

February 9, 2022

Ms. Sherrel Henry Remedial Project Manager U.S. Environmental Protection Agency 290 Broadway – 20th Floor New York, New York 10007-1866

Re: Peter Cooper Markhams Site, Dayton, NY
June 2021 Post-Remedial Groundwater Monitoring Event
Report Revised February 2022

Dear Ms. Henry:

On behalf of the cooperating Potentially Responsible Parties (cPRPs) for the above-referenced site, Benchmark Civil/Environmental Engineering & Geology, PLLC (Benchmark), has prepared this letter report to transmit the results of the June 2021 post-remedial groundwater monitoring event at the Peter Cooper Markhams Site in Dayton, New York (see Figure 1). A site maintenance summary is also included in this report. The work was performed in accordance with our approved (June 2009) Post-Remedial Operation, Maintenance and Monitoring (OM&M) Plan. Groundwater and surface water monitoring requirements are presented on Table 1.

FIELD SAMPLING PROCEDURE

On June 25th, 2021, Benchmark staff collected a round of static water level measurements from the seven monitoring wells shown on Figure 2; measurements and groundwater elevations are summarized on Table 2. Groundwater samples were collected from on-site monitoring wells MW-5S, MW-7S, MW-8S, and MW-9S. At the time of sampling event Wetland F was dry, therefore no surface water sample was collected from the Wetland F location.

The monitoring wells were sampled using a Mini-Typhoon® submersible pump and dedicated PVC tubing in accordance with low-flow groundwater purging procedures. Field measurements for pH, Eh, specific conductance, temperature, turbidity, and visual/olfactory observations were recorded and monitored for stabilization. Purging was considered complete when pH, specific conductivity, and temperature stabilized, and the turbidity measured below or stabilized above 50 NTU. Stability is defined as the variation between field measurements of 10 percent or less with no overall upward or downward trend in the measurements. Once the field parameters stabilized, groundwater samples were collected and analyzed for the parameters presented on Table 1. The submersible pump was decontaminated using Alconox and water following sample collection activities at each well.

Ms. Sherrel Henry
USEPA
February 9, 2022
Page 2 of 3

Attachment 1 includes sample collection logs. All water samples were transferred to laboratory supplied, pre-preserved sample containers and transported under chain-of-custody command to Eurofins Test America Laboratories for analysis in accordance with Table 1.

ANALYTICAL RESULTS

Attachment 2 includes the laboratory analytical data for the June 25th, 2021, sampling event. Routine parameters detected above method detection limits are shown on Table 3 with their associated sample concentrations. NYSDEC Groundwater Quality Standards and Guidance Values (GWQS/GV; TOGS 1.1.1, June 1998) are presented for comparison. Concentrations exceeding the GWQS/GVs are highlighted.

As indicated on Table 3, sample concentrations were reported as non-detect or below GWQS/GV at all the monitored locations with the exceptions of: total manganese, iron and ammonia at MW-5S; total iron at MW-7S, and Nitrate (as Nitrogen) at MW-9S.

HISTORICAL DATA

Table 3 includes routine groundwater monitoring results for past monitoring events. Charts showing trending of the monitored parameters (excluding arsenic, hexavalent chromium and sulfide, which are consistently reported as non-detect or only sporadically at all locations) are presented in Attachment 3. In general, the data indicate similar concentrations for the monitored parameters at each of the sampling locations, with no apparent trending except for an increase in ammonia at MW-5S. No other parameters have shown similar trending at MW-5S, which is in a topographically low area where significant leaf accumulation/decay has been observed and the groundwater elevation is within a few inches of ground surface. In addition, ammonia was detected in the laboratory method blank during the subject monitoring event, indicating potential positive analytical bias.

DATA QUALITY

Site-specific quality control (QC) sampling during each event included the collection of one blind duplicate sample (collected from MW-5S) and one matrix spike/matrix spike duplicate (MS/MSD) sample (collected from MW-9S) for total metal analysis only. Recoveries for the MS/MSDs were within the acceptable ranges with good reproducibility. Blind duplicate results correlated well with MW-5S results.

GROUNDWATER ELEVATION DATA

Groundwater monitoring includes a round of static water level measurements from seven monitoring wells across the site. Table 2 includes groundwater elevation data for the 2021 monitoring year. An isopotential map representing the shallow groundwater was prepared from the June 25th, 2021, depth-to-groundwater measurements and is presented as Figure 2. Based on those measurements, the inferred groundwater flow directions indicate that shallow groundwater migrates to the west towards wetland F, which is consistent with observations recorded during the site Remedial Investigation.

ANNUAL MAINTENANCE SUMMARY REPORT

Post remedial site inspections have been performed during each groundwater monitoring event since June 2009. The June 2021 site inspection indicated no irregularities or changes to the property access or security. The final cover system appears in good condition, with the gas vent monitoring system intact and operational. Overgrown vegetation near and along access paths to the monitoring well locations was cut prior to the June 2021 sampling event and will be re-mowed prior to the next sampling event. A copy of the Field Inspection Form including a photolog is provided in Attachment 4.

CONCLUSIONS

The groundwater monitoring data and site inspection yielded no evidence of significant impact from leaching from the containment cell area into the water table. In addition, no toxic metals (arsenic, chromium, hexavalent chromium) were detected above their representative GWQS/GVs at any of the sample locations. Accordingly, the data indicate that the implemented remedy at the Site remains protective of public health and the environment.

More specifically, the 2021 groundwater monitoring data compared to prior events indicate that there have been no significant changes in groundwater flow or groundwater quality attributable to the landfill. Although groundwater at MW-5S indicates levels of ammonia slightly above the GWQS/GVs standard since 2015, no other monitored parameters have shown similar trending. It is noted that groundwater elevations at MW-5S are close to grade, and the elevated ammonia levels detected in MW-5S may be attributed to the decaying of organic matter from surrounding trees and leaf debris.

Please contact us if you have any questions or require additional information.

Sincerely,

Benchmark Civil/Environmental Engineering & Geology, PLLC

Thomas H. Forbes, P.E.

President

Att.

Cc: M. Joy

R. Biltekoff W. D'Angelo

M. Kuczka (NYSDEC)

TABLES

TABLE 1 MONITORING PROGRAM REQUIREMENTS

June 2021 Monitoring Event Peter Cooper Markhams Site Dayton, New York

							Param	eters				
Sample Location	Frequency	DTW	Field ¹			Total Metals	2			Water	Quality	
Location		DIW	Field	As	Cr	Hex. Cr.	Mn	Fe	Ammonia	Nitrate	Alkalinity	T. Sulfide
Groundwater												
MW-2SR (cross-gradient)		Х										
MW-4S		Х										
MW-5S		Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
MW-6S	15-month	Х										
MW-7S		Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
MW-8S		Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
MW-9S (upgradient)		Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
Surface Water												
Wetland F (surface water)	15-month		Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
QA/QC Samples ³												
Blind Duplicate				Х	Х	Х	Х	Х				
Matrix Spike	15-month			Х	Х	Х	Х	Х				
Matrix Spike Duplicate				Х	Х	Х	Х	Х				

Notes:

- 1. Field measurements include: pH, temperature, specific conductance, turbidity, Eh
- 2. If field measured turbidity is greater than 50 NTU, dissolved metals will also be collected.
- 3. QA/QC samples will be collected at a frequency of 1 per 20 for each matrix.
- 4. DTW = depth to water

TABLE 2

SUMMARY OF GROUNDWATER ELEVATIONS 6/23/21

Monitoring Event Peter Cooper Markhams Site Dayton, New York

Location	TOR Elevation (fmsl)	DTW (fbTOR)	GWE (fmsl)
MW-2SR	1313.33	8.10	1305.23
MW-4S	1313.11	9.85	1303.26
MW-5S	1302.70	3.48	1299.22
MW-6S	1315.47	14.41	1301.06
MW-7S	1312.82	12.90	1299.92
MW-8S	1304.10	4.90	1299.20
MW-9S	1314.13	6.70	1307.43

Notes:

- 1. DTW = depth to water
- 2. fbTOR = feet below top of riser
- 3. fmsl = feet above mean sea level
- 4. GWE = groundwater elevation
- 5. TOR = top of riser

TABLE 3

SUMMARY OF GROUNDWATER ANALYTICAL RESULTS 1,2

June 2021 Monitoring Event Peter Cooper Markhams Site Dayton, New York

											Мо	nitorin	g Locat	on and	Sample	e Colle	ction Da	ate											
Parameter														MW	-5S														GWQS 4
	04/2	5/02	06/1	9/09	12/3	0/09	05/2	8/10	06/2	2/11	06/2	6/12	06/2	4/13	06/2	4/14	10/2	7/15	10/2	6/16	10/2	20/17	10/1	9/18	02/0	5/20	06/2	23/21	
Field Measurements 3:																													
Sample No.	Initial	Final	Initial	Final	Initial	Final	Initial	Final	Initial	Final	Initial	Final	Initial	Final	Initial	Final	Initial	Final	Initial	Final	Initial	Final	Initial	Final	Initial	Final	Initial	Final	
pH (units)		6.81	6.75	6.78	6.58	6.68	6.80	6.86	6.90	7.00	6.88	6.88	6.89	6.92	7.12	7.13	6.92	6.92	6.69	6.70	6.91	6.88	6.89	7.12	6.94	6.92	6.86	6.98	6.5 - 8.5
Temperature (°C)		7.14	11.4	11.7	6.3	6.2	14.3	14.9	14.2	14.5	12.8	13.2	12.9	13.3	12.8	13.6	12.3	12.3	12.7	12.7	13.8	13.7	13.2	12.1	4.4	4.3	12.1	13.1	NA
Sp. Conductance (mS)		822	1004	993	1099	1090	985	966	1035	1029	1005	1008	955	941	986	974	1041	1048	1050	1062	947	949	1207	1234	879	908	992	978	NA
Turbidity (NTU)		2	4.6	2.4	2.9	2.9	37	5.47	4.29	3.11	4.04	3.42	9.82	5.32	8.77	6.79	5.53	5.53	4.39	2.77	1.96	1.53	10	6	31.5	25	8.91	1.4	NA
Eh (mV)		67.3	69	70	-29	-20	-38	21	-9	15	15	30	105	100	150	130	59	82	108	100	155	154	70	88	135	130	230	286	NA
Wet Chemistry (mg/L):																													
Alkalinity, Total	N	IA	538	3 D	470) D	471	D	47	78	4	73	4	74	48	39	5	18	48	36	51	11	51	17	45	3 B	4	69	NA
Ammonia	N	ID	N	ID	0.0)47	N	D	N	D	0	.2	0.	13	0	.4	1	.2	3.	.5	3.	.6	6.	.5	12	2.9	17.	2 B	2
Nitrate (as Nitrogen)	2	.8	0.2	271	0.3	347	0.443	CF6	N	D	0.	23	1	2	N	D	1	.4	14	l.1	1	.2	0.4	43	12	2.7	1	.9	10
Total Inorganic Compounds ((mg/L):																												
Chromium	N	ID	0.0	056	N	ID	N	D	0.0	064	0.0	005	0.0	051	0.0	047	0.0	042	0.0	054	N	ID	0.0	004	0.0	004	0.0	042	0.05
Manganese	١	IA.	1.	61	1.4	45	1.9	50	1.	80	1	.6	1	.7	2	.6	2	.3	2.	.2	1.	.9	2.	.2	4	.5	2.	5 B	0.3
Iron	١	ΙA	0.4	108	0.1	128	0.5	808	0.5	60	0	.2	0.0	53	0.	41	0.	49	0.	17	0.0	091	0.	16	1	.2	0.	59	0.3
Soluble Inorganic Compound	ds (mg/L).																												
Chromium	N	IA.	N	IA	N	IA	N	Α	N	Α	N	IA	N	A	N	A	N	IA	N	IA	N	IA	0.0	004	N	IA	١	IA	0.05
Manganese	١	IA	N	IA	N	IA	N	Α	N	Α	١	IA	N	A	N	A	N	IA	N	IA	N	IA	1.	.6	١	IA	١	IA	0.3

- Only those compounds detected above the method detection limit at a minimum of one sample event are reported in this table.
- 2. Shaded and bolded values represent an exceedance of the GWQS/GV.
- Field measurements were collected immediately before and after groundwater sample collection.
 NYSDEC Class "GA" Groundwater Quality Standards (GWQS) per 6 NYCRR Part 703.

