11:25	07/30/19 11:58	
d5-NEtFOSAA	72		50 - 150				07/02/19 11:25	07/30/19 11:58	
MO 6:0 ETC	0.1		25 150				07/02/10 11:25	07/20/10 11:59	

Eurofins TestAmerica, Buffalo

07/02/19 11:25 07/30/19 11:58

Job ID: 480-155323-1

25 - 150

Client: Benchmark Env. Eng. & Science, PLLC Project/Site: Benchmark-Peter Cooper sites

Date Received: 06/21/19 16:11

Lab Sample ID: 480-155323-2 **Client Sample ID: MW-1SR** Date Collected: 06/21/19 10:50

Matrix: Water

Job ID: 480-155323-1

Method: 537 (modified) - Fluorinated Alkyl Substances (Continued)

Isotope Dilution %Recovery Qualifier Limits Prepared Dil Fac Analyzed M2-8:2 FTS 84 25 - 150 07/02/19 11:25 07/30/19 11:58

Client: Benchmark Env. Eng. & Science, PLLC Project/Site: Benchmark-Peter Cooper sites

Client Sample ID: FIELD BLANK

Date Collected: 06/21/19 09:30 Date Received: 06/21/19 16:11

Lab Sample ID: 480-155323-3

Matrix: Water

Method: 537 (modified) - Fluor Analyte	Result	Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fa
Perfluorobutanoic acid (PFBA)	ND		1.8	0.89	ng/L		07/02/19 11:25	07/30/19 12:23	
Perfluoropentanoic acid (PFPeA)	ND		1.8	0.56	ng/L		07/02/19 11:25	07/30/19 12:23	
Perfluorohexanoic acid (PFHxA)	0.85	J	1.8	0.68	ng/L		07/02/19 11:25	07/30/19 12:23	
Perfluoroheptanoic acid (PFHpA)	ND		1.8	0.81	ng/L		07/02/19 11:25	07/30/19 12:23	
Perfluorooctanoic acid (PFOA)	0.62	JB	1.8	0.56	ng/L		07/02/19 11:25	07/30/19 12:23	
Perfluorononanoic acid (PFNA)	ND	*	1.8	0.24	ng/L		07/02/19 11:25	07/30/19 12:23	
Perfluorodecanoic acid (PFDA)	ND		1.8	0.69	ng/L		07/02/19 11:25	07/30/19 12:23	
Perfluoroundecanoic acid (PFUnA)	ND		1.8	0.47	ng/L		07/02/19 11:25	07/30/19 12:23	
Perfluorododecanoic acid (PFDoA)	ND		1.8	0.53	ng/L		07/02/19 11:25	07/30/19 12:23	
Perfluorotridecanoic acid (PFTriA)	ND		1.8	0.54	ng/L		07/02/19 11:25	07/30/19 12:23	
Perfluorotetradecanoic acid (PFTeA)	ND	1	1.8	0.82	ng/L		07/02/19 11:25	07/30/19 12:23	
Perfluorobutanesulfonic acid (PFBS)	ND		1.8	0.44	ng/L		07/02/19 11:25	07/30/19 12:23	
Perfluorohexanesulfonic acid (PFHxS)	ND		1.8	0.71	ng/L		07/02/19 11:25	07/30/19 12:23	
Perfluoroheptanesulfonic Acid (PFHpS)	ND		1.8	0.85	ng/L		07/02/19 11:25	07/30/19 12:23	
Perfluorodecanesulfonic acid (PFDS)	ND		1.8	0.80	ng/L		07/02/19 11:25	07/30/19 12:23	
Perfluorooctanesulfonic acid (PFOS)	0.57	JB*	1.8	0.54	ng/L		07/02/19 11:25	07/30/19 12:23	
Perfluorooctanesulfonamide (FOSA)	ND		8.9	8.9	ng/L		07/02/19 11:25	07/30/19 12:23	
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND	*	18	1.5	ng/L		07/02/19 11:25	07/30/19 12:23	
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND	*	18	1.3	ng/L		07/02/19 11:25	07/30/19 12:23	
6:2 FTS	ND		18	4.1	ng/L		07/02/19 11:25	07/30/19 12:23	
8:2 FTS	ND		18	2.6	ng/L		07/02/19 11:25	07/30/19 12:23	
lsotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
13C8 FOSA	88		25 - 150				07/02/19 11:25	07/30/19 12:23	
13C4 PFBA	112		25 - 150				07/02/19 11:25	07/30/19 12:23	
13C5-PFPeA DNU	104		25 - 150				07/02/19 11:25	07/30/19 12:23	
13C2 PFHxA	103		50 - 150				07/02/19 11:25	07/30/19 12:23	
13C4 PFHpA	99		50 - 150				07/02/19 11:25	07/30/19 12:23	
13C4 PFOA	103		50 - 150				07/02/19 11:25	07/30/19 12:23	
13C5 PFNA	100		50 - 150				07/02/19 11:25	07/30/19 12:23	
13C2 PFDA	107		50 - 150				07/02/19 11:25	07/30/19 12:23	
13C2 PFUnA	100		50 - 150				07/02/19 11:25	07/30/19 12:23	
13C2 PFDoA	114		50 - 150				07/02/19 11:25	07/30/19 12:23	
13C2 PFTeDA	75		50 - 150				07/02/19 11:25	07/30/19 12:23	
13C3 PFBS	101		50 - 150				07/02/19 11:25	07/30/19 12:23	
1802 PFHxS	128		50 - 150				07/02/19 11:25	07/30/19 12:23	
13C4 PFOS	99		50 - 150				07/02/19 11:25	07/30/19 12:23	
d3-NMeFOSAA	85		50 ₋ 150				07/02/19 11:25	07/30/19 12:23	
d5-NEtFOSAA	83		50 ₋ 150				07/02/19 11:25	07/30/19 12:23	
M2-6:2 FTS	91		25 - 150					07/30/19 12:23	
	• .								

Client: Benchmark Env. Eng. & Science, PLLC Project/Site: Benchmark-Peter Cooper sites

Client Sample ID: MWFP-2S Lab Sample ID: 480-155323-4 Date Collected: 06/21/19 12:06

RL

MDL Unit

Method: 8270D SIM ID - Semivolatile Organic Compounds (GC/MS SIM / Isotope Dilution) Result Qualifier

Date Received: 06/21/19 16:11

Analyte

Analyzed

Prepared

Matrix: Water

Dil Fac

Job ID: 480-155323-1

Allalyte	Nesuit	Qualifier	IXL		Offic		riepaieu	Allalyzeu	Diriac
1,4-Dioxane	ND		0.20	0.10	ug/L		06/25/19 15:44	07/01/19 17:34	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,4-Dioxane-d8	33		15 - 110				06/25/19 15:44	07/01/19 17:34	1
Method: 537 (modified) - Fluor						_			5
Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
Perfluorobutanoic acid (PFBA)	4.6		8.2		ng/L			07/30/19 12:31	5
Perfluoropentanoic acid (PFPeA)	4.8		8.2		ng/L			07/30/19 12:31	5
Perfluorohexanoic acid (PFHxA)	7.9	J	8.2		ng/L			07/30/19 12:31	5
Perfluoroheptanoic acid (PFHpA)	ND		8.2		ng/L			07/30/19 12:31	5
Perfluorooctanoic acid (PFOA)		JB	8.2		ng/L			07/30/19 12:31	5
Perfluorononanoic acid (PFNA)	ND	*	8.2	1.1	ng/L		07/02/19 11:25	07/30/19 12:31	5
Perfluorodecanoic acid (PFDA)	ND		8.2	3.2	ng/L		07/02/19 11:25	07/30/19 12:31	5
Perfluoroundecanoic acid (PFUnA)	ND		8.2	2.2	ng/L		07/02/19 11:25	07/30/19 12:31	5
Perfluorododecanoic acid (PFDoA)	ND		8.2	2.4	ng/L		07/02/19 11:25	07/30/19 12:31	5
Perfluorotridecanoic acid (PFTriA)	ND		8.2	2.5	ng/L		07/02/19 11:25	07/30/19 12:31	5
Perfluorotetradecanoic acid (PFTeA)	ND		8.2	3.8	ng/L		07/02/19 11:25	07/30/19 12:31	5
Perfluorobutanesulfonic acid	2.8	J	8.2	2.0	ng/L		07/02/19 11:25	07/30/19 12:31	5
(PFBS)					-				
Perfluorohexanesulfonic acid	10		8.2	3.3	ng/L		07/02/19 11:25	07/30/19 12:31	5
(PFHxS)					_				_
Perfluoroheptanesulfonic Acid	ND		8.2	3.9	ng/L		07/02/19 11:25	07/30/19 12:31	5
(PFHpS)	ND		0.0	2.7	na/l		07/02/10 11:25	07/20/10 12:21	5
Perfluorodecanesulfonic acid (PFDS)	ND		8.2		ng/L			07/30/19 12:31	5
Perfluorooctanesulfonic acid (PFOS)	ND		8.2		ng/L			07/30/19 12:31	5
Perfluorooctanesulfonamide (FOSA)	ND		41		ng/L			07/30/19 12:31	5
N-methylperfluorooctanesulfonamidoa	ND	•	82	7.0	ng/L		07/02/19 11:25	07/30/19 12:31	5
cetic acid (NMeFOSAA) N-ethylperfluorooctanesulfonamidoac	ND	*	82	6.1	ng/L		07/02/19 11:25	07/30/19 12:31	5
etic acid (NEtFOSAA)	ND		02	0.1	rig/L		07702/10 11.20	07750/15 12.51	3
6:2 FTS	ND		82	19	ng/L		07/02/19 11:25	07/30/19 12:31	5
8:2 FTS	ND		82		ng/L		07/02/19 11:25	07/30/19 12:31	5
		O lifia							
Isotope Dilution 13C8 FOSA	%Recovery	Quaimer	<u>Limits</u> 25 - 150				Prepared	Analyzed 07/30/19 12:31	Dil Fac
13C4 PFBA	87		25 - 150					07/30/19 12:31	5
13C5-PFPeA DNU	98		25 - 150					07/30/19 12:31	5
13C2 PFHxA	103		50 - 150					07/30/19 12:31	5
13C4 PFHpA	93		50 - 150					07/30/19 12:31	5
13C4 PFOA	94		50 - 150					07/30/19 12:31	5
13C5 PFNA	80		50 - 150					07/30/19 12:31	5
13C2 PFDA	103		50 - 150				07/02/19 11:25	07/30/19 12:31	5
13C2 PFUnA	79		50 - 150				07/02/19 11:25	07/30/19 12:31	5
13C2 PFDoA	101		50 - 150				07/02/19 11:25	07/30/19 12:31	5
13C2 PFTeDA	75		50 - 150				07/02/19 11:25	07/30/19 12:31	5
13C3 PFBS	104		50 - 150				07/02/19 11:25	07/30/19 12:31	5
1802 PFHxS	116		50 - 150				07/02/19 11:25	07/30/19 12:31	5
13C4 PFOS	82		50 - 150				07/02/19 11:25	07/30/19 12:31	5
d3-NMeFOSAA	70		50 - 150				07/02/19 11:25	07/30/19 12:31	5
d5-NEtFOSAA	80		50 - 150				07/02/19 11:25	07/30/19 12:31	5

Eurofins TestAmerica, Buffalo

Client: Benchmark Env. Eng. & Science, PLLC Project/Site: Benchmark-Peter Cooper sites

Lab Sample ID: 480-155323-4

Matrix: Water

Job ID: 480-155323-1

Client Sample ID: MWFP-2S Date Collected: 06/21/19 12:06

Date Received: 06/21/19 16:11

Method: 537 (modified) - Fluorinated Alkyl Substances (Continued)

Isotope Dilution %Recovery Qualifier Limits Prepared Dil Fac Analyzed M2-8:2 FTS 91 25 - 150 07/02/19 11:25 07/30/19 12:31

Client: Benchmark Env. Eng. & Science, PLLC Project/Site: Benchmark-Peter Cooper sites

Lab Sample ID: 480-155323-5

Matrix: Water

Job ID: 480-155323-1

Client Sample ID: MWS-5S Date Collected: 06/21/19 13:49 Date Received: 06/21/19 16:11

Method: 8270D SIM ID - Semi	olatile Orga	anic Comp	ounds (GC/	MS SIM /	Isotop	e Diluti	ion)		
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,4-Dioxane	ND		0.20	0.10	ug/L		06/25/19 15:44	07/01/19 17:57	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,4-Dioxane-d8	32		15 - 110				06/25/19 15:44	07/01/19 17:57	1

1,4-Dioxane-d8	32		15 - 110				06/25/19 15:44	07/01/19 17:57	1
Method: 537 (modified) - Fluor	inated Alky	d Substan	COS						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorobutanoic acid (PFBA)	11		8.6	4.3	ng/L		07/02/19 11:25	07/30/19 12:39	5
Perfluoropentanoic acid (PFPeA)	2.9	J	8.6	2.7	ng/L		07/02/19 11:25	07/30/19 12:39	5
Perfluorohexanoic acid (PFHxA)	ND		8.6	3.3	ng/L		07/02/19 11:25	07/30/19 12:39	5
Perfluoroheptanoic acid (PFHpA)	ND		8.6	3.9	ng/L		07/02/19 11:25	07/30/19 12:39	5
Perfluorooctanoic acid (PFOA)	3.4	J B	8.6	2.7	ng/L		07/02/19 11:25	07/30/19 12:39	5
Perfluorononanoic acid (PFNA)	ND	*	8.6	1.2	ng/L		07/02/19 11:25	07/30/19 12:39	5
Perfluorodecanoic acid (PFDA)	ND		8.6	3.3	ng/L		07/02/19 11:25	07/30/19 12:39	5
Perfluoroundecanoic acid (PFUnA)	ND		8.6	2.3	ng/L		07/02/19 11:25	07/30/19 12:39	5
Perfluorododecanoic acid (PFDoA)	ND		8.6	2.5	ng/L		07/02/19 11:25	07/30/19 12:39	5
Perfluorotridecanoic acid (PFTriA)	ND		8.6	2.6	ng/L		07/02/19 11:25	07/30/19 12:39	5
Perfluorotetradecanoic acid (PFTeA)	ND		8.6		ng/L		07/02/19 11:25	07/30/19 12:39	5
Perfluorobutanesulfonic acid (PFBS)	ND		8.6		ng/L		07/02/19 11:25	07/30/19 12:39	5
Perfluorohexanesulfonic acid (PFHxS)	ND		8.6		ng/L		07/02/19 11:25	07/30/19 12:39	5
Perfluoroheptanesulfonic Acid (PFHpS)	ND		8.6		ng/L		07/02/19 11:25	07/30/19 12:39	5
Perfluorodecanesulfonic acid (PFDS)	ND		8.6	3.9	ng/L		07/02/19 11:25	07/30/19 12:39	5
Perfluorooctanesulfonic acid (PFOS)	ND	*	8.6	2.6	ng/L		07/02/19 11:25	07/30/19 12:39	5
Perfluorooctanesulfonamide (FOSA)	ND		43	43	ng/L		07/02/19 11:25	07/30/19 12:39	5
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND	*	86	7.3	ng/L		07/02/19 11:25	07/30/19 12:39	5
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND	*	86	6.5	ng/L		07/02/19 11:25	07/30/19 12:39	5
6:2 FTS `	ND		86	20	ng/L		07/02/19 11:25	07/30/19 12:39	5
8:2 FTS	ND		86	13	ng/L		07/02/19 11:25	07/30/19 12:39	5
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C8 FOSA	81		25 - 150				07/02/19 11:25	07/30/19 12:39	5
13C4 PFBA	85		25 - 150				07/02/19 11:25	07/30/19 12:39	5
13C5-PFPeA DNU	95		25 - 150				07/02/19 11:25	07/30/19 12:39	5
13C2 PFHxA	97		50 - 150				07/02/19 11:25	07/30/19 12:39	5
13C4 PFHpA	93		50 - 150				07/02/19 11:25	07/30/19 12:39	5
13C4 PFOA	93		50 - 150				07/02/19 11:25	07/30/19 12:39	5
13C5 PFNA	85		50 - 150				07/02/19 11:25	07/30/19 12:39	5
13C2 PFDA	93		50 - 150				07/02/19 11:25	07/30/19 12:39	5
13C2 PFUnA	88		50 - 150				07/02/19 11:25	07/30/19 12:39	5
13C2 PFDoA	97		50 - 150				07/02/19 11:25	07/30/19 12:39	5
13C2 PFTeDA	77		50 - 150				07/02/19 11:25	07/30/19 12:39	5
13C3 PFBS	103		50 - 150				07/02/19 11:25	07/30/19 12:39	5
18O2 PFHxS	111		50 - 150				07/02/19 11:25	07/30/19 12:39	5
13C4 PFOS	91		50 - 150				07/02/19 11:25	07/30/19 12:39	5
							07/00/40 44 05	07/00/40 40:00	5
d3-NMeFOSAA	83		50 ₋ 150				07/02/19 11:25	07/30/19 12:39	9
	83 74		50 ₋ 150 50 ₋ 150					07/30/19 12:39 07/30/19 12:39	5
d3-NMeFOSAA							07/02/19 11:25		

Eurofins TestAmerica, Buffalo

Client: Benchmark Env. Eng. & Science, PLLC Project/Site: Benchmark-Peter Cooper sites

Client Sample ID: BLIND DUP

Lab Sample ID: 480-155323-6

Date Collected: 06/21/19 00:00

Matrix: Water

Date Received: 06/21/19 16:11

1802 PFHxS

13C4 PFOS

d3-NMeFOSAA

d5-NEtFOSAA

M2-6:2 FTS

Method: 8270D SIM ID - Semivolatile Organic Compounds (GC/MS SIM / Isotope Dilution)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,4-Dioxane	ND		0.20	0.10	ug/L		06/25/19 15:44	07/01/19 18:21	1
Isotope Dilution	%Recovery	Qualifier	Limits				Dramarad	Amalumad	Dil Faa
isotope Dilution	70Recovery	Qualifier	LIIIIIS				Prepared	Analyzed	Dil Fac

Method: 537 (modified) - Fluor						_	_		
Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fa
Perfluorobutanoic acid (PFBA)	13		7.9	3.9	ng/L		07/02/19 11:25	07/30/19 12:55	
Perfluoropentanoic acid (PFPeA)	5.4	J	7.9	2.5	ng/L		07/02/19 11:25	07/30/19 12:55	
Perfluorohexanoic acid (PFHxA)	4.3	J	7.9	3.0	ng/L		07/02/19 11:25	07/30/19 12:55	
Perfluoroheptanoic acid (PFHpA)	ND		7.9	3.6	ng/L		07/02/19 11:25	07/30/19 12:55	
Perfluorooctanoic acid (PFOA)	6.1	JB	7.9	2.5	ng/L		07/02/19 11:25	07/30/19 12:55	
Perfluorononanoic acid (PFNA)	2.3	J B *	7.9	1.1	ng/L		07/02/19 11:25	07/30/19 12:55	
Perfluorodecanoic acid (PFDA)	ND		7.9	3.0	ng/L		07/02/19 11:25	07/30/19 12:55	
Perfluoroundecanoic acid (PFUnA)	ND		7.9	2.1	ng/L		07/02/19 11:25	07/30/19 12:55	
Perfluorododecanoic acid (PFDoA)	2.4	J	7.9	2.3	ng/L		07/02/19 11:25	07/30/19 12:55	
Perfluorotridecanoic acid (PFTriA)	ND		7.9	2.4	ng/L		07/02/19 11:25	07/30/19 12:55	
Perfluorotetradecanoic acid (PFTeA)	ND		7.9	3.6	ng/L		07/02/19 11:25	07/30/19 12:55	
Perfluorobutanesulfonic acid (PFBS)	2.0	J	7.9	1.9	ng/L		07/02/19 11:25	07/30/19 12:55	
Perfluorohexanesulfonic acid (PFHxS)	ND		7.9	3.1	ng/L		07/02/19 11:25	07/30/19 12:55	
Perfluoroheptanesulfonic Acid (PFHpS)	ND		7.9	3.7	ng/L		07/02/19 11:25	07/30/19 12:55	
Perfluorodecanesulfonic acid (PFDS)	ND	1	7.9	3.5	ng/L		07/02/19 11:25	07/30/19 12:55	
Perfluorooctanesulfonic acid (PFOS)	3.6	JB*	7.9	2.4	ng/L		07/02/19 11:25	07/30/19 12:55	
Perfluorooctanesulfonamide (FOSA)	ND		39	39	ng/L		07/02/19 11:25	07/30/19 12:55	
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		79	6.7	ng/L			07/30/19 12:55	
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND	*	79		ng/L			07/30/19 12:55	
6:2 FTS	ND		79		ng/L			07/30/19 12:55	
8:2 FTS	ND		79	11	ng/L		07/02/19 11:25	07/30/19 12:55	
sotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
13C8 FOSA	66		25 - 150				07/02/19 11:25	07/30/19 12:55	
13C4 PFBA	80		25 - 150				07/02/19 11:25	07/30/19 12:55	
13C5-PFPeA DNU	86		25 - 150				07/02/19 11:25	07/30/19 12:55	
13C2 PFHxA	90		50 - 150				07/02/19 11:25	07/30/19 12:55	
13C4 PFHpA	86		50 - 150				07/02/19 11:25	07/30/19 12:55	
13C4 PFOA	84		50 - 150				07/02/19 11:25	07/30/19 12:55	
13C5 PFNA	82		50 ₋ 150				07/02/19 11:25	07/30/19 12:55	
13C2 PFDA	86		50 - 150				07/02/19 11:25	07/30/19 12:55	
13C2 PFUnA	75		50 ₋ 150				07/02/19 11:25	07/30/19 12:55	
13C2 PFDoA	90		50 ₋ 150				07/02/19 11:25	07/30/19 12:55	
13C2 PFTeDA	78		50 ₋ 150					07/30/19 12:55	
13C3 PFBS	93		50 ₋ 150					07/30/19 12:55	

