

Fall 2019 Routine Semi-Annual Monitoring Event Water Quality Monitoring Report

Location:

Ischua Landfill Olean, New York (NYSDEC Facility ID #05S20)

Prepared for:

City of Olean 101 East State Street P.O. Box 668 Olean, New York 14760

LaBella Project No. 2191208 January 2020

Ischua Landfill Olean, New York (NYSDEC Facility ID #05S20)

Fall 2019 Semi-Annual Monitoring Routine Event Water Quality Monitoring Report

TABLE OF CONTENTS

1.0	INTRODUCTION	.1
2.0	BACKGROUND INFORMATION	
3.0	SAMPLE COLLECTION PROCEDURES	
3.1	General Discussion	.2
3.2	Groundwater Sample Collection Procedures	.2
3.3	Surface Water Sample Collection Procedures	.3
3.4	Field Parameter Measurements	.3
3.5	Quality Assurance/Quality Control	.3
3.6	Shipping and Chain-of-Custody	.3
3.7	Health and Safety	.3
4.0	DATA VALIDATION	.3
4.1	Data Validation	
4.2	Quality Assurance/Quality Control	.4
4	.2.1 Duplicate	.4
5.0	ANALYTICAL RESULTS	.4
5.1	General Discussion	
5.2	Summary of Results	.4
5	.2.1 Volatile Organic Compound Results	.4
5	.2.2 Inorganic Parameters	.5
5	.2.3 Leachate Indicator Parameters	.5
5	.2.4 Comparison of Sampling Results	.5
6.0	SUMMARY AND CONCLUSIONS	5

Figures Tables Appendices

1.0 INTRODUCTION

LaBella Associates, D.P.C (LaBella) was retained by the City of Olean to provide sampling, analysis, and reporting services associated with water quality monitoring at the closed Ischua Landfill (site). Groundwater monitoring is conducted at the site in accordance with Order on Consent 89-92 issued by the New York State Department of Environmental Conservation (NYSDEC) and the December 1990 Sampling and Analysis Plan (SAP) with subsequent modifications in 1991 and 1995. These modifications, as well as other modifications to the SAP, are discussed in detail in Section 2.0.

This report presents the results of the Fall 2019 Routine Semi-Annual Monitoring Event conducted for twelve monitoring wells and two surface water points at the site. This report provides a brief discussion of the relevant background information, describes the sample collection procedures, presents the analytical results, and provides a summary and conclusions for the work conducted.

2.0 BACKGROUND INFORMATION

The Ischua Landfill is located near the Olean municipal airport in the Town of Ischua, New York, as shown on Figure 1. The landfill consists of three parallel trenches approximately 15 feet deep and 50 feet wide that range from 800 feet to 1,300 feet in length (see Figure 2). The landfill operated from 1972 to 1975. When the landfill was closed, the landfill cover consisted of approximately six inches of topsoil. In an effort to control seeps, the landfill cover was improved with 18 inches of compacted clay and six inches of topsoil, as reported in January 1986. The improved cover reduced the seepage volume but did not completely eliminate the seeps.

In response to renewed concerns by the NYSDEC regarding the seeps, a hydrogeologic investigation program was performed at the site from November 1989 through March 1990. Subsequently, the City developed an appropriate course of action for controlling the seepage breakouts. As required by the NYSDEC, the City also initiated a program of quarterly monitoring at the site in September 1990. The samples were analyzed for the Title 6 New York Codes, Rules and Regulations (6NYCRR) Part 360-2.11(d)(6) Baseline Parameters plus volatile organic compounds (VOCs). Following submission of the Baseline Sampling Report, a SAP dated December 4, 1990 was issued for the continued quarterly groundwater monitoring at the landfill site. The SAP was approved by the NYSDEC in a letter dated December 12, 1990. The quarterly sampling at the site continued in accordance with the approved SAP from September 1990 to September 1991.

In the September 1991 Baseline Sampling Report, several modifications to the approved SAP were recommended. These proposed modifications were as follows:

- a. The site's contingency water quality monitoring requirements of quarterly analysis for VOCs was proposed to be removed from the SAP and replaced by the standard routine and baseline analysis program which would have required VOC analysis only during the annual baseline sampling event.
- b. Six sampling points were proposed to be removed from the SAP. These sampling points had primarily been either dry during previous sampling events or had not resulted in elevated levels of analytes of concern. These points were: MW-6B, MW-7C, MW-8A, MW-9A, MW-10A, and MW-11A.
- c. The tabular listing of current and past sampling results in the quarterly and the annual reports was proposed to be replaced with time/concentration plots of selected parameters.

Items b and c of the proposed modifications were later approved by the NYSDEC. With respect to Item a, the NYSDEC did not agree with elimination of the site's contingency water quality

requirements but approved a reduction in the frequency of sampling for VOCs from quarterly to semiannually.

After the submittal of the June 1994 Quarterly Report, it was requested that the current time/concentration plots of selected parameters be replaced with tabular historical data tables from each monitoring point. This request was approved by the NYSDEC.

Furthermore, it was requested in November 1995 that the sampling frequency for all parameters at the site be reduced from quarterly to semi-annually, based upon a statistical evaluation of the previous five years of groundwater monitoring data. The statistical evaluation of the site data revealed that total VOC concentrations for all sampling points had remained constant or decreased with time. The NYSDEC agreed with the request in 1996.

3.0 SAMPLE COLLECTION PROCEDURES

3.1 General Discussion

LaBella performed the Fall 2019 Monitoring Event sampling activities on September 24 and 25, 2019. All sampling activities were completed in general accordance with the approved SAP dated December 4, 1990 and subsequent NYSDEC-approved modifications. All samples collected from the site were analyzed for the 6NYCRR Part 360-2.11(d)(6) Routine Parameters plus Baseline VOCs However, MW-6A, MW-9B and MW-12A were dry, precluding sample collection from these locations. Additionally, MW-6D, MW-7A, and MW-11B contained insufficient water volumes for the full parameter list, thus the parameters analyzed were limited to the following:

- MW-6D: All parameters except alkalinity
- MW-7A: Only VOCs were sampled
- MW-11B: Total organic carbon (TOC) and VOCs

The sample locations for the monitoring wells and the surface water samples are shown on Figure 2. The following paragraphs describe the sample collection procedures and field documentation protocols that were followed.

3.2 Groundwater Sample Collection Procedures

Purging and sampling of the monitoring wells was performed utilizing dedicated disposable polyethylene bailers, and non-absorbent nylon rope was used to lower the bailers into the wells.

Prior to purging, the depth to water in the well was measured to the nearest 1/100th of a foot using an electronic water level indicator. As detailed in the approved SAP, purging is performed in an attempt to obtain a turbidity value of under 50 nephelometric turbidity units (NTUs) prior to sampling. If the turbidity value is greater than 50 NTUs, a filtered metals sample must be collected. The turbidity values recorded during this monitoring event were below 50 NTUs at the time of sample collection with the exception of the SEEP. A filtered metals sample for the SEEP was inadvertently not collected during this event. This will be corrected during future sampling events. As discussed in Section 5.2 below, the metals results for the SEEP were generally within historical ranges.

The monitoring wells were purged a minimum of three well volumes or until dry. In general, purging was intended to be performed such that the water level in the well would not fall below the top of the sand pack. However, because the static water level in some of the wells was below the top of the sand pack, this criterion was not always achieved. Table 1 lists the depth of each monitoring well in addition to the elevation of groundwater in each well. Field Sampling Logs are presented in Appendix A.

After purging, groundwater samples were collected from each well (with the exception of the wells that were dry, as identified in Section 3.4) at the site and placed in laboratory-prepared sample containers. The sample containers were then placed in insulated coolers filled with ice and transported under proper chain-of-custody procedures by courier directly to the analytical laboratory, Pace Analytical Services (Pace), in Melville, New York.

3.3 Surface Water Sample Collection Procedures

Two surface water samples (STREAM and SEEP), are typically collected during each semi-annual sampling event. These sample locations are shown on Figure 2. The SEEP and STREAM samples were collected by direct submersion of a dedicated unpreserved sample bottle into the surface water. A dedicated, unpreserved sampling bottle was used to collect the surface water samples from these locations in order to fill sample bottles containing preservatives. Care was taken to not disturb the sediment during sample collection. The filled sample bottles were transported to the laboratory under chain-of-custody using the procedures described in Section 3.6.

3.4 Field Parameter Measurements

Field parameters including pH, specific conductance, oxidation reduction potential (ORP), temperature, and turbidity were measured for each sample point and the results were recorded on the field sampling logs presented in Appendix A. Due to insufficient water volume, field parameters were not measured for MW-6A, MW-9B, and MW-12A (these locations were ultimately dry). A summary of the field parameters by sample point is included in Table 2.

3.5 Quality Assurance/Quality Control

For quality assurance/quality control purposes, a blind field duplicate sample was collected and analyzed. The blind field duplicate was collected from MW-10B and analyzed for Routine Parameters plus Baseline VOCs. The blind field duplicate sample was designated as "DUP" on the chain-of-custody form and in the laboratory report from Pace. Additionally, a trip blank was submitted and analyzed.

3.6 Shipping and Chain-of-Custody

Sample containers were labeled in the field, placed on ice, and shipped by FedEx using properly signed seals to Pace under chain-of-custody protocols. The samples were relinquished to FedEx on September 25, 2019 and received by Pace September 26, 2019. Appendix B presents the completed chain-of-custody records for this semi-annual monitoring event.

3.7 Health and Safety

Sampling personnel wore Level D personal protective equipment including nitrile gloves during well purging and sampling activities. No health and safety concerns were noted during sampling.

4.0 DATA VALIDATION

4.1 Data Validation

Data validation consisted of an internal validation by Pace. The internal data validation performed by Pace focused on holding times, calibration criteria, method blanks, reference samples, matrix spike/matrix spike duplicate (MS/MSD) samples, and surrogate recoveries. The results of these efforts are presented in the Pace Analytical Report included in Appendix C. The internal validation showed that the analytical results generated during this semi-annual monitoring event are generally

usable in all cases. Only minor QA/QC issues were identified and do not impact the usability of the data for the Fall 2019 Monitoring Event.

4.2 Quality Assurance/Quality Control

4.2.1 Duplicate

The sample designated "DUP" is a duplicate of the MW-10B sample. The duplicate results are generally consistent (within 1.5 times) with the sample results with the exception of nitrate-nitrite which was detected in the DUP but was not detected in MW-10B.

4.2.2 Trip Blank

The laboratory analytical results for the TRIP BLANK sample were non-detect for all VOC parameters.

5.0 ANALYTICAL RESULTS

5.1 General Discussion

Table 3 summarizes the results for each of the groundwater samples collected from the site. Results that are shaded in Table 3 are reported at or above regulatory levels for groundwater established in 6NYCRR Part 703.5 Water Quality Regulations for Groundwater (6NYCRR standards) as amended in April 1999. For parameters for which a standard was not adopted, the guidance values presented in the NYSDEC June 1998 Technical and Operations Guidance Series (TOGS) 1.1.1 were utilized. The following sections briefly describe this event's analytical results with respect to the above-mentioned water quality standards.

Additionally, although the SEEP and STREAM data have also been compared to the 6NYCRR groundwater standards, the comparison was made for purpose of continuity only; the 6NYCRR groundwater standards are not technically applicable to these data. In addition, the duplicate sample is not discussed in the following section. Refer to Section 4.2.

5.2 Summary of Results

5.2.1 Volatile Organic Compound Results

The analytical results for the Fall 2019 Monitoring Event are summarized in Table 3. No VOCs were detected above the applicable water quality standards in the samples collected from MW-6D, MW-7A, MW-7C, MW-13, MW-14, and STREAM. The VOC concentrations that exceeded the applicable water quality standards are summarized below:

- Benzene was reported at the 6NYCRR standard of 1.0 µg/L in one sample (MW-8B).
- Chlorobenzene was reported above the 6NYCRR standard of 5.0 μ g/L in one samples (MW-12B) a concentration of 6.9 μ g/L.
- 1,1-Dichloroethane was reported above the 6NYCRR standard of 5.0 μ g/L in two samples (MW-10B and MW-12B) at concentrations of 11.6 μ g/L and 5.4 μ g/L, respectively.
- cis-1,2-Dichloroethene was reported above the 6NYCRR standard of 5.0 μ g/L in four samples (MW-8B, MW-10B, MW-11B, and SEEP) at concentrations of 6.3 μ g/L, 33.6 μ g/L, 5.2 μ g/L, and 18.8 μ g/L respectively.
- Vinyl Chloride was reported above the 6NYCRR standard of 2.0 μ g/L in four samples (MW-8B, MW-10B, MW-11B, and SEEP) at concentrations of 2.6 μ g/L, 5.1 μ g/L, 2.1 μ g/L, and 2.9 μ g/L, respectively.

The concentrations of these analytes detected in these locations were within historical ranges.

5.2.2 Inorganic Parameters

The concentrations of inorganic analytes were reported below applicable regulatory values, with the exception of the results discussed below.

- Iron was reported above the 6NYCRR standard of 0.3 mg/L in five samples (MW-6D, MW-8B, MW-10B, MW-12B and SEEP): exceedances ranged in concentration from 0.512 mg/L to 32.9 mg/L.
- Manganese was reported above the 6NYCRR standard of 0.3 mg/L in six samples (MW-7C, MW-8B, MW-10B, MW-12B, SEEP, and STREAM): exceedances ranged in concentration from 0.7 mg/L to 11.7 mg/L.

The concentrations of these analytes detected in these locations were within historical ranges.

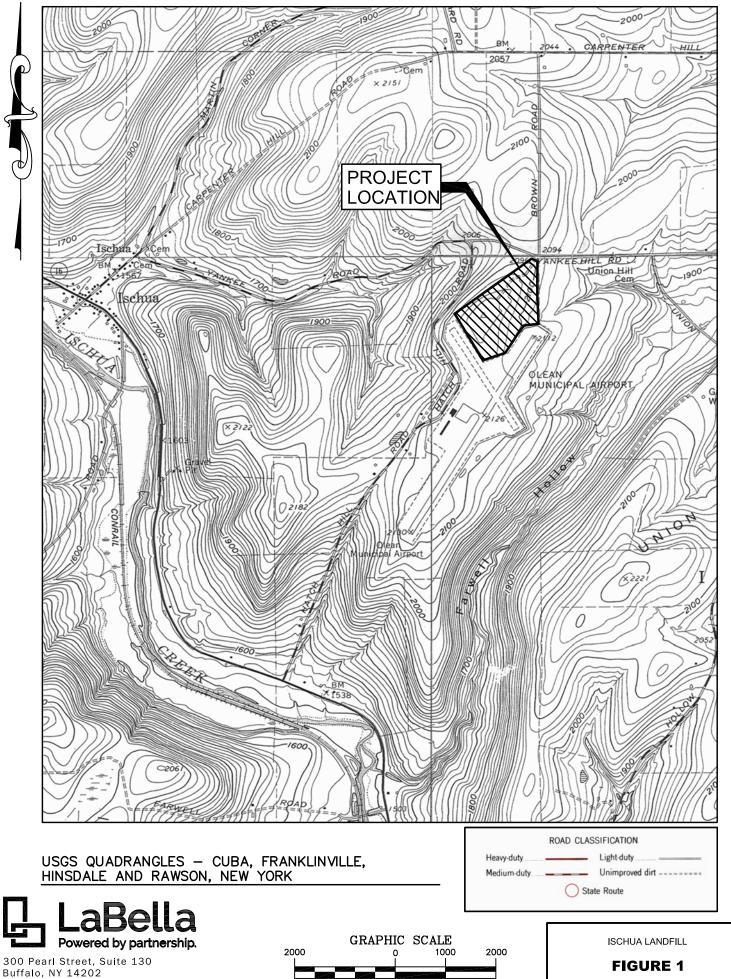
5.2.3 Leachate Indicator Parameters

Leachate indicator parameters were reported below applicable 6NYCRR standards with the exception of the results discussed below.

- Ammonia-Nitrogen was reported above the 6NYCRR standard of 2.0 mg/L in two samples (MW-12B, and SEEP): at concentrations of 8.6 mg/L and 2.4 mg/L, respectively.
- Total Phenols was reported above the 6NYCRR standard of 0.001 mg/L in nine samples (MW-6D, MW-7C, MW-8B, MW-10B, MW-12B, MW-13, MW-14, SEEP and STREAM): exceedances ranged in concentration from 0.004 mg/L to 0.0041 mg/L.

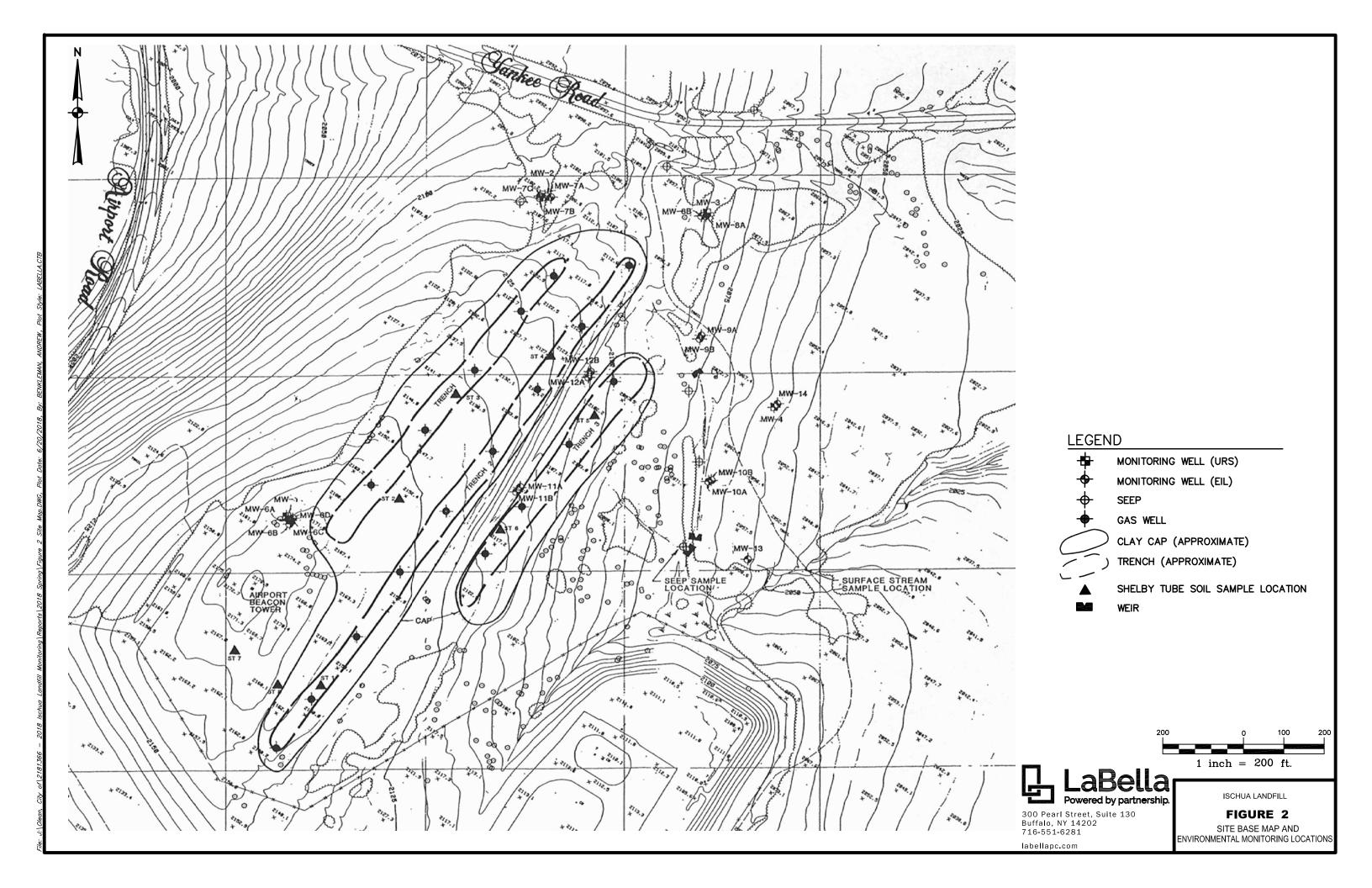
The concentrations of these analytes detected in these locations were within historical ranges.

5.2.4 Comparison of Sampling Results


A tabular listing of the historical data associated with the permanent monitoring network is presented in Appendix D and includes historical data from September 1990 to the present for all monitoring points at the site. Included on each table is a mean concentration and current 6NYCRR groundwater standard for all analytes (both organic and inorganic) at each monitoring point. Historic exceedances of the water quality standards identified in the tables in Appendix D are related to the 6NYCRR standards in effect at the time of sampling, which may not be the standards currently in effect.

6.0 SUMMARY AND CONCLUSIONS

The results of the Fall 2019 Monitoring Event appear generally consistent with the results from the previous sampling events at the site. The next semi-annual sampling event is scheduled for the Spring of 2020.


FIGURES

(IN FEET) 1 inch = 2000 ft.

SITE LOCATION MAP

716-551-6281 labellapc.com

TABLES

Ischua Landfill Fall 2019 Summary of Monitoring Well and Groundwater Depths

Monitoring Well No.	Top of Casing	Depth to Well Bottom	Historical	Elevations	Depth to Water	Elevation of Water	Compared to Last	Compared to Last Year
Well No.	Elevation	Well Bottolli	Sep-18	Apr-19	Sep-19	Sep-19	Event	to Last Tear
MW-6A	2173.1	17.19	NA	2155.91	NA	NA	NA	NA
MW-6D	2173.7	103.14	2072.7	2082	100.20	2073.5	-8.5	0.80
MW-7A	2109.3	11.64	2101.4	2105.3	11.20	2098.1	-7.2	-3.30
MW-7C	2109.3	40.3	2075.60	2082.60	33.1	2076.20	-6.4	0.60
MW-8B	2089.6	25.65	2075.3	2075.55	17.50	2072.1	-3.4	-3.20
MW-9B	2081.1	32.43	2049.60	2050.10	NA	NA	NA	NA
MW-10B	2066.2	33.69	2043.90	2047.10	24.50	2041.70	-5.4	-2.20
MW-11B	2115.1	18.07	2099.1	2102.9	17.30	2097.8	-5.1	-1.30
MW-12A	2108.3	12.68	2097.4	2099.1	NA	NA	NA	NA
MW-12B	2107.5	20.9	2094.4	2096.6	17.60	2089.9	-6.7	-4.50
MW-13	2058.7	11.44	2054.8	2054.7	3.70	2055	0.3	0.20
MW-14	2060.9	23.45	2043.9	2045.7	17.90	2043	-2.7	-0.90

Notes:

- 1. All measurements are in feet and the elevations are referenced to NAVD88 based on USGS "Ischua 1964".
- 2. The depth to the bottom of the monitoring well as well as the depth to water is measure from the from top of the riser pipe prior to purging the wells.

Ischua Landfill Fall 2019 **Summary of Field Parameters**

TABLE 2

	DOWN - GRADIENT MONITORING LOCATIONS																
	Units	MW 6A	MW 6D	MW 7A*	MW 7C	MW 8B	MW 9B	MW 10B	MW 11B*	MW 12A	MW 12B	MW 13	MW 14	SEEP	STREAM	NYSDEC Part 703 Surface water and Groundwater Quality Standards	Units
Field Eh	mV	-	68.3	-16.5 *	89.6	-1.0	-	43.6	3.6*	-	-40.2	39.9	-1.6	-36.4	39.7	NA	mV
Field pH	SU	-	7.85	6.34*	7.76	7.20	-	6.52	6.51*	-	6.68	7.38	7.40	6.89	7.67	6.5-8.5	SU
Field Specific Conductivity	mS/cm	-	0.661	0.504*	0.602	0.552		0.580	0.353*	-	0.945	0.320	0.211	0.547	0.307	NA	mS/cm
Field Turbidity	NTU	-	19.51	137.2*	8.84	9.42		2.86	14.16*		31.17	7.24	8.84	278	1.25	5	NTU
Temperature	degC	-	10.4	12.7*	9.7	11.0		11.1	11.7*		12.0	14.0	12.2	16.4	13.8	NA	degC
Dissolved Oxygen	mg/L	-	-	-	-	-	-	-	-		-	-	-	5.33	4.18	NA	mg/L

[&]quot;-" = Indicates the parameter was not analyzed

1.00 Value exceeds regulatory standard

^{* =} Indicates field parameter measurements were collected during purging due to insufficient water during sample collection
** = Indicates field parameter measurements not collected due to insufficient water during sample collection

Ischua Landfill Fall 2019 Groundwater and Surface Water Analysis Summary

TABLE 3

Page 1 of 2

1.00 Value exceeds regulatory standard

March Marc)		-			Mo	ONITORING LOC	ATIONS										1
POS		CAS#	Units	6A	6D	7A	7C	MW 8B	MW 9B	MW 10B	11B	12A	12B	13	14				Surfacewater and Groundwater	
Company Section Sect				9/25/2019		9/25/2019			9/25/2019		9/25/2019	9/25/2019								nons.
Manufact				-	1.0	-	1.0	1.4	-	1.7	-	-	0.1	1.0	1.0	2.1	1.0	1.0		
Note Note Note Note Note Note Note Note		18540-20-0		_																Hexavalent Chromium
Maining Mainin		10340-29-9			0.11	_	0.083	0.066		ND			0.12	0.073	0.093	ND	0.074	0.049		Nitrate-Nitrogen
Second S	_			_	-	-			_			_								
Column	•			-	2.7	-														
Marie Mari	COD			-	ND	-	ND	12.4	-	21.2	-	-	58.7	14.6	25.6	85.2	25.6	30.0		
Part	Ammonia-Nitrogen 7/	7664-41-7	mg/l	-	0.033	-	0.21	1.00	-	0.830	-	-	8.60	ND	ND	2.40	0.044	0.61		Ammonia-Nitrogen
Part	Sulfate		mg/l	-	28.7	-	8.3	8.5	-	7.0		-	ND	4.1	16	5.6	8.3	7.7	250 mg/l	Sulfate
TOTAL FLORING	Total Cyanide		mg/l	-	-	-	-	-	-	-		-	-	-	-	-	-	-	0.2 mg/l	Total Cyanide
Total Penderick Fig.	Total Dissolved Solids		mg/l	-	348	-	302	306	-	326	-	-	466	173	209	272	168	306	500 mg/l	Total Dissolved Solids
Total Prient Priest Prie	Total Kjeldahl Nitrogen		mg/l	-	ND	-	ND	1.5	-	1.40	-	-	10.1	0.63	ND	3.2	0.49	1.00	NA mg/l	Total Kjeldahl Nitrogen
Authority furnace method Anthority furnace method Rarlum Anthority furnace method Rarlum Recyclism Recycli	тос		mg/l	-	0.7	-	0.7	2.8	-	2.0	8.4	-	9.7	2.2	1.3	7.5	4.9	2.4	NA mg/l	тос
Artimony furnace method Arsenic by furnace are also a furnace are als	Total Phenols		mg/l	-	0.0041	-	0.004	0.0041	-	0.0040	-	-	0.004	0.004	0.004	0.004	0.004	0.004	0.001 mg/l	Total Phenols
Are lick by furnace method Raffur Are li	Aluminum		mg/l	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	NA mg/l	Aluminum
Barlum B	Antimony by furnace method		mg/l	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0.003 mg/l	Antimony by furnace method
Beryllium Bron 740-428 Roy	Arsenic by furnace method		mg/l	-	-	-	-	-	-	-	-	-	-	-	-		-	-	0.025 mg/l	Arsenic by furnace method
Boron	Barium		mg/l	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1 mg/l	Barium
Cadmium mg/l . ND . ND ND ND ND ND	Beryllium		mg/l	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0.003 mg/l	Beryllium
Calcium mg/l	Boron 74	7440-42-8	mg/l	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1 mg/l	Boron
Chromium mg/l	Cadmium		mg/l	-	ND	-	ND	ND	-	ND	-	-	ND	ND	ND	ND	ND	ND	0.005 mg/l	Cadmium
Coper mg/l	Calcium		mg/l	-	103	-	104	84.4	-	78.8	-	-	126	42.2	56.8	63.5	42	77.8	NA mg/l	Calcium
Iron mg/l	Chromium		mg/l	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0.05 mg/l	Chromium
Lead by furnace method mg/l . ND . ND ND . ND ND </td <td>Copper</td> <td></td> <td>mg/l</td> <td>-</td> <td>0.2 mg/l</td> <td>Copper</td>	Copper		mg/l	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0.2 mg/l	Copper
Magnesium mg/l - 27.4 - 17 12.3 - 24.6 - - 25.5 11.9 14.0 23.2 12.3 24.3 35 mg/l Magnesium Manganese mg/l - 0.0143 - 0.70 7.52 - 7.21 - - 10.3 0.259 0.0602 11.70 2.33 7.12 0.3 mg/l Mangane Mercury ng/l -	iron		mg/l	-		-			-		-	-								Iron
Manganese mg/l - 0.0143 - 0.70 7.52 - 7.21 - - 10.3 0.259 0.0602 11.70 2.33 7.12 0.3 mg/l Mangane Mercury mg/l - - - - - - - - - - - - 0.0007 mg/l Mercury Nickel mg/l - - - - - - - - - - - - - 0.1 mg/l Nickel Potassium mg/l - 2.66 - 1.68 2.76 - 2.51 - - 6.73 ND 1.62 3.73 2.2 2.3 NA mg/l Potassium Selenium by furnace method mg/l -	Lead by furnace method		mg/l	-		-			-		-	-							0.025 mg/l	Lead by furnace method
Mercury mg/l - - - - - - - - - - - - - - 0.0007 mg/l Mercury Nickel mg/l -				-		-			-		-	-								Magnesium
Nickel mg/l	-			-	0.0143	-	0.70	7.52	-	7.21	-	-	10.3	0.259	0.0602	11.70	2.33	7.12	i i i i i i i i i i i i i i i i i i i	Manganese
Potassium mg/l -				-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		
Selenium by furnace method mg/l				-		-	-		-	-	-	-	-	-			-	-		
Silver mg/l 0.05 mg/l Silver				-	2.66	-	1.68	2.76	-	2.51	-	-	6.73	ND	1.62	3.73	2.2	2.3		Potassium
				-	-	-	-	-		-	-	-	-	-		-	-	-		Selenium by furnace method
				-	-	-			-	-	-	-		-			-			
				-	7.2	-	6.71	7.1	· ·	9.08	-	-	14.8	9.59	8.99	6.92	3.89	8.88		
				-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		Thallium by furnace method
Zinc mg/l				-	240	-	-	220	-	-	-	-	- 200	122	102	-	140	-	,	

[&]quot;-" - Indictes the parameter was not analyzed

 $[\]ensuremath{\mathsf{ND}}\xspace$ - $\ensuremath{\mathsf{Indicates}}\xspace$ the value is less than the method detection limit

^{1.} Regulatory values are from the 6NYCRR PART 703.5 Water Quality Regulations for Groundwater as amended in April 1999. For parameters for which a standard is not adopted, the guidance values presented in the NYSDEC June 1998 Technical and Operational Guidance Series (TOGS) 1.1.1 were ultilized.

Ischua Landfill Fall 2019 Groundwater and Surface Water Analysis Summary

TABLE 3

Page 2 of 2

							мс	NITORING LOC	ATIONS									
			MW	MW	MW	MW	MW	MW	MW	MW	MW	MW	MW	MW	G550.)	a=n=		NYSDEC Part 703 Surfacewater and Groundwater Quality
etone	67-64-1	Units ug/l	6A -	6D ND	7A ND	7C ND	8B ND	9B -	10B ND	11B ND	12A -	12B ND	13 ND	14 ND	SEEP 1 ND	STREAM ¹ ND	Duplicate ND	Standards Units 50.0 ug/l
rylonitrile	107-13-1	ug/l	-	ND	ND	ND	ND	-	ND	ND	-	ND	ND	ND	ND	ND	ND	5.0 ug/l
zene	71-43-2	ug/l	-	ND	ND	ND	1.0	-	ND	ND	-	ND	ND	ND	ND	ND	ND	1.0 ug/l
nobenzene	74-97-5	ug/l	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	5.0 ug/l
nochloromethane	75-27-4	ug/l	-	ND	ND	ND	ND	-	ND	ND	-	ND	ND	ND	ND	ND	ND	5.0 ug/l
odichloromethane	75-25-2	ug/l	-	ND	ND	ND	ND	-	ND	ND	-	ND	ND	ND	ND	ND	ND	50.0 ug/l
oform	75-15-0	ug/l	-	ND	ND	ND	ND	-	ND	ND	-	ND	ND	ND	ND	ND	ND	50.0 ug/l
omethane anone	56-23-5 108-90-7	ug/l ug/l	-	ND ND	ND ND	ND ND	ND ND	-	ND ND	ND ND	-	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	5.0 ug/l 50.0 ug/l
ylbenzene	75-00-3	ug/l	1	ND -	ND -	-	-	-	ND -	-		- ND	-	ND -	- ND	ND -	- ND	5.0 ug/l
utylbenzene	67-66-3	ug/l	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	5.0 ug/l
Butylbenzene	124-48-1	ug/l	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	5.0 ug/l
on disulfide	96-12-8	ug/l	-	ND	ND	ND	ND	-	ND	ND	-	ND	ND	ND	ND	ND	ND	60.0 ug/l
oon tetrachloride	106-96-4	ug/l	-	ND	ND	ND	ND	-	ND	ND	-	ND	ND	ND	ND	ND	ND	5.0 ug/l
orobenzene	95-50-1	ug/l	-	ND	ND	ND	2.3	-	ND	ND	-	6.9	ND	ND	ND	ND	ND	5.0 ug/l
roethane roform	106-45-	ug/l ug/l	-	ND ND	ND ND	ND ND	ND ND	-	ND ND	ND ND	-	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	5.0 ug/l 7.0 ug/l
promethane	1	ug/l	1	ND ND	ND ND	ND ND	ND ND		ND ND	ND ND	-	ND ND	ND ND	ND ND	ND	ND ND	ND ND	7.0 ug/l 5.0 ug/l
nlorotoluene	1	ug/l	-		-	-	-	-		-	-	-	-	-	-	-	-	5.0 ug/l
hlorotoluene	Ĭ	ug/l	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	5.0 ug/l
romochloromethane	1	ug/l	-	ND	ND	ND	ND	-	ND	ND	-	ND	ND	ND	ND	ND	ND	50.0 ug/l
Dibromo-3-chloropropane		ug/l	-	ND	ND	ND	ND 	-	ND	ND	-	ND	ND 	ND	ND	ND	ND	0.04 ug/l
Dibromoethane	Ĭ	ug/l	-	ND ND	ND ND	ND ND	ND ND	-	ND ND	ND ND	-	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	5.0 ug/l
omomethane Dichlorobenzene		ug/l ug/l	+ :	ND ND	ND ND	ND ND	ND ND	-	ND ND	ND ND	-	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	5.0 ug/l 3.0 ug/l
Dichlorobenzene		ug/l		-	-	-	-	_	-	-	-	-	-	-	-	-	-	3.0 ug/l
Dichlorobenzene		ug/l	-	ND	ND	ND	ND	-	ND	ND	-	ND	ND	ND	ND	ND	ND	3.0 ug/l
s-1,4-Dichloro-2-butene		ug/l	-	ND	ND	ND	ND	-	ND	ND	-	ND	ND	ND	ND	ND	ND	5.0 ug/l
orodifluoromethane		ug/l	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	5.0 ug/l
Dichloroethane	110-57-6	ug/l	-	ND	ND	ND	1.6	-	11.6	ND	-	5.4	ND	ND	ND	ND	16.6	5.0 ug/l
Dichloroethane	107-06-2	ug/l	-	ND	ND	ND	ND	-	ND	ND	-	ND	ND	ND	ND	ND	ND	0.6 ug/l
ichloroethene 2-Dichloroethene		ug/l ug/l	-	ND ND	ND ND	ND ND	ND 6.3	-	ND 33.6	ND 5.2	-	ND ND	ND ND	ND ND	ND 18.8	ND ND	ND 35.1	5.0 ug/l 5.0 ug/l
s-1,2-Dichloroethene		ug/I ug/I		ND ND	ND	ND ND	ND	-	ND	ND	-	ND	ND	ND	ND	ND	ND	5.0 ug/l
Dichloropropane		ug/l	-	ND	ND	ND	ND	-	ND	ND	-	ND	ND	ND	ND	ND	ND	1.0 ug/l
Dichloropropane		ug/l	-	-	-	-	-	-	-	-	-	-	-	-		-	-	5.0 ug/l
Dichloropropane		ug/l	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	5.0 ug/l
Dichloropropene		ug/l	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	5.0 ug/l
-3-Dichloropropene	1006 01 5	ug/l	-	ND ND	ND ND	ND ND	ND ND	-	ND ND	ND ND	-	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	0.4 ug/l
s-1,3-Dichloropropene Ibenzene	1006-01-5 100-41-4	ug/I	-	ND ND	ND ND	ND ND	ND ND	-	ND ND	ND ND	-	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	0.4 ug/l 5.0 ug/l
xanone	591-78-6	ug/l	-	ND	ND	ND ND	ND ND	-	ND	ND	-	ND	ND	ND	ND	ND	ND	50.0 ug/l
achlorobutadiene	74-83-9	ug/l	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0.5 ug/l
methane	74-87-3	ug/l	-	ND	ND	ND	ND	-	ND	ND	-	ND	ND	ND	ND	ND	ND	5.0 ug/l
ropylbenzene	74-95-3	ug/l	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	5.0 ug/l
opropyltoluene	75-09-02	ug/l	-	. NE	- NB	- ND	- ND	-	NB	- ND	-	-	- ND	- ND	- NP	- NE	. NE	5.0 ug/l
hylene chloride ethyl-2-pentanone	78-93-3 108-10-1	ug/l ug/l	-	ND ND	ND ND	ND ND	ND ND	-	ND ND	ND ND	-	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	5.0 ug/l NA ug/l
hthalene	100-10-1	ug/l		- 140	-	- ND	- 1417		-	- 1417		-	- 1417	-	-	- 140	-	10.0 ug/l
opylbenzene	1	ug/l	<u> </u>	-	-	-		-	-		-	-			-	-	-	5.0 ug/l
ene	100-42-5	ug/l	-	ND	ND	ND	ND	-	ND	ND		ND	ND	ND	ND	ND	ND	5.0 ug/l
,2-Tetrachloroethane	630-20-6	ug/l	-	ND	ND	ND	ND	-	ND	ND	-	ND	ND	ND	ND	ND	ND	5.0 ug/l
2-Tetrachloroethane	79-34-5	ug/l	-	ND	ND	ND	ND	-	ND	ND	-	ND	ND	ND	ND	ND	ND	5.0 ug/l
chloroethene	127-18-4	ug/l	+	ND	ND	ND	ND	-	ND	ND	-	ND	ND ND	ND	ND	ND ND	ND	5.0 ug/l
e richlorobenzene	108-88-3 96-18-4	ug/l ug/l	-	ND -	ND -	ND -	ND -	-	ND -	ND -	-	ND -	ND -	ND -	ND -	ND -	ND -	5.0 ug/l 5.0 ug/l
richlorobenzene	90-10-4	ug/I ug/I	+ :-				-				-		<u> </u>		-		 	5.0 ug/l 5.0 ug/l
Trichloroethane	1	ug/l	-	ND	ND	ND	ND	-	ND	ND	-	ND	ND	ND	ND	ND	ND	5.0 ug/l
Trichloroethane	1	ug/l	-	ND	ND	ND	ND	-	ND	ND	-	ND	ND	ND	ND	ND	ND	1.0 ug/l
proethene	Ĭ	ug/l	-	ND	ND	ND	1.0	-	ND	ND	-	ND	ND	ND	ND	ND	ND	5.0 ug/l
nlorofluoromethane	1	ug/l	-	ND	ND	ND	ND	-	ND	ND	-	ND	ND	ND	ND	ND	ND	5.0 ug/l
3-Trichloropropane	96-18-4	ug/l	-	ND	ND	ND	ND	-	ND	ND	-	ND	ND	ND	ND	ND	ND	0.04 ug/l
4-Trimethylbenzene		ug/l	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<u> </u>	5.0 ug/l
,5-Trimethylbenzene	100 05 4	ug/l	+ -	- ND	- ND	- ND	- ND	-	- ND	- ND	-	- ND	- ND	- ND	- ND	- ND	- ND	5.0 ug/l
l acetate l chloride	108-05-4 75-01-4	ug/l ug/l	1 -	ND ND	ND ND	ND ND	ND 2.6	-	ND 5.1	ND 2.1	-	ND ND	ND ND	ND ND	2.9	ND ND	7.1	NA ug/l 2.0 ug/l
		~9/·		ND	ND	ND	ND		ND	ND		ND	ND	ND	ND	ND ND	ND	5.0 ug/l

[&]quot;-" - Indictes the parameter was not analyzed

1.00 Value exceeds regulatory standard

ND - Indicates the value is less than the method detection limit

APPENDIX A

Field Sampling Logs

Project Name: Ischua Landfill [City of Olean]

WELL DEVELOPMENT/ PURGE & SAMPLING LOG

Project No:

WELL ID: MW-6A

2191208

Project Location: Airport Road, Town of Ischua, New York Sampling Event: Fall 2019 Routine 9/24 /2019 Date: Development / Purge Information: [All measurements to Top of Well Riser; Riser I.D. (in): 2 [Volume Conversion = 0.16] Visible Well Damage/Comments: NONE_____ Well Depth (ft): _____ Water Level (ft): _____ Height of Water Column (ft): ____ 1 Well Volume [WV] (gal):______ 3 WV (gal):_____ 5 WV (gal): [Not Applicable] Method of Purging: Dedicated Bailer X / Other:_____ Start Time: Field Parameters Purge X Temp. Turb. [Totalizer Start=_____ Vol Cond. Eh pH (mV) (SU) (°C) (mS/cm) (NTU) Characteristics (gal)/WV Initial / 0 11 12 /3 Total Volume Purged (gal): _____ Complete Time: ____ Water Level (ft): _____ /2019 Sampling Information: Date: 9/ Sample Time: _____ Water Level(ft):_____ Sample Analysis: Routine Event / No. of Bottles: Sampling Method: Dedicated Bailer- All / Manual grab w/- Sample Containers X; S/S Pitcher ____ Sample Field Parameters Eh Characteristics pН Temp. Cond. Turb. (mV) (NTU) (SU) (°C) (mS/cm) Other Comments: This well typically does not contain much water and may not be enough for a full bottle set. X Purger's / X Sampler's Name(s) and Initials SD & MM

WELL ID: MW-6D

2191208 Project No: Project Name: Ischua Landfill [City of Olean] Sampling Event: Fall 2019 Routine Project Location: Airport Road, Town of Ischua, New York 9/ 24 /2019 Date: Development / Purge Information: [All measurements to Top of Well Riser; Riser I.D. (in): 2 [Volume Conversion = 0.16] Visible Well Damage/Comments: NONE_____ (Note: water measuring tape only goes to 101.2 feet) Water Level (ft): 100-7 Height of Water Column (ft): 294 Well Depth (ft):____103.14 1 Well Volume [WV] (gal): 0.47 3 WV (gal): 5 WV (gal): [Not Applicable] Method of Purging: Dedicated Bailer_X_ / Other:_ Start Time: 9:44 AM **Field Parameters** Purge X gall [Totalizer Start=____ Turb. Cond. Temp. Hq Eh Characteristics Vol (NTU) (mS/cm) (°C) (SU) (mV) (gal)/WV 15.2 0.674 Initial / 0 7.34 10.7 201.1 109.6 0.685 214 11 199.7 214 9.6 7.09 0.66 12 196.7 305 7.25 9.8 13 0.68 196.5 Complete Time: 10:15 Water Level (ft): _____ Total Volume Purged (gal): _____ Sampling Information: Date: 9/ 75 /2019 Water Level(ft):_____ Sample Analysis: Routine Event/No. of Bottles: Sample Time: 9:30 Sampling Method : Dedicated Bailer- All / Manual grab w/- Sample Containers X ; S/S Pitcher ____ Sample Field Parameters Characteristics Turb. Cond. Temp. Hq Eh (NTU) (mS/cm) (°C) (SU) (mV) 1951 Overur W.4 0.661 7.85 60.3 samples collected except Alkalining well day Other Comments: All

X Purger's / X Sampler's Name(s) and Initials: SD & MM

WELL ID: MW-7A

		nua Landfill Airport Road		lean] Ischua, New	York	Project No: 2191208 Sampling Event: Fall 2019 Routine Date: 9/ 24 /2019
Developn	nent / Pu	rge Informa	ation: [All	measuremer	nts to Top of	Well Riser; Riser I.D. (in): 2 [Volume Conversion = 0.16]
Visible We	ell Damag	je/Commen	ts: NONE	<u> </u>		(F
Well Dept	h (ft):	11.64	v	Vater Level (ft): 11.2	Height of Water Column (ft):
1 Well Vo	lume [WV	′] (gal): <u> 0</u>	.07	3 W	∨ (gal): C	5 WV (gal): [Not Applicable]
Method of	Purging:	Dedicated	Bailer_X	/ Other:		
Purge <u>X</u>	Field I	Parameters	Star	t Time: \ 0 ;	20	
Vol (gal)/WV	Eh (mV)	pH (SU)	Temp.	Cond. (mS/cm)	Turb. (NTU)	[Totalizer Start=gal] Characteristics
Initial / 0	-16.5	6.34	12.7	.504	137.2	
/1				T		
/2			18	*		
/3						
Total Volu	me Purge	ed (gal):		Complete	Time: (0): 25 Water Level (ft):
	10090	tion: Date			***************************************	
Sample Ti	me:IC	:15	_ W	ater Level(ft):	¥	Sample Analysis: Routine Event/No. of Bottles:
Sampling	Method :	Dedicated	Bailer-	<u>A∥</u> / Manu	al grab w/-	Sample Containers X; S/S Pitcher
Sample F	ield Para	meters				
Eh (mV)	pH (SU)	Temp.			urb.	Characteristics
()	(00)	(0)	(inc	(1	110)	
Other Con	amonto:					
		fter	Initi (N.		
	10C	s Ov	VIA	- Dry		
X_Purg	jer's /	X_Samp	ler's Nam	e(s) and Initia	als: SD & M	IM
	601 -					

WELLID: MW-7C

Project Name: Ischua Landfill [City of Olean] Project No: 2191208 Project Location: Airport Road, Town of Ischua, New York Sampling Event: Fall 2019 Routine Date: 9/ 24 /2019 Development / Purge Information: [All measurements to Top of Well Riser; Riser I.D. (in): 2 [Volume Conversion = 0.16] Visible Well Damage/Comments: NONE_____ Well Depth (ft): 40.30 Water Level (ft): 33.1 Height of Water Column (ft): 7.2 1 Well Volume [WV] (gal): 1.15 3 WV (gal): 3.46 5 WV (gal): [Not Applicable] Method of Purging: Dedicated Bailer X / Other: Start Time: 10:25 Field Parameters Purge X Turb. [Totalizer Start= Vol Temp. Cond. Eh pH (°C) (mS/cm) (NTU) Characteristics (gal)/WV (mV) (SU) Initial / 0 9.6 0.59 10.6 to.79 20.6 4.91 11 0.607 20.3 12 0.609 0.608 /3 7.05 9.2 72 Total Volume Purged (gal): ___ Complete Time: _ Water Level (ft): _ Sampling Information: Date: 9/25 /2019 Sample Time: __9:45 Water Level(ft):_____ Sample Analysis: Routine Event/No. of Bottles: Sampling Method: Dedicated Bailer- All / Manual grab w/- Sample Containers X; S/S Pitcher ____ Sample Field Parameters Εh pН Temp. Cond. Turb. Characteristics (mV) (SU) (°C) (mS/cm) (NTU) 0.602 Clear 9.04 Other Comments: Must be given time to recover. Wait well Purger's / X Sampler's Name(s) and Initials: SD & MM

WELL ID: MW-8B

2*	ation: Air	port Road,	TOWN OF I	Schua, New To		Project No: 2191208 Sampling Event: Fall 2019 Routine Date: 9/ 24 /2019
						ell Riser; Riser I.D. (in): 2 [Volume Conversion = 0.16]
Visible Wel	l Damage	e/Comment	s: NONE			72 15
Well Depth	(ft):	25.65	W	ater Level (ft):	17.5	Height of Water Column (ft): 8.15
1 Well Volu	me [WV]	(gal):	.3	3 WV	(gal): <u>39</u>	5 WV (gal): [Not Applicable]
				_ / Other:		
Purge X	Field	Parameters	s Star	t Time:		goll
Vol (gal)/WV	Eh (mV)	pH (SU)	Temp. (°C)	Cond. (mS/cm)	Turb. (NTU)	[Totalizer Start=gal] Characteristics
Initial / 0	58.6	4.7	301	0.464	412	
/1	9.7	6.6	10	0535	32.5	
	7.4	4.51	9.8	0.536	11.25	
/3	3.0	6.46	9.8	6.535	12.23	
Total Volu	ıme Pura	ed (gal):		Complete	Time:	Water Level (ft):
	Y	tion: Date	· 9170	12019		
Sample T	ime:	13:00	V	Vater Level(ft):		Sample Analysis: Routine Event/No. of Bottles:
Sampling	Method	: Dedicate	d Bailer-	All / Manu	al grab w/-	Sample Containers X; S/S Pitcher
	Field Par					K.
Eh	pH	Tem	р. С	cond.	Γurb.	Characteristics
(mV)	(SU) (°C)) (m	S/cm) (I	NTU)	
0.1	7.2	- 11	0	.552 0	1.42	Clear
Other Co	omments:		-			
X Pu	uraer's /	X_Sar	mpler's Na	ame(s) and Init	ials: SD & I	MM

Project Name: Ischua Landfill [City of Olean]

WELL DEVELOPMENT/ PURGE & SAMPLING LOG

WELL ID: MW-9B

2191208

Project No:

Project Location: Airport Road, Town of Ischua, New York Sampling Event: Fall 2019 Routine /2019 Date: Development / Purge Information: [All measurements to Top of Well Riser; Riser I.D. (in): 2 [Volume Conversion = 0.16] Visible Well Damage/Comments: NONE_____ Well Depth (ft): _____ Height of Water Column (ft): _____ 1 Well Volume [WV] (gal):______ 5 WV (gal): [Not Applicable] Method of Purging: Dedicated Bailer_X / Other: Start Time: 11.65 **Field Parameters** Purge X [Totalizer Start= gal] Temp. Turb. Cond. Vol Eh ΡH Characteristics (NTU) (SU) (°C) (mS/cm) (gal)/WV (mV) Initial / 0 11 12 13 Total Volume Purged (gal): _____ Complete Time: ____ Water Level (ft): _____ Sampling Information: Date: 9/ /2019 Water Level(ft):_____ Sample Analysis: Routine Event/No. of Bottles: Sample Time: _____ Sampling Method: Dedicated Bailer- All / Manual grab w/- Sample Containers X; S/S Pitcher ____ Sample Field Parameters Characteristics Turb. Eh Temp. Cond. Hq (mV) (SU) (°C) (mS/cm) (NTU) Other Comments: X Purger's / X Sampler's Name(s) and Initials: SD & MM

WELL ID: MW-10B

Project Na Project Lo	me: Isch cation: A	ua Landfill irport Road	[City of O , Town of	lean] Ischua, New	York	Project No: 2191208 Sampling Event: Fall 2019 Routine Date: 9/24 /2019	
Developn	nent / Pui	rge Informa	ation: [All	measureme	nts to Top of	Well Riser; Riser I.D. (in): 2 [Volume Conversion = 0.16]	
Visible We	ell Damag	e/Commen	ts: NONE	<u> </u>	=		
Well Dept	h (ft):	33.69)	Water Le	vel (ft):	7 24.5 Height of Water Column (ft): 9,19	
1 Well Vol	lume [WV] (gal):	1.47	3 W	V (gal):	5 WV (gal): [Not Applicable]	
Method of	Purging:	Dedicated		/ Other:			
Purge X	Field	Parameter	s Sta	rt Time:_ 🗀	11:50		
Vol	Eh	рН	Temp.	Cond.	Turb.	[Totalizer Start=gal]	
(gal)/WV	(mV)	(SU)	(°C)	(mS/cm)	(NTU)	Characteristics	
Initial / 0	44.1	7.01	10.2	0.549	13.17	Jy	
/1	46.2	6.41	10	0.51	7.12		
/2	281	4.32	9.8	0.579	4.72		
/3	25.1	6.41	99	0.584	4.8		
Total Volu	ıme Purge	ed (gal):		_ Complet	e Time:	Water Level (ft):	
Sampling	j Informa	tion: Date	: 9/25	/2019			1
Sample T	ime: <i>) .</i>	1:20	^	/ater Level(ft)		Sample Analysis: Routine Event/No. of Bottles:	
Sampling	Method:	Dedicated	l Bailer-	All / Man	ual grab w/-	Sample Containers X; S/S Pitcher	
Sample F	ield Para	meters				7 × * * *	
Eh	рН	Temp	C	ond.	Turb.	Characteristics	
(mV)	(SU)	(°C)			NTU)		
43.6	10.52	11.1	0.5	58 2	. 2 h	clear	
Other Cor							
V'	NP						
)* 		Ten view				
X_Pur	ger's /_	X_Sam	pler's Nar	ne(s) and Init	ials: SD & M	IM Y	

WELL DEVELOPMENT/ PURGE & SAMPLING LOG Project No:

WELL ID: MW-11B

	Project Name: Ischua Landfill [City of Olean] Project No. 2 191208 Sampling Event: Fall 2019 Routine Date: 9/ 1/2019 Development / Purge Information: [All measurements to Top of Well Riser; Riser I.D. (in): 2 [Volume Conversion = 0.16]											
Developn	nent / Pui	rge Informa	ition: [All	measureme	ents to Top	of W						
Visible We	ell Damag	e/Commen	ts: NONE									
Well Dept	h (ft):	18.07	v	Vater Level ((ft): <u> </u>	3	Height of Water Column (ft):0.77					
1 Well Vol	ume [WV	′] (gal):	0.12	3 V	VV (gal):_	0.	5 WV (gal): [Not Applicable]					
Method of	Purging:	Dedicated	Bailer <u>X</u>	_ / Other:_								
Purge X	Field	Parameters	s Star	t Time:	0:30							
Vol	Eh	рН	Temp.	Cond.	Tur		[Totalizer Start=gal]					
(gal)/WV	(mV)	(SU)	(°C)	(mS/cm)		U)	Characteristics					
Initial / 0	3.6	4.51	WT	0.353	14.1	V						
/1				<u> </u>			% %					
/2												
/3												
Total Volume Purged (gal): Complete Time: Water Level (ft):												
Sampling Information: Date: 9/ 25 /2019												
Sample Time: Water Level(ft): Sample Analysis: Routine Event/No. of Bottles:												
Sampling Method : Dedicated Bailer- All / Manual grab w/- Sample Containers X ; S/S Pitcher												
Sample F	ield Para	meters										
Eh	рН	Temp.	Co	ond.	Turb.		Characteristics					
(mV)	(SU)	(°C)	(mS	S/cm)	(NTU)							
Orange in color												
Other Comments:												
wait well. Should be Purged well before sampling. Dry after I well volume only VOCs and Tocs collected.												
1	>m (after	1 W	rell VO	lume							
01	ny '	10(s ar	d to	Cs col	lec tec	d.						
X_Purg	ger's /_	X_Samp	oler's Nam	ne(s) and Ini	tials: SD	& MN	Λ					

Project Name: Ischua Landfill [City of Olean]

WELL DEVELOPMENT/ PURGE & SAMPLING LOG

WELL ID: MW-12A

2191208

Project No:

Project Location: Airport Road, Town of Ischua, New York Sampling Event: Fall 2019 Routine 9/ 24 /2019 Date: Development / Purge Information: [All measurements to Top of Well Riser; Riser I.D. (in): 2 [Volume Conversion = 0.16] Visible Well Damage/Comments: NONE_____ Well Depth (ft): 12.68 Water Level (ft): Py Height of Water Column (ft): _____ 1 Well Volume [WV] (gal):______ 3 WV (gal):_____ 5 WV (gal): [Not Applicable] Method of Purging: Dedicated Bailer X / Other: Start Time: 10:45 **Field Parameters** Purge X [Totalizer Start= ____gal] Turb. Temp. Cond. Vol Eh Ha Characteristics (NTU) (SU) (°C) (mS/cm) (mV) (gal)/WV Initial / 0 11 12 /3 Total Volume Purged (gal): _____ Complete Time: ____ Water Level (ft): _____ Sampling Information: Date: 9/7 /2019 Water Level(ft):_____ Sample Analysis: Routine Event/No. of Bottles: Sample Time: Sampling Method: Dedicated Bailer- All / Manual grab w/- Sample Containers X; S/S Pitcher ____ Sample Field Parameters Characteristics Cond. Turb. Eh Temp. Ha (mV) (mS/cm) (NTU) (SU) (°C) Other Comments: Wait well due to turbidity - No samples Purger's / X Sampler's Name(s) and Initials: SD & MM

WELL ID: MW-12B

		nua Landfill [hirport Road			ew York	io.		Project No: Sampling Event: Date:	Fall 2019 Routine				
Developn	nent / Pu	rge Informa	ition: [All	measurem	ents to To	p of W	/ell R	iser; Riser I.D. (in)): 2 [Volume Conversion	n = 0.16]			
Well Dept	h (ft):	20.90	v	Vater Level	(ft):_17.	.V		Height of Wa	ater Column (ft): <u>3</u>	.3			
1 Well Vol	ume [WV	/] (gal): (0.528	<u>5</u> 3	WV (gal):	1.5	58	5 WV	(gal): [Not Applicab	e]			
Method of	Purging:	Dedicated I	Bailer <u>X</u>	_/ Other:	*								
Purge X	Field	Parameters	s Sta	t Time:	10:55					90			
Vol	Eh	рН	Temp.	Cond.	Wester	rb.	[Tot	talizer Start=					
(gal)/WV	(mV)	(SU)	(°C)	(mS/cm) (N	ΓU)		5)	Characteristics	ii			
Initial / 0	2.0	458	13.2	0.80	8 52	10,2							
/1	21.9	6.51	11.9	0.863	83	3		2					
12 -30.3 6.13 11.5 0.931 49.7													
/3													
Total Volume Purged (gal): Complete Time: Water Level (ft):													
100	Sampling Information: Date: 9/ 75 /2019												
Sample Ti	Sample Time: 10:45 Water Level(ft): Sample Analysis: Routine Event/No. of Bottles:												
Sampling	Sampling Method : Dedicated Bailer- All / Manual grab w/- Sample Containers X ; S/S Pitcher												
Sample F	Sample Field Parameters												
Eh	рН	Temp.	Co	ond.	Turb.			Ch	aracteristics				
(mV)	(SU)	(°C)	(mS	S/cm)	(NTU)				(W)				
-40.2 4.68 12 0.948 31.17													
Other Comments: 2 well volumes													
	try after 2 well volume.												
	· 												
			Ø %	¥						6			
XPurg	jer's /	X_Samp	ler's Nam	ne(s) and Ir	nitials: SD	& MM							

WELL DEVELOPMENT/ PURGE & SAMPLING LOG Proiect No:

WELL ID: MW-13

2191208

Project Name: Ischua Landfill [City of Olean] Sampling Event: Fall 2019 Routine Project Location: Airport Road, Town of Ischua, New York 9/ 24 /2019 Date: Development / Purge Information: [All measurements to Top of Well Riser; Riser I.D. (in): 2 [Volume Conversion = 0.16] Visible Well Damage/Comments: NONE_____ 11.44 Water Level (ft): 3.7 Height of Water Column (ft): 7.74 1.23 3 WV (gal): 3.72 5 WV (gal): [Not Applicable] Well Depth (ft):___ 1 Well Volume [WV] (gal):____ Method of Purging: Dedicated Bailer_X_ / Other:__ 12:20 Start Time: **Field Parameters** Purge X _gal] [Totalizer Start=___ Turb. Cond. Temp. Hq Characteristics Eh Vol (NTU) (mS/cm) (°C) (SU) (mV) (gal)/WV 6.93 0.28 13.8 Initial / 0 0.317 16.72 17.9 11 3.2 12 13 Water Level (ft): _____ Complete Time: _____ Total Volume Purged (gal): __ Sampling Information: Date: 9/25 /2019 Water Level(ft):_____ Sample Analysis: Routine Event/No. of Bottles: Sample Time: 1(:,(5 Sampling Method: Dedicated Bailer- All / Manual grab w/- Sample Containers X; S/S Pitcher ____ Sample Field Parameters Characteristics Turb. Cond. Temp. pΗ Eh (NTU) (mS/cm) (°C) (mV) (SU) 30 Clear 200; Other Comments: Requires some wait time after purging. Dry after 2.5 gal. Purger's / X Sampler's Name(s) and Initials: SD & MM

WELL ID: MW-14

Project Na	me: Isch	ua Landfill [0	City of Ole	ean]	/- d.		Project No: 2191208					
Project Loc	cation: A	irport Road,	Town of	Ischua, New \	rork		Sampling Event: Fall 2019 Routine Date: 9/24/2019					
Developm	ent / Pur	ge Informat	tion: [All	measurement	s to Top of W	/ell R	Riser; Riser I.D. (in): 2 [Volume Conversion = 0.16]					
Visible We	ell Damag	e/Comments	s: NONE				<i>V</i>					
Well Depth	n (ft):	23.45	W	later Level (ft)	179		Height of Water Column (ft): 555					
1 Well Vol	ume [WV] (gal):(1.89	3 WV	′ (gal):2	6	5 WV (gal): [Not Applicable]					
Method of	Purging:	Dedicated E	Bailer_X_	/ Other:	¥							
Purge X	Field F	Parameters	Start	Time: 👢 🕻 🖰	30							
Vol	Eh	рН	Temp.	Cond.	Turb.	[To	otalizer Start=gal]					
(gal)/WV		(SU)	(°C)	(mS/cm)	(NTU)		Characteristics					
Initial / 0	,34°.1	8	12	0.334	562							
/1	010.5	7.84	VI	0.393	3.86							
/2												
/3												
Total Volume Purged (gal): Complete Time: Water Level (ft):												
Sampling Information: Date: 9/ 25 /2019												
Sample T	ime:	1:00	_ w	ater Level(ft):			Sample Analysis: Routine Event/No. of Bottles:					
Sampling	Method:	Dedicated	Bailer-	All / Manua	al grab w/- S	Samp	ple Containers X ; S/S Pitcher					
Sample F	ield Para	meters										
Eh	рН	Temp.	Co	ond. T	urb.		Characteristics					
(mV)	(SU)	(°C)			ITU)							
-1.6 7.4 12.2 0.211 8.84												
	Other Comments: Wait well- very slow recharge rate. Must come back several times to obtain samples. Well casing is often full of bees.											
Wait well-			ate. Mus	t come back s	everal times	to ob	otain samples. Well casing is often full of bees.					
	Dry	after	I w.	e11 U014	ine							
XPu	irger's /	XSam	ipler's Na	me(s) and Init	iais: SD & M	IVI	,,					

WELL ID: SEEP

Project Name: Ischua Landfill [City of Olean]
Project Location: Airport Road, Town of Ischua, New York

Project No:

2191208

Sampling Event: Fall 2019 Routine

Date:

/2019

Purge not red	auired on	this	sample-	Surface	water
---------------	-----------	------	---------	---------	-------

Sampling	Information	n: Date: 9	125 /2019		
Sample Ti	me: 12:	30	Water Lev	/el(ft):	Sample Analysis: Baseline Event/No. of Bottles:
Sampling		edicated B	ailer- <u>All</u> /	Manual grab	w/- Sample Containers X ; S/S Pitcher
			Cond.	Turb.	Characteristics
Eh (mV)	pH (SU)	Temp.	(mS/cm)	(NTU)	[For SW & SEEP Only: D.O. = 5.33 mg/L]
-36.4	6.89	16.4	0.547	278	
Other Cor			V-245		
	brang	e in u	0100		
X Purg	ger's / <u>X</u>	Sample	r's Name(s) an	d Initials: 9	N N

WELL DEVELOPMENT/ PURGE & SAMPLING LOG | WELL ID: STREAM

Project Na	me: Ischua	Landfill [Ci	ty of Olean]	Project No:										
Project Lo	cation: Airpo	ort Road, T	own of Ischua, I	Sampling Event: Date:	a									
Purge not	required on t	his sample	e- Surface water		*									
_ =														
Sampling	Information	n: Date: 9	9/ 25 /2019											
Sample Time: 12:00 Water Level(ft): Sample Analysis: Routine Event/No. of Bottles:														
Ourific Time.														
Sampling Method: Dedicated Bailer- All / Manual grab w/- Sample Containers X; S/S Pitcher														
Sample F	ield Parame	ters						i.						
Eh			Cond.	Turb.		Ch	naracteristics_							
	pΗ	Temp.	special control of the control of th	(NTU)	IFor SW	/ & SEEP Only: D		mg/L]						
(mV)	(SU)	(°C)	(mS/cm)	(1410)	[i Oi Svi	ra occi omy. E	,.o. <u> </u>	91						
39.1	7,67	13.8	0.301	1.25										
Other Cor	mmonte:		//s - //											
	[Mag)			, ,	2 8 1	1-110								
	Mostly	NN	Collected	MON	puo	ale								

X Sampler's Name(s) and Initials: SD & MM

APPENDIX B

Chain-of-Custody

Required Client Information:

Section B

Required Project Information:

CHAIN-OF-CUSTODY / Analytical Rec The Chain-of-Custody is a LEGAL DOCUMENT. All releva

Invoice Information:

Section C

WO#:70106329

cmpany	LaBelia Associates		Andrew B	Benklemar	1		111 1511	_	tentio								/(1106	3.32	9										
ddress	300 Pearl Street	Copy To:						_	_	ny Na	me:													Б.				APPENDED TO SERVICE		1
	NY 14201	Purchase Orde	r #					_	dress															R	eguiat	ory Age	ency			
mail: hone:	abenkleman@labellapc.com (716) 551-6281 Fax	Project Name:		hua Landfi	11			_			Manag	er:	ienr	ifer.ara	cri@n:	acela	hs cor	m			10				State	/ Locati	ion			
	ed Due Date:	Project #: 219						_		rofile #			ine 1 8		or ice pr	40014	50,00	,							THE RESERVE AND ADDRESS OF THE PERSON NAMED IN	NY				
		Ci j	- 12				-										Re	equest	ted Ar	alysi	s Filter	red (Y/	N)							
	MATRIX	CODE	valid codes to left) GRAB C=COMP)		COLLE	CTED		NO			Pres	serva	itives		N/Y	_		¥	, -	E C										
	Drinking V Water Waste We Product Soil/Soild Oil	SL OL	(See valid cod	STA	ART	ΕN	ND	AT COLLECTION	02						Test	04,NO2,TDS		3, Phenols, TK	ess	als by 200.7					ine (Y/N)					
ITEM #	One Character per box. Wipe (A-Z, 0-9 /, -) Air Other Sample lds must be unique Tissue	1A/D	MATRIX CODE SAMPLE TYPE	DATE	TIME	DATE	TIME	SAMPLE TEMP AT COLLECTION	# OF CONTAINERS	H2SO4	HNO3	HCI	Na2S203	Methanol	Analyses	BOD, BR,CI,SO4,NO2,TDS	Alkalinity	COD,NH3,NO3,Phenols,	Metals +Hardness	Dissolved Metals by 200.7 (Volatiles				Residual Chlorine (Y/N)					
1 .	MVV-8A		WT	0125/1				+	1			-	+	H	F	X	Х	x >	(X		Х	+		\top	\mp					
2	MW-6D		wT	9125119	930			1-	7		П				1	x	My		x x		x				1			00	51	
3	MW-7A		WT	9125/14	1015			2	2						1	And Mark		MV.	NA		x							0	02	
4	MW-7C		WT	9125/1	945	H		6	3							x	x	x z	x x		x							00)3	
5	MW-8B		WT	9125119	1300			2	24							x	x	x :	x x		x					M	121	MS	Dhe	1
6	MW-98		WT	_				\pm	\pm	\pm		\exists	\pm	\vdash	+	×	x	x .	x x	\pm	X	1		\pm						
7	MW-10B		WT	9125711	1130											х	х	X I	x x		x							7	200	>
8	MW-11B		WT	9/25/5	1030			-	1							QI	1/21	bar	× lk	١	x							C	006	2
9-	MW-12A		WT	-	-			1	+	4	\vdash	_	+	\sqcup	_	1*	X	X	x x	+	X	+	+	_	+					
10	MW-12B		WT	912019	1045				8							×	x	х	x x		x							3	(CX	1
11	MW-13		WT	9125/19					8							X	x	х	x x		x							0	OB	
12	MW-14		WT	912514	1100			1	3							x	x	x	x x		x							0	09	
	ADDITIONAL COMMENTS	R	ELINQU	ISHED BY /	AFFILIATIO	ON	DATE		TI	ME			AC	CEPTE	BYL	AFFIL	ATION	1			DATE		TIME			SAMP	PLE CO	NDITIONS		
≅rt 360	Routine +Bassline VOCs	- 18M	lan	Men	Da	Off	9125/	19 1	13	IS		h	W	M	4	1	M	U	-1	9	10	191	10.5		24	L	1	1	4	1
								1			1	/_			-	8				_					30	_	L	1	/	1
								+			+									+		+		-	32	-	+			+
					SAMPLE	ER NAME	AND SIGN	IATU	RE							10.1							f.			+	+			+
g	Page Bage Bage Of				PRII	NT Name	of SAMPL	ER:						i ya biya a bi											in C	ved on	2	2	selles	
	go Of O				SIG	NATURE	of SAMPL	ER:						71.20		T	DAT	E Sig	ned:						TEMP in C	Received	(X/N)	Sealed Cooler (Y/N)	Samp Intact (Y/N)	

9

CHAIN-OF-CU: WO#:70106329

The Chain-of-Custody i

ccurately.

Due Date: 10/10/19 PM: JSA Section B Secti Section A CLIENT: LBA-B Required Client Information: Required Project Information: Invoi Page: 2 Of Attent Company: LaBella Associates Andrew Benkleman Address Copy To: Compa 300 Pearl Street Address Regulatory Agency Buffalo, NY 14201 Purchase Order #: abenkleman@labellapc.com Pace Quote Fax Project Name: Pace Project Manager: Phone: (716) 551-6281 State / Location Ischua Landfill jennifer.aracri@pacelabs.com, Requested Due Date: Project #: 71921288 Pace Profile #: 5498 Line 1 & 4 NY Requested Analysis Filtered (Y/N) valid codes to left) C=COMP) X COLLECTED Preservatives MATRIX CODE SAMPLE TEMP AT COLLECTION Drinking Water DW 200.7 (L BOD, BR,CI,SO4,NO2,TDS Water (G=GRAB Waste Water ww COD, NH3, NO3, Phenols Product Analyses Test Dissolved Metals by SAMPLE ID Soil/Solid SL (see START END Metals +Hardness # OF CONTAINERS Residual Chlorine Oil OL One Character per box. Wipe MATRIX CODE SAMPLE TYPE (A-Z, 0-9/, -) Na2S203 Methanol Unpreserv Sample Ids must be unique Alkalinity TEM H2S04 HN03 HCI NaOH Other TOC DATE TIME DATE TIME 8 9125/1230 13 SEEP WT 8 9125/4 14 STREAM WT 8 9125/1 15 DUP WT MSIMSP 9125719 X 6 X 17 18 19 20 21 22 23 24 ADDITIONAL COMMENTS RELINQUISHED BY / AFFILIATION DATE TIME ACCEPTED BY / AFFILIATION DATE SAMPLE CONDITIONS 10/20 9125/19 Part 360 Routine +Baseline VOCs Page 90 of SAMPLER NAME AND SIGNATURE PRINT Name of SAMPLER: TEMP in (SIGNATURE of SAMPLER: DATE Signed:

APPENDIX C

Analytical Laboratory Report

January 08, 2020

Andrew Benkleman LaBella Associates 300 Pearl Street Suite 130 Buffalo, NY 14201

RE: Project: Ischua Landfill

Pace Project No.: 70106329

Dear Andrew Benkleman:

Enclosed are the analytical results for sample(s) received by the laboratory on September 26, 2019. The results relate only to the samples included in this report. Results reported herein conform to the most current, applicable TNI/NELAC standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

REVISION 1: Report re-issued on 1/8/20 to include vinyl chloride.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Jennifer Aracri jennifer.aracri@pacelabs.com (631)694-3040

Project Manager

Enclosures

cc: Shannon Dalton, LaBella Associates

CERTIFICATIONS

Project: Ischua Landfill Pace Project No.: 70106329

Pace Analytical Services Long Island

575 Broad Hollow Rd, Melville, NY 11747

New York Certification #: 10478 Primary Accrediting Body

New Jersey Certification #: NY158 Pennsylvania Certification #: 68-00350 Connecticut Certification #: PH-0435 Maryland Certification #: 208

Rhode Island Certification #: LAO00340 Massachusetts Certification #: M-NY026 New Hampshire Certification #: 2987

REPORT OF LABORATORY ANALYSIS

(631)694-3040

PROJECT NARRATIVE

Project: Ischua Landfill Pace Project No.: 70106329

Date: January 08, 2020

Trip Blank received but not noted on the COC. See Sample Condition Upon Receipt Form for details.

Project: Ischua Landfill Pace Project No.: 70106329

Method: EPA 6010C
Description: 6010 MET ICP
Client: LaBella Associates
Date: January 08, 2020

General Information:

10 samples were analyzed for EPA 6010C. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 3005A with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

QC Batch: 132791

A matrix spike and/or matrix spike duplicate (MS/MSD) were performed on the following sample(s): 70106329004

M1: Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

- MS (Lab ID: 635178)
 - Manganese

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Additional Comments:

(631)694-3040

PROJECT NARRATIVE

Project: Ischua Landfill Pace Project No.: 70106329

Method: EPA 8260C/5030C
Description: 8260C Volatile Organics
Client: LaBella Associates
Date: January 08, 2020

General Information:

14 samples were analyzed for EPA 8260C/5030C. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

QC Batch: 132041

IC: The initial calibration for this compound was outside of method control limits. The result is estimated.

- BLANK (Lab ID: 631173)
 - Acetone
- DUP (Lab ID: 70106329012)
 - Acetone
- LCS (Lab ID: 631174)
 - Acetone
- MS (Lab ID: 635507)
 - Acetone
- MSD (Lab ID: 635508)
 - Acetone
- MW-10B (Lab ID: 70106329005)
 Acetone
- MW-11B (Lab ID: 70106329006)
- Acetone
- MW-12B (Lab ID: 70106329007)
- Acetone
- MW-13 (Lab ID: 70106329008)
- Acetone
- MW-14 (Lab ID: 70106329009)
- AcetoneMW-6D (Lab ID: 70106329001)
 - Acetone
- MW-7A (Lab ID: 70106329002)
 - Acetone
- MW-7C (Lab ID: 70106329003)
 - Acetone
- MW-8B (Lab ID: 70106329004)
 - Acetone
- SEEP (Lab ID: 70106329010)
 - Acetone
- STORAGE BLANK (Lab ID: 70106329014)
 - Acetone
- STREAM (Lab ID: 70106329011)
 - Acetone

Project: Ischua Landfill Pace Project No.: 70106329

Method: EPA 8260C/5030C
Description: 8260C Volatile Organics
Client: LaBella Associates
Date: January 08, 2020

QC Batch: 132041

IC: The initial calibration for this compound was outside of method control limits. The result is estimated.

- TRIP BLANK (Lab ID: 70106329013)
 - Acetone

IL: This analyte exceeded secondary source verification criteria low for the initial calibration. The reported results should be considered an estimated value.

- BLANK (Lab ID: 631173)
 - 2-Butanone (MEK)
- DUP (Lab ID: 70106329012)
 - 2-Butanone (MEK)
- LCS (Lab ID: 631174)
 - 2-Butanone (MEK)
- MS (Lab ID: 635507)
- 2-Butanone (MEK)MSD (Lab ID: 635508)
 - 2-Butanone (MEK)
- MW-10B (Lab ID: 70106329005)
 - 2-Butanone (MEK)
- MW-11B (Lab ID: 70106329006)
 - 2-Butanone (MEK)
- MW-12B (Lab ID: 70106329007)
 - 2-Butanone (MEK)
- MW-13 (Lab ID: 70106329008)2-Butanone (MEK)
- MW-14 (Lab ID: 70106329009)
- 2-Butanone (MEK)
- MW-6D (Lab ID: 70106329001)
- 2-Butanone (MEK)MW-7A (Lab ID: 70106329002)
 - 2-Butanone (MEK)
- MW-7C (Lab ID: 70106329003)
 - 2-Butanone (MEK)
- MW-8B (Lab ID: 70106329004)
 - 2-Butanone (MEK)
- SEEP (Lab ID: 70106329010)
 - 2-Butanone (MEK)
- STORAGE BLANK (Lab ID: 70106329014)
 - 2-Butanone (MEK)
- STREAM (Lab ID: 70106329011)
 - 2-Butanone (MEK)
- TRIP BLANK (Lab ID: 70106329013)
 - 2-Butanone (MEK)

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Project: Ischua Landfill Pace Project No.: 70106329

Method: EPA 8260C/5030C
Description: 8260C Volatile Organics
Client: LaBella Associates
Date: January 08, 2020

QC Batch: 132041

CH: The continuing calibration for this compound is outside of Pace Analytical acceptance limits. The results may be biased high.

- LCS (Lab ID: 631174)
 - Iodomethane
- MS (Lab ID: 635507)
 - Iodomethane
- MSD (Lab ID: 635508)
 - Iodomethane

Internal Standards:

All internal standards were within QC limits with any exceptions noted below.

Surrogates:

All surrogates were within QC limits with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

QC Batch: 132041

A matrix spike and/or matrix spike duplicate (MS/MSD) were performed on the following sample(s): 70106329004

M1: Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

- MS (Lab ID: 635507)
 - 1,2-Dibromoethane (EDB)
 - trans-1,3-Dichloropropene
- MSD (Lab ID: 635508)
 - 1,2-Dibromoethane (EDB)
 - trans-1,3-Dichloropropene
 - trans-1,4-Dichloro-2-butene

R1: RPD value was outside control limits.

- MSD (Lab ID: 635508)
 - lodomethane

Additional Comments:

Project: Ischua Landfill Pace Project No.: 70106329

Method: EPA 8260
Description: TIC MSV Water
Client: LaBella Associates
Date: January 08, 2020

General Information:

10 samples were analyzed for EPA 8260. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Internal Standards:

All internal standards were within QC limits with any exceptions noted below.

Surrogates

All surrogates were within QC limits with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Project: Ischua Landfill Pace Project No.: 70106329

Method: SM22 2320B
Description: 2320B Alkalinity
Client: LaBella Associates
Date: January 08, 2020

General Information:

9 samples were analyzed for SM22 2320B. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Project: Ischua Landfill Pace Project No.: 70106329

Method: SM22 2340C

Description: 2340C Hardness, Total
Client: LaBella Associates
Date: January 08, 2020

General Information:

10 samples were analyzed for SM22 2340C. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Project: Ischua Landfill Pace Project No.: 70106329

Method: SM22 2540C

Description: 2540C Total Dissolved Solids

Client: LaBella Associates

Date: January 08, 2020

General Information:

10 samples were analyzed for SM22 2540C. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Project: Ischua Landfill Pace Project No.: 70106329

Method: EPA 410.4
Description: 410.4 COD
Client: LaBella Associates
Date: January 08, 2020

General Information:

10 samples were analyzed for EPA 410.4. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 410.4 with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Project: Ischua Landfill Pace Project No.: 70106329

Method:SM22 5210BDescription:5210B BOD, 5 dayClient:LaBella AssociatesDate:January 08, 2020

General Information:

10 samples were analyzed for SM22 5210B. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with SM22 5210B with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Project: Ischua Landfill Pace Project No.: 70106329

Method: EPA 300.0

Description: 300.0 IC Anions 28 Days
Client: LaBella Associates
Date: January 08, 2020

General Information:

10 samples were analyzed for EPA 300.0. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Project: Ischua Landfill Pace Project No.: 70106329

Method: EPA 351.2

Description: 351.2 Total Kieldahl Nitrogen

Client: LaBella Associates

Date: January 08, 2020

General Information:

10 samples were analyzed for EPA 351.2. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 351.2 with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

QC Batch: 133689

A matrix spike and/or matrix spike duplicate (MS/MSD) were performed on the following sample(s): 70106329004,70106866002

M1: Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

- MS (Lab ID: 639828)
 - Nitrogen, Kjeldahl, Total

M6: Matrix spike and Matrix spike duplicate recovery not evaluated against control limits due to sample dilution.

- MS (Lab ID: 639826)
 - · Nitrogen, Kjeldahl, Total

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Project: Ischua Landfill Pace Project No.: 70106329

Method: EPA 353.2

Description: 353.2 Nitrogen, NO2/NO3 unpres

Client: LaBella Associates

Date: January 08, 2020

General Information:

10 samples were analyzed for EPA 353.2. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Project: Ischua Landfill Pace Project No.: 70106329

Method: EPA 353.2

Description: 353.2 Nitrogen, NO2
Client: LaBella Associates
Date: January 08, 2020

General Information:

10 samples were analyzed for EPA 353.2. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

QC Batch: 131960

A matrix spike and/or matrix spike duplicate (MS/MSD) were performed on the following sample(s): 70106449001,70106451001

M1: Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

- MS (Lab ID: 630914)
 - Nitrite as N

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Project: Ischua Landfill Pace Project No.: 70106329

Method: EPA 420.1

Description: Phenolics, Total Recoverable

Client: LaBella Associates

Date: January 08, 2020

General Information:

10 samples were analyzed for EPA 420.1. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 420.1 with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

QC Batch: 133477

- B: Analyte was detected in the associated method blank.
 - BLANK for HBN 133477 [WETA/215 (Lab ID: 638980)
 - Phenolics, Total Recoverable

QC Batch: 133478

- B: Analyte was detected in the associated method blank.
 - BLANK for HBN 133478 [WETA/215 (Lab ID: 638984)
 - Phenolics, Total Recoverable

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

QC Batch: 133477

A matrix spike and/or matrix spike duplicate (MS/MSD) were performed on the following sample(s): 70106266003

M1: Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

- MS (Lab ID: 638982)
 - Phenolics, Total Recoverable

QC Batch: 133478

A matrix spike and/or matrix spike duplicate (MS/MSD) were performed on the following sample(s): 70106329004

M1: Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

- MS (Lab ID: 638987)
 - Phenolics, Total Recoverable

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Project: Ischua Landfill Pace Project No.: 70106329

Method: EPA 420.1

Description: Phenolics, Total Recoverable

Client: LaBella Associates

Date: January 08, 2020

QC Batch: 133477

D6: The precision between the sample and sample duplicate exceeded laboratory control limits.

• DUP (Lab ID: 638983)

• Phenolics, Total Recoverable

Project: Ischua Landfill Pace Project No.: 70106329

Method:SM22 4500 NH3 HDescription:4500 Ammonia WaterClient:LaBella AssociatesDate:January 08, 2020

General Information:

10 samples were analyzed for SM22 4500 NH3 H. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Project: Ischua Landfill Pace Project No.: 70106329

Method: SM22 5310B

Description:5310B TOC as NPOCClient:LaBella AssociatesDate:January 08, 2020

General Information:

11 samples were analyzed for SM22 5310B. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Additional Comments:

This data package has been reviewed for quality and completeness and is approved for release.

Project: Ischua Landfill Pace Project No.: 70106329

Date: 01/08/2020 06:22 PM

Sample: MW-6D	Lab ID: 701	06329001	Collected: 09/25/	19 09:30	Received: 09	/26/19 10:50	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
6010 MET ICP	Analytical Met	nod: EPA 60	010C Preparation Me	ethod: El	PA 3005A			
Cadmium	<2.5	ug/L	2.5	1	10/03/19 10:14	10/09/19 17:10	7440-43-9	
Calcium	103000	ug/L	200	1	10/03/19 10:14	10/09/19 17:10	7440-70-2	
Iron	512	ug/L	20.0	1	10/03/19 10:14	10/09/19 17:10	7439-89-6	
Lead	<5.0	ug/L	5.0	1	10/03/19 10:14	10/09/19 17:10	7439-92-1	
Magnesium	27400	ug/L	200	1	10/03/19 10:14	10/09/19 17:10	7439-95-4	
Manganese	14.3	ug/L	10.0	1	10/03/19 10:14	10/09/19 17:10	7439-96-5	
Potassium	2660J	ug/L	5000	1	10/03/19 10:14	10/09/19 17:10	0 7440-09-7	
Sodium	7200	ug/L	5000	1	10/03/19 10:14	10/09/19 17:10	0 7440-23-5	
3260C Volatile Organics	Analytical Met	nod: EPA 82	260C/5030C					
1,1,1,2-Tetrachloroethane	<1.0	ug/L	1.0	1		09/27/19 15:10	0 630-20-6	
1,1,1-Trichloroethane	<1.0	ug/L	1.0	1		09/27/19 15:10	0 71-55-6	
1,1,2,2-Tetrachloroethane	<1.0	ug/L	1.0	1		09/27/19 15:10	0 79-34-5	
1,1,2-Trichloroethane	<1.0	ug/L	1.0	1		09/27/19 15:10	0 79-00-5	
1,1-Dichloroethane	<1.0	ug/L	1.0	1		09/27/19 15:10	0 75-34-3	
1,1-Dichloroethene	<1.0	ug/L	1.0	1		09/27/19 15:10	0 75-35-4	
1,2,3-Trichloropropane	<1.0	ug/L	1.0	1		09/27/19 15:10	0 96-18-4	
I,2-Dibromo-3-chloropropane	<1.0	ug/L	1.0	1		09/27/19 15:10	0 96-12-8	
,2-Dibromoethane (EDB)	<1.0	ug/L	1.0	1		09/27/19 15:10		
I,2-Dichlorobenzene	<1.0	ug/L	1.0	1		09/27/19 15:10		
I,2-Dichloroethane	<1.0	ug/L	1.0	1		09/27/19 15:10		
,2-Dichloropropane	<1.0	ug/L	1.0	1		09/27/19 15:10		
1,4-Dichlorobenzene	<1.0	ug/L	1.0	1		09/27/19 15:10		
2-Butanone (MEK)	<5.0	ug/L	5.0	1		09/27/19 15:10		IL
2-Hexanone	<5.0	ug/L	5.0	1		09/27/19 15:10		
I-Methyl-2-pentanone (MIBK)	<5.0	ug/L	5.0	1		09/27/19 15:10		
Acetone	<5.0	ug/L	5.0	1		09/27/19 15:10		IC
Acrylonitrile	<1.0	ug/L	1.0	1		09/27/19 15:10		10
Benzene	<1.0	ug/L	1.0	1		09/27/19 15:10		
Bromochloromethane	<1.0	ug/L	1.0	1		09/27/19 15:10		
Bromodichloromethane	<1.0	ug/L	1.0	1		09/27/19 15:10		
Bromoform	<1.0	ug/L	1.0	1		09/27/19 15:10		
Bromomethane	<1.0	ug/L ug/L	1.0	1		09/27/19 15:10		
Carbon disulfide	<1.0 <1.0	ug/L ug/L	1.0	1		09/27/19 15:10		
	<1.0 <1.0	•	1.0	1		09/27/19 15:10		
Carbon tetrachloride	<1.0 <1.0	ug/L						
Chlorobenzene		ug/L	1.0	1		09/27/19 15:10		
Chloroethane	<1.0	ug/L	1.0	1		09/27/19 15:10		
Chloroform	<1.0	ug/L	1.0	1		09/27/19 15:10		
Chloromethane	<1.0	ug/L	1.0	1		09/27/19 15:10		
Dibromochloromethane	<1.0	ug/L	1.0	1		09/27/19 15:10		
Dibromomethane	<1.0	ug/L	1.0	1		09/27/19 15:10		
Ethylbenzene	<1.0	ug/L	1.0	1		09/27/19 15:10		
odomethane	<1.0	ug/L	1.0	1		09/27/19 15:10		
Methylene Chloride	<1.0	ug/L	1.0	1		09/27/19 15:10		
Styrene	<1.0	ug/L	1.0	1		09/27/19 15:10		
Tetrachloroethene	<1.0	ug/L	1.0	1		09/27/19 15:10		
Toluene	<1.0	ug/L	1.0	1		09/27/19 15:10	0 108-88-3	

Project: Ischua Landfill Pace Project No.: 70106329

Date: 01/08/2020 06:22 PM

Sample: MW-6D	Lab ID: 701	06329001	Collected: 09/25/1	9 09:30	Received: 09	9/26/19 10:50	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
3260C Volatile Organics	Analytical Met	hod: EPA 82	260C/5030C					
Trichloroethene	<1.0	ug/L	1.0	1		09/27/19 15:1	0 79-01-6	
Trichlorofluoromethane	<1.0	ug/L	1.0	1		09/27/19 15:1	75-69-4	
/inyl acetate	<1.0	ug/L	1.0	1		09/27/19 15:1		
/inyl chloride	<1.0	ug/L	1.0	1		09/27/19 15:1		
(ylene (Total)	<3.0	ug/L	3.0	1		09/27/19 15:1		
sis-1,2-Dichloroethene	<1.0	ug/L	1.0	1		09/27/19 15:1		
sis-1,3-Dichloropropene	<1.0	ug/L	1.0	1			0 10061-01-5	
n&p-Xylene	<2.0	ug/L	2.0	1			0 179601-23-1	
-Xylene rans-1,2-Dichloroethene	<1.0 <1.0	ug/L	1.0 1.0	1 1		09/27/19 15:10 09/27/19 15:10		
rans-1,3-Dichloropropene	<1.0 <1.0	ug/L	1.0	1			0 10061-02-6	
rans-1,4-Dichloro-2-butene	<1.0 <1.0	ug/L ug/L	1.0	1		09/27/19 15:10		
Surrogates	<1.0	ug/L	1.0	•		03/27/13 13.19	5 110 57 -0	
,2-Dichloroethane-d4 (S)	99	%	68-153	1		09/27/19 15:1	0 17060-07-0	
I-Bromofluorobenzene (S)	95	%	79-124	1		09/27/19 15:1	0 460-00-4	
oluene-d8 (S)	95	%	69-124	1		09/27/19 15:1	0 2037-26-5	
340C Hardness, Total	Analytical Met	hod: SM22 2	2340C					
ot Hardness asCaCO3 (SM 2340B	340	mg/L	5.0	1		10/03/19 21:2	4	
540C Total Dissolved Solids	Analytical Met	hod: SM22 2	2540C					
otal Dissolved Solids	348	mg/L	20.0	1		10/01/19 10:4	1	
10.4 COD	Analytical Met	hod: EPA 41	0.4 Preparation Met	hod: EP	A 410.4			
Chemical Oxygen Demand	<10.0	mg/L	10.0	1	10/01/19 09:30	10/01/19 11:58	3	
210B BOD, 5 day	Analytical Met	hod: SM22	5210B Preparation M	1ethod:	SM22 5210B			
3OD, 5 day	1.0J	mg/L	4.0	2	09/26/19 15:36	10/01/19 11:46	6	
00.0 IC Anions 28 Days	Analytical Met	hod: EPA 30	0.00					
Bromide	0.052J	mg/L	0.50	1		10/04/19 22:1	6 24959-67-9	
Chloride	2.7	mg/L	2.0	1			6 16887-00-6	
Sulfate	28.7	mg/L	5.0	1		10/04/19 22:1	6 14808-79-8	
351.2 Total Kjeldahl Nitrogen	Analytical Met	hod: EPA 35	51.2 Preparation Met	hod: EP	A 351.2			
litrogen, Kjeldahl, Total	<0.10	mg/L	0.10	1	10/10/19 06:00	10/10/19 12:3	3 7727-37-9	
53.2 Nitrogen, NO2/NO3 unpres	Analytical Met	hod: EPA 35	53.2					
Nitrate as N	0.11	mg/L	0.050	1		09/27/19 01:3	4 14797-55-8	
litrate-Nitrite (as N)	0.11	mg/L	0.050	1		09/27/19 01:3		
		_		-				
53.2 Nitrogen, NO2	Analytical Met					00/00/::		
litrite as N	<0.050	mg/L	0.050	1		09/26/19 21:5	2 14797-65-0	

Project: Ischua Landfill Pace Project No.: 70106329

Date: 01/08/2020 06:22 PM

Sample: MW-6D	Lab ID: 7010	6329001	Collected: 09/25/1	19 09:30	Received: 09	9/26/19 10:50 I	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
Phenolics, Total Recoverable	Analytical Meth	od: EPA 42	0.1 Preparation Me	thod: EF	PA 420.1			
Phenolics, Total Recoverable	4.1J	ug/L	5.0	1	10/09/19 07:49	10/09/19 13:11		В
4500 Ammonia Water	Analytical Meth	od: SM22 4	500 NH3 H					
Nitrogen, Ammonia	0.033J	mg/L	0.10	1		10/07/19 13:08	7664-41-7	
5310B TOC as NPOC	Analytical Meth	od: SM22 5	310B					
Total Organic Carbon	0.66J	mg/L	1.0	1		10/02/19 08:33	7440-44-0	

Project: Ischua Landfill Pace Project No.: 70106329

Date: 01/08/2020 06:22 PM

Sample: MW-7A	Lab ID: 701	06329002	Collected: 09/25/1	9 10:15	Received:	09/26/19 10:50	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
8260C Volatile Organics	Analytical Meth	nod: EPA 82	260C/5030C					
1,1,1,2-Tetrachloroethane	<1.0	ug/L	1.0	1		09/27/19 15:3	3 630-20-6	
1,1,1-Trichloroethane	<1.0	ug/L	1.0	1		09/27/19 15:3	3 71-55-6	
1,1,2,2-Tetrachloroethane	<1.0	ug/L	1.0	1		09/27/19 15:3	3 79-34-5	
1,1,2-Trichloroethane	<1.0	ug/L	1.0	1		09/27/19 15:3	3 79-00-5	
1,1-Dichloroethane	<1.0	ug/L	1.0	1		09/27/19 15:3	3 75-34-3	
1,1-Dichloroethene	<1.0	ug/L	1.0	1		09/27/19 15:3	3 75-35-4	
1,2,3-Trichloropropane	<1.0	ug/L	1.0	1		09/27/19 15:3	3 96-18-4	
1,2-Dibromo-3-chloropropane	<1.0	ug/L	1.0	1		09/27/19 15:3	3 96-12-8	
1,2-Dibromoethane (EDB)	<1.0	ug/L	1.0	1		09/27/19 15:3	3 106-93-4	
1,2-Dichlorobenzene	<1.0	ug/L	1.0	1		09/27/19 15:3	3 95-50-1	
1,2-Dichloroethane	<1.0	ug/L	1.0	1		09/27/19 15:3	3 107-06-2	
1,2-Dichloropropane	<1.0	ug/L	1.0	1		09/27/19 15:3	3 78-87-5	
1,4-Dichlorobenzene	<1.0	ug/L	1.0	1		09/27/19 15:3	3 106-46-7	
2-Butanone (MEK)	<5.0	ug/L	5.0	1		09/27/19 15:3	3 78-93-3	IL
2-Hexanone	<5.0	ug/L	5.0	1		09/27/19 15:3	3 591-78-6	
4-Methyl-2-pentanone (MIBK)	<5.0	ug/L	5.0	1		09/27/19 15:3	3 108-10-1	
Acetone	<5.0	ug/L	5.0	1		09/27/19 15:3	3 67-64-1	IC
Acrylonitrile	<1.0	ug/L	1.0	1		09/27/19 15:3	3 107-13-1	
Benzene	<1.0	ug/L	1.0	1		09/27/19 15:3	3 71-43-2	
Bromochloromethane	<1.0	ug/L	1.0	1		09/27/19 15:3	3 74-97-5	
Bromodichloromethane	<1.0	ug/L	1.0	1		09/27/19 15:3	3 75-27-4	
Bromoform	<1.0	ug/L	1.0	1		09/27/19 15:3	3 75-25-2	
Bromomethane	<1.0	ug/L	1.0	1		09/27/19 15:3		
Carbon disulfide	<1.0	ug/L	1.0	1		09/27/19 15:3		
Carbon tetrachloride	<1.0	ug/L	1.0	1		09/27/19 15:3		
Chlorobenzene	<1.0	ug/L	1.0	1		09/27/19 15:3		
Chloroethane	<1.0	ug/L	1.0	1		09/27/19 15:3		
Chloroform	<1.0	ug/L	1.0	1		09/27/19 15:3		
Chloromethane	<1.0	ug/L	1.0	1		09/27/19 15:3		
Dibromochloromethane	<1.0	ug/L	1.0	1		09/27/19 15:3		
Dibromomethane	<1.0	ug/L	1.0	1		09/27/19 15:3		
Ethylbenzene	<1.0	ug/L	1.0	1		09/27/19 15:3		
lodomethane	<1.0	ug/L	1.0	1		09/27/19 15:3		
Methylene Chloride	<1.0	ug/L	1.0	1		09/27/19 15:3		
Styrene	<1.0	ug/L	1.0	1		09/27/19 15:3		
Tetrachloroethene	<1.0	ug/L	1.0	1		09/27/19 15:3		
Toluene	<1.0	ug/L	1.0	1		09/27/19 15:3		
Trichloroethene	<1.0	ug/L	1.0	1		09/27/19 15:3		
Frichlorofluoromethane	<1.0	ug/L	1.0	1		09/27/19 15:3		
Vinyl acetate	<1.0	ug/L	1.0	1		09/27/19 15:3		
Vinyl acetate Vinyl chloride	<1.0	ug/L ug/L	1.0	1		09/27/19 15:3		
Xylene (Total)	<3.0	ug/L ug/L	3.0	1		09/27/19 15:3		
cis-1,2-Dichloroethene	<1.0	ug/L ug/L	1.0	1		09/27/19 15:3		
cis-1,3-Dichloropropene				1			3 10061-01-5	
' '	<1.0	ug/L	1.0				3 10061-01-5 3 179601-23-1	
m&p-Xylene	<2.0	ug/L	2.0	1				
o-Xylene	<1.0	ug/L	1.0	1		09/27/19 15:3	0 05 47 0	

Project: Ischua Landfill Pace Project No.: 70106329

Date: 01/08/2020 06:22 PM

Sample: MW-7A	Lab ID: 7010	06329002	Collected: 09/25/1	9 10:15	Received: 09	9/26/19 10:50 N	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260C Volatile Organics	Analytical Meth	od: EPA 82	260C/5030C					
trans-1,3-Dichloropropene	<1.0	ug/L	1.0	1		09/27/19 15:33	10061-02-6	
trans-1,4-Dichloro-2-butene Surrogates	<1.0	ug/L	1.0	1		09/27/19 15:33	110-57-6	
1,2-Dichloroethane-d4 (S)	101	%	68-153	1		09/27/19 15:33	17060-07-0	
4-Bromofluorobenzene (S)	121	%	79-124	1		09/27/19 15:33	460-00-4	
Toluene-d8 (S) Tentatively Identified Compounds	91	%	69-124	1		09/27/19 15:33	2037-26-5	
Sulfur dioxide	13.1J	ug/L		1		09/27/19 15:33	7446-09-5	N

Project: Ischua Landfill Pace Project No.: 70106329

Date: 01/08/2020 06:22 PM

Sample: MW-7C	Lab ID: 701	06329003	Collected: 09/25/	19 09:45	Received: 09	/26/19 10:50	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
6010 MET ICP	Analytical Meth	nod: EPA 60	010C Preparation M	ethod: El	PA 3005A			
Cadmium	<2.5	ug/L	2.5	1	10/03/19 10:14	10/09/19 17:1	3 7440-43-9	
Calcium	104000	ug/L	200	1	10/03/19 10:14	10/09/19 17:13	3 7440-70-2	
ron	30.3	ug/L	20.0	1	10/03/19 10:14	10/09/19 17:13	3 7439-89-6	
_ead	<5.0	ug/L	5.0	1	10/03/19 10:14	10/09/19 17:13	3 7439-92-1	
Magnesium	17000	ug/L	200	1	10/03/19 10:14	10/09/19 17:13	3 7439-95-4	
Manganese	704	ug/L	10.0	1	10/03/19 10:14	10/09/19 17:1	3 7439-96-5	
Potassium	1680J	ug/L	5000	1	10/03/19 10:14	10/09/19 17:1	3 7440-09-7	
Sodium	6710	ug/L	5000	1	10/03/19 10:14	10/09/19 17:1	3 7440-23-5	
3260C Volatile Organics	Analytical Meth	nod: EPA 82	260C/5030C					
1,1,1,2-Tetrachloroethane	<1.0	ug/L	1.0	1		09/27/19 15:5	6 630-20-6	
1,1,1-Trichloroethane	<1.0	ug/L	1.0	1		09/27/19 15:5	6 71-55-6	
1,1,2,2-Tetrachloroethane	<1.0	ug/L	1.0	1		09/27/19 15:5	6 79-34-5	
1,1,2-Trichloroethane	<1.0	ug/L	1.0	1		09/27/19 15:5	6 79-00-5	
1,1-Dichloroethane	<1.0	ug/L	1.0	1		09/27/19 15:50	6 75-34-3	
1,1-Dichloroethene	<1.0	ug/L	1.0	1		09/27/19 15:5	6 75-35-4	
,2,3-Trichloropropane	<1.0	ug/L	1.0	1		09/27/19 15:50	6 96-18-4	
,2-Dibromo-3-chloropropane	<1.0	ug/L	1.0	1		09/27/19 15:5	6 96-12-8	
,2-Dibromoethane (EDB)	<1.0	ug/L	1.0	1		09/27/19 15:5	6 106-93-4	
,2-Dichlorobenzene	<1.0	ug/L	1.0	1		09/27/19 15:5	6 95-50-1	
,2-Dichloroethane	<1.0	ug/L	1.0	1		09/27/19 15:5	6 107-06-2	
1,2-Dichloropropane	<1.0	ug/L	1.0	1		09/27/19 15:5	6 78-87-5	
1,4-Dichlorobenzene	<1.0	ug/L	1.0	1		09/27/19 15:5	6 106-46-7	
2-Butanone (MEK)	<5.0	ug/L	5.0	1		09/27/19 15:5	6 78-93-3	IL
2-Hexanone	<5.0	ug/L	5.0	1		09/27/19 15:5	6 591-78-6	
I-Methyl-2-pentanone (MIBK)	<5.0	ug/L	5.0	1		09/27/19 15:5	6 108-10-1	
Acetone	<5.0	ug/L	5.0	1		09/27/19 15:5	6 67-64-1	IC
Acrylonitrile	<1.0	ug/L	1.0	1		09/27/19 15:5	6 107-13-1	
Benzene	<1.0	ug/L	1.0	1		09/27/19 15:5	6 71-43-2	
Bromochloromethane	<1.0	ug/L	1.0	1		09/27/19 15:50	6 74-97-5	
Bromodichloromethane	<1.0	ug/L	1.0	1		09/27/19 15:5	6 75-27-4	
Bromoform	<1.0	ug/L	1.0	1		09/27/19 15:50	6 75-25-2	
Bromomethane	<1.0	ug/L	1.0	1		09/27/19 15:50	6 74-83-9	
Carbon disulfide	<1.0	ug/L	1.0	1		09/27/19 15:50	6 75-15-0	
Carbon tetrachloride	<1.0	ug/L	1.0	1		09/27/19 15:5	6 56-23-5	
Chlorobenzene	<1.0	ug/L	1.0	1		09/27/19 15:5	6 108-90-7	
Chloroethane	<1.0	ug/L	1.0	1		09/27/19 15:5		
Chloroform	<1.0	ug/L	1.0	1		09/27/19 15:5		
Chloromethane	<1.0	ug/L	1.0	1		09/27/19 15:5		
Dibromochloromethane	<1.0	ug/L	1.0	1		09/27/19 15:5		
Dibromomethane	<1.0	ug/L	1.0	1		09/27/19 15:5		
Ethylbenzene	<1.0	ug/L	1.0	1		09/27/19 15:5		
odomethane	<1.0	ug/L	1.0	1		09/27/19 15:5		
Methylene Chloride	<1.0	ug/L	1.0	1		09/27/19 15:5		
Styrene	<1.0	ug/L	1.0	1		09/27/19 15:5		
Tetrachloroethene	<1.0	ug/L	1.0	1		09/27/19 15:5		
Toluene	<1.0	ug/L	1.0	1		09/27/19 15:5	-	