- B = Compound was found in the blank and sample.
- J = Estimated value
- J = Estimated value

 NA = Not analyzed

 ND = Parameter was not detected above laboratory reporting limit.

 D = Dilution required due to high concentration of target analyte(s).

 P = Sample filtered in the laboratory

 CF6 = Results confirmed by reanalysis.

SUMMARY OF GROUNDWATER ANALYTICAL RESULTS 1,2

June 2021 Monitoring Event Peter Cooper Markhams Site Dayton, New York

											N	/lonitor	ing Loc	ation a	nd Sam	ple Col	ection [Date											
Parameter														М	W-7S														GWQS 4
	04/2	4/02	06/1	9/09	12/3	0/09	05/2	8/10	06/2	2/11	06/2	26/12	06/2	4/13	06/2	24/14	10/2	7/15	10/2	26/16	10/2	20/17	10/1	9/18	02/0	5/20	06/2	23/21	
Field Measurements 3:																													
Sample No.	Initial	Final	Initial	Final	Initial	Final	Initial	Final	Initial	Final	Initial	Final	Initial	Final	Initial	Final	Initial	Final	Initial	Final	Initial	Final	Initial	Final	Initial	Final	Initial	Final	
pH (units)		6.80	6.74	6.79	6.77	6.82	6.79	6.78	6.31	6.41	6.80	6.78		7.23	7.06	7.05	7.02	7.03	6.91	7.00	7.05	7.07	7.04	(5)	7.03	7.01	6.95	6.96	6.5 - 8.5
Temperature (°C)		8.77	9.6	10.1	5.4	7.7	15.0	15.1	13.7	13.4	9.8	9.7		12.8	13.10	12.9	11.00	11.1	10.60	10.5	11.70	12.7	11.00	(5)	7.4	7.6	14.8	13.9	NA
Sp. Conductance (mS)		1959	1753	1754	1804	1799	1687	1785	1771	1660	1786	1776		1632	1648	1621	1612	1619	1595	1603	1498	1492	1715	(5)	1349	1375	1327	1340	NA
Turbidity (NTU)		12.4	>1000	180	405	537	190	27	96.8	40.4	47.6	49.4		32.3	443	80	120	40.1	778	351	16.9	8.12	586	(5)	365	205	71	70	NA
Eh (mV)		170	-56	-62	-62	-64	-83	-114	-86	-92	-63	-66		-26	-25	-41	-60	-60	-36	-36	-84	-92	-61	(5)	-9	-10	-40	-38	NA
Wet Chemistry (mg/L):																													
Alkalinity, Total	N	IA	519	9 D	586	6 D	44	6 D	43	38	4	37	4	10	4	48	43	31	4	34	4	39	3	91	43	8 B	39	8 B	NA
Ammonia	N	ID	0.0	063	0.1	119	0.03	9 C	N	ID	N	1D	0.0	031	0.0	069	0.0	02	0.0	033	١	ID	0	.2	0	.2	0.01	18 JB	2
Nitrate (as Nitrogen)	N	ID	N	ID	N	ID	N	ID	N	ID	N	1D	١	ID.	N	ID	N	D	١	ID.	١	ID	N	ID	0.0	13 J	0.0	03 J	10
Total Inorganic Compounds (mg/L):																												
Chromium	N	ID	0.0	055	0.0	050	0.0	046	0.0	056	0.0	057	0.0	053	١	ID	N	D	0.0	051	١	ID	0.0	082	0.0	082	0.00	034 J	0.05
Manganese	N	IA	0.2	264	0.4	128	0.2	213	0.2	200	0.2	100	0.	19	0.	24	0.	19	0.	.23	0.	18	0.	39	0.	26	0.2	21 B	0.3
Iron	N	IA	1	04	83	3.3	17	7.8	25	5.0	17	7.8	14	4.1	1:	29	1	7	6	1.1	10).3	2	37	2	:5	3	32	0.3
Soluble Inorganic Compound	ls (mg/L):																												
Chromium	N	IA	0.0	05 P	0.0	05 P	0.0	043	0.0	056	N	IA	١	IA.	0.0	044	N	D	N	ID.	١	IA	N	ID	0.00	03 J	N	ND	0.05
Manganese	N	IA	0.2	06 P	0.18	86 P	0.1	193	0	.2	N	1A	١	IA	0.	19	0.	17	0	.2	١	IA	0.	17	0	.2	N	۱A	0.3
Iron	N	IA	N	ID	N	ID	10.8	CF6	10).2	N	IA	- 1	ΙA	9	.8	8.	3	1	10	N	IA	7	.5	0.	43	N	۱A	0.3

Notes:

- 1. Only those compounds detected above the method detection limit at a minimum of one sample event are reported in this table.
- Shaded and bolded values represent an exceedance of the GWQS/GV.
- Field measurements were collected immediately before and after groundwater sample collection.
 NYSDEC Class 'GA' Groundwater Quality Standards (GWQS) per 6 NYCRR Part 703.
 Surface water was more turbid at time of metals collection.

- J = Estimated value
- B = Compound was found in the blank and sample.
- NA = Not analyzed
- ND = Parameter was not detected above laboratory reporting limit.
- D = Dilution required due to high concentration of target analyte(s).
 P = Sample filtered in the laboratory
 CF6 = Results confirmed by reanalysis.

SUMMARY OF GROUNDWATER ANALYTICAL RESULTS 1,2

June 2021 Monitoring Event Peter Cooper Markhams Site Dayton, New York

											М	nitorin	g Locat	ion and	Samp	le Colle	ction D	ate											
Parameter														MV	<i>I</i> -8S														GWQS 4
	04/2	3/02	06/1	9/09	12/3	0/09	05/2	8/10	06/2	2/11	06/2	6/12	06/2	4/13	06/2	24/14	10/2	7/15	10/2	6/16	10/2	0/17	10/1	9/18	02/2	20/20	06/2	23/21	
Field Measurements 3:																													
Sample No.	Initial	Final	Initial	Final	Initial	Final	Initial	Final	Initial	Final	Initial	Final	Initial	Final	Initial	Final	Initial	Final	-										
pH (units)		6.90	6.90	6.92	6.65	6.70	7.04	6.25	6.67	6.72	6.89	6.97	7.01	7.01	7.27	7.17	6.96	6.95	6.82	6.73	7.00	6.97	6.88	7.32	7.27	7.14	7.04	7.12	6.5 - 8.5
Temperature (°C)		7.6	11.5	12.2	6.9	6.9	16.1	12.7	13.5	14.3	12.0	12.8	13.9	14.3	13.0	14.0	12.9	13.2	12.4	12.5	14.1	14.5	13.4	12.7	4.8	5.2	11.3	11.8	NA
Sp. Conductance (mS)		755	754	764	767	767	653	635	886	879	822	809	700	691	781	766	811.5	817.4	894.0	892.0	759.3	773.6	811.0	823.0	575.7	593.5	627.0	595.0	NA
Turbidity (NTU)		17	32	22	30	19	63	5.38	34.6	20	11.3	7.96	8.52	4.88	12.3	5.97	9.17	10.8	6.81	4.96	4.85	6.11	9	9	52.1	27.8	2.92	2.22	NA
Eh (mV)		4.6	80	81	7	15	21	41	48	59	4	72	92	84	162	183	81	102	108	106	133	124	68	77	104	96	241	218	NA
Wet Chemistry (mg/L):																													
Alkalinity, Total	N	Α	291	I D	28	5 D	300) D	3	55	3	72	2	66	2	86	38	85	4:	26	39	96	34	48	30	3 B	2	84	NA
Ammonia	0.	34	0.0)38	0.	.04	0.0)42	0.0	028	١	ID	١	ID	N	ID	N	ID	N	ID	N	ID	N	ID	١	ID	1	ND	2
Nitrate (as Nitrogen)	14	l.6	9.48	8 D	0.5	543	1.9	98	2	3	3	.8	6	.4		7		4	N	ID	0.	54	0.	82	6	.9	8	3.8	10
Total Inorganic Compounds	(mg/L):																												
Chromium	N	D	N	ID	N	1D	N	D	0.0	093	0.0	044	N	D	N	ID	N	ID	0.0	042	N	ID	N	ID	0.00)26 J	0.0	016 J	0.05
Hexavalent Chromium	N	D	N	ID	N	1D	N	D	N	ID.	1	ID	N	D	N	ID	N	ID	N	ID	N	ID	N	ID	0.00)59 J	1	ND.	0.05
Manganese	N	Α	19	9.6	1.	54	2.3	34	14	.30		6	1	.4	1	.7	1	.5	1	.9	0.	64	0.	61	0.	37	0.2	28 B	0.3
Iron	N	Α	1.9	93	N	1D	0.0	88	0.	61	0	15	N	ID	0.	15	0.	11	0.0	97	N	ID	0.	12	0.	91	0.0	47 J	0.3

- 1. Only those compounds detected above the method detection limit at a minimum of one sample event are reported in this table.
- Shaded and bolded values represent an exceedance of the GWQS/GV.
- Field measurements were collected immediately before and after groundwater sample collection.
 NYSDEC Class "GA" Groundwater Quality Standards (GWQS) per 6 NYCRR Part 703.

- B = Compound was found in the blank and sample.
- J = Estimated value
- NA = Not analyzed
- ND = Parameter was not detected above laboratory reporting limit.
- D = Dilution required due to high concentration of target analyte(s).
- P = Sample filtered in the laboratory
- CF6 = Results confirmed by reanalysis.

SUMMARY OF GROUNDWATER ANALYTICAL RESULTS 1,2

June 2021 Monitoring Event Peter Cooper Markhams Site Dayton, New York

											M	onitorin	g Loca	tion and	Samp	e Colle	ction D	ate											
Parameter														MW	-9S ⁵														GWQS 4
	04/2	3/02	06/1	9/09	12/3	0/09	05/2	8/10	06/2	22/11	06/2	26/12	06/2	24/13	06/2	4/14	10/2	7/15	10/2	26/16	10/2	0/17	10/1	9/18	02/0	5/20	06/2	23/21	
Field Measurements 3:																													
Sample No.	Initial	Final	Initial	Final	Initial	Final	Initial	Final	Initial	Final	Initial	Final	Initial	Final	Initial	Final	Initial	Final	-										
pH (units)		7.36	6.48	6.52	6.84	6.79	7.71	6.78	6.31	6.38	6.88	7.11	7.72	7.74	7.83	7.65	7.12	7.06	7.73	7.56	7.31	7.27	7.35	7.10	6.58	6.79	6.78	6.73	6.5 - 8.5
Temperature (°C)		6.02	12.2	12.6	6.5	5.4	12.2	12.4	15.7	16.1	13.0	13.4	14.6	15.3	12.8	14.0	12.6	12.7	12.9	12.9	13.0	13.2	12.7	12.4	4.6	4.6	11.8	11.9	NA
Sp. Conductance (mS)		540	337	337	369	369	402	299	266	280	297	274	320	301	381	417	364.7	342.9	402	400	423.4	416.8	368.0	386.0	322.8	341.2	339.0	335.0	NA
Turbidity (NTU)		11.2	6.2	4	2.43	2.02	18.6	2.98	7.26	9.45	9.51	5.84	12.5	10.4	24	14	1.66	2.38	0.7	0.23	0.96	0.89	13	10	23	20.9	2.99	2.99	NA
Eh (mV)		1.8	93	90	52	56	4	50	54	80	48	23	503	132	149	155	134	131	73	71	116	114	125	115	148	142	208	241	NA
Wet Chemistry (mg/L):																													
Alkalinity, Total	N	IA	98.4	4 D	98.	8 D	73.	5 C	3	9.1	8	2.4	9.	2.2	90).5	1	16	1.	29	1:	37	10	06	10	4 B	81	.4 B	NA
Ammonia	ND	< 10	N	D	0.0	029	N	ID	١	ND	1	ND	1	ND	N	ID	١	1D	١	ID	N	ID	N	ID	0.0	14 J	1	ND	2
Nitrate (as Nitrogen)	9	.3	7.19	9 D	11.	1 D	12.	1 D	1:	3.8		5.8	ε	6.1	13	3.7	8	.6	5	.5	5	.4	8	.1	12	.7 H	1	2.9	10
Total Inorganic Compounds	(mg/L):																												
Chromium	N	ID	0.0	051	١	1D	N	D	١	ND	1	ND	١	ND.	N	ID	١	1D	١	ID	N	ID	N	ID	0.00)18 J	1	1D	0.05
Manganese	N	IA	1.	54	0.0	005	0.0	004	0.0	800	0.0	046	0.	018	0.0)21	0.0	037	0.0	037	0.0	076	0.0	007	0.	.11	0.00	23 JB	0.3
Iron	N	IA	0.3	22	N	1D	0.0	76	0.0	077	0.	057	0	.13	0.	31	0.0	053	N	ID	0	.1	0.0	069	1	.9	0.0	31 J	0.3

- Notes:

 1. Only those compounds detected above the method detection limit at a minimum of one sample event are reported in this table.