Eurofins TestAmerica, Buffalo

07/02/19 11:25 07/30/19 12:55

07/02/19 11:25 07/30/19 12:55

07/02/19 11:25 07/30/19 12:55

07/02/19 11:25 07/30/19 12:55

07/02/19 11:25 07/30/19 12:55

Page 14 of 34

50 - 150

50 - 150

50 - 150

50 - 150

25 - 150

114

83

70

66

94

3

Job ID: 480-155323-1

<u>ی</u>

5

7

9

11

13

1,

5

5

5

Client: Benchmark Env. Eng. & Science, PLLC Project/Site: Benchmark-Peter Cooper sites

Date Received: 06/21/19 16:11

Lab Sample ID: 480-155323-6

Client Sample ID: BLIND DUP Date Collected: 06/21/19 00:00

Matrix: Water

Job ID: 480-155323-1

Method: 537 (modified) - Fluorinated Alkyl Substances (Continued)

Isotope Dilution %Recovery Qualifier Limits Prepared Dil Fac Analyzed M2-8:2 FTS 81 25 - 150 07/02/19 11:25 07/30/19 12:55

Client: Benchmark Env. Eng. & Science, PLLC Project/Site: Benchmark-Peter Cooper sites

480-155323-2 MS

480-155323-2 MSD

480-155323-3

MW-1SR

MW-1SR

FIELD BLANK

Job ID: 480-155323-1

Method: 8270D SIM ID - Semivolatile Organic Compounds (GC/MS SIM / Isotope Dilution)

Matrix: Water Prep Type: Total/NA

		Percent Isotope Dilution Recovery (Acceptance Limits)
	DXE	
Client Sample ID	(15-110)	
MWFP-3S	27	
MW-1SR	33	
MW-1SR	35	
MW-1SR	38	
MWFP-2S	33	
MWS-5S	32	
BLIND DUP	34	
Lab Control Sample	41	
Method Blank	39	
	MWFP-3S MW-1SR MW-1SR MW-1SR MWFP-2S MWS-5S BLIND DUP Lab Control Sample	Client Sample ID (15-110) MWFP-3S 27 MW-1SR 33 MW-1SR 35 MW-1SR 38 MWFP-2S 33 MWS-5S 32 BLIND DUP 34 Lab Control Sample 41

Method: 537 (modified) - Fluorinated Alkyl Substances

Matrix: Water Prep Type: Total/NA

			Perce	ent Isotope	Dilution Re	covery (Ac	ceptance L	imits)	
		PFOSA	PFBA	PFPeA	PFHxA	PFHpA	PFOA	PFNA	PFDA
Lab Sample ID	Client Sample ID	(25-150)	(25-150)	(25-150)	(50-150)	(50-150)	(50-150)	(50-150)	(50-150)
480-155323-1	MWFP-3S	72	88	89	100	101	97	81	97
480-155323-2	MW-1SR	77	78	84	99	96	93	75	89
480-155323-2 MS	MW-1SR	82	74	81	91	90	93	77	90
480-155323-2 MSD	MW-1SR	84	81	90	96	99	94	80	91
480-155323-3	FIELD BLANK	88	112	104	103	99	103	100	107
480-155323-4	MWFP-2S	70	87	98	103	93	94	80	103
480-155323-5	MWS-5S	81	85	95	97	93	93	85	93
480-155323-6	BLIND DUP	66	80	86	90	86	84	82	86
LCS 200-144676/2-A	Lab Control Sample	78	99	96	105	100	101	91	112
MB 200-144676/1-A	Method Blank	65	95	90	98	94	98	88	100
			Perce	ent Isotope	Dilution Re	covery (Ac	ceptance L	imits)	
		PFUnA	PFDoA	PFTDA	3C3-PFB	PFHxS	PFOS	NMeFOS،	-NEtFOS
Lab Sample ID	Client Sample ID	(50-150)	(50-150)	(50-150)	(50-150)	(50-150)	(50-150)	(50-150)	(50-150)
480-155323-1	MWFP-3S		89	66	104	121	88	71	69
480-155323-2	MW-1SR	78	91	67	100	120	83	72	72
480-155323-2 MS	MW-1SR	84	98	63	94	111	84	72	72
480-155323-2 MSD	MW-1SR	83	91	62	100	123	87	77	73
480-155323-3	FIELD BLANK	100	114	75	101	128	99	85	83
480-155323-4	MWFP-2S	79	101	75	104	116	82	70	80
480-155323-5	MWS-5S	88	97	77	103	111	91	83	74
480-155323-6	BLIND DUP	75	90	78	93	114	83	70	66
LCS 200-144676/2-A	Lab Control Sample	91	91	69	104	129	103	86	74
MB 200-144676/1-A	Method Blank	82	77	58	100	118	99	79	72
			Parce	ant leatone	Dilution Re	covery (Ac	contanco I	imite)	
		M262FTS	M282FTS	ont isotopo	Dilution No	covery (Ac	ocpianoc L		
Lab Sample ID	Client Sample ID	(25-150)	(25-150)						
480-155323-1	MWFP-3S	97	88						
.55 .50020 1		٠.	00						

Eurofins TestAmerica, Buffalo

83 78

96

86

89

2

5

7

10

12

13

Isotope Dilution Summary

Client: Benchmark Env. Eng. & Science, PLLC Project/Site: Benchmark-Peter Cooper sites

Method: 537 (modified) - Fluorinated Alkyl Substances (Continued)

Matrix: Water Prep Type: Total/NA

			Percen	t Isotope Dilution Recovery (Acceptance Limits)
		M262FTS	M282FTS	
Lab Sample ID	Client Sample ID	(25-150)	(25-150)	
480-155323-4	MWFP-2S	87	91	
480-155323-5	MWS-5S	89	87	
480-155323-6	BLIND DUP	94	81	
LCS 200-144676/2-A	Lab Control Sample	84	95	
MB 200-144676/1-A	Method Blank	84	86	

Surrogate Legend

PFOSA = 13C8 FOSA

PFBA = 13C4 PFBA

PFPeA = 13C5-PFPeA DNU

PFHxA = 13C2 PFHxA

PFHpA = 13C4 PFHpA

PFOA = 13C4 PFOA

PFNA = 13C5 PFNA

PFDA = 13C2 PFDA

PFUnA = 13C2 PFUnA

PFDoA = 13C2 PFDoA

PFTDA = 13C2 PFTeDA

13C3-PFBS = 13C3 PFBS

PFHxS = 1802 PFHxS

PFOS = 13C4 PFOS

d3-NMeFOSAA = d3-NMeFOSAA

d5-NEtFOSAA = d5-NEtFOSAA

M262FTS = M2-6:2 FTS

M282FTS = M2-8:2 FTS

Eurofins TestAmerica, Buffalo

Job ID: 480-155323-1

Job ID: 480-155323-1

Client: Benchmark Env. Eng. & Science, PLLC Project/Site: Benchmark-Peter Cooper sites

1,4-Dioxane-d8

Method: 8270D SIM ID - Semivolatile Organic Compounds (GC/MS SIM / Isotope Dilution)

Lab Sample ID: MB 480-479551/1	Lab Sample ID: MB 480-479551/1-A						Client Sample ID: Method Blank				
Matrix: Water							Prep Type: T	otal/NA			
Analysis Batch: 480296			Prep Batch: 479551								
	MB	MB									
Analyte	Result	Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac			

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,4-Dioxane	ND		0.20	0.10	ug/L		06/25/19 15:44	07/01/19 15:09	1
	MB	MB							
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,4-Dioxane-d8	39		15 - 110				06/25/19 15:44	07/01/19 15:09	1

Lab Sample ID: LCS 480- Matrix: Water Analysis Batch: 480296	479551/2-A					Clie	nt Sai	mple ID	: Lab Control Sample Prep Type: Total/NA Prep Batch: 479551
Analysis Daton. 400200			Spike	LCS	LCS				%Rec.
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits
1,4-Dioxane	· 		1.00	1.15		ug/L		115	40 - 140
	LCS	LCS							
Isotope Dilution	%Recovery	Qualifier	Limits						

_	
Lab Sample ID: 480-155323-2 MS	Client Sample ID: MW-1SR
Matrix: Water	Prep Type: Total/NA

15 - 110

Analysis Batch: 460296	Sample	Sample	Spike	MS	MS				%Rec.	.Cn: 4/95
Analyte	•	Qualifier	Added	_	Qualifier	Unit	D	%Rec	Limits	
1,4-Dioxane	ND		1.00	1.12		ug/L		112	40 - 140	
	MS	MS								

Isotope Dilution	%Recovery	Qualifier	Limits
1,4-Dioxane-d8	35		15 - 110

41

Lab Sample ID: 480-15532	ab Sample ID: 480-155323-2 MSD									Client Sample ID: MW-1SR					
Matrix: Water									Prep Ty	pe: Tot	al/NA				
Analysis Batch: 480296									Prep Ba	atch: 47	79551				
-	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD				
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit				
1,4-Dioxane	ND		1.00	1.33	E	ug/L		133	40 - 140	17	20				
	MSD	MSD													
Isotope Dilution	%Recovery	Qualifier	Limits												
1,4-Dioxane-d8	38		15 - 110												

Method: 537 (modified) - Fluorinated Alkyl Substances

Lab Sample ID: MB 200-144676/1-A	Client Sample ID: Method Blank
Matrix: Water	Prep Type: Total/NA
Analysis Batch: 145634	Prep Batch: 144676

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorobutanoic acid (PFBA)	ND		2.0	1.0	ng/L		07/02/19 11:25	07/30/19 11:10	1
Perfluoropentanoic acid (PFPeA)	ND		2.0	0.63	ng/L		07/02/19 11:25	07/30/19 11:10	1
Perfluorohexanoic acid (PFHxA)	ND		2.0	0.76	ng/L		07/02/19 11:25	07/30/19 11:10	1
Perfluoroheptanoic acid (PFHpA)	ND		2.0	0.91	ng/L		07/02/19 11:25	07/30/19 11:10	1
Perfluorooctanoic acid (PFOA)	0.696	J	2.0	0.63	ng/L		07/02/19 11:25	07/30/19 11:10	1
Perfluorononanoic acid (PFNA)	0.288	J	2.0	0.27	ng/L		07/02/19 11:25	07/30/19 11:10	1
Perfluorodecanoic acid (PFDA)	ND		2.0	0.77	ng/L		07/02/19 11:25	07/30/19 11:10	1
Perfluoroundecanoic acid (PFUnA)	ND		2.0	0.53	ng/L		07/02/19 11:25	07/30/19 11:10	1

Eurofins TestAmerica, Buffalo

Page 18 of 34

Client: Benchmark Env. Eng. & Science, PLLC Project/Site: Benchmark-Peter Cooper sites

Job ID: 480-155323-1

Prep Type: Total/NA

Prep Batch: 144676

Client Sample ID: Method Blank

Method: 537 (modified) - Fluorinated Alkyl Substances (Continued)

Lab Sample ID: MB 200-144676/1-A **Matrix: Water**

Analysis Batch: 145634

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorododecanoic acid (PFDoA)	ND		2.0	0.59	ng/L		07/02/19 11:25	07/30/19 11:10	1
Perfluorotridecanoic acid (PFTriA)	ND		2.0	0.60	ng/L		07/02/19 11:25	07/30/19 11:10	1
Perfluorotetradecanoic acid (PFTeA)	ND		2.0	0.92	ng/L		07/02/19 11:25	07/30/19 11:10	1
Perfluorobutanesulfonic acid (PFBS)	ND		2.0	0.49	ng/L		07/02/19 11:25	07/30/19 11:10	1
Perfluorohexanesulfonic acid (PFHxS)	ND		2.0	0.80	ng/L		07/02/19 11:25	07/30/19 11:10	1
Perfluoroheptanesulfonic Acid (PFHpS)	ND		2.0	0.95	ng/L		07/02/19 11:25	07/30/19 11:10	1
Perfluorodecanesulfonic acid (PFDS)	ND		2.0	0.90	ng/L		07/02/19 11:25	07/30/19 11:10	1
Perfluorooctanesulfonic acid (PFOS)	1.04	J	2.0	0.61	ng/L		07/02/19 11:25	07/30/19 11:10	1
Perfluorooctanesulfonamide (FOSA)	ND		10	10	ng/L		07/02/19 11:25	07/30/19 11:10	1
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		20	1.7	ng/L		07/02/19 11:25	07/30/19 11:10	1
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		20	1.5	ng/L		07/02/19 11:25	07/30/19 11:10	1
6:2 FTS	ND		20	4.6	ng/L		07/02/19 11:25	07/30/19 11:10	1
8:2 FTS	ND		20	2.9	ng/L		07/02/19 11:25	07/30/19 11:10	1

MB	MB
----	----

	МВ	MB				
Isotope Dilution	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
13C8 FOSA	65		25 - 150	07/02/19 11:25	07/30/19 11:10	1
13C4 PFBA	95		25 - 150	07/02/19 11:25	07/30/19 11:10	1
13C5-PFPeA DNU	90		25 - 150	07/02/19 11:25	07/30/19 11:10	1
13C2 PFHxA	98		50 - 150	07/02/19 11:25	07/30/19 11:10	1
13C4 PFHpA	94		50 - 150	07/02/19 11:25	07/30/19 11:10	1
13C4 PFOA	98		50 - 150	07/02/19 11:25	07/30/19 11:10	1
13C5 PFNA	88		50 - 150	07/02/19 11:25	07/30/19 11:10	1
13C2 PFDA	100		50 - 150	07/02/19 11:25	07/30/19 11:10	1
13C2 PFUnA	82		50 - 150	07/02/19 11:25	07/30/19 11:10	1
13C2 PFDoA	77		50 - 150	07/02/19 11:25	07/30/19 11:10	1
13C2 PFTeDA	58		50 - 150	07/02/19 11:25	07/30/19 11:10	1
13C3 PFBS	100		50 - 150	07/02/19 11:25	07/30/19 11:10	1
18O2 PFHxS	118		50 - 150	07/02/19 11:25	07/30/19 11:10	1
13C4 PFOS	99		50 - 150	07/02/19 11:25	07/30/19 11:10	1
d3-NMeFOSAA	79		50 - 150	07/02/19 11:25	07/30/19 11:10	1
d5-NEtFOSAA	72		50 - 150	07/02/19 11:25	07/30/19 11:10	1
M2-6:2 FTS	84		25 - 150	07/02/19 11:25	07/30/19 11:10	1
M2-8:2 FTS	86		25 - 150	07/02/19 11:25	07/30/19 11:10	1

Lab Sample ID: LCS 200-144676/2-A

Matrix: Water

Analysis Batch: 145634

Client Sample	ID: Lab Control Sample
	Prep Type: Total/NA

Prep Batch: 144676

	Spike	LCS LCS			%Rec.
Analyte	Added	Result Qualifie	er Unit	D %Rec	Limits
Perfluorobutanoic acid (PFBA)	40.0	47.5	ng/L		50 - 150
Perfluoropentanoic acid (PFPeA)	40.0	50.1	ng/L	125	50 - 150
Perfluorohexanoic acid (PFHxA)	40.0	45.6	ng/L	114	70 - 130
Perfluoroheptanoic acid (PFHpA)	40.0	51.1	ng/L	128	70 - 130
Perfluorooctanoic acid (PFOA)	40.0	47.4	ng/L	118	70 - 130
Perfluorononanoic acid (PFNA)	40.0	54.1 *	ng/L	135	70 - 130
Perfluorodecanoic acid (PFDA)	40.0	50.5	ng/L	126	70 - 130

Eurofins TestAmerica, Buffalo

Page 19 of 34

Client: Benchmark Env. Eng. & Science, PLLC Project/Site: Benchmark-Peter Cooper sites

Job ID: 480-155323-1

Method: 537 (modified) - Fluorinated Alkyl Substances (Continued)

Lab Sample ID: LCS 200-144676/2-A

Matrix: Water

Analysis Batch: 145634

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Prep Type: Total/NA Prep Batch: 144676

Analysis Baton: 140004	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Perfluoroundecanoic acid	40.0	46.3		ng/L		116	70 - 130
(PFUnA)							
Perfluorododecanoic acid	40.0	46.2		ng/L		115	70 - 130
(PFDoA)							
Perfluorotridecanoic acid	40.0	49.0		ng/L		123	70 - 130
(PFTriA)							
Perfluorotetradecanoic acid	40.0	45.9		ng/L		115	70 - 130
(PFTeA)							
Perfluorobutanesulfonic acid	35.4	41.1		ng/L		116	70 - 130
(PFBS)							<u></u>
Perfluorohexanesulfonic acid	36.4	32.9		ng/L		90	70 - 130
(PFHxS)							
Perfluoroheptanesulfonic Acid	38.1	46.9		ng/L		123	50 - 150
(PFHpS)	20.0	40.7				400	50 450
Perfluorodecanesulfonic acid	38.6	40.7		ng/L		106	50 - 150
(PFDS)	37.1	49.5				400	70.400
Perfluorooctanesulfonic acid	37.1	49.5		ng/L		133	70 - 130
(PFOS)	40.0	50.0		ng/L		125	50 ₋ 150
Perfluorooctanesulfonamide	40.0	30.0		iig/L		125	30 - 130
(FOSA)	40.0	59.3	*	ng/L		148	70 ₋ 130
N-methylperfluorooctanesulfona midoacetic acid (NMeFOSAA)	40.0	33.3		iig/L		140	70 - 130
N-ethylperfluorooctanesulfonami	40.0	60.7	*	ng/L		152	70 - 130
doacetic acid (NEtFOSAA)	10.0	00.1		119/1		102	70-700
6:2 FTS	37.9	46.7		ng/L		123	50 ₋ 150
8:2 FTS	38.3	44.0		ng/L		115	50 - 150
0.2110	30.3	 .0		ilg/L		113	50 - 150

LCS LCS

	LCS	LCS	
Isotope Dilution	%Recovery	Qualifier	Limits
13C8 FOSA	78		25 - 150
13C4 PFBA	99		25 - 150
13C5-PFPeA DNU	96		25 - 150
13C2 PFHxA	105		50 - 150
13C4 PFHpA	100		50 - 150
13C4 PFOA	101		50 - 150
13C5 PFNA	91		50 - 150
13C2 PFDA	112		50 - 150
13C2 PFUnA	91		50 - 150
13C2 PFDoA	91		50 - 150
13C2 PFTeDA	69		50 - 150
13C3 PFBS	104		50 - 150
1802 PFHxS	129		50 - 150
13C4 PFOS	103		50 - 150
d3-NMeFOSAA	86		50 - 150
d5-NEtFOSAA	74		50 - 150
M2-6:2 FTS	84		25 - 150
M2-8:2 FTS	95		25 - 150

9

10

12

14

Client: Benchmark Env. Eng. & Science, PLLC Project/Site: Benchmark-Peter Cooper sites

Job ID: 480-155323-1

Method: 537 (modified) - Fluorinated Alkyl Substances (Continued)

Lab Sample ID: 480-155323-2 MS Client Sample ID: MW-1SR									
Matrix: Water Prep Type: Total/NA							Prep Type: Total/NA		
Analysis Batch: 145634									Prep Batch: 144676
	Sample	Sample	Spike	MS	MS				%Rec.
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits
Perfluorobutanoic acid (PFBA)	4.0		34.3	45.3		ng/L		120	40 - 160
Perfluoropentanoic acid (PFPeA)	0.94	J	34.3	44.9		ng/L		128	40 - 160
Perfluorohexanoic acid (PFHxA)	1.4	J	34.3	40.9		ng/L		115	40 - 160

Perfluoroheptanoic acid (PFHpA)	0.94 J	34.3	46.0	ng/L	131	40 - 160	
Perfluorooctanoic acid (PFOA)	2.7 B	34.3	43.0	ng/L	118	40 - 160	
Perfluorononanoic acid (PFNA)	0.33 JB*	34.3	45.8	ng/L	133	40 - 160	
Perfluorodecanoic acid (PFDA)	ND	34.3	42.6	ng/L	124	40 - 160	
Perfluoroundecanoic acid (PFUnA)	ND	34.3	38.5	ng/L	112	40 - 160	
Perfluorododecanoic acid (PFDoA)	ND	34.3	38.5	ng/L	112	40 - 160	
Perfluorotridecanoic acid (PFTriA)	ND	34.3	38.7	ng/L	113	40 - 160	
Perfluorotetradecanoic acid (PFTeA)	ND	34.3	43.1	ng/L	126	40 - 160	
Perfluorobutanesulfonic acid (PFBS)	0.64 J	30.3	37.4	ng/L	121	40 - 160	
Perfluorohexanesulfonic acid (PFHxS)	ND	31.2	31.5	ng/L	101	40 - 160	
Perfluoroheptanesulfonic Acid (PFHpS)	ND	32.7	46.4	ng/L	142	40 - 160	
Perfluorodecanesulfonic acid (PFDS)	ND	33.1	38.9	ng/L	117	40 - 160	
Perfluorooctanesulfonic acid (PFOS)	1.7 IB*	31.8	44.2	ng/L	134	40 - 160	