Project: Ischua Landfill Pace Project No.: 70106329

Date: 01/08/2020 06:22 PM

Sample: MW-7C	Lab ID: 701	06329003	Collected: 09/25/1	9 09:45	Received: 09	9/26/19 10:50	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
8260C Volatile Organics	Analytical Meth	nod: EPA 82	260C/5030C					
Trichloroethene	<1.0	ug/L	1.0	1		09/27/19 15:56	6 79-01-6	
Trichlorofluoromethane	<1.0	ug/L	1.0	1		09/27/19 15:56	6 75-69-4	
Vinyl acetate	<1.0	ug/L	1.0	1		09/27/19 15:56		
Vinyl chloride	<1.0	ug/L	1.0	1		09/27/19 15:56		
Xylene (Total)	<3.0	ug/L	3.0	1		09/27/19 15:56		
cis-1,2-Dichloroethene	<1.0	ug/L	1.0	1		09/27/19 15:56		
cis-1,3-Dichloropropene	<1.0	ug/L	1.0	1		09/27/19 15:56		
m&p-Xylene	<2.0	ug/L	2.0	1			5 179601-23-1	
o-Xylene	<1.0	ug/L	1.0	1		09/27/19 15:56		
trans-1,2-Dichloroethene	<1.0	ug/L	1.0	1		09/27/19 15:56		
trans-1,3-Dichloropropene trans-1,4-Dichloro-2-butene	<1.0 <1.0	ug/L	1.0 1.0	1 1		09/27/19 15:56		
Surrogates	<1.0	ug/L	1.0	1		09/27/19 15:56	5 110-57-6	
1,2-Dichloroethane-d4 (S)	101	%	68-153	1		09/27/19 15:56	3 17060-07-0	
4-Bromofluorobenzene (S)	95	%	79-124	1		09/27/19 15:56		
Toluene-d8 (S)	95	%	69-124	1		09/27/19 15:56		
2320B Alkalinity	Analytical Metl	hod: SM22 2	2320B					
Alkalinity, Total as CaCO3	313	mg/L	1.0	1		09/30/19 17:33	3	
2340C Hardness, Total	Analytical Meth	nod: SM22 2	2340C					
Tot Hardness asCaCO3 (SM 2340B	300	mg/L	5.0	1		10/03/19 21:23	7	
2540C Total Dissolved Solids	Analytical Meth	hod: SM22 2	2540C					
Total Dissolved Solids	302	mg/L	20.0	1		10/01/19 10:42	2	
410.4 COD	Analytical Meth	nod: EPA 41	0.4 Preparation Met	hod: EP	A 410.4			
Chemical Oxygen Demand	<10.0	mg/L	10.0	1	10/01/19 09:30	10/01/19 11:58	3	
5210B BOD, 5 day	Analytical Meth	hod: SM22	5210B Preparation N	lethod: §	SM22 5210B			
BOD, 5 day	1.0J	mg/L	4.0	2	09/26/19 15:36	10/01/19 11:48	3	
300.0 IC Anions 28 Days	Analytical Meth	nod: EPA 30	0.00					
Bromide	0.21J	mg/L	0.50	1		10/04/19 22:33	3 24959-67-9	
Chloride	5.9	mg/L	2.0	1		10/04/19 22:33	3 16887-00-6	
Sulfate	8.3	mg/L	5.0	1		10/04/19 22:33	3 14808-79-8	
351.2 Total Kjeldahl Nitrogen	Analytical Meth	nod: EPA 35	51.2 Preparation Met	hod: EP	A 351.2			
Nitrogen, Kjeldahl, Total	<0.10	mg/L	0.10	1	10/10/19 06:00	10/10/19 12:34	4 7727-37-9	
353.2 Nitrogen, NO2/NO3 unpres	Analytical Met	hod: EPA 35	53.2					
Nitrate as N	0.083	mg/L	0.050	1		09/27/19 01:38		
Nitrate-Nitrite (as N)	0.083	mg/L	0.050	1		09/27/19 01:38	3 7727-37-9	

Project: Ischua Landfill Pace Project No.: 70106329

Date: 01/08/2020 06:22 PM

Sample: MW-7C	Lab ID: 7010	6329003	Collected: 09/25/	19 09:45	Received: 09	9/26/19 10:50 N	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
353.2 Nitrogen, NO2	Analytical Meth	od: EPA 353	.2					
Nitrite as N	<0.050	mg/L	0.050	1		09/26/19 21:53	14797-65-0	
Phenolics, Total Recoverable	Analytical Meth	od: EPA 420	.1 Preparation Me	thod: EF	PA 420.1			
Phenolics, Total Recoverable	4.0J	ug/L	5.0	1	10/09/19 07:49	10/09/19 13:12		В
4500 Ammonia Water	Analytical Meth	od: SM22 45	500 NH3 H					
Nitrogen, Ammonia	0.21	mg/L	0.10	1		10/07/19 13:09	7664-41-7	
5310B TOC as NPOC	Analytical Meth	od: SM22 53	310B					
Total Organic Carbon	0.70J	mg/L	1.0	1		10/02/19 08:51	7440-44-0	

Project: Ischua Landfill Pace Project No.: 70106329

Date: 01/08/2020 06:22 PM

Sample: MW-8B	Lab ID: 7	70106329004	Collected: 09/	25/19 13:0	0 Received: 09)/26/19 10:50	Matrix: Water	
Parameters	Results	Units	Report Lim	it DF	Prepared	Analyzed	CAS No.	Qua
6010 MET ICP	Analytical N	Method: EPA 60	010C Preparation	Method:	EPA 3005A			
Cadmium	<2.5	ug/L	2	2.5 1	10/03/19 10:14	10/09/19 17:15	5 7440-43-9	
Calcium	84400	ug/L	2	00 1	10/03/19 10:14	10/09/19 17:15	7440-70-2	
Iron	5010	ug/L	20	0.0 1	10/03/19 10:14	10/09/19 17:15	7439-89-6	
Lead	<5.0	ug/L	;	5.0 1	10/03/19 10:14	10/09/19 17:15	5 7439-92-1	
Magnesium	12300	ug/L	2	00 1	10/03/19 10:14	10/09/19 17:15	7439-95-4	
Manganese	7520	ug/L	10	0.0 1	10/03/19 10:14	10/09/19 17:15	7439-96-5	M1
Potassium	2760J	ug/L	50	00 1	10/03/19 10:14	10/09/19 17:15	5 7440-09-7	
Sodium	7100	ug/L	50	00 1	10/03/19 10:14	10/09/19 17:15	5 7440-23-5	
8260C Volatile Organics	Analytical N	Method: EPA 82	260C/5030C					
1,1,1,2-Tetrachloroethane	<1.0	ug/L		.0 1		09/27/19 16:19	9 630-20-6	
1,1,1-Trichloroethane	<1.0	ug/L		.0 1		09/27/19 16:19	71-55-6	
1,1,2,2-Tetrachloroethane	<1.0	_		.0 1		09/27/19 16:19	79-34-5	
1,1,2-Trichloroethane	<1.0	ug/L		.0 1		09/27/19 16:19	79-00-5	
1,1-Dichloroethane	1.6	ug/L		.0 1		09/27/19 16:19	75-34-3	
1,1-Dichloroethene	<1.0	ug/L		.0 1		09/27/19 16:19	75-35-4	
1,2,3-Trichloropropane	<1.0	ug/L		.0 1		09/27/19 16:19	96-18-4	
1,2-Dibromo-3-chloropropane	<1.0	ug/L		.0 1		09/27/19 16:19	96-12-8	
1,2-Dibromoethane (EDB)	<1.0	ug/L		.0 1		09/27/19 16:19	9 106-93-4	M1
1,2-Dichlorobenzene	<1.0	_		.0 1		09/27/19 16:19	9 95-50-1	
1,2-Dichloroethane	<1.0			.0 1		09/27/19 16:19	9 107-06-2	
1,2-Dichloropropane	<1.0	ug/L		.0 1		09/27/19 16:19	78-87-5	
1,4-Dichlorobenzene	<1.0	ug/L		.0 1		09/27/19 16:19	9 106-46-7	
2-Butanone (MEK)	<5.0	-		5.0 1		09/27/19 16:19	78-93-3	IL
2-Hexanone	<5.0	_		5.0 1		09/27/19 16:19	9 591-78-6	
4-Methyl-2-pentanone (MIBK)	<5.0			5.0 1		09/27/19 16:19	9 108-10-1	
Acetone	<5.0	•		5.0 1		09/27/19 16:19	9 67-64-1	IC
Acrylonitrile	<1.0	ug/L		.0 1		09/27/19 16:19	9 107-13-1	
Benzene	1.0	ug/L		.0 1		09/27/19 16:19	71-43-2	
Bromochloromethane	<1.0	_		.0 1		09/27/19 16:19	9 74-97-5	
Bromodichloromethane	<1.0			.0 1		09/27/19 16:19	9 75-27-4	
Bromoform	<1.0			.0 1		09/27/19 16:19	75-25-2	
Bromomethane	<1.0	•		.0 1		09/27/19 16:19	74-83-9	
Carbon disulfide	<1.0	•		.0 1		09/27/19 16:19	75-15-0	
Carbon tetrachloride	<1.0	•		.0 1		09/27/19 16:19	9 56-23-5	
Chlorobenzene	2.3			.0 1		09/27/19 16:19	9 108-90-7	
Chloroethane	<1.0			.0 1		09/27/19 16:19	75-00-3	
Chloroform	<1.0	•		.0 1		09/27/19 16:19		
Chloromethane	<1.0	-		.0 1		09/27/19 16:19		
Dibromochloromethane	<1.0	0		.0 1		09/27/19 16:19		
Dibromomethane	<1.0			.0 1		09/27/19 16:19		
Ethylbenzene	<1.0	0		.0 1		09/27/19 16:19		
lodomethane	<1.0	J		.0 1		09/27/19 16:19		R1
Methylene Chloride	<1.0	•		.0 1		09/27/19 16:19		
Styrene	<1.0	0		.0 1		09/27/19 16:19		
Tetrachloroethene	<1.0 <1.0			.0 1		09/27/19 16:19		
Toluene	<1.0			.0 1		09/27/19 16:19		

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project: Ischua Landfill Pace Project No.: 70106329

Date: 01/08/2020 06:22 PM

Sample: MW-8B	Lab ID: 701	06329004	Collected: 09/25/1	9 13:00	Received: 09	/26/19 10:50 I	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260C Volatile Organics	Analytical Met	hod: EPA 82	260C/5030C					
Trichloroethene	1.0	ug/L	1.0	1		09/27/19 16:19	79-01-6	
Trichlorofluoromethane	<1.0	ug/L	1.0	1		09/27/19 16:19	75-69-4	
Vinyl acetate	<1.0	ug/L	1.0	1		09/27/19 16:19		
Vinyl chloride	2.6	ug/L	1.0	1		09/27/19 16:19		
Xylene (Total)	<3.0	ug/L	3.0	1		09/27/19 16:19		
cis-1,2-Dichloroethene	6.3	ug/L	1.0	1		09/27/19 16:19		
cis-1,3-Dichloropropene	<1.0	ug/L	1.0	1		09/27/19 16:19		
trans-1,2-Dichloroethene	<1.0	ug/L	1.0	1		09/27/19 16:19		
trans-1,3-Dichloropropene	<1.0	ug/L	1.0	1		09/27/19 16:19		M1
trans-1,4-Dichloro-2-butene Surrogates	<1.0	ug/L	1.0	1		09/27/19 16:19	110-57-6	M1
1,2-Dichloroethane-d4 (S)	106	%	68-153	1		09/27/19 16:19	17060-07-0	
4-Bromofluorobenzene (S)	103	%	79-124	1		09/27/19 16:19	460-00-4	
Toluene-d8 (S)	102	%	69-124	1		09/27/19 16:19	2037-26-5	
2320B Alkalinity	Analytical Met	nod: SM22	2320B					
Alkalinity, Total as CaCO3	261	mg/L	1.0	1		09/30/19 17:46	;	
2340C Hardness, Total	Analytical Met	hod: SM22	2340C					
Tot Hardness asCaCO3 (SM 2340B	220	mg/L	5.0	1		10/03/19 21:33	;	
2540C Total Dissolved Solids	Analytical Met	hod: SM22	2540C					
Total Dissolved Solids	306	mg/L	20.0	1		10/01/19 09:43	;	
410.4 COD	Analytical Met	hod: EPA 41	0.4 Preparation Met	hod: EP	A 410.4			
Chemical Oxygen Demand	12.4	mg/L	10.0	1	10/01/19 09:30	10/01/19 11:58	i .	
5210B BOD, 5 day	Analytical Met	hod: SM22	5210B Preparation M	lethod: \$	SM22 5210B			
BOD, 5 day	1.4J	mg/L	2.0	1	09/26/19 15:36	10/01/19 11:51		
300.0 IC Anions 28 Days	Analytical Met	hod: EPA 30	0.00					
Bromide	0.19J	mg/L	0.50	1		10/04/19 22:50	24959-67-9	
Chloride	11.8	mg/L	2.0	1		10/04/19 22:50	16887-00-6	
Sulfate	8.5	mg/L	5.0	1		10/04/19 22:50	14808-79-8	
351.2 Total Kjeldahl Nitrogen	Analytical Met	nod: EPA 35	51.2 Preparation Met	hod: EP	A 351.2			
Nitrogen, Kjeldahl, Total	1.5	mg/L	0.10	1	10/10/19 06:00	10/10/19 12:35	7727-37-9	M6
353.2 Nitrogen, NO2/NO3 unpres	Analytical Met	hod: EPA 35	53.2					
Nitrate as N	0.066	ma/l	0.050	1		09/27/19 01:39	1/707 55 0	
	0.066	mg/L	0.050	1		09/27/19 01:39		
Nitrate-Nitrite (as N)	0.000	mg/L	0.030	'		03/21/18 01:38	1121-31-8	
353.2 Nitrogen, NO2	Analytical Met	hod: EPA 35	53.2					
Nitrite as N	<0.050	mg/L	0.050	1		09/26/19 21:57	14797-65-0	

Project: Ischua Landfill Pace Project No.: 70106329

Date: 01/08/2020 06:22 PM

Sample: MW-8B	Lab ID: 7010	6329004	Collected: 09/25/1	19 13:00	Received: 09	/26/19 10:50	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
Phenolics, Total Recoverable	Analytical Meth	od: EPA 420).1 Preparation Met	thod: EF	PA 420.1			
Phenolics, Total Recoverable	4.1J	ug/L	5.0	1	10/09/19 07:49	10/09/19 13:24	1	B,M1
4500 Ammonia Water	Analytical Meth	od: SM22 4	500 NH3 H					
Nitrogen, Ammonia	1.0	mg/L	0.10	1		10/07/19 13:10	7664-41-7	
5310B TOC as NPOC	Analytical Meth	od: SM22 5	310B					
Total Organic Carbon	2.8	mg/L	1.0	1		10/02/19 09:44	1 7440-44-0	

Project: Ischua Landfill Pace Project No.: 70106329

Date: 01/08/2020 06:22 PM

Sample: MW-10B	Lab ID:	70106329005	Collected: 09/2	5/19 11:30	Received: 09	/26/19 10:50	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
6010 MET ICP	Analytical I	Method: EPA 60	010C Preparation	Method: E	PA 3005A			
Cadmium	<2.5	ug/L	2.	5 1	10/03/19 10:14	10/09/19 17:31	7440-43-9	
Calcium	78800	ug/L	20) 1	10/03/19 10:14	10/09/19 17:31	7440-70-2	
Iron	1450	_	20.) 1	10/03/19 10:14	10/09/19 17:31	7439-89-6	
Lead	<5.0	-	5.) 1	10/03/19 10:14	10/09/19 17:31	7439-92-1	
Magnesium	24600	-	20) 1	10/03/19 10:14	10/09/19 17:31	7439-95-4	
Manganese	7210	-	10.) 1	10/03/19 10:14	10/09/19 17:31	7439-96-5	
Potassium	2510J	-	500) 1	10/03/19 10:14	10/09/19 17:31	7440-09-7	
Sodium	9080	-	500	0 1	10/03/19 10:14			
8260C Volatile Organics	Analytical I	Method: EPA 82	260C/5030C					
1,1,1,2-Tetrachloroethane	<1.0	ug/L	1.) 1		09/27/19 16:42	2 630-20-6	
1,1,1-Trichloroethane	<1.0		1.) 1		09/27/19 16:42	2 71-55-6	
1,1,2,2-Tetrachloroethane	<1.0	_	1.) 1		09/27/19 16:42	79-34-5	
1,1,2-Trichloroethane	<1.0	ug/L	1.) 1		09/27/19 16:42	2 79-00-5	
1,1-Dichloroethane	11.6	_	1.) 1		09/27/19 16:42	2 75-34-3	
1,1-Dichloroethene	<1.0	_	1.) 1		09/27/19 16:42	2 75-35-4	
1,2,3-Trichloropropane	<1.0	-	1.) 1		09/27/19 16:42	96-18-4	
I,2-Dibromo-3-chloropropane	<1.0	-	1.) 1		09/27/19 16:42	96-12-8	
1,2-Dibromoethane (EDB)	<1.0	Ū	1.) 1		09/27/19 16:42	2 106-93-4	
1,2-Dichlorobenzene	<1.0	_	1.			09/27/19 16:42		
1,2-Dichloroethane	<1.0		1.			09/27/19 16:42		
1,2-Dichloropropane	<1.0	_	1.			09/27/19 16:42		
1,4-Dichlorobenzene	<1.0	0	1.			09/27/19 16:42		
2-Butanone (MEK)	<5.0	•	5.			09/27/19 16:42		IL
2-Hexanone	<5.0	J	5.			09/27/19 16:42		
1-Methyl-2-pentanone (MIBK)	<5.0	_	5.			09/27/19 16:42		
Acetone	<5.0	J	5.			09/27/19 16:42		IC
Acrylonitrile	<1.0	0	1.			09/27/19 16:42		
Benzene	<1.0	Ū	1.			09/27/19 16:42		
Bromochloromethane	<1.0	_	1.			09/27/19 16:42		
Bromodichloromethane	<1.0		1.			09/27/19 16:42		
Bromoform	<1.0	J	1.			09/27/19 16:42	-	
Bromomethane	<1.0	J	1.			09/27/19 16:42		
Carbon disulfide	<1.0	J	1.			09/27/19 16:42		
Carbon tetrachloride	<1.0	J	1.	•		09/27/19 16:42		
Chlorobenzene	<1.0	U	1.			09/27/19 16:42		
Chloroethane	<1.0	Ū	1.			09/27/19 16:42		
Chloroform	<1.0	Ū	1.			09/27/19 16:42		
Chloromethane	<1.0	•	1.			09/27/19 16:42		
Dibromochloromethane	<1.0	J	1. 1.			09/27/19 16:42		
Dibromomethane	<1.0	_	1.			09/27/19 16:42	_	
Ethylbenzene	<1.0	J	1. 1.			09/27/19 16:42		
•		J						
odomethane	<1.0	Ū	1.			09/27/19 16:42		
Methylene Chloride	<1.0	0	1.			09/27/19 16:42		
Styrene	<1.0	ug/L	1.) 1		09/27/19 16:42		
Tetrachloroethene	<1.0	ug/L	1.) 1		09/27/19 16:42	107404	

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project: Ischua Landfill
Pace Project No.: 70106329

Date: 01/08/2020 06:22 PM

Sample: MW-10B	Lab ID:	70106329005	Collected: 09/25/	19 11:30	Received: 09	9/26/19 10:50 I	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
8260C Volatile Organics	Analytical	Method: EPA 82	260C/5030C					
Trichloroethene	1.3	3 ug/L	1.0	1		09/27/19 16:42	79-01-6	
Trichlorofluoromethane	<1.0	0 ug/L	1.0	1		09/27/19 16:42	2 75-69-4	
Vinyl acetate	<1.0	0 ug/L	1.0	1		09/27/19 16:42	2 108-05-4	
Vinyl chloride	5.	1 ug/L	1.0	1		09/27/19 16:42	2 75-01-4	
Xylene (Total)	<3.0	0 ug/L	3.0	1		09/27/19 16:42	2 1330-20-7	
cis-1,2-Dichloroethene	33.0	0	1.0	1		09/27/19 16:42		
cis-1,3-Dichloropropene	<1.0	ū	1.0	1		09/27/19 16:42		
m&p-Xylene	<2.0	ū	2.0	1		09/27/19 16:42		
o-Xylene	<1.0	J	1.0	1		09/27/19 16:42		
rans-1,2-Dichloroethene	<1.0	J	1.0	1		09/27/19 16:42		
trans-1,3-Dichloropropene	<1.0	0	1.0	1		09/27/19 16:42		
rans-1,4-Dichloro-2-butene	<1.0	0 ug/L	1.0	1		09/27/19 16:42	2 110-57-6	
Surrogates	40	4	00.450			00/07/40 40 40		
1,2-Dichloroethane-d4 (S)	10		68-153	1		09/27/19 16:42		
4-Bromofluorobenzene (S)	104		79-124	1		09/27/19 16:42		
Toluene-d8 (S)	9		69-124	1		09/27/19 16:42	2 2037-26-5	
TIC MSV Water	Analytical	Method: EPA 82	260					
ΓIC Search	No TIC: Found			1		10/09/19 11:31		
2320B Alkalinity	Analytical	Method: SM22	2320B					
Alkalinity, Total as CaCO3	30	2 mg/L	1.0	1		09/30/19 18:28	3	
2340C Hardness, Total	Analytical	Method: SM22	2340C					
Tot Hardness asCaCO3 (SM 2340B	260	0 mg/L	5.0	1		10/03/19 21:46	3	
2540C Total Dissolved Solids	Analytical	Method: SM22	2540C					
Total Dissolved Solids	320	6 mg/L	20.0	1		10/01/19 09:44	ļ	
410.4 COD	Analytical	Method: EPA 41	0.4 Preparation Me	thod: EP/	A 410.4			
Chemical Oxygen Demand	21.	2 mg/L	10.0	1	10/04/19 10:35	10/04/19 12:54	ļ	
5210B BOD, 5 day	Analytical	Method: SM22	5210B Preparation N	Method: S	SM22 5210B			
BOD, 5 day	1.7	J mg/L	2.0	1	09/26/19 15:36	10/01/19 11:55	;	
300.0 IC Anions 28 Days	Analytical	Method: EPA 30	0.00					
Bromide	0.27	J mg/L	0.50	1		10/05/19 00:13	3 24959-67-9	
Chloride	8.9	0	2.0	1		10/05/19 00:13		
Sulfate	7.0	ū	5.0	1		10/05/19 00:13		
351.2 Total Kjeldahl Nitrogen	Analytical	Method: EPA 35	51.2 Preparation Me	thod: EP/	A 351.2			
Nitrogen, Kjeldahl, Total	1.4	4 mg/L	0.10	1	10/10/19 06:00	10/10/19 12:37	7727-37-9	
353.2 Nitrogen, NO2/NO3 unpres	Analytical	Method: EPA 35	53.2					
Nitrate as N	0.030		0.050	1		09/27/19 01:42	2 14797-55-8	
		J						

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project: Ischua Landfill Pace Project No.: 70106329

Date: 01/08/2020 06:22 PM

Sample: MW-10B	Lab ID: 701	06329005	Collected:	09/25/1	9 11:30	Received: 0	9/26/19 10:50	Matrix: Water	
Parameters	Results	Units	Report	Limit	DF	Prepared	Analyzed	CAS No.	Qual
353.2 Nitrogen, NO2/NO3 unpres	Analytical Meth	nod: EPA 35	3.2						
Nitrate-Nitrite (as N)	0.030J	mg/L		0.050	1		09/27/19 01:42	2 7727-37-9	
353.2 Nitrogen, NO2	Analytical Meth	nod: EPA 35	3.2						
Nitrite as N	<0.050	mg/L		0.050	1		09/26/19 22:00	14797-65-0	
Phenolics, Total Recoverable	Analytical Meth	nod: EPA 42	0.1 Prepara	tion Met	hod: EP	PA 420.1			
Phenolics, Total Recoverable	4.0J	ug/L		5.0	1	10/09/19 07:49	10/09/19 13:12	2	В
4500 Ammonia Water	Analytical Meth	nod: SM22 4	4500 NH3 H						
Nitrogen, Ammonia	0.83	mg/L		0.10	1		10/07/19 13:14	1 7664-41-7	
5310B TOC as NPOC	Analytical Meth	nod: SM22 5	5310B						
Total Organic Carbon	2.0	mg/L		1.0	1		10/02/19 10:56	7440-44-0	

Project: Ischua Landfill
Pace Project No.: 70106329

Date: 01/08/2020 06:22 PM

Sample: MW-11B	Lab ID: 701	06329006	Collected: 09/25/1	9 10:30	Received:	09/26/19 10:50	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
8260C Volatile Organics	Analytical Metl	nod: EPA 82	260C/5030C					
1,1,1,2-Tetrachloroethane	<1.0	ug/L	1.0	1		09/27/19 17:0	5 630-20-6	
1,1,1-Trichloroethane	<1.0	ug/L	1.0	1		09/27/19 17:0	5 71-55-6	
1,1,2,2-Tetrachloroethane	<1.0	ug/L	1.0	1		09/27/19 17:0	5 79-34-5	
1,1,2-Trichloroethane	<1.0	ug/L	1.0	1		09/27/19 17:0	5 79-00-5	
1,1-Dichloroethane	3.1	ug/L	1.0	1		09/27/19 17:0	5 75-34-3	
1,1-Dichloroethene	<1.0	ug/L	1.0	1		09/27/19 17:0	5 75-35-4	
1,2,3-Trichloropropane	<1.0	ug/L	1.0	1		09/27/19 17:0	5 96-18-4	
1,2-Dibromo-3-chloropropane	<1.0	ug/L	1.0	1		09/27/19 17:0	5 96-12-8	
,2-Dibromoethane (EDB)	<1.0	ug/L	1.0	1		09/27/19 17:0	5 106-93-4	
1,2-Dichlorobenzene	<1.0	ug/L	1.0	1		09/27/19 17:0	5 95-50-1	
1,2-Dichloroethane	<1.0	ug/L	1.0	1		09/27/19 17:0	5 107-06-2	
1,2-Dichloropropane	<1.0	ug/L	1.0	1		09/27/19 17:0	5 78-87-5	
I,4-Dichlorobenzene	<1.0	ug/L	1.0	1		09/27/19 17:0	5 106-46-7	
2-Butanone (MEK)	<5.0	ug/L	5.0	1		09/27/19 17:0		IL
2-Hexanone	<5.0	ug/L	5.0	1		09/27/19 17:0		
I-Methyl-2-pentanone (MIBK)	<5.0	ug/L	5.0	1		09/27/19 17:0		
Acetone	2.8J	ug/L	5.0	1		09/27/19 17:0		IC
Acrylonitrile	<1.0	ug/L	1.0	1		09/27/19 17:0		
Benzene	1.7	ug/L	1.0	1		09/27/19 17:0		
Bromochloromethane	<1.0	ug/L	1.0	1		09/27/19 17:0		
Bromodichloromethane	<1.0	ug/L	1.0	1		09/27/19 17:0		
Bromoform	<1.0	ug/L	1.0	1		09/27/19 17:0		
Bromomethane	<1.0	ug/L	1.0	1		09/27/19 17:0		
Carbon disulfide	<1.0	ug/L	1.0	1		09/27/19 17:0		
Carbon tetrachloride	<1.0	ug/L	1.0	1		09/27/19 17:0		
Chlorobenzene	1.8	ug/L	1.0	1		09/27/19 17:0		
Chloroethane	<1.0	ug/L	1.0	1		09/27/19 17:0		
Chloroform	<1.0	ug/L	1.0	1		09/27/19 17:0		
Chloromethane	<1.0	ug/L	1.0	1		09/27/19 17:0		
Dibromochloromethane	<1.0	ug/L	1.0	1		09/27/19 17:0		
Dibromomethane	<1.0		1.0	1		09/27/19 17:0		
Ethylbenzene	<1.0	ug/L ug/L	1.0	1		09/27/19 17:0		
odomethane	<1.0	ug/L	1.0	1		09/27/19 17:0		
Methylene Chloride	<1.0	ug/L	1.0	1		09/27/19 17:0		
Styrene	<1.0	ug/L	1.0	1		09/27/19 17:0		
Tetrachloroethene	<1.0	•	1.0					
oluene	<1.0 <1.0	ug/L	1.0	1 1		09/27/19 17:0 09/27/19 17:0		
Frichloroethene	<1.0	ug/L	1.0	1		09/27/19 17:0		
Tichloroethene Trichlorofluoromethane		ug/L						
	<1.0	ug/L	1.0	1		09/27/19 17:0		
/inyl acetate	<1.0	ug/L	1.0	1		09/27/19 17:0		
/inyl chloride	2.1	ug/L	1.0	1		09/27/19 17:0		
(ylene (Total)	<3.0	ug/L	3.0	1		09/27/19 17:0		
cis-1,2-Dichloroethene	5.2	ug/L	1.0	1		09/27/19 17:0		
cis-1,3-Dichloropropene	<1.0	ug/L	1.0	1			5 10061-01-5	
m&p-Xylene	<2.0	ug/L	2.0	1			5 179601-23-1	
o-Xylene	<1.0	ug/L	1.0	1		09/27/19 17:0		
rans-1,2-Dichloroethene	<1.0	ug/L	1.0	1		09/27/19 17:0	5 156-60-5	

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project: Ischua Landfill Pace Project No.: 70106329

Date: 01/08/2020 06:22 PM

Sample: MW-11B	Lab ID: 7010	06329006	Collected: 09/25/1	9 10:30	Received: 09/26/19	10:50 N	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared An	alyzed	CAS No.	Qual
8260C Volatile Organics	Analytical Meth	od: EPA 82	260C/5030C					
trans-1,3-Dichloropropene	<1.0	ug/L	1.0	1	09/27/	/19 17:05	10061-02-6	
trans-1,4-Dichloro-2-butene Surrogates	<1.0	ug/L	1.0	1	09/27/	/19 17:05	110-57-6	
1,2-Dichloroethane-d4 (S)	91	%	68-153	1	09/27/	/19 17:05	17060-07-0	
4-Bromofluorobenzene (S)	120	%	79-124	1	09/27/	/19 17:05	460-00-4	
Toluene-d8 (S)	92	%	69-124	1	09/27/	/19 17:05	2037-26-5	
TIC MSV Water	Analytical Meth	od: EPA 82	260					
TIC Search	No TICs Found			1	10/09/	/19 11:31		
5310B TOC as NPOC	Analytical Meth	od: SM22 s	5310B					
Total Organic Carbon	8.4	mg/L	1.0	1	10/02	/19 11:18	7440-44-0	

Project: Ischua Landfill Pace Project No.: 70106329

Date: 01/08/2020 06:22 PM

Sample: MW-12B	Lab ID:	70106329007	Collected: 09/25	/19 10:45	Received: 09	/26/19 10:50 I	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
6010 MET ICP	Analytical N	Method: EPA 60	010C Preparation N	/lethod: E	PA 3005A			
Cadmium	<2.5	ug/L	2.5	1	10/03/19 10:14	10/09/19 17:34	1 7440-43-9	
Calcium	126000	ug/L	200	1	10/03/19 10:14	10/09/19 17:34	1 7440-70-2	
Iron	18100	_	20.0	1	10/03/19 10:14	10/09/19 17:34	7439-89-6	
Lead	<5.0	-	5.0	1	10/03/19 10:14	10/09/19 17:34	7439-92-1	
Magnesium	25500	-	200	1	10/03/19 10:14	10/09/19 17:34	1 7439-95-4	
Manganese	10300	_	10.0	1	10/03/19 10:14	10/09/19 17:34	1 7439-96-5	
Potassium	6730	-	5000	1	10/03/19 10:14	10/09/19 17:34	1 7440-09-7	
Sodium	14800	-	5000	1	10/03/19 10:14	10/09/19 17:34	1 7440-23-5	
8260C Volatile Organics	Analytical N	Method: EPA 82	260C/5030C					
1,1,1,2-Tetrachloroethane	<1.0	ug/L	1.0	1		09/27/19 17:28	3 630-20-6	
1,1,1-Trichloroethane	<1.0		1.0	1		09/27/19 17:28	3 71-55-6	
1,1,2,2-Tetrachloroethane	<1.0	_	1.0	1		09/27/19 17:28	3 79-34-5	
1,1,2-Trichloroethane	<1.0	ug/L	1.0	1		09/27/19 17:28	3 79-00-5	
1,1-Dichloroethane	5.4	-	1.0	1		09/27/19 17:28	3 75-34-3	
1,1-Dichloroethene	<1.0	_	1.0	1		09/27/19 17:28	3 75-35-4	
1,2,3-Trichloropropane	<1.0	-	1.0	1		09/27/19 17:28	3 96-18-4	
I,2-Dibromo-3-chloropropane	<1.0	-	1.0	1		09/27/19 17:28	3 96-12-8	
,2-Dibromoethane (EDB)	<1.0	ŭ	1.0	1		09/27/19 17:28	3 106-93-4	
1,2-Dichlorobenzene	<1.0	_	1.0			09/27/19 17:28		
1,2-Dichloroethane	<1.0		1.0			09/27/19 17:28		
,2-Dichloropropane	<1.0	J	1.0			09/27/19 17:28		
1,4-Dichlorobenzene	2.3	U	1.0			09/27/19 17:28		
2-Butanone (MEK)	<5.0	-	5.0			09/27/19 17:28		IL
2-Hexanone	<5.0	J	5.0			09/27/19 17:28		
4-Methyl-2-pentanone (MIBK)	<5.0	_	5.0			09/27/19 17:28		
Acetone	<5.0	J	5.0			09/27/19 17:28		IC
Acrylonitrile	<1.0	0	1.0			09/27/19 17:28		
Benzene	4.7	•	1.0			09/27/19 17:28		
Bromochloromethane	<1.0	J	1.0			09/27/19 17:28		
Bromodichloromethane	<1.0		1.0			09/27/19 17:28		
Bromoform	<1.0	J	1.0			09/27/19 17:28		
Bromomethane	<1.0	J	1.0			09/27/19 17:28		
Carbon disulfide	<1.0	J	1.0			09/27/19 17:28		
Carbon tetrachloride	<1.0	J	1.0	-		09/27/19 17:28		
Chlorobenzene	6.9	U	1.0			09/27/19 17:28		
Chloroethane	<1.0	_	1.0			09/27/19 17:28		
Chloroform	<1.0	•	1.0			09/27/19 17:28		
Chloromethane	<1.0	-	1.0			09/27/19 17:28		
Dibromochloromethane	<1.0	J	1.0			09/27/19 17:28		
Dibromomethane	<1.0	_	1.0			09/27/19 17:28		
Ethylbenzene	<1.0	J	1.0			09/27/19 17:28		
Ethylbenzene lodomethane	<1.0 <1.0	J	1.0			09/27/19 17:28		
	<1.0 <1.0	0				09/27/19 17:28		
Methylene Chloride		0	1.0					
Styrene Tetrachloroethene	<1.0 <1.0	0	1.0			09/27/19 17:28		
remachioroemene	<1.0	ua/L	1.0	1		09/27/19 17:28	127-18-4	

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project: Ischua Landfill Pace Project No.: 70106329

Date: 01/08/2020 06:22 PM

Sample: MW-12B	Lab ID: 7	0106329007	Collected: 09/25/	19 10:45	Received: 09)/26/19 10:50 I	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260C Volatile Organics	Analytical M	lethod: EPA 82	260C/5030C					
Trichloroethene	<1.0	ug/L	1.0	1		09/27/19 17:28	79-01-6	
Trichlorofluoromethane	<1.0	ug/L	1.0	1		09/27/19 17:28	75-69-4	
Vinyl acetate	<1.0	ug/L	1.0	1		09/27/19 17:28		
Vinyl chloride	<1.0	ug/L	1.0	1		09/27/19 17:28		
Xylene (Total)	<3.0	ug/L	3.0	1		09/27/19 17:28		
cis-1,2-Dichloroethene	1.2	J	1.0	1		09/27/19 17:28		
cis-1,3-Dichloropropene	<1.0	ug/L	1.0	1		09/27/19 17:28		
m&p-Xylene	<2.0	ug/L	2.0	1		09/27/19 17:28		
o-Xylene	<1.0	ug/L	1.0	1		09/27/19 17:28		
trans-1,2-Dichloroethene	<1.0	ug/L	1.0	1		09/27/19 17:28		
trans-1,3-Dichloropropene trans-1,4-Dichloro-2-butene	<1.0 <1.0	ug/L ug/L	1.0 1.0	1 1		09/27/19 17:28 09/27/19 17:28		
Surrogates	<1.0	ug/L	1.0	1		03/21/18 11:20	110-37-0	
1,2-Dichloroethane-d4 (S)	101	%	68-153	1		09/27/19 17:28	17060-07-0	
4-Bromofluorobenzene (S)	96	%	79-124	1		09/27/19 17:28		
Toluene-d8 (S)	95	%	69-124	1		09/27/19 17:28		
TIC MSV Water	Analytical M	1ethod: EPA 82	260					
TIC Search	No TICs Found			1		10/09/19 11:31		
2320B Alkalinity	Analytical M	lethod: SM22	2320B					
Alkalinity, Total as CaCO3	468	mg/L	1.0	1		09/30/19 18:47	•	
2340C Hardness, Total	Analytical M	lethod: SM22	2340C					
Tot Hardness asCaCO3 (SM 2340B	200	mg/L	5.0	1		10/03/19 21:50)	
2540C Total Dissolved Solids	Analytical M	lethod: SM22	2540C					
Total Dissolved Solids	466	mg/L	20.0	1		10/01/19 09:54	Į.	
410.4 COD	Analytical M	lethod: EPA 41	10.4 Preparation Me	thod: EP	A 410.4			
Chemical Oxygen Demand	58.7	mg/L	10.0	1	10/04/19 10:35	10/04/19 12:55	i	
5210B BOD, 5 day	Analytical M	lethod: SM22 !	5210B Preparation N	Method:	SM22 5210B			
BOD, 5 day	8.1	mg/L	6.7	3.33	09/26/19 15:36	10/01/19 11:58		
300.0 IC Anions 28 Days	Analytical M	1ethod: EPA 30	0.00					
Bromide	0.54	Ū	0.50	1		10/05/19 00:30		
Chloride	13.7	Ū	2.0	1		10/05/19 00:30	16887-00-6	
Sulfate	<5.0	mg/L	5.0	1		10/05/19 00:30	14808-79-8	
351.2 Total Kjeldahl Nitrogen	Analytical M	lethod: EPA 35	51.2 Preparation Me	thod: EP	A 351.2			
Nitrogen, Kjeldahl, Total	10.1	mg/L	0.50	5	10/10/19 06:00	10/10/19 13:24	7727-37-9	
353.2 Nitrogen, NO2/NO3 unpres	Analytical M	lethod: EPA 35	53.2					
Nitrate as N	0.12	mg/L	0.050	1		09/27/19 01:43	14797-55-8	

REPORT OF LABORATORY ANALYSIS

Project: Ischua Landfill Pace Project No.: 70106329

Date: 01/08/2020 06:22 PM

Sample: MW-12B	Lab ID: 7010	6329007	Collected:	09/25/1	9 10:45	Received: 0	9/26/19 10:50	Matrix: Water	
Parameters	Results	Units	Report	Limit	DF	Prepared	Analyzed	CAS No.	Qual
353.2 Nitrogen, NO2/NO3 unpres	Analytical Meth	od: EPA 35	3.2						
Nitrate-Nitrite (as N)	0.12	mg/L		0.050	1		09/27/19 01:43	3 7727-37-9	
353.2 Nitrogen, NO2	Analytical Meth	od: EPA 35	3.2						
Nitrite as N	<0.050	mg/L		0.050	1		09/26/19 22:0	14797-65-0	
Phenolics, Total Recoverable	Analytical Meth	od: EPA 42	0.1 Prepara	tion Met	hod: EP	PA 420.1			
Phenolics, Total Recoverable	4.0J	ug/L		5.0	1	10/09/19 07:49	10/09/19 13:13	3	В
4500 Ammonia Water	Analytical Meth	od: SM22 4	4500 NH3 H						
Nitrogen, Ammonia	8.6	mg/L		1.0	10		10/07/19 13:47	7664-41-7	
5310B TOC as NPOC	Analytical Meth	od: SM22 5	5310B						
Total Organic Carbon	9.7	mg/L		1.0	1		10/02/19 11:39	7440-44-0	

Project: Ischua Landfill
Pace Project No.: 70106329

Date: 01/08/2020 06:22 PM

Sample: MW-13	Lab ID: 701	06329008	Collected: 09/2	5/19 11:15	Received: 09	9/26/19 10:50 I	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
6010 MET ICP	Analytical Met	hod: EPA 60	010C Preparation	Method: E	PA 3005A			
Cadmium	<2.5	ug/L	2.	5 1	10/03/19 10:14	10/09/19 17:36	7440-43-9	
Calcium	42200	ug/L	20) 1	10/03/19 10:14	10/09/19 17:36	7440-70-2	
ron	162	ug/L	20.) 1	10/03/19 10:14	10/09/19 17:36	7439-89-6	
₋ead	<5.0	ug/L	5.) 1	10/03/19 10:14	10/09/19 17:36	7439-92-1	
Magnesium	11900	ug/L	20) 1	10/03/19 10:14	10/09/19 17:36	7439-95-4	
Manganese	259	ug/L	10.) 1	10/03/19 10:14	10/09/19 17:36	7439-96-5	
Potassium	<5000	ug/L	500) 1	10/03/19 10:14	10/09/19 17:36	7440-09-7	
Sodium	9590	ug/L	500) 1	10/03/19 10:14	10/09/19 17:36	7440-23-5	
8260C Volatile Organics	Analytical Met	nod: EPA 82	260C/5030C					
1,1,1,2-Tetrachloroethane	<1.0	ug/L	1.) 1		09/27/19 17:50	630-20-6	
1,1,1-Trichloroethane	<1.0	ug/L	1.) 1		09/27/19 17:50	71-55-6	
1,1,2,2-Tetrachloroethane	<1.0	ug/L	1.) 1		09/27/19 17:50	79-34-5	
1,1,2-Trichloroethane	<1.0	ug/L	1.) 1		09/27/19 17:50	79-00-5	
1,1-Dichloroethane	<1.0	ug/L	1.) 1		09/27/19 17:50	75-34-3	
1,1-Dichloroethene	<1.0	ug/L	1.) 1		09/27/19 17:50	75-35-4	
,2,3-Trichloropropane	<1.0	ug/L	1.) 1		09/27/19 17:50	96-18-4	
,2-Dibromo-3-chloropropane	<1.0	ug/L	1.) 1		09/27/19 17:50	96-12-8	
,2-Dibromoethane (EDB)	<1.0	ug/L	1.) 1		09/27/19 17:50	106-93-4	
,2-Dichlorobenzene	<1.0	ug/L	1.) 1		09/27/19 17:50	95-50-1	
,2-Dichloroethane	<1.0	ug/L	1.) 1		09/27/19 17:50	107-06-2	
,2-Dichloropropane	<1.0	ug/L	1.) 1		09/27/19 17:50	78-87-5	
,4-Dichlorobenzene	<1.0	ug/L	1.			09/27/19 17:50		
2-Butanone (MEK)	<5.0	ug/L	5.			09/27/19 17:50		IL
2-Hexanone	<5.0	ug/L	5.			09/27/19 17:50		
I-Methyl-2-pentanone (MIBK)	<5.0	ug/L	5.			09/27/19 17:50		
Acetone	<5.0	ug/L	5.			09/27/19 17:50		IC
Acrylonitrile	<1.0	ug/L	1.			09/27/19 17:50		
Benzene	<1.0	ug/L	1.			09/27/19 17:50		
Bromochloromethane	<1.0	ug/L	1.			09/27/19 17:50		
Bromodichloromethane	<1.0	ug/L	1.			09/27/19 17:50		
Bromoform	<1.0	ug/L	1.			09/27/19 17:50		
Bromomethane	<1.0	ug/L	1.			09/27/19 17:50		
Carbon disulfide	<1.0	ug/L	1.			09/27/19 17:50		
Carbon tetrachloride	<1.0 <1.0	ug/L ug/L	1.			09/27/19 17:50		
Chlorobenzene	<1.0 <1.0	•	1.			09/27/19 17:50		
Chloroethane		ug/L	1. 1.					
	<1.0	ug/L				09/27/19 17:50		
Chloroform	<1.0	ug/L	1.			09/27/19 17:50		
Chloromethane	<1.0	ug/L	1.			09/27/19 17:50		
Dibromochloromethane	<1.0	ug/L	1.			09/27/19 17:50		
Dibromomethane	<1.0	ug/L	1.			09/27/19 17:50		
Ethylbenzene	<1.0	ug/L	1.			09/27/19 17:50		
odomethane	<1.0	ug/L	1.			09/27/19 17:50		
Methylene Chloride	<1.0	ug/L	1.			09/27/19 17:50		
Styrene	<1.0	ug/L	1.			09/27/19 17:50		
Tetrachloroethene	<1.0	ug/L	1.			09/27/19 17:50		
Toluene	<1.0	ug/L	1.) 1		09/27/19 17:50	108-88-3	

REPORT OF LABORATORY ANALYSIS

Project: Ischua Landfill Pace Project No.: 70106329

Date: 01/08/2020 06:22 PM

Sample: MW-13	Lab ID: 701	06329008	Collected: 09/25/1	19 11:15	Received: 09	9/26/19 10:50	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
8260C Volatile Organics	Analytical Met	nod: EPA 82	260C/5030C					
Trichloroethene	<1.0	ug/L	1.0	1		09/27/19 17:50	79-01-6	
Trichlorofluoromethane	<1.0	ug/L	1.0	1		09/27/19 17:50	75-69-4	
Vinyl acetate	<1.0	ug/L	1.0	1		09/27/19 17:50	0 108-05-4	
Vinyl chloride	<1.0	ug/L	1.0	1		09/27/19 17:50	75-01-4	
Xylene (Total)	<3.0	ug/L	3.0	1		09/27/19 17:50		
cis-1,2-Dichloroethene	<1.0	ug/L	1.0	1		09/27/19 17:50		
cis-1,3-Dichloropropene	<1.0	ug/L	1.0	1		09/27/19 17:50		
m&p-Xylene	<2.0	ug/L	2.0	1			0 179601-23-1	
o-Xylene	<1.0	ug/L	1.0	1		09/27/19 17:50		
trans-1,2-Dichloroethene	<1.0	ug/L	1.0	1		09/27/19 17:50		
trans-1,3-Dichloropropene	<1.0	ug/L	1.0	1			0 10061-02-6	
trans-1,4-Dichloro-2-butene	<1.0	ug/L	1.0	1		09/27/19 17:50) 110-57-6	
Surrogates 1,2-Dichloroethane-d4 (S)	100	%	68-153	1		09/27/19 17:50	17060-07-0	
4-Bromofluorobenzene (S)	94	% %	79-124	1		09/27/19 17:50		
Toluene-d8 (S)	93	%	69-124	1		09/27/19 17:50		
TIC MSV Water	Analytical Met			•		05/21/15 17.50	2001-20-0	
		100. LI A 02	200					
ΓIC Search	No TICs Found			1		10/09/19 11:31	I	
2320B Alkalinity	Analytical Met	nod: SM22	2320B					
Alkalinity, Total as CaCO3	156	mg/L	1.0	1		09/30/19 18:57	7	
2340C Hardness, Total	Analytical Met	nod: SM22	2340C					
Tot Hardness asCaCO3 (SM 2340B	133	mg/L	5.0	1		10/03/19 21:50)	
2540C Total Dissolved Solids	Analytical Met	nod: SM22	2540C					
Total Dissolved Solids	173	mg/L	10.0	1		10/01/19 09:54	4	
410.4 COD	Analytical Met	hod: EPA 4	10.4 Preparation Met	thod: EPA	A 410.4			
Chemical Oxygen Demand	14.6	mg/L	10.0	1	10/04/19 10:35	10/04/19 12:5	5	
5210B BOD, 5 day	Analytical Met	nod: SM22	5210B Preparation N	/lethod: S	SM22 5210B			
BOD, 5 day	1.0J	mg/L	2.0	1	09/26/19 15:36	10/01/19 12:00)	
300.0 IC Anions 28 Days	Analytical Met	hod: EPA 30	0.00					
Bromide	0.18J	mg/L	0.50	1		10/05/19 00:47	7 24959-67-9	
Chloride	3.2	mg/L	2.0	1		10/05/19 00:47	7 16887-00-6	
Sulfate	4.1J	mg/L	5.0	1		10/05/19 00:47	7 14808-79-8	
351.2 Total Kjeldahl Nitrogen	Analytical Met	nod: EPA 3	51.2 Preparation Met	thod: EP/	A 351.2			
Nitrogen, Kjeldahl, Total	0.63	mg/L	0.10	1	10/10/19 06:00	10/10/19 12:39	9 7727-37-9	
353.2 Nitrogen, NO2/NO3 unpres	Analytical Met	hod: EPA 3	53.2					
Nitrate as N	0.073	mg/L	0.050	1		09/27/19 01:4	5 14797-55-8	

Project: Ischua Landfill Pace Project No.: 70106329

Date: 01/08/2020 06:22 PM

Sample: MW-13	Lab ID: 7010	06329008	Collected: 09/25/1	9 11:15	Received: 09)/26/19 10:50	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
353.2 Nitrogen, NO2/NO3 unpres	Analytical Meth	od: EPA 35	3.2					
Nitrate-Nitrite (as N)	0.073	mg/L	0.050	1		09/27/19 01:45	7727-37-9	
353.2 Nitrogen, NO2	Analytical Meth	od: EPA 35	3.2					
Nitrite as N	<0.050	mg/L	0.050	1		09/26/19 22:03	3 14797-65-0	
Phenolics, Total Recoverable	Analytical Meth	od: EPA 42	0.1 Preparation Met	hod: EP	PA 420.1			
Phenolics, Total Recoverable	4.0J	ug/L	5.0	1	10/09/19 07:49	10/09/19 13:14	1	В
4500 Ammonia Water	Analytical Meth	od: SM22 4	500 NH3 H					
Nitrogen, Ammonia	<0.10	mg/L	0.10	1		10/07/19 13:18	3 7664-41-7	
5310B TOC as NPOC	Analytical Meth	od: SM22 5	310B					
Total Organic Carbon	2.2	mg/L	1.0	1		10/02/19 12:11	7440-44-0	

Project: Ischua Landfill Pace Project No.: 70106329

Date: 01/08/2020 06:22 PM

Sample: MW-14	Lab ID: 701	06329009	Collected: 09/25/1	19 11:00	Received: 09	/26/19 10:50	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
6010 MET ICP	Analytical Meth	nod: EPA 60	010C Preparation Me	ethod: El	PA 3005A			
Cadmium	<2.5	ug/L	2.5	1	10/03/19 10:14	10/09/19 17:38	3 7440-43-9	
Calcium	56800	ug/L	200	1	10/03/19 10:14	10/09/19 17:38	3 7440-70-2	
ron	15.3J	ug/L	20.0	1	10/03/19 10:14	10/09/19 17:38	3 7439-89-6	
_ead	<5.0	ug/L	5.0	1	10/03/19 10:14	10/09/19 17:38	3 7439-92-1	
Magnesium	14000	ug/L	200	1	10/03/19 10:14	10/09/19 17:38	3 7439-95-4	
Manganese	60.2	ug/L	10.0	1	10/03/19 10:14	10/09/19 17:38	3 7439-96-5	
Potassium	1620J	ug/L	5000	1	10/03/19 10:14	10/09/19 17:38	3 7440-09-7	
Sodium	8990	ug/L	5000	1	10/03/19 10:14	10/09/19 17:38	3 7440-23-5	
3260C Volatile Organics	Analytical Meth	nod: EPA 82	260C/5030C					
1,1,1,2-Tetrachloroethane	<1.0	ug/L	1.0	1		09/27/19 18:13	3 630-20-6	
1,1,1-Trichloroethane	<1.0	ug/L	1.0	1		09/27/19 18:13	3 71-55-6	
1,1,2,2-Tetrachloroethane	<1.0	ug/L	1.0	1		09/27/19 18:13	3 79-34-5	
1,1,2-Trichloroethane	<1.0	ug/L	1.0	1		09/27/19 18:13	3 79-00-5	
1,1-Dichloroethane	<1.0	ug/L	1.0	1		09/27/19 18:13	3 75-34-3	
1,1-Dichloroethene	<1.0	ug/L	1.0	1		09/27/19 18:13	3 75-35-4	
,2,3-Trichloropropane	<1.0	ug/L	1.0	1		09/27/19 18:13	3 96-18-4	
,2-Dibromo-3-chloropropane	<1.0	ug/L	1.0	1		09/27/19 18:13	3 96-12-8	
,2-Dibromoethane (EDB)	<1.0	ug/L	1.0	1		09/27/19 18:13		
.2-Dichlorobenzene	<1.0	ug/L	1.0	1		09/27/19 18:13	3 95-50-1	
,2-Dichloroethane	<1.0	ug/L	1.0	1		09/27/19 18:13	3 107-06-2	
,2-Dichloropropane	<1.0	ug/L	1.0	1		09/27/19 18:13	3 78-87-5	
,4-Dichlorobenzene	<1.0	ug/L	1.0	1		09/27/19 18:13		
P-Butanone (MEK)	<5.0	ug/L	5.0	1		09/27/19 18:1:		IL
2-Hexanone	<5.0	ug/L	5.0	1		09/27/19 18:1:		
I-Methyl-2-pentanone (MIBK)	<5.0	ug/L	5.0	1		09/27/19 18:1:		
Acetone	<5.0	ug/L	5.0	1		09/27/19 18:1:		IC
Acrylonitrile	<1.0	ug/L	1.0	1		09/27/19 18:13		
Benzene	<1.0	ug/L	1.0	1		09/27/19 18:13		
Bromochloromethane	<1.0	ug/L	1.0	1		09/27/19 18:1:		
Bromodichloromethane	<1.0	ug/L	1.0	1		09/27/19 18:1:		
Bromoform	<1.0	ug/L	1.0	1		09/27/19 18:1:		
Bromomethane	<1.0	ug/L	1.0	1		09/27/19 18:1:		
Carbon disulfide	<1.0	ug/L	1.0	1		09/27/19 18:1:		
Carbon tetrachloride	<1.0	ug/L	1.0	1		09/27/19 18:1:		
Chlorobenzene	<1.0	ug/L	1.0	1		09/27/19 18:1:		
Chloroethane	<1.0	ug/L	1.0	1		09/27/19 18:13		
		•						
Chloroform	<1.0 <1.0	ug/L	1.0	1		09/27/19 18:13		
Chloromethane		ug/L	1.0	1		09/27/19 18:13		
Dibromochloromethane Dibromomethane	<1.0	ug/L	1.0	1		09/27/19 18:13		
	<1.0	ug/L	1.0	1		09/27/19 18:13		
Ethylbenzene	<1.0	ug/L	1.0	1		09/27/19 18:13		
odomethane	<1.0	ug/L	1.0	1		09/27/19 18:13		
Methylene Chloride	<1.0	ug/L	1.0	1		09/27/19 18:13		
Styrene	<1.0	ug/L	1.0	1		09/27/19 18:13		
Tetrachloroethene	<1.0	ug/L	1.0	1		09/27/19 18:13		
Toluene	<1.0	ug/L	1.0	1		09/27/19 18:13	3 108-88-3	

REPORT OF LABORATORY ANALYSIS

Project: Ischua Landfill Pace Project No.: 70106329

Date: 01/08/2020 06:22 PM

Sample: MW-14	Lab ID:	70106329009	Collected: 09/25/	19 11:00	Received: 09	9/26/19 10:50 I	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260C Volatile Organics	Analytical I	Method: EPA 82	260C/5030C					
Trichloroethene	<1.0	ug/L	1.0	1		09/27/19 18:13	3 79-01-6	
Trichlorofluoromethane	<1.0) ug/L	1.0	1		09/27/19 18:13	3 75-69-4	
Vinyl acetate	<1.0) ug/L	1.0	1		09/27/19 18:13	3 108-05-4	
Vinyl chloride	<1.0) ug/L	1.0	1		09/27/19 18:13		
Xylene (Total)	<3.0	0	3.0	1		09/27/19 18:13		
cis-1,2-Dichloroethene	<1.0	J	1.0	1		09/27/19 18:13		
cis-1,3-Dichloropropene	<1.0	J	1.0	1		09/27/19 18:13		
m&p-Xylene	<2.0	0	2.0	1			3 179601-23-1	
o-Xylene	<1.0	0	1.0	1		09/27/19 18:13		
trans-1,2-Dichloroethene	<1.0	0	1.0	1		09/27/19 18:13		
trans-1,3-Dichloropropene	<1.0	J	1.0	1		09/27/19 18:13		
trans-1,4-Dichloro-2-butene Surrogates	<1.0) ug/L	1.0	1		09/27/19 18:13	d-16-011	
1,2-Dichloroethane-d4 (S)	101	1 %	68-153	1		09/27/19 18:13	3 17060-07-0	
4-Bromofluorobenzene (S)	93		79-124	1		09/27/19 18:13		
Toluene-d8 (S)	94		69-124	1		09/27/19 18:13		
TIC MSV Water		Method: EPA 82						
TIC Search	No TICs Found	6		1		10/09/19 11:32	2	
2320B Alkalinity	Analytical	Method: SM22	2320B					
Alkalinity, Total as CaCO3	204	1 mg/L	1.0	1		09/30/19 19:08	3	
2340C Hardness, Total	Analytical	Method: SM22	2340C					
Tot Hardness asCaCO3 (SM 2340B	193	B mg/L	5.0	1		10/03/19 22:00)	
2540C Total Dissolved Solids	Analytical I	Method: SM22	2540C					
Total Dissolved Solids	209	mg/L	10.0	1		10/01/19 09:55	5	
410.4 COD	Analytical	Method: EPA 41	10.4 Preparation Me	thod: EP	A 410.4			
Chemical Oxygen Demand	25.6	6 mg/L	10.0	1	10/04/19 10:35	10/04/19 12:55	5	
5210B BOD, 5 day	Analytical I	Method: SM22	5210B Preparation N	Nethod: S	SM22 5210B			
BOD, 5 day	1.0	J mg/L	2.0	1	09/26/19 15:37	10/01/19 12:03	3	
300.0 IC Anions 28 Days	Analytical I	Method: EPA 30	0.00					
Bromide	0.046		0.50	1		10/05/19 01:03	3 24959-67-9	
Chloride	2.4	J	2.0	1		10/05/19 01:03	3 16887-00-6	
Sulfate	16.0	mg/L	5.0	1		10/05/19 01:03	3 14808-79-8	
351.2 Total Kjeldahl Nitrogen	Analytical I	Method: EPA 35	51.2 Preparation Me	thod: EP	A 351.2			
Nitrogen, Kjeldahl, Total	<0.10	mg/L	0.10	1	10/10/19 06:00	10/10/19 12:40	7727-37-9	
353.2 Nitrogen, NO2/NO3 unpres	Analytical I	Method: EPA 35	53.2					
Nitrate as N	0.093	mg/L	0.050	1		09/27/19 01:51	14797-55-8	

REPORT OF LABORATORY ANALYSIS

Project: Ischua Landfill Pace Project No.: 70106329

Date: 01/08/2020 06:22 PM

- 400 : 10,000 : 10 : 000 = 0									
Sample: MW-14	Lab ID: 7010	06329009	Collected:	09/25/1	9 11:00	Received: 0	9/26/19 10:50	Matrix: Water	
Parameters	Results	Units	Report	t Limit	DF	Prepared	Analyzed	CAS No.	Qual
353.2 Nitrogen, NO2/NO3 unpres	Analytical Meth	nod: EPA 35	3.2						
Nitrate-Nitrite (as N)	0.093	mg/L		0.050	1		09/27/19 01:5	1 7727-37-9	
353.2 Nitrogen, NO2	Analytical Meth	nod: EPA 35	3.2						
Nitrite as N	<0.050	mg/L		0.050	1		09/26/19 22:00	6 14797-65-0	
Phenolics, Total Recoverable	Analytical Meth	nod: EPA 42	0.1 Prepara	tion Met	hod: EP	A 420.1			
Phenolics, Total Recoverable	4.0J	ug/L		5.0	1	10/09/19 07:49	9 10/09/19 13:1	5	В
4500 Ammonia Water	Analytical Meth	nod: SM22 4	500 NH3 H						
Nitrogen, Ammonia	<0.10	mg/L		0.10	1		10/07/19 13:22	2 7664-41-7	
5310B TOC as NPOC	Analytical Meth	nod: SM22 5	310B						
Total Organic Carbon	1.3	mg/L		1.0	1		10/02/19 12:30	0 7440-44-0	

Project: Ischua Landfill
Pace Project No.: 70106329

Date: 01/08/2020 06:22 PM

Sample: SEEP	Lab ID: 701	06329010	Collected: 09/25	19 12:30	Received: 09	/26/19 10:50	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
6010 MET ICP	Analytical Met	hod: EPA 60	010C Preparation M	lethod: E	PA 3005A			
Cadmium	<2.5	ug/L	2.5	1	10/03/19 10:14	10/09/19 17:41	7440-43-9	
Calcium	63500	ug/L	200	1	10/03/19 10:14	10/09/19 17:41	7440-70-2	
Iron	32900	ug/L	20.0	1	10/03/19 10:14	10/09/19 17:41	7439-89-6	
Lead	<5.0	ug/L	5.0	1	10/03/19 10:14	10/09/19 17:41	7439-92-1	
Magnesium	23200	ug/L	200	1	10/03/19 10:14	10/09/19 17:41	7439-95-4	
Manganese	11700	ug/L	10.0	1	10/03/19 10:14	10/09/19 17:41	7439-96-5	
Potassium	3730J	ug/L	5000	1	10/03/19 10:14	10/09/19 17:41	7440-09-7	
Sodium	6920	ug/L	5000	1	10/03/19 10:14	10/09/19 17:41	7440-23-5	
3260C Volatile Organics	Analytical Met	nod: EPA 82	260C/5030C					
1,1,1,2-Tetrachloroethane	<1.0	ug/L	1.0	1		09/27/19 18:36	6 630-20-6	
1,1,1-Trichloroethane	<1.0	ug/L	1.0	1		09/27/19 18:36	71-55-6	
1,1,2,2-Tetrachloroethane	<1.0	ug/L	1.0	1		09/27/19 18:36	79-34-5	
1,1,2-Trichloroethane	<1.0	ug/L	1.0	1		09/27/19 18:36	79-00-5	
1,1-Dichloroethane	4.2	ug/L	1.0	1		09/27/19 18:36	5 75-34-3	
1,1-Dichloroethene	<1.0	ug/L	1.0	1		09/27/19 18:36	5 75-35-4	
,2,3-Trichloropropane	<1.0	ug/L	1.0	1		09/27/19 18:36	96-18-4	
,2-Dibromo-3-chloropropane	<1.0	ug/L	1.0	1		09/27/19 18:36	96-12-8	
,2-Dibromoethane (EDB)	<1.0	ug/L	1.0	1		09/27/19 18:36	106-93-4	
,2-Dichlorobenzene	<1.0	ug/L	1.0	1		09/27/19 18:36	95-50-1	
,2-Dichloroethane	<1.0	ug/L	1.0	1		09/27/19 18:36	107-06-2	
,2-Dichloropropane	<1.0	ug/L	1.0	1		09/27/19 18:36	8 78-87-5	
1,4-Dichlorobenzene	<1.0	ug/L	1.0	1		09/27/19 18:36		
2-Butanone (MEK)	<5.0	ug/L	5.0	1		09/27/19 18:36		IL
2-Hexanone	<5.0	ug/L	5.0	1		09/27/19 18:36		
I-Methyl-2-pentanone (MIBK)	<5.0	ug/L	5.0	1		09/27/19 18:36		
Acetone	<5.0	ug/L	5.0	1		09/27/19 18:36		IC
Acrylonitrile	<1.0	ug/L	1.0	1		09/27/19 18:36		10
Benzene	0.64J	ug/L	1.0	1		09/27/19 18:36		
Bromochloromethane	<1.0	ug/L	1.0	1		09/27/19 18:36		
Bromodichloromethane	<1.0	ug/L	1.0	1		09/27/19 18:36		
Bromoform	<1.0	ug/L	1.0	1		09/27/19 18:36		
Bromomethane	<1.0	ug/L	1.0	1		09/27/19 18:36		
Carbon disulfide	<1.0	ug/L	1.0	1		09/27/19 18:36		
Carbon tetrachloride	<1.0 <1.0	-	1.0	1		09/27/19 18:36		
Chlorobenzene	1.1	ug/L	1.0			09/27/19 18:36		
		ug/L						
Chloroethane	<1.0	ug/L	1.0			09/27/19 18:36		
Chloroform	<1.0	ug/L	1.0			09/27/19 18:36		
Chloromethane	<1.0	ug/L	1.0			09/27/19 18:36		
Dibromochloromethane	<1.0	ug/L	1.0			09/27/19 18:36		
Dibromomethane	<1.0	ug/L	1.0			09/27/19 18:36		
Ethylbenzene	<1.0	ug/L	1.0			09/27/19 18:36		
odomethane	<1.0	ug/L	1.0			09/27/19 18:36		
Methylene Chloride	<1.0	ug/L	1.0			09/27/19 18:36		
Styrene	<1.0	ug/L	1.0			09/27/19 18:36	100-42-5	
Tetrachloroethene	<1.0	ug/L	1.0	1		09/27/19 18:36	3 127-18-4	
Toluene	<1.0	ug/L	1.0	1		09/27/19 18:36	108-88-3	

REPORT OF LABORATORY ANALYSIS

Project: Ischua Landfill
Pace Project No.: 70106329

Date: 01/08/2020 06:22 PM

Sample: SEEP	Lab ID:	70106329010	Collected: 09/25/1	9 12:30	Received: 09	9/26/19 10:50	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260C Volatile Organics	Analytical	Method: EPA 82	260C/5030C					
Trichloroethene	1.8	8 ug/L	1.0	1		09/27/19 18:36	79-01-6	
Trichlorofluoromethane	<1.0	0 ug/L	1.0	1		09/27/19 18:36	5 75-69-4	
Vinyl acetate	<1.0	•	1.0	1		09/27/19 18:36	108-05-4	
Vinyl chloride	2.9	9 ug/L	1.0	1		09/27/19 18:36	5 75-01-4	
Xylene (Total)	<3.0	0	3.0	1		09/27/19 18:36		
cis-1,2-Dichloroethene	18.8		1.0	1		09/27/19 18:36		
cis-1,3-Dichloropropene	<1.0	ŭ	1.0	1		09/27/19 18:36		
m&p-Xylene	<2.0	ŭ	2.0	1			3 179601-23-1	
o-Xylene	<1.0	0	1.0	1		09/27/19 18:36		
trans-1,2-Dichloroethene	<1.0	0	1.0	1		09/27/19 18:36		
trans-1,3-Dichloropropene	<1.0		1.0	1		09/27/19 18:36		
trans-1,4-Dichloro-2-butene Surrogates	<1.0	0 ug/L	1.0	1		09/27/19 18:36	0-10-07-0	
1,2-Dichloroethane-d4 (S)	106	6 %	68-153	1		09/27/19 18:36	3 17060-07-0	
4-Bromofluorobenzene (S)	93		79-124	1		09/27/19 18:36		
Toluene-d8 (S)	90		69-124	1		09/27/19 18:36		
TIC MSV Water	Analytical	Method: EPA 82	260					
TIC Search	No TICs Found			1		10/09/19 11:32	2	
2320B Alkalinity	Analytical	Method: SM22 2	2320B					
Alkalinity, Total as CaCO3	260	0 mg/L	1.0	1		09/30/19 19:21	I	
2340C Hardness, Total	Analytical	Method: SM22 2	2340C					
Tot Hardness asCaCO3 (SM 2340B	200	0 mg/L	5.0	1		10/03/19 22:07	7	
2540C Total Dissolved Solids	Analytical	Method: SM22 2	2540C					
Total Dissolved Solids	272	2 mg/L	20.0	1		10/01/19 09:55	5	
410.4 COD	Analytical	Method: EPA 41	0.4 Preparation Met	hod: EPA	A 410.4			
Chemical Oxygen Demand	85.2	Ū	10.0	1		10/04/19 12:55	5	
5210B BOD, 5 day	Analytical	Method: SM22 (5210B Preparation N	/lethod: S	SM22 5210B			
BOD, 5 day	2.1	1 mg/L	2.0	1	09/26/19 15:37	10/01/19 12:06	3	
300.0 IC Anions 28 Days	Analytical	Method: EPA 30	0.00					
Bromide	0.29	J mg/L	0.50	1		10/05/19 01:20	24959-67-9	
Chloride	7.2	2 mg/L	2.0	1		10/05/19 01:20	16887-00-6	
Sulfate	5.6	6 mg/L	5.0	1		10/05/19 01:20	14808-79-8	
351.2 Total Kjeldahl Nitrogen	Analytical	Method: EPA 35	51.2 Preparation Met	hod: EPA	A 351.2			
Nitrogen, Kjeldahl, Total	3.2	2 mg/L	0.10	1	10/10/19 06:00	10/10/19 12:41	7727-37-9	
353.2 Nitrogen, NO2/NO3 unpres	Analytical	Method: EPA 35	53.2					
Nitrate as N	<0.050	0 mg/L	0.050	1		09/27/19 01:52	2 14797-55-8	

REPORT OF LABORATORY ANALYSIS

Project: Ischua Landfill Pace Project No.: 70106329

Date: 01/08/2020 06:22 PM

- 400110,001110 10100020									
Sample: SEEP	Lab ID: 7010	06329010	Collected:	09/25/1	9 12:30	Received: 0	9/26/19 10:50	Matrix: Water	
Parameters	Results	Units	Report	t Limit	DF	Prepared	Analyzed	CAS No.	Qual
353.2 Nitrogen, NO2/NO3 unpres	Analytical Meth	nod: EPA 35	3.2						
Nitrate-Nitrite (as N)	<0.050	mg/L		0.050	1		09/27/19 01:52	2 7727-37-9	
353.2 Nitrogen, NO2	Analytical Meth	nod: EPA 35	3.2						
Nitrite as N	<0.050	mg/L		0.050	1		09/26/19 22:07	7 14797-65-0	
Phenolics, Total Recoverable	Analytical Meth	nod: EPA 42	0.1 Prepara	ition Met	hod: EP	A 420.1			
Phenolics, Total Recoverable	4.0J	ug/L		5.0	1	10/09/19 07:49	9 10/09/19 13:16	6	В
4500 Ammonia Water	Analytical Meth	nod: SM22 4	500 NH3 H						
Nitrogen, Ammonia	2.4	mg/L		0.10	1		10/07/19 13:23	3 7664-41-7	
5310B TOC as NPOC	Analytical Meth	nod: SM22 5	310B						
Total Organic Carbon	7.5	mg/L		1.0	1		10/02/19 13:24	1 7440-44-0	

Project: Ischua Landfill
Pace Project No.: 70106329

Date: 01/08/2020 06:22 PM

Sample: STREAM	Lab ID: 70°	106329011	Collected: 09/25/	19 12:00	Received: 09	/26/19 10:50 I	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
6010 MET ICP	Analytical Me	thod: EPA 60	010C Preparation M	ethod: E	PA 3005A			
Cadmium	<2.5	ug/L	2.5	1	10/03/19 10:14	10/09/19 17:43	7440-43-9	
Calcium	42000	ug/L	200	1	10/03/19 10:14	10/09/19 17:43	7440-70-2	
ron	79.0	ug/L	20.0	1	10/03/19 10:14	10/09/19 17:43	7439-89-6	
₋ead	<5.0	ug/L	5.0	1	10/03/19 10:14	10/09/19 17:43	7439-92-1	
Magnesium	12300	ug/L	200	1	10/03/19 10:14	10/09/19 17:43	7439-95-4	
Manganese	2330	ug/L	10.0	1	10/03/19 10:14	10/09/19 17:43	7439-96-5	
Potassium	2200J	ug/L	5000	1	10/03/19 10:14	10/09/19 17:43	7440-09-7	
Sodium	3890J	ug/L	5000	1	10/03/19 10:14	10/09/19 17:43	7440-23-5	
3260C Volatile Organics	Analytical Me	thod: EPA 82	260C/5030C					
1,1,1,2-Tetrachloroethane	<1.0	ug/L	1.0	1		09/27/19 18:59	630-20-6	
1,1,1-Trichloroethane	<1.0	ug/L	1.0	1		09/27/19 18:59	71-55-6	
,1,2,2-Tetrachloroethane	<1.0	ug/L	1.0	1		09/27/19 18:59	79-34-5	
1,1,2-Trichloroethane	<1.0	ug/L	1.0	1		09/27/19 18:59	79-00-5	
1,1-Dichloroethane	<1.0	ug/L	1.0	1		09/27/19 18:59	75-34-3	
,1-Dichloroethene	<1.0	ug/L	1.0	1		09/27/19 18:59	75-35-4	
,2,3-Trichloropropane	<1.0	ug/L	1.0	1		09/27/19 18:59	96-18-4	
,2-Dibromo-3-chloropropane	<1.0	ug/L	1.0	1		09/27/19 18:59		
,2-Dibromoethane (EDB)	<1.0	ug/L	1.0	1		09/27/19 18:59		
.2-Dichlorobenzene	<1.0	ug/L	1.0	1		09/27/19 18:59		
,2-Dichloroethane	<1.0	ug/L	1.0	1		09/27/19 18:59		
,2-Dichloropropane	<1.0	ug/L	1.0	1		09/27/19 18:59		
,4-Dichlorobenzene	<1.0	ug/L	1.0	1		09/27/19 18:59		
2-Butanone (MEK)	<5.0	ug/L	5.0	1		09/27/19 18:59		IL
2-Hexanone	<5.0	ug/L	5.0	1		09/27/19 18:59		
I-Methyl-2-pentanone (MIBK)	<5.0	ug/L	5.0	1		09/27/19 18:59		
Acetone	<5.0	ug/L	5.0	1		09/27/19 18:59		IC
Acrylonitrile	<1.0	ug/L	1.0	1		09/27/19 18:59		10
Benzene	<1.0 <1.0	-	1.0	1		09/27/19 18:59		
Bromochloromethane	<1.0 <1.0	ug/L		1		09/27/19 18:59		
Bromodichloromethane	<1.0 <1.0	ug/L	1.0 1.0	1		09/27/19 18:59		
		ug/L						
Bromoform	<1.0	ug/L	1.0	1		09/27/19 18:59		
Bromomethane	<1.0	ug/L	1.0	1		09/27/19 18:59		
Carbon disulfide	<1.0	ug/L	1.0	1		09/27/19 18:59		
Carbon tetrachloride	<1.0	ug/L	1.0	1		09/27/19 18:59		
Chlorobenzene	<1.0	ug/L	1.0	1		09/27/19 18:59		
Chloroethane	<1.0	ug/L	1.0	1		09/27/19 18:59		
Chloroform	<1.0	ug/L	1.0	1		09/27/19 18:59		
Chloromethane	<1.0	ug/L	1.0	1		09/27/19 18:59		
Dibromochloromethane	<1.0	ug/L	1.0	1		09/27/19 18:59		
Dibromomethane	<1.0	ug/L	1.0	1		09/27/19 18:59		
Ethylbenzene	<1.0	ug/L	1.0	1		09/27/19 18:59		
odomethane	<1.0	ug/L	1.0	1		09/27/19 18:59		
Methylene Chloride	<1.0	ug/L	1.0	1		09/27/19 18:59	75-09-2	
Styrene	<1.0	ug/L	1.0	1		09/27/19 18:59	100-42-5	
Tetrachloroethene	<1.0	ug/L	1.0	1		09/27/19 18:59	127-18-4	
Toluene	<1.0	ug/L	1.0	1		09/27/19 18:59	108-88-3	

REPORT OF LABORATORY ANALYSIS

Project: Ischua Landfill Pace Project No.: 70106329

Date: 01/08/2020 06:22 PM

Sample: STREAM	Lab ID:	70106329011	Collected: 09/25/1	9 12:00	Received: 09	9/26/19 10:50 I	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
8260C Volatile Organics	Analytical I	Method: EPA 82	260C/5030C					
Trichloroethene	<1.0	ug/L	1.0	1		09/27/19 18:59	79-01-6	
Trichlorofluoromethane	<1.0	ug/L	1.0	1		09/27/19 18:59	75-69-4	
Vinyl acetate	<1.0	ug/L	1.0	1		09/27/19 18:59	108-05-4	
Vinyl chloride	<1.0	ug/L	1.0	1		09/27/19 18:59		
Xylene (Total)	<3.0	J	3.0	1		09/27/19 18:59		
cis-1,2-Dichloroethene	<1.0	J	1.0	1		09/27/19 18:59		
cis-1,3-Dichloropropene	<1.0	J	1.0	1		09/27/19 18:59		
m&p-Xylene	<2.0	J	2.0	1			179601-23-1	
o-Xylene	<1.0	J	1.0	1		09/27/19 18:59		
trans-1,2-Dichloroethene	<1.0	J	1.0	1		09/27/19 18:59		
trans-1,3-Dichloropropene	<1.0	J	1.0	1		09/27/19 18:59		
trans-1,4-Dichloro-2-butene Surrogates	<1.0	ug/L	1.0	1		09/27/19 18:59	0 11U-5/-b	
1,2-Dichloroethane-d4 (S)	99	9 %	68-153	1		09/27/19 18:59	17060-07-0	
4-Bromofluorobenzene (S)	93		79-124	1		09/27/19 18:59		
Toluene-d8 (S)	94		69-124	1		09/27/19 18:59		
TIC MSV Water	Analytical I	Method: EPA 82	260					
TIC Search	No TICs Found			1		10/09/19 11:32	2	
2320B Alkalinity	Analytical I	Method: SM22	2320B					
Alkalinity, Total as CaCO3	145	5 mg/L	1.0	1		09/30/19 19:31	1	
2340C Hardness, Total	Analytical I	Method: SM22	2340C					
Tot Hardness asCaCO3 (SM 2340B	140	mg/L	5.0	1		10/03/19 22:19)	
2540C Total Dissolved Solids	Analytical I	Method: SM22	2540C					
Total Dissolved Solids	168	B mg/L	10.0	1		10/01/19 09:56	3	
410.4 COD	Analytical I	Method: EPA 4	10.4 Preparation Met	hod: EP/	A 410.4			
Chemical Oxygen Demand	25.6	6 mg/L	10.0	1	10/04/19 10:35	10/04/19 12:55	5	
5210B BOD, 5 day	Analytical I	Method: SM22	5210B Preparation N	/lethod: S	SM22 5210B			
BOD, 5 day	1.8J	J mg/L	2.0	1	09/26/19 15:37	10/01/19 12:08	3	
300.0 IC Anions 28 Days	Analytical I	Method: EPA 30	0.00					
Bromide	0.25		0.50	1		10/05/19 01:37		
Chloride	3.7	Ū	2.0	1		10/05/19 01:37	16887-00-6	
Sulfate	8.3	B mg/L	5.0	1		10/05/19 01:37	14808-79-8	
351.2 Total Kjeldahl Nitrogen	Analytical I	Method: EPA 35	51.2 Preparation Met	hod: EP/	A 351.2			
Nitrogen, Kjeldahl, Total	0.49	mg/L	0.10	1	10/10/19 06:00	10/10/19 12:43	3 7727-37-9	
353.2 Nitrogen, NO2/NO3 unpres	Analytical I	Method: EPA 35	53.2					
Nitrate as N	0.074	mg/L	0.050	1		09/27/19 01:53	3 14797-55-8	

Project: Ischua Landfill Pace Project No.: 70106329

Date: 01/08/2020 06:22 PM

. 400 . 10,000 . 10 . 000=0									
Sample: STREAM	Lab ID: 7010	06329011	Collected:	09/25/1	9 12:00	Received: 0	9/26/19 10:50	Matrix: Water	
Parameters	Results	Units	Report	t Limit	DF	Prepared	Analyzed	CAS No.	Qual
353.2 Nitrogen, NO2/NO3 unpres	Analytical Meth	nod: EPA 35	3.2						
Nitrate-Nitrite (as N)	0.074	mg/L		0.050	1		09/27/19 01:53	3 7727-37-9	
353.2 Nitrogen, NO2	Analytical Meth	nod: EPA 35	3.2						
Nitrite as N	<0.050	mg/L		0.050	1		09/26/19 22:08	3 14797-65-0	
Phenolics, Total Recoverable	Analytical Meth	nod: EPA 42	0.1 Prepara	ition Met	hod: EP	A 420.1			
Phenolics, Total Recoverable	4.0J	ug/L		5.0	1	10/09/19 07:49	9 10/09/19 13:16	6	В
4500 Ammonia Water	Analytical Meth	nod: SM22 4	500 NH3 H						
Nitrogen, Ammonia	0.044J	mg/L		0.10	1		10/07/19 13:24	1 7664-41-7	
5310B TOC as NPOC	Analytical Meth	nod: SM22 5	310B						
Total Organic Carbon	4.9	mg/L		1.0	1		10/02/19 13:4	5 7440-44-0	

Project: Ischua Landfill Pace Project No.: 70106329

Date: 01/08/2020 06:22 PM

Sample: DUP	Lab ID: 7	0106329012	Collected: 09/2	5/19 00:00	Received: 09	/26/19 10:50 I	Matrix: Water	
Parameters	Results	Units	Report Lim	t DF	Prepared	Analyzed	CAS No.	Qua
6010 MET ICP	Analytical M	ethod: EPA 60	010C Preparation	Method: E	EPA 3005A			
Cadmium	<2.5	ug/L	2	.5 1	10/03/19 10:14	10/09/19 17:45	7440-43-9	
Calcium	77800	ug/L	20	0 1	10/03/19 10:14	10/09/19 17:45	7440-70-2	
Iron	1430	ug/L	20	.0 1	10/03/19 10:14	10/09/19 17:45	7439-89-6	
Lead	<5.0	ug/L	5	.0 1	10/03/19 10:14	10/09/19 17:45	7439-92-1	
Magnesium	24300	ug/L	2	0 1	10/03/19 10:14	10/09/19 17:45	7439-95-4	
Manganese	7120	ug/L	10	.0 1	10/03/19 10:14	10/09/19 17:45	7439-96-5	
Potassium	2300J	ug/L	50	0 1	10/03/19 10:14	10/09/19 17:45	7440-09-7	
Sodium	8880	ug/L	50	00 1	10/03/19 10:14	10/09/19 17:45	7440-23-5	
8260C Volatile Organics	Analytical M	ethod: EPA 82	260C/5030C					
1,1,1,2-Tetrachloroethane	<1.0	ug/L	1	.0 1		09/27/19 19:22	2 630-20-6	
1,1,1-Trichloroethane	<1.0	ug/L	1	.0 1		09/27/19 19:22	71-55-6	
1,1,2,2-Tetrachloroethane	<1.0	ug/L	1	.0 1		09/27/19 19:22	79-34-5	
1,1,2-Trichloroethane	<1.0	ug/L	1	.0 1		09/27/19 19:22	2 79-00-5	
1,1-Dichloroethane	16.6	ug/L	1	.0 1		09/27/19 19:22	2 75-34-3	
1,1-Dichloroethene	<1.0	ug/L	1	.0 1		09/27/19 19:22	2 75-35-4	
1,2,3-Trichloropropane	<1.0	ug/L	1	.0 1		09/27/19 19:22	96-18-4	
1,2-Dibromo-3-chloropropane	<1.0	ug/L	1	.0 1		09/27/19 19:22	96-12-8	
1,2-Dibromoethane (EDB)	<1.0	ug/L	1	.0 1		09/27/19 19:22	2 106-93-4	
1,2-Dichlorobenzene	<1.0	ug/L	1	.0 1		09/27/19 19:22	95-50-1	
1,2-Dichloroethane	<1.0	ug/L	1	.0 1		09/27/19 19:22	2 107-06-2	
1,2-Dichloropropane	<1.0	ug/L	1	.0 1		09/27/19 19:22	2 78-87-5	
1,4-Dichlorobenzene	<1.0	ug/L	1	.0 1		09/27/19 19:22	2 106-46-7	
2-Butanone (MEK)	<5.0	ug/L	5	.0 1		09/27/19 19:22	2 78-93-3	IL
2-Hexanone	<5.0	ug/L	5	.0 1		09/27/19 19:22	2 591-78-6	
1-Methyl-2-pentanone (MIBK)	<5.0	ug/L	5	.0 1		09/27/19 19:22	2 108-10-1	
Acetone	<5.0	ug/L	5	.0 1		09/27/19 19:22	2 67-64-1	IC
Acrylonitrile	<1.0	ug/L	1	.0 1		09/27/19 19:22	2 107-13-1	
Benzene	0.86J	ug/L		.0 1		09/27/19 19:22		
Bromochloromethane	<1.0	ug/L		.0 1		09/27/19 19:22		
Bromodichloromethane	<1.0	ug/L		.0 1		09/27/19 19:22		
Bromoform	<1.0	ug/L	1	.0 1		09/27/19 19:22	2 75-25-2	
Bromomethane	<1.0	ug/L		.0 1		09/27/19 19:22		
Carbon disulfide	<1.0	ug/L		.0 1		09/27/19 19:22		
Carbon tetrachloride	<1.0	ug/L		.0 1		09/27/19 19:22		
Chlorobenzene	<1.0	ug/L		.0 1		09/27/19 19:22		
Chloroethane	<1.0	ug/L		.0 1		09/27/19 19:22		
Chloroform	<1.0	ug/L		.0 1		09/27/19 19:22		
Chloromethane	<1.0	ug/L		.0 1		09/27/19 19:22		
Dibromochloromethane	<1.0	ug/L		.0 1		09/27/19 19:22		
Dibromomethane	<1.0	ug/L		.0 1		09/27/19 19:22		
Ethylbenzene	<1.0	ug/L		.0 1		09/27/19 19:22		
lodomethane	<1.0	ug/L		.0 1		09/27/19 19:22		
Methylene Chloride	<1.0	ug/L ug/L		.0 1		09/27/19 19:22		
Styrene	<1.0 <1.0	ug/L ug/L		.0 1		09/27/19 19:22		
Styrene Tetrachloroethene	<1.0 <1.0	ug/L ug/L		.0 1		09/27/19 19:22		
Toluene	<1.0 <1.0	ug/L ug/L		.0 1		09/27/19 19:22		

REPORT OF LABORATORY ANALYSIS

Project: Ischua Landfill
Pace Project No.: 70106329

Date: 01/08/2020 06:22 PM

Sample: DUP	Lab ID: 701	06329012	Collected: 09/25/1	9 00:00	Received: 09	9/26/19 10:50	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260C Volatile Organics	Analytical Meth	nod: EPA 82	260C/5030C					
Trichloroethene	1.4	ug/L	1.0	1		09/27/19 19:2	2 79-01-6	
Trichlorofluoromethane	<1.0	ug/L	1.0	1		09/27/19 19:2	2 75-69-4	
Vinyl acetate	<1.0	ug/L	1.0	1		09/27/19 19:2		
Vinyl chloride	7.1	ug/L	1.0	1		09/27/19 19:2		
Xylene (Total)	<3.0	ug/L	3.0	1		09/27/19 19:2		
cis-1,2-Dichloroethene	35.1	ug/L	1.0	1		09/27/19 19:2:		
cis-1,3-Dichloropropene	<1.0	ug/L	1.0	1			2 10061-01-5	
m&p-Xylene	<2.0	ug/L	2.0	1			2 179601-23-1	
o-Xylene	<1.0	ug/L	1.0	1		09/27/19 19:2:		
trans-1,2-Dichloroethene	<1.0	ug/L	1.0	1		09/27/19 19:2:		
trans-1,3-Dichloropropene	<1.0	ug/L	1.0	1			2 10061-02-6	
trans-1,4-Dichloro-2-butene Surrogates	<1.0	ug/L	1.0	1		09/27/19 19:2	2 110-5/-6	
1,2-Dichloroethane-d4 (S)	91	%	68-153	1		00/27/10 10:2	2 17060-07-0	
4-Bromofluorobenzene (S)	95	%	79-124	1		09/27/19 19:2		
Toluene-d8 (S)	94	%	69-124	1		09/27/19 19:2		
TIC MSV Water	Analytical Meth			·		00/21/10 1012		
TIC Search	No TICs Found			1		10/09/19 11:32	2	
2320B Alkalinity	Analytical Meth	nod: SM22	2320B					
Alkalinity, Total as CaCO3	292	mg/L	1.0	1		09/30/19 20:0	0	
2340C Hardness, Total	Analytical Meth	nod: SM22	2340C					
Tot Hardness asCaCO3 (SM 2340B	300	mg/L	5.0	1		10/03/19 22:2	8	
2540C Total Dissolved Solids	Analytical Meth	nod: SM22	2540C					
Total Dissolved Solids	306	mg/L	20.0	1		10/01/19 09:5	6	
410.4 COD	Analytical Meth	nod: EPA 41	10.4 Preparation Met	hod: EPA	A 410.4			
Chemical Oxygen Demand	30.0	mg/L	10.0	1	10/04/19 10:35	10/04/19 12:5	5	
5210B BOD, 5 day	Analytical Meth	nod: SM22	5210B Preparation M	lethod: S	SM22 5210B			
BOD, 5 day	1.8J	mg/L	2.0	1	09/26/19 15:37	10/01/19 12:10	0	
300.0 IC Anions 28 Days	Analytical Meth	nod: EPA 30	0.00					
Bromide	0.29J	mg/L	0.50	1		10/05/19 01:5	4 24959-67-9	
Chloride	9.3	mg/L	2.0	1		10/05/19 01:5	4 16887-00-6	
Sulfate	7.7	mg/L	5.0	1		10/05/19 01:5	4 14808-79-8	
351.2 Total Kjeldahl Nitrogen	Analytical Meth	nod: EPA 35	51.2 Preparation Met	hod: EPA	A 351.2			
Nitrogen, Kjeldahl, Total	1.0	mg/L	0.10	1	10/10/19 06:00	10/10/19 12:4	4 7727-37-9	
353.2 Nitrogen, NO2/NO3 unpres	Analytical Meth	nod: EPA 35	53.2					
Nitrate as N	0.049J	mg/L	0.050	1		09/27/19 01:5	4 14797-55-8	

Project: Ischua Landfill Pace Project No.: 70106329

Date: 01/08/2020 06:22 PM

Sample: DUP	Lab ID: 7010	06329012	Collected: 09/25/	19 00:00	Received: 09	9/26/19 10:50	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
353.2 Nitrogen, NO2/NO3 unpres	Analytical Meth	nod: EPA 35	3.2					
Nitrate-Nitrite (as N)	0.049J	mg/L	0.050	1		09/27/19 01:54	7727-37-9	
353.2 Nitrogen, NO2	Analytical Meth	nod: EPA 35	3.2					
Nitrite as N	<0.050	mg/L	0.050	1		09/26/19 22:10	14797-65-0	
Phenolics, Total Recoverable	Analytical Meth	nod: EPA 42	0.1 Preparation Me	thod: EP	PA 420.1			
Phenolics, Total Recoverable	4.0J	ug/L	5.0	1	10/09/19 07:49	10/09/19 13:17	7	В
4500 Ammonia Water	Analytical Meth	nod: SM22 4	1500 NH3 H					
Nitrogen, Ammonia	0.61	mg/L	0.10	1		10/07/19 13:26	7664-41-7	
5310B TOC as NPOC	Analytical Meth	nod: SM22 5	5310B					
Total Organic Carbon	2.4	mg/L	1.0	1		10/02/19 14:05	7440-44-0	

Project: Ischua Landfill
Pace Project No.: 70106329

Date: 01/08/2020 06:22 PM

### Analytical Method: EPA 8260C/5030C ### 1,1,1,1-Tetrachloroethane	Sample: TRIP BLANK	Lab ID: 701	06329013	Collected: 09/25/1	9 00:00	Received:	09/26/19 10:50	Matrix: Water	
1,1,1,2-Tetrachloroethane	Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
1.1.1-Trichloroethane	3260C Volatile Organics	Analytical Met	hod: EPA 82	260C/5030C					
1,1,2,2-Tichloroethane 4,0 ug/L 1,0 1 09/27/19 13:33 79-34-5 1,1,2-Tichloroethane 4,0 ug/L 1,0 1 09/27/19 13:33 75-34-3 1,1-Dichloroethane 4,0 ug/L 1,0 1 09/27/19 13:33 75-34-3 1,1-Dichloroethane 4,0 ug/L 1,0 1 09/27/19 13:33 75-35-4 1,2-Dibromo-3-chloropropane 4,0 ug/L 1,0 1 09/27/19 13:33 39-61-2-8 1,2-Dibromo-3-chloropropane 4,0 ug/L 1,0 1 09/27/19 13:33 39-61-2-8 1,2-Dichlorobenzene 4,0 ug/L 1,0 1 09/27/19 13:33 39-50-1 1,2-Dichlorobenzene 4,0 ug/L 1,0 1 09/27/19 13:33 70-62-2 1,2-Dichlorobenzene 4,0 ug/L 1,0 1 09/27/19 13:33 70-66-7 1,2-Dichlorobenzene 4,0 ug/L 1,0 1 09/27/19 13:33 70-68-7 1,2-Dichlorobenzene 4,0 ug/L 1,0 1 09/27/19 13:33 70-68-7 1,2-Dichlorobenzene	1,1,1,2-Tetrachloroethane	<1.0	ug/L	1.0	1		09/27/19 13:3	3 630-20-6	
1.1.2-Tickloroethane <1.0 ug/L 1.0 1 09/27/19 13:33 79-00-5 1.1.2-Dichloroethane <1.0 ug/L 1.0 1 09/27/19 13:33 75-34-3 1.1.2-Dichloroethene <1.0 ug/L 1.0 1 09/27/19 13:33 75-35-4 1.2.3-Tichloropropane <1.0 ug/L 1.0 1 09/27/19 13:33 96-18-4 1.2-Dichloroberane <1.0 ug/L 1.0 1 09/27/19 13:33 10-96-2 1.2-Dichloroberane <1.0 ug/L 1.0 1 09/27/19 13:33 10-96-2 1.2-Dichloroberane <1.0 ug/L 1.0 1 09/27/19 13:33 10-96-2 1.2-Dichloropropane <1.0 ug/L 1.0 1 09/27/19 13:33 10-96-2 2-Butanone (MEK) <5.0 ug/L 5.0 1 09/27/19 13:33 10-96-2 2-Hexanone <5.0 ug/L 5.0 1 09/27/19 13:33 10-96-2 2-Hexanone <5.0 ug/L 5.0 1 09/27/19 13:33 10-96-2 2-Hexanone <5.0 ug/L	1,1,1-Trichloroethane	<1.0	ug/L	1.0	1		09/27/19 13:3	3 71-55-6	
1.1-Dichloroethane	1,1,2,2-Tetrachloroethane	<1.0	ug/L	1.0	1		09/27/19 13:3	3 79-34-5	
1.1-Dichlorosthene	1,1,2-Trichloroethane	<1.0	ug/L	1.0	1		09/27/19 13:3	3 79-00-5	
1.2.3-Trichloropropane	1,1-Dichloroethane	<1.0	ug/L	1.0	1		09/27/19 13:3	3 75-34-3	
	1,1-Dichloroethene	<1.0	ug/L	1.0	1		09/27/19 13:3	3 75-35-4	
	1,2,3-Trichloropropane	<1.0	ug/L	1.0	1		09/27/19 13:3	3 96-18-4	
	1,2-Dibromo-3-chloropropane	<1.0	ug/L	1.0	1		09/27/19 13:3	3 96-12-8	
	1,2-Dibromoethane (EDB)	<1.0	ug/L	1.0	1		09/27/19 13:3	3 106-93-4	
	1,2-Dichlorobenzene	<1.0	ug/L	1.0	1		09/27/19 13:3	3 95-50-1	
A-Dichloroberzene	1,2-Dichloroethane	<1.0		1.0	1		09/27/19 13:3	3 107-06-2	
A-Dichlorobenzene	1,2-Dichloropropane	<1.0	-	1.0	1		09/27/19 13:3	3 78-87-5	
### Part		<1.0	•	1.0	1		09/27/19 13:3	3 106-46-7	
Selestanne S.0	2-Butanone (MEK)	<5.0	-	5.0	1		09/27/19 13:3	3 78-93-3	IL
AMethyl-2-pentanone (MIBK)	` '	<5.0	_	5.0	1				
Acetone	1-Methyl-2-pentanone (MIBK)		-		1		09/27/19 13:3	3 108-10-1	
Acrylonitrile			-	5.0	1				IC
Senzene			•		1				
Stromochloromethane			-						
Bromotichloromethane 4.1.0 ug/L 1.0 1 09/27/19 13:33 75-27-4 Bromoform 4.1.0 ug/L 1.0 1 09/27/19 13:33 75-25-2 Bromomethane 4.1.0 ug/L 1.0 1 09/27/19 13:33 75-25-2 Carbon disulfide 4.0 ug/L 1.0 1 09/27/19 13:33 75-15-0 Carbon tetrachloride 4.0 ug/L 1.0 1 09/27/19 13:33 75-25-5 Chlorobenzene 4.0 ug/L 1.0 1 09/27/19 13:33 75-15-0 Chlorobenzene 4.0 ug/L 1.0 1 09/27/19 13:33 76-87-3 Chloroform 4.0 ug/L 1.0 1 09/27/19 13:33 76-86-3 Chloromethane 4.1.0 ug/L 1.0 1 09/27/19 13:33 74-87-3 Eibylbenzene 4.1.0 ug/L 1.0 1 09/27/19 13:33 10-44-4 odomethane 4.1.0 ug/L 1.0 1									
Stromoform									
Stromomethane Carbon disulfide Carbon disulfide Carbon disulfide Carbon disulfide Carbon disulfide Carbon disulfide Carbon tetrachloride Carbo			-						
Carbon disulfide									
Carbon tetrachloride			-						
Chlorobenzene			_						
Chloroethane			-						
Chloroform			-						
Chloromethane <1.0 ug/L 1.0 1 09/27/19 13:33 74-87-3 Dibromochloromethane <1.0									
Dibromochloromethane			-						
21.0									
Carbon C									
1.0 ug/L 1.0 1 09/27/19 13:33 74-88-4 Methylene Chloride 41.0 ug/L 1.0 1 09/27/19 13:33 75-09-2 Styrene 41.0 ug/L 1.0 1 09/27/19 13:33 75-09-2 Styrene 41.0 ug/L 1.0 1 09/27/19 13:33 100-42-5 Styrene 41.0 ug/L 1.0 1 09/27/19 13:33 100-42-5 Styrene 41.0 ug/L 1.0 1 09/27/19 13:33 127-18-4 Stoluene 41.0 ug/L 1.0 1 09/27/19 13:33 108-88-3 Strickloroethene 41.0 ug/L 1.0 1 09/27/19 13:33 79-01-6 Styrene 41.0 ug/L 1.0 1 09/27/19 13:33 75-69-4 Styrene 41.0 ug/L 1.0 1 09/27/19 13:33 108-05-4 Styrene 41.0 ug/L 1.0 1 09/27/19 13:33 1330-20-7 Styrene 41.0 ug/L 1.0 1 09/27/19 13:33 1330-20-7 Styrene 41.0 ug/L 1.0 1 09/27/19 13:33 130-20-7 Styrene 41.0 ug/L 1.0 1 09/27/19 13:33 10061-01-5 Styrene 42.0 ug/L 1.0 1 09/27/19 13:33 179601-23-1 Styrene 41.0 ug/L 2.0 1 09/27/19 13:33 179601-23-1 Styrene 41.0 ug/L 2.0 1 09/27/19 13:33 179601-23-1 Styrene 41.0 ug/L 1.0 1 09/27/19 13:33 179601-23-1 Styrene 41.0 ug/L 2.0 1 09/27/19 13:33 179601-23-1 Styrene 41.0 ug/L 1.0 1 09/27/19 13:33 179601-23-1 Styrene 42.0 ug/L 1.0 1 09/27/19 13:33 179601-23-1			-						
Methylene Chloride <1.0 ug/L 1.0 1 09/27/19 13:33 75-09-2 Styrene <1.0 ug/L 1.0 1 09/27/19 13:33 100-42-5 Tetrachloroethene <1.0 ug/L 1.0 1 09/27/19 13:33 127-18-4 Toluene <1.0 ug/L 1.0 1 09/27/19 13:33 108-88-3 Trichloroethene <1.0 ug/L 1.0 1 09/27/19 13:33 79-01-6 Trichlorofluoromethane <1.0 ug/L 1.0 1 09/27/19 13:33 75-69-4 Vinyl acetate <1.0 ug/L 1.0 1 09/27/19 13:33 108-05-4 Vinyl chloride <1.0 ug/L 1.0 1 09/27/19 13:33 108-05-4 Vylene (Total) <3.0 ug/L 3.0 1 09/27/19 13:33 1330-20-7 vis-1,2-Dichloroethene <1.0 ug/L 1.0 1 09/27/19 13:33 10061-01-5 vis-2,3-Dichloropropene <1.0 ug/L 1.0 1 09/27/19 13:33 179601-23-1 v-Xylene <2.0 ug/L									
Styrene <1.0 ug/L 1.0 1 09/27/19 13:33 100-42-5 Fetrachloroethene <1.0 ug/L 1.0 1 09/27/19 13:33 127-18-4 Foluene <1.0 ug/L 1.0 1 09/27/19 13:33 108-88-3 Frichloroethene <1.0 ug/L 1.0 1 09/27/19 13:33 79-01-6 Frichlorofluoromethane <1.0 ug/L 1.0 1 09/27/19 13:33 75-69-4 /inyl acetate <1.0 ug/L 1.0 1 09/27/19 13:33 108-05-4 /inyl chloride <1.0 ug/L 1.0 1 09/27/19 13:33 75-01-4 Kylene (Total) <3.0 ug/L 3.0 1 09/27/19 13:33 1330-20-7 cis-1,2-Dichloroethene <1.0 ug/L 1.0 1 09/27/19 13:33 156-59-2 cis-1,3-Dichloropropene <1.0 ug/L 1.0 1 09/27/19 13:33 179601-23-1 o-Xylene <2.0 ug/L 1.0 1 09/27/19 13:33 179601-23-1 o-Xylene <1.0 ug/L 1.0 1 09/27/19 13:33 179601-23-1			•						
Tetrachloroethene <1.0 ug/L 1.0 1 09/27/19 13:33 127-18-4 Toluene <1.0 ug/L 1.0 1 09/27/19 13:33 108-88-3 Trichloroethene <1.0 ug/L 1.0 1 09/27/19 13:33 79-01-6 Trichlorofluoromethane <1.0 ug/L 1.0 1 09/27/19 13:33 75-69-4 Vinyl acetate <1.0 ug/L 1.0 1 09/27/19 13:33 108-05-4 Vinyl chloride <1.0 ug/L 1.0 1 09/27/19 13:33 75-01-4 Kylene (Total) <3.0 ug/L 3.0 1 09/27/19 13:33 130-20-7 vis-1,2-Dichloroethene <1.0 ug/L 1.0 1 09/27/19 13:33 156-59-2 vis-1,3-Dichloropropene <1.0 ug/L 1.0 1 09/27/19 13:33 179601-23-1 v-Xylene <2.0 ug/L 2.0 1 09/27/19 13:33 179601-23-1 v-Xylene <1.0 ug/L 1.0 1 09/27/19 13:33 179601-23-1	•		•						
Foluene <1.0 ug/L 1.0 1 09/27/19 13:33 108-88-3 Trichloroethene <1.0 ug/L 1.0 1 09/27/19 13:33 79-01-6 Trichlorofluoromethane <1.0 ug/L 1.0 1 09/27/19 13:33 75-69-4 Vinyl acetate <1.0 ug/L 1.0 1 09/27/19 13:33 108-05-4 Vinyl chloride <1.0 ug/L 1.0 1 09/27/19 13:33 75-01-4 Kylene (Total) <3.0 ug/L 3.0 1 09/27/19 13:33 1330-20-7 vis-1,2-Dichloroethene <1.0 ug/L 1.0 1 09/27/19 13:33 156-59-2 vis-1,3-Dichloropropene <1.0 ug/L 1.0 1 09/27/19 13:33 179601-23-1 v-Xylene <2.0 ug/L 1.0 1 09/27/19 13:33 179601-23-1 v-Xylene <1.0 ug/L 1.0 1 09/27/19 13:33 179601-23-1	•		•						
Trichloroethene <1.0 ug/L 1.0 1 09/27/19 13:33 79-01-6 Trichlorofluoromethane <1.0 ug/L 1.0 1 09/27/19 13:33 75-69-4 /inyl acetate <1.0 ug/L 1.0 1 09/27/19 13:33 108-05-4 /inyl chloride <1.0 ug/L 1.0 1 09/27/19 13:33 75-01-4 (ylene (Total) <3.0 ug/L 3.0 1 09/27/19 13:33 1330-20-7 vis-1,2-Dichloroethene <1.0 ug/L 1.0 1 09/27/19 13:33 156-59-2 vis-1,3-Dichloropropene <1.0 ug/L 1.0 1 09/27/19 13:33 10061-01-5 n&p-Xylene <2.0 ug/L 2.0 1 09/27/19 13:33 179601-23-1 v-Xylene <1.0 ug/L 1.0 1 09/27/19 13:33 179601-23-1									
Trichlorofluoromethane <1.0 ug/L 1.0 1 09/27/19 13:33 75-69-4 Vinyl acetate <1.0 ug/L 1.0 1 09/27/19 13:33 108-05-4 Vinyl chloride <1.0 ug/L 1.0 1 09/27/19 13:33 75-01-4 Vylene (Total) <3.0 ug/L 3.0 1 09/27/19 13:33 1330-20-7 vis-1,2-Dichloroethene <1.0 ug/L 1.0 1 09/27/19 13:33 156-59-2 vis-1,3-Dichloropropene <1.0 ug/L 1.0 1 09/27/19 13:33 10061-01-5 n&p-Xylene <2.0 ug/L 2.0 1 09/27/19 13:33 179601-23-1 v-Xylene <1.0 ug/L 1.0 1 09/27/19 13:33 95-47-6									
/inyl acetate <1.0 ug/L 1.0 1 09/27/19 13:33 108-05-4 /inyl chloride <1.0 ug/L 1.0 1 09/27/19 13:33 75-01-4 (ylene (Total) <3.0 ug/L 3.0 1 09/27/19 13:33 1330-20-7 vis-1,2-Dichloroethene <1.0 ug/L 1.0 1 09/27/19 13:33 156-59-2 vis-1,3-Dichloropropene <1.0 ug/L 1.0 1 09/27/19 13:33 10061-01-5 n&p-Xylene <2.0 ug/L 2.0 1 09/27/19 13:33 179601-23-1 v-Xylene <1.0 ug/L 1.0 1 09/27/19 13:33 95-47-6			•						
/inyl chloride <1.0 ug/L 1.0 1 09/27/19 13:33 75-01-4 (ylene (Total) <3.0			-						
Kylene (Total) <3.0 ug/L 3.0 1 09/27/19 13:33 1330-20-7 cis-1,2-Dichloroethene <1.0 ug/L 1.0 1 09/27/19 13:33 156-59-2 cis-1,3-Dichloropropene <1.0 ug/L 1.0 1 09/27/19 13:33 10061-01-5 n&p-Xylene <2.0 ug/L 2.0 1 09/27/19 13:33 179601-23-1 v-Xylene <1.0 ug/L 1.0 1 09/27/19 13:33 95-47-6			-						
cis-1,2-Dichloroethene <1.0	•		-						
cis-1,3-Dichloropropene			•						
m&p-Xylene	•		-						
o-Xylene <1.0 ug/L 1.0 1 09/27/19 13:33 95-47-6			_						
,	' '		_						
	o-Xylene rans-1,2-Dichloroethene	<1.0 <1.0	ug/L ug/L	1.0 1.0	1 1				

