THE INFORMATION PROVIDED IN THIS DOCUMENT HAS BEEN FUNDER RAC II CONTRACT NUMBER 68-W-98-214 TO TETRA TECH EC, INC. (TEC). THIS DOCUMENT HAS BEEN FORMALLY RELEASED BY THE TO THE EPA. THIS DOCUMENT DOES NOT, THE INFORMATION PROVIDED IN THIS DOCUMENT HAS BEEN FUNDED BY THE THE INFORMATION PROVIDED IN THIS DOCUMENT DOES NOT, HAS BEEN FORMALLY RELEASED BY THE THE PART DOCUMENT DOES NOT, HAS BEEN FORMALLY RELEASED BY THE THE PART DOCUMENT DOES NOT, HAS BEEN FORMALLY RELEASED BY THE THIS DOCUMENT DOES NOT, HAS BEEN FORMALLY RELEASED BY THE THIS DOCUMENT DOES NOT, HAS BEEN FORMALLY RELEASED BY THE PART DOCUMENT DOES NOT, HAS BEEN FORMALLY RELEASED BY THE THIS DOCUMENT DOES NOT, HAS BEEN FORMALLY RELEASED BY THE PART DOCUMENT DOES NOT, HAS BEEN FORMALLY RELEASED BY THE PART DOCUMENT DOES NOT, HAS BEEN FORMALLY RELEASED BY THE PART DOCUMENT DOCUM

HOMEVER, REPRESENT EPA POSITION OR POLICY, AND HAS NOT BEEN FORMALLY

KELEASED BY THE EPA.

NOLICE

10NE 2007

CATTARAUGUS COUNTY, NEW YORK

POR THE

POR THE

POR THE

PITTE VALLEY SUPERFUND SITE

POR THE

PITTE VALLEY SUPERFUND SITE

POR THE

PINAL

PINAL

EPA WORK ASSIGNMENT NUMBER 159-RARA-02GP TETRA TECH EC, INC. RAC II PROGRAM

EPA WORK ASSIGNMENT NUMBER 159-RARA-02GP RAC II PROGRAM TETRA TECH EC, INC. TETRA TECH EC, INC.

CATTARAUGUS COUNTY, NEW YORK LITTLE VALLEY SUPERFUND SITE FOR THE DATA EVALUATION REPORT #1 FINAL

10NE 5007

William R. Colvin, PMP, P.G., CHMM RAC II Program Manager Tetra Tech EC, Inc.
Approved by:
Richard J. Feeney, PE Project Manager Tetra Tech EC, Inc.
Reviewed by:

DATA EVALUATION REPORT

LABLE OF CONTENTS

ES.	EKENC	KEŁ	0.9
μ-ζ	rgor4	7.5	
Statistical Trend Analysis			
<u>Reductive Dechlorination</u> 5-1			
1-2shinant Trends.		1.2	
NANT TRENDS AND PROGRESS OF MIA5-1	IIMAT	CON	5.0
VET MEIT SYMBING	DEAL	KEZ	0 't
Monitored Natural Attenuation/Water Quality Parameters3-5	3.5.2		
Volatile Organic Compounds			
ndwater Results3-4	Gron	$\varepsilon.\varepsilon$	
lity of Sampling Event Data	ids2U	3.2	
1-E3-1	susiV	1.8	
EAENT RESULTS3-1		WAS	3.0
1nvestigation-Derived Wastes	2.2.3		
Groundwater Sampling 2-2	2.2.2		
Mobilization and Demobilization and Demobilization	1.2.2		
2-2	Octol	7.2	
duction2-1		1.2	
OF SAMPLING EVENT	MARY	WNS	0.2
Site Physical Characteristics	£.2.1		
	1.2.2		
I-1 Site Description	1.2.1		
gckgroundl-1		2.1	
1-1 1-1	oəjdO	I.I	
I-INOIL		ILNI	0.1
VBBBKEAIVLIONS	any si	WANO	VCE

FIZL OF APPENDICES

Summary of Detected Groundwater Constituents in MNA Wells from Great Triangle Area,	7-8
Area	
Summary of Detected Groundwater Constituents in MNA Wells from Cattaraugus Cutlery	£-£
Summary of Detected Groundwater Constituents in MNA Wells from Bush Industries Area	3-2
Comparison Criteria for Detected Constituents in Groundwater	1-8
Well Purge Parameters - October 2006 Sampling Event	1-2
LIST OF TABLES	
Statistical Trend Analysis Sheets	D
Well Purge Data Sheets	С
Analytical Data Results	В
Residential Well Results	Y

FIZL OF FIGURES

Summary of Statistical Calculations for Residential Wells with Treatment Systems

Summary of Trend Analysis Test Results

Whig Street Area, and Luminite Area

I-S

I-4

Residential Well Statistical Calculations Graph	1-4
Generalized Groundwater Elevation and Flow Direction - October 14-16, 2003	⊅ -I
Cattaraugus Cutlery Area (BIA), TCE Sampling Results, 2006	1-3
Bush Industries Area (BIA), TCE Sampling Results, 2006	7-1
TCE Sampling Results from Residential Wells, Piezometers and Monitoring Wells, 2006	[-[

VCKONAWS VND VBBKEAIVLIONS

Cattaraugus County Health Department **CCHD** sgq below ground surface

Contract Laboratory Program $C\Gamma b$

Dichloroethene DCE

Data Evaluation Report DEK

Division of Environmental Science and Assessment DEZY

Deionized DI

Dissolved Oxygen DO

United States Environmental Protection Agency EbV

Explanation of Significant Differences **EZD**

Focused Feasibility Study **EES**

Feasibility Study EZ

Maximum Contaminant Level **WCL** Investigation-Derived Waste IDM

J/gmmilligram per liter

Monitored Natural Attenuation **ANM**

mean sea level Ism

Movillim Λ W

National Priorities List NbL

New York State Department of Environmental Conservation **NASDEC**

New York State Department of Health **NASDOH**

New York State Department of Transportation **NYSDOT**

Oxidation-Reduction Potential OKb

Operable Unit

ΠO

Quality Assurance AQ

Quality Control ОC

Remedial Action ЯΑ

Routine Analytical Service **RAS**

Remedial Investigation ВI Remedial Design KD

Record of Decision **KOD**

Standard Deviation **SD** Relative Standard Deviation **K2D** Relative Percent Difference **KPD**

Standard Operating Procedure **dOS**

Sample Quantitation Limit SQL Scope of Work MOS

Trichloroethene LCE

Total Dissolved Solids **LD2**

VCKONAMS VND VBBKEAIVLIONS (conf.q)

Water Quality	ΜÓ
Volatile Organic Compound	Λ OC
microgram per liter	J\gu
Tetra Tech EC, Inc.	L fEC
Total Organic Carbon	LOC

1.0 INTRODUCTION

This Data Evaluation Report #1 (DER #1) presents the data acquired during the first yearly sampling event (October 2006) under the Remedial Action (RA) at the Little Valley Superfund Site (the Site), Operable Unit 2 (OU-2). DER #1 includes: a description of the evaluation of the usability of the data; a discussion of trends apparent in the data; and an overview of the progress of the Monitored Matural Attenuation (MMA) remedy for addressing the groundwater contamination problem. This report has been prepared by Tetra Tech EC, Inc. (TtEC) in response to Work Assignment 159-RARA-02GP, issued under United States Environmental Protection Agency (EPA) RAC II Contract Number 68-W-98-214. Results presented in this DER #1 were obtained and evaluated pursuant to the EPA-approved Final Work Plan (TtEC, 2006b) and Quality Assurance Project Plan Addendum (TtEC, 2006a), and current EPA guidance.

1.1 Objectives of Remedial Action

The objectives of the Remedial Action project are to:

- Perform two annual MNA sampling events;
- Conduct annual visual inspections of the Bush Industries and former Cattaraugus Cutlery properties to observe whether any new wells (without treatment systems) have been installed; and
- Evaluate historic and new analytical data to monitor natural attenuation at the Site.

1.2 Site Background

1.2.1 Site Description

The Site is located in the Towns of Little Valley and Salamanca in Cattaraugus County, New York. Since 1982, chemical analyses of groundwater samples collected from monitoring and private wells throughout the Little Valley study area have indicated the presence of trichloroethene (TCE). The boundaries of the Site have been defined by EPA, the New York State Department of Environmental Conservation (NYSDEC), and the Cattaraugus County Health Department (CCHD), and are based on the locations of the monitoring and residential wells that have been sampled (see Figures 1-1 through 1-3 for the results of the most recent round of sampling). The study area overlies a TCE plume, which extends approximately seven to eight miles from the Village of Little Valley to the northern edge of the City of Salamanca, which is part of the Allegheny Indian Reservation. The Site area is located in a rural, agricultural area with a number of active and inactive small industries located within one mile of the Site. There are over 200 residential properties situated in the study area along Route 353, the main transportation route between Little Valley and Salamanca.

1.2.2 Site History Overview

The following presents an overview of the history and previous investigations performed in the vicinity of the Site. A more detailed chronology is presented in the Remedial Investigation Report for OU-2 (TtFW, 2005a).

In 1982, CCHD and NYSDEC detected TCE in nearby private wells, while investigating contamination at the Luminite Products Corporation (Luminite), a small manufacturing facility along Route 353.

In 1989, the plant production well, process wastewater, and septic tank on the Luminite property, as well as nearby New York State Department of Transportation (NYSDOT) monitoring wells, were sampled by NYSDEC. The analytical results indicated groundwater contamination was present both upgradient and downgradient of the Luminite facility (NYSDOH, 1996).

Between 1989 and 1996, CCHD, NYSDEC, and well owners collected groundwater samples from approximately 104 drinking water wells. Of the wells that were sampled, 42 had levels of TCE greater than or equal to the drinking water standard of 5 micrograms per liter (ug/L).

From 1992 through 1994, NYSDEC conducted various investigations to identify potential sources of the TCE contamination at the Site (NYSDEC, 1994a; 1994b).

On 2 October 1995, EPA proposed the Site as a candidate for the National Priorities List (NPL). The Site was listed on the NPL as the Little Valley Superfund Site in June 1996.

Operable Unit I 1996, EPA developed a Focused Feasibility Study (FFS) Report, which identified and evaluated In 1996, EPA developed a Focused Feasibility Study (FFS) Report, which identified and evaluated remedial alternatives to protect the private water supplies located in the vicinity of the Site (EPA, 1996). A Record of Decision (ROD) was signed in September 1996 for OU-1. The selected remedy called for the installation of water supply treatment units (air strippers) on the affected wells. In 1997, EPA completed the remedial design (RD), and later in August 1997, air stripper treatment units were installed on the affected private water supply wells, which completed the remedial action for OU-1.

Subsequently, granular activated carbon units were installed in addition to the air strippers to improve the overall contaminant removal efficiency. Since the air strippers were reaching the end of their useful life, the maintenance requirements associated with these units were likely to increase, and contaminant concentrations in the private wells had significantly decreased, EPA determined that granular activated carbon units alone would be able to effectively remove the contamination. This determination was documented in an April 2002 Explanation of Significant Differences (ESD). The noted modifications were made in 2002, and granular activated carbon treatment units were installed on 90 private wells at the Site.

In May 2002, EPA issued a Five-Year Review report, which concluded that the individual treatment units called for in the ROD, as modified by the ESD, were functioning as designed and have addressed the immediate threat to public health.

In 2002, NYSDEC became the lead agency responsible for OU-1.

To date, a total of 91 treatment units have been installed throughout the study area.

Appendix A contains a summary of the results of residential well sampling from 1989 through October 2006. Results of the most recent sampling event (October 2006) are shown on Figure 1-1.

Operable Unit 2. States of the residential well treatment units, EPA initiated a Remedial Investigation of the residential well treatment units, EPA initiated a Remedial Investigation (RI) and Feasibility Study (FS) of the Site as OU-2, and TtEC and predecessor companies investigated the sources of the TCE-contaminated groundwater beneath the Site. Ten potential sampling indicated groundwater impacts from TCE at several of the investigated. The RI sampling indicated groundwater impacts from TCE at several of the investigated areas, but no defermined. During the execution of the RI, an evaluation of MNA was performed to assess its viability as a remedy for the contaminated groundwater associated with the Site. The evaluation concluded that MNA is occurring at the Site and therefore was a viable remedy. The RI Report was completed in January 2005 (TtFW, 2005a). The FS Report was completed in April 2005 (TtFW, 2005b), and Appendix C of the FS Report contained a copy of the MNA Evaluation Report, which was based on groundwater sampling performed in November and December 2003.

A ROD for OU-2 was signed in August 2005, which (1) outlined excavation and off-site disposal of contaminated soils at one area, (2) designated MNA as the remedy for addressing the groundwater contamination, and (3) called for an evaluation of the potential for soil vapor intrusion into structures within the study area. A ROD Amendment was approved in September 2006, which changed the soil remedy to in-situ vapor extraction, which was subsequently completed. Based on the results of subslab and indoor air sampling, mitigation systems were installed in two homes in late September 2006.

Appendix B contains results from various rounds of groundwater sampling during the RI, as applicable to this RA.

I.2.3 Site Physical Characteristics

The following presents a summary of the characteristics of the area in the vicinity of the Site. More detailed descriptions of the geology and hydrogeology are presented in the Remedial Investigation Report for OU-2 (TtFW, 2005a).

Surface Features
The Site lies along a 7 to 8-mile segment of the Little Valley Creek and extends from the northwestern end of the Village of Little Valley to the northern boundary of the City of Salamanca. The Site ranges in width from 1,000 to 2,500 feet and in elevation from nearly 1,600 feet above mean sea level (msl) in the Village of Little Valley to less than 1,400 feet msl near the Salamanca city line. The Site is bordered by steeply sloping wooded hillsides, which attain slopes of up to 25 percent and elevations of 2,200 feet above msl.

Geology Little Valley is a U-shaped glacial valley (in cross-section) filled with glacially-derived outwash deposits (i.e., glaciofluvial sediments), which are frequently overlain by more recent alluvial deposits (Cadwell et al., 1988). The recent alluvial deposits are described as glacially-derived, reworked sediments and are representative of the stream bed and floodplain deposits of Little Valley Creek (Zariello, 1987). The unconsolidated deposits of Little Valley are predominantly sand and gravel, with isolated lenses of silt and clay.

Borings advanced throughout the Site area indicated that glacial outwash with high gravel content is the predominant subsurface stratigraphic unit encountered to the depths drilled. This stratigraphic unit typically consists of gravel with sand or sand with gravel and varying amounts of fines. The unit is laterally extensive throughout the length of the valley and thins toward the valley walls. It is frequently encountered below alluvial silts and fine sands associated with more recent streambed deposits.

Depths to gravel generally range from 0 to 30 feet below ground surface (bgs), and gravel is found closer to the surface at locations topographically near creek level. In the Great Triangle Area, the top of the gravel was encountered at greater than 30 feet bgs at a point midway between Little Valley Creek and its tributary to the west, Dublin Creek. Alluvial silts have accumulated in greater thicknesses in this area due to sediment loads of the two creeks (or two outwash fans) being deposited in the area where the valley widens and water velocities decrease. This may also happen where the Whig Street Creek joins Little Valley Creek; however, due to the limited number of borings in the area, accumulation of alluvial sediment was not apparent.

In some areas of the valley, the sand and gravel unit is overlain by glaciolacustrine silty clay or clay lenses. These thin lenses are not laterally or vertically extensive and may represent areas where small historic lakes formed due to damming behind morainal till deposits.

Along the northeast-southwest spine of the Great Triangle Area (Route 242), glacial till deposits consisting of dense clayey silt with some gravel and sand are present. These till deposits may alternate with outwash deposits to considerable depths (i.e., 30 feet or more in borings PZ-18, PZ-19, PZ-29, PZ-31, and PZ-41).

The local bedrock geology consists of flat to slightly southward dipping Devonian Age gray to black siltstones and shales (Rickard et al., 1970), which are mapped as part of the Chadoikin Formation. Bedding and perpendicular fractures provide secondary porosity, which transmits groundwater that provides domestic water supply at the edge of and above the valley plain.

Hydrogeology
The overall groundwater flow direction in the gravel and sand aquifer is from north to south, following the slope of the valley topography. In the central portion of the valley, the gravel and sand unit is the thickest and the most permeable. This depresses the water table elevation in the central portion of the valley, compared to the edges of the valley. Along the eastern and western boundaries of the valley, groundwater flow is toward the center of the valley. A generalized picture of the overall site area groundwater flow is shown on Figure 1-4.

During the period of the RI, the water table in the valley ranged from near ground surface to approximately 50 feet bgs. In general, the water table is deepest in the upper (northern) portion of the valley and gets progressively closer to the ground surface proceeding down the valley toward the Allegheny River. From 1997 through 2003, the water table was observed to be below the base of Little Valley Creek in the northern part of the valley and intersecting Little Valley Creek in the southern part of the valley. Therefore, Little Valley Creek is likely a losing stream in the northern part of the valley and a gaining stream in the southern part of the valley and a gaining stream is considered to be dynamic and is likely affected by seasonal and and gaining reaches of the stream is considered to be dynamic and is likely affected by seasonal and annual precipitation amounts.

The vertical hydraulic gradient throughout the thickness of the central portion of the valley aquifer, as measured in shallow and deep piezometers, is not highly significant. Therefore, the flow in the central portion of the valley aquifer is basically horizontal. This would be expected due to the geometry of the aquifer and high permeability of the sands and gravels. More significant vertical hydraulic gradients would be expected at the outer edges of the valley, between the bedrock and overburden sands and gravel, and in the upstream (upgradient) reaches of the valley. In the center of the valley, the gradients between the bedrock and the overburden would be expected to be upward as well. A downward component of gradient would be expected as groundwater moves through the sands and gravel from the edges of the valley to the central portion of the valley. Data collected in December 2003 as part of the RI confirm a downward hydraulic gradient in the upstream reaches of the valley.

S-I

5.0 SUMMARY OF SAMPLING EVENT

2.1 Introduction

A MNA remediation program is being performed at the Site in accordance with EPA's "Technical Protocol for Evaluating Natural Attenuation of Chlorinated Solvents in Ground Water" (Technical Protocol; EPA, 1998). The field activities to be conducted under this MNA program during each of the two yearly sampling events (October 2006 and October 2007) include the following:

- Mobilization and demobilization;
- Groundwater sampling of selected monitoring wells and piezometers; and
- Investigation-derived waste (IDW) disposal.

Twenty-four (24) of the existing monitoring wells and piezometers present at the Site were selected and approved by EPA, to be sampled during the MNA program based on a site visit conducted in 2005 and considering site-specific information included in the RI Report, the MNA Evaluation Report (Appendix C of the EPA-approved April 2005 FS Report) and EPA's Technical Protocol. An additional 11 monitoring wells and/or piezometers are designated as alternates in hierarchical order for substitution purposes as needed. The primary and alternate wells/piezometers are as follows:

	PZ-55D	MWCCA -7
DZ-62D	97-Zd	MWCCA -6
6-ЛП	DS-45D	WMCCY - 2
ΓΛ-8	6E-Zd	MWCCA -3
PZ-28D	DZ-PD	WMCCY-7
<i>L</i> Z-Zd	S-Zq	MWCCA-1
GL⊅-Zd	PZ-20D	BIYWM-D5
87-Zd	MWCCA-12	BIYWM-DI
7E-32	MWCCA-11D	BIAMW-8
PZ-25	MWCCA-10	BIAMW-6
PZ-38	WMCCY -9D	BIAMW-3
BIAMW-5	MWCCA -8	BIYWW-7
Alternates	syptezometers	Primary Well

Sample analyses are being performed through the EPA's Contract Laboratory Program (CLP), EPA's Division of Environmental Science and Assessment (DESA) Laboratory in Edison, New Jersey, and/or an independent subcontract laboratory. For each of the two MNA events, the off-site laboratory data will undergo validation in accordance with:

The most current versions of the EPA Region 2 Data Validation Standard Operating Procedure (SOP) (www.epa.gov/superfund/ programs/clp/guidance.htm);

- Applicable sections of the most current versions of the EPA National Functional Guidelines for Organic and Inorganic Data Validation (www.epa.gov/superfund/programs/clp/. Gridance.htm);
- Method-specific QC information (such as holding times, calibration records, laboratory and field blanks, duplicate precision, and surrogate and matrix spike recovery) as outlined in the applicable methodology and the Laboratory Subcontract Scope of Work (SOW); and
- The best professional judgment of the validator.

Mobilization and Demobilization

October 2006 Sampling

1.2.2

7.2

TtEC began mobilizing the necessary personnel, equipment and materials for the first annual sampling event on 20 October 2006 (Friday). Site mobilization was completed at the former Cattaraugus Cutlery facility on 23 October 2006 (Monday). Site mobilization activities included:

- Establishment of a temporary staging/storage and decontamination area at the former
- Cattaraugus Cutlery facility;
 Verification and inspection of rental and expendable equipment from office procurement;
- Purchase of additional expendable equipment and sampling supplies; and
- Conducting site-specific orientation/health and safety briefing for project team members.

Demobilization activities were performed on I November 2006, following completion of the sampling event. The temporary staging/storage and decontamination area was restored to pre-event conditions, and the area was secured. All rental equipment was sent back to the appropriate vendors, and the site files were returned to the Morris Plains office of TtEC.

2.2.2

Groundwater sampling was conducted from 23 October 2006 to I November 2006, in accordance with the EPA-approved Final Work Plan (TtEC, 2006b) and Quality Assurance Project Plan Addendum (TtEC, 2006a). Groundwater purging operations, and subsequent sample collection, were conducted using low-flow methodology and adjustable-rate stainless-steel submersible pumps equipped with dedicated Teflon-lined tubing and a flow-through cell. Field indicator parameter readings (i.e., pH, specific conductivity, turbidity, dissolved oxygen (DO), oxidation-reduction potential (ORP), temperature, and total dissolved solids (TDS)) were taken during purging operations (see Appendix C for the well/piezometer purge sheets). Once the indicator parameters were considered to be stabilized, groundwater samples were collected from the monitoring wells/piezometers directly from the Teflon-lined tubing into the sample bottles. Table 2-1 presents the stable field parameter measurements, directly prior to groundwater sampling.

During the event, the field team utilized the list of primary and alternate wells to determine the locations to be sampled. As a result of well BIAMW-8 at the Bush Industries Area being inaccessible due to damage to the outer casing, alternate well BIAMW-5 was added to the event, and therefore, the following locations were sampled during the October 2006 event:

DS-55D	MWCCA-7
97-Zd	WMCCY -6
DS-45D	WMCCY-2
6£-Zd	WMCCY-3
DS-6D	WMCCY-7
Ş-Zd	MWCCA-1
PZ-20D	BIYWM-D5
WMCCA-12	BIYWM-DI
MWCCA-11D	BIYMW-5
MWCCA-10	BIAMW-6
WMCCY -9D	BIYMW-3
MWCCA -8	BIVMW-5

The locations of these wells/piezometers are shown on Figures 1-1 through 1-3.

Samples from the monitoring wells/piezometers were shipped for analysis as follows:

- Trace Concentration volatile organic compound (VOC) samples were analyzed through the EPA CLP by Shealy Environmental Services, Inc.;
- Alkalinity, sulfate, sulfate, nitrate, chloride, and total organic carbon (TOC) were performed by the EPA Region 2 DESA Laboratory; and
- Methane, ethane, ethene, and ferrous iron analyses were performed by a subcontract laboratory, Life Science Laboratory, Inc. of East Syracuse, New York.

The data results obtained from these off-site laboratories underwent a systematic validation to provide assurance that the data would be adequate for its intended use. EPA Region 2 Hazardous Waste Support Section personnel, in conjunction with EPA DESA personnel, performed the validation of the samples sent to the CLP laboratory. DESA Laboratory personnel validated the water quality parameter results that were analyzed by the EPA Region 2 DESA Laboratory. The subcontractor laboratory data were validated by TtEC personnel. The validated results of the sampling event are provided in Appendix B, Tables B-6 and B-8 and discussed in Section 3.0.

Field quality control blanks were also collected during the sampling event. A sample of the deionized (DI) water used for generating the field and trip blanks was sent for verification analysis,

to confirm that any source of contamination in the blank samples was not from the DI water. Field blanks were collected to evaluate the potential for residual chemical contamination of the environmental samples from inadequate decontamination of the field equipment. The field blanks were collected by pumping DI water through the decontaminated well pumps, at a frequency of one per day. Trip blanks were collected to detect possible cross-contamination of volatile samples resulting from handling, storage, and shipment procedures. DI water and field blanks were analyzed for Trace Concentration VOCs. Trip blanks were analyzed for Trace Concentration VOCs and methane, ethane, and ethene. Trichloroethene was not found at or above the sample quantitation limit (SQL) in any of the blanks. Appendix B, Tables B-15 and B-16 contain the results of the blank sample analyses.

2.2.3 Investigation-Derived Wastes

Based on historic low-level groundwater concentrations at the Site, TtEC, through EPA, received NYSDEC approval on 8 March 2006 to discharge the monitoring well/piezometer purge water and the decontamination water to the nearby ground surface.

3.0 SAMPLING EVENT RESULTS

3.1 Visual Inspection

Visual inspections were performed by TtEC personnel at the Bush Industries and Cattaraugus Cutlery properties during the October 2006 sampling event. No new wells (without treatment systems) were noted to be installed, that did not exist when the OU-2 RI Report was prepared. In addition, TtEC inquired of the environmental consultant for Bush Industries if any wells had been installed on the property, and received a negative reply.

3.2 Usability of Sampling Event Data

The usability of the analytical data acquired during the October 2006 field investigation is based on the adequacy of the results to fulfill the requirements of the site-specific quality assurance/quality control (QA/QC) objectives. Characteristics to satisfy these requirements include precision, accuracy, representativeness, comparability, completeness, detection limit verification, and blank contamination elimination. This assessment determines whether the data can be relied upon for assessing the progress of the MNA program.

A total of 41 samples (24 environmental samples; 2 duplicate samples; and 15 field, trip and deionized water blanks) were analyzed, and these off-site laboratory samples contained 2,410 separate constituent results.

Precision is the measurement of agreement in repeated tests of the same or identical samples, under precision is the measurement of agreement in repeated tests of the same or identical samples, under prescribed conditions. Analytical precision can be expressed in terms of standard deviation (SD), relative standard deviation (RSD) and/or relative percent difference (RPD). Acceptance criteria for laboratory precision are described in the applicable analytical methodologies. The acceptance criterion for the field duplicates was an RPD less than or equal to 50 percent for aqueous samples.

Laboratory precision was determined through replicate measurements of the same or identical samples, such as matrix spike duplicates and laboratory duplicates. Over 98 percent of the laboratory analytical results (or 2,366 constituent results) were associated with precision samples that were within their prescribed limits. Only 0.1 percent (or 3 constituent results) had laboratory precision samples slightly outside limits, and were qualified as estimated after validation. A total of 41 constituent results (or 1.7 percent) were determined to be unusable due to severe data bias, and these results were for 1,4-dioxane (which is not a contaminant of concern for the Site).

The precision of the field sampling effort was determined by the analysis of two field duplicate samples and the calculation of RPDs. The RPD was not calculated for any set of sample pairs that [1] had only one detection in either sample but not in both; [2] was not detected in both the data sets, and/or [3] had a data result value deemed unusable ("rejected") during validation for at least one of

the samples. Agreement between the two data pairs can be inferred when both of the results are nondetects, and when the one detected result value is below the quantitation limit of the other sample set. Nineteen of the possible 20 constituent results for which RPDs were calculated (or 95 percent) had acceptable RPDs. The one set of constituent results (or 5 percent) had a calculated RPD of approximately 82 percent, and was for methane.

Accuracy of the data, or the degree of agreement between a measured result with the accepted true value, was determined through the use of surrogate compounds, internal standard compounds, and matrix spike samples. The majority of the laboratory analytical runs had percent recovery measurements within the prescribed method limits (i.e., 99.9 percent or 2,408 constituent results). Two separate constituents (or almost 0.1 percent) were estimated following validation based on exceeding the appropriate recovery limits. None of the concentration results were considered unusable due to gross recovery limit exceedances.

Representativeness is the degree to which the results of the analyses accurately and precisely representativeness is the degree to which the contaminants present and their concentration magnitudes in the degree to which the data reflect the contaminants present and their concentration magnitudes in the sampled site areas). Representativeness of the field investigation data occurred through the use of previously installed locations that were selected by EPA based on Site-specific information. In addition, representativeness is assessed through the implementation of approved sampling procedures as described in the EPA-approved Final Work Plan (TtEC, 2006b) and Quality Assurance Project Plan Addendum (TtEC, 2006a). A field inspection by the TtEC Quality Assurance Officer on 24 and 25 October 2006 indicated that the sampling investigation was found to be in general compliance with the applicable plans. Three minor findings were noted, and corrections were implemented immediately by the field staff.

Based on the above, the October 2006 field investigation data are considered representative of the current environmental conditions at the Site.

Comparability is the degree of confidence with which results from two or more data sets, or two or more laboratories, may be compared. To increase the degree of comparability between data results and between past, present and future sampling events, standard environmental methods were employed by the off-site laboratories. Routine Analytical Service (RAS) sample analyses available through the off-site laboratories. Routine Analytical Service (RAS) sample analyses available through the off-site laboratories. Routine Analytical Service (RAS) sample analyses available laboratory was used during the October 2006 investigation. Non-compliance with the CLP Statement of Work occurred during the calibration of 1,4-dioxane, which qualified these data results as unusable ("rejected").

Non-CLP parameters (i.e., the monitored natural attenuation/water quality parameters) were

analyzed by either the EPA Region 2 DESA Laboratory or Life Science Laboratory, Inc. The methodologies and analytical procedures utilized by these Non-CLP laboratories were EPA-approved, generally accepted methods specified in the Quality Assurance Project Plan Addendum and/or the Subcontract. Non-compliance by the Non-CLP laboratories resulted in either qualification of the results as estimated or did not qualify the data.

Completeness is defined as the percentage of samples that meet or exceed all the criteria objective levels within a defined time period or event. The objective for completeness was 90 percent, as stated in the Quality Assurance Project Plan Addendum. Approximately 1.7 percent of the constituent results (or 41) were considered unusable due to being qualified "rejected" during validation. Therefore, a total of 2,369 constituents (or over 98 percent) was determined to be usable results, which exceeds the completeness criterion.

Detection Limit Verification An evaluation of detection limits was part of the determination of analytical methods to verify that the sensitivity of the chosen methods was adequate to meet the applicable screening criteria. Analytical methods were selected based on, depending on the analytical fraction, either all or a majority of the constituent detection limits being less than applicable criteria values, with special attention paid to the contaminants of potential concern at the Site (e.g., TCE and its reductive dechlorination products).

There were no constituents during the October 2006 sampling event that had screening criteria lower than detection limits (SQLs).

Blanks were prepared during the field investigation and analyzed by the off-site laboratories with the associated environmental samples to evaluate the potential for contamination that may have been introduced into the samples. Validation determines the need for qualification of sampling analytical results based on blank contamination. Concentrations of 14 constituents were detected during the analysis of field, trip and/or deionized water blanks (see Tables B-15 and B-16). Based on the blank contamination amounts, the constituent concentrations in the associated environmental samples were contaminate occurrences or qualified as not detected (144 constituent results).

Usability Summary In general, the data fulfilled the site-specific QA/QC requirements, and therefore, are considered acceptable for use under the project objectives and to support the evaluation of the MNA program.

3.3 Groundwater Results

Comparison screening criteria were used to assist in the interpretation of data results, and Table 3-1 presents Maximum Contaminant Levels (MCLs) from the EPA Drinking Water Regulations and Health Advisories (EPA, 2004b) and Class GA (i.e., groundwater utilized as a source of drinking water) standards/guidance values from NYSDEC Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations (NYSDEC, 1998; 1999; 2000). Current and historic groundwater results for the monitoring wells/piezometers sampled as part of the MNA program are presented in Table 3-2 (Bush Industries Area), Table 3-3 (Cattaraugus Cutlery Area) and Table 3-4 (Great Triangle Area, Whig Street Area, and Luminite Area).

3.3.1 Volatile Organic Compounds

TCE and its reductive dechlorination products (e.g., 1,1-dichloroethene (DCE); 1,2-DCE [total]; cis-1,2-DCE; trans-1,2-DCE; vinyl chloride) are the main contaminants of concern at the Site. Groundwater samples from the various locations around the Little Valley Superfund Site also contained occurrences of non-halogenated volatile organics, such as benzene and acetone, which were below comparison criteria values.

As shown in Table 3-2, occurrences of TCE and its reductive dechlorination products have been and are still currently – present in the wells at the Bush Industries Area. Exceedances of comparison screening criteria for TCE were noted in monitoring wells BIAMW-D, BIAMW-D! (although the October 2006 detection is less than the criterion), and BIAMW-D2. During the current round, the maximum concentration of TCE occurred in BIAMW-D2 (93 D ug/L), with BIAMW-2 having the second highest detection (58 D ug/L). The various investigations also indicated exceedance concentrations for vinyl chloride and 1,2-DCE [total]/cis-1,2-DCE in these wells (with the exception of BIAMW-3). Maxima for the October 2006 event for vinyl chloride and cis-1,2-DCE were present in BIAMW-2 at 4.8 ug/L and 46 D ug/L, respectively (see Table 3-2).

TCE and its reductive dechlorination products have also been detected in the Cattaraugus Cutlery Area wells, with only TCE being present at concentrations above comparison screening criteria (see Table 3-3). Historically, TCE exceeded its comparison criterion in MWCCA-1, MWCCA-2, MWCCA-3, MWCCA-6, MWCCA-10, and MWCCA-12. During the October 2006 sampling event, the samples from monitoring wells MWCCA-12, MWCCA-3, MWCCA-10, and MWCCA-12 indicated exceedance concentrations of 9.6 ug/L, 19 ug/L, 28 D ug/L, 7.2 ug/L, and 16 ug/L, respectively for TCE.

Two piezometers located in each of the following three areas were sampled as part of the MNA program: Great Triangle Area (PZ-5 and PZ-6D), Whig Street Area (PZ-39 and PZ-45D), and Luminite Area (PZ-46 and PZ-55D). As shown in Table 3-4, TCE was detected at exceedance concentrations from 5.7 ug/L to 7.9 ug/L in the Great Triangle Area (PZ-5 and PZ-6D) and Luminite

Area (PZ-55D). PZ-45D, in the Whig Street Area, contained TCE below its comparison screening criterion, while samples from piezometers PZ-39 (also Whig Street Area) and PZ-46 (Luminite Area) did not indicate detectable levels of TCE at all (see Table 3-4).

3.3.3 Monitored Natural Attenuation/Water Quality Parameters

During the October 2006 sampling event, and previously in 2003, monitoring wells and piezometers around the study area were sampled for MNA/water quality (WQ) parameters. Detected concentrations for these constituents are shown in Tables 3-2, 3-3, and 3-4. Four of those parameters have comparison screening criteria values (i.e., chloride, nitrate, sulfate, and sulfide); see Table 3-1. None of the October 2006 samples contained exceedance concentrations. Sulfate was detected at 350 mg/L, which is above its criterion, in December 2003 from a sample collected from PZ-39, in the Whig Street Area (see Table 3-4).

Further discussion of the MNA/WQ parameters, as they relate to the assessment of the degradation of VOCs, is presented in Section 5.1.1.

4.0 RESIDENTIAL WELL SAMPLING

Sampling of the residential wells in the vicinity of the Site has been performed by others from 1989 through 1996 (prior to installation of the treatment systems) and then generally yearly thereafter. In 2002, NYSDEC became the lead agency responsible for the sampling, and the most current rounds have been conducted by Earth Tech Northeast, Inc., a subcontractor to the NYSDEC Division of Environmental Remediation (Earth Tech, 2005; 2006a; 2006b). Appendix A contains a summary of the results of residential well sampling from 1989 through October 2006.

Table 4-1 presents summary statistics for the post-installation sampling events (i.e., 1997 and on), which are also graphed on Figure 4-1 for illustration purposes. Although the number of sampled locations has stayed relatively constant, the number of wells with exceedances has decreased from over 90 percent in 1997 to 60 percent in the most current round (2006), and has even been as low as about 44 percent in 2004. The maximum concentration of TCE detected during the sampling events has remained fairly consistent (i.e., between 18.5 ug/L and 30 ug/L). The median and average values have decreased slightly with time until 2001/2002, after which they have become relatively stable in concentration.

2.0 CONTAMINANT TRENDS AND PROGRESS OF MAA

5.1 Contaminant Trends

5.1.1 Reductive Dechlorination

anaerobic biodegradation.

The data obtained during the October 2006 groundwater sampling events for monitoring wells/piezometers and residential wells were reviewed to assess the potential for degradation of VOCs at the Site via reductive dechlorination. EPA's Technical Protocol (EPA, 1998) was used as a basis for much of the following assessment.

Oxygen Anaerobic bacteria generally cannot function at dissolved oxygen concentrations above 0.5 mg/L, and reductive dechlorination will not occur (EPA, 1998). As indicated in Table 2-1, DO measurements at the Site ranged from 1.05 mg/L to 10.89 mg/L, which are not conducive to

After dissolved oxygen has been depleted, nitrate may be used as an electron acceptor for the biodegradation of organic compounds via denitrification. Areas of depressed nitrate concentrations within a groundwater plume may indicate biodegradation via nitrate reduction, while the presence of nitrate in groundwater can indicate a fairly aerobic environment. As stated in EPA, 1998, nitrate concentrations in the contaminant plume should be less than 1 mg/L for reductive dechlorination to occur. Nitrate concentrations ranged from 0.34 mg/L (conducive) to 2.7 mg/L (not conducive).

Ferrous Iron After nitrate, iron (III) may be used as an electron acceptor during anaerobic biodegradation, reducing the analyte to iron (II). Ferrous iron [iron (II)] concentrations were present in seven monitoring wells/piezometers between 0.06 mg/L and 0.32 mg/L.

Sulfate/Sulfide After dissolved oxygen and nitrate depletion, sulfate may be used as an electron acceptor for anaerobic biodegradation (EPA, 1998). This "sulfate reduction" process produces sulfide, and concentrations of sulfide greater than I mg/L indicate a possible reductive pathway. Sulfate and sulfide concentrations ranged up to 27 mg/L and 0.03 mg/L, respectively.

Methane/Ethane/Ethane) generally occurs after oxygen, nitrate, and sulfate have been depleted, and therefore, the presence of methane in groundwater is indicative of "strongly reducing conditions." Two locations, BIAMW-2 and BIAMW-6 in the Bush Industries Area, contained relatively low concentrations of methane in the 2006 event (0.11 J mg/L and 0.082 J mg/L, respectively).

in the Great Triangle Area; and PZ-55D in the Luminite Area. MWCCA-5, MWCCA-7, MWCCA-12, and PZ-20D in the Cattaraugus Cutlery Area; PZ-5 and PZ-6 BIAMW-2, BIAMW-3 and BIAMW-D1 in the Bush Industries Area; MWCCA-1, MWCCA-3, Samples from the following wells had concentrations more than twice the value in BIAMW-5: the Bush Industries Area. Well BIAMW-5, therefore, was used as "background" for comparison. sample from well BIAMW-5, which is considered upgradient of the elevated TCE concentrations at biodegradation may be occurring. The minimum value for alkalinity (70 mg/L) was present in the According to EPA, 1998, a two-fold increase in alkalinity values over background numbers suggests increased concentrations of carbon dioxide produced by the metabolism of microorganisms. Zones of microbial activity are typically identified by an increase in alkalinity, resulting from **Alkalinity**

at less than 50 mV, as shown in Table 2-1. There were no locations, though, where ORP was below and becomes more likely below -100 mV (EPA, 1998). Half of the sampled wells had ORP values influence rates of biodegradation. At less than 50 millivolts (mV), the reductive pathway is possible, The oxidation-reduction potential of groundwater is a relative measure of electron activity, and can Oxidation-Reduction Potential

the -100 mV level.

BIAMW-2 and BIAMW-D1 (Bush Industries Area). event were between 9.66°C and b.65°C, with the highest values in samples collected from wells approximately equal to or greater than 8. Values of water temperature during the 2006 sampling the monitoring wells in the Cattaraugus Cutlery and Great Triangle Areas had pH values range, as did the piezometers in the Whig Street and Luminite Areas. In comparison, a majority of temperature greater than 20°C. All of the wells in the Bush Industries Area had pHs in this optimum optimal values for these parameters for reductive biodegradation is a pH between 6 to 8 and a Metabolic activity of bacteria is affected by the pH and temperature of the groundwater. The әлпұрләдшәД рир Нд

concentrations at the Bush Industries Area, was used as "background" for comparison of the chloride Well BIAMW-5, which is considered upgradient of the elevated TCE aquifer systems. chlorinated compounds. Road salting also serves as a common, localized source of chloride to concentrations relative to background (i.e., two times) may indicate the biodegradation of and play few vital biochemical roles (EPA, 1998). As a result, significant increases in chloride complexes, do not form salts of low solubility, are not significantly adsorbed on mineral surfaces, Chloride ions do not typically enter into oxidation-reduction reactions, form no important solute Chloride is released as a breakdown product during the biodegradation of chlorinated compounds. Chloride

versus 11 mg/L at BIAMW-5). Other wells/piezometers with chloride values greater than twice the values. PZ-39 (Whig Street Area) was an order of magnitude higher in concentration (130 mg/L

BIAMW-5 background level included BIAMW-2, BIAMW-3, BIAMW-D1, BIAMW-D2, PZ-20D, PZ-5, PZ-6D, and PZ-55D (range: 26 to 78 mg/L).

Total Organic Carbon and energy source for aerobic microorganisms (which during aerobic respiration, by acting as a dissolved oxygen levels, creating a reducing environment and increasing the potential for anaerobic dissolved oxygen levels, creating a reducing environment and increasing the potential for anaerobic decleria to function). EPA, 1998 states that a TOC concentration of 20 mg/L is most favorable to dechlorination. During the 2006 sampling event, there were three locations where TOC was detected, and the concentrations were close to or above 20 mg/L: 26 mg/L (BIAMW-3 in the Bush Industries Area), 39 mg/L (MWCCA-8 in the Cattaraugus Cutlery Area), and 19 mg/L (PZ-5 in the Great Triangle Area).

Daughter Products
Transformation of TCE via reduction dechlorination produces daughter products such as 1,1-DCE, 1,2-DCE (cis- and/or trans-), and vinyl chloride. These constituents were mainly detected, and at their most elevated concentrations, in the Bush Industries Area (see Section 3.3.1). Very low levels (i.e., up to 0.36 ug/L) were also noted in the Cattaraugus Cutlery and Great Triangle Areas. The presence of these daughter products in the Bush Industries Area, and to a much lesser extent, the Cattaraugus Cutlery and Great Triangle Areas, indicates that some dechlorination is occurring. Cutler downgradient areas showed no detectable concentrations of daughter products.

5.1.2 Statistical Trend Analysis

Statistical trend analysis was performed for eight of the monitoring wells/piezometers sampled during the MNA program. These eight locations (BIAMW-2, BIAMW-3, BIAMW-5, BIAMW-DI, and BIAMW-DD in the Bush Industries Area and MWCCA-2, MWCCA-3, and MWCCA-6 in the Cattaraugus Cutlery Area) were the only ones of the 24 wells that had sufficient data rounds for the calculation. In addition, 12 residential wells were selected from the properties with treatment systems, distributed across the valley.

The trend analysis was performed for TCE and, where possible, for 1,2-DCE (either analyzed as total or as the cis- and trans- isomers and then summed) and vinyl chloride, using the Mann-Kendall Statistical Test at the 80 percent and 90 percent confidence interval (80% CI and 90% CI, respectively). When no statistically significant trend was identified, a test for stability at the 80% CI was also conducted. For a compound that was not detected in a given well sample, one-half the lowest SQL (across all sampling rounds) was used in the calculations. When a duplicate sample was collected, the average of the original field sample and the duplicate sample concentrations was utilized in the Mann-Kendall Statistical Test.

Appendix D presents tables and graphs displaying the data used in, and the results of, the Mann-Kendall Statistical Tests. A summary of the trend results is provided in Table 5-1.

For those compounds and wells for which Mann-Kendall Statistical Tests could be run, 70 percent (or 14 of 20) demonstrated a statistically significant decreasing trend at either the 80% CI or 90% CI. As shown in Table 5-1, TCE is decreasing in monitoring wells BIAMW-2 (Bush Industries Area), MWCCA-2 (Cattaraugus Cutlery Area), and MWCCA-3 (Cattaraugus Cutlery Area), and in ten of the residential wells (IDs 13, 40, 104, 107, 120, 157, 166, 174, 178, and 184). Cattaraugus Cutlery Area well MWCCA-6 contained a 80% CI decreasing trend for 1,2-DCE.

Of the 20 monitoring and residential wells selected for Mann-Kendall statistical analysis, none of the wells showed a statistically increasing trend for the selected VOC concentrations.

The remaining 6 test results (or 30 percent) indicated no significant trend for a given compound in a specific well (Table 5-1). Of these, only TCE in MWCCA-6 was determined to be non-stable at the 80% CI.

5.2 Progress of MIVA

As indicated on Figure 1-1, TCE concentrations are generally lower in the southern downgradient portion of the plume (i.e., nearer the border with Salamanca) in comparison to the northern portion of the Site (i.e., Bush Industries, Cattaraugus Cutlery and/or Great Triangle Areas). For individual wells/piezometers, analysis of the Mann-Kendall Statistical Test results indicates either a decreasing or stable trend in concentration. In addition, the number of residential wells with sample concentrations exceeding screening criteria has decreased from over 90 percent in 1997 to 60 percent in the most current round (October 2006).

Typically, reductive dechlorination is the predominant degradation mechanism for TCE. Characterization of the current groundwater quality seems to indicate an environment not readily conducive to biodegradation by reductive dechlorination (for example, high dissolved oxygen concentrations). However, daughter products detected within the plume, specifically in the Bush Industries Area, appear to indicate that limited degradation of TCE is occurring in select site locations. Other natural attenuation mechanisms, such as biodegradation by cometabolism, dilution, dispersion, and/or adsorption, may also be occurring. During cometabolism, the chlorinated hydrocarbon is indirectly transformed (biodegraded) by an enzyme or cofactor produced by a bacterial organism as it uses another substrate (such as benzene, which has been detected at low concentrations in Site groundwater) to meet energy requirements. There is no benefit to the concentrations in the degradation of the chlorinated compound.

These natural attenuation mechanisms, and the installation of a soil source remedy at the Cattaraugus Cutlery property (see Section 1.2.2), are likely contributing to the general stability at the Bush Industries Area and to the general contaminant concentration reduction of the plume beyond the Bush Industries Area.

6.0 REFERENCES

Cadwell, et al., 1988. Surficial Geologic Map of New York Niagara Sheet, NYSGS, Map and Chart Survey No. 40.

Earth Tech, 2005. 2004 Annual Sampling Report for Treatment Systems, Little Valley Wells, Site ID #9-05-026. Earth Tech Northeast, Inc. February 2005.

Earth Tech, 2006a. 2005 Annual Sampling Report for Treatment Systems, Little Valley Wells, Site ID #9-05-026. Earth Tech Northeast, Inc. January 2006.

Earth Tech, 2006b. 2006 Annual Sampling Report for GAC Treatment Systems, Little Valley, Site ID #9-05-026. Earth Tech Northeast, Inc. December 2006.

EPA, 1996. Focused Feasibility Study Report for Alternative Water Supply for the Little Valley Superfund Site.

EPA, 1998. Technical Protocol for Evaluating Natural Attenuation of Chlorinated Solvents in Ground Water. Office of Research and Development. EPA/600/R-98/128. September 1998.

EPA, 2004a. TCE Sample Results for Homes with and without Treatment Systems. Provided by Patricia Simmons Pierre, EPA Work Assignment Manager. 24 November 2004.

EPA, 2004b. 2004 Edition of the Drinking Water Standards and Health Advisories. EPA 822-R-005. Office of Water. www.epa.gov/waterscience/drinkingstandards/dwstandards.pdf. Winter 2004.

EPA, 2006. Little Valley Superfund Site Fact Sheet. Little Valley, New York. EPA ID# NY0001233634. Dated 17 October 2006. From EPA Region 2 Website http://www.epa.gov/region02/cleanup/sites/nytoc_sitename.htm#l.

NYSDEC, 1994a. Geotechnical Investigation, Little Valley. New York State Department of Environmental Conservation. May 1994.

NYSDEC, 1994b. Triangle at Little Valley, Immediate Investigation Work Assignment, (#D002925--96). New York State Department of Environmental Conservation. November 1994.

NYSDEC, 1998. Division of Water Technical and Operational Guidance Series 1.1.1 - Ambient Water Quality Standards and Guidance Values. New York State Department of Environmental Conservation. June 1998 (revised), with April 2000 addendum.

NYSDEC, 1999. Errata Sheet for June 1998 Edition of the Division of Water Technical and Operational Guidance Series (TOGS) Number 1.1.1. New York State Department of Environmental Conservation. January 1999.

NYSDEC, 2000. April 2000 Addendum to June 1998 Division of Water Technical and Operational Guidance Series (TOGS) No. 1.1.1. New York State Department of Environmental Conservation. April 2000.

NYSDOH, 1996. New York State Department of Health, Health Consultation, Little Valley Site. May 1996.

Rickard, et al., 1970; Geologic Map of New York, Niagara Sheet, NYS Museum and Science Services, Map and Chart Series No. 15.

TtEC, 2006a. Quality Assurance Project Plan Addendum for Remedial Action of Monitored Natural Attenuation at the Little Valley Superfund Site. Tetra Tech EC, Inc. September 2006.

TtEC, 2006b. Final Remedial Action Work Plan for the Little Valley Superfund Site, Cattaraugus County, New York. Tetra Tech EC, Inc. October 2006.

TtFW, 2005a. Remedial Investigation Report for OU-2 Remedial Investigation and Feasibility Study, Little Valley Superfund Site, Cattaraugus County, New York. Tetra Tech FW, Inc. January 2005.

TtFW, 2005b. Feasibility Study Report for OU-2 Remedial Investigation and Feasibility Study, Little Valley Superfund Site, Cattaraugus County, New York. Tetra Tech FW, Inc. April 2005.

Zariello, Phillip J., 1987; Hydrogeology of the Salamanca Area, Cattaraugus County, New York, Water-Resources Investigations Report 85-4149, U.W., Geological Survey and New York State.

TABLE 2-1
Well Purge Parameters - October 2006 Sampling Event
Little Valley Superfund Site

STDS (g/mL)	Temp (O°)	OKP (mV)	DO (T/Sm)	dauT (UTV)	Cond. (mS/cm)	Hq (US)	Flow Rate (mim)	Depth to Water (ft TIC)	Well I.D.
££.0	61.91	97	20.1	0.0	22.0	99. <i>T</i>	500	19.78	BIAMW-2
84.0	14.98	L9	98.01	0.0	<i>ST.</i> 0	<i>t</i> 8.7	720	88.84	BIAMW-3
21.0	12.27	601	2.38	0.0	81.0	11.7	700	48.8	BIAMW-5
91.0	<i>ST</i> .01	<i>₹</i> ∠-	27.45	0.0	742.0	£6.9	300	88.£	BIAMW-6
St.0	₹9.8I	ヤヤ	27.T	0.0	669.0	00.7	700	0L.24	BIAMW-D1
97.0	13.27	-30	27.1	1.8£	204.0	ZT.T	300	74.27	BIAMW-D2
82.0	96.6	95	69.4	4.94	0.430	<i>ST.</i> 8	007	27.83	MWCCA-1
61.0	86.11	87-	2.73	1.9	262.0	46.11	720	22.42	MWCCA-2
15.0	99.6	99	8 2 .£	<i>t</i> .2 <i>t</i>	0.480	70.8	200.00	28.03	MWCCA-3
82.0	2.11	97	8£.4	38	6£.0	28.T	200.00	6 <i>L</i> .4.79	WMCCY-5
6.23	20.11	I <i>S</i>	86.2	0.0	195.0	<i>t</i> 6.8	300	8.42	WMCCA-6
71.0	10.11	99	52.2	0.11	697.0	66.7	300.00	\$0.82	MWCCA-7
91.0	07.6	0.52	11.6	7.4	6,243	84.8	250.00	78.22	WWCCA-8
22.0	8.6	0.52	2.55	<i>T.</i> 9	46.0	76.T	300	67.42	WMCCY-9D
62.0	10.11	68	4.33	0.0	095.0	£2.8	310	24.45	WWCCA-10
92.0	70.01	12	20.2	4.9I	204.0	62.8	210	56.63	WMCCY-11D
22.0	E.11	102	74.8	5.21	95.0	29.7	720	90.82	WWCCA-12
\$£.0	77.21	77	25.9	£.44	£2.0	02.8	300 00	90.92	S-Zq
6.33	69.01	35.0	49.7	23.0	212.0	<i>t</i> 9.8	300.00	25.25	G0c Zd
92.0	28.11	0.86	40.7	25.3	04.0	48.7	300.00	26.16	FZ-39 PZ-20D
64.0 81.0	80.21 71.81	25 85.0	06.7 02.2	0.0	697.0 82.0	66.8	700 720	62.24	GSt-Zd
61.0	81.21	79	02.0	0.0	07.0	88.9	700	29.71	9t-Zd
61.0	28.01	08	88.2	255.0	055.0	76.T	300	£7.71	PZ-55D

TABLE 3-1 (Sheet 1 of 2) Comparison Criteria for Detected Constituents in Groundwater Little Valley Superfund Site

ς	10000	Xylenes (total)
ς	** 00001	əuə[vX-d/m
ς	ς	Trichloroethene
ς	1000	Toluene
ς	ς	Tetrachloroethene
ς	100	Styrene
NC	NC	М еthylcyclohexane
NC	NC	Methyl isobutyl ketone (4-Methyl-2-pentanone)
95	NC	Methyl ethyl ketone (2-Butanone)
ς	NC	Methyl chloride (Chloromethane)
ς	002	Ethylbenzene
NC	NC	Cyclohexane
ς	NC	Сротоетрапе
ς	100	Срјогорепzепе
09	NC	Carbon disulfide
Ţ	ς	Benzene
90	NC	Acetone
90	NC	2-Нехапопе
ε	SL	J.4-Dichlorobenzene
ε	NC	1,3-Dichlorobenzene
Ţ	ς	1,2-Dichloropropane
ς	100	trans-1,2-Dichloroethene
ς	0L	cis-1,2-Dichloroethene
ς	* 04	(total) (total)
9.0	ς	1,2-Dichloroethane
ε	009	1,2-Dichlorobenzene
ς	0L	1,2,4-Trichlorobenzene
ς	NC	1,2,3-Trichlorobenzene
ς	L	1,1-Dichloroethene
ς	700	1,1,2-Trichloroethane
		Volatile Organics (ug/L)
[Class GA]	I ₉ v ₉ A	
Values	Jasaimstao	
Water Quality	mumixsM	
NASDEC	EbV	
STATE	HOMAN HEALTH	BYSIS ŁOK CKILEKIY

TABLE 3-1 (Sheet 2 of 2) Comparison Criteria for Detected Constituents in Groundwater Little Valley Superfund Site

NC	NC	COL
20.0	NC	əbifluZ
720	***0\$Z	Sulfate
10	10	Nitrate
NC	NC	Метhапе
NC	NC	Ferrous Iron
720	720***	Chloride
NC	NC	Alkalinity
	(J\gm) sr	Water Quality/Natural Attenuation Paramete
[Class GA]	Level	
SaulaV	Contaminant	
Water Quality	mumixsM	
NASDEC	EbV	
STATE	HOWAN HEALTH	BYSIS ŁOB CKILEKIY

:sətoN

NC indicates no criteria available.

Keferences:

EPA Criteria from 2004 Edition of the Drinking Water Standards and Health Advisories. EPA 822-R-04-005. Winter 2004.

NYSDEC Values are from Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations, June 1998; Errata Sheet for the June 1998 Technical and Operational Guidance Series Number 1.1.1, April 2000.

1.1.1, April 2000.

^{*} indicates EPA criterion provided for 1,2-dichloroethene (total) is the most conservative criteria value for the cisand trans- isomers.

^{**} indicates EPA criterion provided for m/p-Xylene is the criteria value for Xylenes (total).

^{**} indicates EPA criterion value is a secondary drinking water regulation criterion.

Little Valley Superfund Site Summary of Detected Groundwater Constituents in MNA Wells from Bush Industries Area **TABLE 3-2 (Sheet 1 of 2)**

TOC	٧N	ΨN	ΨN	٧N	٧N	9.2			ΨN	ΨN		97	ΨN	ΨN	ΨN	
Sulfide	ΨN	٧N	ΨN	٧N	ΨN	ΨN	20.0	810.0	ΨN	ΨN	ΨN	810.0	ΨN	٧N	٧N	
Sulfate	ΨN	ΨN	ΨN	ΨN	ΨN	91	LΙ	LI	ΨN	ΨN	12	LT	ΨN	ΨN	٧N	<i>L</i> .8
Vitrate	ΨN	ΨN	ΨN	ΨN	ΨN				ΨN	ΨN	2.1	6.I	ΨN	ΨN	٧N	£7.0
Меthane	ΨN	ΨN	ΨN	ΨN	ΨN	0.54 JD	0.046 J	t 11.0	ΨN	ΨN	N t 70.0		ΨN	٧N	٧N	
Ferrous Iron	ΨN	VΝ	ΨN	ΨN	VΝ		71.0	41.0	ΨN	ΨN			ΨN	ΨN	ΨN	81.0
Chloride	VΝ	VΝ	ΨN	ΨN	VΝ	61	97	97	٧N	ΨN	77	81	ΨN	ΨN	ΨN	11
Alkalinity (as CaCO3)	ΨN	VΝ	ΨN	ΨN	ΨN	180	061	180	ΨN	ΨN	091	760	ΨN	ΨN	ΨN	04
MNA/Water Quality Parameters (mg/L)																
w/p-Xylene	ΨN	ΨN	ΨN	ΨN	ΨN	ΨN	t 1.0		ΨN	ΑN	ΨN		ΨN	٧N	٧N	
Vinyl chloride	ſħ	7 1	ľ	Ιl		8.4	7	8.4		-		-				
Trichloroethene	730	061	78	<i>L</i> 8	011	30 D	28 D	28 D	ſŞ	8	6.3	2.2				
Isopropyldenzene	٧N	ΨN	ΨN	ΨN	ΨN		0.14 J		ΨN	ΨN			ΨN	٧N	٧N	
Ethylbenzene							t 22.0									U.13J
trans-1,2-Dichloroethene	٧N	ΨN	ΨN	ΨN		t 82.0	12.0	t 64.0	ΨN							
cis-1,2-Dichloroethene	٧N	ΨN	ΨN	ΨN	<i>tt</i>	₫0D	₹2 D	₹9 D	ΨN	ε	7.2	t 9£.0	ΨN	ΨN		
1,2-Dichloroethene	<i>t</i> \$	IS	07	77	ΨN	٧N	ΨN	ΨN	7 1	ΨN	ΨN	ΨN			٧N	٧N
Chloroethane	t 8.0						t 91.0	Ն 53.0				t 190.0				U.13J
Benzene	l 7.0		l 4.0	l 4.0		0.32 J						0.12 J				0.23 J
1,4-Dichlorobenzene	٧N	٧N	ΨN	ΨN			t 91.0	0.12 J	ΨN				ΨN	٧N		
1,1-Dichloroethene	Ιl		l 7.0	l 7.0		69.0	8.0	68.0								
1,1,2-Trichloroethane																
Volatile Organics (ug/L)																
		Duplicate		Duplicate				Duplicate								
	6661/\$0/\$0	6661/\$0/\$0	15/14/1666	15/14/1666	1007/01/10	12/11/2003	10/31/5006	10/31/5006	6661/\$0/\$0	1007/60/10	17/10/5003	10/30/5006	6661/\$0/\$0	15/13/1666	1007/70/10	10/30/5006
				AIA	7-MW					BIYI	E-WI			AAIA	S-WI	

:sətoV

- -- Not detected.
- J Estimated concentration.
- D Value derived from dilution analysis.
- N Evidence exists for constituent presence.
- NA Not analyzed.

Exceeds human health-based values.

Exceeds state values.

Exceeds both of the above values.

TABLE 3-2 (Sheet 2 of 2) Summary of Detected Groundwater Constituents in MNA Wells from Bush Industries Area Little Valley Superfund Site

TOC	ΨN	VΝ		٧N	VΝ	ΨN			ΨN	٧N	ΨN	ΑN	7.2	
Sulfide	٧N	٧N		٧N	٧N	٧N	٧N		VΝ	٧N	٧N	VΝ	٧N	720.0
Sulfate	ΨN	٧N	II	ΨN	ΨN	ΨN	13	II	ΨN	٧N	ΨN	ΨN	SI	εī
Vitrate	ΨN	ΨN		ΨN	ΨN	٧N	4.1	<i>L</i> .2	ΨN	٧N	ΨN	٧N	62.0	46.0
Меthane	٧N	ΨN	t 280.0	ΨN	ΨN	ΨN	N f 90.0		ΨN	٧N	ΨN	٧N	Nf 70.0	
Ferrous Iron	٧N	ΨN		ΨN	ΨN	٧N			ΨN	٧N	ΨN	٧N		
Chloride	٧N	ΨN	13	ΨN	ΨN	٧N	77	55	ΨN	٧N	ΨN	٧N	77	31
Alkalinity (as CaCO3)	ΨN	ΨN	88	ΨN	٧N	٧N	061	700	ΨN	٧N	ΨN	٧N	130	140
MNA/Water Quality Parameters (mg/L)		•								•				
əuə[/X-d/w	ΨN	ΨN		ΨN	ΨN	ΨN	ΨN		ΨN	٧N	ΨN	ΨN	ΨN	
Vinyl chloride	ſħ							t 81.0						
Trichloroethene	LI	LE	61	II	f 6	81	12	8.1	160	85	140	110	18 D	93 D
[sobropy]benzene	ΨN	ΨN		ΨN	ΨN	ΨN			ΑN	٧N	ΨN	ΨN		
Ethylbenzene														
trans-1,2-Dichloroethene	ΨN		l 84.0	ΨN	ΨN			22.0	ΨN	ΨN				17.0
enərhəorothene	ΨN	77	32 D	ΨN	ΨN	8	8.4	0.42 J	ΨN	ΨN	98	67	18 D	79 D
1,2-Dichloroethene	30	ΨN	ΨN	ſ 9	ſħ	ΨN	ΨN	ΨN	85	91	VΝ	ΑN	VΝ	ΨN
СһІогоетһапе			t 11.0											t 11.0
Вепхеле									7 1					
1,4-Dichlorobenzene	ΨN			ΨN	ΨN				ΨN	ΨN				
l,1-Dichloroethene									Ιl	0.4 1			18.0	42.0
1,1,2-Trichloroethane														0.084 J
Volatile Organics (ug/L)														
												Duplicate		
	15/13/1666	1007/01/10	10/30/5009	6661/\$0/\$0	15/13/1666	1007/01/10	12/10/2003	10/31/5006	6661/\$0/\$0	15/14/1666	1007/01/10	1007/01/10	12/11/2003	10/30/5009
		BIAMW-6				BIAMW-D1					BIAM	IM-D7		

:sətoN

- -- Not detected.
- J Estimated concentration.
- D Value derived from dilution analysis.
- N Evidence exists for constituent presence.
- Not analyzed.

Exceeds human health-based values.

Exceeds state values.

Exceeds both of the above values.

TABLE 3-3 (Sheet I of 3) Summary of Detected Groundwater Constituents in MNA Wells from Cattaraugus Cutlery Area Little Valley Superfund Site

JOT	ΨN	ΨN	٧N	-	٧N	ΨN	ΨN	٧N		-	٧N	ΨN		
Sulfate	ΨN	ΨN	ΨN	14	ΨN	ΨN	ΨN	ΑN	70	17	ΨN	٧N	61	LI
Nitrate	ΨN	ΑN	ΨN	1.1	ΨN	ΨN	ΨN	ΨN	2. 0	99.0	ΨN	٧N	12.0	£ ? .0
Methane	ΨN	ΨN	ΨN		ΨN	ΨN	ΨN	ΨN	Nt 70.0		٧N	ΨN	Nt 70.0	
Ferrous Iron	ΑN	ΑN	ΨN	21.0	ΑN	ΨN	ΨN	ΑN			ΨN	ΨN		
Chloride	ΑN	ΑN	ΨN	7.1	ΑN	ΨN	ΨN	ΑN	12	LI	ΨN	ΨN	81	70
Alkalinity (as CaCO3)	ΨN	ΑN	ΨN	160	ΨN	ΨN	ΨN	ΨN	1301	7 <i>L</i>	ΨN	٧N	160	180
MNA/Water Quality Parameters (mg/L)														
Vinyl chloride										0.141				
Trichloroethene	ε	ε	L	ς	12	17	8	3	8.6	9.6	71 D	Q <i>L</i> 9	28 D	61
trans-1,2-Dichloroethene										t 880.0				
Toluene														
Tetrachloroethene					l E.0	t £.0	t £.0		t 2.0	t 82.0	I		75.0	0.34 J
ү легруј егрујкетопе			В		В	В	l 8	В				В		
Methyl chloride			ſħ				I	ι 7.0						
Еthylbenzene														
Cyclohexane	ΨN	ΨN	٧N		ΨN	ΨN	ΨN	ΨN			٧N	ΨN		
cis-1,2-Dichloroethene	t 2.0	t 2.0	l 2.0	t 91.0		-	-			-	7	3	r.£	t 9£.0
Carbon disulfide														0.054 J
Benzene				U E I . O							ι <i>ε.</i> 0	l 4.0		29.0
Acetone			В		В	В	r 67					141		
1,2-Dichloropropane														
1,2-Dichloroethane							l 4.0							
Volatile Organics (ug/L)														
		Duplicate						_			_			
	8661/91/L0	8661/91/20	8661/08/40	9007/\$7/01	8661/L7/L0	8661/08/40	10/13/1666	6661/L7/01	17/03/5003	9007/18/01	8661/91/20	8661/08/20	17/07/7003	9007/\$7/01
		OMW	CA-1				DMM	CA-2				OMW.	:CA-3	

:sətoN

- -- Not detected.
- U Estimated concentration.
- L Estimated (biased low) concentration.
- D Value derived from dilution analysis.
- N Evidence exists for constituent presence.
- R Data rejected (unusable) after validation.
- NA Not analyzed.
- Exceeds human health-based values.
- Exceeds state values.
- Exceeds both of the above values.

Little Valley Superfund Site Summary of Detected Groundwater Constituents in MNA Wells from Cattaraugus Cutlery Area TABLE 3-3 (Sheet 2 of 3)

	T/AT	WAT		E.I		WAT	WAT	WAT		WAT	WAT	WAT	JOT
	AN	AN				AN	VN	AN		AN	AN	AN	
13	AN	AN	1010	2'1 F	91	ΨN	VN	ΨN	71	AN	AN	ΥN	Sulfate
18.0	VΝ	ΨN	19.0	62.0	62.0	ΨN	ΨN	VΝ	28.0	ΨN	ΑN	VΝ	Nitrate
	ΨN	ΨN		NL E0.0	Nt 20.0	ΨN	VΝ	ΨN		VΝ	VΝ	ΨN	Меthane
	ΨN	٧N				٧N	ΨN	ΨN	21.0	ΨN	ΨN	ΨN	Perrous Iron
7.1	ΨN	٧N	91	8.4	ħΙ	ΨN	ΨN	ΨN	7.1	ΨN	ΨN	ΨN	Chloride
160	ΑN	ΑN	130	130	130	ΨN	ΨN	ΨN	120	ΑN	ΑN	ΑN	Alkalinity (as CaCO3)
Λ/W ater Quality Parameters (mg/L)													
													Vinyl chloride
l 1.0	7	t 8.0	t 9£.0	0.22 J	t 2.0	97 D	97 D	31 D	78 D	Ţ	7	ε	Trichloroethene
t 2 90.0			t 81.0										trans-1,2-Dichloroethene
													Toluene
						7	ε	Ī	0.15				Тейтасhlогоейнепе
	В	К				В	В	В		В	Я	В	- Метһул ет метопе
							l e.0			l 2.0			Methyl chloride
									0.24 J				Еџулјрепzепе
	ΨN	ΨN				ΨN	٧N	٧N		ΨN	ΨN	ΨN	Сусіонскапе
						7	7	ις.0					cis-1,2-Dichloroethene
													Carbon disulfide
									9.I				Велгеле
	В	131						ſ8			В		Acetone
													1,2-Dichloropropane
													1,2-Dichloroethane
		ı	<u> </u>	<u>l</u>	<u>I</u>	ı	<u>l</u>	ı		<u>I</u>	1		Volatile Organics (ug/L)
		1	I	Duplicate	1	Duplicate		1	1	1	Duplicate		(1) / , (1) 11
9007/\$7/01	6661/L7/01	6661/£1/01	9007/7/01	12/01/2003	15/01/2003	6661/97/01	6661/97/01	6661/81/01	9007/77/01	6661/97/01	10/15/1999	6661/71/01	
300C/SC/U1		0001/3/101	3000/10/01	2000/10/01			0001/96/01	1001/3/1000	9000/70/01			0001/61/01	-
	MWCCA-7				9-47	MMC				5-∆	WMC		

:sətoN

-- Not detected.

NA Not analyzed.

- L Estimated (biased low) concentration. J Estimated concentration.
- Γ Value derived from dilution analysis.
- N Evidence exists for constituent presence.

- R Data rejected (unusable) after validation.
- Exceeds state values. Exceeds human health-based values.
- Exceeds both of the above values.

Little Valley Superfund Site Summary of Detected Groundwater Constituents in MNA Wells from Cattaraugus Cutlery Area **TABLE 3-3 (Sheet 3 of 3)**

TOC	٧N	6ξ	ΨN		ΨN			ΨN		٧N	٧N		t e.i	
Sulfate	٧N	13	ΨN	14	ΨN	14	14	ΨN	14	٧N	٧N	SI	61	17
Nitrate	٧N	68.0	ΑN	<i>L</i> S.0	ΨN	69.0	49.0	ΨN	18.0	ΨN	٧N	2.1	<i>2.</i> I	9.1
Меґћапе	٧N		ΨN		ΨN			ΨN		٧N	٧N		Nt 70.0	
Ferrous Iron	ΑN		ΑN		ΑN			ΑN		ΑN	ΑN			690.0
Chloride	ΑN	61	ΑN	LĪ	ΑN	12	Ι2	ΑN	70	ΑN	ΑN	LĪ	15	67
Alkalinity (as CaCO3)	ΑN	140	ΑN	130	ΨN	140	140	ΑN	140	ΨN	ΑN	160	780	120
(A/Am) erer Quality Parameters (mg/L)														
Vinyl chloride									t 11.0					
Trichloroethene			1 .1	6.I	<i>1</i> .4	1.7	<i>2.7</i>			II	10	91		t 2 80.0
trans-1,2-Dichloroethene		0.44 J				79.0	t ee.0		68.0					
Toluene									1.1					
Tetrachloroethene						t 91.0	t 2.0					ι 71.0		
Меthyl ethylketone	В													
Methyl chloride														
Ethylbenzene														
Cyclohexane	ΨN	t 91.0												
cis-1,2-Dichloroethene														
Carbon disulfide														
Benzene				97.0										
Acetone	В		1.1		1.2						2.1			
1,2-Dichloropropane														t 770.0
1,2-Dichloroethane														
Volatile Organics (ug/L)														
							Duplicate				Duplicate			
	1007/01/10	10/52/5009	11/18/2003	10/54/5006	11/17/5003	10/54/5006	10/54/2006	11/18/2003	10/53/5006	11/17/5003	11/17/5003	10/53/5006	11/19/2003	10/31/5006
	MMCCA-8		WMCC	G6-A2		MWCCA-10		WMCC	TA-11D		WWCCA-12		Z-Zd	0D

:sətoN

- -- Not detected.
- L Estimated (biased low) concentration. J Estimated concentration.
- Γ Value derived from dilution analysis.
- N Evidence exists for constituent presence.
- R Data rejected (unusable) after validation.
- NA Not analyzed.
- Exceeds human health-based values.
- Exceeds state values.
- Exceeds both of the above values.

Little Valley Superfund Site Summary of Detected Groundwater Constituents in MNA Wells from Great Triangle Area, Whig Street Area, and Luminite Area **TABLE 3-4**

	6.I				t 2.9		3.2			61		TOC
	٧N		ΨN	820.0	VΝ		ΨN	720.0	ΨN		ΨN	Sulfide
17	14	9.9	6	7	57	14	320	15	Lε	14	36	Sulfate
9.1	<i>2.</i> 1	18.0	E.1	4.0	90.0	1.2	4.2	2.1	1.1	4.1	9.1	Vitrate
	Nt 40.0		Nt 70.0		Nt 90.0		Nt 70.0		Nt 70.0		Nt 90.0	Methane
21.0								25.0				Ferrous Iron
77	36	2.9	LĪ	13	91	130	61	87	15	67	14	Chloride
120	ſ 0 <i>L</i> †	SL	89	96	6300 1	170	100	120	120	160	071	Alkalinity (as CaCO3)
_	_	_	_			_	_		_	_	_	MNA/Water Quality Parameters (mg/L)
				U 21.0								Vinyl chloride
<i>T.</i> 2	ſ †'†			<i>L</i> .2	1.2			6°L	6.9	8.8	9.9	Trichloroethene
		t 790.0				t 880.0		l e80.0		t 780.0		trans-1,2-Dichloroethene
								0.141		0.12 J		Tetrachloroethene
								t 2.0				Метһуісусіоһехапе
t 860.0												Isopropylbenzene
0.16 J	В											Ethylbenzene
								0.12 J				Сусіоћехапе
										t 20.0		eis-1,2-Dichloroethene
t £60.0		U E I . O										Chloroethane
				t 620.0								Carbon disulfide
ile Organics (ug/L)												Volatile Organics (ug/L)
10/56/5006	15/8/2003	10/56/5006	17/8/5003	11/1/5006	15/4/2003	11/1/5006	17/4/5003	11/1/5006	17/3/5003	10/56/5006	17/1/5003	
22D	-Zd	91-	Zd	GS7-Zd 6E-Zd				QD	-Zd	S-Z		
	te Area	inimuJ			set Area	nR gidW			angle Area	Great Tri		

:sətoN

- -- Not detected.
- J Estimated concentration.
- D Value derived from dilution analysis.
- NA Not analyzed. N Evidence exists for constituent presence.
- Exceeds human health-based values.
- Exceeds state values.
- Exceeds both of the above values.

TABLE 4-1
Summary of Statistical Calculations for Residential Wells with Treatment Systems
Little Valley Superfund Site

Average (Arithmetric Mean)	Median TCE Concentration		Minimum Detected TCE Concentration		Number of Wells with TCE	Number of Wells with Detected TCE	Number of Sampled Wells	Sampling Event
TCE Concentration	(qdd)	(qdd)	(qdd)	Concentrations	Concentrations	Concentrations		
(qdd)				Exceeding the MCL	Exceeding the MCL			
				dqq & Yo	dqq & Yo			
1.01	2.9	1.25.1	67°I	%7.56	78	98	88	7991 yisunst
£.9	<i>T.</i> 8	8.82	Ľ.Ź	%L.28	99	ħL	LL	November 1997
7.6	6°L	30	1.1	%6 [.] 8 <i>L</i>	T <i>L</i>	88	06	October 1998 /
								February 1999
<i>t. T</i>	Z.T	2.81	<i>L</i> 9.0	%L.8T	65	7.L	SL	March 2001
Z.T	0.7	7.1	I	%E.17	79	78	<i>L</i> 8	October 2002
1.7	0.8	77	l E.0	%6.29	99	08	\$8	October 2003
6.8	0.2	77	l 4.0	%8.E4	36	88	68	October 2004
Z.T	0.8	77	t <i>c</i> .0	%£.£9	LS	68	06	October 2005
0.7	0.9	77	t 1.0	%0.09	75	68	06	October 2006

Notes: Data results for the residential well sampling are provided in Appendix A. Calculations were performed for the pre-treatment sampling results from wells with treatment systems (Table A-1). The May 1999 sampling event was not utilized during these statistical calculations as it was not a comprehensive round of sampling (i.e., only five wells were sampled at that time). The median and average concentrations were calculated using all of the results for the sampling event, with non-detects at 0.5 ppb (one-half of the 1 ppb limit).

TABLE 5-1 (Sheet 1 of 2) Summary of Trend Analysis Test Results Little Valley Superfund Site

NC	NC	NC	NC	NC	NC	NC	(UN) S-TN	NC	(UN) S-TN	S-TN	NC	(UV) S-TV	S-TN	NC	(QN) S-TN	(UV) S-TV	S-TN	Vinyl Chloride
NC	NC	NC	NC	NC	NC	NC	-	NC	S-TN	S-TN	NC	S-TN	S-TN	NC	(UN) S-TN	S-TN	S-TN	1,2-Dichloroethene (total)
NC	NC	NC	NC	NC	NC	NC	SN-TN	NC	-	-	NC	S-TN	S-TN	NC	(UN) S-TN	S-TN	-	Trichloroethene
DZ-20D	MWCCA-12	MWCCA-11D	MWCCA-10	MWCCA-9D	WWCCA-8	L-ADDWM	9-VOOMW	WWCCA-5	WWCCA-3	WWCCA-2	MWCCA-1	BIAMW-D2	1G-WMAIA	9-WMAIA	S-WMAIA	E-WMAIA	2-WMAIA	
	Cattaraugus Cutlery (CCA)									Bush Industries (BIA)								

:sətoN

- Decreasing Trend - 90% Confidence Interval

Decreasing Trend - 80% Confidence Interval

Increasing Trend - 90% Confidence Interval

Increasing Trend - 80% Confidence Interval

9LT-S No Trend - Stable

NT-S (ND) No Trend - Stable as compound not detected in sample location in any of the event rounds.

NT-NS No Trend - Not Stable

NC Trend analysis test unable to be run, as less than four rounds of sampling for well/piezometer.

Not applicable - compound results not provided.

TABLE 5-1 (Sheet 2 of 2) Summary of Trend Analysis Test Results Little Valley Superfund Site

ΨN	ΨN	ΨN	ΨN	ΨN	ΨN	ΨN	ΨN	ΑN	ΨN	ΨN	ΨN	NC	NC	NC	ИС	ИС	NC	Vinyl Chloride
ΨN	ΨN	ΨN	ΨN	ΨN	VΝ	ΑN	ΑN	ΑN	ΑN	ΑN	VΝ	NC	NC	NC	NC	ИС	NC	(lstot) enedtheroeldzid-2, l
-	-	-	-	-	-	-	-	S-TN	-	S-TN	-	NC	ИС	NC	NC	ИС	NC	Trichloroethene
181 II	871 AI	१८१ वा	1D 166	LSI (II	ID 170	701 ai	ID 10¢	ID 65	ID 40	१७ वा	ात १३	dss-Sq	9 † -Zd	USt-ZA	6E-Zd	G9-Z4	S-Z4	
					slləW İsi	Resident						te Area	inimuJ	вэтА зээ	nt SgidW	sərA əlgu	Great Tria	

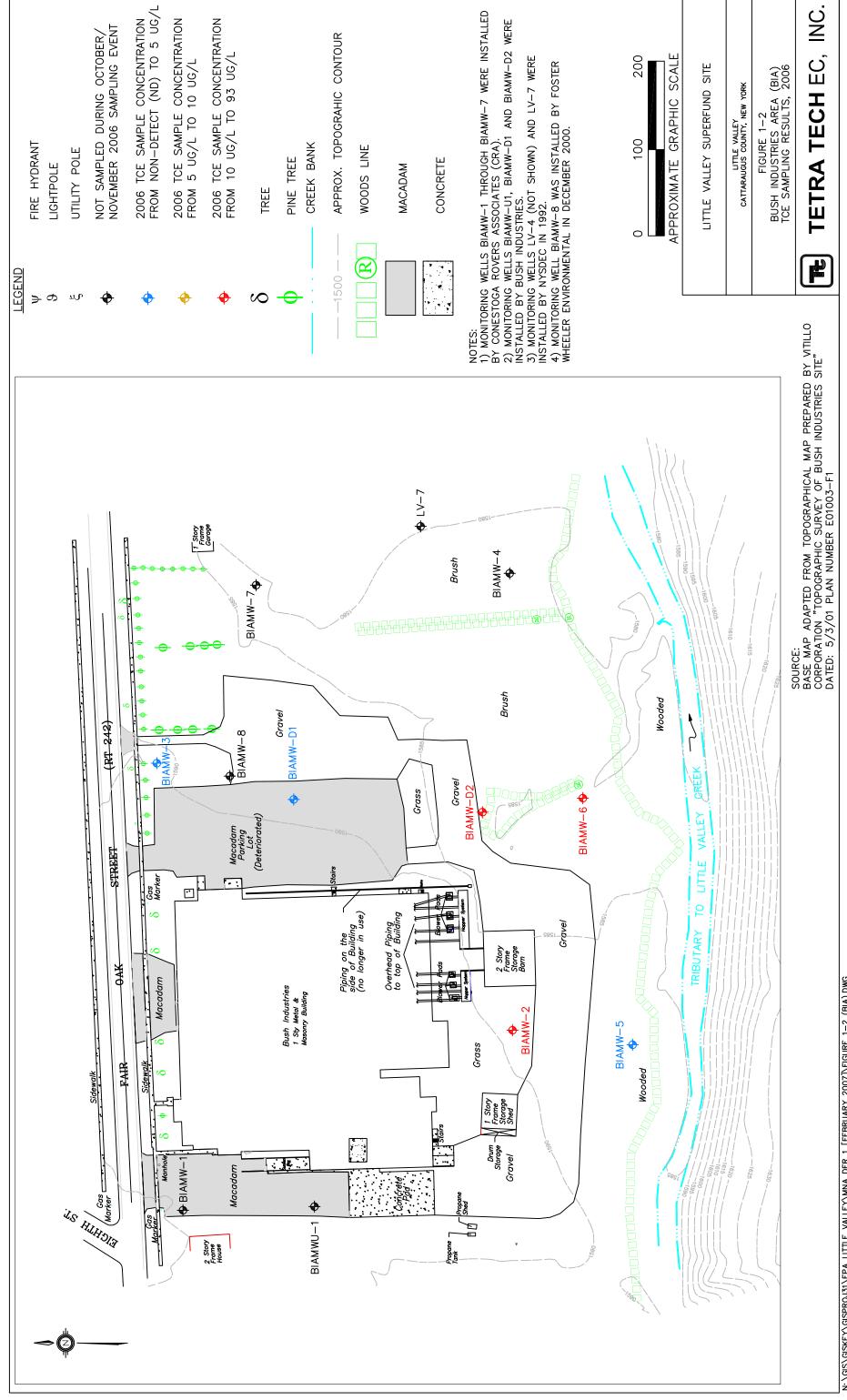
:sətoN

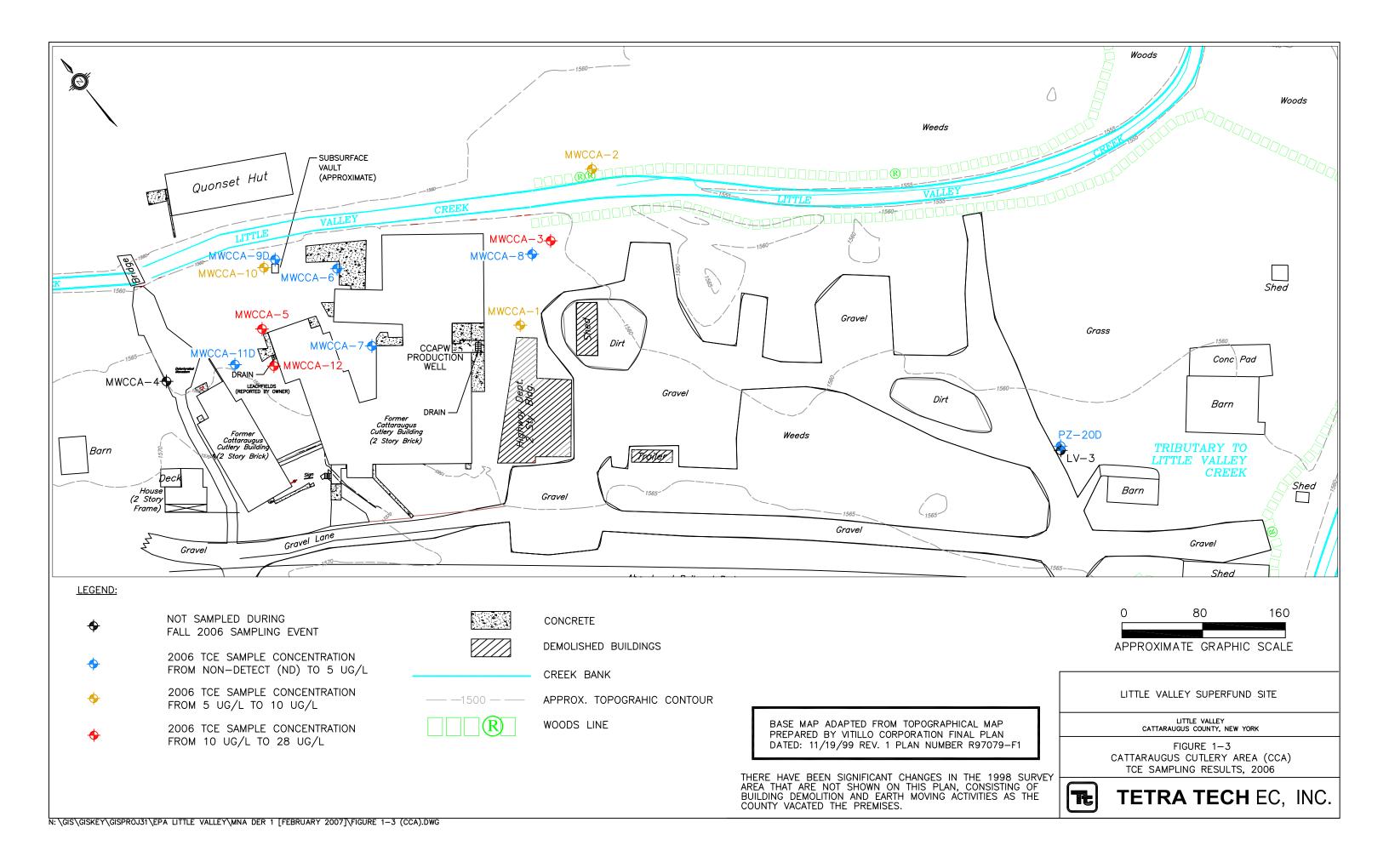
- Decreasing Trend - 90% Confidence Interval

Decreasing Trend - 80% Confidence Interval

+ Increasing Trend - 90% Confidence Interval

+ Increasing Trend - 80% Confidence Interval


oldstarend - Stable Stable


No Trend - Stable as compound not detected in sample location in any of the event rounds.

