Lockheed Martin Response Engineering Analytical Contract 2890 Woodbridge Avenue, Building 209 Annex Edison, NJ 08837-3679 Telephone: 732-321-4200 Facsimile: 732-494-4021

LOCKHEED MARTIN

DATE:	June 3, 2008
TO:	David B. Mickunas, U.S. EPA/ERT Work Assignment Manager
	Jeffrey Bradstreet, REAC Air Response Section Leader
FROM:	Amy DuBois, REAC Task Leader
SUBJECT:	Little Valley VI Extent Study, Little Valley, NY WA # 0-210 - Trip Report – Event 6, March/April 2008

BACKGROUND

The Environmental Protection Agency/Environmental Response Team (EPA/ERT) issued Work Assignment (WA) Number 0-210 to Lockheed Martin under the Response, Engineering, and Analytical Contract (REAC) to perform a soil vapor intrusion extent study at the Little Valley Superfund Site (Site) in Little Valley, New York (NY).

The Site is located in the Towns of Little Valley and Salamanca in Cattaraugus County, NY. Since 1982, chemical analyses of groundwater samples collected from monitoring and private wells throughout the Little Valley study area have indicated the presence of trichloroethene (TCE). The study area overlies a plume of TCE-contaminated groundwater that extends approximately seven to eight miles from the Village of Little Valley to the northern edge of the City of Salamanca, which is part of the Allegheny Indian Reservation. There are more than 200 residential properties in the study area, situated along NY State Route 353, the main transportation route between Little Valley and Salamanca.

The scope of work for this WA included providing support to EPA Region II with a soil vapor intrusion (VI) study to delineate the extent of a subsurface gas plume and determine if indoor air has been impacted. Previously, two soil VI sampling events (Events 1 and 2) were conducted as part of WA #0-165, Little Valley Superfund Site, and three additional events (Events 3, 4 and 5) were conducted under the current WA. Events 1 (September 2005) and 3 (July/August 2006) involved sub-slab sampling only. These were the initial sampling rounds for the units involved. Events 2 (January 2006) and 4 (August 2006) involved follow-up full-column (sub-slab plus ground floor and first floor indoor air) sampling based on previous sampling results as well as some sub-slab-only sampling of new residences. Event 5 (December 2006) involved follow-up full column sampling at seven residences, two had mitigation systems installed prior to the sampling event. For all of the previous events, at the residences where follow-up sampling was conducted, trace atmospheric gas analyzer (TAGA) air monitoring utilizing the EPA/ERT's mobile laboratory triple-quadrupole mass spectrometer (MS/MS) was also conducted.

During the March/April 2008 sampling event (Event 6), SUMMA[®] sampling and TAGA air monitoring were conducted in six of the seven residences sampled during Event 5. Sampling and monitoring were also conducted in a new residence (Unit 136). The target compound list (TCL) for the TAGA air monitoring included TCE and tetrachloroethene (PCE). After completion of the TAGA air monitoring survey of each

unit, a one-liter (L) Tedlar[®] bag grab sample was collected from the sub-slab port prior to collecting the SUMMA[®] sample.

Full-column sampling was conducted at Units 003, 027, 041, 071, and 088. Indoor air sampling was conducted at Units 010 and 136. No sub-slab sample, Tedlar[®] or SUMMA[®], was collected from these units because the port in Unit 010 was rusted shut and Unit 136 does not have a slab. Units 027 and 041 contain mitigation systems.

All SUMMA[®] canister and Tedlar[®] bag samples were analyzed for TCE, PCE, vinyl chloride (VCL), cis-1,2dichloroethene (c12DCE), trans-1,2-dichloroethene (t12DCE), and 1,1-dichloroethene (11DCE). The Tedlar[®] bag compound list also included 1,1,1-trichloroethane and 1,1-dichloroethane. The Tedlar[®] bag samples were analyzed for VOCs on-site following Draft REAC SOP, *Field Analysis of VOCs in Gaseous Phase Samples by GC/MSD Loop Injection*. The SUMMA[®] canister sampling and analysis were conducted following EPA Compendium Method TO-15, *Determination of Volatile Organic Compounds (VOCs) in Air Collected in Specially-Prepared Canisters and Analyzed by Gas Chromatography/Mass Spectrometry (GC/MS)*. Twentyfour SUMMA[®] samples plus a Trip Blank, and six Tedlar[®] bag samples were collected and analyzed.

OBSERVATIONS AND ACTIVITIES

REAC personnel mobilized to site March 31, 2008. On April 1, 2008, lifestyle chemical sources (paints, cleaners, etc.) that might potentially impact the TAGA air monitoring and/or indoor air sampling were removed from the homes. On April 2, 2008, TAGA air monitoring was conducted in all seven residences. Each room in the basement and first floor of the residences was monitored, as well as, the unopened sub-slab ports and any floor drains. Description of the actual procedure used for monitoring can be found in the Final Analytical TAGA Report (Appendix A).

Upon completion of the TAGA survey, REAC personnel collected a 1-L Tedlar[®] bag grab sample from the unit's sub-slab soil gas port(s). Then, 24-hour soil gas samples and/or indoor air samples were collected using 6-L SUMMA[®] canisters in accordance with REAC SOP #1704, *SUMMA[®] Canister Sampling*. A 4 to 5-L time weighted average (TWA) sample was collected during a 24-hour sampling event. In Units 003, 027, 041, 071, and 088 full-column sampling was conducted. In Units 010 and 136 only indoor air samples were collected. A 24-hour ambient air sample was collected in the vicinity of Unit 088 and another near Unit 136. The Tedlar[®] bag samples were properly documented and transferred under chain of custody to the mobile laboratory on-site for GC/MS Loop injection analysis. The samples collected in the SUMMA[®] canisters were properly documented and shipped to a subcontracted laboratory for analysis. Sub-slab, indoor and ambient air analysis was performed in accordance with a modified EPA Method TO-15. Prior to sampling, the SUMMA[®] canisters and orifices were certified clean to meet the reporting levels for the analysis requested.

RESULTS

Results of the Event 6, March/April 2008, SUMMA[®] sampling for the 6-compound TCL, presented in micrograms per cubic meter (μ g/m³), are provided in Table 1. The same results, presented in parts per billion by volume (ppbv), are provided in Table 2. A comparison of indoor air SUMMA[®] and TAGA data is provided in Table 3. A comparison of sub-slab SUMMA[®] and Tedlar[®] bag results is provided in Table 4. A history of the SUMMA[®] sampling TCE and PCE results for Units 003, 010, 027, 041, 071, 088, and 136 over the six sampling events is provided in Tables 5 (TCE) and 6 (PCE).

Trichloroethene was detected in five of the six sub-slab results ranging from 33 μ g/m³ (6.1 ppbv) in Unit 088 to 1.4 μ g/m³ (0.27 ppbv) in Unit 003. The sub-slab sample where TCE was not detected was Unit 041 Port 2.

210-DTR-060308

In indoor air, TCE was not detected in either unit with a mitigation system (Units 027 and 041). TCE was detected in the indoor air in all five other units. Indoor air TCE concentrations ranged from $0.87 \,\mu\text{g/m}^3$ (0.16 ppbv) in Unit 088 to 0.040 $\mu\text{g/m}^3$ (0.0074 ppbv) in Unit 010. TCE was not detected in either ambient air sample.

Tetrachloroethene was detected in all the sub-slab SUMMA[®] samples ranging from 120 μ g/m³ (18 ppbv) in Unit 041 to 0.33 μ g/m³ (0.048 ppbv) in Unit 088. PCE was detected in all indoor and both ambient SUMMA[®] samples. Indoor air PCE concentrations ranged from 4.3 μ g/m³ (0.64 ppbv) in Unit 136 to 0.059 μ g/m³ (0.0088 ppbv) in Unit 027. The ambient SUMMA[®] PCE concentrations were 0.14 and 0.045 μ g/m³ (0.020 and 0.0066 ppbv).

The other compounds detected in the SUMMA[®] samples were: c12DCE in two sub-slab (Units 003 and 041) and one indoor air sample (Unit 041), 11DCE in the sub-slab and first floor from Unit 088, and t12DCE in one sub-slab sample (Unit 041). Vinyl chloride was not detected in any of the samples. Complete analytical results for the SUMMA[®] canister samples are included in the Analytical Report, Appendix B.

The TAGA results provided in Table 3 represent the indoor air average concentration detected in the basement and first floor of each unit surveyed. The concentration for the flag pair in closest proximity to the SUMMA[®] canister location was included. Table 3 does not contain readings detected around the sealed sampling ports, drain pipes, etc. Complete TAGA results are provided in the Final Analytical TAGA Report, Appendix A.

A comparison of Tedlar[®] bag and sub-slab SUMMA[®] canister results is provided in Table 4. Complete Tedlar[®] bag results are provided in the Final Analytical GC/MS Report, Appendix C.

A comparison of TCE results from the six VI sampling events conducted under the two Little Valley WAs, 0-165 and 0-210, is presented in Table 5. A comparison of the PCE results from these six events is presented in Table 6. Event 6 SUMMA[®] and Tedlar[®] Sampling Worksheets are provided in Appendix D.

Future Activities

There are no additional activities scheduled at this time.

cc: Central File - WA # EAC00210 (w/attachment) Electronic File - L:/Archive/REAC4/0210/D/TR/052808 REAC Program Manager (cover page only) TABLES Little Valley VI Extent Study Little Valley, NY June 2008

TABLE 1 Event 6 SUMMA[®] Sampling Results – March/April 2008 (µg/m³) Little Valley VI Extent Study Little Valley, New York June 2008

Jule 2008											
0408-	44319	0408-	44320	0408-	44321	0408-	44322	0408-4	44323	0408-	44324
Unit	003	Unit 003		Unit	003	Unit	088	Unit 088		Unit 088	
S	S	Base	ment	First Floor		SS		Basement		First Floor	
Soil Gas		Α	ir	А	ir	Soil	Gas	Air		Air	
$\mu g/m^3$		μg	$/m^3$	μg/	m ³	μg	m ³	$\mu g/m^3$		$\mu g/m^3$	
4/3/2008		4/3/2	2008	4/3/2	2008	4/3/2	2008	4/3/2	2008	4/3/2008	
Result	RL	Result	RL	Result	RL	Result	RL	Result	RL	Result	RL
1.4	0.039	0.18	0.039	0.44	0.042	33	0.20	0.87	0.037	0.41	0.037
0.33	0.039	0.090	0.039	0.49	0.042	0.33	0.039	0.067	0.037	0.26	0.037
U	0.039	U	0.039	U	0.042	0.046	0.039	U	0.037	0.13	0.037
0.041	0.039	U	0.039	U	0.042	U	0.039	U	0.037	U	0.037
U	0.039	U	0.039	U	0.042	U	0.039	U	0.037	U	0.037
U	0.039	U	0.039	U	0.042	U	0.039	U	0.037	U	0.037
0408-	0408-44325 0408-44326		44326	0408-	44327	0408-	44328	0408-4	44329	0408-	44330
Unit	088	Unit 071		Unit 071		Unit 071		Unit 071		Unit 041	
AMB	IENT	S	S	Basement		Basement Dup		First Floor		First Floor	
А	ir	Soil	Gas	А	ir	Air		А	ir	А	ir
μg/	m ³	μg	/m ³	μg/	m ³	μg	m ³	μg/	m ³	μg	m ³
4/3/2	2008	4/3/2	2008	4/3/2	2008	4/3/2	2008	4/3/2	2008	4/3/2	2008
Result	RL	Result	RL	Result	RL	Result	RL	Result	RL	Result	RL
U	0.036	24	0.040	0.22	0.038	0.23	0.037	0.15	0.040	U	0.037
0.045	0.036	0.40	0.040	0.061	0.038	0.066	0.037	0.064	0.040	0.24	0.037
U	0.036	U	0.040	U	0.038	U	0.037	U	0.040	U	0.037
U	0.036	U	0.040	U	0.038	U	0.037	U	0.040	U	0.037
U	0.036	U	0.040	U	0.038	U	0.037	U	0.040	U	0.037
U	0.036	U	0.040	U	0.038	U	0.037	U	0.040	U	0.037
	Unit S Soil µg/ 4/3/2 Result 1.4 0.33 U 0.041 U U U U U U U U U U U U U U U U U U U	μ g/m ³ $4/3/2008$ Result RL 1.4 0.039 0.33 0.039 U 0.039 0408-44325 Unit 088 AMBIENT Air A/3/2008 Result Result RL U 0.036 0.045 0.036 U 0.036 U 0.036 U 0.036 U 0.036	Unit 003 Unit SS Base Soil Gas A µg/m³ µg/g 4/3/2008 4/3/2 Result RL Result 1.4 0.039 0.18 0.33 0.039 0.090 U 0.039 U 0.041 0.039 U 0.041 0.039 U 0.0408-44325 0408- Unit 0.039 U 0408-44325 0408- Unit 0.88 Unit AMBIENT S Air Soil µg/m³ µg/g 4/3/2008 4/3/2 Result RL Quidit 0.036 Quidit 0.036 Quidit 0.036 Quidit 0.036 Quidit 0.036 Quidit Quidit	0408-44319 0408-44320 Unit 03 Unit 03 SS Bas=ment Soil Air $\mu g/m^3$ $\mu g/m^3$ 4/3/2008 4/3/2008 Result RL Result RL 1.4 0.039 0.18 0.039 0.33 0.039 0.090 0.039 U 0.039 U 0.039 0.041 0.039 U 0.039 U 0.039 U 0.039 Result </td <td>$\begin{array}{ c c c c c c c c c c } 0408-44320 & 0408-4000 & 0408-44320 & 0408-4000 & 0408-4000 & 0408-4000 & 0408-4000 & 0408-4000 & 0000 & 00000 & 000000$</td> <td>$\begin{array}{ c c c c c } 0408 + 4 & 319 & 0408 + 4 & 320 & 0408 + 4 & 321 & Unit 003 & Unit 003 & SS & Basement & First Floor & Air & µg/m^3 & µg/m^3 & µg/m^3 & µg/m^3 & µg/m^3 & 4/3/2008 & 4/3/2008 & 4/3/2008 & 4/3/2008 & 4/3/2008 & 0.049 & 0.042 & 0.039 & 0.049 & 0.042 & 0.033 & 0.039 & 0.090 & 0.039 & 0.49 & 0.042 & 0.033 & 0.039 & U & 0.039 & U & 0.042 & 0.041 & 0.039 & U & 0.039 & U & 0.042 & U & 0.039 & U & 0.039 & U & 0.042 & 0.041 & 0.039 & U & 0.039 & U & 0.042 & 0.041 & 0.039 & U & 0.039 & U & 0.042 & U & 0.039 & U & 0.042 & 0.041 & 0.039 & U & 0.039 & U & 0.042 & U & 0.039 & U & 0.042 & 0.041 & 0.039 & U & 0.039 & U & 0.042 & U & 0.042 & U & 0.039 & U & 0.042 & U & 0.042 & U & 0.039 & U & 0.042 & U & 0.042 & U & 0.039 & U & 0.042 & 0.041 & 0.036 & U & 0.039 & U & 0.043 & 0.041 & 0.038 & 0.045 & 0.036 & 0.40 & 0.040 & 0.061 & 0.038 & U & 0.036 & U & 0.040 & U & 0.038 & U & 0.036$</td> <td>$\begin{array}{c ccccccccccccccccccccccccccccccccccc$</td> <td></td> <td>$\begin{array}{ c c c c c c c c c c c c c c c c c c c$</td> <td></td> <td></td>	$\begin{array}{ c c c c c c c c c c } 0408-44320 & 0408-4000 & 0408-44320 & 0408-4000 & 0408-4000 & 0408-4000 & 0408-4000 & 0408-4000 & 00000 & 000000$	$ \begin{array}{ c c c c c } 0408 + 4 & 319 & 0408 + 4 & 320 & 0408 + 4 & 321 & Unit 003 & Unit 003 & SS & Basement & First Floor & Air & µg/m^3 & µg/m^3 & µg/m^3 & µg/m^3 & µg/m^3 & 4/3/2008 & 4/3/2008 & 4/3/2008 & 4/3/2008 & 4/3/2008 & 0.049 & 0.042 & 0.039 & 0.049 & 0.042 & 0.033 & 0.039 & 0.090 & 0.039 & 0.49 & 0.042 & 0.033 & 0.039 & U & 0.039 & U & 0.042 & 0.041 & 0.039 & U & 0.039 & U & 0.042 & U & 0.039 & U & 0.039 & U & 0.042 & 0.041 & 0.039 & U & 0.039 & U & 0.042 & 0.041 & 0.039 & U & 0.039 & U & 0.042 & U & 0.039 & U & 0.042 & 0.041 & 0.039 & U & 0.039 & U & 0.042 & U & 0.039 & U & 0.042 & 0.041 & 0.039 & U & 0.039 & U & 0.042 & U & 0.042 & U & 0.039 & U & 0.042 & U & 0.042 & U & 0.039 & U & 0.042 & U & 0.042 & U & 0.039 & U & 0.042 & 0.041 & 0.036 & U & 0.039 & U & 0.043 & 0.041 & 0.038 & 0.045 & 0.036 & 0.40 & 0.040 & 0.061 & 0.038 & U & 0.036 & U & 0.040 & U & 0.038 & U & 0.036$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		

 $\mu g/m^3$ - micrograms per cubic meter SS - Sub-slab

RL – Reporting limit

U - not detected

TABLE 1 (continued) Event 6 SUMMA[®] Sampling Results – March/April 2008 (µg/m³) Little Valley VI Extent Study Little Valley, New York

June 2008

0408-	44331	0408-	44332	0408-	44333	0408-	44334	0408-	44335	0408-	44336	
Unit	041	Unit 041		Unit	041	Unit	027	Unit 027		Unit 027		
S	S	SS Dup		Base	Basement		SS		Basement		First Floor	
Soil Gas		Soil Gas		А	Air		Soil Gas		Air		Air	
μg/	m ³	μg	$/m^3$	μg	m^3	μg	$/m^3$	μg/	m^3	$\mu g/m^3$		
4/3/2	2008	4/3/2	2008	4/3/2	2008	4/3/2	2008	4/3/2	2008	4/3/2008		
Result	RL	Result	RL	Result	RL	Result	RL	Result	RL	Result	RL	
4.3	0.038	U	0.042	U	0.034	18	0.044	U	0.037	U	0.033	
120	0.38	31	0.042	0.21	0.034	2.8	0.044	0.059	0.037	0.07	0.033	
U	0.038	U	0.042	U	0.034	U	0.044	U	0.037	U	0.033	
3.8	0.038	U	0.042	0.055	0.034	U	0.044	U	0.037	U	0.033	
0.64	0.038	U	0.042	U	0.034	U	0.044	U	0.037	U	0.033	
U	0.038	U	0.042	U	0.034	U	0.044	U	0.037	U	0.033	
0408-44337 0408-44338		44338	0408-	44339	0408-	44340	0408-	44341	0408-	44342		
Unit	010	Unit 010		Unit 010		Unit 136		Unit 136		Unit 136		
Base	ment	First Floor		Basement Dup		AMBIENT		First Floor		Basement		
А	ir	А	ir	А	ir	А	ir	А	ir	А	ir	
μg/	m^3	μg	$/m^3$	μg	m^3	μg	$/m^3$	μg/	$/m^3$	μg	$/m^3$	
4/3/2	2008	4/3/2	2008	4/3/2	2008	4/3/2	2008	4/3/2	2008	4/3/2	2008	
Result	RL	Result	RL	Result	RL	Result	RL	Result	RL	Result	RL	
0.042	0.039	U	0.040	0.040	0.037	U	0.038	U	0.040	0.083	0.039	
0.10	0.039	0.089	0.040	0.093	0.037	0.14	0.038	4.3	0.040	0.92	0.039	
U	0.039	U	0.040	U	0.037	U	0.038	U	0.040	U	0.039	
U	0.039	U	0.040	U	0.037	U	0.038	U	0.040	U	0.039	
U	0.039	U	0.040	U	0.037	U	0.038	U	0.040	U	0.039	
U	0.039	U	0.040	U	0.037	U	0.038	U	0.040	U	0.039	
	Unit S Soil µg/ 4/3/2 Result 4.3 120 U 3.8 0.64 U U 3.8 0.64 U U U u H Base A µg/ 4/3/2 Result 0.042 0.10 U U U U U	$\begin{array}{c c} \mu g/m^{3} \\ \hline 4/3/2008 \\ \hline Result & RL \\ 4.3 & 0.038 \\ 120 & 0.38 \\ 120 & 0.38 \\ 0.038 \\ 0.038 \\ 0.038 \\ 0.038 \\ 0.038 \\ 0.038 \\ 0.038 \\ 0.038 \\ 0.038 \\ 0.038 \\ 0.038 \\ 0.038 \\ 0.038 \\ 0.039 \\ 0.039 \\ 0.039 \\ 0 & $	Unit 041 Unit SS SS Soil Gas Soil $\mu g/m^3$ $\mu g/m^3$ $\mu g/m^3$ $\mu g/m^3$ $4/3/2008$ $4/3/2$ Result RL 4.3 0.038 120 0.38 120 0.38 120 0.38 0.038 U 3.8 0.038 0.64 0.038 U 0.039 U 0.039 U 0.039 U 0.039 U 0.039 U 0.039	Unit 041 Unit 041 SS SS Dup Soil Gas Soil Gas $\mu g/m^3$ $\mu g/m^3$ $4/3/2008$ $4/3/2008$ Result RL Result RL 4.3 0.038 U 0.042 120 0.38 31 0.042 U 0.038 U 0.042 3.8 0.038 U 0.042 0.64 0.038 U 0.042 U 0.038 U 0.042 0.64 0.038 U 0.042 0408-44337 0408-44338 Unit 010 Basement First Floor Air Air $\mu g/m^3$ $\mu g/m^3$ 4/3/2008 Result RL Result RL 0.042 0.039 U 0.040 0.10 0.039 U 0.040 Unit 0.039 U 0.040 U 0.039 U 0.040 U 0.039 U 0.040 U 0.03	Unit 041 Unit 041 Unit 041 Unit 041 SS SS SS Dup Base Soil Gas Soil Gas A $\mu g/m^3$ $\mu g/g$ $4/3/2008$ $4/3/2008$ $4/3/2008$ $4/3/2008$ $4/3/2008$ Result RL Result RL Result RL 4.3 0.038 U 0.042 U 0 120 0.38 31 0.042 U 0 120 0.38 U 0.042 U 0 0 3.8 0.038 U 0.042 U U 0 0 U 0 U	$ \begin{array}{ c c c c c } Unit 041 & Unit 041 & Unit 041 \\ SS & SS Up & Basement \\ Soil Gas & Soil Gas & Air \\ \mu g/m^3 & \mu g/m^3 & \mu g/m^3 \\ 4/3/2008 & 4/3/2008 & 4/3/2008 \\ \hline Result & RL & Result & RL & Result & RL \\ 4.3 & 0.038 & U & 0.042 & U & 0.034 \\ 120 & 0.38 & 31 & 0.042 & 0.21 & 0.034 \\ U & 0.038 & U & 0.042 & U & 0.034 \\ U & 0.038 & U & 0.042 & U & 0.034 \\ 0.64 & 0.038 & U & 0.042 & U & 0.034 \\ U & 0.038 & U & 0.042 & U & 0.034 \\ U & 0.038 & U & 0.042 & U & 0.034 \\ U & 0.038 & U & 0.042 & U & 0.034 \\ U & 0.038 & U & 0.042 & U & 0.034 \\ \hline 0408-44337 & 0408-44338 & 0408-44339 \\ 0408-44337 & 0408-44338 & 0408-44339 \\ Unit 010 & Unit 010 & Unit 010 \\ Basement & First Floor & Basement Dup \\ Air & Air & Air & Air \\ \mu g/m^3 & \mu g/m^3 & \mu g/m^3 & \mu g/m^3 \\ 4/3/2008 & 4/3/2008 & 4/3/2008 \\ \hline Result & RL & Result & RL & Result & RL \\ 0.042 & 0.039 & U & 0.040 & 0.040 & 0.037 \\ U & 0.039 & U & 0.040 & U & 0.037 \\ U & 0.039 & U & 0.040 & U & 0.037 \\ U & 0.039 & U & 0.040 & U & 0.037 \\ U & 0.039 & U & 0.040 & U & 0.037 \\ U & 0.039 & U & 0.040 & U & 0.037 \\ U & 0.039 & U & 0.040 & U & 0.037 \\ U & 0.039 & U & 0.040 & U & 0.037 \\ U & 0.039 & U & 0.040 & U & 0.037 \\ U & 0.039 & U & 0.040 & U & 0.037 \\ U & 0.039 & U & 0.040 & U & 0.037 \\ U & 0.039 & U & 0.040 & U & 0.037 \\ \end{array}$	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			

 $\mu g/m^3$ - micrograms per cubic meter SS – Sub-slab RL – Reporting limit U - not detected

TABLE 2 Event 6 SUMMA[®] Sampling Results – March/April 2008 (ppbv) Little Valley VI Extent Study Little Valley, New York

					June 200)8						
Sample Number:	0408-	44319	0408-	44320	0408-	44321	0408-	44322	0408-	44323	0408-	44324
Ĩ	Unit	t 003	Unit 003		Unit	Unit 003		t 088	Unit 088		Unit 088	
Sampling Location:	S	S	Basement		First Floor		SS		Basement		First Floor	
Matrix:	Soil Gas		А	ir	А	ir	Soil	Gas	А	ir	Air	
Units:	pp	bv	pp	bv	pp	bv	pp	bv	pp	bv	ppbv	
Date Sampled:	4/3/2	2008	4/3/	2008	4/3/2	2008	4/3/	2008	4/3/2	2008	4/3/	2008
Parameter	Result	RL	Result	RL	Result	RL	Result	RL	Result	RL	Result	RL
Trichloroethene	0.27	0.0072	0.034	0.0073	0.082	0.0078	6.1	0.036	0.16	0.0069	0.077	0.0068
Tetrachloroethene	0.049	0.0057	0.013	0.0058	0.072	0.0062	0.048	0.0057	0.0099	0.0055	0.039	0.0054
1,1-Dichloroethene	U	0.0097	U	0.0098	U	0.011	0.012	0.0097	U	0.0094	0.033	0.0092
cis-1,2-Dichloroethene	0.010	0.0097	U	0.0098	U	0.011	U	0.0097	U	0.0094	U	0.0092
trans-1,2-Dichloroethene	U	0.0097	U	0.0098	U	0.011	U	0.0097	U	0.0094	U	0.0092
Vinyl Chloride	U	0.015	U	0.015	U	0.016	U	0.015	U	0.015	U	0.014
Sample Number:	0408-	0408-44325 0408-44326		0408-	44327	0408-	44328	0408-	44329	0408-	44330	
Sample Number.		088		t 071	Unit 071		Unit 071		Unit 071		Unit 041	
Sampling Location:	AMB	IENT		SS	Basement		Basement Dup		First Floor		First Floor	
Matrix:	А	ir	Soil	Gas	А	ir	А	ir	А	ir	A	ir
Units:	pp	bv	pp	bv	pp	bv	pp	bv	pp	bv	pp	bv
Date Sampled:	4/3/2	2008	4/3/	2008	4/3/2	2008	4/3/2	2008	4/3/2	2008	4/3/	2008
Parameter	Result	RL	Result	RL	Result	RL	Result	RL	Result	RL	Result	RL
Trichloroethene	U	0.0067	4.5	0.0074	0.041	0.0071	0.043	0.0069	0.028	0.0074	U	0.0068
Tetrachloroethene	0.0066	0.0053	0.059	0.0058	0.0091	0.0056	0.0097	0.0055	0.0095	0.0059	0.036	0.0054
1,1-Dichloroethene	U	0.0090	U	0.010	U	0.0097	U	0.0094	U	0.010	U	0.0092
cis-1,2-Dichloroethene	U	0.0090	U	0.010	U	0.0097	U	0.0094	U	0.010	U	0.0092
trans-1,2-Dichloroethene	U	0.0090	U	0.010	U	0.0097	U	0.0094	U	0.010	U	0.0092
Vinyl Chloride	U	0.014	U	0.015	U	0.015	U	0.015	U	0.016	U	0.014

ppbv – parts per billion by volume SS – Sub-slab

RL – Reporting limit

U - not detected

TABLE 2 (continued) Event 6 SUMMA[®] Sampling Results – March/April 2008 (ppbv) Little Valley VI Extent Study Little Valley, New York

June 2008

0408-	44331	0408-	44332	0408-	44333	0408-	44334	0408-	44335	0408-	44336
Unit	041	Unit	t 041	Unit	: 041	Unit	: 027	Unit	t 027	Unit 027	
S	S	SS	Dup	Base	ment	S	S	Basement		First Floor	
Soil Gas		Soil Gas		Air		Soil Gas		Air		Air	
pp	bv	pp	bv	pp	bv	ppbv		ppbv		ppbv	
4/3/2	2008	4/3/2	2008	4/3/2	2008	4/3/2	2008	4/3/2	2008	4/3/2008	
Result	RL	Result	RL	Result	RL	Result	RL	Result	RL	Result	RL
0.80	0.0070	U	0.0078	U	0.0063	3.4	0.0081	U	0.0069	U	0.0061
18	0.056	4.5	0.0062	0.031	0.0050	0.42	0.0065	0.0088	0.0055	0.010	0.0048
U	0.0095	U	0.011	U	0.0085	U	0.011	U	0.0094	U	0.0083
0.96	0.0095	U	0.011	0.014	0.0085	U	0.011	U	0.0094	U	0.0083
0.16	0.0095	U	0.011	U	0.0085	U	0.011	U	0.0094	U	0.0083
U	0.015	U	0.016	U	0.013	U	0.017	U	0.015	U	0.013
0408-44337		0408-44338		0408-44339		0408-44340		0408-44341		0408-44342	
Unit	010	Unit 010		Unit 010		Unit 136		Unit 136		Unit 136	
Base	ment	First Floor		Basement Dup		AMBIENT		First Floor		Basement	
А	ir	А	lir	А	ir	А	ir	А	lir	А	ir
pp	bv	pp	bv	pp	bv	pp	bv	pp	bv	pp	bv
4/3/2	2008	4/3/2	2008	4/3/2	2008	4/3/2	2008	4/3/2	2008	4/3/	2008
Result	RL	Result	RL	Result	RL	Result	RL	Result	RL	Result	RL
0.0078	0.0073	U	0.0074	0.0074	0.0068	U	0.0070	U	0.0074	0.015	0.0073
0.015	0.0058	0.013	0.0058	0.014	0.0054	0.020	0.0056	0.64	0.0059	0.14	0.0058
U	0.0099	U	0.010	U	0.0092	U	0.0095	U	0.010	U	0.0099
U	0.0099	U	0.010	U	0.0092	U	0.0095	U	0.010	U	0.0099
U	0.0099	U	0.010	U	0.0092	U	0.0095	U	0.010	U	0.0099
U	0.015	U	0.015	U	0.014	U	0.015	U	0.016	U	0.015
	Unit S Soil pp 4/3/2 Result 0.80 18 U 0.96 0.16 U 0.96 0.16 U 0.408- Unit Base A pp 4/3/2 Result 0.0078 0.015 U U U	ppb/ $4/3/2008$ Result RL 0.80 0.0070 18 0.056 U 0.0095 0.96 0.0095 0.16 0.0095 0.16 0.0095 0408-44337 Unit 0408-44337 Unit 0408-44337 Unit 0.408 4/3/2 Result RL 0.0078 0.0073 0.015 0.0058 U 0.0099 U 0.0099 U 0.0099 U 0.0099	Unit 041 Unit SS SS Soil Gas Soil ppbv pp $4/3/2008$ $4/3/2$ Result RL Result 0.80 0.0070 U 18 0.056 4.5 U 0.0095 U 0.96 0.0095 U 0.16 0.0095 U 0408-44337 0408- Unit 010 Unit Basement First Air Air ppbv<	Unit Unit Unit Unit SS SS SS SS Soil Gas Soil Gas ppbr qpbr qpbr qpbr 4/3/2008 4/3/2008 4/3/2008 Result RL Result RL 0.80 0.0070 U 0.0078 18 0.056 4.5 0.0062 U 0.0095 U 0.011 0.96 0.0095 U 0.011 0.16 0.0095 U 0.011 0.16 0.0095 U 0.016 0408-44337 0408-44338 Unit<10	Unit 041 Unit 041 Unit 041 Unit 041 SS SS Up Base Soil Gas Soil Gas A ppb· ppb· ppb· ppp 4/3/2008 4/3/2008 4/3/2008 4/3/2 Result RL Result RL Result 0.80 0.0070 U 0.0078 U 18 0.056 4.5 0.0062 0.031 U 0.0095 U 0.011 U 0.96 0.0095 U 0.011 U 0.96 0.0095 U 0.011 U 0.16 0.0095 U 0.011 U 0.16 0.0095 U 0.011 U 0.16 0.0095 U 0.011 U 0.408-44337 0408-44338 0408- Unit 010 Unit Unit Unit Basement First Floor Basement Air Air Air A 0.0078 0.0073 U 0.0074	$ \begin{array}{ c c c c } \medskip Unit 041 & Unit 041 & Unit 041 & Unit 041 & Unit 041 \\ SS & SS Up & Basement \\ Soil Gas & Soil Gas & Air \\ ppbr & ppbr & ppbr & ppbr \\ \hline \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{ c c c c c c } \begin{tabular}{ c c c c c } \begin{tabular}{ c c c c c c } \line{Indef} \\ \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		

ppbv – parts per billion by volume SS – Sub-slab

RL – Reporting limit

U - not detected

TABLE 3 Comparison of SUMMA[®] and TAGA Results (ppbv) Little Valley VI Extent Study Little Valley, NY June 2008

Unit	Location		SUMMA [®]	Juile		TAGA	
		Sample #	TCE	PCE	TCE	PCE	Filename
							LV08001,
		0408-			DL=0.027 QL=0.090	DL=0.025 QL=0.083	LV08005
003	Sub-slab	44319	0.27	0.049	NA	NA	LV08003
003	Basement	44320	0.034	0.013	U	U	LV08003
003	First Floor	44321	0.082	0.072	0.033 J	0.067 J	LV08003
							LV08001,
		0408-			DL=0.027 QL=0.090	DL=0.025 QL=0.083	LV08005
088	Sub-slab	44322	6.1	0.048	NA	NA	LV08004
088	Basement	44323	0.16	0.0099	0.096	U	LV08004
088	First Floor	44324	0.077	0.039	0.16	U	LV08004
088	Ambient	44325	< 0.0067	0.0066	U	U	LV08004
		0408-			DL=0.023 QL=0.075	DL=0.027 QL=0.091	LV08005
071	Sub-slab	44326	4.5	0.059	NA	NA	LV08006
071	Basement	44327	0.041	0.0091	0.028 J	U	LV08006
071	Basement Dup	44328	0.043	0.0097	0.028 J	U	LV08006
071	First Floor	44329	0.028	0.0095	U	U	LV08006
		0408-			DL=0.039 QL=0.13	DL=0.025 QL=0.083	LV08008
041	Sub-slab	44331	0.80	18	NA	NA	LV08007
041	Sub-slab Dup	44332	< 0.0078	4.5	NA	NA	LV08007
041	Basement	44333	< 0.0063	0.031	U	U	LV08007
041	First Floor	44330	< 0.0068	0.036	U	0.032 J	LV08007
							LV08008,
		0408-			DL=0.031 QL=0.10	DL=0.022 QL=0.073	LV08012
027	Sub-slab	44334	3.4	0.42	NA	NA	LV08009
027	Basement	44335	< 0.0069	0.0088	U	U	LV08009
027	First Floor	44336	< 0.0061	0.010	U	U	LV08009
		0.400					LV08008,
	-	0408-			DL=0.031 QL=0.10	DL=0.022 QL=0.073	LV08012
010	Basement	44337	0.0078	0.015	U	U	LV08010
010	Basement Dup	44339	0.0074	0.014	U	U	LV08010
010	First Floor	44338	< 0.0074	0.013	U	U	LV08010
		0408-					LV08008, LV08012
120	Deservert		0.015	0.14	-	DL=0.022 QL=0.073	
136	Basement	44342	0.015	0.14	U	0.088	LV08011
136	First Floor	44341	< 0.0074	0.64	U	0.62	LV08011
136	Ambient	44340	< 0.0070	0.020	U	U	LV08011

ppbv – parts per billion by volume

TCE – Trichloroethene

PCE – Tetrachloroethene

DL – TAGA detection limit

QL – TAGA quantitaion limit

U - not detected above detection limit

J - Estimated concentration detected at or below the quantitation limit

NA – Not applicable

	Li		y VI Exte						
			Valley, N	IΥ					
Somula Number	10	01	ine 2008	44319	10	02	0408	44322	
Sample Number:		003 T		44519 03 SS		02 088 T		44522 88 SS	
Sampling Location:		llar [®]				llar®		MA [®]	
Sample Collection:			SUMMA®						
Units: Data Samula di		ppbv 4/2/2008		ppbv 4/3/2008		bv 2008	ppbv 4/3/2008		
Date Sampled:	Result	2008 RL	Result RL		Result	2008 RL	Result RL		
Parameter	U	КL 0.50	0.27	0.0072	8.0	кL 0.50	6.1	кL 0.036	
Trichloroethene	U	0.50	0.27	0.0072	8.0 U	0.50	0.048	0.0057	
Tetrachloroethene	U	0.50	U.049	0.0037	U	0.50	0.048	0.0037	
1,1-Dichloroethene									
cis-1,2-Dichloroethene	U	0.50	0.010	0.0097	U	0.50	U U	0.0097	
Trans-1,2-Dichloroethene	U U	0.50	U U	0.0097	U	0.50	U	0.0097 0.015	
Vinyl Chloride		0.50 03		0.015 44326	U 10	0.50 04			
Sample Number:		03 071 T			10 Unit 041		0408-44331		
Sampling Location:		llar®	Unit 071 SS SUMMA [®]		Unit 041 Ted		Unit 041 SS		
Sample Collection:							SUMMA [®]		
Units:		bv	ppbv		pp		ppbv		
Date Sampled:		2008	4/3/2008			2008	4/3/2008		
Parameter	Result	RL	Result	RL	Result	RL	Result	RL	
Trichloroethene	0.75	0.50	4.5	0.0074	0.96	0.50	0.80	0.0070	
Tetrachloroethene	U	0.50	0.059	0.0058	20	0.50	18	0.056	
1,1-Dichloroethene	U	0.50	U	0.010	U	0.50	U	0.0095	
cis-1,2-Dichloroethene	U	0.50	U	0.010	0.92	0.50	0.96	0.0095	
Trans-1,2-Dichloroethene	U	0.50	U	0.010	U	0.50	0.16	0.0095	
Vinyl Chloride	U	0.50	U	0.015	U	0.50	U	0.015	
Sample Number:		05		44332		06		44334	
Sampling Location:		T-Port 2		SS DUP		027 T		027	
Sample Collection:		llar®		MA [®]		llar®		MA [®]	
Units:		bv		bv	pp			bv	
Date Sampled:		2008		2008	4/2/2			2008	
Parameter	Result	RL	Result	RL	Result	RL	Result	RL	
Trichloroethene	U	0.50	U	0.0078	3.2	0.50	3.4	0.0081	
Tetrachloroethene	6.6	0.50	4.5	0.0062	U	0.50	0.42	0.0065	
1,1-Dichloroethene	U	0.50	U	0.011	U	0.50	U	0.011	
cis-1,2-Dichloroethene	U	0.50	U	0.011	U	0.50	U	0.011	
Trans-1,2-Dichloroethene	U	0.50	U	0.011	U	0.50	U	0.011	
Vinyl Chloride	U	0.50	U	0.016	U	0.50	U	0.017	

TABLE 4
Comparison of SUMMA [®] and Tedlar [®] Results (ppbv)
Little Valley VI Extent Study
Little Valley, NY
June 2008

ppbv – parts per billion by volume RL – Reporting limit U - not detected

J – estimated

TABLE 5 Comparison of Trichloroethene Results from Events 1 through 6 Little Valley VI Extent Study Little Valley, NY June 2008

			June 20				
			[Trichloroeth		[
		Event 1	Event 2	Event 3	Event 4	Event 5	Event 6
			Sub-slab/		Sub-slab/	Sub-slab/	Sub-slab/
		Sub-slab	Indoor	Sub-slab	Indoor	Indoor	Indoor
		September	January	July/August	August	December	March/April
		2005	2006	2006	2006	2006	2008
Location	Sub-Location	ppbv	ppbv	ppbv	ppbv	ppbv	ppbv
Unit 003	Sub-slab	1.3	0.37	NS-NSS	1.2	0.34	0.27
Unit 003	Basement	NS-SSO	9.1	NS-NSS	< 0.031	0.051	0.034
Unit 003	1st Floor	NS-SSO	0.073	NS-NSS	< 0.032	0.040	0.082
Unit 010	Sub-slab	1.3	NS^1	NS-NSS	1.2	0.86	NS^2
Unit 010	Basement	NS-SSO	NS^1	NS-NSS	0.036	0.013	0.0078
Unit 010	1st Floor	NS-SSO	NS^1	NS-NSS	< 0.029	0.0089	< 0.0074
Unit 071	Sub-slab	NS	NS	0.98	1.4	1.3	4.5
Unit 071	Basement	NS	NS	NS-SSO	0.073	0.026	0.041
Unit 071	1st Floor	NS	NS	NS-SSO	0.080	0.019	0.028
Unit 088	Sub-slab	NS	NS	1.5	0.90	8.2	6.1
Unit 088	Basement	NS	NS	NS-SSO	< 0.031	0.25	0.16
Unit 088	1st Floor	NS	NS	NS-SSO	< 0.029	0.13	0.077
Unit 136	Basement	NS	NS	NS	NS	NS	0.015
Unit 136	1st Floor	NS	NS	NS	NS	NS	< 0.0074
Units 027 a	and 041 had mitigatio	n systems inst	alled betweer	Events 4 and	5.		
Unit 027	Sub-slab	NS	22	NS-NSS	16	NS	3.4
Unit 027	Basement	NS	NS	NS-NSS	0.27	0.0084	< 0.0069
Unit 027	1st Floor	NS	NS	NS-NSS	0.0089	< 0.0080	< 0.0061
Unit 041	Sub-slab Port 1	NS	NS	U	< 0.0077	NS	0.80
Unit 041	Sub-slab Port 2	NS	NS	2.8	2.9	NS	< 0.0078
Unit 041	Basement	NS	NS	NS-SSO	0.10	< 0.0077	< 0.0063
Unit 041	1st Floor	NS	NS	NS-SSO	0.62	0.011	< 0.0068

Events 1 and 3 involve first-time sampling events for the specified units. Events 2 and 4 include sampling new units and follow-up sampling based on results from previous events. Event 5 involves follow-up sampling only, no new units were sampled.

ppbv – parts per billion by volume

NS – Not sampled; NS-SSO – Not sampled, sub-slab event only; NS-NSS – Not sampled, new sub-slab event;

 NS^1 – Resident unavailable; NS^2 – port rusted shut

Shading indicates Units that were not included during specified sampling event.

TABLE 6 Comparison of Tetrachloroethene Results from Events 1 through 6 Little Valley VI Extent Study Little Valley, NY June 2008

1		1	June 200				
		,		Tetrachloroet	thene Results	1	1
		Event 1	Event 2	Event 3	Event 4	Event 5	Event 6
			Sub-slab/		Sub-slab/	Sub-slab/	Sub-slab/
		Sub-slab	Indoor	Sub-slab	Indoor	Indoor	Indoor
		September	January	July/August	August	December	March/April
	a.t. a:	2005	2006	2006	2006	2006	2008
Location	Sub-Location	ppbv	ppbv	ppbv	ppbv	ppbv	ppbv
Unit 003	Sub-slab	0.19 J	0.06	NS-NSS	0.17	0.072	0.049
Unit 003	Basement	NS-SSO	0.13	NS-NSS	< 0.031	0.029	0.013
Unit 003	1st Floor	NS-SSO	0.023	NS-NSS	< 0.032	0.12	0.072
Unit 010	Sub-slab	4.0	NS^1	NS-NSS	3.7	2.9	NS^2
Unit 010	Basement	NS-SSO	NS^1	NS-NSS	< 0.029	0.018	0.015
Unit 010	1st Floor	NS-SSO	NS^1	NS-NSS	< 0.029	0.017	0.013
Unit 071	Sub-slab	NS	NS	0.063	0.070	0.063	0.059
Unit 071	Basement	NS	NS	NS-SSO	< 0.028	0.0082	0.0091
Unit 071	1st Floor	NS	NS	NS-SSO	< 0.032	0.0081	0.0095
Unit 088	Sub-slab	NS	NS	0.034	< 0.031	0.046	0.048
Unit 088	Basement	NS	NS	NS-SSO	0.032	0.016	0.0099
Unit 088	1st Floor	NS	NS	NS-SSO	< 0.029	0.020	0.039
Unit 136	Basement	NS	NS	NS	NS	NS	0.14
Unit 136	1st Floor	NS	NS	NS	NS	NS	0.64
Units 027 an	d 041 had mitigation sy	stems installed	l between Eve	ents 4 and 5.			
Unit 027	Sub-slab	NS	2.1	NS-NSS	1.7	NS	0.42
Unit 027	Basement	NS	NS	NS-NSS	0.14	0.080	0.0088
Unit 027	1st Floor	NS	NS	NS-NSS	0.018	0.16	0.010
Unit 041	Sub-slab Port 1	NS	NS	36	33	NS	18
Unit 041	Sub-slab Port 2	NS	NS	87	94	NS	4.5
Unit 041	Basement	NS	NS	NS-SSO	0.13	0.039	0.031
Unit 041	1st Floor	NS	NS	NS-SSO	0.19	0.033	0.036

Events 1 and 3 involve first-time sampling events for the specified units. Events 2 and 4 include sampling new units and follow-up sampling based on results from previous events. Event 5 involves follow-up sampling only, no new units were sampled.

ppbv – parts per billion by volume

NS – Not sampled; NS-SSO – Not sampled, sub-slab event only; NS-NSS – Not sampled, new sub-slab event;

 NS^1 – Resident unavailable; NS^2 – port rusted shut

Shading indicates Units that were not included during specified sampling event.

APPENDIX A Final Analytical TAGA Report – April 25, 2008 Little Valley VI Extent Study June 2008

FINAL ANALYTICAL TAGA REPORT LITTLE VALLEY VI EXTENT STUDY LITTLE VALLEY, NY APRIL 2008

U.S. EPA Work Assignment No.: 0-210 LOCKHEED MARTIN Work Order No.: EAC00210 U.S. EPA Contract No.: EP-C-04-032

> Submitted to David Mickunas U.S. EPA/ERT

Prepared by: Lockheed Martin/REAC

C

25

Amy DuBois REAC Task Leader

Dennis Á. Miller¹ REAC Program Manager

5/08 Date

Analysis and Preparation by: John Wood

Date

LIST O	F TABLI	ESiv	7
LIST O	F FIGUR	ES	7
1.0	INTRO	DUCTION1	
2.0	METHO	DDOLOGY1	-
	2.1	Mass Spectrometer/Mass Spectrometer General Theory 1	
	2.2	TAGA Procedure1	
		2.2.1 TAGA Mass Calibration	2
		2.2.2 TAGA Response Factor Measurements	2
		2.2.3 Transport Efficiency	
		2.2.4 TAGA Air Monitoring	\$
	2.3	Meteorological Monitoring	;
3.0	TAGA	AIR MONITORING RESULTS	;
	3.1	Unit Surveys	;
	3.2	TAGA File Event Summaries	ŀ
	3.3	Graphical Presentations4	ŀ
	3.4	TAGA Target Compound Summaries4	
4.0	DISCUS	SSION OF RESULTS4	ŀ
	4.1	Unit 003 Survey, File LV080034	ł
	4.2	Unit 088 Survey, File LV08004	ŀ
	4.3	Unit 071 Survey, File LV080065	;
	4.4	Unit 041 Survey, File LV080075	;
	4.5	Unit 027 Survey, File LV080095	;
	4.6	Unit 010 Survey, File LV080105	
	4.7	Unit 136 Survey, File LV080115	;
5.0	QUALI	TY ASSURANCE/QUALITY CONTROL	5
	5.1	Intermediate Response Factor for Ion Pairs	
	5.2	Error Bars7	
	5.3	Ion Pair Detection and Quantitation Limits	
	5.4	Compound Detection and Quantitation Limits	;
APPEN	DIX	A Standard Gas Cylinder Certification	
APPEN	DIX	B Compiled Meteorological Data	

TABLE OF CONTENTS

PAGE

LIST OF TABLES

TABLE

1	Summary of Transport Efficiencies Measured on 02 April 2008
---	---

- 2 Summary of Meteorological Conditions during Monitoring, 02 April 2008
- 3 Response Factors and Error Bars Summary for 02 April 2008
- 4 Summary of Detection and Quantitation Limit Data for 02 April 2008

LIST OF FIGURES

FIG	U	R	E
110	v	1/	_

1a Unit 003 Survey Floor Plan, LV08003

1bTAGA File Event Summary, File: LV08003 Acquired on 02 April 2008 at 08:11:53, Title: Unit 003Survey

1c Unit 003 Survey for Trichloroethene and Tetrachloroethene

1d TAGA Target Compound Summary for Unit 003, File: LV08003 Acquired on 02 April 2008 at 08:11:53

2a Unit 088 Survey Floor Plan, LV08004

2b TAGA File Event Summary, File: LV08004 Acquired on 02 April 2008 at 09:01:23, Title: Unit 088 Survey

2c Unit 088 Survey for Trichloroethene and Tetrachloroethene

2d TAGA Target Compound Summary for Unit 088, File: LV08004 Acquired on 02 April 2008 at 09:01:23

3a Unit 071 Survey Floor Plan, LV08006

3b TAGA File Event Summary, File: LV08006 Acquired on 02 April 2008 at 10:16:17, Title: Unit 071 Survey

3c Unit 071 Survey for Trichloroethene and Tetrachloroethene

3d TAGA Target Compound Summary for Unit 071, File: LV08006 Acquired on 02 April 2008 at 10:16:17

4a Unit 041 Survey Floor Plan, LV08007

4b TAGA File Event Summary, File: LV08007 Acquired on 02 April 2008 at 11:40:46, Title: Unit 041 Survey

4c Unit 041 Survey for Trichloroethene and Tetrachloroethene

4d TAGA Target Compound Summary for Unit 041, File: LV08007 Acquired on 02 April 2008 at 11:40:46

5a Unit 027 Survey Floor Plan, LV08009

5b TAGA File Event Summary, File: LV08009 Acquired on 02 April 2008 at 13:24:51, Title: Unit 027 Survey

5c Unit 027 Survey for Trichloroethene and Tetrachloroethene

5d TAGA Target Compound Summary for Unit 027, File: LV08009 Acquired on 02 April 2008 at 13:24:51

6a Unit 010 Survey Floor Plan, LV08010

6b TAGA File Event Summary, File: LV08010 Acquired on 02 April 2008 at 14:11:28, Title: Unit 010 Survey

6c Unit 010 Survey for Trichloroethene and Tetrachloroethene

6d TAGA Target Compound Summary for Unit 010, File: LV08010 Acquired on 02 April 2008 at 14:11:28

7a Unit 136 Survey Floor Plan, LV08011

7b TAGA File Event Summary, File: LV08011 Acquired on 02 April 2008 at 16:37:09, Title: Unit 136 Survey

- 7c Unit 136 Survey for Trichloroethene and Tetrachloroethene
- 7d TAGA Target Compound Summary for Unit 136, File: LV08011 Acquired on 02 April 2008 at 16:37:09

1.0 INTRODUCTION

The Environmental Protection Agency (EPA)/Environmental Response Team (ERT) issued Work Assignment (WA) Number 0-210, Little Valley VI Extent Study in Little Valley, NY, to Lockheed Martin under the Response Engineering and Analytical Contract (REAC). As an element of this WA, REAC personnel were to conduct target compound monitoring using the ECA Trace Atmospheric Gas Analyzer (TAGA) IIe, to assist EPA Region II in its investigation of residential indoor air quality.

