

__.pdf

_.pdf

The electronic version of this file/report should have the file name:

Type of document. Site Number. Year-Month. File Year-Year or Report name. pdf

example: letter . Year-Month . File Year-Year . pdf

Report. HW. 905004. 1993.01.01. pdf

example: report . Site Number . Year-Month . Report Name . pdf

Project Site numbers will be proceeded by the following:

Municipal Brownfields - B Superfund - HW Spills - SP ERP - E VCP - V BCP - C

PALMER STREET LANDFILL POST CLOSURE PLAN (EPA ID NYD002126910)

ł

BROWN GROUP, INC. GOWANDA, NEW YORK

JULY 1993 REVISED MARCH 1994

MALCOLM PIRNIE, INC.

S-3515 Abbott Road P. O. Box 1938 Buffalo, New York 14219

0605-237-200

FINAL

PALMER STREET LANDFILL POST CLOSURE PLAN (EPA ID NYD002126910)

BROWN GROUP, INC. GOWANDA, NEW YORK

JULY 1993 REVISED MARCH 1994

MALCOLM PIRNIE, INC.

S-3515 Abbott Road P. O. Box 1938 Buffalo, New York 14219

MALCOLM PIRNIE

BROWN GROUP, INC. PALMER STREET POST-CLOSURE PLAN

TABLE OF CONTENTS

	1.1 1.2 1.3 1.4	General Description 1.1.1 Products Produced 1.1.2 Site Description Waste Generation Landfill Operation Topographic Map	1-1 1-1 1-1 1-1 1-2 1-2 1-2
2.0	POS	T-CLOSURE CARE AND MONITORING	2-1
	2.1		2-1
	2.2		2-1
		2.2.1 Site Inspections	2-1
		2.2.2 Cover Maintenance	2-2
		2.2.3 Maintenance of Site Structures	2-3
		2.2.4 Contingency Plans 2	2-3
		2.2.4.1 Leachate Breakout Repair Procedure	2-4
		2.2.4.2 Fire	2-5
		2.2.4.3 Vandalism	2-5
		2.2.4.4 Air Contamination	2-5
		2.2.4.5 Unauthorized Dumping or Disposal	2-5
	2.3		2-6
	2.3	Need For Corrective Action 2 Detection Monitoring Program 2	2-6
	2.4	2.4.1 General 2	-0
		2.4.2 Phase I: Continued Routine Monitoring	(-0
		2.4.3 Phase I: Supplemental Site Assessment	-0 0 0
		2.4.3.1 Objectives	,-9)_0
		2.4.4 Phase II: Post Closure Detection Monitoring	
		2.4.4.1 Monitoring Locations	12
		2.4.4.2 Monitoring Frequency	14
		2.4.5 Monitoring Parameters	15
	2.5	Maintenance of Benchmarks	16
	2.6	Site Security	16
3.0		T-CLOSURE COST AND FINANCIAL ASSURANCE	
	3.1	Post-Closure Cost Estimates	
	3.2	Financial Assurance and Liability Coverage 3	-1

i

REFERENCES

0605-237-200

Page

BROWN GROUP, INC. PALMER STREET POST-CLOSURE PLAN

TABLE OF CONTENTS (continued)

LIST OF TABLES

Table No.	Description	Following Page
2-1	Seed Mixture	2-2
2-2	Routine Groundwater Quality Monitoring Parameters	2-15
3-1	Post-Closure Costs	3-1

LIST OF FIGURES

Fig ure No.	F Description	Following Page
2-1	Groundwater Elevations vs. Time/Becrock Wells and Piezometers	2-11
2-2	Isopotential Map for January 27, 1992	2-11
2-3	Isopotential Map for May 4, 1993	2-11

LIST OF APPENDICES

Appendix	Description	
1	Site Inspection Checklist and Maintenance Schedule	
2	Sampling and Analysis Plan	

1.0 FACILITY DESCRIPTION

The following information is submitted in accordance with the requirements for a general description of the facility as contained in 40 CFR 270.14(b)(1) and 6 NYCRR 373-1.5(a)(2)(1) and related Subparts. All information presented herein is submitted for use in evaluating the proposed post-closure plan for the Palmer Street Landfill.

1.1 GENERAL DESCRIPTION

The Moench Tanning Company, a division of Brown Group, Inc. has been closed and all waste generating operations have ended. The site is located near the southeast corner of the Village of Gowanda, Cattaraugus County, New York.

The site address is:

The Brown Group 265 Palmer St. Gowanda, New York 14070

The contact and party responsible for previous hazardous waste management activities at Brown Group is:

Jeff Smith Plant Engineer (716) 532-2201

1.1.1 Products Produced

Moench Tanning Company was a leather tanning facility that was in operation for approximately 120 years. A brief discussion of leather tanning processes and a summary of Moench Tanning's company history has been presented in the Closure Plan for the Palmer Street Landfill (Reference 7).

1.1.2 Site Description

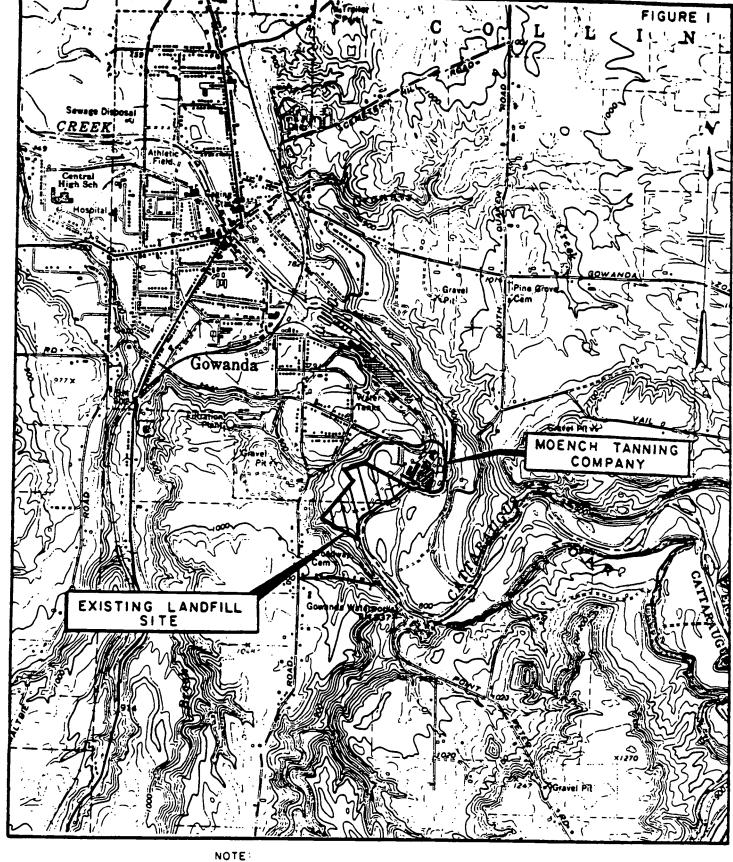
The Palmer Street Landfill was operated by Moench Tanning from 1900 through July 1983. (See Figure 1-1 for Location Map). The site occupies approximately 25 acres in size and is bound on the west and south by a steeply-sloped wooded area, on the

MALCOLM PIRNIE

northwest by a swampy area and on the east by Cattaraugus Creek. The former Tannery site serves as the northeast boundary of the site.

1.2 WASTE GENERATION

A variety of wastes generated at Moench Tanning were disposed of at the landfill site. The landfill was <u>not</u> used for disposal of wastes generated from outside sources. Brief descriptions of the types of wastes known to have disposed of at the landfill site are presented in the Palmer Street Landfill Closure Plan (revised August 1989). The waste types include sole leather extract, rendering waste, spray booth clean-up waste, wastewater treatment plant sludge, and construction debris.


Spray Booth Clean-up waste is the only potentially hazardous material landfilled at the Palmer Street site since the effective date of the Resource Conservation and Recovery Act (RCRA). The Brown Group maintains that these wastes were not hazardous when disposed of at the landfill. Following the end of landfill disposal operations these wastes were classified as a nonhazardous industrial waste and disposed of at a permitted disposal facility.

1.3 LANDFILL OPERATION

There is virtually no documented information on the operation of Palmer Street Landfill because records/logs were not maintained. All available information regarding operational practices and the location of wastes is based on interviews with plant personnel actually involved in the landfill operation. This information is summarized in the Palmer Street Landfill Closure Plan (Reference 7).

1.4 TOPOGRAPHIC MAP

Plate 1 is a topographic map with existing contours, site property lines and drainage. Figure 1-1 is a location map showing topography in the vicinity of the landfill site. Plate 1 also shows site property lines, site drainage control and the 100-year floodplain.

TOPOGRAPHY TAKEN FROM 1963 GOWANDA, N.Y. U.S.G.S. QUADRANGLE 7.5 MIN. SERIES SCALE: I"= 2000'

SITE LOCATION MAP PALMER STREET LANDFILL GOWANDA, N.Y.

2.0 POST-CLOSURE CARE AND MONITORING

This information is submitted to comply with 40 CFR 270.14(b)(13) and 6 NYCRR 373-1.5(a)(2)(xiii) and related Subparts.

2.1 POST-CLOSURE PERIOD

Post-closure activities for the Palmer Street Landfill will extend over a 30-year period.

2.2 INSPECTION AND MAINTENANCE

2.2.1 Site Inspections

The Brown Group will be responsible for site inspection and maintenance. The site will be inspected on a quarterly basis throughout the entire post-closure period. The landfill site will be inspected for:

- Integrity of structures.
- Visible debris, litter and waste.
- Loss of vegetative cover or growth of undesirable species.
- Integrity of drainage ditches including:
 - Sediment buildup.
 - Pooling or ponding.
 - Slope integrity, and
 - Overall adequacy of surface runoff collection system.
- Integrity of gas venting system.
- Integrity of access roads, gates and fences.
- Integrity of groundwater monitoring system.
- Integrity of landfill cap including:
 - Erosion or settling of cap material.
 - Leachate breakthroughs.

Maintenance of existing benchmarks.

All records on frequency of inspection, maintenance, detection monitoring and maintenance of bench marks will be submitted to the NYSDEC Region 9 Office, Attention: Regional Solid and Hazardous Waste Engineer, on an annual basis.

2.2.2 Cover Maintenance

Cover maintenance will be performed as necessary over the entire post-closure care period. Any signs of erosion, settling, cracking or other site maintenance problems detected during routine site inspections will be corrected as soon as possible. All eroded areas will be brought back to original grade according to the procedures described for constructing the final cover. Settling which results in ponding of water will be regraded and revegetated as necessary to eliminate the ponding. All bare spots in the final cover will be reseeded and fertilized as necessary, but no less than once every year. Seed and fertilizer will be of the same type and quality as specified in Table 2-1. "First-mowing will be done with light equipment so as not to impart excessive wheel-injury to seedlings. Successive mowing will be undertaken with a frequency to minimize the accumulation of clippings that would smother grass. Six months after seeding, the cover will be fertilized with 400 lb/acre of 10-10-10 fertilizer. The same fertilizer mix will be applied each fall to assure maintenance of a good grass cover. Any undesirable species (i.e., large tree growth) will be removed if their presence is suspected to have the potential to deteriorate the integrity of the final cover.

The need for cover repairs due to subsidence and/or settling will be determined based on an evaluation of whether the functions of the final cover in the affected area has been impaired. Those areas where the function has been impaired or will be impaired will be repaired to ensure that the integrity of the final cover is maintained. These repair actions may include, but will not be limited to:

- Strip and stockpile topsoil from the affected area.
- Regrade the affected area in accordance with the grading plan.
- Using clay or a bentonite-soil admixture, fill cracks and re-establish the recompacted low permeability soil layer to a depth of twenty-four inches at a maximum permeability of 1 x 10⁻⁷ cm/s.

TABLE	2-1				
PALMER STREET LANDFILL					
Seed Mixt	ure ⁽¹⁾				
Perennial Ryegrass	10 lbs/acre				
Kentucky Bluegrass	20 lbs/acre				
Strong Creeping Red Fescue	20 lbs/acre				
Chewings Fescue	20 lbs/acre				
Hard Fescue	20 lbs/acre				
White Clover	10 lbs/acre				

PIRNIE

Replace topsoil and revegetate affected area in accordance with Table 2-1.

2.2.3 Maintenance of Site Structures

Maintenance of structures for surface water control and groundwater monitoring will be performed by Brown Group as necessary during the post-closure period.

All eroded areas in the drainage ditches will be repaired and regraded. Reseeding will be carried out using the recommended seed mixture given in Table 2-1. Sediment buildup in the ditches will be removed if it restricts flow in the ditches. Any other areas in the ditches where the cross-section or slope has been altered to the extent that flow does not occur as desired will be reworked and regraded as necessary.

Gas vents will be repaired or rebuilt to restore them to the original design configuration. Monitoring wells which sustain damage or cannot provide representable groundwater samples will be examined to determine whether the problem can be corrected. In particular, attention will be given to:

- Signs of encrustation and corrosion.
- An exceptional increase in solids content (due to the breakdown of the screening arrangement.
- An appreciable decrease in groundwater elevation.

Remedial actions will be determined by the expected impact of the loss of data on the overall monitoring program.

The access road to the landfill site will be maintained in good condition so that routine inspections and required maintenance activities can be carried out. Gates will be kept in good repair to prevent unauthorized access onto the landfill site.

2.2.4 Contingency Plans

The objective of the contingency plan is to address events which occur outside the scope of the routine maintenance program. The contingency plan will be implemented following the discovery of a condition at the landfill which is not covered by the routine maintenance plan.

Natural occurrences such as storms, drought and subsidence should be considered as "expected occurrences" and are addressed in the maintenance program and are not

addressed in this contingency plan. Certain problems which cannot be reasonably expected to occur, such as earthquakes or war, are also not addressed in this contingency plan.

The following problems may not be reasonably expected to occur, yet may be discovered during a routine post-closure inspection and monitoring program:

- Leachate significantly impacting groundwater or surface water quality.
- Failure of the final cover integrity which may be a result of, or indicated by:
 - Waste protruding through the final cover.
 - Soil erosion or other drainage problems.
 - Uncontrolled burrowing by pests.
- Vegetative cover missing despite repeated efforts at revegetation.

The following guidelines are offered to determined when the contingency plan should be implemented and to determine possible corrective actions when responding to a contingency. All corrective actions, where appropriate, will be executed in a timely fashion after notifying the appropriate regulatory agencies.

2.2.4.1 Leachate Breakout Repair Procedure

Leachate breakouts through the landfill cover system will be discovered during regularly scheduled site inspections. Should such a breakout occur, the damage will be repaired as quickly as possible. Repairs will be made with materials and methods as specified in previous sections of the closure plan. Areas where leachate breakouts have occurred will receive additional cover material which shall be compacted and overlaid with topsoil for vegetative growth.

If the Brown Group or the NYSDEC believes a substantial threat of water pollution exists as a result of leachate draining from the site, the Brown Group will prepare a work plan to determine appropriate response efforts including:

- Whether leachate should be contained and treated on-site.
- Whether leachate should be collected and transported to an off-site treatment facility.
- Actions to control, minimize or eliminate the conditions which are contributing to leachate production.

Revised 3/94 0605-237-200

2.2.4.2 Fire

A fire at the landfill will be immediately reported to the local fire department. Appropriate response measures, including personnel safety, will be the responsibility of the fire department. Underground fires will be controlled as necessary. Aboveground fires will be quenched according to approved fire department protocol. Damage to the surface drainage system or final cover will be repaired where these systems have been compromised.

2.2.4.3 Vandalism

Vandalism will be reported to the local enforcement authorities. If vandals have gained entry to the landfill, appropriate measures will be taken to eliminate or restrict future access. Vandalism to monitoring wells will be repaired as appropriate. Damage caused by off-road vehicles will be repaired, where the damage is determined to have compromised the integrity of the final cover or the functions of the gas vents or surface drainage system.

2.2.4.4 Air Contamination

Methane gas venting to the atmosphere should not present a risk to human health due to the rural nature of the landfill and the relative lack of human population adjacent to the landfill. It is conceivable although highly unlikely that a build-up of gas within the landfill may occur.

Should it be suspected that methane gas generation may be presenting an explosion or other hazard, the Brown Group will notify the NYSDEC and New York State Department of Health (NYSDOH). If it is determined that such a hazard is present, a work plan will be developed to determine if the venting system is functioning properly and to determine the appropriate response actions. Possible response actions include replacing portions of the venting system, adding new vents, or installing an active gas withdrawal system. Any proposed remedial actions would be approved through the NYSDEC prior to implementation.

2.2.4.5 Unauthorized Dumping or Disposal

Unauthorized dumping or waste disposal by other parties will be reported to the NYSDEC, and local enforcement officials. In the event that such disposal occurs, efforts

will be taken to eliminate further dumping and to restrict subsequent entry to the site. The Brown Group will assist the NYSDEC and/or USEPA in the prosecution of persons found in the act of illegal dumping and in seeking reimbursement from the responsible party for all costs incurred in the removal and disposal of the waste.

2.2.4.6 Quality Assurance/Quality Control

To assure the performance of site inspection and maintenance, a reporting procedure has been established. A site inspection checklist and maintenance schedule is provided in Appendix 1. The site inspection checklist was developed in accordance with the parameters identified in Section 2.2. The maintenance schedule will be completed after regularly scheduled site inspections and will be submitted to the NYSDEC on an annual basis.

Brown Group will hire personnel (fully qualified to perform the work) or a licensed consulting engineering firm to perform site inspections and supervise maintenance operations. The site inspection checklist and maintenance schedule will be signed by authorized personnel. Maintenance and repair work shall conform to the requirements set forth in Section 2.0 of this report.

2.3 NEED FOR CORRECTIVE ACTION

Ground and surface water quality data collected to date indicates that the Palmer Street Landfill is not having a significant impact on the ground and surface water quality in the vicinity of the site (Reference 5). No corrective actions beyond those already implemented are considered necessary at this time.

2.4 DETECTION MONITORING PROGRAM

2.4.1 GENERAL

The principal purpose of any landfill monitoring system is to provide a mechanism for initiating corrective actions if the impairment of groundwater or surface water is apparent. Remediation is triggered by comparison of water quality at pre-established points of monitoring/compliance with appropriate and applicable standards. The monitoring system should be site specific; in other words, the system design should be capable of

detecting landfill derived contaminants along the principal pathways of contaminant movement. Hydrogeologic conditions at the Palmer Street Landfill have been described in a series of site investigation reports that were completed between 1983 and 1991 (see References 1 through 6).

It has been determined that much of the leachate produced at the landfill is currently moving with the shallow groundwater either towards the east with discharge to Cattaraugus Creek or northwards across the landfill boundary. A lesser volume of leachate is moving to depth through the lower overburden (overburden aquitard) to the regional groundwater flow system. The historical water quality data have been obtained from the existing monitoring well system, which includes a total of seven shallow wells (viz. MW-1, MW-2, MW-3, MW-4, MW-5, MW-6 and MW-7S), three wells completed in the lower overburden (viz. MW-7, MW-3D and MW-8), and three bedrock wells (viz. MW-7D, MW-3DR, and MW-8D). A new bedrock well, MW-4D, was installed in September 1993. This distribution of wells is considered adequate for monitoring existing shallow leachate and groundwater flow.

Construction of the landfill cover system will influence the existing pattern of groundwater flow with flow reversal anticipated along the northern landfill boundary (inflow as opposed to outflow). This is likely due to reduced infiltration. These changes are likely to take place over several years and will be difficult to monitor until such time as steady state flow conditions and chemical equilibrium are re-established. This necessitated specifying a "grace" period of sufficient duration until sufficient water quality data are collected to redefine the site's baseline geochemistry.

Future monitoring at the Palmer Street Landfill must be cognizant of anticipated changes to the groundwater flow pattern. The following have been factored into the detection monitoring program.

- With reversal of shallow groundwater movement along the northern boundary, well MW-7S will be physically upgradient of the landfill. Any improvement in water quality monitored at this location, however, will be gradual because it will likely take some time for the contaminant plume, if any, in this area to disperse.
- Monitoring wells MW-4, MW-5 and MW-6, although hydraulically downgradient from the landfill, are screened within waste fill. Because of their physical position within the waste, water samples from these wells are

representative of leachate quality rather than true downgradient groundwater quality. It is conceivable that once the landfill is covered, the observed water quality in these wells will deteriorate further as infiltration through the landfill is reduced. Although these wells will not be suitable for monitoring groundwater quality improvement, they can be used to monitor contaminant loadings to Cattaraugus Creek. Contaminant loadings will decrease proportional to the decline in water levels as measured in these wells.

• The bedrock wells can continue to be used to monitor water quality changes attributable to the landfill in the regional groundwater flow system. Lower overburden wells can provide a measure of early detection of water quality changes in the lower overburden prior to detection in the regional aquifer. It should, however, be recognized that because groundwater flow and any contaminant movement through the confining aquitard is slow, it may take several years for an existing contaminant plume, if any, to disperse. Therefore, it is possible monitoring could indicate some impairment of water quality even after the landfill cover system is in place and loadings are reduced.

Based on the hydrogeologic information available on the aquitard which separates the shallow overburden and deep regional groundwater flow systems, it is reasonable to assume that leachate contaminants have penetrated some undefined distance into the aquitard. The extent of contaminant penetration would be a function of the hydraulic gradient, porosity, and hydraulic conductivity of the aquitard material.

A two-phased detection monitoring program was initiated based on the premise that it would be premature to attempt to evaluate the impacts of the cover system construction until such time as steady-state flow conditions and chemical equilibrium are re-established.

2.4.2 Phase I: Continued Routine Monitoring

Phase I of the detection monitoring program involved continued routine monitoring of selected existing monitoring wells in accordance with requirements of 40 CFR Part 265.93 and 6NYCRR Part 373-3.6. Monitoring wells MW-1, MW-3, MW-4, MW-5, MW-6, MW-7S, MW-3DR, MW-7D and MW-8D plus two bank seeps were monitored for the contaminantsof-interest (viz. arsenic, barium, chromium, lead and volatile organics) on a quarterly basis. All remaining monitoring wells were monitored annually for the contaminants-of-interest. All monitoring wells were monitored quarterly for pH, conductivity, turbidity as well as elevation data. Quarterly and annual reports summarizing the routine monitoring data were submitted to the NYSDEC.

Phase I routine monitoring was initiated in March 1989 and continued on a quarterly basis through July 1993.

2.4.3 Phase I: Supplemental Site Assessment

A supplemental site assessment was conducted in response to NYSDEC comments on previous investigation reports prepared for the Palmer Street Landfill. A complete description of the investigative methodology and results of the supplemental site assessment is provided in the report entitled "Post-Closure Investigation Report - Palmer Street Landfill" (July 1991) prepared by Malcolm Pirnie, Inc. This section presents a summary of the assessment objectives, and findings.

2.4.3.1 Objectives

The objectives of the program were developed in response to NYSDEC comments to previous investigation reports which have been prepared for the Palmer Street Landfill. These objectives were as follows:

- Install a bedrock monitoring well fully downgradient of the waste/fill and replace a damaged existing well.
- Assess the potential for hydraulic connections between on-site wells, off-site wells, and Cattaraugus Creek.
- Assess the need for long-term groundwater monitoring in bedrock in the northeast corner of the site.
- Assess the integrity of existing deep overburden and bedrock monitoring wells (MW-3D and MW-8D).
- Recommend a detection monitoring strategy for the lower overburden which underlies the site.
- Recommend detection monitoring parameters.

2.4.3.2 Summary and Conclusions

The results and conclusions of the supplemental site assessment are presented below:

- Overburden geologic formations in the southwestern corner of the site toward MW-1D consist of a thickening wedge of low permeability glaciolacustrine sediments and till.
- The potential for hydraulic connections between on-site wells, Cattaraugus Creek and the deep production wells in Gowanda was assessed as follows:
 - MW-1D, and to a lesser degree, MW-8D and MW-3DR, were shown to be influenced by pumping of the Moench Tanning production wells. The Village of Gowanda wells, if used on a regular basis, would also influence the on-site bedrock wells.
 - Bedrock water levels exhibited a long term rise which is attributed to the reduced use (pumping) of the Village of Gowanda water supply wells.
 - MW-3D and MW-3DR show no response to transient fluctuations in the stage levels in Cattaraugus Creek. Therefore, there is no direct hydraulic connection between the Creek and these wells. Tritium sampling results also suggest that no direct connection is present.
 - MW-6D shows a weak response to transient fluctuations in Cattaraugus Creek stage levels. The response is probably lessened by the low hydraulic conductivity of the upper bedrock at MW-6D.
- Long-term detection monitoring should be conducted in the northeast corner of the site at MW-6D based on the following.
 - A groundwater high has been identified in the upper bedrock zone between MW-7D and P-6D. Groundwater flows away from the high to the northeast toward Cattaraugus Creek.
 - The upper bedrock zone at MW-6D discharges to Cattaraugus Creek. This conclusion is based on the relative elevations of the Creek bed and groundwater in MW-6; and the tritium content in groundwater at MW-6D, which is much lower in comparison to the Creek.
- Deep overburden wells MW-3D and MW-8 exhibit elevated pH and specific conductivity, which may be attributable to grout contamination. Redevelopment has not mitigated the elevated pH. However, neither well is applicable to detection monitoring, since the monitored intervals are probably of limited extent. Tritium levels in each well are equal to or less than tritium levels in the upper bedrock zone, indicating that the monitoring intervals are not recharged at a rate equal to or less than the upper bedrock.

Upper bedrock wells MW-7D, MW-8D, and P-6D all exhibit turbid samples, which are a result of weathered shale layers in the monitored intervals. Groundwater samples collected from the upper bedrock zone for the analysis

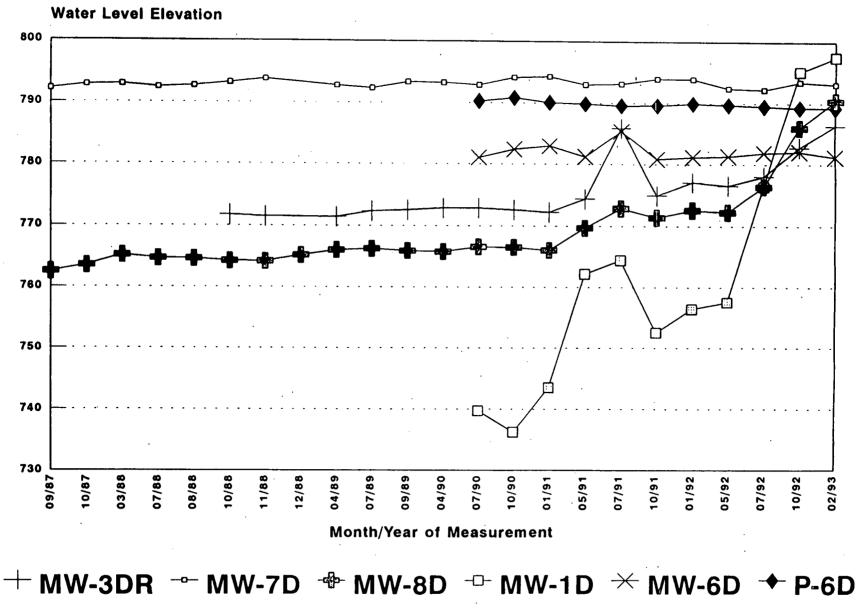
of metals should be filtered to eliminate the interference of metal bearing sediment on the samples.

The long-term rise in bedrock water levels observed during the supplemental site assessment was accelerated during 1992 due to the cessation of pumping at the Moench Tanning Company production wells. Figure 2-1 is a hydrograph showing the changing bedrock water levels over time. The effect of the changing water levels on bedrock groundwater flow is illustrated on two bedrock groundwater isopotential maps presented as Figures 2-2 and 2-3.

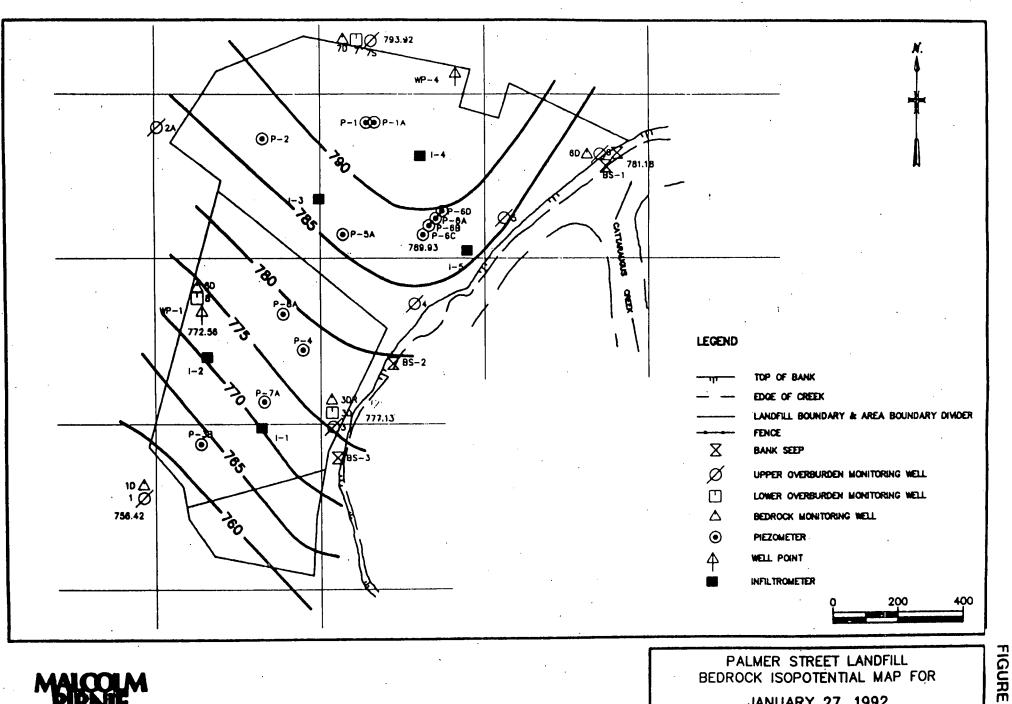
Bedrock groundwater now flows from a groundwater potentiometric high situated within the buried bedrock valley (underlying Gowanda) toward Cattaraugus Creek. Under present conditions leachate that migrates downward through the aquitard underlying the site would ultimately discharge to Cattaraugus Creek.

As shown on Figure 2-1, groundwater levels were still rising during May 1993 and the final configuration of the bedrock isopotential lines is not certain. However, the general configuration of the isopotential lines (e.g., with flow toward the Creek) appears to be well established.

All bedrock wells located between the landfill and Cattaraugus Creek are and are likely to remain, in the absence of pumping, downgradient of the waste/fill. Bedrock wells located west and north of the site are upgradient wells.

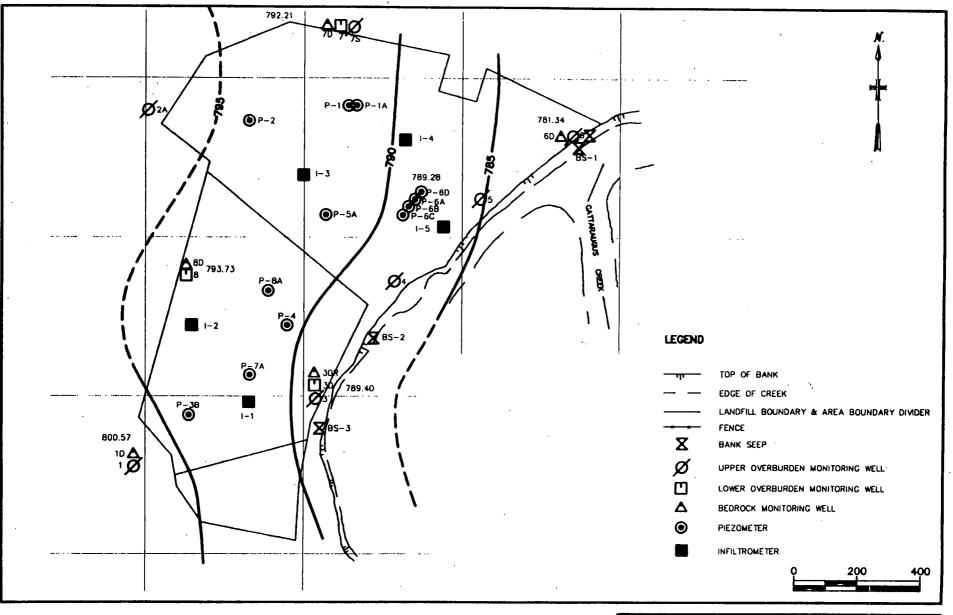

The results of the supplemental site assessment and the reversal of bedrock groundwater flow were utilized in the development of the detection monitoring program described below.

2.4.4 Phase II: Post-Closure Detection Monitoring


This section outlines the monitoring locations, monitoring frequency, and monitoring parameters to be utilized in the post-closure detection monitoring program for the Palmer Street Landfill, which was initiated in November 1993. Detailed monitoring requirements, such as sampling and analytical procedures, are presented in a Post-Closure Sampling and Analysis Plan presented as Appendix 2.

The long-term post-closure detection monitoring program at the Palmer Street Landfill consists of three (3) principle elements, which are as follows:

GROUND WATER ELEVATIONS vs TIME BEDROCK WELLS AND PIEZOMETERS


Water levels in feet above MSL.

MTC-23-805

1 10

BEDROCK ISOPOTENTIAL MAP FOR JANUARY 27, 1992 JANUARY 1993 MOENCH TANNING COMPANY

. .

PALMER STREET LANDFILL BEDROCK ISOPOTENTIAL MAP FOR MAY 4, 1993 MOENCH TANNING COMPANY

JULY 1993

FIGURE

N

MTC-23-BIM

- Detection monitoring of the regional bedrock groundwater flow system at upgradient and downgradient locations in accordance with 6NYCRR Part 360 or 40 CFR Part 264.98 and 6NYCRR Part 373-2.6(i);
- Early warning detection monitoring of the regional bedrock aquifer at a central location within the boundaries of the landfill to provide an early warning of contaminant release to the regional aquifer;
- Performance monitoring of the shallow overburden groundwater/leachate flow system for periodic evaluation of landfill cover system impact performance and to determine when steady state flow conditions and chemical equilibrium have been established.

2.4.4.1 Monitoring Locations

Detection Monitoring Locations

Detection monitoring will be performed in the upper bedrock zone of the regional bedrock aquifer. The detection monitoring well network will be comprised of five monitoring wells as follows:

- Upgradient Wells: MW-7D and MW-1D.
- Downgradient Wells: MW-3DR, MW-6D, and MW-4D.

Early Warning Detection Monitoring Location

Monitoring of the upper bedrock at P-6D and the lower overburden at P-6B will provide an early warning of contaminant release to the upper bedrock. The rationale for the selection of these wells is as follows:

- P-6D is upgradient of all downgradient monitoring wells;
- Based on vertical hydraulic gradients, leachate has the potential to move downward through the lower overburden and be detected at P-6D;
- Monitoring of the upper bedrock at an interior location will provide an adequate warning or lead time to develop and implement a corrective action program. This conclusion is based on estimates of contaminant migration rates based on calculations using Darcy's Law and on the interpretation of tritium concentrations in bedrock wells.
- The groundwater quality data indicate that P-6D does not currently exhibit elevated levels of contaminants.

Monitoring of the lower overburden (at P6-B) will be performed as an additional monitoring point to detect contaminant releases to the upper bedrock.

Performance Monitoring Locations

The landfill cover system at the Palmer Street Landfill is comprised of 24-inches of a barrier layer and a 12-inches topsoil layer. A previous investigation (Reference 8) concluded that the cover system will provide equivalent performance to a "RCRA Cap". A performance evaluation of the landfill cover system will be conducted to determine the actual impact of the cover system on the site water balance and contaminant loadings to Cattaraugus Creek.

The upper overburden zone is currently recharged primarily by precipitation/infiltration and secondarily by upgradient groundwater flow. Both sources of recharge generate leachate at the Palmer Street Landfill. Construction of the landfill cover system will reduce the generation of leachate due to infiltration of precipitation.

It is conceivable that the leachate quality in the downgradient overburden monitoring wells will deteriorate further as infiltration through the cover system is reduced, although water levels will fall and loading will decrease. Therefore, the performance of the landfill cover system will be evaluated by assessing the reduction in mass loading to Cattaraugus Creek from the upper overburden.

A mathematical model was developed during a previous investigation (Reference 5) that calculated a mass balance for the site. The same model or modifications thereof will be used during the post-closure period. The model uses observed concentration data and a calculated water balance to predict the mass load to Cattaraugus Creek. The calculated impact to Cattaraugus Creek is determined under average flow and low flow conditions.

The cover system performance evaluation will be based on water quality data from the following on-site monitoring locations:

Groundwater:

Upgradient - MW-1 and MW-2A

Groundwater/Leachate:

Area 1- P-1, P-2, P-6C Area 2- P-3B, P-7A, P-8

Downgradient- MW-3, MW-4S, MW-5, MW-6, MW-7S

Waste/Fill Pore Water:

Area 1 - LYS-P2, LYS-MW4, LYS-MW6T Area 2 - LYS-P7B, LYS-P8

2.4.4.2 Monitoring Frequency

The monitoring frequency for each monitoring objective is described below.

Detection Monitoring

Initially, the detection monitoring wells will be sampled quarterly. Semi-annual monitoring should be considered because the groundwater migrates so slowly to the bedrock. This conclusion is based on the results of tritium sampling in the upper bedrock zone, which indicates that the water currently present in the bedrock at MW-3DR, MW-8D, and P-6D entered the groundwater system 30 to 40 years ago. A decision to implement semi-annual monitoring should be based on the performance monitoring results and a review of quarterly monitoring data.

Early Warning Detection Monitoring

The proposed early warning monitoring location at P-6D will be sampled at the same frequency as the detection monitoring wells.

Performance Monitoring

Construction of the landfill cover system will likely influence the existing pattern of overburden groundwater/leachate flow. It is also likely to result in measurable changes in overburden groundwater/leachate quality. The rates at which steady state flow conditions and chemical equilibrium will be re-established are uncertain, but are likely to take place over several years. The cover system performance evaluation will be conducted three years (Fall 1994) and five years (Fall 1996) after completion of construction of the final cover system, and at the end of each five-year period thereafter. Each performance monitoring event will be comprised of two rounds of sampling.

2.4.5 Monitoring Parameters

The recommended monitoring parameters are listed in Table 2-2. These parameters are the same as the interim monitoring parameters being analyzed during the closure period, except that barium and total metals have been deleted from the monitoring program.

Detection monitoring samples that will be analyzed for metals will be filtered to eliminate the interference from metal bearing sediments on the analytical results. To mitigate the potential effects of the filtering process on the samples, filtration will be performed with an in-line filter and under pressure, rather than a vacuum.

Total barium occurs in the waste/fill at concentrations of up to 2060 mg/kg. Soluble barium occurs in the leachate at concentrations that range from 1 to 4 times the 6 NYCRR Part 703 groundwater quality standard of 1.0 mg/l. However, the natural background concentrations of barium in the regional bedrock aquifer have been shown to equal and/or exceed barium concentrations in the leachate.

Moore and Staubitz (1984) have documented barium concentrations in 21 wells on the Cattaraugus Indian Reservation (north of Gowanda) which exceed the groundwater quality standard. Water supply wells for Moench Tanning and the Village of Gowanda have exhibited barium concentrations of 2.4 and 1.7 mg/l, respectively.

On-site wells MW-1D and MW-3DR have exhibited total barium concentrations of 5.5 and 1.7 mg/l, respectively. Neither MW-3DR nor MW-1D exhibit elevated concentrations of other constituents on the interim monitoring parameter list and neither well appears to be influenced by landfill derived leachate. Furthermore, barium in the more shallow bedrock wells, MW-6D and P-6D, which are well situated to intercept leachate contaminated groundwater, do not exhibit elevated barium.

In this context, it is difficult to distinguish between naturally occurring barium and landfill derived barium in the regional bedrock aquifer. Therefore, barium has been deleted from the monitoring program.

TABLE 2-2

MOENCH TANNING COMPANY PALMER STREET LANDFILL

ROUTINE GROUNDWATER QUALITY MONITORING PARAMETERS

Soluble Arsenic Soluble Chromium Soluble Lead

Volatile Organics⁽²⁾⁽³⁾

pH⁽¹⁾

Conductivity⁽¹⁾ Turbidity⁽¹⁾ Groundwater Elevation⁽¹⁾ Temperature⁽¹⁾

All samples collected for analysis of soluble metals will be pressure-filtered in the field immediately upon sample collection.

NOTES:

1. All field parameters (i.e., pH, specific conductance, temperature and turbidity) will be measured in the field. No analysis of these parameters will be required by the laboratory.

2. Volatile organic compounds will be those compounds determined by SW-846, Method 8260.

A benchmark is located on the headwall for the stormwater discharge located between disposal areas 1 and 2. This benchmark will be maintained throughout the postclosure period.

2.6 SITE SECURITY

Following site closure, the property will not be used for any purpose that may jeopardize the integrity of the cover system, venting system or monitoring system. Site access will be restricted except for those vehicles and personnel necessary to provide routine inspection and maintenance as described in Sections 2.1 and 2.2 of this Closure plan. Unauthorized access to the site will be discouraged by virtue of the existing fence on the north, south and west boundaries. The natural boundary of the steep creek bank on the east should be sufficient to restrict unauthorized access which might lead to potential damage of the closure appurtenances of the site from this direction.

r

PIRNIE

3.0 POST-CLOSURE COST AND FINANCIAL ASSURANCE

3.1 **POST CLOSURE COST ESTIMATES**

Preliminary post-closure costs associated with groundwater monitoring and site maintenance as described in Section 2 of the Post-Closure Plan are present in Table 3-1. The post-closure cost estimate will be adjusted annually for inflation and will be revised whenever a change in the plans increase costs.

3.2 FINANCIAL ASSURANCE AND LIABILITY COVERAGE

As required by 40CFR 264.143(f) and 264.147(f) and 6NYCRR 373-2.8(g)(h), documentation that the Brown Group Inc. meets the requirements for financial assurance and liability coverage for the post-closure period will be provided under separate cover.

TABLE 3-1								
PALMER STREET LANDFILL POST-CLOSURE PLAN								
Post-Closure Costs								
Unit of ItemUnit of MeasureUnit QuantityEstimated 								
1. Laboratory Test (Detection Sampling)	Sample Occasion	120	2,200	264,000				
2. Laboratory Test (Performance Sampling)	Sample Occasion	7	8,000	56,000				
3. Sample Collection	Manhours Manhours	3,840 896	50 50	192,000 44,800				
4. Annual Detection Report	Manhours	1,200	60	72,000				
5. Performance Monitoring Report	Manhours	1,470	70	102,900				
6. Site Inspection	Manhours	240	50	12,000				
7. Site Maintenance	Years	30	2,500	<u>75.000</u>				
			Sub-total ngencies @ 10% st-Closure Cost	\$818,700 <u>81,870</u> \$900,570				
Average Annual Cost for 30 Years \$30,020								

Notes:

(1) Laboratory testing based on 30-year post-closure period.

(2) Detection Sampling: 2 people for 8 days per year = 128 manhours per year x 30 years = 3,840 manhours. Performance Sampling: 2 people for 8 days per year = 128 hours per year for seven years = 896 hours.

(3) Quarterly reports by The Brown Group; annual reports by Licensed Professional Engineer. Annual report based on 40 manhours per year for 30 years = 1,200 manhours. Performance Monitoring Report by Licensed Professional Engineer. Estimate based on 210 manhours per event.

(4) Quarterly inspections by The Brown Group; Annual inspections by Licensed Professional Engineer. Site inspection based on one person for one day per year = 8 manhours per year times 30 years = 240 manhours.

(5) Costs are based on 1993 dollars; actual costs may vary depending on cost inflation.

(6) Performance sampling assumes 18 locations and two QA/QC samples will be analyzed for a total of seven performance monitoring events at two rounds per event will be conducted throughout the post-closure period, at a cost of \$200 per sample. Soluble arsenic chromium, lead and volatile organics.

(7) Detection sampling assumes that 7 monitoring wells plus two bank seeps plus two QA/QC samples = 11 samples per sample occasion will be analyzed for solubel arsenic, chromium, lead, volatile organics, pH, conductivity, Eh, and turbidity at a laboratory cost of \$200 per sample. Sampling will occur quarterly.
 (8) We have assumed a lump sum unit cost for site maintenance because the scope of work is not yet known.

TABLE 3-2 PALMER STREET LANDFILL MOENCH TANNING COMPANY ANALYTICAL PARAMETERS/METHODS/PROTOCOL								
Parameter	Method	Method Ref.	Maximum Detection Limits (mg/L) (Note 1)	Holding Time	Preservation (Note 2)	Container (Note 3)		
Soluble Arsenic	3020/7060	1	0.010	Note 4	HNO ₃ to pH <2	500 ml plastic or glass		
Soluble Chromium	3020/7191	1	0.010	Note 4	HNO ₃ to pH <2	500 ml plastic or glass		
Soluble Lead	3020/7421	1	0.010	Note 4	HNO ₃ to pH <2	500 ml plastic or glass		
Purgeable Halocarbons/	5030/8260	1		Note 5	Cool to 4°C	40 ml glass VOA vial with Teflon septum		
Volatile Aromatics	5030/8260	1		Note 5	Cool to 4°C	40 ml glass VOA vial with Teflon septum		
Methyl Ethyl Ketone	5030/8260	1		Note 5	Cool to 4°C	40 ml glass VOA vial with Teflon septum		

PIRNIE

References:

1. Test Methods for Evaluation of Solid Wastes. USEPA SW-846, 3rd Edition. 11/86.

2. Methods for Chemical Analysis of Water and Wastes. USEPA, Cincinnati, Ohio. EPA 6W/4-79-020. Revised March 1983.

Notes:

- 1. The laboratory shall make every reasonable effort to achieve analytical detection limits that are less than or equal to those cited above.
- 2. Preservations will be added to the sample bottles in the field bottles in the field immediately after sample has been collected. Ice will be used to cool samples in the field and in transit to the laboratory.
- 3. Containers shown are those necessary to satisfy volume requirements for water analysis.
- 4. Analysis of water for all metals must be completed within 180 days of the VTSR (Validated Time of Sample Receipt). The VTSR shall be the date on which a sample is received at the laboratory, as recorded on the chain-of-custody form and the lab's central sample log.
- 5. All field samples will be delivered to the lab within one (1) day of their collection. VOA analysis of water samples must be completed within seven days of VTSR.