No Trend - Not Stable

NC Trend analysis test unable to be run, as less than four rounds of sampling for well/piezometer.

Not applicable - compound results not provided.

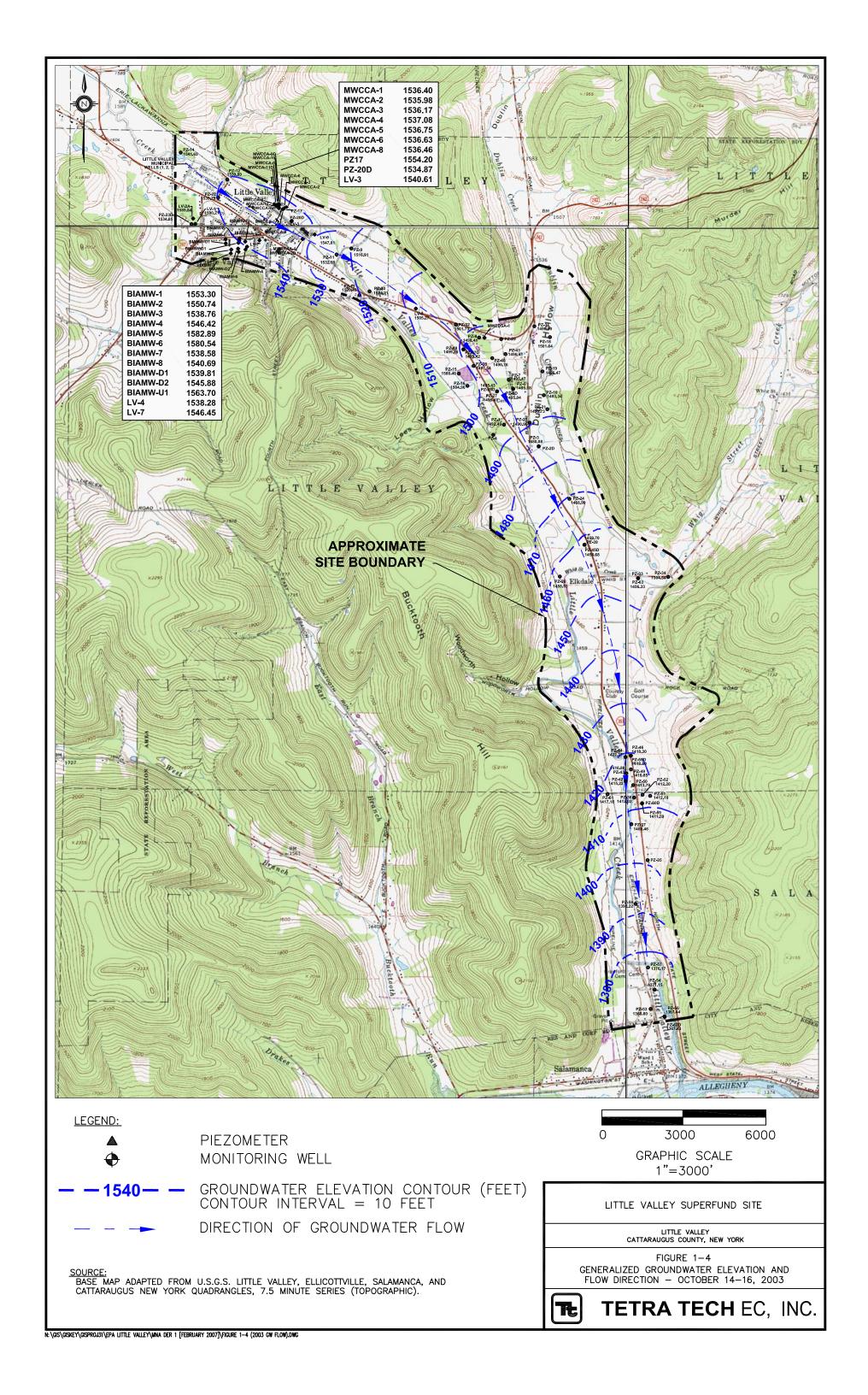
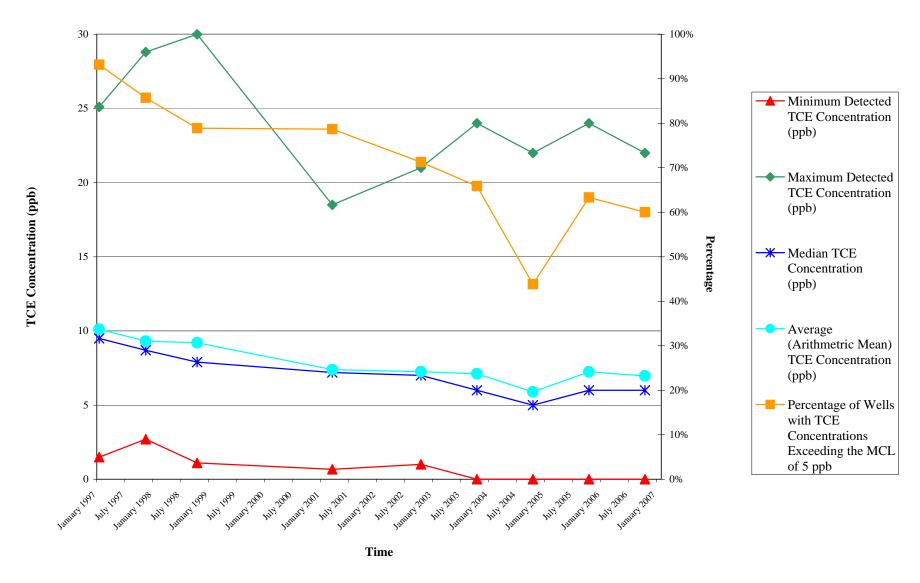



FIGURE 4-1
Residential Well Statistical Calculations Graph
Little Valley Superfund Site

NOTE: Sampling events occurred in January 1997, November 1997, between October 1998 and February 1999, March 2001, October 2002, October 2003, October 2004, October 2005, and October 2006.

APPENDIX A RESIDENTIAL WELL RESULTS

Table A-1
TCE Sampling Results for Homes with Treatment Systems in Parts Per Billion (ppb)
Little Valley Superfund Site
Page 1 of 8

ID#	System	1989 - 1996	January 1997	Novemb	per 1997	Oct. 98	/ Feb. 99	May	1999	October 2000
	Location	Range	Pre-Install.	Pre-Treat.	Post-Treat.	Pre-Treat.	Post-Treat.	Pre-Treat.	Post-Treat.	Post-Treat.
1	Maint. Shop	ND - 12	8.63			6.6	ND			
2	Boiler Room	ND - 22	8.61			8.5	ND			ND
3	Basement	4 - 9.6	9.46	10	ND	7.1	ND			ND
4	Shed	5	9.3			9.5		7.5	ND	ND
5	Basement	5 - 15	8.49	9.2	ND	7.2	ND			ND
6	Basement	4	5.95	4.7	ND	5.4	ND			ND
8	Basement	3 - 11	6.33	6	ND	5.5	ND			ND
9	Basement	7.2 - 16	10.4	8.2	ND	7.9	ND			ND
10	Wood Shop	3 - 11	1.49			10				ND
11	Basement	6.3 - 9	6.58	5.6	ND	6.4	ND			ND
12	Shed	14	12.4	8.7	ND	9.4, 12	ND			ND
13	Basement	8	8.08	4.4	ND	7.1	ND			ND
14	Basement	ND - 7.7	7.77	8	ND	6.3	ND			ND
15	Shed	7.4 - 11	8.63	7	ND	8.9	ND			ND
17	Basement	12	8.57	8.5	ND	7.1	ND	***		ND
18	Basement	7 - 20	8.6	7.8	ND	7.6	ND			ND
19	Shed	3.6 - 13	4.36	4.3	ND	4.2	ND	***		ND
21	Basement	8 - 50	22.9		ND	29	ND	****		ND
28	Basement	18	14.1	11.7	ND	12	ND	****		ND
29	Basement	9.7 - 18	7.95	6.3	ND	7.6	ND			ND
30	Basement	8	6.52	5.9	ND	3.9	ND			ND
32	Basement	3 - 8	5.52	5.6	ND	4.2	ND			ND
33	Basement	4 - 11	7.38	5.4	ND	5.9	ND			ND
35	Shed	23 - 31	18.1	17.1	ND	18	ND	15	ND	ND
36	Shed	12 - 21	14.8	13.6	ND	12	ND			ND
40	Basement	19	10.7	10.5	ND	11	ND			ND
44	Basement	ND - 16	ND	ND	ND	ND	ND			. ND

⁻⁻⁻⁻ Not sampled LUCIO ND Result not detected.

^{*} Result likely reflects a mix up of pre-treated and post-treated water samples.

Table A-1
TCE Sampling Results for Homes with Treatment Systems in Parts Per Billion (ppb)
Little Valley Superfund Site
Page 2 of 8

ID#	System	1989 - 1996	January 1997	Novemb	per 1997	Oct. 98	/ Feb. 99	May	1999	October 2000
	Location	Range	Pre-Install.	Pre-Treat.	Post-Treat.	Pre-Treat.	Post-Treat.	Pre-Treat.	Post-Treat.	Post-Treat.
45	Basement	20 - 33	23.7	22.5	ND	24	ND	****		ND
46	Basement	32	16.3	28.8	ND	30	ND			
47	Shed	19				23, 22	ND	22	ND	6.84
51	Basement	7	5.58	6	ND	4.7	ND			ND
53	Basement	33	20	19.2	ND	28	ND			ND
54	Basement	5.2 - 10	5.64			4	ND			ND
57	Shed	7.5 - 19	6.06	7.7	ND	5.8	ND			ND
62	Basement	7	9.72	11.6	ND	2.2	ND			ND
64	Basement	11 - 30	12.9	9.3	ND	12	ND			ND
65	Shed	33	22.7	25.2	ND	4.1	ND	***		ND
79	Basement	9 - 18	11.2	8.5	ND	1.6	ND			ND
86	Basement	17	12	9.9	ND	9.6	ND			ND
87	Basement	17	10.8	9.6	ND	9.7	ND		~~~~	ND
91	Basement	9.9	9.84	9.1	ND	8	ND			2.2
92	Shed	17.3	17.3	16.1	ND	6.2	ND			ND
95	Basement	6.5	8.75	6.9	ND	7.7	ND			ND
96	Shed	10.2	12	9.1	ND	9.1	ND		****	4.5
99	Shed	6.4	6.49	6.1	ND	6.6	ND			ND
104	Basement	11	13.3	10.6	ND	13	ND			
105	Basement	9.5	9.38	8.5	ND	9.8	ND	****		8.5
106	Basement	11	9.91	9.8	ND	8.8	ND			
107	Basement	11 - 28.6	12	12.5	ND	9.7	ND	9.7	ND	ND
108	Shed	12	11.9	10.5	ND	11	ND	***		ND
109	Basement	12	13.8			8.9	ND			ND
110	Shed	11	11.5	10.4	ND	12	ND			ND
111	Basement	4.6	5.25	4	ND	4.1	ND	m = 100 ma = 44		ND
117	Shed	19.9	20.5	23.3	ND	29	ND			

⁻⁻⁻⁻ Not sampled [3.1966]

ND | Result not detected.

^{*} Result likely reflects a mix up of pre-treated and post-treated water samples.

Table A-1
TCE Sampling Results for Homes with Treatment Systems in Parts Per Billion (ppb)
Little Valley Superfund Site
Page 3 of 8

ID#	System	1989 - 1996	January 1997	Novemb	per 1997	Oct. 98	/ Feb. 99	May	1999	October 2000
	Location	Range	Pre-Install.	Pre-Treat.	Post-Treat.	Pre-Treat.	Post-Treat.	Pre-Treat.	Post-Treat.	Post-Treat.
118	Garage	9.2	9.82	8.4	ND	1.1	ND	W- At No. 100 No.		ND
119	Basement	11	10.3			ND	ND			ND
120	Shed	10	12.3	10.7	ND	10	ND			ND
121	Basement	11	10.7	12.1	ND	12	ND			ND
122	Basement	7.2	7.43	6.9	ND	6.4	ND			ND
125	Basement		5.5	5.2	ND	4.7	ND			ND
127	Basement	****	7.3	7	ND	1.3	ND	***		ND
133	Basement		6.94	7.6	ND	6.8	ND			ND
134	Basement		7.9	6.7	ND	7.4	ND			ND
135	Basement	****	8.96	8.8	ND	6.4	ND	***		ND
136	Basement		10.4	9.9	ND	8.3	ND	~~~		ND
137	Garage		10.6	9.8	ND	7.9	ND			ND
153	Shed		8.37	ND	ND	8.3	ND			
154	Basement		10.5	10.2	ND	8.2	ND			ND
157	Basement		14.9	3.9	ND	5	ND			ND
162	Shed		11.5	9.8		9.1	ND			ND
163	Basement		7.41	7.7	ND	7	ND			ND
164	Basement		6.15	2.7	ND	4.6	ND			~~~~
166	Basement		11.5	8.9	ND	7.9	ND			ND
168	Barn		4.64	3.5	ND	3.8	ND			ND
170	Basement		12.4	10.6	ND	9.1	ND			ND
171	Basement		11.1							ND
172	Shed		9.52	7.3	ND	9.6	ND			ND
173	Shed		ND		ND	4.5				ND
174	Garage		12.1	10	ND	13	. ND			ND
176	Wood shed		12.5	10.2	ND	11	ND	~~=-		
178	Basement		3.97	3.9	ND	6.8	ND			ND

⁻⁻⁻⁻ Not sampled in the first

ND | Result not detected.

^{*} Result likely reflects a mix up of pre-treated and post-treated water samples.

Table A-1 TCE Sampling Results for Homes with Treatment Systems in Parts Per Billion (ppb) Little Valley Superfund Site Page 4 of 8

ID#	System	1989 - 1996	January 1997	November 1997		Oct. 98	/ Feb. 99	May	1999	October 2000
	Location	Range	Pre-Install.	Pre-Treat.	Post-Treat.	Pre-Treat.	Post-Treat.	Pre-Treat.	Post-Treat.	Post-Treat.
184	Wood shed	***	13.1	10.4	ND	12	ND ·			ND
185	Basement		7.85	12.2	ND	13	ND			ND
186	Garage		7.08	7.5	ND	9.1	ND			ND
187	Shed		7.45	ND	ND	14	ND		*****	ND
189	Breezeway		25.1	24.2	ND	29	ND	~~		
195	Shed		8.05	6.6	ND	8.7	ND			ND
205	Shed		10.7	9.1	ND	12	ND		****	
206	Shed					5.2		***		0.405
207	Basement					6		5.4	ND	
209	Basement	5.2 - 10	5.6			4	ND			ND
210	Garage									
211	Basement								****	****

⁻⁻⁻⁻ Not sampled E.L.E.E.

ND | Result not detected.

^{*} Result likely reflects a mix up of pre-treated and post-treated water samples.

Table A-1
TCE Sampling Results for Homes with Treatment Systems in Parts Per Billion (ppb)
Little Valley Superfund Site
Page 5 of 8

ID#	System	Marcl	า 2001	Octobe	er 2002	Octob	er 2003	October 2004	October 2005	October 2006
	Location	Pre-Treat.	Post-Treat.	Pre-Treat.	Post-Treat.	Pre-Treat.	Post-Treat.	Pre-Treat.	Pre-Treat.	Pre-Treat.
1	Maint. Shop	6.6	1.4	7	ND	6	ND	5	7	6
2	Boiler Room			7	ND	7	ND	6	8	7
3	Basement	7.7	ND	7	ND	0.6 J	ND	6	8	6
4	Shed	7.5	ND	8	ND	7	ND	6		6
5	Basement	7.0	ND	8	ND	6	ND	5	6	6
6	Basement	4.6	ND	3	ND	4	ND	3	4	3 (Dup 3)
8	Basement	5.6	ND	6	ND	5	ND	4	5	4
9	Basement	8.1	ND	6	ND			5	7	4
10	Wood Shop			1	ND	0.9 J	ND	0.6 J	1	
11	Basement	4.8	ND	5	ND	4	ND	3	4	4
12	Shed	8.7	ND	7	ND	7	ND	5	6	6
13	Basement	5.8	ND	6	ND	5	ND	4	5	4
14	Basement	6.2	ND	6	ND	5	ND	5	6	5
15	Shed	5.6	ND	6	6	ND	ND	5	6	2
17	Basement			7	ND	8	ND	5	7	6
18	Basement	6.8	ND	7	ND	6	ND	6	6	6
19	Shed	6.1	ND	6	ND	6	ND	5	7	6
21	Basement	18.5	ND	21	ND	24	ND	20	22	22
28	Basement	ND	ND	8	ND	8	ND	6 (Dup 7)	8	6
29	Basement	3.6	3.9	6	ND	ND	ND	3	4	4
30	Basement	5.6	ND	5	ND	5	ND	4	5	4
32	Basement	4.6	4.5	4	ND	4	ND	3	5	3
33	Basement	6.2	ND	5	ND	5	ND	4	5	6
35	Shed	14.0		14	ND	13	ND	12	15	16
36	Shed	10.7	ND	10	ND	11	ND	10	13 (Dup 13)	11
40	Basement	8.4	ND	7	ND			6	8	7
44	Basement	ND	ND	ND	ND	ND	ND	ND	ND	ND

⁻⁻⁻⁻ Not sampled Late to

ND | Result not detected.

^{*} Result likely reflects a mix up of pre-treated and post-treated water samples.

Table A-1
TCE Sampling Results for Homes with Treatment Systems in Parts Per Billion (ppb)
Little Valley Superfund Site
Page 6 of 8

ID#	System	March	n 2001	Octobe	er 2002	Octob	er 2003	October 2004	October 2005	October 2006
	Location	Pre-Treat.	Post-Treat.	Pre-Treat.	Post-Treat.	Pre-Treat.	Post-Treat.	Pre-Treat.	Pre-Treat.	Pre-Treat.
45	Basement			ND	ND	23	ND	16	17	21
46	Basement	****	en 100 en 100 en	20	ND	24	ND	20	11	22
47	Shed	17.6	ND	18	ND	19	ND		23	21
51	Basement	5.0	ND	5	ND	4	ND	3	4	4
53	Basement	13.2	ND	16	ND	15	ND	15	15	16
54	Basement	5.4	ND	5	ND	4	ND	3	4	4
57	Shed	4.2	ND	5	ND	6	ND	4	5	4
62	Basement	6.1	ND	6	ND	6	ND	4	1	7
64	Basement	9.0	ND	8	ND	9	ND	8	7	8
65	Shed	15.3	ND	17	ND	21	ND	22	16 (Dup 16)	22
79	Basement	7.2	ND	7	ND	7	ND	5	7	5
86	Basement	7.9	ND			6	ND	6	7	6
87	Basement	8.6	ND	8	ND	6	ND	5	7	6
91	Basement	7.2	2.3	6	ND	7	ND	6	7	7
92	Shed	12.0		12	ND	13	ND	3	2	12
95	Basement	7.3	ND	6	ND	6	ND	4	5	6
96	Shed	9.5	ND	7	ND	7	ND	6	8	6 (Dup 9)
99	Shed	5.5	ND	4	ND	4	ND	3	4	3 (Dup 3)
104	Basement	9.5		8	ND	9	ND	9	10	7
105	Basement	8.8	ND	7	ND	7	ND	6	7	7
106	Basement			7	ND	8	ND	6	8	7
107	Basement	9.6	ND	8	ND	8	ND	7	8	7 (Dup 8)
108	Shed	10.0	ND	8	ND	4	ND	3 (Dup 4)	0.5 J	3
109	Basement			9	ND	7	ND	6	5	6
110	Shed	10.1		9	ND	10	ND	8	9	9
111	Basement	3.7	ND	3	ND	ND '*	3 '*	2	3	2
117	Shed	15.6	ND	17	ND	17	ND	15	21 (Dup 21)	20

⁻⁻⁻⁻ Not sampled

ND | Result not detected.

^{*} Result likely reflects a mix up of pre-treated and post-treated water samples.

Table A-1
TCE Sampling Results for Homes with Treatment Systems in Parts Per Billion (ppb)
Little Valley Superfund Site
Page 7 of 8

ID#	System	March	n 2001	Octob	er 2002	Octob	er 2003	October 2004	October 2005	October 2006
	Location	Pre-Treat.	Post-Treat.	Pre-Treat.	Post-Treat.	Pre-Treat.	Post-Treat.	Pre-Treat.	Pre-Treat.	Pre-Treat.
118	Garage	7.9	ND	7	ND	7	ND	6	7	6
119	Basement	8.3	ND	7	ND	6	ND	5	6	6
120	Shed	9.3	ND	8	ND	7	ND	6	7	7
121	Basement	7.8	ND	8	ND	7	ND	6	8	3
122	Basement			5	ND	6	ND	5 (Dup 6)	6	6
125	Basement	4.2	ND	4	ND	4	ND	3	4	4
127	Basement	6.2	ND	4	ND	4	ND	4	5	5
133	Basement	7.0	ND	6	ND	6	ND	5	6	6
134	Basement	7.0	ND	6	ND	6	ND	5	6	6
135	Basement	7.9	ND	6	ND	6	ND	5	6	5
136	Basement	8.2	ND	7	ND	7	ND	6	7	8
137	Garage			7	ND	7	ND	6	7	7
153	Shed			7	ND					
154	Basement	7.4	ND	8	ND	6	ND	6	8 (Dup 8)	7
157	Basement	3.9	ND	4	ND	3	ND	3	5	3
162	Shed	8.5	ND	8	8	7	ND	5	6	6
163	Basement	5.8	ND	5	ND	5	ND	4	4	4 (Dup 4)
164	Basement	4.0	ND					2	2	2
166	Basement	9.5	ND	9	ND	8	ND	7	8	8
168	Barn	3.22	ND	3	ND	3	ND	2 (Dup 2)	2	2
170	Basement	9.1	ND	8	ND	7	ND	6	8	7
171	Basement			8	ND	8	ND	5	8	6
172	Shed	7.9	ND	7	ND	6	ND	6	7	5
173	Shed	.67	ND	3	ND	ND	ND	0.4 J	2	0.1 J
174	Garage	9.2	ND	8	ND	6	ND	7	8	8
176	Wood shed			8	ND	7	ND	6	8	7
178	Basement	2.6	ND	2	ND	2	ND	2	3	2

⁻⁻⁻⁻ Not sampled

ND | Result not detected.

^{*} Result likely reflects a mix up of pre-treated and post-treated water samples.

Table A-1 TCE Sampling Results for Homes with Treatment Systems in Parts Per Billion (ppb) Little Valley Superfund Site Page 8 of 8

ID#	System	March	n 2001	Octobe	er 2002	Octobe	er 2003	October 2004	October 2005	October 2006
	Location	Pre-Treat.	Post-Treat.	Pre-Treat.	Post-Treat.	Pre-Treat.	Post-Treat.	Pre-Treat.	Pre-Treat.	Pre-Treat.
184	Wood shed	10.7	ND	9	ND	8	ND	7	11	10
185	Basement	ND	· ND	ND	ND	0.3 J	ND	6	0.9 J	0.7 J
186	Garage	6.0	ND	6	ND	4	ND	4	6	5
187	Shed	7.7	ND	8	ND	8	ND	8	10	7
189	Breezeway			19	ND	21	ND	19	24 (Dup 12)	18
195	Shed	6.1	ND	5	ND	6	ND	4	6	5
205	Shed									
206	Shed			5	ND	4	ND	3	5	4
207	Basement	~~~		5	ND	5	ND	4	4	4
209	Basement	5.4	ND	*				3	4	4
210	Garage							0.7 J	4	3
211	Basement							****	23	22

⁻⁻⁻⁻ Not sampled 1. 1. 1. 1.

ND | Result not detected.

^{*} Result likely reflects a mix up of pre-treated and post-treated water samples.

Table A-2
TCE Sampling Results for Homes without Treatment Systems in Parts Per Billion (ppb)
Little Valley Superfund Site
Page 1 of 3

ID#	System	1989 - 1996	January 1997	November 1997	October 1998	Fall 1999	April 2001
	Location	Historical Range					
16	None	ND	ND	ND	0.5	ND	
	None	ND .	ND	ND		ND	ND
	None	ND	ND	ND			ND
	None	ND - 0.5	0.4	ND	0.5	0.5	0.3
24	None	ND	0.5	ND		0.5	0.3
	None	2.0	1.5		1.5	1.0	
	None	1 - 3	1.2	1.2	1.6	1.9	0.9
27	None	9.3 - 25	13.7		13 (refused)	****	****
	None	ND	ND	ND	0.5	ND	ND
	None	ND			0.5		ND
37	None	ND	ND	ND	2.7	ND	
38	None	3	0.7	3.0	2.7	2.7	1.8
	None	8 - 9.4	2.4		0.9	ND	0.6
	None	ND	ND	ND		ND	
	None	ND	ND	ND	0.5	ND	ND
	None	2 - 2.8	3.0		0.5	3.1	2.5
56	None	ND - 0.5	0.5		0.5	0.5	0.3
	None	ND - 0.5	ND			ND	
	None	1	1.0		****	1.0	0.8
60	None	ND		ND		0.4	
	None	ND	ND				
	None	ND	ND	ND	0.5	****	
	None	ND	ND	ND	0.5	ND	ND
	None	ND	ND	ND		ND	ND
	None	2	2.6		1.7	1.0	1.6
70	None	ND	ND	ND	0.7	ND	ND
	None	2	3.0			ND	ND
	None	1	1.2		0.9	1.0	0.9
	None	ND			****		
	None	ND	ND			ND	ND
94	None	ND	ND	ND	0.5	ND	ND
	None	9.4	7.7	2.7		****	6.24 (non-pot
98	None	2.6	2.7		1.7	2.6	1.5

^{---- |} Not sample

ND | Result not detected.

^{*} Result likely reflects a mix up of pre-treated and post-treated water samples.

Table A-2
TCE Sampling Results for Homes without Treatment Systems in Parts Per Billion (ppb)
Little Valley Superfund Site
Page 2 of 3

ID#	System	1989 - 1996	January 1997	November 1997	October 1998	Fall 1999	April 2001
	Location	Historical Range					
100	None	ND	ND	ND	0.5	0.5	ND
	None	1 - 2.1	2.3	2.1		2.0	
102	None	5.8	****				
103	None	ND	ND	ND	0.5	0.5	ND
112	None	1.4	1.7		1.4	3.0	2.5
113	None	2.1	2.6		1.6	1.7	1.7
114	None	ND	ND	ND	0.5	ND	ND
	None	ND	ND	ND		ND	
	None	ND	ND	ND	0.5	ND	ND
	None		1.2		0.9	1.2	1.0
	None		1.2	****	1.3	1.3	0.9
	None	***	2.3		2.0	2.4	1.9
	None		5.6				****
130	None		ND	ND		0.4	ND
	None		7.5		7.5 (refuse)	8.2	6.8
	None		ND	ND	0.5	ND	ND
	None	***	ND	ND	0.5	ND	ND
	None		ND	ND		ND	
	None			****			
	None		ND	ND		0.5	
	None		ND	ND	0.5	ND	
	None		ND	ND	0.5	ND	
	None		ND	ND	0.5	ND	ND
	None					7.5	
	None		***			0.5	ND
	None		ND	ND	0.5		
	None		ND	ND	0.5	ND	ND
	None		ND	ND		ND	ND
	None		ND	ND	0.5	ND	ND
	None		ND	ND			
	None		ND	ND	0.5	ND	ND
	None		ND	ND	0.5	ND	***
156	None		ND	ND	0.5	ND	ND

⁻⁻⁻⁻ Not sample

ND | Result not detected.

^{*} Result likely reflects a mix up of pre-treated and post-treated water samples.

Table A-2
TCE Sampling Results for Homes without Treatment Systems in Parts Per Billion (ppb)
Little Valley Superfund Site
Page 3 of 3

ID#	System	1989 - 1996	January 1997	November 1997	October 1998	Fall 1999	April 2001
	Location	Historical Range					
158	None		ND	ND	0.5	ND	ND
159	None		ND	ND	*****	ND	ND
160	None		ND	ND	0.5	ND	ND
161	None		ND	ND		ND	
	None		6.2			0.5	
167	None						
169	None		ND	ND		0.5	
175	None		14.9				ND
179	None				====		
180	None		3.3			3.5	2.7
181	None		1.6		1.5	2.1	1.1
182	None			ND	0.8	1.0	0.4
	None		0.5		0.5	1.1	1.0
188	None					A	
190	None		ND	ND .	*	ND	ND
191	None		ND	ND			
	None		ND	ND			ND
193	None		ND	ND		ND	ND
194	None		ND	ND		***	ND
196	None		3.3		3.0	3.0	2.7
	None		ND	ND		ND	ND
	None		ND	ND	0.5	ND	
199	None		ND	ND		ND	ND
	None		0.7		0.5		****
201	None		ND	ND		2.9	****
202	None		4.5	*****			
203	None		2.7	****	2.1	2.7	2.1
208	None						ND
209	None						ND

⁻⁻⁻⁻ Not sample

ND | Result not detected.

^{*} Result likely reflects a mix up of pre-treated and post-treated water samples.

Table A-3
TCE Sampling Results from State and County Agency Sampling in Parts Per Billion (ppb)
Little Valley Superfund Site
Page 1 of 1

ID#	Testing	Range	Last Sample	Date of Last	1997 EPA
	Organization		Result	Sample Result	Sample Result
7	CCHD	ND-8	10/8/1998	ND	
41	CCHD	8-20	Not Sa	ampled	
42	CCHD	ND	Not Sa	ampled	
43	CCHD	ND	Not Sa	ampled	
48	CCHD	3	Not Sa	ampled	
49	CCHD	ND	Not Sa	ampled	
63	CCHD	18-22	10/21/1998	22	19.2
74	CCHD	ND	3/19/1991	ND	
75	NYSDEC	ND	12/7/1992	ND	
76	D&M	ND	5/29/1991	ND	
77	NYSDEC	45-186	12/7/1992	186	
78	NYSDEC	27-280	12/7/1992	27	
80	NYSDEC	ND	12/7/1992	ND	
81	NYSDEC	ND	12/7/1992	ND	
82	NYSDEC	0.7-1.4	12/7/1992	1.4	
83	NYSDEC	ND	12/7/1992	ND	
84	NYSDEC	ND	12/7/1992	ND	-
85	NYSDEC	ND-0.5	12/7/1992	0.5	
89	NYSDEC	ND	12/7/1992	ND	
90	NYSDEC	ND	12/7/1992	ND	
204	unknown	0.8	10/7/1998	0.8	

CCHD = Cattaraugus County Health Department
NYSDEC = New York State Department of Environmental Conservation
D&M = Dames and Moore

APPENDIX B MONITORING WELL/PIEZOMETER ANALYTICAL RESULTS

APPENDIX B - ANALYTICAL DATA RESULTS

Table	Title
B-1	Abbreviations and Qualifiers Utilized in Result Tables
B-2	Volatile Organic Compounds - Groundwater (1998)
B-3	Volatile Organic Compounds - Groundwater (1999)
B-4	Volatile Organic Compounds - Groundwater (2000/2001)
B-5	Volatile Organic Compounds - Groundwater (2002/2003)
B-6	Volatile Organic Compounds - Groundwater (2006)
B-7	Monitored Natural Attenuation Parameters - Groundwater (2003)
B-8	Monitored Natural Attenuation Parameters - Groundwater (2006)
B-9	CRA Investigation of Bush Industries - May 1999
B-10	CRA Investigation of Bush Industries - December 1999
B-11	Volatile Organic Compounds - Quality Assurance/Quality Control (1998)
B-12	Volatile Organic Compounds - Quality Assurance/Quality Control (1999)
B-13	Volatile Organic Compounds - Quality Assurance/Quality Control (2000/2001)
B-14	Volatile Organic Compounds - Quality Assurance/Quality Control (2002/2003)
B-15	Volatile Organic Compounds - Quality Assurance/Quality Control (2006)
B-16	Monitored Natural Attenuation Parameters - Quality Assurance/Quality Control (2006)

TABLE B-1 Abbreviations and Qualifiers Utilized in Result Tables Little Valley Superfund Site Page 1 of 1

Abbreviation	Definition			
BIA	Bush Industries Area.			
CCA	Cattaraugus Cutlery Area.			
FB	Field Blank.			
1ST	First Street Area.			
GTA	Great Triangle Area.			
ID	Identification.			
KW	King Window Area.			
mg/L	milligrams per liter.			
MW	Monitoring Well Location.			
9LF	Ninth Street Landfill Area.			
ND	Not Detected.			
ppb	parts per billion (ug/kg or ug/L).			
ppm	parts per million (mg/kg or mg/L).			
PZ	Piezometer Location.			
QA	Quality Assurance.			
QC	Quality Control.			
RRAA	Railroad Avenue Area.			
TICs	Tentatively Identified Compounds.			
ug/L	micrograms per liter.			
WSA	Whig Street Area.			

Qualifier	Definition
U	Compound not detected at detection limits.
	No Tentatively Identified Compounds (TICs) identified in sample.
J	Compound value is estimated.
L	Compound value is estimated; biased low.
K	Compound value is estimated; biased high.
R	Compound value is rejected and deemed unusable.
В	Compound was also present in an associated blank sample.
Е	Compound concentration exceeds the calibration range.
D	Compound value reported is from a dilution analysis.
N	Presumptive evidence exists for the presence of compound.
NA	Not analyzed/not available.

TABLE B-2
Volatile Organic Compounds - Groundwater (1998)
Little Valley Superfund Site
Page 1 of 30

Area	Ninth Street Landfill Area	Ninth Street Landfill Area	Ninth Street Landfill Area	Ninth Street Landfill Area	Ninth Street Landfill Area
Location	9LF1	9LF1	LV-2A	LV-1	LV-1
TtEC Sample I.D.	LV-SB9LF1-66GW	LV-SB9LF1-70GW	LV-GWLV2A-01	LV-GWLV1-02	LV-GWLV1-03
Sampling Date	06/25/1998	06/26/1998	07/15/1998	07/29/1998	07/30/1998
Matrix	SimulProbe	SimulProbe	Groundwater	Groundwater	
Units	ug/L	ug/L	ug/L	ug/L	Groundwater
Cints	ug/L	ug/L	L ug/L	L ug/L	ug/L
Chloromethane	2 U	1 U	1 U	9 Ј	2 J
Bromomethane	· 1 U	1 U	1 U	i U	1 U
Vinyl chloride	1 U	1 U	1 U	1 U	iU
Chloroethane	1 U	1 U	1 U	1 U	1 U
Methylene chloride	1 U	2 U	2 U	2	2 U
Acetone	28 UJ	11 UJ	R	11 J	87 Ј
Carbon disulfide	1	1 U	1 U	l U	0.3 Ј
1,1-Dichloroethene	1 U	1 U	1 U	1 U	1 U
1,1-Dichloroethane	1 U	1 U	1 U	1 U	l UJ
cis-1,2-Dichloroethene	1 U	1 U	0.2 Ј	1 U	1 U
trans-1,2-Dichloroethene	l U	1 U	1 U	1 U	١U
Chloroform	1 U	1 U	1 U	1 U	1 U
1,2-Dichloroethane	ì U	1 U	1 U	0.3 Ј	1 U
2-Butanone	8 UJ	5 UJ	R	6 Ј	R
Bromochloromethane	ı U	1 U	1 U	1 U	1 U
1,1,1-Trichloroethane	1 U	1 U	1 U	1 U	1 U
Carbon tetrachloride	1 U	1 U	1 U	1 U	1 U
Bromodichloromethane	1 U	. 1 U	1 U	1 U	1 U
1,2-Dichloropropane	l U	1 U	1 U	1 U	1 U
cis-1,3-Dichloropropene	1 U	1 U	1 U	1 U	1 U
Trichloroethene	10	19	1 U	1 U	1 U
Dibromochloromethane	1 U	1 U	1 U	I U	1 U
1,1,2-Trichloroethane	1 U	1 U	1 U	1 U	1 U
Benzene	1	1 U	1 U	1 U	1 U
trans-1,3-Dichloropropene	1 U	1 U	1 U	1 U	1 U
Bromoform	1 U	1 U	1 U	1 U	1 U
4-Methyl-2-pentanone	5 U	5 U	5 U	5 U	5 UJ
2-Hexanone	5 U	5 U	5 U	R	R
Tetrachloroethene	1 U	1 U	1 U	1 U	1 U

TABLE B-2
Volatile Organic Compounds - Groundwater (1998)
Little Valley Superfund Site
Page 2 of 30

Area Location		Ninth Street Landfill Area 9LF1	Ninth Street Landfill Area LV-2A	Ninth Street Landfill Area LV-1	Ninth Street Landfill Area
TtEC Sample I.D.		LV-SB9LF1-70GW	LV-GWLV2A-01	LV-GWLV1-02	LV-1 LV-GWLV1-03
	13, 32,521 000 W	E. BD/EI 1 700 II	DV-GWLV2/I-01	LV-GWLVI-02	LV-GWLV1-03
Sampling Date	06/25/1998	06/26/1998	07/15/1998	07/29/1998	07/30/1998
Matrix	SimulProbe	SimulProbe	Groundwater	Groundwater	Groundwater
Units	ug/L	ug/L	ug/L	ug/L	ug/L
1,1,2,2-Tetrachloroethane	1 U	1 U	1 U	1 U	1 U
1,2-Dibromoethane	1 U	1 U	1 U	1 U	1 U
Toluene	2	1 U	1 U	1 U	1 U
Chlorobenzene	1 U	1 U	1 U	l U	I U
Ethylbenzene	1 U	1 U	1 U	1 U	1 U
Styrene	1 U	1 U	1 U	1 U	I U
Xylenes (total)	0.8 Ј	1 U	0.7 Ј	1 U	1 U
1,3-Dichlorobenzene	1 U	1 U	1 U	1 U	1 U
1,4-Dichlorobenzene	1 U	1 U	1 U	1 U	1 U
1,2-Dichlorobenzene	1 U	1 U	1 U	1 U	1 U
1,2-Dibromo-3-chloropropane	R	R	1 U	1 U	1 U
1,2,4-Trichlorobenzene	4	1 U	1 U	1 U	1 U
Total Volatile TICs	8 J			~-	,

TABLE B-2 Volatile Organic Compounds - Groundwater (1998) Little Valley Superfund Site Page 3 of 30

Area	Ninth Street Landfill Area	Bush Industries Area	Bush Industries Area	Bush Industries Area	Bush Industries Area
Location	LV-2A	BIA1	BIA1	BIA1	BIA1
TtEC Sample I.D.	LV-GWLV2-02	LV-SBBIA1-45GW	LV-SBBIA1-46GW	LV-SBBIA1-50GW	LV-SBBIA1-55GW
			Duplicate of SBBIA1-45GW		·
Sampling Date	07/30/1998	06/24/1998	06/24/1998	06/24/1998	06/24/1998
Matrix	Groundwater	SimulProbe	SimulProbe	SimulProbe	SimulProbe
Units	ug/L	ug/L	ug/L	ug/L	ug/L
Chloromethane	27 JE	1 U	2 U	2 U	1 U
Bromomethane	1 U	1 U	1 U	1 U	1 U
Vinyl chloride	1 U	1 U	1 U	1 U	1 U
Chloroethane	1 U	1 U	1 U	1 U	1 U
Methylene chloride	8 U	2 U	2 U	2 U	2 U
Acetone	19 J	13 UJ	. 15 UJ	12 UJ	11 UJ
Carbon disulfide	l UJ	1	0.9 Ј	1 U	1 U
1,1-Dichloroethene	1 U	1 U	1 U	1 U	1 U
1,1-Dichloroethane	1 UJ	1 U	1 U	1 U	1 U
cis-1,2-Dichloroethene	1 U	1 U	1 U	1 U	1 U
trans-1,2-Dichloroethene	1 U	1 U	1 U	1 U	1 U
Chloroform	1 U	1 U	1 U	1 U	1 U
1,2-Dichloroethane	0.8 Ј	1 U	1 U	1 U	l U
2-Butanone	R	2 J	3 Ј	3 Ј	2 Ј
Bromochloromethane	1 U	1 U	1 U	1 U	l U
1,1,1-Trichloroethane	1 U	1 U	1 U	1 U	1 U
Carbon tetrachloride	1 U	1 U	1 U	1 U	. 1 U
Bromodichloromethane	1 U	1 U	1 U	1 U	1 U
1,2-Dichloropropane	1 U	1 U	1 U	1 U	1 U
cis-1,3-Dichloropropene	1 U	1 U	1 U	1 U	l U
Trichloroethene	1 U	1 U	1 U	0.8 J	1
Dibromochloromethane	1 U	1 U	1 U	1 U	1 U
1,1,2-Trichloroethane	1 U	1 U	1 U	1 U	1 U
Benzene	0.3 J	1 U	1 U	0.6 J	i UJ
trans-1,3-Dichloropropene	. 1 U	1 U	1 U	1 U	1 U
Bromoform	1 U	1 U	1 U	iU	1 U
4-Methyl-2-pentanone	5 UJ	5 U	5 U	5 U	5 U
2-Hexanone	R	5 U	5 U	5 U	5 U
Tetrachloroethene	1 U	1 U	1 U	1 U	1 U

TABLE B-2 Volatile Organic Compounds - Groundwater (1998) Little Valley Superfund Site Page 4 of 30

Area	Ninth Street Landfill Area	Bush Industries Area	Bush Industries Area	Bush Industries Area	Bush Industries Area
Location	LV-2A	BIA1	BIA1	BIA1	BIA1
TtEC Sample I.D.	LV-GWLV2-02	LV-SBBIA1-45GW	LV-SBBIA1-46GW	LV-SBBIA1-50GW	LV-SBBIA1-55GW
			Duplicate of SBBIA1-45GW		
Sampling Date	07/30/1998	06/24/1998	06/24/1998	06/24/1998	06/24/1998
Matrix	Groundwater	SimulProbe	SimulProbe	SimulProbe	SimulProbe
Units	ug/L	ug/L	ug/L	ug/L	ug/L
1,1,2,2-Tetrachloroethane	1 U	1 U	1 U	1 U	1 U
1,2-Dibromoethane	1 U	1 U	1 U	1 U	1 U
Toluene	1 U	1 U	1 U	1 J	0.9 Ј
Chlorobenzene	1 U	1 U	1 U	1 UJ	1 UJ
Ethylbenzene	1 U	1 U	1 U	1 UJ	1 UJ
Styrene	1 U	1 U	IU	1 UJ	1 UJ
Xylenes (total)	l U	1 U	1 U	0.9 J	l UJ
1,3-Dichlorobenzene	1 U .	1 U	1 U	1 U	1 U
1,4-Dichlorobenzene	1 U	1 U	l U	1 U	1 U
1,2-Dichlorobenzene	1 U	1 U	1 U	1 U	1 U
1,2-Dibromo-3-chloropropane	1 U	R	R	R	R
1,2,4-Trichlorobenzene	ïU	1 U	1 U	1 U	1 U
Total Volatile TICs	als to	19 JN	17 JN	30 JN	8 JN

TABLE B-2
Volatile Organic Compounds - Groundwater (1998)
Little Valley Superfund Site
Page 5 of 30

Area	Bush Industries Area	Bush Industries Area	Bush Industries Area	Bush Industries Area	Bush Industries Area			
Location	BIA2	BIA2	BIA2	BIA2	BIA2			
TtEC Sample I.D.	LV-SBBIA2-45GW	LV-SBBIA2-46GW	LV-SBBIA2-50GW	LV-SBBIA2-57GW	LV-SBBIA2-60GW			
		Duplicate of SBBIA2-45GW						
Sampling Date	06/19/1998	06/19/1998	06/22/1998	06/22/1998	06/23/1998			
Matrix	SimulProbe	SimulProbe	SimulProbe	SimulProbe	SimulProbe			
Units	ug/L	ug/L	ug/L	ug/L	ug/L			
Chloromethane	2 U	2 U	1 U	1 U	1 U			
Bromomethane	1 U	1 U	1 U	1 U	1 U			
Vinyl chloride	1 U	1 U	1 U	. 1 U	1 U			
Chloroethane	1 U	1 U	1 U	1 U	1 U			
Methylene chloride	2 UJ	2 UJ	2 U	2 U	2 U			
Acetone	21 UJ	22 UJ	6 UJ	28 UJ	13 UJ			
Carbon disulfide	1 U	1 U	1 U	1 U	1			
1,1-Dichloroethene	1 U	I U	1 U	1 U	1 U			
1,1-Dichloroethane	1 U	1 U	1 U	1 U	1 U			
cis-1,2-Dichloroethene	1 U	1 U	0.6 Ј	1 U	1 J			
trans-1,2-Dichloroethene	1 U	. 1 U	1 U	1 U	1 U			
Chloroform	1 U	1 U	1 U	1 U	1 U			
1,2-Dichloroethane	1 U	1 U	1 U	1 U	1 U			
2-Butanone	6 UJ	6 UJ	2 Ј	6 Ј	4 J			
Bromochloromethane	1 U	1 U	1 U	1 U	1 U			
1,1,1-Trichloroethane	1 U	1 U	1 U	1 U	1 U			
Carbon tetrachloride	1 U	1 U	1 U	1 U	1 U			
Bromodichloromethane	1 U	1 U	1 U	. 1 U	1 U			
1,2-Dichloropropane	1 U	1 U	1 U	1 U	1 U			
cis-1,3-Dichloropropene	1 U	1 U	· 1 U	1 U	1 U			
Trichloroethene	1	1	6	3	10			
Dibromochloromethane ·	1 U	1 U	1 U	1 U	1 U			
1,1,2-Trichloroethane	1 U	1 U	1 U	1 U	1 U			
Benzene	1 U	1 U	1 U	1 J	0.8 J			
trans-1,3-Dichloropropene	1 U	1 U	1 U	l U	1 U			
Bromoform	1 U	1 U	I U	1 U	1 U			
4-Methyl-2-pentanone	5 U	5 U	5 U	5 U	5 U			
2-Hexanone	5 U	5 U	5 U	5 U	5 U			
Tetrachloroethene	1 U	1 U	I U	1 U	1 U			

TABLE B-2
Volatile Organic Compounds - Groundwater (1998)
Little Valley Superfund Site
Page 6 of 30

Area	Bush Industries Area	Bush Industries Area	Bush Industries Area	Bush Industries Area	Bush Industries Area
Location	BIA2	BIA2	BIA2	BIA2	BIA2
TtEC Sample I.D.	LV-SBBIA2-45GW	LV-SBBIA2-46GW	LV-SBBIA2-50GW	LV-SBBIA2-57GW	LV-SBBIA2-60GW
		Duplicate of SBBIA2-45GW			
Sampling Date	06/19/1998	06/19/1998	06/22/1998	06/22/1998	06/23/1998
Matrix	SimulProbe	SimulProbe	SimulProbe	SimulProbe	SimulProbe
Units	ug/L	ug/L	ug/L	ug/L	ug/L
1,1,2,2-Tetrachloroethane	1 U	1 U	· 1 U	1 U	1 U
1,2-Dibromoethane	1 U	1 U	1 U	1 U	1 U
Toluene	1 U	l U	1 U	2 Ј	0.8 Ј
Chlorobenzene	1 U	1 U	1 U	l UJ	1 U
Ethylbenzene	1 U	1 U	1 U	1 UJ	1 U
Styrene	1 U	1 U	1 U	1 UJ	1 U
Xylenes (total)	1 U	l U	1 U	0.8 J	1 U
1,3-Dichlorobenzene	1 U	1 U	1 U	1 U	1 U
1,4-Dichlorobenzene	1 U	1 U	1 U	1 U	1 U
1,2-Dichlorobenzene	1 U	1 U	1 U	1 U	1 U
1,2-Dibromo-3-chloropropane	R	R	R	R	R
1,2,4-Trichlorobenzene	1 U	1 U	1 U	1 U	1 U
Total Volatile TICs	33 JN	39 JN	~ "	24 JN	21 JN

TABLE B-2
Volatile Organic Compounds - Groundwater (1998)
Little Valley Superfund Site
Page 7 of 30

Area Location TtEC Sample I.D.	Bush Industries Area BIA3 LV-SBBIA3-52GW	Bush Industries Area BIA4 LV-SBBIA4-45GW	Bush Industries Area BIA5 LV-SBBIA5-40GW	Bush Industries Area BIA5 LV-SBBIA5-47GW	Bush Industries Area LV-4 LV-GWLV4-01
Sampling Date	06/17/1998	07/06/1998	07/08/1998	07/08/1998	07/14/1998
Matrix	SimulProbe	SimulProbe	SimulProbe	SimulProbe	Groundwater
Units	ug/L	ug/L	ug/L	ug/L	ug/L
Chloromethane	1 U	1	. 1 U	1 U	1 U
Bromomethane	1 U	1 U	1 U	1 U	1 U
Vinyl chloride	1 U	1 U	1 U	1 U	1 U
Chloroethane	1 U	0.8 Ј	1 U	1 U	1 U
Methylene chloride	2 U	2 U	2 U	2 U	2 U
Acetone	9 UJ	23 UJ	31 UJ	13 UJ	17 UJ
Carbon disulfide	1 U	1 U	3	0.6 Ј	1 U
1,1-Dichloroethene	1 U	1 U	1 U	l U	1 U
1,1-Dichloroethane	1 U	1 U	1 U	1 U	1 U
cis-1,2-Dichloroethene	1 U	1 U	1 U	1 U	1 U
trans-1,2-Dichloroethene	1 U	1 U	1 U	1 U	1 U
Chloroform	1 U	1 U	1 U	1 U	1 U
1,2-Dichloroethane	1 U	. 1 U	1 U	1 U	1 U
2-Butanone	5 UJ	7 UJ	6 UJ	5 UJ	5 UJ
Bromochloromethane	1 U	1 U	1 U	I U	1 U
1,1,1-Trichloroethane	1 U	1 U	1 U	1 U	1 U
Carbon tetrachloride	1 U	1 U	1 U	1 U	1 U
Bromodichloromethane	1 U	1 U	1 U	1 U	1 U
1,2-Dichloropropane	1 U	. 1 U	1 U	1 U	1 U
cis-1,3-Dichloropropene	1 U	1 U	1 U	1 U	1 U
Trichloroethene	1	1 U	1 U	1 U	1
Dibromochloromethane	1 U	1 U	1 U	1 U	1 U
1,1,2-Trichloroethane	1 U	1 U	1 U	1 U	1 U
Benzene	1 U	0.8 Ј	1 UJ	0.6 J	1 U
trans-1,3-Dichloropropene	1 U	1 U	1 U	1 U	1 U
Bromoform	1 U	1 U	1 U	1 U	1 U
4-Methyl-2-pentanone	5 U	5 U	5 U	5 U	5 U
2-Hexanone	5 U	5 U	5 U	5 U	5 U
Tetrachloroethene	1 U	1 U	1 U	l U	1 U

TABLE B-2
Volatile Organic Compounds - Groundwater (1998)
Little Valley Superfund Site
Page 8 of 30

Area Location TtEC Sample I.D.	Bush Industries Area BIA3 LV-SBBIA3-52GW	Bush Industries Area BIA4 LV-SBBIA4-45GW	Bush Industries Area BIA5 LV-SBBIA5-40GW	Bush Industries Area BIA5 LV-SBBIA5-47GW	Bush Industries Area LV-4 LV-GWLV4-01
Sampling Date Matrix Units	06/17/1998 SimulProbe ug/L	07/06/1998 SimulProbe ug/L	07/08/1998 SimulProbe ug/L	07/08/1998 SimulProbe ug/L	07/14/1998 Groundwater ug/L
1,1,2,2-Tetrachloroethane	l U	1 U	1 U	1 U	ΙU
1,2-Dibromoethane	1 U	1 U	1 U	1 U	1 U
Toluene	1 U	0.8 Ј	1 UJ	1	i U
Chlorobenzene	1 U	1 U	1 UJ	1 U	l U
Ethylbenzene	1 U	1 U	1 UJ	1 U	١U
Styrene	1 U	1 U	1 UJ	1 U	1 U
Xylenes (total)	1 U	1 U	l UJ	0.6 J	1 U
1,3-Dichlorobenzene	1 U	1 U	1 U	1 U	1 U
1,4-Dichlorobenzene	1 U	1 U	1 U	1 U	1 U
1,2-Dichlorobenzene	1 U	1 U	1 U	1 U	1 U
1,2-Dibromo-3-chloropropane	R	R	R	R	1 U
1,2,4-Trichlorobenzene	1 U	1 U	1 U	1 U	1 U
Total Volatile TICs	23 JN	56 JN	12 JN	7 JN	

TABLE B-2 Volatile Organic Compounds - Groundwater (1998) Little Valley Superfund Site Page 9 of 30

Area	Bush Industries Area	Bush Industries Area	Bush Industries Area	Bush Industries Area	Cattaraugus Cutlery Area
Location	LV-7	LV-7	LV-4	LV-7	CCA1
TtEC Sample I.D.	LV-GWLV7-01	LV-GWLV7-02	LV-GWLV4-02	LV-GWLV7-03	LV-SBCCA1-30GW
Sampling Date	07/09/1998	07/13/1998	07/29/1998	07/29/1998	06/17/1998
Matrix	Groundwater	Groundwater	Groundwater	Groundwater	SimulProbe
Units	ug/L	ug/L	ug/L	ug/L	ug/L
Chloromethane	1 UJ	4 U	5 UJ	1 UJ	1 U
Bromomethane	1 UJ	1 U	1 U	1 U	1 U
Vinyl chloride	1 UJ	1 U	1 U	1 U	1 U
Chloroethane	1 UJ	1 U	1 U	1 U	1 U
Methylene chloride	2 UJ	2 U	2 U	2 U	2 UJ
Acetone	10 UJ	9 UJ	R	R	11 UJ
Carbon disulfide	1 UJ	1 U	1 U	1 U	1 U
1,1-Dichloroethene	1 UJ	1 U	1 U	1 U	1 U
1,1-Dichloroethane	1 UJ	1 U	1 U	1 U	1 U
cis-1,2-Dichloroethene	1 UJ	1 U	1 U	1 U	1
trans-1,2-Dichloroethene	1 UJ	1 U	1 U	1 U	1 U
Chloroform	1 UJ	1 U	1 U	1 U	1 U
1,2-Dichloroethane	1 UJ	0.3 Ј	1 U	l U	1 U
2-Butanone	5 UJ	R	R	R	5 UJ
Bromochloromethane	1 UJ	1 U	1 U	1 U	1 U
1,1,1-Trichloroethane	1 UJ	1 U	1 U	1 U	l U
Carbon tetrachloride	1 UJ	1 U	1 U	1 U	1 U
Bromodichloromethane	1 UJ	1 U	1 U	1 U	l U
1,2-Dichloropropane	1 UJ	1 U	1 U	1 U	1 U
cis-1,3-Dichloropropene	1 UJ	1 U	1 U	1 U	1 U
Trichloroethene	1 UJ	1 U	1	1 U	36 D
Dibromochloromethane	1 UJ	1 U	1 U	1 U	1 U
1,1,2-Trichloroethane	1 UJ	1 U	1 U	1 U	1 U
Benzene	1 UJ	1 U	1 U	1 U	1 U
trans-1,3-Dichloropropene	l UJ	1 U	1 U	1 U	1 U
Bromoform	1 UJ	1 U	1 U	1 U	1 U
4-Methyl-2-pentanone	5 UJ	5 U	5 U	5 U	5 U
2-Hexanone	5 UJ	5 U	R	R	5 U
Tetrachloroethene	1 UJ	1 U	1 U	1 U	1 U

TABLE B-2
Volatile Organic Compounds - Groundwater (1998)
Little Valley Superfund Site
Page 10 of 30

Area Location TtEC Sample I.D.	Bush Industries Area LV-7 LV-GWLV7-01	Bush Industries Area LV-7 LV-GWLV7-02	Bush Industries Area LV-4 LV-GWLV4-02	Bush Industries Area LV-7 LV-GWLV7-03	Cattaraugus Cutlery Area CCA1 LV-SBCCA1-30GW
Sampling Date Matrix Units	07/09/1998 Groundwater ug/L	07/13/1998 Groundwater ug/L	07/29/1998 Groundwater ug/L	07/29/1998 Groundwater ug/L	06/17/1998 SimulProbe ug/L
1,1,2,2-Tetrachloroethane	1 UJ	1 U	1 U	1 U	1 U
1,2-Dibromoethane	1 UJ	1 U	1 U	1 U	1 U
Toluene	1 UJ	1 U	1 U	1 U	1 U
Chlorobenzene	1 UJ	1 U	1 U	1 U	1 U
Ethylbenzene	1 UJ	1 U	1 U	1 U	l U
Styrene	1 UJ	1 U	1 U	l U	1 U
Xylenes (total)	1 UJ	-1 U	1 U	l U	i U
1,3-Dichlorobenzene	1 UJ	1 U	1 U	iŪ	1 U
1,4-Dichlorobenzene	1 UJ	1 U	1 U	I U	1 U
1,2-Dichlorobenzene	1 UJ	1 U	1 U	1 U	1 U
1,2-Dibromo-3-chloropropane	R	1 U	1 U	1 U	R
1,2,4-Trichlorobenzene	1 UJ	1 U	1 U	I U	1 U
Total Volatile TICs					2 JN

TABLE B-2
Volatile Organic Compounds - Groundwater (1998)
Little Valley Superfund Site
Page 11 of 30

Area	Cattaraugus Cutlery Area	Cattaraugus Cutlery Area	Cattaraugus Cutlery Area	Cattaraugus Cutlery Area	Cattaraugus Cutlery Area
Location	CCA2	CCA3	MWCCA-1	MWCCA-1	MWCCA-3
TtEC Sample I.D.	LV-SBCCA2-06GW	LV-SBCCA3-33GW	LV-GWCCA1-01	LV-GWCCA4-01	LV-GWCCA3-01
	:			Duplicate of GWCCA1-01	
Sampling Date	06/16/1998	07/01/1998	07/16/1998	07/16/1998	07/16/1998
Matrix	SimulProbe	SimulProbe	Groundwater	Groundwater	Groundwater
Units	ug/kg	ug/L	ug/L	ug/L	ug/L
Chloromethane	13 UJ	1 U	1 U	1 U	1 U
Bromomethane	13 UJ	1 U	1 U	1 U	1 U
Vinyl chloride	13 UJ	1 U	1 U	1 U	1 U
Chloroethane	13 UJ	, IU	1 U	1 U	1 U
Methylene chloride	13 UJ	2 U	2 U	2 U	2 U
Acetone	13 UJ	14 UJ	29 UJ	33 UJ	40 UJ
Carbon disulfide	· 13 UJ	1 U	1 U	1 U	1 U
1,1-Dichloroethene	13 UJ	1 U	1 U	1 U	1 U
1,1-Dichloroethane	13 UJ	. 1 U	1 U	1 U	1 U
cis-1,2-Dichloroethene	13 UJ	1 U	0.2 Ј	0.2 J	2
trans-1,2-Dichloroethene	13 UJ	1 U	1 U	1 U	1 U
Chloroform	13 UJ	1 U	1 U	1 U	1 U
1,2-Dichloroethane	13 UJ	1 U	1 U	1 U	1 U
2-Butanone	13 UJ	5 UJ	9 UJ	11 UJ	10 UJ
Bromochloromethane	NA	1 U	1 U	1 U	1 U
1,1,1-Trichloroethane	13 UJ	1 U	1 U	1 U	1 U
Carbon tetrachloride	13 UJ	1 U	1 U	1 U	1 U
Bromodichloromethane	13 UJ	1 U	1 U	1 U	1 U
1,2-Dichloropropane	13 UJ	1 U	1 U	1 U	1 U
cis-1,3-Dichloropropene	13 UJ	1 U	1 U	1 U	1 U
Trichloroethene	9 Ј	12	3	3	71 D
Dibromochloromethane	13 UJ	1 U	1 U	1 U	1 U
1,1,2-Trichloroethane	13 UJ	1 U	1 U	1 U	1 U
Benzene	13 UJ	0.7 J	1 U	1 U	0.5 J
trans-1,3-Dichloropropene	13 UJ	1 U	1 U	1 U	1 U
Bromoform	13 UJ	1 U	1 U	1 U	1 U
4-Methyl-2-pentanone	13 UJ	5 U	5 U	5 U	5 U
2-Hexanone	13 UJ	5 U	5 U	5 U	5 U
Tetrachloroethene	3 J	1 U	1 U	1 U	1

TABLE B-2
Volatile Organic Compounds - Groundwater (1998)
Little Valley Superfund Site
Page 12 of 30

Area Location	Cattaraugus Cutlery Area CCA2	Cattaraugus Cutlery Area CCA3	Cattaraugus Cutlery Area MWCCA-1	Cattaraugus Cutlery Area	Cattaraugus Cutlery Area
				MWCCA-1	MWCCA-3
TtEC Sample I.D.	LV-SBCCA2-06GW	LV-SBCCA3-33GW	LV-GWCCA1-01	LV-GWCCA4-01	LV-GWCCA3-01
Samuella a Data	06/16/1009	07/01/1009	07/1///1000	Duplicate of GWCCA1-01	07/17/1000
Sampling Date		07/01/1998	07/16/1998	07/16/1998	07/16/1998
Matrix	SimulProbe	SimulProbe	Groundwater	Groundwater	Groundwater
Units	ug/kg	ug/L	ug/L	ug/L	ug/L
1,1,2,2-Tetrachloroethane	13 UJ	1 U	1 U	1 U	1 U
1,2-Dibromoethane	NA	1 U	1 U	1 U	1 U
Toluene	13 UJ	2 J	1 U	1 U	1 U
Chlorobenzene	13 UJ	1 UJ	1 U	1 U	1 U
Ethylbenzene	13 UJ	1 UJ	1 U	1 U	1 U
Styrene	13 UJ	l UJ	1 U	1 U	I U
Xylenes (total)	13 UJ	2 J	1 U	1 U	1 U
1,3-Dichlorobenzene	NA	1 U	1 U	1 U	IU
1,4-Dichlorobenzene	NA	1 U	1 U	1 U	I U
1,2-Dichlorobenzene	NA	1 U	1 U	1 U	1 U
1,2-Dibromo-3-chloropropane	NA	R	1 U	1 U	1 U
1,2,4-Trichlorobenzene	NA	1 U	1 U	1 U	1 U
Total Volatile TICs	~~	11 JN			

TABLE B-2
Volatile Organic Compounds - Groundwater (1998)
Little Valley Superfund Site
Page 13 of 30

Area	Cattaraugus Cutlery Area	Cattaraugus Cutlery Area	Cattaraugus Cutlery Area	Cattaraugus Cutlery Area	Cattaraugus Cutlery Area
Location	LV-3	MWCCA-1	MWCCA-2	MWCCA-2	MWCCA-3
TtEC Sample I.D.	LV-GWLV3-01	LV-GWCCA1-02	LV-GWCCA2-02	LV-GWCCA2-03	LV-GWCCA3-02
•				27 3 17 3 12 3	27 37 667 62
Sampling Date	07/16/1998	07/30/1998	07/27/1998	07/30/1998	07/30/1998
Matrix	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater
Units	ug/L	ug/L	ug/L	ug/L	ug/L
Chloromethane	0.4 J	4 J	1 U	1 UJ	1 UJ
Bromomethane	1 U	1 U	1 U	1 U	1 U
Vinyl chloride	1 U	1 U	1 U	- 1 U	1 U
Chloroethane	1 U	1 U	1 U -	1 U	1 U
Methylene chloride	2 U	2 U	2 U	2 U	2 U
Acetone	R	R	R	R	14 J
Carbon disulfide	1 U	1 U	1 U	1 U	1 U
1,1-Dichloroethene	1 U	1 U	1 U	1 U	1 U
1,1-Dichloroethane	l U	1 U	1 U	1 U	1 U
cis-1,2-Dichloroethene	1 U	0.5 J	1 U	1 U	3
trans-1,2-Dichloroethene	1 \mathbf{U}	1 U	1 U	1 U	1 U
Chloroform	1 U	1 U	1 U	1 U	1 U
1,2-Dichloroethane	0.3 Ј	1 U	1 U	1 U	1 U
2-Butanone	R	R	R	R	R
Bromochloromethane	1 U	1 U	1 U	1 U	١U
1,1,1-Trichloroethane	1 U	1 U	1 U	1 U	1 U
Carbon tetrachloride	1 U	1 U	1 U	1 U	1 U
Bromodichloromethane	1 U	1 U	1 U	1 U	1 U
1,2-Dichloropropane	1 U	1 U	1 U	1 U	1 U
cis-1,3-Dichloropropene	1 U	1 U	1 U	1 U	1 U
Trichloroethene	1 U	7	12	12	67 D
Dibromochloromethane	1 U	1 U	1 U	1 U	. 1 U
1,1,2-Trichloroethane	1 U	1 U	1 U	1 U	1 U
Benzene	1 U	1 U	1 U	1 U	0.4 J
trans-1,3-Dichloropropene	1 U	1 U	1 U	1 U	1 U
Bromoform	l U	1 U	1 U	1 U	1 U
4-Methyl-2-pentanone	5 U	5 U	5 U	5 U	5 U
2-Hexanone	5 U	R	R	R	R
Tetrachloroethene	1 U	1 U	0.3 J	0.3 J	1 U

TABLE B-2
Volatile Organic Compounds - Groundwater (1998)
Little Valley Superfund Site
Page 14 of 30

Area Location	LV-3	Cattaraugus Cutlery Area MWCCA-1	Cattaraugus Cutlery Area MWCCA-2	Cattaraugus Cutlery Area MWCCA-2	Cattaraugus Cutlery Area MWCCA-3
TtEC Sample I.D.	LV-GWLV3-01	LV-GWCCA1-02	LV-GWCCA2-02	LV-GWCCA2-03	LV-GWCCA3-02
Sampling Date Matrix Units	Groundwater	07/30/1998 Groundwater ug/L	07/27/1998 Groundwater ug/L	07/30/1998 Groundwater ug/L	07/30/1998 Groundwater ug/L
1,1,2,2-Tetrachloroethane	1 U	1 U	1 U	1 U	1 U
1,2-Dibromoethane	1 U	1 U	1 U	1 U	1 U
Toluene	1 U	1 U	1 U	1 U	1 U
Chlorobenzene	1 U	1 U	1 U	1 U	1 U
Ethylbenzene	1 U	1 U	1 U	1 U	1 U
Styrene	1 U	1 U	1 U	1 U	l U
Xylenes (total)	1 U	1 U	1 U	1 U	1 U
1,3-Dichlorobenzene	1 U	1 U	1 U	1 U	1 U
1,4-Dichlorobenzene	1 U	1 U	1 U	1 U	1 U
1,2-Dichlorobenzene	1 U	1 U	1 U	1 U	1 U
1,2-Dibromo-3-chloropropane	1 U	1 U	1 U	1 U	1 U
1,2,4-Trichlorobenzene	1 U	I U	1 U	1 U	1 U
Total Volatile TICs			~-	÷	

TABLE B-2
Volatile Organic Compounds - Groundwater (1998)
Little Valley Superfund Site
Page 15 of 30

Area Location TtEC Sample I.D.	Cattaraugus Cutle ₁ y Area LV-3 LV-GWLV3-02	King Window Area LV-9 LV-GWLV9-01	King Window Area Production Well LV-GWKWPW-01	King Window Area Production Well LV-GWKWWS-01	King Window Area LV-9 LV-GWLV9-02
Sampling Date	07/29/1998	07/15/1998	07/15/1998	Duplicate of GWKWPW-01 07/15/1998	07/29/1998
Matrix	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater
Units		ug/L	ug/L	ug/L	
Citis	45/12	ug/L	ug/L	ug/L	ug/L
Chloromethane	1 UJ	1 U	1 U	1 U	1 UJ
Bromomethane	1 U	1 U	1 U	i U	i U
Vinyl chloride	1 U	1 U	l U	1 U	i U
Chloroethane	1 U	1 U	1 U	1 U	i U
Methylene chloride	2 U	2 U	2 U	2 U	2 U
Acetone	R	9 UJ	13 UJ	R	6 UJ
Carbon disulfide	1 U	3	1 U	1 U	1 U
1,1-Dichloroethene	1 U	1 U	1 U	1 U	1 U
1,1-Dichloroethane	1 U	1 U	l U	1 U	1 U
cis-1,2-Dichloroethene	l U	1 U	1 U	1 U	· 1 U
trans-1,2-Dichloroethene	1 U	1 U	1 U	1 U	1 U
Chloroform	1 U	0.3 J	1 U	1 U	1 U
1,2-Dichloroethane	1 U	1 U	1 U	1 U	1 U
2-Butanone	R	2 J	5 UJ	R	R
Bromochloromethane	1 U	1 U	1 U	1 U	1 U
1,1,1-Trichloroethane	1 U	1 U	1 U	1 U	1 U
Carbon tetrachloride	1 U	0.3 Ј	1 U	1 U	1 U
Bromodichloromethane	1 U	1 U	1 U	1 U	1 U
1,2-Dichloropropane	1 U	1 U	1 U	1 U	1 U
cis-1,3-Dichloropropene	1 U	1 U	1 U	1 U	1 U
Trichloroethene	1 U	1 U	3	2	1 U
Dibromochloromethane	1 U	1 U	1 U	1 U	1 U
1,1,2-Trichloroethane	1 U	1 U	1 U	1 U	1 U
Benzene	1 U	1 U	1 U	1 U	1 U
trans-1,3-Dichloropropene	1 U	1 U	1 U	1 U	1 U
Bromoform	1 U	1 U	1 U	1 U	1 U
4-Methyl-2-pentanone	5 U	5 U	5 U	5 U	5 U
2-Hexanone	R	5 U	5 U	5 U	R
Tetrachloroethene	1 U	1 U	1 U	1 U	1 U

TABLE B-2
Volatile Organic Compounds - Groundwater (1998)
Little Valley Superfund Site
Page 16 of 30

Area Location TtEC Sample I.D. Sampling Date Matrix Units	LV-3 LV-GWLV3-02 07/29/1998 Groundwater	King Window Area LV-9 LV-GWLV9-01 07/15/1998 Groundwater ug/L	King Window Area Production Well LV-GWKWPW-01 07/15/1998 Groundwater ug/L	King Window Area Production Well LV-GWKWWS-01 Duplicate of GWKWPW-01 07/15/1998 Groundwater ug/L	King Window Area LV-9 LV-GWLV9-02 07/29/1998 Groundwater ug/L
	-				8
1,1,2,2-Tetrachloroethane	1 U	1 U	1 U	1 U	1 U
1,2-Dibromoethane	1 U	1 U	1 U	1 U	1 U
Toluene	1 U	1 U	1 U	1 U	1 U
Chlorobenzene	1 U	1 U	1 U	1 U	1 U
Ethylbenzene	1 U	1 U	1 U	1 U	iU
Styrene	1 U	1 U	1 U	1 U	ıu
Xylenes (total)	1 U	1	1 U	1 U	1 U
1,3-Dichlorobenzene	1 U	1 U	1 U	1 U	ı U
1,4-Dichlorobenzene	1 U	1 U	1 U	1 U	iu
1,2-Dichlorobenzene	1 U	1 U	1 U	1 U	I U
1,2-Dibromo-3-chloropropane	1 U	1 U	1 U	1 U	1 U
1,2,4-Trichlorobenzene	1 U	1 U	1 U	I U	I U
Total Volatile TICs					

TABLE B-2
Volatile Organic Compounds - Groundwater (1998)
Little Valley Superfund Site
Page 17 of 30

Area	King Window Area	First Street Area	First Street Area	Great Triangle Area	Great Triangle Area
Location	Production Well	1ST1	1ST1	Great Mangie Area GTA1	GTA1
TtEC Sample I.D.	LV-GWKWPW-02	LV-SB1ST1-25GW	LV-SB1ST1-26GW	LV-SBGTA1-79GW	LV-SBGTA1-84GW
•			Duplicate of SB1ST1-25GW	LV-SDGTAT-77GW	LV-SDGTAT-04GW
Sampling Date	07/30/1998	06/10/1998	06/10/1998	07/01/1998	07/01/1998
Matrix	Groundwater	SimulProbe	SimulProbe	SimulProbe	SimulProbe
Units	ug/L	ug/L	ug/L	ug/L	ug/L
				45/1	ugi
Chloromethane	1 UJ	5	10	3 UJ	1 UJ
Bromomethane	1 U	1 U	1 U	3 UJ	1 UJ
Vinyl chloride	1 U	1 U	1 U	3 UJ	1 UJ
Chloroethane	1 U	1 U	1 U	3 UJ	l UJ
Methylene chloride	2 U	2	0.8 Ј	7 UJ	2 UJ
Acetone	R	R	R	310 UJ	230 J
Carbon disulfide	1 U	1 U	1 U	3 UJ	1 UJ
1,1-Dichloroethene	1 U	1 U	1 U	3 UJ	1 UJ
1,1-Dichloroethane	1 U	1 U	1 U	3 UJ	i UJ
cis-1,2-Dichloroethene	1 U	1 U	1 U	3 UJ	1 UJ
trans-1,2-Dichloroethene	1 U	1 U	1 U	3 UJ	1 UJ
Chloroform	1 U	2	2	2 J	1 UJ
1,2-Dichloroethane	1 U	1 U	1 U	3 UJ	l UJ
2-Butanone	R	R	R	100 J	73 J
Bromochloromethane	1 U	1 U	1 U	3 UJ	1 UJ
1,1,1-Trichloroethane	1 U	1 U	1 U	R	R
Carbon tetrachloride	1 U .	1 U	1 U	R	R
Bromodichloromethane	1 U	1 U	1 U	R	R
1,2-Dichloropropane	1 U	1 U	1 U	R	R
cis-1,3-Dichloropropene	1 U	1 U	1 U	R	R
Trichloroethene	2	1 U	1 U	R	4 J
Dibromochloromethane	1 U	1 U	1 U	R	R
1,1,2-Trichloroethane	1 U	1 U	1 U	R	R R
Benzene	1 U	1 U	iU	R	3 J
trans-1,3-Dichloropropene	1 U	1 U	iU	R	R
Bromoform	1 U	1 U	1 U	R	R
4-Methyl-2-pentanone	5 U	5 U	5 U	16 UJ	5 UJ
2-Hexanone	R	R	R	16 UJ	5 J
Tetrachloroethene	1 U	1 U	1 U	3 UJ	1 UJ

TABLE B-2
Volatile Organic Compounds - Groundwater (1998)
Little Valley Superfund Site
Page 18 of 30

Area	King Window Area	First Street Area	First Street Area	Great Triangle Area	Great Triangle Area
Location	Production Well	1ST1	1ST1	GTA1	GTAI
TtEC Sample I.D.	LV-GWKWPW-02	LV-SB1ST1-25GW	LV-SB1ST1-26GW	LV-SBGTA1-79GW	LV-SBGTA1-84GW
			Duplicate of SB1ST1-25GW		
Sampling Date	07/30/1998	06/10/1998	06/10/1998	07/01/1998	07/01/1998
Matrix	Groundwater	SimulProbe	SimulProbe	SimulProbe	SimulProbe
Units	· ug/L	ug/L	ug/L	ug/L	ug/L
					3
1,1,2,2-Tetrachloroethane	1 U	1 U	1 U	3 UJ	1 UJ
1,2-Dibromoethane	1 U	1 U	1 U	3 UJ	1 UJ
Toluene	1 U	1 U	0.5 J	3 UJ	. 3 Ј
Chlorobenzene	1 U	1 U	1 U	3 UJ	1 UJ
Ethylbenzene	1 U	l U	1 U	3 UJ	0.6 J
Styrene	1 U	1 U	1 U	3 UJ	1 UJ
Xylenes (total)	1 U	1 U	1 U	3 UJ	2 UJ
1,3-Dichlorobenzene	1 U	1 U	1 U	3 UJ	l UJ
1,4-Dichlorobenzene	1 U	1 U	1 U	3 UJ	1 UJ
1,2-Dichlorobenzene	i U	1 U	1 U	3 UJ	1 UJ
1,2-Dibromo-3-chloropropane	1 U	1 U	1 U	3 UJ	1 UJ
1,2,4-Trichlorobenzene	1 U	1 U	l U	3 UJ	1 UJ
Total Volatile TICs		2 JN	2 JN	26 JN	181 JN

TABLE B-2 Volatile Organic Compounds - Groundwater (1998) Little Valley Superfund Site Page 19 of 30

Area	Great Triangle Area	Great Triangle Area	Great Triangle Area	Great Triangle Area	Great Triangle Area
Location	GTA2	GTA2	GTA2	GTA2	LV-8
TtEC Sample I.D.	LV-SBGTA2-22GW	LV-SBGTA2-30GW	LV-SBGTA2-31GW	LV-SBGTA2-35GW	LV-GWLV8-01
			Duplicate of SBGTA2-30GW		
Sampling Date	06/25/1998	06/25/1998	06/25/1998	06/25/1998	07/14/1998
Matrix	SimulProbe	SimulProbe	SimulProbe	SimulProbe	Groundwater
Units	ug/L	ug/L	ug/L	ug/L	ug/L
Chloromethane	1 U	1 77	1 YT	4 77	
Bromomethane	1 U	1 U 1 U	1 U	1 U	1 U
Vinyl chloride	1 U		1 U	1 U	1 U
Chloroethane	1 U	1 U	1 U	1 U	1 U
Methylene chloride	1 U 2 U	1 U	1 Ü	1 U	1 U
Acetone Acetone		2 U	2 U	2 U	2 U
Carbon disulfide	12 UJ	8 UJ	8 UJ	7 UJ	25 UJ
1,1-Dichloroethene	1 77	1 U	1 U	1 U	1 U
1.1-Dichloroethane	1 U	1 U	1 U	1 U	1 U
cis-1,2-Dichloroethene	l U	1 U	1 U	1 U	1 U
trans-1,2-Dichloroethene	1 U	1 U	1 U	1 U	1 U
Chloroform	1 U	1 U	1 U	1 U	1 U
1,2-Dichloroethane	1 U	1 U	1 U	1 U	1 U
1	1 U	1 U	1 U	1 U	1 U
2-Butanone	5 UJ	5 UJ	5 UJ	R	8 UJ
Bromochloromethane	1 U	1 U	1 U	1 U	1 U
1,1,1-Trichloroethane	1 U	1 U	1 U	1 U	1 U
Carbon tetrachloride	1 U	1 U	1 U	1 U	1 U
Bromodichloromethane	1 U	1 U	1 U	1 U	1 U
1,2-Dichloropropane	1 U	1 U	1 U	1 U	1 U
cis-1,3-Dichloropropene	1 U	1 U	1 U	1 U	1 U
Trichloroethene	1 U	1 U	1 U	1 U	0.3 J
Dibromochloromethane	1 U	1 U	1 U	1 U	1 U
1,1,2-Trichloroethane	1 U	1 U	1 U	-1 U	1 U
Benzene	1 U	1 U	1 U	1 U	1 U
trans-1,3-Dichloropropene	1 U	1 U	1 U	1 U	1 U
Bromoform	1 U	1 U	1 U	1 U	1 U
4-Methyl-2-pentanone	5 U	5 U	5 U	5 U	5 U
2-Hexanone	5 U	5 U	5 U	5 U	5 U
Tetrachloroethene	1 U	1 U	1 U	1 U	1 U

TABLE B-2
Volatile Organic Compounds - Groundwater (1998)
Little Valley Superfund Site
Page 20 of 30

Area	Great Triangle Area	Great Triangle Area	Great Triangle Area	Great Triangle Area	Great Triangle Area
Location	GTA2	GTA2	GTA2	GTA2	LV-8
TtEC Sample I.D.	LV-SBGTA2-22GW	LV-SBGTA2-30GW	LV-SBGTA2-31GW	LV-SBGTA2-35GW	LV-GWLV8-01
			Duplicate of SBGTA2-30GW		
Sampling Date	06/25/1998	06/25/1998	06/25/1998	06/25/1998	07/14/1998
Matrix	SimulProbe	SimulProbe	SimulProbe	SimulProbe	Groundwater
Units	ug/L	ug/L	ug/L	ug/L	ug/L
1,1,2,2-Tetrachloroethane	1 U	1 U	1 U	1 U	1 U
1,2-Dibromoethane	1 U	1 U	1 U	1 U	1 U
Toluene	1 U	1 U	1 U	1 U	1 U
Chlorobenzene	1 U	1 U	1 U	1 U	1 U
Ethylbenzene	1 U	1 U	l U	1 U	l U
Styrene	1 U	1 U	1 U	1 U	1 U
Xylenes (total)	1 U	1 U	1 U	1 U	1 U
1,3-Dichlorobenzene	1 U	1 U	1 U	1 U	1 U
1,4-Dichlorobenzene	1 U	1 U	1 U	1 U	1 U
1,2-Dichlorobenzene	1 U	1 U	1 U	1 U	i U
1,2-Dibromo-3-chloropropane	R	R	R	R	i U
1,2,4-Trichlorobenzene	1 U	1 U	1 U	1 U	i U
Total Volatile TICs	2 JN		2 JN		

TABLE B-2 Volatile Organic Compounds - Groundwater (1998) Little Valley Superfund Site Page 21 of 30

Area Location	Great Triangle Area PZ-47D	Great Triangle Area PZ-48	Great Triangle Area LV-8	Great Triangle Area PZ-47D	Great Triangle Area PZ-48
TtEC Sample I.D.	LV-GWPZ47D-01	LV-GWPZ48-01	LV-GWLV8-02	LV-GWPZ47D-02	LV-GWPZ48-02
_					
Sampling Date	07/14/1998	07/14/1998	07/29/1998	07/29/1998	07/28/1998
Matrix	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater
Units	ug/L	ug/L	ug/L	ug/L	ug/L
Chloromethane	2 U	1 U	1 U	1 UJ	7
Bromomethane	1 U	1 U	1 U	1 U	1 U
Vinyl chloride	1 U	1 U	1 U	1 U	1 U
Chloroethane	1 U	1 U	1 U	1 U	1 U
Methylene chloride	2 U	2 U	2 U	2 U	0.9 Ј
Acetone	90 UJ	11 UJ	R	27 UJ	R
Carbon disulfide	0.4 J	1 U	1 U	1 U	1 U
1,1-Dichloroethene	1 U	1 U	1 U	1 U	1 U
1,1-Dichloroethane	1 U	1 U	1 U	1 U	1 U
cis-1,2-Dichloroethene	1 U	1 U	1 U	1 U	1 U
trans-1,2-Dichloroethene	1 U	1 U	·1 U	1 U	1 U
Chloroform	1	1 U	1 U	1 U	1 U
1,2-Dichloroethane	2 U	1 U	1 U	1 U	1 U
2-Butanone	277 JD	5 UJ	R	7 Ј	R
Bromochloromethane	1 U	1 U	1 U	1 U	1 U
1,1,1-Trichloroethane	1 U	1 U	1 U	1 U	1 U
Carbon tetrachloride	1 U	1 U	1 U	1 U	1 U
Bromodichloromethane	1 U	1 U	1 U	1 U	1 U
1,2-Dichloropropane	1 U	1 U	1 U	1 U	I U
cis-1,3-Dichloropropene	1 U	1 U	1 U	1 U	1 U
Trichloroethene	0.4 Ј	6	1 U	0.5 J	5
Dibromochloromethane	1 U	1 U	1 U	1 U	1 U
1,1,2-Trichloroethane	1 U	1 U	1 U	1 U	1 U
Benzene	1 U	1 U	1 U	0.6 J	1 U
trans-1,3-Dichloropropene	1 U	1 U	1 U	1 U	1 U
Bromoform	1 U	1 U	1 U	1 U	1 U
4-Methyl-2-pentanone	5 U	5 U	5 U	5 U	5 U
2-Hexanone	5 U	5 U	R	R	R
Tetrachloroethene	1 U	1 U	1 U	1 U	1 U