The TAGA air monitoring events conducted on 02 April 2008 were screening in nature. Air monitoring for trichloroethene (TCE) and tetrachloroethene (PCE) was performed in accordance with the REAC Draft Standard Operating Procedure (SOP) # 1711, *Trace Atmospheric Gas Analyzer (TAGA) IIe Operations*. Real-time monitoring for the target compounds was performed using a selected ion technique.

2.0 METHODOLOGY

2.1 Mass Spectrometer/Mass Spectrometer General Theory

The ECA TAGA IIe is based upon the Perkin-Elmer API 365 mass spectrometer/mass spectrometer (MS/MS) and is a direct air-monitoring instrument capable of detecting, in real time, trace levels of many organic compounds in ambient air. The technique of triple quadrupole MS/MS is used to differentiate and quantitate compounds.

The initial step in the MS/MS process involves simultaneous chemical ionization of the compounds present in a sample of ambient air. The ionization produces both positive and negative ions by donating or removing one or more electrons. The chemical ionization is a "soft" ionization technique, which allows ions to be formed with little or no structural fragmentation. These ions are called parent ions. The parent ions with different mass-to-charge (m/z) ratios are separated by the first quadrupole (the first MS of the MS/MS system). The quadrupole scans selected m/z ratios allowing only the parent ions with these ratios to pass through the quadrupole. Parent ions with m/z ratios different than those selected are discriminated electronically and fail to pass through the quadrupole.

The parent ions selected in the first quadrupole are accelerated through a collision cell containing uncharged nitrogen molecules in the second quadrupole. A portion of the parent ions entering the second quadrupole fragments as they collide with the nitrogen molecules. These fragment ions are called daughter ions. This process, in the second quadrupole, is called collision induced dissociation. The daughter ions are separated according to their m/z ratios by the third quadrupole (the second MS of the MS/MS system). The quadrupole scans selected m/z ratios, allowing only the daughter ions with these ratios to pass through the quadrupole. Daughter ions with m/z ratios different than those selected are discriminated electronically and fail to pass through the quadrupole. Daughter ions with the selected m/z ratios are then counted by an electron multiplier. The resulting signals are measured in ion counts per second (icps) for each parent/daughter ion pair selected. The intensity of the icps for each parent/daughter ion pair is directly proportional to the ambient air concentration of the inorganic or organic compound that produced the ion pair. All of the ions discussed in this report have a single charge. The m/z ratios of all of the ions discussed are equal to the ion masses in atomic mass units (amu). Therefore, the terms parent and daughter masses are synonymous with parent and daughter ion m/z ratios.

2.2 TAGA Procedure

The TAGA was used to analyze indoor air during monitoring events. Indoor monitoring utilized a 300-foot corrugated Teflon[®] sampling hose. The proximal end was attached to the TAGA source inlet, while the distal end was taken inside a unit. Air was continuously drawn through the hose at a set flow rate and transported to the TAGA source during the monitoring event.

2.2.1 TAGA Mass Calibration

At the beginning of the monitoring period, a gas mixture containing benzene, toluene, xylenes, tetrachloroethene, trichloroethene, 1,1-dichloroethene, and vinyl chloride was introduced by a mass flow controller (MFC) into the sample air flow (SAF). The tuning parameters for the first quadrupole at 30, 78, 106, 130, and 166 amu, and the third quadrupole at 30, 78, 105, 129, and 166 amu were optimized for sensitivity and mass assignment. The peak widths were limited between 0.55 amu and 0.85 amu. The mass assignments were set to the correct values within 0.15 amu.

2.2.2 TAGA Response Factor Measurements

The TAGA was calibrated for the target compounds four times during the day. The calibration system consisted of a regulated gas cylinder containing a gas standard mixture of the target compounds connected to an in-line MFC. The MFC was calibrated with a National Institute of Standards and Technology (NIST) traceable flow rate meter. The gas standard certification is presented in Appendix A. The gas standard containing a known mixture of target compounds, certified by the supplier, was regulated at preset flow rates, and diluted with ambient air. The dilution of the gas standard resulted in known analyte concentrations. The calibration consisted of a zero point and five known concentrations obtained by setting the MFC to 0, 10, 20, 40, 80, and 90 milliliters per minute (mL/min) with the SAF at 1,500 milliliters per second (mL/sec).

The approximate concentration range of standards introduced into the TAGA was between 1 and 25 parts per billion by volume (ppbv). Utilizing the analytes' concentrations, gas flow rates, air sampling flow rates, and atmospheric pressure, response factors (RFs), in units of ion counts per second per part per billion by volume (icps/ppbv), were calculated for each ion pair by using a least-square-fit algorithm to calculate the slope of its curve. The coefficient of correlation was checked for each ion pair's RF to ensure that it was greater than 0.90. In certain cases, the RFs of each analyte generated immediately prior to monitoring a unit were used to quantify the target compounds in ambient air. In most of the cases, the intermediate response factor (IRF) was calculated between pairs of calibrations and used to quantify target compounds in ambient air.

2.2.3 Transport Efficiency

The transport efficiency and residence time for the target compounds through the 300foot length of corrugated Teflon[®] sampling hose was determined prior to and at the conclusion of indoor air monitoring activities each day. The transport efficiency was determined by introducing a known concentration of the target compounds into the proximal end and then into the distal end of the sampling hose. The signal intensity of each ion pair for each compound was measured in icps and the percent (%) transport efficiency calculated using the equation below:

% transport efficiency = $\frac{\text{signal intensity at the distal end of the hose}}{\text{signal intensity at the proximal end of the hose}} \times 100$

A transport efficiency of 85 percent is considered acceptable and results are summarized in Table 1.

The residence time is the interval, in seconds, it takes the air sample to travel the length of the sampling hose. The residence time, which reflects a time difference between the sampling and the instrument response, is incorporated in the offset. The offset, which is the total number of sequences acquired during the residence time, is applied to the monitoring files (Figures 1b to 7b and Figures 1c to 7c). Therefore, the observations and instrument responses are temporally coordinated.

2.2.4 TAGA Air Monitoring

TAGA monitoring was performed by continuously drawing air through the Teflon[®] hose at a flow-rate of approximately 1,500 mL/sec. The air was then passed through a glass splitter where the pressure gradient between the mass spectrometer core and the atmosphere causes a sample flow of approximately 10 mL/min into the ionization source through a heated transfer line. The flow into the TAGA source was controlled so that the ionization source pressure was maintained at an optimum value of approximately 2.5 torr. The remaining airflow was drawn through the air pump and vented from the TAGA bus.

Monitoring was performed in the parent/daughter ion-monitoring mode. As monitoring proceeded, the operator pressed letter keys (flags), alphabetically on a computer keyboard, to denote events or locations during the monitoring event. This information was also recorded on an event log sheet. The intensity of each parent/daughter ion pair monitored by the TAGA was recorded in a permanent file on the computer's hard drive. One set of recorded measurements of all the ion pairs is called a sequence.

At the beginning of each unit survey, a one-minute pre-entry ambient data segment was collected. At the operator's signal, the sampler then entered the unit while holding the distal end of the hose at breathing height. The sampler proceeded to each room in the unit where one-minute data segments were collected. After the rooms in the unit were monitored, a one-minute post-exit ambient data segment was collected. Upon completion of the one-minute post-exit ambient data segment, the instrumentation was challenged with the calibration standard, which was introduced at 30 mL/min (approximately 7 ppbv), to verify that the system was functioning properly.

2.3 Meteorological Monitoring

United States Department of Commerce, National Oceanic and Atmospheric Administration, National Climatic Data Center provided the meteorological data for 02 April 2008. Data were collected from the airport, in Jamestown, NY. The airport is located approximately 20 miles west southwest of the Little Valley VI Extent Study. Meteorological data, such as wind speed, wind direction, and rainfall, are summarized in Table 2 for the periods during which monitoring occurred. The compiled meteorological data are presented in Appendix B. The reported data for rainfall is an average of the data recorded during the time between the time recorded in the table and the previous time recorded in the table. The reported meteorological data for wind speed and direction represent a five-minute average collected prior to the time recorded in the table. More than one set of meteorological conditions were recorded during each monitoring period, therefore, the average of the meteorological monitoring location from the study location and the short averaging period, care should be exercised in relating meteorological conditions existing at the Little Valley VI Extent Study.

3.0 TAGA AIR MONITORING RESULTS

The TAGA was used to survey indoor air in residential units in the vicinity of the Little Valley VI Extent Study.

3.1 Unit Surveys

Figures 1a through 7a, present the approximate floor plans of each unit. The SUMMA[®] canister sampling locations are also depicted in these floor plans. The monitoring locations marked by letters are the "flags" that the TAGA operator placed into the file. These "flags" mark events and are carried through the rest of the data presentation.

3.2 TAGA File Event Summaries

Figures 1b through 7b present the TAGA file event summaries. These are the observations made during the file acquisition by the TAGA operator, along with the times from the TAGA file and the letter "flags" used to mark the data, which are recorded by the TAGA computer.

3.3 Graphical Presentations

Figures 1c through 7c are the graphical representations of the TAGA files. A graph of each target compound concentration is presented with ppbv plotted on the vertical axis, and time into the acquisition, in minutes, on the horizontal axis. The target compound concentration was calculated by averaging the concentrations obtained from the ion pairs that were monitored for each target compound. There are two horizontal lines on each graph. The lower line is set at the detection limit (DL) for the compound. The higher line is set at the concentration equal to the quantitation limit (QL) for the target compound. When high concentrations are represented, the lower DL line may not be readily discerned. Transient, momentary spikes above the QL line are occasionally observed. These spikes, electronic in nature, do not affect average concentrations. They may be distinguished from elevated concentrations because the spikes are only present for one sequence and are often only present for one ion pair of the monitored compound.

3.4 TAGA Target Compound Summaries

Figures 1d through 7d present the TAGA target compound summaries. These figures contain the concentrations of the target compounds averaged over time, at the various locations logged into the TAGA file event summaries.

4.0 DISCUSSION OF RESULTS

The TAGA target compound summaries are represented in Figures 1d through 7d. During each survey, a one-minute average was measured in each room, or at various locations within a room. Only the highest average concentrations above the QL are listed below. In one of the units, a positive interference with two of a compound's ion pairs was noted. In that instance, only the ion pair not subject to interference was used for the calculated result, graphic representation, detection limit, and quantitation limit for the compound.

4.1 Unit 003 Survey, File LV08003

Unit 003 was surveyed on 02 April 2008 at 08:11:53 and is represented in Figures 1a through 1d. The average wind speed and direction at the airport during the monitoring period were 11.3 miles per hour (mph) from 333 degrees. There was no precipitation during the preceding hour. The highest average concentration of trichloroethene was 0.14 ppbv at the hole in the floor, between flags B1 and C1. The highest average concentration of tetrachloroethene was 0.085 ppbv in the foyer, between flags D and E.

4.2 Unit 088 Survey, File LV08004

Unit 088 was surveyed on 02 April 2008 at 09:01:23 and is represented in Figures 2a through 2d. The average wind speed and direction at the airport during the monitoring period were 10.0 mph from 335 degrees. There was no precipitation during the preceding hour. The highest average concentration of trichloroethene was 0.17 ppbv in bedroom two, between flags J and K. The

average concentration of tetrachloroethene was not detected above its quantitation limit at any of the monitoring locations.

4.3 Unit 071 Survey, File LV08006

Unit 071 was surveyed on 02 April 2008 at 10:16:17 and is represented in Figures 3a through 3d. The average wind speed and direction at the airport during the monitoring period were 10.3 mph from 350 degrees. There were 0.24-inches of precipitation at the airport during the preceding hour. The Task Leader did not observe any precipitation at the monitoring location. The average concentrations of trichloroethene and tetrachloroethene were not detected above their quantitation limits at any of the monitoring locations.

4.4 Unit 041 Survey, File LV08007

Unit 041 was surveyed on 02 April 2008 at 11:40:46 and is represented in Figures 4a through 4d. The average wind speed and direction at the airport during the monitoring period were 10.0 mph from 350 degrees. There was no precipitation during the preceding hour. The average concentrations of trichloroethene and tetrachloroethene were not detected above their quantitation limits at any of the monitoring locations. The walls of the first floor were being painted during the monitoring period, producing significant positive interference for the 130/95 and 132/95 ion pairs for trichloroethene. Therefore, only the 132/97 ion pair was used for trichloroethene in the graphic representation and calculations for this monitoring period. The 30 mL/min spike was performed twice because it was noted that the concentration was rising throughout the first spike. The instrument was allowed a few more minutes to recover from the paint fumes, then the spike was repeated. The spike concentration was constant during the second spike period. The high levels of paint fumes present in the unit caused degradation of the instrumental response, requiring recalibration after completion of the unit survey.

4.5 Unit 027 Survey, File LV08009

Unit 027 was surveyed on 02 April 2008 at 13:24:51 and is represented in Figures 5a through 5d. The average wind speed and direction at the airport during the monitoring period were 10.0 mph from 330 degrees. There was no precipitation during the preceding hour. The average concentrations of trichloroethene and tetrachloroethene were not detected above their quantitation limits at any of the monitoring locations.

4.6 Unit 010 Survey, File LV08010

Unit 010 was surveyed on 02 April 2008 at 14:11:28 and is represented in Figures 6a through 6d. The average wind speed and direction at the airport during the monitoring period were 9.0 mph from 360 degrees. There was no precipitation during the preceding hour. The average concentrations of trichloroethene and tetrachloroethene were not detected above their quantitation limits at any of the monitoring locations.

4.7 Unit 136 Survey, File LV08011

Unit 136 was surveyed on 02 April 2008 at 16:37:09 and is represented in Figures 7a through 7d. The average wind speed and direction at the airport during the monitoring period were 7.5 mph from 5 degrees. There was no precipitation during the preceding hour. The average concentration of trichloroethene was not detected above its quantitation limit at any of the monitoring locations. The highest average concentration of tetrachloroethene was 1.1 ppbv in the bathroom, between flags L and M.

5.0 QUALITY ASSURANCE/QUALITY CONTROL

Compound	Parent Ion Mass	Daughter Ion Mass
Trichloroethene	130	95
Trichloroethene	132	95
Trichloroethene	132	97
Tetrachloroethene	164	129
Tetrachloroethene	166	129
Tetrachloroethene	166	131

The compound parent/daughter ion pairs used are listed below.

Tables 3 and 4 document the RFs and IRFs generated during the calibration procedure for the individual ion pairs. Response Factors and Intermediate Response Factors were used to quantitate the ion pair concentrations.

The summaries of detection and quantitation limit data for the monitoring periods (Section 5.3 and Table 4) document the concentration, in ppbv, required for a compound's ion pair to be considered detectable and quantifiable during the specified monitoring period. The DL is defined as three times the standard deviation of the concentration for a compound's ion pair measured in an ambient air sample. The QL is defined as 10 times the standard deviation of the concentration of the concentration for the same conditions.

The summaries of the target compound detection and quantitation limits measured during the monitoring periods (Section 5.4 and Table 4) document the concentration, in ppbv, required for the compound to be considered detectable and quantifiable. The detection and quantitation limits for a compound result from averaging the appropriate detection and quantitation limits of the compound's ion pairs.

5.1 Intermediate Response Factor for Ion Pairs

Response factors for most units were generated from two calibration events, as described in the procedure (Section 2.2.2.). Table 3 contains the RFs in units of icps/ppbv. The initial and final RFs were used to calculate the IRFs, which were used to calculate the reported concentration results.

The following equation was used to calculate the IRFs found in Tables 3 and 4:

$$IRF = \frac{2(RF_1 \times RF_2)}{(RF_1 + RF_2)}$$

where:

IRF = Intermediate response factor (icps/ppbv) $RF_1 = The RF for an ion pair measured during the first calibration event (icps/ppbv)$ $RF_2 = The RF for the same ion pair measured during the second calibration event (icps/ppbv)$

For example, the entry for the 130/95 ion pair of trichloroethene from Table 3 for files LV08003 and LV08004, 02 April 2008 is:

 $RF_1 = 3988.1 \text{ icps/ppbv}$ $RF_2 = 3164.1 \text{ icps/ppbv}$

therefore,

$$IRF = \frac{2(3988.1 \times 3164.1)}{(3988.1 + 3164.1)} = \frac{25,237,494}{7,152.2} = 3,528.63 \ icps / ppbv$$

The result, 3,528.63 icps/ppbv, rounded to 3,528.6 is the IRF reported in Table 3 and used in Table 4.

5.2 Error Bars

The potential maximum concentration percent deviations for each target compound are presented in Table 3 and are called "error bars" for simplicity. They represent the potential bias in the concentration due to changes in the sensitivity of the TAGA instrument. Errors bars were calculated using the following equation:

error bar =
$$\frac{\left|RF_{1} - RF_{2}\right|}{(RF_{1} + RF_{2})} \times 100$$

where:

For example, the entry for the 130/95 ion pair of trichloroethene from Table 3 for files LV08003 and LV08004, 02 April 2008 is:

 $RF_1 = 3988.1 \text{ icps/ppbv}$ $RF_2 = 3164.1 \text{ icps/ppbv}$

error bar =
$$\frac{|3988.1 - 3164.1|}{(3988.1 + 3164.1)} \times 100 = 11.5\%$$

The % error bar calculated for the 130/95 ion pair of trichloroethene is 11.5% for files LV08003 and LV08004, 02 April 2008.

The above calculation was repeated for each ion pair. The error bars for each compound's ions were averaged to give a single value for the compound. This averaged error bar can be applied to the samples analyzed between the two calibrations of the monitoring period.

5.3 Ion Pair Detection and Quantitation Limits

The DLs and QLs were calculated using the standard deviation (SD) of the compound's ion pair intensity measured in an ambient air sample and its RF. The SD reflects the variability of the instrument's response to the ambient air sample.

The following equation was used to calculate the DLs found in Table 4:

$$DL = \frac{3 \times SD}{RF \text{ or } IRF}$$

where:

DL	=	Detection limit for an ion pair (ppbv)
SD	=	Standard deviation of the ion intensity measured in an ambient air sample (icps)
RF or IRF	=	Response factor or/Intermediate response factor for an ion pair (icps/ppbv)

For example, the entry for the 130/95 ion pair of trichloroethene from Table 4, files LV08003 and LV08004, 02 April 2008 is:

SD = 17.243 icps IRF = 3528.6 icps/ppbv

$$DL = \frac{3 \times 17.243}{3528.6} = 0.0147 \text{ ppbv}$$

The following equation was used to calculate the QLs found in Table 4:

$$QL = \frac{10 \times SD}{RF \text{ or } IRF}$$

where:

QL	=	Quantitation limit concentration for an ion pair (ppbv)
SD	=	Standard deviation of the ion intensity measured in an ambient air sample (icps)
RF or IRF	=	Response factor or/Intermediate response factor for an ion pair (icps/ppbv)

For example, the entry for the 130/95 ion pair of trichloroethene from Table 4, files LV08003 and LV08004, 02 April 2008 is:

SD = 17.243 icps IRF = 3528.6 icps/ppbv

$$QL = \frac{10 \times 17.243}{3528.6} = 0.0489 \text{ ppbv}$$

5.4 Compound Detection and Quantitation Limits

Averaging the respective DLs and QLs of the target compound's ion pairs found in Table 4 generated the DLs and QLs found in Table 4.

The following equation was used to calculate the compound's DL:

$$DL_{c} = \frac{DL_{1} + DL_{2} + \dots + DL_{n}}{n}$$

where:

=	Detection limit for a compound (ppbv)
=	Detection limit for the first ion pair (ppbv)
=	Detection limit for the second ion pair (ppbv)
=	Detection limit for the n th ion pair (ppbv)
=	Number of ion pairs to be averaged
	=

For example, using the entries for the 130/95, 132/95 and 132/97 ion pairs of trichloroethene from Table 4 for files LV08003 and LV08004, 02 April 2008 is:

$$DL_c = \frac{0.0147 + 0.0498 + 0.0163}{3} = \frac{0.0808}{3} = 0.0269 \text{ ppbv}$$

This result, 0.0269 ppbv, rounded to 0.027 ppbv is the DL for trichloroethene found in Table 4.

The following equation was used to calculate the compound's QL:

$$QL_{c} = \frac{QL_{1} + QL_{2} + \dots QL_{n}}{n}$$

where:

QL_c	=	Quantitation limit for a compound (ppbv)
QL_1	=	Quantitation limit for the first ion pair (ppbv)
QL_2	=	Quantitation limit for the second ion pair (ppbv)
QL_n	=	Quantitation limit for the n th ion pair (ppbv)
n	=	Number of ion pairs to be averaged

For example, using the entries for the 130/95, 132/95 and 132/97 ion pairs of trichloroethene from Table 4 for files LV08003 and LV08004, 02 April 2008 is:

$$QL_c = \frac{0.0489 + 0.166 + 0.0542}{3} = \frac{0.2691}{3} = 0.0897 \text{ ppbv}$$

This result, 0.0897 ppbv, rounded to 0.090 ppbv is the QL for trichloroethene found in Table 4.

TABLES

TABLE 1 Summary of Transport Efficiencies Measured on 02 April 2008 Little Valley VI Extent Study Little Valley, New York April 2008

		April 2008	0				
	Transport E	fficiency for 02 Apri File: LV08002	1 2008 07:48				
Start Sequence: 348 697							
I	End Sequence:	446	833				
Compound	PM/DM	Proximal Intensity (icps)	Distal Intensity (icps)	Transport Efficiency (%)			
Trichloroethene	130/95	22771.6	21199.2	93.1			
Trichloroethene	132/95	7026.3	6763.7	96.3			
Trichloroethene	132/97	13796.4	13322.4	96.6			
Average	Trichloroethene	e Transport Efficienc	y:	95.3			
Tetrachloroethene	164/129	11935.3	11519.6	96.5			
Tetrachloroethene	166/129	4690.2	4412.0	94.1			
Tetrachloroethene	166/131	12172.5	11388.0	93.6			
Average Te	etrachloroether	ne Transport Efficien	cy:	94.7			
	-	fficiency for 02 Apri File: LV08013					
	Start Sequence		722				
	End Sequence	e: 302	843				
Compound	PM/DM	Proximal Intensity (icps)	Distal Intensity (icps)	Transport Efficiency (%)			
Trichloroethene	130/95	10140.9	10043.5	99.0			
Trichloroethene 132/95		3745.2	3630.5	96.9			
Themoroculenc	132/93	37 13.2	5050.5	90.9			
Trichloroethene	132/93	7197.4	7033.7	97.7			
Trichloroethene	132/97		7033.7				
Trichloroethene	132/97	7197.4 Transport Efficiency	7033.7	97.7			
Trichloroethene Average T	132/97 Frichloroethene	7197.4 Transport Efficiency	7033.7 v:	97.7 97.9			
Trichloroethene Average T Tetrachloroethene	132/97 Trichloroethene 164/12	7197.4 Transport Efficiency 9 7204.3	7033.7 /: 6803.8	97.7 97.9 94.4			

PM/DM = Parent Mass/Daughter Mass

icps = Ion Counts per Second

% = Percent

TABLE 2 Summary of Meteorological Conditions during Monitoring, 02 April 2008 Little Valley VI Extent Study Little Valley, New York April 2008

h	April 2008						
File	Unit	Date	Start Time	Wind Speed (mph)	Wind Direction (degrees)	Precipitation (inches)	
LV08003	003	4/2/2008	8:11:53	11.3	333	-	
LV08004	088	4/2/2008	9:01:23	10.0	335	-	
LV08006	071	4/2/2008	10:16:17	10.3	350	0.24	
LV08007	041	4/2/2008	11:40:46	10.0	350	-	
LV08009	027	4/2/2008	13:24:51	10.0	330	-	
LV08010	010	4/2/2008	14:11:28	9.0	360	-	
LV08011	136	4/2/2008	16:37:09	7.5	5	-	

Note: The wind direction is the direction from which the wind is blowing

mph = Miles per Hour

- = No Precipitation

TABLE 3 Response Factors and Error Bars Summary for 02 April 2008 Little Valley VI Extent Study Little Valley, NY 2008

Calibration Files: LV08001 and LV08005 on 02 April 2008 Used for Survey Files: LV08003 and LV08004							
Compound	PM/DM	Initial Response Factor (icps/ppbv)	Final Response Factor (icps/ppbv)	Intermediate Response Factor (icps/ppbv)	Error Bar (%)		
Trichloroethene	130/95	3988.1	3164.1	3528.6	11.5		
Trichloroethene	132/95	1332.3	1025.9	1159.2	13.0		
Trichloroethene	132/97	2600.9	2013.7	2269.9	12.7		
				Average	: 12		
Tetrachloroethene	164/129	2659.9	1982.9	2272.1	14.6		
Tetrachloroethene	166/129	970.98	743.46	842.13	13.3		
Tetrachloroethene	Tetrachloroethene 166/131 2463.4 1904.9 2148.4						
	Average:						

Calibration Files: LV08008 and LV08012 on 02 April 2008 Used for Survey Files: LV08009, LV08010, and LV08011							
CompoundPM/DMResponse FactorResponse FactorResponse Factor				-	Error Bar (%)		
Trichloroethene	130/95	1862.5	2354.3	2079.7	11.7		
Trichloroethene	132/95	620.90	798.46	698.58	12.5		
Trichloroethene	Trichloroethene 132/97 1219.7 1554.8 136		1367.0	12.1			
	•		·	Average	: 12		
Tetrachloroethene	164/129	1264.9	1661.6	1436.3	13.6		
Tetrachloroethene	166/129	449.77	581.53	507.23	12.8		
Tetrachloroethene	166/131	1148.7	1472.2	1290.5	12.3		
Average:							

PM/DM = Parent Mass/Daughter Mass

icps = Ion Counts per Second

ppbv = Parts per Billion by Volume

% = Percent

TABLE 4 Summary of Detection and Quantitation Limit Data for 02 April 2008 Little Valley VI Extent Study Little Valley, NY 2008

Calibration Files: LV08001 and LV08005 on 02 April 2008 Used for Survey Files: LV08003 and LV08004							
Compound	PM/DM	Standard Deviation (icps)	Detection Limit (ppbv)	Quantitation Limit (ppbv)			
Trichloroethene	130/95	3528.6	17.243	0.0147	0.0489		
Trichloroethene	132/95	1159.2	19.231	0.0498	0.166		
Trichloroethene	132/97	2269.9	12.311	0.0163	0.0542		
			Average:	0.027	0.090		
Tetrachloroethene	164/129	2272.1	19.912	0.0263	0.0876		
Tetrachloroethene	166/129	842.13	8.8686	0.0316	0.105		
Tetrachloroethene	166/131	2148.4	11.831	0.0165	0.0551		
			Average:	0.025	0.083		

Calibration File: LV08005 at 09:52:07 on 02 April 2008 Used for Survey File: LV08006					
Compound	PM/DM	Response Factor (icps/ppbv)	Standard Deviation (icps)	Detection Limit (ppbv)	Quantitation Limit (ppbv)
Trichloroethene	130/95	3164.1	10.760	0.0102	0.0340
Trichloroethene	132/95	1025.9	15.900	0.0465	0.155
Trichloroethene	132/97	2013.7	7.5131	0.0112	0.0373
			Average:	0.023	0.075
Tetrachloroethene	164/129	1982.9	20.013	0.0303	0.101
Tetrachloroethene	166/129	743.46	8.5986	0.0347	0.116
Tetrachloroethene	166/131	1904.9	10.525	0.0166	0.0553
			Average:	0.027	0.091

PM/DM = Parent Mass/Daughter Mass icps = Ion Counts per Second

= Parts per Billion by Volume ppbv

TABLE 4 (continued) Summary of Detection and Quantitation Limit Data for 02 April 2008 Little Valley VI Extent Study Little Valley, NY 2008

Calibration File: LV08008 at 12:59:44 on 02 April 2008 Used for Survey File: LV08007					
Compound	PM/DM	Response Factor (icps/ppbv)	Standard Deviation (icps)	Detection Limit (ppbv)	Quantitation Limit (ppbv)
Trichloroethene	132/97	1219.7	15.979	0.0393	0.131
	•		Average:	0.039	0.13
Tetrachloroethene	164/129	1264.9	10.969	0.0260	0.0867
Tetrachloroethene	166/129	449.77	4.2424	0.0283	0.0943
Tetrachloroethene	166/131	1148.7	7.7271	0.0202	0.0673
			Average:	0.025	0.083

Calibration Files: LV08008 and LV08012 on 02 April 2008 Used for Survey Files: LV08009, LV08010 and LV08011					
Compound	PM/DM	Intermediate Response Factor (icps/ppbv)	Standard Deviation (icps)	Detection Limit (ppbv)	Quantitation Limit (ppbv)
Trichloroethene	130/95	2079.7	21.993	0.0317	0.106
Trichloroethene	132/95	698.58	5.8382	0.0251	0.0836
Trichloroethene	132/97	1367.0	15.979	0.0351	0.117
Average: 0.031 0.10					0.10
Tetrachloroethene	ene 164/129 1436.3		10.969	0.0229	0.0764
Tetrachloroethene	166/129	507.23	4.2424	0.0251	0.0836
Tetrachloroethene	166/131 1290.5		7.7271	0.0180	0.0599
Average: 0.022 0.073					0.073

PM/DM = Parent Mass/Daughter Mass

icps = Ion Counts per Second

ppbv = Parts per Billion by Volume

FIGURES

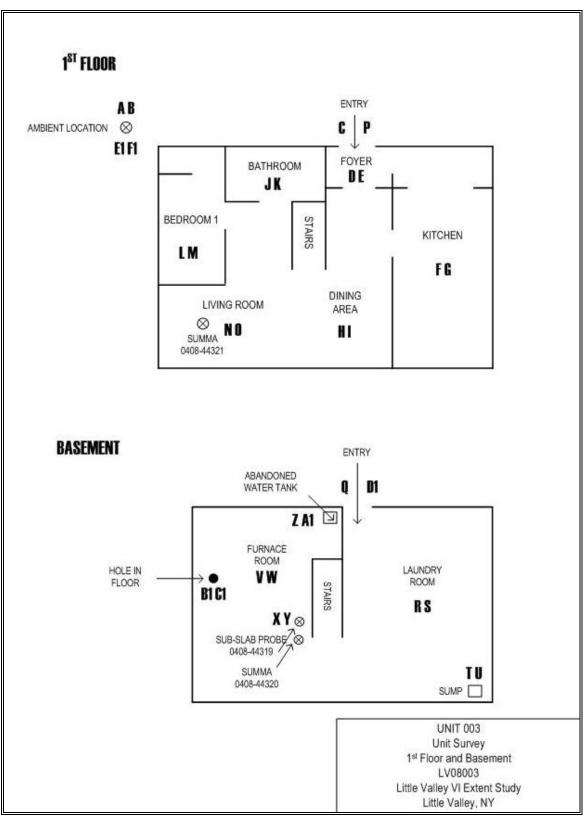


Figure 1a Unit 003 Survey Floor Plan, LV08003

	Figure 1b					
	TAGA File Event Summary File: LV08003 Acquired on 02 April 2008 at 08:11:53 Title: Unit 003 Survey					
Flag	Offset Time	Offset Sequence	Description			
А	2.0	191	Start of the pre-entry ambient			
В	3.0	288	End of the pre-entry ambient			
С	5.7	546	Entering the unit			
D	6.9	659	Start of the foyer			
E	7.9	756	End of the foyer			
F	8.3	792	Start of the kitchen			
G	9.3	886	End of the kitchen			
Н	9.7	927	Start of the dining area			
Ι	10.8	1029	End of the dining area			
J	11.3	1078	Start of the bathroom			
K	12.3	1176	End of the bathroom			
L	12.6	1197	Start of bedroom one			
М	13.6	1294	End of bedroom one			
Ν	13.9	1325	Start of the living room			
0	15.0	1424	End of the living room			
Р	15.4	1465	Exiting the unit			
Q	15.8	1500	Entering the basement			
R	16.2	1543	Start of the laundry room			
S	17.2	1640	End of the laundry room			
Т	17.4	1657	Start of the sump			
U	18.4	1754	End of the sump			
V	18.8	1793	Start of the furnace room			
W	19.8	1889	End of the furnace room			
Х	20.0	1908	Start of the sub-slab probe			
Y	21.1	2006	End of the sub-slab probe			
Z	21.3	2028	Start of the abandoned water tank			
A1	22.8	2168	End of the abandoned water tank			
B1	23.0	2187	Start of the hole in the floor			
C1	24.0	2288	End of the hole in the floor			
D1	24.6	2341	Exiting the unit			
E1	25.0	2382	Start of the post-exit ambient			
F1	26.0	2480	End of the post-exit ambient			
G1	27.5	2622	Start of the 30 mL/min spike			
H1	28.5	2717	End of the 30 mL/min spike			

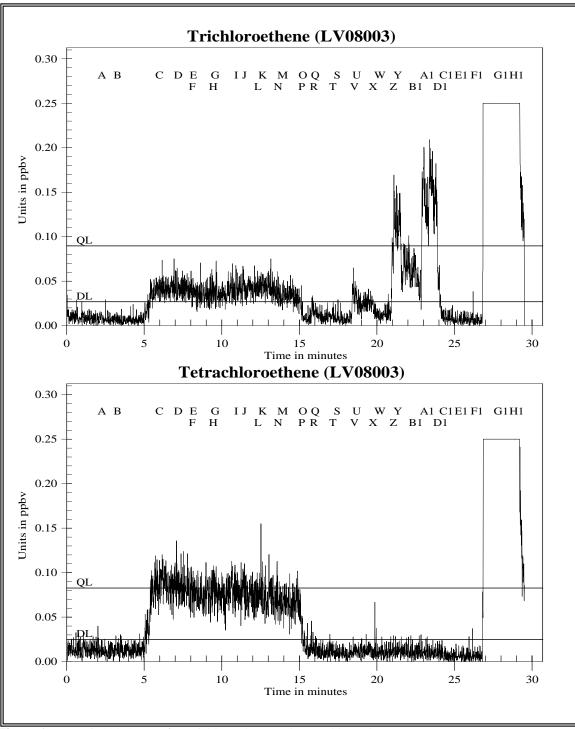


Figure 1c Unit 003 Survey for Trichloroethene and Tetrachloroethene

Figure 1d							
	TAGA Target Compound Summary for Unit 003 File: LV08003 Acquired on 02 April 2008 at 08:11:53						
	Trichloroethene Tetrachloroethene						
	Detection Limits - DL:	0.027	0.025				
	Quantitation Limits - QL:	0.090	0.083				
Flags	Description	Trichloroethene	Tetrachloroethene				
A - B	Pre-entry ambient	DL=0.027	DL=0.025				
D - E	Foyer	0.042J	0.085				
F - G	Kitchen	0.036J	0.075J				
H - I	Dining area	0.037J	0.077J				
J - K	Bathroom	0.043J	0.076J				
L - M	Bedroom one	0.043J	0.072J				
N - O	Living room	0.033J	0.067J				
R - S	Laundry room	DL=0.027	DL=0.025				
T - U	Sump	DL=0.027	DL=0.025				
V - W	Furnace room	DL=0.027	DL=0.025				
X - Y	Sub-slab probe	DL=0.027	DL=0.025				
Z - A1	Abandoned water tank	0.071J	DL=0.025				
B1 - C1	Hole in the floor	0.14	DL=0.025				
E1 - F1	Post-exit ambient	DL=0.027	DL=0.025				
G1 - H1	30 mL/min spike	5.5	4.7				

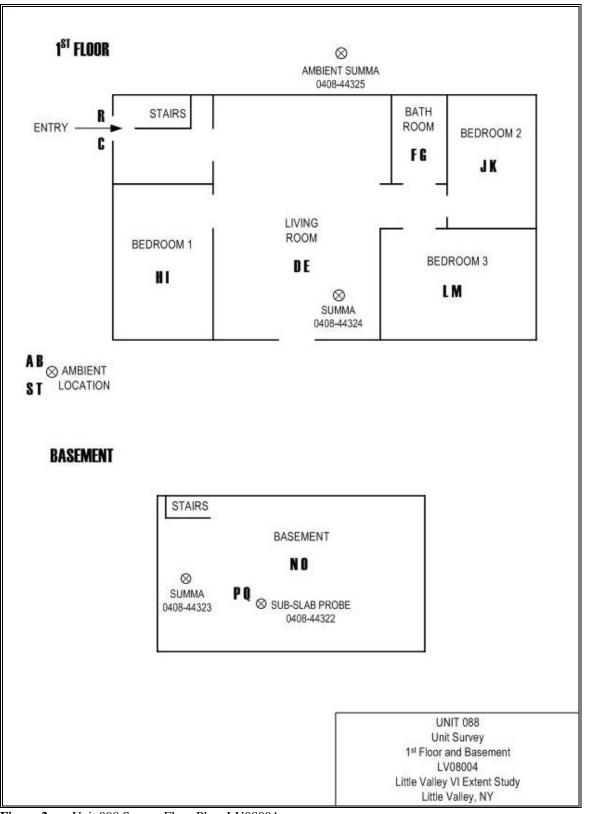


Figure 2aUnit 088 Survey Floor Plan, LV08004

	Figure 2b				
	TAGA File Event Summary File: LV08004 Acquired on 02 April 2008 at 09:01:23 Title: Unit 088 Survey				
Flag	Offset Time	Offset Sequence	Description		
А	2.4	231	Start of the pre-entry ambient		
В	3.4	329	End of the pre-entry ambient		
С	4.3	407	Entering the unit		
D	4.9	467	Start of the living room		
Е	5.9	564	End of the living room		
F	6.3	596	Start of the bathroom		
G	7.3	692	End of the bathroom		
Н	7.7	737	Start of bedroom one		
Ι	8.8	834	End of bedroom one		
J	9.1	865	Start of bedroom two		
K	10.2	967	End of bedroom two		
L	10.4	986	Start of bedroom three		
М	11.4	1083	End of bedroom three		
Ν	12.3	1173	Start of the basement		
0	13.4	1273	End of the basement		
Р	13.7	1306	Start of the sub-slab probe		
Q	14.8	1405	End of the sub-slab probe		
R	15.3	1454	Exiting the unit		
S	15.6	1481	Start of the post-exit ambient		
Т	16.6	1581	End of the post-exit ambient		
U	17.7	1686	Start of the 30 mL/min spike		
V	19.1	1817	End of the 30 mL/min spike		

Figure 2b

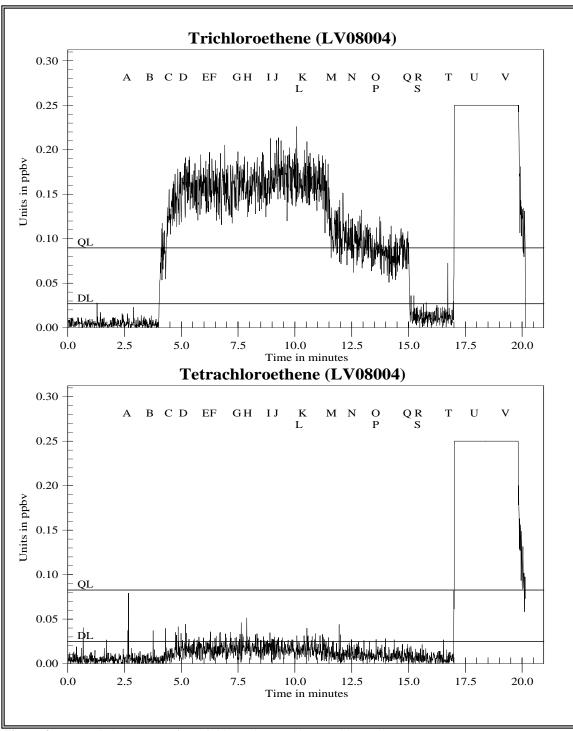


Figure 2c Unit 088 Survey for Trichloroethene and Tetrachloroethene

	Figure 2d					
	TAGA Target Compound Summary for Unit 088 File: LV08004 Acquired on 02 April 2008 at 09:01:23					
		Trichloroethene	Tetrachloroethene			
	Detection Limits - DL:	0.027	0.025			
	Quantitation Limits - QL:	0.090	0.083			
Flags	Description	Trichloroethene	Tetrachloroethene			
A - B	Pre-entry ambient	DL=0.027	DL=0.025			
D - E	Living room	0.16	DL=0.025			
F - G	Bathroom	0.16	DL=0.025			
H - I	Bedroom one	0.16	DL=0.025			
J - K	Bedroom two	0.17	DL=0.025			
L - M	Bedroom three	0.16	DL=0.025			
N - O	Basement	0.096	DL=0.025			
P - Q	Sub-slab probe	0.084J	DL=0.025			
S - T	Post-exit ambient	DL=0.027	DL=0.025			
U - V	30 mL/min spike	5.3	4.7			

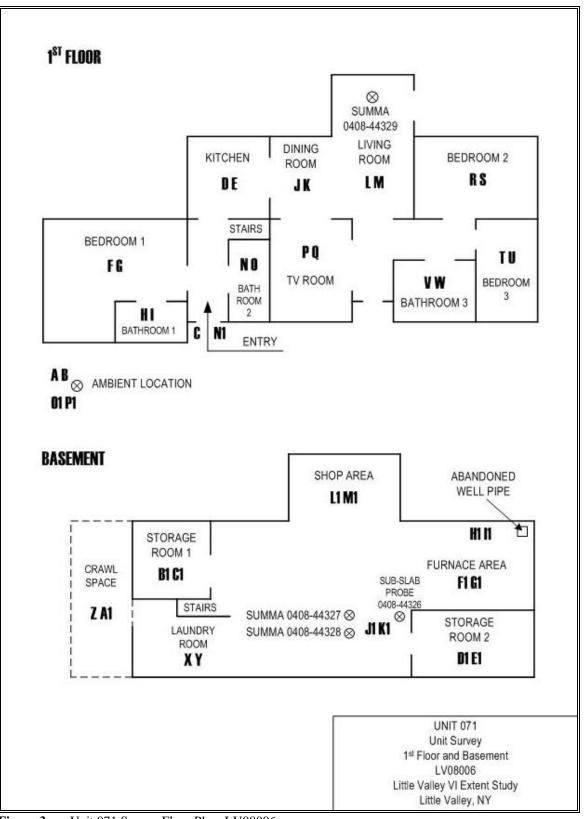


Figure 3a Unit 071 Survey Floor Plan, LV08006

	Figure 3b				
	TAGA File Event Summary File: LV08006 Acquired on 02 April 2008 at 10:16:17 Title: Unit 071 Survey				
Flag	Offset Time	Offset Sequence	Description		
А	2.1	198	Start of the pre-entry ambient		
В	3.1	297	End of the pre-entry ambient		
C	4.6	442	Entering the unit		
D	5.1	485	Start of the kitchen		
Е	6.1	580	End of the kitchen		
F	6.3	599	Start of bedroom one		
G	7.3	694	End of bedroom one		
Н	7.5	712	Start of bathroom one		
Ι	8.5	808	End of bathroom one		
J	8.8	843	Start of the dining room		
K	9.9	940	End of the dining room		
L	10.1	959	Start of the living room		
М	11.1	1056	End of the living room		
Ν			Start of bathroom two		
0	12.5	1189	End of bathroom two		
Р	P 12.7 1210 Start of the TV room		Start of the TV room		
Q	13.7	1308	End of the TV room		
R	14.1	1343	Start of bedroom two		
S	15.1	1440	End of bedroom two		
Т	15.4	1467	Start of bedroom three		
U	16.4	1562	End of bedroom three		
V	16.7	1590	Start of bathroom three		
W	17.7	1687	End of bathroom three		
Х	19.0	1808	Start of the laundry room		
Y	20.0	1905	End of the laundry room		
Z	20.4	1938	Start of the crawl space		
A1	21.4	2036	End of the crawl space		
B1	21.7	2069	Start of storage room one		
C1	22.7	2166	End of storage room one		
D1	23.2	2209	Start of storage room two		
E1	24.2	2301	End of storage room two		
F1	24.5	2334	Start of the furnace area		
G1	25.5	2426	End of the furnace area		

Figure 3b (continued)

TAGA File Event Summary File: LV08006 Acquired on 02 April 2008 at 10:16:17 Title: Unit 071 Survey			
Flag	Offset Time	Offset Sequence	Description
H1	25.6	2442	Start of the abandoned well pipe
I1	26.7	2538	End of the abandoned well pipe
J1	27.0	2574	Start of the sub-slab port
K1	28.0	2666	End of the sub-slab port
L1	28.2	2687	Start of the shop area
M1	29.2	2783	End of the shop area
N1	29.9	2844	Exiting the unit
01	30.3	2882	Start of the post-exit ambient
P1	31.2	2975	End of the post-exit ambient
Q1	Q1 32.4 3083 Start of the 30 mL/min spike		Start of the 30 mL/min spike
R1	33.4	3182	End of the 30 mL/min spike

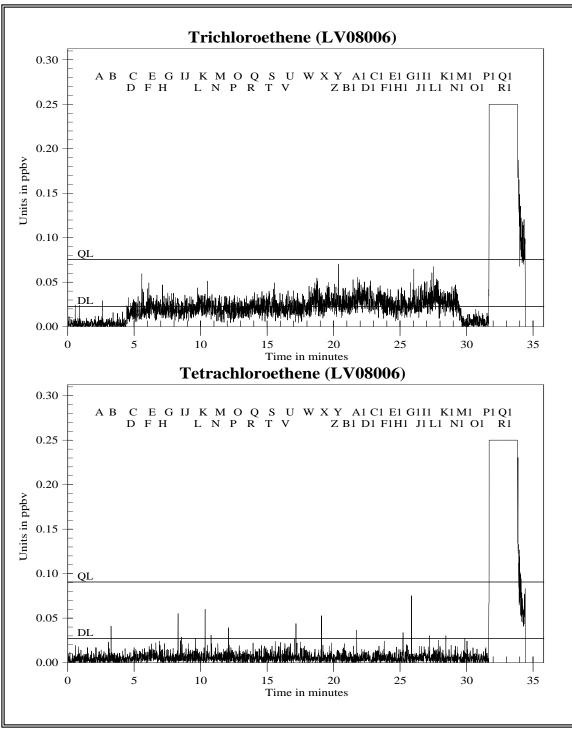


Figure 3cUnit 071 Survey for Trichloroethene and Tetrachloroethene

		Figure 3d					
	TAGA Target Compound Summary for Unit 071 File: LV08006 Acquired on 02 April 2008 at 10:16:17						
	Trichloroethene Tetrachloroethene						
	Detection Limits - DL:	0.023	0.027				
	Quantitation Limits - QL:	0.075	0.091				
Flags	Description	Trichloroethene	Tetrachloroethene				
A - B	Pre-entry ambient	DL=0.023	DL=0.027				
D - E	Kitchen	DL=0.023	DL=0.027				
F - G	Bedroom one	DL=0.023	DL=0.027				
H - I	Bathroom one	DL=0.023	DL=0.027				
J - K	Dining room	DL=0.023	DL=0.027				
L - M	Living room	DL=0.023	DL=0.027				
N - O	Bathroom two	DL=0.023	DL=0.027				
P - Q	TV room	DL=0.023	DL=0.027				
R - S	Bedroom two	DL=0.023	DL=0.027				
T - U	Bedroom three	DL=0.023	DL=0.027				
V - W	Bathroom three	DL=0.023	DL=0.027				
X - Y	Laundry room	0.027J	DL=0.027				
Z - A1	Crawl space	0.027J	DL=0.027				
B1 - C1	Storage room one	0.033J	DL=0.027				
D1 - E1	Storage room two	0.027J	DL=0.027				
F1 - G1	Furnace area	0.024J	DL=0.027				
H1 - I1	Abandoned well pipe	0.026J	DL=0.027				
J1 - K1	Sub-slab port	0.032J	DL=0.027				
L1 - M1	Shop area	0.028J	DL=0.027				
O1 - P1	Post-exit ambient	DL=0.023	DL=0.027				
Q1 - R1	30 mL/min spike	5.6	4.7				

