2023 Annual Report

Peter Cooper Site (Zoar Valley Gateway Park)

Gowanda, New York

Prepared for

Gowanda Area Redevelopment Corporation

Gowanda, New York

February 2024

Peter Cooper Site (Zoar Valley Gateway Park) Gowanda, New York

2023 Annual Report

February 2024

Prepared For:

Gowanda Area Redevelopment Corporation Gowanda, New York

Prepared By:

Barton & Loguidice, D.P.C. 1738 Elmwood Avenue, Suite 100 Buffalo, New York 14207

CERTIFICATION

I, Jeffrey Reed, P.E. of Barton & Loguidice, D.P.C. at 443 Electronics Parkway, Liverpool, New York 13088, am currently a registered professional engineer licensed by the State of New York. I certify that all information and statements in this Annual Summary Report for the Peter Cooper Site (a.k.a. Zoar Valley Gateway Park) are true. I make this certification on behalf of the Site Owner, Gowanda Area Redevelopment Corporation (GARC), and have been authorized and designated by GARC to sign this certification for the site.

P.E. Stamp/Signature

02/14/2024

Date

TABLE OF CONTENTS

Section Page BACKGROUND AND SITE DESCRIPTION1 1.0 1.1 1.2 1.3 2.0 2.1 2.2 Monitoring Wells and Gas Vents6 Groundwater and Surface Water Quality6 2.3 2.4 3.0 SITE IMPROVEMENTS......7 3.1 Topsoil Import......7 4.0

Tables

Table 1 Discharge Permit Ar

Figures

Figure 1	Site Location Map
Figure 2	Site Plan

Appendices

- Appendix A 2023 Groundwater Sampling and Site Inspection Report and Photos
- Appendix B SIU Permit Requirements
- Appendix C SIU Permit Monitoring Data
- Appendix D O&M Cost Summary

1.0 BACKGROUND AND SITE DESCRIPTION

The Subject Site is an approximate 26-acre property located off Palmer Street, in the Village of Gowanda, Cattaraugus County, New York (see Figures 1 and 2). The Site is bordered to the north by Cattaraugus Creek; to the south by Palmer Street; to the west by a former hydroelectric dam and wetland area; and to the east by residential properties.

The Site was previously used to manufacture animal glue and industrial adhesives. Peter Cooper Corporation (PCC) and/or its predecessor, Eastern Tanners Glue Company, manufactured animal glue at the Site from 1904 to 1972. When the animal glue product line was terminated, PCC continued to produce synthetic industrial adhesives until the plant closed in 1985. Between 1925 and October 1970, PCC used the northwest portion of the property (a 5-acre area known as the "Elevated Fill Subarea") to pile sludge remaining after the animal glue manufacturing process. These wastes, known as "cookhouse sludge" because of a cooking cycle that occurred just prior to extraction of the glue, were derived from animal hides, some of which were chrome-tanned hides obtained from tanneries. The waste material has been shown to contain elevated levels of chromium, arsenic, zinc, and several organic compounds.

In 1998, EPA prepared a Hazard Ranking System Model score for the Site and added it to the National Priority List (NPL) on April 6, 1998. In April 2000, EPA issued a Unilateral Administrative Order (UAO) CERCLA-02-2000-2014 to fourteen potentially responsible parties (PRPs) directing that they complete a remedial investigation and feasibility study (RI/FS) for the Site.

The UAO became effective May 1, 2000. The RI/FS was performed on behalf of the PRPs by Benchmark Environmental Engineering and Science, PLLC (Benchmark) and its sub-consultant, Geomatrix, Inc. The RI field investigation activities were performed from August 2000 to April 2001, and the final RI report was submitted to EPA in November 2003. The FS was substantially completed by the PRPs in July 2004, and was finalized in June 2005.

Concurrent with completion of RI activities, the Village of Gowanda in association with the University at Buffalo developed a Reuse Assessment and Concept Plan for the Site that concluded that the "highest and best use" of the remainder of the property outside of the 5-acre Elevated Fill Subarea after cleanup would be as a multi-use recreational facility, specifically a public park incorporating elements such as a walking/biking trail, fishing access, outdoor picnic areas, and athletic fields. The New York State Department of Environmental Conservation and the USEPA agreed that use in this capacity would require placement of clean cover soils, specifically one foot of cover in passive recreational areas and two feet in active recreational areas.

Based upon the results of the RI/FS, a Record of Decision (ROD) was signed on September 30, 2005. Specifically, the ROD called for:

• Excavating three "hot spot" soil areas identified across the Site and consolidating them within the Elevated Fill Subarea, followed by capping the 5-acre Elevated Fill Subarea of the inactive landfill area with a 12-inch low permeability soil cap, followed by 6-inches of topsoil and seed.

- Collecting leachate/groundwater seeps that were observed discharging from the Elevated Fill Subarea to Cattaraugus Creek. The collected leachate is pumped through a pretreatment building where it may be pretreated, if necessary, with hydrogen peroxide to remove hydrogen sulfide prior to discharge to the sanitary sewer for final treatment at the local Publicly Owned Treatment Works (POTW).
- Stabilizing the bank of Cattaraugus Creek along the Elevated Fill Area with a poly liner and heavy riprap stone.
- Installing a groundwater diversion system to limit groundwater migration through the Elevated Fill Subarea. (Subsequent engineering analyses by Benchmark and Geomatrix demonstrated that this element would not provide additional benefit. USEPA agreed and ultimately removed this requirement from the remedial design).
- Installing a passive gas venting system for proper venting of the 5-acre Elevated Fill Subarea.
- Performing long-term operation and maintenance of the remedial measures including inspections and repairs of the landfill cap, gas venting, and leachate collection and pretreatment systems;
- Performing post-remedial surface water and groundwater quality monitoring; and
- Evaluating Site conditions at least once every five years to determine if the remedy remains protective.

This remedy also includes certain institutional controls, including an environmental easement which limits future use of the Site and the groundwater to ensure that the implemented remedial measures will not be disturbed and that the Site will not be redeveloped for purposes other than a park. A Site Management Plan was also required to ensure appropriate handling of subsurface soils during redevelopment and to formalize the post-remedial operation, maintenance and monitoring requirements.

Following issuance of the ROD, the Village of Gowanda and the PRPs entered into discussions concerning the Village's redevelopment goals. An agreement was reached whereby the Gowanda Area Redevelopment Corporation (GARC) took ownership of the Site and agreed to perform certain post-remedial operation, maintenance and monitoring activities in exchange for provision of specific non-remedial site enhancements and funding by the PRPs to facilitate park redevelopment.

On February 12, 2009, a Consent Decree stipulating the required remedial construction elements was entered in United States District Court. On March 15, 2009, Benchmark was approved by EPA as the supervising contractor to conduct the remedial design and construction work at the Site.

1.1 Remedial Construction

Conditional approval to start site preparation and hotspot removal was issued to Benchmark in July 2009. The remedial measures and above-described non-remedial enhancements were substantially completed by December 2009; the final Elevated Fill Subarea cover system topsoil and seeding work was completed in summer of 2010.

On September 9, 2010, a final inspection was conducted by the USEPA. Based on the results of the inspection, it was determined that the required remedial construction was complete. The only outstanding element was the placement of clean cover soil over the remainder of the site, which has since been completed by GARC.

1.2 Post-Remedial Operation, Maintenance, and Monitoring

Post-Remedial Operation, Maintenance and Monitoring (OM&M) responsibilities were initially shared by the PRPs who undertook the remedial work (deemed the cooperating PRPs, or cPRPs) and GARC in accordance with the September 2010 Site Management Plan (SMP) prepared by Benchmark. In general, the responsibilities include:

- Semi-annual sampling of five onsite monitoring wells and three surface water locations with associated reporting to EPA (cPRPs);
- Semi-annual inspection of the landfill cover system and creek bank (cPRPs);
- Cover system mowing and maintenance (GARC);
- Leachate/groundwater collection and pretreatment, including sampling of the pretreatment system effluent per a discharge permit issued by the POTW (GARC);
- Other site maintenance (GARC).

Semi-annual post-remedial groundwater monitoring began in July 2011 and continued through June 2013. The groundwater monitoring were consistently favorable, indicating no adverse impact to Cattaraugus Creek from the Site and few parameters above the NY State groundwater quality standards. Based upon these results USEPA approved a request by the cPRPs to reduce the monitoring frequency from semi-annual to annual. Annual groundwater monitoring reports submitted by the cPRPs since that time have shown similar favorable results.

Similarly, visual inspections of the final cover indicate that the vegetation is well established, with no evidence of erosion. There are no indications of leachate breakouts or staining on the cover system. The gas venting system continues to mitigate any gas build up beneath the cover system. Inspections of the creek bank indicate no washouts where stabilization was constructed as part of the remedial activities.

Concerning the groundwater/seep collection and pretreatment system, the Village of Gowanda, on behalf of GARC, collects effluent samples that routinely demonstrate conformance with Significant Industrial User (SIU) permit limits. In addition, pretreatment with peroxide has not been necessary to achieve sulfide discharge limits since the collection system was started up in 2010.

1.3 Regulatory Status

On September 17, 2010 EPA issued a Preliminary Close Out Report (PCOR) which determined that construction activities at the Peter Cooper Superfund site have been completed in accordance with the Close-Out Procedures for National Priorities List Sites (OSWER Directive 9320.2-09A-P). The New York State Department of Environmental Conservation, which had previously listed the Site as a "Class 2" Site (indicating it poses a significant threat to public health and the environment) due to its federal NPL status, subsequently reclassified the site to "Class 4" (i.e., properly closed – requires continued management).

The first five-year review for the Site was undertaken by the USEPA in October 2014. The purpose of the five-year review is to determine if the remedy is and will continue to be protective of human health and the environment. The triggering action for the statutory five-year review is the initiation of on-site remedial construction, which began at the Site in late 2009.

The 5 year review Report was issued by the USEPA in April 2015. The report concluded "based upon reviews of the Record of Decision, annual groundwater sampling results, and site inspection reports as prepared by the potentially responsible parties, as well as a site visit conducted by United States Environmental Protection Agency personnel on October 30, 2014, the remedy is functioning as intended by the decision document and is protective of human health and the environment. An environmental easement has been placed on the site property to address any future uses of the property which would impact contaminated soil left in place, and to prohibit groundwater use unless groundwater quality standards are met. The site management plan requires continued monitoring of the site. There are no recommendations or follow-up actions identified in this five-year review."

The site remained on the NPL pending completion of clean cover placement in the planned park redevelopment area outside of the Elevated Fill Subarea, which was completed in 2017. Subsequently, on May 1, 2019, USEPA issued a Final Close Out Report (FCOP). The FCOP stated "The Site meets all the Site-completion requirements as specified in Close Out Procedures for National Priorities List Sites (OSWER Directive 9320.2-22, May 2011). Specifically, the implemented remedy achieved the degree of cleanup specified in the ROD for all pathways of exposure. The remedy, remedial action objectives, and associated cleanup goals are consistent with agency policy and guidance. No further Superfund response action is needed to protect human health and the environment.

The only continuing remedial efforts at the Site are the ongoing maintenance of the landfill cap, the groundwater and surface water monitoring and insuring that the institutional controls in the form of restrictive covenant to restrict the use of on-Site groundwater as a source of potable or process water and to restrict activities on the Site that could compromise the integrity of the cap remain in place and continue to be effective. Five-year reviews will continue to be performed to ensure the remedy remains protective." NYSDEC issued a concurrence letter on June 25, 2019, and USEPA delisted the site from the NPL on July 30, 2019.

The second five-year review for the Site was undertaken by the USEPA in November 2019. The five-year review report was issued by the USEPA in December 2019. The review "did not identify any issue or make any recommendation for the protection of public health or the environment which was not included or anticipated by the site decision documents."

The second five-year review allowed for the following changes in site management:

- Groundwater sampling will be performed every fifth quarter, instead of annually, which will allow for evaluation of seasonal variability in the data.
- Groundwater level measurement will also be performed every fifth quarter, instead of annually.
- Inspections will continue to be performed annually to verify the integrity of the cover system.

The site is owned by GARC. Following delisting of the site, the cPRPs responsibility for monitoring of the site has ended, and GARC has retained Barton & Loguidice D.P.C. to perform monitoring activities. Ongoing maintenance of the cap and other components of the remedy, plus the operation of the leachate collection and treatment system is performed by the Village of Gowanda.

2.0 SUMMARY OF SITE REMEDY PERFORMANCE

2.1 Cover System

B&L performed an annual inspection in November 2023 (See Appendix A). This inspection found that vegetation on the elevated Fill Subarea remains well established, with no evidence of erosion. There are no signs of leachate breakouts or staining on the cover system. Inspections of the creek bank identified no washouts where stabilization was constructed as part of the remedial activities.

The site outside of the elevated Fill Subarea is covered with one to two feet of clean soil cover. B&L did not observe any intrusions or breaches of this cover at the site.

2.2 Monitoring Wells and Gas Vents

All monitoring wells were accessible and functioning. The gas vents were in good shape and there was no stressed vegetation around vents.

2.3 Groundwater and Surface Water Quality

Groundwater and surface water sampling is required once every 15 months. The results of the sampling are presented in Appendix A. All monitored parameters were reported as non-detect or below the groundwater quality standard at all the groundwater sampling locations except for total manganese for MW-5, and MWFP-2S, ammonia at MW-5 and total sulfide in MW-5.

2.4 Groundwater/Seep Collection and Pretreatment

To monitor the groundwater/seep collection and pretreatment system, the Village of Gowanda, on behalf of GARC, monitors the discharges to the sanitary sewer in accordance with the SIU permit (Appendix B) for the facility through regular pH, temperature, and dissolved oxygen measurements, and through the collection of samples for extended analytical parameters once every fifteen months. The next extended analytical parameter sampling is scheduled for March 2024. There was no sample collection and analysis required in 2023. The results of the routine monitoring of operational parameters are presented on Table 1 and in Appendix C.

Pretreatment with peroxide was not necessary to prevent discharge of Hydrogen sulfide (H_2S) during the reporting period as dissolved oxygen levels were consistently above 2 ppm.

One of the two pumps in the collection system became disabled in November 2022. However, the second pump continued operating and groundwater collection continued unimpeded. The disabled pump was replaced in kind in February 2023.

During the middle portion of 2023, accurate flows for the groundwater seep collection were not available due to equipment problems. These equipment problems, and the repairs made to resolve them are described below.

As noted in the 2022 annual report, the flow meter was not providing accurate measurements towards the end of 2022 and a new one was ordered. To address the issues with its operation, the former paddle wheel meter was replaced with a magnetic flow monitoring model for greater reliability. This replacement was done in April 2023. However, upon installation, the configuration of the pipe did not allow for proper operation and thus additional replumbing was required, resulting in continued lack of flow monitoring. Concurrently, the pumps no longer cycled on and off, requiring the services of an electrician to diagnose the problems. During this period (mid 2023) the pumps were manually cycled on and off to maintain the operation of the groundwater and seep collection system. However, due to the manual cycling, flow could not be accurately measured. The electrician diagnosed the control problem to be a malfunctioning relay. In late October/early November, the relay was replaced along with the pump in the Creekside sump which had been damaged during the period of improper cycling. Since November, the collection system has been operating on an automatic basis and flows are accurately recorded.

3.0 SITE IMPROVEMENTS

During the 2023 reporting period:

- No site improvements were performed.
- No materials were imported to the site.
- No excavations were performed.

4.0 OPERATION AND MAINTENANCE COSTS

Costs incurred by the Village of Gowanda are detailed in Appendix D. The summary of the costs is provided below:

	1/2023- 5/2023	6/2023- 12/2023
Leachate Pump Station Electric	\$2,005.33	\$987.71
Sampling/Pump Replacement Labor	\$1,261.04	\$1,756.16
Pump, Flow Meter Replacement and Repair Expenses	\$749.24	\$2,863.67
Admin Expense Monitoring & Processing	\$937.50	\$1,425.00
Leachate Flow	\$53.85	\$68.27
Barton & Loguidice D.P.C. (sampling, reporting)	\$4,400.00	
Total	\$9,406.96	\$7,100.81

TABLE 1 Discharge Permit Analyses

TABLE 1 DISCHARGE PERMIT ANALYSES Peter Cooper Gowanda Site Gowanda, New York

Parameter	Criterion		Re	esult
	Value	Units	Value	lbs/Day (where applicable)
Flow Rate	30,000	gpd	(1)	
рН	5 - 10.5	standard unit	6.96-7.35	
Hexavalent Chromium	0.0048	lb/d	(2)	
Ammonia	75	lb/d	(2)	
Dissolved Oxygen	2	mg/L	3.7	
Sulfides	9	mg/L	(2)	

Notes:

1. Flow Rate measurements were not accurate during most of the year. Refer to text

2. Ammonia, Hexavalent chromium, and sulfide analyses not required in 2023

3. Dissolved Oxygen value is average of weekly measurements

FIGURE 1 Site Location Map

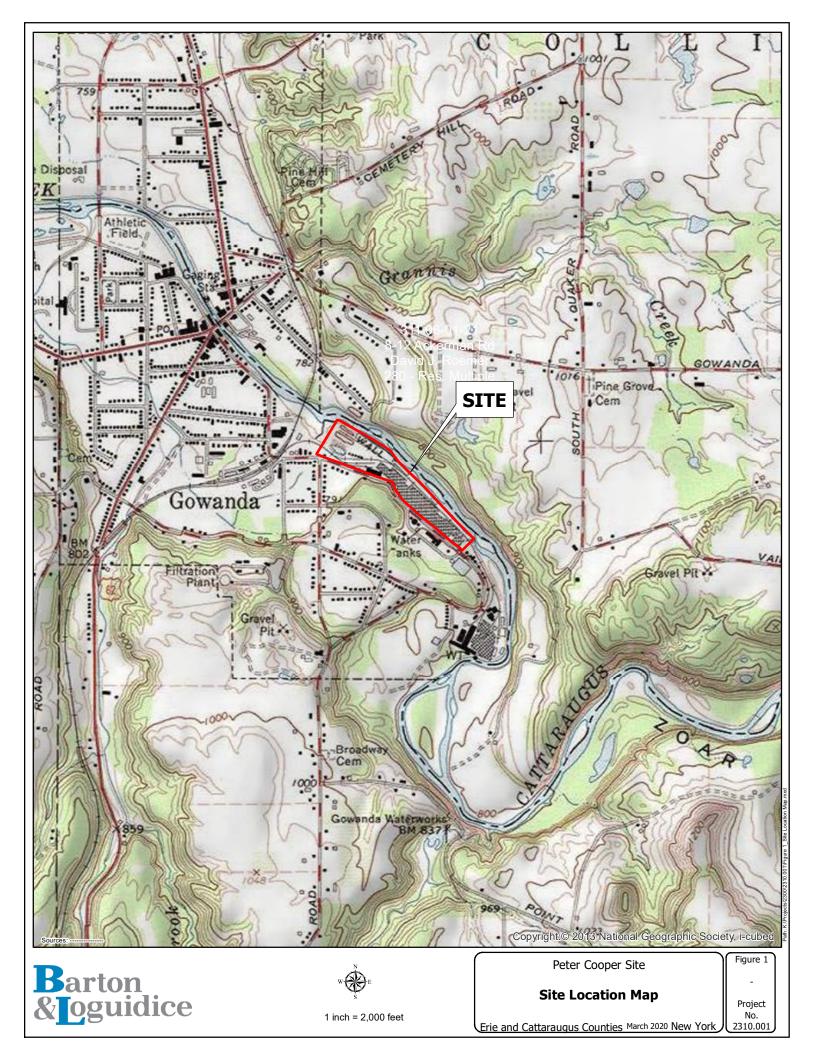
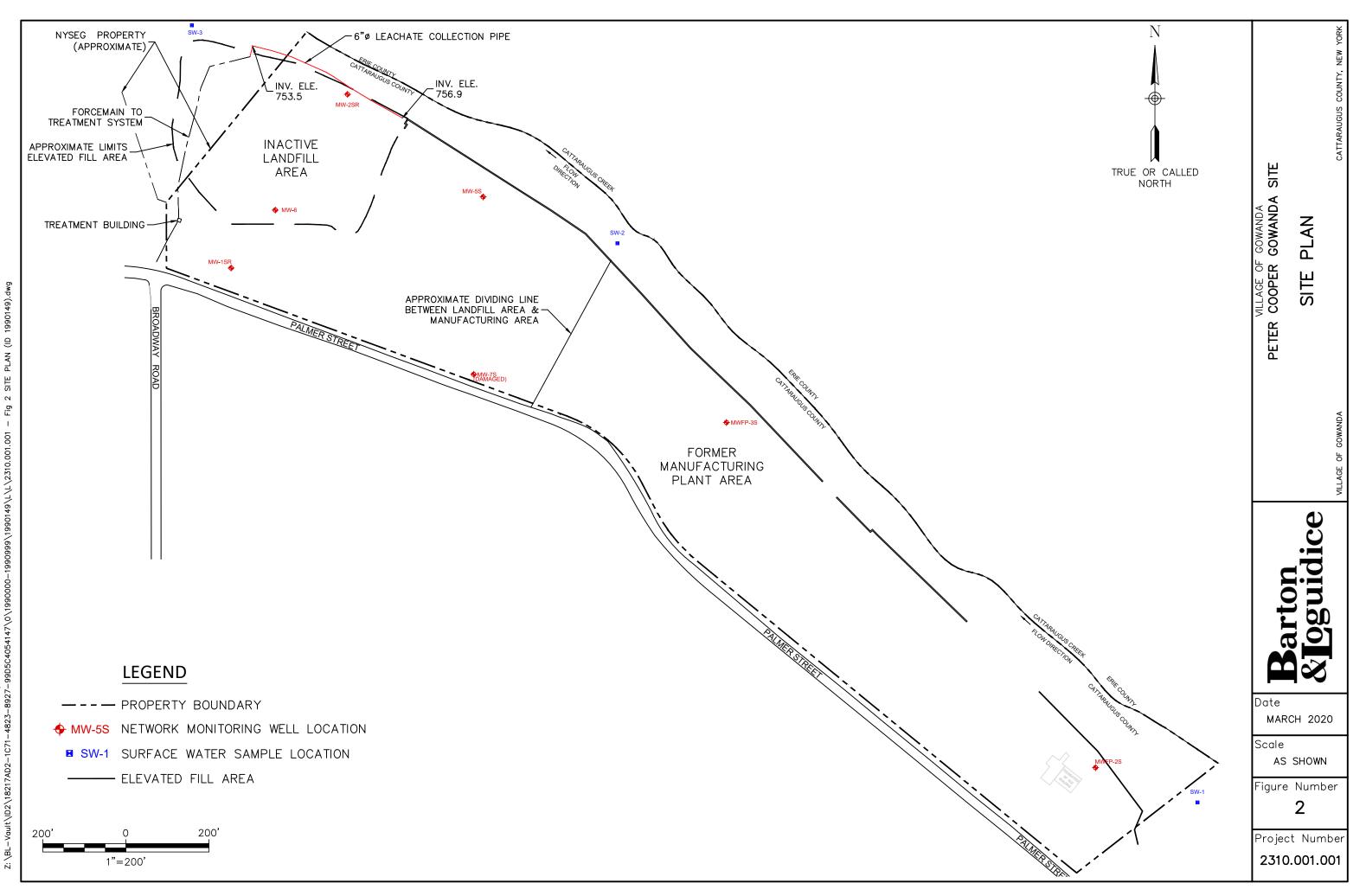



FIGURE 2 Site Plan

PLAN (ID SITE Fig 2 Т SYR By. bas 4823-8927-99D5C4054147\0\1990000-1990999\1990149\L\L\2310.001.001 Plotted: Mar 19, 2020 – 1:20PM Z:\BL-Vault\ID2\18217AD2-1C71--

APPENDIX A 2020 Groundwater Sampling and Site Inspection Report and Photos Post-Remedial Groundwater Monitoring & Maintenance Summary Report 2023 Every Fifth Quarter Event

Peter Cooper Site (Zoar Valley Gateway Park)

Gowanda, New York

Prepared for

Gowanda Area Redevelopment Corporation

27 E Main Street Gowanda, New York 14070

February 2024

Peter Cooper Site (Zoar Valley Gateway Park) Gowanda, New York

Post-Remedial Groundwater Monitoring & Maintenance Summary Report 2023 Every Fifth Quarter Event

February 2024

Prepared for Gowanda Area Redevelopment Corporation 27 E Main Street Gowanda, New York 14070

Prepared by

Barton & Loguidice, D.P.C. 1738 Elmwood Ave, Suite 100 Buffalo, NY 14207

TABLE OF CONTENTS

Section	<u>l</u>	Pag	e
ABBRE	/IATION	S	ii
1.0	Introdu	iction	1
2.0	Field Sa	ampling Procedure	
	2.1.	Groundwater	2
	2.2.	Surface Water	2
3.0	Analyti	cal Results	3
4.0	Data Q	uality	4
5.0	Ground	Jwater Elevation Data	5
6.0	Annual	Inspection	6
	6.1.	Elevated Fill Subarea and Bank Protection Cover Monitoring	6
	6.2.	Leachate / Groundwater Collection and Pretreatment System	
7.0	Conclu	sions and Recommendations	7

Tables

Table 1	Groundwater & Surface Water Monitoring Plan
Table 2	Summary of Groundwater Elevations
Table 3A and 3B	Summary of Groundwater and Surface Water Analytical Data
Table 4A and 4B	Historical Summary of Groundwater and Surface Water Analytical Data

Figures

Figure 1	Site Location Map
Figure 2	Site Plan
Figure 3	Groundwater Contour Map 2021

Appendices

Attachment A	Sample Collection Logs
Attachment B	Analytical Data
Attachment C	Inspection Form
Attachment D	Photo Log

ABBREVIATIONS

B&L CERCLA	Barton & Loguidice, D.P.C. Comprehensive Environmental Response, Compensation, and Liability Act
GARC	Gowanda Area Redevelopment Corporation
MS	Matrix spike
MSD	Matrix spike duplicate
MW	Monitoring Well
NTU	Nephelometric Turbidity Unit
NYSDEC	New York State Department of Environmental Conservation
OM&M	Operation, Maintenance and Monitoring
QC	Quality control
SW	Surface Water
TOGS	Technical and Operational Guidance Series
USEPA	United States Environmental Protection Agency
VOC	Volatile organic compounds

1.0 INTRODUCTION

Barton & Loguidice, D.P.C. (B&L) has prepared this report of the results of the every-five-quarters postremedial groundwater monitoring event at the Peter Cooper Site in Gowanda, New York (see Figure 1). A monitoring and maintenance summary for the engineering controls, consisting of a landfill cover system and creek bank erosion controls, is also included in this report.

The work was performed in accordance with the approved Post-Remedial Operation, Maintenance and Monitoring (OM&M) Plan (Benchmark Environmental and Engineering Science, October 2010). Groundwater and surface water monitoring requirements are presented in Table 1.

2.0 **FIELD SAMPLING PROCEDURE**

On December 11, 2023 B&L staff collected a round of static level measurements from the six monitoring wells shown on Figure 2. One wells, MW-2SR, was dry. One well, MW-7S had groundwater that allowed for a depth-to-groundwater measurement, but did not produce enough water during purging to allow sample collection. Measurements and groundwater elevations are summarized on Table 2. B&L then collected groundwater samples from on-site monitoring wells MW-1SR, MW-5, MWFP-2S, and MWFP-3S. At the request of the United States Environmental Protection Agency (USEPA), per the 2015 Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) 5-Year Review Report, samples were collected from MW-1SR in lieu of MW-SR due to continued dry conditions at the MW-2SR location. Surface water samples were collected from SW-1, SW-2, and SW-3.

Attachment A includes sample collection logs. All water samples were cooled to 4°C in the field and transported, under chain-of-custody command, to Test America Laboratories, Inc. in Amherst, NY for analysis per Table 1.

2.1. Groundwater

The monitoring wells were purged using a peristaltic pump with dedicated tubing following lowflow groundwater purging procedures. Purge water was returned to each well following completion of sampling at each well. Field measurements for pH, Eh, dissolved oxygen, specific conductance, temperature, turbidity, and visual/olfactory observations were recorded and monitored during purging. Purging was considered complete when pH, specific conductivity, and temperature stabilized; and the turbidity measured below or stabilized above 50 NTU. Stability is defined as the variation between field measurements of 10 percent or less with no overall upward or downward trend in the measurements. Once the field parameters stabilized, groundwater samples were collected using clean bailers and placed into laboratory-supplied pre-preserved sample bottles.

2.2. Surface Water

The surface water samples from SW-1, SW-2, and SW-3 were collected by slowly immersing a sample jar into the water. The contents of the collection jar were then transferred to laboratory-supplied pre-preserved bottles for analysis. Field measurements for pH, Eh, specific conductivity, temperature, turbidity, and visual/olfactory observations were also recorded.

3.0 ANALYTICAL RESULTS

Attachment B includes the laboratory analytical data package for the December 11, 2023 sampling event. Compounds detected above method detection limits are shown on Tables 3A and 3B with their associated sample concentrations. New York state Class "GA" Groundwater Quality Standards and Guidance Values and Class "C(T)" surface water quality standards (collectively referred to herein as the "standards") per New York State Department of Environmental Conservation (NYSDEC) Technical and Operational Guidance Series (TOGS) 1.1.1 for ambient water quality are presented for comparison. Concentrations exceeding the respective standards are highlighted.

As indicated on Tables 3A and 3B, all monitored parameters were reported as non-detect or below the groundwater quality standard at all the groundwater sampling locations except for total manganese for MW-5 and MWFP-2S, and ammonia and total sulfide in MW-5.

All monitored parameters were reported as non-detect or below the surface water quality standard at all surface water sampling locations.

A historical summary of the analytical data is provided in Tables 4A and 4B. The results from this round of sampling were consistent with previous results at each location.

4.0 DATA QUALITY

Site-specific quality control (QC) sampling during this event included the collection of one blind duplicate sample collected from MW-5, and one matrix spike/matrix spike duplicate (MS/MSD) sample collected from MW-1SR for the VOC analyses and metals. Blind duplicate data was consistent with primary sample data. The MS/MSD laboratory recoveries showed recoveries near or more typically above 100% indicating that the analysis did not underestimate contaminant concentrations.

5.0 **GROUNDWATER ELEVATION DATA**

Groundwater monitoring included a round of static water level measurements from seven monitoring wells across the site on December 11, 2023 (see Table 2). An isopotential map representing the shallow groundwater was prepared from the depth-to-groundwater measurements and is present as Figure 3. Based on those measurements, shallow groundwater migrates north-westerly towards Cattaraugus Creek, which is consistent with observations recorded during the site Remedial Investigation.

6.0 **ANNUAL INSPECTION**

B&L performed the annual inspection of the remedy on November 22, 2023. A completed inspection form is provided in Attachment C. A log of photos taken during the inspection is provided in Attachment D.

6.1. Elevated Fill Subarea and Bank Protection Cover Monitoring

A post remedial site inspection of the Elevated Fill Subarea was performed prior to the groundwater monitoring event. The inspection report indicated no irregularities or changes to the property access or security. The gas-vent system is intact and operational with no objectionable odors noted. The soil cover system and vegetative cover remain intact with no evidence of erosion, burrowing, vegetative stress, etc. Similarly, riprap erosion control remains in place with no visual or olfactory evidence of leachate breakout.

6.2. Leachate / Groundwater Collection and Pretreatment System

The leachate and groundwater collection and pretreatment system are monitored by the Gowanda Area Redevelopment Corporation (GARC), which is the current property owner. A summary of the pretreatment system monitoring results is presented in the annual report.

7.0 CONCLUSIONS AND RECOMMENDATIONS

The data indicate few exceedances of the standards with no adverse impact from the site to Cattaraugus Creek. The remedy is functioning as intended and remains protective of human health and the environment.

Groundwater will continue to be collected once every 15 months to allow for evaluation of seasonal variability in the data. Inspections will continue to be performed annually to verify the integrity of the cell cover and gas venting system.

- 7 -

Tables

TABLE 1Groundwater and Surface Water Monitoring Plan

TABLE 1 GROUNDWATER & SURFACE WATER MONITORING PLAN Peter Cooper Site Gowanda, New York

Sample Location	Est. Number of Samples per Event	Parameters	Frequency
Upgradient Monitoring We	// ·		
MW-7S	1	TCL VOCs, Total Metals ² Field Measurements ³ Water Quality Parameters ⁴	Every 5 Quarters
FMPA Monitoring Network	Wells (water level and quality)		
MWFP-2S	1	TCL VOCs (chlorinated aliphatics only)	Every 5 Quarters
MWFP-3S	1	Total Metals ² Field Measurements ³	Every 5 Quarters
ILA Monitoring Network W	ells (water level and quality)		
MW-1SR	1	TCL VOCs	Every 5 Quarters
MW-2SR⁵	1	Total Metals ² Field Measurements ³	
MW-5S	1	Water Quality Parameters⁴	
QA/QC Samples ¹		ł	
Trip Blank	1	TCL VOCs	Every 5 Quarters
Blind Duplicate	1		
Matrix Spike	1	TCL VOCs Total Metals ²	Every 5 Quarters
Matrix Spike Duplicate	1		
Monitoring Network Surface	ce Water		
SW-1	1	TCL VOCs	Every 5 Quarters
SW-2	1	Total Metals ² Field Measurements ³	
SW-3	1	Water Quality Parameters⁴	
Monitoring Well (water lev	el only)		
MW-6	-	-	Every 5 Quarters

Notes:

1. QA/QC samples will be collected at a frequency of 1 per 20 for each matrix.

2. Total metals include: arsenic, chromium, hexavalent chromium, manganese; if field measured turbidity is greater than 50 NTU, dissolved metals will also be collected.

3. Field measurements include: pH, temperature, specific conductance, turbidity, Eh

4. Water quality parameters include: ammonia, hardness, chloride, total sulfide.

5. Due to persistent dry conditions at MW-2SR, samples have instead been collected from MW-1SR per USEPA request in the 2015 five-year review

Acronyms:

FMPA = Former Manufacturing Plant Area of the Site

ILA = Inactive Landfill Area of the Site TCL = Target Compound List

VOCs = Volatile Organic Compounds

TABLE 2Summary of Groundwater Elevations

TABLE 2 SUMMARY OF GROUNDWATER ELEVATIONS December 2023 Every Fifth Quarter Monitoring Event Peter Cooper Site Gowanda, New York

Location	TOR Elevation	12/11/2023	
Location	(fmsl)		GWE (fmsl)
MW-7S	787.77	9.63	778.14
MWFP-2S	786	9.88	776.12
MWFP-3S	780.69	8.13	772.56
MW-2SR	770.93	DRY	DRY
MW-5S	781.16	12.68	768.48
MW-1SR	779.62	7.12	772.5
MW-6	787.87	16.28	771.59

Notes:

1. DTW = depth to water

2. fbTOR = feet below top of riser

3. fmsl = feet above mean sea level

4. GWE = groundwater elevation

5. TOR = top of riser

TABLE 3A Summary of Groundwater and Surface Water Analytical Data Groundwater

TABLE 3A SUMMARY OF GROUNDWATER ANALYTICAL DATA December 2023 Sampling Event Groundwater Peter Cooper Site Gowanda, NY

PARAMETER	CAS No.	GWQS ² Class Groundwa Standar	ater	MW-1	SR	MW		MW			/-2SR	MWFF	P-2S	MWF	P-3S	Blind E (MW-	
Volatile Organic Compounds (VOCs) - (ug/L								Dry		Dry				i			
1,1,1-Trichloroethane	71-55-6	5		0.82	U	3.3	U	NA		NA		0.82	U	1.4		3.3	U
1,1,2,2-Tetrachloroethane	79-34-5	5		0.21	U	0.84	U	NA		NA		NA		NA		0.84	U
1,1,2-Trichloro-1,2,2-trifluoroethane	76-13-1	5		0.31	U	1.2	U	NA		NA		NA		NA		1.2	U
1,1,2-Trichloroethane	79-00-5	1		0.23	U	0.92	U	NA		NA		NA		NA		0.92	U
1,1-Dichloroethane	75-34-3	5		0.38	U	1.5	U	NA		NA		0.38	U	0.38	U	1.5	U
1,1-Dichloroethene	75-35-4	5		0.29	U	1.2	U	NA		NA		NA		NA		1.2	U
1,2,4-Trichlorobenzene	120-82-1	5		0.41	U	1.6	U	NA		NA		NA		NA		1.6	U
1,2-Dibromo-3-Chloropropane	96-12-8	0.04		0.39	U	1.6	U	NA		NA		NA		NA		1.6	U
1,2-Dibromoethane	106-93-4	0.0006		0.73	U	2.9	U	NA		NA		NA		NA		2.9	U
1,2-Dichloroethane	107-06-2	0.6		0.21	U	0.84	U	NA		NA		NA		NA		0.84	U
1,2-Dichloropropane	78-87-5	1		0.72	U	2.9	U	NA		NA		NA		NA		2.9	U
1,3-Dichloropropene, Total				0.73	U	2.9	U	NA		NA		0		0		2.9	U
cis-1,3-Dichloropropene	10061-01-5			0.36	U	1.4	U	NA		NA		NA		NA		1.4	U
trans-1,3-Dichloropropene	10061-02-6			0.37	UF1	1.5	U	NA		NA		NA		NA		1.5	U
2-Butanone (MEK)	78-93-3	50	(GV)	1.3	U	5.3	U	NA		NA		1.3	U	1.3	U	5.3	Ŭ
2-Hexanone	591-78-6	50	(GV)	1.2	Ŭ	5	Ŭ	NA		NA		NA		NA	-	5	Ŭ
4-Methyl-2-pentanone (MIBK)	108-10-1		(01)	2.1	U	8.4	U	NA		NA		NA		NA		8.4	U
Acetone	67-64-1	50	(GV)	3	U	12	U	NA		NA		3	U	3	U	12	U
Benzene	71-43-2	1	(0))	0.41	U	1.6	U	NA		NA		NA	0	NA	0	1.6	U
Bromodichloromethane	75-27-4	50	(GV)	0.41	U	1.6	U	NA		NA		NA		NA		1.6	U
	75-27-4	50	(GV)	0.39	U	1.0	U	NA		NA		NA		NA		1.0	U
Bromoform	75-25-2 74-83-9	50	(UV)	0.26	U	2.8	U	NA		NA		NA		NA		2.8	U
Bromomethane	75-15-0	5 60		0.69	U	0.76	U							NA		0.76	U
Carbon disulfide								NA		NA		NA					
Carbon tetrachloride	56-23-5	5		0.27	U	1.1	U	NA		NA		NA		NA		1.1	U
Chlorobenzene	108-90-7	5		0.75	U	3	U	NA		NA		NA		NA		3	U
Chloroethane	75-00-3	5		0.32	U	1.3	U	NA		NA		NA		NA		1.3	U
Chloroform	67-66-3	7		0.34	U	1.4	U	NA		NA		0.34	U	0.79]	1.4	U
Chloromethane	74-87-3	5		0.35	U	1.4	U	NA		NA		NA		NA		1.4	U
cis-1,2-Dichloroethene	156-59-2	5		0.81	U	3.2	U	NA		NA		0.81	U	0.81	U	3.2	U
Cyclohexane	110-82-7			0.18	U	0.72	U	NA		NA		NA		NA		0.72	U
Dibromochloromethane	124-48-1	50	(GV)	0.32	U	1.3	U	NA		NA		NA		NA		1.3	U
Dichlorobenzenes, Total				2.41	U	9.7	U	NA		NA		NA		NA		9.7	U
1,2-Dichlorobenzene	95-50-1	3		0.79	U	3.2	U	NA		NA		NA		NA		3.2	U
1,3-Dichlorobenzene	541-73-1	3		0.78	U	3.1	U	NA		NA		NA		NA		3.1	U
1,4-Dichlorobenzene	106-46-7	3		0.84	U	3.4	U	NA		NA		NA		NA		3.4	U
Dichlorodifluoromethane	75-71-8	5		0.68	U	2.7	U	NA		NA		NA		NA		2.7	U
Ethylbenzene	100-41-4	5		0.74	U	3	U	NA		NA		NA		NA		3	U
Isopropylbenzene	98-82-8	5		0.79	U F1	3.2	U	NA		NA		NA		NA		3.2	U
Methyl acetate	79-20-9			1.3	U	5.2	U	NA		NA		NA		NA		5.2	U
Methyl tert-butyl ether	1634-04-4			0.16	U	0.64	U	NA		NA		NA		NA		0.64	U
Methylcyclohexane	108-87-2			0.16	U	0.64	U	NA		NA		NA		NA		0.64	U
Methylene chloride	75-09-2	5		0.44	U	1.8	U	NA		NA		0.44	U	0.44	U	1.8	U
Styrene	100-42-5	5		0.73	U	2.9	U	NA		NA		NA		NA		2.9	U
Tetrachloroethene	127-18-4	5		0.36	U F1	1.4	Ŭ	NA		NA		0.36	U	4.8		1.4	Ŭ
Toluene	108-88-3	5		0.50	U	2	U	NA		NA		NA	0	NA		2	U U
trans-1,2-Dichloroethene	156-60-5	5		0.9	U	3.6	U	NA		NA		NA		NA		3.6	U
Trichloroethene	79-01-6	5		0.46	U	1.8	U	NA		NA		0.46	U	1.3		1.8	U
Trichlorofluoromethane	75-69-4	5		0.48	U	3.5	U	NA		NA		0.46 NA	U	NA		3.5	U
Vinyl chloride	75-09-4	2		0.88	U	3.5	U	NA		NA		NA		NA		3.6	U
			5														
Xylenes, Total	1330-20-7	5	-	0.66	U	2.6	U	NA		NA		NA	_	NA	_	2.6	U
Total Metals (mg/L)	7440	0.677		0.0		0						0		0		0	
Arsenic, Total	7440-38-2	0.025		0.0056	U	0.0056	U	NA		NA		0.0056	U	0.0056	U	0.0056	U
Chromium, Total	7440-47-3	0.05		0.0024	J	0.003	J	NA		NA		0.024		0.0027	J	0.0032	J
Chromium, Hexavalent	18540-29-9	0.05		0.005	U	0.005	U	NA		NA		0.005	U	0.0066	J	0.005	UH
Manganese, Total	7439-96-5	0.3		0.13		0.75		NA		NA		0.34		0.011		0.77	
General Chemistry (mg/L)		1															
Ammonia (as N)	7664-41-7	2		0.1	U	4.8		NA		NA		NA		NA		NA	
Chloride	16887-00-6	250		3.2		4.7		NA		NA		NA		NA		NA	
Total Sulfide	18496-25-8	0.05	(GV)	0.67	U	1.6		NA		NA		NA		NA	-	NA	
Hardness as calcium carbonate	STL00009			448		930		NA		NA		NA		NA		NA	
Field Measurements (Units as Indicated)																	
Sample Information				Initial	Final	Initial	Final	Initial	Final	Initial	Final	Initial	Final	Initial	Final	Initia	al
pH (units)	STL00199	6.5-8.5		6.39	6.64	6.37	6.67	NA	NA	NA	NA	6.92	6.98	6.88	6.84	-	
				9.9	8.8	13	13	NA	NA	NA	NA	13.1	12.8	10.1	9.8	-	
Temperature (°C)											NA						
Temperature (°C) Specific Conductance (uS/cm)	STL00246 STL00244			777	796	1483	1571	NA	NΔ	NΔ		1084		524	536	-	
Specific Conductance (µS/cm)	STL00244			777	796	1483	1571 2.18	NA	NA	NA		1084 14	1119	524 29.2	536		
				777 9.76 149	796 4.18 145	1483 4.2 -17	1571 2.18 -63	NA NA NA	NA NA NA	NA NA NA	NA NA NA	1084 14 154	1.8	524 29.2 123	536 1.34 143	-	

Notes:

 Notes:

 1. Only those parameters detected at a minimum of one sample location are presented in this table; all other compounds were reported as non-detect.