 2. Shaded and boiled values represent an exceedance of the GWQS/GV.

 3. Field measurements were collected immediately before and after groundwater sample collection.

 4. NYSDEC Class "GA" Groundwater Quality Standards (GWQS) per 6 NYCRR Part 703.

 - Surface water was more turbid at time of metals collection.

- H = Sample was prepped or analyzed beyond the specified holding time.
- B = Compound was found in the blank and sample.
- J = Estimated value
- NA = Not analyzed
- ND = Parameter was not detected above laboratory reporting limit.
- D = Dilution required due to high concentration of target analyte(s).
- P = Sample filtered in the laboratory
- CF6 = Results confirmed by reanalysis.

SUMMARY OF GROUNDWATER ANALYTICAL RESULTS 1,2

June 2021 Monitoring Event Peter Cooper Markhams Site Dayton, New York

Parameter							,	Wetland-	F							GWQS 4
	06/1	9/09	12/30/09	05/28/10	06/22/11	06/26/12	06/2	24/13	06/24/14	10/27/15	10/26/16	10/20/17	10/19/18	02/05/20	06/23/21	
Field Measurements 3:																
Sample No.	Initial	Final	Initial	Initial	Initial	Initial	Initial	Final	Initial	Initial	Initial	Initial	Initial	Initial	Initial	-
pH (units)	7.24	7.24	6.04	7.45	7.27	(6)	7.70	7.70	7.13	7.42	(6)	7.18	7.34	6.94	(6)	6.5 - 8.5
Temperature (°C)	16.7	16.9	2.00	22.00	20.90	(6)	27.8	27.7	20.00	9.40	(6)	11.4	6	0.8	(6)	NA
Sp. Conductance (mS)	416	426	571.8	469.0	385.0	(6)	752.8	748.0	484.0	299.4	(6)	268.8	638	611	(6)	NA
Turbidity (NTU)	1.2	250	588	6.79	7.83	(6)		-	21.3	2.97 ⁵	(6)	250	8	203	(6)	NA
Eh (mV)	3	-42	-39	530	-1	(6)	97	89	86	11.8	(6)	112	-49	9	(6)	NA
Wet Chemistry (mg/L):																
Alkalinity, Total	22	8 D	274 D	243 D	204	(6)	3	25	260	110	(6)	120	253	260 B	(6)	NA
Ammonia	0.0	065	0.167	0.088	0.2	(6)	0.	.20	0.090	.020	(6)	.070	0.034	0.37	(6)	2
Nitrate (as Nitrogen)	7.9) D	ND	ND	3.8	(6)	N	1D	ND	ND	(6)	.27	ND	1.7	(6)	10
Sulfide, Total	0.	173	ND	ND	ND	(6)	N	1D	ND	ND	(6)	ND	ND	1.2	(6)	0.05
Total Inorganic Compounds	(mg/L):															
Chromium	N	ID	0.006	ND	ND	(6)	0.0	045	0.0084	ND	(6)	.0041	ND	0.0049	(6)	0.05
Manganese	0.0	676	0.305	0.392	0.51	(6)	2	2.9	0.76	2.5	(6)	1.0	0.86	0.84	(6)	0.3
Iron	0.0	647	6.14	0.715	0.94	(6)	0.	.22	8.8	2.9	(6)	1.0	3.5	2.6	(6)	0.3
Soluble Inorganic Compound	ds (mg/L):															
Manganese	0.01	16 P	0.0272 P	NA	ND	(6)	N	IA.	0.0043	0.60	(6)	0.21	0.018	0.45	(6)	0.3
Iron	0.10	04 P	0.089 P	NA	0.07	(6)	N	۱A	0.057	1.0	(6)	.0084	1.9	0.18	(6)	0.3

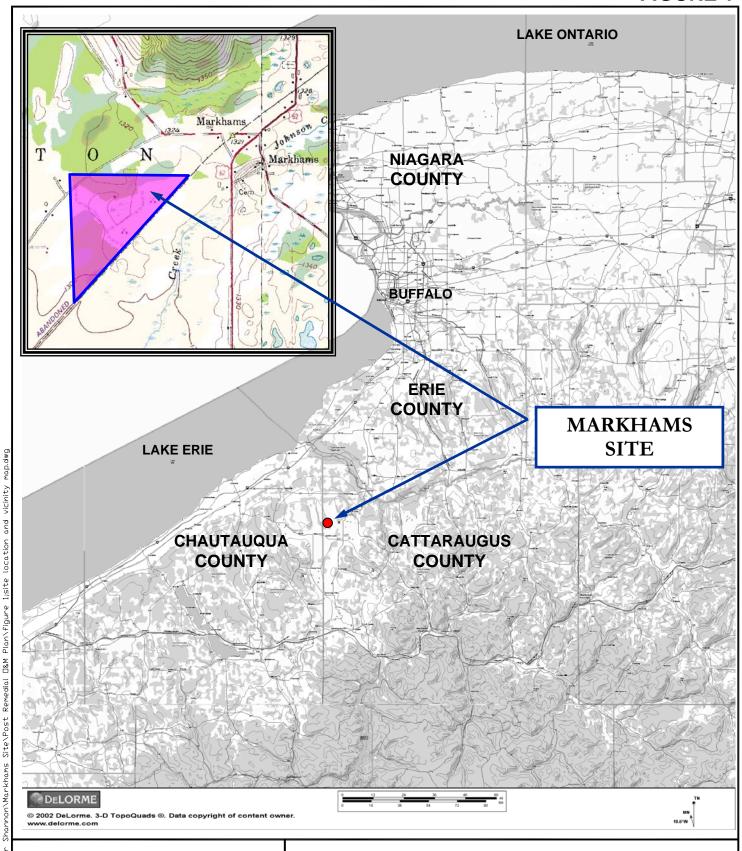
- Only those compounds detected above the method detection limit at a minimum of one sample event are reported in this table.
 Shaded and bolded values represent an exceedance of the GWQS/GV.
- 3. Field measurements were collected immediately before and after groundwater sample collection.

 4. NYSDEC Class "GA" Groundwater Quality Standards (GWQS) per 6 NYCRR Part 703.

 5. Surface water was more turbid at time of metals collection.

- Sample location was dry

 Definitions:


J = Estimated value

- J = Estimated value
 B = Compound was found in the blank and sample.
 NA = Not analyzed
 ND = Parameter was not detected above laboratory reporting limit.
 D = Dilution required due to high concentration of target analyte(s).
 P = Sample filtered in the laboratory
- CF6 = Results confirmed by reanalysis.

FIGURES

FIGURE 1

726 EXCHANGE STREET SUITE 624 (716) 856-0599

PROJECT NO.: 0021-003-400

DATE: JANUARY 2008

DRAFTED BY: AJZ

SITE LOCATION AND VICINITY MAP

POST-REMEDIAL OPERATION & MAINTENANCE PLAN

PETER COOPER MARKHAMS SITE DAYTON, NEW YORK

PREPARED FOR

RESPONDENTS FOR PETER COOPER MARKHAMS SITE

O\Benchmark\Collier Shannon\Markhams Site\Post-Remedial Monitoring\2021\Figure 2: Site Plan & Isopotential Map 2021.dwg. 7/14/2021 3:56:1-

ATTACHMENT 1

SAMPLE COLLECTION LOGS

GROUNDWATER FIELD FORM

Project Name: Peter Cooper Markhams Site Date: Project No.: 0199-001-100 Field Team: Location: Markhams

Well No). M	W-5S	Diameter (in	iches): 2"		Sample Date	e / Time:	5/23/21	
Product Dep	oth (fbTOR):	e	Water Colur	nn (ft):		DTW when	sampled:		
DTW (static) (fbTOR):		One Well Vo	olume (gal):		Purpose:	Developmer	nt 🗌 Sample	Purge &
Total Depth	(fbTOR):		Total Volum	e Purged (gal):		Purge Metho	od: Low	flow (mini mons	oon)
Time	Water Level (fbTOR)	Acc. Volume (gallons)	pH (units)	Temp. (deg. C)	SC (uS)	Turbidity (NTU)	DO (mg/L)	ORP (mV)	Appearance & Odor
1055	o Initial		8.86	13.2	995	20,1		1268	Cleur
	1		6.86	11.8	1041	13.6		1257	cleur
	2		7.66	12.0	1000	7.86		4244	Cleur
1059	33.65	3	6-87	12.0	996	7.42		+228	Clear
1	1		<u> </u>	<u> </u>		No.			
	5								
	6								
	7								
	8								
	9								
	10								
Sample I	nformation:								
1101	S1 365	2	6.86	12.1	992	8.91	and her	+230	Clear
1110	52 3.65	9.2.5	6.98	13.1	978	1.4		+286	Clear

Well No). M	W-7S	Diameter (in	ches): 2"		Sample Date	/ Time:	6/23/2	6
Product De	oth (fbTOR):		Water Colur	nn (ft):		DTW when s	ampled:		6.11
DTW (statio) (fbTOR):		One Well Vo	olume (gal):		Purpose:	☐ Dev	velopmen Sar	nple Purge &
Total Depth	(fbTOR):	2.90	Total Volum	e Purged (gal):		Purge Metho	d: Low	flow (mini mons	soon)
Time	Water Level (fbTOR)	Acc Volume (gallons)	pH (units)	Temp. (deg. C)	SC (uS)	Turbidity (NTU)	DO (mg/L)	ORP (mV)	Appearance & Odor
1152	o Initial		7.25	11.6	1257	562		-26	TURBIO
	1		7.00	11 4	1336	495		-36	
	2	1	6.98	10.7	1328	299		-34	
	3		6.99	10.3	1320	234		-25	
	4		0-1	1	1				.//
	5								V
	6								
	7								
	8								
	9								
	10								
Sample I	nformation:					L			
1201	s1 13.20		6.95	148	1327	71		-40	TURBIO
1202	52 13.20		6.96	13.9	1340	70		-39	NRBID

MW-55 COVERED BLUD DIP FROM Collected DISSOLVAN MENTS & HEXCE CROM MW-75 Ove to high turk of M. Note: All water level measurements are in feet, distance from top of riser.

Volume Calculation Diam. Vol. (g/ft) 1* 0.041 2* 0.163 4" 0.653 1.469

Stabilization Criteria Parameter Criteria рΗ ± 0,1 unit SC ± 3% Turbidity ± 10% DO ± 0.3 mg/L ORP ± 10 mV

PREPARED BY:

GROUNDWATER FIELD FORM

Project Name:	Peter Co	oper Markhams Site	Date: \mathcal{D}_{I}	123/21
Location:	Markhams	Project No.: 0199-001-100	Field Team:	RIO/MH

Well No	. M	W-9S	Diameter (in	iches): 2"		Sample Date	e / Time:	15/23/21	
Product Deg	oth (fbTOR):		Water Colur	nn (ft):		DTW when s	sampled:		
DTW (static) (fbTOR):		One Well Vo	olume (gal):		Purpose:	Development	t Sample	☑ Purge & Sample
Total Depth	(fbTOR):	5.70	Total Volum	e Purged (gal):		Purge Metho	od: Low	flow (mini monsc	on)
Time	Water Level (fbTOR)	Acc. Volume (gallons)	pH (units)	Temp. (deg. C)	SC (uS)	Turbidity (NTU)	DO (mg/L)	ORP (mV)	Appearance & Odor
1003	o Initial		8.45	11.8	386	29		+132	Clear
1000	1		2.54	11.4	351	9.7		+130	1
1000	2		7.16	11.5	343	5.6		+140	
100X	3		201	11 ur	337	4.3		1196	
1010	4		6.97	115	231	7.99		1/93	
distribu	5			(6×6)					\sim
	6								
	7								
	8								
	9								
	10								
Sample I	nformation:								
1013	S1 6.90	3	6.28	11.8	339	2.99		+208	CIEWS
	S2 6.90	3.5	623	11-9	335	2-99		1241	

Well No	o. M	W-8S	Diameter (in	ches): 2"		Sample Date	e / Time:	6/23/21				
Product De	oth (fbTOR):	#2	Water Colur	nn (ft):		DTW when s	sampled:	01				
DTW (statio) (fbTOR):	430	One Well Vo	olume (gal):		Purpose:] Developmen	t 🗌 Sample	Purge & Sample			
Total Depth			Total Volum	e Purged (gal):		Purge Metho	od: Low	flow (mini mons	oon)			
Time	Water Level (fbTOR)	Acc. Volume (gallons)	pH (units)	Temp (deg. C)	SC (uS)	Turbidity (NTU)	DO (mg/L)	ORP (mV)	Appearance & Odor			
1128	o Initial		7.56	12.1	563	28		1285	Cleur			
1139	1	J	731	11-3	543	22		+258	- 47			
1141	2	1.5	7.11	11.2	58X	8.14		t245				
11.47	3	7	7.07	11.3	283	3.91						
	4	1	<u> </u>		403			1010	W.			
	5											
	6	=										
-	7											
	В											
	9											
	10											
Sample I	nformation:											
1143	S1 4.35		7.04	11.3	627	2-92		1241	Cleur			
1146	S2 4 WO		7117	11.8	595	2-27		4218	clear			

REMARKS: MS/MSO COLLECTED at Mw-95

Note: All water level measurements are in feet, distance from top of riser.