TABLE B-2 Volatile Organic Compounds - Groundwater (1998) Little Valley Superfund Site Page 22 of 30

Area Location TtEC Sample I.D.	Great Triangle Area PZ-47D LV-GWPZ47D-01	Great Triangle Area PZ-48 LV-GWPZ48-01	Great Triangle Area LV-8 LV-GWLV8-02	Great Triangle Area PZ-47D LV-GWPZ47D-02	Great Triangle Area PZ-48 LV-GWPZ48-02
Sampling Date Matrix Units	07/14/1998 Groundwater ug/L	07/14/1998 Groundwater ug/L	07/29/1998 Groundwater ug/L	07/29/1998 Groundwater ug/L	07/28/1998 Groundwater ug/L
1,1,2,2-Tetrachloroethane	1 U	1 U	1 U	1 U	1 U
1,2-Dibromoethane	1 U	1 U	1 U	1 U	1 U
Toluene	2	1 U	1 U	1 U	l U
Chlorobenzene	1 U	1 U	1 U	1 U	1 U
Ethylbenzene	1 U	1 U	1 U	1 U	1 U
Styrene	1 U	l U	1 U	1 U	1 U
Xylenes (total)	2 U	1 U	1 U	1 U	1 U
1,3-Dichlorobenzene	1 U	1 U	1 U	1 U	1 U
1,4-Dichlorobenzene	1 U	1 U	1 U	1 U	1 U
1,2-Dichlorobenzene	1 U	1 U	1 U	1 U	1 U
1,2-Dibromo-3-chloropropane	1 U	1 U	1 U	1 U	1 U
1,2,4-Trichlorobenzene	1 U	1 U	1 U	1 U	1 U
Total Volatile TICs	12 JN				40 Au

TABLE B-2
Volatile Organic Compounds - Groundwater (1998)
Little Valley Superfund Site
Page 23 of 30

Area	Whig Street Area	Whig Street Area	Luminite Area	Luminite Area	Luminite Area
Location	WSA1	WSA1	PZ-36	PZ-42	PZ-43
TtEC Sample I.D.	LV-SBWSA1-30GW	LV-SBWSA1-35GW	LV-GWPZ36-01	LV-GWPZ42-01	LV-GWPZ43-01
Sampling Date	06/29/1998	06/29/1998	07/13/1998	07/13/1998	07/14/1998
Matrix	SimulProbe	SimulProbe	Groundwater	Groundwater	Groundwater
Units	ug/L	ug/L	ug/L	ug/L	ug/L
Chi					
Chloromethane Bromomethane	1 U	1 U	1 U	1 U	1 U
1	1 U	1 U	1 U	1 U	1 U
Vinyl chloride	1 U	1 U	1 U	1 U	1 U
Chloroethane	1 U	1 U	1 U	1 U	1 U
Methylene chloride	2 U	2 U	2 U	2 U	2 U
Acetone	8 UJ	12 UJ	5 UJ	7 UJ	5 UJ
Carbon disulfide	1 U	1 U	1 U	1 U	1 U
1,1-Dichloroethene	1 U	1 U	1 U	1 U	1 U
1,1-Dichloroethane	1 U	1 U	1 U	1 U	1 U
cis-1,2-Dichloroethene	1 U	1 U	1 U	1 U	1 U
trans-1,2-Dichloroethene	1 U	1 U	1 U	1 U	1 U
Chloroform	1 U	1 U	1 U	1 U	1 U
1,2-Dichloroethane	1 U	1 U	1 U	1 U	1 U
2-Butanone	R	R	R	R	R
Bromochloromethane	1 U	1 U	1 U	1 U	1 U
1,1,1-Trichloroethane	1 U	1 U	1 U	1 U	1 U
Carbon tetrachloride	1 U	1 U	1 U	1 U	1 U
Bromodichloromethane	1 U	1 U	1 U	1 U	1 U
1,2-Dichloropropane	1 U	1 U	1 U	1 U	1 U
cis-1,3-Dichloropropene	1 U	1 U	1 U	1 U	i U
Trichloroethene	1 U	0.6 Ј	8	2	2
Dibromochloromethane	1 U	1 U	i U	- 1 U	1 U
1,1,2-Trichloroethane	1 U	1 U	1 U	1 U	1 U
Benzene	1 UJ	0.6 Ј	l U	iU	1 U
trans-1,3-Dichloropropene	* U	1 U	1 U	iU	1 U
Bromoform	1 U	1 U	iU	i U	1 U
4-Methyl-2-pentanone	5 U	5 U	5 U	5 U	5 U
2-Hexanone	5 U	5 U	5 U	5 U	5 U
Tetrachloroethene	1 U	1 U	īŪ	1 U	1 U

TABLE B-2
Volatile Organic Compounds - Groundwater (1998)
Little Valley Superfund Site
Page 24 of 30

Area Location TtEC Sample I.D.	Whig Street Area WSA1 LV-SBWSA1-30GW	Whig Street Area WSA1 LV-SBWSA1-35GW	Luminite Area PZ-36 LV-GWPZ36-01	Luminite Area PZ-42 LV-GWPZ42-01	Luminite Area PZ-43 LV-GWPZ43-01
Sampling Date Matrix Units	06/29/1998 SimulProbe ug/L	06/29/1998 SimulProbe ug/L	07/13/1998 Groundwater ug/L	07/13/1998 Groundwater ug/L	07/14/1998 Groundwater ug/L
1,1,2,2-Tetrachloroethane	1 U	1 U	1 U	1 U	1 U
1,2-Dibromoethane	l U	1 U	1 U	l U	I U
Toluene	0.8 J	2 J	1 U	1 U	1 U
Chlorobenzene	l UJ	1 UJ	1 U	1 U	1 U
Ethylbenzene	1 UJ	1 UJ	1 U	1 U	I U
Styrene	1 UJ	1 UJ -	1 U	1 U	1 U
Xylenes (total)	0.8 J	1 J	1 U	1 U	1 U
1,3-Dichlorobenzene	1 U	1 U	1 U	1 U	1 U
1,4-Dichlorobenzene	1 U	1 U	1 U	1 U	1 U
1,2-Dichlorobenzene	1 U	1 U	1 U	1 U	1 U
1,2-Dibromo-3-chloropropane	R	\mathbf{R}	1 U	1 U	1 U
1,2,4-Trichlorobenzene	1 U	1 U	1 U	1 U	1 U
Total Volatile TICs	2 JN	5 JN			

TABLE B-2
Volatile Organic Compounds - Groundwater (1998)
Little Valley Superfund Site
Page 25 of 30

Area	Luminite Area	Luminite Area	Luminite Area	Luminite Area	Luminite Area
Location	PZ-51	PZ-59	PZ-60D	PZ-60D	PZ-36
TtEC Sample I.D.	LV-GWPZ51-01	LV-GWPZ59-01	LV-GWPZ60D-01	LV-GWPZ60S-01	LV-GWPZ36-02
				Duplicate of GWPZ60D-01	
Sampling Date	07/13/1998	07/13/1998	07/13/1998	07/13/1998	07/28/1998
Matrix	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater
Units	ug/L	ug/L	ug/L	ug/L	ug/L
Chloromethane	1 U	1 U	1 U	1 U	2
Bromomethane	1 U	1 U	1 U	1 U	1 U
Vinyl chloride	1 U	1 U	1 U	1 U	1 U
Chloroethane	1 U	1 U	1 U	1 U	1 U
Methylene chloride	2 U	2 U	2 U	2 U	0.4 J
Acetone	6 UJ	5 UJ	5 UJ	5 UJ	R
Carbon disulfide	1 U	1 U	1 U	1 U	1 U
1,1-Dichloroethene	1 U	1 U	· 1 U	1 U	1 U
1,1-Dichloroethane	1 U	1 U	1 U	l U	1 U
cis-1,2-Dichloroethene	1 U	1 U	1 U	1 U	1 U
trans-1,2-Dichloroethene	1 U	1 U	1 U	1 U	1 U
Chloroform	1 U	1 U	1 U	1 U	1 U
1,2-Dichloroethane	1 U	1 U	1 U	1 U	1 U
2-Butanone	R	R	1 J	2 Ј	R
Bromochloromethane	1 U	1 U	1 U	1 U	1 U
1,1,1-Trichloroethane	1 U	1 U	1 U	1 U	1 U
Carbon tetrachloride	1 U	1 U	1 U	1 U	1 U
Bromodichloromethane	1 U	1 U	1 U	1 U	1 U
1,2-Dichloropropane	1 U	1 U	1 U	1 U	1 U
cis-1,3-Dichloropropene	1 U	1 U	1 U	1 U	1 U
Trichloroethene	8	8	10	. 10	6
Dibromochloromethane	1 U	1 U	1 U	ıU	i U
1,1,2-Trichloroethane	1 U	1 U	1 U	i U	1 U
Benzene	1 U	1 U	1 U	1 U	1 U
trans-1,3-Dichloropropene	1 U	1 U	i U	i U	1 U
Bromoform	1 U	1 U	i U	i U	1 U
4-Methyl-2-pentanone	5 U	5 U	5 U	5 U	5 U
2-Hexanone	5 U	5 U	5 U	5 U	R
Tetrachloroethene	1 U	1 U	1 U	1 U	1 U

TABLE B-2
Volatile Organic Compounds - Groundwater (1998)
Little Valley Superfund Site
Page 26 of 30

Area Location TtEC Sample I.D.	Luminite Area PZ-51 LV-GWPZ51-01	Luminite Area PZ-59 LV-GWPZ59-01	Luminite Area PZ-60D LV-GWPZ60D-01	Luminite Area PZ-60D LV-GWPZ60S-01 Duplicate of GWPZ60D-01	Luminite Area PZ-36 LV-GWPZ36-02
Sampling Date	07/13/1998	07/13/1998	07/13/1998	07/13/1998	07/28/1998
Matrix	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater
Units	ug/L	ug/L	ug/L	ug/L	ug/L
1,1,2,2-Tetrachloroethane	1 U	1 U	1 U	1 U	1 U
1,2-Dibromoethane	1 U	1 U	1 U	1 U	1 U
Toluene	1 U	1 U	1 U	1 U	1 U
Chlorobenzene	1 U	1 U	1 U	1 U	1 U
Ethylbenzene	1 U	1 U	1 U	1 U	1 U
Styrene	1 U	1 U	1 U	1 U	1 U
Xylenes (total)	1 U	1 U	1 U	1 U	1 U
1,3-Dichlorobenzene	1 U	1 U	1 U	1 U	1 U
1,4-Dichlorobenzene	1 U	1 U	1 U	1 U	l U
1,2-Dichlorobenzene	1 U	1 U	1 U	1 U	1 U
1,2-Dibromo-3-chloropropane	1 U	1 U	1 U	1 U	1 U
1,2,4-Trichlorobenzene	1 U	1 U	1 U	ı U	1 U
Total Volatile TICs					

TABLE B-2 Volatile Organic Compounds - Groundwater (1998) Little Valley Superfund Site Page 27 of 30

Area	Luminite Area	Luminite Area	Luminite Area	Luminite Area	Luminite Area
Location	PZ-42	PZ-43	PZ-43	PZ-51	PZ-59
TtEC Sample I.D.	LV-GWPZ42-02	LV-GWPZ43-02	LV-GWPZ83-02	LV-GWPZ51-02	LV-GWPZ59-02
			Duplicate of GWPZ43-02		
Sampling Date	07/28/1998	07/28/1998	07/28/1998	07/27/1998	07/29/1998
Matrix	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater
Units	ug/L	ug/L	ug/L	ug/L	ug/L
Chloromethane	1 U	3	1 U	1 U	1 U
Bromomethane	1 U	1 U	1 U	1 U	1 U
Vinyl chloride	1 U	1 U	1 U	1 U	1 U
Chloroethane	1 U	1 U	1 U	ΙU	1 U
Methylene chloride	2 U	0.6 J	2 U	2 U	2 U
Acetone	R	R	R	R	R
Carbon disulfide	1 U	1 U	1 U	1 U	1 U
1,1-Dichloroethene	1 U	1 U	1 U	1 U	1 U
1,1-Dichloroethane	1 U	· 1 U	1 U	1 U	1 U
cis-1,2-Dichloroethene	1 U	1 U	1 U	1 U	١U
trans-1,2-Dichloroethene	· 1 U	1 U	I U	1 U	1 U
Chloroform	1 U	1 U	1 U	1 U	1 U
1,2-Dichloroethane	1 U	l U	1 U	1 U	ΙŪ
2-Butanone	R	R	R	R	R
Bromochloromethane	1 U	1 U	1 U	1 U	1 U
1,1,1-Trichloroethane	1 U	1 U	1 U	1 U	1 U
Carbon tetrachloride	l U	1 U	1 U	1 U	1 U
Bromodichloromethane	1 U	1 U	1 U	1 U	1 U
1,2-Dichloropropane	1 U	1 U	1 U	1 U	l U
cis-1,3-Dichloropropene	1 U	1 U	1 U	1 U	1 U
Trichloroethene	2	0.5 J	0.5 Ј	8	7
Dibromochloromethane	1 U	1 U	1 U	1 U	1 U
1,1,2-Trichloroethane	1 U	1 U	1 U	1 U	1 U
Benzene	1 U	1 U	1 U	1 U	1 U
trans-1,3-Dichloropropene	1 U	1 U	1 U	1 U	1 U
Bromoform	1 U	1 U	1 U	1 U	1 U
4-Methyl-2-pentanone	5 U	5 U	5 U	5 U	5 U
2-Hexanone	R	R	R	R	R
Tetrachloroethene	1 U	1 U	1 U	1 U	l U

TABLE B-2 Volatile Organic Compounds - Groundwater (1998) Little Valley Superfund Site Page 28 of 30

Area Location TtEC Sample I.D.	Luminite Area PZ-42 LV-GWPZ42-02	Luminite Area PZ-43 LV-GWPZ43-02	Luminite Area PZ-43 LV-GWPZ83-02	Luminite Area PZ-51 LV-GWPZ51-02	Luminite Area PZ-59 LV-GWPZ59-02
Sampling Date Matrix Units	07/28/1998 Groundwater ug/L	07/28/1998 Groundwater ug/L	Duplicate of GWPZ43-02 07/28/1998 Groundwater ug/L	07/27/1998 Groundwater ug/L	07/29/1998 Groundwater ug/L
1,1,2,2-Tetrachloroethane	1 U	1 U	1 U	1 U	1 U
1,2-Dibromoethane	1 U	1 U	1 U	1 U	1 U
Toluene	1 U	1 U	iU	1 U	1 U
Chlorobenzene	1 U	1 U	1 U	ı U	1 U
Ethylbenzene	1 U	1 U	I U	1 U	1 U
Styrene	1 U	1 U	1 U	1 U	1 U
Xylenes (total)	1 U	1 U	1 U	1 U	1 U
1,3-Dichlorobenzene	1 U	1 U	1 U	1 U	1 U
1,4-Dichlorobenzene	1 U	1 U	1 U	1 U	1 U
1,2-Dichlorobenzene	1 U	1 U	1 U	1 U	iŪ
1,2-Dibromo-3-chloropropane	1 U	1 U	1 U	1 U	1 U
1,2,4-Trichlorobenzene	1 U	1 U	1 U	1 U	1 U
Total Volatile TICs		·			35 au

TABLE B-2
Volatile Organic Compounds - Groundwater (1998)
Little Valley Superfund Site
Page 29 of 30

Area	Luminite Area
Location	PZ-60D
TtEC Sample I.D.	LV-GWPZ60D-02
Sampling Date	07/28/1998
Matrix	Groundwater
Units	ug/L
Chloromethane	1 U
Bromomethane	1 U
Vinyl chloride	1 U
Chloroethane	1 U
Methylene chloride	2 U
Acetone	R
Carbon disulfide	1 U
1,1-Dichloroethene	1 U
1,1-Dichloroethane	1 U
cis-1,2-Dichloroethene	1 U
trans-1,2-Dichloroethene	1 U
Chloroform	1 U
1,2-Dichloroethane	1 U
2-Butanone	R
Bromochloromethane	1 U
1,1,1-Trichloroethane	1 U
Carbon tetrachloride	1 U
Bromodichloromethane	l U
1,2-Dichloropropane	1 U
cis-1,3-Dichloropropene	1 U
Trichloroethene	8
Dibromochloromethane	i U
1,1,2-Trichloroethane	1 U
Benzene	1 U
trans-1,3-Dichloropropene	i U
Bromoform	1 U
4-Methyl-2-pentanone	5 U
2-Hexanone	R
Tetrachloroethene	ıÜ
	1 0

TABLE B-2 Volatile Organic Compounds - Groundwater (1998) Little Valley Superfund Site Page 30 of 30

Area	Luminite Area
Location	PZ-60D
TtEC Sample I.D.	LV-GWPZ60D-02
Sampling Date	07/28/1998
Matrix	Groundwater
Units	ug/L

1,1,2,2-Tetrachloroethane	1 []
1,2-Dibromoethane	1 1 1
Toluene	iu
Chlorobenzene	l iu l
Ethylbenzene	1 U
Styrene	1 U
Xylenes (total)	1 U
1,3-Dichlorobenzene	1 U
1,4-Dichlorobenzene	1 U
1,2-Dichlorobenzene	1 U
1,2-Dibromo-3-chloropropane	1 U
1,2,4-Trichlorobenzene	1 U
Total Volatile TICs	

TABLE B-3
Volatile Organic Compounds - Groundwater (1999)
Little Valley Superfund Site
Page 1 of 6

Area	Cattaraugus Cutlery	Cattaraugus Cutlery	Cattaraugus Cutlery	Cattaraugus Cutlery	Cattaraugus Cutlery
Location	MWCCA-2	MWCCA-4	MWCCA-5	MWCCA-8	MWCCA-6
TtEC Sample I.D.	LI-GW-CCA2-04	LI-GW-CCA4-01	LI-GW-CCA5-01	LI-GW-CCA8-01	LI-GW-CCA6-01
1				Duplicate of MWCCA-5	LI-GW-CCA0-01
Sampling Date	10/13/1999	10/12/1999	10/12/1999	10/12/1999	10/13/1999
Matrix	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater
Units	ug/L	ug/L	ug/L	ug/L	ug/L
	<u> </u>	<u> </u>		45/2	ag/L
Chloromethane	l	1 U	1 U	1 U	1 U
Bromomethane	1 U	1 U	i U	1 U	1 U
Vinyl Chloride	1 U	l U	1 U	1 U	1 U
Chloroethane	1 U	1 U	1 Ü	1 U	1 U
Methylene Chloride	2 U	2 U	2 U	2 U	2 U
Acetone	29 Ј	12 UJ	12 UJ	R	8 J
Carbon Disulfide	2 U	1 U	1 U	1 U	1 U
1,1-Dichloroethene	1 U	1 U	iU	1 U	1 U
1,1-Dichloroethane	1 U	1 U	1 U	1 U	1 U
cis-1,2-Dichloroethene	1 U	1 U	1 U	1 U	0.5 J
trans-1,2-Dichloroethene	1 U	1 U	1 U	1 U	0.5 J
Chloroform	1 U	1 U	1 U	1 U	1 U
1,2-Dichloroethane	0.4 J	1 U	i U	1 U	1 U
2-Butanone	8 J	R	R	R	R
Bromochloromethane	1 U	1 U	1 U	I U	1 U
1,1,1-Trichloroethane	1 U	1 U	1 U	1 U	1 U
Carbon Tetrachloride	1 U	1 U	l U	1 U	1 U
Bromodichloromethane	1 U	1 U	i U	1 U	1 U
1,2-Dichloropropane	1 U	1 U	1 U	1 U	1 U
cis-1,3-Dichloropropene	1 U	1 U	1 U	1 U	1 U
Trichloroethene	8	1 U	3	2	31 D
Dibromochloromethane	1 U	1 U	1 U	1 U	1 U
1,1,2-Trichloroethane	1 U	1 U	1 U	1 U	1 U
Benzene	1 U	1 U	. 1 U	1 U	1 U
trans-1,3-Dichloropropene	1 U	1 U	1 U	l U	1 U
Bromoform	1 U	1 U	l U	1 U	1 U
4-Methyl-2-pentanone	5 U	5 U	5 U	5 U	5 U
2-Hexanone	5 U	5 U	5 U	5 U	R
Tetrachloroethene	0.3 Ј	1 U	1 U	1 U	1

TABLE B-3
Volatile Organic Compounds - Groundwater (1999)
Little Valley Superfund Site
Page 2 of 6

Area Location	Cattaraugus Cutlery MWCCA-2	Cattaraugus Cutlery MWCCA-4	Cattaraugus Cutlery	Cattaraugus Cutlery	Cattaraugus Cutlery
TtEC Sample I.D.	LI-GW-CCA2-04	LI-GW-CCA4-01	MWCCA-5	MWCCA-8	MWCCA-6
Tibe Sample 1.D.	LI-GW-CCA2-04	LI-GW-CCA4-01	LI-GW-CCA5-01	LI-GW-CCA8-01	LI-GW-CCA6-01
Sampling Date	10/13/1999	10/12/1999	10/12/1999	Duplicate of MWCCA-5	10/12/1000
Matrix	Groundwater	Groundwater		10/12/1999	10/13/1999
Units	ug/L		Groundwater	Groundwater	Groundwater
Cints	ug/L	ug/L	ug/L	ug/L	ug/L
1,1,2,2-Tetrachloroethane	1 U	1 U	1 17		
1,2-Dibromoethane	1 U	1 U	1 U	1 U	1 U
Toluene	l UJ		1 U	1 U	1 U
Chlorobenzene		1 UJ	1 UJ	1 UJ	1 U
1	1 U	1 U	1 U	1 U	1 U
Ethylbenzene	1 U	1 U	1 U	1 U	1 U
Styrene	1 U	1 U	1 U	1 U	1 U
Xylenes (total)	1 U	1 U	1 U	1 U	1 U
1,2-Dichlorobenzene	1 U	1 U	1 U	1 U	1 U
1,3-Dichlorobenzene	1 U	1 U	1 U	1 U	1 U
1,4-Dichlorobenzene	1 U	1 U	i U	1 U	I
1,2-Dibromo-3-chloropropane	R	R	R	R	1 U
1,2,4-Trichlorobenzene	1 U	1 U	1 U	1 U	R
Total Volatile TICs					1 U

TABLE B-3
Volatile Organic Compounds - Groundwater (1999)
Little Valley Superfund Site
Page 3 of 6

Area Location TtEC Sample I.D.	Cattaraugus Cutlery MWCCA-7 LI-GW-CCA7-01	Cattaraugus Cutlery Production Well LI-GW-CCAPW-01	Cattaraugus Cutlery MWCCA-2 LI-GW-CCA2-05	Cattaraugus Cutlery MWCCA-4 LI-GW-CCA4-02	Cattaraugus Cutlery MWCCA-5 LI-GW-CCA5-02
Sampling Date	10/13/1999	10/13/1999	10/27/1999	10/26/1999	10/26/1999
Matrix	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater
Units	ug/L	ug/L	ug/L	ug/L	ug/L
					<u> </u>
Chloromethane	1 U	1 U	0.7 J	1 U	0.5 J
Bromomethane	1 U	1 U	1 U	1 U	1 U
Vinyl Chloride	1 U	1 U	1 U	1 U	1 U
Chloroethane	1 U	1 U	1 U	1 U	1 U
Methylene Chloride	2 U	2 U	2 U	2 U	2 U
Acetone	13 J	R	. 18 UJ	R	9 UJ
Carbon Disulfide	1 U	1 U	1 U	1 U	1 U
1,1-Dichloroethene	1 U	1 U	1 U	1 U	1 U
1,1-Dichloroethane	1 U	1 U	1 U	1 U	1 U
cis-1,2-Dichloroethene	1 U	1 U	1 U	1 U	1 U
trans-1,2-Dichloroethene	1 U	1 U	1 U	1 U	1 U
Chloroform	1 U	1 U	1 U	1 U	1 U
1,2-Dichloroethane	1 U	1 U	1 U	1 U	1 U
2-Butanone	R	R	R	R	R
Bromochloromethane	1 U	1 U	1 U	1 U	1 U
1,1,1-Trichloroethane	1 U	1 U	1 U	1 U	1 U
Carbon Tetrachloride	1 U	. 1 U	1 U	1 U	1 U
Bromodichloromethane	1 U	1 U	1 U	1 U	1 U
1,2-Dichloropropane	1 U	1 U	1 U	1 U	1 U
cis-1,3-Dichloropropene	1 U	1 U	1 U	1 U	1 U
Trichloroethene	0.8 Ј	1 U	3	1 U	1
Dibromochloromethane	1 U	1 U	1 U	1 U	1 U
1,1,2-Trichloroethane	1 U	1 U	1 U	1 U	1 U
Benzene	1 U	1 U	1 U	1 U	1 U
trans-1,3-Dichloropropene	1 U	1 U	l UJ	1 U	1 U
Bromoform	1 U	1 U	1 U	1 U	1 U
4-Methyl-2-pentanone	5 U	5 U	R	5 U	5 U
2-Hexanone	R	5 U	R	R	R
Tetrachloroethene	l U	1 U	. 1 U	1 U	1 U

TABLE B-3
Volatile Organic Compounds - Groundwater (1999)
Little Valley Superfund Site
Page 4 of 6

Area Location TtEC Sample I.D.	Cattaraugus Cutlery MWCCA-7 LI-GW-CCA7-01	Cattaraugus Cutlery Production Well LI-GW-CCAPW-01	Cattaraugus Cutlery MWCCA-2 LI-GW-CCA2-05	Cattaraugus Cutlery MWCCA-4 LI-GW-CCA4-02	Cattaraugus Cutlery MWCCA-5 LI-GW-CCA5-02
Sampling Date	10/13/1999	10/13/1999	10/27/1999	10/26/1999	10/26/1999
Matrix Units	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater
Cints	ug/L	ug/L	ug/L	ug/L	ug/L
1,1,2,2-Tetrachloroethane	1 U	1 U	1 U	1 U	1 U
1,2-Dibromoethane	1 U	1 U	1 U	1 U	1 U
Toluene	1 U	1 UJ	1 U	1 U	2 U
Chlorobenzene	1 U	1 U	1 U	1 U	1 U
Ethylbenzene	1 U	1 U	1 U	i U	1 U
Styrene	1 U	1 U	î U	1 U	l U
Xylenes (total)	1 U	1 U	1 U	i U	1 U
1,2-Dichlorobenzene	1 U	1 U	1 U	l U	l U
1,3-Dichlorobenzene	1 U	l U	1 U	1 U	l U
1,4-Dichlorobenzene	1 U	1 U	1 U	1 U	i U
1,2-Dibromo-3-chloropropane	R	R	1 UJ	1 UJ	l UJ
1,2,4-Trichlorobenzene	1 U	1 U	1 UJ	1 U	1 U
Total Volatile TICs	•		~~		

TABLE B-3
Volatile Organic Compounds - Groundwater (1999)
Little Valley Superfund Site
Page 5 of 6

Area	Cattaraugus Cutlery	Cattaraugus Cutlery	Cattaraugus Cutlery	Cattaraugus Cutlery
Location	MWCCA-6	MWCCA-9	MWCCA-7	Production Well
TtEC Sample I.D.	LI-GW-CCA6-02	LI-GW-CCA9-02	LI-GW-CCA7-02	LI-GW-CCAPW-02
·		Duplicate of MWCCA-6		
Sampling Date	10/26/1999	10/26/1999	10/27/1999	10/27/1999
Matrix	Groundwater	Groundwater	Groundwater	Groundwater
Units	ug/L	ug/L	ug/L	ug/L
				<u> </u>
Chloromethane	0.9 Ј	1 U	1 U	1 U
Bromomethane	1 U	1 U	l U	1 U
Vinyl Chloride	1 U	1 U	١U	1 U
Chloroethane	l U	1 U	l U	1 U
Methylene Chloride	2 U	2 U	2 U	2 U
Acetone	14 UJ	7 UJ	R	R
Carbon Disulfide	1 U	1 U	1 U	1 U
1,1-Dichloroethene	1 U	1 U	1 U	1 U
1,1-Dichloroethane	1 U	1 U .	1 U	1 U
cis-1,2-Dichloroethene	2	2	1 U	1 U
trans-1,2-Dichloroethene	1 U	1 U	1 U	1 U
Chloroform	1 U	1 U	1 U	1 U
1,2-Dichloroethane	1 U	1 U	1 U	1 U
2-Butanone	R	R	R	R
Bromochloromethane	1 U	1 U	1 U	1 U
1,1,1-Trichloroethane	1 U	1 U	1 U	1 U
Carbon Tetrachloride	1 U	1 U	1 U	1 U
Bromodichloromethane	1 U	1 U	1 U	1 U
1,2-Dichloropropane	1 U	1 U	1 U	I U
cis-1,3-Dichloropropene	1 U	1 U	1 U	1 U
Trichloroethene	62 D	62 D	2	1 U
Dibromochloromethane	1 U	1 U	1 U	1 U
1,1,2-Trichloroethane	1 U	1 U	1 U	1 U
Benzene	1 U	1 U	1 U	1 U
trans-1,3-Dichloropropene	1 U	1 U	1 UJ	1 UJ
Bromoform	1 U	1 U	1 U	l U
4-Methyl-2-pentanone	5 U	5 U	R	R
2-Hexanone	R	R	R	R
Tetrachloroethene	3	2	1 U	1 U

TABLE B-3
Volatile Organic Compounds - Groundwater (1999)
Little Valley Superfund Site
Page 6 of 6

Area	Cattaraugus Cutlery	Cattaraugus Cutlery	Cattaraugus Cutlery	Cattaraugus Cutlery
Location	MWCCA-6	MWCCA-9	MWCCA-7	Production Well
TtEC Sample I.D.	LI-GW-CCA6-02	LI-GW-CCA9-02	LI-GW-CCA7-02	LI-GW-CCAPW-02
TEC Sample 1.D.	LI-GW-CCA0-02		LI-GW-CCA7-02	LI-GW-CCAPW-02
Sampling Date	10/26/1999	Duplicate of MWCCA-6	10/27/1000	10/27/1000
		10/26/1999	10/27/1999	10/27/1999
Matrix	Groundwater	Groundwater	Groundwater	Groundwater
Units	ug/L	ug/L	ug/L	ug/L
1,1,2,2-Tetrachloroethane	1 U	l U	1 U	1 U
1,2-Dibromoethane	1 U	1 U	1 U	1 U
Toluene	1 U	1 UJ	1 U	1 U
Chlorobenzene	· 1 U	1 U	1 U	1 U
Ethylbenzene	1 U	1 U	1 U	1 U
Styrene	1 U	1 U	1 U	1 U
Xylenes (total)	1 U	1 U	l U	1 U
1,2-Dichlorobenzene	1 U	1 U	1 U	l. U
1,3-Dichlorobenzene	1 U	1 U	1 U	1 U
1,4-Dichlorobenzene	1 U	1 U	1 U	1 U
1,2-Dibromo-3-chloropropane	1 UJ	1 UJ	1 UJ	1 UJ
1,2,4-Trichlorobenzene	1 U	1 U	1 UJ	1 UJ
Total Volatile TICs				

TABLE B-4
Volatile Organic Compounds - Groundwater (2000/2001)
Little Valley Superfund Site
Page 1 of 6

Area	Bush Industries	Bush Industries	Bush Industries	Bush Industries	Bush Industries
Location	MW-1	MW-D1	MW-2	MW-D2	MW-D2
TtEC Sample I.D.	LV-BIA-GW-MW1-01	LV-BIA-GW-MWD1-01	LV-BIA-GW-MW2-01	LV-BIA-GW-MWD2-01	LV-BIA-GW-MWD3-01
Sampling Date	1/4/01	1/10/01	1/10/01	1/10/01	1/10/01
Units	ug/L	ug/L	ug/L	ug/L	ug/L
					<u> </u>
Chloromethane	1 U	1 U	10 U	10 U	10 U
Bromomethane	1 U	1 U	10 U	10 U	10 U
Vinyl Chloride	1 U	1 U	10 U	10 U	10 U
Chloroethane	1 U	1 U	10 U	10 U	10 U
Methylene Chloride	2 U	2 U	20 U	20 U	20 U
Acetone	R	R	R	R	R
Carbon Disulfide	1 U	1 U	10 U	10 U	10 U
1,1-Dichloroethene	1 U	1 U	10 U	10 U	10 U
1,1-Dichloroethane	1 U	1 U	10 U	10 U	10 U
cis-1,2-Dichloroethene	1 U	8	44	36	29
trans-1,2-Dichloroethene	1 U	1 U	10 U	10 U	10 U
Chloroform	1 U	1 U	10 U	10 U	10 U
1,2-Dichloroethane	1 U	1 U	10 U	10 U	10 U
2-Butanone	R	R	R	R	R
Bromochloromethane	1 U	1 U	10 U	10 U	10 U
1,1,1-Trichloroethane	1 U	1 U	10 U	10 U	10 U
Carbon Tetrachloride	1 U	1 U	10 U	10 U	10 U
Bromodichloromethane	1 U	1 U	10 U	10 U	10 U
1,2-Dichloropropane	1 U	1 U	10 U	10 U	10 U
cis-1,3-Dichloropropene	1 U	1 U	10 U	10 U	10 U
Trichloroethene	1 · U	18	110	140	110
Dibromochloromethane	.1 U	. 1 U	10 U	10 U	10 U
1,1,2-Trichloroethane	1 U	1 U	- 10 U	10 U	10 U
Benzene	1 U	<u> </u>	10 U	10 U	10 U

TABLE B-4
Volatile Organic Compounds - Groundwater (2000/2001)
Little Valley Superfund Site
Page 2 of 6

Area	Bush Industries	Bush Industries	Bush Industries	Bush Industries	Bush Industries
Location	MW-1	MW-D1	MW-2	MW-D2	MW-D2
TtEC Sample I.D.	LV-BIA-GW-MW1-01	LV-BIA-GW-MWD1-01	LV-BIA-GW-MW2-01	LV-BIA-GW-MWD2-01	LV-BIA-GW-MWD3-01
Sampling Date	1/4/01	1/10/01	1/10/01	1/10/01	1/10/01
Units	ug/L	ug/L	ug/L	ug/L	ug/L
trans-1,3-Dichloropropene	1 U	1 U	10 U	10 U	10 U
Bromoform	1 U	1 U	10 U	10 U	10 U
4-Methyl-2-pentanone	5 U	5 U	50 U	50 U	50 U
2-Hexanone	R	R	R	R	R
Tetrachloroethene	1 U	1 U	10 U	10 U	10 U
1,1,2,2-Tetrachloroethane	1 U	1 U	10 U	10 U	10 U
1,2-Dibromoethane	1 U	-1 U	10 U	10 U	10 U
Toluene	1 U	1 U	10 U	10 U	10 U
Chlorobenzene	1 U	1 U	10 U	10 U	10 U
Ethylbenzene	1 U	1 U	10 U	10 U	10 U
Styrene	1 U	1 U	10 U	10 U	10 U
Xylenes (total)	1 U	1 U	10 U	10 U	10 U
1,3-Dichlorobenzene	1 U	1 U	10 U	10 U	10 U
1,4-Dichlorobenzene	1 U	1 U	10 U	10 U	10 U
1,2-Dichlorobenzene	1 U	1 U	10 U	10 U	10 U
1,2-Dibromo-3-chloropropane	R	R	R	R	R
1,2,4-Trichlorobenzene	1 U	1 U	10 U	10 U	10 U
Total Volatile TICs	~~				

TABLE B-4
Volatile Organic Compounds - Groundwater (2000/2001)
Little Valley Superfund Site

Page 3 of 6

Area	Bush Industries				
Location	MW-3	MW-4	MW-5	MW-6	MW-7
TtEC Sample I.D.	LV-BIA-GW-MW3-01	LV-BIA-GW-MW4-01	LV-BIA-GW-MW5-01	LV-BIA-GW-MW6-01	LV-BIA-GW-MW7-01
Sampling Date	1/9/01	1/8/01	1/4/01	1/10/01	1/9/01
Units	ug/L	ug/L	ug/L	ug/L	ug/L
Chloromethane	1 U	1 U	1 U	5 U	1 U
Bromomethane	1 U	1 U	l U	5 U	1 U
Vinyl Chloride	1 U	1 U	1 U	5 U	1 U
Chloroethane	1 U	1 U	1 U	5 U	1 U
Methylene Chloride	2 U	2 U	2 U	10 U	2 U
Acetone	R	R	R	R	R
Carbon Disulfide	1 U	1 U	1 U	5 U	1 U
1,1-Dichloroethene	1 U	1 U	1 U	5 U	l U
1,1-Dichloroethane	1 U	1 U	1 U	5 U	1 U
cis-1,2-Dichloroethene	3	1 U	1 U	44	1 U
trans-1,2-Dichloroethene	1 U	1 U	1 U	5 U	1 U
Chloroform	1 U	. 1 U	1 U	5 U	1 U
1,2-Dichloroethane	1 U	1 U	l U	5 U	l U
2-Butanone	R	R	R	R	R
Bromochloromethane	1 U	1 U	1 U	5 U	1 U
1,1,1-Trichloroethane	1 U	1 U	1 U	5 U	1 U
Carbon Tetrachloride	1 U	1 U	1 U	5 U	1 U
Bromodichloromethane	1 U	1 U	1 U	5 U	1 U
1,2-Dichloropropane	1 U	1 U	1 U	5 U	1 U
cis-1,3-Dichloropropene	1 U	1 U	1 U	5 U	1 U
Trichloroethene	8	0.9 J	1 U	37	0.9 Ј
Dibromochloromethane	l U	1 U	1 U	5 U	1 U
1,1,2-Trichloroethane	I U	1 U	1 U	5 U	1 U
Benzene	1 U	1 U	l U	5 U	1 U

TABLE B-4
Volatile Organic Compounds - Groundwater (2000/2001)
Little Valley Superfund Site
Page 4 of 6

Area	Bush Industries				
Location	MW-3	MW-4	MW-5	MW-6	MW-7
TtEC Sample I.D.	LV-BIA-GW-MW3-01	LV-BIA-GW-MW4-01	LV-BIA-GW-MW5-01	LV-BIA-GW-MW6-01	LV-BIA-GW-MW7-01
Sampling Date	1/9/01	1/8/01	1/4/01	1/10/01	1/9/01
Units	ug/L	ug/L	ug/L	ug/L	ug/L
trans-1,3-Dichloropropene	1 U	1 U	1 U	5 U	I U
Bromoform	1 U	1 U	1 U	5 U	1 U
4-Methyl-2-pentanone	5 U	5 U	5 U	25 U	5 U
2-Hexanone	R	R	R	R	R
Tetrachloroethene	1 U	1 U	1 U	5 U	1 U
1,1,2,2-Tetrachloroethane	1 U	1 U	1 U	5 U	1 U
1,2-Dibromoethane	1 U	1 U	1 U	5 U	1 U
Toluene	1 U	1 U	1 U	5 U	1 U
Chlorobenzene	1 U	1 U	1 U	5 U	1 U
Ethylbenzene	1 U .	1 U	1 U	5 U	1 U
Styrene	1 U	1 U	1 U	5 U	1 U
Xylenes (total)	1 U	1 U	1 U	5 U	1 U
1,3-Dichlorobenzene	1 U	1 U	1 U	5 U	1 U
1,4-Dichlorobenzene	1 U	1 U	1 U	5 U	1 U
1,2-Dichlorobenzene	1 U	1 U	1 U	5 U	1 U
1,2-Dibromo-3-chloropropane	R	R	R	R	R
1,2,4-Trichlorobenzene	1 U	1 U	1 U	5 U	1 U
Total Volatile TICs					

TABLE B-4
Volatile Organic Compounds - Groundwater (2000/2001)
Little Valley Superfund Site
Page 5 of 6

Area	Bush Industries	Bush Industries	Cattaraugus Cutlery
Location	MW-8	MW-U1	MW-8
TtEC Sample I.D.	LV-BIA-GW-MW8-01	LV-BIA-GW-MWU1-01	LV-CCA-GW-MW8-01
Sampling Date	1/12/01	1/8/01	1/10/01
Units	ug/L	ug/L	ug/L
Chloromethane	1 U	1 U	1 U
Bromomethane	1 U	1 U	1 U
Vinyl Chloride	1 U	1 U	1 U
Chloroethane	1 U	1 U	1 U
Methylene Chloride	2 U	2 U	2 U
Acetone	R	R	R
Carbon Disulfide	1 U	1 U	1 U
1,1-Dichloroethene	1 U	1 U	l U
1,1-Dichloroethane	1 U	1 U	1 U
cis-1,2-Dichloroethene	0.6 J	1 U	1 U
trans-1,2-Dichloroethene	1 U	1 U	1 U
Chloroform	1 U	1 U	1 U
1,2-Dichloroethane	1 U	1 U	1 U
2-Butanone	R	R	R
Bromochloromethane	1 U	1 U	1 U
1,1,1-Trichloroethane	1 U	1 U	1 U
Carbon Tetrachloride	1 U	1 U	1 U
Bromodichloromethane	1 U	1 U	1 U
1,2-Dichloropropane	1 U	1 U	1 U
cis-1,3-Dichloropropene	1 U	1 U	1 U
Trichloroethene	4	1 U	1 U
Dibromochloromethane	1 U	1 U	1 U
1,1,2-Trichloroethane	1 U	1 U	1 U
Benzene	1 U	1 U	1 U

TABLE B-4
Volatile Organic Compounds - Groundwater (2000/2001)
Little Valley Superfund Site
Page 6 of 6

Area	Bush Industries	Bush Industries	Cattaraugus Cutlery
Location	MW-8	MW-U1	MW-8
TtEC Sample I.D.	LV-BIA-GW-MW8-01	LV-BIA-GW-MWU1-01	LV-CCA-GW-MW8-01
Sampling Date	1/12/01	1/8/01	1/10/01
Units	ug/L	ug/L	ug/L
trans-1,3-Dichloropropene	1 U	1 U	1 U
Bromoform	1 U	1 U	1 U
4-Methyl-2-pentanone	5 U	5 U	5 U
2-Hexanone	R	R	R
Tetrachloroethene	1 U	1 U	1 U
1,1,2,2-Tetrachloroethane	1 U	1 U	1 U
1,2-Dibromoethane	1 U	1 U	1 U
Toluene	1 U	1 U	1 U
Chlorobenzene	1 U	1 U	1 U
Ethylbenzene	1 U	1 U	1 U
Styrene	1 U	1 U	1 U
Xylenes (total)	1 U	1 U	1 U
1,3-Dichlorobenzene	1 U	1 U	1 U
1,4-Dichlorobenzene	1 U	1 U	ΙŪ
1,2-Dichlorobenzene	1 U	1 U	1 U
1,2-Dibromo-3-chloropropane	R	R	R
1,2,4-Trichlorobenzene	1 U	1 U	l U
Total Volatile TICs			

TABLE B-5
Volatile Organic Compounds - Groundwater (2002/2003)
Little Valley Superfund Site
Page 1 of 45

Area	Bush Industries				
Location	BIAMW-1	BIAMW-2	BIAMW-3	BIAMW-7	MWD-1
TtEC Sample I.D.	LV-GW-BIA-MWI-MNA	LV-GW-BIA-MW2-MNA	LV-GW-BIA-MW3-MNA	LV-GW-BIA-MW7-MNA	LV-GW-BIA-MWDI-MNA
Sampling Date	12/09/2003	12/11/2003	12/10/2003	12/09/2003	12/10/2003
Matrix	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater
Units	ug/L	ug/L	ug/L	ug/L	ug/L
1,1,1,2-Tetrachloroethane	NA	NA	NA	NA	NA
1,1,1-Trichloroethane	0.5 U				
1,1,2,2-Tetrachloroethane	0.5 U				
1,1,2-Trichloroethane	0.5 U	0.5 U	0.5 U	0.5 U	0.5 UJ
1,1-Dichloroethane	0.5 U				
1,1-Dichloroethylene	0.5 U	0.63	0.5 U	0.5 U	0.5 U
1,1-Dichloropropene	NA	NA	NA	NA	NA
1,2,3-Trichlorobenzene	0.5 U				
1,2,3-Trichloropropane	NA	NA	NA	NA	NA
1,2,4-Trichlorobenzene	0.5 U				
1,2-Dibromoethane	0.5 U				
1,2-Dichloroethane	0.5 UJ	0.5 U	0.5 UJ	0.5 UJ	0.5 UJ
1,2-Dichloropropane	0.5 U				
1,3-Dichloropropane	NA	NA	NA	NA	NA
2,2-Dichloropropane	NA	NA	NA	NA	NA
2-Hexanone	5 U	5 U	5 U	5 U	5 U
Acetone	5 U	5 U	5 U	5 U	5 U
Benzene	0.5 U	0.32 J	0.5 U	0.5 U	0.5 U
Benzene, 1,2,4-trimethyl	NA	NA	NA	NA	NA
Benzene, 1,3,5-trimethyl-	NA	NA	NA	NA	NA
Benzene, 1-methylethyl-	0.5 U				
Bromobenzene	NA	NA	NA	NA	NA
Bromodichloromethane	0.5 U				
Bromoform	0.5 U				
Carbon disulfide	0.5 U				

TABLE B-5 Volatile Organic Compounds - Groundwater (2002/2003) Little Valley Superfund Site Page 2 of 45

Area	Bush Industries				
Location	BIAMW-1	BIAMW-2	BIAMW-3	BIAMW-7	MWD-1
TtEC Sample I.D.	LV-GW-BIA-MWI-MNA	LV-GW-BIA-MW2-MNA	LV-GW-BIA-MW3-MNA	LV-GW-BIA-MW7-MNA	LV-GW-BIA-MWD1-MNA
Sampling Date	12/09/2003	12/11/2003	12/10/2003	12/09/2003	12/10/2003
Matrix	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater
Units	ug/L	ug/L	ug/L	ug/L	ug/L
Carbon tetrachloride	0.5 UJ	0.5 U	0.5 U	0.5 UJ	0.5 U
Chlorobenzene	0.5 U				
Chlorobromomethane	0.5 U				
Chloroethane	0.5 U				
Chloroform	0.5 U				
cis-1,2-Dichloroethylene	0.5 U	40 D	2.2	0.5 U	4.8
cis-1,3-Dichloropropene	0.5 U	0.5 U	0.5 U	0.5 U	0.5 UJ
Cyclohexane	0.5 U				
Dibromochloromethane	0.5 U				
Dibromochloropropane	0.5 U				
Dichlorodifluoromethane	0.5 U				
Ethylbenzene	0.5 U				
Freon 113	0.5 U				
Hexachlorobutadiene	NA	NA	NA	NA	NA
m/p-xylene	NA	NA	NA	NA	NA
m-Dichlorobenzene	0.5 U				
Methyl Acetate	0.5 U				
Methyl bromide	0.5 U				
Methyl chloride	0.5 U				
Methyl ethylketone	5 U	5 U	5 U	5 U	5 U
Methyl isobutyl ketone (MIBK)	5 U	5 U	5 U	5 U	5 U
Methyl tert-butyl ether	0.5 U				
Methylcyclohexane	0.5 U				
Methylene bromide	NA	NA	NA	NA	NA
Methylene chloride	0.5 U				

TABLE B-5 Volatile Organic Compounds - Groundwater (2002/2003) Little Valley Superfund Site Page 3 of 45

Area	Bush Industries				
Location	BIAMW-1	BIAMW-2	BIAMW-3	BIAMW-7	MWD-1
TtEC Sample I.D.	LV-GW-BIA-MW1-MNA	LV-GW-BIA-MW2-MNA	LV-GW-BIA-MW3-MNA	LV-GW-BIA-MW7-MNA	LV-GW-BIA-MWD1-MNA
	12/20/2022				
Sampling Date	12/09/2003	12/11/2003	12/10/2003	12/09/2003	12/10/2003
Matrix	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater
Units	ug/L	ug/L	ug/L	ug/L	ug/L
[· · · · ·					
Naphthalene	NA	NA	NA	NA	NA
n-Butylbenzene	NA	NA	NA	NA	NA
n-Propylbenzene	NA	NA	NA	NA	NA
o-Chlorotoluene	NA	NA	NA	NA	NA
o-Dichlorobenzene	0.5 U				
o-Xylene	[*] NA	NA	NA	NA	NA
p-Chlorotoluene	NA	NA	NA	NA	NA
p-Cymene	NA	NA	NA	NA	NA
p-Dichlorobenzene	0.5 U	0.5 U	. 0.5 U	0.5 U	0.5 U
sec-Butylbenzene	NA	NA	NA	NA	NA
Styrene	0.5 U				
tert-Butylbenzene	NA	NA	NA	NA	NA
Tetrachloroethylene	0.5 U				
Toluene	0.5 U				
trans-1,2-Dichloroethene	0.5 U	0.28 J	0.5 U	0.5 U	0.5 U
trans-1,3-Dichloropropene	0.5 U	0.5 U	0.5 U	0.5 U	0.5 UJ
Trichloroethylene	0.5 U	36 D	6.3	0.75	12
Trichlorofluoromethane	0.5 U	0.5 UJ	0.5 UJ	0.5 U	0.5 UJ
Vinyl chloride	0.5 U	4.8	0.5 U	0.5 U	0.5 U
Xylene (total)	0.5 U				
Total Volatile TICs		R			

TABLE B-5
Volatile Organic Compounds - Groundwater (2002/2003)
Little Valley Superfund Site
Page 4 of 45

Area	Bush Industries	Cattaraugus Cutlery	Cattaraugus Cutlery	Cattaraugus Cutlery	Cattaraugus Cutlery
Location	MWD-2	CCAGEO-1	CCAGEO-1	CCAGEO-2	CCAGEO-3
TtEC Sample I.D.	LV-GW-BIA-MWD2-MNA	LV-GW-CCA-GEO1-34	LV-GW-CCA-GEO7-34	LV-GW-CCA-GE02-30	LV-GW-CCA-GE03-30
			Duplicate		
Sampling Date	12/11/2003	09/08/2003	09/08/2003	09/09/2003	09/09/2003
Matrix	Groundwater	Direct Push (34.00)	Direct Push (34.00)	Direct Push (30.00)	Direct Push (30.00)
Units	ug/L	ug/L	ug/L	ug/L	ug/L
1,1,1,2-Tetrachloroethane	NA	NA	NA	NA	NA
1,1,1-Trichloroethane	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,1,2,2-Tetrachloroethane	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,1,2-Trichloroethane	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,1-Dichloroethane	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,1-Dichloroethylene	0.81	0.5 U	0.5 U	0.5 U	0.5 U
1.1-Dichloropropene	NA	NA	NA	NA	NA
1,2,3-Trichlorobenzene	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,2,3-Trichloropropane	NA	NA	NA	NA	NA
1,2,4-Trichlorobenzene	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,2-Dibromoethane	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,2-Dichloroethane	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,2-Dichloropropane	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,3-Dichloropropane	NA	NA	NA	NA	NA
2,2-Dichloropropane	NA	NA	NA	NA	NA
2-Hexanone	5 U	0.5 U	0.5 U	0.5 U	0.5 U
Acetone	5 U	2.5 U	2.5 U	2.5 U	2.5 U
Benzene	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Benzene, 1,2,4-trimethyl	NA	NA	NA	NA	NA
Benzene, 1,3,5-trimethyl-	NA .	NA	NA	NA	NA
Benzene, I-methylethyl-	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Bromobenzene	NA	NA	NA	NA	NA
Bromodichloromethane	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Bromoform	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Carbon disulfide	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U

TABLE B-5 Volatile Organic Compounds - Groundwater (2002/2003) Little Valley Superfund Site Page 5 of 45

Area		Cattaraugus Cutlery	Cattaraugus Cutlery	Cattaraugus Cutlery	Cattaraugus Cutlery
Location		CCAGEO-1	CCAGEO-1	CCAGEO-2	CCAGEO-3
TtEC Sample I.D.	LV-GW-BIA-MWD2-MNA	LV-GW-CCA-GEO1-34	LV-GW-CCA-GEO7-34	LV-GW-CCA-GE02-30	LV-GW-CCA-GE03-30
			Duplicate		
Sampling Date	1	09/08/2003	09/08/2003	09/09/2003	09/09/2003
Matrix		Direct Push (34.00)	Direct Push (34.00)	Direct Push (30.00)	Direct Push (30.00)
Units	ug/L	ug/L	ug/L	ug/L	ug/L
Carbon tetrachloride	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Chlorobenzene	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Chlorobromomethane	0.5 U	NA	NA	NA	NA
Chloroethane	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Chloroform	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
cis-1,2-Dichloroethylene	18 D	0.5 U	0.5 U	0.7	0.72
cis-1,3-Dichloropropene	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Cyclohexane	0.5 U	0.71	0.75	0.5 U	0.5 U
Dibromochloromethane	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Dibromochloropropane	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Dichlorodifluoromethane	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Ethylbenzene	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Freon 113	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Hexachlorobutadiene	NA	NA	NA ·	NA	NA
m/p-xylene	NA	0.73	0.75	0.5 U	0.5 U
m-Dichlorobenzene	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Methyl Acetate	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Methyl bromide	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Methyl chloride	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Methyl ethylketone	5 U	0.5 U	0.5 U	0.5 U	0.5 U
Methyl isobutyl ketone (MIBK)	5 U	0.5 U	0.5 U	0.5 U	0.5 U
Methyl tert-butyl ether	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Methylcyclohexane	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Methylene bromide	NA	NA	NA	NA	NA .
Methylene chloride	0.5 U	0.97 UJ	1.4 UJ	1.3 UJ	1.3 UJ

TABLE B-5 Volatile Organic Compounds - Groundwater (2002/2003) Little Valley Superfund Site Page 6 of 45

Area	Bush Industries	Cattaraugus Cutlery	Cattaraugus Cutlery	Cattaraugus Cutlery	Cattaraugus Cutlery
Location	MWD-2	CCAGEO-1	CCAGEO-1	CCAGEO-2	CCAGEO-3
TtEC Sample I.D.	LV-GW-BIA-MWD2-MNA	LV-GW-CCA-GEO1-34	LV-GW-CCA-GEO7-34	LV-GW-CCA-GE02-30	LV-GW-CCA-GE03-30
			Duplicate		
Sampling Date	12/11/2003	09/08/2003	09/08/2003	09/09/2003	09/09/2003
Matrix	Groundwater	Direct Push (34.00)	Direct Push (34.00)	Direct Push (30.00)	Direct Push (30.00)
Units	ug/L	ug/L	ug/L	ug/L	ug/L
Naphthalene	NA	NA	NA	NA	NA
n-Butylbenzene	NA	NA	NA	NA	NA
n-Propylbenzene	NA	NA	NA	NA	NA
o-Chlorotoluene	. NA	NA	NA	NA .	NA
o-Dichlorobenzene	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
o-Xylene	NA	0.5 U	0.5 U	0.5 U	0.5 U
p-Chlorotoluene	NA	NA	NA	NA	NA
p-Cymene	NA	NA	NA	NA	NA
p-Dichlorobenzene	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
sec-Butylbenzene	NA	NA	NA ·	NA	NA
Styrene	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
tert-Butylbenzene	NA	NA	NA	NA	NA
Tetrachloroethylene	0.5 U	0.5 U	0.5 U	10	12
Toluene	0.5 U	0.86	0.86	0.5 U	0.5 U
trans-1,2-Dichloroethene	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
trans-1,3-Dichloropropene	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Trichloroethylene	78 D	0.79	0.9	63 D	76 D
Trichlorofluoromethane	0.5 UJ	0.5 U	0.5 U	0.5 U	0.5 U
Vinyl chloride	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Xylene (total)	0.5 U	NA	NA	NA	NA
Total Volatile TICs			***		

TABLE B-5 Volatile Organic Compounds - Groundwater (2002/2003) Little Valley Superfund Site Page 7 of 45

Area	Cattaraugus Cutlery				
Location	CCAGEO-4	CCAGEO-5	CCAGEO-6	MWCCA-2	MWCCA-3
TtEC Sample I.D.	LV-GW-CCA-GE04-30	LV-GW-CCA-GE05-30	LV-GW-CCA-GE06-30	LV-GW-CCA2-MNA	LV-GW-CCA3-MNA
Sampling Date	09/10/2003	09/10/2003	09/10/2003	12/03/2003	12/02/2003
Matrix	Direct Push (30.00)	Direct Push (30.00)	Direct Push (30.00)	Groundwater	Groundwater
Units	ug/L	ug/L	ug/L	ug/L	ug/L
1,1,1,2-Tetrachloroethane	NA	NA	NA	NA	NA
1,1,1-Trichloroethane	0.5 U				
1,1,2,2-Tetrachloroethane	0.5 U				
1,1,2-Trichloroethane	0.5 U				
1,1-Dichloroethane	0.5 U				
1,1-Dichloroethylene	0.5 U				
1,1-Dichloropropene	NA	NA	NA	NA	NA
1,2,3-Trichlorobenzene	0.5 U				
1,2,3-Trichloropropane	NA	NA	NA	NA	NA
1,2,4-Trichlorobenzene	0.5 U				
1,2-Dibromoethane	0.5 U				
1,2-Dichloroethane	0.5 U				
1,2-Dichloropropane	0.5 U				
1,3-Dichloropropane	NA	NA	NA	NA	NA
2,2-Dichloropropane	NA	NA	NA	NA	NA
2-Hexanone	0.5 U	0.5 U	0.5 U	5 U	5 U
Acetone	2.5 U	2.5 U	2.5 U	5 U	5 U
Benzene	0.5 U				
Benzene, 1,2,4-trimethyl	NA	NA	NA	NA	NA
Benzene, 1,3,5-trimethyl-	NA	NA	NA	NA	· NA
Benzene, I-methylethyl-	0.5 U				
Bromobenzene	NA	NA	NA	NA	NA
Bromodichloromethane	0.5 U				
Bromoform	0.5 U				
Carbon disulfide	0.5 U				

TABLE B-5 Volatile Organic Compounds - Groundwater (2002/2003) Little Valley Superfund Site Page 8 of 45

Area	Cattaraugus Cutlery				
Location	CCAGEO-4	CCAGEO-5	CCAGEO-6	MWCCA-2	MWCCA-3
TtEC Sample I.D.	LV-GW-CCA-GE04-30	LV-GW-CCA-GE05-30	LV-GW-CCA-GE06-30	LV-GW-CCA2-MNA	LV-GW-CCA3-MNA
Sampling Date	09/10/2003	09/10/2003	09/10/2003	12/03/2003	12/02/2003
Matrix	Direct Push (30.00)	Direct Push (30.00)	Direct Push (30.00)	Groundwater	Groundwater
Units	ug/L	ug/L	ug/L	ug/L	ug/L
		Y			
Carbon tetrachloride	0.5 U				
Chlorobenzene	0.5 U				
Chlorobromomethane	NA	NA	NA	0.5 U	0.5 U
Chloroethane	0.5 U				
Chloroform	0.5 U				
cis-1,2-Dichloroethylene	0.5 U	0.5 U	0.5 U	0.5 U	3.7
cis-1,3-Dichloropropene	0.5 U				
Cyclohexane	0.5 U	0.5 U	0.52	0.5 U	0.5 U
Dibromochloromethane	0.5 U				
Dibromochloropropane	0.5 U				
Dichlorodifluoromethane	0.5 U				
Ethylbenzene	0.5 U				
Freon 113	0.5 U				
Hexachlorobutadiene	NA	NA	NA	NA	NA
m/p-xylene	0.5 U	0.5 U	0.5 U	NA	NA
m-Dichlorobenzene	0.5 U				
Methyl Acetate	0.5 U				
Methyl bromide	0.5 U				
Methyl chloride	0.5 U				
Methyl ethylketone	0.5 U	0.5 U	0.5 U	5 U	5 U
Methyl isobutyl ketone (MIBK)	0.5 U	0.5 U	0.5 U	. 5 U	5 U
Methyl tert-butyl ether	0.5 U				
Methylcyclohexane	0.5 U				
Methylene bromide	NA	NA	NA	NA	NA NA
Methylene chloride	2.5 UJ	2.3 UJ	2.5 UJ	0.5 U	0.5 U

TABLE B-5 Volatile Organic Compounds - Groundwater (2002/2003) Little Valley Superfund Site Page 9 of 45

Area	Cattaraugus Cutlery				
Location	CCAGEO-4	CCAGEO-5	CCAGEO-6	MWCCA-2	MWCCA-3
TtEC Sample I.D.	LV-GW-CCA-GE04-30	LV-GW-CCA-GE05-30	LV-GW-CCA-GE06-30	LV-GW-CCA2-MNA	LV-GW-CCA3-MNA
Sampling Date	09/10/2003	09/10/2003	09/10/2003	12/03/2003	12/02/2003
Matrix	Direct Push (30.00)	Direct Push (30.00)	Direct Push (30.00)	Groundwater	Groundwater
Units	ug/L	ug/L	ug/L	ug/L	ug/L
Naphthalene	NA	NA	NA	NA	NA
n-Butylbenzene	NA	NA	NA	NA	NA
n-Propylbenzene	NA	NA	NA	NA	NA
o-Chlorotoluene	NA	NA	NA	NA	NA
o-Dichlorobenzene	0.5 U				
o-Xylene	0.5 U	0.5 U	0.5 U	NA	NA
p-Chlorotoluene	NA	NA	NA	NA	NA
p-Cymene	NA	NA	NA	NA	NA
p-Dichlorobenzene	0.5 U				
sec-Butylbenzene	NA	NA	NA	NA	NA
Styrene	0.5 U				
tert-Butylbenzene	NA	NA	NA	NA	NA
Tetrachloroethylene	0.65	2.6	1.1	0.2 J	0.67
Toluene	0.5 U	0.5 U	0.66	0.5 U	0.5 U
trans-1,2-Dichloroethene	0.5 U				
trans-1,3-Dichloropropene	0.5 U				
Trichloroethylene	62 D	76 D	23	9.8	58 D
Trichlorofluoromethane	0.5 U				
Vinyl chloride	0.5 U				
Xylene (total)	NA	NA	NA	0.5 U	0.5 U
Total Volatile TICs					

TABLE B-5 Volatile Organic Compounds - Groundwater (2002/2003) Little Valley Superfund Site Page 10 of 45

Area	Cattaraugus Cutlery				
Location	MWCCA-4	MWCCA-6	MWCCA-6	MWCCA-9D	MWCCA-10
TtEC Sample I.D.	LV-GW-CCA4-MNA	LV-GW-CCA6-MNA	LV-GW-CCA16-MNA	LV-GW-CCA9D-01	LV-GW-CCA10-01
			Duplicate		
Sampling Date	11/19/2003	12/01/2003	12/01/2003	11/18/2003	11/12/2003
Matrix	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater
Units	ug/L	ug/L	ug/L	ug/L	ug/L
1,1,1,2-Tetrachloroethane	0.50 U	NA	NA	0.50 U	0.5 U
1,1,1-Trichloroethane	0.50 U	0.5 U	0.5 U	0.50 U	0.5 U
1,1,2,2-Tetrachloroethane	. 0.50 U	0.5 U	0.5 U	0.50 U	0.5 U
1,1,2-Trichloroethane	0.50 U	0.5 U	0.5 U	0.50 U	0.5 U
1,1-Dichloroethane	0.50 U	0.5 U	0.5 U	0.50 U	0.5 U
1,1-Dichloroethylene	0.50 U	0.5 U	0.5 U	0.50 U	0.5 U
1,1-Dichloropropene	0.50 U	NA	NA	0.50 U	0.5 U
1,2,3-Trichlorobenzene	0.50 U	0.5 U	0.5 U	0.50 U	0.5 U
1,2,3-Trichloropropane	0.50 U	NA	NA	0.50 U	0.5 U
1,2,4-Trichlorobenzene	0.50 U	0.5 U	0.5 U	0.50 U	0.5 U
1,2-Dibromoethane	0.50 U	0.5 U	0.5 U	0.50 U	0.5 U
1,2-Dichloroethane	0.50 U	0.5 U	0.5 U	0.50 U	0.5 U
1,2-Dichloropropane	0.50 U	0.5 U	0.5 U	0.50 U	0.5 U
1,3-Dichloropropane	0.50 U	NA	NA	0.50 U	0.5 U
2,2-Dichloropropane	0.50 U	NA	NA	0.50 U	0.5 U
2-Hexanone	1.0 U	5 U	5 U	1.0 U	1 U
Acetone	1.0 U	5 U	5 U	1.1	1.2
Benzene	0.50 U	0.5 U	0.5 U	0.50 U	0.5 U
Benzene, 1,2,4-trimethyl	0.50 U	NA	NA	0.50 U	0.5 U
Benzene, 1,3,5-trimethyl-	0.50 U	NA	NA	0.50 U	0.5 U
Benzene, 1-methylethyl-	0.50 U	0.5 U	0.5 U	0.50 U	0.5 U
Bromobenzene	0.50 U	NA	NA	0.50 U	0.5 U
Bromodichloromethane	0.50 U	0.5 U	0.5 U	0.50 U	0.5 U
Bromoform	0.50 U	0.5 U	0.5 U	0.50 U	0.5 U
Carbon disulfide	0.50 U	0.5 U	0.5 U	0.50 U	0.5 U

TABLE B-5 Volatile Organic Compounds - Groundwater (2002/2003) Little Valley Superfund Site Page 11 of 45

Area	Cattaraugus Cutlery				
Location	MWCCA-4	MWCCA-6	MWCCA-6	MWCCA-9D	MWCCA-10
TtEC Sample I.D.	LV-GW-CCA4-MNA	LV-GW-CCA6-MNA	LV-GW-CCA16-MNA	LV-GW-CCA9D-01	LV-GW-CCA10-01
			Duplicate		
Sampling Date	11/19/2003	12/01/2003	12/01/2003	11/18/2003	11/12/2003
Matrix	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater
Units	ug/L	ug/L	ug/L	ug/L	ug/L
Carbon tetrachloride	0.50 U	0.5 U	0.5 U	0.50 U	0.5 U
Chlorobenzene	0.50 U	0.5 U	0.5 U	0.50 U	0.5 U
Chlorobromomethane	0.50 U	0.5 U	0.5 U	0.50 U	0.5 U
Chloroethane	0.50 U	0.5 U	0.5 U	0.50 U	0.5 U
Chloroform	0.50 U	0.5 U	0.5 U	0.50 U	0.5 U
cis-1,2-Dichloroethylene	0.50 U	0.5 U	0.5 U	0.50 U	0.5 U
cis-1,3-Dichloropropene	0.50 U	0.5 U	0.5 U	0.50 U	0.5 U
Cyclohexane	0.50 U	0.5 U	0.5 U	0.50 U	0.5 U
Dibromochloromethane	0.50 U	0.5 U	0.5 U	0.50 U	0.5 U
Dibromochloropropane	0.50 U	0.5 U	0.5 U	0.50 U	0.5 U
Dichlorodifluoromethane	0.50 U	0.5 U	0.5 U	0.50 U	0.5 U
Ethylbenzene	0.50 U	0.5 U	0.5 U	0.50 U	0.5 U
Freon 113	0.50 U	0.5 U	0.5 U	0.50 U	0.5 U
Hexachlorobutadiene	0.50 U	NA	NA	0.50 U	0.5 U
m/p-xylene	0.50 U	NA	NA	0.50 U	0.5 U
m-Dichlorobenzene	0.50 U	0.5 U	0.5 U	0.50 U	0.5 U
Methyl Acetate	0.50 U	0.5 U	0.5 U	0.50 U	0.5 U
Methyl bromide	0.50 U	0.5 U	0.5 U	0.50 U	0.5 U
Methyl chloride	0.50 U	0.5 U	0.5 U	0.50 U	0.5 U
Methyl ethylketone	1.0 U	5 U	5 U	1.0 U	1 U
Methyl isobutyl ketone (MIBK)	1.0 U	5 U	5 U	1.0 U	1 U
Methyl tert-butyl ether	0.50 U	0.5 U	0.5 U	0.50 U	0.5 U
Methylcyclohexane	0.50 U	0.5 U	0.5 U	0.50 U	0.5 U
Methylene bromide	0.50 U	NA	NA	0.50 U	0.5 U
Methylene chloride	0.50 U	0.5 U	0.5 U	0.50 U	0.5 U

TABLE B-5 Volatile Organic Compounds - Groundwater (2002/2003) Little Valley Superfund Site Page 12 of 45

Area	Cattaraugus Cutlery				
Location	MWCCA-4	MWCCA-6	MWCCA-6	MWCCA-9D	MWCCA-10
TtEC Sample I.D.	LV-GW-CCA4-MNA	LV-GW-CCA6-MNA	LV-GW-CCA16-MNA	LV-GW-CCA9D-01	LV-GW-CCA10-01
			Duplicate		
Sampling Date	11/19/2003	12/01/2003	12/01/2003	11/18/2003	11/12/2003
Matrix	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater
Units	ug/L	ug/L	ug/L	ug/L	ug/L
Naphthalene	0.50 U	NA	NA	0.50 U	0.5 U
n-Butylbenzene	0.50 U	NA	NA	0.50 U	0.5 U
n-Propylbenzene	0.50 U	NA	NA	0.50 U	0.5 U
o-Chlorotoluene	0.50 U	NA	NA	0.50 U	0.5 U
o-Dichlorobenzene	0.50 U	0.5 U	0.5 U	0.50 U	0.5 U
o-Xylene	0.50 U	NA	NA	0.50 U	0.5 U
p-Chlorotoluene	0.50 U	NA	NA	0.50 U	0.5 U
p-Cymene	0.50 U	NA	NA	0.50 U	0.5 U
p-Dichlorobenzene	0.50 U	0.5 U	0.5 U	0.50 U	0.5 U
sec-Butylbenzene	0.50 U	NA	NA	0.50 U	0.5 U
Styrene	0.50 U	0.5 U	0.5 U	0.50 U	0.5 U
tert-Butylbenzene	0.50 U	NA	NA	0.50 U	0.5 U
Tetrachloroethylene	0.50 U	0.5 U	0.5 U	0.50 U	0.5 U
Toluene	0.50 U	0.5 U	0.5 U	0.50 U	0.5 U
trans-1,2-Dichloroethene	0.50 U	0.5 U	0.5 U	0.50 U	0.5 U
trans-1,3-Dichloropropene	0.50 U	0.5 U	0.5 U	0.50 U	0.5 U
Trichloroethylene	0.50 U	0.2 Ј	0.22 J	1.4	1.4
Trichlorofluoromethane	0.50 U	0.5 U	0.5 U	0.50 U	0.5 U
Vinyl chloride	0.50 U	0.5 U	0.5 U	0.50 U	0.5 U
Xylene (total)	NA	0.5 U	0.5 U	NA	NA
Total Volatile TICs					

TABLE B-5
Volatile Organic Compounds - Groundwater (2002/2003)
Little Valley Superfund Site
Page 13 of 45

Area	Cattaraugus Cutlery	Cattaraugus Cutlery	Cattaraugus Cutlery	Cattaraugus Cutlery	Railroad Avenue
Location	MWCCA-11D	MWCCA-12	MWCCA-12	PZ-20D	RRAAGEO-1
TtEC Sample I.D.	LV-GW-CCA11D-01	LV-GW-CCA12-01	LV-GW-CCA13-01	LV-GW-PZ20DMNA	LV-GW-RRAA-GEO1-32
			Duplicate		
Sampling Date	11/18/2003	11/12/2003	11/12/2003	11/19/2003	09/15/2003
Matrix	Groundwater	Groundwater	Groundwater	Groundwater	Direct Push (32.00)
Units	ug/L	ug/L	ug/L	ug/L	ug/L
1,1,1,2-Tetrachloroethane	0.50 U	0.5 U	0.5 U	0.50 U	NA
1,1,1-Trichloroethane	0.50 U	0.5 U	0.5 U	0.50 U	0.5 U
1,1,2,2-Tetrachloroethane	0.50 U	0.5 U	0.5 U	0.50 U	0.5 U
1,1,2-Trichloroethane	0.50 U	0.5 U	0.5 U	0.50 U	0.5 U
1,1-Dichloroethane	0.50 U	0.5 U	0.5 U	0.50 U	0.5 U
1,1-Dichloroethylene	0.50 U	0.5 U	0.5 U	0.50 U	0.5 U
1,1-Dichloropropene	0.50 U	0.5 U	0.5 U	0.50 U	NA
1,2,3-Trichlorobenzene	0.50 U	0.5 U	0.5 U	0.50 U	0.5 UJ
1,2,3-Trichloropropane	0.50 U	0.5 U	0.5 U	0.50 U	NA
1,2,4-Trichlorobenzene	0.50 U	0.5 U	0.5 U	0.50 U	0.5 U
1,2-Dibromoethane	0.50 U	0.5 U	0.5 U	0.50 U	0.5 U
1,2-Dichloroethane	0.50 U	0.5 U	0.5 U	0.50 U	0.5 U
1,2-Dichloropropane	0.50 U	0.5 U	0.5 U	0.50 U	0.5 U
1,3-Dichloropropane	0.50 U	0.5 U	0.5 U	0.50 U	NA
2,2-Dichloropropane	0.50 U	0.5 U	0.5 U	0.50 U	NA
2-Hexanone	1.0 U	l U	1 U	1.0 U	5
Acetone	1.0 U	1 U	1.2	1.0 U	91
Benzene	0.50 U	0.5 U	0.5 U	0.50 U	0.16 J
Benzene, 1,2,4-trimethyl	0.50 U	0.5 U	0.5 U	0.50 U	NA
Benzene, 1,3,5-trimethyl-	0.50 U	0.5 U	0.5 U	0.50 U	NA
Benzene, 1-methylethyl-	0.50 U	0.5 U	0.5 U	0.50 U	0.5 U
Bromobenzene	0.50 U	0.5 U	0.5 U	0.50 U	NA
Bromodichloromethane	0.50 U	0.5 U	0.5 U	0.50 U	0.5 U
Bromoform	0.50 U	0.5 U	0.5 U	0.50 U	0.5 U
Carbon disulfide	0.50 U	0.5 U	0.5 U	0.50 U	0.5 U

TABLE B-5 Volatile Organic Compounds - Groundwater (2002/2003) Little Valley Superfund Site Page 14 of 45

Area	Cattaraugus Cutlery	Cattaraugus Cutlery	Cattaraugus Cutlery	Cattaraugus Cutlery	Railroad Avenue
Location	MWCCA-11D	MWCCA-12	MWCCA-12	PZ-20D	RRAAGEO-1
TtEC Sample I.D.	LV-GW-CCA11D-01	LV-GW-CCA12-01	LV-GW-CCA13-01	LV-GW-PZ20DMNA	LV-GW-RRAA-GEO1-32
			Duplicate		
Sampling Date	11/18/2003	11/12/2003	11/12/2003	11/19/2003	09/15/2003
Matrix	Groundwater	Groundwater	Groundwater	Groundwater	Direct Push (32.00)
Units	ug/L	ug/L	ug/L	ug/L	ug/L
Carbon tetrachloride	0.50 U	0.5 U	0.5 U	0.50 U	0.5 U
Chlorobenzene	0.50 U	0.5 U	0.5 U	0.50 U	0.5 U
Chlorobromomethane	0.50 U	0.5 U	0.5 U	0.50 U	0.5 U
Chloroethane	0.50 U	0.5 U	0.5 U	0.50 U	0.5 U
Chloroform	0.50 U	0.5 U	0.5 U	0.50 U	0.5 U
cis-1,2-Dichloroethylene	0.50 U	0.5 U	0.5 U	0.50 U	0.5 U
cis-1,3-Dichloropropene	0.50 U	0.5 U	0.5 U	0.50 U	0.5 U
Cyclohexane	0.50 U	0.5 U	0.5 U	0.50 U	0.5 U
Dibromochloromethane	0.50 U	0.5 U	0.5 U	0.50 U	0.5 U
Dibromochloropropane	0.50 U	0.5 U	0.5 U	0.50 U	0.5 U
Dichlorodifluoromethane	0.50 U	0.5 U	0.5 U	0.50 U	0.5 U
Ethylbenzene	0.50 U	0.5 U	0.5 U	0.50 U	0.5 U
Freon 113	0.50 U	0.5 U	0.5 U	0.50 U	0.5 U
Hexachlorobutadiene	0.50 U	0.5 U	0.5 U	0.50 U	NA
m/p-xylene	0.50 U	0.5 U	0.5 U	0.50 U	NA
m-Dichlorobenzene	0.50 U	0.5 U	0.5 U	0.50 U	0.5 U
Methyl Acetate	0.50 U	0.5 U	0.5 U	0.50 U	0.5 U
Methyl bromide	0.50 U	0.5 U	0.5 U	0.50 U	0.5 U
Methyl chloride	0.50 U	0.5 U	0.5 U	0.50 U	0.5 U
Methyl ethylketone	1.0 U	1 U	1 U	1.0 U	5 U
Methyl isobutyl ketone (MIBK)	1.0 U	1 U	1 U	1.0 U	1.9 J
Methyl tert-butyl ether	0.50 U	0.5 U	0.5 U	0.50 U	0.5 U
Methylcyclohexane	0.50 U	0.5 U	0.5 U	0.50 U	0.5 U
Methylene bromide	0.50 U	0.5 U	0.5 U	0.50 U	NA
Methylene chloride	0.50 U	0.5 U	0.5 U	9.0 U	0.5 U

TABLE B-5 Volatile Organic Compounds - Groundwater (2002/2003) Little Valley Superfund Site Page 15 of 45

Area	Cattaraugus Cutlery	Cattaraugus Cutlery	Cattaraugus Cutlery	Cattaraugus Cutlery	Railroad Avenue
Location	MWCCA-11D	MWCCA-12	MWCCA-12	PZ-20D	RRAAGEO-1
TtEC Sample I.D.	LV-GW-CCA11D-01	LV-GW-CCA12-01	LV-GW-CCA13-01	LV-GW-PZ20DMNA	LV-GW-RRAA-GEO1-32
			Duplicate		
Sampling Date	11/18/2003	11/12/2003	11/12/2003	11/19/2003	09/15/2003
Matrix	Groundwater	Groundwater	Groundwater	Groundwater	Direct Push (32.00)
Units	ug/L	ug/L	ug/L	ug/L	ug/L
Naphthalene	0.50 U	0.5 U	0.5 U	0.50 U	NA
n-Butylbenzene	0.50 U	0.5 U	0.5 U	0.50 U	NA
n-Propylbenzene	0.50 U	0.5 U	0.5 U	0.50 U	NA
o-Chlorotoluene	0.50 U	0.5 U	0.5 U	0.50 U	NA
o-Dichlorobenzene	0.50 U	0.5 U	0.5 U	0.50 U	0.5 U
o-Xylene	0.50 U	0.5 U	0.5 U	0.50 U	NA
p-Chlorotoluene	0.50 U	0.5 U	0.5 U	0.50 U	NA
p-Cymene	0.50 U	0.5 U	0.5 U	0.50 U	NA
p-Dichlorobenzene	0.50 U	0.5 U	0.5 U	0.50 U	0.5 U
sec-Butylbenzene	0.50 U	0.5 U	0.5 U	0.50 U	NA
Styrene	0.50 U	0.5 U	0.5 U	0.50 U	0.5 U
tert-Butylbenzene	0.50 U	0.5 U	0.5 U	0.50 U	NA
Tetrachloroethylene	0.50 U	0.5 U	0.5 U	0.50 U	0.5 U
Toluene	0.50 U	0.5 U	0.5 U	0.50 U	0.3 J
trans-1,2-Dichloroethene	0.50 U	0.5 U	0.5 U	0.50 U	0.5 U
trans-1,3-Dichloropropene	0.50 U	0.5 U	0.5 U	0.50 U	0.5 U
Trichloroethylene	0.50 U	11	10	0.50 U	0.22 J
Trichlorofluoromethane	0.50 U	0.5 U	0.5 U	0.50 U	0.5 U
Vinyl chloride	0.50 U	0.5 U	0.5 U	0.50 U	0.5 U
Xylene (total)	NA	NA	NA	NA	0.5 U
Total Volatile TICs			*		

TABLE B-5 Volatile Organic Compounds - Groundwater (2002/2003) Little Valley Superfund Site Page 16 of 45

Area	Railroad Avenue				
Location	RRAAGEO-1	RRAAGEO-1	RRAAGEO-2	RRAAGEO-2	RRAAGEO-2
TtEC Sample I.D.	LV-GW-RRAA-GEO1-40	LV-GW-RRAA-GE01-72	LV-GW-RRAA-GEO2-50	LV-GW-RRAA-GEO2-60	LV-GW-RRAA-GEO13-60
					Duplicate
Sampling Date	09/15/2003	09/17/2003	09/23/2003	09/23/2003	09/23/2003
Matrix	Direct Push (40.00)	Direct Push (72.00)	Direct Push (50.00)	Direct Push (60.00)	Direct Push (60.00)
Units	ug/L	ug/L	ug/L	ug/L	ug/L
1,1,1,2-Tetrachloroethane	NA	NA	NA	NA	NA
1,1,1-Trichloroethane	0.5 U				
1,1,2,2-Tetrachloroethane	0.5 U				
1,1,2-Trichloroethane	0.5 U				
1,1-Dichloroethane	0.5 U				
1,1-Dichloroethylene	0.5 U				
1,1-Dichloropropene	NA	NA	NA	NA	NA
1,2,3-Trichlorobenzene	0.16 J	0.5 U	0.5 U	0.5 U	0.5 U
1,2,3-Trichloropropane	NA	NA	NA	NA	NA
1,2,4-Trichlorobenzene	0.16 J	0.5 U	0.5 U	0.5 U	0.5 U
1,2-Dibromoethane	0.5 U				
1,2-Dichloroethane	0.5 U				
1,2-Dichloropropane	0.5 U				
1,3-Dichloropropane	NA	NA	NA	NA	NA
2,2-Dichloropropane	NA	NA	NA	NA	NA
2-Hexanone	5 U	0.5 U	5 U	5 U	5 U
Acetone	30	28 U	5 U	5 U	5 U
Benzene	0.5 U				
Benzene, 1,2,4-trimethyl	NA NA	NA	NA	NA	NA
Benzene, 1,3,5-trimethyl-	NA	NA	NA	NA	NA
Benzene, I-methylethyl-	0.5 U				
Bromobenzene	NA	NA	NA	NA	NA
Bromodichloromethane	0.5 U				
Bromoform	0.5 U				
Carbon disulfide	0.5 U				

TABLE B-5 Volatile Organic Compounds - Groundwater (2002/2003) Little Valley Superfund Site Page 17 of 45

Area	Railroad Avenue	Railroad Avenue	Railroad Avenue	Railroad Avenue	Railroad Avenue
Location	RRAAGEO-1	RRAAGEO-1	RRAAGEO-2	RRAAGEO-2	RRAAGEO-2
TtEC Sample I.D.	LV-GW-RRAA-GEO1-40	LV-GW-RRAA-GE01-72	LV-GW-RRAA-GEO2-50	LV-GW-RRAA-GEO2-60	LV-GW-RRAA-GEO13-60
1			21 31 RRULI GEOL 50	LV GW-RRAH-GLO2-00	Duplicate
Sampling Date	09/15/2003	09/17/2003	09/23/2003	09/23/2003	09/23/2003
Matrix	Direct Push (40.00)	Direct Push (72.00)	Direct Push (50.00)	Direct Push (60.00)	Direct Push (60,00)
Units	ug/L	ug/L	ug/L	ug/L	ug/L
1			, , , , , , , , , , , , , , , , , , ,	ug/L	dg/L
Carbon tetrachloride	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Chlorobenzene	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Chlorobromomethane	0.5 U	NA	0.5 U	0.5 U	0.5 U
Chloroethane	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Chloroform	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
cis-1,2-Dichloroethylene	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
cis-1,3-Dichloropropene	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Cyclohexane	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Dibromochloromethane	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Dibromochloropropane	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Dichlorodifluoromethane	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Ethylbenzene	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Freon 113	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Hexachlorobutadiene	NA	NA	NA	NA	NA
m/p-xylene	NA	0.5 U	NA	NA	NA
m-Dichlorobenzene	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Methyl Acetate	0.5 U	0.5 U	0.5 UJ	0.5 UJ	0.5 UJ
Methyl bromide	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Methyl chloride	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Methyl ethylketone	7.7	5.1	5 U	5 U	5 U
Methyl isobutyl ketone (MIBK)	5 U	0.5 U	5 U	5 U	5 U
Methyl tert-butyl ether	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Methylcyclohexane	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Methylene bromide	NA	NA	NA	NA	NA
Methylene chloride	0.5 U	1.8 UJ	0.59 UJ	0.5 U	l UJ