REFERENCES

- 1. Malcolm Pirnie, Inc., November 1987. Palmer Street Landfill, Supplemental Hydrogeologic Investigation.
- 2. Malcolm Pirnie, Inc., August 1985. Groundwater Quality Assessment Program, Palmer Street Landfill.
- 3. Malcolm Pirnie, Inc., 1983. Site Investigation. Palmer Street Landfill.
- 4. Malcolm Pirnie, Inc., March 1986. Groundwater Quality Assessment Report, Palmer Street Landfill.
- 5. Malcolm Pirnie, Inc., January 1989. Palmer Street Landfill, Evaluation Alternative Cover Systems, Volumes 1, 2 & 3 Reports.
- 6. Malcolm Pirnie, Inc., July 1991. Post-Closure Investigation Report Palmer Street Landfill.
- 7. Malcolm Pirnie, Inc., 1985, revised August 1989. Palmer Street Landfill Closure/Post-Closure Plan.
- 8. Moore R. B. and Staubitz, W. E., 1984, "Distribution and Source of Barium in Groundwater at Cattaraugus Indian Reservation, Southwestern, New York", U. S. Geological Survey, Water Resources Inv. Report, 84-4129.
- 9. U. S. D. A. Soil Conservation Service, 1977. Conservation Plantings on Critical Erosion Areas, Syracuse, NY, Pg. 2.

APPENDIX 1

SITE INSPECTION CHECKLIST AND MAINTENANCE SCHEDULE

SITE INSPECTION CHECKLIST

Date:

Inspected By:

	CONDITION:	(Check)		·••	. · ·
	Acceptable	Not Acceptable	Present	Not Present	REMARKS
 Vegetative Cover a) Landfill Site b) Mining Area c) Drainage Ditches d) Leachate Collection					<u></u>
 2) Integrity of Drainage Dit a) sediment build-up b) pooling or ponding c) slope integrity d) overall adequacy e) anti-erosion matting f) lining 	ches 				
3) Integrity of Gas Vents			· .		· . ·
4) Condition of Access Roada) road conditionb) gates/locks			,		
5) Integrity of Groundwater Monitoring Wells		—			
 6) Integrity of Landfill Cap a) erosion damage b) leachate breakthrough c) settlement d) cracking 					

SITE INSPECTION CHECKLIST - continued

Date:

Inspected By:

	CONDITION:	(Check)				
	Acceptable	Not Acceptable	Present	Not Present	_ REMARKS	
 7) Leachate Collection Systematic a) flow in pipe b) sediment in pipe c) storage tank - structural integrity d) high water level in leachate storage tank 	in 	·			•	
8) Other (e.g. litter, unauthorized dumping, etc	·.			·	 	

MAINIENANCE SCHEDULE

Date:

MAINIENANCE PERFORMED

(check)	
	 Vegetative Cover: a) seeding b) fertilizing c) topsoil replaced d) removal of undesirable vegetation
	2) Drainage Ditches:
	a) excavation
	b) landfill cap replacement
	c) fill
	d) regrading
·	e) vegetative cover placement
	f) stone lining replacement
	g) anti-erosion matting replacement
	3) Leachate Collection System
	a) collection pipe flushing
	b) sediment removal
	c) repair/replacement:
	i) collection piping
<u> </u>	ii) excavation
·	iii) gravel backfill
· · · ·	iv) non-woven filter fabric
	v) fill/cover
	vi) vecetative crear

TIEM

vi) vegetative cover

- vii) storage tank
- 4) Access Road
 - a) fill

2

- b) grading
- c) Repair/Replacement:
 - i) gate
 - ii) locks
 - iii) signs

REMARKS

MAINTENANCE SCHEDUER - continued

.

Date:

Þ

AINIENANCE	
PERFORMED	
(check)	

TIPM

REMARKS

- 5) Repair/Replacement:
 - a) Gas Vents
 - i) excavation
 - ii) gravel fill
 - iii) vent pipe
 - iv) screen
 - v) cover
 - vi) vegetative cover
 - b) Landfill Cap
 - i) excavation
 - ii) cover
 - iii) compaction
 - iv) testing
 - v) grading
 - vi) vegetative cover
 - c) Groundwater Monitoring Wells
 - i) drilling
 - ii) screening
 - iii) casing
 - iv) pipe
 - v) fill/grout
 - vi) cap

APPENDIX 2

SAMPLING AND ANALYSIS PLAN

0605-237-200

SAMPLING PLAN AND QUALITY ASSURANCE PLAN FOR MONITORING ACTIVITIES AT THE PALMER STREET LANDFILL

MOENCH TANNING COMPANY DIVISION OF BROWN GROUP, INC. GOWANDA, NEW YORK

JULY 1993 REVISED MARCH 1994

MALCOLM PIRNIE, INC.

S-3515 Abbott Road P. O. Box 1938 Buffalo, New York 14219

0605-237-200

MALCOLM PIRNIE

APPENDIX 2 POST-CLOSURE PLAN

THE BROWN GROUP PALMER STREET

TABLE OF CONTENTS

1.0	INTRODUCTION1-11.1Background1-11.2Site Description1-21.3Purpose and Objectives1-21.4Hydrogeologic Information1-21.5Summary of Detection Monitoring Program1-31.5.1Performance Monitoring1-41.5.2Infiltrometer Monitoring1-51.6Project Organization1-5	· · · · · · · · · · · · · · · · · · ·
2.0	MONITORING NETWORK2-12.1Detection Monitoring Locations2-12.2Early Warning Detection Monitoring Location2-12.3Performance Monitoring Locations2-12.4Monitor Construction Details2-22.5Hydraulic Monitoring Locations2-2	
3.0	SAMPLING PLAN3-13.1Notification3-13.2Sampling Frequency3-13.2.1Detection Monitoring3-13.2.2Hydraulic Monitoring3-13.2.3Performance Monitoring3-13.2.4Modifications3-23.3Sampling and Field Documentation Methods3-23.4Field Measurements3-43.5Field Equipment Cleaning/Decontamination3-53.6Report3-5	
4.0	LABORATORY ANALYSIS PROGRAM4-14.1Parameters for Physical/Chemical Analysis4-14.2Analytical Methodology/Protocol4-14.3Laboratory QC/Reporting Requirements4-14.3.1Quality Control Requirements4-14.3.2Reporting and Deliverable Requirements4-1	
5.0	QUALITY ASSURANCE PLAN5-15.1Quality Assurance Objectives5-15.1.1Accuracy and Precision5-1	L

0605-237-200

ý

MALCOLM PIRNIE

APPENDIX 2

THE BROWN GROUP PALMER STREET

TABLE OF CONTENTS (Continued)

		5.1.2 Completeness 5-1
		5.1.3 Representativeness 5-2
		5.1.4 Comparability 5-2
	5.2	Sampling Procedures 5-2
	5.3	Sample Custody
	5.4	Calibration Procedures and Frequency 5-3
	5.5	Analytical Procedures 5-3
	5.6	Data Reduction/Validation and Reporting 5-4
		5.6.1 Field Activities
		5.6.2 Laboratory Analysis 5-4
	5.7	Internal Quality Control Checks and Frequency 5-5
	5.8	Performance and System Audits 5-5
	5.9	Preventive Maintenance Procedures & Schedules 5-5
		5.9.1 Field Equipment 5-5
		5.9.2 Laboratory Equipment 5-5
	5.10	Quality Control of Data 5-6
	5.11	Corrective Action
	5.12	Quality Assurance Reports to Management 5-6
6.0	HEAI	TH & SAFETY CONSIDERATIONS
	6.1	Health & Saftey Training Requirements
	6.2	Health & Saftey Plan

LIST OF TABLES

Table No.	Fol	lowing Page
1-1	Correlation of Geologic & Hydrogeologic Units	. 1-3
2-1	Monitoring Well Construction Summary	. 2-2
2-2	Piezometer/Well Point Construction Summary	. 2-2
3-1	Monitoring Parameters	. 3-4
3-2	Analytical Parameter Methods/Protocol Surface & Groundwater Samples	. 3-4

APPENDIX 2

THE BROWN GROUP PALMER STREET

TABLE OF CONTENTS (Continued)

LIST OF TABLES (Continued)

Table No.	Description	Following Page
4-1	Summary of Sample Collection, Analytical Program and Well Monitoring	4-1
4-2	Summary of Sample Collection, Analytical Program for Performance Monitoring	4-1

LIST OF FIGURES

Figure No.	Description	Following Page
1-1	Site Location Map	1-1
2-1	Monitoring Locations	2-2
4-1	Water Sampling Field Data Sheet	3-4
5-1	Chain-of-Custody Record	5-3

LIST OF ATTACHMENTS

Attachment	Description
Α	Geologic Logs & Well Completion Reports
В	Purging and Sample Collection Procedures
С	Calibration of Field Equipment
D	Sampling Equipment Decontamination Procedures

APPROVALS

This Sampling and Quality Assurance Plan has been reviewed and approved by the following individuals.

BROWN GROUP, INC.

Date

MALCOLM PIRNIE, INC.

Project Officer

Project Manager

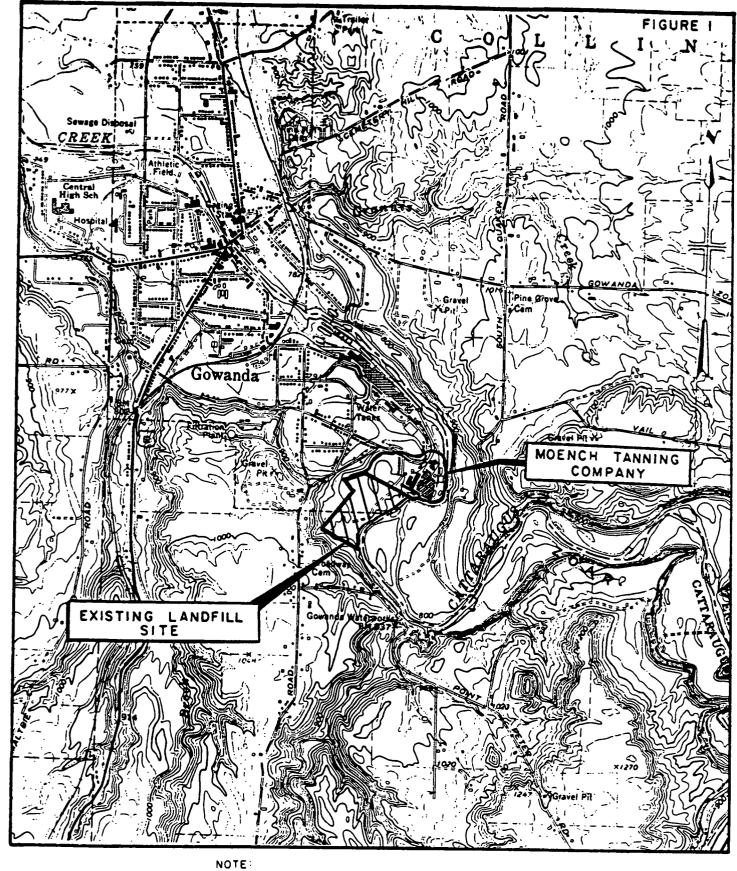
Date

Date

Date

Date

MALCOLM PIRNIE


1.0 INTRODUCTION

1.1 BACKGROUND

Moench Tanning Company (Moench Tanning) operated the Palmer Street Landfill (the site) contiguous to its tannery in Gowanda, New York from the late 1800s through July 1983 (Figure 1-1). The site occupies approximately 25 acres and is bound on the west and south by a steeply-sloped wooded area, on the northwest by a swampy area and on the east by Cattaraugus Creek. The former Tannery complex (now closed) serves as the northeast boundary of the site.

A plan for closure of the landfill in accordance with the requirements of 6NYCRR Part 373 and 40 CFR Part 265 (viz. RCRA) was approved by the New York State Department of Environmental Conservation in September 1989. Closure, which consists of grading and placement of a cover system (viz. 2-feet of low permeability soil and 12-inches of topsoil), was initiated in the Spring of 1990 and was completed in the Fall of 1991. Although the site has been closed as a RCRA hazardous waste site, Moench Tanning and its parent company, The Brown Group, Inc. has maintained and continues to maintain that no RCRA hazardous waste were disposed of at the site. Moench Tanning is now closed, and The Brown Group is continuing to pursue reclassification of the site as a 6NYCRR Part 360 landfill site.

A post-closure, water quality monitoring program has been developed for the Site. Post-closure water quality will be monitored in accordance with 6NYCRR Part 360 or in accordance with a post-closure permit issued under 40 CFR 264.98 and 6NYCRR Part 373.2.6. As discussed in the Palmer Street Landfill Closure/Post-Closure Plan, February 1989, the post-closure monitoring program has been developed in two phases. Phase I involved continued routine monitoring of the existing monitoring system; and further site assessment. A site assessment report entitled "Post-Closure Investigation Report - Palmer Street Landfill was completed in July 1991 and approved by the NYSDEC in March 1993. The basis for the long term post-closure detection monitoring program (viz. Phase II) described herein has been presented as follows:

TOPOGRAPHY TAKEN FROM 1963 GOWANDA, N.Y. U.S.G.S. QUADRANGLE 7.5 MIN. SERIES SCALE: 1"= 2000'

SITE LOCATION MAP PALMER STREET LANDFILL GOWANDA, N.Y. MOENCH TANNING, CO.

- Monitoring recommendations in the Post-Closure Investigation Report;
- Comments on the Report by the NYSDEC dated March 9, 1993; and
- Quarterly and annual monitoring reports which document changes to the regional bedrock flow pattern described previously in the Post-Closure Investigation Report.

1.2 SITE DESCRIPTION

The landfill site is located within the Erie-Niagara Drainage Basin where Cattaraugas Creek flows out of the Appalachian Uplands and into Lake Erie Lowland. The site is situated adjacent to steep hillsides to the south and west. The north boundary is adjacent, in part, to a wetland area which discharges to Cattaraugus Creek via a sewer line passing through the former Tannery Site. Cattaraugus Creek bounds the site on the east. A final landfill cover system has been constructed and vegetative growth established.

1.3 PURPOSE AND OBJECTIVES

The purpose of this Sampling Plan and Quality Assurance Plan is to identify and document sample locations, sample collection procedures, analytical parameters, and analytical methods to be employed to meet monitoring requirements for the landfill. The quality assurance measures to be taken to ensure acceptable monitoring results are detailed in this plan.

1.4 HYDROGEOLOGIC INFORMATION

Geologic units occurring beneath the site can be divided into three major groups as follows:

- Upper overburden deposits comprised of:
 - waste/fill
 - alluvial silt, sand, and gravel
 - glaciolacustrine silt and sand

Lower overburden deposits comprised of:

0605-237-200

1-2

- glaciolacustrine silt and clay
- glacial till
- glaciofluvial sand and gravel
- Bedrock deposits comprised of siltstone and shale.

A correlation of geologic units and hydrogeologic units is presented in Table 1-1. Detailed geologic logs from on-site monitoring wells are presented in Attachment A.

A full thickness of the saturated overburden has been defined as the uppermost aquifer (see NYSDEC comments, dated August 15, 1989, on the February 1989 Closure/Post-Closure plan for the Palmer Street Landfill). This definition recognized that the entire thickness between the waste/fill and bedrock is hydraulically connected. Also granular deposits in the lower overburden do not appear to be continuous beneath the landfill and, in some cases may be isolated from one another by a substantial thickness of low permeability till. The term aquifer is used in the sense that the unit will yield water in quantities that are sufficient for monitoring purposes, and is the primary potential contaminant migration pathway to a regional bedrock aquifer.

1.5 SUMMARY OF DETECTION MONITORING PROGRAM

The long-term post-closure detection monitoring program at the Palmer Street Landfill will consist of three (3) principle elements, which are as follows:

- Detection monitoring of the regional bedrock groundwater flow system at upgradient and downgradient locations in accordance with 6NYCRR Part 360 or 40 CFR Part 264.98 and 6NYCRR Part 373-2.6(i);
- Early warning detection monitoring of the regional bedrock aquifer at a central location within the boundaries of the landfill to provide an early warning of contaminant release to the regional aquifer;
- Performance monitoring of the shallow overburden groundwater/leachate flow system for periodic evaluation of landfill cover system performance and to determine when steady state flow conditions and chemical equilibrium have been established. The performance monitoring program is discussed further below.

TABLE 1-1 MOENCH TANNING COMPANY PALMER STREET LANDFILL SAMPLING PLAN & QUALITY ASSURANCE PLAN CORRELATION OF GEOLOGIC AND HYDROGEOLOGIC UNITS

GEOLOGIC UNITS

HYDROGEOLOGIC UNITS

Uppermost Aquifer					
Waste/Fill	Upper Overburden				
Alluvial Silt, Sand & Gravel	Unconfined Water/Leachate				
Glaciolacustrine Silt & Sand	Bearing Zone				
Glaciolacustrine Silt & Clay	Lower Overburden				
Glacial Till	Confining Water				
Glaciofluvial Sand & Gravel	Bearing Zone				
	Regional Aquifer				
Bedrock Deposits	Regional Confined				
	Water Bearing Zone				

1.5.1 Performance Monitoring

The landfill cover system is comprised of 24-inches of clay and 12-inches of topsoil layer. A previous study (Malcolm Pirnie, 1989) concluded that the cover system will provide equivalent performance to a "RCRA Cap". Performance evaluations of the landfill cover system will be conducted to determine the actual impact of the cover system on the site water balance and contaminant loadings to Cattaraugus Creek.

The upper overburden zone is currently recharged primarily by precipitation/filtration and secondarily by upgradient ground water flow. Both sources of recharge generate leachate at the Palmer Street Landfill. Construction of the landfill cover system will reduce the generation of leachate due to infiltration of precipitation.

It is conceivable that the leachate quality in the downgradient overburden monitoring wells will deteriorate further as infiltration through the cover system is reduced, although water levels will fall and loading will decrease. Therefore, the performance of the landfill cover system will be evaluated by assessing the reduction in mass loading to Cattaraugus Creek from the upper overburden.

A mathematical model was developed during a previous investigation (see Malcolm Pirnie, 1989) that calculated a mass balance from the load inputs and load outputs at the site. The same model or modifications thereof will be used during the post-closure period. The model uses observed concentration data and a calculated water balance to predict the mass load to Cattaraugus Creek. The calculated impact to Cattaraugus Creek is determined under average flow and low flow conditions.

1.5.2 Infiltrometer Monitoring

Five infiltrometers have been installed beneath the landfill cap to be used in the assessment of the permeability of the cap. During each quarterly event water levels in the infiltrometers are measured and the amount of water infiltrating the cap is calculated.

1.6 PROJECT ORGANIZATION

The project will be managed over the course of the post closure monitoring period by The Brown Group, Inc. and its designated subcontractors.

0605-237-200

MALCOLM PIRNIE

2.0 MONITORING NETWORK

2.1 DETECTION MONITORING LOCATIONS

Detection monitoring will be performed in the upper bedrock zone of the regional bedrock aquifer. The detection monitoring well network is comprised of four monitoring wells as follows:

•	Upgradient Wells:	MW 1D MW-7D		
•	Downgradient Wells:	MW - 3DR MW - 4D MW - 6D		

• Upgradient Well MW-8D is to be sampled one quarter per year for three years. After reviewing three years of data, Moench Tanning may petition the Department to discontinue sampling of MW-8D.

In addition, two bank seeps located along Cattaraugus Creek are to be sampled. These are designated as follows:

- Area 1: BS-1, located southeast of MW-6.
- Area 2: BS-3, located southeast of MW-3

2.2 EARLY WARNING DETECTION MONITORING LOCATION

Monitoring of the upper bedrock and lower overburden will be performed to provide an early warning of contaminant release to the regional bedrock aquifer. The P-6 piezometer cluster is to be sampled as follows:

• Upper bedrock piezometer: P-6D

• Lower Overburden piezometer: P-6B

Revised 3/94 0605-237-200

2-1

2.3 PERFORMANCE MONITORING LOCATIONS

The cover system performance evaluation will be based on water quality data from the following on-site monitoring locations:

Groundwater:

Upgradient - MW-1 and MW-2A

Groundwater/Leachate:

Area 1 - P-1, P-2, P-6C Area 2 - P-3B, P-7A, P-8 Downgradient - MW-3, MW-4S, MW-5, MW-6, MW-7S

Waste/Fill Pore Water

Area 1 - LYS-P2, LYS-MW4, LYS-MW6T Area 2 - LYS-P7B, LYS-P8

Infiltrometers (hydraulic monitoring only):

Area 1 - I3, I4, I5 Area 2 - I1, I2

2.4 MONITOR CONSTRUCTION DETAILS

Construction details and survey information for on-site wells, well points, and piezometers is presented in Table 2-1 and Table 2-2. Detailed well completion reports and the infiltrometer design are presented in Attachment A. All monitoring locations are shown of Figure 2-1.

2.5 HYDRAULIC MONITORING LOCATIONS

The groundwater level will be measured in each of the existing monitoring locations listed on Tables 2-1 and 2-2. In addition water levels in the five infiltrometers will be measured.

Revised 3/94 0605-237-200

TABLE 2-1

MOENCH TANNING COMPANY

PALMER STREET LANDFILL

POST CLOSURE INVESTIGATION

MONITORING WELL CONSTRUCTION SUMMARY

	ELEVATIONS		ELEVATIONS DEPTHS				DIMENSIONS				
	GROUND	WELL RISER	TOP OF	TOP OF	BASE OF	BASE OF	BOREHOLE	WELL	TYPE OF	SCREEN LENGTH	
WELL NO.	SURFACE	ELEVATION	SAND PACK	SCREEN	WELL	SAND PACK	DIAMETER	DIAMETER	SAND PACK	X SLOT SIZE	NOTE8
MW-1-83	822.00	825.00	8.0	9.0	29.5	29.5	7 in.	2*	#4	20' x .010"	
		828.05 (1)									
MW1D90	821.56	822.70	172.4	174.3	184.3	186.1	6 in.	.2*	#4	10' x .010"	6" Overburden
		827.81 (1)		··-·· · · · · · · · · · · · · · · · · ·							casing SCH 80 PVC
MW-2 -8 3	808.00	811.42	9.0	10.0	30.0	30.0	7 in.	2″	#4	20' x .010"	Replaced
MW-2 A-9 0	808.22	810.62	7.0	9.0	14.0	14.0	10.5 in.	2"	#1	5' x .008"	
MW-3-83	804.20	807.21	3.0	3.5	13.5	13.5	7 in.	2"	#4	10' x .010"	
	1	810.81 (2)									
MW-3D-87	804.49	807.22	51.0	56.5	61.5	69.5	4.6 in.	2*	#2	5' x .010"	
		810.73 (2)									
MW30R-68	804.79	806.96	86.0	87.0	97.0	100.0	6 in.	2"	#4	10' x .010"	
		810.47 (2)									
MW-4-83	800.50	803.85	6.5	7.0	17.0	17.5	7 in.	2"	#4	10' x .010"	Abandoned
	ļ	806.75 (2)									
MW-48-93	802.95	805.22	11.0	13.0	23.0	23.3	10.5 in.	2"	#1	10' x .006"	
MW-4D-93	803.47	805.93	6 0.5	62.5	72.5	72.9	4.0 in.	2"	#2	10' x .010"	
MW-6-83	795.60	798.91	6.0	8.5	16.5	17.0	7 in.	2"	#4	10' x .010"	
		805.35 (2)									
M W-6-8 3	795.60	798.65	4.0	4.0	14.0	14.8	7 in.	2*	#4	10' x .010"	
		800.48 (2)									L
MW6D90	795.78	796.15	20.5	22.5	32.5	33.8	4 in.	2"	#2	10' x .010"	6" overburden
		800.63 (2)	1								casing SCH 80 PVC

TABLE 2-1 CONT'D. MOENCH TANNING COMPANY PALMER STREET LANDFILL POST CLOSURE MONITORING MONITORING WELL CONSTRUCTION SUMMARY

	ELEVATIONS			DEPTHS				DIMENSIONS			
	GROUND	WELL RISER	TOP OF	TOP OF	BASE OF	BASE OF	BOREHOLE	WELL	TYPE OF	SCREEN LENGTH	
WELL NO.	SURFACE	ELEVATION	SAND PACK	SCREEN	WELL	SAND PACK	DIAMETER	DIAMETER	SAND PACK	X SLOT SIZE	NOTES
MW7-87	797.60	800.50	20.7	22.5	27.5	28.0	7.5 in.	2"	#2	5' x .010"	
MW-78-87	797.60	800.38	4.5	7.0	12.0	13.0	7.5 in.	2*	#2	5' x .010"	
WW-7D-87	797.60	800.40	32.0	34.0	39.0	39.5	4 in.	2"	#2	5' x .010"	
MW-8-87	816.00	818.31 821.82 (1)	97.0	100.5	105.5	105.5	3 in.	2"	•	5' x .010"	*collapsed sand/gravel
MW-8D-87	816.00	818.45 821.89 (1)	114.5	117.0	122.0	123.0	4 in.	2*	#2	5' x .010"	

Notes: All elevations are in feet above mean sea level.

(1) Well casings raised August 16-18, 1990

(2)Well casings raised June 1991.

All depths are in feet below ground surface.

Resurveyed on September 13, 1990.

Resurveyed 09/11/91 by Hayes Enterprises

TABLE 2-2

.

MOENCH TANNING COMPANY

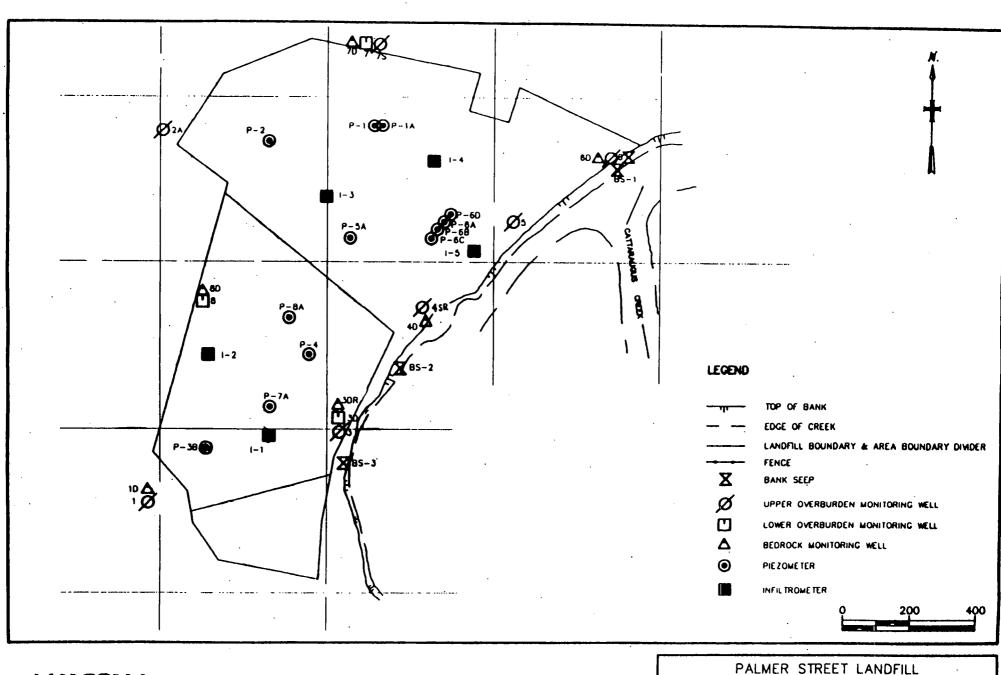
PALMER STREET LANDFILL

POST CLOSURE INVESTIGATION

PIEZOMETER/WELL POINT CONSTRUCTION SUMMARY

	ELEVATIONS		DEPTHS (below orginal grade)								
PIEZOMETER	ORIGINAL		TOP OF	TOPOF	BASE OF	BASE OF	BOREHOLE	WELL	TYPE OF	SCREEN LENGTH	·
NUMBER	GRADE (4)	WELL RISER	SAND PACK	SCREEN	WELL	SAND PACK	DIAMETER	DIAMETER	SAND PACK	x SLOT SIZE	NOTES
P-1-88	801.26	803.86	5.0	7.0	18.0	18.0	10.5 in.	2"	#2	10' x .010"	· · · · · · · · · · · · · · · · · · ·
		811.85 (2)									
P-1A-88	801.53	804.00	4.0	5.0	7.5	7.5	10.5 in.	2"	#2	2' x .010"	
		811.91 (2)					•				
P-2-88	802.63	804.99	4.5	5.5	11.0	11.0	10.5 in.	2″	#2	5' x .010"	
		811.94 (2)					-				
P-38-88	814.97	817.68	4.0	5.0	10.5	12	10.5 in.	2"	#2	5' x .010"	
		822.07 (1)									
P-4-88	808.53	808.38	5.0	8.0	14.0	14.0	10.5 in.	2"	#2	5' x .010"	Screen plug dislodged
		813.54 (1)									
P-6A-88	802. 99	805.89	5.0	6.7	13.0	13.0	10.5 in.	2*	#2	5' x .010"	Destroyed
P-6-88	800.12	801.77	6.0	8.0	14.0	14.0	10.5 in.	2"	#2	5' x .010"	Destroyed
P-6A-90	804.34	805.58 810.37 (2)	17.4	18.4	20.8	20.8	7.25 in.	1*	#1	2' x .006" .	1" Riser/10" Surface Casing
P-68-90	804.08	808.56	32.0	33.0	35.0	35.0	7.25 in.	1*	#1	2' x .006"	1" Riser/10" Surface Casing
		810.35 (2)									
P-6C-00	803.89	805.86	9.0	11.0	16.0	16.0	7.5 in.	2"	#1	5' x .008"	
		810.38 (2)									
P-6D-00	804.40	806.59	48.1	50.4	55.4	55.4	7.25 in.	2"	#1	5' x .008"	10" Surface Casing
		810.30 (2)									
P7 A88	809.45	811.55	9.5	11.7	16.7	16.7	7.5 in.	2*	#2	5' x .010"	
		816.92 (1)									
P-8 A-8 8	805.29	806.66	6.7	8.5	13.5	14.2	7.5 in.	2"	#2	5' x .010"	
		809.0 (1,3)									
WP-1-88	-	816.29	-	-	-	-	-	-	-	-	Steel Well Point
		822.16 (2)									•
WP488	-	800.34	-	-	-	-	-	-	-	-	Steel Well Point
		806.31 (4)									
Notes: All eleva	tions are in feet	above mean sea	level.	(1) Well casin	os raised Augu	st 16-18, 1990		(2) Well casings	(4) Original grade elevations		

(1) Well casings raised August 16–18, 1990


Resurveyed Sept. 13, 1990

(2) Well casings raised June 1991.

(4) Original grade elevations

All depths are in feet below ground surface.

Resurveyed 09/11/91 (3)Estimated from well depths. changed due to regrading

PIRNIE

MOENCH TANNING COMPANY

MONITORING LOCATIONS

JULY 1992

MOE - 23

MALCOLM PIRNIE

3.0 SAMPLING PLAN

3.1 NOTIFICATION

The NYSDEC (Region 9) will be given verbal notice by the owner at least seven days prior to any sampling event.

3.2 SAMPLING FREQUENCY

The frequency of sampling for each of the three elements of the monitoring program are provided below.

3.2.1 Detection Monitoring

Groundwater samples will be collected from the five detection monitoring bedrock wells and two bank seeps described in Section 2.1 on a quarterly basis (i.e., once every three months).

In addition, the early warning detection monitoring piezometers described in Section 2.2 will be sampled on a quarterly basis.

3.2.2 Hydraulic Monitoring

The water levels will be measured in each of the existing groundwater monitoring points listed in Tables 2-1 and 2-2. In addition, water levels in the five infiltrometers and any newly installed wells will be measured. The depth to water will be measured to the nearest hundredth (0.01) foot using an electronic liquid level sensor. Groundwater level measurements will be made on a quarterly basis.

3.2.3 Performance Monitoring

A cap performance evaluation as described in Section 1.5 is scheduled to be performed as follows:

Three years after completion of the landfill cap (e.g., Fall 1994);

Revised 3/94 0605-237-200

- Five years after the completion of the landfill cap (Fall, 1996); and
- At the end of each successive five year period thereafter to the end of the post-closure monitoring period.

Infiltrometer hydraulic monitoring will be performed quarterly or in conjunction with the detection monitoring program. Each performance monitoring event will be comprised of two rounds of sampling.

3.2.4 Modifications

Modifications to the sampling program will be assessed after the initial cap performance evaluation and a review of the first three years of monitoring data.

3.3 SAMPLING AND FIELD DOCUMENTATION METHODS

Collection of representative groundwater samples will require that the monitoring wells be adequately purged prior to sampling.

Wells that recover continuously and exhibit water levels of less than 25 feet below top of casing (TOC) (maximum lift capacity of a peristaltic pump) will be purged by slowly pumping with a peristaltic pump to remove any stagnant water within the casing. The minimum anticipated pumping rate is 0.2 liters/minute for each well. Field parameters of pH, specific conductivity, temperature, and turbidity will be monitored periodically during purging. Purging will be complete when:

- 1) Field parameters have stabilized (i.e., when field parameters have changed less than 10 percent over a 10- to 15-minute period); or
- 2) Three (3) well volumes have been withdrawn.

Wells that do not recover continuously at the rate of pumping by the peristaltic pump, or which have a water level greater than 25 feet below TOC will be purged by bailing. These wells will be purged dry and allowed to recover for a maximum period of 24 hours before sampling. However, all wells will be sampled within three hours of purging, if possible.

Piezometers P-6B (early warning detection location) can not be completely purged and sampled within a 24 hour period. If bailed dry P-6B remains dry for period of 24 to 48

hours. Complete recovery requires several weeks. This behavior is the result of the short monitoring interval and the low hydraulic conductivity of the formation. Therefore, in order to sample within a 24 hour period, P-6B will be purged only to the top of the screened interval and samples will be collected from within the screened interval.

Groundwater samples will be collected by methods described below:

Soluble Metals

For wells which exhibit water levels of less than 25 feet below grade (after purging) groundwater samples for soluble metals analyses will be collected via a peristaltic pump. The peristaltic pump will be equipped with an in-line .45 micron disposable filter. The groundwater sample will be pressure filtered directly from the well via the peristaltic pump and collected in appropriate sample containers.

If a peristaltic pump is not available, and for wells with water levels greater than 25 feet below grade, groundwater samples will be collected by a dedicated teflon bailer. An air pump will then be used to "push" the groundwater sample from the bailer through a disposable .45 micron filter and into the laboratory supplied sample container. Alternatively, some samples will be pumped directly from the dedicated bailer (using a peristaltic pump and disposable tubing) through an in-line disposable 0.45 micron filter, and to the laboratory supplied sample container.

Volatiles

All groundwater samples for volatile organic analyses will be obtained by use of a dedicated teflon bailer and prior to the collection of soluble metals samples. All wells will be sampled with dedicated or disposable sampling equipment, including bailers, filters, and tubing for use with the peristaltic pump. Decontamination of groundwater sampling equipment will not be required due to the dedicated or disposable nature of this equipment.

Bank Seeps

Bank seep samples will be collected using the following procedures:

1. Using a small precleaned trowel and shovel, carefully dig a shallow depression in the immediate area of seep discharge.

- 2. Allow a minimum of 30 minutes for groundwater to accumulate in depression prior to sampling.
- 3. Obtain a representative groundwater sample, without disturbing bottom sediments, by carefully submersing each appropriate precleaned sample container. Samples for volatile organic parameters will be collected first.

Groundwater samples will be slowly transferred to the appropriate precleaned sample containers. Groundwater samples will be analyzed for the parameters listed in Tables 3-1 and 3-2, as appropriate. Pore water will not be sampled for analysis of volatile organics during performance monitoring events due to likely volatilization during sample collection.

The specific procedures and methodologies to be employed for collecting representative groundwater samples from the monitoring wells listed in Section 2.1 are presented in Attachment B.

Observations and measurements made in the field will be documented in a permanent field logbook and on the field data sheets. Other data and information recorded will include the sampling date, sample description and identification code, sample preservation methods, the sampling conditions (e.g., weather, etc.) and water level measurements for each well. Documentation procedures are presented in Section 5.6.1.

3.4 FIELD MEASUREMENTS

Measurements of pH, Eh, temperature, turbidity, and specific conductivity will be made in the field immediately upon sample collection using calibrated instrumentation. Field methods and calibration of field equipment is specified in Attachment C. Stabilized field parameter readings and the volume purged will be recorded on field data sheets. Field-measured turbidities should be less than approximately 50 NTUs before collecting samples for metals analysis if possible.

TABLE 3-1

THE BROWN GROUP PALMER STREET LANDFILL

MONITORING PARAMETERS

Soluble Arsenic Soluble Chromium Soluble Lead

Volatile Organics⁽²⁾⁽³⁾

pH⁽¹⁾

Specific Conductance⁽¹⁾ Turbidity⁽¹⁾ Groundwater Elevation⁽¹⁾ Temperature⁽¹⁾ Odor Sample Appearance

All samples collected for analysis of soluble metals will be pressure-filtered in the field immediately upon sample collection.

NOTES:

1. All field parameters (i.e., pH, specific conductance, temperature and turbidity) will be measured in the field by sampling personnel. No analysis of these parameters will be required by the laboratory.

2. Volatile organic compounds will be those compounds determined by SW-846, Method 8260.

3. Volatile organics will not be analyzed on pore water samples during performance monitoring events.

TABLE 3-2

PALMER STREET LANDFILL Moench Tanning Company Analytical Parameters/Methods/Protocol

Parameter	Method	Method Ref.	Maximum Detection Limits (mg/L) (Note 1)	Holding Time	Preservation (Note 2)	Container (Note 3)
Soluble Arsenic Soluble Chromium Soluble Lead Purgeable Halocarbons Volatile Aromatics Methyl Ethyl Ketone	3020/7060 3020/7191 3020/7421 5030/8260 5030/8260 5030/8260	1 1 1 1 1	0.010 0.010 0.010	Note 4 Note 4 Note 5 Note 5 Note 5 Note 5	HNO3 to pH < 2 HNO3 to pH < 2 Cool to 4 deg.C Cool to 4 deg.C	500 ml plastic or glass 500 ml plastic or glass 500 ml plastic or glass 40ml glass VOA vial with Teflon septum 40ml glass VOA vial with Teflon septum 40ml glass VOA vial with Teflon septum

References

1. Test Methods For Evaluation of Solid Wastes. USEPA SW-846, 3rd Edition. 11/86

2. Methods For Chemical Analysis of Water and Wastes. USEPA, Cincinnati, Ohio. EPA 6W/4-79-020. Revised March 1983.

NOTES:

1. The laboratory shall make every reasonable effort to achieve analytical detection limits that are less than or equal to those cited above.

- 2. Preservations will be added to the sample bottles in the field bottles in the field immediately after sample has been collected. Ice will be used to cool samples in the field and in transit to the laboratory.
- 3. Containers shown are those necessary to satisfy volume requirements for water analysis.
- 4. Analysis of water for all metals must be completed within 180 days of the VTSR (Validated Time of Sample Receipt). The VTSR shall be the date on which a sample is received at the laboratory, as recorded on the chain-of-custody form and the lab's central sample log.
- 5. All field samples will be delivered to the lab within one (1) day of their collection. VOA analysis of water samples must completed within seven days of VTSR.

PIRNIF

3.5 FIELD EQUIPMENT CLEANING/DECONTAMINATION

All non-dedicated sampling devices (trowels, shovels, etc.) will be cleaned in accordance with the cleaning procedures presented in Attachment D.

3.6 REPORT

Following each sampling event, a report summarizing the monitoring data will be submitted to the NYSDEC. The report will include groundwater elevation data, a summary of methods and procedures used, analytical data, and a comparison of the analytical data to NYSDEC Class "GA" groundwater quality standards and Class "D" surface water standards, as appropriate. Groundwater elevation data will be used to document upgradient and downgradient groundwater flow directions at the site. The appendices to the report will include field data sheets and a signed laboratory report which will include the quality control data and chain-of-custody documentation. MALCOLM PIRNIE

4.0 LABORATORY ANALYSIS PROGRAM

4.1 PARAMETERS FOR PHYSICAL/CHEMICAL ANALYSIS

A summary of the environmental samples collected during the detection monitoring program and the analyses performed is presented in Table 4-1. A summary of environmental samples collected during the performance monitoring program and the analyses performed is presented in Table 4-2.

4.2 ANALYTICAL METHODOLOGY/PROTOCOL

The methods that will be used for chemical analysis of all groundwater samples collected during this monitoring program are presented in Table 3-2. The sampling holding times, preservation, and container requirements are also presented.

4.3 LABORATORY QC/REPORTING REQUIREMENTS

Laboratory quality control and reporting requirements will be as identified below.

4.3.1 Quality Control Requirements

- A subcontract laboratory will perform all standard in-house QA/QC necessary to control the introduction of contamination in the laboratory and to insure the accuracy and precision of the data.
- The laboratory will strictly adhere to the quality control requirements specified in the analytical method references given in Table 3-2.
- The laboratory will provide trip blanks for aqueous volatile organic compounds analyses.

4.3.2 Reporting and Deliverable Requirements

• The contract laboratory will submit two (2) copies of a final complete analytical report to the owner or its representative within 20 business days of receipt of the samples.

0605-237-200

The analytical report submitted by the laboratory will conform to all reporting and deliverable requirements specified below. The analytical report will include for each sample:

- Date collected
- Date extracted or digested
- Date analyzed
- Analytical methodology
- Method detection limits
- Sample dilution factor
- A case narrative including a discussion of all QC problems and corrective actions taken
- Chain-of-custody record
- QC data that will be submitted with each report will include:
 - Field Duplicates
 - Method blank
 - Trip blank
 - Reference standard sample recoveries
- The analytical report prepared by the laboratory will describe, in lay terms, any and all QA/QC problems encountered during analysis of the samples.
- The owner or its representative will incorporate the analytical results into a comprehensive sampling report that will be submitted to NYSDEC within ten (10) weeks of completion of the sampling event.

4-2

Revised 3/94 0605-237-200

MALCOLM TABLE 4-1 PALMER STREET LANDFILL Summary of Sample Collection, Analytical Program for Detection Monitoring 1. GROUNDWATER A. Summary of Samples 1. Seven (7) wells will be sampled quarterly (i.e. approximately every three (3) months) each calendar year. Well MW-8D will be sampled during one quarter per year. After 3 years of 2. sampling, Moench Tanning may petition the Department to discontinue sampling Well MW-8D. **B.** Analytical Parameters/Methods The samples collected at all wells during each sampling event will be analyzed for 1. the parameters listed in Table 3-1 using the methods identified in Table 3-2. 2. Field measurements of pH, specific conductivity, temperature and turbidity will be taken at all wells during each quarterly monitoring event. BANK GROUNDWATER SEEP SAMPLES 2. A. Summary of Samples 1. One (1) bank seep sample will be collected as a grab from a drainage ditch located along the north landfill boundary near MW-6. 2. One (1) bank seep sample will be collected as a grab along the bank of the Cattaraugus Creek at a point south of monitoring well MW-3. 3. Sampling frequency will be the same as given in item 1.A.1. **B.** Analytical Parameters/Methods Same as item 1.B.1. 1. 3. **QUALITY CONTROL SAMPLES** Summary of Samples Α. One (1) equipment blank will be prepared during each quarterly sampling event in 1. which sampling equipment is required to be cleaned between sampling locations (a maximum of 4 equipment blanks). One (1) trip blank will be prepared and accompany the samples collected each day. 2. One (1) duplication sample will be analyzed each quarterly sampling event. **B.** Analytical Parameters/Methods Equipment blanks 1. a. Same as Item 1.B.1. 2. Trip blanks b. Only the volatile organic parameters will be analyzed using the methods identified in Table 3.

TABLE 4-2

PALMER STREET LANDFILL

Summary of Sample Collection, Analytical Program for Performance Monitoring

1. GROUNDWATER

- A. Summary of Samples
 - 1. Thirteen (13) wells will be sampled three years after completion of the cover system; five years after completion of the cover system; and each five years thereafter. Two rounds of sampling will be conducted for a total of 26 groundwater samples per performance monitoring event.
- **B.** Analytical Parameters/Methods
 - 1. The samples collected at all wells during each sampling event will be analyzed for the parameters listed in Table 3-1 using the methods identified in Table 3-2.
 - 2. Field measurements of pH, specific conductivity, temperature and turbidity will be taken at all wells during each quarterly monitoring event.

2. PORE WATER SAMPLES

- A. Summary of Samples
 - 1. Five (5) pore water samples will be collected as grab samples from the lysimeter installations. Two rounds of sampling will be performed for a total of 10 pore water samples per performance monitoring event.
 - 2. Sampling frequency will be the same as given in item 1.A.1.
- **B.** Analytical Parameters/Methods
 - 1. Same as item 1.B.1, exluding volatile organics.

3. QUALITY CONTROL SAMPLES

- A. Summary of Samples
 - 1. One (1) equipment blank will be prepared during each round of sampling (2 QC samples per performance monitoring event). One (1) trip blank will be prepared and accompany the samples collected each day.
 - 2. Two (2) duplicate samples will be analyzed each monitoring event (one duplicate per round).

B. Analytical Parameters/Methods

- 1. Equipment blanks
 - a. Same as Item 1.B.1.
- 2. Trip blanks
 - b. Only the volatile organic parameters will be analyzed using the methods identified in Table 3-2.

5.0 QUALITY ASSURANCE PLAN

This Quality Assurance (QA) Plan presents, in specific terms, the policies, organizations, objectives, functional activities, and specific QA and quality control (QC) activities designed to achieve the data quality goals of the Palmer Street Landfill monitoring program. This plan describes the elements that are considered to be an essential part of a QA Plan as defined by the USEPA Office of Research and Development.

The QA applicable to both the field sampling activities and the laboratory analysis of these samples is addressed in this document. The QA/QC that will be employed during the acquisition of field samples is based on the use of accepted sampling procedures as specified in Appendices B, C and D. The laboratory analyses and QA/QC procedures will be in accordance with the requirements of 40 CFR Part 136. Analytical services will be performed by a contract laboratory that has written QA/QC standard operating procedures (SOPs) that describe the in-house procedures employed to guarantee, to the extent possible, the quality of all analytical data. The contract laboratory will be a NYS Department of Health ELAP-approved laboratory.