Project: Ischua Landfill Pace Project No.: 70106329

Date: 01/08/2020 06:22 PM

Sample: TRIP BLANK	Lab ID: 7010	06329013	Collected: 09/25/1	9 00:00	Received: 09	9/26/19 10:50 N	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260C Volatile Organics	Analytical Meth	nod: EPA 82	260C/5030C					
trans-1,3-Dichloropropene	<1.0	ug/L	1.0	1		09/27/19 13:33	10061-02-6	
trans-1,4-Dichloro-2-butene	<1.0	ug/L	1.0	1		09/27/19 13:33	110-57-6	
Surrogates		_						
1,2-Dichloroethane-d4 (S)	105	%	68-153	1		09/27/19 13:33	17060-07-0	
4-Bromofluorobenzene (S)	97	%	79-124	1		09/27/19 13:33	460-00-4	
Toluene-d8 (S)	85	%	69-124	1		09/27/19 13:33	2037-26-5	
TIC MSV Water	Analytical Meth	nod: EPA 82	260					
TIC Search	No TICs Found			1		10/09/19 11:30		

Project: Ischua Landfill
Pace Project No.: 70106329

Date: 01/08/2020 06:22 PM

Sample: STORAGE BLANK	Lab ID: 701	06329014	Collected: 09/26/1	9 00:00	Received:	09/26/19 10:50	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
2260C Volatile Organics	Analytical Metl	nod: EPA 82	260C/5030C					
,1,1,2-Tetrachloroethane	<1.0	ug/L	1.0	1		09/27/19 13:5	6 630-20-6	
,1,1-Trichloroethane	<1.0	ug/L	1.0	1		09/27/19 13:5	6 71-55-6	
,1,2,2-Tetrachloroethane	<1.0	ug/L	1.0	1		09/27/19 13:5	6 79-34-5	
,1,2-Trichloroethane	<1.0	ug/L	1.0	1		09/27/19 13:5	6 79-00-5	
,1-Dichloroethane	<1.0	ug/L	1.0	1		09/27/19 13:5	6 75-34-3	
,1-Dichloroethene	<1.0	ug/L	1.0	1		09/27/19 13:5	6 75-35-4	
,2,3-Trichloropropane	<1.0	ug/L	1.0	1		09/27/19 13:5	6 96-18-4	
,2-Dibromo-3-chloropropane	<1.0	ug/L	1.0	1		09/27/19 13:5	6 96-12-8	
,2-Dibromoethane (EDB)	<1.0	ug/L	1.0	1		09/27/19 13:5	6 106-93-4	
,2-Dichlorobenzene	<1.0	ug/L	1.0	1		09/27/19 13:5	6 95-50-1	
,2-Dichloroethane	<1.0	ug/L	1.0	1		09/27/19 13:5	6 107-06-2	
,2-Dichloropropane	<1.0	ug/L	1.0	1		09/27/19 13:5	6 78-87-5	
,4-Dichlorobenzene	<1.0	ug/L	1.0	1		09/27/19 13:5	6 106-46-7	
2-Butanone (MEK)	<5.0	ug/L	5.0	1		09/27/19 13:5	6 78-93-3	IL
2-Hexanone	<5.0	ug/L	5.0	1		09/27/19 13:5	6 591-78-6	
I-Methyl-2-pentanone (MIBK)	<5.0	ug/L	5.0	1		09/27/19 13:5	6 108-10-1	
Acetone	<5.0	ug/L	5.0	1		09/27/19 13:5	6 67-64-1	IC
Acrylonitrile	<1.0	ug/L	1.0	1		09/27/19 13:5	6 107-13-1	
Benzene	<1.0	ug/L	1.0	1		09/27/19 13:5	6 71-43-2	
Bromochloromethane	<1.0	ug/L	1.0	1		09/27/19 13:5		
Bromodichloromethane	<1.0	ug/L	1.0	1		09/27/19 13:5		
Bromoform	<1.0	ug/L	1.0	1		09/27/19 13:5		
Bromomethane	<1.0	ug/L	1.0	1		09/27/19 13:5		
Carbon disulfide	<1.0	ug/L	1.0	1		09/27/19 13:5		
Carbon tetrachloride	<1.0	ug/L	1.0	1		09/27/19 13:5		
Chlorobenzene	<1.0	ug/L	1.0	1		09/27/19 13:5		
Chloroethane	<1.0	ug/L	1.0	1		09/27/19 13:5		
Chloroform	<1.0	ug/L	1.0	1		09/27/19 13:5		
Chloromethane	<1.0	ug/L	1.0	1		09/27/19 13:5		
Dibromochloromethane	<1.0	ug/L	1.0	1		09/27/19 13:5		
Dibromomethane	<1.0	ug/L	1.0	1		09/27/19 13:5		
Ethylbenzene	<1.0	ug/L	1.0	1		09/27/19 13:5		
odomethane	<1.0	ug/L	1.0	1		09/27/19 13:5		
Methylene Chloride	<1.0	ug/L	1.0	1		09/27/19 13:5		
Styrene	<1.0	ug/L	1.0	1		09/27/19 13:5		
Tetrachloroethene	<1.0	ug/L	1.0	1		09/27/19 13:5		
Toluene	<1.0	ug/L	1.0	1		09/27/19 13:5		
Trichloroethene	<1.0	ug/L	1.0	1		09/27/19 13:5		
Trichlorofluoromethane	<1.0	ug/L	1.0	1		09/27/19 13:5		
/inyl acetate	<1.0	•	1.0	1		09/27/19 13:5		
/inyl acetate /inyl chloride	<1.0 <1.0	ug/L	1.0	1		09/27/19 13:5		
Vilene (Total)	<1.0 <3.0	ug/L	3.0	1		09/27/19 13:5		
		ug/L						
cis-1,2-Dichloroethene	<1.0	ug/L	1.0	1		09/27/19 13:5		
sis-1,3-Dichloropropene	<1.0	ug/L	1.0	1			6 10061-01-5 6 170601 33 1	
n&p-Xylene	<2.0	ug/L	2.0	1			6 179601-23-1	
o-Xylene	<1.0	ug/L	1.0	1		09/27/19 13:5	o 95-4/-b	

Project: Ischua Landfill Pace Project No.: 70106329

Date: 01/08/2020 06:22 PM

Sample: STORAGE BLANK	Lab ID: 7010	06329014	Collected: 09/26/1	9 00:00	Received: 09	9/26/19 10:50 N	fatrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260C Volatile Organics	Analytical Meth	od: EPA 82	260C/5030C					
trans-1,3-Dichloropropene	<1.0	ug/L	1.0	1		09/27/19 13:56	10061-02-6	
trans-1,4-Dichloro-2-butene	<1.0	ug/L	1.0	1		09/27/19 13:56	110-57-6	
Surrogates		-						
1,2-Dichloroethane-d4 (S)	102	%	68-153	1		09/27/19 13:56	17060-07-0	
4-Bromofluorobenzene (S)	93	%	79-124	1		09/27/19 13:56	460-00-4	
Toluene-d8 (S)	93	%	69-124	1		09/27/19 13:56	2037-26-5	
TIC MSV Water	Analytical Meth	od: EPA 82	260					
TIC Search	No TICs Found			1		10/09/19 11:30		

Project: Ischua Landfill Pace Project No.: 70106329

Date: 01/08/2020 06:22 PM

QC Batch: 132791 Analysis Method: EPA 6010C
QC Batch Method: EPA 3005A Analysis Description: 6010 MET Water

Associated Lab Samples: 70106329001, 70106329003, 70106329004, 70106329005, 70106329007, 70106329008, 70106329009,

70106329010, 70106329011, 70106329012

METHOD BLANK: 635175 Matrix: Water

Associated Lab Samples: 70106329001, 70106329003, 70106329004, 70106329005, 70106329007, 70106329008, 70106329009,

70106329010, 70106329011, 70106329012

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
Cadmium	ug/L	<2.5	2.5	10/09/19 17:01	
Calcium	ug/L	<200	200	10/09/19 17:01	
Iron	ug/L	<20.0	20.0	10/09/19 17:01	
Lead	ug/L	< 5.0	5.0	10/09/19 17:01	
Magnesium	ug/L	<200	200	10/09/19 17:01	
Manganese	ug/L	<10.0	10.0	10/09/19 17:01	
Potassium	ug/L	< 5000	5000	10/09/19 17:01	
Sodium	ug/L	<5000	5000	10/09/19 17:01	

LABORATORY CONTROL SAMPLE:	635176					
Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
Cadmium	ug/L	50	49.2	98	80-120	
Calcium	ug/L	25000	24800	99	80-120	
Iron	ug/L	2000	1980	99	80-120	
Lead	ug/L	500	493	99	80-120	
Magnesium	ug/L	25000	24500	98	80-120	
Manganese	ug/L	250	247	99	80-120	
Potassium	ug/L	50000	46500	93	80-120	
Sodium	ug/L	50000	48800	98	80-120	

MATRIX SPIKE SAMPLE:	635178						
Danasatan	11-26-	70106329004	Spike	MS	MS	% Rec	0 175
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
Cadmium	ug/L	<2.5	50	49.8	99	75-125	
Calcium	ug/L	84400	25000	105000	82	75-125	
Iron	ug/L	5010	2000	6780	88	75-125	
Lead	ug/L	<5.0	500	502	100	75-125	
Magnesium	ug/L	12300	25000	36600	97	75-125	
Manganese	ug/L	7520	250	7450	-28	75-125 M ²	1
Potassium	ug/L	2760J	50000	48300	91	75-125	
Sodium	ug/L	7100	50000	56500	99	75-125	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: Ischua Landfill Pace Project No.: 70106329

Date: 01/08/2020 06:22 PM

SAMPLE DUPLICATE: 635177 70106329004 Dup RPD Parameter Units Result Result Qualifiers <2.5 Cadmium ug/L <2.5 84400 3 Calcium ug/L 82300 5010 3 Iron ug/L 4880 Lead ug/L < 5.0 <5.0 Magnesium ug/L 12300 12000 2 Manganese ug/L 7520 7330 3 2760J 2720J Potassium ug/L Sodium ug/L 7100 6890 3

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: Ischua Landfill Pace Project No.: 70106329

Date: 01/08/2020 06:22 PM

QC Batch: 132041 Analysis Method: EPA 8260C/5030C

QC Batch Method: EPA 8260C/5030C Analysis Description: 8260 MSV

Associated Lab Samples: 70106329001, 70106329002, 70106329003, 70106329004, 70106329005, 70106329006, 70106329007,

70106329008, 70106329009, 70106329010, 70106329011, 70106329012, 70106329013, 70106329014

METHOD BLANK: 631173 Matrix: Water

Associated Lab Samples: 70106329001, 70106329002, 70106329003, 70106329004, 70106329005, 70106329006, 70106329007,

70106329008, 70106329009, 70106329010, 70106329011, 70106329012, 70106329013, 70106329014

101000	23000, 70100323003	Blank	Reporting	100020012, 7010	0020010, 701000
Parameter	Units	Result	Limit	Analyzed	Qualifiers
1,1,1,2-Tetrachloroethane	ug/L	<1.0	1.0	09/27/19 11:37	
1,1,1-Trichloroethane	ug/L	<1.0	1.0	09/27/19 11:37	
1,1,2,2-Tetrachloroethane	ug/L	<1.0	1.0	09/27/19 11:37	
1,1,2-Trichloroethane	ug/L	<1.0	1.0	09/27/19 11:37	
1,1-Dichloroethane	ug/L	<1.0	1.0	09/27/19 11:37	
1,1-Dichloroethene	ug/L	<1.0	1.0	09/27/19 11:37	
1,2,3-Trichloropropane	ug/L	<1.0	1.0	09/27/19 11:37	
1,2-Dibromo-3-chloropropane	ug/L	<1.0	1.0	09/27/19 11:37	
1,2-Dibromoethane (EDB)	ug/L	<1.0	1.0	09/27/19 11:37	
1,2-Dichlorobenzene	ug/L	<1.0	1.0	09/27/19 11:37	
1,2-Dichloroethane	ug/L	<1.0	1.0	09/27/19 11:37	
1,2-Dichloropropane	ug/L	<1.0	1.0	09/27/19 11:37	
1,4-Dichlorobenzene	ug/L	<1.0	1.0	09/27/19 11:37	
2-Butanone (MEK)	ug/L	<5.0	5.0	09/27/19 11:37	IL
2-Hexanone	ug/L	<5.0	5.0	09/27/19 11:37	
4-Methyl-2-pentanone (MIBK)	ug/L	<5.0	5.0	09/27/19 11:37	
Acetone	ug/L	<5.0	5.0	09/27/19 11:37	IC
Acrylonitrile	ug/L	<1.0	1.0	09/27/19 11:37	
Benzene	ug/L	<1.0	1.0	09/27/19 11:37	
Bromochloromethane	ug/L	<1.0	1.0	09/27/19 11:37	
Bromodichloromethane	ug/L	<1.0	1.0	09/27/19 11:37	
Bromoform	ug/L	<1.0	1.0	09/27/19 11:37	
Bromomethane	ug/L	<1.0	1.0	09/27/19 11:37	
Carbon disulfide	ug/L	<1.0	1.0	09/27/19 11:37	
Carbon tetrachloride	ug/L	<1.0	1.0	09/27/19 11:37	
Chlorobenzene	ug/L	<1.0	1.0	09/27/19 11:37	
Chloroethane	ug/L	<1.0	1.0	09/27/19 11:37	
Chloroform	ug/L	<1.0	1.0	09/27/19 11:37	
Chloromethane	ug/L	<1.0	1.0	09/27/19 11:37	
cis-1,2-Dichloroethene	ug/L	<1.0	1.0	09/27/19 11:37	
cis-1,3-Dichloropropene	ug/L	<1.0	1.0	09/27/19 11:37	
Dibromochloromethane	ug/L	<1.0	1.0	09/27/19 11:37	
Dibromomethane	ug/L	<1.0	1.0	09/27/19 11:37	
Ethylbenzene	ug/L	<1.0	1.0	09/27/19 11:37	
Iodomethane	ug/L	<1.0	1.0	09/27/19 11:37	
m&p-Xylene	ug/L	<2.0	2.0	09/27/19 11:37	
Methylene Chloride	ug/L	<1.0	1.0	09/27/19 11:37	
o-Xylene	ug/L	<1.0	1.0	09/27/19 11:37	
Styrene	ug/L	<1.0	1.0	09/27/19 11:37	
Tetrachloroethene	ug/L	<1.0	1.0	09/27/19 11:37	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: Ischua Landfill Pace Project No.: 70106329

Date: 01/08/2020 06:22 PM

METHOD BLANK: 631173 Matrix: Water

Associated Lab Samples: 70106329001, 70106329002, 70106329003, 70106329004, 70106329005, 70106329006, 70106329007,

70106329008, 70106329009, 70106329010, 70106329011, 70106329012, 70106329013, 70106329014

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
Toluene	ug/L	<1.0	1.0	09/27/19 11:37	
trans-1,2-Dichloroethene	ug/L	<1.0	1.0	09/27/19 11:37	
trans-1,3-Dichloropropene	ug/L	<1.0	1.0	09/27/19 11:37	
trans-1,4-Dichloro-2-butene	ug/L	<1.0	1.0	09/27/19 11:37	
Trichloroethene	ug/L	<1.0	1.0	09/27/19 11:37	
Trichlorofluoromethane	ug/L	<1.0	1.0	09/27/19 11:37	
Vinyl acetate	ug/L	<1.0	1.0	09/27/19 11:37	
Vinyl chloride	ug/L	<1.0	1.0	09/27/19 11:37	
Xylene (Total)	ug/L	<3.0	3.0	09/27/19 11:37	
1,2-Dichloroethane-d4 (S)	%	99	68-153	09/27/19 11:37	
4-Bromofluorobenzene (S)	%	94	79-124	09/27/19 11:37	
Toluene-d8 (S)	%	94	69-124	09/27/19 11:37	

LABORATORY CONTROL SAMPLE:	631174					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
1,1,1,2-Tetrachloroethane	ug/L	50	39.6	79	74-113	
1,1,1-Trichloroethane	ug/L	50	45.6	91	65-118	
1,1,2,2-Tetrachloroethane	ug/L	50	46.3	93	74-121	
1,1,2-Trichloroethane	ug/L	50	46.7	93	80-117	
1,1-Dichloroethane	ug/L	50	43.3	87	83-151	
1,1-Dichloroethene	ug/L	50	47.5	95	45-146	
1,2,3-Trichloropropane	ug/L	50	41.0	82	71-123	
1,2-Dibromo-3-chloropropane	ug/L	50	42.2	84	74-119	
1,2-Dibromoethane (EDB)	ug/L	50	44.6	89	83-115	
1,2-Dichlorobenzene	ug/L	50	42.6	85	74-113	
1,2-Dichloroethane	ug/L	50	49.9	100	74-129	
1,2-Dichloropropane	ug/L	50	40.6	81	75-117	
1,4-Dichlorobenzene	ug/L	50	42.6	85	71-113	
2-Butanone (MEK)	ug/L	50	39.0	78	44-162 II	L
2-Hexanone	ug/L	50	42.2	84	32-183	
4-Methyl-2-pentanone (MIBK)	ug/L	50	47.8	96	69-132	
Acetone	ug/L	50	50.9	102	23-188 l	C
Acrylonitrile	ug/L	50	40.4	81	59-148	
Benzene	ug/L	50	41.3	83	73-119	
Bromochloromethane	ug/L	50	45.4	91	81-116	
Bromodichloromethane	ug/L	50	45.9	92	78-117	
Bromoform	ug/L	50	33.6	67	65-122	
Bromomethane	ug/L	50	58.2	116	52-147	
Carbon disulfide	ug/L	50	41.5	83	41-144	
Carbon tetrachloride	ug/L	50	48.3	97	59-120	
Chlorobenzene	ug/L	50	42.9	86	75-113	
Chloroethane	ug/L	50	40.9	82	49-151	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Project: Ischua Landfill Pace Project No.: 70106329

Date: 01/08/2020 06:22 PM

_ABORATORY CONTROL SAMPLE:	631174					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Chloroform	ug/L	50	49.9	100	72-122	
hloromethane	ug/L	50	34.4	69	46-144	
s-1,2-Dichloroethene	ug/L	50	43.9	88	72-121	
-1,3-Dichloropropene	ug/L	50	45.7	91	78-116	
promochloromethane	ug/L	50	38.6	77	70-120	
oromomethane	ug/L	50	41.9	84	75-125	
nylbenzene	ug/L	50	43.3	87	70-113	
lomethane	ug/L	50	52.0	104	61-144	CH
p-Xylene	ug/L	100	84.4	84	72-115	
hylene Chloride	ug/L	50	41.4	83	61-142	
ylene	ug/L	50	39.4	79	73-117	
rene	ug/L	50	40.7	81	72-118	
achloroethene	ug/L	50	40.8	82	60-128	
iene	ug/L	50	49.7	99	72-119	
s-1,2-Dichloroethene	ug/L	50	43.5	87	56-142	
ns-1,3-Dichloropropene	ug/L	50	42.0	84	79-116	
ns-1,4-Dichloro-2-butene	ug/L	50	49.8	100	71-121	
chloroethene	ug/L	50	42.3	85	69-117	
chlorofluoromethane	ug/L	50	48.8	98	27-173	
yl acetate	ug/L	50	37.0	74	20-158	
yl chloride	ug/L	50	33.9	68	43-143	
ene (Total)	ug/L	150	124	83	71-109	
-Dichloroethane-d4 (S)	%			103	68-153	
romofluorobenzene (S)	%			92	79-124	
uene-d8 (S)	%			94	69-124	

MATRIX SPIKE & MATRIX SPIKE	DUPLICAT	E: 63550	7		635508						
			MS	MSD							
	701	106329004	Spike	Spike	MS	MSD	MS	MSD	% Rec		
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	Qual
1,1,1,2-Tetrachloroethane	ug/L	<1.0	50	50	38.5	41.0	77	82	74-113	6	
1,1,1-Trichloroethane	ug/L	<1.0	50	50	44.8	46.8	90	94	65-118	4	
1,1,2,2-Tetrachloroethane	ug/L	<1.0	50	50	44.1	41.1	88	82	74-121	7	
1,1,2-Trichloroethane	ug/L	<1.0	50	50	42.9	40.8	86	82	80-117	5	
1,1-Dichloroethane	ug/L	1.6	50	50	49.2	43.3	95	83	83-151	13	
1,1-Dichloroethene	ug/L	<1.0	50	50	48.6	52.5	97	105	45-146	8	
1,2,3-Trichloropropane	ug/L	<1.0	50	50	39.5	39.3	79	79	71-123	1	
1,2-Dibromo-3-chloropropane	ug/L	<1.0	50	50	41.4	41.0	83	82	74-119	1	
1,2-Dibromoethane (EDB)	ug/L	<1.0	50	50	38.4	39.9	77	80	83-115	4 M1	
1,2-Dichlorobenzene	ug/L	<1.0	50	50	41.1	42.3	82	85	74-113	3	
1,2-Dichloroethane	ug/L	<1.0	50	50	46.5	49.7	93	99	74-129	7	
1,2-Dichloropropane	ug/L	<1.0	50	50	45.5	41.3	91	83	75-117	10	
1,4-Dichlorobenzene	ug/L	<1.0	50	50	42.1	43.0	84	86	71-113	2	
2-Butanone (MEK)	ug/L	<5.0	50	50	34.5	31.9	69	64	44-162	8 IL	
2-Hexanone	ug/L	<5.0	50	50	42.3	40.7	85	81	32-183	4	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: Ischua Landfill Pace Project No.: 70106329

Date: 01/08/2020 06:22 PM

MATRIX SPIKE & MATRIX SPIKE	DUPLICATE	E: 63550°		635508							
			MS	MSD							
Demonstra		06329004	Spike	Spike	MS	MSD	MS	MSD	% Rec	DDD	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	Qua
4-Methyl-2-pentanone (MIBK)	ug/L	<5.0	50	50	45.0	42.4	90	85	69-132	6	
Acetone	ug/L	<5.0	50	50	50.3	51.8	101	104	23-188	3 IC	
Acrylonitrile	ug/L	<1.0	50	50	41.0	36.8	82	74	59-148	11	
Benzene	ug/L	1.0	50	50	46.4	43.7	91	85	73-119	6	
Bromochloromethane	ug/L	<1.0	50	50	45.7	45.4	91	91	81-116	1	
Bromodichloromethane	ug/L	<1.0	50	50	43.6	45.7	87	91	78-117	5	
Bromoform	ug/L	<1.0	50	50	32.8	35.1	66	70	65-122	7	
3romomethane	ug/L	<1.0	50	50	39.3	42.1	79	84	52-147	7	
Carbon disulfide	ug/L	<1.0	50	50	44.3	47.0	89	94	41-144	6	
Carbon tetrachloride	ug/L	<1.0	50	50	47.2	50.9	94	102	59-120	8	
Chlorobenzene	ug/L	2.3	50	50	45.0	46.0	85	87	75-113	2	
Chloroethane	ug/L	<1.0	50	50	50.5	43.3	101	87	49-151	15	
Chloroform	ug/L	<1.0	50	50	51.2	50.4	102	101	72-122	2	
Chloromethane	ug/L	<1.0	50	50	39.4	42.8	79	86	46-144	8	
cis-1,2-Dichloroethene	ug/L	6.3	50	50	52.5	50.3	92	88	72-121	4	
cis-1,3-Dichloropropene	ug/L	<1.0	50	50	39.6	39.2	79	78	78-116	1	
Dibromochloromethane	ug/L	<1.0	50	50	36.6	38.5	73	77	70-120	5	
Dibromomethane	ug/L	<1.0	50	50	40.1	42.0	80	84	75-125	5	
Ethylbenzene	ug/L	<1.0	50	50	43.5	44.0	87	88	70-113	1	
odomethane	ug/L	<1.0	50	50	41.6	60.9	83	122	61-144	38 CH,	R1
n&p-Xylene	ug/L	<2.0	100	100	83.8	82.5	84	83	72-115	2	
Methylene Chloride	ug/L	<1.0	50	50	38.6	41.1	77	82	61-142	6	
o-Xylene	ug/L	<1.0	50	50	41.3	40.8	83	82	73-117	1	
Styrene	ug/L	<1.0	50	50	41.0	39.8	82	80	72-118	3	
Tetrachloroethene	ug/L	<1.0	50	50	40.7	43.7	81	87	60-128	7	
Toluene	ug/L	<1.0	50	50	45.6	44.0	91	88	72-119	4	
rans-1,2-Dichloroethene	ug/L	<1.0	50	50	39.2	43.3	78	87	56-142	10	
rans-1,3-Dichloropropene	ug/L	<1.0	50	50	36.0	36.7	72	73	79-116	2 M1	
rans-1,4-Dichloro-2-butene	ug/L	<1.0	50	50	38.3	34.1	77	68	71-121	12 M1	
Frichloroethene	ug/L	1.0	50	50	45.3	44.9	89	88	69-117	1	
Frichlorofluoromethane	ug/L	<1.0	50	50	56.0	57.9	112	116	27-173	3	
/inyl acetate	ug/L	<1.0	50	50	37.6	31.6	75	63	20-158	17	
/inyl chloride	ug/L	2.6	50	50	44.5	51.5	84	98	43-143	15	
(ylene (Total)	ug/L	<3.0	150	150	125	123	83	82	71-109	1	
,2-Dichloroethane-d4 (S)	%						98	104	68-153	•	
I-Bromofluorobenzene (S)	%						94	90	79-124		
Toluene-d8 (S)	%						94	95	69-124		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: Ischua Landfill Pace Project No.: 70106329

QC Batch: 132286 Analysis Method: SM22 2320B
QC Batch Method: SM22 2320B Analysis Description: 2320B Alkalinity

Associated Lab Samples: 70106329003, 70106329004, 70106329005, 70106329007, 70106329008, 70106329009, 70106329010,

70106329011, 70106329012

METHOD BLANK: 632399 Matrix: Water

Associated Lab Samples: 70106329003, 70106329004, 70106329005, 70106329007, 70106329008, 70106329009, 70106329010,

70106329011, 70106329012

Units

mg/L

Blank Reporting
Result Limit Analyzed Qualifiers

Alkalinity, Total as CaCO3 mg/L <1.0 09/30/19 17:04

Spike

Conc.

LABORATORY CONTROL SAMPLE: 632400

Parameter

Alkalinity, Total as CaCO3 25.8 103 85-115 mg/L 25 MATRIX SPIKE SAMPLE: 632402 70106329004 Spike MS MS % Rec Result % Rec Limits Qualifiers Parameter Units Conc. Result

261

LCS

Result

LCS

% Rec

25

% Rec

Limits

290

Qualifiers

75-125

117

SAMPLE DUPLICATE: 632401

Alkalinity, Total as CaCO3

Date: 01/08/2020 06:22 PM

 Parameter
 Units
 Result Result Result
 RPD Qualifiers

 Alkalinity, Total as CaCO3
 mg/L
 261
 257
 1

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: Ischua Landfill Pace Project No.: 70106329

QC Batch: 132887 Analysis Method: SM22 2340C

QC Batch Method: SM22 2340C Analysis Description: 2340C Hardness, Total

Associated Lab Samples: 70106329001, 70106329003, 70106329004, 70106329005, 70106329007, 70106329008, 70106329009,

70106329010, 70106329011, 70106329012

METHOD BLANK: 635785 Matrix: Water

Associated Lab Samples: 70106329001, 70106329003, 70106329004, 70106329005, 70106329007, 70106329008, 70106329009,

70106329010, 70106329011, 70106329012

Parameter Units Result Limit Analyzed Qualifiers

Tot Hardness asCaCO3 (SM 2340B mg/L <5.0 5.0 10/03/19 21:22

LABORATORY CONTROL SAMPLE: 635786

LCS LCS Spike % Rec Parameter Units Conc. Result % Rec Limits Qualifiers Tot Hardness asCaCO3 (SM 2340B mg/L 100 100 90-110 100

MATRIX SPIKE SAMPLE: 635787

70106329004 Spike MS MS % Rec Result % Rec Limits Qualifiers Parameter Units Conc. Result 220 Tot Hardness asCaCO3 (SM 2340B 2000 2240 101 75-125 mg/L

SAMPLE DUPLICATE: 635788

Date: 01/08/2020 06:22 PM

 Parameter
 Units
 Result
 Dup Result
 RPD
 Qualifiers

 Tot Hardness asCaCO3 (SM 2340B
 mg/L
 220
 240
 9

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: Ischua Landfill
Pace Project No.: 70106329

Date: 01/08/2020 06:22 PM

QC Batch: 132347 Analysis Method: SM22 2540C

QC Batch Method: SM22 2540C Analysis Description: 2540C Total Dissolved Solids

Associated Lab Samples: 70106329001, 70106329003, 70106329004, 70106329005, 70106329007, 70106329008, 70106329009,

70106329010, 70106329011, 70106329012

METHOD BLANK: 632726 Matrix: Water

Associated Lab Samples: 70106329001, 70106329003, 70106329004, 70106329005, 70106329007, 70106329008, 70106329009,

70106329010, 70106329011, 70106329012

Blank Reporting
Parameter Units Result Limit Analyzed Qualifiers

Total Dissolved Solids mg/L <10.0 10.0 10/01/19 09:42

LABORATORY CONTROL SAMPLE: 632727 LCS LCS Spike % Rec Parameter Units Conc. Result % Rec Limits Qualifiers **Total Dissolved Solids** 500 530 106 85-115 mg/L MATRIX SPIKE SAMPLE: 632729 70106329004 Spike MS MS % Rec % Rec Limits Parameter Units Result Conc. Result Qualifiers 306 **Total Dissolved Solids** 600 874 95 75-125 mg/L MATRIX SPIKE SAMPLE: 632731 70106594001 Spike MS MS % Rec Parameter Units Result Conc. Result % Rec Limits Qualifiers Total Dissolved Solids mg/L 163 300 455 97 75-125 SAMPLE DUPLICATE: 632728 70106329004 Dup **RPD** Parameter Units Result Result Qualifiers 306 **Total Dissolved Solids** 300 2 mg/L SAMPLE DUPLICATE: 632730 70106594001 Dup Result Result **RPD** Qualifiers Parameter Units 163 **Total Dissolved Solids** 169 4 mg/L

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: Ischua Landfill Pace Project No.: 70106329 QC Batch: 132352 Analysis Method: EPA 410.4 QC Batch Method: EPA 410.4 Analysis Description: 410.4 COD Associated Lab Samples: 70106329001, 70106329003, 70106329004 METHOD BLANK: 632746 Matrix: Water Associated Lab Samples: 70106329001, 70106329003, 70106329004 Blank Reporting Limit Qualifiers Parameter Units Result Analyzed Chemical Oxygen Demand <10.0 10.0 10/01/19 11:52 mg/L LABORATORY CONTROL SAMPLE: Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers Chemical Oxygen Demand mg/L 500 531 106 90-110 MATRIX SPIKE SAMPLE: 632748 70106187001 Spike MS MS % Rec Parameter Units Result Conc. Result % Rec Limits Qualifiers 158 1000 1110 96 90-110 Chemical Oxygen Demand mg/L MATRIX SPIKE SAMPLE: 632750 70106329004 Spike MS MS % Rec Parameter Units Result Conc. Result % Rec Limits Qualifiers Chemical Oxygen Demand mg/L 12.4 1000 1040 103 90-110 SAMPLE DUPLICATE: 632749 70106187001 Dup Parameter Units Result Result **RPD** Qualifiers 158 3 Chemical Oxygen Demand mg/L 162 SAMPLE DUPLICATE: 632751

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Dup

Result

12.4

RPD

0

Qualifiers

70106329004

Result

12.4

Units

mg/L

Parameter

Chemical Oxygen Demand

Date: 01/08/2020 06:22 PM

Chemical Oxygen Demand

Date: 01/08/2020 06:22 PM

QUALITY CONTROL DATA

Project: Ischua Landfill Pace Project No.: 70106329 QC Batch: 132917 Analysis Method: EPA 410.4 QC Batch Method: EPA 410.4 Analysis Description: 410.4 COD Associated Lab Samples: 70106329005, 70106329007, 70106329008, 70106329009, 70106329010, 70106329011, 70106329012 METHOD BLANK: 635934 Matrix: Water Associated Lab Samples: 70106329005, 70106329007, 70106329008, 70106329009, 70106329010, 70106329011, 70106329012 Blank Reporting Limit Parameter Units Result Analyzed Qualifiers Chemical Oxygen Demand <10.0 10.0 10/04/19 12:53 mg/L LABORATORY CONTROL SAMPLE: 635935 Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers Chemical Oxygen Demand mg/L 500 544 109 90-110 MATRIX SPIKE SAMPLE: 635936 70106743001 Spike MS MS % Rec Parameter Units Result Conc. Result % Rec Limits Qualifiers 45.5 1000 1090 104 90-110 Chemical Oxygen Demand mg/L MATRIX SPIKE SAMPLE: 635938 70106587007 Spike MS MS % Rec % Rec Parameter Units Result Conc. Result Limits Qualifiers Chemical Oxygen Demand mg/L 14.6 1000 1080 106 90-110 SAMPLE DUPLICATE: 635937 70106743001 Dup Parameter Units Result Result RPD Qualifiers 45.5 5 Chemical Oxygen Demand mg/L 43.3 SAMPLE DUPLICATE: 635939 70106587007 Dup Units Result Result **RPD** Qualifiers Parameter

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

14.6

mg/L

14.6

0

REPORT OF LABORATORY ANALYSIS

Project: Ischua Landfill Pace Project No.: 70106329

QC Batch: 131922 Analysis Method: SM22 5210B

QC Batch Method: SM22 5210B Analysis Description: 5210B BOD, 5 day

Associated Lab Samples: 70106329001, 70106329003, 70106329004, 70106329005, 70106329007, 70106329008, 70106329009,

70106329010, 70106329011, 70106329012

METHOD BLANK: 630534 Matrix: Water

Associated Lab Samples: 70106329001, 70106329003, 70106329004, 70106329005, 70106329007, 70106329008, 70106329009,

70106329010, 70106329011, 70106329012

BIank Reporting Limit Analyzed Qualifiers

BOD, 5 day mg/L <2.0 2.0 10/01/19 11:41

LABORATORY CONTROL SAMPLE: 630535

LCS LCS Spike % Rec Parameter Units Conc. Result % Rec Limits Qualifiers BOD, 5 day 193 98 84.5-115.4 mg/L 198

SAMPLE DUPLICATE: 630536

Date: 01/08/2020 06:22 PM

 Parameter
 Units
 Result Result Result
 RPD Qualifiers

 BOD, 5 day
 mg/L
 1.4J
 1.4J

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: Ischua Landfill Pace Project No.: 70106329

Date: 01/08/2020 06:22 PM

QC Batch: 132884 Analysis Method: EPA 300.0

QC Batch Method: EPA 300.0 Analysis Description: 300.0 IC Anions

Associated Lab Samples: 70106329001, 70106329003, 70106329004, 70106329005, 70106329007, 70106329008, 70106329009,

70106329010, 70106329011, 70106329012

METHOD BLANK: 635703 Matrix: Water

Associated Lab Samples: 70106329001, 70106329003, 70106329004, 70106329005, 70106329007, 70106329008, 70106329009,

70106329010, 70106329011, 70106329012

Parameter	Units	Blank Result	Reporting Limit	Analyzed	Qualifiers
Bromide	mg/L	<0.50	0.50	10/04/19 20:53	
Chloride	mg/L	<2.0	2.0	10/04/19 20:53	
Sulfate	mg/L	<5.0	5.0	10/04/19 20:53	

LABORATORY CONTROL SAMPLE:	635704					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Bromide	mg/L		0.99	99	90-110	
Chloride	mg/L	10	10.7	107	90-110	
Sulfate	mg/L	10	10.6	106	90-110	

MATRIX SPIKE SAMPLE:	635705						
Parameter	Units	70106329004 Result	Spike Conc.	MS Result	MS % Rec	% Rec Limits	Qualifiers
Bromide	 mg/L	0.19J	1	1.2	100	80-120	
Chloride	mg/L	11.8	10	21.6	98	80-120	
Sulfate	mg/L	8.5	10	19.1	106	80-120	

SAMPLE DUPLICATE: 635706					
		70106329004	Dup		
Parameter	Units	Result	Result	RPD	Qualifiers
Bromide	mg/L	0.19J	0.19J		
Chloride	mg/L	11.8	11.8	1	
Sulfate	mg/L	8.5	8.6	0	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Qualifiers

QUALITY CONTROL DATA

Project: Ischua Landfill Pace Project No.: 70106329

Parameter

Nitrogen, Kjeldahl, Total

QC Batch: 133689 Analysis Method: EPA 351.2 QC Batch Method: EPA 351.2 Analysis Description: 351.2 TKN

70106329001, 70106329003, 70106329004, 70106329005, 70106329007, 70106329008, 70106329009, Associated Lab Samples:

70106329010, 70106329011, 70106329012

METHOD BLANK: 639824 Matrix: Water

70106329001, 70106329003, 70106329004, 70106329005, 70106329007, 70106329008, 70106329009, Associated Lab Samples: Blank

Result

< 0.10

70106329010, 70106329011, 70106329012

Units

mg/L

LABORATORY CONTROL SAMPLE: 639825 LCS LCS Spike % Rec Parameter Units Conc. Result % Rec Limits Qualifiers Nitrogen, Kjeldahl, Total 3.9 97 90-110 mg/L 4 MATRIX SPIKE SAMPLE: 639826 70106329004 Spike MS MS % Rec Result % Rec Limits Parameter Units Conc. Result Qualifiers 1.5 Nitrogen, Kjeldahl, Total 4 6.0 112 90-110 M6 mg/L MATRIX SPIKE SAMPLE: 639828 70106866002 Spike MS MS % Rec Parameter Units Result Conc. Result % Rec Limits Qualifiers Nitrogen, Kjeldahl, Total mg/L 1.3 4 2.8 38 90-110 M1

Reporting

Limit

0.10

Analyzed

10/10/19 12:31

70106329004 Dup **RPD** Parameter Units Result Result Qualifiers 1.5 1.6 7 Nitrogen, Kjeldahl, Total mg/L

SAMPLE DUPLICATE: 639829

Date: 01/08/2020 06:22 PM

639827

SAMPLE DUPLICATE:

70106866002 Dup Result Result **RPD** Qualifiers Parameter Units 1.3 Nitrogen, Kjeldahl, Total 1.3 4 mg/L

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Date: 01/08/2020 06:22 PM

QUALITY CONTROL DATA

Project: Ischua Landfill Pace Project No.: 70106329 QC Batch: 131960 Analysis Method: EPA 353.2 QC Batch Method: EPA 353.2 Analysis Description: 353.2 Nitrite, Unpres. Associated Lab Samples: 70106329001, 70106329003 METHOD BLANK: 630912 Matrix: Water Associated Lab Samples: 70106329001, 70106329003 Blank Reporting Limit Qualifiers Parameter Units Result Analyzed Nitrite as N < 0.050 0.050 09/26/19 21:16 mg/L LABORATORY CONTROL SAMPLE: 630913 Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers Nitrite as N mg/L 1.0 101 90-110 MATRIX SPIKE SAMPLE: 630914 70106451001 Spike MS MS % Rec Parameter Units Result Conc. Result % Rec Limits Qualifiers < 0.050 0.5 0.44 88 90-110 M1 Nitrite as N mg/L MATRIX SPIKE SAMPLE: 630916 70106449001 Spike MS MS % Rec Parameter Units Result Conc. Result % Rec Limits Qualifiers < 0.050 Nitrite as N mg/L 0.5 0.55 110 90-110 SAMPLE DUPLICATE: 630915 70106451001 Dup Parameter Units Result Result **RPD** Qualifiers < 0.050 Nitrite as N mg/L < 0.050 SAMPLE DUPLICATE: 630917 70106449001 Dup Parameter Units Result Result **RPD** Qualifiers < 0.050 < 0.050 Nitrite as N mg/L

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Qualifiers

QUALITY CONTROL DATA

Reporting

Limit

Analyzed

Project: Ischua Landfill Pace Project No.: 70106329

Parameter

Date: 01/08/2020 06:22 PM

QC Batch: 131961 Analysis Method: EPA 353.2

Units

QC Batch Method: EPA 353.2 Analysis Description: 353.2 Nitrite, Unpres.

70106329004, 70106329005, 70106329007, 70106329008, 70106329009, 70106329010, 70106329011, Associated Lab Samples:

70106329012

METHOD BLANK: 630918 Matrix: Water

70106329004, 70106329005, 70106329007, 70106329008, 70106329009, 70106329010, 70106329011, Associated Lab Samples: Blank

Result

70106329012

Nitrite as N mg/L < 0.050 0.050 09/26/19 21:54 LABORATORY CONTROL SAMPLE: 630919 LCS LCS Spike % Rec Parameter Units Conc. Result % Rec Limits Qualifiers mg/L 1 1.0 101 90-110 Nitrite as N MATRIX SPIKE SAMPLE: 630920 70106329004 Spike MS MS % Rec Result % Rec Limits Units Conc. Result Qualifiers Parameter < 0.050 Nitrite as N 0.5 0.50 99 90-110 mg/L MATRIX SPIKE SAMPLE: 630922 70106454001 Spike MS MS % Rec Parameter Units Result Conc. Result % Rec Limits Qualifiers Nitrite as N mg/L < 0.050 0.5 0.52 103 90-110 SAMPLE DUPLICATE: 630921 70106329004 Dup **RPD** Parameter Units Result Result Qualifiers < 0.050 < 0.050 Nitrite as N mg/L SAMPLE DUPLICATE: 630923 70106454001 Dup Result Result **RPD** Qualifiers Parameter Units <0.050 Nitrite as N < 0.050 mg/L

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Ischua Landfill

Project:

Nitrate-Nitrite (as N)

Nitrate-Nitrite (as N)

Date: 01/08/2020 06:22 PM

SAMPLE DUPLICATE:

Parameter

630968

QUALITY CONTROL DATA

Pace Project No.: 70106329 QC Batch: 131972 Analysis Method: EPA 353.2 QC Batch Method: EPA 353.2 Analysis Description: 353.2 Nitrate, Unpres. Associated Lab Samples: 70106329001, 70106329003, 70106329004, 70106329005, 70106329007, 70106329008 METHOD BLANK: 630965 Matrix: Water Associated Lab Samples: 70106329001, 70106329003, 70106329004, 70106329005, 70106329007, 70106329008 Blank Reporting Limit Parameter Units Result Analyzed Qualifiers Nitrate-Nitrite (as N) < 0.050 0.050 09/27/19 01:10 mg/L LABORATORY CONTROL SAMPLE: 630966 Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers Nitrate-Nitrite (as N) mg/L 1.0 102 90-110 MATRIX SPIKE SAMPLE: 630967 70106329001 Spike MS MS % Rec Parameter Units Result Conc. Result % Rec Limits Qualifiers 0.11 0.5 0.64 108 90-110 Nitrate-Nitrite (as N) mg/L MATRIX SPIKE SAMPLE: 630969 70106329004 Spike MS MS % Rec Parameter Units Result Conc. Result % Rec Limits Qualifiers

0.066

0.5

0.10

Dup

Result

0.58

2

RPD

103

Qualifiers

90-110

SAMPLE DUPLICATE: 630970					
		70106329004	Dup		
Parameter	Units	Result	Result	RPD	Qualifiers
Nitrate-Nitrite (as N)	mg/L	0.066	0.062	6	

70106329001

Result

0.11

mg/L

Units

mg/L

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

SAMPLE DUPLICATE: 630976

Nitrate-Nitrite (as N)

Date: 01/08/2020 06:22 PM

Parameter

QUALITY CONTROL DATA

Project: Ischua Landfill Pace Project No.: 70106329 QC Batch: 131973 Analysis Method: EPA 353.2 QC Batch Method: EPA 353.2 Analysis Description: 353.2 Nitrate, Unpres. Associated Lab Samples: 70106329009, 70106329010, 70106329011, 70106329012 METHOD BLANK: 630971 Matrix: Water Associated Lab Samples: 70106329009, 70106329010, 70106329011, 70106329012 Blank Reporting Limit Qualifiers Parameter Units Result Analyzed Nitrate-Nitrite (as N) < 0.050 0.050 09/27/19 01:48 mg/L LABORATORY CONTROL SAMPLE: 630972 Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers Nitrate-Nitrite (as N) mg/L 1.1 109 90-110 MATRIX SPIKE SAMPLE: 630973 70106453001 Spike MS MS % Rec Parameter Units Result Conc. Result % Rec Limits Qualifiers 6.3 5 11.6 106 90-110 Nitrate-Nitrite (as N) mg/L MATRIX SPIKE SAMPLE: 630975 70106454001 Spike MS MS % Rec % Rec Parameter Units Result Conc. Result Limits Qualifiers 6.3 Nitrate-Nitrite (as N) mg/L 5 12.7 129 90-110 SAMPLE DUPLICATE: 630974 70106453001 Dup Parameter Units Result Result **RPD** Qualifiers 6.3 2 Nitrate-Nitrite (as N) mg/L 6.4

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Dup

Result

6.3

RPD

0

Qualifiers

70106454001

Result

6.3

Units

mg/L

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

QUALITY CONTROL DATA

Project: Ischua Landfill Pace Project No.: 70106329

QC Batch: 133477 Analysis Method: EPA 420.1

QC Batch Method: EPA 420.1 Analysis Description: 420.1 Phenolics Macro

Associated Lab Samples: 70106329001, 70106329003, 70106329005, 70106329007, 70106329008, 70106329009, 70106329010,

70106329011, 70106329012

METHOD BLANK: 638980 Matrix: Water

Associated Lab Samples: 70106329001, 70106329003, 70106329005, 70106329007, 70106329008, 70106329009, 70106329010,

70106329011, 70106329012

ParameterUnitsBlank Reporting ResultReporting LimitAnalyzedQualifiersPhenolics, Total Recoverableug/L4.1J5.010/09/19 13:00

, and the second se

LABORATORY CONTROL SAMPLE: 638981

LCS LCS Spike % Rec Parameter Units Conc. Result % Rec Limits Qualifiers Phenolics, Total Recoverable 107 107 90-110 100 ug/L

MATRIX SPIKE SAMPLE: 638982

70106266003 Spike MS MS % Rec Result % Rec Limits Parameter Units Conc. Result Qualifiers 39.1 Phenolics, Total Recoverable 20 76.2 185 75-125 M1 ug/L

SAMPLE DUPLICATE: 638983

Date: 01/08/2020 06:22 PM

 Parameter
 Units
 Result Result
 Result Result
 RPD Qualifiers

 Phenolics, Total Recoverable
 ug/L
 11.2
 37.1
 107 D6

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Phenolics, Total Recoverable

Date: 01/08/2020 06:22 PM

QUALITY CONTROL DATA

Project: Ischua Landfill Pace Project No.: 70106329 QC Batch: 133478 Analysis Method: EPA 420.1 QC Batch Method: EPA 420.1 Analysis Description: 420.1 Phenolics Macro Associated Lab Samples: 70106329004 METHOD BLANK: 638984 Matrix: Water Associated Lab Samples: 70106329004 Blank Reporting Parameter Limit Qualifiers Units Result Analyzed Phenolics, Total Recoverable 4.0J 5.0 10/09/19 13:22 ug/L LABORATORY CONTROL SAMPLE: 638985 Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers Phenolics, Total Recoverable ug/L 100 109 109 90-110 MATRIX SPIKE SAMPLE: 638987 70106329004 Spike MS MS % Rec Parameter Units Result Conc. Result % Rec Limits Qualifiers 4.1J 106 Phenolics, Total Recoverable 20 512 75-125 M1 ug/L SAMPLE DUPLICATE: 638986 70106329004 Dup RPD Parameter Units Result Result Qualifiers

4.1J

4.0J

ug/L

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL DATA

Project: Ischua Landfill
Pace Project No.: 70106329

QC Batch: 133141 Analysis Method: SM22 4500 NH3 H
QC Batch Method: SM22 4500 NH3 H Analysis Description: 4500 Ammonia

Associated Lab Samples: 70106329001, 70106329003, 70106329004, 70106329005, 70106329007, 70106329008

METHOD BLANK: 637164 Matrix: Water

Associated Lab Samples: 70106329001, 70106329003, 70106329004, 70106329005, 70106329007, 70106329008

Blank Reporting

ParameterUnitsResultLimitAnalyzedQualifiersNitrogen, Ammoniamg/L<0.10</td>0.1010/07/19 12:44

LABORATORY CONTROL SAMPLE: 637165

Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers Nitrogen, Ammonia mg/L 1.0 101 90-110

MATRIX SPIKE SAMPLE: 637166

70106329004 Spike MS MS % Rec Parameter Units Result Conc. Result % Rec Limits Qualifiers 1.0 Nitrogen, Ammonia 1 2.0 100 75-125 mg/L

SAMPLE DUPLICATE: 637167

Date: 01/08/2020 06:22 PM

		70106329004	Dup		
Parameter	Units	Result	Result	RPD	Qualifiers
Nitrogen, Ammonia	mg/L	1.0	1.0	0	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL DATA

Project: Ischua Landfill
Pace Project No.: 70106329

QC Batch: 133197 Analysis Method: SM22 4500 NH3 H
QC Batch Method: SM22 4500 NH3 H Analysis Description: 4500 Ammonia

Associated Lab Samples: 70106329009, 70106329010, 70106329011, 70106329012

METHOD BLANK: 637353 Matrix: Water
Associated Lab Samples: 70106329009, 70106329010, 70106329011, 70106329012

Blank Reporting
Parameter Units Result Limit A

Parameter Units Result Limit Analyzed Qualifiers

Nitrogen, Ammonia mg/L <0.10 0.10 10/07/19 13:20

LABORATORY CONTROL SAMPLE: 637354

Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers Nitrogen, Ammonia mg/L 1.0 101 90-110

MATRIX SPIKE SAMPLE: 637355

70107191001 Spike MS MS % Rec Parameter Units Result Conc. Result % Rec Limits Qualifiers < 0.10 1 1.1 113 75-125 Nitrogen, Ammonia mg/L

SAMPLE DUPLICATE: 637356

Date: 01/08/2020 06:22 PM

 Parameter
 Units
 Result Result Result RPD
 Qualifiers

 Nitrogen, Ammonia
 mg/L
 <0.10</td>
 <0.10</td>

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Date: 01/08/2020 06:22 PM

QUALITY CONTROL DATA

Project: Ischua Landfill Pace Project No.: 70106329 QC Batch: 132444 Analysis Method: SM22 5310B QC Batch Method: SM22 5310B Analysis Description: 5310B TOC Associated Lab Samples: 70106329001, 70106329003 633297 METHOD BLANK: Matrix: Water Associated Lab Samples: 70106329001, 70106329003 Blank Reporting Parameter Result Limit Analyzed Qualifiers Units Total Organic Carbon <1.0 1.0 10/01/19 18:27 mg/L LABORATORY CONTROL SAMPLE: 633298 Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers **Total Organic Carbon** mg/L 10 9.1 91 85-115 MATRIX SPIKE SAMPLE: 633300 MS 70106524001 Spike MS % Rec Parameter Units Result Conc. Result % Rec Limits Qualifiers 4.6 **Total Organic Carbon** 10 14.6 100 75-125 mg/L SAMPLE DUPLICATE: 633299 70106524001 Dup RPD Parameter Units Result Result Qualifiers 4.6 **Total Organic Carbon** mg/L 4.8 4

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL DATA

Project: Ischua Landfill
Pace Project No.: 70106329

QC Batch: 132448 Analysis Method: SM22 5310B
QC Batch Method: SM22 5310B Analysis Description: 5310B TOC

Associated Lab Samples: 70106329004, 70106329005, 70106329006, 70106329007, 70106329008, 70106329009, 70106329010,

70106329011, 70106329012

METHOD BLANK: 633308 Matrix: Water

Associated Lab Samples: 70106329004, 70106329005, 70106329006, 70106329007, 70106329008, 70106329009, 70106329010,

70106329011, 70106329012

ParameterUnitsBlank Reporting ResultReporting LimitAnalyzedQualifiersTotal Organic Carbonmg/L<1.0</td>1.010/02/19 09:01

LABORATORY CONTROL SAMPLE: 633309

LCS LCS Spike % Rec Parameter Units Conc. Result % Rec Limits Qualifiers **Total Organic Carbon** 9.2 92 85-115 mg/L 10

MATRIX SPIKE SAMPLE: 633311

MS 70106329004 Spike MS % Rec % Rec Units Result Result Limits Qualifiers Parameter Conc. 2.8 **Total Organic Carbon** mg/L 10 12.1 94 75-125

SAMPLE DUPLICATE: 633310

Date: 01/08/2020 06:22 PM

Parameter	Units	70106329004 Result	Dup Result	RPD	Qualifiers
Total Organic Carbon	mg/L	2.8	2.6	5	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: Ischua Landfill Pace Project No.: 70106329

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

WORKORDER QUALIFIERS

WO: 70106329

[1] Trip Blank received but not noted on the COC. See Sample Condition Upon Receipt Form for details.

ANALYTE QUALIFIERS

Date: 01/08/2020 06:22 PM

В	Analyte was detected in the associated method blank.
---	--

CH The continuing calibration for this compound is outside of Pace Analytical acceptance limits. The results may be biased high.

D6 The precision between the sample and sample duplicate exceeded laboratory control limits.

IC The initial calibration for this compound was outside of method control limits. The result is estimated.

IL This analyte exceeded secondary source verification criteria low for the initial calibration. The reported results should be considered an estimated value.

M1 Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

M6 Matrix spike and Matrix spike duplicate recovery not evaluated against control limits due to sample dilution.

N The reported TIC has an 85% or higher match on a mass spectral library search.

R1 RPD value was outside control limits.

Project: Ischua Landfill Pace Project No.: 70106329

Date: 01/08/2020 06:22 PM

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytica Batch
70106329001	MW-6D	EPA 3005A	132791	EPA 6010C	132806
70106329003	MW-7C	EPA 3005A	132791	EPA 6010C	132806
0106329004	MW-8B	EPA 3005A	132791	EPA 6010C	132806
0106329005	MW-10B	EPA 3005A	132791	EPA 6010C	132806
0106329007	MW-12B	EPA 3005A	132791	EPA 6010C	132806
0106329008	MW-13	EPA 3005A	132791	EPA 6010C	132806
0106329009	MW-14	EPA 3005A	132791	EPA 6010C	132806
0106329010	SEEP	EPA 3005A	132791	EPA 6010C	132806
0106329011	STREAM	EPA 3005A	132791	EPA 6010C	132806
0106329012	DUP	EPA 3005A	132791	EPA 6010C	132806
0106329001	MW-6D	EPA 8260C/5030C	132041		
0106329002	MW-7A	EPA 8260C/5030C	132041		
0106329003	MW-7C	EPA 8260C/5030C	132041		
0106329004	MW-8B	EPA 8260C/5030C	132041		
0106329005	MW-10B	EPA 8260C/5030C	132041		
0106329006	MW-11B	EPA 8260C/5030C	132041		
0106329007	MW-12B	EPA 8260C/5030C	132041		
0106329008	MW-13	EPA 8260C/5030C	132041		
0106329009	MW-14	EPA 8260C/5030C	132041		
0106329010	SEEP	EPA 8260C/5030C	132041		
0106329011	STREAM	EPA 8260C/5030C	132041		
0106329012	DUP	EPA 8260C/5030C	132041		
0106329013	TRIP BLANK	EPA 8260C/5030C	132041		
0106329014	STORAGE BLANK	EPA 8260C/5030C	132041		
0106329005	MW-10B	EPA 8260			
0106329006	MW-11B	EPA 8260			
0106329007	MW-12B	EPA 8260			
0106329008	MW-13	EPA 8260			
0106329009	MW-14	EPA 8260			
0106329010	SEEP	EPA 8260			
0106329011	STREAM	EPA 8260			
0106329012	DUP	EPA 8260			
0106329013	TRIP BLANK	EPA 8260			
0106329014	STORAGE BLANK	EPA 8260			
0106329003	MW-7C	SM22 2320B	132286		
0106329004	MW-8B	SM22 2320B	132286		
0106329005	MW-10B	SM22 2320B	132286		
0106329007	MW-12B	SM22 2320B	132286		
0106329008	MW-13	SM22 2320B	132286		
0106329009	MW-14	SM22 2320B	132286		
0106329010	SEEP	SM22 2320B	132286		
0106329011	STREAM	SM22 2320B	132286		
0106329012	DUP	SM22 2320B	132286		
0106329001	MW-6D	SM22 2340C	132887		
0106329003	MW-7C	SM22 2340C	132887		
0106329004	MW-8B	SM22 2340C	132887		
0106329005	MW-10B	SM22 2340C	132887		

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project: Ischua Landfill Pace Project No.: 70106329

Date: 01/08/2020 06:22 PM

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
70106329007	MW-12B	SM22 2340C	132887	_	
70106329008	MW-13	SM22 2340C	132887		
70106329009	MW-14	SM22 2340C	132887		
0106329010	SEEP	SM22 2340C	132887		
0106329011	STREAM	SM22 2340C	132887		
0106329012	DUP	SM22 2340C	132887		
0106329001	MW-6D	SM22 2540C	132347		
0106329003	MW-7C	SM22 2540C	132347		
0106329004	MW-8B	SM22 2540C	132347		
0106329005	MW-10B	SM22 2540C	132347		
0106329007	MW-12B	SM22 2540C	132347		
0106329008	MW-13	SM22 2540C	132347		
0106329009	MW-14	SM22 2540C	132347		
0106329010	SEEP	SM22 2540C	132347		
0106329011	STREAM	SM22 2540C	132347		
0106329012	DUP	SM22 2540C	132347		
0106329001	MW-6D	EPA 410.4	132352	EPA 410.4	132394
0106329003	MW-7C	EPA 410.4	132352	EPA 410.4	132394
0106329004	MW-8B	EPA 410.4	132352	EPA 410.4	132394
0106329005	MW-10B	EPA 410.4	132917	EPA 410.4	132946
0106329007	MW-12B	EPA 410.4	132917	EPA 410.4	132946
0106329008	MW-13	EPA 410.4	132917	EPA 410.4	132946
0106329009	MW-14	EPA 410.4	132917	EPA 410.4	132946
0106329010	SEEP	EPA 410.4	132917	EPA 410.4	132946
0106329011	STREAM	EPA 410.4	132917	EPA 410.4	132946
0106329012	DUP	EPA 410.4	132917	EPA 410.4	132946
0106329001	MW-6D	SM22 5210B	131922	SM22 5210B	132472
0106329003	MW-7C	SM22 5210B	131922	SM22 5210B	132472
0106329004	MW-8B	SM22 5210B	131922	SM22 5210B	132472
0106329005	MW-10B	SM22 5210B	131922	SM22 5210B	132472
0106329007	MW-12B	SM22 5210B	131922	SM22 5210B	132472
0106329008	MW-13	SM22 5210B	131922	SM22 5210B	132472
0106329009	MW-14	SM22 5210B	131922	SM22 5210B	132472
0106329010	SEEP	SM22 5210B	131922	SM22 5210B	132472
0106329011	STREAM	SM22 5210B	131922	SM22 5210B	132472
0106329012	DUP	SM22 5210B	131922	SM22 5210B	132472
0106329001	MW-6D	EPA 300.0	132884		
0106329003	MW-7C	EPA 300.0	132884		
0106329004	MW-8B	EPA 300.0	132884		
0106329005	MW-10B	EPA 300.0	132884		
0106329007	MW-12B	EPA 300.0	132884		
0106329008	MW-13	EPA 300.0	132884		
0106329009	MW-14	EPA 300.0	132884		
0106329010	SEEP	EPA 300.0	132884		
0106329011	STREAM	EPA 300.0	132884		
0106329012	DUP	EPA 300.0	132884		

Project: Ischua Landfill Pace Project No.: 70106329

Date: 01/08/2020 06:22 PM

ab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytic Batch
0106329001	MW-6D	EPA 351.2	133689	EPA 351.2	133699
0106329003	MW-7C	EPA 351.2	133689	EPA 351.2	133699
0106329004	MW-8B	EPA 351.2	133689	EPA 351.2	133699
0106329005	MW-10B	EPA 351.2	133689	EPA 351.2	133699
0106329007	MW-12B	EPA 351.2	133689	EPA 351.2	133699
0106329008	MW-13	EPA 351.2	133689	EPA 351.2	133699
0106329009	MW-14	EPA 351.2	133689	EPA 351.2	133699
0106329010	SEEP	EPA 351.2	133689	EPA 351.2	133699
0106329011	STREAM	EPA 351.2	133689	EPA 351.2	133699
0106329012	DUP	EPA 351.2	133689	EPA 351.2	133699
0106329001	MW-6D	EPA 353.2	131972		
0106329003	MW-7C	EPA 353.2	131972		
0106329004	MW-8B	EPA 353.2	131972		
0106329005	MW-10B	EPA 353.2	131972		
0106329007	MW-12B	EPA 353.2	131972		
0106329008	MW-13	EPA 353.2	131972		
0106329009	MW-14	EPA 353.2	131973		
0106329010	SEEP	EPA 353.2	131973		
0106329011	STREAM	EPA 353.2	131973		
0106329012	DUP	EPA 353.2	131973		
0106329001	MW-6D	EPA 353.2	131960		
0106329003	MW-7C	EPA 353.2	131960		
0106329004	MW-8B	EPA 353.2	131961		
0106329005	MW-10B	EPA 353.2	131961		
106329007	MW-12B	EPA 353.2	131961		
0106329008	MW-13	EPA 353.2	131961		
106329009	MW-14	EPA 353.2	131961		
0106329010	SEEP	EPA 353.2	131961		
0106329011	STREAM	EPA 353.2	131961		
0106329012	DUP	EPA 353.2	131961		
0106329001	MW-6D	EPA 420.1	133477	EPA 420.1	133547
0106329003	MW-7C	EPA 420.1	133477	EPA 420.1	133547
0106329004	MW-8B	EPA 420.1	133478	EPA 420.1	133548
0106329005	MW-10B	EPA 420.1	133477	EPA 420.1	133547
0106329007	MW-12B	EPA 420.1	133477	EPA 420.1	133547
0106329008	MW-13	EPA 420.1	133477	EPA 420.1	133547
106329009	MW-14	EPA 420.1	133477	EPA 420.1	133547
0106329010	SEEP	EPA 420.1	133477	EPA 420.1	133547
106329011	STREAM	EPA 420.1	133477	EPA 420.1	133547
0106329012	DUP	EPA 420.1	133477	EPA 420.1	133547
0106329001	MW-6D	SM22 4500 NH3 H	133141		
0106329003	MW-7C	SM22 4500 NH3 H	133141		
0106329004	MW-8B	SM22 4500 NH3 H	133141		
0106329005	MW-10B	SM22 4500 NH3 H	133141		
0106329007	MW-12B	SM22 4500 NH3 H	133141		

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project: Ischua Landfill Pace Project No.: 70106329

Date: 01/08/2020 06:22 PM

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytica Batch
70106329008	MW-13	SM22 4500 NH3 H	133141		
70106329009	MW-14	SM22 4500 NH3 H	133197		
70106329010	SEEP	SM22 4500 NH3 H	133197		
70106329011	STREAM	SM22 4500 NH3 H	133197		
70106329012	DUP	SM22 4500 NH3 H	133197		
70106329001	MW-6D	SM22 5310B	132444		
70106329003	MW-7C	SM22 5310B	132444		
70106329004	MW-8B	SM22 5310B	132448		
70106329005	MW-10B	SM22 5310B	132448		
70106329006	MW-11B	SM22 5310B	132448		
70106329007	MW-12B	SM22 5310B	132448		
70106329008	MW-13	SM22 5310B	132448		
70106329009	MW-14	SM22 5310B	132448		
70106329010	SEEP	SM22 5310B	132448		
70106329011	STREAM	SM22 5310B	132448		
70106329012	DUP	SM22 5310B	132448		

Pace Analytical

Sample Condition Up

WO#:70106329

Client Name: PM: JSA Due Date: 10/10/19 CLIENT: LBA-B Courier: Fed Ex UPS USPS Client Commercial Pace Other Seals intact: Yes No Custody Seal on Cooler/Box Present: Temperature Blank Present: Yes No Packing Material Bubble Wrap Bubble Bags Ziploc None Dther Type of Ice://Wet Blue None Correction Factor: + 0, Thermometer Used: TH091 Samples on ice, cooling process has begun Cooler Temperature (°C): 26,30 Date/Time 5035A kits placed in freezer Temp should be above freezing to 6.0°C Date and Initials of person examining contents: USDA Regulated Soil (N/A, water sample) Did samples orignate from a foreign source (internationally, Did samples originate in a quarantine zone within the United States: AL, AR, CA, FL, GA, ID, LA, MS, NC, including Hawaii and Puerto Rico)? Tyes No YES NO NM, NY, OK, OR, SC, TN, TX, or VA (check map)? If Yes to either question, fill out a Regulated Soil Checklist (F-LI-C-010) and include with SCUR/COC paperwork. COMMENTS: □No Chain of Custody Present: Yes **Yes** □No Chain of Custody Filled Out: Yes □No Chain of Custody Relinquished: Sampler Name & Signature on COC: Yes □No □N/A Yes □No Samples Arrived within Hold Time ZYes □No Short Hold Time Analysis (<72hr): No □Yes Rush Turn Around Time Requested: Sufficient Volume: (Triple volume provided for MS/MSD) Tres □No 9 Correct Containers Used: Yes □No Yes DNo -Pace Containers Used: □No **Y**es Containers Intact □No **DN/A** Note if sediment is visible in the dissolved container. □Yes Filtered volume received for Dissolved tests / No Sample Labels match COC: MYés WT DIL -Includes date/time/ID/Analysis All containers needing preservation have been checked ☐ HNO₃ □No □N/A 13 ☐ H₂SO₄ □ NaOH ☐ HCI pH paper Lot # $\mathcal{M}($ Sample # All containers needing preservation are found to be in compliance with EPA recommendation? DY es □N/A (HNO₃, H₂SO₄, HCI, NaOH>9 Sulfide, ПNо NAOH>12 Cyanide) Exceptions: VOA, Coliform, TOC/DOC, Oil and Grease, Initial when completed: Lot # of added preservative: Date/Time preservative added DRO/8015 (water). Per Method, VOA pH is checked after analysis □N/A 14. □No □Yes Samples checked for dechlorination: KI starch test strips Lot # Positive for Res. Chlorine? Y N Residual chlorine strips Lot # DNo □N/A 15. □Yes Headspace in VΩA Vials (>6mm); 16. Yes Trip Blank Present: □No □N/A □N/A □No Trip Blank Custody Seals Present □Yes Pace Trip Blank Lot # (if applicable) Field Data Required? Client Notification/ Resolution: Date/Time Person Contacted Comments/ Resolution

APPENDIX D

Historical Analytical Results Tables

PARAMETER VOLATILES (ug/L)	9/90	12/90	3/91	6/91	9/91	12/91	3/92	6/92	9/92	12/92	3/93	6/93	9/93	12/93	3/94	6/94	9/94	12/94	3/95 6	5/95	9/95	12/95	4/96	9/96	3/97	9/97	3/98 9	98 3	/99 9	/99	3/00	9/00	3/01	9/01	3/02	9/02	3/03	9/03
Acetone				Г								_		1						$\overline{}$				- 1				$\overline{}$	$\overline{}$	$\overline{}$				1		-	$\neg \neg$	_
Acrylonitrile																														— t								
Benzene	ND	ND	ND																																ND		ND	
Bromobenzene	ND		ND																																ND		ND	
Bromochloromethane	ND ND	ND ND	ND ND																									_		<u>_</u> _					ND		ND	
Bromodichloromethane Bromoform	ND ND		ND ND												-	-		-	-	-	- 1	-		-				+		-+	-					-	-	
Bromomethane															-	-		-				-		-		-	-	-	-	-t					ND	-	ND	
2-Butanone																																						
n-Butylbenzene	ND		ND																																ND		ND	
sec-Butylbenzene		ND	ND																																ND		ND	
tert-Butylbenzene	ND	ND	ND																									_		_					ND		ND	
Carbon disulfide Carbon tetrachloride	ND	ND	ND												-	-		-	-	-	- 1	-		-				+		-+	-				ND	-	ND	
Chlorobenzene	ND	ND	ND																	-										-t					ND		ND	$\overline{}$
Chloroethane	ND	ND	ND																																ND		ND	$\overline{}$
Chloroform	<dl< td=""><td>ND</td><td>ND</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></dl<>	ND	ND																																			
Chloromethane	ND		ND																																ND		ND	
2-Chlorotoluene	ND ND		ND	-	!		!		\vdash					1							}					+				+					ND ND		ND ND	
4-Chlorotoluene Dibromochloromethane	ND ND	ND ND	ND ND																-+	-+	- +				-+	+		+	-+	+					ND	\rightarrow	ND	
1,2-Dibromo-3-chloropropane		ND																	-	-+	- 1		-	- 1	- +	+	-	\dashv	-	\dashv	-+					-	-	-
1,2-Dibromoethane	ND																			t								_		\dashv								$\overline{}$
Dibromomethane	ND	ND	ND																																ND		ND	
1,2-Dichlorobenzene		ND																																	ND		ND	
1,3-Dichlorobenzene	ND		ND																																ND		ND	
1,4-Dichlorobenzene trans-1,4-Dichloro-2-butene	ND	ND	ND															-							-	-		_		-+					ND	\rightarrow	ND	
Dichlorodifluoromethane	ND	ND	ND																	-						-		_		-+					ND		ND	
1,1-Dichloroethane	ND	ND													-	-		-				-		-		-	-	-	-	-t					ND		ND	
1,2-Dichloroethane	ND	ND																																	ND		ND	
1,1-Dichloroethene	ND	ND	ND																																ND		ND	
cis-1,2-Dichloroethene																																			ND		ND	
trans-1,2-Dichloroethene 1,2-Dichloropropane	ND ND		ND ND															-							-	-		_		-+					ND ND		ND ND	
1,3-Dichloropropane															-	-		-	-	-	- 1	-		-				+		-+	-				ND		ND ND	
2,2-Dichloropropane																				-										-t					ND		ND	-
1,1-Dichloropropene	ND		ND																																ND		ND	
cis-1-3-Dichloropropene			ND																																ND		ND	
trans-1,3-Dichloropropene	ND		ND																																ND		ND	
Ethylbenzene 2-Hexanone	ND	ND	ND															-							-	-		_		-+					ND	\rightarrow	ND	
Hexachlorobutadiene	ND	ND	ND																	-						-		_		-+					ND		ND	
lodomethane	110	110															b			-								_		-					110		- 110	_
Isopropylbenzene	ND	ND	ND																																ND		ND	
p-Isopropyltoluene	ND		ND																																ND		ND	
Methylene chloride	ND	ND	ND]					[]										\Box		ND	I	ND	
4-Methyl-2-pentanone Naphthalene	ND	ND	ND											-												\rightarrow			-+	-+					ND	\rightarrow	ND	-
n-Propylbenzene	ND ND	ND	ND			_								1						-+	1				+	-+			-	-+					ND		ND	-
Styrene	ND	ND	ND																		- 1		- 1							_					ND		ND	-
1,1,1,2-Tetrachloroethane	ND	ND	ND																																ND		ND	
1,1,2,2-Tetrachloroethane	ND	ND	ND																																ND		ND	
Tetrachloroethene	ND	ND	ND																																ND		ND	
Toluene	ND		ND																-							\rightarrow			-+	+					ND ND		ND ND	-
1,2,3-Trichlorobenzene 1,2,4-Trichlorobenzene	ND ND	ND ND	ND ND	 		_			\vdash					1	+			-+	-+	-+	1		+		+	-+		-	\dashv	\dashv	-+		\vdash		ND ND		ND ND	-
1,1,1-Trichloroethane	ND	ND	ND													- +			-	-+	- 1	- +	-	- 1	- +	+	-	\dashv	-	\dashv	-+				ND		ND	-
1,1,2-Trichloroethane	ND	ND	ND																															1	ND		ND	
Trichloroethene	ND	ND	ND																																ND		ND	
Trichlorofluoromethane	ND	ND	ND																	\Box						\Box		$\perp \Gamma$							ND		ND	
1,2,3-Trichloropropane	ND	ND	ND	-										—												$-\bot$									ND		ND	
1,2,4-Trimethylbenzene 1,3,5-Trimethylbenzene	ND	ND	ND																-							\rightarrow			-+	+					ND ND		ND ND	-
Vinyl acetate	+					_								1						-+	1				+	-+			-	-+					ND	\rightarrow	UND	-
Vinyl chloride	ND	ND	ND																	-						\rightarrow			-	-					ND	\rightarrow	ND	-
o-Xylene	ND		ND																																ND		ND	
p-Xylene & m-Xylene																																			ND		ND	

	9/90	12/90	3/01	6/91	0/01	12/01	3/02	6/92	9/92	12/02	3/02	6/92	0/02	12/93	/04 6	/94 9/0	1 12/04	3/05	6/95	9/95	12/95	4/96	9/96	/97	9/97 3	/08	9/98	3/99	9/90	3/00	9/00	3/01	9/01	3/02	9/02	3 /03
PARAMETER METALS (mg/L)	9/90	12/90	3/91	6/91	9/91	12/91	3/92	0/92	9/92	12/92	3/93	0/93	9/93	12/95	794 0	/94 9/9	1 12/94	3/93	0/93	9/93	12/95	4/96	9/90	1/9/	9/9/ 3	/98	9/96 3	3/99	9/99	3/00	9/00	3/01	9/01	3/02	9/02	3/03
Aluminum	1	1			1	1		_									1	-	П	1						_	-	- 1	1							_
Calcium	1 1					<u> </u>		1	1																											
Iron	1 1					<u> </u>		1	1																											
	1 1					<u> </u>		1	1																											
Magnesium	+ +								1					_	_	_	_		-		_	_		_												
Manganese	+ +								1					_	_	_	_		-		_	_		_												
Potassium	1 1					<u> </u>		1	1																											
Sodium								<u> </u>	1																											
PARAMETER (mg/l) TOXIC METAL	•								_			_	_			_	_	_						_		_						_	_	_	_	_
Antimony	+							1	-								_				_															
Arsenic	1 1							1																												
Barium	1 1							1																												
Beryllium																																				
Cadmium																																				
Chromium (Total)	1															_																				
Copper																																				
Lead																																				
Mercury																																				
Nickel																																				
Selenium																																				
Silver																																				
Thallium																																				
Zinc																																				
AMETER (mg/l) LEACHATE INDICATORS																																				
Alkalinity																																				
Biochemical Oxygen Demand																																				
Boron																																				
Chemical Oxygen Demand																																				
Chromium (Hexavalent)																																				
Chloride																																				
Color (PCU units)																																				
Nitrate-Nitrite																																				
Nitrogen-Ammonia																																				
Phenols																																				
Sulfate																																				
Total Organic Carbon (TOC)																																		5.2		N
Total Dissolved Solids (TDS)																																				
Total Hardness																																				
Total Kjeldahl Nitrogen (TKN)																																				
Turbidity (NTU units)																																				

																																		NYS
PARAMETER VOLATILES (ug/L)	3/04	9/04	3/05	9/05	3/06	11/06	4/07	10/07	4/08	10/08	6/09	9/09	4/10	9/10	5/11	10/11	5/12	10/12	6/13	10/13	6/14	10/14	6/15	11/15	5/16	10/16	3/17	10/17	5/18	9/18	4/19	9/19	MEAN	STD
Acetone				ND	ND	ND	ND	_	2.4						ND	Т.			-	. 1	-				. 1								0.12	50.0
Acrylonitrile				ND	ND	ND	ND		ND						ND				-	-	-	-	-	-	-	-	-	-	-	-	-	-	0.12	5.0
Benzene	ND			ND	ND	ND	ND		ND						ND				-	-		-	-	-	-	-	-	-	-	-	-	-	0	1.0
Bromobenzene	ND			ND	ND	ND	ND		ND						ND				-	-	-	-		-	-	-	-	-	-	-	-	-	0	5.0
Bromochloromethane	ND			ND	ND	ND	ND		ND						ND						-	-		-								-	0	5.0
Bromodichloromethane	ND			ND	ND	ND	ND		ND						ND				-		-	-				-					-	-	0	50.0
Bromoform	ND			ND	ND	ND	ND		ND						ND				-	-	-	-	-	-	-	-	-	-	-	-	-	-	0	50.0
Bromomethane	ND			ND	ND	ND	ND		ND						ND				-	-	-	-	-	-	-	-	-	-	-	-	-	-	0	5.0
2-Butanone				ND	ND	ND	ND	-	ND	-					ND	-				-	-	-	-	-	-	-	-	-	-	-	-	-	0	50.0
n-Butylbenzene sec-Butylbenzene	ND ND			ND ND	ND ND	ND ND	ND ND	-	ND ND						ND ND	-				-	-	-	-	-		-	-	-	-	-	<u> </u>	-	0	5.0
tert-Butylbenzene	ND ND			ND	ND	ND	ND	1	ND ND						ND								-	-		-	-		-	-	-	-	0	5.0
Carbon disulfide	IND			ND	ND	ND	ND	-	ND						ND				÷		÷		-	-			-		-	-			0	60.0
Carbon tetrachloride	ND			ND	ND		ND		ND						ND							-	-	-	-	-	-	-	-	-	-	-	0	5.0
Chlorobenzene	ND			ND	ND	ND	ND		ND						ND				-	-	-	-	-	-	-	-	-	-		-		-	0	5.0
Chloroethane	ND			ND		ND	ND		ND						ND				-	-	-	-	-	-	-	-	-	-		-	-	-	0	5.0
Chloroform	ND			ND	ND	ND	ND		ND						ND				-		-	-		-			-	-			-	-	0	7.0
Chloromethane	ND			ND	ND		ND		ND						ND				-	-	-	-	-	-	-	-	-	-	-	-	-	-	0	5.0
2-Chlorotoluene	ND			ND					ND						ND				-		-	-	-	-	-	-	-		-		-	-	0	5.0
4-Chlorotoluene	ND			ND					ND						ND				-	-	-	-	-	-	-	-	-	-	-	-	-		0	5.0
Dibromochloromethane	ND			ND			ND		ND						ND	1			-	-	-	-	-	-	-	-	-	-	-	-	-	-	0	50.0
1,2-Dibromo-3-chloropropane	ND		-	ND			ND		ND	\vdash				 	ND	+			-	-	-	-	-	-	-	-	-	-	-	-	-	-	0	0.04
1,2-Dibromoethane	ND			ND			ND	-	ND ND						ND ND	-				-	-	-	-	-	-		-	-	-	-	-	-	0	5.0
Dibromomethane 1,2-Dichlorobenzene	ND ND			ND ND	ND ND	ND ND	ND ND	-	ND ND	-					ND							-	-	-			-	-		-	<u> </u>	<u> </u>	0	5.0 3.0
1,3-Dichlorobenzene	ND ND			ND	ND	ND	ND	1	ND ND						ND								-	-		-	-		-	-	-	-	0	3.0
1,4-Dichlorobenzene	ND			ND	ND	ND	ND	-	ND						ND				÷		÷		-	-			-		-	-			0	3.0
trans-1.4-Dichloro-2-butene				ND	ND	ND	ND		ND						ND							-	-	-	-	-	-	-	-	-	-	-	0	5.0
Dichlorodifluoromethane	ND			ND	ND	ND	ND		ND						ND				-	-	-	-	-	-	-	-	-	-	-	-	-	-	0	5.0
1,1-Dichloroethane	ND			ND	ND	ND	ND		ND						ND						-		-	-		-	-			-		-	0	5.0
1,2-Dichloroethane	ND			ND	ND	ND	ND		ND						ND				-	-	-	-		-	-	-		-		-	-	-	0	0.6
1,1-Dichloroethene	ND			ND	ND	ND	ND		ND						ND				-	-	-	-	-	-	-	-	-				-	-	0	5.0
cis-1,2-Dichloroethene	ND			ND			ND		ND						ND					-		-	-	-	-	-	-	-	-	-	-	-	0	5.0
trans-1,2-Dichloroethene	ND			ND			ND		ND						ND				-	-	-	-	-	-	-	-	-	-	-	-	-	-	0	5.0
1,2-Dichloropropane	ND			ND	ND	ND	ND	<u> </u>	ND						ND				-	-	-	-	-	-	-	-	-	-		-		-	0	1.0
1,3-Dichloropropane	ND ND			ND ND	ND ND		ND ND	-	ND ND	-					ND ND	-				-	-	-	-	-	-	-	-	-	-	-	-	-	0	5.0 5.0
2,2-Dichloropropane 1,1-Dichloropropene	ND ND			ND	ND		ND	+	ND	-					ND	+			÷	-	÷		-	-	-	÷	-	-	-	<u> </u>	-	-	0	5.0
cis-1-3-Dichloropropene	ND			ND			ND	-	ND						ND					-	-		-	-		-	-	-	-	-			0	0.4 *
trans-1,3-Dichloropropene	ND			ND	ND		ND		ND						ND							-	-	-	-	-		-	-	-	-	-	0	0.4 *
Ethylbenzene	ND			ND	ND	ND	ND		ND						ND				-	-	-	-	-	-	-	-	-	-	-	-	-	-	0	5.0
2-Hexanone				ND	ND	ND	ND		ND						ND				-	-	-	-		-		-	-	-	-	-		-	0	50.0
Hexachlorobutadiene	ND			ND	ND	ND	ND		ND						ND				-	-	-	-		-	-	-	-	-	-	-	-	-	0	0.5
Iodomethane				ND			ND		ND						ND				-		-			-		-						-	0	5.0
Isopropylbenzene	ND			ND	ND		ND		ND						ND				-	-		-			-			-	-		-	-	0	5.0
p-Isopropyltoluene	ND			ND			ND		ND						ND				-	-		-	-	-	-	-	-	-	-	-	-	-	0	5.0
Methylene chloride	ND		-	ND			ND		ND						ND	-	<u> </u>			-	-	<u> </u>	-	-	-		-				-	<u> </u>	0	5.0
4-Methyl-2-pentanone Naphthalene	ND	-	-	ND ND			ND ND		ND ND	$\vdash \vdash$				1	ND ND	+				-	-	-	-	-	-	-	-	-	-	-	-	-	0	10.0 **
n-Propylbenzene	ND ND		-	ND ND			ND ND		ND ND	\vdash				1	ND ND	+					-		-	-			-	-	-	H :			0	5.0
Styrene	ND ND			ND			ND		ND ND						ND	+				-				-			-		-	-	-		0	5.0
1,1,1,2-Tetrachloroethane	ND		1	ND			ND		ND	 				1	ND	1			-	-	-	-	-	-	-	-	-	-	-	-	-	-	0	5.0
1,1,2,2-Tetrachloroethane	ND			ND			ND		ND						ND				-	-	-	-	-	-	-	-	-	-	-	-	-	-	0	5.0
Tetrachloroethene	ND			ND			ND		ND						ND				-	-	-	-	-	-	-	-	-	-	-	-	-	-	0	5.0
Toluene	ND			ND			ND		ND						ND					-		-			-	-		-	-	-		-	0	5.0
1,2,3-Trichlorobenzene	ND			ND	ND		ND		ND						ND				-	-	-	-	-	-	-	-	-	-	-	-	-	-	0	5.0
1,2,4-Trichlorobenzene	ND			ND	ND		ND		ND						ND				-		-	-	-		-	-	-		-	-	-	-	0	5.0
1,1,1-Trichloroethane	ND			ND	ND	ND	ND		ND						ND					-		-	-	-	- 1	-	-	-	-	-	-	-	0	5.0
1,1,2-Trichloroethane	ND			ND	ND	ND	ND	1	ND						ND	1			-	-	-	-	-	-	-	-	-	-	-	-	-	-	0	1.0
Trichloroethene	ND			ND	ND	ND	ND	1	ND						ND	1			-	-	-	-	-	-	-	-	-	-	-	-	-	-	0	5.0
Trichlorofluoromethane	ND ND		-	ND	ND	ND	ND	+	ND						ND	-	<u> </u>			-	-	<u> </u>	-	-	-						<u> </u>	<u> </u>	0	5.0
1,2,3-Trichloropropane 1,2,4-Trimethylbenzene	ND ND		-	ND ND	ND ND	ND ND	ND ND	+	ND ND	\vdash				 	ND ND	+			-	-	-	-		-	-	•	-	-	-	-	 -	<u> </u>	0	0.04 5.0
	ND ND		-	ND	ND	ND ND	ND ND		ND ND	\vdash				 	ND ND	+	\vdash			H		-	-	-			-	-	-	-	⊢÷-	⊢÷-	0	5.0
1,3,5-Trimethylbenzene Vinyl acetate	ND		-	ND	ND	ND ND	ND	+	ND ND	-+				 	ND ND	+				-		-	-	-			-	-	-		-		0	3.0
Vinyl acetate Vinyl chloride	ND		-	ND	ND	ND	ND	+	ND	-+				 	ND	+					-	-	-	-			-	-		-	-		0	2.0
o-Xylene	ND		1	ND		ND	ND	1	ND	 				1	ND	1			-	-	-	-	-	-	-	-	-	-	-	-	-	-	0	5.0
p-Xylene & m-Xylene	ND			ND			ND	1	ND						ND				-	-	-	-	-	-	-	-	-	-	-	-	١.	-	0	5.0

	2 (04	0/04	2 (05	0 (05	2 (05	11/05	4 (07	10/07	4 (00	10 (00	C (00	0./00	4/30	0/10	- /	10/11	- /12	10/12	6/12	10/12		10/14	6/15		5/16	10/16	2/17	10/17	F /20	1 0/10	1 4/10	0/10	MEAN	NY:
	3/04	9/04	3/05	9/05	3/06	11/06	4/07	10/07	4/08	10/08	6/09	9/09	4/10	9/10	5/11	10/11	5/12	10/12	6/13	10/13	6/14	10/14	6/15	11/15	5/16	10/16	3/17	10/17	5/18	9/18	4/19	9/19	MEAN	STE
PARAMETER METALS (mg/L)				_		т .	_										_					-												_
Aluminum					<u> </u>		78.6								0					-	-	-	-	-	-		-			-	-	-	0 4.9125	
Calcium				 	 										0	-	<u> </u>			-	-	-	-	-	-		-	-	-	-	-	-		
Iron				 	 		11								0	-	<u> </u>		-	-	-	-	-	-			-	-		-	-	-	0.6875	
Magnesium				1	1		23.3								0	1				-	-	-	-	-	-	-				-	-	-	1.4563	
Manganese				1	1		0.36								0	1				-	-	-	-	-	-	-		-		-	-	-	0.0225	
Potassium				1	1		4.6								0	1				-	-	-	-	-		-	-	-		-	-	-	0.2875	
Sodium				<u> </u>	<u> </u>		4.9								0	<u> </u>	<u> </u>			-	-		-	-			-	-	-	-	-	-	0.3063	20.
PARAMETER (mg/l) TOXIC METALS	i																																	_
Antimony															0				-	-	-	-	-	-	-	-	-	-	-	-	-	-	0	0.00
Arsenic															0					-	-		-	-	-	-	-			-	-	-	0	0.0
Barium															0					-	-		-	-	-		-			-	-	-	0	1.0
Beryllium				<u> </u>	<u> </u>										0	1				-	-	-	-	-	-	-	-	-	-	-	-	-	0	
Cadmium							ND								0					-	-	-	-	-		-	-			-	-	-	0	0.0
Chromium (Total)															0					-	-		-	-	-		-			-	-	-	0	0.0
Copper															0					-	-	-	-	-	-	-	-			-	-	-	0	0.
Lead							0.015								0				٠				-			-		٠	٠				0.0009	0.0
Mercury															0				٠				-					٠	٠				0	0.0
Nickel															0																-		0	0.
Selenium															0						-		-			-	-				-		0	0.
Silver															0						-		-			-	-				-		0	0.0
Thallium															0						-		-			-	-				-		0	0.00
Zinc															0						-		-			-	-				-		0	2.
AMETER (mg/l) LEACHATE INDICATORS																																		
Alkalinity															0						-		-			-	-				-		0	T
Biochemical Oxygen Demand															0								-			-					-		0	1
Boron															0						-		-			-	-				-		0	1.
Chemical Oxygen Demand															0						-		-			-					-		0	1
Chromium (Hexavalent)															0								-			-					-		0	0.0
Chloride															0						-		-			-	-				-		0	25
Color (PCU units)															0						-		-			-					-		0	1.
Nitrate-Nitrite															0								-			-					-		0	10
Nitrogen-Ammonia															0								-			-					-		0	2
Phenols															0					-	-		-			-				-	-	-	0	0.0
Sulfate															0				-	-	-	-	-	-	-	-	-	-	-	-	-	-	0	25
Total Organic Carbon (TOC)				ND	ND	2.3	1.5		1.4						0				-	-	-	-	-	-	-	-	-	-	-	-	-	-	0.4727	
Total Dissolved Solids (TDS)	1			1	1										0					-	-	-	-	-		-	-		-	-	-	-	0	50
Total Hardness					1	1									0				-	-	-	-	-	-		-	-	-	-	-	-	-	0	1
Total Kjeldahl Nitrogen (TKN)				1	1		†								0		†		-	-	-		-	-		-	-	-		-	-	-	0	1
Turbidity (NTU units)				1	1		†								0		†		-	-	-	· -	-	-	-	-	-	-	-	0	0	0	0	5.
Cyanide	1			+	+	1	+			-					0	+	1	1	-			<u> </u>		-		-	-	-	-	-	-	-	0	0.

(Shade) = Analyte reported at or above New York State standards (amended March and June 1998). These standards were used beginning with the 9/98 sampling event. Exceedances noted prior to this event reflect prior standards.

* applies to the sum of cis and trans-1,3-dichloropropene.

--- = unuance value.

ND values are included in calculation of Mean and are considered equal to zero.

(Blank) or "-" = Not Analyzed.

ND = Not Detected. J
<DL = Detected below method detection limit. 8

J = Estimated. B = Analyte was detected in method blank.

^{** =} Guidance Value.