34.3

34.3

34.3

32.5

45.1

47.9

51.8

42.0

39.2

ng/L

ng/L

ng/L

ng/L

ng/L

131

140

151

129

119

40 - 160

40 - 160

40 - 160

40 - 160

40 - 160

ND		32.9
MS	MS	
%Recovery	Qualifier	Limits
82		25 - 150
74		25 - 150
81		25 - 150
91		50 - 150
90		50 - 150
93		50 - 150
77		50 - 150
90		50 - 150
84		50 - 150
98		50 - 150
63		50 - 150
94		50 - 150
111		50 - 150
84		50 - 150
72		50 - 150
72		50 - 150
	MS %Recovery 82 74 81 91 90 93 77 90 84 98 63 94 111 84 72	MS MS %Recovery Qualifier 82 74 81 91 90 93 77 90 84 98 63 94 111 84 72

ND

ND *

ND *

ND

Perfluorooctanesulfonamide

N-methylperfluorooctanesulfona

N-ethylperfluorooctanesulfonami

midoacetic acid (NMeFOSAA)

doacetic acid (NEtFOSAA)

(FOSA)

6:2 FTS

Eurofins TestAmerica, Buffalo

3

4

6

8

46

11

13

14

Job ID: 480-155323-1

Client: Benchmark Env. Eng. & Science, PLLC Project/Site: Benchmark-Peter Cooper sites

Method: 537 (modified) - Fluorinated Alkyl Substances (Continued)

Lab Sample ID: 480-155323-2 MS

Lab Sample ID: 480-155323-2 MSD

Matrix: Water

Matrix: Water

Analysis Batch: 145634

MS MS Isotope Dilution %Recovery Qualifier Limits 25 - 150 M2-6:2 FTS 86 M2-8:2 FTS 83 25 - 150

Client Sample ID: MW-1SR Prep Type: Total/NA

Prep Batch: 144676

Client Sample ID: MW-1SR Prep Type: Total/NA

Prep Batch: 144676

Analysis Batch: 145634 Sample Sample Spike MSD MSD %Rec. **RPD Analyte** Result Qualifier Added Result Qualifier Unit D %Rec Limits RPD Limit Perfluorobutanoic acid (PFBA) 4.0 32.7 43.2 ng/L 120 40 - 160 5 30 ng/L Perfluoropentanoic acid (PFPeA) 0.94 J 32.7 41.1 123 40 - 160 9 30 Perfluorohexanoic acid (PFHxA) 1.4 J 32.7 41.4 ng/L 122 40 - 160 20 Perfluoroheptanoic acid (PFHpA) 0.94 J 32.7 42.7 ng/L 128 40 - 160 20 Perfluorooctanoic acid (PFOA) 2.7 B 32.7 43.9 ng/L 126 40 - 160 2 20 Perfluorononanoic acid (PFNA) 0.33 JB* 32.7 49.6 ng/L 151 40 - 160 8 20 Perfluorodecanoic acid (PFDA) ND 32.7 42.9 ng/L 131 40 - 160 20 20 Perfluoroundecanoic acid ND 32.7 37.1 ng/L 113 40 - 160 (PFUnA) ND 32.7 40.3 123 40 - 160 5 20 Perfluorododecanoic acid ng/L (PFDoA) ND 38.0 2 20 Perfluorotridecanoic acid 32 7 ng/L 116 40 - 160 (PFTriA) ND 32.7 2 20 Perfluorotetradecanoic acid 44.1 ng/L 135 40 - 160 (PFTeA) 0.64 J 28.9 36.1 123 40 - 160 20 Perfluorobutanesulfonic acid ng/L (PFBS) ND 29.8 28.9 ng/L 97 40 - 160 20 Perfluorohexanesulfonic acid (PFHxS) ND 31.2 43.3 ng/L 139 40 - 160 7 30 Perfluoroheptanesulfonic Acid (PFHpS) ND 40 - 160 31.6 39.5 ng/L 125 2 30 Perfluorodecanesulfonic acid (PFDS) 1.7 IB* 30.4 41.5 131 6 20 ng/L 40 - 160 Perfluorooctanesulfonic acid (PFOS) ND 32.7 43.6 ng/L 133 40 - 160 3 30 Perfluorooctanesulfonamide (FOSA) ND * 32.7 43.5 ng/L 133 40 - 160 10 20 N-methylperfluorooctanesulfona midoacetic acid (NMeFOSAA) N-ethylperfluorooctanesulfonami ND 32.7 49.4 ng/L 151 40 - 160 5 20 doacetic acid (NEtFOSAA) ND 31.0 38.6 8 6:2 FTS ng/L 124 40 - 160 30 8:2 FTS ND 30 31.4 44.0 ng/L 140 40 - 160 12

MSD MSD

Isotope Dilution	%Recovery	Qualifier	Limits
13C8 FOSA	84		25 - 150
13C4 PFBA	81		25 - 150
13C5-PFPeA DNU	90		25 - 150
13C2 PFHxA	96		50 - 150
13C4 PFHpA	99		50 ₋ 150
13C4 PFOA	94		50 - 150
13C5 PFNA	80		50 - 150
13C2 PFDA	91		50 - 150
13C2 PFUnA	83		50 - 150

Eurofins TestAmerica, Buffalo

QC Sample Results

Client: Benchmark Env. Eng. & Science, PLLC Job ID: 480-155323-1 Project/Site: Benchmark-Peter Cooper sites

Method: 537 (modified) - Fluorinated Alkyl Substances (Continued)

Lab Sample	ID: 480-155323-2 MSD	Client Sample ID: MW-1SR
Matrix: Wat	er	Prep Type: Total/NA
Analysis Ba	atch: 145634	Prep Batch: 144676

Analysis Batch: 145	634		Prep Batch: 144676
	MSD MSD		·
Isotope Dilution	%Recovery Quality	ier Limits	
13C2 PFDoA	91	50 - 150	
13C2 PFTeDA	62	50 - 150	
13C3 PFBS	100	50 - 150	
1802 PFHxS	123	50 - 150	
13C4 PFOS	87	50 - 150	
d3-NMeFOSAA	77	50 - 150	
d5-NEtFOSAA	73	50 - 150	
M2-6:2 FTS	89	25 - 150	
M2-8:2 FTS	78	25 - 150	

Client: Benchmark Env. Eng. & Science, PLLC Project/Site: Benchmark-Peter Cooper sites

Job ID: 480-155323-1

GC/MS Semi VOA

Prep Batch: 479551

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-155323-1	MWFP-3S	Total/NA	Water	3510C	
480-155323-2	MW-1SR	Total/NA	Water	3510C	
480-155323-4	MWFP-2S	Total/NA	Water	3510C	
480-155323-5	MWS-5S	Total/NA	Water	3510C	
480-155323-6	BLIND DUP	Total/NA	Water	3510C	
MB 480-479551/1-A	Method Blank	Total/NA	Water	3510C	
LCS 480-479551/2-A	Lab Control Sample	Total/NA	Water	3510C	
480-155323-2 MS	MW-1SR	Total/NA	Water	3510C	
480-155323-2 MSD	MW-1SR	Total/NA	Water	3510C	

Analysis Batch: 480296

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-155323-1	MWFP-3S	Total/NA	Water	8270D SIM ID	479551
480-155323-2	MW-1SR	Total/NA	Water	8270D SIM ID	479551
480-155323-4	MWFP-2S	Total/NA	Water	8270D SIM ID	479551
480-155323-5	MWS-5S	Total/NA	Water	8270D SIM ID	479551
480-155323-6	BLIND DUP	Total/NA	Water	8270D SIM ID	479551
MB 480-479551/1-A	Method Blank	Total/NA	Water	8270D SIM ID	479551
LCS 480-479551/2-A	Lab Control Sample	Total/NA	Water	8270D SIM ID	479551
480-155323-2 MS	MW-1SR	Total/NA	Water	8270D SIM ID	479551
480-155323-2 MSD	MW-1SR	Total/NA	Water	8270D SIM ID	479551

LCMS

Prep Batch: 144676

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-155323-1	MWFP-3S	Total/NA	Water	3535	
480-155323-2	MW-1SR	Total/NA	Water	3535	
480-155323-3	FIELD BLANK	Total/NA	Water	3535	
480-155323-4	MWFP-2S	Total/NA	Water	3535	
480-155323-5	MWS-5S	Total/NA	Water	3535	
480-155323-6	BLIND DUP	Total/NA	Water	3535	
MB 200-144676/1-A	Method Blank	Total/NA	Water	3535	
LCS 200-144676/2-A	Lab Control Sample	Total/NA	Water	3535	
480-155323-2 MS	MW-1SR	Total/NA	Water	3535	
480-155323-2 MSD	MW-1SR	Total/NA	Water	3535	

Analysis Batch: 145634

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-155323-1	MWFP-3S	Total/NA	Water	537 (modified)	144676
480-155323-2	MW-1SR	Total/NA	Water	537 (modified)	144676
480-155323-3	FIELD BLANK	Total/NA	Water	537 (modified)	144676
480-155323-4	MWFP-2S	Total/NA	Water	537 (modified)	144676
480-155323-5	MWS-5S	Total/NA	Water	537 (modified)	144676
480-155323-6	BLIND DUP	Total/NA	Water	537 (modified)	144676
MB 200-144676/1-A	Method Blank	Total/NA	Water	537 (modified)	144676
LCS 200-144676/2-A	Lab Control Sample	Total/NA	Water	537 (modified)	144676
480-155323-2 MS	MW-1SR	Total/NA	Water	537 (modified)	144676
480-155323-2 MSD	MW-1SR	Total/NA	Water	537 (modified)	144676

Eurofins TestAmerica, Buffalo

5

7

ŏ

40

11

14

1 /

14

Client: Benchmark Env. Eng. & Science, PLLC Project/Site: Benchmark-Peter Cooper sites

Client Sample ID: MWFP-3S

Date Collected: 06/21/19 13:09 Date Received: 06/21/19 16:11

Lab Sample ID: 480-155323-1

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3510C			479551	06/25/19 15:44	ATG	TAL BUF
Total/NA	Analysis	8270D SIM ID		1	480296	07/01/19 17:10	RJS	TAL BUF
Total/NA	Prep	3535			144676	07/02/19 11:25	TPB	TAL BUR
Total/NA	Analysis	537 (modified)		5	145634	07/30/19 11:50	JM1	TAL BUR

Client Sample ID: MW-1SR

Date Collected: 06/21/19 10:50 Date Received: 06/21/19 16:11 Lab Sample ID: 480-155323-2

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3510C			479551	06/25/19 15:44	ATG	TAL BUF
Total/NA	Analysis	8270D SIM ID		1	480296	07/01/19 16:46	RJS	TAL BUF
Total/NA	Prep	3535			144676	07/02/19 11:25	TPB	TAL BUR
Total/NA	Analysis	537 (modified)		1	145634	07/30/19 11:58	JM1	TAL BUR

Client Sample ID: FIELD BLANK

Date Collected: 06/21/19 09:30

Date Received: 06/21/19 16:11

Lab Sample ID: 480-155323-3

Lab Sample ID: 480-155323-5

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3535			144676	07/02/19 11:25	TPB	TAL BUR
Total/NA	Analysis	537 (modified)		1	145634	07/30/19 12:23	JM1	TAL BUR

Client Sample ID: MWFP-2S

Date Collected: 06/21/19 12:06

Date Received: 06/21/19 16:11

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3510C			479551	06/25/19 15:44	ATG	TAL BUF
Total/NA	Analysis	8270D SIM ID		1	480296	07/01/19 17:34	RJS	TAL BUF
Total/NA	Prep	3535			144676	07/02/19 11:25	TPB	TAL BUR
Total/NA	Analysis	537 (modified)		5	145634	07/30/19 12:31	JM1	TAL BUR

Client Sample ID: MWS-5S

Date Collected: 06/21/19 13:49

Date Received: 06/21/19 16:11

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3510C			479551	06/25/19 15:44	ATG	TAL BUF
Total/NA	Analysis	8270D SIM ID		1	480296	07/01/19 17:57	RJS	TAL BUF
Total/NA	Prep	3535			144676	07/02/19 11:25	TPB	TAL BUR
Total/NA	Analysis	537 (modified)		5	145634	07/30/19 12:39	JM1	TAL BUR

Matrix: Water

Matrix: Water

Matrix: Water

Lab Sample ID: 480-155323-4

Eurofins TestAmerica, Buffalo

Lab Chronicle

Client: Benchmark Env. Eng. & Science, PLLC Project/Site: Benchmark-Peter Cooper sites

Job ID: 480-155323-1

Lab Sample ID: 480-155323-6

Matrix: Water

Client Sample ID: BLIND DUP

Date Collected: 06/21/19 00:00 Date Received: 06/21/19 16:11

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3510C			479551	06/25/19 15:44	ATG	TAL BUF
Total/NA	Analysis	8270D SIM ID		1	480296	07/01/19 18:21	RJS	TAL BUF
Total/NA	Prep	3535			144676	07/02/19 11:25	TPB	TAL BUR
Total/NA	Analysis	537 (modified)		5	145634	07/30/19 12:55	JM1	TAL BUR

Laboratory References:

TAL BUF = Eurofins TestAmerica, Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

TAL BUR = Eurofins TestAmerica, Burlington, 30 Community Drive, Suite 11, South Burlington, VT 05403, TEL (802)660-1990

4

5

8

10

11

13

14

Accreditation/Certification Summary

Client: Benchmark Env. Eng. & Science, PLLC Project/Site: Benchmark-Peter Cooper sites

Job ID: 480-155323-1

Laboratory: Eurofins TestAmerica, Buffalo

The accreditations/certifications listed below are applicable to this report.

Authority	Program	EPA Region	Identification Number	Expiration Date
New York	NELAP	2	10026	03-31-20

Laboratory: Eurofins TestAmerica, Burlington

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	EPA Region	Identification Number	Expiration Date
ANAB	Dept. of Defense ELAP		L2336	02-25-20
ANAB	DoD		L2336	02-25-20
Connecticut	State Program	1	PH-0751	09-30-19
DE Haz. Subst. Cleanup Act (HSCA)	State Program	3	NA	02-01-20
Florida	NELAP	4	E87467	06-30-20
Florida	NELAP		E87467	06-01-20
Minnesota	NELAP	5	050-999-436	12-31-19
New Hampshire	NELAP	1	2006	12-18-19
New Jersey	NELAP	2	VT972	06-30-20
New Jersey	NELAP		VT972	06-30-20
New York	NELAP	2	10391	04-01-20
New York	NELAP		<cert no.=""></cert>	03-31-20
Pennsylvania	NELAP	3	68-00489	04-30-20
Pennsylvania	NELAP		68-00489	04-30-20
Rhode Island	State Program	1	LAO00298	12-30-19
US Fish & Wildlife	Federal		LE-058448-0	07-31-19
USDA	Federal		P330-11-00093	07-24-20
Vermont	State Program	1	VT-4000	12-31-19
Virginia	NELAP	3	460209	12-14-19

4

5

7

9

11

12

4.1

Method Summary

Client: Benchmark Env. Eng. & Science, PLLC Project/Site: Benchmark-Peter Cooper sites

Job ID: 480-155323-1

Method	Method Description	Protocol	Laboratory
8270D SIM ID	Semivolatile Organic Compounds (GC/MS SIM / Isotope Dilution)	SW846	TAL BUF
537 (modified)	Fluorinated Alkyl Substances	EPA	TAL BUR
3510C	Liquid-Liquid Extraction (Separatory Funnel)	SW846	TAL BUF
3535	Solid-Phase Extraction (SPE)	SW846	TAL BUR

Protocol References:

EPA = US Environmental Protection Agency

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL BUF = Eurofins TestAmerica, Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600
TAL BUR = Eurofins TestAmerica, Burlington, 30 Community Drive, Suite 11, South Burlington, VT 05403, TEL (802)660-1990

2

Л

5

7

8

11

12

14

Sample Summary

Client: Benchmark Env. Eng. & Science, PLLC Project/Site: Benchmark-Peter Cooper sites

Job ID: 480-155323-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received	Asset ID
480-155323-1	MWFP-3S	Water	06/21/19 13:09	06/21/19 16:11	
480-155323-2	MW-1SR	Water	06/21/19 10:50	06/21/19 16:11	
480-155323-3	FIELD BLANK	Water	06/21/19 09:30	06/21/19 16:11	
480-155323-4	MWFP-2S	Water	06/21/19 12:06	06/21/19 16:11	
480-155323-5	MWS-5S	Water	06/21/19 13:49	06/21/19 16:11	
480-155323-6	BLIND DUP	Water	06/21/19 00:00	06/21/19 16:11	

4

5

7

8

10

11

13

14

Chain of Custody Record

Eurofins TestAmerica, Buffalo

10 Hazelwood Drive

Amherst, NY 14228-2298 Phone: 716-691-2600 Fax: 716-691-7991

eurofins Environment festing TestAmerica

o di de como ci de com	Sampler			Lab PM: Fische	Lab PM: Fischer Brian I		Carrier Tracking No(s):	COC No:	2 3025
Cilent Intormation	Z pone			T SCI T	i, Di a	7		Page:	2.00.2
Client Contact Mr. Rick Dubisz	716 818-	8358		brian.	ischer@	brian.fischer@testamericainc.com		Page 2 of 2	
Company: Benchmark Env. Eng. & Science, PLLC						Analysis	Analysis Requested	, dob	
Address: 2558 Hamburg Tumpike Suite 300	Due Date Requested:							Preservation Codes:	odes:
City: Lackawanna	TAT Requested (days):							B - NaOH C - Zn Acetate	N - None O - AsNaO2
State, Zlp: NY, 14218						\(\lambda\)(sez)	_	D - Nitric Acid E - NaHSO4	P - Na204S
Phone:	PO #: Purchase Order Requested	equested			(or	ilsnA I			rdrate
Email: rdubisz@benchmarkturnkey.com	"MO #				NO. 10 (1) (1) (1)				
Project Name: Benchmark-Peter Cooper sites(Emerging)	Project #: 48004066				SALES DE LA COLONIA DE LA COLO		80	480-155323 Chain of Custody	
Site: New York	SSOW#:				-				
Samule Identification	Sample Date	Sample (Sample Type (C=comp, G=grab)	Matrix (w=water, S=solid, O=waste/oil, BT=Tissue, A=Air)	Field Filtered NSM moheq	88270D_SIM_MS		Total Number	Special Instructions/Note:
		1	- m	on Code:	17	-			
MWFP-3S	6/2/19	1309	Trub	Water		× ×		7	
MW-1SR	1	1050	->	Water		XX		3	
MW-7SR-	1		1	Water		-		1	
BLIND DUP	CAZIFF	700	arch	Water		××		7	
MS (M.W. 15R	6/21/15	050	1	Water		X		, 7	
MSD MW-15/R	V -	1050	->	Water		×		7	
Field Blank		1930				×		7	
MWFR-25		1206	Sich	_		×		Ţ	
MWS-55		1349	-	>		×		7	
Possible Hazard Identification	Poison B		Radiological		San	iple Disposal (A fee ma	y be assessed if sample	Sample Disposal (A fee may be assessed it samples are retained longer than 1 month) Refurn To Client Archive For	in 1 month)
sted: I, II, III, IV, Other	1				Spe	Special Instructions/QC Requirements.	irements:	3	
Empty Kit Relinquished by:	ו	Date:			Time:	1	Method of Shipment	nent:	
Relinguished by:	Date/Time			Company		Repeator	Dated	1191 P1/19	Company
Relinduished by:	Date/Time.			Company		Received by:	Date	Date/Time:	Company
Relinquished by:	Date/Time:			Company		Received by:	Date	Date/Time:	Сотрапу
Custody Seals Intact: Custody Seal No.: Δ Yes Δ No						Cooler Temperature(s) °C and Other Remarks	Other Remarks:	到过一样 6	
									Ver. 01/16/2019

Ver: 01/16/2019

8/9/2019 (Rev. 1)