 2. Values per NYSDEC Division of Water Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations - GA Class (TOGS 1.1.1, Table 1)

 3. MV-2SR was not sampled as well was dry.

 4. Blind Duplicate was collected from MWFP-3S.

 5. Each xylene isomer has an individual GWQS of 5 ug/L in TOGS 1.1.1. Lab reports only as total xylenes.

Definitions:

Definitions: NA = not analyzed for these parameters *-* = No standard available for the parameter. U = Parameter not detected above laboratory detection limit. B = Compound was found in the blank and sample F1 = MS/MSD Recovery is outside acceptance limits. F2= MS/MSD RPD exceeds control limits H= Sample analyzed outside of laboratory method holding time. J = Estimated value; result is less than the sample quantitation limit but greater than zero. * + = LCS and/or LCSD is outside acceptance limits, high biased. GV = Guidance Value Highlighted = Result exceeds GWOS.

TABLE 3BSummary of Groundwater and Surface Water Analytical DataSurface Water

TABLE 3B SUMMARY OF SURFACE WATER ANALYTICAL DATA December 2023 Sampling Event Surface Water Peter Cooper Site Gowanda, NY

PARAMETER	CAS No.	GWQS ² Class Surface W Standar	ater	SW-1	1	SW-	2	SW-	3
Volatile Organic Compounds (VOCs) - (ug,	/L)							•	
1,1,1-Trichloroethane	71-55-6			0.82	U	0.82	U	0.82	U
1,1-Dichloroethane	75-34-3			0.38	U	0.38	U	0.38	U
2-Butanone (MEK)	78-93-3			1.3	U	1.3	U	1.3	U
Acetone	67-64-1			3	U	3	U	3	U
Carbon disulfide	75-15-0			0.19	U	0.19	U	0.19	U
Carbon tetrachloride	56-23-5			0.27	U	0.27	U	0.27	U
Chloroform	67-66-3			0.34	U	0.34	U	0.34	U
cis-1,2-Dichloroethene	156-59-2			0.81	U	0.81	U	0.81	U
Methylene chloride	75-09-2	200		0.44	U	0.44	U	0.44	U
Tetrachloroethene	127-18-4	1	(GV)	0.36	U	0.36	U	0.36	U
Trichloroethene	79-01-6	40		0.46	U	0.46	U	0.46	U
Total Metals (mg/L)						-			
Arsenic, Total	7440-38-2	0.15		0.0056	U	0.0056	U	0.0056	U
Chromium, Total	7440-47-3	Note 6		0.0045		0.0039	J	0.0038	J
Chromium, Hexavalent	18540-29-9	0.011		0.0066	J	0.005	U	0.0079	J
Manganese, Total	7439-96-5			0.068		0.056		0.052	
General Chemistry (mg/L)									
Ammonia (as N)	7664-41-7	Note 7		0.1	U	0.1	U	0.1	U
Chloride	16887-00-6			21.1		20.7		20.8	
Total Sulfide	18496-25-8	0.002	8	0.67	U F1	0.67	U	0.67	U
Hardness as calcium carbonate	STL00009			120		116		116	
Field Measurements (Units as Indicated)									
Sample Information				Initia	1	Initia	al	Initia	n/
pH (units)	STL00199			7.95		8.14		8.14	
Temperature (°C)	STL00246			4.7		4.4		4.3	
Specific Conductance (µS/cm)	STL00244			301		290		292	
Turbidity (NTU)	STL00392			20.4		20.8		23.2	
ORP (mV)	STL00811			247		125		86	
Dissolved Oxygen (mg/L)	STL00082			11.99		12.52		12.55	

	Calculated Class "	C" (T) SWQS (mg/L)	
PARAMETER	SW-1	SW-2	SW-3
Chromium ⁶	0.086	0.084	0.084
Ammonia ⁷	0.0110	0.0130	0.0130

Notes:

1. Only those parameters detected at a minimum of one sample location are presented in this table; all other compounds were reported as non-detect.

2. Values per NYSDEC Division of Water-Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitions (TOGS1.1.1)- Class C (T). More conservative of the A(C) and A(A) types where both types are available.

6. Class C Standard (ug/l) calculated as: (0.86) exp (0.819 [In (ppm hardness)] + 0.6848)

7. Value is pH and temperature dependent-per TOGS 1.1.1 lookup table.

8. Total sulfide SWQS based on hydrogen sulfide SWQS per TOGS 1.1.1.

Definitions:

NA = not analyzed for these parameters

"--" = No standard available for the parameter.

U = Parameter not detected above laboratory detection limit.

B = Compound was found in the blank and sample

F1 = MS/MSD Recovery is outside acceptance limits.

F2= MS/MSD RPD exceeds control limits

H= Sample analyzed outside of laboratory method holding time.

J = Estimated value; result is less than the sample quantitation limit but greater than zero.

*+ = LCS and/or LCSD is outside acceptance limits, high biased.

^+ = Continuing Calibration Verification (CCV) is outside acceptance limits, high biased.

GV = Guidance Value

TABLE 4A Historical Summary of Groundwater and Surface Water Analytical Data Groundwater Data

PARAMETER	CAS No.	GWQS ² Class "GA" Groundwater Standard					/-1SR			
			10/30/2015	11/16/2016	10/27/2017	10/10/2018	3/13/2020	6/23/2021	9/26/2022	12/11/2023
Volatile Organic Compounds (VOCs) - (ug/L)	T	[[T	1	1		T	
1,1,1-Trichloroethane	71-55-6	5	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethane	75-34-3	5	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethene	75-35-4	5	ND	ND	ND	ND	ND	ND	ND	ND
2-Butanone (MEK)	78-93-3	50 (GV)	ND	ND	ND	1.5	ND	ND	ND	ND
Acetone	67-64-1	50 (GV)	ND	ND	38	3	ND	ND	ND	ND
Carbon disulfide	75-15-0	60 (GV)	ND	ND	0.49 J	ND	ND	ND	ND	ND
Carbon tetrachloride	56-23-5	5	ND	ND	ND	ND	ND	ND	ND	ND
Chloroform	67-66-3	7	ND	ND	ND	ND	ND	ND	ND	ND
cis-1,2-Dichloroethene	156-59-2	5	ND	ND	ND	ND	ND	ND	ND	ND
Methylene chloride	75-09-2	5	ND	ND	ND	ND	ND	ND	ND	ND
Tetrachloroethene	127-18-4	5	ND	ND	ND	ND	ND	ND	ND	ND
trans-1,2-Dichloroethene	156-60-5	5	ND	ND	ND	ND	ND	ND	ND	ND
Trichloroethene	79-01-6	5	ND	ND	ND	ND	ND	ND	ND	ND
Total Metals (mg/L)									-	
Arsenic - Total	7440-38-2	0.025	ND	ND	0.018	ND	ND	ND	ND	ND
Chromium - Total	7440-47-3	0.05	ND	ND	0.092	ND	ND	ND	0.0016 J	0.0024 J
Chromium, Hexavalent - Total	18540-29-9	0.05	NA	NA	NA	NA	NA	NA	0.006 J B	ND
Iron - Total ⁴	7439-89-6	0.3	NA	NA	NA	ND	NA	NA	NA	NA
Manganese - Total	7439-96-5	0.3	2	2.8	5.2	6.3	2.9	3.7	2.5 B	0.13
Dissolved Metals										
Manganese - Soluble	7439-96-5D		NA	NA	NA	NA	NA	NA	NA	NA
General Chemistry (mg/L)										
Ammonia (as N)	7664-41-7	2	0.26	1.5	1.7	0.97	0.88	0.99	0.55	ND
Chloride	16887-00-6	250	8.5	7	6.5	8	5	4.3	2.6	3.2
Hardness as calcium carbonate	STL00009		470	396	425	416	388	42	444	448
Field Measurements (Units as Indicated)										
Sample Information			Final	Final	Final	Final	Final	Final	Final	Final
pH (units)	STL00199	6.5 - 8.5	6.64	6.91	6.99	6.88	6.6	7.11	6.77	6.64
Temperature (°C)	STL00246		14.9	14.1	16.5	18.7	6.6	13.7	16.6	8.8
Specific Conductance (µS/cm)	STL00244		815.4	724.7	749.9	816	638	788	658	796
Turbidity	STL00392		18.7	43.9	>1000	8	3.15	1.41	2.4	4.18
ORP (mV)	STL00811		19	-15	-72	-54	187.6	-36	23	145
Dissolved Oxygen (ppm)	STL00082		NA	NA	NA	NA	NA	-36	NA	2.03

Notes:

1. Only those parameters detected at a minimum of one sample location are presented in

this table; all other compounds were reported as non-detect.Values per NYSDEC Division of Water Ambient Water Quality Standards and Guidance

Values and Groundwater Effluent Limitations - GA Class (TOGS 1.1.1)

3. MW-2SR dry, no sample collected.

4. Iron samples were inadvertently collected during the events prior to June 2013; iron is not a required analyte per the approved post-remedial groundwater monitoring plan.

Definitions:

- ND = Parameter not detected above laboratory detection limit.
- NA = not analyzed for these parameters
- NS = not sampled
- "--" = No standard available for the parameter.

B = Compound was found in the blank and sample
 B7 = Detected in method blank at or above method reporting limit. Concentration was 10 times above the concentration found in the blank.

C= Calibration Varification recovery was above the method control limit for the analyte. A

high bias may be indicated.

D = Compounds were identified in an analysis at the secondary dilution factor.

F1 = MS/MSD Recovery is outside acceptance limits.

F2= MS/MSD RPD exceeds control limits

H= Sample analyzed outside of laboratory method holding time.

J = Estimated value; result is less than the sample quantitation limit but greater than zero.

*+ = LCS and/or LCSD is outside acceptance limits, high biased.
 ^+ = Continuing Calibration Verification (CCV) is outside acceptance limits, high biased.

GV = Guidance Value

PARAMETER	CAS No.	GWQS ² Class "GA" Groundwater Standard							M	W-5						
			6/23/2011	1/11/2012	6/25/2012	1/10/2013	6/25/2013	6/23/2014	10/30/2015	11/16/2016	10/27/2017	10/10/2018	3/13/2020	6/23/2021	9/26/2022	12/11/2023
Volatile Organic Compounds (VOCs) - (ug/L)						-					-	-	-			
1,1,1-Trichloroethane	71-55-6	5	ND	ND	ND	ND	ND	ND	ND	ND						
1,1-Dichloroethane	75-34-3	5	ND	ND	ND	ND	ND	ND	ND	ND						
1,1-Dichloroethene	75-35-4	5	ND	ND	ND	ND	ND	ND	ND	ND						
2-Butanone (MEK)	78-93-3	50 (GV)	ND	ND	ND	ND	ND	ND	ND	ND						
Acetone	67-64-1	50 (GV)	ND	ND	ND	ND	ND	ND	ND	ND						
Carbon disulfide	75-15-0	60 (GV)	ND	ND	ND	ND	ND	ND	ND	ND						
Carbon tetrachloride	56-23-5	5	ND	ND	ND	ND	ND	ND	ND	ND						
Chloroform	67-66-3	7	ND	ND	ND	ND	ND	ND	ND	ND						
cis-1,2-Dichloroethene	156-59-2	5	ND	ND	ND	ND	ND	ND	ND	ND						
Methylene chloride	75-09-2	5	ND	ND	ND	1.2 J	ND	ND	ND	ND						
Tetrachloroethene	127-18-4	5	ND	0.42 J	ND	ND	ND	ND	ND	ND						
trans-1,2-Dichloroethene	156-60-5	5	ND	ND	ND	ND	ND	ND	ND	ND						
Trichloroethene	79-01-6	5	ND	ND	ND	ND	ND	ND	ND	ND						
Total Metals (mg/L)																
Arsenic - Total	7440-38-2	0.025	ND	ND	ND	ND	ND	ND	ND	ND						
Chromium - Total	7440-47-3	0.05	ND	ND	ND	ND	0.0025 J	0.0031 J	0.0021 J	0.003 J						
Chromium, Hexavalent - Total	18540-29-9	0.05	NA	ND	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	ND	ND
Iron - Total ⁴	7439-89-6	0.3	24.7	ND	ND	15.1	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Manganese - Total	7439-96-5	0.3	0.79	1	0.96 B7	1.2	0.88	0.79	1.3	1.2	1.3	0.93	0.77	1.2	0.76 B	0.75
Dissolved Metals																
Manganese - Soluble	7439-96-5D		NA	NA	NA	NA	NA	NA	NA	NA						
General Chemistry (mg/L)															•	
Ammonia (as N)	7664-41-7	2	3.5	10.2	10.2	9.3	9.4	3.5	10.8	7.8	11	7.5	3.9	6.2	8.7	4.8
Chloride	16887-00-6	250	6.4	8.7	5.2	3.1	3.6	2.8	8.3	9.6	8.3	11.5	5.4	3	4.5	4.7
Hardness as calcium carbonate	STL00009		940	900	1300	610	920	1100	880	620	1300	1260	950	1450	1150	930
Field Measurements (Units as Indicated)															•	
Sample Information			Final	Final	Final	Final	Final	Final	Final	Final						
pH (units)	STL00199	6.5 - 8.5	7.1	6.85	6.57	6.74	6.81	7.01	6.77	6.78	6.77	6.89	6.17	6.94	6.95	6.67
Temperature (°C)	STL00246		18.9	10.9	12.8	12.8	13.6	17.1	13.6	14.3	15.3	18.4	9.6	12.7	14.6	13
Specific Conductance (µS/cm)	STL00244		1742	1592	2015	1135	1712	1773	1657	1239	2046	2483	1530	2338	1667	1571
Turbidity	STL00392		17	8.49	8.13	30	20.2	14.9	17.3	18.9	4.17	12	46.3	4.95	1.97	2.18
ORP (mV)	STL00811		-130	-55	-80	-62	-30	-66	-72	-52	-145	-140	-23.3	-64	-73	-63
Dissolved Oxygen (ppm)	STL00082		NA	NA	NA	NA	NA	-64	NA	0.78						

Notes:

1. Only those parameters detected at a minimum of one sample location are presented in

this table; all other compounds were reported as non-detect.Values per NYSDEC Division of Water Ambient Water Quality Standards and Guidance

Values and Groundwater Effluent Limitations - GA Class (TOGS 1.1.1)

3. MW-2SR dry, no sample collected.

4. Iron samples were inadvertently collected during the events prior to June 2013; iron is not a required analyte per the approved post-remedial groundwater monitoring plan.

Definitions:

- ND = Parameter not detected above laboratory detection limit.
- NA = not analyzed for these parameters
- NS = not sampled
- "--" = No standard available for the parameter.
- B = Compound was found in the blank and sample

B7 = Detected in method blank at or above method reporting limit. Concentration was 10 times above the concentration found in the blank.

C= Calibration Varification recovery was above the method control limit for the analyte. A

high bias may be indicated.

D = Compounds were identified in an analysis at the secondary dilution factor.

F1 = MS/MSD Recovery is outside acceptance limits.

F2= MS/MSD RPD exceeds control limits

H= Sample analyzed outside of laboratory method holding time.

J = Estimated value; result is less than the sample quantitation limit but greater than zero.

*+ = LCS and/or LCSD is outside acceptance limits, high biased.
 ^+ = Continuing Calibration Verification (CCV) is outside acceptance limits, high biased.

GV = Guidance Value

PARAMETER	CAS No.	GWQS ² Class "GA" Groundwater Standard							MV	N-7S						
			6/23/2011	1/11/2012	6/25/2012	1/10/2013	6/25/2013	6/23/2014	10/30/2015	11/16/2016	10/27/2017	10/10/2018	3/13/2020	6/23/2021	9/26/2022	12/11/2023
Volatile Organic Compounds (VOCs) - (ug/L)								-			-	-		-		
1,1,1-Trichloroethane	71-55-6	5	ND	ND	Dry	ND	ND	Dry	ND	Dry						
1,1-Dichloroethane	75-34-3	5	ND	ND	Dry	ND	ND	Dry	ND	Dry						
1,1-Dichloroethene	75-35-4	5	ND	ND	Dry	ND	ND	Dry	ND	Dry						
2-Butanone (MEK)	78-93-3	50 (GV)	ND	ND	Dry	ND	ND	Dry	ND	Dry						
Acetone	67-64-1	50 (GV)	ND	ND	7.6 J	ND	ND	ND	ND	ND	Dry	ND	ND	Dry	9.8 J	Dry
Carbon disulfide	75-15-0	60 (GV)	ND	ND	Dry	ND	ND	Dry	ND	Dry						
Carbon tetrachloride	56-23-5	5	ND	ND	Dry	ND	ND	Dry	ND	Dry						
Chloroform	67-66-3	7	ND	ND	Dry	ND	ND	Dry	ND	Dry						
cis-1,2-Dichloroethene	156-59-2	5	ND	ND	Dry	ND	ND	Dry	ND	Dry						
Methylene chloride	75-09-2	5	ND	ND	Dry	ND	ND	Dry	ND	Dry						
Tetrachloroethene	127-18-4	5	ND	ND	Dry	ND	ND	Dry	ND	Dry						
trans-1,2-Dichloroethene	156-60-5	5	ND	ND	Dry	ND	ND	Dry	ND	Dry						
Trichloroethene	79-01-6	5	ND	ND	Dry	ND	ND	Dry	ND	Dry						
Total Metals (mg/L)																
Arsenic - Total	7440-38-2	0.025	0.014	0.02	0.11	0.015	ND	0.043	ND	0.028	Dry	0.031	ND	Dry	0.0079 J	Dry
Chromium - Total	7440-47-3	0.05	ND	ND	ND	ND	ND	0.023	ND	ND	Dry	ND	0.0013	Dry	0.0012 J	Dry
Chromium, Hexavalent - Total	18540-29-9	0.05	NA	ND	NA	NA	NA	NA	NA	NA	Dry	NA	NA	Dry	ND	Dry
Iron - Total ⁴	7439-89-6	0.3	8.6	ND	ND	7.3	NA	NA	NA	NA	Dry	NA	NA	Dry	NA	Dry
Manganese - Total	7439-96-5	0.3	0.71	1.5	0.9	1.8	1.2	4	0.66	2.2	Drv	1.3	0.066	Drv	1.7 B	Drv
Dissolved Metals											,			, ,		,
Manganese - Soluble	7439-96-5D		NA	NA	Drv	NA	NA	Drv	NA	Drv						
General Chemistry (mg/L)															<u>.</u>	
Ammonia (as N)	7664-41-7	2	10.8	13.9	20.3	17.7	18.1	11.7	3.7	23	Dry	14.3	1.3	Dry	1.7	Dry
Chloride	16887-00-6	250	19.1	33.4	42.4	39.5	35.5	25.3	32.5	65.5	Dry	29.8	5.4	Dry	17	Dry
Hardness as calcium carbonate	STL00009		473	710	530	780	680	NA	340	NA	Dry	456	280	Dry	388	Dry
Field Measurements (Units as Indicated)															<u>.</u>	
Sample Information			Final	Final	Final	Final	Final	Final	Final	Final						
pH (units)	STL00199	6.5 - 8.5	7.01	6.94	NA	7.03	6.69	6.8	6.4	NA	Dry	7.13	6.48	Dry	6.86	Dry
Temperature (°C)	STL00246		17.3	9	NA	8.9	12.5	19.9	13.5	NA	Dry	18.3	6.6	Dry	17	Dry
Specific Conductance (µS/cm)	STL00244		992.1	1349	NA	1547	1413	2153	856.2	NA	Dry	1228	502	Dry	710	Dry
Turbidity	STL00392		12.1	1.69	NA	10	9.82	100	41.5	NA	Dry	21	24.8	Dry	4.92	Dry
ORP (mV)	STL00811		-95	-31	NA	57	92	80	37	NA	Dry	-86	294	Dry	-4	Dry
Dissolved Oxygen (ppm)	STL00082		NA	NA	Dry	NA	NA	Dry	NA	Dry						

Notes:

1. Only those parameters detected at a minimum of one sample location are presented in

this table; all other compounds were reported as non-detect.Values per NYSDEC Division of Water Ambient Water Quality Standards and Guidance

Values and Groundwater Effluent Limitations - GA Class (TOGS 1.1.1)

3. MW-2SR dry, no sample collected.

4. Iron samples were inadvertently collected during the events prior to June 2013; iron is not a required analyte per the approved post-remedial groundwater monitoring plan.

Definitions:

- ND = Parameter not detected above laboratory detection limit.
- NA = not analyzed for these parameters
- NS = not sampled
- "--" = No standard available for the parameter.
- B = Compound was found in the blank and sample

B7 = Detected in method blank at or above method reporting limit. Concentration was 10 times above the concentration found in the blank.

C= Calibration Varification recovery was above the method control limit for the analyte. A

high bias may be indicated.

D = Compounds were identified in an analysis at the secondary dilution factor.

F1 = MS/MSD Recovery is outside acceptance limits.

F2= MS/MSD RPD exceeds control limits

H= Sample analyzed outside of laboratory method holding time.

J = Estimated value; result is less than the sample quantitation limit but greater than zero.

*+ = LCS and/or LCSD is outside acceptance limits, high biased.
 ^+ = Continuing Calibration Verification (CCV) is outside acceptance limits, high biased.

GV = Guidance Value

4

PARAMETER	CAS No.	GWQS ² Class "GA" Groundwater Standard							'-2SR					
			6/23/2011	1/11/2012	6/25/2012	1/10/2013	6/25/2013	6/24/2013	10/30/2015	11/16/2016	3/13/2020	6/23/2021	9/26/2022	12/11/2023
Volatile Organic Compounds (VOCs) - (ug/L)				[[T		[1				
1,1,1-Trichloroethane	71-55-6	5	Dry	Dry	Dry	Dry	Dry	Dry						
1,1-Dichloroethane	75-34-3	5	Dry	Dry	Dry	Dry	Dry	Dry						
1,1-Dichloroethene	75-35-4	5	Dry	Dry	Dry	Dry	Dry	Dry						
2-Butanone (MEK)	78-93-3	50 (GV)	Dry	Dry	Dry	Dry	Dry	Dry						
Acetone	67-64-1	50 (GV)	Dry	Dry	Dry	Dry	Dry	Dry						
Carbon disulfide	75-15-0	60 (GV)	Dry	Dry	Dry	Dry	Dry	Dry						
Carbon tetrachloride	56-23-5	5	Dry	Dry	Dry	Dry	Dry	Dry						
Chloroform	67-66-3	7	Dry	Dry	Dry	Dry	Dry	Dry						
cis-1,2-Dichloroethene	156-59-2	5	Dry	Dry	Dry	Dry	Dry	Dry						
Methylene chloride	75-09-2	5	Dry	Dry	Dry	Dry	Dry	Dry						
Tetrachloroethene	127-18-4	5	Dry	Dry	Dry	Dry	Dry	Dry						
trans-1,2-Dichloroethene	156-60-5	5	Dry	Dry	Dry	Dry	Dry	Dry						
Trichloroethene	79-01-6	5	Dry	Dry	Dry	Dry	Dry	Dry						
Total Metals (mg/L)							-							
Arsenic - Total	7440-38-2	0.025	Dry	Dry	Dry	Dry	Dry	Dry						
Chromium - Total	7440-47-3	0.05	Dry	Dry	Dry	Dry	Dry	Dry						
Chromium, Hexavalent - Total	18540-29-9	0.05	Dry	Dry	Dry	Dry	Dry	Dry						
Iron - Total ⁴	7439-89-6	0.3	Dry	Dry	Dry	Dry	Dry	Dry						
Manganese - Total	7439-96-5	0.3	Dry	Dry	Dry	Dry	Dry	Dry						
Dissolved Metals														
Manganese - Soluble	7439-96-5D		Dry	Dry	Dry	Dry	Dry	Dry						
General Chemistry (mg/L)														
Ammonia (as N)	7664-41-7	2	Dry	Dry	Dry	Dry	Dry	Dry						
Chloride	16887-00-6	250	Dry	Dry	Dry	Dry	Dry	Dry						
Hardness as calcium carbonate	STL00009		Dry	Dry	Dry	Dry	Dry	Dry						
Field Measurements (Units as Indicated)														
Sample Information			Final	Final	Final	Final	Final	Final						
pH (units)	STL00199	6.5 - 8.5	Dry	Dry	Dry	Dry	Dry	Dry						
Temperature (°C)	STL00246		Dry	Dry	Dry	Dry	Dry	Dry						
Specific Conductance (µS/cm)	STL00244		Dry	Dry	Dry	Dry	Dry	Dry						
Turbidity	STL00392		Dry	Dry	Dry	Dry	Dry	Dry						
ORP (mV)	STL00811		Dry	Dry	Dry	Dry	Dry	Dry						
Dissolved Oxygen (ppm)	STL00082		Dry	Dry	Dry	Dry	Dry	Dry						

Notes:

1. Only those parameters detected at a minimum of one sample location are presented in

this table; all other compounds were reported as non-detect.Values per NYSDEC Division of Water Ambient Water Quality Standards and Guidance

Values and Groundwater Effluent Limitations - GA Class (TOGS 1.1.1)

3. MW-2SR dry, no sample collected.

4. Iron samples were inadvertently collected during the events prior to June 2013; iron is not a required analyte per the approved post-remedial groundwater monitoring plan.

Definitions:

- ND = Parameter not detected above laboratory detection limit.
- NA = not analyzed for these parameters
- NS = not sampled
- "--" = No standard available for the parameter.

B = Compound was found in the blank and sample
 B7 = Detected in method blank at or above method reporting limit. Concentration was 10 times above the concentration found in the blank.

C= Calibration Varification recovery was above the method control limit for the analyte. A

high bias may be indicated.

D = Compounds were identified in an analysis at the secondary dilution factor.

F1 = MS/MSD Recovery is outside acceptance limits.

F2= MS/MSD RPD exceeds control limits

H= Sample analyzed outside of laboratory method holding time.

J = Estimated value; result is less than the sample quantitation limit but greater than zero.

*+ = LCS and/or LCSD is outside acceptance limits, high biased.
 ^+ = Continuing Calibration Verification (CCV) is outside acceptance limits, high biased.

GV = Guidance Value

PARAMETER	CAS No.	GWQS ² Class "GA" Groundwater Standard							MW	/-FP-2S						
			6/23/2011	1/11/2012	6/25/2012	1/10/2013	6/25/2013	6/23/2014	10/30/2015	11/16/2016	10/27/2017	10/10/2018	3/13/2020	6/23/2021	9/26/2022	12/11/2023
Volatile Organic Compounds (VOCs) - (ug/L)																
1,1,1-Trichloroethane	71-55-6	5	ND	ND	ND	ND	ND	ND	ND	ND						
1,1-Dichloroethane	75-34-3	5	ND	ND	ND	ND	ND	ND	ND	ND						
1,1-Dichloroethene	75-35-4	5	ND	ND	ND	ND	ND	ND	ND	NA						
2-Butanone (MEK)	78-93-3	50 (GV)	ND	ND	ND	ND	ND	ND	ND	ND						
Acetone	67-64-1	50 (GV)	ND	ND	ND	ND	ND	ND	ND	ND						
Carbon disulfide	75-15-0	60 (GV)	ND	ND	ND	ND	ND	ND	ND	NA						
Carbon tetrachloride	56-23-5	5	ND	ND	ND	ND	ND	ND	ND	NA						
Chloroform	67-66-3	7	ND	ND	ND	ND	ND	ND	ND	ND						
cis-1,2-Dichloroethene	156-59-2	5	ND	ND	ND	ND	ND	ND	ND	ND						
Methylene chloride	75-09-2	5	ND	ND	ND	ND	ND	ND	ND	ND						
Tetrachloroethene	127-18-4	5	ND	0.77 J	ND	ND	ND	ND	ND	ND						
trans-1,2-Dichloroethene	156-60-5	5	ND	ND	ND	ND	ND	ND	ND	NA						
Trichloroethene	79-01-6	5	ND	ND	ND	ND	ND	ND	ND	ND						
Total Metals (mg/L)	•															
Arsenic - Total	7440-38-2	0.025	0.026	0.025	0.018	0.015	0.014	ND	ND	ND	ND	ND	0.0086	ND	ND	ND
Chromium - Total	7440-47-3	0.05	0.018	0.041	0.056	0.01	0.0092	0.0099	0.038	0.049	0.054	0.02	0.012	0.01	0.012 F1 F2	0.024
Chromium, Hexavalent - Total	18540-29-9	0.05	NA	NA	NA	NA	NA	NA	0.0085 J B	ND						
Iron - Total ⁴	7439-89-6	0.3	8	ND	ND	5.2	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Manganese - Total	7439-96-5	0.3	0.5	0.36	0.43	0.57	0.44	0.42	0.3	0.5	0.4	0.37	0.38	0.4	0.38 B	0.34
Dissolved Metals	<u>.</u>															
Manganese - Soluble	7439-96-5D		NA	NA	NA	NA	NA	NA	NA	NA						
General Chemistry (mg/L)	•															
Ammonia (as N)	7664-41-7	2	3.2	NA	NA	NA	NA	NA	NA	NA	NA	NA	2.6	6.6	0.91	NA
Chloride	16887-00-6	250	22.8	NA	NA	NA	NA	NA	NA	NA	NA	NA	4.2	8.6	3.8	NA
Hardness as calcium carbonate	STL00009		873	NA	NA	NA	NA	NA	NA	NA	NA	NA	536	570	580 F1	NA
Field Measurements (Units as Indicated)	•															
Sample Information			Final	Final	Final	Final	Final	Final	Final	Final						
pH (units)	STL00199	6.5 - 8.5	7.55	7.24	7.42	7.1	7.46	7.29	7.14	7.26	7.32	7.13	6.55	7.45	7.18	6.98
Temperature (°C)	STL00246		17.3	10.7	13.7	11.5	14.9	17.5	12.6	14.2	15	19.2	9.3	12.4	12.9	12.8
Specific Conductance (µS/cm)	STL00244		1212	1207	1192	1220	1053	970	1210	1224	982.8	1121	950	1023	1082	1119
Turbidity	STL00392		47	8.14	6.14	3.33	20.7	3.94	8.42	22.5	10.3	4	6.7	0.56	4.45	1.8
ORP (mV)	STL00811		-145	-27	42	-76	-42	-142	-30	-59	-103	-95	-58.4	-99	-30	-70
Dissolved Oxygen (ppm)	STL00082		NA	NA	NA	NA	NA	-99	NA	1.02						

Notes:

1. Only those parameters detected at a minimum of one sample location are presented in

this table; all other compounds were reported as non-detect.Values per NYSDEC Division of Water Ambient Water Quality Standards and Guidance

Values and Groundwater Effluent Limitations - GA Class (TOGS 1.1.1)

3. MW-2SR dry, no sample collected.

4. Iron samples were inadvertently collected during the events prior to June 2013; iron is not a required analyte per the approved post-remedial groundwater monitoring plan.

Definitions:

- ND = Parameter not detected above laboratory detection limit.
- NA = not analyzed for these parameters
- NS = not sampled
- "--" = No standard available for the parameter.

B = Compound was found in the blank and sample

B7 = Detected in method blank at or above method reporting limit. Concentration was 10 times above the concentration found in the blank.

C= Calibration Varification recovery was above the method control limit for the analyte. A

high bias may be indicated.

D = Compounds were identified in an analysis at the secondary dilution factor.

F1 = MS/MSD Recovery is outside acceptance limits.

F2= MS/MSD RPD exceeds control limits

H= Sample analyzed outside of laboratory method holding time.

J = Estimated value; result is less than the sample quantitation limit but greater than zero.

*+ = LCS and/or LCSD is outside acceptance limits, high biased.
 ^+ = Continuing Calibration Verification (CCV) is outside acceptance limits, high biased.

GV = Guidance Value

PARAMETER	CAS No.	GWQS ² Class "GA" Groundwater Standard								FP-3S						
			6/23/2011	1/11/2012	6/25/2012	1/10/2013	6/25/2013	6/23/2014	10/30/2015	11/16/2016	10/27/2017	10/10/2018	3/13/2020	6/23/2021	9/26/2022	12/11/2023
Volatile Organic Compounds (VOCs) - (ug/L)	-										•	•		•		
1,1,1-Trichloroethane	71-55-6	5	3.1	1.2	1.3	2.8	3.2	2.1	3.5	1.3	1.3	2.9	1.1	ND	3.5	1.4
1,1-Dichloroethane	75-34-3	5	0.91 J	ND	0.82 J	ND	ND	ND	0.4 J	1.2	2.5	1.7 J	ND	0.67 J	0.8 J	ND
1,1-Dichloroethene	75-35-4	5	ND	ND	ND	ND	ND	ND	0.3	ND	ND	ND	ND	ND	ND	NA
2-Butanone (MEK)	78-93-3	50 (GV)	ND	ND	ND	ND	ND	ND	ND	ND						
Acetone	67-64-1	50 (GV)	ND	ND	ND	ND	ND	ND	ND	ND						
Carbon disulfide	75-15-0	60 (GV)	ND	ND	ND	ND	ND	ND	ND	NA						
Carbon tetrachloride	56-23-5	5	ND	ND	ND	0.44	ND	ND	0.73	ND	ND	ND	ND	ND	0.59 J	NA
Chloroform	67-66-3	7	1.4	0.44 J	ND	0.69 J	0.73 J	0.45 J	2.6 J	0.63 J	ND	1.3 J	ND	ND	2	0.79 J
cis-1,2-Dichloroethene	156-59-2	5	1.6	0.91 J	2.8	ND	ND	1.6	1.2	5.4	6.5	8.1	ND	4.6	1.5	ND
Methylene chloride	75-09-2	5	ND	ND	ND	1.4 J	ND	ND	ND	ND						
Tetrachloroethene	127-18-4	5	7.9	6.9	3.3	13	12	10	9.5	5.9	3.8	8.5	4.7	1.9	12	4.8
trans-1,2-Dichloroethene	156-60-5	5	ND	ND	0.23	ND	ND	ND	ND	NA						
Trichloroethene	79-01-6	5	3.2	2.4	2.3	1.8	2.7	1.9	3.8	2.3	1.7	3.2	1.7	1	2.6	1.3
Total Metals (mg/L)																
Arsenic - Total	7440-38-2	0.025	ND	ND	ND	ND	ND	ND	ND	ND						
Chromium - Total	7440-47-3	0.05	0.011	ND	ND	ND	ND	ND	ND	ND	ND	0.0065	0.0021 J	0.0015 J	ND	0.0027 J
Chromium, Hexavalent - Total	18540-29-9	0.05	NA	NA	NA	0.021 H	NA	NA	0.0097 JB	0.0066 J						
Iron - Total ⁴	7439-89-6	0.3	5.9	ND	ND	1.5	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Manganese - Total	7439-96-5	0.3	0.64	0.069	2.5	0.15	0.25	1.2	0.28	0.56	5.2	6.6	0.02	2.2	0.22 B	0.011
Dissolved Metals	-															
Manganese - Soluble	7439-96-5D		NA	NA	NA	NA	NA	NA	NA	NA						
General Chemistry (mg/L)																
Ammonia (as N)	7664-41-7	2	3.8	NA	NA	NA	NA	NA	NA	NA	NA	NA	0.21	17	0.89	NA
Chloride	16887-00-6	250	38.7	NA	NA	NA	NA	NA	NA	NA	NA	NA	12.5	ND	8	NA
Hardness as calcium carbonate	STL00009		690	NA	NA	NA	NA	NA	NA	NA	NA	NA	340	420	292	NA
Field Measurements (Units as Indicated)																
Sample Information			Final	Final	Final	Final	Final	Final	Final	Final						
pH (units)	STL00199	6.5 - 8.5	7.24	7.1	6.72	7.22	6.68	7.1	6.69	6.68	6.72	6.75	6.19	7.06	6.88	6.84
Temperature (°C)	STL00246		16.7	8.5	14.6	9.6	13.8	14.6	13.3	14.2	15.2	17.7	6.2	12	15.7	9.8
Specific Conductance (µS/cm)	STL00244		1290	550.9	1881	771	842.1	1187	744.9	1002	1487	1850	642	1013	578	536
Turbidity	STL00392		25.5	8.78	7.46	7.5	18.5	13.9	9.91	5.79	2.7	16	2.49	3.68	1.51	1.34
ORP (mV)	STL00811		-40	35	32	429	106	132	98	43	7	-61	222	-30	123	143
Dissolved Oxygen (ppm)	STL00082		NA	NA	NA	NA	NA	NA	NA	5.48						

Notes:

1. Only those parameters detected at a minimum of one sample location are presented in

this table; all other compounds were reported as non-detect.Values per NYSDEC Division of Water Ambient Water Quality Standards and Guidance

Values and Groundwater Effluent Limitations - GA Class (TOGS 1.1.1)

3. MW-2SR dry, no sample collected.

4. Iron samples were inadvertently collected during the events prior to June 2013; iron is not a required analyte per the approved post-remedial groundwater monitoring plan.

Definitions:

- ND = Parameter not detected above laboratory detection limit.
- NA = not analyzed for these parameters
- NS = not sampled
- "--" = No standard available for the parameter.

B = Compound was found in the blank and sample

B7 = Detected in method blank at or above method reporting limit. Concentration was 10 times above the concentration found in the blank.

C= Calibration Varification recovery was above the method control limit for the analyte. A

high bias may be indicated.

D = Compounds were identified in an analysis at the secondary dilution factor.

F1 = MS/MSD Recovery is outside acceptance limits.

F2= MS/MSD RPD exceeds control limits

H= Sample analyzed outside of laboratory method holding time.

J = Estimated value; result is less than the sample quantitation limit but greater than zero.

*+ = LCS and/or LCSD is outside acceptance limits, high biased.
 ^+ = Continuing Calibration Verification (CCV) is outside acceptance limits, high biased.