Volume Calculation					
Diam.	Vol. (g/ft)				
1*	0.041				
2"	0.163				
4"	0.653				
6*	1.469				

Stabilization Criteria					
Parameter	Criteria				
pН	± 0.1 unit				
SC	± 3%				
Turbidity	± 10%				
DO	± 0.3 mg/L				
ORP	± 10 mV				

PREPARED BY:

WATER SAMPLE COLLECTION LOG

PROJECT INFO	RMATION			SAMPLE DES	CRIPTION
Project Name: Peter	Cooper Mar	khams Site		I.D.:	WETLAND F
Project No.: B0199-0	01-100			Matrix: SURFACI	E WATER STORM
Client:				SEEP	OTHER
Location: Markhams,	NY				
SAMPLE INFOR	MATION				
Date Collected:				Sample Type: [POINT GRAB
Time Collected:		0000		[COMPOSITE
Date Shipped to Lab	/	VA			
Collected By:		113			
Sample Collection M	ethod: 🔲	DIRECT DIP		SS / POLY. DIPPER	PERISTALTIC PUMP
		POLY. DISP. BA	ILER	ISCO SAMPLER	OTHER
SAMPLING INFO	RMATIO	N		LOCATION SKET	СН
Weather:				(not to scale, dimension	ons are approximate)
Air Temperature:				5-5905-590 N	751-751-75-K
Parameter	First	Last	Units		
	riist	Lasi	units		
pH			°C		
Temp. Cond.			mS		MMAS
			NTU		Jan San San San San San San San San San S
Turbidity Eh / ORP		1	mV		: A A A: 11
D.O.		$/\Lambda$			MM-75
Odor		\Box	ppm olfactory		
		16.	visual		
Appearance			Visual	METLAND. T	
			G		in ini ni
EXACT LOCATION	(if applicab	le)			
Northing (ft)	Easting		ce Elevation (fmsl)	
[[1		1	
					001
SAMPLE DESCRIPT			ctory):	AMPLE LOCA	tion 1614
NO STAND	ws	WATER			The state of the s
	-	. 1		NO SAMPI	e collected
SAMPLE ANALYSIS	i (depth, lat	oratory and	alysis require	ed):	
				WIN	Inis Event
ADDITIONAL DECE	DI/C				
ADDITIONAL REMA	HKS:				
PREPARED BY:	121	0		DATE:	1 2261
FILLAMED DI:	1-			DATE.	01-310

TABLE 2

SUMMARY OF GROUNDWATER ELEVATIONS

6/23/21

Monitoring Event Peter Cooper Markhams Site Dayton, New York

Location	TOR Elevation (fmsl)	DTW (fbTOR)	GWE (fmsl)
MW-2SR	1313.33	8.10	1313.33
MW-4S	1313.11	9.85	1313.11
. MW-5S	1302.70	3.4/	1302.70
MW-6S	1315.47	14.4]	1315.47
MW-7S	1312.82	1290	1312.82
MW-8S	1304.10	4.90	1304.10
MW-9S	1314.13	60)0	1314.13

Notes

- 1. DTW = depth to water
- 2. fbTOR = feet below top of riser
- 3. fmsl = feet above mean sea level
- 4. GWE = groundwater elevation
- 5. TOR = top of riser

ATTACHMENT 2

TESTAMERICA LABORATORIES, INC. SAMPLE DATA SUMMARY PACKAGE
JUNE 2021

Environment Testing America

ANALYTICAL REPORT

Eurofins TestAmerica, Buffalo 10 Hazelwood Drive Amherst, NY 14228-2298 Tel: (716)691-2600

Laboratory Job ID: 480-186435-1

Client Project/Site: Benchmark-Peter Cooper sites

Sampling Event: Annual sampling

For:

Benchmark Env. Eng. & Science, PLLC 2558 Hamburg Turnpike Suite 300 Lackawanna, New York 14218

Attn: Mr. Tom Forbes

7

Authorized for release by: 6/30/2021 2:21:20 PM Rebecca Jones, Project Management Assistant I Rebecca.Jones@Eurofinset.com

Designee for

Brian Fischer, Manager of Project Management (716)504-9835

Brian.Fischer@Eurofinset.com

Review your project results through
Total Access

Have a Question?

Visit us at:

www.eurofinsus.com/Env

The test results in this report meet all 2003 NELAC, 2009 TNI, and 2016 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Detection Summary	5
Client Sample Results	6
QC Sample Results	11
QC Association Summary	16
Lab Chronicle	18
Certification Summary	20
Method Summary	21
Sample Summary	22
Chain of Custody	23
Receipt Chacklists	24

10

12

13

14

Definitions/Glossary

Client: Benchmark Env. Eng. & Science, PLLC

Project/Site: Benchmark-Peter Cooper sites

Job ID: 480-186435-1

Qualifiers

M	eta	Is
•••	O CO	•

•	auaiiii c i	Qualifier Description
В	3	Compound was found in the blank and sample.
J		Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

General Chemistry

QI	Jailtier	Qualifier Description
В		Compound was found in the blank and sample.
Н		Sample was prepped or analyzed beyond the specified holding time
J		Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

Glossary	
Abbreviation	These commonly used abbreviations may or may not be present in this report.
n	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CFU	Colony Forming Unit
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)
EDL	Estimated Detection Limit (Dioxin)
LOD	Limit of Detection (DoD/DOE)
LOQ	Limit of Quantitation (DoD/DOE)
MCL	EPA recommended "Maximum Contaminant Level"
MDA	Minimum Detectable Activity (Radiochemistry)

MPN MQL NC

MDC

MDL

ML

C Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent
POS Positive / Present

PQL Practical Quantitation Limit

PRES Presumptive
QC Quality Control

RER Relative Error Ratio (Radiochemistry)

Method Detection Limit

Minimum Level (Dioxin)

Most Probable Number

Method Quantitation Limit

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

Minimum Detectable Concentration (Radiochemistry)

TEF Toxicity Equivalent Factor (Dioxin)
TEQ Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

6/30/2021

Case Narrative

Client: Benchmark Env. Eng. & Science, PLLC Project/Site: Benchmark-Peter Cooper sites

Job ID: 480-186435-1

Job ID: 480-186435-1

Laboratory: Eurofins TestAmerica, Buffalo

Narrative

Job Narrative 480-186435-1

Comments

No additional comments.

Receipt

The samples were received on 6/23/2021 5:03 PM. Unless otherwise noted below, the samples arrived in good condition, and where required, properly preserved and on ice. The temperature of the cooler at receipt was 6.8° C.

Receipt Exceptions

Total and Dissolved 7196 volume received for this sample point: MW-7S (480-186435-2)

Metals

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

General Chemistry

Method 353.2: The results reported for the following sample do not concur with results previously reported for this site: MW-8S (480-186435-3). Reanalysis was performed, and the result(s) confirmed.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

13

4

5

6

7

10

11

. .

12

RL

0.0040

0.050

0.0030

60.0

0.20

0.050

MDL Unit

0.0010 mg/L

0.019 mg/L

24.0 mg/L

0.090 mg/L

0.020 mg/L

0.00040 mg/L

Result Qualifier

0.0042

0.59

469

1.9

2.5 B

17.2 B

Client: Benchmark Env. Eng. & Science, PLLC Project/Site: Benchmark-Peter Cooper sites

Client Sample ID: MW-5S

Client Sample ID: MW-7S

Analyte

Iron

Chromium

Manganese

Nitrate as N

Alkalinity, Total

Ammonia (as N)

Job ID: 480-186435-1

Prep Type

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Lab Sample ID: 480-186435-2

Lab Sample ID: 480-186435-3

Lab Sample ID: 480-186435-4

Lab Sample ID: 480-186435-5

Lab Sample ID: 480-186435-1

Dil Fac D Method

1

1

6

10

6010C

6010C

6010C

310.2

350.1

353.2

Analyte	Result (Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Chromium	0.0034	J	0.0040	0.0010	mg/L		_	6010C	Total/NA
Iron	32.0		0.050	0.019	mg/L	1		6010C	Total/NA
Manganese	0.21	В	0.0030	0.00040	mg/L	1		6010C	Total/NA
Alkalinity, Total	398		50.0	20.0	mg/L	5		310.2	Total/NA
Ammonia (as N)	0.018	J B	0.020	0.0090	mg/L	1		350.1	Total/NA
Nitrate as N	0.030	J	0.050	0.020	mg/L	1		353.2	Total/NA

Client Sample ID: MW-8S

Analyte	Result Qua	alifier RL	MDL	Unit	Dil Fac D	Method	Prep Type
Chromium	0.0016 J	0.0040	0.0010	mg/L		6010C	Total/NA
Iron	0.047 J	0.050	0.019	mg/L	1	6010C	Total/NA
Manganese	0.28 B	0.0030	0.00040	mg/L	1	6010C	Total/NA
Alkalinity, Total	284	50.0	20.0	mg/L	5	310.2	Total/NA
Nitrate as N	8.8	0.050	0.020	mg/L	1	353.2	Total/NA

Client Sample ID: MW-9S

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Iron	0.031	J	0.050	0.019	mg/L	1	_	6010C	Total/NA
Manganese	0.0023	JB	0.0030	0.00040	mg/L	1		6010C	Total/NA
Alkalinity, Total	81.4		20.0	8.0	mg/L	2		310.2	Total/NA
Nitrate as N	12.9		0.050	0.020	mg/L	1		353.2	Total/NA

Client Sample ID: Blind Duplicate

Analyte	Result Qualit	fier RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Chromium	0.0043	0.0040	0.0010	mg/L	1	_	6010C	Total/NA
Iron	0.48	0.050	0.019	mg/L	1		6010C	Total/NA
Manganese	2.4 B	0.0030	0.00040	mg/L	1		6010C	Total/NA

This Detection Summary does not include radiochemical test results.