	Eurofins TestAmerica, Buffalo														
	10 Hazelwood Drive	5	hoin o	ر ال القام	G Moo.	7							rofins		,
	Amherst, NY 14228-2298)			Ialli oi custody Record	0000								TestAmerica	nt lesting
	Phone: 716-691-2600 Fax: 716-691-7991														
	ormation (Sub Contract Lab)	Sampler:			Lab PM: Fische	Lab PM: Fischer, Brian J		480-15	323 Cha	480-155323 Chain of Custody	lody		399.1		
	Client Contact: Shipping/Receiving	Phone:			E-Mail. brìan.	fischer@t	E-Mail: brian.fischer@testamericainc.com	inc.com	2	New York			Page 1 of 1		
	Company: TestAmerica Laboratories Inc					Accreditations Required	Accreditations Required (See note)	ee note):		,			Job #:		
		Due Date Requested:			1		AGW 101R						480-155323-1		
	nmunity Drive, Suite 11,	6/27/2019						Analysis	is Reguested	ested		<u> </u>	Preservation Codes:	:sepo	
	Oity:	TAT Requested (days)	:(s					F					A - HCL B - NaOH	M - Hexane N - None	
	State, Zip:												C - Zn Acetate	0 - AsNaO2	
	VT, 05403					(S)							E - NaHSO4	Q - Na2SO3	
	Phone: 802-660-1990(Tel) 802-660-1919(Fax)	PO#:											F - MeOH G - Amchlor		
		WO #:				(0							H - Ascorbic Acid I - Ice		cahydrate
	Drainet Name.	* * * * * * * * * * * * * * * * * * * *				N 1						Laboration Company	J - Di Water K - F⊓TA	V - MCAA	
	-Peter Cooper sites	Project #: 48004066				o se						alka more	L-EDA	Z - other (specify)	cify)
	Site: Peter Cooper Markhams	SSOW#:				(), (T						-X vod-refinde	Other:		
						SW.						ا ه			
				Sample Type	Matrix (W=water,	Filterec	loo					eqwny			
*	Samula Identification - Client D (ak ID)	Some			S=solid, O=waste/oil,	оће I_ОЯ	nalyt			. 0		l lstc	 		
	Campio tachancaron - Orent to (Lab ID)	Sample Date		Preservation Code:	BT=Tissue, A=Air)	a a >				300		1	Special	Special Instructions/Note	Note:
ı			/5.55		<i>j</i>	$\frac{1}{4}$						X			
Par	MWFP-3S (480-155323-1)	6/21/19	Eastern		Water	×						8	Report problematic anayte match Sacremento's limits	Report problematic anaytes to 20 ng/l match Sacremento's limits.	- I/gn (
ie :	MW-1SR (480-155323-2)	6/21/19	10:50 Eastern		Water	×						CV.	Report problematic anayte match Sacremento's limits	Report problematic anaytes to 20 ng/l match Sacremento's limits.	- I/gn (
}1 <i>(</i>	MW-1SR (480-155323-2MS)	6/21/19	10:50 Eastern	MS	Water	×						N	Report problematic anayte	Report problematic anaytes to 20 ng/l	- I/Bu (
of 3	MW-1SR (480-155323-2MSD)	6/21/19	10:50 Fastern	MSD	Water	×						24	Report problems	Report problematic analytes to 20 ng/l	- I/Bu (
4	FIELD BLANK (480-155323-3)	6/21/19	09:30 Eastern		Water	×-						8	Report problematic anaytes	Report problematic anaytes to 20 ng/l	- I/gn (
	MWFP-2S (480-155323-4)	6/21/19	12:06 Eastern		Water	×						-01	Report problematic anayte	Report problematic anaytes to 20 ng/l	- I/bu C
	MWS-5S (480-155323-5)	6/21/19	13:49 Eastern		Water	X						8	Report problematic anayte match Sacremento's limits.	Report problematic anaytes to 20 ng/l - match Sacremento's limits.	- I/gn C
	BLIND DUP (480-155323-6)	6/21/19	Eastern		Water	×						CN .	Report problematic anayte: match Sacremento's limits.	Report problematic anaytes to 20 ng/l match Sacremento's limits.	- I/gn C
	Note: Since laboratory accreditations are subject to change. TestAmerica Laboratories Inc. places the own	ories Inc. places the or	vnership of me	thod analyte 8	ership of method analyte & accreditation compliance	ompliance	non out subc	erect labora	This	eide elemen	, . ,				

Note: Since laboratory accreditations are subject to change, TastAmerica Laboratories, Inc. places the ownership of method, analyte & accreditation compliance upon out subcontract laboratories. This sample should be the samples must be shipped back to the TestAmerica laboratory or other instructions will be provided. Any changes to accreditation status should be brought to TestAmerica Laboratories, inc. attention immedially. If all requested accreditations are current to date, return the signed Chain of Custody attesting to said complicance to TestAmerica Laboratories, Inc.

	Possible Hazard Identification		Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)	samples are retained longer than 1	month)
	Unconfirmed		Return To Client Disposal By Lab	Lab Archive For	Months
	Deliverable Requested: I, II, III, IV, Other (specify)	Primary Deliverable Rank: 2	Requi		
	Empty Kit Relinquished by:	Date:	ime: Method	Method of Shipment:	
	Relinquished by:	Date/Time.	Received by Taulor Mahn	Colonial of SS	THY CO
გ/0	Reimquished by:	Date/Time: Combany	Received by:	Date/Time:	Company
/201	Relinquished by:	Date/Time: Company	Received by:	Date/Time:	Company
9 (R	Custody Seals Intact: Custody Seal No.: Δ Yes Δ No	NA	Cooler Temperature(s) °C and Other Remarks:	7	
٠,					

ORIGIN ID:DKKA (716) 691-2600 CHAR BEONSON TEST AMERICA 10 MAZELWOOD

BILL RECIPIENT

AMHERST , NY 14228 UNITED STATES US

SAMPLE MGT. TA BURLINGTON 30 COMMUNITY DRIVE SUITE 11
SOUTH BURLINGTON VT 05403
(8021 660 - 1990 PER : BURLINGTON
DEAT: SAMPLE CONTROL

FedEx Express

TRK# 0201 4276 0720 1011

XH BTVA

WED - 26 JUN 10:30A PRIORITY OVERNIGHT

> 05403 VT-US BTV

Client: Benchmark Env. Eng. & Science, PLLC

Job Number: 480-155323-1

Login Number: 155323

List Number: 1

Creator: Kolb, Chris M

List Source: Eurofins TestAmerica, Buffalo

Question	Answer	Comment
Radioactivity either was not measured or, if measured, is at or below background	True	
The cooler's custody seal, if present, is intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the sample IDs on the containers and the COC.	True	
Samples are received within Holding Time (Excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	N/A	
If necessary, staff have been informed of any short hold time or quick TAT needs	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Sampling Company provided.	True	BENCHMARK
Samples received within 48 hours of sampling.	True	
Samples requiring field filtration have been filtered in the field.	True	
Chlorine Residual checked.	N/A	

Client: Benchmark Env. Eng. & Science, PLLC

Job Number: 480-155323-1

Login Number: 155323

List Number: 2

155323 List Source: Eurofins TestAmerica, Burlington
List Creation: 06/26/19 01:08 PM

Creator: Mohn, Taylor J

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey neter.</td <td>N/A</td> <td>Lab does not accept radioactive samples.</td>	N/A	Lab does not accept radioactive samples.
The cooler's custody seal, if present, is intact.	True	Seal present with no number.
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or ampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	2.7°C
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
s the Field Sampler's name present on COC?	N/A	Received project as a subcontract.
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	N/A	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is 6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

ATTACHMENT 3

DATA USABILITY SUMMARY REPORT (DUSR) JUNE 2019

Data Validation Services

120 Cobble Creek Road P. O. Box 208 North Creek, NY 12853 Phone (518) 251-4429 harry@frontiernet.net

October 8, 2019

Thomas Forbes
Turnkey Environmental Restoration, LLC
2558 Hamburg Turnpike Suite 300
Buffalo, NY 14218

RE: Validation of the Peter Cooper Brownfield Cleanup Program (BCP) Site Analytical Data Data Usability Summary Report (DUSR)
Eurofin TestAmerica SDG No. 480-155323-1

Dear Mr. Forbes:

Review has been completed for the data package generated by Eurofin TestAmerica that pertains to samples collected 06/21/19 at the Peter Cooper BCP site. Four aqueous samples, one field duplicate, and a field blank were processed for per- and poly fluorinated alkyl substances (PFAS) by a modified USEPA method 537 and 1,4-dioxane by USEPA method 8270D Selective Ion Monitoring (SIM).

The data packages submitted by the laboratory contain full deliverables for validation, but this usability report is generated from review of the QC summary form information, with full review of sample raw data and limited review of associated QC raw data. The reported QC summary forms and sample raw data have been reviewed for application of validation qualifiers, with guidance from the USEPA national and regional validation documents, and in consideration for the specific requirements of the analytical methodology. The following items were reviewed:

- * Data Completeness
- * Case Narrative
- * Custody Documentation
- * Holding Times
- * Surrogate, Isotopic Dilution, and Internal Standard Recoveries
- * Method and Field Blanks
- * Laboratory Control Sample (LCS)
- * Matrix Spike Recoveries and Correlations
- * Blind Field Duplicate Correlations
- * Instrumental Tunes
- * Initial and Continuing Calibration Standards
- * Method Compliance
- * Sample Result Verification

Those items listed above which show deficiencies are discussed within the text of this narrative. All of the other items were determined to be acceptable for the DUSR level review, as discussed in NYS DER-10 Appendix B Section 2.0 (c). Documentation of the outlying parameters cited in this report can be found in the laboratory data package.

In summary, results for the samples are usable either as reported or with minor qualification or edit.

Data completeness, accuracy, precision, representativeness, reproducibility, sensitivity, and comparability are acceptable.

The laboratory modifications to the USEPA method 537 are significant, including acceptance ranges, consistent in many respects to the advances in the available monitoring compounds. Validation actions are based on the laboratory procedures, in consideration that the laboratory undergoes NYS DOH certifications and NYS SOP review.

The client sample identifications are attached to this text. Also included in this report is the EQuIS EDD with recommended qualifiers/edits applied in red.

1,4-Dioxane by EPA 8270D SIM

Holding times were met. Blanks show no contamination. Calibration standards show acceptable responses.

Surrogate standard recoveries are within the laboratory acceptance ranges and internal standard recoveries are within protocol limits.

Matrix spikes performed on MW-1SR show acceptable recoveries and correlations. LCS recoveries are compliant.

The blind field duplicate correlation of MW-5S is acceptable.

PFAS by Modified EPA Method 537

PFAS compounds are identified by their common acronyms in this report. The EDDs reference both the technical names and the acronyms.

The following detected results are considered external contamination and edited to reflect non-detection due to presence in the associated field and/or method blanks:

- PFHxA and PFNA in MW-1SR
- PFOA in all samples except BLIND DUP and FIELD BLANK
- PFOS in all samples except MWFP-3S and FIELD BLANK

Matrix spike recoveries and correlations of MW-1SR and the blind field duplicate correlation of MW-5S are within validation guidelines.

The detected result for PFNA in BLIND DUP and the detected results for PFOS in MWFP-3S and FIELD BLANK are qualified as estimated, with a high bias, due to elevated recoveries in the associated LCS.

Holding times were met. Isotopic dilution surrogate standards and internal standard recoveries are within laboratory acceptance ranges.

Due to matrix interferences, three of the samples and the field duplicate were processed at fivefold dilution, resulting in proportionally elevated reporting limits.

Please do not hesitate to contact me if questions or comments arise during your review of this report.

Very truly yours,

Judy Harry

Judy Harry

Attachments: Validation Data Qualifier Definitions

Sample Identifications

Qualified Laboratory EQuIS EDD

VALIDATION DATA QUALIFIER DEFINITIONS

- U The analyte was analyzed for, but was not detected above the level of the associated reported quantitation limit.
- J The analyte was positively identified; the associated numerical value is an approximate concentration of the analyte in the sample.
- J- The analyte was positively identified; the associated numerical value is an estimated quantity that may be biased low.
- J+ The analyte was positively identified; the associated numerical value is an estimated quantity that may be biased high.
- UJ The analyte was analyzed for, but was not detected. The associated reported quantitation limit is approximate and may be inaccurate or imprecise.
- NJ The detection is tentative in identification and estimated in value. Although there is presumptive evidence of the analyte, the result should be used with caution as a potential false positive and/or elevated quantitative value.
- R The data are unusable. The sample results are rejected due to serious deficiencies in meeting Quality Control limits. The analyte may or may not be present.
- EMPC The results do not meet all criteria for a confirmed identification.

 The quantitative value represents the Estimated Maximum Possible

 Concentration of the analyte in the sample.

Sample Summaries

Project Name: 2924 HAMBURG TURNPIKE

Project Number: 0345-015-001-008

Lab Number: L1940870 **Report Date:** 09/23/19

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L1940870-01	MW-1	WATER	LACKAWANNA NY	09/06/19 13:57	09/06/19
L1940870-02	BLIND DUP	WATER	LACKAWANNA NY	09/06/19 12:00	09/06/19
L1940870-03	MW-2	WATER	LACKAWANNA NY	09/06/19 12:33	09/06/19
L1940870-04	MW-5	WATER	LACKAWANNA NY	09/06/19 11:50	09/06/19
L1940870-05	EQUIPMENT BLANK	WATER	LACKAWANNA NY	09/06/19 10:45	09/06/19
L1940870-06	FIELD BLANK	WATER	LACKAWANNA NY	09/06/19 10:20	09/06/19

APPENDIX C SIU Permit Requirements

TABLE 2 (revised Sampling and Monitoring) EFFECTIVE 1/1/13

Annual samples to be done in January, semi-annual samples to be done in June

Parameter	Sampling Location	Frequency	Sample Type
USEPA Priority Pollutant	Pre treatment building	Annual Effective 1/1/13	Grab
Sulfates	Pre treatment building	2x per year effective 1/1/13	24/hr. Composite
Sulfides (collected both prior to and following pre-treatment)	Pre treatment building	2x per year effective 1/1/13	24/hr. Composite
BOD/5 TSS	Pre treatment building Pre treatment building	2x per year Effective 1/1/13	Composite
Phenols Ammonia TKN	Pre treatment building Pre treatment building Pre treatment building		
PH (field measured)	Pre treatment building	weekly	24/hr. Composite
METALS Arsenic Calcium Total Chromium Hexavalent Chromium Cooper Cyanide Lead Mercury Nickel Silver	Pre treatment building	annual Effective 1/1/13	24 hr. composite
Zinc Dissolved Oxygen	Pre treatment building	weekly	GRAB

TARLE 1	(Effluent I	Limitations)
I PARILLE R	TELEFORE B	Limitations,

TABLE I (EITHER LIBITATIONS)	Daily	lb/d Daily
Parameter	Maximum Concentration	Maximum
Flow	30,000 gpd	
Total Toxic Organic Compounds (TTO)	1.37 mg/L	-
Total Organic Halogen (TOX)	0.1	-
BOD	-	200lb/d
		•
COD	monitor only	•
Total Solids	÷ ,	181 lb/d
pH	5.0 - 10.5	-
Total Arsenic 0.0062 lb/d	-	
Total Chromium	-	0.032 lb/d
Hex Chromium lb/d	-	0.0048
Phenol	•	0.78 lb/d
Ammonia	-	75 lb/d
Dissolved Oxygen ¹	2.0 mg/L	-
Sulfides	9.0mg/L	, -

¹ The discharge shall maintain a minimum concentration of Dissolved Oxygen content of 2.0 mg/L when sulfide concentrations are in excess of 9.0 mg/L.

Modification of Local Limits.

c)

In accordance with the Municipal Code, the established local limits are subject to change and shall be modified as needed based on regulatory requirements and standards, GSTP operation, performance and processes, the industrial user base, potable water quality and domestic wastewater characteristics. Modification to the established local limits must be reviewed and approved prior to implementation. Implementation shall be effective thirty (30) days from notice of acceptance of the modified limits. New local limits will be issued as an addendum to this wastewater discharge permit. Any modification of local limits that would require the Permittee to construct and operate, or modify an existing pretreatment system, shall include a reasonable schedule of compliance.

Part 3. Operation and maintenance of pollution controls.

a) Proper operation and maintenance

APPENDIX D

Laboratory Data – SIU Permit Compliance Sampling

Microbac Laboratories Inc., Pittsburgh Division CERTIFICATE OF ANALYSIS

9041758

Gowanda, Village of WWTP

Project Name: Peter Cooper for Priority Pollutant

Andrew Carriero 27 East Main Street Gowanda, NY 14070 Project / PO Number: N/A Received: 04/04/2019 Reported: 04/16/2019

Analytical Testing Parameters

Client Sample ID: Peter Cooper Composite

Sample Matrix: Aqueous Collected By: A.Carriero

Lab Sample ID: 9041758-01 **Collection Date:** 04/04/2019 7:30

Inorganics	Result	RL	Units	Note	Prepared	Analyzed	Analyst	
Method: EPA 300.0, Rv. 2.1								
Sulfate	263	5.00	mg/L		04/09/19 1748	04/09/19 1748	BAC	
Method: HACH 8000								
Chemical Oxygen Demand (COD)	45.7	5.00	mg/L		04/05/19 0900	04/05/19 1425	BAC	
Method: SM 2540 D-97,-11								
Total Suspended Solids - TSS	<5.0	5.0	mg/L			04/09/19 1630	JRS	
Method: SM 4500 NH3 B/F-97,-11								
Ammonia as N	188	22.5	mg/L		04/10/19 0800	04/10/19 1457	BAC	
Method: SM 4500 NH3 C/F-97,-11								
Total Kjeldahl Nitrogen - TKN	186	25.0	mg/L		04/15/19 0800	04/15/19 1430	BAC	
Method: SM 4500 P B,E-99,-11								
Phosphorus, Total as P	0.634	0.100	mg/L		04/08/19 1000	04/09/19 1001	BAC	
Metals, Total	Result	RL	Units	Note	Prepared	Analyzed	Analyst	
Method: EPA 200.7, Rv. 4.4								
Antimony	<0.030	0.030	mg/L		04/05/19 1501	04/09/19 1410	CDC	
Arsenic	<0.010	0.010	mg/L		04/05/19 1501	04/09/19 1410	CDC	
Beryllium	<0.0003	0.0003	mg/L		04/05/19 1501	04/09/19 1410	CDC	
Chromium	0.032	0.002	mg/L		04/05/19 1501	04/09/19 1410	CDC	
Copper	0.023	0.004	mg/L		04/05/19 1501	04/09/19 1410	CDC	
Lead	<0.007	0.007	mg/L		04/05/19 1501	04/09/19 1410	CDC	
Nickel	<0.007	0.007	mg/L		04/05/19 1501	04/09/19 1410	CDC	
Selenium	<0.020	0.020	mg/L		04/05/19 1501	04/09/19 1410	CDC	
Silver	<0.004	0.004	mg/L		04/05/19 1501	04/09/19 1410	CDC	
Thallium	<0.025	0.025	mg/L	Υ	04/05/19 1501	04/09/19 1410	CDC	
Zinc	0.012	0.010	mg/L		04/05/19 1501	04/09/19 1410	CDC	
Cadmium	<0.0006	0.0006	mg/L		04/05/19 1501	04/09/19 1410	CDC	
General Chemistry	Result	RL	Units	Note	Prepared	Analyzed	Analyst	

Method: SM 5210 B

CERTIFICATE OF ANALYSIS

9041758

Client Sample ID: Peter Cooper Composite

Sample Matrix: Aqueous Collected By: A.Carriero

Result

Lab Sample ID: 9041758-01 **Collection Date:** 04/04/2019 7:30

 General Chemistry
 Result
 RL
 Units
 Note
 Prepared
 Analyzed
 Analyst

 BOD5
 7
 4
 mg/L
 04/05/19 1558
 04/10/19 1233
 MKM

Analyses Subcontracted to: Microbac Laboratories, Inc. - Ohio Valley

RL

Units

Note

Prepared

Analyzed

Analyst

						,	
Method: EPA420.1							
Phenolics, Total	<0.00550	0.00550	mg/L			04/09/19 1000	ТВ
608	Result	RL	Units	Note	Prepared	Analyzed	Analyst
Method: 608.3							
4,4'-DDD	<0.0505	0.0505	ug/L		04/09/19 1045	04/11/19 0814	ECL
4,4'-DDE	< 0.0505	0.0505	ug/L		04/09/19 1045	04/11/19 0814	ECL
4,4'-DDT	< 0.0505	0.0505	ug/L		04/09/19 1045	04/11/19 0814	ECL
Aldrin	< 0.0505	0.0505	ug/L		04/09/19 1045	04/11/19 0814	ECL
alpha-BHC	< 0.0505	0.0505	ug/L		04/09/19 1045	04/11/19 0814	ECL
alpha-Chlordane	<0.0505	0.0505	ug/L		04/09/19 1045	04/11/19 0814	ECL
Aroclor-1016	< 0.505	0.505	ug/L		04/09/19 1045	04/11/19 0814	ECL
Aroclor-1221	< 0.505	0.505	ug/L		04/09/19 1045	04/11/19 0814	ECL
Aroclor-1232	< 0.505	0.505	ug/L		04/09/19 1045	04/11/19 0814	ECL
Aroclor-1242	<0.505	0.505	ug/L		04/09/19 1045	04/11/19 0814	ECL
Aroclor-1248	<0.505	0.505	ug/L		04/09/19 1045	04/11/19 0814	ECL
Aroclor-1254	<0.505	0.505	ug/L		04/09/19 1045	04/11/19 0814	ECL
Aroclor-1260	<0.505	0.505	ug/L		04/09/19 1045	04/11/19 0814	ECL
beta-BHC	<0.0505	0.0505	ug/L		04/09/19 1045	04/11/19 0814	ECL
Chlordane	< 0.505	0.505	ug/L		04/09/19 1045	04/11/19 0814	ECL
delta-BHC	< 0.0505	0.0505	ug/L		04/09/19 1045	04/11/19 0814	ECL
Dieldrin	< 0.0505	0.0505	ug/L		04/09/19 1045	04/11/19 0814	ECL
Endosulfan I	< 0.0505	0.0505	ug/L		04/09/19 1045	04/11/19 0814	ECL
Endosulfan II	<0.0505	0.0505	ug/L		04/09/19 1045	04/11/19 0814	ECL
Endosulfan sulfate	<0.0505	0.0505	ug/L		04/09/19 1045	04/11/19 0814	ECL
Endrin	< 0.0505	0.0505	ug/L		04/09/19 1045	04/11/19 0814	ECL
Endrin Aldehyde	< 0.0505	0.0505	ug/L		04/09/19 1045	04/11/19 0814	ECL
Endrin Ketone	< 0.0505	0.0505	ug/L		04/09/19 1045	04/11/19 0814	ECL
gamma-BHC (Lindane)	< 0.0505	0.0505	ug/L		04/09/19 1045	04/11/19 0814	ECL
gamma-Chlordane	< 0.0505	0.0505	ug/L		04/09/19 1045	04/11/19 0814	ECL
Heptachlor	< 0.0505	0.0505	ug/L		04/09/19 1045	04/11/19 0814	ECL
Heptachlor epoxide	< 0.0505	0.0505	ug/L		04/09/19 1045	04/11/19 0814	ECL
Methoxychlor	<0.0505	0.0505	ug/L		04/09/19 1045	04/11/19 0814	ECL
Toxaphene	<1.01	1.01	ug/L		04/09/19 1045	04/11/19 0814	ECL
Surrogate: 2,4,5,6-Tetrachloro-m-xylene	52.6	Limit: 20-	180 % Rec		04/09/19 1045	04/11/19 0814	ECL
Surrogate: Decachlorobiphenyl	35.0	Limit: 20-	140 % Rec		04/09/19 1045	04/11/19 0814	ECL