Part																																
Actions		9/90	12/90	3/91	6/91	9/91 12/9	3/92	6/92 9/9	12/92	3/93	6/93	9/93	12/93	3/94	6/94 9/9	4 12/94 3/95	6/95	9/95	12/95	4/96	9/96 3/	97 9/	3/98	9/98 3	/99 9	/99 3/	00 9/00	0 3/01	9/01	3/02	9/02	3/03 9/03
Company Comp	PARAMETER VOLATILES (ug/L)																															
According																																
Empelement 10, 100 30 30 40 40 40 40 40																						_				_						
Brone-Horsenter 10 10 10 10 10 10 10 1																																ND ND
Empirical Information 10															 		+		-						_			-	_			ND ND
Rempform No. 100											-			ND		ND	+	_	-	ND		U				IN	U	_	-	ND	-	ND ND
Renovembrance 10						+					1				 	+	+		 	-			+ +	_			_	+	_	-		ND ND
Company Comp						+ + -								ND		ND	+			ND		D	+	_		N	D	+		ND		ND ND
Residence 10 10 10 10 10 10 10 1		IND	IND	IND	ND	+ +	IND	IND	+	IND	1			ND	 	IND	+			ND	- ''		+ +		-	- ''		+		ND	-	ND ND
Calcale Calc		ND	ND	ND	ND		ND	ND		ND				ND		ND				ND	N	D				N	D			ND		ND ND
Cerbon structured																																ND ND
Criticoterists 10 10 10 10 10 10 10 1	tert-Butylbenzene	ND	ND	ND	ND		ND	ND		ND				ND		ND				ND	N	D				N	D			ND		ND ND
Chargoscape S0 S0 D0 D0 N0 N0 N0 N0 N0 N																																
Checombar 100																																ND ND
Chescriture 0.56 No. N																																ND ND
Characterister Mo No No No No No No No														ND		ND				ND	N	D				N	D			ND		ND ND
2 Characterises														N/D	 		+		-	N/P		_			_			-	_	NE		ND.
A Chienotelesee 10 10 10 10 10 10 10						-					 				\vdash		+	-	1 1				+ +					+	\vdash			ND ND
Disconcelluse						+ +					!				 		1-		1 1				+ +					1	-			ND ND
12-Distrome-Echlorerectorate						+ +					!			ND	 	IND	1-		1 1	ND	- 15	_	+ +			110	_	1	-	ND		ND ND
1-10-bit connectation						1 				IND	1				 		1 -		1 1		_		+ +	-+	- 1		+	1	\vdash	- 1		ND ND
Disconnentative NO NO NO NO NO NO NO N						1 1				1	t —					1 1	1		1 1			-1-										ND.
1,4 Octoberoberezee						1 1				ND				ND		ND				ND		D				N	D			ND		ND ND
Table All Control All Co	1,2-Dichlorobenzene	ND	ND	ND	ND	1 1	ND	ND		ND				ND		ND				ND	N	D				N	D			ND		ND ND
Trans-1-2-Octobergo-patente	1,3-Dichlorobenzene	ND	ND	ND	ND	1 1	ND	ND		ND				ND		ND				ND	N	D				N	D			ND		ND ND
Diction/ordinary-methalare NO NO NO NO NO NO NO N	1,4-Dichlorobenzene	ND	ND	ND	ND		ND	ND		ND				ND		ND				ND	N	D				N	D			ND		ND ND
1,1-0/c10/cethane																																
1,2 Olichiogethane																																ND ND
1.1 Circlanoretheme																																ND ND
Cist 3_20 (shilorosethene ND NO ND																																ND ND
Taris-1,2 Oktologorobane																																ND ND
1.2 Octohorpropane																																ND ND
1.3-Dickhoropropane																	-		-										-			ND ND
22-Eichlorgroppane															 		+		-						_			-	_			ND ND
1,1-0ichloropropene						+ +									 		+	-	 				+					+	-			ND ND
Cis-1-3-Dichloropropene ND ND ND ND ND ND ND N						+ +					1				 		+		 				+ +						-		-	ND ND
Trans-1_3-0chloropropene						 											1															ND ND
Ethylenene						 											1															ND ND
Hexachloroblardiene	Ethylbenzene	ND	ND	ND	ND	1 1	ND	ND		ND				ND		ND				ND	N	D				N	D			ND		ND ND
International Contention International Conte	2-Hexanone																															
Stoppropytholisten	Hexachlorobutadiene	ND	ND	ND	ND		ND	ND		ND				ND		ND				ND	N	D				N	D			ND		ND ND
PisopropyRollene	lodomethane																															
Methylene chloride																																ND ND
A-Methyl-2-pentanone																																ND ND
Naphthalene		<dl< td=""><td><dl< td=""><td><dl< td=""><td>1.0</td><td></td><td>2.0</td><td>ND</td><td>_</td><td>ND</td><td>ļ</td><td></td><td></td><td>ND</td><td>$oxed{oxed}$</td><td>ND</td><td>1</td><td></td><td></td><td>ND</td><td>N</td><td>D</td><td></td><td></td><td></td><td>N</td><td>D</td><td></td><td></td><td>ND</td><td></td><td>ND ND</td></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""><td>1.0</td><td></td><td>2.0</td><td>ND</td><td>_</td><td>ND</td><td>ļ</td><td></td><td></td><td>ND</td><td>$oxed{oxed}$</td><td>ND</td><td>1</td><td></td><td></td><td>ND</td><td>N</td><td>D</td><td></td><td></td><td></td><td>N</td><td>D</td><td></td><td></td><td>ND</td><td></td><td>ND ND</td></dl<></td></dl<>	<dl< td=""><td>1.0</td><td></td><td>2.0</td><td>ND</td><td>_</td><td>ND</td><td>ļ</td><td></td><td></td><td>ND</td><td>$oxed{oxed}$</td><td>ND</td><td>1</td><td></td><td></td><td>ND</td><td>N</td><td>D</td><td></td><td></td><td></td><td>N</td><td>D</td><td></td><td></td><td>ND</td><td></td><td>ND ND</td></dl<>	1.0		2.0	ND	_	ND	ļ			ND	$oxed{oxed}$	ND	1			ND	N	D				N	D			ND		ND ND
Propylenzene				L	115	\bot	110				<u> </u>				$oxed{oxed}$		1		1	N/P		_						1		.up		ND C
Styrene											<u> </u>				$\vdash \vdash$		1		1									4	\vdash			ND ND
1,1,1,2-Tetrachioroethane						+ + -					 						-	-	-				+ -					+	-			ND ND
1,1,2,2-fetrachloroethane						+-+					 	-			\vdash		+	1	 				+					1 -	\vdash			ND ND
Tetrachloroethene						+-+					 	-			\vdash		+	1	 				+					1 -	\vdash			ND ND
Toluene						+ + -					 				\vdash		+-	—	1				+					+	+			ND ND
1,2,3-Trichlorobenzene						+ + -					 				\vdash		+-	—	1				+					+	+			ND ND
1,2,4-frichloroebenzene						1 1					1						1 -						+ 1									ND ND
1,1,1-Trichloroethane						1 1					1						1		1 1													ND ND
1,1,2-Trichloroethane																																ND ND
Trichloroflucromethane	1,1,2-Trichloroethane			ND	ND		ND	ND		ND						ND				ND	N	D				N	D					ND ND
1,2,3-Trichloropropane																																ND ND
1,2,4-Trimethylbenzene																																ND ND
1,3,5-Trimethylbenzene ND ND<																																ND ND
Vinyl acetate																	1]	ND ND
		ND	ND	ND	ND		ND	ND		ND	<u> </u>			ND	$oxed{oxed}$	ND	1		1	ND	N	D				N	D			ND		ND ND
				L	1		110				<u> </u>				\vdash		1		1	N/P		_					_	4	\vdash	N/D		
						+	ND	ND			1	-			\vdash		1	1	1				+					1	\vdash			ND ND
		ND	ND			+-+-	+	ND			 				\vdash		+	-	1 1				+ +					+	\vdash			ND ND
ין בארן ביי בארייניים איי איי ביי איי איי איי איי איי איי איי	р-хујепе & m-хујепе			ND	ND			ND		NU	ь		L	ND		ND	٠	<u> </u>		NU	N	U				I N	U			ND		מא טא

	0.100		2 (01	6 (0.	0 (0.1		2 (02	6 (00	0./00		2 (02	6 (02	0 (0.2		2 (0.4			2/94 3/95	6 (0.5	0.405		4 /05	0.105	2 (0.7	0 (0.7	200	0 (00	2 (00	0 /00	2 (00	/00		2 (02	0 (00	2 (02
PARAMETER METALS (mg/L)	9/90	12/90	3/91	6/91	9/91	12/91	3/92	6/92	9/92	12/92	3/93	6/93	9/93	12/93	3/94	6/94	9/94 1	2/94 3/95	6/95	9/95	12/95	4/96	9/96	3/9/	9/9/	3/98	9/98	3/99	9/99	3/00	/00 3/	/01 9/01	3/02	9/02	3/03
Aluminum	5.7 86.5	88.5	65.7	100	+	_	66.40	70.20	34.30	75.40	78.80	72.6	-		120	69.4	-	72.10	-	+	80.7	01.6	-	94 7	_				_	00.1		$-\!\!\!\!-\!\!\!\!\!-$	90.9	-	1
Calcium					_	_	66.40						_	119	128		_	73.10		+		91.6			-				_	88.1		$-\!\!\!\!-\!\!\!\!\!-$		_	
Iron	21	13.1		44.8	_		0.70		62.80			17.2	_	187 49.7		0.92 19.4		9.23		4	5.78			49.7						10.3			24.7		3
Magnesium	7.8	19.1		27.5	_	_	17.70		28.60									19.30	_	-		23.6		30.0	-					23.7			25.6	_	2
Manganese		0.32	0.2	0.73	_	_		0.08	1.23	0.23	0.459	0.361	_	3.34		0.03		0.19	_	-		0.359	_	0.976	-					0.235			0.689	-	
Potassium	5.4	4.8		9.7	+	_		8.00	11.30	4.48	8.78	5.22	-	21.8	17.9	3.96	-	4.28	-	+	4.60	5.76	-	10.3	_				_	7.12		$-\!\!\!\!-\!\!\!\!\!-$	6.46	-	6
Sodium	8.7	4.7	7.1	7.5			5.10	6.20	4.87	4.98	16.16	8.23		6.24	8.57	5.62	\bot	4.65			5.13	6.48		6.33	-					5.77			5.24	\bot	(
PARAMETER (mg/l) TOXIC METALS																																			
Antimony	<dl< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>0.028</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></dl<>								0.028																										
Arsenic	ND								0.029																										
Barium	0.12	0.1	ND	0.23	4—		0.06	0.07	0.296	0.100	0.17	0.124	 	0.661	0.565	0.05		0.09	<u> </u>		0.082	0.072	 	0.273						0.092			0.162		(
Beryllium					1				0.003											1															
Cadmium		0	ND				ND		ND	ND		ND			0.008	ND		ND				0.004		ND						ND			ND		
Chromium (Total)	<dl< td=""><td>0.01</td><td><dl< td=""><td>0.04</td><td>1</td><td></td><td>ND</td><td>0.01</td><td>0.062</td><td></td><td>0.054</td><td>0.023</td><td></td><td>0.174</td><td>0.159</td><td>ND</td><td></td><td>0.03</td><td></td><td></td><td>0.016</td><td>0.020</td><td></td><td>0.062</td><td></td><td></td><td></td><td></td><td></td><td>0.038</td><td></td><td></td><td>0.02</td><td></td><td>(</td></dl<></td></dl<>	0.01	<dl< td=""><td>0.04</td><td>1</td><td></td><td>ND</td><td>0.01</td><td>0.062</td><td></td><td>0.054</td><td>0.023</td><td></td><td>0.174</td><td>0.159</td><td>ND</td><td></td><td>0.03</td><td></td><td></td><td>0.016</td><td>0.020</td><td></td><td>0.062</td><td></td><td></td><td></td><td></td><td></td><td>0.038</td><td></td><td></td><td>0.02</td><td></td><td>(</td></dl<>	0.04	1		ND	0.01	0.062		0.054	0.023		0.174	0.159	ND		0.03			0.016	0.020		0.062						0.038			0.02		(
Copper	<dl< td=""><td></td><td></td><td></td><td>1</td><td></td><td></td><td></td><td>ND</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>(</td></dl<>				1				ND																										(
Lead		0.010		0.022	1		ND				0.013				0.140	0.006		0.006			0.006			0.050						0.008			0.035		(
Mercury	ND	<dl< td=""><td>ND</td><td>ND</td><td></td><td></td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td></td><td>ND</td><td>ND</td><td>ND</td><td></td><td>ND</td><td></td><td></td><td>ND</td><td>ND</td><td></td><td>ND</td><td></td><td></td><td></td><td></td><td></td><td>ND</td><td></td><td></td><td>ND</td><td></td><td></td></dl<>	ND	ND			ND	ND	ND	ND	ND	ND		ND	ND	ND		ND			ND	ND		ND						ND			ND		
Nickel	0.25								0.040																										
Selenium	0.028	<dl< td=""><td><dl< td=""><td></td><td></td><td></td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td></td><td>ND</td><td></td><td>ND</td><td>ND</td><td>ND</td><td></td><td>ND</td><td></td><td></td><td>ND</td><td>ND</td><td></td><td>ND</td><td></td><td></td><td></td><td></td><td></td><td>ND</td><td></td><td></td><td>ND</td><td></td><td></td></dl<></td></dl<>	<dl< td=""><td></td><td></td><td></td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td></td><td>ND</td><td></td><td>ND</td><td>ND</td><td>ND</td><td></td><td>ND</td><td></td><td></td><td>ND</td><td>ND</td><td></td><td>ND</td><td></td><td></td><td></td><td></td><td></td><td>ND</td><td></td><td></td><td>ND</td><td></td><td></td></dl<>				ND	ND	ND	ND		ND		ND	ND	ND		ND			ND	ND		ND						ND			ND		
Silver	ND	ND	ND	ND			ND	ND	ND	ND	ND	ND		ND	ND	ND		ND			ND	ND		ND						ND			ND		
Thallium	0.04								ND																										
Zinc	0.04								0.182																										(
AMETER (mg/l) LEACHATE INDICATO																																			
Alkalinity	531	237	243	241			286.0	268.0	278.0	240.0	252	239		239	250	255		246			273	271		266						318			266		- 3
Biochemical Oxygen Demand	20								12.0																										
Boron	ND								ND																										
Chemical Oxygen Demand	190	24	<dl< td=""><td>ND</td><td></td><td></td><td>ND</td><td>31.0</td><td>124.0</td><td>126.0</td><td>84.6</td><td>47.3</td><td></td><td>101</td><td>21.6</td><td>24.1</td><td></td><td>ND</td><td></td><td></td><td>294</td><td>66.2</td><td></td><td>ND</td><td></td><td></td><td></td><td></td><td></td><td>73.9</td><td></td><td></td><td>ND</td><td></td><td></td></dl<>	ND			ND	31.0	124.0	126.0	84.6	47.3		101	21.6	24.1		ND			294	66.2		ND						73.9			ND		
Chromium (Hexavalent)	<dl< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>ND</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></dl<>								ND																										
Chloride	6	12	12	4			7.0	15.0	ND	6.4	7.26	9.72		7.1	6.5	8.43		6.10			5.89	6.02		13.2						6.91			4.28		
Color (PCU units)	15								10.0																										
Nitrate-Nitrite	<dl< td=""><td><dl< td=""><td><dl< td=""><td>0.68</td><td></td><td></td><td>ND</td><td>0.3</td><td>0.14</td><td>ND</td><td>0.277</td><td>0.087</td><td></td><td>0.331</td><td>ND</td><td>ND</td><td></td><td>ND</td><td></td><td></td><td>ND</td><td>ND</td><td></td><td>ND</td><td></td><td></td><td></td><td></td><td></td><td>0.098</td><td></td><td></td><td>ND</td><td></td><td>(</td></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""><td>0.68</td><td></td><td></td><td>ND</td><td>0.3</td><td>0.14</td><td>ND</td><td>0.277</td><td>0.087</td><td></td><td>0.331</td><td>ND</td><td>ND</td><td></td><td>ND</td><td></td><td></td><td>ND</td><td>ND</td><td></td><td>ND</td><td></td><td></td><td></td><td></td><td></td><td>0.098</td><td></td><td></td><td>ND</td><td></td><td>(</td></dl<></td></dl<>	<dl< td=""><td>0.68</td><td></td><td></td><td>ND</td><td>0.3</td><td>0.14</td><td>ND</td><td>0.277</td><td>0.087</td><td></td><td>0.331</td><td>ND</td><td>ND</td><td></td><td>ND</td><td></td><td></td><td>ND</td><td>ND</td><td></td><td>ND</td><td></td><td></td><td></td><td></td><td></td><td>0.098</td><td></td><td></td><td>ND</td><td></td><td>(</td></dl<>	0.68			ND	0.3	0.14	ND	0.277	0.087		0.331	ND	ND		ND			ND	ND		ND						0.098			ND		(
Nitrogen-Ammonia	<dl< td=""><td><dl< td=""><td>1.3</td><td>0.3</td><td></td><td></td><td>ND</td><td>0.2</td><td>0.08</td><td>0.01</td><td>0.176</td><td>0.055</td><td></td><td>0.52</td><td>0.086</td><td>0.01</td><td></td><td>0.072</td><td></td><td></td><td>0.103</td><td>0.110</td><td></td><td>ND</td><td></td><td></td><td></td><td></td><td></td><td>ND</td><td></td><td></td><td>ND</td><td></td><td></td></dl<></td></dl<>	<dl< td=""><td>1.3</td><td>0.3</td><td></td><td></td><td>ND</td><td>0.2</td><td>0.08</td><td>0.01</td><td>0.176</td><td>0.055</td><td></td><td>0.52</td><td>0.086</td><td>0.01</td><td></td><td>0.072</td><td></td><td></td><td>0.103</td><td>0.110</td><td></td><td>ND</td><td></td><td></td><td></td><td></td><td></td><td>ND</td><td></td><td></td><td>ND</td><td></td><td></td></dl<>	1.3	0.3			ND	0.2	0.08	0.01	0.176	0.055		0.52	0.086	0.01		0.072			0.103	0.110		ND						ND			ND		
Phenols	0.003	ND	ND	0.811			ND	ND	ND	ND	0.003	0.007		ND	0.008	ND		0.012			ND	0.002		0.002						0.014			0.0118		
Sulfate	29	39.8	25.4	32			29.0	36.0	17.0	42.0	37	39		37	35	34		30			32	ND		31						40			30.1		
Total Organic Carbon (TOC)	25	24	2.7	- 1			ND	45.0	6.5	16.0	14.8	6.8		8.7	3	4		5.4	1		9.7	6.0		4.4						12.0		\neg	3.9		ND
Total Dissolved Solids (TDS)	324	351	294	366			281.0	336.0	290.0	305.0	318	331		361	282	296		266			283	318		284						336			333		
Total Hardness	248	304	237	368			238.0	255.0	1070	308.0	981	360		840	654	310		262			288	326		360						318			332		
Total Kieldahl Nitrogen (TKN)	7.7			1	1			. , , , ,	ND			1	1	T				1	1	1			1									\neg			
Turbidity (NTU units)		3150	195	910			83.0	400		1600	2000	1600		340	30	110		340			330	85		34						61		\neg	220		
Cvanide	0.004								ND								_		1	_			_		1						-			_	

														1																			NYS
	3/04	9/04	3/05	9/05	3/06	11/06	4/07	7 10/07	4/08 10/08	8 4/09	9/09	4/10	9/10	5/11	10/1	1 5/12	10/12	6/13	10/13	6/14	10/14	6/15	11/15	5/16	10/16	3/17	10/17	5/18	9/18	4/19	9/19	MEAN	STD
PARAMETER VOLATILES (ug/L)																																	
Acetone	<u> </u>				ND		2.3		ND		ND	ND		ND	ND			ND	-	ND	ND	-		-	-	ND	-	ND	ND	ND		0.10	50.0
Acrylonitrile	ND	ND	ND	_	ND ND	ND ND	ND ND		ND ND	ND ND	ND ND	ND		ND ND	ND ND			ND ND	-	ND ND	ND ND	-	-		-	ND ND		ND ND	ND ND	ND ND	110	0.00	1.0
Benzene Bromobenzene	ND	ND		_	ND		ND		ND	ND	ND	ND ND		ND	ND			ND	-	ND ND	ND ND	-		-	-	ND .		ND .	ND -	ND -		0.00	5.0
Bromochloromethane	ND	ND	ND		ND	ND			ND	ND	ND	ND		ND	ND			ND	-	ND	ND	-	-	-	-	ND	-	ND	ND	ND		0.00	5.0
Bromodichloromethane	ND	ND	ND		ND	ND	ND		ND	ND	ND	ND		ND	ND			ND	-	ND	ND	-		-		ND	-	ND	ND	ND		0.00	50.0
Bromoform	ND	ND	ND		ND	ND	ND		ND	ND	ND	ND		ND	ND	ND		ND	-	ND	ND	-			-	ND	-	ND	ND	ND	ND	0.00	50.0
Bromomethane	ND	ND	ND		ND	ND			ND	ND	ND	ND		ND	ND			0.45		ND	ND		-			ND		ND	ND	ND		0.01	5.0
2-Butanone					ND	ND			ND	ND	ND	ND		ND	ND			ND	-	ND	ND	-		-	-	ND	-	ND	ND	ND		0.00	50.0
n-Butylbenzene	ND	ND	ND		ND	ND			ND	ND	ND	ND		ND	ND			ND	-	ND	ND	-	-	-	-	-	-	-	-	-		0.00	5.0
sec-Butylbenzene tert-Butylbenzene	ND ND	ND ND			ND ND	ND ND			ND ND	ND ND	ND ND	ND ND		ND ND	ND ND			ND ND	-	ND ND	ND ND	•		-	-	-	-	-	-			0.00	5.0
Carbon disulfide	ND	IND	ND		ND	ND			ND	ND	ND	ND		ND	ND			ND		ND	ND				-	ND.	 	ND.	ND.	ND		0.00	60.0
Carbon tetrachloride	ND	ND	ND		ND		ND		ND	ND	ND	ND		ND	ND			ND	-	ND	ND	-	-	-		ND		ND	ND	ND		0.00	5.0
Chlorobenzene	ND	ND	ND		ND		ND		ND	ND	ND	ND		ND	ND			ND	-	ND	ND			-	-	ND	-	ND	ND	ND		0.00	5.0
Chloroethane	ND	ND	ND		ND	ND	ND		ND	ND	ND	ND		ND	ND	ND		ND	-	ND	ND	-	-	-	-	ND	-	ND	ND	ND	ND	0.00	5.0
Chloroform	ND	ND	ND		ND	ND	ND		ND	ND	ND	ND		ND	ND	ND		ND	-	ND	ND	-				ND	-	ND	ND	ND	ND	0.01	7.0
Chloromethane	ND	ND	ND		ND		ND		ND	ND	ND	ND		ND	ND			ND	-	ND	ND	-			-	ND	-	ND	ND	ND		0.19	5.0
2-Chlorotoluene	ND	ND		1	ND		ND		ND	ND		ND		ND	ND			ND	-	ND	ND	-	-	-	-	-	-	-	-	-		0.00	5.0
4-Chlorotoluene	ND ND	ND ND	ND ND	1	ND ND	ND ND	ND		ND ND	ND	ND ND	ND ND	<u> </u>	ND ND	ND ND			ND ND	-	ND ND	ND	-	-		-	ND	<u> </u>	. ND	- ND	- ND		0.00	5.0
Dibromochloromethane 1,2-Dibromo-3-chloropropane	ND ND	ND	ND	1	ND		ND ND		ND ND	ND ND	ND	ND	-	ND	ND	ND ND		ND ND	-	ND ND	ND ND	-	-	-	-	ND ND		ND ND	ND ND	ND ND		0.00	50.0 0.04
1,2-Dibromoethane	ND	ND	ND	1	ND		ND		ND	ND	ND	ND		ND	ND	ND		ND	-	ND	ND	-	-			ND		ND ND	ND	ND		0.00	5.0
Dibromomethane	ND	ND	ND		ND	ND			ND	ND	ND	ND		ND	ND			ND	-	ND	ND	-	-	-	-	ND	- 1	ND	ND	ND		0.00	5.0
1,2-Dichlorobenzene	ND	ND	ND		ND	ND	ND		ND	ND	ND	ND		ND	ND	ND		ND	-	ND	ND	-		-	-	ND	-	ND	ND	ND	ND	0.00	3.0
1,3-Dichlorobenzene	ND	ND	ND		ND		ND		ND	ND	ND	ND		ND	ND			ND	-	ND	ND	-					-	ND	-			0.00	3.0
1,4-Dichlorobenzene	ND	ND	ND		ND		ND		ND	ND	ND	ND		ND	ND			ND	-	ND	ND	-		-	-	ND	-	ND	ND	ND		0.00	3.0
trans-1,4-Dichloro-2-butene					ND	ND			ND	ND	ND	ND		ND	ND			ND	-	ND	ND	-			-	ND	-	ND	ND	ND		0.00	5.0
Dichlorodifluoromethane 1.1-Dichloroethane	ND ND	0.34			ND 0.43		ND		0.37	0.43	0.38	ND 0.45		ND 0.41				ND 0.33	-	ND	ND ND	•		-	-	ND	-	ND	. ND	- ND		0.34	5.0 5.0
1,2-Dichloroethane	ND	ND		_	0.43 ND		0.36 ND		ND	ND	0.55 ND	ND		ND	ND ND			ND	-	ND ND	ND ND	-	-			ND ND		ND ND	ND ND	ND ND		0.00	0.6
1,1-Dichloroethene	ND	ND			ND		ND		ND	ND		ND		ND	ND			ND	-	ND	ND	-	-	-	-	ND		ND	ND	ND		0.00	5.0
cis-1.2-Dichloroethene	ND	ND	ND		ND	0.39			0.3	0.27	0.46	ND		ND	ND			0.3	-	ND	ND	-	-		-	ND	-	ND	ND	ND		0.05	5.0
trans-1,2-Dichloroethene	ND	ND	ND		ND	ND			ND	ND	ND	0.35		ND	ND			ND	-	ND	ND	-	-	-	-	ND	-	ND	ND	ND	ND	0.01	5.0
1,2-Dichloropropane	ND	ND	ND		ND	ND			ND	ND	ND	ND		ND	ND			ND	-	ND	ND	-				ND		ND	ND	ND		0.00	1.0
1,3-Dichloropropane	ND	ND			ND	ND			ND	ND	ND	ND		ND	ND			ND	-	ND	ND	-		-	-	-	-	ND	-			0.00	5.0
2,2-Dichloropropane	ND	ND	ND ND		ND	ND			ND	ND	ND	ND		ND	ND			ND	-	ND	ND	-		-	-	-	-	ND	-			0.00	5.0
1,1-Dichloropropene cis-1-3-Dichloropropene	ND ND	ND ND	ND	_	ND ND	ND ND			ND ND	ND ND	ND ND	ND ND		ND ND	ND ND			ND ND	-	ND ND	ND ND	-	-		-	ND		ND ND	ND	ND		0.00	5.0 0.4 *
trans-1.3-Dichloropropene	ND	ND			ND		ND		ND	ND	ND	ND		ND	ND			ND	-	ND	0.34				-	ND	+ -	ND	ND	ND		0.00	0.4 *
Ethylbenzene	ND	ND			ND	ND			ND	ND	ND	ND		ND	ND			ND	-	ND	ND.	-		-		ND	-	ND	ND	ND		0.00	5.0
2-Hexanone					ND	ND	ND		ND	ND	ND	ND		ND	ND	ND		ND	-	ND	ND	-		-	-	ND	-	ND	ND	ND	ND	0.00	50.0
Hexachlorobutadiene	ND	ND	ND		ND		ND		ND	ND		ND		ND	ND	ND		ND	-	ND	ND	-			-		-	-			-	0.00	0.5
lodomethane					ND		ND		ND	ND		ND		ND	ND			ND	-	ND	ND	-	-	-	-	ND	-	ND	ND	ND		0.00	5.0
Isopropylbenzene	ND	ND		1	ND		ND		ND	ND		ND		ND				ND	-	ND	ND	-	-	-	-	-	-	-	-	-		0.00	5.0
p-Isopropyltoluene Methylene chloride	ND ND	ND ND		1	ND ND		ND ND		ND ND	ND ND	ND ND	ND ND	-	ND ND	ND ND			ND ND	-	ND ND	ND ND	-	-	<u> </u>	-	ND	 -	- ND	- ND	- ND		0.00	5.0
4-Methyl-2-pentanone	ND	ND	ND	1	ND		ND ND		ND ND	ND ND		ND	-	ND	ND			ND ND	-	ND ND	ND ND	-	-	-	-	ND ND		ND ND	ND ND	ND ND		0.07	5.0
Naphthalene	ND	ND	ND	1	ND		ND		ND	ND	ND	ND		ND	ND			ND	-	ND	ND	-	- :	-	-	-		-	-	-		0.00	10.0 **
n-Propylbenzene	ND	ND	ND		ND		ND		ND	ND	ND	ND		ND	ND	ND		ND	-	ND	ND	-	-	-	-	-	-	-	-	-		0.00	5.0
Styrene	ND	ND	ND		ND	ND	ND		ND	ND	ND	ND		ND	ND	ND		ND	-	ND	ND	-			-	ND	-	ND	ND	ND		0.00	5.0
1,1,1,2-Tetrachloroethane	ND	ND	ND		ND	ND	ND		ND	ND	ND	ND		ND	ND	ND		ND	-	ND	ND	-	-	-	-	ND	-	ND	ND	ND		0.00	5.0
1,1,2,2-Tetrachloroethane	ND	ND	ND	1	ND		ND		ND	ND	ND	ND		ND	ND	ND		ND	-	ND	ND	-	-	-	-	ND	-	ND	ND	ND		0.00	5.0
Tetrachloroethene Toluene	ND	ND	ND	1	ND	ND			ND	ND	ND	ND	<u> </u>	ND ND	ND	ND		ND	-	ND	ND	-	-	-	-	ND ND	<u> </u>	ND	ND	ND		0.00	5.0
Toluene 1.2.3-Trichlorobenzene	ND ND	ND 0.65	ND ND	1	ND ND		ND ND		ND ND	ND ND	ND ND	ND ND	-	ND ND	ND ND			ND ND	-	ND ND	ND ND	-	-		-	ND .	+ -	ND	ND	ND		0.19	5.0
1,2,3-Trichlorobenzene	ND	1.8	ND	1	ND	ND	ND		ND	ND	ND	ND	—	ND	ND	ND		ND	-	ND	ND ND	-	-	H	-:-	-	+ -		-			0.02	5.0
1,1,1-Trichloroethane	ND	ND	ND	1	ND		ND		ND	ND	ND	ND		ND	ND			ND	-	ND	ND	-	-	-	-	ND		ND.	ND	ND		0.02	5.0
1,1,2-Trichloroethane	ND	ND	ND		ND	ND			ND	ND	ND	ND		ND	ND	ND		ND	-	ND	ND	-	-	-	-	ND	-	ND	ND	ND		0.00	1.0
Trichloroethene	ND	ND	ND		ND		ND		ND	ND	ND	ND		ND	ND			ND	-	ND	ND	-			-	ND	-	ND	ND	ND		0.00	5.0
Trichlorofluoromethane	ND	ND	ND		ND	ND			ND	ND	ND	ND		ND	ND			ND	-	ND	ND	-		-	-	ND	-	ND	ND	ND		0.00	5.0
1,2,3-Trichloropropane	ND	ND	ND	1	ND	ND	ND	+	ND	ND	ND	ND		ND	ND			ND	-	ND	ND	-	-	-	-	ND	-	ND	ND	ND		0.00	0.04
1,2,4-Trimethylbenzene	ND	ND	ND ND	1	ND ND	ND	ND	+ -	ND ND	ND	ND	ND	-	ND ND	ND			ND ND	-	ND ND	ND	-	-	-	-	-	-	-	-	-		0.00	5.0
1,3,5-Trimethylbenzene Vinyl acetate	ND	ND	ND	1	ND ND	ND ND	ND ND		ND ND	ND ND	ND ND	ND ND	-	ND ND	ND ND			ND ND	-	ND ND	ND ND	-	-		H :	ND.	+ -	ND	ND.	- ND		0.00	5.0
Vinyl acetate Vinyl chloride	ND	ND	ND		ND	ND			ND ND	ND	ND	ND		ND	ND			ND ND	-	ND ND	ND ND	-	-			ND ND		ND ND	ND ND	ND		0.00	2.0
o-Xylene	ND	ND	ND		ND	ND			ND	ND	ND	ND		ND	ND			ND	-	ND	ND	-	-		-	ND	- 1	ND	ND	ND		0.00	5.0
p-Xylene & m-Xylene	ND				ND		ND		ND	ND		ND		ND				ND	-	ND	ND	-	-	-	-	ND	-	ND	ND	ND		0.00	5.0
·																																	

																																	NYS
	3/04	9/04	3/0	5 9/0	5 3/0	6 11,	/06	4/07 1	0/07 4/08 10/	08 4/09	9/09	4/10	9/10	5/11	10/11	5/12	10/12	6/13	10/13	6/14	10/14	6/15	11/15	5/16	10/16	3/17	10/17	5/18	9/18	4/19	9/19	MEAN	STD
PARAMETER METALS (mg/L)																																	
Aluminum		2.4				0.4	45		1.6	0.49				0.42				0.31			ND					0.367			27.3	3.15		4.22	
Calcium	95.6	118	139	_	90.9	9 87	'.3		95.6	101	92.9	94		101		96		82.9	٠	87.8	ND					90.7		96	120	116	103	78.82	
Iron	0.35	3.9	4.1		0.49	9 0.5	56		1.7	0.403	0.128	0.178		0.29		0.57		0.34		0.39	ND		-			0.723		1.32	63.4	6.11	0.512	16.88	0.3
Magnesium	23.6	24.5	26		23.9	9 23	.6		25.1	26.5	24.5	24.8		26.8		26		22.9		24.6	ND	-	-			24.7	-	25.9	35.1	31	27.4	21.25	35.0
Manganese	0.03	1.4	1.7		0.02	2 0.0	04		0.05	ND	ND	ND		ND		ND		0.02	-	0.02	ND		-	-	-	0.0242	-	0.059	1.78	0.233	0.0143	0.43	0.3
Potassium	2.72	3.4	3.2		2.7	2.	.6		2.8	3.04	2.71	2.29		2.4		2.4		2.5	-	2.3	ND		-	-	-	2.71	-	2.68	7.39	ND	2.66	4.48	
Sodium	6.85	7.6	5.7		5.5	5.	.9		4.9	6	4.5	4.7		4.9		5.1		4.6		4.6	ND		-			3.81	-	4.94	6.62	4.99	7.2	5.16	20.0
PARAMETER (mg/l) TOXIC METALS														•											•	•	•						
Antimony		ND				N	ID		ND	ND				ND				ND	-		ND		-	-	-	ND	-	-	ND	ND		0.00	0.003
Arsenic		ND				N	ID		ND	ND				ND				ND			ND	-				ND	-	-	0.0626	0.0059	-	0.00	0.025
Barium	0.07	0.16	0.26	5	0.06	5 0.0	06		0.06	0.055	0.047			0.051				0.05			0.061	-	-			0.0513	-	-	0.205	0.0736	-	0.11	1.0
Bervllium		ND				N	ID		ND	ND				ND				0.0002			ND	-	-	-		ND	-	-	0.0014	ND	-	0.00	
Cadmium	ND	ND	ND		ND) N	ID		ND	ND	ND	ND		ND				ND		ND	ND		-	-	-	ND	-	ND	ND	ND	ND	0.00	0.005
Chromium (Total)	ND	ND	ND		ND) N	ID		ND	ND	ND			ND				ND			0.001	-				ND	-	-	0.0504	0.0088	-	0.02	0.05
Copper		0.02		1	1	N	ID		ND	ND		1	1	ND	1	1	1	0.005			ND	-	-	-		0.003	-	-	0.0533	ND	-	0.00	0.2
Lead	ND	0.03	0.03	:	ND		ID .		ND	ND	ND	ND	1	ND	1	0.002	1	ND		ND	0.005	-	-	-		0.0027	-	0.0048	0.126	0.0139	ND	0.02	0.025
Mercury	ND	ND	ND		ND			ND	ND	ND	ND			ND				ND		-	ND					ND		-	0.0002	ND	-	0.00	0.0007
Nickel		ND	1				ID .		ND	ND				ND				ND			0.004					0.0021	-	-	0.0616	0.0092		0.02	0.1
Selenium	ND	ND	ND		ND			ND	ND	ND				ND				ND			ND					ND	-	-	ND	ND		0.00	0.01
Silver	ND	ND	ND		ND			ND	ND	ND	ND	1		ND				ND			ND					ND		-	ND	ND		0.00	0.05
Thallium	110	ND	1.00		.,,		ID I	110	ND ND	ND	.,,,	1		ND				ND			ND					ND		-	0.005	ND		0.00	0.0005
Zinc		0.03	+	1			ID I		ND ND	0.038		1	1	ND	1	1	1	0.047			0.069					0.0084	-	-	0.178	0.0209		0.03	2.0
RAMETER (mg/l) LEACHATE INDICATO	i i	0.03							110	0.030				140			1	0.017			0.003			1		0.0001			0.170	0.0203		0.03	2.0
Alkalinity	330	289	268		496	17	75	275	250	337	298	329		382	378	310	T	319		329			-		-	294	-	311		344	-	239	
Biochemical Oxygen Demand		6.6				N			ND	ND				ND		ND		ND								1.0	-	ND		1.0	1.0	2	
Boron		ND				N	ID.		0.03	0.028				0.03			1	0.06			0.06		-			0.0303	-	-	0.0382	0.0286	-	0	1.0
Chemical Oxygen Demand	ND	92.1	ND		ND) N	ID	ND	ND	ND	ND	ND		ND	ND	ND		ND		ND	ND					50.5	-	21.6		12.4	ND	29	
Chromium (Hexavalent)		ND	1			N			ND	ND				ND			1	ND			0.013					ND	-	-		ND	-	0	0.05
Chloride	3.7	3.3	3.1		3.2	3	3	3.2	2.3	2.2	2 79	2.5		2.7	2.2	2.26	1	3		2.5	2.1		-			4.1	-	2.4		2.7	2.7	4.3	250
Color (PCU units)		160		1		2			15	ND				50				12		-	17					5	-			25	-	15	15.0
Nitrate-Nitrite	0.03	ND	ND		ND			ND	ND	0.088	0.58	1	1	ND	0.05	0.534		ND		ND	ND		-			0.09		ND		0.045	0.11	0	10.0
Nitrogen-Ammonia	0.1	ND			ND		ID	ND	ND	ND	ND			ND	ND	ND		ND	-	ND	ND					0.026	-	0.022		0.032	0.033	0	2.0
Phenois	0.1	0.02			ND			ND	ND	ND		ND		ND		ND		ND		ND	ND					0.0041	-	0.0056		0.0043	0.0041	0	0.001
Sulfate	31	27.3			23.2			23.7	20.6	21		20.9	1	20.6	19.5	21	1	20.4		20.65	24.5	-				25.2		20.6		18.5	28.7	23.0	250
Total Organic Carbon (TOC)	1.3	28.4			ND			ND	ND ND	ND.	1.5		t —	ND		ND.	1	ND	-	ND	ND					ND	-	13.6	2.1	1	0.66	5	
Total Dissolved Solids (TDS)		377	332		359			435	363	365	354		1	351	1	420	1	738	-	359	381					349		381		454	348	298	500
Total Hardness	336	395			325			288	342	360		340	t —	363	t —	350	1	301		321	342					310		330	347	320	340	331	300
Total Kieldahl Nitrogen (TKN)	330	21	734	+-	323) 31 N		200	ND	ND.	220	340	+	ND	+	ND.	+	ND	—	321	0.28	-	-			0.35	<u> </u>	ND	. 347	ND.	ND ND	1	
Turbidity (NTU units)	920	2390	346)	272			202	16.9	16	30	5	_	- IND	+	18.02	4	19.6	—	17.8	24.2	18.8	17.4	_		11.7		15.8	365.6	20.5	19.51	453	5.0
Cvanide	320	ND.			2/2	. 9 N		_UZ	ND	ND.	30		_	ND.	+	10.02		ND	-	17.0	27.2	10.0	17.4	-		ND	_	13.3	303.0	0.0024	19.31	0	0.2
Cyanide	<u> </u>			alvte re	norted			New Yor	rk State standards		March	and lur	00 1008		ctanda	rde	1	IND								ND				0.0024			0.2
									ent. Exceedances																								
									oropropene.					p																			
				e Value.				,																									
						alculat	ion o	f Mean a	nd are considered	equal to a	ero																						
				= Not A			0			. ,																							
				tected.	.,						J = Est	imated.																					
				ted belo	w meth	od det	tectio	n limit.					as detec	ted in r	nethod	blank.																	

PARAMETER VOLATILES (ug/L)	9/90	12/9	90 3/9	1 6,	/91 9	/91	12/91	3/92	6/92	9/92 1	2/92 3,	93 6/	/93 9/	93 12/	93 3/94	6/94 9	9/94	12/94 3/	95 6/9	5 9/9	95 12/9	4/96	9/96	3/97	9/97	3/98	9/98 3/	99 9/	99 3/	00 9/	00	3/01 9/0	1 3/02	9/02	3/03	9/03
Acetone Acetone	_	Т		Т		Т		1		$\overline{}$			$\overline{}$	$\overline{}$	$\overline{}$	П	Т		$\overline{}$			Т						Т	$\overline{}$	$\overline{}$	Т		$\overline{}$			
Acrylonitrile																																				
Benzene	0.37		0.9			0.8	ND	2.0		33.0		ID	1		ND		1	0.				1	0.8	0.5	0.6	1	0.		_	0.		1.0	2.08	ND	1.0	1.3
Bromobenzene	ND						ND	ND		ND		ID		ID	ND		ND	N	_			ND		ND		ND	N		ID N			ND	ND	ND	ND	
Bromochloromethane	ND	NE					ND ND	ND ND		ND		ID		ID	ND		ND	N)	4-	_	ND	ND	ND	ND	ND	N) 1	ID N	D N	ID	ND	ND	ND	ND	ND ND
Bromodichloromethane Bromoform			NE NE				ND	ND	-	ND ND		ID ID		ID ID	_	 			+	+-	-	+						+			_	_	+			ND
Bromomethane	ND						ND	ND		ND		ID ID		D.	ND		ND	N)	_		ND	ND	ND	ND	ND	N) (ID N	D N	ID	ND	ND	ND	ND	ND
2-Butanone						-																														
n-Butylbenzene	ND					ND	ND	ND		ND	1	ID	N	ID	ND		ND	N)			ND	ND	ND	ND	ND	N		ID N			ND	ND	ND	ND	ND
sec-Butylbenzene	0.22					ND	ND	ND		ND		1D		ID	ND		ND	N				ND	ND	ND	ND	ND	N					ND	ND	ND	ND	ND
tert-Butylbenzene Carbon disulfide	ND	0.50) NE	1 (ND I	ND	ND	ND		ND		ID	N	D	ND		ND	N)	4-	_	ND	ND	ND	ND	ND	N) 1	ID N	D N	ID	ND	ND	ND	ND	ND
Carbon disulfide Carbon tetrachloride	ND	NE	NE		ND I	ND	ND	ND		ND	-	ID.	N	D	ND		ND	N	_	-	-	ND	ND	ND	ND	ND	N		ID N	D N	ID.	ND	ND	ND	ND	ND
Chlorobenzene	0.37		0.2					ND	-	0.7		ID ID	N		ND		ND	N		1	_	ND		ND		ND	N		ID N			ND	ND	ND	ND	ND
Chloroethane	ND	NE	1.5					2.0		ND	1	ID	N	ID	0.5		ND	N)			1	0.6	ND		ND	N) N	ID 0.			ND	ND	ND	ND	ND
Chloroform	ND	0.29) NE	1 (ND I	ND	ND			ND		ID.	N																							ND
Chloromethane	ND						ND	ND		43.0		ID		ID	ND		ND	N				ND		ND	ND	ND	N		ID N			ND	ND	ND	ND	ND
2-Chlorotoluene	ND						ND	ND		ND		ID ID		D	ND		ND	N				ND		ND		ND	N		ID N			ND	ND	ND	ND	ND
4-Chlorotoluene Dibromochloromethane	ND ND						ND ND	ND ND		ND ND		ID ID		ID ID	ND	 	ND	N	,	-		ND	ND	ND	ND	ND	N	, N	ID N	υ N	ID	ND	ND	ND	ND	ND ND
1.2-Dibromo-3-chloropropane	ND ND						ND ND	ND ND		ND	- + '	IU .	N	U	_	 	-+			-	-	1			\vdash			+			-t		1			ND ND
1,2-Dibromoethane	ND						ND	ND	t	ND		_							-1-	+-		1						1		\dashv						ND
Dibromomethane	ND					ND	ND	ND		ND	1	ID	N	ID	ND		ND	N)			ND	ND	ND	ND	ND	N	0 0	ID N	D N	ID	ND	ND	ND	ND	ND
1,2-Dichlorobenzene	<dl< td=""><td></td><td></td><td></td><td></td><td>ND</td><td>ND</td><td>ND</td><td></td><td>ND</td><td></td><td>ID</td><td></td><td>ID</td><td>ND</td><td></td><td>ND</td><td>N</td><td></td><td></td><td></td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>N</td><td></td><td></td><td></td><td></td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td></dl<>					ND	ND	ND		ND		ID		ID	ND		ND	N				ND	ND	ND	ND	ND	N					ND	ND	ND	ND	ND
1,3-Dichlorobenzene	ND						ND	ND		ND		1D		ID	ND		ND	N				ND		ND	ND	ND	N					ND	ND	ND	ND	
1,4-Dichlorobenzene	0.23	0.43	0.2	2 1	ND I	ND	ND	ND		ND		ID	N	ID	ND		ND	N)	4-	_	ND	ND	ND	ND	ND	N) /	ID N	D N	ID	ND	ND	ND	ND	ND
trans-1,4-Dichloro-2-butene	ND	NE	NE		ND I	ND	ND	ND		ND		ID.	N N	D	ND	-	ND	N		-	_	ND	ND	ND	ND	ND	N		ID 0.	E N	ID	ND	ND	ND	ND	ND
1 1-Dichloroethane			1 3.9				1.0	7.0		3.0		.0	- N		2		3	2		+		4	3	1	3	ND	2		3 3			3	3.3	0.82	2.1	
1.2-Dichloroethane			0.10				ND	ND		ND		ID.	N		ND		ND	N		+		ND	-	ND.	ND	ND	N	_	ID N			ND	ND	ND	ND	
1,1-Dichloroethene	ND					ND	ND	ND		ND	1	ID	N		ND		ND	N				ND		ND	ND	4	N		ID N	D N	ID	ND	ND	ND	ND	
cis-1,2-Dichloroethene	0.66							2.0		1.0		ID	2		0.5		1	0.				1	1	0.5	0.9	ND	N		2 2			2	3.18	ND	2	2.4
trans-1,2-Dichloroethene	ND						ND	ND		0.6		ID	N		ND		ND	N				ND		ND	ND	ND	N		ID N			ND	ND	ND	ND	
1,2-Dichloropropane	ND ND					ND ND	ND ND	ND ND		ND ND		ID ID	N N	D	ND ND		ND ND	N N		4-	_	ND ND	ND ND	ND ND	ND ND	ND ND	N N		ID N			ND ND	ND ND	ND ND	ND ND	ND ND
1,3-Dichloropropane 2,2-Dichloropropane	ND ND						ND ND	ND ND		ND		ID ID	N N		ND ND		ND	N N		-	-	ND	ND	ND ND	ND ND	ND	N N		ID N			ND ND	ND ND	ND	ND	ND ND
1,1-Dichloropropene	ND						ND	ND		ND		ID ID	N		ND		ND	N		+		ND		ND	ND	ND	N		ID N			ND	ND	ND	ND	
cis-1-3-Dichloropropene	ND	NE	NE	1 (ND I	ND	ND	ND		ND	1	ID	N	ID	ND		ND	N)			ND	ND	ND	ND	ND	N) N	ID N	D N	ID	ND	ND	ND	ND	ND
trans-1,3-Dichloropropene	ND	NE				ND	ND	ND		ND		ID	N		ND		ND	N				ND	ND	ND	ND	ND	N		ID N			ND	ND	ND	ND	ND
Ethylbenzene	0.46	0.3	0.6	1 1	ND 1	.0	ND	ND		0.7	1	ID	N	ID	ND		ND	N)			ND	ND	ND	ND	ND	N) N	ID N	D N	ID	ND	ND	ND	ND	ND
2-Hexanone Hexachlorobutadiene	ND	NE			ND I		ND	ND		ND		ID	N		ND		ND	N	_	_		ND		ND	N/D	ND	N		ID N			ND	ND		ND	ND
lodomethane	ND	INL	NE	, r	ND I	ND	ND	ND		ND	-+'	iD .	N	IU .	ND		ND	IN		-		ND	ND	ND	ND	ND	IN.	, ,	ID N	D N	U	ND	ND	ND	ND	ND
Isopropylbenzene	0.16	0.39	0.2	3 N	ND I	ND	ND	ND		ND	-	ID.	N	D	ND		ND	N)	+		ND	ND	ND	ND	ND	N) N	ID N	D N	ID	ND	0.99	ND	ND	ND
p-Isopropyltoluene	ND						ND	ND		ND		ID	N		ND		ND	N				ND	ND	ND	ND	ND	N		ID N			ND	ND	ND	ND	ND
Methylene chloride	ND	<d< td=""><td></td><td></td><td>.0 2</td><td>2.0</td><td>1.0</td><td>2.0</td><td></td><td>0.5</td><td>1</td><td>ID</td><td>N</td><td>ID</td><td>ND</td><td></td><td>ND</td><td>N</td><td>)</td><td></td><td></td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>2 B</td><td>N</td><td>) N</td><td>ID N</td><td></td><td></td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td></d<>			.0 2	2.0	1.0	2.0		0.5	1	ID	N	ID	ND		ND	N)			ND	ND	ND	ND	2 B	N) N	ID N			ND	ND	ND	ND	ND
4-Methyl-2-pentanone				Ŧ		┚																														
Naphthalene	0.38					ND	ND	ND		3.0		ID		D	ND		ND	N		4	_	ND	ND	ND	ND	0.6	N		ID N			ND	ND	ND	ND	ND
n-Propylbenzene Styrene	ND ND						ND ND	ND ND		ND ND		ID ID		D D	ND ND		ND ND	N N		-		ND ND	ND ND	ND ND	ND ND	ND ND	N N		ID N			ND ND	ND ND	ND ND	ND ND	ND ND
1.1.1.2-Tetrachloroethane	ND					ND ND	ND	ND		ND		ID ID		D	ND ND		ND	N N		+-	_	ND		ND	ND	ND	N N					ND	ND ND	ND	ND	ND
1,1,2,2-Tetrachloroethane	ND					ND	ND	ND	t	ND		ID		ID	ND		ND	N		+-		ND	ND	ND	ND	ND	N					ND	ND	ND	ND	ND
Tetrachloroethene	ND	NE	NE.	1 (ND I	ND	ND	ND		ND	1	ID	N	ID	ND		ND	N)			ND	ND	ND	ND	ND	N	N C	ID N	D N	ID	ND	ND	ND	ND	ND
Toluene	ND					ΝD	ND	ND		ND		ID		ID	ND		ND	N				0.9		ND	ND	ND	N					ND	ND	ND	ND	ND
1,2,3-Trichlorobenzene	ND					ND	ND	ND		ND		ID		ID	ND		ND	N		4	_	ND		ND	ND	ND	N					ND	ND	ND	ND	ND
1,2,4-Trichlorobenzene	ND ND					ND ND	ND ND	ND ND		ND ND		ID ID		ID ID	ND ND		ND ND	N N		+-	-	ND ND		ND ND	ND ND	ND ND	N N		ID N			ND ND	ND ND	ND ND	ND ND	ND ND
1,1,2-Trichloroethane	ND ND					ND ND	ND ND	ND ND		ND		ID ID		D D	ND ND		ND	N N		-	-	ND		ND ND	ND ND	ND	N N		ID 0.			ND ND	ND ND	ND	ND	ND ND
Trichloroethene		0.57				ND ND	ND	ND	-+	ND		ID ID		ID	ND		ND	N		+-	+	ND		ND	ND	ND	N N		ID N			ND	ND	ND	ND	0.6
Trichlorofluoromethane	ND					ND	ND	ND		ND		ID		ID	ND		ND	N		1		ND	ND	ND	ND	ND	N		ID N			ND	ND	ND	ND	
1,2,3-Trichloropropane	ND		NE	1 (ND	ND	ND		ND		ID	N	ID	ND		ND	N)			ND	ND	ND	ND	ND	N		ID N			ND	ND	ND	ND	ND
1,2,4-Trimethylbenzene		NE					ND	1.0		0.6		ID		D	ND		ND	N				ND		ND		ND	N		ID N			ND	ND		ND	
1,3,5-Trimethylbenzene	0.23	NE	NE	1 (ND I	ND	ND	ND		ND	1	ID	N	ID	ND	1	ND	N)	4	_	ND	ND	ND	ND	ND	N) 1	ID N	D N	ID	ND	ND	ND	ND	ND
Vinyl acetate Vinyl chloride	ND	NE	NE	١ ،	ND I	ND	ND	ND		ND	-+.	ID	NI NI	D	ND	 	0.8	N	. -	-		1	ND	ND	ND	ND	N	, ,	ID 1	NI.	ID	0.8	ND	ND	0.5	1.5
o-Xvlene	0.19	<d< td=""><td></td><td></td><td></td><td>ND ND</td><td>ND</td><td>ND</td><td>-+</td><td>ND</td><td></td><td>ID ID</td><td></td><td>D</td><td>ND ND</td><td></td><td>ND</td><td>N N</td><td></td><td>+-</td><td></td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>N N</td><td></td><td>ID N</td><td></td><td></td><td>ND</td><td>ND ND</td><td>ND</td><td>ND</td><td>ND</td></d<>				ND ND	ND	ND	-+	ND		ID ID		D	ND ND		ND	N N		+-		ND	ND	ND	ND	ND	N N		ID N			ND	ND ND	ND	ND	ND
p-Xylene & m-Xylene	0.19	1	- \			ND				ND		ID ID		ID	ND		ND	N		-	-	ND		ND		ND	N N					ND	ND	ND	ND	ND
r		•	_	•										•					•	•			•	•										•		

	0./00	12/00	2 /01	6/01	0/01	12/01	2/02	6/02	0./02	12/02	2 /02	6/02	0/02	12/02	2/04	6/04	0/04	12/04	2 /OF	G/OF	0/05	12/05	4/06	0/06	2/07	0/07	2/00	0/00	2 /00	0/00	2/00	0/00	3/01 9/	01 2/0	2 0/0	2 /03	
PARAMETER METALS (mg/L)	9/90	12/90	3/91	0/91	9/91	12/91	3/92	6/92	9/92	12/92	3/93	6/93	9/93	12/93	3/94	6/94	9/94	12/94	3/93	6/95	9/95	12/95	4/90	9/96	3/9/	9/9/	3/98	9/98	3/99	9/99	3/00	9/00	3/01 9/	01 3/02	: 19/02	2 3/03	, 9
		_	_	_	20.4	_	_	_	0.21	_	_	_	51.0	_	_	_		_		_		_	_	140	_	3 74	_	_	_	0.21	_	_	_		_	_	-
Aluminum	11.2	55.4	41.4	F0.7	30.4 57.6	20.0	E2.1	45.0	0.21	F0.7	26.5	42.1	51.8 47.5	38.5	31.3	47.6	14.4	26.4	39.5	20.5		52.2	40.0	14.9 38.5	40.7	41	46.3	-	43.6	0.21 43.1	CO 7		41.4	53.7	_	48.6	0.
		55.4				0.010	53.1			59.7					0.110																	_					
Iron	50.8	79	9.9	19.2	62.6	6.19		36.7				49.3		21.6	15.3	52.5	40.6	19.5		16.1			22.0			7.98			4.9		20.2		9.86	10.5		27	
Magnesium	4.5	13.9	12.3	10.4	18.1	6.3	12.5	12.3	9.99	17.6	10.5	12.6	20.6	8.5	7.13	13.9	11.1	7.66	9.32	6.55		10.8					9.54		8.8		12.3		8.26	11.3		10.2	
Manganese			9.53			13.4		12.6		15.1	7.8						24.4	8.64						9.28					9.62		14		9.58	14		11.7	
Potassium		23.8		25.8		14.3				29.6	17.8		33.4	17.4	13.2	27.7	7	17.7	16.3	20.5				29.8			16.1		17.8		19.4		16	22.6		18.3	
Sodium	7.2	10.2	7.2	9.1	11.9	7.2	10.6	9.2	8.97	10.2	3.5	7.92	7.92	7.73	6.01	7.5	ND	7.59	6.07	5.16		8.56	6.86	8.40	6.32	9.11	6.22		6.76	7.1	9.05		6.49	8.85		6.68	- 8
ARAMETER (mg/l) TOXIC METALS																																					
Antimony	0.008				0.060				0.028				ND				ND							ND		ND				ND							_
Arsenic	0.010				0.060				0.045				0.094				0.061							0.046		0.01				0.02							
Barium	0.97				1.53				0.79				1.47				0.81							0.860		0.78				0.72							0
Beryllium					ND				ND				0				ND							ND		ND				ND							
Cadmium		<dl< td=""><td><dl< td=""><td></td><td>0.08</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>0.002</td><td>ND</td><td></td><td>ND</td><td>0.010</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td></td><td>ND</td><td>ND</td><td>ND</td><td></td><td>ND</td><td>ND</td><td>\top</td><td>ND</td><td></td></dl<></td></dl<>	<dl< td=""><td></td><td>0.08</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>0.002</td><td>ND</td><td></td><td>ND</td><td>0.010</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td></td><td>ND</td><td>ND</td><td>ND</td><td></td><td>ND</td><td>ND</td><td>\top</td><td>ND</td><td></td></dl<>		0.08	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.002	ND		ND	0.010	ND	ND	ND	ND		ND	ND	ND		ND	ND	\top	ND	
Chromium (Total)	<dl< td=""><td></td><td></td><td></td><td>0.08</td><td></td><td></td><td></td><td>0.01</td><td></td><td></td><td></td><td>0.15</td><td></td><td></td><td></td><td>0.07</td><td></td><td></td><td></td><td></td><td></td><td></td><td>0.051</td><td></td><td>0.02</td><td></td><td></td><td></td><td>0.02</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></dl<>				0.08				0.01				0.15				0.07							0.051		0.02				0.02							
Copper	<dl< td=""><td></td><td></td><td></td><td>0.03</td><td></td><td></td><td></td><td>ND</td><td></td><td></td><td></td><td>0.06</td><td></td><td></td><td></td><td>0.02</td><td></td><td></td><td></td><td></td><td></td><td></td><td>ND</td><td></td><td>ND</td><td></td><td></td><td></td><td>ND</td><td></td><td></td><td></td><td></td><td>\neg</td><td></td><td></td></dl<>				0.03				ND				0.06				0.02							ND		ND				ND					\neg		
Lead	0.221	∠DI	0.010	ND	0.014	ND	0.007	0.021		0.012	0.009	0.015	0.032	0.008	0.002	0.004	0.010	ND	ND	0.001		ND	0.004		0.002	0	0		0	0	ND		ND	0.001	1	0.005	
Mercury	ND	100	0.010		0.080		0.007	0.021	ND	0.012	0.003	0.013	ND	0.000	0.002	0.001	ND	.,,,	110	0.001		110	0.001	ND.	0.002	ND	·	1	_	ND	110			0.00	+-	0.003	+
Nickel	ND				0.08	1			0.02				0.18				0.01							0.070		0.05		1		0.05			-	-	+-	+-	+
Selenium		0.05	0.07	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND	ND		ND	ND	ND	1	ND	ND	ND		ND	ND	_	ND	
Silver	0.03	<di< td=""><td>ND</td><td></td><td></td><td>ND</td><td></td><td></td><td>ND</td><td></td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td></td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>1</td><td>ND</td><td>ND</td><td>ND</td><td></td><td>ND</td><td>ND.</td><td></td><td>ND</td><td></td></di<>	ND			ND			ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND	ND	ND	ND	ND	ND	1	ND	ND	ND		ND	ND.		ND	
Thallium	<dl< td=""><td>\DL</td><td>IND</td><td>ND</td><td>0.12</td><td>IND</td><td>ND</td><td>IND</td><td>ND</td><td>IND</td><td>IND</td><td>ND</td><td>ND</td><td>IND</td><td>ND</td><td>IND</td><td>ND</td><td>ND</td><td>ND</td><td>IND</td><td></td><td>IND</td><td>IND</td><td>ND</td><td>IND</td><td>ND</td><td>IND</td><td>1</td><td>ND</td><td>ND</td><td>IND</td><td></td><td>- ND</td><td>IND</td><td>+</td><td>IND</td><td>+</td></dl<>	\DL	IND	ND	0.12	IND	ND	IND	ND	IND	IND	ND	ND	IND	ND	IND	ND	ND	ND	IND		IND	IND	ND	IND	ND	IND	1	ND	ND	IND		- ND	IND	+	IND	+
Zinc	0.09		-	 	0.12	+	-	-	0.01	-	-		0.24				0.08							0.100		0.03		-		0.02				$-\!\!\!\!\!-$	+	+-	+
METER (mg/l) LEACHATE INDICATOR				<u> </u>	0.12	<u> </u>			0.01				0.24				0.08							0.100		0.03				0.02					_	_	
Alkalinity		563	105	276	200	187	2070	12000	221	206.0	1100	1070		102	154	210	104	180	172	160		251	100		191	132	233		100	226	205	164	100	245	-	238	₹.
		302	195	2/6	4.0	167	287.0	299.0	12	206.0	119.0	197.0		192	134	210		100	1/2	100		231	199		191		233	-	199	ND	203	104	196	243	+	238	-
Biochemical Oxygen Demand	0.05		_	-	0.17	-		-	0.01	-							11 ND					_		0.126		14		-		0.1		_	\leftarrow	$-\!\!\!\!\!-$	+	—	
Boron													ND											0.136		0.1											I
Chemical Oxygen Demand	39	26	18	17	ND	5.0	56.0	ND		59.7	54.8	49.0	31.9	33.8	10.9	12.3		16.4	20.6	43.4		63.2	72.7		ND	53.1	18.4		32.9	22.5	36.6	ND	32.5	16	—	18.1	
Chromium (Hexavalent)	<dl< td=""><td></td><td></td><td></td><td>16</td><td></td><td></td><td></td><td>ND</td><td></td><td></td><td></td><td>ND</td><td></td><td></td><td></td><td>ND</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>ND</td><td></td><td></td><td></td><td>ND</td><td></td><td></td><td></td><td></td><td>—</td><td></td><td></td></dl<>				16				ND				ND				ND									ND				ND					—		
Chloride	9.4	12	11.7	13	16	8.0	14.0	16.0		7.1	4.73	8.41		6.03	4.82	5.02		8.4	5.81	ND		7.4	6.22		3.73	4.8	4.37		5.46	6.97	6.88		3.85	6.19	—	4.17	
Color (PCU units)	40				ND				125								10									30				200							
Nitrate-Nitrite	<dl< td=""><td><dl< td=""><td></td><td>ND</td><td>3.5</td><td>ND</td><td></td><td></td><td></td><td>0.7</td><td>ND</td><td>1.35</td><td></td><td>0.31</td><td>ND</td><td>ND</td><td></td><td>0.09</td><td></td><td>0.275</td><td></td><td>ND</td><td></td><td></td><td></td><td>1.41</td><td>ND</td><td></td><td>ND</td><td>ND</td><td>ND</td><td></td><td>ND</td><td>ND</td><td></td><td>ND</td><td></td></dl<></td></dl<>	<dl< td=""><td></td><td>ND</td><td>3.5</td><td>ND</td><td></td><td></td><td></td><td>0.7</td><td>ND</td><td>1.35</td><td></td><td>0.31</td><td>ND</td><td>ND</td><td></td><td>0.09</td><td></td><td>0.275</td><td></td><td>ND</td><td></td><td></td><td></td><td>1.41</td><td>ND</td><td></td><td>ND</td><td>ND</td><td>ND</td><td></td><td>ND</td><td>ND</td><td></td><td>ND</td><td></td></dl<>		ND	3.5	ND				0.7	ND	1.35		0.31	ND	ND		0.09		0.275		ND				1.41	ND		ND	ND	ND		ND	ND		ND	
Nitrogen-Ammonia	3.3	1.1	0.6	0.2	3.5	1.1	2.7	9.9	3.23		1.52	2.0	0.57	2.2	1.83	2.41		2.23	1.84	ND		2.02			1.05	1.36	2.15		1.45	2.44	1.91	1.83	1.92	2.26		2.21	
Phenols	<dl< td=""><td>0.049</td><td>ND</td><td>ND</td><td>0.030</td><td>ND</td><td>ND</td><td>ND</td><td>0.015</td><td></td><td>0.006</td><td>0.016</td><td>0.012</td><td>ND</td><td>0.017</td><td>ND</td><td>0.004</td><td>ND</td><td>ND</td><td>0.015</td><td></td><td>0.006</td><td>0.004</td><td></td><td>0.006</td><td>ND</td><td>ND</td><td></td><td>0.02</td><td>0.01</td><td>0.01</td><td></td><td>0.02</td><td>0.014</td><td>.7</td><td>0.0116</td><td>6 0</td></dl<>	0.049	ND	ND	0.030	ND	ND	ND	0.015		0.006	0.016	0.012	ND	0.017	ND	0.004	ND	ND	0.015		0.006	0.004		0.006	ND	ND		0.02	0.01	0.01		0.02	0.014	.7	0.0116	6 0
Sulfate	23	<dl< td=""><td>8.6</td><td>15</td><td>12</td><td>38.0</td><td>10.0</td><td>ND</td><td>19.0</td><td>24.0</td><td>13.0</td><td>27.0</td><td></td><td>18</td><td>17</td><td>16</td><td>15</td><td>16</td><td>15</td><td>24</td><td></td><td>17</td><td>15</td><td></td><td>14</td><td>16</td><td>12</td><td></td><td>30</td><td>14</td><td>11</td><td></td><td>20</td><td>8.74</td><td></td><td>8.71</td><td>Т</td></dl<>	8.6	15	12	38.0	10.0	ND	19.0	24.0	13.0	27.0		18	17	16	15	16	15	24		17	15		14	16	12		30	14	11		20	8.74		8.71	Т
Total Organic Carbon (TOC)	12	16	7.8	11	12	3.0	9.0	28.0	25.4	12.3	5.5	9.2	36	10.8	5.7	6.8	7	6.2	8.6	7.8		9.8	8.8		4.8	6.1	5.3		4.7	7	6.9	4.4	ND	6.5	3.6	4.2	Т
Total Dissolved Solids (TDS)	276	266	237	304	369	291.0	305.0	448.0	279.0	203.0	142.0	272.0		234	181	192	274		196	216		280	212		205	215	227		227	257	327		228	303	Т	283	
Total Hardness	100	195	154	169	219	103.0	183.0	163.0	226.0	157.0	231.0	177.0		188	169	169	274	122	137	101		175	162		136	140	155		146	143	202		137	181	1	163	1
Total Kjeldahl Nitrogen (TKN)	4.6				4.6				3.67				4.12				11.3									ND				15.4				\neg	1	1	+
Turbidity (NTU units)		400	803	810		9.0	123.0	302.0		250,0	725,0	130,0		220	56	56		30	110	195		120	140		58	11	60		30	0.95	44		27	16		84	
Cvanide	0.13	.00			ND		5.0		ND			0.0	ND	-10			ND					0				ND		-		ND					$\overline{}$		_

																																		1000
	3/04	9/04	3/05	9/05	3/06	11/06	4/07	10/07	4/08	10/08	4/09	9/09	4/10	9/10	5/11	10/11	5/12	10/12	6/13	10/13	6/14	10/14	6/15	11/15	5/16	10/16	3/17	10/17	5/18	9/18	4/19	9/19	MEAN	NYS STD
PARAMETER VOLATILES (ug/L)	,,,,,,	-,	-,	,	1 0, 00	1,	.,	1.0,01	.,	,	.,	-,	.,	-,	,	,	-,	,	-,	,	-,	,	-,	,	-,	,	٠,	,	-,		.,	-,		
Acetone				ND	2.3	2.8	2.8		1.9	3.2	ND	ND	ND	ND	ND	ND	ND		1.4	-	ND	ND	ND	ND	ND	-	ND	ND	1.7	ND	ND	ND	0.60	50.0
Acrylonitrile				ND	ND		ND		ND	ND	ND	ND		ND	ND	ND			ND	,	ND	ND	ND	ND	ND		ND	ND	ND	ND	ND	ND	0.00	5.0
Benzene	0.7	0.84	ND	1.0	1.1	1.1	0.75		0.8	0.3	0.35	0.8		ND	0.83	ND			0.74	-	ND	1.1	0.37	ND	ND	-	ND	ND	1.3	ND	ND	ND	1.26	1.0
Bromobenzene	ND	_	ND	ND	ND	ND		ND	ND	ND			ND	-	ND	ND	ND			-			-				0.00	5.0						
Bromochloromethane	ND	ND	ND ND	ND ND	ND	ND	ND		ND	ND	ND	ND	ND ND	ND	ND	ND	ND		ND	-	ND	ND	ND	ND	ND	-	ND	ND	ND	ND	ND	ND	0.00	5.0
Bromodichloromethane Bromoform	ND ND	ND ND	ND		ND ND	ND ND	ND ND	-	ND ND	ND ND	ND ND	ND ND		ND ND	ND ND	ND ND			ND ND		ND ND	ND ND	ND ND	ND ND	ND ND	-	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	0.00	50.0 50.0
Bromomethane	ND	1	ND	ND	ND	ND	ND	ND	ND	ND			ND		ND	ND	ND	ND	ND	_	ND	ND	ND	ND	ND	ND	0.00	5.0						
2-Butanone	IND	ND	ND	ND	ND	ND	ND	1	ND	ND	ND	ND		ND	ND	ND			ND	÷	ND	ND	ND	ND	ND	-	ND	ND	ND	ND	ND	ND	0.00	50.0
n-Butylbenzene	ND		ND	ND	ND	ND		ND	ND	ND			ND	-	ND	ND	ND	-	-	-	-	-	-	-	-	-	0.00	5.0						
sec-Butvlbenzene	ND		ND	ND	ND	ND		ND	ND	ND	ND		ND	-	ND	ND	ND	-	-	-	-	-	-	-	-	-	0.00	5.0						
tert-Butylbenzene	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND		ND	-	ND	ND	ND	-	-	-	-	-	-	-	-	-	0.01	5.0						
Carbon disulfide				ND	ND	ND	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND		ND	-	ND	ND	ND	ND	ND		ND	ND	ND	ND	ND	ND	0.00	60.0
Carbon tetrachloride	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND		ND		ND	ND	ND	ND	ND		ND	ND	ND	ND	ND	ND	0.00	5.0						
Chlorobenzene	ND	0.36	ND	ND	ND	0.33	0.26		0.29	ND	ND	0.37	ND	ND	ND	ND	ND		0.31		ND	0.56	ND	ND	ND	-	ND	ND	ND	ND	ND	ND	0.08	5.0
Chloroethane	ND	0.38	ND	0.44	0.58	0.56	0.31		0.32	ND	ND	0.25		ND	ND	ND	ND		0.26		ND	ND	ND	ND	ND	-	ND	ND	ND	ND	ND	ND	0.26	5.0
Chloroform	ND		ND	ND	ND	ND		ND	ND	ND	ND		ND	-	ND	ND	ND	ND	ND	-	ND	ND	ND	ND	ND	ND	0.01	7.0						
Chloromethane	ND	₩	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND	-	ND	ND	ND	ND	ND	-	ND	ND	ND	ND	ND	ND	0.75	5.0						
2-Chlorotoluene 4-Chlorotoluene	ND	ND	ND	ND	ND	ND	ND ND	₩	ND	D	ND	ND		ND	ND	ND			ND	_	ND	ND	ND	-	-	-	-	-	-	-	-	-	0.00	5.0
4-Chlorotoluene Dibromochloromethane	ND	ND	ND	ND	ND ND	ND ND	ND ND	₩	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND	<u> </u>	ND	ND ND	ND ND	- ND	- NID	-	- ND	- ND	ND	- ND	- ND	- ND	0.00	5.0
1.2-Dibromo-3-chloropropane	ND ND	├	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND		ND ND	-	ND ND	ND ND	ND ND	ND ND	ND ND	-	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	0.00	50.0 0.04						
1,2-Dibromo-3-Chloropropane 1,2-Dibromoethane	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	\vdash	ND	ND ND	ND ND	ND ND	ND	ND ND	ND	ND ND	ND ND		ND	-	ND ND	ND ND	ND ND	ND ND	ND ND	-	ND	ND	ND ND	ND ND	ND ND	ND ND	0.00	5.0
1,2-Dibromoethane Dibromomethane	ND	ND	ND	ND	ND ND	ND	ND ND	\vdash	ND	ND	ND ND	ND ND	ND	ND ND	ND	ND	ND		ND	H	ND ND	ND ND	ND	ND	ND	÷	ND	ND	ND ND	ND ND	ND ND	ND ND	0.00	5.0
1,2-Dichlorobenzene	ND	\vdash	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND	-	ND	ND	ND	ND	ND	-	ND	ND	ND	ND	ND	ND ND	0.00	3.0						
1.3-Dichlorobenzene	ND	ND	ND			ND	ND	1	ND	ND	ND	ND		ND	ND	ND			ND		ND	ND	ND	ND.	IVD.	-	IND.	IND .	ND	IND	IND	IND	0.00	3.0
1 4-Dichlorobenzene	ND	0.55	ND	ND		0.34	0.38	1		0.28	0.34	0.57		ND	ND	ND			0.48		ND	0.71	0.44	ND	ND	-	ND	ND	ND	ND	ND	ND	0.00	3.0
trans-1.4-Dichloro-2-butene		0.55	1110	ND		ND.	ND		ND	ND	ND	ND		ND	ND	ND			ND	-	ND	ND	ND	ND	ND	-	ND	ND	ND	ND	ND	ND	0.00	5.0
Dichlorodifluoromethane	ND	0.38	ND		0.78	2.1	0.9		0.47	ND	ND	0.31		ND	ND	ND			ND	-	ND	ND	ND	-			9.7		1.4			-	0.30	5.0
1,1-Dichloroethane	1.5	1.4	0.52		2.1	1.8	1.4		1.4	0.8	0.65	1.3		ND	1.4	0.73	ND		0.96		ND	1.5	0.41	ND	ND	-	ND	ND	1.2	ND	ND	ND	1.77	5.0
1,2-Dichloroethane	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND		ND	-	ND	ND	ND	ND	ND		ND	ND	ND	ND	ND	ND	0.15	0.6						
1,1-Dichloroethene	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND		ND		ND	ND	ND	ND	ND	-	ND	ND	ND	ND	ND	ND	0.07	5.0						
cis-1,2-Dichloroethene	1.3	1.6	0.4	2.1	2.5	2.5	1.6		1.9	0.84	0.79	1.8	0.86	ND	1.9	ND	ND		1.8	-	ND	2.6	0.79	ND	ND		ND	ND	3	ND	ND	ND	1.07	5.0
trans-1,2-Dichloroethene	ND	ND		ND	ND	0.34	ND		ND	ND	ND	0.23		ND	ND	ND			ND		ND	ND	ND	ND	ND		ND	ND	ND	ND	ND	ND	0.03	5.0
1,2-Dichloropropane	ND	ND	ND		ND	ND	ND		ND	ND	ND	ND		ND	ND	ND			ND		ND	ND	ND	ND	ND		ND	ND	ND	ND	ND	ND	0.00	1.0
1,3-Dichloropropane	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND		ND		ND	ND	ND						ND	-	-		0.00	5.0						
2,2-Dichloropropane	ND	ND	ND		ND	ND	ND		ND	ND	ND	ND		ND	ND	ND			ND	-	ND	ND	ND	-	-	-	-	-	ND	-	-	-	0.00	5.0
1,1-Dichloropropene	ND	ND		ND	ND	ND	ND	-	ND	ND	ND	ND		ND	ND	ND			ND		ND	ND	ND			-			ND				0.00	5.0
cis-1-3-Dichloropropene	ND	-	ND	ND	ND	ND		ND	ND	ND	ND		ND		ND	ND	ND	ND	ND	-	ND	ND	ND	ND	ND	ND	0.00	0.4 *						
trans-1,3-Dichloropropene Ethylbenzene	ND ND	1	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND		ND ND	-	ND ND	ND ND	ND ND	ND ND	ND ND	-	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	0.00	0.4 *						
2-Hexanone	ND	1	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND	÷	ND	ND	ND	ND	ND	-	ND	ND	ND	ND	ND	ND ND	0.00	50.0						
Hexachlorobutadiene	ND	1	ND	ND	ND	ND		ND	ND	ND			ND	÷	ND	ND	ND	ND	ND	-	ND	ND	ND	ND	ND	ND	0.00	0.5						
lodomethane	ND	IND	IND	ND	ND	ND	ND	1	ND	ND	ND	ND		ND	ND	ND			ND	-	ND	ND	ND	ND.	ND.	-	ND.	ND.	ND.	ND.	ND.	ND.	0.00	5.0
Isopropylbenzene	ND	1	ND	ND	ND	ND		ND	ND	ND			ND		ND	ND	ND	ND.	IVD.	-	IND.	IND .	IND.	IND	IND	IND	0.00	5.0						
p-Isopropyltoluene	ND	1	ND	ND	ND	ND		ND	ND	ND			ND	_	ND	ND	ND	-	-	-	-	_					0.03	5.0						
Methylene chloride	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND		ND	-	ND	ND	ND	ND	ND	-	ND	ND	ND	ND	ND	ND	0.11	5.0						
4-Methyl-2-pentanone	T		1	ND	ND	ND	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND		ND	-	ND	ND	ND	ND	ND	-	ND	ND	ND	ND	ND	ND	0.00	1
Naphthalene	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND		ND	-	ND	ND	ND	-	-	-	-	-	-	-	-	-	0.09	10.0 **						
n-Propylbenzene	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND		ND		ND	ND	ND	-	-	-	-	-	-	-	-	-	0.00	5.0						
Styrene	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND		ND	-	ND	ND	ND	ND	ND		ND	ND	ND	ND	ND	ND	0.00	5.0						
1,1,1,2-Tetrachloroethane	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND		ND	-	ND	ND	ND	ND	ND	-	ND	ND	ND	ND	ND	ND	0.00	5.0						
1,1,2,2-Tetrachloroethane	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND		ND	-	ND	ND	ND	ND	ND	-	ND	ND	ND	ND	ND	ND	0.00	5.0						
Tetrachloroethene	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND		ND	-	ND	ND	ND	ND	ND		ND	ND	ND	ND	ND	ND	0.00	5.0						
Toluene	ND		ND	ND	ND	ND		ND	ND	ND	ND		ND		ND	ND	ND	ND	ND		ND	ND	ND	ND	ND	ND	0.02	5.0						
1,2,3-Trichlorobenzene	ND	$\vdash \vdash$	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND	-	ND	ND	ND	ND	-	-	-	-	-	-	-	-	0.00	5.0						
1,2,4-Trichlorobenzene	ND	$\vdash \vdash$	ND	ND	ND	ND		ND	ND	ND	ND		ND	-	ND	ND	ND	-		-	-	-	-	-	-		0.01	5.0						
1,1,1-Trichloroethane	ND	₩	ND	ND	ND	ND		ND	ND	ND			ND	-	ND	ND	ND	ND	ND	-	ND	ND	ND	ND	ND	ND	0.02	5.0						
1,1,2-Trichloroethane	ND	₩	ND	ND	ND	ND		ND	ND	ND			ND		ND	ND	ND	ND	ND	•	ND	ND	ND	ND	ND	ND	0.00	1.0						
Trichloroethene	ND	0.41		0.35	0.43	0.49	0.41	₩	0.37	ND	ND	0.4		ND	ND	ND			0.43	_	ND	0.57	0.28	ND	ND	-	ND	ND	ND	ND	ND	ND	0.10	5.0
Trichlorofluoromethane	ND	₩	ND	ND	ND	ND		ND	ND	ND			ND	_	ND	ND	ND	ND	ND	-	ND	ND	ND	ND	ND	ND	0.00	5.0						
1,2,3-Trichloropropane	ND	₩	ND	ND	ND	ND	ND	ND	ND	ND			ND	_	ND	ND	ND	ND	ND	-	ND	ND	ND	ND	ND	ND	0.00	0.04						
1,2,4-Trimethylbenzene	ND	ND	ND		ND	ND	ND	├	ND	ND	ND	ND		ND	ND	ND			ND	-	ND	ND	ND		-	-	-	-	-	-	-	-	0.03	5.0
1,3,5-Trimethylbenzene	ND	ND	ND	ND ND	ND ND	ND ND	ND	├	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND			ND ND	<u> </u>	ND ND	ND ND	ND ND	ND.	ND.	-	ND.	ND.	ND.	ND.	ND.	ND.	0.00	5.0
Vinyl acetate Vinyl chloride	0.7	0.74	ND	0.74	1.4	1.5	ND 0.79	\vdash	0.81	ND	0.29	0.49		ND ND	0.75	ND	ND ND		0.7	÷	ND	0.86	ND ND	ND ND	ND	÷	ND	ND ND	ND ND	ND ND	ND ND	ND ND	0.00	2.0
o-Xvlene	ND	+ +	ND	ND	0.29 ND	ND	ND	ND	ND	ND	ND		ND	Ė	ND	ND	ND	ND	ND	-	ND	ND	ND	ND	ND	ND ND	0.00	5.0						
p-Xylene & m-Xylene	ND	ND	ND		ND	ND	ND	t	ND	ND	ND	ND		ND	ND	ND			ND	<u> </u>	ND	ND	ND	ND	ND		ND	ND	ND	ND	ND	ND	0.00	5.0
p repeated as correspond																																		

																																		NYS
	3/04	9/04	3/05	9/05	3/06	11/06	4/07	10/07	4/08	10/08	4/09	9/09	4/10	9/10	5/11	10/11	5/12	10/12 6,	13 10	0/13 6	/14 10	/14 6	/15	11/15	5/16	10/16	3/17	10/17	5/18	9/18	4/19	9/19	MEAN	STD
PARAMETER METALS (mg/L)																																		
Aluminum		1.1		ND		ND			ND		0.251				ND			0	04			ND I	ND		ND			0.853		0.104	0.295		4.32	
Calcium	34.8	34.8	26.3	45.3	52.4	55.9	36.3		46		33.5	44	32.5		53.5	94.2	60	4	0.8	- 5	4.6 5	3.4 2	5.3	70.9	42.3	-	58.2	30.7	57.8	48.2	53.3		43.28	
Iron	16.6	17.2	6.8	1.1	20.8	25.7	21.8		3.8		10	16.8	8.98		7.8	0.12	28	8	15	- 1	0.1 2	0.2 1	1.8	4.68	18.4	-	11.9	2.31	32.8	25.2	27.7		22.64	0.3
Magnesium	6.52	6.8	5.1	9.1	10.5	11.3	7.5		9.4		6.67	8.78			10.9	15.3	12		.8	- 1			5.2		7.48	-	11.7	6.07	11.6	9.51	10.6		9.59	35.0
Manganese	8.31	8.9	6	7.2	12.8	14.3	9.6		13.5		8.55	11.3	7.84		13.7	2	16	1	5.7	- 1	6.1 1	6.3 6	.89	9.5	10.7	-	16.4	2.16	11.6	12.7	14.1	-	10.76	0.3
Potassium	15.7	21.8		23.9	19.7	23.8	18		20.6		19.1	22	15.7		18.4	1.8	18		9	- 1	9.8 1	6.6 1	1.6	13.3	17		21.6	21.6	18.1	17.9	12.2		18.73	
Sodium	5.35	5.9	3.6	6.5	5.3	5.9	3.9		5.1		4.4	4.6	3.8		5	6.4	5.3	4	.3		4.7 4	1.8	2.6	5.9	ND		4.71	4.74	4.28	4.42	3.39		5.98	20.0
PARAMETER (mg/l) TOXIC METALS																																		
Antimony		ND		ND		ND			ND		ND				ND				0	-	- 1	ND I	ND	-	ND	-	ND	ND	-	ND	ND	-	0.00	0.003
Arsenic		0.04		ND		0.043			ND		0.016				ND			0.	007	-	- 0.	026 0.	.026		0.026	-	0.01	0.01	-	0.0413	0.0461	-	0.02	0.025
Barium		0.5		0.59		0.76			0.65		0.45				0.65			0.	661	-	- 0.	681 0	.36	-	0.499		0.76	0.614	-	0.617	0.588	-	0.56	1.0
Beryllium		ND		ND		ND			ND		ND				ND			2E	-04	-	- 1	ND I	ND	-	ND	-	ND	ND	-	ND	ND	-	0.00	
Cadmium	ND	ND	ND	ND	ND	ND	ND		ND		ND	ND	ND		ND	ND	ND	1	ID	-	ND I	ND I	ND	ND	ND	-	8E-05	ND	ND	ND	ND	-	0.00	0.005
Chromium (Total)		0.01		ND		ND			ND		ND				ND			0.	003	-	- 0.	003 0.	.001	-	0.011	-	0.006	ND	-	ND	ND	-	0.01	0.05
Copper		ND		ND		ND			ND		ND				ND			1	ID	-		ND I	ND	-	ND	-	0.003	ND	-	ND	ND	-	0.00	0.2
Lead	ND	ND	ND	ND	ND	ND	ND		ND		ND	ND	ND		ND	ND	0.001	0.	002	-	ND 0.	002 1	ND	ND	0.003		0.003	0.003	0.0025	0.0021	ND	-	0.01	0.025
Mercury		ND		ND		ND			ND		ND				ND			1	ID	-	- 1	ND I	ND	-	ND	-	ND	2E-04	-	0.0001	ND	-	0.00	0.0007
Nickel		ND		ND		ND			ND		ND				ND			0.)12	-	- 0.	011 0.	.005	-	ND	-	0.013	0.005	-	0.0048	0.0056	-	0.02	0.1
Selenium	ND	ND	ND	ND	ND	ND	ND		ND		ND	ND			ND			0.	007	-	- 0.	006 0.	800	-	ND	-	ND	ND	-	ND	ND	-	0.00	0.01
Silver	ND	ND	ND	ND	ND	ND	ND		ND		ND	ND			ND			1	ID	-	- 0.	003 0.	.002	-	ND	-	ND	ND	-	ND	0.0023	-	0.01	0.05
Thallium		ND		ND		ND			ND		ND				ND			1	ID	-	. 1	ND I	ND		0.014	-	ND	ND		0.0145	0.0097	-	0.01	0.0005
Zinc		ND		ND		0.039			0.02		0.032				0.038			0.	063	-	- 0.	036 0.	.015	-	ND	-	0.01	0.008	-	0.0078	ND	-	0.03	2.0
ARAMETER (mg/l) LEACHATE INDICATORS																																		
Alkalinity	180	144	101	203	218	263	96.7		121		145	188	128		252	328	240	2	09	- 2	50 2	65 1	20	160	193		287	243	206	249	221		201.6	
Biochemical Oxygen Demand		ND		ND		2.8			4.4		3.2				5.7		12		5	-	- 1	0.4	2.1	4.9	6	-	7.3	ND	8.5	8.3	10.1	-	5.7	
Boron		0.07		0.08		0.073			0.05		0.057				0.057				08		- 0	.06 0	.07		ND		0.061	0.082	٠	0.0865	0.0457		0.0	1.0
Chemical Oxygen Demand	13	26.2	ND	18.8	17.9	20.1	16.6		19.2		ND	19.9	13.9		ND	10.5	24	1	1.8	- 1	8.1 2	0.8 1	0.3	19.1	-	-	50.5	111	54.3	50.2	43.3	-	25.8	
Chromium (Hexavalent)		ND		ND		ND			ND		ND				ND				ID			ND I	ND				ND	•	٠	ND	ND		0.6	0.05
Chloride	3.7	2.7	1.4	5	3.5	3.8	3.3		2.7		2	2.39	1.83		4.3	9.1	4.26		.9		3.1		ND	2.8	2.28	-	5	4.6	3.5	4.6	2.7	-	5.4	250
Color (PCU units)		50		100		250			25		60				200			1	30	-	- 2	80 1	20	-	10		15	-		75	100	-	65.7	15
Nitrate-Nitrite	0.03	ND	0.47	ND	ND	ND	ND		ND		ND	ND			ND	ND			ID		ND I	ND I	ND	ND	ND		0.044	0.58	0.073	0.07	ND		0.2	10
Nitrogen-Ammonia	2.1	1.1	0.91	1.7	1.2	1.3	1.6		1.5		1.54	1.72			1.3	ND	2.38	1	49	-	1.3 2		.72	1.86	2.22	-	1.8	1.6	2.1	1.2	2.4	-	1.8	2.0
	ND	ND	ND	ND	ND	0.007	ND		ND		ND	ND	ND		ND	ND	ND		ID	- 0.	005 0.	011	ND	ND	0.006		0.007	0.014	0.0146	0.0095	0.0095		0.0	0.001
Sulfate	11	12	12.8	11	8.8	6.2	10		8.5		12	9.37	11.5		8	6.8	ND	6	.9		5.6	.9	7.7	7.7	6.37		5.9	5.2	4.6	24.6	5.1		11.9	250
Total Organic Carbon (TOC)	4	7.1	1.5	4.6	5	5.4	5.5			11.9	3.7	4.2	1.7		4.8	ND	7		.4	- 1	5.3	7.2	4.6	5.4	4.8	-	7	5.5	18.9	5.7	6.4	-	7.4	
	208	213	107	248	336	231	351		244		184	221	178		265	309	350		42				41	259	207	-	272	448	296	246	254	-	242.6	500
Total Hardness	114	115	86.7	150	174	186	122		154		110	150	110		179	298	200	1	38	- 1	85 1	79 8	4.6	235	140	-	220	96	200	187	170	-	154.3	
Total Kjeldahl Nitrogen (TKN)		2.9		2		1.8			1.7		1.76				2.2		2.23	2	.1		- 2	.51 1	.81	-	2.27	-	2.4	6	2.7	0.43	2.2	-	2.8	
	81	63.4	118	44.6	40.3	87	33.2		5.9		23	4	0	308	3	6.9	11	-	.6	. 1	2.5 1	3.8 1	5.2	21.2	15.4	-	3	41	3.5	10.5	3.5	-	132.8	5.0
Turbidity (NTU units)	01	03.4	110								ND																							0.2

 1																																		
	9/90 12/90	3/91 6/91	9/91	12/91 3,	/92 6/	/92 9/9	2 12/9	92 3/93	6/93	9/93	12/93	3/94	6/94	9/94	12/94	/95	6/95	9/95 12/	95 4/96	9/96	3/97	9/97	3/98 9/98	3/99	9/99	3/00	9/00	3/01	9/01	3/02	9/02	3/03	9/03	3/04
PARAMETER VOLATILES (ug/L) Acetone									_														_	_										
Acrylonitrile							-1-	_	+						-				-					+	1 1				-					
Benzene	ND	ND	ND																															
Bromobenzene	ND	ND	ND																															
Bromochloromethane	ND	ND	ND																															\equiv
	0.40	ND	ND																															
Bromoform	ND	ND	ND																															
Bromomethane	ND	ND	ND										-	-	-		1					1			-									
2-Butanone	110		N/D										-	-	-		1					-			-				_					
n-Butylbenzene sec-Butylbenzene	ND ND	ND ND	ND ND					_	+	-		-			-	-+	+					+		+	1		-	-						
tert-Butylbenzene	ND	ND ND	ND	-	_	-	+	+	+	1			-+	-+	-	-+		_	+-	-			_	+	1		-		-+		_	-	-	
Carbon disulfide	IND	ND	ND	_	_	_	+	+	+	1			-	-	-	-+			+					+					-			-	_	_
Carbon tetrachloride	ND	ND	ND																															
Chlorobenzene	ND	ND	ND																															
Chloroethane	ND	ND	ND																															
Chloroform	0.91	ND	ND																															
Chloromethane	ND	ND	ND]]							$ldsymbol{\square}$				oxdot			Ţ						
2-Chlorotoluene	ND	ND	ND				_	_		ļ		ļ								1	\sqcup													,
4-Chlorotoluene	ND	ND ND	ND					_	+	-		\vdash								1	\vdash			+	\vdash			<u>}</u>		-				
Dibromochloromethane	ND	ND	ND					_	+	-		\vdash								1	\vdash			+	\vdash			<u>}</u>		-				
1,2-Dibromo-3-chloropropane 1,2-Dibromoethane	ND ND	ND ND	ND ND	—⊢				+	+-	├	-	\vdash				\rightarrow	}	-+	_	+	\vdash			+-	+			 +	\rightarrow	+				
Dibromoethane	ND ND	ND ND	ND		_	-		+	+	1	\vdash	 	-+	-+		-+			-	-	+ +			+	+				-+		-+	-+	-	_
1,2-Dichlorobenzene	ND ND	ND ND	ND				+-	+	+-	+	\vdash	\vdash	-+	-+		\rightarrow		-+	_	+	\vdash	— h		+-	+				\rightarrow		-+			
1,3-Dichlorobenzene	ND ND	ND ND	ND	_	_	_	+	_	+	1			-	-	-	_			+					+					-			-	_	_
1,4-Dichlorobenzene	ND	ND ND	ND	_	_	_	+	+	+	1			-	-	-	_			+					+					-			-	_	_
trans-1,4-Dichloro-2-butene																																		
Dichlorodifluoromethane	ND	ND	ND																															
1,1-Dichloroethane	1.11	2.0	1.0																															
1,2-Dichloroethane	ND	ND	ND																															
1,1-Dichloroethene	ND	ND	ND																															
cis-1,2-Dichloroethene	ND	ND	ND					_																										
trans-1,2-Dichloroethene 1,2-Dichloropropane	ND ND	ND ND	ND ND			_		_	+	<u> </u>						-				_				+					-			_	_	
1.3-Dichloropropane	ND ND	ND ND	ND			_	_	-	+			-				-+				+	-		-	+	1				-	_	-			
2,2-Dichloropropane	ND	ND ND	ND	-	_	-	+	+	+	1			-+	-+	-	-+		_	+-	-			_	+	1		-		-+		_	-	-	
1,1-Dichloropropene	ND ND	ND ND	ND	_	_	_	+	+	+	1			-	-	-	-+			+					+					-			-	_	_
cis-1-3-Dichloropropene	ND	ND.	ND																_															
trans-1,3-Dichloropropene	ND	ND	ND																															
Ethylbenzene	ND	ND	ND																															
2-Hexanone																																		
Hexachlorobutadiene	ND	ND	ND																															
lodomethane																																		
Isopropylbenzene	ND	ND	ND																															
p-Isopropyltoluene	ND 0.75	ND 2.0	ND ND					_	+	-		\vdash								1	\vdash			+	\vdash			<u>}</u>		-				
Methylene chloride 4-Methyl-2-pentanone	0.75	2.0	ND					+	+-	├	-	\vdash				\rightarrow			_	+	\vdash			+-	\vdash				-+	-				
4-Methyl-2-pentanone Naphthalene	ND	ND	ND			_	-1-	+	+	1	\vdash					\rightarrow				1	1 1			+	1					-	-+			_
n-Propylbenzene	ND ND	ND ND	ND				+	+	+-	 		\vdash	-+	-+	-+	\dashv		-+	_	+	\vdash	— h		+-	1 1				\rightarrow		-+			
Styrene	ND	ND ND	ND				-1-		1	1						-				1	t d			1	1 1			- t	\rightarrow					
1,1,1,2-Tetrachloroethane	ND	ND	ND						1	1						t				1				1			- 1	t				f		_
1,1,2,2-Tetrachloroethane	ND	ND	ND																															=
Tetrachloroethene	ND	ND	ND																															
Toluene	ND	ND	ND																															
1,2,3-Trichlorobenzene	ND	ND	ND																															
1,2,4-Trichlorobenzene	ND	ND	ND				_		1	1		$oxed{oxed}$				[└			1	↓			[]	
1,1,1-Trichloroethane	ND	ND	ND						4	<u> </u>	—	\sqcup				_				4	1			4	1 1									
1,1,2-Trichloroethane	ND	ND	ND						4	<u> </u>	—	\sqcup				_				4	1			4	1 1									
Trichloroethene	ND ND	ND ND	ND					+	+	1	\vdash	\vdash				-+				+	1			+	1 1						-+		-	
Trichlorofluoromethane 1,2,3-Trichloropropane	ND ND	ND ND	ND ND					+	+	1	\vdash	\vdash				-+				+	1			+	1 1						-+		-	
1,2,3-1richioropropane 1,2,4-Trimethylbenzene	ND ND	ND ND	ND					+	+	1	\vdash	$\vdash \vdash$				-+				+	\vdash			+	\vdash							-+		
1,3,5-Trimethylbenzene	.,0	ND ND	ND			_		_	+							\dashv		_		1				+					-+				_	_
Vinyl acetate		IND	ND			_		_	+							\dashv		_		1				+					-+				_	_
Vinyl chloride	ND	ND	ND				-1-		1	1						-				1	1 1			1	1 1			- t	\rightarrow					
							_		+	_	-	-	_	_		_	-+	-		+	-	_	_	+	+			_	_			-+	-	-
o-Xylene	ND	1 1 1	ND																															

	9/90	12/90	3/91	6/91	9/91	12/91	3/92	6/92	9/92	12/92	3/93	6/93	9/93	12/03	3/94	6/94	9/9/	12/94	3/95	6/95	9/95	12/95	4/96	9/96	3/97	9/97	3/98	9/98	3/99	1/99 3	/00 0	2/00 3	3/01	9/01	3/02	9/02	3/03	9/0
PARAMETER METALS (mg/L)	3/30	12/30	3/31	0/31	3/31	12/91	3/32	0/32	3/32	12/32	3/33	0/33	3/33	12/3.	1 3/37	0/34	3/37	112/ 37	3/33	0/33	3/33	12/33	7/30	3/30	3/31	3/31	3/30	3/30	3/33 3	1/33 3	700 3	7,00 3	3/01	3/01	3/02	3/02	3/03	3/0.
Aluminum	16.8			1	1.9	1		T I	1				1	1	1		1	1		1			1	1	1		Т										- 1	-
Calcium		117	102	100	93.8	88.2	1						-	+	 		_	 		_	\vdash		 	_	-		-	-		-+	-+	-+	-+	-				$\overline{}$
Iron					2.8								-	+	 		_	 		_	\vdash		 	_	-		-	-		-+	-+	-+	-+	-				$\overline{}$
Magnesium					15.6				-					+	+			+					-	_	-		-+	-+	-	-+	-+	-+	-+	_	_			$\overline{}$
Manganese					0.27		-		-					+	+			+					-	_	-		-+	-+	-	-+	-+	-+	-+	_	_			$\overline{}$
	5.3			1.5			-		-				-	1	+			+			-		-	_	-			-			-+		-+	-				-
Potassium Sodium				5.2			_	_						-	1		-	1		-					_	_		_		_			-+	_				—
	14.8	4	4.8	5.2	4./	4.5								<u> </u>	<u> </u>			<u> </u>																				_
ARAMETER (mg/l) TOXIC METALS							_																															_
Antimony	ND				ND																																	_
Arsenic	ND				ND																																	_
Barium	0.21				0.1																																	
Beryllium					ND																																	
Cadmium		ND	<dl< td=""><td>ND</td><td></td><td>ND</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></dl<>	ND		ND																																
Chromium (Total)	<dl< td=""><td></td><td></td><td></td><td>ND</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></dl<>				ND																																	
Copper	0.03				ND																																	
Lead	0.06	ND	0.01	ND	ND	0.01																																$\overline{}$
Mercury	0.01	<dl< td=""><td>ND</td><td>ND</td><td>ND</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>$\overline{}$</td></dl<>	ND	ND	ND																																	$\overline{}$
Nickel	0.39				ND																																	$\overline{}$
Selenium	0.05	ND	0.01	ND	ND	ND																																-
Silver	ND				ND																																	-
Thallium	ND				ND																																	$\overline{}$
Zinc	0.08				0.1									1									1						_		-			_				-
METER (mg/l) LEACHATE INDICATO																	<u> </u>			<u> </u>	<u> </u>																	
Alkalinity		300	284	295	315	356		1	1				1	1	1		1	1		1			1	1	1		- 1										- 1	-
Biochemical Oxygen Demand	<dl< td=""><td>300</td><td>201</td><td>233</td><td>2.0</td><td>330</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>1</td><td>1</td><td></td><td></td><td>1</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>- 1</td><td></td><td></td><td></td><td>_ h</td><td>- 1</td><td>_ t</td><td></td><td></td><td></td><td></td><td>$\overline{}$</td></dl<>	300	201	233	2.0	330								1	1			1									- 1				_ h	- 1	_ t					$\overline{}$
Boron	ND				ND									1	1			1									- 1				_ h	- 1	_ t					$\overline{}$
Chemical Oxygen Demand	15	20	∠DI	ND		ND	1	-	-			_	_	1	 		_	 		_	+ +		1		-					-+	-+		_	-		_		_
Chromium (Hexavalent)	<dl< td=""><td>20</td><td>\DL</td><td>IND</td><td>ND</td><td>IND</td><td>1</td><td></td><td></td><td></td><td></td><td></td><td>-</td><td>+</td><td>+</td><td></td><td>_</td><td>+</td><td></td><td>_</td><td>\vdash</td><td></td><td> </td><td>_</td><td>_</td><td></td><td>-</td><td>-</td><td></td><td>-+</td><td>-+</td><td>-+</td><td>-+</td><td>-</td><td></td><td></td><td></td><td>$\overline{}$</td></dl<>	20	\DL	IND	ND	IND	1						-	+	+		_	+		_	\vdash		 	_	_		-	-		-+	-+	-+	-+	-				$\overline{}$
Chloride		40	20.1	30	21.0	20	-	_	_				-	+	+		-	+		-	-		-	_	-	_			_		-+		_	_				-
Color (PCU units)	5	40	39.1	30	ND	30	-		-				-	1	+			+			-		-	_	-			-			-+		-+	-				-
	<dl< td=""><td>-</td><td></td><td>ND</td><td></td><td>ND</td><td>-</td><td></td><td>-</td><td></td><td></td><td></td><td>-</td><td>1</td><td>+</td><td></td><td></td><td>+</td><td></td><td></td><td>-</td><td></td><td>-</td><td>_</td><td>-</td><td></td><td></td><td>-</td><td></td><td></td><td>-+</td><td></td><td>-+</td><td>-</td><td></td><td></td><td></td><td>-</td></dl<>	-		ND		ND	-		-				-	1	+			+			-		-	_	-			-			-+		-+	-				-
Nitrate-Nitrite							_	_						-	1		-	1		-			-		_	_		_		_			-+	_				_
Nitrogen-Ammonia	<dl< td=""><td></td><td></td><td>0.2</td><td></td><td></td><td>_</td><td>_</td><td></td><td></td><td></td><td></td><td></td><td>-</td><td>1</td><td></td><td>-</td><td>1</td><td></td><td>-</td><td></td><td></td><td>-</td><td></td><td>_</td><td>_</td><td></td><td>_</td><td></td><td>_</td><td></td><td>_</td><td>-+</td><td>_</td><td></td><td></td><td></td><td>_</td></dl<>			0.2			_	_						-	1		-	1		-			-		_	_		_		_		_	-+	_				_
PhenoIs	0.002				0.01									1	1			1																				_
Sulfate	14		15.4			21																																
Total Organic Carbon (TOC)	4.1		4		2.0																																	—
Total Dissolved Solids (TDS)				388																																		
Total Hardness		357	326	342		279																																
Total Kjeldahl Nitrogen (TKN)	34				0.9																																	
Turbidity (NTU units)		126	83	200	111																																	\equiv
	<dl< td=""><td></td><td></td><td></td><td>ND</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>_</td></dl<>				ND																																	_

																																	NYS
	9/04	3/05	9/05	3/06	11/0	6 4/0	7 10/0	7 4/08	10/08	4/09	9/09	4/10	9/10	5/11	10/11	5/12	10/12	6/13	10/13	6/14	10/14	6/15	11/15	5/16	10/16	3/17	10/17	5/18	9/18	4/19	9/19	MEAN	
PARAMETER VOLATILES (ug/L)																																	
Acetone Acrylonitrile		<u> </u>	ND ND						ND ND	ND ND	ND ND	ND ND	ND ND		ND ND	ND ND	ND ND	1.4 ND	ND ND	1.3 ND	ND ND	ND ND	ND ND	0.40	50.0								
Acrylonitrile Benzene			ND	ND					ND	ND	ND	ND	ND	ND	1.1	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	0.00	1.0
Bromohenzene			ND	ND					ND	ND	ND	ND	ND	-	-	-	-	-	- IND	-	-	- IND	0.00	5.0									
Bromochloromethane			ND						ND	ND	ND	ND	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.00	5.0
Bromodichloromethane			ND	ND					ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.01	50.0									
Bromoform			ND						ND	ND		ND	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.00	50.0
Bromomethane 2-Butanone		-	ND						ND	ND	ND	ND	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.00	5.0
2-Butanone n-Butvlbenzene		-	ND ND	ND ND				ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.00	50.0										
sec-Butylbenzene			ND	ND				ND	ND	ND	ND	ND	-	-	-	-	-	-	-	-	-	0.00	5.0										
tert-Butylbenzene			ND						ND	ND		ND	ND		ND	ND	ND	ND	ND	ND	ND	ND	-		-	-	-	-	-	-		0.00	5.0
Carbon disulfide			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.00	60.0
Carbon tetrachloride			ND	ND				ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.00	5.0										
Chlorobenzene			ND					ND	ND	ND		ND	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.00	5.0
Chloroethane		-	ND						ND	ND	ND	0.23	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.04	5.0
Chloroform Chloromethane	-		ND ND					ND ND	ND ND	ND ND		ND ND	ND ND		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	0.03	7.0 5.0
2-Chlorotoluene	t		ND	ND				ND	ND	ND	ND	ND	-		-	-	-	-	-	-	-	0.00	5.0										
4-Chlorotoluene			ND	ND				ND	ND	ND	ND	ND	-	-	-	-	-	-	-	-	-	0.00	5.0										
Dibromochloromethane			ND	ND				ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.00	50.0										
1,2-Dibromo-3-chloropropane			ND	ND				ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.00	0.04										
1,2-Dibromoethane	-	!	ND	ND				ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.00	5.0										
Dibromomethane 1.2-Dichlorobenzene	<u> </u>	-	ND ND	ND ND				ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	0.00	5.0										
1.3-Dichlorobenzene	 	 	ND	ND				ND ND	ND	ND ND	ND ND	ND	ND	ND ND	- 100	- ND	-	-	- 140	ND ND	- 140	- 140	-	0.00	3.0								
1,4-Dichlorobenzene			ND	ND				ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.00	3.0										
trans-1,4-Dichloro-2-butene			ND	ND				ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.00	5.0										
Dichlorodifluoromethane			ND	ND				ND	0.2	ND	ND	ND	ND		ND	ND	ND	ND	ND	ND	ND	ND		-				ND				0.01	5.0
1,1-Dichloroethane			1.5					1.2	1.2	1.1	1.2	1.1	1.1	0.72		ND	ND	0.66	ND	ND	0.79	0.89	ND	ND	ND	ND	ND	1.1	ND	ND	ND	0.74	5.0
1,2-Dichloroethane			ND	ND					ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.00	0.6									
1,1-Dichloroethene cis-1,2-Dichloroethene	-	-	ND ND	ND ND					ND ND	ND ND	ND ND	ND ND	ND ND		ND 23	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	0.00	5.0
trans-1 2-Dichloroethene			ND						ND	ND	ND	ND	ND		ND.	ND	ND	ND ND	ND	ND	ND	ND	ND	0.07	5.0								
1.2-Dichloropropane			ND						ND	ND	ND	ND	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.00	1.0
1,3-Dichloropropane			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	-	-	-	-	-	ND	-	-	-	0.00	5.0
2,2-Dichloropropane			ND						ND	ND	ND	ND	ND			ND	ND	ND	ND	ND	ND	ND				•		ND				0.00	5.0
1,1-Dichloropropene			ND						ND	ND	ND	ND	ND			ND	ND	ND	ND	ND	ND	ND	-	-	-	-	-	ND	-	-	-	0.00	5.0
cis-1-3-Dichloropropene		-	ND ND	.,0					ND ND	ND ND	ND ND	ND ND	ND ND			ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	0.00	0.4
trans-1,3-Dichloropropene Ethylbenzene		-	ND						ND	ND	ND	ND	ND		ND	ND	ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	0.00	5.0
2-Hexanone			ND						ND	ND	ND	ND	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.00	50.0
Hexachlorobutadiene			ND	ND	ND			ND	ND	ND	ND	ND	-	-	-	-	-	-	-	-	-	0.00	0.5										
Iodomethane			ND						ND	ND	ND	ND	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.00	5.0
Isopropylbenzene			ND						ND	ND	ND	ND	ND		ND	ND	ND	ND	ND	ND	ND	ND	-	-		-	-	-		-	-	0.00	5.0
p-Isopropyltoluene	<u> </u>		ND						ND	ND	ND	ND	ND		ND	ND	ND	ND	ND	ND	ND	ND	- ND	- ND	- ND	- ND	- ND	- ND	- ND	ND	- ND	0.00	5.0
Methylene chloride 4-Methyl-2-pentanone	-	-	ND ND						ND ND	ND ND	ND ND	ND ND	ND ND		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	0.09	5.0
Naphthalene	-		ND						ND	ND	ND	ND	ND		ND	ND	ND	ND	ND	ND	ND	ND	-	-	-	-	-	-	-	-	-	0.00	10.0
n-Propylbenzene	t		ND						ND	ND		ND	ND			ND	ND	ND	ND	ND	ND	ND	-	-	-	-	† -	-	-	-	-	0.00	5.0
Styrene			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.00	5.0
1,1,1,2-Tetrachloroethane			ND						ND	ND		ND	ND			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.00	5.0
1,1,2,2-Tetrachloroethane	<u> </u>	!	ND					ND	ND	ND		ND	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.00	5.0
Tetrachloroethene Toluene	1	-	ND ND						ND ND	ND ND		ND ND	ND ND		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	0.00	5.0
1,2,3-Trichlorobenzene	1	1	ND						ND	ND		ND	ND		ND ND	ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND -	ND -	ND -	ND -	ND -	ND -	ND -	ND -	0.00	5.0
1,2,4-Trichlorobenzene	1	1	ND						ND	ND		ND	ND		ND	ND	ND	ND	ND	ND	ND	ND	-	-	-	-	-	-	-	-	-	0.00	5.0
1,1,1-Trichloroethane		L	ND						ND	ND		ND	ND			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.00	5.0
1,1,2-Trichloroethane			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.00	1.0
Trichloroethene			ND						ND	ND		ND	ND			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.01	5.0
Trichlorofluoromethane	ļ		ND						ND	ND		ND	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.00	5.0
1,2,3-Trichloropropane	-	!	ND	ND				ND	ND	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.00	0.04						
1,2,4-Trimethylbenzene 1,3,5-Trimethylbenzene	-	-	ND ND	ND ND				ND ND	ND ND	ND ND	ND ND	ND ND	ND ND		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	-	-				-	-		-	0.00	5.0
Vinyl acetate	-		ND	ND				ND ND	ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND.	ND	ND	ND	ND	ND.	ND	ND.	0.00	5.0						
Vinyl acetate Vinyl chloride	1	1	ND	ND					ND	ND	ND	ND	ND		0.69	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.02	2.0
*	1		ND	ND				ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.00	5.0										
o-Xylene								ND			ND		ND			ND	ND		ND	ND	ND	ND	ND	0.00	5.0								

																																	NYS
	9/04	3/05	9/05	3/06	11/06	4/07	10/07	4/08	10/08	4/09	9/09	4/10	9/10	5/11	10/11	5/12	10/12	6/13	10/13	6/14	10/14	6/15	11/15	5/16	10/16	3/17	10/17	5/18	9/18	4/19	9/19	MEAN	STD
PARAMETER METALS (mg/L)																																	
Aluminum			ND		ND		ND	ND		ND			ND	ND			ND	ND	0		ND	ND		ND	ND	ND	ND		ND	ND		0.78	
Calcium			103.0	91.0	97.3	96.5	98.2	94.7	97.9	97.3	96.3	97	100	90.9	52.3	98	96	84.2	94.6	91.6	92.4	102	95.8	102	105	96.6	96.6	105	97.8	115	104	98.23	
Iron			ND	0.063	ND	ND	0.092	ND	0.081	0.177	ND	ND	0.184	ND	2.3	ND	ND	0.03	ND	0.17	0.08	ND	ND	ND	ND	0.0147	0.07	0.0643	0.147	0.0392	0.0303	1.23	0.3
Magnesium			16.4	14.9	15.7	15.5	15.4	14.9	15.3	15.5	15.3	15.3	15.4	14.8	10.9	16	16	14	15.9	15.5	16.4	16.7	15.8	15	16.9	15.4	15.3	16.7	15.7	18.4	17	15.89	35.0
Manganese			0.2	1.5	1.6	1.5	2.2	1.7	0.9	2.65	1.01	1.21	0.633	1.2	9.3	0.89	0.44	1.1	2.04	2.83	1.35	0.945	0.571	0.928	0.464	0.32	6.75	1.20	2.95	0.48	0.70	1.47	0.3
Potassium			1.6	1.5	1.5	1.6	1.6	1.4	1.5	1.57	1.39	1.48	1.83	1.5	24.3	1.5	1.5	1.4	ND	ND	1.4	1.6	ND	ND	ND	2.04	2.57	1.73	1.79	ND	1.68	2.16	
Sodium			6.7	6.3	6.9	7.7	6.4	6.1	6.3	6.5	6.1	6	6.8	6	5.9	6.6	ND	5.8	6.4	6.5	6.3	6.4	6.9	6.62	7.44	8.48	6.53	6.74	6.24	7.14	6.71	6.36	20.0
PARAMETER (mg/l) TOXIC METALS																							•										
Antimony			ND		ND		ND	ND		ND			ND	ND			ND	ND	-	-	ND	ND		ND	ND	ND	ND	-	ND	ND	-	0.00	0.003
Arsenic			ND		ND		ND	ND		ND			ND	ND			ND	ND	-		ND	ND	-	ND	ND	ND	ND	-	ND	ND		0.00	0.025
Barium			0.12		0.1		0.16	0.14		0.186			0.101	0.11			ND	0.104		-	0.132	0.128	-	ND	ND	0.0904	0.239	-	0.14	0.0741	-	0.09	1.0
Beryllium			ND		ND		ND	ND		ND			ND	ND				0.0002			ND	ND	-	ND	ND	ND	ND		ND	ND	-	0.00	
Cadmium			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.00	0.005
Chromium (Total)			ND		ND		ND	ND		0.006			0.005	ND			ND	0.0001			0.001	ND		ND	ND	ND	ND		ND	ND		0.00	0.05
Copper			ND		ND		ND	ND		ND			ND	ND			ND	0.003		-	ND	ND		ND	ND	0.0026	ND		ND	ND		0.00	0.2
Lead			DN	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.009	ND	ND	0.002	ND	ND	ND	ND	0.005	0.003	ND	0.0039	ND	0.0021	0.0036	0.0025	ND	ND	ND	0.00	0.025
Mercury			ND		ND		ND	ND		ND			ND	ND			ND	ND			ND	ND		ND	ND	ND	0.0001		0.0001	0.0001		0.00	0.0007
Nickel			ND		ND		ND	ND		ND			ND	ND			ND	ND			ND	ND		ND	ND	0.0016	0.0015		0.0011	ND		0.02	0.1
Selenium			ND		ND		ND	ND		ND			ND	ND			ND	ND			0.003	0.003		ND	ND	ND	ND		ND	ND		0.00	0.0
Silver			ND		ND		ND	ND		ND			ND	ND			ND	ND			ND	ND		ND	ND	ND	ND		ND	ND		0.00	0.05
Thallium			DN		ND		ND	ND		ND			ND	ND			ND	ND	0		ND	ND		ND	ND	ND	0.0052		ND	ND		0.00	0.0005
Zinc			ND		0.015		0.028	0.011		0.012			0.034	ND			0.012	0.011			0.011	ND		0.0276	ND	0.0237	0.0495		0.0292	0.0227		0.02	2.0
RAMETER (mg/l) LEACHATE INDICATORS																																	
Alkalinity			282.0	484	264	311	401	279	246		293	350	307		252	270		299	320	302	320	321	320	307	310	314	292	286	314	327	313	310.0	
Biochemical Oxygen Demand			ND		ND		ND	ND		ND			ND	ND		ND	ND	ND		-	ND	ND	ND	ND	ND	1.0	1.0	ND	ND	1.0	1.0	0.2	
Boron			ND		ND		ND	ND		ND			0.02	0.021			ND	ND			0.03	0.05		ND	ND	0.0166	0.0187		0.0136	ND		0.0	1.0
Chemical Oxygen Demand			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	18.7	ND	ND	11.4	6.3	ND	11.1	12.8	9.1		ND	15.1	18.2	25.7	15.5	ND	ND	5.1	
Chromium (Hexavalent)			ND		ND		ND	ND		ND			ND	ND			ND	ND			ND	ND			ND	0.0033	-	•	ND	ND		0.0	0.05
Chloride			14.7	14.3	13.2	12.2	12.3	10.5	11.9	12	12	10.2	9.72	10.3	4	9.18	7.69	7.9	7.6	6.8	6.3	7.7	6.1	5.82	7.1	7.5	5.7	5.4	6.3	5.7	5.9	13.1	250
Color (PCU units)			13.0		15.0		50	5		ND			0	17.5			ND	8		-	12	8		5	5	5			15	10		7.2	15.0
Nitrate-Nitrite			ND	ND	ND	0.092		ND	ND	ND	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.023	0.044	ND	ND	ND	0.083	0.0	10.0
Nitrogen-Ammonia			ND	ND	ND	ND	ND	ND	ND	ND	ND		ND	ND	1.5	ND	ND	ND	ND	ND	ND	0.059	ND	ND	ND	0.028	0.038	0.03	0.089	0.066	0.21	0.1	2.0
Phenois			ND	ND	ND	0.01	ND	0.0098	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.252	ND	ND	0.0031	0.0011	0.0034	ND	0.0054	0.004	0.0085	0.001
Sulfate			8.0	7.3	6	8	8.2	5.5	6.7	6.8	6.82	7.41	6.1	7.9	7.9	6.2	ND	6.6	6.4	7.2	6.3	7.8	7.4	6.86	8.3	8.7	6.5	6.8	9.3	6.8	8.3	8.1	250
Total Organic Carbon (TOC)			1.1	ND	ND	2	1.1	1.3	1.6	ND	2.3	ND	1.4	1.3	1.8	ND	ND	1.4	1.5	1.3	1.4	1.4	577	1.35	2.7	ND	1.6	13.5	1.7	1.6	0.7	18.4	
Total Dissolved Solids (TDS)			341.0	344	325	326		327	326		321	319	259	287	254	340	370	340	329	290	330	308	325	334	338	349	342	354	323	310	302	336.6	500
Total Hardness			ND	288	308	305		298	307		300	310	310		176		300	268	302	293	298	324	318	340	310	280	310	340	273	280	300	297.1	
Total Kjeldahl Nitrogen (TKN)			ND		ND		ND	ND		ND			ND	ND		ND	ND	ND	-	-	0.24	0.28	-	0.13	ND	0.21	0.15	ND	2.8	ND	ND	1.5	
Turbidity (NTU units)			62.2	4.2	5	11.3	15.5	2.4	4.9	1	0	1	12	1	8.2	3.4	15.3	2.2	1.8	10	3.9	17.2	8.1	3.8	5.8	24.7	5.86	16.7	25.1	13.5	9.04	26.1	5.0
Cvanide			ND		ND	1	ND	ND		ND			ND	ND			ND	ND			ND	ND	-		ND	ND	-	-	ND	0.0024	-	0.0	0.2

⁽Shade) = Analyte reported at or above New York State standards (amended March and June 1998). These standard were used beginning with the 9/98 sampling event. Exceedances noted prior to this event reflect prior standards.