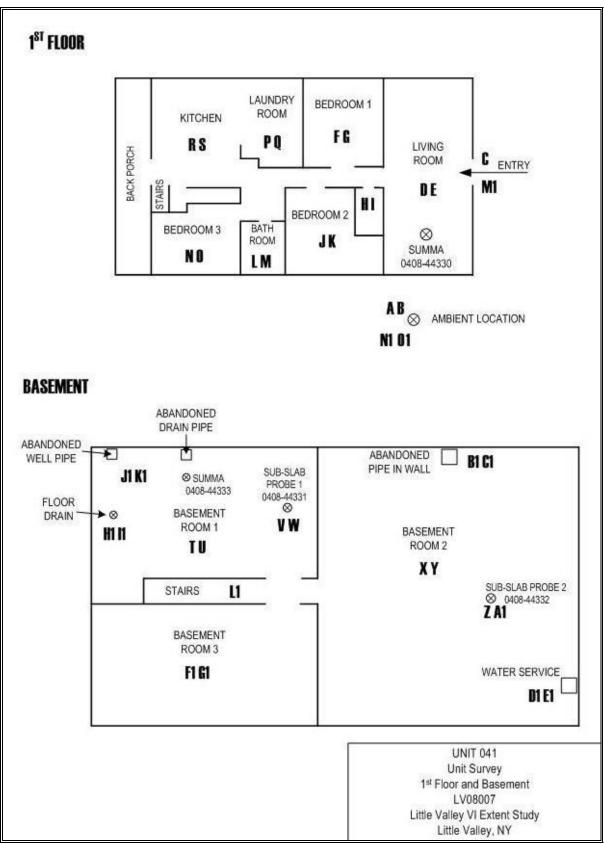


Figure 4a Unit 041 Survey Floor Plan, LV08007

	Figure 4b				
	TAGA File Event Summary File: LV08007 Acquired on 02 April 2008 at 11:40:46 Title: Unit 041 Survey				
Flag	Offset Time	Offset Sequence	Description		
А	2.2	207	Start of the pre-entry ambient		
В	3.2	307	End of the pre-entry ambient		
С	3.9	369	Entering the unit		
D	4.1	394	Start of the living room		
Е	5.1	489	End of the living room		
F	5.7	540	Start of bedroom one		
G	6.7	642	End of bedroom one		
Н	6.9	661	Start of the hall closet		
Ι	8.0	758	End of the hall closet		
J	8.3	794	Start of bedroom two		
K	9.4	891	End of bedroom two		
L	9.8	929	Start of the bathroom		
М	M 10.8 1026 End of the bathroom		End of the bathroom		
Ν	11.1 1056 Start of bedroom three		Start of bedroom three		
0	12.1	1153	End of bedroom three		
Р	12.8 1219 Start of the laundry room		Start of the laundry room		
Q	13.8	1316	End of the laundry room		
R	14.0	1332	Start of the kitchen		
S	15.0	1429	End of the kitchen		
Т	15.8	1505	Start of basement room one		
U	16.8	1602	End of basement room one		
V	17.1	1625	Start of sub-slab probe one		
W	18.1	1724	End of sub-slab probe one		
Х	18.5	1760	Start of basement room two		
Y	19.5	1857	End of basement room two		
Z	19.7	1879	Start of sub-slab probe two		
A1	20.7	1974	End of sub-slab probe two		
B1	21.0	2000	Start of the abandoned pipe in the wall		
C1			End of the abandoned pipe in the wall		
D1	22.4	2131	Start of the water service		
E1	23.4	2231	End of the water service		
F1	23.8	2269	Start of basement room three		
G1	24.8	2366	End of basement room three		

Figure 4b (continued)

	TAGA File Event Summary File: LV08007 Acquired on 02 April 2008 at 11:40:46 Title: Unit 041 Survey				
Flag	Flag Offset Time Offset Sequence Description				
H1	25.2	2396	Start of the floor drain		
I1	26.2	2492	End of the floor drain		
J1	J1 26.4 2512 Start of the abandoned well pipe		Start of the abandoned well pipe		
K1	K1 27.3 2603 End of the abandoned well pipe		End of the abandoned well pipe		
L1	27.7	2634	Ascending the stairs		
M1	28.5	2710	Exiting the unit		
N1	28.9	2750	Start of the post-exit ambient		
01	29.9	2848	End of the post-exit ambient		
P1	P1 38.0 3616 Start of the 30 mL/min spike		Start of the 30 mL/min spike		
Q1	38.4	3656	End of the 30 mL/min spike		

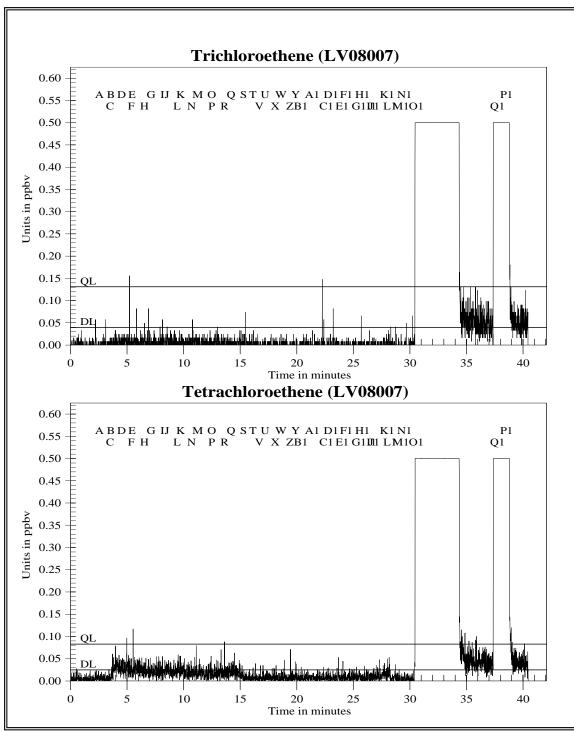


Figure 4c Unit 041 Survey for Trichloroethene and Tetrachloroethene

	Fi	gure 4d						
	TAGA Target Compound File: LV08007 Acquired on 0	2	16					
	Trichloroethene Tetrachloroethene							
	Detection Limits - DL:	0.039	0.025					
	Quantitation Limits - QL:	0.13	0.083					
Flags	Description	Trichloroethene	Tetrachloroethene					
A - B	Pre-entry ambient	DL=0.039	DL=0.025					
D - E	Living room	DL=0.039	0.032J					
F - G	Bedroom one	DL=0.039	0.026J					
H - I	Hall closet	DL=0.039	DL=0.025					
J - K	Bedroom two	DL=0.039	DL=0.025					
L - M	Bathroom	DL=0.039	DL=0.025					
N - O	Bedroom three	DL=0.039	DL=0.025					
P - Q	Laundry room	DL=0.039	DL=0.025					
R - S	Kitchen	DL=0.039	DL=0.025					
T - U	Basement room one	DL=0.039	DL=0.025					
V - W	Sub-slab probe one	DL=0.039	DL=0.025					
X - Y	Basement room two	DL=0.039	DL=0.025					
Z - A1	Sub-slab probe two	DL=0.039	DL=0.025					
B1 - C1	Abandoned pipe in the wall	DL=0.039	DL=0.025					
D1 - E1	Water service	DL=0.039	DL=0.025					
F1 - G1	Basement room three	DL=0.039	DL=0.025					
H1 - I1	Floor drain	DL=0.039	DL=0.025					
J1 - K1	Abandoned well pipe	DL=0.039	DL=0.025					
N1 - O1	Post-exit ambient	DL=0.039	DL=0.025					
P1 - Q1	30 mL/min spike	3.5	3.1					

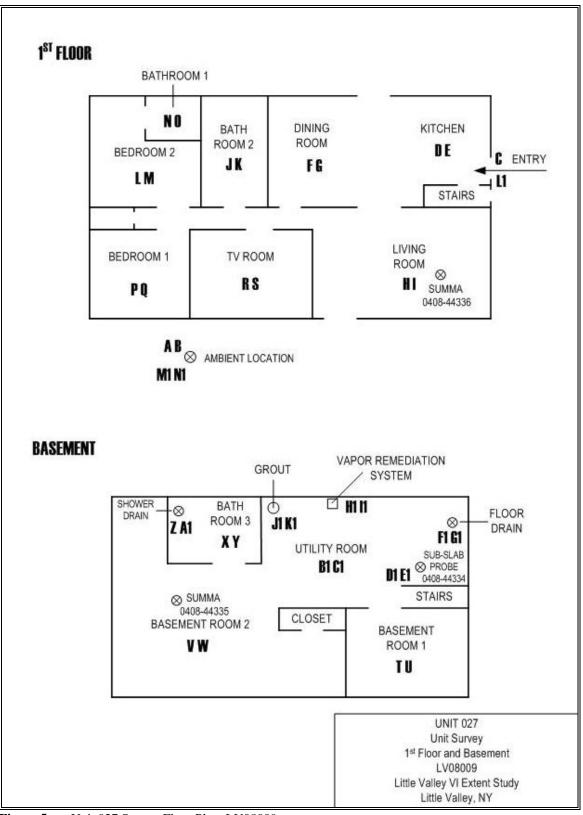


Figure 5a Unit 027 Survey Floor Plan, LV08009

1	Figure 5b				
	TAGA File Event Summary File: LV08009 Acquired on 02 April 2008 at 13:24:51 Title: Unit 027 Survey				
Flag	Offset Time	Offset Sequence	Description		
А	2.5	237	Start of the pre-entry ambient		
В	3.5	331	End of the pre-entry ambient		
C	4.0	386	Entering the unit		
D	4.2	399	Start of the kitchen		
Е	5.2	497	End of the kitchen		
F	5.4	513	Start of the dining room		
G	6.4	608	End of the dining room		
Н	6.6	626	Start of the living room		
Ι	7.6	723	End of the living room		
J	7.9	754	Start of bathroom two		
K	8.9	851	End of bathroom two		
L	9.2	872	Start of bedroom two		
М	10.2	967	End of bedroom two		
Ν	10.4	989	Start of bathroom one		
0	11.4	1086	End of bathroom one		
Р	P 11.6 1108 Start of bedroom one		Start of bedroom one		
Q	12.6	1202	End of bedroom one		
R	13.4	1276	Start of the TV room		
S	14.4	1373	End of the TV room		
Т	16.0	1525	Start of basement room one		
U	17.1	1624	End of basement room one		
V	17.4	1660	Start of basement room two		
W	18.5	1757	End of basement room two		
Х	18.8	1786	Start of bathroom three		
Y	19.8	1881	End of bathroom three		
Z	20.0	1901	Start of the shower drain		
A1	21.0	2003	End of the shower drain		
B1	21.3	2033	Start of the utility room		
C1	22.4	2131	End of the utility room		
D1	22.6	2154	Start of the sub-slab probe		
E1	23.7	2252	End of the sub-slab probe		
F1	23.9	2277	Start of the floor drain		
G1	24.9	2371	End of the floor drain		

Figure 5b (continued)

Figure 50 (continued)					
	TAGA File Event Summary File: LV08009 Acquired on 02 April 2008 at 13:24:51 Title: Unit 027 Survey				
Flag	Offset Time	Offset Sequence	Description		
H1	25.1	2392	Start of the vapor remediation system		
I1	26.2	2490	End of the vapor remediation system		
J1	J1 26.4 2514 Start of the grout		Start of the grout		
K1	K1 27.4 2609 End of the grout		End of the grout		
L1	28.0	2669	Exiting the unit		
M1	28.7	2731	Start of the post-exit ambient		
N1	N1 29.7 2828 End of the post-exit ambient		End of the post-exit ambient		
01	O1 31.1 2964 Start of the 30 mL/min spike		Start of the 30 mL/min spike		
P1	32.1	3061	End of the 30 mL/min spike		

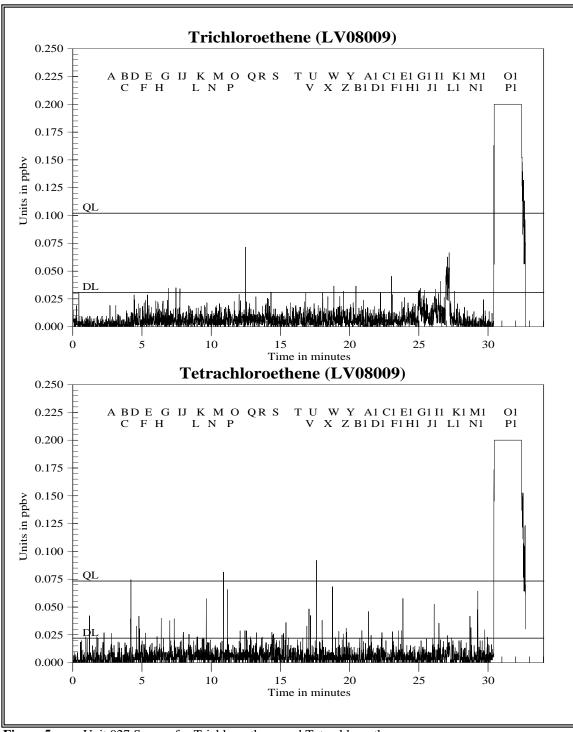


Figure 5c Unit 027 Survey for Trichloroethene and Tetrachloroethene

	Fi	igure 5d						
	TAGA Target Compound Summary for Unit 027 File: LV08009 Acquired on 02 April 2008 at 13:24:51							
	Trichloroethene Tetrachloroethene							
	Detection Limits - DL:	0.031	0.022					
	Quantitation Limits - QL:	0.10	0.073					
Flags	Description	Trichloroethene	Tetrachloroethene					
A - B	Pre-entry ambient	DL=0.031	DL=0.022					
D - E	Kitchen	DL=0.031	DL=0.022					
F - G	Dining room	DL=0.031	DL=0.022					
H - I	Living room	DL=0.031	DL=0.022					
J - K	Bathroom two	DL=0.031	DL=0.022					
L - M	Bedroom two	DL=0.031	DL=0.022					
N - O	Bathroom one	DL=0.031	DL=0.022					
P - Q	Bedroom one	DL=0.031	DL=0.022					
R - S	TV room	DL=0.031	DL=0.022					
T - U	Basement room one	DL=0.031	DL=0.022					
V - W	Basement room two	DL=0.031	DL=0.022					
X - Y	Bathroom three	DL=0.031	DL=0.022					
Z - A1	Shower drain	DL=0.031	DL=0.022					
B1 - C1	Utility room	DL=0.031	DL=0.022					
D1 - E1	Sub-slab probe	DL=0.031	DL=0.022					
F1 - G1	Floor drain	DL=0.031	DL=0.022					
H1 - I1	Vapor remediation system	DL=0.031	DL=0.022					
J1 - K1	Grout	DL=0.031	DL=0.022					
M1 - N1	Post-exit ambient	DL=0.031	DL=0.022					
O1 - P1	30 mL/min spike	5.1	4.7					

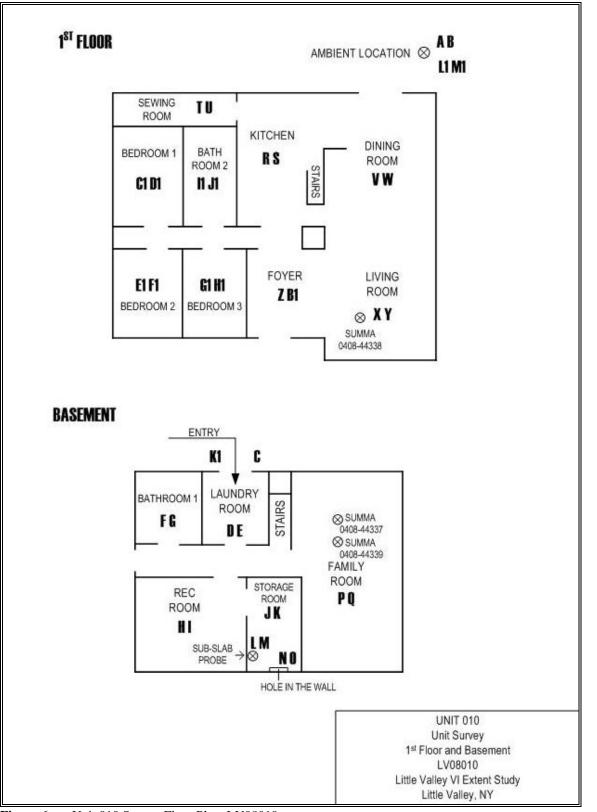


Figure 6a Unit 010 Survey Floor Plan, LV08010

	Figure 6b								
	TAGA File Event Summary File: LV08010 Acquired on 02 April 2008 at 14:11:28 Title: Unit 010 Survey								
Flag	Offset Time Offset Sequence Description								
А	2.4	228	Start of the pre-entry ambient						
В	3.4	323	End of the pre-entry ambient						
C	6.9	654	Entering the unit						
D	7.7	732	Start of the laundry room						
Е	8.7	826	End of the laundry room						
F	9.2	875	Start of bathroom one						
G	10.2	972	End of bathroom one						
Н	10.6	1008	Start of the recreational room						
Ι	11.6	1103	End of the recreational room						
J	11.8	1127	Start of the storage room						
K	12.9	1226	End of the storage room						
L	18.8	1789	Start of the sub-slab probe						
М	19.8	1884	End of the sub-slab probe						
Ν	20.2	1927	Start of the hole in the wall						
0	21.2	2023	End of the hole in the wall						
Р	22.7	2165	Start of the family room						
Q	23.8	2263	End of the family room						
R	24.5	2331	Start of the kitchen						
S	25.5	2430	End of the kitchen						
Т	25.7	2447	Start of the sewing room						
U	26.7	2545	End of the sewing room						
V	27.2	2588	Start of the dining room						
W	28.2	2687	End of the dining room						
Х	28.4	2707	Start of the living room						
Y	29.5	2806	End of the living room						
Z	30.2	2874	Start of the foyer						
B1	31.2	2971	End of the foyer						
C1	31.8	3026	Start of bedroom one						
D1	32.8	3126	End of bedroom one						
E1	33.1	3155	Start of bedroom two						
F1	34.1	3251	End of bedroom two						
G1	34.4	3275	Start of bedroom three						
H1	35.4	3372	End of bedroom three						

Figure 6b (continued)

	Figure ob (continued)								
	TAGA File Event Summary File: LV08010 Acquired on 02 April 2008 at 14:11:28 Title: Unit 010 Survey								
Flag	Flag Offset Time Offset Sequence Description								
I1	35.6	3394	Start of bathroom two						
J1	36.6	3488	End of bathroom two						
K1	38.0	3616	Exiting the unit						
L1	39.6	3769	Start of the post-exit ambient						
M1	40.6	3870	End of the post-exit ambient						
N1	42.0	4000	Start of the 30 mL/min spike						
O1	43.9	4183	End of the 30 mL/min spike						

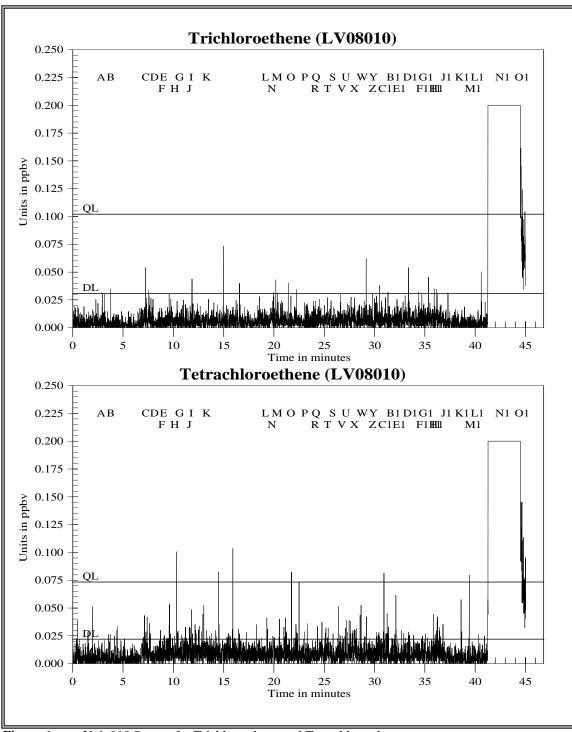


Figure 6cUnit 010 Survey for Trichloroethene and Tetrachloroethene

r		Figure 6d							
	TAGA Target Compound Summary for Unit 010 File: LV08010 Acquired on 02 April 2008 at 14:11:28								
	Trichloroethene Tetrachloroethene								
	Detection Limits - DL:	0.031	0.022						
	Quantitation Limits - QL:	0.10	0.073						
Flags	Description	Trichloroethene	Tetrachloroethene						
A - B	Pre-entry	DL=0.031	DL=0.022						
D - E	Laundry room	DL=0.031	DL=0.022						
F - G	Bathroom one	DL=0.031	DL=0.022						
H - I	Recreational room	DL=0.031	DL=0.022						
J - K	Storage room	DL=0.031	DL=0.022						
L - M	Sub-slab probe	DL=0.031	DL=0.022						
N - O	Hole in the wall	DL=0.031	DL=0.022						
P - Q	Family room	DL=0.031	DL=0.022						
R - S	Kitchen	DL=0.031	DL=0.022						
T - U	Sewing room	DL=0.031	DL=0.022						
V - W	Dining room	DL=0.031	DL=0.022						
X - Y	Living room	DL=0.031	DL=0.022						
Z - B1	Foyer	DL=0.031	DL=0.022						
C1 - D1	Bedroom one	DL=0.031	DL=0.022						
E1 - F1	Bedroom two	DL=0.031	DL=0.022						
G1 - H1	Bedroom three	DL=0.031	DL=0.022						
I1 - J1	Bathroom two	DL=0.031	DL=0.022						
L1 - M1	Post-exit ambient	DL=0.031	DL=0.022						
N1 - O1	30 mL/min spike	4.7	4.3						

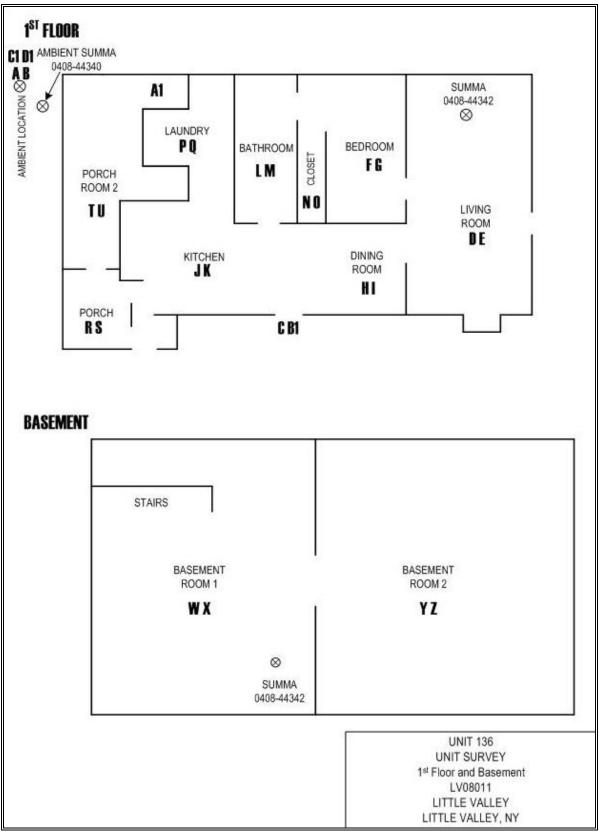


Figure 7aUnit 136 Survey Floor Plan, LV08011

			Figure 7b						
	TAGA File Event Summary File: LV08011 Acquired on 02 April 2008 at 16:37:09 Title: Unit 136 Survey								
Flag	Offset Time Offset Sequence Description								
А	2.0	194	Start of the pre-entry ambient						
В	3.0	291	End of the pre-entry ambient						
С	5.5	524	Entering the unit						
D	6.0	569	Start of the living room						
Е	7.1	677	End of the living room						
F	7.3	699	Start of the bedroom						
G	8.4	796	End of the bedroom						
Н	8.6	818	Start of the dining room						
Ι	9.6	916	End of the dining room						
J	9.9	942	Start of the kitchen						
K	10.9	1041	End of the kitchen						
L	11.4	1086	Start of the bathroom						
М	12.5	1189	End of the bathroom						
Ν	12.8	1216	Start of the closet						
0	13.8	1313	End of the closet						
Р	14.2	1351	Start of the laundry						
Q	15.2	1449	End of the laundry						
R	19.6	1870	Start of the porch						
S	20.6	1966	End of the porch						
Т	21.1	2012	Start of porch room two						
U	22.2	2111	End of porch room two						
V	22.5	2147	Entering the basement						
W	22.9	2185	Start of basement room one						
Х	24.0	2284	End of basement room one						
Y	24.3	2312	Start of basement room two						
Z	25.3	2409	End of basement room two						
A1	25.8	2452	Ascending to the first floor						
B1	27.1	2579	Exiting the unit						
C1	28.1	2679	Start of the post-exit ambient						
D1	29.2	2777	End of the post-exit ambient						
E1	30.3	2888	Start of the 30 mL/min spike						
F1	31.4	2985	End of the 30 mL/min spike						

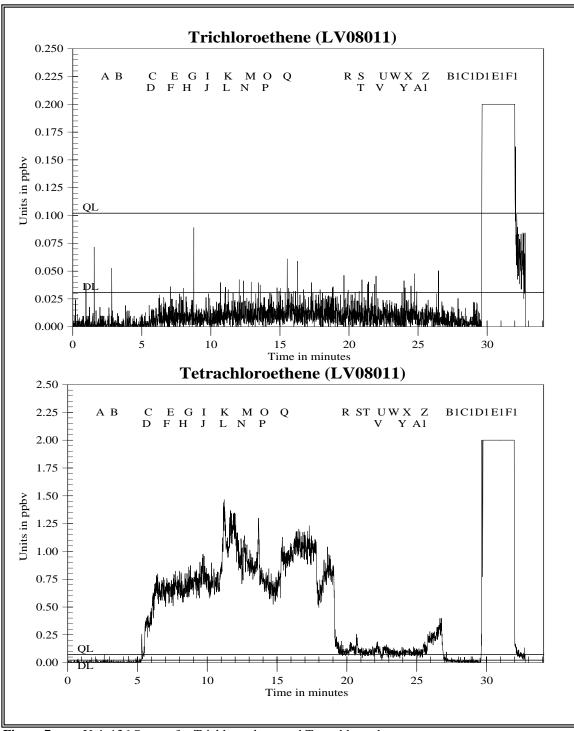


Figure 7c Unit 136 Survey for Trichloroethene and Tetrachloroethene

	Figure 7d									
	TAGA Target Compound Summary for Unit 136 File: LV08011 Acquired on 02 April 2008 at 16:37:09									
	Trichloroethene Tetrachloroethene									
	Detection Limits - DL: 0.031 0.022									
	Quantitation Limits - QL:	0.10	0.073							
Flags	Description	Trichloroethene	Tetrachloroethene							
A - B	Pre-entry	DL=0.031	DL=0.022							
D - E	Living room	DL=0.031	0.62							
F - G	Bedroom	DL=0.031	0.67							
H - I	Dining room	DL=0.031	0.72							
J - K	Kitchen	DL=0.031	0.73							
L - M	Bathroom	DL=0.031	1.1							
N - O	Closet	DL=0.031	0.90							
P - Q	Laundry	DL=0.031	0.69							
R - S	Porch	DL=0.031	0.11							
T - U	Porch room two	DL=0.031	0.098							
W - X	Basement room one	DL=0.031	0.088							
Y - Z	Basement room two	DL=0.031	0.091							
C1 - D1	Post-exit ambient	DL=0.031	DL=0.022							
E1 - F1	30 mL/min spike	5.1	4.8							

APPENDIX A

Standard Gas Cylinder Certification Little Valley VI Extent Study Final Analytical TAGA Report April 2008

3434 Route 22 West, Branchburg, New Jersey 08876 USA Э ISO 9001:2000 Spectra Gases, Inc. SHIPPED FROM: 80 INDUSTRIAL DRIVE ALPHA, NJ. 08865 SHIPPED TO: Lockheed Martin 2890 Woodbridge Ave. Edison, NJ 08837-3679 CERTIFICATE OF ANALYSIS SGI ORDER # : 121599 CYLINDER # : CC-197362 ITEM#: 2 CERTIFICATION DATE: 12/21/2007 CYLINDER PRES: 600 psig CYLINDER VALVE: CGA 350 CC-C Shields P.O.#: **BLEND TYPE:** CERTIFIED PRODUCT EXPIRATION DATE: 12/21/2008 ANALYTICAL ACCURACY: +/- 2% ANALYSIS **REQUESTED GAS** COMPONENT CONC 20.0 ppm 20.4 ppm Vinyl Chloride 20.6 ppm 20.0 ppm 1,1-Dichloroethene Benzene 20.0 ppm 20.2 ppm 20.0 ppm 20.2 ppm Trichloroethylene 20.1 ppm 20.0 ppm Toluene Tetrachloroethylene 20.0 ppm 20.1 ppm 10.0 ppm 10.1 ppm p-Xylene 10.1 ppm m-Xylene 10.0 ppm o-Xylene 10.0 ppm 10.1 ppm Balance Balance Nitrogen DATE: 12/21/2007 ANALYST: da Lou Lorenzetti Nitrogen Balance Balance Tel: +1 908-252-9300 Fax: +1 908-252-0811 www.spectragases.com

APPENDIX B

Compiled Meteorological Data Little Valley VI Extent Study Final Analytical TAGA Report April 2008

CHAUTAUQUA CO/JAMESTOWN AP (04720) JAMESTOWN, NY (04/2008) Elevation: 1723 ft. above sea level Latitude: 42.153 Longitude: -79.251 Data Version: VER2

Date	Time	Sky Conditions	Visibility	Dry Bulb	Dew Point	Rel.	Wind	Wind	Station	Precip
			(Miles)	Temp (F)	Temp (F)	Hum	Speed	Direction	Pressure	Total
				_	_	(%)	(mph)	(deg)	(in. Hg)	(inches)
4/2/08	15	OVC024	10	28	19	69	11	300	28.39	
4/2/08	35	BKN024 OVC028	10	28	19	69	11	290	28.39	
4/2/08	55	OVC024	10	28	19	69	15	290	28.4	
4/2/08	115	SCT019 BKN025 OVC030	9	28	21	75	14	310	28.4	
4/2/08	135	BKN017 OVC025	10	28	21	75	13	300	28.4	
4/2/08	155	OVC015	9	28	21	75	13	310	28.41	
4/2/08	215	SCT015 SCT027 OVC033	10	28	21	75	14	300	28.41	
4/2/08	235	SCT013 BKN027 OVC033	9	27	21	78	15	320	28.42	
4/2/08	255	FEW013 SCT024 OVC032	10	27	19	72	13	320	28.43	
4/2/08	315	OVC030	10	27	18	69	15	330	28.43	
4/2/08	335	SCT026 OVC030	10	27	18	69	15	310	28.45	
4/2/08	355	OVC034	10	27	16	63	15	300	28.45	
4/2/08	415	OVC034	10	27	16	63	9	320	28.46	
4/2/08	435	BKN029 OVC034	10	27	18	69	16	300	28.46	
4/2/08	455	OVC031	10	27	18	69	11	300	28.47	
4/2/08	515	OVC033	9	27	18	69	10	290	28.48	
4/2/08	535	FEW017 OVC035	10	27	18	69	9	290	28.48	
4/2/08	555	FEW017 BKN038	10	25	18	75	11	300	28.5	
4/2/08	615	SCT016 SCT023 BKN031	10	25	18	75	9	290	28.51	
4/2/08	635	FEW021 BKN026 OVC032	6	27	18	69	10	310	28.52	
4/2/08	655	BKN022 OVC027	3	27	18	69	16	320	28.52	
4/2/08	715	SCT015 OVC024	5	27	18	69	9	310	28.54	
4/2/08	735	FEW013 BKN018 OVC027	10	25	16	69	13	330	28.55	

CHAUTAUQUA CO/JAMESTOWN AP (04720) JAMESTOWN, NY (04/2008) Elevation: 1723 ft. above sea level Latitude: 42.153 Longitude: -79.251 Data Version: VER2

Date	Time	Sky Conditions	Visibility	Dry Bulb	Dew Point	Rel. Hum	Wind	Wind	Station	Precip
			(Miles)	Temp (F)	Temp (F)	(%)	Speed	Direction	Pressure	Total
							(mph)		(in. Hg)	(inches
)
4/2/08	755	SCT023 OVC027	10	25	16	69	10	330	28.56	
4/2/08	815	BKN023 OVC028	10	27	16	63	10	330	28.56	
4/2/08	835	OVC023	10	27	16	63	13	350	28.56	
4/2/08	855	OVC023	10	27	16	63	11	320	28.57	
4/2/08	915	BKN023	10	27	16	63	9	350	28.58	
4/2/08	935	BKN025	10	27	16	63	11	360	28.58	
4/2/08	955	BKN027	10	28	16	61	9	340	28.59	
4/2/08	1015	SCT027	10	28	14	56	13	360	28.6	0.08
4/2/08	1035	BKN031	10	28	18	66	10	330	28.6	0.08
4/2/08	1055	BKN031	М	28	16	61	8	360	28.61	0.08
4/2/08	1115	М	10	30	16	56	5	330	28.61	
4/2/08	1135	М	10	30	16	56	9	330	28.6	
4/2/08	1155	М	10	30	16	56	10	360	28.6	
4/2/08	1215	М	10	30	16	56	11	350	28.6	
4/2/08	1235	М	10	32	16	52	10	10	28.6	
4/2/08	1255	CLR	10	32	16	52	9	350	28.6	
4/2/08	1315	CLR	10	32	14	47	9	10	28.6	
4/2/08	1335	CLR	10	34	14	44	10	320	28.59	
4/2/08	1355	М	10	34	14	44	10	340	28.59	
4/2/08	1415	М	10	34	14	44	8	10	28.59	
4/2/08	1435	М	10	34	14	44	10	350	28.58	
4/2/08	1455	М	10	34	14	44	9	350	28.58	
4/2/08	1515	М	10	34	14	44	7	330	28.58	

CHAUTAUQUA CO/JAMESTOWN AP (04720) JAMESTOWN, NY (04/2008) Elevation: 1723 ft. above sea level Latitude: 42.153 Longitude: -79.251 Data Version: VER2

Date	Time	Sky	Visibility	Dry Bulb	Dew Point	Rel. Hum	Wind	Wind	Station	Precip
		Conditions	(Miles)	Temp (F)	Temp (F)	(%)	Speed	Direction	Pressure	Total
							(mph)		(in. Hg)	(inches
)
4/2/08	1535	М	10	34	12	40	6	350	28.58	
4/2/08	1615	М	10	34	12	40	9	330	28.58	
4/2/08	1635	М	10	36	12	37	8	360	28.58	
4/2/08	1655	М	10	34	12	40	7	10	28.58	
4/2/08	1715	М	10	34	12	40	6	10	28.58	
4/2/08	1735	М	10	34	12	40	6	360	28.58	
4/2/08	1755	М	10	34	12	40	5	350	28.58	
4/2/08	1815	М	10	34	12	40	5	360	28.58	
4/2/08	1835	М	10	34	12	40	3	340	28.58	
4/2/08	1855	М	10	32	12	43	5	340	28.58	
4/2/08	1915	М	10	30	12	47	5	340	28.57	
4/2/08	1935	М	10	30	12	47	5	350	28.58	
4/2/08	1955	М	10	30	12	47	0	0	28.58	
4/2/08	2015	М	10	30	12	47	0	0	28.58	
4/2/08	2035	М	10	30	12	47	3	350	28.59	
4/2/08	2055	М	10	30	12	47	0	0	28.59	
4/2/08	2115	М	10	30	12	47	0	0	28.6	
4/2/08	2135	М	10	28	12	51	0	0	28.59	
4/2/08	2155	М	10	28	12	51	0	0	28.59	
4/2/08	2215	М	10	27	12	53	0	0	28.58	
4/2/08	2235	CLR	10	28	10	47	3	130	28.58	
4/2/08	2255	CLR	10	28	12	51	0	0	28.58	
4/2/08	2315	М	10	27	12	53	0	0	28.58	

CHAUTAUQUA CO/JAMESTOWN AP (04720) JAMESTOWN, NY (04/2008) Elevation: 1723 ft. above sea level Latitude: 42.153 Longitude: -79.251 Data Version: VER2

Date	Time	Sky Conditions	Visibility	Dry Bulb	Wet Bulb	Dew Point	Rel. Hum	Wind	Wind	Station	Precip
			(Miles)	Temp (F)	Temp (F)	Temp (F)	(%)	Speed	Direction	Pressure	Total
			· · ·	1 < /	1 < /	1 < /		(mph)		(in. Hg)	(inches
										× °C/)
2/7/08	253	CLR	7	10	9	7	88	0	0	29.02	
2/7/08	353	CLR	6	9	8	6	87	0	0	29.01	
2/7/08	436	SCT006	5	9	8	5	84	3	220	29.03	
2/7/08	445	BKN006	5	9	8	5	84	6	240	29.02	
2/7/08	453	OVC006	4	9	8	6	87	6	240	29.02	
2/7/08	506	OVC006	2	9	9	7	91	8	240	29.02	
2/7/08	517	OVC006	4	9	9	7	91	5	240	29.01	
2/7/08	527	OVC004	3	10	10	9	96	7	240	29.02	
2/7/08	538	OVC004	2	10	10	9	96	6	220	29.01	
2/7/08	553	OVC004	2	10	10	8	92	5	230	29.02	Т
2/7/08	607	OVC004	1	10	10	9	96	6	240	29.02	
2/7/08	638	OVC002	0.75	10	10	9	96	7	230	29.01	
2/7/08	651	OVC002	1.5	10	10	9	96	7	210	29.01	
2/7/08	653	OVC002	2	11	11	9	92	6	230	29.02	Т
2/7/08	705	OVC004	1.5	10	10	9	96	8	200	29.01	
2/7/08	712	OVC004	1	10	10	9	96	11	210	29.01	
2/7/08	729	BKN004 OVC009	2	10	10	9	96	7	240	29.02	
2/7/08	748	OVC009	2	10	10	9	96	7	230	29.02	
2/7/08	753	OVC007	2.5	11	10	8	88	7	210	29.01	Т
2/7/08	830	OVC009	3	10	10	9	96	7	220	29.01	
2/7/08	853	OVC007	3	10	10	8	92	7	230	29.01	Т
2/7/08	953	OVC009	4	11	10	8	88	6	210	29	Т
2/7/08	1053	OVC009	3	13	12	9	84	8	180	29	Т

APPENDIX B Analytical Report – May 16, 2008 Little Valley VI Extent Study June 2008

LOCKHEED MARTI

May 16, 2008 DATE:

R. Singhvi, EPA/ERT Work Assignment Manager V. Kansal, REAC Analytical Section Leader Where Veresse TO:

FROM:

SUBJECT: DOCUMENT TRANSMITTAL UNDER WORK ASSIGNMENT # 0-210

Attached please find the following document prepared under this work assignment:

Little Valley VI Extent Study- Analytical Report

Work Assignment Manager (w/o attachment) D. Mickunas A. DuBois Task Leader (w/o attachment) Data Validation and Report Writing Group Leader (w/o attachment) J. Soroka Central File WA # 0-210 (w/attachment)

ANALYTICAL REPORT

Prepared by LOCKHEED MARTIN, Inc.

Little Valley VI Extent Study Little Valley, NY

May 2008

EPA Work Assignment No. 0-210 LOCKHEED MARTIN Work Order EAC00210 EPA Contract No. EP-C-04-032

Submitted to D. Mickunas EPA-ERT

ausa V Kahşal Date

Analytical Section/Leader

Depund Kellen

Ø. Killeen Quality Assurance Manager

5 14 08

Date

D. Miller Program Manager

Date

Analysis by: Columbia Analytical Services

Prepared by: Y. Mehra

Reviewed by: J. Soroka

Table of Contents

Topic

Introduction Case Narrative Summary of Abbreviations

Section I

Results of the Analysis for VOC (ppbv) in Air Results of the Analysis for VOC (μ g/m³) in Air

Section II

Results of the LCS Analysis for VOC in Air Results of the Duplicate Analysis for VOC in Air

Section III

Correspondence Chains of Custody

Appendices

Appendix A Data for VOC in Air

Appendix A will be furnished on request.

Table 1.1a

Table 1.1b

Table 2.1 Table 2.2

T 149

Introduction

REAC, in response to WA 0-210, provided analytical support for environmental samples collected from the Little Valley VI Extent Study located in Little Valley, NY as described in the following table. The support also included QA/QC, data review and preparation of an analytical report containing analytical and the QA/QC results.

COC #	Number of Samples	Sampling Date	Date Received	Matrix	Analysis/ Method	Laboratory	Data Package
0-210-04/03/08-0052	4	04/03/08	04/07/08	Air	VOC/	Columbia	T 149
0-210-04/03/08-0053	4				TO-15 SIM	Analytical Services ⁱ	
0-210-04/03/08-0054	4						
0-210-04/03/08-0055	4						
0-210-04/03/08-0056	2						
	1			Trip Blank			
	1			Soil Gas			Ę
0-210-04/03/08-0057	4						
0-210-04/03/08-0058	1						

¹ Columbia Analytical Services is NELAC certified for TO-15 analysis.

Case Narrative

The laboratory reported the data to two significant figures. Any other representation of the data is the responsibility of the user. All data validation flags have been inserted into the results tables. At the request of the WAM a limited number of compounds (6 chlorinated hydrocarbons) were reported by the laboratory

VOC Package T 149

The data package was reviewed and found to be acceptable.

Summary of Abbreviations

DED	D					
BFB	Bromofluorob	enzene				
C	Centigrade	nata mi Dua ana na				
CLP		ratory Program				
COC	Chain of Custo	bay				
conc	concentration					
cont	continued		•.			
CRDL		ired Detection Li				
CRQL		ired Quantitation				1
D Dianain		ole) value is from				ited
Dioxin		d dibenzo-p-dioxi	ns (PCDL) and Polychlor	nated	
DETDD	dibenzofurans					
DFTPP		henylphosphine				
EMPC		imum possible co				
GC/MS		graphy/ Mass Spe	ctrometry			
IS LCS	Internal Standa					
LCS	Laboratory Co		1:+-			
LCSD		ntrol Sample Dup	ncate			
MDA MS (DS)		ectable Activity				
MS (BS)	Matrix Spike (India Down	lianta)		
MSD (BSD) MW	Molecular Wei	Duplicate (Blank S	pike Dup	licate)		
NA		e or Not Available				
NAD		solute Difference				
NC	Not Calculated					
NR	Not Requested					
NS	Not Spiked	And Reported				
% D	Percent Differe	ence				
% REC	Percent Recove					
SOP		ating Procedure				
ppbv	parts per billion					
ppm	parts per millio					
pptv	parts per trillio					
PQL	Practical Quan					
QÂ/QC		nce/Quality Contr	ol			
QL	Quantitation Li					
REAC	Response Engi	neering and Analy	tical Cont	ract		
RL	Reporting Limi	it				
RPD	Relative Percer					
RSD	Relative Standa	rd Deviation				
SIM	Selected Ion M	onitoring				
Sur	Surrogate					
TIC		ntified Compound				
TCLP		cteristic Leaching	Procedure	e		
VOC	Volatile Organi					
*	Value exceeds	the acceptable QC	limits.			
m ³ cubic r	neter g	gram	kg	kilogram	L	liter
µg microg	•	microliter	mg	milligram	mL	milliliter
ng nanogr		picogram	pČi	picocurie	S	sigma
_			-	•		0
		Data Validat	ion Flags			

J	Value is estimated	R	Value is unusable
J+	Value is estimated high (metals only)	U	Not detected
J-	Value is estimated low (metals only)	UJ	Not detected and RL is estimated

Rev. 02/05/08

0210-DAR-051608

Table 1.1a Results of the Analysis for VOC(ppbv) in Air WA# 0-210 Little Valley VI Extent Study

Method TO-15 SIM									Page	1 of 2
Sample Number Sample Location Sublocation	4/10/2008 Method Blank		0408-44321 003 First Floor		0408-44320 003 Basement		0408-44324 088 First Floor		0408-44323 088 Basement	
Analyte	Result ppbv	RL ppbv	Result ppbv	RL ppbv	Result ppbv	RL ppbv	Result ppbv	RL ppbv	Result ppbv	RL ppbv
	U	0.0098	U	0.016	ບ	0.015	U	0.014	U	0.015
Vinyl Chloride	U U	0.0098	Ŭ	0.011	ບັ	0.0098	0.033	0.0092	Ŭ	0.0094
1,1-Dichloroethene	U	0.0063	Ű	0.011	Ŭ	0.0098	U.000	0.0092	Ŭ	0.0094
trans-1,2-Dichloroethene	-	0.0063	U	0.011	Ŭ	0.0098	บ	0.0092	บั	0.0094
cis-1,2-Dichloroethene	U		0.082	0.0078	0.034	0.0073	0.077	0.0068	0.16	0.0069
Trichloroethene	U	0.0047	++-	+	0.034	0.0073	0.077	0.0054	0.0099	0.0055
Tetrachloroethene	U	0.0037	0.072	0.0062	0.013	0.0008	0.039	0.0004	0.0099	0.0000

Table 1.1a (cont) Results of the Analysis for VOC(ppbv) in Air WA# 0-210 Little Valley VI Extent Study

Method TO-15 SIM

Sample Number Sample Location Sublocation	0408-44325 088 AMBIENT		0408-44327 Unit 71 Basement		0408-44328 Unit 71 Basement Dup		0408-44329 Unit 71 First Floor		0408-44330 Unit 41 First Floor	
Analyte	Result _ppbv	RL ppbv	Result ppby	RL ppbv	Result ppbv	RL ppbv	Result ppbv	RL ppbv	Result ppbv	RL ppbv
Vinvl Chloride	U	0.014	U	0.015	U	0.015	U	0.016	U	0.014
1.1-Dichloroethene	U	0.0090	U	0.0097	U	0.0094	U	0.010	U	0.0092
trans-1.2-Dichloroethene	Ū	0.0090	U	0.0097	U	0.0094	U	0.010	U	0.0092
cis-1.2-Dichloroethene	Ū	0.0090	U	0.0097	ບ	0.0094	U	0.010	U	0.0092
Trichloroethene	Ū	0.0067	0.041	0.0071	0.043	0.0069	0.028	0.0074	U	0.0068
Tetrachloroethene	0.0066	0.0053	0.0091	0.0056	0.0097	0.0055	0.0095	0.0059	0.036	0.0054

Table 1.1a (cont) Results of the Analysis for VOC(ppbv) in Air WA# 0-210 Little Valley VI Extent Study

Method TO-15 SIM

Sample Number Sample Location Sublocation	0408-44333 Unit 41 Basement		0408-44335 Unit 27 Basement		0408-44336 Unit 27 First Floor		0408-44337 Unit 10 Basement		0408-44338 Unit 10 First Floor	
Analyte	Result ppbv	RL ppbv	Result ppbv	RL ppbv	Result ppbv	RL ppby	Result ppbv	RL ppbv	Result ppbv	RL ppbv
Vinyl Chloride	U	0.013	U	0.015	U	0.013	U	0.015	U	0.015
1.1-Dichloroethene	U	0.0085	U	0.0094	U	0.0083	U	0.0099	U	0.010
trans-1.2-Dichloroethene	U	0.0085	U	0.0094	U	0.0083	U	0.0099	U	0.010
cis-1.2-Dichloroethene	0.014	0.0085	U	0.0094	U	0.0083	U	0.0099	U	0.010
Trichloroethene	U	0.0063	U	0.0069	U	0.0061	0.0078	0.0073	U	0.0074
Tetrachloroethene	0.031	0.0050	0.0088	0.0055	0.010	0.0048	0.015	0.0058	0.013	0.0058

0210-DAR-051608

Table 1.1a (cont) Results of the Analysis for VOC(ppbv) in Air WA# 0-210 Little Valley VI Extent Study

Method TO-15 SIM

Sample Number Sample Location Sublocation	0408-44339 Unit 10 Basement Dup		0408-44340 Unit 136 AMBIENT	
Analyte	Result ppbv	RL ppbv	Result ppbv	RL ppbv
Vinyl Chloride	U	0.014	U	0.015
1,1-Dichloroethene	U	0.0092	U	0.0095
trans-1,2-Dichloroethene	U	0.0092	U	0.0095
cis-1,2-Dichloroethene	υ	0.0092	U	0.0095
Trichloroethene	0.0074	0.0068	U	0.0070
Tetrachloroethene	0.014	0.0054	0.020	0.0056

Table 1.1a (cont) Results of the Analysis for VOC(ppbv) in Air WA# 0-210 Little Valley VI Extent Study

Method TO-15 SIM

Sample Number Sample Location Sublocation	04/11 Method Blank		0408-44343 Trip Blank		0408-44322 088 SS		0408-44326 Unit 71 SS		0408-44331 Unit 41 SS	
Analyte	Result ppby	RL. ppbv	Result ppbv	RL ppbv	Result ppbv	RL ppbv	Result ppbv	RL ppbv	Result ppbv	RL ppbv
Vinyl Chloride	υ	0.0098	U	8600.0	ບ	0.015	U	0.015	U	0.015
1.1-Dichloroethene	Ŭ	0.0063	U	0.0063	0.012	0.0097	· U	0.010	ป	0.0095
trans-1.2-Dichloroethene	ū	0.0063	Ū	0.0063	U	0.0097	U	0.010	0.16	0.0095
cis-1.2-Dichloroethene	Ŭ	0.0063	Ū	0.0063	Ŭ	0.0097	U	0.010	0.96	0.0095
Trichloroethene	Ū	0.0047	Ū	0.0047	6.1	0.036	4.5	0.0074	0.80	0.0070
Tetrachloroethene	Ŭ	0.0037	Ū	0.0037	0.048	0.0057	0.059	0.0058	18	0.056

Table 1.1a (cont) Results of the Analysis for VOC(ppbv) in Air WA# 0-210 Little Valley VI Extent Study