Client: Benchmark Env. Eng. & Science, PLLC Job ID: 480-186435-1

Project/Site: Benchmark-Peter Cooper sites

Client Sample ID: MW-5S Lab Sample ID: 480-186435-1

Matrix: Water

Date Collected: 06/23/21 11:01 Date Received: 06/23/21 17:03

Method: 6010C - Metals (IC	P)							
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	ND ND	0.015	0.0056	mg/L		06/25/21 06:51	06/25/21 21:06	1
Chromium	0.0042	0.0040	0.0010	mg/L		06/25/21 06:51	06/25/21 21:06	1
Iron	0.59	0.050	0.019	mg/L		06/25/21 06:51	06/25/21 21:06	1
Manganese	2.5 B	0.0030	0.00040	mg/L		06/25/21 06:51	06/25/21 21:06	1
General Chemistry								

General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Alkalinity, Total	469		60.0	24.0	mg/L			06/24/21 17:04	6
Ammonia (as N)	17.2	В	0.20	0.090	mg/L			06/28/21 10:38	10
Nitrate as N	1.9		0.050	0.020	mg/L			06/24/21 18:42	1
Chromium (hexavalent)	ND		0.010	0.0050	mg/L			06/24/21 08:55	1
Sulfide	ND		1.0	0.67	mg/L			06/29/21 16:45	1

Client: Benchmark Env. Eng. & Science, PLLC Project/Site: Benchmark-Peter Cooper sites

Job ID: 480-186435-1

ap	Sample	:טו	480-186435-2
			Matrix: Water

Date Received: 06/23/21 17:	03
Method: 6010C - Metals (IC	P)

Client Sample ID: MW-7S Date Collected: 06/23/21 11:57

Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	ND		0.015	0.0056	mg/L		06/25/21 06:51	06/25/21 21:10	1
Chromium	0.0034	J	0.0040	0.0010	mg/L		06/25/21 06:51	06/25/21 21:10	1
Iron	32.0		0.050	0.019	mg/L		06/25/21 06:51	06/25/21 21:10	1
Manganese	0.21	В	0.0030	0.00040	mg/L		06/25/21 06:51	06/25/21 21:10	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac

General Chemistry Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Alkalinity, Total	398		50.0	20.0	mg/L		-	06/24/21 17:04	5
Ammonia (as N)	0.018	JB	0.020	0.0090	mg/L			06/28/21 10:52	1
Nitrate as N	0.030	J	0.050	0.020	mg/L			06/24/21 17:26	1
Chromium (hexavalent)	ND		0.010	0.0050	mg/L			06/24/21 08:55	1
Sulfide	ND		1.0	0.67	mg/L			06/29/21 16:45	1

General Chemistry - Dissolved									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chromium, hexavalent (dissolved)	ND		0.010	0.0050	mg/L			06/24/21 08:55	1

6/30/2021

Client: Benchmark Env. Eng. & Science, PLLC Job ID: 480-186435-1 Project/Site: Benchmark-Peter Cooper sites

Client Sample ID: MW-8S

Lab Sample ID: 480-186435-3

Matrix: Water

Date Collected: 06/23/21 11:43 Date Received: 06/23/21 17:03

Method: 6010C - Metals (ICP)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	ND		0.015	0.0056	mg/L		06/25/21 06:51	06/25/21 21:13	1
Chromium	0.0016	J	0.0040	0.0010	mg/L		06/25/21 06:51	06/25/21 21:13	1
Iron	0.047	J	0.050	0.019	mg/L		06/25/21 06:51	06/25/21 21:13	1
Manganese	0.28	В	0.0030	0.00040	mg/L		06/25/21 06:51	06/25/21 21:13	1
_									

General Chemistry								
Analyte	Result Q	ualifier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Alkalinity, Total	284	50.0	20.0	mg/L			06/24/21 17:07	5
Ammonia (as N)	ND	0.020	0.0090	mg/L			06/28/21 10:40	1
Nitrate as N	8.8	0.050	0.020	mg/L			06/24/21 18:45	1
Chromium (hexavalent)	ND	0.010	0.0050	mg/L			06/24/21 08:55	1
Sulfide	ND	1.0	0.67	mg/L			06/29/21 16:45	1

Client: Benchmark Env. Eng. & Science, PLLC Job ID: 480-186435-1 Project/Site: Benchmark-Peter Cooper sites

Lab Sample ID: 480-186435-4 **Client Sample ID: MW-9S**

Method: 6010C - Metals (ICP)

Matrix: Water

Date Collected: 06/23/21 10:13 Date Received: 06/23/21 17:03

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	ND		0.015	0.0056	mg/L		06/25/21 06:51	06/25/21 21:17	1
Chromium	ND		0.0040	0.0010	mg/L		06/25/21 06:51	06/25/21 21:17	1
Iron	0.031	J	0.050	0.019	mg/L		06/25/21 06:51	06/25/21 21:17	1
Manganese	0.0023	JB	0.0030	0.00040	mg/L		06/25/21 06:51	06/25/21 21:17	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Alkalinity, Total	81.4		20.0	8.0	mg/L			06/24/21 17:08	2
Ammonia (as N)	ND		0.020	0.0090	mg/L			06/28/21 10:41	1
Nitrate as N	12.9		0.050	0.020	mg/L			06/24/21 18:49	1
Chromium (hexavalent)	ND		0.010	0.0050	mg/L			06/24/21 08:55	1
Sulfide	ND		1.0	0.67	mg/L			06/29/21 16:45	1

Client: Benchmark Env. Eng. & Science, PLLC
Project/Site: Benchmark-Peter Cooper sites

Job ID: 480-186435-1

Client Sample ID: Blind Duplicate

ate Lab Sample ID: 480-186435-5

Date Collected: 06/23/21 11:50 Matrix: Water Date Received: 06/23/21 17:03

Method: 6010C - Metals (ICP)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	ND		0.015	0.0056	mg/L		06/25/21 06:51	06/25/21 21:35	1
Chromium	0.0043		0.0040	0.0010	mg/L		06/25/21 06:51	06/25/21 21:35	1
Iron	0.48		0.050	0.019	mg/L		06/25/21 06:51	06/25/21 21:35	1
Manganese	2.4	В	0.0030	0.00040	mg/L		06/25/21 06:51	06/25/21 21:35	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chromium (hexavalent)	ND		0.010	0.0050	mg/L			06/24/21 10:15	1

10

11

13

14

Job ID: 480-186435-1

Client: Benchmark Env. Eng. & Science, PLLC Project/Site: Benchmark-Peter Cooper sites

Method: 6010C - Metals (ICP)

Lab Sample ID: MB 480-586931/1-A

Matrix: Water

Analysis Batch: 587203

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 586931 MDL Unit Analyzed Dil Fac **Prepared** 0.0056 mg/L 06/25/21 06:51 06/25/21 20:44

Arsenic ND 0.015 Chromium ND 0.0040 0.0010 mg/L 06/25/21 06:51 06/25/21 20:44 ND 06/25/21 06:51 06/25/21 20:44 Iron 0.050 0.019 mg/L 0.000610 J 0.0030 0.00040 mg/L 06/25/21 06:51 06/25/21 20:44 Manganese

RL

Lab Sample ID: LCS 480-586931/2-A **Client Sample ID: Lab Control Sample**

MB MB Result Qualifier

Matrix: Water

Analyte

Analysis Batch: 587203

Prep Type: Total/NA

Prep Batch: 586931

Spike LCS LCS %Rec Analyte Added Result Qualifier Unit %Rec Limits Arsenic 0.200 0.202 101 80 - 120 mg/L 0.200 Chromium 0.205 mg/L 103 80 - 120 Iron 10.0 9.65 mg/L 96 80 - 120 0.200 0.207 mg/L 104 80 - 120Manganese

Lab Sample ID: 480-186435-4 MS Client Sample ID: MW-9S

Matrix: Water

Analysis Batch: 587203

Prep Type: Total/NA **Prep Batch: 586931**

Sample Sample Spike MS MS %Rec. Analyte Result Qualifier Added Result Qualifier %Rec Limits Unit D 0.208 Arsenic ND 0.200 mg/L 104 75 - 125 mg/L Chromium ND 0.200 0.204 102 75 - 125 Iron 0.031 J 10.0 10.02 mg/L 100 75 - 125 0.0023 JB 0.200 0.208 103 75 - 125 Manganese mg/L

Lab Sample ID: 480-186435-4 MSD Client Sample ID: MW-9S

Matrix: Water

Analysis Batch: 587203

Prep Type: Total/NA Prep Batch: 586931

								Freb Da	iten. se	1 6500
Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
ND		0.200	0.206		mg/L		103	75 - 125	1	20
ND		0.200	0.202		mg/L		101	75 - 125	1	20
0.031	J	10.0	9.71		mg/L		97	75 - 125	3	20
0.0023	JB	0.200	0.207		mg/L		102	75 - 125	1	20
_	Result ND ND 0.031		Result Qualifier Added ND 0.200 ND 0.200 0.031 J 10.0	Result Qualifier Added Result ND 0.200 0.206 ND 0.200 0.202 0.031 J 10.0 9.71	Result Qualifier Added Result Qualifier ND 0.200 0.206 ND 0.200 0.202 0.031 J 10.0 9.71	Result Qualifier Added Result Qualifier Unit ND 0.200 0.206 mg/L ND 0.200 0.202 mg/L 0.031 J 10.0 9.71 mg/L	Result Qualifier Added Result Qualifier Unit D ND 0.200 0.206 mg/L ND 0.200 0.202 mg/L 0.031 J 10.0 9.71 mg/L	Result Qualifier Added Result Qualifier Unit D %Rec ND 0.200 0.206 mg/L 103 ND 0.200 0.202 mg/L 101 0.031 J 10.0 9.71 mg/L 97	Sample Result Result ND Qualifier ND MSD WSD WRec. WRec. WRec. Limits ND 0.200 0.206 mg/L 103 75 - 125 ND 0.200 0.202 mg/L 101 75 - 125 0.031 J 10.0 9.71 mg/L 97 75 - 125	Result Qualifier Added Result Qualifier Unit D %Rec Limits RPD ND 0.200 0.206 mg/L 103 75 - 125 1 ND 0.200 0.202 mg/L 101 75 - 125 1 0.031 J 10.0 9.71 mg/L 97 75 - 125 3

Method: 310.2 - Alkalinity

Lab Sample ID: MB 480-586905/103 Client Sample ID: Method Blank

Matrix: Water

Prep Type: Total/NA

Analysis Batch: 586905

MB MB

Result Qualifier RL **MDL** Unit D Prepared Dil Fac Analyte Analyzed 10.0 06/24/21 13:27 Alkalinity, Total 4.98 J 4.0 mg/L

Lab Sample ID: MB 480-586905/140

Matrix: Water

Analysis Batch: 586905

Client Sample ID: Method Blank

Prep Type: Total/NA

MB MB Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac Alkalinity, Total $\overline{\mathsf{ND}}$ 10.0 4.0 mg/L 06/24/21 13:56

Eurofins TestAmerica, Buffalo

Page 11 of 24

6/30/2021

Client: Benchmark Env. Eng. & Science, PLLC Project/Site: Benchmark-Peter Cooper sites

Job ID: 480-186435-1

Prep Type: Total/NA

Prep Type: Total/NA

Prep Type: Total/NA

Prep Type: Total/NA

Prep Type: Total/NA

Client Sample ID: Method Blank

Client Sample ID: Method Blank

Client Sample ID: Method Blank

Client Sample ID: Lab Control Sample

Client Sample ID: Lab Control Sample

Client Sample ID: Lab Control Sample

Analyzed

06/24/21 16:53

Method: 310.2 - Alkalinity

Lab Sample ID: MB 480-586905/277

Matrix: Water

Analysis Batch: 586905

MB MB

ND

Result Qualifier Analyte

Alkalinity, Total

Lab Sample ID: MB 480-586905/299

Matrix: Water

Analysis Batch: 586905

MB MB

Result Qualifier RL MDL Unit D Prepared Dil Fac Analyte Analyzed 10.0 Alkalinity, Total ND 4.0 mg/L 06/24/21 17:01

RL

10.0

MDL Unit

4.0 mg/L

D

Prepared

Lab Sample ID: MB 480-586905/311

Matrix: Water

Analysis Batch: 586905

MB MB

Analyte

RL **MDL** Unit Result Qualifier Prepared Analyzed Dil Fac Alkalinity, Total $\overline{\mathsf{ND}}$ 10.0 4.0 mg/L 06/24/21 17:05

Lab Sample ID: LCS 480-586905/102

Matrix: Water

Analysis Batch: 586905

Spike LCS LCS %Rec. Analyte Added Result Qualifier Unit %Rec Limits 53.35 B Alkalinity, Total 50.0 mg/L 107 90 - 110

Lab Sample ID: LCS 480-586905/139

Matrix: Water

Analysis Batch: 586905

LCS LCS Spike %Rec. Added Analyte Result Qualifier Unit %Rec Limits 50.0 49.72 99 Alkalinity, Total mg/L 90 - 110

Lab Sample ID: LCS 480-586905/276

Matrix: Water

Analysis Batch: 586905

Spike LCS LCS %Rec. Added Analyte Result Qualifier %Rec Limits Unit D 50.0 Alkalinity, Total 49.88 mg/L 100