5.1 QUALITY ASSURANCE OBJECTIVES

The QA sample collection and analysis objectives are stated in terms of accuracy, precision, completeness, representativeness and comparability.

5.1.1 Accuracy and Precision

Accuracy will be determined on the basis of analyte recoveries from spiked samples. Precision will be determined in terms of the coefficient of variance based on duplicate sample analysis.

5.1.2 Completeness

The QA objective for completeness is to collect and analyze all environmental samples in a manner such that valid data is obtained from 100% of the samples. Achievement of this objective will rely on the use of strict sample identification and custody procedures, analysis of samples within required holding times, use of standard reference

Revised 3/94 0605-237-200

MALCOLM

5-1

materials, proper instrument calibration and maintenance, analysis of quality control samples, performance audits, and corrective action anytime QC acceptance criteria are exceeded.

5.1.3 Representativeness

An objective of the sampling is the collection of samples that are representative of the matrix (i.e., ground water, surface water, leachate, etc.) from which they were collected. Achievement of this objective will rely on the use of sampling procedures, as described in Section 3.3 and Appendix A, that have been designed with the goal of obtaining representative samples.

5.1.4 Comparability

The QA objective for comparability is the generation of data that can be used to make valid comparisons with other data that may be generated in the future at this or other sites. The objective also involves the analysis of the samples in a manner that produces results comparable to the results that would be obtained by another laboratory using the same analytical procedure. This objective is achieved by the use of standard materials traceable to the National Bureau of Standards; the use of accepted procedures for sample collection and analysis; and analysis of quality control samples to validate the analytical results.

5.2 SAMPLING PROCEDURES

The procedures that will be used for the collection, handling, preservation and analysis of samples are presented in Attachment B.

5.3 SAMPLE CUSTODY

Immediately following sample collection, each sample container will be marked with the following information:

- Sample Code
- Project Number
- Date/Time of Collection

0605-237-200

Sampler's Initials

The sample code will indicate the site location, media sampled, and sample station. All samples will be recorded and tracked under strict chain-of-custody protocols. In the field, each sample will be checked for proper labeling. The samples will then be packed into coolers with ice and transported to the laboratory. A chain-of-custody form (Figure 5-1) will be completed for each cooler. The form will be signed and dated by the person who collected the samples, the person to whom the samples were relinquished for transport to the laboratory, and the laboratory sample controller/custodian who receives the samples. The sample chain-of-custody procedures that will be followed once the samples are at the laboratory are described in the laboratory's QA/QC Plan.

5.4 CALIBRATION PROCEDURES AND FREQUENCY

The field instruments that will be used to make measurements in the field during the Project are the following:

- Turbidity Meter
- pH/Eh Meter
- Conductivity Meter
- Dissolved Oxygen Meter

The procedures that will be used to calibrate and maintain these instruments are in accordance with the manufacturer's instructions. Calibration of laboratory analytical instruments will be as specified by 40 CFR, Part 136 for the appropriate methods.

5.5 ANALYTICAL PROCEDURES

Analytical procedures that will be used for chemical analysis of the environmental samples collected during this project are presented on Table 3-2.

MALCOLM PIRNIE, INC.

CHAIN OF CUSTODY RECORD

PROJECT NO.: SITE NAME:																
							' /	' /	' /							
SAMPLERS (SIGNATURE):							NO.									
							OF CON-						/ · /	REMARKS		
STATION NO.	DATE	TIME	COMP.	-	ST/	TION LOCATION	TAINERS		///			. /				
			·····				1	ť	f	ŕ	(/	1	f		
			ļ				İ									
													Τ			
							ł	<u>+</u>			╂──		╂──			
								<u> </u>	<u> </u>	ļ						
								1								
							1	1		1	1	†	<u>†</u>	· · · · · · · · · · · · · · · · · · ·		
·- -							 	 				<u> </u>				
						······	}				 					
	····-				, ,											
									·							
RELINQUISHED BY (SIGNATURE): DATE/TIME: RECEIVED BY (SIGNATURE)				lE):	RELINQUISHED BY (SIGNATURE)				GNAT	URE):	DATE/TIME: RECEIVED BY (SIGNATURE):					
																
RELINQUISHED BY (SIGNATURE): DATE/TIME: RECEIVED BY (SIGNATURE)				iE):	RELIN	QUIS	HED (3Y (SI	GNAT	URE):	DATE/TIME: RECEIVED BY (SIGNATURE):					
RELINQUISHED BY (SIGNATURE): DATE/TIME: RECEIVED FOR LABORATO					ORY BY	D	ATE/	TIME	REN	ARKS	b :	<u> </u>				
(SIGNATURE):						1				1						
			Distributi	on Origina	il accompanies sh	wment, cupy to coordinator field fi	les				1					

WATER SAMPLING FIELD DATA SHEET

PROJECT:	TYPE OF SAMPLE:
CLIENT:	LOCATION NO.:
JOB NO.:	LAB SAMPLE NO.:
WELL DATA: DATE:	TIME:
Casing Diameter (inches):	Casing Material:
Screened interval (ft BGS):	Screen Material:
Static Water Level Below TOR (ft):	Screen Haterial:Bottom Depth (ft):
Elevation Top of Well Riser:	Datum Ground Surface:
PURCING DATA: DATE:	
Method:	TIME: Start: Finish:
Well Volumes Purged (V=#R ² H/231):	Pumping Rate (gal/min): Was well purged dry?YesNo
Standing Volume (gal):	
Volume Purged (gal):	Was well purged below sand pack?YesNo Well I.D. Volume
is purging equipment dedicated to sample location?	(inches) (gal/ft)
Yes No	2 0.17
Field Personnel:	• 0.66 6 1.50
SAMPLING DATA: DATE:	TIME: Start: Finish:
Method:	Sampler:
Present Water Level (ft):	Air Temperature (°F):
Depth of Sample (ft):	Weather Conditions:
is sampling equipment dedicated to sample location?	Yes No
PRESERVATION DATA: DATE:	TIME: Start: Finish:
Filtered: Yes No	Cool to 4°C:
Preservative:H ₂ SO ₄ HNO ₃	
PHYSICAL AND CHENICAL DATA:	
Appearance: Clear: Turbid:	Color:
	Odor: Other:
Temperature (*C): pH: Speci	
Turbidity (NTU): Other	
REMARKS :	
PIRNIE	

-

5.6 DATA REDUCTION, VALIDATION AND REPORTING

5.6.1 Field Activities

The results of all field measurements and associated calculations will be recorded on standard forms (Figure 5-2). During all activities, the following general information will be recorded in the log book:

- 1. Date
- 2. Sampling Team
- 3. Meteorological conditions
- 4. Location where work is performed
- 5. Problems encountered and corrective actions taken
- 6. Field measurements or descriptions made
- 7. Any modifications made to work plan to obtain representative samples

The following information will be recorded by the sampling team leader and/or field technicians during the collection of field samples:

- 1. Sample locations and summary of samples collected
- 2. Completeness of the sampling effort (e.g., were all the samples collected that were intended to be collected and if not, what were the reasons?)
- 3. Chain-of-custody information
- 4. Results of field measurements
- 5. Results of field instrument calibrations

Original forms and field notebooks will be placed in the project record file that will be maintained by the owner or its representative. Records will be initially audited by the owner or its representative. Records will be available for QC audits by NYSDEC.

Data validation will be facilitated by adherence to Standard Operating Procedures (SOPs) identified for the performance of all field activities, calibration checks on all field instruments at the beginning and end of each day of use, and manual checks of field calculations.

5.6.2 Laboratory Analysis

The laboratory procedures for data reduction, validation and reporting for all chemical parameters analyzed during this project will be in accordance with the requirements of 40 CFR Part 136 and the procedures presented in the laboratory's QA/QC Plan. The laboratory report will include a discussion of the validity of the data which is consistent with the level of Quality Control required for the project.

Revised 3/94 0605-237-200

5.7 INTERNAL QUALITY CONTROL CHECKS AND FREQUENCY

Quality control sample analyses that will be performed during this project to document the acceptability of the data will include method blank, trip blank, and reference standard sample analyses.

Quality control sample analytical results will be reported on standard forms in conjunction with data acceptance criteria. The acceptance criteria applicable to this project will be those specified in 40 CFR Part 136.

5.8 PERFORMANCE AND SYSTEM AUDITS

Performance and system audits routinely conducted at the laboratory to ascertain the potential of all analytical measurements systems to generate data that are representative, valid, and meet completeness requirements are described in the laboratory's QA/QC Plan.

5.9 PREVENTATIVE MAINTENANCE PROCEDURES AND SCHEDULES

5.9.1 Field Equipment

Maintenance procedures that will be employed to assure the proper operation of all field equipment are presented in Attachment C.

5.9.2 Laboratory Equipment

Preventative maintenance will be performed on critical laboratory instruments as described in the laboratory's QA/QC Plan.

5.10 QUALITY CONTROL OF DATA

A number of general and specific measures will be employed to ensure that the analytical data produced during this project are generated within known and acceptable limits of accuracy and precision. General control measures will include the following:

- Proper cleaning of sample containers
- Use of formal written sample labeling, logging and chain-of-custody

0605-237-200

MALCOLM

- Use of USEPA-accepted methods for sample preservation
- Use of laboratory reagents that meet or exceed American Chemical Society "Analytical Reagent Grade" quality standards
- Use of laboratory water that meets or exceeds quality standards for Type I water
- Proper cleaning of laboratory glassware

These measures are addressed in the laboratory's QA/QC Plan.

Field quality control samples will include one equipment blank per sampling event in which sampling equipment is required to be field cleaned between sample locations.

5.11 CORRECTIVE ACTION

Whenever calibration checks of field or laboratory instruments fail to compare with initial calibrations and/or laboratory data precision and/or accuracy acceptance limits are exceeded, corrective actions will be implemented. These actions will include:

- Recalibration or standardization of instruments
- Acquiring new standards
- Repairing instrumentation
- Replacing instruments that cannot be repaired
- Reanalyzing samples for which unacceptable or suspect analytical results were obtained

If problems are encountered which require corrective action, these problems will be addressed and resolved before additional samples are analyzed in order to minimize the quantity of re-analyses required. Specific corrective actions that will be implemented, if needed, and the individuals assigned the responsibility for initiating and approving such corrective actions are identified in the laboratory's QA/QC Plan.

5.12 QUALITY ASSURANCE REPORTS TO MANAGEMENT

Periodically during the performance of this investigation, field and laboratory personnel will be required to report the performance of measurement systems to management. Field personnel will report to the Monitoring Program Manager. Laboratory personnel reporting requirements are defined in the laboratory's QA/QC Plan.

The frequency of reporting will be as appropriate during the period of time that measurements are being made in the field and/or laboratory. Reporting of measurement system performance generally will be verbal. However, if a problem requiring corrective action is encountered, a formal written report will be prepared. If a QC problem arises in the laboratory, the laboratory operation manager will immediately contact the owner or its representative to discuss an appropriate corrective action. Final approval of the corrective action to be implemented will be made by the laboratory operation manager.

MALCOLM

MALCOLM PIRNIE

6.0 HEALTH AND SAFETY CONSIDERATIONS

6.1 HEALTH AND SAFETY TRAINING REQUIREMENTS

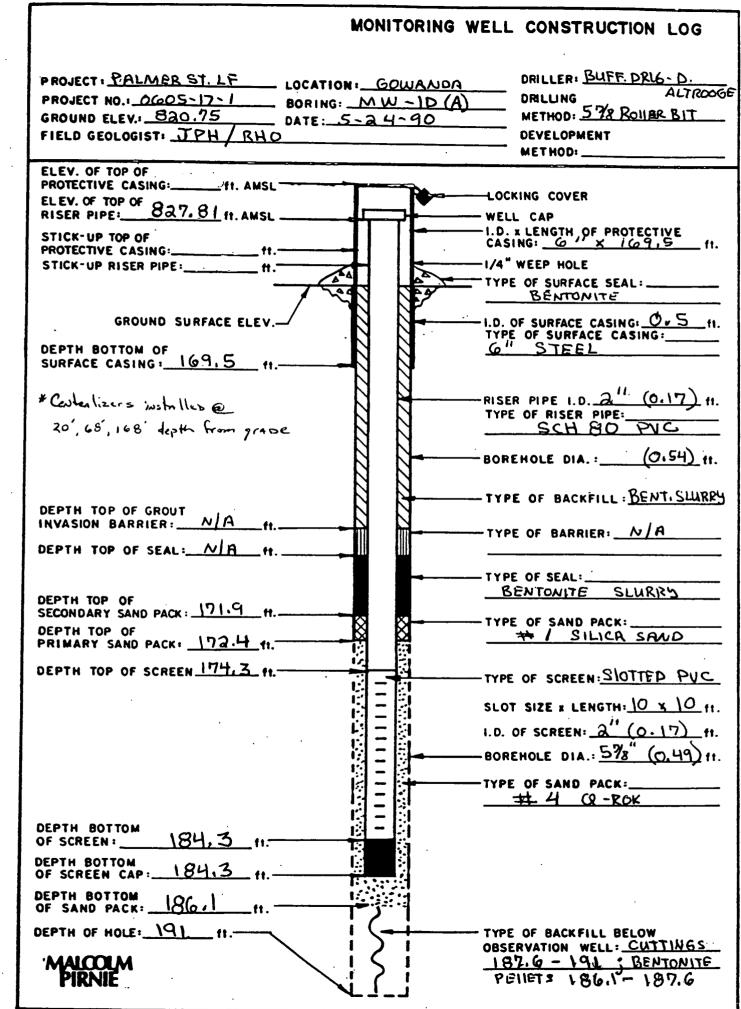
Prior to any site activities, the field investigation team will participate in formal health and safety training. At a minimum, the training will cover:

- First aid (recognition of conditions requiring emergency or medical care and simple steps to take until help arrives).
- Emergency and routine communications.
- Decontamination procedures.
- Personnel protective equipment use, maintenance, and limitations.

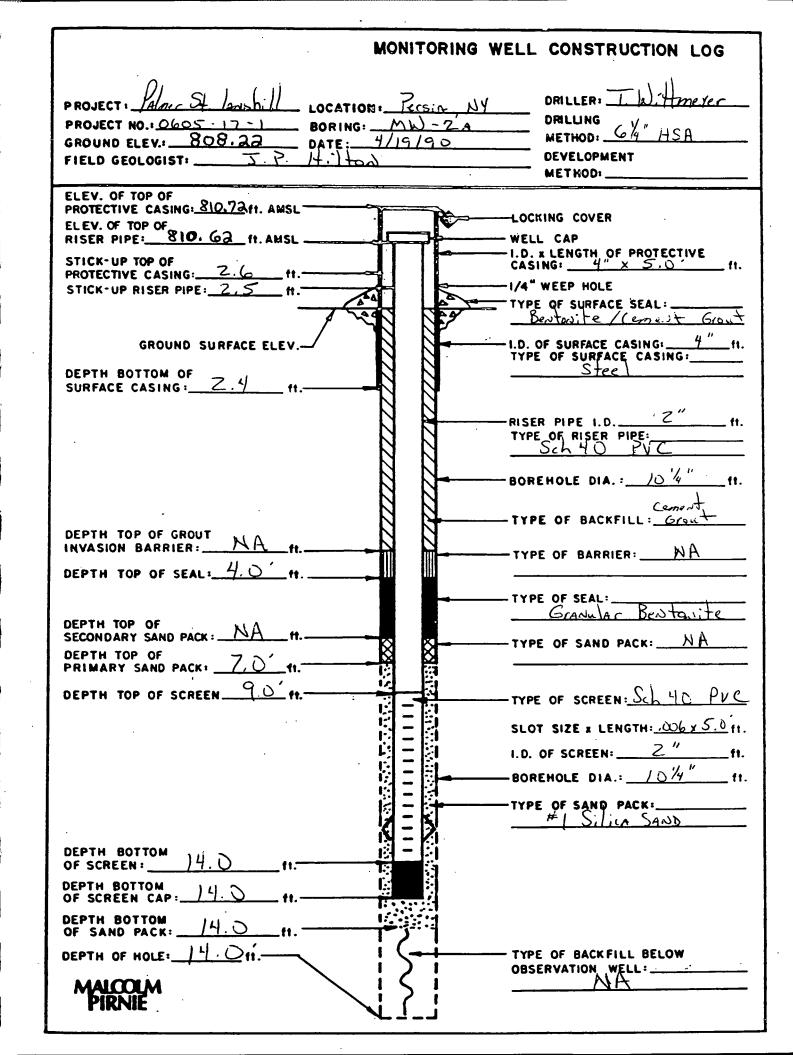
6.2 HEALTH AND SAFETY PLAN

Monitoring activities at the Palmer Street Landfill shall be performed in strict conformance with the site-specific Health and Safety Plan. All field personnel will be familiar with the requirements of the Health and Safety Plan prior to beginning any field work.

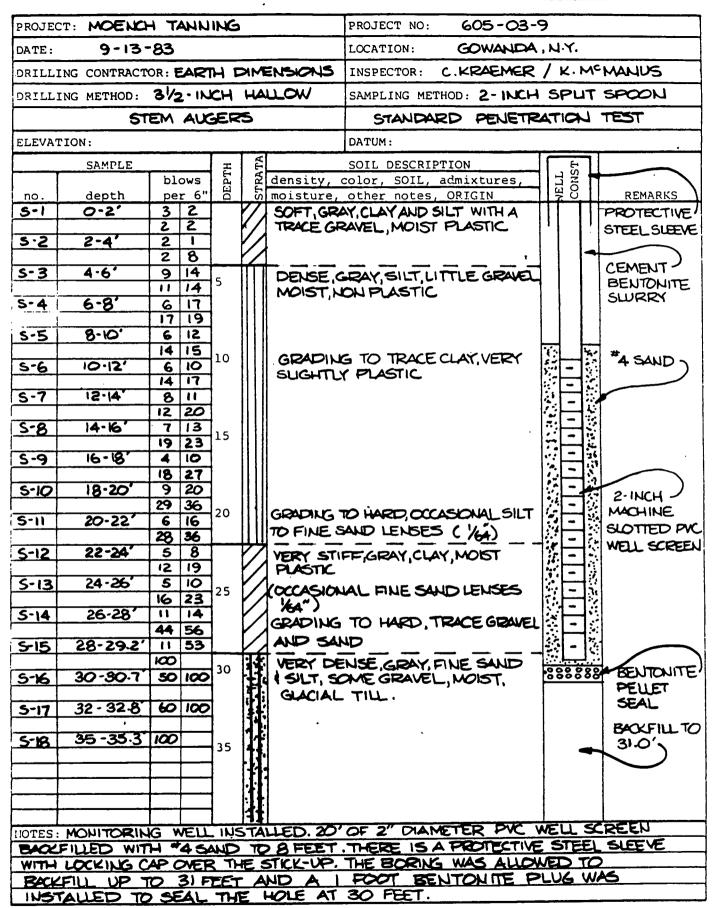
ATTACHMENT A


GEOLOGIC LOGS, WELL COMPLETION REPORTS AND INFILTROMETER DESIGN

0605-237-200


									BORING		
	CT: MOENC		TAN	ININ	JG		PROJECT NO:	605	-03-9)	
DATE: 9-20-83							LOCATION:	GOW	ANDA	, N.Y.	
	ING CONTRACT	_					INSPECTOR:	<u> </u>	IC MAN	US	
DRILI	ING METHOD:	3/2	<u>"н</u>		$\underline{\circ}$	STEM	SAMPLING MET	THOD :	2 - INCH	SPU-	T SPOON
		ALX	SER	5			STAND	ARD	PENE	TRATI	ON TEST
ELEVA	TION:				_		DATUM:				
	SAMPLE			E	ATA		SOIL DESCRIP			L.	
no.	depth		.ows er 6"	DEPTH	STR		olor, SOIL, other notes,			VELL CONST	REMARKS
5-1	0-2'	3	9				-, LEAVES, RO			Î	REMARKS
		17	17]			DENSE, BRO		JD,		STEEL SLEEVE
				1		WITH SOM	e silt‡grav	EL,MO			
5-2	4.5-6.5	8	13	5			JON PLASTIC		TINT)		CEMENT-
		9	7	13			NE GRAVEL LE		است نسر م		SURRY
	·			1			DENSE, BROW D, LITTLE GRAV				
				1		INDI-DIAS	THE .		1	121 13	2
5-3	9.5-11.5	1	1	10		(AUGER C-	ANGE AT 8.5	, NO RE			
		4	10				ENSE GRAY, S		وسمعت جسمه	3-3	
		1		1			VEL, MOIST, NO				
C - A				ļ							#
<u>s-4</u>	14.5-16.5	7	17	15		GRADING T	O TRACE CLAY	SUGHT	LY POST		#4 SAND
					77	VERY STIF	F,GRAY, CLAY	, TRAC	ē — —		
					///	GRAVEL, M	OST, PLAST	Ĵ,			
5-5	19.5-21.5	9	15		V/	(COCASIO	NAL FINE SA	NDLE	15/2)	하니?	
		24	26	20	\langle / \rangle	· · ; -		_		~ -	
		 				GRADING -	TO SILT ICU	AY.TRA	CE		2-INCH
							LIGHTLY PLA			<u>:</u> [-];	MACHINE
5-6	24.5-26.5	8	32	25	IT.	VERY DE	NSE, GRAY,	FINE :	SAND		SLOTTED
		41	36_	2.5	1		T, MOIST, NO				SCREEN
										H	
<u>s-7</u>	29.5-31.5		4	30	μ	BOTIOM	of Boring	5 AT 2	95	<u> </u>	4
	···	12	13								
	•										
	•										
				35							
			1			4.1.50			11.151.1		
	MONITORI										
WEL	L SCREEN	B	ACK	FILL	EL	> WITH		TO	3 FEET	Г. Тне	

SHEET 1 OF ____


1

-

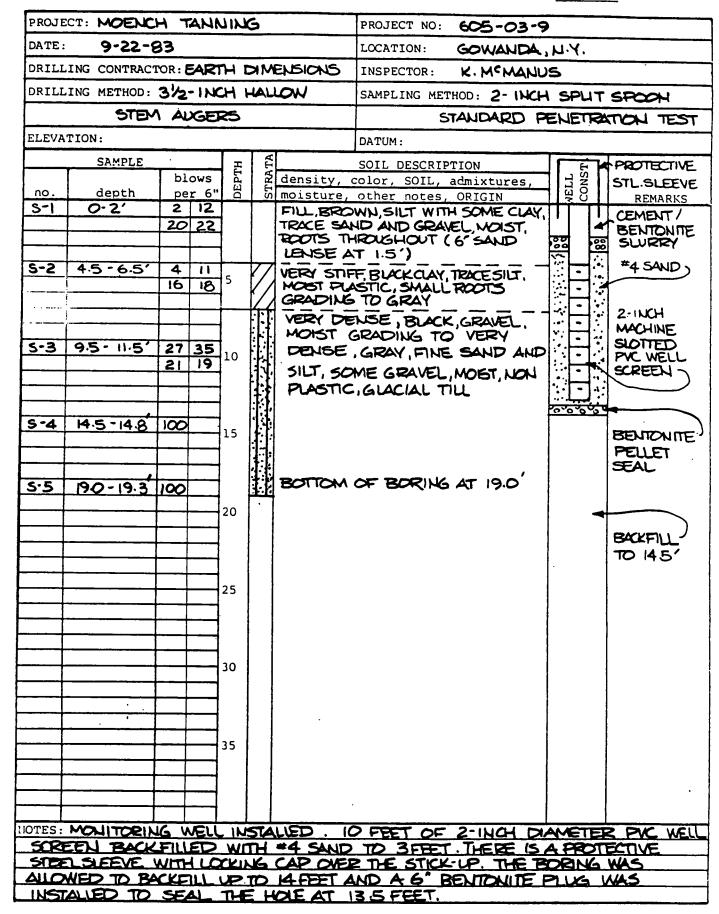
BORING 2

MALCOLM PIRNIE, INC.

SHEET 1 OF 2

÷.

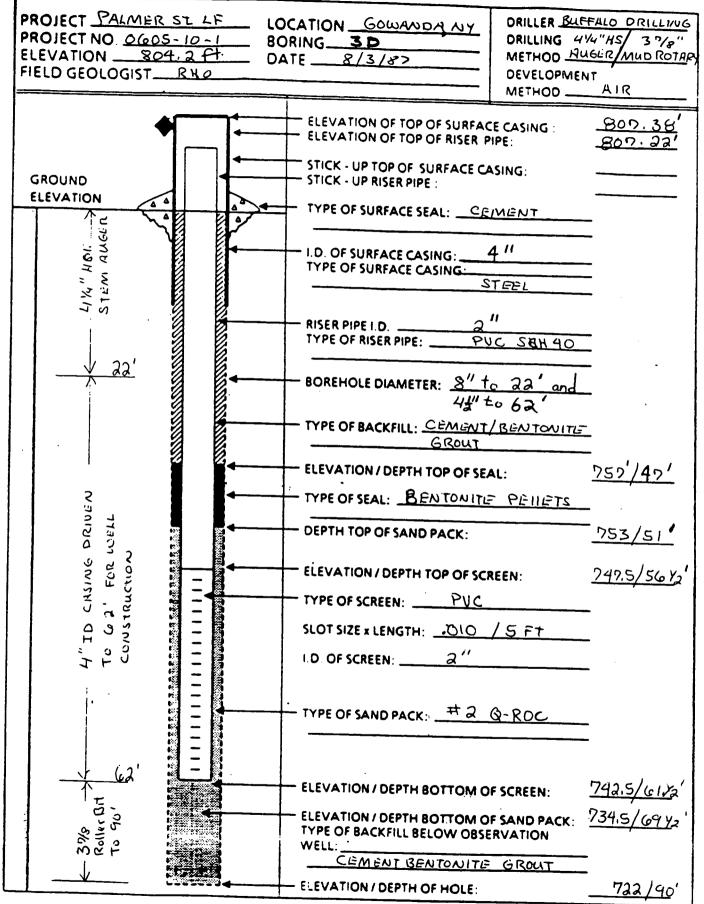
BORING	
BORING	

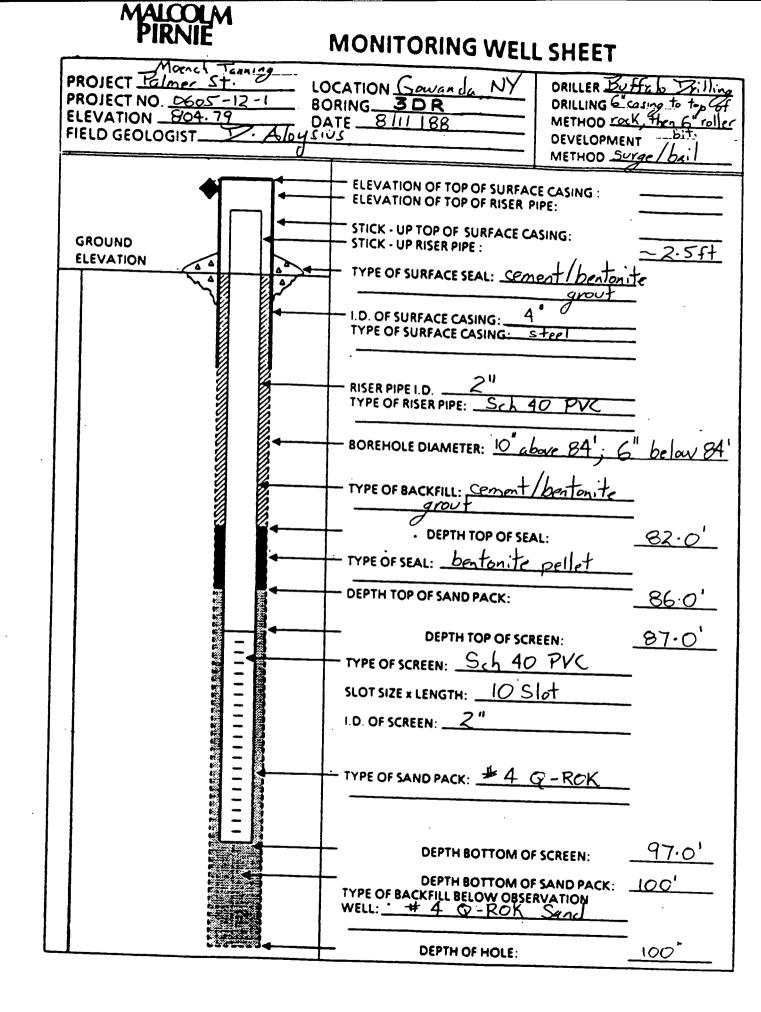

	T: MOENCI		4 1411			PROJECT NO: 605-03		
ATE:	9-19-	83				LOCATION: GOWAN	DA, N.Y.	
ELEVATION:						DATUM :		
r	SAMPLE	T		E	ATA	SOIL DESCRIPTION		
no.	depth	blow per	/S 	DEPTH	STRATA	density, color, SOIL, admixtures moisture, other notes, ORIGIN	VELL CONST.	
5-19	40-42	38 7				GRADING TO HARD, GRAY, CLAY	30	REMARK
		64 10				AND SILT SOME GRAVEL, MOIST		
						GLACIAL TILL		
-20	15-150	63 1		4				
-20	45-45.9'	63 /	4	5				
					Ľ			
5-21	50-50.4'	100		0	ł	BOTTOM OF BORING AT 50		
		┟───┼─						
		├ ──┼─						
		┠───┟─	5	5				
		┨───┤─					· ·	
				0				
	<u> </u>		ĭ	Ĭ				
				·				
	·· ·							
	· · · · · · · · · · · · · · · · · · ·			_		•		
			°	,		· ·		
+								
			7	0				
					ļ			
		┨───┤──		1				
+				5				
					ļ			
-	·							
<u> </u>	•					•		
				0				
		┝╌╌┼╼						
	· · ·							
			1.			<u></u>	<u> </u>	<u>I</u>
DTES:		-					<u></u>	
		· · · · · · · · · · · · · · · · · · ·						
			<u>.</u>					
				_				

MALCOLM PIRNIE. INC.

1

.


BORING 3



MALCOLM PIRNIE, INC.

SHEET 1 OF

									BORING		
PROJ	ECT: MOENC	Я 7	TANK	IING	2		PROJECT NO:	60	5-03-9	· · · · ·	
DATE	9-16-8	3					LOCATION:	GOV	WANDA,	N.Y.	
DRILLING CONTRACTOR: EARTH DIMENSIONS							INSPECTOR :		1° MANI	_	
DRIL	LING METHOD:	31/2	2 - 11	ICH	HA	LOW	SAMPLING ME	тнор.	2 - INC-	150	IT SPOON
			AUC								ON TEST
ELEV	ATION:				• 		DATUM :		FERE		
	SAMPLE				T A	· · · · · · · · · · · · · · · · · · ·					
		Ъ	lows	DEPTH		density, o	SOIL DESCRIP	admix	tures.	VELL	
no. 5-1	depth 0-2'		er 6"		ST ST	moisture,	other notes,	, ORIC	IN	VELL CONS	REMARKS
3-1	0-2.	4	10	<u> </u>	╉──	L'LL DE	MIN WAMI	ig a	<u>al</u>		PROTECTIVE STEEL SLEEVE
				1		FILL, BL	CK, CINDE	¢			
			┿	-							CEMENT/
5-2	5-7'	2	3	5			_				SURRY
· - · ··· ·	·	1	11	1		FILL, YEL	LOW (PAIN	TBO	ਤਸ		
·	<u> </u>			4		SLUDGE)	, odorous	5		<u>:</u>	PELET
				10				-	PORCLE		SEAL
5-3	10-12'		1	<u> </u>	-		D BROWN'E	_			4 SAND
<u></u>		+	4				CK, CINDER		HBRICK		
				1			NTS, ODOR				MACHINE
5-4	15-17'	4	10	15			NER AL (I,	5)		: -	SLOTTED
<u> </u>	- 13 11	9									SCREEN
				1		VERY STI	FF, GRAY, SI		AY	888	•
		┟───				MOIST SU	CE SAND AND GHTLY PLAS) (H2) (T) (vel,	000	BENTONITE
5-5	20-22'	1	4	20			uniter Par				PELET
		6	100		P[]	LOOSE .G	RAY, SAND	WITH	SOME		SEAL
		╂───					JD LITTLE SI			-	BACKFILL?
				25	11	NON-PLA	GTIC		_		TO 185'
5-6	25-26'	6	i Ø	25		GRADING	TO VERY PE	NE,	FINE		
						SAND AN	D SILT, SO	MEG	RAVEL,		
						FUD1,GI	ACIAL TILL				
5-7	30 - 30.95		8	30	19.	BOTTOM	OF BORI	NG AT	r 30'		
<u>, ,</u>	_ 30 30.20										
	· ·										
				35							
DTES:	MONITORIN	S W	ar	INS	TAL	LED. 10 F	BET OF 2-	INCH	DIAMET	ERP	WC WELL
SLEF	VE WITH L	CK				NER THE	STICK - UP	THE	E IS A	C VIA	S ALLOWED TO
BACK	EILL UP T	0 1	8.5	FEE	ET .	AND A I	FOOT BEN				S INSTALLED
OT	SEAL THE	- H	DLE	A	C 1	7.5 FEET	•				

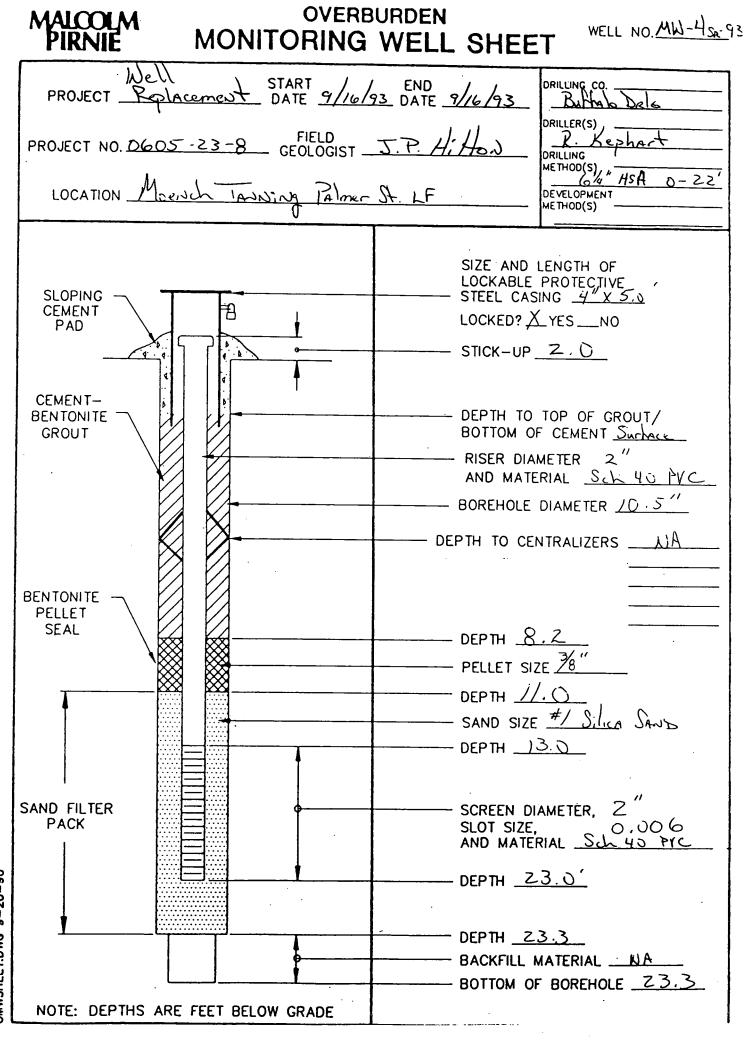
MALCOLM PIRNIE, INC.

SHEET 1 OF

BORING 5

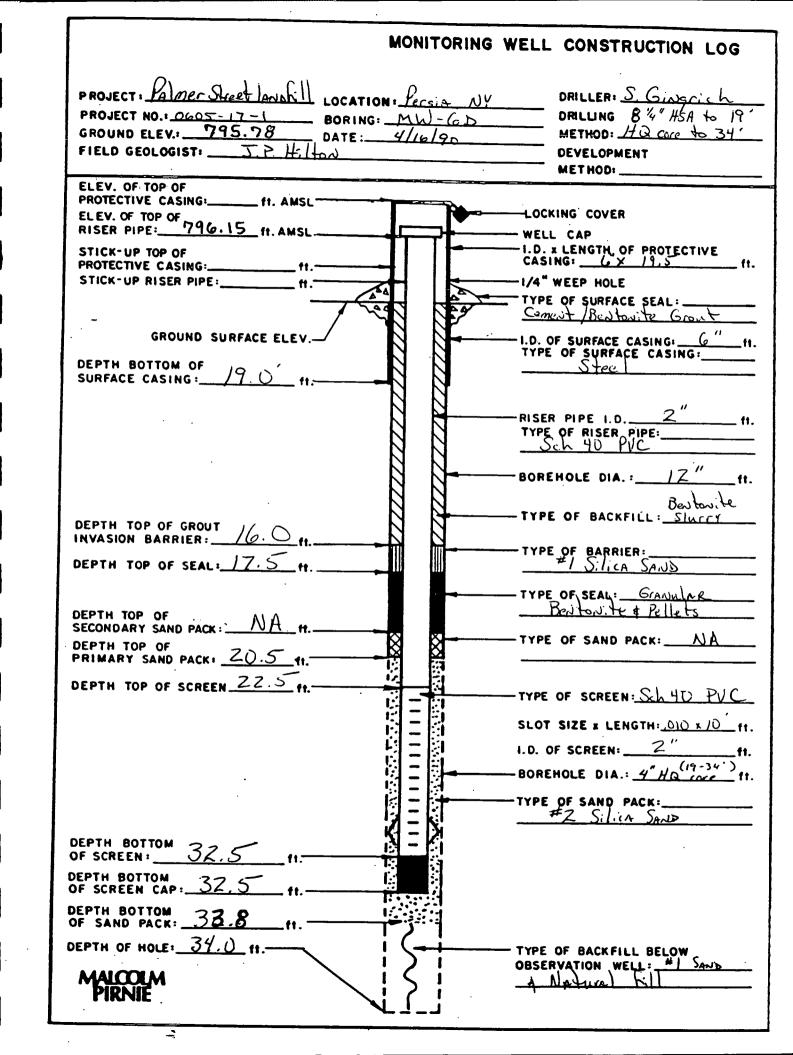
PROJECT: MOENCH TANNING PROJECT NO: 605-03-9						
DATE:						LOCATION: GOWANDA, N.Y.
DRILLING CONTRACTOR: EARTH DIMENSIONS						
	ING METHOD:				_	
		AUGE				STANDARD PENETRATION TEST
ELEVA						DATUM :
	SAMPLE			т	Ę	
		1	ows	ЕРТН	1 2	density, color, SOIL, admixtures, $\exists \frac{9}{2}$
no.	<u>depth</u> 0.2'		r 6" 48	ā	<u>``</u>	
		23	29			FILL, COBBLES AND GRAVEL WITH PROTECTIVE SAND AND SOME LEATHER SCRAPS STEEL SLEVE
						CEMENT/
5-2	4.5-6.5'	5	9	r.		NO RECOVERY, MOSTLY LEATHER BENTONITE
	CE AE'	6	8	5		
5-2	6.5 - 8.5'	6	6			NO RECOVERY, MOSTLY LEATHER BELITONITE) STRAPS
5-4	9.5 - 11.5'	3 34	6 36	10		4 SAND
		<u> </u>	30		20	VERY DELSE, BROWN, GRAVEL WITH - 2-INCH
					Eb	
5-5	14.5-16.5	14	29		F	(WATER AT 135')
		35		15	PP	
						HARD, GRAY, SILT AND CLAY, TRACE
5-6	17.5-19.5	13	26			BENTONITE)
~ 7	10 5 0 51	4	74	20		PELLET SEAL
<u>S-7</u>	19.5-21.5'	32 70	7 4 6 4			GRADING TO LITTLE GRAVEL SAND
						VERY DENSE, GRAY, SAND WITH BACKFILL
5-8	24.5-25.3	25	100			SOME GRAVELAND LITTLE SILT, TO B'
50	4·5-2·5	22		25	圕	
						GRADING TO FINE SAND & SILT,
		 				SOME GRAVEL, MOIST, GLACIAL TILL
5-9	29.5-30.3	35	100	30	包	BOTTOM OF BORING AT 29.5'
	-				ļ	
				35		
						LED. 10 FEET OF 2-INCH DIAMETER PVC WELL
						SAND TO 6 FEET. THERE IS A PROTECTIVE STEEL
TOE	ACKFILL UP	2 70	18	FE	Ĕ	AND 4 I FOOT BENTONITE PLIG WAS INSTALLED
TO SEAL THE HOLE AT 17 FEET.						

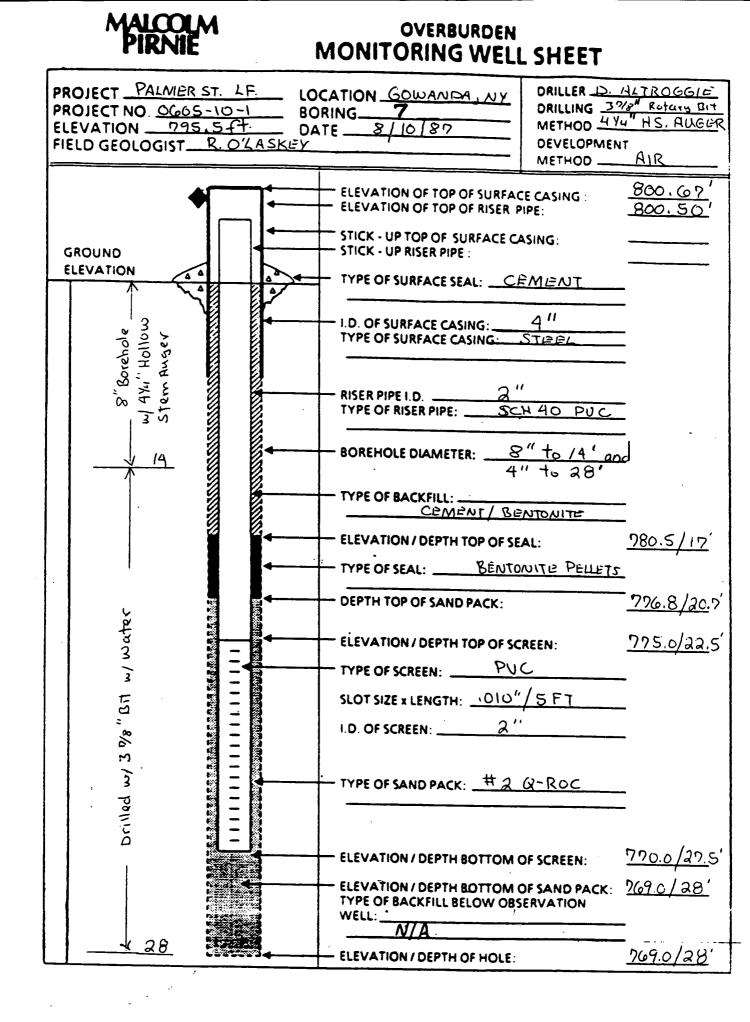
SHEET 1 OF

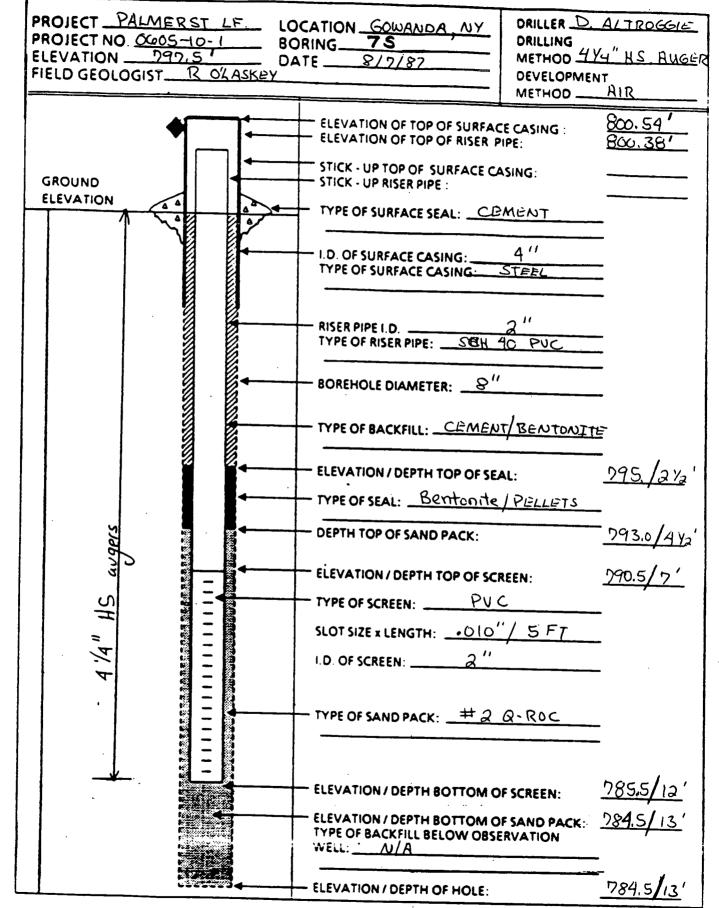

.