GV = Guidance Value

TABLE 4B Historical Summary of Groundwater and Surface Water Analytical Data Surface Water Data

PARAMETER	CAS No.	SWQS ² Class "C" (T) Surface Water Standard	((00 (005 -	4 (44 (00) - 2	(IOF (004))	1 10 100	(105.000-0	(/00 /00		SW-1	40/07/0217	40 100 100 100	0.400.0000	(100 1000 1	0/0//00000	10/14/10:00
Volatile Organic Compounds (VOCs) - (ug/L)			6/23/2011	1/11/2012	6/25/2012	1/10/2013	6/25/2013	6/23/2014	10/30/2015	11/16/2016	10/27/2017	10/10/2018	3/13/2020	6/23/2021	9/26/2022	12/11/2023
1,1,1-Trichloroethane	71-55-6		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethane	75-34-3		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethene	75-35-4		NA	ND	ND	ND	NA	NA	NA	NA	NA	NA	NA	NA	ND	ND
2-Butanone (MEK)	78-93-3		NA	ND	ND	ND	NA	NA	NA	NA	NA	NA	NA	NA	ND	ND
Acetone	67-64-1		3	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Carbon disulfide	75-15-0		NA	ND	ND	ND	NA	NA	NA	NA	NA	NA	NA	NA	0.21 J	ND
Carbon tetrachloride	56-23-5		NA	ND	ND	ND	NA	NA	NA	NA	NA	NA	NA	NA	ND	ND
Chloroform	67-66-3		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
cis-1,2-Dichloroethene	156-59-2		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Methylene chloride	75-09-2	200	NA	ND	ND	ND	NA	NA	NA	NA	NA	NA	NA	NA	ND	ND
Tetrachloroethene	127-18-4	1 (GV)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
trans-1,2-Dichloroethene	156-60-5	(67)	NA	ND	ND	ND	NA	NA	NA	NA	NA	NA	NA	NA	ND	ND
Trichloroethene	79-01-6	40	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Total Metals	79-01-0	40	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Arsenic - Total	7440-38-2	0.15	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.008 J	ND
Chromium - Total	7440-30-2	Note 7	0.016	ND	ND	0.0044	ND	ND	ND	ND	ND	ND	ND	ND	0.02	0.0045
Chromium, Hexavalent - Total	18540-29-9	0.011	ND	ND	ND	ND	ND	ND	ND	0.011	ND	ND	ND	ND	0.0085 J E	
Iron - Total ⁸	7439-89-6	0.3	19.5	ND	ND	1.1	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Manganese - Total	7439-89-8		0.35	0.029	0.032 B7	0.044	0.01	0.031	0.031	0.018	0.015	0.052	0.02	0.042	0.55 B	
Dissolved Metals	/439-90-5		0.35	0.029	0.032 B7	0.044	0.01	0.031	0.031	0.018	0.015	0.052	0.02	0.042	0.55 B	0.008
	7420.04 50		NIA	NA	NA	NIA	NIA	N LA	ND	NLA.	NIA	N A	NIA	NLA	NIA	NIA
Manganese - Soluble	7439-96-5D		NA	NA	NA	NA	NA	NA	ND	NA	NA	NA	NA	NA	NA	NA
General Chemistry (mg/L)	7// / / 1 7	Nata (ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Ammonia (as N)	7664-41-7	Note 6	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chloride	16887-00-6		22	23.7	30.2	30.2 144	31.3	33.7	22.1	33.4 184	30	20.4	12.5	26.7	15.9	21.1
Hardness as calcium carbonate	STL00009		139	140	160	144	172	180	136	184	176	152	340	164	224	120
Field Measurements (Units as Indicated)			Initial	Initial	Initial	Initial	Initial	Initial	Initial	Initial	Initial	Initial	Initial	Initial	Initial	Initial
Sample Information oH (units)	STL00199		8.17	8.08	8.75	7.93	8.24	8.21	7.85	8.08	8.46	8.67	8.36	7.33	7.92	7.95
Temperature (°C)	STL00199		-	4.1											14.5	4.7
i emperature (°C) Specific Conductance (µS/cm)	STL00246 STL00244		26.2 385.9	4.1 326.4	21.5 408.6	3.3	23.5	24.3	10.2	6.3	10.1 412.3	21	6.9	16.6		
Specific Conductance (µS7cm) Turbidity	STL00244 STL00392		385.9 405	326.4 21.6	408.6	380 19.7	418.2 21.3	440 10	326.1 117	430.7 6.14	412.3 6.04	516 69	273 51.6	382 20.5	354 >1000	301 20.4
ORP (mV)			405 -105	21.6	41.9	19.7	21.3	58	117		-38	69 37		20.5	>1000	20.4 247
	STL00811				_					-20			206 NA		9.52	11.99
Dissolved Oxygen (ppm)	STL00082		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	INA	141	9.52	11.99
Calculated Surface Water GWQS (mg/L)			SW-1	SW-1	SW-1	SW-1	SW-1	SW-1	SW-1	SW-1	SW-1	SW-1	SW-1	SW-1	SW-1	SW-1
			6/23/2011	1/11/2012	6/25/2012	1/10/2013	6/25/2013	6/23/2014	10/30/2015	11/16/2016	10/27/2017	10/10/2018	3/13/2020	6/23/2021	9/26/2022	12/11/2023
Chromium ⁵			0.097	0.098	0.109	0.100	0.116	0.120	0.095	0.122	0.118	0.104	0.202	0.111	0.143	0.086

Notes:

1. Only those parameters detected at a minimum of one sample location are presented in this table; all other compounds were reported as non-detect.

2. Values per NYSDEC Division of Water-Ambient Water Quality Standards and Guidance

Values and Groundwater Effluent Limitions (TOGS1.1.1)- Class C (T). More conservative of the A(C) and A(A) types where both types are available.

Class C Standard (ug/l) calculated as: (0.86) exp (0.819 [In (ppm hardness)] + 0.6848)
 Value is pH and temperature dependent-per TOGS 1.1.1 lookup table.

7. Total sulfide SWQS based on hydrogen sulfide SWQS per TOGS 1.1.1.

8. Iron samples were inadvertently collected during the events prior to June 2013; iron is not

a required analyte per the approved post-remedial groundwater monitoring plan.

Definitions:

ND = Parameter not detected above laboratory detection limit.

NA = not analyzed for these parameters

NS = not sampled

"--" = No standard available for the parameter. B = Compound was found in the blank and sample

B7 = Detected in method blank at or above method reporting limit. Concentration was 10 C= Calibration Varification recovery was above the method control limit for the analyte. A

D = Compounds were identified in an analysis at the secondary dilution factor.

F1 = MS/MSD Recovery is outside acceptance limits.

F2= MS/MSD RPD exceeds control limits

H= Sample analyzed outside of laboratory method holding time.

J = Estimated value; result is less than the sample quantitation limit but greater than zero.

*+ = LCS and/or LCSD is outside acceptance limits, high biased.

^+ = Continuing Calibration Verification (CCV) is outside acceptance limits, high biased.

GV = Guidance Value

PARAMETER	CAS No.	SWQS ² Class "C" (T) Surface Water Standard	(/00 /0011	1/11/2012	(/25 / 2012	1/10/2013	(/2E /2012	(/00 /001 /		SW-2	10/07/2017	10/10/2010	2/12/2020	(/22 /2021	0/2/ /2022	12/11/2022
Volatile Organic Compounds (VOCs) - (ug/L)			6/23/2011	1/11/2012	6/25/2012	1/10/2013	6/25/2013	6/23/2014	10/30/2015	11/16/2016	10/27/2017	10/10/2018	3/13/2020	6/23/2021	9/26/2022	12/11/2023
1,1,1-Trichloroethane	71-55-6		ND	ND	ND	ND	ND	ND	ND	ND						
1.1-Dichloroethane	75-34-3		ND	ND	ND	ND	ND	ND	ND	ND						
1,1-Dichloroethene	75-35-4		ND	ND	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	ND	ND
2-Butanone (MEK)	78-93-3		ND	ND	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	ND	ND
Acetone	67-64-1		ND	ND	ND	3.5 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Carbon disulfide	75-15-0		ND	ND	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	0.24 J	ND
Carbon tetrachloride	56-23-5		ND	ND	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	ND	ND
Chloroform	67-66-3		ND	ND	ND	ND	ND	ND	ND	ND						
cis-1.2-Dichloroethene	156-59-2		ND	ND	ND	ND	ND	ND	ND	ND						
Methylene chloride	75-09-2	200	ND	ND	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	ND	ND
Tetrachloroethene	127-18-4	1 (GV)	ND	ND	ND	ND	ND	ND	ND	ND						
trans-1,2-Dichloroethene	156-60-5	(07)	ND	ND	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	ND	ND
Trichloroethene	79-01-6	40	ND	ND	ND	ND	ND	ND	ND	ND						
Total Metals	79-01-0	40	ND		ND	ND	ND	ND	ND		ND	ND	ND	ND	ND	ND
Arsenic - Total	7440-38-2	0.15	ND	ND	ND	ND	ND	ND	0.019	ND						
Chromium - Total	7440-47-3	Note 7	0.017	ND	ND	ND	ND	ND	0.0042	ND	ND	ND	ND	0.0018 J	0.042	0.0039 J
Chromium, Hexavalent - Total	18540-29-9	0.011	ND	ND	ND	ND	ND	ND	0.0097 JB							
Iron - Total ⁸	7439-89-6	0.3	22	ND	ND	0.95	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Manganese - Total	7439-96-5		0.44	0.027	0.027	0.033	0.0078	0.017	0.091	0.017	0.011	0.051	0.066	0.044	1.5 B	0.056
Dissolved Metals	7439-90-3		0.44	0.027	0.027	0.033	0.0070	0.017	0.071	0.017	0.011	0.031	0.000	0.044	1.5 0	0.030
Manganese - Soluble	7439-96-5D		NA	NA	NA	NA	NA	NA	ND	NA	NA	ND	NA	NA	NA	NA
General Chemistry (mg/L)	7439-90-3D		NA	NA	NA	NA	NA	NA	ND	NA	NA	ND	NA	NA	NA	NA
Ammonia (as N)	7664-41-7	Note 6	ND	ND	ND	ND	ND	ND	0.3	ND	ND	ND	ND	ND	ND	ND
Chloride	16887-00-6		21.5	23.5	29.9	29.3	31.4	33.4	20	33.1	29.9	20.3	21.4	26.9	15.3	20.7
Hardness as calcium carbonate	STL00009		189	150	164	140	180	180	120	196	176	148	120	172	276 F1	116
Field Measurements (Units as Indicated)	31200009		107	150	104	140	160	160	120	190	170	140	120	172	270 11	110
Sample Information			Initial	Initial	Initial	Initial	Initial	Initial	Initial	Initial						
pH (units)	STL00199		8.16	8.29	8.44	7.21	8.54	8.32	7.96	7.82	8.32	8.45	8.34	8.24	8.11	8.14
Temperature (°C)	STL00246		23	3.3	22.8	2.6	24.8	23.8	10.1	6.3	10.5	23	6.8	17.4	14.3	4.4
Specific Conductance (µS/cm)	STL00240		316.7	328.7	405.8	385	416.2	421	287.5	427.1	438.7	445	274.2	372	250	290
Turbidity	STL00244 STL00392		626	23.8	31.1	23	27.4	10.2	140	2.99	5.9	73	52.6	19.1	>1000	20.8
ORP (mV)	STL00372		-75	16	18	117	-14	107	77	79	-4	-15	228	200	NA	125
Dissolved Oxygen (ppm)	STL00082		NA	NA	NA	NA	NA	200	9.83	12.52						
sisseried skilden (bhu)	51200002	1	1973	1.47.5	1.97.5	1973	1.97.5	1.97.5	1.47.1	1.97.5	1.47.5	1.97.5	1.47.3	200	7.00	12.02
Calculated Surface Water GWQS (mg/L)			SW-2 6/23/2011	SW-2 1/11/2012	SW-2 6/25/2012	SW-2 1/10/2013	SW-2 6/25/2013	SW-2 6/23/2014	SW-2 10/30/2015	SW-2 11/16/2016	SW-2 10/27/2017	SW-2 10/10/2018	SW-2 3/13/2020	SW-2 6/23/2021	SW-2 9/26/2022	SW-2 12/11/2023
Chromium ⁵			0.125	0.103	0.111	0.098	0.120	0.120	0.086	0.129	0.118	0.102	0.086	0.116	0.170	0.084
Ammonia ⁶			0.035	0.013	0.035	0.002	0.035	0.035	0.022	0.015	0.025	0.035	0.018	0.035	0.025	0.013
מווטחוחר			0.035	0.013	0.035	0.002	0.030	0.030	0.022	0.010	0.020	0.030	0.010	0.033	0.020	0.013

Notes:

1. Only those parameters detected at a minimum of one sample location are presented in this table; all other compounds were reported as non-detect.

2. Values per NYSDEC Division of Water-Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitions (TOGS1.1.1)- Class C (T). More conservative of the A(C) and A(A) types where both types are available.

Class C Standard (ug/l) calculated as: (0.86) exp (0.819 [In (ppm hardness)] + 0.6848)
 Value is pH and temperature dependent-per TOGS 1.1.1 lookup table.

7. Total sulfide SWQS based on hydrogen sulfide SWQS per TOGS 1.1.1.

8. Iron samples were inadvertently collected during the events prior to June 2013; iron is not

a required analyte per the approved post-remedial groundwater monitoring plan.

Definitions:

ND = Parameter not detected above laboratory detection limit.

NA = not analyzed for these parameters

NS = not sampled

"--" = No standard available for the parameter. B = Compound was found in the blank and sample

B7 = Detected in method blank at or above method reporting limit. Concentration was 10 C= Calibration Varification recovery was above the method control limit for the analyte. A

D = Compounds were identified in an analysis at the secondary dilution factor.

F1 = MS/MSD Recovery is outside acceptance limits.

F2= MS/MSD RPD exceeds control limits

H= Sample analyzed outside of laboratory method holding time.

J = Estimated value; result is less than the sample quantitation limit but greater than zero.

*+ = LCS and/or LCSD is outside acceptance limits, high biased.

^+ = Continuing Calibration Verification (CCV) is outside acceptance limits, high biased.

GV = Guidance Value

PARAMETER	CAS No.	SWQS ² Class "C" (T) Surface Water Standard	(00)0000	1 /11 /0010	(105.10040	1 (10 (0010	(/05 /0040	(/00 /001 (SW-3	10/07/0017	10/10/0010	0.110.10000	(/00 /0001	0/0//0000	40/44/0000
Volatile Organic Compounds (VOCs) - (ug/L)			6/23/2011	1/11/2012	6/25/2012	1/10/2013	6/25/2013	6/23/2014	10/30/2015	11/16/2016	10/27/2017	10/10/2018	3/13/2020	6/23/2021	9/26/2022	12/11/2023
1.1.1-Trichloroethane	71-55-6		ND	ND	ND	ND	ND	ND	ND	ND						
1,1-Dichloroethane	75-34-3		ND	ND	ND	ND	ND	ND	ND	ND						
1.1-Dichloroethene	75-35-4		ND	ND	ND	ND	NA	NA	NA	NA	NA	NA	NA	NA	ND	ND
2-Butanone (MEK)	78-93-3		ND	ND	ND	ND	NA	NA	NA	NA	NA	NA	NA	NA	ND	ND
Acetone	67-64-1		ND	ND	ND	ND	ND	ND	ND	ND						
Carbon disulfide	75-15-0		ND	ND	ND	ND	NA	NA	NA	NA	NA	NA	NA	NA	ND	ND
Carbon tetrachloride	56-23-5		ND	ND	ND	ND	NA	NA	NA	NA	NA	NA	NA	NA	ND	ND
Chloroform	67-66-3		ND	ND	ND	ND	ND	ND	ND	ND						
cis-1,2-Dichloroethene	156-59-2		ND	ND	ND	ND	ND	ND	ND	ND						
Methylene chloride	75-09-2	200	ND	ND	ND	ND	NA	NA	NA	NA	NA	NA	NA	NA	ND	ND
Tetrachloroethene	127-18-4	1 (GV)	ND	ND	ND	ND	ND	ND	ND	ND						
trans-1,2-Dichloroethene	156-60-5		ND	ND	ND	ND	NA	NA	NA	NA	NA	NA	NA	NA	ND	ND
Trichloroethene	79-01-6	40	ND	ND	ND	ND	ND	ND	ND	ND						
Total Metals																
Arsenic - Total	7440-38-2	0.15	0.013	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.014 J	ND
Chromium - Total	7440-47-3	Note 7	0.024	ND	ND	ND	ND	ND	0.0004	ND	ND	ND	ND	0.0012 J	0.027	0.0038 J
Chromium, Hexavalent - Total	18540-29-9	0.011	ND	ND	ND	ND	ND	ND	0.006 J B	0.0079 J						
Iron - Total ⁸	7439-89-6	0.3	32.1	ND	ND	1	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Manganese - Total	7439-96-5		0.62	0.27	0.024	0.033	0.025	0.017	0.18	0.017	0.011	0.046	0.066	0.04	0.98 B	0.052
Dissolved Metals																
Manganese - Soluble	7439-96-5D		ND	NA	NA	NA	NA	NA	0.014	NA	NA	0.0035	NA	NA	NA	NA
General Chemistry (mg/L)																
Ammonia (as N)	7664-41-7	Note 6	ND	0.034	ND	ND	0.032	ND	0.13	ND	ND	0.047	ND	ND	ND	ND
Chloride	16887-00-6		24.5	22.7	29.7	29.4	39.3	33.2	25.2	32.8	30.1	20	21.6	27.2	16	20.8
Hardness as calcium carbonate	STL00009		194	140	160	142	132	180	152	176	174	160	116	152	244	116
Field Measurements (Units as Indicated)		1													-	
Sample Information	071 00100		Initial	Initial	Initial	Initial	Initial	Initial	Initial	Initial						
pH (units)	STL00199		8.51	7.91	8.53	8.14	8.41	8.42	7.12	7.95	8.4	8.71	8.28	8.45	7.95	8.14
Temperature (°C)	STL00246		23.9	3.8	23.7	2.7	25.9	23.9	10.2	6.1	13.9	21.8	6.9	18.8	14.3	4.3
Specific Conductance (µS/cm)	STL00244		312.6	330	402.9	347	464.1	500	373	427.7	410.9	425 57	278.9 59.5	372	258	292
Turbidity ORP (mV)	STL00392 STL00811		934	20.6	32 50	34 104	24.3 37	11 92	116 35	4.86	6.96	-		16 175	>1000	23.2
	STL00811 STL00082		43 NA	25 NA	50 NA	NA	37 NA	92 NA	35 NA	46 NA	-131 NA	-16 NA	254 NA	175	88 9.84	86 12.55
Dissolved Oxygen (ppm)	31100062		NA	NA	NA	INA	NA	NA	NA	INA	NA	NA	IVA	175	9.04	12.00
Calculated Surface Water GWQS (mg/L)			SW-3 6/23/2011	SW-3 1/11/2012	SW-3 6/25/2012	SW-3 1/10/2013	SW-3 6/25/2013	SW-3 6/23/2014	SW-3 10/30/2015	SW-3 11/16/2016	SW-3 10/27/2017	SW-3 10/10/2018	SW-3 3/13/2020	SW-3 6/23/2021	SW-3 9/26/2022	SW-3 12/11/2023
Chromium ⁵			0.128	0.098	0.109	0.099	0.093	0.120	0.104	0.118	0.117	0.109	0.084	0.104	0.154	0.084
Ammonia ⁶			0.035	0.011	0.035	0.013	0.035	0.035	0.004	0.015	0.025	0.035	0.018	0.035	0.022	0.013

Notes:

1. Only those parameters detected at a minimum of one sample location are presented in this table; all other compounds were reported as non-detect.

2. Values per NYSDEC Division of Water-Ambient Water Quality Standards and Guidance

Values and Groundwater Effluent Limitions (TOGS1.1.1)- Class C (T). More conservative of the A(C) and A(A) types where both types are available.

Class C Standard (ug/l) calculated as: (0.86) exp (0.819 [In (ppm hardness)] + 0.6848)
 Value is pH and temperature dependent-per TOGS 1.1.1 lookup table.

7. Total sulfide SWQS based on hydrogen sulfide SWQS per TOGS 1.1.1.

8. Iron samples were inadvertently collected during the events prior to June 2013; iron is not

a required analyte per the approved post-remedial groundwater monitoring plan.

Definitions:

ND = Parameter not detected above laboratory detection limit.

NA = not analyzed for these parameters

NS = not sampled

"--" = No standard available for the parameter. B = Compound was found in the blank and sample

B7 = Detected in method blank at or above method reporting limit. Concentration was 10 C= Calibration Varification recovery was above the method control limit for the analyte. A

D = Compounds were identified in an analysis at the secondary dilution factor.

F1 = MS/MSD Recovery is outside acceptance limits.

F2= MS/MSD RPD exceeds control limits

H= Sample analyzed outside of laboratory method holding time.

J = Estimated value; result is less than the sample quantitation limit but greater than zero.

*+ = LCS and/or LCSD is outside acceptance limits, high biased.

^+ = Continuing Calibration Verification (CCV) is outside acceptance limits, high biased.

GV = Guidance Value

Figures

FIGURE 1 Site Location Map

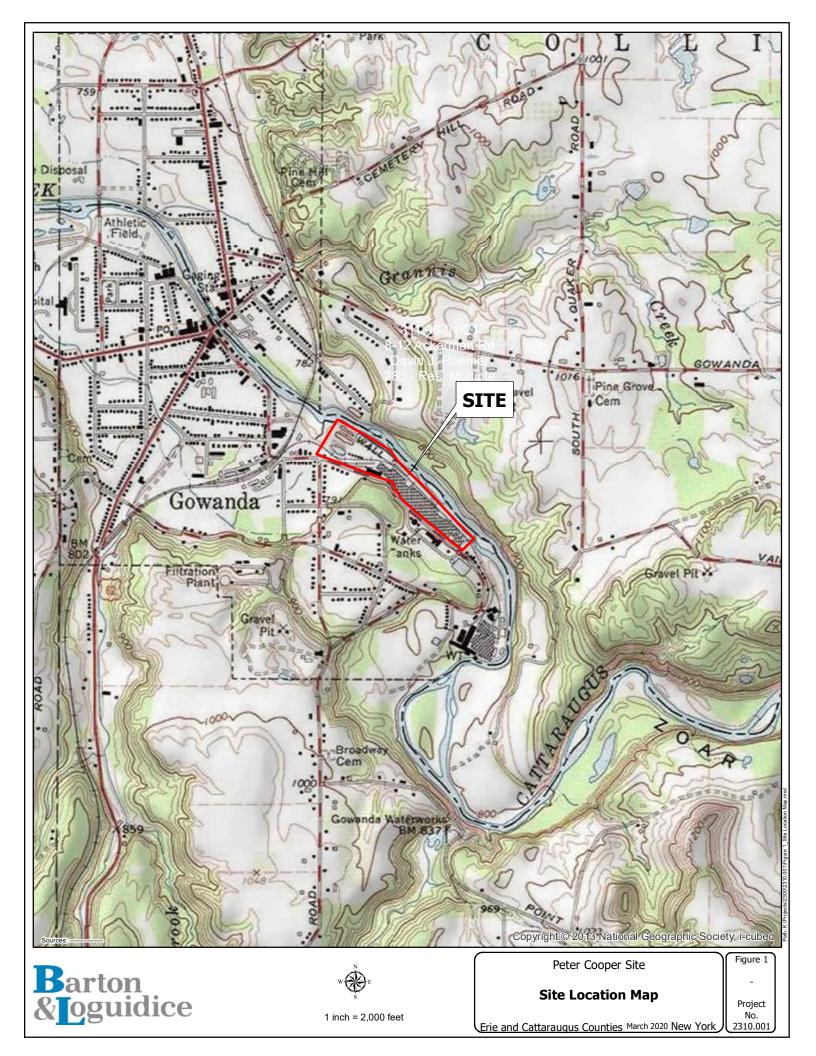
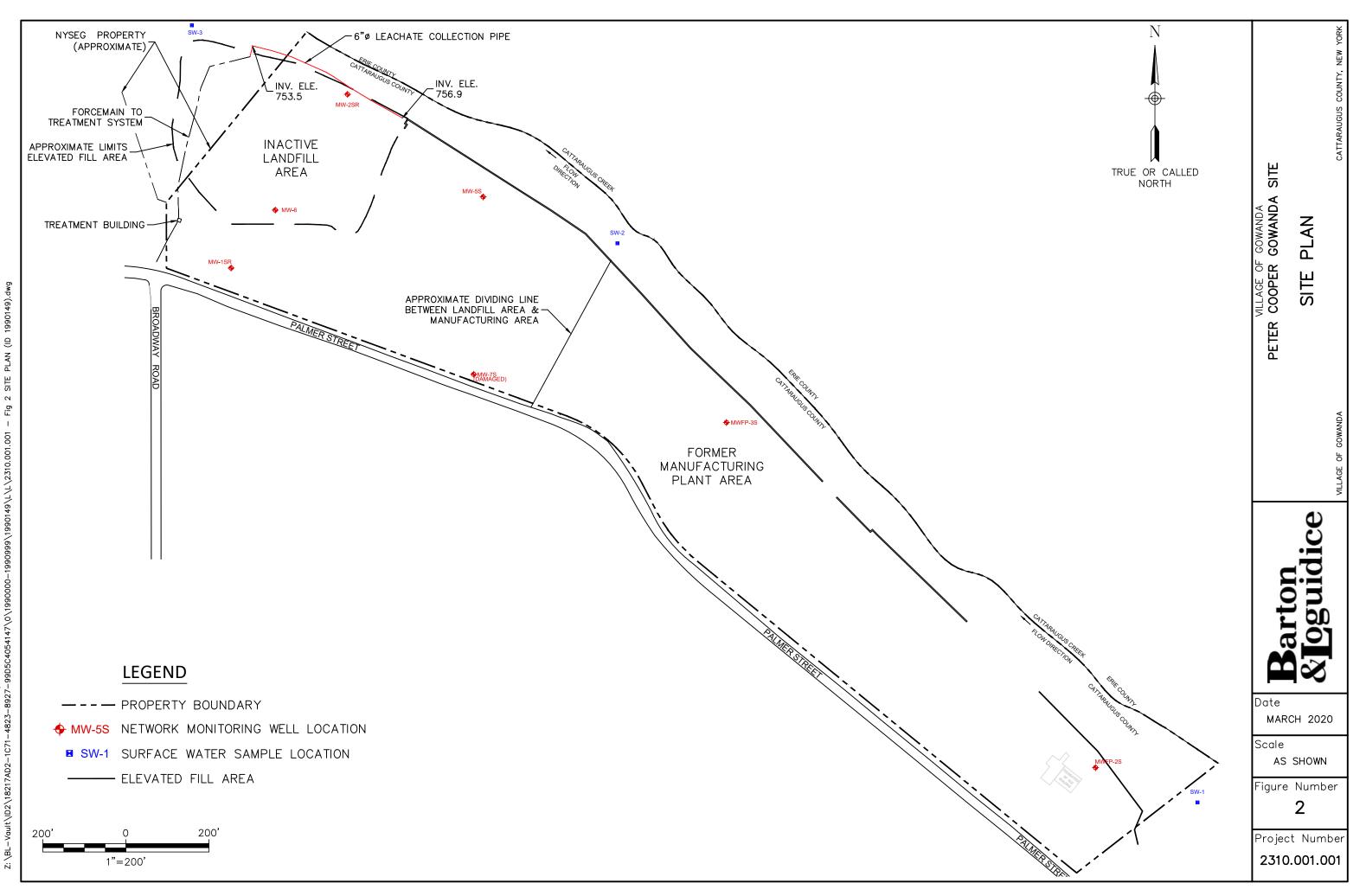
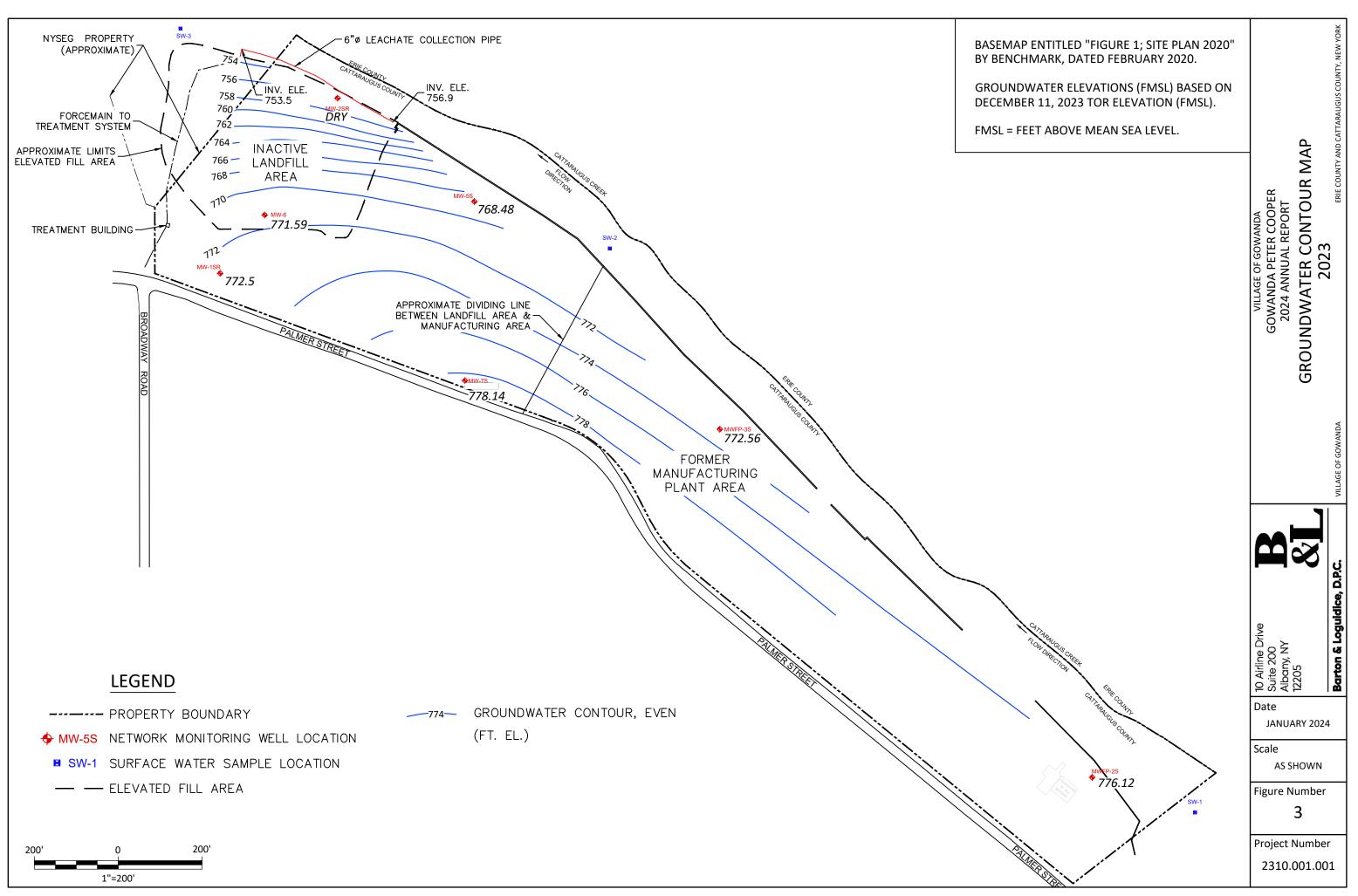




FIGURE 2 Site Plan

PLAN (ID SITE Fig 2 Т Plotted: Mar 19, 2020 - 1:20PM SYR By: bas Z:\BL-Vault\ID2\18217AD2-1C71-4823-8927-99D5C4054147\0\1990000-1990999\1990149\L\L\2310.001.001

FIGURE 3 Groundwater Contour Map 2022

Attachments

ATTACHMENT A Sample Collection Logs

				la telepole.		. PRO	Concernance of the second		£
Bar	ton				F	IELD S	AMPLING	DATA SHE	ET
Bar & og	guid	ice							<i>(</i>
SITE: CLIENT: Weather Conditions:	Gowanda Per Village of Go	wanda	~	SAMPLE LO JOB #: Temperature				MW-1SR 2310.001.00	
SAMPLE TYPE:	Groundwater Sediment		X	Surface Wate	er			Other (specify)	<u>.</u>
WATER LEVEL DATA									-
static Water Level (f			21	12	Sample Da		12/11/	23	
leasured Well Dept		_		.83	Sample Ti		1-1	1413 HBJM- JD4	
roduct Depth (fbTC Vell Casing Diamete				2	Sampled E Purge Met			staltic	
alculated Volume in		(gal.):		0,77	- ge wet		1.011		
otal Volume Purgeo	d (gal.):		1.0		1				
epth to water when	sampled:			2.3	1		Stabilizati	on Criteria:	
								pH	± 0.1 unit
								SP. Cond.	± 3%
								Turbidity	± 10%
								DO	± 0.3 mg/L
								ORP	± 10 mV
ırge water stabiliza	tion readings			umping Rate:				Pressure (psi):	
Time	SWL (ft.)	Acc. Volume (gal.)	pH (std.)	Temp. (C)	Sp. Cond. (uS)	Turbidity (NTU)	DO (mg/L)	Orp (mV)	Appearance and Odor
1 1352	7.3	(gai.)	6.39	9.9	777	9.76	3.67	149	der/Fives/WOOder
2 1357	7-3	0.25	6.66	9.2	295	631	2.80	140	/ /
3 1402	7.3	0.35	6.63	10.1	793		62.4b	142	
4 1407	7-3	0.75	6.63	10.0	792	5.31	1-86	142	N
5 1412	7-3	1.0	6.64	8.8	796	4.18	2.03	145	clear INO odes
6	41	110	6.64	0.0	110	/// 0	2100	113	
8									
9								1	
10									
11									
12								L	
Sample Information:			1		201	1110		111-	al a lata a t
S1 1413	2.3	1.0	6.64	8-8	296	4.18	203	145	cher Mooder
S2									Some Fines Prose
a <i>mples Collected (</i> amples Deivered to		s Test Amer		- Sampled for Date:	TCL VOCs,	Total Metal	s, Water Qual	ity Parameters	+ 5ms/ 5msp TCL VOC'S + toto
	, Euroni	is rest Amer		5010.		rine.			met
COMMENTS:									
v. 05/13 (MJK)									

Barte	on		FIELD SA	MPLING DATA SHEET	
& ogi	uidice				
SITE: CLIENT: Weather Conditions:	Peter Cooper Gov Village of Gowanda	vanda	SAMPLE LOCATION: JOB #: Temperature:	mw-25R 2310.001.001	_
SAMPLE TYPE:	Groundwater Sediment	×	Surface Water Leachate	Other (specify):	_
WATER LEVEL DATA Static Water Level (feet)* Measured Well Depth (fe Well Casing Diameter (in Calculated Volume in We *depth from	et)*: ches):	pry	3. 6 2	Measuring Point: Top of R Measured by: GJY / JD Date: Time:	к
PURGING METHOD Equipment:	Bailer Bladder Pump Dedicated		Submersible Pump Foot Valve Non-dedicated	Air Lift System Peristaltic Pump Stabilization Criteria:	
Calculated Volume Of Wa	ater To Be Purged (gallons): Purged (gallons): Did well purge dry? Did well recover?	No	Yes Yes		3% 10% mg/L
Purge water stabilizatio	n readings: SWL (fL) pH (s	td.) Sp. Con (umhos/c		Turb (NTU) Orp (mV) Sam Appear	••••••
1 2 3 4 5					/
6 7 8 9					
10 Sample					
SAMPLING METHOD Equipment:	Bailer Bladder Pump Dedicated		Submersible Pump Foot Valve Non-dedicated	Air Lift System Peristaltic Pump Grab	
Sampled by: SAMPLING DATA Sampling Appearance	GJY/JDK Time		Date:	- \	
Color: Odor: Samples Collected (Num	<i>ber/Туре):</i> CL VOCs, Total Metals, Wat	er Quality Para	Sediment:		
Samples Delivered to:	Eurofins Test America		Time:	Date:	
COMMENTS:	We have She	L'a para	the bit a	ud at bottom	

B	art	on				F	IELD S	AMPLING	DATA SH	EET
&	og	ton uid	ice							
SITE: CLIENT:		Gowanda Pet Village of Go			SAMPLE LO	CATION:			MWFP-2S	
Weather Cor	nditions:		clo vd.	7	Temperature	ŝ			35	
SAMPLE TY	PE:	Groundwater	I	x	Surface Wat	er			Other (specify)	
		Sediment	i		Leachate					
WATEDLEV				_			_			
WATER LEV Static Wate		TORI			1.38	Sample Da	ato:	17/	1/23	1
Measured V		the second s			.09	Sample Ti		14	1105	
Product Dep					_	Sampled E		637 IL	HBJM-JDK	1
Well Casing	the second s				2	Purge Met			nsoon-	1
Calculated V	Volume in	Well Casing	(gal.):	0.	69			P	Peristalf.	2
Total Volum	ne Purged	(gal.):		1.75						
Depth to wa	ater when a	sampled:						Stabilizati	on Criteria:	
									pН	± 0.1 unit
			X						SP. Cond.	± 3%
									Turbidity	± 10%
									DO	± 0.3 mg/L
									ORP	± 10 mV
									on	1 10 110
Purge water	r stabilizati	on readings:		Р	umping Rate:	300) mi/	min	Pressure (psi)	
	Time	SWL (ft.)	Acc. Volume	pH (std.)	Temp. (C)	Sp. Cond. (uS)		DO (mg/L)	Orp (mV)	Appearance and Odor
	-20	10:3	(gal.)	1 1-	(2.1	1- 911	111 0	1	1-11	SI- Hazel None
	038		-	6.92	13.1	1084	14.0	1.81	154	SI- Haze work
	043	10.5	0.50	6.92	12.9	1086	7.0	1.25	122	
	1048	10.85	0.75	6.91	12.8	1105	3.8	1.40	59	L.
4 /	053	11-1	1.0	6.93	12.7	1116	2.8	1.29	6.0	clow SI. SVIR
	058	11-4	1.5	6.96	12.9	1120	1.6	1.14	-38	
6 1	103	11.6	1.75	6:98	12.8	1119	1.8	1.02	- 70	st.
7										
8										
9										
10										
11										
12						I				
Sample Info	ormation:			_						
S1 //	105	11.6	1.75	6.98	12.8	1119	1.8	1.02	- 70	door two sed
S2										SI- Sulfor oder
	ollected (N	umber/Type):			Bo H-S	TCL VOCS	L VOC	s Chlorin s. Water Qual	valed a	SI-Suffer odor alphatics only) Total metals
Samples De	eivered to:	Eurofin	s Test Ameri	ca	Date:		Time:			
COMMENTS	3:									
Source 13										
						-				
Rev. 05/13 (MJK	K)									

Bar	ton				F	IELD S	AMPLING	DATA SHI	EET
& 09	uid	ice							
SITE: CLIENT:	Gowanda Pe Village of Go			SAMPLE LC	CATION:			MWFP-3S 2310.001.00	
Weather Conditions:	village of GC	Cloudy		Temperature	E:			35	
SAMPLE TYPE:	Groundwater	/	X	Surface Wat	er			Other (specify)	¢.
	Sediment			Leachate					
WATER LEVEL DATA									
Static Water Level (f				8.13	Sample Da	ate:	12/11/2	3	1
Measured Well Dept			13	.64	Sample Ti			11.51	
Product Depth (fbTO				/	Sampled E		GJY IH	HBJM JDR	
Well Casing Diameter		1.000		2	Purge Met	hod:	Peri	staltic)	
Calculated Volume in		(gal.):		0.90					
Total Volume Purgeo Depth to water when			1-5		-		Stabilizati	on Criteria:	
Depth to water when	sampieu.				1				+ 0.1 unit
								pH SB Cond	± 0.1 unit
								SP. Cond.	± 3%
								Turbidity	± 10%
								DO	± 0.3 mg/L
								ORP	± 10 mV
Purge water stabilizat	ion readings:		P	umping Rate	30	o mila	nin	Pressure (psi):	
Time	SWL (ft.)	Acc. Volume	pH (std.)	Temp. (C)	Sp. Cond. (uS)			Orp (mV)	Appearance and Odor
		(gal.)	1		- <u>2. 2</u>		1.01		
1 1135	8.4	-	6.88	10.1	524	292	6.96	123	Sh. Haze / None
2 1140	845	0.75	6.88	9.9	529	-	6.11	130	clear / None
3 1145	814	1.25	6.86	9.8	532	2.31	5.64	139	Cher Insure
4 1150	8.4	1.5	6.84	9.8	536	1.34	5.48	143	clear Inome
5	0			,					
6									
7									
					-				
8									
9									
10									
11						-	· · · · · · · · · · · · · · · · · · ·		
12									
Sample Information:									
S1 1151	814	1.50	6.84	9.8	534	1.34	5.48	143	
S2									, NO o dor
Samples Collected (I	Number/Type)		5 Bothe	Sampled for	tol me	Heel S Total Metal	ナー ア c s. Water Quali	CL Voc)	Chlorinahad alphatris unh
Samples Deivered to	: Eurofir	ns Test Amer	ica	Date:		Time:			
					10 - 7 -				
COMMENTS:	prodss hak in to	turbidy Flo	readin three metter	ss w Loze we	ere n ell el tra	sot Factor	acurat s trb tel	e bibi	bles + fines r, switched
7).									
Rev. 05/13 (MJK)				_					