TABLE B-5 Volatile Organic Compounds - Groundwater (2002/2003) Little Valley Superfund Site Page 18 of 45

Area	Railroad Avenue				
Location	RRAAGEO-1	RRAAGEO-1	RRAAGEO-2	RRAAGEO-2	RRAAGEO-2
TtEC Sample I.D.	LV-GW-RRAA-GEO1-40	LV-GW-RRAA-GE01-72	LV-GW-RRAA-GEO2-50	LV-GW-RRAA-GEO2-60	LV-GW-RRAA-GEO13-60
					Duplicate
Sampling Date	09/15/2003	09/17/2003	09/23/2003	09/23/2003	09/23/2003
Matrix	Direct Push (40.00)	Direct Push (72.00)	Direct Push (50.00)	Direct Push (60.00)	Direct Push (60.00)
Units	ug/L	ug/L	ug/L	ug/L	ug/L
Naphthalene	NA	NA	NA	NA	NA
n-Butylbenzene	NA	NA	NA	NA	NA
n-Propylbenzene	NA	NA	NA	NA	NA
o-Chlorotoluene	NA	NA	NA	NA	NA
o-Dichlorobenzene	0.5 U				
o-Xylene	NA	0.5 U	NA	NA	NA ·
p-Chlorotoluene	NA	NA	NA	NA	NA
p-Cymene	NA	NA	NA	NA	NA
p-Dichlorobenzene	0.5 U				
sec-Butylbenzene	NA	NA	NA	NA	NA
Styrene	0.5 U				
tert-Butylbenzene	NA	NA	NA	NA	NA
Tetrachloroethylene	0.5 U				
Toluene	0.5 U	0.81	0.5 U	0.5 U	0.5 U
trans-1,2-Dichloroethene	0.5 U				
trans-1,3-Dichloropropene	0.5 U				
Trichloroethylene	0.5 U	0.57	0.5 U	0.5 U	0.5 U
Trichlorofluoromethane	0.5 U				
Vinyl chloride	0.5 U				
Xylene (total)	0.5 U	NA	0.5 U	0.5 U	0.5 U
Total Volatile TICs					

TABLE B-5 Volatile Organic Compounds - Groundwater (2002/2003) Little Valley Superfund Site Page 19 of 45

Area	Railroad Avenue				
Location	RRAAGEO-2	RRAAGEO-3	RRAAGEO-3	RRAAGEO-3	RRAAGEO-4
TtEC Sample I.D.	LV-GW-RRAA-GE02-70	LV-GW-RRAA-GEO3-40	LV-GW-RRAA-GEO3-56	LV-GW-RRAA-GE03-72	LV-GW-RRAA-GEO4-30
		·			
Sampling Date	09/24/2003	09/18/2003	09/18/2003	09/19/2003	09/24/2003
Matrix	Direct Push (70.00)	Direct Push (40.00)	Direct Push (56.00)	Direct Push (72.00)	Direct Push (30.00)
Units	ug/L	ug/L	ug/L	ug/L	ug/L
1,1,1,2-Tetrachloroethane	NA	NA	NA	NA	NA
1,1,1-Trichloroethane	0.5 U				
1,1,2,2-Tetrachloroethane	0.5 U				
1,1,2-Trichloroethane	0.5 U	0.5 UJ	0.5 U	0.5 U	0.5 U
1,1-Dichloroethane	0.5 U				
1,1-Dichloroethylene	0.5 U				
1,1-Dichloropropene	NA	NA	NA	NA	NA
1,2,3-Trichlorobenzene	0.5 U				
1,2,3-Trichloropropane	NA	NA	NA	NA	NA
1,2,4-Trichlorobenzene	0.5 U				
1,2-Dibromoethane	0.5 U				
1,2-Dichloroethane	0.5 U				
1,2-Dichloropropane	0.5 U				
1,3-Dichloropropane	NA	NA	NA	NA	NA
2,2-Dichloropropane	NA	NA	NA	NA	NA
2-Hexanone	2.5 U	5 U	5 U	0.5 U	5 U
Acetone	2.5 U	9.8	12	16 U	5 U
Benzene	0.5 U	0.5 U	0.41 J	0.58	0.5 U
Benzene, 1,2,4-trimethyl	NA	NA	NA	NA	NA-
Benzene, 1,3,5-trimethyl-	NA	NA	NA	NA	NA
Benzene, 1-methylethyl-	0.5 U				
Bromobenzene	NA	NA	NA	NA	NA
Bromodichloromethane	0.5 U				
Bromoform	0.5 U				
Carbon disulfide	0.5 U	0.22 J	0.5 U	0.5 U	0.5 U

TABLE B-5 Volatile Organic Compounds - Groundwater (2002/2003) Little Valley Superfund Site Page 20 of 45

Area	Railroad Avenue				
Location	RRAAGEO-2	RRAAGEO-3	RRAAGEO-3	RRAAGEO-3	RRAAGEO-4
TtEC Sample I.D.	LV-GW-RRAA-GE02-70	LV-GW-RRAA-GEO3-40	LV-GW-RRAA-GEO3-56	LV-GW-RRAA-GE03-72	LV-GW-RRAA-GEO4-30
Sampling Date	09/24/2003	09/18/2003	09/18/2003	09/19/2003	09/24/2003
Matrix	Direct Push (70.00)	Direct Push (40.00)	Direct Push (56.00)	Direct Push (72.00)	Direct Push (30.00)
Units	ug/L	ug/L	ug/L	ug/L	ug/L
Carbon tetrachloride	0.5 U				
Chlorobenzene	0.5 U				
Chlorobromomethane	0.5 U	0.5 U	0.5 U	NA	0.5 U
Chloroethane	0.5 U				
Chloroform	0.5 U	0.5 U	0.53	0.5 U	0.5 U
cis-1,2-Dichloroethylene	0.5 U				
cis-1,3-Dichloropropene	0.5 U	0.5 UJ	0.5 U	0.5 U	0.5 U
Cyclohexane	0.5 U	0.5 U	0.55 J	0.5 U	0.5 U
Dibromochloromethane	0.5 U				
Dibromochloropropane	0.5 Ú	0.5 U	0.5 U	0.5 U	0.5 U
Dichlorodifluoromethane	0.5 U				
Ethylbenzene	0.5 U	0.5 U	0.18 J	0.5 U	0.5 U
Freon 113	0.5 U				
Hexachlorobutadiene	NA	NA	NA	NA	NA
m/p-xylene	0.5 U	NA	NA	0.5 U	NA
m-Dichlorobenzene	0.5 U				
Methyl Acetate	0.5 U	0.5 UJ	0.5 UJ	0.5 U	0.5 UJ
Methyl bromide	0.5 UJ	0.5 U	0.5 U	0.5 U	0.5 U
Methyl chloride	0.5 U	0.21 U	0.81	0.5 U	0.5 U
Methyl ethylketone	2.5 U	5 UJ	2.6 J	2.6	5 U
Methyl isobutyl ketone (MIBK)	2.5 U	5 UJ	5 UJ	0.5 U	5 U
Methyl tert-butyl ether	0.5 U				
Methylcyclohexane	0.5 U	0.5 U	0.57 J	0.5 U	0.5 U
Methylene bromide	NA	NA	NA	NA	NA
Methylene chloride	1.1 UJ	0.5 U	0.5 U	1.3 UJ	0.5 U

TABLE B-5 Volatile Organic Compounds - Groundwater (2002/2003) Little Valley Superfund Site Page 21 of 45

Area	Railroad Avenue				
Location	RRAAGEO-2	RRAAGEO-3	RRAAGEO-3	RRAAGEO-3	RRAAGEO-4
TtEC Sample I.D.	LV-GW-RRAA-GE02-70	LV-GW-RRAA-GEO3-40	LV-GW-RRAA-GEO3-56	LV-GW-RRAA-GE03-72	LV-GW-RRAA-GEO4-30
Sampling Date	09/24/2003	09/18/2003	09/18/2003	09/19/2003	09/24/2003
Matrix	Direct Push (70.00)	Direct Push (40.00)	Direct Push (56.00)	Direct Push (72.00)	Direct Push (30.00)
Units	ug/L	ug/L	ug/L	ug/L	ug/L
Naphthalene	NA	NA	NA	NA	NA
n-Butylbenzene	NA	NA	NA	NA	NA
n-Propylbenzene	NA	NA	NA	NA	NA
o-Chlorotoluene	NA	NA	NA	NA	NA
o-Dichlorobenzene	0.5 U				
o-Xylene	0.5 U	NA	NA	0.5 U	NA
p-Chlorotoluene	NA	NA	NA	NA	NA
p-Cymene	NA	NA	NA	NA	NA
p-Dichlorobenzene	0.5 U				
sec-Butylbenzene	NA	NA	NA	NA	NA
Styrene	0.5 U				
tert-Butylbenzene	NA	NA	NA	NA	NA
Tetrachloroethylene	0.5 U				
Toluene	0.5 U	0.5 U	0.78 J	0.75	0.5 U
trans-1,2-Dichloroethene	0.5 U				
trans-1,3-Dichloropropene	0.5 U	0.5 UJ	0.5 U	0.5 U	0.5 U
Trichloroethylene	0.5 U	0.5 U	0.5 U	1.1	0.5 U
Trichlorofluoromethane	0.5 U				
Vinyl chloride	0.5 U				
Xylene (total)	NA	0.5 U	0.86 J	NA	0.5 U
Total Volatile TICs					==

TABLE B-5 Volatile Organic Compounds - Groundwater (2002/2003) Little Valley Superfund Site Page 22 of 45

Area	Railroad Avenue				
Location	RRAAGEO-4	RRAAGEO-4	RRAAGEO-5	RRAAGEO-5	RRAAGEO-5
TtEC Sample I.D.	LV-GW-RRAA-GEO4-40	LV-GW-RRAA-GE04-70	LV-GW-RRAA-GE05-30	LV-GW-RRAA-GEO5-50	LV-GW-RRAA-GEO5-70
Sampling Date	09/24/2003	09/25/2003	10/07/2003	10/07/2003	10/07/2003
Matrix	Direct Push (40.00)	Direct Push (70.00)	Direct Push (30.00)	Direct Push (50.00)	Direct Push (70.00)
Units	ug/L	ug/L	ug/L	ug/L	ug/L
1,1,1,2-Tetrachloroethane	NA	NA	NA	NA	NA
1,1,1-Trichloroethane	0.5 U	0.5 U	0.5 U	24 UJ	0.5 U
1,1,2,2-Tetrachloroethane	0.5 U	0.5 U	0.5 U	24 UJ	0.5 U
1,1,2-Trichloroethane	0.5 U	0.5 U	0.5 U	24 UJ	0.5 U
1,1-Dichloroethane	0.5 U	0.5 U	0.5 U	24 UJ	0.5 U
1,1-Dichloroethylene	0.5 U	0.5 U	0.5 U	24 UJ	0.5 U
1,1-Dichloropropene	NA	NA	NA	NA	NA
1,2,3-Trichlorobenzene	0.5 U	0.5 U	0.5 U	NA	0.5 U
1,2,3-Trichloropropane	NA	NA	NA	NA	NA
1,2,4-Trichlorobenzene	0.5 U	0.5 U	0.5 U	24 UJ	0.5 U
1,2-Dibromoethane	0.5 U	0.5 U	0.5 U	24 UJ	0.5 U
1,2-Dichloroethane	0.5 U	0.5 U	0.5 U	24 UJ	0.5 U
1,2-Dichloropropane	0.5 U	0.5 U	0.5 U	24 UJ	0.5 U
1,3-Dichloropropane	NA	NA	NA	NA	NA
2,2-Dichloropropane	NA	NA	NA	NA	NA
2-Hexanone	5 U	2.5 U	5 U	24 UJ	2.5 U
Acetone	5 U	10	6.2	24 UJ	2.5 U
Benzene	0.43 J	0.5 U	0.5 U	24 UJ	0.5 U
Benzene, 1,2,4-trimethyl	NA	NA	NA	NA	NA
Benzene, 1,3,5-trimethyl-	NA	NA	NA	NA	NA
Benzene, I-methylethyl-	0.5 U	0.5 U	0.5 U	24 UJ	0.5 U
Bromobenzene	NA	NA	NA	NA	NA
Bromodichloromethane	0.5 U	0.5 U	0.5 U	24 UJ	0.5 U
Bromoform	0.5 U	0.5 U	0.5 U	24 UJ	0.5 U
Carbon disulfide	0.5 U	0.5 U	0.5 U	24 UJ	0.5 U

TABLE B-5 Volatile Organic Compounds - Groundwater (2002/2003) Little Valley Superfund Site Page 23 of 45

Area	Railroad Avenue				
Location	RRAAGEO-4	RRAAGEO-4	RRAAGEO-5	RRAAGEO-5	RRAAGEO-5
TtEC Sample I.D.	LV-GW-RRAA-GEO4-40	LV-GW-RRAA-GE04-70	LV-GW-RRAA-GE05-30	LV-GW-RRAA-GEO5-50	LV-GW-RRAA-GEO5-70
Sampling Date	09/24/2003	09/25/2003	10/07/2003	10/07/2003	10/07/2003
Matrix	Direct Push (40.00)	Direct Push (70.00)	Direct Push (30.00)	Direct Push (50.00)	Direct Push (70,00)
Units	ug/L	ug/L	ug/L	ug/L	ug/L
Carbon tetrachloride	0.5 UJ	0.5 U	0.5 U	24 UJ	0.5 U
Chlorobenzene	0.5 U	0.5 U	0.5 U	24 UJ	0.5 U
Chlorobromomethane	0.5 UJ	0.5 U	0.5 U	NA	0.5 U
Chloroethane	0.5 U	0.5 U	0.5 U	24 UJ	0.5 U
Chloroform	0.5 U	0.5 U	0.5 U	24 UJ	0.5 U
cis-1,2-Dichloroethylene	0.5 U	0.5 U	6.2	24 UJ	0.5 U
cis-1,3-Dichloropropene	0.5 U	0.5 U	0.5 U	24 UJ	0.5 U
Cyclohexane	0.5 U	0.5 U	0.5 U	24 UJ	0.5 U
Dibromochloromethane	0.5 U	0.5 U	0.5 U	24 UJ	0.5 U
Dibromochloropropane	0.5 U	0.5 U	0.5 U	24 UJ	0.5 U
Dichlorodifluoromethane	0.5 U	0.5 U	0.5 U	24 UJ	0.5 U
Ethylbenzene	0.5 U	0.5 U	0.5 U	24 UJ	0.5 U
Freon 113	0.5 U	0.5 U	0.5 U	24 UJ	0.5 U
Hexachlorobutadiene	NA	NA	NA	NA	NA
m/p-xylene	NA	0.5 U	NA	NA	0.5 U
m-Dichlorobenzene	0.5 U	0.5 U	0.5 U	24 UJ	0.5 U
Methyl Acetate	0.5 UJ	0.5 U	0.5 U	24 UJ	0.5 U
Methyl bromide	0.5 U	0.5 UJ	0.5 U	24 UJ	0.5 U
Methyl chloride	0.5 U	0.5 U	0.5 U	24 UJ	0.5 U
Methyl ethylketone	5 U	2.5 U	5 U	24 UJ	2.5 U
Methyl isobutyl ketone (MIBK)	5 U	2.5 U	5 U	24 UJ	2.5 U
Methyl tert-butyl ether	0.5 U	0.5 U	0.5 U	24 UJ	0.5 U
Methylcyclohexane	0.5 U	0.5 U	0.5 U	24 UJ	0.5 U
Methylene bromide	NA	NA	NA	NA	NA
Methylene chloride	0.5 U	0.8 UJ	0.5 U	. 37 UJ	0.5 U

TABLE B-5 Volatile Organic Compounds - Groundwater (2002/2003) Little Valley Superfund Site Page 24 of 45

Area	Railroad Avenue				
Location	RRAAGEO-4	RRAAGEO-4	RRAAGEO-5	RRAAGEO-5	RRAAGEO-5
TtEC Sample I.D.	LV-GW-RRAA-GEO4-40	LV-GW-RRAA-GE04-70	LV-GW-RRAA-GE05-30	LV-GW-RRAA-GEO5-50	LV-GW-RRAA-GEO5-70
Sampling Date	09/24/2003	09/25/2003	10/07/2003	10/07/2003	10/07/2003
Matrix	Direct Push (40.00)	Direct Push (70.00)	Direct Push (30.00)	Direct Push (50.00)	Direct Push (70.00)
Units	ug/L	ug/L	ug/L	ug/L	ug/L
Naphthalene	NA	NA	NA	NA	NA
n-Butylbenzene	NA	NA	NA	NA	NA
n-Propylbenzene	NA	NA	NA	NA	NA
o-Chlorotoluene	NA	NA	NA	NA	NA
o-Dichlorobenzene	0.5 U	0.5 U	0.5 U	24 UJ	0.5 U
o-Xylene	NA	0.5 U	NA	NA	0.5 U
p-Chlorotoluene	NA	NA	NA	NA	NA
p-Cymene	NA	NA	NA	NA	NA
p-Dichlorobenzene	0.5 U	0.5 U	0.5 U	24 UJ	0.5 U
sec-Butylbenzene	NA	NA	NA	NA	NA
Styrene	0.5 U	0.5 U	0.5 U	24 UJ	0.5 U
tert-Butylbenzene	NA	NA	NA	NA	NA
Tetrachloroethylene	0.5 U	0.5 U	0.5 U	24 UJ	0.5 U
Toluene	0.69	0.5 U	0.5 U	24 UJ	0.5 U
trans-1,2-Dichloroethene	0.5 U	0.5 U	0.5 U	24 UJ	0.5 U
trans-1,3-Dichloropropene	0.5 U	0.5 U	0.5 U	24 UJ	0.5 U
Trichloroethylene	0.5 U	0.5 U	0.5 U	24 UJ	0.5 U
Trichlorofluoromethane	0.5 U	0.5 U	0.5 U	24 UJ	0.5 U
Vinyl chloride	0.5 U	0.5 U	0.5 U	24 UJ	0.5 U
Xylene (total)	0.41 J	NA	0.5 U	24 UJ	NA
Total Volatile TICs					

TABLE B-5 Volatile Organic Compounds - Groundwater (2002/2003) Little Valley Superfund Site Page 25 of 45

Area	Railroad Avenue	Railroad Avenue	Railroad Avenue	Railroad Avenue	Railroad Avenue
Location	RRAAGEO-6	RRAAGEO-6	RRAAGEO-6	RRAAGEO-6	RRAAGEO-7
TtEC Sample I.D.	LV-GW-RRAA-GE06-50	LV-GW-RRAA-GE06-60	LV-GW-RRAA-GE014-60	LV-GW-RRAA-GEO6-70	LV-GW-RRAA-GEO7-50
_			Duplicate		
Sampling Date	10/06/2003	10/06/2003	10/06/2003	10/06/2003	09/19/2003
Matrix	Direct Push (50.00)	Direct Push (60.00)	Direct Push (60.00)	Direct Push (70.00)	Direct Push (50.00)
Units	ug/L	ug/L	ug/L	ug/L	ug/L

1,1,1,2-Tetrachloroethane	NA	NA	NA	NA	NA
1,1,1-Trichloroethane	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,1,2,2-Tetrachloroethane	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,1,2-Trichloroethane	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,1-Dichloroethane	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,1-Dichloroethylene	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,1-Dichloropropene	NA	NA	NA	NA	NA
1,2,3-Trichlorobenzene	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,2,3-Trichloropropane	NA	NA	NA	NA	NA
1,2,4-Trichlorobenzene	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,2-Dibromoethane	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,2-Dichloroethane	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,2-Dichloropropane	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,3-Dichloropropane	NA	NA	NA	NA	NA
2,2-Dichloropropane	NA	NA	NA	NA	NA
2-Hexanone	5 U	5 U	5 U	2.5 U	5 U
Acetone	5 U	5 U	5 U	2.5 U	5 U
Benzene	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Benzene, 1,2,4-trimethyl	NA	NA	NA	NA	NA
Benzene, 1,3,5-trimethyl-	NA	NA	NA	NA	NA
Benzene, I-methylethyl-	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Bromobenzene	NA	NA	NA	NA	NA
Bromodichloromethane	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Bromoform	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Carbon disulfide	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U

TABLE B-5
Volatile Organic Compounds - Groundwater (2002/2003)
Little Valley Superfund Site
Page 26 of 45

Area	Railroad Avenue				
Location	RRAAGEO-6	RRAAGEO-6	RRAAGEO-6	RRAAGEO-6	RRAAGEO-7
TtEC Sample I.D.	LV-GW-RRAA-GE06-50	LV-GW-RRAA-GE06-60	LV-GW-RRAA-GE014-60	LV-GW-RRAA-GEO6-70	LV-GW-RRAA-GEO7-50
			Duplicate		
Sampling Date	10/06/2003	10/06/2003	10/06/2003	10/06/2003	09/19/2003
Matrix	Direct Push (50.00)	Direct Push (60.00)	Direct Push (60.00)	Direct Push (70.00)	Direct Push (50.00)
Units	ug/L	ug/L	ug/L	ug/L	ug/L
					<u> </u>
Carbon tetrachloride	0.5 U				
Chlorobenzene	0.5 U				
Chlorobromomethane	0.5 U				
Chloroethane	0.5 U				
Chloroform	0.5 U				
cis-1,2-Dichloroethylene	0.5 U				
cis-1,3-Dichloropropene	0.5 U				
Cyclohexane	0.5 U				
Dibromochloromethane	0.5 U				
Dibromochloropropane	0.5 U				
Dichlorodifluoromethane	0.5 U				
Ethylbenzene	0.5 U				
Freon 113	0.5 U				
Hexachlorobutadiene	NA	NA	NA	NA	NA
m/p-xylene	NA	NA	NA	0.5 U	NA
m-Dichlorobenzene	0.5 U				
Methyl Acetate	0.5 U	0.5 U	0.5 U	0.5 U	0.5 UJ
Methyl bromide	0.5 U				
Methyl chloride	0.5 U				
Methyl ethylketone	5 U	5 U	5 U	2.5 U	5 U
Methyl isobutyl ketone (MIBK)	5 U	5 U	5 U	2.5 U	5 U
Methyl tert-butyl ether	0.5 U				
Methylcyclohexane	0.5 U				
Methylene bromide	NA	NA	NA	NA	NA
Methylene chloride	0.5 U				

TABLE B-5
Volatile Organic Compounds - Groundwater (2002/2003)
Little Valley Superfund Site
Page 27 of 45

Area	Railroad Avenue				
Location	RRAAGEO-6	RRAAGEO-6	RRAAGEO-6	RRAAGEO-6	RRAAGEO-7
TtEC Sample I.D.	LV-GW-RRAA-GE06-50	LV-GW-RRAA-GE06-60	LV-GW-RRAA-GE014-60	LV-GW-RRAA-GEO6-70	LV-GW-RRAA-GEO7-50
			Duplicate		
Sampling Date	10/06/2003	10/06/2003	10/06/2003	10/06/2003	09/19/2003
Matrix	Direct Push (50.00)	Direct Push (60.00)	Direct Push (60.00)	Direct Push (70.00)	Direct Push (50.00)
Units	ug/L	ug/L	ug/L	ug/L	ug/L
Naphthalene	NA	NA	NA	NA	NA
n-Butylbenzene	NA	NA	NA	NA	NA
n-Propylbenzene	NA	NA	NA	NA	NA
o-Chlorotoluene	NA	NA	NA	NA	NA
o-Dichlorobenzene	0.5 U				
o-Xylene	NA	NA	NA	0.5 U	NA
p-Chlorotoluene	NA	NA	NA	NA	NA
p-Cymene	NA	NA	. NA	NA	NA
p-Dichlorobenzene	0.5 U	0.5 U	0.5 U	0.5 U .	0.5 U
sec-Butylbenzene	NA	NA	NA	NA	NA
Styrene	0.5 U				
tert-Butylbenzene	NA	NA	NA	NA	NA
Tetrachloroethylene	0.5 U				
Toluene	0.5 U				
trans-1,2-Dichloroethene	0.5 U				
trans-1,3-Dichloropropene	0.5 U				
Trichloroethylene	0.5 U				
Trichlorofluoromethane	0.5 U				
Vinyl chloride	0.5 U				
Xylene (total)	0.5 U	0.5 U	0.5 U	NA	0.5 U
Total Volatile TICs		<u></u>			

TABLE B-5 Volatile Organic Compounds - Groundwater (2002/2003) Little Valley Superfund Site Page 28 of 45

Area	Railroad Avenue	Raifroad Avenue	Railroad Avenue	Railroad Avenue	Railroad Avenue
Location	RRAAGEO-7	RRAAGEO-7	RRAAGEO-8	RRAAGEO-8	RRAAGEO-8
TtEC Sample I.D.	LV-GW-RRAA-GEO7-30	LV-GW-RRAA-GE07-70	LV-GW-RRAA-GEO8-30	LV-GW-RRAA-GEO8-40	LV-GW-RRAA-GEO8-70
Sampling Date	09/26/2003	09/26/2003	09/29/2003	09/29/2003	09/30/2003
Matrix	Direct Push (30.00)	Direct Push (70.00)	Direct Push (30.00)	Direct Push (40.00)	Direct Push (70.00)
Units	ug/L	ug/L	ug/L	ug/L	ug/L
1,1,1,2-Tetrachloroethane	NA	NA	NA	NA	NA
1,1,1-Trichloroethane	0.5 U				
1,1,2,2-Tetrachloroethane	0.5 U				
1,1,2-Trichloroethane	0.5 U				
1,1-Dichloroethane	0.5 U				
1,1-Dichloroethylene	0.5 U				
1,1-Dichloropropene	NA	NA	NA	NA -	NA
1,2,3-Trichlorobenzene	0.5 U	0.5 U	0.5 UJ	0.5 UJ	0.5 UJ
1,2,3-Trichloropropane	NA	NA	NA	NA	NA
1,2,4-Trichlorobenzene	0.5 U	0.5 U	0.5 U	0.5 U	0.5 UJ
1,2-Dibromoethane	0.5 U				
1,2-Dichloroethane	0.5 U				
1,2-Dichloropropane	0.5 U				
1,3-Dichloropropane	NA	NA	NA	NA	NA
2,2-Dichloropropane	NA	NA	NA	NA	NA
2-Hexanone	5 U	2.5 U	5 U	5 U	2.5 U
Acetone	5 U	2.5 U	6.6 J	5 U	2.5 U
Benzene	0.5 U	0.5 U	0.5 U	0.16 J	0.5 U
Benzene, 1,2,4-trimethyl	NA	NA	NA	NA	NA
Benzene, 1,3,5-trimethyl-	NA	NA	NA	NA	NA
Benzene, 1-methylethyl-	0.5 U				
Bromobenzene	NA	NA	NA	NA	NA
Bromodichloromethane	0.5 U				
Bromoform	0.5 U				
Carbon disulfide	0.5 U				

TABLE B-5
Volatile Organic Compounds - Groundwater (2002/2003)
Little Valley Superfund Site
Page 29 of 45

Area	Railroad Avenue				
Location	RRAAGEO-7	RRAAGEO-7	RRAAGEO-8	RRAAGEO-8	RRAAGEO-8
TtEC Sample I.D.	LV-GW-RRAA-GEO7-30	LV-GW-RRAA-GE07-70	LV-GW-RRAA-GEO8-30	LV-GW-RRAA-GEO8-40	LV-GW-RRAA-GEO8-70
•			EV GW MARIA GEOG 50	ET GW MMA-GEOG-40	LV-GW-RRAA-GLO6-70
Sampling Date	09/26/2003	. 09/26/2003	09/29/2003	09/29/2003	09/30/2003
Matrix	Direct Push (30.00)	Direct Push (70.00)	Direct Push (30,00)	Direct Push (40.00)	Direct Push (70.00)
Units	ug/L	ug/L	ug/L	ug/L	ug/L
				C	
Carbon tetrachloride	0.5 U				
Chlorobenzene	0.5 U				
Chlorobromomethane	0.5 U				
Chloroethane	0.5 U				
Chloroform	0.5 U				
cis-1,2-Dichloroethylene	0.5 U				
cis-1,3-Dichloropropene	0.5 U				
Cyclohexane	0.5 U				
Dibromochloromethane	0.5 U				
Dibromochloropropane	0.5 U				
Dichlorodifluoromethane	0.5 U				
Ethylbenzene	0.5 U				
Freon 113	0.5 U				
Hexachlorobutadiene	NA	NA	NA	NA	NA
m/p-xylene	NA	0.5 U	NA	NA	0.5 U
m-Dichlorobenzene	0.5 U				
Methyl Acetate	0.5 UJ	0.5 U	0.5 U	0.5 U	0.5 U
Methyl bromide	0.5 U	0.5 UJ	0.5 U	0.5 U	0.5 U
Methyl chloride	0.5 U	0.5 U	· 0.5 U	0.5 U	0.5 U
Methyl ethylketone	5 U	2.5 U	5 U	5 U	2.5 U
Methyl isobutyl ketone (MIBK)	5 U	2.5 U	5 U	5 U	2.5 U
Methyl tert-butyl ether	0.5 U				
Methylcyclohexane	0.5 U				
Methylene bromide	NA	NA	NA	NA	NA
Methylene chloride	0.5 U	0.5 UJ	0.67 UJ	0.7 U	0.5 U

TABLE B-5 Volatile Organic Compounds - Groundwater (2002/2003) Little Valley Superfund Site Page 30 of 45

Area	Railroad Avenue				
Location	RRAAGEO-7	RRAAGEO-7	RRAAGEO-8	RRAAGEO-8	RRAAGEO-8
TtEC Sample I.D.	LV-GW-RRAA-GEO7-30	LV-GW-RRAA-GE07-70	LV-GW-RRAA-GEO8-30	LV-GW-RRAA-GEO8-40	LV-GW-RRAA-GEO8-70
Sampling Date	09/26/2003	09/26/2003	09/29/2003	09/29/2003	09/30/2003
Matrix	Direct Push (30.00)	Direct Push (70.00)	Direct Push (30.00)	Direct Push (40.00)	Direct Push (70.00)
Units	ug/L	ug/L	ug/L	ug/L	ug/L
Naphthalene	NA	NA	NA	NA	NA
n-Butylbenzene	NA	NA	NA	NA	NA
n-Propylbenzene	NA	NA	NA	NA	NA
o-Chlorotoluene	NA	NA	NA	NA	NA
o-Dichlorobenzene	0.5 U				
o-Xylene	NA	0.5 U	NA	NA	0.5 U
p-Chlorotoluene	NA	NA	NA	NA	NA
p-Cymene	NA	NA	NA	NA	NA
p-Dichlorobenzene	0.5 U				
sec-Butylbenzene	NA	NA	NA	NA	NA
Styrene	0.5 U				
tert-Butylbenzene	NA	NA	NA	NA	NA
Tetrachloroethylene	0.5 U				
Toluene	0.5 U				
trans-1,2-Dichloroethene	0.5 U				
trans-1,3-Dichloropropene	0.5 U				
Trichloroethylene	0.5 U				
Trichlorofluoromethane	0.5 U				
Vinyl chloride	0.5 U				
Xylene (total)	0.5 U	NA	0.5 U	0.5 U	NA
Total Volatile TICs					

TABLE B-5 Volatile Organic Compounds - Groundwater (2002/2003) Little Valley Superfund Site Page 31 of 45

Area	Railroad Avenue				
Location	RRAAGEO-9	RRAAGEO-9	RRAAGEO-9	RRAAGEO-10	RRAAGEO-10
TtEC Sample I.D.	LV-GW-RRAA-GEO9-50	LV-GW-RRAA-GEO9-60	LV-GW-RRAA-GEO9-70	LV-GW-RRAA-GEO10-30	LV-GW-RRAA-GEO10-60
		,			
Sampling Date	10/02/2003	10/02/2003	10/02/2003	09/30/2003	10/01/2003
Matrix	Direct Push (50.00)	Direct Push (60.00)	Direct Push (70.00)	Direct Push (30.00)	Direct Push (60.00)
Units	ug/L	ug/L	ug/L	ug/L	ug/L
1,1,1,2-Tetrachloroethane	NA	NA	NA	NA	NA
1,1,1-Trichloroethane	0.5 U				
1,1,2,2-Tetrachloroethane	0.5 U				
1,1,2-Trichloroethane	0.5 U				
1,1-Dichloroethane	0.5 U				
1,1-Dichloroethylene	0.5 U				
1,1-Dichloropropene	NA	NA	NA	NA	NA
1,2,3-Trichlorobenzene	0.5 UJ	0.5 UJ	0.5 U	0.5 UJ	0.5 UJ
1,2,3-Trichloropropane	NA	NA	NA	NA	NA
1,2,4-Trichlorobenzene	0.5 U				
1,2-Dibromoethane	0.5 U				
1,2-Dichloroethane	0.5 U	0.5 U	0.5 U	. 0.5 U	0.5 U
1,2-Dichloropropane	0.5 U				
1,3-Dichloropropane	NA	NA	NA	NA	NA
2,2-Dichloropropane	NA	NA	NA	NA	NA
2-Hexanone	5 U	5 U	2.5 U	5 U	5 U
Acetone	5 U	5 U	2.5 U	26	15
Benzene	0.25 J	0.22 J	0.5 U	0.5 U	0.24 J
Benzene, 1,2,4-trimethyl	NA	NA	NA	NA	NA
Benzene, 1,3,5-trimethyl-	NA	NA	NA	NA NA	NA
Benzene, I-methylethyl-	0.5 U				
Bromobenzene	NA	NA	NA	NA	NA
Bromodichloromethane	0.5 U				
Bromoform	0.5 U				
Carbon disulfide	0.5 U				

TABLE B-5 Volatile Organic Compounds - Groundwater (2002/2003) Little Valley Superfund Site Page 32 of 45

Area	Railroad Avenue	Railroad Avenue	Railroad Avenue	Raiiroad Avenue	Railroad Avenue
Location	RRAAGEO-9	RRAAGEO-9	RRAAGEO-9	RRAAGEO-10	RRAAGEO-10
TtEC Sample I.D.	LV-GW-RRAA-GEO9-50	LV-GW-RRAA-GEO9-60	LV-GW-RRAA-GEO9-70	LV-GW-RRAA-GEO10-30	LV-GW-RRAA-GEO10-60
Sampling Date	10/02/2003	10/02/2003	10/02/2003	09/30/2003	10/01/2003
Matrix	Direct Push (50.00)	Direct Push (60.00)	Direct Push (70.00)	Direct Push (30.00)	Direct Push (60.00)
Units	ug/L	ug/L	ug/L	ug/L	ug/L
Carbon tetrachloride	0.5 U				
Chlorobenzene	0.5 U				
Chlorobromomethane	0.5 U				
Chloroethane	0.5 U				
Chloroform	0.94	0.5 U	0.5 U	0.5 U	0.5 U
cis-1,2-Dichloroethylene	0.5 U				
cis-1,3-Dichloropropene	0.5 U				
Cyclohexane	0.5 U	0.5 U	0.5	0.5 U	0.5 U
Dibromochloromethane	0.5 U				
Dibromochloropropane	0.5 U				
Dichlorodifluoromethane	0.5 U				
Ethylbenzene	0.5 U				
Freon 113	0.5 U				
Hexachlorobutadiene	NA	NA	NA	NA	NA
m/p-xylene	NA	NA	0.5 U	NA	NA
m-Dichlorobenzene	0.5 U				
Methyl Acetate	0.5 U				
Methyl bromide	0.5 U	0.5 U	0.5 UJ	0.5 U	0.5 U
Methyl chloride	0.5 U				
Methyl ethylketone	5 U	5 U	2.5 U	5 U	5 U
Methyl isobutyl ketone (MIBK)	5 U	5 U	2.5 U	5 U	5 U
Methyl tert-butyl ether	0.5 U				
Methylcyclohexane	0.17 J	0.19 J	0.5 U	0.5 U	0.5 U
Methylene bromide	NA	NA	NA	NA	NA
Methylene chloride	0.6 U	0.56 U	1.1 UJ	0.54 U	0.5 U

TABLE B-5 Volatile Organic Compounds - Groundwater (2002/2003) Little Valley Superfund Site Page 33 of 45

Area	Railroad Avenue				
Location	RRAAGEO-9	RRAAGEO-9	RRAAGEO-9	RRAAGEO-10	RRAAGEO-10
TtEC Sample I.D.	LV-GW-RRAA-GEO9-50	LV-GW-RRAA-GEO9-60	LV-GW-RRAA-GEO9-70	LV-GW-RRAA-GEO10-30	LV-GW-RRAA-GEO10-60
Sampling Date	10/02/2003	10/02/2003	10/02/2003	09/30/2003	10/01/2003
Matrix	Direct Push (50.00)	Direct Push (60.00)	Direct Push (70.00)	Direct Push (30.00)	Direct Push (60.00)
Units	ug/L	ug/L	ug/L	ug/L	ug/L
Naphthalene	NA	NA	NA	NA	NA
n-Butylbenzene	NA	NA	NA	NA	NA
n-Propylbenzene	NA	NA	NA	NA	NA
o-Chlorotoluene	NA	NA	NA	NA	NA
o-Dichlorobenzene	0.5 U				
o-Xylene	NA	NA	0.5 U	NA	NA
p-Chlorotoluene	NA	NA	NA	NA	NA
p-Cymene	NA	NA	NA	NA	NA
p-Dichlorobenzene	0.5 U				
sec-Butylbenzene	NA	NA	NA	NA	NA
Styrene	0.5 U				
tert-Butylbenzene	NA	NA	NA	NA	NA
Tetrachloroethylene	0.5 U				
Toluene	0.34 J	0.28 J	0.7	0.5 U	0.22 Ј
trans-1,2-Dichloroethene	0.5 U				
trans-1,3-Dichloropropene	0.5 U				
Trichloroethylene	0.5 U	0.26 J	1	0.5 U	0.5 U
Trichlorofluoromethane	0.5 U				
Vinyl chloride	0.5 U				
Xylene (total)	0.5 U	0.5 U	NA	0.5 U	0.5 U
Total Volatile TICs					

TABLE B-5 Volatile Organic Compounds - Groundwater (2002/2003) Little Valley Superfund Site Page 34 of 45

Area	Railroad Avenue	Railroad Avenue	Railroad Avenue	Railroad Avenue	T) '1 1 4
Location	RRAAGEO-10	RRAAGEO-11			Railroad Avenue
			RRAAGEO-11	RRAAGEO-11	RRAAGEO-12
TtEC Sample I.D.	LV-GW-RRAA-GEO10-70	LV-GW-RRAA-GE011-50	LV-GW-RRAA-GE011-60	LV-GW-RRAA-GEO11-70	LV-GW-RRAA-GEO12-40
Sampling Date	10/01/2003	10/08/2003	10/08/2003	10/08/2003	09/22/2003
Matrix	Direct Push (70.00)	Direct Push (50.00)	Direct Push (60.00)	Direct Push (70.00)	Direct Push (40.00)
Units	ug/L	ug/L	ug/L	ug/L	ug/L
					TO THE STATE OF TH
1,1,1,2-Tetrachloroethane	NA	NA	NA	NA	NA
1,1,1-Trichloroethane	0.5 U				
1,1,2,2-Tetrachloroethane	0.5 U				
1,1,2-Trichloroethane	0.5 U	0.5 UJ	0.5 U	0.5 U	0.5 U
1,1-Dichloroethane	0.5 U				
1,1-Dichloroethylene	0.5 U				
1,1-Dichloropropene	NA	NA	NA	NA	NA
1,2,3-Trichlorobenzene	0.5 U				
1,2,3-Trichloropropane	NA	NA	NA	NA	NA
1,2,4-Trichlorobenzene	0.5 U				
1,2-Dibromoethane	0.5 U				
1,2-Dichloroethane	0.5 U				
1,2-Dichloropropane	0.5 U				
1,3-Dichloropropane	NA	NA	NA	NA	NA
2,2-Dichloropropane	NA	NA	NA	NA	NA
2-Hexanone	2.5 U	5 U	5 U	2.5 U	5 U
Acetone	2.5 U	5 R	5 R	2.5 U	5 U
Benzene	0.5 U	0.5 U	0.31 J	0.5 U	0.5 U
Benzene, 1,2,4-trimethyl	NA	NA	NA	NA	NA
Benzene, 1,3,5-trimethyl-	NA	NA	NA	NA	NA
Benzene, I-methylethyl-	0.5 U				
Bromobenzene	NA	NA	NA	NA	NA
Bromodichloromethane	0.5 U				
Bromoform	0.5 U				
Carbon disulfide	0.5 U				

TABLE B-5 Volatile Organic Compounds - Groundwater (2002/2003) Little Valley Superfund Site Page 35 of 45

Area	Railroad Avenue				
Location	RRAAGEO-10	RRAAGEO-11	RRAAGEO-11	RRAAGEO-11	RRAAGEO-12
TtEC Sample I.D.	LV-GW-RRAA-GEO10-70	LV-GW-RRAA-GE011-50	LV-GW-RRAA-GE011-60	LV-GW-RRAA-GEO11-70	LV-GW-RRAA-GEO12-40
Sampling Date	10/01/2003	10/08/2003	10/08/2003	10/08/2003	09/22/2003
Matrix	Direct Push (70.00)	Direct Push (50.00)	Direct Push (60.00)	Direct Push (70.00)	Direct Push (40.00)
Units	ug/L	ug/L	ug/L	ug/L	ug/L
Carbon tetrachloride	0.5 U	0.5 U	0.17 J	0.5 U	0.5 U
Chlorobenzene	0.5 U				
Chlorobromomethane	0.5 U				
Chloroethane	0.5 U				
Chloroform	0.5 U				
cis-1,2-Dichloroethylene	0.5 U				
cis-1,3-Dichloropropene	0.5 U	0.5 UJ	0.5 U	0.5 U	0.5 U
Cyclohexane	0.5 Ú	0.5 U	0.5 U	0.5 U	0.5 U
Dibromochloromethane	0.5 U				
Dibromochloropropane	0.5 U				
Dichlorodifluoromethane	0.5 U				
Ethylbenzene	0.5 U				
Freon 113	0.5 U				
Hexachlorobutadiene	NA	NA	NA	NA	NA
m/p-xylene	0.5 U	NA	NA	0.5 U	NA
m-Dichlorobenzene	0.5 U				
Methyl Acetate	0.5 U	0.5 R	0.5 R	0.5 U	0.5 UJ
Methyl bromide	0.5 UJ	0.5 U	0.5 U	0.5 U	0.5 U
Methyl chloride	0.5 U	0.5 U	0.45 J	0.5 U	0.5 U
Methyl ethylketone	2.5 U	5 U	5 U	2.5 U	5 U
Methyl isobutyl ketone (MIBK)	2.5 U	5 U	5 U	2.5 U	5 U
Methyl tert-butyl ether	0.5 U				
Methylcyclohexane	0.5 U	0.5 UJ	0.44 J	0.5 U	0.5 U
Methylene bromide	NA	NA	NA	NA	NA
Methylene chloride	1.3 UJ	0.5 U	0.5 U	1 U	0.5 UJ

TABLE B-5 Volatile Organic Compounds - Groundwater (2002/2003) Little Valley Superfund Site Page 36 of 45

Area	Railroad Avenue	Raifroad Avenue	Railroad Avenue	Railroad Avenue	Railroad Avenue
Location	RRAAGEO-10	RRAAGEO-11	RRAAGEO-11	RRAAGEO-11	RRAAGEO-12
TtEC Sample I.D.	LV-GW-RRAA-GEO10-70	LV-GW-RRAA-GE011-50	LV-GW-RRAA-GE011-60	LV-GW-RRAA-GEO11-70	LV-GW-RRAA-GEO12-40
Sampling Date	10/01/2003	10/08/2003	10/08/2003	10/08/2003	00/22/2002
Matrix		Direct Push (50.00)	Direct Push (60.00)		09/22/2003
Units	` ′	ug/L	ug/L	Direct Push (70.00)	Direct Push (40.00)
		ugil	ug/L	ug/L	ug/L
Naphthalene	NA	NA	NA	NA	NA
n-Butylbenzene	NA	NA	NA NA	NA NA	NA NA
n-Propylbenzene	NA	NA	NA	NA NA	NA NA
o-Chlorotoluene	NA .	NA	NA NA	NA	NA NA
o-Dichlorobenzene	0.5 U				
o-Xylene	0.5 U	NA	NA	0.5 U	NA
p-Chlorotoluene	NA	NA	NA	NA	NA NA
p-Cymene	NA	NA	NA	NA	NA NA
p-Dichlorobenzene	0.5 U				
sec-Butylbenzene	NA	NA	NA	NA	NA
Styrene	0.5 U				
tert-Butylbenzene	NA	NA	NA	NA	NA NA
Tetrachloroethylene	0.5 U				
Toluene	0.5 J	0.5 U	0.32 Ј	0.5 U	0.5 U
trans-1,2-Dichloroethene	0.5 U				
trans-1,3-Dichloropropene	0.5 U	0.5 UJ	0.5 U	0.5 U	0.5 U
Trichloroethylene	0.5	0.5 U	0.5 U	0.5 U	0.5 U
Trichlorofluoromethane	0.5 U				
Vinyl chloride	0.5 U				
Xylene (total)	NA	0.5 U	0.5 U	NA	0.5 U
Total Volatile TICs			2.99 Ј		

TABLE B-5 Volatile Organic Compounds - Groundwater (2002/2003) Little Valley Superfund Site Page 37 of 45

Area	Railroad Avenue	Railroad Avenue	Railroad Avenue	Railroad Avenue	Whig Street
Location	RRAAGEO-12	RRAAGEO-12	MWRRAA-1	MWRRAA-2D	PZ-39
TtEC Sample I.D.	LV-GW-RRAA-GEO12-60	LV-GW-RRAA-GEO12-70	LV-GW-RRAA1-01	LV-GW-RRAA2D-01	LV-GW-PZ39-MNA
-				D. G. RIGHED OF	EV-GW-1 255-MINA
Sampling Date	09/22/2003	09/22/2003	11/12/2003	11/12/2003	12/04/2003
Matrix	Direct Push (60.00)	Direct Push (70.00)	Groundwater	Groundwater	Groundwater
Units	ug/L	ug/L	ug/L	ug/L	ug/L
					11 60 12
1,1,1,2-Tetrachloroethane	NA	NA	0.5 U	0.5 U	NA
1,1,1-Trichloroethane	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,1,2,2-Tetrachloroethane	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,1,2-Trichloroethane	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,1-Dichloroethane	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,1-Dichloroethylene	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,1-Dichloropropene	NA	NA	0.5 U	0.5 U	NA
1,2,3-Trichlorobenzene	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,2,3-Trichloropropane	NA	NA	0.5 U	0.5 U	NA
1,2,4-Trichlorobenzene	0.5 U	0.5 U	0.5 U	0.5 U	0.5 UJ
1,2-Dibromoethane	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,2-Dichloroethane	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,2-Dichloropropane	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,3-Dichloropropane	NA	NA	0.5 U	0.5 U	NA
2,2-Dichloropropane	NA	NA	0.5 U	0.5 U	NA
2-Hexanone	5 UJ	2.5 U	1 U	1 U	5 U
Acetone	5 U	2.5 U	1 U	I U	5 U
Benzene	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Benzene, 1,2,4-trimethyl	NA	NA	0.5 U	0.5 U	NA
Benzene, 1,3,5-trimethyl-	NA	NA	0.5 U	0.5 U	NA
Benzene, I-methylethyl-	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Bromobenzene	NA	NA	0.5 U	0.5 U	NA
Bromodichloromethane	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Bromoform	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Carbon disulfide	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U

TABLE B-5 Volatile Organic Compounds - Groundwater (2002/2003) Little Valley Superfund Site Page 38 of 45

Area	Railroad Avenue	Railroad Avenue	Railroad Avenue	Railroad Avenue	Whig Street
Location	RRAAGEO-12	RRAAGEO-12	MWRRAA-1	MWRRAA-2D	PZ-39
TtEC Sample I.D.	LV-GW-RRAA-GEO12-60	LV-GW-RRAA-GEO12-70	LV-GW-RRAA1-01	LV-GW-RRAA2D-01	LV-GW-PZ39-MNA
					·
Sampling Date	09/22/2003	09/22/2003	11/12/2003	11/12/2003	12/04/2003
Matrix	Direct Push (60.00)	Direct Push (70.00)	Groundwater	Groundwater	Groundwater
Units	ug/L	ug/L	ug/L	ug/L	ug/L
Carbon tetrachloride	0.63	0.5 U	0.5 U	0.5 U	0.5 U
Chlorobenzene	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Chlorobromomethane	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Chloroethane	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Chloroform	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
cis-1,2-Dichloroethylene	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
cis-1,3-Dichloropropene	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Cyclohexane	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Dibromochloromethane	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Dibromochloropropane	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Dichlorodifluoromethane	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Ethylbenzene	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Freon 113	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Hexachlorobutadiene	NA	NA	0.5 U	0.5 U	NA
m/p-xylene	NA	0.5 U	0.5 U	0.5 U	NA
m-Dichlorobenzene	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Methyl Acetate	0.5 UJ	0.5 U	0.5 U	0.5 U	0.5 UJ
Methyl bromide	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Methyl chloride	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Methyl ethylketone	5 U	2.5 U	1 U	1 U	5 U
Methyl isobutyl ketone (MIBK)	5 UJ	2.5 U	1 U	1 U	5 U
Methyl tert-butyl ether	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Methylcyclohexane	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Methylene bromide	NA	NA	0.5 U	0.5 U	NA
Methylene chloride	0.55 UJ	1.2 UJ	0.5 U	0.5 U	0.5 U

TABLE B-5 Volatile Organic Compounds - Groundwater (2002/2003) Little Valley Superfund Site Page 39 of 45

Area	Railroad Avenue	Railroad Avenue	Railroad Avenue	Railroad Avenue	Whig Street
Location	RRAAGEO-12	RRAAGEO-12	MWRRAA-1	MWRRAA-2D	PZ-39
TtEC Sample I.D.	LV-GW-RRAA-GEO12-60	LV-GW-RRAA-GEO12-70	LV-GW-RRAA1-01	LV-GW-RRAA2D-01	LV-GW-PZ39-MNA
Sampling Date	09/22/2003	09/22/2003	11/12/2003	11/12/2003	12/04/2003
Matrix	Direct Push (60.00)	Direct Push (70.00)	Groundwater	Groundwater	Groundwater
Units	ug/L	ug/L	ug/L	ug/L	ug/L
Naphthalene	NA	NA	0.5 U	0.5 U	NA
n-Butylbenzene	NA	NA	0.5 U	0.5 U	NA
n-Propylbenzene	NA	NA	0.5 U	0.5 U	NA
o-Chlorotoluene	NA	NA	0.5 U	0.5 U	NA
o-Dichlorobenzene	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
o-Xylene	NA	0.5 U	0.5 U	0.5 U	NA
p-Chlorotoluene	NA	NA	0.5 U	0.5 U	NA
p-Cymene	NA	NA	0.5 U	0.5 U	NA
p-Dichlorobenzene	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
sec-Butylbenzene	NA	NA	0.5 U	0.5 U	NA
Styrene	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
tert-Butylbenzene	NA	NA	0.5 U	0.5 U	NA
Tetrachloroethylene	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Toluene	0.5 U	0.5	0.5 U	0.5 U	0.5 U
trans-1,2-Dichloroethene	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
trans-1,3-Dichloropropene	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Trichloroethylene	0.31 J	1.9	0.5 U	0.5 U	0.5 U
Trichlorofluoromethane	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Vinyl chloride	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Xylene (total)	0.5 U	NA	NA	NA	0.5 U
Total Volatile TICs					0.5

TABLE B-5 Volatile Organic Compounds - Groundwater (2002/2003) Little Valley Superfund Site Page 40 of 45

Area	Whig Street	Great Triangle	Great Triangle	Great Triangle	Great Triangle
Location	PZ-45D	MWEDSA-1	PZ-5	PZ-6D	PZ-47D
TtEC Sample I.D.	LV-GW-PZ45D-MNA	LV-GW-EDSA1-MNA	LV-GW-PZ5-MNA	LV-GW-PZ6D-MNA	PZ-47D
Sampling Date	12/04/2003	11/20/2003	12/01/2003	12/03/2003	05/02/2002
Matrix	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater
Units	ug/L	ug/L	ug/L	ug/L	ug/L
1,1,1,2-Tetrachloroethane	NA	0.50 U	NA	NA	NA
1,1,1-Trichloroethane	0.5 U	0.50 U	0.5 U	0.5 U	0.5 U
1,1,2,2-Tetrachloroethane	0.5 U	0.50 U	0.5 U	0.5 U	0.5 U
1,1,2-Trichloroethane	0.5 U	0.50 U	0.5 U	0.5 U	0.5 U
1,1-Dichloroethane	0.5 U	0.50 U	0.5 U	0.5 U	0.5 U
1,1-Dichloroethylene	0.5 U	0.50 U	0.5 U	0.5 U	0.5 U
1,1-Dichloropropene	NA	0.50 U	NA	NA	NA
1,2,3-Trichlorobenzene	0.5 U	0.50 U	0.5 U	0.5 U	0.5 U
1,2,3-Trichloropropane	NA	0.50 U	NA	NA	NA
1,2,4-Trichlorobenzene	0.5 UJ	0.50 U	0.5 U	0.5 U	0.5 U
1,2-Dibromoethane	0.5 U	0.50 U	0.5 U	0.5 U	0.5 U
1,2-Dichloroethane	0.5 U	0.50 U	0.5 U	0.5 U	0.5 U
1,2-Dichloropropane	0.5 U	0.50 U	0.5 U	0.5 U	0.5 U
1,3-Dichloropropane	NA	0.50 U	NA	NA	NA
2,2-Dichloropropane	NA	0.50 U	NA	NA	NA
2-Hexanone	5 U	1.0 U	5 U	5 U	5 U
Acetone	5 U	2.2	5 U	5 U	5.7 U
Benzene	0.5 U	0.50 U	0.5 U	0.5 U	0.5 U
Benzene, 1,2,4-trimethyl	NA	0.50 U	NA	NA	NA
Benzene, 1,3,5-trimethyl-	NA	0.50 U	NA	NA	NA
Benzene, I-methylethyl-	0.5 U	0.50 U	0.5 U	0.5 U	0.5 U
Bromobenzene	NA	0.50 U	NA	NA	NA
Bromodichloromethane	0.5 U	0.50 U	0.5 U	0.5 U	0.5 U
Bromoform	0.5 U	0.50 U	0.5 U	0.5 U	0.5 U
Carbon disulfide	0.5 U	0.50 U	0.5 U	0.5 U	0.38 J

TABLE B-5 Volatile Organic Compounds - Groundwater (2002/2003) Little Valley Superfund Site Page 41 of 45

Area	Whig Street	Great Triangle	Great Triangle	Great Triangle	Great Triangle
Location	PZ-45D	MWEDSA-1	PZ-5	PZ-6D	PZ-47D
TtEC Sample I.D.	LV-GW-PZ45D-MNA	LV-GW-EDSA1-MNA	LV-GW-PZ5-MNA	LV-GW-PZ6D-MNA	PZ-47D
Sampling Date	12/04/2003	11/20/2003	12/01/2003	12/03/2003	05/02/2002
Matrix	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater
Units	ug/L	ug/L	ug/L	ug/L	ug/L
Carbon tetrachloride	0.5 U	0.50 U	0.5 U	0.5 U	0.5 U
Chlorobenzene	0.5 U	0.50 U	0.5 U	0.5 U	0.5 U
Chlorobromomethane	0.5 U	0.50 U	0.5 U	0.5 U	0.5 U
Chloroethane	0.5 U	0.50 U	0.5 U	0.5 U	0.5 U
Chloroform	0.5 U	0.50 U	0.5 U	0.5 U	0.5 U
cis-1,2-Dichloroethylene	0.5 U	0.50 U	0.5 U	0.5 U	0.5 UJ
cis-1,3-Dichloropropene	0.5 U	0.50 U	0.5 U	0.5 U	0.5 U
Cyclohexane	0.5 U	0.50 U	0.5 U	0.5 U	0.5 U
Dibromochloromethane	0.5 U	0.50 U	0.5 U	0.5 U	0.5 U
Dibromochloropropane	0.5 U	0.50 U	0.5 U	0.5 U	0.5 U
Dichlorodifluoromethane	0.5 U	0.50 U	0.5 U	0.5 U	0.5 UJ
Ethylbenzene	0.5 U	0.50 U	0.5 U	0.5 U	0.5 U
Freon 113	-0.5 U	0.50 _. U	0.5 U	0.5 U	0.5 U
Hexachlorobutadiene	NA	0.50 U	NA	NA	NA
m/p-xylene	NA	0.50 U	NA	NA	NA
m-Dichlorobenzene	0.5 U	0.50 U	0.5 U	0.5 U	0.5 U
Methyl Acetate	0.5 UJ	0.50 U	0.5 U	0.5 U	0.5 U
Methyl bromide	0.5 U	0.50 U	0.5 U	0.5 U	0.5 U
Methyl chloride	0.5 U	0.50 U	0.5 U	0.5 U	0.5 U
Methyl ethylketone	5 U	1.0 U	5 U	5 U	2.9 J
Methyl isobutyl ketone (MIBK)	5 U	1.0 U	5 U	5 U	5 U
Methyl tert-butyl ether	0.5 U	0.50 U	0.5 U	0.5 U	0.5 U
Methylcyclohexane	0.5 U	0.50 U	0.5 U	0.5 U	0.5 U
Methylene bromide	NA	0.50 U	NA	NA	NA
Methylene chloride	0.5 U	9.0 U	0.5 U	0.5 U	0.5 U

TABLE B-5 Volatile Organic Compounds - Groundwater (2002/2003) Little Valley Superfund Site Page 42 of 45

Area	Whig Street	Great Triangle	Great Triangle	Great Triangle	Great Triangle
Location	PZ-45D	MWEDSA-1	PZ-5	PZ-6D	PZ-47D
TtEC Sample I.D.	LV-GW-PZ45D-MNA	LV-GW-EDSA1-MNA	LV-GW-PZ5-MNA	LV-GW-PZ6D-MNA	PZ-47D
Sampling Date	12/04/2003	11/20/2003	12/01/2003	12/03/2003	05/02/2002
Matrix	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater
Units	ug/L	ug/L	ug/L	ug/L	ug/L
Naphthalene	NA	0.50 U	NA	NA	NA
n-Butylbenzene	NA	0.50 U	NA	NA	NA
n-Propylbenzene	NA	0.50 U	NA	NA	NA
o-Chlorotoluene	NA	0.50 U	NA	NA	NA
o-Dichlorobenzene	0.5 U	0.50 U	0.5 U	0.5 U	0.5 U
o-Xylene	NA	0.50 U	NA	NA	NA
p-Chlorotoluene	NA	0.50 U	NA	NA	NA
p-Cymene	NA	0.50 U	NA	NA	NA
p-Dichlorobenzene	0.5 U	0.50 U	0.5 U	0.5 U	0.5 U
sec-Butylbenzene	NA	0.50 U	NA	NA	NA
Styrene	0.5 U	0.50 U	0.5 U	0.5 U	0.5 U
ert-Butylbenzene	NA	0.50 U	NA	NA	NA
Tetrachloroethylene	0.5 U	0.50 U	0.5 U	0.5 U	0.5 U
Гoluene	0.5 U	0.50 U	0.5 U	0.5 U	0.22 J
rans-1,2-Dichloroethene	0.5 U	0.50 U	0.5 U	0.5 U	0.5 UJ
rans-1,3-Dichloropropene	0.5 U	0.50 U	0.5 U	0.5 U	0.5 U
Frichloroethylene	2.1	14	6.6	6.9	1.6
Trichlorofluoromethane	0.5 U	0.50 U	0.5 U	0.5 U	0.5 U
Vinyl chloride	0.5 U	0.50 U	0.5 U	0.5 U	0.5 U
Xylene (total)	0.5 U	NA	0.5 U	0.5 U	0.14 J
Fotal Volatile TICs	~~	w.a.	~~		- -

TABLE B-5 Volatile Organic Compounds - Groundwater (2002/2003) Little Valley Superfund Site Page 43 of 45

Area	Great Triangle	Luminite	Luminite	Municipal Well #3
Location	PZ-48	PZ-46	PZ-55D	MUNWELL3
TtEC Sample I.D.	PZ48	LV-GW-PZ46-MNA	LV-GW-PZ55D-MNA	MUNICIPAL WELL #3
•				Meriten ne (ABLE)
Sampling Date	05/02/2002	12/08/2003	12/08/2003	05/02/2002
Matrix	Groundwater	Groundwater	Groundwater	Groundwater
Units	ug/L	ug/L	ug/L	ug/L
			<u> </u>	
1,1,1,2-Tetrachloroethane	NA	NA	NA	NA
1,1,1-Trichloroethane	0.5 U	0.5 U	0.5 UJ	0.5 U
1,1,2,2-Tetrachloroethane	0.5 U	0.5 U	0.5 UJ	0.5 U
1,1,2-Trichloroethane	0.5 U	0.5 U	0.5 UJ	0.5 U
1,1-Dichloroethane	0.5 U	0.5 U	0.5 UJ	0.5 U
1,1-Dichloroethylene	0.5 U	0.5 U	0.5 UJ	0.5 U
1,1-Dichloropropene	NA	NA	NA	NA
1,2,3-Trichlorobenzene	0.5 U	0.5 U	0.5 R	0.5 U
1,2,3-Trichloropropane	NA	NA	NA	NA
1,2,4-Trichlorobenzene	0.5 U	0.5 U	0.5 R	0.5 U
1,2-Dibromoethane	0.5 U	0.5 U	0.5 UJ	0.5 U
1,2-Dichloroethane	0.5 U	0.5 UJ	0.5 UJ	0.5 U
1,2-Dichloropropane	0.5 U	0.5 U	0.5 UJ	0.5 U
1,3-Dichloropropane	NA	NA	NA	NA
2,2-Dichloropropane	NA	NA	NA	NA
2-Hexanone	5 U	5 U	5 R	5 U
Acetone	5.6 U	5 U	5 R	5 U
Benzene	0.5 U	0.5 U	0.5 R	0.5 U
Benzene, 1,2,4-trimethyl	NA	NA	NA	NA
Benzene, 1,3,5-trimethyl-	NA	NA	NA	NA
Benzene, I-methylethyl-	0.5 U	0.5 U	0.5 R	0.5 U
Bromobenzene	NA	NA	NA	NA
Bromodichloromethane	0.5 U	0.5 U	0.5 UJ	0.5 U
Bromoform	0.5 U	0.5 U	0.5 UJ	0.5 U
Carbon disulfide	0.5 U	0.5 U	0.5 UJ	0.5 U

TABLE B-5 Volatile Organic Compounds - Groundwater (2002/2003) Little Valley Superfund Site Page 44 of 45

Area	Great Triangle	Luminite	Luminite	Municipal Well #3
Location	PZ-48	PZ-46	PZ-55D	MUNWELL3
TtEC Sample I.D.	PZ48	LV-GW-PZ46-MNA	LV-GW-PZ55D-MNA	MUNICIPAL WELL #3
Sampling Date	05/02/2002	12/08/2003	12/08/2003	05/02/2002
Matrix	Groundwater	Groundwater	Groundwater	Groundwater
Units	ug/L		1	
Units	ug/L	ug/L	ug/L	ug/L
Carbon tetrachloride	0.5 U	0.5 UJ	0.5 UJ	0.5 U
Chlorobenzene	0.5 U	0.5 U	0.5 R	0.5 U
Chlorobromomethane	0.5 U	0.5 U	0.5 UJ	0.5 U
Chloroethane	0.5 U	0.5 U	0.5 UJ	0.5 U
Chloroform	0.5 U	0.5 U	0.5 UJ	0.5 U
cis-1,2-Dichloroethylene	0.5 UJ	0.5 U	0.5 UJ	0.5 U
cis-1,3-Dichloropropene	0.5 U	0.5 U	0.5 UJ	0.5 U
Cyclohexane	0.5 U	0.5 U	0.5 UJ	0.5 U
Dibromochloromethane	0.5 U	0.5 U	0.5 UJ	0.5 U
Dibromochloropropane	0.5 U	0.5 U	0.5 UJ	0.5 U
Dichlorodifluoromethane	0.5 UJ	0.5 U	0.5 UJ	0.5 UJ
Ethylbenzene	0.5 U	0.5 U	0.5 R	0.5 U
Freon 113	0.5 U	0.5 U	0.5 UJ	0.5 U
Hexachlorobutadiene	NA	NA	NA	NA
m/p-xylene	NA	NA	NA	NA
m-Dichlorobenzene	0.5 U	0.5 U	0.5 R	0.5 U
Methyl Acetate	0.5 U	0.5 U	0.5 UJ	0.5 U
Methyl bromide	0.5 U	0.5 U	0.5 UJ	0.5 U
Methyl chloride	0.5 U	0.5 U	0.5 UJ	0.5 UJ
Methyl ethylketone	5 U	5 U	5 R	5 U
Methyl isobutyl ketone (MIBK)	5 U	5 U	5 R	5 U
Methyl tert-butyl ether	0.5 U	0.5 U	0.5 UJ	0.5 U
Methylcyclohexane	0.5 U	0.5 U	0.5 UJ	0.5 U
Methylene bromide	NA	NA	NA	NA
Methylene chloride	0.5 U	0.5 U	0.5 UJ	0.5 U

TABLE B-5
Volatile Organic Compounds - Groundwater (2002/2003)
Little Valley Superfund Site
Page 45 of 45

Area	Great Triangle	Luminite	Luminite	Municipal Well #3
Location	PZ-48	PZ-46	PZ-55D	MUNWELL3
TtEC Sample I.D.	PZ48	LV-GW-PZ46-MNA	LV-GW-PZ55D-MNA	MUNICIPAL WELL #3
Sampling Date	05/02/2002	12/08/2003	12/08/2003	05/02/2002
Matrix	Groundwater	Groundwater	Groundwater	Groundwater
Units	ug/L	ug/L	ug/L	ug/L
Naphthalene	NA	NA	NA	NA
n-Butylbenzene	NA	NA	NA	NA
n-Propylbenzene	NA	NA	NA	NA
o-Chlorotoluene	NA	NA	NA	NA
o-Dichlorobenzene	0.5 U	0.5 U	0.5 R	0.5 U
o-Xylene	NA	NA	NA	NA
p-Chlorotoluene	NA	NA	NA	NA
p-Cymene	NA	NA	NA	NA NA
p-Dichlorobenzene	0.5 U	0.5 U	0.5 R	0.5 U
sec-Butylbenzene	NA	NA	NA	NA
Styrene	0.5 U	0.5 U	0.5 R	0.5 U
tert-Butylbenzene	NA	NA	NA	NA
Tetrachloroethylene	0.5 U	0.5 U	0.5 UJ	0.5 U
Toluene	0.5 U	0.5 U	0.5 R	0.5 U
trans-1,2-Dichloroethene	0.5 UJ	0.5 U	0.5 UJ	0.5 U
trans-1,3-Dichloropropene	0.5 U	0.5 U	0.5 UJ	0.5 U
Trichloroethylene	3.4	0.5 U	4.4 J	0.5 U
Trichlorofluoromethane	0.5 U	0.5 U	0.5 UJ	0.5 U
Vinyl chloride	0.5 U	0.5 U	0.5 UJ	0.5 U
Xylene (total)	0.5 U	0.5 U	0.5 R	0.5 U
Total Volatile TICs				

TABLE B-6
Volatile Organic Compounds - Groundwater (2006)
Little Valley Superfund Site
Page 1 of 12

Area	Bush Industries	Bush Industries	Bush Industries	Bush Industries	Bush Industries
Location	BIAMW-2	BIAMW-2	BIAMW-3	BIAMW-5	BIAMW-6
TtEC Sample I.D.	LVRD01-GWMNA-BIA2	LVRD01-GWMNA-BIA22	LVRD01-GWMNA-BIA3	LVRD01-GWMNA-BIA5	LVRD01-GWMNA-BIA6
		Duplicate			
Sampling Date	10/31/2006	10/31/2006	10/30/2006	10/30/2006	10/30/2006
Matrix	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater
Units	ug/L	ug/L	ug/L	ug/L	ug/L
1,1,1-Trichloroethane	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,1,2,2-Tetrachloroethane	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,1,2-Trichloro-1,2,2-trifluoroethane	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,1,2-Trichloroethane	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,1-Dichloroethane	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,1-Dichloroethene	0.8	0.89	0.5 U	0.5 U	0.5 U
1,2,3-Trichlorobenzene	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,2,4-Trichlorobenzene	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,2-Dibromo-3-chloropropane	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,2-Dibromoethane (EDB)	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,2-Dichlorobenzene	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,2-Dichloroethane	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,2-Dichloropropane	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,3-Dichlorobenzene	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,4-Dichlorobenzene	0.16 J	0.12 J	0.5 U	0.5 U	0.5 U
1,4-Dioxane	20 R	20 R	20 R	20 R	20 R
2-Hexanone	5 U	5 U	5 U	5 U	5 U
Acetone	5 U	5 U	5 U	5 U	5 U
Benzene	0.66 U	0.5 U	0.12 J	0.23 J	0.5 U
Bromodichloromethane	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Bromoform	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Carbon disulfide	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Carbon tetrachloride	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Chlorobenzene	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Chlorobromomethane	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Chloroethane	0.19 J	0.23 J	0.091 J	0.13 J	0.11 Ј
Chloroform	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
cis-1,2-Dichloroethene	45 D	46 D	0.36 J	0.5 U	35 D

TABLE B-6
Volatile Organic Compounds - Groundwater (2006)
Little Valley Superfund Site
Page 2 of 12

Area	Bush Industries	Bush Industries	Bush Industries	Bush Industries	Bush Industries
Location	BIAMW-2	BIAMW-2	BIAMW-3	BIAMW-5	BIAMW-6
TtEC Sample I.D.	LVRD01-GWMNA-BIA2	LVRD01-GWMNA-BIA22	LVRD01-GWMNA-BIA3	LVRD01-GWMNA-BIA5	LVRD01-GWMNA-BIA6
		Duplicate			
Sampling Date	10/31/2006	10/31/2006	10/30/2006	10/30/2006	10/30/2006
Matrix	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater
Units	ug/L	ug/L	ug/L	ug/L	ug/L
cis-1,3-Dichloropropene	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Cyclohexane	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Dibromochloromethane	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Dichlorodifluoromethane	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Ethylbenzene	0.25 J	0.5 U	0.5 U	0.13 J	0.5 U
Isopropylbenzene	0.14 J	0.5 U	0.5 U	0.5 U	0.5 U
m/p-Xylene	0.1 J	0.5 U	0.5 U	0.5 U	0.5 U
Methyl Acetate	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Methyl bromide	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Methyl chloride	0.5 U	0.53 U	0.51 U	0.5 U	0.5 U
Methyl ethylketone	5 U	5 U	5 U	. 5 U	5 U
Methyl isobutylketone (MIBK)	5 U	5 U	5 U .	5 U	5 U
Methyl tert-butyl ether	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Methylcyclohexane	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Methylene chloride	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
o-Xylene	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Styrene	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Tetrachloroethene	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Toluene	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
trans-1,2-Dichloroethene	0.51	0.49 J	0.5 U	0.5 U	0.48 J
Trans-1,3-Dichloropropene	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Trichloroethene	58 D	58 D	2.2	0.5 U	19
Trichlorofluoromethane	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Vinyl chloride	4	4.8	0.5 U	0.5 U	0.5 U
Total Volatile TICs	3.46 JN	543.8 J	0.88 JN	1.3 JN	R

TABLE B-6
Volatile Organic Compounds - Groundwater (2006)
Little Valley Superfund Site
Page 3 of 12

Area	Bush Industries	Bush Industries	Cattaraugus Cutlery	Cattaraugus Cutlery	Cattaraugus Cutlery
Location	BIAMW-D1	BIAMW-D2	MWCCA-1	MWCCA-2	MWCCA-3
TtEC Sample I.D.	LVRD01-GWMNA-BIAD1	LVRD01-GWMNA-BIAD2	LVRD01-GWMNA-CCA1	LVRD01-GWMNA-CCA2	LVRD01-GWMNA-CCA3
•			211001 01111111111111111111111111111111	27 RDOT GWIMINT CORE	EVREOF GWMWA CCAS
Sampling Date	10/31/2006	10/30/2006	10/25/2006	10/31/2006	10/25/2006
Matrix	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater
Units	ug/L	ug/L	ug/L	ug/L	ug/L
				:	<u> </u>
1,1,1-Trichloroethane	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,1,2,2-Tetrachloroethane	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,1,2-Trichloro-1,2,2-trifluoroethane	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,1,2-Trichloroethane	0.5 U	$0.084 \mathrm{~J}$	0.5 U	0.5 U	0.5 U
1,1-Dichloroethane	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,1-Dichloroethene	0.5 U	0.54	0.5 U	0.5 U	0.5 U
1,2,3-Trichlorobenzene	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,2,4-Trichlorobenzene	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,2-Dibromo-3-chloropropane	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,2-Dibromoethane (EDB)	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,2-Dichlorobenzene	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,2-Dichloroethane	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,2-Dichloropropane	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,3-Dichlorobenzene	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,4-Dichlorobenzene	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,4-Dioxane	20 R	20 R	20 R	20 R	20 R
2-Hexanone	5 U	5 U	5 U	5 U	5 U
Acetone	5 U	5 U	5 U	5 U	5 U
Benzene	0.5 U	0.5 U	0.13 J	0.5 U	0.62
Bromodichloromethane	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Bromoform	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Carbon disulfide	0.5 U	0.5 U	0.5 U	0.5 U	0.054 Ј
Carbon tetrachloride	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Chlorobenzene	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Chlorobromomethane	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Chloroethane	0.5 U	0.11 J	0.5 U	0.5 U	0.5 U
Chloroform	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
cis-1,2-Dichloroethene	0.42 J	26 D	0.19 J	0.5 U	0.36 J

See Table B-1 for abbreviations and data qualifiers.