Method TO-15 SIM

Sample Number Sample Location Sublocation	0408-44341 Unit 136 First Floor		0408-44332 Unit 41 SS Dup		0408-44334 Unit 27 SS		0408-44342 Unit 136 Basement		0408-44319 003 SS	
Analyte	Result ppbv	RL ppbv	Result ppbv	RL ppbv	Result ppbv	RL ppbv	Result ppbv	RL ppbv	Result ppbv	RL ppbv
Vinyl Chloride	U	0.016	U	0.016	U	0.017	U	0.015	U	0.015
1.1-Dichloroethene	Ŭ	0.010	U	0.011	U	0.011	U	0.0099	U	0.0097
trans-1.2-Dichloroethene	Ū	0.010	Ú	0.011	U	0.011	U	0.0099	U	0.0097
cis-1,2-Dichloroethene	Ū	0.010	Ū	0.011	Ú	0.011	U	0.0099	0.010	0.0097
Trichloroethene	Ũ	0.0074	Ū	0.0078	3.4	0.0081	0.015	0.0073	0.27	0.0072
Tetrachloroethene	0.64	0.0059	4.5	0.0062	0.42	0.0065	0.14	0.0058	0.049	0.0057

Page 2 of 2

Table 1.1b Results of the Analysis for VOC(µg/m³) in Air. WA# 0-210 Little Valley VI Extent Study

- -

Method TO-15 SIM									Page	1 of 2
Sample Number Sample Location Sublocation	04/10		00	0408-44321 003 First Floor		0408-44320 003 Basement		0408-44324 088 First Floor		44323 38 ment
Analyte	Result ug/m ³	RL µg/m ³	Result µg/m ³	RL µg/m ³	Result µg/m³	RL µg/m ³	Result µg/m ³	RL µg/m ³	Result µg/m ³	RL µg/m ³
Vinyl Chloride	U	0.025	U	0.042	U	0.039	U	0.037	U	0.037
1.1-Dichloroethene	ŭ	0.025	Ŭ	0.042	Ū	0.039	0.13	0.037	บ	0.037
trans-1,2-Dichloroethene	Ŭ	0.025	Ū	0.042	U	0.039	U	0.037	U	0.037
cis-1.2-Dichloroethene	ŭ	0.025	U	0.042	U	0.039	U	0.037	Ų	0.037
Trichloroethene	บ้	0.025	0.44	0.042	0.18	0.039	0.41	0.037	0.87	0.037
Tetrachloroethene	Ŭ	0.025	0.49	0.042	0.090	0.039	0.26	0.037	0.067	0.037

Table 1.1b (cont) Results of the Analysis for VOC(µg/m³) in Air WA# 0-210 Little Valley VI Extent Study

Sample Number Sample Location Sublocation	0408-44325 088 AMBIENT		0408-44327 Unit 71 Basement		0408-44328 Unit 71 Basement Dup		0408-44329 Unit 71 First Floor		0408-44330 Unit 41 First Floor	
Analyte	Result µg/m³	RL µg/m ³	Result µg/m ³	RL µg/m ³	Result µg/m ³	RL µg/m³	Result µg/m³	RL µg/m ³	Result µg/m ³	RL µg/m ³
Vinvl Chloride	U	0.036	U	0.038	U	0.037	υ	0.040	U	0.037
1.1-Dichloroethene	ម័	0.036	ŭ	0.038	ū	0.037	U	0.040	U	0.037
trans-1,2-Dichloroethene	ບັ	0.036	Ũ	0.038	Ū	0.037	υ	0.040	U	0.037
cis-1,2-Dichloroethene	บั	0.036	ũ	0.038	Ū	0.037	U	0.040	U	0.037
Trichloroethene	ŭ	0.036	0.22	0.038	0.23	0.037	0.15	0.040	U	0.037
Tetrachloroethene	0.045	0.036	0.061	0.038	0.066	0.037	0.064	0.040	0.24	0.037

Table 1.1b (cont) Results of the Analysis for VOC(µg/m³) in Air WA# 0-210 Little Valley VI Extent Study

Sample Number Sample Location Sublocation	Uni	44333 t 41 ment	0408- Uni Base	t 27	Uni	44336 t 27 Floor		44337 t 10 ment	Uni	44338 t 10 Floor
Analyte	Result µg/m³	RL _µg/m ³	Result µg/m ³	RL µg/m ³	Result µg/m³	RL µg/m ³	Result µg/m ³	RL µg/m ³	Result µg/m ³	RL µg/m ³
Vinyl Chloride	U	0.034	U	0.037	υ	0.033	U	0.039	U	0.040
1.1-Dichloroethene	ŭ	0.034	Ū	0.037	U	0.033	U	0.039	U	0.040
trans-1,2-Dichloroethene	Ŭ	0.034	Ū	0.037	υ	0.033	U	0.039	U	0.040
cis-1.2-Dichloroethene	0.055	0.034	Ũ	0.037	Ū	0.033	U	0.039	U	0.040
Trichloroethene	U	0.034	Ŭ	0.037	Ŭ	0.033	0.042	0.039	U	0.040
Tetrachloroethene	0.21	0.034	0.059	0.037	0.070	0.033	0.10	0.039	0.089	0.040

0210-DAR-051608

Method TO-15 SIM

Table 1.1b (cont) Results of the Analysis for VOC(µg/m³) in Air WA# 0-210 Little Valley VI Extent Study

Method TO-15 SIM

Page 2 of 2

Sample Number Sample Location Sublocation	Uni	44339 t 10 ent Dup	Unit	44340 136 IENT
Analyte	Result µg/m³	RL µg/m³	Result µg/m³	RL µg/m ³
Vinyl Chloride	U	0.037	U	0.038
1,1-Dichloroethene	U	0.037	U	0.038
trans-1.2-Dichloroethene	U	0.037	U	0.038
cis-1,2-Dichloroethene	υ	0.037	ប	0.038
Trichloroethene	0.040	0.037	U	0.038
Tetrachioroethene	0.093	0.037	0.14	0.038

Table 1.1b (cont) Results of the Analysis for VOC(µg/m³) in Air WA# 0-210 Little Valley VI Extent Study

Result µg/m ³	RL µg/m ³	Result µg/m ³	RL	Result	RL	Result	RL
		ug/iii	<u>µg/m³</u>	µg/m³	μg/m ³	µg/m ³	µg/m³
11	0.025	11	0.030		0.040	11	0.038
-		-				-	0.038
-		•		-	÷·- ·-	-	0.038
-		-		-			0.038
-		-		-		+	0.038
-	•••						0.38
	0 0 0 0 0 0	U 0.025 U 0.025 U 0.025 U 0.025 U 0.025	U 0.025 0.046 U 0.025 U U 0.025 U U 0.025 U U 0.025 33	U 0.025 0.046 0.039 U 0.025 U 0.039 U 0.025 U 0.039 U 0.025 U 0.039 U 0.025 33 0.20	U 0.025 0.046 0.039 U U 0.025 U 0.039 U U 0.025 U 0.039 U U 0.025 U 0.039 U U 0.025 33 0.20 24	U 0.025 0.046 0.039 U 0.040 U 0.025 U 0.039 U 0.040 U 0.025 U 0.039 U 0.040 U 0.025 U 0.039 U 0.040 U 0.025 33 0.20 24 0.040	U 0.025 0.046 0.039 U 0.040 U U 0.025 U 0.039 U 0.040 0.64 U 0.025 U 0.039 U 0.040 0.64 U 0.025 U 0.039 U 0.040 3.8 U 0.025 33 0.20 24 0.040 4.3

Table 1.1b (cont) Results of the Analysis for VOC(µg/m³) in Air WA# 0-210 Little Valley VI Extent Study

Sample Number Sample Location Sublocation	Unit	44341 136 Floor	Uni	44332 t 41 Dup	Uni	44334 t 27 S	Unit	44342 136 ment	0	44319 03 S
Analyte	Result µg/m³	RL µg/m ³	Result µg/m ³	RL µg/m³	Result µg/m ³	RL µg/m³	Result µg/m³	RL µg/m ³	Result µg/m³	RL µg/m³
Vinvi Chloride	U	0.040	U	0,042	U	0.044	U	0.039	U	0.039
1.1-Dichloroethene	Ū	0.040	Ű	0.042	U	0.044	U	0.039	U	0.039
trans-1.2-Dichloroethene	Ŭ	0.040	Ū	0.042	U	0.044	U	0.039	U	0.039
cis-1.2-Dichloroethene	Ŭ	0.040	Ū	0.042	U	0.044	U	0.039	0.041	0.039
Trichloroethene	Ū	0.040	Ū	0.042	18	0.044	0.083	0.039	1.4	0.039
Tetrachloroethene	4.3	0.040	31	0.042	2.8	0.044	0.92	0.039	0.33	0.039

Table 2.1 Results of the LCS Analysis for VOC in Air WA # 0-210 Little Valley VI Extent Study

Page 1 of 1

•

Sample Number: LCS 04/10/08

Analyte	LCS Spike Added ng	LCS Recovered ng	LCS % Recovery	QC Limits % Recovery
Vinyl Chloride	0.495	0.414	84	64-125
1,1-Dichloroethene	0.555	0.519	94	68-118
trans-1,2-Dichloroethene	0.530	0.500	94	67-111
cis-1,2-Dichloroethene	0.540	0.512	95	62-121
Trichloroethene	0.545	0.524	96	67-116
Tetrachloroethene	0.520	0.551	106	56-133

Sample Number: LCS 04/11/08

Analyte	LCS Spike Added ng	LCS Recovered ng	LCS % Recovery	QC Limits % Recovery
Vinyl Chloride	0.495	0.379	77	64-125
1,1-Dichloroethene	0.555	0.485	87	68-118
trans-1,2-Dichloroethene	0.530	0.471	89	67-11 1
cis-1,2-Dichloroethene	0.540	0.492	91	62-121
Trichloroethene	0.545	0.504	92	67-116
Tetrachloroethene	0.520	0.520	100	56-133

Table 2.2 Results of the Duplicate Analysis for VOC in Air WA # 0-210 Little Valley VI Extent Study

Page 1 of 1

Sample Number 0408-44321

	Initial Analysis Result	Duplicate Analysis Result		QC Limits
Analyte	ppbv	ppbv	RPD	RPD
Vinyl Chloride	U	U	NC	25
1,1-Dichloroethene	U	U	NC	25
trans-1,2-Dichloroethene	U	U	NC	25
cis-1,2-Dichloroethene	U	U	NC	25
Trichloroethene	0.0816	0.0811	1	25
Tetrachloroethene	0.0723	0.0720	1	25

Sample Number 0408-44326

Initial Analysis Result	Duplicate Analysis Result		QC Limits
ppbv	ppbv	RPD	RPD
U	U	NC	25
U	U	NC	25
U	U	NC	25
U	U	NC	25
4.47	4.46	1	25
0.0592	0.0589	1	25
	Result ppbv U U U U U 4.47	Result Result ppbv ppbv U U U U U U U U U U U U U U U U U U U U U U U U U U U U 4.47 4.46	ResultResultppbvppbvRPDUUNCUUNCUUNCUUNCUUNC4.474.461

LOCKHEED MARTI

Columbia Analytical Inc. 2665 Park Center Drive Suite A Simi Valley, CA 93065

Attn: Kate Aguilera

March 14, 2008

As per Lockheed Martin / REAC Amended Purchase Order 7100038199, for Project 0-210, please analyze samples according to the following parameters:

Analysis/Method	Matrix	# of samples
VOA/TO-15 Low level See attached compound list	Summa	10
VOA/TO-15 SIM See attached compound list	Summa	25
Data package: Package with Diskette Deliverable		

Samples are expected to arrive at your laboratory the week of April 1, 2008. <u>Preliminary sample and QC</u> result tables plus a signed copy of our Chain of Custody must be sent to REAC 10 business days after receipt of each batch of samples. The complete data package is due 15 business days after receipt of each batch of samples. The complete data package must include all items on the deliverables checklist. The laboratory must provide documentation for individual summa canister and flow controller certification.

All sample and QC results must be summarized in a tab delimited file diskette deliverable. Units must be in ppbv and ug/m3 in the electronic deliverable. See checklist for EDD field needed.

All summa canisters and preset orifices must arrive at REAC by March 26, 2008. All Summa Canisters rental plus orifice preset to 24 hour sampling. The flow controllers should have 1/4 inch fittings.

Please submit all reports and technical questions concerning this project to John Johnson at (732) 321-4248 or fax to (732) 494-4020 or john.m.johnson@lmco.com Any contractual question, please call Josh Tapkas at (301) 805-0305.

Sincerely Vintel

Vinod Kansal Analytical Section Leader Lockheed Martin / REAC Project

VK:jj Attachments

cc. R. Singhvi D. Mickunas 0210\non\mem\0803\sub\0210Con4 V. Kansal Subcontracting File J. Soroka J. Tapkas A. DuBois

TO-15 Compound List for Project 0210 Requested Reporting Limit

nequested in	choimið muu		
Compound	SIM		Low Level
	(ppbv)		(ppbv)
Vinyl Chloride	0.070	*	0.1*
1,1-Dichloroethene	0.070	*	0.1*
trans-1,2-Dichloroethene	0.070	*	0.1*
cis-1,2-Dichloroethene	0.070	*	0.1*
Trichloroethene	0.070	*	0.1*
Tetrachloroethene	0.070	*	0.1*

* After normal dilution rate of 1-2x

•

Page 1 of 1

A

P

`1

POSODAHL

No: 0-210-04/03/08-0052

REAC, Edison, NJ EPA Contract Number: EP-C-04-032

CHAIN OF CUSTODY RECORD

Site #: 0-210

Contact Name: John Johnson Contact Phone: 732-321-4248

Lab: Columbia Analytical Services - Air Lab Phone: 805-526-7161

أسد مريور م	Sample #	Locat	ion	Sub Locatio	n (A	nalyses		Matrix	Collec	ted	Numb Cont	Start Pressure	Stop Pressure	
	0408-44320			Basement	Т	015 - 6 compo	óunds	Air	4/3/20	08	1	-i7	1033010	
Ø	0408-44321			First Floor		015 - 6 compo		Air	: 4/3/20		 1 :	the second s	<u> </u>	1
\mathcal{Q}	0408-44323			Basement	T	O15 - 6 compo	ounds	Air	4/3/20	08	1			
D _	0408-44324	4 088		First Floor	т	O15 - 6 comp	ounds	Air	4/3/20		1	~Z7		1
			· ··											1
			······											
	·													1
	· · · · · ·	··· ··································			·····		~ `		·· j				· · · · · · · · · · · · · · · · · · ·	
	••••••••••••••••••••••••••••••••••••••	· · · · · · · · · · · · · · · · · · ·			······································			<u>_</u>			AND CALL OF CALL OF CALL			1
							(2)		······					'
	; •	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·				X							-:
• 														
	· · · · · · · · · · · · ·	·												
	1944 - Anna - Anna Anna Anna Anna Anna Anna	· · · · · · · · · · · · · · · · · · ·	·······					<u>_</u>	·					
···-			- And the second second second											
									<u> </u>					
								<u> </u>						_
		······												
					·	·····								:
					· · · · · · · · · · · · · · · · · · ·				SAM	PLES TRAI	NSFERRED	FROM		!
Decial	Instructions:	0.070 ppbv report	ing limit							PLES TRAI		FROM		
												FROM		
	Instructions: /Reason	0.070 ppbv report		Received by	Date	Time	Items/Reason	Relinquis	CHAI				ate Time	
Items				**** *********************************		Time	ltems/Reason	Relinquist	CHAI	N OF CUS	TODY #		ate Time	
Items	/Reason		Date	Received by			Items/Reason	Relinquis	CHAI	N OF CUS	TODY #		ate Time	
Items	/Reason		Date	**** *********************************			Items/Reason	Relinquis	CHAI	N OF CUS	TODY #		ate Time	
Items	/Reason		Date	**** *********************************			Items/Reason	Relinquis	CHAI	N OF CUS	TODY #		ate Time	
Items	/Reason		Date	**** *********************************			Items/Reason	Relinquis	CHAI	N OF CUS	TODY #		ate Time	

0210-

P0800946

No: 0-210-04/03/08-0053

Page 1 of 1

REAC, Edison, NJ

EPA Contract Number: EP-C-04-032

CHAIN OF CUSTODY RECORD

Site #: 0-210

Contact Name: John Johnson Contact Phone: 732-321-4248

Lab: Columbia Analytical Services - Air Lab Phone: 805-526-7161

ab#	Sample #	Location	Sub Location	Analyses	Matrix	Collected	Numb	Start Pressure	Stop Pressure
\mathbf{G}^{-}	0408-44325	088	AMBIENT	TO15 - 6 compounds	Air	4/3/2008	1	-17	-5
$\mathbf{\hat{O}}$	0408-44327	Unit 71	Basement	TO15 - 6 compounds	Air	4/3/2008		- 25	1
5	0408-44328	Unit 71	Basement Dup	TO15 - 6 compounds	Air	4/3/2008	1	-20	
3)	0408-44329	Unit 71	First Floor	TO15 - 6 compounds	Air	4/3/2008	1	-25-	-2
	<u></u>							······································	
	······								
				· · · · · · · · · · · · · · · · · · ·					
			·····						
	· · · · · · · · · · · · · · · · · · ·						· · · ·		****
				(A)				<u>-</u>	
	1 							• • • • • • • • • • • • • • • • • • •	
	· · · · · · · · · · · · · · · · · · ·				1				
					<u> </u>				
		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		and a second second	1			
						······································			
	i				······································			······································	
					1		-		
						1			
	:					SAMPLES TR	ANSFERRED	FROM	
specia	Instructions: 0.070	ppbv reporting limit				CHAIN OF CU	STODY #		
pecia	Instructions: 0.070	ppbv reporting limit				CHAIN OF CU	STODY #		
		nquished by Date		Date Time Items/Reas	on Relinquis			d by Da	ate Time
Item	s/Reason Relir	nquished by Date		Date Time Items/Read	on Relinquis		STODY #	d by Da	ate Time
Item		nquished by Date		Date Time Items/Read	on Relinquis			d by Da	ate Time
Item	s/Reason Relir	nquished by Date	Received by	Date Time Items/Read	on Relinquis			d by Da	ate Time
Item	s/Reason Relir	nquished by Date		Date Time Items/Reas	on Relinquis			d by Da	ate Time
Item	s/Reason Relir	nquished by Date		Date Time Items/Read	ion Relinquis			d by Da	ate Time
Item	s/Reason Relir	nquished by Date		Date Time Items/Read	on Relinquis			d by Da	ate Time
Item	s/Reason Relir	nquished by Date		Date Time Items/Read	on Relinquis			d by Da	ate Time

,

2

.

90800 946

:

No: 0-210-04/03/08-0054

REAC, Edison, NJ EPA Contract Number: EP-C-04-032

CHAIN OF CUSTODY RECORD

Site #: 0-210

Lab: Columbia Analytical Services - Air Lab Phone: 805-526-7161

010 #1 0-210
Contact Name: John Johnson
Contact Phone: 732-321-4248

Lab #	Sample #	Location	Sub Location	Analyses	Matrix	Collected	Numb Cont	Start Pressure	Stop	
9	0408-44330	Unit 41	First Floor	TO15 - 6 compounds	Air	4/3/2008	1	-27	Pressure	:5:
6	0408-44333	Unit 41	Basement	TO15 - 6 compounds	Air	4/3/2008		-27		ر مي د
	0408-44335	Unit 27	Basement	TO15 - 6 compounds	Air	4/3/2008	1	-21		
B	0408-44336	Unit 27	First Floor	TO15 - 6 compounds	Air	4/3/2008	1	-20	· · · · · · · · · · · · · · · · · · ·	-5.
							+			• 🖵 .
		•	<u> </u>							
	·····								•••••••••••••••••••••••••••••••••••••••	
	ر - بالمحمد مالية المحمد ال		·	· · · · · · · · · · · · · · · · · · ·						
	· · · · · · · · · · · · · · · · · · ·					i	1			
		······		-(A)				· · · · · · · · · · · · · · · · · · ·		
	<u> </u>					·				!
	<u> </u>									
						i	+			
t		· · · · · · · · · · · · · · · · · · ·						· · · · · · · · · · · · · · · · ·		į į
										(
								~		1
		······································				· · · · · · · · · · · · · · · · · · ·			<u> </u>	İ
			······································	······					· · · · · · · · · · · · · · · · · · ·	1

	SAMPLES TRANSFERRED FROM
Special Instructions: 0.070 ppbv reporting limit	CHAIN OF CUSTODY #
note Sample 0408-44330 resident was painting	
Items/Reason Relinquished by Date Received by Date Time Items/Reason Relinquished	By Data Dessite the

/			received by	Date	rime	items/Reason	Relinguished By	Date ,	Received by	Date	Time
4/Anolysis	92	4/3/88	Utrace	HINOr	0945	2 5					
	: . {		· · · · · · · · · · · · · · · · · · ·			•					
	:		· · · · · · · · · · · · · · · · · · ·		1 1	· · · · · · · · · · · · · · · · · · ·			1997 - M. H. H. 1997 - Marcola Company, and a starting of the		
	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·		4		<u> </u>	[•	-
·	i	· · · · · · · · · · · · · · · · · · ·	í					L		L	

0210-DAR-051608

90800 946

No: 0-210-04/03/08-0055

REAC, Edison, NJ

Page 1 of 1

EPA Contract Number: EP-C-04-032

CHAIN OF CUSTODY RECORD Site #: 0-210 Contact Name: John Johnson Contact Phone: 732-321-4248

Lab: Columbia Analytical Services - Air Lab Phone: 805-526-7161

Lab#	Sample #	Locatio		Sub Locatio		Analyses		Matrix	Colle	sted	Numb Cont	Start Pressure	Stop Pressure
2	0408-4433			Basement		TO15 - 6 comp	ounds	Air	4/3/20	i 80	1	-28	- 2
Ð	0408-44338			First Floor		TO15 - 6 comp		Air	4/3/20		1	-28	ITE
63	0408-44339			Basement Du	Jp	TO15 - 6 comp	ounds	Air	4/3/20	F	1	-28	$-\frac{\gamma_{1}}{2}$
D	0408-44340	0 Unit 13	6	AMBIENT		TO15 - 6 comp	ounds	Air	4/3/20	man and a second se	1	-28	-2
					1	· · ·		······································		<u></u>			6-
	·			·····									
	1 -)			·									
		· · · · · · · · · · · · · · · · · · ·		· · ····	;				;			· ···· - • · · · · · ·	·····
·····						7	1		1				
			·····				57						
						- L'							
									:				
		i						<u> </u>					. هين , نه
		· · · · · · · · · · · · · · · · · · ·											
										Manufacture and a second			
	•÷	······		• ••••••••••••••••••••••••••••••••••••		······································							
		and the second se										Second	
			· · · · · · · · · · · · · · · · · · ·	· · · · · ·									
			· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·				· · · · · · · · · · · · · · · · · · ·					
		<u> </u>	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·					****				
		1									NSFERRED	FROM	
Specia	I Instructions:	: 0.070 ppbv reportir	ng limit							PLES TRA		FROM	
	I Instructions:	: 0.070 ppbv reportir Relinquished by	ng limit	Received by		Time	Items/Reason	Relinquis	CHA	IN OF CUS	TODY #	- ·····	
			Date				Items/Reason	Relinquis	CHA			- ·····	ate Tim
			Date				Items/Reason	Relinquis	CHA	IN OF CUS	TODY #	- ·····	ate Tim
			Date	Received by			Items/Reason	Relinquis	CHA	IN OF CUS	TODY #	- ·····	ate Tim
			Date				Items/Reason	Relinquis	CHA	IN OF CUS	TODY #	- ·····	ate Time
			Date				Items/Reason	Relinquis	CHA	IN OF CUS	TODY #	- ·····	ate Tim
			Date				Items/Reason	Relinquis	CHA	IN OF CUS	TODY #	- ·····	ate Tim
			Date				Items/Reason	Relinquis	CHA	IN OF CUS	TODY #	- ·····	ate Tim

. .

۸

4

Page 1 of 1

۸

905000046

No: 0-210-04/03/08-0056

REAC, Edison, NJ EPA Contract Number: EP-C-04-032

CHAIN OF CUSTODY RECORD Site #: 0-210 Contact Name: John Johnson Contact Phone: 732-321-4248

Lab: Columbia Analytical Services - Air Lab Phone: 805-526-7161

.ab #	Sample #		tion	Sub Locatio	n A	nalyses		Matrix	Colle	cted	Numb	Start	Stop
1	0408-4433			SS	T	O15 - 6 compou	nds	Soil Gas	4/3/20	108	Cont		Pressure
3	0408-4434		136	First Floor		015 - 6 compou		Air	4/3/20			-28	Ya
a	0408-4434		136	Basement		O15 - 6 compou		Air	4/3/20		+	-28	-1
20)	0408-4434	13 Trip I	Blank			O15 - 6 compou		Air	4/3/20		1	-28	<u> </u>
					·····	·····					1	-28	-28
								·····					
		-									t		
····	· · · · · · · · · · · · · · · · · · ·				······································		· · · · · · · · · · · · · · · · · · ·		· · · · ·			·	
	1	···				KI							
	1 .				~	×					ļ		······
	L						~		+				· · · · · · · · · · · · · · · · · · ·
	; +					·····					 		
	ļ <u> </u>			· · · · · · · · · · · · · · · · · · ·	···	·····							· · · · · · · · · · · · · · · · · · ·
					•• •••••	· ·····					ł		
				· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·					×			
				··· • • · · · · · · · · · · · · · · · ·							i 		
		i		<u> </u>			· · · · · · · · · · · · · · · · · · ·						
											ii		
ocial.		. 0 070						·····	1044				
	nisuuceons	: 0.070 ppbv repor	ting limit for M	latrix - Air		-					NSFERRED	FROM	
		limit for Matrix - S	or Gas						CHA	IN OF CUS	STODY #	:	
Items	/Reason	Relinguished by	Date	Received by	Date	Time	ems/Reason	Relinquish	ed By	Date	Received	l bu	
ille	alysis	64	4/3/08		.1.			· · · · · · · · · · · · · · · · · · ·			T COEIVER	l by Da	itë Time
74	<u> </u>	70		Ultaur	4/1/08	0240			1			l l	
		\sim										++	
				1		· † · · · · · · · · · · · · · · · · · · ·					· · · · · · · · · · · · · · · · · · ·	······	
		ŧ	•		1			ł					
	;	· · · · · · · · · · · · · · · · · · ·				┦────┤┦───							
		ł	j,	•							1		

0210-DAR-051(

P0800 a46

No: 0-210-04/03/08-0057

REAC, Edison, NJ EPA Contract Number: EP-C-04-032

CHAIN OF CUSTODY RECORD Site #: 0-210 Contact Name: John Johnson Contact Phone: 732-321-4248

Lab: Columbia Analytical Services - Air

Lab Phone: 805-526-7161

Lab#	Sample #	Location	Sub Location	Analyses	Matrix	Collected	Numb Cont	Start	Stop]
	0408-44322	088	SS	TO15 - 6 compounds	Soil Gas	4/3/2008	Cont	Pressure	Pressure	
	0408-44326	Unit 71	SS	TO15 - 6 compounds	Soil Gas	4/3/2008			- 1	-6
[23)	0408-44331	Unit 41	SS	TO15 - 6 compounds	Soil Gas	4/3/2008		-27	-13	
E	0408-44332	Unit 41	SS Dup	TO15 - 6 compounds	Soil Gas	4/3/2008	·	-28		4
		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·			4/3/2008		-27	-10.5	- 1
										ļ
		·	· · · · · · · · · · · · · · · · · · ·	······		- 				1
	1						·····			1
							7-2			: 7
			······································	· · · ·					· ······	
		· · · · · · · · · · · · · · · · · · ·	••••••••••••••••••••••••••••••••••••••							
	; 	:	······································					· · · · · · · · · · · · · · · · · · ·		a
	· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·	Ve in the second s			·····	· · · · · · · · · · · · · · · · · · ·	ł
	; +		and the second sec	1	and the second s	the design of the second se	·			: 1
				4			······			÷
	-	and a second			•					1
								<u> </u>		4
	1	· 1				+				Ì
	1					- <u> </u>				
										1

: 0.10 ppbv reporting	y limit	•								
	<u> </u>									
Relinquished by	Date	Received by	Date	Time	items/Reason	Relinquished B	/ Date	Received by	Date	Time
Q^{-}	43/05	Willing	Holor	Aquis						
									+	
·	<u>+</u>	4	•	ł – – – – – – – – – – – – – – – – – – –						
				! I						
	· · · · · · · · · · · · · · · · · · ·	1 - San Istal	Relinquished by Date Received by	Relinquished by Date Received by Date	Relinquished by Date Received by Date Time	Relinquished by Date Received by Date Time Items/Reason	Relinquished by Date Received by Date Time Items/Reason Relinquished By	Relinquished by Date Received by Date Time Items/Reason Relinquished By Date	Relinquished by Date Received by Date Time Items/Reason Relinquished By Date Received by	Relinquished by Date Time Items/Reason Relinquished By Date Received by Date

0210-DAR-051608

POSODQUE

.

No: 0-210-04/03/08-0058

Lab: Columbia Analytical Services - Air

Lab Phone: 805-526-7161

Page 1	l of 1
--------	--------

Q

REAC, Edison, NJ EPA Contract Number: EP-C-04-032

CHAIN OF CUSTODY RECORD Site #: 0-210 Contact Name: John Johnson Contact Phone: 732-321-4248

ab#	Sample #	Location	Sub Location	Analyses	Matrix	Collected	Numb	Start Pressure	Stop
5	0408-44319	003	SS	TO15 - 6 compounds	Soil Gas	4/3/2008	1		
		!					+	-27	<u> </u>
					<u></u>				
	1	· · · · · · · · · · · · · · · · · · ·							
			·						
								1	- 7 h
				_AD				······	· · · · · · · · · · · · · · · · · · ·
							+		•••••••
									• · · · · · · · · ·
							· [· · · · · · · · · · · · · · · · · ·		
		· · · · · · · · · · · · · · · · · · ·	and the second se					· · = · · · · · · · ·	
	1								
		<u>********************************</u>							
	· ····································	— 1 . <u> </u>	<u> </u>						
			· •·····						
									·· ·· •···
			1		1	······································			
	1						47	×	,
							ANOCEDONT		
nocial	Unofinialization 0.40 -	alars and adding a firm th				SAMPLES TR	ANSFEKKED	FROM	
pecial	I Instructions: 0.10 p	pbv reporting limit				SAMPLES TR CHAIN OF CU		FROM	
pecial	i Instructions: 0.10 p	pbv reporting limit						FROM	
		nquished by Date		Date Time Items/	Reason Relinguish	CHAIN OF CU	STODY #	······································	ido Timo
Item	s/Reason Relir	nquished by Date			Reason Relinquish	CHAIN OF CU		······································	ate Time
Item		nquished by Date			Reason Relinquish	CHAIN OF CU	STODY #	······································	ite Time
Item	s/Reason Relir	nquished by Date	Received by		Reason Relinquish	CHAIN OF CU	STODY #	······································	ite Time
Item	s/Reason Relir	nquished by Date			Reason Relinquish	CHAIN OF CU	STODY #	······································	ite Time
Item	s/Reason Relir	nquished by Date			Reason Relinquish	CHAIN OF CU	STODY #	······································	ite Time
Item	s/Reason Relir	nquished by Date			Reason Relinquish	CHAIN OF CU	STODY #	······································	ite Time
Item	s/Reason Relir	nquished by Date			Reason Relinquish	CHAIN OF CU	STODY #	······································	ate Time
Item	s/Reason Relir	nquished by Date			Reason Relinquish	CHAIN OF CU	STODY #	······································	ate Time

0210-DAR-051608

APPENDIX C Final Analytical GC/MS Report – April 30, 2008 Little Valley VI Extent Study June 2008

LOCI HEED MAR

DATE:	30 April 2008
-------	---------------

TO:

Jeffrey Bradstreet, REAC Air Response Section Leader With Wheel THROUGH:

FROM:

SUBJECT: DOCUMENT TRANSMITTAL UNDER WORK ASSIGNMENT # 0-210

Attached please find the following document prepared under this work assignment:

GC/MS ANALYTICAL REPORT LITTLE VALLEY VI EXTENT STUDY LITTLE VALLEY, NEW YORK APRIL 2008

cc:

Central File - WA # 0-210 (w/attachment) Electronic File - L:/Archive/REAC4/0-210/DFA/043008 Dennis A. Miller, REAC Program Manager (w/o attachment)

GC/MS ANALYTICAL REPORT LITTLE VALLEY VI EXTENT STUDY LITTLE VALLEY, NEW YORK APRIL 2008

U.S. EPA Work Assignment No.: 0-210 LOCKHEED MARTIN Work Order No.: EAC00210 U.S. EPA Contract No.: EP-C-04-032

Submitted to: David B. Mickunas U.S. EPA/ERT

Prepared by: Lockheed Martin/REAC

Amy DuBois

REAC Task Leader

Dennis A. Miller REAC Program Manager

<u>4</u>/08

Date

Analyzed and Prepared by: Scott J. Thompson

CONTENTS

1.0	INTR	RODUCTION	<u>PAGE</u>
2.0		CEDURES	1
	2.1	Soil Gas Analysis	1
	2.2	Tuning and Calibration Standards	1
	2.3	Compound Identification and Quantitation	2
	2.4	Quality Assurance/Quality Control	2
3.0	RESU	ULTS	3
4.0	DISC	CUSSION OF RESULTS	3

LIST OF TABLES

Table 1	Summary of Chain of Custody Records
Table 2	Instrument Conditions for the Analysis of Volatile Organic Compounds in Soil Gas Samples
Table 3	Concentrations and Quantitation Ions for BFB Tuning Standard, Primary and Secondary Volatile
	Organic Compound Standards, and Internal Standard
Table 4	Results of Volatile Organic Compounds in Soil Gas Samples for 02 April 2008

APPENDICES

- Appendix A Chain of Custody Records
- Appendix B Certificate of Analysis for BFB Tuning Standard, Primary and Secondary Volatile Organic Compound Standards and Internal Standard
- Appendix C Mass Spectrometer Tune Report, Instrument Log Book Information, Initial Calibration Data, and Secondary Source Confirmation Data
- Appendix D Method Blank, Lot Blank, and Soil Gas Sample Quantitation Reports
- Appendix E Internal Standard QA-QC Report

1.0 INTRODUCTION

The Environmental Protection Agency/Environmental Response Team (EPA/ERT) issued Work Assignment # 0-210 to Lockheed Martin under the Response Engineering and Analytical Contract (REAC) to provide analytical services at the Little Valley VI Extent Site located in Little Valley, New York.

An Agilent[®] 6890 gas chromatograph and 5973N mass spectrometer (GC/MS) were used to perform Volatile Organic Compound (VOC) analysis of soil gas samples collected in one-Liter (L) Tedlar[®] bags. Eight compounds made up the target compound list (TCL) comprised of vinyl chloride, 1,1-dichloroethene, trans-1,2-dichloroethene, 1,1-dichloroethane, cis-1,2-dichloroethene, 1,1,1-trichloroethane, trichloroethene, and tetrachloroethene.

On-site GC/MS analyses occurred on 02 April 2008 on the six sub-slab soil gas samples collected by REAC personnel. Analysis was performed in accordance with REAC DRAFT Standard Operating Procedure, *Field Analysis of VOCs in Gaseous Phase Samples by GC/MS Loop Injection*. All analytical data were verified per Screening Data (SD) requirements. Table 1 details the samples by chain of custody number, number of samples, date sampled and received, matrix, and analysis. Copies of the chain of custody (COC) records are included in Appendix A.

2.0 PROCEDURES

A Tedlar[®] bag was attached to the sample introduction port of the heated dual loop injection apparatus. One of the loops was filled with the sample and the other with an internal standard. The contents of both loops were simultaneously injected onto the head of the column for subsequent analysis by GC/MS. When required, all sample dilutions were done in a glass syringe. The Agilent Chemstation[®] data system was used to evaluate and process the data. Table 2 lists the operating conditions of the dual loop injection apparatus and the GC/MS system.

2.1 Soil Gas Analysis

An aliquant of sample was directly introduced into the first loop of the injection apparatus from a Tedlar[®] bag using the sample introduction port. The second loop was filled from a SUMMA[®] canister containing the internal standard. The loops were switched in line with the carrier gas to inject the sample and internal standard into the GC/MS system.

The GC oven was temperature programmed to focus the sample on the head of the column and to achieve quick separation of the VOCs in the sample, which were then detected by the MS detector. Comparing their retention times and mass spectra to those of a 500 parts per billion by volume (ppbv) reference standard, permits identification of the VOCs in the sample.

2.2 Tuning and Calibration Standards

All certified standards were obtained from commercial vendors with certificates of analysis (COA). The standards' cylinder numbers, concentrations, and compound quantitation ions used are presented in Table 3. Vendor COA of the p-bromofluorobenzene (BFB) tuning standard, primary and secondary VOC standards, and internal standard are presented in Appendix B.

Mass spectrometer tuning was performed and checked at the beginning of each day. Five milliliters (mL) of BFB at one part per million by volume (ppmv) was analyzed to validate the mass spectrometer tuning parameters.

The primary calibration standard was based on a nominal value of 20 ppmv for all target compounds. The secondary calibration standard was based on a nominal value of 500 ppbv for all target compounds. The primary and secondary standards both contained 15 compounds in a balance of nitrogen.

The internal standard mix consisted of bromochloromethane, 1,4-difluorobenzene, and chlorobenzene- d_5 each at approximately one ppmv. Fifty microliters (μ L) of internal standard, equivalent to 10 ppbv, was added to all standards, blanks, and samples.

Prior to the analysis of samples and blanks but after the instrument performance check standard criteria was met, the GC/MS was calibrated to a minimum of five concentrations that span the monitoring range of interest in an initial calibration sequence to determine sensitivity and linearity of the instrument's response for the target compounds. Samples were analyzed in the 24-hour period after meeting the acceptance criteria for the initial calibration.

After the 24-hour period expired, a new analytical sequence commenced with the analysis of the instrument performance check standard followed by the analysis of a daily continuing calibration verification standard.

2.3 Compound Identification and Quantitation

VOCs in the samples were identified and quantitated using the Agilent ChemStation[®] software. This software uses mass spectra reference libraries and extracted ion chromatograms matched with retention time windows to identify and quantify target compounds. The report format prints the internal standards, identified compounds, calculated concentrations, mass spectra (both raw and background subtracted), quantitation, and qualifier ion chromatograms.

The limit of quantitation (LOQ) for each compound was calculated using the following equation:

 $LOQ(ppbv) = Lowest Calibration Standard (ppbv) \times Dilution Factor$

Dilution of the sample was performed when target compounds exceeded the upper range of the initial calibration. The dilution was documented in the injection logbook and the dilution factor was calculated using the following equation:

 $Dilution \ Factor = \frac{Final \ Sample \ Volume \ (mL)}{Initial \ Sample \ Volume \ (mL)}$

The target compound results were calculated using the following equation:

Concentration (ppbv) = Analytical Concentration of Compound (ppbv) × Dilution Factor

2.4 Quality Assurance/Quality Control

The following Quality Assurance/Quality Control (QA/QC) procedures were performed for this work assignment:

- The GC/MS system was tuned with perfluorotributylamine (PFTBA) to meet ion abundance criteria for BFB as listed on the BFB tune reports.
- Five initial calibration levels of varying concentrations were prepared and analyzed using the GC/MS operating parameters listed in Table 2. An initial calibration curve with a minimum of five calibration levels for each target compound was constructed before any samples were analyzed. The Response Factor Report for the initial calibration curve was evaluated for acceptance criteria of less than or equal to 30 percent relative standard deviation (%RSD) for all target compounds.

- Initial calibration verification (ICV) using the second source 500 ppbv VOC standard was run immediately following each initial calibration. The percent Recovery (%R) must be between 70% to 130%.
- The lowest initial calibration level used for each target compound was used for the LOQ.
- Method (Instrument) blanks were analyzed after the ICV standards and before samples were analyzed to assess possible laboratory contamination and/or carryover.
- Lot (Tedlar[®] Bag) blanks were analyzed after the method blank and before samples were analyzed to assess possible contaminants in the lot of Tedlar[®] bag being used to collect the samples.
- Internal Standard areas from all analyses were evaluated for acceptance criteria of $\pm 40\%$ of the most recent valid calibration standard.
- The following is a list of the QA/QC flags used in qualifying the analytical results.
 - A Assumed Volume.
 - B Concentration less than five times the reported blank result. Result is considered not detected.
 - D Result is from an analysis at a secondary dilution factor.
 - E Exceeds the calibration range. Result is considered estimated.
 - J Detected below the limit of quantitation. Result is considered estimated.
 - U None detected at or above the limit of quantitation.
 - R Result is unusable.

All applicable data qualifiers were inserted into the results tables.

3.0 RESULTS

All results are reported in ppbv and to two significant figures. Method blank, lot blank and soil gas sample results for 02 April 2008 are presented in Table 4.

The COC records are found in Appendix A. The COA for the BFB tuning standard, primary and secondary VOC standards, and internal standard are found in Appendix B. The Mass Spectrometer Tuning Reports and Initial Calibration Packages are included in Appendix C. The Initial Calibration Package includes copies of the GC/MS injection logbook # REAC-IV-L-0451, BFB Tune Report, Initial Calibration Response Factor Report, Initial Calibration Quantitation Reports and Second Source Verification Quantitation Report.

Quantitation reports for all blanks and soil gas samples are included in Appendix D. All blank and soil gas sample quantitation reports list the retention times, quantitation ions, peak area responses, and concentration of target compounds in ppbv. Calculated concentrations are generated using the average relative response factor from the initial calibration curve for each target compound.

Internal Standard QA-QC Reports are included in Appendix E.

4.0 DISCUSSION OF RESULTS

A total of six samples were collected and analyzed on-site by REAC personnel on 02 April 2008 at the Little Valley VI Extent Study. Preliminary results were reported to the Work Assignment Manager (WAM) at the end of the day.

On 02 April 2008, a BFB standard and five-point initial calibration curve were analyzed and found to be

within acceptable limits. The LOQ for all targeted compounds was 0.5 ppbv, except for vinyl chloride, which was 5 ppbv. The secondary standard used to verify the initial calibration curve was analyzed and found to be acceptable with all target compounds being reported less than thirty percent difference (< 30%). The method blank and lot (Tedlar[®] Bag) blank for 02 April 2008 were reviewed and found to be acceptable with no target compounds being reported.

Of the six samples collected on 02 April 2008, sample numbers 1002 and 1006 have the highest reportable results for trichloroethene at 8.0 ppbv and 3.2 ppbv, respectively. Sample numbers 1004 and 1005 have the highest reportable results for tetrachloroethene at 20 ppbv and 6.6 ppbv respectively.

The internal standard 1,4-difluorobenzene- d_5 was reported below the acceptable criteria of ±40 of the most recent valid calibration standard for samples 1001, 1002, 1005, and 1006.

TABLES

TABLE 1Summary of Chain of Custody RecordsLittle Valley VI Extent StudyLittle Valley, New YorkApril 2008

COC #	Number of Samples	Date Sampled	Date Received	Matrix	Analysis
40051	6	02 April 2008	02 April 2008	Soil Gas	VOCs by GC-MS w/ loop Injection

TABLE 2 Instrument Conditions for the Analysis of Volatile Organic Compounds in Soil Gas Samples Little Valley VI Extent Study Little Valley, New York April 2008

AGILENT[®] 6890 GC Method

Sample Loop	
Loop Volume	5mL
Loop Temperature	60 °C
Internal Standard Loop	
Loop Volume	50μL (10ppbv)
Loop Temperature	60 °C
GC Inlet	
Gas Type	Helium
Mode	Pulsed Splitless
Temperature	190 °C
Pressure	23.0 psi
Pulsed Pressure	50.0 psi
Pulsed Time	0.50 min
Purge Flow	30.0 mL/min
Purge Time	0.00 min
Total Flow	33.7 mL/min
GC Oven	
Column	Rtx-Volatiles, 20 m x 0.18 mm ID x 2.0 μ m d _f
Mode	Constant Flow
Flow rate	1.5 mL/min
Cryo (CO ₂)	On
Quick Cryo Cooling	On
Initial Temperature	-10 °C
Initial Temperature Hold Time	0.50 min
Ramp Program	40 °C/min
Final Temperature	160 °C
Final Temperature Hold Time	1 min
Total Run Time	5.75 min
<u>,</u>	
AGILENT [®] 5973N MS Method	
MS Temperatures	

MS Temperatures	
MS Quadrupole	150 °C
MS Ion Source	230 °C
MS Transfer Line	220 °C
MS Tune File	BFB.u
MS Acquisition Mode	SIM
Solvent Delay	0.75 min

TABLE 2 (continued) Instrument Conditions for the Analysis of Volatile Organic Compounds in Soil Gas Samples Little Valley VI Extent Study Little Valley, New York April 2008

SIM Parameters:

Group 1 Start Time	0.75 min
Ions/Dwell in Group 1	(62/85) (64/85)
Group 2 Starts Time	2.00 min
Ions/Dwell in Group 2	(61/85) (63/85) (96/85)
Group 3 Starts Time Ions/Dwell in Group 3	2.50 min (41/85) (43/85) (57/85) (61/85) (73/85) (96/85) (98/85)
Group 4 Starts Time Ions/Dwell in Group 4	2.78 min (31/85) (65/85) (83/85) (98/85)
Group 5 Starts Time	3.00 min
Ions/Dwell in Group 5	(61/85) (96/85) (98/85)
Group 6 Starts Time Ions/Dwell in Group 6	3.15 min (49/85) (61/85) (93/85) (97/85) (99/85) (130/85)
Group 7 Starts Time Ions/Dwell in Group 7	3.35 min (50/85) (63/85) (77/85) (78/85) (88/85) (114/85)
Group 8 Starts Time	3.58 min
Ions/Dwell in Group 8	(95/85) (130/85) (132/85)
Group 9 Starts Time	3.90 min
Ions/Dwell in Group 9	(91/85) (92/85)
Group 10 Starts Time	4.20 min
Ions/Dwell in Group 10	(131/85) (164/85) (166/85)
Group 11 Starts Time Ions/Dwell in Group 11	4.40 min (82/85) (91/85) (106/85) (117/85) (119/85)

TABLE 3

Concentrations and Quantitation Ions for BFB Tuning Standard, Primary and Secondary Volatile Organic Compound Standards and Internal Standard Little Valley VI Extent Study Little Valley, New York April 2008

Scott Specialty Gases, Inc.

Cylinder Number:	ALM057539
Certification Date:	07 March 2008
Expiration Date:	07 March 2009

BFB Compound

4-Bromofluorobenzene	

Quantitation Ion	Concentration
N/A	1.02 ppm

Spectra Gases, Inc. Special Certified Blend

Cylinder Number:	CC-256138
Certification Date:	01 October 2007
Expiration Date:	01 October 2008

Volatile Organic Compound	Quantitation Ion	Concentration
Vinyl chloride	62	20.7 ppm
1,1-Dichloroethene	61	20.4 ppm
trans-1,2-Dichloroethene	61	21.1 ppm
1,1-Dichloroethane	63	20.4 ppm
Methyl Tert Butyl Ether	73	20.5 ppm
cis-1,2-Dichloroethene	61	20.4 ppm
1,1,1-Trichloroethane	97	20.4 ppm
Benzene	78	20.2 ppm
Trichloroethene	130	20.6 ppm
Toluene	97	20.4 ppm
Tetrachloroethene	166	20.1 ppm
Ethylbenzene	91	20.0 ppm
p-Xylene	91	19.7 ppm
m-Xylene	91	19.7 ppm
o-Xylene	91	19.7 ppm

TABLE 3 (continued) Concentrations and Quantitation Ions for BFB Tuning Standard, Primary and Secondary Volatile Organic Compound Standards and Internal Standard Little Valley VI Extent Study Little Valley, New York April 2008

Spectra Gases, Inc. Special Certified Blend

Cylinder Number:	CC-256175
Certification Date:	03 March 2008
Expiration Date:	03 March 2009

Volatile Organic Compound	Quantitation Ion	Concentration
Vinyl chloride	62	495 ppb
1,1-Dichloroethene	61	539 ppb
trans-1,2-Dichloroethene	61	533 ppb
1,1-Dichloroethane	63	530 ppb
Methyl Tert Butyl Ether	73	529 ppb
cis-1,2-Dichloroethene	61	516 ppb
1,1,1-Trichloroethane	97	521 ppb
Benzene	78	526 ppb
Trichloroethene	130	524 ppb
Toluene	97	535 ppb
Tetrachloroethene	166	519 ppb
Ethylbenzene	91	514 ppb
p-Xylene	91	520 ppb
m-Xylene	91	520 ppb
o-Xylene	91	512 ppb

Spectra Gases, Inc.