* = Applies to the sum of cis and trans-1,3-dichloropropene.

** = Guidance Value.

ND values are included in calculation of Mean and are considered equal to zero.

((Blank) or * * - Not Analyzed.

ND = Not Detected.

J = Estimated.

<DL = Detected below method detection limit.

B = Analyte was detected in method blank.

	0.000	2/00	5 (0.1			2 (02	6 (00	0 (02	12 (02	. (02	6 (02	0 (02	12/93 3/94		0 (0.4	12/04		/OF 0	(0.5	2 (0.5)	105	0 (05	2 (0.7	0 (0.0	2 (00	0.100	2 (22	0.100	2/00	0.100	2/01	0.01	2 (02	0 (00	2 (02	0 (02
PARAMETER VOLATILES (ug/L)	9/90 1	2/90 3/91	6/91	9/91	12/91	3/92	6/92	9/92	12/92	3/93	6/93	9/93	12/93 3/94	6/94	9/94	12/94 3,	95 6,	/95 9	/95 1.	2/95 4	/96	9/96	3/9/	9/9/	3/98	9/98	3/99	9/99	3/00	9/00	3/01	9/01	3/02	9/02	3/03	9/03
Acetone Acetone			T	Г		П	1		T	_			1	т т	1						_	1		Т				1			Ι			1	-	_
Acrylonitrile	+ +		1								-	-		+ +			_		_	_															-+	-
Benzene	0.08		3.0	2.0			i	3.0		3.0		4	4		3		1				4	3	3	3	4	1	3	5	4	3	3	1.2	3.1	1.6	2	2.5
Bromobenzene	ND		ND					ND		ND		ND	ND		ND	1	ID				ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND			ND
Bromochloromethane	ND		ND					ND		ND		ND	ND		ND	١	ID				ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND
Bromodichloromethane	ND			ND				ND		ND		ND																								ND
Bromoform	ND			ND				ND		ND		ND																								ND
Bromomethane 2-Butanone	ND		ND	ND			1	ND	-	ND		ND	ND	-	5	1	ID				ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-Butanone n-Butvlbenzene	ND	_	ND	ND		-	+	ND	+	ND		ND	ND	+	ND	-	ID			_	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
sec-Butylbenzene	ND		ND	ND				ND		ND		ND	ND ND		ND		ID ID		_		ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1.21	ND		ND
tert-Butylbenzene	ND		ND	ND				ND		ND	-	ND	ND.		ND		ID .		_				ND	ND	ND	ND	ND		ND		ND	ND	ND			ND
Carbon disulfide			1											1 1																						
Carbon tetrachloride	ND		ND	ND				ND		ND		ND	ND	1 1	ND	1	ID				ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chlorobenzene	<dl< td=""><td></td><td>ND</td><td>ND</td><td></td><td></td><td></td><td>1.0</td><td></td><td>1.0</td><td></td><td>1</td><td>2</td><td></td><td>1</td><td>1</td><td></td><td></td><td></td><td></td><td>2</td><td>1</td><td>1</td><td>1</td><td>1</td><td>0.6</td><td>1</td><td>3</td><td>2</td><td>1</td><td>2</td><td>0.6</td><td>2.3</td><td>0.84</td><td>1.5</td><td>2.4</td></dl<>		ND	ND				1.0		1.0		1	2		1	1					2	1	1	1	1	0.6	1	3	2	1	2	0.6	2.3	0.84	1.5	2.4
Chloroethane	ND		ND					ND		ND		1	1		0.6	0	.9				2	1	1	1	1	0.6	ND	2	2	ND	ND	ND	ND	1		ND
Chloroform	ND		ND					ND		ND		ND																						Į.		ND
Chloromethane	ND		ND					ND		ND		ND	ND		ND								ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND			ND
2-Chlorotoluene	ND		ND					ND		ND		ND	ND		ND		ID						ND		д	ND		ND	ND			ND	ND			ND
4-Chlorotoluene Dibromochloromethane	ND ND	_	ND	ND ND		-		ND ND		ND ND		ND ND	ND	+ +	ND		ID				ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND ND
1.2-Dibromo-3-chloropropane	ND ND			ND	 	\vdash		ND		ND		ND		+ +	-	-	+				-+		-			-							-			ND ND
1,2-Dibromo-5-Chloropropane 1.2-Dibromoethane	ND		ND	ND	_	\vdash		ND	— h	-	-			+ +		\vdash				-	-+		-	 		\vdash							\vdash			ND
Dibromomethane	ND		ND	ND				ND		ND	-	ND	ND	+ +	ND		ID		_	_	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND
1,2-Dichlorobenzene	ND		ND	ND				ND		ND		ND	ND		ND		ID				ND		ND	ND	ND	ND	ND		ND	ND	ND	ND	ND	ND		ND
1,3-Dichlorobenzene	ND		ND	ND				ND		ND		ND	ND		ND		2				ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,4-Dichlorobenzene	1.12		ND	ND				2.0		1.0		1	2		1		2				2	1	2	2	1	0.6	1	2	2	1	2	ND	1.92	0.69	0.89	1.6
trans-1,4-Dichloro-2-butene																																				
Dichlorodifluoromethane	ND		3.0					1.0		0.6		ND	ND		0.8	0								0.5	ND			ND	ND		0.7	ND	ND			ND
1,1-Dichloroethane	2.12			7.0				3.0		ND		4	3		3						2		2	3	3	4	3	3	2	3	2	3.72	2.18			1.6
1,2-Dichloroethane	<dl< td=""><td></td><td></td><td>ND</td><td></td><td></td><td></td><td>ND</td><td></td><td>ND</td><td></td><td>ND</td><td>ND</td><td></td><td>ND</td><td></td><td>ID</td><td></td><td></td><td>_</td><td></td><td></td><td>ND</td><td>ND</td><td>ND</td><td></td><td></td><td>ND</td><td>ND</td><td></td><td>ND</td><td>ND</td><td></td><td></td><td></td><td>ND</td></dl<>			ND				ND		ND		ND	ND		ND		ID			_			ND	ND	ND			ND	ND		ND	ND				ND
1,1-Dichloroethene	ND			ND				ND		3.0	_	ND	ND		ND		ID						ND 4	ND	ND			ND			ND					ND
cis-1,2-Dichloroethene trans-1,2-Dichloroethene	ND 1.68	_	8.0	ND		-		4.0 0.6		2 5.0 0.7	_	9 0.8	0.9		5		ID ID				4 0.6		0.6	0.8	7	9	6	8 2	5	0.7	5 0.9	4.16 0.84	3.52 ND			2.4 ND
1,2-Dichloropropane	ND			ND				ND		ND	-	ND	ND		ND		ID				ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND
1,3-Dichloropropane	ND		ND	ND				ND		ND	-	ND	ND.		ND		ID .		_		ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND
2,2-Dichloropropane	ND		ND	ND				ND		ND		ND	ND		ND		ID				ND		ND	ND	ND	ND	ND	ND	ND		ND	ND	ND			ND
1,1-Dichloropropene	ND		ND	ND				ND		ND		ND	ND		ND	1	ID				ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
cis-1-3-Dichloropropene	ND		ND	ND				ND		ND		ND	ND		ND	١	ID				ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
trans-1,3-Dichloropropene	ND		ND	ND				ND		ND		ND	ND		ND	1					ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND			ND
Ethylbenzene	ND		4.0	2.0			_	8.0		2.0	_	6	- 11	-	6		3				10	2	4	1	ND	ND	ND	3	5	0.6	0.8	ND	1.35	ND	ND	ND
2-Hexanone	110						1		-													N/D				N/D					N/D	NID	N/D			
Hexachlorobutadiene lodomethane	ND	_	ND	ND		-	+	ND	+	ND		ND	ND	+	ND	1	ID				ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Isopropylbenzene	ND	_	ND	ND		-	+	0.9	+	ND		1	1	+	0.9	١.	ID			_	1	0.5	0.8	0.8	0.7	ND	ND	1	0.9	ND	0.7	ND	1.16	ND	ND	ND
p-Isopropyltoluene	ND		ND	ND				ND		ND	-	ND	0.6	+ +	ND		ID						ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND			ND
Methylene chloride	ND		4.0	ND			t	ND		ND		0.5*	ND		ND	— ——							ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND			ND
4-Methyl-2-pentanone	 		T										110	1 1																	<u> </u>		··-			
Naphthalene	ND		ND	ND				2.0		1.0		ND	1		ND	0	.6			0	.9 B	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
n-Propylbenzene	ND		ND	ND				1.0		ND		1	1		0.8						1		0.8		0.7	ND	ND	0.8	0.9	ND	ND	ND	1.13			ND
Styrene	ND		ND	ND				ND		ND		ND	ND		ND		ID						ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND			ND
1,1,1,2-Tetrachloroethane	ND		ND	ND				ND		ND		ND	ND		ND		ID				ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND			ND
1,1,2,2-Tetrachloroethane Tetrachloroethene	ND ND	_	ND ND	ND ND		-		ND ND		ND 3.0		ND ND	ND ND		ND ND	1	ID				ND ND		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND		ND ND
Toluene	ND ND		ND	ND				0.6		0.8		ND	0.6		ND		ID .						ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND			ND
1.2.3-Trichlorobenzene	ND		ND	ND			+	ND		ND	-	ND	ND		ND		ID .				ND ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND			ND
1,2,4-Trichlorobenzene	ND	_	ND	ND	1			ND		ND	- 1	ND	ND ND		ND		ID ID		-		ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND			ND
1.1.1-Trichloroethane	ND		ND	ND			t	ND		ND		ND	ND.		ND		ID						ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND			ND
1,1,2-Trichloroethane	ND		ND	ND				ND		ND		ND	ND		ND		ID						ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND			ND
Trichloroethene	0.36		ND	ND				0.6		8.0		1	0.8		0.8	0	.9			-	0.6	0.9	0.9	1	2	0.9	ND	ND	-	ND	1	0.94	1.15		0.52	ND
Trichlorofluoromethane	ND		ND					ND		ND		ND	ND		ND		ID			_			ND	ND	ND	ND	ND		ND	ND	ND	ND	ND			ND
1,2,3-Trichloropropane	ND		ND					ND		ND		ND	ND		ND		ID				ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND
1,2,4-Trimethylbenzene	0.12			ND		\sqcup		0.5		ND		ND	1		ND		ID						ND		ND			ND	ND		ND	ND	ND	ND		ND
1,3,5-Trimethylbenzene	ND		ND	ND		\sqcup		ND		19.0		ND	3	1 1	ND	^	ID				ND	ND	ND	ND	ND	ND	ND	ND	0.9	ND	ND	ND	ND	ND	ND	ND
Vinyl acetate Vinyl chloride	ND	_	8.0	10		-	_	4.0		19.0	_	11	7	_	ND						4		6	8	10		7	12		F	6	ND	ND	19	1.6	2
o-Xvlene	ND ND	-	8.0	ND	_	\vdash		4.0 ND		ND	-	ND	0.8	+	ND ND		ID .		-+			ND.	ND.	ND	ND	ND	ND	12 ND	ND	ND	ND.	ND	ND ND			ND
p-Xylene & m-Xylene	IND	_	ND	ND		1		1.5		1.7		ND	2	+ +	5		ID ID						ND					ND	0.9			ND				ND
E-strange - strange		-									- '						-	-	-	- '																

	9/90	12/90	3/91	6/91	9/91	12/91	3/92	6/92	9/92	12/92	3/93	6/93	9/93	12/93	3/94	6/94	9/94	12/94	3/95	6/95	9/95	12/95	4/96	9/96	3/97	9/97	3/98	9/98	3/99	9/99	3/00	9/00	3/01	9/01	3/02	9/02	3/03
PARAMETER METALS (mg/L)																																					
Aluminum	1.5				0.5				1.03				1.59				0.47				3.7			0.095		4.4		0.18		0.09		0.23	$\overline{}$	0.39		ND	
Calcium	75.4	81.2	67.7	86.8	65.7	55.7	69.6	67.0	70.8	77	74.8	69.9	69.4	73.2	75.5	74.8	69.5	67.2	64.9	64.2	80.3	76.4	88.5	66.8	69.9	64.6	72.4	86.8	67.2	70.4	77.8	71.5	71.3	78.8	72.1	65.5	65.4
Iron	16.1	14.1	8.8	7.3	10.0	7.56	14.6	7.9	16	20.5	17.9	13.1	23.3	13.4	18.9	18.8	13.8	11.4	10.0	9.99	64.9	15.1	20.3	8.11	11.1	14.4	11.9	57.2	5.96	31.2	15.8	11.7	10.2	46.4	9.15	7.05	6.61
Magnesium	5.8	11.4	12.2	13.2	9.9	8.5	10.8	11.0	11.5	13.3	11.9	11.1	11.1	11.4	12.9	12.2	10.6	10.3	9.8	10.2	12.5	11.9	14.0	10.3	11.2	10.8	11.1	11.6	10.4	10.9	12.3	11.2	11	11.5	11.2	9.83	10.3
Manganese	10.9	10.8	8.39	9.17	6.13	7.97	10	9.6	10.6	10.5	10.7	9.94	10.3	9.8	11.1	11.1	9.85	8.94	8.1	8.53	8.53	11	12.3	7.95	9.37	9	9.67	8.06	7.75	10.6	10.9	9.51	9.66	7.24	9.8	7.43	7.62
Potassium	3.4	2.4	3.3	2.8	2.0	2.5	3.7	3.1	4.9	4.5	3.3	2.56	3.62	3.64	4.1	3.76	3.31	3.56	2.7	2.91	2.85	4.18	3.77	2.88	3.39	4.68	3.07	2.7	2.81	4.33	3.87	4.35	3.11	2.28	2.86	3.01	2.7
Sodium	8.2	6.8	6.6	13.5	8.8	8.3	9.2	10.5	11.1	10.2	7.4	7.79	9.72	9.09	8.86	9.06	8.14	8.18	6.3	9.23	9.23	8.28	7.85	9.69	7.27	9.5	6.86	10.5	7.08	7.88	7.38	8.79	6.58	8.99	6.83	7.18	6.69
PARAMETER (mg/l) TOXIC METALS		•		•			•																			•											
Antimony	0.01				ND				0.04				ND				ND				ND			ND		ND		ND		ND		ND		ND		ND	
Arsenic	0.020				0.024				0.028				0.046				0.023				0.17			0.018		0.02		0.04		0.07		0.03		0.16		0.02	
Barium	0.04				0.35				0.23				0.27				0.21				0.712			0.211		0.22		0.77		0.25		0.2	\vdash	0.47	†	0.19	$\overline{}$
Beryllium					ND				ND				ND				ND				ND			ND		ND		ND		ND		ND		ND		ND	
Cadmium		ND	<dl< td=""><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>0.002</td><td>0.004</td><td>0.01</td><td>ND</td><td>ND</td><td></td><td>0.005</td><td>ND</td><td>ND</td><td>0.01</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td></td><td>ND</td><td>ND</td></dl<>	ND	ND	ND	ND	ND	ND	ND	0.002	0.004	0.01	ND	ND		0.005	ND	ND	0.01	ND	ND	ND	ND	ND	ND		ND	ND								
Chromium (Total)	<dl< td=""><td></td><td></td><td></td><td>ND</td><td></td><td></td><td></td><td>0</td><td></td><td></td><td></td><td>0.01</td><td></td><td></td><td></td><td>ND</td><td></td><td></td><td></td><td>0.046</td><td></td><td></td><td>ND</td><td></td><td>ND</td><td></td><td>ND</td><td></td><td>ND</td><td></td><td>ND</td><td></td><td>ND</td><td></td><td>ND</td><td></td></dl<>				ND				0				0.01				ND				0.046			ND		ND		ND		ND		ND		ND		ND	
Copper	<dl< td=""><td></td><td></td><td></td><td>ND</td><td></td><td></td><td></td><td>ND</td><td></td><td></td><td></td><td>0.01</td><td></td><td></td><td></td><td>0.01</td><td></td><td></td><td></td><td>0.025</td><td></td><td></td><td>ND</td><td></td><td>ND</td><td></td><td>ND</td><td></td><td>ND</td><td></td><td>ND</td><td>-</td><td>ND</td><td></td><td>ND</td><td>t-</td></dl<>				ND				ND				0.01				0.01				0.025			ND		ND		ND		ND		ND	-	ND		ND	t-
Lead	0.583	ND	0.009	ND	ND	ND	0.060	ND		0.026	0.008	0.004	0.033	0.005	0.013	0.004	0.004	ND	ND	ND	0.036	ND	0.012	0.010	0.004	0.02	0.01		0.003	0.01	0.01	0.01	0.002		0.002	0.004	0.01
Mercury	ND				ND				ND				ND				ND				0.0003			ND		ND		ND		ND		ND		ND	1	ND	
Nickel	ND				ND				0.02				0.05				0.06				0.066			0.033		0.05		0.03		0.05		0.04	-	0.04		0.04	_
Selenium	0.03	∠DI	0.07	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND								
Silver	0.03			- 112	ND				ND				ND				ND				ND			ND		ND		ND		ND		ND		ND		ND	
Thallium	0.01			1	ND				ND				ND				ND				ND			ND		ND		ND		ND		ND	\vdash	ND	-	ND	
Zinc	0.03			1	0.01				0.02				0.07				0.03				0.129			ND		0.06		0.06		0.03		ND	\vdash	0.03		ND	
METER (mg/l) LEACHATE INDICATORS																																				- 112	_
Alkalinity	275	281	258	228	244	251	296	226.0	243	262	256	264	246	261	294	271	267	275	258	258	260	258	282	271	278	244	293	261	281	287	283	261	276	350	250	219	270
Biochemical Oxygen Demand	28	201	230		ND	23.	230	220.0	13	LUL	230	201	3	201	231	271	ND	2,7,5	230	230	17	230	202	4	270	ND	233	16	LO.	ND	203	5	270	18	1230	ND	
Boron	<dl< td=""><td></td><td>1</td><td>1</td><td>0.04</td><td>1</td><td>1</td><td></td><td>ND</td><td></td><td></td><td></td><td>ND</td><td></td><td></td><td></td><td>ND</td><td></td><td></td><td></td><td>ND</td><td></td><td></td><td>0.072</td><td></td><td>0.07</td><td></td><td>0.08</td><td></td><td>0.11</td><td></td><td>0.08</td><td>$\vdash \vdash$</td><td>ND</td><td>+-</td><td>0.08</td><td> </td></dl<>		1	1	0.04	1	1		ND				ND				ND				ND			0.072		0.07		0.08		0.11		0.08	$\vdash \vdash$	ND	+-	0.08	
Chemical Oxygen Demand	30	33	20	ND		28.0	66.0	ND		51.3	79.6	371		28.1	26.4	61	27	131	16.5	69.4		37.6	363		18.2	16.2	28.9		23.1		37.3		24.4		ND	33.6	32.1
Chromium (Hexavalent)	ND	- 33		110	ND	20.0	00.0	.,,,	ND	31.3	73.0	37	ND	20.1	20.1	٠.	ND.	13.1	10.5	03.1	ND	37.0	30.3	ND	10.2	ND	20.5	ND	23.1	ND	37.3	ND		33.3	1	ND.	32
Chloride	18.5	18	17.6	29	22.0	15.0	22.0	80.0	18.2	17.7	14.5	18	19	15.7	15.8	15.2	17.1	12	11.4	18.3	20.7	13.6	12.5	17.8	0.18	13.8	856	20	12	12.9	0.57	14.2	0.45	\vdash	9.27	12.8	7.70
Color (PCU units)	45	10	17.0	23	ND.	13.0	22.0	00.0	60.0	17.7	17.3	10	30	13.7	13.0	13.2	35	12	11.7	10.5	25	13.0	12.3	200	9.10	30	0.50	500	12	250	3.31	45		750	3.21	12.0	7.73
Nitrate-Nitrite	2.1	<di< td=""><td><di< td=""><td>ND</td><td>ND</td><td>0.04</td><td>ND</td><td>ND</td><td>1 97</td><td>1.08</td><td>ND</td><td>ND</td><td>0.4</td><td>0.37</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>0.107</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>0.05</td><td>ND</td><td>ND</td><td></td><td>ND</td><td>0.13</td><td>ND</td></di<></td></di<>	<di< td=""><td>ND</td><td>ND</td><td>0.04</td><td>ND</td><td>ND</td><td>1 97</td><td>1.08</td><td>ND</td><td>ND</td><td>0.4</td><td>0.37</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>0.107</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>0.05</td><td>ND</td><td>ND</td><td></td><td>ND</td><td>0.13</td><td>ND</td></di<>	ND	ND	0.04	ND	ND	1 97	1.08	ND	ND	0.4	0.37	ND	0.107	ND	ND	ND	ND	ND	ND	ND	ND	0.05	ND	ND		ND	0.13	ND						
Nitrogen-Ammonia	2.2	<dl< td=""><td>0.7</td><td>ND</td><td>1.3</td><td>0.04</td><td>2.3</td><td>2.7</td><td>2.58</td><td>2.3</td><td>2.64</td><td>2.31</td><td></td><td>1.8</td><td>3.13</td><td></td><td>2.91</td><td>1.52</td><td>2.04</td><td>1.75</td><td>1.5</td><td>2.74</td><td>3.26</td><td></td><td>2.49</td><td></td><td>2.72</td><td>0.9</td><td></td><td>3.08</td><td>2.77</td><td>1.85</td><td></td><td>1.05</td><td>1.61</td><td>1.87</td><td></td></dl<>	0.7	ND	1.3	0.04	2.3	2.7	2.58	2.3	2.64	2.31		1.8	3.13		2.91	1.52	2.04	1.75	1.5	2.74	3.26		2.49		2.72	0.9		3.08	2.77	1.85		1.05	1.61	1.87	
Phenois	<dl< td=""><td>ND</td><td><dl< td=""><td>ND</td><td>0.020</td><td>ND.</td><td>ND.</td><td>ND</td><td>0.035</td><td>0.029</td><td></td><td></td><td>0.038</td><td>ND</td><td>0.050</td><td>0.037</td><td>0.043</td><td></td><td>0.019</td><td>0.071</td><td>0.067</td><td>0.031</td><td>0.046</td><td>0.023</td><td>0.030</td><td>0.02</td><td></td><td>0.01</td><td>0.03</td><td>0.04</td><td>0.03</td><td>0.02</td><td></td><td>0.01</td><td>0.02</td><td></td><td>0.01</td></dl<></td></dl<>	ND	<dl< td=""><td>ND</td><td>0.020</td><td>ND.</td><td>ND.</td><td>ND</td><td>0.035</td><td>0.029</td><td></td><td></td><td>0.038</td><td>ND</td><td>0.050</td><td>0.037</td><td>0.043</td><td></td><td>0.019</td><td>0.071</td><td>0.067</td><td>0.031</td><td>0.046</td><td>0.023</td><td>0.030</td><td>0.02</td><td></td><td>0.01</td><td>0.03</td><td>0.04</td><td>0.03</td><td>0.02</td><td></td><td>0.01</td><td>0.02</td><td></td><td>0.01</td></dl<>	ND	0.020	ND.	ND.	ND	0.035	0.029			0.038	ND	0.050	0.037	0.043		0.019	0.071	0.067	0.031	0.046	0.023	0.030	0.02		0.01	0.03	0.04	0.03	0.02		0.01	0.02		0.01
Sulfate	16	4 9	Q.	16	9.0	17.0	6.0	ND	30.0	21.0	7.8	ND	13	18	6.6	6.6	5	91	91	9.3	12	9.4	15	8.2	7.2	7.4	8.1	14	13	7.8	9.2	8.2	13	0.01	9.84	8.76	
Total Organic Carbon (TOC)	13	14	93	6	4.0	8.0	9.0	5.6	17.6	13.9	6.2	ND 8	12	8	8.7	7.8	7	7.3	100	5.1	5.9	10.3	9.8	6.2	9.5	1.7	6.9	21	5.7	9.4	8.7	8.2	5.5	2.9	5.8	2.9	2.5
Total Dissolved Solids (TDS)	330	330	303	-	329	269	323	283	282	335	316	359	120	311		311	320	307	278	312	301	290	325	287	288	276	277	316	300	289	317	278	306	304	294	2.9	311
Total Hardness	212	249	219	271	205	174	219	213	262	270	266	243		301	356		327		202	202	252	240	279		221	206		265	211	187	245	225	223	244		204	
Total Hardness Total Kieldahl Nitrogen (TKN)	2.8	249	219	2/1	1.6	1/4	219	213	1 91	2/0	200	243	3.56	301	230	2/1	5.88	210	202	202	3.7	240	2/9	3 5 5	221	2 48	220	10.5	211	9 47	243	2 36	223	244	220	1.81	
	46	207	80	12		24	30.0	0.3	38.0	46.0	26	20	24	40	10	26	28	20	22	1.4	130	20	27	3.55	10		20	10.5	7.5	210	15	2.36	- 11	- 63	4.7	1.61	8
Turbidity (NTU units)	ND	207	80	12	ND	24	30.0	6.3		46.0	26	20		40	19	26	ND	20	22	14		26	27	ND	19	12 ND	29		7.5		15		11	63	4.7	ND	- 8
Cyanide	ND				ND				ND				ND	1	1	ı	ND		l	ı	ND	ı		ND		ND		ND		ND	1	ND	1 '	ND		ND	

																																			NYS
	3/0	4 9	9/04	3/05	9/05	3/06	11/	06 4/0	7 10/07	4/08	10/08	4/09	9/09	4/10	9/10	5/1	1 10/1	1 5/1	2 10/12	6/13	10/13	6/14	10/14	6/15	11/15	5/16	10/16	3/17	10/17	5/18	9/18	4/19	9/19	MEAN	STD
PARAMETER VOLATILES (ug/L)		_									1.0		NID		NID		NID			1.0	L LID		N/D		N/P	N/D				N/D	N/P	ND	N/P	0.72	T 50.0
Acetone Acrylonitrile	_	+			ND	ND ND			3.2 ND			ND ND			ND ND		ND ND			1.8 ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	1.4 ND	ND ND	ND ND	ND ND	ND ND	ND ND	0.73	50.0
Benzene	3.7		3	2.2	5.5					1.8										1.8	ND	ND	3.1	1.3	ND	ND	ND	1.6	ND	1.0	ND	ND	1.0	2.21	1.0
Bromobenzene	NI.		ND	ND	ND					ND.		ND								ND	ND	ND	ND	ND	-	·	-		- IND		-	- IND	- 1.0	0.00	5.0
Bromochloromethane	NE		ND	ND	ND					ND	ND	ND	ND							ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.00	5.0
Bromodichloromethane	NE)	ND	ND	ND	ND	NE) ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND) ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.00	50.0
Bromoform	NE		ND	ND	ND				ND	ND										ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.00	50.0
Bromomethane	NE)	ND	ND	ND					ND		ND	ND			ND				ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.09	5.0
2-Butanone		_			ND		1.2			ND		ND	ND			ND				ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.04	50.0
n-Butylbenzene	NE		ND	ND	ND					ND		ND	ND			ND				ND	ND	ND	ND	ND	-	-	-		-	-	-	-	-	0.00	5.0
sec-Butylbenzene tert-Butylbenzene	NE NE		ND ND	ND ND	0.49 ND		NE NE			ND ND	0.35 ND	ND ND	0.33 ND	ND ND		ND ND		ND ND		ND ND	ND ND	ND ND	ND ND	ND ND	-				-		-	-	-	0.05	5.0
Carbon disulfide	INL	+	ND	ND	ND					ND		ND	ND	ND		ND				ND	ND	ND ND	ND	ND	ND.	ND.	ND	ND	ND	ND	ND.	ND.	ND.	0.00	60.0
Carbon tetrachloride	NΓ	,	ND	ND	ND					ND		ND	ND							ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.00	5.0
Chlorobenzene	3.8		2.8	2	5.2		2.8			2.1	5.2	2.9	5	2.4		1.7				3.2	ND	ND	6.7	2.1	ND	ND	ND	2.8	8.9	1.7	6.6	ND	2.3	2.08	5.0
Chloroethane	NE)	1.3	1.1	1.4	1.1	- 1			0.87		0.89	1	0.95	0.98	0.68	0.69	ND) ND	0.78	ND	ND	0.45	0.67	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.57	5.0
Chloroform	NE		ND	ND	ND					ND		ND	ND							ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.00	7.0
Chloromethane	NE		ND	ND	ND					ND		ND	ND			ND				ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.00	5.0
2-Chlorotoluene	NE		ND	ND	ND				ND	ND		ND	ND							ND	ND	ND	ND	ND	-	-	-	-	-	-	-	-	-	0.00	5.0
4-Chlorotoluene Dibromochloromethane	NE		ND	ND	ND					ND		ND	ND							ND	ND	ND	ND	ND	- ND	ND	- ND	ND	- ND	- ND	- ND	- ND	- ND	0.00	5.0
1.2-Dibromo-3-chloropropane	NE NE		ND ND	ND ND	ND ND				ND ND	ND ND		ND ND	ND ND							ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	0.00	50.0 0.04
1,2-Dibromo-5-chloropropane 1.2-Dibromoethane	NE NE		ND	ND	ND					ND		ND	ND							ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	0.00	5.0
Dibromomethane	NE		ND	ND	ND					ND	ND	ND	ND	ND		ND				ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.00	5.0
1,2-Dichlorobenzene	NE		ND	ND	ND					ND		ND	0.31			ND				ND	ND	ND	0.41	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.02	3.0
1,3-Dichlorobenzene	NE		ND	ND	ND															ND	ND	ND	ND	ND	-	-	-	-	-	ND	-	-	-	0.04	3.0
1,4-Dichlorobenzene	2.3		1.6	1.1	2.8		1.5		0.81	0.95			2.4	1	1	0.7) ND	1.3	ND	ND	2.8	0.66	ND	ND	ND	1.1	ND	ND	ND	ND	ND	1.10	3.0
trans-1,4-Dichloro-2-butene					ND															ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.01	5.0
Dichlorodifluoromethane				0.52		0.61			0.49				0.50							ND	ND	ND	ND	ND	-	-		9.1	-	ND	-	-	-	0.49	5.0
1,1-Dichloroethane	1		1.7	1.7	1.5					2	1.8	1.4	1.4	ND		1.4				1.1	ND	ND	0.47	1.1	ND	ND	ND	1.1	ND	1.6	ND	ND	1.6	1.91	5.0
1,2-Dichloroethane	NE NE		ND	ND	ND ND				ND											ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.00	0.6
1,1-Dichloroethene cis-1,2-Dichloroethene	NL 4		ND 3.8	ND 5	6.4		NE 4.4		ND 4	ND 4.2	11		ND 10			ND 4.6				ND 6.4	ND 11	ND 5.4	ND 12	ND 6.6	ND 6.9	ND 5.4	ND 9.6	ND 5.8	ND 17.3	ND 5.3	ND 6.7	ND ND	ND 6.3	6.38	5.0
trans-1,2-Dichloroethene			0.58	0.5		0.42			0.3	0.34										ND	ND	ND	ND	0.34	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.40	5.0
1,2-Dichloropropane	NE		ND	ND	ND					ND		ND	ND			ND				ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.00	1.0
1,3-Dichloropropane	NE		ND	ND	ND		NE			ND	ND	ND	ND	ND		ND				ND	ND	ND	ND	ND	-	-	-	-	-	ND	-	-	-	0.00	5.0
2,2-Dichloropropane	NE		ND	ND	ND					ND	ND	ND	ND			ND				ND	ND	ND	ND	ND	-	-	-	-		ND	-	-	-	0.00	5.0
1,1-Dichloropropene	NE		ND	ND	ND		NE		ND	ND		ND	ND			ND				ND	ND	ND	ND	ND	-	-			-	ND	-	-	-	0.00	5.0
cis-1-3-Dichloropropene	NE		ND	ND	ND		NE			ND		ND	ND			ND				ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.00	0.4 *
trans-1,3-Dichloropropene Ethylbenzene	NE NE		ND ND	ND 0.47	ND 1.2	ND	NE NE			ND ND	ND 0.61	ND ND	ND 0.31	ND ND		ND ND				ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	0.00	0.4 * 5.0
2-Hexanone	NL	<u>'</u>	ND	0.47	ND	ND	NΓ			ND	ND	ND	ND	ND		ND				ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	0.00	50.0
Hexachlorobutadiene	NΓ	,	ND	ND	ND					ND	ND	ND	ND	ND		ND				ND	ND	ND	ND	ND	- IND	- ND	ND -	- IND	IND	- ND	- IND	IND .	- IND	0.00	0.5
lodomethane	1112	_	.,,,	110	ND		NE			ND	ND	ND	ND	ND		ND		ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.00	5.0
Isopropylbenzene	NE)	0.4	0.32		0.65	0.2			ND		0.34	0.52	ND		ND				ND	ND	ND	ND	ND	-	-	-	-	-		-	-	-	0.28	5.0
p-Isopropyltoluene	NE)	ND	ND	ND	ND	NE) ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND) ND	ND	ND	ND	ND	ND	-	-	-	-	-		-	-	-	0.02	5.0
Methylene chloride	NE		ND	ND	0.27					ND	ND	ND	ND	ND		ND		ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.13	5.0
4-Methyl-2-pentanone	4.	4			ND					ND			ND							ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.00	
Naphthalene	NE		ND	ND	ND					ND		ND	ND							ND	ND	ND	ND	ND		-	-			-		-		0.08	10.0 **
n-Propylbenzene Styrene	NE NE		ND ND	ND ND	0.32 ND					ND ND		ND ND	ND ND			ND ND				ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND	ND	ND	- ND	ND	ND	- ND	ND	0.19	5.0
1.1.1.2-Tetrachloroethane	NΓ		ND	ND	ND					ND		ND	ND							ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	0.00	5.0
1,1,2,2-Tetrachioroethane	NE		ND	ND	ND					ND		ND	ND							ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.00	5.0
Tetrachloroethene	NE		ND	ND	ND					ND	ND	ND	ND	ND						ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.07	5.0
Toluene	NE)	ND	ND	ND	ND	NE) ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND) ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.12	5.0
1,2,3-Trichlorobenzene	NE		ND	ND	ND					ND										ND	ND	ND	ND	ND	ND	-	-	-	-	-	-	-	-	0.00	5.0
1,2,4-Trichlorobenzene	NE		ND	ND	ND					ND		ND	ND							ND	ND	ND	ND	ND	-	-	-		-	-	-	-	-	0.00	5.0
1,1,1-Trichloroethane	NE		ND	ND	ND					ND										ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.00	5.0
1,1,2-Trichloroethane	NE		ND	ND	ND					ND		ND	ND			ND				ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.00	1.0
Trichloroethene	1.7 NF	_ `	0.93 ND	1.8 ND	2.2 ND			1.4	0.03	0.83 ND		2.1 ND	ND	2 ND		1.2 ND	2.0			1.6 ND	ND ND	ND	4.4 ND	1.8 ND	ND ND	ND	ND	1.3	ND ND	1.2	ND ND	ND ND	1.0	1.11	5.0
Trichlorofluoromethane 1.2.3-Trichloropropane	NE NE	_	ND ND	ND ND	ND					ND		ND ND	ND							ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	0.00	0.04
1,2,5-Trichloropropane	NΓ		ND	ND	ND				ND	ND		ND	ND							ND	ND ND	ND ND	ND	ND ND	ND -	- ND	-	-	- 100	- 110	- 110	- IND	- 110	0.00	5.0
1,3,5-Trimethylbenzene	NE		ND	ND	ND					ND		ND	ND			ND				ND	ND	ND	ND	ND	-	-	-	-	-	-	-	-	-	0.40	5.0
Vinyl acetate	1	+			ND		NE			ND	ND	ND	ND	ND		ND				ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.00	
Vinyl chloride	8.6		3.8	4.6	6.8	5.2	3.1			3	11	6.2	5.9	5.1		2.7	6.2	ND	4.9	4.4	5.5	ND	6.2	2.6	ND	ND	ND	2.8	7.3	2.4	ND	ND	2.6	4.85	2.0
o-Xylene	NE		ND	ND	ND					ND		ND	ND							ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.01	5.0
p-Xylene & m-Xylene	NE)	ND	ND	ND	ND	NE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND) ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.21	5.0

																																		10/6
	3/04	9/04	3/05	9/05	3/06	11/0	6 4/07	10/07	4/08	10/08	4/00	9/09	4/10	9/10	5/11	10/11	5/12	10/12	6/13	10/13	6/14	10/14	6/15	11/15	5/16	10/16	3/17	10/17	5/18	9/18	4/19	9/19	MEAN	NYS STD
PARAMETER METALS (mg/L)	3/04	3/04	3/03	9/03	3/00	111/0	10 4/07	110/07	4/08	10/00	4/03	9/09	4/10	9/10	3/11	10/11	3/12	10/12	0/13	10/13	0/14	10/14	0/13	11/13	3/10	10/10	3/17	10/17	3/10	3/10	4/13	9/19	MEAN	310
Aluminum		ND		ND		ND		ND	ND	1	ND			ND	ND			ND	ND			ND	ND		ND	ND	ND	0.0473		0.0416	ND		0.39	
Calcium	62.5	69.7	80.1		73.4			73.8		79.6	78.4	72.5	76.5	86.9		74.1	76	87	69.5	78.1	72.3	69	72.5	81.2	78.7	95.8	76.8	66.6	75.7	74.4	79.1	84 4	74 07	
Iron	8.49		6.2	21	9.5	7.9		0.86	6.4	12.4	9.23	9.06	5.09	5.5	4.8	11.4		6.3	3.49	7.45	3,44	11.5	3.39	4.52	4.19	3	4.17	11	3.5	7.15	3.97	5.01	12.11	0.3
Magnesium	9.24		11.6	12.5						12.2	12.2	11.2	11.6	13	11.9	11.8	12	14	111	12.6	114	10.8	11.6	12.1	11.5	14	11.2	9.89	11	10.7	11.4	12.3	11.33	35.0
Manganese	9.91		7.9	12	9.1	9	8.7	6.8	7.7	9.8	8.51	9.39	7.71		7	10.8		9.5	5.73	8.77	6.28	11.7	5.9	7.74	7.05	7.26	7.02	9.06	5.32	8.25	6.8	7.52	8.83	0.3
Potassium	3.36		2.5	5.8		3.2		2.7	2.3	3.7	2.89	3.2	2.24	2.8	2.2	4.3	1.9	2.9	1.7	3.1	ND	3.5	1.9	2.7	ND	ND	3.51	5.7	2.13	3.05	ND	2.76	3.01	0.5
Sodium	5.67		6.4	6.8	6.6	7.1		9.5	7.1	7.8	7.1	6.3	6.2	11	6.6	6.2	6.7	ND	6.4	7.0	5.8	4.7	6.5	7.5	6.68	10.7	7.13	4.71	6.0	5.1	5.52	7.1	7.56	20.0
PARAMETER (mg/l) TOXIC METALS	3.07	0.5	0.1	0.0	0.0	7.1	1 3.3	3.3	7	7.0		0.5	0.2		0.0	0.2	0.7	110	0.1	7.0	3.0	1.,	0.5	7.3	0.00	10.7	7.13	1.7	0.0	J.1	J.J.	7	7.50	20.0
Antimony		ND		ND		ND		ND	ND	1	ND			ND	ND			ND	ND			ND	ND		ND	ND	ND	ND		ND	ND		0.00	0.003
Arsenic	1	0.01		0.03		0.02		ND	0.02		0.021			0.02	0.017			ND	0.012		_	0.025	0.014		0.0174	0.0114	0.0144	0.0283		0.0228	0.017		0.03	0.005
Barium	+	0.17		0.03		0.02		0.23	0.16	+	0.021	_		0.02	0.017			ND	0.012	-		0.023	0.137	-	ND.	ND	0.124	0.0203	-	0.126	0.125	-	0.03	1.0
Bervllium	+	ND		ND	+	ND		ND	ND	+	ND	_		ND	ND			ND	0.0002			ND	ND		ND	ND	ND	ND		ND	ND.		0.00	1.0
Cadmium	ND	ND	ND	ND	ND	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.00	0.005
Chromium (Total)	IND	ND	IND	ND	UND	ND		ND	ND	IND	ND	IND	ND	ND	ND	ND	IND	ND	ND ND	ND -	IND	0.002	ND ND	ND -	ND ND	ND ND	0.0017	0.004	ND -	ND ND	ND	ND -	0.00	0.005
Copper	1	ND	-	ND	+-	ND		ND	ND	 	ND	_		ND	ND	-	-	ND	ND ND	-		ND	ND	-	ND ND	ND ND	ND	ND	-	ND ND	ND	-	0.00	0.03
Lead	ND	ND	ND	ND	ND	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	0.001	ND	0.0008	ND.	ND.	0.002	0.002	ND.	0.0064	ND	0.0017	0.0033	0.0041	0.0013	ND	ND.	0.00	0.025
Mercury	IND	ND	IND	ND	ND	ND		ND	ND	IND	ND	IND	ND	ND	ND	IND	0.001	ND	ND.	IND .	- IND	ND	ND	IND	ND.	ND	ND	7E-05	0.0041	0.00013	ND	IND .	0.00	0.0007
Nickel	_	ND	 	ND	+-	ND		ND	ND	_	ND			ND	ND			ND	0.0006	-		0.007	0.005	-	ND	ND	0.0052	0.0057	-	0.0048	0.0047		0.00	0.0007
Selenium	ND	ND	ND	ND	ND	ND		ND	ND	ND	ND	ND		ND	ND			ND	ND	-		0.007	0.005	-	ND	ND	ND	ND	-	ND	ND		0.01	0.0
Silver	IND	ND	IND	ND	IND	ND		ND	ND	ND	ND	ND		ND	ND			ND	ND	-		0.002	0.003	-	ND	ND	ND ND	ND	-	ND	0.0021	-	0.00	0.05
Thallium	+	ND		ND	+	ND		ND	ND	 	ND			ND	ND			ND	ND			ND	ND	-	0.0128	ND	ND	ND	-	0.0103	ND	-	0.00	0.03
Zinc	1	ND		ND	+	0.0		ND	0.02	1	0.013	_		0.01	0.015			0.023	0.11	-		0.002	0.009	-	ND	0.0209	ND	0.021	-	0.0099	ND	-	0.00	2.0
PARAMETER (mg/l) LEACHATE INDICATORS	5	ND	<u> </u>	ND		0.0		IND	0.02		0.013			0.01	0.013		<u> </u>	0.023	0.11			0.002	0.009		ND	0.0209	ND	0.021		0.0099	ND		0.02	2.0
Alkalinity		205	225	254	248	269	249	274	178	256	281	247	292	272	296	268	250	280	270	310	270	272	255	270	248	287	266	241	207	278	238	261	261.64	
Biochemical Oxygen Demand		15.6		ND		ND		2.9	2.8		3.9			ND	ND		ND	ND	3.6	-		7	3.2	2.7	ND	ND	1.2	3.5	ND	ND	1.8	1.4	4.15	
Boron	1	0.06		0.1		0.07		0.054		1	0.059			0.052	0.052			ND	0.05		-	0.06	0.05	-	ND	ND	0.0428	0.0676	-	0.0565	0.0386	-	0.04	1.0
Chemical Oxygen Demand	ND	50.2	10.1		23.3	16.8		26.3	13.8	18.4	ND	20.3	18.2	11.2		20.3	ND	89	ND	16.9	7.3	9	ND	12.8	-	19.2	23.4	39.4	27.7	46.1	10.2	12.4	27.88	1.0
Chromium (Hexavalent)	1110	ND	10.1	ND	23.3	ND		ND	ND	10.1	ND	20.5	10.2	ND	ND	20.5		ND	ND	- 10.5		ND	ND	12.0		ND	ND.			ND	ND		0.00	0.05
Chloride	5.2	6	5.4	9.6	5.5	5.3		19.6	6.4	7.6	7.5	4.71	417	23.5	4	44	3.34	9.9	3.3	6.4	3.1	2.8	3.2	4.3	2.71	4.1	4.7	3.6	2.8	4.9	2.6	11.8	11.94	250
Color (PCU units)	7.2	12	J.,	18	3.3	70		30	20	7.0	7.5		1.17	0	7.5		3.31	ND	170	-	-	27	38	-	5	20	10	-	-	15	5	-	65.81	15
Nitrate-Nitrite	ND	ND	ND	ND	ND	ND		0.24	ND	0.077	ND	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.68	0.032	0.062	ND	ND	ND	0.066	0.11	10
Nitrogen-Ammonia	2.7	0.81	0.83	2.6		1.1		0.87	0.99	1.9	1.9		0.797		0.73	2.8	1.08	ND	0.804	1.3	0.595	2.46	1.03	1.23	1.22	1.1	0.86	2.4	0.62	0.99	0.86	1.0	1.64	2.0
Phenois	ND	0.01	ND	ND	ND	0.01		ND	ND	ND	ND	ND	ND	ND	ND	0.014	ND	ND	ND	0.0163	ND	0.0272	ND	ND	0.0148	0.0078	0.0021	0.0325	0.0096	0.0274	0.0069	0.0041	0.02	0.001
Sulfate	7.6	8.8	8.4	7.7	7.3	6.9	8.8	10.6	6.2	5.1	6.9	6.24	7 91	7.69	8.8	5.6	ND	ND	6.9	6.8	6.7	4.8	6.1	6.9	6.36	8.5	7.9	4.2	6.6	5.7	6.6	8.5	8.61	250
Total Organic Carbon (TOC)	4.4	20.8	3.6	8.2	3.5	5.6		3.8	4.0	7.4	5.4	4.4	2.2	5.3	2.8	2.6	ND	ND	3.2	4.0	2.9	6.2	3.8	3.5	2.59	4.6	4.8	5.9	15	6.2	2.2	2.8	6.71	
Total Dissolved Solids (TDS)	268		276	311	294	280		272	304	330	319	297	314	319	283	299	260	250	292	320	283	274	276	291	269	329	290	248	279	279	410	306	297.32	500
Total Hardness	194		248	244		234		227	254	249	250	230	240	270	249	234	240	270	219	247	228	217	229	261	212	400	228	250	220	173	180	220	237.29	
Total Kieldahl Nitrogen (TKN)		2.7		3.2	1	1.5		1.7	11		2.31			1.47	1.2		0.508	1.3	0.98	-		ND	1.14	-	1.23	0.88	1.6	3.4	0.79	2.4	1.2	1.5	2.33	
Turbidity (NTU units)	9		24.4		3.6		27.2			4.2	20	16	0	3	6	7	3.9	2.2	18.1	1.6	0	7.3	18.5	9.9	2	3.6	0.3	35	9.8	20.1	10.9	9.42	27.50	5.0
Cvanide		ND		ND		ND		ND	ND		ND			ND	ND			ND	ND		-	ND	ND			ND	ND			ND	0.0024		0.00	0.2
.,) = Anal		orted a		ove New			dards (a		March a	and lune			standar	rds			•														
		were u	sed bed	innina	with the	9/98	sampling	event.	Exceed	ances no	oted prio	or to this	s event	reflect p	rior sta	indards.																		
							ins-1,3-di																											
			idance				,		.,																									
					ed in cal	culatio	n of Mea	n and ar	e consi	dered ed	ual to z	ero.																						
												'																						
					,				1 -	Estima	ted.																							
	(Blank) or "-" = Not Analyzed. ND = Not Detected. J = Estimated.																																	
		<di =<="" td=""><td>Detecte</td><td>d belov</td><td>w metho</td><td>d dete</td><td>ction limi</td><td>it R</td><td>= Analy</td><td>rte was i</td><td>detected</td><td>in meth</td><td>nod blar</td><td>nk</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></di>	Detecte	d belov	w metho	d dete	ction limi	it R	= Analy	rte was i	detected	in meth	nod blar	nk																				

						1																																
	9/90	12/90	3/91	6/91	9/91	12/91	3/92	6/92	9/92	12/92	3/93	6/93	9/93	12/93	3/94	6/94	9/94	12/94	3/95	6/95	9/95	12/95	4/96	9/96	3/97	9/97	3/98	9/98	3/99	9/99	3/00	9/00	3/01	9/01	3/02	9/02	3/03	9/03
PARAMETER VOLATILES (ug/L) Acetone			_	_	_	_	_	_					_	_	-		_	_		_		- 1	_			_				-	_	_		_				
Acrylonitrile	1		1 -	1	+	1																					-							1			\dashv	-
Benzene	ND	0.12	ND	ND	ND	ND	ND										ND		ND				ND												ND		ND	
Bromobenzene	ND	ND															ND		ND				ND												ND		ND	-
Bromochloromethane	ND	ND	ND	ND	ND	ND	ND										ND		ND				ND												ND		ND	
Bromodichloromethane	ND	ND	ND	ND	ND	ND	ND																															
Bromoform	ND	ND					ND																															
Bromomethane	ND	ND	ND	ND	ND	ND	ND										ND		ND				ND												ND		ND	
2-Butanone n-Butylbenzene	ND	ND	ND	ND	ND	ND	ND										ND		ND				ND				_			_					ND		ND	
sec-Butylbenzene	ND	ND													1		ND		ND			1	ND			-	-		-						ND	+	ND	-
tert-Butylbenzene	ND	ND													1		ND		ND			1	ND		-	-	_		1						ND	+	ND	-
Carbon disulfide			1																																			\neg
Carbon tetrachloride	ND	ND	ND	ND	ND	ND	ND										ND		ND				ND												ND		ND	-
Chlorobenzene	ND	ND															ND		ND				ND												ND		ND	
Chloroethane	ND	ND															ND		ND				ND												ND		ND	
Chloroform	0.86	1.44													-							-				-	_									1		
Chloromethane 2-Chlorotoluene	ND ND	ND ND		2.0 ND			ND ND			_					\vdash		ND ND		ND ND		-	\vdash	ND ND										-	1	ND ND		ND ND	-
4-Chlorotoluene	ND	ND						\vdash							\vdash		ND	\vdash	ND			\vdash	ND	-+	\rightarrow	-+	-							1	ND		ND	-
Dibromochloromethane	ND	ND																				1 1	140	-+		- +								1			-1.5	-
1,2-Dibromo-3-chloropropane	ND	ND	ND	ND	ND	ND																																
1,2-Dibromoethane	ND	ND				ND	ND																															
Dibromomethane	ND	ND					ND										ND		ND				ND												ND		ND	
1,2-Dichlorobenzene	ND	ND					ND										ND		ND				ND												ND		ND	
1,3-Dichlorobenzene	ND ND	ND ND					ND ND								-		ND ND		ND			-	ND ND			-	_								ND ND	1	ND ND	
trans-1.4-Dichloro-2-butene	ND	ND	ND	ND	ND	ND	ND										ND		ND			1	ND	-+	- +	-	_		-	-				-	ND		ND	-
Dichlorodifluoromethane	ND	ND	ND	ND	ND	ND	ND								1		ND		0.6			1	0.6 J		-	-	_		1						ND	+	ND	-
1,1-Dichloroethane	5.73		7.73				2.0										3.0		ND				3.0												3.05		2.1	-
1,2-Dichloroethane	0.17		ND				ND										ND		ND				ND												ND		ND	
1,1-Dichloroethene	ND		ND				ND										ND		ND				ND												ND		ND	
cis-1,2-Dichloroethene	ND	1.12					ND										ND		ND				ND												ND		ND	
trans-1,2-Dichloroethene	1.39	ND															ND		ND				ND												ND		ND	
1,2-Dichloropropane 1,3-Dichloropropane	ND ND	ND ND															ND ND		ND ND				ND ND				_			_					ND ND		ND ND	
2.2-Dichloropropane	ND	ND															ND		ND			1	ND	-+	- +	-	_		-	-				-	ND ND		ND	-
1.1-Dichloropropene	ND	ND															ND		ND				ND												ND		ND	-
cis-1-3-Dichloropropene	ND	ND	ND	ND	ND	ND	ND										ND		ND				ND												ND		ND	
trans-1,3-Dichloropropene	ND	ND															ND		ND				ND												ND		ND	
Ethylbenzene	ND	ND	ND	ND	ND	ND	ND										ND		ND				ND												ND		ND	
2-Hexanone					110	ND	ND								_				ND			-				-	_								ND	1	ND	
Hexachlorobutadiene Iodomethane	ND	ND	ND	ND	ND	ND	ND										ND		ND				ND			-	_							-	ND		ND	
Isopropylbenzene	ND	ND	ND	ND	ND	ND	ND								1		ND		ND			1	ND		-	-	_		1						ND	+	ND	-
p-lsopropyltoluene	ND	ND					ND										ND		ND				ND												ND		ND	\neg
Methylene chloride	5.95			3.0													ND		4.0				ND												ND		ND	
4-Methyl-2-pentanone																																						
Naphthalene	ND	ND					ND								\vdash		ND		ND			\vdash	ND												ND		ND	
n-Propylbenzene Styrene	ND ND	ND ND					ND ND			_					\vdash		ND ND		ND ND		-	\vdash	ND ND										-	1	ND ND		ND ND	
1.1.1.2-Tetrachloroethane	ND ND	ND				ND ND	ND ND								\vdash		ND ND		ND ND			1	ND ND	-+										1	ND ND		ND ND	
1.1.2.2-Tetrachloroethane	ND	ND					ND										ND		ND			1	ND	-+		- +				_				1	ND		ND	-
Tetrachloroethene	ND	ND	ND			ND	ND										ND		ND				ND												ND		ND	$\neg \neg$
Toluene	<dl< td=""><td><dl< td=""><td></td><td></td><td></td><td></td><td>ND</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>ND</td><td></td><td>ND</td><td></td><td></td><td></td><td>2.0</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>ND</td><td></td><td>ND</td><td></td></dl<></td></dl<>	<dl< td=""><td></td><td></td><td></td><td></td><td>ND</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>ND</td><td></td><td>ND</td><td></td><td></td><td></td><td>2.0</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>ND</td><td></td><td>ND</td><td></td></dl<>					ND										ND		ND				2.0												ND		ND	
1,2,3-Trichlorobenzene	ND	ND					ND										ND		ND				ND												ND		ND	
1,2,4-Trichlorobenzene	ND	ND				ND	ND								-		ND		ND			\vdash	ND											 	ND		ND	
1,1,1-Trichloroethane 1,1,2-Trichloroethane	ND ND	ND ND					ND ND	\vdash			+				1		ND ND	\vdash	ND ND	-		\vdash	ND ND		-+		-	-						1	ND ND	+	ND ND	——
Trichloroethene	ND	ND					ND								\vdash		ND		ND			1	ND	-+										1	ND		ND	
Trichlorofluoromethane	ND	ND					ND										ND		ND			1 1	ND	-+		- +								1	ND		ND	-
1,2,3-Trichloropropane	ND	ND					ND										ND		ND				ND												ND		ND	
1,2,4-Trimethylbenzene	ND	ND	ND	ND	ND	ND	ND										ND		ND				ND												ND		ND	
1,3,5-Trimethylbenzene	ND	ND	ND	ND	ND	ND	ND										ND		ND				ND												ND		ND	
Vinyl acetate		L	ļ.,	ļ.,																		\Box													تــــا		ت	
Vinyl chloride o-Xvlene	ND ND	ND ND			ND ND		ND			_					\vdash		ND ND		ND ND		-	\vdash	ND ND										-	1	ND ND		ND ND	
o-Xylene p-Xylene & m-Xylene	ND	ND		ND			1	\vdash			+				1		ND ND	\vdash	ND ND	-		\vdash	ND ND		-+		-	-						1	ND ND	+	ND ND	——
p-Aylette with Aylette	-		140	ND	140												ND		IND				ND		- 1										ND		AD	

	9/90	12/90	3/91	6/91	9/91	12/91	3/92	6/92	9/92	12/92	3/93	6/93	9/93	12/93	3/94	6/94	9/94	12/94	3/95	6/95	9/95	12/95	4/96	9/96	3/97	9/97	3/98	9/98	3/99	9/99	3/00	9/00	3/01	9/01	3/02	9/02	3/03
PARAMETER METALS (mg/L)	3/30	12/30	3/31	0/31	3/31	12/31	3/32	0/ 32	3/32	1.2/32	3,33	0/33	3/33	12/33	3/3.	0, 3 .	3/31	12/31	3/33	0/33	3/33	12/33	1, 30	3/30	3/31	3/31	3/30	3/30	3/33	3/33	3,00	3,00	3,01	3,01	3,02	3,02	3,03
Aluminum	61.8	\neg			21.6												35.0																				
Calcium	82.6	103	47	49.1	51.9	41.9	37.6	79.3						44.7		48.2	55.6						53.1														
Iron	110	90.3	0.6	72.3	40.6	25.6	37.5	36.2						73.1		68.1	77.2						70.1														
Magnesium	14.4	19.5	13.3	16.3	11.9	8.6	10.2	15.3						16.4		16.2	16.9						16.9														
Manganese	1.24	1.48	0.66	0.95	0.7	0.33	1.07	0.48						0.84		1.03	1.6						1.06														
Potassium	10.5	8.7	5.8	12.8	6.9	5.7	6.1	8.1						11.9		10.5	8.9						9.44														
Sodium	3.4	2.2	3	4.5	4.1	3.3	3.7	6.3						3.7		3.24	4.0						3.51														
PARAMETER (mg/l) TOXIC METALS																																					
Antimony	<dl< td=""><td></td><td></td><td></td><td>ND</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>ND</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></dl<>				ND												ND																				
Arsenic	ND				0.015												0.028																				
Barium	0.21				0.12												0.208																				
Beryllium					ND												0.002																				
Cadmium		ND	0	ND	ND	ND	ND	ND						ND		ND	ND						0.013														
Chromium (Total)	0.06	0.03	0.02	0.08	0.07	0.05	0.04	0.06						0.11			0.076						0.215														
Copper	0.12				0.05												0.065																				
Lead	0.015	<dl< td=""><td>0.010</td><td>0.013</td><td>0.008</td><td>0.007</td><td>0.014</td><td>0.015</td><td></td><td></td><td></td><td></td><td></td><td>0.031</td><td>(</td><td>0.026</td><td>0.018</td><td></td><td></td><td></td><td></td><td></td><td>0.014</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></dl<>	0.010	0.013	0.008	0.007	0.014	0.015						0.031	(0.026	0.018						0.014														
Mercury	<dl< td=""><td></td><td></td><td></td><td>ND</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>ND</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></dl<>				ND												ND																				
Nickel	0.82				0.07												0.087																				
Selenium	0.08	0.03	0.01	ND	ND	ND	ND	ND						0		ND	ND						ND														
Silver	ND	\Box			ND												ND																				
Thallium	ND				ND												ND																				
Zinc	0.32	-			0.16												0.28																				
METER (mg/l) LEACHATE INDICATOR:	;													•																							•
Alkalinity			402	140		158	143	147.0																													
Biochemical Oxygen Demand																																					
Boron					0.06												ND																				
Chemical Oxygen Demand		<dl< td=""><td><dl< td=""><td>ND</td><td></td><td>ND</td><td>ND</td><td>ND</td><td></td><td></td><td></td><td></td><td></td><td>78.3</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></dl<></td></dl<>	<dl< td=""><td>ND</td><td></td><td>ND</td><td>ND</td><td>ND</td><td></td><td></td><td></td><td></td><td></td><td>78.3</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></dl<>	ND		ND	ND	ND						78.3																							
Chromium (Hexavalent)	<dl< td=""><td></td><td></td><td></td><td>ND</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>ND</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></dl<>				ND												ND																				
Chloride			11	12		10.0	15.0	8.0																													
Color (PCU units)																																					
Nitrate-Nitrite		<dl< td=""><td><dl< td=""><td>0.27</td><td></td><td>ND</td><td>ND</td><td>0.2</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></dl<></td></dl<>	<dl< td=""><td>0.27</td><td></td><td>ND</td><td>ND</td><td>0.2</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></dl<>	0.27		ND	ND	0.2																													
Nitrogen-Ammonia		<dl< td=""><td><dl< td=""><td>0.4</td><td>0.2</td><td>ND</td><td>0.1</td><td>0.2</td><td></td><td></td><td></td><td></td><td></td><td>ND</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></dl<></td></dl<>	<dl< td=""><td>0.4</td><td>0.2</td><td>ND</td><td>0.1</td><td>0.2</td><td></td><td></td><td></td><td></td><td></td><td>ND</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></dl<>	0.4	0.2	ND	0.1	0.2						ND																							
Phenols		ND	0.078	ND		ND	ND	ND						0.031																							
Sulfate			22.3	11		42.0	15.0	7.0																													
Total Organic Carbon (TOC)		14	2	3	2.0	2.0	1.0	5.2						2.8																					32.7		2.7
Total Dissolved Solids (TDS)		\Box	180	858		140	163.0	176.0			1																									1	1
Total Hardness	265	340	172			156	135.0	261.0																													
Total Kieldahl Nitrogen (TKN)					1.3												3.3																				
			182	1110		130	4.0	1840																													
Turbidity (NTU units)		-		_					_			_					ND																				

MARKETE			NYS
Accessed 7.8	PARAMETER VOLATILES (ug/l)	5 11/06 4/07 10/07 4/08 10/08 4/09 9/09 4/10 9/10 5/11 10/11 5/12	10/12 6/13 10/13 6/14 10/14 6/15 11/15 5/16 10/16 3/17 10/17 5/18 9/18 4/19 9/19 MEAN STD
Acceptance		T 2 0 T ND T 2 6 T 2 6 T ND T 1 0 T ND T ND T ND T ND T ND T	ND
Encounter 100			
Brownelformers			
Frompeliothicomenthuse	Bromobenzene		
Brownershame	Bromochloromethane	ND	ND ND - ND - ND ND ND ND ND ND ND ND ND - 0.00 5.0
Statement	Bromodichloromethane	ND	ND ND - ND - ND ND ND ND ND ND ND ND ND - 0.00 50.0
2-84stanone	Bromoform		
Resinfulmentation			
Sec-Baytheerane			
Inter-Eleviphenement No			
Carbon disturbles MD ND ND ND ND ND ND ND			
Carbon tetrachidride			
Chieroelenzee			
Chlorotehane			
Chicordefmem NO NO NO NO NO NO NO N			
Chloromethane			
Coloratolemen			
4-Chisrotoluene			
Discremechane NO			
12-Dibromo-3-thoropropage			
1,2-Chromomethane	1,2-Dibromo-3-chloropropane		
1,2-Dichlorobenzene	1,2-Dibromoethane		
3-30-ichlorobenzene		ND	
A-Bichloroberseene			
Trans-1,4-Dichloro-Z-butene			
Dichlorodifluoromethane	1,4-Dichlorobenzene		
1.1-Dichloroethane	trans-1,4-Dichloro-2-butene		
1,2-Dichloroethane			
1.1-Dichloroethene	1,1 = 101110110111011		
Cist 2-Dichloropethene			
Trans-12-Dichloropene			
1.2-Dichloropropane			
1.3-01chloropropage			
2.2-01chloropropene			
1.1			
Cis-1-3-Dichloropropene			
Trans-1,3-Chlorropropene			
Ethylbenzene ND			
2-Hexanone			
Idefomethane		ND	ND ND - ND - ND ND ND ND ND ND ND ND - 0.00 50.0
Sopropylenzene	Hexachlorobutadiene	ND	ND ND - ND - ND 0.00 0.5
Pisopropytoluene	lodomethane	ND	ND ND - ND - ND ND ND ND ND ND ND ND ND - 0.00 5.0
Pisopropytoluene	Isopropylbenzene		
4-Methyl-zpentanone		ND	
Naphthalene			
n-Propylbenzene			
Styrene ND			
1,1,1,2-Tetrachloroethane ND			
ו או			
Tetrachloroethene ND			
Toluene ND			
12.3-Trichloroberzene ND ND ND ND ND ND ND ND ND ND ND ND ND ND			
1,2,3**Intentionsterize			
1,2,3** 1,111111111111111111111111111111111			
1,1,2-Trichlorestanze ND	.,.,		
Trichloroethene ND 0.57 ND			
Trichlorofluoromethane ND			
1,2,3-Trichloropropane ND			
1,2,4-Trimethylbenzene ND			
1,3,5-Trimethylbenzene ND	1,3,5-Trimethylbenzene		
Vinyl acetate ND	Vinyl acetate		
Vinyl chloride ND 1.5 ND	Vinyl chloride		
o-Xylene ND			
p-Xylene & m-Xylene	p-Xylene & m-Xylene	ND	ND ND - ND - ND ND ND ND ND ND ND ND ND - 0.00 5.0

																																		NYS
	3/04	9/04	3/05	9/05	3/06	11/06	4/07	10/07	4/08	10/08	4/09	9/09	4/10	9/10	5/11	10/11	5/12	10/12	6/13	10/13	6/14	10/14	6/15	11/15	5/16	10/16	3/17	10/17	5/18	9/18	4/19	9/19	MEAN	STD
PARAMETER METALS (mg/L)																																		
Aluminum						2.3			ND		0.238			ND	0.59			0.12	ND		-	-	ND	-	ND	-	0.056	-		0.43	0.251		5.32	
Calcium						60.7	52.6		68	72.1	62	61.9		54.9	65.4	61.8		63	54.7	-	61.2	-	63.8	75.6	70.7	-	75.6	-	-	76.4	78.4	-	52.38	
Iron						2.8	0.31		0.28	2		0.451		0.472			0.33	1.3	0.3		1.44	-	0.65	1.22		-	0.135	-		1.78	1.44	-	18.96	0.3
Magnesium						8.2	6.9		8.5	9.1	8.44		8.98	8.74	9.5	9.8		10	8.8		9.9	-	9.5	10.1		-	10.6	-	-	10.1	10.4		9.49	35.0
Manganese						0.14	0.032		0.05	0.03	ND	ND	0.07	0.035	0.12	0.055	0.029	0.053	0.021		0.066	-		0.428		-	0.118	-	-	0.658	1.53		0.44	0.3
Potassium						1.9	1		1.4	5	1.61	1.18	1.17	1.7	1.8	1.7	1	2.3	1.2		2.1	-	1.4	3.3	ND	-	2.04	-		1.83	ND		3.66	
Sodium						4.2	3.5		4.9	5.7	4.8	4.3	4.1	4.7	4.6	4.7	4.1	ND	4.1		4.3	-	4.4	5.5	ND	-	5.89	-		5.33	4.62		3.39	20.0
PARAMETER (mg/l) TOXIC METALS																																		
Antimony						ND			ND		ND			ND	ND			ND	ND	•	-		ND		ND	-	ND	-		ND	ND	-	0.00	0.003
Arsenic						ND			ND		ND			ND	ND			ND	ND	-	-	-	ND	-	ND	-	ND		-	ND	ND	-	0.00	0.025
Barium						0.04			0.02		0.019			0.019	0.029			ND	0.016	٠			0.021		ND		0.02			0.0377	0.0314		0.03	1.0
Beryllium						ND			ND		ND			ND	ND			ND	2E-04	٠			ND		ND		ND			ND	ND		0.00	
Cadmium						ND	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	•	ND	-	ND	ND	ND	-	ND			ND	ND	-	0.00	0.005
Chromium (Total)						0.01			ND	ND	ND	ND		ND	ND			ND	ND	·	-	-	ND	-	ND	-	ND		-	0.0069	ND	-	0.03	0.05
Copper						ND			ND		ND			ND	ND			ND	ND	-	-	-	ND	-	ND	-	ND	-	-	0.0044	ND	-	0.01	0.2
Lead						0.01	ND		ND	ND	ND	ND	ND	ND	0.006	ND	0.001	ND	0.001	-	ND	-	0.002	ND	0.005	-	ND		-	ND	ND	-	0.01	0.025
Mercury						ND			ND		ND			ND	ND			ND	ND	·	-	-	ND	-	ND	-	ND		-		ND	-	0.00	0.0007
Nickel						ND			ND		ND			ND	ND			ND	ND	-	-	-	0.002	-	ND	-	0.001	-	-	0.0042	0.0054	-	0.04	0.1
Selenium						ND	ND		ND	ND	ND	ND		ND	ND			ND	ND	-	-	-	0.004	-	ND	-	ND	-		ND	ND	-	0.00	0.0
Silver						ND			ND		ND			ND	ND			ND	ND	-	-	-	ND	-	ND	-	ND	-		ND	ND	-	0.00	0.05
Thallium						ND			ND		ND			ND	ND			ND	ND			-	ND	-	ND		ND		-	ND	ND		0.00	0.0005
Zinc						0.03			0.15		0.054			0.143	0.15			0.17	0.059		-	-	0.255	-	0.204	-	0.006	-		0.323	0.306		0.11	2.0
PARAMETER (mg/l) LEACHATE INDICATORS	5																																	
Alkalinity						158	155						1.860			226	220		180	-	-	-	-	-	-	-	200	-		-	-	-	88.8	
Biochemical Oxygen Demand						-											ND					-					1.2		-	-			0.1	
Boron						ND			ND		ND			ND	ND				ND	-	-	-	-	-	ND	-	0.01	-		0.0115	ND	-	0.0	1.0
Chemical Oxygen Demand						14.9	23.4		19.2				ND	ND	ND	107	ND		6	-	30.3	-	-	-	-	ND	17.2	-		44.1	12.4		12.2	
Chromium (Hexavalent)						ND													ND			-	-	-			0.01				-		0.0	0.05
Chloride						5.4	4.2						5.86	6.59		5.5	60.7		5	-	4.3	-	-	-	-	-	5.9	-		-	-	-	6.4	250
Color (PCU units)						-													12	-	-	-	-	-	-	5	10	-		-	-	-	1.8	15.0
Nitrate-Nitrite						0.05	0.15									ND	0.069		ND		ND	-	-	-		0.055	0.035		-	ND	0.078		0.0	10.0
Nitrogen-Ammonia						ND	ND		ND				ND	ND	ND	ND	ND		ND	-	ND	-	-	-	-	ND	0.026	-		0.091	0.033	-	0.0	2.0
Phenols						ND	0.0081			ND	ND	ND	ND	ND	ND	ND			ND	-	-	-	-	-	-	-	0.003	-	-	0.0161	0.0033	-	0.0	0.001
Sulfate						8.2	10.1						9.52	8.13		8.8	8.5		8.3	-	7.9	-	-	-	-	-	9.6	-		-	-	-	7.1	250
Total Organic Carbon (TOC)						-	1.5	5	2.4	2.3		ND	BD	ND	2.5	ND	ND		1.5	-	-	-	-	-	-	2.6	ND	5.8	15.8	3.8	2.5	-	3.2	
Total Dissolved Solids (TDS)						244	177										240		215	-	228	-	-	-	-	-	225	-	-	-	-	-	129.4	500
Total Hardness						185	160		205			190	190	170		195		200	173	-	194	-	-	-	170	-	200	-	-	200	180	-	140.8	
Total Kjeldahl Nitrogen (TKN)						ND								ND	ND		ND		ND	-	-	-	-	-	-	0.11	0.27	-	-	0.35	0.49	-	0.3	
Turbidity (NTU units)						-	5.2		18.5	19.1	48	3	12	14	4	22.8	11.4	27.5	17	-	9.2	28.3	31	23.8	14.4	3.5	14.8	229	38.3	28.8	26.5	-	126.3	5.0
Cyanide						-													-	-		-	-	-	-		ND	-	-	-	ND		0.0	0.2
		were u * = Ap ** = Gu ND val (Blank) ND = N	sed beg plies to uidance ues are or "-" = lot Dete	inning v the sum Value. include Not Anacted.	orted at with the of cis and d in calconal alyzed.	9/98 sa nd trans ulation	mpling s-1,3-di of Mear	event. I chloropr and are	e consid	nces no ered eq	ted prio	r to this ero. ed.	event	eflect p																				

																_																				
	9/90	12/	90 3/	91	6/91	9/91	12/91	3/92	6/92	9/92 1	12/92 3	/93 6	5/93 9/	93 1	2/93	3/94	6/94 9	/94	12/94 3/9	6/95	9/95	12/95 4/9	9/96	3/97	9/97	3/98	9/98	3/99	9/99	3/00	9/00	3/01	9/01	3/02	9/02	3/03 9/0
PARAMETER VOLATILES (ug/L)	-,	1,	, -,		-,	-,	,	-,	-,	-,	-,, -	,	, ,		_,	,,,,,	-, , -,		, , . , .	. , .,	-,	,,	,	-,	,	-,	,	-,	-,	-,	-,	-,	-,	-,	-,	-, -, -
Acetone		4—	_	_										_				_		1 1				<u> </u>												
Acrylonitrile Benzene	-	1.3	6 3.	78	4.0	5.0	2.0	4.0		4.0		3.0	-	1	_	3	_	3	2	_	3	3	3	2	2	3	3	2	3	2	2	2	2.74	2,29	1.5	2.2 2.1
Bromohenzene	+	NI NI			ND	ND	ND	ND		ND		ND.		ID.		ND		ND.	ND.	_	ND	ND.	ND	ND.	ND	ND	ND	ND.	ND	ND	ND	ND	ND	ND	ND	ND ND
Bromochloromethane		NI			ND	ND				ND		ND		ID D		ND		ND.	ND.		ND	ND		ND			ND		ND	ND	ND	ND	ND	ND	ND	ND ND
Bromodichloromethane		NE) <	DL	ND	ND	ND	ND		ND		ND		ID																						ND
Bromoform		NE					ND			ND		ND		ID																						ND
Bromomethane	-	N) N	ID	ND	ND	ND	ND		ND	_	ND	١	ID		ND		ND	ND	+	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND ND
2-Butanone n-Butylbenzene	-	NI) N	ID.	ND	ND	ND	ND	-	ND	-	ND	_	ID		ND	-	ND	ND	+ +	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND ND
sec-Butylbenzene		NI		ID	ND	ND	ND	ND		ND		ND		ID ID		ND		ND	ND		ND	ND		ND	ND	ND	ND		ND	ND	ND	ND	ND	ND	ND	ND ND
tert-Butylbenzene		1.9		DL		ND	ND	ND		ND		ND		ID		ND		ND	ND		ND	ND		ND	ND	ND	ND		ND	ND	ND	ND	ND	ND	ND	ND ND
Carbon disulfide																																				
Carbon tetrachloride	4	NE		ID	ND	ND	ND	ND		ND		ND	N	ID		ND		ND	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND ND
Chlorobenzene Chloroethane	-	0.3 NI		.0	1.0 ND	ND ND	ND ND	1.0 2.0		1.0 ND		I.0 ND		ID I		ND		.8 ND	0.5	+ +	1 ND	1 ND	ND	0.6	0.9 ND	0.9 ND	1 ND	ND	2 ND	1 ND	0.7 ND	0.9 ND	1.22 ND	1.58 ND	0.58 ND	1.5 1.4 ND ND
Chloroform		1.7			ND	ND				ND		ND		ID ID		ND	-+	VD.	0.3	+ +	ND	ND	ND	0.0	ND	ND	ND	ND	IND	ND	ND	ND	ND	ND	ND	ND ND
Chloromethane	1	NI			ND	ND			i i	ND		ND		ID D	t	ND		ND	ND	1 1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND ND
2-Chlorotoluene		NE			ND	ND	ND			ND		ND		ID		ND		ND	ND		ND	ND			ND		ND		ND	ND	ND	ND	ND	ND	ND	ND ND
4-Chlorotoluene		N			ND	ND				ND		ND		ID		ND		۱D	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND ND
Dibromochloromethane		NI			ND	ND			 	ND		ND		ID				_		+			-	₩	<u> </u>		<u> </u>									ND
1,2-Dibromo-3-chloropropane 1,2-Dibromoethane	+	NI NI			ND ND	ND ND		ND ND	1	ND ND		- -		-				-		+ +			+	+	-	-	-									ND ND
Dibromomethane		N[ND	ND	ND			ND		ND	N	ID		ND		ND	ND	1 1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND ND
1,2-Dichlorobenzene		0.1			ND	ND		ND		ND		ND		ID		ND		ND.	ND		ND	ND				ND	ND		ND	ND	ND		ND	ND	ND	
1,3-Dichlorobenzene		N[) <	DL	ND	ND	ND	ND		ND		ND	N	ID		ND		۱D	ND		ND	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND ND
1,4-Dichlorobenzene		0.8	2 0.6	66	ND	ND	ND	1.0		0.7		0.6	0	.6		0.7	1	۱D	0.6		0.7	0.7	0.7	0.6	0.6	ND	0.6	ND	0.6	0.6	ND	ND	ND	ND	ND	0.55 ND
trans-1,4-Dichloro-2-butene	-					N/D				2.0	_					NID.			_	+	_		-	٠.		.	1		0.7	1				N/P	N/D	
Dichlorodifluoromethane 1.1-Dichloroethane	-	NI 26.			4.0 30.0	ND 26.0	ND	ND 34.0		3.0 26.0		2.0		ID 5		ND 18		1	2 22		3 22	2 J 19		18	0.9	22	23	ND 20	0.7 19	16	ND 19	0.9	ND 14.7	ND 17.8	ND 17	ND ND
1.2-Dichloroethane		0.9			ND	1.0				ND		ND		ID .		ND		ND.	ND		0.6	ND.		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND ND
1,1-Dichloroethene		NE	0.	15	ND	ND	ND	ND		ND		ND	N	ID		ND	1	ND	ND		ND	ND		ND	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND ND
cis-1,2-Dichloroethene		34.	·		26.0			24.0		17.0		0.0		3		15		3	18		11	15		15	13		19	14	17	15	17	20	21.7	13.6	17	20 26.1
trans-1,2-Dichloroethene	4	2.8				1.0		2.0		1.0		1.0	N			1		.7	0.7		1	0.7		0.7	0.7		0.9	0.5	ND	0.6	ND	ND	1.42	ND	0.53	
1,2-Dichloropropane 1,3-Dichloropropane	-	NI NI			ND ND	ND ND	ND ND	ND ND		ND ND		ND ND		ID ID		ND ND		ND ND	ND ND		ND ND	ND ND		ND ND	ND ND		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
2 2-Dichloropropane		NI			ND			ND		ND		ND		ID ID		ND		ND	ND ND		ND	ND ND		ND		ND	ND		ND	ND		ND	ND	ND		ND ND
1,1-Dichloropropene		NE			ND	ND	ND	ND		ND		ND		ID		ND		ND	ND		ND	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND ND
cis-1-3-Dichloropropene		NE			ND	ND	ND	ND		ND		ND		ID		ND		۱D	ND		ND	ND		ND	ND		ND		ND	ND	ND	ND	ND	ND	ND	ND ND
trans-1,3-Dichloropropene	4	NI		ID	ND	ND	ND	ND		ND		ND		ID 3		ND 2		ND	ND 1		ND	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND ND
Ethylbenzene 2-Hexanone	-	0.1	6 1.6	56	4.0	4.0	ND	3.0	-	3.0	-	3.0	-+	5		2		.7	-+-	+ +	3	0.8		0.6	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.95	ND	ND ND
Hexachlorobutadiene		NI) <	DL	ND	ND	ND	ND		ND		ND	N	ID		ND		ND	ND	1 1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND ND
lodomethane																																				
Isopropylbenzene		0.2			ND	ND	ND	ND		ND		ND		ID		ND		٧D	ND		ND	ND		ND	ND	ND	ND		ND	ND	ND	ND	ND	0.88	ND	ND ND
p-Isopropyltoluene	4	1.9		ID	ND	ND	ND	ND		ND		ND		ID		ND		۱D	ND		ND	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND ND
Methylene chloride 4-Methyl-2-pentanone	+	6.8	/ <	DL	2.0	1.0	2.0	3.0	1	ND		ND		ID		ND		ND	ND	++	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND ND
4-Methyl-2-pentanone Naphthalene	1	0.4	0 <	DL	ND	ND	ND	ND		ND		ND		ID		ND		ND	ND	+ +	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND ND
n-Propylbenzene	1	0.3		ID	ND	ND	ND	ND		ND		ND		ID		ND		ND	ND		ND	ND		ND	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND ND
Styrene		N[ND	ND	ND	ND		ND		ND		ID		ND		ND	ND		ND	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND ND
1,1,1,2-Tetrachloroethane		N			ND	ND			\Box	ND		ND		ID		ND		۱D	ND		ND	ND		ND	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND ND
1,1,2,2-Tetrachloroethane	+	0.2 NI			ND ND	ND ND	ND ND	ND ND	1	ND ND		ND ND		ID ID		ND ND		ND ND	ND		ND ND	ND ND		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Tetrachloroethene Toluene	+	0.1			ND	ND ND			1	0.6		ND ND		ID ID		ND		ND ND	ND ND		ND	ND 2		ND	ND ND		ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND
1,2,3-Trichlorobenzene	1	NI			ND	ND	ND	ND		ND ND		ND		ID		ND		ND	ND		ND	ND.		ND	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND ND
1,2,4-Trichlorobenzene		NE	3.8	83	ND	ND	ND	ND		ND		ND	N	ID		ND		ND	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND ND
1,1,1-Trichloroethane		7.7			2.0	ND		3.0		2.0		ND		.6		1		.9	1		ND	ND		ND	ND		ND		ND	ND	ND		ND	ND	ND	
1,1,2-Trichloroethane Trichloroethene		NI 4.8			ND 14.0	ND 3.0	ND 3.0	ND 3.0	 	9.0		ND 7.0		ID 5		ND 9		ND 7	ND 6		ND 5	ND 6	ND	ND 4	ND 8	ND 4	ND 9	ND	ND 5	ND	ND	ND 3	ND 5.69	ND 2.7	ND 2.8	ND ND 2.6 4
Trichloroethene Trichlorofluoromethane	+	4.8 NI			14.0 ND	3.0 ND	3.0 ND	3.0 ND	\vdash	9.0 ND		7.0 ND		ID I		9 ND		7 ND	6 ND		ND	6 ND	ND	ND	ND	ND	ND	A ND	ND	ND	7 ND	ND.	5.69 ND	ND	2.8 ND	2.6 4 ND ND
1.2.3-Trichloropropane	1	NI		ID ID	ND	ND	ND	ND		ND		ND		ID ID		ND		ND ND	ND ND		ND	ND ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND ND
1,2,4-Trimethylbenzene	1	NI		72	ND	ND	ND	ND		ND		ND		ID		ND		ND	ND		ND	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND ND
1,3,5-Trimethylbenzene		NE) N	ID	ND	ND	ND	ND		ND		ND	N	ID		ND	1	ND	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND ND
Vinyl acetate		1		J								\Box				\Box		\Box																		
Vinyl chloride		NI 1.4			42.0		8.0	36.0	 	22.0		2.0		ID D		15		5	15		15	13		10	8	14	14	8	14	10	10	11	15.6	ND	8 ND	6.4 12.2
o-Xylene p-Xylene & m-Xylene	+	1.4			ND 2.0	ND ND	1	 	1	ND 2.0		ND ND		ID .2		ND ND		ND ND	ND ND		ND ND	ND ND				ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND		ND ND
p Affecte a martiene		•	J.			.,,,,					- 1								IND		.,,,	IND		,			,		.,,,	.,,,,				.,,,,	.,,,	.10 110

	9/90	12/90	3/01	6/91	0/01	12/01	3/92	6/92	9/92	12/02	3/03	6/93	0/03	12/03	3/0/	6/94	9/9/	12/94	3/05	6/05	0/05	12/95	4/96	9/96	3/07	9/97	3/08	0/08	3/00	9/99	3/00	9/00	3/01	9/01	3/02	9/02	3/0
PARAMETER METALS (mg/L)	3/30	12/30	3/31	0/31	3/31	12/91	3/32	0/32	3/32	12/32	3/33	0/33	3/33	12/33	3/37	0/34	3/37	12/34	3/33	0/33	3/33	12/33	7/ 30	3/30	3/31	3/31	3/30	3/30	3/33	3/33	3/00	3/00	3/01	3/01	3/02	3/02	3/0.
Aluminum					12.6	1			6.27				1.33	1			ND				1.44		1	1.80		2.43		0.13	1	0.1		0.146	$\overline{}$	ND		ND	$\overline{}$
Calcium		72.2	50.4	64.6	65.0	51.8	58	62.8		66.7		61.6	62.1	55.6	57.5	66.2		55	52.6	61.1	65.8	64.7	64.4	61.7	59.3	63.9	62.7		55.9	66.8	68.1	66.9	50.4		62.3		57.4
Iron		16.8		8.96				7.1		22		12.1		5.55		38.8			43.5			15.3				5.48		4.13		1.1		3.72		5	2.8		4.25
Magnesium			21.4		22.7	15.6	19.4	20.6	25.6	24.1		20.1	20	19.2			0.13		22.1	19.7	21	21.9					19.8	20.3		20.3	22.3	21.4	10.7	21.1	20.2	21.6	
Manganese		12.8			13.1		11.6	12	14.7	12.5		11.9	11.9			12.5		9.22	10.0		12.7			11.4	10.7			11.3		10.9	:	11.3	7.97		6.93	11.0	
Potassium		2.7					3.3	3.8	3.58	3.9		3.4	2.34		3.18	5.24		3.56	5.9		2.49			3.00				3.24		2.58	5.54	3.46	2.77		4.53	3.02	2.87
Sodium				10.2			10.7			10		8.86							7.6							10.6		8.96									
		9.9	11.6	10.2	11.5	10.1	10.7	10.7	12.2	10		8.86	10.6	10	10.7	3.02	11	10.5	7.6	10.7	10.3	10.7	9.45	10.9	9.83	10.6	9.76	8.96	9.39	9.86	10.4	9.82	9.62	9.84	10.3	9.64	8.99
PARAMETER (mg/l) TOXIC METALS	_	_		_		_	_	_		_	_	_		_	_	_		_	_			_			_		_				_		_		_		_
Antimony					ND				ND				ND				ND				ND			ND		ND		ND		0.05		ND		ND		ND	
Arsenic					0.021				0.028				0.016				0.013				0.02			0.030		0.01		0.01		0.01		0.013	لــــا	0.03		0.016	
Barium					0.17				0.25				0.1				ND				0.13			0.124		0.13		0.09		0.09		0.105		0.11	<u> </u>	0.105	ь
Beryllium					ND				ND				ND				ND				ND			ND		ND		ND		ND		ND	لــــا	ND		ND	↓
Cadmium		<dl< td=""><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td></td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>0</td><td>ND</td><td>ND</td><td>ND</td><td>0.002</td><td>ND</td><td>0</td><td>ND</td><td></td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>0.01</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td></dl<>	ND	ND	ND	ND	ND	ND	ND		ND	ND	ND	ND	0	ND	ND	ND	0.002	ND	0	ND		ND	ND	ND	ND	0.01	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chromium (Total)					0.03				0.02				0.02				ND				0.35			0.026		0.03		ND		0.01		0.013	لـــــــا	ND	<u> </u>	ND	ш.
Copper					0.02				ND				ND				ND				ND			ND		ND		ND		ND		ND	لـــــــا	ND	<u> </u>	ND	
Lead		0.020	<dl< td=""><td>0.022</td><td>0.029</td><td>ND</td><td>0.018</td><td>0.023</td><td>0.010</td><td>0.034</td><td>0.021</td><td>0.009</td><td>0.007</td><td>0.012</td><td>0.005</td><td>0.026</td><td>0.004</td><td>0.013</td><td>0.009</td><td>0.006</td><td>0.02</td><td>0.003</td><td>0.010</td><td>0.042</td><td>0.010</td><td>0.01</td><td>0</td><td>0.01</td><td>0</td><td>0</td><td>0</td><td>0.014</td><td>0</td><td>0.01</td><td>0.003</td><td>0.007</td><td>0</td></dl<>	0.022	0.029	ND	0.018	0.023	0.010	0.034	0.021	0.009	0.007	0.012	0.005	0.026	0.004	0.013	0.009	0.006	0.02	0.003	0.010	0.042	0.010	0.01	0	0.01	0	0	0	0.014	0	0.01	0.003	0.007	0
Mercury					ND				ND				ND				ND				ND			ND		ND		ND		ND		ND		ND		ND	
Nickel					ND				0.04				0.06				ND				0.15			0.055		0.07		0.04		0.05		0.048		0.06		0.046	T
Selenium		<dl< td=""><td></td><td></td><td>ND</td><td></td><td></td><td></td><td>ND</td><td></td><td></td><td></td><td>ND</td><td></td><td></td><td>ND</td><td>ND</td><td></td><td></td><td></td><td>ND</td><td></td><td></td><td>ND</td><td></td><td>ND</td><td></td><td>ND</td><td></td><td>ND</td><td></td><td>ND</td><td></td><td>ND</td><td></td><td>ND</td><td>T</td></dl<>			ND				ND				ND			ND	ND				ND			ND		ND		ND		ND		ND		ND		ND	T
Silver					ND				ND				0.01				ND				ND			ND		ND		ND		ND		ND	\neg	ND		ND	1
Thallium					ND				ND				ND				ND				ND			ND		ND		ND		ND		ND	\neg	ND		ND	1
Zinc					0.08				0.04				0.03				ND				ND			ND		0.03		ND		ND		ND	$\overline{}$	0.03		0.029	+
AMETER (mg/l) LEACHATE INDICATORS																																-11-					
Alkalinity		278	271	247	296	306	321	294.0	282	259	278	257	275	238	262	264	291	261	247	288	265	256	246	310	260	281	317	288	268	310	285	281	251	282	257	286	276
Biochemical Oxygen Demand		270			3	300	J	231.0	ND	233	270	23.	7	230	LUL	201	8	201	,	200	15	230	2.10	q	200	13	217	17	200	ND	203	9		14		4	1270
Boron					0.1				ND				0.02				ND				0.07			0.112		0.06		0.08		0.07		0.081	-	0.08	\vdash	0.073	+-
Chemical Oxygen Demand		16	17	ND	8	6.0	ND	15.0		29.9	181	16.4	23.4	45.3	27.7	20.4		ND	25.1	45.4	36.6	ND		19.0	ND	22.4	30.1	26.3	25.4	ND	38.3	ND	23.2		24.3		12.8
Chromium (Hexavalent)	_	10	- 17	IND	ND	0.0	IND	13.0	ND	23.3	10.1	10.4	ND	73.3	21.1	20.4	ND	IND	23.1	73.7	ND	IND	29.3	ND	IND	ND ND	33.1	ND ND	23.7	ND	30.3	ND	23.2	ND	27.3	ND.	12.0
Chloride	_	21	20.3	22	22	26.0	18.0	42.0		16.4	22.2	23	25.6	16.5	19.9	170		18.4	15	21.1		18.9	15.0	24.0	13.2	20.6	12.0	20.3	16.2	20.8	12.7	18	145		15.3	19.9	12.0
Color (PCU units)	_	41	20.3	- 23	ND	20.0	10.0	73.0	30	10.4	23.2	- 23	20	10.5	13.3	17.0	40	10.4	-13	21.1	30	10.9	13.0	60	13.2	20.0	12.0	35	10.5	50	13.7	20	17.5	15	13.3	50	12.0
Nitrate-Nitrite		<dl< td=""><td>·DI</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>0.1</td><td></td><td>1.1</td><td>ND</td><td>ND</td><td>ND</td><td>0.86</td><td>ND</td><td>ND</td><td></td><td>0.76</td><td>ND</td><td>0.096</td><td>0.78</td><td>ND</td><td>ND</td><td>1.56</td><td>ND</td><td>0.58</td><td>ND</td><td>0.61</td><td>0.63</td><td>0.71</td><td>ND</td><td></td><td>0.1</td><td>0.21</td><td>ND</td><td>0.217</td><td>4 NID</td></dl<>	·DI	ND	ND	ND	ND	0.1		1.1	ND	ND	ND	0.86	ND	ND		0.76	ND	0.096	0.78	ND	ND	1.56	ND	0.58	ND	0.61	0.63	0.71	ND		0.1	0.21	ND	0.217	4 NID
Nitrate-Nitrite Nitrogen-Ammonia	_	<dl< td=""><td><dl< td=""><td>ND</td><td>0.3</td><td>0.8</td><td>1.2</td><td>4.6</td><td>1.76</td><td>1.9</td><td>1.99</td><td>1.2</td><td>2.05</td><td>0.51</td><td>ND 1.2</td><td>3.74</td><td>1.39</td><td></td><td>2.02</td><td></td><td>1.5</td><td>1.7</td><td></td><td>1.24</td><td>1.54</td><td></td><td>1.45</td><td>1.66</td><td>0.62</td><td>1 14</td><td>1.32</td><td></td><td>0.76</td><td></td><td>0.684</td><td>1 79</td><td></td></dl<></td></dl<>	<dl< td=""><td>ND</td><td>0.3</td><td>0.8</td><td>1.2</td><td>4.6</td><td>1.76</td><td>1.9</td><td>1.99</td><td>1.2</td><td>2.05</td><td>0.51</td><td>ND 1.2</td><td>3.74</td><td>1.39</td><td></td><td>2.02</td><td></td><td>1.5</td><td>1.7</td><td></td><td>1.24</td><td>1.54</td><td></td><td>1.45</td><td>1.66</td><td>0.62</td><td>1 14</td><td>1.32</td><td></td><td>0.76</td><td></td><td>0.684</td><td>1 79</td><td></td></dl<>	ND	0.3	0.8	1.2	4.6	1.76	1.9	1.99	1.2	2.05	0.51	ND 1.2	3.74	1.39		2.02		1.5	1.7		1.24	1.54		1.45	1.66	0.62	1 14	1.32		0.76		0.684	1 79	
Phenols	_	ND	ND		0.010	ND	ND		0.010		0.018		0.031	ND	0.030				0.010		0.05	0.013		0.014	0.005	0.01			0.02	0.01		0.0112			0.0129		4 0.00
Sulfate	_	0.5	4.5	ND	ND	ND	ND	ND	14	11	ND	ND	0.031	5.7	6.7	6.7	ND	ND.	ND	ND	ND	8.7	6.4	ND	ND	12	7.1	ND	14	7.4	106	ND	0.02	6.37	7.15	5.52	
				ND											0.7																	ND					
Total Organic Carbon (TOC)		13	5.4	6	6	6	5.0	14.0		6.3	7.2	5.6	7.8	4.7	7	4.9		4.8	9.5		6.4	6.1	7.0	6.4	4.6	ND		6.2	4.5	6	5.3	/	4.8	4.8	4.3	3.1	2.4
Total Dissolved Solids (TDS)		290	311		360	149	306	332.0	228	376	347	338	305	283	284	288	336	282	269	330	319	290	282	326	290		271	368	292	306	308	290	305	336	297	320	309
Total Hardness		272	237	294	256	194	225	242.0	320	304	368	277	299	295	422	284		212	222		251	252	249	237	232	245	199	255	217	250	262		225		239		222
Total Kjeldahl Nitrogen (TKN)					1.9				1.62				2.88				3.28				2.35			5.01		ND		3.03		2.52		3.24		4.71		2.19	
Turbidity (NTU units)		3200	496	280	386	24.0	214	138.0		160	240	75	24	150	88	66	23	9	130	19	27	46	70	29	36		43	18	23	700	18	22	9	6.1	2.4	36	8.9
Cyanide					ND		I —		ND				ND				ND		_		ND			ND		ND		ND		DA		ND		. –	ı —	1	

	2 (0 4		2 /05	0.00	2 /05		4 (0.7		4 (00		4 /00			0/10	- /		= /										2/12							, NY
PARAMETER VOLATILES (ug/L)	3/04	9/04	3/05	9/05	3/06	11/06	4/07	10/07	4/08	10/08	4/09	9/09	4/10	9/10	5/11	10/11	5/12	10/12	6/13	10/13	6/14	10/14	6/15	11/15	5/16	10/16	3/17	10/17	5/18	9/18	4/19	9/19	MEAN	I ST
Acetone		l		ND	ND	ND	2.8	14	ND	2	ND	1.2	ND	1.4	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1.2	ND	ND	ND	0.78	50.0
Acrylonitrile				ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.00	5.0
Benzene	2.3	2.2	2.3	1.8	1.6	2	1.6	1.6	1.4	1.7	ND	0.59	0.85	1.8	1.4	0.82	ND	ND	1.9	ND	ND	1.6	1.3	ND	ND	1.4	ND	ND	1.8	ND	ND	ND	1.85	1.0
Bromobenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	•	-			•	-	-		-	0.00	5.0
Bromochloromethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.00	5.0
Bromodichloromethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.00	50.0
Bromoform	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.00	50.0
Bromomethane 2-Butanone	ND	ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	0.00	50.0
n-Butylbenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND -	ND -	ND -	ND -	ND	ND -	ND	ND .	ND -	0.00	5.0
sec-Butylbenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND			-	-	-		-			0.00	5.0
tert-Butylbenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		-	-	-	-	-	-	-	-	0.03	5.0
Carbon disulfide				ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.00	60.0
Carbon tetrachloride	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.00	5.0
Chlorobenzene	1.5	1.4	1.5	0.87	1	1.2	0.95	0.88	1.2	1	ND	0.36	0.52	1.4	0.98	ND	ND	ND	1.7	ND	ND	1.2	0.93	ND	ND	ND	ND	ND	1.3	ND	ND	ND	0.78	5.0
Chloroethane	ND	0.4	0.55	0.33	0.4	ND	0.37	0.5	ND	0.52	ND	ND	0.26	0.59	0.55	ND	ND	ND	0.67	ND	ND	0.75	0.57	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.17	5.0
Chloroform	ND	ND	ND	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.04	7.0
Chloromethane	ND	ND	ND	ND			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.00	
2-Chlorotoluene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		-	-		-	<u> </u>	-	-	-	0.00	5.0
4-Chlorotoluene Dibromochloromethane	ND ND	ND ND	ND ND	ND ND		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	- ND	- ND	- ND	- ND	- ND	- ND	- ND	- ND	- ND	0.00	5.0
1,2-Dibromo-3-chloropropane	ND	ND ND	ND	ND			ND ND	ND	ND ND	ND	ND	ND	ND ND	ND	ND	ND ND	ND	ND	ND	ND	ND ND	ND ND	ND	ND	ND ND	ND	ND	ND	ND	ND ND	ND ND	ND ND	0.00	
1,2-Dibromo-3-chloropropane 1,2-Dibromoethane	ND ND	ND ND	ND ND	ND		ND ND	ND ND	ND	ND ND	ND	ND ND	ND	ND ND	ND ND	ND	ND ND	ND	ND	ND	ND	ND ND	ND	ND	ND	ND ND	ND	ND	ND	ND	ND ND	ND ND	ND ND	0.00	
Dibromomethane	ND	ND	ND	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND ND	0.00	5.0
1.2-Dichlorobenzene	ND	ND	ND	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND ND	0.00	3.
1.3-Dichlorobenzene	ND	ND	ND	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	-	-	-	-	-	ND	-	-	-	0.00	3.
1,4-Dichlorobenzene	ND	0.53	0.57	ND	ND	ND	0.31	0.3	ND	0.34	ND	ND	ND	0.41	ND	ND	ND	ND	0.53	ND	ND	0.37	0.29	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.25	3.0
trans-1,4-Dichloro-2-butene				ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.00	5.0
Dichlorodifluoromethane	ND	1.3	0.95	0.58	0.85	ND	0.85	0.64	ND	ND	ND	0.33	0.42	0.7	ND	ND	ND	ND	ND	ND	ND	ND	ND				8.4		ND			-	0.87	5.0
1,1-Dichloroethane	17.6	18	16	21	18	19	17	19	12	18	13	- 11	14	18	14	12	12	15	12	13	21	11	15	- 11	-11	16	11.5	18.1	15.5	9.5	14.2	11.6	18.00	
1,2-Dichloroethane	0.5	ND	ND	0.4	ND	ND	0.33	ND	ND	0.39	ND	ND	ND	0.43	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.11	0.0
1,1-Dichloroethene	ND	ND	0.4	ND	ND	ND	0.31	0.35	ND	0.37	ND	ND	0.24	0.37	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.04	5.0
cis-1,2-Dichloroethene	31.5	35	39	22	28	36	35	31	27	28	15	19	31	55	26	19	36	37	40	38	49	41	54 1 1	30	38	43	35.2	62.3	54.4	38.2	54.9	33.6	27.09	
trans-1,2-Dichloroethene 1,2-Dichloropropane	1.1	0.96	1.1	0.69	0.61	0.87	0.88 ND	0.64 ND	ND	1.1 ND	ND ND	0.34	0.52	0.97	0.58	ND	ND	ND	ND	ND	ND	0.64	1.1	ND ND	ND	ND	ND	ND	1.2	ND	ND	ND	0.61	5.0
1,3-Dichloropropane	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND	ND ND	ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND.	ND	ND -	ND	ND	ND ND	ND	ND .	ND .	0.00	5.
2.2-Dichloropropane	ND	ND	ND	ND	ND	ND	ND	ND		ND	ND	ND	ND	ND	ND	ND	ND	-	-	-	-	-	ND	-	-	-	0.00	5.0						
1.1-Dichloropropene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		-	-	-	-	ND	-	-	-	0.00	5.0
cis-1-3-Dichloropropene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.00	0.4
trans-1,3-Dichloropropene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.00	0.4
Ethylbenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.54	5.
2-Hexanone				ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.00	50
Hexachlorobutadiene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	-	-	-	-		-	-	-	-	0.00	0.
lodomethane	ND	N/D	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.00	5.
Isopropylbenzene p-Isopropyltoluene	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	\vdash	-	-	-	-	<u> </u>	-	-	-	0.02	5.
Methylene chloride	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	11	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND.	ND	ND.	ND.	ND.	ND	ND.	ND	ND	0.03	5.
4-Methyl-2-pentanone	ND	ND	IAD	ND	ND	ND	ND	ND	ND	ND	ND.	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND ND	0.26	1 3.
Naphthalene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	-	-							-	0.01	10
n-Propylbenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	-	-	-	-	-	1 -	-	-	-	0.01	5.
Styrene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.00	5
1,1,1,2-Tetrachloroethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.00	5
1,1,2,2-Tetrachloroethane	ND	ND	ND	ND	ND	ND	ND	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.00	5						
Tetrachloroethene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.01	5
Toluene	ND	ND	ND	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.04	5
1,2,3-Trichlorobenzene	ND	ND	ND	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	-	-				-	-	-	0.00	5.
1,2,4-Trichlorobenzene	ND	ND	ND	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		-	-			-	-		-	0.06	
1,1,1-Trichloroethane	ND	ND	ND	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.32	
1,1,2-Trichloroethane Trichloroethene	ND 4.3	ND 10	ND 7.2	ND 4.9	ND	ND 2.2	ND 2.3	ND 1.9	ND 1.4	ND 2.2	ND 1.6	ND 1.5	ND 2.2	ND 1.9	ND 1.8	ND 1.9	ND ND	ND ND	ND 2.6	ND ND	ND ND	ND 5.5	ND 5.9	ND ND	ND ND	ND 2.1	ND ND	ND ND	ND 1.8	ND ND	ND ND	ND ND	0.00 3.78	1
Trichlorofluoromethane	4.3 ND	ND.	ND	ND	ND	ND	Z.3 ND	ND	ND	ND.	ND.	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND ND	ND	5.9 ND	ND	ND ND	ND	ND	ND	ND	ND ND	ND ND	ND ND	0.00	5
1.2.3-Trichloropropane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND ND	0.00	0.
1.2.4-Trimethylbenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	-	-	- IND	-	-	-	-	-	-	0.00	5
1,3,5-Trimethylbenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	- 1	-	-			-	-	-	-	0.00	5
Vinyl acetate	T	<u> </u>		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.00	Ť
Vinyl chloride	15.9	12	13	8.8	10	9.3	9	8.6	6.7	15	2	3.6	4.9	16	6.5	2.4	10	9.2	9.6	7	8.9	6.8	7.5	ND	ND	ND	4.9	8.8	10.2	ND	12.9	5.1	10.44	2.
	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1.1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.06	5.0
o-Xylene p-Xylene & m-Xylene	ND	ND	ND	ND			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.10	5.