TABLE B-6
Volatile Organic Compounds - Groundwater (2006)
Little Valley Superfund Site
Page 4 of 12

Area	Bush Industries	Bush Industries	Cattaraugus Cutlery	Cattaraugus Cutlery	Cattaraugus Cutlery
Location	BIAMW-D1	BIAMW-D2	MWCCA-1	MWCCA-2	MWCCA-3
TtEC Sample I.D.	LVRD01-GWMNA-BIAD1	LVRD01-GWMNA-BIAD2	LVRD01-GWMNA-CCA1	LVRD01-GWMNA-CCA2	LVRD01-GWMNA-CCA3
_					
Sampling Date	10/31/2006	10/30/2006	10/25/2006	10/31/2006	10/25/2006
Matrix	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater
Units	ug/L	ug/L	ug/L	ug/L	ug/L
cis-1,3-Dichloropropene	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Cyclohexane	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Dibromochloromethane	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Dichlorodifluoromethane	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Ethylbenzene	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Isopropylbenzene	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
m/p-Xylene	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Methyl Acetate	0.5 UJ	0.5 U	0.5 U	0.5 UJ	0.5 U
Methyl bromide	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Methyl chloride	0.61 U	0.5 U	0.5 U	0.5 U	0.5 U
Methyl ethylketone	5 U	5 U	5 U	5 U	5 U
Methyl isobutylketone (MIBK)	5 U	5 U	5 U	5 U	5 U
Methyl tert-butyl ether	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Methylcyclohexane	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Methylene chloride	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
o-Xylene	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Styrene	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Tetrachloroethene	0.5 U	0.5 U	0.5 U	0.28 J	0.34 J
Toluene	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
trans-1,2-Dichloroethene	0.55	0.71	0.5 U	0.058 J	0.5 U
Trans-1,3-Dichloropropene	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Trichloroethene	1.8	93 D	5	9.6	19
Trichlorofluoromethane	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Vinyl chloride	0.16 J	0.5 U	0.5 U	0.14 J	0.5 U
Total Volatile TICs	2.27 JN	82.25 J	468 J	44.5 J	R

TABLE B-6
Volatile Organic Compounds - Groundwater (2006)
Little Valley Superfund Site
Page 5 of 12

Area	Cattaraugus Cutlery	Cattaraugus Cutlery	Cattaraugus Cutlery	Cattaraugus Cutlery	Cattaraugus Cutlery
Location	MWCCA-5	MWCCA-6	MWCCA-7	MWCCA-8	MWCCA-9D
TtEC Sample I.D.	LVRD01-GWMNA-CCA5	LVRD01-GWMNA-CCA6	LVRD01-GWMNA-CCA7	LVRD01-GWMNA-CCA8	LVRD01-GWMNA-CCA9D
			211101 01111111111111111111111111111111	D'INDOT O'THINT O'CHO	2.1001 0.11111 00.152
Sampling Date	10/24/2006	10/24/2006	10/25/2006	10/25/2006	10/24/2006
Matrix	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater
Units	ug/L	ug/L	ug/L	ug/L	ug/L
1,1,1-Trichloroethane	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,1,2,2-Tetrachloroethane	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,1,2-Trichloro-1,2,2-trifluoroethane	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,1,2-Trichloroethane	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,1-Dichloroethane	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,1-Dichloroethene	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,2,3-Trichlorobenzene	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,2,4-Trichlorobenzene	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,2-Dibromo-3-chloropropane	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,2-Dibromoethane (EDB)	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,2-Dichlorobenzene	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,2-Dichloroethane	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,2-Dichloropropane	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,3-Dichlorobenzene	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,4-Dichlorobenzene	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,4-Dioxane	20 R	20 R	20 R	20 R	20 R
2-Hexanone	5 U	5 U	5 U	5 U	5 U
Acetone	5 U	5 U	5 U	5 U	5 U
Benzene	1.6	0.5 U	0.5 U	0.5 U	0.76
Bromodichloromethane	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Bromoform	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Carbon disulfide	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Carbon tetrachloride	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Chlorobenzene	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Chlorobromomethane	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Chloroethane	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Chloroform	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
cis-1,2-Dichloroethene	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U

TABLE B-6
Volatile Organic Compounds - Groundwater (2006)
Little Valley Superfund Site
Page 6 of 12

Area	Cattaraugus Cutlery				
Location	MWCCA-5	MWCCA-6	MWCCA-7	MWCCA-8	MWCCA-9D
TtEC Sample I.D.	LVRD01-GWMNA-CCA5	LVRD01-GWMNA-CCA6	LVRD01-GWMNA-CCA7	LVRD01-GWMNA-CCA8	LVRD01-GWMNA-CCA9D
Sampling Date	10/24/2006	10/24/2006	10/25/2006	10/25/2006	10/24/2006
Matrix	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater
Units	ug/L	ug/L	ug/L	ug/L	ug/L
cis-1,3-Dichloropropene	0.5 U				
Cyclohexane	0.5 U	0.5 U	0.5 U	0.16 J	0.5 U
Dibromochloromethane	0.5 U				
Dichlorodifluoromethane	0.5 U				
Ethylbenzene	0.24 J	0.5 U	0.5 U	0.5 U	0.5 U
Isopropylbenzene	0.5 U				
m/p-Xylene	0.5 U				
Methyl Acetate	0.5 U				
Methyl bromide	0.5 U				
Methyl chloride	0.5 U				
Methyl ethylketone	5 U	5 U	5 U	5 U	5 U
Methyl isobutylketone (MIBK)	5 U	5 U	5 U	5 U	5 U
Methyl tert-butyl ether	0.5 U				
Methylcyclohexane	0.5 U				
Methylene chloride	0.5 U				
o-Xylene	0.5 U				
Styrene	0.5 U				
Tetrachloroethene	0.15 J	0.5 U	0.5 U	0.5 U	0.5 U
Toluene	0.5 U				
trans-1,2-Dichloroethene	0.5 U	0.18 J	0.065 J	0.44 J	0.5 U
Trans-1,3-Dichloropropene	0.5 U				
Trichloroethene	28 D	0.36 J	0.1 J	0.5 U	1.9
Trichlorofluoromethane	0.5 U				
Vinyl chloride	0.5 U				
Total Volatile TICs	1.1 JN	11 JN	510 J	3.91 JN	31 J

TABLE B-6
Volatile Organic Compounds - Groundwater (2006)
Little Valley Superfund Site
Page 7 of 12

Area	Cattaraugus Cutlery	Cattaraugus Cutlery	Cattaraugus Cutlery	Cattaraugus Cutlery	Cattaraugus Cutlery
Location	MWCCA-10	MWCCA-10	MWCCA-11D	MWCCA-12	PZ-20D
TtEC Sample I.D.	LVRD01-GWMNA-CCA10	LVRD01-GWMNA-CCA20	LVRD01-GWMNA-CCA11	LVRD01-GWMNA-CCA12	LVRD01-GWMNA-PZ20D
Tille Sumple 112.	EVREOT GWINTAT CERTIO	Duplicate Duplicate	LVRD01-GWMIVA-CCA11	LVRB01-GWMINA-CCA12	LVRD01-GWMNA-FZ20D
Sampling Date	10/24/2006	10/24/2006	10/23/2006	10/23/2006	10/31/2006
Matrix	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater
Units	ug/L	ug/L	ug/L	ug/L	ug/L
			S		
1,1,1-Trichloroethane	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,1,2,2-Tetrachloroethane	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,1,2-Trichloro-1,2,2-trifluoroethane	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,1,2-Trichloroethane	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,1-Dichloroethane	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,1-Dichloroethene	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,2,3-Trichlorobenzene	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,2,4-Trichlorobenzene	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,2-Dibromo-3-chloropropane	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,2-Dibromoethane (EDB)	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,2-Dichlorobenzene	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,2-Dichloroethane	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,2-Dichloropropane	0.5 U	0.5 U	0.5 U	0.5 U	0.077 Ј
1,3-Dichlorobenzene	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,4-Dichlorobenzene	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,4-Dioxane	20 R	20 R	20 R	20 R	20 R
2-Hexanone	0.5 U	5 U	5 U	5 U .	5 U
Acetone	5 U	5 U	5 U	5 U	7.9 U
Benzene	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Bromodichloromethane	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Bromoform	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Carbon disulfide	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Carbon tetrachloride	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Chlorobenzene	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Chlorobromomethane	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Chloroethane	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Chloroform	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
cis-1,2-Dichloroethene	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U

TABLE B-6
Volatile Organic Compounds - Groundwater (2006)
Little Valley Superfund Site
Page 8 of 12

Area	Cattaraugus Cutlery				
Location	MWCCA-10	MWCCA-10	MWCCA-11D	MWCCA-12	PZ-20D
TtEC Sample I.D.	LVRD01-GWMNA-CCA10	LVRD01-GWMNA-CCA20	LVRD01-GWMNA-CCA11	LVRD01-GWMNA-CCA12	LVRD01-GWMNA-PZ20D
		Duplicate			
Sampling Date	10/24/2006	10/24/2006	10/23/2006	10/23/2006	10/31/2006
Matrix	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater
Units	ug/L	ug/L	ug/L	ug/L	ug/L
cis-1,3-Dichloropropene	0.5 U				
Cyclohexane	0.5 U				
Dibromochloromethane	0.5 U				
Dichlorodifluoromethane	0.5 U				
Ethylbenzene	0.5 U				
Isopropylbenzene	0.5 U				
m/p-Xylene	0.5 U				
Methyl Acetate	0.5 U	0.5 U	0.5 U	0.5 U	0.5 UJ
Methyl bromide	0.5 U				
Methyl chloride	0.5 U	0.5 U	0.5 U	0.5 U	0.97 U
Methyl ethylketone	5 U	5 U	5 U	5 U	5 U
Methyl isobutylketone (MIBK)	5 U	5 U	5 U	5 U	5 U
Methyl tert-butyl ether	0.5 U				
Methylcyclohexane	0.5 U				
Methylene chloride	0.5 U				
o-Xylene	0.5 U				
Styrene	0.5 U				
Tetrachloroethene	0.19 J	0.2 J	0.5 U	0.17 J	0.5 U
Toluene	0.5 U	0.5 U	1.1	0.5 U	0.5 U
trans-1,2-Dichloroethene	0.62	0.39 Ј	0.83	0.5 U	0.5 U
Trans-1,3-Dichloropropene	0.5 U				
Trichloroethene	7.1	7.2	0.5 U	16	0.065 J
Trichlorofluoromethane	0.5 U				
Vinyl chloride	0.5 U	0.5 U	0.11 J	0.5 U	0.5 U
Total Volatile TICs	23.9 JN	24.2 JN	R	413.1 JB	36.2 J

TABLE B-6
Volatile Organic Compounds - Groundwater (2006)
Little Valley Superfund Site
Page 9 of 12

Area	Great Triangle Area	Great Triangle Area	Whig Street Area	Whig Street Area	Luminite Area
Location	PZ-5	PZ-6D	PZ-39	PZ-45D	PZ-46
TtEC Sample I.D.	LVRD01-GWMNA-PZ5	LVRD01-GWMNA-PZ6D	LVRD01-GWMNA-PZ39	LVRD01-GWMNA-PZ45D	LVRD01-GWMNA-PZ46
Sampling Date	10/26/2006	11/1/2006	11/1/2006	11/1/2006	10/26/2006
Matrix	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater
Units	ug/L	ug/L	ug/L	ug/L	ug/L
1,1,1-Trichloroethane	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,1,2,2-Tetrachloroethane	0.5 U	0.5 U	0.5 U ,	0.5 U	0.5 U
1,1,2-Trichloro-1,2,2-trifluoroethane	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,1,2-Trichloroethane	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,1-Dichloroethane	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,1-Dichloroethene	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,2,3-Trichlorobenzene	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,2,4-Trichlorobenzene	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,2-Dibromo-3-chloropropane	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,2-Dibromoethane (EDB)	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,2-Dichlorobenzene	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,2-Dichloroethane	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,2-Dichloropropane	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,3-Dichlorobenzene	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,4-Dichlorobenzene	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,4-Dioxane	20 R	20 R	20 R	20 R	20 R
2-Hexanone	5 U	5 U	5 U	5 U	5 U
Acetone	5 U	5 U	5 U	5 U	5 U
Benzene	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Bromodichloromethane	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Bromoform	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Carbon disulfide	0.5 U	0.5 U	0.5 U	0.059 J	0.5 U
Carbon tetrachloride	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Chlorobenzene	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Chlorobromomethane	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Chloroethane	0.5 U	0.5 U	0.5 U	0.5 U	0.13 J
Chloroform	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
cis-1,2-Dichloroethene	0.05 J	0.5 U	0.5 U	0.5 U	0.5 U

TABLE B-6
Volatile Organic Compounds - Groundwater (2006)
Little Valley Superfund Site
Page 10 of 12

Area	Great Triangle Area	Great Triangle Area	Whig Street Area	Whig Street Area	Luminite Area		
Location	PZ-5	PZ-6D	PZ-39	PZ-45D	PZ-46		
TtEC Sample I.D.	LVRD01-GWMNA-PZ5	LVRD01-GWMNA-PZ6D	LVRD01-GWMNA-PZ39	LVRD01-GWMNA-PZ45D	LVRD01-GWMNA-PZ46		
1							
Sampling Date	10/26/2006	11/1/2006	11/1/2006	11/1/2006	10/26/2006		
Matrix	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater		
Units	ug/L	ug/L	ug/L	ug/L	ug/L		
cis-1,3-Dichloropropene	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U		
Cyclohexane	0.5 U	0.12 J	0.5 U	0.5 U	0.5 U		
Dibromochloromethane	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U		
Dichlorodifluoromethane	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U		
Ethylbenzene	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U		
Isopropylbenzene	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U		
m/p-Xylene	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U		
Methyl Acetate	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U		
Methyl bromide	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U		
Methyl chloride	0.52 U	0.5 U	0.5 U	0.56 U	0.5 U		
Methyl ethylketone	5 U	5 U	5 U	5 U	5 U		
Methyl isobutylketone (MIBK)	5 U	5 U	5 U	5 U	5 U		
Methyl tert-butyl ether	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U		
Methylcyclohexane	0.5 U	0.2 Ј	0.5 U	0.5 U	0.5 U		
Methylene chloride	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U		
o-Xylene	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U		
Styrene	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U		
Tetrachloroethene	0.12 Ј	0.14 J	0.5 U	0.5 U	0.5 U		
Toluene	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U		
trans-1,2-Dichloroethene	0.067 J	0.089 J	0.086 J	0.5 U	0.097 J		
Trans-1,3-Dichloropropene	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U		
Trichloroethene	6.8	7.9	0.5 U	2.7	0.5 U		
Trichlorofluoromethane	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U		
Vinyl chloride	0.5 U	0.5 U	0.5 U	0.15 J	0.5 U		
Total Volatile TICs	R	679.4 J	550 J	R	28.5 J		

TABLE B-6 Volatile Organic Compounds - Groundwater (2006) Little Valley Superfund Site Page 11 of 12

Area	Luminite Area
Location	PZ-55D
TtEC Sample I.D.	
TtEC Sample 1.D.	EV KD01-GWMINA-F255D
Sampling Date	10/26/2006
Matrix	Groundwater
Units	ug/L
	<u> </u>
1,1,1-Trichloroethane	0.5 U
1,1,2,2-Tetrachloroethane	0.5 U
1,1,2-Trichloro-1,2,2-trifluoroethane	0.5 U
1,1,2-Trichloroethane	0.5 U
1,1-Dichloroethane	0.5 U
1,1-Dichloroethene	0.5 U
1,2,3-Trichlorobenzene	0.5 U
1,2,4-Trichlorobenzene	0.5 U
1,2-Dibromo-3-chloropropane	0.5 U
1,2-Dibromoethane (EDB)	0.5 U
1,2-Dichlorobenzene	0.5 U
1,2-Dichloroethane	0.5 U
1,2-Dichloropropane	0.5 U
1,3-Dichlorobenzene	0.5 U
1,4-Dichlorobenzene	0.5 U
1,4-Dioxane	20 R
2-Hexanone	5 U
Acetone	5 U
Benzene	0.5 U
Bromodichloromethane	0.5 U
Bromoform	0.5 U
Carbon disulfide	0.5 U
Carbon tetrachloride	0.5 U
Chlorobenzene	0.5 U
Chlorobromomethane	0.5 U
Chloroethane	0.093 J
Chloroform	0.5 U
cis-1,2-Dichloroethene	0.5 U

TABLE B-6
Volatile Organic Compounds - Groundwater (2006)
Little Valley Superfund Site
Page 12 of 12

Area	Luminite Area		
Location	PZ-55D		
TtEC Sample I.D.	LVRD01-GWMNA-PZ55D		
Compling Date	10/26/2006		
Sampling Date			
Matrix	Groundwater		
Units	ug/L		
cis-1,3-Dichloropropene	0.5 U		
Cyclohexane	0.5 U		
Dibromochloromethane	0.5 U		
Dichlorodifluoromethane	0.5 U		
Ethylbenzene	0.16 J		
Isopropylbenzene	0.098 J		
m/p-Xylene	0.5 U		
Methyl Acetate	0.5 U		
Methyl bromide	0.5 U		
Methyl chloride	0.78 U		
Methyl ethylketone	5 U		
Methyl isobutylketone (MIBK)	5 U		
Methyl tert-butyl ether	0.5 U		
Methylcyclohexane	0.5 U		
Methylene chloride	0.5 U		
o-Xylene	0.5 U		
Styrene	0.5 U		
Tetrachloroethene	0.5 U		
Toluene	0.5 U		
trans-1,2-Dichloroethene	0.5 U		
Trans-1,3-Dichloropropene	0.5 U		
Trichloroethene	5.7		
Trichlorofluoromethane	0.5 U		
Vinyl chloride	0.5 U		
Total Volatile TICs	33.6 J		

TABLE B-7
Monitored Natural Attenuation Parameters - Groundwater (2003)
Little Valley Superfund Site
Page 1 of 4

Area	Bush Industries				
Location	BIAMW-1	BIAMW-2	BIAMW-3	BIAMW-7	MWD-1
TtEC Sample I.D.	LV-GW-BIA-MW1-MNA	LV-GW-BIA-MW2-MNA	LV-GW-BIA-MW3-MNA	LV-GW-BIA-MW7-MNA	LV-GW-BIA-MWD1-MNA
Sampling Date	12/09/2003	12/11/2003	12/10/2003	12/09/2003	12/10/2003
Matrix	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater
Units	mg/L	mg/L	mg/L	mg/L	mg/L

Alkalinity (as CaCO3)	83	180	160	150	190
Chloride	46	19	44	44	42
Ethane	0.02 UJ				
Ethylene	0.03 UJ				
Ferrous Iron	0.1 U				
Hydrogen	0.163 U				
Methane	0.07 JN	0.54 JD	0.07 JN	0.08 JN	0.06 JN
Nitrate	2	0.050 U	1.2	1	1.4
Sulfate	11	16	12	12	13
TOC	1.0 U	2.6	1.0 U	1.0 U	1.0 U

TABLE B-7
Monitored Natural Attenuation Parameters - Groundwater (2003)
Little Valley Superfund Site
Page 2 of 4

Area	Bush Industries	Cattaraugus Cutlery	Cattaraugus Cutlery	Cattaraugus Cutlery	Cattaraugus Cutlery			
Location	MWD-2	MWCCA-2	MWCCA-3	MWCCA-4	MWCCA-6			
TtEC Sample I.D.	LV-GW-BIA-MWD2-MNA	LV-GW-CCA2-MNA	LV-GW-CCA3-MNA	LV-GW-CCA4-MNA	LV-GW-CCA6-MNA			
Sampling Date	12/11/2003	12/03/2003	12/02/2003	11/19/2003	12/01/2003			
Matrix	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater			
Units	mg/L	mg/L	mg/L	mg/L	mg/L			
-								
Alkalinity (as CaCO3)	130	130 J	160	150	130			
Chloride	22	12	18	110	14			
Ethane	0.02 UJ	0.02 UJ	0.02 UJ	0.02 UJ	0.02 UJ			
Ethylene	0.03 UJ	0.03 UJ	0.03 UJ	0.03 UJ	0.03 UJ			
Ferrous Iron	0.1 U	0.10 U	0.10 U	0.10 U	0.10 U			
Hydrogen	0.163 U	0.163 U	0.163 U	0.163 UJ	0.163 U			
Methane	0.07 JN	0.07 JN	0.07 JN	0.08 JN	0.05 JN			
Nitrate	0.29	0.5	0.51	0.79	0.59			
Sulfate	15	20	19	78 L	16			
TOC	2.4	1.0 U	1.0 U	1.0 U	1.0 U			

TABLE B-7
Monitored Natural Attenuation Parameters - Groundwater (2003)
Little Valley Superfund Site
Page 3 of 4

Area	Cattaraugus Cutlery	Cattaraugus Cutlery	Whig Street	Whig Street	Great Triangle		
Location	MWCCA-6	PZ-20D	PZ-39	PZ-45D	MWEDSA-1		
TtEC Sample I.D.	LV-GW-CCA16-MNA	LV-GW-PZ20DMNA	LV-GW-PZ39-MNA	LV-GW-PZ45D-MNA	LV-GW-EDSA1-MNA		
	Duplicate						
Sampling Date	12/01/2003	11/19/2003	12/04/2003	12/04/2003	11/20/2003		
Matrix	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater		
Units	mg/L	mg/L	mg/L	mg/L	mg/L		
Alkalinity (as CaCO3)	130	280	100	6300 J	110		
Chloride	4.8	51	19	16	19		
Ethane	. 0.02 UJ	0.02 UJ	0.02 UJ	0.02 UJ	0.02 UJ		
Ethylene	0.03 UJ	0.03 UJ	0.03 UJ	0.03 UJ	0.03 UJ		
Ferrous Iron	0.10 U	0.10 U	0.10 U	0.10 U	0.10 Ú		
Hydrogen	0.163 U	0.163 UJ	0.163 UJ	0.163 UJ	0.163 UJ		
Methane	0.03 JN	0.07 JN	0.07 JN	0.06 JN	0.07 JN		
Nitrate	0.59	1.5	2.4	0.06	0.3		
Sulfate	5.1 L	19	350	29	97		
TOC	1.3	1.5 J	3.2	9.2 J	3		

TABLE B-7
Monitored Natural Attenuation Parameters - Groundwater (2003)
Little Valley Superfund Site
Page 4 of 4

Area	Great Triangle	Great Triangle	Luminite	Luminite
Location	PZ-5	PZ-6D	PZ-46	PZ-55D
TtEC Sample I.D.	LV-GW-PZ5-MNA	LV-GW-PZ6D-MNA	LV-GW-PZ46-MNA	LV-GW-PZ55D-MNA
Sampling Date	12/01/2003	12/03/2003	12/08/2003	12/08/2003
Matrix	Groundwater	Groundwater	Groundwater	Groundwater
Units	mg/L	mg/L	mg/L	mg/L
Alkalinity (as CaCO3)	170	150	68	470 J
Chloride	14	12	17	39
Ethane	0.02 UJ	0.02 UJ	0.02 UJ	0.02 UJ
Ethylene	0.03 UJ	0.03 UJ	0.03 UJ	0.03 UJ
Ferrous Iron	0.10 U	0.10 U	0.1 U	0.1 U
Hydrogen	0.163 U	0.163 U	0.163 U	0.163 U
Methane	0.06 JN	0.07 JN	0.07 JN	0.04 JN
Nitrate	1.6	1.1	1.3	1.5
Sulfate	. 39	37	9	14
TOC	1.0 U	1.0 U	1.0 U	1.9

TABLE B-8
Monitored Natural Attenuation Parameters - Groundwater (2006)
Little Valley Superfund Site
Page 1 of 6

Area	Bush Industries	Bush Industries	Bush Industries	Bush Industries	Bush Industries			
Location	BIAMW-2	BIAMW-2	BIAMW-3	BIAMW-5	BIAMW-6			
		Duplicate						
TtEC Sample I.D.	LVRD01-GWMNA-BIA2	LVRD01-GWMNA-BIA22	LVRD01-GWMNA-BIA3	LVRD01-GWMNA-BIA5	LVRD01-GWMNA-BIA6			
Sampling Date	10/31/2006	10/31/2006	10/30/2006	10/30/2006	10/30/2006			
Matrix	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater			
Units	mg/L	mg/L	mg/L	mg/L	mg/L			
Alkalinity (as CaCO3)	190	180	260	70	88			
Chloride	26	26	78	11	13			
Methane	0.046 J	0.11 J	0.0015 UJ	0.0014 UJ	0.082 J			
Ethane	0.0030 UJ	0.0030 UJ	0.0031 UJ	0.0029 UJ	0.0030 UJ			
Ethene	0.0022 UJ	0.0022 UJ	0.0023 UJ	0.0022 UJ	0.0022 UJ			
Ferrous Iron	0.17	0.14	0.05 U	0.18	0.05 U			
Nitrate	0.05 U	0.05 U	1.9	0.73	0.05 U			
Sulfate	17	17	27	6.7	11			
Sulfide	0.02	0.018	0.018	0.01 U	0.01 U			
TOC	10 U	10 U	26	10 UJ	10 UJ			

TABLE B-8
Monitored Natural Attenuation Parameters - Groundwater (2006)
Little Valley Superfund Site
Page 2 of 6

Area	Bush Industries	Bush Industries	Cattaraugus Cutlery	Cattaraugus Cutlery	Cattaraugus Cutlery
Location	BIAMW-D1	BIAMW-D2	MWCCA-1	MWCCA-2	MWCCA-3
TtEC Sample I.D.	LVRD01-GWMNA-BIAD1	LVRD01-GWMNA-BIAD2	LVRD01-GWMNA-CCA1	LVRD01-GWMNA-CCA2	LVRD01-GWMNA-CCA3
Sampling Date	10/31/2006	10/30/2006	10/25/2006	10/31/2006	10/25/2006
Matrix	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater
Units	mg/L	mg/L	mg/L	mg/L	mg/L
	-			7	
Alkalinity (as CaCO3)	200	140	160	72	180
Chloride	55	31	21	17	20
Methane	0.0014 UJ	0.0014 UJ	0.0014 UJ	0.0014 UJ	0.0014 UJ
Ethane	0.0028 UJ	0.0029 UJ	0.0028 UJ	0.0029 UJ	0.0029 UJ
Ethene	0.0021 UJ	0.0022 UJ	0.0021 UJ	0.0022 UJ	0.0022 UJ
Ferrous Iron	0.05 U	0.05 U	0.15	0.05 U	0.05 U
Nitrate	2.7	0.34	1.1	0.66	0.53
Sulfate	11	13	14	12	17
Sulfide	0.01 U	0.027	0.01 U	0.01 U	0.01 U
TOC	10 U	5 U	5 U	5 U	5 U

TABLE B-8
Monitored Natural Attenuation Parameters - Groundwater (2006)
Little Valley Superfund Site
Page 3 of 6

Area	Cattaraugus Cutlery				
Location	MWCCA-5	MWCCA-6	MWCCA-7	MWCCA-8	MWCCA-9D
TtEC Sample I.D.	LVRD01-GWMNA-CCA5	LVRD01-GWMNA-CCA6	LVRD01-GWMNA-CCA7	LVRD01-GWMNA-CCA8	LVRD01-GWMNA-CCA9D
Sampling Date	10/24/2006	10/24/2006	10/25/2006	10/25/2006	10/24/2006
Matrix	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater
Units	mg/L	mg/L	mg/L	mg/L	mg/L
Alkalinity (as CaCO3)	150	130	160	140	130
Chloride	21	16	21	19	17
Methane	0.0027 UJ	0.0021 UJ	0.0014 UJ	0.0015 UJ	0.0014 UJ
Ethane	0.0030 UJ	0.0030 UJ	0.0029 UJ	0.0030 UJ	0.0029 UJ
Ethene	0.0022 UJ				
Ferrous Iron	0.15	0.05 U	0.05 U	0.05 U	0.05 U
Nitrate	0.82	0.61	0.81	0.83	0.57
Sulfate	14	14	13	13	14
Sulfide	0.01 U				
TOC	1 U	1 U	5 U	39	1 U

TABLE B-8
Monitored Natural Attenuation Parameters - Groundwater (2006)
Little Valley Superfund Site
Page 4 of 6

Area	Cattaraugus Cutlery				
Location	MWCCA-10	MWCCA-10	MWCCA-11D	MWCCA-12	PZ-20D
		Duplicate			·
TtEC Sample I.D.	LVRD01-GWMNA-CCA10	LVRD01-GWMNA-CCA20	LVRD01-GWMNA-CCA11	LVRD01-GWMNA-CCA12	LVRD01-GWMNA-PZ20D
Sampling Date	10/24/2006	10/24/2006	10/23/2006	10/23/2006	10/31/2006
Matrix	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater
Units	mg/L	mg/L	mg/L	mg/L	mg/L
	·				
Alkalinity (as CaCO3)	140	140	140	160	150
Chloride	15	15	20	17	29
Methane	0.0015 UJ	0.0015 UJ	0.0015 UJ	0.0014 UJ	0.0014 UJ
Ethane	0.0031 UJ	0.0031 UJ	0.0030 UJ	0.0029 UJ	0.0029 UJ
Ethene	0.0023 UJ	0.0023 UJ	0.0022 UJ	0.0022 UJ	0.0022 UJ
Ferrous Iron	0.05 U	0.05 U	0.05 UJ	0.05 UJ	0.063
Nitrate	0.63	0.64	0.81	1.5	1.6
Sulfate	14	14	14	15	12
Sulfide	0.01 U				
TOC	1 U	1 U	1 U	1 U	5 U

TABLE B-8
Monitored Natural Attenuation Parameters - Groundwater (2006)
Little Valley Superfund Site
Page 5 of 6

Area	Great Triangle Area	Great Triangle Area	Whig Street Area	Whig Street Area	Luminite Area
Location	PZ-5	PZ-6D	PZ-39	PZ-45D	PZ-46
				-	
TtEC Sample I.D.	LVRD01-GWMNA-PZ5	LVRD01-GWMNA-PZ6D	LVRD01-GWMNA-PZ39	LVRD01-GWMNA-PZ45D	LVRD01-GWMNA-PZ46
Sampling Date	10/26/2006	11/1/2006	11/1/2006	11/1/2006	10/26/2006
Matrix	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater
Units	mg/L	mg/L	mg/L	mg/L	mg/L
Alkalinity (as CaCO3)	160	150	120	96	75
Chloride	49	48	130	13	6.2
Methane	0.0015 UJ	0.0014 UJ	0.0015 UJ	0.0014 UJ	0.0015 UJ
Ethane	0.0031 UJ	0.0028 UJ	0.0030 UJ	0.0029 UJ	0.0030 UJ
Ethene	0.0023 UJ	0.0021 UJ	0.0022 UJ	0.0022 UJ	0.0022 UJ
Ferrous Iron	0.05 U	0.32	0.05 U	0.05 U	0.05 U
Nitrate	1.4	1.2	2.1	0.4	0.81
Sulfate	14	12	14	4	6.6
Sulfide	0.01 U	0.027	0.01 U	0.028	0.01 U
TOC	19	5 U	5 U	5 U	5 U

TABLE B-8
Monitored Natural Attenuation Parameters - Groundwater (2006)
Little Valley Superfund Site
Page 6 of 6

Area Location	
TtEC Sample I.D.	LVRD01-GWMNA-PZ55D
Sampling Date	10/26/2006
Matrix	Groundwater
Units	mg/L

Alkalinity (as CaCO3)	150
Chloride	42
Methane	0.0015 UJ
Ethane	0.0031 UJ
Ethene	0.0023 UJ
Ferrous Iron	0.15
Nitrate	1.6
Sulfate	12
Sulfide	0.01 U
TOC	10 UJ

TABLE B-9 CRA Investigation of Bush Industries - May 1999 Volatile Organic Compounds - Groundwater Little Valley Superfund Site Page 1 of 6

Area	Bush Industries - CRA			
Location	MW-1	MW-2	MW-2	MW-3
Sample I.D.	MW-1	MW-2	MW-D3	MW-3
			Duplicate of MW-2	
Sampling Date	05/05/1999	05/05/1999	05/05/1999	05/05/1999
Units	ug/L	ug/L	ug/L	ug/L
Chloromethane	10 UJ	20 UJ	20 U	10 UJ
Bromomethane	10 U	20 U	20 U	10 U
Vinyl chloride	10 U	4 J	2 Ј	10 U
Chloroethane	10 U	0.8 Ј	20 U	10 U
Methylene chloride	10 U	20 U	20 U	10 U
Acetone	10 UJ	20 UJ	20 UJ	10 UJ
Carbon disulfide	10 U	20 U	20 U	10 U
1,1-Dichloroethene	10 U	1 J	20 U	10 U
1,1-Dichloroethane	10 U	20 U	20 U	10 U
1,2-Dichloroethene (total)	10 U	54	51	2 Ј
cis-1,2-Dichloroethene	NR	NR	NR	NR
trans-1,2-Dichloroethene	NR	NR	NR	NR
Chloroform	, 10 U	20 U	20 U	10 U
1,2-Dichloroethane	10 U	20 U	20 U	10 U
2-Butanone	10 UJ	20 UJ	20 U	10 UJ
1,1,1-Trichloroethane	10 U	20 U	20 U	10 U
Carbon Tetrachloride	10 U	20 U	20 U	10 U
Bromodichloromethane	10 U	20 U	20 U	10 U
1,2-Dichloropropane	10 U	20 U	20 U	10 U
cis-1,3-Dichloropropene	10 U	20 U	20 U	10 U
Trichloroethene	10 U	230	190	5 J
Dibromochloromethane	10 U	20 U	20 U	10 U
1,1,2-Trichloroethane	10 U	20 U	20 U	10 U
Benzene	10 U	0.7 J	20 U	10 U
trans-1,3-Dichloropropene	10 U	20 U	20 U	10 U
Bromoform	10 U	20 U	20 U	10 U
4-Methyl-2-pentanone	10 U	20 U	20 U	10 U
2-Hexanone	10 U	20 U	20 U	10 U
Tetrachloroethene	10 U	20 U	20 U	10 U

TABLE B-9
CRA Investigation of Bush Industries - May 1999
Volatile Organic Compounds - Groundwater
Little Valley Superfund Site
Page 2 of 6

Area	Bush Industries - CRA			
Location	MW-1	MW-2	MW-2	MW-3
Sample I.D.	MW-1	MW-2	MW-D3	MW-3
			Duplicate of MW-2	
Sampling Date	05/05/1999	05/05/1999	05/05/1999	05/05/1999
Units	ug/L	ug/L	ug/L	ug/L
1,1,2,2-Tetrachloroethane	10 U	20 U	20 U	10 U
Toluene	10 U	20 U	20 U	10 U
Chlorobenzene	10 U	20 U	20 U	10 U
Ethylbenzene	10 U	20 U	20 U	10 U
Styrene	10 U	20 U	20 U	10 U
Xylenes (total)	10 U	20 U	20 U	10 U
Bromochloromethane	NR	NR	NR	NR
1,2-Dibromoethane	NR	NR	NR	NR
1,3-Dichlorobenzene	NR	NR	NR	NR
1,4-Dichlorobenzene	NR	NR	NR	NR
1,2-Dichlorobenzene	NR	NR	NR	NR
1,2-Dibromo-3-chloropropane	NR	NR	NR	NR
1,2,4-Trichlorobenzene	NR	NR	NR	NR

TABLE B-9
CRA Investigation of Bush Industries - May 1999
Volatile Organic Compounds - Groundwater
Little Valley Superfund Site
Page 3 of 6

Area	Bush Industries - CRA			
Location	MW-4	MW-5	MW-D1	MW-D2
Sample I.D.	MW-4	MW-5	MW-D1	MW-D2
Sampling Date	05/05/1999	05/05/1999	05/05/1999	05/05/1999
Units	ug/L	ug/L	ug/L	ug/L
Chloromethane	10 UJ	10 UJ	10 UJ	10 UJ
Bromomethane	10 U	10 U	10 U	10 U
Vinyl chloride	10 U	10 U	10 U	10 U
Chloroethane	10 U	10 U	10 U	10 U
Methylene chloride	10 U	10 U	10 U	10 U
Acetone	10 UJ	10 ÚJ	10 UJ	10 UJ
Carbon disulfide	10 U	10 U	10 U	10 U
1,1-Dichloroethene	10 U	10 U	10 U	1 J
1,1-Dichloroethane	10 U	10 U	10 U	10 U
1,2-Dichloroethene (total)	10 U	10 U	6 Ј	58
cis-1,2-Dichloroethene	NR	NR	NR	NR
trans-1,2-Dichloroethene	NR	NR	NR	NR
Chloroform	10 U	10 U	10 U	10 U
1,2-Dichloroethane	10 U	10 U	10 U	10 U
2-Butanone	10 UJ	10 UJ	10 UJ	- 10 UJ
1,1,1-Trichloroethane	10 U	10 U	10 U	10 U
Carbon Tetrachloride	10 U	10 U	10 U	10 U
Bromodichloromethane	10 U	10 U	10 U	10 U
1,2-Dichloropropane	10 U	10 U	10 U	10 U
cis-1,3-Dichloropropene	10 U	10 U	10 U	10 U
Trichloroethene	2 Ј	10 U	11	160
Dibromochloromethane	10 U	10 U	10 U	10 U
1,1,2-Trichloroethane	10 U	10 U	10 U	10 U
Benzene	2 J	10 U	10 U	2 J
trans-1,3-Dichloropropene	10 U	10 U	10 U	10 U
Bromoform	10 U	10 U	10 U	10 U
4-Methyl-2-pentanone	10 U	10 U	10 U	10 U
2-Hexanone	10 U	10 U	10 U	10 U
Tetrachloroethene	10 U	10 U	10 U	10 U

TABLE B-9
CRA Investigation of Bush Industries - May 1999
Volatile Organic Compounds - Groundwater
Little Valley Superfund Site
Page 4 of 6

Area Location Sample I.D.	Bush Industries - CRA MW-4 MW-4	Bush Industries - CRA MW-5 MW-5	Bush Industries - CRA MW-D1 MW-D1	Bush Industries - CRA MW-D2 MW-D2
	272.17	WIW 3	W -D1	W - 172
Sampling Date	05/05/1999	05/05/1999	05/05/1999	05/05/1999
Units	ug/L	ug/L	ug/L	ug/L
1,1,2,2-Tetrachloroethane	10 U	10 U	10 U	10 U
Toluene	10 U	10 U	10 U	10 U
Chlorobenzene	10 U	10 U	10 U	10 U
Ethylbenzene	10 U	10 U	10 U	10 U
Styrene	10 U	10 U	10 U	10 U
Xylenes (total)	10 U	10 U	10 U	10 U
Bromochloromethane	NR	NR	NR	NR
1,2-Dibromoethane	NR	NR	NR	NR
1,3-Dichlorobenzene	NR	NR	NR	NR
1,4-Dichlorobenzene	NR	NR	NR	NR
1,2-Dichlorobenzene	NR	NR	NR	NR
1,2-Dibromo-3-chloropropane	NR	NR	NR	NR
1,2,4-Trichlorobenzene	NR	NR	NR	NR

TABLE B-9 CRA Investigation of Bush Industries - May 1999 Volatile Organic Compounds - Groundwater Little Valley Superfund Site Page 5 of 6

Area Location Sample I.D.	Bush Industries - CRA MW-U1 MW-U1	Bush Industries - CRA LV-4 B78404	Bush Industries - CRA LV-7 B78407
Sampling Date	05/05/1999	05/05/1999	05/05/1999
Units	ug/L	ug/L	ug/L
Chloromethane	10 UJ	1 U	1 U
Bromomethane	10 U	1 U	1 U
Vinyl chloride	10 U	1 U	" I U
Chloroethane	10 U	1 U	1 U
Methylene chloride	10 U	1 U	1 U
Acetone	10 UJ	5 U	5 U
Carbon disulfide	10 U	1 U	1 U
1,1-Dichloroethene	10 U	1 U	1 U
1,1-Dichloroethane	10 U	1 U	1 U
1,2-Dichloroethene (total)	10 U	NR	NR
cis-1,2-Dichloroethene	NR	1 U	l U
trans-1,2-Dichloroethene	NR	1 U	1 U
Chloroform	10 U	1 U	1 U
1,2-Dichloroethane	10 U	1 U	l U
2-Butanone	10 UJ	5 U	5 U
1,1,1-Trichloroethane	10 U	1 U	1 U
Carbon Tetrachloride	10 U	1 U	1 U
Bromodichloromethane	10 U	1 U	1 U
1,2-Dichloropropane	10 U	l U	1 U
cis-1,3-Dichloropropene	10 U	. 1 U	l U
Trichloroethene	10 U	1 U	0.5 J
Dibromochloromethane	10 U	1 U	1 U
1,1,2-Trichloroethane	10 U	1 U	1 U
Benzene	10 U	i U	1 U
trans-1,3-Dichloropropene	10 U	1 U	1 U
Bromoform	10 U	1 U	1 U
4-Methyl-2-pentanone	10 U	5 U	5 U
2-Hexanone	10 U	5 U	5 U
Tetrachloroethene	10 U	1 U	1 U

TABLE B-9
CRA Investigation of Bush Industries - May 1999
Volatile Organic Compounds - Groundwater
Little Valley Superfund Site
Page 6 of 6

Area	Bush Industries - CRA	Bush Industries - CRA	Bush Industries - CRA
Location	MW-U1	LV-4	LV-7
Sample I.D.	MW-U1	B78404	B78407
Sampling Date	05/05/1999	05/05/1999	05/05/1999
Units	ug/L	ug/L	ug/L
1,1,2,2-Tetrachloroethane	10 U	1 U	l U
Toluene	10 U	1 U	1 U
Chlorobenzene	10 U	1 U	ΙU
Ethylbenzene	10 U	1 U	1 U
Styrene	10 U	1 U	l U
Xylenes (total)	. 10 U	1 U	1 U
Bromochloromethane	NR	1 U	1 U
1,2-Dibromoethane	NR	1 U	1 U
1,3-Dichlorobenzene	NR	1 U	l U
1,4-Dichlorobenzene	NR	1 U	١Ū
1,2-Dichlorobenzene	NR	1 U	1 U
1,2-Dibromo-3-chloropropane	NR	1 U	1 U
1,2,4-Trichlorobenzene	NR	1 U	1 U

TABLE B-10 CRA Investigation of Bush Industries - December 1999

Volatile Organic Compounds - Groundwater Little Valley Superfund Site

Page 1 of 6

Area	Bush Industries - CRA			
Location	MW-1	MW-2	MW-2	MW-4
Sample I.D.	MW-1	MW-2	MW-D3	MW-4
			Duplicate of MW-2	
Sampling Date	12/13/1999	12/14/1999	12/14/1999	12/13/1999
Units	ug/L	ug/L	ug/L	ug/L
Chloromethane	10 U	10 U	10 U	10 U
Bromomethane	10 U	10 U	10 U	10 U
Vinyl chloride	10 U	1 Ј	1 J	10 U
Chloroethane	10 U	10 U	10 U	10 U
Methylene chloride	10 U	10 U	10 U	10 U
Acetone	10 U	10 U	10 U	10 U
Carbon disulfide	10 U	10 U	10 U	10 U
1,1-Dichloroethene	10 U	0.7 J	0.7 Ј	10 U
1,1-Dichloroethane	10 U	10 U	10 U	10 U
1,2-Dichloroethene (total)	10 U	40	42	0.7 Ј
cis-1,2-Dichloroethene	NR	NR	NR	NR
trans-1,2-Dichloroethene	NR	NR	NR	NR
Chloroform	10 U	10 U	10 U	10 U
1,2-Dichloroethane	10 U	10 U	10 U	10 U
2-Butanone	10 U	10 U	10 U	10 U
1,1,1-Trichloroethane	10 U	10 U	10 U	10 U
Carbon Tetrachloride	10 U	10 U	10 U	10 U
Bromodichloromethane	10 U	10 U	10 U	10 U
1,2-Dichloropropane	10 U	10 U	10 U	10 U
cis-1,3-Dichloropropene	10 U	10 U	10 U	10 U
Trichloroethene	10 U	84	87	1 J
Dibromochloromethane	10 U	10 U	10 U	10 U
1,1,2-Trichloroethane	10 U	10 U	10 U	10 U
Benzene	10 U	0.4 Ј	0.4 J	10 U
trans-1,3-Dichloropropene	10 U	10 U.	10 U	10 U
Bromoform	10 U	10 U	10 U	10 U
4-Methyl-2-pentanone	10 U	10 U	10 U	10 U
2-Hexanone	10 U	10 U	10 U	10 U
Tetrachloroethene	10 U	10 U	10 U	10 U

CRA Investigation of Bush Industries - December 1999 Volatile Organic Compounds - Groundwater

Little Valley Superfund Site

Page 2 of 6

Area	Bush Industries - CRA			
Location	MW-1	MW-2	MW-2	MW-4
Sample I.D.	MW-1	MW-2	MW-D3	MW-4
			Duplicate of MW-2	
Sampling Date	12/13/1999	12/14/1999	12/14/1999	12/13/1999
Units	ug/L	ug/L	ug/L	ug/L
1,1,2,2-Tetrachloroethane	10 U	10 U	10 U	10 U
Toluene	10 U	10 U	10 U	10 U
Chlorobenzene	10 U	10 U	10 U	10 U
Ethylbenzene	10 U	10 U	10 U	10 U
Styrene	10 U	10 U	10 U	10 U
Xylenes (total)	10 U	10 U	10 U	10 U
Bromochloromethane	NR	NR	NR	NR
1,2-Dibromoethane	NR	NR	NR	NR
1,3-Dichlorobenzene	NR	NR	NR	NR
1,4-Dichlorobenzene	NR	NR	NR	NR
1,2-Dichlorobenzene	NR	NR	NR	NR
1,2-Dibromo-3-chloropropane	NR	NR	NR	NR
1,2,4-Trichlorobenzene	NR	NR	NR	NR

CRA Investigation of Bush Industries - December 1999

Volatile Organic Compounds - Groundwater

Little Valley Superfund Site

Page 3 of 6

Area	Bush Industries - CRA			
Location	MW-5	MW-6	MW-7	MW-D1
Sample I.D.	MW-5	MW-6	MW-7	MW-D1
Sampling Date	12/13/1999	12/13/1999	12/13/1999	12/13/1999
Units	ug/L	ug/L	ug/L	ug/L
Chloromethane				
Bromomethane	10 U	10 U	10 U	10 U
	10 U	10 U	10 U	10 U
Vinyl chloride	10 U	4 J	10 U	10 U
Chloroethane	10 U	10 U	10 U	10 U
Methylene chloride	10 U	10 U	10 U	10 U
Acetone	10 U	10 U	10 U	10 U
Carbon disulfide	10 U	10 U	10 U	10 U
1,1-Dichloroethene	10 U	10 U	10 U	10 U
1,1-Dichloroethane	10 U	10 U	10 U	10 U
1,2-Dichloroethene (total)	10 U	30	0.3 Ј	4 J
cis-1,2-Dichloroethene	NR	NR	NR	NR
trans-1,2-Dichloroethene	NR	NR	NR	NR
Chloroform	10 U	10 U	10 U	10 U
1,2-Dichloroethane	10 U	10 U	10 U	10 U
2-Butanone	10 U	10 U	10 U	10 U
1,1,1-Trichloroethane	10 U	10 U	10 U	10 U
Carbon Tetrachloride	10 U	10 U	10 U	10 U
Bromodichloromethane	10 U	10 U	10 U	10 U
1,2-Dichloropropane	10 U	10 U	10 U	10 U
cis-1,3-Dichloropropene	10 U	10 U	10 U	10 U
Trichloroethene	10 U	17	2 J	9 J
Dibromochloromethane	10 U	10 U	10 U	10 U
1,1,2-Trichloroethane	10 U	10 U	10 U	10 U
Benzene	10 U	10 U	10 U	10 U
trans-1,3-Dichloropropene	10 U	10 U	10 U	10 U
Bromoform	10 U	10 U	10 U	10 U
4-Methyl-2-pentanone	10 U	10 U	10 U	10 U
2-Hexanone	10 U	10 U	10 U	10 U
Tetrachloroethene	10 U	10 U	10 U	10 U

CRA Investigation of Bush Industries - December 1999

Volatile Organic Compounds - Groundwater

Little Valley Superfund Site

Page 4 of 6

Area	Bush Industries - CRA			
Location	MW-5	MW-6	MW-7	MW-DI
Sample I.D.	MW-5	MW-6	MW-7	MW-D1
Sampling Date	12/13/1999	12/13/1999	12/13/1999	12/13/1999
Units	ug/L	ug/L	ug/L	ug/L
1,1,2,2-Tetrachloroethane	10 U	10 U	10 U	10 U
Toluene	10 U	10 U	10 U	10 U
Chlorobenzene	10 U	10 U	10 U	10 U
Ethylbenzene	10 U	10 U	10 U	10 U
Styrene	10 U	10 U	10 U	10 U
Xylenes (total)	10 U	10 U	10 U	10 U
Bromochloromethane	NR	NR	NR	NR
1,2-Dibromoethane	NR	NR	NR	NR
1,3-Dichlorobenzene	NR	NR	NR	NR
1,4-Dichlorobenzene	NR	NR	NR	NR
1,2-Dichlorobenzene	NR	NR	NR	NR
1,2-Dibromo-3-chloropropane	NR	NR	NR	NR
1,2,4-Trichlorobenzene	NR	NR	NR	NR

CRA Investigation of Bush Industries - December 1999 Volatile Organic Compounds - Groundwater Little Valley Superfund Site

Page 5 of 6

Area	Bush Industries - CRA	Bush Industries - CRA
Location	MW-D2	MW-U1
Sample I.D.	MW-D2	MW-U1
Sampling Date	12/14/1999	12/13/1999
Units	ug/L	ug/L
Chloromethane	10 U	10 U
Chioromethane Bromomethane	10 U	10 U
	10 U	10 U
Vinyl chloride		
Chloroethane	10 U	10 U
Methylene chloride	10 U	10 U
Acetone	10 U	10 U
Carbon disulfide	10 U	10 U
1,1-Dichloroethene	0.4 J	10 U
1,1-Dichloroethane	10 U	10 U
1,2-Dichloroethene (total)	16	10 U
cis-1,2-Dichloroethene	NR	NR
trans-1,2-Dichloroethene	NR	NR
Chloroform	10 U	10 U
1,2-Dichloroethane	10 U	10 U
2-Butanone	10 U	10 U
1,1,1-Trichloroethane	10 U	10 U
Carbon Tetrachloride	10 U	10 U
Bromodichloromethane	10 U	10 U
1,2-Dichloropropane	10 U	10 U
cis-1,3-Dichloropropene	10 U	10 U
Trichloroethene	58	10 U
Dibromochloromethane	10 U	10 U
1,1,2-Trichloroethane	10 U	10 U
Benzene	10 U	10 U
trans-1,3-Dichloropropene	10 U	10 U
Bromoform	10 U	10 U
4-Methyl-2-pentanone	10 U	10 U
2-Hexanone	10 U	10 U
Tetrachloroethene	10 U	10 U

TABLE B-10

CRA Investigation of Bush Industries - December 1999 Volatile Organic Compounds - Groundwater Little Valley Superfund Site

Page 6 of 6

Area	Bush Industries - CRA	Bush Industries - CRA
Location	MW-D2	MW-U1
Sample I.D.	MW-D2	MW-U1
Sampling Date	12/14/1999	12/13/1999
Units	ug/L	ug/L
1.1.2.2.T-4	10.11	10.11
1,1,2,2-Tetrachloroethane	10 U	10 U
Toluene	10 U	10 U
Chlorobenzene	10 U	10 U
Ethylbenzene	10 U	10 U
Styrene	10 U	10 Ú
Xylenes (total)	10 U	10 U
Bromochloromethane	NR	NR
1,2-Dibromoethane	NR	NR
1,3-Dichlorobenzene	NR	NR
1,4-Dichlorobenzene	NR	NR
1,2-Dichlorobenzene	NR	NR
1,2-Dibromo-3-chloropropane	NR	NR
1,2,4-Trichlorobenzene	NR	NR

TABLE B-11
Volatile Organic Compounds - Quality Assurance/Quality Control (1998)
Little Valley Superfund Site

Page 1 of 18

Area	QA/QC Sample				
Location	Field Blank				
	SimulProbe Groundwater				
TtEC Sample I.D.	LV-FBSBGW-061998	LV-FBSBGW-062298	LV-FBSBGW-062498	LV-FBSBGW-062698	LV-FBSBGW-070198
Sampling Date	06/19/1998	06/22/1998	06/24/1998	06/26/1998	07/01/1998
Units	ug/L	ug/L	ug/L	ug/L	ug/L
Chloromethane	1 U	0.9 J	1 U	2	1 U
Bromomethane	1 U	1 U	l U	1 U	l U
Vinyl chloride	1 U	1 U	1 U	1 U	l U
Chloroethane	1 U	1 U	1 U	1 U	1 U
Methylene chloride	2 UJ	0.6 J	2 U	2	2 U
Acetone	16 JB	10 J	7 Ј	24 Ј	16 J
Carbon disulfide	1 U	1 U	1 U	1 U	1 U
1,1-Dichloroethene	1 U	1 U	1 U	1 U	1 U
1,1-Dichloroethane	1 U	1 U	1 U	1 U	1 U
cis-1,2-Dichloroethene	1 U	1 U	1 U	1 U	1 U
trans-1,2-Dichloroethene	1 U	1 U	1 U	1 U	1 U
Chloroform	1 U	1 U	1 U	1 U	1 U
1,2-Dichloroethane	1 U	1 U	1 U	1 U	1 U
2-Butanone	R	3 Ј	R	6 Ј	2 J
Bromochloromethane	1 U	1 U	1 U	1 U	1 U
1,1,1-Trichloroethane	` 1 U	1 U	1 U	1 U	1 U
Carbon tetrachloride	1 U	1 U	1 U	l U	l U
Bromodichloromethane	1 U	1 U	1 U	1 U	1 U
1,2-Dichloropropane	1 U	1 U	1 U	1 U	1 U
cis-1,3-Dichloropropene	1 U	1 U	l U	1 U	1 U
Trichloroethene	1 U	1 U	1 U	1 U	1 U
Dibromochloromethane	1 U	1 U	1 U	1 U	1 U
1,1,2-Trichloroethane	1 U	1 U	1 U	1 U	1 U
Benzene	5	1 U	1 U	1 U	1 U
trans-1,3-Dichloropropene	1 U	1 U	1 U	1 U	1 U
Bromoform	1 U	1 U	1 U	1 U	1 U
4-Methyl-2-pentanone	5 U	5 U	5 U	5 U	5 U
2-Hexanone	5 U	5 U	5 U	5 U	5 U
Tetrachloroethene	1 U	1 U	1 U	1 U	1 U
1,1,2,2-Tetrachloroethane	1 U	1 U	1 U	1 U	1 U

TABLE B-11
Volatile Organic Compounds - Quality Assurance/Quality Control (1998)
Little Valley Superfund Site
Page 2 of 18

Area	QA/QC Sample				
Location	Field Blank				
	SimulProbe Groundwater				
TtEC Sample I.D.	LV-FBSBGW-061998	LV-FBSBGW-062298	LV-FBSBGW-062498	LV-FBSBGW-062698	LV-FBSBGW-070198
Sampling Date	06/19/1998	06/22/1998	06/24/1998	06/26/1998	07/01/1998
Units	ug/L	ug/L	ug/L	ug/L	ug/L
1,2-Dibromoethane	1 U	1 U	1 U	1 U	1 U
Toluene	8	1 U	1 U	1 U	1 U
Chlorobenzene	1 U	1 U	1 U	1 U	1 U
Ethylbenzene	0.5 J	1 U	1 U	1 U	1 U
Styrene	1 U	1 U	1 U	1 U	1 U
Xylenes (total)	2	1 U	1 U	1 U	2
1,3-Dichlorobenzene	1 U	1 U	1 U	1 U	1 U
1,4-Dichlorobenzene	1 U	1 U	1 U	1 U	1 U
1,2-Dichlorobenzene	1 U	1 U	1 U	1 U	1 U
1,2-Dibromo-3-chloropropane	R	R	R	R	R
1,2,4-Trichlorobenzene	1 U	1 U	1 U	1 U	1 U
Total Volatile TICs		4 JN	3 JN	10 JN	11 Ј

TABLE B-11 Volatile Organic Compounds - Quality Assurance/Quality Control (1998) Little Valley Superfund Site

Page 3 of 18

Area Location	1 1	QA/QC Sample Field Blank SimulProbe Groundwater	QA/QC Sample Field Blank SimulProbe Groundwater	QA/QC Sample Field Blank Groundwater	QA/QC Sample Field Blank Groundwater
TtEC Sample I.D.	LV-FBSBGW-070298	LV-FBSBGW-070698	LV-FBSBGW-070898	LV-FBGW-070998	LV-FBGW-071398
Sampling Date	07/01/1998	07/06/1998	07/08/1998	07/09/1998	07/13/1998
Units	ug/L	ug/L	ug/L	ug/L	ug/L
				<u> </u>	
Chloromethane	1 U	1 U	l U	1 UJ	l U
Bromomethane	1 U	1 U	1 U	1 UJ	1 U
Vinyl chloride	. 1 U	1 U	1 U	1 UJ	0.2 Ј
Chloroethane	1 U	1 U	1 U	1 UJ	1 U
Methylene chloride	2 U	2 U	2 U	2 UJ	2 U
Acetone	22 J	8 Ј	13 Ј	7 J	7 Ј
Carbon disulfide	1 U	1 U	1 U	1 UJ	1 U
1,1-Dichloroethene	1 U	1 U	1 U	1 UJ	1 U
1,1-Dichloroethane	1 U	1 U	1 U	1 UJ	1 U
cis-1,2-Dichloroethene	1 U	1 U	1 U	1 UJ	l U
trans-1,2-Dichloroethene	1 U	1 U	1 U	l UJ	1 U
Chloroform	1 U	1 U	1 U	1 UJ	1 U
1,2-Dichloroethane	1 U	1 U	1 U	1 UJ	l U
2-Butanone	3 J	R	3 Ј	3 J	R
Bromochloromethane	1 U	1 U	1 U	l UJ	1 U
1,1,1-Trichloroethane	1 U	1 U	· 1 U	1 UJ	1 U
Carbon tetrachloride	1 U	1 U	1 U	1 UJ	1 U
Bromodichloromethane	, 1 U	1 U	1 U	1 UJ	1 U
1,2-Dichloropropane	1 U	1 U	1 U	1 UJ	1 U
cis-1,3-Dichloropropene	1 U	1 U	1 U	1 UJ	1 U
Trichloroethene	1 U	1 U	1 U	1 UJ	1 U
Dibromochloromethane	1 U	1 U	1 U	1 UJ	1 U
1,1,2-Trichloroethane	1 U	1 U	1 U	1 UJ	ΙU
Benzene	1 U	. 1 U	1 U	1 UJ	0.2 Ј
trans-1,3-Dichloropropene	1 U	1 U	1 U	1 UJ	1 U
Bromoform	1 U	1 U	1 U	1 UJ	1 U
4-Methyl-2-pentanone	5 U	5 U	5 U	5 UJ	5 U
2-Hexanone	5 U	5 U	5 U	5 UJ	5 U
Tetrachloroethene	1 U	1 U	1 U	1 UJ	1 U
1,1,2,2-Tetrachloroethane	1 U	1 U	1 U	l UJ	1 U

TABLE B-11
Volatile Organic Compounds - Quality Assurance/Quality Control (1998)
Little Valley Superfund Site
Page 4 of 18

Area	QA/QC Sample	QA/QC Sample	QA/QC Sample	QA/QC Sample	QA/QC Sample
Location	Field Blank	Field Blank	Field Blank	Field Blank	Field Blank
	SimulProbe Groundwater	SimulProbe Groundwater	SimulProbe Groundwater	Groundwater	Groundwater
TtEC Sample I.D.	LV-FBSBGW-070298	LV-FBSBGW-070698	LV-FBSBGW-070898	LV-FBGW-070998	LV-FBGW-071398
Sampling Date	07/01/1998	07/06/1998	07/08/1998	07/09/1998	07/13/1998
Units	ug/L	ug/L	ug/L	ug/L	ug/L
1,2-Dibromoethane	1 U	1 U	1 U	1 UJ	1 U
Toluene	1 U	1 U	1 U	ľ UJ	1 U
Chlorobenzene	1 · U	1 U	1 U	l UJ	1 U
Ethylbenzene	1 U	1 U	1 U	1 UJ	1 U
Styrene	1 U	1 U	1 U	1 UJ	1 U
Xylenes (total)	1 U	1 U	1 U	1 UJ	1 U
1,3-Dichlorobenzene	1 U	1 U	1 U	1 UJ	1 U
1,4-Dichlorobenzene	1 U	1 U	1 U	1 UJ	1 U
1,2-Dichlorobenzene	1 U	1 U	1 U	1 UJ	1 U
1,2-Dibromo-3-chloropropane	R	R	R	R	1 U
1,2,4-Trichlorobenzene	1 U	1 U	1 U	1 UJ	1 U
Total Volatile TICs	6 JN			2 JN	

TABLE B-11
Volatile Organic Compounds - Quality Assurance/Quality Control (1998)
Little Valley Superfund Site
Page 5 of 18

Area Location	QA/QC Sample Field Blank Groundwater				
TtEC Sample I.D.	LV-FBGWBLR-071398	LV-FBGW-071498	LV-FBGW-071598	LV-FBGW-071698	LV-FBGWAM-072898
Sampling Date	1	07/14/1998	07/15/1998	07/16/1998	07/28/1998
Units	I	ug/L	ug/L	ug/L	ug/L
		ug L	<u> </u>		ug/L
Chloromethane	0.7 J	1 U	2	0.6 J	1 U
Bromomethane	1 U	1 U	l U	1 U	1 U
Vinyl chloride	1 U	1 U	1 U	1 U	l U
Chloroethane	1 U	1 U	1 U	1 U	1 U
Methylene chloride	0.3 JB	0.2 JB	1 JB	0.6 JB	2 U
Acetone	8 Ј	21 J	19 J	9 Ј	R
Carbon disulfide	1 U	1 U	1 U	0.2 JB	l U
1,1-Dichloroethene	1 U	1 U	1 U	1 U	1 U
1,1-Dichloroethane	1 U	1 U	1 U	1 U	1 U
cis-1,2-Dichloroethene	1 U	1 U	1 Ú	1 U	1 U
trans-1,2-Dichloroethene	1 U	1 U	1 U	1 U	1 U
Chloroform	1 U	1 U	1 U	1 U	1 U
1,2-Dichloroethane	1 U	0.2 Ј	1 U	0.3 J	1 U
2-Butanone	2 Ј	4 J	5 J	3 J	R
Bromochloromethane	1 U	1 U	1 U	1 U	l U
1,1,1-Trichloroethane	1 U	1 U	1 U	1 U	1 U
Carbon tetrachloride	1 U	1 U	1 U	1 U	1 U
Bromodichloromethane	1 U	1 U	1 U	1 U	1 U
1,2-Dichloropropane	1 U	1 U	1 U	1 U	1 U
cis-1,3-Dichloropropene	1 U	1 U	1 U	1 U	1 U
Trichloroethene	1 U	1 U	1 U	l U	1 U
Dibromochloromethane	1 U	1 U	1 U	1 U	1 U
1,1,2-Trichloroethane	1 U	1 U	1 U	1 U	1 U
Benzene	1 U	1 U	0.2 Ј	1 U	l U
trans-1,3-Dichloropropene	1 U	1 U	1 U	1 U	1 U
Bromoform	1 U	1 Ü	1 U	1 U	1 U
4-Methyl-2-pentanone	5 U	5 U	5 U	5 U	5 U
2-Hexanone	5 U	5 U	5 U	5 U	R
Tetrachloroethene	1 U	1 U	1 U	1 U	1 U
1,1,2,2-Tetrachloroethane	1 U	.1 U	1 U	1 U	1 U

TABLE B-11
Volatile Organic Compounds - Quality Assurance/Quality Control (1998)
Little Valley Superfund Site
Page 6 of 18

Area	QA/QC Sample	QA/QC Sample	QA/QC Sample	QA/QC Sample	QA/QC Sample
Location	Field Blank	Field Blank	Field Blank	Field Blank	Field Blank
	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater
TtEC Sample I.D.	LV-FBGWBLR-071398	LV-FBGW-071498	LV-FBGW-071598	LV-FBGW-071698	LV-FBGWAM-072898
Sampling Date	07/13/1998	07/14/1998	07/15/1998	07/16/1998	07/28/1998
Units	ug/L	ug/L	ug/L	ug/L	ug/L
1,2-Dibromoethane	1 U	1 U	1 U	1 U	l U
Toluene	1 U	1 U	1 U	0.5 J	1 U
Chlorobenzene	1 U	1 U	1 U	1 U	1 U
Ethylbenzene	1 U	1 U ,	1 U	l U	1 U
Styrene	1 U	1 U	1 U	1 U	1 U
Xylenes (total)	1 U	1 U	l U	1 U	1 U
1,3-Dichlorobenzene	1 U	1 U	1 U	1 U	1 U
1,4-Dichlorobenzene	1 U	1 U	1 U	1 U	1 U
1,2-Dichlorobenzene	1 U	1 U	1 U	1 U ,	1 U
1,2-Dibromo-3-chloropropane	1 U	1 U	1 U	1 U	1 U
1,2,4-Trichlorobenzene	1 U	1 U	1 U	1 U	1 U
Total Volatile TICs					

TABLE B-11
Volatile Organic Compounds - Quality Assurance/Quality Control (1998)
Little Valley Superfund Site

Page	7	of	1	8
1 11,50	•	O.		v

Area Location	QA/QC Sample Field Blank Groundwater	QA/QC Sample Field Blank	QA/QC Sample Field Blank	QA/QC Sample Field Blank	QA/QC Sample Field Blank
TtEC Sample I.D.	LV-FBGWPM-072898	Groundwater LV-FBGW-072998	Groundwater	Groundwater	Groundwater
·	07/28/1998	07/29/1998	LV-FBGW-073098	LV-FBGWBLR-072998	LV-FBGWBLR-073098
Sampling Date Units			07/29/1998	07/29/1998	07/30/1998
Units	ug/L	ug/L	ug/L	ug/L	ug/L
Chloromethane	1 U	1 J	2 J	1 U	1 UJ
Bromomethane	1 U	1 U	1 U	1 U	1 U
Vinyl chloride	1 U	1 U	1 U	1 U	1 U
Chloroethane	1 U	1 U	1 U	1 U	1 U
Methylene chloride	2 U	2 U	0.7 J	2 U	1 J
Acetone	R	R	22 J	R	R
Carbon disulfide	1 U	1 U	0.4 J	1 U	1 UJ
1.1-Dichloroethene	1 U	1 U	1 U	1 U	1 U
1,1-Dichloroethane	1 U	1 U	1 U	1 U	1 UJ
cis-1,2-Dichloroethene	1 U	i U	1 U	l U	1 U
trans-1,2-Dichloroethene	1 U	1 U	1 U	1 U	1 U
Chloroform	1 U	1 U	1 U	1 U	0.8 J
1,2-Dichloroethane	1 U	1 U	1 U	iU	1 U
2-Butanone	R	R	R	R	R
Bromochloromethane	1 U	1 U	1 U	1 U	1 U
1,1,1-Trichloroethane	1 U	1 U	1 U	1 U	1 U
Carbon tetrachloride	1 U	1 U	1 U	l U	1 U
Bromodichloromethane	1 U	1 U	1 U	1 U	1 U
1,2-Dichloropropane	1 U	1 U	1 U	1 U	1 U
cis-1,3-Dichloropropene	1 U	1 U	1 U	1 U	1 U
Trichloroethene	1 U	1 U	1 U	1 U	1 U
Dibromochloromethane	1 U	1 U	1 U	1 U	1 U
1,1,2-Trichloroethane	1 U	1 U	1 U	1 U	1 U
Benzene	1 U	1 U	1 U	1 U	1 U
trans-1,3-Dichloropropene	1 U	1 U	1 U	1 U	1 U
Bromoform	1 U	1 U	1 U	1 U	1 U
4-Methyl-2-pentanone	5 U	5 U	5 U	5 U	5 UJ
2-Hexanone	R	R	R	R	R
Tetrachloroethene	1 U	1 U	1 U	1 U	1 U
1,1,2,2-Tetrachloroethane	1 U	1 U	1 U	1 U	1 U

TABLE B-11
Volatile Organic Compounds - Quality Assurance/Quality Control (1998)
Little Valley Superfund Site

Page 8 of 18

Area Location	QA/QC Sample Field Blank	QA/QC Sample Field Blank	QA/QC Sample Field Blank	QA/QC Sample Field Blank	QA/QC Sample Field Blank
TtEC Sample I D	Groundwater LV-FBGWPM-072898	Groundwater LV-FBGW-072998	Groundwater	Groundwater	Groundwater
TtEC Sample I.D.			LV-FBGW-073098	LV-FBGWBLR-072998	LV-FBGWBLR-073098
Sampling Date	07/28/1998	07/29/1998	07/29/1998	07/29/1998	07/30/1998
Units	ug/L	ug/L	ug/L	ug/L	ug/L
1,2-Dibromoethane	1 U	1 U	1 U	1 U	1 U
Toluene	0.4 J	1 U	0.5 J	1 U	0.5 J
Chlorobenzene	1 U	1 U	1 U	1 U	1 U
Ethylbenzene	1 U	1 U	1 U	1 U	1 U
Styrene	1 U	-1 U	1 U	1 U	1 U
Xylenes (total)	1 U	1 U	1 U	1 U	1 U
1,3-Dichlorobenzene	1 U	1 U	1 U	1 U	1 U
1,4-Dichlorobenzene	1 U	1 U	1 U	1 U	1 U
1,2-Dichlorobenzene	1 U	1 U	1 U	1 U	1 U
1,2-Dibromo-3-chloropropane	1 U	1 U	1 U	1 U	1 U
1,2,4-Trichlorobenzene	1 U	1 U	1 U	1 U	1 U
Total Volatile TICs				Alle des	

TABLE B-11
Volatile Organic Compounds - Quality Assurance/Quality Control (1998)
Little Valley Superfund Site
Page 9 of 18

Area Location	QA/QC Sample Trip Blank				
TtEC Sample I.D. Sampling Date Units	LV-TB-061798 06/17/1998 ug/L	LV-TB-061998 06/19/1998 ug/L	LV-TB-062298 06/22/1998 ug/L	LV-TB-062398 06/23/1998 ug/L	LV-TB-062498 06/24/1998 ug/L
	2 1	1			
Chloromethane	2	1	l U	1 U	1
Bromomethane	1 U	1 U	1 U	1 U	I U
Vinyl chloride	1 U	1 U	1 U	1 U	1 U
Chloroethane	1 U	1 U	1 U	1 U	1 U
Methylene chloride	0.8 JB	1 JB	5 U	2 U	0.6 JB
Acetone	6 JB	10 JB	6 J	8 J	11 J
Carbon disulfide	1 U	1 U	1 U	1 U	1 U
1,1-Dichloroethene	1 U	1 U	1 U	1 U	1 U
1,1-Dichloroethane	1 U	1 U	1 U	1 U	1 U
cis-1,2-Dichloroethene	1 U	1 U	1 U	1 U	1 U
trans-1,2-Dichloroethene	1 U	1 U	1 U	1 U	1 U
Chloroform	1 U	1 U	1 U	1 U	l U
1,2-Dichloroethane	1 U	1 U	1 U	1 U	1 U
2-Butanone	2 Ј	3 Ј	R	R	2 J
Bromochloromethane	1 U	1 U	1 U	1 U	1 U
1,1,1-Trichloroethane	1 U	1 U	1 U	1 U	1 U
Carbon tetrachloride	1 U	1 U	1 U	1 U	1 U
Bromodichloromethane	1 U	1 U	1 U	1 U	1 U
1,2-Dichloropropane	1 U	1 U	1 U	1 U	1 U
cis-1,3-Dichloropropene	1 U	1 U	1 U	1 U	l U
Trichloroethene	1 U	1 U	1 U	1 U	1 U
Dibromochloromethane	1 U	1 U	1 U	I U	1 U
1,1,2-Trichloroethane	1 U	1 U	1 U	1 U	1 U
Benzene	1 U	1 U	1 U	1 U	1 U
trans-1,3-Dichloropropene	1 U	1 U	1 U	1 U	1 U
Bromoform	1 U	1 U	1 U	1 U	1 U
4-Methyl-2-pentanone	5 U	5 U	5 U	5 U	5 U
2-Hexanone	5 U	5 U	5 U	5 U	5 U
Tetrachloroethene	1 U	1 U	1 U	1 U	1 U
1,1,2,2-Tetrachloroethane	1 U	1 U	1 U	1 U	1 U

TABLE B-11
Volatile Organic Compounds - Quality Assurance/Quality Control (1998)
Little Valley Superfund Site

Page 10	0 of	18
---------	------	----

Area Location	QA/QC Sample Trip Blank				
TtEC Sample I.D. Sampling Date Units	LV-TB-061798 06/17/1998 ug/L	LV-TB-061998 06/19/1998 ug/L	LV-TB-062298 06/22/1998 ug/L	LV-TB-062398 06/23/1998 ug/L	LV-TB-062498 06/24/1998 ug/L
1,2-Dibromoethane	1 U	1 U	1 U	1 U	l l U
Toluene	1 U	1 U	1 U	1 U	1 U
Chlorobenzene	1 U	1 U	1 U	1 U	1 U
Ethylbenzene	1 U	1 U	1 U	1 U	1 U
Styrene	1 U	1 U	. 1 U	1 U	1 U
Xylenes (total)	1 U	1 U	1 U	1 U	I U
1,3-Dichlorobenzene	1 U	1 U	1 U	ΙŪ	1 U
1,4-Dichlorobenzene	1 U	1 U	1 U	1 U	1 U
1,2-Dichlorobenzene	1 U	1 U	1 U	1 U	1 U
1,2-Dibromo-3-chloropropane	R	R	R	R	R
1,2,4-Trichlorobenzene	1 U	1 U	1 U	1 U	1 U
Total Volatile TICs	5 JN	3 JN			9 JN

TABLE B-11
Volatile Organic Compounds - Quality Assurance/Quality Control (1998)
Little Valley Superfund Site

	Page	11	of	18
--	------	----	----	----

Area Location	QA/QC Sample Trip Blank				
TtEC Sample I.D. Sampling Date Units	LV-TB-062598 06/25/1998 ug/L	LV-TB-062698 06/26/1998 ug/L	LV-TB-062998 06/29/1998 ug/L	LV-TB-070198 07/01/1998 ug/L	LV-TB-070298 07/02/1998 ug/L
Chloromethane	1 U	1 U	1 U	2	3
Bromomethane	l U	iU	i U	iu	ı u
Vinyl chloride	l U	i U	1 U	1 U	1 U
Chloroethane	iU	iU	1 U	i U	iU
Methylene chloride	2 U	2 U	2 U	0.6 J	0.6 J
Acetone	6 J	11 J	10 J	6 J	8 J
Carbon disulfide	iU	i U	iU	1 U	1 U
1.1-Dichloroethene	iU	iU	1 U	1 U	i U
1,1-Dichloroethane	1 U	i U	1 U	1 U	i U
cis-1,2-Dichloroethene	1 U	1 U	1 U	1 U	1 U
trans-1,2-Dichloroethene	1 U	iU	1 U	1 U	1 U
Chloroform	1 U	1 U	iU	iU	iU
1,2-Dichloroethane	1 U	1 U	1 U	iU	iU
2-Butanone	5 J	3 Ј	4 J	R	2 Ј
Bromochloromethane	I U	1 U	IU	1 U	1 U
1,1,1-Trichloroethane	1 U	1 U	1 U	1 U	1 U
Carbon tetrachloride	1 U	1 U	1 U	ıu	1 U
Bromodichloromethane	1 U	1 U	1 U	1 U	1 U
1,2-Dichloropropane	l U	1 U	1 U	1 U	1 U
cis-1,3-Dichloropropene	1 U	1 U	1 U	1 U	1 U
Trichloroethene	1 U	1 U	1 U	1 U	1 U
Dibromochloromethane	1 U	1 U	1 U	1 U	1 U
1,1,2-Trichloroethane	1 U	1 U	1 U	1 U	1 U
Benzene	1 U	1 U	1 U	1 U	ΙU
trans-1,3-Dichloropropene	1 U	1 U	1 U	1 U	1 U
Bromoform	1 U	1 U	1 U	1 U	1 U
4-Methyl-2-pentanone	5 U	5 U	5 U	5 U	5 U
2-Hexanone	5 U	5 U	5 U	5 U	5 U
Tetrachloroethene	1 U	1 U	1 U	1 U	1 U
1,1,2,2-Tetrachloroethane	1 U	1 U	1 U	1 U	1 U

TABLE B-11
Volatile Organic Compounds - Quality Assurance/Quality Control (1998)
Little Valley Superfund Site
Page 12 of 18

Area Location	QA/QC Sample Trip Blank				
TtEC Sample I.D. Sampling Date Units	LV-TB-062598 06/25/1998 ug/L	LV-TB-062698 06/26/1998 ug/L	LV-TB-062998 06/29/1998 ug/L	LV-TB-070198 07/01/1998 ug/L	LV-TB-070298 07/02/1998 ug/L
1,2-Dibromoethane	1 U	1 U	I U	I U	1 U
Toluene	1 U	1 U	1 U	1 U	1 U
Chlorobenzene	1 U	1 U	1 U	1 U	1 U
Ethylbenzene	1 U	1 U	1 U	1 U	1 U
Styrene	1 U	1 U	1 U	1 U	1 U
Xylenes (total)	1 U	1 U	1 U	1 U	l U
1,3-Dichlorobenzene	1 U	1 U	1 U	1 U	1 U
1,4-Dichlorobenzene	1 U	1 U	1 U	1 U	1 U
1,2-Dichlorobenzene	1 U	1 U	1 U	1 U	I U
1,2-Dibromo-3-chloropropane	R	R	R	R	R
1,2,4-Trichlorobenzene	1 U	1 U	1 U	1 U	1 U
Total Volatile TICs	4 JN	4 JN	2 JN	5 JN	5 JN

TABLE B-11
Volatile Organic Compounds - Quality Assurance/Quality Control (1998)
Little Valley Superfund Site
Page 13 of 18

QA/QC Sample	QA/QC Sample	QA/QC Sample	QA/QC Sample	QA/QC Sample
Trip Blank	Trip Blank	Trip Blank	Trip Blank	Trip Blank
				LV-TB-071498
				07/14/1998
ug/L	ug/L	ug/L	ug/L	ug/L
1 11	1 11	1 111	1 17	37 D
				1 U
				1 U
				2 5
				19 J
				1 U 1 U
				1 U
		l i		1 U
				1 U 1 U
				0.8 J
				0.8 J 5 J
				3 J 1 U
				1 U
				1 U
				1 U
		l i		1 U
				1 U
				1 U
				1 U
				1 U
				0.2 J
				0.2 J 1 U
		1	1	1 U
			•	5 U
				5 U
			!	1 U
				1 U
		Trip Blank LV-TB-070698 07/06/1998 ug/L I U I U I U I U I U I U I U I U I U I	Trip Blank LV-TB-070698 07/06/19	Trip Blank LV-TB-070698 07/06/1998 07/08/19

TABLE B-11
Volatile Organic Compounds - Quality Assurance/Quality Control (1998)
Little Valley Superfund Site
Page 14 of 18

Area Location	QA/QC Sample Trip Blank				
TtEC Sample I.D. Sampling Date Units	LV-TB-070698 07/06/1998 ug/L	LV-TB-070898 07/08/1998 ug/L	LV-TB-070998 07/09/1998 ug/L	LV-TB-071398 07/13/1998 ug/L	LV-TB-071498 07/14/1998 ug/L
1,2-Dibromoethane	I U	1 U	1 UJ	1 U	l U
Toluene	1 U	1 U	1 UJ	1 U	1 U
Chlorobenzene	1 U	1 U	1 UJ	1 U	1 U
Ethylbenzene	1 U	1 U	1 UJ	1 U	1 U
Styrene	1 U	1 U	1 UJ	1 U	1 U
Xylenes (total)	1 U	1 U	. 1 UJ	1 U	1 U
1,3-Dichlorobenzene	1 U	1 U	1 UJ	1 U	1 U
1,4-Dichlorobenzene	1 U	1 U	1 UJ	1 U	1 U
1,2-Dichlorobenzene	1 U	1 U	1 UJ	1 U	1 U
1,2-Dibromo-3-chloropropane	R	R	R	1 U	1 U
1,2,4-Trichlorobenzene	1 U	1 U	1 UJ	1 U	1 U
Total Volatile TICs	4 JN	4 JN	3 JN		

TABLE B-11
Volatile Organic Compounds - Quality Assurance/Quality Control (1998)
Little Valley Superfund Site

Page 15 of	f 18
------------	------

Area Location	QA/QC Sample Trip Blank				
Docum	Trip Diank	Trip Diank	Trip Diank	ուր տառ	Trip Diank
TtEC Sample I.D.	LV-TB-071598	LV-TB-071698	LV-TB-072798	LV-TB-072898	LV-TBBLR-072998
Sampling Date	07/15/1998	07/16/1998	07/27/1998	07/28/1998	07/29/1998
Units	ug/L	ug/L	ug/L	ug/L	ug/L
Chloromethane	3	1 U	1 U	1 U	1 U
Bromomethane	1 U	1 U	1 U	1 U	l U
Vinyl chloride	1 U	1 U	1 U	1 U	1 U
Chloroethane	l U	1 U	1 U	1 U	1 U
Methylene chloride	2 U	2 U	2 U	2 U	2 U
Acetone	13 J	R	R	R	R
Carbon disulfide	1 U	1 U	1 U	1 U	1 U
1,1-Dichloroethene	1 U	1 U	1 U	1 U	1 U
1,1-Dichloroethane	1 U	1 U	1 U	1 U	1 U
cis-1,2-Dichloroethene	1 U	1 U	1 U	1 U	1 U
trans-1,2-Dichloroethene	1 U	1 U	1 U	1 U	I U
Chloroform	1 U	1 U	1 U	1 U	1 U
1,2-Dichloroethane	1 U	1 U	1 U	1 U	. 1 U
2-Butanone	5 J	2 J	R	R	R
Bromochloromethane	1 U	1 U	1 U	1 U	1 U
1,1,1-Trichloroethane	1 U	1 U	1 U	1 U	I U
Carbon tetrachloride	1 U	1 U	1 U	1 U	1 U
Bromodichloromethane	1 U	1 U	1 U	1 U	1 U
1,2-Dichloropropane	1 U	1 U	1 U	1 U	1 U
cis-1,3-Dichloropropene	1 U	1 U	1 U	1 U	1 U
Trichloroethene	1 U	1 U	1 U	1 U	1 U
Dibromochloromethane	1 U	1 U	1 U	1 U	1 U
1,1,2-Trichloroethane	1 U	1 U	l U	1 U	1 U
Benzene	1 U	1 U	1 U	1 U	1 U
trans-1,3-Dichloropropene	1 U	1 U	1 U	1 U	1 U
Bromoform	1 U	1 U	1 U	1 U	1 U
4-Methyl-2-pentanone	5 U	5 U	5 U	5 U	5 U
2-Hexanone	5 U	5 U	R	R	R
Tetrachloroethene	1 U	1 U	1 U	1 U	1 U
1,1,2,2-Tetrachloroethane	1 U	1 U	ΙŪ	1 U	1 U

TABLE B-11
Volatile Organic Compounds - Quality Assurance/Quality Control (1998)
Little Valley Superfund Site
Page 16 of 18

Area Location	QA/QC Sample Trip Blank	QA/QC Sample Trip Blank	QA/QC Sample Trip Blank	QA/QC Sample Trip Blank	QA/QC Sample Trip Blank
TtEC Sample I.D. Sampling Date Units		LV-TB-071698 07/16/1998 ug/L	LV-TB-072798 07/27/1998 ug/L	LV-TB-072898 07/28/1998 ug/L	LV-TBBLR-072998 07/29/1998 ug/L
1,2-Dibromoethane	l U	1 U	1 U	1 U	1 U
Toluene	0.5 J	1 U	0.4 J	0.4 J	0.4 J
Chlorobenzene	1 U	1 U	1 U	1 U	1 U
Ethylbenzene	1 U	1 U	1 U	1 U	1 U
Styrene	1 U	1 U	1 U	l U	1 U
Xylenes (total)	1 U	1 U	1 U	1 U	1 U
1,3-Dichlorobenzene	1 U	1 U	1 U	1 U	1 U
1,4-Dichlorobenzene	1 U	1 U	1 U	1 U	1 U
1,2-Dichlorobenzene	1 U	1 U	1 U	1 U	1 U
1,2-Dibromo-3-chloropropane	1 U	1 U	1 U	1 U	1 U
1,2,4-Trichlorobenzene	1 U	1 U	1 U	1 U	ΙŪ
Total Volatile TICs		**			

TABLE B-11
Volatile Organic Compounds - Quality Assurance/Quality Control (1998)
Little Valley Superfund Site
Page 17 of 18

Area	QA/QC Sample	QA/QC Sample	QA/QC Sample
Location	Trip Blank	Deionized Water Blank	Deionized Water Blank
TtEC Sample I.D.	LV-TB-073098	LV-DI-070198	LV-DIGW-073098
Sampling Date	07/30/1998	07/01/1998	07/30/1998
Units	ug/L	ug/L	ug/L
			<u> </u>
Chloromethane	2 J	6	2 J
Bromomethane	1 U	1 U	1 U
Vinyl chloride	1 U	1 U	1 U
Chloroethane	1 U	1 U	1 U
Methylene chloride	2	2 U	0.7 J
Acetone	R	10 UJ	21 Ј
Carbon disulfide	1 UJ	1 U	1 U
1,1-Dichloroethene	1 U	1 U	ΙU
1,1-Dichloroethane	1 UJ	1 U	1 U
cis-1,2-Dichloroethene	1 U	l U	1 U
trans-1,2-Dichloroethene	1 U	1 U	1 U
Chloroform	1 U	1 U	l U
1,2-Dichloroethane	1 U	1 U	1 U
2-Butanone	R	3 Ј	R
Bromochloromethane	1 U	1 U	1 U
1,1,1-Trichloroethane	1 U	1 U	1 U
Carbon tetrachloride	1 U	1 U	1 U
Bromodichloromethane	1 U	l U	1 U
1,2-Dichloropropane	1 U	1 U	l U
cis-1,3-Dichloropropene	1 U	1 U	I U
Trichloroethene	1 U	1 U	1 U
Dibromochloromethane	1 U	1 U	· 1 U
1,1,2-Trichloroethane	1 U	1 U	1 U
Benzene	1 U	1 U	1 U
trans-1,3-Dichloropropene	1 U	1 U	1 U
Bromoform	1 U	1 U	1 U
4-Methyl-2-pentanone	5 UJ	5 U	5 U
2-Hexanone	R	5 U	R
Tetrachloroethene	1 U	1 U	1 U
1,1,2,2-Tetrachloroethane	1 U	1 U	I U

TABLE B-11
Volatile Organic Compounds - Quality Assurance/Quality Control (1998)
Little Valley Superfund Site
Page 18 of 18

Area	QA/QC Sample	QA/QC Sample	QA/QC Sample
Location	Trip Blank	Deionized Water Blank	Deionized Water Blank
TtEC Sample I.D.	LV-TB-073098	LV-DI-070198	LV-DIGW-073098
Sampling Date	07/30/1998	07/01/1998	07/30/1998
Units	ug/L	ug/L	ug/L
	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		
1,2-Dibromoethane	1 U	1 U	1 U
Toluene	0.4 J	1 U	0.7 J
Chlorobenzene	1 U	1 U	1 U
Ethylbenzene	1 U	l U	1 U
Styrene	1 U	1 U	1 U
Xylenes (total)	1 U	1 U	1 U
1,3-Dichlorobenzene	1 U	- 1 U	1 U
1,4-Dichlorobenzene	1 U	1 U	1 U
1,2-Dichlorobenzene	1 U	1 U	1 U
1,2-Dibromo-3-chloropropane	1 U	R	1 U
1,2,4-Trichlorobenzene	1 U	1 U	1 U
Total Volatile TICs	·	R	

TABLE B-12
Volatile Organic Compounds - Quality Assurance/Quality Control (1999)
Little Valley Superfund Site
Page 1 of 4

Area	QA/QC Sample	QA/QC Sample	QA/QC Sample	QA/QC Sample	QA/QC Sample	QA/QC Sample
Location	DI Water Blank	Field Blank	Field Blank	Field Blank	Field Blank	Field Blank
				(for CCA2 only)		(Pump)
TtEC Sample I.D.	LI-DI-101499	LI-FB-101299	LI-FB-101399	LI-FB-101499	LI-FB-102699	LI-FB-102799
Sampling Date		10/12/1999	10/13/1999	10/14/1999	10/26/1999	10/27/1999
Units	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
Chloromethane	1 U	1 U	1 U	1 U	1 U	1 U
Bromomethane	1 U	1 U	1 U	1 U	1 U	1 U
Vinyl Chloride	1 U	1 U	1 U	1 U	1 U	1 U
Chloroethane	1 U	1 U	1 U	1 U	1 U	1 U
Methylene Chloride	2 U	2 U 🔩	2 U	2 U	2 U	2 U
Acetone	8 J	9 J	5 R	7 Ј	6 J	5 R
Carbon Disulfide	1 U	1 U	1	8	1 U	1 U
1,1-Dichloroethene	1 U	1 U	1 U	1 U	1 U	1 U
1,1-Dichloroethane	1 U	1 U	1 U	1 U	1 U	1 U
cis-1,2-Dichloroethene	1 U	1 U	1 U	1 U	1 U	l U
trans-1,2-Dichloroethene	1 U	1 U	1 U	1 U	1 U	1 U
Chloroform	1 U	1 U	1 U	1 U	1 U	1 U
1,2-Dichloroethane	1 U	1 U	1 U	1 U	1 U	1 U
2-Butanone	5 R	5 R	5 R	5 R	5 R	5 R
Bromochloromethane	1 U	1 U	1 U	1 U	1 U	١U
1,1,1-Trichloroethane	1 U	1 U	1 U	l U	1 U	1 U
Carbon Tetrachloride	1 U	1 U	1 U	1 U	l U	1 U
Bromodichloromethane	1 U	1 U	1 U	1 U	1 U	ΙÜ
1,2-Dichloropropane	1 U	1 U	1 U	1 U	1 U	1 U
cis-1,3-Dichloropropene	1 U	1 U	1 U	1 U	1 U	1 U
Trichloroethene	1 U	1 U	1 U	1 U	1 U	1 U
Dibromochloromethane	1 U	1 U	1 U	1 U	1 U	I U
1,1,2-Trichloroethane	1 U	1 U	1 U	1 U	I U	l U
Benzene	1 U	1 U	1 U	1 U	1 U	l U
trans-1,3-Dichloropropene	1 U	1 U	1 U	1 U	ΙÜ	l UJ
Bromoform	1 U	1 U	1 U	1 U	I U	1 U
4-Methyl-2-pentanone	5 U	5 U	5 U	5 U	5 U	5 R
2-Hexanone	5 U	5 U	5 R	5 U	5 R	5 R
Tetrachloroethene	1 U	1 U	1 U	1 U	1 U	1 U

TABLE B-12 Volatile Organic Compounds - Quality Assurance/Quality Control (1999) Little Valley Superfund Site Page 2 of 4

Area	QA/QC Sample	QA/QC Sample	QA/QC Sample	QA/QC Sample	QA/QC Sample	QA/QC Sample
Location	DI Water Blank	Field Blank	Field Blank	Field Blank	Field Blank	Field Blank
				(for CCA2 only)		(Pump)
TtEC Sample I.D.	LI-DI-101499	LI-FB-101299	LI-FB-101399	LI-FB-101499	LI-FB-102699	LI-FB-102799
Sampling Date		10/12/1999	10/13/1999	10/14/1999	10/26/1999	10/27/1999
Units	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
	· · · · · · · · · · · · · · · · · · ·					
1,1,2,2-Tetrachloroethane	1 U	1 U	1 U	1 U	1 U	1 U
1,2-Dibromoethane	1 U	1 U	1 U	1 U	1 U	1 U
Toluene	1 UJ	0.3 J	1 U	1 UJ	2	1 U
Chlorobenzene	1 U	1 U	1 U	1 U	1 U	1 U
Ethylbenzene	1 U	1 U	1 U	1 U	1 U	1 U
Styrene	1 U	1 U	1 U	1 U	1 U	1 U
Xylenes (total)	1 U	1 U	1 U	1 U	1 U	1 U
1,3-Dichlorobenzene	1 U	1 U	1 U	1 U	1 U	l U
1,4-Dichlorobenzene	1 U	1 U	1 U	1 U	1 U	1 U
1,2-Dichlorobenzene	1 U	1 U	1 U	1 U	1 U	1 U
1,2-Dibromo-3-chloropropane	1 R	1 R	1 R	1 R	1 UJ	l UJ
1,2,4-Trichlorobenzene	1 U	1 U	1 U	1 U	I U	1 UJ
Total Volatile TICs					2 JN	

TABLE B-12
Volatile Organic Compounds - Quality Assurance/Quality Control (1999)
Little Valley Superfund Site
Page 3 of 4

Area	QA/QC Sample	QA/QC Sample	QA/QC Sample	QA/QC Sample	QA/QC Sample
Location	Field Blank	Trip Blank	Trip Blank	Trip Blank	Trip Blank
	(Bailer; CCA2 only)	•	•	1	
TtEC Sample I.D.	LI-FB-102799	LI-TB-101299	LI-TB-101399	LI-TB-102699	LI-TB-102799
Sampling Date	10/27/1999	10/12/1999	10/13/1999	10/26/1999	10/27/1999
Units	ug/L	ug/L	ug/L	ug/L	ug/L
					Ψ
Chloromethane	1 U	1 U	1 U	1 U	1 U
Bromomethane	1 U	1 U	1 U	1 U	1 U
Vinyl Chloride	1 U	1 U	1 U	1 U	1 U
Chloroethane	1 U	- 1 U	1 U	1 U	1 U
Methylene Chloride	2 U	2 U	2 U	2 U	2 U
Acetone	5 R	5 R	5 R	5 R	9 J
Carbon Disulfide	1 U	1 U	1 U	1 U	1 U
1,1-Dichloroethene	1 U	1 U	1 U	1 U	1 U
1,1-Dichloroethane	1 U	1 U	1 U	1 U	1 U
cis-1,2-Dichloroethene	1 U	1 U	1 U	1 U	1 U
trans-1,2-Dichloroethene	1 U	1 U	1 U	1 U	1 U
Chloroform	1 U	1 U	1 U	1 U	1 U
1,2-Dichloroethane	1 U	1 U	1 U	1 U	1 U
2-Butanone	5 R	5 R	5 R	5 R	5 R
Bromochloromethane	1 U	1 U	1 U	1 U	1 U
1,1,1-Trichloroethane	1 U	1 U	1 U	1 U	1 U
Carbon Tetrachloride	1 U	1 U	1 U	1 U	1 U
Bromodichloromethane	1 U	1 U	1 U	1 U	1 U
1,2-Dichloropropane	1 U	1 U	1 U	1 U	1 U
cis-1,3-Dichloropropene	1 U	1 U	1 U	1 U	1 U
Trichloroethene	1 U	1 U	1 U	1 U	1 U
Dibromochloromethane	1 U	1 U	1 U	1 U	1 U
1,1,2-Trichloroethane	1 U	1 U	1 U	1 U	1 U
Benzene	1 U	1 U	1 U	1 U	1 U
trans-1,3-Dichloropropene	1 UJ	1 U	1 U	1 U	1 UJ
Bromoform	1 U	1 U	1 U	1 U	1 U
4-Methyl-2-pentanone	5 R	5 U	5 U	5 U	5 R
2-Hexanone	5 R	5 U	5 U	5 R	5 R
Tetrachloroethene	1 U	1 U	1 U	1 U	1 U