Bar	ton				F	IELD S	AMPLING	DATA SH	EET
& T 08	guid	ice			1				
SITE: CLIENT: Weather Conditions:	Gowanda Pe Village of Go	ter Cooper		SAMPLE LO JOB #: Temperature				MW-5 2310.001.00	/ Duppicate
SAMPLE TYPE:	Groundwater	10.001	X	Surface Wat				Other (specify)	f.
	Sediment			Leachate					
WATER LEVEL DAT	4								
Static Water Level (fbTOR):		12.	68	Sample Da	ate:	Rhilv		
Measured Well Dep			16	6.5	Sample Ti			1254	
Product Depth (fbT(-	Sampled E	Colored and the second se	the second se	BABJM JDK	
Well Casing Diamet Calculated Volume i		(aal.):		2 62	Purge Met	nod:		Perishaltic	
Total Volume Purge		(gal.).	1.				<i>r</i>	er shour c	
Depth to water when				.85	1		Stabilizati	ion Criteria:	
			the second s					pН	± 0.1 unit
								SP. Cond.	± 3%
								Turbidity	± 10%
								DO	± 0.3 mg/L
								ORP	± 10 mV
Purge water stabiliza	tion readings:		Р	umping Rate:	30	10 mi	Imin	Pressure (psi):	
Time	SWL (ft.)	Acc. Volume (gal.)	pH (std.)	Temp. (C)	Sp. Cond. (uS)	Turbidity (NTU)	DO (mg/L)	Orp (mV)	Appearance and Odor
1 1233	12.8	-	6.37	13.0	1483	4.20	2.35	-17	Clear Ist. Suiter
2 1238	12.85	0.5	6.64	12.8	1525	2.95	1.13	- 45	a d
3 1243		0.75	6.67	13.0	1554	3.10	0.90	-54	cler Invoder
4 1248		1.0	6.67	13.1	1566	2.83	0.82	-60	
5 1253		1.5	6.67	13.0	1571	2.18	0.78	-63	
6			4101		GE	0.10			
							-		
7									
8	-								
9									
10									
11									
12						-			
Sample Information	1	1							
S1 1254	12.85	1.5	6.67	13.0	15H	2.18	0.78	-63	Cher No odor
S2									No sediment
Samples Collected (Number/Type)	(9 Bottles-	Sampled for	TCL VOCs,	Total Metals	, Water Quali	ty Parameters	+ g / Duplicate
Samples Deivered to	D: Eurofi	ns Test Amer	ica	Date:		Time:			
COMMENTS:									
			_			_			
Pay 05/10 10									
Rev. 05/13 (MJK)			-			-			

Bar	ton				F	IELD S/	AMPLING	DATA SHI	EET
Bar & 0g	guid	ice							
SITE: CLIENT: Weather Conditions:	Gowanda Per Village of Go		102	SAMPLE LO JOB #: Temperature				MW-7S 2310.001.00 305)1
SAMPLE TYPE:	Groundwater	J .	x	Surface Wat	er			Other (specify)	:
	1				_				/
WATER LEVEL DATA	the supervised in the supervis	_	(7.63	Sample Dr	to:	12/11/2		
Static Water Level (f Measured Well Dept				.6 >	Sample Da Sample Ti		14/1/2	3	
Product Depth (fbTC			10	.25	Sampled E		7-1	HBJM-JDK	
Well Casing Diamete				2	Purge Met			staltic	
Calculated Volume in		(02)).			i urge met	nou.	Ton	Stanto	
Total Volume Purger		(gaily:							
Depth to water when				/			Stabilizati	on Criteria:	
- spar to mater milen	Serrin and	/		/				pH	± 0.1 unit
			V	502					
		/						SP. Cond.	± 3%
								Turbidity	± 10%
								DO	± 0.3 mg/L
			/					ORP	± 10 mV
			,	\backslash					
Purge water stabiliza	tion readings:		P	umping Rate:				Pressure (psi):	
Time	SWL (ft.)	Acc. Volume (gal.)	pH (std.)	Temp. (C)	Sp. Cond. (uS)	Turbidity (NTU)	DO (mg/L)	Orp (mV)	Appearance and Odor
		(gui)			1			/	
1	-			/			/		
2					<u> </u>				
3					\backslash				
4					X				
5				/					
			/						
6			/						
7									
8									
9									
10						/			
11							/		
							/		
12		I							
Sample Information							/		
S1									
S2									
Samples Collected (Samples Deivered to				Sampled for Date:	TCL VOCS,	Total Metals Time:	l s, Water Quat	l ity Parameters	, ,
COMMENTS:									
Ens: Ens: We	at dry	Volum y an	e ho d h	obtan	N Se Not	mpte,	Arge.	4 400 e	mi then
Rev. 05/13 (MJK)									

Bart	on uidice	FIELD SAMPL	ING DATA SHEET
SITE: CLIENT: Weather Conditions: SAMPLE TYPE:	Gowanda Peter Cooper Village of Gowanda Cloudy Groundwater	SAMPLE LOCATION: JOB #: Temperature: Surface Water Leachate	SW-1 2310.001.001 35 Other (specify):
WATER LEVEL DATA			
Static Water Level (feet)* Measured Well Depth (fee Well Casing Diameter (inc Calculated Volume in We	et)*: ches):	-	Measuring Point: - Measured by: GJY / JDK Date: Time:
PURGING METHOD			
Equipment:	Bailer Non-dedicated Dedicated	Submersible Pamp	Air Lift System
Calculated Volume Of	Water To Be Purged (gallons):	_	
Actual Volu	ime of Water Purged (gallons):	_	
	Did well purge dry? No Did well recover? No	Yes Yes	Recovery Time:
SAMPLING METHOD			
Equipment: Sampled by:BJM 63	Bailer	Submersible Pump Sample Bottle Grob	Air Lift System
SAMPLING DATA Sample Appearance Color: Odor:	cloudy/furbid tan None	_Sediment:	
Field Measured Parameter pH (Standard Units) Temperature (C) Turbidity (NTU)	7.95 4.7 20,40	Sp. Conductivity (umhos/cm) Eh-Redox Potential (mV) Dissolved Oxygen (mg/L)	301 Z47 11.99
Samples Collected (Numb 9 Bottles- Sampled for TC کل ر / بردی Samples Delivered to:	ber/Type): CL VOCs, Total Metals, Water Quality Parar Eurofins Test America	neters Time: Date	57
		Date	
COMMENTS: YS 40 DSS From s be Rev. 3/14 (MPS)	furb sensor is Not	reading acurately red Lamothe 2020 W	due to bubbles and

Bart	on	FIELD SAM	PLING DATA SHEET
& og	uidice		
SITE:	Gowanda Peter Cooper	SAMPLE LOCATION:	SW-2
CLIENT: Weather Conditions:	Village of Gowanda	JOB #: Temperature:	2310.001.001
	(
SAMPLE TYPE:	Groundwater	Surface Water	X Other (specify):
WATER LEVEL DATA Static Water Level (feet)*	·		Measuring Point: -
Measured Well Depth (fee			Measured by: GJY / JDK
Well Casing Diameter (in		-	Date:
Calculated Volume in We		-	Time:
-depth from	measuring point		
PURGING METHOD			
Equipment:	Bailer	Submersible Pump	Air Lift System
	Non-dedicated	Foot Valve	Peristaltic Pump
	Dedicated	Bladder Pump	Grab
Calculated Volume Of	Water To Be Purged (gallons):		
Actual Volu	ume of Water Purged (gallons):		
	Did well purge dry? No	Yes	
	Did well recover? No	Yes	Recovery Time:
SAMPLING METHOD			
Equipment:	Bailer	Submersible Pump	Air Lift System
	Non-dedicated	Sample Bottle/Grab	Peristaltic Pump
	Dedicated	Bladder Pump	Waterra
		11	
Sampled by: BJM 63	57/JDK Time: 1216	Date: 12/11/23	
SAMPLING DATA Sample Appearance			
Color:	Hazy ton	Sediment: Awe	5
Odor:	None	_	
Field Measured Paramete	ers		
pH (Standard Units)	814	Sp. Conductivity (umhos/d	
Temperature (C) Turbidity (NTU)	20.80	Eh-Redox Potential (mV) Dissolved Oxygen (mg/L)	12.52
rubidity (NTO)	20130	Dissolved Oxygen (hight)	16.5 2
Samples Collected (Num	ber/Type)		
	CL VOCs, Total Metals, Water Quality Para	meters	
	>		
Samples Delivered to:	Eurofins Test America	Time:	Date:
COMMENTS:			
Rev. 3/14 (MPS)			

Bart	on	FIELD SAM	PLING DATA SHEET	
& og	uidice			
SITE: CLIENT: Weather Conditions:	Gowanda Peter Cooper Village of Gowanda <i>S</i> ∼ v ∾	SAMPLE LOCATION: JOB #: Temperature:	SW-3 2310.001.001 30-5	
SAMPLE TYPE:	Groundwater Sediment	Surface Water	C Other (specify):	
		Ecoloniato		
WATER LEVEL DATA			Macouring Doint	
Static Water Level (feet)*: Measured Well Depth (fee			Measuring Point: - Measured by: G.	IX / JDK
Well Casing Diameter (inc		-	Date:	
Calculated Volume in Wel		-	Time:	
*depth from	measuring point			
PURGING METHOD	Bailer	Submersible Pump	Air Lift System	
Equipment:		\sim		
	Non-dedicated	Foot Valve	Peristaltic Pump	
	Dedicated	Bladder Pump	Grab	
Calculated Volume Of	Water To Be Purged (gallons):			
	me of Water Purged (gallons):			
	Did well purge dry? No	Yes	¬ \	_
	Did well recover? No	Yes	Recovery Time:	
SAMPLING METHOD				
Equipment:	B -11-			
Equipment.	Bailer	Submersible Pump	Air Lift System	
Equipment.	Non-dedicated	Submersible Pump Sample Bottle/6/4/3	Air Lift System	
Equipment.	Non-dedicated	Sample Bottle/6643	Time 1	
	Non-dedicated	Sample Bottle/66443 Bladder Pump	Peristaltic Pump Waterra	
Sampled by: BJM	Non-dedicated	Sample Bottle/6643	Peristaltic Pump Waterra	
Sampled by: BJM 6	Non-dedicated	Sample Bottle/66443 Bladder Pump	Peristaltic Pump Waterra	
Sampled by: BJM 6 SAMPLING DATA Sample Appearance	Non-dedicated	Sample Bottle/66443 Bladder Pump	Peristaltic Pump Waterra	
Sampled by: BJM 6 SAMPLING DATA Sample Appearance	Non-dedicated	Sample Bottle/64413 Bladder Pump Date: <u>12/11</u> 23	Peristaltic Pump Waterra	
Sampled by: BJM 6 SAMPLING DATA Sample Appearance Color: H Odor:	Non-dedicated Dedicated SY/SDM Time: 1333 427 Fare NOWE	Sample Bottle/64413 Bladder Pump Date: <u>12/11</u> 23	Peristaltic Pump Waterra	
Sampled by: BJM 6 SAMPLING DATA Sample Appearance Color: 4 Odor: Field Measured Parameter	Non-dedicated Dedicated SY/SDM Time: 1333 427 fant NONC	Sample Bottle/64413 Bladder Pump Date: <u>12/11/2</u> Sediment: <u>Fin</u>	Peristaltic Pump Waterra	
Sampled by: BJM 6 SAMPLING DATA Sample Appearance Color: 4 Odor: Field Measured Parameter PH (Standard Units) Temperature (C)	Non-dedicated Dedicated SY/SDM Time: 1333 427 fant NONC IS 8.14 4.3	Sample Bottle/6443 Bladder Pump Date: <u>12/11</u> 2 Sediment: <u>Fine</u> Sp. Conductivity (umhos/ Eh-Redox Potential (mV)	Peristaltic Pump Waterra	
Sampled by: BJM 6 SAMPLING DATA Sample Appearance Color: H Odor: Field Measured Parameter PH (Standard Units)	Non-dedicated Dedicated SY/SDM Time: 1333 427 fant NONC	Sample Bottle/64413 Bladder Pump Date: <u>12/11 2</u> Sediment: <u>Fine</u>	m) 292	
Sampled by: BJM 6 SAMPLING DATA Sample Appearance Color: 4 Odor: Field Measured Parameter PH (Standard Units) Temperature (C)	Non-dedicated Dedicated SY/SDM Time: 1333 427 fant NONC IS 8.14 4.3	Sample Bottle/6443 Bladder Pump Date: <u>12/11</u> 2 Sediment: <u>Fine</u> Sp. Conductivity (umhos/ Eh-Redox Potential (mV)	m) 292	
Sampled by: BJM 6 SAMPLING DATA Sample Appearance Color: H Odor: H Field Measured Parameter pH (Standard Units) Temperature (C) Turbidity (NTU) Samples Collected (Number Samples Collected (Number Collected (Non-dedicated Dedicated SY/JDM Time: 1333 427 fan NON-C rs 8.14 4-3 23-20 per/Type):	Sample Bottle/6443 Bladder Pump Date: <u>12/11 2 3</u> Sediment: <u>Final</u> Sp. Conductivity (umhos/ Eh-Redox Potential (mV) Dissolved Oxygen (mg/L)	m) 292	
Sampled by: BJM 6 SAMPLING DATA Sample Appearance Color: H Odor: H Field Measured Parameter pH (Standard Units) Temperature (C) Turbidity (NTU) Samples Collected (Number Samples Collected (Number Collected (Non-dedicated Dedicated SY/JDM Time: 1333 427 Fan NON-C rs 8.14 4.3 23.20	Sample Bottle/6443 Bladder Pump Date: <u>12/11 2 3</u> Sediment: <u>Final</u> Sp. Conductivity (umhos/ Eh-Redox Potential (mV) Dissolved Oxygen (mg/L)	m) 292	
Sampled by: BJM 6 SAMPLING DATA Sample Appearance Color: H Odor: Field Measured Parameter pH (Standard Units) Temperature (C) Turbidity (NTU) Samples Collected (Numb 9 Bottles- Sampled for TC	Non-dedicated Dedicated SY/JDM Time: 1333 427 fan NON-C rs 8.14 4-3 23-20 per/Type):	Sample Bottle/6443 Bladder Pump Date: <u>12/11 2 3</u> Sediment: <u>Final</u> Sp. Conductivity (umhos/ Eh-Redox Potential (mV) Dissolved Oxygen (mg/L)	m) 292	
Sampled by: BJM 6 SAMPLING DATA Sample Appearance Color: H Odor: H Field Measured Parameter pH (Standard Units) Temperature (C) Turbidity (NTU) Samples Collected (Number Samples Collected (Number Collected (Non-dedicated Dedicated SY/JDM Time: 1333 427 fan NON-C rs 8.14 4-3 23-20 per/Type):	Sample Bottle/6443 Bladder Pump Date: <u>12/11 2 3</u> Sediment: <u>Fine</u> Sp. Conductivity (umhos/ Eh-Redox Potential (mV) Dissolved Oxygen (mg/L)	m) 292	
Sampled by: BJM 6 SAMPLING DATA Sample Appearance Color: H Odor: Field Measured Parameter pH (Standard Units) Temperature (C) Turbidity (NTU) Samples Collected (Number 9 Bottles- Sampled for TO GATAJUK	Non-dedicated	Sample Bottle/6443 Bladder Pump Date: <u>12/11 2 3</u> Sediment: <u>Fine</u> Sp. Conductivity (umhos/ Eh-Redox Potential (mV) Dissolved Oxygen (mg/L)	m) 292 12.55	
Sampled by: BJM 6 SAMPLING DATA Sample Appearance Color: H Odor: Field Measured Parameter pH (Standard Units) Temperature (C) Turbidity (NTU) Samples Collected (Number 9 Bottles- Sampled for TC GATALLIK Samples Delivered to:	Non-dedicated	Sample Bottle/6443 Bladder Pump Date: <u>12/11 2 3</u> Sediment: <u>Fine</u> Sp. Conductivity (umhos/ Eh-Redox Potential (mV) Dissolved Oxygen (mg/L)	m) 292 12.55	
Sampled by: BJM 6 SAMPLING DATA Sample Appearance Color: H Odor: Field Measured Parameter pH (Standard Units) Temperature (C) Turbidity (NTU) Samples Collected (Numble 9 Bottles- Sampled for TC GJYTJUK Samples Delivered to:	Non-dedicated	Sample Bottle/6443 Bladder Pump Date: <u>12/11 2 3</u> Sediment: <u>Fine</u> Sp. Conductivity (umhos/ Eh-Redox Potential (mV) Dissolved Oxygen (mg/L)	m) 292 12.55	

17/11/23 Fixed Notes Gowonda SWL: mw-6 = 16.28 MW-ZSR = Dry, hit Muddy bottom * Locks are all crased up and tough to open * Key Weakened and eventually Snapped, we had to cut locks off MW-ISR, MW-75, MW-6 and replace with Bth's ABUS locks * All wells on site will need New locks Since Now we do not have a key

Work Order No.: SE-125423 Date of Service: 12/08/23 Order Time: 11:30:39 AM

Initials: <u>4</u>5

Unit Under Test: YSI ProDSS, 4m Cable

Asset No.: FA04636 Technician: Haley Steinbruckner Serial No: 21C103762/21C103776

TEST	Specification	Result	
Standard Calibration	Pass/Fail	pass	

TEST STANDARDS USED:

DESCRIPTION	LOT NO./EXPIRATION DATE	QUANTITY
7.00 mS Conductivity Standard Solution	Lot No. 2GK874 Exp. 11/2023	1
pH 10.00 Standard Solution	Lot No. 3GE0965 Exp. 05/2025	1
pH 4.00 Standard Solution	Lot No. 2GA766 Exp. 01/2024	1
pH 7.00 Standard Solution	Lot No. 3GE1252 Exp. 05/2025	1
ORP Standard Solution	Lot No. 23D100185 Exp. 04/11/2028	1
Turbidity Free Water	Lot No. 3GF0946 Exp. 06/2025	1
100 NTU AMCO Turbidity Standard	Lot No. 22420023 Exp. 05/2024	1
Air Saturated Water		1

TEST EQUIPMENT USED:

1

DESCRIPTION	ASSET NO.	SERIAL NO.	DATE OF LAST CAL	DATE CAL DUE

Test Equipment and standards are traceable to National standards.

Calibration Record

Project No:	2310.001.001	Date: 12/11/2-
Calibrated By:	2310.001.001 634/3Dec	Time:0
pHunstrument Model:	Myron 6P	
Standard Solution	Calibration Reading	Acceptable Range
pH 4		(+/- 1.0 pH, pH 3.0 - 5.0)
pH 7:		(+/- 1.5 pH, pH 5.5-8.5)
pH 10:		(+/- 1.0 pH; ph 9.0 - 11.0)
Sn Conductivity		
Sp.Conductivity Instrument Model:	Myron 6	
Standard Solution	Calibration Reading	Acceptable Range
7000 uS		(+/- 1.0 % Error)
7000 03		(1/- 1.0 /0 Ellor)
ORP Instrument Model:	Myron 6P	
Standard Solution	Calibration Reading	Acceptable Range
		Myron 6p ORP
		calibration is calculated by pH and
		SPC values
Turbidimeter Model:	Lamotte 2020t	
Standard Solution	Calibration Reading	Acceptable Range
0.0	Blank	Blank 0.0 NTU 🧹
1.0	1.06-7100	(0.5-1.5 NTU)
10.0	2.80-210-06	(8-12 NTU)
Dissolved Oxygen Meter M	todel: YSI EcoSense	
	Pressure (MB) Calibration Reading	Acceptable Range
100%		(+/- 5.0% Error, 95-105%)
Comments		
Comments		
		4

Eurofins Buffalo

Phone: 716-691-2600 Fax: 716-691-7991

10 Hazelwood Drive Amherst, NY 14228-2298

Chain of Custody Record

🔆 eurofins

Environment Testing

-

Client Information	Sampler You Phone: 585 2		Lab PM: VanDette, R	lyon T	Carrier Tracking No(s):	COC No:
Client Contact: Mr. Darik Jordan	Phone:	2011	E-Mail:		State of Origin:	480-188549-31975.1 Page:
Company	585 4	PWSID.	Rvan Y =		NI BRITE BITTER	Page 1 of 2
						Job #
1) Centre Park, Suite 203	Due Date Requested:					Preservation Codes:
City. Rochester	TAT Requested (days):					A - HCL M - Hexane R NaOlu N - None
State, Zip	S.	TD.	4	80-215606 Chain of Custody		C - Zn Acetate O - AsNaO2
NY, 14614 Phone:	Compliance Project:					D - Nitric Acid P - Na2O4S E - NaHSO4 Q - Na2SO3
716-436-7857(Tel)	Po #: Purchase Order Requested			<u> </u>		F - MeOH R - Na2S2O3 G - Amchlor S - H2SO4
Email:	WO #:		or No)			H - Ascorbic Acid T - TSP Dodecahydrate
djordan@bartonandloguidice.com Project Name:	2310.001.001 Project #:		No)		60	J - DI Water W - MCAA
Village of Gowanda, NY Landfill	48021815		s or		liner	Y - Trizma
Site:	SSOW#:		ample D (Ye	r, Mn ss suffide fent Chro	atiles	Z - other (specify) Other:
Sample Identification	Sample Date Sampl	G=grab) BT=Tissue,	ber, d, Lieiq Litte A=Air)	9056A_28D - Chloride 6010C - T. As, Cr,Mn 2340C - Hardness 8260C - TCL Volatiles SM4500_S2_F - Sulfide 7196A - Hexavalent Chromium 350.1 - Local Method	8260C - Select Volatiles	Special Instructions/Note:
MW-1SR		Preservation Coc	de: XX	N D D A CB N S	AX	
	12/11/23 1413	3 G Wate	er NN	XXXXXXXX	- 0	
MW-7S		Wate	er			Kalussal
MW-2SR	~	Wate				Pry/Wi Samphe
MW-5S	1252			XXXXXXX	- 9	Dry/No Samphe
SW-1	102		er M N	XXXXXXX	- 9	
SW-2	1210		er Ar Af		- 9	
SW-3	(33)		er WN	XXXXXX	- 9	
Frip Blank		- Wate			\otimes 3	
Duplicate	-	Wate	er NN	- X - X - X -		
MS	141	3 Wate			- 5	
MSD	1413		er NV	-X - X - X - X - X	- 5	
Possible Hazard Identification Sample Disposal (A fee may be assessed if samples are retained leaves the disposal (A fee may be assessed if samples are retained leaves the disposal (A fee may be assessed if samples are retained leaves the disposal (A fee may be assessed if samples are retained leaves the disposal (A fee may be assessed if samples are retained leaves the disposal (A fee may be assessed if samples are retained leaves the disposal (A fee may be assessed if samples are retained leaves the disposal (A fee may be assessed if samples are retained leaves the disposal (A fee may be assessed if samples are retained leaves the disposal (A fee may be assessed if samples are retained leaves the disposal (A fee may be assessed if samples are retained leaves the disposal (A fee may be assessed if samples are retained leaves the disposal (A fee may be assessed if samples are retained leaves the disposal (A fee may be assessed if samples are retained leaves the disposal (A fee may be assessed if samples are retained leaves the disposal (A fee may be assessed if samples are retained leaves the disposal (A fee may be assessed if samples are retained leaves the disposal (A fee may be assessed if samples are retained leaves the disposal (A fee may be assessed if samples are retained leaves the disposal (A fee may be assessed if samples are retained leaves the disposal (A fee may be assessed if samples are retained leaves the disposal (A fee may be assessed if samples are retained leaves the disposal (A fee may be assessed if samples are retained leaves the disposal (A fee may be assessed if samples are retained leaves the disposal (A fee may be assessed if samples are retained leaves the disposal (A fee may be assessed if samples are retained leaves the disposal (A fee may be assessed if samples are retained leaves the disposal (A fee may be assessed (A fee may be asse						
Deliverable Boguestedi L III N/Constant Poison B Unknown Radiological Return To Client Disposal By Lab						
Empty Kit Bolingviched hu						
Relinquished by:	Date:		Time:		Method of Shipment:	
friday	Date/Time:	1625 Company		Received by:		3 1625 Company
Relinquished by	Date/Time:	Company	/	Received by:	Date/Time:	Company
Relinquished by:	Date/Time:	Company	/	Received by:	Date/Time:	Company
Custody Seals Intact: Custody Seal No.:			Cooler Temperature(s) °C and Other Re	marks		
Δ Yes Δ No					3.4 4.2	#1 1088

Ver: 06/08/2021

Eurofins Buffalo

10 Hazelwood Drive

Amherst,	NY 14228-2	298
Phone: 71	6-691-2600	Fax: 716-691-7991

Chain of Custody Record

• 6			· · ·		
	61	Iro	tu	nc	
W -9	~ "	110		15	

Environment Testing

Client Information	Sampler	./		Lab PM:						arrier Tracking	No(s):	COC No:		
Client Contact	Grant	10m	2	VanDette,	Ryan T	THE OWNER DOLLARS							549-3197	5.2
Mr. Darik Jordan	Sampler Phone 585	- 298	nell	E-Mail Ryan VanD					5	itate of Origin:	1 MAY 10 MIN OF ALL ALL ALL ALL ALL ALL ALL ALL ALL AL	Page		
Company Estton & Loguidice, D.P.C.	202	ir	PWSID	techan AsuC	ettelaie	eurotin	sus cor	η	2			Page 2 d	of 2	
							Anala	vsie R	2001	ested		Job #		
11 Centre Park Suite 203	Due Data Maquesta	ेत.		1.1	E T	1.1		10101	serie	esteu	17 I. Y. I			- 1
City									- 1	4		Preserva	tion Code	
City Rochester	TAT Requested (da									2,2		A HCL		M - Hexane N - None
State Zip		STD								siplate		B - NaOH C Zn Ac	etate	O - AsNaO2
NY. 14614	Compliance Projec	t: A Yes A	No		10					3		D - Nitric /	Acid	P - Na2O4S Q - Na2SO3
Phone:	PO #											E - NaHS F - MeOH	04	R - Na2S2O3
716-436-7857(Tel)	Purchase Order	Requested								40		G - Amch	lor	S - H2SO4
	WO #:			or No)						N.S.		H - Ascori	bic Acid	T - TSP Dodecahydrate U - Acetone
djordan@bartonandloguidice.com Project Name.	2310.001.001			20						3		J - DI Wat	ter	V - MCAA
Village of Gowanda, NY Landfill	Project #:			s z				niu	K	th kawate		K - EDTA L - EDA Other:		W - pH 4-5 Y - Trizma
Site:	48021815 SSOW#:							Lo L		$\mathbf{\gamma}$		L - EDA		Z - other (specify)
	33000#.			Sample (Yes SD (Yes or A	l e e		lfid	1 to	8	atile		Other:		
					9056A_28D - Chloride	888	8260C - TCL Volatiles SM4500_S2_F - Sulfide	7196A - Hexavalent Chromium	350.1 - Local Method	Select Volatiles		6		
			Sample Mat	trix 200		- Hardness	л Ц	Xav	at N	ect		bed		
				ater,	182	포	S S	1 £	Ľ	Se		5		
Sample Identification			(C=Comp, S=se	te/oil, 무 분	9056A	2340C	8260C SM450	EA	÷	8		Z		
oumple identification	Sample Date	Time	G=grab) BT=Tissu		8 8	53	SM 826	719	350	8260C		Teto St	pecial Ins	tructions/Note:
	~	\sim	Preservation Co	ode: XX	N D	DA	CB	N	SA			X		actione.
MWFP-2S	12/11/23	1105	G Wa	iter NV	- 1			V	-					
MWFP-3S	101112-					÷+ -+-			-+	X		3	*	
		1151	Wa	iter WN	1 - 1 3	4+		X	-	XI		5		
Trip Blank	N-	-		hin		LR	7)-			201				
	- 2		× ×				4					3		
						++	-	+		-+-+-	+ $+$ $+$ $+$			
	et ()	1				1.1	- 1				2462	2		
					+ + -			+			+ + + +			
				14										
					+ +			+						
				1.1				1 1						
				1.1.1					_					
					+	+	_	+						
												12		
Ressible Hazard Identification				Sa	mole D	sposal	(A fee	mayh	he as	sossod if c	amples are ret	aim and the second		
Non-Hazard Flammable Skin Irritant Pois	on B Unkn	iown 🗆 R	adiological		D _{Rot}	Irn To C	liont	Ŋ		sposal By La			rtnan 1 n	
Deliverable Requested: I, II, III, IV, Other (specify)				Sr	ecial Ins	tructions		equire		sposal By La	ab — A	rchive For		_ Months
Empty Kit Polingvished hu						dottom		equire	ment	5.				
Empty Kit Relinquished by:		Date:		Time:						Method of	Shipment:			
Relinquished by:	Date/Timer		Compa	ny	Receive	d by:	1				Date/Time:	/		Company
Relinquished by		2 16	25		V	VE	$1 \wedge 1$	2		-	172/11	173 11	625	Company
	Date/Time:		Compa	ny	Receive	d by:	· · · ·				Date/Time:	~ 11	9 -	Company
Relinquished by:	Date/Time:				L									
	Cater nine.		Compa	ny	Receive	d by:					Date/Time:			Company
Custody Seals Intact: Custody Seal No.:		- · · · · · · · · ·			Coult -				_					
Δ Yes Δ No					Cooler 1	emperatur	e(s) °C a	and Othe	er Rem	arks:				

ATTACHMENT B Analytical Data

Environment Testing

ANALYTICAL REPORT

PREPARED FOR

Attn: Mr. Jon Sundquist Barton & Loguidice, D.P.C. 600 Riverwalk Pky. Suite 400 Tonawanda, New York 14150 Generated 12/19/2023 1:27:03 PM

JOB DESCRIPTION

Village of Gowanda, NY Landfill

JOB NUMBER

480-215606-1

Eurofins Buffalo 10 Hazelwood Drive Amherst NY 14228-2298

Eurofins Buffalo

Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

The test results in this report relate only to the samples as received by the laboratory and will meet all requirements of the methodology, with any exceptions noted. This report shall not be reproduced except in full, without the express written approval of the laboratory. All questions should be directed to the Eurofins Environment Testing Northeast, LLC Project Manager.

Authorization

Generated 12/19/2023 1:27:03 PM 5

Authorized for release by Joshua Velez, Project Management Assistant I Joshua.Velez@et.eurofinsus.com Designee for Ryan VanDette, Project Manager II Ryan.VanDette@et.eurofinsus.com (716)504-9830

Table of Contents

Cover Page	1
Table of Contents	3
Definitions/Glossary	4
Case Narrative	5
Detection Summary	6
Client Sample Results	8
Surrogate Summary	24
QC Sample Results	25
QC Association Summary	34
Lab Chronicle	37
Certification Summary	40
Method Summary	41
Sample Summary	42
Chain of Custody	43
Receipt Checklists	45

Qualifiers

Qualifiers		3
GC/MS VOA Qualifier	Qualifier Description	4
F1	MS and/or MSD recovery exceeds control limits.	
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.	5
Metals		
Qualifier	Qualifier Description	
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.	
General Che	mistry	
Qualifier	Qualifier Description	

Qualifier	Qualifier Description
F1	MS and/or MSD recovery exceeds control limits.
Н	Sample was prepped or analyzed beyond the specified holding time. This does not meet regulatory requirements.
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.	
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis	
%R	Percent Recovery	
CFL	Contains Free Liquid	
CFU	Colony Forming Unit	
CNF	Contains No Free Liquid	
DER	Duplicate Error Ratio (normalized absolute difference)	
Dil Fac	Dilution Factor	
DL	Detection Limit (DoD/DOE)	
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample	
DLC	Decision Level Concentration (Radiochemistry)	
EDL	Estimated Detection Limit (Dioxin)	
LOD	Limit of Detection (DoD/DOE)	
LOQ	Limit of Quantitation (DoD/DOE)	
MCL	EPA recommended "Maximum Contaminant Level"	
MDA	Minimum Detectable Activity (Radiochemistry)	
MDC	Minimum Detectable Concentration (Radiochemistry)	
MDL	Method Detection Limit	
ML	Minimum Level (Dioxin)	
MPN	Most Probable Number	
MQL	Method Quantitation Limit	
NC	Not Calculated	
ND	Not Detected at the reporting limit (or MDL or EDL if shown)	
NEG	Negative / Absent	
POS	Positive / Present	
PQL	Practical Quantitation Limit	
PRES	Presumptive	
QC	Quality Control	
RER	Relative Error Ratio (Radiochemistry)	
RL	Reporting Limit or Requested Limit (Radiochemistry)	
RPD	Relative Percent Difference, a measure of the relative difference between two points	
TEF	Toxicity Equivalent Factor (Dioxin)	
TEQ	Toxicity Equivalent Quotient (Dioxin)	
TNTC		

Job ID: 480-215606-1

Eurofins Buffalo

Job Narrative 480-215606-1

Receipt

The samples were received on 12/11/2023 4:25 PM. Unless otherwise noted below, the samples arrived in good condition, and where required, properly preserved and on ice. The temperatures of the 2 coolers at receipt time were 3.4° C and 4.2° C.

GC/MS VOA

Method 8260C: The continuing calibration verification (CCV) associated with batch 480-695045 recovered above the upper control limit for Isopropylbenzene. The samples associated with this CCV were non-detects for the affected analytes; therefore, the data have been reported. The associated samples are impacted: MW-1SR (480-215606-1), MW-5S (480-215606-2), SW-1 (480-215606-3), SW-2 (480-215606-4), SW-3 (480-215606-5), DUPLICATE (480-215606-6) and TRIP BLANK (480-215606-9).

Method 8260C: The continuing calibration verification (CCV) associated with batch 480-695045 recovered outside acceptance criteria, low biased, for 2-Butanone (MEK). A reporting limit (RL) standard was analyzed, and the target analytes are detected. Since the associated samples were non-detect for the analyte(s), the data are reported.

Method 8260C: The following volatiles samples were diluted due to foaming at the time of purging during the original sample analysis: MW-5S (480-215606-2) and DUPLICATE (480-215606-6). Elevated reporting limits (RLs) are provided.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

HPLC/IC

Method 9056A: The following samples were diluted due to the abundance of non-target analytes: MW-1SR (480-215606-1) and MW-5S (480-215606-2). Elevated reporting limits (RLs) are provided.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Metals

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

General Chemistry

Method 7196A: The following sample(s) was received with less than 2 days remaining on the holding time or less than one shift (8 hours) remaining on a test with a holding time of 48 hours or less. As such, the laboratory had insufficient time remaining to perform the analysis within holding time: DUPLICATE (480-215606-6).

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Detection Summary

Client: Barton & Loguidice, D.P.C. Project/Site: Village of Gowanda, NY Landfill

Client Sample ID: MW-1SR

Client Sample ID: MW-1SF	ient Sample ID: MW-1SR								
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Chromium	0.0024	J	0.0040	0.0010	mg/L	1	_	6010C	Total/NA
Manganese	0.13		0.0030	0.00040	mg/L	1		6010C	Total/NA
Chloride	3.2		1.0	0.56	mg/L	2		9056A	Total/NA
Hardness as calcium carbonate	448		4.0	1.1	mg/L	1		SM 2340C	Total/NA

Client Sample ID: MW-5S

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac D	Method	Prep Type
Chromium	0.0030	J	0.0040	0.0010	mg/L	1	6010C	Total/NA
Manganese	0.75		0.0030	0.00040	mg/L	1	6010C	Total/NA
Ammonia	4.8		1.0	0.50	mg/L	5	350.1	Total/NA
Chloride	4.7		2.5	1.4	mg/L	5	9056A	Total/NA
Hardness as calcium carbonate	930		10.0	2.6	mg/L	1	SM 2340C	Total/NA
Sulfide	1.6		1.0	0.67	mg/L	1	SM 4500 S2 F	Total/NA

Client Sample ID: SW-1

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac D	Method	Prep Type	
Chromium	0.0045		0.0040	0.0010	mg/L	1	6010C	Total/NA	
Manganese	0.068		0.0030	0.00040	mg/L	1	6010C	Total/NA	i
Chromium, hexavalent	0.0066	J	0.010	0.0050	mg/L	1	7196A	Total/NA	
Chloride	21.1		0.50	0.28	mg/L	1	9056A	Total/NA	i.
Hardness as calcium carbonate	120		4.0	1.1	mg/L	1	SM 2340C	Total/NA	

Client Sample ID: SW-2

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Chromium	0.0039	J	0.0040	0.0010	mg/L	1	_	6010C	Total/NA
Manganese	0.056		0.0030	0.00040	mg/L	1		6010C	Total/NA
Chloride	20.7		0.50	0.28	mg/L	1		9056A	Total/NA
Hardness as calcium carbonate	116		4.0	1.1	mg/L	1		SM 2340C	Total/NA

Client Sample ID: SW-3

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Ргер Туре
Chromium	0.0038	J	0.0040	0.0010	mg/L	1	_	6010C	Total/NA
Manganese	0.052		0.0030	0.00040	mg/L	1		6010C	Total/NA
Chromium, hexavalent	0.0079	J	0.010	0.0050	mg/L	1		7196A	Total/NA
Chloride	20.8		0.50	0.28	mg/L	1		9056A	Total/NA
Hardness as calcium carbonate	116		4.0	1.1	mg/L	1		SM 2340C	Total/NA

Client Sample ID: DUPLICATE

Analyte	Result Qua	lifier RL	MDL	Unit	Dil Fac	D	Method	Ргер Туре
Chromium	0.0032 J	0.0040	0.0010	mg/L	1	- 6	6010C	Total/NA
Manganese	0.77	0.0030	0.00040	mg/L	1	6	6010C	Total/NA

Client Sample ID: MFWP-2S

Analyte	Result Qualifier	RL	MDL	Unit	Dil Fac	D Method	Prep Type
Chromium	0.024	0.0040	0.0010	mg/L	1	6010C	Total/NA
Manganese	0.34	0.0030	0.00040	mg/L	1	6010C	Total/NA

This Detection Summary does not include radiochemical test results.

Eurofins Buffalo

5

Job ID: 480-215606-1

Lab Sample ID: 480-215606-2

Lab Sample ID: 480-215606-3

Lab Sample ID: 480-215606-4

Lab Sample ID: 480-215606-5

Lab Sample ID: 480-215606-6

Lab Sample ID: 480-215606-7

|2 |3

Detection Summary

Client: Barton & Loguidice, D.P.C. Project/Site: Village of Gowanda, NY Landfill

Client Sample ID: MWFP-3S

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
1,1,1-Trichloroethane	1.4		1.0	0.82	ug/L	1	_	8260C	Total/NA
Chloroform	0.79	J	1.0	0.34	ug/L	1		8260C	Total/NA
Tetrachloroethene	4.8		1.0	0.36	ug/L	1		8260C	Total/NA
Trichloroethene	1.3		1.0	0.46	ug/L	1		8260C	Total/NA
Chromium	0.0027	J	0.0040	0.0010	mg/L	1		6010C	Total/NA
Manganese	0.011		0.0030	0.00040	mg/L	1		6010C	Total/NA
Chromium, hexavalent	0.0066	J	0.010	0.0050	mg/L	1		7196A	Total/NA
Client Sample ID: TRIP	BLANK					Lab Sa	am	ple ID: 4	80-215606-

No Detections.

Lab Sample ID: 480-215606-8

Job ID: 480-215606-1

This Detection Summary does not include radiochemical test results.