Lab Sample ID: LCS 480-586905/298

Matrix: Water

Analysis Batch: 586905

Spike LCS LCS %Rec. Added Result Qualifier Limits Analyte Unit %Rec Alkalinity, Total 50.0 49.45 mg/L 99 90 - 110

Lab Sample ID: LCS 480-586905/310

Matrix: Water

Analysis Batch: 586905 Spike LCS LCS %Rec. Added Analyte Result Qualifier Unit %Rec Limits Alkalinity, Total 50.0 90 - 110 49.34 mg/L 99

Eurofins TestAmerica, Buffalo

Page 12 of 24

Dil Fac

Prep Type: Total/NA

90 - 110

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Client: Benchmark Env. Eng. & Science, PLLC Project/Site: Benchmark-Peter Cooper sites

Job ID: 480-186435-1

Prep Type: Total/NA

Prep Type: Total/NA

Prep Type: Total/NA

Method: 350.1 - Nitrogen, Ammonia

Lab Sample ID: MB 480-587213/27 Client Sample ID: Method Blank Prep Type: Total/NA

Matrix: Water

Analysis Batch: 587213

MB MB

Analyzed Result Qualifier RL **MDL** Unit Dil Fac Analyte D Prepared 0.020 06/28/21 10:45 Ammonia (as N) 0.0119 J 0.0090 mg/L

Lab Sample ID: MB 480-587213/3 Client Sample ID: Method Blank **Matrix: Water Prep Type: Total/NA**

Analysis Batch: 587213

MB MB

Result Qualifier RL **MDL** Unit Prepared Analyzed Dil Fac Analyte 0.020 06/28/21 10:25 Ammonia (as N) 0.0132 J 0.0090 mg/L

Lab Sample ID: LCS 480-587213/28 **Client Sample ID: Lab Control Sample Matrix: Water Prep Type: Total/NA**

Analysis Batch: 587213

Spike LCS LCS %Rec. Added Result Qualifier Limits Analyte Unit %Rec Ammonia (as N) 1.00 0.973 97 90 - 110 mg/L

Lab Sample ID: LCS 480-587213/4 **Client Sample ID: Lab Control Sample**

Matrix: Water

Analysis Batch: 587213

Spike LCS LCS %Rec. Analyte Added Result Qualifier Unit %Rec Limits 1.00 0.916 Ammonia (as N) mg/L 90 - 110

Method: 7196A - Chromium, Hexavalent

Lab Sample ID: MB 480-586772/3 Client Sample ID: Method Blank **Prep Type: Total/NA**

Matrix: Water

Analysis Batch: 586772

MB MB

Analyte Result Qualifier RL **MDL** Unit Prepared Analyzed Dil Fac Chromium (hexavalent) ND 0.010 0.0050 mg/L 06/24/21 08:55

Lab Sample ID: LCS 480-586772/4

Matrix: Water

Analysis Batch: 586772

LCS LCS %Rec. Spike Added Analyte Result Qualifier Unit %Rec Limits Chromium (hexavalent) 0.0500 0.0536 107 85 - 115 mg/L

Lab Sample ID: MB 480-586882/3

Matrix: Water

Analysis Batch: 586882

MB MB

Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac Chromium (hexavalent) 0.010 06/24/21 10:15 ND 0.0050 mg/L

Client Sample ID: Lab Control Sample

Client Sample ID: Method Blank

Job ID: 480-186435-1

Client: Benchmark Env. Eng. & Science, PLLC Project/Site: Benchmark-Peter Cooper sites

Method: 7196A - Chromium, Hexavalent (Continued)

Client Sample ID: Lab Control Sample **Prep Type: Total/NA**

Matrix: Water Analysis Batch: 586882

Spike LCS LCS %Rec. Added Result Qualifier %Rec Limits Analyte Unit D

Chromium (hexavalent) 0.0500 0.0499 mg/L 100 85 - 115

Lab Sample ID: 480-186435-4 MS Client Sample ID: MW-9S **Matrix: Water Prep Type: Total/NA**

Analysis Batch: 586882

Lab Sample ID: LCS 480-586882/4

Sample Sample Spike MS MS %Rec. Result Qualifier Added Result Qualifier Unit D %Rec Limits Analyte 0.0500 85 - 115 Chromium (hexavalent) ND 0.0451 H mg/L 90

Lab Sample ID: 480-186435-4 MSD Client Sample ID: MW-9S **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 586882

Sample Sample Spike MSD MSD %Rec. **RPD** Result Qualifier Added Result Qualifier Limits **RPD** Analyte Unit %Rec Limit Chromium (hexavalent) ND 0.0500 0.0475 H 95 20 mg/L

Lab Sample ID: 480-186435-5 MS **Client Sample ID: Blind Duplicate Matrix: Water Prep Type: Total/NA**

Analysis Batch: 586882

Spike MS MS %Rec. Sample Sample Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits 0.0500 0.0487 Chromium (hexavalent) ND mg/L 85 - 115

Lab Sample ID: 480-186435-5 DU **Client Sample ID: Blind Duplicate** Prep Type: Total/NA

Matrix: Water

Analysis Batch: 586882

DU DU RPD Sample Sample Result Qualifier RPD Analyte Result Qualifier Unit Limit Chromium (hexavalent) ND ND mg/L NC 20

Method: SM 4500 S2 F - Sulfide, Total

Lab Sample ID: MB 480-587623/27 Client Sample ID: Method Blank Prep Type: Total/NA

Matrix: Water

Analysis Batch: 587623

MR MR Analyte Result Qualifier RL **MDL** Unit Prepared Analyzed Dil Fac 1.0 Sulfide ND 0.67 mg/L 06/29/21 16:45

Lab Sample ID: MB 480-587623/3 Client Sample ID: Method Blank Prep Type: Total/NA

Matrix: Water

Analysis Batch: 587623

MB MB Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac Sulfide 0.67 mg/L ND 1.0 06/29/21 16:45

Eurofins TestAmerica, Buffalo

QC Sample Results

Client: Benchmark Env. Eng. & Science, PLLC Project/Site: Benchmark-Peter Cooper sites

Job ID: 480-186435-1

Method: SM 4500 S2 F - Sulfide, Total (Continued)

Lab Sample ID: LCS 480-587623/28				Clie	nt Sai	nple ID	: Lab Control Sample
Matrix: Water							Prep Type: Total/NA
Analysis Batch: 587623							
	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Sulfide	7.80	8.40		mg/L		108	90 - 110

Lab Sample ID: LCS 480-587623/4 Matrix: Water Analysis Batch: 587623				Clie	nt Saı	mple ID	: Lab Control Sample Prep Type: Total/NA
Analysis Baton. 607 626	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Sulfide	7.80	8.00		mg/L		103	90 - 110

Client: Benchmark Env. Eng. & Science, PLLC Project/Site: Benchmark-Peter Cooper sites

Job ID: 480-186435-1

Metals

Prep Batch: 586931

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-186435-1	MW-5S	Total/NA	Water	3005A	
480-186435-2	MW-7S	Total/NA	Water	3005A	
480-186435-3	MW-8S	Total/NA	Water	3005A	
480-186435-4	MW-9S	Total/NA	Water	3005A	
480-186435-5	Blind Duplicate	Total/NA	Water	3005A	
MB 480-586931/1-A	Method Blank	Total/NA	Water	3005A	
LCS 480-586931/2-A	Lab Control Sample	Total/NA	Water	3005A	
480-186435-4 MS	MW-9S	Total/NA	Water	3005A	
480-186435-4 MSD	MW-9S	Total/NA	Water	3005A	

Analysis Batch: 587203

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-186435-1	MW-5S	Total/NA	Water	6010C	586931
480-186435-2	MW-7S	Total/NA	Water	6010C	586931
480-186435-3	MW-8S	Total/NA	Water	6010C	586931
480-186435-4	MW-9S	Total/NA	Water	6010C	586931
480-186435-5	Blind Duplicate	Total/NA	Water	6010C	586931
MB 480-586931/1-A	Method Blank	Total/NA	Water	6010C	586931
LCS 480-586931/2-A	Lab Control Sample	Total/NA	Water	6010C	586931
480-186435-4 MS	MW-9S	Total/NA	Water	6010C	586931
480-186435-4 MSD	MW-9S	Total/NA	Water	6010C	586931

General Chemistry

Analysis Batch: 586772

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-186435-1	MW-5S	Total/NA	Water	7196A	
480-186435-2	MW-7S	Dissolved	Water	7196A	586780
480-186435-2	MW-7S	Total/NA	Water	7196A	
480-186435-3	MW-8S	Total/NA	Water	7196A	
480-186435-4	MW-9S	Total/NA	Water	7196A	
MB 480-586772/3	Method Blank	Total/NA	Water	7196A	
LCS 480-586772/4	Lab Control Sample	Total/NA	Water	7196A	

Filtration Batch: 586780

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-186435-2	MW-7S	Dissolved	Water	Filtration	

Analysis Batch: 586882

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-186435-5	Blind Duplicate	Total/NA	Water	7196A	 ,
MB 480-586882/3	Method Blank	Total/NA	Water	7196A	
LCS 480-586882/4	Lab Control Sample	Total/NA	Water	7196A	
480-186435-4 MS	MW-9S	Total/NA	Water	7196A	
480-186435-4 MSD	MW-9S	Total/NA	Water	7196A	
480-186435-5 MS	Blind Duplicate	Total/NA	Water	7196A	
480-186435-5 DU	Blind Duplicate	Total/NA	Water	7196A	

Analysis Batch: 586905

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-186435-1	MW-5S	Total/NA	Water	310.2	

Page 16 of 24

QC Association Summary

Client: Benchmark Env. Eng. & Science, PLLC Project/Site: Benchmark-Peter Cooper sites

Job ID: 480-186435-1

General Chemistry (Continued)

Analysis Batch: 586905 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-186435-2	MW-7S	Total/NA	Water	310.2	
480-186435-3	MW-8S	Total/NA	Water	310.2	
480-186435-4	MW-9S	Total/NA	Water	310.2	
MB 480-586905/103	Method Blank	Total/NA	Water	310.2	
MB 480-586905/140	Method Blank	Total/NA	Water	310.2	
MB 480-586905/277	Method Blank	Total/NA	Water	310.2	
MB 480-586905/299	Method Blank	Total/NA	Water	310.2	
MB 480-586905/311	Method Blank	Total/NA	Water	310.2	
LCS 480-586905/102	Lab Control Sample	Total/NA	Water	310.2	
LCS 480-586905/139	Lab Control Sample	Total/NA	Water	310.2	
LCS 480-586905/276	Lab Control Sample	Total/NA	Water	310.2	
LCS 480-586905/298	Lab Control Sample	Total/NA	Water	310.2	
LCS 480-586905/310	Lab Control Sample	Total/NA	Water	310.2	

Analysis Batch: 586919

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-186435-1	MW-5S	Total/NA	Water	353.2	<u> </u>
480-186435-2	MW-7S	Total/NA	Water	353.2	
480-186435-3	MW-8S	Total/NA	Water	353.2	
480-186435-4	MW-9S	Total/NA	Water	353.2	

Analysis Batch: 587213

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-186435-1	MW-5S	Total/NA	Water	350.1	<u> </u>
480-186435-2	MW-7S	Total/NA	Water	350.1	
480-186435-3	MW-8S	Total/NA	Water	350.1	
480-186435-4	MW-9S	Total/NA	Water	350.1	
MB 480-587213/27	Method Blank	Total/NA	Water	350.1	
MB 480-587213/3	Method Blank	Total/NA	Water	350.1	
LCS 480-587213/28	Lab Control Sample	Total/NA	Water	350.1	
LCS 480-587213/4	Lab Control Sample	Total/NA	Water	350.1	

Analysis Batch: 587623

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-186435-1	MW-5S	Total/NA	Water	SM 4500 S2 F	
480-186435-2	MW-7S	Total/NA	Water	SM 4500 S2 F	
480-186435-3	MW-8S	Total/NA	Water	SM 4500 S2 F	
480-186435-4	MW-9S	Total/NA	Water	SM 4500 S2 F	
MB 480-587623/27	Method Blank	Total/NA	Water	SM 4500 S2 F	
MB 480-587623/3	Method Blank	Total/NA	Water	SM 4500 S2 F	
LCS 480-587623/28	Lab Control Sample	Total/NA	Water	SM 4500 S2 F	
LCS 480-587623/4	Lab Control Sample	Total/NA	Water	SM 4500 S2 F	