CERTIFICATE OF ANALYSIS

9041758

Client Sample ID: Peter Cooper Composite

Sample Matrix: Aqueous Collected By: A.Carriero

Lab Sample ID: 9041758-01 **Collection Date:** 04/04/2019 7:30

BNA Compounds	Result	RL	Units	Note	Prepared	Analyzed	Analyst
Method: 625.1							
1,2,4-Trichlorobenzene	<10.2	10.2	ug/L		04/09/19 1500	04/10/19 1928	SCB
1,2-Dichlorobenzene	<10.2	10.2	ug/L		04/09/19 1500	04/10/19 1928	SCB
1,3-Dichlorobenzene	<10.2	10.2	ug/L		04/09/19 1500	04/10/19 1928	SCB
1,4-Dichlorobenzene	<10.2	10.2	ug/L		04/09/19 1500	04/10/19 1928	SCB
2,4,6-Trichlorophenol	<10.2	10.2	ug/L		04/09/19 1500	04/10/19 1928	SCB
2,4-Dichlorophenol	<10.2	10.2	ug/L		04/09/19 1500	04/10/19 1928	SCB
2,4-Dimethylphenol	<10.2	10.2	ug/L		04/09/19 1500	04/10/19 1928	SCB
2,4-Dinitrophenol	<51.0	51.0	ug/L		04/09/19 1500	04/10/19 1928	SCB
2,4-Dinitrotoluene	<10.2	10.2	ug/L		04/09/19 1500	04/10/19 1928	SCB
2,6-Dinitrotoluene	<10.2	10.2	ug/L		04/09/19 1500	04/10/19 1928	SCB
2-Chloronaphthalene	<10.2	10.2	ug/L		04/09/19 1500	04/10/19 1928	SCB
2-Chlorophenol	<10.2	10.2	ug/L		04/09/19 1500	04/10/19 1928	SCB
2-Methyl-4,6-dinitrophenol	<51.0	51.0	ug/L		04/09/19 1500	04/10/19 1928	SCB
2-Nitrophenol	<10.2	10.2	ug/L		04/09/19 1500	04/10/19 1928	SCB
3,3'-Dichlorobenzidine	<20.4	20.4	ug/L		04/09/19 1500	04/10/19 1928	SCB
4-Bromophenyl phenyl ether	<10.2	10.2	ug/L		04/09/19 1500	04/10/19 1928	SCB
4-Chloro-3-methylphenol	<10.2	10.2	ug/L		04/09/19 1500	04/10/19 1928	SCB
4-Chlorophenyl phenyl ether	<10.2	10.2	ug/L		04/09/19 1500	04/10/19 1928	SCB
4-Nitrophenol	<51.0	51.0	ug/L		04/09/19 1500	04/10/19 1928	SCB
Acenaphthene	<10.2	10.2	ug/L		04/09/19 1500	04/10/19 1928	SCB
Acenaphthylene	<10.2	10.2	ug/L		04/09/19 1500	04/10/19 1928	SCB
Anthracene	<10.2	10.2	ug/L		04/09/19 1500	04/10/19 1928	SCB
Benzidine	<51.0	51.0	ug/L		04/09/19 1500	04/10/19 1928	SCB
Benzo(a)anthracene	<10.2	10.2	ug/L		04/09/19 1500	04/10/19 1928	SCB
Benzo(a)pyrene	<10.2	10.2	ug/L		04/09/19 1500	04/10/19 1928	SCB
Benzo(b)fluoranthene	<10.2	10.2	ug/L		04/09/19 1500	04/10/19 1928	SCB
Benzo(g,h,i)Perylene	<10.2	10.2	ug/L		04/09/19 1500	04/10/19 1928	SCB
Benzo(k)fluoranthene	<10.2	10.2	ug/L		04/09/19 1500	04/10/19 1928	SCB
Bis(2-Chloroethoxy)Methane	<10.2	10.2	ug/L		04/09/19 1500	04/10/19 1928	SCB
Bis(2-Chloroethyl)ether	<10.2	10.2	ug/L		04/09/19 1500	04/10/19 1928	SCB
bis(2-Chloroisopropyl)ether	<10.2	10.2	ug/L		04/09/19 1500	04/10/19 1928	SCB
bis(2-Ethylhexyl)phthalate	<10.2	10.2	ug/L		04/09/19 1500	04/10/19 1928	SCB
Butyl benzyl phthalate	<10.2	10.2	ug/L		04/09/19 1500	04/10/19 1928	SCB
Chrysene	<10.2	10.2	ug/L		04/09/19 1500	04/10/19 1928	SCB
Di-N-Butylphthalate	<10.2	10.2	ug/L		04/09/19 1500	04/10/19 1928	SCB
Di-n-octyl phthalate	<10.2	10.2	ug/L		04/09/19 1500	04/10/19 1928	SCB
Dibenzo(a,h)Anthracene	<10.2	10.2	ug/L		04/09/19 1500	04/10/19 1928	SCB
Diethyl phthalate	<10.2	10.2	ug/L		04/09/19 1500	04/10/19 1928	SCB
Dimethyl phthalate	<10.2	10.2	ug/L		04/09/19 1500	04/10/19 1928	SCB
Fluoranthene	<10.2	10.2	ug/L		04/09/19 1500	04/10/19 1928	SCB
Fluorene	<10.2	10.2	ug/L		04/09/19 1500	04/10/19 1928	SCB
Hexachlorobenzene	<10.2	10.2	ug/L		04/09/19 1500	04/10/19 1928	SCB

Microbac Laboratories, Inc.

CERTIFICATE OF ANALYSIS

9041758

Peter Cooper Composite Client Sample ID:

Sample Matrix: Aqueous Collected By: A.Carriero

Lab Sample ID: 9041758-01				Collectio	n Date: 04/04/	2019 7:30	
BNA Compounds	Result	RL	Units	Note	Prepared	Analyzed	Analys
Hexachlorobutadiene	<10.2	10.2	ug/L		04/09/19 1500	04/10/19 1928	SCB
Hexachlorocyclopentadiene	<10.2	10.2	10.2 ug/L		04/09/19 1500	04/10/19 1928	SCB
Hexachloroethane	<10.2	10.2	ug/L		04/09/19 1500	04/10/19 1928	SCB
Indeno(1,2,3-cd)pyrene	<10.2	10.2	ug/L		04/09/19 1500	04/10/19 1928	SCB
Isophorone	<10.2	10.2	ug/L		04/09/19 1500	04/10/19 1928	SCB
N-Nitrosodi-n-propylamine	<10.2	10.2	ug/L		04/09/19 1500	04/10/19 1928	SCB
N-Nitrosodimethylamine	<10.2	10.2	ug/L		04/09/19 1500	04/10/19 1928	SCB
Diphenylamine/n-Nitrosodiphenylamine	<10.2	10.2	ug/L		04/09/19 1500	04/10/19 1928	SCB
Naphthalene	<10.2	10.2	ug/L		04/09/19 1500	04/10/19 1928	SCB
Nitrobenzene	<10.2	10.2	ug/L		04/09/19 1500	04/10/19 1928	SCB
Pentachlorophenol	<51.0	51.0	ug/L		04/09/19 1500	04/10/19 1928	SCB
Phenanthrene	<10.2	10.2	ug/L		04/09/19 1500	04/10/19 1928	SCB
Phenol	<10.2	10.2	ug/L		04/09/19 1500	04/10/19 1928	SCB
Pyrene	<10.2	10.2	ug/L		04/09/19 1500	04/10/19 1928	SCB
Surrogate: 2,4,6-Tribromophenol	116	Limit: 22	-142 % Rec		04/09/19 1500	04/10/19 1928	SCB
Surrogate: 2-Fluorobiphenyl	102	Limit: 43	-116 % Rec		04/09/19 1500	04/10/19 1928	SCB
Surrogate: 2-Fluorophenol	58.2	Limit: 19	-119 % Rec		04/09/19 1500	04/10/19 1928	SCB
Surrogate: Nitrobenzene-d5	93.2	Limit: 35	-114 % Rec		04/09/19 1500	04/10/19 1928	SCB
Surrogate: p-Terphenyl-d14	65.7	Limit: 10	-130 % Rec		04/09/19 1500	04/10/19 1928	SCB
Surrogate: Phenol-D5	50.1	Limit: 1	0-94 % Rec		04/09/19 1500	04/10/19 1928	SCB
CYANIDE	Result	RL	Units	Note	Prepared	Analyzed	Analyst
Method: SM4500-CN-C,E-1999							
Cyanide	<0.0100	0.0100	mg/L			04/11/19 1015	APH
Library Search	Result	RL	Units	Note	Prepared	Analyzed	Analyst
Method: 625.1							
n-Hexadecanoic acid	15.7		ug/L		04/09/19 1500	04/10/19 1928	SCB
Octadecanoic acid	10.1		ug/L		04/09/19 1500	04/10/19 1928	SCB
Heptacosane	34.0		ug/L		04/09/19 1500	04/10/19 1928	SCB
Tetratetracontane	44.2		ug/L		04/09/19 1500	04/10/19 1928	SCB
Tetratriacontane	32.3		ug/L		04/09/19 1500	04/10/19 1928	SCB
Sulfide	Result	RL	Units	Note	Prepared	Analyzed	Analys
Method: SM4500-S-(-2)-F-2000							
Sulfide	<1.00	1.00	mg/L			04/09/19 1451	APH

CERTIFICATE OF ANALYSIS

9041758

Client Sample ID: Peter Cooper Grab

Sample Matrix: Aqueous Collected By: A.Carriero

Lab Sample ID: 9041758-02 **Collection Date:** 04/03/2019 14:30

Analyses Subcontracted to: Microbac Laboratories, Inc. - Ohio Valley

Volatile Organics	Result	RL	Units	Note	Prepared	Analyzed	Analyst
Method: EPA624.1							
1,1,1-Trichloroethane	<5.00	5.00	ug/L			04/05/19 2133	JDS
1,1,2,2-Tetrachloroethane	<5.00	5.00	ug/L			04/05/19 2133	JDS
1,1,2-Trichloroethane	<5.00	5.00	ug/L			04/05/19 2133	JDS
1,1-Dichloroethane	<5.00	5.00	ug/L			04/05/19 2133	JDS
1,1-Dichloroethene	<5.00	5.00	ug/L			04/05/19 2133	JDS
1,2-Dichlorobenzene	<5.00	5.00	ug/L			04/05/19 2133	JDS
1,2-Dichloroethane	<5.00	5.00	ug/L			04/05/19 2133	JDS
1,2-Dichloropropane	<5.00	5.00	ug/L			04/05/19 2133	JDS
1,3-Dichlorobenzene	<5.00	5.00	ug/L			04/05/19 2133	JDS
1,4-Dichlorobenzene	<5.00	5.00	ug/L			04/05/19 2133	JDS
2-Chloroethyl vinyl ether	<10.0	10.0	ug/L			04/05/19 2133	JDS
Acrolein	<10.0	10.0	ug/L			04/05/19 2133	JDS
Acrylonitrile	<10.0	10.0	ug/L			04/05/19 2133	JDS
Benzene	<5.00	5.00	ug/L			04/05/19 2133	JDS
Bromodichloromethane	<5.00	5.00	ug/L			04/05/19 2133	JDS
Bromoform	<5.00	5.00	ug/L			04/05/19 2133	JDS
Bromomethane	<10.0	10.0	ug/L			04/05/19 2133	JDS
Carbon tetrachloride	<5.00	5.00	ug/L			04/05/19 2133	JDS
Chlorobenzene	<5.00	5.00	ug/L			04/05/19 2133	JDS
Chloroethane	<10.0	10.0	ug/L			04/05/19 2133	JDS
Chloroform	<5.00	5.00	ug/L			04/05/19 2133	JDS
Chloromethane	<10.0	10.0	ug/L			04/05/19 2133	JDS
cis-1,3-Dichloropropene	<5.00	5.00	ug/L			04/05/19 2133	JDS
Dibromochloromethane	<5.00	5.00	ug/L			04/05/19 2133	JDS
Ethyl benzene	<5.00	5.00	ug/L			04/05/19 2133	JDS
Methylene chloride	<5.00	5.00	ug/L			04/05/19 2133	JDS
Tetrachloroethene	<5.00	5.00	ug/L			04/05/19 2133	JDS
Toluene	<5.00	5.00	ug/L			04/05/19 2133	JDS
trans-1,2-Dichloroethene	<5.00	5.00	ug/L			04/05/19 2133	JDS
trans-1,3-Dichloropropene	<5.00	5.00	ug/L			04/05/19 2133	JDS
Trichloroethene	<5.00	5.00	ug/L			04/05/19 2133	JDS
Trichlorofluoromethane	<10.0	10.0	ug/L			04/05/19 2133	JDS
Vinyl chloride	<10.0	10.0	ug/L			04/05/19 2133	JDS
Surrogate: 1,2-Dichloroethane-d4	94.6	Limit: 63	-140 % Rec			04/05/19 2133	JDS
Surrogate: p-Bromofluorobenzene	89.5	Limit: 60	-140 % Rec			04/05/19 2133	JDS
Surrogate: Toluene-d8	95.7	Limit: 60	-140 % Rec			04/05/19 2133	JDS

Definitions

RL: Reporting Limit

Y: This analyte is not on the laboratory's current scope of accreditation.

Microbac Laboratories Inc., Pittsburgh Division CERTIFICATE OF ANALYSIS 9041758

Project Requested Certification(s)

Microbac Laboratories Inc., Pittsburgh Division 10121

Microbac Laboratories, Inc. - Ohio Valley

460187 10861 OH004 New York State Department of Health

Commonwealth of Virginia (NELAC) New York Department of Health ID State of New Jersey (NELAC)

Report Comments

Samples were received in proper condition and the reported results conform to applicable accreditation standard unless otherwise noted.

The data and information on this, and other accompanying documents, represents only the sample(s) analyzed. This report is incomplete unless all pages indicated in the footnote are present and an authorized signature is included.

Reviewed and Approved By:

Tina Sharer Administration

Reported: 04/16/2019 14:05

CHAIN OF CUSTODY

Put har code here

Microbac Pittsburgh Division 100 Marshall Drive Warrendale, PA 15086

QC270 V6

724.772.0610

Page 1 of 1

Gowanda, Village of WWTF

					•												PM:	Tina S	Sharer	AM MA 9 E			٦
	nt /Company Name:	Dont			1		Name: v Carrie	oro						1				Ana	ıyses				
	age of Gowanda Sewer ress:	рерг			1	To/F		310															
	ress: E. Main Street				וויכ	1 0/1	<i>J</i>									s by ive							
	/State/Zip:														z	bles 3:: F	Sb,					a)	
Go	wanda, NY 14070														T X	acta 608	Pb, 8					:: Five	
Pho		Email/Fax:	@!!				al Hazard	s: Hazard	г	1 5	Padio	activ	آ ۾	,	::	xtrg PA	<u>-</u>		_			::	
	6-532-5931	gowandawwtp	@mail.com			sposa		1 lazaiu	L	J	\adio	activ	- 1		NH3	<u>~</u> ≥ Ш Ш	Z		420.1			324	
Pri	ect Name/ID: <mark>ority Pollutant – Pete</mark> r	Cooper			Dis	spose	of [X		ırn	[]	Re	tain	[]		:: Dist. N	Acid Extractables/Base Neutral Extractables by EPA 625 :: Pesticides/PCBs by EPA 608:: Five Peaks on BNA Scan	As, Be, Cd, Cr, Cu, Hg, Ni, Tl, Zn		A 42	ட		EPA 624	
San	npled By:	Due D	ate:		Co	mplia	ance Sam		St	ate:	B. (· · · · ·				PO /	Cn		EPA	S2		ے ا	
A	- CARRIERO				Ye	s [X	į inc	[]			N				<u>ت</u>	Bas des an	ပ်	SS	þ	-00		s by	
Ship	pped By:	Tracki	ng #:		PV	VSID	#:		M	onito	oring	Peric	od:		COD	les/ stici Sca	, d,	<u> </u>	jtal	145	<u></u>	Pic C	
Mic	crobac Courier			0: 0:											::	fabl Pes	O	. 4(^۲	S	Tota	rga VO	
Тур	e Code: G-Grab C-Composit	te Comp. Start:	17:30A	Comp. St	:op: У-19	; /·	7:30A			Р	reser	vativ	es		hos	trac 5 :: in B	Be	SC	ics	by	o,	O E	
Mat	rix Code: DW-Potable wate			il/Sludge F-F	ood	S-S	Swab O	-Other	a)	<u>ش</u>	4	c		-	Total Phos	EX: 62: ks o	As,	BOD :: SO4 :: TSS	Phenolics, Total by	Sulfide by SM4500-S2	Cyanide, Total	Volatile Organics by Peaks on VOC Scan	
	Sample Identifi	cation	Date	Time	Ту		Matrix	Tot. #	None	HNO3	H2SO4	HC HC	달 음	Other	Cota	\cid ∃PA Peal	Ag, Se,	200	he	Suff	Sya	/ok	
	Sample identific	Cation	Taken	Taken	G	С	Wattix	Cont.				_	-			₹шш	4 07	ш	LJ				
	Peter Cooper Composi	ite	4-4-19	7:304		Х	WW	129	4	1	2	1		1	Х	X	X	X	Х	X	X		
	Peter Cooper Grab		4-3-19	9:30,4,2:30,0	Χ		WW	3			-		3									Χ	
				1. 204 , 2. 20																			
													+										
		AV														33,000							
la a	tructions/Comments:				l		· · · · · · · · · · · · · · · · · · ·												<u> </u>	<u> </u>			
insi	tructions/Comments.																						
									1		(1											
Rel	linquished By:			e/Time:			Receive	d By:	X	F.		Y.	00				Date/Tir リーリ	ne:	0	101	Tor	np <i>0 9</i>	[}] °C
W.	· Carrer			c_, g/			Receive		L	<u>عملا</u>	<u></u>	8	M						-		1	(~\	
Rel	linquished By:	the	Dat 4	e/Time:			Receive	д Бу.		(M	// /	Bn.	$/ \setminus$				Date/Tir		166	ð	Ice	d: 🍾	N
Rel	linquished By:	0/\		e/Time:	,	-	Receive	d By:	1	450	L	· ·		5			Date/Tir		ill		Inta	ict: (Y	N
Re	linequished By:		Dat				Receive	ed By:		000		}_		part 100 1	,		Date/Tir		1 /	· Sang Spinner	+		
	Chils I then)	म्प	1119 1	33	U	<u> </u>	MOR	حيل		<u> </u>	<u>10</u>	1/	21	haupett ^{a,,,}		<u> 24-00</u>	44	1/56	<u> 45 –</u>			
1		7					1 11 "	4 467		Bushard	4	-											

Laboratory Report Number: L19040448

Michael Goodling Microbac Laboratories 100 Marshall Drive Warrendale, PA 15086

Please find enclosed the analytical results for the samples you submitted to Microbac Laboratories. Review and compilation of your report was completed by Microbac's Ohio Valley Division (OVD). If you have any questions, comments, or require further assistance regarding this report, please contact your service representative listed below.

Laboratory Contact:

_

(740) 373-4071

Alicia.walker@microbac.com

I certify that all test results meet all of the requirements of the accrediting authority listed below. All results for soil samples are reported on a 'dry-weight' basis unless specified otherwise. Analytical results for water and wastes are reported on a 'as received' basis unless specified otherwise. A statement of uncertainty for each analysis is available upon request. This laboratory report shall not be reproduced, except in full, without the written approval of Microbac Laboratories. The reported results are related only to the samples analyzed as received.