Client: Barton & Loguidice, D.P.C. Project/Site: Village of Gowanda, NY Landfill

Client Sample ID: MW-1SR Date Collected: 12/11/23 14:13 Date Received: 12/11/23 16:25

Job ID: 480-215606-1

Lab Sample ID: 480-215606-1

Matrix: Water

5 6

Analyte	Result Qu	alifier RL	MDL		D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND	1.0	0.82	ug/L			12/12/23 14:24	1
1,1,2,2-Tetrachloroethane	ND	1.0	0.21	ug/L			12/12/23 14:24	1
I,1,2-Trichloroethane	ND	1.0	0.23	ug/L			12/12/23 14:24	1
I,1,2-Trichloro-1,2,2-trifluoroethane	ND	1.0	0.31	ug/L			12/12/23 14:24	1
I,1-Dichloroethane	ND	1.0	0.38	ug/L			12/12/23 14:24	1
I,1-Dichloroethene	ND	1.0	0.29	ug/L			12/12/23 14:24	1
1,2,4-Trichlorobenzene	ND	1.0	0.41	ug/L			12/12/23 14:24	1
I,2-Dibromo-3-Chloropropane	ND	1.0	0.39	ug/L			12/12/23 14:24	1
1,2-Dichlorobenzene	ND	1.0	0.79	ug/L			12/12/23 14:24	1
I,2-Dichloroethane	ND	1.0	0.21	ug/L			12/12/23 14:24	1
1,2-Dichloropropane	ND	1.0		ug/L			12/12/23 14:24	1
1,3-Dichlorobenzene	ND	1.0		ug/L			12/12/23 14:24	1
1,4-Dichlorobenzene	ND	1.0		ug/L			12/12/23 14:24	1
2-Butanone (MEK)	ND	10		ug/L			12/12/23 14:24	1
2-Hexanone	ND	5.0		ug/L			12/12/23 14:24	1
4-Methyl-2-pentanone (MIBK)	ND	5.0	2.1				12/12/23 14:24	1
Acetone	ND	10		ug/L			12/12/23 14:24	
Benzene	ND	1.0		ug/L			12/12/23 14:24	
Bromodichloromethane	ND	1.0		ug/L			12/12/23 14:24	· · · · · · · · ·
Bromoform	ND	1.0		ug/L			12/12/23 14:24	
Bromomethane	ND	1.0		ug/L			12/12/23 14:24	
Carbon disulfide	ND	1.0		ug/L			12/12/23 14:24	
Carbon tetrachloride	ND	1.0		ug/L			12/12/23 14:24	
Chlorobenzene	ND	1.0		ug/L			12/12/23 14:24	
Dibromochloromethane	ND	1.0		ug/L			12/12/23 14:24	
Chloroethane	ND	1.0		ug/L			12/12/23 14:24	
Chloroform	ND	1.0		ug/L			12/12/23 14:24	
Chloromethane	ND	1.0		ug/L			12/12/23 14:24	· · · · · · · · ·
sis-1,2-Dichloroethene	ND	1.0		ug/L			12/12/23 14:24	
sis-1,2-Dichloropropene	ND	1.0		ug/L			12/12/23 14:24	
Cyclohexane	ND	1.0		ug/L			12/12/23 14:24	
Dichlorodifluoromethane		1.0		-				
	ND			ug/L			12/12/23 14:24	
Ethylbenzene	ND	1.0		ug/L			12/12/23 14:24	
,2-Dibromoethane	ND	1.0		ug/L			12/12/23 14:24	
sopropylbenzene	ND F1	1.0		ug/L			12/12/23 14:24	
/lethyl acetate	ND	2.5		ug/L			12/12/23 14:24	
Methyl tert-butyl ether	ND	1.0		ug/L			12/12/23 14:24	
/lethylcyclohexane	ND	1.0		ug/L			12/12/23 14:24	
Aethylene Chloride	ND	1.0		ug/L			12/12/23 14:24	
Styrene	ND	1.0		ug/L			12/12/23 14:24	
etrachloroethene	ND F1	1.0		ug/L			12/12/23 14:24	~
oluene	ND	1.0		ug/L			12/12/23 14:24	•
rans-1,2-Dichloroethene	ND	1.0		ug/L			12/12/23 14:24	
rans-1,3-Dichloropropene	ND F1	1.0		ug/L			12/12/23 14:24	
richloroethene	ND	1.0	0.46	ug/L			12/12/23 14:24	
Trichlorofluoromethane	ND	1.0	0.88	ug/L			12/12/23 14:24	
/inyl chloride	ND	1.0	0.90	ug/L			12/12/23 14:24	
Xylenes, Total	ND	2.0	0.66	ug/L			12/12/23 14:24	

Matrix: Water

5

6

Lab Sample ID: 480-215606-1

Client Sample ID: MW-1SR Date Collected: 12/11/23 14:13 Date Received: 12/11/23 16:25

Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	97		80 - 120					12/12/23 14:24	1
1,2-Dichloroethane-d4 (Surr)	93		77 - 120					12/12/23 14:24	1
4-Bromofluorobenzene (Surr)	97		73 - 120					12/12/23 14:24	1
Dibromofluoromethane (Surr)	94		75 - 123					12/12/23 14:24	1
_ Method: SW846 6010C - Meta	Is (ICP)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	ND		0.015	0.0056	mg/L		12/13/23 08:20	12/13/23 20:19	1
Chromium	0.0024	J	0.0040	0.0010	mg/L		12/13/23 08:20	12/13/23 20:19	1
Manganese	0.13		0.0030	0.00040	mg/L		12/13/23 08:20	12/13/23 20:19	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ammonia (EPA 350.1)	ND		0.20	0.10	mg/L		12/13/23 06:00	12/13/23 08:11	1
Chromium, hexavalent (SW846 7196A)	ND		0.010	0.0050	mg/L			12/12/23 09:45	1
Chloride (SW846 9056A)	3.2		1.0	0.56	mg/L			12/12/23 21:04	2
Hardness as calcium carbonate (SM 2340C)	448		4.0	1.1	mg/L			12/15/23 11:50	1
Sulfide (SM 4500 S2 F)	ND		1.0	0.67	mg/L			12/16/23 14:00	1

5

6

Lab Sample ID: 480-215606-2 Matrix: Water

Date Collected: 12/11/23 12:54 Date Received: 12/11/23 16:25

Client Sample ID: MW-5S

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND	4.0	3.3	ug/L			12/12/23 14:49	4
1,1,2,2-Tetrachloroethane	ND	4.0	0.84	-			12/12/23 14:49	4
1,1,2-Trichloroethane	ND	4.0	0.92	-			12/12/23 14:49	4
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	4.0		ug/L			12/12/23 14:49	4
1,1-Dichloroethane	ND	4.0		ug/L			12/12/23 14:49	4
1,1-Dichloroethene	ND	4.0		ug/L			12/12/23 14:49	4
1,2,4-Trichlorobenzene	ND	4.0		ug/L			12/12/23 14:49	4
1,2-Dibromo-3-Chloropropane	ND	4.0		ug/L			12/12/23 14:49	4
1,2-Dichlorobenzene	ND	4.0		ug/L			12/12/23 14:49	4
1,2-Dichloroethane	ND	4.0		ug/L			12/12/23 14:49	4
1,2-Dichloropropane	ND	4.0		ug/L			12/12/23 14:49	4
1,3-Dichlorobenzene	ND	4.0		ug/L			12/12/23 14:49	4
1,4-Dichlorobenzene	ND	4.0		ug/L			12/12/23 14:49	4
2-Butanone (MEK)	ND	40		ug/L			12/12/23 14:49	4
2-Hexanone	ND	20		ug/L			12/12/23 14:49	4
4-Methyl-2-pentanone (MIBK)	ND	20		ug/L			12/12/23 14:49	4
Acetone	ND	40		ug/L			12/12/23 14:49	4
Benzene	ND	4.0		ug/L			12/12/23 14:49	4
Bromodichloromethane	ND	4.0		ug/L			12/12/23 14:49	4
Bromoform	ND	4.0		ug/L			12/12/23 14:49	- 4
Bromomethane	ND	4.0		ug/L			12/12/23 14:49	4
Carbon disulfide	ND	4.0		ug/L			12/12/23 14:49	
Carbon tetrachloride	ND	4.0		ug/L			12/12/23 14:49	- 4
Chlorobenzene	ND	4.0		ug/L			12/12/23 14:49	4
Dibromochloromethane	ND	4.0 4.0		ug/L			12/12/23 14:49	4
Chloroethane	ND	4.0		ug/L			12/12/23 14:49	4
Chloroform	ND	4.0 4.0		-			12/12/23 14:49	4
Chloromethane				ug/L				
	ND	4.0		ug/L			12/12/23 14:49	4
cis-1,2-Dichloroethene	ND	4.0		ug/L			12/12/23 14:49	4
cis-1,3-Dichloropropene	ND	4.0		ug/L			12/12/23 14:49	4
Cyclohexane	ND	4.0		ug/L			12/12/23 14:49	4
Dichlorodifluoromethane	ND	4.0		ug/L			12/12/23 14:49	4
Ethylbenzene	ND	4.0		ug/L			12/12/23 14:49	4
1,2-Dibromoethane	ND	4.0		ug/L			12/12/23 14:49	4
Isopropylbenzene	ND	4.0		ug/L			12/12/23 14:49	4
Methyl acetate	ND	10		ug/L			12/12/23 14:49	4
Methyl tert-butyl ether	ND	4.0		ug/L			12/12/23 14:49	4
Methylcyclohexane	ND	4.0		ug/L			12/12/23 14:49	4
Methylene Chloride	ND	4.0		ug/L			12/12/23 14:49	4
Styrene	ND	4.0		ug/L			12/12/23 14:49	4
Tetrachloroethene	ND	4.0		ug/L			12/12/23 14:49	4
Toluene	ND	4.0		ug/L			12/12/23 14:49	4
trans-1,2-Dichloroethene	ND	4.0		ug/L			12/12/23 14:49	4
trans-1,3-Dichloropropene	ND	4.0		ug/L			12/12/23 14:49	4
Trichloroethene	ND	4.0		ug/L			12/12/23 14:49	4
Trichlorofluoromethane	ND	4.0	3.5	ug/L			12/12/23 14:49	4
Vinyl chloride	ND	4.0		ug/L			12/12/23 14:49	4
Xylenes, Total	ND	8.0	2.6	ug/L			12/12/23 14:49	4

Job ID: 480-215606-1

Matrix: Water

5

6

Lab Sample ID: 480-215606-2

Client Sample ID: MW-5S Date Collected: 12/11/23 12:54 Date Received: 12/11/23 16:25

Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	100		80 - 120					12/12/23 14:49	4
1,2-Dichloroethane-d4 (Surr)	91		77 - 120					12/12/23 14:49	4
4-Bromofluorobenzene (Surr)	102		73 - 120					12/12/23 14:49	4
Dibromofluoromethane (Surr)	89		75 - 123					12/12/23 14:49	4
_ Method: SW846 6010C - Meta	Is (ICP)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	ND		0.015	0.0056	mg/L		12/13/23 08:20	12/13/23 20:46	1
Chromium	0.0030	J	0.0040	0.0010	mg/L		12/13/23 08:20	12/13/23 20:46	1
Manganese	0.75		0.0030	0.00040	mg/L		12/13/23 08:20	12/13/23 20:46	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ammonia (EPA 350.1)	4.8		1.0	0.50	mg/L		12/18/23 06:00	12/18/23 09:53	5
Chromium, hexavalent (SW846 7196A)	ND		0.010	0.0050	mg/L			12/12/23 09:45	1
Chloride (SW846 9056A)	4.7		2.5	1.4	mg/L			12/12/23 21:22	5
Hardness as calcium carbonate (SM 2340C)	930		10.0	2.6	mg/L			12/15/23 11:50	1
Sulfide (SM 4500 S2 F)	1.6		1.0	0.67	mg/L			12/16/23 14:00	1

Client Sample ID: SW-1

Date Collected: 12/11/23 10:25

Lab Sample ID: 480-215606-3

Matrix: Water

5

6

Method: SW846 8260C - Volatil	· ·	•			- -		- ··· -
Analyte	Result Qualifier			Unit	D Prepare		Dil Fa
,1,1-Trichloroethane	ND	1.0		ug/L		12/12/23 15:11	
,1,2,2-Tetrachloroethane	ND	1.0		ug/L		12/12/23 15:11	
I,1,2-Trichloroethane	ND	1.0		ug/L		12/12/23 15:11	
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	1.0		ug/L		12/12/23 15:11	
1,1-Dichloroethane	ND	1.0		ug/L		12/12/23 15:11	
1,1-Dichloroethene	ND	1.0		ug/L		12/12/23 15:11	
1,2,4-Trichlorobenzene	ND	1.0		ug/L		12/12/23 15:11	
1,2-Dibromo-3-Chloropropane	ND	1.0		ug/L		12/12/23 15:11	
1,2-Dichlorobenzene	ND	1.0		ug/L		12/12/23 15:11	
1,2-Dichloroethane	ND	1.0	0.21	ug/L		12/12/23 15:11	
1,2-Dichloropropane	ND	1.0	0.72	ug/L		12/12/23 15:11	
1,3-Dichlorobenzene	ND	1.0		ug/L		12/12/23 15:11	
1,4-Dichlorobenzene	ND	1.0		ug/L		12/12/23 15:11	
2-Butanone (MEK)	ND	10		ug/L		12/12/23 15:11	
2-Hexanone	ND	5.0		ug/L		12/12/23 15:11	
4-Methyl-2-pentanone (MIBK)	ND	5.0		ug/L		12/12/23 15:11	
Acetone	ND	10	3.0	ug/L		12/12/23 15:11	
Benzene	ND	1.0	0.41	ug/L		12/12/23 15:11	
Bromodichloromethane	ND	1.0	0.39	ug/L		12/12/23 15:11	
Bromoform	ND	1.0	0.26	ug/L		12/12/23 15:11	
Bromomethane	ND	1.0	0.69	ug/L		12/12/23 15:11	
Carbon disulfide	ND	1.0	0.19	ug/L		12/12/23 15:11	
Carbon tetrachloride	ND	1.0	0.27	ug/L		12/12/23 15:11	
Chlorobenzene	ND	1.0	0.75	ug/L		12/12/23 15:11	
Dibromochloromethane	ND	1.0	0.32	ug/L		12/12/23 15:11	
Chloroethane	ND	1.0	0.32	ug/L		12/12/23 15:11	
Chloroform	ND	1.0	0.34	ug/L		12/12/23 15:11	
Chloromethane	ND	1.0	0.35	ug/L		12/12/23 15:11	
cis-1,2-Dichloroethene	ND	1.0		ug/L		12/12/23 15:11	
cis-1,3-Dichloropropene	ND	1.0		ug/L		12/12/23 15:11	
Cyclohexane	ND	1.0		ug/L		12/12/23 15:11	
Dichlorodifluoromethane	ND	1.0		ug/L		12/12/23 15:11	
Ethylbenzene	ND	1.0		ug/L		12/12/23 15:11	
1,2-Dibromoethane	ND	1.0		ug/L		12/12/23 15:11	
sopropylbenzene	ND	1.0		ug/L		12/12/23 15:11	
Methyl acetate	ND	2.5		ug/L		12/12/23 15:11	
Methyl tert-butyl ether	ND	1.0		ug/L		12/12/23 15:11	
Methylcyclohexane	ND	1.0		ug/L		12/12/23 15:11	
Methylene Chloride	ND	1.0		ug/L		12/12/23 15:11	
Styrene	ND	1.0		ug/L		12/12/23 15:11	
Fetrachloroethene	ND	1.0		ug/L		12/12/23 15:11	
Foluene	ND	1.0		ug/L		12/12/23 15:11	
rans-1,2-Dichloroethene	ND ND	1.0 1.0		ug/L ug/L		12/12/23 15:11	
				-			
rans-1,3-Dichloropropene Frichloroethene	ND	1.0		ug/L		12/12/23 15:11	
	ND	1.0		ug/L		12/12/23 15:11	
Trichlorofluoromethane	ND	1.0		ug/L		12/12/23 15:11	
√inyl chloride Xylenes, Total	ND ND	1.0 2.0		ug/L ug/L		12/12/23 15:11 12/12/23 15:11	

Matrix: Water

5

6

Lab Sample ID: 480-215606-3

Client Sample ID: SW-1 Date Collected: 12/11/23 10:25 Date Received: 12/11/23 16:25

Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	99		80 - 120					12/12/23 15:11	1
1,2-Dichloroethane-d4 (Surr)	94		77 - 120					12/12/23 15:11	1
4-Bromofluorobenzene (Surr)	97		73 - 120					12/12/23 15:11	1
Dibromofluoromethane (Surr)	92		75 - 123					12/12/23 15:11	1
_ Method: SW846 6010C - Meta	als (ICP)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	ND		0.015	0.0056	mg/L		12/13/23 08:20	12/13/23 20:50	1
Chromium	0.0045		0.0040	0.0010	mg/L		12/13/23 08:20	12/13/23 20:50	1
Manganese	0.068		0.0030	0.00040	mg/L		12/13/23 08:20	12/13/23 20:50	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ammonia (EPA 350.1)	ND		0.20	0.10	mg/L		12/13/23 06:00	12/13/23 08:45	1
Chromium, hexavalent (SW846 7196A)	0.0066	J	0.010	0.0050	mg/L			12/12/23 09:45	1
Chloride (SW846 9056A)	21.1		0.50	0.28	mg/L			12/12/23 21:40	1
Hardness as calcium carbonate (SM 2340C)	120		4.0	1.1	mg/L			12/15/23 11:50	1
Sulfide (SM 4500 S2 F)	ND	F1	1.0	0.67	mg/L			12/16/23 14:00	1

Client Sample ID: SW-2

Date Collected: 12/11/23 12:16

Date Received: 12/11/23 16:25

Lab Sample ID: 480-215606-4

Matrix: Water

5 6

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
,1,1-Trichloroethane	ND		1.0	0.82	ug/L			12/12/23 15:33	
,1,2,2-Tetrachloroethane	ND		1.0	0.21	ug/L			12/12/23 15:33	
,1,2-Trichloroethane	ND		1.0	0.23	ug/L			12/12/23 15:33	
,1,2-Trichloro-1,2,2-trifluoroethane	ND		1.0	0.31	ug/L			12/12/23 15:33	
,1-Dichloroethane	ND		1.0		ug/L			12/12/23 15:33	
,1-Dichloroethene	ND		1.0	0.29	-			12/12/23 15:33	
,2,4-Trichlorobenzene	ND		1.0	0.41				12/12/23 15:33	
,2-Dibromo-3-Chloropropane	ND		1.0	0.39	-			12/12/23 15:33	
,2-Dichlorobenzene	ND		1.0	0.79	-			12/12/23 15:33	
,2-Dichloroethane	ND		1.0		ug/L			12/12/23 15:33	
,2-Dichloropropane	ND		1.0		ug/L			12/12/23 15:33	
,3-Dichlorobenzene	ND		1.0		ug/L			12/12/23 15:33	
,4-Dichlorobenzene	ND		1.0	0.84				12/12/23 15:33	
-Butanone (MEK)	ND		10		ug/L			12/12/23 15:33	
-Hexanone	ND		5.0		ug/L			12/12/23 15:33	
-Methyl-2-pentanone (MIBK)	ND		5.0		ug/L			12/12/23 15:33	
Acetone	ND		10		ug/L			12/12/23 15:33	
Benzene	ND		1.0	0.41	-			12/12/23 15:33	
Bromodichloromethane	ND		1.0	0.41				12/12/23 15:33	
Bromoform	ND		1.0		ug/L ug/L			12/12/23 15:33	
romomethane	ND		1.0	0.20	-			12/12/23 15:33	
carbon disulfide									
	ND		1.0		ug/L			12/12/23 15:33	
Carbon tetrachloride	ND		1.0	0.27	-			12/12/23 15:33	
Chlorobenzene	ND		1.0	0.75				12/12/23 15:33	
bibromochloromethane	ND		1.0		ug/L			12/12/23 15:33	
Chloroethane	ND		1.0		ug/L			12/12/23 15:33	
Chloroform	ND		1.0		ug/L			12/12/23 15:33	
Chloromethane	ND		1.0		ug/L			12/12/23 15:33	
is-1,2-Dichloroethene	ND		1.0		ug/L			12/12/23 15:33	
is-1,3-Dichloropropene	ND		1.0		ug/L			12/12/23 15:33	
Cyclohexane	ND		1.0		ug/L			12/12/23 15:33	
Dichlorodifluoromethane	ND		1.0	0.68	-			12/12/23 15:33	
thylbenzene	ND		1.0		ug/L			12/12/23 15:33	
,2-Dibromoethane	ND		1.0		ug/L			12/12/23 15:33	
sopropylbenzene	ND		1.0		ug/L			12/12/23 15:33	
lethyl acetate	ND		2.5		ug/L			12/12/23 15:33	
lethyl tert-butyl ether	ND		1.0		ug/L			12/12/23 15:33	
lethylcyclohexane	ND		1.0	0.16	ug/L			12/12/23 15:33	
lethylene Chloride	ND		1.0		ug/L			12/12/23 15:33	
tyrene	ND		1.0	0.73	ug/L			12/12/23 15:33	
etrachloroethene	ND		1.0	0.36	ug/L			12/12/23 15:33	
oluene	ND		1.0	0.51	ug/L			12/12/23 15:33	
ans-1,2-Dichloroethene	ND		1.0	0.90	ug/L			12/12/23 15:33	
ans-1,3-Dichloropropene	ND		1.0	0.37	ug/L			12/12/23 15:33	
richloroethene	ND		1.0		ug/L			12/12/23 15:33	
richlorofluoromethane	ND		1.0		ug/L			12/12/23 15:33	
'inyl chloride	ND		1.0	0.90	-			12/12/23 15:33	
Kylenes, Total	ND		2.0		ug/L			12/12/23 15:33	

Matrix: Water

5

6

Lab Sample ID: 480-215606-4

Client Sample ID: SW-2 Date Collected: 12/11/23 12:16 Date Received: 12/11/23 16:25

Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	95		80 - 120					12/12/23 15:33	1
1,2-Dichloroethane-d4 (Surr)	91		77 - 120					12/12/23 15:33	1
4-Bromofluorobenzene (Surr)	98		73 - 120					12/12/23 15:33	1
Dibromofluoromethane (Surr)	90		75 - 123					12/12/23 15:33	1
_ Method: SW846 6010C - Meta	Is (ICP)								
Analyte	· · · ·	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	ND		0.015	0.0056	mg/L		12/13/23 08:20	12/13/23 20:53	1
Chromium	0.0039	J	0.0040	0.0010	mg/L		12/13/23 08:20	12/13/23 20:53	1
Manganese	0.056		0.0030	0.00040	mg/L		12/13/23 08:20	12/13/23 20:53	1
_ General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ammonia (EPA 350.1)	ND		0.20	0.10	mg/L		12/13/23 06:00	12/13/23 08:48	1
Chromium, hexavalent (SW846 7196A)	ND		0.010	0.0050	mg/L			12/12/23 09:45	1
Chloride (SW846 9056A)	20.7		0.50	0.28	mg/L			12/12/23 21:58	1
Hardness as calcium carbonate (SM 2340C)	116		4.0	1.1	mg/L			12/15/23 11:50	1
Sulfide (SM 4500 S2 F)	ND		1.0	0.67	mg/L			12/16/23 14:00	1

Lab Sample ID: 480-215606-5

Matrix: Water

5

6

Client Sample ID: SW-3 Date Collected: 12/11/23 13:33 Date Received: 12/11/23 16:25

Method: SW846 8260C - Volati Analyte	-	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		1.0	0.82	ug/L			12/12/23 15:55	1
1,1,2,2-Tetrachloroethane	ND		1.0	0.21	ug/L			12/12/23 15:55	1
1,1,2-Trichloroethane	ND		1.0	0.23	ug/L			12/12/23 15:55	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		1.0	0.31	ug/L			12/12/23 15:55	1
1,1-Dichloroethane	ND		1.0	0.38	ug/L			12/12/23 15:55	1
1,1-Dichloroethene	ND		1.0	0.29	ug/L			12/12/23 15:55	1
1,2,4-Trichlorobenzene	ND		1.0		ug/L			12/12/23 15:55	1
1,2-Dibromo-3-Chloropropane	ND		1.0		ug/L			12/12/23 15:55	1
1,2-Dichlorobenzene	ND		1.0		ug/L			12/12/23 15:55	1
1,2-Dichloroethane	ND		1.0	0.21	ug/L			12/12/23 15:55	1
1,2-Dichloropropane	ND		1.0		ug/L			12/12/23 15:55	1
1,3-Dichlorobenzene	ND		1.0		ug/L			12/12/23 15:55	1
1,4-Dichlorobenzene	ND		1.0		ug/L			12/12/23 15:55	1
2-Butanone (MEK)	ND		10		ug/L			12/12/23 15:55	1
2-Hexanone	ND		5.0		ug/L			12/12/23 15:55	1
4-Methyl-2-pentanone (MIBK)	ND		5.0		ug/L			12/12/23 15:55	
Acetone	ND		10		ug/L			12/12/23 15:55	1
Benzene	ND		1.0		ug/L			12/12/23 15:55	1
Bromodichloromethane	ND		1.0		ug/L			12/12/23 15:55	
Bromoform	ND		1.0		ug/L			12/12/23 15:55	1
Bromomethane	ND		1.0		ug/L			12/12/23 15:55	1
Carbon disulfide	ND		1.0		ug/L			12/12/23 15:55	1
Carbon tetrachloride	ND		1.0		ug/L			12/12/23 15:55	1
Chlorobenzene	ND		1.0		ug/L			12/12/23 15:55	1
Dibromochloromethane	ND		1.0		ug/L			12/12/23 15:55	1
Chloroethane	ND		1.0		ug/L			12/12/23 15:55	1
Chloroform	ND		1.0		ug/L			12/12/23 15:55	1
Chloromethane	ND		1.0		ug/L			12/12/23 15:55	
cis-1,2-Dichloroethene	ND		1.0		ug/L			12/12/23 15:55	1
cis-1,3-Dichloropropene	ND		1.0		ug/L			12/12/23 15:55	1
Cyclohexane	ND		1.0		ug/L			12/12/23 15:55	
Dichlorodifluoromethane	ND		1.0		ug/L			12/12/23 15:55	1
Ethylbenzene	ND		1.0		ug/L			12/12/23 15:55	1
1,2-Dibromoethane	ND		1.0		ug/L			12/12/23 15:55	
Isopropylbenzene	ND		1.0		ug/L			12/12/23 15:55	1
,	ND		2.5		ug/L			12/12/23 15:55	1
Methyl acetate									
Methyl tert-butyl ether	ND		1.0		ug/L			12/12/23 15:55	1
Methylcyclohexane	ND		1.0		ug/L			12/12/23 15:55	1
Methylene Chloride	ND		1.0		ug/L			12/12/23 15:55	1
Styrene	ND		1.0		ug/L			12/12/23 15:55	1
Tetrachloroethene	ND		1.0		ug/L			12/12/23 15:55	1
Toluene	ND		1.0		ug/L			12/12/23 15:55	1
trans-1,2-Dichloroethene	ND		1.0		ug/L			12/12/23 15:55	1
trans-1,3-Dichloropropene	ND		1.0		ug/L			12/12/23 15:55	1
Trichloroethene	ND		1.0		ug/L			12/12/23 15:55	1
Trichlorofluoromethane	ND		1.0		ug/L			12/12/23 15:55	1
Vinyl chloride	ND		1.0		ug/L			12/12/23 15:55	1
Xylenes, Total	ND		2.0	0.66	ug/L			12/12/23 15:55	1

Matrix: Water

5

6

Lab Sample ID: 480-215606-5

Client Sample ID: SW-3 Date Collected: 12/11/23 13:33 Date Received: 12/11/23 16:25

Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	98		80 - 120					12/12/23 15:55	1
1,2-Dichloroethane-d4 (Surr)	97		77 - 120					12/12/23 15:55	1
4-Bromofluorobenzene (Surr)	94		73 - 120					12/12/23 15:55	1
Dibromofluoromethane (Surr)	97		75 - 123					12/12/23 15:55	1
_ Method: SW846 6010C - Meta	Is (ICP)								
Analyte	· · · ·	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	ND		0.015	0.0056	mg/L		12/13/23 08:20	12/13/23 20:56	1
Chromium	0.0038	J	0.0040	0.0010	mg/L		12/13/23 08:20	12/13/23 20:56	1
Manganese	0.052		0.0030	0.00040	mg/L		12/13/23 08:20	12/13/23 20:56	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ammonia (EPA 350.1)	ND		0.20	0.10	mg/L		12/13/23 06:00	12/13/23 08:51	1
Chromium, hexavalent (SW846	0.0079	J	0.010	0.0050	mg/L			12/12/23 09:45	1
7196A)			0.50						
Chloride (SW846 9056A)	20.8		0.50	0.28	mg/L			12/12/23 22:16	1
Hardness as calcium carbonate (SM 2340C)	116		4.0	1.1	mg/L			12/15/23 11:50	1
Sulfide (SM 4500 S2 F)	ND		1.0	0.67	mg/L			12/16/23 14:00	1

Client Sample ID: DUPLICATE Date Collected: 12/11/23 00:00 Date Received: 12/11/23 16:25

Lab Sample ID: 480-215606-6

Matrix: Water

5

6

Analyte	Result Qualifier	RL	MDL	Unit	D Pi	repared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND	4.0	3.3	ug/L		-	12/12/23 16:17	4
1,1,2,2-Tetrachloroethane	ND	4.0		ug/L			12/12/23 16:17	4
I,1,2-Trichloroethane	ND	4.0	0.92	ug/L			12/12/23 16:17	4
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	4.0		ug/L			12/12/23 16:17	4
,1-Dichloroethane	ND	4.0		ug/L			12/12/23 16:17	4
I,1-Dichloroethene	ND	4.0		ug/L			12/12/23 16:17	4
1,2,4-Trichlorobenzene	ND	4.0		ug/L			12/12/23 16:17	4
,2-Dibromo-3-Chloropropane	ND	4.0		ug/L			12/12/23 16:17	4
1,2-Dichlorobenzene	ND	4.0		ug/L			12/12/23 16:17	4
1,2-Dichloroethane	ND	4.0		ug/L			12/12/23 16:17	4
1,2-Dichloropropane	ND	4.0		ug/L			12/12/23 16:17	4
1,3-Dichlorobenzene	ND	4.0		ug/L			12/12/23 16:17	4
1,4-Dichlorobenzene	ND	4.0		ug/L			12/12/23 16:17	4
2-Butanone (MEK)	ND	40		ug/L			12/12/23 16:17	4
2-Hexanone	ND	20		ug/L			12/12/23 16:17	4
4-Methyl-2-pentanone (MIBK)	ND	20		ug/L			12/12/23 16:17	4
Acetone	ND	40		ug/L			12/12/23 16:17	4
Benzene	ND	4.0		ug/L			12/12/23 16:17	4
Bromodichloromethane	ND	4.0		ug/L			12/12/23 16:17	4
Bromoform	ND	4.0		ug/L			12/12/23 16:17	4
Bromomethane	ND	4.0		ug/L			12/12/23 16:17	4
Carbon disulfide	ND	4.0		ug/L			12/12/23 16:17	
Carbon tetrachloride	ND	4.0		ug/L			12/12/23 16:17	4
Chlorobenzene	ND	4.0		ug/L			12/12/23 16:17	4
Dibromochloromethane	ND	4.0		ug/L			12/12/23 16:17	
Chloroethane	ND	4.0		ug/L			12/12/23 16:17	4
Chloroform	ND	4.0		ug/L			12/12/23 16:17	4
Chloromethane	ND	4.0		ug/L			12/12/23 16:17	4
cis-1,2-Dichloroethene	ND	4.0		ug/L			12/12/23 16:17	4
cis-1,3-Dichloropropene	ND	4.0		ug/L			12/12/23 16:17	4
Cyclohexane	ND	4.0		ug/L			12/12/23 16:17	4
Dichlorodifluoromethane	ND	4.0		ug/L			12/12/23 16:17	4
Ethylbenzene	ND	4.0		ug/L			12/12/23 16:17	4
1,2-Dibromoethane	ND	4.0		ug/L			12/12/23 16:17	
sopropylbenzene	ND	4.0		ug/L			12/12/23 16:17	4
Methyl acetate	ND	10		ug/L			12/12/23 16:17	4
Methyl tert-butyl ether	ND	4.0		ug/L			12/12/23 16:17	4
Methylcyclohexane	ND	4.0		ug/L			12/12/23 16:17	4
Methylene Chloride	ND	4.0		ug/L			12/12/23 16:17	4
Styrene	ND	4.0		ug/L			12/12/23 16:17	
Fetrachloroethene	ND	4.0		ug/L			12/12/23 16:17	4
Toluene	ND	4.0		ug/L			12/12/23 16:17	4
rans-1,2-Dichloroethene	ND	4.0		ug/L			12/12/23 16:17	4
rans-1,3-Dichloropropene	ND	4.0		ug/L			12/12/23 16:17	4
Trichloroethene	ND	4.0		ug/L			12/12/23 16:17	4
Trichlorofluoromethane	ND	4.0		ug/L			12/12/23 16:17	4
Vinyl chloride	ND	4.0		ug/L			12/12/23 16:17	4
Xylenes, Total	ND	4.0 8.0		ug/L			12/12/23 16:17	4

Client Sample ID: DUPLICATE Date Collected: 12/11/23 00:00 Date Received: 12/11/23 16:25

Lab Sample ID: 480-215606-6 Matrix: Water

Date Received: 12/11/23 16:2	.5								
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	97		80 - 120					12/12/23 16:17	4
1,2-Dichloroethane-d4 (Surr)	90		77 - 120					12/12/23 16:17	4
4-Bromofluorobenzene (Surr)	94		73 - 120					12/12/23 16:17	4
Dibromofluoromethane (Surr)	92		75 - 123					12/12/23 16:17	4
Analyte Arsenic	Result ND	Qualifier	RL 0.015	MDL 0.0056		<u> </u>	Prepared 12/13/23 08:20	Analyzed 12/13/23 21:00	Dil Fac
		Qualifier				D			Dil Fac
Chromium	0.0032	а	0.0040	0.0010	U U		12/13/23 08:20	12/13/23 21:00	1
Manganese	0.77	•	0.0030	0.00040	0		12/13/23 08:20	12/13/23 21:00	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chromium, hexavalent (SW846 7196A)	ND	Н	0.010	0.0050	mg/L			12/12/23 09:45	1

Client: Barton & Loguidice, D.P.C. Project/Site: Village of Gowanda, NY Landfill

Client Sample ID: MFWP-2S Date Collected: 12/11/23 11:05 Date Received: 12/11/23 16:25

Lab Sample ID: 480-215606-7

Matrix: Water

5 6

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		1.0	0.82	ug/L			12/12/23 16:39	1
1,1-Dichloroethane	ND		1.0	0.38	ug/L			12/12/23 16:39	1
2-Butanone (MEK)	ND		10	1.3	ug/L			12/12/23 16:39	1
Acetone	ND		10	3.0	ug/L			12/12/23 16:39	1
Chloroform	ND		1.0	0.34	ug/L			12/12/23 16:39	1
cis-1,2-Dichloroethene	ND		1.0	0.81	ug/L			12/12/23 16:39	1
Methylene Chloride	ND		1.0	0.44	ug/L			12/12/23 16:39	1
Tetrachloroethene	ND		1.0	0.36	ug/L			12/12/23 16:39	1
Trichloroethene	ND		1.0	0.46	ug/L			12/12/23 16:39	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
1,2-Dichloroethane-d4 (Surr)	92		77 - 120					12/12/23 16:39	
4-Bromofluorobenzene (Surr)	94		73 - 120					12/12/23 16:39	-
Toluene-d8 (Surr)	97		80 - 120					12/12/23 16:39	
Dibromofluoromethane (Surr)	93		75 - 123					12/12/23 16:39	
Method: SW846 6010C - Me	tals (ICP)								
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	ND		0.015	0.0056	mg/L		12/13/23 08:20	12/13/23 21:03	
Chromium	0.024		0.0040	0.0010	mg/L		12/13/23 08:20	12/13/23 21:03	
Manganese	0.34		0.0030	0.00040	mg/L		12/13/23 08:20	12/13/23 21:03	
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Chromium, hexavalent (SW846 7196A)	ND		0.010	0.0050	mg/L			12/12/23 09:45	

Client Sample Results

Client: Barton & Loguidice, D.P.C. Project/Site: Village of Gowanda, NY Landfill

Client Sample ID: MWFP-3S Date Collected: 12/11/23 11:51 Date Received: 12/11/23 16:25

Job ID: 480-215606-1

Lab Sample ID: 480-215606-8

Matrix: Water

5 6

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	1.4		1.0	0.82	ug/L			12/12/23 17:02	1
1,1-Dichloroethane	ND		1.0	0.38	ug/L			12/12/23 17:02	1
2-Butanone (MEK)	ND		10	1.3	ug/L			12/12/23 17:02	1
Acetone	ND		10	3.0	ug/L			12/12/23 17:02	1
Chloroform	0.79	J	1.0	0.34	ug/L			12/12/23 17:02	1
cis-1,2-Dichloroethene	ND		1.0	0.81	ug/L			12/12/23 17:02	1
Methylene Chloride	ND		1.0	0.44	ug/L			12/12/23 17:02	1
Tetrachloroethene	4.8		1.0	0.36	ug/L			12/12/23 17:02	1
Trichloroethene	1.3		1.0	0.46	ug/L			12/12/23 17:02	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	94		77 - 120					12/12/23 17:02	1
4-Bromofluorobenzene (Surr)	100		73 - 120					12/12/23 17:02	1
Toluene-d8 (Surr)	98		80 - 120					12/12/23 17:02	1
Dibromofluoromethane (Surr)	92		75 - 123					12/12/23 17:02	1
Method: SW846 6010C - Meta	als (ICP)								
Analyte	· · · ·	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	ND		0.015	0.0056	mg/L		12/13/23 08:20	12/13/23 21:07	1
Chromium	0.0027	J	0.0040	0.0010	mg/L		12/13/23 08:20	12/13/23 21:07	1
Manganese	0.011		0.0030	0.00040	mg/L		12/13/23 08:20	12/13/23 21:07	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chromium, hexavalent (SW846 7196A)	0.0066	J	0.010	0.0050	mg/L			12/12/23 09:45	1

Client Sample ID: TRIP BLANK Date Collected: 12/11/23 00:00 Date Received: 12/11/23 16:25

Lab Sample ID: 480-215606-9

Matrix: Water

5

6

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND	1.0	0.82	ug/L			12/12/23 17:24	1
1,1,2,2-Tetrachloroethane	ND	1.0	0.21	ug/L			12/12/23 17:24	1
1,1,2-Trichloroethane	ND	1.0	0.23	ug/L			12/12/23 17:24	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	1.0	0.31	ug/L			12/12/23 17:24	1
1,1-Dichloroethane	ND	1.0	0.38	ug/L			12/12/23 17:24	1
1,1-Dichloroethene	ND	1.0	0.29	ug/L			12/12/23 17:24	1
1,2,4-Trichlorobenzene	ND	1.0	0.41	ug/L			12/12/23 17:24	1
I,2-Dibromo-3-Chloropropane	ND	1.0	0.39	ug/L			12/12/23 17:24	1
I,2-Dichlorobenzene	ND	1.0	0.79	ug/L			12/12/23 17:24	1
I,2-Dichloroethane	ND	1.0	0.21	ug/L			12/12/23 17:24	1
1,2-Dichloropropane	ND	1.0	0.72	-			12/12/23 17:24	1
,3-Dichlorobenzene	ND	1.0	0.78	-			12/12/23 17:24	1
,4-Dichlorobenzene	ND	1.0		ug/L			12/12/23 17:24	1
2-Butanone (MEK)	ND	10		ug/L			12/12/23 17:24	1
2-Hexanone	ND	5.0		ug/L			12/12/23 17:24	
-Methyl-2-pentanone (MIBK)	ND	5.0		ug/L			12/12/23 17:24	1
Acetone	ND	10		ug/L			12/12/23 17:24	
Benzene	ND	1.0	0.41	-			12/12/23 17:24	
Bromodichloromethane	ND	1.0	0.39				12/12/23 17:24	
Bromoform	ND	1.0	0.26	-			12/12/23 17:24	
romomethane	ND	1.0	0.69	-			12/12/23 17:24	
Carbon disulfide	ND	1.0	0.09				12/12/23 17:24	
Carbon tetrachloride	ND	1.0	0.13	-			12/12/23 17:24	
Chlorobenzene	ND	1.0	0.27	-			12/12/23 17:24	
Dibromochloromethane	ND	1.0	0.75				12/12/23 17:24	
Chloroethane	ND	1.0	0.32	-			12/12/23 17:24	
		1.0		-				
Chloroform	ND		0.34				12/12/23 17:24	
Chloromethane	ND	1.0		ug/L			12/12/23 17:24	
is-1,2-Dichloroethene	ND	1.0	0.81	-			12/12/23 17:24	
is-1,3-Dichloropropene	ND	1.0	0.36				12/12/23 17:24	
Cyclohexane	ND	1.0		ug/L			12/12/23 17:24	
Dichlorodifluoromethane	ND	1.0	0.68				12/12/23 17:24	
thylbenzene	ND	1.0	0.74				12/12/23 17:24	
,2-Dibromoethane	ND	1.0		ug/L			12/12/23 17:24	
sopropylbenzene	ND	1.0	0.79	-			12/12/23 17:24	
1ethyl acetate	ND	2.5		ug/L			12/12/23 17:24	
lethyl tert-butyl ether	ND	1.0		ug/L			12/12/23 17:24	
lethylcyclohexane	ND	1.0		ug/L			12/12/23 17:24	
lethylene Chloride	ND	1.0		ug/L			12/12/23 17:24	
styrene	ND	1.0		ug/L			12/12/23 17:24	
etrachloroethene	ND	1.0		ug/L			12/12/23 17:24	
oluene	ND	1.0	0.51	ug/L			12/12/23 17:24	
ans-1,2-Dichloroethene	ND	1.0	0.90	ug/L			12/12/23 17:24	
rans-1,3-Dichloropropene	ND	1.0	0.37	ug/L			12/12/23 17:24	
richloroethene	ND	1.0	0.46	ug/L			12/12/23 17:24	
Trichlorofluoromethane	ND	1.0	0.88	ug/L			12/12/23 17:24	
/inyl chloride	ND	1.0		ug/L			12/12/23 17:24	
Kylenes, Total	ND	2.0		ug/L			12/12/23 17:24	