'	3 /04	0/04	2 /05	0/05	2/06	11/06	4/07	10/07	4 /00	10/00	4/00	0./00	4/10	0/10	E/11	10/11	E/12	10/12	6/12	10/12	6/14	10/14	6/15	11/15	E/16	10/16	2/17	10/17	E/10	9/18	4/10	0/10	MEAN	NYS STD
PARAMETER METALS (mg/L)	3/04	9/04	3/03	9/03	3/00	11/00	4/07	10/07	4/00	10/08	4/09	3/03	4/10	9/10	3/11	10/11	3/12	10/12	0/13	10/13	0/14	10/14	0/13	11/13	3/10	10/10	3/17	10/17	3/10	3/10	4/13	3/13	WEAN	310
Aluminum		3.4	$\overline{}$	ND		ND		ND	ND	1	ND			ND	ND			ND	0.03	0		ND	ND		ND	ND	0.03	ND	-	0.068	ND		0.82	T T
Calcium	71.6		73.1	66.8	64.2	68.9	63.7		67.7	69.1	63	71.1	67.5	75.5	75.1	70.7	72	79		74 7	74	70	74.5	66.4	72.9	83	72.4	77.1	76.4	76.6	88.8	78.8	66.17	1
Iron	1.63	6.1	4	ND.	0.44	0.61	1.7	0.48			0.337		0.599		0.5	0.54		1.6			1.04		1.42	ND	0.294	1.26	0.137	2.43	0.782		1.9	1.45	6.15	0.3
Magnesium			22.6		194	22		23.1		21.8	19.9	22.6		24.5	24.1	23	25			25.4			24.4	20.9	20.7	26	22.4	23.9	24.3	23.8	28	24.6	21.59	35.0
Manganese	8.81	9.5	9.7	2.3	4.3	5.4	6.6			8.3	5.02	3.06		11.3		6.1	9.7	11			5.78		7.54		3.71		2.16	9.29		5.59	8.69	7.21	8.94	0.3
Potassium	2.65	3.4	2.6	2.3	2.2	2.5	2.3	2.4	2.5	2.5	1.76	2.08		2.42	2.4	2.2	2.3	2.3	2.2	2.5	2.4	2	2.4	2.2	ND	ND	2.59	3.56	2.42	2.41	ND	2.51	2.78	0.5
Sodium					8.8	9.3	8.6	9.4	9.9	9.5	9.2	9.8	9.4	9	8.9	9.5	8.7	ND	8.7	9.2	8.3	9.1	9.1	9.3		9.86	8.22	8.83	8.99	9.64	8.7	9.08	9.45	20.0
PARAMETER (mg/l) TOXIC METALS	10.0	0.0	9.2	9.7	0.0	9.3	0.0	9.4	9.9	9.3	9.2	9.0	9.4	9	0.9	9.3	0.7	IND	0.7	9.2	0.3	9.1	9.1	9.3	9.29	9.00	0.22	0.03	0.99	9.04	0.7	9.00	9.43	20.0
Antimony		ND	$\overline{}$	ND		ND		ND	ND	1	ND			ND	ND			ND	ND			ND	ND		ND	ND	ND	ND		ND	ND	$\overline{}$	0.00	0.003
Arsenic		ND	$\overline{}$	ND		ND		ND			ND			0.013	ND				0.005	_	_	ND	0.005	-	ND	ND	ND	0.012	·	ND	0.007	<u> </u>	0.00	0.003
Barium		0.16	-	0.14		0.08		0.093		 	0.085			0.013	0.074				0.003	-		0.071	0.003	-	ND	ND	0.055	0.012	÷	0.066	0.007		0.01	1.0
Bervllium		ND.	$\overline{}$	ND		ND.		ND	ND		ND.			ND	ND			ND	ND	_	_	ND	ND	_	ND	ND	ND	ND	_	ND	ND	-	0.00	1.0
Cadmium	ND	ND	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND.	ND.	ND	ND	ND.	ND	ND	ND	ND	ND	ND	ND	ND.	0.00	0.005
Chromium (Total)	IND	0.01	IND	ND	IND	ND	IND	ND	ND	ND	ND	ND	IND	ND	ND	IND	IND	ND	ND	ND .	IND	ND	ND	IND	ND	ND	ND	ND	ND	ND	ND	IND	0.00	0.003
Copper Copper		0.01	$\overline{}$	ND	_	ND		ND	ND	-	ND			ND	ND			ND	ND	-	-	ND	ND	-	ND ND	ND	ND	ND		ND ND	ND ND		0.01	0.03
Lead	ND	0.01	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.001		0.002	ND.	ND.	ND	ND	ND.	0.004	ND	0.002	0.004	0.004	ND ND	ND ND	ND.	0.00	0.025
Mercury	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.001	ND	0.002 ND	ND	ND	ND	ND	IND	ND	ND	ND	6E-05	0.004	1E-04	ND	ND	0.00	0.023
Nickel		ND	-	ND		ND		ND	ND		ND			ND	ND				0.005	_		0.005	0.005	-	ND	ND	0.004	0.004		0.004	0.005	<u> </u>	0.00	0.0007
Selenium		ND	-	ND		ND		ND	ND		ND			ND	ND				0.005	_		U.UU3	0.005	-	ND	ND		0.004 ND		ND	0.003 ND	<u> </u>	0.02	0.0
Selenium		ND ND	-	ND ND		ND ND		ND	ND		ND ND			ND	ND			ND ND	0.006 ND	-		ND ND	0.006	-	ND ND	ND	ND ND	ND	-	ND ND	ND ND	<u> </u>	0.00	0.05
Thallium		ND	-	ND		ND		ND	ND		ND			ND	ND			ND	ND	_		ND	ND	-	ND	ND	ND	0.005		0.0066	0.0086		0.00	0.0005
Zinc			-						0.01	-			_	0.01			_		0.004	•		0.014		_			0.004	0.003	_			<u> </u>		2.0
		ND	-	ND		ND		ND	0.01		ND			0.01	0.014			ND	0.004		•	0.014	ND	-	ND	ND	0.004	0.007	-	0.009	ND		0.01	2.0
PARAMETER (mg/l) LEACHATE INDICATORS	270	274	267	272	280	242	268	2.40	134	321	314	261	257	340	221	325	290	330	310	330	311	319	303	260	268	315	267	392	269	307	324	302	285 1	1
Alkalinity	2/0		267		280		268			321		261	257		331	325					311									7				.
Biochemical Oxygen Demand		ND 0.07	-	ND ND		ND		4.4	2.7	-	ND 0.04		_	ND	2.6 0.057		5	ND	4.4 0.07	-		3.5	0.06	2.4	ND ND	ND	1.2 0.045	2.4	ND -		2.8 0.046	1.7	3.9	
Boron						0.06		0.052			0.04 ND			0.059				ND			-	0.00	0.00		ND			0.053		29.8		-	0.0	1.0
Chemical Oxygen Demand	18		14.1		ND	ND	ND	ND	ND	ND		ND	ND	ND	ND	15.9	ND		11.4	9.7	ND	ND	11.3	8.4	-	21.3	13	35.2	31.8		16.8	21.2	15.5	0.05
Chromium (Hexavalent)		ND 12.3	11	ND	11.7	ND	100	ND	ND	12.0	ND 13	12.6		ND 11.5	ND		0.75	ND	ND			ND	ND			ND 11.7	0.003		-	ND	ND		0.0	0.05 250
Chloride	14				11.7	9.2	10.9	14		13.9		12.6	11.5		8 12.5	11.3	8.75	10.4		11.5	6.4	8.4	11.2	9.1	8.71		12.5	10.2	8.0	10.9	7.1 ND	8.5	15.5	
Color (PCU units)	N/D	100		15				40	ND		10			0			0.055	5	39			8	22		ND	15	10							15
Nitrate-Nitrite	ND	0.18	ND		ND	ND		0.12		1.3	ND	ND 0.235	0.212	ND	ND		0.056		ND	ND	ND	ND	ND	1.5		0.054		0.042	ND	ND	ND	ND	0.3	10
Nitrogen-Ammonia	1.1	0.4			0.37	0.26	0.65	1	0.52		0.655			0.823	0.44	0.29	1.2		0.796		0.357		0.709	0.2	0.44	1.2	0.19		0.68	0.32 0.0110	0.9	0.83	1.1	2.0
	0.004		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.006									0.001
Sulfate	6.1	7.3	6.9	6.1	7.1	7.1	6.6	6.8	4.3	5.4	6.7		6.91	5.16	7.7	5.8	ND	ND	5.3	5.4	6.2	5.4	5.4	6.2	5.65	6.1	6.2	4.4	5.0	6.1	5.2	7.0	6.4	250
Total Organic Carbon (TOC)	3.2	4.4	3.6	3	2.4	3	3.1	2.7	4.4	5.3	2.7	1.6	1.5	3.6	3.0	1.4	3.9	3.6	4.0	3.6	3.4	3.9	3.0	3.1	1.65	5.2	ND	3.9	12.8	2.9	2.7	2.0	4.9	500
Total Dissolved Solids (TDS)	312		287	307	282	404	378	325		318	286	294	290	308	295	296	410	370	339	332		324	311	278	300	342	279	337	335	308	306	326	312.2	500
	267		276		240	262	244	282		262	240	270	260	290	287	271		310		291	287	273	286	257	250	350	250	300	300	227	280	260	265.6	<u> </u>
Total Kjeldahl Nitrogen (TKN)	23	1.4		1.3		ND		1.6	ND		ND			1.6	1.4			1.55	1.25	-	-	0.78	0.88	-	0.32	1	0.36	1.4	0.88	0.53	1.10	1.40	1.5	<u> </u>
			109	1.9	1.7	3	6.2	6.9	1.9	4.5	37	8	0	4	0	4.1	3.1	0.1	0.3	3	0	9.4	25.4	3.3	0.8	1.7	1.4	15.6	0.60	2.40	1.50	2.86	109.4	5.0
Turbidity (NTU units) Cvanide	23	ND	.03	ND		ND		ND	ND		ND			ND	ND			ND	ND	-	-	ND	ND			ND	ND			ND	ND		0.0	0.2

	0./00	12/	/00	3/91	6 /01	0/01	12/0	2 /03	6 (02	0./02	12/02	2 /02	6/02	0/02	12/02	2/04	6/94 9/	12/0	2 /05	6/05	0/05	12 /05	4/06	0/06	/07 0	/07 2 //	0.00	2 /00	0./00	2/00	9/00	2 /01	0/01	3/02	0/02	3/03	0./03
PARAMETER VOLATILES (ug/L)	9/90	12/	90	3/91	0/91	9/91	12/3	1 3/32	0/92	9/92	12/92	3/33	0/93	9/93	12/93	3/34	0/34 3/	34 12/3	1 3/33	0/93	9/93	12/93	4/90	9/90 3	/9/ 9	797 3/:	0 9/:	0 3/99	9/93	3/00	9/00	3/01	9/01	3/02	9/02	3/03	9/03
Acetone		Т	Т			1	Т	1		T				T					1	1										T		Т					
Acrylonitrile																																					
Benzene	1.45			0.38			3.0									2			3.0				2		3					2		1		2.45			2.5
Bromobenzene	ND			ND		ND										ND			ND				ND		ND					ND		ND			ND	ND	ND
Bromochloromethane	ND			ND		ND	ND									ND			ND				ND		ND					ND		ND		ND	ND	ND	ND
Bromodichloromethane	ND			ND		ND	ND			4					1			_	1								_		4								ND
Bromoform	ND	NI		ND		ND				4				-				_					110				_	_	-		-	110		110			ND
Bromomethane 2-Butanone	ND	NI	U	ND		ND	ND	ND	+	1 -				1	<u> </u>	ND		_	ND				ND		ND		_		1	ND	1 1	ND		ND	ND	ND	ND
n-Butylbenzene	ND	NI	D	ND		ND	ND	ND	+	+				-	1	ND		-	ND	-			ND		ND	-	_	-	+	ND	1	ND		ND	ND	ND	ND
sec-Butylbenzene	0.16			<dl< td=""><td>_</td><td>ND</td><td></td><td></td><td>+</td><td>+</td><td></td><td>\vdash</td><td></td><td>-</td><td>+</td><td>ND</td><td></td><td>_</td><td>ND</td><td>1</td><td></td><td></td><td>ND</td><td></td><td>ND.</td><td>_</td><td>_</td><td>+</td><td>+</td><td>ND</td><td>+ +</td><td>ND</td><td></td><td></td><td>ND</td><td>ND</td><td>ND</td></dl<>	_	ND			+	+		\vdash		-	+	ND		_	ND	1			ND		ND.	_	_	+	+	ND	+ +	ND			ND	ND	ND
tert-Butylbenzene	ND			ND			ND			1				1		ND		_	ND	1			ND		ND		_	+	+	ND	1 1	ND			ND	ND	ND
Carbon disulfide			-						1																-			_									
Carbon tetrachloride	ND	N	D	ND		ND	ND	ND								ND			ND				ND		ND					ND		ND		ND	ND	ND	ND
Chlorobenzene	0.14	0.2	20	<dl< td=""><td></td><td>ND</td><td>ND</td><td>1.0</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>ND</td><td></td><td></td><td>0.6</td><td></td><td></td><td></td><td>ND</td><td></td><td>ND</td><td></td><td></td><td></td><td></td><td>1</td><td></td><td>ND</td><td></td><td>1.26</td><td>ND</td><td>5.4</td><td>2.4</td></dl<>		ND	ND	1.0								ND			0.6				ND		ND					1		ND		1.26	ND	5.4	2.4
Chloroethane	ND			ND		6.0										3			1.0				1	_).9					ND		ND		ND	ND	0.74	ND
Chloroform	ND			ND		ND	ND																														ND
Chloromethane	ND			ND		ND										ND			ND				ND		ND				1	ND		ND		ND	ND	ND	ND
2-Chlorotoluene	ND			ND		ND	ND			1				<u> </u>		ND			ND	<u> </u>			ND		ND				4—	ND	\vdash	ND		ND	ND	ND	ND
4-Chlorotoluene	ND			ND		ND				1		1		<u> </u>	1	ND			ND	<u> </u>		—	ND	<u> </u>	ND		4	_	_	ND	+	ND		ND	ND	ND	ND
Dibromochloromethane 1.2-Dibromo-3-chloropropane	ND			ND		ND	ND ND	ND ND	-	_		\vdash			_	\vdash		_	_		_	_	\vdash						4	+	\vdash						ND
1,2-Dibromo-3-chloropropane 1.2-Dibromoethane	ND ND			ND ND			ND ND			1		1		1	1	\vdash			1-	1		\vdash	\vdash	-		_	+		1	+	+ +		-+				ND ND
1,2-Dibromoethane	ND ND			ND ND	_	ND ND				+	-	\vdash		1	1	ND		-	ND	1	-	\vdash	ND	-	ND		+	-	+	ND	+	ND		ND	ND	ND	ND ND
1.2-Dichlorobenzene	ND			ND		ND				+				-	+	ND		_	ND	-			ND		ND ND		_	+	+-	ND	-	ND	_		ND	0.88	ND
1,3-Dichlorobenzene	ND			ND			ND			+				-	+	ND		_	ND	-			ND		ND ND		_	+	+-	ND	-	ND	_				
1.4-Dichlorobenzene	ND			ND			ND			1				1		ND		_	1.0	1			ND		ND		_	+	+	ND	1 1	ND		ND		1.7	ND
trans-1.4-Dichloro-2-butene	110	0.2	-	110		110	110	1	1	1					1	110			1.0				110			_	_	1	1	110		.,,,		.,,,	.,,,		
Dichlorodifluoromethane	ND	NI	D	ND		ND	ND	ND		1				1		ND			2.0	1			0.7 J		1			-	1	ND	t	0.7		ND	ND	ND	ND
1.1-Dichloroethane	6.25			5.16			2.0									2			4.0				3		2			_		3		2		2.18		6.2	
1,2-Dichloroethane	0.16	<d< td=""><td>DL</td><td>ND</td><td></td><td>1.0</td><td>ND</td><td>ND</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>ND</td><td></td><td></td><td>ND</td><td></td><td></td><td></td><td>ND</td><td></td><td>ND</td><td></td><td></td><td></td><td>1</td><td>ND</td><td></td><td>ND</td><td></td><td>ND</td><td>ND</td><td>ND</td><td>ND</td></d<>	DL	ND		1.0	ND	ND								ND			ND				ND		ND				1	ND		ND		ND	ND	ND	ND
1,1-Dichloroethene	ND	NI	D	ND		ND	ND	ND								ND			ND				ND		ND					ND		ND		ND	ND	ND	ND
cis-1,2-Dichloroethene	ND	19.	.7	10.6		30.0	8.0	12.0								7			12.0				8		6					9		5		5.9	3.8	9.9	9.7
trans-1,2-Dichloroethene	14.3			0.41		28.0	ND	ND								ND			ND				ND		ND					ND		ND			ND	0.55	
1,2-Dichloropropane	ND			ND				ND								ND			ND				ND		ND					ND		ND		ND			
1,3-Dichloropropane	ND			ND			ND									ND			ND				ND		ND					ND		ND		ND		ND	
2,2-Dichloropropane	ND			ND			ND			1						ND		_	ND				ND		ND		_		1	ND	1 1	ND		ND			
1,1-Dichloropropene	ND			<dl< td=""><td></td><td>ND</td><td></td><td></td><td></td><td>4</td><td></td><td></td><td></td><td>-</td><td></td><td>ND</td><td></td><td>_</td><td>ND</td><td></td><td></td><td></td><td>ND</td><td></td><td>ND</td><td></td><td>_</td><td>_</td><td>-</td><td>ND</td><td>-</td><td>ND</td><td></td><td>ND</td><td></td><td>ND</td><td>ND</td></dl<>		ND				4				-		ND		_	ND				ND		ND		_	_	-	ND	-	ND		ND		ND	ND
cis-1-3-Dichloropropene trans-1,3-Dichloropropene	ND ND			ND ND		ND ND				+				_	-	ND ND		_	ND ND	-			ND ND		ND D	_	_	_	+	ND ND	-	ND ND			ND ND	ND ND	ND ND
Ethylbenzene	0.16			0.13		ND				+				-	+	ND		_	1.0	-			ND		ND ND		_	+	+-	ND	-	ND	_	1.06		1.2	ND
2-Hexanone	0.16	0.2		0.13		ND	IND	2.0	+	1 -				1	1	IND			1.0	1			ND		ND		_	-	1	ND	1 1	ND		1.00	ND	1.2	IND
Hexachlorobutadiene	ND	NI	D	ND		ND	ND	ND	+	1				1		ND		_	ND	1			ND		ND		_	+	+	ND	1 1	ND		ND	ND	ND	ND
lodomethane	110		_	110		110	110	1	1	1					1	110			110				110			_	_	1	1	110		.,,,		.,,,	.,,,	110	
Isopropylbenzene	0.52	0.9	99	ND		ND	ND	ND	1							ND			ND				ND		ND			_		ND		ND		1.02	ND	0.5	ND
p-Isopropyltoluene	ND		20	ND		ND	ND									ND			ND				ND		ND					ND		ND			ND	ND	ND
Methylene chloride	1.76			ND		3.0										ND			ND				ND		ND					ND		ND			ND	ND	ND
4-Methyl-2-pentanone																																					
Naphthalene	0.52			ND		ND										ND			ND				ND		ND					ND		ND		ND		1.2	ND
n-Propylbenzene	ND			ND		ND						oxdot				ND			ND				ND		ND					ND		ND		ND	ND	ND	ND
Styrene	ND	NI		ND		ND			1	1				ļ	1	ND		_	ND	ļ			ND		ND			_	_	ND	\vdash	ND		ND	ND	ND	ND
1,1,1,2-Tetrachloroethane	ND			ND		ND				1		1		<u> </u>	1	ND			ND	<u> </u>		—	ND		ND		4	_	_	ND	+	ND		ND	ND	ND	ND
1,1,2,2-Tetrachloroethane	ND			ND		ND				+				_	-	ND		_	ND	-			ND		ND	_	_	_	+	ND	-	ND			ND	ND	ND
Tetrachloroethene Toluene	1.48 <dl< td=""><td></td><td></td><td>0.79 ND</td><td></td><td>ND ND</td><td></td><td></td><td></td><td>-</td><td> </td><td>\vdash</td><td></td><td>├</td><td>-</td><td>0.6 ND</td><td></td><td>_</td><td>ND ND</td><td> </td><td></td><td>1</td><td>ND 0.8</td><td></td><td>ND ND</td><td></td><td>_</td><td>+</td><td>+</td><td>ND ND</td><td>\vdash</td><td>ND ND</td><td></td><td></td><td>ND ND</td><td>ND ND</td><td>ND ND</td></dl<>			0.79 ND		ND ND				-	 	\vdash		├	-	0.6 ND		_	ND ND	 		1	ND 0.8		ND ND		_	+	+	ND ND	\vdash	ND ND			ND ND	ND ND	ND ND
1 2 3-Trichlorobenzene	ND.			ND		ND				+		-		-	 	ND ND		_	ND	-			ND		ND ND	_	_	+	+	ND ND	-	ND	-	ND	ND	ND	ND
1,2,4-Trichlorobenzene	ND			ND		ND				+				-	+	ND		_	ND	-			ND		ND		_	+	+-	ND	-	ND	_	ND	ND	ND	ND
1,1,1-Trichloroethane	ND			0.43	-	ND				1	 	\vdash		 	_	ND		_	ND	 			ND		ND		_	+	+	1	+	ND	-+		ND	ND	ND
1.1.2-Trichloroethane	ND			<dl< td=""><td></td><td>ND</td><td></td><td></td><td></td><td>1</td><td></td><td></td><td></td><td>1</td><td>1</td><td>ND</td><td></td><td>_</td><td>ND</td><td>1</td><td></td><td>\vdash</td><td>ND</td><td></td><td>ND</td><td></td><td></td><td>+</td><td>1</td><td>ND</td><td>1 1</td><td>ND</td><td>-+</td><td></td><td>ND</td><td>ND</td><td>ND</td></dl<>		ND				1				1	1	ND		_	ND	1		\vdash	ND		ND			+	1	ND	1 1	ND	-+		ND	ND	ND
Trichloroethene	3.53			2.0		2.0	2.0			1				1	1	2			4.0				3		3	_	+		1	3	1 1	2			1.2	2.6	2.9
Trichlorofluoromethane	ND			ND		ND				1				t		ND			ND				ND		ND			1	1	ND	\vdash	ND	-	ND		ND	ND
1,2,3-Trichloropropane	ND			ND		ND	ND							1		ND			ND				ND		ND					ND		ND		ND	ND	ND	ND
1,2,4-Trimethylbenzene	0.20	NI	D	ND		ND	ND	2.0								ND			ND				ND		ND					ND		ND		ND	ND	ND	ND
1,3,5-Trimethylbenzene	0.120			ND		ND	ND	ND								ND			ND				ND		ND					ND		ND		ND	ND	ND	ND
Vinyl acetate																																					
Vinyl chloride	ND			ND			ND	7.0								3			4.0				2		2					3		1			ND		3.1
o-Xylene	0.070	0.3	6	ND		ND										ND			ND				ND		ND					ND		ND			ND		ND
p-Xylene & m-Xylene				ND		ND										ND			ND				ND		ND					ND		ND		1.78	ND	ND	ND
	_										_		_							_		_				_				_	_		_		_	_	_

	9/90	12/90	3/91	6/91	9/91	12/91	3/92	6/92	9/92	12/92	3/93	6/93	9/93	12/93	3/94	6/94	9/94	12/94	3/95	6/95	9/95	12/95	4/96	9/96	3/97	9/97	3/98	9/98	3/99	9/99	3/00	9/00	3/01	9/01	3/02	9/02	3/03	9/
PARAMETER METALS (mg/L)	3,30	12, 30	3/31	0,51	3/31	12/31	3/32	0/32	3,32	12/ 32	3/33	0/33	3/33	12/33	3, 31	0,51	3/31	12/51	3/33	0/33	3,33	12/33	1,50	3,30	3,31	3/31	3,30	3/30	3/33	3/33	3,00	3,00	3,01	3,01	3,02	3,02	3,03	1 3/1
	4.3				3.1																											$\overline{}$					$\overline{}$	τ
Calcium	23.4	16.5	25.1		48.2	13.9	25.4			12.3				28.2	11.6	14			23.6				31.5		19.7						29.7	1	\vdash		36.7		40.8	-
Iron			26.5			13.1				13.1				22.7	12.7	39.3			11.1				47.6		17.2						26.5		\vdash		19.3		28.1	
	7.6	4.5	8.1		14.8	4	9.8			4.61						8.09			6.5				7.93		5.45						9.34	1	\vdash		14		15.9	1
		6.5				5.42				4.56					4.45				6.5				8.69		7.80						11.9		\vdash		10.8		11.2	
Potassium	3.3	1.1	4		4.1		3.1			3.46						9.5			3.2				4.62		1.84						3.19	1	\vdash		3.08		4.1	1
Sodium	1.3	1.4	3.3		8.8	3.3	7.5			1.58				6.38	1.67	3.02			2.8				3.59		2.05						3.99		\vdash		7.24		8.7	т
PARAMETER (mg/l) TOXIC METALS																																_	_			_	1 211	
	ND				ND																											$\overline{}$						т
Arsenic	ND				0.041																											+	\vdash				_	+
	0.23				0.52																											t	\vdash				t	+
Bervllium					ND																											+	\vdash				_	+
Cadmium	-	<dl< td=""><td><dl< td=""><td></td><td>ND</td><td>ND</td><td>ND</td><td></td><td></td><td>ND</td><td></td><td></td><td></td><td>ND</td><td>ND</td><td>ND</td><td></td><td></td><td>ND</td><td></td><td></td><td></td><td>ND</td><td></td><td>ND</td><td></td><td></td><td></td><td></td><td></td><td>ND</td><td>-</td><td>\vdash</td><td></td><td>ND</td><td></td><td>ND</td><td>+</td></dl<></td></dl<>	<dl< td=""><td></td><td>ND</td><td>ND</td><td>ND</td><td></td><td></td><td>ND</td><td></td><td></td><td></td><td>ND</td><td>ND</td><td>ND</td><td></td><td></td><td>ND</td><td></td><td></td><td></td><td>ND</td><td></td><td>ND</td><td></td><td></td><td></td><td></td><td></td><td>ND</td><td>-</td><td>\vdash</td><td></td><td>ND</td><td></td><td>ND</td><td>+</td></dl<>		ND	ND	ND			ND				ND	ND	ND			ND				ND		ND						ND	-	\vdash		ND		ND	+
	<dl< td=""><td></td><td></td><td></td><td>0.04</td><td></td><td></td><td></td><td>- 1</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td>\vdash</td><td></td><td></td><td></td><td>+</td><td>+</td></dl<>				0.04				- 1																							-	\vdash				+	+
Copper	<dl< td=""><td></td><td></td><td></td><td>0.01</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>+</td><td>\vdash</td><td></td><td></td><td></td><td>_</td><td>+</td></dl<>				0.01																											+	\vdash				_	+
Lead	<dl< td=""><td>∠DI</td><td>0.008</td><td></td><td>ND</td><td>ND</td><td>0.020</td><td></td><td>- 1</td><td>0.005</td><td></td><td></td><td></td><td>0.006</td><td>0.004</td><td>0.024</td><td></td><td></td><td>0.009</td><td></td><td></td><td></td><td>0.003</td><td></td><td>0.001</td><td></td><td></td><td></td><td></td><td></td><td>ND</td><td>-</td><td>\vdash</td><td></td><td>0.001</td><td></td><td>0.003</td><td>+</td></dl<>	∠DI	0.008		ND	ND	0.020		- 1	0.005				0.006	0.004	0.024			0.009				0.003		0.001						ND	-	\vdash		0.001		0.003	+
	ND	1DL	0.000		ND	.,,	0.020			0.003				0.000	0.001	0.02 1			3.003				0.003		0.001						110	-	\vdash		0.001	 	0.003	+
	0.62			_	0.05				-								-						_									-	\vdash			-	-	+
	0.021	ND	0.077		ND	ND	ND			ND				0.007	ND	ND			ND				ND		ND						ND	-	\vdash		ND	 	ND	+
	ND.	110	0.077		ND	.,,			- 1	.,,,				0.007	110	110			.,,,						110						110	-	\vdash		110	 		+
Thallium	ND				ND				- 1										- 1													-	\vdash			 	-	+
	0.04				0.12				_																							-	\vdash			_	-	+
AMETER (mg/l) LEACHATE INDICATORS	0.01				0.12																											_				_	-	_
	95	95	117	1	1	84.0	135.0		Т	44.4				128	45.4				91.3	- 1			1		78.8						145	$\overline{}$			192		205	一
	19.0					01.0	133.0		_					120	13.1				31.3						70.0						113	-	\vdash		1,72	_		+
	ND				0.06				_																							-	\vdash			_	-	+
		15.0	12		0.00	5.0	ND		- 1	ND				43.9	175				23.4						ND						48.4	-	\vdash		33.2	 	28.8	- 2
Chromium (Hexavalent)	<dl< td=""><td>13.0</td><td></td><td></td><td>ND</td><td>3.0</td><td>.,,,</td><td></td><td>_</td><td>110</td><td></td><td></td><td></td><td>13.3</td><td>17.3</td><td></td><td></td><td></td><td>23.1</td><td></td><td></td><td></td><td></td><td></td><td>110</td><td></td><td></td><td></td><td></td><td></td><td>10.1</td><td>-</td><td>\vdash</td><td></td><td>33.2</td><td>_</td><td>20.0</td><td>+</td></dl<>	13.0			ND	3.0	.,,,		_	110				13.3	17.3				23.1						110						10.1	-	\vdash		33.2	_	20.0	+
	<dl< td=""><td>6</td><td>7</td><td></td><td>110</td><td>ND</td><td>4.0</td><td></td><td>_</td><td>ND</td><td></td><td></td><td></td><td>10.1</td><td>ND</td><td></td><td></td><td></td><td>2.3</td><td></td><td></td><td></td><td></td><td></td><td>ND</td><td></td><td></td><td></td><td></td><td></td><td>3.92</td><td>-</td><td>\vdash</td><td></td><td>10.3</td><td>_</td><td>12.7</td><td>+</td></dl<>	6	7		110	ND	4.0		_	ND				10.1	ND				2.3						ND						3.92	-	\vdash		10.3	_	12.7	+
	55.0	- 0		_	_	ND	4.0		-	ND				10.1	IND		-		2.3				_		IND						3.32	-	\vdash		10.5		12.7	+
Nitrate-Nitrite	<dl< td=""><td><dl< td=""><td><dl< td=""><td>_</td><td>ND</td><td>ND</td><td>ND</td><td></td><td>-</td><td>1.3</td><td></td><td></td><td></td><td>0.338</td><td>ND</td><td></td><td>-</td><td></td><td>ND</td><td></td><td></td><td></td><td>_</td><td></td><td>ND</td><td></td><td></td><td></td><td></td><td></td><td>ND</td><td>-</td><td>\vdash</td><td></td><td>0.176</td><td></td><td>ND</td><td>-</td></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""><td>_</td><td>ND</td><td>ND</td><td>ND</td><td></td><td>-</td><td>1.3</td><td></td><td></td><td></td><td>0.338</td><td>ND</td><td></td><td>-</td><td></td><td>ND</td><td></td><td></td><td></td><td>_</td><td></td><td>ND</td><td></td><td></td><td></td><td></td><td></td><td>ND</td><td>-</td><td>\vdash</td><td></td><td>0.176</td><td></td><td>ND</td><td>-</td></dl<></td></dl<>	<dl< td=""><td>_</td><td>ND</td><td>ND</td><td>ND</td><td></td><td>-</td><td>1.3</td><td></td><td></td><td></td><td>0.338</td><td>ND</td><td></td><td>-</td><td></td><td>ND</td><td></td><td></td><td></td><td>_</td><td></td><td>ND</td><td></td><td></td><td></td><td></td><td></td><td>ND</td><td>-</td><td>\vdash</td><td></td><td>0.176</td><td></td><td>ND</td><td>-</td></dl<>	_	ND	ND	ND		-	1.3				0.338	ND		-		ND				_		ND						ND	-	\vdash		0.176		ND	-
	1.0	<dl< td=""><td><dl< td=""><td>_</td><td>1.6</td><td>0.6</td><td>2.2</td><td></td><td></td><td>0.4</td><td></td><td></td><td></td><td>1.01</td><td>ND</td><td></td><td>-</td><td></td><td>0.8</td><td></td><td></td><td></td><td>_</td><td></td><td>0.390</td><td></td><td></td><td></td><td></td><td></td><td>0.56</td><td>-</td><td>\vdash</td><td></td><td>4.12</td><td>_</td><td>3.55</td><td>Ť</td></dl<></td></dl<>	<dl< td=""><td>_</td><td>1.6</td><td>0.6</td><td>2.2</td><td></td><td></td><td>0.4</td><td></td><td></td><td></td><td>1.01</td><td>ND</td><td></td><td>-</td><td></td><td>0.8</td><td></td><td></td><td></td><td>_</td><td></td><td>0.390</td><td></td><td></td><td></td><td></td><td></td><td>0.56</td><td>-</td><td>\vdash</td><td></td><td>4.12</td><td>_</td><td>3.55</td><td>Ť</td></dl<>	_	1.6	0.6	2.2			0.4				1.01	ND		-		0.8				_		0.390						0.56	-	\vdash		4.12	_	3.55	Ť
	0.002	ND	<dl< td=""><td>_</td><td>1.0</td><td>ND</td><td>ND.</td><td></td><td></td><td>0.010</td><td></td><td></td><td>_</td><td>0.019</td><td></td><td></td><td>_</td><td>_</td><td>ND</td><td></td><td></td><td>_</td><td></td><td></td><td>0.001</td><td>_</td><td>_</td><td>_</td><td></td><td></td><td>0.0138</td><td>_</td><td>\vdash</td><td></td><td>0.0225</td><td>-</td><td>0.0157</td><td></td></dl<>	_	1.0	ND	ND.			0.010			_	0.019			_	_	ND			_			0.001	_	_	_			0.0138	_	\vdash		0.0225	-	0.0157	
	11	16.3					12.0			12.0			-	8.7	8		-	_	6.0			_	-		6.1						12	+-	\vdash		8.77	\vdash	5.9	4
Total Organic Carbon (TOC)	8	8	5	-	10.0	3.0	6.0	-		5.0				6.7			-		6.4						5.8						6.6		-		4.3	-	6.1	+
	132.0	110	118	 	10.0		153.0			60.0				183	85				112						75						153	+-	\vdash		216	\vdash	262	+
		60.7	96	1	1		104.0	\vdash		54.0			-	187			\vdash		85.6			_	-		71.6				_	_	113	+-	\vdash		149	\vdash	167	+
	1.9	00.7	30	-	2.1	31.0	104.0	\vdash		34.0			-	10/	99		\vdash		0.00			_	-		/1.0	-	_	-	-		113	+-	\vdash		149	\leftarrow	167	+
	55	242	102	_	2.1	32.0	040	\vdash	_	76.0			-	100	F00		\vdash	_	70.0				-		45	<u> </u>		<u> </u>		-	33	-	$\vdash \vdash$		9.7	-	24	+
	<dl< td=""><td>243</td><td>102</td><td>_</td><td>-</td><td>32.0</td><td>34.0</td><td>\vdash</td><td>_</td><td>70.0</td><td>_</td><td>_</td><td>-</td><td>100</td><td>300</td><td></td><td>\vdash</td><td>_</td><td>70.0</td><td></td><td></td><td></td><td>-</td><td></td><td>43</td><td>—</td><td>-</td><td>-</td><td>-</td><td></td><td>- 33</td><td>+</td><td>\vdash</td><td>_</td><td>9.7</td><td>-</td><td>24</td><td>4</td></dl<>	243	102	_	-	32.0	34.0	\vdash	_	70.0	_	_	-	100	300		\vdash	_	70.0				-		43	—	-	-	-		- 33	+	\vdash	_	9.7	-	24	4

																																	NYS
DADAMETER VOLATILES (*** (1)	3/04	9/04	3/05	9/05	3/06	11/06	4/07	10/07	4/08 10,	/08 4/09	9/09	4/10	9/10	5/11	10/11	5/12	10/12	6/13	10/13	6/14	10/14	6/15	11/15	5/16	10/16	3/17	10/17	5/18	9/18	4/19	9/19	MEAN	STD
PARAMETER VOLATILES (ug/L) Acetone				11	5	6	ND	16	4 1	4	т —	5.5	5.5	3.4	ND	ND		2.3	ND	ND	1.7	ND	ND	ND	ND	ND		3.8	ND	ND	ND	3.01	50.0
Acrylonitrile				ND	ND			ND	ND N	D		ND	ND	ND	ND	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND		ND	ND	ND	ND	0.00	5.0
Benzene	2	3	2.2	2.6	3.8	3.8	2.5	1.6	2.2 0.	4		1.4	0.79	3.6	1.2	ND		1.1	ND	ND	1.4	0.67	ND	ND	ND	ND		4.4	ND	ND	ND	1.87	1.0
Bromobenzene	ND	ND	ND		ND	ND	ND	ND	ND N			ND	ND	ND	ND	ND		ND	ND	ND	ND	ND										0.00	5.0
Bromochloromethane	ND	ND	ND	ND	ND	ND	ND	ND	ND N			ND	ND	ND	ND	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND		ND	ND	ND	ND	0.00	5.0
Bromodichloromethane Bromoform	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND N		+	ND ND	ND ND	ND ND	ND ND	ND ND		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND		ND ND	ND ND	ND ND	ND ND	0.00	50.0 50.0
Bromomethane	ND ND	ND	ND	ND	ND	ND	ND	ND	ND N		+-	ND	ND	ND	ND	ND ND		ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	-	ND ND	ND ND	ND ND	ND ND	0.00	5 0
2-Butanone	IND	ND	IND	ND	ND		ND		ND N		+	ND	ND	ND		ND		ND	ND	ND	ND	ND	ND	ND	ND	ND		ND	ND	ND	ND	0.00	50.0
n-Butylbenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND N	D		ND	ND	ND	ND	ND		ND	ND	ND	ND	ND									-	0.00	5.0
sec-Butylbenzene	ND	ND	ND	ND	ND	0.28	ND	ND	0.32 N	D		ND	ND	ND	ND	ND		ND	ND	ND	ND	ND										0.02	5.0
tert-Butylbenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND N			ND	ND	ND	ND	ND		ND	ND	ND	ND	ND										0.00	5.0
Carbon disulfide	ND	NID	ND	ND	ND		ND	ND	ND N			ND	ND	ND	ND	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND		ND	ND	ND	ND	0.00	
Carbon tetrachloride	ND ND	2.7	ND 0.67	ND 0.59	ND 6.4	ND 5.1		ND 0.46	ND N 0.81 N		+-	ND 1.6	ND 0.34	ND 5.8	ND 0.58	ND ND		ND 0.71	ND ND	ND 6.6	ND 1.4	ND 0.53	ND ND	ND ND	ND ND	ND ND	-	ND 10.9	ND ND	ND 5.8	ND ND	0.00 1.45	5.0
Chloroethane	ND	1	0.07	0.33	0.94	0.86	0.64	0.46	0.01		+	0.5	0.34	1.1	ND.	ND		0.71	ND	ND	0.34	ND.	ND	ND	ND	ND		ND	ND	ND	ND	0.48	5.0
Chloroform	ND	ND	ND	ND	ND	ND	ND	ND	ND N	D		ND	ND	ND	ND	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND		ND	ND	ND	ND	0.00	7.0
Chloromethane	ND	ND	ND	ND	ND		ND	ND		D		ND	ND		ND	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND		ND	ND	ND	ND	0.00	5.0
2-Chlorotoluene	ND	ND	ND	ND	ND	ND	ND	ND	ND N			ND	ND	ND	ND	ND		ND	ND	ND	ND	ND						.				0.00	5.0
4-Chlorotoluene Dibromochloromethane	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND N			ND ND	ND ND		ND ND	ND ND	\vdash	ND ND	ND ND	ND ND	ND ND	ND ND	ND	- ND	ND	- ND	-	- ND	- ND	- ND	- ND	0.00	5.0
1,2-Dibromo-3-chloropropane	ND ND		ND	ND ND	ND ND		ND ND	ND	ND N	_	+-	ND ND	ND	ND ND	ND ND	ND ND	\vdash	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	- : -	ND ND	ND ND	ND ND	ND ND	0.00	50.0 0.04
1,2-Dibromoethane	ND	ND	ND	ND	ND		ND	ND	ND N	_	1 -	ND	ND	ND	ND	ND		ND	ND	ND	ND	ND	ND	ND	ND ND	ND		ND	ND	ND	ND	0.00	5.0
Dibromomethane	ND	ND	ND		ND		ND	ND	ND N		1	ND	ND		ND	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND		ND	ND	ND	ND	0.00	5.0
1,2-Dichlorobenzene	ND		ND	ND	1.5		0.36	ND	ND N			0.29	ND	0.99	ND	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND		1.6	ND	ND	ND	0.16	3.0
1,3-Dichlorobenzene	ND		ND		ND		ND	ND	ND N			ND	ND	ND		ND		ND	ND	ND	ND	ND						ND				0.00	3.0
1,4-Dichlorobenzene	ND	1	ND		2.2	1.5	0.71	ND	ND N			0.55	ND	1.6	ND	ND		0.25	ND	ND	0.26	ND	ND	ND	ND	ND		2.4	ND	ND	ND	0.30	3.0
trans-1,4-Dichloro-2-butene Dichlorodifluoromethane	ND	1.5	0.71	ND 0.72	ND 0.8	ND ND	ND 0.84	ND 0.5	ND N		+	ND 0.55	ND 0.6	ND ND	ND ND	ND ND		ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND	ND	ND 8.6	-	ND ND	ND	ND	ND	0.00	5.0
1.1-Dichloroethane	1.5		1.2			5.3		0.5	0.65 N		+-	0.55	1.5					1.1	ND ND	15	0.57	0.67	ND.	ND.	ND	ND	-	8.4	ND	7.7	ND	3.47	5.0
1.2-Dichloroethane	ND			ND		0.5		ND	ND N		+	ND.		0.64				ND	ND	ND	ND	ND	ND	ND	ND	ND		ND	ND	ND	ND	0.06	0.6
1,1-Dichloroethene	ND	ND	ND		ND	ND	ND	ND	ND N	D		ND	ND			ND		ND	ND	ND	ND	ND	ND	ND	ND	ND		ND	ND	ND	ND	0.00	5.0
cis-1,2-Dichloroethene	4.1	14		8.4	8.7		6.2	2.9	2.9 1.			5.5	2.6			ND		2.8	ND	ND	2.1	1.8	ND	ND	6.4	ND		14	ND	14.7	5.2	6.45	5.0
trans-1,2-Dichloroethene	ND	0.54		ND		0.45	0.35	ND	ND N			0.22	ND			ND		ND	ND	ND	ND	ND	ND	ND	ND	ND		ND	ND	ND	ND	1.04	5.0
1,2-Dichloropropane	ND ND	ND ND	ND ND		ND ND		ND ND	ND ND	ND N		-	ND ND	ND ND	ND ND	ND ND	ND ND		ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND	ND	ND	-	ND ND	ND	ND	ND	0.00	1.0
2.2-Dichloropropane	ND	ND	ND		ND		ND	ND	ND N		+	ND	ND			ND		ND	ND	ND	ND	ND ND		- :			-	ND ND	-	-:-		0.00	5.0
1,1-Dichloropropene	ND	ND	ND		ND		ND	ND	ND N		+	ND	ND	ND	ND	ND		ND	ND	ND	ND	ND	-			-		ND				0.00	5.0
cis-1-3-Dichloropropene	ND	ND	ND	ND	ND	ND	ND	ND	ND N			ND	ND	ND	ND	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND		ND	ND	ND	ND	0.00	0.4 *
trans-1,3-Dichloropropene	ND	ND	ND		ND		ND	ND	ND N			ND	ND			ND		ND	ND	ND	ND	ND	ND	ND	ND	ND		ND	ND	ND	ND	0.00	0.4 *
Ethylbenzene 2-Hexanone	ND	0.6	ND	ND ND	1.9 ND	0.95	0.44 ND	ND ND	ND N			ND ND	ND ND	1.3	ND	ND ND		ND ND	ND ND	ND	ND ND	ND ND	ND	ND	ND	ND ND		ND	ND	ND	ND	0.24	5.0
Z-Hexanone Hexachlorobutadiene	ND	ND	ND	ND	ND ND	ND ND	ND ND	ND ND	ND N		+	ND ND	ND	ND ND	ND ND	ND ND		ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND	ND	ND	-	ND	ND	ND	ND	0.00	50.0 0.5
Iodomethane	IND	ND	ND	ND	ND		ND	ND	ND N		+	ND	ND		ND	ND ND		ND	ND	ND	ND	ND ND	ND	ND.	ND.	ND.	-	ND.	ND.	ND.	ND.	0.00	5.0
Isopropylbenzene	ND	0.48	0.43	0.42	0.62		0.4	0.35	0.48 N	D	+	ND	ND	0.48	ND	ND		ND	ND	ND	ND	ND	•	-								0.16	5.0
p-Isopropyltoluene	ND	ND	ND	ND	ND	ND	ND	ND	ND N	D		ND	ND	ND	ND	ND		ND	ND	ND	ND	ND										0.00	5.0
Methylene chloride	ND	ND	ND	0.21	ND		ND	ND	ND N			ND	ND		ND	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND		ND	ND	ND	ND	0.33	5.0
4-Methyl-2-pentanone Naphthalene	ND	0.42	ND	ND ND	ND	ND 0.5	ND ND	ND ND	ND N			ND ND	ND ND	ND 0.41		ND ND	\vdash	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND	ND	ND		ND	ND	ND	ND	0.00	10.0 **
n-Propylbenzene	ND ND	0.42 ND	ND ND	ND ND	0.46	0.5	ND ND	ND	ND N		+	ND ND	ND	0.41 ND	ND ND	ND ND	-	ND ND	ND ND	ND ND	ND ND	ND ND	<u> </u>		-		-	-	-	-	-	0.09	5.0
Styrene	ND	ND	ND	ND	ND	ND	ND	ND	ND N		1 -	ND	ND	ND	ND	ND		ND	ND	ND	ND	ND ND	ND.	ND.	ND.	ND.		ND.	ND.	ND.	ND.	0.02	5.0
1,1,1,2-Tetrachloroethane	ND	ND	ND	ND	ND	ND	ND	ND	ND N	D	1	ND	ND	ND	ND	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND		ND	ND	ND	ND	0.00	5.0
1,1,2,2-Tetrachloroethane	ND	ND	ND	ND	ND			ND	ND N			ND	ND	ND	ND	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND		ND	ND	ND	ND	0.04	5.0
Tetrachloroethene	ND	ND	ND	ND	ND	ND	ND	ND	ND N			ND	ND	ND	ND	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	-	ND	ND	ND	ND	0.06	5.0
Toluene 1.2.3-Trichlorobenzene	ND ND	ND ND	ND ND	ND ND	ND ND	0.22 ND	ND ND	ND ND	ND N			ND ND	0.43 ND	ND ND	ND ND	ND ND	\vdash	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND	ND	-	ND	ND	ND	ND	0.04	5.0
1,2,3-Trichlorobenzene 1,2,4-Trichlorobenzene	ND ND	0.81	ND	ND ND	ND			ND	ND N		+-	ND ND	ND ND	ND		ND ND	\vdash	ND ND	ND ND	ND ND	ND ND	ND ND	ND -	- : -	\vdash		- : -	- : -	H		H	0.00	5.0
1,1,1-Trichloroethane	ND	ND	ND	ND	ND	ND	ND	ND	ND N		1	ND	ND	ND	ND	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	-	ND	ND	ND	ND	0.02	5.0
1,1,2-Trichloroethane	ND	ND	ND	ND	ND		ND	ND	ND N		1	ND	ND	ND	ND	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND		ND	ND	ND	ND	0.00	1.0
Trichloroethene	1.9	3.9	1.9	1.6	2.2	2.1	2.2	1.1	1.2 0.			1.5	0.73	2.9	1.1	ND		1.2	ND	ND	1.1	0.78	ND	ND	ND	ND		2.0	ND	ND	ND	1.66	5.0
Trichlorofluoromethane	ND	ND	ND	ND	ND		ND	ND	ND N			ND	ND	ND	ND	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND		ND	ND	ND	ND	0.00	5.0
1,2,3-Trichloropropane	ND	ND	ND	ND	ND	ND	ND	ND	ND N			ND	ND	ND	ND	ND	\vdash	ND	ND	ND	ND	ND	ND	ND	ND	ND	-	ND	ND	ND	ND	0.00	0.04
1,2,4-Trimethylbenzene 1,3,5-Trimethylbenzene	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND N		+	ND ND	ND ND	ND ND	ND ND	ND ND		ND ND	ND ND	ND ND	ND ND	ND ND	•	-	-	-	-	-	-	-	-	0.05	5.0
Vinyl acetate	ND	ND	ND	ND ND	ND ND		ND ND	ND ND	ND N		+	ND ND	ND		ND ND	ND ND	-	ND ND	ND ND	ND ND	ND ND	ND ND	ND.	ND	ND	ND.	-	ND.	ND	ND.	ND	0.00	5.0
Vinyl chloride	1.9	4.6	1.3	1.4	3.6	3	1.9	0.37		.3	1	0.98	0.66		ND	ND		0.9	ND	5.6	0.48	ND	ND	ND	ND	1.4	-	8.1	ND	8.2	2.1	2.04	2.0
o-Xylene	ND		ND	ND	ND	ND	ND	ND	ND N			ND	ND		ND	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	-	ND	ND	ND	ND	0.03	5.0
p-Xylene & m-Xylene	ND	ND	ND	ND	ND	ND	ND	ND	ND N	D		ND	ND	ND	ND	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND		ND	ND	ND	ND	0.04	5.0

																																		NYS
	3/04	9/04	3/05	9/05	3/06	11/06	6 4/07	10/0	7 4/08	10/08	4/09	9/09	4/10	9/10	5/11	10/11	5/12	10/12	6/13	10/13	6/14	10/14	6/15	11/15	5/16	10/16	3/17	10/17	5/18	9/18	4/19	9/19	MEAN	STD
PARAMETER METALS (mg/L)																																		
Aluminum		3.2				ND			ND						ND				0.06	0		0.07	-		-	-	0.0369				0.181	-	0.55	
Calcium		46.2	23.2		57.6		34.4		26.9						70.2	15.6	45		18.5	14.9	55.6	13.6	-	18.8	-	-	19		62.4	-	64	-	25.94	
Iron			9.6			22.4			12.6						23.8		18		9.5	11.5	20.2	8.52		8.73			5.9		2.98		36.8		15.44	0.3
Magnesium	6.58	16.2	6.8		20.7	23.6	12.4		7.8						32.6	4.8	16		5.9	4.9	21.5	4.3	-	5.2			5.69		24.4	-	23.6	-	9.19	35.0
Manganese	9.41	14.8	9.4		12.9	13.9	10.7		11.9						16.6	7.5	16		9.31	8.09	20	7.69		9.89			8.89		ND		19.6		8.23	0.3
Potassium	2.21	4.3	1.7		4.2	4.6	2.6		1.6						4.8	1.6	2.3		1.3	ND	3	1.1	-	ND	-	-	2.12	-	2.82	-	4.56	-	2.46	
Sodium	1.31	7.4	2.1		10.5	11.7	4.9		2.1						13.3	1.1	6.2		1.2	ND	7.5	0.8	-	1.3			3.11		11.2		9.31		3.94	20.0
PARAMETER (mg/l) TOXIC METALS											•													•	•	•								
Antimony		ND				ND			ND						ND				ND	-	-	ND	-	-	-	-	ND	-	-	-	ND	-	0.00	0.003
Arsenic		0.022				0.016	5		0.021						ND				0.01			0.014					0.0069				0.0526	-	0.01	0.025
Barium		0.37				0.4			0.18						0.48				0.206			0.149					0.158				0.557		0.16	1.0
Beryllium		ND				ND			ND						ND				0.0003			ND	-				ND				ND		0.00	
Cadmium	ND	ND	ND		ND	ND	ND	1	ND						ND	ND	ND		ND	ND	ND	ND		ND			ND	-	ND		ND		0.00	0.005
Chromium (Total)		0.013			<u> </u>	ND			ND	1					ND				0.002			0.003					0.003				ND		0.00	0.05
Copper		ND				ND		1	ND						ND				ND		-	ND					ND	-			ND	-	0.00	0.2
Lead	ND	ND	ND		ND		ND		ND	1					0.006	ND	0.001		0.001	ND	ND	ND		ND			0.0017		0.0034		0.0043		0.00	0.025
Mercury	1.10	ND	1.00		1.10	ND			ND	1					ND		2.301		ND			ND					ND ND				ND		0.00	0.0007
Nickel	1	0.025	1		1	ND		1	ND						ND				0.013			0.013					0.0106				0.017		0.04	0.1
Selenium	ND	ND	ND		ND			+	ND						ND				0.007			ND					ND				ND	-	0.00	0.0
Silver	110	ND	110		1110	ND		1	ND						ND				ND		-	0.001					ND	-			0.0026		0.00	0.05
Thallium	1	ND				ND		_	ND						ND				ND			ND					ND	-			0.017	-	0.00	0.0005
Zinc	+	0.022	1	_	1	0.027		+	0.065	-		_			0.02			_	0.035			0.046		_			0.977		-	-	2.76		0.21	2.0
PARAMETER (mg/l) LEACHATE INDICATORS		U.ULL				0.027		_	0.003						0.02				0.033			0.010					0.577				2.70		0.21	1 2.0
Alkalinity	90	175	671		220	218	150	$\overline{}$	62.5						374		210				299			80.8			179	-	264		324		112.9	T
Biochemical Oxygen Demand	- 30	ND	07.1		1223	4.9	130	_	4.5						12.2		11			-			-	4 1			9.6		7.6	ND	3.7		3.8	
Boron	1	0.066				0.091	+	_	0.024						0.1				ND					- '.'			0.0125	-	7.0		0.0775	-	0.0	1.0
Chemical Oxygen Demand	18	54.8	185		29.8		23.4	1	16						19.4	23.8	32		12.6		27.6			22.8		58.8	62.9	-	84.9		38.9		28.7	1.0
Chromium (Hexavalent)	- 10	ND	10.5		23.0	ND		_	ND						ND	23.0	JL		ND	-	-					30.0	ND				ND.		0.0	0.05
Chloride	2.2	12.2	1.8	_	141	17.8		+	3.8	-		_	4.88		16.8	ND	9.48	_	ND		10.5			ND			6.4		10.8	48.8	12.8		6.0	250
Color (PCU units)	2.2	60	1.0	_	14.1	80	3.3	+	60			_	4.00		200	ND	3.40	_			10.5		-	ND -			10		10.0	70.0	150		32.4	15
Nitrate-Nitrite	ND	ND	ND	-	ND	ND	ND	+	ND	_		-	_		ND		ND	+-+	ND		ND			ND		ND	0.046	_	ND	-	ND.		0.0	10
Nitrogen-Ammonia	0.5	11	0.56			2.6		-	0.71	-					4	0.36	2.1	_	0.369		1.87	<u> </u>	- :	0.482		0.78	2.1		3.1		4.4		1.2	2.0
Phenois		0.028		-		0.01		+	ND	_		-	ND		ND	0.50	2.1	-	ND.		0.0073			ND		0.76	0.0099		0.0172	<u> </u>	0.0105		0.0	0.001
Sulfate	5.8	4.6	5.9	-	4.1		5.1	-	5.2	-		-	5.15		6.7	4.1	ND	-	2.5		4.3	-	-	3.3	-		3.3		2.5	2.5	ND	-:-	5.5	250
Total Organic Carbon (TOC)	3.8	62.9	5.9	4 1		6.8		10.8		1		-	3.4		9	1.4	ND	1	7.1		8.9		- :	4.6	-	5.7	3.3	14.6	2.5	5	8.7	8.4	7.4	230
Total Organic Carbon (TOC) Total Dissolved Solids (TDS)		283	99	4.1		402		10.8	190	1	-	-	3.4		388	1.4	280	+	115		320	 	-	96	-	3./	170	14.6	315	87	354	5.4	148.6	500
	81	182	85.9	-		236		+	99.3	1		-			310	58.6	180	1	70.6	57.1	227			68.5			88	-	290	87	250	-	148.6	500
Total Hardness Total Kieldahl Nitrogen (TKN)	61	4.3	85.9	 	229	3.9		1	1.1	1		 			2.2	56.6	2.09	1	0.85	3/.1	227	-	- :	06.5		11	3.8	-	5.7	-	5.3	-	2.2	1
	C1		00.4	_	30.0			-		-	-	-	267	_		20.1		12.0						11.2	41.2			107						
Turbidity (NTU units)	61	49.1	89.4	_	36.9		21.3	_	28	-	5	7	267	6	5	36.1	29	12.8	16.1		19.5	27.6	35.7	11.3	41.2	15	6.2	107	62.3	32.5	27.5		59.9	5.0
Cyanide		ND			at a disast	ND		and Car	ND	ala (a.a.	and and the	Landa at 1	luma 10	00) T	ND	de ade					-	<u> </u>					ND				0.002		0.0	0.2
		were u	sed beg	inning w	vith the	9/98 sa	e New Yo impling e s-1,3-dich	event. I	Exceedar																									
			idance '				. ,																											
						ulation	of Mean	and are	conside	red equa	l to zer	٥.																						
		(Blank)	or "-" =		alyzed.																													
			lot Dete				ion limit.				J = Esti		detecte																					

	9/90	12/9	3/9	1 6	/91	9/91	12/91	3/92	6/92	9/92	12/92	3/93	6/93	9/93	12/93	3/94	6/94 9	/94 12/	94 3/9	6/95	9/9	12/95	4/96	9/96	3/97	9/97	3/98	9/98	3/99	9/99	3/00	9/00	3/01	9/01	3/02	9/02	3/03	9/03
PARAMETER VOLATILES (ug/L) Acetone		1								-			- 1	-		- 1					_								_						_	-	—	
Acetone	+	+	-	_	-+						-		-			-	_		+	-	+	+	<u> </u>													-	${ o}$	-
Benzene	0.21	2.14	1.5	0 5	5.0	2.0	4.0	2.0	_	19.0		0.8	_	4	_	0.8	_	2	2		+	+	1		2	-			2	1	2		1		4.76		2.1	5
Bromobenzene	ND) 1		ND	ND			ND		ND	_	ND		ND		ND D	NI)	+	+	ND		ND				ND	ND			ND		ND	_		ND
Bromochloromethane	ND					ND	ND	ND		ND		ND		ND		ND		ND	NI				ND		ND				ND	ND			ND		ND			ND
Bromodichloromethane	ND					ND	ND	ND		ND		ND		ND					_																			ND
Bromoform	ND	NE			ND	ND	ND	ND		ND		ND		ND																								ND
Bromomethane	ND	NE	NE	1 0	ND	ND	ND	ND		ND		ND		ND		ND		ND	NI)			ND		ND				ND	ND	ND		ND		ND		ND	ND
2-Butanone																																						
n-Butylbenzene	ND	NE			ND	ND	ND	ND		ND		ND		ND		ND		ND	NI				ND		ND				ND	ND	ND		ND		ND			ND
sec-Butylbenzene		0.10				ND	ND	ND		ND		ND		ND	Į.	ND		ND	NI				ND		ND				ND	ND			ND		ND			ND
tert-Butylbenzene	ND	0.29) NI	1 0	ND	ND	ND	ND		ND		ND		ND		ND		ND	NI)	_		ND		ND				ND	ND	ND		ND		ND		ND	ND
Carbon disulfide	ND				ND	ND		ND		ND		ND		ND				ND	-		-	_	ND			_			ND				ND		ND		ND	
Chlorobenzene			0.2			ND	ND ND			0.8		ND		0.7		ND ND		ND D	NI NI		+	-	ND ND		ND ND	-			ND	ND ND	ND ND	-	ND		2.05			ND 1.7
Chloroethane		NE		1 5		2.0	5.0	ND	+	ND		ND		2	+	ND		1	NI		+	-	ND		ND				ND	ND			ND	_	ND	-		ND
Chloroform		1.34				ND	ND			ND		ND		ND.		ND			INI	_	+		IND		ND	-			IND	ND	ND	-	ND		ND	-		ND
Chloromethane	ND					ND	ND	ND	_	8.0		ND	-	ND		ND		ND	NI	,	+	+	ND		ND	-			ND	ND	ND		ND		ND	_		ND
2-Chlorotoluene			NE			ND	ND			ND		ND		ND		ND		ND ND	NI		+	+-	ND		ND				ND	ND			ND		ND			ND
4-Chlorotoluene	ND					ND	ND		t	ND		ND		ND	t	ND		ND ND	NI		1	1	ND	1 1	ND				ND	ND		1 1	ND		ND			ND
Dibromochloromethane	ND					ND	ND	ND	t	ND		ND		ND	t				1		1																	ND
1,2-Dibromo-3-chloropropane	ND) (ND	ND	ND		ND									1		1																	ND
1,2-Dibromoethane	ND					ND	ND	ND		ND																												ND
Dibromomethane	ND					ND	ND	ND		ND		ND		ND		ND		ND	NI)			ND		ND				ND	ND	ND		ND		ND			ND
1,2-Dichlorobenzene	ND	<d< td=""><td>L NE</td><td>1 0</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td></td><td>ND</td><td></td><td>ND</td><td></td><td>ND</td><td></td><td>ND</td><td></td><td>ND</td><td>- 1</td><td></td><td></td><td></td><td>ND</td><td></td><td>ND</td><td></td><td></td><td></td><td>ND</td><td>ND</td><td>ND</td><td></td><td>ND</td><td></td><td>ND</td><td></td><td>ND</td><td>ND</td></d<>	L NE	1 0	ND	ND	ND	ND		ND		ND		ND		ND		ND	- 1				ND		ND				ND	ND	ND		ND		ND		ND	ND
1,3-Dichlorobenzene	ND		N[ND	ND			ND		ND		4		ND		ND	NI				ND		ND				ND	ND			ND		ND			ND
1,4-Dichlorobenzene	4.99	7.20	2.5	9 5	5.0	4.0	3.0	1.0		2.0		0.7		ND		0.8		3	5				0.9		0.6				1	2	- 1		0.8		1.94		0.77	1.5
trans-1,4-Dichloro-2-butene																																						
Dichlorodifluoromethane	ND			1 0		ND	ND			2.0		ND		ND		ND		ND	1				ND		ND				ND	ND			0.6		ND			ND
1,1-Dichloroethane	2.13					ND	3.0			5.0		2.0		2		1		5	NI				2		2				2	2	2		1		1.69			0.8
1,2-Dichloroethane	0.33					ND	ND			ND		ND		ND		ND		ND	NI		_		ND		ND				ND	ND			ND		ND			ND
1,1-Dichloroethene cis-1,2-Dichloroethene			NI NI				ND 4.0	1.0	_	ND 16.0		ND 0.9		ND 2		ND 0.7		ND 8	3	_	+	-	ND 2		ND 3	-			ND 6	ND 4		-	ND 3		ND 4.91			ND
trans-1,2-Dichloroethene	6.88		3.5			3.0 ND	ND	ND	_	1.0		ND	-	0.8		ND		0.6	6 NI		+	-	ND		0.5		_	_	ND.	ND		-	ND	_	4.91 ND	_		5.2 ND
1 2-Dichloropropage	ND					ND	ND	ND		ND		ND		ND		ND		ND	NI		+		ND		ND	-			ND	ND		-	ND		ND	-		ND
1.3-Dichloropropane	ND					ND	ND	ND		ND		ND		ND		ND		ND ND	NI		+		ND		ND	-			ND	ND		-	ND		ND	-		ND
2.2-Dichloropropane	ND					ND	ND			ND		ND		ND		ND		ND ND	NI				ND		ND				ND	ND			ND		ND			ND
1,1-Dichloropropene	ND					ND	ND	ND		ND		ND		ND		ND		ND	NI				ND		ND				ND	ND			ND		ND			ND
cis-1-3-Dichloropropene	ND	NE	<d< td=""><td>L I</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td></td><td>ND</td><td></td><td>ND</td><td></td><td>ND</td><td></td><td>ND</td><td></td><td>ND</td><td>NI</td><td>)</td><td></td><td></td><td>ND</td><td></td><td>ND</td><td></td><td></td><td></td><td>ND</td><td>ND</td><td>ND</td><td></td><td>ND</td><td></td><td>ND</td><td></td><td>ND</td><td>ND</td></d<>	L I	ND	ND	ND	ND		ND		ND		ND		ND		ND	NI)			ND		ND				ND	ND	ND		ND		ND		ND	ND
trans-1,3-Dichloropropene	ND					ND	ND			ND		3.0		ND		ND		ND	NI				ND		ND				ND	ND			ND		ND			ND
Ethylbenzene	0.27	0.90	0.2	4 2	2.0	ND	2.0	ND		1.0		ND		1		ND	().6	0.5				ND		0.8				ND	ND	ND		ND		1.92		ND	ND
2-Hexanone																																						
Hexachlorobutadiene	ND	NE	NI.	1 0	ND	ND	ND	ND		ND		ND		ND		ND		ND	NI)			ND		ND				ND	ND	ND		ND		ND		ND	ND
lodomethane																					4																	
Isopropylbenzene			NE			ND	ND	ND ND		ND		ND		ND		ND		ND	NI		-	_	ND		ND	_			ND	ND			ND		1.04		ND	ND ND
p-Isopropyltoluene			1 NE			ND	ND		+	ND		ND		ND	+	ND		ND	2		+	-	ND		ND				ND	ND			ND ND	_	ND			ND
Methylene chloride 4-Methyl-2-pentanone	<dl< td=""><td>0.12</td><td>2 NE</td><td>, 3</td><td>3.0</td><td>2.0</td><td>2.0</td><td>2.0</td><td></td><td>1.0</td><td></td><td>ND</td><td></td><td>ND</td><td></td><td>ND</td><td></td><td>ND</td><td>NI</td><td>_</td><td>+</td><td>+</td><td>ND</td><td>\vdash</td><td>ND</td><td></td><td></td><td></td><td>ND</td><td>ND</td><td>ND</td><td>\vdash</td><td>ND</td><td>$\vdash \vdash \vdash$</td><td>ND</td><td></td><td>ND</td><td>ND</td></dl<>	0.12	2 NE	, 3	3.0	2.0	2.0	2.0		1.0		ND		ND		ND		ND	NI	_	+	+	ND	\vdash	ND				ND	ND	ND	\vdash	ND	$\vdash \vdash \vdash$	ND		ND	ND
Naphthalene	0.06	NE	NE) 1	ND	ND	ND	ND	— t	1.0		ND		ND		ND	_	ND	7		+	+-	ND		ND				ND	ND	ND		ND		ND		ND	ND
n-Propylbenzene	ND	0.10				ND	ND	ND	— t	ND		ND		ND		ND		ND ND	NI)	+	+-	ND		ND				ND	ND			ND		ND			ND
Styrene	ND					ND	ND	ND	t	ND		ND		ND	t	ND		ND ND	NI		1	1	ND		ND				ND	ND		1 1	ND		ND			ND
1,1,1,2-Tetrachloroethane	ND					ND	ND	ND		ND		ND		ND		ND		ND	NI		1		ND		ND				ND	ND			ND		ND			ND
1,1,2,2-Tetrachloroethane	ND	<d< td=""><td></td><td></td><td></td><td>ND</td><td>ND</td><td>ND</td><td></td><td>ND</td><td></td><td>ND</td><td></td><td>ND</td><td></td><td>ND</td><td></td><td>ND</td><td>NI</td><td></td><td></td><td></td><td>ND</td><td></td><td>ND</td><td></td><td></td><td></td><td>ND</td><td>ND</td><td></td><td></td><td>ND</td><td></td><td>ND</td><td></td><td></td><td>ND</td></d<>				ND	ND	ND		ND		ND		ND		ND		ND	NI				ND		ND				ND	ND			ND		ND			ND
Tetrachloroethene	0.35	ND	NI.	1 0	ND	ND	ND	ND		ND		ND		ND		ND		ND	NI)			ND		ND				ND	ND	ND		ND		ND		ND	ND
Toluene	ND					ND	1.0	ND		0.8		ND		1*		ND).9	NI				3		ND				ND	ND			ND		1.73			ND
1,2,3-Trichlorobenzene	ND	NE				ND	ND			ND		ND		ND		ND		ND	NI				ND		ND				ND	ND			ND		ND			ND
1,2,4-Trichlorobenzene	ND					ND	ND	ND		ND		ND		ND		ND		ND	NI		4	4	ND		ND				ND	ND		1	ND	ļ	ND			ND
1,1,1-Trichloroethane	ND					ND	ND			ND		ND		ND		ND		ND	NI		+	—	ND	1	ND				ND	ND		1	ND	\sqcup	ND			ND
1,1,2-Trichloroethane	ND					ND	ND	ND		ND		ND		ND		ND		ND	NI		+	—	ND	1	ND				ND	ND		1	ND	\sqcup	ND			ND
Trichloroethene Trichlorofluoromethane	0.81					1.0	ND	ND		1.0		ND		ND		ND		0.6	NI		+	+	ND	1	ND				ND	ND		\vdash	DN	$\vdash \vdash \vdash$	1.2			0.9 ND
1,2,3-Trichloropropane	ND ND					ND ND	ND ND	ND ND		ND ND		ND ND		ND ND		ND ND		ND ND	NI NI		+	+-	ND ND	\vdash	ND ND				ND ND	ND ND	ND ND	\vdash	ND ND	$\vdash \vdash \vdash$	ND ND			ND
1,2,3-Tricnioropropane 1 2 4-Trimethylbenzene	√DI	NE NE				ND	ND	ND ND		ND		ND	-	ND		ND		ND D	33		+	+	ND	1	ND	-			ND ND	ND ND	ND	++	ND		ND ND	-		ND
1,3,5-Trimethylbenzene	0.09	NE				ND	ND	ND	+	ND		ND		ND	+	ND		ND ND	6		+	+-	ND	1 1	ND	-	+	+	ND	ND	ND	+	ND	\vdash	ND			ND
Vinyl acetate	0.09	INL	INL	+		.vD	ND	ND	 	.40	-+	.40		ND		ND		-	- 0	_	+	+-	NO	\vdash	ND		+	+	IND	ND	ND	\vdash	ND	\vdash	IND		.40	.40
Vinyl chloride	ND	NE	0.8	0 1	ND	ND	ND	ND	-	23.0		ND		1		ND		3	4		+	1	2		3				2	3	3		2		ND		0.98	3.9
o-Xylene	0.16					ND			- 1							ND		ND	NI)	1	1	ND		ND				ND	ND	ND		ND		1.25			ND
p-Xylene & m-Xylene					ND	ND				1.1		ND		ND		ND		ND	NI)	1		ND		ND				ND	ND	ND		ND		2.56			ND

	9/90	12/9	0 3/91	6/9	91 9/	91 12	2/91	3/92	6/92	9/92	12/92	3/93	6/93	9/93	12/93	3/94	6/94	9/94	12/94	3/95	6/95	9/95	12/95	4/96	9/96	3/97	9/97	3/98	9/98	3/99	9/99	3/00	9/00	3/01	9/01	3/02	9/02	3/03	9/0
PARAMETER METALS (mg/L)	3/30	12/3	0 3/3		,, ,,,	, , ,	-/ -/ -	3,32	0, 32	3/32	12/32	. 3/33	0,33	3/33	112/55	,, 3,3.	0, 31	3/31	12/51	3,33	0,33	3/33	12/33	1/30	3/30	3, 3.	3, 3.	3, 30	3/30	3/33	3/33	3,00	3,00	3,01	3,01	3,02	3/02	3,03	3,0.
Aluminum	0.15		$\overline{}$		0	3				0.09	1	1		1.39		T		1.84															$\overline{}$	$\overline{}$	$\overline{}$	$\overline{}$	$\overline{}$		0.11
Calcium			70.3	67.	5 88	9 5	56.3	71.4	85.2	113	97.3	80.3		77	109	87.5	92.6	97.2	103	81.5	92		112	104		96.0				107		122	-	96.5	-	104	-	86.4	
Iron	49.4	34.2	9.2	21.	8 37	4 1	16.0	9.0	13.3	24.3	24.5	7.99		13.4	26.1	4.83	14.8	28.1	25.9	11.5	16.1		55.7	10.9		12.2				47.4		27		25.9		37.8		26.3	
Magnesium	7.9	7	9.5					8.3	12.2	13.3	11.8	10.3		10.7	11.6		11.8	11.4		8.39	12.4		10.3			11.6				10.9		11.8		10.7		11.9	-	10.7	
Manganese	11.3	10.9	8.87	8.7	8 9.6	2 7	7.43	6.23	7.64	9.53	7.79	5.38		6.51	9.18	5.39	7.84	7.71	7.88	7.01	7.39		8.34	6.58		7.58				7.32		8.46		7.24		9.31	$\overline{}$	8.21	9.49
Potassium	2.6	2.9	3.3	3	3.	5 2	2.8	2.8	3.0	8.52	3.22	1.6		2.38	3.25	2.51	2.43	2.88	2.7	2.2	2.54		3.61	2.07		3.27				3.49		3.33		2.27		3.22		2.54	3.53
Sodium	11.2	6.9	12.7	18.	1 17	9 1	15.2	12.4	18.7	19.2	17.0	15.4		17.9	10	13.3	14	0.82	10.4	8.09	14.1		7.86	12.6		10.9				5.82		6.27		6.4		6.88		5.7	
PARAMETER (mg/l) TOXIC METALS																	•					•																	
Antimony	ND				N	D				0.05				ND				0.04															$\overline{}$			$\overline{}$			ND
Arsenic	<dl< td=""><td></td><td></td><td></td><td>0.0</td><td>50</td><td></td><td></td><td></td><td>0.031</td><td></td><td></td><td></td><td>0.042</td><td></td><td></td><td></td><td>0.038</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>\neg</td><td>$\neg \neg$</td><td>$\overline{}$</td><td></td><td>ND</td></dl<>				0.0	50				0.031				0.042				0.038																	\neg	$\neg \neg$	$\overline{}$		ND
Barium	1.44	1.59	1.37	1.5	3 1.3	9 1	1.28	1.12	1.58	1.63	1.41	1.4		1.47	1.45	1.22	1.52	1.58	1.23	1.08	1.57		1.82	1.72		1.31				1.49		1.6		1.57		1.75	$\overline{}$	1.52	1.92
Beryllium					N	D				ND				ND				ND																\neg	\neg	\neg	$\overline{}$		ND
Cadmium		ND	ND	NI) N	D I	ND	ND	ND	ND	ND	ND		ND	ND	ND	ND	ND	ND	ND	ND		ND	ND		ND				ND		ND		ND	-	ND	\Box	ND	ND
Chromium (Total)	<dl< td=""><td></td><td></td><td></td><td>0.0</td><td>1</td><td></td><td></td><td></td><td>ND</td><td></td><td></td><td></td><td>0.02</td><td></td><td></td><td></td><td>0.02</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>$\neg \neg$</td><td></td><td></td><td>ND</td></dl<>				0.0	1				ND				0.02				0.02																		$\neg \neg$			ND
Copper	ND				N	D				ND				ND				0.01																					ND
Lead	ND	ND	ND	NI) N	D	ND I	0.010	0.007	ND	0.001	0.004		0.019	0.003	0.002	0.003	0.011	ND	0.020	0.003		ND	ND		0.001				0.002		ND		0		ND		ND	ND
Mercury	ND				N	D				ND				ND				ND																					ND
Nickel	0.05				N	D				ND				0.04				0.64																					ND
Selenium	0.014	<dl< td=""><td>0.01</td><td>N</td><td>) N</td><td>D</td><td></td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td></td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td></td><td>ND</td><td>ND</td><td></td><td>ND</td><td></td><td></td><td></td><td>ND</td><td></td><td>ND</td><td></td><td>ND</td><td></td><td>ND</td><td></td><td>ND</td><td>ND</td></dl<>	0.01	N) N	D		ND	ND	ND	ND	ND		ND	ND	ND	ND	ND	ND	ND	ND		ND	ND		ND				ND		ND		ND		ND		ND	ND
Silver	0.08	ND	ND	NI) N	D		ND	ND	ND	ND	ND		ND	ND	ND	ND	ND	ND	ND	ND		0.007	ND		ND				ND		ND		ND		ND		ND	ND
Thallium	0.1				N	D				ND				ND				ND																					ND
Zinc	<dl< td=""><td></td><td></td><td></td><td>0.0</td><td>15</td><td></td><td></td><td></td><td>0.06</td><td></td><td></td><td></td><td>0.06</td><td></td><td></td><td></td><td>0.08</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>ND</td></dl<>				0.0	15				0.06				0.06				0.08																					ND
RAMETER (mg/l) LEACHATE INDICATOR	RS																																						
Alkalinity		259	278	29	9 42	0 3	326	449	236		316	297			357	332	344		424	321			384	322		355				423		400		355		353		319	410
Biochemical Oxygen Demand	55.0				4					15.0																													- 11
Boron	ND				0.1					0.02				0.08				ND																					ND
Chemical Oxygen Demand	29.1	20	15	NI			16.0	ND	31.0		77.2	19.1		13.2	33.8	18.5	ND		12.4	12			51.8	ND		29.4				40.6		43.4				37.4	ш_	26.5	38
Chromium (Hexavalent)	<dl< td=""><td></td><td></td><td></td><td>N</td><td></td><td></td><td></td><td></td><td>ND</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>ND</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>ш_</td><td><u> Ш</u></td><td>ND</td></dl<>				N					ND								ND																			ш_	<u> Ш</u>	ND
Chloride	4.1	7	10.8	- 5			7.0	ND	13.0		3.9	3.76			2.98	2.97	136		ND	ND			4.66	3.70		1.84				2.42		ND				8.42	ш_	4.41	5.1
Color (PCU units)	55.0				N					125																											ш_		20
Nitrate-Nitrite		20.1		. NI				ND	0.2	1.63		ND			ND					ND			ND			ND				ND		ND				ND		ND	ND
Nitrogen-Ammonia	2.9	<dl< td=""><td></td><td></td><td></td><td></td><td></td><td>2.6</td><td>7.0</td><td>2.6</td><td>2.5</td><td>3.07</td><td></td><td>2.79</td><td>1.8</td><td>2.4</td><td>2.54</td><td></td><td></td><td>7.02</td><td></td><td></td><td>3.96</td><td></td><td></td><td>1.51</td><td></td><td></td><td></td><td>0.715</td><td></td><td>ND</td><td></td><td></td><td></td><td>4.47</td><td></td><td></td><td></td></dl<>						2.6	7.0	2.6	2.5	3.07		2.79	1.8	2.4	2.54			7.02			3.96			1.51				0.715		ND				4.47			
Phenols	0.003						ND	ND	ND	ND	ND	ND		0.008	0.005	0.009			0.070	ND			0.025			0.013				0.001		0.01				0.0203		0.004	
Sulfate	5.5	6.7					12.0	ND	ND	16.0		ND				ND	ND		ND	ND			ND	ND		ND				ND		ND		11		ND		5.8	ND
Total Organic Carbon (TOC)	11.3	8	8.5					4.0	16.0	6.5	14.6	3.4			5.5		4.3		4.3	6.2			7.8	6.6		4.9				9.9		13				8.8	ш'	3.4	7.8
Total Dissolved Solids (TDS)	312							335	262	375		293			356		353		377	311			360	360		383				406		410		380		405			298
Total Hardness	242	168	215	21	1 27		174	212	263		267	316			510	374	328		300	238			322	316		287				312		353		285		309	∟'	260	214
Total Kjeldahl Nitrogen (TKN)	3.2				4.					2.14				4.2																						لــــــــا	ш'	Ш	8.4
Turbidity (NTU units)	36	900	270	34			17.0	45	182		40	140			110	15	21		78	78			200	90		30				60		32				46	—⁻	53	38
Cvanide	<dl< td=""><td>1</td><td>1</td><td>1</td><td>N</td><td>D</td><td></td><td></td><td>ı</td><td>ND</td><td>1</td><td>1</td><td>ı</td><td></td><td>1</td><td></td><td></td><td>ı</td><td></td><td></td><td></td><td></td><td>1</td><td></td><td></td><td></td><td></td><td></td><td></td><td>i i</td><td>1</td><td></td><td></td><td></td><td></td><td></td><td>1 '</td><td>1</td><td>ND</td></dl<>	1	1	1	N	D			ı	ND	1	1	ı		1			ı					1							i i	1						1 '	1	ND

	1				1	1																								1	1			NYS
	3/04	9/04	3/05	9/05	3/06	11/06	4/07	10/07	4/08	10/08	4/09	9/09	4/10	9/10	5/11	10/11	5/12	10/12	6/13	10/13	6/14	10/14	6/15	11/15	5/16	10/16	3/17	10/17	5/18	9/18	4/19	9/19	MEAN	STD
PARAMETER VOLATILES (ug/L)																																		
Acetone				18	19		12		5.9		21		20		6.4	32			6.4	-	ND	- 11	-	ND	-	-	12.8			7.6		-	11.89	50.0
Acrylonitrile	2.6	-		ND	ND	ND	ND		ND	ND	ND				ND	ND	ND		ND	-	ND	ND	-	ND	-	-	ND	ND	ND	ND	ND	-	0.00	5.0
Benzene Bromobenzene	2.6 ND	7 ND	4.6 ND	7.1 ND	6.3 ND	13 ND	6.3 ND	4 ND	7 ND	4.1 ND	1.6 ND	1.5 ND		_	7.7 ND	7.8 ND	6.2 ND		6.3 ND		7.1 ND	5.1 ND		6.6			7.2	ND	5.7	5.2	ND		3.86 0.00	1.0 5.0
Bromochloromethane	ND	ND			ND	ND	ND	ND	ND	ND	ND	ND		1	ND	ND	ND		ND	-	ND	ND		ND	-		ND	ND	ND	ND	ND	-	0.00	5.0
Bromodichloromethane	ND	ND			ND	ND	ND	ND	ND	ND	ND	ND			ND	ND	ND		ND		ND	ND	-	ND			ND	ND	ND	ND	ND	-	0.00	50.0
Bromoform	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND	ND	ND		ND	-	ND	ND		ND	-		ND	ND	ND	ND	ND		0.00	50.0
Bromomethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND			ND	ND	ND		ND		ND	ND	·	ND		٠	ND	ND	ND	ND	ND	-	0.00	5.0
2-Butanone				ND	ND	1.2	ND	1.4	ND	3.6	1.2	ND			ND	ND	ND		ND	-	ND	ND	-	ND	-	-	ND	ND	ND	ND	ND	-	0.27	50.0
n-Butylbenzene sec-Butylbenzene	ND ND	ND 0.37	ND ND	ND ND	ND ND	0.22	ND ND	ND ND	ND 0.28	ND ND	ND ND	ND ND	ND ND	 	ND ND	ND ND	ND ND		ND ND	-	ND ND	ND ND	-	-	-	_	-	-	-	-	-	-	0.00	5.0
tert-Butylbenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	+	ND	ND	ND		ND		ND	ND	÷	-		÷	-		-	-	-		0.03	5.0
Carbon disulfide	110	.,,,	110	ND	ND	ND	ND	0.49	ND	0.28	0.66	ND	ND		ND	ND	ND		ND		ND	ND	-	ND			ND	ND	ND	ND	ND	-	0.05	60.0
Carbon tetrachloride	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND	ND	ND		ND	-	ND	ND	-	ND	-	-	ND	ND	ND	ND	ND	-	0.00	5.0
Chlorobenzene	0.8	2.5	1.4	3.8	4	13	3.9	2.5	6.4	3	1.1	1.1	2.8		7.4	6.7	5.1		5.6		6.2	4.3	•	8.7		•	11.2	ND	6.1	8.1	ND		2.36	5.0
Chloroethane	ND	2.3	1.2	1	0.94	1.1	0.66	0.48	0.66	0.65	0.61	ND	0.53		0.55	0.44	ND		0.74		ND	ND	-	ND		•	ND	ND	ND	ND	ND	-	0.59	5.0
Chloroform	ND	ND	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	<u> </u>	ND	ND	ND		ND	-	ND	ND	-	ND	-	-	ND	ND	ND	ND	ND	-	0.03	7.0
Chloromethane 2-Chlorotoluene	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	+	ND ND	ND ND	ND ND		ND ND	-	ND ND	ND ND	-	ND	-	-	ND	ND	ND	ND	ND	H : H	0.15	5.0
2-Chlorotoluene 4-Chlorotoluene	ND	ND	ND	ND	ND ND	ND ND	ND	ND ND	ND	ND	ND	ND	ND	1	ND ND	ND ND	ND ND		ND	-	ND ND	ND	-	\vdash	-	÷	-						0.00	5.0
Dibromochloromethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		1 -	ND	ND	ND		ND	-	ND	ND	-	ND	-	-	ND	ND	ND	ND	ND	- 1	0.00	50.0
1,2-Dibromo-3-chloropropane	ND	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND			ND	ND	ND		ND	-	ND	ND		ND	-	-	ND	ND	ND	ND	ND	- 1	0.00	0.04
1,2-Dibromoethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND	ND	ND		ND	-	ND	ND	-	ND	-		ND	ND	ND	ND	ND	-	0.00	5.0
Dibromomethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND	ND	ND		ND	-	ND	ND		ND	-		ND	ND	ND	ND	ND	-	0.00	5.0
1,2-Dichlorobenzene	ND	ND	ND	ND	ND	0.57	ND	ND	ND	ND	ND	ND	ND	_	ND	ND	ND		0.29	-	ND	0.21	-	ND	-	-	ND	ND	ND	ND	ND	-	0.04	3.0
1,3-Dichlorobenzene	ND ND	ND 2	ND 0.9	ND 1.9	ND 2.1	ND 5.1	ND 1.8	ND 2.9	ND 3.3	ND 4.4	ND 3.1	ND 0.88			ND 2.4	ND 2.9	ND ND		ND 2.3	-	ND ND	ND ND	-	- ND	-		- ND	- ND	ND 2.6	ND	- ND	-	0.08	3.0
trans-1,4-Dichloro-2-butene	IND		0.9	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	+	ND	ND	ND		ND		ND	ND		ND		-	ND	ND	ND	ND	ND		0.00	5.0
Dichlorodifluoromethane	ND	1.2	1	1	1.1	ND	0.98	0.98	1.2	ND	0.86			1	ND	ND	ND		ND	-	ND	ND	-	-	-	-	18.6	-	ND	-	-	-	0.60	5.0
1,1-Dichloroethane	0.9	0.86	1.1	1.4	1.2	0.98	1.1	2.6	0.95	1.8	0.47	ND	0.84		1	0.68	ND		0.8		ND	0.52	-	ND		-	ND	ND	ND	ND	ND	-	1.12	5.0
1,2-Dichloroethane	ND	ND	ND	ND	0.37	ND	ND	ND	ND	ND	ND	ND	ND		ND	ND	ND		ND	-	ND	ND		ND	-		ND	ND	ND	ND	ND		0.02	0.6
1,1-Dichloroethene	ND	ND			ND	ND	ND	ND	ND	ND	ND	ND		ļ	ND	ND	ND		ND		ND	ND	-	ND			ND	ND	ND	ND	ND	-	0.08	5.0
cis-1,2-Dichloroethene	3.3	7.2	0.46	5	4.6 0.44	5.4	4.5	3.1	4.4	3.6 0.7	1.9	1	4	 	4.3	3.7	ND		4	-	ND	3.2	-	ND ND	•	-	ND	ND	3.6	ND	ND	-	3.17	5.0
trans-1,2-Dichloroethene 1.2-Dichloropropane	ND ND	0.46 ND			ND	0.43 ND	0.54 ND	0.92 ND	0.37 ND	ND	ND ND	ND ND			ND ND	ND ND	ND ND		0.4 ND	-	ND ND	ND ND	-	ND	÷	÷	ND ND	ND ND	ND ND	ND ND	ND ND	-	0.34	5.0 1.0
1,3-Dichloropropane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1	ND	ND	ND		ND	-	ND	ND	-		-	-		-	ND		-	-	0.00	5.0
2,2-Dichloropropane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND	ND	ND		ND	-	ND	ND	-	-	-	-	-	-	ND	-	-	-	0.00	5.0
1,1-Dichloropropene	ND	ND	ND		ND	ND	ND	ND	ND	ND	ND	ND			ND	ND	ND		ND		ND	ND	•	,				-	ND	-			0.00	5.0
cis-1-3-Dichloropropene	ND	ND	ND		ND	ND	ND	ND	ND	ND	ND	ND			ND	ND	ND		ND	-	ND	ND	-	ND	-	-	ND	ND	ND	ND	ND	-	0.00	0.4 *
trans-1,3-Dichloropropene Ethylbenzene	ND ND	ND 0.57	ND ND	ND 1.2	ND 3	ND 10	ND 1.3	ND 0.67	ND 4.4	ND 0.28	ND ND	ND ND	ND ND	 	ND 5.1	ND ND	ND ND		ND ND	-	ND ND	ND ND	-	ND ND	-	-	ND ND	ND ND	ND ND	ND ND	ND ND	-	0.06	0.4 * 5.0
2-Hexanone	ND	0.57	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1	ND	ND	ND		ND	÷	ND	ND	-	ND	÷	÷	ND	ND	ND	ND	ND ND		0.73	50.0
Hexachlorobutadiene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1	ND	ND	ND		ND	-	ND	ND		-	-		-	-	- IND	-	-	-	0.00	0.5
lodomethane				ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND	ND	ND		ND	-	ND	ND	-	ND	-	-	ND	ND	ND	ND	ND	-	0.00	5.0
Isopropylbenzene	ND	1.3	0.47	0.79	0.48	1.6	0.61	0.51	0.76	0.42	ND	ND	0.54		0.82	0.86	ND		ND	-	ND	ND			-		-	-	-	-	-		0.28	5.0
p-Isopropyltoluene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND	ND	ND		ND		ND	ND	-	-		•	-	-				-	0.05	5.0
Methylene chloride	ND	ND	ND	0.37	0.28	ND	ND	ND	ND	ND	ND	ND	ND	₩	ND	ND	ND		ND		ND	ND		ND ND		-	ND	ND	ND	ND	ND	-	0.21	5.0
4-Methyl-2-pentanone Naphthalene	ND	ND	ND	ND ND	ND 0.41	ND 1.6	ND ND	ND ND	ND 0.48	ND ND	ND ND	ND ND	ND ND	+	ND 1.1	ND ND	ND ND		ND ND	-	ND ND	ND ND	÷	ND .	-	÷	ND -	ND -	ND -	ND -	ND -		0.00	10.0 **
n-Propylbenzene	ND	ND	ND	ND	ND	1.1	0.29	ND	0.49	ND	ND	ND	ND	+	0.59	ND	ND		ND	-	ND	ND			-					-			0.22	5.0
Styrene	ND	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1	ND	ND	ND		ND	-	ND	ND	-	ND	-	-	ND	ND	ND	ND	ND	- 1	0.00	5.0
1,1,1,2-Tetrachloroethane	ND	ND	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND		ND	ND	ND		ND	-	ND	ND	-	ND	-		ND	ND	ND	ND	ND	-	0.00	5.0
1,1,2,2-Tetrachloroethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND	ND	ND		ND	-	ND	ND	-	ND	-	-	ND	ND	ND	ND	ND	-	0.00	5.0
Tetrachloroethene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1	ND	ND	ND		ND		ND	ND		ND			ND	ND	ND	ND	ND	-	0.01	5.0
Toluene 1 2 3-Trichlorobenzene	ND ND	0.74 ND			0.34 ND	1.3 ND	ND ND	0.46 ND	0.47 ND	0.25 ND	ND ND	ND ND	ND ND		0.48 ND	ND ND	ND ND		0.38 ND	-	ND ND	0.4 ND	<u> </u>	ND ND	-		ND	ND	ND	ND	ND	-	0.28	5.0
1,2,3-Trichlorobenzene	ND ND	0.41			ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND	ND	ND ND		ND ND	ND	ND ND		ND ND	-	ND ND	ND ND	÷	ND	-	÷	H:	-			-		0.00	5.0
1,2,4-Trichlorobenzene	ND	ND				ND	ND	ND ND	ND	ND	ND	ND		+	ND	ND	ND		ND	÷	ND	ND	÷	ND.	÷	÷	ND	ND.	ND	ND.	ND		0.00	5.0
1,1,2-Trichloroethane	ND	ND			ND	ND	ND	ND	ND	ND	ND	ND		1	ND	ND	ND		ND	-	ND	ND	-	ND	-	-	ND	ND	ND	ND	ND	-	0.00	1.0
Trichloroethene	0.5	0.93		0.7	0.61	ND	0.67	ND	0.69	0.32	0.36				0.61	0.5	ND		0.51	-	ND	0.26	-	ND		-	ND	ND	ND	ND	ND	- 1	0.25	5.0
Trichlorofluoromethane	ND	ND			ND	ND	ND	ND	ND	ND	ND	ND			ND	ND	ND		ND	-	ND	ND		ND	-		ND	ND	ND	ND	ND	-	0.00	5.0
1,2,3-Trichloropropane	ND	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND			ND	ND	ND		ND	-	ND	ND	-	ND	-	-	ND	ND	ND	ND	ND	-	0.00	0.04
1,2,4-Trimethylbenzene 1.3.5-Trimethylbenzene	ND ND	ND ND		ND ND	0.42 ND	0.82 ND	ND ND	ND ND	0.67 ND	ND ND	ND ND	ND ND	ND ND		3.6 0.45	ND ND	ND ND		ND ND	-	ND ND	ND ND	-	\vdash	-	-	-	-		 	-	H : H	0.74	5.0
Vinyl acetate	IND	ND	IND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1	0.45 ND	ND	ND		ND	-	ND	ND	÷	ND	-	÷	ND.	ND	ND	ND.	ND		0.13	3.0
Vinyl acetate Vinyl chloride	3.1	3.9	2.9	2.5	3.2	2.6	2.3	1.9	2.7	2.5	0.78	0.21	1.5	1	2.5	1.5	ND		3.1	-	ND	1.5	-	ND	-	-	2.9	ND	1.7	ND	ND	- 1	1.83	2.0
o-Xylene	ND	ND	ND	ND	0.4	ND	ND	ND	0.41	ND	ND	ND	ND		0.58	ND	ND		ND	-	ND	ND		ND	-	-	ND	ND	ND	ND	ND		0.08	5.0
p-Xylene & m-Xylene	ND	ND	ND	ND	1.7	ND	0.22	0.17	2.6	ND	ND	ND	ND		6.9	ND	ND		ND	-	ND	ND	-	ND	-	-	ND	ND	1.2	ND	ND	- 1	0.35	5.0