BORING 6

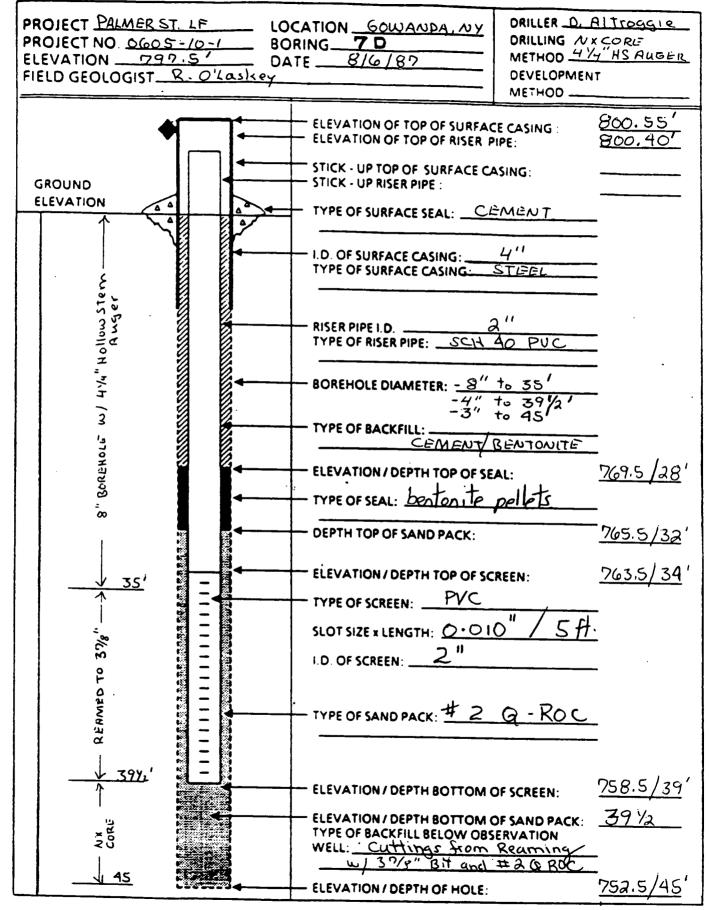
PROJECT: MOENCH TANNING PROJECT NO: 605-03-9							
DATE: 9-15-83		LOCATION: COWANDA, N.Y.					
DRILLING CONTRACTOR: EART	h dimensions	INSPECTOR: K. MCMANUS					
DRILLING METHOD: 312"-11	ICH HALLOW	SAMPLING METHOD: 2-INCH SPLIT SPECIN					
STEM AUGE	R	STANDARD PENETRATION TEST					
ELEVATION:		DATUM:					
SAMPLE	H T	SOIL DESCRIPTION					
no. depth per 6"	H F A 2 density, O 0 moisture,	SOIL DESCRIPTION PROTECTIVE color, SOIL, admixtures, 120 other notes, ORIGIN 20					
no. depth per 6"	÷	Other notes, ORIGIN					
5-1 2-4' 29 38	SAND	BENTONNE					
16	GRADING	TO GRAVEL AND SAND					
5-2 4.5-6.5 3 4 15 23	5 VERY ST	FF, BLACK, CLAY WITH IN BENTCHITE					
15 23		ND AND GRAVEL AND FEILET SEAL					
	SOME T						
5-3 9.5-11.5 3 5	GRADING	D GRAY, CLAY WITH					
69	10 SOME SI	TAND GRAVEL, MAL COARSE BLACK					
		USES (1") SUOTTED					
		- SCREEN					
5-4 14.5-14.8' 100	15 REFUSA	_ AT 14.6					
	20						
	25						
	30						
·							
	35						
DTES: MONITORING WEL	L INSTALLED.	OFEET OF 2-INCH DIAMETER PVC					
		OVER THE STKK-UP.					

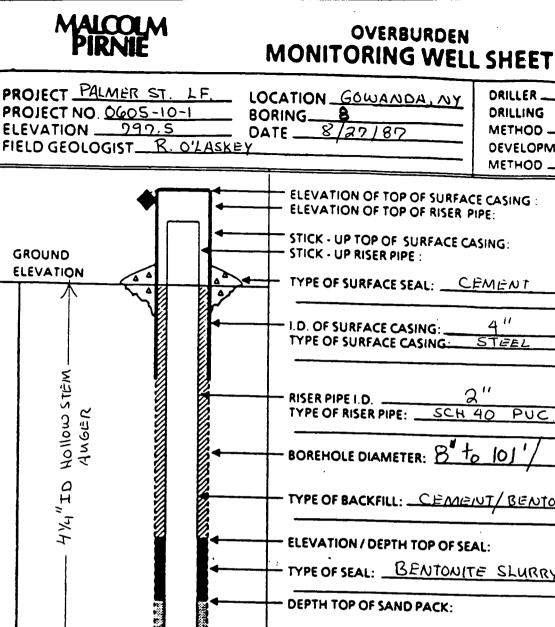

MALCOLM PIRNIE, INC.

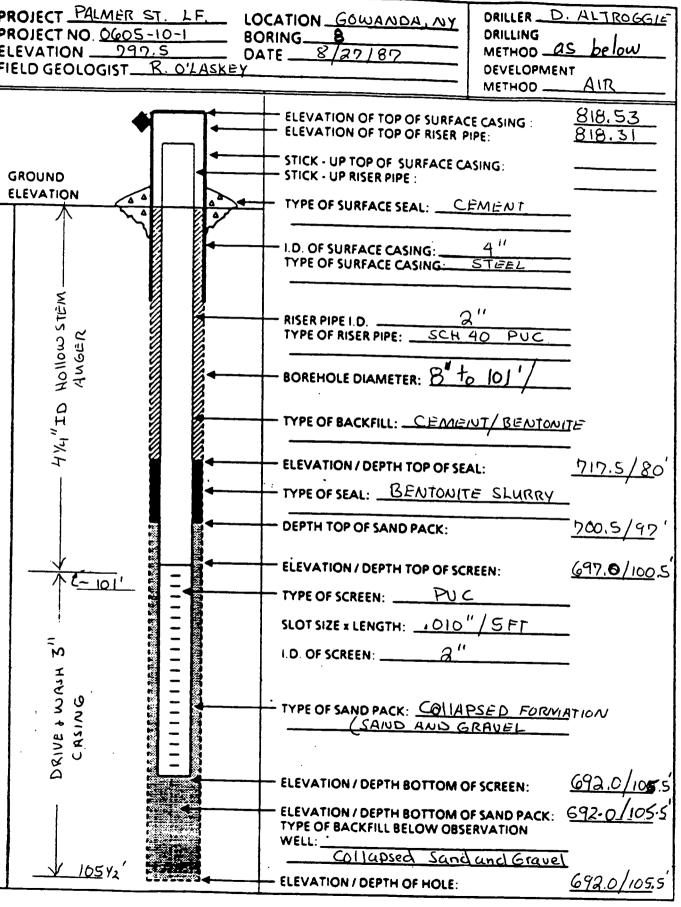

SHEET 1 OF 1

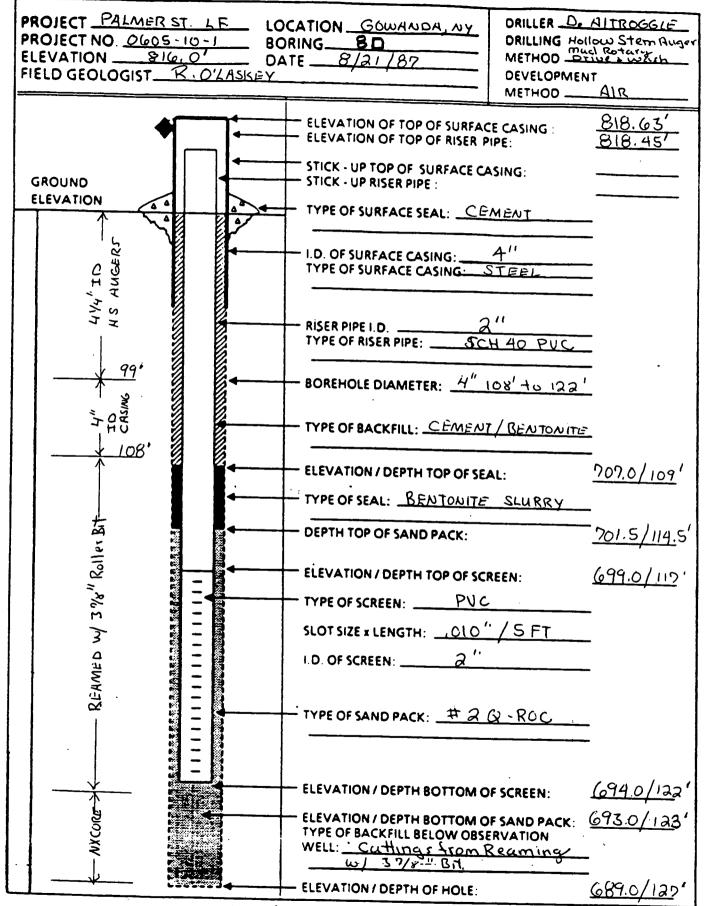

DMWSHEET.DWG 9-20-90

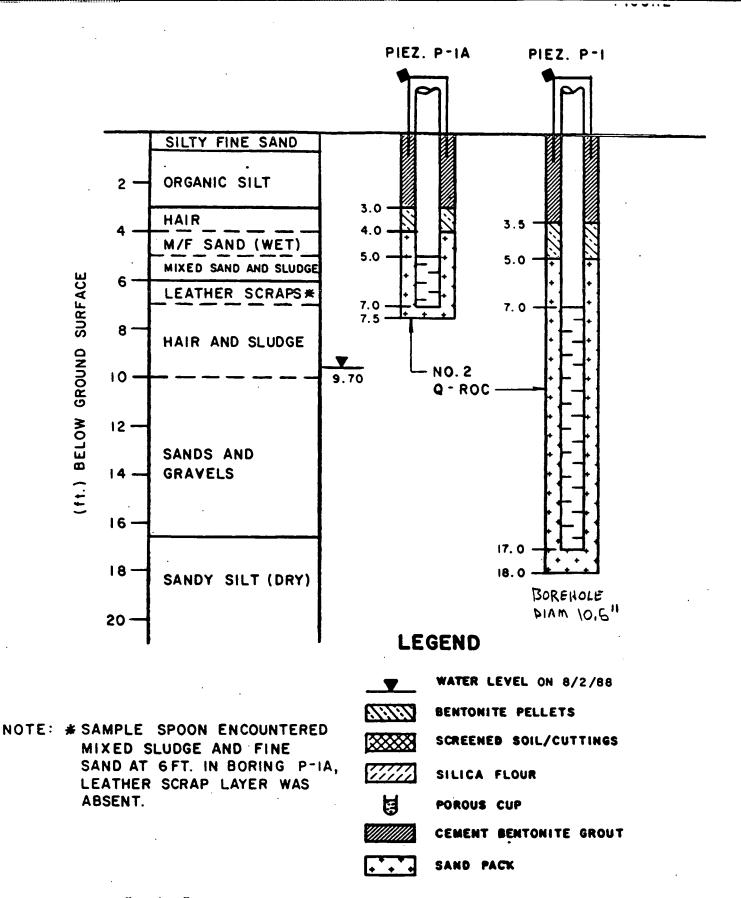
MONITORING WELL CONSTRUCTION LOG Down Grapicalt PROJECT, Well INStallation LOCATION, PAlmer St LF ORILLER: R. Keshart DRILLING 84 HSA 0-24' 24-58 PROJECT NO. 1 0605-23-8 MW-4D-93 BORING: ___ DAJE: 9/13 - 9/15/93 METHOD: NX Gere 55.73 GROUND ELEV. FIELD GEOLOGIST: DEVELOPMENT METHODI __ ELEY. OF TOP OF PROTECTIVE CASING:_____ ft. AMSL LOCKING COVER ELEV. OF TOP OF RISER PIPE:___ _____ ft. AMSL -- WELL CAP -I.D. & LENGTH OF PROTECTIVE STICK-UP TOP OF PROTECTIVE CASING 2.9 . 11. ft.-STICK-UP RISER PIPE: 2.6 -1/4" WEEP HOLE #1. 7 TYPE OF SURFACE SEAL: _____ GROUND SURFACE ELEV .-I.D. OF SURFACE CASING _____ ft. TYPE OF SURFACE CASING:______ DEPTH BOTTOM OF 24 SURFACE CASING .__ _2″ RISER PIPE 1.0._ TYPE OF RISER PIPE: -BOREHOLE DIA. :_ 8,5 tt. Bento TYPE OF BACKFILL : Growt DEPTH TOP OF GROUT 56.0 11. -TYPE OF BARRIER: #/ Silica DEPTH TOP OF SEAL: 57.5 H. SAND TYPE OF SEAL : 2/E " Pellits DEPTH TOP OF SECONDARY SAND PACK :_____NA TYPE OF SAND PACK: NA DEPTH TOP OF PRIMARY SAND PACKI 60 DEPTH TOP OF SCREEN 62.5 H TYPE OF SCREEN: Sch 40 PVC SLOT SIZE & LENGTH: OID X 10 11. 2 " ____f1. I.D. OF SCREEN BOREHOLE DIA .. 4" _ft. TYPE OF SAND PACK . TO Silica SAND Z Q-ROK EPUINALIST) DEPTH BOTTOM OF SCREEN : Ŀ ſ: DEPTH BOTTOM OF SCREEN CAP: 72.5 DEPTH BOTTOM t: j OF SAND PACK: 72.9 DEPTH OF HOLE: 73. 0 11.-TYPE OF BACKFILL BELOW OBSERVATION WELL; / NATIVE CUHINGS MALCOL PIRNIE

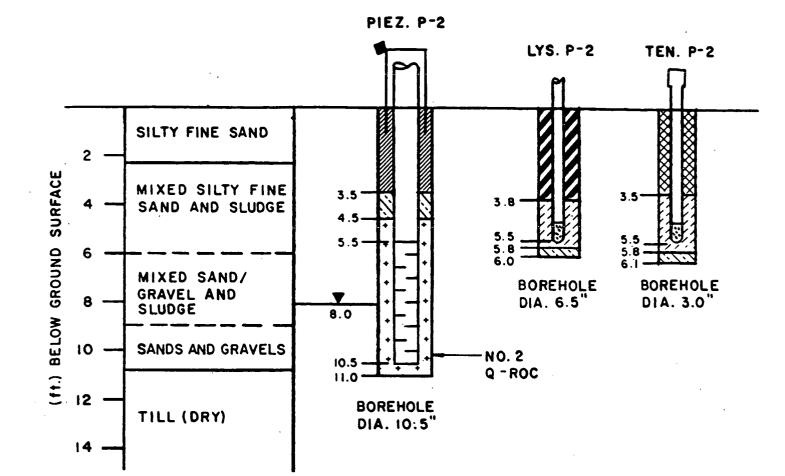










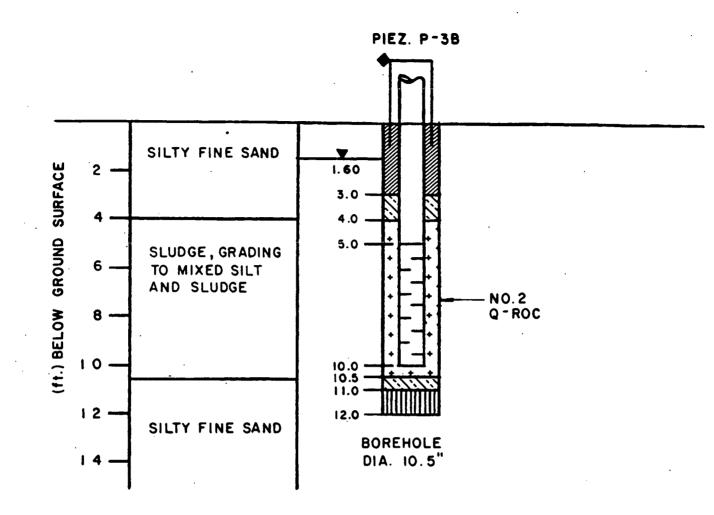


VERT. SCALE : 1"= 4'-0"

MOENCH TANNING COMPANY PALMER STREET LANDFILL

PIEZOMETER CONSTRUCTION DIAGRAM NOVEMBER 1988

LEGEND

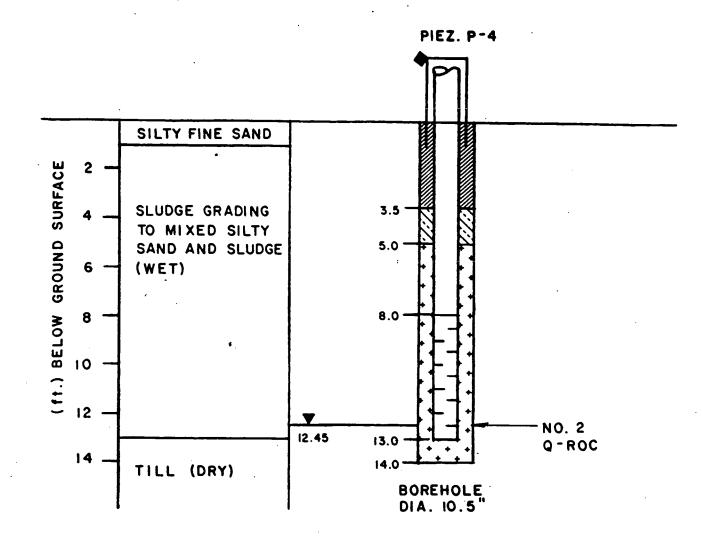

///.	BENTONITE SLURRY
	WATER LEVEL ON 8/2/88
ABIBI	BENTONITE PELLETS
	SCREENED SOIL/CUTTINGS
	SILICA FLOUR
E	POROUS CUP
<i>\</i>	CEMENT BENTONITE GROUT
••••	SAND PACK

MOENCH TANNING COMPANY PALMER STREET LANDFILL PIEZOMETER CONSTRUCTION DIAGRAM NOVEMBER 1988

VERT. SCALE : 1"= 4'-0"

FIGURE

LEGEND


	COLLAPSED FORMATION
	WATER LEVEL ON 8/2/88
131316	BENTONITE PELLETS
	SCREENED SOIL/CUTTINGS
	SILICA FLOUR
E	POROUS CUP
<i>Miillin</i>	CEMENT BENTONITE GROUT
• • •	SAND PACK

MOENCH TANNING COMPANY PALMER STREET LANDFILL PIEZOMETER CONSTRUCTION DIAGRAM NOVEMBER 1988

VERT. SCALE : I"= 4'-0"

FIGURE

LEGEND

_ Y	WATER LEVEL ON 8/2/88
	BENTONITE PELLETS
	SCREENED SOIL/CUTTINGS
	SILICA FLOUR
E	POROUS CUP
	CEMENT BENTONITE GROUT
• • •	SAND PACK

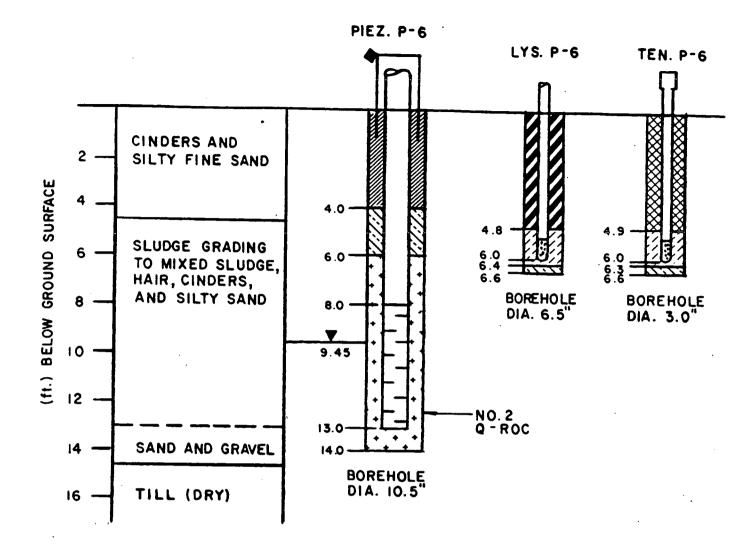
VERT. SCALE : 1"= 4'-0"

PIRNIE

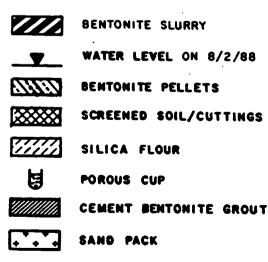
MOENCH TANNING COMPANY PALMER STREET LANDFILL PIEZOMETER CONSTRUCTION DIAGRAM NOVEMBER 1988

LEGEND

////	BENTONITE SLURRY
	COLLAPSED FORMATION
	WATER LEVEL ON 8/2/88
<u> 161118</u>	BENTONITE PELLETS
	SCREENED SOIL/CUTTINGS
	SILICA FLOUR
भ	POROUS CUP
<i>1</i>	CEMENT BENTONITE GROUT
•••	SAND PACK


VERT. SCALE : 1"= 4'-0"

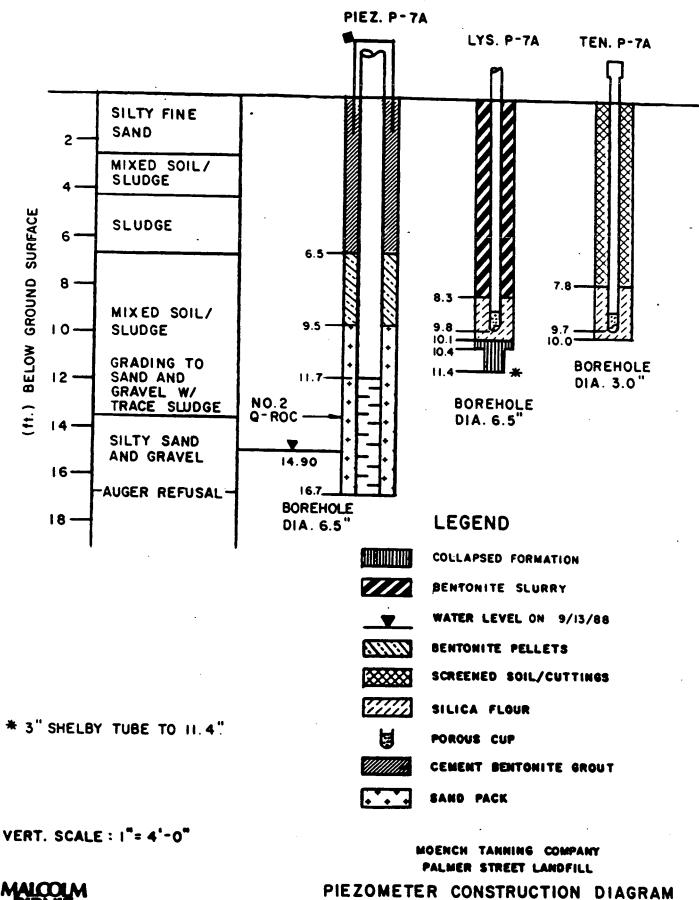
MICOLM


MOENCH TANNING COMPANY PALMER STREET LANDFILL

PIEZOMETER CONSTRUCTION DIAGRAM NOVEMBER 1988

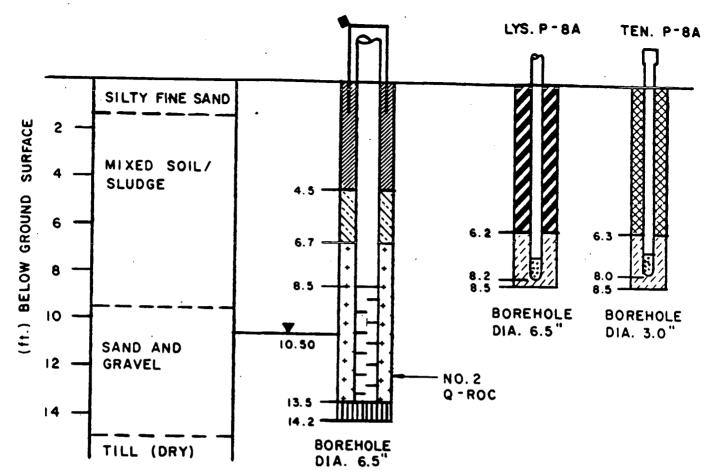
FIGURE

LEGEND



VERT. SCALE : 1"= 4'-0"

MOENCH TANNING COMPANY PALMER STREET LANDFILL PIEZOMETER CONSTRUCTION DIAGRAM NOVEMBER 1988

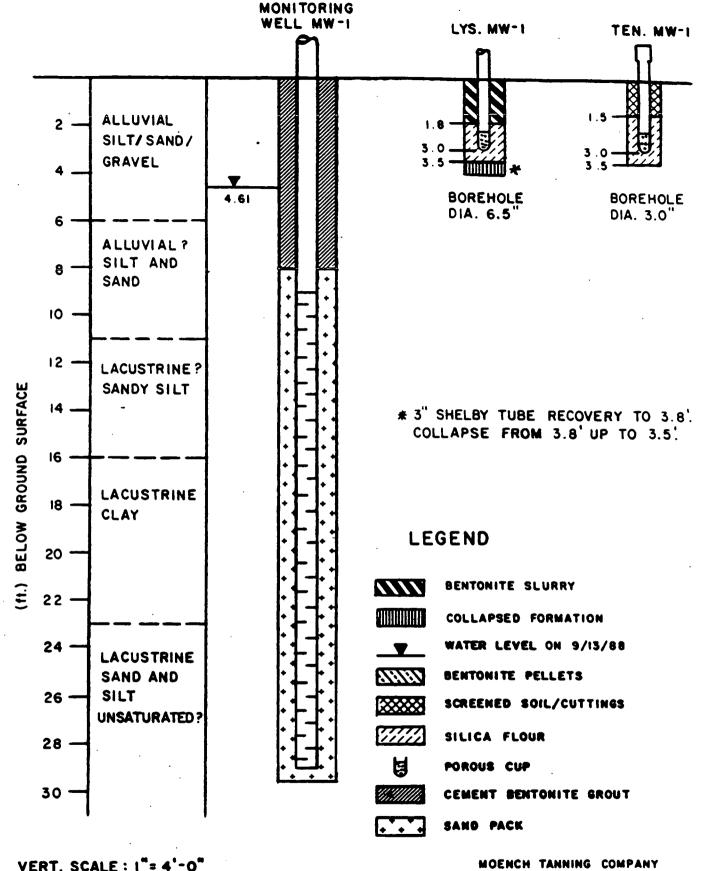

FIGURE

NOVEMBER 1988

PIRNIE

PIEZ. P-8A

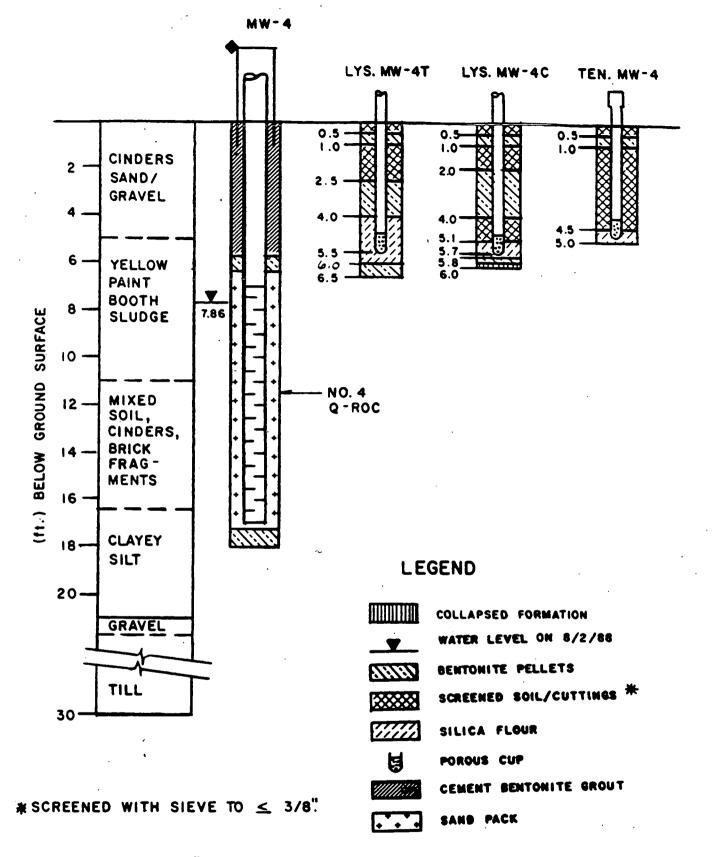
LEGEND


COLLAPSED FORMATION 111. BENTONITE SLURRY ____ WATER LEVEL ON 9/13/88 18181 BENTONITE PELLETS SCREENED SOIL/CUTTINGS 1111 SILICA FLOUR E POROUS CUP CEMENT BENTONITE GROUT $\cdot \cdot \cdot \cdot$ SAND PACK

> MOENCH TANNING COMPANY PALMER STREET LANDFILL PIEZOMETER/LYSIMETER CONSTRUCTION DIAGRAM NOVEMBER 1988

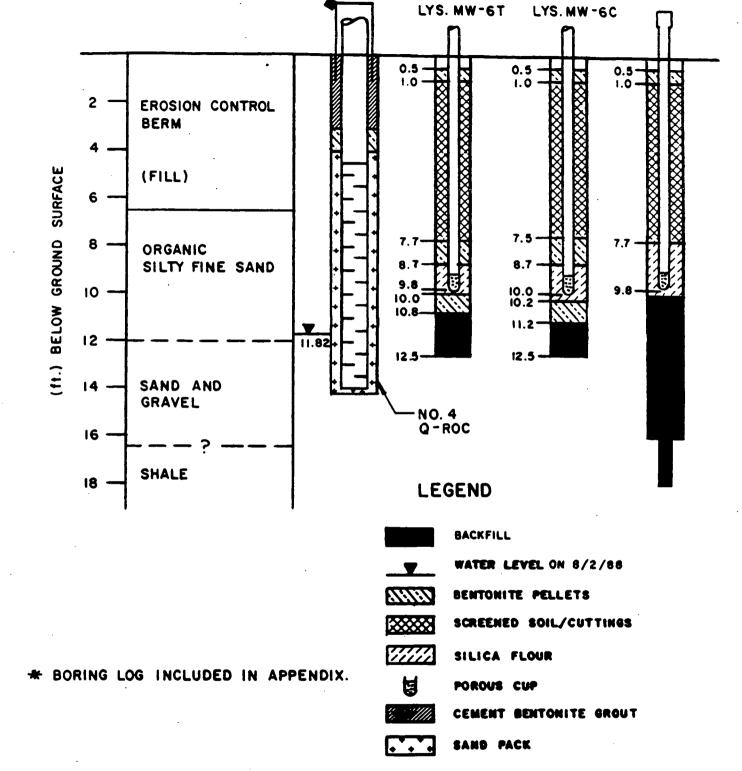
- IUUKE

VERT. SCALE : 1"= 4'-0"

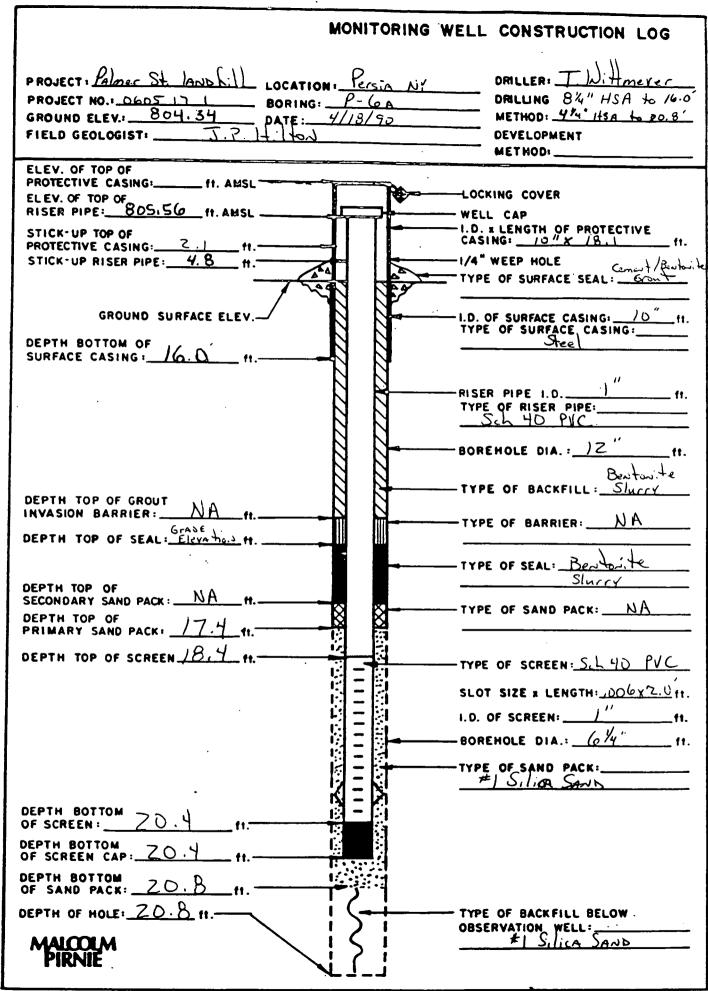


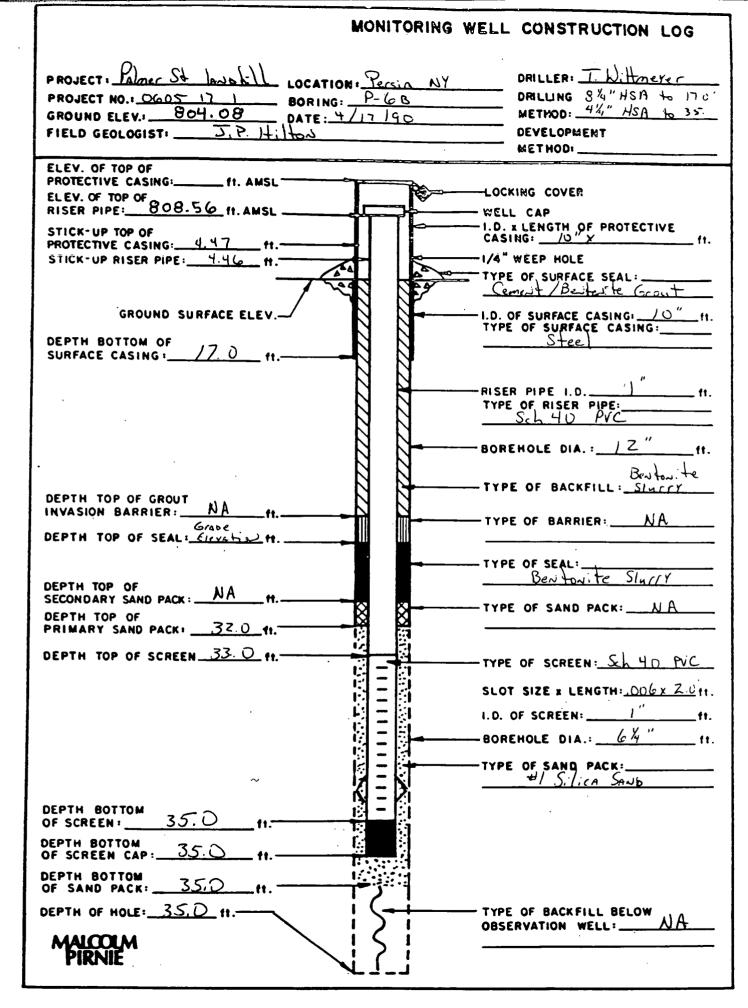
PALMER STREET LANDFILL PIEZOMETER/LYSIMETER CONSTRUCTION DIAGRAM NOVEMBER 1988

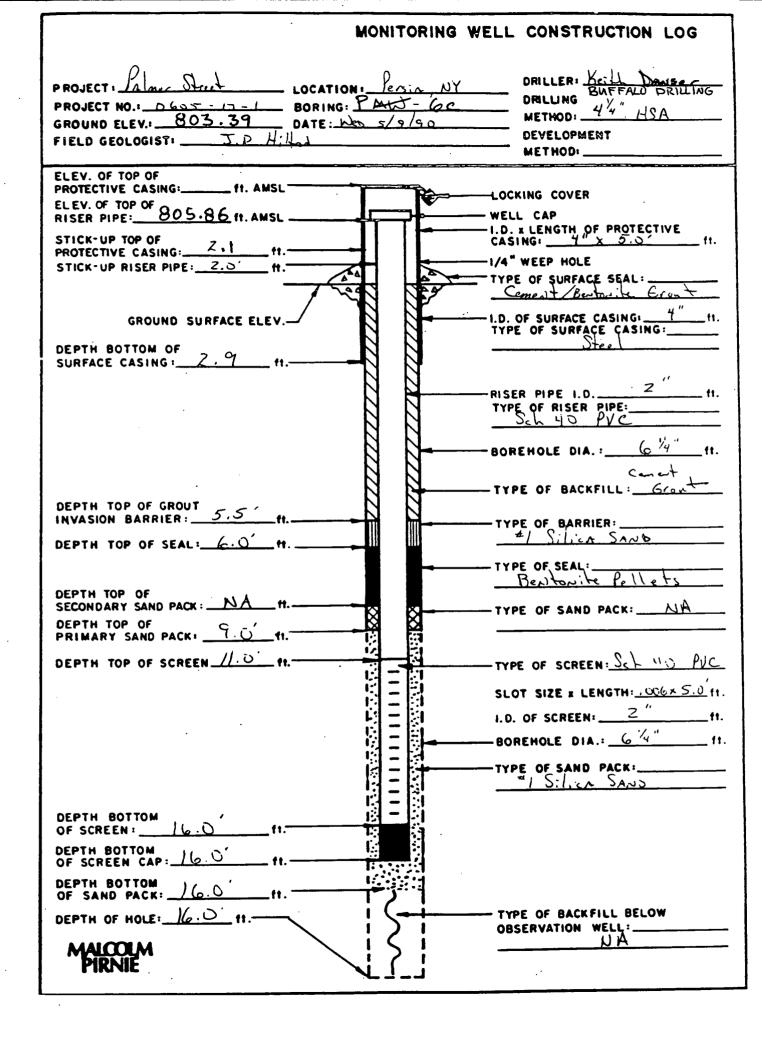
VERT. SCALE : 1"= 4'-0"

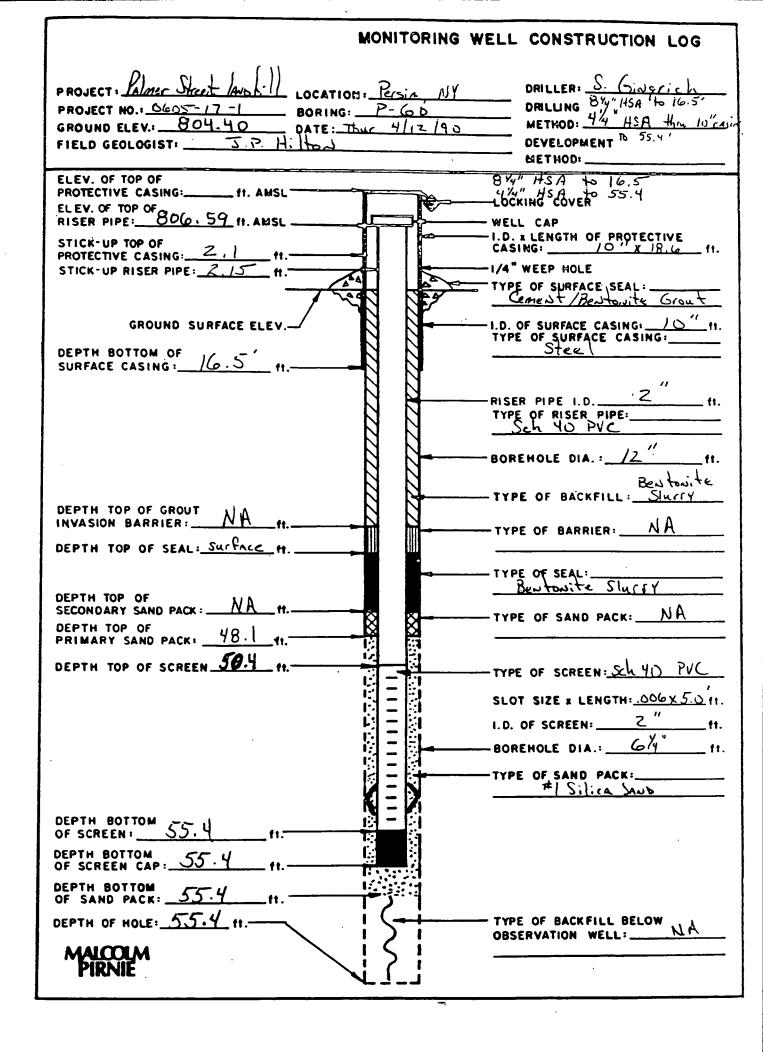

MALCOLM

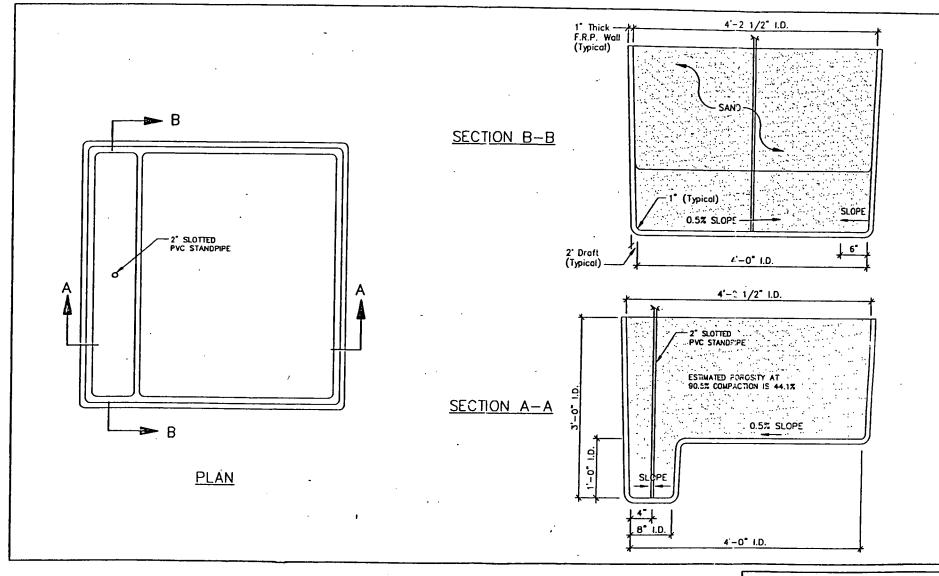
MOENCH TANNING COMPANY PALMER STREET LANDFILL LYSIMETER CONSTRUCTION DIAGRAM NOVEMBER 1988


NOENCH TANNING COMPANY PALMER STREET LANOFILL LYSIMETER CONSTRUCTION DIAGRAM NOVEMBER 1988


VERT. SCALE : 1"= 4'-0"


MW-6


TEN. MW-2



•

MTC-23-INF

.

1

:

2

TIPICAL INFILIROMETER BY HEY'S ENTERPRISES AS INSTALLED AT PALMER STREET LANDFILL INFIL TROMETER MOENCH TANNING COMPANY

3/20 00

F

ATTACHMENT B

PURGING & SAMPLE COLLECTION PROCEDURES

0605-237-200

Appendix: Item <u>WE</u>	LL PURGING PRIOR TO	SAMPLING
Applicability: <u>GENERAL</u>	Revision No.: <u>1</u>	Date: <u>2/7/91</u>
Prepared By: <u>MKR</u> Date: <u>11/28/89</u>	Approved By: <u>RHO</u>	Date: <u>2/7/91</u>

This guideline presents methods for well purging prior to ground water sample collection in order to collect representative ground water samples. Purging involves the removal of at least three to five volumes of water in wells with moderate yields and at least one volume from wells with low yields (slow water level recovery). Sampling should commence as soon as the well has adequately recharged.

2.0 WELL PURGING METHODOLOGY

- 1. Place plastic on the ground around the well to prevent equipment from touching the ground. Unlock and carefully remove the well cover to avoid introducing foreign material into the well. Monitor the top of the well casing for organic vapors using a photoionization detector (HNu), if applicable. If a reading of greater than 5 ppm is recorded, the well should be allowed to vent until levels drop below 5 ppm before proceeding with purging.
- 2. Measure the depth to water and total well depth prior to purging the well. Calculate the volume of water in the well based on the water level below top of casing and the total depth of well using the following equation: $V = 5.825 I^2 (D-W)$

 - V = one well volume (gallon)
 - I = inside diameter of well casing (feet)
 - D = Well Depth (feet)
 - W = Depth to Water from Top of Casing (feet)
- 3. For wells where the water level is 20 feet or less below the top of casing, use a suction-lift pump to purge the well. Measure the purged volume using a calibrated container and record measurements in a field notebook. Use dedicated new low density polyethylene tubing for each well. During this evacuation of shallow wells, the intake opening of the pump tubing should be positioned just below the surface of the

MALCOLM PIRNIE, INC.

Page <u>1</u> of <u>4</u>

Appendix: Item <u>WE</u>	L PURGING PRIOR TO SAMPLING
Applicability: <u>GENERAL</u>	Revision No.: <u>1</u> Date: <u>2/7/91</u>
Prepared By: <u>MKR</u> Date: <u>11/28/89</u>	Approved By: <u>RHO</u> Date: <u>2/7/91</u>

water. As the water level drops, lower the tubing as needed to maintain flow. The intake level should not be lowered past the top of the screen. Pumping from the top of the water column will ensure proper flushing of the well. Continue pumping until the required volumes are removed. Adjust the purging rate to maintain the water level above the screen.

For wells that exhibit an elevated turbidity (values greater than 50 NTU), maintain a purging rate which limits drawdown of the water level in the well. This procedure will reduce the hydraulic gradient in the well vicinity and limit piping of sediment particles through the sand pack and into the well. Use a peristaltic pump to achieve purging rates below the minimum rat of a suction lift pump.

For wells where the screen straddles the water table, maintain purging at a rate which matches the rate of recovery of the well (well yield). If the well purges to dryness and is slow to recharge (greater than 15 minutes), terminate evacuation.

- 4. For wells where the water level is initially below about 20 feet, or draw down to this level because of a slow recharge rate, conduct purging using one of three (3) devices:
 - <u>Bailer</u> A bottom filling bailer with a leader made of teflon stainless steel wire or single strand polypropylene monofilament of at least 10-feet long which is attached to a dedicated 1/4-inch nylon rope, should be used.
 - <u>Well Wizard Purge Pump</u> This is a pneumatic pump that uses compressed air to push water to the surface. Ground water is in contact with the drive air during the pumping process, therefore the pump is not used for sampling. Drive air is fully contained within the pump apparatus.
 - WaterraTM pump This is a manually operated pump which uses dedicated polyethylene tubing and a check valve, and can be used as an optional method for purging deeper.

MALCOLM PIRNIE, INC.

Page <u>2</u> of <u>4</u>

Appendix: Item <u>WE</u>	LL PURGING PRIOR TO SAMPLING
Applicability: <u>GENERAL</u>	Revision No.: <u>1</u> Date: <u>2/7/91</u>
Prepared by: <u>MKR</u> Date: <u>11/28/89</u>	Approved By: <u>RHO</u> Date: <u>2/7/91</u>

wells. The pump and tubing should be removed prior to sampling.