TABLE B-12
Volatile Organic Compounds - Quality Assurance/Quality Control (1999)
Little Valley Superfund Site
Page 4 of 4

Area	QA/QC Sample	QA/QC Sample	QA/QC Sample	QA/QC Sample	QA/QC Sample
Location	Field Blank	Trip Blank	Trip Blank	Trip Blank	Trip Blank
	(Bailer; CCA2 only)	1	,		****P 2 ******
TtEC Sample I.D.	LI-FB-102799	LI-TB-101299	LI-TB-101399	LI-TB-102699	LI-TB-102799
Sampling Date	10/27/1999	10/12/1999	10/13/1999	10/26/1999	10/27/1999
Units	ug/L	ug/L	ug/L	ug/L	ug/L
1,1,2,2-Tetrachloroethane	1 U	1 U	1 U	1 U	1 U
1,2-Dibromoethane	1 U	1 U	1 U	1 U	1 U
Toluene	1 U	0.3 J	0.5 J	1	1 U
Chlorobenzene	1 U	,1 U	1 U	1 U	1 U
Ethylbenzene	1 U	1 U	1 U	1 U	1 U
Styrene	1 U	· 1 U	1 U	1 U	1 U
Xylenes (total)	1 U	1 U	1 U	l U	1 U
1,3-Dichlorobenzene	1 U	1 U	1 U	1 U	1 U
1,4-Dichlorobenzene	1 U	1 U	1 U	1 U	1 U
1,2-Dichlorobenzene	1 U	1 U	I U	1 U	1 U
1,2-Dibromo-3-chloropropane	1 UJ	1 R	1 R	1 UJ	1 UJ
1,2,4-Trichlorobenzene	1 UJ	1 U	1 U	1 U	1 UJ
Total Volatile TICs					

TABLE B-13
Volatile Organic Compounds - Quality Assurance/Quality Control (2000/2001)
Little Valley Superfund Site
Page 1 of 6

Area	QA/QC Sample					
Location	Field Blank	Trip Blank	Field Blank	Trip Blank	Field Blank	
TtEC Sample I.D.	LV-BIA-FB010401	LV-BIA-TB010401	LV-BIA-FB010801	LV-BIA-TB010801	LV-BIA-FB010901	
Sampling Date	01/04/2001	01/04/2001	01/08/2001	01/08/2001	01/09/2001	
Units	ug/L	ug/L	ug/L	ug/L	ug/L	
	<u> </u>	<u> </u>	<u> </u>	ζ		
Chloromethane	1 U	1 U	1 U	1 U	l U	
Bromomethane	1 U	1 U	1 U	1 U	1 U	
Vinyl Chloride	1 U	1 U	1 U	1 U	1 U	
Chloroethane	1 U	1 U	1 U	1 U	1 U	
Methylene Chloride	2 U	2 U	2 U	2 U	2 U	
Acetone	R	R	R	R	R	
Carbon Disulfide	1 U	1 U	3	1 U	1 U	
1,1-Dichloroethene	1 U	1 U	1 U	1 U	1 U	
1,1-Dichloroethane	1 U	1 U	1 U	1 U	1 U	
cis-1,2-Dichloroethene	0.9 J	1 U	1 U	1 U	1 U	
trans-1,2-Dichloroethene	1 U	1 U	1 U	1 U	l U	
Chloroform	1 U	1 U	1 U	1 U	1 U	
1,2-Dichloroethane	1 U	1 U	1 U	1 U	1 U	
2-Butanone	R	R	R	R	R	
Bromochloromethane	1 U	1 U	1 U	1 U	1 U	
1,1,1-Trichloroethane	1 U	1 U	1 U	1 U	1 U	
Carbon Tetrachloride	1 U	1 U	1 U	1 U	1 U	
Bromodichloromethane	1 U	1 U	1 U	1 U	I U	
1,2-Dichloropropane	1 U	1 U	1 U	1 U	1 U	
cis-1,3-Dichloropropene	1 U	1 U	1 U	1 U	1 U	
Trichloroethene	1 U	1 U	1 U	1 U	1 U	
Dibromochloromethane	1 U	1 U	1 U	1 U	1 U	
1,1,2-Trichloroethane	1 U	1 U	1 U	1 U	1 U	
Benzene	1 U	1 U	1 U	1 U	1 U	
trans-1,3-Dichloropropene	1 U	1 U	1 U	1 U	1 U	
Bromoform	1 U	. 1 U	1 U	1 U	1 U	
4-Methyl-2-pentanone	5 U	5 U	5 U	5 U	5 U	
2-Hexanone	R	R	R	R	R	
Tetrachloroethene	1 U	1 U	1 U	1 U	1 U	

TABLE B-13
Volatile Organic Compounds - Quality Assurance/Quality Control (2000/2001)
Little Valley Superfund Site
Page 2 of 6

Area Location	QA/QC Sample Field Blank	QA/QC Sample Trip Blank	QA/QC Sample Field Blank	QA/QC Sample Trip Blank	QA/QC Sample Field Blank
TtEC Sample I.D. Sampling Date Units	LV-BIA-FB010401 01/04/2001 ug/L	LV-BIA-TB010401 01/04/2001 ug/L	LV-BIA-FB010801 01/08/2001 ug/L	LV-BIA-TB010801 01/08/2001 ug/L	LV-BIA-FB010901 01/09/2001 ug/L
1,1,2,2-Tetrachloroethane	1 U	1 U	1 U	1 U	l U
1,2-Dibromoethane	1 U	1 U	1 U	1 U	1 U
Toluene	0.9 J	1 U	1 U	1 U	1 U
Chlorobenzene	1 U	1 U	1 U	1 U	1 U
Ethylbenzene	1 U	1 U	1 U	1 U	l U
Styrene	1 U	1 U	1 U	1 U	l U
Xylenes (total)	1 U	1 U	1 U	1 U	l IU
1,3-Dichlorobenzene	1 U	1 U	1 U	1 U	1 U
1,4-Dichlorobenzene	1 U	1 U	1 U	1 U	1 U
1,2-Dichlorobenzene	1 U	1 U	1 U	1 U	1 U
1,2-Dibromo-3-chloropropane	R	R	R	R	R
1,2,4-Trichlorobenzene	1 U	1 U	1 U	1 U	1 U
Total Volatile TICs	2 J				3 J

TABLE B-13
Volatile Organic Compounds - Quality Assurance/Quality Control (2000/2001)
Little Valley Superfund Site
Page 3 of 6

Area	QA/QC Sample				
Location	Trip Blank	Field Blank	Trip Blank	Field Blank	Trip Blank
					_
TtEC Sample I.D.	LV-BIA-TB010901	LV-BIA-FB011001	LV-BIA-TB011001	LV-BIA-FB011101	LV-BIA-TB011101
Sampling Date	01/09/2001	01/10/2001	01/10/2001	01/11/2001	01/11/2001
Units	ug/L	ug/L	ug/L	ug/L	ug/L
Chloromethane	1 U	1 U	, 1 U	1 U	1 U
Bromomethane	1 U	1 U	1 U	1 U	1 U
Vinyl Chloride	1 U	1 U	1 U	1 U	1 U
Chloroethane	1 U	1 U	1 U	1 U	1 U
Methylene Chloride	2 U	2 U	2 U	2 U	2 U
Acetone	R	R	R	R	R
Carbon Disulfide	1 U	1 U	1 U	1 U	1 U
1,1-Dichloroethene	1 U	1 U	1 U	1 U	1 U
1,1-Dichloroethane	1 U	1 U	1 U	1 U	1 U
cis-1,2-Dichloroethene	1 U	1 U	1 U	1 U	1 U
trans-1,2-Dichloroethene	1 U	1 U	1 U	1 U	1 U
Chloroform	1 U	1 U	1 U	1 U	1 U
1,2-Dichloroethane	1 U	1 U .	1 U	1 U	1 U
2-Butanone	R	R	R	R	R
Bromochloromethane	1 U	1 U	1 U	1 U	1 U
1,1,1-Trichloroethane	1 U	1 U	1 U	1 U	1 U
Carbon Tetrachloride	1 U	1 U	1 U	1 U	1 U
Bromodichloromethane	1 U	1 U	1 U	1 U	1 U
1,2-Dichloropropane	1 U	1 U	1 U	1 U	ΙU
cis-1,3-Dichloropropene	1 U	1 U	1 U	1 U .	1 U
Trichloroethene	1 U	1 U	1 U	1 U	1 U
Dibromochloromethane	1 U	١U	1 U	1 U	1 U
1,1,2-Trichloroethane	1 U	1 U	1 U	1 U	1 U
Benzene	1 U	1 U	1 U	1 U	i U
trans-1,3-Dichloropropene	1 U	1 U	ΙU	1 U	1 U
Bromoform	1 U	1 U	l U	I U	1 U
4-Methyl-2-pentanone	5 U	5 U	5 U	5 U	5 U
2-Hexanone	R	R	R	R	R
Tetrachloroethene	1 U	1 U	1 U	l U	1 U

TABLE B-13
Volatile Organic Compounds - Quality Assurance/Quality Control (2000/2001)
Little Valley Superfund Site
Page 4 of 6

Area	QA/QC Sample	QA/QC Sample	QA/QC Sample	QA/QC Sample	QA/QC Sample
Location	Trip Blank	Field Blank	Field Blank Trip Blank		Trip Blank
Tipod III	T. T. D. T. (777)				
TtEC Sample I.D.	LV-BIA-TB010901	LV-BIA-FB011001	LV-BIA-TB011001	LV-BIA-FB011101	LV-BIA-TB011101
Sampling Date	01/09/2001	01/10/2001	01/10/2001	01/11/2001	01/11/2001
Units	ug/L	ug/L	ug/L	ug/L	ug/L
1,1,2,2-Tetrachloroethane	1 U	1 U	1 U	1 U	1 U
1,2-Dibromoethane	1 U	1 U	1 U	1 U	1 U
Toluene	1 U	1 U	1 U	1 U	1 U
Chlorobenzene	1 U	1 U	1 U	1 U	1 U
Ethylbenzene	1 U	1 U	1 U	1 U	1 U
Styrene	1 U	1 U	1 U	1 U	1 U
Xylenes (total)	1 U	1 U	1 U	1 U	1 U
1,3-Dichlorobenzene	1 U	1 U	1 U	1 U	1 U
1,4-Dichlorobenzene	1 U	1 U	1 U	1 U	1 U
1,2-Dichlorobenzene	1 U	1 U	1 U	1 U	1 U
1,2-Dibromo-3-chloropropane	R	R	R	R	R
1,2,4-Trichlorobenzene	1 U	1 U	1 U	1 U	1 U
Total Volatile TICs	4 J	3 Ј	4 J	3 Ј	5 J

TABLE B-13
Volatile Organic Compounds - Quality Assurance/Quality Control (2000/2001)
Little Valley Superfund Site
Page 5 of 6

Area	QA/QC Sample	QA/QC Sample	QA/QC Sample	QA/QC Sample
Location	Field Blank	Trip Blank	DI Water Blank	Trip Blank
TtEC Sample I.D.	LV-BIA-FB011201	LV-BIA-TB011201	LV-BIA-DI010501	LV-BIA-TB121100
Sampling Date	01/12/2001	01/12/2001	01/05/2001	12/11/2000
Units	ug/L	ug/L	ug/L	ug/L
Chloromethane	1 U	1 U	1 U	1 U
Bromomethane	1 U	1 U	1 U	1 U
Vinyl Chloride	1 U	· 1 U	1 U	1 U
Chloroethane	1 U	. 1 U	1 U	1 U
Methylene Chloride	2 U	2 U	2 U	2 U
Acetone	R	R	R	R
Carbon Disulfide	1 U	1 U	1 U	1 U
1,1-Dichloroethene	1 U	1 U	1 U	1 U
1,1-Dichloroethane	1 U	1 U	1 U `	1 U
cis-1,2-Dichloroethene	1 U	1 U	1 U	1 U
trans-1,2-Dichloroethene	1 U	1 U	1 U	1 U
Chloroform	1 U	1 U	1 U	1 U
1,2-Dichloroethane	1 U	1 U	1 U	1 U
2-Butanone	R	R	R	R
Bromochloromethane	1 U	1 U	1 U	1 U
1,1,1-Trichloroethane	1 U	1 U	1 U	1 U
Carbon Tetrachloride	1 U	1 U	1 U	1 U
Bromodichloromethane	1 U	1 U	1 U	1 U
1,2-Dichloropropane	1 U	1 U	1 U	1 U
cis-1,3-Dichloropropene	1 U	1 U	1 U	1 U
Trichloroethene	1 U	1 U	1 U	1 U
Dibromochloromethane	1 U	1 U	1 U	1 U
1,1,2-Trichloroethane	1 U	1 U	1 U	1 U
Benzene	1 U	1 U	1 U	i U
trans-1,3-Dichloropropene	1 U	1 U	1 U	i U
Bromoform	1 U	1 U	1 U	1 U
4-Methyl-2-pentanone	5 U	5 U	5 U	5 UJ
2-Hexanone	R	R	R	R
Tetrachloroethene	1 U	1 U	1 Ü	1 U

TABLE B-13
Volatile Organic Compounds - Quality Assurance/Quality Control (2000/2001)
Little Valley Superfund Site
Page 6 of 6

Area	QA/QC Sample	QA/QC Sample	QA/QC Sample	QA/QC Sample
Location	Field Blank	Trip Blank	DI Water Blank	Trip Blank
TtEC Sample I.D.	LV-BIA-FB011201	LV-BIA-TB011201	LV-BIA-DI010501	LV-BIA-TB121100
Sampling Date	01/12/2001	01/12/2001	01/05/2001	12/11/2000
Units	ug/L	ug/L	ug/L	ug/L
1,1,2,2-Tetrachloroethane	1 U	1 U	1 U	1 U
1,2-Dibromoethane	1 U	1 U	1 U	1 U
Toluene	1 U	1 U	1 U	1 U
Chlorobenzene	1 U	1 U	. I U	1 U
Ethylbenzene	1 U	1 U	1 U	1 U
Styrene	1 U	1 U	1 U	1 U
Xylenes (total)	1 U	1 U	1 U	1 U
1,3-Dichlorobenzene	1 U	1 U	1 U	1 U
1,4-Dichlorobenzene	1 U	1 U	1 U	1 U
1,2-Dichlorobenzene	1 U	1 U	1 U	1 U
1,2-Dibromo-3-chloropropane	R	R	R	1 U
1,2,4-Trichlorobenzene	1 U	1 U	1 U	1 U
Total Volatile TICs	3 J	4 J	R	

TABLE B-14
Volatile Organic Compounds - Quality Assurance/Quality Control (2002/2003)
Little Valley Superfund Site
Page 1 of 36

Area	QA/QC Sample	QA/QC Sample	QA/QC Sample	QA/QC Sample	QA/QC Sample	QA/QC Sample
Location	DI Water Blank	Trip Blank	Field Blank	Trip Blank	Trip Blank	Trip Blank
TtEC Sample I.D.	LV-DI-043002	LV-TB-GW-043002	LV-FB-GW-043002	LV-TB-GW-090803	LV-TB-GW-090903	LV-TB-GW-091003
Sampling Date	04/30/2002	04/30/2002	04/30/2002	09/08/2003	09/09/2003	09/10/2003
Units	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
1,1,1,2-Tetrachloroethane	NA	NA	NA	NA	NA	NA
1,1,1-Trichloroethane	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,1,2,2-Tetrachloroethane	0.5 U	. 0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,1,2-Trichloro-1,2,2-trifluoroethane	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,1,2-Trichloroethane	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,1-Dichloroethane	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,1-Dichloroethene	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,1-Dichloropropene	NA	NA	NA	NA	NA	NA
1,2,3-Trichlorobenzene	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,2,3-Trichloropropane	NA	NA	NA	NA	NA	NA
1,2,4-Trichlorobenzene	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,2,4-Trimethylbenzene	NA	NA	NA	NA	NA	NA
1,2-Dibromo-3-chloropropane	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,2-Dibromoethane (EDB)	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,2-Dichlorobenzene	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,2-Dichloroethane	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,2-Dichloropropane	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,3,5-Trimethylbenzene	NA	NA	NA	NA	NA	NA
1,3-Dichlorobenzene	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,3-Dichloropropane	NA	NA	NA	NA	NA	NA
1,4-Dichlorobenzene	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	- 0.5 U
2,2-Dichloropropane	NA	NA	NA	NA	NA	NA
2-Butanone	5 U	5 U	5 U	0.5 U	0.5 U	0.5 U
2-Chlorotoluene	NA	NA	NA	NA	NA	NA
2-Hexanone	5 U	5 U	5 U	0.5 U	0.5 U	0.5 U
4-Chlorotoluene	0.5 U	0.5 UJ	0.5 UJ	NA	NA	NA
4-Methyl-2-pentanone	NA	NA	NA	0.5 U	0.5 U	0.5 U
Acetone	5 U	5 U	5 U	2.5 U	2.5 U	2.5 U
Benzene	5 U	3.7 J	4.5 J	0.5 U	0.5 U	0.5 U

TABLE B-14
Volatile Organic Compounds - Quality Assurance/Quality Control (2002/2003)
Little Valley Superfund Site
Page 2 of 36

Area	QA/QC Sample	QA/QC Sample	QA/QC Sample	QA/QC Sample	QA/QC Sample	QA/QC Sample
Location	DI Water Blank	Trip Blank	Field Blank	Trip Blank	Trip Blank	Trip Blank
					_	-
TtEC Sample I.D.	LV-DI-043002	LV-TB-GW-043002	LV-FB-GW-043002	LV-TB-GW-090803	LV-TB-GW-090903	LV-TB-GW-091003
Sampling Date	04/30/2002	04/30/2002	04/30/2002	09/08/2003	09/09/2003	09/10/2003
Units	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
					 	
Benzene, dimethyl-	0.5 U	0.5 U	0.5 U	NA	NA	NA
Bromobenzene	NA	NA	NA	NA	NA	NA
Bromochloromethane	NA	NA	NA	0.5 U	0.5 U	0.5 U
Bromodichloromethane	0.5 U	0.5 U	0.5 U	NA	NA	NA
Bromoform	NA	NA	NA	0.5 U	0.5 U	0.5 U
Bromomethane	0.5 U	0.3 J	0.24 J	0.5 U	0.5 U	0.5 U
Carbon disulfide	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Carbon tetrachloride	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Chlorobenzene	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Chloroethane	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Chloroform	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Chloromethane	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
cis-1,2-Dichloroethene	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
cis-1,3-Dichloropropene	0.5 U	0.5 UJ	0.5 UJ	0.5 U	0.5 U	0.5 U
Cyclohexane	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Dibromochloromethane	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Dibromomethane	0.5 U	0.5 U	0.5 U	NA	NA	NA
Dichlorodifluoromethane	NA	NA	NA	0.5 U	0.5 U	0.5 U
Ethylbenzene	0.5 UJ	0.5 UJ	0.5 UJ	0.5 U	0.5 U	0.5 U
Hexachlorobutadiene	0.5 U	0.5 U	0.5 U	NA	NA	NA
Isopropanol	NA	NA	NA	NA	NA	NA
Isopropylbenzene	NA	NA	NA	0.5 U	0.5 U	0.5 U
m/p-xylene	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Methyl Acetate	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Methyl tert-butyl ether	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Methylcyclohexane	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Methylene chloride	0.5 U	0.5 U	0.5 U	0.5 U	1.2	1.3
Naphthalene	0.5 U	0.5 U	0.5 U	NA	NA	NA
n-Butylbenzene	NA	NA	NA	NA	NA	NA

TABLE B-14
Volatile Organic Compounds - Quality Assurance/Quality Control (2002/2003)
Little Valley Superfund Site
Page 3 of 36

Area	QA/QC Sample	QA/QC Sample	QA/QC Sample	QA/QC Sample	QA/QC Sample	QA/QC Sample
Location	DI Water Blank	Trip Blank	Field Blank	Trip Blank	Trip Blank	Trip Blank
				Î	•	•
TtEC Sample I.D.	LV-DI-043002	LV-TB-GW-043002	LV-FB-GW-043002	LV-TB-GW-090803	LV-TB-GW-090903	LV-TB-GW-091003
Sampling Date	04/30/2002	04/30/2002	04/30/2002	09/08/2003	09/09/2003	09/10/2003
Units	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
					T	
n-Propylbenzene	NA	NA	NA	NA	NA	NA
o-Xylene	NA	NA	NA	0.5 U	0.5 U	0.5 U
p-Isopropyl toluene	0.5 U	0.5 U	0.5 U	NA	NA	NA
sec-Butylbenzene	NA	NA	NA	NA	NA	NA
Styrene	NA	NA	NA	0.5 U	0.5 U	0.5 U
tert-Butylbenzene	0.5 U	0.5 U	0.5 U	NA	NA	NA
Tetrachloroethene	NA	NA	NA	0.5 U	0.5 U	0.5 U
Toluene	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
trans-1,2-Dichloroethene	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
trans-1,3-Dichloropropene	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Trichloroethene	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Trichlorofluoromethane	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Vinyl chloride	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Total Volatile TICs	4. 60	~ ~				~-

TABLE B-14
Volatile Organic Compounds - Quality Assurance/Quality Control (2002/2003)
Little Valley Superfund Site
Page 4 of 36

Area	QA/QC Sample	QA/QC Sample	QA/QC Sample	QA/QC Sample	QA/QC Sample	QA/QC Sample		
Location	Field Blank	Trip Blank	Trip Blank	Field Blank	Trip Blank	Trip Blank		
			•		•			
TtEC Sample I.D.	LV-FB-GW-09150	LV-TB-091503	LV-TB-091703	LV-FB-GW-09180	LV-TB-091803	LV-TB-091903		
Sampling Date	09/15/2003	09/15/2003	09/17/2003	09/18/2003	09/18/2003	09/19/2003		
Units	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L		
1,1,1,2-Tetrachloroethane	NA	NA	NA	NA	NA	NA _.		
1,1,1-Trichloroethane	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U		
1,1,2,2-Tetrachloroethane	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U		
1,1,2-Trichloro-1,2,2-trifluoroethane	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U		
1,1,2-Trichloroethane	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U		
1,1-Dichloroethane	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U		
1,1-Dichloroethene	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U		
1,1-Dichloropropene	NA	NA	NA	NA	NA	NA		
1,2,3-Trichlorobenzene	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U		
1,2,3-Trichloropropane	NA	NA	NA	NA	NA	NA		
1,2,4-Trichlorobenzene	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U		
1,2,4-Trimethylbenzene	NA	NA	NA	NA	NA	NA		
1,2-Dibromo-3-chloropropane	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U		
1,2-Dibromoethane (EDB)	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U		
1,2-Dichlorobenzene	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U		
1,2-Dichloroethane	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U		
1,2-Dichloropropane	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U		
1,3,5-Trimethylbenzene	NA	NA	NA	NA	NA	NA		
1,3-Dichlorobenzene	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U		
1,3-Dichloropropane	NA	NA	NA	NA	NA	NA		
1,4-Dichlorobenzene	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U		
2,2-Dichloropropane	NA	NA	NA	NA	NA	NA		
2-Butanone	5 U	5 U	0.5 U	5 U	5 U	0.5 U		
2-Chlorotoluene	NA	NA	NA	NA	NA	NA		
2-Hexanone	5 U	5 U	0.5 U	5 U	5 U	0.5 U		
4-Chlorotoluene	NA	NA	NA	NA	NA	NA		
4-Methyl-2-pentanone	5 U	5 U	0.5 U	5 U	5 U	0.5 U		
Acetone	5.1	5 U	2.5 U	5 U	5 U	2.5 U		
Benzene	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U		

TABLE B-14
Volatile Organic Compounds - Quality Assurance/Quality Control (2002/2003)
Little Valley Superfund Site
Page 5 of 36

Area	QA/QC Sample	QA/QC Sample	QA/QC Sample	QA/QC Sample	QA/QC Sample	QA/QC Sample		
Location	Field Blank	Trip Blank	Trip Blank	Field Blank	Trip Blank	Trip Blank		
		1	*					
TtEC Sample I.D.	LV-FB-GW-09150	LV-TB-091503	LV-TB-091703	LV-FB-GW-09180	LV-TB-091803	LV-TB-091903		
Sampling Date	09/15/2003	09/15/2003	09/17/2003	09/18/2003	09/18/2003	09/19/2003		
Units	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L		
Benzene, dimethyl-	0.5 U	0.5 U	NA	0.5 U	0.5 U	NA		
Bromobenzene	NA	NA	NA	NA	NA	NA		
Bromochloromethane	0.5 U	0.5 U	NA	0.5 U	0.5 U	NA		
Bromodichloromethane	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U		
Bromoform	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U		
Bromomethane	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U		
Carbon disulfide	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U		
Carbon tetrachloride	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U		
Chlorobenzene	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U		
Chloroethane	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U		
Chloroform	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U		
Chloromethane	0.5 U	0.5 U	0.5 U	0.17	0.5 U	0.5 U		
cis-1,2-Dichloroethene	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U		
cis-1,3-Dichloropropene	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U		
Cyclohexane	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U		
Dibromochloromethane	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U		
Dibromomethane	NA	NA	NA	NA	NA	NA		
Dichlorodifluoromethane	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U		
Ethylbenzene	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U		
Hexachlorobutadiene	NA	NA	NA	NA	NA	NA		
Isopropanol	NA	NA	NA	NA	NA	NA		
Isopropylbenzene	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U		
m/p-xylene	NA	NA	0.5 U	NA	NA	0.5 U		
Methyl Acetate	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U		
Methyl tert-butyl ether	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U		
Methylcyclohexane	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U		
Methylene chloride	0.23	0.5 U	0.87	0.5 U	0.5 U	0.69		
Naphthalene	NA	NA	NA	NA .	NA	NA		
n-Butylbenzene	NA	NA	NA	NA	NA	NA		

TABLE B-14
Volatile Organic Compounds - Quality Assurance/Quality Control (2002/2003)
Little Valley Superfund Site
Page 6 of 36

Area	QA/QC Sample	QA/QC Sample	QA/QC Sample	QA/QC Sample	QA/QC Sample	QA/QC Sample
Location	Field Blank	Trip Blank	Trip Blank	Field Blank	Trip Blank	Trip Blank
						-
TtEC Sample I.D.	LV-FB-GW-09150	LV-TB-091503	LV-TB-091703	LV-FB-GW-09180	LV-TB-091803	LV-TB-091903
Sampling Date	09/15/2003	09/15/2003	09/17/2003	09/18/2003	09/18/2003	09/19/2003
Units	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
n-Propylbenzene	NA	NA	NA	NA	NA	NA
o-Xylene	NA	NA	0.5 U	NA	NA	0.5 U
p-Isopropyl toluene	NA	NA	NA	NA	NA	NA
sec-Butylbenzene	NA	NA	NA	NA	NA	NA
Styrene	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
tert-Butylbenzene	NA	NA	NA	NA	NA	NA
Tetrachloroethene	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Toluene	0.5 U	0.18	0.5 U	0.5 U	0.5 U	0.5 U
trans-1,2-Dichloroethene	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
trans-1,3-Dichloropropene	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Trichloroethene	0.5 U	0.5 U	0.5 U	0.22	0.23	0.5 U
Trichlorofluoromethane	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Vinyl chloride	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Total Volatile TICs						

TABLE B-14
Volatile Organic Compounds - Quality Assurance/Quality Control (2002/2003)
Little Valley Superfund Site
Page 7 of 36

Area	QA/QC Sample	QA/QC Sample	QA/QC Sample	QA/QC Sample	QA/QC Sample	QA/QC Sample	
Location	Trip Blank	Field Blank	Trip Blank	Field Blank	Trip Blank	Field Blank	
200000	Trip Diam.	Tion Blank	Trip Diank	I ICIG Diank	Trip Diank	I icid Diank	
TtEC Sample I.D.	LV-TB-CT-092203	LV-FB-CLP-GW-0	LV-TB-CLP-0922	LV-FB-GW-09230	LV-TB-092303	LV-FB-GW-CLP-0	
Sampling Date	09/22/2003	09/22/2003	09/22/2003	09/23/2003	09/23/2003	09/24/2003	
Units	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	
1,1,1,2-Tetrachloroethane	NA	NA	NA	NA	NA	NA	
1,1,1-Trichloroethane	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	
1,1,2,2-Tetrachloroethane	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	
1,1,2-Trichloro-1,2,2-trifluoroethane	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	
1,1,2-Trichloroethane	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	
1,1-Dichloroethane	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	
1,1-Dichloroethene	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	
1,1-Dichloropropene	NA	NA	NA	NA	NA	NA	
1,2,3-Trichlorobenzene	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	
1,2,3-Trichloropropane	NA	NA	NA	NA	NA	NA	
1,2,4-Trichlorobenzene	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	
1,2,4-Trimethylbenzene	NA	NA	NA	NA	NA	NA	
1,2-Dibromo-3-chloropropane	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	
1,2-Dibromoethane (EDB)	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	
1,2-Dichlorobenzene	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	
1,2-Dichloroethane	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	
1,2-Dichloropropane	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	
1,3,5-Trimethylbenzene	NA	NA	NA	NA	NA	NA	
1,3-Dichlorobenzene	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	
1,3-Dichloropropane	NA	NA	NA	NA	NA	NA	
1,4-Dichlorobenzene	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	
2,2-Dichloropropane	NA	NA	NA	NA	NA	NA	
2-Butanone	2.5 U	5 U	5 U	5 U	5 U	5 U	
2-Chlorotoluene	NA	NA	NA	NA	NA	NA	
2-Hexanone	2.5 U	5 U	5 U	5 U	5 U	5 U	
4-Chlorotoluene	NA	NA	NA	NA	NA	NA	
4-Methyl-2-pentanone	2.5 U	5 U	5 U	5 U	5 U	5 U	
Acetone	15	5 U	5 U	5 U	5 U	5 U	
Benzene	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	

TABLE B-14
Volatile Organic Compounds - Quality Assurance/Quality Control (2002/2003)
Little Valley Superfund Site
Page 8 of 36

Area	QA/QC Sample	QA/QC Sample	QA/QC Sample	QA/QC Sample	QA/QC Sample	QA/QC Sample
Location	Trip Blank	Field Blank	Trip Blank	Field Blank	Trip Blank	Field Blank
	Tip Blank	Tield Blank	Trip Blank	I icid Dialik	ттр Біанк	Picid Dialik
TtEC Sample I.D.	LV-TB-CT-092203	LV-FB-CLP-GW-0	LV-TB-CLP-0922	LV-FB-GW-09230	LV-TB-092303	LV-FB-GW-CLP-0
Sampling Date	09/22/2003	09/22/2003	09/22/2003	09/23/2003	09/23/2003	09/24/2003
Units	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
			Σ		-8-	1
Benzene, dimethyl-	NA	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Bromobenzene	NA	NA	NA	NA	NA	NA
Bromochloromethane	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Bromodichloromethane	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Bromoform	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Bromomethane	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Carbon disulfide	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Carbon tetrachloride	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Chlorobenzene	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Chloroethane	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Chloroform	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Chloromethane	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
cis-1,2-Dichloroethene	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
cis-1,3-Dichloropropene	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Cyclohexane	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Dibromochloromethane	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Dibromomethane	NA	NA	NA	NA	NA	NA
Dichlorodifluoromethane	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Ethylbenzene	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Hexachlorobutadiene	NA	NA	NA	NA	NA	NA
Isopropanol	NA	NA	NA	NA	NA	NA
Isopropylbenzene	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
m/p-xylene	0.5 U	NA	NA	NA	NA	NA
Methyl Acetate	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Methyl tert-butyl ether	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Methylcyclohexane	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Methylene chloride	0.6	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Naphthalene	NA	NA	NA	NA	NA	NA
n-Butylbenzene	NA	NA	NA	NA	NA	NA

TABLE B-14
Volatile Organic Compounds - Quality Assurance/Quality Control (2002/2003)
Little Valley Superfund Site
Page 9 of 36

Area	QA/QC Sample	QA/QC Sample	QA/QC Sample	QA/QC Sample	QA/QC Sample	QA/QC Sample
Location	Trip Blank	Field Blank	Trip Blank	Field Blank	Trip Blank	Field Blank
TtEC Sample I.D.	LV-TB-CT-092203	LV-FB-CLP-GW-0	LV-TB-CLP-0922	LV-FB-GW-09230	LV-TB-092303	LV-FB-GW-CLP-0
Sampling Date	09/22/2003	09/22/2003	09/22/2003	09/23/2003	09/23/2003	09/24/2003
Units	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
n-Propylbenzene	NA	NA	NA	NA	NA	NA
o-Xylene	0.5 U	NA	NA	NA	NA	NA
p-Isopropyl toluene	NA	NA	NA	NA	NA	NA
sec-Butylbenzene	NA	NA	NA	NA	NA	NA
Styrene	0.5 U	0.5 U	. 0.5 U	0.5 U	0.5 U	0.5 U
tert-Butylbenzene	NA	NA	NA NA	NA	NA	NA
Tetrachloroethene	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Toluene	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
trans-1,2-Dichloroethene	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
trans-1,3-Dichloropropene	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Trichloroethene	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Trichlorofluoromethane	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Vinyl chloride	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Total Volatile TICs						

TABLE B-14
Volatile Organic Compounds - Quality Assurance/Quality Control (2002/2003)
Little Valley Superfund Site
Page 10 of 36

Area	QA/QC Sample	QA/QC Sample	QA/QC Sample	QA/QC Sample	QA/QC Sample	QA/QC Sample		
Location	Trip Blank	Trip Blank	Trip Blank	Field Blank	Trip Blank	Trip Blank		
		"	-		•	•		
TtEC Sample I.D.	LV-TB-CLP-0924	LV-TB-CT-092403	LV-TB-092503	LV-FB-GW-CLP-0	LV-TB-CLP-0926	LV-TB-CT-092603		
Sampling Date	09/24/2003	09/24/2003	09/25/2003	09/26/2003	09/26/2003	09/26/2003		
Units	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L		
1,1,1,2-Tetrachloroethane	NA	NA	NA	NA	NA	NA		
1,1,1-Trichloroethane	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U		
1,1,2,2-Tetrachloroethane	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U		
1,1,2-Trichloro-1,2,2-trifluoroethane	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U		
1,1,2-Trichloroethane	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U		
1,1-Dichloroethane	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U		
1,1-Dichloroethene	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U		
1,1-Dichloropropene	NA	NA	NA	NA	NA	NA		
1,2,3-Trichlorobenzene	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U		
1,2,3-Trichloropropane	NA	NA	NA	NA	NA	NA		
1,2,4-Trichlorobenzene	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U		
1,2,4-Trimethylbenzene	NA	NA	NA	NA	NA	NA		
1,2-Dibromo-3-chloropropane	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U		
1,2-Dibromoethane (EDB)	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U		
1,2-Dichlorobenzene	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U		
1,2-Dichloroethane	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U		
1,2-Dichloropropane	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U		
1,3,5-Trimethylbenzene	NA	NA	NA	NA	NA	NA		
1,3-Dichlorobenzene	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U		
1,3-Dichloropropane	NA	NA	NA	NA	NA	NA		
1,4-Dichlorobenzene	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U		
2,2-Dichloropropane	NA	NA	NA	NA	NA	NA		
2-Butanone	5 U	2.5 U	2.5 U	5 U	5 U	2.5 U		
2-Chlorotoluene	NA	NA	NA .	NA	NA	NA		
2-Hexanone	5 U	2.5 U	2.5 U	5 U	5 U	2.5 U		
4-Chlorotoluene	NA	NA	NA	NA	NA	NA		
4-Methyl-2-pentanone	5 U	2.5 U	2.5 U	5 U	5 U	2.5 U		
Acetone	5 U	2.5 U	2.5 U	5 U	5 U	2.5 U		
Benzene	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U		

TABLE B-14
Volatile Organic Compounds - Quality Assurance/Quality Control (2002/2003)
Little Valley Superfund Site
Page 11 of 36

Area	QA/QC Sample	QA/QC Sample	QA/QC Sample	QA/QC Sample	QA/QC Sample	QA/QC Sample
Location	Trip Blank	Trip Blank	Trip Blank	Field Blank	Trip Blank	Trip Blank
	•	•	•		•	-
TtEC Sample I.D.	LV-TB-CLP-0924	LV-TB-CT-092403	LV-TB-092503	LV-FB-GW-CLP-0	LV-TB-CLP-0926	LV-TB-CT-092603
Sampling Date	09/24/2003	09/24/2003	09/25/2003	09/26/2003	09/26/2003	09/26/2003
Units	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
Benzene, dimethyl-	0.5 U	NA	NA	0.5 U	0.5 U	NA
Bromobenzene	NA	NA	NA	NA	NA	NA
Bromochloromethane	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Bromodichloromethane	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Bromoform	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Bromomethane	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Carbon disulfide	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Carbon tetrachloride	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Chlorobenzene	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Chloroethane	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Chloroform	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Chloromethane	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
cis-1,2-Dichloroethene	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
cis-1,3-Dichloropropene	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Cyclohexane	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Dibromochloromethane	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Dibromomethane	NA	NA	NA	NA	NA	NA
Dichlorodifluoromethane	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Ethylbenzene	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Hexachlorobutadiene	NA	NA	NA	NA	NA	NA
Isopropanol	NA	NA	NA	NA	NA	NA
Isopropylbenzene	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
m/p-xylene	NA	0.5 U	0.5 U	NA	NA	0.5 U
Methyl Acetate	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Methyl tert-butyl ether	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Methylcyclohexane	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Methylene chloride	0.5 U	1	0.7	0.5 U	0.5 U	1
Naphthalene	NA	NA	NA	NA	NA	NA
n-Butylbenzene	NA	NA	NA	NA	NA	NA

TABLE B-14
Volatile Organic Compounds - Quality Assurance/Quality Control (2002/2003)
Little Valley Superfund Site
Page 12 of 36

Area	QA/QC Sample	QA/QC Sample	QA/QC Sample	QA/QC Sample	QA/QC Sample	QA/QC Sample
Location	Trip Blank	Trip Blank	Trip Blank	Field Blank	Trip Blank	Trip Blank
TtEC Sample I.D.	LV-TB-CLP-0924	LV-TB-CT-092403	LV-TB-092503	LV-FB-GW-CLP-0	LV-TB-CLP-0926	LV-TB-CT-092603
Sampling Date	09/24/2003	09/24/2003	09/25/2003	09/26/2003	09/26/2003	09/26/2003
Units	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
n-Propylbenzene	NA	NA	NA	NA	NA	NA
o-Xylene	NA	0.5 U	0.5 U	NA	NA	0.5 U
p-Isopropyl toluene	NA	NA	NA	NA	NA	NA
sec-Butylbenzene	NA	NA	NA	NA	NA	NA
Styrene	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
tert-Butylbenzene	NA	NA	NA	NA	NA	NA
Tetrachloroethene	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Toluene	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
trans-1,2-Dichloroethene	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
trans-1,3-Dichloropropene	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Trichloroethene	0.5 U	0.5 U	0:5 U	0.5 U	0.5 U	0.5 U
Trichlorofluoromethane	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Vinyl chloride	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Total Volatile TICs		Ann anh				

TABLE B-14
Volatile Organic Compounds - Quality Assurance/Quality Control (2002/2003)
Little Valley Superfund Site
Page 13 of 36

Area	QA/QC Sample								
Location	Field Blank	Trip Blank	Trip Blank	Field Blank	Trip Blank	Field Blank			
		•	1		1				
TtEC Sample I.D.	LV-FB-GW-CLP-09	LV-TB-CLP-09290	LV-TB-CT-093003	LV-FB-GW-CLP-09	LV-TB-CLP-09300	LV-FB-GW-CLP-10			
Sampling Date	09/29/2003	09/29/2003	09/30/2003	09/30/2003	09/30/2003	10/01/2003			
Units	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L			
1,1,1,2-Tetrachloroethane	NA	NA	NA	NA	NA	NA			
1,1,1-Trichloroethane	0.5 U								
1,1,2,2-Tetrachloroethane	0.5 U								
1,1,2-Trichloro-1,2,2-trifluoroethane	0.5 U								
1,1,2-Trichloroethane	0.5 U								
1,1-Dichloroethane	0.5 U								
1,1-Dichloroethene	0.5 U								
1,1-Dichloropropene	NA	NA	NA	NA	NA	NA			
1,2,3-Trichlorobenzene	0.5 U								
1,2,3-Trichloropropane	NA	NA	NA	NA	NA	NA			
1,2,4-Trichlorobenzene	0.5 U								
1,2,4-Trimethylbenzene	NA	NA	NA	NA	NA	NA			
1,2-Dibromo-3-chloropropane	0.5 U								
1,2-Dibromoethane (EDB)	0.5 U								
1,2-Dichlorobenzene	0.5 U								
1,2-Dichloroethane	0.5 U								
1,2-Dichloropropane	0.5 U								
1,3,5-Trimethylbenzene	NA	NA	NA	NA	NA	NA			
1,3-Dichlorobenzene	0.5 U								
1,3-Dichloropropane	NA	NA	NA	NA	NA	NA			
1,4-Dichlorobenzene	0.5 U								
2,2-Dichloropropane	NA	NA	NA	NA	NA	NA			
2-Butanone	5 U	5 U	2.5 U	5 U	5 U	5 U			
2-Chlorotoluene	NA	NA	NA	NA	NA	NA			
2-Hexanone	5 U	5 U	2.5 U	5 U	5 U	5 U			
4-Chlorotoluene	NA	NA	NA	NA	NA	NA			
4-Methyl-2-pentanone	5 U	5 U	2.5 U	5 U	5 U	5 U			
Acetone	5 U	5 U	2.5 U	5 U	5 U	5 U			
Benzene	0.5 U								

TABLE B-14
Volatile Organic Compounds - Quality Assurance/Quality Control (2002/2003)
Little Valley Superfund Site
Page 14 of 36

Area	QA/QC Sample					
Location	Field Blank	Trip Blank	Trip Blank	Field Blank	Trip Blank	Field Blank
TtEC Sample I.D.	LV-FB-GW-CLP-09	LV-TB-CLP-09290	LV-TB-CT-093003	LV-FB-GW-CLP-09	LV-TB-CLP-09300	LV-FB-GW-CLP-10
Sampling Date	09/29/2003	09/29/2003	09/30/2003	09/30/2003	09/30/2003	10/01/2003
Units	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
	•				,	
Benzene, dimethyl-	0.5 U	0.5 U	NA	0.5 U	0.5 U	0.5 U
Bromobenzene	NA	NA	NA	NA	NA	NA
Bromochloromethane	0.5 U					
Bromodichloromethane	0.5 U					
Bromoform	0.5 U					
Bromomethane	0.5 U					
Carbon disulfide	0.5 U					
Carbon tetrachloride	0.5 U					
Chlorobenzene	0.5 U					
Chloroethane	0.5 U					
Chloroform	1.1	0.5 U				
Chloromethane	0.5 U					
cis-1,2-Dichloroethene	0.5 U					
cis-1,3-Dichloropropene	0.5 U					
Cyclohexane	0.5 U					
Dibromochloromethane	0.21	0.5 U				
Dibromomethane	NA	. NA	NA	NA	NA	NA
Dichlorodifluoromethane	0.5 U					
Ethylbenzene	0.5 U					
Hexachlorobutadiene	NA	NA	NA	NA	NA	NA
Isopropanol	NA	NA	NA	NA	NA	NA
Isopropylbenzene	0.5 U					
m/p-xylene	NA	NA	0.5 U	NA	NA	NA NA
Methyl Acetate	0.5 U					
Methyl tert-butyl ether	0.5 U					
Methylcyclohexane	0.5 U					
Methylene chloride	0.67	0.98	0.5 U	0.74	0.69	0.45
Naphthalene	NA	NA	NA	NA	NA	NA
n-Butylbenzene	NA	NA	NA	NA	NA	NA

TABLE B-14
Volatile Organic Compounds - Quality Assurance/Quality Control (2002/2003)
Little Valley Superfund Site
Page 15 of 36

Area	QA/QC Sample					
Location	Field Blank	Trip Blank	Trip Blank	Field Blank	Trip Blank	Field Blank
TtEC Sample I.D.	LV-FB-GW-CLP-09	LV-TB-CLP-09290	LV-TB-CT-093003	LV-FB-GW-CLP-09	LV-TB-CLP-09300	LV-FB-GW-CLP-10
Sampling Date	09/29/2003	09/29/2003	09/30/2003	09/30/2003	09/30/2003	10/01/2003
Units	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
n-Propylbenzene	NA	NA	NA	NA	NA	NA
o-Xylene	NA	NA	0.5 U	NA	NA	NA
p-Isopropyl toluene	NA	NA	NA	NA	NA	NA
sec-Butylbenzene	NA	NA	NA	NA	NA	NA
Styrene	0.5 U					
tert-Butylbenzene	NA	NA	NA	NA	NA	NA
Tetrachloroethene	0.5 U					
Toluene	0.5 U					
trans-1,2-Dichloroethene	0.5 U					
trans-1,3-Dichloropropene	0.5 U					
Trichloroethene	0.5 U					
Trichlorofluoromethane	0.5 U					
Vinyl chloride	0.5 U					
Total Volatile TICs						

TABLE B-14
Volatile Organic Compounds - Quality Assurance/Quality Control (2002/2003)
Little Valley Superfund Site
Page 16 of 36

Area	QA/QC Sample							
Location	Trip Blank	Trip Blank	Trip Blank	Field Blank	Trip Blank	Field Blank		
·								
TtEC Sample I.D.	LV-TB-CLP-10010	LV-TB-CT-100103	LV-TB-CT-100203	LV-FB-GW-CLP-10	LV-TB-CLP-10020	LV-FB-GW-CLP-10		
Sampling Date	10/01/2003	10/01/2003	10/02/2003	10/02/2003	10/02/2003	10/06/2003		
Units	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L		
1,1,1,2-Tetrachloroethane	NA	NA	NA	NA	NA	NA		
1,1,1-Trichloroethane	0.5 U							
1,1,2,2-Tetrachloroethane	0.5 U							
1,1,2-Trichloro-1,2,2-trifluoroethane	0.5 U							
1,1,2-Trichloroethane	0.5 U							
1,1-Dichloroethane	0.5 U							
1,1-Dichloroethene	0.5 U							
1,1-Dichloropropene	NA	NA	NA	NA	NA	NA		
1,2,3-Trichlorobenzene	0.5 U							
1,2,3-Trichloropropane	NA	NA.	NA	NA	NA	NA		
1,2,4-Trichlorobenzene	0.5 U							
1,2,4-Trimethylbenzene	NA	NA	NA	NA	NA	NA		
1,2-Dibromo-3-chloropropane	0.5 U							
1,2-Dibromoethane (EDB)	0.5 U							
1,2-Dichlorobenzene	0.5 U							
1,2-Dichloroethane	0.5 U							
1,2-Dichloropropane	0.5 U							
1,3,5-Trimethylbenzene	NA	NA	NA	NA	NA	NA		
1,3-Dichlorobenzene	0.5 U							
1,3-Dichloropropane	NA	NA	NA	NA	NA	NA		
1,4-Dichlorobenzene	0.5 U							
2,2-Dichloropropane	NA	NA	NA	NA	NA	NA		
2-Butanone	5 U	2.5 U	2.5 U	5 U	5 U	5 U		
2-Chlorotoluene	NA	NA	NA	NA	NA	NA		
2-Hexanone	5 U	2.5 U	2.5 U	5 U	5 U	5 U		
4-Chlorotoluene	NA	NA	NA	NA	NA	NA		
4-Methyl-2-pentanone	5 U	2.5 U	2.5 U	5 U	- 5 U	5 U		
Acetone	5 U	2.5 U	2.5 U	5 U	5 U	5 U		
Benzene	0.5 U							

TABLE B-14
Volatile Organic Compounds - Quality Assurance/Quality Control (2002/2003)
Little Valley Superfund Site
Page 17 of 36

Area	QA/QC Sample					
Location	Trip Blank	Trip Blank	Trip Blank	Field Blank	Trip Blank	Field Blank
	-	•	•		•	
TtEC Sample I.D.	LV-TB-CLP-10010	LV-TB-CT-100103	LV-TB-CT-100203	LV-FB-GW-CLP-10	LV-TB-CLP-10020	LV-FB-GW-CLP-10
Sampling Date	10/01/2003	10/01/2003	10/02/2003	10/02/2003	10/02/2003	10/06/2003
Units	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
Benzene, dimethyl-	0.5 U	NA	NA	0.5 U	0.5 U	0.5 U
Bromobenzene	NA	NA	NA	NA	NA	NA
Bromochloromethane	0.5 U					
Bromodichloromethane	0.5 U					
Bromoform	0.5 U					
Bromomethane	0.5 U					
Carbon disulfide	0.5 U					
Carbon tetrachloride	0.5 U					
Chlorobenzene	0.5 U					
Chloroethane	0.5 U					
Chloroform	0.5 U					
Chloromethane	0.5 U					
cis-1,2-Dichloroethene	0.5 U					
cis-1,3-Dichloropropene	0.5 U					
Cyclohexane	0.5 U					
Dibromochloromethane	0.5 U					
Dibromomethane	NA	NA	NA	NA	NA	NA
Dichlorodifluoromethane	0.5 U					
Ethylbenzene	0.5 U					
Hexachlorobutadiene	NA	NA	NA	NA	NA	NA
Isopropanol	NA	NA	NA	NA	NA	NA
Isopropylbenzene	0.5 U					
m/p-xylene	NA	0.5 U	0.5 U	NA	NA	NA
Methyl Acetate	0.5 U					
Methyl tert-butyl ether	0.5 U					
Methylcyclohexane	0.5 U					
Methylene chloride	0.38	1.8	1.3	0.47	0.29	0.5 U
Naphthalene	NA	NA	NA	NA	NA	NA
n-Butylbenzene	NA	NA	NA	·NA	NA	NA

TABLE B-14
Volatile Organic Compounds - Quality Assurance/Quality Control (2002/2003)
Little Valley Superfund Site
Page 18 of 36

Area	QA/QC Sample					
Location	Trip Blank	Trip Blank	Trip Blank	Field Blank	Trip Blank	Field Blank
TtEC Sample I.D.	LV-TB-CLP-10010	LV-TB-CT-100103	LV-TB-CT-100203	LV-FB-GW-CLP-10	LV-TB-CLP-10020	LV-FB-GW-CLP-10
Sampling Date	10/01/2003	10/01/2003	10/02/2003	10/02/2003	10/02/2003	10/06/2003
Units	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
n-Propylbenzene	NA	NA	NA	NA	NA	NA
o-Xylene	NA	0.5 U	0.5 U	NA	NA	NA NA
p-Isopropyl toluene	NA	NA	NA	NA	NA	NA
sec-Butylbenzene	NA	NA	NA	NA	NA	NA
Styrene	0.5 U					
tert-Butylbenzene	NA	NA	NA	NA	NA	NA
Tetrachloroethene	0.5 U					
Toluene	0.5 U					
trans-1,2-Dichloroethene	0.5 U					
trans-1,3-Dichloropropene	0.5 U					
Trichloroethene	0.5 U					
Trichlorofluoromethane	0.5 U					
Vinyl chloride	0.5 U					
Total Volatile TICs						

TABLE B-14
Volatile Organic Compounds - Quality Assurance/Quality Control (2002/2003)
Little Valley Superfund Site
Page 19 of 36

Area	QA/QC Sample					
Location	Trip Blank	Trip Blank	Field Blank	Trip Blank	Trip Blank	Trip Blank
		•		•	•	•
TtEC Sample I.D.	LV-TB-CLP-10060	LV-TB-CT-100603	LV-FB-GW-CLP-10	LV-TB-CLP-10070	LV-TB-CT-100703	LV-TB-CT-100803
Sampling Date	10/06/2003	10/06/2003	10/07/2003	10/07/2003	10/07/2003	10/08/2003
Units	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
1,1,1,2-Tetrachloroethane	NA	NA	NA	NA	NA	NA
1,1,1-Trichloroethane	0.5 U					
1,1,2,2-Tetrachloroethane	0.5 U					
1,1,2-Trichloro-1,2,2-trifluoroethane	0.5 U					
1,1,2-Trichloroethane	0.5 U					
1,1-Dichloroethane	0.5 U					
1,1-Dichloroethene	0.5 U					
1,1-Dichloropropene	NA	NA	. NA	NA	NA	NA
1,2,3-Trichlorobenzene	0.5 U					
1,2,3-Trichloropropane	NA	NA	NA	NA	NA	NA
1,2,4-Trichlorobenzene	0.5 U					
1,2,4-Trimethylbenzene	NA	NA	NA	NA	NA	NA
1,2-Dibromo-3-chloropropane	0.5 U					
1,2-Dibromoethane (EDB)	0.5 U					
1,2-Dichlorobenzene	0.5 U					
1,2-Dichloroethane	0.5 U					
1,2-Dichloropropane	0.5 U					
1,3,5-Trimethylbenzene	NA	NA	NA	NA	NA	NA
1,3-Dichlorobenzene	0.5 U					
1,3-Dichloropropane	NA	NA	NA	NA	NA	NA
1,4-Dichlorobenzene	0.5 U					
2,2-Dichloropropane	NA	NA	NA	NA	NA	NA
2-Butanone	5 U	2.5 U	5 U	5 U	2.5 U	2.5 U
2-Chlorotoluene	NA	NA	NA	NA	NA	NA
2-Hexanone	5 U	2.5 U	5 U	5 U	2.5 U	2.5 U
4-Chlorotoluene	NA	NA	NA	NA	NA	NA
4-Methyl-2-pentanone	5 U	2.5 U	5 U	5 U	2.5 U	2.5 U
Acetone	5 U	2.5 U	5 U	5 U	2.5 U	2.5 U
Benzene	. 0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U

TABLE B-14
Volatile Organic Compounds - Quality Assurance/Quality Control (2002/2003)
Little Valley Superfund Site
Page 20 of 36

Area	QA/QC Sample					
Location	Trip Blank	Trip Blank	Field Blank	Trip Blank	Trip Blank	Trip Blank
TtEC Sample I.D.	LV-TB-CLP-10060	LV-TB-CT-100603	LV-FB-GW-CLP-10	LV-TB-CLP-10070	LV-TB-CT-100703	LV-TB-CT-100803
Sampling Date	10/06/2003	10/06/2003	10/07/2003	10/07/2003	10/07/2003	10/08/2003
Units	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
Benzene, dimethyl-	0.5 U	NA	0.5 U	0.5 U	NA	NA
Bromobenzene	NA	NA	NA	NA	NA	NA
Bromochloromethane	0.5 U	0.5 U	0.5 U	0.5 U	0,5 U	0.5 U
Bromodichloromethane	0.5 U					
Bromoform	0.5 U					
Bromomethane	0.5 U					
Carbon disulfide	0.5 U					
Carbon tetrachloride	0.5 U					
Chlorobenzene	0.5 U					
Chloroethane	0.5 U					
Chloroform	0.5 U					
Chloromethane	0.5 U					
cis-1,2-Dichloroethene	0.5 U					
cis-1,3-Dichloropropene	0.5 U					
Cyclohexane	0.5 U					
Dibromochloromethane	0.5 U					
Dibromomethane	NA	NA	NA	NA	NA	NA
Dichlorodifluoromethane	0.5 U					
Ethylbenzene	0.5 U					
Hexachlorobutadiene	NA	NA	NA	NA	NA NA	NA
Isopropanol	NA	NA	NA	NA	NA	NA
Isopropylbenzene	0.5 U					
m/p-xylene	NA	0.5 U	NA	NA	0.5 U	0.5 U
Methyl Acetate	0.5 U					
Methyl tert-butyl ether	0.5 U					
Methylcyclohexane	0.5 U					
Methylene chloride	0.5 U	1.1	0.5 U	0.5 U	1.3	1.5
Naphthalene	NA	NA	NA	NA	NA	NA
n-Butylbenzene	NA	NA	NA .	NA	NA	NA

TABLE B-14
Volatile Organic Compounds - Quality Assurance/Quality Control (2002/2003)
Little Valley Superfund Site
Page 21 of 36

Area	QA/QC Sample					
Location	Trip Blank	Trip Blank	Field Blank	Trip Blank	Trip Blank	Trip Blank
					:	
TtEC Sample I.D.	LV-TB-CLP-10060	LV-TB-CT-100603	LV-FB-GW-CLP-10	LV-TB-CLP-10070	LV-TB-CT-100703	LV-TB-CT-100803
Sampling Date	10/06/2003	10/06/2003	10/07/2003	10/07/2003	10/07/2003	10/08/2003
Units	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
n-Propylbenzene	NA	NA	NA	NA	NA	NA
o-Xylene	NA	0.5 U	NA	NA	0.5 U	0.5 U
p-Isopropyl toluene	NA	NA	NA ·	NA	NA	NA
sec-Butylbenzene	NA	NA	NA	NA	NA	NA
Styrene	0.5 U					
tert-Butylbenzene	NA	NA	NA	NA	NA	NA
Tetrachloroethene	0.5 U					
Toluene	0.5 U					
trans-1,2-Dichloroethene	0.5 U					
trans-1,3-Dichloropropene	0.5 U					
Trichloroethene	0.5 U					
Trichlorofluoromethane	0.5 U					
Vinyl chloride	0.5 U					
Total Volatile TICs				w.m		

TABLE B-14
Volatile Organic Compounds - Quality Assurance/Quality Control (2002/2003)
Little Valley Superfund Site
Page 22 of 36

Area	QA/QC Sample	QA/QC Sample	QA/QC Sample	QA/QC Sample	QA/QC Sample	QA/QC Sample			
Location	Trip Blank	Field Blank	Trip Blank	Trip Blank	Field Blank	Trip Blank			
TtEC Sample I.D.	LV-TB-SW-100903	LV-FB-GW-CLP-10	LV-TB-CLP-10080	LV-TB-SW-100803	LV-FB-111203	LV-TB-111203			
Sampling Date	10/09/2003	10/09/2003	10/09/2003	10/09/2003	11/12/2003	11/12/2003			
Units	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L			
1,1,1,2-Tetrachloroethane	NA	NA	NA	NA	0.5 U	0.5 U			
1,1,1-Trichloroethane	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U			
1,1,2,2-Tetrachloroethane	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U			
1,1,2-Trichloro-1,2,2-trifluoroethane	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U			
1,1,2-Trichloroethane	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U			
1,1-Dichloroethane	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U			
1,1-Dichloroethene	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U			
1,1-Dichloropropene	NA	NA	NA	NA	0.5 U	0.5 U			
1,2,3-Trichlorobenzene	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U			
1,2,3-Trichloropropane	NA	NA	NA	NA	0.5 U	0.5 U			
1,2,4-Trichlorobenzene	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U			
1,2,4-Trimethylbenzene	NA	NA	NA	NA	0.5 U	0.5 U			
1,2-Dibromo-3-chloropropane	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U			
1,2-Dibromoethane (EDB)	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U			
1,2-Dichlorobenzene	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U			
1,2-Dichloroethane	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U			
1,2-Dichloropropane	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U			
1,3,5-Trimethylbenzene	NA	NA	NA	NA	0.5 U	0.5 U			
1,3-Dichlorobenzene	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U			
1,3-Dichloropropane	NA	NA	NA	NA	0.5 U	0.5 U			
1,4-Dichlorobenzene	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U			
2,2-Dichloropropane	NA	NA	NA	NA	0.5 U	0.5 U			
2-Butanone	5 U	5 U	5 U	5, U	1 U	1 U			
2-Chlorotoluene	NA	NA	NA	NA	0.5 U	0.5 U			
2-Hexanone	5 U	5 U	5 U	5 U	1 U	1 U			
4-Chlorotoluene	NA	NA	NA	NA	0.5 U	0.5 U			
4-Methyl-2-pentanone	5 U	5 U	5 U	5 U	1 U	1 U			
Acetone	5 U	5	5 U	5	1.6	1.9			
Benzene	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U			

TABLE B-14
Volatile Organic Compounds - Quality Assurance/Quality Control (2002/2003)
Little Valley Superfund Site
Page 23 of 36

Area	QA/QC Sample	QA/QC Sample	QA/QC Sample	QA/QC Sample	QA/QC Sample	QA/QC Sample			
Location	Trip Blank	Field Blank	Trip Blank	Trip Blank	Field Blank	Trip Blank			
			-	-					
TtEC Sample I.D.	LV-TB-SW-100903	LV-FB-GW-CLP-10	LV-TB-CLP-10080	LV-TB-SW-100803	LV-FB-111203	LV-TB-111203			
Sampling Date	10/09/2003	10/09/2003	10/09/2003	10/09/2003	11/12/2003	11/12/2003			
Units	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L			
Benzene, dimethyl-	0.5 U	0.5 U	0.5 U	0.5 U	NA	NA			
Bromobenzene	NA	NA	NA	NA	0.5 U	0.5 U			
Bromochloromethane	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U			
Bromodichloromethane	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U			
Bromoform	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U			
Bromomethane	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U			
Carbon disulfide	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U			
Carbon tetrachloride	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U			
Chlorobenzene	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U			
Chloroethane	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U			
Chloroform	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U			
Chloromethane	0.37	0.33	0.25	0.27	0.5 U	0.5 U			
cis-1,2-Dichloroethene	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U			
cis-1,3-Dichloropropene	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U			
Cyclohexane	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U			
Dibromochloromethane	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U			
Dibromomethane	NA	NA	NA	NA	0.5 U	0.5 U			
Dichlorodifluoromethane	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U			
Ethylbenzene	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U			
Hexachlorobutadiene	NA	NA	NA	NA	0.5 U	0.5 U			
Isopropanol	NA	NA	NA	NA	NA	NA			
Isopropylbenzene	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U			
m/p-xylene	NA	NA	NA	NA	0.5 U	0.5 U			
Methyl Acetate	0.5 U	0.5	0.5 U	0.5	0.5 U	0.5 U			
Methyl tert-butyl ether	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.8			
Methylcyclohexane	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U			
Methylene chloride	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U			
Naphthalene	NA	NA	NA	NA	0.5 U	0.5 U			
n-Butylbenzene	NA	NA	NA	NA	0.5 U	0.5 U			

TABLE B-14
Volatile Organic Compounds - Quality Assurance/Quality Control (2002/2003)
Little Valley Superfund Site
Page 24 of 36

Area	QA/QC Sample	QA/QC Sample	QA/QC Sample	QA/QC Sample	QA/QC Sample	QA/QC Sample
Location	Trip Blank	Field Blank	Trip Blank	Trip Blank	Field Blank	Trip Blank
m.n.g.g						
TtEC Sample I.D.	LV-TB-SW-100903	LV-FB-GW-CLP-10	LV-TB-CLP-10080	LV-TB-SW-100803	LV-FB-111203	LV-TB-111203
Sampling Date	10/09/2003	10/09/2003	10/09/2003	10/09/2003	11/12/2003	11/12/2003
Units	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
		•				
n-Propylbenzene	NA	NA	NA	NA	0.5 U	0.5 U
o-Xylene	NA	NA	NA	NA	0.5 U	0.5 U
p-Isopropyl toluene	NA	NA	NA	NA	0.5 U	0.5 U
sec-Butylbenzene	NA	NA	NA	NA	0.5 U	0.5 U
Styrene	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
tert-Butylbenzene	NA	NA	NA	NA	0.5 U	0.5 U
Tetrachloroethene	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Toluene	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
trans-1,2-Dichloroethene	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
trans-1,3-Dichloropropene	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Trichloroethene	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Trichlorofluoromethane	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Vinyl chloride	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Total Volatile TICs			0.56	0.5		,

TABLE B-14
Volatile Organic Compounds - Quality Assurance/Quality Control (2002/2003)
Little Valley Superfund Site
Page 25 of 36

Area	QA/QC Sample					
Location	Field Blank	Trip Blank	Field Blank	Trip Blank	Field Blank	Trip Blank
		1		1		1
TtEC Sample I.D.	LV-FB-111803	LV-TB-111803	LV-FB-111903	LV-TB-111903	LV-FB-112003	LV-TB-112003
Sampling Date	11/18/2003	11/18/2003	11/19/2003	11/19/2003	11/20/2003	11/20/2003
Units	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
1,1,1,2-Tetrachloroethane	0.5 U					
1,1,1-Trichloroethane	0.5 U					
1,1,2,2-Tetrachloroethane	0.5 U					
1,1,2-Trichloro-1,2,2-trifluoroethane	0.5 U					
1,1,2-Trichloroethane	0.5 U					
1,1-Dichloroethane	0.5 U					
1,1-Dichloroethene	0.5 U					
1,1-Dichloropropene	0.5 U					
1,2,3-Trichlorobenzene	0.5 U					
1,2,3-Trichloropropane	0.5 U					
1,2,4-Trichlorobenzene	0.5 U	. 0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,2,4-Trimethylbenzene	0.5 U					
1,2-Dibromo-3-chloropropane	0.5 U					
1,2-Dibromoethane (EDB)	0.5 U					
1,2-Dichlorobenzene	0.5 U					
1,2-Dichloroethane	0.5 U					
1,2-Dichloropropane	0.5 U					
1,3,5-Trimethylbenzene	0.5 U					
1,3-Dichlorobenzene	0.5 U					
1,3-Dichloropropane	0.5 U					
1,4-Dichlorobenzene	0.5 U					
2,2-Dichloropropane	0.5 U					
2-Butanone	1 U	1 U	1 U	1 U	1 U	I U
2-Chlorotoluene	0.5 U					
2-Hexanone	1 U	1 U	1 U	1 U	1 U	1 U
4-Chlorotoluene	0.5 U					
4-Methyl-2-pentanone	1 U	1 U	1 U	1 U	1 U	1 U
Acetone	5 U	5 U	1 U	1.1	1.2	1 U
Benzene	0.5 U					

TABLE B-14
Volatile Organic Compounds - Quality Assurance/Quality Control (2002/2003)
Little Valley Superfund Site
Page 26 of 36

Area	QA/QC Sample	QA/QC Sample	QA/QC Sample	QA/QC Sample	QA/QC Sample	QA/QC Sample
Location	Field Blank	Trip Blank	Field Blank	Trip Blank	Field Blank	Trip Blank
TARC Commission	LV FD 111002	1.W.TD 111002		IN TED 111002	I I I I I I I I I I I I I I I I I I I	X X /FD 112002
TtEC Sample I.D.	LV-FB-111803	LV-TB-111803	LV-FB-111903	LV-TB-111903	LV-FB-112003	LV-TB-112003
Sampling Date	11/18/2003	11/18/2003	11/19/2003	11/19/2003	11/20/2003	11/20/2003
Units	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
Benzene, dimethyl-	NA	NA	NA	NA	NA	NA
Bromobenzene	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Bromochloromethane	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Bromodichloromethane	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Bromoform	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Bromomethane	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Carbon disulfide	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Carbon tetrachloride	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Chlorobenzene	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Chloroethane	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Chloroform	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Chloromethane	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
cis-1,2-Dichloroethene	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
cis-1,3-Dichloropropene	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Cyclohexane	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Dibromochloromethane	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Dibromomethane	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Dichlorodifluoromethane	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Ethylbenzene	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Hexachlorobutadiene	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Isopropanol	19	NA	NA	NA	NA	NA
Isopropylbenzene	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
m/p-xylene	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Methyl Acetate	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Methyl tert-butyl ether	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Methylcyclohexane	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Methylene chloride	0.5 U	0.5 U	9 U	9 U	9 U	9 U
Naphthalene	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
n-Butylbenzene	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U

TABLE B-14
Volatile Organic Compounds - Quality Assurance/Quality Control (2002/2003)
Little Valley Superfund Site
Page 27 of 36

Area	QA/QC Sample	QA/QC Sample				
Location	Field Blank	Trip Blank	Field Blank	Trip Blank	Field Blank	Trip Blank
TtEC Sample I.D.	LV-FB-111803	LV-TB-111803	LV-FB-111903	LV-TB-111903	LV-FB-112003	LV-TB-112003
Sampling Date	11/18/2003	11/18/2003	11/19/2003	11/19/2003	11/20/2003	11/20/2003
Units	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
n-Propylbenzene	0.5 U	0.5 U				
o-Xylene	0.5 U	0.5 U				
p-Isopropyl toluene	0.5 U	0.5 U				
sec-Butylbenzene	0.5 U	0.5 U				
Styrene	0.5 U	0.5 U				
tert-Butylbenzene	0.5 U	0.5 U				
Tetrachloroethene	0.5 U	0.5 U				
Toluene	0.5 U	0.5 U				
trans-1,2-Dichloroethene	0.5 U	0.5 U				
trans-1,3-Dichloropropene	0.5 U	0.5 U				
Trichloroethene	0.5 U	0.5 U				
Trichlorofluoromethane	0.5 U	0.5 U				
Vinyl chloride	0.5 U	0.5 U				
Total Volatile TICs			0.9		** ***	1

TABLE B-14
Volatile Organic Compounds - Quality Assurance/Quality Control (2002/2003)
Little Valley Superfund Site
Page 28 of 36

Area	QA/QC Sample					
Location	Field Blank	Trip Blank	Field Blank	Trip Blank	Field Blank	Trip Blank
		-				
TtEC Sample I.D.	LV-FB-120103	LV-TB-120103	LV-FB-120203	LV-TB-120203	LV-FB-120303	LV-TB-120303
Sampling Date	12/01/2003	12/01/2003	12/02/2003	12/02/2003	12/03/2003	12/03/2003
Units	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
1,1,1,2-Tetrachloroethane	NA	NA	NA	NA	NA	NA ·
1,1,1-Trichloroethane	0.5 U					
1,1,2,2-Tetrachloroethane	0.5 U					
1,1,2-Trichloro-1,2,2-trifluoroethane	0.5 U					
1,1,2-Trichloroethane	0.5 U					
1,1-Dichloroethane	0.5 U					
1,1-Dichloroethene	0.5 U					
1,1-Dichloropropene	NA	NA	NA	NA	NA	NA
1,2,3-Trichlorobenzene	0.5 U					
1,2,3-Trichloropropane	NA	NA	NA	NA	NA	NA
1,2,4-Trichlorobenzene	0.5 U					
1,2,4-Trimethylbenzene	NA	NA	NA	NA	NA	NA
1,2-Dibromo-3-chloropropane	0.5 U					
1,2-Dibromoethane (EDB)	0.5 U					
1,2-Dichlorobenzene	0.5 U					
1,2-Dichloroethane	0.5 U					
1,2-Dichloropropane	0.5 U					
1,3,5-Trimethylbenzene	NA	NA	NA	NA	NA	NA
1,3-Dichlorobenzene	0.5 U					
1,3-Dichloropropane	NA	NA	NA -	NA	NA	NA
1,4-Dichlorobenzene	0.5 U					
2,2-Dichloropropane	NA	NA	NA	NA	NA	NA
2-Butanone	5 U	5 U	5 U	5 U	5 U	5 U
2-Chlorotoluene	NA	NA	NA	NA	NA	NA
2-Hexanone	5 U	5 U	5 U	5 U	5 U	5 U
4-Chlorotoluene	NA	NA	NA	NA	NA	NA
4-Methyl-2-pentanone	5 U	5 U	5 U	5 U	5 U	5 U
Acetone	5 U	5 U	5 U	5 U	5 U	5 U
Benzene	0.5 U					

TABLE B-14
Volatile Organic Compounds - Quality Assurance/Quality Control (2002/2003)
Little Valley Superfund Site
Page 29 of 36

Area	QA/QC Sample								
Location	Field Blank	Trip Blank	Field Blank	Trip Blank	Field Blank	Trip Blank			
TtEC Sample I.D.	LV-FB-120103	LV-TB-120103	LV-FB-120203	LV-TB-120203	LV-FB-120303	LV-TB-120303			
Sampling Date	12/01/2003	12/01/2003	12/02/2003	12/02/2003	12/03/2003	12/03/2003			
Units	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L			
Benzene, dimethyl-	0.5 U								
Bromobenzene	NA	NA	NA	NA	NA	NA			
Bromochloromethane	0.5 U								
Bromodichloromethane	0.5 U								
Bromoform	0.5 U								
Bromomethane	0.5 U								
Carbon disulfide	0.5 U								
Carbon tetrachloride	0.5 U								
Chlorobenzene	0.5 U								
Chloroethane	0.5 U								
Chloroform	0.5 U								
Chloromethane	0.5 U	0.5 U	0.5 U	0.5 U	0.2	0.5 U			
cis-1,2-Dichloroethene	0.5 U								
cis-1,3-Dichloropropene	0.5 U								
Cyclohexane	0.5 U								
Dibromochloromethane	0.5 U								
Dibromomethane	NA	NA	NA	NA	NA	NA			
Dichlorodifluoromethane	0.5 U								
Ethylbenzene	0.5 U								
Hexachlorobutadiene	NA	NA	NA	NA	NA	NA			
Isopropanol	NA	NA	NA	NA	NA	NA			
Isopropylbenzene	0.5 U								
m/p-xylene	NA	NA	NA	NA	NA	NA			
Methyl Acetate	0.5 U								
Methyl tert-butyl ether	0.5 U								
Methylcyclohexane	0.5 U								
Methylene chloride	0.5 U								
Naphthalene	NA	NA .	NA	NA	NA	NA			
n-Butylbenzene	NA	NA	NA	NA	NA	NA			

TABLE B-14
Volatile Organic Compounds - Quality Assurance/Quality Control (2002/2003)
Little Valley Superfund Site
Page 30 of 36

Area	QA/QC Sample					
Location	Field Blank	Trip Blank	Field Blank	Trip Blank	Field Blank	Trip Blank
TtEC Sample I.D.	LV-FB-120103	LV-TB-120103	LV-FB-120203	LV-TB-120203	LV-FB-120303	LV-TB-120303
Sampling Date	12/01/2003	12/01/2003	12/02/2003	12/02/2003	12/03/2003	12/03/2003
Units	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
n-Propylbenzene	NA	NA	NA	NA	NA	NA
o-Xylene	NA	· NA	NA	NA	NA	NA
p-Isopropyl toluene	NA	NA	NA	NA	NA	NA
sec-Butylbenzene	NA	NA	NA	NA	NA	NA
Styrene	0.5 U					
tert-Butylbenzene	NA	NA	NA	NA	NA	NA
Tetrachloroethene	0.5 U					
Toluene	0.2	0.17	0.19	0.2	0.5 U	0.18
trans-1,2-Dichloroethene	0.5 U					
trans-1,3-Dichloropropene	0.5 U					
Trichloroethene	0.5 U					
Trichlorofluoromethane	0.5 U					
Vinyl chloride	0.5 U					
Total Volatile TICs	1.19			1.81		

TABLE B-14
Volatile Organic Compounds - Quality Assurance/Quality Control (2002/2003)
Little Valley Superfund Site
Page 31 of 36

Area	QA/QC Sample								
Location	Field Blank	Trip Blank	Field Blank	Trip Blank	Field Blank	Trip Blank			
					•				
TtEC Sample I.D.	LV-FB-120403	LV-TB-120403	LV-FB-120803	LV-TB-120803	LV-FB-120903	LV-TB-120903			
Sampling Date	12/04/2003	12/04/2003	12/08/2003	12/08/2003	12/09/2003	12/09/2003			
Units	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L			
1,1,1,2-Tetrachloroethane	NA	NA	NA	NA	NA	NA			
1,1,1-Trichloroethane	0.5 U								
1,1,2,2-Tetrachloroethane	0.5 U								
1,1,2-Trichloro-1,2,2-trifluoroethane	0.5 U								
1,1,2-Trichloroethane	0.5 U								
1,1-Dichloroethane	0.5 U								
1,1-Dichloroethene	0.5 U								
1,1-Dichloropropene	NA	NA	NA	NA	NA	NA			
1,2,3-Trichlorobenzene	0.5 U								
1,2,3-Trichloropropane	NA	NA	NA	NA	NA	NA			
1,2,4-Trichlorobenzene	0.5 U								
1,2,4-Trimethylbenzene	NA	NA	NA	NA	NA	NA			
1,2-Dibromo-3-chloropropane	0.5 U								
1,2-Dibromoethane (EDB)	0.5 U								
1,2-Dichlorobenzene	0.5 U								
1,2-Dichloroethane	0.5 U								
1,2-Dichloropropane	0.5 U								
1,3,5-Trimethylbenzene	NA	NA	NA	NA	NA	NA			
1,3-Dichlorobenzene	0.5 U								
1,3-Dichloropropane	NA	NA	NA	NA	NA	NA			
1,4-Dichlorobenzene	0.5 U								
2,2-Dichloropropane	NA	NA	NA	NA	NA	NA			
2-Butanone	5 U	5 U	5 U	5 U	5 U	5 U			
2-Chlorotoluene	NA	NA	NA	. NA	NA	NA			
2-Hexanone	5 U	5 U	5 U	5 U	5 U	5 U			
4-Chlorotoluene	NA	NA	NA	NA	NA	NA			
4-Methyl-2-pentanone	5 U	5 U	5 U	5 U	5 U	5 U			
Acetone	5 U	5 U	5 U	5 U	5 U	5 U			
Benzene	0.5 U								

TABLE B-14
Volatile Organic Compounds - Quality Assurance/Quality Control (2002/2003)
Little Valley Superfund Site
Page 32 of 36

Area	QA/QC Sample	QA/QC Sample	QA/QC Sample	QA/QC Sample	QA/QC Sample	QA/QC Sample
Location	Field Blank	Trip Blank	Field Blank	Trip Blank	Field Blank	Trip Blank
		r		r		r
TtEC Sample I.D.	LV-FB-120403	LV-TB-120403	LV-FB-120803	LV-TB-120803	LV-FB-120903	LV-TB-120903
Sampling Date	12/04/2003	12/04/2003	12/08/2003	12/08/2003	12/09/2003	12/09/2003
Units	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
-	**************************************				· · · · · · · · · · · · · · · · · · ·	
Benzene, dimethyl-	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Bromobenzene	NA	NA	NA	NA	NA	NA
Bromochloromethane	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Bromodichloromethane	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Bromoform	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Bromomethane	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Carbon disulfide	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Carbon tetrachloride	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Chlorobenzene	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Chloroethane	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Chloroform	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Chloromethane	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
cis-1,2-Dichloroethene	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
cis-1,3-Dichloropropene	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Cyclohexane	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Dibromochloromethane	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Dibromomethane	NA	NA	NA	NA	NA	NA
Dichlorodifluoromethane	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Ethylbenzene	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Hexachlorobutadiene	NA	NA	NA	NA	NA	NA
Isopropanol	NA	NA	NA	NA	NA	NA
Isopropylbenzene	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5°U
m/p-xylene	NA	NA	NA	NA	NA	NA
Methyl Acetate	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Methyl tert-butyl ether	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Methylcyclohexane	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Methylene chloride	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Naphthalene	NA	NA	NA	NA	NA	NA
n-Butylbenzene	NA	NA	NA	NA	NA	NA

TABLE B-14
Volatile Organic Compounds - Quality Assurance/Quality Control (2002/2003)
Little Valley Superfund Site
Page 33 of 36

Area	QA/QC Sample	QA/QC Sample	QA/QC Sample	QA/QC Sample	QA/QC Sample	QA/QC Sample
Location	Field Blank	Trip Blank	Field Blank	Trip Blank	Field Blank	Trip Blank
·						
TtEC Sample I.D.	LV-FB-120403	LV-TB-120403	LV-FB-120803	LV-TB-120803	LV-FB-120903	LV-TB-120903
Sampling Date	12/04/2003	12/04/2003	12/08/2003	12/08/2003	12/09/2003	12/09/2003
Units	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
	· · · · · · · · · · · · · · · · · · ·					
n-Propylbenzene	NA	NA	NA	NA	NA	NA
o-Xylene	NA	NA	NA	NA	NA	NA
p-Isopropyl toluene	NA	NA	NA	NA	NA	NA
sec-Butylbenzene	NA	NA	NA	NA	NA	NA
Styrene	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
tert-Butylbenzene	NA	NA	NA	NA	NA	NA
Tetrachloroethene	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Toluene	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
trans-1,2-Dichloroethene	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
trans-1,3-Dichloropropene	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Trichloroethene	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Trichlorofluoromethane	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Vinyl chloride	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Total Volatile TICs		2.51		0.64	7	

TABLE B-14
Volatile Organic Compounds - Quality Assurance/Quality Control (2002/2003)
Little Valley Superfund Site
Page 34 of 36

Area	QA/QC Sample	QA/QC Sample	QA/QC Sample	QA/QC Sample
Location	Field Blank	Trip Blank	Field Blank	Trip Blank
		•		•
TtEC Sample I.D.	LV-FB-121003	LV-TB-121003	LV-FB-121103	LV-TB-121103
Sampling Date	12/10/2003	12/10/2003	12/11/2003	12/11/2003
Units	ug/L	ug/L	ug/L	ug/L
1,1,1,2-Tetrachloroethane	NA	NA	NA	NA
1,1,1-Trichloroethane	0.5 U	0.5 U	0.5 U	0.5 U
1,1,2,2-Tetrachloroethane	0.5 U	0.5 U	0.5 U	0.5 U
1,1,2-Trichloro-1,2,2-trifluoroethane	0.5 U	0.5 U	0.5 U	0.5 U
1,1,2-Trichloroethane	0.5 U	0.5 U	0.5 U	0.5 U
1,1-Dichloroethane	0.5 U	0.5 U	0.5 U	0.5 U
1,1-Dichloroethene	0.5 U	0.5 U	0.5 U	0.5 U
1,1-Dichloropropene	NA	NA	NA	NA
1,2,3-Trichlorobenzene	0.5 U	0.5 U	0.5 U	0.5 U
1,2,3-Trichloropropane	NA	NA	NA	NA
1,2,4-Trichlorobenzene	0.5 U	0.5 U	0.5 U	0.5 U
1,2,4-Trimethylbenzene	NA	NA	NA	NA
1,2-Dibromo-3-chloropropane	0.5 U	0.5 U	0.5 U	0.5 U
1,2-Dibromoethane (EDB)	0.5 U	0.5 U	0.5 U	0.5 U
1,2-Dichlorobenzene	0.5 U	0.5 U	0.5 U	0.5 U
1,2-Dichloroethane	0.5 U	0.5 U	0.5 U	0.5 U
1,2-Dichloropropane	0.5 U	0.5 U	0.5 U	0.5 U
1,3,5-Trimethylbenzene	NA	NA	NA	NA
1,3-Dichlorobenzene	0.5 U	0.5 U	0.5 U	0.5 U
1,3-Dichloropropane	NA	NA	NA	NA
1,4-Dichlorobenzene	0.5 U	0.5 U	0.5 U	0.5 U
2,2-Dichloropropane	NA	NA	NA	NA
2-Butanone	5 U	5 U	5 U	5 U
2-Chlorotoluene	NA	NA	NA	NA
2-Hexanone	5 U	5 U	5 U	5 U
4-Chlorotoluene	NA	NA	NA	NA
4-Methyl-2-pentanone	5 U	5 U	5 U	5 U
Acetone	5 U	5 U	5 U	5 U
Benzene	0.5 U	0.5 U	0.5 U	0.5 U

TABLE B-14
Volatile Organic Compounds - Quality Assurance/Quality Control (2002/2003)
Little Valley Superfund Site
Page 35 of 36

Area	QA/QC Sample	QA/QC Sample	QA/QC Sample	QA/QC Sample
Location	Field Blank	Trip Blank	Field Blank	Trip Blank
TtEC Sample I.D.	LV-FB-121003	LV-TB-121003	LV-FB-121103	LV-TB-121103
Sampling Date	12/10/2003	12/10/2003	12/11/2003	12/11/2003
Units	ug/L	ug/L	ug/L	ug/L
			<u> </u>	Σ
Benzene, dimethyl-	0.5 U	0.5 U	0.5 U	0.5 U
Bromobenzene	NA	NA	NA	NA
Bromochloromethane	0.5 U	0.5 U	0.5 U	0.5 U
Bromodichloromethane	0.5 U	0.5 U	0.5 U	0.5 U
Bromoform	0.5 U	0.5 U	0.5 U	0.5 U
Bromomethane	0.5 U	0.5 U	0.5 U	0.5 U
Carbon disulfide	0.5 U	0.5 U	0.5 U	0.5 U
Carbon tetrachloride	0.5 U	0.5 U	0.5 U	0.5 U
Chlorobenzene	0.5 U	0.5 U	0.5 U	0.5 U
Chloroethane	0.5 U	0.5 U	0.5 U	0.5 U
Chloroform	0.5 U	0.5 U	0.5 U	0.5 U
Chloromethane	0.5 U	0.5 U	0.5 U	0.5 U
cis-1,2-Dichloroethene	0.5 U	0.5 U	0.5 U	0.5 U
cis-1,3-Dichloropropene	0.5 U	0.5 U	0.5 U	0.5 U
Cyclohexane	0.5 U	0.5 U	0.5 U	0.5 U
Dibromochloromethane	0.5 U	0.5 U	0.5 U	0.5 U
Dibromomethane	NA	NA	NA	NA
Dichlorodifluoromethane	0.5 U	0.5 U	0.5 U	0.5 U
Ethylbenzene	0.5 U	0.5 U	0.5 U	0.5 U
Hexachlorobutadiene	NA	NA	NA	NA
Isopropanol	NA	NA	NA	NA
Isopropylbenzene	0.5 U	0.5 U	0.5 U	0.5 U
m/p-xylene	NA	NA	NA	NA
Methyl Acetate	0.5 U	0.5 U	0.5 U	0.5 U
Methyl tert-butyl ether	0.5 U	0.5 U	0.5 U	0.5 U
Methylcyclohexane	0.5 U	0.5 U	0.5 U	0.5 U
Methylene chloride	0.5 U	0.5 U	0.5 U	0.5 U
Naphthalene	NA	NA	NA	NA
n-Butylbenzene	NA	NA	NA	NA