	3 /04	0./04	2 /05	0/05	3 /06	11/06	4/07	10/07	4/00	10/08	4/00	0./00	4/10	0/10	E/11	10/11	E/12	10/12	6/12	10/12	6/14	10/14	6/15	11/15	F/16	10/16	2/17	10/17	E/10	0/10	4/10	0/10	MEAN	NYS STD
PARAMETER METALS (mg/L)	3/04	9/04	3/03	9/05	3/06	11/06	4/0/	10/07	4/08	10/08	4/09	9/09	4/10	9/10	3/11	10/11	3/12	10/12	0/13	10/13	0/14	10/14	0/15	11/15	5/16	10/16	3/1/	10/17	3/18	9/18	4/19	9/19	MEAN	310
Aluminum	-	ND		ND		ND		1	ND						ND				ND	. 1		ND					0.016		-		ND		0.16	1
	114		94.8		114	91	89.2		106						109	72.9			80.1	-	90.3	102	-	77.9	-	-	112	-	118	-	96.1	-	80.11	1
		45.6		33.5		40.6	33.8		33.3						30.4	29.7			30.9	_		29.8		33.8			42.4		35	_	35.1		23.73	0.3
	13.5	11 9	12.4	117		23.6			15.3						17.4	11.3			13.3	-	14.7	14.6	-	12.7	-	-	14.3	-	14.5	-	14.1	-	10.40	35.0
	8.31	9.5	10.6		10.3	13.9	12.9		15.3						17	12			17.1	-		11.5		17.4			12.4		7.92		14.5		8.32	0.3
	2.18	4.3	2.6		2.9	4.6	3.5		4.1						3.8	4.5		_	3.8	-	3.8	3.9		4.7			6.74		3.35		4.39		2.93	0.5
	7.68		6.8	7				1	8.8						9.5	7.2		-	7.8		6.8	7.2		6.5			10.4		6.92		6.56	-	8.74	20.0
PARAMETER (mg/l) TOXIC METALS	7.00	0.2	0.0		0.1	11.7	7.0		0.0						3.3	1.2			7.0		0.0	7.2		0.5			10.7		0.32		0.30		0.74	20.0
Antimony	-	ND		ND		ND		1	ND						ND				ND	. 1		ND					ND		-		ND		0.00	0.003
Arsenic		0.06		0.07		0.06			0.03						0.047			_	0.042	-	-	0.068	-	-	-	-:-	0.056	-	-	÷	0.0263	-	0.00	0.003
Barium		2	1.8	1.9	1.7	2.2	_	1	1.9	_					1.9	_			1.77	-		1.59	-	_			1.78		-	-	1.64	H-	1.26	1.0
Bervllium		ND	1.0	ND	1.7	ND	_		ND						ND				ND		-	ND		-		-	ND		-	H	ND	H	0.00	1.0
Cadmium	ND	ND	ND	ND	ND	ND	ND	1	ND						ND	ND			ND		ND	ND		ND			6E-04		ND		ND		0.00	0.005
Chromium (Total)	ND	ND	IND	ND	ND	ND	IND	1	ND						ND	IND		-	0.003		IND	0.003		IND.			0.022		- IND		ND	-	0.00	0.003
Copper	ND	ND		ND		ND	-	1	ND						ND			-	ND			ND.					0.004		-		ND	-	0.00	0.03
Lead	ND	ND	ND	ND	ND	ND	ND	-	ND						ND	ND		-	0.001	_	ND	ND	_	ND	_		0.004	_	0.003		0.003		0.00	0.025
Mercury	ND	ND	ND	ND	ND	ND	IND		ND						ND	ND			ND	-	IND	ND	-	ND	-		ND	-	0.003	-	ND	-	0.00	0.0007
Nickel		ND		ND		ND	-	1	ND						ND			-	0.007	_	_	0.003					0.006			_	0.004		0.00	0.0007
Selenium	ND	ND	ND	ND	ND	ND	ND	-	ND						ND				0.007		_	0.003	_		_		ND.	_	-	÷	ND	-	0.03	0.0
Silver	ND	ND	ND	ND	ND	ND	ND	1	ND						ND				0.003			0.003		-			ND		-		0.002	-	0.00	0.05
Thallium	ND	ND	IND	ND	ND	ND	ND		ND						ND				ND.	-		ND					ND		-		0.011		0.00	0.0005
Zinc		ND		ND		ND			0.2						0.012				0.004	-	-	0.01	-	-	-		0.024	-	-	-	ND.		0.00	2.0
ARAMETER (mg/l) LEACHATE INDICATORS		ND		ND		IND			0.2						0.012				0.004			0.01					0.024				IND		0.02	2.0
	350	42.9	211	430	407	242	206	1	191				185		467	252	320		349	. 1	377		. 1	315	. 1		380	. 1	-	-	339		269.0	т —
Biochemical Oxygen Demand	330	15.9	211	4.7	407	8.9	200	1	4.5				103		8.6	232	16			-	-	-	-	7.9	-	-	9.6	-	8.1	14.4	4.5	-	7.8	+
Roron		0.09		0.09		0.12		1	0.1						0.11				0.11	-	-	0.07	-		-	-	0.118	-	-		0.079		0.0	1.0
Chemical Oxygen Demand	34	61	316	55.9	48.6	61.3	46.7		33.6						36.4	50.6	41		22.1	-	38.8	36.2	-	52.9	-		75.4	-	101		49 9	-	28.7	1.0
Chromium (Hexavalent)	٠.	ND	31.0	ND	10.0	ND	10.7		ND.						ND	30.0			ND	-	-	ND	-		-	-	ND.	-	-	-	ND	-	0.0	0.05
Chloride	2.5	3	2.2	8.2	6.6	8.7	5.5		6.6				3 48		8.2	3.8	5.97		4.9	-	44	3.4	-	44	-	-	10.5	-	6.1	7.1	4.6	-	6.8	250
Color (PCU units)	2.5	140		140	0.0	200	3.3		120				3.10		200	3.0	3.31		-	-	-	-		-	-		25	-	-		200		53.3	15
Nitrate-Nitrite	ND	ND	ND	0.07	ND	ND	ND		ND						ND	ND	ND		ND	-	ND	ND	-	ND	-	-	0.065	-	0.097		ND		0.5	10
Nitrogen-Ammonia	2	1.3	1.4	4.3	1.8	4.5	3.2		3.8						5.9	7.7	5.26		5.57		4.45			6.1	-		7.0	-	5.7	-	6.0		2.8	2.0
Phenols	ND	0.02	ND	ND	ND	ND	0.01		ND				ND		ND	0.014	ND		0.015				-	0.036	-	-	0.042	-	0.0253	_	0.0136		0.0	0.001
Sulfate	2.9	ND	4.4	ND	3.1	ND	4.2		ND				4.87		3.4	ND.	ND		2.5	-	4.7	ND	-	2	-		2.9	-	2.3	7.4	ND		2.4	250
Total Organic Carbon (TOC)	8.2	29.5	6.1	12.1	6.3	11.7	8.8	35.4	8.8	23.2		13	6.1		8.8	9.5	13		11.7	-	-	16.2	-	12.6	-	-	7.5	24.9	25	11.7	9.7	-	9.2	
	402	330	345	413	446	484	378	1	390			_			449	344	440		395	-	375	392	-	349		-	426	-	436	394	340		328.1	500
		319	288	268	343	277			328						345	228			255	-	286		-	259	-	-	340	-	410	-	300	-	250.1	
Total Kieldahl Nitrogen (TKN)		5		6.3		6.5	1		5.2						2.4		3.52		711	-		6.91	-		-	-	8.2	-	8.9	-	6.5		3.4	
	48	56.4	22	30.2	45.2	75	64.4		13.9			19	150	12		29.5			31.5	-	36.3	22	66.8	26.6	-	-	12.4	219	41.4	154	22.4		83.3	5.0

	9/	90	12/9	3,	/91	6/91	9/9	91 1	2/91	3/92	6/92	9/92	12/92	3/93	6/93	9/93	12/93	3/94	6/94	9/94	12/94	3/95	6/95	9/95 1	12/95	4/96	9/96	3/97	9/97	3/98	9/98	3/99	9/99	3/00	9/00	3/01	9/01	3/02	9/02	3/03	9/03
PARAMETER VOLATILES (ug/L) Acetone		_					_	_								_	_	_	_	_											_				_			_			
Acetone	+			+			_	+								 	+	+	-			-	-+	-+	-				-					1	-						\vdash
Benzene	11	.6	19.6	2	3.8	28.0	5.0) :	14.0	18.0		64.0		13.0		25		18		16		20		20		22	15	11	18	20	16	19	13	19	11	13		14.8	13	13	17.9
Bromobenzene	N		ND		ND	ND			ND	ND		ND		ND		ND		ND		ND		ND		ND			ND	ND	ND		ND				ND	ND		ND	ND	ND	ND
Bromochloromethane	N	D	ND	1	ND	ND	N	0	ND	ND		ND		ND		ND		ND		ND		ND		ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND	ND	ND	ND
Bromodichloromethane	N		ND		ND	ND			ND	ND		ND		ND		ND																									ND
Bromoform	N		ND						ND	ND		ND		ND		ND																									ND
Bromomethane	N	D	ND	1	ND	ND	NI	0	ND	ND		ND		ND		ND	-	ND		ND		ND		ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND	ND	ND	ND
2-Butanone n-Butylhenzene	N	D	ND	. 1	.98	ND	NI		ND	ND		ND		ND	-	ND	+	0.7		ND		ND	+	ND		ND	ND	ND	ND	ND	1	0.8	ND	,	ND	0.5		ND	ND	ND	ND
sec-Butylbenzene	8.				6.2				ND	ND		0.6		ND		ND	1	ND	1	ND		ND		0.6		0.8	8	ND	0.6	0.8	0.7	1	ND	1	ND	0.6		ND	ND	0.61	0.7
tert-Butylbenzene			34.1			ND			ND	ND		ND		ND		ND	1	ND		ND		ND		ND.		ND	ND	ND	ND.	ND	ND	ND.	ND		ND	ND		ND	ND	ND	1.2
Carbon disulfide																																									
Carbon tetrachloride	N		ND			ND			ND	ND		ND		ND		ND		ND		ND		ND		ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND	ND	ND	ND
Chlorobenzene	6.					11.0				10.0		12.0		6.0		12		9		10		11		12			11	7	12	12	12		8	18	9	10		17.2			17.1
Chloroethane	N		ND			2.0		0	9.0	3.0		2.0		3.0		4	-	4		2		ND		2		4	1	4	3	ND	2	2	ND	2	ND	ND		ND	1.8	2.3	ND
Chloroform	N N		1.33 ND		ND .17	ND ND			ND ND	ND ND		ND 13.0		ND ND	-	ND ND	+	ND		ND		ND	+	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND	ND	ND	ND ND
Chloromethane 2-Chlorotoluene	N N		ND		ND	ND			ND	ND		ND		ND		ND	1	ND	1	ND ND		ND ND		ND			ND	ND	ND	ND	ND	ND	ND			ND		ND	ND ND	ND	ND ND
4-Chlorotoluene		D	ND		<dl< td=""><td>ND</td><td></td><td></td><td>ND</td><td>ND</td><td></td><td>ND</td><td></td><td>ND</td><td></td><td>ND</td><td>1</td><td>ND</td><td>1</td><td>ND</td><td></td><td>ND</td><td></td><td>ND</td><td></td><td></td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td></td><td>ND</td><td></td><td></td><td>ND</td><td></td><td>ND</td><td>ND</td><td>ND</td><td>ND</td></dl<>	ND			ND	ND		ND		ND		ND	1	ND	1	ND		ND		ND			ND	ND	ND	ND	ND		ND			ND		ND	ND	ND	ND
Dibromochloromethane	N		ND		ND	ND			ND	ND		ND		ND		ND																									ND
1,2-Dibromo-3-chloropropane	N		ND			ND			6.0	ND		ND																													ND
1,2-Dibromoethane		D	ND		ND	ND			ND	ND		ND				L	1																	L	L	L					ND
Dibromomethane 1,2-Dichlorobenzene	4.	D	ND		ND	ND 4.0			ND	ND		ND 3.0		2.0		ND	_	ND	-	ND		ND		ND		ND	ND	ND	ND 1	ND	ND	ND 1				ND		ND ND	ND	ND 0.67	ND
1,3-Dichlorobenzene		D	0.21		.20 ND	ND			ND ND	2.0 ND		ND	_	ND 3.0	_	3 ND	_	2 ND		ND		ND ND		2 ND		ND	ND	0.6 ND	ND	0.9 ND	1 ND	ND	ND ND	1 ND	ND ND	0.7 ND		ND	0.65 ND	0.67 ND	ND ND
1.4-Dichlorobenzene	1.3		8.28		ND	ND			4.0	7.0		6.0		ND		4		4		4		ND		4		6	4	3	5	4	4	6	2	8	3	4		8.12	3.6	5.1	6.3
trans-1,4-Dichloro-2-butene		_																								_						_									
Dichlorodifluoromethane	N	D	ND	1	ND	ND	NI	D .	ND	ND		5.0		0.7		ND		ND		ND		1		ND		2 J	ND	0.7	0.9	0.8	ND	ND	ND	0.9	ND	0.9		ND	0.5	ND	ND
1,1-Dichloroethane	8.0					12.0				6.0		8.0		7.0		-11		6		7		8		7		6	6	6	9	7	10	6	7	5	8	7		4.83	9.1	4.5	5.1
1,2-Dichloroethane	1.0					2.0			ND	ND		ND		ND		ND		ND		ND		ND		0.7				0.6		0.7	0.9	ND	ND		1	ND		ND		ND	ND
1,1-Dichloroethene	N		ND		ND	ND			ND	ND		ND		ND		ND	-	ND	-	ND		ND		ND			ND	ND	ND		ND					ND		ND	ND	ND	ND
cis-1,2-Dichloroethene trans-1,2-Dichloroethene	18		0.89		.02	3.0 ND			52.0 ND	2.0 ND		10.0		ND ND		4 0.5	+	0.8	-	3 ND		5 ND		3 ND		0.7	6 ND	0.7	0.8	0.6	0.8	0.6	3 ND	0.5	6 ND	4 ND		ND ND	3.3 ND	2.3 ND	2.4 ND
1,2-Dichloropropane	N		ND		ND	ND			ND	ND		ND		ND		ND	+	ND		ND		ND		ND		ND	ND	ND	ND	ND	ND	ND	ND			ND		ND	ND	ND	ND
1,3-Dichloropropane	N		ND		<dl< td=""><td>ND</td><td></td><td></td><td>ND</td><td>ND</td><td></td><td>ND</td><td></td><td>ND</td><td></td><td>ND</td><td>1</td><td>ND</td><td></td><td>ND</td><td></td><td>ND</td><td></td><td>ND</td><td></td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td></td><td>ND</td><td>ND</td><td>ND</td><td>ND</td></dl<>	ND			ND	ND		ND		ND		ND	1	ND		ND		ND		ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND	ND	ND	ND
2,2-Dichloropropane	N		ND		ND	ND			ND	ND		ND		ND		ND		ND		ND		ND		ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND	ND	ND	ND
1,1-Dichloropropene	N		ND			ND			ND	ND		ND		ND		ND		ND		ND		ND		ND		ND	ND	ND	ND	ND	ND	ND	ND		ND	ND		ND	ND	ND	ND
cis-1-3-Dichloropropene	N		ND		ND	ND			ND	ND		ND		ND		ND		ND		ND		ND		ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND	ND	ND	ND
trans-1,3-Dichloropropene Ethylbenzene	12		ND		ND	ND 26.0			ND 13.0	ND 24.0		ND 34.0	_	ND 15.0		ND 26	_	ND 26	_	ND 23		ND 39		ND 27		ND 43	ND 16	ND 18	ND 31	ND 36	ND 19	ND 34	ND 13	ND 43	ND 9	ND 17	\vdash	ND 31.4	ND 6.3	ND 21	ND ND
2-Hexanone	12	.2	20.2	- 4	1.4	20.0	4.0		13.0	24.0		34.0		13.0		20		20		23		39	_	21	_	43	10	10	31	30	19	34	13	43	9	-17		31.4	0.3	21	ND
Hexachlorobutadiene	N	D	ND	1	ND	ND	NI	0	ND	ND		ND		ND		ND	1	ND		ND		ND		ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND	ND	ND	ND
lodomethane																																									
Isopropylbenzene	1.3		2.68			2.0				2.0		2.0		1.0		2		2		1		3		2		3	1	1	2	2	2	2	0.6	3	1	2		3.21	1	1.9	2.3
p-Isopropyltoluene	2.:		3.53			2.0			3.0	2.0		3.0		ND		4		2		2		ND		2		0.8	1	0.8	1	2	1	2	ND	ND	0.8	1		ND	0.57	ND	1.4
Methylene chloride	2.0	52	ND	1	ND	1.0	NI	0	5.0	ND		1.0		0.6		0.6	-	0.5		ND		ND		ND		ND	ND	ND	ND	ND	ND	ND	ND	0.8	ND	ND		ND	ND	ND	ND
4-Methyl-2-pentanone Naphthalene	6.	13	5.53	. 5	.47	7.0	NI		ND	5.0		7.0		3.0		5	+	6	-	4		ND		6 B		6 B	4	3	5 B	5	4	5	ND	6	2 B	4		10.6	3.5	6.3	3.5
n-Propylbenzene	1.		10.9		.73	2.0			ND	2.0		2.0		1.0		2	1	2	1	1		2		2	-+	3	1	1	2 B	3	2	3	0.5	4	1	2		3.79	1.5	2.2	2.5
Styrene	N		ND		ND	ND			ND	ND		ND		ND		ND	1	ND		ND		ND		ND		ND	ND	ND	ND	ND	ND	ND	ND		ND	ND		ND	ND	ND	ND
1,1,1,2-Tetrachloroethane	N		ND		ND	ND			ND	ND		ND		ND		ND		ND		ND		ND		ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND	ND	ND	ND
1,1,2,2-Tetrachloroethane		D	0.32		ND	ND			ND	ND		ND		ND		ND		ND		ND		ND		ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND	ND	ND	ND
Tetrachloroethene	N		ND		ND	ND			ND	ND		ND		ND		ND	_	ND		ND		ND		ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND	ND	ND	ND
Toluene 1.2.3-Trichlorobenzene	32 N		1.64 ND		ND ND	2.0 ND			46.0 ND	21.0 ND		8.0 ND	-	5.0 ND		9 ND	_	6 ND	-	6 ND	-	2 ND		1 ND		9 ND	0.8 ND	0.7 ND	1 ND	1 ND	0.8 ND	4 ND	0.6 ND	2 ND	0.5 ND	0.9 ND		12.9 ND	ND ND	2 ND	1
1,2,3-1richlorobenzene 1,2,4-Trichlorobenzene	N		ND		ND ND	ND			ND ND	ND ND	-	ND	-	ND ND	-	ND	+-	ND	 	ND ND	-	ND ND		ND ND		ND ND	ND	ND	ND ND	ND	ND	ND	ND ND	ND	ND	ND	\vdash	ND ND	ND ND	ND ND	ND ND
1,2,4-Trichlorobenzene	N N		ND		ND ND	ND			ND	ND		0.6		ND		ND	+	ND	1	ND		ND		ND		ND	ND	ND	ND	ND	ND	ND	ND		ND	ND		ND	ND	ND	ND
1,1,2-Trichloroethane	N		ND		ND	ND			ND	ND		ND		ND		ND	1	ND	1	ND		ND		ND		ND	ND	ND	ND	ND	ND	ND	ND		ND	ND		ND	ND	ND	ND
Trichloroethene	1.0)7	0.98	0.	.20	ND			ND	ND		1.0		0.6		0.6		0.6		ND		0.5		ND		ND	1	ND	2	ND	2	ND	ND	ND	1_	ND		ND	1.2	ND	ND
Trichlorofluoromethane	N		ND	_	ND	ND			ND	ND		8.0		2.0		ND		ND		0.6		ND		ND		ND	ND	ND	ND	ND	ND	ND	ND			ND		ND	ND	ND	ND
1,2,3-Trichloropropane	N		ND		.90	ND			ND	ND		ND	_	ND	<u> </u>	ND		ND		ND		ND		ND		ND	ND	ND	ND	ND	ND	ND	ND	ND		ND	\perp	ND	ND	ND	ND
1,2,4-Trimethylbenzene 1,3,5-Trimethylbenzene	3.4					29.0 6.0			4.0 ND	27.0 8.0	_	38.0 7.0	_	3.0 17.0	_	28 ND		28 6	_	20 5	_	ND ND		29 5	-	7	15	15 2	24 3	27 3	2	27 7	0.8	31	4	12		35.1 8.21	1.7 ND	19 3.4	13.2
Vinyl acetate	3.4	10	IND	8.	/	0.0	INI	+	NU	3.0	-	7.0	-	17.0	-	IND	+-		1	,		ND	_	,	_	,		۷.	2	2	۷.	-	0.0	- 3	3	<u> </u>	\vdash	0.21	ND	3.4	1.3
Vinyl acetate Vinyl chloride	0.4	12	ND	1	ND	ND	NI	0 4	41.0	ND		15.0		ND		ND	 	ND	1	2		3		2		5	3	3	4	3	7	3	2	3	4	4		ND	1.2	0.66	2.4
o-Xylene	16			2			NI					ND		ND		ND		19		13		17		7		18	5	5	6	7	2	8	2	10	ND	2		10.8	0.77		3.3
p-Xylene & m-Xylene				18	8.1	69.0	9.0)				98.0		42.0		70		49		44		53		33		65	14	16	24	18	7	37	9		4	8		41	3.4	16	17
	_		_	_	_	_	_	_	_	_	_	_	_	_	_		_							_	_	_	_	_	_	_	_									_	_

	9/90	12/90	3/91	6/91	9/91	12/91	3/92	6/92	9/92	12/92	3/93	6/93	9/93	12/93	3/94	6/94	9/94	12/94	3/95	6/95	9/95	12/95	4/96	9/96	3/97	9/97	3/98	9/98	3/99	9/99	3/00	9/00	3/01	9/01	3/02	9/02	3/03
PARAMETER METALS (mg/L)													,							,											,						
Aluminum	1.7				0.1				0.61				5.07				6.38				2.34			0.248		0.2		ND		ND		ND				0.1	
Calcium	96.6	138	167	123	98.4	117	12.3	123	109	95.5	89.2	109	108	137	90.1	82.1	49.2			103	120			95.6	110	121	107	129	104	112	116	114				126	95.7
Iron	45.7	63.8	57.6	52.6	23.9	28.6	57.3	62.8	63.5	57.2	53.9	54.9	47.8	65	13.8	35.9	11.5	19.3		44.2	48.6				50.6	40.9	38.9	25.7	43.2	23.1	50.4	14.4	30.5		53.7	26.8	29.3
Magnesium	8.7	20.4	20.5	26.3	21.9	22.7	25.2	28.2	22.7	19.8	21.6	24.1	24.2	26.5	17.2	16.9	11.8	16		23.0	25.2		22.8			23.3		23.3	21.3	21.7	23.1	22.4	21		21.8	24.7	19.6
Manganese	19	23.1	23.9	13.1	16.4	15.6	23.9	22.1	19.5	16.4	10.7	16.1	16	20.9	9.03	12.2	2.72	9.34	13.7	12.0	15.4	20.2	17.3	11.3	15.4	14.7	12.9	12.8	15.9	11.2	16.1	12.3	12.2		16	13.2	11.4
Potassium	8.9		11.8			6.0		12.7								9.46				12.4						11.2		8.66	10	8.18	10.7	10	8.78		11.1	7.87	6.84
Sodium	18.9	27.7	30.4	34.9	27.3	25.2	34.0	38.0	32.2	26.0	19.3	27.9	30.8	33.8	22.8	22.8	31	20.6	21.8	27.6	31.9	30.8	24.7	31.0	24.3	27.8	20.9	23.8	24.6	23.4	23.2	21.2	19.3		24.1	22.3	16.5
ARAMETER (mg/l) TOXIC METALS																																					
Antimony	ND				ND				0.05				ND				ND				ND			0.055		ND		ND		ND		ND		-	-	ND	
Arsenic	ND				0.032				0.010				0.020				0.019				0.02			0.010		0.02		0.03		0.01		0.01		-		0.01	
Barium	0.53				0.36				0.8				0.66				0.15				0.73			0.581		0.73		0.58		0.43		0.5				0.56	
Beryllium					ND				ND				ND				ND				ND			ND		ND		ND		ND		ND				ND	
Cadmium		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.01	ND	ND	ND	ND	0.01	ND	ND	ND	ND	ND		ND	ND	ND
Chromium (Total)	<dl< td=""><td></td><td></td><td></td><td>0.01</td><td><u> </u></td><td></td><td></td><td>0.02</td><td><u> </u></td><td></td><td></td><td>0.03</td><td></td><td></td><td></td><td>0.04</td><td></td><td></td><td></td><td>0.04</td><td></td><td></td><td>0.028</td><td></td><td>0.02</td><td></td><td>ND</td><td></td><td>0.02</td><td></td><td>0.02</td><td></td><td>-</td><td>-</td><td>ND</td><td></td></dl<>				0.01	<u> </u>			0.02	<u> </u>			0.03				0.04				0.04			0.028		0.02		ND		0.02		0.02		-	-	ND	
Copper	ND				ND				ND				0.01				0.02				0.02			ND		ND		ND		ND		ND				ND	
Lead	<dl< td=""><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>0.070</td><td>0.009</td><td>0.003</td><td>0.004</td><td>0.023</td><td>0.012</td><td>0.009</td><td>0.005</td><td>ND</td><td>0.005</td><td>0.017</td><td>0.002</td><td>0.001</td><td>0.003</td><td>0.01</td><td>ND</td><td>0</td><td>0.011</td><td>0.005</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>ND</td><td>0.01</td><td>0</td><td></td><td>0</td><td>0</td><td>0.003</td></dl<>	ND	ND	ND	ND	ND	0.070	0.009	0.003	0.004	0.023	0.012	0.009	0.005	ND	0.005	0.017	0.002	0.001	0.003	0.01	ND	0	0.011	0.005	0	0	0	0	0	ND	0.01	0		0	0	0.003
Mercury	ND				ND				ND				ND				ND				ND			ND		ND		ND	_	ND		ND		-		ND	
Nickel	0.64				ND				0.05				0.09				0.04				0.1			0.058		0.08		0.06		0.06		0.05			-	0.05	
Selenium		0.03	0.05	ND	ND		ND	ND	ND	ND	ND	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	-	ND		0.001
Silver	ND				ND				ND				0.02				ND				0.01			ND		ND		ND		ND		ND		-		ND	
Thallium	ND				ND				ND				ND				ND				ND			ND		ND		ND		ND		ND		-	_	ND	
Zinc	0.03				0.01				0.02				0.06				0.06				0.08			0.095		0.05		0.07		0.03		ND		-	-	0.04	
METER (mg/l) LEACHATE INDICATORS	3																																	_			
Alkalinity	411	461	523	522	468	522	653	562	489	507	394	446	523	656	475	386	656	253	516	587	583	530	470		499	412	543	1	587	571	521	500	487	$\overline{}$	603	469	363
Biochemical Oxygen Demand	45		323	JLL	6.0	ND	033	302	24.0	30,	331	110	11	030	.,,	300	13	233	310	307	ND	330	.,,	29	133	26	3 13		307	10	J	300	107	-	003	8	303
Boron	0.11				0.21	ND			0.25	1			0.02				ND				0.29			0.249		0.28		0.24		0.23		0.18		-	-	0.18	
Chemical Oxygen Demand	100	20	98	90	50		158.0	106	85.1	107	82.4	84.7		228	92.1	50.9		84	69.3	127		139	88 3		27.4	85.5	44.8	0.2	93.9	77.2	94	32.1	71.5	-	76.7	80.2	54.1
Chromium (Hexavalent)	<dl< td=""><td></td><td>- 50</td><td>- 30</td><td>ND</td><td></td><td>130.0</td><td>100</td><td>ND</td><td></td><td>UL. I</td><td>01.7</td><td>ND.</td><td></td><td>32</td><td>30.3</td><td>ND</td><td></td><td>03.3</td><td>127</td><td>ND</td><td></td><td>0.0.0</td><td>0.010</td><td>27.1</td><td>ND</td><td>11.0</td><td>ND</td><td>33.3</td><td>0</td><td>٠,</td><td>32</td><td>7 1.3</td><td>-t</td><td>, 0.,</td><td>ND</td><td>7</td></dl<>		- 50	- 30	ND		130.0	100	ND		UL. I	01.7	ND.		32	30.3	ND		03.3	127	ND		0.0.0	0.010	27.1	ND	11.0	ND	33.3	0	٠,	32	7 1.3	-t	, 0.,	ND	7
Chloride	42.5	46	64	7	71	36.0	70.0	75.0		37.4	20.8	56.3		61.6	27	15.5		38.6	38	55.2		43.8	29.2		30.9	35.6	20.8	IND	36.4		32.8	40.1	27	-	42	45.5	23.8
Color (PCU units)	51	70	04		ND	30.0	70.0	73.0	250	37.7	23.0	30.3	400	01.0	21	13.3	175	30.0	30	33.2	600	73.0	23.2	_	30.9	120	23.0		30.4	450	32.0	40.1	21	-	72	500	23.0
Nitrate-Nitrite	<dl< td=""><td><dl< td=""><td><dl< td=""><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td></td><td>1.2</td><td>0.23</td><td>ND</td><td></td><td>0.18</td><td>ND</td><td>ND</td><td>ND</td><td>0.1</td><td>ND</td><td>0.110</td><td>ND</td><td>ND</td><td>ND</td><td></td><td>ND</td><td>ND</td><td>ND</td><td></td><td>ND</td><td>ND</td><td>ND</td><td>1.28</td><td>ND</td><td>-+</td><td>ND</td><td>0.72</td><td>ND</td></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td></td><td>1.2</td><td>0.23</td><td>ND</td><td></td><td>0.18</td><td>ND</td><td>ND</td><td>ND</td><td>0.1</td><td>ND</td><td>0.110</td><td>ND</td><td>ND</td><td>ND</td><td></td><td>ND</td><td>ND</td><td>ND</td><td></td><td>ND</td><td>ND</td><td>ND</td><td>1.28</td><td>ND</td><td>-+</td><td>ND</td><td>0.72</td><td>ND</td></dl<></td></dl<>	<dl< td=""><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td></td><td>1.2</td><td>0.23</td><td>ND</td><td></td><td>0.18</td><td>ND</td><td>ND</td><td>ND</td><td>0.1</td><td>ND</td><td>0.110</td><td>ND</td><td>ND</td><td>ND</td><td></td><td>ND</td><td>ND</td><td>ND</td><td></td><td>ND</td><td>ND</td><td>ND</td><td>1.28</td><td>ND</td><td>-+</td><td>ND</td><td>0.72</td><td>ND</td></dl<>	ND	ND	ND	ND	ND		1.2	0.23	ND		0.18	ND	ND	ND	0.1	ND	0.110	ND	ND	ND		ND	ND	ND		ND	ND	ND	1.28	ND	-+	ND	0.72	ND
Nitrogen-Ammonia	16.3	87	7.5	0.5		2.8		38.0					19.1		27.1		2.6	20.8		13.8	24	13.4	8.66		11.2	13.7				16.9		1.20	12.5		25.3		14
Phenols	0.005	0.084	ND	0.010		0.100	ND									0.032			0.063	0.118			0.11		0.06	0.08			0.13		0.12	_	0.06		0.11		0.0661
Sulfate	14	1.8	16.8		ND	ND.	ND	ND	20.0	8.4	ND	ND	11	0.011	ND	ND	ND	ND	ND	ND	ND	ND	ND	-	ND	ND			11	ND	ND	ND			ND	ND	ND
Total Organic Carbon (TOC)	30.4	29	36	27	24	172				29.0		22.9		44.2	30.8		372	25.6		24.3	50.9	32.7	25.6	_	19	19	18		28	44	33	17	19		27.2		11
Total Dissolved Solids (TDS)	436	580	546		584	454	639.0		474	556	430	602	380	688	426		658	530	461	568	670	565	470	_	544	438			543	480	558	503				560	500
Total Hardness	277		721	415	336		134.0		376	404		386	521	595	554		589	290	326	352	446	408	386		366	398			347	301	385		359				
	11.2	427	/21	415		386	154.0	422		404	301	366		292	554	320	30	290	326	332		408		24.2	306		331		54/		385	3//	339	-+	349		320
Total Kjeldahl Nitrogen (TKN)			270	570	15.8	62.0		240	21.9	E0.0	120		22			40		- 00	- 0.0		19.5	100		24.3	20	12.8	40	_		17.5			40	-		16.2	
Turbidity (NTU units)		1440	370	570		62.0	1/3.0	240		58.0	120	130		140	64	40	155	88	98	150		100	125		75	43	48	_	23	600	51		48	-	140	200	42
Cyanide	<dl< td=""><td></td><td></td><td>1</td><td>ND</td><td></td><td></td><td></td><td>ND</td><td></td><td></td><td></td><td>ND</td><td></td><td></td><td></td><td>ND</td><td>ı</td><td></td><td>1</td><td>ND</td><td></td><td></td><td>ND</td><td></td><td>ND</td><td></td><td></td><td></td><td>ND</td><td></td><td>ı</td><td>1</td><td></td><td></td><td></td><td></td></dl<>			1	ND				ND				ND				ND	ı		1	ND			ND		ND				ND		ı	1				

																																		NYS
PARAMETER VOLATILES (ug/L)	3/04	9/04	3/05	9/05	3/06	11/06	4/07	10/07	4/08	10/08	4/09	9/09	4/10	9/10	5/11	10/11	5/12	10/12	6/13	10/13	6/14	10/14	6/15	11/15	5/16	10/16	3/17	10/17	5/18	9/18	4/19	9/19	MEAN	STD
Acetone Acetone			1	19	2.2	4.5	7.1	12	3	4.5	3 3	ND	ND	1.6	2.6	4.2	ND	ND	3.3	ND	ND	2.5	ND	ND	ND	ND	ND	ND	2.2	ND	ND	ND	1.89	50.0
Acrylonitrile				ND	ND.	ND		ND	ND	ND	ND	ND	ND		ND	ND	ND	ND		ND	ND	ND ND	ND	ND	ND	ND	ND	ND	ND.	ND	ND	ND	0.00	5.0
Benzene	12.5	14	9.2	13	12	15	12	10	11	9.6	5.5	5.4	8.6	6.8	8.8	9.7	6.6	7.4	7.0	8.3	8.5	5.8	3.7	7.0	5.5	6.0	6.7	10.5	7.8	5.8	6.0	ND	13.07	1.0
Bromobenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND			-		-				-	0.00	5.0
Bromochloromethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.00	5.0
Bromodichloromethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.00	50.0
Bromoform	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.00	50.0
Bromomethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.00	5.0
2-Butanone				ND	ND	1.4		1.6	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.10	50.0
n-Butylbenzene	ND	0.52	ND	ND	0.36	0.48		ND	0.48	ND	ND	ND	0.35	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	-	-		-	-	-	-		-	0.14	5.0
sec-Butylbenzene		0.62		0.47	0.58	0.78		0.25	0.68	0.32	0.25	ND	ND ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	-	-	-	-	-	-		-	-	1.15	5.0
tert-Butylbenzene Carbon disulfide	ND	ND	ND	ND ND	ND ND	ND ND		ND ND	ND ND	ND 0.26	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND 0.63	ND ND	ND.	ND.	ND.	ND.	ND.	ND.	ND.	ND	ND.	0.58	5.0 60.0
Carbon distillide	ND	ND	ND	ND	ND			ND	ND	ND	ND	ND	ND		ND	ND	ND	ND	ND	ND	ND ND	ND	ND	ND	ND	ND ND	ND	ND ND	ND	ND	ND ND	ND ND	0.03	5.0
Chlorobenzene	11.2	14		13	12	18	15	8.3	15	11	6.7	5.0	10	6.1	12	13	8.7	8.8	9.9	13	10	7.6	3.6	10	11	6.9	9.7	16.9	9.4	7.0	5.8	6.9	10.39	5.0
Chloroethane	ND	2.9	2.6	2.5	2.1	2	1.2	1.5	1.6	1.5	0.9	1.7	1.1	1.1	0.93	0.85	ND	ND	1.2	ND	ND	0.99	1.6	ND	ND	ND	ND	ND	ND	ND	ND.	ND	1.37	5.0
Chloroform	ND	ND	ND.	ND	ND	ND	ND	ND	ND.	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND.	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.03	7.0
Chloromethane	ND	ND	ND	0.31	ND	0.21	ND	0.63	0.25	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.39	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.25	5.0
2-Chlorotoluene	ND	ND	ND	ND	ND	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	-	-	-	-	-	-	-	-	-	0.00	5.0
4-Chlorotoluene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	-	-	-	-	-	-	-	-	-	0.00	5.0
Dibromochloromethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.00	50.0
1,2-Dibromo-3-chloropropane	ND	ND	ND	ND	ND	ND		ND	ND	ND	ND	ND	ND		ND	ND	ND	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.14	0.04
1,2-Dibromoethane	ND	ND	ND	ND	ND	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.00	5.0
Dibromomethane	ND	ND	ND	ND	ND	ND		ND	ND	ND	ND	ND	ND		ND	ND	ND	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.03	5.0
1,2-Dichlorobenzene	0.6	0.79	0.37	0.58	0.6	0.8	0.61	0.35	0.63	0.48	0.3	0.24	0.39	0.23	ND	ND	ND	ND	0.45	ND	ND	0.3	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.84	3.0
1,3-Dichlorobenzene	ND	ND	ND	ND	ND	0.26	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	-		-		-	ND	-			0.06	3.0
1,4-Dichlorobenzene	3.5	4.5	2.9	3.8	4.1	5.7	5.5	2.3	5.1	3.6	2.4	1.7	3.2	1.7	4.1	4.2	ND	ND	3.2	ND	ND	2.3	0.96	ND	ND	ND	ND	5.5	3.7	ND	ND	ND	3.11	3.0
trans-1,4-Dichloro-2-butene				ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.00	5.0
Dichlorodifluoromethane	ND	1.2	1.2	1	1.4	ND		1.3	ND	ND	0.81	0.76	1.3	1	ND	ND	ND	ND	ND	ND	ND	ND	ND	-	-		22.7	-	ND	-	-	-	0.74	5.0
1,1-Dichloroethane	6.7	5.6	5	6	5.2	4.7	4.1	7.9	4.4	7.0	5.6	11	3.6	7.9	3.6	3.5	ND	6.8	4.1	ND	ND	4.7	9.1	ND	ND	8.1	ND	5.1	4.3	ND	ND	5.4	5.84	5.0
1,2-Dichloroethane	ND	ND	0.38	ND	ND	ND		1.2	ND	0.87	0.52	0.58	ND	ND	ND	ND ND	ND	ND	ND	ND	ND	0.36	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.26	0.6
1,1-Dichloroethene	ND	ND		ND	ND	ND		ND	ND	ND	ND	ND	ND		ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.00	5.0
cis-1,2-Dichloroethene trans-1,2-Dichloroethene	4.2 0.5	3	0.48	4 0.65	4.6 0.52	3.5	2.6 0.48	0.46	0.41	0.36	0.82	0.34	0.41	0.29	2.1 ND	1.7 ND	ND ND	ND ND	0.35	ND ND	ND ND	1.8 ND	2.1 ND	ND ND	ND ND	ND ND	ND ND	ND ND	2.5 ND	ND ND	ND ND	ND ND	3.75 0.55	5.0
1,2-Dichloropropane	ND	ND	ND	ND	ND	ND		ND	ND	ND	ND	ND	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND ND	0.00	1.0
1.3-Dichloropropane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	IND.	ND.	IND.	IND.	IND.	ND	IND	IND	IND .	0.00	5.0
2.2-Dichloropropane	ND	ND	ND	ND	ND	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND ND	ND	ND	-	-		-	-	ND	-		-	0.00	5.0
1 1-Dichloropropene	ND	ND	ND	ND	ND	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	-		-	-		ND				0.00	5.0
cis-1-3-Dichloropropene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.00	0.4 *
trans-1.3-Dichloropropene	ND	ND	ND	ND	ND	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.00	0.4 *
Ethylbenzene	15.1	16	9.5	10	14	18	15	0.38	16	1.8	ND	0.51	6.1	ND	8.7	2.1	ND	ND	2.4	ND	ND	0.57	ND	ND	ND	ND	ND	ND	1.6	ND	ND	ND	13.02	5.0
2-Hexanone				ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.00	50.0
Hexachlorobutadiene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND										0.00	0.5
Iodomethane				ND	ND	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.00	5.0
Isopropylbenzene	1.5	1.8	1.1	1.3	1.5	2.1	2	0.77	1.8	0.98	0.58	0.46	1.7	0.36	1.6	1.5	ND	ND	ND	ND	ND	ND	ND	-				-	-	-			1.20	5.0
p-Isopropyltoluene	0.7	ND	0.52	ND	ND	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	-	-	-	-	-	-	-	-	-	0.69	5.0
Methylene chloride	ND	ND	ND	0.83	0.35	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.22	5.0
4-Methyl-2-pentanone	1	_		ND	ND	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.00	100
Naphthalene	ND 1.7	5	3.3	3.5	3.9	5.1	5.8	1.6	5.3	2.9	1.5	1.1	1.7	0.53	4.3	4.0	ND	ND	ND	ND	ND	ND	ND	-	-		-	-	-	-		-	2.60	10.0 **
n-Propylbenzene Styrene	1.7 ND	2 ND	1.2 ND	1.3 ND	1.7 ND	2.2 ND	2.2 ND	0.71 ND	2 ND	0.92 ND	0.55 ND	0.39 ND	1.8 ND	0.26 ND	1.7 ND	1.2 ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND.	- ND	- ND	ND.	- ND	ND.	- ND	ND	ND	1.52	5.0
1.1.1.2-Tetrachloroethane	ND ND	ND	ND	ND	ND	ND		ND	ND	ND	ND ND	ND	ND	ND	ND	ND ND	ND ND	ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	0.00	5.0
1,1,2-Tetrachloroethane	ND ND	ND		ND	ND	ND		ND	ND	ND	ND ND	ND	ND	ND ND	ND	ND ND	ND ND	ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	0.00	5.0
Tetrachloroethene	ND	ND	ND	ND	ND	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND ND	ND	ND	ND	ND	ND ND	ND	ND ND	ND	ND	ND	ND ND	0.00	5.0
Toluene	0.7	0.72		1.1	0.82	1.6		0.7	1.1	0.39	0.31	0.74	0.35		0.64	0.42	ND	ND	0.56	ND	ND	0.3	0.31	ND	ND	ND	ND	ND	ND	ND	ND	ND	3 1 1	5.0
1,2,3-Trichlorobenzene	ND	ND		ND	ND			ND	ND	ND	ND	ND	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	- IND	- 140		-	-	-			0.00	5.0
1,2,4-Trichlorobenzene	ND	0.46		ND	ND	ND	ND	ND	ND	ND	ND	0.28	0.58	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		-	-	-	-		-	-	-	0.00	5.0
1,1,1-Trichloroethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.02	5.0
1,1,2-Trichloroethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.00	1.0
Trichloroethene	1.2	0.54	0.53	0.73	0.86	0.6	0.84	0.74	0.64	0.32	ND	0.37	0.77	0.3	ND	ND	ND	ND	0.42	ND	ND	0.29	0.34	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.36	5.0
Trichlorofluoromethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.17	5.0
	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.06	0.04
1,2,3-Trichloropropane		7.3	3.7	5.1	4.5	10	5.1	ND	3.7	0.85	ND	ND	ND	ND	4.4	2.5	ND	ND	ND	ND	ND	ND	ND		-	-	-	-	-	-		-	9.15	5.0
1,2,3-Trichloropropane 1,2,4-Trimethylbenzene	5.3							110	ND	ND	ND	ND	ND	ND	0.45	ND	ND	ND	ND	ND	ND	ND	ND			-			-	-	-	-	1.92	5.0
	1.1	0.38	0.64	1.1	ND	2	ND	ND	ND	IND				ND	0.43																			
1,2,4-Trimethylbenzene 1,3,5-Trimethylbenzene Vinyl acetate	1.1		0.64	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.00	
1,2,4-Trimethylbenzene 1,3,5-Trimethylbenzene	1.1	2.9	3	ND 3.5	ND 5.6	ND 2.6	ND 3.1	ND 2.2	ND 4.6	ND 1.3	ND 0.98	ND 1.4	ND 4.0	ND 1.5	ND 2.9	ND 1.1	ND ND	ND ND	ND 2.9	ND ND	ND ND	0.95	ND 1.4	ND	ND	ND	3.0	ND	2.2	ND	ND	ND	0.00 2.71	2.0
1,2,4-Trimethylbenzene 1,3,5-Trimethylbenzene Vinyl acetate	1.1	2.9 2.2	3 0.98	ND 3.5 1.2	ND	ND 2.6 2.4	ND 3.1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND 2.9 0.4	ND	ND		ND										0.00	2.0 5.0 5.0

					_									_																				
	2 /04	0/04	2 /05	0/05	3 /06	11/06	4/07	10/07	4/00	10/00	4 /00	0./00	4/10	0/10	E/11	10/11	E/12	10/13	6/13	10/13	6/14	10/14	6/15	11/15	E/16	10/16	2/17	10/17	E/10	9/18	4/19	9/19	MEAN	NYS STD
PARAMETER METALS (mg/L)	3/04	3/04	3/03	3/03	3/00	111/00	4/07	10/0/	4/00	10/08	4/09	3/03	14/10	9/10	3/11	110/11	3/12	10/12	0/13	110/13	0/14	10/14	0/13	11/13	3/10	10/10	3/17	10/17	3/10	3/10	4/13	3/13	WEAN	310
Aluminum		0.21		ND	1	ND		ND	ND		ND			ND	ND	T .	1	0.053	0.001	Ι.	Ι.	ND	ND		ND	ND	0.0157	0.0282	1 -	0.096	ND		0.47	
Calcium	110		119	119		106	113	124		118	122	126	117		117	105	130	130	107	111	120	126	148	104	133	135	121	106	119	127	124	126	112.42	-
Iron				13.3		19.6	29.8	14.6	22.8	17.7	26.6	13.2			19.7	15.1	27	15	14.5	26.8		14.5	6.01	10.2	17.3	13.2	12.3	14.4	17.5	11	13.8	18.1	30.59	0.3
Magnesium	20.9	19	22.6	22.7		19.6	22.9	24.3	22.8	24.1	25.6	24.9			23.5	20.9	27	28	22.2		23.3	24.5	29.3	19.1	24.4	27.3	22.8	20.8	22.0	23.8	23.6	25.5	22.35	35.0
Manganese	9.84	10.6		12.2			12.4	11.2	12.5	10.7	11.9				11.1	10.6	12	11	9.61		11.2	9.39	8.04	13.4	10.8	10.5	10.7	9.04	7.62	9.54	10.2	10.3	13.07	0.3
Potassium	5.81	6.6		6.9	5.1	6.2	7.2	7.4	6.9		7.35	5.17			5.7	7.1	6.4	7.5	4.8	7.4		4.6	3.3	4.6	ND	7.67	6.3	7.42	3.97	5.52	4.46	6.73	7.89	0.3
Sodium			16.7			15.5	17.2	21				14.9			14.5		16	ND	13.3		12.2	14	13	11.2	16.1	17.4	11.8	14.5		15.0	12.6	14.8	20.88	20.0
PARAMETER (mg/l) TOXIC METALS	13.0	14.9	10.7	19.9	14.2	13.3	17.2	21	10.0	19.4	20.2	14.9	13.0	20	14.3	13.3	10	ND	13.3	17.1	12.2	14	13	11.2	10.1	17.4	11.0	14.3	11.2	13.0	12.0	14.0	20.00	20.0
Antimony		ND	_	ND	_	ND		ND	ND		ND	_	_	ND	ND	_	_	ND	ND	_	_	ND	ND	_	ND	ND	ND	ND	_	ND	ND	_	0.00	0.003
Artimony	-	0.01	+	ND		0.01		0.012			0.013	+	+	0.012	0.011	-		ND	0.007	<u> </u>	<u> </u>	0.013	0.014	-	ND	ND	0.0108	0.0095	-	0.0085	0.0164	-	0.00	0.003
Barium	+	0.43	+	0.43		0.01	-	0.012			0.555	1	+	0.516	0.45	-		0.53	0.334	⊢ ·	<u> </u>	0.303	0.014		0.394	0.414	0.304	0.439	-	0.325	0.0104	-	0.40	1.0
Bervllium	+	ND	+	0.43 ND		ND	-	ND	ND		ND	1	+	ND	ND	-		ND	0.334 ND	÷	<u> </u>	ND	ND	-	0.394 ND	ND	ND	ND	-	ND	0.293 ND	-	0.40	1.0
Cadmium	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND.	ND.	ND	ND	ND.	ND		ND	ND	ND	ND	ND		0.00	0.005
Cadmium Chromium (Total)	ND	0.01	טא	ND	ND	0.01	ND	ND	ND	NU	ND	ND	ND	ND ND	ND ND	ND	שא	ND ND	0.001	שא	NU	0 0009	ND ND	טא	0.0175	ND ND	0.006	0.0069	ND -	0.0107	ND ND	ND	0.00	0.005
Copper Copper	+	ND	+	ND	+-	ND	-	ND	ND	-	ND	+	+-	ND ND	ND ND	+	 	ND ND	0.001 ND	+-	+-	0.0009 ND	ND ND	<u> </u>	0.0175 ND	ND ND	0.006 ND	0.0069 ND	-	0.0107 ND	ND ND	<u> </u>	0.01	0.05
Lead	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND	ND	0.002	ND	0.002	ND.	ND.	0.003	0.002	ND.	0.0046	ND	0.0015	0.0035	0.0021	0.0016	ND	ND.	0.00	0.025
Lead Mercury	ND	ND	טא	ND	ND	ND	ND	ND	ND	NU	ND	ND	ND	ND ND	ND ND	ND	0.002	ND ND	0.002 ND	שא	NU	0.003 ND	0.002 ND	טא	0.0046 ND	ND ND	0.0015 ND	6E-05	0.0021	0.0016	ND ND	ND -	0.00	0.025
Nickel	-	ND	+	ND	+	ND		ND	ND		ND	+	+	ND	ND	-		ND	0.006	<u> </u>	<u> </u>	0.005	0.004	·	ND	ND	0.0058	0.0063	-	0.0046	0.0176	·	0.04	0.0007
Selenium	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	+	ND	ND	-		ND	0.006	<u> </u>	<u> </u>	0.005	0.004	-	ND	ND ND	ND	ND	-	ND	ND	-	0.04	0.0
Selenium	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	+	ND	ND			ND	ND	H-	<u> </u>	0.006	0.008	-	ND	ND ND	ND ND	ND	<u> </u>	ND	ND	-	0.00	0.05
Thallium		ND	1	ND	+	ND		ND	ND		ND	<u> </u>	1	ND	ND	1		ND	ND	-	-	ND	ND	-	0.0127	ND	ND	0.0044	<u> </u>	ND	ND	-	0.00	0.0005
Zinc	+	ND	+	ND	+	0.03	-	0.03			ND	1	+	ND	0.014	-		0.014	0.014	<u> </u>	<u> </u>	0.01	ND ND	-	ND	ND ND	0.0028	0.0044	-	0.0045	0.0054	-	0.00	2.0
PARAMETER (mg/l) LEACHATE INDICATOR	c	ND	_	IND		0.03		0.03	0.018		ND		_	ND	0.014			0.014	0.014			0.01	ND		ND	ND	0.0028	0.0067		0.0043	0.0034		0.02	2.0
Alkalinity		167	371	449	383	373	ND	476	267	457	482	410	413	490	482	407	440	480	460	485	461	487	530	388	468	484	539	483	378	496	478	468	466.0	
Biochemical Oxygen Demand	440	ND	3/1	6.3	303	3.5	IND	6.3	4.7	437	11 9	410	413	ND	5	407	11	7	10.1	403	401	11.1	6.7	3.7	9.0	ND	9.9	6.0	13	7.6	3.9	8.1	8.8	
Roron	-	0.14	+	0.3	+	0.17		0.3			0.163	+	+	0.151	0.15	-	- ' '	ND.	0.14	-	-	0.1	0.08	-	0.119	0 1 0 7	0.11	0.0	- 13	0.125	0.0919	-	0.0	1.0
Chemical Oxygen Demand	42	83	44.6	71.3		50.5	43	46.5	41.2	42.9	45	38	41.6		31	48.8	38	45	37.4	56.7	26.6	42.8	24.5	30	0.119	46.3	48.4	73.3	64.5	74.7	34.5	58.7	72.8	1.0
Chromium (Hexavalent)	74	ND	77.0	ND	23.7	ND	7.7	ND	ND	72.3	ND	- 30	71.0	ND	ND	70.0	30	ND	ND.	30.7	20.0	ND	ND.	-		ND.	ND	73.3	04.3	0.0061	ND.	30.7	0.0	0.05
Chloride	17	24.8	183	38.6	17.4	16	21.4	27.7		27.3	25	21.7	16		14	14.5	13.6	22.7	12.8	19.1	8.1	10.2	9.6	7.9	12.6	18.2	11.4	16.3	9.1	10.8	8.0	13.7	30.6	250
Color (PCU units)	- 17	120	10.5	60	17.3	160	21.7	300	80	21.3	30	21.7	10	0	320	17.3	13.0	5	280	13.1	0.1	340	90	7.9	20	5	15	- 10.5	-	75	100	- 13.7	134.6	15
Nitrate-Nitrite	ND	ND	ND	ND	ND		ND	4	ND	0.4	0.144	ND	1	0.104	ND	ND	0.055		ND	ND	ND	ND	ND	ND	ND	ND	0.052	1.4	ND	0.052	ND	0.12	0.2	10
Nitrogen-Ammonia	10.4		8	17.1	5	4.3	8.8	6.3	8.3	9.2	13.2		_	9.36	8.9	11					3.7	7.03	5.29	5.1	6.87	9.3	6.7	12.9	5.1	2.2	4.9	8.6	11.9	2.0
Phenois	0.002		ND.	ND	ND	ND	ND	ND	ND	ND	ND	ND.			ND	0.09	ND	ND.					0.0057	ND.	0.0406		0.047	0.0578		0.049	0.0351	0.004	0.0	0.001
Sulfate	2.2	ND	2.2	ND	2.6	ND	ND	2.1	ND	ND	ND	ND	2.32		ND	ND	ND	ND	ND.	ND	2.9	ND	3.2	3	ND	ND	2.6	1.3	1.9	2.5	ND	ND	2.1	250
Total Organic Carbon (TOC)	13	23.5		14.9		13.2	16.2	13.3	14.4		14.9	9.6	9.1		11.2	8.7	10.9	11.5	12.7	17.2		14.1	9.3	11.6	9.52	9.8	3.2	19.5	20.8	9.0	8.9	9.7	27.5	230
Total Dissolved Solids (TDS)	478	478	449	515		587	312	502	468	467	508	482		510	468	430	610	600	482	511		488	523	407	487	516	459	201	457	458	602	466	504.3	500
Total Hardness	361	328		390			376	410	376		410		390		389	349	- 010	450	359	376		415	490	352	390	450	410	520	450	340	400	200	391.6	300
Total Kjeldahl Nitrogen (TKN)	301	12.9	230	194	3/2	6	370	9.4	ND	237	13.1	720	330	9.95	9.5	549	5.2	9.26	7.89	370	330	7.59	5.25		7.53	7.7	6.4	14.3	6.7	4.7	5.4	10.1	11.0	
Turbidity (NTU units)	53	41.6	25.8	12.7	22.6		47.8	33.8		15.1	12	4	5	6	10	0.8	6.4	26.8	14.4	10.4	2.3	7.1	23.4	7.84	6.3	10.9	6.6	87.2	43.8	16.2	8.6	31.17	103.6	5.0
Cyanide	33	ND.		ND	22.0	ND	47.0	ND	ND.	13.1	ND	-	,	ND	ND	0.0	0.4	ND	ND	10.4	2.3	ND	ND	7.04	0.5	ND	ND	07.2	73.0	ND.	ND	31.17	0.0	0.2
Cyanide	1				orted at		o Now Y			larde (a		March	and lu	ne 1998)		ctanda	rde	ND	ND	_		ND	ND			ND	ND			ND	ND		0.0	0.2
														t reflect																				
					n of cis a						a pii			circut			-																	
			uidance		0. 0.5 0	ina tran	J 1,5 U	cinorop	opene.																									
					ed in calo	ulation	of Mear	and ar	e consi	lered ed	ual to	zero.																						
) or "-" =																															
			Not Dete		,						J = Est	imated.																						
		<dl =<="" td=""><td>Detecte</td><td>d belov</td><td>w method</td><td>d detect</td><td>ion limi</td><td>t.</td><td></td><td></td><td>B = An</td><td>alyte wa</td><td>as dete</td><td>cted in n</td><td>ethod l</td><td>olank.</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></dl>	Detecte	d belov	w method	d detect	ion limi	t.			B = An	alyte wa	as dete	cted in n	ethod l	olank.																		

PARAMETER VOLATILES (ug/L)	9/90	12/90	3/91	6/91	9/91	12/91	3/92	6/92	9/92	12/92	3/93	6/93	9/93	12/93 3/9	4 6/94	9/94	12/94	3/95	6/95	9/95	12/95	4/96	9/96	3/97	9/97	3/98	9/98	3/99	9/99	3/00	9/00	3/01	9/01	3/02	9/02	3/03	9/03
Acetone						Т									_	т —	_		Т												Т		т —		$\overline{}$	$\overline{}$	-
Acrylonitrile																																					
Benzene	<dl< td=""><td></td><td></td><td>ND</td><td>ND</td><td></td><td></td><td></td><td>ND</td><td></td><td>ND</td><td></td><td>ND</td><td>NI</td><td></td><td>ND</td><td></td><td>ND</td><td></td><td>ND</td><td></td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td></td><td></td><td>ND</td><td></td><td>ND</td><td>ND</td><td></td><td>ND</td></dl<>			ND	ND				ND		ND		ND	NI		ND		ND		ND		ND			ND		ND	ND		ND							
Bromobenzene	ND			ND	ND				ND		ND		ND	NI		ND		ND		ND		ND			ND		ND	ND		ND							
Bromochloromethane	ND ND			ND	ND				ND		ND		ND	NI	,	ND		ND		ND	-	ND	ND	ND	ND	ND	ND	ND	ND								
Bromodichloromethane Bromoform	ND ND			ND ND	ND ND	-			ND ND	_	ND ND		ND ND		-	+	+	-	-	-	1									-	-	 	+		lacksquare	-	ND ND
Bromomethane	ND			ND	ND				ND		ND		ND	N	,	ND		ND		ND		ND	ND	ND	ND	ND	ND	ND	ND								
2-Butanone	140			110	110				110		110		110			1,10		110		110		110	140	110	.,,,	110	110	110	110	110	110	110	110	110	110	-110	
n-Butylbenzene	ND			ND	ND				ND		ND		ND	NI)	ND		ND		ND		ND	ND	ND	ND	ND	ND	ND	ND								
sec-Butylbenzene	ND			ND	ND				ND		ND		ND	NI		ND		ND		ND		ND	ND		ND	ND			ND			ND				ND	
tert-Butylbenzene	ND			ND	ND				ND		ND		ND	NI)	ND	_	ND		ND		ND	ND	ND	ND	ND	ND	ND	ND								
Carbon disulfide	N/P								N/D		110		NIE		_						-		N/D										110	NIE	L	L	
Carbon tetrachloride Chlorobenzene	ND ND			ND ND	ND ND	-			ND ND	_	ND ND		ND ND	NI NI		ND ND		ND ND		ND ND	1	ND ND			ND ND		ND ND		ND ND	ND ND							
Chloroethane	ND			ND	ND				ND		ND		ND	N		ND		ND		ND		ND		ND		ND	ND		ND								
Chloroform	ND			ND	ND				ND		ND		ND			1,10		110		110		110	140	110	.,,,	110	110	110	110	110	110	110	110	110	110	-110	ND
Chloromethane	ND			ND	ND				ND		ND		ND	NI)	ND		ND		ND		ND	ND	ND	ND	ND	ND	ND	ND								
2-Chlorotoluene	ND			ND	ND				ND		ND		ND	N		ND		ND		ND		ND	ND		ND	ND			ND				ND				ND
4-Chlorotoluene	ND			ND	ND				ND		ND		ND	NI)	ND		ND		ND		ND	ND	ND	ND	ND	ND	ND	ND								
Dibromochloromethane	ND			ND	ND	-			ND	\vdash	ND		ND		_	+	+		-	<u> </u>					\vdash					<u> </u>	<u> </u>	_	1	-	₩	-	ND
1,2-Dibromo-3-chloropropane 1,2-Dibromoethane	ND ND			ND ND	ND ND	-			ND ND	 					-	+	+	-	-	-	\vdash								_	-	1	1	1	-	₩	\vdash	ND ND
Dibromomethane	ND			ND	ND	 			ND	\vdash	ND		ND	NI	,	ND	+-	ND	 	ND	\vdash	ND	ND	ND	ND	ND	ND	ND									
1,2-Dichlorobenzene	ND			ND	ND				ND		ND		ND	NI		ND		ND		ND		ND	ND	ND	ND	ND	ND		ND			ND		ND	ND		ND
1,3-Dichlorobenzene	ND			ND	ND				ND		ND		ND	NI)	ND		ND		ND		ND	ND	ND	ND	ND	ND	ND	ND								
1,4-Dichlorobenzene	0.06			ND	ND				ND		ND		ND	NI)	ND		ND		ND		ND	ND	ND	ND	ND	ND	ND	ND								
trans-1,4-Dichloro-2-butene																																			└ ─'		
Dichlorodifluoromethane	ND 2.2			ND 3.0	ND 2.0				ND 2.0		ND 2.0		ND 2	NI	_	ND 1	-	ND ND		ND 2	1	ND 2	ND 2	ND 2	ND 2	ND ND	ND 2	ND	ND 1	ND 0.9	ND 0.8	ND 1			ND 1.8		
1,1-Dichloroethane	<dl< td=""><td></td><td></td><td>ND</td><td>ND</td><td></td><td></td><td></td><td>ND</td><td></td><td>ND</td><td></td><td>ND ND</td><td>1 NI</td><td></td><td>ND</td><td>+</td><td>ND</td><td></td><td>ND</td><td></td><td>ND.</td><td>ND ND</td><td>_</td><td>ND ND</td><td>ND</td><td>ND.</td><td>ND.</td><td>ND</td><td></td><td></td><td>ND</td><td></td><td></td><td></td><td></td><td></td></dl<>			ND	ND				ND		ND		ND ND	1 NI		ND	+	ND		ND		ND.	ND ND	_	ND ND	ND	ND.	ND.	ND			ND					
1.1-Dichloroethene	ND			ND	ND				ND		ND		ND	NI		ND		2		ND		ND	ND		ND	ND			ND			ND				ND	
cis-1,2-Dichloroethene	ND			2.0	ND				1.0		0.9		0.8	0.6		0.6		0.8		0.8		0.8	1	0.8	0.9	ND	0.9	ND	ND			0.9		ND			
trans-1,2-Dichloroethene	0.81			ND	ND				ND		ND		ND	NI)	ND		ND		ND		ND	ND	ND	ND	ND	ND	ND	ND								
1,2-Dichloropropane	ND			ND	ND				ND		ND		ND	NI		ND		ND		ND		ND			ND		ND		ND	ND							
1,3-Dichloropropane	ND			ND	ND				ND		ND		ND	NI		ND		ND		ND		ND	ND	ND		ND	ND		ND								
2,2-Dichloropropane 1,1-Dichloropropene	ND ND			ND ND	ND ND				ND ND		ND ND	_	ND ND	NI NI		ND ND		ND ND		ND ND		ND ND	ND ND	ND ND		ND ND	ND ND		ND ND								
cis-1-3-Dichloropropene	ND			ND	ND				ND		ND		ND	NI NI		ND		ND		ND		ND	ND	ND		ND	ND		ND								
trans-1,3-Dichloropropene	ND			ND	ND				ND		ND	-	ND	NI		ND		ND		ND		ND		ND	ND		ND		ND	ND							
Ethylbenzene	ND			ND	ND				ND		ND		ND	NI		ND		ND		ND		ND		ND	ND		ND		ND	ND							
2-Hexanone																																					
Hexachlorobutadiene	ND			ND	ND				ND		ND		ND	NI)	ND		ND		ND		ND	ND	ND	ND	ND	ND	ND	ND								
lodomethane																	_																<u> </u>		└ ──'		
Isopropylbenzene p-Isopropyltoluene	ND ND			ND ND	ND ND				ND ND		ND ND	_	ND ND	NI NI		ND ND		ND ND		ND ND		ND ND			ND ND	ND ND	ND ND	ND ND		ND ND							
Methylene chloride	ND			2.0	1.0				ND		ND		ND	NI		0.7		ND		0.7		ND			ND		ND	ND		ND							
4-Methyl-2-pentanone	IND			2.0	1.0	1			IND		AD		IND	INI	+	0.7	1	IND.	1	0.7	1	ND	IND	ND	IND	IND	ND	IND	IND	ND	IND	, NO	IND	IND	ND	IND	IND
Naphthalene	ND			ND	ND				ND		ND		ND	NI)	ND	1	ND		ND		ND	ND	ND	ND	ND	ND	ND	ND								
n-Propylbenzene	ND			ND	ND				ND		ND		ND	NI		ND		ND		ND		ND			ND		ND	ND									
Styrene	ND			ND	ND				ND		ND		ND	NI		ND		ND		ND		ND		ND	ND		ND	ND									
1,1,1,2-Tetrachloroethane	ND			ND	ND	<u> </u>			ND		ND		ND	NI		ND		ND		ND	\vdash	ND			ND		ND	ND									
1,1,2,2-Tetrachloroethane Tetrachloroethene	ND ND			ND ND	ND ND	<u> </u>			ND ND	1	ND ND		ND ND	NI NI		ND ND		ND ND		ND ND		ND ND		ND ND	ND ND		ND ND	ND ND	ND ND	ND ND							
Toluene	ND			ND ND	ND	-			ND	 	ND		ND	NI NI		ND		ND		ND	1	ND 1	ND		ND ND	ND		ND ND	ND			ND				ND	
1,2,3-Trichlorobenzene	ND			ND	ND	1			ND		ND		ND	NI		ND		ND		ND	1	ND	ND		ND	ND			ND				ND			ND	
1,2,4-Trichlorobenzene	ND			ND	ND				ND		ND		ND	NI		ND		ND		ND		ND	ND		ND	ND	ND	ND	ND			ND		ND	ND		ND
1,1,1-Trichloroethane	ND			ND	ND				0.5		ND		ND	NI)	ND		ND		ND		ND	0.8	ND	ND	ND	ND	ND	ND	ND							
1,1,2-Trichloroethane	ND			ND	ND				ND		ND		ND	NI		ND		ND		ND		ND		ND	ND		ND	ND		ND							
Trichloroethene	<dl< td=""><td></td><td></td><td>ND</td><td>ND</td><td><u> </u></td><td></td><td></td><td>ND</td><td></td><td>ND</td><td></td><td>ND</td><td>NI</td><td></td><td>ND</td><td></td><td>ND</td><td><u> </u></td><td>ND</td><td>\vdash</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td></td><td>ND</td><td></td><td>0.65</td><td>ND</td><td>0.54</td><td></td><td>ND</td></dl<>			ND	ND	<u> </u>			ND		ND		ND	NI		ND		ND	<u> </u>	ND	\vdash	ND		ND		0.65	ND	0.54		ND							
Trichlorofluoromethane	ND ND			ND ND	ND ND	1			ND ND		ND ND		ND ND	NI NI		ND ND		ND ND	1	ND ND	\vdash	ND ND	ND ND	ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND		ND	ND ND		ND
1,2,3-Trichloropropane 1,2,4-Trimethylbenzene	ND ND			ND ND	ND ND	-			ND ND	 	ND ND		ND ND	NI NI		ND ND		ND ND	-	ND ND	1	ND ND	ND ND	ND ND	ND ND	ND ND		ND ND		ND ND		ND ND		ND ND			ND ND
1,3,5-Trimethylbenzene	ND			ND	ND	1			ND		ND		ND	NI		ND		ND	1	ND	1	ND			ND		ND	ND		ND							
Vinyl acetate				<u> </u>	<u> </u>	t									_	T	1		t									<u> </u>	-:	<u> </u>	T	T	† · · ·	T		├ ंं	H
Vinyl chloride	ND			ND	ND				ND		ND		ND	NI		ND		ND		ND			ND			ND			ND				ND				
o-Xylene	ND			ND	ND				ND		ND		ND	NI		ND		ND		ND	$oxed{oxed}$	ND	ND	ND	ND	ND	ND		ND			ND		ND	ND		ND
p-Xylene & m-Xylene				ND	ND				ND		ND		ND	N)	1		ND	1	1		ND	ND	ND	ND	ND	ND	ND	ND								

	9/90	12/90	3/91	6/91	9/91	12/91	3/92	6/92	9/92	12/92	3/93	6/93	9/93	12/93	3/94	6/94	9/94	12/94	3/95	6/95	9/95	12/95	4/96	9/96	3/97	9/97	3/98	9/98	3/99	9/99	3/00	9/00	3/01	9/01	3/02	9/02	3/0
PARAMETER METALS (mg/L)	3/30	112/30	1 3/31	0/31	3/31	12/31	3/32	0/ 32	3/32	12/32	3/33	0/33	3/33	12/33	3/37	0/ 34	3/37	12/ 54	3/33	0/33	3/33	12/93	4/ 30	3/30	3/31	3/31	3/30	3/30	3/33	3/33	3/00	3/00	3/01	3/01	3/02	3/02	1 3/0
Aluminum	5.04				12.6				7.85				8.91				1.17				15.2			1.54		10.4		2.14		0.78		0.85		1.48	1	5.93	Т
Calcium	53.1	48.8	54.7	52.8	65.9	62.6	53.7	56.2	55.2	56.4	48.7	51.2	51	41.3	41	45.4	50.9	45.2	36.5	38.2	50.8	48.6	51.9	44.5	42.5	44.8	37.1	45.3	40.4	41.2	34.4	40.8	35.5	44.9	38.3	52.3	32
Iron	9.75	0.8	2	0.28	22.0	4.03	0.2	8.6	14.4	52.1	10.2	45.5	13.4	2.08	7.39	52.3	59.6	17.2	7.75	10.6	36.9	23.1	30.8	2.56	3.13	10.2	1.91	2.94	10.7	1.19	2.92	0.8	4.95	2.57	2.52	10.8	6.8
Magnesium	11	9.9	13.2		15.1	11.9	10.8	12.6	13.7	17.8	11.8	16.6	13	9.91	11.3	17.4		12.2			15.6	14	15.0		10.9		9.16	9.98		9.36	8.79	9.79	9.72		9.58	13.8	
Manganese	3.33	1.94	2.02	1.06	0.83	0.82	0.18	0.71	2.85	1.98	1.94	2.82	2.37	1	2.29	2.95	-11	2.08	1.94	1.39	3.79	3.11	1.79	2.58	1.44	4.79	2.03	1.38	2.35	2.18	2.6	1.54	1.15	2.99	1.87	4.84	1.4
Potassium	2.6	1.5	3.1	1.1	5.1	2.1	1.3	3.8	4.22	7.24	2.85	6.79	4.88	2.21	2.67	8.74	3.26	4.41	1.91	2.36	3.9	4.47	4.70	2.22	1.78	4.49	1.53	3.16	3.85	1.55	2.64	2.91	3.06	1.42	1.15	2.68	2.0
Sodium	6.6	8.6	9	8.4	8.0	7.5	7.5	7.8	8.76	7.75	6.29	5.92	8.38	6.22	7.8	7.64	0.04	7.65	6.57	8.01	8.69	7.71	7.03	8.45	7.17	7.95	6.95	7.75	6.99	7.38	7.36	7.43	7.01	6.59	8.25	8.68	7.5
PARAMETER (mg/l) TOXIC METALS																																					
Antimony	ND				ND				0.03				ND				ND				ND			ND		ND		ND		ND		ND		ND	1	ND	т
Arsenic	<dl< td=""><td></td><td></td><td></td><td>0.006</td><td></td><td></td><td></td><td>0.005</td><td></td><td></td><td></td><td>0.004</td><td></td><td></td><td></td><td>0.004</td><td></td><td></td><td></td><td>0.01</td><td></td><td></td><td>ND</td><td></td><td>0</td><td></td><td>0</td><td></td><td>ND</td><td></td><td>ND</td><td></td><td>ND</td><td>1</td><td>0</td><td>1</td></dl<>				0.006				0.005				0.004				0.004				0.01			ND		0		0		ND		ND		ND	1	0	1
Barium	0.1				0.18				0.17				0.15				0.29				0.19			0.060		0.12		0.13		0.05		0.08		0.03	1	0.11	\top
Beryllium					ND				ND				ND				ND				ND			ND		ND		ND		ND		ND		ND	1	ND	1
Cadmium		<dl< td=""><td><dl< td=""><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>0.004</td><td>0.01</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>0.01</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>N</td></dl<></td></dl<>	<dl< td=""><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>0.004</td><td>0.01</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>0.01</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>N</td></dl<>	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.004	0.01	ND	ND	ND	ND	ND	ND	0.01	ND	N							
Chromium (Total)	<dl< td=""><td></td><td></td><td></td><td>0.03</td><td></td><td></td><td></td><td>0.02</td><td></td><td></td><td></td><td>0.03</td><td></td><td></td><td></td><td>ND</td><td></td><td></td><td></td><td>0.66</td><td></td><td></td><td>ND</td><td></td><td>0.02</td><td></td><td>ND</td><td></td><td>0.02</td><td></td><td>ND</td><td></td><td>ND</td><td>1</td><td>0.02</td><td>\top</td></dl<>				0.03				0.02				0.03				ND				0.66			ND		0.02		ND		0.02		ND		ND	1	0.02	\top
Copper	ND				0.02				ND				0.02				ND				0.03			ND		ND		ND		ND		ND		ND	1	ND	T
Lead	0.004	ND	0.005	ND	0.009	0.007	ND	0.007	0.003	0.013	0.002	0.014	0.011	0.003	0.001	0.018	0.007	0.010	0.007	0.005	0.01	0.004	0.010	0.005	0.008	0.01	ND	0	0.01	0	0	0.01	0	0.02	0	0.01	0.
Mercury	ND				ND				ND				ND				ND				ND			ND		ND		ND		ND		ND		ND	1	ND	\top
Nickel	0.1			ND	ND				ND				0.03				0.06				0.47			0.017		0.04		ND		ND		ND		0.03		0.04	T
Selenium	0.01	ND			ND	ND			ND				ND				ND				ND			ND		ND		ND		ND		ND		ND	1	ND	\top
Silver	ND				ND				ND				ND				ND				ND			ND		ND		ND		ND		ND		ND	1	ND	T
Thallium	0.2				ND				ND				ND				ND				ND			ND		ND		ND		ND		ND		ND	1	ND	\top
Zinc	0.05				0.07				0.05				0.05				0.04				0.14			ND		0.04		0.03		0.02		0.02		ND		0.05	
METER (mg/l) LEACHATE INDICATO	RS									•										•																	
Alkalinity	203	209	182	190	208	242	204	173	188	178	152	170	215	141	148	144	178	153	144	184	203	140	136	183	141	161	190	167	123	168	116	114	124	169	114	175	11
Biochemical Oxygen Demand	<dl< td=""><td></td><td></td><td></td><td>ND</td><td>ND</td><td></td><td></td><td>7</td><td></td><td></td><td></td><td>14</td><td></td><td></td><td></td><td>10</td><td></td><td></td><td></td><td>9</td><td></td><td></td><td>12</td><td></td><td>22</td><td></td><td>9</td><td></td><td>ND</td><td></td><td>ND</td><td></td><td>ND</td><td></td><td>ND</td><td>T</td></dl<>				ND	ND			7				14				10				9			12		22		9		ND		ND		ND		ND	T
Boron	ND				0.08	ND			ND				0.03				ND				0.07			0.087		0.08		0.09		0.09		0.09		0.07		0.09	T
Chemical Oxygen Demand	8.4	20	11	ND	7.0	5.0	ND	17.0	20.2	30.7	46	57.2	11.1	27.7	27.1	30.6	36.2	11.7	11.6	60.0	18.9	90.5	126	ND	ND	25.3	ND	ND	10.3	ND	32.3	31.4	37.1	ND	10.4	33.6	N
Chromium (Hexavalent)	<dl< td=""><td></td><td></td><td></td><td>ND</td><td></td><td></td><td></td><td>ND</td><td></td><td></td><td></td><td>ND</td><td></td><td></td><td></td><td>ND</td><td></td><td></td><td></td><td>ND</td><td></td><td></td><td>ND</td><td></td><td>ND</td><td></td><td>ND</td><td></td><td>ND</td><td></td><td>ND</td><td></td><td>ND</td><td>Ī</td><td>ND</td><td>Т</td></dl<>				ND				ND				ND				ND				ND			ND		ND		ND		ND		ND		ND	Ī	ND	Т
Chloride	16.9	18	16.6	12	11	14.0	16.0	14.0	15.9	10.8	ND	12.6	11.9	11.7	12.5	11.7	13	11.4	10.3	10.1	9.66	9.82	9.05	11.5	ND	10.6	8.33	8.17	10.3	10.6	10.2	9.22	9.24	8.19	11.3	11.2	8.
Color (PCU units)	9				ND				20				15				ND				25			30		20		300		1250		300		250		100	
Nitrate-Nitrite	<dl< td=""><td><dl< td=""><td>0.2</td><td>ND</td><td>0.04</td><td>0.4</td><td>0.18</td><td>0.28</td><td>0.67</td><td>0.22</td><td>0.22</td><td>0.21</td><td>0.22</td><td>0.39</td><td>0.11</td><td>0.16</td><td>0.15</td><td>0.12</td><td>0.06</td><td>0.552</td><td>0.08</td><td>0.206</td><td>ND</td><td>0.080</td><td>0.068</td><td>ND</td><td>ND</td><td>0.13</td><td>0.14</td><td>0.17</td><td>0.09</td><td>0.1</td><td>0.11</td><td>0.13</td><td>0.42</td><td>0.13</td><td>0.</td></dl<></td></dl<>	<dl< td=""><td>0.2</td><td>ND</td><td>0.04</td><td>0.4</td><td>0.18</td><td>0.28</td><td>0.67</td><td>0.22</td><td>0.22</td><td>0.21</td><td>0.22</td><td>0.39</td><td>0.11</td><td>0.16</td><td>0.15</td><td>0.12</td><td>0.06</td><td>0.552</td><td>0.08</td><td>0.206</td><td>ND</td><td>0.080</td><td>0.068</td><td>ND</td><td>ND</td><td>0.13</td><td>0.14</td><td>0.17</td><td>0.09</td><td>0.1</td><td>0.11</td><td>0.13</td><td>0.42</td><td>0.13</td><td>0.</td></dl<>	0.2	ND	0.04	0.4	0.18	0.28	0.67	0.22	0.22	0.21	0.22	0.39	0.11	0.16	0.15	0.12	0.06	0.552	0.08	0.206	ND	0.080	0.068	ND	ND	0.13	0.14	0.17	0.09	0.1	0.11	0.13	0.42	0.13	0.
Nitrogen-Ammonia	<dl< td=""><td><dl< td=""><td><dl< td=""><td>0.1</td><td>0.2</td><td>ND</td><td>0.4</td><td>0.1</td><td>0.19</td><td>0.07</td><td>0.17</td><td>0.23</td><td>0.35</td><td>0.59</td><td>0.13</td><td>0.06</td><td>0.13</td><td>0.1</td><td>0.05</td><td>0.102</td><td>0.22</td><td>0.172</td><td>0.16</td><td>0.117</td><td>0.316</td><td>0.22</td><td>0.2</td><td>0.47</td><td>0.11</td><td>0.17</td><td>0.17</td><td>0.13</td><td>0.14</td><td>0.12</td><td>ND</td><td>0.14</td><td>١</td></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""><td>0.1</td><td>0.2</td><td>ND</td><td>0.4</td><td>0.1</td><td>0.19</td><td>0.07</td><td>0.17</td><td>0.23</td><td>0.35</td><td>0.59</td><td>0.13</td><td>0.06</td><td>0.13</td><td>0.1</td><td>0.05</td><td>0.102</td><td>0.22</td><td>0.172</td><td>0.16</td><td>0.117</td><td>0.316</td><td>0.22</td><td>0.2</td><td>0.47</td><td>0.11</td><td>0.17</td><td>0.17</td><td>0.13</td><td>0.14</td><td>0.12</td><td>ND</td><td>0.14</td><td>١</td></dl<></td></dl<>	<dl< td=""><td>0.1</td><td>0.2</td><td>ND</td><td>0.4</td><td>0.1</td><td>0.19</td><td>0.07</td><td>0.17</td><td>0.23</td><td>0.35</td><td>0.59</td><td>0.13</td><td>0.06</td><td>0.13</td><td>0.1</td><td>0.05</td><td>0.102</td><td>0.22</td><td>0.172</td><td>0.16</td><td>0.117</td><td>0.316</td><td>0.22</td><td>0.2</td><td>0.47</td><td>0.11</td><td>0.17</td><td>0.17</td><td>0.13</td><td>0.14</td><td>0.12</td><td>ND</td><td>0.14</td><td>١</td></dl<>	0.1	0.2	ND	0.4	0.1	0.19	0.07	0.17	0.23	0.35	0.59	0.13	0.06	0.13	0.1	0.05	0.102	0.22	0.172	0.16	0.117	0.316	0.22	0.2	0.47	0.11	0.17	0.17	0.13	0.14	0.12	ND	0.14	١
Phenols	0.002	ND	ND	ND	0.020	ND	ND	ND	ND	ND	ND	0.015	0.013	0.100	0.002	ND	0.004	ND	ND	0.039	0.01	ND	0.020	0.004	0.007	0.002	ND	ND	0.01	0.01	ND	ND	ND	ND	ND	ND	1
Sulfate	8	1	23	ND	26	47.0	58.0	26.0	22	21.0	20	16	12	17	11	12	12	11	ND	6.3	6.5	26	17	18	11	12	8.4	108	26	ND	19	14	14	8.62	15.2	10.4	9.
Total Organic Carbon (TOC)	6.2	9	4.8	4	3.0	3.0	3.0	19.0	18	8.3	7.8	5.7	11.4	11	5.6	8.8	5.4	4.9	9.1	10.1	23.7	18.8	16.9	6.7	8.7	4.8	6	4.1	4.8	2.9	5.2	5.9	7.6	2.7	3.2	2.8	1
Total Dissolved Solids (TDS)	212	222	225	236	291	309	260	221	238	209	201	218	212	211	171	192	215	205	169	187	252	199	221	206	169	213	161	211	215	183	162	170	156	199	175	197	1.
Total Hardness	178	163	191	178	203	205	178	192	241	175	259	189	201	218	211	180	257	163	132	140	191	179	191	155	151	160	130	154	111	112	122	142	129	154	135	187	1.
Total Kjeldahl Nitrogen (TKN)	0.9				1.1				2.19				3.36				ND				ND			3.10		ND		1.6		3.26		ND		1.18		ND	T
Turbidity (NTU units)	75	320	128	175	308	79.0	44.0	107	600	52.0	170	31	31	60	100	40	270	17	69	19	280	43	80	33	24	70	19	66	54	700	37	77	23	168	6.8	140	5
Cvanide	<dl< td=""><td></td><td></td><td></td><td>ND</td><td></td><td></td><td></td><td>ND</td><td></td><td></td><td></td><td>ND</td><td></td><td></td><td></td><td>ND</td><td></td><td></td><td></td><td>ND</td><td></td><td></td><td>ND</td><td></td><td>ND</td><td></td><td>ND</td><td></td><td>ND</td><td></td><td>ND</td><td></td><td>ND</td><td></td><td></td><td>T</td></dl<>				ND				ND				ND				ND				ND			ND		ND		ND		ND		ND		ND			T

																																		NYS
	3/04	9/04	3/05	9/05	3/06	11/06	4/07	10/07	4/08	10/08	4/09	9/09	4/10	9/10	5/11	10/11	5/12	10/12	6/13	10/13	6/14	10/14	6/15	11/15	5/16	10/16	3/17	10/17	5/18	9/18	4/19	9/19	MEAN	STD
PARAMETER VOLATILES (ug/L)						N/D	NIP	2.1	110	N/D		110	N/D		N/D		110	NIP		NIP	N.D.	N/D	N/D	N/D	NID		NIP	N/D	1.7	110	N/D	N/D	0.24	50.0
Acetone Acrylonitrile	1			ND ND	ND ND	ND	ND ND	3.4 ND	ND ND	ND ND	ND ND	ND	ND ND	1.8 ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	0.24	5.0												
Benzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.00	1.0							
Bromobenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	- IND	-	-	-		-	-	- IND	- IND	0.00	5.0							
Bromochloromethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.00	5.0							
Bromodichloromethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.00	50.0							
Bromoform	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.00	50.0							
Bromomethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.00	5.0							
2-Butanone				ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.00	50.0
n-Butylbenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	-	-	-		-	-	-	-	-	0.00	5.0							
sec-Butylbenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	-	-	-		-	-	-	-	-	0.00	5.0							
tert-Butylbenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	-	-	-	-	-	-	-	-	-	0.00	5.0							
Carbon disulfide	ND		NID.	ND ND	ND ND	ND	ND	ND	ND	ND	ND	ND	ND	ND ND	ND	ND	ND	ND	ND	ND	0.00	60.0												
Carbon tetrachloride Chlorobenzene	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	0.00	5.0							
Chloroethane	ND	ND	ND	ND	ND	ND	ND	ND		ND	ND	ND	ND	ND ND	ND ND	ND	ND	ND	ND ND	ND	ND	ND ND	ND ND	ND ND	ND ND	0.00	5.0							
Chloroform	ND	ND	ND	ND ND	ND	ND	ND	ND		ND	ND	ND	ND	ND ND	ND ND	ND	ND ND	ND	ND ND	ND	ND	ND ND	ND ND	ND ND	ND ND	0.00	7.0							
Chloromethane	ND	ND	ND	ND	ND	ND	0.22	ND		ND	ND	ND	ND	ND	ND ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.00	5.0							
2-Chlorotoluene	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND	ND	ND	ND	ND ND	ND ND	ND	ND -	ND -	ND -	- IND	ND -	IND	IND	IND	- ND	0.00	5.0
4-Chlorotoluene	ND	ND	ND	ND	ND	ND	ND	ND		ND		-		÷						0.00	5.0													
Dibromochloromethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.00	50.0							
1,2-Dibromo-3-chloropropane	ND	ND	ND	ND	ND	ND	ND	ND		ND	ND	ND	ND	ND	ND	0.00	0.04																	
1,2-Dibromoethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.00	5.0							
Dibromomethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.00	5.0							
1,2-Dichlorobenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.00	3.0							
1,3-Dichlorobenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	-	-	-	-	-	ND	-	-	-	0.00	3.0							
1,4-Dichlorobenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.00	3.0							
trans-1,4-Dichloro-2-butene				ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.00	5.0
Dichlorodifluoromethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND				-		ND	-	-	-	0.00	5.0							
1,1-Dichloroethane	2	1.4	1.3	1.3	1.2	1.7	1.3	1.1	0.84	1.2	1	1.4	1.2	1.1	0.84	1.1	ND	ND	0.7	ND	ND	0.76	0.68	ND	ND	ND	ND	ND	ND	ND	ND	ND	1.04	5.0
1,2-Dichloroethane	ND	ND	ND	ND	ND	ND	ND	ND		ND	ND	ND	ND	ND	ND	0.00	0.6																	
1,1-Dichloroethene	ND	ND	ND	ND	ND	ND	ND	ND		ND	ND	ND	ND	ND	ND	0.03	5.0																	
cis-1,2-Dichloroethene	1.7	1.4	1.3	1.3	1.4	2.1	1.8	1.1	0.9	1.7	1.2	2	2.1	1.7	1	1.8	ND	ND	0.82	ND	ND	1.1	0.88	ND	ND	ND	ND	ND	1.2	ND	ND	ND	0.77	5.0
trans-1,2-Dichloroethene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.01	5.0							
1,2-Dichloropropane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.00	1.0							
1,3-Dichloropropane	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	-	-	-	-	-	ND ND	-	-	-	0.00	5.0							
1,1-Dichloropropene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND ND	ND ND	ND	-	-	_		_	ND ND	-	-	-	0.00	5.0							
cis-1-3-Dichloropropene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.00	0.4 *							
trans-1 3-Dichloropropene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.00	0.4 *							
Ethylbenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.00	5.0							
2-Hexanone				ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.00	50.0
Hexachlorobutadiene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	-	-			-	-	-	-	-	0.00	0.5							
lodomethane				ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.00	5.0
Isopropylbenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	-	-	-	-	-	-	-	-	-	0.00	5.0							
p-Isopropyltoluene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	-							-		0.00	5.0							
Methylene chloride	ND	ND	ND	ND	ND	ND	ND	ND		ND	ND	ND	ND	ND	ND	0.08	5.0																	
4-Methyl-2-pentanone		_		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND	ND	ND	ND	ND	ND	0.00											
Naphthalene	ND	ND	ND	ND	ND	ND	ND	ND		ND	-	-	-	-	-	-	-	-	-	0.00	10.0 **													
n-Propylbenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		-	-	-	-		-	-	-	0.00	5.0							
Styrene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.00	5.0							
1,1,1,2-Tetrachloroethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.00	5.0							
1,1,2,2-Tetrachloroethane Tetrachloroethene	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	0.00	5.0							
Toluene	ND	ND ND	ND ND	ND	ND ND	ND	ND	ND	ND ND	ND	ND ND	ND ND	ND	ND ND	ND	ND ND	ND ND	ND	ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	0.00	5.0
1 2 3-Trichlorobenzene	ND ND	ND	ND ND	ND ND	ND ND	ND	ND	ND	ND ND	ND	ND ND	ND ND	ND	ND	ND	ND ND	ND ND	ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND -	ND .	ND	ND.	ND -	ND -	ND -	ND -	0.02	5.0
1,2,3-Trichlorobenzene	ND	0.34	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND ND	ND	ND -	-			H	H	H	H	 	0.00	5.0
1,2,4-Trichlorobenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND ND	ND ND	ND	ND .	ND.	ND .	ND.	ND.	ND	ND.	ND.	ND .	0.01	5.0							
1.1.2-Trichloroethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.02	1.0							
Trichloroethene	ND	0.44	0.46	0.44	ND	0.36	0.31	0.28	ND	0.25	ND	0.23	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.07	5.0
Trichlorofluoromethane	ND	ND	ND	ND	ND	ND	ND	ND		ND	ND	ND	ND	ND	ND	0.00	5.0																	
1,2,3-Trichloropropane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.00	0.04							
1,2,4-Trimethylbenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	-	-	-	-	-	-	-	-	-	0.00	5.0							
1,3,5-Trimethylbenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	-	-	-	-	-	-	-	-	-	0.00	5.0							
Vinyl acetate				ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.00	1
Vinyl chloride	ND	0.3	0.25	ND	0.22	0.43	0.35	ND	ND	ND	ND	ND	0.29	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.03	2.0
o-Xylene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.00	5.0							
p-Xylene & m-Xylene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.04	5.0							

																																		NYS
	3/04	9/04	3/05	9/05	3/06	11/06	4/07	10/07	4/08	10/08	4/09	9/09	4/10	9/10	5/11	10/11	5/12	10/12	6/13	10/13	6/14	10/14	6/15	11/15	5/16	10/16	3/17	10/17	5/18	9/18	4/19	9/19	MEAN	STD
PARAMETER METALS (mg/L)																																		
Aluminum		9.4		0.27		ND		ND	0.22		ND			0.296				ND	0.02	0	-	0.08	ND		ND	0.238	0.026			0.0697			2.29	
Calcium	46.5					44.5	37.3	40.1	33.7	41.7		41.6			37.3		38	47	31.7	14.1	33.4	39.5	36.6	44.3	38.4	44	46.8	43.9	42.7	50.3	38.9	42.2	44.01	
Iron	1.26		0.74	0.33		0.12	0.1	0.16	0.36	0.21	0.133		0.223				0.039		0.1	0.34		0.19	0.08	0.42	0.101	0.459	0.0907		0.357		0.617	0.162	7.45	0.3
Magnesium		12.9	10.7	12	- 11	11.6	10.2	10.4	9.2	10.8	10.5	11.1	10.5	10.8		12.6	11	13	9.6	5.3	10.6	10.3	10.6	11.3	9.95	11.9	13	11.9	12.1	13.8	11.4	11.9	11.55	35.0
Manganese	0.76		0.83	0.48		7.5	0.53		0.42	0.24	0.167	0.08	0.28	0.365				0.55			0.562	0.145	0.294	0.136	0.641	0.94	0.171	0.0609			1.29	0.259	1.69	0.3
Potassium	1.06		1.1	1.3		2.1	0.84	1.1	0.78	0.94	0.874	0.825			0.7	1.1	0.64	0.91	0.6	ND	ND	0.7	1.7	ND	ND	ND	ND	1.04	1.09	1.58	ND	ND	2.14	
Sodium	7.54	8.6	7.5	11.2	7.9	8.1	7.6	-11	8.8	9.9	11.5	11.7	9.8	11.8	9.2	12.2	- 11	ND	11.5	1.9	10.8	10.1	11.3	10.4	11.2	12.4	10.7	10.2	8.94	11.6	8.65	9.59	8.37	20.0
PARAMETER (mg/l) TOXIC METALS																																		
Antimony		ND		ND		ND		ND	ND		ND			ND	ND			ND	ND	-	-	ND	ND	-	ND	ND	ND	ND	-	0.0035	ND	-	0.00	0.003
Arsenic		ND		ND		ND		ND	ND		ND			ND	ND			ND	ND	-	-	ND	ND	-	ND	ND	ND	ND	-	ND	ND	-	0.00	0.025
Barium		0.13		0.01		0.03		0.013	0.018		0.015			0.021	0.019			ND	0.016		-	0.019	0.022	-	ND	ND	0.017	0.0166		0.0194	0.0239	-	0.06	1.0
Beryllium		ND		ND		ND		ND	ND		ND			ND	ND			ND	0.0002		-	ND	ND	-	ND	ND	ND	ND		ND	ND	-	0.00	
Cadmium	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.00	0.005
Chromium (Total)		0.03		ND		ND		ND	ND		ND			ND	ND			ND	ND	-	-	ND	ND	-	ND	ND	ND	ND		0.0044	ND		0.02	0.05
Copper		0.01		ND		ND		ND	ND		ND			ND	ND			ND	ND	-	-	ND	ND		ND	ND	ND	ND	-	ND	ND		0.00	0.2
Lead	ND	ND	ND	0.01	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.001	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.00	0.025
Mercury		ND		ND		ND		ND	ND		ND			ND	ND			ND	ND			ND	ND		ND	ND	ND	6E-05	-	ND	ND		0.00	0.0007
Nickel		0.02		ND		ND		ND	ND		ND			ND	ND			ND	ND	-	-	ND	0.002		ND	ND	0.0021	0.0012	-	0.0017	0.0112		0.02	0.1
Selenium		ND		ND		ND		ND	ND		ND			ND	ND			ND	ND			ND	ND		ND	ND	ND	ND	-	ND	ND		0.00	0.0
Silver		ND		ND		ND		ND	ND		ND			ND	ND			ND	ND	-	-	ND	ND		ND	ND	ND	ND	-	ND	ND		0.00	0.05
Thallium		ND		ND		ND		ND	ND		ND			ND	ND			ND	ND	-	-	ND	ND	-	ND	ND	ND	ND	-	ND	ND	-	0.01	0.0005
Zinc		0.04		ND		0.02		0.054	0.019		0.033			0.098	0.031			0.074	0.041			0.03	0.015		0.0206	0.0267	0.0143	0.0225		0.0295	0.0267		0.03	2.0
PARAMETER (mg/l) LEACHATE INDICATORS	;																																	
Alkalinity	150	181	129	132	148	160	155	202	79.8	147	132	156	165	186	156	189	140	180	147	164	147	158	154	168	145	169	170	191	144	53.6	162	156	160.3	
Biochemical Oxygen Demand		2.5		ND		ND		ND	ND		ND			ND	ND		ND	ND	ND	-	-	ND	ND	ND	ND	ND	1.0	1.0	ND	ND	1.0	1.0	2.3	
Boron		0.08		0.07		0.06		0.073	0.045		0.058			0.068	0.045			ND	0.07	-	-	0.06	0.06	-	ND	0.0569	0.0434	0.06	-	0.0734	0.0385	-	0.0	1.0
Chemical Oxygen Demand	9	54.1	ND	12	ND	ND	12.9	ND	ND	ND	ND	ND	ND	ND	ND	11.4	ND	ND	6.0	ND	30.3	ND	9.7	9.7		ND	17.2	11.9	17.5	21.6	ND	14.6	15.6	
Chromium (Hexavalent)		ND		ND		ND		ND	ND		ND			ND	ND			ND	ND	-	-	ND	ND		-	ND	0.0059	-	-	ND	ND		0.0	0.05
Chloride	7.5	5.7	6.6	10.2	8.1	6.5	6.5	6.2	6	7.4	6.9	5.43	5.94	5.66	6.7	7.1	5.52	4.96	6.0	5.7	5.3	4.4	6.3	5.3	4.82	4.0	6.3	4.4	5.1	4.0	4.3	3.2	8.6	250
Color (PCU units)		200		25		15		60	18		5			60	80			ND	12	-	-	14	16		10	5.0	5.0	-	-	10	5.0	-	77.4	15
Nitrate-Nitrite	0.07	0.1	ND	0.1	0.09	ND	ND	0.18	0.19	0.16	0.098	0.113	ND	0.086	0.068	ND	0.055	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.066	0.067	ND	0.062	ND	0.073	0.1	10
Nitrogen-Ammonia	0.2	0.14	0.2	ND	ND	0.21	0.1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.084	ND	0.17	0.1	0.032	0.1	0.07	0.14	0.18	ND	0.1	2.0
Phenols	0	0.02	ND	ND	ND	ND	ND	ND	ND	ND	0.012	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.247	ND	0.0099	0.0015	0.0016	0.0034	0.0043	ND	0.004	0.0	0.001
Sulfate	9.2	6.9	8	14.2	9.8	6.4	9.5	10.6	8.3	6.8	6.7	6.11	6.19	6.7	6.6	4.1	ND	ND	3.9	3.5	3.6	3.5	3.2	3.6	ND	8.5	9	5.8	5.1	4.7	3.4	4.1	12.4	250
Total Organic Carbon (TOC)	2.4	15.8	1.9	3	2.3	2.8	2.7	2.3	2.2	3.2	2.1	1.4	1	2.2	2	ND	ND	ND	2.4	2.4	2.2	2.2	2.2	543	2.21	3.5	ND	3.4	14.7	2.9	2.1	2.2	13.2	
Total Dissolved Solids (TDS)	192	220	163	255	220	334	157	148	179	163	193	144	193	188	178	175	260	190	161	167	164	172	168	183	163	204	197	195	157	181	222	173	198.4	500
Total Hardness	161	170	150	171	154	159	135	143	122	394	140	150	140	150	136	167	140	170	119	56.8		141	135	157	108	170	150	150	150	113	140	133	161.9	
Total Kjeldahl Nitrogen (TKN)		1.9		ND		ND		ND	ND		ND			ND	ND		ND	ND	ND	-	-	0.29	0.21	-	ND	0.16	0.17	0.42	0.14	0.23	0.4	0.63	0.6	
Turbidity (NTU units)	110		246		40.6		10.3	9.2	4.6	8	30	1	8	32	5	8.1	12.3		13	5.1	21.7	5.4	23	14.3	5.3	11.7	6.3	17.7	10.2	5.5	13	7.24	80.6	5.0
Cyanide		ND		ND		ND		ND	ND		ND			ND	ND			ND	ND	-	-	ND	ND	-	-	ND	ND	-	-	ND	ND		0.0	0.2
.,			e) = Anal				e New Y			lards (a		March	and Jur			standa	rds																	
		were	used bed	inning	with the	9/98 sa	ampling	event. I	xceeda	nces no	ted pri	or to th	s event	reflect	prior st	andards																		
		* = Ap	plies to	the sur																														
			uidance				,																											
		ND va	lues are	include	d in calo	culation	of Mear	and are	consid	ered ed	ual to	ero.																						
		(Blank) or "-" =	Not Ar	alyzed.																													
		ND =	Not Dete	cted.							J = Esti	mated.																						
		<dl =<="" td=""><td>Detecte</td><td>d belov</td><td>w method</td><td>d detect</td><td>ion limit</td><td>t</td><td></td><td></td><td>B = An</td><td>alyte wa</td><td>s dete</td><td>ted in n</td><td>nethod l</td><td>olank.</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></dl>	Detecte	d belov	w method	d detect	ion limit	t			B = An	alyte wa	s dete	ted in n	nethod l	olank.																		