Prior to use in a well, the bailer, exterior pump bodies, and pump tubing should be cleaned using decontamination protocols specified for the program.

- 5. Purging will continue until a predetermined volume of water has been removed. Record measurements for pH, temperature, conductivity and turbidity during purging. The stability of these measurements with time can be used to guide the decision to discontinue purging.
- 6. Record well purging data in the Project Field Book or on the attached "Well Development/Purging Log" form.

034.1

MALCOLM PIRNIE, INC.

Page <u>3</u> of <u>4</u>

WELL DEVELOPMENT/PURGING LOG

DATE:								
WELL NO.:	G AND SC	- PEEN 18	NGTH	(67).			WELL I.D.	VOL GAL / F
				(=):			ו" 2"	0.0 4 0.17
2 CASING INTER				_			3"	0.38
3 WATER LEVEL	BELOW 1	op of c	ASING	(FT.)			4 5"	0.66 1.04
(VOLUME OF W	ATER IN C	ASING (GAL.)				6" 8"	F.50
	08 (@ ² x					-		2.60
			י ש		G	AL.		
PARAMETERS	ACCUM	ULATE	VOLU					
F								
		+		· · ·				
				Ī				
MENTS								

PIRNIE

Àppendix: Item <u>GRC</u>	DUND WATER SAMPLING L	ISING POLYETHYLENE	
BAILERS			
Applicability: <u>GENERAL</u>	Revision No.:	Date: <u>4/24/92</u>	
Prepared By: <u>DMH</u> Date: <u>4/24/92</u>	Approved By: <u>DMH</u>	Date: <u>4/24/92</u>	

This guideline presents a method for collecting a ground water sample after the monitoring well has been purged and has sufficiently recovered. Sampling should be carried out according to the following protocol:

2.0 METHODOLOGY

- 1. Perform sampling within three hours after purging if the well has recovered sufficiently to sample, or within 24 hours after evacuation, if the well recharges slowly. If the well does not yield sufficient volume for all required laboratory analytical testing (including quality control), a decision should be made to prioritize analyses based on contaminants of concern at the site. Analyses will be prioritized in the order of the parameters volatilization sensitivity. After volatile organics have been collected, field parameters must be measured from the next sample collected. If a well takes longer than 24 hours to recharge, the Project Manager should be consulted.
- 2. Following purging and recharging the well, collect samples into appropriate containers using a stainless steel or polytetrafluoroethylene bailer. The bailer should be equipped with a leader made of Teflon, stainless steel wires or single strand polypropylene monofilament of at least ten feet long which is attached to a new, dedicated 1/4-inch nylon rope. The bailer should be lowered slowly below the surface of the water so as to allow the water to touch only the "leader" and not the nylon rope. Prior to its use in the field, the stainless steel bailer and "leader" should be cleaned according to decontamination protocols specified for the program.
- 3. For wells that are known to produce turbid samples (values greater than 50 NTU), the bailer should be lowered and retrieved at a rate that limits surging of the well.

MALCOLM PIRNIE, INC.

Page <u>1</u> of <u>3</u>

	ity: <u>GENERAL</u> Revision No.: <u>1</u> Date: <u>2/7/91</u> By: <u>MKR</u> Date: <u>11/27/89</u> Approved By: <u>RHO</u> Date: <u>2/7/91</u>
4.	Prelabel all sample bottles in the field using a waterproof permanent marker. The following information should be included on the label:
	- Site name
	- Sample identification code
	- Project number
	- Date/time of sample collection (month, day, year)
	- Sampler's initials
	- Preservation added (if any)
	- Analysis to be performed
.5.	Collect samples into pre-cleaned bottles provided by the analytical laboratory with the appropriate preservative(s) added, and the samples placed in coolers for shipment to the designated laboratory. Chain of custody procedures should be adhered to upon sample collection.
	All samples will be total (unfiltered) unless the project specific work plan states otherwise. Should sample filtration be required, ground water samples will be pressure-filtered through 0.45 um filters in the field using air.
6.	Collect a separate sample of approximately 200 mls into an appropriate container to measure pH, conductivity, temperature and turbidity in the field.
7.	Record well sampling data in the Project Field Book or on the attached "Water Sampling Field Data Sheet."

MALCOLM PIRNIE, INC.

Page <u>2</u> of <u>3</u>

Appendix: Item <u>GRO</u>	UND WATER SAMPLING	
Applicability: <u>GENERAL</u>	Revision No.: <u>1</u>	Date: <u>2/7/91</u>
Prepared By: <u>MKR</u> Date: <u>11/27/89</u>	Approved By: <u>RHO</u>	Date: <u>2/7/91</u>

3.0 REFERENCES

(a) USEPA, September 1986, RCRA Groundwater Monitoring Technical Enforcement Guidance Document.

035.1

MALCOLM PIRNIE, INC.

Page <u>3</u> of <u>3</u>

WATER SAMPLING FIELD DATA SHEET

PROJECT :	TYPE OF SAMPLE
CLIENT:	TYPE OF SAMPLE:
JOB NO.:	LOCATION NO.:
	LAB SAMPLE NO.:
WELL DATA: DATE:	TINE:
Casing Diameter (inches):	
Screened Interval (ft BCS):	Casing Material:
Static Water Level Below TOR (ft):	Bottom Depth (ft):
Elevation Top of Well Riser:	Datum Ground Surface:
PURCING DATA: DATE:	TIME: Stert: Finish:
Method:	Pumping Rate (gal/min);
Well Volumes Purged (V=TR ² H/231):	Was well purged dry?YesNo
Standing Volume (gal):	Was well purged below sand pack?YesNo
Volume Purged (gel):	We11 I.D. Volume
is purging equipment dedicated to sample location?	(inches) (gal/ft)
Yes No	2 0.17 4 0.66
Field Personnel:	6 1.50
SAMPLING DATA: DATE:	
	TIME: Start: Finish:
Hethod:	Sampler:
Present Water Level (ft):	Air Temperature (*F):
Depth of Sample (ft):	Weather Conditions:
is sampling equipment dedicated to sample location?	Yes No
PRESERVATION DATA: DATE:	TIME: Start. Statut
Filtered: Yes' No	TIME: Start: Finish:
Preservative: H ₂ SO ₄ HNO ₃	
· 2 · 4 · · · · · · · · · · · · · · ·	
PHYSICAL AND CHENICAL DATA:	
Appearance: Cleer: Turbid:	Calar:
	Odor: Other:
Temperature (*C): pH: Speci	
Turbidity (NTU): Other	•
REMARKS :	······································
MALCOLM	-
PIRNIE	

.

Appendix: Item <u>SU</u>	RFACE WATER SAMPLING	
Applicability: <u>GENERAL</u>	Revision No.:	Date:
Prepared By: <u>MKR</u> Date: <u>1/18/90</u>	Approved By: <u>KLB</u>	Date:2/2/90

This guideline presents a method for the collection of surface water samples. The most widely used method for collection involves a sampler consisting of an adjustable clamp attached to the end of a two or three piece telescoping aluminum tube that serves as the handle. The clamp is used to secure a precleaned laboratory sample bottle. Using the sample bottle for actual sampling eliminates the need for other equipment. This method also reduces the risk of introducing other variables into a sampling event.

2.0 METHODOLOGY

- 1. Assemble the sampler. Make sure that the sample bottle and the bolts and nuts that secure the clamp to the pole are tightened properly.
- With proper protective garment and gear, take a grab sample by slowly submerging the sample bottle with minimal surface disturbance.
- 3. Collect samples from near shore unless boats are feasible and permitted.
- 4. Retrieve the sampler from the surface water with minimal disturbance. (If sample bottles were not used for sample collection, carefully transfer the water samples to appropriate precleaned sample bottles).
- 5. Cap the sample bottle and remove from the sampler. Follow procedures for preservation, if required, and sample handling.

MALCOLM PIRNIE, INC.

Page <u>1</u> of <u>2</u>

Applicability: GENERAL Revision No.: Prepared By: MKR Date: 1/18/90 Approved By: KLB	Date: Date:2/2/90

- 6. Dismantle the sampler and store in plastic bags for subsequent decontamination.
- 7. Record available information for the pond, stream or other body of water that was sampled, such as its size, location and depth in the Project Field Book. Approximate sampling points should be identified on a sketch of the water body.

3.0 REFERENCES

New Jersey Department of Environmental Protection, 1988, Field Sampling Procedures Manual: Bureau of Environmental Measurements and Quality Assurance CN 028, 414 p.

Page <u>2</u> of <u>2</u>

042

Appendix: Item	WATER LEVEL MONITORING	
Applicability: <u>GENERAL</u>	Revision No.:	Date:
Prepared By: <u>MKR</u> Date: <u>11/20/89</u>	Approved By: <u>GHF</u>	Date: <u>11/22/89</u>

This guideline presents a method for obtaining water levels from monitoring wells/piezometers. The groundwater levels measured in the monitoring wells can be used to determine groundwater flow directions and when combined with hydraulic conductivity data, flow rates.

Water levels in monitoring wells should be measured using an electronic water level indicator which has been checked to ensure it is operational, prior to mobilizing to the field.

2.0 METHODOLOGY

- 1: Pre-clean water level probe and lower portion of cable with DI water and dry with a clean tissue. A solvent wash and acid wash are not required for cleaning of the water level meter.
- 2. Lower probe slowly into the monitoring well until the audible alarm, which indicates water, sounds.
- 3. Read depth from the graduated cable to the nearest 100th (0.01) of a foot using either the v-notched reference point on the well riser or the highest point on the well riser as a reference. Repeat the measurement for confirmation and record the water level in the Project Field Book or on a "Groundwater Levels" form (attached).
- 4. Remove the probe from the well slowly, drying the cable and probe with a clean tissue.
- 5. Replace well cap and lock protective cap in place. Repeat decontamination procedures if additional measurements are to be taken.

Revised 3/94

MALCOLM PIRNIE, INC.

Page <u>1</u> of <u>3</u>

Appendix: Item WA	TER LEVEL MONITORING	
· .	· · · · · · · · · · · · · · · · · · ·	
	Revision No.:	Date:
Prepared By: <u>MKR</u> Date: <u>11/20/89</u>	Approved By: <u>GHF</u>	Date: <u>11/22/89</u>

3.0 EQUIPMENT REQUIREMENTS

- personal protective garment and gear (if applicable)
- water level indicator
- tissues
- Project Field Book

4.0 REFERENCES

USEPA, September 1986, RCRA Ground Water Monitoring Technical Enforcement Guidance Document, 9950.1

MALCOLM PIRNIE, INC.

Page <u>2</u> of <u>3</u>

033

	DA	TE								WATE		
WELL / BOREHOLE NO.	REFERENCE POINT (R P)	RP ELEV. (ft.AMSL)	DEPTH DRP ELEV. (11.) (11. AMSL)	DEPTH BRP ELEV. (11.) (11.AMSL)	DEPTH BRP ELEV. (11.) (11.AMSL)	DEPTH BRP (11.)	ORP ELEV.	DEPTH BRP ELI (11.) (11.4	ELEV. (11. AMSL			
											·	1
												†
				L								ł
											·	
											·	
		·										
					·							
							·					
				·	l					I		
BRP + BE	LOW REFE	RENCE POI	NT TO	DC = TOP OF	CASING	TOR .	TOP OF F	RISER	GS . GRO	JND SURFA	CE	

.

ADOLIND WATER

U

Ĺ

ATTACHMENT C

CALIBRATION OF FIELD EQUIPMENT

0605-237-200

Printed on Recycled Paper

Appendix 💆 : I	tem <u>CA</u>	IBRATION AND	MAINTEN	ANCE OF PORTABLE
	<u>FI</u>	ELD pH/Eh METE	<u></u>	
Applicability:	GENERAL	Revision No.:		Date:
Prepared By: <u>THF</u>	Date: <u>12/22/89</u>	Approved By:	<u>KLB</u>	Date: <u>12/22/89</u>

This guideline presents a method for calibration of a portable pH/Eh meter. The pH/Eh meter measures and provides a log scale reading of the hydrogen ion concentration of a water sample (pH function) or of the oxidation/reduction potential of a water sample (Eh function). In order to ensure an accurate reading, the pH/Eh meter must be calibrated prior to use in the field.

2.0 ACCURACY -

The calibrated accuracy of the pH/Eh meter will be:

- pH 0.1 pH unit, over the temperature range of -2° C to 40° C.
- Eh -1 to +1 millivolts over the range of -700 to +700 millivolts.

3.0 CALIBRATION

Calibrate all field test equipment at the beginning of each sampling day and check and recalibrate according to the manufacturer's specifications. Calibrate the pH/Eh meter by immersing the sensing probe in a container of certified pH buffer solution traceable to the National Bureau of Standards, and compare the meter reading to the known value of the buffer solution, which is stirred. If the reading obtained by the meter does not agree with the known value of the buffer solution, adjust the "standardize" control until the desired reading is obtained. In addition,

MALCOLM PIRNIE, INC.

Page <u>1</u> of <u>3</u>

Appendix: Item <u>CA</u>	LIBRATION AND MAINTENANCE OF PORTABLE
_ <u></u> FI	ELD pH/Eh METER
Applicability: <u></u>	Revision No.: Date:
Prepared By: <u>THF</u> Date: <u>12/22/89</u>	Approved By: <u>KLB</u> Date: <u>12/22/89</u>

measure the temperature of the buffer solutions, and adjust the temperature setting of the meter accordingly. Typically, pH 4.0, 7.0 and 10.0 buffers will be used for calibration purposes. Two-point calibrate the meter in the field at the beginning and end of each group of measurements. Select the two points to bracket the range of expected field measurements. The narrowest range possible is desired to maximize accuracy. This procedure will apply to both the pH and Eh functions of the meter, since there is no need to standardize the Eh function to any additional buffer or to compensate for solution temperature.

4.0 MAINTENANCE

ł

- 1. When not in use or between measurements, keep the pH/Eh probe immersed in or moist with buffer solution.
- 2. Check the meter batteries at the end of each day and recharge when needed.
- 3. Replace the pH/Eh probe any time that the meter response time becomes greater than two minutes or the metering system consistently fails to retain its calibrated accuracy for a minimum of ten sample measurements.
- 4. If a replacement of the pH/Eh probe fails to resolve instrument response time and stability problems, the equipment officer will send the instrument to its manufacturer for maintenance and repair.
- 5. Maintain a log for each monitoring instrument. Record all maintenance performed on the instrument on this log with date and name of the organization performing the maintenance.

MALCOLM PIRNIE, INC.

Page <u>2</u> of <u>3</u>

Appendix: Item	CALIBRATION AND MAINTENANCE OF PORTABLE
· · · ·	FIELD pH/Eh METER
Applicability: <u>GENERAL</u>	Uutt
Prepared By: <u>THF</u> Date: <u>12/22/89</u>	_ Approved By: <u>KLB</u> Date: <u>12/22/89</u>

5.0 DATA VALIDATION

Document all instrument calibrations in the field notebook, indicating the meter readings before and after the meter has been adjusted. Also document the pH buffers used to calibrate the meter. This is important, not only for data validation, but also to establish maintenance schedules and component replacement.

MALCOLM PIRNIE, INC.

Page <u>3</u> of <u>3</u>

047

Appendix: Item CALIBRATION	AND MAINTENANCE OF
PORTABLE CON	DUCTIVITY METER
Applicability: <u>GENERAL</u> Revision No	.: <u>1</u> Date: <u>12/29/89</u>
Prepared By: <u>THF</u> Date: <u>12/29/89</u> Approved By	: <u>KLB</u> Date: <u>12/29/89</u>

This guideline presents a method for checking the calibration of a portable field conductivity meter. The conductivity meter is factory calibrated and measures and provides a direct reading of the conductivity of a water sample. In order to ensure an accurate reading, the calibration of the conductivity meter must be checked prior to use in the field.

2.0 ACCURACY

The calibrated accuracy of the specific-conductance meter is within three percent of full-scale over the temperature range of -2° C to 40° C.

3.0 CALIBRATION

The instrument has been calibrated by the manufacturer according to factory specifications. All test equipment must be field checked at the beginning of each sampling day [6NYCRR 360-2-11(a)(12)(v)(a)] using a calibration solution having a known specific conductivity and salinity. Check the factory calibration by immersing the sensor probe in a container of manufacturer-prepared standard solution of known specific conductivity. Turn the meter on and allow approximately 30 seconds for response. If the reading obtained does not agree with the known specific conductivity of the solution, proceed as follows:

- Turn the instrument off, and mechanically zero the meter in accordance with the instruction manual (if possible).

MALCOLM PIRNIE, INC.

Page 1 of 3

Appendix: Item	CALIBRATION AND MAINTENANCE OF
	PORTABLE CONDUCTIVITY METER
Applicability: <u>GENERAL</u>	Revision No.: 1 Date: 12/29/89
Prepared By: THE Date: <u>12/29/89</u>	Approved By: <u>KLB</u> Date: <u>12/29/89</u>

- Turn the instrument on and check the battery power. If necessary, place the meter on charge for several hours.
- Clean and dry the probe thoroughly. With the probe not in the solution, turn the meter on and adjust the range selector to the lowest range available. The meter reading should be within two minor divisions of zero. If the response is outside this range, return the meter to the manufacturer for repair.
- Place the electrode in the manufacturer-prepared solution of known salinity. Adjust the "salinity" control to match that of the standard solution.
- If the above steps fail to adequately calibrate the meter, consult the manufacturer.

4.0 MAINTENANCE

- 1. Check the meter batteries at the end of each day and recharge when needed.
- 2. Track the meter response time and stability to determine the need for instrument maintenance. When response time becomes greater than two minutes and the meter must be recalibrated more than once per day, send the instrument to the manufacturer for maintenance and repair.
- 3. Maintain a log for each specific-conductance meter. Record all maintenance performed on the instrument on this log with date and name of organization performing the maintenance.

MALCOLM PIRNIE, INC.

Page <u>2</u> of <u>3</u>

Appendix: Item	CALIBRATION AND MAINTENANCE OF
	PORTABLE CONDUCTIVITY METER
Applicability: <u>_GENERAL</u>	Revision No.: <u>1</u> Date: <u>12/29/89</u>
Prepared By: <u>THF</u> Date: <u>12/29/89</u>	Approved By: <u>KLB</u> Date: <u>12/29/89</u>

5.0 DATA VALIDATION

Document all instrument calibration checks, indicating the meter readings before and after the meter has been adjusted. The standard solution used to calibrate the meter will also be documented.

048

MALCOLM PIRNIE, INC.

Page <u>3</u> of <u>3</u>

Appendix: Item <u>C/</u>	ALIBRATION AND MAINTENANCE OF PORTABLE
	IELD_TURBIDITY_METER
Applicability: <u>GENERAL</u>	Revision No.: Date:
Prepared By: <u>THF</u> Date: <u>2/9/90</u>	Approved By: <u>KLB</u> Date: <u>2/9/90</u>

This procedure presents a method for calibration of the HACH Model 16800 portable field turbidity meter. The turbidity meter is used to measure and provide a direct reading of the cloudiness or clarity of water samples. The turbidity meter is factory calibrated. In order to ensure an accurate reading, the factory calibration must be checked prior to using the meter in the field.

2.0 ACCURACY

The calibrated accuracy of the turbidity meter will be within one percent of full-scale on all scale ranges.

3.0 CALIBRATION

All factory calibrated field test equipment must be checked at the beginning of each sampling day and recalibrated (if necessary) according to the manufacturer's specifications (Ref. 1). Check the factory calibration of the turbidity meter as follows:

- 1. With the instrument turned off, check the mechanical zero adjustment on the meter face. Adjust for a zero reading if necessary.
- 2. Turn the meter on and perform a battery check. Charge the batter pack if the meter indicates low battery charge.

MALCOLM PIRNIE, INC.

Page 1 of 3

Appendix: Item	CALIBRATION AND MAINTENANCE OF PORTABLE
	FIELD TURBIDITY METER
Applicability: <u>GENERAL</u>	Revision No.: Date:
Prepared By: <u>THF</u> Date: <u>2/9/90</u>	Approved By: <u>KLB</u> Date:2/9/90

- 3. Place the focusing template into the cell holder, press the 1.0 range switch, and adjust the ZERO control to obtain a zero NTU reading.
- 4. Remove the focusing template and insert a 0.9 NTU turbidity standard. Adjust the SPAN control for a corrected 0.9 NTU reading, if necessary.
- 5. Remove the 0.75 NTU standard and replace it with a 9 NTU standard. Press the 10 range switch. The meter should indicate 9 (\pm 0.02) NTU. If it does not, the 10 range potentiometer must be adjusted in accordance with the manufacturer's instructions. Adjust the SPAN control for a reading of exactly 9 NTU.
- 6. Remove the 9 NTU standard and replace it with the cell riser and 90 NTU standard. Press the 100 range switch. The meter should indicate 90 (\pm 2) NTU.
- 7. Remove the 90 NTU standard and cell riser and insert the 9 NTU standard. Press the 10 NTU range switch. Adjust the SPAN control for a reading of exactly 9 NTU.
- 8. Remove the 9 NTU standard and replace it with a 0.9 NTU standard. Press the 1.0 range switch. The meter should indicate the correct value for the 0.9 NTU standard (± 0.2). If it does not, the 1.0 range potentiometer must be adjusted in accordance with the manufacturer's instructions.

4.0 MAINTENANCE

- 1. Check the meter battery pack at the end of each day and recharge when needed.
- 2. When not in use, store the meter in a clean, dry area with the protective cover shut.
- 3. Clean the lens periodically with a dry cloth or tissue.

MALCOLM PIRNIE, INC.

Page <u>2</u> of <u>3</u>

Appendix: Item	CALIBRATION AND MAINTE	NANCE OF PORTABLE
	FIELD TURBIDITY METER	
Applicability: <u>GENERAL</u>	Revision No.:	Date:
Prepared By: <u>THF</u> Date: <u>2/9/90</u>	Approved By: <u>KLB</u>	Date: <u>2/9/90</u>

4. Maintain a log for each turbidity meter. All maintenance performed on the instrument will be recorded on this log with date and name of organization performing the maintenance.

5.0 DATA VALIDATION

Document all instrument calibrations, indicating the meter readings before and after adjustment. The calibration standard manufacturer and type will also be documented. Record any problems or malfunctions occurring during field use and present them with the instrument readings obtained.

6.0 REFERENCES

 New York State Code of Rules and Regulations, 6NYCRR Part 360, Section 2.11(a)(12)(v)(a).

007

MALCOLM PIRNIE, INC.

Page <u>3</u> of <u>3</u>

Appendix: Item	CALIBRATION AND MAINTENANCE OF
	PORTABLE DISSOLVED OXYGEN METER
	· :
Applicability: <u>GENERAL</u>	Revision No.: Date:
Prepared By: <u>EWM</u> Date: <u>04/16/90</u>	Approved By: <u>KLB</u> Date: <u>04/24/90</u>

This guideline presents a method for checking the calibration of a portable dissolved oxygen meter. The dissolved oxygen meter is to measure the dissolved oxygen content of surface water samples. In order to ensure an accurate reading, the calibration must be checked prior to using the meter in the field.

2.0 ACCURACY

The calibrated accuracy of the dissolved oxygen meter will be within \pm one percent of full-scale over the temperature range of -5°C to +45°C.

3.0 CALIBRATION

The dissolved oxygen meter will be air calibrated based on probe temperature and true local atmospheric pressure conditions (or feet above sea level). Refer to the operation manual for detailed calibration procedures.

4.0 MAINTENANCE

1. When not in use or between measurements, the dissolved oxygen probe will be kept immersed in or moist with deionized water.

MALCOLN PIRNIE, INC.

Page 1 of 2

Appendix: Item	CALIBRATION AND MAINTE	NANCE OF
-	PORTABLE DISSOLVED OXY	GEN METER
-		
Applicability: <u>GENERAL</u>	Revision No.:	Date:
Prepared By: <u>EWM</u> Date: <u>04/16/90</u>	_ Approved By: <u>KLB</u>	Date: <u>04/24/90</u>

- 2. The meter batteries will be checked prior to each meter's use and will be replaced when the meter cannot be red-line adjusted.
- 3. The meter response time and stability will be tracked to determine the need for instrument maintenance. When response time becomes greater than two minutes, probe service is indicated. The probe will be cleaned, refilled with new KCL solution, and fitted with a new membrane. If the meter response and stability is not in accordance to manufacturer's specifications, the meter will be sent to the manufacturer for maintenance and repair.
- 4. A maintenance log will be kept for each dissolved oxygen meter. All maintenance performed on the instrument will be recorded on this log with date and name of the organization performing the maintenance.

5.0 DATA VALIDATION

All instrument calibrations will be documented, indicating the meter readings before and after the meter has been adjusted. Each preparation of probe and method of calibration will also be documented. This is important, not only for data validation, but also to establish maintenance schedules and component replacement.

MALCOLM PIRNIE, INC.

Page <u>2</u> of <u>2</u>

052

ATTACHMENT D

SAMPLING EQUIPMENT DECONTAMINATION PROCEDURE

0605-237-200

Printed on Recycled Paper

Appendix: Item <u>SAMPLING EQUIPMENT DECONTAMINATION</u>		
PROTOCOLS		
	Revision No.: <u>2</u> Date: <u>12/5/89</u>	
Prepared By: <u>AJM</u> Date: <u>10/31/89</u>	Approved By: <u>KLB</u> Date: <u>12/12/89</u>	

This guideline presents a method for the decontamination of sampling equipment used in the collection of environmental samples.

2.0 HEALTH AND SAFETY.

Nitric acid is a strong oxidizing agent as well as being extremely corrosive to the skin and eyes. Solvents such as acetone, methanl, hexane, and isopropanol are flammable liquids. Limited contact with skin can cause irritation, while prolonged contact may result in dermititis. Eye contact with the solvents may cause irritation or temporary corneal damage. Safety glasses with protective side shields, neoprene or nitrile gloves, and long-sleeve protective clothing must be worn whenever acids and solvents are being used.

3.0 METHODOLOGY

- 1. All equipment used in sampling must be clean and free from residue of any previous samples. To accomplish this, the following procedures are to be followed:
 - a. wash equipment thoroughly with non-phosphate detergent and tap water⁽¹⁾ using a brush to remove any particulate matter or surface film;
 - b. rinse with tap water⁽¹⁾;
 - c. rinse with a 10% HNO, solution⁽²⁾;

MALCOLM PIRNIE, INC.

Page 1 of 4

Appendix: Item <u>SA</u>	MPLING EQUIPMENT DEC	ONTAMINATION
PROTOCOLS		
Applicability: <u>NYSDEC-SPECIFICATION</u>	Revision No.: _2	Date: <u>12/5/89</u>
Prepared By: <u>AJM</u> Date: <u>10/31/89</u>	Approved By: <u>KLB</u>	Date: <u>12/12/89</u>

- d. rinse with tap water⁽¹⁾:
- e. rinse with pesticide grade $acetone^{(3)}$ or $methanol^{(3)}$:
- f. rinse with pesticide grade-hexane⁽³⁾;
- g. rinse with deionized water (demonstrated-analytefree)⁽⁴⁾;
- h. air dry; and
- i. wrap in aluminum foil (shiny side out)
- 2. Well excavation equipment, such as submersible pumps and bailers, which are put into the borehole must be decontaminated following the procedures listed above. All excavation tubing must be dedicated to individual wells, (i.e., tubing cannot be reused).
- 3. Bailer cord must be cleaned with non-phosphate detergent and demonstrated analyte-free deionized water before use. Cord can be reused; it is not necessary to dedicate it to individual wells. If a ten (10) foot or greater length leader is being used, only the leader need be cleaned (assumes bailer cord is not allowed to contact water).
- 4. All unused sample bottles and sampling equipment must be maintained in such a manner that there is no possibility of casual contamination.

MALCOLM PIRNIE, INC.

Page 2 of 4

Appendix: Item <u>_SA</u>	MPLING EQUIPMENT DECONTAMINATION
<u>PR</u>	OTOCOLS
	Revision No.: <u>2</u> Date: <u>12/5/89</u>
Prepared By: <u>AJM</u> Date: <u>10/31/89</u>	Approved By: <u>KLB</u> Date: <u>12/12/89</u>

4.0 EQUIPMENT REQUIREMENTS

- personal protective garment and gear
- brush, buckets, and wash basins
- squirt bottles
- supply of solvents and water
- aluminum foil

5.0 REFERENCES

New York State Department of Environmental Conservation, Division of Hazardous Substances Regulation, August 1989, RCRA Quality Assurance Project Plan Guidance.

Engineering Support Branch Standard Operating Procedures and Quality Assurance Manual, April 1, 1986. USEPA Region IV.

NOTES

- (1) Tap water may be used from any municipal water treatment system. The use of an untreated potable water supply is not an acceptable substitute.
- (2) Omit this step if metals are not being analyzed. For carbon steel split spoon samplers, a 1% rather than 10% HNO₃ solution should be used.

MALCOLM PIRNIE, INC.

Page <u>3</u> of <u>4</u>

Appendix: Item <u>SA</u>	MPLING EQUIPMENT DECONTAMINATION
PR	OTOCOLS
Applicability: <u>NYSDEC-SPECIFICATION</u>	Revision No.: 2 Date: <u>12/5/89</u>
Prepared By: <u>AJM</u> Date: <u>10/31/89</u>	Approved By: <u>KLB</u> Date: <u>12/12/89</u>

- (3) This solvent rinse can be omitted if organics are <u>not</u> being analyzed. Alternatively, if approval from NYSDEC has been granted, use pesticide grade isopropanol as the cleaning solvent. Isopropanol is better suited as a cleaning solvent than acetone, methanol and hexane for the following reasons:
 - Acetone is a parameter analyzed for on the Target Compound List (TCL); therefore the detection of acetone in samples collected using acetone rinsed equipment is suspect;
 - Almost all grades of methanol contain 2-butanone (MEK) contamination. As for acetone, 2-butanone is a TCL compound. Thus, the detection of 2-butanone in samples collected using methanol rinsed equipment is suspect. In addition, methanol is much more hazardous than either isopropanol or acetone.
 - Hexane is not miscible with water (hydrophobic) and therefore, is not an effective rinsing agent unless the sampling equipment is dry. Isopropanol is extremely miscible in water (amphoteric), making it an effective rinsing agent on either wet or dry equipment.
- (4) Deionized water must be demonstrated to be analyte-free water. The criteria for analyte-free water are the Method Detection Limits (MDLs) for the analytes. Specifically for the common laboratory contaminants listed below, the allowable limits are set at three times the respective MDLs determined by the most sensitive analytical method:
 - 1. Methylene Chloride
 - 2. Acetone
 - 3. Toluene
 - 4. 2-Butanone
 - 5. Phthalates

054

MALCOLM PIRNIE, INC.

Page <u>4</u> of <u>4</u>

Moench Company

Division of Caleres*5*

465 Palmer Street

Gowanda, NY 14070

Phone: 716-532-2201

Mr. Stanley F. Radon; CHMM,CPG

NY State Dept. of Environmental Conservation

Division of solid and Hazardous Waste

270 Michigan Ave.

Buffalo, NY 14203-2999

RE: Palmer St. Landfill Groundwater Quality Report

April 2018 sample event.

Mr. Radon

Enclosed is the Groundwater Quality Report for our Palmer Street Landfill. Sampling was done on April 30th and May 1st 2018. A PDF file of the report was emailed to you on June 11,2018. GEI Consultants will submit the electronic (EDD).

The results were pretty normal with small detections of Arsenic, Chromium and Acetone in a few locations. Even after a snowy winter and wet spring MW-3 and MW-5 continued to be dry. There was no bank seep in BS-1 and 2 and had to take BS-3 sample in a small pool.

Please call if you have any questions or stop by. School is out on the 20th and I will be down here longer hours.

CC David Rodgers , Emily Shultz– Caleres; St Louis 🖊

Rick Frappa-GEI consultants

Sincerely

RECEIVED

JUN 1 4 2018

NYS DEC

Michael Best Site Manager

Moench Company Division of Caleres*5* 465 Palmer Street Gowanda, NY 14070 Phone 713-532-2201

RECEIVED

JUN 1.4 2018 NYS DEC REGION 9

Palmer Street LandfillJune 2018Groundwater Quality Monitoring ReportApril 30th and May 1st Monitoring EventFirst of two sampling events for 2018

Michael Best

Michael Best Site Manager

PALMER STREET LANDFILL - MOENCH COMPANY. Division of Caleres*5* GROUNDWATER MONITORING REPORT FOR APRIL and May 2018, SAMPLING EVENT.

TABLE OF CONTENTS:

.

		PAGE
1.0	INTRODUCTION	1
	1.1 BACKGROUND-LANDFILL	1
	1.2 PURPOSE AND SCOPE	1
2.0	MONITORING SYSTEM -LANDFILL	2
3.0	MONITORING METHODS-LANDFILL	3
	3.1 GROUNDWATER MONITORING	3
	3.2 INFILTROMETER MONITORING	3
4.0	GROUNDWATER QUALITY MONITORING SUMMARY	4
	4.1 EVALATION GROUNDWATER QUALITY 4	
	SUMMARY OF SAMPLING RESULTS	4B
5.0	GROUNDWATER FLOW	5
6.0	REFERENCES	6

LIST OF TABLES

TABLE NO.	DESCRIPTION	FOLLOWING	PAGE
1 .	MONITORING PARAMETERS		3
2	GROUNDWATER ELEVATIONS	•	3
3	SUMMARY OF FIELD MEASUREMENT	rs .	3
4	INFILTROMETER MEASUREMENTS		3
5	SUMMARY OF ANALYTICAL RESULT	S-LANDFILL	4
7	INVENTORY OF SAMPLING EQUIPN	MENT/MATERIAL	6
8	CALIBRATION LOG		6
	FIGURES		
FIGURE NO.	DESCRIPTION	FOLLOWIN	IG PAG

1	SITE LOCATION	1
2	MONITORING LOCATIONS	2
3	WATER TABLE ISOPOTENTIAL MAP	5
4 ,	BEDROCK ISOPOTENTIAL MAP	5
5	WATER LEVEL HYDROGRAPHICS	5

TABLE OF CONTENTS (CONTINUED) LIST OF APPENDICES

APPENDIX

A FIELD DATA SHEETS FOR April 30th and May 1st 2018 MONITORING EVENT..

B INFILTROMETER DESIGN

М

C LAB ANALYTICAL REPORT FOR APRIL 30TH AND May 1st 2018 MONITORING EVENT. (ALPHA ANALYTICAL)

(

1.0 INTRODUCTION

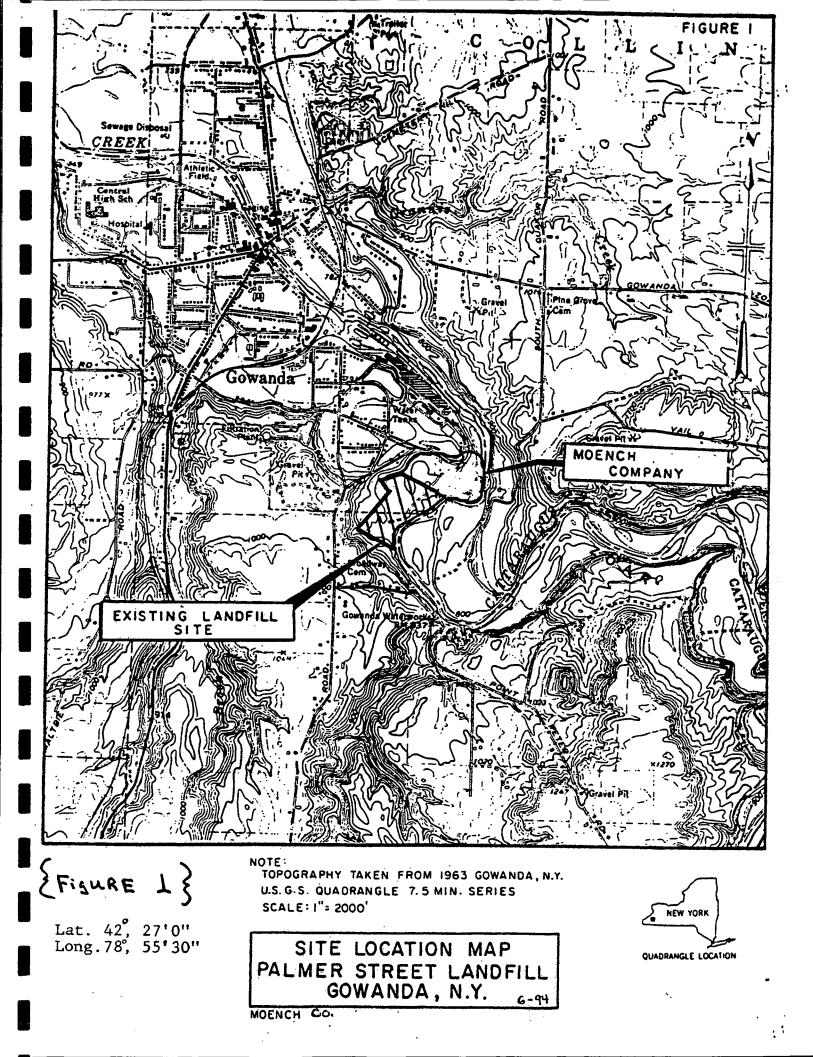
1.1 BACKGROUND-LANDFILL.

THE MOENCH COMPANY, A DIVISION OF BROWN SHOE CO., NOW Known AS CALERES, IS LOCATED NEAR THE SOUTHEAST CORNER OF THE VILLAGE OF GOWANDA, CATTARAUGUS COUNTY, NEW YORK. (FIGURE 1). THE PALMER STREET LANDFILL, WHICH WAS OPERATED BY MOENCH TANNING FROM 1900 (APPROX), THROUGH JULY 1983, LIES IMMEDIATELY SOUTHWEST OF THE (FORMER) TANNERY COMPLEX ON AN APPROXIMATELY 25-ACRE, PARCEL OF LAND. A VARIETY OF WASTE GENERATED BY MOENCH TANNING WERE DISPOSED OF AT THE PALMER STREET LANDFILL SITE. THESE WASTES INCLUDED SOLE LEATHER EXTRACT, RENDERING WASTE, SPRAY BOOTH CLEAN UP WASTE, WASTE FINISH, WASTE HAIR/LEATHER SCRAPS, WASTEWATER TREATMENT PLANT SLUDGE, AND OCCASIONAL CONSTRUCTION DEBRIS.

MOENCH CO. HAS CLOSED THE PALMER STREET LANDFILL. ACCORDINGLY, THE CLOSURE/POST CLOSURE PLAN(REFERENCE 1), IS BEING PERFORMED. THE LONG-TERM POST CLOSURE MONITORING PROGRAM HAS BEEN APPROVED & IMPLIMENTED.(JULY 1993, REVISED MARCH 1994, MARCH 2001 & DECEMBER 2006).

IN JULY OF 2006, A PROPOSAL WAS MADE TO THE NEW YORK STATE DEPT. OF ENVIRONMENT CONSERV.(NYSDEC), TO RECONFIGURE THE GROUNDWATER MONITORING SYSTEM(REF#7).

THIS WAS AGREED UPON IN EXCHANGE FOR THE ELIMINATION OF THE FIVE YEAR "COVER SYSTEM EVALUATION". THE NEW MONITORING SYSTEM IS DESCRIBED IN SECTION 2.0


1.2 PURPOSE AND SCOPE

SAMPLES ASSOCIATED WITH THE SECOND EVENT OF TWO, WATER QUALITY MONITORS, FOR 2018 YEAR, WERE COLLECTED ON April 30th and May 1st.

EVEN THOUGH WE HAD A VERY SNOWY AND WET SPRING ONLY THERE WAS NO BANK SEEP ON BS-1 AND BS-2. A SAMPLE WAS OBAINED FROM A POOL ADJACENT TO THE SPLINTER CREEK NEAR BS-3.

SITES MW-3 AND MW-5 WERE DRY; NO SAMPLE OBTAINED.

PAGE 1.

2.0 MONITORING SYSTEM(RECONFIGURED 7/06)

THE RECONFIGURED GROUNDWATER MONITORING SYSTEM FOR THE PALMER STREET LANDFILL(FIG. 2), CONTAINS NINE(9) MONITORING WELLS AND THREE(3) BANK SEEPS. A REVISED POST CLOSURE PLAN, DESCRIBING THE DETAILS, WAS SUBMITTED TO THE NYSDEC 9, IN JANUARY 2007.

UPGRADIANT	OVERBURDEN/WASTE	BEDROCK
WELLS	<u>WELLS</u>	WELLS
	MW-3	MW-3D
MW-7D	MW-4SR	MW-4 D
MW-8D	MW5	MW-6D
	MW-6	

IN ADDITION TO THE WELLS, NYSDEC ALSO REQUIRES THE MON-ITORING OF THREE (3) BANK SEEPS DESIGNATED AS BS-1, BS-2 AND BS-3, RE-SPECTIVELY. THE ABILITY-TO OBTAIN SAMPLES FROM THESE BANK SEEPS IS SPORADIC DUE TO VARYING WEATHER/MOISTURE CONDITIONS.

MW-8D IS DOWN GRADIENT FROM GERNATT'S GRAVEL WASHING OPERATION, SETTLING PONDS. IT MAY BE AFFECTED FROM THESE.

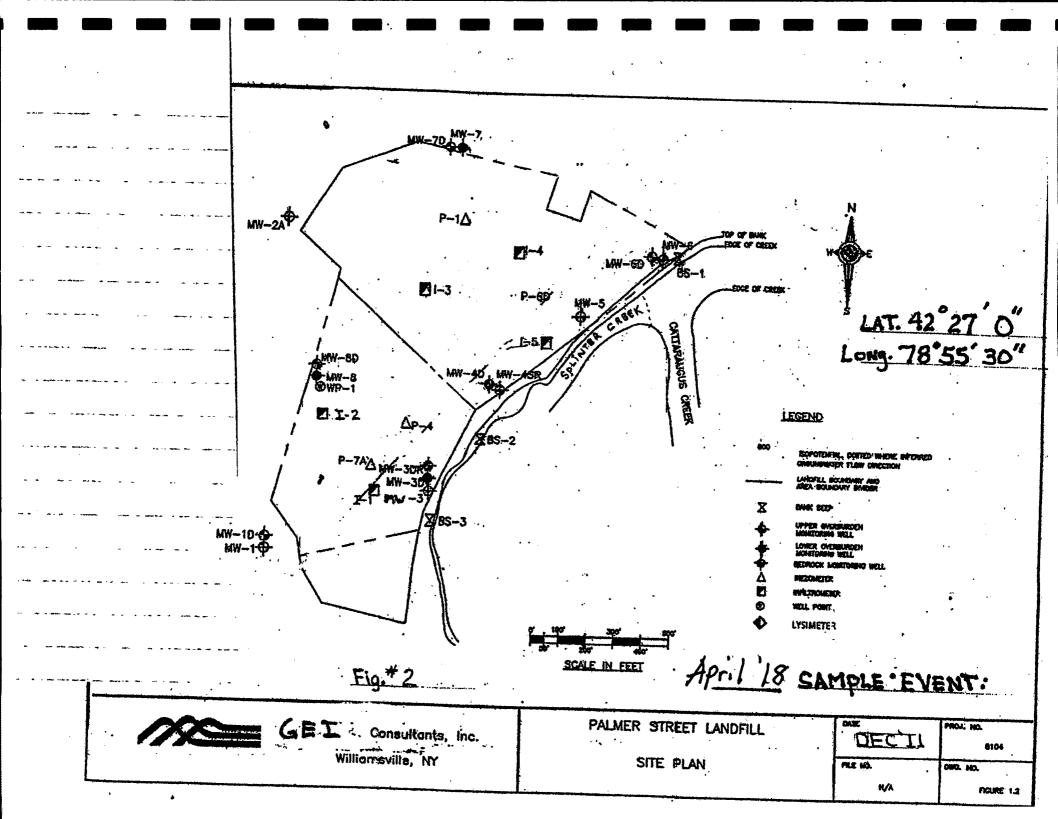
TO AID IN THE EVALUATION OF COVER PERFORMACE, WATER LEVELS FROM FIVE (5) INFILTROMETERS ARE ALSO MONITORED. LOCATIONS OF MONITORING POINTS ARE SHOWN ON FIGURE 2. THE RESULTS CONTINUE TO INDICATE THAT THE COVER SYSTEM IS PERFORMING AS PLANNED. THESE SHOWED NO/NEGATIVE INFILTRATION FOR THIS SAMPLING EVENT; TABLE #4. THE VILLAGE HAS USED THE DEEP AQUIFER OFF AND ON THE PAST YEARS WHICH RESULTS IN FLUCTUATIONS ON WATER LEVEL IN THE MW-1D WELL

PAGE 2.

TABLE +1

MOENCH TANNING COMPANY PALMER STREET LANDFILL

MONITORING PARAMETERS *Twice/year


Soluble Arsenic⁽¹⁾ Soluble Chromium⁽¹⁾ Soluble Lead⁽¹⁾

Volatile Organics⁽²⁾⁽³⁾

 $p\underline{H}^{(4)}$ Specific Conductance⁽⁴⁾
Turbidity⁽⁴⁾ - $\bigvee_{i \leq U \leq L}$ Groundwater Elevation⁽⁴⁾
Temperature⁽⁴⁾
Odor⁽⁴⁾
Sample Appearance⁽⁴⁾

Notes:

- 1. All samples collected for analysis of soluble metals are pressurefiltered in the field immediately upon sample collection.
- 2. The list of VOC analytes are those compounds included in SW-846, Method 8260.
- 3. Analysis for VOCs are not performed on pore water samples during performance monitoring events.
- 4. Field parameters (i.e., pH, specific conductance, temperature and turbidity) are measured in the field by sampling personnel. Laboratory analysis of these parameters will not be required.

3.0 MONITORING METHODS

3.1 GROUNDWATER MONITORING -LANDFILL

SAMPLES COLLECTED DURING THE APRIL 30TH AND MAY 1ST 2018, MONITORING EVENT WERE COLLECTED BY MOENCH COMPANY PERSONNEL, AND ANA-LYZED BY ALPHA ANALYTICAL, TONAWANDA, NEW YORK. THE ANALYSIS IS PERFORMED IN ACCORDANCE WITH THE SAMPLING PLAN/QUALITY ASSURANCE PLAN FOR THE PALMER STREET LANDFILL (REFERENCE 3).