This report was certified on April 15 2019

Leslie Bucina – Laboratory Manager

Leslie Buira

State of Origin: NY

Accrediting Authority: Department of Health ID:10861

QAPP: Microbac OVD

Microbac Laboratories * Ohio Valley Division
158 Starlite Drive, Marietta, OH 45750 * T: (740) 373-4071 F: (740) 373-4835 * www.microbac.com

Lab Report #: L19040448 **Lab Project #:** 2941.115

Project Name: Warrendale-NY cert

Lab Contact:

Record of Sample Receipt and Inspection

Comments/Discrepancies

This is the record of the shipment conditions and the inspection records for the samples received and reported as a sample delivery group (SDG). All of the samples were inspected and observed to conform to our receipt policies, except as noted below.

The following discrepancies were noted:

Discrepancy	Resolution
Sample ID: 9041758-01. No Metals received. BRG	Please proceed with the remaining analyses listed on the COC. ADW

Coolers					
Cooler #	Temperature Gun	Temperature COC # Airbill #		Airbill #	Temp Required?
00110065	I	2.0		1001891730610004575000710812487373	X
00115451	I	1.0		1001891730610004575000710812487432	X
00116117	I	1.0		710812487410	Х

nspection Che	cklist	
#	Question	Result
1	Were shipping coolers sealed?	Yes
2	Were custody seals intact?	NA
3	Were cooler temperatures in range of 0-6?	Yes
4	Was ice present?	Yes
5	Were COC's received/information complete/signed and dated?	Yes
6	Were sample containers intact and match COC?	No
7	Were sample labels intact and match COC?	Yes
8	Were the correct containers and volumes received?	Yes
9	Were samples received within EPA hold times?	Yes
10	Were correct preservatives used? (water only)	Yes
11	Were pH ranges acceptable? (voa's excluded)	Yes
12	Were VOA samples free of headspace (less than 6mm)?	Yes

Microbac Laboratories ● Ohio Valley Division 158 Starlite Drive, Marietta, OH 45750 ● T: (740)373-4071 F: (740)373-4835 www.microbac.com

L19040448 / Revision: 0 / 22 total pages

Generated: 04/15/2019 12:38

Lab Report #: L19040448 Lab Project #: 2941.115

Project Name: Warrendale-NY cert

Lab Contact:

Samples Received											
Client ID	Laboratory ID	Date Collected	Date Received								
9041758-01	L19040448-01	04/04/2019 07:30	04/05/2019 12:02								
9041758-02	L19040448-02	04/04/2019 14:30	04/05/2019 12:02								

L19040448 / Revision: 0 / 22 total pages

Page 10 of 29 Generated: 04/15/2019 12:38

Login Number: L19040448 Department: Semivolatiles Analyst: Sarah Bogolin

METHOD

Preparation 3510C/1311

Analysis 40 CFR Part 136 625.1

HOLDING TIMES

Sample Preparation: All holding times were met.

Sample Analysis: All holding times were met.

PREPARATION

Sample preparation proceeded normally.

CALIBRATION

Initial Calibration: For all compounds that yielded a %RSD greater than 15%, linear or higher order equations were applied. All acceptance criteria were met.

Alternate Source Standards: Hexachlorocyclopentadiene exceeded the limit for percent difference, biased high. The associated sample was non-detect for the high outlier.

Sample #	Analyte	Date	Result	Lower	Upper	Туре
WG702171-11	Hexachlorocyclopentadiene	2019-04-04 14:37:00	0.000		40	RPD

Continuing Calibration and Tune: In the CCV 2,4-dinitrophenol exceeded the limit for percent difference, biased high. The associated sample was non-detect for the high outlier.

BATCH QA/QC

Method Blank: All acceptance criteria were met.

Laboratory Control Sample: In the LCS Diphenylamine/n-Nitrosodiphenylamine exceeded the percent recovery limit, biased high; in the LCSdup percent recovery was within acceptable limits. The associated sample was non-detect for the high outlier.

Page 1 of 3

Generated at Apr 11, 2019 16:38

Sample #	Analyte	Date	Result	Lower	Upper	Туре
WG702775-02	Diphenylamine/n- Nitrosodiphenylamine	2019-04-10 12:31:00	112	40	110	Recovery

Matrix Spikes: There were no MS/MSD results associated with this sample delivery group, due to insufficient volume of sample. The laboratory included an LCS and LCS duplicate in the preparation batch in lieu of the NELAC prescribed MS/MSD. Microbac recommends site specific MS/MSD samples to avoid possible data qualification.

SAMPLES

Samples: Sample 01, was run at a 2X dilution due to a foamy sample matrix.

Internal Standards: All acceptance criteria were met.

Surrogates: All acceptance criteria were met.

Manual Integration Reason Codes

Reason #1: Data System Fails to Select Correct Peak In some cases the chromatography system selects and integrates the 'wrong peak'. In this case the analyst must correct the selection and force the system to integrate the proper peak. Other times the system may miss the peakcompletely.

Reason #2: Data System Splits the Peak Incorrectly or Integrates a False Peak as a Rider Peak This phenomena is common at low concentrations where the signal:noise ratio is low. A single compound (peak) is incorrectly split into multiple peaks or integrated as a main peak with one or more rider peaks resulting in low areacounts for the target compound.

Reason #3: Improperly Integrated Isomers and/or coeluting compounds. This system often fails to distinguish coeluting compounds and or isomers. The integration areas and concentrations are wrong, and they must be corrected by manual integration. Prime examples are benzo(k)fluoranthene andbenzo(b)fluoranthene which are often unresolved and integrated improperly when both are present at low concentrations in standards or samples.

Reason #4: System Establishes Incorrect Baseline There are numerous situations in chromatography where the system establishes the baseline incorrectly. Some baseline errors will be obvious to the analyst and should be corrected via manual procedures.

Reason #5: Miscellaneous Other situations involving integration errors may require in-depth review and technical judgment. These cases should be brought to the attention of the laboratory management. If the form of manual integration is not clearly covered by these four cases, then review and approval by the Managing Director or the QAO will be required.

I certify that this data package is in compliance with the terms and conditions agreed to by the client and Microbac Laboratories Inc., both technically and for completeness, except for the conditions noted above. Release of the data contained in this hard copy data package has been authorized by the Laboratory Manager or designated person, as verified by the following signature.

Narrative ID: 148161

Approved By: Leslie Bucina

Page 2 of 3

Generated at Apr 11, 2019 16:38

Page 3 of 3

Generated at Apr 11, 2019 16:38

L19040448 / Revision: 0 / 22 total pages

Lab Project #: L19040448 **Lab Project #:** 2941.115

Project Name: Warrendale-NY cert

Lab Contact:

Certificate of Analysis

Sample #: L19040448-01 PrePrep Method: N/A Instrument: HPMS12

 Client ID:
 9041758-01
 Prep Method:
 3510C
 Prep Date:
 04/09/2019 15:00

 Matrix:
 Water 2
 Analytical Method:
 625.1
 Cal Date:
 04/04/2019 13:52

 Workgroup #:
 WG702919
 Analyst:
 SCB
 Run Date:
 04/10/2019 19:28

Sample Tag: DL01 Units: ug/L

Analyte	CAS#	Result	Qual	RL	MDL
n-Hexadecanoic acid		15.7	TIC	0.000	0.000
Octadecanoic acid		10.1	TIC	0.000	0.000
Tetratetracontane		23.3	TIC	0.000	0.000
Heptacosane		34.0	TIC	0.000	0.000
Tetratetracontane		44.2	TIC	0.000	0.000
Tetratetracontane		42.9	TIC	0.000	0.000
Tetratriacontane		32.3	TIC	0.000	0.000
Heptacosane		16.5	TIC	0.000	0.000
TIC Library Search Compound					

Sample #: L19040448-01 PrePrep Method: N/A Instrument: HPMS12

 Client ID:
 9041758-01
 Prep Method:
 3510C
 Prep Date:
 04/09/2019 15:00

 Matrix:
 Water 2
 Analytical Method:
 625.1
 Cal Date:
 04/04/2019 13:52

 Workgroup #:
 WG702919
 Analyst:
 SCB
 Run Date:
 04/10/2019 19:28

Sample Tag: DL01 Units: ug/L

Analyte	CAS#	Result	Qual	RL	MDL
1,2,4-Trichlorobenzene	120-82-1		U	10.2	5.10
1,2-Dichlorobenzene	95-50-1		U	10.2	5.10
1,3-Dichlorobenzene	541-73-1		U	10.2	5.10
1,4-Dichlorobenzene	106-46-7		U	10.2	5.10
2,4,6-Trichlorophenol	88-06-2		U	10.2	5.10
2,4-Dichlorophenol	120-83-2		U	10.2	5.10
2,4-Dimethylphenol	105-67-9		U	10.2	5.10
2,4-Dinitrophenol	51-28-5		U	51.0	25.5
2,4-Dinitrotoluene	121-14-2		U	10.2	5.10
2,6-Dinitrotoluene	606-20-2		U	10.2	5.10
2-Chloronaphthalene	91-58-7		U	10.2	5.10
2-Chlorophenol	95-57-8		U	10.2	5.10
2-Methyl-4,6-dinitrophenol	534-52-1		U	51.0	25.5
2-Nitrophenol	88-75-5		U	10.2	5.10
3,3'-Dichlorobenzidine	91-94-1		U	20.4	5.10

Page 1 of 6 Generated at Apr 15, 2019 12:35

L19040448 / Revision: 0 / 22 total pages

Generated: 04/15/2019 12:38

Lab Report #:L19040448Lab Project #:2941.115Project Name:Warrendale-NY cert

Lab Contact:

Certificate of Analysis

	Certificate of Analysis								
Analyte	CAS#	Result	Qual	RL	MDL				
4-Bromophenyl phenyl ether	101-55-3		U	10.2	5.10				
4-Chloro-3-methylphenol	59-50-7		U	10.2	5.10				
4-Chlorophenyl phenyl ether	7005-72-3		U	10.2	5.10				
4-Nitrophenol	100-02-7		U	51.0	25.5				
Acenaphthene	83-32-9		U	10.2	5.10				
Acenaphthylene	208-96-8		U	10.2	5.10				
Anthracene	120-12-7		U	10.2	5.10				
Benzidine	92-87-5		U	51.0	25.5				
Benzo(a)anthracene	56-55-3		U	10.2	5.10				
Benzo(a)pyrene	50-32-8		U	10.2	5.10				
Benzo(b)fluoranthene	205-99-2		U	10.2	5.10				
Benzo(g,h,i)Perylene	191-24-2		U	10.2	5.10				
Benzo(k)fluoranthene	207-08-9		U	10.2	5.10				
Bis(2-Chloroethoxy)Methane	111-91-1		U	10.2	5.10				
Bis(2-Chloroethyl)ether	111-44-4		U	10.2	5.10				
bis(2-Chloroisopropyl)ether	108-60-1		U	10.2	5.10				
bis(2-Ethylhexyl)phthalate	117-81-7		U	10.2	5.10				
Butyl benzyl phthalate	85-68-7		U	10.2	5.10				
Chrysene	218-01-9		U	10.2	5.10				
Di-N-Butylphthalate	84-74-2		U	10.2	5.10				
Di-n-octyl phthalate	117-84-0		U	10.2	5.10				
Dibenzo(a,h)Anthracene	53-70-3		U	10.2	5.10				
Diethyl phthalate	84-66-2		U	10.2	5.10				
Dimethyl phthalate	131-11-3		U	10.2	5.10				
Fluoranthene	206-44-0		U	10.2	5.10				
Fluorene	86-73-7		U	10.2	5.10				
Hexachlorobenzene	118-74-1		U	10.2	5.10				
Hexachlorobutadiene	87-68-3		U	10.2	5.10				
Hexachlorocyclopentadiene	77-47-4		U	10.2	5.10				
Hexachloroethane	67-72-1		U	10.2	5.10				
Indeno(1,2,3-cd)pyrene	193-39-5		U	10.2	5.10				
Isophorone	78-59-1		U	10.2	5.10				
N-Nitrosodi-n-propylamine	621-64-7		U	10.2	5.10				
N-Nitrosodimethylamine	62-75-9		U	10.2	5.10				
Diphenylamine/n-Nitrosodiphenylamine	86-30-6		U	10.2	5.10				
Naphthalene	91-20-3		U	10.2	5.10				
Nitrobenzene	98-95-3		U	10.2	5.10				
Pentachlorophenol	87-86-5		U	51.0	25.5				
Phenanthrene	85-01-8		U	10.2	5.10				

Page 2 of 6 Generated at Apr 15, 2019 12:35

Lab Project #: 2941.115

Project Name: Warrendale-NY cert

Lab Contact:

Certificate of Analysis

Analyte	CAS#	Result	Qual	RL	MDL	
Phenol	108-95-2		U	10.2	5.10	
Pyrene	129-00-0		U	10.2	5.10	

Surrogate	Recovery	Lower Limit	Upper Limit	Q
2,4,6-Tribromophenol	116	22	142	
2-Fluorobiphenyl	102	43	116	
2-Fluorophenol	58.2	19	119	
Nitrobenzene-d5	93.2	35	114	
p-Terphenyl-d14	65.7	10	130	
Phenol-D5	50.1	10	94	

U Not detected at or above adjusted sample detection limit

Sample #: L19040448-01

Client ID: 9041758-01

Matrix: Water 2

Workgroup #: WG702926
Collect Date: 04/04/2019 07:30

Sample Tag: 01

PrePrep Method: N/A Ins

Prep Method: 3510C
Analytical Method: 608.3

Analyst: ECL

Dilution: 1
Units: ug/L

Instrument: HP15

Prep Date: 04/09/2019 10:45
Cal Date: 04/10/2019 21:36

Run Date: 04/11/2019 08:14

File ID: 15G72018.R

Analyte	CAS#	Result	Qual	RL	MDL
4,4'-DDD	72-54-8		U	0.0505	0.0101
4,4'-DDE	72-55-9		U	0.0505	0.0101
4,4'-DDT	50-29-3		U	0.0505	0.0101
Aldrin	309-00-2		U	0.0505	0.0101
alpha-BHC	319-84-6		U	0.0505	0.0101
alpha-Chlordane	5103-71-9		U	0.0505	0.0101
Aroclor-1016	12674-11-2		U	0.505	0.253
Aroclor-1221	11104-28-2		U	0.505	0.253
Aroclor-1232	11141-16-5		U	0.505	0.253
Aroclor-1242	53469-21-9		U	0.505	0.253
Aroclor-1248	12672-29-6		U	0.505	0.253
Aroclor-1254	11097-69-1		U	0.505	0.253
Aroclor-1260	11096-82-5		U	0.505	0.253
beta-BHC	319-85-7		U	0.0505	0.0101
Chlordane	57-74-9		U	0.505	0.253
delta-BHC	319-86-8		U	0.0505	0.0101
Dieldrin	60-57-1		U	0.0505	0.0101
Endosulfan I	959-98-8		U	0.0505	0.0101
Endosulfan II	33213-65-9		U	0.0505	0.0101
Endosulfan sulfate	1031-07-8		U	0.0505	0.0101
Endrin	72-20-8		U	0.0505	0.0101

Page 3 of 6 Generated at Apr 15, 2019 12:35

Lab Project #: L19040448 **Lab Project #:** 2941.115

Project Name: Warrendale-NY cert

Lab Contact:

Certificate of Analysis

Analyte	CAS#	Result	Qual	RL	MDL
Endrin Aldehyde	7421-93-4		U	0.0505	0.0101
Endrin Ketone	53494-70-5		U	0.0505	0.0101
gamma-BHC (Lindane)	58-89-9		U	0.0505	0.0101
gamma-Chlordane	5103-74-2		U	0.0505	0.0101
Heptachlor	76-44-8		U	0.0505	0.0101
Heptachlor epoxide	1024-57-3		U	0.0505	0.0101
Methoxychlor	72-43-5		U	0.0505	0.0101
Toxaphene	8001-35-2		U	1.01	0.303

Surrogate	Recovery	Lower Limit	Upper Limit	Q	
2,4,5,6-Tetrachloro-m-xylene	52.6	20	180		
Decachlorobiphenyl	35.0	20	140		

U Not detected at or above adjusted sample detection limit

 Sample #:
 L19040448-01
 PrePrep Method:
 N/A
 Instrument:
 UV-2600

 Client ID:
 9041758-01
 Prep Method:
 SM4500-CN-C,E-1999
 Prep Date:
 N/A

 Matrix:
 Water 2
 Analytical Method:
 SM4500-CN-C,E-1999
 Cal Date:
 02/28/2019 14:49

 Workgroup #:
 WG702869
 Analyst:
 APH
 Run Date:
 04/11/2019 10:15

 Collect Date:
 04/04/2019 07:30
 Dilution:
 1
 File ID:
 00.1904111015-07

Sample Tag: Total Units: mg/L

	Analyte	CAS#	Result	Qual	RL	MDL
Cyanide		57-12-5		U	0.0100	0.00500
U	Not detected at or above adjusted sample dete	ction limit				

 Sample #:
 L19040448-01
 PrePrep Method:
 N/A
 Instrument:
 UV-2600

 Client ID:
 9041758-01
 Prep Method:
 420.1
 Prep Date:
 N/A

 Matrix:
 Water 2
 Analytical Method:
 420.1
 Cal Date:
 03/05/2019 11:45

 Workgroup #:
 WG702545
 Analyst:
 TB
 Run Date:
 04/09/2019 10:00

 Collect Date:
 04/04/2019 07:30
 Dilution:
 1.1
 File ID:
 00.1904091000-21

Sample Tag: Units: mg/L

	Analyte	CAS#	Result	Qual	RL	MDL
Phenolics, Tota	l	64743-03-9		U	0.00550	0.00330
U	Not detected at or above adjusted sample detected	ction limit				

Page 4 of 6 Generated at Apr 15, 2019 12:35

L19040448 / Revision: 0 / 22 total pages

Generated: 04/15/2019 12:38

Lab Project #: L19040448 **Lab Project #:** 2941.115

Project Name: Warrendale-NY cert

Lab Contact:

Certificate of Analysis

 Sample #:
 L19040448-01
 PrePrep Method:
 N/A
 Instrument:
 BURET

 Client ID:
 9041758-01
 Prep Method:
 SM4500-S-(-2)-F-2000
 Prep Date:
 N/A

Matrix: Water 2 Analytical Method: SM4500-S-(-2)-F-2000 Cal Date:

 Workgroup #:
 WG702764
 Analyst:
 APH
 Run Date:
 04/09/2019 14:51

 Collect Date:
 04/04/2019 07:30
 Dilution:
 1
 File ID:
 ET.1904091451-04

Sample Tag: Units: mg/L

	Analyte	CAS#	Result	Qual	RL	MDL
Sulfide		18496-25-8		U	1.00	1.00
U	Not detected at or above adjusted sample dete	ction limit				

 Sample #:
 L19040448-02
 PrePrep Method:
 N/A
 Instrument:
 HPMS17

 Client ID:
 9041758-02
 Prep Method:
 5030B/5030C/5035A
 Prep Date:
 N/A

 Matrix:
 Water 2
 Analytical Method:
 624.1
 Cal Date:
 02/05/2019 19:23

 Workgroup #:
 WG702398
 Analyst:
 JDS
 Run Date:
 04/05/2019 21:33

 Collect Date:
 04/04/2019 14:30
 Dilution:
 1
 File ID:
 17M0285065

Sample Tag: 01 Units: ug/L

Analyte	CAS#	Result	Qual	RL	MDL
1,1,1-Trichloroethane	71-55-6		U	5.00	0.250
1,1,2,2-Tetrachloroethane	79-34-5		U	5.00	0.250
1,1,2-Trichloroethane	79-00-5		U	5.00	0.250
1,1-Dichloroethane	75-34-3		U	5.00	0.250
1,1-Dichloroethene	75-35-4		U	5.00	0.500
1,2-Dichlorobenzene	95-50-1		U	5.00	0.250
1,2-Dichloroethane	107-06-2		U	5.00	0.250
1,2-Dichloropropane	78-87-5		U	5.00	0.250
1,3-Dichlorobenzene	541-73-1		U	5.00	0.250
1,4-Dichlorobenzene	106-46-7		U	5.00	0.250
2-Chloroethyl vinyl ether	110-75-8		U	10.0	5.00
Acrolein	107-02-8		U	10.0	2.50
Acrylonitrile	107-13-1		U	10.0	2.50
Benzene	71-43-2		U	5.00	0.250
Bromodichloromethane	75-27-4		U	5.00	0.250
Bromoform	75-25-2		U	5.00	0.500
Bromomethane	74-83-9		U	10.0	0.500
Carbon tetrachloride	56-23-5		U	5.00	0.250
Chlorobenzene	108-90-7		U	5.00	0.250
Chloroethane	75-00-3		U	10.0	0.500
Chloroform	67-66-3		U	5.00	0.250
Chloromethane	74-87-3		U	10.0	0.500

Page 5 of 6 Generated at Apr 15, 2019 12:35

L19040448 / Revision: 0 / 22 total pages

Generated: 04/15/2019 12:38

Lab Project #: 2941.115

Project Name: Warrendale-NY cert

Lab Contact:

Certificate of Analysis

Analyte	CAS#	Result	Qual	RL	MDL
cis-1,3-Dichloropropene	10061-01-5		U	5.00	0.250
Dibromochloromethane	124-48-1		U	5.00	0.250
Ethyl benzene	100-41-4		U	5.00	0.250
Methylene chloride	75-09-2		U	5.00	0.250
Tetrachloroethene	127-18-4		U	5.00	0.250
Toluene	108-88-3		U	5.00	0.250
trans-1,2-Dichloroethene	156-60-5		U	5.00	0.250
trans-1,3-Dichloropropene	10061-02-6		U	5.00	0.500
Trichloroethene	79-01-6		U	5.00	0.250
Trichlorofluoromethane	75-69-4		U	10.0	0.250
Vinyl chloride	75-01-4		U	10.0	0.500

Surrogate	Recovery	Lower Limit	Upper Limit	Q
1,2-Dichloroethane-d4	94.6	63	140	
p-Bromofluorobenzene	89.5	60	140	
Toluene-d8	95.7	60	140	

U Not detected at or above adjusted sample detection limit

 Sample #:
 L19040448-02
 PrePrep Method:
 N/A
 Instrument:
 HPMS17

 Client ID:
 9041758-02
 Prep Method:
 5030B/5030C/5035A
 Prep Date:
 N/A

 Matrix:
 Water 2
 Analytical Method:
 624.1
 Cal Date:
 02/05/2019 19:23

 Workgroup #:
 WG702398
 Analyst:
 JDS
 Run Date:
 04/05/2019 21:33

Sample Tag: 01 Units: ppm

Page 6 of 6 Generated at Apr 15, 2019 12:35

Page 12

Page 19 of 29

Generated: 04/15/2019 12:38

Lab Report #:L19040448Lab Project #:2941.115Project Name:Warrendale-NY cert

Lab Contact:

Certificate of Analysis

Page 1 of 1

Generated at Apr 15, 2019 12:35

Page 13

Microbac Laboratories Inc. Ohio Valley Division Analyst List April 15, 2019

001 - BIO-CHEM TESTING WYDED 220	002 - REIC Consultants, Inc. WVDEP 060
003 - Sturm Environmental	004 MICRODAC ITIIDDONGII
005 - ES LABORATORIES 007 - ALS LABORATORIES	008 - BENCHMARK LABORATORIES
010 MICROPAC CUICACOLAND	AC AMBED D CARMICHAEL
007 - ALS LABORATORIES 010 - MICROBAC CHICAGOLAND ACG - ALEX C. GEDON	AC - AMBER R. CARMICHAEL
ACG - ALEX C. GEDON ADG - APRIL D. GREENE	ADU ALICIA D. WALKED
ALS - ADRIANE L. STEED	
	ATK - ALEX T. KLINTWORTH
AWE - ANDREW W. ESSIG	AZH - AFIER HOURS
BLG - BRENDA L. GREENWALT CAS - Craig A. Smith CLC - CHRYS L. CRAWFORD CPD - CHAD P. DAVIS	BRG - BRENDA R. GREGORY
CAS - Craig A. Smith	CEB - CHAD E. BARNES
CLC - CHRYS L. CRAWFORD	COR - Corporate II
CPD - CHAD P. DAVIS	CSH - CHRIS S. HILL
DIH - DEANNA I. HESSON	
DLP - DOROTHY L. PAYNE	
ECL - ERIC C. LAWSON	EEA - EMILY E. ALLEN
EGS - EMILY G. SHILLING	EPT - ETHAN P. TIDD
ERP - ERIN R. PORTER JDH - JUSTIN D. HESSON	JAO - Jeff A. Ogle
JDH - JUSTIN D. HESSON	JDS - JARED D. SMITH
JKP - JACQUELINE K. PARSONS JRH - Justin R. Hill	JLR - JIMMY L. RUSH
JRH - Justin R. Hill	JST - JOSHUA S. TAYLOR
JTP - JOSHUA T. PEMBERTON	
JYH - JI Y. HU	KAK - KATHY A. KIRBY
KEB - KATIE E. BARNES	KEH - Katelyn E. Hoover
KFR - KARISSA F. REYNOLDS	KHR - KIM H. RHODES
KKB - KERRI K. BUCK	KMC - KAYLA M. CHEVALIER
KMG - KALEN M. GANDOR	KRA - KATHY R. ALBERTSON
KKB - KERRI K. BUCK KMG - KALEN M. GANDOR KRP - KATHY R. PARSONS	KWD - Kurtis W. Decker
LLS - LARRY L. STEPHENS	LSB - LESLIE S. BUCINA
LSJ - LAURA S. JONES	MAP - MARLA A. PORTER
MES - MARY E. SCHILLING	MMB - MAREN M. BEERY
MRT - MICHELLE R. TAYLOR	
PIT - MICROBAC WARRENDALE	RLB - BOB BUCHANAN
PIT - MICROBAC WARRENDALE RNM - Rene N. Miller SAV - SARAH A. VANDENBERG	RNP - RICK N. PETTY
SAV - SARAH A. VANDENBERG	SCB - SARAH C. BOGOLIN
SLM - STEPHANIE L. MOSSBURG	TB - TODD BOYLE
TMM - TAMMY M. MORRIS	VC - VICKI COLLIER
XXX - UNAVAILABLE OR SUBCONTRACT	

Microbac Laboratories Inc. List of Valid Qualifiers April 15, 2019

Qualkey: STD_ND=U

Qualifier	Description
*	
	Surrogate or spike compound out of range
+	Correlation coefficient for the MSA is less than 0.995
<	Result is less than the associated numerical value.
>	Result is greater than the associated numerical value.
A	See the report narrative
В	Analyte present in method blank
B1	Target analyte detected in method blank at or above the method reporting limit
B3	Target analyte detected in calibration blank at or above the method reporting limit
B4	The BOD unseeded dilution water blank exceeded 0.2 mg/L
C	Confirmed by GC/MS
CG CT1	Confluent growth
CT1 DL	The cooler temperature at receipt exceeded regulatory guidance.
E E	Surrogate or spike compound was diluted out
EDL	Estimated concentration due to sample matrix interference
EMPC	Elevated sample reporting limits, presence of non-target analytes Estimated Maximum Possible Concentration
F, S	Estimated maximum Possible Concentration Estimated result below quantitation limit; method of standard additions(MSA)
FL	Free Liquid
FP1	Did not ignite.
H1	Sample analysis performed past holding time.
ï	Semiguantitative result (out of instrument calibration range)
j	The analyte was positively identified, but the quantitation was below the RL
J,B	Analyte detected in both the method blank and sample above the MDL.
J,CT1	Estimated. The cooler temperature at receipt exceeded the regulatory guidance.
J,H1	The analyte was positively identified, but the quantitation was below the RL. Sample analysis performed past holding time
J,P	Estimate: columns don't agree to within 40%
J,S	Estimated concentration; analyzed by method of standard addition (MSA)
Ĺ	Sample reporting limits elevated due to matrix interference
L1	The associated blank spike (LCS) recovery was above the laboratory acceptance limits.
L2	The associated blank spike (LCS) recovery was below the laboratory acceptance limits.
M	Matrix effect; the concentration is an estimate due to matrix effect.
N	Tentatively identified compound(TIC)
NA	Not applicable
ND, S	Not detected; analyzed by method of standard addition (MSA)
ND,L	Not detected; sample reporting limit (RL) elevated due to interference
NF	Not found by library search
NFL	No free liquid
NI	Non-ignitable
NR	Analyte is not required to be analyzed
NS	Not spiked
P	Concentrations >40% difference between the two GC columns
Q	One or more quality control criteria failed. See narrative.
QNS	Quantity of sample not sufficient to perform analysis
RA	Reanalysis confirms reported results
RE	Reanalysis confirms sample matrix interference
S SMI	Analyzed by method of standard addition (MSA)
SP	Sample matrix interference on surrogate
TIC	Reported results are for spike compounds only Library Search Compound
TNTC	Too numerous to count
U	Not detected at or above adjusted sample detection limit
U,CT1	Not detected at or above adjusted sample detection limit Not detected. The cooler temperature at receipt exceeded regulatory guidance.
U,H1	Not detected. The cooler temperature at receipt exceeded regulatory guidance. Not detected; sample analysis performed past holding time.
UJ	Undetected; the MDL and RL are estimated due to quality control discrepancies.
W	Post-digestion spike for furnace AA out of control limits
X	Exceeds regulatory limit
x, s	Exceeds regulatory limit; method of standard additions (MSA)
Y	This analyte is not on the laboratory's current scope of accreditation.
Z	Cannot be resolved from isomer - see below

Microbac Laboratories Inc., Pittsburgh Division

SUBCONTRACT ORDER 9041758

Phone: 7

SENDING LABORATORY:

Microbac Laboratories Inc., Pittsburgh Division

100 Marshall Drive Warrendale, PA 15086 Phone: 724-772-0610

Project Manager: Tina Sharer

RECEIVING LABORATORY:

Microba === Microbac OVD 158 STA

Received: 04/05/2019 12:02

MARIET By: BRENDA GREGORY 221000136467

Proiect Info:

Project Name:

Priority Pollutant - Peter Coo Project Type: Project No:

Peter Cooper for Priority Poll Project Location:

Brenda Stregory Gowanda, Village of WWTP

ENV-WasteWater

New York

Report TAT: 7

Due: 04/15/2019 00:00

Sample ID: 9041758-01

Matrix: Aqueous

Sampled: 04/04/2019 07:30

Analysis

Method

Client:

Analysis Due

Expires

			Expires		
Acid Extractables by EPA 625	EPA 625		04/15/2019 00:00	04/11/2019 07:	30
2,4,6-Trichlorophenol	0.01 mg/	· ·		0.01	mg/L
2,4-Dimethylphenol	0.01 mg/	, ,	nol	0.05	mg/L
2-Chlorophenol	0.01 mg/	• •	initrophenol	0.05	mg/L
2-Methylphenol (o-Cresol)	0.01 mg/	L 2-Nitrophenol		0.01	mg/L
4-Chloro-3-Methylphenol	0.01 mg/	L 4-Methylpheno	l (p-Cresol)	0.01	mg/L
4-Nitrophenol	0.01 mg/	•	enol	50	mg/L
Phenol	10 mg/	L			
Base Neutral Extractables by EPA 6	25 EPA 625	(04/15/2019 00:00	04/11/2019 07:	30
1,2,4-Trichlorobenzene	0.001 ppb	1,2-Diphenylhy		0.01	
2,4-Dinitrotoluene (2,4-DNT)	0.01 ppb	2,6-Dinitrotolue	ene (2,6-DNT)	0.01	ppb
2-Chloronaphthalene	0.01 ppb	3,3'-Dichlorobe	3,3'-Dichlorobenzidine		ppb
4-Bromophenyl Phenyl Ether	10 ppb	4-Chloropheny	4-Chlorophenyl phenylether		ppb
Acenaphthene	0.01 ppb		Acenaphthylene		ppb
Anthracene	0.01 ppb	Benzidine	Benzidine		ppb
Benzo(a)anthracene	10 ppb	Benzo(a)pyren	Benzo(a)pyrene		ppb
Benzo(b)fluoranthene	10 ppb	Benzo(g,h,i)pe	Benzo(g,h,i)perylene		ppb
Benzo(k)fluoranthene	10 ppb	bis(2-Chloroeth	bis(2-Chloroethoxy)methane		ppb
ois(2-Chloroethyl)ether	10 ppb	bis(2-Chloroisc	propyl)ether		ppb
ois(2-Ethylhexyl)phthalate	10 ppb	Butyl benzyl ph	thalate		ppb
Chrysene	10 ppb	Dibenzo(a,h)ar			ppb
Diethyl phthalate	10 ppb	Dimethyl phtha	late		ppb
Di-n-butyl phthalate	10 ppb	Di-n-octyl phtha		10	
Fluoranthene	10 ppb	Fluorene		10	
Hexachlorobenzene	10 ppb	Hexachlorobuta	adiene	0.0005	• •
Hexachlorocyclopentadiene	10 ppb	Hexachloroetha	ane	10	
indeno(1,2,3-cd)pyrene	10 ppb	Isophorone		10	ppb
Naphthalene	0.0005 ppb	Nitrobenzene		10	ppb
n-Nitroso-Dimethylamine	10 ppb	n-Nitrosodi-n-p	ropylamine	10	ppb
n-Nitrosodiphenylamine	10 ppb	Phenanthrene	• •		ppb
Pyrene	10 ppb			,,,	rr-
Cyanide, Total by SM 4500-CN C/E Cyanide	SM 4500 (4/15/2019 00:00	04/18/2019 07:	30
Five Peaks On BNA Scan Five Peaks on scan	EPA 625 mg/l		4/15/2019 00:00	04/07/2019 07:	30
Five Peaks On VOC Scan Five Peaks on scan	EPA 624	C	4/15/2019 00:00	04/05/2019 07:	30

Page 1 of 3

Microbac Laboratories Inc., Pittsburgh Division

SUBCONTRACT ORDER 9041758

Sample ID: 9041758-01

Sulfide as S

Matrix: Aqueous

Sampled: 04/04/2019 07:30

Analysis	Method	Analysis Due	Expires
Mercury EPA 245.1 Mercury	EPA 245.1 0.0002 mg/L	04/15/2019 00:00	05/02/2019 07:30
Pesticides/PCBs by EPA 608	EPA 608	04/15/2019 00:00	04/11/2019 07:30
4,4'-DDD	0.04 μg/L	4,4'-DDE	0.04 µg/L
4,4'-DDT	0.04 µg/L	Aldrin	0.2 μg/L
alpha-BHC (alpha-Hexachlorocyclohexane)	0.2 μg/L	Arochlor-1016 (PCB-1016)	0.05 μg/L
Arochlor-1221 (PCB-1221)	0.05 μg/L	Arochlor-1232 (PCB-1232)	0.05 μg/L
Arochlor-1242 (PCB-1242)	0.05 μg/L	Arochlor-1248 (PCB-1248)	0.05 μg/L
Arochlor-1254 (PCB-1254)	0.05 µg/L	Arochlor-1260 (PCB-1260)	0.05 μg/L
beta-BHC (beta-Hexachlorocyclohexane)	0.004 µg/L	Chlordane (tech.)	0.4 μg/L
Chlorine - Total Residual	0.1 µg/L	delta-BHC	0.04 μg/L
Dieldrin	0.005 µg/L	Endosulfan I	0.04 µg/L
Endosulfan II	0.04 µg/L	Endosulfan Sulfate	0.04 µg/L
Endrin	0.04 µg/L	Endrin Aldehyde	0.04 μg/L
gamma-BHC (Lindane, gamma-Hexachlorocyclol	0.04 µg/L	Heptachlor	0.04 µg/L
Heptachlor Epoxide	0.04 µg/L	Toxaphene (Chlorinated camphene)	0.8 µg/L
Phenolics, Total by EPA 420.1 Phenols - 4AAP	EPA 420.1 (1 9 0.005 mg/L	978) 04/15/2019 00:00	05/02/2019 07:30
Sulfide by SM4500-S2 F	SM 4500 S2	F-00 04/15/2019 00:00	04/11/2019 07:30

5 mg/L

Microbac Laboratories Inc., Pittsburgh Division

SUBCONTRACT ORDER 9041758

Sample ID: 9041758-02

Matrix: Aqueous

Sampled: 04/03/2019 14:30

Analysis Method **Analysis Due Expires**

Volatile Organics by EPA 624	EPA 624	04/15/2019 00:00 04/17	7/2019 14:30	
1,1,1,2-Tetrachloroethane	0.00031 mg/L	1,1,1-Trichloroethane	0.00039 mg/L	
1,1,2,2-Tetrachloroethane	0.00076 mg/L	1,1,2-Trichloroethane	0.00061 mg/L	
1,1-Dichloroethane	0.00043 mg/L	1,1-Dichloroethene (1,1-Dichloroethylene)	0.00047 mg/L	
1,1-Dichloropropene (1,1-Dichloropropylene)	0.0004 mg/L	1,2,3-Trichlorobenzene	0.00064 mg/L	
1,2,3-Trichloropropane	0.00072 mg/L	1,2,4-Trichlorobenzene	0.001 mg/L	
1,2,4-Trimethylbenzene	0.00039 mg/L	1,2-Dibromo-3-Chloropropane (DBCP)	0.00081 mg/L	
1,2-Dibromoethane (Ethylene dibromide) (EDB)	0.00042 mg/L	1,2-Dichlorobenzene	0.00043 mg/L	
1,2-Dichloroethane	0.00041 mg/L	1,2-Dichloropropane	0.00021 mg/L	
1,3,5-Trimethylbenzene	0.00019 mg/L	1,3-Dichlorobenzene	0.005 mg/L	
1,3-Dichloropropane	0.00009 mg/L	1,4-Dichlorobenzene	0.0006 mg/L	
1,4-Dioxane	`0 mg/L	1-Bromopropane	0.005 mg/L	
2,2-Dichloropropane	0.00057 mg/L	2-Butanone (MEK)	0.005 mg/L	
2-Chloroethyl vinyl ether	0.005 mg/L	2-Chlorotoluene	0.00066 mg/L	
2-Hexanone	0.005 mg/L	3-Chloro-1-Propene	0 mg/L	
4-Chlorotoluene	0.00045 mg/L	4-Isopropyltoluene (p-Isopropyltoluene)	0.00016 mg/L	
4-Methyl-2-pentanone (MIBK)	0.005 mg/L	Acetone	0.01 mg/L	
Acrolein	0.05 mg/L	Acrylonitrile	0.05 mg/L	
Benzene	0.005 mg/L	Bromobenzene	0.005 mg/L	
Bromochloromethane	0.005 mg/L	Bromodichloromethane	0.005 mg/L	
Bromoform	0.005 mg/L	Carbon disulfide	0 mg/L	
Carbon tetrachloride	0.005 mg/L	Chlorobenzene	0.005 mg/L	
Chlorodibromomethane (Dibromochloromethane	0.005 mg/L	Chloroethane (Ethyl Chloride)	0.005 mg/L	
Chloroform	0.005 mg/L	cis-1,2-Dichloroethene	0.005 mg/L	
cis-1,3-Dichloropropene	0.005 mg/L	Dibromomethane (Methylene Bromide)	0.005 mg/L	
Dichlorodifluoromethane (Freon-12)	0.005 mg/L	Ethylbenzene	5 mg/L	
Hexachlorobutadiene	0.005 mg/L	lodomethane (Methyl iodide)	0 mg/L	
Isopropylbenzene (Cumene)	0.005 mg/L	m,p-Xylene	0 mg/L	
m+p-xylene	0.01 mg/L	Methyl bromide (Bromomethane)	0.005 mg/L	
Methyl chloride (Chloromethane)	0.005 mg/L	Methyl iso-butyl ketone (MIBK)	0 mg/L	
Methyl tert-butyl ether (MTBE)	0.005 mg/L	Methylene chloride (Dichloromethane)	0 mg/L	
Naphthalene	0.005 mg/L	n-Butyl Benzene	0.005 mg/L	
n-Propylbenzene	0.005 mg/L	o-Xylene	0.005 mg/L	
p-Isopropyltoluene	0 mg/L	p-Xylene	0 mg/L	
sec-Butylbenzene	0.005 mg/L	Styrene	0.005 mg/L	
tert-Butylbenzene	0.005 mg/L	Tetrachloroethylene (Perchloroethylene)	0.25 mg/L	
Toluene	0.005 mg/L	trans-1,2-Dichloroethene	0.0005 mg/L	
trans-1,3-Dichloropropene	0.005 mg/L	trans-1,4-Dichloro-2-butene	0.005 mg/L	
Trichloroethene (Trichloroethylene)	0.001 mg/L	Trichlorofluoromethane (Freon 11)	0.005 mg/L	
Vinyl acetate	0 mg/L	Vinyl chloride	o.ooo mg/L	

Vachel W/	4/4/19		
Released By	`Date	Received By	Date
Released By	Date	Received By	Date

Page 3 of 3

COOLER TEMP >6° C LOG

	Bottle 1	Bottle 2	Bottle 3	Bottle 4	Bottle 5	Bottle
SAMPLE ID	°C	°C	°C	°C	°C	٥С
	_		· · · · · · · · · · · · · · · · · · ·			Y
sna				19		
			1.61			
		-				
					· ·	
		The same				
/						

	5	9,24	(0'5
pH Lot #	I	047	

SAMPLE ID	Bottle 1	Bottle 2	Bottle 3	Bottle 4	Bottle 5	Bottle
				19		
			1.15			
			1			
		120				
		N X				
. //		PRES	ERVATI PTION:	VE		
		FYC	DTION			
		LAC	NONE	7		

Document Control # 1957 Last 10-07-2016

Issued to: Document Master File

NELAP Addendum - January 3, 2019

Non-NELAP LIMS Product and Description

The following is a list of those tests that are not included in the Microbac – OVD NELAP Scope of Accreditation:

Heat of Combustion (BTU)
Total Halide by Bomb Combustion (TX)
Particle Sizing - 200 Mesh (PS200)
Specific Gravity/Density (SPGRAV)
Total Residual Chlorine (CL-TRL)
Total Volatile Solids (all forms) (TVS)
Total Coliform Bacteria (all methods)
Fecal Coliform Bacteria (all methods)
Sulfite (SO3)

