

Biweekly Report Little Valley

300 Sixth Street Little Valley, New York

Date: November 28, 2007

Reporting Period: November 8– November 29, 2007

For:

Louis DiGuardia, OSC John DiMartino, RPM

U.S. EPA Region II U.S. EPA Region II

Emergency & Remedial Response Division Emergency & Remedial Response Division

Removal Action Branch New York Remedial Branch

2890 Woodbridge Avenue (MS-211) 290 Broadway

Edison, New Jersey 08837-3679 New York, NY 10007-1866

A. Summary of Actions Conducted During Reporting Period

- Performed Soil Vapor Extraction system O&M; maintenance
- Performed SVE system bi weekly air monitoring; all wells are on except Well 19. See Appendix 1 for monitoring log
- Performed SVE system blower maintenance (grease change, oil change, etc)

B. Monitoring, Sampling and Test Results

See Appendix 1 for SVE Monitoring Log for November 28

C. <u>Communications Transmitted to EPA</u>

None

D. <u>Summary of Actions Scheduled for Next Reporting Period (Nov 28 – Dec 13)</u>

- SVE system O&M, site maintenance
- Continue bi-weekly SVE system monitoring
- Motion sensor camera data download (if necessary)

E. Other Information Relating to Progress of Completion

• ERT will use data from Summa sampling to determine locations of future sub-slabs

F. **Project Progress**

Continued monitoring of SVE system and data evaluation. Eventual installation and monitoring of a sub-slab system and subsequent data evaluation from that monitoring.

G. <u>Deviations to the Project Schedule</u>

None

Soil Vapor Extraction System Air Monitoring Log

Little Valley

Date: 11/27/07

Soil Vapor Extraction Air Monitoring Log WRS Project #: 33-64-060026

	FID	ID MultiRAE Plus PID							Veloci-Calc Plus			
Well	VOC	IVIUITIKAE PIUS PID					Pressure	Pipe	veloci-calc Flus			
	(ppm)	VOC (ppm)	Oxygen	H ₂ S	LEL	СО	(" Hg)	Diameter	Flow	Humidity	Temp.	Dew Pt.
1		0.0	20.9%	0	0	0		1.9	62.4	51.7	47.2	58.7
2		0.0	20.9%	0	0	0		1.9	64.7	52.2	46.1	56.2
3		0.3	20.9%	0	0	0		1.9	64.5	50.1	44.2	51.3
4		0.3	20.9%	0	0	0		1.9	64.7	52.1	45.2	50.7
5		0.0	20.9%	0	0	0		1.9	63.7	50.4	44.7	55.8
6		0.0	20.9%	0	0	0		1.9	57.2	54.3	41.2	56.7
7		0.0	20.9%	0	0	0		1.9	58.4	54.0	42.4	55.4
8		0.0	20.9%	0	0	0		1.9	56.2	51.7	44.7	53.7
9		0.0	20.9%	0	0	0		1.9	55.8	50.2	46.3	54.8
10		0.2	20.9%	0	0	0		1.9	59.2	53.1	44.7	56.1
11		0.0	20.9%	0	0	0		1.9	60.4	57.8	46.2	55.1
12		0.2	20.9%	0	0	0		1.9	62.7	52.3	48.3	56.3
13		0.0	20.9%	0	0	0		1.9	57.8	53.4	49.9	57.8
16		0.0	20.9%	0	0	0		1.9	55.4	55.7	46.2	55.9
18		0.0	20.9%	0	0	0		1.9	56.1	54.2	45.3	56.7
19								1.9				
20		0.0	20.9%	0	0	0		1.9	48.7	62.5	43.1	55.1
24		0.0	20.9%	0	0	0		1.9	49.2	61.5	43.9	56.2
25		0.0	20.9%	0	0	0		1.9	54.7	60.7	45.2	51.3
26		0.1	20.9%	0	0	0		1.9	57.8	60.5	44.7	51.2
27		0.0	20.9%	0	0	0		1.9	60.4	59.1	46.3	58.3
28		0.3	20.9%	0	0	0		1.9	67.3	57.4	42.2	54.3
29		0.3	20.9%	0	0	0		1.9	64.2	56.2	41.7	54.7
30		0.0	20.9%	0	0	0		1.9	61.7	54.7	42.3	57.6
32		0.0	20.9%	0	0	0		1.9	64.2	51.2	47.8	58.7
33		0.0	20.9%	0	0	0		1.9	67.8	55.4	45.1	54.8
Sub-slab		0.0	20.9%	0	0	0			51.8	58.4	44.7	55.7
Effluent		0.0	20.9%	0	0	0		5.7	71	68.1	48.2	68.5
Combined		0.0	20.9%	0	0	0		5.7	OVER	57.0	46.8	60.4
Background		0.0	20.9%	0	0	0		N/A	N/A	sleet mixed with rain		

Please note flow is measured in SCFM or ACFM. Readings performed by: Rob McKown

Blower Hours:

Notes: Well 19 is broken and the sub-slab valve is half on

SVE Readings from control panel (digital readings):

Air Flow: CFM Inlet Vacuum: 12 " H₂O Discharge Pressure: 7 " H₂O

FID: Flame Ionization Detector

VOC: Volatile Organic Compounds (in ppm)

CO: Carbon Monoxide LEL: Lower Explosive Limit ppm: parts per million

Temperature: measured in degress Farenheit Pressure: measured in inches of mercury (" Hg)

Humidity: percent relative Humidity

SCFM:Standard Cubic Feet per Minute at 32 degrees Farenheit and 14.7 PSI

ACFM:Actual Cubic Feet per Minute at existing Temperature and Pressure at time of measurement.