TABLE B-14
Volatile Organic Compounds - Quality Assurance/Quality Control (2002/2003)
Little Valley Superfund Site
Page 36 of 36

Area Location	QA/QC Sample Field Blank	QA/QC Sample Trip Blank	QA/QC Sample Field Blank	QA/QC Sample Trip Blank
TtEC Sample I.D. Sampling Date	LV-FB-121003 12/10/2003	LV-TB-121003	LV-FB-121103	LV-TB-121103
Units	ug/L	12/10/2003 ug/L	12/11/2003 ug/L	12/11/2003 ug/L
n-Propylbenzene	NA	NA	NA	NA
o-Xylene	NA	NA	NA	NA
p-Isopropyl toluene	NA	NA	NA	NA
sec-Butylbenzene	NA	NA	NA	NA
Styrene	0.5 U	0.5 U	0.5 U	0.5 U
tert-Butylbenzene	NA	NA	NA	NA
Tetrachloroethene	0.5 U	0.5 U	0.5 U	0.5 U
Toluene	0.15	0.5 U	0.5 U	0.5 U
trans-1,2-Dichloroethene	0.5 U	0.5 U	0.5 U	0.5 U
trans-1,3-Dichloropropene	0.5 U	0.5 U	0.5 U	0.5 U
Trichloroethene	0.5 U	0.5 U	0.5 U	0.5 U
Trichlorofluoromethane	0.5 U	0.5 U	0.5 U	0.5 U
Vinyl chloride	0.5 U	0.5 U	0.5 U	0.5 U
Total Volatile TICs	7.2		***	

TABLE B-15
Volatile Organic Compounds - Quality Assurance/Quality Control (2006)
Little Valley Superfund Site
Page 1 of 6

Area	QA/QC Sample					
Location	Field Blank	Trip Blank	Field Blank	Trip Blank	Field Blank	Trip Blank
TtEC Sample I.D.	LVRD01-FB102306	LVRD01-TB102306	LVRD01-FB102406	LVRD01-TB102406	LVRD01-FB102506	LVRD01-TB102506
Sampling Date	10/23/2006	10/23/2006	10/24/2006	10/24/2006	10/25/2006	10/25/2006
Units	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
					<u> </u>	<u></u>
1,1,1-Trichloroethane	0.5 U					
1,1,2,2-Tetrachloroethane	0.5 U					
1,1,2-Trichloro-1,2,2-trifluoroethane	0.5 U					
1,1,2-Trichloroethane	0.5 U					
1,1-Dichloroethane	0.5 U					
1,1-Dichloroethene	0.5 U					
1,2,3-Trichlorobenzene	0.5 U					
1,2,4-Trichlorobenzene	0.5 U					
1,2-Dibromo-3-chloropropane	0.5 U					
1,2-Dibromoethane	0.5 U					
1,2-Dichlorobenzene	0.5 U					
1,2-Dichloroethane	0.5 U					
1,2-Dichloropropane	0.5 U					
1,3-Dichlorobenzene	0.5 U					
1,4-Dichlorobenzene	0.5 U					
1,4-Dioxane	20 R					
2-Butanone	5 U	5 U	5 U	0.6 J	5 U	5 U
2-Hexanone	5 U	5 U	5 U	5 U	5 U	5 U
4-Methyl-2-pentanone	5 U	5 U	5 U	5 U	5 U	5 U
Acetone	0.61 J	1.1 J	7.5	0.84 J	1.5 J	5 U
Benzene	0.5 U	0.5 U	0.066 J	0.5 U	0.5 U	0.5 U
Bromochloromethane	0.5 U					
Bromodichloromethane	0.5 U					
Bromoform	0.5 U					
Bromomethane	0.5 U	0.054 J	0.053 J	0.06 J	0.086 J	0.1 J
Carbon disulfide	0.5 U					
Carbon tetrachloride	0.5 U					
Chlorobenzene	0.5 U					
Chloroethane	0.5 U	0.5 U	0.5 U	0.5 U	0.13 J	0.5 U

TABLE B-15
Volatile Organic Compounds - Quality Assurance/Quality Control (2006)
Little Valley Superfund Site
Page 2 of 6

Area	QA/QC Sample					
Location	Field Blank	Trip Blank	Field Blank	Trip Blank	Field Blank	Trip Blank
				-		-
TtEC Sample I.D.	LVRD01-FB102306	LVRD01-TB102306	LVRD01-FB102406	LVRD01-TB102406	LVRD01-FB102506	LVRD01-TB102506
	10/02/2004	10/20/2004	10/21/2006	40/24/2007	1010 7 10 00 5	40/27/2006
Sampling Date	N I	10/23/2006	10/24/2006	10/24/2006	10/25/2006	10/25/2006
Units	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
	0.020					
Chloroform	0.053 J	0.5 U	0.076 J	0.075 J	0.06 J	0.05 J
Chloromethane	0.26 J	0.32 J	0.5 U	0.33 J	0.48 J	0.28 J
cis-1,2-Dichloroethene	0.5 U					
cis-1,3-Dichloropropene	0.5 U					
Cyclohexane	0.5 U					
Dibromochloromethane	0.5 U					
Dichlorodifluoromethane	0.25 J	0.5 U	0.21 J	0.21 J	0.46 J	0.46 J
Ethylbenzene	0.5 U					
Isopropylbenzene	0.5 U					
m+p-xylene	0.5 U					
Methyl Acetate	0.5 U					
Methyl tert-butyl ether	0.5 U					
Methylcyclohexane	0.5 U					
Methylene chloride	0.5 U					
o-Xylene	0.5 U					
Styrene	0.5 U					
Tetrachloroethene	0.5 U					
Toluene	0.55	0.13 J	0.13 J	0.12 J	0.083 J	0.14 J
trans-1,2-Dichloroethene	0.5 U					
Trans-1,3-Dichloropropene	0.5 U					
Trichloroethene	0.5 U .	0.5 U				
Trichlorofluoromethane	0.5 U	0.5 U	0.5 U	0.5 U	0.09 J	0.098 J
Vinyl chloride	0.5 U					
Total Volatile TICs	27.71 JN	4.1 JN			3.7 J	R

TABLE B-15
Volatile Organic Compounds - Quality Assurance/Quality Control (2006)
Little Valley Superfund Site
Page 3 of 6

Area	QA/QC Sample	QA/QC Sample	QA/QC Sample	QA/QC Sample	QA/QC Sample	QA/QC Sample
Location	Field Blank	Trip Blank	Field Blank	Trip Blank	Field Blank	Trip Blank
TtEC Sample I.D.	LVRD01-FB102606	LVRD01-TB102606	LVRD01-FB103006	LVRD01-TB103006	LVRD01-FB103106	LVRD01-TB103106
Samuling Data	10/26/2006	10/26/2006	10/30/2006	10/30/2006	10/31/2006	10/31/2006
Sampling Date Units		li de la companya de				
Units	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
1,1,1-Trichloroethane	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,1,2,2-Tetrachloroethane	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,1,2-Trichloro-1,2,2-trifluoroethane	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,1,2-Trichloroethane	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,1-Dichloroethane	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,1-Dichloroethene	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,2,3-Trichlorobenzene	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,2,4-Trichlorobenzene	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,2-Dibromo-3-chloropropane	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,2-Dibromoethane	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,2-Dichlorobenzene	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,2-Dichloroethane	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,2-Dichloropropane	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,3-Dichlorobenzene	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,4-Dichlorobenzene	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,4-Dioxane	20 R	20 R	20 R	20 R	20 R	20 R
2-Butanone	5 U	5 U	5 U	5 U	5 U	5 U
2-Hexanone	5 U	5 U	5 U	5 U	3.2 J	5 U
4-Methyl-2-pentanone	5 U	5 U	5 U	5 U	5 U	5 U
Acetone	8.6	1.5 J	16	1.1 J	7.9	0.82 J
Benzene	0.076 J	0.5 U	0.5 U	0.5 U	0.081 J	0.5 U
Bromochloromethane	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Bromodichloromethane	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Bromoform	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Bromomethane	0.11 J	0.097 J	0.098 J	0.1 J	0.094 J	0.078 J
Carbon disulfide	0.5 U	0.056 J	0.5 U	0.5 U	0.5 U	0.5 U
Carbon tetrachloride	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Chlorobenzene	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Chloroethane	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U

TABLE B-15
Volatile Organic Compounds - Quality Assurance/Quality Control (2006)
Little Valley Superfund Site
Page 4 of 6

Area	QA/QC Sample					
Location	Field Blank	Trip Blank	Field Blank	Trip Blank	Field Blank	Trip Blank
				•		•
TtEC Sample I.D.	LVRD01-FB102606	LVRD01-TB102606	LVRD01-FB103006	LVRD01-TB103006	LVRD01-FB103106	LVRD01-TB103106
					·	
Sampling Date	10/26/2006	10/26/2006	10/30/2006	10/30/2006	10/31/2006	10/31/2006
Units	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
Chloroform	0.5 U	0.5 U	0.5 U	0.057 J	0.5 U	0.5 U
Chloromethane	0.43 J	0.46 J	0.47 J	0.32 J	0.42 J	0.43 J
cis-1,2-Dichloroethene	0.5 U					
cis-1,3-Dichloropropene	0.5 U					
Cyclohexane	0.5 U					
Dibromochloromethane	0.5 U					
Dichlorodifluoromethane	0.42 J	0.39 J	0.45 J	0.39 J	0.45 J	0.4 J
Ethylbenzene	0.5 U					
Isopropylbenzene	0.5 U					
m+p-xylene	0.5 U					
Methyl Acetate	0.5 U					
Methyl tert-butyl ether	0.5 U					
Methylcyclohexane	0.5 U					
Methylene chloride	0.5 U					
o-Xylene	0.5 U					
Styrene	0.5 U					
Tetrachloroethene	0.5 U					
Toluene	0.11 J	0.5 U	0.21 J	0.19 J	0.29 J	0.33 J
trans-1,2-Dichloroethene	0.5 U					
Trans-1,3-Dichloropropene	0.5 U	0.5 U	0.064 J	0.5 U	0.5 U	0.5 U
Trichloroethene	0.5 U					
Trichlorofluoromethane	0.089 J	0.09 J	0.086 J	0.5 U	0.076 J	0.083 J
Vinyl chloride	0.14 J	0.5 U	0.5 U	0.13 Ј	0.5 U	0.5 U
Total Volatile TICs	NA	NA	52.1 JN	82.9 J	2.8 J	92.8 J

TABLE B-15
Volatile Organic Compounds - Quality Assurance/Quality Control (2006)
Little Valley Superfund Site
Page 5 of 6

Area QA/QC Sample QA/QC Sample QA/QC Sample								
Location	Field Blank	Trip Blank	DI Water Blank					
Location	Picid Dialik	ттр ыанк	Di Water Diank					
TtEC Sample I.D.	LVRD01-FB110106	LVRD01-TB110106	LVRD01-DIBLANK					
Sampling Date	11/1/2006	11/1/2006	10/23/2006					
Units	ug/L	ug/L	ug/L					
1,1,1-Trichloroethane	0.5 U	0.5 U	0.5 U					
1,1,2,2-Tetrachloroethane	0.5 U	0.5 U	0.5 U					
1,1,2-Trichloro-1,2,2-trifluoroethane	0.5 U	0.5 U	0.5 U					
1,1,2-Trichloroethane	0.5 U	0.5 U	0.5 U					
1,1-Dichloroethane	0.5 U	0.5 U	0.5 U					
1,1-Dichloroethene	0.5 U	0.5 U	0.5 U					
1,2,3-Trichlorobenzene	0.5 U	0.5 U	0.5 U					
1,2,4-Trichlorobenzene	0.5 U	0.5 U	0.5 U					
1,2-Dibromo-3-chloropropane	0.5 U	0.5 U	0.5 U					
1,2-Dibromoethane	0.5 U	0.5 U	0.5 U					
1,2-Dichlorobenzene	0.5 U	0.5 U	0.5 U					
1,2-Dichloroethane	0.5 U	0.5 U	0.5 U					
1,2-Dichloropropane	0.5 U	0.5 U	0.5 U					
1,3-Dichlorobenzene	0.5 U	0.5 U	0.5 U					
1,4-Dichlorobenzene	0.5 U	0.5 U	0.5 U					
1,4-Dioxane	20 R	20 R	20 R					
2-Butanone	5 U	5 U	5 U					
2-Hexanone	5 U	5 U	3.4 J					
4-Methyl-2-pentanone	5 U	5 U	5 U					
Acetone	15	0.72 J	5 U					
Benzene	0.5 U	0.084 J	0.5 U					
Bromochloromethane	0.5 U	0.5 U	0.5 U					
Bromodichloromethane	0.5 U	0.5 U	0.5 U					
Bromoform	0.5 U	0.5 U	0.5 U					
Bromomethane	0.09 J	0.1 J	0.5 U					
Carbon disulfide	0.5 U	0.5 U	0.5 U					
Carbon tetrachloride	0.5 U	0.5 U	0.5 U					
Chlorobenzene	0.5 U	0.5 U	0.5 U					
Chloroethane	0.5 U	0.12 J	0.5 U					

TABLE B-15
Volatile Organic Compounds - Quality Assurance/Quality Control (2006)
Little Valley Superfund Site
Page 6 of 6

Area	QA/QC Sample	QA/QC Sample	QA/QC Sample
Location	Field Blank	Trip Blank	DI Water Blank
TtEC Sample I.D.	LVRD01-FB110106	LVRD01-TB110106	LVRD01-DIBLANK
Sampling Date	11/1/2006	11/1/2006	10/23/2006
Units	ug/L	ug/L	ug/L
Chloroform	0.5 U	0.061 J	0.5 U
Chloromethane	0.46 J	0.4 J	0.5 U
cis-1,2-Dichloroethene	0.5 U	0.5 U	0.5 U
cis-1,3-Dichloropropene	0.5 U	0.5 U	0.5 U
Cyclohexane	0.5 U	0.5 U	0.5 U
Dibromochloromethane	0.5 U	0.05 J	0.5 U
Dichlorodifluoromethane	0.32 J	0.35 J	0.5 U
Ethylbenzene	0.5 U	0.5 U	0.5 U
Isopropylbenzene	0.5 U	0.5 U	0.5 U
m+p-xylene	0.5 U	0.5 U	0.5 U
Methyl Acetate	0.5 U	0.5 U	0.5 U
Methyl tert-butyl ether	0.5 U	0.5 U	0.5 U
Methylcyclohexane	0.5 U	0.5 U	0.5 U
Methylene chloride	0.5 U	0.064 J	0.5 U
o-Xylene	0.5 U	0.5 U	0.5 U
Styrene	0.5 U	0.5 U	0.5 U
Tetrachloroethene	0.5 U	0.5 U	0.5 U
Toluene	0.3 Ј	0.35 J	0.12 J
trans-1,2-Dichloroethene	0.5 U	0.5 U	0.5 U
Trans-1,3-Dichloropropene	0.5 U	0.5 U	0.5 U
Trichloroethene	0.5 U	0.5 U	0.5 U
Trichlorofluoromethane	0.098 J	0.093 J	0.5 U
Vinyl chloride	0.5 U	0.5 U	0.5 U
Total Volatile TICs	2.9 J	37.4 JN	52.4 J

TABLE B-16

Monitored Natural Attenuation Parameters - Quality Assurance/Quality Control (2002/2003) Little Valley Superfund Site

e vancy superrain

Page 1 of 1

Area	QA/QC Sample					
Location	Trip Blank					
TtEC Sample I.D.	LVRD01-TB102406	LVRD01-TB102506	LVRD01-TB102606	LVRD01-TB103006	LVRD01-TB103106	LVRD01-TB110106
Sampling Date	10/24/2006	10/25/2006	10/26/2006	10/30/2006	10/31/2006	11/1/2006
Units	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
Methane	0.0014 UJ	0.002 J	0.0017 J	0.0017 J	0.0016 J	0.0017 J
Ethane	0.0028 UJ	0.0030 UJ	0.0029 UJ	0.0028 UJ	0.0028 UJ	0.0031 UJ
Ethene	0.0021 UJ	0.0022 UJ	0.0022 UJ	0.0021 UJ	0.0021 UJ	0.0023 UJ

APPENDIX C WELL PURGE DATA SHEETS

PROJECT NAME: PROJECT No:	Little Valley		N. J 		
DATE:	10/31/2006				•
Well I.D.: BIA-2					
Purge Method:	Low-Flow				
Static Water Level (WL) = Notes/Observations:		35.55 ft			

TtFW Samplers Present:

Loren Blasko

Total Volume Purged:

Design = _____ gallons Actual = gallons

Time	Depth to Water	рН	Cond.	Turb	DO	ORP	Temp	Flow Rate	TDS	Comments
	(ft TIC)	(SU)	(mS/cm)	(NTU)	(mg/L)	(mV)	(°C)	(mL/min)	(g/mL)	
8:29	37.56	4.82	0.46	28.9	11.13	216	21.95	325	0.31	
8:34	37.6	7.01	0.48	16.3	1.96	99	12.63	200	0.31	
8:39	37.65	7.39	0.47	26.2	1.12	70	13.18	200	0.30	
8:44	37.7	7.56	0.48	0.0	1.03	53	14.2	200	0.31	
8:49	37.71	7.56	0.48	0.0	1.35	50	15.19	200	0.31	
8:54	37.8	7.53	0.48	0.0	1.44	49	15.78	200	0.31	
8:59	37.79	7.49	0.49	0.0	1.44	50	16.34	200	0.32	
9:04	37.75	7.48	0.50	0.0	1.37	49	16.59	200	0.33	
9:09	37.73	7.53	0.49	0.0	1.26	43	16.65	200	0.32	
9:14	37.68	7.57	0.53	0.0	1.15	38	16.47	200	0.34	
9:19	37.55	7.63	0.53	0.0	1.11	31	16.18	200	0.34	
9:24	37.65	7.64	0.52	0.0	1.10	28	16.22	200	0.33	
9:29	37.61	7.66	0.52	0.0	1.05	26	16.19	200	0.33	
9:35										Sampling Begins
						Total Assessor				
								and the same of th		

PROJECT NAME: PROJECT No:	Little Valley		<u>—</u>	
DATE:	10/30/2006		_	
Well I.D.: BIA-3				
Purge Method: Static Water Level (WL) = Notes/Observations:	Low-Flow	48.89_ft		
TtFW Samplers Present:		Loren Blasko		
Total Volume Purged:		Design =	gallons	

Total Vol	unic i diged.		Actual =		_gallons						
Time	Depth to Water (ft TIC)	pH (SU)	Cond. (mS/cm)	Turb (NTU)	DO (mg/L)	ORP (mV)	Temp (°C)	Flow Rate (mL/min)	TDS (g/mL)	Comments	-
11:23	48.87	6.13	0.67	482.0	12.04	165	11.49	250	0.42		-
11:28	48.87	7.64	0.66	172.0	10.06	87	12.2	250	0.42		-
11:33	48.87	8.14	0.66	107.0	10.22	48	12.81	250	0.42		
11:38	48.88	8.23	0.68	76.4	10.38	34	15.19	250	0.44		2.40
							***************************************			~ === 	FFF

	(ft HC)	(SU)	(mS/cm)	(NTU)	(mg/L)	(mV)	(°C)	(mL/min)	(g/mL)	
11:23	48.87	6.13	0.67	482.0	12.04	165	11.49	250	0.42	
11:28	48.87	7.64	0.66	172.0	10.06	87	12.2	250	0.42	
11:33	48.87	8.14	0.66	107.0	10.22	48	12.81	250	0.42	
11:38	48.88	8.23	0.68	76.4	10.38	34	15.19	250	0.44	
11:43	48.88	8.36	0.73	68.5	10.59	21	15.49	250	0.47	
11:48	48.88	8.09	0.74	59.4	11.00	44	14.01	250	0.47	
11:53	48.88	7.97	0.75	36.2	10.82	54	14.74	250	0.48	
11:58	48.88	7.88	0.76	15.4	10.85	62	14.55	250	0.48	
12:03	48.88	7.86	0.75	0.0	10.87	65	14.85	250	0.48	
12:08	48.88	7.84	0.75	0.0	10.89	67	14.98	250	0.48	
12:20										Sampling Begins
				and all the same of the same o						

PROJECT NAME: PROJECT No:	Little Valley	-	
DATE:	10/30/2006	- -	
Well I.D.: BIA-5			
Purge Method: Static Water Level (WL) = Notes/Observations:	Low-Flow ft	·	
TtFW Samplers Present:	Loren Blasko		
			•

Total Volume Purged:	Design =	gallons
	Actual =	gallons

Time	Depth to Water	рН	Cond.	Turb	DO	ORP	Temp	Flow Rate	TDS	Comments
	(ft TIC)	(SU)	(mS/cm)	(NTU)	(mg/L)	(mV)	(°C)	(mL/min)	(g/mL)	
8:57	6.1	5.30	0.18	0.0	11.46	252	10.29	300	0.11	
9:03	6.13	6.38	0.19	0.0	2.86	174	10.74	225	0.12	
9:08	6.01	6.75	0.18	0.0	2.76	149	10.93	225	0.12	SVV - See - Color SVV - See - Color SVV - See - SvV - See - SvV -
9:13	6.01	6.99	0.18	0.0	2.67	128	11.87	200	0.12	
9:18	6.01	7.04	0.18	0.0	2.66	124	11.79	200	0.11	
9:23	6.02	7.09	0.18	0.0	2.57	117	12.04	250	0.11	
9:28	6.03	7.11	0.18	0.0	2.55	113	12.21	200	0.11	,
9:33	5.86	7.12	0.18	0.0	2.49	111	11.87	200	0.12	
9:38	5.83	7.14	0.18	0.0	2.48	109	12.14	200	0.12	
9:43	8.84	7.14	0.18	0.0	2.38	108	12.21	200	0.12	
9:48	8.84	7.11	0.18	0.0	2.38	109	12.27	200	0.12	
9:50										Sampling Begins
		777777777777777777777777777777777777777			***************************************			0.000		
			-					Andread		
				74A89979990-1/AA						
									-	

PROJECT NAME:	Little Valley			
PROJECT No: DATE:	10/30/2006		<u> </u>	
Well I.D.: BIA-6				
Purge Method:	Low-Flow	2.02.#		
Static Water Level (WL) = Notes/Observations:		3.03 ft		
44-11-11-11-11-11-11-11-11-11-11-11-11-1				

TtFW Samplers Present:

Ryan Beachner

Total Volume Purged:

Design = _____ gallons Actual = _____ gallons

Time	Depth to Water	рН	Cond.	Turb	DO	ORP	Temp	Flow Rate	TDS	Comments
	(ft TIC)	(SU)	(mS/cm)	(NTU)	(mg/L)	(mV)	(°C)	(mL/min)	(g/mL)	
9:15	4.04	6.12	0.246	157.0	5.83	105	10.13	300	0.16	
9:20	4.00	6.63	0.245	68.0	0.91	104	10.05	300	0.16	
9:25	3.92	6.76	0.245	27.4	2.38	23	10.15	300	0.16	
9:30	3.88	6.80	0.248	27.9	4.15	-34	10.29	300	0.16	
9:35	3.89	6.86	0.247	17.6	4.13	-46	10.41	300	0.16	
9:40	3.89	6.76	0.248	17.1	3.66	-55	10.42	300	0.16	
9:45	3.89	6.86	0.249	15.4	2.33	-58	10.45	300	0.16	
9:50	3.89	6.84	0.246	9.4	2.53	-64	10.59	300	0.16	
9:55	3.88	6.78	0.246	5.0	3.57	-68	10.57	300	0.16	
10:00	3.88	6.77	0.246	0.0	1.79	-71	10.63	300	0.16	
10:05	3.88	6.90	0.245	0.0	2.76	-76	10.67	300	0.16	
10:10	3.88	6.92	0.245	0.0	1.32	-76	10.75	300	0.16	
10:15	3.88	6.93	0.247	0.0	2.45	-74	10.75	300	0.16	
10:20										Sampling Begins
								TO THE ADMINISTRATION OF THE ADMINISTRATION		

PROJECT NAME:	Little Valley	
PROJECT No: DATE:	10/31/2006	
Well I.D.: BIA-D1		
Purge Method: Static Water Level (WL) = Notes/Observations:	Low-Flow 45.72 ft	·
TtFW Samplers Present:	Ryan Beachner	
Total Volume Purged:	Design -	gallone

•	Total Volume Furged.			Actual = _	gallons gallons		
	Time	Depth to Water	рН	Cond.	Turb	DO	OF
		(ft TIC)	(SU)	(mS/cm)	(NTU)	(mg/L)	(m

Time	Depth to Water	pН	Cond.	Turb	DO	ORP	Temp	Flow Rate	TDS	Comments
	(ft TIC)	(SU)	(mS/cm)	(NTU)	(mg/L)	(mV)	(°C)	(mL/min)	(g/mL)	
8:40	45.70	6.32	0.706	140.0	9.49	107	12.81	225	0.45	
8:45	45.69	6.92	0.697	98.6	7.57	93	13.34	225	0.44	
8:50	45.69	6.95	0.687	81.0	7.43	81	14.39	225	0.44	
8:55	45.69	9.65	0.683	47.1	7.50	45	15.91	200	0.44	
9:00	45.69	9.96	0.692	18.0	7.51	23	16.39	200	0.44	
9:05	45.70	9.98	0.697	9.6	7.45	30	16.58	200	0.45	
9:10	45.70	6.99	0.701	0.0	7.33	38	16.49	200	0.45	
9:15	45.70	7.00	0.699	0.0	7.25	44	16.65	200	0.45	
9:20										Sampling Begins
										· · · · · · · · · · · · · · · · · · ·
	74 WWW.0000000000000000000000000000000000						***************************************			
						NAME OF THE OWNER OWNER OF THE OWNER OWNE			and the second delication of the second	

PROJECT NAME: PROJECT No: DATE:	Little Valley 10/30/2006		
Well I.D.: BIA-D2			
Purge Method: Static Water Level (WL) = Notes/Observations:	Low-Flow 34.10 ft	·	
TtFW Samplers Present:	Ryan Beachner		

Design = _____ gallons Actual = _____ gallons

Total Volume Purged:

Time	Depth to Water	рН	Cond.	Turb	DO	ORP	Temp	Flow Rate	TDS	Comments
	(ft TIC)	(SU)	(mS/cm)	(NTU)	(mg/L)	(mV)	(°C)	(mL/min)	(g/mL)	
11:45	34.09	7.47	0.452	795.0	8.67	79	10.60	350	0.30	
11:50	34.26	7.75	0.454	977.0	3.94	100	10.40	300	0.29	
11:55	34.27	7.76	0.434	537.0	2.41	90	11.74	300	0.28	
12:00	34.27	7.72	0.423	219.0	2.12	55	12.71	300	0.27	
12:05	24.27	7.71	0.419	137.0	2.01	19	13.00	300	0.27	
12:10	34.27	7.70	0.414	89.2	1.89	-17	13.14	350	0.27	
12:15	34.27	7.71	0.411	64.8	1.78	-31	13.22	325	0.27	
12:20	34.27	7.72	0.409	49.4	1.76	-32	13.22	300	0.27	
12:25	34.27	7.72	0.405	36.1	1.72	-30	13.27	300	0.26	
12:30										Sampling Begins
				er territolog entrend a fer a total entre accounts and a fer a						

PROJECT NAME: PROJECT No:	Little Valley	_		
DATE:	10/25/2006	- -		
Well I.D.: CCA-1	-			
Purge Method: Static Water Level (WL) = Notes/Observations:	Low-Flowft			
TtFW Samplers Present:	Loren Blasko			

Total Volume Purged:	Design =	gallons
	Actual =	gallons

Time	Depth to Water	pН	Cond.	Turb	DO	ORP	Temp	Flow Rate	TDS	Comments
	(ft TIC)	(SU)	(mS/cm)	(NTU)	(mg/L)	(mV)	(°C)	(mL/min)	(g/mL)	
11:18	27.81	8.35	0.400	170.0	8.86	55	7.86	400	0.26	
11:23	27.81	8.50	0.410	271.0	8.21	46	9.85	400	0.27	
11:28	27.82	8.68	0.420	287.0	6.50	47	10.28	400	0.27	
11:33	27.82	8.76	0.420	237.0	4.11	44	10.6	400	0.28	
11:38	27.82	8.90	0.430	180.0	4.59	42	10.72	400	0.28	
11:43	27.83	8.81	0.430	159.0	3.36	42	11.1	400	0.28	
11:48	27.83	8.81	0.430	957.0	3.33	37	10.79	400	0.28	
11:53	27.83	8.75	0.430	129.0	3.61	35	10.91	400	0.28	
11:58	27.83	8.76	0.440	61.6	4.81	38	10.87	400	0.28	
12:03	27.83	8.76	0.440	64.0	3.81	39	10.86	400	0.28	
12:08	27.83	8.79	0.430	58.4	5.46	45	10.04	400	0.28	
12:13	23.83	8.75	0.430	48.5	4.86	49	9.92	400	0.28	
12:18	27.83	8.74	0.430	47.9	4.71	50	9.89	400	0.28	
12:25	27.83	8.75	0.430	46.4	4.69	50	9.96	400	0.28	Sampling Begins

PROJE	ECT N	IAME:
--------------	-------	-------

Little Valley

PROJECT No: DATE:

10/31/2006

Well I.D.: CCA-2

Low-Flow

Purge Method: Static Water Level (WL) =

21.45 ft

Notes/Observations:

TtFW Samplers Present:

Ryan Beachner

Total Volume Purged:

Design = gallons Actual = gallons

Time	Depth to Water	pН	Cond.	Turb	DO	ORP	Temp	Flow Rate	TDS	Comments
	(ft TIC)	(SU)	(mS/cm)	(NTU)	(mg/L)	(mV)	(°C)	(mL/min)	(g/mL)	
11:40	22.35	14.18	2.360	0.0	1.85	-67	10.51	400	1.50	
11:45	22.22	14.11	2.240	0.0	1.40	-56	10.8	200	1.40	
11:50	22.18	14.09	2.150	0.0	1.04	-51	11.24	200	1.40	
11:55	22.18	13.98	1.970	0.0	0.77	-42	12.06	250	1.30	
12:00	22.18	13.90	1.830	0.0	0.64	-34	12.63	225	1.20	
12:05	22.18	13.84	1.750	0.0	0.60	-29	12.8	250	1.10	
12:10	22.18	13.79	1.590	0.0	0.66	-24	12.91	250	1.00	
12:15	22.17	13.74	1.460	0.0	0.78	-20	12.82	225	0.90	
12:20	22.17	13.64	1.330	0.0	1.03	-16	12.69	225	0.80	
12:25	22.17	13.57	1.240	0.0	1.28	-13	12.61	225	0.80	
12:30	22.17	13.49	1.160	0.0	1.50	-10	12.49	250	0.70	
12:35	22.17	13.42	1.090	0.0	1.69	-7	12.43	250	0.70	
12:40	22.17	13.35	1.060	0.0	1.80	-5	12.35	250	0.60	
12:45	22.15	13.30	0.970	0.0	1.88	-2	12.34	200	0.60	
12:50	22.14	13.28	0.930	0.0	1.95	0	12.38	200	0.60	
12:55	22.14	13.16	0.572	0.0	2.07	-56	12.32	200	0.37	
13:00	22.46	13.12	0.551	15.0	3.49	-45	11.63	200	0.27	

PROJECT NAME: PROJECT No:	Little Valley	
DATE:	10/31/2006	
Well I.D.: CCA-2	MAMARA, Marana	
Purge Method: Static Water Level (WL) = Notes/Observations:	Low-Flow21.45_ft	
TtFW Samplers Present:	Ryan Beachner	

Total Volume Purged:

Design = _____ gallons
Actual = ____ gallons

Time Depth to Water Cond. DO рН Turb ORP Flow Rate TDS Comments Temp (ft TIC) (SU) (mS/cm) (NTU) (mV) (°C) (mg/L)(mL/min) (g/mL) 13:05 22.41 12.91 0.428 0.0 2.61 -50 11.67 225 0.28 13:10 22.41 12.88 0.420 -50 0.0 2.58 12.07 225 0.27 13:15 22.41 12.79 0.385 0.0 2.58 -48 12.13 225 0.25 13:20 22.41 12.65 0.355 0.0 2.54 -43 12.13 225 0.23 13:25 22.41 12.56 0.336 0.0 2.63 -40 0.23 12.16 225 13:30 22.41 12.41 0.328 0.0 2.70 -38 12.13 225 0.21 13:35 22.41 12.22 0.308 1.1 2.75 -33 12.04 250 0.20 13:38 22.42 12.08 0.303 4.5 2.72 -30 11.97 250 0.20 13:41 22.42 11.97 0.302 8.0 2.82 -29 11.98 250 0.19 13:44 22.42 11.94 0.295 6.1 2.73 -28 11.98 250 0.19 13:47 Sampling Begins

PROJECT NAME: PROJECT No:	Little Valley				
DATE:	10/25/2006	<u>}</u>		•	
Well I.D.: CCA-3		_			
Purge Method: Static Water Level (WL) = Notes/Observations:	Low-Flow	<u>26.45</u> ft			
		-			
TtFW Samplers Present:		Loren Blasko			

Total Volume Purged:	Design =	gallons
	Actual =	gallons

Time	Depth to Water	рН	Cond.	Turb	DO	ORP	Temp	Flow Rate	TDS	Comments
	(ft TIC)	(SU)	(mS/cm)	(NTU)	(mg/L)	(mV)	(°C)	(mL/min)	(g/mL)	
9:00	27.01	6.37	0.479	98.7	4.72	34	8.85	225.00	0.31	
9:05	27.25	7.02	0.480	95.0	4.47	51	9.09	200.00	0.31	
9:10	27.36	7.29	0.480	88.5	4.33	61	9.28	200.00	0.31	
9:15	27.47	7.47	0.480	72.4	4.06	64	9.53	200.00	0.31	
9:20	27.55	7.61	0.480	64.3	4.06	68	9.29	200.00	0.31	
9:25	27.58	7.73	0.490	72.4	4.10	72	8.88	200.00	0.32	
9:30	27.71	7.79	0.480	53.3	3.97	73	9.40	200.00	0.31	
9:35	27.78	7.84	0.480	49.9	3.71	71	9.46	200.00	0.31	
9:40	27.9	7.89	0.480	45.2	3.78	71	9.91	200.00	0.31	
9:45	27.98	7.95	0.480	43.1	3.60	68	9.73	200.00	0.31	
9:50	28.07	8.01	0.480	45.0	3.74	69	9.57	200.00	0.31	
9:53	28.03	8.05	0.480	46.2	3.62	68	9.64	200.00	0.32	
9:56	28.03	8.07	0.480	45.4	3.58	66	9.66	200.00	0.31	
10:00										Sampling Begins
				V-1000100000						

20	\sim	COT	AIA	
ГΠ	UJ	IECT	INM	

Little Valley

PROJECT No: DATE:

10/24/2006

Well I.D.: CCA-5

Purge Method:

Low-Flow

Static Water Level (WL) =

24.79 ft

Notes/Observations:

TtFW Samplers Present:

Loren Blasko

Total Volume Purged:

Design = gallons Actual = gallons

Time	Depth to Water	рН	Cond.	Turb	DO	ORP	Temp	Flow Rate	TDS	Comments
	(ft TIC)	(SU)	(mS/cm)	(NTU)	(mg/L)	(mV)	(°C)	(mL/min)	(g/mL)	
10:57	24.81	7.80	0.36	201	12.72	181	7.4	400.00	0.24	
11:02	24.79	7.82	0.38	896	5.35	117	8.1	200.00	0.25	
11:07	24.77	7.88	0.37	797	5.39	82	9.1	200.00	0.26	
11:12	24.71	7.87	0.40	469	5.11	48	10.0	200.00	0.25	
11:17	24.99	7.87	0.39	373	4.72	37	10.2	200.00	0.26	
11:22	24.99	7.88	0.39	268	4.41	31	10.7	200.00	0.25	
11:27	24.91	7.87	0.39	220	4.85	46	10.6	200.00	0.25	
11:32	24.99	7.86	0.39	157	4.42	50	10.6	200.00	0.25	
11:37	24.99	7.86	0.39	138	4.21	54	10.5	200.00	0.26	
11:42	24.79	7.86	0.39	118	4.10	54	10.5	200.00	0.25	
11:47	24.79	7.86	0.39	87	4.13	34	11.0	200.00	0.25	
11:52	24.75	7.85	0.39	75	4.22	32	11.1	200.00	0.25	
11:57	24.79	7.84	0.39	66	4.21	34	10.9	200.00	0.25	
12:02	24.79	7.83	0.39	59	4.31	40	10.9	200.00	0.25	
12:07	24.79	7.83	0.39	52	4.30	38	10.9	200.00	0.25	
12:12	24.75	7.83	0.39	42	4.37	41	11.1	200.00	0.25	
12:17	24.79	7.83	0.39	36	4.38	45	11.2	200.00	0.25	
12:21	24.79	7.82	0.39	38	4.38	46	11.2	200.00	0.28	
12:25		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,								Sampling Begins

PROJECT NAME: PROJECT No:	Little Valley	
DATE:	10/24/2006	· •
Well I.D.: CCA-6		
Purge Method: Static Water Level (WL) =	Low-Flow 24.80 ft	
Notes/Observations:	Generator ran out of gas at 12:20	
TtFW Samplers Present:	Ryan Beachner	
Total Volume Purged:		gallons gallons

Time	Depth to Water	рН	Cond.	Turb	DO	ORP	Temp	Flow Rate	TDS	Comments
	(ft TIC)	(SU)	(mS/cm)	(NTU)	(mg/L)	(mV)	(°C)	(mL/min)	(g/mL)	
11:20	24.81	8.45	0.247	3.9	9.45	54	9.16	150	0.19	
11:25	24.81	8.77	0.317	0.0	6.18	73	9.39	300	0.21	
11:30	24.81	8.88	0.343	0.0	3.21	71	10.65	300	0.23	
11:35	24.8	8.89	0.358	0.0	3.20	65	10.81	375	0.23	
11:40	24.8	8.90	0.361	0.0	3.13	64	10.74	300	0.23	
11:45	24.8	8.92	0.361	0.0	3.07	60	10.82	300	0.23	
11:50	24.8	8.92	0.361	0.0	3.01	55	10.96	300	0.23	
11:55	24.8	8.94	0.361	0.0	2.98	51	11.02	300	0.23	
12:00										Sampling Begins
12:20				100000						
12:35										Restart Sampling

***************************************				4.00_4				-		
				AND THE RESIDENCE OF THE PARTY						

PROJECT NAME: PROJECT No:	Little Valley		
DATE:	10/25/2006		
Well I.D.: CCA-7			
Purge Method:	Low-Flow		
Static Water Level (WL) = Notes/Observations:	25.03_ft		
TtFW Samplers Present:	Ryan Beachner		
Total Volume Purged:	Design = Actual =	gallons gallons	

Time	Depth to Water	рН	Cond.	Turb	DO	ORP	Temp	Flow Rate	TDS	Comments
	(ft TIC)	(SU)	(mS/cm)	(NTU)	(mg/L)	(mV)	(°C)	(mL/min)	(g/mL)	
12:15	25.03	7.32	0.271	34.0	8.68	122	8.9	250.00	0.18	
12:20	25.04	7.54	0.272	14.0	5.92	106	9.81	350.00	0.18	
12:25	25.04	7.66	0.272	8.0	5.38	96	10.44	350.00	0.18	
12:30	25.04	7.79	0.270	8.4	5.29	85	10.85	300.00	0.18	
12:35	25.04	7.87	0.270	2.2	5.26	79	10.83	300.00	0.18	
12:40	25.04	7.89	0.270	2.1	5.22	76	10.69	300.00	0.18	
12:45	25.04	7.92	0.270	3.8	5.20	74	10.75	300.00	0.18	
12:50	25.04	7.94	0.269	11.8	5.22	71	10.88	300.00	0.17	
12:55	25.04	7.99	0.269	11.0	5.23	66	11.01		0.17	
13:00										Sampling Begins
	-									
				V						
		····								

P	R	OJ	E	C.	Т	١	A	۱	Λ	Ε	:
---	---	----	---	----	---	---	---	---	---	---	---

Little Valley

PROJECT No: DATE:

10/25/2006

Well I.D.: CCA-8

Purge Method:

Low-Flow

Static Water Level (WL) = Notes/Observations:

25.87 ft

Sampling began at 10:45

TtFW Samplers Present:

Ryan Beachner

Total Volume Purged:

Design = gallons Actual = gallons

Time	Depth to Water	рН	Cond.	Turb	DO	ORP	Temp	Flow Rate	TDS	Comments	
	(ft TIC)	(SU)	(mS/cm)	(NTU)	(mg/L)	(mV)	(°C)	(mL/min)	(g/mL)		
9:20	25.87	5.27	0.244	11.7	9.32	230.0	9.03	210.00	0.17		
9:25	25.87	5.89	0.271	249.0	4.74	198.0	9.16	210.00	0.18		
9:30	25.87	6.38	0.275	150.0	4.04	174.0	9.35	210.00	0.18		
9:35	25.88	6.74	0.269	108.0	3.95	152.0	9.42	210.00	0.17		
9:40	25.87	7.06	0.258	61.2	3.96	133.0	9.54	210.00	0.17		
9:45	25.87	7.36	0.251	40.1	3.79	110.0	9.45	200.00	0.16		
9:50	25.87	7.60	0.248	30.5	3.71	95.0	9.52	200.00	0.16		
9:55	25.87	7.80	0.246	27.2	3.64	81.0	9.47	200.00	0.16		
10:00	25.87	7.96	0.246	22.3	3.51	69.0	9.47	225.00	0.16		
10:05	25.87	8.07	0.245	21.4	3.44	59.0	9.47	225.00	0.16		
10:10	25.87	8.18	0.245	19.4	3.37	51.0	9.54	225.00	0.16		
10:15	25.87	8.27	0.244	19.5	3.30	43.0	9.65	225.00	0.16		
10:20	25.87	8.33	0.244	13.2	3.24	37.0	9.64	225.00	0.16		
10:25	25.87	8.38	0.243	12.5	3.20	32.0	9.69	225.00	0.16		
10:30	25.87	8.43	0.243	8.6	3.15	29.0	9.65	250.00	0.16		
10:35	25.87	8.45	0.243	5.7	3.13	26.0	9.63	250.00	0.16		
10:40	25.87	8.48	0.243	4.2	3.11	23.0	9.70		0.16		
									Sampling	Begins	

PROJECT NAME:	Little Valley
PROJECT No: DATE:	10/24/2006
Well I.D.: CCA-9D	
Purge Method: Static Water Level (WL) =	Low-Flow 24.77 ft
Notes/Observations:	Pump shut down @ 8:52 (generator shut off), turned back on.
TtFW Samplers Present:	Loren Blasko

Total Volume Purged:

Design = _____ gallons Actual = _____ gallons

Time	Depth to Water	рН	Cond.	Turb	DO	ORP	Temp	Flow Rate	TDS	Comments
	(ft TIC)	(SU)	(mS/cm)	(NTU)	(mg/L)	(mV)	(°C)	(mL/min)	(g/mL)	
8:44	24.81	6.05	0.35	0.0	9.21	224.0	7.6	300	0.23	
8;49	24.82	7.44	0.34	0.3	4.93	96.0	9.0	300	0.22	
8:52										
8:56	24.82	7.84	0.34	18.3	5.08	71.0	9.0	300	0.22	
9:01	24.82	7.90	0.34	20.9	3.39	52.0	9.4	300	0.22	
9:06	24.80	7.94	0.34	16.5	2.95	51.0	9.5	300	0.22	
9:11	24.80	7.95	0.34	13.2	2.65	51.0	9.6	300	0.22	
9:16	24.80	7.97	0.34	8.8	2.65	51.0	9.9	300	0.22	
9:21	24.79	7.97	0.34	6.7	2.55	53.0	9.8	300	0.22	
9:25										Sampling Begins
		F1774 F 7000000000000000000000000000000000								
									5.46.04	
		***************************************							MARKAN AND AND AND AND AND AND AND AND AND A	

PROJECT NAME: PROJECT No:	Little Valley		
DATE:	10/24/2006		
Well I.D.: CCA-10			
Purge Method:	Low-Flow	Military Commence of the Comme	
Static Water Level (WL) = Notes/Observations:	ft		

TtFW Samplers Present:	Ryan Beach	ner	•

Total Volume Purged:	Design =	gallons
	Actual =	gallons

Time	Depth to Water	рН	Cond.	Turb	DO	ORP	Temp	Flow Rate	TDS	Comments
	(ft TIC)	(SU)	(mS/cm)	(NTU)	(g/L)	(mV)	(°C)	(mL/min)	(g/mL)	
8:45	24.44	6.68	0.360	43.7	6.65	53	8.84	350	0.23	
8:50	24.44	7.35	0.351	46.8	5.61	28	9.85	350	0.23	
8:55	24.44	7.75	0.355	40.3	5.18	21	10.46		0.23	
9:00	24.45	8.01	0.357	26.4	4.79	21	10.7	350	0.23	
9:05	24.44	8.19	0.358	22.9	4.56	21	10.75	375	0.23	
9:10	24.45	8.33	0.361	14.4	4.44	25	10.74	325	0.23	
9:15	24.45	8.39	0.360	12.3	4.34	25	10.84	310	0.23	
9:20	24.45	8.43	0.361	8.8	4.65	27	10.87	310	0.23	
9:25	24.45	8.47	0.361	3.8	4.32	31	10.89		0.23	
9:30	24.45	8.50	0.360	3.1	4.43	33	10.97		0.23	
9:35	24.45	8.52	0.362	0.4	4.37	36	10.87	310	0.24	
9:40	24.45	8.53	0.360	0.0	4.33	39	11.01		0.23	
9:45										Sampling Begins

								A Parameter Company		
								50		

PROJECT NAME:	Little Valley	
PROJECT No: DATE:	10/23/2006	
Well I.D.: CCA-11		
Purge Method: Static Water Level (WL) = Notes/Observations:	Low-Flow26.65_ft	

TtFW Samplers Present:

Ryan Beachner

Total Volume Purged:

Design = _____ gallons Actual = _____ gallons

Time	Depth to Water	рΗ	Cond.	Turb	DO	ORP	Temp	Flow Rate	TDS	Comments
	(ft TIC)		(mS/cm)	(NTU)	(mg/L)	(mV)	(°C)	(mL/min)	(g/mL)	
14:12	26.65	6.10	0.403	16.7	6.14	18	8.89		0.26	
14:18	26.63	6.65	0.404	10.7	2.77	18	8.83	275	0.26	
14:21	26.63	6.99	0.403	11.6	2.38	18	9.11		0.26	
14:25	26.63	7.35	0.401	11.3	2.38	2	9.51	300	0.26	
14:29	26.62	7.58	0.401	11.0	2.28	-6	9.83	200	0.26	
14:33	26.63	7.81	0.402	12.4	2.25	-10	9.98	300	0.26	
14:38	26.63	8.05	0.404	13.3	2.08	-1	10.03	20	0.26	
14:43	26.63	8.22	0.406	14.7	2.06	3	9.98		0.26	
14:47	26.63	8.32	0.407	14.7	2.09	5	9.85	210	0.26	
14:51	26.63	8.39	0.405	15.7	2.09	6	9.92		0.26	
14:55	26.63	8.45	0.405	17.3	2.07	9	9.91	210	0.26	
14:59	26.63	8.54	0.404	18.5	2.04	11	10.19	210	0.26	
15:03	26.63	8.56	0.405	11.3	2.02	13	10.11		0.26	
15:07	26.63	8.59	0.405	19.4	2.02	12	10.07	210	0.26	
15:10										Sampling Begins

PROJECT NAME: PROJECT No:	Little Valley				
DATE:	10/23/2006				
Well I.D.: CCA-12					
Purge Method:	Low-Flow				
Static Water Level (WL) = Notes/Observations:		28.08 ft			
TtFW Samplers Present:	Lo	ren Blasko			
Total Volume Purged:		sign = tual =	gallons gallons		

Time	Depth to Water	рН	Cond.	Turb	DO	ORP	Temp	Flow Rate	TDS	Comments
	(ft TIC)	(SU)	(mS/cm)	(NTU)	(mg/L)	(mV)	(°C)	(mL/min)	(g/mL)	
13:50	28.07	0.45	0.48	6.9	9.98	215	8.1	250	0.25	
13:55	28.07	7.42	0.38	7.4	8.75	114	10.1	250	0.25	
14:00	28.07	7.52	0.39	6.3	8.70	98	10.2	250	0.25	***************************************
14:05	28.07	7.57	0.39	7.5	8.55	93	10.7	250	0.25	
14:10	28.07	7.60	0.39	12.4	8.50	97	11.0	250	0.25	
14:15	28.06	7.62	0.39	12.3	8.44	97	11.1	250	0.25	
14:20	28.06	7.62	0.39	15.3	8.47	102	11.3	250	0.25	Sampling Begins
										The second secon
-		WWW. 1994 1								
				Accessed to the contract of th						
		· · · · · · · · · · · · · · · · · · ·								
						-A				

····						111 - 1				

PROJECT NAME: PROJECT No:	Little Valley		-		
DATE:	10/26/2006		- -		
Well I.D.: PZ-5					
Purge Method: Static Water Level (WL) = Notes/Observations:	Low-Flow	26.07 ft			
	<u> </u>				

TtFW Samplers Present:

Loren Blasko

Total Volume Purged:

Design = ____ gallons Actual = ____ gallons

Time	Depth to Water	рН	Cond.	Turb	DO	ORP	Temp	Flow Rate	TDS	Comments
	(ft TIC)	(SU)	(mS/cm)	(NTU)	(mg/L)	(mV)	(°C)	(mL/min)	(g/mL)	
10:53	26.09	7.21	0.52	89.8	11.44	54	9.57	250	0.34	
10:58	26.09	7.84	0.54	91.7	9.56	58	9.63	250	0.34	
11:03	26.09	8.05	0.54	120.0	9.50	50	11.35	250	0.34	
11:08	26.09	8.16	0.53	105.0	9.33	46	12.45	250	0.34	
11:13	26.09	8.26	0.53	93.3	9.30	42	12.92	250	0.34	
11:18	26.09	8.34	0.53	66.9	9.46	38	12.73	250	0.34	
11:23	26.09	8.34	0.53	56.8	9.34	28	14.65	250	0.34	
11:28	26.09	8.44	0.54	85.1	9.93	33	12.09	250	0.34	
11:33	26.09	8.46	0.54	86.5	9.78	31	11.37	250	0.34	
11:38	26.09	8.48	0.54	64.9	9.64	29	11.56	250	0.35	
11:43	26.09	8.47	0.53	45.0	9.46	25	12.79	250	0.34	
11:48	26.09	8.48	0.53	44.6	9.45	25	12.82	250	0.34	
11:53	26.09	8.50	0.53	44.3	9.32	24	12.77	250	0.34	***************************************
11:55										Sampling Begins
									CORRECT TO THE PROPERTY OF THE	

PROJECT	NAME:
----------------	-------

Little Valley

PROJECT No:

11/1/2006

Well I.D.: PZ-6D

DATE:

Purge Method:

Low-Flow

Static Water Level (WL) =

25.48 ft

Notes/Observations:

TtFW Samplers Present:

Ryan Beachner

Total Volume Purged:

gallons Design = Actual = gallons

Depth to Water DO ORP Flow Rate TDS Comments Cond. Turb Temp Time рН (°C) (g/mL)(ft TIC) (SU) (mV) (mL/min) (mS/cm) (NTU) (mg/L)9.99 0.22 11:05 25.19 7.54 0.344 10.8 10.33 75.0 11:10 25.46 40.9 9.60 86.0 10.19 0.25 7.81 0.337 0.29 25.67 >1000 8.48 76.0 10.74 300.00 11:15 7.99 0.403 11:20 25.53 8.72 >1000 4.90 49.0 10.59 300.00 0.32 0.501 11:25 25.52 8.65 0.504 >1000 6.54 49.0 10.39 300.00 0.32 0.32 11:30 25.53 8.62 0.500 6.94 300.00 >1000 42.0 10.41 >1000 7.23 0.32 11:35 25.54 8.61 36.0 10.36 350.00 0.503 0.32 11:40 25.53 8.60 0.506 >1000 7.40 33.0 10.43 350.00 7.50 350.00 0.33 25.53 0.508 625.0 31.0 10.44 11:45 8.59 350.00 0.33 11:50 25.53 0.509 7.53 8.60 382.0 30.0 10.55 25.53 299.0 7.56 350.00 0.33 11:55 8.60 0.508 30.0 10.67 12:00 25.53 8.61 7.58 30.0 10.62 350.00 0.33 0.508 248.0 375.00 0.33 12:05 25.53 8.61 0.508 198.0 7.58 29.0 10.64 300.00 0.33 12:10 25.53 8.62 0.509 198.0 7.57 29.0 10.56 25.53 29.0 10.61 300.00 0.33 12:15 8.62 0.508 133.0 7.55 12:20 25.53 8.62 118.0 7.61 29.0 10.63 300.00 0.33 0.509 28.0 0.33 12:25 25.53 8.63 0.509 96.0 7.62 10.69 300.00

PROJECT NAME: PROJECT No:	Little Valley	
DATE:	11/1/2006	
Well I.D.: PZ-6D		
Purge Method:	Low-Flow	
Static Water Level (WL) = Notes/Observations:	25.48_ft	
TtFW Samplers Present:	Ryan Beachner	
Total Volume Purged:	Design = Actual =	gallons

Time	Depth to Water (ft TIC)	pH (SU)	Cond. (mS/cm)	Turb (NTU)	DO (mg/L)	ORP (mV)	Temp (°C)	Flow Rate (mL/min)	TDS (g/mL)	Comments
12:30	25.53	8.63	0.509	169.0	7.68	28.0	10.64	300.00	0.33	
12:35	25.54	8.69	0.508	37.4	7.82	40.0	10.63	300.00	0.33	
12:40	25.54	8.66	0.512	22.8	7.63	34.0	10.68	300.00	0.33	
12:45	25.55	8.64	0.512	23.0	7.64	32.0	10.69		0.33	
12:50							F			Sampling Begins
				/ .						

0.770.400.000.000.000.000										

PROJECT	NAME:
PROJECT	No:

Little Valley

DATE:

10/31/2006

Well I.D.: PZ-20D

Purge Method:

Low-Flow

Static Water Level (WL) =

26.00 ft

Notes/Observations:

TtFW Samplers Present:

Loren Blasko

Total Volume Purged:

Design = gallons Actual = gallons

Time	Depth to Water	рН	Cond.	Turb	DO	ORP	Temp	Flow Rate	TDS	Comments
	(ft TIC)	(SU)	(mS/cm)	(NTU)	(mg/L)	(mV)	(°C)	(mL/min)	(g/mL)	
12:00	26.15	5.11	0.36		9.80	201.0	10.98	300.00	0.24	
12:05	26.17	6.50	0.39		5.96	164.0	11.25	200.00	0.25	
12:10	26.18	6.67	0.39		6.52	155.0	11.17	200.00	0.26	
12:15	26.15	6.86	0.39		6.34	143.0	11.68	200.00	0.25	
12:20	26.15	6.96	0.40		6.29	139.0	11.63	200.00	0.26	
12:25	26.15	6.99	0.40		6.60	139.0	11.54	250.00	0.26	
12:30	26.15	7.09	0.40		9.00	136.0	11.52	250.00	0.26	
12:35	26.15	7.26	0.40		6.65	127.0	11.57	300.00	0.26	
12:38				A 22 PONTES A TELEFONO E EMPLOYO PARA PROPERTO E A PONTES E A PONT						Generator Shut Down
12:44	26.16	7.38	0.40		9.54	125.0	11.4	300.00	0.26	Switched Generator
12:49	26.15	7.51	0.40		9.64	123.0	11.39	350.00	0.26	
12:54	26.16	7.65	0.40	289.0	7.66	121.0	11.45	400.00	0.26	
12:59	26.16	7.70	0.40	115.0	7.53	118.0	11.32	400.00	0.26	
13:04	26.16	7.71	0.40	180.0	7.41	117.0	11.27	400.00	0.26	
13:09	26.16	7.76	0.40	161.0	7.22	112.0	11.69	300.00	0.26	
13:14	26.16	7.79	0.40	308.0	7.13	108.0	11.67	300.00	0.26	
13:19	26.16	7.81	0.40	167.0	7.18	105.0	11.95	300.00	0.26	

PROJECT NAME: PROJECT No:	Little Valley		
DATE:	10/31/2006		
Well I.D.: PZ-20D			
Purge Method: Static Water Level (WL) = Notes/Observations:	Low-Flow ft		
TtFW Samplers Present:	Loren Blasko		
Total Volume Purged:	Design = Actual =	gallons gallons	

Time	Depth to Water	рН	Cond.	Turb	DO	ORP	Temp	Flow Rate	TDS	Comments
	(ft TIC)	(SU)	(mS/cm)	(NTU)	(mg/L)	(mV)	(°C)	(mL/min)	(g/mL)	
13:24	26.16	7.84	0.40	77.4	7.19	102.0	11.91	300.00	0.26	
13:29	26.16	7.86	0.40	49.4	7.19	100.0	11.62	300.00	0.26	
13:34	26.16	7.84	0.40	28.7	7.15	99.0	11.84	300.00	0.26	
13:37	26.16	7.84	0.40	35.1	7.11	98.0	11.87	300.00	0.26	
13:40	26.16	7.84	0.40	25.3	7.04	98.0	11.82	300.00	0.26	
13:45										Sampling Begins
							No.			
						-				

PROJECT NAME: PROJECT No: DATE:	Little Valley 11/1/2006	
Well I.D.: PZ-39		
Purge Method: Static Water Level (WL) = Notes/Observations:	Low-Flow 5.25_ft	<u> </u>
T.E.W.O.		
TtFW Samplers Present:	Ryan Beachner	

Design = ____ gallons Actual = ____ gallons

Total Volume Purged:

Time	Depth to Water	pН	Cond.	Turb	DO	ORP	Temp	Flow Rate	TDS	Comments
	(ft TIC)	(SU)	(mS/cm)	(NTU)	(mg/L)	(mV)	(°C)	(mL/min)	(g/mL)	
9:05	5.29	6.13	0.483	134.0	8.29	97	11.51	200	0.32	
9:10	5.31	6.60	0.695	31.6	8.19	18	11.96	300	0.41	
9:15	5.31	6.75	0.685	33.5	8.50	5	12.03	250	0.44	
9:20	5.31	6.82	0.697	8.8	8.18	8	12.01	250	0.45	
9:25	5.30	6.90	0.727	0.0	8.03	14	12.04	250	0.47	
9:30	5.31	6.94	0.756	0.0	8.21	18	12.09	250	0.49	
9:35	5.31	9.96	0.761	0.0	8.14	22	12.02	250	0.49	
9:40	5.31	6.99	0.769	0.0	7.90	25	12.08	250	0.49	
9:45		***************************************								Sampling Begins
				700000						
****								1100		
Note that the contract of the										

PROJECT NAME:	Little Valley	
PROJECT No:		
DATE:	11/1/2006	

Well I.D.: PZ-45D

Purge Method:

Low-Flow

Static Water Level (WL) = Notes/Observations:

9.22 ft

TtFW Samplers Present:

Loren Blasko

Total Volume Purged:

Design = _____ gallons Actual = ____ gallons

Time	Depth to Water	рН	Cond.	Turb	DO	ORP	Temp	Flow Rate	TDS	Comments
	(ft TIC)	(SU)	(mS/cm)	(NTU)	(mg/L)	(mV)	(°C)	(mL/min)	(g/mL)	
8:54	8.95	4.95	0.19	369.0	11.68	241.0	10.44	200	0.13	
8:53	9.22	6.03	0.31	243.0	5.12	192.0	8.58	200	0.20	
9:04	9.95	6.38	0.29	180.0	2.74	173.0	9.90	200	0.19	
9:09	11.55	6.81	0.28	143.0	3.24	152.0	10.63	200	0.18	
9:14	12.32	7.05	0.28	116.0	3.22	140.0	10.14	200	0.18	
9:19	12.76	7.19	0.28	101.0	3.15	133.0	9.67	200	0.18	
9:24	13.67	7.32	0.27	83.3	3.34	123.0	10.44	200	0.18	
9:29	14.70	7.52	0.27	99.7	3.71	110.0	10.81	200	0.17	
9:34	15.33	7.66	0.27	90.5	4.03	101.0	10.25	200	0.17	
9:39	16.12	7.75	0.26	94.4	4.33	93.0	10.51	200	0.17	
9:44	17.22	7.84	0.25	82.5	4.95	85.0	10.90	200	0.16	
9:49	18.00	7.84	0.25	81.6	5.21	84.0	10.66	200	0.16	
9:54	18.57	7.84	0.24	74.4	5.33	83.0	10.76	200	0.16	
9:59	19.26	7.84	0.24	89.0	5.48	83.0	10.47	200	0.16	
10:04	19.71	7.81	0.24	107.0	5.63	83.0	10.33	200	0.15	TO CHAIN AND AND AND AND AND AND AND AND AND AN
10:09	20.18	7.89	0.23	126.0	5.84	79.0	10.80	200	0.15	
10:14	20.77	7.93	0.24		5.85	74.0	10.94	200	0.15	

PROJECT NAME: PROJECT No:	Little Valley				
DATE:	11/1/2006				
Well I.D.: PZ-45D					
Purge Method: Static Water Level (WL) = Notes/Observations:	Low-Flow 9.22 ft				
TtFW Samplers Present:	Loren Blasko				

Total Volume	Purged:
--------------	---------

Design = ____ gallons Actual = ____ gallons

Time	Depth to Water	рН	Cond.	Turb	DO	ORP	Temp	Flow Rate	TDS	Comments
	(ft TIC)	(SU)	(mS/cm)	(NTU)	(mg/L)	(mV)	(°C)	(mL/min)	(g/mL)	
10:19	21.39	8.36	0.24		4.31	40.0	10.97	200	0.16	
10:24	23.08	8.62	0.25		4.44	24.0	11.71	200	0.16	
10:29	23.67	8.57	0.24		5.42	32.0	11.30	200	0.15	
10:34	26.50	8.35	0.23		5.75	42.0	11.37	200	0.15	
10:39	25.60	8.26	0.24	The second secon	5.44	48.0	11.62	200	0.16	
10:44	26.06	8.22	0.25		5.51	51.0	11.13	200	0.16	
10:49	26.73	8.16	0.24		5.80	55.0	11.22	200	0.16	
10:54	27.53	8.08	0.24		5.60	59.0	11.55	200	0.16	
10:59	28.27	8.06	0.25		5.53	62.0	11.10	200	0.16	
11:04	28.92	8.02	0.25		5.71	64.0	11.27	200	0.16	
11:09	29.36	8.00	0.25		5.46	65.0	11.49	200	0.16	William Andrew A
11:14	29.99	7.98	0.26		5.60	66.0	11.77	200	0.16	
11:19	30.55	8.01	0.26		5.27	64.0	11.73	200	0.17	
11:24	31.16	8.04	0.26		5.15	63.0	11.82	200	0.17	
11:29	31.97	8.00	0.26		5.67	65.0	12.21	200	0.17	
11:34	32.98	7.99	0.26		5.39	65.0	12.43	200	0.17	
11:39	33.69	7.96	0.26		5.50	67.0	12.59	200	0.17	

PROJECT NAME: PROJECT No: DATE:	Little Valley 11/1/2006		• •		
Well I.D.: PZ-45D					
Purge Method: Static Water Level (WL) = Notes/Observations:	Low-Flow	9.22 ft			

Total Volume Purged:

TtFW Samplers Present:

Loren Blasko

Design = _____ gallons Actual = _____ gallons

Time	Depth to Water	рН	Cond.	Turb	DO	ORP	Temp	Flow Rate	TDS	Comments
	(ft TIC)	(SU)	(mS/cm)	(NTU)	(mg/L)	(mV)	(°C)	(mL/min)	(g/mL)	
11:44	34.49	7.93	0.26		5.50	69.0	12.84	200	0.17	
11:49	34.97	7.91	0.26		5.49	71.0	12.79	200	0.17	
11:54	35.57	7.91	0.26		5.61	72.0	12.99	200	0.17	
11:59	36.30	7.89	0.27		5.43	72.0	12.90	200	0.17	
12:04	37.04	7.89	0.27		5.32	72.0	13.07	200	0.18	
12:09	37.82	7.89	0.27		5.42	72.0	13.23	200	0.18	
12:14	38.91	7.87	0.27	1 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	5.57	73.0	13.13	200	0.18	
12:19	39.52	7.82	0.26		9.76	76.0	13.89	200	0.17	
12:24	40.97	7.80	0.27		5.73	78.0	13.86	200	0.17	
12:29	42.20	7.75	0.26		5.92	80.0	14.55	200	0.17	
12:34	43.56	7.77	0.26		6.17	80.0	14.25	200	0.17	
12:39	43.93	7.69	0.25		5.59	86.0	13.71	200	0.17	
12:44	44.52	7.65	0.28		5.90	88.0	12.76	200	0.18	
12:49	48.96	7.64	0.28	V 4000-100-100-100-100-100-100-100-100-100	5.78	87.0	12.81	200	0.18	
12:54	45.29	7.67	0.28	WWW.4410/24	5.50	85.0	13.17	200	0.18	
12:55										Sampling Begins

PROJECT NAME: PROJECT No: DATE:	Little Valley 10/26/2006			
Well I.D.: PZ-46				
Purge Method: Static Water Level (WL) = Notes/Observations:	Low-Flow17.42 ft			
			*	
TtFW Samplers Present:	Loren Blasko			
Total Volume Purged:	Design = Actual =	gallons gallons		