SOLID AND HAZARDOUS CHEMICALS

Propionaldehyde (HPLC-UV)

Nitrogen, Ammonia by Method 350.1 Chromium, Hexavalent, Leachable by SM3500 Cr-B 2009 Phenolics, Total by Method 420.1 ASTM D3987-06

NELAP Accreditation by Laboratory SOP

NONPOTABLE WATER

OVD HPLC02/HPLC-UV

Nitroglycerin Acetic acid Butyric acid Lactic acid Propionic acid Pyruvic acid

OVD MSS01/GC-MS

1,4-Phenylenediamine1-Methylnaphthalene

1,4-Dioxane

Atrazine

Benzaldehyde

Biphenyl

Caprolactam

Hexamethylphosphoramide (HMPA)

Pentachlorobenzene

Pentachloroethane

NELAP Accreditation by Laboratory SOP

Page 20

NONPOTABLE WATER

OVD MSV01/GC-MS

1, 1, 2-Trichloro-1,2,2-trifluoroethane

1,3-Butadiene

Cyclohexane

Cyclohexanone

Dimethyl disulfide

Dimethylsulfide

Ethyl-t-butylether (ETBE)

Isoprene

Methylacetate

Methylcyclohexane

T-amylmethylether (TAME)

Tetrahydrofuran (THF)

OVD HPLC07/HPLC-MS-MS

Hexamethylphosphoramide (XMPA-LCMS)

OVD HPLC12/HPLC/UV

Acetate

Formate

OVD RSK01/GC-FID

Acetylene

Propane

OVD K9305/ISE

Fluoroborate

NELAP Accreditation by Laboratory SOP

SOLID AND HAZARDOUS CHEMICALS

OVD MSS0I/GC-MS

1-Methylnaphthalene

Benzaldehyde

Biphenyl

Caprolactam

Pentachloroethane

NELAP Accreditation by Laboratory SOP

L19040448 / Revision: 0 / 22 total pages

SOLID AND HAZARDOUS CHEMICALS

OVD MSV0I/GC-MS

1.3-Butadiene Cyclohexane
Cyclohexanone
Dimethyl disulfide
Dimethylsulfide Ethyl-t-butylether (ETBE) Isoprene Methylacetate Methylcyclohexane n-Hexane

T-amylmethylether (TAME)

Microbac Laboratories Inc., Pittsburgh Division

CERTIFICATE OF ANALYSIS

9094077

Gowanda, Village of WWTP

Project Name: Peter Cooper Semi- Annual

Andrew Carriero 27 East Main Street Gowanda, NY 14070 Project / PO Number: N/A Received: 09/26/2019 Reported: 10/15/2019

Analytical Testing Parameters

Client Sample ID: Peter Cooper Samples

Sample Matrix: Aqueous Collected By: A.Carriero

Lab Sample ID: 9094077-01 Collection Date: 09/26/2019 7:15

Inorganics	Result	RL	Units	Dilution	Note	Prepared	Analyzed	Analyst
EPA 300.0, Rv. 2.1								
Sulfate	234	5.00	mg/L	10		09/27/19 2126	09/27/19 2126	BAD
SM 2540 D-11								
Total Suspended Solids - TSS	6.5	5.0	mg/L	1			09/28/19 1545	KTR
SM 4500 NH3 B/F-11								
Ammonia as N	153	7.50	mg/L	25		09/27/19 1010	09/27/19 1334	BAD
SM 4500 NH3 C/F-11								
Total Kjeldahl Nitrogen - TKN	207	25.0	mg/L	20		10/03/19 0800	10/03/19 1654	BAD
Canaval Chamiatru	Percelt	DI	l luite	Dilution	Nata	Dunnand	Amakanad	Amaluat
General Chemistry	Result	RL	Units	Dilution	Note	Prepared	Analyzed	Analyst
SM 5210 B								
BOD5	14	4	mg/L	1		09/27/19 1252	10/02/19 0857	MKM

Analyses Subcontracted to: Microbac Laboratories Inc., - Marietta, OH

Inorganics	Result	RL	Units	Dilution	Note	Prepared	Analyzed	Analyst
EPA 420.1, Rv 1978 Phenols - 4AAP	<0.0050	0.0050	mg/L	1		10/07/19 0834	10/09/19 1100	ТВ
SM4500-S2 F-2000 Sulfide as S	1.79	1.00	mg/L	1		09/27/19 1341	09/27/19 1352	EPT

Definitions

RL: Reporting Limit

Project Requested Certification(s)

Microbac Laboratories Inc., - Marietta, OH

10861

Microbac Laboratories Inc., Pittsburgh Division 10121

New York State Department of Health

New York State Department of Health

Microbac Laboratories Inc., Pittsburgh Division CERTIFICATE OF ANALYSIS 9094077

Report Comments

Samples were received in proper condition and the reported results conform to applicable accreditation standard unless otherwise noted.

The data and information on this, and other accompanying documents, represents only the sample(s) analyzed. This report is incomplete unless all pages indicated in the footnote are present and an authorized signature is included.

Reviewed and Approved By:

Tina Sharer Administration

Reported: 10/15/2019 09:11

S do 8 age 3 of 3

Warrendale, PA 15086

CHAIN OF CUSTODY

Page 1 of 1

Gowanda, Village of WWTP
PM: Tina Sharer

Microbac Pittsburgh Division 100 Marshall Drive 724.772.0610

72.0610

Client /Company Name: Village of Gowanda Sewer Dept								Name: v Carrie	ero																
Add	ress: E. Main Street	·				Bill	To/P	°O#:																	
	/State/Zip: wanda, NY 14070																						, 1		
Pho 716	ne: 6-532-5931	Email/Fax: gowanda		mail.com	l			al Hazard zard [X]	s: Hazard	[]] R	Radio	acti	ve []		0.1								
Proj Pe 1	ect Name/ID: ter Cooper Stmi	-ANNU	AL				spose spose] Retu	ırn	[]	Re	etain	[]			EPA 420.1	Ш.							
Sampled By: Due Date:					Compliance Sample: Yes [X] No []			Sta	ate:	N	1Y			_		SM4500-S2		TSS							
Shipped By: Tracking #: Microbac Courier						PV	PWSID#:			Mo	onito	ring	Per	iod:		_ Z	: ⊢	SM45		::					
Type Code: G-Grab C-Composite Comp. Start: Comp. Start:							cop: 26-19/7:1574			Preservatives				Z			Sulfide by		:: S04						
Matrix Code: DW-Potable water WW-Nonpotable water SS-Soil/Sludge I Sample Identification Date Taken Taken							S-S pe C	Swab O Matrix	-Other Tot. # Cont.	None	HN03	H2SO	NaOH	E H	9	Other	Phenolics,	Sulfic		BOD					
	Peter Cooper			9-26-19		G	X	WW	4	1	1	1			1	1 X	X	Х	7	X					
				, , ,																					
							,																		
Inst	tructions/Comments:																								
Rel	linquished By:	/		Da	te/Time:	_		Receive	ed By:	D.	h	D	h	1 .				Date/1	ime:	 ì	18	30	Ten		7 °C
Rel	Inquished By:)		Da Da	to/Time:	14.	_	Redeive	у:	1	one			~				9-10 9124			11		Iced		_ 0 N
Rel	linquished By:	_ (u	wy	Pa	te/Time:	43		Receive	By:	le	ij	1	R	71	0	O		Date/			10	430	Inta	ct:) N
Relinquished By: Date/Time:							Receive	ed By:	/	/	-	_					Date/								

APPENDIX E
O&M Cost Summary

PETER COOPER SITE 138 Palmer Street, Gowanda, NY 14070 April 2018 - March 2019

\$33.62

Landaha Barra Chakkar Flanksia				755.02					Peter Cooper Leachate Flow				
	np Station Electric ce (NYSEG) 1003-345	7-754	Village of Gowa Employee: April \$21.85/hr plus	nda Sewer 2018@	As itemized As itemized: Mowing @ Microbac Sampling Inv. data for monitoring sys Cooper Site	oices. Cellular	Admin Monitor & Includes office supp manage, process, a Peter Cooper expen prepare report @ \$	ort to nd document ses, and	Flow per month Sewer Flow Me	n as documented by ter at Peter Cooper not included in billing			
Payment Dat	e Service Dates	Amount	Month Hr	s Amount	Service/Item	Amount	Month Hrs	Amount	Month	Flow Amount			
4/12/2018	3/13/18-4/3/18	\$ 93.69	Apr-18 6	\$ 201.72	Mowing 8/24/18	\$ 175.00	Apr-18 0.25	\$ 18.75	Year 2015 2	758.986 \$1,379.49			
5/16/2018	4/4/18-5/4/18	\$ 190.64	May-18 4.	5 \$ 151.29	(3.5 hours)		May-18 0.25	\$ 18.75	Year 2016 1	801.983 \$901.01			
6/18/2018	5/5/18-6/6/18	\$ 98.92	Jun-18 5	\$ 168.10			Jun-18 0.25	\$ 18.75	Year 2017	3244.66 \$1,622.35			
7/15/2018	6/7/18-7/7/18	\$ 73.82	Jul-18 6	\$ 201.72	Microbac		Jul-18 0.25	\$ 18.75	Year 2018 3	235.085 \$1,617.54			
8/21/2018	7/8/18-8/4/18	\$ 64.14	Aug-18 5.	5 \$ 184.91	Inv #AA8K02553	\$ 111.59	Aug-18 0.25	\$ 18.75	Jan-19	343.866 \$171.93			
9/18/2018	8/5/18-9/7/18	\$ 71.63	Sep-18 5	\$ 168.10	Inv# CA8E01323	\$ 734.93	Sep-18 0.25	\$ 18.75	Feb-19	174.149 \$87.07			
10/16/2018	9 /8/18 10/3/18	\$ 84.84	Oct-18 8.	5 \$ 285.77			Oct-18 0.25	\$ 18.75	Mar-19	84.343 \$42.17			
11/19/2018	10/4/18 - 11/2/18	\$ 160.25	Nov-18 7	\$ 235.34	Cyclops Monitoring S	System	Nov-18 0.25	\$ 18.75					
12/18/2018	11/3/18- 12/5/18	\$ 185.26	Dec-18 5.	5 \$ 184.91	12 mo. cellular data	\$ 360.00	Dec-18 0.25	\$ 18.75					
1/24/2019	12/6/18- 1/8/19	\$ 177.67	Jan-19 5	\$ 168.10	monitors high level		Jan-19 0.25	\$ \$ 18.75					
2/12/2019	1/9/19- 2/5/19	\$ 168.37	Feb-19 5	\$ 168.10	and daily flows		Feb-19 0.25	\$ 18.75					
3/18/2019	2/6/19 - 3/7/19	\$ 126.41	Mar-19 5	\$ 168.10			Mar-19 2.25	\$ 18.75					
4/4/2019	3/8/19 - 4/3/19	\$ 107.90											
TOTALS		\$ 1,603.54	68	\$ 2,286.16		\$ 1,381.52	5	\$ 225.00	1	1643.07 \$5,821.56			
Electric		\$ 1,603.54	\$580.35										
Sampling La	bor	\$ 2,286.16	\$504.30										
Mowing & N	Microbac	\$ 1,381.52											
Admin		\$ 225.00	\$ 56.25										
Flow		\$ 5,821.56	\$301.17										
TOTAL REIN	1B REQUEST	\$ 11,317.78	\$1,442.07										

PETER COOPER SITE 138 Palmer Street, Gowanda, NY 14070 April 2019 - May 2019

247.63

805.16

37.50

\$ 3,320.49

\$ 217.92

\$ 4,628.70

Electric

Admin

Flow

Sampling Labor

Mowing & Microbac

TOTAL REIMB REQUEST

\$33.62

Leachate Pu	ımp Station Electri	c	Sampling La	bor			As itemized			Admin Mor	nitor & N	∕laint.	Peter Coo	per Leacha	ate Flow
Electrical Serv	vice (NYSEG) 1003-34	157-754	Village of Gov Employee: Ap plus 53.87% f \$50/hr	oril 2018	8@\$	21.85/hr	As itemized: Mowing @ \$ Microbac Sampling Invoic data for monitoring syste Cooper Site	es.	Cellular	Includes office support to manage, process, and document Peter Cooper expenses, and prepare report @ \$75/hour		Flow per month as documented by Sewer Flow Meter at Peter Cooper Site.			
Payment Da	t∈ Service Dates	Amount	Month	Hrs	Α	mount	Service/Item	F	mount	Month	Month Hrs Amount		Month	Flow	Amount
5/14/2019	4/4/19-5/3/19	\$ 137.28	Apr-19	13	\$	437.06	Microbac			Apr-19	0.25	\$ 18.75	Apr-19	204.513	\$102.26
5/31/2019	5/4/19 - 6/6/19	\$ 110.35	May-19	5	\$	168.10	Inv #AA9D02078 Priority Pollutant	\$	789.25	May-19	0.25	\$ 18.75	May-19	231.314	\$115.66
			5/15/2018 Mowing	4	\$	200.00	Chemicals Hydro Peroxide	\$	47.90						
							Pump Replacement As Itemized on Attached	\$	2,483.34						
TOTALS		\$ 247.63		22	\$	805.16		\$	3,320.49		0.5	\$ 37.50		435.827	\$217.92

PETER COOPER SITE 138 Palmer Street, Gowanda, NY 14070 June 2019 - Oct 2019

\$33.62

Leachate Pun	p Station Electric			Sampling La	abor			As itemized			Admin Monitor & Maint.		nt.	Peter Cooper Leachat		ate Flow	
Electrical Service	al Service (NYSEG) 1003-3457-754			Village of Gowanda Sewer Employee: April 2018@ \$21.85/hr plus 53.87% fringe. Mowing @ \$50/hr			As itemized: Site maintenance as required.			Includes office support to manage, process, and document Peter Cooper expenses, and prepare report @ \$75/hour		•		umented by Jeter Cooper			
Payment Date	Service Dates	P	mount	Month	Hrs	1	Amount	Service/Item		Amount	Month	Hrs	Α	mount	Month	Flow	Amount
7/23/2019	6/7/19 - 7/8/19	\$	100.77	Jun-19	7	\$	235.34	Good Neighbor			Jun-19	0.25	\$	18.75	Jun-19	183.567	\$91.78
8/20/2019	7/9/19 - 8/6/19	\$	68.31	Jul-19	5.5	\$	184.91	Tree Removal at site	\$	3,000.00	Jul-19	0.25	\$	18.75	Jul-19	147.848	\$73.92
9/17/2019	8/7/19 - 9/4/19	\$	59.55	Aug-19	7	\$	235.34				Aug-19	0.25	\$	18.75	Aug-19	98.402	\$49.20
10/22/2019	9/5/19 - 10/4/19	\$	58.53	Sep-19	5.5	\$	184.91	M.W. Offhause & Son	s		Sep-19	0.25	\$	18.75	Sep-19	81.498	\$40.75
				Oct-19	5	\$	168.10	Fill & Cover Ruts	\$	430.00	Oct-19	0.25	\$	18.75	Oct-19	93.205	\$46.60
								Gernatt Asphalt Produ	ucts \$	71.83							

TOTALS	\$ 287.16	30 \$ 1,008.60	\$ 3,501.83	1.25 \$ 93.75	604.52
Electric	\$ 287.16				
Sampling Labor	\$ 1,008.60				
Mowing & Microbac	\$ 3,501.83				
Admin	\$ 93.75				
Flow	\$ 302.25				
TOTAL REIMB REQUEST	\$ 5,193.59				

PETER COOPER SITE

138 Palmer Street, Gowanda, NY 14070 Reimbursement Period: Nov - Dec 2019

General Fund Reimbursement	Sewer Fund Charges		Special Project Fund Reimbursement	General Fund Charges	Sewer Fund Charges
Electric - Leachate Pump Station	Sampling Labor	\$34.48	As itemized	Admin Monitor & Maint.	Peter Cooper Leachate Flow
Electrical Service (NYSEG) 1003-3457-754	Labor as documented by Employees \$22.41 Rate/ 53.87% fringe. Mowing @	/hr plus	As itemized: Site maintenance as required.	Village Admin processing of Reimbursment Requests @ \$75/hour	Flow per month as documented by Sewer Flow Meter at Peter Cooper Site.

Payment Date	Service Dates	P	\mount	Month	Hrs	Amount	Service/Item	Amount	Month	Hrs	Amount	Month	Flow	Amount
11/19/2019	10/5/19 - 11/6/19	\$	150.11	Nov-19	5	\$ 172.40	Great Lakes	\$ 5,100.00	November	0.25	\$18.75	Nov-19	133.769	\$66.88
12/17/2019	11/7/19 - 12/6/19	\$	140.24	Dec-19	6	\$ 206.88	Environmental		December	0.25	\$18.75	Dec-19	226.769	\$113.38
							To prepare the 2019 P	eter Cooper						

Periodic Review.

Reimbursment Request Total								
Electric	\$	290.35						
Sampling Labor	\$	379.28						
Itemized Expenses	\$	5,100.00						
Admin Support	\$	37.50						
Leachate Flow	\$	180.26						
TOTAL REIMB REQUEST	\$	5,987.39						

VILLAGE OF GOWANDA

"Gateway to the Southern Tier"

27 E. Main Street • Gowanda, NY 14070 (716) 532-3353 • Fax (716) 532-2938

"The Village of Gowanda is an Equal Opportunity Provider and Employer"

April 10, 2019

Thomas Skivington Institutional Services Assistant Vice President Private Wealth Management 10 Tripps Lane, RTL 125 Riverside, RI 02915

Dear Mr. Skivington,

Enclosed you will find the O&M Expense Reimbursement Invoice and all supporting documentation for the Peter Cooper Site Agreement for the period April 2018 – March 2019.

The expense report is itemized as attached:

Leachate Flow:	\$ 5,821.56
Admin Expense Monitoring & Processing:	\$ 225.00
Monitoring System Annual Fee:	\$ 360.00
Microbac Testing:	\$ 846.52
Mowing:	\$ 175.00
Sampling Labor:	\$ 2,286.16
Leachate Pump Station Electric:	\$ 1,603.54

Please contact me if you need any additional information or have any other questions at (716) 532-3353.

Thank you,

Traci R. Hopkins, Treasurer

Village of Gowanda

Cc:

Sherrel Henry, EPA Mourice Moore, DEC Tom Forbes, Benchmark John Walgus, GARC Mike Hutchinson, GARC

VILLAGE OF GOWANDA

"Gateway to the Southern Tier"

27 E Main Street • Gowanda NY 14070

 $(716)532-3353 \bullet Fax (716)532-2938$

"The Village of Gowanda is an Equal Opportunity Provider and Employer."

June 25, 2019

Thomas Skivington Institutional Services Assistant Vice President Private Wealth Management 10 Tripps Lane, RTL 125 Riverside, RI 02915

Dear Mr. Skivington,

Enclosed you will find the O&M Expense Reimbursement Invoice and all supporting documentation for the Peter Cooper Site Agreement for the period April 2019 – May 2019 to close out expenses through the end of the Village Fiscal Year (5/31/19).

The expense report is itemized as attached:

TOTAL	\$ 4,628.70
Leachate Flow:	\$ 217.92
Admin Expense Monitoring & Processing:	\$ 37.50
Pump Replacement:	\$ 2,483.34
Chemicals:	\$ 47.90
Microbac Testing:	\$ 789.25
Mowing:	\$ 200.00
Sampling Labor:	\$ 605.16
Leachate Pump Station Electric:	\$ 247.63
1 1	

Please contact me if you need any additional information or have any other questions at (716) 532-3353.

Thank you,

Traci R. Hopkins, Treasurer

Village of Gowanda

Cc:

Sherrel Henry, EPA

Mourice Moore, DEC

Tom Forbes, Benchmark

John Walgus, GARC

Mike Hutchinson, GARC

VILLAGE OF GOWANDA

"Gateway to the Southern Tier"

27 E Main Street ♦ Gowanda NY 14070

(716)532-3353 ♦ Fax (716)532-2938

"The Village of Gowanda is an Equal Opportunity Provider and Employer."

October 31, 2019

Thomas Skivington Institutional Services Assistant Vice President Private Wealth Management 10 Tripps Lane, RTL 125 Riverside, RI 02915

Dear Mr. Skivington,

Enclosed you will find the O&M Expense Reimbursement Invoice and all supporting documentation for the Peter Cooper Site Agreement for the period June 2019 – October 2019. These are all expenses related to the operation and maintenance of the site.

The expense report is itemized as attached:

TOTAL	\$ 5,193.59
Leachate Flow:	\$ 302.25
Admin Expense Monitoring & Processing:	\$ 93.75
Gernatt Asphalt Classifier Silt Fill	\$ 71.83
M.W. Offhause & Sons Fill &Cover Ruts	\$ 430.00
Good Neighbor Tree Removal at Site:	\$ 3,000.00
Sampling Labor:	\$ 1,008.60
Leachate Pump Station Electric:	\$ 287.16

Please contact me if you need any additional information or have any other questions at (716) 532-3353.

Thank you,

Traci R. Hopkins, Treasurer

Village of Gowanda

Cc:

Sherrel Henry, EPA Mourice Moore, DEC Tom Forbes, Benchmark John Walgus, GARC Mike Hutchinson, GARC

The experience to listen The power to Solve