Page 17 of 24

Client: Benchmark Env. Eng. & Science, PLLC Project/Site: Benchmark-Peter Cooper sites

Date Received: 06/23/21 17:03

Total/NA

Client Sample ID: MW-5S Lab Sample ID: 480-186435-1 Date Collected: 06/23/21 11:01

Matrix: Water

Batch Batch Dilution Batch **Prepared** Method or Analyzed **Prep Type** Type Run **Factor** Number Analyst Lab Total/NA 3005A 586931 06/25/21 06:51 ADM TAL BUF Prep Total/NA 6010C 587203 06/25/21 21:06 LMH Analysis 1 TAL BUF Total/NA Analysis 310.2 6 586905 06/24/21 17:04 SRW TAL BUF Total/NA 350.1 Analysis 10 587213 06/28/21 10:38 CLT TAL BUF Total/NA 353.2 Analysis 586919 06/24/21 18:42 ALT TAL BUF 1 586772 06/24/21 08:55 DLG Total/NA Analysis 7196A 1 TAL BUF

Client Sample ID: MW-7S Lab Sample ID: 480-186435-2 Date Collected: 06/23/21 11:57 **Matrix: Water**

1

587623 06/29/21 16:45 SRA

TAL BUF

Date Received: 06/23/21 17:03

Analysis

SM 4500 S2 F

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3005A			586931	06/25/21 06:51	ADM	TAL BUF
Total/NA	Analysis	6010C		1	587203	06/25/21 21:10	LMH	TAL BUF
Total/NA	Analysis	310.2		5	586905	06/24/21 17:04	SRW	TAL BUF
Total/NA	Analysis	350.1		1	587213	06/28/21 10:52	CLT	TAL BUF
Total/NA	Analysis	353.2		1	586919	06/24/21 17:26	ALT	TAL BUF
Dissolved	Analysis	7196A		1	586772	06/24/21 08:55	DLG	TAL BUF
Dissolved	Filtration	Filtration			586780	06/24/21 09:15	DLG	TAL BUF
Total/NA	Analysis	7196A		1	586772	06/24/21 08:55	DLG	TAL BUF
Total/NA	Analysis	SM 4500 S2 F		1	587623	06/29/21 16:45	SRA	TAL BUF

Client Sample ID: MW-8S Lab Sample ID: 480-186435-3 Date Collected: 06/23/21 11:43 **Matrix: Water**

Date Received: 06/23/21 17:03

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3005A			586931	06/25/21 06:51	ADM	TAL BUF
Total/NA	Analysis	6010C		1	587203	06/25/21 21:13	LMH	TAL BUF
Total/NA	Analysis	310.2		5	586905	06/24/21 17:07	SRW	TAL BUF
Total/NA	Analysis	350.1		1	587213	06/28/21 10:40	CLT	TAL BUF
Total/NA	Analysis	353.2		1	586919	06/24/21 18:45	ALT	TAL BUF
Total/NA	Analysis	7196A		1	586772	06/24/21 08:55	DLG	TAL BUF
Total/NA	Analysis	SM 4500 S2 F		1	587623	06/29/21 16:45	SRA	TAL BUF

Client Sample ID: MW-9S Lab Sample ID: 480-186435-4 Date Collected: 06/23/21 10:13 **Matrix: Water**

Date Received: 06/23/21 17:03

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3005A			586931	06/25/21 06:51	ADM	TAL BUF
Total/NA	Analysis	6010C		1	587203	06/25/21 21:17	LMH	TAL BUF
Total/NA	Analysis	310.2		2	586905	06/24/21 17:08	SRW	TAL BUF

Eurofins TestAmerica, Buffalo

Page 18 of 24 6/30/2021

Lab Chronicle

Client: Benchmark Env. Eng. & Science, PLLC Project/Site: Benchmark-Peter Cooper sites

Lab Sample ID: 480-186435-4

Matrix: Water

Job ID: 480-186435-1

Client Sample ID: MW-9S Date Collected: 06/23/21 10:13 Date Received: 06/23/21 17:03

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	350.1	_	1	587213	06/28/21 10:41	CLT	TAL BUF
Total/NA	Analysis	353.2		1	586919	06/24/21 18:49	ALT	TAL BUF
Total/NA	Analysis	7196A		1	586772	06/24/21 08:55	DLG	TAL BUF
Total/NA	Analysis	SM 4500 S2 F		1	587623	06/29/21 16:45	SRA	TAL BUF

Client Sample ID: Blind Duplicate

Lab Sample ID: 480-186435-5 Date Collected: 06/23/21 11:50 **Matrix: Water**

Date Received: 06/23/21 17:03

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3005A			586931	06/25/21 06:51	ADM	TAL BUF
Total/NA	Analysis	6010C		1	587203	06/25/21 21:35	LMH	TAL BUF
Total/NA	Analysis	7196A		1	586882	06/24/21 10:15	SRA	TAL BUF

Laboratory References:

TAL BUF = Eurofins TestAmerica, Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

Accreditation/Certification Summary

Client: Benchmark Env. Eng. & Science, PLLC Project/Site: Benchmark-Peter Cooper sites

Job ID: 480-186435-1

Laboratory: Eurofins TestAmerica, Buffalo

The accreditations/certifications listed below are applicable to this report.

Author	ity	Program	Identification Number	Expiration Date
New Yo	ork	NELAP	10026	04-01-22

Method Summary

Client: Benchmark Env. Eng. & Science, PLLC Project/Site: Benchmark-Peter Cooper sites

Job ID: 480-186435-1

Method	Method Description	Protocol	Laboratory
6010C	Metals (ICP)	SW846	TAL BUF
310.2	Alkalinity	MCAWW	TAL BUF
350.1	Nitrogen, Ammonia	MCAWW	TAL BUF
353.2	Nitrate	EPA	TAL BUF
7196A	Chromium, Hexavalent	SW846	TAL BUF
SM 4500 S2 F	Sulfide, Total	SM	TAL BUF
3005A	Preparation, Total Metals	SW846	TAL BUF
Filtration	Sample Filtration	None	TAL BUF

Protocol References:

EPA = US Environmental Protection Agency

MCAWW = "Methods For Chemical Analysis Of Water And Wastes", EPA-600/4-79-020, March 1983 And Subsequent Revisions.

None = None

SM = "Standard Methods For The Examination Of Water And Wastewater"

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL BUF = Eurofins TestAmerica, Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

Eurofins TestAmerica, Buffalo

6

8

9

11

12

13

Sample Summary

Client: Benchmark Env. Eng. & Science, PLLC Project/Site: Benchmark-Peter Cooper sites

Job ID: 480-186435-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received	Asset
480-186435-1	MW-5S	Water	06/23/21 11:01	06/23/21 17:03	
480-186435-2	MW-7S	Water	06/23/21 11:57	06/23/21 17:03	
480-186435-3	MW-8S	Water	06/23/21 11:43	06/23/21 17:03	
480-186435-4	MW-9S	Water	06/23/21 10:13	06/23/21 17:03	
480-186435-5	Blind Duplicate	Water	06/23/21 11:50	06/23/21 17:03	

3

4

O

7

10

11

13

12

Chain of Custody Record

curonns restamerica, Buffalo

10 Hazelwood Drive Amherst, NY 14228-2298 Phone: 716-691-2600 Fax: 716-691-7991

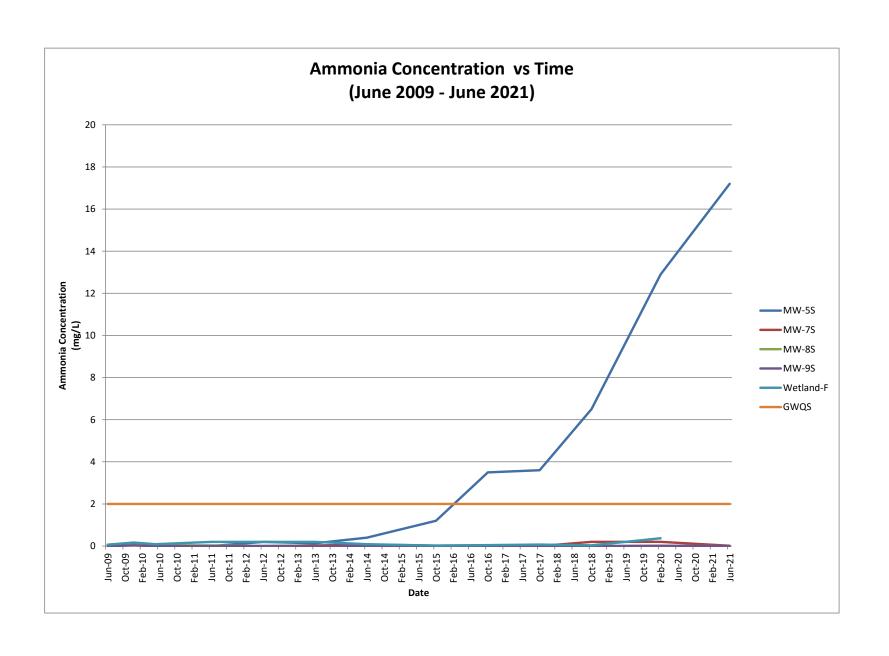
of the state of th	Sampler:			Corrier Translation Mineral	
Client Contact.	S - Condo			Carrel Hacking NO(8).	COC No: 480-160359-27561 1
Mr. Rick Dubisz	11-8-916-916		E-Mail: Brian.Fischer@Eurofinset.com	State of Origin:	Page:
Company. Benchmark Env. Eng. & Science, PLLC		PWSID:	4		rayer = 0: Job #:
Address: 2558 Hamburg Turnnike, Stuite 300	Due Date Requested:		Analysis Kequested	uested	Description
Gity:	TAT Requested (days):				0
State, Zip:			Cos		B - NaOH N - None C - Zn Acetate O - AsNaO2
NY, 14218	Compliance Project: △ Yes	∆ No			
- 1016	Po # Purchase Order Requested	77	крэш	1 10	
Email: rdubisz@bm-tk.com	WO #:		V (Mari		
ct Name: chmark-Peter Cooper (Markhams)	Project #:		or Me fin only thod	anon a	J - DI Water K - EDTA
	SSOW#:		Sel Meth ICr/Fe/N As/Cr/F Ocal Me Inod	contain	
Sample Identification	Sample Date Time	Sample Matrix Type (W-water, S-solid. (C=comp, O-westerior).	ield Filtered S entorin MS/MS 50.1 - (MOD) Loc 70.0C - (MOD) D. 70.0C - (MOD) D. 70.2, 353.2_uirrii 96A - Local Met 96A - Local Met	To TedmuN let	
	1	Preservation Code:	3	oT	Special Instructions/Note:
WETLAND		Water			
MW-5S	6/23/21 1/01	Water			
S2-MM		+			
MW-8S	2411	Water			
S6-MM	F10/1880/017	Water			
BLIND DUPLICATE	-	Water			
MS MW95	27.1	Water			
MSD MW-9S	5/11	Water	>		
		>		400-186435 Chain of Custody	in of Custody
Possible Hazard Identification Non-Hazard — Flammable — Skin Irritant — Poiss	Poison B Unknown	Radiological	Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)	sessed if samples are retain	ed longer than 1 month)
			Special Instructions/QC Requirements:	isposal By Lab Arct	nive For Months
inquished by:	Date:		Time:	Method of Shipment:	
	Date/Time: 141	Company	Received by:	Date/Fine 2 7	1702 Company
Keinquished by:	Date/Time:	Company		Date/Time	Company
	Date/Time:	Company	Received by:	Date/filme	1705
Custody Seals Intact: Custody Seal No∷ △ Yes △ No			Cooler Temperature(s) ^o C and Other Remarks	narks: (0.6 H	