Lab Sample ID: 480-215606-9

Matrix: Water

5

6

Client Sample ID: TRIP BLANK Date Collected: 12/11/23 00:00 Date Received: 12/11/23 16:25

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	96	80 - 120		12/12/23 17:24	1
1,2-Dichloroethane-d4 (Surr)	94	77 - 120		12/12/23 17:24	1
4-Bromofluorobenzene (Surr)	99	73 - 120		12/12/23 17:24	1
Dibromofluoromethane (Surr)	91	75 - 123		12/12/23 17:24	1

Surrogate Summary

Method: 8260C - Volatile Organic Compounds by GC/MS Matrix: Water

			Pe	Percent Surro		
		TOL	DCA	BFB	DBFM	
Lab Sample ID	Client Sample ID	(80-120)	(77-120)	(73-120)	(75-123)	
480-215606-1	MW-1SR	97	93	97	94	
480-215606-1 MS	MW-1SR	100	92	101	91	
480-215606-1 MSD	MW-1SR	100	89	104	94	
480-215606-2	MW-5S	100	91	102	89	
480-215606-3	SW-1	99	94	97	92	
480-215606-4	SW-2	95	91	98	90	
480-215606-5	SW-3	98	97	94	97	
480-215606-6	DUPLICATE	97	90	94	92	
480-215606-7	MFWP-2S	97	92	94	93	
480-215606-8	MWFP-3S	98	94	100	92	
480-215606-9	TRIP BLANK	96	94	99	91	
LCS 480-695045/6	Lab Control Sample	95	87	102	89	
MB 480-695045/8	Method Blank	98	95	100	92	

TOL = Toluene-d8 (Surr)

DCA = 1,2-Dichloroethane-d4 (Surr)

BFB = 4-Bromofluorobenzene (Surr)

DBFM = Dibromofluoromethane (Surr)

Prep Type: Total/NA

5

8

Method: 8260C - Volatile Organic Compounds by GC/MS

Lab Sample ID: MB 480-695045/8 Matrix: Water

Client Sample ID: Method Blank Prep Type: Total/NA

Matrix: Water Analysis Batch: 695045

Analysis Batch: 695045	MB	MB							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		1.0	0.82	ug/L			12/12/23 11:53	1
1,1,2,2-Tetrachloroethane	ND		1.0	0.21	ug/L			12/12/23 11:53	1
1,1,2-Trichloroethane	ND		1.0	0.23	-			12/12/23 11:53	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		1.0	0.31	ug/L			12/12/23 11:53	1
1,1-Dichloroethane	ND		1.0	0.38	-			12/12/23 11:53	1
1,1-Dichloroethene	ND		1.0	0.29	ug/L			12/12/23 11:53	1
1,2,4-Trichlorobenzene	ND		1.0	0.41	ug/L			12/12/23 11:53	1
1,2-Dibromo-3-Chloropropane	ND		1.0	0.39	ug/L			12/12/23 11:53	1
1,2-Dichlorobenzene	ND		1.0	0.79	ug/L			12/12/23 11:53	1
1,2-Dichloroethane	ND		1.0	0.21	ug/L			12/12/23 11:53	1
1,2-Dichloropropane	ND		1.0	0.72	ug/L			12/12/23 11:53	1
1,3-Dichlorobenzene	ND		1.0	0.78	ug/L			12/12/23 11:53	1
1,4-Dichlorobenzene	ND		1.0	0.84	ug/L			12/12/23 11:53	1
2-Butanone (MEK)	ND		10	1.3	ug/L			12/12/23 11:53	1
2-Hexanone	ND		5.0	1.2	ug/L			12/12/23 11:53	1
4-Methyl-2-pentanone (MIBK)	ND		5.0	2.1	ug/L			12/12/23 11:53	1
Acetone	ND		10	3.0	ug/L			12/12/23 11:53	1
Benzene	ND		1.0	0.41	ug/L			12/12/23 11:53	1
Bromodichloromethane	ND		1.0	0.39	ug/L			12/12/23 11:53	1
Bromoform	ND		1.0	0.26	ug/L			12/12/23 11:53	1
Bromomethane	ND		1.0	0.69	ug/L			12/12/23 11:53	1
Carbon disulfide	ND		1.0	0.19	ug/L			12/12/23 11:53	1
Carbon tetrachloride	ND		1.0	0.27	ug/L			12/12/23 11:53	1
Chlorobenzene	ND		1.0	0.75	ug/L			12/12/23 11:53	1
Dibromochloromethane	ND		1.0	0.32	ug/L			12/12/23 11:53	1
Chloroethane	ND		1.0	0.32	ug/L			12/12/23 11:53	1
Chloroform	ND		1.0	0.34	ug/L			12/12/23 11:53	1
Chloromethane	ND		1.0	0.35	ug/L			12/12/23 11:53	1
cis-1,2-Dichloroethene	ND		1.0	0.81	ug/L			12/12/23 11:53	1
cis-1,3-Dichloropropene	ND		1.0	0.36	ug/L			12/12/23 11:53	1
Cyclohexane	ND		1.0	0.18	ug/L			12/12/23 11:53	1
Dichlorodifluoromethane	ND		1.0	0.68	ug/L			12/12/23 11:53	1
Ethylbenzene	ND		1.0	0.74	ug/L			12/12/23 11:53	1
1,2-Dibromoethane	ND		1.0	0.73	ug/L			12/12/23 11:53	1
Isopropylbenzene	ND		1.0	0.79	ug/L			12/12/23 11:53	1
Methyl acetate	ND		2.5	1.3	ug/L			12/12/23 11:53	1
Methyl tert-butyl ether	ND		1.0	0.16	ug/L			12/12/23 11:53	1
Methylcyclohexane	ND		1.0	0.16	ug/L			12/12/23 11:53	1
Methylene Chloride	0.486	J	1.0	0.44	ug/L			12/12/23 11:53	1
Styrene	ND		1.0	0.73	ug/L			12/12/23 11:53	1
Tetrachloroethene	ND		1.0	0.36	ug/L			12/12/23 11:53	1
Toluene	ND		1.0	0.51	ug/L			12/12/23 11:53	1
trans-1,2-Dichloroethene	ND		1.0	0.90	ug/L			12/12/23 11:53	1
trans-1,3-Dichloropropene	ND		1.0	0.37	ug/L			12/12/23 11:53	1
Trichloroethene	ND		1.0	0.46	ug/L			12/12/23 11:53	1
Trichlorofluoromethane	ND		1.0	0.88	ug/L			12/12/23 11:53	1
Vinyl chloride	ND		1.0	0.90	ug/L			12/12/23 11:53	1
Xylenes, Total	ND		2.0	0.66	ug/L			12/12/23 11:53	1

QC Sample Results

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Prep Type: Total/NA

Prep Type: Total/NA

Client Sample ID: Method Blank

Client Sample ID: Lab Control Sample

Lab Sample ID: MB 480-695045/8 Matrix: Water

Analysis Batch: 695045

	MB	MB				
Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	98		80 - 120		12/12/23 11:53	1
1,2-Dichloroethane-d4 (Surr)	95		77 - 120		12/12/23 11:53	1
4-Bromofluorobenzene (Surr)	100		73 - 120		12/12/23 11:53	1
Dibromofluoromethane (Surr)	92		75 - 123		12/12/23 11:53	1

Lab Sample ID: LCS 480-695045/6 Matrix: Water

Analysis Batch: 695045

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,1,1-Trichloroethane	25.0	27.1		ug/L		109	73 - 126	
1,1,2,2-Tetrachloroethane	25.0	24.9		ug/L		100	76 - 120	
1,1,2-Trichloroethane	25.0	25.8		ug/L		103	76 - 122	
1,1,2-Trichloro-1,2,2-trifluoroetha	25.0	26.2		ug/L		105	61 - 148	
ne								
1,1-Dichloroethane	25.0	24.6		ug/L		98	77 - 120	
1,1-Dichloroethene	25.0	23.4		ug/L		94	66 - 127	
1,2,4-Trichlorobenzene	25.0	24.0		ug/L		96	79 - 122	
1,2-Dibromo-3-Chloropropane	25.0	26.2		ug/L		105	56 - 134	
1,2-Dichlorobenzene	25.0	24.8		ug/L		99	80 - 124	
1,2-Dichloroethane	25.0	24.2		ug/L		97	75 - 120	
1,2-Dichloropropane	25.0	25.7		ug/L		103	76 - 120	
1,3-Dichlorobenzene	25.0	24.9		ug/L		100	77 - 120	
1,4-Dichlorobenzene	25.0	24.1		ug/L		96	80 - 120	
2-Butanone (MEK)	125	119		ug/L		95	57 - 140	
2-Hexanone	125	118		ug/L		95	65 - 127	
4-Methyl-2-pentanone (MIBK)	125	120		ug/L		96	71 - 125	
Acetone	125	128		ug/L		103	56 - 142	
Benzene	25.0	25.0		ug/L		100	71 - 124	
Bromodichloromethane	25.0	27.0		ug/L		108	80 - 122	
Bromoform	25.0	27.1		ug/L		109	61 - 132	
Bromomethane	25.0	23.3		ug/L		93	55 - 144	
Carbon disulfide	25.0	22.8		ug/L		91	59 - 134	
Carbon tetrachloride	25.0	30.2		ug/L		121	72 - 134	
Chlorobenzene	25.0	25.7		ug/L		103	80 - 120	
Dibromochloromethane	25.0	26.3		ug/L		105	75 - 125	
Chloroethane	25.0	25.1		ug/L		100	69 - 136	
Chloroform	25.0	25.2		ug/L		101	73 - 127	
Chloromethane	25.0	24.7		ug/L		99	68 - 124	
cis-1,2-Dichloroethene	25.0	24.5		ug/L		98	74 - 124	
cis-1,3-Dichloropropene	25.0	29.2		ug/L		117	74 - 124	
Cyclohexane	25.0	25.4		ug/L		102	59 - 135	
Dichlorodifluoromethane	25.0	26.0		ug/L		104	59 - 135	
Ethylbenzene	25.0	25.5		ug/L		102	77 - 123	
1,2-Dibromoethane	25.0	26.2		ug/L		105	77 - 120	
lsopropylbenzene	25.0	29.2		ug/L		117	77 - 122	
Methyl acetate	50.0	52.8		ug/L		106	74 - 133	
Methyl tert-butyl ether	25.0	24.8		ug/L		99	77 - 120	
Methylcyclohexane	25.0	27.2		ug/L		109	68 - 134	

Prep Type: Total/NA

Client Sample ID: Lab Control Sample

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCS 480-695045/6 Matrix: Water

Analysis Batch: 695045

	Spike	LCS	LCS				%Rec
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Methylene Chloride		25.1		ug/L		101	75 - 124
Styrene	25.0	25.4		ug/L		101	80 - 120
Tetrachloroethene	25.0	27.7		ug/L		111	74 - 122
Toluene	25.0	26.5		ug/L		106	80 - 122
trans-1,2-Dichloroethene	25.0	23.7		ug/L		95	73 - 127
trans-1,3-Dichloropropene	25.0	29.5		ug/L		118	80 - 120
Trichloroethene	25.0	27.3		ug/L		109	74 - 123
Trichlorofluoromethane	25.0	26.0		ug/L		104	62 - 150
Vinyl chloride	25.0	26.3		ug/L		105	65 - 133

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
Toluene-d8 (Surr)	95		80 - 120
1,2-Dichloroethane-d4 (Surr)	87		77 - 120
4-Bromofluorobenzene (Surr)	102		73 - 120
Dibromofluoromethane (Surr)	89		75 - 123

Lab Sample ID: 480-215606-1 MS Matrix: Water Analysis Batch: 695045

-	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,1,1-Trichloroethane	ND		25.0	31.0		ug/L		124	73 - 126	
1,1,2,2-Tetrachloroethane	ND		25.0	29.2		ug/L		117	76 - 120	
1,1,2-Trichloroethane	ND		25.0	28.5		ug/L		114	76 - 122	
1,1,2-Trichloro-1,2,2-trifluoroetha	ND		25.0	29.4		ug/L		118	61 - 148	
ne										
1,1-Dichloroethane	ND		25.0	28.3		ug/L		113	77 - 120	
1,1-Dichloroethene	ND		25.0	26.3		ug/L		105	66 - 127	
1,2,4-Trichlorobenzene	ND		25.0	26.1		ug/L		104	79_122	
1,2-Dibromo-3-Chloropropane	ND		25.0	30.1		ug/L		121	56 - 134	
1,2-Dichlorobenzene	ND		25.0	27.3		ug/L		109	80 - 124	
1,2-Dichloroethane	ND		25.0	26.4		ug/L		106	75 - 120	
1,2-Dichloropropane	ND		25.0	28.2		ug/L		113	76 - 120	
1,3-Dichlorobenzene	ND		25.0	27.4		ug/L		109	77 - 120	
1,4-Dichlorobenzene	ND		25.0	26.6		ug/L		106	78 - 124	
2-Butanone (MEK)	ND		125	125		ug/L		100	57 - 140	
2-Hexanone	ND		125	132		ug/L		105	65 - 127	
4-Methyl-2-pentanone (MIBK)	ND		125	133		ug/L		106	71 - 125	
Acetone	ND		125	131		ug/L		105	56 - 142	
Benzene	ND		25.0	28.5		ug/L		114	71_124	
Bromodichloromethane	ND		25.0	29.0		ug/L		116	80 - 122	
Bromoform	ND		25.0	26.8		ug/L		107	61 - 132	
Bromomethane	ND		25.0	28.1		ug/L		113	55 - 144	
Carbon disulfide	ND		25.0	25.2		ug/L		101	59 - 134	
Carbon tetrachloride	ND		25.0	32.1		ug/L		128	72 - 134	
Chlorobenzene	ND		25.0	29.3		ug/L		117	80 - 120	
Dibromochloromethane	ND		25.0	28.7		ug/L		115	75 - 125	
Chloroethane	ND		25.0	29.2		ug/L		117	69 - 136	
Chloroform	ND		25.0	28.1		ug/L		112	73 - 127	

Eurofins Buffalo

Client Sample ID: MW-1SR Prep Type: Total/NA

14

5

8

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: 480-215606-1 MS Matrix: Water

Analysis Batch: 695045

Analysis Batch: 695045										
	Sample	Sample	Spike	MS	MS				%Rec	5
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Chloromethane	ND		25.0	26.9		ug/L		108	68 - 124	
cis-1,2-Dichloroethene	ND		25.0	28.4		ug/L		114	74 - 124	
cis-1,3-Dichloropropene	ND		25.0	28.1		ug/L		113	74 - 124	
Cyclohexane	ND		25.0	28.4		ug/L		113	59 - 135	
Dichlorodifluoromethane	ND		25.0	29.0		ug/L		116	59 - 135	8
Ethylbenzene	ND		25.0	28.2		ug/L		113	77 - 123	0
1,2-Dibromoethane	ND		25.0	29.8		ug/L		119	77 - 120	
Isopropylbenzene	ND	F1	25.0	31.8	F1	ug/L		127	77 - 122	9
Methyl acetate	ND		50.0	53.3		ug/L		107	74 - 133	
Methyl tert-butyl ether	ND		25.0	26.3		ug/L		105	77 - 120	
Methylcyclohexane	ND		25.0	27.7		ug/L		111	68 - 134	
Methylene Chloride	ND		25.0	28.6		ug/L		114	75 - 124	
Styrene	ND		25.0	27.8		ug/L		111	80 - 120	
Tetrachloroethene	ND	F1	25.0	31.1	F1	ug/L		124	74 - 122	
Toluene	ND		25.0	29.6		ug/L		118	80 - 122	_
trans-1,2-Dichloroethene	ND		25.0	27.7		ug/L		111	73 - 127	
trans-1,3-Dichloropropene	ND	F1	25.0	30.4	F1	ug/L		122	80 - 120	
Trichloroethene	ND		25.0	30.0		ug/L		120	74 - 123	
Trichlorofluoromethane	ND		25.0	29.9		ug/L		120	62 - 150	
Vinyl chloride	ND		25.0	30.7		ug/L		123	65 - 133	

	MS	MS	
Surrogate	%Recovery	Qualifier	Limits
Toluene-d8 (Surr)	100		80 - 120
1,2-Dichloroethane-d4 (Surr)	92		77 - 120
4-Bromofluorobenzene (Surr)	101		73 - 120
Dibromofluoromethane (Surr)	91		75 - 123

Lab Sample ID: 480-215606-1 MSD Matrix: Water Analysis Batch: 695045

Analysis Baten. 000040	Sample	Sample	Spiko	MSD	MSD				%Rec		RPD
	•	Sample	Spike		-		_	a/ =			
Analyte		Qualifier	Added		Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1,1,1-Trichloroethane	ND		25.0	31.6		ug/L		126	73 - 126	2	15
1,1,2,2-Tetrachloroethane	ND		25.0	29.0		ug/L		116	76 - 120	1	15
1,1,2-Trichloroethane	ND		25.0	28.3		ug/L		113	76 - 122	1	15
1,1,2-Trichloro-1,2,2-trifluoroetha	ND		25.0	29.9		ug/L		119	61 - 148	2	20
ne											
1,1-Dichloroethane	ND		25.0	28.6		ug/L		114	77 - 120	1	20
1,1-Dichloroethene	ND		25.0	27.8		ug/L		111	66 - 127	5	16
1,2,4-Trichlorobenzene	ND		25.0	26.3		ug/L		105	79 - 122	1	20
1,2-Dibromo-3-Chloropropane	ND		25.0	29.2		ug/L		117	56 - 134	3	15
1,2-Dichlorobenzene	ND		25.0	26.8		ug/L		107	80 - 124	2	20
1,2-Dichloroethane	ND		25.0	27.2		ug/L		109	75 - 120	3	20
1,2-Dichloropropane	ND		25.0	29.8		ug/L		119	76 - 120	6	20
1,3-Dichlorobenzene	ND		25.0	27.6		ug/L		110	77 - 120	1	20
1,4-Dichlorobenzene	ND		25.0	26.6		ug/L		106	78 - 124	0	20
2-Butanone (MEK)	ND		125	130		ug/L		104	57 - 140	4	20
2-Hexanone	ND		125	135		ug/L		108	65 - 127	2	15
4-Methyl-2-pentanone (MIBK)	ND		125	136		ug/L		108	71 - 125	2	35

Eurofins Buffalo

Client Sample ID: MW-1SR

Prep Type: Total/NA

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: 480-215606-1 MSD Matrix: Water

Analysis Batch: 695045

Analysis Balch: 695045	Sample	Sample	Spike	MSD	MSD				%Rec		RPD	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit	
Acetone	ND		125	131		ug/L		105	56 - 142	0	15	
Benzene	ND		25.0	28.9		ug/L		116	71 - 124	1	13	
Bromodichloromethane	ND		25.0	29.9		ug/L		119	80 - 122	3	15	
Bromoform	ND		25.0	27.1		ug/L		108	61 - 132	1	15	
Bromomethane	ND		25.0	27.6		ug/L		111	55 - 144	2	15	
Carbon disulfide	ND		25.0	24.9		ug/L		100	59 - 134	1	15	
Carbon tetrachloride	ND		25.0	33.3		ug/L		133	72 - 134	4	15	
Chlorobenzene	ND		25.0	29.0		ug/L		116	80 - 120	1	25	
Dibromochloromethane	ND		25.0	29.1		ug/L		116	75 - 125	1	15	
Chloroethane	ND		25.0	28.2		ug/L		113	69 - 136	4	15	
Chloroform	ND		25.0	28.6		ug/L		114	73 - 127	2	20	
Chloromethane	ND		25.0	25.7		ug/L		103	68 - 124	5	15	
cis-1,2-Dichloroethene	ND		25.0	29.3		ug/L		117	74 - 124	3	15	
cis-1,3-Dichloropropene	ND		25.0	28.4		ug/L		114	74 - 124	1	15	
Cyclohexane	ND		25.0	27.4		ug/L		109	59 - 135	4	20	2
Dichlorodifluoromethane	ND		25.0	26.7		ug/L		107	59 - 135	9	20	
Ethylbenzene	ND		25.0	28.5		ug/L		114	77 - 123	1	15	2
1,2-Dibromoethane	ND		25.0	28.6		ug/L		114	77 - 120	4	15	
Isopropylbenzene	ND	F1	25.0	32.6	F1	ug/L		130	77 - 122	2	20	
Methyl acetate	ND		50.0	49.5		ug/L		99	74 - 133	7	20	
Methyl tert-butyl ether	ND		25.0	26.5		ug/L		106	77 - 120	1	37	
Methylcyclohexane	ND		25.0	28.9		ug/L		115	68 - 134	4	20	
Methylene Chloride	ND		25.0	29.0		ug/L		116	75 - 124	1	15	
Styrene	ND		25.0	28.0		ug/L		112	80 - 120	1	20	
Tetrachloroethene	ND	F1	25.0	31.7	F1	ug/L		127	74 - 122	2	20	
Toluene	ND		25.0	29.4		ug/L		118	80 - 122	1	15	
trans-1,2-Dichloroethene	ND		25.0	27.3		ug/L		109	73 - 127	1	20	
trans-1,3-Dichloropropene	ND	F1	25.0	29.8		ug/L		119	80 - 120	2	15	
Trichloroethene	ND		25.0	28.9		ug/L		116	74 - 123	4	16	
Trichlorofluoromethane	ND		25.0	29.3		ug/L		117	62 - 150	2	20	
Vinyl chloride	ND		25.0	31.2		ug/L		125	65 - 133	1	15	
	MSD	MSD										
Surrogate	%Recovery	Qualifier	Limits									
Toluene-d8 (Surr)	100		80 - 120									
1,2-Dichloroethane-d4 (Surr)	89		77 - 120									

Method: 6010C - Metals (ICP)

104

94

4-Bromofluorobenzene (Surr)

Dibromofluoromethane (Surr)

Lab Sample ID: MB 480-695168/1-A **Client Sample ID: Method Blank Matrix: Water** Prep Type: Total/NA Analysis Batch: 695432 Prep Batch: 695168 MB MB Analyte **Result Qualifier** RL MDL Unit D Prepared Analyzed Dil Fac 0.015 Arsenic ND 0.0056 mg/L 12/13/23 08:20 12/13/23 20:13 1 Chromium ND 0.0040 0.0010 mg/L 12/13/23 08:20 12/13/23 20:13 1 Manganese ND 0.0030 0.00040 mg/L 12/13/23 08:20 12/13/23 20:13 1

73 - 120

75 - 123

Eurofins Buffalo

Prep Type: Total/NA

5

8

Client Sample ID: MW-1SR

LCS LCS

0.198

0.197

0.196

Result Qualifier

Unit

mg/L

mg/L

mg/L

Lab Sample ID: LCS 480-695168/2-A

Matrix: Water

Analyte

Arsenic

Ammonia

Analysis Batch: 695432

Method: 6010C - Metals (ICP) (Continued)

%Rec

Limits

80 - 120

80 - 120

80 - 120

D %Rec

99

99

98

Chromium Manganese Lab Sample ID: 480-215606-1 MS

Matrix: Water Prep Type: Total/NA Analysis Batch: 695432 Prep Batch: 695168 Sample Sample Spike MS MS %Rec Limits Analyte **Result Qualifier** Added Result Qualifier Unit D %Rec ND 0.200 0.190 75 - 125 Arsenic mg/L 95 Chromium 0.0024 J 0.200 0.182 90 mg/L 75 - 125 0.13 0.200 0.330 mg/L 75 - 125 Manganese 102

Spike

Added

0.200

0.200

0.200

Lab Sample ID: 480-215606	-1 MSD							Clien	t Sample		
Matrix: Water									Prep Ty	pe: Tot	al/NA
Analysis Batch: 695432									Prep Ba	atch: 69	95168
	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Arsenic	ND		0.200	0.202		mg/L		101	75 - 125	6	20
Chromium	0.0024	J	0.200	0.199		mg/L		98	75 - 125	9	20
Manganese	0.13		0.200	0.347		mg/L		111	75 - 125	5	20

Method: 350.1 - Nitrogen, Ammonia

Lab Sample ID: MB 480-695 Matrix: Water Analysis Batch: 695240	212/1-B	MB MB								Clie		le ID: Metho Prep Type: T Prep Batch:	otal/NA
Analyte	Re	sult Qualifier		RL		MDL	Unit		D	Р	repared	Analyzed	Dil Fac
Ammonia		ND		4.0		2.0	mg/L		_	12/1	3/23 06:00	12/13/23 08:05	1
Lab Sample ID: 480-215606- Matrix: Water	1 MS											Sample ID: M Prep Type: T	otal/NA
Analysis Batch: 695240		_										Prep Batch:	695217
	Sample	Sample	Spike		MS	MS						%Rec	
Analyte	Result	Qualifier	Added		Result	Qua	alifier	Unit		D	%Rec	Limits	
Ammonia	ND		0.200		0.191	J		mg/L			95	90 - 110	
Lab Sample ID: MB 480-695	240/17									Clie	ent Samp	ole ID: Metho	d Blank
Matrix: Water												Prep Type: T	
Analysis Batch: 695240													
-		MB MB											
Analyte	Re	sult Qualifier		RL		MDL	Unit		D	Р	repared	Analyzed	Dil Fac

0.20

0.10 mg/L

ND

Eurofins Buffalo

12/13/23 07:59

1

Job ID: 480-215606-1

Method: 350.1 - Nitrogen, Ammonia (Continued)

Lab Sample ID: LCS 480-695240/1	3							Cli	ent	San	nple ID:	Lab Control	
Matrix: Water												Prep Type: 1	otal/NA
Analysis Batch: 695240			Omilia		1.00							0/ D = =	
Analyta			Spike Added			LCS		Unit		n	% Baa	%Rec Limits	
Analyte			1.00		Result	Qua	Inter			D	<u>%Rec</u>		
Ammonia			1.00		0.980			mg/L			90	90 - 110	
Lab Sample ID: MB 480-695680/1-	3									Clie	nt Sami	ple ID: Metho	d Blank
Matrix: Water										••	in ounq	Prep Type: 1	
Analysis Batch: 695795												Prep Batch:	
	М	З МВ										Top Daton.	
Analyte		t Qualifier		RL		MDL	Unit		D	Pr	epared	Analyzed	Dil Fac
Ammonia	N			0.20			mg/L				•	12/18/23 09:37	
				0.20		0.10	ing/E			12/10	0,20 00.00	12/10/20 00:01	
Lab Sample ID: MB 480-695795/17										Clie	nt Sami	ple ID: Metho	d Blank
Matrix: Water												Prep Type: 1	
Analysis Batch: 695795													
· ······, · · · · · · · · · · · · · · ·	м	З МВ											
Analyte		t Qualifier		RL		MDL	Unit		D	Pr	epared	Analyzed	Dil Fac
Ammonia	N			0.20		0.10			_			12/18/23 09:31	
				0.20		00	g/ =					12/10/20 00:01	•
Lab Sample ID: LCS 480-695795/18	3							Cli	ent	San	nple ID:	Lab Control	Sample
Matrix: Water												Prep Type: 1	
Analysis Batch: 695795													
· ······, ····························			Spike		LCS	LCS						%Rec	
Analyte			Added		Result	Qua	lifier	Unit		D	%Rec	Limits	
Ammonia			1.00		0.953			mg/L		_	95	90 - 110	
	lexav	valent											
· · · · · · · · · · · · · · · · · · ·													
Lab Sample ID: MB 480-695116/3										Clie	nt Sam	ple ID: Metho	d Blank
Matrix: Water												Prep Type: 1	Total/NA
Analysis Batch: 695116													
-	M	B MB											
Analyte	Resu	t Qualifier		RL	1	MDL	Unit		D	Pr	repared	Analyzed	Dil Fac
Chromium, hexavalent	N	<u> </u>	(0.010	0.0	0050	mg/L					12/12/23 09:45	1
Lab Sample ID: LCS 480-695116/4								Cli	ent	San	nple ID:	Lab Control	Sample
												Dura a Trans a 7	fotal/NΔ
Matrix: Water												Prep Type: 1	
Matrix: Water Analysis Batch: 695116												Prep Type:	
			Spike		LCS	LCS						%Rec	
			Spike Added		LCS Result			Unit		D	%Rec		
Analysis Batch: 695116								Unit mg/L		<u>D</u>	%Rec	%Rec	
Analysis Batch: 695116 Analyte Chromium, hexavalent			Added		Result					<u>D</u>	114	%Rec Limits 85 - 115	
Analysis Batch: 695116 Analyte Chromium, hexavalent Lab Sample ID: 480-215606-1 MS			Added		Result					<u>D</u>	114	%Rec Limits 85 - 115 Sample ID: N	
Analysis Batch: 695116 Analyte Chromium, hexavalent Lab Sample ID: 480-215606-1 MS Matrix: Water			Added		Result					<u>D</u>	114	%Rec Limits 85 - 115	
Analysis Batch: 695116 Analyte Chromium, hexavalent Lab Sample ID: 480-215606-1 MS Matrix: Water Analysis Batch: 695116			Added 0.0500		Result 0.0571	Qua				<u>D</u>	114	%Rec Limits 85 - 115 Sample ID: M Prep Type: 1	
Analysis Batch: 695116 Analyte Chromium, hexavalent Lab Sample ID: 480-215606-1 MS Matrix: Water Analysis Batch: 695116 Sam	ple Sa		Added 0.0500 Spike		Result 0.0571 MS	Qua	lifier	mg/L		_	114 Client	%Rec Limits 85 - 115 Sample ID: M Prep Type: 7 %Rec	
Analysis Batch: 695116 Analyte Chromium, hexavalent Lab Sample ID: 480-215606-1 MS Matrix: Water Analysis Batch: 695116 Sam Analyte	ple Sa sult Qu		Added 0.0500		Result 0.0571	Qua	lifier			D	114	%Rec Limits 85 - 115 Sample ID: M Prep Type: 1	

QC Sample Results

Client: Barton & Loguidice, D.P.C. Project/Site: Village of Gowanda, NY Landfill Job ID: 480-215606-1

Method: 7196A - Chromium, Hexavalent (Continued)

Lab Sample ID: 480-21560	6-1 MSD							Clien	t Sample	D: MV	/-1SR
Matrix: Water									Prep Ty	be: Tot	al/NA
Analysis Batch: 695116											
-	Sample	Sample	Spike	MSE	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Resul	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Chromium, hexavalent	ND		0.0500	0.0558		mg/L		112	85 - 115	2	20
Lab Sample ID: 480-21560	6-8 MS							Client	Sample I): MWF	FP-3S
Matrix: Water									Prep Ty		
Analysis Batch: 695116											
,	Sample	Sample	Spike	MS	MS				%Rec		
Analyte		Qualifier	Added	Resul	Qualifier	Unit	D	%Rec	Limits		
Chromium, hexavalent	0.0066	J	0.0500	0.0608		mg/L		108	85 - 115		
Lab Sample ID: 480-21560								Clie	ent Sample	M יחו ב	W-59
Matrix: Water	0-2 00							One	Prep Ty		
Analysis Batch: 695116									Fieb iy	Je. 101	ainna
Analysis Batch. 095110	Samplo	Sample		וח	DU						RPD
Analyte		Qualifier			Qualifier	Unit	D			RPD	Limit
Chromium, hexavalent	ND			NE		mg/L	<u> </u>			NC	20
	ND			INL		mg/∟				NO	20
Lab Sample ID: 480-21560	6-7 DU							Client	Sample I): MFV	VP-2S
Matrix: Water								onone	Prep Ty		
Analysis Batch: 695116									1100 131		
	Sample	Sample		וס	DU						RPD
	•	Sample Qualifier			DU Qualifier	Unit	П			RPD	RPD I imit
Analyte	•	Sample Qualifier			Qualifier	Unit mg/L	<u>D</u>			RPD NC	RPD Limit 20
Analyte Chromium, hexavalent	Result ND	Qualifier		Resul	Qualifier	Unit mg/L	<u>D</u>				Limit
Analyte Chromium, hexavalent	Result ND	Qualifier	phy	Resul	Qualifier		<u>D</u>				Limit
Analyte Chromium, hexavalent	Result ND	Qualifier	phy	Resul	Qualifier			ent Sam	nple ID: M	NC	20
Analyte Chromium, hexavalent Method: 9056A - Anion	Result ND	Qualifier	phy	Resul	Qualifier			ent Sam	nple ID: Mo Prep Tyj	NC ethod l	Limit 20 Blank
Analyte Chromium, hexavalent Method: 9056A - Anion Lab Sample ID: MB 480-69	Result ND	Qualifier	phy	Resul	Qualifier			ent Sam		NC ethod l	Limit 20 Blank
Analyte Chromium, hexavalent Method: 9056A - Anion Lab Sample ID: MB 480-69 Matrix: Water	Result ND	Qualifier	phy	Resul	Qualifier			ent Sam		NC ethod l	Limit 20 Blank
Analyte Chromium, hexavalent Aethod: 9056A - Anion Lab Sample ID: MB 480-69 Matrix: Water Analysis Batch: 695160	Result ND IS, Ion Chi 95160/4	Qualifier comatogra	phy	Resul	Qualifier		Clie	ent Sam		ethod I	Limit 20 Blank
Analyte Chromium, hexavalent Aethod: 9056A - Anion Lab Sample ID: MB 480-69 Matrix: Water Analysis Batch: 695160 Analyte	Result ND IS, Ion Chi 95160/4	Qualifier comatogra	phy	Resul	Qualifier		Clie		Prep Ty	NC ethod I be: Tot	Limit 20 Blank al/NA
Analyte Chromium, hexavalent Alethod: 9056A - Anion Lab Sample ID: MB 480-69 Matrix: Water Analysis Batch: 695160 Analyte Chloride	Result ND 15, Ion Chi 95160/4 Re	Qualifier comatogra MB MB sult Qualifier	phy	Resul	Qualifier	mg/L	Clie	repared	Prep Typ 	NC ethod I be: Tot red 16:14	Limit 20 Blank cal/NA Dil Fac
Analyte Chromium, hexavalent Method: 9056A - Anion Lab Sample ID: MB 480-69 Matrix: Water Analysis Batch: 695160 Analyte Chloride Lab Sample ID: LCS 480-6	Result ND 15, Ion Chi 95160/4 Re	Qualifier comatogra MB MB sult Qualifier	phy	Resul	Qualifier	mg/L	Clie	repared	Prep Typ 	NC ethod I be: Tot led 16:14 trol Sa	Limit 20 Blank cal/NA Dil Fac 1 ample
Analyte Chromium, hexavalent Method: 9056A - Anion Lab Sample ID: MB 480-69 Matrix: Water Analysis Batch: 695160 Analyte Chloride Lab Sample ID: LCS 480-6 Matrix: Water	Result ND 15, Ion Chi 95160/4 Re	Qualifier comatogra MB MB sult Qualifier	phy	Resul	Qualifier	mg/L	Clie	repared	Prep Typ 	NC ethod I be: Tot led 16:14 trol Sa	Limit 20 Blank cal/NA Dil Fac 1 ample
Analyte Chromium, hexavalent Method: 9056A - Anion Lab Sample ID: MB 480-69 Matrix: Water Analysis Batch: 695160 Analyte Chloride Lab Sample ID: LCS 480-6	Result ND 15, Ion Chi 95160/4 Re	Qualifier comatogra MB MB sult Qualifier		Resul	MDL Unit 0.28 mg/L	mg/L	Clie	repared	Prep Tyr Analyz 12/12/23 Control Control Co	NC ethod I be: Tot led 16:14 trol Sa	Limit 20 Blank cal/NA Dil Fac 1 ample
Analyte Chromium, hexavalent Method: 9056A - Anion Lab Sample ID: MB 480-69 Matrix: Water Analysis Batch: 695160 Analyte Chloride Lab Sample ID: LCS 480-6 Matrix: Water Analysis Batch: 695160	Result ND 15, Ion Chi 95160/4 Re	Qualifier comatogra MB MB sult Qualifier	Spike	Resul	MDL Unit 0.28 mg/L	mg/L Clie	Clie	repared mple ID	Prep Ty Analyz 12/12/23 C Lab Con Prep Ty %Rec	NC ethod I be: Tot led 16:14 trol Sa	Limit 20 Blank cal/NA Dil Fac 1 ample
Analyte Chromium, hexavalent Alethod: 9056A - Anion Lab Sample ID: MB 480-69 Matrix: Water Analysis Batch: 695160 Analyte Chloride Lab Sample ID: LCS 480-6 Matrix: Water Analysis Batch: 695160	Result ND 15, Ion Chi 95160/4 Re	Qualifier comatogra MB MB sult Qualifier		Resul	MDL Unit 0.28 mg/L LCS Qualifier	mg/L	Clie	repared mple ID	Prep Tyr Analyz 12/12/23 Control Control Co	NC ethod I be: Tot led 16:14 trol Sa	Limit 20 Blank cal/NA Dil Fac 1 ample
Analyte Chromium, hexavalent Alethod: 9056A - Anion Lab Sample ID: MB 480-69 Matrix: Water Analysis Batch: 695160 Analyte Chloride Lab Sample ID: LCS 480-6 Matrix: Water Analysis Batch: 695160 Analyte Chloride	Result ND 95160/4 Re 95160/5	Qualifier comatogra MB MB sult Qualifier	Spike Added	Resul RL 0.50 LCS Resul	MDL Unit 0.28 mg/L LCS Qualifier	mg/L Clie	Clie	repared mple ID <u>%Rec</u> 98	Analyz 12/12/23 End Compression Prep Type %Rec Limits 90 - 110	NC ethod I pe: Tot 16:14 trol Sa pe: Tot	Limit 20 Blank cal/NA Dil Fac 1 ample cal/NA
Analyte Chromium, hexavalent Alethod: 9056A - Anion Lab Sample ID: MB 480-69 Matrix: Water Analysis Batch: 695160 Analyte Chloride Lab Sample ID: LCS 480-6 Matrix: Water Analysis Batch: 695160 Analyte Chloride Lab Sample ID: 480-21560	Result ND 95160/4 Re 95160/5	Qualifier comatogra MB MB sult Qualifier	Spike Added	Resul RL 0.50 LCS Resul	MDL Unit 0.28 mg/L LCS Qualifier	mg/L Clie	Clie	repared mple ID <u>%Rec</u> 98	Prep Ty Analyz 12/12/23 E Lab Con Prep Ty %Rec Limits 90 - 110 lient Samp	NC ethod I pe: Tot 16:14 trol Sa pe: Tot	Limit 20 Blank al/NA Dil Fac 1 ample cal/NA
Analyte Chromium, hexavalent Aethod: 9056A - Anion Lab Sample ID: MB 480-69 Matrix: Water Analysis Batch: 695160 Analyte Chloride Lab Sample ID: LCS 480-6 Matrix: Water Analysis Batch: 695160 Analyte Chloride Lab Sample ID: 480-21560 Matrix: Water	Result ND 95160/4 Re 95160/5	Qualifier comatogra MB MB sult Qualifier	Spike Added	Resul RL 0.50 LCS Resul	MDL Unit 0.28 mg/L LCS Qualifier	mg/L Clie	Clie	repared mple ID <u>%Rec</u> 98	Analyz 12/12/23 End Compression Prep Type %Rec Limits 90 - 110	NC ethod I pe: Tot 16:14 trol Sa pe: Tot	Limit 20 Blank al/NA Dil Fac 1 ample cal/NA
Analyte Chromium, hexavalent Alethod: 9056A - Anion Lab Sample ID: MB 480-69 Matrix: Water Analysis Batch: 695160 Analyte Chloride Lab Sample ID: LCS 480-6 Matrix: Water Analysis Batch: 695160 Analyte Chloride Lab Sample ID: 480-21560	Result ND 95160/4 Re 695160/5	Qualifier omatogra MB MB sult Qualifier ND	Spike Added 50.1	Result NE 0.50 LCS Result 48.87	MDL Unit 0.28 Unit LCS Qualifier	mg/L Clie	Clie	repared mple ID <u>%Rec</u> 98	Prep Ty Analyz 12/12/23 C: Lab Com Prep Ty %Rec Limits 90 - 110 lient Samp Prep Ty	NC ethod I pe: Tot 16:14 trol Sa pe: Tot	Limit 20 Blank cal/NA Dil Fac 1 ample cal/NA
Analyte Chromium, hexavalent Method: 9056A - Anion Lab Sample ID: MB 480-69 Matrix: Water Analysis Batch: 695160 Analyte Chloride Lab Sample ID: LCS 480-69 Matrix: Water Analysis Batch: 695160 Analyte Chloride Lab Sample ID: 480-21560 Matrix: Water Analysis Batch: 695160	Result ND IS, Ion Chi IS 95160/4 Re 95160/5 Sample	Qualifier omatogra MB MB sult Qualifier ND	Spike Added 50.1	Resul RL 0.50 LCS Resul 48.85 MS	MDL Unit 0.28 mg/L	Clie Unit mg/L	Clie	repared mple ID <u>%Rec</u> 98 C	Prep Ty Analyz 12/12/23 C Lab Con Prep Ty %Rec Limits 90 - 110 lient Samp Prep Ty %Rec	NC ethod I pe: Tot 16:14 trol Sa pe: Tot	Limit 20 Blank cal/NA Dil Fac 1 ample cal/NA
Analyte Chromium, hexavalent Method: 9056A - Anion Lab Sample ID: MB 480-69 Matrix: Water Analysis Batch: 695160 Analyte Chloride Lab Sample ID: LCS 480-6 Matrix: Water Analysis Batch: 695160 Analyte Chloride Lab Sample ID: 480-21560 Matrix: Water	Result ND IS, Ion Chi IS 95160/4 Re 95160/5 Sample	Qualifier omatogra MB MB sult Qualifier ND	Spike Added 50.1	Resul RL 0.50 LCS Resul 48.85 MS	MDL Unit 0.28 mg/L LCS Qualifier	mg/L Clie	Clie	repared mple ID <u>%Rec</u> 98	Prep Ty Analyz 12/12/23 C: Lab Com Prep Ty %Rec Limits 90 - 110 lient Samp Prep Ty	NC ethod I pe: Tot 16:14 trol Sa pe: Tot	Limit 20 Blank cal/NA Dil Fac 1 ample cal/NA