Cylinder Number:	CC-172915
Certification Date:	04 December 2007
Expiration Date:	04 December 2008

Internal Standard	Quantitation Ion	Concentration
Bromochloromethane	49	1.03
1,4-Difluorobenzene	114	1.06
Chlorobenzene-d ₅	117	1.07

Table 4 Results of Volatile Organic Compounds in Soil Gas Samples for 02 April 2008 Little Valley VI Extent Study Little Valley, New York April 2008

Data File:	LV0	33	LV0	34	LV03	35	LV036			
Sample Number:	20080402	2MB-1	20080402	2LB-1	100	3	1004	4		
Sample Location:	Method	Blank	Lot Bl	ank	Unit 0'	71T	Unit 0417	-Port1		
Sample Volume (ml):	5		5		5		5			
Dilution multiplier:	1		1		1		1			
Date Sampled:	02 Apr	2008	02 Apr	2008	02 Apr	2008	02 Apr	2008		
Date Analyzed:	02 Apr	2008	02 Apr	2008	02 Apr	2008	02 Apr	2008		
Compound	Conc. (ppbv)	LOQ	Conc. (ppbv)	LOQ	Conc. (ppbv)	LOQ	Conc. (ppbv)	LOQ		
Vinyl Chloride	U	0.50	U	0.50	U	0.50	U	0.50		
1,1-Dichloroethene	U	0.50	U	0.50	U	0.50	U	0.50		
trans-1,2-Dichloroethene	U	0.50	U	0.50	U	0.50	U	0.50		
1,1-Dichloroethane	U	0.50	U	0.50	U	0.50	U	0.50		
cis-1,2-Dichloroethene	U	0.50	U	0.50	U	0.50	0.92	0.50		
1,1,1-Trichloroethane	U	0.50	U	0.50	U	0.50	U	0.50		
Trichloroethene	U	0.50	U	0.50	0.75	0.50	0.96	0.50		
Tetrachloroethene	U	0.50	U	0.50	U	0.50	0 20 0.50			

Data File:	LV0	37	LV0	38	LV03	39	LV040			
Sample Number:	100	5	100	6	100	1	100	2		
Sample Location:	Unit 0417	-Port2	Unit 02	27T	Unit 0	03T	Unit 0	88T		
Sample Volume (ml):	5		5		5		5			
Dilution multiplier:	1		1		1		1			
Date Sampled:	02 Apr	2008	02 Apr	2008	02 Apr	2008	02 Apr	2008		
Date Analyzed:	02 Apr	2008	02 Apr	2008	02 Apr	2008	02 Apr	2008		
Compound	Conc. (ppbv)	LOQ	Conc. (ppbv)	LOQ	Conc. (ppbv)	LOQ	Conc. (ppbv)	LOQ		
Vinyl Chloride	U	0.50	U	0.50	U	0.50	U	0.50		
1,1-Dichloroethene	U	0.50	U	U 0.50 U		0.50	U	0.50		
trans-1,2-Dichloroethene	U	0.50	U	0.50	U	0.50	U	0.50		
1,1-Dichloroethane	U	0.50	U	0.50	U	0.50	U	0.50		
cis-1,2-Dichloroethene	U	0.50	U	0.50	U	0.50	U	0.50		
1,1,1-Trichloroethane	U	0.50	U	0.50	U	0.50	U	0.50		
Trichloroethene	U	0.50	3.2	0.50	U	0.50	8.0	0.50		
Tetrachloroethene	6.6	0.50	U	0.50	U	0.50	U	0.50		

Results are in part per billion by volume (ppbv)

U = None detected at or above the limit of quantitation

APPENDIX A

Chain of Custody Records Little Valley VI Extent Study Little Valley, New York April 2008

APPENDIX B

Certificate of Analysis for BFB Tuning Standard, Primary and Secondary Volatile Organic Compound Standards and Internal Standard Little Valley VI Extent Study Little Valley, New York April 2008

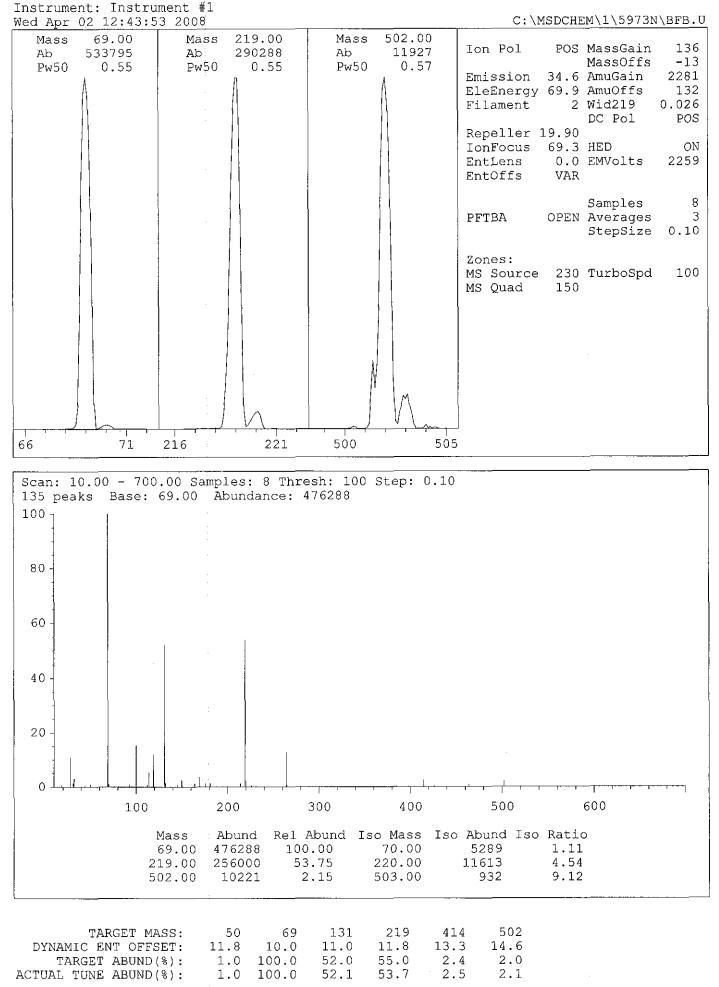
AIR LIQUIDE Scott Specially Air Liquide A	r Gases merica Specially Gases LLC	CUSTOM CLASS
6141 EASTON ROAD, BLDG 1, PL	JMSTEADVILLE, PA 18949-03	10 Phone: 800-331-4953 Fax: 215-766-7226
CERTIFICATE OF ACCURACY		
CERTIFICATE OF ACCOUNTS		
Product Information Project No.: 01-77176-001 Item No.: 01028201270ZAL P.O. No.: 7100037646		Customer LOCKHEED MARTIN BAY F 2890 WOODBRIDGE AVE
Cylinder Number: ALM057539 Cylinder Size: AL Certification Date: 07Mar2008 Expiration Date: 07Mar2009		BUILDING 209 EDISON, NJ 08837
CERTIFIED CONCENTRATION	Concentration	Accuracy
Component Name	(Moles)	(+/-%)
4-BROMOFLUOROBENZENE NITROGEN	1.02 PPM BALANCE	10
TRACEABILITY		
Description	Traceability Type	Traceable To
	da e estas So	
	het	DATE: 03/04/08
	Page 1 of 2	2

Certificate of Analysis for BFB Tuning Standard

SHIPPED FROM: 80 INC	DUSTRIAL DRIVE ALI	PHA, NJ. 08865	
SHIPPED TO:	Lockheed Martin / F GSA Raritan Depot, 2890 Woodbridge A Edison, NJ 08837	EAC Bidg. 209	
		CERTIFICATE	
		OF ANALYSIS	
SGI ORDER # : ITEM# :	114624 1	ANALISIS	CYLINDER # : CC-256138
CERTIFICATION DATE:	10/01/2007		CYLINDER PRES: 355 psig
P.O.# : BLEND TYPE:	CC-C Shields CERTIFIED	PPOPULAT	CYLINDER VALVE: CGA 350
	SERVICED		EXPIRATION DATE: 10/01/2008
		ANAL	YTICAL ACCURACY: +/- 5%
COMPONENT		REQUESTED GAS CONC	ANALYSIS
	-		
Vinyt Chloride		20.0 ppm	20.7 ppm
1.1-Dichloroethene Trans-1.2-Dichloroethylene		20.0 ppm	20.4 ppm
i,1- Dichloroethane		20.0 ppm	21.1 ppm
Methyl Tert Butyl Ether		20.0 ppm 20.0 ppm	20.4 ppm
Cis-1.2-Dichloroethylene		20.0 ppm	20.5 ppm
1.1.Trichloroethane		20.0 ppm	20.4 ppm
Benzene		20.0 ppm	20.4 ppm 20.2 ppm
richluroethylene		20.0 ppm	20.6 ppm
oluene		20.0 ppm	20.4 ppm
etrachloroethylene		20.0 ppm	20.1 ppm
thylbenzene		20.0 ppm	20.0 ppm
-Xytene 1-Xytene		20.0 ppm	19.7 ppm
Xylene		20.0 ppm	19.7 ppm
		20.0 ppm	19.7 ppm
itrogan		Balance	Balance
NALYST: Jon Lou L	orenzetti		DATE: 10/01/2007

Certificate of Analysis for Primary Volatile Organic Compounds Standard

1783 03/2008 -C Shields RTIFIED	PRODUCTE	CYLINDER # : (CYLINDER PRES:) CYLINDER VALVE: (XPIRATION DATE: (ICAL ACCURACY: -	1650 psig CGA 350 03/03/2009 +- 5%
1783 03/2008 -C Shields RTIFIED	OF ANALYSIS PRODUCT E ANALYT	CYLINDER PRES: CYLINDER VALVE: 0 XPIRATION DATE: 0	1650 psig CGA 350 03/03/2009 +- 5%
1783 03/2008 -C Shields RTIFIED	OF ANALYSIS PRODUCT E ANALYT	CYLINDER PRES: CYLINDER VALVE: 0 XPIRATION DATE: 0	1650 psig CGA 350 03/03/2009 +- 5%
1783 03/2008 -C Shields RTIFIED	PRODUCT E	CYLINDER PRES: CYLINDER VALVE: 0 XPIRATION DATE: 0	1650 psig CGA 350 03/03/2009 +- 5%
03/2008 -C Shields RTIFIED	PRODUCT E	CYLINDER PRES: CYLINDER VALVE: 0 XPIRATION DATE: 0	1650 psig CGA 350 03/03/2009 +- 5%
RE	QUESTED GAS	ICAL ACCURACY: ·	
RE			
			ANALYSIS
		-	
	500 ppb		495 ppb
	500 ppb		539 ppb
	500 ppb		533 ppb
	500 ppb		530 ppb
			529 ppb
			516 ppb 521 ppb
	1.2. * *		526 ppb
	500 ppb		524 ppb
	500 ppb		535 ppb
	500 ppb		519 ppb
	500 ppb		514 ppb
			520 ppb
	500 ppb 500 ppb		520 ppb 512 ppb
	Balance		Balance
	500 ppb		
		500 ppb 500 ppb 500 ppb 500 ppb 500 ppb 500 ppb	500 ppb 500 ppb


Certificate of Analysis for Secondary Volatile Organic Compounds Standard

Spectra Ge	ses, Inc.	3434 Route 22 West	, Branchburg, New Je ISO 9001:2000	rsey 08876 USA
SHIPPED FROM: 80 IN	DUSTRIAL DRIVE	LPHA, NJ. 08865		
SHIPPED TO:	Lockheed Martin 2890 Woodbridge Edison, NJ 08837	Environmental Services Ave. -3679		
		CERTIFICATE OF		
		ANALYSIS		
SGI ORDER # : ITEM# : CERTIFICATION DATE: P.O.# : BLEND TYPE:	120022 2 12/04/2007 CC-G BALL CERTIFIED	-	CYLINDER # : C CYLINDER PRES: 19 CYLINDER VALVE: C EXPIRATION DATE: 12	950 psig
		ANAL	YTICAL ACCURACY: +/	-5%
COMPONENT		REQUESTED GAS		ANALYSIS
Bromochloromethane 1,4-Difluorobenzene Chlorobenzene-d5		1.00 ppm 1.00 ppm 1.00 ppm		1.03 ppm 1.06 ppm 1.07 ppm
Nitrogen		Balance		Balance
ANALYST: Jun Lou Lo	renzetti	-	DATE:	12/04/2007
	Tet: +1 908-25. ww	2-9300 Fax: +1 908-252-0811 wispectragases.com	I	

Certificate of Analysis for Internal Standard

APPENDIX C

Mass Spectrometer Tune Report, Instrument Log Book Information, Initial Calibration Data, and Second Source Confirmation Data Little Valley VI Extent Study Little Valley, New York April 2008

5973 BFB Dynamic Target Tune

(Å) 网络 1.50 Notebook No.

14 PROJECT LITTLE VALLEY WA #0-210

Continued From Page

	\sim	11	n1	10	5																	:			, · ·			х	
					a Ninsa	e in					Sati	i ji Mati				4	385.1			i Kata				niae). Na se					Li li s
		Þ,	lm	5	Ď	su.	у ^к		n.	Ś	A	段	έſ		Ť k	A	ie.	ah ii	Y	0 th	<i>Z</i>	1074	14.4		ı ƙ		2.004	el est	()
			nn	[B1=	ß	S	71)	1	5	C	UNI	Fie	<u>en.</u>	'n	1.5.5	-	ARE	<u>.</u>	Pre	50	N	⊁						
		D	4t	4	60	СĤ	<u>۲:</u>	, V		0:	1m	s P	che			$\mathbf{\lambda}$	dA	64	73	60 8		Zœ	20	40 <u>(</u>	anda Atobi	4	/ /	XK	d
				8.41 6 4.	1		ester Secon									(<u>京</u> 孫守			an a					9 - C - C	n an sea an sea an sea an sea an sea	ર કરવા છે. આ ગામ છે. આ ગામ છે.	APRO-	
			Vc	1	1491-); K 1. (34) 1. (34)		<i>n</i>			3 F > (<u> </u>]	r	PPr Pr										PA-	23	1992 (1994) 1993 (1994)		
i en grant			6			3	m	2		3 <i>E</i> 2	13	G			Pm			 					د . د د ه . م	 	PA	52	na abaton Griece ni a	9.1	en pro
					1. 5 4				1.11.2		1	1. A								i i i						t deri			
8. 11.					7997	神影	會任			T ights	1917		1	• X * *	i filt x		存代	14-14 A.	44			14414 d 143474				hidina kata	No. of the second state		
0	4.	10	2/	108											· ·								· · · · ·	-				- 1 / 5= 18	2.12.2.1. 2.12.2.1
						[<u> </u>	-	<u> </u>										
<u>, 1 604</u>	.	I	n.	1.0	4		A	<u> </u>	rr	£.	un		57	m	lA	RU	4	Pr	ep	an	×.	<i>4</i> %	×1		nên Kêr				
	- 5	1		1	1	z -					<u> </u>				208			ł				1 34.10				178104	1.527	<u>89</u> 91	19 29-1
						FCH						L	15	71	V I		1 1	10											
			1.0	1. 1		Ce	1	- 21	38				1. A.P.4		on om			-+: -:			in the second	a ite nie	6 .1%	i de la composition de la comp	Gale	SI LIGHT		inini.	il let
		5-1 7 8.0	4.6	<u>On</u>	<u>د</u>	<u>N</u>			2048) 		5	A S 6.	1999 (to 1.1	10		- 18 7	12	1774 X.2.				1	1971) A 1277		4 (1) (1)				and the second
		77	>>/	105	in	102		2				- 5	70	200	280	40	2 -	6										10 A	
		1	1.	1 .	1	46	1				. <u>.</u>					[T	571	0	н. 1. н.) 		<u></u>
		1	1	1	Τ.	1	1 :	1.24			83.	6-1-5-9		1	m	١.	1		14.14		Sec.4		and or	5.44 6.46				44 85 - 1.610	and an
	8		9	00	ml	-^					1 1 ¹ 2 1			90	m	•1	4.2		er er er	: : : : . : : : : : : : : : : : : : : :	S. S.	18	N. S.		1				
		ļ							ļ								-		ļ		 						<u> </u>	┣—	
	í	1.	-1	1	4	02	1 .	ł		2 	ļ				080			7										li e se Li e se	
		5	pop	ohu	F	1	51	6		1 1 1 1			200	eph #			-	**									SAL SAL		
								<u> </u>	<u>}</u>		<u> </u>			0m		* 7 1					1 35. 5	F	3-2 -123 				1.201		
	<u> </u>			01	nc		2									 .		-					1,15			د. در دو اد			
·	 	\$71	12	00	Pex	¢Ζ	- 4	1		†		2	008	2 OU	020	B	-1												
		- 1 .	\$	-i		CA	1.	4 .									-				an - A		2 4 (1)	130 4 8					
					726									_	ļ	ļ']		ļ	ļ	-	-	ļ				<u> </u> -		
3						In	-	<u></u>	-						<u> </u>		-		-	<u> </u> ;	<u>.</u>	<u>,</u>	31.2	لأبرونهما ا	21	i National and National and and National and	<u></u>		
								<u> </u>		$\frac{1}{1}$											d.	- - 1-1-2		推進		New			4.6.7
		1				<u>; [: ::</u> 							-[```` 	i : T	41			,			1.1.1.1		194 N.S.	3.:	فبنشساء	tinue	d on	Page	e /
	<u> </u>																	1	<u> </u>			<u> </u>	1						

108 OY/ Date

Signed

Signed

Date

JEC.	r_2	τt	!e	- V	AC	.Le	<u>f</u>	W	Ą #	0	-2	10	<u>.</u>				ebo		inue					14				
410	52	105	.	(Ċ0	J'1						<u> </u>											4 -	·				-1 - 14 ⁻² -
				1999年			1.11		appi				: **	<u>a</u> 7.	an a		li vati ni ta stati ni									ः (स्टब्स्	34 - 112 8 - 8 - 144	
BE	B	m-e	1	od		ing an the	ß	FI	31	60	þ.	M			3	35 I	1.11			• • • •					. <u>.</u>			1544
60	In	51	ne	the	d		10	op	5	F _M	PS	Ple	کک	M						19.95 	184.	1.12					4.75	· 157
EG	lin	st	1	iet	100	12.	La	20	20	28	04	62	N		<u> </u>	<u>.</u>											2	91
			6.5Y	ik.	·疏.y	õ	N.e	\$0	o ho	m	N	X	dr	ta	\mathbf{N}	Zo	08,	• ۲	20	280	40	2	12	V	٢x	×.	1	a a
	11 36 2 3		网络				等利	1. 14 14:		2658				. <u>9-19874</u> /	1 										· · ·	· · ·		5.642
	Vo	4	500 (1997) 1997 - 1997 1997 - 1997 - 1997 - 1997 1997 - 1977 - 1977 -	5	m	77.97	ßF	13	C		pps	V	BY	/2/	68		· -		-					<u> </u>	Pn	55		
4	Va	35			<u>\$т</u>	02	00	00	402		8	Ľ			1	1	Fel			· ·								
4	Va	6		1	 		<u> </u>			-	2			PP,	nu	7	<u>cn</u>	ť.	sny	• •	<u> </u>		<u> </u>		<u> </u>		- 	
4	Yoc	7		:							3		5	60	ph	ν_{-}	Fa	rl.	57	0			5	P	10	zło	0	
4	<i>i</i> a	S.		1		1	1	í	1		11	1	1	1.1			A			7		1			Ĩ.,		1 655	jan.
te	Vα	9	7	ZA	4	7	pe.	<u> </u>	K T	 	A	ÞΕ	5	4.	ŧt-	d	14		he	- 	SZ	m	C	10-	ha	1-	50	
4	1/0	10		191	12	C	on	100	11	ø,		w	C.	<u> </u>	ot	6	<u>Þu</u> r	w	- (1/-	đ	13774		1	26-1 21-1	1	- 19 19 -01	
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1																Ľ											1N IV
itana nagang Galang ngababa Ag	i i serierari i i serierari	1. 99. 9. 9. 1. 99. 9. 90 1. 99. 9. 90	i rondy i 720 Strete i Station Strete i Station	ૼૼૻ૾ૢૼૣૻઽ	se		ನಿಕ	<u>u</u>		RT		h	(fic.	1 is	5	M.	m	cd	6	ĊΟγ	SJ	m	<u> </u>	20	\$ \$77	<u>n</u>	13.95
i T				R	e -	cu	2	A	46	7	-0.	+6	57	p	<u> </u>	<u> </u>			<u> </u>									
(* Literation		1.2/53 15/63	14.3			1							10	1.1.2		8	<u>.</u>	144			 हेन्द्र हे			- 1872)				
2	100	2		1		204		· ·	T-			T .	<u>.</u>		1:		+		UR		<u> </u>	F	4-11	<u>ut 3</u>	icn	A . A	1.1.5	
461	100	9 .	,	571	<u>þ5</u>	05	04	ΰŻ		\$	50	¢ _f	100	1 1	<u>cn</u>	2	57	<u>p</u>					1	8		OF	-	
4	1010)	6.4(\$* 5 *	1.1					†	 	1	1	1.	· ·	Τ	1	ST	I	<u> </u>					+3		ok		
1	1.52.0							1.8.16	12	NI ST	1	PP	<u>m</u>	1		17.1	<u>Sr</u>	19.300		er ->				8		00	100	
14	4		322	ŞÇ.	當進		1.32	13.5	44		50	pf	bu		<i>e1</i> 7	1	571				112-2			Sec.		ak		15.44
2	101	<u> </u>		n jog ør	1		- <u></u>		S		5	pp	by.	1	M	1	72	1	<u> </u>			<u> </u>	┝	8		op		
14	Var	1		<u> </u>			<u> </u>		-6	<u> </u>	Bis	T• 1	Рb	1	1	1	-17	}					-	+		Sta	1	<u>} - </u>
	19	1 3		$\mathbf{r} \in \mathbf{R}$	102.2	120	NG PRO		7 - 1984	distant	制成品	1. 6 3		4	So,	A. 304		Kesser	1. 1. sta	-18-11.						01		515
6	101	1.2		1	1	1000	1.5	1.12		1.6		T		- 27	1					17.運			L.			ot	lietter die die	11-91
	1965		2	COC	80	402	22	<u>(</u> 3_	1		1 - Ch	ω		750	11	9K							-			1		1
	101	X Nili		1	$\frac{\infty}{2}$		1.1.1			10		00			i au				50	26	1.1.					al		
	9 - 10 - 10 - 10 - 10 - 10 - 10 - 10 - 1			19 - 7 1 7	6 ₄₁ 42														l. Ifasio								an Fuir-	
100 Jac	ia buitun	277.52 1277.13			a c Nor Traspani		s rista a North		9 - 1 11 2 9 - 1 11 2 - 1 11 2										1 3.44		1 1 1 1 1 1 1 1 1 1 1			an a		2011 A 1	As at	
	002			1			1	1		<u>V//</u>		7			~~~~	-1:F2174	1.12.6.20		50		TI CAN	T - 7 ¹ 2	12	1.0,149		ok		
<u>الم.</u> سنار	/02 51	2	1.200	174 13	120	シア(24	12	1		22	11	<i>h1</i>	2	Lasa	Suc		*			16.92	a trant	14	2.11-21-21-21-2		1	J.	
8 I I I 8 I I I I			i. Užvo) (entra	in the second							1998 E		16.03					Su Su	1. 化学				The second se	112.12	-the of	ine fa Sin a s	$5 P^{2} + v^{2}$
C	VO.		(R)	12	10		P 1	P?N			47		725		12			1		1.5	TT.	цų;	+++++	tinue	-199 Aug		71.20	/
	112.00	<u>)#.(25</u>		Test.	Paris C.	1.4.3	17 - 57 ș	T day			1	1	1	Rea	d and	1 1 1 1 1 1 1 1 1	derst	L port l	ι 3ν		1	·· •						
	al dist		. Le		31	موجع الم		1	1.141		; . ; .	e Agrica M	10 E.C	, iod					- ,	÷		į					4.11	:
A AA			1. A. S.				al a t		11		1	1	3) 3) 112 -	der en fr	1.1 1.1			。 法位:1	." Borra	11 14 14	建 电关		- 18 10	i. Lenga	1. 24-14-0.0	4.4		45856

日本の形式の

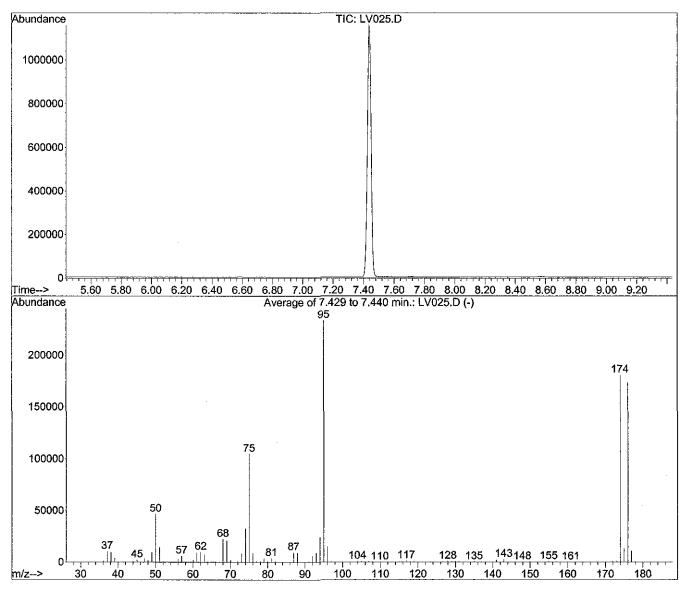
都高兴。 利益人	16	si i	l Internet	1	. 1	71	in fil. Circl	1	AT)	1 e.	1	- 1	H	ŧ 0	÷2/	0		ſ	Not	ebc	DOK Cont	No	S.K.	CAC m Pi	-10	<u>س</u> الم	-04	57	۰.
		24	10	2/	108	. (14 (1 4 (×				inst-		-11:14 -11:14 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1	la și	19 by					15	1.	1997-1 177-1						
			6		si dia	ې د بو به بې			s c	5	- 	41.21	an a	00	d.				1		22	12	č	Th			ue		0
		14416	0 X 36 Y 3	200	19 - 1970 - 1	12011-01	face.	We have been								Ç			na de La constituía	n d Nad		 				ini en Itali			101
	1.972	$\phi \in Q$	62	16. 16.		19 H M			ß	CU 123 S	F (1 1 1 1 1	0		<u>f</u> t		រាំ ខ្មែរ							62.14 1401 m					の点	ss S
							10			10	2-					i s e i	7 . 0				17. 19 1 17. 19 1 17. 19 1 17. 19 1	(子)斜 (今) (1)			10 00 (* 1000) 1000 (* 1000)				
			102	1.845								2		۲ 5	opr 2 ₀ 0	10 161	1.1.1	тон Гси	1	57	の 1 1						3		るた
			がし					林桃 叶 灰石林			5. A	5		1 1	ĵĝ,		*ゴ ノ ゴ	C M	NO. 1		2						No.		のた
TA CU	<u>Р</u>	21	103	~		57	102 08	00.	904 	102 414	-	7		500	pph	iv d	21 70	,1			e S -	70		1.2		ilu. t	e Rvi		e h
4	z/08						+-1		en			AL CO		JC 1 ∓9	40	J 3	C	02	<u> </u>	eg.	14 776	401 2			no1		UR Fa	ic.;	vg
	3				e	N	¢i	ω.	CL		0	2	lop	4	2		<u>(0</u>	<u>c</u>	01	1.5.		m	0	p.e L	2	. Į.	639.6	vcg Lup	<u>ra</u>
	·哈特· 注意非	4.9% (#1		i. (i	123-1 2 123	S	14	00	G	} [,] ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	pr		1444. ²			1										1000000 1000000 100000			
					A. 4.				/計	1	S. (4)	読し		R 22				0							i. Incisi		制建	16	
		<u>:</u> Zt	20 70	33		20	208	040	30	nr	1 .	T N	1.44	2 1 2		ev d	B	2 - E A	- x/X	シ ム 日本									
		21	10	35			a	23	21	► B	<u> </u>	T.	t c	.01 24	1							NS.	2000 2010						
	ت بر فر می موجوع ا		10.				00				u	nil	1	41	T -	Pa	nt nt					S	m	ſ .	<u>x</u> 1 <u>x</u>		i i fijo Saka		-
			<u>10</u> . V0			<u> </u>	00				T		t	00		/	- <u></u>					S	ml		<u>هرا</u> 1 x				4
			104	1			000 TN	-	080	1	T	<u>4</u> 7	t		87 97	50	2,	rd	So	3 Urc	110 C		me	- 	1X 14	de dia .			
												37.04 14 - 10		61 8 . 2			11 200 2014 - M												
					10. star	1. j.,						1 1 1 1 1		1		ine:		2011 - 11 2011 -	ana na		Zeres Zeres								nine o
		TEN	Li i ste	1.			1.25.45	1949 6.1	107 83	1. 1. Ration	2.068	(4)(-) (新生)	1.1	[2, j]		State 4		dia.com	ALL D	1 BOR	國主	1.0	推過		i si	C.P.P.P	A DESIGNATION	a da sa	

· The second second

「「「「「「「「「「「「「「」」」」

12 100 A

14


1. S. M.S.

Signed Dy Date

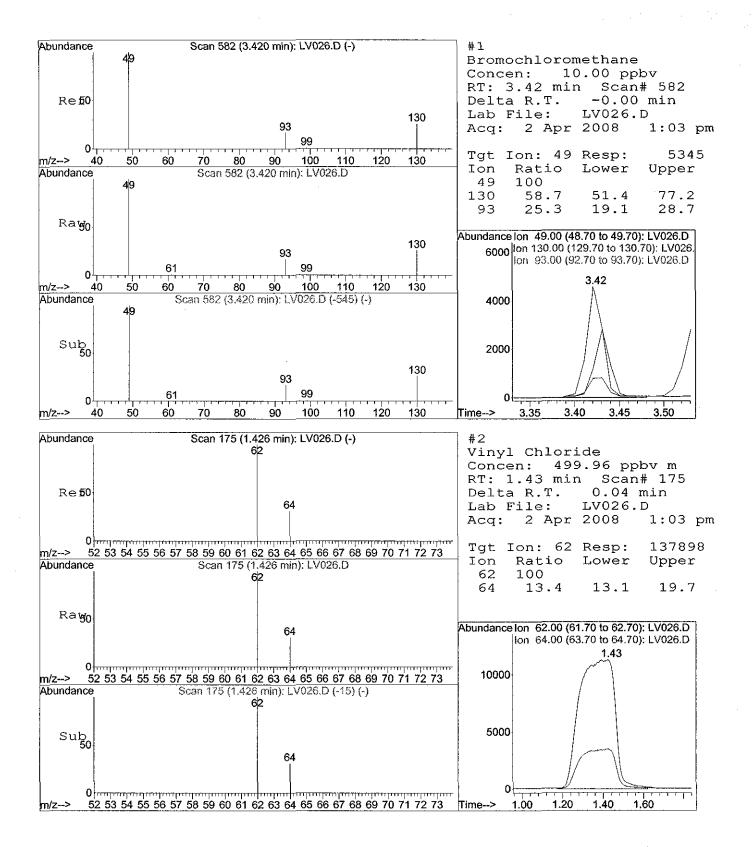
Signed

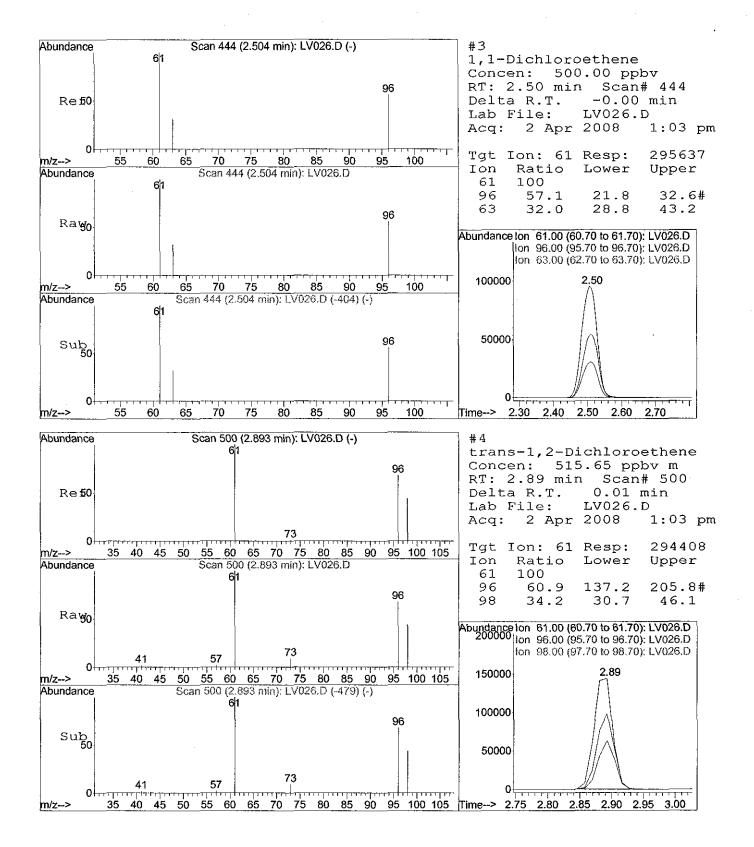
Date

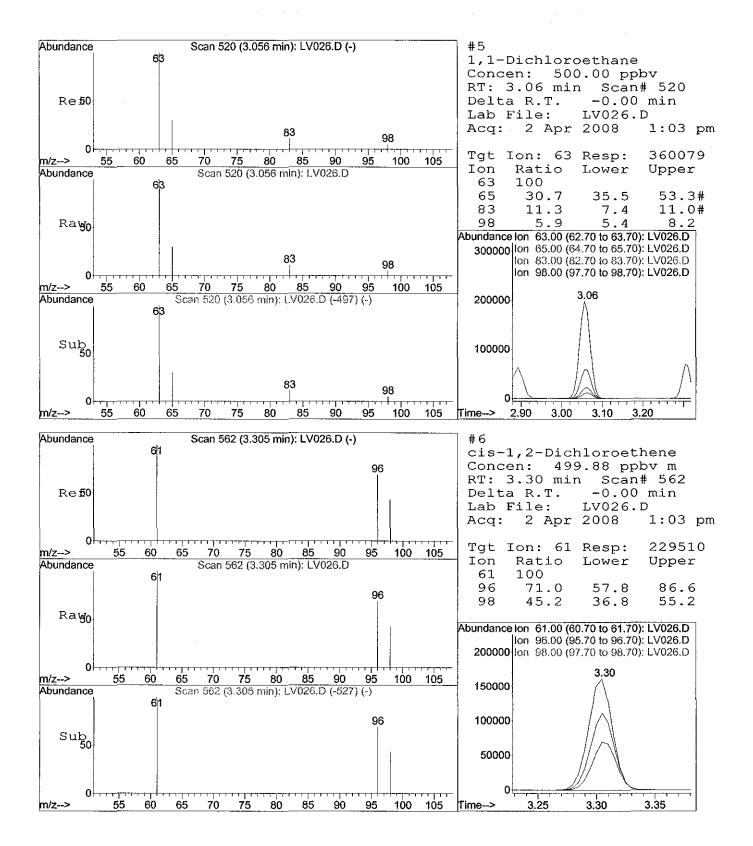
Data File : C:\MSDCHEM\1\DATA\2008\20080402\LV025.D	Vial:	1.
Acq On : 2 Apr 2008 12:49 pm	Operator:	SJT
Sample : 5mL BFB @ 1ppmv	Inst :	Instrumen
Misc : TUNE CHECK	Multiplr:	1.00
MS Integration Params: rteint.p		
Method : C:\MSDCHEM\1\METHODS\LOOP20080402A.M (RTE	Integrato	r)
Title : TO-15 Std. (57 compounds)		

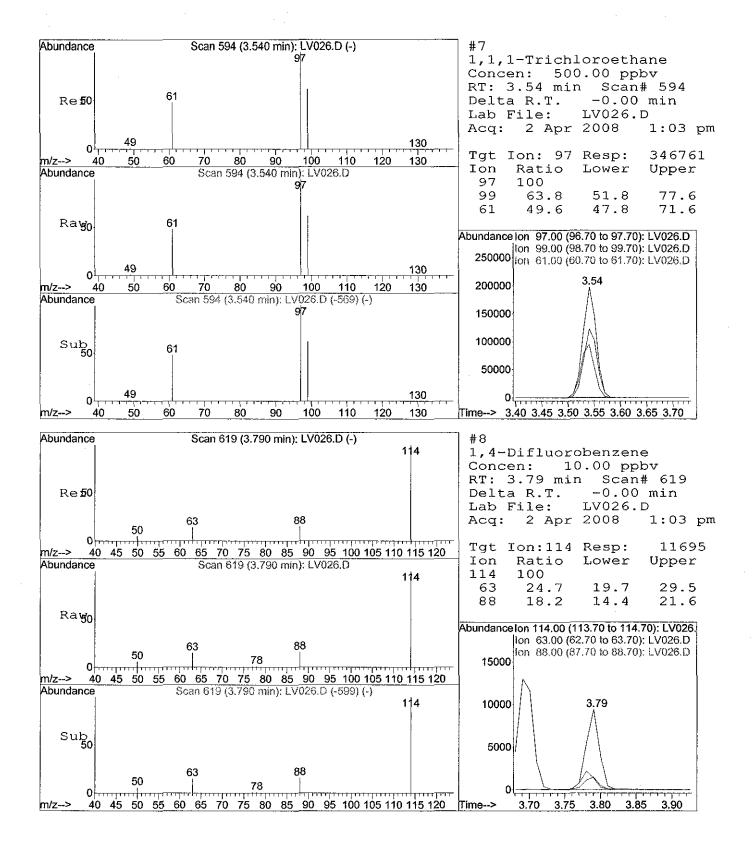
AutoFind: Scans 835, 836, 837; Background Corrected with Scan 826

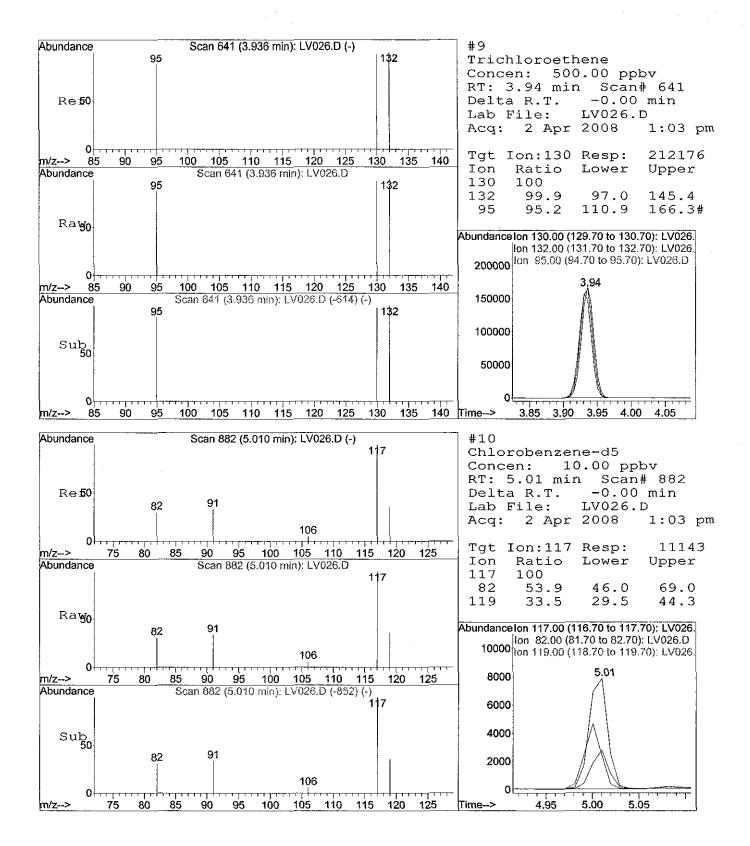
Taro		Rel. to Mass		Lower Limit%		Upper Limit%	 	Rel. Abn%	 	Raw Abn		Result Pass/Fail	
	5	95 95 95 95	 	15 30 100	 	40 60 100 9		20.0 44.9 100.0 6.4	 	46717 104720 233301 14914	 	PASS PASS PASS PASS	
173 174 174 175 176		95 174 95 174 174 176		5 0.00 50 5 95 5		9 2 100 9 101 9		6.4 0.6 77.5 7.3 95.9 6.4		$ 14914 \\ 1089 \\ 180885 \\ 13263 \\ 173546 \\ 11122 $		PASS PASS PASS PASS PASS PASS	

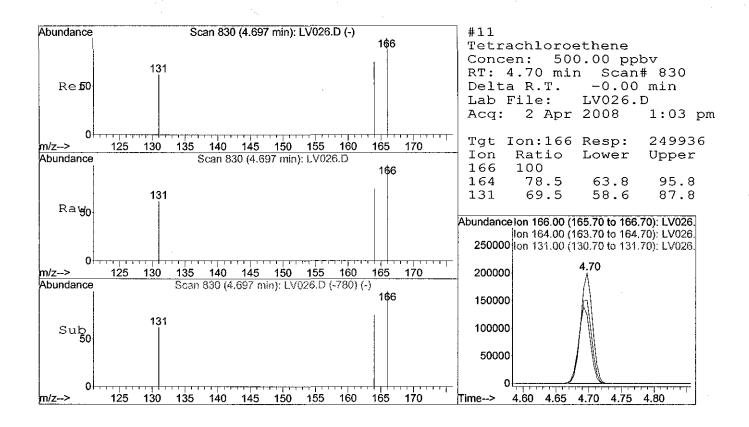

BFB

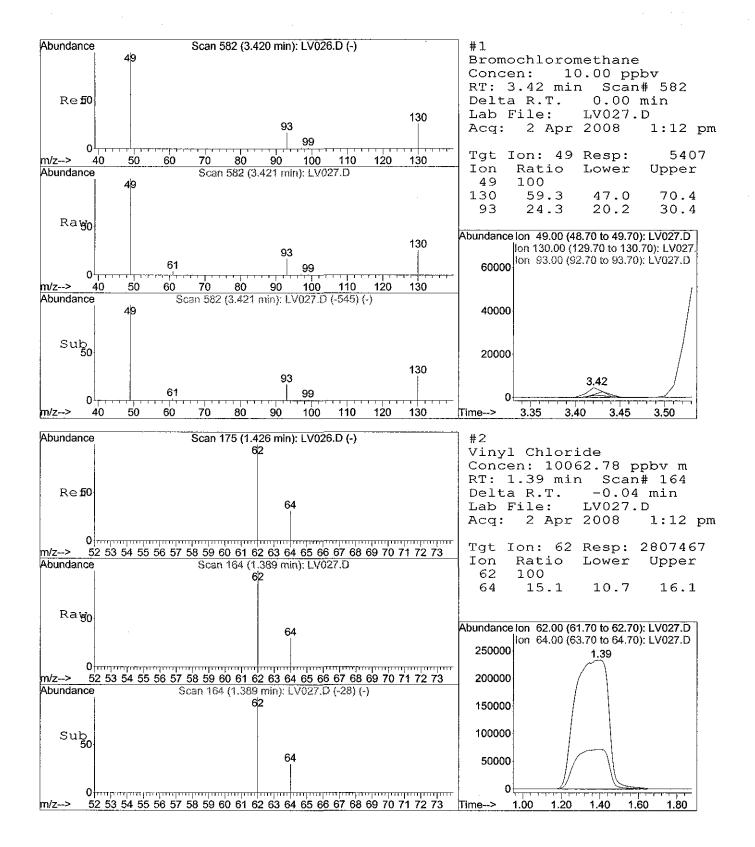

ר I	<pre>Method : D:\MSDCHEM\1\METHODS\LOOP20080402A.M (RTE Integrator) Title : TO-15 Std. (57 compounds) Last Update : Wed Apr 02 14:17:47 2008 Response via : Initial Calibration</pre>									
5	500	oration Files =LV026.D =LV029.D								
	(Compound	500	100A	1000	50	5	0.5	Avg	%RSD
1) 2) 3) 4) 5) 6) 7)		Bromochlorometha Vinyl Chloride 1,1-Dichloroeth trans-1,2-Dichl 1,1-Dichloroeth cis-1,2-Dichlor 1,1,1-Trichloro	0.510 1.100 1.060 1.34 0.850 1.290	6 0.519 6 1.115 8 0.942 7 1.316 9 0.846 8 1.397	0.464 0.955 0.879 1.145 0.677 1.103	0.499 0.990 0.938 1.249 0.719 1.190	0.412 0.827 0.766 1.071 0.601 1.035	1.578 0.928 1.852 0.860 1.847	0.482 1.095 0.920 1.330 0.760 1.312	9.33 23.67 10.66 20.73 14.53 22.33
8) 9)	Ι	1,4-Difluoroben: Trichloroethene	0.36	3 0.344	0.272	0.369	0.329	0.381	0.343	11.49
10) 11)	I	Chlorobenzene-d Tetrachloroethe		9 0.441						14.97

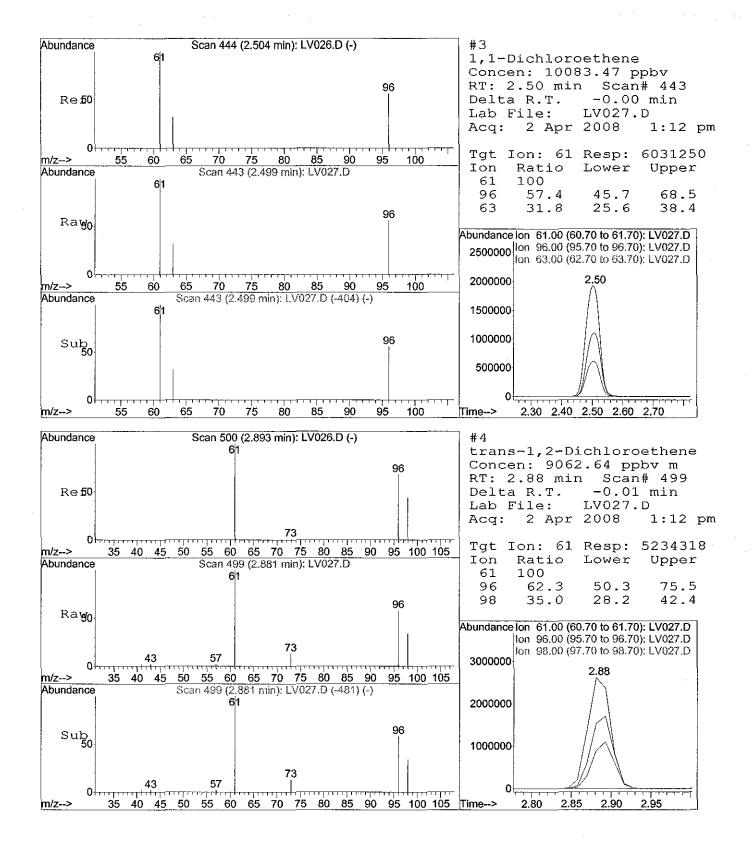

Quantitatio	n Repo	ort	(QT Revie	wed)			
Data File : C:\MSDCHEM\1\DATA\2008 Acq On : 2 Apr 2008 1:03 pm Sample : STD20080402-3 Misc : 500ppbv ICAL STD MS Integration Params: rteint.p Quant Time: Apr 02 13:22:57 2008			Op In	ltiplr:	SJT Insti 1.00		
Quant Method : D:\MSDCHEM\1\LOO Title : TO-15 Std. (57 comp Last Update : Wed Apr 02 13:22:44 Response via : Initial Calibration DataAcq Meth : LOOPSIMP	ounds) 2008		M (RTE Int	egrator)		
Internal Standards	R.T.	QIon	Response	Conc U	nits I	Dev (M	in)
,		114	5345 11695 11143		ppbv	0	.00 .00 .00
Target Compounds 2) Vinyl Chloride	1.43	62	137898m	499.96	nnhv	Qval	ue
 3) 1,1-Dichloroethene 4) trans-1,2-Dichloroethene 	2.50	61 61	295637 294408m	500.00	ppbv	#	71
5) 1,1-Dichloroethane	3.06	63 61	360079	500.00	ppbv	#	83
	3.54	97 130	346761	500.00	ppbv		93 72
11) Tetrachloroethene	4.70	166	249936	500.00		74	97

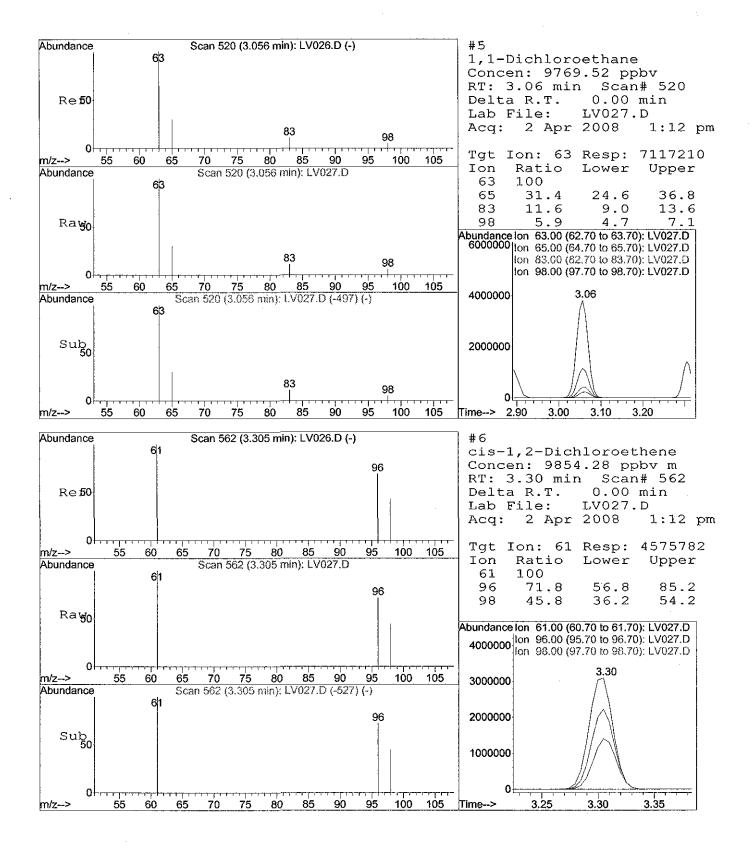

Data File : C:\MSDCHEM\1\DATA\2008\20080402\LV026.D Vial: 1 Acq On : 2 Apr 2008 1:03 pm Operator: SJT Sample : STD20080402-3 Inst : Instrum Misc : 500ppbv ICAL STD Multiplr: 1.00 MS Integration Params: rteint.p Quant Time: Apr 2 14:30 2008 Quant Results File: LOOF200 Method : C:\MSDCHEM\1\METHODS\LOOF20080402A.M (RTE Integrator) Title : TO-15 Std. (57 compounds) Last Update : Wed Apr 02 14:34:39 2008 Response via : Initial Calibration Abundance TC:LV026.D 105000 105000 950000 950000 950000 850000 850000 750000	
Method : C:\MSDCHEM\1\METHODS\LOOP20080402A.M (RTE Integrator) Title : TO-15 Std. (57 compounds) Last Update : Wed Apr 02 14:34:39 2008 Response via : Initial Calibration Abundance TIC:LV026.D 1100000 1050000 950000 950000 950000 850000 850000 850000 750000	
Title : TO-15 Std. (57 compounds) Last Update : Wed Apr 02 14:34:39 2008 Response via : Initial Calibration Abundance TIC: LV026.D 1100000 1050000 950000 950000 850000 800000 750000	80402A
110000 105000 950000 900000 850000 800000	
105000 100000 950000 900000 850000 750000	
100000 95000 900000 850000 800000 75000	
950000 900000 850000 800000 750000	
900000 850000 800000 750000	
850000 800000 750000	
800000 750000	
750000	
650000	
5	
450000	
500000 4500000 4000000 33500000	
350000 E	
300000 eee	
300000 250000	
200000 150000 i oupper service of the service of	
1200000 Miny Chloride Monochloride Miny Chloride	
50000	
Time> 1.00 1.20 1.40 1.60 1.80 2.00 2.20 2.40 2.60 2.80 3.00 3.20 3.40 3.60 3.80 4.00 4.20 4.40 4.60 4.80 5.00 5.20 5.40 5.6	