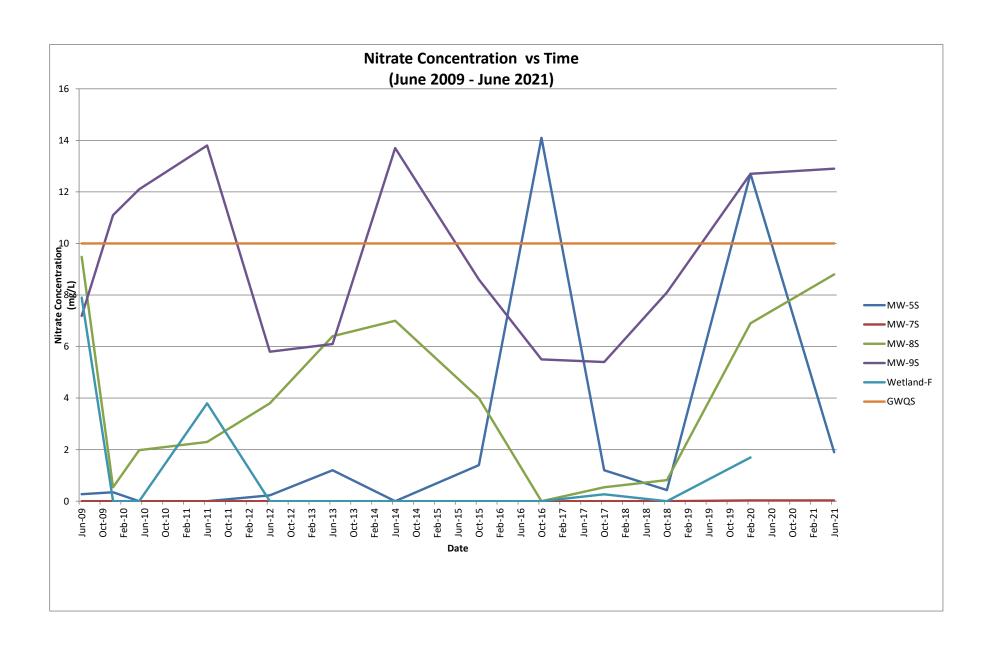
Client: Benchmark Env. Eng. & Science, PLLC

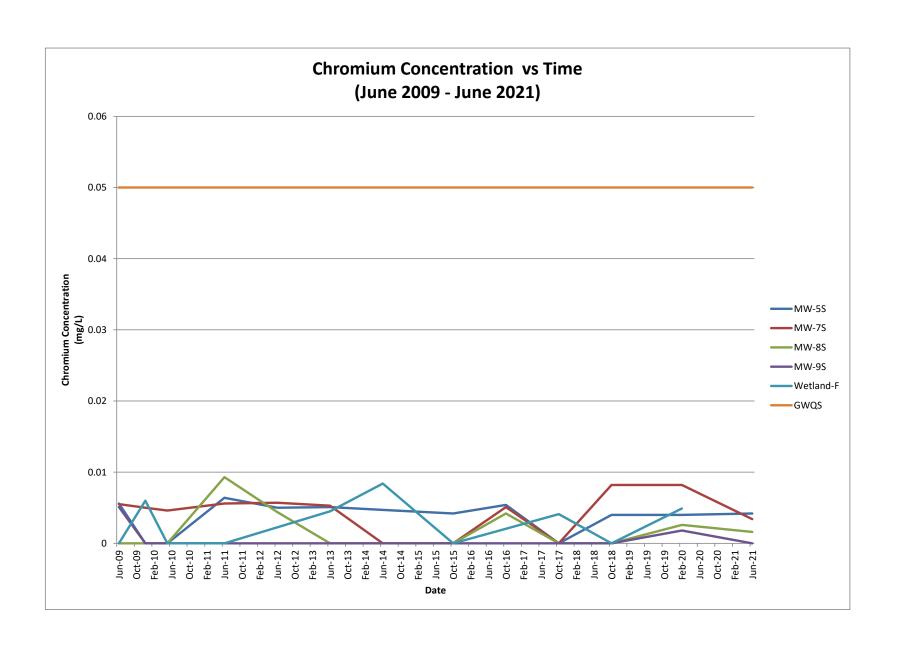
Job Number: 480-186435-1

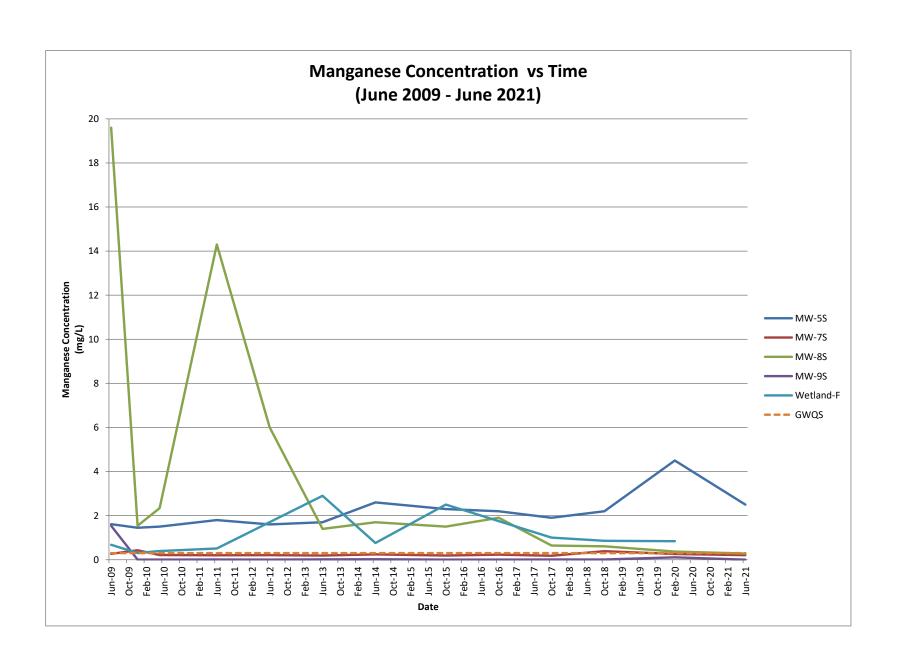
Login Number: 186435 List Source: Eurofins TestAmerica, Buffalo

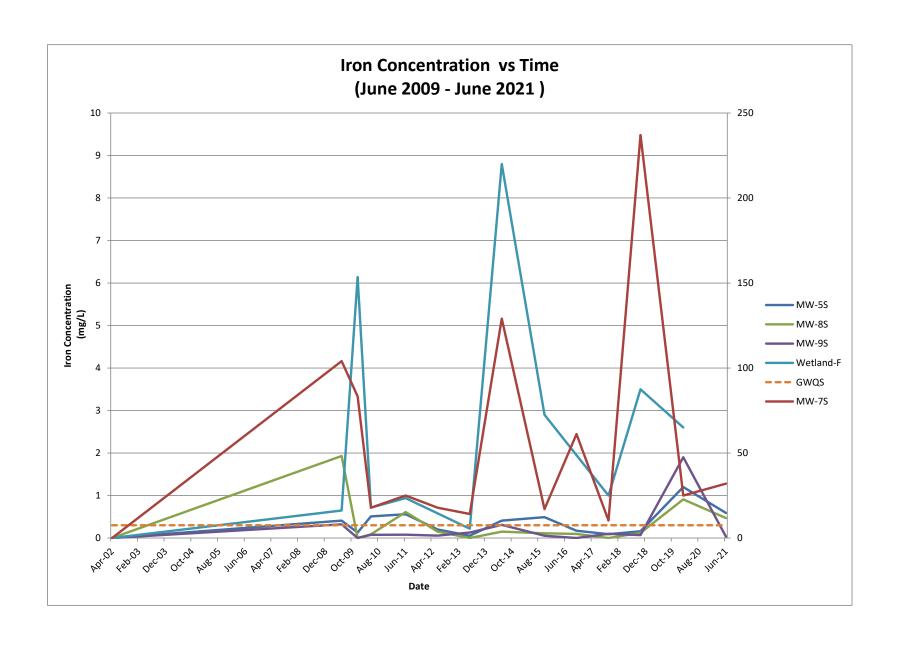
List Number: 1


Creator: Kolb, Chris M


Creator: Kolb, Chris W		
Question	Answer	Comment
Radioactivity either was not measured or, if measured, is at or below background	True	
The cooler's custody seal, if present, is intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the sample IDs on the containers and the COC.	True	
Samples are received within Holding Time (Excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	True	
If necessary, staff have been informed of any short hold time or quick TAT needs	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Sampling Company provided.	True	benchmark
Samples received within 48 hours of sampling.	True	
Samples requiring field filtration have been filtered in the field.	True	
Chlorine Residual checked.	True	


ATTACHMENT 3


HISTORIC DATA CHARTS



ATTACHMENT 4

FIELD INSPECTION FORM & PHOTO LOG

Field Inspection Report Post-Remedial Operation & Maintenance Plan

Property Name: Peter Cooper Markhams Site	Project No.:	0199-001-10	00				
Client: Biltekoff & Pullen							
Property Address: Bentley Road	Dayton, NY	14041					
Property ID: (Tax Assessment Map) Section:	Block	:	Lot(s):				
Preparer's Name:	Date/Time:						
CERTIFICATION							
The results of this inspection were discussed with the Site Manager. Any corrective actions required have been identified and noted in this report, and a supplemental Corrective Action Form has been completed. Proper implementation of these corrective actions have been discussed with the Site Manager, agreed upon, and scheduled. Preparer / Inspector: 2.005 S2 Date: 6/23/21							
Signature:			0/23/2/				
Next Scheduled Inspection Date:							
Property Access							
1. Is the access road in need of repair?	☐ yes	✓ no	□ N/A				
2. Sufficient signage posted (No Trespassing)?	yes	no no	□ N/A				
3. Has there been any noted or reported trespassing	g? 🗌 yes	✓ no	□ N/A				
Please note any irregularities/ changes in site access and security:							
Final Surface Cover / Vegetation							
The integrity of the vegetative soil cover or other sur entire Site must be maintained. The following document	face coverage (e ments the conditi	e.g., asphalt, coon of the abov	oncrete) over the re.				
1. Final Cover is in Place and in good condition?	yes	□ no	□ N/A				
Cover consists of (mainly): Wild Vegatative Gr	ass Cover						
2. Evidence of erosion?	yes	no	N/A				
3. Cracks visible in pavement?	□ yes	no	 ☑ N/A				
4. Evidence of distressed vegetation/turf?	□ yes	no no	□ N/A				
5. Evidence of unintended traffic and/or rutting?	☐ yes	☑ no	□ N/A				
6. Evidence of uneven settlement and/or ponding?	☐ yes	no	N/A				

Field Inspection Report Post-Remedial Operation & Maintenance Plan

. Damage to any surface coverage?	☐ yes	no		I/A
yes to any question above, please provide n	nore information	below.		
Gas Vent System Monitoring and Mainter	nance			
Are there signs of stressed vegetation arour	nd gas vents?	☐ yes	☑ no	□ N/A
Are the gas vents currently intact and operate	tional?	yes	□ no	□ N/A
Has regular maintenance and monitoring be	en documented	and enclosed o	r reference	d?
		☐ yes	☐ no	□ N/A
Groundwater Monitoring				
Is there a plan in place and currently being f	followed?	yes	□ no	□ N/A
Are the wells currently intact and operationa	11?	yes	□ no	□ N/A
When was the most recent sampling event when is the next projected sampling event?		nittal? Date:	In.	2018
Property Use Changes / Site Developmen	nt			
Has the property usage changed, or site bee	en redeveloped	since the last in	spection?	
If yes, please list with date:		□ yes	Øno	□ N/A

Field Inspection Report Post-Remedial Operation & Maintenance Plan

New Informa	ition					
Has any new information been brought to the owner/engineer's attention regarding any and/or all engineering and institutional controls and their operation and effectiveness?						
	□ yes	⋉ no				
Comments:						
This space f	or Notes and Comments					
Access to and around monitoring wells limited to overgrown brush/weeds. Brush/weed cutting						
required.	Cutting of vegetation on final cover will be re	quired.				
Diagon inclu	de the fellowing Attachments					
	de the following Attachments:					
Site Sketch	h					
2. Photograp	phs					

PHOTOGRAPHIC LOG

Client Name:

Site Location:

Project No.:

reter

Peter Cooper -Markhams Site

0199-001-100

Photo No.

Date

1

06/23/21

Direction Photo Taken:

West

Description:

North slope of containment fill area.

Photo No. Date

2

06/23/21

Direction Photo Taken:

East

Description:

Top of containment fill area.

PHOTOGRAPHIC LOG

Client Name:

Photo No.

3

Site Location:

Project No.:

Date

06/23/21

Peter Cooper -Markhams Site

0199-001-100

Direction Photo Taken:

South

Description:

Facing south of containment fill area.

Photo No.

Date

4

06/23/21

Direction Photo Taken:

West

Description:

Top of containment fill area facing west.