QC Sample Results

Job ID: 480-215606-1

Method: SM 2340C - Hardness, Total (mg/l as CaC03)

Lab Sample ID: MB 480-695674/3								Clie	ent Sam	ple ID: Method	
Matrix: Water										Prep Type: To	otal/N/
Analysis Batch: 695674											
	N	AB MB									
Analyte	Res	ult Qualifier		RL	MD	L Unit	D	Р	repared	Analyzed	Dil Fa
Hardness as calcium carbonate	١	ND		2.0	0.5	53 mg/L				12/15/23 11:50	
Lab Sample ID: LCS 480-695674/4	4						Clien	t Sai	mple ID	: Lab Control S	Sample
Matrix: Water										Prep Type: To	otal/N/
Analysis Batch: 695674											
			Spike	L	CS LO	cs				%Rec	
Analyte			Added	Res	sult Q	ualifier	Unit	D	%Rec	Limits	
Hardness as calcium carbonate			179	17	2.0		mg/L		96	90 - 110	
Nethod: SM 4500 S2 F - Sulfi	de, T	otal									
Lab Sample ID: MB 480-695683/3								Clie	ent Sam	ple ID: Method	d Blani
Matrix: Water										Prep Type: To	
Analysis Batch: 695683											
	Ν	AB MB									
Analyte	Res	ult Qualifier		RL	MD	L Unit	D	Р	repared	Analyzed	Dil Fa
Sulfide	1			1.0	0.6	7 mg/L			•	12/16/23 14:00	·
• •						0					
Lab Sample ID: LCS 480-695683/4	ł.						Clien	t Sai	mple ID	: Lab Control S	Sample
Matrix: Water										Prep Type: To	otal/N/
Analysis Batch: 695683											
-											
			Spike	L	CS LO	CS				%Rec	
Analyte			Spike Added			CS ualifier	Unit	D	%Rec	%Rec Limits	
			•	Res			Unit mg/L	_ <u>D</u>	%Rec		
Sulfide			Added	Res	sult Q			<u>D</u>	105	Limits 90 - 110): SW-'
Sulfide Lab Sample ID: 480-215606-3 MS			Added	Res	sult Q			_ <u>D</u>	105	Limits 90 - 110	
Sulfide Lab Sample ID: 480-215606-3 MS Matrix: Water			Added	Res	sult Q			_ <u>D</u>	105	Limits 90 - 110	
Sulfide Lab Sample ID: 480-215606-3 MS Matrix: Water Analysis Batch: 695683		Gample	Added	Res	sult Q	ualifier		_ <u>D</u>	105	Limits 90 - 110	
Sulfide Lab Sample ID: 480-215606-3 MS Matrix: Water Analysis Batch: 695683 Sar	•	Sample Qualifier	Added 3.80	Res 4	MS M	ualifier		_ <u>D</u>	105	Limits 90 - 110 lient Sample ID Prep Type: To	
Sulfide Lab Sample ID: 480-215606-3 MS Matrix: Water Analysis Batch: 695683 San Analyte Re	•	Qualifier	Added 3.80 Spike	Res 4	MS M	ualifier S	mg/L		105 CI	Limits 90 - 110 lient Sample ID Prep Type: To %Rec	
Sulfide Lab Sample ID: 480-215606-3 MS Matrix: Water Analysis Batch: 695683 San Analyte Sulfide	sult C	Qualifier	Added 3.80 Spike Added	Res 4	MS M sult Q	ualifier S	mg/L Unit		105 CI %Rec 119	Limits 90 - 110 lient Sample ID Prep Type: To %Rec Limits 40 - 150	otal/N/
Sulfide Lab Sample ID: 480-215606-3 MS Matrix: Water Analysis Batch: 695683 San Analyte Sulfide Lab Sample ID: 480-215606-1 DU	sult C	Qualifier	Added 3.80 Spike Added	Res 4	MS M sult Q	ualifier S	mg/L Unit		105 CI %Rec 119	Limits 90 - 110 lient Sample ID Prep Type: To %Rec Limits 40 - 150 t Sample ID: M	otal/N/ W-1SF
Sulfide Lab Sample ID: 480-215606-3 MS Matrix: Water Analysis Batch: 695683 San Analyte Sulfide Lab Sample ID: 480-215606-1 DU Matrix: Water	sult C	Qualifier	Added 3.80 Spike Added	Res 4	MS M sult Q	ualifier S	mg/L Unit		105 CI %Rec 119	Limits 90 - 110 lient Sample ID Prep Type: To %Rec Limits 40 - 150	otal/N/ W-1SF
Sulfide Lab Sample ID: 480-215606-3 MS Matrix: Water Analysis Batch: 695683 San Analyte Re Sulfide Lab Sample ID: 480-215606-1 DU Matrix: Water Analysis Batch: 695683	ND F	Qualifier	Added 3.80 Spike Added	Res 2	MS M Sult Q MS M Sult Q .80	s ualifier	mg/L Unit		105 CI %Rec 119	Limits 90 - 110 lient Sample ID Prep Type: To %Rec Limits 40 - 150 t Sample ID: M	otal/N/ W-1SF otal/N/
Sulfide Lab Sample ID: 480-215606-3 MS Matrix: Water Analysis Batch: 695683 San Analyte Re Sulfide Lab Sample ID: 480-215606-1 DU Matrix: Water Analysis Batch: 695683 San	nple S	Qualifier	Added 3.80 Spike Added	Res 4 Res 2	MS M Sult Q MS M Sult Q .80 DU D	s ualifier	mg/L Unit		105 CI %Rec 119	Limits 90 - 110 lient Sample ID Prep Type: To %Rec Limits 40 - 150 t Sample ID: M	otal/NA W-1SF otal/NA RPI

QC Association Summary

Client: Barton & Loguidice, D.P.C. Project/Site: Village of Gowanda, NY Landfill

9 10 11 11 12 tch

Analysis Batch: 695045

GC/MS VOA

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-215606-1	MW-1SR	Total/NA	Water	8260C	
480-215606-2	MW-5S	Total/NA	Water	8260C	
480-215606-3	SW-1	Total/NA	Water	8260C	
480-215606-4	SW-2	Total/NA	Water	8260C	
480-215606-5	SW-3	Total/NA	Water	8260C	
480-215606-6	DUPLICATE	Total/NA	Water	8260C	
480-215606-7	MFWP-2S	Total/NA	Water	8260C	
480-215606-8	MWFP-3S	Total/NA	Water	8260C	
480-215606-9	TRIP BLANK	Total/NA	Water	8260C	
MB 480-695045/8	Method Blank	Total/NA	Water	8260C	
LCS 480-695045/6	Lab Control Sample	Total/NA	Water	8260C	
480-215606-1 MS	MW-1SR	Total/NA	Water	8260C	
480-215606-1 MSD	MW-1SR	Total/NA	Water	8260C	

Metals

Prep Batch: 695168

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch	
480-215606-1	MW-1SR	Total/NA	Water	3005A		
480-215606-2	MW-5S	Total/NA	Water	3005A		
480-215606-3	SW-1	Total/NA	Water	3005A		
480-215606-4	SW-2	Total/NA	Water	3005A		
480-215606-5	SW-3	Total/NA	Water	3005A		
480-215606-6	DUPLICATE	Total/NA	Water	3005A		
480-215606-7	MFWP-2S	Total/NA	Water	3005A		
480-215606-8	MWFP-3S	Total/NA	Water	3005A		
MB 480-695168/1-A	Method Blank	Total/NA	Water	3005A		
LCS 480-695168/2-A	Lab Control Sample	Total/NA	Water	3005A		
480-215606-1 MS	MW-1SR	Total/NA	Water	3005A		
480-215606-1 MSD	MW-1SR	Total/NA	Water	3005A		

Analysis Batch: 695432

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
480-215606-1	MW-1SR	Total/NA	Water	6010C	695168
480-215606-2	MW-5S	Total/NA	Water	6010C	695168
480-215606-3	SW-1	Total/NA	Water	6010C	695168
480-215606-4	SW-2	Total/NA	Water	6010C	695168
480-215606-5	SW-3	Total/NA	Water	6010C	695168
480-215606-6	DUPLICATE	Total/NA	Water	6010C	695168
480-215606-7	MFWP-2S	Total/NA	Water	6010C	695168
480-215606-8	MWFP-3S	Total/NA	Water	6010C	695168
MB 480-695168/1-A	Method Blank	Total/NA	Water	6010C	695168
LCS 480-695168/2-A	Lab Control Sample	Total/NA	Water	6010C	695168
480-215606-1 MS	MW-1SR	Total/NA	Water	6010C	695168
480-215606-1 MSD	MW-1SR	Total/NA	Water	6010C	695168

General Chemistry

Analysis Batch: 695116

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
480-215606-1	MW-1SR	Total/NA	Water	7196A	
480-215606-2	MW-5S	Total/NA	Water	7196A	

QC Association Summary

Client: Barton & Loguidice, D.P.C. Project/Site: Village of Gowanda, NY Landfill

General Chemistry (Continued)

Analysis Batch: 695116 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-215606-3	SW-1	Total/NA	Water	7196A	
480-215606-4	SW-2	Total/NA	Water	7196A	
480-215606-5	SW-3	Total/NA	Water	7196A	
480-215606-6	DUPLICATE	Total/NA	Water	7196A	
480-215606-7	MFWP-2S	Total/NA	Water	7196A	
480-215606-8	MWFP-3S	Total/NA	Water	7196A	
MB 480-695116/3	Method Blank	Total/NA	Water	7196A	
LCS 480-695116/4	Lab Control Sample	Total/NA	Water	7196A	
480-215606-1 MS	MW-1SR	Total/NA	Water	7196A	
480-215606-1 MSD	MW-1SR	Total/NA	Water	7196A	
480-215606-8 MS	MWFP-3S	Total/NA	Water	7196A	
480-215606-2 DU	MW-5S	Total/NA	Water	7196A	
480-215606-7 DU	MFWP-2S	Total/NA	Water	7196A	

Analysis Batch: 695160

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch	
480-215606-1	MW-1SR	Total/NA	Water	9056A		
480-215606-2	MW-5S	Total/NA	Water	9056A		
480-215606-3	SW-1	Total/NA	Water	9056A		
480-215606-4	SW-2	Total/NA	Water	9056A		
480-215606-5	SW-3	Total/NA	Water	9056A		
MB 480-695160/4	Method Blank	Total/NA	Water	9056A		
LCS 480-695160/5	Lab Control Sample	Total/NA	Water	9056A		
480-215606-5 MS	SW-3	Total/NA	Water	9056A		

Leach Batch: 695212

Lab S	ample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
MB 48	0-695212/1-B	Method Blank	Total/NA	Water	D3987-85	

Prep Batch: 695217

Lab Sample ID 480-215606-1	Client Sample ID MW-1SR	Prep Type Total/NA	Matrix Water	Method Distill/Ammonia	Prep Batch
480-215606-3	SW-1	Total/NA	Water	Distill/Ammonia	
480-215606-4	SW-2	Total/NA	Water	Distill/Ammonia	
480-215606-5	SW-3	Total/NA	Water	Distill/Ammonia	
MB 480-695212/1-B	Method Blank	Total/NA	Water	Distill/Ammonia	695212
480-215606-1 MS	MW-1SR	Total/NA	Water	Distill/Ammonia	

Analysis Batch: 695240

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-215606-1	MW-1SR	Total/NA	Water	350.1	695217
480-215606-3	SW-1	Total/NA	Water	350.1	695217
480-215606-4	SW-2	Total/NA	Water	350.1	695217
480-215606-5	SW-3	Total/NA	Water	350.1	695217
MB 480-695212/1-B	Method Blank	Total/NA	Water	350.1	695217
MB 480-695240/17	Method Blank	Total/NA	Water	350.1	
LCS 480-695240/18	Lab Control Sample	Total/NA	Water	350.1	
480-215606-1 MS	MW-1SR	Total/NA	Water	350.1	695217

QC Association Summary

General Chemistry

Analysis Batch: 695674

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-215606-1	MW-1SR	Total/NA	Water	SM 2340C	
480-215606-2	MW-5S	Total/NA	Water	SM 2340C	
480-215606-3	SW-1	Total/NA	Water	SM 2340C	
480-215606-4	SW-2	Total/NA	Water	SM 2340C	
480-215606-5	SW-3	Total/NA	Water	SM 2340C	
MB 480-695674/3	Method Blank	Total/NA	Water	SM 2340C	
LCS 480-695674/4	Lab Control Sample	Total/NA	Water	SM 2340C	

Leach Batch: 695680

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
MB 480-695680/1-B	Method Blank	Total/NA	Water	D3987-85	

Analysis Batch: 695683

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch	
480-215606-1	MW-1SR	Total/NA	Water	SM 4500 S2 F		
480-215606-2	MW-5S	Total/NA	Water	SM 4500 S2 F		
480-215606-3	SW-1	Total/NA	Water	SM 4500 S2 F		
480-215606-4	SW-2	Total/NA	Water	SM 4500 S2 F		
480-215606-5	SW-3	Total/NA	Water	SM 4500 S2 F		
MB 480-695683/3	Method Blank	Total/NA	Water	SM 4500 S2 F		
LCS 480-695683/4	Lab Control Sample	Total/NA	Water	SM 4500 S2 F		
480-215606-3 MS	SW-1	Total/NA	Water	SM 4500 S2 F		
480-215606-1 DU	MW-1SR	Total/NA	Water	SM 4500 S2 F		

Prep Batch: 695729

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-215606-2	MW-5S	Total/NA	Water	Distill/Ammonia	
MB 480-695680/1-B	Method Blank	Total/NA	Water	Distill/Ammonia	695680

Analysis Batch: 695795

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-215606-2	MW-5S	Total/NA	Water	350.1	695729
MB 480-695680/1-B	Method Blank	Total/NA	Water	350.1	695729
MB 480-695795/17	Method Blank	Total/NA	Water	350.1	
LCS 480-695795/18	Lab Control Sample	Total/NA	Water	350.1	

Job ID: 480-215606-1

Lab Sample ID: 480-215606-1 Matrix: Water

Date Collected: 12/11/23 14:13 Date Received: 12/11/23 16:25

Client Sample ID: MW-1SR

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	8260C		1	695045	CR	EET BUF	12/12/23 14:24
Total/NA	Prep	3005A			695168	EMO	EET BUF	12/13/23 08:20
Total/NA	Analysis	6010C		1	695432	BMB	EET BUF	12/13/23 20:19
Total/NA	Prep	Distill/Ammonia			695217	CLT	EET BUF	12/13/23 06:00
Total/NA	Analysis	350.1		1	695240	CLT	EET BUF	12/13/23 08:11
Total/NA	Analysis	7196A		1	695116	KM	EET BUF	12/12/23 09:45
Total/NA	Analysis	9056A		2	695160	AF	EET BUF	12/12/23 21:04
Total/NA	Analysis	SM 2340C		1	695674	AM	EET BUF	12/15/23 11:50
Total/NA	Analysis	SM 4500 S2 F		1	695683	AM	EET BUF	12/16/23 14:00

Client Sample ID: MW-5S Date Collected: 12/11/23 12:54 Date Received: 12/11/23 16:25

Lab Sample ID: 480-215606-2

Lab Sample ID: 480-215606-3

Matrix: Water

Matrix: Water

5 6

10

13

	Batch	Batch		Dilution	Batch			Prepared
Prep Туре	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	8260C		4	695045	CR	EET BUF	12/12/23 14:49
Total/NA	Prep	3005A			695168	EMO	EET BUF	12/13/23 08:20
Total/NA	Analysis	6010C		1	695432	BMB	EET BUF	12/13/23 20:46
Total/NA	Prep	Distill/Ammonia			695729	CLT	EET BUF	12/18/23 06:00
Total/NA	Analysis	350.1		5	695795	CLT	EET BUF	12/18/23 09:53
Total/NA	Analysis	7196A		1	695116	KM	EET BUF	12/12/23 09:45
Total/NA	Analysis	9056A		5	695160	AF	EET BUF	12/12/23 21:22
Total/NA	Analysis	SM 2340C		1	695674	AM	EET BUF	12/15/23 11:50
Total/NA	Analysis	SM 4500 S2 F		1	695683	AM	EET BUF	12/16/23 14:00

Client Sample ID: SW-1 Date Collected: 12/11/23 10:25 Date Received: 12/11/23 16:25

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	8260C		1	695045	CR	EET BUF	12/12/23 15:11
Total/NA	Prep	3005A			695168	EMO	EET BUF	12/13/23 08:20
Total/NA	Analysis	6010C		1	695432	BMB	EET BUF	12/13/23 20:50
Total/NA	Prep	Distill/Ammonia			695217	CLT	EET BUF	12/13/23 06:00
Total/NA	Analysis	350.1		1	695240	CLT	EET BUF	12/13/23 08:45
Total/NA	Analysis	7196A		1	695116	KM	EET BUF	12/12/23 09:45
Total/NA	Analysis	9056A		1	695160	AF	EET BUF	12/12/23 21:40
Total/NA	Analysis	SM 2340C		1	695674	AM	EET BUF	12/15/23 11:50
Total/NA	Analysis	SM 4500 S2 F		1	695683	AM	EET BUF	12/16/23 14:00

Lab Sample ID: 480-215606-4 **Matrix: Water**

Lab Sample ID: 480-215606-5

Lab Sample ID: 480-215606-6

Lab Sample ID: 480-215606-7

Matrix: Water

Matrix: Water

Matrix: Water

5 10

13

Client Sample ID: SW-2 Date Collected: 12/11/23 12:16 Date Received: 12/11/23 16:25

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	8260C		1	695045	CR	EET BUF	12/12/23 15:33
Total/NA	Prep	3005A			695168	EMO	EET BUF	12/13/23 08:20
Total/NA	Analysis	6010C		1	695432	BMB	EET BUF	12/13/23 20:53
Total/NA	Prep	Distill/Ammonia			695217	CLT	EET BUF	12/13/23 06:00
Total/NA	Analysis	350.1		1	695240	CLT	EET BUF	12/13/23 08:48
Total/NA	Analysis	7196A		1	695116	KM	EET BUF	12/12/23 09:45
Total/NA	Analysis	9056A		1	695160	AF	EET BUF	12/12/23 21:58
Total/NA	Analysis	SM 2340C		1	695674	AM	EET BUF	12/15/23 11:50
Total/NA	Analysis	SM 4500 S2 F		1	695683	AM	EET BUF	12/16/23 14:00

Client Sample ID: SW-3 Date Collected: 12/11/23 13:33 Date Received: 12/11/23 16:25

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	8260C		1 _	695045	CR	EET BUF	12/12/23 15:55
Total/NA	Prep	3005A			695168	EMO	EET BUF	12/13/23 08:20
Total/NA	Analysis	6010C		1	695432	BMB	EET BUF	12/13/23 20:56
Total/NA	Prep	Distill/Ammonia			695217	CLT	EET BUF	12/13/23 06:00
Total/NA	Analysis	350.1		1	695240	CLT	EET BUF	12/13/23 08:51
Total/NA	Analysis	7196A		1	695116	KM	EET BUF	12/12/23 09:45
Total/NA	Analysis	9056A		1	695160	AF	EET BUF	12/12/23 22:16
Total/NA	Analysis	SM 2340C		1	695674	AM	EET BUF	12/15/23 11:50
Total/NA	Analysis	SM 4500 S2 F		1	695683	AM	EET BUF	12/16/23 14:00

Client Sample ID: DUPLICATE Date Collected: 12/11/23 00:00 Date Received: 12/11/23 16:25

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	8260C		4	695045	CR	EET BUF	12/12/23 16:17
Total/NA	Prep	3005A			695168	EMO	EET BUF	12/13/23 08:20
Total/NA	Analysis	6010C		1	695432	BMB	EET BUF	12/13/23 21:00
Total/NA	Analysis	7196A		1	695116	KM	EET BUF	12/12/23 09:45

Client Sample ID: MFWP-2S Date Collected: 12/11/23 11:05 Date Received: 12/11/23 16:25

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	8260C		1	695045	CR	EET BUF	12/12/23 16:39
Total/NA	Prep	3005A			695168	EMO	EET BUF	12/13/23 08:20
Total/NA	Analysis	6010C		1	695432	BMB	EET BUF	12/13/23 21:03
Total/NA	Analysis	7196A		1	695116	KM	EET BUF	12/12/23 09:45

Eurofins Buffalo

Client: Barton & Loguidice, D.P.C. Project/Site: Village of Gowanda, NY Landfill

Lab Sample ID: 480-215606-8 Matrix: Water

Client Sample ID: MWFP-3S Date Collected: 12/11/23 11:51 Date Received: 12/11/23 16:25

Prep Type 1	T							
	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA A	Analysis	8260C		1	695045	CR	EET BUF	12/12/23 17:02
Total/NA F	Prep	3005A			695168	EMO	EET BUF	12/13/23 08:20
Total/NA A	Analysis	6010C		1	695432	BMB	EET BUF	12/13/23 21:07
Total/NA A	Analysis	7196A		1	695116	KM	EET BUF	12/12/23 09:45

Client Sample ID: TRIP BLANK Date Collected: 12/11/23 00:00 Date Received: 12/11/23 16:25

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	8260C		1	695045	CR	EET BUF	12/12/23 17:24

Laboratory References:

EET BUF = Eurofins Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

Matrix: Water

Accreditation/Certification Summary

Client: Barton & Loguidice, D.P.C. Project/Site: Village of Gowanda, NY Landfill

Laboratory: Eurofins Buffalo Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below. **Expiration Date** Authority Program **Identification Number** New York NELAP 10026 03-31-24 The following analytes are included in this report, but the laboratory is not certified by the governing authority. This list may include analytes for which the agency does not offer certification. Analysis Method Prep Method Matrix Analyte SM 2340C Water Hardness as calcium carbonate

Eurofins Buffalo

Method Summary

Client: Barton & Loguidice, D.P.C. Project/Site: Village of Gowanda, NY Landfill

lethod	Method Description	Protocol	Laboratory
260C	Volatile Organic Compounds by GC/MS	SW846	EET BUF
010C	Metals (ICP)	SW846	EET BUF
50.1	Nitrogen, Ammonia	EPA	EET BUF
196A	Chromium, Hexavalent	SW846	EET BUF
056A	Anions, Ion Chromatography	SW846	EET BUF
M 2340C	Hardness, Total (mg/l as CaC03)	SM	EET BUF
M 4500 S2 F	Sulfide, Total	SM	EET BUF
005A	Preparation, Total Metals	SW846	EET BUF
030C	Purge and Trap	SW846	EET BUF
istill/Ammonia	Distillation, Ammonia	None	EET BUF

Protocol References:

EPA = US Environmental Protection Agency

None = None

SM = "Standard Methods For The Examination Of Water And Wastewater"

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

EET BUF = Eurofins Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

Eurofins Buffalo

Sample Summary

Client: Barton & Loguidice, D.P.C. Project/Site: Village of Gowanda, NY Landfill

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
480-215606-1	MW-1SR	Water	12/11/23 14:13	12/11/23 16:25
480-215606-2	MW-5S	Water	12/11/23 12:54	12/11/23 16:25
480-215606-3	SW-1	Water	12/11/23 10:25	12/11/23 16:25
480-215606-4	SW-2	Water	12/11/23 12:16	12/11/23 16:25
480-215606-5	SW-3	Water	12/11/23 13:33	12/11/23 16:25
480-215606-6	DUPLICATE	Water	12/11/23 00:00	12/11/23 16:25
480-215606-7	MFWP-2S	Water	12/11/23 11:05	12/11/23 16:25
480-215606-8	MWFP-3S	Water	12/11/23 11:51	12/11/23 16:25
480-215606-9	TRIP BLANK	Water	12/11/23 00:00	12/11/23 16:25

Eurofins Buffalo

10 Hazelwood Drive

Amherst, NY 14228-2298 Phone: 716-691-2600 Fax: 716-691-7991

Chain of Custody Record

🛟 eurofins

Л

Environment Testing

Client Information	Sampler	+ Yomg 85 298 00 PWSID	Lab Pl VanD	n: ette, Ryan T	Carrier Tracking No(s):	
Client Contact: Mr. Darik Jordan	Phone:		E-Mail		State of Origin:	480-188549-31975.1 Page:
Company	5	85 248 0	Sti Rvan		NILLI NELLE ELLE ALE	Page 1 of 2
Barton & Loguidice, D.P.C.		PWSID.				Job #
Adaress. 11 Centre Park, Suite 203	Due Date Reques	sted:				Preservation Codes:
City.	TAT Requested (days):				A - HCI M - Hexane
Rochester State, Zip		STD.		480-215606 Chain of Custody		B - NaOH N - None C - Zn Acetate O - AsNaO2
NY, 14614	Compliance Proj	ect: △ Yes △ No			1 1 1 1	D - Nitric Acid P - Na2O45 E - NaHSO4 Q - Na2SO3
Phone: 716-436-7857(Tel)	PO#: Purchase Orde	er Requested		5		F - MeOH R - Na2S2O3 G - Amethor S - H2SO4
mail: djordan@bartonandloguidice.com	WO #:	el riequesteu		Ŷ		H - Ascorbic Acid I - Ice T - TSP Dodecahydrate U - Acetone
Project Name:	2310.001.001 Project #:			NON IS		L DIWator V - MCAA
Village of Gowanda, NY Landfill	48021815			emic or each		K - EDTA W - PH 4-5 L - EDA Y - Trizma Z - other (specify)
	SSOW#:			Field Filtered Sample (Yes or N Perform MS/MSD (Yes or N 9056A_28D - Chloride 6010C - T. As, Cr, Mn 2340C - Hardness 8260C - TCL Volatiles 5M4500_S2_F - Sulfide 7196A - Hexavalent Chromium 73501 - Local Method	latiles	K - EDTA W - pH 4-5 L - EDA Y - Trizma L - EDA Z - other (specify) Other: Special Instructions/Note:
		Samp	e Matrix	Field Filtered Samp Perform MS/MSD (Y 9056A_28D - Chloride 6010C - T. As, Cr, Mn 2340C - Hardness 8260C - TCL Volatiles 84500_S2_F - Sulfide 7196A - Hexavalent Ch	8260C - Select Volatiles	
	N	Type	(W=water,	11 A 1 A 1 A 1 A 1 A 1 A 1 A 1 A 1 A 1	Sele	
Sample Identification	Samula Data	Sample (C=com		Field F Perfort 9056A_ 9056A_ 6010C - 5340C - 8260C - 8260C - 7196A - 7196A - 7350.1 - L 1.		
	Sample Date		b) BT=Tissue, A=Air)		836	Special Instructions/Note:
MW-1SR	12/11/23		rvation Code: Water	X N D D A CB N S	A	
MW-7S	1011123	1413 3	Water	VNXXXXXX		0
MW-2SR						P Bry Wi Samphe
MW-5S			Water			O Dry/No Samphe
SW-1		1254	Water	VNXXXXXXX		9 11
SW-2		1025	Water	VNXXXXXXXX		9
SW-3		1216	Water	VN XX XX XX X		9
		1333	Water	VNXXXXXX		9
<u>Frip Blank</u> Duplicate			Water		\bigcirc	3
			Water	MN - X - X - X -	-	5
MS		1413	Water	xy - x - x - x		5
MSD		1413	Water	NY - X - X - X	+	5
Possible Hazard Identification				Sample Disposal (A fee may be	assessed if samples are re	
Non-Hazard Flammable Skin Irrita Deliverable Requested: I, II, III, IV, Other (specify)	nt Poison B Unk	known Radiolog	ical	Return To Client	Disposal By Lab	Archive For Months
Empty Kit Relinguished by:		Deter		Special Instructions/QC Requireme	ents:	
Relinquished by:	Date/Time: / /	Date:	Company	Time:	Method of Shipment:	
Intern	Date/Time:	\$ 1625	Company	Received by:	Date/Time:	123 1625 Company
Relinquished by	Date/Time:		Company	Received by:	Date/Time:	Company
Relinquished by:	Date/Time:		Company	Received by:	Date/Time:	Company
Custody Seals Intact: Custody Seal No.:	345		<u> </u>			
Δ Yes Δ No				Cooler Temperature(s) °C and Other F	Remarks: 710	2#1 1008

14

Eurofins Buffalo

10 Hazelwood Drive

Amherst, NY 14228-2298 Phone: 716-691-2600 Fax: 716-691-7991

🔅 eurofins

Environment Testing

Client Information	Sampler	Yours	Lab PM VanD	n: 9ette, Ryan T				Carrier Tracking) No(s):	COC No:	
Dient Contact Mr. Darik Jordan	Sampler Crant Phone 585	298 0.51	E-Mail Ryan	VanDette@e	t ourofin-	-		State of Origin:		480-188549-31 Page	975.2
Company Enton & Loguidice, D.P.C.	203	PWSID	ALC YOU	VanDelleluje	e euronnst	us com				Page 2 of 2 Job #	
121-1	Due Data Maguestod.				/	halysi	s Req	uested		100 *	
11 Centre Park Suite 203	Pee Pata Suguestou.						Ì	A		Preservation Co	
Dity Rochester	TAT Requested (days							alplates		A HCL	M - Hexane N - None
tate, Zip		STD.						phan 1		B - NaOH C Zn Acetate	O - AsNaO2
NY. 14614	Compliance Project:	∆ Yes ∆ No						0		D - Nitric Acid E - NaHSO4	P - Na2O4S Q - Na2SO3
Phone: /16-436-7857(Tel)	PO #							8		F - MeOH	R - Na2S2O3 S - H2SO4
mail:	Purchase Order R	equested		õ				inche		G - Amchlor H - Ascorbic Acid	T - TSP Dodecahydrate
jordan@bartonandloguidice.com	2310.001.001			No)				kim		I - Ice	U - Acetone V - MCAA
roject Name: /illage of Gowanda, NY Landfill	Project #:			S N N				X		J - DI Water K - EDTA	W - pH 4-5
	48021815			9 8						L - EDA	Y - Trizma Z - other (specify)
	SSOW#:			Sample (Yes or A ISD (Yes or A Ioride	tiles	SM4500_S2_F - Sulfide 7196A - Hexavalent Chromium	P	8260C - Select Volatiles		K - EDTA L - EDA Other:	
		Sample		HSMISD ()	2340C - H. AS, Cr, Min 2340C - Hardness 8260C - TCL Volatiles	F - S	350.1 - Local Method	ct Vo			
		Туре	(W=water,		TCL Far	S2	Loca	Sele		Logan Numper Special	
Sample Identification		Sample (C=comp,	S=solid, O=waste/oil,	Perfor 9056A_	2340C	1450(2		N	
	Sample Date		BT=Tissue, A=Air)					826			nstructions/Note:
/WFP-2S				XXN D	DA	CB N		A		X	
MWFP-3S		1105 6	Water	MN-)	47	<u>+ X</u>		X		5	
		1151	Water	NN -	X +	+ 1	-	X		5	
Trip Blank		- 1		NN-	$- \mathbf{e}$	$\rightarrow \pm$		(x)		3	
							+	M+	+ $+$ $+$ $+$		
		1			=						
						$(-1)^{1}$					
						+		+ + + -	+ $+$ $+$ $+$		
							-				
								1.3	$\phi_{1}=\phi_{1}\phi_{2}$		
				2.16					+		
									1. 1. 1.		
					2.1					15	
Rossible Hazard Identification				Sample D	isposal (.	A fee ma	y be a	ssessed if s	amples are ret	ained longer than	1 month)
Non-Hazard Flammable Skin Irritant Collection Plant Collection Col	Poison B 💭 Unknov	vn 🛄 Radiologica	1	Ret	urn To Clie	ent	72	Disposal By L	ab 🗖 A	Archive For	Months
				Special In	structions/	QC Requ	iremer	nts:			Months
Empty Kit Relinquished by:	D	ate:		Time:				Method o	f Shipment:		
Relinquished by:	Date/Timey	a 11.	Company	Receive	d by	1-					
Relinquished by	12/11/23	0 1625		I	V'I	m		-	Date/Time:	23 1625	Company
	Date/Time:		Company	Receive	ed by:				Date/Time:	19	Company
Relinquished by:	Date/Time:		Company	Receive	ed by			· · · · · · · · · · · · · · · · · · ·	Data/Tirra		
									Date/Time:		Company
Custody Seals Intact: Custody Seal No.:											

14

Ver: 06/08/2021

5

12/19/2023

Client: Barton & Loguidice, D.P.C.

Login Number: 215606 List Number: 1 Creator: Stopa, Erik S

Question	Answer	Comment
Radioactivity either was not measured or, if measured, is at or below background	True	
The cooler's custody seal, if present, is intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the sample IDs on the containers and the COC.	True	
Samples are received within Holding Time (Excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	True	
If necessary, staff have been informed of any short hold time or quick TAT needs	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Sampling Company provided.	True	B+L
Samples received within 48 hours of sampling.	True	
Samples requiring field filtration have been filtered in the field.	N/A	
Chlorine Residual checked.	N/A	

Job Number: 480-215606-1

List Source: Eurofins Buffalo

ATTACHMENT C Inspection Form

Field Inspection Report Post-Remedial Operation, Maintenance & Monitoring Plan

Property Name: Peter Cooper Land:	ill Site Project No.:
Client: Gowanda Area Redevelopme	nt Corporation
Property Address: 138 Palmer St	City, State: Gowanda NY Zip Code: 14070
Property ID: (Tax Assessment Map)	Section: 16.028 Block: 3 Lot(s): 10.4
Preparer's Name: Jon Sundquist	Date/Time: November 22, 2023
CERTIFICATION	
have been identified and noted in this repo	ed with the Site Manager. Any corrective actions required ort, and a supplemental Corrective Action Form has been se corrective actions have been discussed with the Site

Manager, agreed upon, and scheduled.

2. Sufficient signage posted (No Trespassing)? yes no KN/A 3. Has there been any noted or reported trespassing? yes no KN/A Please note any irregularities/ changes in site access and security:	Preparer/Inspector: Jon Sundquist		Date: 11/22/2023		
Property Access 1. Is the access road in need of repair? yes no N/A 2. Sufficient signage posted (No Trespassing)? yes no N/A 3. Has there been any noted or reported trespassing? yes no N/A Please note any irregularities/ changes in site access and security: Site is a public	Signature: In Judy d				
1. Is the access road in need of repair? yes no N/A 2. Sufficient signage posted (No Trespassing)? yes no N/A 3. Has there been any noted or reported trespassing? yes no N/A Please note any irregularities/ changes in site access and security:	Next Scheduled Inspection Date:	2024			
2. Sufficient signage posted (No Trespassing)? yes no XN/A 3. Has there been any noted or reported trespassing? yes no XN/A Please note any irregularities/ changes in site access and security: Site is a public	Property Access		na an a	a dunun dunun an ar ar an an an	a
 B. Has there been any noted or reported trespassing? yes no Please note any irregularities/ changes in site access and security: Site is a public 	. Is the access road in need of repair?] yes	🔀 no	□ N/A
Please note any irregularities/ changes in site access and security:	. Sufficient signage posted (No Trespassing)?] yes	🗌 no	X N/A
	. Has there been any noted or reported tresp	bassing?	yes	🗌 no	⊠ N/A
	Please note any irregularities/ changes in sit	e access and s	security:	Site is a	public
park and thus no site access controls are present.	park and thus no site access co	ontrols are	e preser	ıt.	
	Final Surface Cover / Vegetation				

The integrity of the vegetative soil cover or other surface coverage (e.g., asphalt, concrete) over the entire Site must be maintained. The following documents the condition of the above.

1.	Final Cover is in Place and in good condition? Cover consists of (mainly):	∑ yes	no	□ N/A
2.	Evidence of erosion?	🗌 yes	X no	N/A
3.	Cracks visible in pavement?	🗌 yes	no	🔀 N/A
4.	Evidence of distressed vegetation/turf?	🗌 yes	[X] no	□ N/A
5.	Evidence of unintended traffic and/or rutting?	🗌 yes	X no	□ N/A
6.	Evidence of uneven settlement and/or ponding?	🗌 yes	X no	□ N/A

Field Inspection Report

.

			ring Pla
Final Surface Cover / Vegetation		<u></u>	
. Damage to any surface coverage?	🕅 no		N/A
yes to any question above, please provide more information	n below.		
Gas Vent System Monitoring and Maintenance			
Are there signs of stressed vegetation around gas vents?	🗌 yes	x no	🗌 N/A
Are the gas vents currently intact and operational?	🛛 yes	🗌 no	□ N/A
Has regular maintenance and monitoring been documented		or reference	d?
	🛛 yes	no	□ N/A
Groundwater Monitoring		<u> </u>	
Is there a plan in place and currently being followed?	🔀 yes	🗌 no	□ N/A
Are the wells currently intact and operational?	X yes	🗌 no	🗌 N/A
When was the most recent sampling event report and submit	ittal? Date:	Dec. 202	23
When is the next projected sampling event? Date: Mar	ch 2025	ARA	
Property Use Changes / Site Development			
Has the property usage changed, or site been redeveloped s	since the last ir	spection?	
	🗌 yes	🕅 no	🗌 N/A
If yes, please list with date:			

Field Inspection Report Post-Remedial Operation, Maintenance & Monitoring Plan

New Information

Has any new information been brought to the owner/engineer's attention regarding any and/or a engineering and institutional controls and their operation and effectiveness?				
	📋 yes	🛛 no	□ N/A	
Comments:				
This space for Notes and Comments		ana		
Please include the following Attachments:				
1. Site Sketch				
2. Photographs				

ATTACHMENT D Photo Log

View of landfill area.

View of landfill area.

View of landfill area and vent.

View of riprap area.

View of riprap area.

View of riprap area.