LABORATORY ANALYSIS WERE PERFORMED IN ACCORDANCE WITH THE USEPA 200.7 FOR METALS & VOC 8260. THE MONITORING PARAMETERS ARE LISTED IN TABLE 1. SAMPLES WERE NOT AVAILABLE FROM ONE WELLS AND THREE BANK SEEPS, IDENTIFIED IN SECTION 2.0.

PRIOR TO SAMPLING, STATIC WATER LEVEL ELEVATIONS WERE MEASURED IN THE MONITORING WELLS AND THE WELLS WERE PURGED (SEE TABLE 2. GROUNDWATER ELEVATIONS WERE ALSO MEASURED IN THE PIE-ZOMETERS, INFILTROMETERS, AND WELLS ON-SITE.

FIELD SAMPLES WERE COLLECTED AND MEASURED FOR THE FIELD PARAMETERS IDENTIFIED IN TABLE 1. THE FIELD MEASUREMENTS ARE SUMMARIZED IN TABLE #3.....

3.2 INFILTROMETER MONITORING

FIVE INFILTROMETERS HAVE BEEN INSTALLED BENEATH THE LAND-FILL CAP TO AID IN THE ASSESSMENT OF PERFORMANCE OF THE CAP. DURING EACH SAMPLING EVENT, WATER LEVELS IN THE INFILTROMETER ARE MEASURED AND THE AMOUNT OF WATER INFILTRATING CALCULATED. NOTE: IT IS BELIEVED THAT INFILTROMETER #1, IS OFTEN FLOODED DUE TO NEIGHBORING SPRINGS AND GRAVEL SETTLING PONDS. THIS CREATES A HIGH WATER TABLE, IN THE SOUTH END OF AREA #2.

A SCHEMATIC SHOWING THE DESIGN AND DIMENSIONS OF THE INFILTROMETERS IS PRESENTED IN APPENDIX "B".

PAGE 3.

MOENCH COMPANY 465 PALMER ST. GOWANDA, NY **160**20

PALMER STREET LANDFILL :

DATE 1/23/18

GROUNDWATER ELEVATIONS: (TABLE #2)

#*

WP. WHALE PUMP - DEDICATEL

	WELL #	ELEVATION TOP OF PVC(FT)	TOTAL DEPTH FROM TOP OF PVC(FT)	WATER DEPTH(FT) FROM TOP OF PVC	WATER(FT) ELEVATION
	1		31.90 18-12	3.70	822.35
	<u>MW-1</u> MW-1D	826.05 RSL 827.82	<u>31.70 (8-12</u> 188.20	17.10	809.52
	MW-2A	810.62	16.15 "	3.05	807.57
	<u>MW-3</u>	810.81	17.10	15165	795:16
	<u>MW-3D</u>	810.73	67.70 "	19,65	796.08
	MW-3DR	810.47	102.30 "	11.85	798.62
	MW-4 SR	806.75 JP	24.92 "	12.1.05	794,90
	MW-4D	805.93	74,94 ''	13.35	792.58
	MW-5	805.35	18.15 "	DRY	
	MW-6	800.48 VP	18.78 "	15,55	786.58
	MW-6D	.800.63	37.03 "	17.60	783.58
ť	<u>MW-7</u>	800.50	30.60 (8.12)	7.25	793.25
		800.39	41.90 "	5.70	794.89
	MW-8	821.82	15.96 ."	DRY	
	MW-8D	821.89 \vf	126.80 (15)	20,20	801.69
	· · · · · · · · · · · · · · · · · · ·		3		
	INFILTROM	ETERS:			
	#!		9.00	4.20	
	#2		8.80	7.20	
	# 3		9.00	6,80	
	#4		8-92	6.70	
	<i>#</i> 5		9.00	7.25	<u> </u>
	P	······			à à 19

Palmer st. Landfill

GROUNDWATER ELEVATIONS:

WELL #	ELEVATION TOP OF PVC(FT)	TOTAL DEPTH FROM TOP OF PVC(FT)	WATER DEPTH(FT) FROM TOP OF PVC	WATER (FT ELEVATION
<u>P-1</u>		18.30 (8/12)	16,60	795,25
P-4	813.54 "	19.70 "	15,40	798,14
P-6D	810.30	61.25 "	20,00	790.30
P-7A	816,92 "	23.90 ''	19.25	797.67
WP-1	822.16 "	11.71 L, WB	8,15	814.01

NOTE:

Aug 2012 ALL WELLS "DEVELOP ED"

REV & 9/12 Roid - 2/12

smpl date

*

4.0 GROUNDWATER QUALITY MONITORING RESULTS:

4.1 EVALUATION OF GROUNDWATER ELEVATION DATA:

GROUNDWATER ELEVATION MEASUREMENTS WERE TAKEN AT EACH OF THE ACCESSIBLE ON-SITE MONITORING WELLS, PIEZOMETERS, AND WELL POINTS, DURING THE APRIL 30TH AND MAY 1ST 2018, MONITORING EVENT. THE DATA ARE SUMMARIZED IN TABLE 2/3.

PLOTS OF THE GROUNDWATER ELEVATIONS MEASURED IN THE MONITORING WELLS WITH RESPECT TO TIME ARE PRESENTED IN FIGURE 3,4, AND 5, FOR THE SHALLOW OVERBURDEN, DEEP OVERBURDEN AND BEDROCK WELLS, ON THE LANDFILL, RESPECTIVELY. AS SHOWN IN FIGURES 3 AND 4, OVERBURDEN GROUNDWATER ELEVATIONS WERE GENERALLY CONSISTENT, THROUGHOUT THE MONITORING PERIOD. WATER LEVELS HAVE STABLIZED, AFTER THREE YEARS OF INCREASES.('92-'94). THIS OCCURRED DUE TO CESSATION OF VILLAGE AND TANNERY PUMPING OF THE DEEP AQUIFERS. SOME SLIGHT SEASONAL FLUCTUATION DOES OCCUR. IN AUGUST, 2009, A DRAMATIC FLOOD OCCURRED IN THE GOWANDA AREA, THAT DISABLED THE VILLAGE RESERVIOR. BUT, NOW AFTER 7 YEARS, THE VILAGE IS CONSISTENTLY USING NATURAL SPRINGS. WATER LEVELS HAVE RISEN AGAIN TO EXPECTED LEVELS.

4.2 THE GROUNDWATER AND SURFACE WATER QUALITY RESULTS FOR THE APRIL 30TH AND MAY 1ST 2018 MONITORING EVENTS, AT THE PALMER STREET LANDFILL, ARE PRESENTED IN TABLES #3 THROUGH #5.

. "GA" STANDARDS & GUIDANCE VALUES ARE ALSO PRESENTED.

BOTH THE SOIL AND WASTE AT THE PALMER STREET LANDFILL CONTAIN METALS-OF-INTEREST AS A COMPONENT OF THE SOIL OR WASTE PARTICLES (REFERENCE 5). THEREFORE, THE SEDIMENT (OR TURBIDITY) CONTENT OF ANY GROUNDWATER OR SURFACE WATER QUALITY SAMPLES WILL DIRECTLY IMPACT THE TOTAL METAL CONCENTRATION OF THE SAMPLES. THE TURBIDITY CONTENT OF THE GROUNDWATER SAMPLES COLLECTED AT THE SITE IS EXTREMELY VARIABLE AND RELATIVELY HIGH BECAUSE THE SOIL AND WASTE FILL BOTH CONTAIN HIGH PERCENTAGES OF FINE-GRAINED PAR-TICLES. AS NYSDEC HAS PREVIOUSLY AGREED, IN ORDER TO AVOID MIS-INTERPRETATION OF WATER QUALITY DATA, TOTAL METALS WILL NO LONGER SAMPLED FOR GROUNDWATER QUALITY STANDARDS OR EVALUATIONS, OF GROUNDWATER QUALITY IMPACTS WILL BE BASED ON SOLUBLE METAL CONCENTRATIONS.

I SHOULD BE NOTED THAT SEVERAL ON THE "ADDED" MONITORING WELL, ARE SCREENED IN THE WASTE. SUMMARY OF THE SAMPLING RESULTS IS AS FOLLOWS:

PG. 4A

Summary Palmer Street April 30th and May 1st 2018 sampling event

- Very snowy and wet early spring
- MW-3 did not have enough water to sample
- MW-5 continued to be dry
- Small detection of Arsenic was found in monitoring wells MW-3D, MW-6, MW-6D, Blind duplicate (6D) and BS-3 all well below "GA" standard.
- A small detection of Chromium was found in monitoring wells MW-4SR, MW-6 and BS-3 all well below "GA" standards
- Acetone was detected in monitoring wells MW-4SR, MW-6, MW-6D, Blind Duplicate (6D) and BS-3. All were well below guidance levels.
- PH continued to be below neutral in monitoring wells MW-4SR and MW-6
- Even with very wet spring, still had to take sample of BS-3 in small pools all of which had a lot of natural iron deposits.

			• ,	TABLE 3				······································
		4/20	MOEN - 5/1 PALN		COMPANY LANDFILL ITORING EVENT			
	1		SUMMARY	OF FIELD M	EASUREMENTS		INITIAL	
Location	Sampling Date	Sampling Time	'Temp. (°C)	pH (units)	Conductance ⁽¹⁾ (umhos/cm)	Turbidity NA	Sample Appearance	Sample Odor
MW-3	4/30/18	NO Sample		······		NA		
* <u>MW-3D</u> MW-4SR	43018	11:45	13.1	8.2	380	<u> </u>	Clear.	Slight
* MW-4D	$\left \frac{1}{1} \right $	10:35	10.9	6.6	620	11	Turbid	finish
<u>MW-5</u>	. 11		13.0	8.1	710		Clear	NO
MW-6	4130/18	10:00	13.6	6.9	1300	11	1	61 1-
-MW-6D	1.1.	9:25	14.3	8.1	1050		Lt, Orange	Slight
MW-7D	5/1/18	10.00	12.0	811	680	<u> </u>	Slight Turbid	NO
<u>MW-8</u> D <u>BS-1</u>	5/1/18	10:35	13.1	7.9	440	11	Shight Turbo Clear	NO
BS-2	NO Sample							NO
BS-3	413018	12:25	23.1	7.5	820	¥1		
NOTES:			6	5-8.5 (StD)			Red-Iron	NO
	ivity readings com Duplicate	ected to 25°C.	<u> </u>	<u> </u>		o bank	seep - h	ad.
(3) MW-7D	is apparent hydra	ulically upgradient	bedrock well	•	Sm	get s all Pool	ample i bu croe	Î.
* Sha *** Bec	ullow Overburden drock Well	Well	BS Ba	gradient ik Seep	NO sample Au	ni nalable m	1-5 1-3-BS1 -	BS·2

:

4 <u>-</u>

1

•

• '

Moench Tanning Company Palmer Street landfill Monitoring Event Gowanda, New York

Geosyntec Consultants May 2018

Infiltrometer	Static Water Level (ft)	Static Water Level (ft)	Change in	Change in Volumë	# Days Between	Infiltratio	on Rate	Approx. Total rainfall This	
	7/6/2017	4/23/2018	Depth (ft)	(gallons)	Readings (#)	(gal/day.ft^2)	(cm/sec)	Period (ft)	Infiltration (%)
l-1	4.95	4.20	0.75	1.78	290	0.000	1.63E-08	4.47	1.44
1-2	7.20	7.20	0.00	0.00	290	0.000	0.00E+00	0.00	and the second se
1-3	7.20	6.80	0.40	0.95	290	0.000	8.69E-09		0.00
1-4	6.70	6.70	0.00	0.00	290			4.47	0.77
1-5	7.20		the second s		the second s	0.000	0.00E+00	0.00	0.00
1-5.	7.20	7.25	0.00	0.00	290	0.000	0.00E+00	0.00	0.00

Notes and assumptions. See attached infiltrometer layout figures.

ft - feet

gal - gallons

cm - centimeters

sec - second

1 cubic foot = 7.481 gallons

1ft = 30.48 cm

1 gallon per day per square foot = 1 gal/(day*ft^2) * (1ft^3/7.481 gal)* 1 day/(24*60*60 sec)*30.48 cm/ft = 4.72E-5 cm/sec 🖌

Maximum area of infiltrometer (at top - Section A-B) = length * length = 4.20833 ft * 4.20833 ft = 17.71 square feet 🔨

Area (Section A-A) = Area of trapezold + area of bottom trench = [1/2*(a+b)*h] + [b'*h'] = [1/2*(4.208+4)*2] + (1*2/3] = 8:875 ft^2

Maximum Infiltromter volume = Area (Section A-A) * Infiltrometer length = 8.875 ft^2 * 4.208 ft = 37.349 ft^3

Estimated porosity at 90.5% compaction = 44.1%. See layout Section A-A.

Total infiltration rate assuming 44.1% porosity = Total infiltrometer volume * 0.441 = 37.349 ft^3 * 7.481 gal/ft^3 * 0.441 = 123.2129 gallons

Approximate total rainfall and water level measurements identified by local resources.

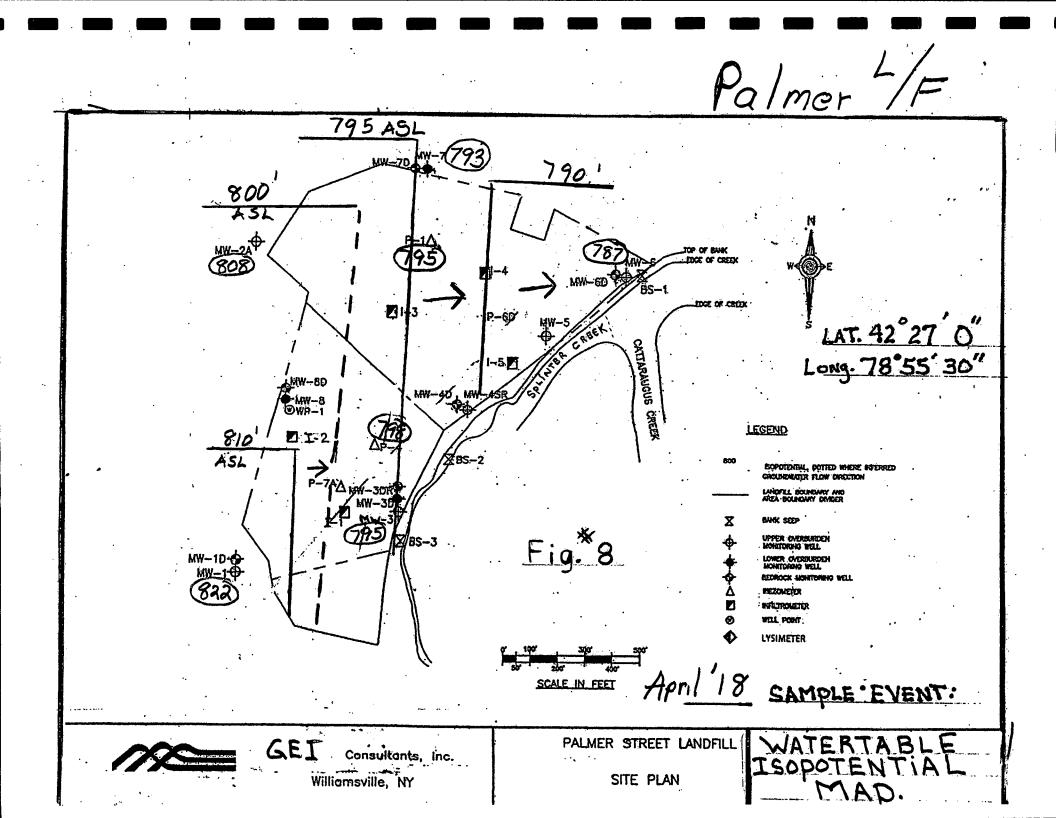
Negative change in depth precludes calculation of infiltration rate.

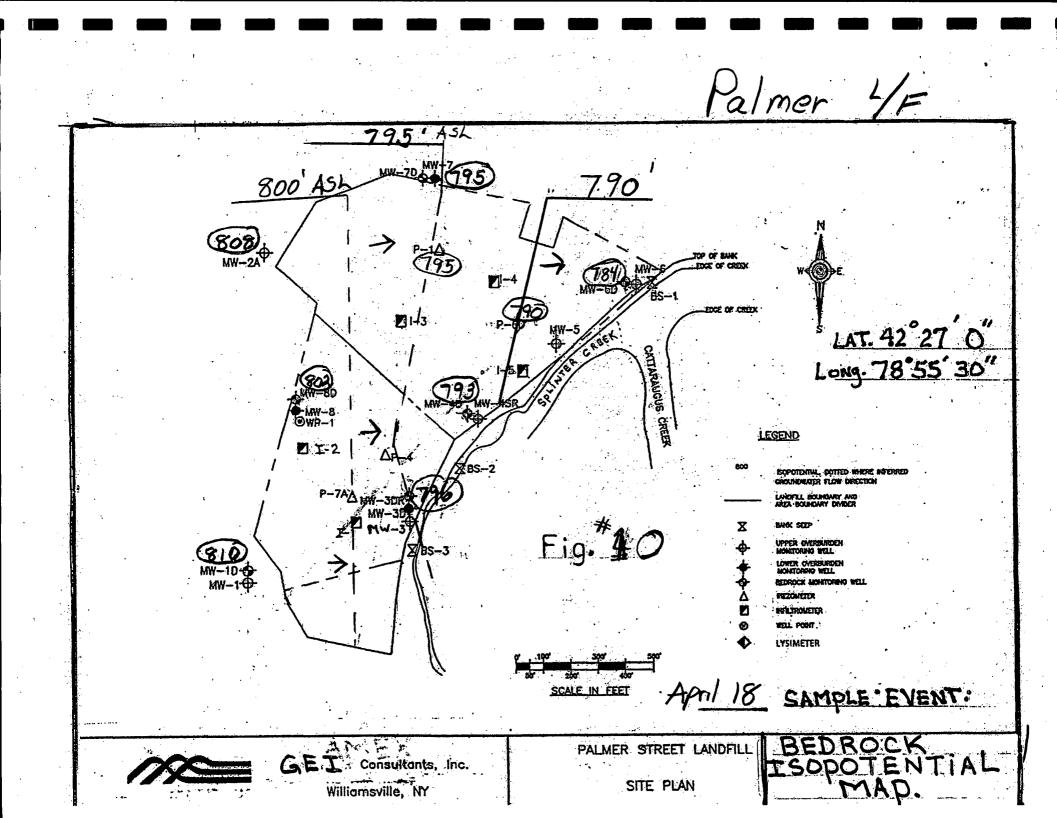
A I-1 often flooded by Natural springs + Mash ponds upgradient

				TABLE 5		:			· · · · · · · · · · · · · · · · · · ·	
· ·	4]	30 - 5/1	MOENCH PALME 2018 SUMMARY C	R STREET L	•					
	Quantitation Limit	** MW-3	MW-3D	** MW-4SR	MW4 D	** MW-5	1×* MW-6	MW-6D	"GA" Std.	
Metals (mg/l):					<u></u>	<u></u>				•
Arsenic - Soluble	0.005		,00139	NP	ND	\square	,03588	100061	.025mg/	4
Chromium - Soluble	0.005	D	ND	,00525	ND	R	,00194	ND	.05	k -
Lead - Soluble	0.005	R	ND	ND	ND		NO	ND	.025	· ·
		7				7				
								 	 	
ACETONE	· · ·		ND	,0057	ND		.00069	.0044		
								,,	GUID.VALU=	•0.5mg
				······			·		· · · · · · · · · · · · · · · · · · ·	

** Screened in Waste/Overburden.

Blind Duplicate <u>MW-60</u>


:		30-5/1	MÖENCH / PALMEI					· · · · · · · · · · · · · · · · · · ·		
	4	30-5/1				,		and a state of the		
	4	30-5/1				,]
	4	30-5/1							1	11.
			118		COMPANY ANDFILL FORING EVI	CNT ⁽¹⁾				
	· · · · ·	S	UMMARY O)F ANALYTI	CAL RESUL	FS				
	Quantitation Limit	MW-7D	MW-8D	BS-1	BS-2	BS-3	Blind Duplic	E Blak	GAn Std.	
Metals (mg/l): Arsenic - Soluble	0.005	ND	ND	N	N	00458	,00050	ND	.025 mg /1	
Chromium - Soluble	0.005	ND	ND	0	0	,00275		ND	•05	• -
Lead - Soluble	0.005	ND	ND	5	5	ND	ND	ND	.025	
			•	a	a					
		·		M	M	†	H			i
VOLATILES mg/L ACETONE		ND	ND	P	ρ	,0061	,0072		GUID. VALU	= • 05 m
				2	R					
		· · · · · · · · · · · · · · · · · · ·								· · · · · · · · · · · · · · · · · · ·


5.0 GROUNDWATER FLOW

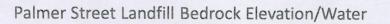
A WATER TABLE ISOPOTENTIAL MAP, BEDROCK ISOPOTENTIAL MAP AND A BEDROCK WATER LEVEL HYDROGRAPH HAVE BEEN PREPARED FOR THE PALMER STREET LANDFILL AND ARE PRESENTED IN FIGURES 3,4 AND 5, RESPECTIVELY. GROUNDWATER ELEVATIONS MEASURED ON APRIL 23,2018 WERE USED IN PREPARING THE WATER TABLE AND BEDROCK ISO-POTENTIAL MAP. THEY INDICATE THAT THE SHALLOW GROUNDWATER, AND BEDROCK FLOW IS PRIMARILY TO THE EAST.

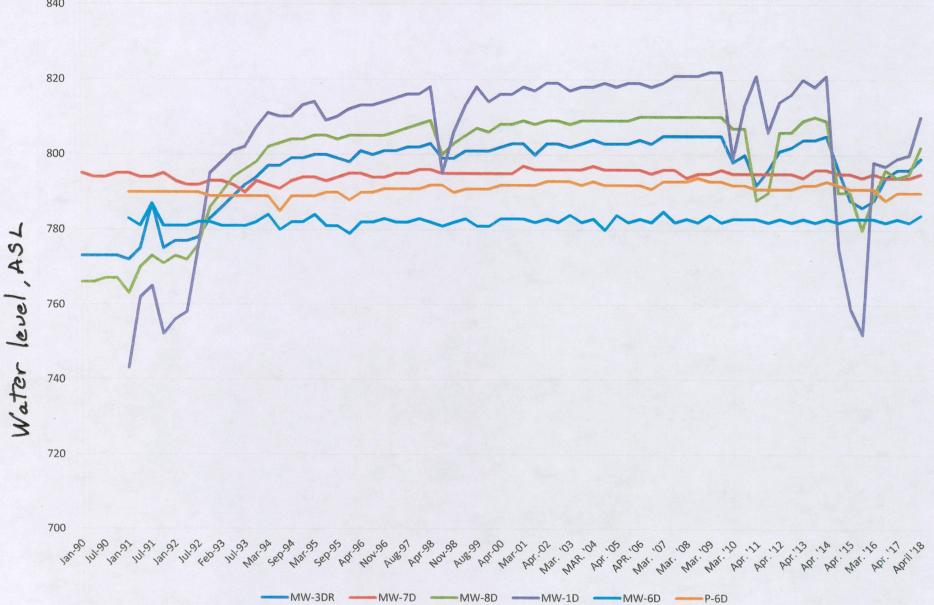
THE VILLAGE IS ONCE AGAIN USING THE SURFACE RUNOFF FOR A WATER SOURCE INSTEAD OF THE DEEP AQUIFER WHICH IN TURN BROUGHT WATER LEVELS IN MW-1D BACK TO NORMAL. THIS HAS RESULTED IN A SUBSTANTIAL RISE IN WATER LEVELS, BACK TO THE PRE 2009 LEVLES.

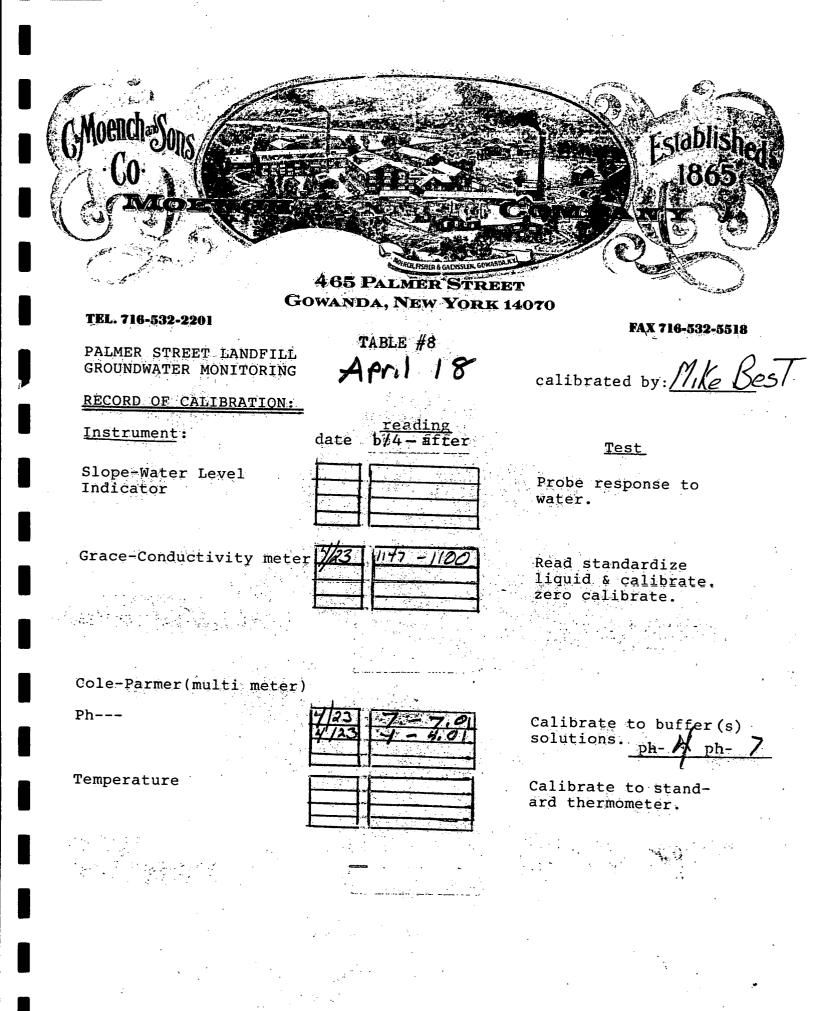
PAGE 5.

PLMRGW3.	dsx
----------	-----

.


	·					· · · · · · · ·											· · · · · · · · · · · · · · · · · · ·				r				
							June'18										<u></u>					· · · ·	June 18	·	
																·		Fig. #5							
·										(FIG #5)			<u>`i</u>	·						·			·	ļ	
	Aug-96	Nov-96	Apr-97	Aug-97	Nov-97	Apr-98	Aug-98	Nov-98	Apr-99	Aug-99	Nov-99	Apr-00	Sep-00	Mar 01	Aug-01	Apr02	Aug -02	Mar: '03	Aug. 103	MAR: 04	AUG. 04	Apr. '05	Aug. '05	APR. '06	Aug. '08
MW-3DR	800	801	801	802		803	799	799	801	801	801	802	803	803	800	803	803	3 802		804					
WW-70	794	794	795	795			795	795	795	795	795	795	795	797	796	796	79	8 798	796	797	798	798	796	798	
WW-8D	805	805	808	807			600	603			806	808	808	809	808	809	80	808	809	809	809	809	809		
WW-10	813	814	815	816			795	806			814			818			811	9 817	818	818	819	818	819	819	
MW-6D	782	783	782	782				782						783		783	78	2 784	782	783	760	784	782	783	76
P-6D	790	791	791	791	791	. 792	792	790	791	791	. 791	792	792	792	792	793	793	3 793	792	793	792	792	792	792	.75
	· - ·										· · · · · ·														
			· · · ·				<u></u>										·								
المستحصي	البين المستحد المستحد الم		البنسجسيا	· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·		<u>.</u>				1 A A A					1		1					


PLMRGW3_xlsx


	1		i	· · · · · · · · · · · · · · · · · · ·		PALMER S	TREETIA	NDEUL	· · · · · · · · · · · · · · · · · · ·			·····								······					
******						MOENCH														<u> </u>					
·····						GROUND								June 18											
			in ad																						
			(FIG.#5)			BEDROCK	MONITOR	WELLS &	PIEZOMET	ERS				FIG. #5				:				·			
						L												·							
	Jan-90	Apr-90	Jul-90	Oct-90	Jan-91	May-91	Jul-91	Oct-91	Jan-92	May-92	Jul-92	Oct-92	Feb-93	May-93	Jul-93	Oct-93	Mar-94	Jun-94	Sep-941	Dec-94	Mar-95	Jun-95	Sep-95	Dec-95	Apr-9
MW-3DR	773	773	773	773	772	775	787	775	777	777	778	783	786	789	792	794	797	797	799	799	800	800	799	798	80
MW-7D	795	794	794	795	795	794	794	795	793	792	792	793	793	792	790	793	792	791	793	794	794	793		795	79
MW-8D	766	768	767	767	763	770	773	771	773	772	776	786	790	794	796	798	802	803	804	804	805	805	804	805	80
MW-1D					743	762	785	752	756	758	776	795	798	801	802	807	811	810	810	813	814	809	810	812	81
MW-8D					783	781	787	781	781	781	782	782	781	781	781	782	784	780	782	782	784	781	781	779	78.
P-8D				•	790	790	790	790	790	790	790	789	789	789	789	789	789	785	789	789	789	790	790	788	790
	-					L																			
																		· 1							
(1																			

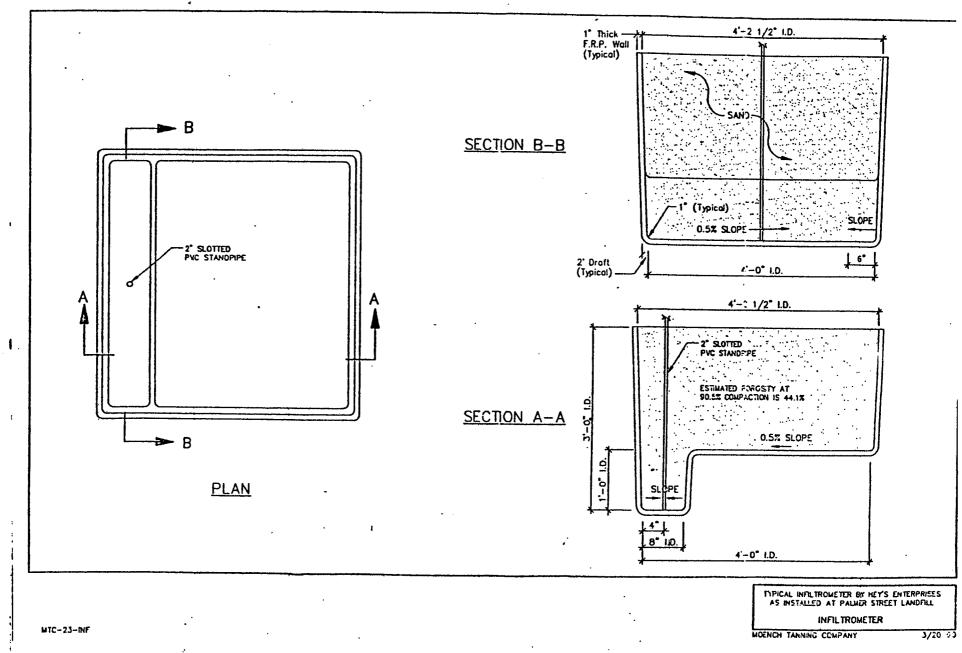
PLMRGW3_xlsx

						-										· · · · · · · · · · · · · · · · · · ·				÷ · · · ·					·····			
	4-			-+													L		·	L					L			L
	-													L	•						18-Jun	1						I
	FIG	. #5							_						<u> </u>													
	4					÷			-	<u> </u>										L	L							L
	4								_						[]									Α.				(
	Mai			07			g. °08	Mar. '09				Aug. '10			Apr. 12	Aug.'12	Apr.'13	July '13	Apr. '14	Aug. '14	Apr. '15	Aug. '15	Mar. '16	July '18	Apr. '17	July '17	April '18	
MW-3DR		805		805	805		805		05	805	798	800			801	802	804	804	805	798	788	768	788	794	796	796	799	
WW-7D		796		796	794	1	795	7	85	798	795	795	795	795	795	705	794	796	796	795	795	794	795	794	794	794	795	
d8-WN		810		810	810		810	8	10	810	807	807	788	790	808	606	809	810	809	790	790	780	789	796	794	785	802	
MW-1D		.619		621	621	T_	821	. 8	22	822	789	613	821	808	814	816	820	818	821	775	759	752	798	797	799	-800	810	-
WW-6D		785	1	782	783	1	782	7	84	762	783	783	783	782	783	782	783	782	783	782	783	783	783	782	783	782	784	
P-6D	1	793		793	703	1	794	7	93	793	792	792	791	791	791	791	782	792	793	792	791	791	791					
	1					Τ								1		1				1				1	1			
	1		1			""N	W-8D d	epih me	เสรมก	ed at MW	8, after Apr	1 2011				Village	using deep	quifer for v	vater supply	since 2009	. Hydrent o	n often.	Village bar	ck to				<u> </u>
;			1				T				· · · · ·	T		1		1			1	1	T	1	using surfa					
						1			-		·			t	1	1	1			1	<u> </u>	<u> </u>		T				
	+		1			+			-+-		<u> </u>	1	· · · · · · · · · · · · · · · · · · ·		1	f	t		+		+	<u> </u>	+					<u> </u>
	+		+			+					<u> </u>		<u>+</u>		+	t	+	+		+	·	+	+		·			┣━━

465 PALMER STREET GOWANDA, NEW YORK 14070 TEL. 716-532-2201 FAX 716-532-5518 revised 8/06 TABLE # 7 PALMER STREET LANDFILL April 18 GROUNDWATER MONITORING EQUIPMENT INVENTORY: (A) Slope Indicator Co. - Model 51453, water level indicator (B) W.R. Grace (Dearborn) - Model EP-10, Micromhos meter (conductivity) (C) Cole-Parmer Instrumentation Co. - Model 5985-80, Ph, temperature °C , with probes. (D) Grundfos Purging System. -Hose, VFD, Generator. E) Norton Company - Part #865-3170, Posi-Filter for filtering dissolved metals with filters. And vacuum pump/flask. (F) Wash bucket (5 gallon) with Alconox soap. G)Rinse bucket with D.I. water. -buy 10 gal. distilled at store. -get 2 gal. lab certified, eqpt. blank. H)Rinse bottle with 10% Nitric Acid and water. I) five gallon bucket to measure volume purged. (J) Latex gloves (K) Required bottles and coolers and ice. (L)Required field data forms. (M) Cell Phone (N) Watch (0) Head Radio (P) Board to hold Meters & equipment Liquid soap/water spray-bees. (Q) (R) Benedryl-bee sting.

6.0 REFERENCES

- PALMER STREET LANDFILL CLOSURE/POST CLOSURE PLAN (EPA ID. NYDOO2126910), PREPARED BY MALCOLM PIRNIE, INC. REVISED FEBRUARY 1989. REVISED DECEMBER 2006.
- PALMER STREET LANDFILL, SUPPLEMENTAL HYDROGEOLOGIC INVESTIGATION, PREPARED BY MALCOLM PIRNIE, INC. JANUARY 1989.
- SAMPLING PLAN/QUALITY ASSURANCE PLAN FOR GROUNDWATER MONITORING - PALMER STREET LANDFILL. PREPARED BY MALCOLM PIRNIE, INC., AUGUST 1989. REVISED 12/2006.
- 4. TEST METHODS FOR EVALUATING SOLID WASTE, PHYSICAL/ CHEMICAL METHODS, THIRD EDITION, USEPA OFFICE OF SOLID WASTE AND EMERGENCY RESPONSE, NOVEMBER 1986.
- 5. PALMER STREET LANDFILL, EVALUATION OF ALTERNATIVE COVER SYSTEMS, PREPARED BY MALCOLM PIRNIE, INC., JANUARY 1989.
- 6 COVER SYSTEM PERFORMANCE EVALUATION, PALMER STREET LANDFILL; PREPARED BY MALCOLM PIRNIE, INC. OCTOBER 1995. Second "Evaluation"; 3/99. THIRD EVALUATION; 8/03.(LAST)
- JULY 27TH, 2006 LETTER FROM GEOMATRIX TO STAN RADON (NYSDEC) DOCUMENTING A JULY 19TH MEETING IN WHICH REVISIONS TO THE GROUNDWATER MONITOIRNG SYSTEM, WERE AGREED UPON.
 - SEPTEMBER 7, 2006 LETTER FROM STAN RADON(NYSDEC) TO JEFFREY SMITH(MOENCH) CONFIRMING AGREEMENT OF REVISED GROUNDWATER MONITORING SYSTEM, AND COVER SYSTEM EVALUATION ELIMINATON.

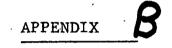

PG. 6

8.

APPENDIX B

; '

INFILTROMETER DESIGN


.

465 PALMER STREET GOWANDA, NEW YORK 14070

TEL. 716-532-2201

FAX 716-532-5518

FOR April, May 2018

MONITORING EVENT.... PALMER STREET LANDFILL

Field Data sheets

WELL DEVELOPMENT/PURGING LOG MOENCH CO. PROJECT TITLE: PALMER St. LANDFILL - GWM ST OF 2 ANNUAL EVENTS. PROJECT NO Michael Best STAFF: 11:45 DATE: HELL NO .: MW-3D VOL. WELL I.D. GAL./FT TOTAL CASING AND SCREEN LENGTH (ft.) 67.70 1 ער נ 2 CASING INTERNAL DIAMETER (in.) WATER LEVEL BELOW TOP OF CASING (ft.) 14.65 3 04 50 VOLUME OF WATER IN CASING (gal.) 4 84 2.60 $V = 0.0408 (^{2} x (1 - 3) = \frac{9.0}{9.0} gal.$ ACCUMULATED VOLUME PURGED (GALLONS) PARAMETERS 2n/ 8. PH VISUAL-INITIAL Turbo clear TURBIPITY 100 380 CONDUCTIVIT 1. 3. TEMP COMMENTS

WATER	SAMPLING	FIELD	DATA	SHEET

i

PROJECT: PALMER ST. L/FILL-CI	WMYPE OF SAMPLE: GROUNDWATER - GRAB
MOENCH CO.	WATTYPE OF SAMPLE: GROWNOWATER - GRAG
mono : 1ST of 2 CUONTS 2018	LOCATION NO .: MW-3D
	LID CAMPLE ND. :
WELL DATA: DATE: 4/30/18	TIME: 11:45
Casing Diameter (inches): 2 ¹¹	
Screened Interval (ft BGS):	Casing Haterial: <u>PVC</u>
Static Water Level Below TOR (ft):	Screen Haterial: PVC
Elevetion Top of Well Riser: 810.73	Bottom Depth (ft): <u>67-70</u>
	Datum Ground Surface:
PURGING DATA: DATE: 4/30/18	TINE: Start: 11:45 Finish: 12:05
Nothod: SupER NOVA - PUMP 12V.	Pumping Rate (ast/stal) = 5 = 230
Well Volumes Purged (V=#R ² H/231):	Pumping Rate (gal/min): <u>•5 gpm</u>
Standing Volume (gal): 9.0	Was well purged dry? Yes K No
Volume Purged (gal): 12	Was well purged below sand pack?Yes 🗶 No Well (.D. ^ Volume
	(finches) (gal/ft)
is purging equipment dedicated to sample location?	
Field Personnel:	4 0.66 6 1.50
SAMPLING DATA: DATE: 4/30/18	12 . 5
Hothod: TEFLON BAIL CR	TIME: Start: 12.05 Finish: 12:15
Present Weter Level (ft):	Sampler: MB Air Temperature (*F): 55
Depth of Sample (ft):	Manthan Graditit
is sampling equipment dedicated to sample location?	Weather Conditions: Clear Sunny
	Yes No
PRESERVATION DATA: DATE: 4/2/18 AL PHA	
	1
	3 Naun Other
PHYSICAL AND CHENICAL DATA:	
Appearance: Clear: Turbid:	color. Shafit grey
	Odor: Slight Other:
Temperature (*C): pH: Spect	
Turbidity (NTU):	
	·
REMARKS: SAMPLE /FILTER EQUIPMENT	: WASH & W/SOAD + WATER / 2x 1
KINSED IN DISTIL'& WATER. R	NSE with 10% Nitric
ACID WASH. FINAL RINSE	W/ DISTIL'& WATERS
•	· .

•

..

•

WELL DEVELOPMENT/PURGING LOG MOENCH CO. PROJECT TITLE: PALMER St. LANDFILL - GWM PROJECT NO .: ____ ST OF 2 ANNUAL EVENTS. STAFF: Mike Best 10:35 DATE: _____4 WELL NO .: MW-4 SR (D) WELL I.D. VOL. GAL./FT TOTAL CASING AND SCREEN LENGTH (ft.) 24.92 1 2 CASING INTERNAL DIAMETER (in.) WATER LEVEL BELOW TOP OF CASING (ft.) 12.10 3 VOLUME OF WATER IN CASING (gal.) 4 2.60 $V = 0.0408 (^{2} x (1 - 3) = ________ gal.$ ACCUMULATED VOLUME PURGED (GALLONS) PARAMETERS 6,6 6.7 TUR. - INITIAL Litte ordnoe deel Particles APPEARANCE 120 510 600 CONDUCTIVITY 10.5 11.0 10.9 COMMENT

WATER	SAMPLING	FIELD	DATA	SHEET
		•		

i.

PROJECT: <u>PALMER St. LANDFill</u> -G	WM TYPE OF SAMPLE: GROWND WATER-GRAB
CLIENT: MOENCH CO.	LOCATION NO .: MW-4SR
15T of a cuent's 2018	
WELL DATA: DATE: 43018	TIME: 10:35
Casing Diameter (inches): 2.11	Casing Material: PVC
Screened Interval (ft BCS):	Screen Haterial:PVC
Static Water Level Below TOR (ft):	Bottom Depth (ft): 24.92
Elevation Top of Well Riser: 806.75 AGL	Datum Ground Surface:
PURCING DATA: DATE: 43018	TIME: Start: 11:35 Finish: 10:50
Hothod: DEDICATED BAILER	Pumping Rate (gal/min):
Well Volumes Purged (V##R ² H/231):	
Standing Volume (gal): 2,2	Was well purged dry? Yes No
	Was well purged below sand pack? Yes X No
Volume Purged (gel):	Nell L.D. Volume (inches) (gel/ft)
is purging equipment dedicated to sample location?	2 0.17
Field Personnel: MIKC Gast	6 1.50
SAMPLING DATA: DATE: 43018	TIME: Start: 10:50 Finish: 11:00
Method: DEDICATED BAILER	Sampler:M.B
Present Water Level (ft):	Air Temperature (*F): 55
Depth of Sample (ft):	Weather Conditions: <u>Clear Sunny</u>
Is sampling equipment dedicated to sample location?	Yes No
 	
PRESERVATION DATA: DATE: 4/2/18 AKPHA	· TIME: Start: Finish:
	Cool to 4°C:
Preservative: H_SO, HNO	NeOH HCI Other
2 4	
PHYSICAL AND CHENICAL DATA:	
Appearance: Clears Furbids	Color: Wange
Appearance: Clear: Turbid: K	color: Ovange
Contains Sediment:	Odor: Finish Other:
Contains Sediment: Temperature (*C):pH: Speci	Odor: <u>Finish</u> Other: Ific Conductivity (Lunhos/cm):
Contains Sediment:	Odor: <u>Finish</u> Other: Ific Conductivity (Lunhos/cm):
Contains Sediment:	Odor: <u>Finish</u> Other: Ific Conductivity (Umhos/cm):
Contains Sediment: Temperature (*C):pH: Speci	Odor: Finish Other: Ific Conductivity (Lenhos/ce): WASH W/SOAP + WATER (3x).
Contains Sediment: Temperature (°C):pH:Speci Turbidity (NTU):Other Other PERMORE SAMPLE FILTER EQUIEMENT :	Odor: Finish Other: Ific Conductivity (Lunhos/cm): WASH W/SOAP + WATER (3x). R. RINSED, With 1070

•

.•

_

WELL DEVELOPMENT/PURGING LOG MOENCH CO. PROJECT TITLE: PALMER ST. LANDFILL - G.W.M. OF 2 ANNUAL EVENTS PROJECT NO .: STAFF: MIKe Ses 11:05 DATE: ____ HELL NO .: MW-4D (5) WELL I.D. VOL. GAL./FT TOTAL CASING AND SCREEN LENGTH (ft.) 74.94 1 2 CASING INTERNAL DIAMETER (in.) HATER LEVEL BELOW TOP OF CASING (ft.) 13.35 5[#] 3 04 6" .50 4 VOLUME OF WATER IN CASING (gal.) 8* 2.60 $V = 0.0408 (^{2} x (1 - 3)) = 10.5$ gal. ACCUMULATED VOLUME PURGED (GALLONS) PARAMETERS 8.1 8.1 lisual-INITIAL clear clear TUPBIDIT 680 710 CONDUCTIVITY 11.5 13.0 TEMD . C COMMENTS:

WATER SAMPLING F	IELD DATA SHEETS
PROJECT: PALMER ST. LIF-G.W.M. MOENCH ST OF 2 ANNUAL EVENTS	TYPE OF SAMPLE: <u>GROUND</u> WATER LOCATION NO.: <u>MW-4D</u>
DATE: 4/30/18 Casing Diameter (Inches): 2". Casing Diameter (Inches): 2". Screened Interval (It BGS): 2". Static Water Level Below TOR (It.): 2. Elevation Top of Well Riser: 805-93 Elevation Top of Screen: 72.9	TIME: <u>11:05</u> Casing Katerial: <u>PVC</u> Screen Material: <u>PVC</u> Bottom Depth (ft.) <u>74.94</u> Datum Ground Surface:
PURGING DATA: Method: <u>ELECTRIC PUMP-NOT-DEDICT</u> Mell Volumes Purged (RE ⁺ N/251): <u>(SUPER NOVA)</u> Standing Volume (GAL.) <u>10.5</u> Volume Purged (GAL.) <u>16</u> Is purging equipment dedicated to sample location? Yes <u>NO X</u> Field Personnel: <u>Michael Best</u>	TIME: Start: //:05 Finish: //:25 Pumping Rate (gal/ain): 1-29814 Vas well purged dry? Yes No X Vas Well purged below sand pack? Yes No X Well I.O. Volume (inches) (gal/(s) 2 0.17 4 0.66 6 1:50
SAMPLING DATA: DATE: <u>N/30/18</u> Nethod: <u>DEDICATED BAILER</u> Present Vater Level (ft.): Depth of Sample (ft.): Is sampling equipment dedicated to sample location: Yes <u>*</u> Source and type of uster used in field for GC purposes:	TIMES Starts 11:25 Finish: 11:35 Sampler: MB Air Temperature (F*): 55 Uesther Conditions: <u>Surny</u> <u>Clear</u> No <u>ALPHA</u> LAB
PRESERVATION DATA: DATE: 4/2/18 ALPHA	Cool co 4°C: Finish: Cool co 4°C: CN Other H C1
Arrsical And CHENICS Appendiance: Clearsi Turbid: Centains Sedicent Centains Sedicent Centains Sedicent Centains Sedicent Centains Sedicent	
E.FLASK ENNES: <u>NA-NOT APPLICABLE. TEFLOM</u> WAS WASHED WITH SOAP RINS <u>RINSED WITH 10% NITRIC AC</u> WITH LAB. GRADE WATER	BAILER USED FOR SAMPLE ED WITH LABORATORY WATER/ ID WASH, THEN FINAL RINSE
• • • • • • • • • • • • • • • • • • •	· · ·

- •

.