Time	Depth to Water	рН	Cond.	Turb	DO	ORP	Temp	Flow Rate	TDS	Comments
	(ft TIC)	(SU)	(mS/cm)	(NTU)	(mg/L)	(mV)	(°C)	(mL/min)	(g/mL)	
8:40	17.63	5.90	0.22	5.8	9.98	76	9.62	300	0.14	
8:45	17.65	6.62	0.21	3.7	6.87	97	10.81	300	0.14	
8:50	17.62	6.81	0.21	0.0	6.89	90	11.54	200	0.13	
8:55	17.62	6.84	0.20	0.0	6.60	83	11.95	200	0.13	
9:00	17.61	6.84	0.20	0.0	6.50	78	11.98	200	0.13	
9:05	17.62	6.88	0.20	0.0	6.42	71	11.96	200	0.13	
9:10	17.62	6.89	0.20	0.0	6.46	66	12.03	200	0.13	
9:15	17.62	6.88	0.20	0.0	6.50	62	12.18	200	0.13	
9:20										Sampling Begins
~~~										
		- P- P- 001001101								
									,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
***************************************				***************************************						
									******************************	
					000 m					

PROJECT NAME:	Little Valley
PROJECT No:	
DATE:	10/26/2006

Well I.D.: PZ-55D

Purge Method:

Low-Flow

Static Water Level (WL) = Notes/Observations:

17.7 ft

TtFW Samplers Present:

Ryan Beachner

**Total Volume Purged:** 

Design = _____ gallons Actual = gallons

Time	Depth to Water	рН	Cond.	Turb	DO	ORP	Temp	Flow Rate	TDS	Comments
	(ft TIC)	(SU)	(mS/cm)	(NTU)	(mg/L)	(mV)	(°C)	(mL/min)	(g/mL)	
9:00	17.79	6.12	0.360	>1000	9.22	168.0	9.66		0.23	
9:05	17.76	6.31	0.340	>1000	8.09	162.0	10.37	200.00	0.22	
9:10	17.78	7.29	0.262	>1000	4.54	111.0	10.69	300.00	0.17	
9:15	17.78	7.54	0.265	>1000	4.73	99.0	10.69	350.00	0.17	
9:20	17.78	7.75	0.268	>1000	5.10	81.0	10.7	500.00	0.17	
9:25	17.75	7.84	0.266	>1000	5.48	85.0	10.67	350.00	0.17	
9:30	17.75	7.70	0.263	>1000	5.62	94.0	10.54	300.00	0.17	
9:35	17.75	7.60	0.336	>1000	8.13	101.0	10.44	300.00	0.22	
9:40	17.75	7.64	0.346	>1000	5.76	100.0	10.69	300.00	0.23	·
9:45	17.75	7.72	0.347	>1000	5.74	99.0	10.58	300.00	0.23	
9:50	17.75	7.70	0.348	>1000	5.77	101.0	10.81	300.00	0.23	
9:55	17.74	7.68	0.348	>1000	5.78	102.0	10.82	300.00	0.23	
10:00	17.74	7.69	0.348	>1000	5.80	103.0	10.88	300.00	0.23	
10:05	17.74	7.69	0.348	>1000	5.80	104.0	10.83	300.00	0.23	
10:10	17.75	7.71	0.348	>1000	5.82	104.0	10.88	300.00	0.23	
10:15	17.74	7.72	0.347	>1000	5.79	104.0	10.92	300.00	0.23	
10:20	17.74	7.73	0.347	>1000	5.81	104.0	10.95	300.00	0.23	

DATE:         10/26/2006           Well I.D.:         PZ-55D           Purge Method:         Low-Flow           Static Water Level (WL) =         17.7 ft	PROJECT NAME: PROJECT No:	Little Valley			
Purge Method: Static Water Level (WL) = Low-Flow  17.7 ft		10/26/2006			
Static Water Level (WL) = 17.7 ft	Well I.D.: PZ-55D				
NOTES/ODSETVATIONS.			İ		

TtFW Samplers Present:

Ryan Beachner

**Total Volume Purged:** 

Design = _____ gallons Actual = _____ gallons

Time	Depth to Water	рН	Cond.	Turb	DO	ORP	Temp	Flow Rate	TDS	Comments
	(ft TIC)	(SU)	(mS/cm)	(NTU)	(mg/L)	(mV)	(°C)	(mL/min)	(g/mL)	
10:25	17.74	7.78	0.347	>1000	5.81	101	10.91	300	0.23	
10:30	17.74	7.88	0.347	>1000	5.83	93	10.94	300	0.23	
10:35	17.74	7.95	0.347	>1000	5.89	87	10.95	350	0.23	
10:40	17.73	8.00	0.347	>1000	5.89	83	10.87	400	0.23	
10:45	17.73	7.89	0.341	>1000	7.20	90	10.78	300	0.22	
10:50	17.73	8.03	0.345	>1000	5.85	80	11.15	300	0.23	
10:55	17.73	8.08	0.348	>1000	5.85	76	11.06	300	0.23	
11:00	17.73	8.10	0.349	>1000	5.83	74	11.03	300	0.23	
11:05	17.73	8.11	0.348	>1000	5.86	73	10.93	300	0.23	
11:10	17.73	8.12	0.349	988.0	5.86	72	10.92	300	0.23	
11:15	17.73	8.13	0.349	880.0	5.89	71	11.03	300	0.23	
11:20	17.73	8.13	0.349	913.0	5.90	71	10.96	300	0.23	
11:25	17.73	8.13	0.349	842.0	5.95	70	11.20	300	0.23	
11:30	17.73	8.12	0.350	803.0	5.90	70	10.91	300	0.23	
11:35	17.73	8.11	0.349	787.0	5.92	71	10.94	300	0.23	
11:40	17.73	8.12	0.349	734.0	5.90	71	10.82	300	0.23	
11:45	17.73	8.08	0.338	870.0	5.94	73	10.75	300	0.22	

PROJECT NAME: PROJECT No:	Little Valley		
DATE:	10/26/2006		
Well I.D.: PZ-55D			
Purge Method: Static Water Level (WL) = Notes/Observations:	Low-Flowft		
TtFW Samplers Present:	Ryan Beachner		

Total Volume Purged:

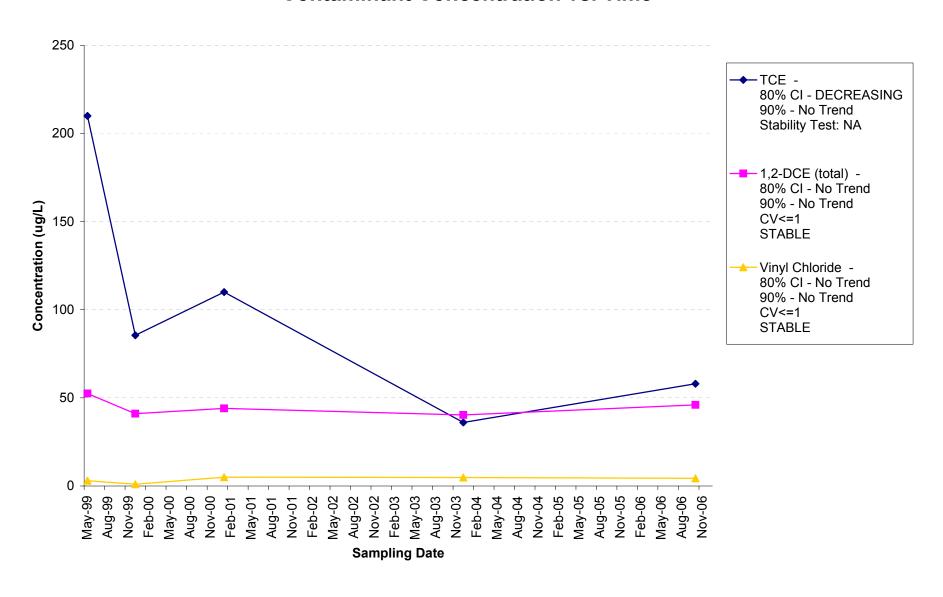
Design = _____ gallons
Actual = _____ gallons

Time	Depth to Water	pН	Cond.	Turb	DO	ORP	Temp	Flow Rate	TDS	Comments
	(ft TIC)	(SU)	(mS/cm)	(NTU)	(mg/L)	(mV)	(°C)	(mL/min)	(g/mL)	
11:50	17.73	8.09	0.339	715.0	5.84	72	10.95	300	0.22	
11:55	17.73	8.06	0.344	586.0	5.88	74	10.90	300	0.22	
12:00	17.73	8.04	0.345	556.0	5.89	75	10.81	300	0.22	
12:05	17.72	8.02	0.347	552.0	5.80	77	10.81	300	0.23	
12:10	17.73	8.01	0.348	538.0	5.88	78	10.84	300	0.23	
12:15	17.73	7.93	0.348	449.0	6.82	82	10.80	300	0.23	
12:20	17.73	8.03	0.349	365.0	5.94	77	10.84	300	0.23	
12:25	17.73	8.00	0.349	324.0	5.91	78	10.79	300	0.23	
12:30	17.73	8.00	0.350	277.0	5.91	79	10.79	300	0.23	
12:35	17.73	8.00	0.350	228.0	5.89	79	10.76	300	0.23	
12:40	17.73	7.98	0.350	229.0	5.87	81	10.80	300	0.23	
12:45	17.73	7.97	0.350	233.0	5.87	81	10.82	300	0.23	
12:50	17.73	7.97	0.350	226.0	5.86	81	10.81	300	0.23	
12:55		7.97	0.350	255.0	5.88	80	10.85		0.23	
13:00		***************************************								Sampling Begins
										· · · · · · · · · · · · · · · · · · ·
								The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s		

(For Groundwater Sampling Trend Analysis)

Instructions: Do not change formulas or other information in cells with a blue background, only cells with a yellow background are used for data entry. To use the spreadsheet, provide at least four rounds and not more than ten rounds of data that is not seasonally affected. Use consistent units. The spreadsheet contains several error checks, and a data entry error may cause "DATA ERR" or "DATE ERR" to be displayed. Dates that are not consecutive will show an error message and will not display the test results. The spreadsheet tests the data for both increasing and decreasing trends at both 80 percent and 90 percent confidence levels. If an increasing or decreasing trend is not present, an additional coefficient of variation test is used to test for stability, as proposed by Wiedemeier et al, 1999. For additional information, refer to the Interim Guidance on Natural Attenuation from the governing regulatory agencies for the site and applicable guidance for recommendations on data entry for non-detect values (See protocol at bottom of worksheet).

**Error Messages:** There is a section below the data entry screen that describes data entry errors in more detail and which cell has that error. Thus a user can determine what and where their error is very quickly. Note that a space is seen as text in Excel formulae.


Data Entry and Error Messages: When there are <u>less than four rounds of data entered</u>, instead of getting an "ERROR" message, only "n<4" is displayed. But, if text, a zero or a negative number is inadvertently entered, the "ERROR" message is displayed. Thus, during data entry, an "ERROR" message is only displayed when there actually is an error. Note that the date must be entered before sample results collected on that date are entered to avoid an error message.

To avoid biasing the Mann-Kendall test, **the same value for all ND results must be entered** in the spreadsheet for a given compound. This is to make sure that any identified trends are data trends and not trends of laboratory detection limits. **SEE PROTOCOL AT BOTTOM OF WORKSHEET!** 

Site Name =	Little Valley Superfund Site - I	Bush Industries Ar	ea	Site ID No. =	1945.2159	Well Number =	MW-2
	Compound ->	TCE	1,2-DCE (total)	Vinyl Chloride			
		Concentration	Concentration	Concentration	Concentration	Concentration	Concentration
Event	Sampling Date	(leave blank	(leave blank	(leave blank	(leave blank	(leave blank	(leave blank
Number	(most recent last)	if no data)	if no data)	if no data)	if no data)	if no data)	if no data)
1	05/05/1999	210	52.5	3			
2	12/14/1999	85.5	41	1			
3	01/10/2001	110	44	5			
4	12/11/2003	36	40.28	4.8			
5	10/31/2006	58	46	4.4			
6							
7							
8							
9							
10							
	Mann Kendall Statistic (S) =	-6	-2	2	0	0	0
	Number of Rounds (n) =	5	5	5	0	0	0
	Average =	99.90	44.76	3.64	#DIV/0!	#DIV/0!	#DIV/0!
	Standard Deviation =	67.584	4.905	1.670	#DIV/0!	#DIV/0!	#DIV/0!
	Coefficient of Variation(CV)=	0.677	0.110	0.459	#DIV/0!	#DIV/0!	#DIV/0!
Error Check, Bla	ank if No Errors Detected				N<4	N<4	N<4
Trend = 80% C	onfidence Level	DECREASING	No Trend	No Trend	N<4	N<4	N<4
Trend = 90% Confidence Level		No Trend	No Trend	No Trend	N<4	N<4	N<4
Stability Test, If	No Trend Exists at		CV<=1	CV<=1	n<4	n<4	n<4
80% Confidence	ce Level	NA	STABLE	STABLE	n<4	n<4	n<4
	Data Entry By =	L. Arabia	Date =	02/13/2007	Checked By =	LB	TETRATECH EC, INC.

# Trend Test - BIA MW2 - DER 1 02-2007.xls

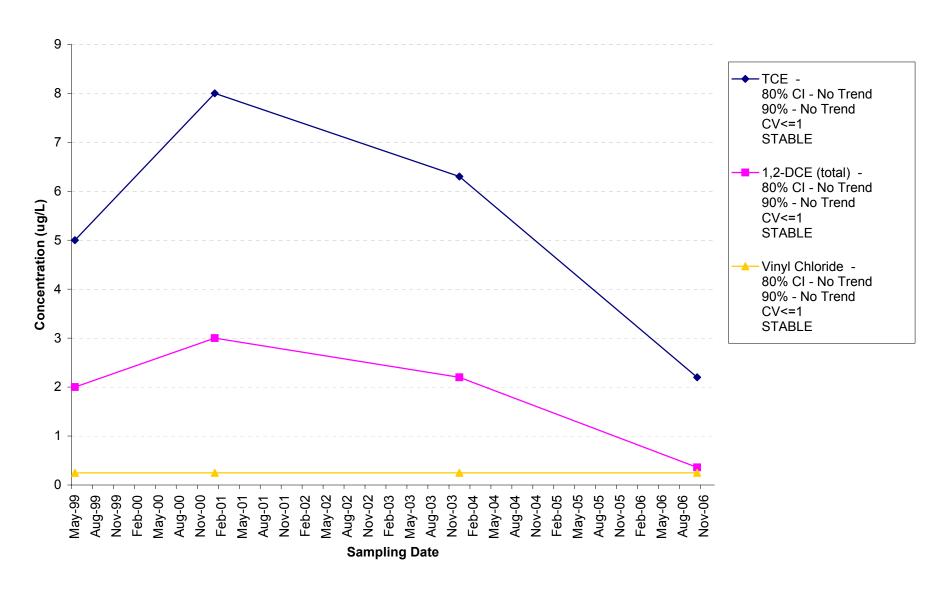
# **Contaminant Concentration vs. Time**



(For Groundwater Sampling Trend Analysis)

Instructions: Do not change formulas or other information in cells with a blue background, only cells with a yellow background are used for data entry. To use the spreadsheet, provide at least four rounds and not more than ten rounds of data that is not seasonally affected. Use consistent units. The spreadsheet contains several error checks, and a data entry error may cause "DATA ERR" or "DATE ERR" to be displayed. Dates that are not consecutive will show an error message and will not display the test results. The spreadsheet tests the data for both increasing and decreasing trends at both 80 percent and 90 percent confidence levels. If an increasing or decreasing trend is not present, an additional coefficient of variation test is used to test for stability, as proposed by Wiedemeier et al, 1999. For additional information, refer to the Interim Guidance on Natural Attenuation from the governing regulatory agencies for the site and applicable guidance for recommendations on data entry for non-detect values (See protocol at bottom of worksheet).

**Error Messages:** There is a section below the data entry screen that describes data entry errors in more detail and which cell has that error. Thus a user can determine what and where their error is very quickly. Note that a space is seen as text in Excel formulae.


Data Entry and Error Messages: When there are <u>less than four rounds of data entered</u>, instead of getting an "ERROR" message, only "n<4" is displayed. But, if text, a zero or a negative number is inadvertently entered, the "ERROR" message is displayed. Thus, during data entry, an "ERROR" message is only displayed when there actually is an error. Note that the date must be entered before sample results collected on that date are entered to avoid an error message.

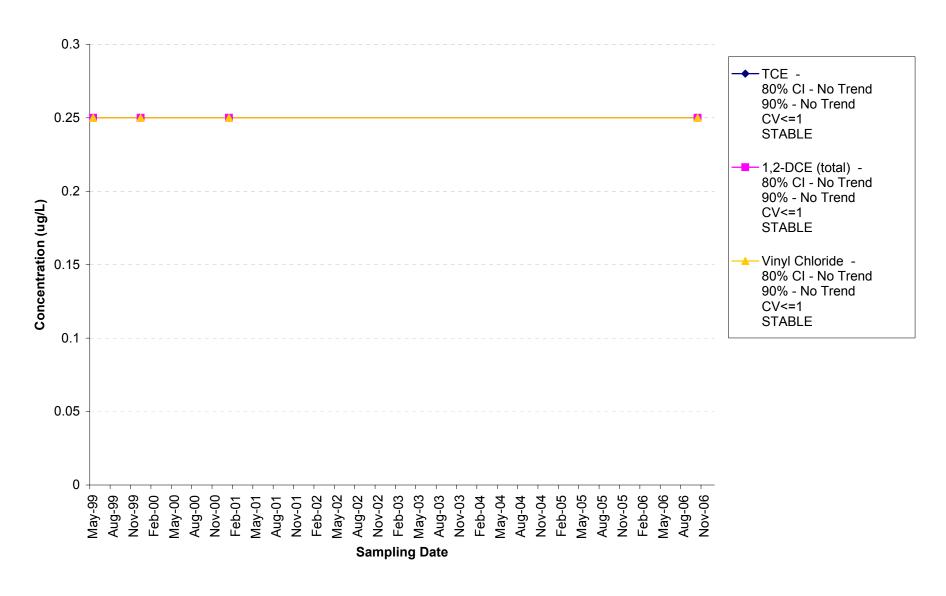
To avoid biasing the Mann-Kendall test, **the same value for all ND results must be entered** in the spreadsheet for a given compound. This is to make sure that any identified trends are data trends and not trends of laboratory detection limits. **SEE PROTOCOL AT BOTTOM OF WORKSHEET!** 

Site Name =	Little Valley Superfund Site - I	Bush Industries Ar	rea	Site ID No. =	1945.2159	Well Number =	MW-3
Compound -> TCE 1,2-DCE (total)				Vinyl Chloride			
		Concentration	Concentration	Concentration	Concentration	Concentration	Concentration
Event	Sampling Date	(leave blank	(leave blank	(leave blank	(leave blank	(leave blank	(leave blank
Number	(most recent last)	if no data)	if no data)	if no data)	if no data)	if no data)	if no data)
1	05/05/1999	5	2	0.25			
2	01/09/2001	8	3	0.25			
3	12/10/2003	6.3	2.2	0.25			
4	10/30/2006	2.2	0.36	0.25			
5							
6							
7							
8							
9							
10							
	Mann Kendall Statistic (S) =	-2	-2	0	0	0	0
	Number of Rounds (n) =	4	4	4	0	0	0
	Average =	5.38	1.89	0.25	#DIV/0!	#DIV/0!	#DIV/0!
	Standard Deviation =	2.447	1.108	0.000	#DIV/0!	#DIV/0!	#DIV/0!
	Coefficient of Variation(CV)=	0.455	0.586	0.000	#DIV/0!	#DIV/0!	#DIV/0!
Error Check, Bl	ank if No Errors Detected				N<4	N<4	N<4
Trend = 80% C	Confidence Level	No Trend	No Trend	No Trend	N<4	N<4	N<4
Trend = 90% Confidence Level		No Trend	No Trend	No Trend	N<4	N<4	N<4
Stability Test, If	No Trend Exists at	CV<=1	CV<=1	CV<=1	n<4	n<4	n<4
80% Confiden		STABLE	STABLE	STABLE	n<4	n<4	n<4
	Data Entry By =	L. Arabia	Date =	02/13/2007	Checked By =	LB	TETRATECH EC, INC.

# Trend Test - BIA MW3 - DER 1 02-2007.xls

# **Contaminant Concentration vs. Time**




Instructions: Do not change formulas or other information in cells with a blue background, only cells with a yellow background are used for data entry. To use the spreadsheet, provide at least four rounds and not more than ten rounds of data that is not seasonally affected. Use consistent units. The spreadsheet contains several error checks, and a data entry error may cause "DATA ERR" or "DATE ERR" to be displayed. Dates that are not consecutive will show an error message and will not display the test results. The spreadsheet tests the data for both increasing and decreasing trends at both 80 percent and 90 percent confidence levels. If an increasing or decreasing trend is not present, an additional coefficient of variation test is used to test for stability, as proposed by Wiedemeier et al, 1999. For additional information, refer to the Interim Guidance on Natural Attenuation from the governing regulatory agencies for the site and applicable guidance for recommendations on data entry for non-detect values (See protocol at bottom of worksheet).

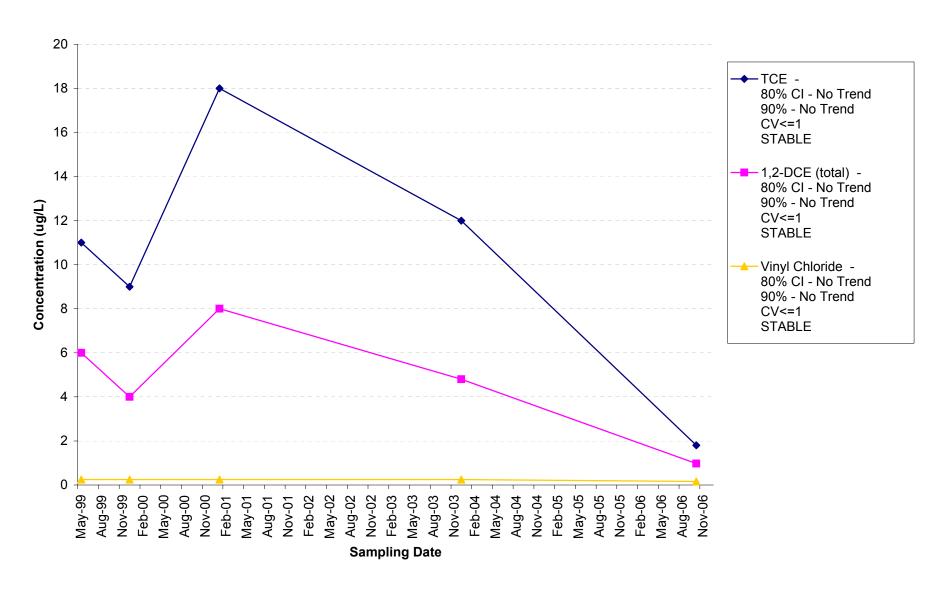
**Error Messages:** There is a section below the data entry screen that describes data entry errors in more detail and which cell has that error. Thus a user can determine what and where their error is very quickly. Note that a space is seen as text in Excel formulae.

Data Entry and Error Messages: When there are <u>less than four rounds of data entered</u>, instead of getting an "ERROR" message, only "n<4" is displayed. But, if text, a zero or a negative number is inadvertently entered, the "ERROR" message is displayed. Thus, during data entry, an "ERROR" message is only displayed when there actually is an error. Note that the date must be entered before sample results collected on that date are entered to avoid an error message.

Site Name =	Little Valley Superfund Site - I	Bush Industries Ar	rea	Site ID No. =	1945.2159	Well Number =	MW-5
	Compound ->	TCE	1,2-DCE (total)	Vinyl Chloride			
		Concentration	Concentration	Concentration	Concentration	Concentration	Concentration
Event	Sampling Date	(leave blank	(leave blank	(leave blank	(leave blank	(leave blank	(leave blank
Number	(most recent last)	if no data)	if no data)	if no data)	if no data)	if no data)	if no data)
1	05/05/1999	0.25	0.25	0.25			
2	12/13/1999	0.25	0.25	0.25			
3	01/04/2001	0.25	0.25	0.25			
4	10/30/2006	0.25	0.25	0.25			
5							
6							
7							
8							
9							
10							
	Mann Kendall Statistic (S) =	0	0	0	0	0	0
	Number of Rounds (n) =	4	4	4	0	0	0
	Average =	0.25	0.25	0.25	#DIV/0!	#DIV/0!	#DIV/0!
	Standard Deviation =	0.000	0.000	0.000	#DIV/0!	#DIV/0!	#DIV/0!
	Coefficient of Variation(CV)=	0.000	0.000	0.000	#DIV/0!	#DIV/0!	#DIV/0!
Error Check, Bla	ank if No Errors Detected				N<4	N<4	N<4
Trend = 80% C	onfidence Level	No Trend	No Trend	No Trend	N<4	N<4	N<4
Trend = 90% C	onfidence Level	No Trend	No Trend	No Trend	N<4	N<4	N<4
Stability Test, If	No Trend Exists at	CV<=1	CV<=1	CV<=1	n<4	n<4	n<4
80% Confidence	ce Level	STABLE	STABLE	STABLE	n<4	n<4	n<4
	Data Entry By =	L. Arabia	Date =	02/13/2007	Checked By =	LB	TETRATECH EC, INC.

## Trend Test - BIA MW5 - DER 1 02-2007.xls




Instructions: Do not change formulas or other information in cells with a blue background, only cells with a yellow background are used for data entry. To use the spreadsheet, provide at least four rounds and not more than ten rounds of data that is not seasonally affected. Use consistent units. The spreadsheet contains several error checks, and a data entry error may cause "DATA ERR" or "DATE ERR" to be displayed. Dates that are not consecutive will show an error message and will not display the test results. The spreadsheet tests the data for both increasing and decreasing trends at both 80 percent and 90 percent confidence levels. If an increasing or decreasing trend is not present, an additional coefficient of variation test is used to test for stability, as proposed by Wiedemeier et al, 1999. For additional information, refer to the Interim Guidance on Natural Attenuation from the governing regulatory agencies for the site and applicable guidance for recommendations on data entry for non-detect values (See protocol at bottom of worksheet).

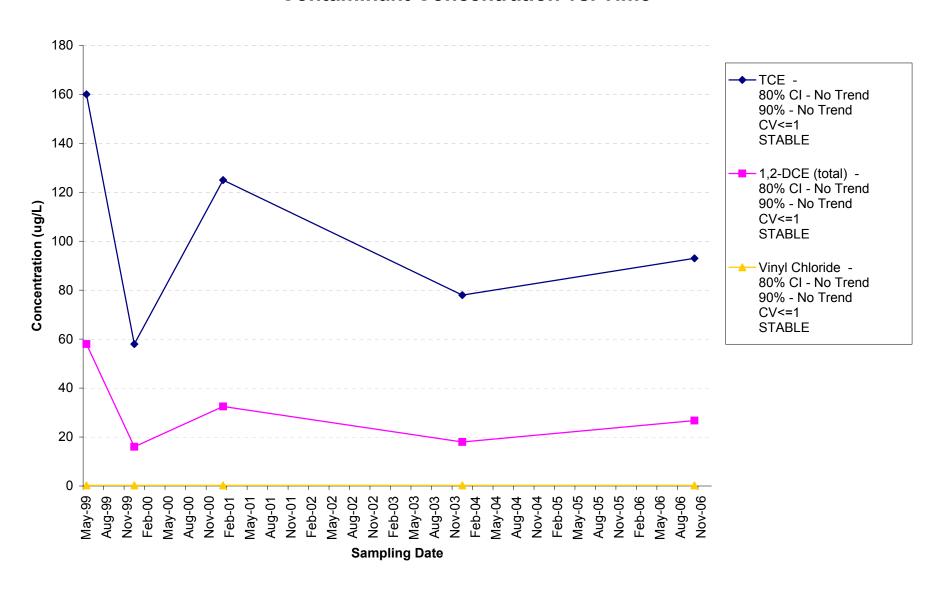
**Error Messages:** There is a section below the data entry screen that describes data entry errors in more detail and which cell has that error. Thus a user can determine what and where their error is very quickly. Note that a space is seen as text in Excel formulae.

Data Entry and Error Messages: When there are <u>less than four rounds of data entered</u>, instead of getting an "ERROR" message, only "n<4" is displayed. But, if text, a zero or a negative number is inadvertently entered, the "ERROR" message is displayed. Thus, during data entry, an "ERROR" message is only displayed when there actually is an error. Note that the date must be entered before sample results collected on that date are entered to avoid an error message.

Site Name =	Little Valley Superfund Site - I	Bush Industries Ar	ea	Site ID No. =	1945.2159	Well Number =	MW-D1
TETRA TECH SC	Compound ->	TCE	1,2-DCE (total)	Vinyl Chloride			
IE .		Concentration	Concentration	Concentration	Concentration	Concentration	Concentration
Event	Sampling Date	(leave blank	(leave blank	(leave blank	(leave blank	(leave blank	(leave blank
Number	(most recent last)	if no data)	if no data)	if no data)	if no data)	if no data)	if no data)
1	05/05/1999	11	6	0.25			
2	12/13/1999	9	4	0.25			
3	01/10/2001	18	8	0.25			
4	12/10/2003	12	4.8	0.25			
5	10/31/2006	1.8	0.97	0.16			
6							
7							
8							
9							
10							
	Mann Kendall Statistic (S) =	-2	-4	-4	0	0	0
	Number of Rounds (n) =	5	5	5	0	0	0
	Average =	10.36	4.75	0.23	#DIV/0!	#DIV/0!	#DIV/0!
	Standard Deviation =	5.844	2.597	0.040	#DIV/0!	#DIV/0!	#DIV/0!
	Coefficient of Variation(CV)=	0.564	0.546	0.173	#DIV/0!	#DIV/0!	#DIV/0!
Error Check, Bla	ank if No Errors Detected				N<4	N<4	N<4
Trend = 80% Co	onfidence Level	No Trend	No Trend	No Trend	N<4	N<4	N<4
Trend = 90% Co	onfidence Level	No Trend	No Trend	No Trend	N<4	N<4	N<4
Stability Test, If	No Trend Exists at	CV<=1	CV<=1	CV<=1	n<4	n<4	n<4
80% Confidence		STABLE	STABLE	STABLE	n<4	n<4	n<4
	Data Entry By =	L. Arabia	Date =	02/13/2007	Checked By =	LB	TETRATECH EC, INC.

## Trend Test - BIA MWD1 - DER 1 02-2007.xls




Instructions: Do not change formulas or other information in cells with a blue background, only cells with a yellow background are used for data entry. To use the spreadsheet, provide at least four rounds and not more than ten rounds of data that is not seasonally affected. Use consistent units. The spreadsheet contains several error checks, and a data entry error may cause "DATA ERR" or "DATE ERR" to be displayed. Dates that are not consecutive will show an error message and will not display the test results. The spreadsheet tests the data for both increasing and decreasing trends at both 80 percent and 90 percent confidence levels. If an increasing or decreasing trend is not present, an additional coefficient of variation test is used to test for stability, as proposed by Wiedemeier et al, 1999. For additional information, refer to the Interim Guidance on Natural Attenuation from the governing regulatory agencies for the site and applicable guidance for recommendations on data entry for non-detect values (See protocol at bottom of worksheet).

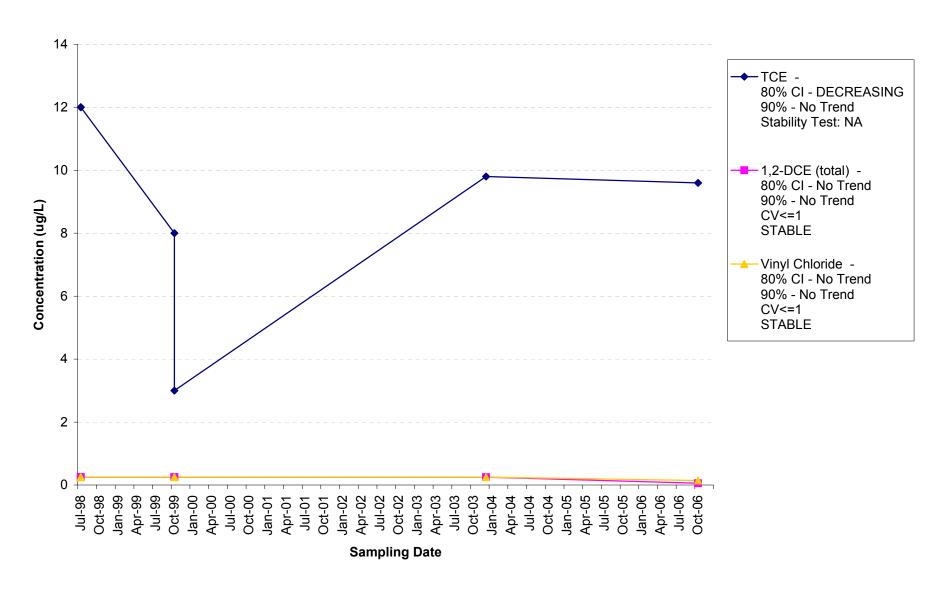
**Error Messages:** There is a section below the data entry screen that describes data entry errors in more detail and which cell has that error. Thus a user can determine what and where their error is very quickly. Note that a space is seen as text in Excel formulae.

Data Entry and Error Messages: When there are <u>less than four rounds of data entered</u>, instead of getting an "ERROR" message, only "n<4" is displayed. But, if text, a zero or a negative number is inadvertently entered, the "ERROR" message is displayed. Thus, during data entry, an "ERROR" message is only displayed when there actually is an error. Note that the date must be entered before sample results collected on that date are entered to avoid an error message.

Site Name =	Little Valley Superfund Site - I	B <mark>ush Industries Ar</mark>	rea	Site ID No. =	1945.2159	Well Number =	MW-D2
	Compound ->	TCE	1,2-DCE (total)	Vinyl Chloride			
		Concentration	Concentration	Concentration	Concentration	Concentration	Concentration
Event	Sampling Date	(leave blank	(leave blank	(leave blank	(leave blank	(leave blank	(leave blank
Number	(most recent last)	if no data)	if no data)	if no data)	if no data)	if no data)	if no data)
1	05/05/1999	160	58	0.25			
2	12/14/1999	58	16	0.25			
3	01/10/2001	125	32.5	0.25			
4	12/11/2003	78	18	0.25			
5	10/30/2006	93	26.71	0.25			
6							
7							
8							
9							
10							
	Mann Kendall Statistic (S) =	-2	-2	0	0	0	0
	Number of Rounds (n) =	5	5	5	0	0	0
	Average =	102.80	30.24	0.25	#DIV/0!	#DIV/0!	#DIV/0!
	Standard Deviation =	40.258	16.888	0.000	#DIV/0!	#DIV/0!	#DIV/0!
	Coefficient of Variation(CV)=	0.392	0.558	0.000	#DIV/0!	#DIV/0!	#DIV/0!
Error Check, Bl	ank if No Errors Detected				N<4	N<4	N<4
Trend = 80% C	Confidence Level	No Trend	No Trend	No Trend	N<4	N<4	N<4
Trend = 90% Confidence Level		No Trend	No Trend	No Trend	N<4	N<4	N<4
Stability Test, If No Trend Exists at		CV<=1	CV<=1	CV<=1	n<4	n<4	n<4
80% Confidence Level		STABLE	STABLE	STABLE	n<4	n<4	n<4
	Data Entry By =	L. Arabia	Date =	02/13/2007	Checked By =	LB	TETRATECH EC, INC.

## Trend Test - BIA MWD2 - DER 1 02-2007.xls




Instructions: Do not change formulas or other information in cells with a blue background, only cells with a yellow background are used for data entry. To use the spreadsheet, provide at least four rounds and not more than ten rounds of data that is not seasonally affected. Use consistent units. The spreadsheet contains several error checks, and a data entry error may cause "DATA ERR" or "DATE ERR" to be displayed. Dates that are not consecutive will show an error message and will not display the test results. The spreadsheet tests the data for both increasing and decreasing trends at both 80 percent and 90 percent confidence levels. If an increasing or decreasing trend is not present, an additional coefficient of variation test is used to test for stability, as proposed by Wiedemeier et al, 1999. For additional information, refer to the Interim Guidance on Natural Attenuation from the governing regulatory agencies for the site and applicable guidance for recommendations on data entry for non-detect values (See protocol at bottom of worksheet).

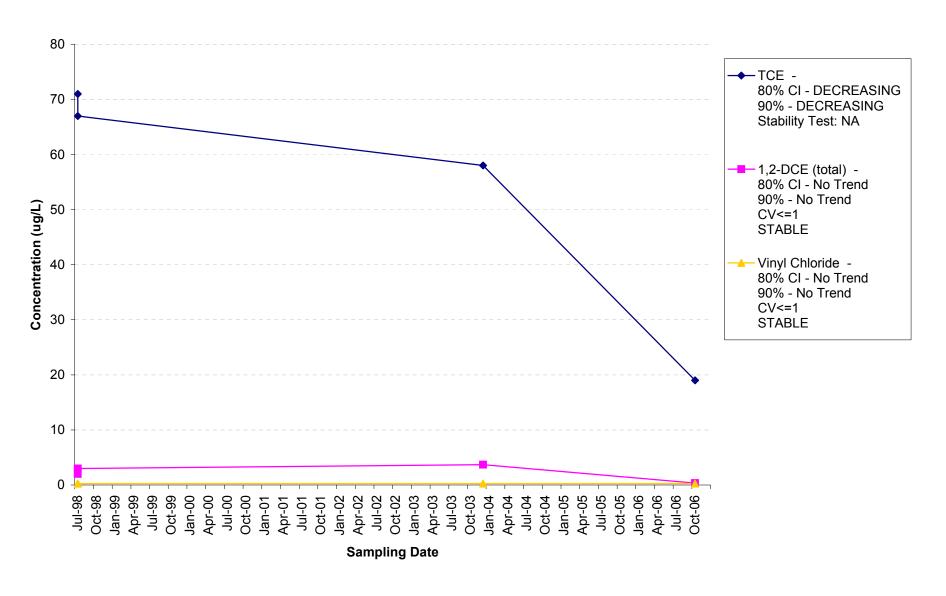
**Error Messages:** There is a section below the data entry screen that describes data entry errors in more detail and which cell has that error. Thus a user can determine what and where their error is very quickly. Note that a space is seen as text in Excel formulae.

Data Entry and Error Messages: When there are <u>less than four rounds of data entered</u>, instead of getting an "ERROR" message, only "n<4" is displayed. But, if text, a zero or a negative number is inadvertently entered, the "ERROR" message is displayed. Thus, during data entry, an "ERROR" message is only displayed when there actually is an error. Note that the date must be entered before sample results collected on that date are entered to avoid an error message.

Site Name =	Little Valley Superfund Site - 0	Cattaraugus Cutle	ry Area	Site ID No. =	1945.2159	Well Number =	MWCCA-2
	Compound ->	TCE	1,2-DCE (total)	Vinyl Chloride			
		Concentration	Concentration	Concentration	Concentration	Concentration	Concentration
Event	Sampling Date	(leave blank	(leave blank	(leave blank	(leave blank	(leave blank	(leave blank
Number	(most recent last)	if no data)	if no data)	if no data)	if no data)	if no data)	if no data)
1	07/27/1998	12	0.25	0.25			
2	07/30/1998	12	0.25	0.25			
3	10/13/1999	8	0.25	0.25			
4	10/27/1999	3	0.25	0.25			
5	12/03/2003	9.8	0.25	0.25			
6	10/31/2006	9.6	0.058	0.14			
7							
8							
9							
10							
	Mann Kendall Statistic (S) =	-6	-5	-5	0	0	0
	Number of Rounds (n) =	6	6	6	0	0	0
	Average =	9.07	0.22	0.23	#DIV/0!	#DIV/0!	#DIV/0!
	Standard Deviation =	3.346	0.078	0.045	#DIV/0!	#DIV/0!	#DIV/0!
	Coefficient of Variation(CV)=	0.369	0.360	0.194	#DIV/0!	#DIV/0!	#DIV/0!
Error Check, Bla	ank if No Errors Detected				N<4	N<4	N<4
Trend = 80% C	onfidence Level	DECREASING	No Trend	No Trend	N<4	N<4	N<4
Trend = 90% C	onfidence Level	No Trend	No Trend	No Trend	N<4	N<4	N<4
Stability Test, If	No Trend Exists at		CV<=1	CV<=1	n<4	n<4	n<4
80% Confidence		NA	STABLE	STABLE	n<4	n<4	n<4
	Data Entry By =	L. Arabia	Date =	02/13/2007	Checked By =	LB	TETRATECH EC, INC.

## Trend Test - CCA MW2 - DER 1 02-2007.xls




Instructions: Do not change formulas or other information in cells with a blue background, only cells with a yellow background are used for data entry. To use the spreadsheet, provide at least four rounds and not more than ten rounds of data that is not seasonally affected. Use consistent units. The spreadsheet contains several error checks, and a data entry error may cause "DATA ERR" or "DATE ERR" to be displayed. Dates that are not consecutive will show an error message and will not display the test results. The spreadsheet tests the data for both increasing and decreasing trends at both 80 percent and 90 percent confidence levels. If an increasing or decreasing trend is not present, an additional coefficient of variation test is used to test for stability, as proposed by Wiedemeier et al, 1999. For additional information, refer to the Interim Guidance on Natural Attenuation from the governing regulatory agencies for the site and applicable guidance for recommendations on data entry for non-detect values (See protocol at bottom of worksheet).

**Error Messages:** There is a section below the data entry screen that describes data entry errors in more detail and which cell has that error. Thus a user can determine what and where their error is very quickly. Note that a space is seen as text in Excel formulae.

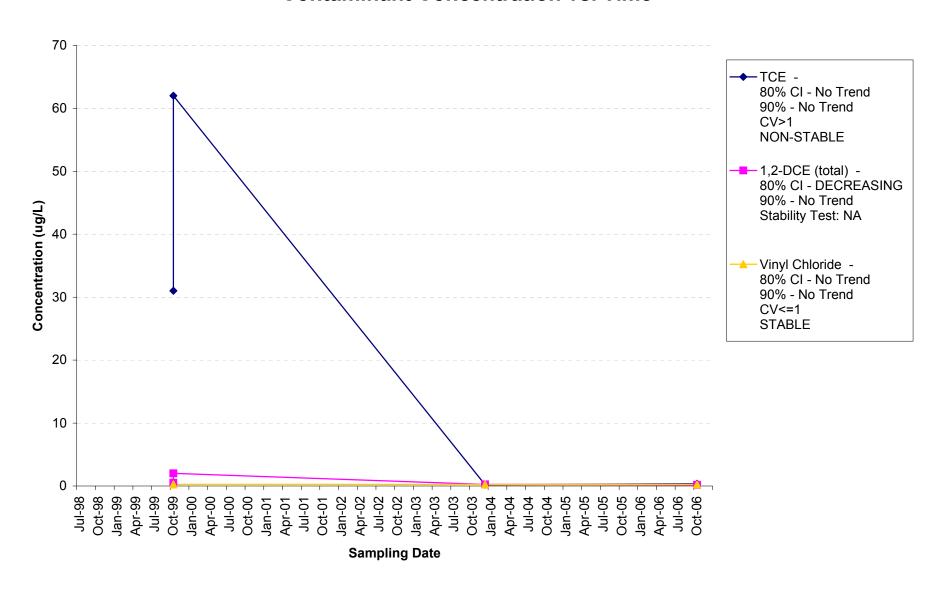
Data Entry and Error Messages: When there are <u>less than four rounds of data entered</u>, instead of getting an "ERROR" message, only "n<4" is displayed. But, if text, a zero or a negative number is inadvertently entered, the "ERROR" message is displayed. Thus, during data entry, an "ERROR" message is only displayed when there actually is an error. Note that the date must be entered before sample results collected on that date are entered to avoid an error message.

Site Name =	Little Valley Superfund Site - (	Cattaraugus Cutle	ry Area	Site ID No. =	1945.2159	Well Number =	MWCCA-3
	Compound ->	TCE	1,2-DCE (total)	Vinyl Chloride			
		Concentration	Concentration	Concentration	Concentration	Concentration	Concentration
Event	Sampling Date	(leave blank	(leave blank	(leave blank	(leave blank	(leave blank	(leave blank
Number	(most recent last)	if no data)	if no data)	if no data)	if no data)	if no data)	if no data)
1	07/16/1998	71	2	0.25			
2	07/30/1998	67	3	0.25			
3	12/02/2003	58	3.7	0.25			
4	10/25/2006	19	0.36	0.25			
5							
6							
7							
8							
9							
10							
	Mann Kendall Statistic (S) =	-6	0	0	0	0	0
	Number of Rounds (n) =	4	4	4	0	0	0
	Average =	53.75	2.27	0.25	#DIV/0!	#DIV/0!	#DIV/0!
	Standard Deviation =	23.796	1.449	0.000	#DIV/0!	#DIV/0!	#DIV/0!
	Coefficient of Variation(CV)=	0.443	0.640	0.000	#DIV/0!	#DIV/0!	#DIV/0!
Error Check, Bla	ank if No Errors Detected				N<4	N<4	N<4
Trend = 80% C	onfidence Level	DECREASING	No Trend	No Trend	N<4	N<4	N<4
Trend = 90% C	onfidence Level	DECREASING	No Trend	No Trend	N<4	N<4	N<4
Stability Test, If	No Trend Exists at		CV<=1	CV<=1	n<4	n<4	n<4
80% Confidence	ce Level	NA	STABLE	STABLE	n<4	n<4	n<4
	Data Entry By =	L. Arabia	Date =	02/13/2007	Checked By =	LB	TETRATECH EC, INC.

## Trend Test - CCA MW3 - DER 1 02-2007.xls



Instructions: Do not change formulas or other information in cells with a blue background, only cells with a yellow background are used for data entry. To use the spreadsheet, provide at least four rounds and not more than ten rounds of data that is not seasonally affected. Use consistent units. The spreadsheet contains several error checks, and a data entry error may cause "DATA ERR" or "DATE ERR" to be displayed. Dates that are not consecutive will show an error message and will not display the test results. The spreadsheet tests the data for both increasing and decreasing trends at both 80 percent and 90 percent confidence levels. If an increasing or decreasing trend is not present, an additional coefficient of variation test is used to test for stability, as proposed by Wiedemeier et al, 1999. For additional information, refer to the Interim Guidance on Natural Attenuation from the governing regulatory agencies for the site and applicable guidance for recommendations on data entry for non-detect values (See protocol at bottom of worksheet).


Firmy Messages: There is a section below the data entry screen that describes data entry errors in more detail and which cell has that error. Thus a user can

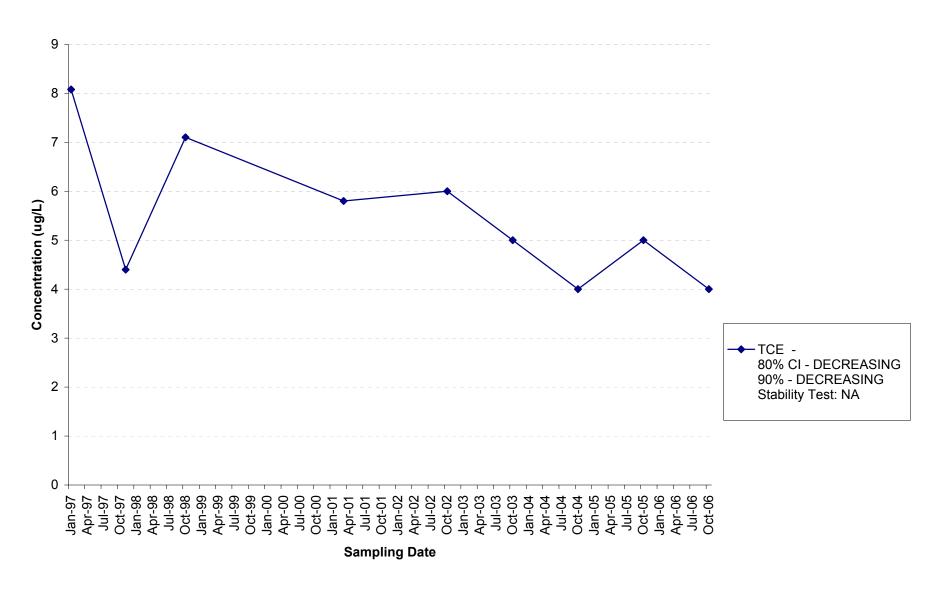
**Error Messages:** There is a section below the data entry screen that describes data entry errors in more detail and which cell has that error. Thus a user can determine what and where their error is very quickly. Note that a space is seen as text in Excel formulae.

Data Entry and Error Messages: When there are <u>less than four rounds of data entered</u>, instead of getting an "ERROR" message, only "n<4" is displayed. But, if text, a zero or a negative number is inadvertently entered, the "ERROR" message is displayed. Thus, during data entry, an "ERROR" message is only displayed when there actually is an error. Note that the date must be entered before sample results collected on that date are entered to avoid an error message.

Site Name =	Little Valley Superfund Site - (	Cattaraugus Cutle	ry Area	Site ID No. =	1945.2159	Well Number =	MWCCA-6
	Compound ->	TCE	1,2-DCE (total)	Vinyl Chloride			
		Concentration	Concentration	Concentration	Concentration	Concentration	Concentration
Event	Sampling Date	(leave blank	(leave blank	(leave blank	(leave blank	(leave blank	(leave blank
Number	(most recent last)	if no data)	if no data)	if no data)	if no data)	if no data)	if no data)
1	10/13/1999	31	0.5	0.25			
2	10/26/1999	62	2	0.25			
3	12/01/2003	0.21	0.25	0.25			
4	10/24/2006	0.36	0.18	0.25			
5							
6							
7							
8							
9							
10							
	Mann Kendall Statistic (S) =	-2	-4	0	0	0	0
	Number of Rounds (n) =	4	4	4	0	0	0
	Average =	23.39	0.73	0.25	#DIV/0!	#DIV/0!	#DIV/0!
	Standard Deviation =	29.532	0.856	0.000	#DIV/0!	#DIV/0!	#DIV/0!
	Coefficient of Variation(CV)=	1.262	1.169	0.000	#DIV/0!	#DIV/0!	#DIV/0!
Error Check, Bla	ank if No Errors Detected				N<4	N<4	N<4
Trend = 80% C	onfidence Level	No Trend	DECREASING	No Trend	N<4	N<4	N<4
Trend = 90% C	onfidence Level	No Trend	No Trend	No Trend	N<4	N<4	N<4
Stability Test, If	No Trend Exists at	CV>1		CV<=1	n<4	n<4	n<4
80% Confidence		NON-STABLE	NA	STABLE	n<4	n<4	n<4
	Data Entry By =	L. Arabia	Date =	02/13/2007	Checked By =	LB	TETRA TECH EC, INC.

## Trend Test - CCA MW6 - DER 1 02-2007.xls




Instructions: Do not change formulas or other information in cells with a blue background, only cells with a yellow background are used for data entry. To use the spreadsheet, provide at least four rounds and not more than ten rounds of data that is not seasonally affected. Use consistent units. The spreadsheet contains several error checks, and a data entry error may cause "DATA ERR" or "DATE ERR" to be displayed. Dates that are not consecutive will show an error message and will not display the test results. The spreadsheet tests the data for both increasing and decreasing trends at both 80 percent and 90 percent confidence levels. If an increasing or decreasing trend is not present, an additional coefficient of variation test is used to test for stability, as proposed by Wiedemeier et al, 1999. For additional information, refer to the Interim Guidance on Natural Attenuation from the governing regulatory agencies for the site and applicable guidance for recommendations on data entry for non-detect values (See protocol at bottom of worksheet).

**Error Messages:** There is a section below the data entry screen that describes data entry errors in more detail and which cell has that error. Thus a user can determine what and where their error is very quickly. Note that a space is seen as text in Excel formulae.

Data Entry and Error Messages: When there are <u>less than four rounds of data entered</u>, instead of getting an "ERROR" message, only "n<4" is displayed. But, if text, a zero or a negative number is inadvertently entered, the "ERROR" message is displayed. Thus, during data entry, an "ERROR" message is only displayed when there actually is an error. Note that the date must be entered before sample results collected on that date are entered to avoid an error message.

Site Name =	Little Valley Superfund Site -	Residential Well		Site ID No. =	1945.2159	Well Number =	ID 13
	Compound ->	TCE					
		Concentration	Concentration	Concentration	Concentration	Concentration	Concentration
Event	Sampling Date	(leave blank	(leave blank	(leave blank	(leave blank	(leave blank	(leave blank
Number	(most recent last)	if no data)	if no data)	if no data)	if no data)	if no data)	if no data)
1	01/1997	8.08					
2	11/1997	4.4					
3	10/1998	7.1					
4	03/2001	5.8					
5	10/2002	6					
6	10/2003	5					
7	10/2004	4					
8	10/2005	5					
9	10/2006	4					
10							
	Mann Kendall Statistic (S) =	-20	0	0	0	0	0
	Number of Rounds (n) =	9	0	0	0	0	0
	Average =	5.49	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!
	Standard Deviation =	1.404	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!
	Coefficient of Variation(CV)=	0.256	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!
Error Check, Bla	ank if No Errors Detected		N<4	N<4	N<4	N<4	N<4
Trend = 80% C	onfidence Level	DECREASING	N<4	N<4	N<4	N<4	N<4
Trend = 90% C	onfidence Level	DECREASING	N<4	N<4	N<4	N<4	N<4
Stability Test, If No Trend Exists at			n<4	n<4	n<4	n<4	n<4
80% Confidence		NA	n<4	n<4	n<4	n<4	n<4
	Data Entry By =	L. Arabia	Date =	02/07/2007	Checked By =	LB	TETRA TECH EC, INC.

## Trend Test - Res ID 13 - DER 1 02-2007.xls




Instructions: Do not change formulas or other information in cells with a blue background, only cells with a yellow background are used for data entry. To use the spreadsheet, provide at least four rounds and not more than ten rounds of data that is not seasonally affected. Use consistent units. The spreadsheet contains several error checks, and a data entry error may cause "DATA ERR" or "DATE ERR" to be displayed. Dates that are not consecutive will show an error message and will not display the test results. The spreadsheet tests the data for both increasing and decreasing trends at both 80 percent and 90 percent confidence levels. If an increasing or decreasing trend is not present, an additional coefficient of variation test is used to test for stability, as proposed by Wiedemeier et al, 1999. For additional information, refer to the Interim Guidance on Natural Attenuation from the governing regulatory agencies for the site and applicable guidance for recommendations on data entry for non-detect values (See protocol at bottom of worksheet).

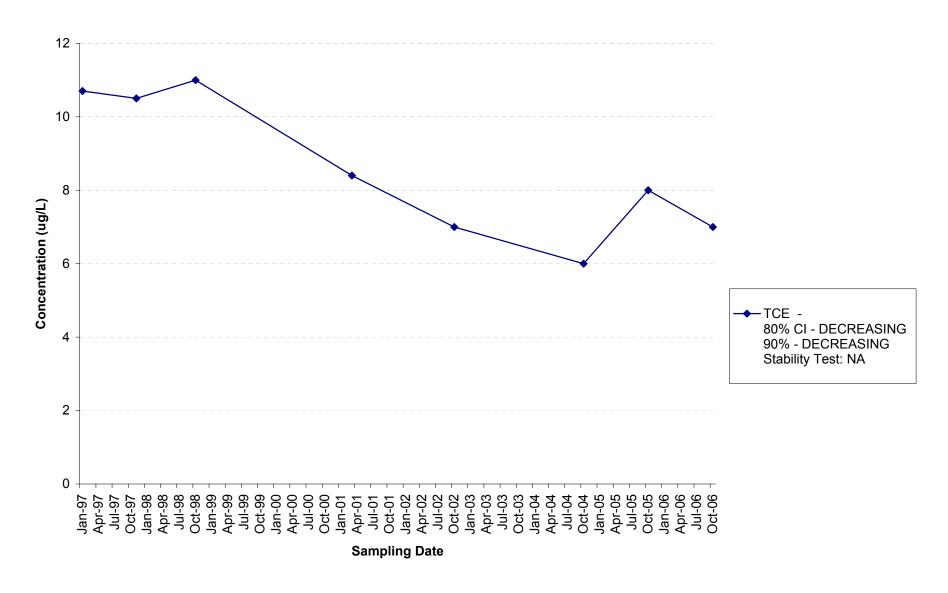
**Error Messages:** There is a section below the data entry screen that describes data entry errors in more detail and which cell has that error. Thus a user can determine what and where their error is very quickly. Note that a space is seen as text in Excel formulae.

Data Entry and Error Messages: When there are <u>less than four rounds of data entered</u>, instead of getting an "ERROR" message, only "n<4" is displayed. But, if text, a zero or a negative number is inadvertently entered, the "ERROR" message is displayed. Thus, during data entry, an "ERROR" message is only displayed when there actually is an error. Note that the date must be entered before sample results collected on that date are entered to avoid an error message.

Site Name =	Little Valley Superfund Site - I	Residential Well		Site ID No. =	1945.2159	Well Number =	ID 21
	Compound ->	TCE					
	·	Concentration	Concentration	Concentration	Concentration	Concentration	Concentration
Event	Sampling Date	(leave blank	(leave blank	(leave blank	(leave blank	(leave blank	(leave blank
Number	(most recent last)	if no data)	if no data)	if no data)	if no data)	if no data)	if no data)
1	01/1997	22.9					
2	10/1998	29					
3	03/2001	18.5					
4	10/2002	21					
5	10/2003	24					
6	10/2004	20					
7	10/2005	22					
8	10/2006	22					
9							
10							
	Mann Kendall Statistic (S) =	-3	0	0	0	0	0
	Number of Rounds (n) =	8	0	0	0	0	0
	Average =	22.43	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!
	Standard Deviation =	3.154	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!
	Coefficient of Variation(CV)=	0.141	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!
Error Check, Bla	ank if No Errors Detected		N<4	N<4	N<4	N<4	N<4
Trend = 80% C	onfidence Level	No Trend	N<4	N<4	N<4	N<4	N<4
Trend = 90% C	onfidence Level	No Trend	N<4	N<4	N<4	N<4	N<4
Stability Test, If	No Trend Exists at	CV<=1	n<4	n<4	n<4	n<4	n<4
80% Confidence		STABLE	n<4	n<4	n<4	n<4	n<4
	Data Entry By =	L. Arabia	Date =	02/07/2007	Checked By =	LB	TETRA TECH EC, INC.

# Trend Test - Res ID 21 - DER 1 02-2007.xls




Instructions: Do not change formulas or other information in cells with a blue background, only cells with a yellow background are used for data entry. To use the spreadsheet, provide at least four rounds and not more than ten rounds of data that is not seasonally affected. Use consistent units. The spreadsheet contains several error checks, and a data entry error may cause "DATA ERR" or "DATE ERR" to be displayed. Dates that are not consecutive will show an error message and will not display the test results. The spreadsheet tests the data for both increasing and decreasing trends at both 80 percent and 90 percent confidence levels. If an increasing or decreasing trend is not present, an additional coefficient of variation test is used to test for stability, as proposed by Wiedemeier et al, 1999. For additional information, refer to the Interim Guidance on Natural Attenuation from the governing regulatory agencies for the site and applicable guidance for recommendations on data entry for non-detect values (See protocol at bottom of worksheet).

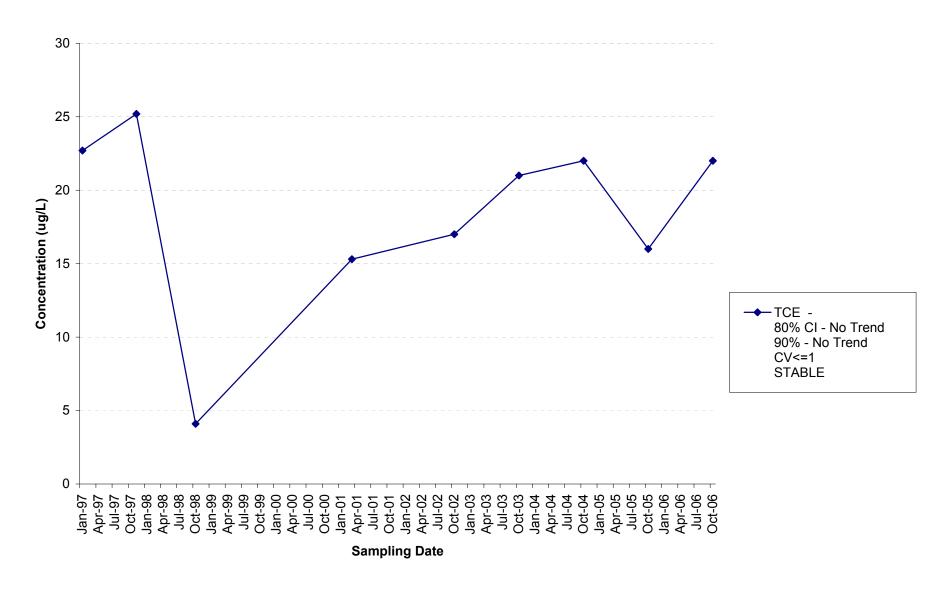
**Error Messages:** There is a section below the data entry screen that describes data entry errors in more detail and which cell has that error. Thus a user can determine what and where their error is very quickly. Note that a space is seen as text in Excel formulae.

Data Entry and Error Messages: When there are <u>less than four rounds of data entered</u>, instead of getting an "ERROR" message, only "n<4" is displayed. But, if text, a zero or a negative number is inadvertently entered, the "ERROR" message is displayed. Thus, during data entry, an "ERROR" message is only displayed when there actually is an error. Note that the date must be entered before sample results collected on that date are entered to avoid an error message.

Site Name =	Little Valley Superfund Site - I	Residential Well		Site ID No. =	1945.2159	Well Number =	ID 40
	Compound ->	TCE					
	·	Concentration	Concentration	Concentration	Concentration	Concentration	Concentration
Event	Sampling Date	(leave blank	(leave blank	(leave blank	(leave blank	(leave blank	(leave blank
Number	(most recent last)	if no data)	if no data)	if no data)	if no data)	if no data)	if no data)
1	01/1997	10.7					
2	11/1997	10.5					
3	10/1998	11					
4	03/2001	8.4					
5	10/2002	7					
6	10/2004	6					
7	10/2005	8					
8	10/2006	7					
9							
10							
	Mann Kendall Statistic (S) =	-17	0	0	0	0	0
	Number of Rounds (n) =	8	0	0	0	0	0
	Average =	8.58	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!
	Standard Deviation =	1.929	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!
	Coefficient of Variation(CV)=	0.225	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!
Error Check, Bla	ink if No Errors Detected		N<4	N<4	N<4	N<4	N<4
Trend = 80% Co	onfidence Level	DECREASING	N<4	N<4	N<4	N<4	N<4
Trend = 90% Co	onfidence Level	DECREASING	N<4	N<4	N<4	N<4	N<4
Stability Test, If	No Trend Exists at		n<4	n<4	n<4	n<4	n<4
80% Confidence		NA	n<4	n<4	n<4	n<4	n<4
	Data Entry By =	L. Arabia	Date =	02/07/2007	Checked By =	LB	TETRA TECH EC, INC.

## Trend Test - Res ID 40 - DER 1 02-2007.xls




Instructions: Do not change formulas or other information in cells with a blue background, only cells with a yellow background are used for data entry. To use the spreadsheet, provide at least four rounds and not more than ten rounds of data that is not seasonally affected. Use consistent units. The spreadsheet contains several error checks, and a data entry error may cause "DATA ERR" or "DATE ERR" to be displayed. Dates that are not consecutive will show an error message and will not display the test results. The spreadsheet tests the data for both increasing and decreasing trends at both 80 percent and 90 percent confidence levels. If an increasing or decreasing trend is not present, an additional coefficient of variation test is used to test for stability, as proposed by Wiedemeier et al, 1999. For additional information, refer to the Interim Guidance on Natural Attenuation from the governing regulatory agencies for the site and applicable guidance for recommendations on data entry for non-detect values (See protocol at bottom of worksheet).

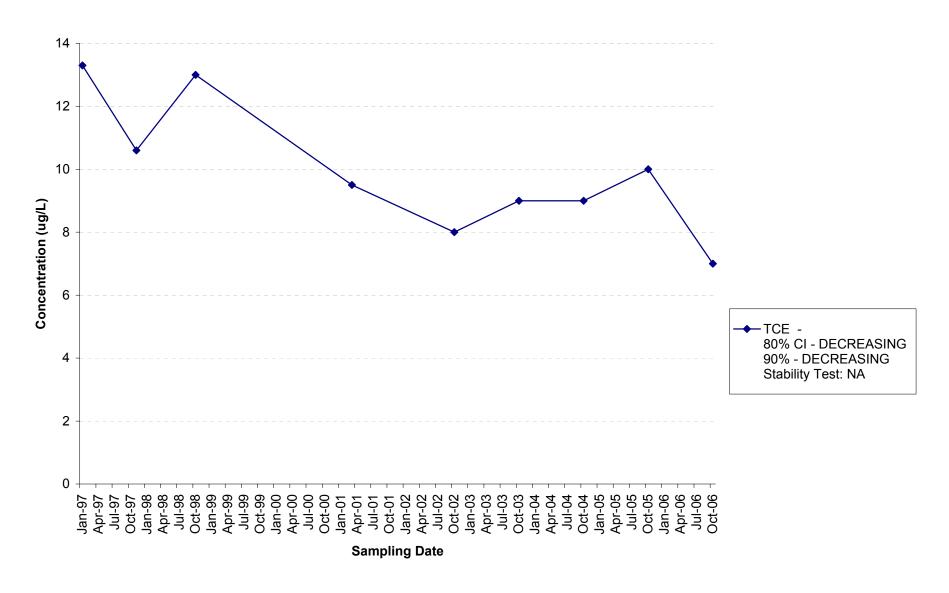
**Error Messages:** There is a section below the data entry screen that describes data entry errors in more detail and which cell has that error. Thus a user can determine what and where their error is very quickly. Note that a space is seen as text in Excel formulae.

Data Entry and Error Messages: When there are <u>less than four rounds of data entered</u>, instead of getting an "ERROR" message, only "n<4" is displayed. But, if text, a zero or a negative number is inadvertently entered, the "ERROR" message is displayed. Thus, during data entry, an "ERROR" message is only displayed when there actually is an error. Note that the date must be entered before sample results collected on that date are entered to avoid an error message.

Site Name =	Little Valley Superfund Site - I	Residential Well		Site ID No. =	1945.2159	Well Number =	ID 65
	Compound ->	TCE					
	·	Concentration	Concentration	Concentration	Concentration	Concentration	Concentration
Event	Sampling Date	(leave blank	(leave blank	(leave blank	(leave blank	(leave blank	(leave blank
Number	(most recent last)	if no data)	if no data)	if no data)	if no data)	if no data)	if no data)
1	01/1997	22.7					
2	11/1997	25.2					
3	10/1998	4.1					
4	03/2001	15.3					
5	10/2002	17					
6	10/2003	21					
7	10/2004	22					
8	10/2005	16					
9	10/2006	22					
10							
	Mann Kendall Statistic (S) =	1	0	0	0	0	0
	Number of Rounds (n) =	9	0	0	0	0	0
	Average =	18.37	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!
	Standard Deviation =	6.317	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!
	Coefficient of Variation(CV)=	0.344	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!
Error Check, Bla	ank if No Errors Detected		N<4	N<4	N<4	N<4	N<4
Trend = 80% C	onfidence Level	No Trend	N<4	N<4	N<4	N<4	N<4
Trend = 90% C	onfidence Level	No Trend	N<4	N<4	N<4	N<4	N<4
Stability Test, If	No Trend Exists at	CV<=1	n<4	n<4	n<4	n<4	n<4
80% Confidence		STABLE	n<4	n<4	n<4	n<4	n<4
	Data Entry By =	L. Arabia	Date =	02/07/2007	Checked By =	LB	TETRA TECH EC, INC.

# Trend Test - Res ID 65 - DER 1 02-2007.xls




Instructions: Do not change formulas or other information in cells with a blue background, only cells with a yellow background are used for data entry. To use the spreadsheet, provide at least four rounds and not more than ten rounds of data that is not seasonally affected. Use consistent units. The spreadsheet contains several error checks, and a data entry error may cause "DATA ERR" or "DATE ERR" to be displayed. Dates that are not consecutive will show an error message and will not display the test results. The spreadsheet tests the data for both increasing and decreasing trends at both 80 percent and 90 percent confidence levels. If an increasing or decreasing trend is not present, an additional coefficient of variation test is used to test for stability, as proposed by Wiedemeier et al, 1999. For additional information, refer to the Interim Guidance on Natural Attenuation from the governing regulatory agencies for the site and applicable guidance for recommendations on data entry for non-detect values (See protocol at bottom of worksheet).

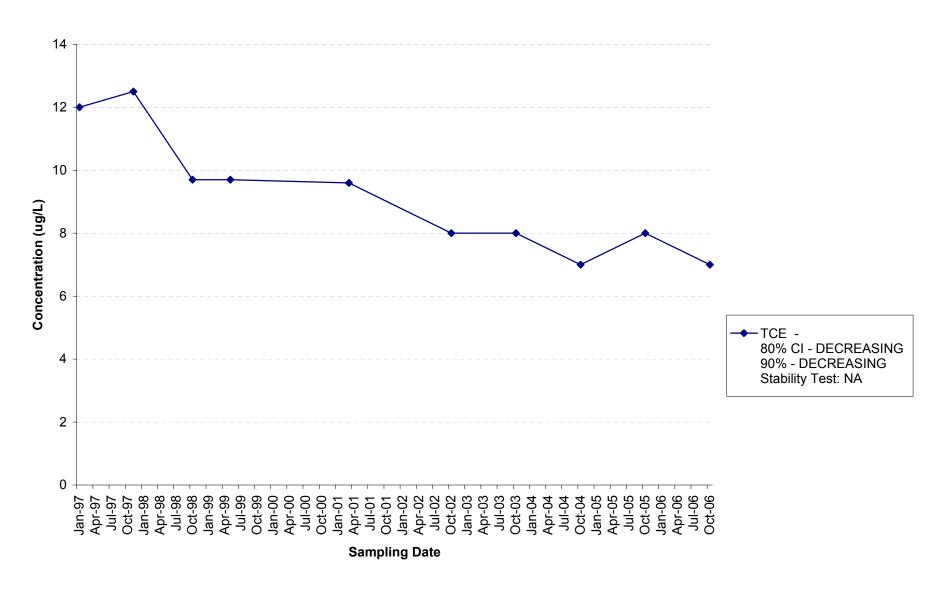
**Error Messages:** There is a section below the data entry screen that describes data entry errors in more detail and which cell has that error. Thus a user can determine what and where their error is very quickly. Note that a space is seen as text in Excel formulae.

Data Entry and Error Messages: When there are <u>less than four rounds of data entered</u>, instead of getting an "ERROR" message, only "n<4" is displayed. But, if text, a zero or a negative number is inadvertently entered, the "ERROR" message is displayed. Thus, during data entry, an "ERROR" message is only displayed when there actually is an error. Note that the date must be entered before sample results collected on that date are entered to avoid an error message.

Site Name =	Little Valley Superfund Site - I	Residential Well		Site ID No. =	1945.2159	Well Number =	ID 104
	Compound ->	TCE					
	·	Concentration	Concentration	Concentration	Concentration	Concentration	Concentration
Event	Sampling Date	(leave blank	(leave blank	(leave blank	(leave blank	(leave blank	(leave blank
Number	(most recent last)	if no data)	if no data)	if no data)	if no data)	if no data)	if no data)
1	01/1997	13.3					
2	11/1997	10.6					
3	10/1998	13					
4	03/2001	9.5					
5	10/2002	8					
6	10/2003	9					
7	10/2004	9					
8	10/2005	10					
9	10/2006	7					
10							
	Mann Kendall Statistic (S) =	-21	0	0	0	0	0
	Number of Rounds (n) =	9	0	0	0	0	0
	Average =	9.93	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!
	Standard Deviation =	2.105	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!
	Coefficient of Variation(CV)=	0.212	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!
Error Check, Bla	ank if No Errors Detected		N<4	N<4	N<4	N<4	N<4
Trend = 80% C	onfidence Level	DECREASING	N<4	N<4	N<4	N<4	N<4
Trend = 90% C	onfidence Level	DECREASING	N<4	N<4	N<4	N<4	N<4
Stability Test, If	No Trend Exists at		n<4	n<4	n<4	n<4	n<4
80% Confidence		NA	n<4	n<4	n<4	n<4	n<4
	Data Entry By =	L. Arabia	Date =	02/12/2007	Checked By =	LB	TETRATECH EC, INC.

## Trend Test - Res ID 104 - DER 1 02-2007.xls




Instructions: Do not change formulas or other information in cells with a blue background, only cells with a yellow background are used for data entry. To use the spreadsheet, provide at least four rounds and not more than ten rounds of data that is not seasonally affected. Use consistent units. The spreadsheet contains several error checks, and a data entry error may cause "DATA ERR" or "DATE ERR" to be displayed. Dates that are not consecutive will show an error message and will not display the test results. The spreadsheet tests the data for both increasing and decreasing trends at both 80 percent and 90 percent confidence levels. If an increasing or decreasing trend is not present, an additional coefficient of variation test is used to test for stability, as proposed by Wiedemeier et al, 1999. For additional information, refer to the Interim Guidance on Natural Attenuation from the governing regulatory agencies for the site and applicable guidance for recommendations on data entry for non-detect values (See protocol at bottom of worksheet).

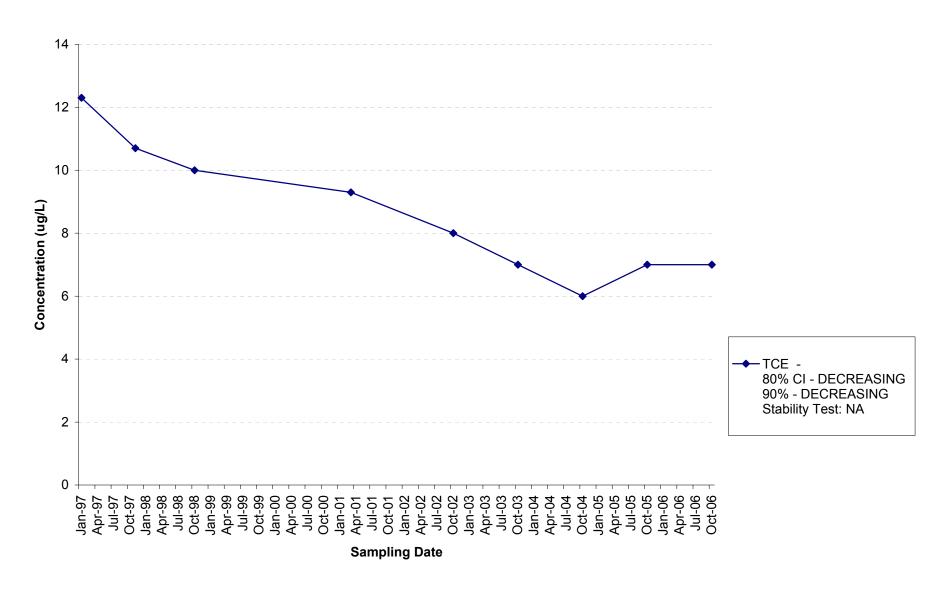
**Error Messages:** There is a section below the data entry screen that describes data entry errors in more detail and which cell has that error. Thus a user can determine what and where their error is very quickly. Note that a space is seen as text in Excel formulae.

Data Entry and Error Messages: When there are <u>less than four rounds of data entered</u>, instead of getting an "ERROR" message, only "n<4" is displayed. But, if text, a zero or a negative number is inadvertently entered, the "ERROR" message is displayed. Thus, during data entry, an "ERROR" message is only displayed when there actually is an error. Note that the date must be entered before sample results collected on that date are entered to avoid an error message.

Site Name =	Little Valley Superfund Site -	Residential Well		Site ID No. =	1945.2159	Well Number =	ID 107
	Compound ->	TCE					
		Concentration	Concentration	Concentration	Concentration	Concentration	Concentration
Event	Sampling Date	(leave blank	(leave blank	(leave blank	(leave blank	(leave blank	(leave blank
Number	(most recent last)	if no data)	if no data)	if no data)	if no data)	if no data)	if no data)
1	01/1997	12					
2	11/1997	12.5					
3	10/1998	9.7					
4	05/1999	9.7					
5	03/2001	9.6					
6	10/2002	8					
7	10/2003	8					
8	10/2004	7					
9	10/2005	8					
10	10/2006	7					
	Mann Kendall Statistic (S) =	-36	0	0	0	0	0
	Number of Rounds (n) =	10	0	0	0	0	0
	Average =	9.15	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!
	Standard Deviation =	1.925	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!
	Coefficient of Variation(CV)=	0.210	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!
Error Check, Bla	ank if No Errors Detected		N<4	N<4	N<4	N<4	N<4
Trend = 80% Co	onfidence Level	DECREASING	N<4	N<4	N<4	N<4	N<4
Trend = 90% Co	onfidence Level	DECREASING	N<4	N<4	N<4	N<4	N<4
Stability Test, If	No Trend Exists at		n<4	n<4	n<4	n<4	n<4
80% Confidence	ce Level	NA	n<4	n<4	n<4	n<4	n<4
	Data Entry By =	L. Arabia	Date =	02/12/2007	Checked By =	LB	TETRATECH EC, INC.

## Trend Test - Res ID 107 - DER 1 02-2007.xls




Instructions: Do not change formulas or other information in cells with a blue background, only cells with a yellow background are used for data entry. To use the spreadsheet, provide at least four rounds and not more than ten rounds of data that is not seasonally affected. Use consistent units. The spreadsheet contains several error checks, and a data entry error may cause "DATA ERR" or "DATE ERR" to be displayed. Dates that are not consecutive will show an error message and will not display the test results. The spreadsheet tests the data for both increasing and decreasing trends at both 80 percent and 90 percent confidence levels. If an increasing or decreasing trend is not present, an additional coefficient of variation test is used to test for stability, as proposed by Wiedemeier et al, 1999. For additional information, refer to the Interim Guidance on Natural Attenuation from the governing regulatory agencies for the site and applicable guidance for recommendations on data entry for non-detect values (See protocol at bottom of worksheet).

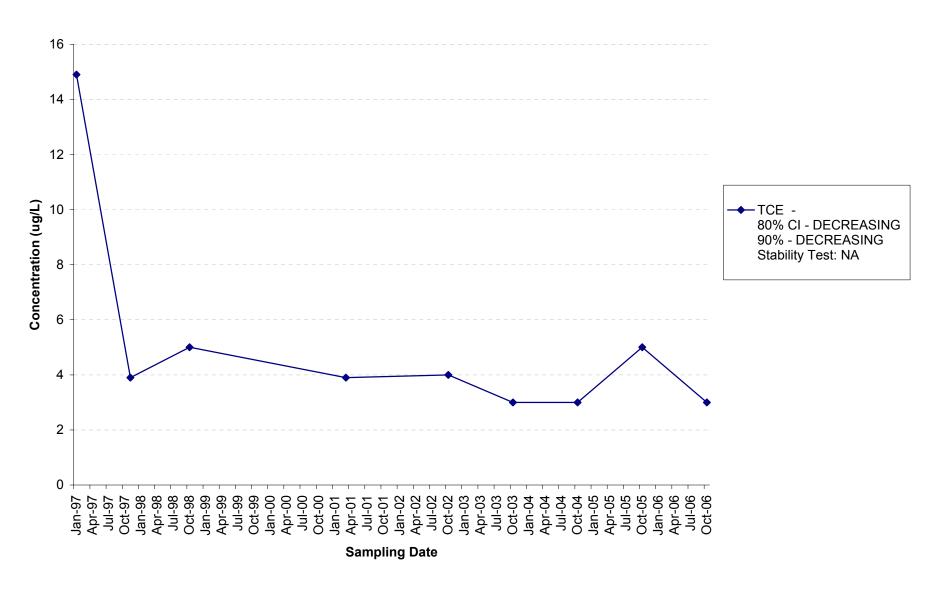
**Error Messages:** There is a section below the data entry screen that describes data entry errors in more detail and which cell has that error. Thus a user can determine what and where their error is very quickly. Note that a space is seen as text in Excel formulae.

Data Entry and Error Messages: When there are <u>less than four rounds of data entered</u>, instead of getting an "ERROR" message, only "n<4" is displayed. But, if text, a zero or a negative number is inadvertently entered, the "ERROR" message is displayed. Thus, during data entry, an "ERROR" message is only displayed when there actually is an error. Note that the date must be entered before sample results collected on that date are entered to avoid an error message.

Site Name =	Little Valley Superfund Site -	Residential Well		Site ID No. =	1945.2159	Well Number =	ID 120
	Compound ->	TCE					
	·	Concentration	Concentration	Concentration	Concentration	Concentration	Concentration
Event	Sampling Date	(leave blank	(leave blank	(leave blank	(leave blank	(leave blank	(leave blank
Number	(most recent last)	if no data)	if no data)	if no data)	if no data)	if no data)	if no data)
1	01/1997	12.3	·	·	,	·	·
2	11/1997	10.7					
3	10/1998	10					
4	03/2001	9.3					
5	10/2002	8					
6	10/2003	7					
7	10/2004	6					
8	10/2005	7					
9	10/2006	7					
10							
	Mann Kendall Statistic (S) =	-29	0	0	0	0	0
	Number of Rounds (n) =	9	0	0	0	0	0
	Average =	8.59	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!
	Standard Deviation =	2.102	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!
	Coefficient of Variation(CV)=	0.245	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!
Error Check, Blank if No Errors Detected			N<4	N<4	N<4	N<4	N<4
Trend = 80% C	Trend = 80% Confidence Level		N<4	N<4	N<4	N<4	N<4
Trend = 90% C	onfidence Level	DECREASING	N<4	N<4	N<4	N<4	N<4
Stability Test, If	No Trend Exists at		n<4	n<4	n<4	n<4	n<4
80% Confidence	ce Level	NA	n<4	n<4	n<4	n<4	n<4
	Data Entry By =	L. Arabia	Date =	02/08/2007	Checked By =	LB	TETRATECH EC, INC.

## Trend Test - Res ID 120 - DER 1 02-2007.xls




Instructions: Do not change formulas or other information in cells with a blue background, only cells with a yellow background are used for data entry. To use the spreadsheet, provide at least four rounds and not more than ten rounds of data that is not seasonally affected. Use consistent units. The spreadsheet contains several error checks, and a data entry error may cause "DATA ERR" or "DATE ERR" to be displayed. Dates that are not consecutive will show an error message and will not display the test results. The spreadsheet tests the data for both increasing and decreasing trends at both 80 percent and 90 percent confidence levels. If an increasing or decreasing trend is not present, an additional coefficient of variation test is used to test for stability, as proposed by Wiedemeier et al, 1999. For additional information, refer to the Interim Guidance on Natural Attenuation from the governing regulatory agencies for the site and applicable guidance for recommendations on data entry for non-detect values (See protocol at bottom of worksheet).

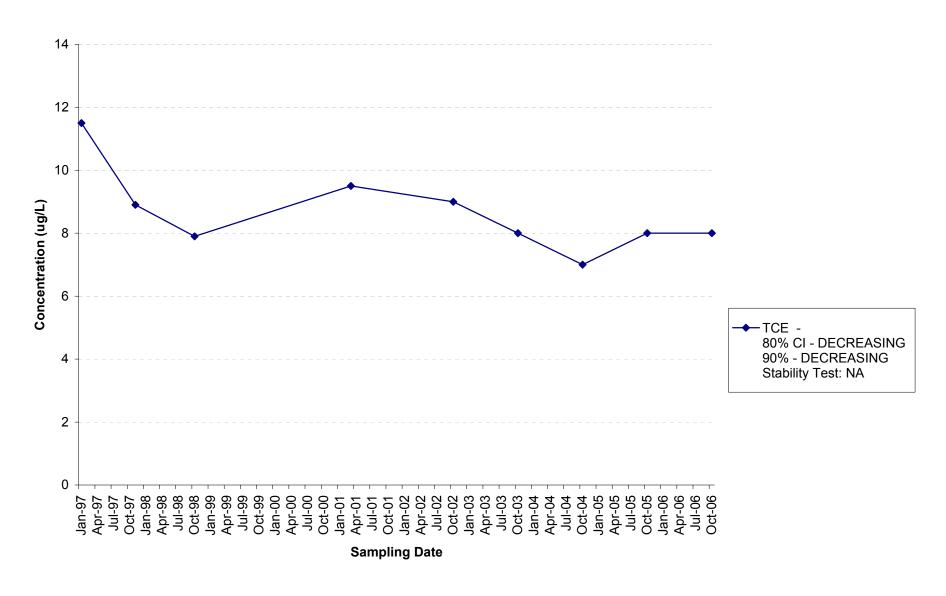
**Error Messages:** There is a section below the data entry screen that describes data entry errors in more detail and which cell has that error. Thus a user can determine what and where their error is very quickly. Note that a space is seen as text in Excel formulae.

Data Entry and Error Messages: When there are <u>less than four rounds of data entered</u>, instead of getting an "ERROR" message, only "n<4" is displayed. But, if text, a zero or a negative number is inadvertently entered, the "ERROR" message is displayed. Thus, during data entry, an "ERROR" message is only displayed when there actually is an error. Note that the date must be entered before sample results collected on that date are entered to avoid an error message.

Site Name =	Little Valley Superfund Site -	Residential Well		Site ID No. =	1945.2159	Well Number =	ID 157
	Compound ->	TCE					
	·	Concentration	Concentration	Concentration	Concentration	Concentration	Concentration
Event	Sampling Date	(leave blank	(leave blank	(leave blank	(leave blank	(leave blank	(leave blank
Number	(most recent last)	if no data)	if no data)	if no data)	if no data)	if no data)	if no data)
1	01/1997	14.9					
2	11/1997	3.9					
3	10/1998	5					
4	03/2001	3.9					
5	10/2002	4					
6	10/2003	3					
7	10/2004	3					
8	10/2005	5					
9	10/2006	3					
10							
	Mann Kendall Statistic (S) =	-15	0	0	0	0	0
	Number of Rounds (n) =	9	0	0	0	0	0
	Average =	5.08	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!
	Standard Deviation =	3.765	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!
	Coefficient of Variation(CV)=	0.741	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!
Error Check, Bla	ank if No Errors Detected		N<4	N<4	N<4	N<4	N<4
Trend = 80% Confidence Level		DECREASING	N<4	N<4	N<4	N<4	N<4
Trend = 90% Confidence Level		DECREASING	N<4	N<4	N<4	N<4	N<4
Stability Test, If	Stability Test, If No Trend Exists at		n<4	n<4	n<4	n<4	n<4
80% Confidence Level		NA	n<4	n<4	n<4	n<4	n<4
	Data Entry By =	L. Arabia	Date =	02/12/2007	Checked By =	LB	TETRA TECH EC, INC.

## Trend Test - Res ID 157 - DER 1 02-2007.xls




Instructions: Do not change formulas or other information in cells with a blue background, only cells with a yellow background are used for data entry. To use the spreadsheet, provide at least four rounds and not more than ten rounds of data that is not seasonally affected. Use consistent units. The spreadsheet contains several error checks, and a data entry error may cause "DATA ERR" or "DATE ERR" to be displayed. Dates that are not consecutive will show an error message and will not display the test results. The spreadsheet tests the data for both increasing and decreasing trends at both 80 percent and 90 percent confidence levels. If an increasing or decreasing trend is not present, an additional coefficient of variation test is used to test for stability, as proposed by Wiedemeier et al, 1999. For additional information, refer to the Interim Guidance on Natural Attenuation from the governing regulatory agencies for the site and applicable guidance for recommendations on data entry for non-detect values (See protocol at bottom of worksheet).

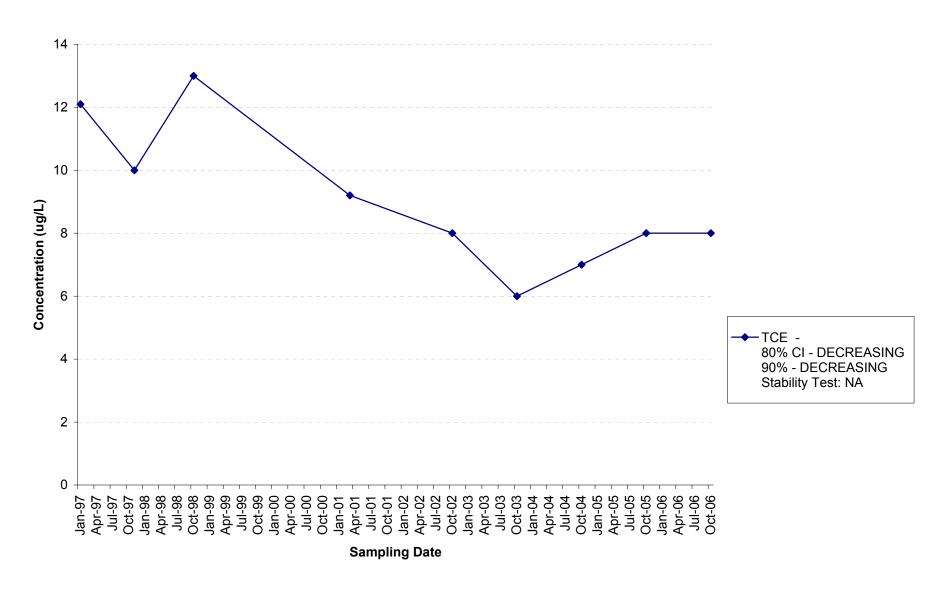
**Error Messages:** There is a section below the data entry screen that describes data entry errors in more detail and which cell has that error. Thus a user can determine what and where their error is very quickly. Note that a space is seen as text in Excel formulae.

Data Entry and Error Messages: When there are <u>less than four rounds of data entered</u>, instead of getting an "ERROR" message, only "n<4" is displayed. But, if text, a zero or a negative number is inadvertently entered, the "ERROR" message is displayed. Thus, during data entry, an "ERROR" message is only displayed when there actually is an error. Note that the date must be entered before sample results collected on that date are entered to avoid an error message.

Site Name =	Little Valley Superfund Site -	Residential Well		Site ID No. =	1945.2159	Well Number =	ID 166
	Compound ->	TCE					
		Concentration	Concentration	Concentration	Concentration	Concentration	Concentration
Event	Sampling Date	(leave blank	(leave blank	(leave blank	(leave blank	(leave blank	(leave blank
Number	(most recent last)	if no data)	if no data)	if no data)	if no data)	if no data)	if no data)
1	01/1997	11.5					
2	11/1997	8.9					
3	10/1998	7.9					
4	03/2001	9.5					
5	10/2002	9					
6	10/2003	8					
7	10/2004	7					
8	10/2005	8					
9	10/2006	8					
10							
	Mann Kendall Statistic (S) =	-15	0	0	0	0	0
	Number of Rounds (n) =	9	0	0	0	0	0
	Average =	8.64	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!
	Standard Deviation =	1.303	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!
	Coefficient of Variation(CV)=	0.151	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!
Error Check, Bla	ank if No Errors Detected		N<4	N<4	N<4	N<4	N<4
Trend = 80% C	Trend = 80% Confidence Level		N<4	N<4	N<4	N<4	N<4
Trend = 90% Confidence Level		DECREASING	N<4	N<4	N<4	N<4	N<4
Stability Test, If	No Trend Exists at		n<4	n<4	n<4	n<4	n<4
80% Confidence Level		NA	n<4	n<4	n<4	n<4	n<4
	Data Entry By =	L. Arabia	Date =	02/08/2007	Checked By =	LB	TETRATECH EC, INC.

## Trend Test - Res ID 166 - DER 1 02-2007.xls




Instructions: Do not change formulas or other information in cells with a blue background, only cells with a yellow background are used for data entry. To use the spreadsheet, provide at least four rounds and not more than ten rounds of data that is not seasonally affected. Use consistent units. The spreadsheet contains several error checks, and a data entry error may cause "DATA ERR" or "DATE ERR" to be displayed. Dates that are not consecutive will show an error message and will not display the test results. The spreadsheet tests the data for both increasing and decreasing trends at both 80 percent and 90 percent confidence levels. If an increasing or decreasing trend is not present, an additional coefficient of variation test is used to test for stability, as proposed by Wiedemeier et al, 1999. For additional information, refer to the Interim Guidance on Natural Attenuation from the governing regulatory agencies for the site and applicable guidance for recommendations on data entry for non-detect values (See protocol at bottom of worksheet).

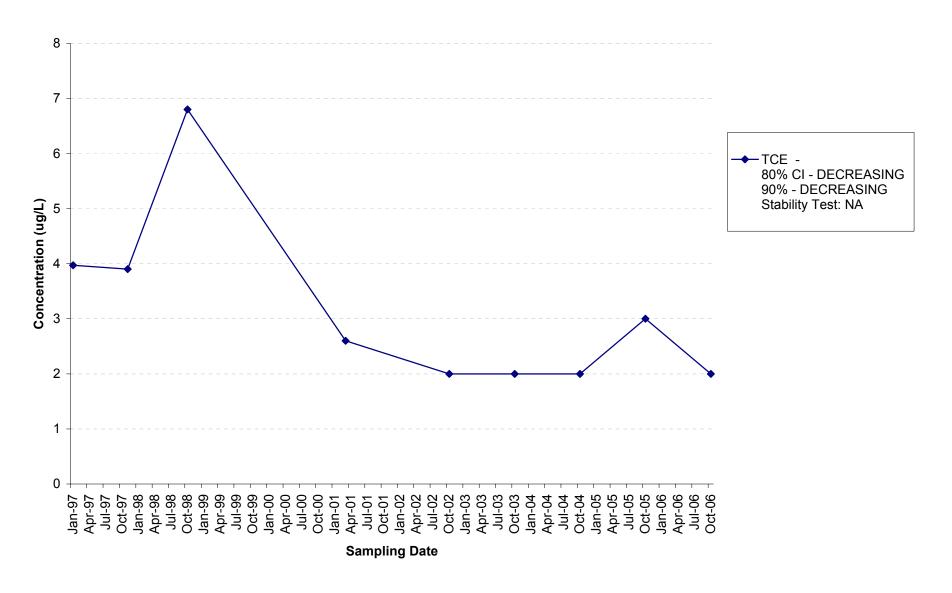
**Error Messages:** There is a section below the data entry screen that describes data entry errors in more detail and which cell has that error. Thus a user can determine what and where their error is very quickly. Note that a space is seen as text in Excel formulae.

Data Entry and Error Messages: When there are <u>less than four rounds of data entered</u>, instead of getting an "ERROR" message, only "n<4" is displayed. But, if text, a zero or a negative number is inadvertently entered, the "ERROR" message is displayed. Thus, during data entry, an "ERROR" message is only displayed when there actually is an error. Note that the date must be entered before sample results collected on that date are entered to avoid an error message.

Site Name =	Little Valley Superfund Site -	Residential Well		Site ID No. =	1945.2159	Well Number =	ID 174
	Compound ->	TCE					
	·	Concentration	Concentration	Concentration	Concentration	Concentration	Concentration
Event	Sampling Date	(leave blank	(leave blank	(leave blank	(leave blank	(leave blank	(leave blank
Number	(most recent last)	if no data)	if no data)	if no data)	if no data)	if no data)	if no data)
1	01/1997	12.1					
2	11/1997	10					
3	10/1998	13					
4	03/2001	9.2					
5	10/2002	8					
6	10/2003	6					
7	10/2004	7					
8	10/2005	8					
9	10/2006	8					
10							
	Mann Kendall Statistic (S) =	-19	0	0	0	0	0
	Number of Rounds (n) =	9	0	0	0	0	0
	Average =	9.03	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!
	Standard Deviation =	2.309	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!
	Coefficient of Variation(CV)=	0.256	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!
Error Check, Bla	ank if No Errors Detected		N<4	N<4	N<4	N<4	N<4
Trend = 80% C	onfidence Level	DECREASING	N<4	N<4	N<4	N<4	N<4
Trend = 90% C	onfidence Level	DECREASING	N<4	N<4	N<4	N<4	N<4
Stability Test, If No Trend Exists at			n<4	n<4	n<4	n<4	n<4
	80% Confidence Level		n<4	n<4	n<4	n<4	n<4
	Data Entry By =	L. Arabia	Date =	02/08/2007	Checked By =	LB	TETRA TECH EC, INC.

## Trend Test - Res ID 174 - DER 1 02-2007.xls




Instructions: Do not change formulas or other information in cells with a blue background, only cells with a yellow background are used for data entry. To use the spreadsheet, provide at least four rounds and not more than ten rounds of data that is not seasonally affected. Use consistent units. The spreadsheet contains several error checks, and a data entry error may cause "DATA ERR" or "DATE ERR" to be displayed. Dates that are not consecutive will show an error message and will not display the test results. The spreadsheet tests the data for both increasing and decreasing trends at both 80 percent and 90 percent confidence levels. If an increasing or decreasing trend is not present, an additional coefficient of variation test is used to test for stability, as proposed by Wiedemeier et al, 1999. For additional information, refer to the Interim Guidance on Natural Attenuation from the governing regulatory agencies for the site and applicable guidance for recommendations on data entry for non-detect values (See protocol at bottom of worksheet).

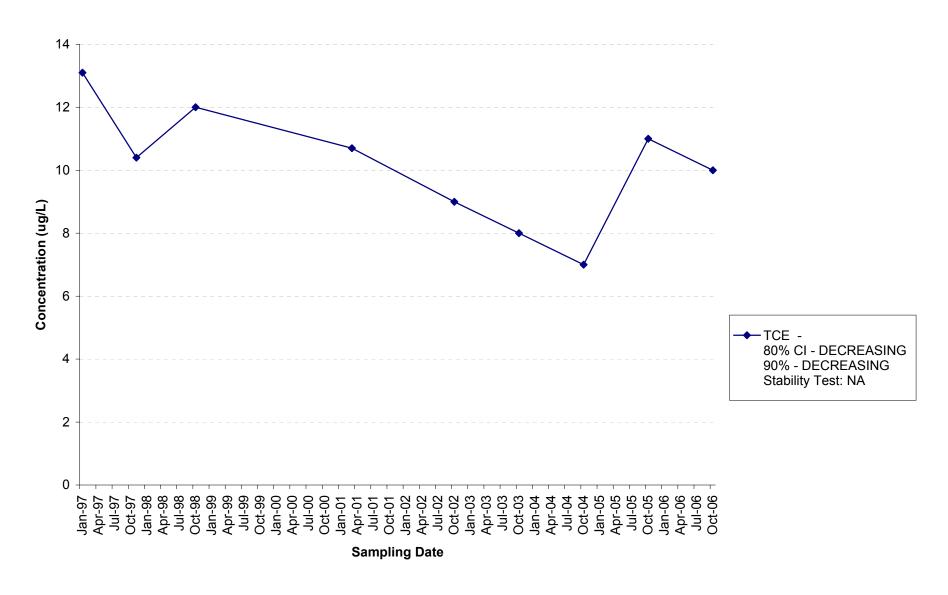
**Error Messages:** There is a section below the data entry screen that describes data entry errors in more detail and which cell has that error. Thus a user can determine what and where their error is very quickly. Note that a space is seen as text in Excel formulae.

Data Entry and Error Messages: When there are <u>less than four rounds of data entered</u>, instead of getting an "ERROR" message, only "n<4" is displayed. But, if text, a zero or a negative number is inadvertently entered, the "ERROR" message is displayed. Thus, during data entry, an "ERROR" message is only displayed when there actually is an error. Note that the date must be entered before sample results collected on that date are entered to avoid an error message.

Site Name =	ame = Little Valley Superfund Site - Residential Well				1945.2159	Well Number =	ID 178
	Compound ->	TCE					
		Concentration	Concentration	Concentration	Concentration	Concentration	Concentration
Event	Sampling Date	(leave blank					
Number	(most recent last)	if no data)					
1	01/1997	3.97					
2	11/1997	3.9					
3	10/1998	6.8					
4	03/2001	2.6					
5	10/2002	2					
6	10/2003	2					
7	10/2004	2					
8	10/2005	3					
9	10/2006	2					
10							
	Mann Kendall Statistic (S) =	-18	0	0	0	0	0
	Number of Rounds (n) =	9	0	0	0	0	0
	Average =	3.14	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!
	Standard Deviation =	1.588	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!
	Coefficient of Variation(CV)=	0.506	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!
Error Check, Bla	ank if No Errors Detected		N<4	N<4	N<4	N<4	N<4
Trend = 80% C	Trend = 80% Confidence Level DECR		N<4	N<4	N<4	N<4	N<4
Trend = 90% Confidence Level DE		DECREASING	N<4	N<4	N<4	N<4	N<4
Stability Test, If	No Trend Exists at		n<4	n<4	n<4	n<4	n<4
80% Confidence Level		NA	n<4	n<4	n<4	n<4	n<4
	Data Entry By =	L. Arabia	Date =	02/08/2007	Checked By =	LB	TETRATECH EC, INC.

## Trend Test - Res ID 178 - DER 1 02-2007.xls




Instructions: Do not change formulas or other information in cells with a blue background, only cells with a yellow background are used for data entry. To use the spreadsheet, provide at least four rounds and not more than ten rounds of data that is not seasonally affected. Use consistent units. The spreadsheet contains several error checks, and a data entry error may cause "DATA ERR" or "DATE ERR" to be displayed. Dates that are not consecutive will show an error message and will not display the test results. The spreadsheet tests the data for both increasing and decreasing trends at both 80 percent and 90 percent confidence levels. If an increasing or decreasing trend is not present, an additional coefficient of variation test is used to test for stability, as proposed by Wiedemeier et al, 1999. For additional information, refer to the Interim Guidance on Natural Attenuation from the governing regulatory agencies for the site and applicable guidance for recommendations on data entry for non-detect values (See protocol at bottom of worksheet).

**Error Messages:** There is a section below the data entry screen that describes data entry errors in more detail and which cell has that error. Thus a user can determine what and where their error is very quickly. Note that a space is seen as text in Excel formulae.

Data Entry and Error Messages: When there are <u>less than four rounds of data entered</u>, instead of getting an "ERROR" message, only "n<4" is displayed. But, if text, a zero or a negative number is inadvertently entered, the "ERROR" message is displayed. Thus, during data entry, an "ERROR" message is only displayed when there actually is an error. Note that the date must be entered before sample results collected on that date are entered to avoid an error message.

Site Name =	ne = Little Valley Superfund Site - Residential Well				1945.2159	Well Number =	ID 184
	Compound ->	TCE					
		Concentration	Concentration	Concentration	Concentration	Concentration	Concentration
Event	Sampling Date	(leave blank					
Number	(most recent last)	if no data)					
1	01/1997	13.1					
2	11/1997	10.4					
3	10/1998	12					
4	03/2001	10.7					
5	10/2002	9					
6	10/2003	8					
7	10/2004	7					
8	10/2005	11					
9	10/2006	10					
10							
	Mann Kendall Statistic (S) =	-16	0	0	0	0	0
	Number of Rounds (n) =	9	0	0	0	0	0
	Average =	10.13	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!
	Standard Deviation =	1.907	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!
	Coefficient of Variation(CV)=	0.188	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!
Error Check, Bla	ank if No Errors Detected		N<4	N<4	N<4	N<4	N<4
Trend = 80% C	Trend = 80% Confidence Level DEC		N<4	N<4	N<4	N<4	N<4
Trend = 90% Confidence Level DE		DECREASING	N<4	N<4	N<4	N<4	N<4
Stability Test, If	Stability Test, If No Trend Exists at		n<4	n<4	n<4	n<4	n<4
80% Confidence	80% Confidence Level		n<4	n<4	n<4	n<4	n<4
	Data Entry By =	L. Arabia	Date =	02/12/2007	Checked By =	LB	TE TETRATECH ECLING

## Trend Test - Res ID 184 - DER 1 02-2007.xls