Looking east along walkway

Looking south across area where soil was placed during amphitheater construction

East end of site

Central portion of the site, looking west. MW-7S in foreground

View of ballfields

Looking north from western parking area, with views of MW-1SR (adjacent to parking area) and MW-6 (on landfill area)

The experience to **listen** The power to **Solve**

APPENDIX B SIU Permit Requirements

SCHEDULE A

Specific and General Conditions to SIU Discharge Permit #

Issued By:

VILLAGE OF GOWANDA SEWER DEPARTMENT 03/02/2020

ТО

GARC

In accordance with the provisions in Chapter 46, Articles 4 & 5, of the Village of Gowanda Municipal Code, GARC, hereinafter referred to as "Permittee", is hereby authorized to discharge leachate from a ground water collection system located at 70 Palmer Street in the Village of Gowanda, New York only through the outfall(s) identified herein into the Village of Gowanda's Sewage Treatment Plant (the "GSTP") in accordance with the effluent limitations, monitoring requirements, and other conditions set forth in Section 1 (Specific) and Section 2 (General) and Section 3 (Enforcement) attached hereto and incorporated by reference herein as part of this permit (collectively the "Permit").

Compliance with this Permit does not relieve the Permittee of its obligation to comply with all pretreatment regulations, standards or requirements under local, state and federal laws, including any such laws, regulations, standards or requirements that may become effective during the term of this Permit.

Noncompliance with the terms and conditions of this Permit shall constitute a violation of the Village of Gowanda Municipal Code.

This Agreement shall commence the date on which the Consent Decree between EPA & CPRPs becomes effective and shall terminate on the last day of the sixtieth (60th) month following the month of commencement of the Term. The Village reserves the right to terminate this Agreement in the event that there are any violations of any Village, state or federal laws and regulations. This Agreement may be renewed as provided in the SIU Permit.

The Permittee shall not discharge after the date of expiration. If the Permittee wishes to continue to discharge after the expiration date, an application must be filed for re-issuance of this Permit in accordance with the requirements of Chapter 46, Articles 4 and 5, of the Village of Gowanda Municipal Code, a minimum of ninety (90) days prior to the expiration date.

ABBREVIATIONS

BOD	Biological Oxygen Demand
CFR	6 16
	Code of Federal Regulations
COD	Chemical Oxygen Demand
Code	Village of Gowanda Code of Ordinances
Superintendent	Superintendent of Public Works
EPA	Environmental Protection Agency (Federal)
mg/L	milligrams per liter (equivalent to ppm, or parts per million)
PCR	Permit Compliance Report
SIU	Significant Industrial User Permit
SNC	Significant Noncompliance
SOP	Standard Operating Procedures
TOX	Total Organic Halogen
TRC	Technical Review Criteria
TSS	Total Suspended Solids
TTO	Total Toxic Organics
SIU	Wastewater Discharge Permit
WWF	Wastewater Facility

SECTION 1. Specific conditions

Part 1. Operation and effluent origins

- a. Description and regulation of operation
- Part 2. Effluent limitations
 - a. Outfall
 - b. Effluent limitations
 - c. Modifications of local limits

Part 3. Operation and maintenance of pollution controls

- a. Proper operation and maintenance
- b. Duty to halt or reduce activity
- c. Bypass of treatment facilities
- d. Notification of bypass

Part 4. Sampling and monitoring requirements

- a. Sample points
- b. Sampling and analysis; notification of sample collection Table I: Frequency and sampling type
- c. Permittee's analytical laboratory
- d. Sampling procedures

Part 5. Reporting requirements

- a. Periodic compliance reports
- b. Extra monitoring
- c. Automatic re-sampling
- d. Accidental discharge report
- e. Report submission

Part 6. Demand monitoring costs

SECTION 2. General requirements and conditions

Part 1. Compliance with applicable pretreatment standards and requirements

- Part 2. Duty to reapply
- Part 3. Continuation of expired SIU
- Part 4. Signatory requirements
- Part 5. Right of entry
- Part 6. Limitation on permit transfer
- Part 7. Changed conditions
- Part 8. Records retention

Part 9. Sample type and notification of sample collection

- Part 10. Measurements for discharge limitations
- Part 11. Notification of violation and resample requirement
- Part 12. Dilution
- Part 13. General prohibitive standards
- Part 14. Flow measurements
- Part 15. Suspension/termination of service and/or permit
- Part 16. Duty to comply with permit conditions, falsifying information or tampering with monitoring equipment.
- Part 17. Modification or revision of the permit

Part 18. Severability

SECTION 3. Enforcement

- Part 1. Notice of violation
- Part 2. Significant noncompliance
- Part 3. Civil penalties
- Part 4. Emergency actions
- Part 5. Duty to mitigate
- Part 6. Recovery of costs incurred

SECTION 1. SPECIFIC CONDITIONS

Part 1. Operation and effluent origins.

a) Description and regulation of operation

Permittee will discharge leachate to the GSTP in connection with a system installed to recover such leachate pursuant to the Record of Decision issued by the Environmental Protection Agency for the Peter Cooper Site, dated 9/30/05, relating to property located at 70 Palmer Street in the Village of Gowanda, New York.

b) The discharge shall not exceed 30,000 gallons peak daily.

Part 2. Effluent Limitations

- a) Outfall
 - 1. During the Permit period, Permittee is authorized to discharge leachate to the GSTP from the outfall 003 listed below.

Description of outfalls:

OutfallsDescription003Constructed sewer line to Village manhole – C-116 and
test immediately before discharge to Village system.

- 2. The Permittee shall apply, in writing, to the Superintendent for permission to discharge leachate to any other outfall other than indicated above. Reasons for the change and detailed plans and drawings of the proposed new outfall(s) must accompany the request.
- b) Effluent Limitations

During the Permit period, the discharge from the outfall 003 listed above shall not exceed the following effluent limitations. Effluent from outfall consists of all origins listed in Section 1. Effluent from this outfall consists of groundwater and leachate from an inactive industrial landfill.

[Remainder of Page Intentionally Blank]

TABLE 1 (Effluent Limitations) (updated/revised 3-2-2020)

Parameter	Daily Maximum Concentration	lb/d Daily <u>Maximum</u>
Flow	30,000 gpd	-
VOC's		
Total Metals		
Chlorides		
Hardness as CacO3		
Temp.		
рН	5.0 - 10.5	~
Hex Chromium	~	0.0048 lb/d
Ammonia as Nitrogen	~	75 lb/d
Dissolved Oxygen ¹	2.0 mg/L	~
Sulfates	9.0mg/L	~

¹The discharge shall maintain a minimum concentration of Dissolved Oxygen content of 2.0 mg/L when sulfide concentrations are in excess of 9.0 mg/L.

c) Modification of Local Limits.

In accordance with the Municipal Code, the established local limits are subject to change and shall be modified as needed based on regulatory requirements and standards, GSTP operation, performance and processes, the industrial user base, potable water quality and domestic wastewater characteristics. Modification to the established local limits must be reviewed and approved prior to implementation. Implementation shall be effective thirty (30) days from notice of acceptance of the modified limits. New local limits will be issued as an addendum to this wastewater discharge permit. Any modification of local limits that would require the Permittee to construct and operate, or modify an existing pretreatment system, shall include a reasonable schedule of compliance.

Part 3. Operation and maintenance of pollution controls.

a) Proper operation and maintenance

The Permittee shall at all times properly operate and maintain all facilities and systems of treatment and control (and related appurtenances) which are installed or used by the Permittee to achieve compliance with the terms of this SIU. Proper operation and maintenance includes but is not limited to: effective performance, adequate funding, adequate operator staffing and training, and adequate laboratory and process controls, including appropriate quality assurance procedures. This provision requires the operation of back-up or auxiliary facilities or similar systems only when necessary to achieve compliance with the conditions of the SIU.

b) Duty to halt or reduce activity

Upon reduction of efficiency of operation, or loss or failure of all or part of the treatment facility, the

Permittee shall, to the extent necessary to maintain compliance with this SIU, control its production or discharges (or both) until operation of the treatment facility is restored or an alternative method of treatment is provided. This requirement applies, for example, when the primary source of power of the treatment facility fails or is reduced. It shall not be a defense for a Permittee in an enforcement action that it would have been necessary to halt or reduce the permitted activity in order to maintain compliance of the SIU.

- c) Bypass of treatment facilities
 - 1. Bypass is prohibited unless it is unavoidable to prevent loss of life, personal injury or severe property damage or no feasible alternative exist.

2. Bypass not exceeding limitations. The Permittee may allow bypass to occur which does not cause effluent limitations to be exceeded, but only if it is also for essential maintenance to assure efficient operation

d) Notification of bypass

1. Anticipated bypass. If the Permittee knows in advance of the need for a bypass, it shall submit prior written notice, at least ten days before the date of the bypass, to the Superintendent.

2. Unanticipated bypass. The Permittee shall immediately notify the Superintendent and submit a written notice to the WWF within 5 days. This report shall specify:

- (i) A description of the bypass, and its cause and duration;
- (ii) Whether the bypass has been corrected; and
- (iii) The steps being taken or to be taken to reduce, eliminate or prevent a recurrence of the bypass.

Part 4. Sampling and monitoring requirements

a) Sample points

During the permit period, the Permittee shall collect samples and monitor the leachate discharge from the following sample points:

Outfall 003 described in Section 1 of this SIU Permit or other locations approved by the Superintendent.

This is the only sampling point that is approved by the Superintendent for the collection of samples.

b) Sampling and Analysis; Notification of Sample Collection

The samples collected by the Permittee or its authorized representative shall be analyzed for the parameters listed in Section 1. Frequency and types of samples to be taken are indicated below:

Parameter	Sampling Location	Frequency	Sample Type
VOC's (method 8260C) Total Metals (method 6010C)	Pre-treatment Building	1/15 Months	24 hr. Composite
Sulfates	Pre-treatment Building	1/15 Months	24 hr. Composite
Chloride (9056A)	Pre-treatment Building	1/15 Months	24 hr. Composite
Ammonia as Nitrogen (350.1) Hardness as CacO3 (SM2340C)	Pre-treatment Building	1/15 Months	24 hr. Composite
Hexavalent Chromium (7196A)	Pre-treatment Building	1/15 Months	24 hr. composite
Dissolved Oxygen Ph Temperature	Pre-treatment Building	1/week	Grab
Air Test Vents and visual/walkthrough inspection.	Landfill Vents	2X/year	N/A

 TABLE 2 (Sampling and Monitoring) revised 03/02/2020

* An updated Complete Discharge Analysis consisting of all parameters listed above, must be provided to the Village Sewer Department prior to the initial discharge.

1. Sampling frequency shall be determined by the Superintendent based on the nature, volume and concentrations of parameters of concern identified in this SIU Permit, as demonstrated

during the first year of monitoring.

- 2. Samples collected by the Permittee or its authorized representative shall be as representative as possible of the volume and nature of the Permittee's discharge throughout the daily period of system operation. All handling and preservation of collected samples shall be performed in accordance with 40 CFR Part 136 and any amendments thereto. The Village reserves the right to spot check sampling procedures by the Permittee or the Permittee's contract laboratory at any time.
- 3. The Village reserves the right to modify the frequency of analysis. If laboratory analysis indicates any parameter exceeds the levels set in the Village's Sewer Use Ordinance or this SIU Permit or the Superintendent determines that any parameter present in the discharge poses a treatment concern.

c) Permittee's analytical laboratory

The Permittee shall utilize a State of New York certified laboratory of its choosing for the purposes of complying with the requirements of this SIU. Certification must be current during the performance of a required analysis for each parameter measured. The Permittee is directly responsible for ensuring the validity of all analytical measurements received from its laboratory as required by this SIU Permit.

The Village will only accept analytical results that are performed by a laboratory certified by the State of New York for environmental analysis performed. Analytical measurements submitted by non certified laboratories or resulting from analysis of samples during periods of non-certification for the analyte will be considered null and void and the facility will be considered as not having monitored for these parameters.

d) Sampling procedures

All sampling procedures shall comply with the requirements contained in the then current Standard Methods.

If the Permittee performs its own sampling, the Permittee shall prepare a written description of its procedures and shall submitted such document to the Village. The Village may, at its option, observe the collection of the required samples by the Permittee to ensure that approved sampling methods are complied with in full. Failure to follow sampling procedures will result in the Village's rejection of the sample and any resulting analytical results that may be submitted by the Permittee.

If the Permittee's chosen laboratory performs the sampling for the Permittee, the Village may, at its option, observe the collection of the required samples to ensure that approved sampling methods are complied with in full by the laboratory concerned. Failure to follow sampling procedures will result in the Village's rejection of the sample and any resulting analytical results that may be submitted by the Permittee or its laboratory.

Part 5. Reporting requirements

a) Periodic compliance reports (PCR)

Annual compliance reports must be submitted to the Village of Gowanda by February 1st of each year covering January 1st to December 31st of the previous year.

1. Annual compliance report information is to be submitted on NYSDEC FROSI report

forms.

2. A copy of the original contracting laboratory's analysis, including all chain of custody forms.

The due date for submission of the PCR report and attachments is thirty days after the last day of the month in which the samples are required to be taken. If a report is submitted more than 30 days after the due date, the facility will be deemed to be in significant noncompliance (SNC) and appropriate enforcement proceedings will be initiated by the Village.

A report shall be considered incomplete and in violation of reporting requirements if it does not contain the above required information and attachments. Incomplete reports will be returned to sender.

b) Extra monitoring

If the Permittee monitors its discharge for any pollutant more frequently than required by this SIU, using test procedures prescribed in 40 CFR Part 136 or any New York State regulation or amendments thereto, or otherwise approved by EPA or as specified in this SIU, the results of such monitoring shall be included in the calculation and results shall be reported in the PCR reports and submitted to the Superintendent.

c) Automatic re-sampling

If the results of the Permittee's discharge analysis indicate a violation has occurred, the Permittee must:

- 1. Inform the Superintendent within 24 hours of becoming aware of the violation, as defined in Section 3 of this SIU; and
- 2. Repeat the sampling and pollutant analysis for the parameter in violation and submit the results of the second analysis in writing to the Village within 30 days after becoming aware of the violation.
- d) Accidental discharge report

The Permittee shall notify the Superintendent immediately upon the occurrence of an accidental discharge of substances prohibited by the Municipal Code or any slug loads or spills that may enter the public sewer. During normal business hours, the Superintendent should be notified by telephone at 716-532-5931 At all other times, the Superintendent should be notified by telephone at 716-913-1455 or 716-532-4077 after 4:30 p.m. Monday - Friday or weekends and holidays. The Permittee shall inform the Superintendent of the location of discharge, date and time, type of waste, including concentration and volume, and corrective actions taken. The Permittee's notification of accidental release in accordance with this section does not relieve it of other reporting requirements that arise under local, State, or Federal laws. Within five (5) days following an accidental discharge, the Permittee shall submit to the Superintendent a detailed written report. The report shall specify:

- 1. Description and cause of the upset, slug or accidental discharge, the cause thereof and the impact on the Permittee's compliance status. The description should also include location of discharge, type, concentration and volume of waste.
- 2. Duration of noncompliance, including exact dates and times of noncompliance, and if the noncompliance continues, the time by which compliance is reasonably expected to occur.
- 3. All steps taken or to be taken to reduce, eliminate, and prevent recurrence of such an upset, slug, accidental discharge, or other conditions of noncompliance.

e) The cooperating PRPs will provide the Village with copies of all post-remedial inspections, sampling, analysis, evaluation reporting, and any other document or report submitted to EPA and required by USEPA to demonstrate performance and permanence of the remedial measures including but not limited to:

- 1. Gas Vent Emissions testing and reporting;
- 2. Groundwater and surface water data assessment and reporting for the first five (5) years following completion of remedial construction.
- 3. Periodic site inspections to observe cover system integrity and observe seep/ground water collection system operation and maintenance.
- f) Report Submission

The Permittee shall submit all reports required by this Permit to the Superintendent at the following address:

Superintendent of Gowanda WWTP Village of Gowanda 27 East Main Street Gowanda, New York 14070

PART 6. Demand monitoring costs

Any required demand monitoring, inspections and surveillance deemed to be necessary as a result of a violation will be carried out by the Village and charged directly to the Permittee at the Village's cost, which costs shall be a charge against the OM&M Account.

SECTION 2. GENERAL REQUIREMENTS AND CONDITIONS

PART 1. Compliance with applicable pretreatment standards and requirements; Costs

a) Compliance with this permit does not relieve the Permittee from its obligations regarding compliance with any and all applicable local, State and Federal pretreatment standards, regulations, laws, and requirements including any that become effective during the term of this permit. This SIU Permit shall be expressly subject to all provisions of the Municipal Code, as amended, and all other applicable codes and regulations.

b) The Permittee shall reimburse the Village for monitoring all parameters required by the DEC, EPA or the Village and at the frequency requested by any of these agencies or any other agency having jurisdiction over the discharge and for all cost associated with any Village SPDES Permit modifications associated with the acceptance of the discharge, which costs shall be a charge against the OM&M Trust Account.

PART 2. Duty to reapply

The Permittee shall apply for permit re-issuance at least ninety (90) days, but no more than one hundred and eighty (180) days prior to the expiration of the Permittee's permit. The Permittee shall be informed of any proposed changes to the permit at least thirty (30) days prior to the effective date of change. Any changes or new conditions in the permit shall include a reasonable time schedule for compliance.

PART 3. Continuation of expired SIU

An expired SIU will continue to be effective and enforceable until the SIU is reissued if:

a) The Permittee has submitted a complete SIU application at least ninety (90) days prior to the expiration date of the Permittee's existing SIU.

b) The failure to reissue the SIU, prior to expiration of the previous SIU, is not due to any act or failure to act on the part of the Permittee.

PART 4. Signatory requirements

All applications, reports, or information submitted to the Village of Gowanda must contain the following certification statement:

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fines and imprisonment for knowing violations."

All reports required by this permit shall contain the name/title of a principal executive officer of the Permittee, and shall be signed by the principal executive officer or his/her authorized representative.

PART 5. Right of entry

The Permittee shall allow the Village or its representatives, exhibiting proper credentials and identification, to enter upon the premises of the Permittee, at all reasonable hours for the purposes of inspection, sampling, or records inspection and duplication. Reasonable hours in the context of inspection and sampling include any time the Permittee is operating any process which results in a process wastewater discharge to the Village's WWF.

PART 6. Limitation on permit transfer

Discharge permits are issued to a specific Permittee for a specific operation. They shall not be reassigned, or transferred, or sold to a new owner, new significant Permittee, or transferred to a different premises without Village approval.

PART 7. Changed conditions

The Permittee shall report to the Village prior to the introduction of new discharge any substantial change in the volume or characteristics of the wastewater being discharged into the WWF from the Permittee's processes and/or facilities.

PART 8. Records Retention

a) The Permittee shall retain and preserve for no less than five (5) years, any records, books, and documents, memoranda, reports, correspondence and any and all summaries thereof, relating to monitoring, sampling and chemical analyses made by or on behalf of the Permittee in connection with its discharge.

b) All records that pertain to matters that are the subject of special orders or any other enforcement or

litigation activities brought by the Village shall be retained and preserved by the Permittee until all enforcement activities have concluded and all periods of limitation with respect to any and all appeals have expired.

PART 9. Sample type and notification of sample collection

All samples shall be 24-hour (flow-proportioned or time-proportioned) composite samples where feasible, except VOC sampling which are grab samples as specifically provided in Table 2.

PART 10. Measurements for discharge limitations

- a) Daily Maximun concentration mg/l.
- b) Lb/d Day Maximum: Total Daily flow in MGD x concentration in mg/l x 8.34

c) For each measurement or sample taken pursuant to the requirements of this permit, the following information shall be recorded:

- i) The exact place, date and time of sampling;
- ii) The dates the analysis were performed;
- iii) The person responsible for performing the sampling or measurement;
- iv) The person(s) who performed the analyses;
- v) The analytical techniques or methods used, and
- vi) The results of all required analyses.

PART 11. Violation of notification and resample requirement

If sampling performed by Permittee indicates a violation of any part of this Permit or Village Code, as amended, the Permittee shall notify the Superintendent within 24 hours of becoming aware of the violation. The Permittee shall repeat the sampling and analysis and submit both results of the analysis to the Superintendent within 30 days after becoming aware of the violation.

PART 12. Dilution

No Permittee shall increase the use of potable or process water or in any way attempt to dilute a discharge as a partial or complete substitute for adequate treatment to achieve compliance with the limitations contained in the permit

PART 13. General prohibitive standards

The Permittee shall not discharge wastewater to the sewer system:

a) Any point source wastewater having a temperature greater than 65° Celsius (C) (150° Fahrenheit (F)) or which will inhibit biological activity in the treatment plant resulting in interference.

b) Containing any gasoline, benzene, naphtha, fuel oil or other flammable or explosive liquids, solids or gases; and in no case pollutants with a closed cup flashpoint of less than 60° C (140 °F), or pollutants which cause an exceedance of 10 percent of the Lower Explosive Limit (LEL) at any point within the WWF.

c) Any water having a pH less than 5.5 or greater than 10.5, or wastewater having any other corrosive property capable of causing damage or hazard to structures or equipment, or endangering Village personnel.

d) Solids or viscous substances in amounts which will cause obstruction of the flow in the wastewater treatment facility resulting in interference, but in no case solids greater than one-half inch in any dimension.

e) Any wastewater containing pollutants, including oxygen-demanding pollutants (BOD, etc.), released in a discharge at a flow rate and/or pollutant concentration which, either singly or by interaction with other pollutants, will cause interference with either the WWF, the collection system, or any wastewater treatment or sludge process, or which will constitute a hazard to humans or animals.

f) Any wastewater in mixture which causes the temperature at the introduction into the WWF to exceed 40° C (104° F).

g) Petroleum oil, non-biodegradable cutting oil or products of mineral oil origin in amounts which will cause interference or pass-through.

h) Any pollutants which result in the presence of toxic gases, vapors or fumes within the WWF in a quantity which may cause acute worker health and safety problems.

i) Any noxious or malodorous liquids, gases, solids or other wastewater which, either singly or by interaction with other wastes, are sufficient to create a public nuisance or a hazard to life, or prevent entry into the sewers for maintenance and repair.

j) Any wastewater containing any radioactive wastes or isotopes.

k) Stormwater, surface water, groundwater, artesian well water, roof runoff, subsurface drainage, swimming pool drainage, condensate, deionized water, non-contact cooling water, and unpolluted industrial wastewater, unless specifically authorized by the Superintendent.

1) Any sludges, screenings or other residues from the pretreatment of industrial wastes.

m) Any wastewater causing the treatment plant's effluent to fail a Village requirement or cause a violation of any requirements of the Village's State Pollution Discharge Elimination Permit ("SPDES Permit") imposed by either The New York State Department of Environmental Conservation or the Environmental Protection Agency or any wastes containing detergents, surface active agents or other substances which may cause excessive foaming in the WWF.

n) Any discharge of chemicals used to dissolve grease.

o) Any wastewater which imparts color which cannot be removed by the treatment process, such as but not limited to dye wastes and vegetable tanning solutions, which consequently imparts color to the treatment plant's effluent thereby violating the Village's operating permit.

PART 14. Flow measurements

Appropriate flow measurement devices and methods consistent with accepted scientific practices shall be selected and used to insure the accuracy and reliability of measurements of the volume of monitoring

discharges. The devices shall be installed, calibrated, and maintained by the Permittee to insure that the accuracy of the measurements are consistent with the accepted capability of that type of device. Devices selected shall be capable of measuring flows with a maximum deviation of less than +1- 10% from the true discharge rates throughout the range of expected discharge volumes.

PART 15. Suspension/termination of service and/or permit

The Village may suspend discharge treatment service and/or the SIU when such suspension is necessary to stop an actual or threatened discharge which would endanger the health or welfare of persons or the environment, cause interference with GSTP operations, cause sludge quality degradation, or cause the Village to violate any conditions of its operating permit Conditions for termination of this permit include but are not limited to the following:

- a) Falsifying self-monitoring reports;
- b) Tampering with monitoring equipment;
- c) Refusing to allow timely access to the Permittee's premises and records;
- d) Failure to meet effluent limitations;
- e) Failure to pay fines;
- f) Failure to pay sewer charges, and
- g) Failure to meet compliance schedules.

PART 16. Duty to comply with permit conditions, falsifying information or tampering with monitoring equipment

The Permittee must comply with all conditions of this permit. Any Permittee who willfully or negligently fails to comply with provisions of this permit shall be subject to the imposition of penalties and appropriate recovery of costs by the Village. Any person who knowingly makes any false statements, representation or correction in any record, report, plan or other document filed pursuant to this permit, or who falsifies, tampers with, or knowingly renders inaccurate any monitoring device or method required under this permit shall, upon conviction, be subject to the imposition of penalties prescribed by the Code or any other applicable local, State or Federal law.

PART 17. Modification or revision of the permit

The Superintendent may modify a SIU for good cause, including, but not limited to, the following reasons:

- a) To incorporate any new or revised Federal, State or local pretreatment standards or requirements;
- b) To address significant alterations or additions to the Permittee's operation, processes, or discharge volume or character since the time of the SIU issuance;
- c) A change in the WWF that requires either a temporary or permanent reduction or elimination of the authorized discharge;
- d) Information indicting that the permitted discharge poses a threat to the Village's WWF, personnel, or the receiving waters;

- e) Violation of any term or condition of the permit;
- f) Misrepresentation or failure to fully disclose all relevant facts in the wastewater discharge permit application or in any required reporting;
- g) To correct typographical or other errors in the permit; or
- h) To reflect a transfer of the facility ownership or operation to a new owner or operator.

PART 18. Severability

The provisions of this permit are severable, and if any provision of this permit, or the application of any provision of this permit to any circumstances is held invalid, the application of such provision to other circumstances and the remainder of this permit shall not be affected thereby.

SECTION 3. ENFORCEMENT

PART 1. Notice of violation

a) Any violation of requirements including, but not limited to, discharge limits, sampling, analysis, meeting compliance schedules and regulatory deadlines, and reporting shall be considered as noncompliance for which the Permittee is liable for enforcement, including penalties. The Permittee shall respond to any notice of violation in writing within 30 days of the notice. This written notification shall include the reason for the violation(s), the actions taken to correct the violation(s) and what steps will be taken to prevent the violation(s) from occurring in the future.

b) The failure of the Village to reject any discharge shall not, in any way, relieve or diminish the Permittee's liabilities to the Village for any damages the Village may incur as a result of the discharge being in violation of any provisions of this Permit.

PART 2. Significant noncompliance (SNC)

Violations shall be identified as those violations or patterns of violations by the Permittee that are instances of Significant Noncompliance (SNC). The determination of SNC is patterned after criteria used in the EPA program (40 CFR 123.45). Instances of SNC are Permittee violations which meet one or more of the following criteria:

1. Violation of wastewater discharge limits:

a) Chronic Violations: If 66% or more of the measurements obtained from the testing described in this permit exceed the permit limits in a 6 - month period (any magnitude of exceedance), then chronic violations will have occurred.

b) Technical Review Criteria (TRC) violations, when thirty-three (33%) percent or more of all measurements taken during six - (6) month period equal or exceed the permit limit multiplied by the applicable TRC factor.

c) Any other violation(s) of an effluent limit (average or daily maximum) that the Village believes has caused, alone, or in combination with other discharges, interference (e.g. slug loads or pass though) or endangered the health of the WWF personnel or the public.

d) Any discharge of a pollutant that has caused imminent endangerment to human welfare, or to the environment, and has resulted in the Village's exercise of its emergency authority to halt or prevent such a discharge.

e) Failure to meet within ninety (90) days after the schedule, a compliance schedule milestone required.

- 2. Failure to provide reports as stipulated in this permit within thirty (30) days from the due date.
- 3. Failure to accurately report non-compliance.
- 4. Any other violation or group of violations that the Village considers to be significant.

As part of its enforcement action, the Village shall notify the Permittee of each incidence of SNC, and each notice shall include an order for the Permittee to come into compliance immediately, or to enter into a compliance agreement with the Village.

PART 3. Civil penalties

A Permittee who has violated or continues to violate any provision of the Municipal Code, a SIU or other order issued, or any other pretreatment standard or requirement shall be liable to the Village for a maximum civil penalty of \$1,000.00 per violation, per day.

The Village may recover reasonable attorney's fees, court costs and other expenses associated with enforcement activities, including sampling and monitoring expenses and the cost of actual damage incurred by the Village.

In determining the amount of the civil liability, the court shall take into account all relevant circumstances including, but not limited to, the extent of harm caused by the violation, any economic benefit gained through the Permittee's violation, corrective actions by the Permittee, the compliance history of the Permittee and any other factor as justice requires.

Filing a suit for civil penalties shall not be a bar against or a prerequisite for taking any other action against the Permittee.

PART 4. Emergency actions

The Superintendent shall have authority and procedures to immediately and effectively halt any discharge to the WWF which endangers public health or welfare. The Superintendent shall also have the authority and procedures to prevent any discharge to the WWF which endangers the environment or which threatens to interfere with the operations of the WWF. Notice shall be provided to the Permittee prior to such action. If public health or welfare are not endangered, the Permittee shall be given an opportunity to respond to the

notice.

PART 5. Duty to mitigate

The Permittee shall take all reasonable steps to minimize or correct any adverse impact to the public treatment plant or the environment resulting from noncompliance with this SIU, including such accelerated or additional monitoring as necessary to determine the nature and impact of the noncompliant discharge.

PART 6. Recovery of costs incurred

In addition to civil liability, the Permittee violating any of the provisions of this SIU, of the Municipal Code or causing damage to or otherwise inhibiting the Village of Gowanda wastewater disposal system shall be liable to the Village of Gowanda for any expense, or damage caused by such violation or discharge. The Superintendent shall bill the Permittee for the costs incurred by the Village for any demand monitoring, analysis, cleaning, repair, or replacement work caused by the violation or discharge.

Andrew Currier

Andrew Carriero Gowanda WWTP Superintendent

APPENDIX C Laboratory Data – SIU Permit Compliance Sampling

SIU Permit Compliance Monitoring Data

	Peter Cooper PH Min. 5.0 Max. 10.5	Peter Cooper Temp.	Peter Cooper D.O. Min. 2.0 Daily	Peter Cooper Totalizer Meter Reading	Peter Cooper Total Flow
Date	SU	Deg C	mg/l	gpd	gpd
1/1/23		Deg o	mgn	101,296	230
1/2/23	7.35	52.90	4.21	102,735	1,439
1/9/23	7.18	53.10	5.21	118,494	15,759
1/16/23	7.31	51.40	4.64	124,273	5,779
1/23/23	7.17	53.40	5.44	129,577	5,304
1/30/23	7.22	54.00	3.55	167,750	38,173
1/31/23	7.22	01.00	0.00	171,254	3,504
2/1/23				171,254	0
2/6/23	7.20	54.70	6.66	189,605	18,351
2/13/23	7.23	55.40	4.01	190,341	736
2/20/23	7.23	57.90	4.44	194,187	3,846
2/27/23	7.29	54.90	2.51	208,132	13,945
2/28/23	1.27	54.70	2.51	208,140	8
3/1/23				208,145	25
3/6/23	7.15	52.00	2.99	208,194	54
3/13/23	7.16	51.40	4.18	208,216	22
3/20/23	7.16	50.80	3.39	208,210	22
3/20/23	7.29	54.20	3.39		140
	1.29	54.20	3.39	208,364	
3/31/23	7.10	F 4 00	2 / 7	208,372	8
4/3/23	7.13	54.90	3.67	208,376	4
4/10/23	7.12	53.30	3.08	208,503	127
4/17/23	7.05	54.40	2.80	000 / 5 :	
4/24/23	7.28	55.70	4.11	208,654	151
4/30/23	_		_	208,654	0
5/1/23	7.28	57.40	3.39	208,654	0
5/8/23	7.31	57.10	5.29	0	0
5/15/23	7.19	53.90	3.48	17	17
5/22/23	7.26	57.40	3.88	41	24
5/29/23	7.27	56.50	4.62	81	40
6/1/23				126	0
6/5/23	7.09	57.30	2.09	126	0
6/12/23	7.20	61.80	2.91	165	39
6/19/23	7.27	64.70	3.13	890	725
6/26/23	7.21	62.80	4.16	976	86
6/30/23				1,827	851
7/1/23				2,624	797
7/3/23	7.11	65.40	3.62	2,711	87
7/10/23	7.12	65.80	3.95	3,710	999
7/17/23	7.13	64.10	2.71	3,795	85
7/24/23	7.12	68.20	5.69	7,432	3,637
7/31/23	7.07	65.30	6.19	7,492	60
8/1/23				7,495	3
8/7/23	7.18	67.90	2.43	7,557	62
8/14/23	7.12	66.80	2.48	15,141	7,584
8/21/23	7.11	65.10	2.50	16,254	1,113
8/28/23	7.14	65.90	2.20	16,315	161
8/31/23				16,315	0
9/1/23				16,315	0
9/4/23	7.00	63.60	3.88	16,770	455
9/11/23	7.05	66.70	2.35	17,093	323
9/18/23	7.15	66.10	5.87	18,691	1,598
9/25/23	7.08	63.60	2.08	18,772	81
9/30/23				19,312	540
10/1/23				19,312	0
10/2/23	7.01	64.70	2.40	19,378	66
10/9/23	7.15	63.20	4.43	19,472	94
10/16/23	7.15	62.20	3.66	19,665	193
10/23/23	7.20	61.80	2.86	20,141	476
10/23/23	7.08	59.70	2.08	21,353	1,212
10/30/23	7.00	57.10	2.00	21,553	200
10/31/23				21,553	0
11/6/23	7.23	61.60	5.11	26,298	4,745
11/13/23	7.28	63.00	5.13	33,430	7,132
11/20/23	7.16	59.70	3.90	40,698	7,268
11/27/23	7.18	60.70	3.12	49,495	8,797
11/30/23				56,252	6,757
12/1/23				58,317	2,065
12/4/23	6.99	58.80	4.06	66,658	8,341
12/11/23	6.96	55.50	2.32	85,111	18,453
12/18/23	7.17	56.20	2.60	103,380	18,269
12/25/23	7.09	56.30	2.16	123,737	20,357
12/31/23				136,563	12,826

Vent Gas Measurements

		5/3/2023	10/5/2023
Vent # 1 02	%	21.0	20.0
Vent # 1 CO	ppm	0.0	0.0
Vent # 1 H2S	ppm	0.0	1.0
Vent # 1 LEL	%	0.0	100.0
Vent # 2 O2	%	13.8	12.9
Vent # 2 CO	ppm	138.0	115.0
Vent # 2 H2S	ppm	150.0	146.0
Vent # 2 LEL	%	100.0	100.0
Vent # 3 O2	%	21.0	20.9
Vent # 3 CO	ppm	0.0	0.0
Vent # 3 H2S	ppm	0.0	4.0
Vent # 3 LEL	%	0.0	12.0
Vent # 4 O2	%	21.0	20.9
Vent # 4 CO	ppm	0.0	1.0
Vent # 4 H2S	ppm	0.0	1.0
Vent # 4 LEL	%	0.0	11.0
Vent # 5 O2	%	21.1	20.8
Vent # 5 CO	ppm	0.0	0.0
Vent # 5 H2S	ppm	0.0	2.0
Vent # 5 LEL	%	0.0	13.0

APPENDIX D O&M Cost Summary

PETER COOPER SITE 138 Palmer Street, Gowanda, NY 14070 Reimbursement Period: Jan 2023 - May 2023

TOTAL REIMB REQUEST

\$ 9,406.96

General Fund Reimbursement Electric - Leachate Pump Station Electrical Service (NYSEG) 1003-3457-754			Sewer Fund	d Charge	5		Sp Project/Sewer Fund	General Fi	und Cha	rge	5	Sewer Fund Charges					
				Sampling Labor \$35.84			As itemized			Admin M	onitor	& N	/laint.	Peter Cooper Leachate Flow			
			Labor as documented by Sewer Employees \$23.29 Rate/hr plus 53.87% fringe. Mowing @ \$50/hr				As itemized: Site maintenance/Equipment Repairs as required.			Village Admin processing of Reimbursment Requests @ \$75/hour				Flow per month as documented by Sewer Flow Meter at Peter Cooper Site.			
Payment Da	te Service Dates	A	mount	Month	Hrs	ļ	Amount	Service/Item		Amount	Month	Hrs	ļ	Amount	Month	Flow	Amount
1/23/2023	12/7/23- 1/9/23	\$	366.12	Jan-23	7	\$	250.88	2022 Annual Report	\$	4,400.00	Jan-23	2	\$	150.00	Jan-23	70.188	\$35.09
2/13/2023	1/10/23- 2/7/23	\$	413.97	Feb-23	5	\$	179.20				Feb-23	4	\$	300.00	Feb-23	36.886	\$18.44
3/13/2023	2/8/23-3/6/23	\$	379.63	Mar-23	5	\$	179.20	Microbac Laboratories	\$	388.50	Mar-23	2.5	\$	187.50	Mar-23	0.277	\$0.14
4/17/2023	3/7/23-4/3/23	\$	412.48	Apr-23	5	\$	179.20	Site Testing			Apr-23	2	\$	150.00	Apr-23	0.282	\$0.14
5/17/2023 4/4/23-5/5/23		\$	433.13	May-23	9	\$	322.56	Ti Sales	\$	360.74	May-23	2	\$	150.00	May-23	0.081	\$0.04
				Mowing	3	\$	150.00	Flow Meter Replacement									
															Flow mete	r was repla	ced to
															fix flow mo	onitoring is:	sues
TOTALS		\$	2,005.33		34.00	\$	1,261.04		\$	5,149.24		12.5	\$	937.50		107.71	\$53.85
Potes																	
and the second se	bursment Reque	and the same						<u>Reimbursements</u>									
Electric			2,005.33					General Fund	\$	2,942.83							
Sampling L		\$	1,261.04					Sp Proj/Comm Dev Fund	\$	4,400.00							
Itemized Ex			5,149.24					Sewer Fund		\$2,064.13							
Admin Sup		\$	937.50						\$	9,406.96							
Leachate Fl	low	\$	53.85														

PETER COOPER SITE 138 Palmer Street, Gowanda, NY 14070 Reimbursement Period: June 1, 2023 - Dec 31, 2023

\$ 7,100.81

TOTAL REIMB REQUEST

General Fund	Reimbursement			Sewer Fund	Charge:	s		Sp Project/Sewer Fund			General Fu	ind Cha	rges	ges Sewer Fund Charges				
Electric - Lea	chate Pump Statio	n		Sampling	Labor		\$35.84	As itemized			Admin M	onitor	& N	laint.	Peter Co	Peter Cooper Leachate Flo		
Electrical Service (NYSEG) 1003-3457-754		Labor as documented by Sewer Employees \$23.29 Rate/hr plus 53.87% fringe. Mowing @ \$50/hr			As itemized: Site maintenance/Equipment Repairs as required.			Village Admin processing of Reimbursment Requests @ \$75/hour				Flow per month as documented by Sewer Flow Meter at Peter Cooper Site.						
Payment Dat	e Service Dates	A	mount	Month	Hrs	P	mount	Service/Item		Amount	Month	Hrs	A	mount	Month	Flow	Amount	
6/12/2023	5/6-6/1/23	\$	177.38	Jun-23	8	\$	286.72	Siewert Equipment	\$	2,656.00	Jun-23	2	\$	150.00	Jun-23	1.701	\$0.85	
7/19/2023	6/2-7/7/23	\$	98.07	Jul-23	5.5	\$	197.12	Liberty Pump for Peter Coop	er		Jul-23	4	\$	300.00	Jul-23	5.665	\$2.83	
8/21/2023	7/8-8/2/23	\$	34.44	Aug-23	12	\$	412.16	Burzak Electric			Aug-23	2.5	\$	187.50	Aug-23	8.923	\$4.46	
9/18/2023	8/3-9/6/23	\$	63.98	Sep-23	5	\$	179.20	Pump Controller Repair	\$	207.67	Sep-23	2	\$	150.00	Sep-23	2.997	\$1.50	
10/12/2023	9/7 - 10/3/23	\$	59.66	Oct-23	6	\$	215.04				Oct-23	2	\$	150.00	Oct-23	2.241	\$1.12	
11/9/2023	10/4- 11/2/23	\$	192.19	Nov-23	8	\$	286.72				Nov-23	3	\$	225.00	Nov-23	34.699	\$17.35	
12/11/2023	11/4- 12/1/23	\$	361.99	Dec-23	5	\$	179.20				Dec-23	3.5	\$	262.50	Dec-23	80.311	\$40.16	

TOTALS	\$ 987	.71	49.00	\$ 1,75	6.16	\$	2,863.67	19	\$ 1,425.00	136.54	\$68.27
Patient										Flow meter, pumps, and	l controllers
Reimbursment Re	equest lotal				<u>Reimbursements</u>	1				have been fixed.	
Electric	\$ 987	.71			General Fund	\$	2,412.71				
Sampling Labor	\$ 1,756	.16			Sewer Fund	\$	2,863.67				
Itemized Expenses	\$ 2,863	.67			Sewer Fund	\$	1,824.43				
Admin Support	\$ 1,425	.00				\$	7,100.81				
Leachate Flow	\$ 68	.27									

The experience to **listen** The power to **Solve**