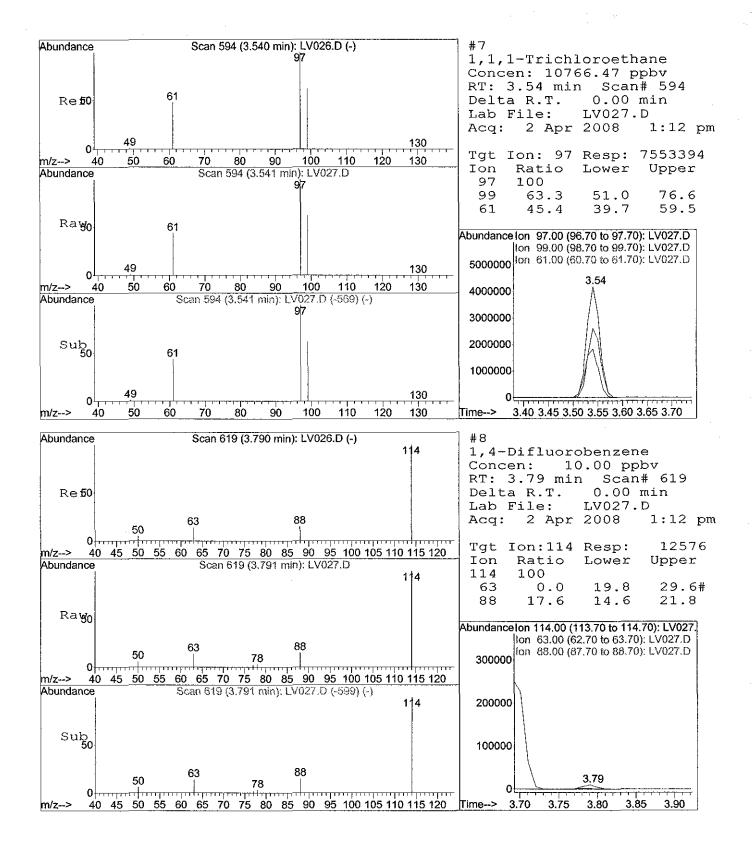

LV026.D LOOP20080402A.M Wed Apr 16 11:35:37 2008

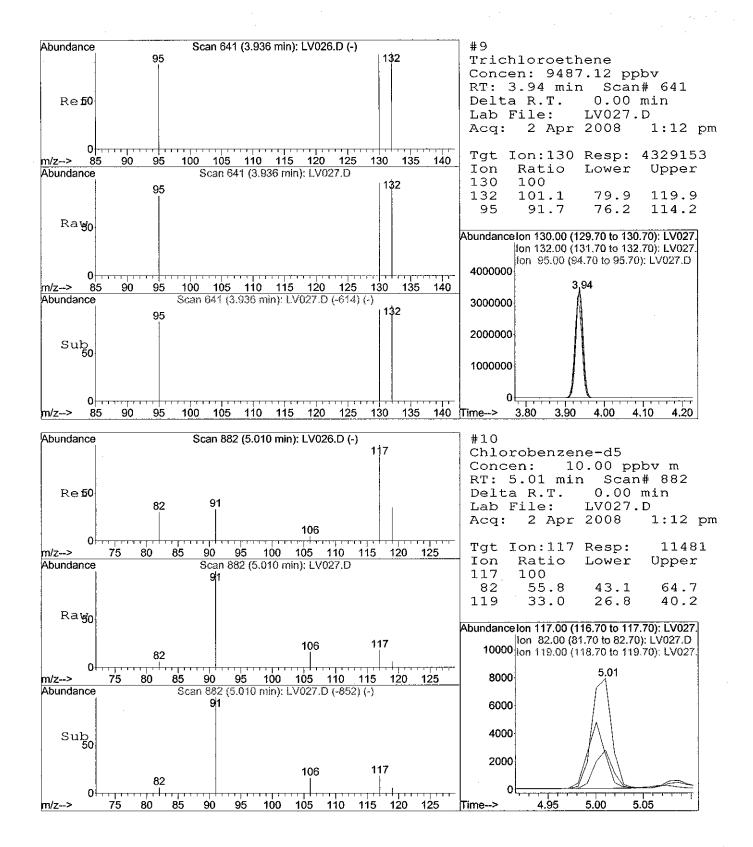


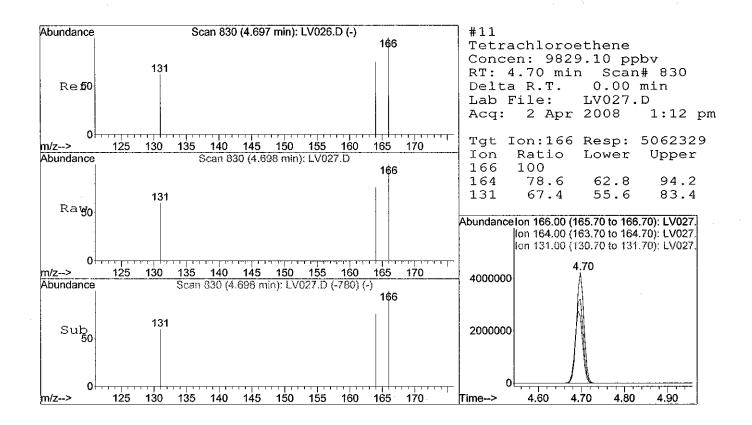


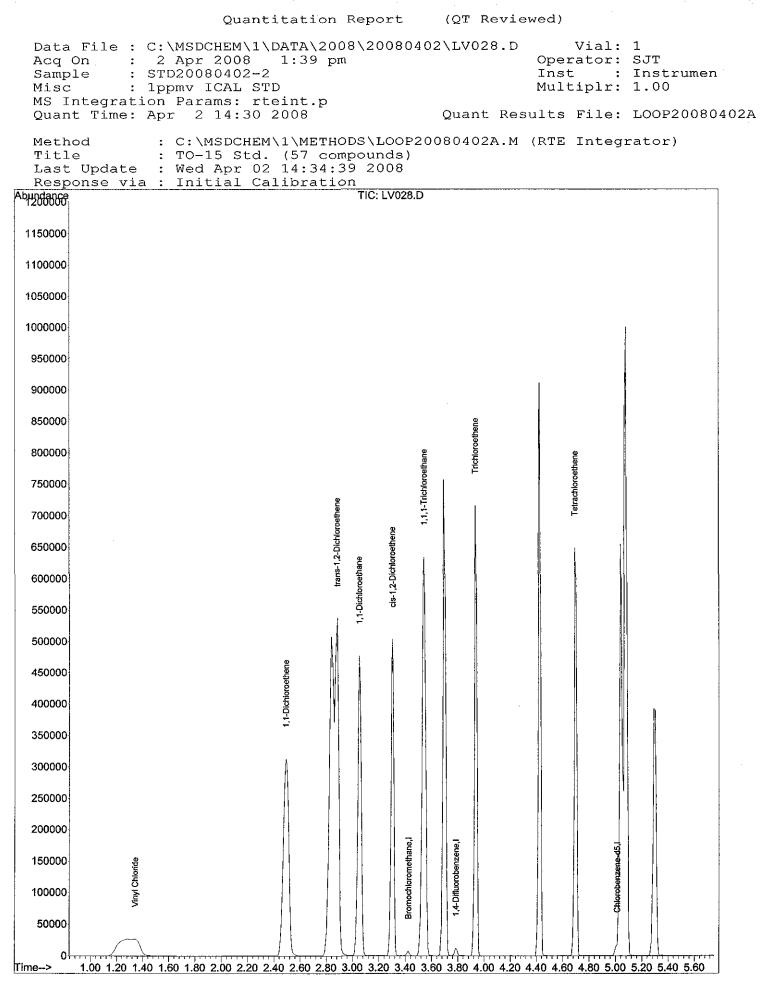


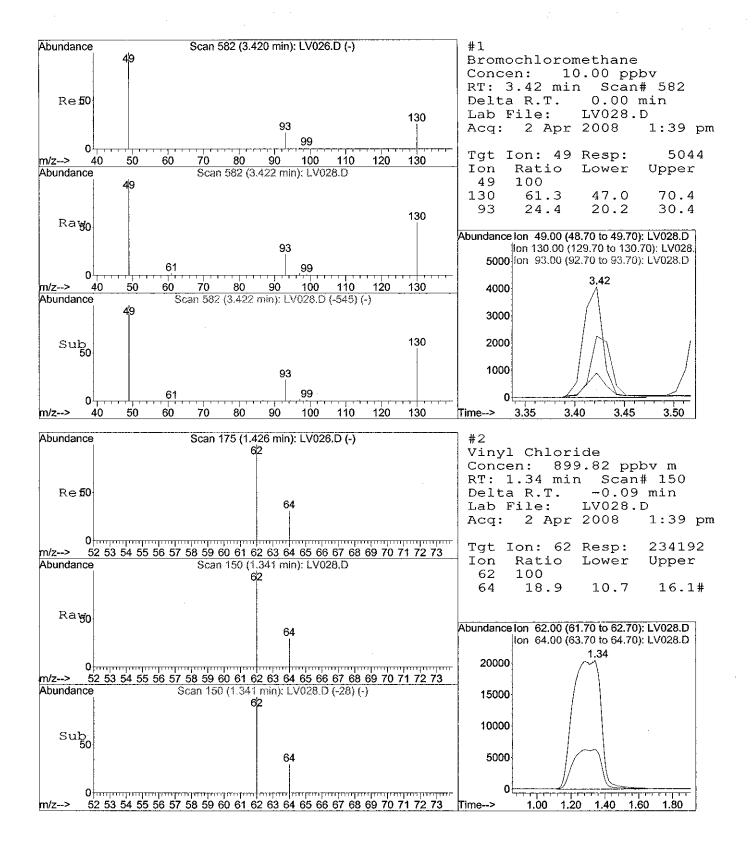

Quantitatic	n Repo	ort	(QT Revie	ewed)		
Data File : C:\MSDCHEM\1\DATA\2008 Acq On : 2 Apr 2008 1:12 pm Sample : STD20080402-1 Misc : 10ppmv ICAL STD MS Integration Params: rteint.p Quant Time: Apr 02 13:24:17 2008			Op I 1 Mu	Vial: perator: nst : ultiplr: ts File:	SJT Instrur 1.00	nen 080402A.RE:
Quant Method : D:\MSDCHEM\1\LOC Title : TO-15 Std. (57 comp Last Update : Wed Apr 02 13:24:07 Response via : Initial Calibration DataAcq Meth : LOOPSIMP	ounds) 2008		M (RTE In	tegrator)		
Internal Standards	R.T.	QIon	Response	Conc Un	its Dev	v(Min)
		114	5407 12576 11481m	10.00	ppbv ppbv ppbv	0.00 0.00 0.00
Target Compounds	1 2 0	60				value
 2) Vinyl Chloride 3) 1,1-Dichloroethene 4) trans-1,2-Dichloroethene 	1.39 2.50 2.88	62 61 61	6031250	10062.78 10083.47 9062.64	' ppbv	100
5) 1,1-Dichloroethane	3.06	63 61	7117210	9769.52	ppbv	99
	3.54 3.94	97 130	7553394	10766.47	ppbv	97 98
11) Tetrachloroethene	4.70	166				99

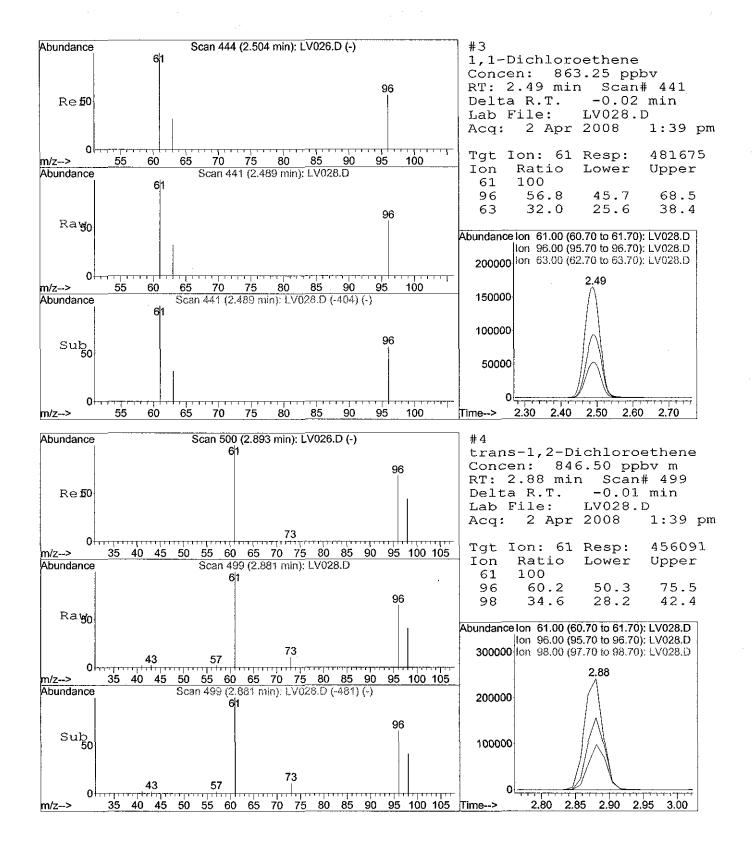

			Quanti	tation	Repo	rt	(QT Revi	ewed)	
Acq Samp Misc MS I	On : ole : c : integrati	2 Apr : STD2008 10ppmv on Para	2008 0402-1 ICAL ST ms: rte	1:12 p D int.p	08\20(m	080402	2\LV027.D	Operator: Inst : Multiplr:	SJT Instrumen 1.00
Quan	t Time:	Apr 2	14:30 2	008			Quant Rea	sults File:	LOOP20080402A
Meth Titl Last Resp		: TO-1 : Wed	5 Std. Apr 02	(57 co 14:34:	mpoun 39 200 on	ds) 08	080402A.M	(RTE Integ	rator)
Abundance 1.8e+07					TIC: L	V027.D			
1.00+07			1						
1.7e+07									
1.6e+07									
1.5e+07									
1.4e+07									
1.3e+07									
1.2e+07							hene	Tetrachloroethene	
1.1e+07						roethane	Trichloroethene	Tetrachi	
1e+07						1,1,1-Trichloroethane	. 1		
9000000	•								
8000000				energy	thane	cis-1,2-Dichtoroethene			
7000000				orentario 4 2 Districtor	ans-1,2-014 more than e				
6000000				n	g				
5000000				1,1-Dichloroethene					
4000000				-					
3000000	- - - -					e,1		Chlorobenzen <u>e d6.1</u>	
2000000	Vinvl Chloride					Bromochloromethane,	1,4-Diffuorobenzene,	Chlorobe	
1000000	Vinv.					Bromoch	1,4-Difluc		
· .		١							
04 Time>	1.00 1.20 1.4	0 1.60 1.80 2	2.00 2.20 2.40) 2.60 2.80	3.00 3.20	3.40 3.6	0 3.80 4.00 4.20	4.40 4.60 4.80 5.00	5.20 5.40 5.60

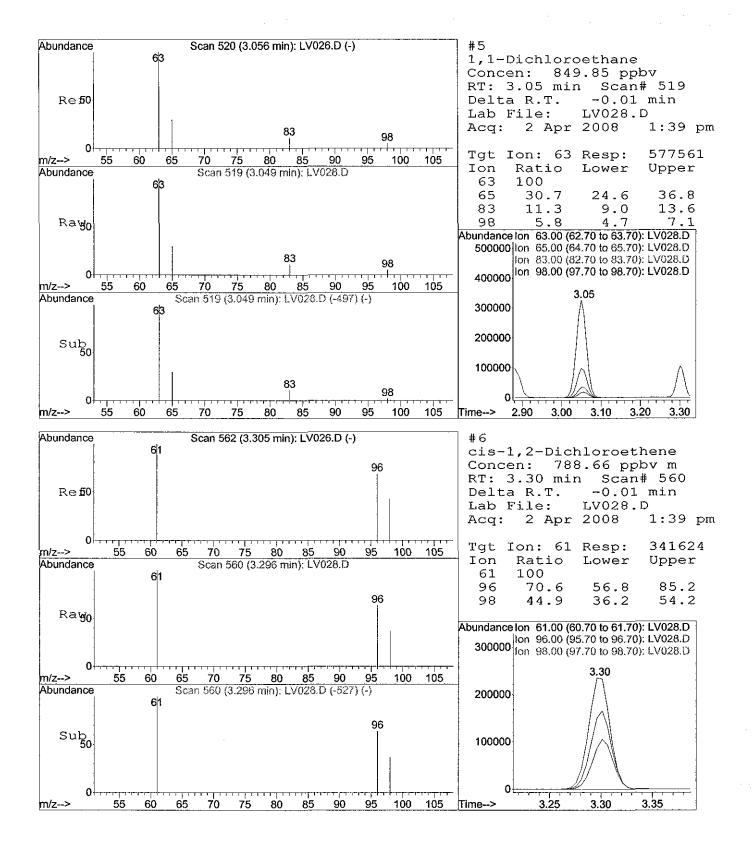

Wed Apr 16 11:35:41 2008

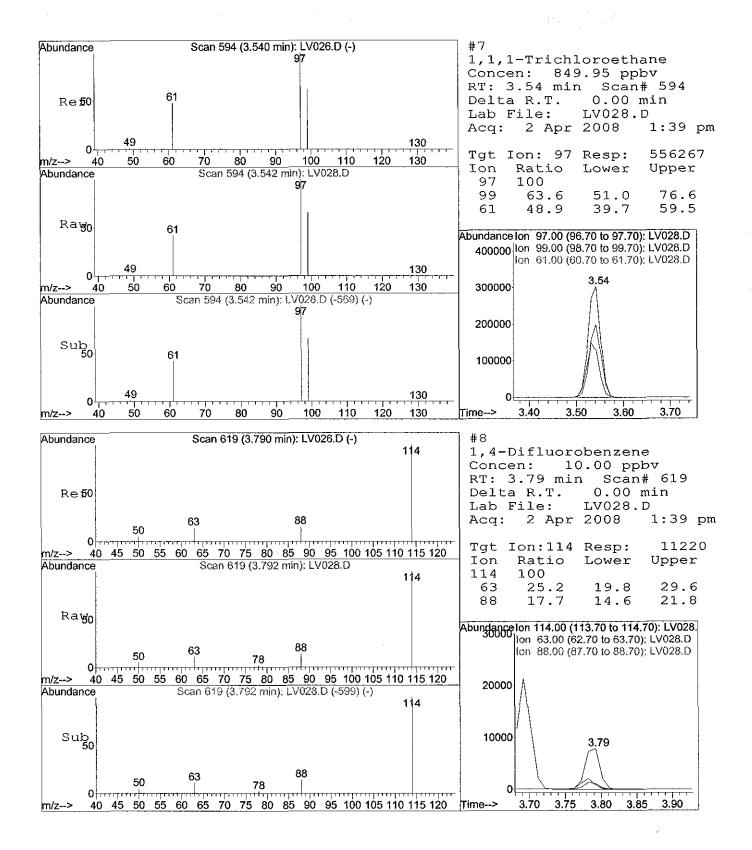


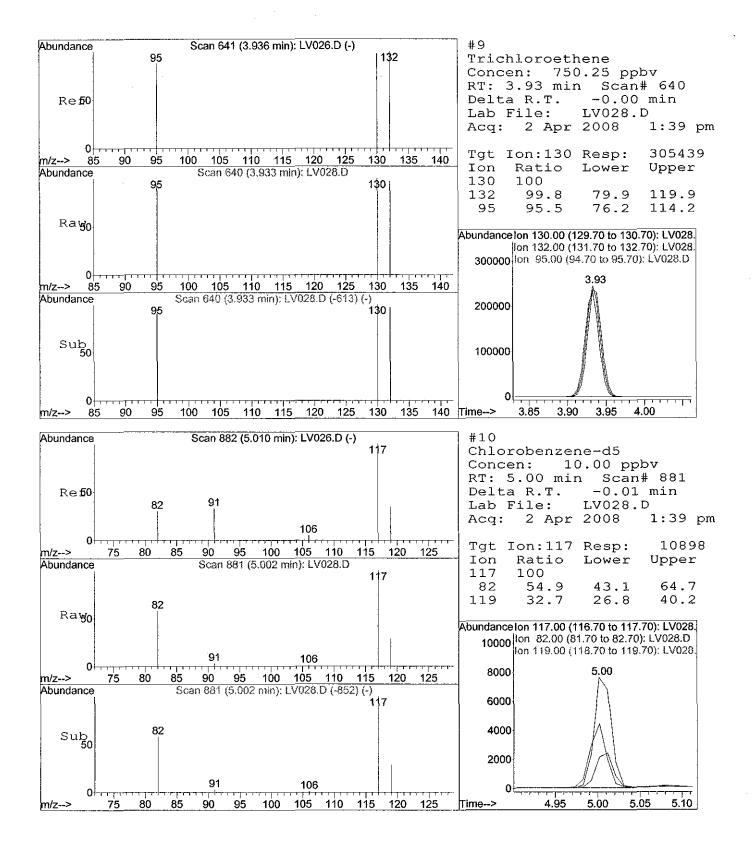


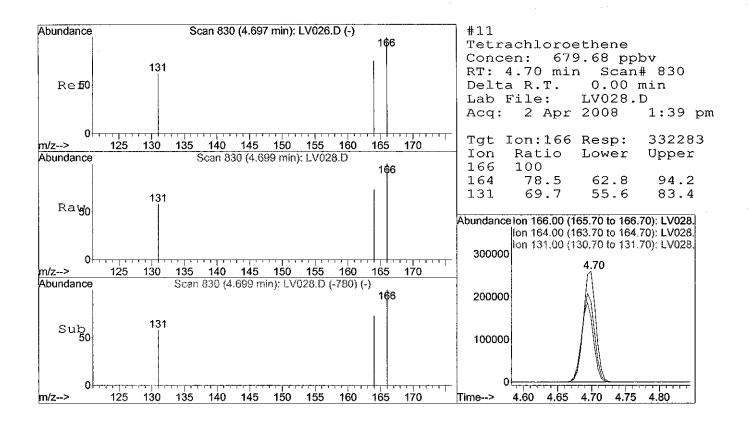


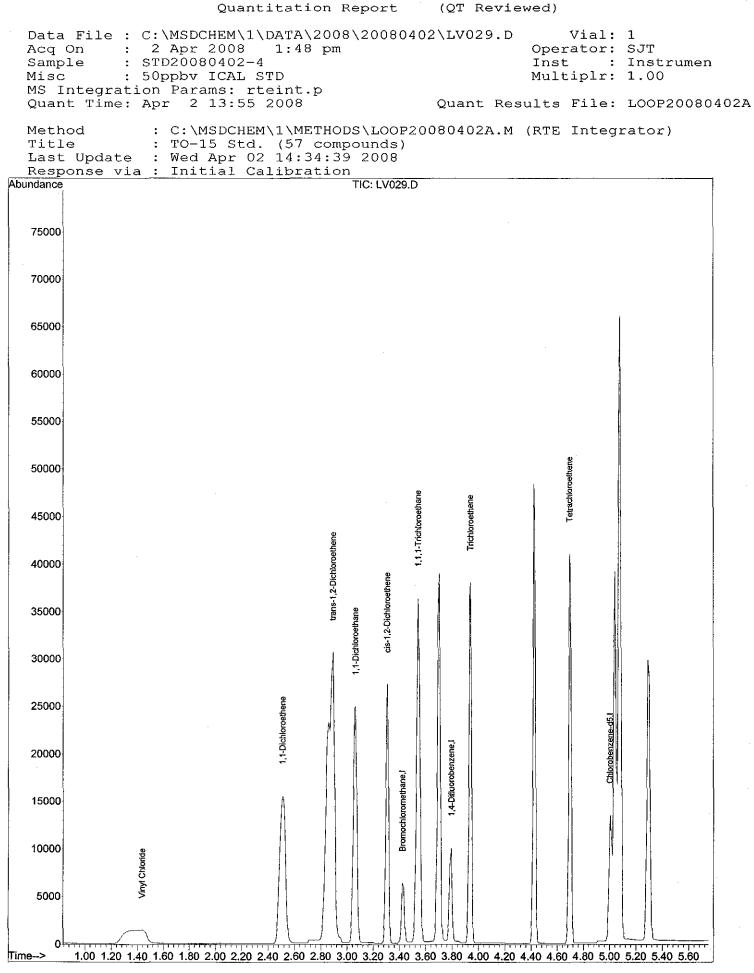




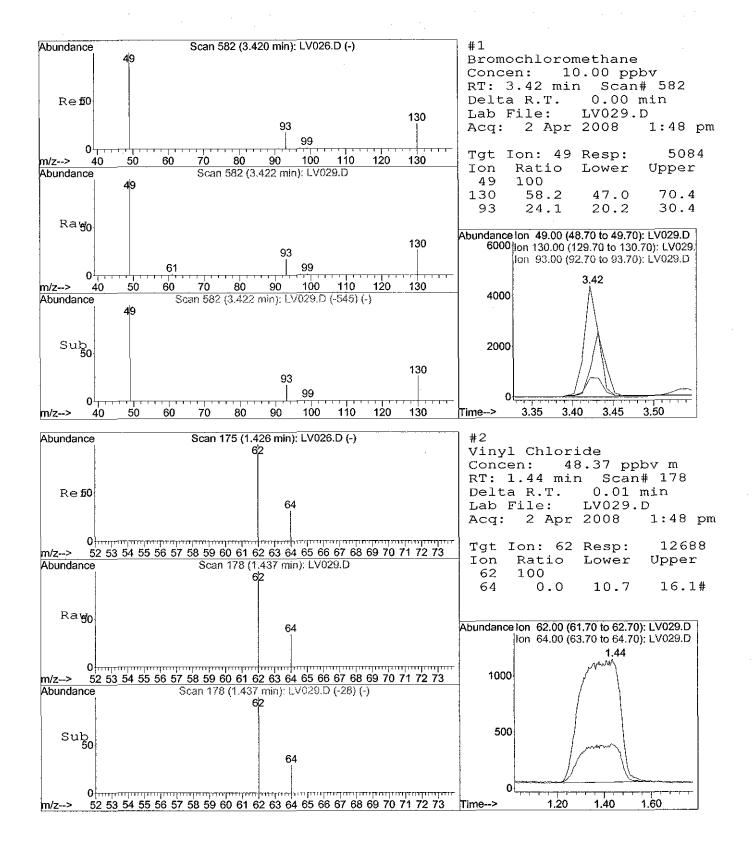

		i.				
Quantitatio	n Repo	ort	(QT Revie	wed)		
Data File : C:\MSDCHEM\1\DATA\2008 Acq On : 2 Apr 2008 1:39 pm Sample : STD20080402-2 Misc : 1ppmv ICAL STD MS Integration Params: rteint.p Quant Time: Apr 02 13:46:04 2008	\20080		Op In Mu	Vial: erator: st : ltiplr: s File:	SJT Insti 1.00	rumen 20080402A.RE:
Quant Method : D:\MSDCHEM\1\LOO Title : TO-15 Std. (57 comp Last Update : Wed Apr 02 13:24:07 Response via : Initial Calibration DataAcq Meth : LOOPSIMP	ounds) 2008			-		
Internal Standards		QIon	Response			Dev(Min)
 Bromochloromethane 1,4-Difluorobenzene Chlorobenzene-d5 	3.42 3.79 5.00	49 114 117	5044 11220 10898	$10.00 \\ 10.00 \\ 10.00$	ppbv	0.00
Target Compounds						Ovalue
 2) Vinyl Chloride 3) 1,1-Dichloroethene 4) trans-1,2-Dichloroethene 	1.34 2.49 2.88	62 61 61	234192m 481675 456091m	899.82 863.25 846.50	ppbv	100
5) 1,1-Dichloroethane	3.05	63	577561	849.85	ppbv	100
6) cis-1,2-Dichloroethene7) 1,1,1-Trichloroethane	3.30 3.54	61 97	341624m 556267	788.66 849.95		99
9) Trichloroethene	3.93	130	305439	750.25	ppbv	100
11) Tetrachloroethene	4.70	166	332283	679.68	ppbv	100

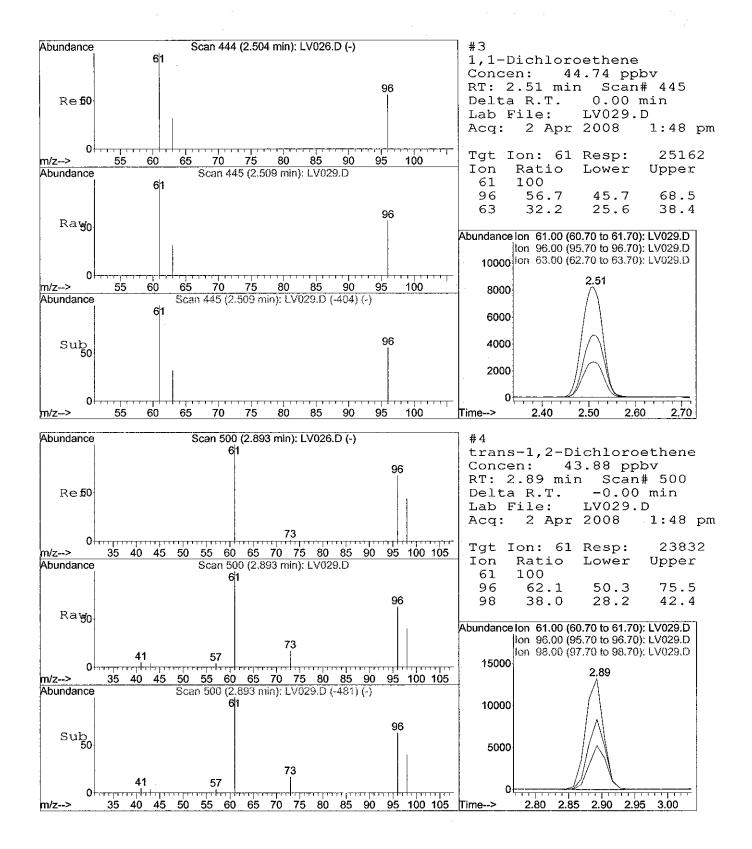




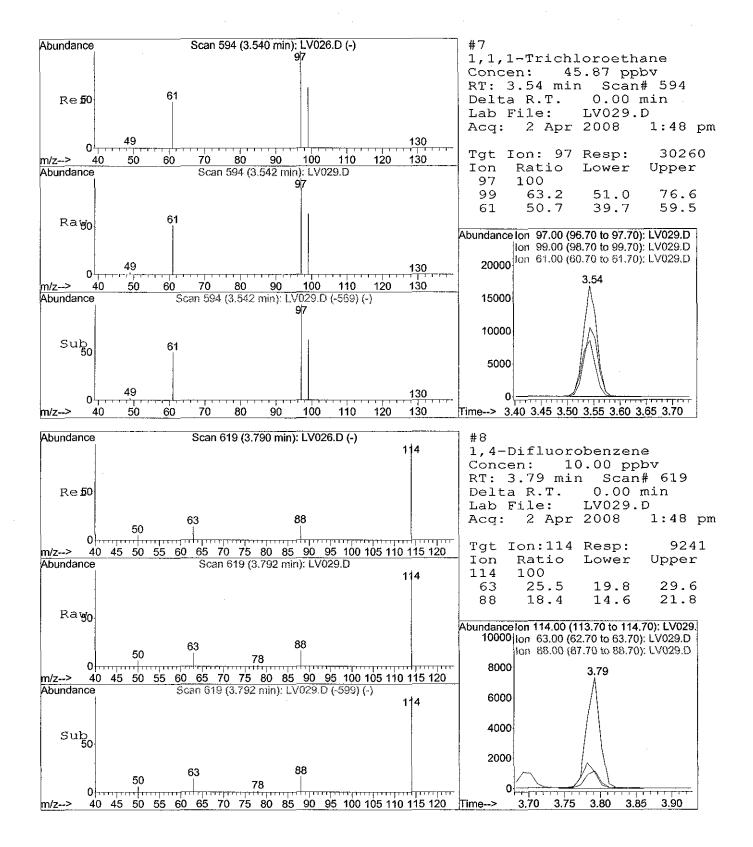

LV028.D LOOP20080402A.M

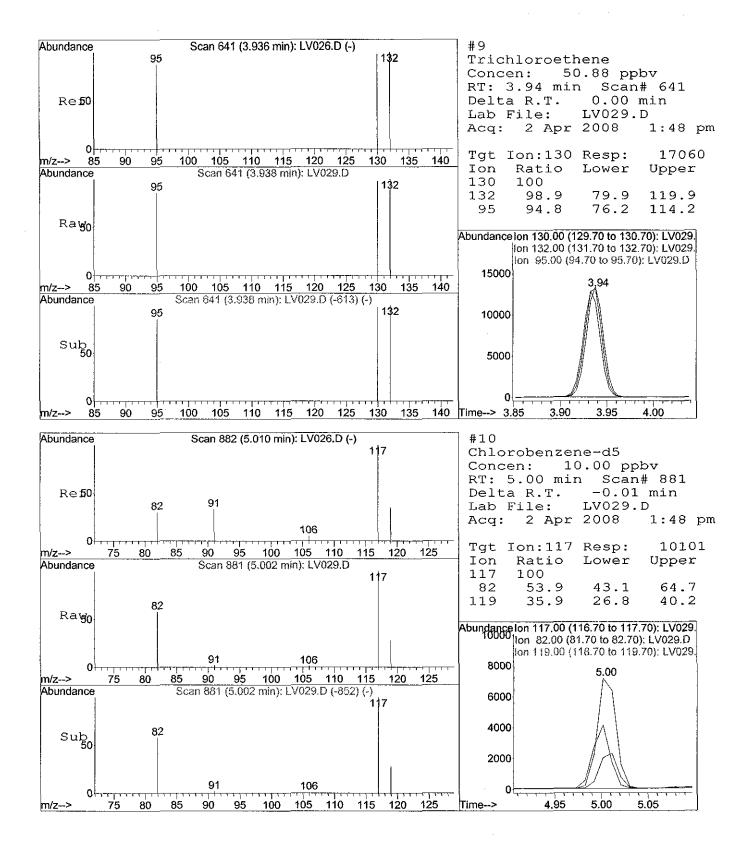
Page 6

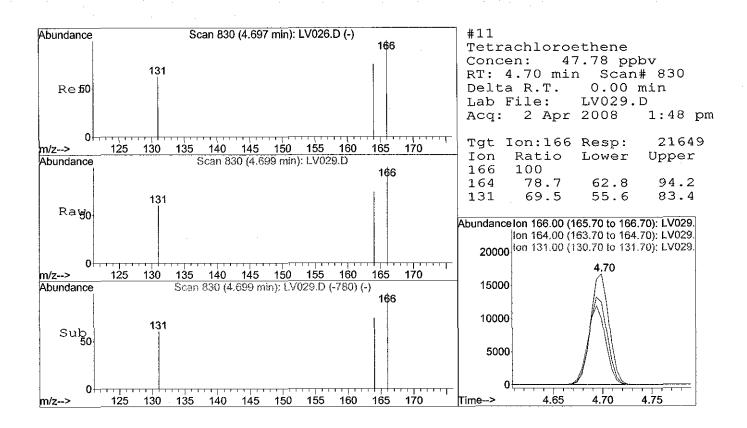


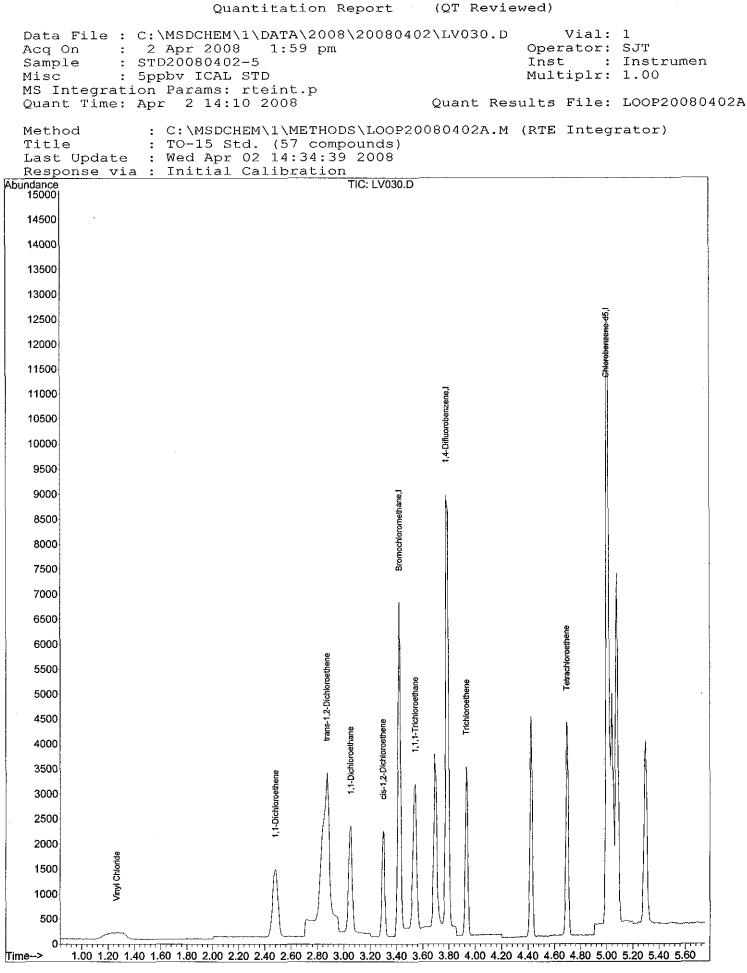

Quantitation	n Repo	ort	(QT Review	wed)		
Data File : C:\MSDCHEM\1\DATA\2008 Acq On : 2 Apr 2008 1:48 pm Sample : STD20080402-4 Misc : 50ppbv ICAL STD MS Integration Params: rteint.p Quant Time: Apr 02 13:54:43 2008			Op In Mu	Vial: erator: st : ltiplr: s File:	SJT Inst 1.00	
Quant Method : D:\MSDCHEM\1\LOOM Title : TO-15 Std. (57 compo Last Update : Wed Apr 02 13:24:07 Response via : Initial Calibration DataAcq Meth : LOOPSIMP	ounds) 2008	,		-		
Internal Standards	R.T.	QIon	Response	Conc Ur	nits	Dev(Min)
	3.79	114	5084 9241 10101		ppbv	0.00
 3) 1,1-Dichloroethene 4) trans-1,2-Dichloroethene 5) 1,1-Dichloroethane 6) cis-1,2-Dichloroethene 		61 61 63 97 130	12688m 25162 23832 31753 18283 30260 17060 21649	43.88 46.36 41.88 45.87 50.88	ppbv ppbv ppbv ppbv ppbv ppbv	99 98 100 97 99 99