.

. . .

.. ,

WELL DEVELOPMENT/PURGING LOG MOENCH CO. PROJECT TITLE: PALMER ST. LANDFILL - GWM ST OF 2 ANNUAL EVENTS. PROJECT NO .: Mike Best STAFF: 10:00 DATE: ____ HELL NO .: MW - 6 (3) WELL I.D. VOL. GAL./FT TOTAL CASING AND SCREEN LENGTH (ft.) 18.78 1 2 CASING INTERNAL DIAMETER (in.) 3 WATER LEVEL BELOW TOP OF CASING (ft.) 14.55 5 6**"** .50 4 VOLUME OF WATER IN CASING (gal.) 8* 2.60 $V = 0.0408 (\frac{2}{x}(1-3)) = \frac{7}{2} gal.$ ACCUMULATED VOLUME PURGED (GALLONS) PARAMETERS NiT. 2ND 6.8 69 TURBIDITY clear londy AFFEARTINITTAL 1100300 CONDUCTIVITY 12.3 13.6 COMMENTS:

WATER	SAMPLING	FIELD	DATA	SHEET	i.

	WATER SAMPLING FIELD DATA SHEET
PROJECT: <u>PALMER ST. LANDFILL</u> CLIENT: <u>MOTENCH CO</u> . JOBNO.: <u>ISTOF 2 ANNUAL</u> EV.	TYPE OF SAMPLE: <u>GROUNDWATER</u> LOCATION NO.: <u>MW-6</u> LAB-SAMPLEMED.: <u>2018</u>
WELL DATA: DATE: 430,18 Casing Diameter (inches): 2" Screened Interval (ft BCS): 2" Static Water Level Below TOR (ft):	TIME: <u> D;00</u> Casing Material: <u>PVC</u> Screen Material: <u>PVC</u> Bottom Depth (ft): <u>18.78</u> Datum Ground Surface:
PURCING DATA: DATE: 13018 Method: DEDICATED BAILER: Well Volumes Purged (VemR2H/231): 1 Standing Volume (gel): 17 Volume Purged (gel): 17 Is purging equipment dedicated to sample location? Yes No Field Personnel: Mike Best	TIME: Start: $10:20$ Finish: $10:20$ Pumping Rate (gel/min): $_$ $_$ $_{-}O$ Wes well purged dry? Yes $_$ No Wes well purged below send peck? \checkmark Yes $_$ No Well 1.D. Volume (inches) (gel/ft) 2 0.17 4 0.66 6 1.50
SAMPLING DATA: DATE: H/30/18 Hethod: DEDICATED BAILER Present Water Level (ft):	TIME: Start: 10:90 Finish: 10:30 Sampler: <u>MB</u> Air Temperature (*F): <u>48</u> Meather Conditions: <u>Sunny Clear</u> Yes <u>X</u> No
PRESERVATION DATA: DATE: 1/R/18 ALP A	TIME: Start: Cool to 4°C: * NeOH HCl Other
PHYSICAL AND CHENICAL DATA: Appearance: Clear: Contains Sediment: Temperature (*C): pH: Specif Turbidity (NTU): Other:	Odor: Other: ic Conductivity (Umbos/cm):
REMARKS: DEDICATED BAILER FOR SI WASHED (3x), RINSED with LAB G NITRIC ACID WASH . FINAL RINS	RADE WATER. RINSED W/ 10%

.

WELL DEVELOPMENT/PURGING LOG

MOENCH CØ. ST. LANDFILL - G.W.M PROJECT TITLE: PALMER I ST OF 2 ANNUAL EVENTS PROJECT NO .: _ *like* Best STAFF: 9:25 DATE: WELL NO .: MIN - GD (D+3) Blind Oup WELL I.D. VOL. GAL. /FT 1 TOTAL CASING AND SCREEN LENGTH (ft.) 37.03 2" 2 CASING INTERNAL DIAMETER (in.) 4" 5" 6" 3 WATER LEVEL BELOW TOP OF CASING (ft.) 17.60 1.50 VOLUME OF WATER IN CASING (gal.) 8* 2.60 $V = 0.0408 (...^2 x (1-3) = 3.3 gal.$ ACCUMULATED VOLUME PURGED (GALLONS) PARAMETERS 200 IN. ᠮ᠊ 8.1 8.1 PH VISUAL- IN MIAL Little clear ١ Hurhd TURBIDITY CONDUCTIVITY 200 1050 14,3 143 °,C COMMENTS:

. |.

WATER SAMPLING FIELD DATA SHEETS .

.

. .

v

Deserve	
PROJECT: PALMER ST. LANDFILL	TYPE OF SUMPLE: _ GROUNDWATER
151 OF 2' ANNUAL EVENT	LOCATION NO.: MW-GD
2 ALQ	<u>13.</u>
a010	0:25
$\frac{\Delta E(L DATA}{\Delta TA}: DATE: \frac{4/30/18}{2}$	TINE:
Casing Diameter (Inches):2	_ Casing Haterial:PVC
Static Vater Level Selow TOR (ft.):	Screen Naterial: PNC
Elevation Top of Well Riser: 800.63	Bottom Depth (ft.) 37.03
Elevetion Top of Screen: NA	
PUNGING DATA: DEDIGATED DATE: 4/30/18	_ TIMEs Start: 9:25 Finish: 9.50
Method: TEFLON BAILER-HAND:	
Hell Volumes Purged (st 1/251):	- Was well purged dry? Yes No
Standing Volume (GAL.) 3,3	Ves Well purged below send peck? Yes Ko X
Volume Purged (GAL.) _5, 2	Vell L.D. Volume
le purging equipment dedicated to sample location?	$\frac{(1 \text{ ches})}{2} \qquad (\frac{ge}{ft})$
Yes <u>*</u> No	4 0.66
rield Personnel: Mike Best	6 1150
SAMPLING DATAS DATES 13018	TIMES Starts 7:50 Finish: 10:00
Hothod: DEDIC. TEFLON BAILER - HAND	Saplers MD + 1
resent lister Level (ft.):	
Depth of Sample (it.):	Weather Conditions: Clear Sunny
is sampling equipment dedicated to sample locations Yes 💥	
Source and type of seter used in field for QC purposess	TALPHA LAB
RESERVATION DAYAS DATES 418 ALPHA	TIMEs Starts Finish:
Filtered: Yes No	cool to 4°C:
reservative: #200 اللكري اللكري اللكري اللكري اللكري الله الله الله الله الله الله الله الل	leon Other H C [
TTSICAL AND CHENIC	color: slight givery
opeurance: Clears	
Centoleo Sedleent	Oders Others
esperature (°C):	Specific Cenductivity (mhos/cm):
urbidity (NTU):	Other:
E. FLASK +/or	COMPLETE LAS LACITOR LIME
BUNKS: TEFLON BAILER USED FOR	
SOAP, RINSED WITH LABORATORY	WATER / RINSED WITH 1070
NITRIC WASH THEN FINAL R	•
- · · · · · · · · · · · · · · · · · · ·	
PRIOR TO USE.	
·	•

WELL DEVELOPMENT/PURGING LOG MOENCH C0. LANDFILL - G.W.M. PROJECT TITLE: PALMER ŚT. oF 2 ANNUAL EVENTS PROJECT NO .: Mike Best STAFF: 10:00 5 DATE: WELL NO .: MW-7D (9 VOL. WELL I.D. GAL./FT TOTAL CASING AND SCREEN LENGTH (ft.) 41.90 1 0.04 0.17 2 CASING INTERNAL DIAMETER (in.) 66 WATER LEVEL BELOW TOP OF CASING (ft.) 5.70 3 5* 04 .50 VOLUME OF WATER IN CASING (gal.) 4 2.60 $V = 0.0408 (1.^2 \times (1-3)) = 6.2 gal.$ ACCUNULATED VOLUME PURGED (GALLONS) PARAMETERS Fri L' all 8.1 8.1 TWING SLISHT VISUAL- INITIAL Jear Grev Part bug TURBIDITY 100 1,60 CONDUCTIVITY 9.5 ID D COMMENTS

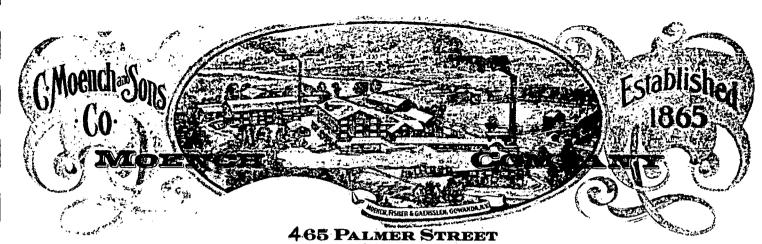
•	
· ·	
. WATER SAMPLITH	G FIELD DATA SHEETS
	A TIED DATA SHEETS
• **** · · ·	
·P	
PROJECT: PALMER ST. LANDFILL	TYPE OF SWELE: GROUND WATER
MOENCH -CO.	LOCATION NO .: MW- TD
OF STANNAAL EVEN	
ELL DATA: DATE: 5/1/18	10100
Casing Diameter (Inches):	
creened Interval (It Bas): 34 - 39	Casing Katerial: PUC
tatic Water Level Below TOR (ft.):	Screen Katerial: PV.C. Bottom Depth (ft.) 41.00
levetion Top of Hell River:800 - 39	Detum Ground Surfaces.
levetion Top of Screen: 763.50	
MGING DATA: DATE: 5/1/18	
ethod: TEFLON BAILER - MANUAL	Pupping Rate (get/ain): -5 gpm
ell Volumes Purged (st %/231):	Was well purged dry? Yes No
tarding Volume (GAL.)	Was Welt purged below send pack? Yes Ko
lime Purged (GAL_)	Vell I.D. Volume
purging equipment dedicated to sample location?	$\frac{(inches)}{2} \qquad (aol/(s))$
Tes No	4 0.66
eld Personnel: Mike Best Tam-	<u> </u>
PLING DATAS DATES 5/1/18	TIMES Starts 10:20 Finish: 10:30
wood:TEFLON BAILER	$- \text{TIME: Start: } \frac{10!20}{M!B} \text{Finish: } \frac{10!30}{10!30}$
esent Water Level (ft.):	Ale Tesperature (F*): 67
th of Sample (ft.):	Weather Conditiones <u>Clear Sunny</u>
sampling equipment dedicated to sample locations Yes *	to
rce and type of uster used in field for GC purposess	ALPHA. LAB
CETVATION DATA: DATE: 4/2/18: ALPHA	TIMEs StartsFinish:
tered: Yes No	Cool to 4*C:
servetive: #250g HHOg	Kenn HCI
TCAL AND CHENTICE	
urance: Claures	Colors <u>NO</u>
Contoine Sodiaent	Oders ND others
ersture (*C)z pll	Specific Conductivity (mhos/cm):
idity (ITU):	Other:
E. FLASK +/OR	
	SAMPLING WAS WASHED WITH
A: TEFLON BAILER USED FOR	SAMPLING WAS WASHED WITH
DAP, RINSED WITH LAB. WA	ITER RINSED WITH 10% NITRIE
I TEFLON BAILER USED FOR	ITER RINSED WITH 10% NITRIE
DAP, RINSED WITH LAB. WA	ITER RINSED WITH 10% NITRIE

WELL DEVELOPMENT/PURGING LOG MOENCH CO. 18AR - 2018 PROJECT TITLE: PALMER ST. LANDFILL - G.W.M. 1ST OF 2 ANNUAL EVENTS PROJECT NO .: ____ STAFF: Mike Best 10:35 DATE: ____5 NELL NO .: MW = 8D (8) WELL I.D. VÓL. GAL./FT 1 TOTAL CASING AND SCREEN LENGTH (ft.) 127.70 2 CASING INTERNAL DIAMETER (in.) 5<u>"</u> 6" . 50 4 VOLUME OF WATER IN CASING (gal.) 2.60 $V = 0.0408 (^{2} x (1 - 3)) = \frac{1813}{2} gal.$ PARAMETERS ACCUMULATED VOLUME PURGED (GALLONS) Nit. and 7.9 8.1 VISUAL- INITIAL Clear clear TURBIDIA 420440 CONDUCTIV. 12.7 13.1 TEMP. °C COMMENTS: 5

WATER SAMPLING FIELD DATA SHEETS

· · · ·	
PROJECT: PALMER ST. LANDFILL	TYPE OF SUPLE: GROUND WATER - GRA
MOENCH COMPANY	
1.ST OF 2 ANNUAL EVEN	TS
UELL DATA: DATE: 51118	
Casing Diameter (inches):2"	_ Casing Naterial: PVC
screened Interval (ft BCS): NA	_ Screen Haterial:PVC
Static Water Level Below TOR (ft.):	- Bottom Depth (ft.) 127.70
Elevation Top of Well Riser: 821.89	Datum Ground Surface:
Elevation Top of Screen: NA	
PURGING DATA: DEDICATED DATE: 5/1/18	THE COM ID! AE HALFE
Hethod: ELECTRIC PLMP-SUPER NOVA	_ TINES Starts 10:35 Finishs 10:55
Well Volumes Purged (st 1/231):	
Standing Volume (GAL.)	Was well purged dry? Yes No
VolumePurged (GAL.)	Was Well purged below sand pack? Yes No
	Vell I.D. Volume (friches) (gel/15)
s purging equipment dedicated to sample location?	2 0.17
leld Personnel:Mike+Best	4 0.66 6 1150
ield Personnel:UE31	•
	· · ·
AMPLING DATAS DATES 5/1/18	TIME: Start: 10:55 Finish: 11:05
Archod: DEDICATE PUMR-	Samplers M.B
Vesent Water Level (ft.):	Air Temperature (F'):670
enth of Sample (it.):	Veether Conditiones Clear Sunny
s sampling equipment dedicated to sample locations Yes	No. CANFEIGHES <u>LICALY</u> DAMA Y
ource and type of seter used in field for GC purposess	
and the of mean and in flere for at purposes	ALPHA LAB
EPERMATION DATAS DATES Y12/18 ALPHA-	
ESERVATION DATA: DATE: 4/2/18 ALPHA-	# TIME: Storts Finish:
Itered: Yes No	Cool to 4.4:
eservetive: #250g	non detur Hcl
TICH AND CHENTLE	
Desirance: Clears	Colors NONE
Centeles Sedleent	Oders NO Others
persture (*C):	Specific Conductivity (mohos/cm):
bidity (NTU):	Other:
E. FLASK +/or	
· · ·	SAMAL DA AND AND AND AND AND AND AND AND AND
MC: TEELON BAILER USED FOR	
SOAP RINSED WITH LAB. 1	LATER/RINSED WITH 1070
NETRIC WASH THEN FINAL	
WATER PRIOR TO W	SF.

;


BS-3 WATER SAMPLING FIELD DATA SHEETS PROJECT: PALMER ST. LANDFILL FYPE OF SUPPLE: SURFACE/GROUND WATER MOENCH Co. LOCATION NO.: BB-3 (BANK SEED EVENTS OF 2 ANNUAL South of MW-3 N ELL DATA: DATE: TIME: 12:21 Taking Diameter (inches): NA Casing Haterial: Screened Interval (ft BGS): Screen Katerials Static Water Level Below TOR (ft.): _ Bottom Depth (ft.) Elevation Top of Well Risers Datum Ground Surfaces Elevetion Top of Screen: _ WIGING DATA: DATE: TINE: Start: _ flalsh: NA Kethod: Pumping Rate (gal/min): __ Hell Volumes Purped (#R^CH/231): NA Vas well purged dry? Yes _____ Ho standing volume (GAL.) NA Was Well purged below sand pack? Yes Volume Purged (GAL.) _____NAT Well I.D. Yolume (Inches) (gal/(t) s purging equipment dedicated to sample location? Z 0.17 Yes K. No 0.66 Field Personnel: ____Mike Bes 1:50 TIMES Starts 12:25 Finishs 12:40 SAMPLING DATA: DATES 4000: SURFACE WATER GRAB Samplers . m Present Water Level (ft.)s ____ :NA 55 Air Temperature (F*): ____ AN each of Sample (it.): Weather Conditiones Sunny / C/CGF a sampling equipment dedicated to sample locations Yes 🔆 No _ ALPHA Source and type of water used in field for QC purposess LAB PRESERVATION DATA: DATES TIMES Starts Finish: Filtered: Yes 🔆 Cool to 4°C: # reservatives H_SOL * Hcl Kantil PRITEICAL AND CHENTERS colors Orange Iron poerance: Clears . Turpids . . Centeles Sails Oders NL Temperature (*C): ______ pil Specific Conductivity (unhos/cm): _ lurbidity (NTU): ____ Other: A- NOT ADOLICA E, FLACK YOR TEFLON BAILER USED ENARCS: SAMPLING / FILTERING, WAS WASHED WITH ALCONOX SOAD INSED W LAB GRADE WATER, RINSED W/ 1070 NITRIC WASH, WITH LAB GRADE WATER PRIOR TO USE. FINAL RINSE

WELL DEVELOPMENT/PURGING LOG MOENCH COMPANY PROJECT TITLE: PALMER ST. LANDFILL - G.W.M PROJECT NO .: OF 2 ANNUAL EVENTS Mike Best STAFF: |1:10 5 DATE: HELL NO .: Equipment BLANK WELL I.D. VOL. TOTAL CASING AND SCREEN LENGTH (ft.) (GAL./FT 1 NA 1* 0.04 2۴ 2 CASING INTERNAL DIAMETER (in.) WATER LEVEL BELOW TOP OF CASING (ft.) 3 5" 6" VOLUME OF WATER IN CASING (gal.) 1.50 4 8" 2.60 $V = 0.0408 (^{2} x (1 - 3)) = NA gal.$ PARAMETERS ACCUMULATED VOLUME PURGED (GALLONS) 0_N 19,1 VISUAL CLEAR ALWAYS TURBIDIT 12 CONDUCTIVIT 21.7 LEMO. C COMMENTS D.I. WATER (Q.C) FROM: ALPHA LAB

ALPHA	NEW YORK CHAIN OF CUSTODY	<u>Service Centers</u> Mahwah, NJ 07430: 35 Whitn Albany, NY 12205: 14 Walker Tonawanda, NY 14150: 275 C	Way			ge 1 of		Date	Rec'd					1.
Westborough, MA 01581	Mansfield, MA 02048		Cober Mae, Suite	105		1	1.	្រុ	Lab	1991). 1991			ANTUM GOD #	135
8 Walkup Dr. TEL: 508-898-9220	320 Forbes Blvd	Project Information					Deli	verabl	es					f
FAX: 508-898-9193	TEL: 508-822-9300 FAX: 508-822-3288	Project Name:	Palmer Str	reet Landfill Ro	utine Parar	neter List				Т	ASP		Billing formation	
		Project Location:	Gowanda,				1 -	_	IS (1 Fil	പ്		-	Same as Client Inf	Ö
Client Information		Project #								e) [IS (4 File)	PO #	
lient: Moench C	and the second	(Use Projéct name as F	Project #)				-		/ Require					in and
idress: 465 Palme	er St		Mike Be	est			, teg				_		Disposal Site Informatio	5.1
owanda, NY 14070		ALPHAQuote #:				·····	┥┝╴	NYT				art.375	Please identify below location	an of
none: 716-532-2	201	Turn-Around Time		·	· · · · · · · · · · · · · · · · · · ·	<u></u>			Standard				applicable disposal facilities	١.
ix: 716-532-5		Standor	। ।	Due Date					estricted (_	Other		Disposal Facility:	
nail: MDbesT	Glens.com	Rush (only if pre approved	n []						nrestricter					
ese samples have b	een previously analyze			# of Days	:				Sewer Dis	charge			Other:	
her project specific	requirements/comm	ents: Go day		<u> </u>	, /		ANA	LYSIS	i				Sample Filtration	
		e field.	<u>ne on a</u>	(days 7	<u> 30 -</u>	5/1/18		(As,Cr,Pb)					Done Lab to do	
ase specify Metals	or TAL.						8260	As,(Preservation	
				······································		······	5	si (
ALPHA Lab ID (Lab Use Only)	Sa	mple ID	Col	lection Time	Sample Matrix	Sampler's Initials	ГF.	D-Metals					(Please Specify below)	I i
	Site 1 MW-	6 D	4/30/18			1 2012							Sample Specific Comment	Ş
	Site 2 Blind	DUP	11-11-0	9:50	GW	4.17	X	X					Grab	
	Site 3 MW-6	Þ	11		GW	172	X -	X					Grab	
	Site 4 MW - 1	ISR	11	10:00	GW	170	x	X	·				Grab	
	Site 5 MW- 4	70	11		GW	MB	X	X					Grab	
D. A.	Site 6 MW	30	11	11:05	1	MD	X	X					Grab	
	Site 7 BS-	3	11	11,13	GW		X	x					Grab	
	Site 8 M.W-	80		12:20	the second s	MB	X.	Х					Grab	-+
	Site 9 MW-7		5/1/18	10:35		the second s	X	x				ı	Grab	-+
No. and the second s	Site 10 Equips	D DI IS	11	10:00	ĢW	MB	X	x					Grab	-+
ervative Code:	Container Codo			11:10	GW	MB	X	х					Grab	
		Westboro: Certification N			Con	tainer Type								
110	A = Amber Glass V = Vial	Mansfield: Certification N	o: MA015				v	Р					Please print clearly, le	aiblv
l₂SO₄	G = Glass										+ - +		and completely. Samp	les c
	B = Bacteria Cup C = Cube				۲ 	reservative	в	с					not be logged in and turnaround time clock	
2 · · · · · · · · · · · · · · · · · · ·	D = Other	Relinquished E	By:	, Pate/1	lime			ed By:					start until any ambiguit	worn ties a
•	E = Encore	11/1 alla USS		5/1/18	1:50	t'		Su By			Date/	IIme	resolved. BY EXECUT	ING
la2S2O3		and and the		12/11/17		r								
la2S2O3	D = BOD Bottle		<u>al</u>	5/1/18	1.30		<u>}</u>						THIS COC, THE CLIE HAS READ AND AGR	NT

i

1

GOWANDA, NEW YORK 14070

TEL. 716-532-2201

FAX 716-532-5518

APPENDIX "C"

ALPha Lab

ANALYTICAL RÉPORT FROM LABORATORY:

FOR April, May 2018

MONITORING EVENT....

PALMER STREET LANDFILL

ANALYTICAL REPORT

Lab Number:	L1815445
Client:	Moench Company
	465 Palmer Street
	Gowanda, NY 14070
ATTN:	Michael Best
Phone:	(716) 532-2201
Project Name:	PALMER ST. LF ROUTINE LIST
Project Number:	Not Specified
Report Date:	05/09/18

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-17-00196).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

ð

1

CAL

.*		Serial_N	0:05091819:40
Project Name:	PALMER ST. LF ROUTINE LIST	Lab Number:	L1815445
Project Number:	Not Specified	Report Date:	05/09/18
· .	' SAMPLE RESULTS		
Lab ID:	L1815445-01	Date Collected:	04/30/18 09:25
Client ID:	SITE 1 MW-6D_04302018	Date Received:	05/01/18
Sample Location:	GOWANDA, NY	Field Prep:	Field Filtered (Dissolved Metals)
Sample Depth:			
Matrix:	Water		
Analytical Method:	1,8260C		
Analytical Date:	05/04/18 18:47		
Analyst:	MKS		· ·

. : . .

8400

Dilution Eactor

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS West	oorough Lab					
Methylene chloride	ND		ug/l	2.5		, 1
1,1-Dichloroethane	• ND		ug/l	2.5		1
Chloroform	ND		ug/l	2.5		1
2-Chloroethylvinyl ether	ND		ug/l	10		1
Carbon tetrachloride	ND		ug/i	0.50		1
1,2-Dichloropropane	ND		ug/l	1.0		1
Dibromochloromethane	ND		ug/l	0.50		1
1,1,2-Trichloroethane	ND		ug∕l	.1.5		1
Tetrachloroethene	ND		ug/l	0.50		1
Chlorobenzene	ND		ug/l	2.5		1
1,2-Dichloroethane	ND		ug/l	0.50		1
1,1,1-Trichloroethane	ND		ug/l	2.5		1
Bromodichloromethane	ND		ug/l	0.50		1
rans-1,3-Dichloropropene	ND		ug/l	0.50		1
cis-1,3-Dichloropropene	ND		ug/l	0.50		1 .
Bromoform	ND		ugA	2.0		1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50		1
Benzene	ND		ugЛ	0.50		1
Toluene	ND		ug/i	2.5		1
Ethylbenzene	ND		ug/l	. 2.5		1
Chloromethane	ND		ug/l	2.5		1
Bromomethane	ND		ug/l	2.5		1
Vinyl chloride	ND		ugA	1.0		1
Chloroethane	ND		_ug/l	2.5		1
I,1-Dichloroethene	ND		ugA	0.50		1
rans-1,2-Dichloroethene	ND		ug∕l	. 2.5		1
Trichloroethene	ND		ug/l	0.50		1
b/m-Xylene	ND		ug/l	2.5		1.
	and the second					

					Serial_No:05091819:40				
Project Name:	PALMER ST. LF ROU	ITINE LIST			Lab N	umber:	L1815445		
Project Number:	Not Specified				Repor	t Date:	05/09/18		
-	·	SAMP	LE RESULTS	5	-				
Lab ID:	L1815445-01				Date Co	llected:	04/30/18 09:25		
Client ID:	SITE 1 MW-6D_0430	02018			Date Re	eceived:	05/01/18		
Sample Location:	GOWANDA, NY				Field Pr	ep:	Field Filtered (Dissolved Metals)		
Sample Depth:							·		
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor		
Volatile Organics b	y GC/MS - Westboroug	h Lab		4.00 ×		· · · .			
o-Xylene		ND		ug/l	2.5	-	1		
cis-1,2-Dichloroethene		ND	••••	ug/l	2.5	-	1		
Styrene	· · · · · · · · · · · ·	ND		ug/l	2.5		1		
Acetone	· . · · • • • •	(44)		ug/l	5.0		1		
Carbon disulfide	•••••••••••	ND	• • • • • •	ug/l	5.0		1		
2-Butanone		ND		ug/l	5.0		1		
Vinyl acetate		ND	••••	ug/l	5.0	-	1		
4-Methyl-2-pentanone		ND	•••••	ug/i	5.0		1 <u>1</u>		
2-Hexanone	a i transforma a	ND		ug/l	5.0		1		

Surrogate	% Recovery	Acceptance Qualifier Criteria
1,2-Dichloroethane-d4	. 89	70-130
Toluene-d8	100	70-130
4-Bromofluorobenzene	101	70-130
Dibromofluoromethane	92	70-130

		Serial_N	0:05091819:40
Project Name:	PALMER ST. LF ROUTINE LIST	Lab Number:	L1815445
Project Number:	Not Specified	Report Date:	05/09/18
	SAMPLE RESULTS		
Lab ID:	L1815445-02	Date Collected:	04/30/18 09:50
Client ID:	SITE 2 BLIND DUP_04302018	Date Received:	05/01/18
Sample Location:	GOWANDA, NY	Field Prep:	Field Filtered (Dissolved Metals)
Sample Depth:			
Matrix:	Water		
Analytical Method:	1,8260C		
Analytical Date:	05/04/18 19:15		

.

MKS

Analyst:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS	estborough Lab					
Methylene chloride	. ND		ug/i	2.5		1
1,1-Dichloroethane	ND		ug/l	2.5		1
Chloroform	ND		ug/l	2.5		1
2-Chloroethylvinyl ether	ND		ug/l	10		1
Carbon tetrachloride	ND		ug/l	0.50		1
1,2-Dichloropropane	ND	•	ug/l	1.0	·	1
Dibromochloromethane	ND		ug/l	0.50		1
1,1,2-Trichloroethane	ND		ug/l	1.5		1
Tetrachloroethene	ND		ug/l	0.50	-	1
Chlorobenzene	ND		ug/l	2.5		1
1,2-Dichloroethane	ND		ug/l	0.50		1
I,1,1-Trichloroethane	ND		ug/l	2.5		1
Bromodichloromethane	ND		ug/l	0.50		1
rans-1,3-Dichloropropene	. ND		ug/l	0.50	-	1
cis-1,3-Dichloropropene	ND		ugΛ	0.50		1
Bromoform	ND		ug/l	2.0		1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50		1
Benzene	ND		ug/l	0.50		1
Foluene	ND		ug/i	2.5		1
Ethylbenzene	ND	** * ***	ug/l	2.5		1
Chloromethane	ND		ug/l	2.5	-	1
Bromomethane	ND		ug/l	2.5		1
/inyl chloride	ND		ug/l	1.0		1
Chloroethane	ND	a karri u ri er e lage e snættigt af an i trær	ug/l	2.5	-	1
,1-Dichloroethene	ND	•	ug/l	0.50		1
rans-1,2-Dichloroethene	ND		ug/l	2.5		1
richloroethene	ND		ug/l	0.50		1
/m-Xylene	ND		ug/l	2.5		1
a e a galeria e anteriora que conseguir de la sur el conseguir e consecutiva de la consecta de secondo de secon						

						Serial_IN	0:05091819:40
Project Name:	PALMER ST. LF ROUTINE	LIST			Lab N	umber:	L1815445
Project Number:	Not Specified				Repor	t Date:	05/09/18
-	•	SAMP	LE RESULTS	5			
Lab ID: Client ID: Sample Location:	L1815445-02 SITE 2 BLIND DUP_0430 GOWANDA, NY	2018		Þ		ollected: eceived: rep:	04/30/18 09:50 05/01/18 Field Filtered (Dissolved Metals)
Sample Depth:							
Parameter	R	lesult	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics I	ov GC/MS - Westborough Lab)/ //	•		· .	•	

Volatile Organics by GC/MS - We	estborough Lab	•	· ·		
o-Xylene	ND	ug/i	2.5		
cis-1,2-Dichloroethene	ND	ug/l	2.5		1
Styrene	ND	ug/l	2.5		1
Acetone	72	ug/	5.0		1
Carbon disulfide	ND	ug/l	5.0		1
P-Butanone	ND	ug/l	5.0		1
/inyl acetate	ND	ug/l	5.0		1
1-Methyl-2-pentanone	ND	ug/l	5.0	-	
2-Hexanone	ND	ug/l	5.0		1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	90	70-130	
Toluene-d8	100	70-130	
4-Bromofluorobenzene	100	70-130	
Dibromofluoromethane	92	70-130	

		Seriai_N	0:05091819:40
Project Name:	PALMER ST. LF ROUTINE LIST	Lab Number:	L1815445
Project Number:	Not Specified	Report Date:	05/09/18
	SAMPLE RESULTS		
Lab ID:	L1815445-03	Date Collected:	04/30/18 10:00
Client ID:	SITE 3 MW-6_04302018	Date Received:	05/01/18
Sample Location:	GOWANDA, NY	Field Prep:	Field Filtered (Dissolved Metals)
Sample Depth:			
Matrix:	Water		
Analytical Method:	1,8260C		
Analytical Date:	05/04/18 19:42		
Analyst:	. MKS		

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS -, W	estboroughLab					
Methylene chloride	ND		ug/l	2.5		1
1,1-Dichloroethane	ND		ug/l	2.5		1
Chloroform	ND		ug/l	2.5		1
2-Chloroethylvinyl ether	ND		ug/l	10		1
Carbon tetrachloride	ND		ug/l	0.50		1
1,2-Dichloropropane	ND		ug/l	1.0		1
Dibromochloromethane	ND		ug/l	0.50		1
1,1,2-Trichloroethane	ND		ug/i	1.5		1
Tetrachloroethene	ND		ug/l	0.50		1
Chlorobenzene	ND		ug/l	2.5	-	1
1,2-Dichloroethane	ND	a, a ay lakaran da kunan P a Phare	ug/i	0.50		1
1,1,1-Trichloroethane	ND		ug/l	2.5		1
Bromodichloromethane	ND		ug/l	0.50		1
trans-1,3-Dichloropropene	ND		ug/l	0.50	-	1
cis-1,3-Dichloropropene	ND		ug/i	0.50		1
Bromoform	ND		ug/l	2.0		1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	_	1
Benzene	ND		ug/l	0.50		1
Toluene	ND		ug/i	2.5		1
Ethylbenzene	ND		ugA	2.5		1
Chloromethane	ND		ug/l	2.5	_	1
Bromomethane	ND		ug/l	2.5		1.
Vinyl chloride	ND		ug/l	1.0		1
Chloroethane	ND		ug/l	2.5	-	1
1,1-Dichloroethene	ND		ug/ì	0.50		1
trans-1,2-Dichloroethene	ND		ug/l	2.5		1
Trichloroethene	ND		ug/l	0.50	-	1
p/m-Xylene	NĎ		ug/l	2.5		1
						a na a anna a mana a ga thairt na chairtean a mharanna ann ann ann ann ann ann ann ann a

`

.

ļ

,		Senal_No:05091819:4					0:05091819:40
Project Name:	PALMER ST. LF ROU	TINE LIST			Lab N	umber:	L1815445
Project Number:	Not Specified				Repor	rt Date:	05/09/18
-		SAMP	LE RESULT	5	-		
Lab ID:	L1815445-03				Date Co	ollected:	04/30/18 10:00
Client ID:	SITE 3 MW-6_043020	018			Date Re	eceived:	05/01/18
Sample Location:	GOWANDA, NY				Field Pi	ep:	Field Filtered (Dissolved Metals)
Sample Depth:							,
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics t	y GC/MS - Westborough	Lab			•••		
o-Xylene		ND		ug/l	2.5		1
cis-1,2-Dichloroethene		ND		ug/l	2.5		1
Styrene	<u> </u>	ND	· • ·	ug/l	2.5		1
Acetone		6.9		ug/l	5.0	-	1
Carbon disulfide	• • • • • • • • • • •	ND	• •	ug/l	5.0		1
2-Butanone	··· ··· · · · · · · · · · · · · · · ·	ND		ug/l	5.0		1
	· · · · · · · · · · ·	ND .		ug/l	5.0	· · · · ·	1
Vinyl acetate		=					
Vinyl acetate 4-Methyl-2-pentanone	· · · · · · · · · · · · · · · · · · ·	ND	•• ••	ug/l	5.0	-	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	92	70-130	
Toluene-d8	101	70-130	
4-Bromofluorobenzene	102	70-130	
Dibromofluoromethane	92	70-130	

		· Serial_N	0:05091819:40
Project Name:	PALMER ST. LF ROUTINE LIST	Lab Number:	L1815445
Project Number:	Not Specified	Report Date:	05/09/18
	SAMPLE RESULTS		
Lab ID:	L1815445-04	Date Collected:	04/30/18 10:35
Client ID:	SITE 4 MW-4SR_04302018	Date Received:	05/01/18
Sample Location:	GOWANDA, NY	Field Prep:	 Field Filtered (Dissolved Metals)
Sample Depth:			
Matrix:	Water		

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - We	estborough Lab					
Methylene chloride	ND		ug/	2.5	-	1
1,1-Dichloroethane	ND		ug/l	2.5 ,		1
Chloroform	ND		ug∕l	2.5	-	. 1
2-Chloroethylvinyl ether	ND		ug/l	10		1
Carbon tetrachloride	ND		ug/l	0.50	-	1
1,2-Dichloropropane	, ND		ug/l	1.0		1
Dibromochloromethane	ND		ug/l	0.50		1
1,1,2-Trichloroethane	ND		ug/l	1.5		1
Tetrachloroethene	ND		ug/i	0.50		1
Chlorobenzene	ND		ug/l	2.5		1
1,2-Dichloroethane	ND		ug/i	0.50		, 1
1,1,1-Trichloroethane	ND		ug/l	2.5		1
Bromodichloromethane	ND		ug/l	0.50	-	1
rans-1,3-Dichloropropene	ND	/	ug/i	0.50		1
cis-1,3-Dichloropropene	ND		ug/i	0.50		1
Bromoform	ND	an a	ug/l	2.0		1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50		1
Benzene	ND		ug/l	0.50		1
Toluene	ND		ug/l	2.5		1
Ethylbenzene	ND	,	ug/l	2.5	-	1
Chloromethane	ND		ug/i	2.5		1
Bromomethane	ND		ug/l	2.5		. 1
Vinyl chloride	ND		ug/l	1.0		1
Chloroethane	ND		ug/i	2.5		1
I,1-Dichloroethene	, ND		ug/l	0.50 ·	-	1
rans-1,2-Dichloroethene	ND		ugA	2.5		1
Frichloroethene	ND	*	ug/l	0.50		1
p/m-Xylene	ND		ug/l	2.5		1

.

Analytical Method: Analytical Date:

Analyst:

1,8260C 05/04/18 20:10

MKS

					Senal_No:05091819:40			
Project Name:	PALMER ST. LF ROUT	INE LIST			Lab N	umber:	L18154	45
Project Number:	Not Specified				Repor	t Date:	05/09/1	8
,		SAMP		S	-			-
Lab ID:	L1815445-04				Date Co	llected:	04/30/18 1	0:35
Client ID:	SITE 4 MW-4SR_0430	2018			Date Re	ceived:	05/01/18	
Sample Location:	GOWANDA, NY				Field Pr	ep:	Field Filter Metals)	ed (Dissolved
Sample Depth:							,	
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Fa	ctor
Volatile Organics i	by GC/MS - Westborough	Lab						
o-Xylene		ND		ug/l	2.5		1	
cis-1,2-Dichloroethene		ND		••• ••	2.5			
cis-1,2-Dichloroethene Styrene			· ··	ug/l ug/l	2.5			· · · · · ·
·····	· · · · · · · · · · · · · · · · · · ·	•	 	ug/l ug/l ug/l	·· · ·	- 	1 	······································
Styrene	· · · · · · · · · · ·	ND	 	ug/l ug/l	2.5	· ····································	1 	·····
Styrene Acetone	· · · · · · · · · · · · · · · · · · ·	ND 57	· · · · · · · · · · · · · · · · · · ·	ug/i ug/i ug/i ug/i ug/i	2.5 5.0	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·
Styrene Acetone Carbon disulfide	· · · · · · · · · · · · · · · · · · ·	ND 57 ND	· · · · · · · · · · · · · · · · · · ·	ug/l ug/l ug/l	2.5 5.0 5.0	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·
Styrene Acetone Carbon disulfide 2-Butanone	· · · · · · · · · · · · · · · · · · ·	ND 57 ND ND	· · · · · · · · · · · · · · · · · · ·	ug/ ug/ ug/ ug/ ug/	2.5 5.0 5.0 5.0	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·

Surrogate	% Recovery	Acceptance Qualifier Criteria
1,2-Dichloroethane-d4	93	70-130
Toluene-d8	. 99	70-130
4-Bromofluorobenzene	101	70-130
Dibromofluoromethane	. 93	70-130

.

.

.

n

٠

	Serial_N	0:05091819:40
PALMER ST. LF ROUTINE LIST	Lab Number:	L1815445
Not Specified	Report Date:	05/09/18
SAMPLE RESULTS		
L1815445-05	Date Collected:	04/30/18 11:05
SITE 5 MW-4D_04302018	Date Received:	05/01/18
GOWANDA, NY	Field Prep:	Field Filtered (Dissolved Metals)
Water 1,8260C 05/04/18 21:06 MKS		
	Not Specified . SAMPLE RESULTS L1815445-05 SITE 5 MW-4D_04302018 GOWANDA, NY Water 1,8260C	PALMER ST. LF ROUTINE LIST Lab Number: Not Specified Report Date: SAMPLE RESULTS L1815445-05 Date Collected: SITE 5 MW-4D_04302018 Date Received: GOWANDA, NY Field Prep: Water 1,8260C 05/04/18 21:06 List 21:06

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS We	stboroughLab :: 🏹		1 N	N. C.A.S.	A CALL AND A CALL AND A CALL AND A	
Methylene chloride	ND		ugЛ	2.5		1
1,1-Dichloroethane	ND		ug/l	2.5		1
Chloroform	ND		ug/l	2.5		1
2-Chloroethylvinyl ether	ND		ug/l	10		1
Carbon tetrachloride	ND		ug/l	0.50		1
1,2-Dichloropropane	ND		ug/l	1.0		1
Dibromochloromethane	ND		ugA	0.50		1 ·
1,1,2-Trichloroethane	ND		ug/l	1.5	-	1
Tetrachloroethene	ND		ug/i	0.50		1
Chlorobenzene	ND	nanden i fenni hen an einer die gemeenten die antheastrik in Henry word.	ug/l	2.5		1
1,2-Dichloroethane	ND		ug/l	0.50		1
1,1,1-Trichloroethane	ND		ug/l	2.5	-	1
Bromodichloromethane	ND		ug/l	0.50		1
trans-1,3-Dichloropropene	ND		ug/l	0.50		1
cis-1,3-Dichloropropene	ND		ug/l	0.50		1
Bromoform	ND		ug/l	2.0		1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50		· 1
Benzene	ND		ug/l	0.50		1
Toluene	ND		ug/l	2.5		1
Ethylbenzene	ND		ug/l	2.5	-	1
Chloromethane	ND		ug/i	2.5		1
Bromomethane	ND		ug/l	2.5		1
Vinyl chloride	ND		ug/l	1.0		1 .
Chloroethane	ND		ug/l	2.5	-	1
1,1-Dichloroethene	ND		ug/i	0.50	-	1
rans-1,2-Dichloroethene	ND		ug/l	2.5		1
Frichloroethene	ND		ug/i	0.50		1
b/m-Xylene	ND		ug/l	2.5		1

Į

					Serial_No	0:05091819:40		
Project Name:	PALMER ST. LI	F ROUTINE LIST		· ·,	Lab N	umber:	L1815445	
Project Number:	Not Specified				Repor	rt Date:	05/09/18	
•		SAMP	LE RESULT	S				
Lab ID:	L1815445-05				Date Co	ollected:	04/30/18 11:05	
Client ID:	SITE 5 MW-40	SITE 5 MW-4D 04302018				Date Received: 05/01/18		
Sample Location:	GOWANDA, N	IY			Field Pi	rep: -	Field Filtered (Dissolved Metals)	
Sample Depth:							,	
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor	

o-Xylene	ND	ug/l	2.5	-	1
cis-1,2-Dichloroethene	ND	ug/l	2.5		1
Styrene	ND	ug/l	2.5		1
Acetone	ND	ug/l	5.0		1
Carbon disulfide	ND	ug/l	5.0		1
2-Butanone	ND	ug/l	5.0		1
/inyl acetate	ND	ug/l	5.0		1
4-Methyl-2-pentanone	ND	ug/l	5.0		1
2-Hexanone	ND	ug/l	5.0		1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	92		70-130	
Toluene-d8	99		70-130	
4-Bromofluorobenzene	102		70-130	
Dibromofluoromethane	94		70-130	,

Page 15 of 45

		Serial_N0:05091819:40			
Project Name:	PALMER ST. LF ROUTINE LIST	Lab Number:	L1815445		
Project Number:	Not Specified	Report Date:	05/09/18		
	SAMPLE RESULTS	·			
Lab ID:	L1815445-06	Date Collected:	. 04/30/18 11:45		
Client ID:	SITE 6 MW-3D_04302018	Date Received:	05/01/18		
Sample Location:	GOWANDA, NY	Field Prep:	Field Filtered (Dissolved Metals)		
Sample Depth:			,		
Matrix:	Water		٤		

¢,						
Parameter	Resu	lt Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS	Westborough Lab.					
Methylene chloride	, } ND	· · · · · ·	ug/l	2.5		1
1,1-Dichloroethane	ND		ug/i	2.5		1
Chloroform	ND		ug/l	2.5		1
2-Chloroethylvinyl ether	ND		ug/l	10		, 1
Carbon tetrachloride	ND		ug/l	0.50		1
1,2-Dichloropropane	ND		ug/l	1.0		1
Dibromochloromethane	ND		ug/l	0.50		1
1,1,2-Trichloroethane	ND		ug/l	1.5		1
Fetrachioroethene	ND		ug/	0.50		1
Chlorobenzene	ND		ug/l	2.5		1
,2-Dichloroethane	ND		ug/l	0.50		1
,1,1-Trichloroethane	ND		ug/l	2.5		1
Iromodichloromethane	ND		ug/l	0.50	-	1
rans-1,3-Dichloropropene	ND		ug/l	0.50		1
is-1,3-Dichloropropene	. ND		ug/l	0.50		1
Bromoform	ND		ug/l	2.0		1
,1,2,2-Tetrachloroethane	ND		ug/l	0.50		1
lenzene	ND		ug/l	0.50		1
oluene	ND		ug/l	2.5		1
thylbenzene	ND		ug/l	2.5		1
hloromethane	ND		ug/l	2.5		1
romomethane	ND	1	ug/l	2.5		1
inyl chloride	ND		ug/l	1.0		1
hloroethane	ND		ug/l	2.5		1
,1-Dichloroethene	ND		ug/l	0.50		1
ans-1,2-Dichloroethene	ND	an a	ug/l	2.5		1
richloroethene	ND	, an en an Agereliphone en fride off start design sufe	ug/t	0.50		1.
/m-Xylene	ND	na - An	ug/i	2.5		1

Analytical Method:

Analytical Date:

Analyst:

,

1,8260C

MKS

05/04/18 21:34

1 11 2 54 8					ET 1	Serial_N	0.05091819:40	
Project Name:	PALMER ST. LF ROUT	INE LIST	· ·			umber:	L1815445	
Project Number:	Not Specified				Repor	t Date:	05/09/18	
• •	•	SAMP	LE RESULT	S	-			
Lab ID:	L1815445-06				Date Co	llected:	04/30/18 11:45	
Client ID:	SITE 6 MW-3D_04302	018 ·			Date Re	eceived:	05/01/18	
Sample Location:	GOWANDĂ, NY				Field Pr	ep:	Field Filtered (Diss Metals)	solved
Sample Depth:								
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics t	by GC/MS - Westborough	Lab						
o-Xylene		ND		ug/l	2.5		1	
cis-1,2-Dichloroethene	n na han na sharar ann an ann an an an an an an an an an a	ND		ug/l	2.5		1	
Styrene		ND		ug/l	2.5		1	
Acetone	a 1999 an ann an Aonaiche an Aonaiche an Aonaiche an anns - Sharannanaigh a run Bhrainninn ann ann Aonaiche A	ND		ug/l	5.0		1	
Carbon disulfide	n gan annan in an annan an an annan an annan an annan an	ND	1	ug/l	5.0	-	1	
2-Butanone	an an an an an ann a	ND		ug/l	5.0		1	
Vinyl acetate	unders seinen einen gereinen ger under het herr vereinen die eine die zuhlandente einer handet heiden. Deut	ND		ug/l	5.0		1	
4-Methyl-2-pentanone	an an ann an	ND		ua/i	5.0		1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	94	70-130	
Toluene-d8	. 99	70-130	
4-Bromofluorobenzene	99	70-130	
Dibromofluoromethane	93	70-130	

ND

5.0

1

ug/ì

2-Hexanone

•		serial_N	0:05091819:40
Project Name:	PALMER ST. LF ROUTINE LIST	Lab Number:	L1815445
Project Number:	Not Specified	Report Date:	05/09/18
-	SAMPLE RESULT	S	
Lab ID:	L1815445-07	Date Collected:	04/30/18 12:20
Client ID:	SITE 7 BS-3_04302018	Date Received:	05/01/18
Sample Location:	GOWANDA, NY	Field Prep:	Field Filtered (Dissolved Metals)
Sample Depth:			
Matrix:	Water		
Analytical Method:	1,8260C	•	
Analytical Date:	05/04/18 22:02		
Analyst:	MKS		

Parameter	Result	Qualifier U	nits ·	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - We	stborough Lab					
Methylene chloride	ND	u	g/l	2.5		1
1,1-Dichloroethane	ND	u	gЛ	2.5		1
Chloroform	ND	u	g/i	2.5	-	1
2-Chloroethylvinyl ether	ND	u	g/l	10		1
Carbon tetrachloride	ND	u	gЛ	0.50		1
1,2-Dichloropropane	ND	u	g/i	1.0		1
Dibromochloromethane	ND	u	g/I	0.50		1
1,1,2-Trichloroethane	ND	u	gЛ	1.5		1
Tetrachloroethene	ND	u	gЛ	0.50		1
Chlorobenzene	ND	u	g/l	2.5		1
,2-Dichloroethane	ND	u	gA .	0.50		1
,1,1-Trichloroethane	ND	u	g/l	2.5	-	1
Bromodichloromethane	ND		g/l	0.50		1
rans-1,3-Dichloropropene	ND	U	gЛ	0.50	-	1
is-1,3-Dichloropropene	ND	U	gЛ	0.50		• 1
Bromoform	ND	, U	зЛ	2.0		1
,1,2,2-Tetrachloroethane	ND	u	g/i	0.50		1
Benzene	ND	L	зЛ	0.50		1
îoluene	ND	U	зЛ	2.5		1
thylbenzene	ND	u,	зЛ	2.5		1
Chloromethane	. ND	u	g/l	2.5	,	1
Bromomethane	ND		зЛ	2.5		1
/inyl chloride	ND	ų	g/l	1.0		1
Chloroethane	ND	ui.	<u>д/</u>	2.5	-	1
,1-Dichloroethene	ND	Li	зЛ	0.50		1
ans-1,2-Dichloroethene	ND	· u	зЛ	2.5		1
richloroethene	ND	u	g/l	0.50		1
/m-Xylene	ND		аЛ	2.5		1

•

.