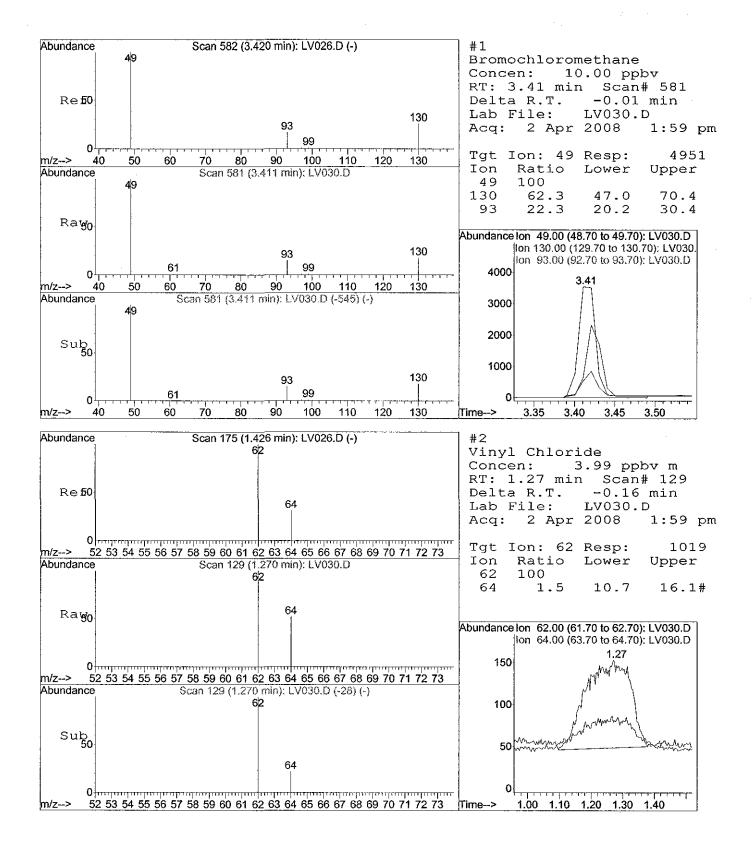


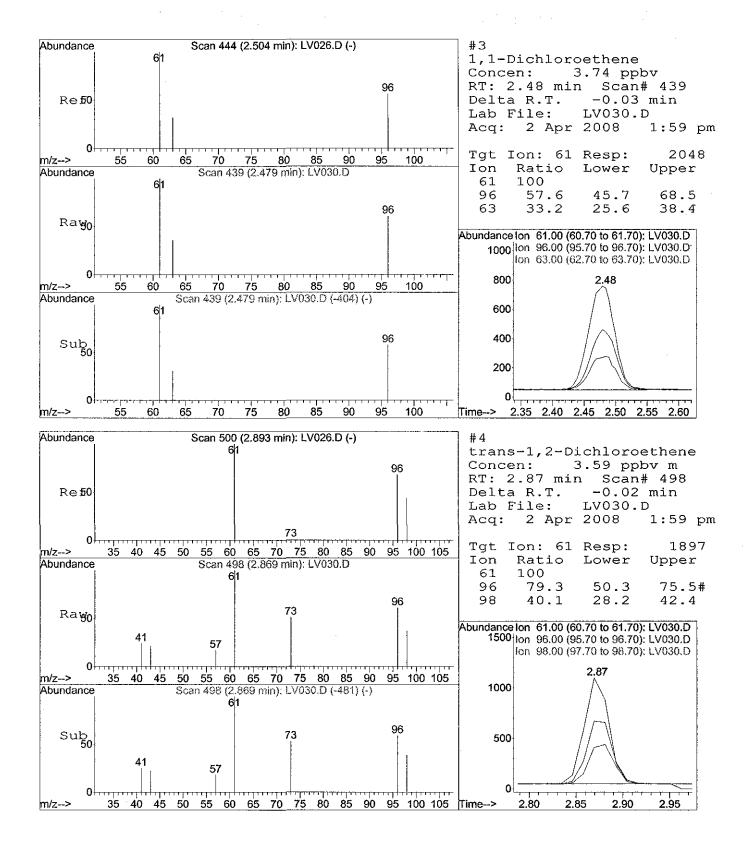

LV029.D LOOP20080402A.M

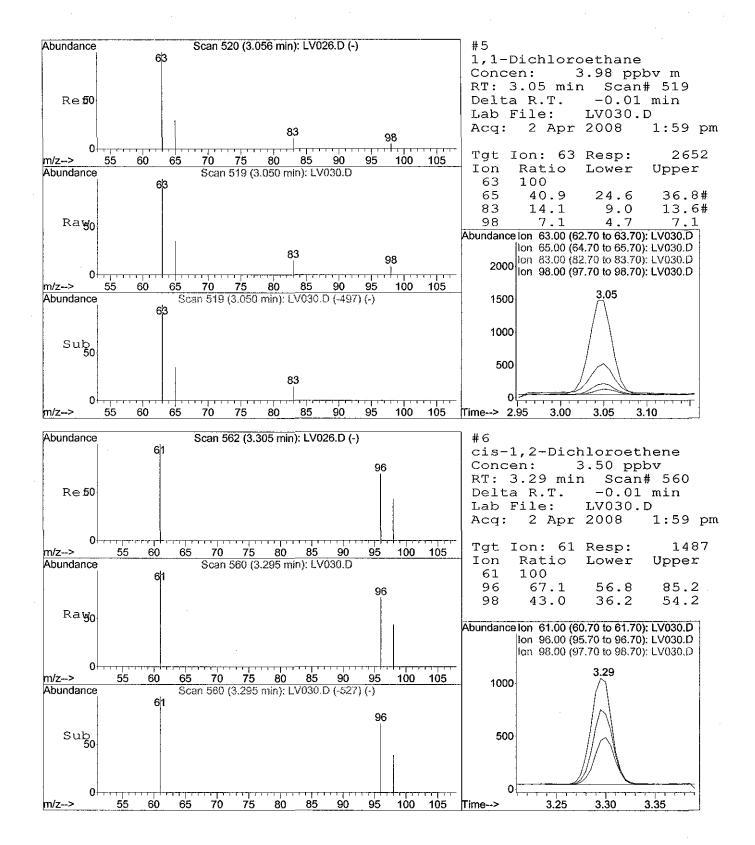

Wed Apr 16 11:35:47 2008

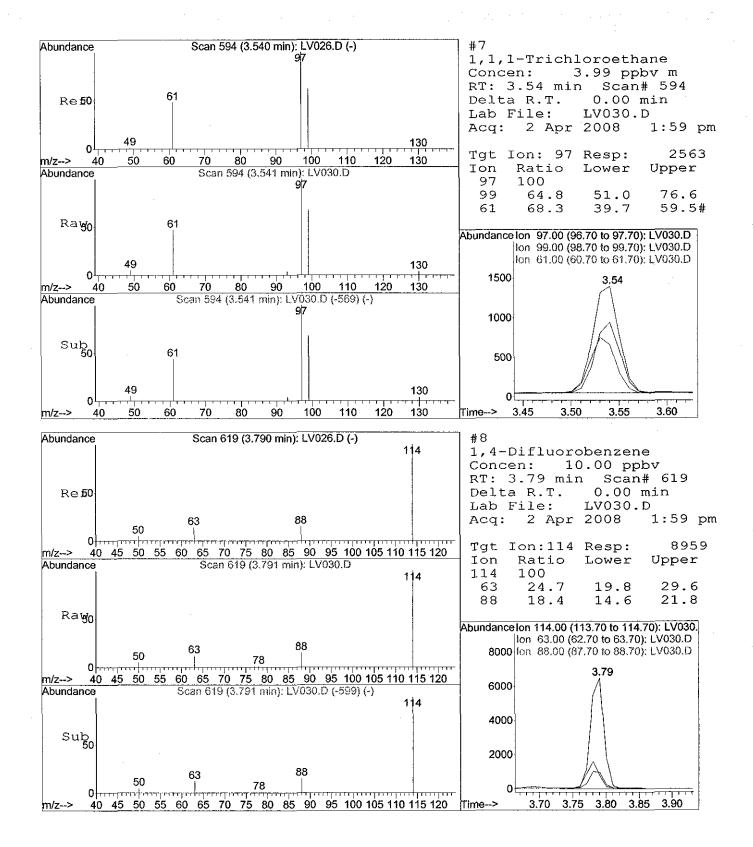


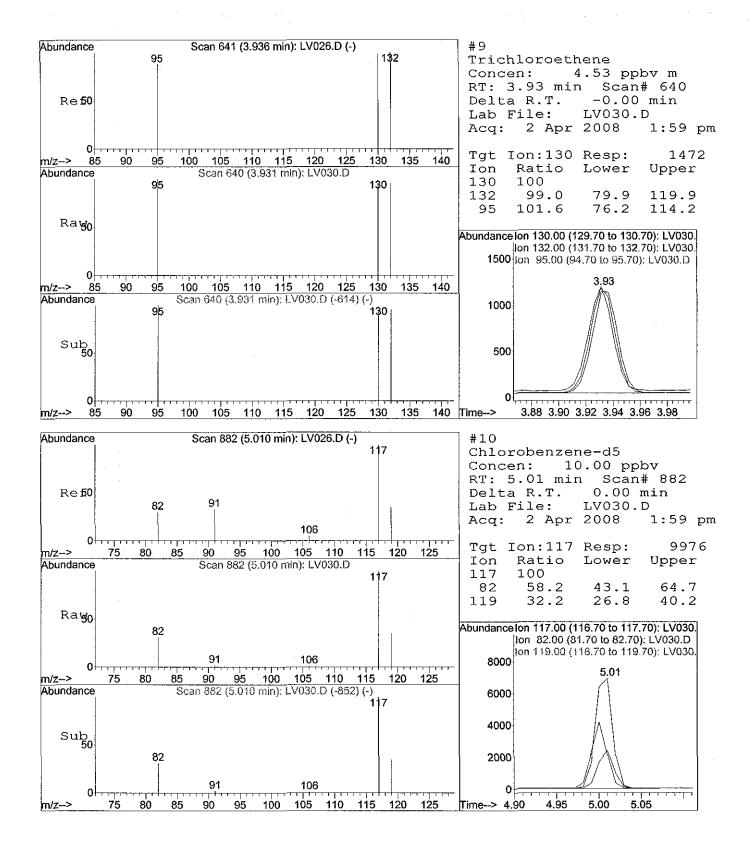


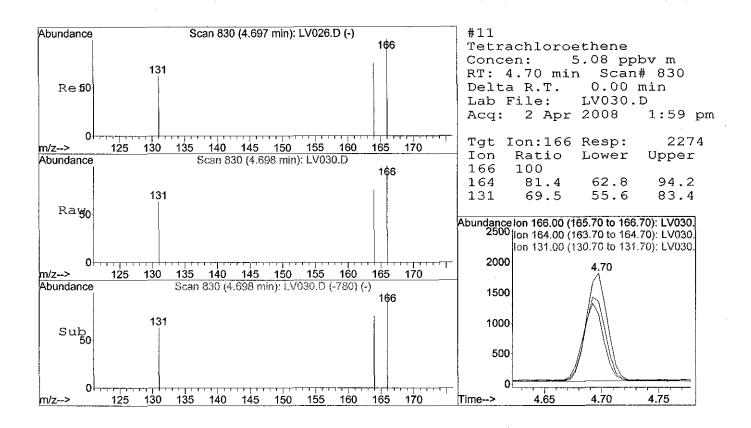


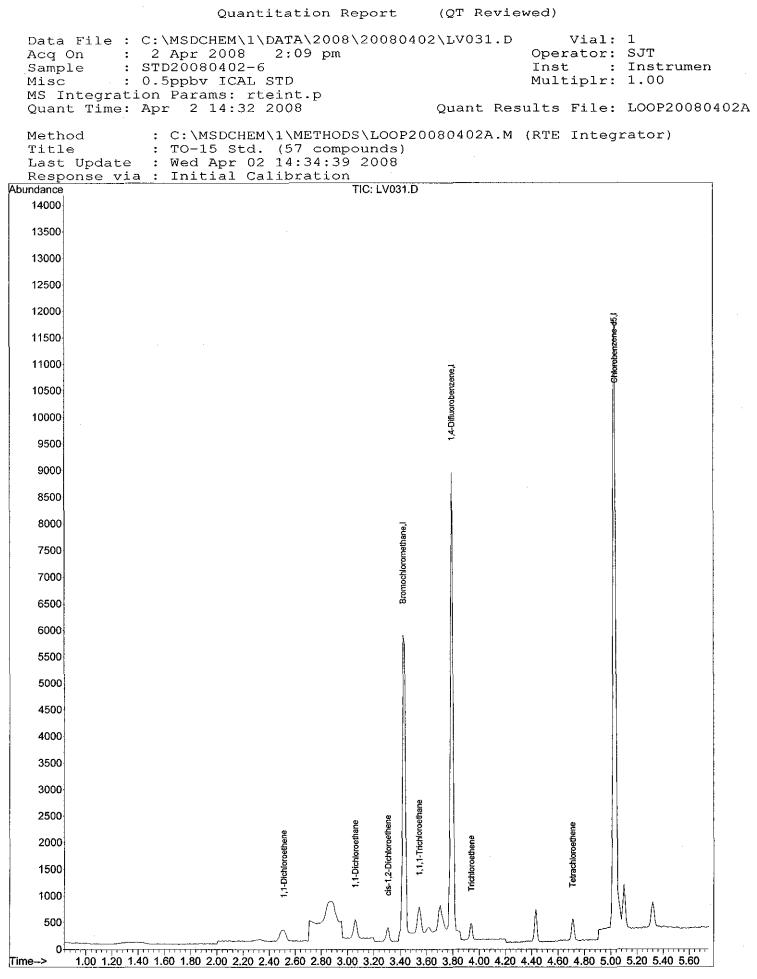


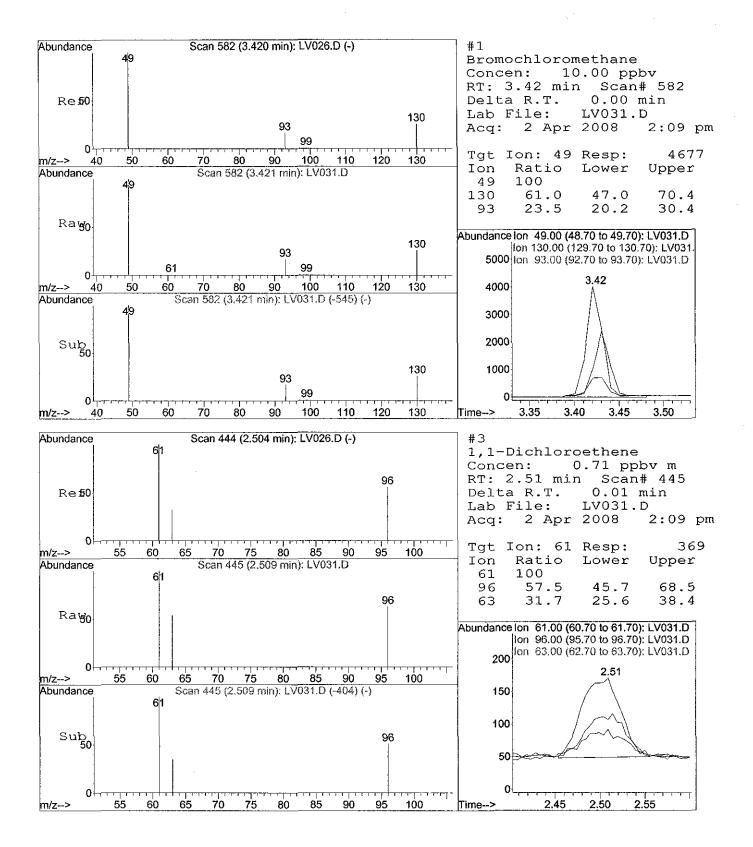


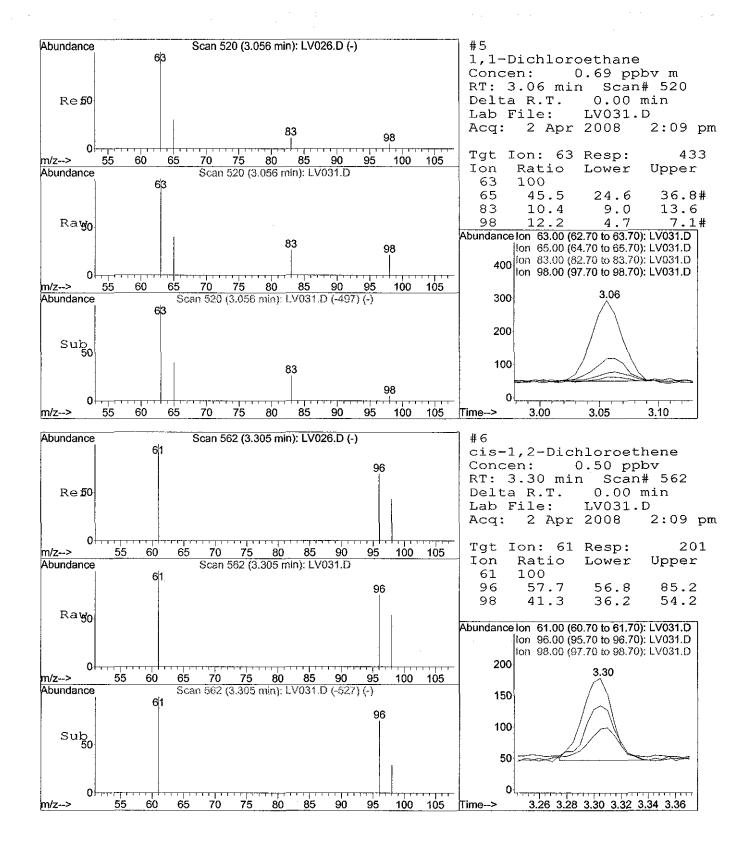

Quantitatio	n Repo	ort	(QT Revie	wed)		
Data File : C:\MSDCHEM\1\DATA\2008 Acq On : 2 Apr 2008 1:59 pm Sample : STD20080402-5 Misc : 5ppbv ICAL STD MS Integration Params: rteint.p Quant Time: Apr 02 14:05:07 2008			Op In Mu	Vial: erator: st : ltiplr: s File:	SJT Instr 1.00	rumen 20080402A.RE:
Quant Method : D:\MSDCHEM\1\LOO Title : TO-15 Std. (57 comp Last Update : Wed Apr 02 13:24:07 Response via : Initial Calibration DataAcq Meth : LOOPSIMP	ounds) 2008		M (RTE Int	egrator)	i	
Internal Standards	R.T.	QIon	Response	Conc Ur	nits I	Dev(Min)
-,		114	4951 8959 9976		ppbv	0.00
Target Compounds						Qvalue
 2) Vinyl Chloride 3) 1,1-Dichloroethene 4) trans-1,2-Dichloroethene 5) 1,1-Dichloroethane 	1.27 2.48 2.87 3.05			3.74 3.59	ppbv ppbv	99
6) cis-1,2-Dichloroethene	3.29 3.54 3.93 4.70	61 97 130	1487	3.50 3.99 4.53	ppbv ppbv ppbv	96

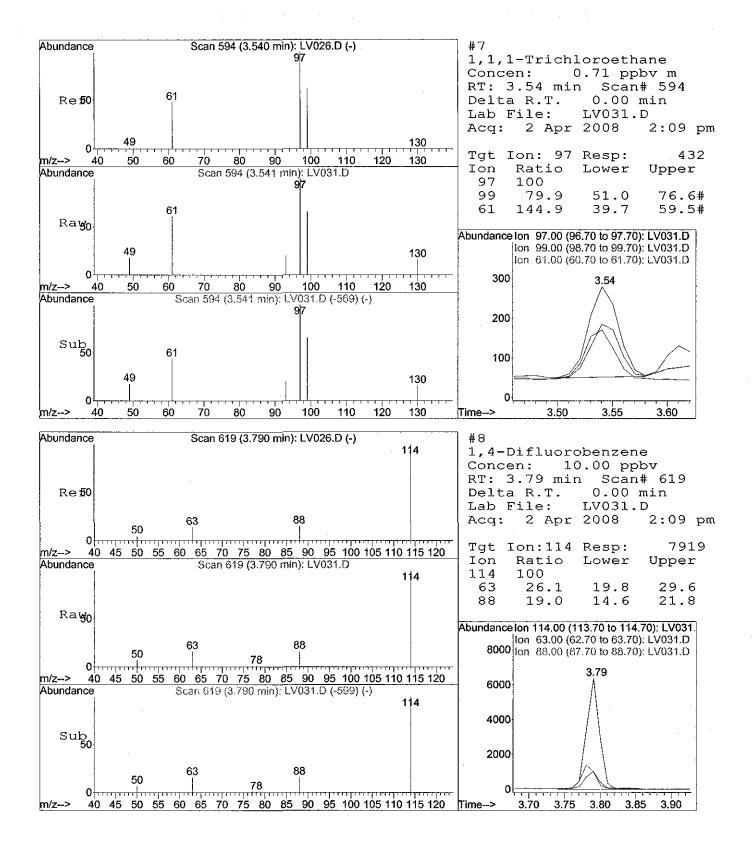


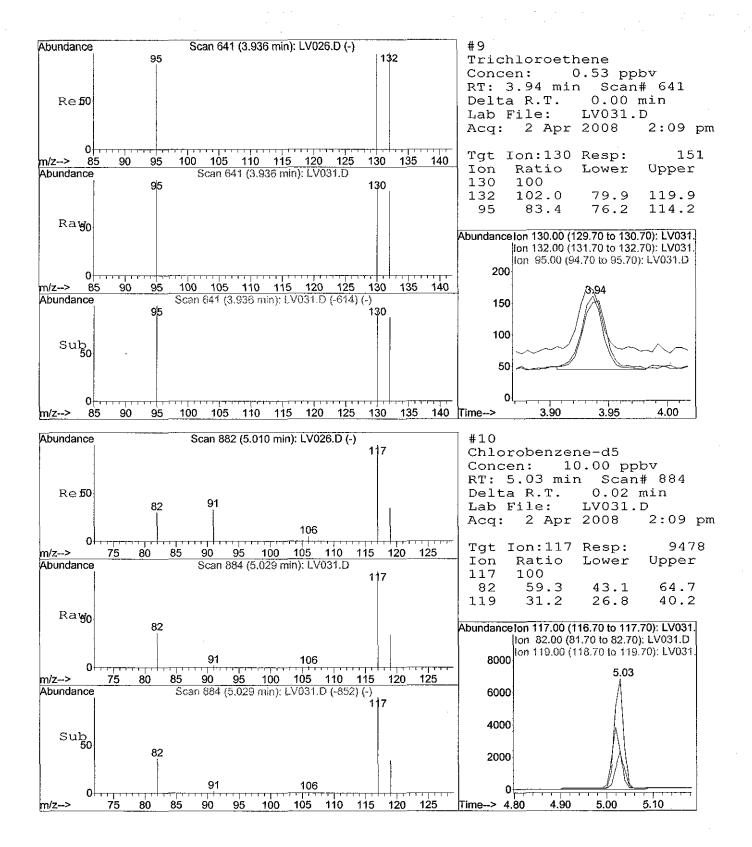


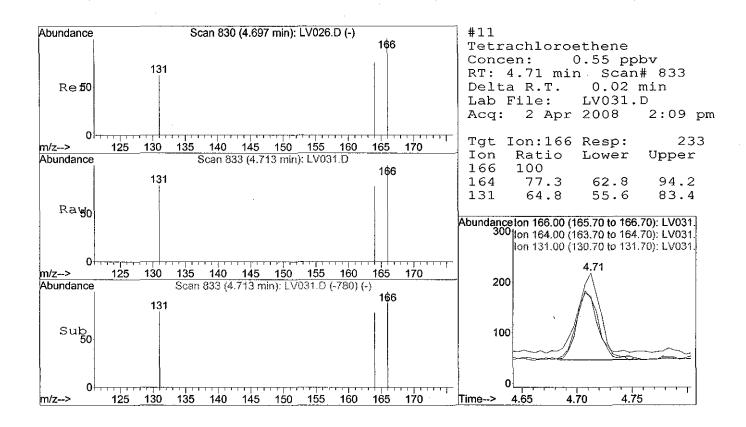







Data File : C:\MSDCHEM\1\DATA\2008 Acq On : 2 Apr 2008 2:09 pm Sample : STD20080402-6 Misc : 0.5ppbv ICAL STD MS Integration Params: rteint.p Quant Time: Apr 02 14:15:18 2008			Op In Mu	Vial: erator: st : ltiplr: s File:	SJT Instr 1.00	
Quant Method : D:\MSDCHEM\1\LOO Title : TO-15 Std. (57 comp Last Update : Wed Apr 02 13:24:07 Response via : Initial Calibration DataAcq Meth : LOOPSIMP	ounds) 2008 1			-		
Internal Standards	R.T.	QION	Response	Conc Ui	nits D	ev(Min)
	3.79	114	4677 7919 9478	10.00	ppbv	0.00 0.00 0.02
	3.06	63	433m	0.69	ppbv ppbv	Qvalue 88
7) 1,1,1-Trichloroethane	3.54 3.94	97 130	201 432m 151 233	0.71 0.53	ppbv ppbv ppbv ppbv	93





Page 6

Evaluate Continuing Calibration Report

-10.4

-23.6

-7.7

0.0

0.0

-22.9 110

-18.4

-21.4 107

-3.9 105

109

106

106

96

94

107

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

Acq (Sampi Misc	<pre>File : D:\MSDCHEM\1\DATA\200 On : 2 Apr 2008 15:36 le : STD20080402-7</pre>	8\20080402\LV032.D	Vial: 1 Operator: SJT Inst : Instrumen Multiplr: 1.00
		pounds) 0 2008	(RTE Integrator)
	RRF : 0.000 Min. Rel. RRF Dev : 30% Max. Rel.	Area : 50% Max. Area : 150%	R.T. Dev 0.50min
	Compound	AvgRF CCRF	%Dev Area% Dev(min)
1 I 2	Bromochloromethane Vinyl Chloride		0.0 100 0.00 -17.8 110 0.00

1.095

0.951

1.330

0.760

1.312

1.000

0.343

1.000

0.428

1.209

1.175

1.432

0.923

1.363

1.000

0.406

1.000

0.526

1,1-Dichloroethene

trans-1,2-Dichloroethene

1,1-Dichloroethane

cis-1,2-Dichloroethene

1,1,1-Trichloroethane

1,4-Difluorobenzene

Trichloroethene

Chlorobenzene-d5

Tetrachloroethene

3

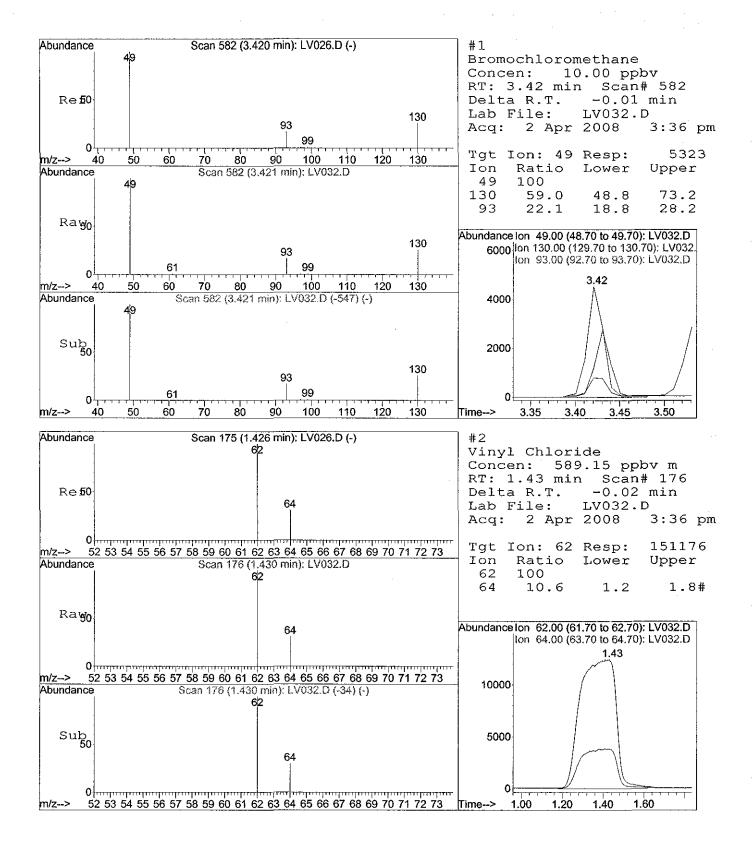
4

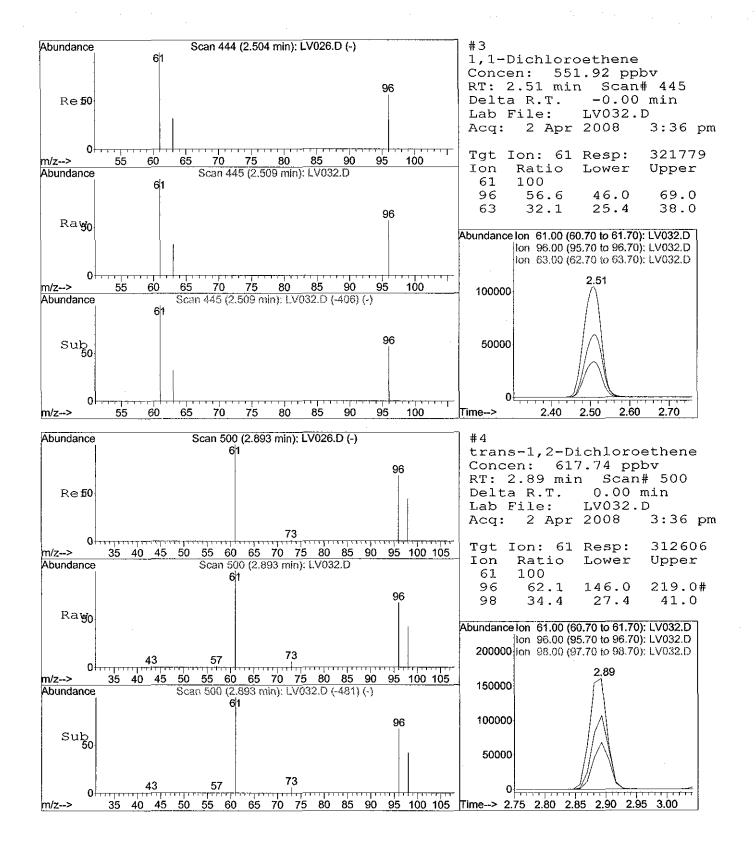
5

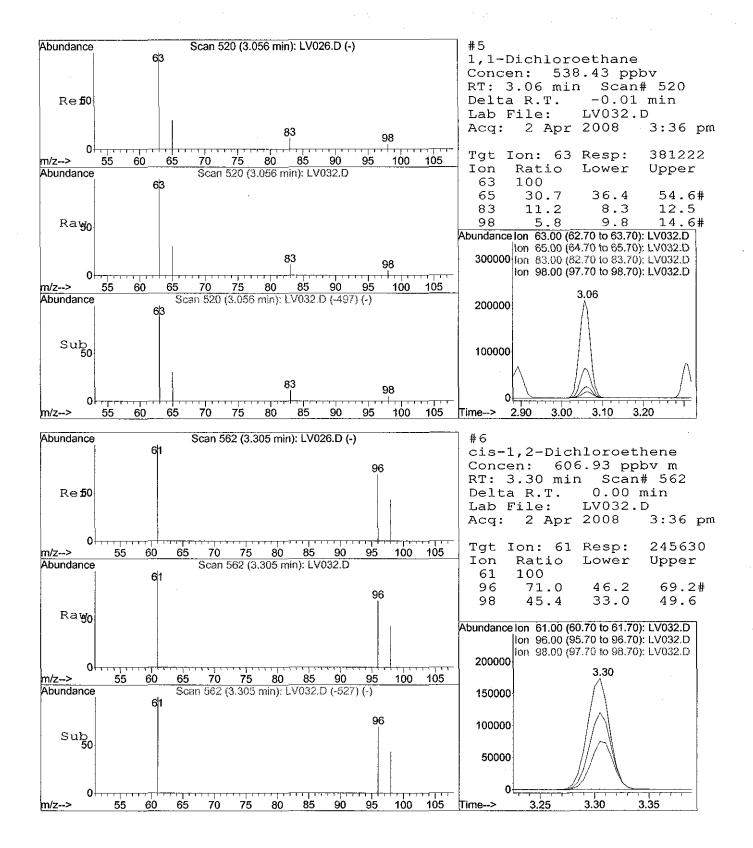
6

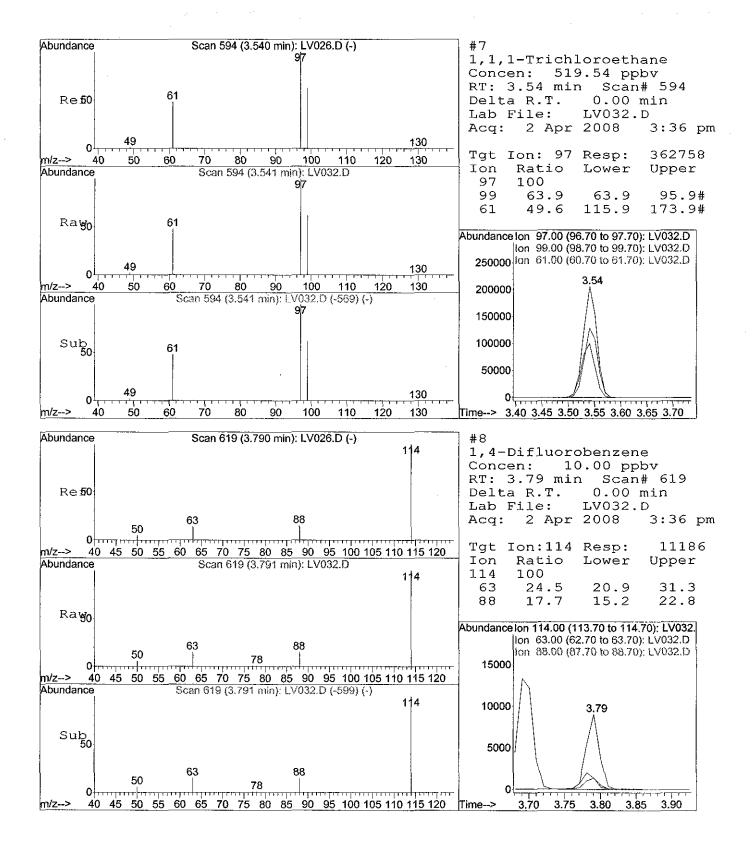
7

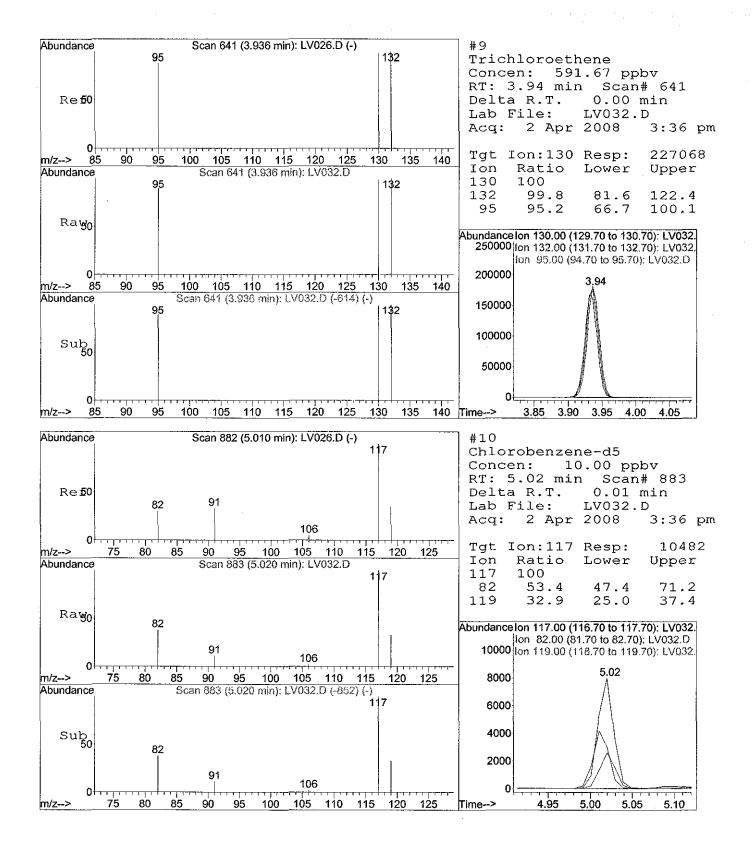
9

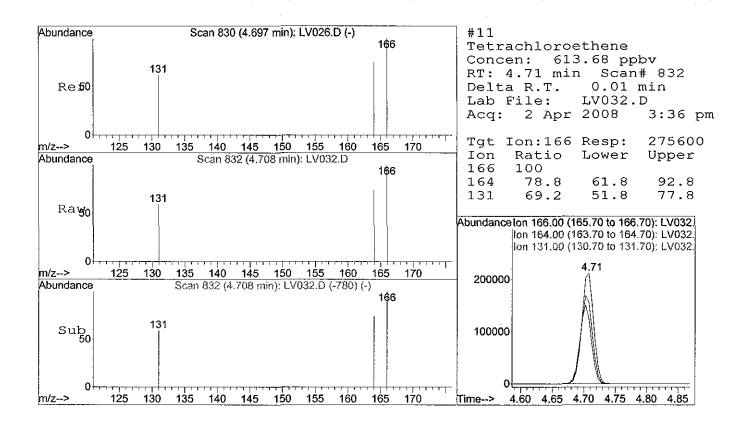

10 I


11


8 I

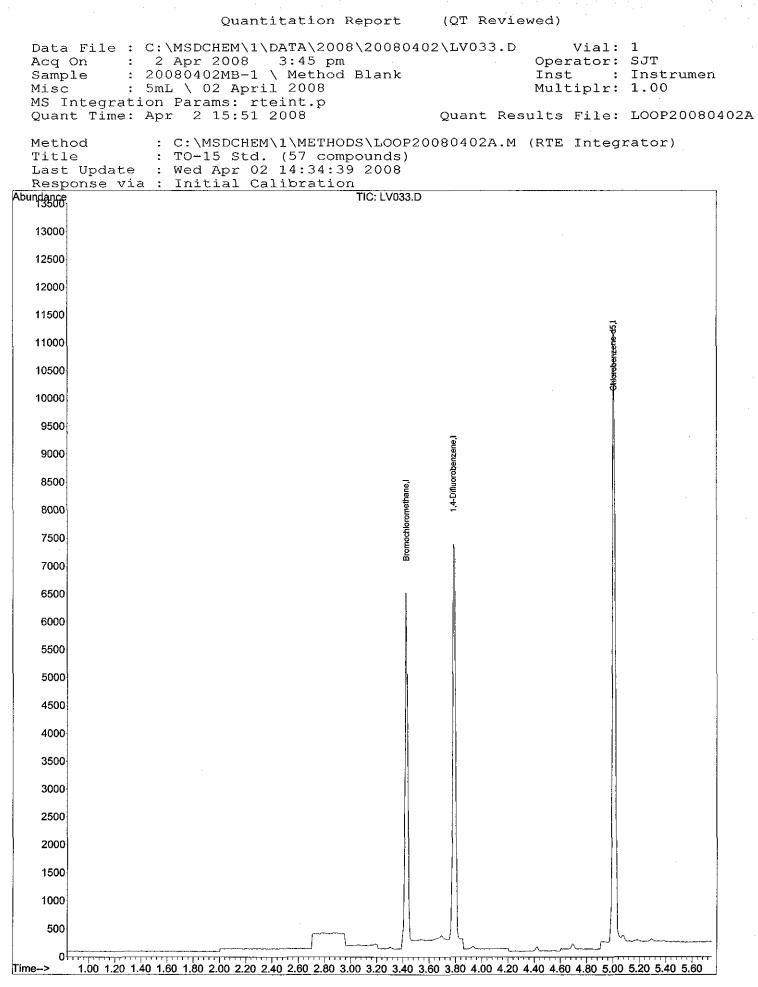

Quantitatio	n Repo	ort	(QT Revie	wed)			
Data File : C:\MSDCHEM\1\DATA\2008 Acq On : 2 Apr 2008 3:36 pm Sample : STD20080402-7 Misc : 500ppbv 2ND SOURCE MS Integration Params: rteint.p Quant Time: Apr 02 15:45:18 2008			Op In	Vial: erator: st : ltiplr: s File:	SJT Instr 1.00		02A.RE
Quant Method : D:\MSDCHEM\1\LOO Title : TO-15 Std. (57 comp Last Update : Wed Apr 02 14:34:39 Response via : Initial Calibration DataAcq Meth : LOOPSIMP	ounds) 2008		M (RTE Int	egrator)		
Internal Standards	R.T.	QION	Response	Conc U	nits I	Dev(Mi	n)
-,		114	5323 11186 10482		ppbv	Ο.	00 00 00
Target Compounds 2) Vinyl Chloride 3) 1,1-Dichloroethene 4) trans-1,2-Dichloroethene	1.43 2.51 2.89		321779	589.15 551.92 617.74	vdqq		99 29
 5) 1,1-Dichloroethane 6) cis-1,2-Dichloroethene 	3.06 3.30	63 61	381222 245630m	538.43 606.93	ppbv ppbv	#	82
9) Trichloroethene	3.54 3.94 4.71	97 130 166	227068	519.54 591.67 613.68	ppbv		44 93 97

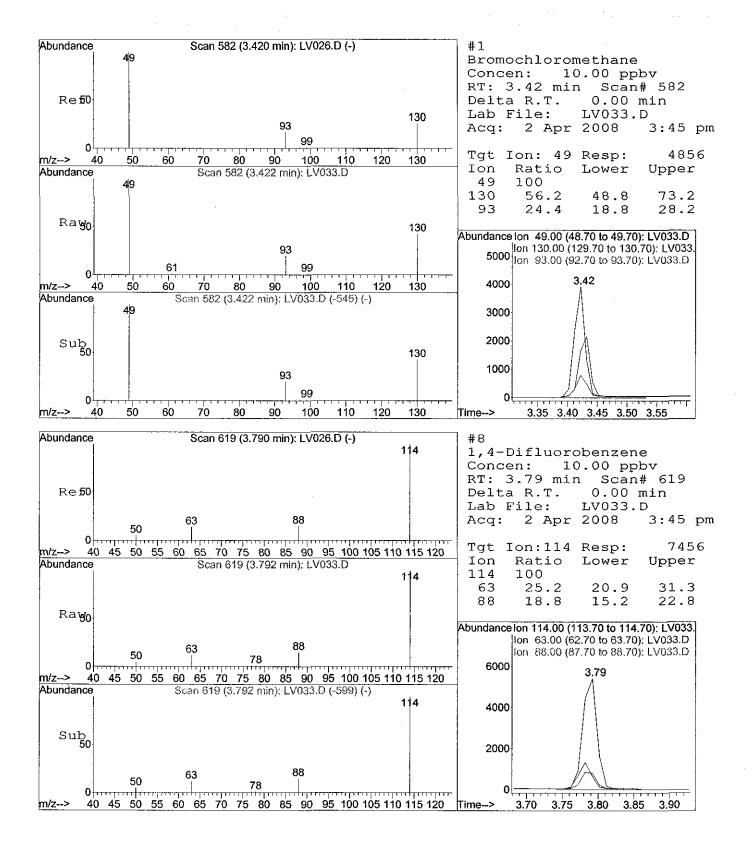

	Quantitation Report (QT Reviewed)
Acq (Samp Misc	File : C:\MSDCHEM\1\DATA\2008\20080402\LV032.DVial: 1On : 2 Apr 2008 3:36 pmOperator: SJTLe : STD20080402-7Inst : Instrumen: 500ppbv 2ND SOURCEMultiplr: 1.00htegration Params: rteint.pOperator: SIT
Quan	Time: Apr 2 15:45 2008 Quant Results File: LOOP20080402A
Resp Abundance	
1000000	
950000	
900000	
850000	
000008	
750000	
700000	
650000	tene age
600000	Trichloroethene Terrachloroethene
550000	boroethann T
500000	ethene octhene 1.1.1-Trichhoroethane Trich
450000	Dichiar Dichiar
400000	1.1-Dichloroethane
350000	
300000	
250000	
200000	
150000	edő, f
100000	Vinyl Chloride Chlorobenzene, 45
50000	King and the second sec
Time>	1.00 1.20 1.40 1.60 1.80 2.00 2.20 2.40 2.60 2.80 3.00 3.20 3.40 3.60 3.80 4.00 4.20 4.40 4.60 4.80 5.00 5.20 5.40 5.60

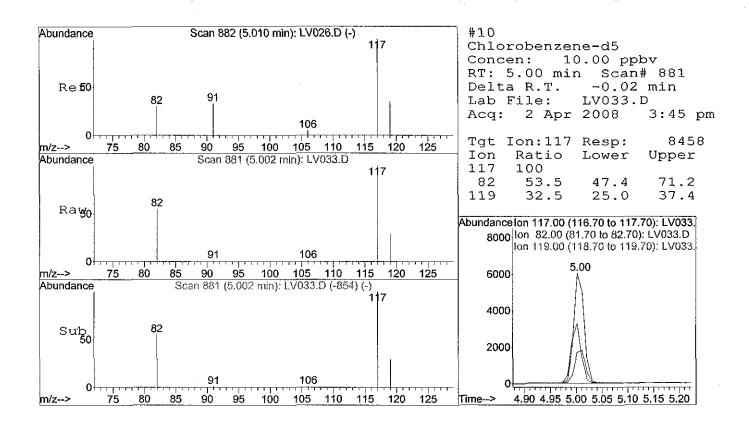


APPENDIX D

Method Blank, Lot Blank, and Soil Gas Sample Quantitation Reports Little Valley VI Extent Study Little Valley, New York April 2008

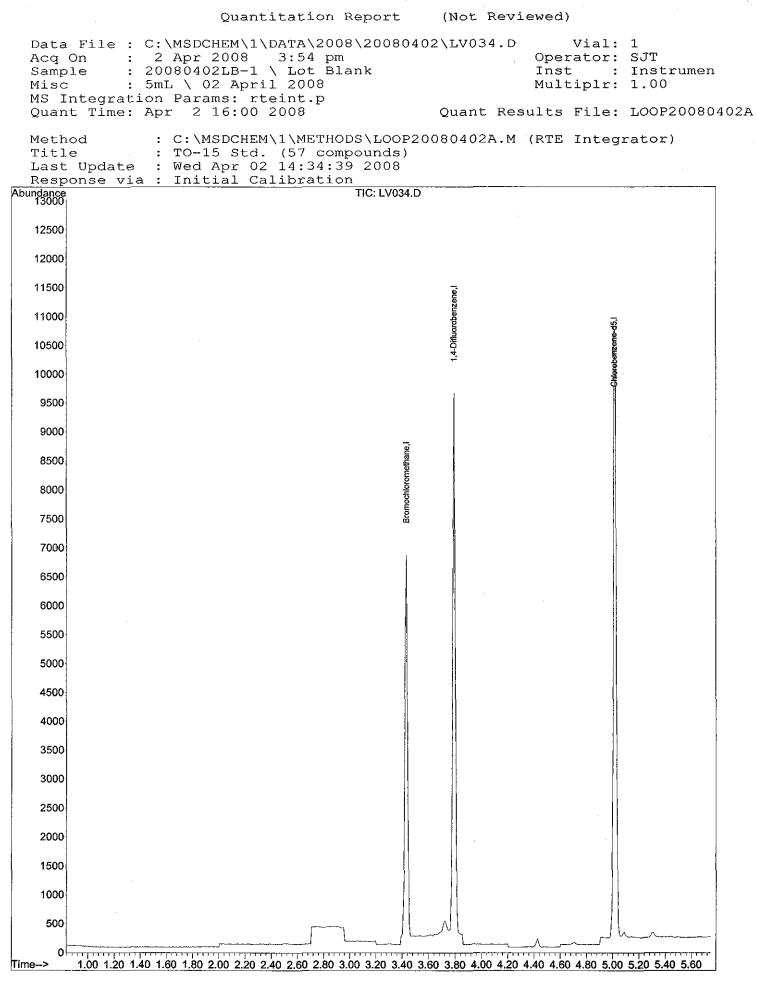

$O_{11} = D$	+ i	$+ \rightarrow +$	ion	Report
Vuan	. L. L.	Lau		LEDOLL

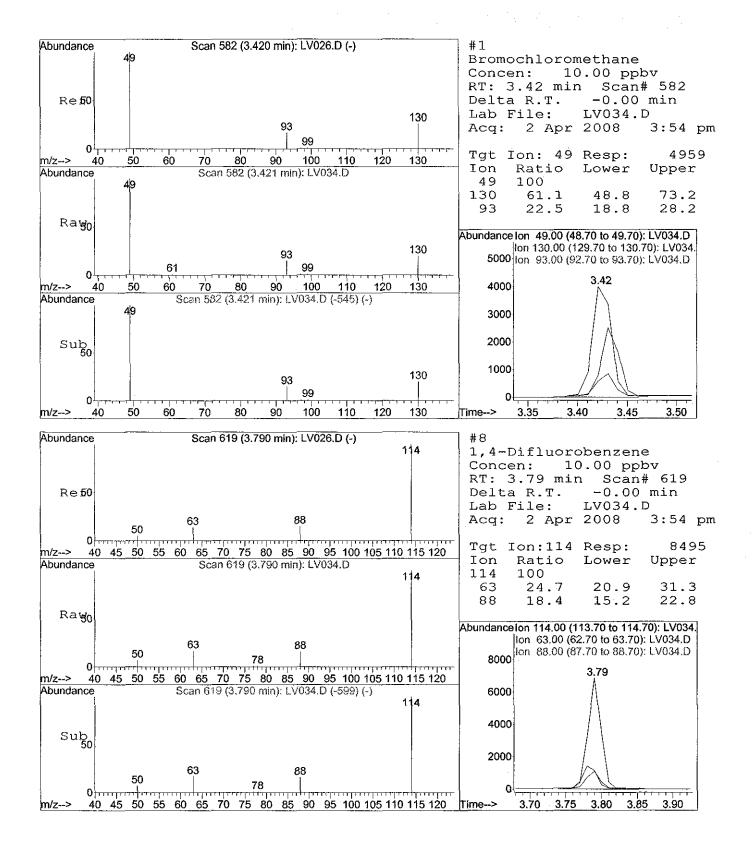

(QT Reviewed)

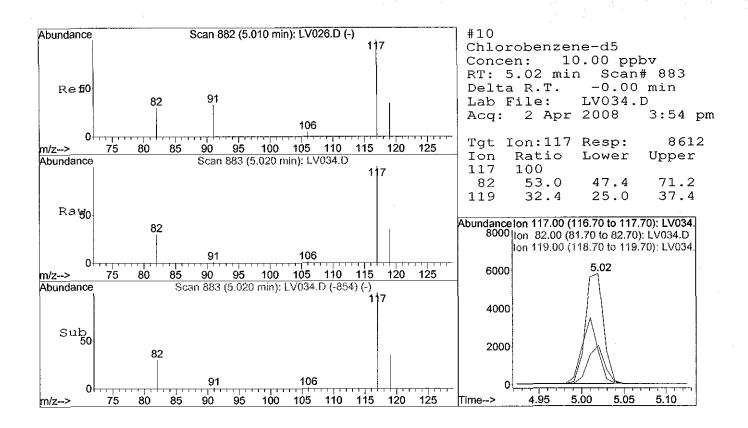

Data File : C:\MSDCHEM\1\DATA\2008 Acq On : 2 Apr 2008 3:45 pm Sample : 20080402MB-1 \ Method Misc : 5mL \ 02 April 2008 MS Integration Params: rteint.p Quant Time: Apr 02 15:51:29 2008			Op In Mu	Vial: erator: st : ltiplr: s File:	SJT Instru 1.00	
Quant Method : D:\MSDCHEM\1\LOO Title : TO-15 Std. (57 comp Last Update : Wed Apr 02 15:46:00 Response via : Initial Calibration DataAcq Meth : LOOPSIMP	ounds) 2008		M (RTE Int	egrator))	
Internal Standards	R.T.	QIOn	Response	Conc Ur	nits De	v(Min)
-,	3.79		4856 7456 8458	10.00	ppbv ppbv ppbv	

Target Compounds

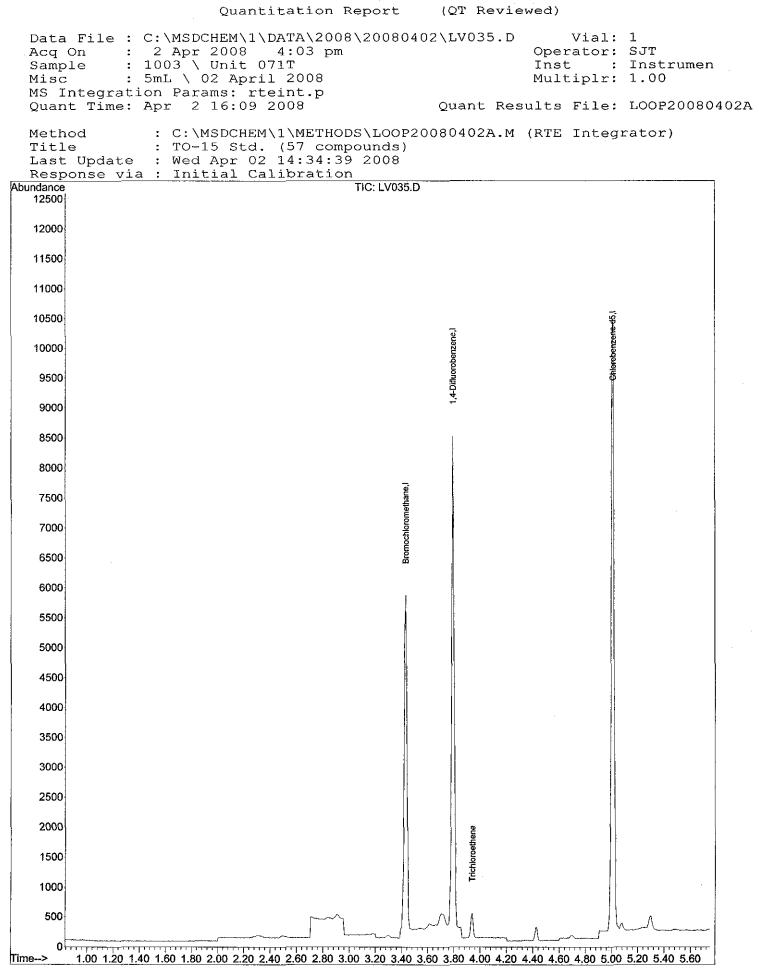
Qvalue

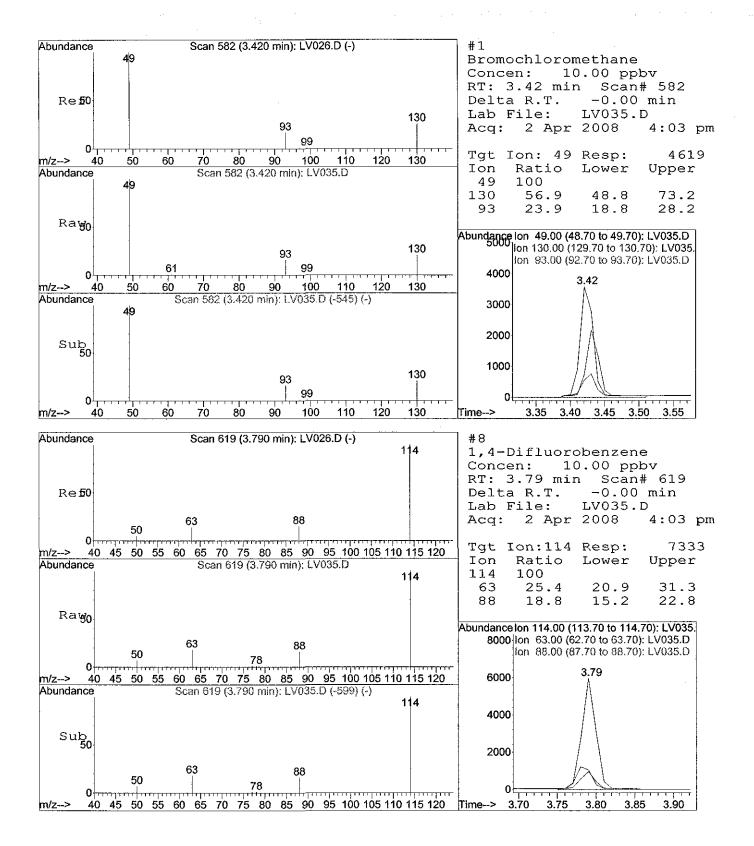


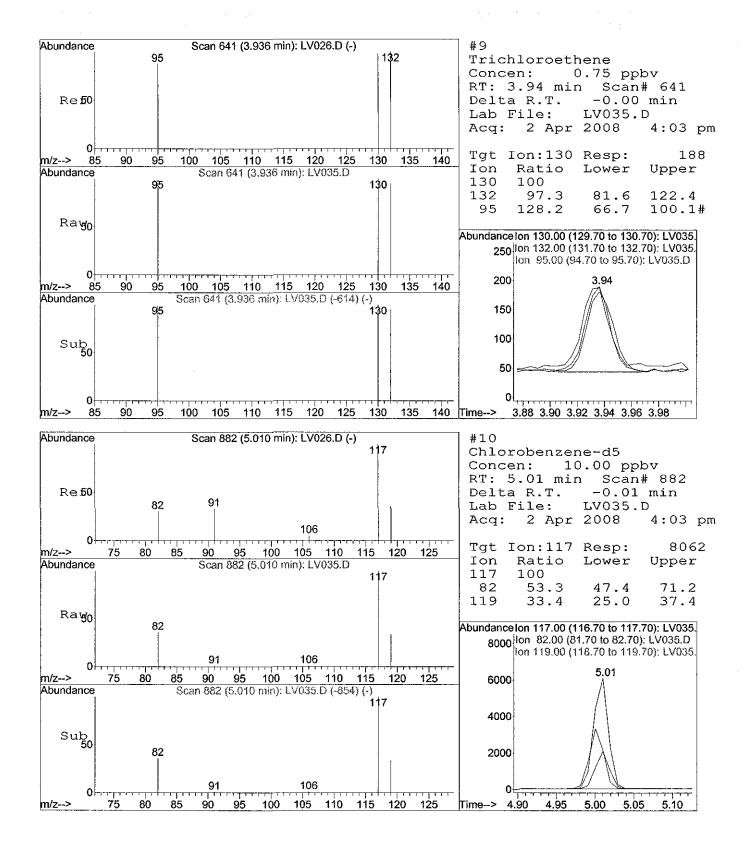

Quantitatio	n Repo	ort	(Not Revi	ewed)		
Data File : C:\MSDCHEM\1\DATA\2008 Acq On : 2 Apr 2008 3:54 pm Sample : 20080402LB-1 \ Lot Bla Misc : 5mL \ 02 April 2008 MS Integration Params: rteint.p Quant Time: Apr 02 16:00:34 2008			Op In Mu	Vial: 1 erator: SJ st : In ltiplr: 1. s File: LC	strumen	A.RES
Quant Method : D:\MSDCHEM\1\LOO Title : TO-15 Std. (57 comp Last Update : Wed Apr 02 15:46:00 Response via : Initial Calibration DataAcq Meth : LOOPSIMP	ounds) 2008		M (RTE Int	egrator)		
Internal Standards	R.T.	QION	Response	Conc Unit	s Dev(Min)	
8) 1,4-Difluorobenzene	3.79				bv 0.00	