.

Project Name:	PALMER ST. LF ROUTINE LIST				Lab Number:		L1815445	
Project Number:	Not Specified				Repor	t Date:	05/09/18	
-	•	SAMP	LE RESULTS	;				
Lab ID:	L1815445-07				Date Co	llected	04/30/18 12:20	
Client ID:	SITE 7 BS-3_04302018				Date Received:		05/01/18	
Sample Location:	GOWANDA, NY				Field Pr	ep:	Field Filtered (Dissolved Metals)	
Sample Depth:								
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics I	v GC/MS - Westborough L	ab						

• •			· · · · ·	
. ND	ug/i	2.5	-	1
ND	ug/l	2.5		1
ND	ug/l	2.5		1
61	ug/l	5.0		1
ND	ug/l	5.0		1
ND	ug/l	5.0		1
ND	ug/l	5.0		1
ND .	ug/l	5.0		1
ND	ug/l	5.0	,	1
	ND ND 61 ND ND ND ND ND ND ND ND	ND ug/i ND ug/i ND ug/i 61 ug/i ND ug/i	ND ug/l 2.5 ND ug/l 2.5 ND ug/l 2.5 0 0 1 61 ug/l 5.0 ND ug/l 5.0	ND ug/l 2.5 ND ug/l 2.5 ND ug/l 2.5 ND ug/l 2.5 ND ug/l 5.0 ND ug/l 5.0

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	93	70-130	
Toluene-d8	98	70-130	
4-Bromofluorobenzene	100	70-130	
Dibromofluoromethane	93	70-130	•

Serial_No:05091819:40

	· · ·	Serial_N	0:05091819:40
Project Name:	PALMER ST. LF ROUTINE LIST	Lab Number:	L1815445
Project Number:	Not Specified	Report Date:	05/09/18
	SAMPLE RESULTS		
Lab ID:	L1815445-08	Date Collected:	05/01/18 10:35
Client ID:	SITE 8 MW-8D_05012018	Date Received:	05/01/18
Sample Location:	GOWANDA, NY	Field Prep:	Field Filtered (Dissolved Metals)
Sample Depth:			,

Parameter '	Result	Qualifier	Units	RL	MDL	Dilution Factor
/olatile Organics by GC/MS - Westborou	igh Lab					
Aethylene chloride	ND		ug/l	2.5		1
,1-Dichloroethane	ND		ug/l	2.5	-	1
Chloroform	ND		ug/l	2.5	-	1
-Chloroethylvinyl ether	ND .		ug/l	10		1
Carbon tetrachloride	ND		ug/l	0.50		1
,2-Dichloropropane	ND		ug/l	1.0		1
Dibromochloromethane	ND	*********	ug/l [·]	0.50		1
,1,2-Trichloroethane	ND		ug/l	1.5		1
etrachloroethene	ND	na n	ug/l	0.50		1
hlorobenzene	ND	·	ug/	2.5	-	1
,2-Dichloroethane	ND		ug/i	0.50		1
,1,1-Trichloroethane	ND	ng kalan sana i da kana kata da	ug/l	2.5		1
romodichloromethane	ND	********	ug/l	0.50		1
ans-1,3-Dichloropropene	ND		ug/i	0.50		1
is-1,3-Dichloropropene	ND		ug∕l	0.50		1
romoform	ND		ug/l	2.0		1
,1,2,2-Tetrachloroethane	ND		ug/i	0.50		1
enzene	ND	nga garagapaketi ni tininar catili ki wena k	ug/l	0.50		1
oluene	ND		ug/l	2.5		1
thylbenzene	ND		ug/	2.5		1
hloromethane	ND	1. Anna	ug/i	2.5		1
romomethane	ND	* * * , * * * * * * * * * * * * *	ug/l	2.5		1
inyl chloride	ND		ug/i	1.0		1
hloroethane	ND		ug/i	2.5		1
1-Dichloroethene	ND		ug/l	0.50		1
ans-1,2-Dichloroethene	ND		ug/l	2.5		1
richloroethene	ND		ug/l	0.50		1

.

Matrix:

Analyst:

Analytical Method:

Analytical Date:

Water

MKS

1,8260C

05/04/18 22:30

						Serial_No	0:05091819:40	
Project Name:	PALMER ST. LF ROU	TINE LIST			Lab N	umber:	L1815445	
Project Number:	Not Specified				Report	Date:	05/09/18	
-	·	SAMP	LE RESULT	S	-			
Lab ID: Client ID:	L1815445-08 SITE 8 MW-8D_0501	2018			Date Co Date Re		05/01/18 10:35 05/01/18	
Sample Location:	GOWANDA, NY	2010			Field Pro		Field Filtered (Dis Metals)	solved
Sample Depth:							(incluit)	
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics t	oy GC/MS - Westborough	n Lab						
o-Xylene		ND		ug/l	2.5	-	1	
cis-1,2-Dichloroethene	* * * * *	ND		ug/l	2.5		1	
Styrene	· · ·	ND		ug/l	2.5		1	
Acetone	• •	ND		ug/l	5.0		1	
Carbon disulfide		ND	• •	ug/l	5.0		1	

ug/l

ug/l

ug/l

ug/l

% Recovery

93

99

101

94。

5.0

5.0

5.0

5.0

Qualifier

Acceptance Criteria

70-130

70-130

70-130

70-130

¹, ø

.

ND

ND

ND

ND

.

.

2-Butanone

Vinyl acetate

2-Hexanone

4-Methyl-2-pentanone

Surrogate

Toluene-d8

1,2-Dichloroethane-d4

4-Bromofluorobenzene

Dibromofluoromethane

	,		Serial_N	0:05091819:40
Project Name:	PALMER ST. LF ROUTINE LIST		Lab Number:	L1815445
Project Number:	Not Specified		Report Date:	05/09/18
-	SAMPLE RESULTS			
Lab ID:	L1815445-09		Date Collected:	05/01/18 10:00
Client ID:	SITE 9 MW-7D_05012018	•	Date Received:	05/01/18
Sample Location:	GOWANDA, NY		Field Prep:	Field Filtered (Dissolved Metals)
Sample Depth:				·
Matrix:	Water			
Analytical Method:	1,8260C			

05/04/18 22:57

• MKS

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - W	estborough Lab					
Methylene chloride	ND		ug/l	2.5		1
1,1-Dichloroethane	ND		ug/l	2.5		1
Chloroform	ND		ug/l	2.5		1
2-Chloroethylvinyl ether	ND		ug/i	10		1
Carbon tetrachloride	ND		ug/l	0.50		1
1,2-Dichloropropane	ND		ug/l	1.0		1
Dibromochloromethane	ND		ug/l	0.50		1 .
1,1,2-Trichloroethane	ND		ug/l	1.5		1
Tetrachloroethene	ND		ug/l	0.50		1
Chlorobenzene	ND		ug/l	2.5		1
1,2-Dichloroethane	· ND		ug/i	0.50		1
1,1,1-Trichloroethane	ND		ug/i	2.5		1
Bromodichloromethane	ND		ug/l	0.50		1
trans-1,3-Dichloropropene	ND		ug/l	0.50		1
cis-1,3-Dichloropropene	ND	a ana a a ann an Tha ann a tha ann an ann an an ann an ann an an ann an a	ug/l	0.50		1.
Bromoform	ND		ug/l	2.0		1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50		1
Benzene	ND		ug/l	0.50		1
Toluene	ND		ug/l	2.5		1
Ethylbenzene	ND		ug/l	2.5	-	1
Chloromethane	ND		ug/l	2.5		1
Bromomethane	ND		ug/l	2.5		1
Vinyl chloride	ND		ug/l	1.0		1
Chloroethane	ND		ug/l	2.5		1
1,1-Dichloroethene	ND		ug/i	0.50		1
rans-1,2-Dichloroethene	ND		ug/l	2.5	-	1
Frichloroethene	ND		ug/l	0.50		1
þ/m-Xylene	ND .		ug/l	2.5		1

Analytical Date:

Analyst:

						Serial_N	0:05091819:40
Project Name:	PALMER ST. LF ROUTI	NE LIST			Lab N	umber:	L1815445
Project Number:	Not Specified				Repor	t Date:	05/09/18
-	,	SAMP		S			
Lab ID:	L1815445-09				Date Co	llected:	05/01/18 10:00
Client ID:	SITE 9 MW-7D_050120	018			Date Re	eceived:	05/01/18
Sample Location:	GOWANDA, NY				Field Pr	ep:	Field Filtered (Dissolved Metals)
Sample Depth:							,
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics b	y GC/MS - Westborough L	.ab	· · ·				
o-Xylene		ND		ug/l	2.5		1
cis-1,2-Dichloroethene		ND		ug/i	2.5		1
Styrene	· · · · ·	ND		ug/l	2.5		1
Acetone		ND		ug/l	5.0		1
Carbon disulfide		ND		ug/i	5.0		1
2-Butanone		ND		ug/l	5.0		1
Vinyl acetate		ND	•	ug/i	5.0		1
4-Methyl-2-pentanone		ND		ug/l	5.0		1
	• • • •	• •		••••			

4-wiethy-2-pentatione		ugn	5.0		1 1
2-Hexanone	ND	ug/i	5.0	· · · · · · · · · · · · · · · · · ·	1
Surrogate		% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4		93		70-130	
Toluene-d8		99		70-130	
4-Bromofluorobenzene		101		70-130	
Dibromofluoromethane		94		70-130	

.

5

		Serial_N	0:05091819:40
Project Name:	PALMER ST. LF ROUTINE LIST	Lab Number:	L1815445
Project Number:	Not Specified	Report Date:	05/09/18
	SAMPLE RESULTS		
Lab ID:	L1815445-10	Date Collected:	05/01/18 11:10
Client ID:	SITE 10 EQUIPMENT BLANK_05012018	Date Received:	05/01/18
Sample Location:	GOWANDA, NY	Field Prep:	Field Filtered (Dissolved Metals)
Sample Depth:			,
Matrix:	Water		
Analytical Method:	1,8260C		
Analytical Date:	05/04/18 23:25		
Analyst:	MKS		

ND ugn 2.5 - 1 Chlorodram ND ugA 2.5 - 1 2.Chlorodethydivyl etter ND ugA 10 - 1 2.Chlorodethydivyl etter ND ugA 10 - 1 2.Chlorodethydivyl etter ND ugA 0.50 - 1 2.Chlorodethydivyl etter ND ugA 0.50 - 1 1.2.Chlohorodethane ND ugA 0.50 - 1 1.1.2.Trichlorodethane ND ugA 0.50 - 1 1.1.2.Trichlorodethane ND ugA 0.50 - 1 1.1.2.Trichlorodethane ND ugA 0.50 - 1 1.2.Dichloroptropene ND ugA 0.50 - 1 1.2.Dichloroptropene ND ugA 0.50 - 1 1.3.Trichlorodethane ND ugA 0.50 - 1 1.	Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Methylene chloride ND ug/l 2.5 - 1 1,1-Dichloroethane ND ug/l 2.5 - 1 Chloroothane ND ug/l 2.5 - 1 Chloroothane ND ug/l 1.0 - 1 2.Chloroothylvinj ether ND ug/l 0.50 - 1 2.Chloroothyloropane ND ug/l 0.50 - 1 1.1.2.Chloroothane ND ug/l 0.50 - 1	Volatile Organics by GC/MS - W	estborough Lab					
ND ug/l 2.5 - 1 2.Chloroethylvinyi etter ND ug/l 10 - 1 2.Chloroethylvinyi etter ND ug/l 0.50 - 1 2.Chloroethylvinyi etter ND ug/l 0.50 - 1 1.2.Dichloropropane ND ug/l 0.50 - 1 1.1.2.Trichloroethane ND ug/l 0.50 - 1 1.1.2.Trichloroethane ND ug/l 0.50 - 1 1.2.Trichloroethane ND ug/l 0.50 - 1 1.2.Dichloropropane ND ug/l 0.50 - 1 1.2.Dichloropthane ND ug/l 0.50 - 1 1.2.Dichloroptopene ND ug/l 0.50 - 1 1.1.2.Trichloroethane ND ug/l 0.50 - 1 1.1.2.Totkloroptopene ND ug/l 0.50 - 1	Methylene chloride	ND		ug/l	2.5	-	1
Chloroethykinyl ether ND ug/l 10 - 1 Carbon tetrachloride ND ug/l 0.50 - 1 1.2-Dichloropropane ND ug/l 1.0 - 1 1.2-Dichloropropane ND ug/l 0.50 - 1 1.1.2-Trichloroethane ND ug/l 1.5 - 1 1.1.2-Trichloroethane ND ug/l 0.50 - 1 1.2-Dichloroethane ND ug/l 0.50 - 1 1.2-Dichloroethane ND ug/l 0.50 - 1 1.2-Dichloroethane ND ug/l 0.50 - 1 1.1.1-Trichloroethane ND ug/l 0.50 - <td< td=""><td>1,1-Dichloroethane</td><td>ND</td><td></td><td>ug/l</td><td>2.5</td><td></td><td>1</td></td<>	1,1-Dichloroethane	ND		ug/l	2.5		1
2.2.Chioroethylvinvi ether ND ug/l 10 - 1 Carbon tetrachloride ND ug/l 0.50 - 1 1.2.Dichloropropane ND ug/l 1.0 - 1 Dibromochloromethane ND ug/l 0.50 - 1 1.1.2.Trichloroethane ND ug/l 0.50 - 1 1.1.2.Trichloroethane ND ug/l 0.50 - 1 1.2.Dichloroethane ND ug/l 0.50 - 1 1.2.Dichloroethane ND ug/l 0.50 - 1 1.1.1.Trichloroethane ND ug/l 0.50 - 1 1.1.2.Dichloropthane ND ug/l 0.50 - 1 1.1.2.Dichloroptopene ND ug/l 0.50 - 1 1.1.2.2.Tetrachoroethane ND ug/l 0.50 - 1 1.1.2.2.Tetrachoroethane ND ug/l 0.50 - </td <td>Chloroform</td> <td>ND</td> <td></td> <td>ug/l</td> <td>2.5</td> <td></td> <td>1</td>	Chloroform	ND		ug/l	2.5		1
1.2 Dichloropropane ND ug/l 1.0 - 1 Dibromochloromethane ND ug/l 0.50 - 1 1.1.2-Trichloroethane ND ug/l 0.50 - 1 1.1.2-Trichloroethane ND ug/l 0.50 - 1 Tetrachloroethane ND ug/l 0.50 - 1 Chloroethane ND ug/l 0.50 - 1 1.2-Dichloroethane ND ug/l 0.50 - 1 1.2-Dichloroethane ND ug/l 0.50 - 1 1.2-Dichloropthane ND ug/l 0.50 - 1 Bromodichloromethane ND ug/l 0.50 - 1 cis-1.3-Dichloropropene ND ug/l 0.50 - 1 1.1.2-2-Tetrachleroethane ND ug/l 0.50 - 1 1.2.2-Tetrachleroethane ND ug/l 2.5 - 1	2-Chloroethylvinyl ether	ND			10		1
Dibromechane ND ug/l 0.50 - 1 1,1,2.Trichloroethane ND ug/l 1.5 - 1 Tetrachloroethane ND ug/l 0.50 - 1 Tetrachloroethane ND ug/l 0.50 - 1 Chlorobenzene ND ug/l 0.50 - 1 1.2.Dichloroethane ND ug/l 0.50 - 1 1.1.1.1.Trichloroethane ND ug/l 0.50 - 1 Bromodichloromothane ND ug/l 0.50 - 1 I.1.3.Dichloropropene ND ug/l 0.50 - 1 Bromoferm ND ug/l 0.50 - 1 1.1.2.2-Tetrachloroethane ND ug/l 0.50 - 1 Bromoferm ND ug/l 0.50 - 1 - 1.1.2.2-Tetrachloroethane ND ug/l 2.5 - 1	Carbon tetrachloride	ND		ug/l	0.50		1
ND ugh 1.5 - 1 Tetrachloroethane ND ugh 0.50 - 1 Chlorobenzene ND ugh 2.5 - 1 1.2-Dichloroethane ND ugh 0.50 - 1 1.2-Dichloroethane ND ugh 0.50 - 1 1.1.1-Trichloroethane ND ugh 0.50 - 1 Bromodichloromethane ND ugh 0.50 - 1 reaspl.3-Dichloropropene ND ugh 0.50 - 1 Bromodichloropropene ND ugh 0.50 - 1 1.1.2.2-Tetrachloroethane ND ugh 0.50 - 1 Bromoferm ND ugh 0.50 - 1 1.1.2.2-Tetrachloroethane ND ugh 2.5 - 1 Doluene ND ugh 2.5 - 1 Ethylbenzene ND </td <td>1,2-Dichloropropane</td> <td>ND</td> <td></td> <td>ug/l</td> <td>1.0</td> <td></td> <td>1</td>	1,2-Dichloropropane	ND		ug/l	1.0		1
Tetrachloroethene ND ug/l 0.50 - 1 Chlorobenzene ND ug/l 2.5 - 1 1.2-Dichloroethane ND ug/l 0.50 - 1 1.1.1.1.1-Trichloroethane ND ug/l 0.50 - 1 Bromodichloromethane ND ug/l 0.50 - 1 trans-1.3-Dichloropropene ND ug/l 0.50 - 1 bromodichloromethane ND ug/l 0.50 - 1 trans-1.3-Dichloropropene ND ug/l 0.50 - 1 trans-1.3-Dichloroethane ND ug/l 0.50 - 1 troluene ND ug/l 2.5 - <td>Dibromochloromethane</td> <td>ND</td> <td></td> <td>ug/l</td> <td>0.50</td> <td></td> <td>1</td>	Dibromochloromethane	ND		ug/l	0.50		1
ND ug/l 2.5 - 1 1,2-Dichloroethane ND ug/l 0.50 - 1 1,1-Trichloroethane ND ug/l 2.5 - 1 1,1,1-Trichloroethane ND ug/l 0.50 - 1 Bromodichloromethane ND ug/l 0.50 - 1 trans-1,3-Dichloropropene ND ug/l 0.50 - 1 cis-1,3-Dichloropropene ND ug/l 0.50 - 1 Bromoform ND ug/l 0.50 - 1 1 1,1,2-2-Tetrachloroptopene ND ug/l 0.50 - 1 1 1,1,2,2-Tetrachloroethane ND ug/l 0.50 - 1 1 1,1,2,2-Tetrachloroethane ND ug/l 0.50 - 1 1 Toluene ND ug/l 0.50 - 1 1 1 Chloromethane ND	1,1,2-Trichloroethane	ND		ug/l	1.5		1
ND ug/l 0.50 - 1 1.1.1-Trichloroethane ND ug/l 2.5 - 1 Bromodichloromethane ND ug/l 0.50 - 1 Bromodichloropropene ND ug/l 0.50 - 1 cis-1,3-Dichloropropene ND ug/l 0.50 - 1 Bromoform ND ug/l 0.50 - 1 1.1.2,2-Tetrachloroptopene ND ug/l 0.50 - 1 Bromoform ND ug/l 0.50 - 1 1.1.2,2-Tetrachloroethane ND ug/l 0.50 - 1 Berzene ND ug/l 0.50 - 1 Toluene ND ug/l 2.5 - 1 Ethylbenzene ND ug/l 2.5 - 1 Chloromethane ND ug/l 2.5 - 1 Vinyl choride ND ug/l 1.0 - 1 Chloromethane ND ug/l </td <td>Tetrachloroethene</td> <td>ND</td> <td></td> <td>ug/l</td> <td>0.50</td> <td></td> <td>1</td>	Tetrachloroethene	ND		ug/l	0.50		1
1.2-Dichloroethane ND ug/l 0.50 - 1 1.1,1-Trichloroethane ND ug/l 2.5 - 1 Bromodichloromethane ND ug/l 0.50 - 1 trans-1,3-Dichloropropene ND ug/l 0.50 - 1 cis-1,3-Dichloropropene ND ug/l 0.50 - 1 Bromoform ND ug/l 0.50 - 1 1,2,2-Tetrachloroethane ND ug/l 0.50 - 1 1,2,2-Tetrachloroethane ND ug/l 0.50 - 1 1,2,2-Tetrachloroethane ND ug/l 0.50 - 1 1,1,2,2-Tetrachloroethane ND ug/l 0.50 - 1 Toluene ND ug/l 2.5 - 1 1 Chloromethane ND ug/l 2.5 - 1 1 Chloromethane ND ug/l 1.0 - 1 1 Chloroethane ND ug/l 2.5	Chlorobenzene	ND		ug/l	2.5		1
Bromodichloromethane ND ug/l 0.50 - 1 trans-1,3-Dichloropropene ND ug/l 0.50 - 1 cis-1,3-Dichloropropene ND ug/l 0.50 - 1 Bromodichioropropene ND ug/l 0.50 - 1 Bromodichioropropene ND ug/l 0.50 - 1 Bromodichioropropene ND ug/l 0.50 - 1 1,1,2,2-Tetrachloroethane ND ug/l 0.50 - 1 Berzene ND ug/l 0.50 - 1 Toluene ND ug/l 2.5 - 1 Ethylbenzene ND ug/l 2.5 - 1 Chloromethane ND ug/l 2.5 - 1 Vinyl chbride ND ug/l 2.5 - 1 Vinyl chbride ND ug/l 0.50 - 1 Li	1,2-Dichloroethane	ND		ug/i	0.50		1
ND ug/l 0.50 1 cis-1,3-Dichloropropene ND ug/l 0.50 - 1 Bromoform ND ug/l 0.50 1 1,1,2,2-Tetrachloroethane ND ug/l 0.50 1 Benzene ND ug/l 0.50 1 Toluene ND ug/l 0.50 1 Ethylbenzene ND ug/l 2.5 1 Chloromethane ND ug/l 2.5 1 Bromomethane ND ug/l 2.5 1 Vinyl chloride ND ug/l 2.5 1 Vinyl chloride ND ug/l 2.5 1 Chloroethane ND ug/l 2.5 1 Li-Dichloroethene ND ug/l 2.5 - 1 Li-Dichloroethene ND ug/l	1,1,1-Trichloroethane	ND		ug/l	2.5		1
ND ug/l 0.50 - 1 Bromoform ND ug/l 2.0 1 1.1,2,2-Tetrachloroethane ND ug/l 0.50 1 Benzene ND ug/l 0.50 1 Toluene ND ug/l 0.50 1 Ethylbenzene ND ug/l 2.5 1 Chloromethane ND ug/l 2.5 1 Bromoferma ND ug/l 2.5 1 Chloromethane ND ug/l 2.5 1 Bromoferthane ND ug/l 2.5 1 Chloromethane ND ug/l 1.0 1 Vinyl chloride ND ug/l 1.0 1 Chloroethane ND ug/l 0.50 1 1.1-Dichloroethene ND ug/l 0.50	Bromodichloromethane	ND		ug/l	0.50		1
Bromoform ND ug/l 2.0 1 1,1,2,2-Tetrachloroethane ND ug/l 0.50 1 Berzene ND ug/l 0.50 1 Toluene ND ug/l 0.50 1 Toluene ND ug/l 2.5 1 Ethylbenzene ND ug/l 2.5 1 Chloromethane ND ug/l 2.5 1 Bromoethane ND ug/l 2.5 1 Chloromethane ND ug/l 2.5 1 Vinyl chloride ND ug/l 1.0 1 Chloroethane ND ug/l 0.50 1 1,1-Dichloroethene ND ug/l 0.50 1 1,1-Dichloroethene ND ug/l 0.50 1	trans-1,3-Dichloropropene	ND		ug/l	0.50		1
ND ug/l 0.50 1 Berzene ND ug/l 0.50 - 1 Toluene ND ug/l 2.5 1 Toluene ND ug/l 2.5 1 Ethylbenzene ND ug/l 2.5 1 Chloromethane ND ug/l 2.5 1 Bromomethane ND ug/l 2.5 1 Vinyl chloride ND ug/l 2.5 1 Vinyl chloride ND ug/l 1.0 1 Chloroethane ND ug/l 0.50 1 1.1-Dichloroethene ND ug/l 0.50 1 trans-1,2-Dichloroethene ND ug/l 0.50 1 Trichloroethene ND ug/l 0.50 1	cis-1,3-Dichloropropene	ND		ug/l	0.50		1
Benzene ND ug/l 0.50 1 Toluene ND ug/l 2.5 1 Toluene ND ug/l 2.5 1 Ethylbenzene ND ug/l 2.5 1 Chloromethane ND ug/l 2.5 1 Bromomethane ND ug/l 2.5 1 Winyl chloride ND ug/l 2.5 1 Vinyl chloride ND ug/l 1.0 1 Chloroethane ND ug/l 0.50 1 1.1-Dichloroethene ND ug/l 0.50 1 trans-1,2-Dichloroethene ND ug/l 2.5 1 Trichloroethene ND ug/l 0.50 1	Bromoform	ND		ugA	2.0		1
Toluene ND ug/l 2.5 1 Ethylbenzene ND ug/l 2.5 1 Chloromethane ND ug/l 2.5 1 Chloromethane ND ug/l 2.5 1 Bromomethane ND ug/l 2.5 1 Bromomethane ND ug/l 2.5 1 Vinyl chloride ND ug/l 1.0 1 Chloroethane ND ug/l 2.5 1 1.1-Dichloroethene ND ug/l 0.50 1 trans-1,2-Dichloroethene ND ug/l 2.5 1 Trichloroethene ND ug/l 0.50 1	1,1,2,2-Tetrachloroethane	ND		ug/l	0.50		1
Ethylbenzene ND ug/l 2.5 - 1 Chloromethane ND ug/l 2.5 - 1 Bromomethane ND ug/l 2.5 - 1 Bromomethane ND ug/l 2.5 - 1 Vinyl chloride ND ug/l 1.0 - 1 Chloroethane ND ug/l 2.5 - 1 Chloroethane ND ug/l 2.5 - 1 1,1-Dichloroethene ND ug/l 0.50 - 1 trans-1,2-Dichloroethene ND ug/l 2.5 - 1 Trichloroethene ND ug/l 0.50 - 1	Benzene	ND		ug/I	0.50		1
ND ug/l 2.5 1 Bromomethane ND ug/l 2.5 1 Vinyl chloride ND ug/l 1.0 1 Chloroethane ND ug/l 2.5 1 Chloroethane ND ug/l 2.5 1 Chloroethane ND ug/l 2.5 1 1,1-Dichloroethene ND ug/l 0.50 1 trans-1,2-Dichloroethene ND ug/l 2.5 1 Trichloroethene ND ug/l 0.50 1	Toluene	ND		ug/l	2.5		1
ND ug/l 2.5 1 Bromomethane ND ug/l 2.5 1 Vinyl chloride ND ug/l 1.0 1 Chloroethane ND ug/l 2.5 1 Chloroethane ND ug/l 2.5 1 1,1-Dichloroethene ND ug/l 0.50 1 trans-1,2-Dichloroethene ND ug/l 2.5 1 Trichloroethene ND ug/l 0.50 1	Ethylbenzene	ND		ug/l	2.5		1
Bromomethane ND ug/l 2.5 1 Vinyl chloride ND ug/l 1.0 1 Chloroethane ND ug/l 2.5 1 1,1-Dichloroethene ND ug/l 0.50 1 trans-1,2-Dichloroethene ND ug/l 2.5 1 Trichloroethene ND ug/l 0.50 1	Chioromethane	ND		ug/l	2.5		1
Chloroethane ND ug/l 2.5 - 1 1,1-Dichloroethene ND ug/l 0.50 1 trans-1,2-Dichloroethene ND ug/l 2.5 1 Trichloroethene ND ug/l 0.50 1	Bromomethane	ND			2.5		1
ND ug/l 0.50 1 trans-1,2-Dichloroethene ND ug/l 2.5 1 Trichloroethene ND ug/l 0.50 1	Vinyl chloride	ND		ug/i	1.0		1
trans-1,2-Dichloroethene ND ug/ 2.5 1 Trichloroethene . ND ug/ 0.50 1	Chloroethane	ND		ug/l	2.5	-	1
ND ug/l 2.5 1 Trichloroethene ND ug/l 0.50 1	1,1-Dichloroethene	ND		ug/l	0.50		1
	trans-1,2-Dichloroethene	ND			2.5		1
p/m-Xylene ND ug/i 2.5 1	Trichtoroethene	• ND		ug/l	0.50		1
	p/m-Xylene	ND	, a managa managana ng managa ng managana ng managana ng managana ng managana ng managana ng managana ng managa	ug/l	2.5	-	1

						oonal_n	0:05091819:40	
Project Name:	PALMER ST. LF ROU	TINE LIST			Lab N	umber:	L1815445	
Project Number:	Not Specified				Repor	t Date:	05/09/18	
-	·	SAMP	LE RESULT	S	-			
Lab ID:	L1815445-10				Date Co	llected:	05/01/18 11:10	
Client ID:	SITE 10 EQUIPMEN	T BLANK_05	5012018		Date Re	eceived:	05/01/18	
Sample Location:	GOWANDA, NY	_			Field Pr	ep:	Field Filtered (Disso Metals)	lved
Sample Depth:						•		
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor	
			11. I I I I I I I I I I I I I I I I I I					
	y GC/MS - Westborough			uali	2.5	_	 1	
Volatile Organics b o-Xylene cis-1,2-Dichloroethene	y GC/MS - Westborougt	ND ND	······································	ug/i ug/i	2.5 2.5		· · · · · · · · · · · · · · · · · · ·	
o-Xylene	y GC/MS - Westboroug	ND ND ND	•••••	ug/l	2.5 2.5		. 1 . 1 . 1 . 1	
o-Xylene cis-1,2-Dichloroethene	y GC/MS - Westboroug	ND ND	······································	•	2.5		1 . 1 . 1 . 1 . 1 . 1	
o-Xylene cis-1,2-Dichloroethene Styrene	y GC/MS - Westborougt	ND ND ND ND	·····	ug/l ug/l	2.5 2.5		1 1 1 1 1 1	
o-Xylene cis-1,2-Dichloroethene Styrene Acetone	y GC/MS - Westborougt	ND ND ND ND	······································	ug/i ug/i ug/i	2.5 2.5 5.0		1 1 1 1 1 1 1 1	
o-Xylene cis-1,2-Dichloroethene Styrene Acetone Carbon disulfide	y GC/MS - Westborougt	ND ND ND ND ND	······································	ug/l ug/l ug/l ug/l	2.5 2.5 5.0 5.0			
o-Xylene cis-1,2-Dichloroethene Styrene Acetone Carbon disulfide 2-Butanone	y GC/MS - Westboroug	ND ND ND ND ND	······································	ug/i ug/i ug/i ug/i	2.5 2.5 5.0 5.0 5.0		1 1 1 1 1 1 1 1 1 1 1 1 1 1	

Surrogate	% Recovery	Acceptance Qualifier Criteria
1,2-Dichloroethane-d4	94	70-130
Toluene-d8	. 99	70-130
4-Bromofluorobenzene	101	70-130
Dibromofluoromethane	94	70-130

METALS

.

Page 28 of 45

Serial_No:05091819:40

Project Name:	PALMER ST. LF ROUTINE LIST	Lab Number:	L1815445
Project Number:	Not Specified	Report Date:	05/09/18
	SAMPLE RESULTS		
Lab ID:	L1815445-01	Date Collected:	04/30/18 09:25
Client ID:	SITE 1 MW-6D_04302018	Date Received:	05/01/18
Sample Location:	GOWANDA, NY	Field Prep:	Field Filtered (Dissolved Metals)
Sample Depth:			
Matrix:	Water		

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Dissolved Metals -	Mansfield	Lab	· ·	•					· · ·		· · ·
Arsenic, Dissolved	0.00061)	mg/l	0.00050		. 1	05/03/18 11:00	05/04/18 15:58	EPA 3005A	1,6020A	AM
Chromium, Dissolved	ND .		mg/l	0.00100		1	05/03/18 11:00	05/04/18 15:58	EPA 3005A	1,6020A	AM
Lead, Dissolved	ND		mg/l	0.00100		. 1	05/03/18 11:00	05/04/18 15:58	EPA 3005A	1,6020A	AM

Serial_No:05091819:40

Project Name:	PALMER ST. LF ROUTINE LIST	Lab Number:	L1815445
Project Number:	Not Specified	Report Date:	05/09/18
	SAMPLE RESULTS		
Lab ID:	L1815445-02	Date Collected:	04/30/18 09:50
Client ID:	SITE 2 BLIND DUP_04302018	Date Received:	05/01/18
Sample Location:	GOWANDA, NY	Field Prep:	Field Filtered (Dissolved Metals)
Sample Depth:			

Matrix:

Water

Parameter	Result	Qualifier	Units	RL [·]	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Dissolved Metals -	Mansfield	Lab		•	. ' . ·		د • •• • ـ ـ •	•		• • •	
Arsenic, Dissolved	0.00050		mg/l	0.00050		1	05/03/18 11:00	05/04/1816:4	7 EPA 3005A	1,6020A	AM
Chromium, Dissolved	ND		_mg/l	0.00100		1	05/03/18 11:00	005/04/18 16:4	7 EPA 3005A	1,6020A	AM
Lead, Dissolved	ND		mg/l	0.00100		1	05/03/18 11:00	05/04/18 16:4	7 EPA 3005A	1,6020A	AM

Serial_N0:05091819:40

Project Name:	PALMER ST. LF ROUTINE LIST	Lab Number:	L1815445
Project Number:	Not Specified	Report Date:	05/09/18
	SAMPLE RESULTS		
Lab ID:	L1815445-03	Date Collected:	04/30/18 10:00
Client ID:	SITE 3 MW-6_04302018	Date Received:	05/01/18
Sample Location:	GOWANDA, NY	Field Prep:	Field Filtered (Dissolved Metals)
Sample Depth:			

Matrix:

Water

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Dissolved Metals -	Mansfield	Lab	· · · ·	* . •	4	· , ·	1		•	· , , , , , , , , , , , , , , , , , , ,	
Arsenic, Dissolved	0.03588		mg/l	0.00050		<u>1</u>	05/03/18 11:00	05/04/18 16:5	1 EPA 3005A	1,6020A	AM
Chromium, Dissolved	0.00494	2	mg/l	0.00100	`	1	05/03/18 11:00	05/04/18 16:5	EPA 3005A	1,6020A	AM
Lead, Dissolved	ND	- · · ·	mg/l	0.00100		1	05/03/18 11:00	05/04/18 16:5	EPA 3005A	1,6020A	AM

ł

		Sen	al_N0:05091819:40
Project Name:	PALMER ST. LF ROUTINE LIST	Lab Number:	L1815445
Project Number:	Not Specified	Report Date:	05/09/18
	SAMPLE RESUL	TS	
Lab ID:	L1815445-04	Date Collected:	04/30/18 10:35
Client ID:	SITE 4 MW-4SR_04302018	Date Received:	05/01/18
Sample Location:	GOWANDA, NY	Field Prep:	Field Filtered (Dissolved Metals)
Sample Depth:			
Matrix:	Water		

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Dissolved Metals -	Mansfield	Lab		•						1	
Arsenic, Dissolved	ND		mg/l	0.00050		. 1.	05/03/18 11:0	0 05/04/18 16:5	5 EPA 3005A	1,6020A	AM
Chromium, Dissolved	0.00525		mg/l	0.00100		1	05/03/18 11:0	0 05/04/18 16:5	5 EPA 3005A	1,6020A	AM
Lead, Dissolved	ND		mg/l	0.00100		1	05/03/18 11:0	0 05/04/18 16:5	5 EPA 3005A	1,6020A	AM

Senal_No:05091819:40

• • •

AM

AM

AM

1,6020A

1,6020A

1,6020A

Project Name:	PALN	AER ST. LF		IE LIST			Lab Nu	ımber:	L1815	445	
, Project Number:	Not S	pecified					Report	Date:	05/09/	/18	
				SAMP	LE RES	ULTS					
Lab ID:	L1815	5445-05				•	Date C	ollected:	04/30/1	8 11:05	
Client ID:	SITE	5 MW-4D_0	04302018	8			Date R	eceived:	05/01/1	8	,
Sample Location:	GOW	ANDA, NY					Field P	rep:	Field F Metals	iltered (Diss	olved
Sample Depth:											
Matrix:	Water	ſ.									
Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst

ND

ND

ND

Dissolved Metals - Mansfield Lab

mg/l

mg/l

mg/l

0.00050

0.00100

0.00100

1

1

1

•

05/03/18 11:00 05/04/18 16:59 EPA 3005A

05/03/18 11:00 05/04/18 16:59 EPA 3005A

05/03/18 11:00 05/04/18 16:59 EPA 3005A

24

Parameter

Arsenic, Dissolved

Lead, Dissolved

Chromium, Dissolved

Serial_No:05091819:40

Project Name:	PALMER ST. LF ROUTINE LIST	Lab Number:	L1815445
Project Number:	Not Specified	Report Date:	05/09/18
	SAMPLE RESULTS		
Lab ID:	L1815445-06	Date Collected:	04/30/18 11:45
Client ID:	SITE 6 MW-3D_04302018	Date Received:	05/01/18
Sample Location:	GOWANDA, NY	Field Prep:	Field Filtered (Dissolved Metals)
Sample Depth:			

Matrix:

Water

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Dissolved Metals	Mansfield	Lab		·	÷ 1 – 1				• • • •	•	
Arsenic, Dissolved	0.00139)	mg/l	0.00050		, ,1 , ,	05/03/18 11:00	05/04/18 17:03	EPA 3005A	1,6020A	AM
Chromium, Dissolved	ND		mg/l	0.00100		1	05/03/18 11:00	05/04/18 17:03	EPA 3005A	1,6020A	AM
Lead, Dissolved	ND		mg/l	0.00100		1	05/03/18 11:00	05/04/18 17:03	EPA 3005A	1,6020A	AM

Senal_No:05091819:40

Project Name:	PALMER ST. LF ROUTINE LIST	Lab Number:	L1815445		
Project Number:	Not Specified	Report Date:	05/09/18		
	SAMPLE RESULTS				
Lab ID:	L1815445-07	Date Collected:	04/30/18 12:20		
Client ID:	SITE 7 BS-3_04302018	Date Received:	05/01/18		
Sample Location:	GOWANDA, NY	Field Prep:	Field Filtered (Dissolved Metals)		
Sample Depth:					

Matrix:

Water

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Dissolved Metals -	Mansfield	Lab							i e a	• •	
Arsenic, Dissolved	0.00458)	mg/l	0.00050		1	05/03/18 11:0	0 05/04/18 17:0	7 EPA 3005A	1,6020A	AM
Chromium, Dissolved	0.00275		mg/l	0.00100	. 	1	05/03/18 11:0	0 05/04/18 17:0	7 EPA 3005A	1,6020A	AM
Lead, Dissolved	ND		mg/l	0.00100		. 1	05/03/18 11:0	0 05/04/18 17:0	7 EPA 3005A	1,6020A	AM

Serial_No:05091819:40

AM

Project Name: PALMER ST. LF ROUTINE LIST							Lab Nu	mber:	L1815445			
Project Number:	Not S	pecified					Report	Date:	05/09/18			
-	·			SAMPL	E RES	ULTS						
Lab ID:	L1815	445-08					Date Co	llected:	05/01/18	10:35		
Client ID:	SITE 8	8 MW-8D_0	0501201	8			Date Re	ceived:	05/01/18			
Sample Location:	GOW	ANDA, NY				-	Field Pr	ep:	Field Filtered (Dissolved Metals)			
Sample Depth:			•						·			
Matrix:	Water						•					
Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analysi	
Dissolved Metals - N	Aansfield	Lab								د مورد فران موا ^{ر مرد} فران		
Arsenic, Dissolved	ND		mg/l	0.00050		1		05/04/18 17:11		1,6020A	AM	
Chromium, Dissolved	ND		mg/l	0.00100				05/04/18 17:11	554 00054	1,6020A	AM	

Lead, Dissolved ND mg/l 0.00100 -- 1 05/03/18 11:00 05/04/18 17:11 EPA 3005A 1,6020A

Serial_N0:05091819:40

Project Name:	PALMER ST. LF ROUTINE LIST	Lab Number:	L1815445
Project Number:	Not Specified	Report Date:	05/09/18
	SAMPLE RESULTS		
Lab ID:	L1815445-09	Date Collected:	05/01/18 10:00
Client ID:	SITE 9 MW-7D_05012018	Date Received:	05/01/18
Sample Location:	GOWANDA, NY	Field Prep:	Field Filtered (Dissolved Metals)
Sample Depth:			

Matrix:

Water

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Dissolved Metals -	Mansfield	Lab			21 - 2 2 - 2 23						
Arsenic, Dissolved	ND		mg/l	0.00050		1	05/03/18 11:0	0 05/04/18 17:15	EPA 3005A	1,6020A	AM
Chromium, Dissolved	ND		mg/l	0.00100		11	05/03/18 11:0	0 05/04/18 17:15	EPA 3005A	1,6020A	AM
Lead, Dissolved	ND		mg/l	0.00100		1	05/03/18 11:0	0 05/04/18 17:15	EPA 3005A	1,6020A	AM

-

Serial_N0:05091819:40

Analyst

. .

1,6020A

1,6020A

1,6020A

::

AM

AM

AM

Project Name:	PALN	PALMER ST. LF ROUTINE LIST						ımber:	L1815445				
Project Number:	Not S	pecified					Report	Date:	05/09/18				
		•		SAMP	LE RES	ULTS					٥		
Lab ID:	L1815	5445-10					Date C	ollected:	05/01/18 11:10				
Client ID:	SITE	10 EQUIPN	MENT BL	ANK_0	5012018	3	Date R	eceived:	05/01/18				
Sample Location:	GOW	GOWANDA, NY						rep:	Field Filtered (Dissolved Metals)				
Sample Depth:													
Matrix:	Water												
Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst		

MDL

4

Qualifier

Result

ND

ND

ND

Dissolved Metals - Mansfield Lab

Units

mg/l

mg/l

mg/l

Ņ.

RL

è

0.00050

0.00100

0.00100

1

1

1

05/03/18 11:00 05/04/18 17:19 EPA 3005A

05/03/18 11:00 05/04/18 17:19 EPA 3005A

05/03/18 11:00 05/04/18 17:19 EPA 3005A

Parameter

Arsenic, Dissolved

Lead, Dissolved

Chromium, Dissolved