Target Compounds

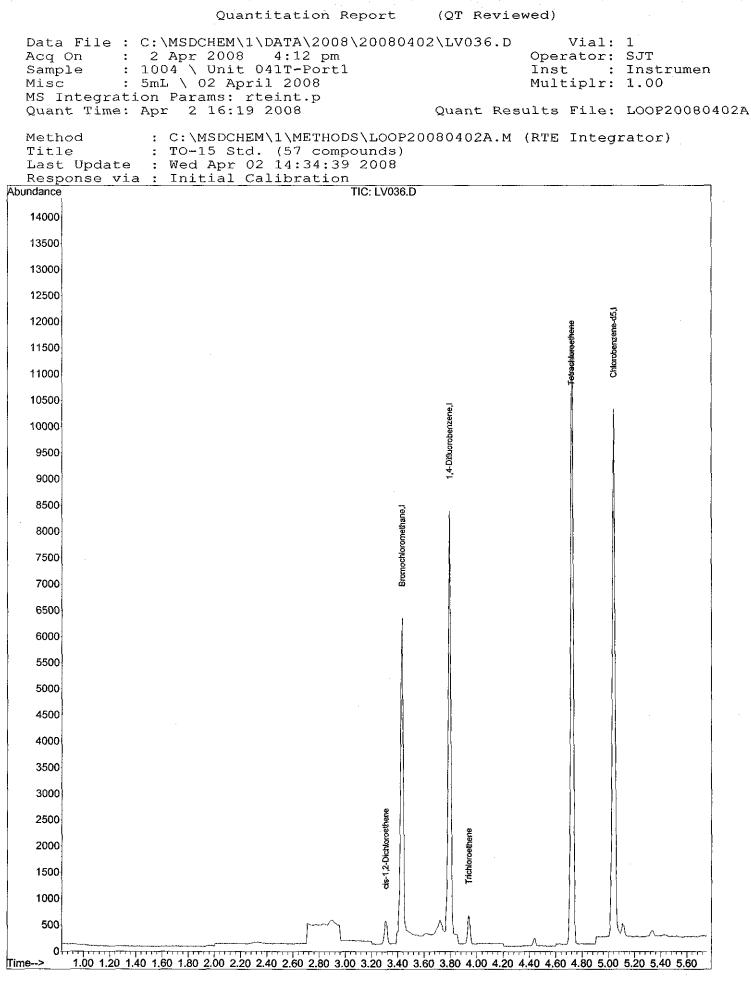
Qvalue

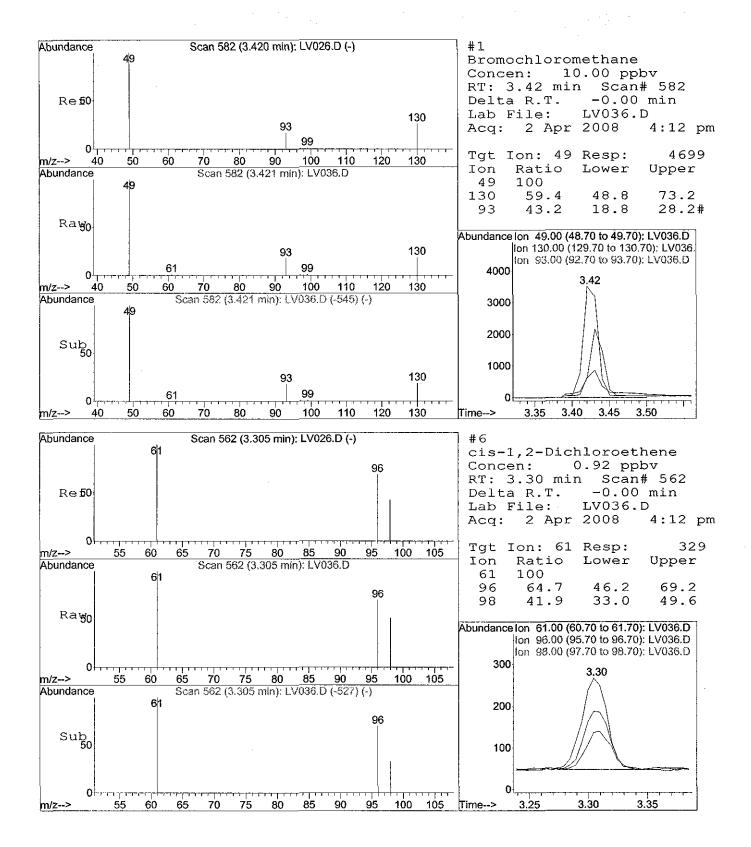

Quantitatio	n Repo	ort	(QT Revie	wed)		
Data File : C:\MSDCHEM\1\DATA\2008 Acq On : 2 Apr 2008 4:03 pm Sample : 1003 \ Unit 071T Misc : 5mL \ 02 April 2008 MS Integration Params: rteint.p Quant Time: Apr 02 16:09:23 2008	\2008(Op In Mu	Vial: erator: st : ltiplr: s File:	SJT Instrur 1.00	nen 080402A.RES
Quant Method : D:\MSDCHEM\1\LOO Title : TO-15 Std. (57 comp Last Update : Wed Apr 02 15:46:00 Response via : Initial Calibration DataAcq Meth : LOOPSIMP	ounds) 2008		M (RTE Int	egrator)	
Internal Standards	R.T.	Qlon	Response	Conc U	nits Dev	v(Min)
 Bromochloromethane 1,4-Difluorobenzene Chlorobenzene-d5 	3.79	49 114 117	7333	10.00	ppbv ppbv ppbv	0.00 0.00 0.00

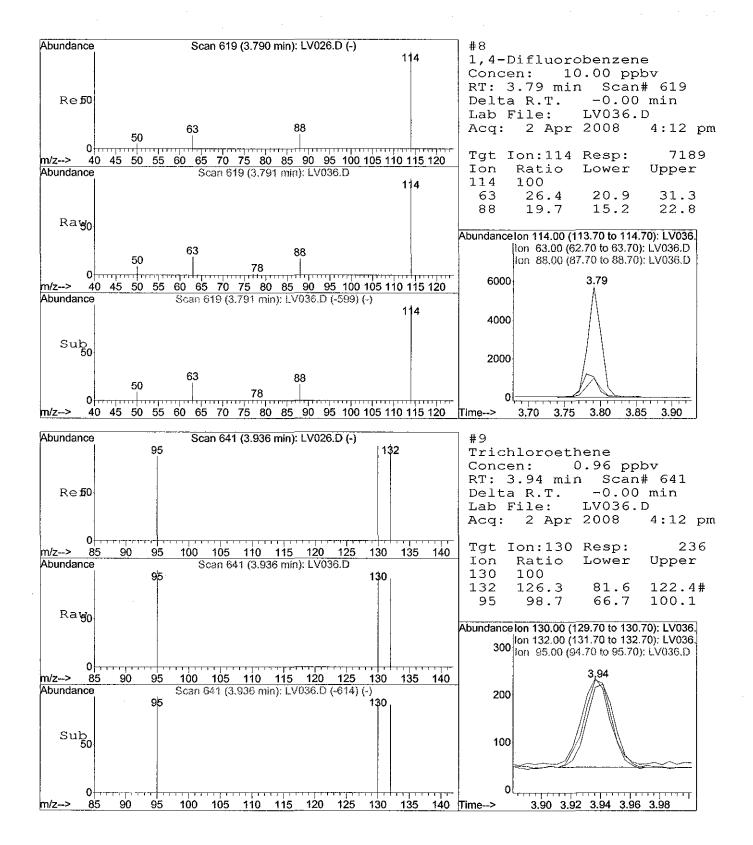

3.94 130

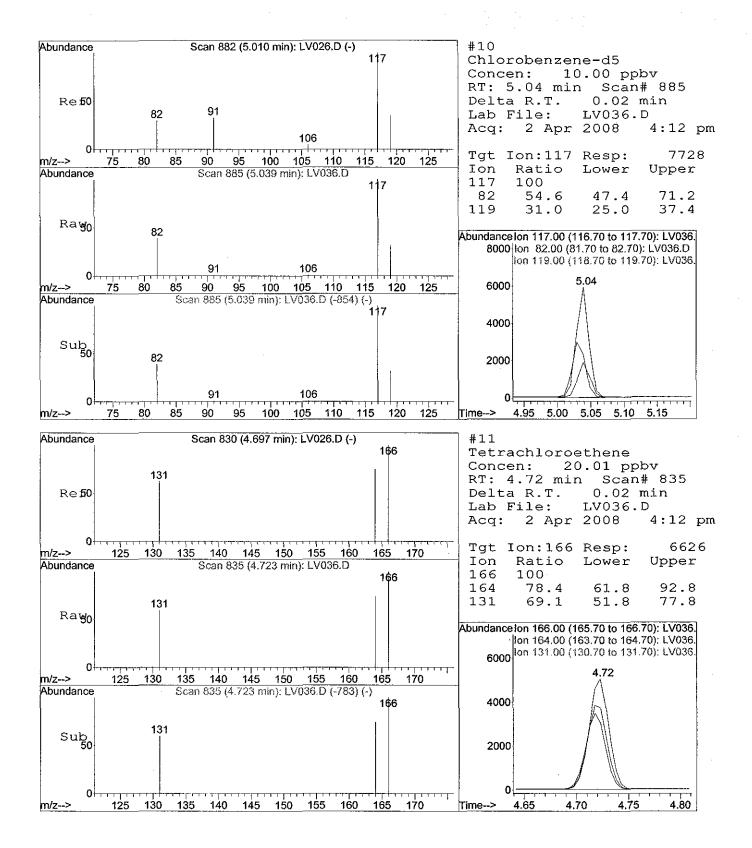

Qvalue

188 0.75 ppbv # 75


Target Compounds 9) Trichloroethene



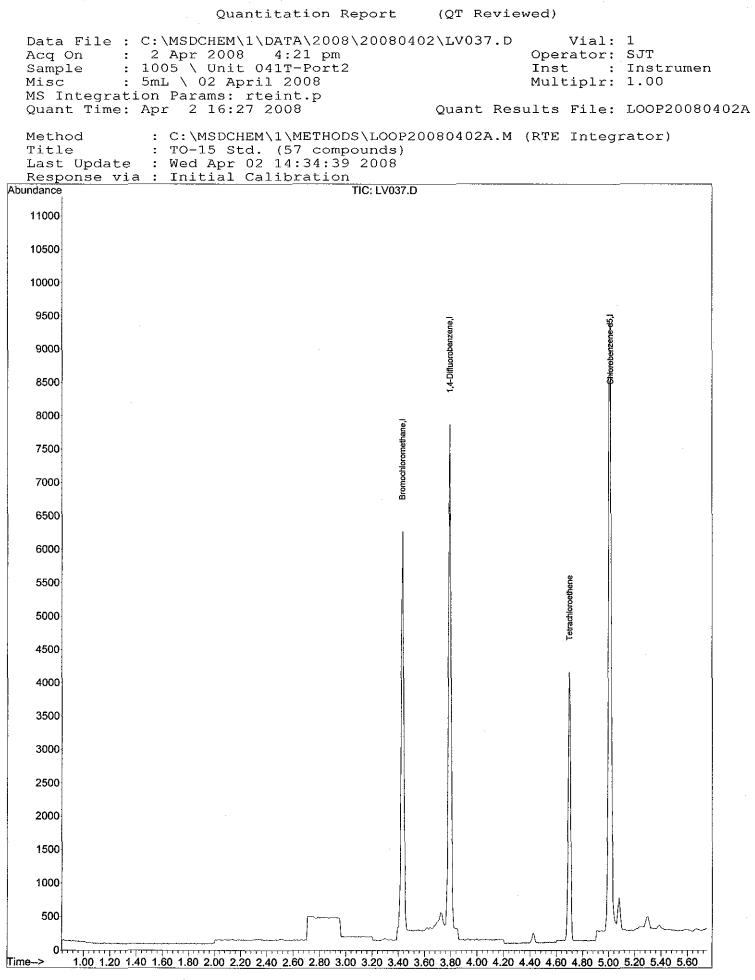


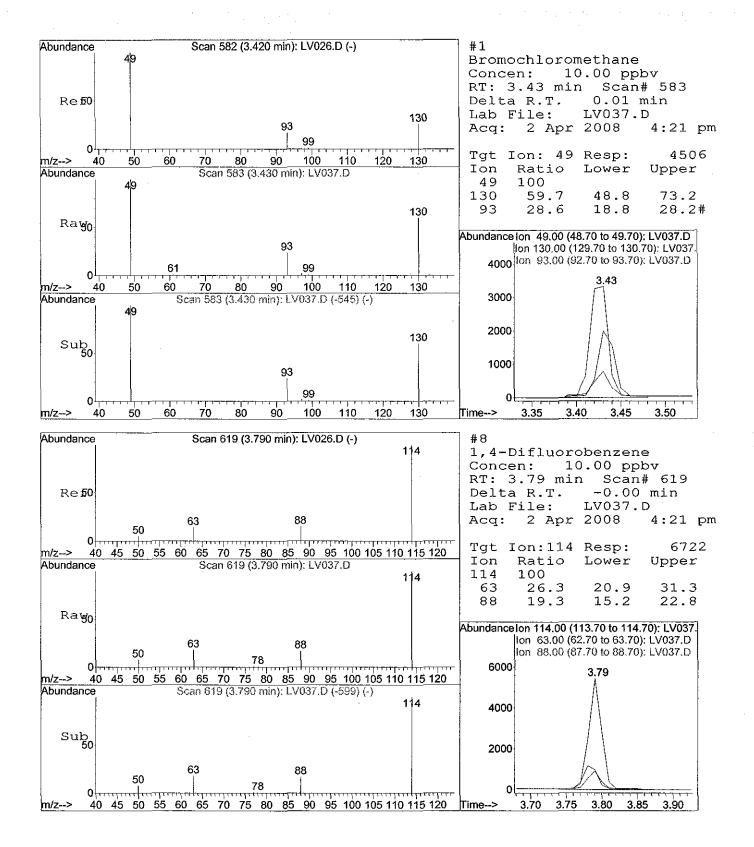


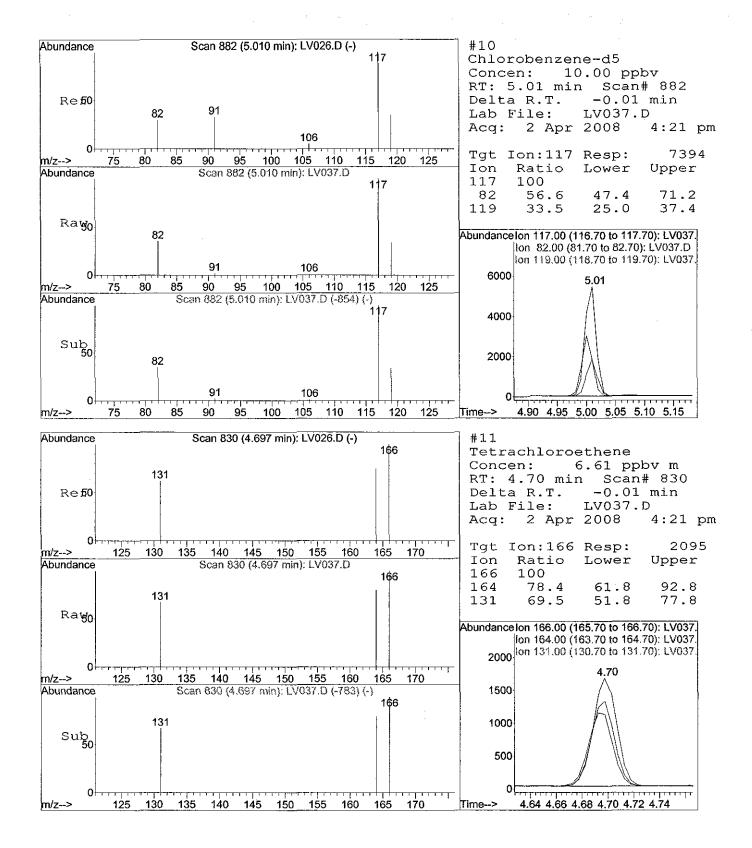
Quantitation	n Repo	ort	(QT Revie	wed)		
Data File : C:\MSDCHEM\1\DATA\2008 Acq On : 2 Apr 2008 4:12 pm Sample : 1004 \ Unit 041T-Port1 Misc : 5mL \ 02 April 2008 MS Integration Params: rteint.p Quant Time: Apr 02 16:19:25 2008		·	Op In Mu	Vial: erator: st : ltiplr: s File:	SJT Instr 1.00	
Quant Method : D:\MSDCHEM\1\LOO Title : TO-15 Std. (57 compo- Last Update : Wed Apr 02 15:46:00 Response via : Initial Calibration DataAcq Meth : LOOPSIMP	ounds 2008		M (RTE Int	egrator)	·
Internal Standards	R.T.	QIon	Response	Conc Ui	nits I	Dev(Min)
	3.79	49 114 117			ppbv	
9) Trichloroethene			236			# 79

Quantitatic	on Repo	ort	(QT Revie	wed)		
Data File : C:\MSDCHEM\1\DATA\2008 Acq On : 2 Apr 2008 4:21 pm Sample : 1005 \ Unit 041T-Port2 Misc : 5mL \ 02 April 2008 MS Integration Params: rteint.p Quant Time: Apr 02 16:27:16 2008	:	·	Op In Mu	erator: SJ st : In ltiplr: 1.	T strumen	¢
Quant Method : D:\MSDCHEM\1\LOC Title : TO-15 Std. (57 comp Last Update : Wed Apr 02 15:46:00 Response via : Initial Calibration DataAcq Meth : LOOPSIMP)P2008) ounds) 2008	- 0402A.				-
Internal Standards	R.T.	QIon	Response	Conc Unit	s Dev(Min)	
 Bromochloromethane 1,4-Difluorobenzene Chlorobenzene-d5 	3.79	114	6722	10.00 pp	bv 0.00 bv 0.00 bv 0.00 bv 0.00	
Target Compounds					Qvalue	

4.70 166

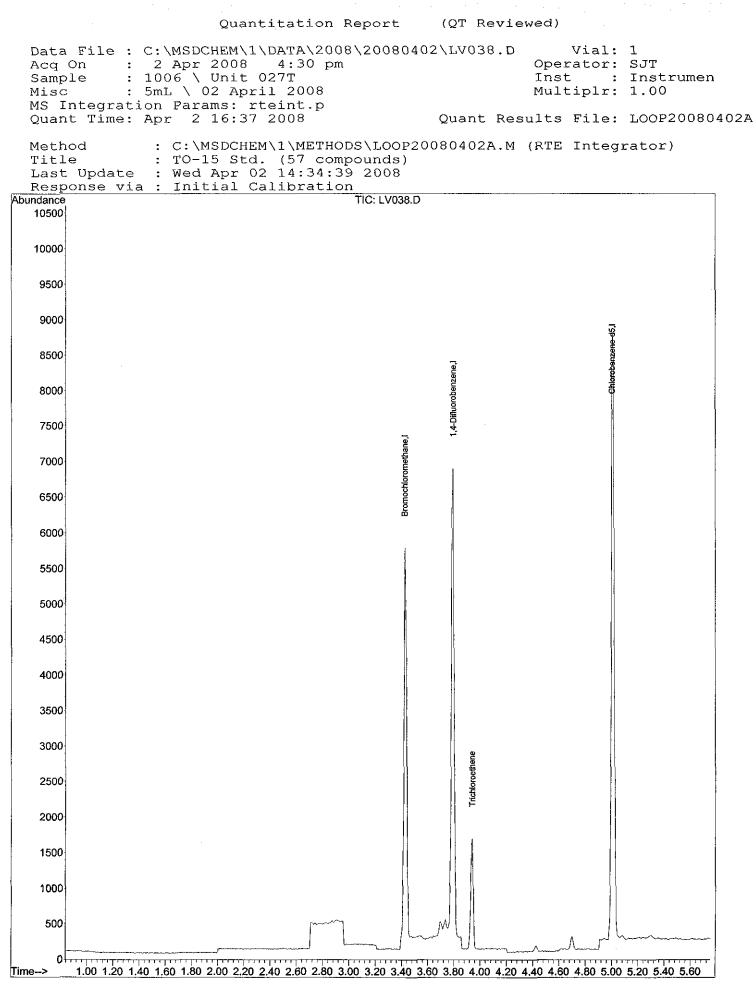

6.61 ppbv

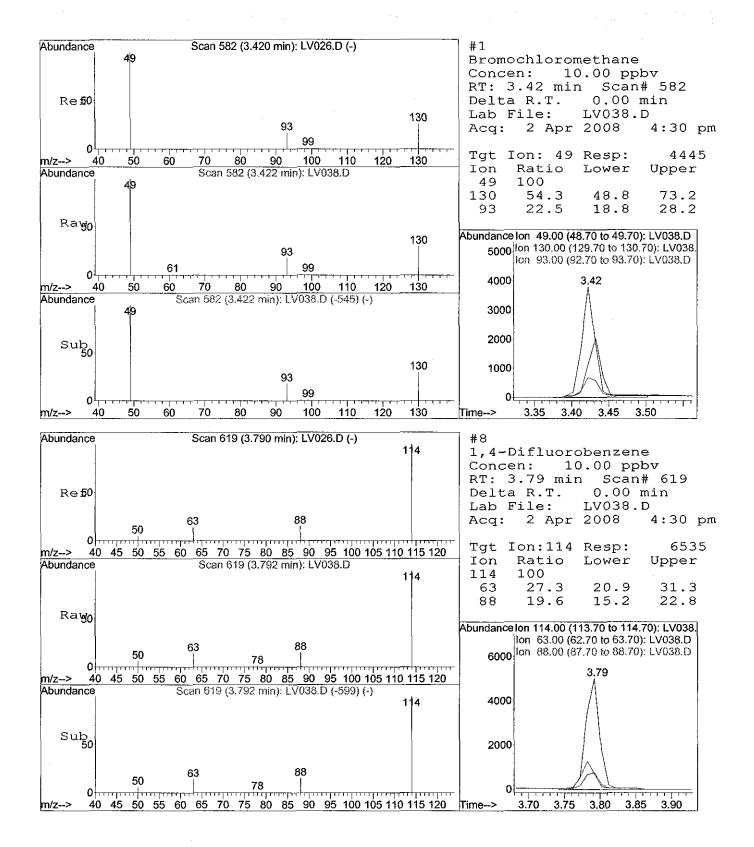


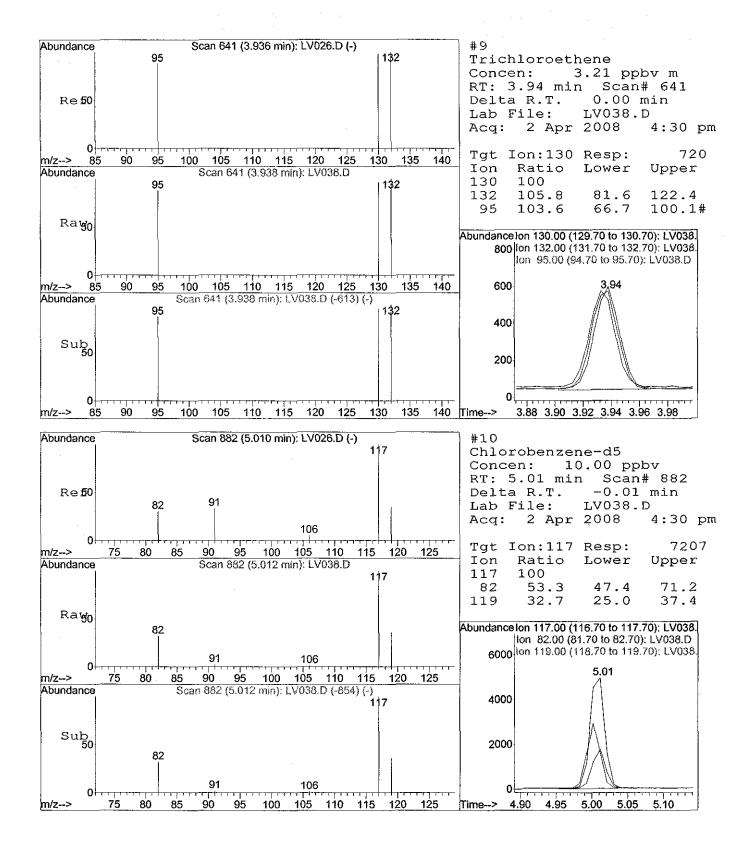

2095m

Target Compounds 11) Tetrachloroethene

(#) = qualifier out of range (m) = manual integration (+) = signals summed LV037.D LOOP20080402A.M Wed Apr 16 11:36:06 2008 Page 1 Page 1

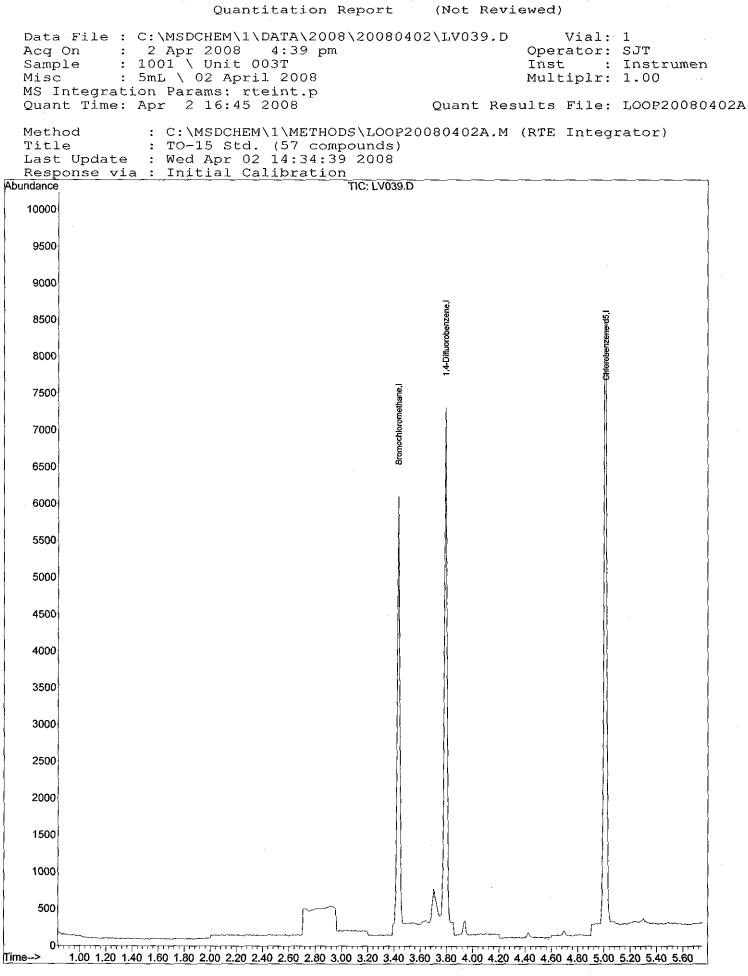


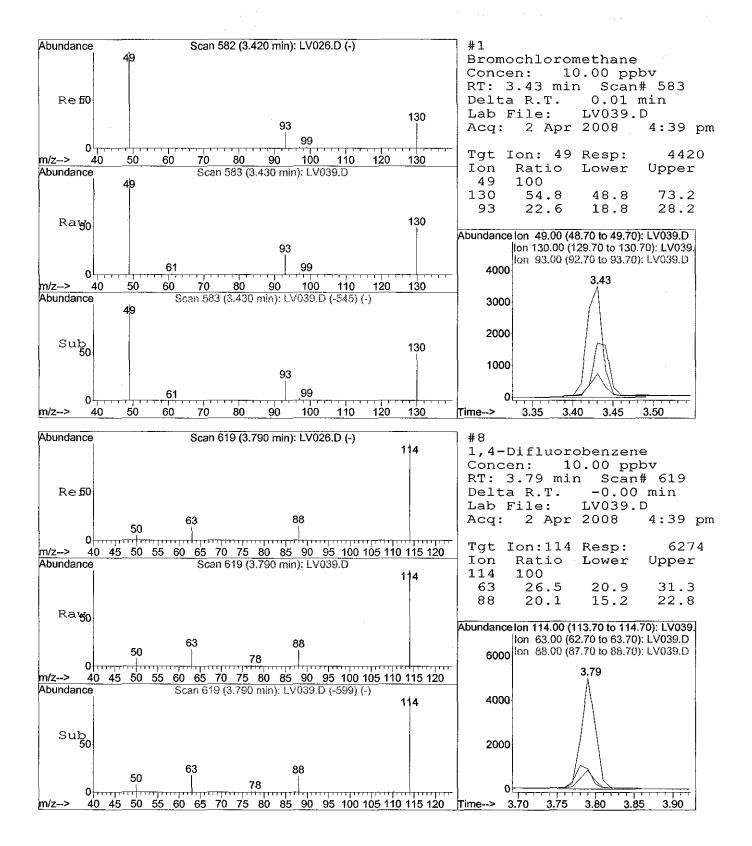


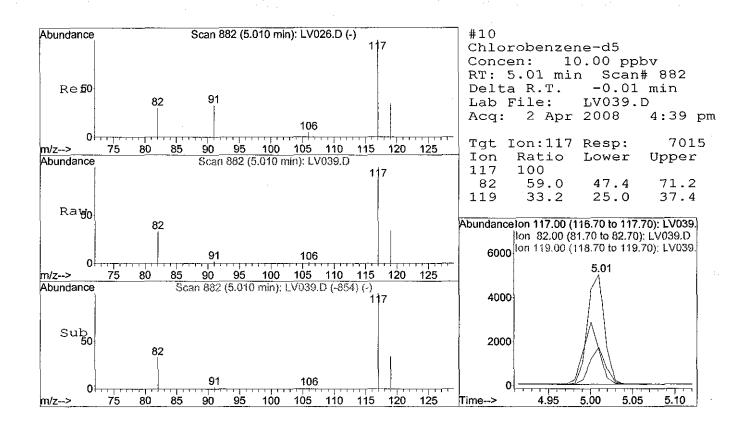


Quantitatio	n Repo	ort	(QT Revie	wed)		
Data File : C:\MSDCHEM\1\DATA\2008 Acq On : 2 Apr 2008 4:30 pm Sample : 1006 \ Unit 027T Misc : 5mL \ 02 April 2008 MS Integration Params: rteint.p Quant Time: Apr 02 16:37:07 2008	\2008(·	Op In Mu	Vial: erator: st : ltiplr: s File:	SJT Instr 1.00	umen 0080402A.RE:
Quant Method : D:\MSDCHEM\1\LOC Title : TO-15 Std. (57 comp Last Update : Wed Apr 02 15:46:00 Response via : Initial Calibration DataAcq Meth : LOOPSIMP	ounds 2008		M (RTE Int	egrator))	
Internal Standards	R.T.	QIon	Response	Conc Ur	nits D	ev(Min)
	3.79	114	4445 6535 7207	10.00 10.00 10.00	ppbv ppbv ppbv	0.00 0.00 0.00
Target Compounds 9) Trichloroethene	3.94	130	720m	3.21		Qvalue

(#) = qualifier out of range (m) = manual integration (+) = signals summed LV038.D LOOP20080402A.M Wed Apr 16 11:36:08 2008 Page 1 Page 1

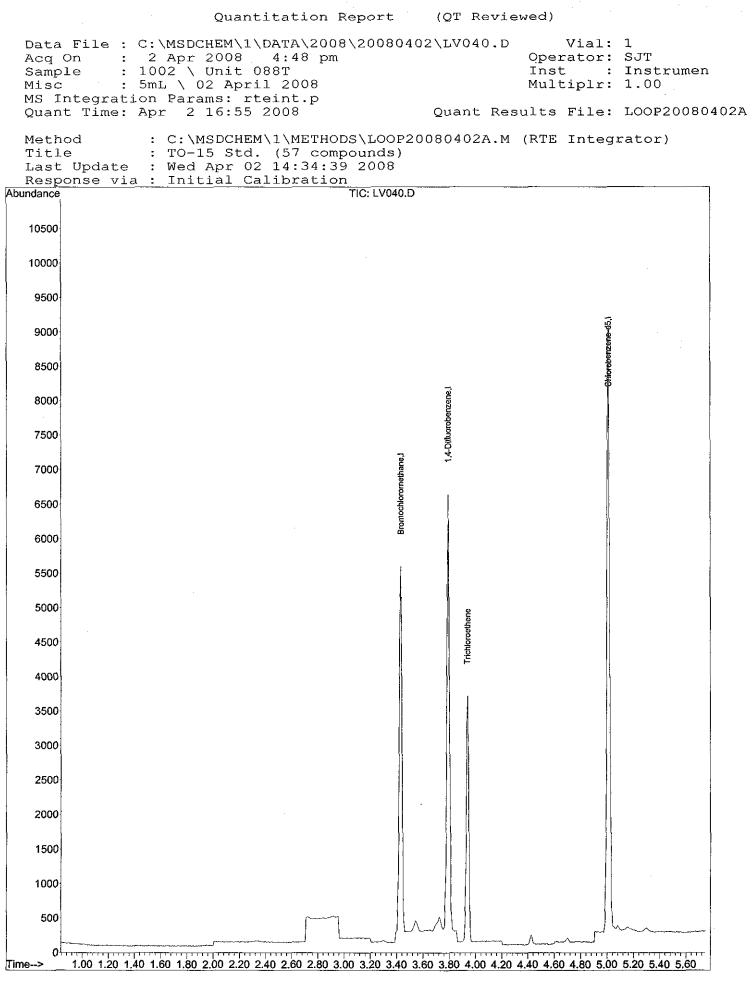

Quancicación Report	Quan	titation	Report	(1
---------------------	------	----------	--------	----

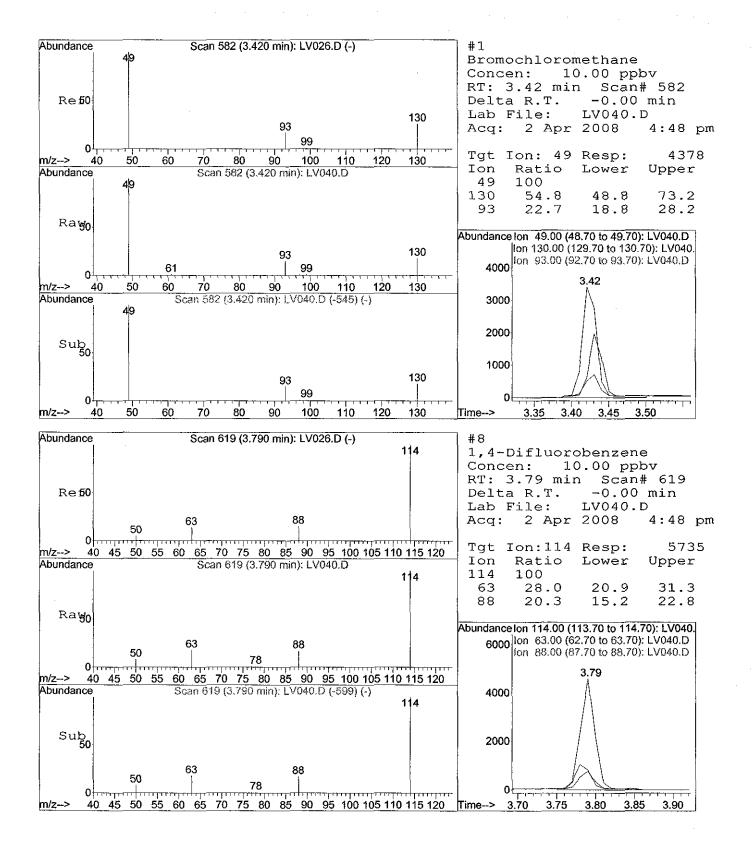

Target Compounds

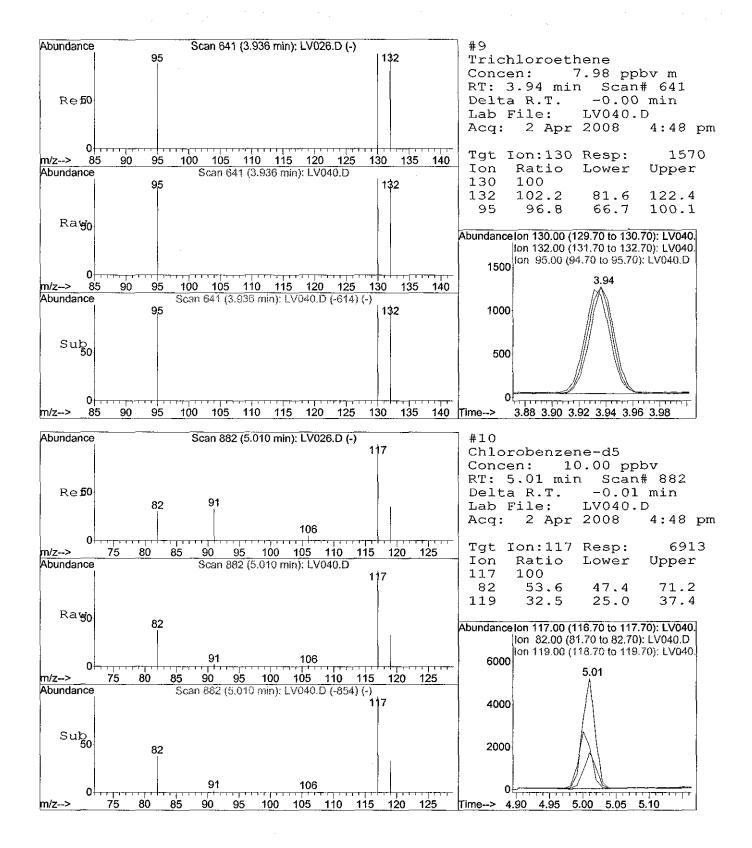

(Not Reviewed)

Qvalue

Data File : C:\MSDCHEM\1\DATA\2008 Acq On : 2 Apr 2008 4:39 pm Sample : 1001 \ Unit 003T Misc : 5mL \ 02 April 2008 MS Integration Params: rteint.p Quant Time: Apr 02 16:45:33 2008			Op In Mu	Vial: 1 erator: S st : I ltiplr: 1 s File: L	JT nstrumen	2A.RE
Quant Method : D:\MSDCHEM\1\LOO Title : TO-15 Std. (57 comp Last Update : Wed Apr 02 15:46:00 Response via : Initial Calibration DataAcq Meth : LOOPSIMP	ounds) 2008		M (RTE Int	egrator)		
Internal Standards	R.T.		Response		ts Dev(Min	1)
-, - · · · · · · · ·	· –	49 114	4420 6274 7015	10.00 p	opbv 0.0 opbv 0.0	0







Data File : C:\MSDCHEM\1\DATA\2008 Acq On : 2 Apr 2008 4:48 pm Sample : 1002 \ Unit 088T Misc : 5mL \ 02 April 2008 MS Integration Farams: rteint.p Quant Time: Apr 02 16:55:07 2008	\2008		Op In Mu	Vial: erator: st : ltiplr: s File:	SJT Insti 1.00	rumen 20080402A.RE:
Quant Method : D:\MSDCHEM\1\LOC Title : TO-15 Std. (57 comp Last Update : Wed Apr 02 15:46:00 Response via : Initial Calibration DataAcq Meth : LOOPSIMP	ounds 2008		M (RTE Int	egrator,)	
Internal Standards	R.T.	QIon	Response	Conc U	nits I	Dev(Min)
 Bromochloromethane 1,4-Difluorobenzene Chlorobenzene-d5 	3.79	114	4378 5735 6913	10.00	ppbv	0.00
Target Compounds 9) Trichloroethene	3.94	130	1570m	7.98	ppbv	Qvalue

(#) = qualifier out of range (m) = manual integration (+) = signals summed LV040.D LOOP20080402A.M Wed Apr 16 11:36:11 2008 Page 1 Page 1

APPENDIX E

Internal Standard QA-QC Report Little Valley VI Extent Study Little Valley, New York April 2008

GC/MS QA-QC Check Report

Tune File : C:\MSDCHEM\1\DATA\2008\20080402\LV025.D Tune Time : 2 Apr 2008 12:49 pm

Daily Calibration File : C:\MSDCHEM\1\DATA\2008\20080402\LV026.D

5345	11695	11143

File	Sample	Internal	Standard	Responses	
LV026.D	STD20080	5345	11695	11143	
LV027.D	STD20080	5407	12576	11481	
LV028.D	STD20080	5044	11220	10898	
LV029.D	STD20080	5084	9241	10101	
LV030.D	STD20080	4951	8959	9976	
LV031.D	STD20080	4677	7919	9478	
LV032.D	STD20080	5323	11186	10482	
LV033.D	20080402	4856	7456	8458	
LV034.D	20080402	4959	8495	8612	
LV035.D	1003 \ U	4619	7333	8062	
LV036.D	1004 \ U	4699	7189	7728	
LV037.D	1005 \ U	4506	6722*	7394	
LV038.D	1006 \ U	4445	6535*	7207	
LV039.D	1001 \ U	4420	6274*	7015	
LV040.D	1002 \ U	4378	5735*	6913	

t - fails 24hr time check * - fails criteria

Created: Wed Apr 16 11:53:25 2008 Instrumen

APPENDIX D REAC SUMMA[®]/Tedlar[®] Sampling Worksheets Little Valley VI Extent Study June 2008

Site Name: Little Valley	Lockheed Martin	WA Number: 210
	REAC, Edison NJ	EPA Contact: David Mickunas
Little Valley, NY	EP-C-04-032	REAC Contact: Amy DuBois

Sample #	0408-44319	0408-44320	0408-44321	0408-44322	0408-44323
EventID	Event 6				
Location	003	003	003	088	088
Sub Location	SS	Basement	First Floor	SS	Basement
Media	Summa Canister				
SUMMA #	AC00407	AC00917	AC01023	AC01322	AC00985
Orifice_ID	FC00297	FC00084	FC00409	FC00602	FC00448
Pump Fault	N	N	N	N	N
Start Date	4/2/2008	4/2/2008	4/2/2008	4/2/2008	4/2/2008
Stop Date	4/3/2008	4/3/2008	4/3/2008	4/3/2008	4/3/2008
Start Time	8:58:00 AM	8:59:00 AM	9:04:00 AM	9:30:00 AM	9:34:00 AM
Stop Time	8:40:00 AM	8:40:00 AM	8:40:00 AM	9:12:00 AM	9:15:00 AM
Flow Rate (Start)	3.4	3.4	3.4	3.5	3.7
Flow Rate Units	cc/min	cc/min	cc/min	cc/min	cc/min
Volume					
Vol Units	CC	CC	CC	CC	СС
Remarks					
Start_Pressure	-27	-27	-27	-28	-28
Stop_Pressure	-7	-7.5	-8	-7	-5
Analysis	TO15 - 6 compounds				

Sample #	0408-44324	0408-44325	0408-44326	0408-44327	0408-44328
EventID	Event 6				
Location	088	088	Unit 71	Unit 71	Unit 71
Sub Location	First Floor	AMBIENT	SS	Basement	Basement Dup
Media	Summa Canister				
SUMMA #	AC01032	AC01046	AC00518	AC00590	AC01060
Orifice_ID	FC00161	FC00572	FC00460	FC00634	FC00153
Pump Fault	N	N	N	N	N
Start Date	4/2/2008	4/2/2008	4/2/2008	4/2/2008	4/2/2008
Stop Date	4/3/2008	4/3/2008	4/3/2008	4/3/2008	4/3/2008
Start Time	9:35:00 AM	9:36:00 AM	10:56:00 AM	10:59:00 AM	10:59:00 AM
Stop Time	9:16:00 AM	9:18:00 AM	9:57:00 AM	10:00:00 AM	10:00:00 AM
Flow Rate (Start)	3.6	3.4	3.2	3.5	3
Flow Rate Units	cc/min	cc/min	cc/min	cc/min	cc/min
Volume					
Vol Units	СС	CC	CC	CC	СС
Remarks					
Start_Pressure	-27	-28	-27	-28	-28
Stop_Pressure	-5	-5	-7.5	-6	-6
Analysis	TO15 - 6 compounds				

Site Name: Little Valley	Lockheed Martin	WA Number: 210
	REAC, Edison NJ	EPA Contact: David Mickunas
Little Valley, NY	EP-C-04-032	REAC Contact: Amy DuBois

Sample #	0408-44329	0408-44330	0408-44331	0408-44332	0408-44333
EventID	Event 6	Event 6	Event 6	Event 6	Event 6
Location	Unit 71	Unit 41	Unit 41	Unit 41	Unit 41
Sub Location	First Floor	First Floor	SS	SS Dup	Basement
Media	Summa Canister	Summa Canister	Summa Canister	Summa Canister	Summa Canister
SUMMA #	AC00967	AC00963	AC00610	AC00546	AC00665
Orifice_ID	FC00124	FC00628	FC00451	FC00630	FC00692
Pump Fault	N	N	N	Ν	N
Start Date	4/2/2008	4/2/2008	4/2/2008	4/2/2008	4/2/2008
Stop Date	4/3/2008	4/3/2008	4/3/2008	4/3/2008	4/3/2008
Start Time	11:03:00 AM	12:16:00 PM	12:35:00 PM	12:35:00 PM	12:36:00 PM
Stop Time	10:05:00 AM	11:12:00 AM	11:13:00 AM	11:13:00 AM	11:13:00 AM
Flow Rate (Start)	3.3	3.5	3.5	2.7	3
Flow Rate Units	cc/min	cc/min	cc/min	cc/min	cc/min
Volume					
Vol Units	CC	CC	CC	CC	CC
Remarks		resident painting one of rooms of house during start of TAGA and summa sampling period	Port 1	Port 2 hard to read numbers on fc	resident painting one of rooms of house during start o TAGA and summa sampling period
Start_Pressure	-28	-27	-28	-27	-27
Stop_Pressure	-7	-5	-6	-10.5	-3
Analysis	TO15 - 6 compounds	TO15 - 6 compounds	TO15 - 6 compounds	TO15 - 6 compounds	TO15 - 6 compound

Sample #	0408-44334	0408-44335	0408-44336	0408-44337	0408-44338
EventID	Event 6				
Location	Unit 27	Unit 27	Unit 27	Unit 10	Unit 10
Sub Location	SS	Basement	First Floor	Basement	First Floor
Media	Summa Canister				
SUMMA #	AC00297	AC01025	AC01477	AC00771	AC00551
Orifice_ID	FC00596	FC00320	FC00082	FC00335	FC00441
Pump Fault	N	N	N	N	N
Start Date	4/2/2008	4/2/2008	4/2/2008	4/2/2008	4/2/2008
Stop Date	4/3/2008	4/3/2008	4/3/2008	4/3/2008	4/3/2008
Start Time	2:11:00 PM	2:14:00 PM	2:18:00 PM	3:01:00 PM	3:06:00 PM
Stop Time	2:21:00 PM	2:21:00 PM	2:20:00 PM	2:35:00 PM	2:33:00 PM
Flow Rate (Start)	3	3.5	3.2	3.4	3.4
Flow Rate Units	cc/min	cc/min	cc/min	cc/min	cc/min
Volume					
Vol Units	СС	сс	сс	сс	сс
Remarks					
Start_Pressure	-28	-28	-28	-28	-28
Stop_Pressure	-9	-5	-2	-7	-6.5
Analysis	TO15 - 6 compounds				

Site Name: Little Valley	Lockheed Martin	WA Number: 210
	REAC, Edison NJ	EPA Contact: David Mickunas
Little Valley, NY	EP-C-04-032	REAC Contact: Amy DuBois

Sample #	0408-44339	0408-44340	0408-44341	0408-44342	0408-44343
EventID	Event 6				
Location	Unit 10	Unit 136	Unit 136	Unit 136	Trip Blank
Sub Location	Basement Dup	AMBIENT	First Floor	Basement	
Media	Summa Canister				
SUMMA #	AC01053	AC00942	AC00085	AC01435	AC01084
Orifice_ID	FC00689	FC00581	FC00269	FC00322	NA
Pump Fault	N	N	N	N	N
Start Date	4/2/2008	4/2/2008	4/2/2008	4/2/2008	4/2/2008
Stop Date	4/3/2008	4/3/2008	4/3/2008	4/3/2008	4/3/2008
Start Time	3:08:00 PM	5:08:00 PM	5:10:00 PM	5:12:00 PM	5:12:00 PM
Stop Time	2:35:00 PM	4:06:00 PM	4:06:00 PM	4:03:00 PM	
Flow Rate (Start)	3	3.4	3.3	3.6	
Flow Rate Units	cc/min	cc/min	cc/min	cc/min	cc/min
Volume					
Vol Units	CC	CC	CC	CC	СС
Remarks					
Start_Pressure	-28	-28	-28	-28	-28
Stop_Pressure	-5	-6	-7	-7	-28
Analysis	TO15 - 6 compounds				

Sample #	1001	1002	1003	1004	1005
EventID	Event 6				
Location	Unit 003 Tedlar	Unit 088 Tedlar	Unit 071 Tedlar	Unit 041 Tedlar	Unit 041 Tedlar
Sub Location	SS	SS	SS	SS	SS Dup
Media	Tedlar Bag				
SUMMA #					
Orifice_ID					
Pump Fault	N	Ν	N	N	N
Start Date	4/2/2008	4/2/2008	4/2/2008	4/2/2008	4/2/2008
Stop Date	4/2/2008	4/2/2008	4/2/2008	4/2/2008	4/2/2008
Start Time	8:44:00 AM	9:29:00 AM	10:52:00 AM	12:28:00 PM	12:29:00 PM
Stop Time	8:45:00 AM	9:30:00 AM	10:53:00 AM	12:29:00 PM	12:30:00 PM
Flow Rate (Start)					
Flow Rate Units					
Volume	1	1	1	1	1
Vol Units	Liters	Liters	Liters	Liters	Liters
Remarks				port 1	port 2
Start_Pressure					
Stop_Pressure					
Analysis	Loop GC/MS				

Page 4 of 4

Site Name: Little Valle	•		WA Number: 210 EPA Contact: David Mickunas	
Little Valley, NY		EP-C-04-032	REAC Contact: Amy DuBois	
Sample #	1006			
EventID	Event 6			
Location	Unit 027 Tedlar			
Sub Location	SS			
Media	Tedlar Bag			
SUMMA #				
Orifice_ID				
Pump Fault	N			
Start Date	4/2/2008			
Stop Date	4/2/2008			
Start Time	2:09:00 PM			
Stop Time	2:10:00 PM			
Flow Rate (Start)				
Flow Rate Units				
Volume	1			
Vol Units	Liters			
Remarks				
Start_Pressure				
Stop_Pressure				
Analysis	Loop GC/MS			