PARAMETER VOLATILES (ug/L)	9/90	12/	/90 3	3/91	6/91	9/91	12/9	1 3/92	6/92	/92 12	2/92 3/93	6/93	9/93 1	2/93 3/94	6/94 9	/94 1	2/94 3/95	6/95	9/95 12	2/95 4	/96 9/96	3/97	9/97	3/98	9/98	3/99	9/99 3	/00 9	9/00 3	3/01 9	/01	3/02	9/02	3/03)/03
Acetone Acetone		_	_			T	T	т т				т —		- 1	— г		- 1	т т				1					- 1				-				
Acrylonitrile		+	_			1	1					1			t t																_				-
Benzene	ND		14	ND	ND		ND	ND		ND	ND		ND	ND		ND	ND		ND	1	ND ND	ND	ND	ND		ND		ND			ND				0.8
Bromobenzene	ND			ND	ND			ND		ND	ND		ND	ND		ND	ND		ND		ND ND	ND	ND	ND											ND
Bromochloromethane	ND	N		ND	ND		ND			ND	ND	4	ND	ND		ND	ND		ND	1	ND ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND
Bromodichloromethane Bromoform	ND ND	N		ND ND	ND ND	ND ND	ND ND	ND ND		ND ND	ND ND	+	ND ND			-+		-		_	_	-				_							-+		ND ND
Bromomethane	ND	N		ND	ND		ND			ND ND	ND ND	1	ND	ND		ND	ND		ND		ND ND	ND	ND	ND	ND	ND	ND	ND	ND I	ND	ND	ND	ND		ND
2-Butanone	ND	1.0		IND	ND	IND	IND	ND		IND	IND	1	IND	IND		ND	IND		NU		ND ND	IND	ND	NO	ND	IND	IVD	IND	ND	IND	IND	IVD	IND	IND	IND
n-Butylbenzene	ND	N	D	ND	ND	ND	ND	ND		ND	ND		ND	ND		ND	ND		ND	1	ND ND	ND	ND	ND	ND	ND	ND	ND	ND I	ND	ND	ND	ND	ND	ND
sec-Butylbenzene	ND	N		ND	ND					ND	ND		ND	ND		ND	ND		ND		ND ND	ND	ND												ND
tert-Butylbenzene	ND	N	D	ND	ND	ND	ND	ND		ND	ND		ND	ND		ND	ND		ND	1	ND ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Carbon disulfide	ND		_	ND	ND		ND	ND		ND			ND	ND		ND			110		ND ND	110	N/D	ND			N/D					ND			N/D
Carbon tetrachloride Chlorobenzene	ND	NI		ND	ND	ND ND				ND ND	ND ND		ND ND	ND ND		ND ND	ND ND		ND ND		ND ND	ND ND	ND ND	ND											ND ND
Chloroethane	ND	N		ND	ND					ND	ND		ND	ND		ND	ND ND		ND		ND ND		ND	ND		ND									ND
Chloroform	ND	N		ND	ND					ND	ND		ND	- 110			110				10 110	110	110	110	140										ND
Chloromethane	ND	N	D	ND	ND	ND	ND	ND		ND	ND		ND	ND		ND	ND		ND	1	ND ND	ND	ND	ND	ND	ND	ND	ND	ND I	ND	ND	ND	ND	ND	ND
2-Chlorotoluene	ND			ND	ND					ND	ND		ND	ND		ND	ND		ND		ND ND	ND	ND												ND
4-Chlorotoluene	ND			ND	ND					ND	ND		ND	ND	\vdash	ND	ND		ND		ND ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND
Dibromochloromethane 1,2-Dibromo-3-chloropropane	ND ND			ND ND	ND ND					ND ND	ND	1	ND		-	-+		1				1								-			-+		ND ND
1,2-Dibromo-3-chloropropane 1,2-Dibromoethane	ND ND			ND	ND					ND ND		+	 	_	 		_	1 1				1											-+		ND
Dibromomethane	ND	N		ND	ND			ND		ND	ND	1 -	ND	ND		ND	ND	1 1	ND		ND ND	ND	ND	ND	ND	ND	ND	ND	ND I	ND	ND	ND	ND		ND
1,2-Dichlorobenzene	ND	N	D	ND	ND	ND	ND	ND		ND	ND		ND	ND		ND	ND		ND	1	ND ND	ND	ND	ND	ND	ND	ND	ND	ND I	ND	ND	ND	ND	ND	ND
1,3-Dichlorobenzene	ND			ND	ND	ND				ND	ND		ND	ND		ND	ND		ND		ND ND	ND	ND	ND											ND
1,4-Dichlorobenzene	ND	N	D	ND	ND	ND	ND	ND		ND	ND		ND	ND		ND	ND		ND	1	ND ND	ND	ND	ND	ND	ND	ND	ND	ND I	ND	ND	ND	ND	ND	ND
trans-1,4-Dichloro-2-butene			_			+						4																							
Dichlorodifluoromethane 1,1-Dichloroethane	ND ND	N		ND ND	ND ND					ND ND	ND ND	1	ND ND	ND ND		ND ND	ND ND		ND ND		ND ND	ND ND	ND ND												ND ND
1,2-Dichloroethane	ND			ND	ND					ND	ND	+-	ND	ND		ND	ND	-	ND		ND ND		ND												ND
1,1-Dichloroethene	ND			ND	ND					ND	ND		ND	ND		ND	ND		ND			ND	ND												ND
cis-1,2-Dichloroethene	ND			ND	ND					ND	ND		ND	ND		ND	ND		ND		ND ND		ND	ND											ND
trans-1,2-Dichloroethene	ND			ND	ND					ND	ND		ND	ND		ND	ND		ND		ND ND		ND	ND											ND
1,2-Dichloropropane	ND			ND	ND					ND	ND		ND	ND		ND	ND		ND		ND ND		ND	ND											ND
1,3-Dichloropropane 2,2-Dichloropropane	ND ND			ND ND	ND ND					ND ND	ND ND		ND ND	ND ND		ND ND	ND ND		ND ND		ND ND		ND ND	ND ND		ND ND									ND ND
1.1-Dichloropropane	ND ND			ND	ND					ND ND	ND ND		ND ND	ND ND		ND ND	ND ND		ND ND		ND ND		ND	ND		ND									ND
cis-1-3-Dichloropropene	ND			ND	ND					ND	ND		ND	ND		ND	ND ND		ND		ND ND		ND	ND		ND									ND
trans-1,3-Dichloropropene	ND			ND	ND					ND	ND		ND	ND		ND	ND		ND		ND ND		ND												ND
Ethylbenzene	ND	N	D	ND	ND	ND	ND	ND		ND	ND		ND	ND		ND	ND		ND	1	ND ND	ND	ND	ND	ND	ND	ND	ND	ND I	ND	ND	ND	ND	ND	ND
2-Hexanone																																			
Hexachlorobutadiene	ND	N	D	ND	ND	ND	ND	ND		ND	ND	4	ND	ND		ND	ND		ND	1	ND ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
lodomethane Isopropylbenzene	ND	N.	D	ND	ND	ND	ND	ND		ND	ND	+	ND	ND	-	ND	ND		ND	—	ND ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
p-Isopropyltoluene	ND				ND					ND ND	ND ND		ND	ND ND		ND	ND ND		ND		ND ND		ND										ND		ND
Methylene chloride	ND	N		ND	2.0	1.0	1.0	3.0		ND	ND		ND	ND		ND	ND.		ND		ND ND	ND	ND	ND		ND									ND
4-Methyl-2-pentanone																																			
Naphthalene	ND	N		ND	ND	ND	ND	ND		ND	ND		ND	ND		ND	ND		ND		ND ND	ND	ND			ND									ND
n-Propylbenzene	ND	N		ND	ND		ND			ND	ND		ND	ND		ND	ND	$oldsymbol{\sqcup}$	ND		ND ND	ND	ND												ND
Styrene 1,1,1,2-Tetrachloroethane	ND ND	NI		ND ND	ND ND		ND ND			ND ND	ND ND	+	ND ND	ND ND		ND ND	ND ND	+	ND ND		ND ND	ND ND	ND ND												ND ND
1,1,2-Tetrachioroethane	ND	N		ND	ND					ND ND	ND ND	1-	ND ND	ND ND		ND ND	ND ND	+ +	ND ND		ND ND		ND												ND
Tetrachloroethene	ND	N		ND	ND					ND	ND	1	ND	ND		ND	ND	\vdash	ND		ND ND	ND	ND												ND
Toluene	ND	<e< td=""><td>DL</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td></td><td>ND</td><td>ND</td><td></td><td>ND</td><td>ND</td><td></td><td>ND</td><td>ND</td><td></td><td>ND</td><td></td><td>8 ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND </td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td></e<>	DL	ND	ND	ND	ND	ND		ND	ND		ND	ND		ND	ND		ND		8 ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2,3-Trichlorobenzene	ND	N		ND	ND					ND	ND		ND	ND		ND	ND		ND		ND ND	ND	ND	ND											ND
1,2,4-Trichlorobenzene	ND	NI		ND	ND					ND	ND		ND	ND		ND	ND	1	ND		ND ND		ND	ND		ND									ND
1,1,1-Trichloroethane 1,1,2-Trichloroethane	ND ND	N		ND ND	ND ND					ND ND	ND ND		ND ND	ND ND		ND ND	ND ND	1	ND ND		ND ND	ND ND	ND ND	ND ND		ND ND									ND ND
Trichloroethane	ND	N		ND	ND					ND ND	ND ND		ND	ND ND		ND	ND ND	+ +	ND		ND ND		ND												ND
Trichlorofluoromethane	ND			ND	ND					ND	ND		ND	ND		ND	ND ND	1 1	ND		ND ND		ND	ND		ND									ND
1,2,3-Trichloropropane	ND			ND	ND					ND	ND		ND	ND		ND	ND		ND		ND ND	ND	ND	ND		ND									ND
1,2,4-Trimethylbenzene	ND			ND	ND	ND				ND	ND		ND	ND		ND	ND		ND		ND ND		ND											ND	ND
1,3,5-Trimethylbenzene	ND	N	D	ND	ND	ND	ND	ND		ND	ND		ND	ND		ND	ND		ND		ND ND	ND	ND	ND	ND	ND	ND	ND	ND I	ND	ND	ND	ND	ND	ND
Vinyl acetate	NP	1		ND	NP	NC	No	ND		ND	1.00	+	ND	No	-	ND	No	\vdash	ND		ID NO	ND	ND	NID	ND	ND	ND	ND	NID.	ND.	ND	ND	ND	ND	ND
Vinyl chloride o-Xylene	ND ND			ND ND	ND ND		ND	ND		ND ND	ND ND		ND ND	ND ND		ND ND	ND ND	+	ND ND		ND ND	ND ND	ND ND	ND ND											ND ND
p-Xylene & m-Xylene	ND	N	U	NU	ND		+	+		ND ND	ND ND		ND ND	ND ND		ND ND	ND ND	+ +	ND ND		ND ND	ND	ND	ND											ND
p Ayrene a mayrene		•					•				.40			1.,0			1		.,,,		, .,,			110									.,.	.,,,,	

	9/90	12/90	3/91	6/91	9/91	12/91	3/92	6/92	9/92	12/92	3/93	6/93	9/93	12/93	3/94	6/94	9/94	12/94	3/95	6/95	9/95	12/95	4/96	9/96	3/97	9/97	3/98	9/98	3/99	9/99	3/00	9/00	3/01	9/01	3/02	9/02	3/03	9/0
PARAMETER METALS (mg/L)																																						
Aluminum	22				7.7				3.42				6.45				13.4				7.68			4.10		7.33		1.28		1.66		0.34		0.83		0.4	T	4.33
Calcium	50.7	65.1	58.2	69.6	80.5	82.8	79.9	70.7	84.3	82.6	80.9	73.7	78.4	84.2	75.4	73.1	83.7	72.8	69.6	67.8	80.6		79.1	66.4	80.7	81.1	71.5	48.8	79.1	62.4	49.6	47.8	54.8	44.4	65.1	35.5	40.3	96.8
Iron	49.5	4.6	0.55	1.24	13.6	2.15	1.6	1.2	6.8	9.02	9.63	5.92	11.5	14	6.26	16	22.1	15.6	16.9	20.2	15.6		3.88	7.79	6.49	8.5	6.74	1.72	5.24	3.11	0.73	0.77	0.53	1.59	1.68	0.84	1.77	9.15
Magnesium	17.7	15.9	17.2	19.5	22.6		19.1	19.3	21.7	21.5	21	19.1	20.6	22	19.9	20.7	21.4	19.1	19	19.4	21.8		19.1	17.5	20.8	20.5	19.7	17.6	17.8	13.8	13.1	11.2	14.2	14.4	15.9	10.3	12.4	14.4
Manganese	2.28	0.9		0.32	0.54	0.39	0.08	0.05	0.39	0.03	0.35	0.23	0.5	0.66	0.37	0.76	0.79	0.64	0.598	0.870	0.85		0.21	0.447	0.258	0.43	0.46	0.12	0.37	0.33	0.07	0.22	0.06	0.06	0.096	0.04	0.06	0.31
Potassium	7.3	3.9		6.8	6.5			6.3	5.12		9.59						6.86	5.83	6.45	5.82	3.97		3.53	3.62	5.01	5.69				3.16					2.59	3.2	3.71	4.33
Sodium	8.9	10.2	14.5	20.4	18.3	12.9	27.3	20.5	17.5	16.5	20.9	18.7	15.9	15.7	14.2	18.3	18	15	14.7	15.5	15.7		12.3	14.9	16.2	16	15.4	18.5	15.2	16.9	18.9	17.4	15.5	17.3	16.4	14.9	15.6	13.
PARAMETER (mg/l) TOXIC METALS																																						
Antimony	0.01				ND				ND				ND				ND				ND			0.028		ND		ND		ND		ND		ND		ND		N
Arsenic	ND				ND				0.003				0.004				ND				0.01			0.004		ND		0		0		ND		ND		0		N
Barium	0.15				0.08				0.08				0.1				0.14				0.12			0.087		0.13		0.12		0.1		0.1		0.15		0.12	T	0.3
Beryllium					ND				ND				ND				ND				ND			ND		ND		ND		ND		ND		ND		ND		N
Cadmium		<dl< td=""><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td></td><td>ND</td><td>ND</td><td></td><td>ND</td><td>ND</td><td>0.002</td><td>ND</td><td>0.01</td><td></td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td></td><td>0.01</td><td></td><td>ND</td><td>ND</td><td>ND</td><td></td><td>ND</td><td>ND</td><td>ND</td><td>0</td><td>N</td></dl<>	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND	ND		ND	ND	0.002	ND	0.01		ND	ND	ND	ND		0.01		ND	ND	ND		ND	ND	ND	0	N
Chromium (Total)	0.02	0	0	ND	0.02	ND	ND	ND	0.02	0.03	0.03	0.02	0.03	0.03	0.02	0.06	0.05	0.07	0.05	0.034	0.03		ND	0.024	0.044	0.34	0.03	ND	0.02	0.02	0.02	ND	ND	ND	0.003	ND	0.01	0.0
Copper	ND				0.01				ND				0.01				0.03				0.02			ND		0.02		ND		ND		ND		ND		ND		0.0
Lead	0.013	<dl< td=""><td><dl< td=""><td>ND</td><td>0.005</td><td>ND</td><td>0.070</td><td>0.010</td><td>0.001</td><td>0.005</td><td>0.003</td><td>0.005</td><td>0.007</td><td>0.006</td><td>0.005</td><td>0.010</td><td>0.011</td><td>0.007</td><td>0.006</td><td>0.007</td><td>0.01</td><td></td><td>0</td><td>0.024</td><td>0.005</td><td>0.01</td><td>0</td><td>0</td><td>0</td><td>0</td><td>ND</td><td>0</td><td>ND</td><td>0.01</td><td>0.001</td><td>0</td><td>0</td><td>N</td></dl<></td></dl<>	<dl< td=""><td>ND</td><td>0.005</td><td>ND</td><td>0.070</td><td>0.010</td><td>0.001</td><td>0.005</td><td>0.003</td><td>0.005</td><td>0.007</td><td>0.006</td><td>0.005</td><td>0.010</td><td>0.011</td><td>0.007</td><td>0.006</td><td>0.007</td><td>0.01</td><td></td><td>0</td><td>0.024</td><td>0.005</td><td>0.01</td><td>0</td><td>0</td><td>0</td><td>0</td><td>ND</td><td>0</td><td>ND</td><td>0.01</td><td>0.001</td><td>0</td><td>0</td><td>N</td></dl<>	ND	0.005	ND	0.070	0.010	0.001	0.005	0.003	0.005	0.007	0.006	0.005	0.010	0.011	0.007	0.006	0.007	0.01		0	0.024	0.005	0.01	0	0	0	0	ND	0	ND	0.01	0.001	0	0	N
Mercury					ND				ND				ND				ND				ND			ND		ND		ND		ND		ND		ND		ND		N
Nickel	0.14				ND				ND				0.03				0.05				0.03			0.020		0.15		ND		ND		ND		ND		ND		NI
Selenium	0.03	<dl< td=""><td><dl< td=""><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td></td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>N</td></dl<></td></dl<>	<dl< td=""><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td></td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>N</td></dl<>	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	N
Silver					ND				ND				ND				ND				ND			ND		ND		ND		ND		ND		ND		ND		N
Thallium	0.2				ND				ND				ND				ND				ND			ND		ND		ND		ND		ND		ND		ND	1	N
Zinc	0.11				0.06				0.03				0.05				0.09				0.07			0.054		0.07		0.03		0.03		0.03		0.03		0.02	1	0.0
RAMETER (mg/l) LEACHATE INDICATOR	S					•																																
Alkalinity	207	224	226	209	244	233	299	236	237	221	236	231	189	227	221	244	235	225	232	237			224		234	235	171	189			139	136	187	139	165		Т	14
Biochemical Oxygen Demand	8				ND				6				ND				ND				19			3		8		3									1	N
Boron	ND				0.04				ND				ND				ND				ND			ND		ND		0.06		ND		ND		ND		ND	1	N
Chemical Oxygen Demand	15.9	<dl< td=""><td><dl< td=""><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>12.2</td><td>ND</td><td>1.75</td><td>17.1</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>30.9</td><td>ND</td><td>14.3</td><td></td><td></td><td>ND</td><td></td><td>ND</td><td>21.4</td><td>ND</td><td>ND</td><td></td><td></td><td>15.9</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td></td><td>1</td><td>N</td></dl<></td></dl<>	<dl< td=""><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>12.2</td><td>ND</td><td>1.75</td><td>17.1</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>30.9</td><td>ND</td><td>14.3</td><td></td><td></td><td>ND</td><td></td><td>ND</td><td>21.4</td><td>ND</td><td>ND</td><td></td><td></td><td>15.9</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td></td><td>1</td><td>N</td></dl<>	ND	ND	ND	ND	ND	12.2	ND	1.75	17.1	ND	ND	ND	ND	ND	30.9	ND	14.3			ND		ND	21.4	ND	ND			15.9	ND	ND	ND	ND		1	N
Chromium (Hexavalent)	<dl< td=""><td></td><td></td><td></td><td>ND</td><td></td><td></td><td></td><td>ND</td><td></td><td></td><td></td><td>ND</td><td></td><td></td><td></td><td>ND</td><td></td><td></td><td></td><td>ND</td><td></td><td></td><td>ND</td><td></td><td>ND</td><td></td><td>ND</td><td></td><td></td><td></td><td></td><td></td><td>ND</td><td></td><td></td><td></td><td>N</td></dl<>				ND				ND				ND				ND				ND			ND		ND		ND						ND				N
Chloride	2.4	8	7.8	3	9	ND	ND	4.0	ND	1.9	ND	2.5	ND	2.08	1.87	2.15	2.69	2.07	2	ND			ND		1.94	1.74	2.01	1.35			ND	1.58	1.68		1.52		1	1.
Color (PCU units)	25				ND				20								5									30		250						75			1	5
Nitrate-Nitrite	<dl< td=""><td><dl< td=""><td><dl< td=""><td>ND</td><td>0.05</td><td>ND</td><td>ND</td><td>0.1</td><td>0.19</td><td>1.3</td><td>0.14</td><td>6.89</td><td>0.13</td><td>0.43</td><td>0.09</td><td>0.08</td><td>0.49</td><td>0.2</td><td>0.09</td><td>0.252</td><td></td><td></td><td>ND</td><td></td><td>0.19</td><td>0.15</td><td>0.14</td><td>0.46</td><td></td><td></td><td>0.31</td><td>0.53</td><td>0.21</td><td>0.4</td><td>0.363</td><td></td><td>1</td><td>0.0</td></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""><td>ND</td><td>0.05</td><td>ND</td><td>ND</td><td>0.1</td><td>0.19</td><td>1.3</td><td>0.14</td><td>6.89</td><td>0.13</td><td>0.43</td><td>0.09</td><td>0.08</td><td>0.49</td><td>0.2</td><td>0.09</td><td>0.252</td><td></td><td></td><td>ND</td><td></td><td>0.19</td><td>0.15</td><td>0.14</td><td>0.46</td><td></td><td></td><td>0.31</td><td>0.53</td><td>0.21</td><td>0.4</td><td>0.363</td><td></td><td>1</td><td>0.0</td></dl<></td></dl<>	<dl< td=""><td>ND</td><td>0.05</td><td>ND</td><td>ND</td><td>0.1</td><td>0.19</td><td>1.3</td><td>0.14</td><td>6.89</td><td>0.13</td><td>0.43</td><td>0.09</td><td>0.08</td><td>0.49</td><td>0.2</td><td>0.09</td><td>0.252</td><td></td><td></td><td>ND</td><td></td><td>0.19</td><td>0.15</td><td>0.14</td><td>0.46</td><td></td><td></td><td>0.31</td><td>0.53</td><td>0.21</td><td>0.4</td><td>0.363</td><td></td><td>1</td><td>0.0</td></dl<>	ND	0.05	ND	ND	0.1	0.19	1.3	0.14	6.89	0.13	0.43	0.09	0.08	0.49	0.2	0.09	0.252			ND		0.19	0.15	0.14	0.46			0.31	0.53	0.21	0.4	0.363		1	0.0
Nitrogen-Ammonia	<dl< td=""><td><dl< td=""><td><dl< td=""><td>ND</td><td>0.1</td><td>ND</td><td>0.3</td><td>ND</td><td>0.21</td><td>0.1</td><td>0.05</td><td>0.08</td><td>0.1</td><td>0.67</td><td>0.17</td><td>0.2</td><td>0.07</td><td>0.06</td><td>0.1</td><td>0.021</td><td></td><td></td><td>0.140</td><td></td><td>0.012</td><td>ND</td><td>ND</td><td>0.49</td><td></td><td></td><td>ND</td><td></td><td>ND</td><td>ND</td><td>ND</td><td></td><td>1</td><td>N[</td></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""><td>ND</td><td>0.1</td><td>ND</td><td>0.3</td><td>ND</td><td>0.21</td><td>0.1</td><td>0.05</td><td>0.08</td><td>0.1</td><td>0.67</td><td>0.17</td><td>0.2</td><td>0.07</td><td>0.06</td><td>0.1</td><td>0.021</td><td></td><td></td><td>0.140</td><td></td><td>0.012</td><td>ND</td><td>ND</td><td>0.49</td><td></td><td></td><td>ND</td><td></td><td>ND</td><td>ND</td><td>ND</td><td></td><td>1</td><td>N[</td></dl<></td></dl<>	<dl< td=""><td>ND</td><td>0.1</td><td>ND</td><td>0.3</td><td>ND</td><td>0.21</td><td>0.1</td><td>0.05</td><td>0.08</td><td>0.1</td><td>0.67</td><td>0.17</td><td>0.2</td><td>0.07</td><td>0.06</td><td>0.1</td><td>0.021</td><td></td><td></td><td>0.140</td><td></td><td>0.012</td><td>ND</td><td>ND</td><td>0.49</td><td></td><td></td><td>ND</td><td></td><td>ND</td><td>ND</td><td>ND</td><td></td><td>1</td><td>N[</td></dl<>	ND	0.1	ND	0.3	ND	0.21	0.1	0.05	0.08	0.1	0.67	0.17	0.2	0.07	0.06	0.1	0.021			0.140		0.012	ND	ND	0.49			ND		ND	ND	ND		1	N[
Phenols	0.002	ND	<dl< td=""><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>0.002</td><td>0.004</td><td>0.001</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>0.054</td><td>0.03</td><td></td><td>0.01</td><td></td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td></td><td></td><td>ND</td><td></td><td>ND</td><td>ND</td><td>0.0042</td><td></td><td>1</td><td>N</td></dl<>	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.002	0.004	0.001	ND	ND	ND	ND	0.054	0.03		0.01		ND	ND	ND	ND			ND		ND	ND	0.0042		1	N
Sulfate	63.3	47.3	59.8	68	81	173	64.0	109	90	100	75	93	94	82	68	100	80	100	80	69			77		75	69	79	54			66	99	75		82.1		1	1
Total Organic Carbon (TOC)	5.2	4	2.3	2	1	1.0	1.0	3.5	4.8	4.0	1.2	2.0	1.2	3	1.2	5.8	ND	1.1	2.7	14.5			2.4		1.9	1.2	1.4	2.5			1.2	1.6	1.7	1.3	1.1	ND	ND	N
Total Dissolved Solids (TDS)	305	310	316	331	373	375	429	369	395	348	371	377		383	319	306	317	344	340	327			326		331	338	288	282			270	238	281	241	285	†	†	30
Total Hardness	199	228	216	254	294	287				315				378	355		387		252	249			276		287	287		194			178	165			228		1	30
Total Kieldahl Nitrogen (TKN)	<dl< td=""><td></td><td>1</td><td></td><td>0.9</td><td></td><td></td><td></td><td>ND</td><td></td><td></td><td></td><td>2.42</td><td></td><td></td><td></td><td>1.39</td><td></td><td></td><td></td><td>ND</td><td></td><td></td><td>2.98</td><td></td><td>ND</td><td></td><td>ND</td><td></td><td></td><td></td><td></td><td>$\overline{}$</td><td></td><td></td><td></td><td>1</td><td>N</td></dl<>		1		0.9				ND				2.42				1.39				ND			2.98		ND		ND					$\overline{}$				1	N
Turbidity (NTU units)	70	905	225	230	242	171	304	456	320	320	240	240		200	480	58	200	97	110	270			360	-,-	225	280	85	57			19		15	87	78		1	7-
Cvanide	0.01				ND				ND				ND				ND				ND	-		ND		ND		ND				ND				t-	1	

																																		NYS
	3/04	9/04	3/05	9/05	3/06	11/06	4/07	10/07	4/08	10/08	4/09	9/09	4/10	9/10	5/11	10/11	5/12	10/12	6/13	10/13	6/14	10/14	6/15	11/15	5/16	10/16	3/17	10/17	5/18	9/18	4/19	9/19	MEAN	
PARAMETER VOLATILES (ug/L)																																		
Acetone	-			ND ND	ND ND	ND ND	ND ND		1.6 ND		ND	4.2 ND			ND ND				ND ND	ND	ND	ND	ND	ND	ND	ND ND	0.43	50.0						
Acrylonitrile Renzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND 0.26	ND ND	ND	ND ND	ND	ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	0.00	5.0						
Bromobenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND.	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	- IND	- IND	- IND	-	- IND	-	-	-	-	0.02	5.0
Bromochloromethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.00	5.0
Bromodichloromethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.00	50.0
Bromoform	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.00	50.0
Bromomethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.00	5.0
2-Butanone n-Butvlbenzene	ND	ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND		7.5 ND	ND ND	ND	ND	ND	ND	ND	ND	ND .	ND .	ND	0.26	50.0										
sec-Butylbenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	-	-		-				-		0.00	5.0
tert-Butylbenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND			-	-	-	-	-	-	-	0.00	5.0
Carbon disulfide				ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.00	60.0
Carbon tetrachloride	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.00	5.0
Chlorobenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.00	5.0
Chloroethane Chloroform	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	0.00	7.0
Chloromethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.00	5.0
2-Chlorotoluene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	-	-	-	-	-	-	-	-	-	0.00	5.0
4-Chlorotoluene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	-	-	-	-	-	-	-	-	-	0.00	5.0
Dibromochloromethane	ND	ND	ND	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.00	50.0
1,2-Dibromo-3-chloropropane	ND	ND	ND	ND		ND	ND	ND	ND	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.00	0.04
1,2-Dibromoethane Dibromomethane	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	0.00	5.0
1,2-Dichlorobenzene	ND ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND ND	ND	ND ND	ND	ND	ND ND	ND	ND ND	ND	ND ND	ND ND	ND ND	ND	ND ND	0.00	3.0
1,3-Dichlorobenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	-	-	-	-	-	ND	-	-	-	0.00	3.0
1,4-Dichlorobenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.00	3.0
trans-1,4-Dichloro-2-butene				ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.00	5.0
Dichlorodifluoromethane	ND			ND	ND	ND	ND	ND	ND	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND			-			ND			-	0.00	5.0
1,2-Dichloroethane	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	0.00	0.6
1,1-Dichloroethene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.00	5.0
cis-1,2-Dichloroethene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.00	5.0
trans-1,2-Dichloroethene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.00	5.0
1,2-Dichloropropane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.00	1.0
1,3-Dichloropropane	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	-	-	-	-	-	ND ND	-	-	-	0.00	5.0
1 1-Dichloropropane	ND ND	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND ND	ND	ND ND	ND	ND ND	-	-	-	-	-	ND ND	-	-		0.00	5.0
cis-1-3-Dichloropropene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.00	0.4 *
trans-1,3-Dichloropropene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.00	0.4 *
Ethylbenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	110	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.00	5.0
2-Hexanone			ND	ND	ND	ND	ND	ND		ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.00	50.0
Hexachlorobutadiene Iodomethane	ND	ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.00	0.5 5.0
Isopropylbenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	·	-	- IND		- ND	-			-	0.00	5.0
p-Isopropyltoluene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		-	-	-	-	-	-	-	-	0.00	5.0
Methylene chloride	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.11	5.0
4-Methyl-2-pentanone			110	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.00	100
Naphthalene n-Propylbenzene	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	-	-	-	-	-	-	-	-	-	0.00	10.0 **
n-Propylbenzene Styrene	ND ND	ND	ND	ND ND	ND	ND	ND	ND	ND ND	ND ND		ND	ND ND	ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND	ND	ND	ND	ND	ND	ND	ND.	0.00	5.0
1,1,1,2-Tetrachloroethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.00	5.0
1,1,2,2-Tetrachloroethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.00	5.0
Tetrachloroethene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.00	5.0
Toluene 1.2.3-Trichlorobenzene	ND ND	ND	ND ND	ND	ND ND	ND ND	ND	ND ND	ND	ND ND		ND	ND ND	ND	ND	ND ND	ND	ND	ND ND	ND	ND ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.13	5.0
1,2,3-Trichlorobenzene 1,2,4-Trichlorobenzene	ND ND	ND 0.69	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	-	-		-				-	0.00	5.0						
1.1.1-Trichloroethane	ND ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND ND	ND	ND ND	ND	ND.	ND.	ND.	ND	ND.	ND.	ND.	ND	0.01	5.0
1,1,2-Trichloroethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.00	1.0
Trichloroethene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.00	5.0
Trichlorofluoromethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.00	5.0
1,2,3-Trichloropropane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.00	0.04
1,2,4-Trimethylbenzene 1,3,5-Trimethylbenzene	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	-	-		H :		-	H	-		0.00	5.0
Vinyl acetate	ND	IND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND ND	ND	ND	ND.	ND.	ND.	ND.	ND	ND.	ND	ND.	ND	0.00	3.0						
Vinyl chloride	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.00	2.0
o-Xylene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.00	5.0
p-Xylene & m-Xylene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.00	5.0

																																		NYS
	3/04	9/04	3/05	9/05	3/06	11/06	4/07	10/07	4/08	10/08	4/09	9/09	4/10	9/10	5/11	10/11	5/12	10/12	6/13	10/13	6/14	10/14	6/15	11/15	5/16	10/16	3/17	10/17	5/18	9/18	4/19	9/19	MEAN	STD
PARAMETER METALS (mg/L)																																		
Aluminum		1.1		ND		ND		0.24			ND			ND	ND				ND	-	-	ND	ND	-	ND	ND	ND	ND	-	0.0766	ND	-	2.29	
Calcium	67.5		68.3	34.6			33	57.1		31	26.1		43.2	49.1	61.7	53.9	32		41.5	50	54.9	59.1	45.8	55.1	50.6	59.9	60.1	52.8	59.4	66.1	57.3	56.8	60.59	
Iron	0.54	1.5	0.64	0.07		0.16	0.07	0.74		0.22	0.089	0.165	0.06	0.05	ND		0.049		0.03	ND	ND	0.13	0.05	ND	ND	0.162	ND	0.106	0.0518	0.0552	0.0298		4.56	0.3
Magnesium	8.7	15.5	15.8	25.4			17.1		18.1	21.3	14.8	17	17.9	17.8	16.9	16.4	19		14	15.1	15.3	15	14.6	14.7	13.4	15.2	15.0	13.0	14.3	15.9	14.0	14.0	17.22	35.0
Manganese	0.06	0.08	0.06	ND	ND	0.11	ND	0.024	0.027	0.033	ND	0.215	ND	ND	0.12	0.12	ND		0.008	0.035	0.015	0.246	0.013	0.208	0.0524	0.126	0.0682	0.0486	0.05	0.183	0.0674	0.0602	0.26	0.3
Potassium	5.48	3.7	3.8	2.7	3.6	2.5	3	3.3	2.6	3.9	3.72	2.09	2.24	2.45	2	2.4	2.2		1.8	2	ND	1.7	2.1	ND	ND	ND	1.92	2.18	1.78	2.32	1.85	1.62	3.93	
Sodium	18	17	17.2	17.8	18.3	15.9	15.2	15.9	16.2	15.8	16.7	14.2	13.5	14.1	13.1	11.4	10		9.9	9.3	9.5	9.4	10.5	10	10.6	10.4	9.93	8.54	9.46	11.1	9.11	8.99	14.73	20.0
PARAMETER (mg/l) TOXIC METALS																																		
Antimony		ND		ND		ND		ND	ND		ND			ND	ND				ND	-		ND	ND		ND	ND	ND	ND		ND	ND		0.00	0.003
Arsenic		ND		ND		ND		ND	ND		ND			ND	ND				ND			ND	ND		ND	ND	ND	ND	-	ND	ND		0.00	0.025
Barium		0.22		0.1		0.08		0.15	0.064		0.138			0.06	0.068				0.071	-		0.054	0.065		ND	ND	0.0415	0.0403		0.0405	0.0362		0.08	1.0
Beryllium		ND		ND		ND		ND	ND		ND			ND	ND				0.0002			ND	ND		ND	ND	ND	ND	-	ND	ND		0.00	
Cadmium	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.00	0.005
Chromium (Total)	ND	0.02	0.01	ND	ND	ND		0.006	ND	ND	ND	ND		ND	ND				ND	-	-	ND	ND	-	ND	ND	ND	ND	-	0.0032	ND	-	0.02	0.05
Copper		ND		ND		ND		ND	ND		ND			ND	ND				ND	-	-	ND	ND	-	ND	ND	ND	ND	-	ND	ND	-	0.00	0.2
Lead	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.001		0.0009	ND	ND	ND	ND	ND	0.0039	ND	ND	0.0013	ND	ND	ND	ND	0.00	0.025
Mercury	ND	ND		0.01		ND		ND	ND		ND			ND	ND				ND			ND	ND		ND	ND	ND	7E-05	-	ND	0.00015	-	0.00	0.0007
Nickel		ND														0.009		0.01	0.1															
Selenium	ND															ND		0.00	0.0															
Silver																ND		0.00	0.05															
Thallium					1		1													-	-								-			-	0.01	0.0005
Zinc	ND N																0.02	2.0																
RAMETER (mg/l) LEACHATE INDICATORS	ND N																																	
Alkalinity	ND N														213	204	196.9																	
Biochemical Oxygen Demand	-	ND														1.0	1.0	1.9																
Boron	ND N														0.0207	-	0.0	1.0																
Chemical Oxygen Demand	13		ND	ND	ND	ND	ND		ND			ND	ND	ND	ND	ND	ND	20	ND	ND	ND	ND	ND	5.2	-	ND	13	24.6	17.5	27.7	ND	25.6	6.1	
Chromium (Hexavalent)		ND		ND		ND		ND	ND		ND			ND	ND			ND	ND			ND	ND		-		0.0086	-		ND	ND		0.0	0.05
Chloride	ND	1.5	1.6	110	1.4		1.4		110		.,,	1.42	1.94	1.62	1.7	1.7	1.91	15.1	ND	2.7	2	2.1	2.2	2.3	2.04		2.7	2.2	2.0	2.3	2.2	2.4	2.2	250
Color (PCU units)	110	120	1.0		1	1.0	1					1.12	1.51	1.02	ND	1.7	1.51	ND	7	-	-	13	14	-	5	20	10		-	5.0	5.0		24.4	15
Nitrate-Nitrite	0.05	0.05	ND	_	ND	ND	ND	-	_	_		0.285		0.106	ND	ND	0.095	110	ND	ND	ND	ND	ND	ND	ND	ND	0.086	0.55	ND	ND.	ND.	0.093	0.3	10
Nitrogen-Ammonia	ND		0.13	ND			ND	-	ND	_		0.116		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.11	0.12	0.024	0.051	0.02		0.039	ND	0.1	2.0
Phenois	IND	0.02	ND	ND			0.01	ND		ND	ND	ND	ND	ND	ND	ND	ND	0	ND	ND	ND	ND	ND	ND	ND	ND.	ND	0.0065	0.0043	0.0074	ND	0.004	0.0	0.001
Sulfate	49	48.4	55.4	IND	53.8		44.7	ND	IND	IND	ND	37.9	33.3	33.6	30.4	22	19	16.9	17	16.1	15.6	13.6	15.1	14.4	12.4	IND	18.2	13.4	12.8	14.6	12.5	16.0	54.6	250
Total Organic Carbon (TOC)	1.3	20	ND	ND	33.0	ND	1.9	11.1	ND	4.9	1.3	1.3	ND	33.0	ND	ND.	ND	10.5	ND.	1.1	ND.	ND	1.2	ND	ND	2.3	0.085	4.5	10.7	0.81	0.82	1.3	2.3	230
Total Dissolved Solids (TDS)	1.5	259	215	IND	229		232	11.1	140	7.9	1.5	255	245	<u> </u>	238	215	350	240	215	223	229	228	211	231	209	2.3	249	225	202	216	224	209	280.9	500
Total Hardness	205		236	191				1	167	1			180	200	224	202	160	240	161	187	200	209	175	206	132	200	249	190	190	187	160	193	229.1	300
Total Hardness Total Kieldahl Nitrogen (TKN)	203	1.8	230	ND	12/	ND.	133	1	ND	1		210	100	ND	ND	202		0.597	ND	107	200	ND	ND	- 206	ND	0.98	0.14	0.59	ND	ND	ND	ND	0.4	-
Turbidity (NTU units)	67	129	415	ND	21.7		24.1	-	6.3	16.7	22	3	2	42	6 6	5	6.2	50.1	3.2	3	0	4.4	ND ND	5.3	3.3	9.9	1.8	25	6.3	5.5	8.1	8.84	126.9	5.0
	0/		415	MC	21./		24.1	-		10./		3				3	0.2	30.1	ND	3	U	ND	ND ND	5.3	3.3			23	0.3		ND	8.84		
Cyanide		ND	Щ.	ND		ND	1		ND		ND		L	ND	0.16	اب	Ļ		ND			ND	ND			ND	ND			ND	ND		0.0	0.2
										dards (ar																								
										ances no	ted prid	or to this	s event	reflect	orior sta	ındards.																		
					n of cis	and trar	ns-1,3-di	chlorop	ropene.																									
		** = G	iidance	Value.																														
		ND val	ues are	include	d in cal	culation	of Mear	n and ar	e consi	dered eq	ual to z	ero.																						
		(Blank)	or "-" =	Not An	alyzed.																													
			ot Dete		,						J = Esti	mated.																						
							tion limi				B = Ana																							

DADAMETER VOLATUES ((I)	9/90	12/9	3/9	6/9	1 9/9	1 12/9	1 3/92	6/92 9/92	12/92 3/	93 6	9/93	12/93	3/94	6/94 9/94	12/94 3/	5 6/95	9/95	12/95	4/96	9/96	3/97	9/97	3/98	9/98	3/99	9/99	3/00	9/00	3/01	9/01 3/0	02 9/	02 3	/03	9/03
PARAMETER VOLATILES (ug/L) Acetone		ı		1								_	т т			_		_	1							- 1			1				_	_
Acrylonitrile	1			+				t t		_																							-	_
Benzene	ND	3.02	2.66	3.0	1	2.0	2.0	1.0	2.	0	2		1	3	2				- 1	1	1	1	2		2	3	2	2	2	2.5	9	0	.58	2
Bromobenzene	ND	ND				ND		ND		D	ND		ND	ND	N				ND		ND		ND			ND	ND	ND	ND	N				ND
Bromochloromethane	ND	ND				ND		ND	N		ND		ND	ND	N)			ND	ND	ND	ND	ND		ND	ND	ND	ND	ND	N	D			ND
Bromodichloromethane Bromoform	ND ND	ND				ND ND		ND ND	N N		ND ND		1		-	-	-	-														_		ND ND
Bromomethane	ND	ND ND				ND		ND ND	N N		ND ND		ND	ND	N		+	+	ND	ND	ND	ND	ND	-+	ND	ND	ND	ND	ND	N	D .			ND
2-Butanone	IND	IND	IND	INL	_	ND	ND	IND	I IN	_	IND		IND	ND	IN	_	-		ND	ND	ND	ND	ND	-+	IND	ND	ND	IND	IND	INI			ND -	ND
n-Butylbenzene	ND	ND	ND	NE)	ND	ND	0.6	N	D	ND		ND	ND	N)			ND	ND	ND	ND	ND		ND	ND	ND	ND	ND	N	D		ND	ND
sec-Butylbenzene	ND	ND				ND		ND		D	ND		ND	ND	N				ND		ND		ND			ND	ND	ND	ND	N				ND
tert-Butylbenzene	ND	0.32	! <dl< td=""><td>. NE</td><td>)</td><td>ND</td><td>ND</td><td>ND</td><td>N</td><td>D</td><td>ND</td><td></td><td>ND</td><td>ND</td><td>N</td><td>)</td><td></td><td></td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td></td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>N</td><td>D</td><td></td><td>ND</td><td>ND</td></dl<>	. NE)	ND	ND	ND	N	D	ND		ND	ND	N)			ND	ND	ND	ND	ND		ND	ND	ND	ND	ND	N	D		ND	ND
Carbon disulfide	ND			NC				ND	L	_	ND						4		ND											N				
Carbon tetrachloride Chlorobenzene	ND ND		ND 0.91			1.0	ND 1.0	1.0		D 9	0.8		ND 0.6	ND 2	N 0.		-	-	0.9		ND 0.8	ND 1	ND 1		ND 1	ND 2	ND 1	ND 1	ND 1	N 2.7				ND 1.9
Chloroethane	ND					1.0		ND		D	ND		ND	ND	N.		+	1		ND			ND			ND.	ND	ND.	ND	N N				ND
Chloroform	ND	2.06				ND		ND.		D	ND.		1	110	-				110	.,,,	.,,,		110		.,,,	.,,,	140	110						ND
Chloromethane	ND	ND				ND		ND		D	ND		ND	ND	N)			ND	ND	ND	ND	ND		ND	ND	ND	ND	ND	N	D			ND
2-Chlorotoluene	ND	ND				ND		ND	N		ND		ND	ND	N				ND		ND	ND	ND		ND	ND	ND	ND	ND	N				ND
4-Chlorotoluene	ND	ND				ND		ND	N		ND		ND	ND	N)			ND	ND	ND	ND	ND		ND	ND	ND	ND	ND	N	D			ND
Dibromochloromethane	ND	ND				ND		ND	N	D	ND		+				_	1																ND
1,2-Dibromo-3-chloropropane 1,2-Dibromoethane	ND ND	ND ND					ND ND	ND ND	 			+	+				+	+	\vdash	}		-+			_				1					ND ND
1,2-Dibromoethane Dibromomethane	ND ND		ND				ND ND	ND ND	NI NI	D	ND	+	ND	ND	N	,	+	1-	ND	ND	ND	ND	ND	+	ND	ND	ND	ND	ND	N	D	+		ND
1,2-Dichlorobenzene	ND	0.31				ND		0.6	N		ND ND		ND	ND	N N		1	1	ND		ND		ND			ND	ND	ND	ND	N				ND
1,3-Dichlorobenzene	ND		. <dl< td=""><td></td><td></td><td></td><td>ND</td><td>0.6</td><td>N</td><td></td><td>ND</td><td></td><td>ND</td><td>ND</td><td>N</td><td></td><td></td><td></td><td></td><td>ND</td><td></td><td></td><td>ND</td><td></td><td></td><td>ND</td><td>ND</td><td>ND</td><td></td><td>N</td><td></td><td></td><td></td><td>ND</td></dl<>				ND	0.6	N		ND		ND	ND	N					ND			ND			ND	ND	ND		N				ND
1,4-Dichlorobenzene	0.35	1.72	1.08	ND)	1.0	2.0	1.0	0.	9	0.7		0.6	1	0.				0.7	0.6	0.6	0.8	0.7		0.8	1	0.8	0.7	0.7	1.9	96		ND	ND
trans-1,4-Dichloro-2-butene																																		
Dichlorodifluoromethane	ND		ND				ND	ND			ND		ND	1	0.					ND			ND			ND	ND		0.7	N				ND
1,1-Dichloroethane	2.29		8.77			9.0		3.0	6.		6		3	9	N		_		4	5	4	5	6		5	7	6	6	7	5.2				6.4
1,2-Dichloroethane 1,1-Dichloroethene	<dl ND</dl 	ND	0.29 <dl< td=""><td></td><td></td><td>ND ND</td><td></td><td>ND ND</td><td>N N</td><td></td><td>ND ND</td><td>-</td><td>ND ND</td><td>ND ND</td><td>N 6</td><td></td><td>-</td><td>-</td><td>ND ND</td><td></td><td>ND ND</td><td></td><td>ND ND</td><td></td><td>ND ND</td><td>ND ND</td><td>ND ND</td><td>ND ND</td><td>ND ND</td><td>NI NI</td><td></td><td></td><td></td><td>ND ND</td></dl<>			ND ND		ND ND	N N		ND ND	-	ND ND	ND ND	N 6		-	-	ND ND		ND ND		ND ND		ND ND	ND ND	ND ND	ND ND	ND ND	NI NI				ND ND
cis-1.2-Dichloroethene	ND		23.3			11.0			7.		5		5	11	1		-		6	4	6	5	8		6	10	9	11	10	7.1				10.6
trans-1.2-Dichloroethene	3.03		0.80			ND		ND.		D	ND		ND	ND.	N				ND		ND		ND			ND	ND	ND	ND	N				0.6
1,2-Dichloropropane	ND	ND				ND		ND		D	ND		ND	ND	N				ND				ND			ND	ND	ND	ND	N				ND
1,3-Dichloropropane	ND		ND				ND	ND		D	ND		ND	ND	N					ND			ND			ND	ND	ND		N				ND
2,2-Dichloropropane	ND		ND				ND	ND		D	ND		ND	ND	N					ND			ND			ND	ND	ND	ND	N				ND
1,1-Dichloropropene cis-1-3-Dichloropropene	ND ND		<dl ND</dl 				ND ND	ND ND		D D	ND ND		ND ND	ND ND	N N		+	-		ND ND			ND ND			ND ND	ND ND	ND ND		NI N				ND ND
trans-1,3-Dichloropropene	ND		ND				ND	ND ND		D	ND ND		ND ND	ND ND	N N		+	+			ND		ND			ND	ND	ND		N				ND
Ethylbenzene	ND		0.14				ND	1.0		0	2	+	ND	2	0.		+	1			ND		ND			ND	ND	ND		1.1				ND
2-Hexanone																																		
Hexachlorobutadiene	ND	ND	ND	ND)	ND	ND	0.6	N	D	ND		ND	ND	N)			ND	ND	ND	ND	ND		ND	ND	ND	ND	ND	N	D		ND	ND
lodomethane																																		
Isopropylbenzene	ND	<di< td=""><td></td><td></td><td></td><td></td><td>ND</td><td>0.5</td><td></td><td>D</td><td>ND</td><td></td><td>ND</td><td>0.5</td><td>N</td><td></td><td></td><td>4</td><td>ND</td><td></td><td>ND</td><td></td><td>ND</td><td></td><td></td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>1.1</td><td></td><td></td><td></td><td>ND</td></di<>					ND	0.5		D	ND		ND	0.5	N			4	ND		ND		ND			ND	ND	ND	ND	1.1				ND
p-Isopropyltoluene Methylene chloride	ND ND	2.03 <di< td=""><td>ND <dl< td=""><td></td><td></td><td></td><td>ND 25.0</td><td>ND 0.6</td><td></td><td>D D</td><td>ND ND</td><td></td><td>ND ND</td><td>ND ND</td><td>N N</td><td></td><td>-</td><td>-</td><td></td><td>ND ND</td><td>ND ND</td><td></td><td>ND ND</td><td></td><td></td><td>ND ND</td><td>ND ND</td><td>ND ND</td><td>ND ND</td><td>NI N</td><td></td><td></td><td></td><td>ND ND</td></dl<></td></di<>	ND <dl< td=""><td></td><td></td><td></td><td>ND 25.0</td><td>ND 0.6</td><td></td><td>D D</td><td>ND ND</td><td></td><td>ND ND</td><td>ND ND</td><td>N N</td><td></td><td>-</td><td>-</td><td></td><td>ND ND</td><td>ND ND</td><td></td><td>ND ND</td><td></td><td></td><td>ND ND</td><td>ND ND</td><td>ND ND</td><td>ND ND</td><td>NI N</td><td></td><td></td><td></td><td>ND ND</td></dl<>				ND 25.0	ND 0.6		D D	ND ND		ND ND	ND ND	N N		-	-		ND ND	ND ND		ND ND			ND ND	ND ND	ND ND	ND ND	NI N				ND ND
4-Methyl-2-pentanone	ND	<01	- <dl< td=""><td>1.0</td><td>+</td><td>2.0</td><td>25.0</td><td>0.6</td><td>l N</td><td>U</td><td>ND</td><td>1</td><td>ND</td><td>ND</td><td>N</td><td><u> </u></td><td>+</td><td>1</td><td>ND</td><td>ND</td><td>טט</td><td>ND</td><td>IND</td><td></td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>N</td><td>_</td><td></td><td>AD.</td><td>IND</td></dl<>	1.0	+	2.0	25.0	0.6	l N	U	ND	1	ND	ND	N	<u> </u>	+	1	ND	ND	טט	ND	IND		ND	ND	ND	ND	ND	N	_		AD.	IND
Naphthalene	ND	0.91	0.20	ND)	ND	ND	0.5	N	D	ND	1	ND	ND	N)	1	1	ND	ND	ND	ND	ND	-	ND	ND	ND	ND	ND	N	D		ND	ND
n-Propylbenzene	ND	0.22	0.19	ND)	ND	ND	0.5	N	D	ND		ND	ND	N)			ND	ND	ND	ND	ND		ND	ND	ND	ND	ND	N	D		ND	ND
Styrene	ND	ND				ND		ND	N		ND		ND	ND	N				ND		ND		ND			ND	ND	ND	ND	N				ND
1,1,1,2-Tetrachloroethane	ND	ND				ND		ND		D	ND		ND	ND	N		4	4	ND		ND		ND			ND	ND	ND	ND	N				ND
1,1,2,2-Tetrachloroethane	ND ND	ND ND				ND ND	ND ND	ND ND	N N	D	ND ND		ND ND	ND ND	N N		+	+	ND ND		ND		ND		ND ND	ND	ND ND	ND ND	ND ND	NI NI				ND ND
Tetrachloroethene Toluene	ND	0.76				2.0		ND ND		D	ND 1	+	ND	ND ND	N N		+-	+			ND ND		ND ND			ND ND	ND	ND	ND ND	NI NI				ND
1,2,3-Trichlorobenzene	ND	ND				ND		ND ND		D	ND	1	ND	ND ND	N N		+	+	ND		ND		ND			ND	ND	ND	ND	N				ND
1,2,4-Trichlorobenzene	ND	ND				ND		0.6		D	ND		ND	ND	N		1	1	ND	ND	ND	ND	ND		ND	ND	ND	ND	ND	N				ND
1,1,1-Trichloroethane	ND	4.47	3.19	ND)	1.0	1.0	0.5	N	D	ND		ND	ND	1				0.6	ND	0.7	ND	ND		ND	ND	ND	ND	ND	N	D		ND	ND
1,1,2-Trichloroethane	ND	ND				ND		ND	N		ND		ND	ND	N				ND		ND	ND	ND		ND	ND	ND	ND	ND	NI NI				ND
Trichloroethene	<dl< td=""><td>26.4</td><td></td><td></td><td></td><td>2.0</td><td></td><td>2.0</td><td>7.</td><td></td><td>1</td><td></td><td>2</td><td>21</td><td>4</td><td></td><td>4—</td><td>1</td><td>3</td><td>2</td><td>1</td><td>4</td><td>2</td><td>_</td><td>2</td><td>2</td><td>2</td><td>14</td><td>4</td><td>1.6</td><td></td><td></td><td></td><td>3.6</td></dl<>	26.4				2.0		2.0	7.		1		2	21	4		4—	1	3	2	1	4	2	_	2	2	2	14	4	1.6				3.6
Trichlorofluoromethane	ND	ND				ND		ND ND	N		ND	-	ND	ND	N		+	1	ND	ND	ND	ND	ND		ND	ND	ND	ND	ND	N				ND
1,2,3-Trichloropropane 1,2,4-Trimethylbenzene	ND ND	ND ND				ND ND		ND 0.7	N	D D	ND ND	+	ND ND	ND ND	N N		+-	+	ND ND	ND ND	ND ND	ND ND	ND ND		ND ND	ND ND	ND ND	ND ND	ND ND	NI NI				ND ND
1,2,4-1/Imethylbenzene	ND	ND				ND		ND		D	ND ND		ND ND	ND ND	N N		+	+	ND		ND		ND		ND	ND	ND	ND	ND	N N				ND
Vinyl acetate	T	T	1	† <u>``</u>	-1-	1	1	1 1	<u> </u>		- 10	1	1 1		 	1	1	1	· · ·					-	-			<u> </u>	T		\dashv			౼
Vinyl chloride	ND		2.11			10.0	19.0	5.0	4.		4		3	7	6				4	2	3	3	5		3	5	4	4	4	N				4.3
o-Xylene	ND	<di< td=""><td>1.12</td><td></td><td></td><td></td><td></td><td>ND</td><td></td><td>D</td><td>ND</td><td></td><td>ND</td><td>ND</td><td>N</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>ND</td><td></td><td></td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>N</td><td></td><td></td><td></td><td>ND</td></di<>	1.12					ND		D	ND		ND	ND	N								ND			ND	ND	ND	ND	N				ND
p-Xylene & m-Xylene			0.29	2.0				1.8	0.	6	0.6		ND	0.7	N)			ND	ND	ND	ND	ND		ND	ND	ND	ND	ND	N	D		ND	ND

	9/90	12/90	3/91	6/91	9/91	12/91	3/92	6/92	9/92	12/92	3/93	6/93	9/93	12/93	3/94	6/94	9/94	12/94	3/95	6/95	9/95	12/95	4/96	9/96	3/97	9/97	3/98	9/98	3/99	9/99	3/00	9/00	3/01	9/01	3/02	9/02	3/03	9/07
PARAMETER METALS (mg/L)							,																															
Aluminum	ND								0.06				0.2				0.87							ND		0.23				0.09		ND			-			ND
Calcium	12.8	40	32.8	41.6		29.0	35.3	42.1	26.7	33.8	33.2	39.3	38.2	35.7	28	28.1	40.6	29	29.9	39.5		45.8	29.6	32.4	27.6	32.2	37.3		40.4	49.2	39.2	41.6	38		54.2		21.9	41.2
Iron	3.62	17.1	9.6	24.7		8.94	8.2	57.7	5.53	8.32	16.1	14.0	22.1	9.8	6.49	8.4	47.9	10.5	9.41	16.7		16.4	7.44	8.89	23.8	11.1	18.7		12.1	11.8	6.2	17.7	19.1		121		79.6	10.8
Magnesium	4	9	10.3	13.6		9.0	10.9	14.3	8.26	10.1	10.7	12.9	12.8	11.6	9.09	8.86	12.6	8.86	9.17	13.5		14.4	8.82	10.9	8.98	10.7	11.2		12.8	16.2	12.7	14.3	12.5		14.6		6.67	11.8
Manganese	3.85	11.3	9.2	9.65		6.3	9.48	10.8	5.52	8.82	8.02	9.59	8.5	8.4	5.74	6.53	8.82	6.89	6.97	8.63		10.8	6.39	6.59	6.23	6.24	8.21		6.68	9.27	7.13	8.03	7.73		11.3		4.28	7.93
Potassium	2	3.2	2.4	3.3		3.2	4.5	4.2	3.34	3.78	2.22	2.92	2.63	3.23	3.04	2.53	2.94	2.9	2.6	3.20		3.89	2.39	2.85	2.56	2.94	2.76		3.4	3.94	3.23	3.39	2.93		4.3		2.65	3.34
Sodium	4	10.3	7.1	8.2		8.3	8.8	10.1	7.22	7.23	6.31	6.64	7.92	6.71	6.43	6.12	9	6.11	5.25	7.41		8.17	4.80	6.69	5.12	6.37	5.46		7.08	9.23	6.51	7.54	6.08		8.06		3.89	5.93
PARAMETER (mg/l) TOXIC METALS																																						
Antimony	ND								ND				ND				0.03							0.028		ND				ND		ND				-		ND
Arsenic	<dl< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>0.005</td><td></td><td></td><td></td><td>0.019</td><td></td><td></td><td></td><td>0.040</td><td></td><td></td><td></td><td></td><td></td><td></td><td>0.009</td><td></td><td>0.02</td><td></td><td></td><td></td><td>0.01</td><td></td><td>0.027</td><td></td><td></td><td></td><td></td><td>$\overline{}$</td><td>ND</td></dl<>								0.005				0.019				0.040							0.009		0.02				0.01		0.027					$\overline{}$	ND
Barium	0.05								0.11				0.18				0.22							0.131		0.14				0.21		0.172						0.16
Beryllium		ND							ND				ND				ND							ND		ND				ND		ND						ND
Cadmium		<dl< td=""><td>ND</td><td>ND</td><td></td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td></td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td></td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td></td><td>ND</td><td></td><td>ND</td><td>ND</td></dl<>	ND	ND		ND		ND	ND	ND	ND	ND	ND		ND	ND	ND	ND	ND		ND		ND	ND														
Chromium (Total)	ND								ND				0				0.02							ND		ND				ND		ND						ND
Copper	ND								ND				ND				ND							ND		ND				ND		ND					$\overline{}$	ND
Lead	ND		0.003	ND		ND	0.030	0.014	ND	ND	0.002	0.001	0	0.007	0.002	0.002	0.005	0.001	ND	0.007		0.002	0.001	0.006	0.005	0	ND		0	0	ND	0.005	0		0.004	-	0.005	ND
Mercury	ND								ND				ND				ND							ND		ND				ND		ND						ND
Nickel	0.11								ND				0.03				0.05							0.023		0.03				0.04		0.032						ND
Selenium	ND	<dl< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>ND</td><td></td><td></td><td></td><td>ND</td><td></td><td></td><td></td><td>ND</td><td></td><td></td><td></td><td></td><td></td><td></td><td>ND</td><td></td><td>ND</td><td></td><td></td><td></td><td>ND</td><td></td><td>ND</td><td></td><td></td><td></td><td></td><td></td><td>ND</td></dl<>							ND				ND				ND							ND		ND				ND		ND						ND
Silver	ND								ND				ND				0.01							ND		ND				ND		ND						ND
Thallium	<dl< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>ND</td><td></td><td></td><td></td><td>ND</td><td></td><td></td><td></td><td>ND</td><td></td><td></td><td></td><td></td><td></td><td></td><td>ND</td><td></td><td>ND</td><td></td><td></td><td></td><td>ND</td><td></td><td>ND</td><td></td><td></td><td></td><td></td><td></td><td>ND</td></dl<>								ND				ND				ND							ND		ND				ND		ND						ND
Zinc	ND								0.003				0.02				0.02							ND		0.02				0.03		ND						ND
RAMETER (mg/l) LEACHATE INDICATOR	RS																																					
Alkalinity	102	190	167	176		168	204	194	112	143	86.4	224	169	173	124	125	213	166	155	211		204	80.0		104		169		190	227	177	160	182		192	-	85.7	180
Biochemical Oxygen Demand	3								ND				ND				4							ND		ND				ND		ND						4
Boron	ND								ND				ND				ND							0.074		0.07				0.11		0.113						0.06
Chemical Oxygen Demand	4.5	18	20	9		24.0	22.0	22.0	27.1	16.2	21.8	14.4	ND	21	14.4	ND	46.1	ND	ND	15.3		18.4	ND	ND	ND	ND	ND		17.4	ND	23.6	ND	15.8		23.6		11.5	9
Chromium (Hexavalent)	ND								ND				ND				ND							ND		ND				ND		ND						ND
Chloride	6.1	13	15	15		13.0	20.0	17.0	7.14	8.5	11	12.8	12.8	10.4	7.34	7.71	16.8	7.71	7.69	11.6		14	7.72	10.4	5.54	8.17	7.24		12.2	14.9	7.56	9.45	6.97		10.9		3.26	7.9
Color (PCU units)	45								65.0				75				60							150		40				25		300				\neg		10
Nitrate-Nitrite	0.1	<dl< td=""><td><dl< td=""><td>ND</td><td></td><td>0.22</td><td>ND</td><td>ND</td><td>0.52</td><td>1.3</td><td>1.52</td><td>0.18</td><td>ND</td><td>0.63</td><td>ND</td><td>0.11</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td></td><td>1.9</td><td>ND</td><td>ND</td><td>ND</td><td>1.47</td><td>ND</td><td></td><td>0.11</td><td>3.06</td><td>0.09</td><td>0.191</td><td>ND</td><td></td><td>0.289</td><td></td><td>0.21</td><td>ND</td></dl<></td></dl<>	<dl< td=""><td>ND</td><td></td><td>0.22</td><td>ND</td><td>ND</td><td>0.52</td><td>1.3</td><td>1.52</td><td>0.18</td><td>ND</td><td>0.63</td><td>ND</td><td>0.11</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td></td><td>1.9</td><td>ND</td><td>ND</td><td>ND</td><td>1.47</td><td>ND</td><td></td><td>0.11</td><td>3.06</td><td>0.09</td><td>0.191</td><td>ND</td><td></td><td>0.289</td><td></td><td>0.21</td><td>ND</td></dl<>	ND		0.22	ND	ND	0.52	1.3	1.52	0.18	ND	0.63	ND	0.11	ND	ND	ND	ND		1.9	ND	ND	ND	1.47	ND		0.11	3.06	0.09	0.191	ND		0.289		0.21	ND
Nitrogen-Ammonia	1.5	<dl< td=""><td><dl< td=""><td>0.3</td><td></td><td>1.5</td><td>3.1</td><td>7.4</td><td>2.93</td><td>3.5</td><td>3.07</td><td>3.55</td><td>3.61</td><td>2.87</td><td>1.21</td><td>2.44</td><td>3.74</td><td>2.76</td><td>2.93</td><td>3.02</td><td></td><td>2.61</td><td>2.24</td><td>2.59</td><td>2.31</td><td>2.18</td><td>3.06</td><td></td><td>1.86</td><td>3.11</td><td>2.25</td><td>2.63</td><td></td><td></td><td>2.82</td><td></td><td>1.47</td><td>2.8</td></dl<></td></dl<>	<dl< td=""><td>0.3</td><td></td><td>1.5</td><td>3.1</td><td>7.4</td><td>2.93</td><td>3.5</td><td>3.07</td><td>3.55</td><td>3.61</td><td>2.87</td><td>1.21</td><td>2.44</td><td>3.74</td><td>2.76</td><td>2.93</td><td>3.02</td><td></td><td>2.61</td><td>2.24</td><td>2.59</td><td>2.31</td><td>2.18</td><td>3.06</td><td></td><td>1.86</td><td>3.11</td><td>2.25</td><td>2.63</td><td></td><td></td><td>2.82</td><td></td><td>1.47</td><td>2.8</td></dl<>	0.3		1.5	3.1	7.4	2.93	3.5	3.07	3.55	3.61	2.87	1.21	2.44	3.74	2.76	2.93	3.02		2.61	2.24	2.59	2.31	2.18	3.06		1.86	3.11	2.25	2.63			2.82		1.47	2.8
Phenols	0.003	<dl< td=""><td>ND</td><td>0.006</td><td>5</td><td>ND</td><td>ND</td><td>ND</td><td>0.009</td><td>0.026</td><td>0.010</td><td>0.017</td><td>0.023</td><td>0.001</td><td>0.006</td><td>0.003</td><td>0.015</td><td>0.012</td><td>0.006</td><td>0.021</td><td></td><td>0.035</td><td>0.012</td><td>0.012</td><td>0.006</td><td>0.01</td><td>0.01</td><td></td><td>0.01</td><td>0.03</td><td>0.01</td><td>0.0099</td><td>0.02</td><td></td><td>0.0199</td><td>-</td><td>0.0052</td><td>0.002</td></dl<>	ND	0.006	5	ND	ND	ND	0.009	0.026	0.010	0.017	0.023	0.001	0.006	0.003	0.015	0.012	0.006	0.021		0.035	0.012	0.012	0.006	0.01	0.01		0.01	0.03	0.01	0.0099	0.02		0.0199	-	0.0052	0.002
Sulfate	<dl< td=""><td>5.1</td><td>8</td><td>8</td><td></td><td>14.0</td><td>18.0</td><td>ND</td><td>16.0</td><td>15.0</td><td>45</td><td>7.6</td><td>15</td><td>11</td><td>9</td><td>14</td><td>15</td><td>17</td><td>8.3</td><td>12</td><td></td><td>40</td><td>16</td><td>13</td><td>8.5</td><td>25</td><td>10</td><td></td><td>13</td><td>11</td><td>7.9</td><td>25</td><td>11</td><td></td><td>14.7</td><td></td><td>7.44</td><td>7.9</td></dl<>	5.1	8	8		14.0	18.0	ND	16.0	15.0	45	7.6	15	11	9	14	15	17	8.3	12		40	16	13	8.5	25	10		13	11	7.9	25	11		14.7		7.44	7.9
Total Organic Carbon (TOC)	3.7	8	8.1	6		9.0	7.0	16.0	6.0	11.4	5.2	7	8.5	11.5	3.6	4.8	8.8	4.1	4.4	6.6		9.1	4.3	4.2	6.0	4.5	5.8		5.7	9.5	4.6	4.5	5.1		6.9		2.8	6.9
Total Dissolved Solids (TDS)	132	200	211	231		165	200	195	129	172	189		178	224		148	262	179	171	220		262	161	1700	150	185	179			247	207	200	224		240	\neg	126	208
Total Hardness	48.5	137	124	160		110	133	164	111	144	142	168	186	198	164	123	261	109	112	154		174	110	126	106	124	139		154	190	150	163	146		195		82.2	151
Total Kjeldahl Nitrogen (TKN)	1.8								2.14				4.17				5.91							2.89		2.54				3.83		5.31				\neg		3.6
Turbidity (NTU units)	5	122	40.2	120		15.5	5.0	345	8.9	3.1	320	18	21	30	5.1	7.5	170	7	11	14		18	7	27	21	11	16		26	2.6	5.4	35	7		23		4.7	15
Cvanide	<dl< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>ND</td><td></td><td></td><td></td><td>ND</td><td></td><td></td><td></td><td>ND</td><td></td><td></td><td></td><td></td><td></td><td></td><td>ND</td><td></td><td>ND</td><td></td><td></td><td></td><td>ND</td><td></td><td>ND</td><td></td><td></td><td>-</td><td>-</td><td></td><td>ND</td></dl<>								ND				ND				ND							ND		ND				ND		ND			-	-		ND

Marie Section Sectio																																			NYS
Marie Mari		3/04	9/04	3/05	9/05	3/06	11/06	4/07	10/07	4/08	10/08	4/09	9/09	4/10	9/10	5/11	10/11	5/12	10/12	6/13	10/13	6/14	10/14	6/15	11/15	5/16	10/16	3/17	10/17	5/18	9/18	4/19	9/19	MEAN	
Accordance 10																								1 1											
Excess Section Secti	rectone	1		1																														1.01	
Expendiometers 10		14	17	0.35																															
Provestignee 10																									-	-	-	-	-		-	-	-		
Improvement Column Colum																									ND										
Expendiscription 10 10 10 10 10 10 10 1	Bromodichloromethane			ND														ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.00	50.0
Second Content																																			
Part		ND	ND	ND																															
Section of the content of the cont		ND	ND	ND																					ND										
Exchange Company Com																									- :	-			-	-		-	- :		
Chesteristeristed: 9, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10																									-	-	-	-	-	-	-	-	-		
Characterises	Carbon disulfide				ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.00	60.0
Checorduse	Carbon tetrachloride																																		
Cheromethane in Di No							-																												0.00
Checometates						0.00				0.00																									0.0
## Controller NO NO NO NO NO NO NO N																																			
Activariable No. NO																									ND -										
Deconscriptioner Month M																									-	-	-	-	-	-	-	-	١.		
12-Disconnecessare		ND	ND	ND	ND	ND	ND	ND	ND		ND	ND	ND	ND	ND	ND	ND		ND			ND	ND	ND											50.0
Observation No.	1,2-Dibromo-3-chloropropane																																		
12-Dictionophenoment NO NO NO NO NO NO NO N	1,000																																	0.00	
1.3 Dischirorestensees																																			
14 Dischlaroretesteres																									ND	ND	ND	ND	ND		ND	ND	ND		
Part April Debt																									ND.	ND.	ND.	ND	ND.		ND.	ND.	ND.		
Dichlorodiffusoremethane	trans-1.4-Dichloro-2-butene			1										ND		ND				ND			ND	ND						ND				0.00	
1,20kHorosethane	Dichlorodifluoromethane	ND	1.1	ND	0.89	0.55	ND	0.38	0.53	0.4	0.67	0.37	0.7	0.48	0.65	ND	ND	ND	ND	ND	ND	ND	ND	ND	-	-	-	7.2	-	ND	-		-	0.33	5.0
1,150khorosthene																																			
CS-1_2 Ochhorosthete																																			
Trans-12 Dicthorestenee	.,																																		
1.20Eclioropropane																																			
2.2-Dichloropropages ND	1,2-Dichloropropane									ND						ND				ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		
1.10chlopropropene	1,3-Dichloropropane	ND	ND	ND			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	-	-	-		-	ND			-	0.00	5.0
GS-13-9C-Inforpropene ND																						-			-	-								0.00	
Trans-13-Olichilorgorpene	1,1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1																					-				-									
Ethylenzene ND																																	_		
2-Hexanone																																			
Indomethane				1												ND																			
Isopropylenzene	Hexachlorobutadiene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	-	-	-		-		-		-	0.01	0.5
P-isopropriolemen																									ND										
Methylera chloride																									-	-	-	-	-		-		<u> </u>		
4-Methyl:2-pentanone																									ND.										
Naphthelene		IND	IND	IND																110	110	110		110										0.50	3.0
Syrene		ND	ND	ND																					-		-		-	-	-		-		10.0 **
1,1,2-Tetrackloroethane																									-	-	-	-	-	-	-	-	-		
1,1,2,2-Tetrachloroethane																						-													
Tetrachforoethene																																			
Tolsee ND																																			
1.2,3-Trichlorobenzene																																			
1,2,4-Trichlorobenzene																																	<u> </u>		
1,1,2-Trichloroethane	1,2,4-Trichlorobenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		-		-		-	-	-	-			5.0
Trichforoethene 1.2 5.5 0.51 8.7 2.5 2.9 1.3 0.38 0.99 2 8.5 6.3 1.9 ND 0.45 1 ND	11.11																					-													
Tricklorofluoromethane				_													ND																		
1,2,3-Trichloropropane																	ND.																		
1,2,4-Trimethylpenzene ND																																			
1,3,5-Trimethylbenzene ND																									-	-	-	-	-	-	-	-	-		
Vinvi acetate I I ND	1,3,5-Trimethylbenzene									ND						ND				ND	ND	ND	ND	ND	-	-	-	-	-	-	-	-	-	0.00	5.0
											ND								ND						ND				ND		ND	ND	ND		
Vinyl chloride 3.5 3.3 0.69 6.2 3.7 3.6 2.3 3.9 2.4 4 3.7 5.2 3.3 4.6 0.96 2.5 3.6 ND 2.9 ND ND 2.7 3.5 ND ND ND 1.9 ND 3.4 ND ND 2.9 3.31 2.0				0.05																		-						1.2						3.31	
O-SYSPIEGE ND																																			
p:Xylene & m:Xylene	p-xylene & m-xylene	ND	ND	ND	ND	ND	1.5	ND	0.21	ND	ND	ND	ND	ND	NU	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	U.13	3.0								

																																		NYS
	3/04	9/04	3/05	9/05	3/06	11/06	4/07	10/07	4/08	10/08	4/09	9/09	4/10	9/10	5/11	10/11	5/12	10/12	6/13	10/13	6/14	10/14	6/15	11/15	5/16	10/16	3/17	10/17	5/18	9/18	4/19	9/19	MEAN	
PARAMETER METALS (mg/L)	0, 0 1	-,	, ,, ,,	-,	, ,, ,,	1,	.,	,	.,	,	.,	2, 22	.,	, ,, ,,	٠,	,	-,	,		,	-,	,	1 -,	,	-,	,	-,	,	,	,	.,	1 0, 10		
Aluminum		ND		ND		0.44		ND	ND		ND			ND	0.32			0.19	ND	-	-	ND	ND		ND	ND	0.101	0.056		0.0779	0.652	-	0.09	
Calcium	33.3	35.4	14.8	68	45.4	46.8	38.6	48.9	41.8	46.8	55	53.9	51.9	53.6	22.3	47.7	48	49	39	46.8	47	49.8	50.3	28.5	54.5	54.4	47.3	48.8	57.5	52.4	49	63.5	40.86	
Iron	7.87	12.1	3.1	17.1	14.1	47.1	9.4	1.8	11.4	8.7	14	24.3	15.7	18.2	6.2	10.6	15	25	12.1	7.69	14.1	13.8	20.7	0.14	15.7	10.1	13.4	9.27	15.9	14.3	21.9	32.9	17.44	0.3
Magnesium	9.8	10.6	4.1	23.1	13.5	14.2	12.4	16.2	13.2	15.4	18.9	17.5	17	18	6.6	15.9	16	17	13.8	17.1	16.4	15.4	17	8.6	16.8	17.5	13.9	14.7	17.8	16.6	15.1	23.2	13.07	35.0
Manganese	6.03	7.4	2	12.6	8.5	9.7	7.6	7.2	8.7	8.4	10.7	11.5	10.8	8.7	3.6	9.5	10	8.7	8.59	8.93	10.3	9.3	10.5	0.125	11	9.12	10.9	9.25	9.69	10.6	10.6	11.7	8.34	0.3
Potassium	2.53	3.4	2	4.7	3.5	3.8	3	3.5	3.1	3.2	3.6	3.46	3.29	3.19	2.3	3.6	2.9	2.6	2.8	3.1	3.2	2.8	3.3	ND	ND	ND	5	4.39	3.77	4.24	3.81	3.73	3.08	
Sodium	4.99	5	2	10.5	6.2	6.4	5.4	7.2	6	6.8	8	6.6	5.8	7	2.8	7.1	5.5	ND	5.3	6.5	5	5.6	6.3	1.5	6.19	ND	6.59	6.04	6.16	6.64	5.95	6.92	6.28	20.0
PARAMETER (mg/l) TOXIC METALS																																		
Antimony		ND		ND		ND		ND	ND		ND			ND	ND			ND	ND			ND	ND	-	ND	ND	ND	ND		ND	ND	- '	0.00	0.003
Arsenic		0.02		0.01		0.06		ND	0.012		0.017			0.022	ND			ND	0.015			0.021	0.039	-	0.0177	0.0188	0.0164	0.02		0.0288	0.0261	· '	0.01	0.025
Barium		0.13		0.25		0.2		0.18	0.15		0.2			0.19	0.075			ND	0.157	-	-	0.185	0.21	-	ND	ND	0.15	0.182	-	0.177	0.168	- '	0.10	1.0
Beryllium		ND		ND		ND		ND	ND		ND			ND	ND			ND	0.0003			ND	ND	-	ND	ND	ND	ND		ND	ND	-	0.00	
Cadmium	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.00	0.005
Chromium (Total)		ND		ND		ND		ND	ND		ND			ND	ND			ND	0.001			0.001	0.002	-	ND	ND	0.0066	0.0036		0.0107	ND	- '	0.00	0.05
Copper		ND		ND		ND		ND	ND		ND			ND	ND			ND	ND	-	-	ND	ND		ND	ND	ND	ND		ND	ND	- '	0.00	0.2
Lead	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.002	ND	ND	ND	ND	ND	ND	ND	0.0015	ND	0.0024	ND	ND	ND	0.00	0.025
Mercury		ND		ND		ND		ND	ND		ND			ND	ND			ND	ND			ND	ND	-	ND	ND	ND	0.0033		ND	ND	- '	0.00	0.0007
Nickel		ND		ND		ND		ND	ND		ND			ND	ND			ND	0.004			0.004	0.004	-	ND	ND	0.0059	6E-05	-	0.0031	0.0145	- '	0.01	0.1
Selenium		ND		ND		ND		ND	ND		ND			ND	ND			ND	0.006			0.005	0.008	-	ND	ND	ND	ND		ND	ND	- '	0.00	0.01
Silver		ND		ND		ND		ND	ND		ND			ND	ND			ND	ND	-	-	0.002	0.004		ND	ND	ND	ND		ND	ND	- '	0.00	0.05
Thallium		ND		ND		ND		ND	ND		ND			ND	ND			ND	ND			ND	ND	-	0.0141	ND	ND	0.0042		ND	ND	- '	0.00	0.0005
Zinc		ND		ND		ND		ND	ND		ND			ND	ND			ND	ND			ND	ND	-	ND	ND	ND	0.0028		ND	0.0059	- '	0.00	2.0
PARAMETER (mg/l) LEACHATE INDICATORS																																		
Alkalinity	150	132	46	261	178	174	172	232	128	245	245	181	207	218	144	228	210	210	ND	225	223	227	225	92.7	236	223	217	231	201	231	221	260	177.3	
Biochemical Oxygen Demand		4.4		2.8		ND		3.4	3.2		4.6			ND	ND		7	ND	6.8			7.9	5.1	ND	ND	ND	6.1	15.1	3.5	ND	6.2	2.1	2.3	
Boron		0.07		0.11		0.08		0.07	0.067		0.072			0.059	0.044			ND	0.07			0.05	0.07		ND	ND	0.0687	0.0811		0.0852	0.0575	· .	0.0	1.0
Chemical Oxygen Demand	ND	17.1	11.4	16.2	23.3	23.4	ND	ND	13.8	10	ND	16.9	ND	15.8	ND	16.8	ND	62	24.4	11.2	6.7	ND	17.3	7.5		35.9	46.3	33	58.4	44.1	32.2	85.2	16.1	
Chromium (Hexavalent)		ND		ND		ND		ND	ND		ND			ND	ND			ND	ND			ND	ND			ND	0.0099		-	ND	ND	- '	0.0	0.05
Chloride	5	4.8	1.5	15.9	6.5	8.8	5.6	8.9	4.8	7.4		7.02	6.4	7.28	4	6.6	6.41	5.59	4.6	6	4.9	3.8	6.3	ND	4.81	6.1	7.9	4.8	6.1	4.7	4.2	7.2	8.3	250
Color (PCU units)		10		100		80		50	50		25			30	80			5	110	•	•	34	38	-	5	10	10			125	100		51.0	15
Nitrate-Nitrite	0.09	ND	0.19	ND	ND	ND	0.08	ND	ND	ND	ND	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.11	ND	ND	ND	ND	ND	0.2	10
Nitrogen-Ammonia	2.3	1.4	0.76	3.4	1.9	1.6	2.1	1.9	2.4	2.3	2.71	2.68	1.96	1.9	0.92	3.5	2.84	1.98	2.61	2.68	2.32	2.65	2.98	ND	3.16	2.4	2.7	3.3	3.1	3	2.9	2.4	2.4	2.0
Phenols	ND	ND	0.02	ND	ND	0.01	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.0134	0.0089	ND	ND	0.0128	0.0094	0.0151	0.0172	0.0172	0.0079	0.0105	0.004	0.0	0.001
Sulfate	8.5	9.2	5.9	7	7.2	6.3	7.7	10.9	5.2	8	7.5	7.25	7.66	8.08	4.8	6.3	ND	ND	5.8	7	5.2	5.8	5.5	22.6	5.44	8.3	3.9	5.2	3.7	5.6	4.7	5.6	10.2	250
Total Organic Carbon (TOC)	3	3	2.6	8	3.9	6.2	4.2	3.9	4.6	4.9	5.2	3.6	2.9	4.1	4.8	4.5	ND	3.9	4.4	4.7	5	4.5	6.3	2.1	3.95	7.9	6.3	5.9	18.5	5.4	6.0	7.5	5.9	
Total Dissolved Solids (TDS)		194	67	331	208	129	191	215	195		271	246	256	257	94	211	230	290	220	227	250	236	232	128	263	238	213	237	262	217	318	272	230.3	500
	123	132	53.8	265	169	175	147	189	159	180	220	210	200		82.9	184	190	190	154	187	185	188	196	107	220	240	180	250	250	200	180	200	162.7	
Total Kjeldahl Nitrogen (TKN)		2.8		4.2		2		3.3	2.8		3.11			2.57	1.4		2.52	2.9	3.04	,		2.78	3.23		3.02	2.2	3.3	3.9	3.9	2.9	3.0	3.2	2.5	
Turbidity (NTU units)	10	25.9	7.6	21	26.3		9.7	8.2	3.6 ND	4.5	10 ND	31	3	1	4	5.7	0.1	26.5	0.9	14	0	4.2	19.2	2.2	1.9	8.9	3.5	28.5	15.3	17.7	12.3	278	34.6	5.0
Cvanide		ND		ND		ND		ND						ND	ND			ND	ND			ND	ND			ND	ND			ND	0.002		0.0	0.2

	9/90	12/90	3/91	6/91	9/91	12/91	3/92	6/92	9/92	12/92 3/	93 6/9	9/93	12/93	3/94	6/94	9/94	12/94	3/95	6/95	9/95	12/95	4/96	9/96	3/97	9/97	3/98	9/98	3/99	9/99	3/00	9/00	3/01	9/01	3/02	09/02	3/03 9/	03
PARAMETER VOLATILES (ug/L) Acetone									- 1																					1	1	1	1				
Acetone	+ +			-	1				-	_		+							_						_		-				1	 	-			-+	-
Benzene	<dl< td=""><td>ND</td><td><dl< td=""><td></td><td></td><td>ND</td><td>ND</td><td></td><td>ND</td><td>N</td><td>D</td><td></td><td></td><td>ND</td><td></td><td></td><td></td><td>ND</td><td></td><td></td><td></td><td>ND</td><td></td><td>ND</td><td>ND</td><td>ND</td><td></td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td></td><td>ND</td><td></td><td>ND</td><td>\neg</td></dl<></td></dl<>	ND	<dl< td=""><td></td><td></td><td>ND</td><td>ND</td><td></td><td>ND</td><td>N</td><td>D</td><td></td><td></td><td>ND</td><td></td><td></td><td></td><td>ND</td><td></td><td></td><td></td><td>ND</td><td></td><td>ND</td><td>ND</td><td>ND</td><td></td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td></td><td>ND</td><td></td><td>ND</td><td>\neg</td></dl<>			ND	ND		ND	N	D			ND				ND				ND		ND	ND	ND		ND	ND	ND	ND	ND		ND		ND	\neg
Bromobenzene	ND	ND	ND			ND	ND		ND	N				ND				ND				ND		ND	ND	ND			ND			ND		ND		ND	_
Bromochloromethane	ND	ND	ND			ND	ND		ND	N	D			ND				ND				ND		ND	ND	ND		ND	ND	ND	ND	ND		ND		ND	\exists
Bromodichloromethane	ND	ND	ND			ND	ND		ND	N	D																										
Bromoform	ND	ND	ND			ND	ND		ND	N																											_
Bromomethane	ND	ND	ND			ND	ND		ND	N	D	4		ND				ND				ND		ND	ND	ND		ND	ND	ND	ND	ND		ND		ND	_
2-Butanone n-Butylbenzene	ND	ND	ND	-	-	ND	ND		ND		D	_		ND				ND				ND		ND	ND	ND		ND	ND	ND	ND	ND	-	ND		ND	_
sec-Butylbenzene	ND ND	ND	ND		-	ND	ND	_	ND		D	-	_	ND				ND				ND		ND	ND	ND			ND	ND		ND	_	ND		ND	-
tert-Butylbenzene	ND	ND	ND			ND	ND		ND		D			ND				ND				ND		ND	ND	ND		ND	ND	ND		ND		ND		ND	-
Carbon disulfide	1																																				_
Carbon tetrachloride	ND	ND	ND			ND	ND		ND	N	D			ND				ND				ND		ND	ND	ND		ND	ND	ND	ND	ND		ND		ND	\neg
Chlorobenzene	ND	ND	<dl< td=""><td></td><td></td><td>ND</td><td>ND</td><td></td><td>ND</td><td>N</td><td>D</td><td></td><td></td><td>ND</td><td></td><td></td><td></td><td>ND</td><td></td><td></td><td></td><td>ND</td><td></td><td>ND</td><td>ND</td><td>ND</td><td></td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td></td><td>ND</td><td></td><td>ND</td><td></td></dl<>			ND	ND		ND	N	D			ND				ND				ND		ND	ND	ND		ND	ND	ND	ND	ND		ND		ND	
Chloroethane	ND		<dl< td=""><td></td><td></td><td>ND</td><td>ND</td><td></td><td>ND</td><td>N</td><td></td><td></td><td></td><td>ND</td><td></td><td></td><td></td><td>ND</td><td></td><td></td><td></td><td>ND</td><td></td><td>ND</td><td>ND</td><td>ND</td><td></td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td></td><td>ND</td><td></td><td>ND</td><td></td></dl<>			ND	ND		ND	N				ND				ND				ND		ND	ND	ND		ND	ND	ND	ND	ND		ND		ND	
Chloroform	ND		<dl< td=""><td></td><td></td><td>ND</td><td>ND</td><td></td><td>ND</td><td>N</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td><u> </u></td><td></td><td></td><td></td><td></td><td>_</td></dl<>			ND	ND		ND	N																						<u> </u>					_
Chloromethane		ND	ND			ND			ND		D			ND				ND				ND		ND	ND	ND			ND	ND		ND		ND		ND	_
2-Chlorotoluene 4-Chlorotoluene	ND ND	ND ND	ND ND	+	1	ND ND		\vdash	ND ND	N	D D	+-	-	ND ND			-	ND ND			\vdash	ND ND	\vdash	ND ND	ND ND	ND ND		ND ND	ND ND			ND ND		ND ND	+	ND ND	-
Dibromochloromethane	ND ND	ND	ND		1	ND	ND	1	ND		D	+	\vdash	IND				ND			1	ND	1 +	ND	IND	ND		ND	ND	שאו	IND	IND	1	IND		IVD	\dashv
1,2-Dibromo-3-chloropropane		ND	ND	1	1	ND	ND		ND	- 1"		1									1 1											t —	1	1 1		-+	\dashv
1,2-Dibromoethane	ND	ND	ND			ND	ND		ND																												\neg
Dibromomethane	ND	ND	ND			ND	ND		ND	N				ND				ND				ND		ND	ND	ND			ND	ND		ND		ND		ND	
1,2-Dichlorobenzene	ND	ND	ND			ND	ND		ND	N				ND				ND				ND		ND	ND	ND			ND	ND		ND		ND		ND	
1,3-Dichlorobenzene	ND	ND	ND			ND	ND		ND	N				ND				ND				ND		ND	ND	ND				ND		ND		ND		ND	
1,4-Dichlorobenzene	ND	ND	ND			ND	ND		ND	N	D			ND				ND				ND		ND	ND	ND		ND	ND	ND	ND	ND		ND		ND	_
trans-1,4-Dichloro-2-butene	ND	ND	ND	-	-	ND	ND		ND	N		_		ND				ND				ND		ND	ND	ND		ND	ND	ND	ND	ND	-	ND		ND	—
Dichlorodifluoromethane 1.1-Dichloroethane		0.45	0.54	-	1	ND ND	ND		ND	1.		+		ND				ND	_			ND		ND ND		ND ND			ND			ND		ND ND		ND ND	-
1,2-Dichloroethane	ND	ND	<dl< td=""><td></td><td></td><td>ND</td><td></td><td></td><td>ND</td><td>N</td><td></td><td></td><td></td><td>ND</td><td></td><td></td><td></td><td>ND</td><td></td><td></td><td></td><td>ND</td><td></td><td>ND</td><td>ND</td><td></td><td></td><td></td><td>ND</td><td></td><td></td><td>ND</td><td></td><td>ND</td><td></td><td>ND</td><td>_</td></dl<>			ND			ND	N				ND				ND				ND		ND	ND				ND			ND		ND		ND	_
1,1-Dichloroethene	ND	ND	<dl< td=""><td></td><td></td><td>ND</td><td>ND</td><td></td><td>ND</td><td>N N</td><td></td><td></td><td></td><td>ND</td><td></td><td></td><td></td><td>ND</td><td></td><td></td><td></td><td>ND</td><td></td><td>ND</td><td>ND</td><td></td><td></td><td></td><td>ND</td><td></td><td></td><td>ND</td><td></td><td>ND</td><td></td><td>ND</td><td>\neg</td></dl<>			ND	ND		ND	N N				ND				ND				ND		ND	ND				ND			ND		ND		ND	\neg
cis-1,2-Dichloroethene	ND	0.68	1.63			ND	ND		ND	1.				ND				ND				ND		ND	ND	ND			ND	ND		ND		ND		ND	
trans-1,2-Dichloroethene	ND	ND	ND			ND	ND		ND		D			ND				ND				ND		ND	ND	ND			ND	ND		ND		ND		ND	
1,2-Dichloropropane	ND	ND	ND			ND	ND		ND		D			ND				ND				ND		ND	ND	ND			ND	ND		ND		ND		ND	
1,3-Dichloropropane	ND	ND	0.10			ND	ND		ND		D			ND				ND				ND		ND	ND	ND		ND	ND	ND		ND		ND		ND	
2,2-Dichloropropane 1.1-Dichloropropene	ND ND	ND ND	ND ND	-	-	ND ND	ND ND		ND ND		D D	_	_	ND ND				ND ND				ND ND		ND ND	ND ND	ND ND		ND ND	ND ND	ND ND		ND ND		ND ND		ND ND	
cis-1-3-Dichloropropene	ND	ND	ND	-	1	ND	ND		ND		D	+		ND				ND	_			ND		ND	ND	ND		ND	ND	ND		ND		ND		ND	-
trans-1,3-Dichloropropene	ND	ND	ND			ND	ND		ND	N N		+		ND				ND				ND		ND	ND	ND			ND			ND		ND		ND	-
Ethylbenzene	ND	ND	ND			ND	ND		ND		D			ND				ND				ND		ND	ND	ND			ND			ND		ND		ND	-
2-Hexanone																																					
Hexachlorobutadiene	ND	ND	ND			ND	ND		ND	N	D			ND				ND				ND		ND	ND	ND		ND	ND	ND	ND	ND		ND		ND	
lodomethane																																					
Isopropylbenzene	ND		ND ND			ND ND			ND	N				ND				ND				ND		ND ND	ND ND				ND ND			ND		ND		ND	_
p-Isopropyltoluene Methylene chloride	ND 3.62	ND ND	<dl< td=""><td></td><td>-</td><td>1.0</td><td></td><td>_</td><td>ND ND</td><td>N N</td><td></td><td>-</td><td>_</td><td>ND ND</td><td></td><td></td><td></td><td>ND ND</td><td></td><td></td><td></td><td>ND ND</td><td></td><td>ND</td><td>ND ND</td><td>ND</td><td></td><td></td><td>ND ND</td><td></td><td></td><td>ND ND</td><td></td><td>ND ND</td><td></td><td>ND ND</td><td>-</td></dl<>		-	1.0		_	ND ND	N N		-	_	ND ND				ND ND				ND ND		ND	ND ND	ND			ND ND			ND ND		ND ND		ND ND	-
4-Methyl-2-pentanone	3.02	IND	NDL	1	1	1.0	3.0		IND	N		+	+	IND				IND			1	IND	1 - 1	IND	IND	IND		IND	IND	ND	IND	טא	1	IND		ND	-
Naphthalene	ND	ND	<dl< td=""><td>1</td><td>1</td><td>ND</td><td>ND</td><td></td><td>ND</td><td>N</td><td>D</td><td>1</td><td></td><td>ND</td><td></td><td></td><td></td><td>ND</td><td></td><td></td><td>1 1</td><td>ND</td><td></td><td>ND</td><td>ND</td><td>ND</td><td></td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>1</td><td>ND</td><td></td><td>ND</td><td>\neg</td></dl<>	1	1	ND	ND		ND	N	D	1		ND				ND			1 1	ND		ND	ND	ND		ND	ND	ND	ND	ND	1	ND		ND	\neg
n-Propylbenzene	ND	ND	ND			ND	ND		ND		D	1		ND				ND				ND		ND	ND	ND		ND	ND	ND		ND	1	ND		ND	\neg
Styrene	ND	ND	ND			ND	ND		ND	N	D			ND				ND				ND		ND	ND	ND			ND	ND	ND	ND		ND		ND	
1,1,1,2-Tetrachloroethane	ND	ND	ND			ND	ND		ND	N				ND				ND				ND		ND	ND	ND		ND	ND	ND		ND		ND		ND	
1,1,2,2-Tetrachloroethane	ND	ND	ND	1	1	ND	ND		ND	N		4—	\perp	ND				ND				ND	\sqcup	ND	ND	ND		ND	ND	ND		ND		ND		ND	_
Tetrachloroethene Toluene	ND	ND	ND <di< td=""><td>-</td><td>1</td><td>ND</td><td>ND</td><td>\vdash</td><td>ND</td><td>N 1</td><td></td><td>+</td><td>-</td><td>ND</td><td></td><td></td><td></td><td>ND</td><td></td><td></td><td>-</td><td>ND</td><td></td><td>ND</td><td>ND</td><td>DN</td><td></td><td>ND ND</td><td>ND</td><td>ND</td><td></td><td>ND</td><td>-</td><td>ND</td><td></td><td>ND</td><td>4</td></di<>	-	1	ND	ND	\vdash	ND	N 1		+	-	ND				ND			-	ND		ND	ND	DN		ND ND	ND	ND		ND	-	ND		ND	4
Toluene 1,2,3-Trichlorobenzene	ND ND	ND ND	<dl ND</dl 	+	1	ND ND	ND ND	\vdash	ND ND	1. N		+-	-	ND ND			-	ND ND			\vdash	ND ND		ND ND	ND ND	ND		ND ND	ND ND	ND ND		ND ND		ND ND	+	ND ND	\dashv
1,2,4-Trichlorobenzene	ND	ND	ND	+	1	ND	ND	\vdash	ND	N N		+-	\vdash	ND			 	ND			\vdash	ND		ND	ND	ND		ND	ND			ND		ND	+	ND	\dashv
1,1,1-Trichloroethane	ND	ND	<dl< td=""><td>1</td><td></td><td>ND</td><td>ND</td><td> </td><td>ND</td><td>N</td><td></td><td>1</td><td></td><td>ND</td><td></td><td></td><td></td><td>ND</td><td></td><td></td><td>1 1</td><td>ND</td><td></td><td>ND</td><td>ND</td><td>ND</td><td></td><td></td><td>ND</td><td></td><td></td><td>ND</td><td></td><td>ND</td><td></td><td>ND</td><td>\dashv</td></dl<>	1		ND	ND		ND	N		1		ND				ND			1 1	ND		ND	ND	ND			ND			ND		ND		ND	\dashv
1,1,2-Trichloroethane	ND	ND	<dl< td=""><td></td><td></td><td>ND</td><td>ND</td><td></td><td>ND</td><td></td><td>D</td><td></td><td></td><td>ND</td><td></td><td></td><td></td><td>ND</td><td></td><td></td><td></td><td>ND</td><td></td><td>ND</td><td>ND</td><td>ND</td><td></td><td>ND</td><td>ND</td><td>ND</td><td></td><td>ND</td><td></td><td>ND</td><td></td><td>ND</td><td>\neg</td></dl<>			ND	ND		ND		D			ND				ND				ND		ND	ND	ND		ND	ND	ND		ND		ND		ND	\neg
Trichloroethene	<dl< td=""><td>ND</td><td>0.73</td><td></td><td></td><td>ND</td><td>ND</td><td></td><td>ND</td><td>0.</td><td></td><td></td><td></td><td>ND</td><td></td><td></td><td></td><td>ND</td><td></td><td></td><td></td><td>ND</td><td></td><td>ND</td><td>ND</td><td>ND</td><td></td><td></td><td>ND</td><td></td><td></td><td>ND</td><td></td><td>ND</td><td></td><td>ND</td><td></td></dl<>	ND	0.73			ND	ND		ND	0.				ND				ND				ND		ND	ND	ND			ND			ND		ND		ND	
Trichlorofluoromethane	ND	ND	ND			ND	ND		ND	N				ND				ND				ND		ND	ND	ND		ND	ND			ND		ND		ND	
1,2,3-Trichloropropane	ND	ND	ND			ND	ND	ļ	ND		D	4	1	ND				ND				ND		ND	ND	ND		ND	ND	ND		ND		ND		ND	_
1,2,4-Trimethylbenzene	ND	ND	ND	-	1	ND	ND	\vdash	ND		D	+	-	ND				ND			-	ND		ND	ND	д			ND	ND		ND		ND		ND	_
1,3,5-Trimethylbenzene Vinyl acetate	ND	ND	ND	1	1	ND	ND		ND	N	D	+	\vdash	ND				ND			-	ND	-	ND	ND	ND	<u> </u>	ND	ND	ND	ND	ND	1	ND		ND	_
Vinyl acetate Vinyl chloride	ND	ND	<dl< td=""><td>1</td><td>1</td><td>ND</td><td>ND</td><td></td><td>ND</td><td>N.</td><td>D</td><td>+</td><td>+</td><td>ND</td><td></td><td></td><td></td><td>ND</td><td></td><td></td><td>1</td><td>ND</td><td>+ +</td><td>ND</td><td>ND</td><td>ND</td><td>-</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>+</td><td>ND</td><td>- 1</td><td>ND</td><td>\dashv</td></dl<>	1	1	ND	ND		ND	N.	D	+	+	ND				ND			1	ND	+ +	ND	ND	ND	-	ND	ND	ND	ND	ND	+	ND	- 1	ND	\dashv
o-Xvlene	IND	IND	ND	1	1	IND	ND		ND		D	+	\vdash	ND			1	ND	-			ND		ND	ND	ND			ND	ND		ND		ND	- 1	ND	-
p-Xylene & m-Xylene	† †		ND						ND	0.		1		ND				ND				ND		ND					ND			ND		ND		ND	\neg
										•	•			•							•													•			

	0/00	12/00	2/01	6 (01	0/01	12/01	2 /02	6/02	0./02	12/02	2/02	6/02	9/93 12/9	2 /0/	6/04	0/04	12/04	2 /05	6/05	0/05	12/05	4/06	0./06	2/07	0/07	2/00	0/00 3	/00	0/00	2/00	0./00	2 /01	0/01	2/02 6	0/02	2/0:
PARAMETER METALS (mg/L)	9/90	12/90	3/31	0/91	3/31	12/91	3/32	0/92	3/32	12/32	3/93	0/93	3/33 12/3	35 3/34	0/34	3/34	12/34	3/33	0/93	3/33	12/93	4/30	9/90	3/3/	3/31	3/30	3/30 3	/ 33	3/33	3/00	3/00	3/01	3/01	3/02 10	3/02	3/03
Aluminum	ND	1	ı			1	r -	1 1	31.1				-	1		1	ı	1	ı		1				0.15		г г	- 1	0.12		ND	1	$\overline{}$	$\overline{}$	$\overline{}$	_
Calcium		13.4	21.7	+	+	14.4	13.5	1	28.8	14.2	ND	-	100	9.94	26.6	_	20	18.3		_	1	16.3	+-+	14.6	13.6	21.5	1			174	33.4	22.3	+	17.3	-	8.01
Iron	0.06		2.4	_	+	0.07	ND	1		0.54		-	0.03		0.79		2.03			_		0.05			0.44							0.89		0.15		0.46
Magnesium	2	2.7	6.8	1	1	3.7	3.9	1	11.6				5.8		7.07		5.83					4.26		3.98		6.02			6.52	4.65		6.8		4.78		2.17
Magnesiani	0.26		2	_	+		0.01		23.2			-	0.35		0.25	_	0.94			_		0.01			0.06						0.95			0.02		0.0
Potassium	1.1	0.33	1.7	_	+	1.6	1.5		5.45	1.71		-	1.59		1.43	-	1.85				-	1 47		1.26		1 71				1.5	2.21	1.64		1.26		1.8
Sodium	ND		5.4	1	1	2.9		1		1.94			2.62		4.04	1		2.78				2.15		1.93		2.95				1.99		3.37		2.39		1.3
PARAMETER (mg/l) TOXIC METALS	IND	1.5	3.7			2.3	2.0		ر.ر	1.34	7.03		2.02	1.17	7.07		3.0	2.70		<u> </u>		2.13		1.95	0.57	2.33	<u> </u>		2.30	1.33	J.2	3.37	-	2.33	-	1.3
Antimony	ND	_	_	1	_	_	_	1	0.03					_	_	_	_	_	_	_					ND			_	ND		ND	_		$\overline{}$	$\overline{}$	-
Arsenic	<dl< td=""><td></td><td></td><td>1</td><td>1</td><td>1</td><td></td><td></td><td>0.03</td><td></td><td></td><td></td><td></td><td>-</td><td>+</td><td>1</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>ND</td><td></td><td></td><td></td><td>ND</td><td></td><td>ND</td><td>1</td><td>+</td><td>-+</td><td>-+</td><td>$\overline{}$</td></dl<>			1	1	1			0.03					-	+	1									ND				ND		ND	1	+	-+	-+	$\overline{}$
Barium	ND			+	+	 			0.37			-		+	+	-					-		-		ND		-		0.03		0.04	_	+	-+	\rightarrow	-
Bervllium	ND ND	-	-	 	 	1	-	1	0.37		_	-	_	+-	+	1	-	-	-	-	\vdash		-		ND				ND	_	ND	+	+	-+	\rightarrow	_
Cadmium	ND	ND	ND	 	 	ND	ND	1	ND	ND	ND	-	ND	ND	ND	1	ND	ND	-	-	\vdash	ND	-	ND	ND	ND		ND	ND	ND	ND	ND	+	ND	\rightarrow	N
Chromium (Total)	ND ND	ND	IND	 	 	ND	ND	1	0.04	IND	IND	-	ND	ND	ND	 	IND	IND	-	-	\vdash	IND	1	IND	ND	ND	\vdash	טאו	ND	ND	ND	IND	\mapsto	IND	$\boldsymbol{-}$	INI
Copper	ND			+	+	 			ND			-		+	+	-					-		-		ND		-		ND		ND	_	+	-+	\rightarrow	$\overline{}$
Lead	ND	<dl< td=""><td><dl< td=""><td>1</td><td> </td><td>ND</td><td>0.040</td><td></td><td>0.018</td><td>ND</td><td>0.007</td><td>-</td><td>0.00</td><td>2 ND</td><td>0.000</td><td>-</td><td>0.006</td><td>ND</td><td></td><td>-</td><td>-</td><td>ND</td><td>-</td><td>0.002</td><td>ND</td><td>ND</td><td></td><td>ND</td><td>0</td><td>ND</td><td>0.01</td><td>0</td><td>+</td><td>ND</td><td>-</td><td>N</td></dl<></td></dl<>	<dl< td=""><td>1</td><td> </td><td>ND</td><td>0.040</td><td></td><td>0.018</td><td>ND</td><td>0.007</td><td>-</td><td>0.00</td><td>2 ND</td><td>0.000</td><td>-</td><td>0.006</td><td>ND</td><td></td><td>-</td><td>-</td><td>ND</td><td>-</td><td>0.002</td><td>ND</td><td>ND</td><td></td><td>ND</td><td>0</td><td>ND</td><td>0.01</td><td>0</td><td>+</td><td>ND</td><td>-</td><td>N</td></dl<>	1	 	ND	0.040		0.018	ND	0.007	-	0.00	2 ND	0.000	-	0.006	ND		-	-	ND	-	0.002	ND	ND		ND	0	ND	0.01	0	+	ND	-	N
Mercury	ND ND	<dl< td=""><td><dl< td=""><td>1</td><td> </td><td>ND</td><td>0.040</td><td></td><td>ND</td><td>ND</td><td>0.007</td><td>-</td><td>0.00</td><td>Z ND</td><td>0.002</td><td>-</td><td>0.006</td><td>ND</td><td></td><td>-</td><td>-</td><td>ND</td><td>-</td><td>0.002</td><td>ND</td><td>ND</td><td></td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>U</td><td>+</td><td>ND</td><td>-</td><td>IN</td></dl<></td></dl<>	<dl< td=""><td>1</td><td> </td><td>ND</td><td>0.040</td><td></td><td>ND</td><td>ND</td><td>0.007</td><td>-</td><td>0.00</td><td>Z ND</td><td>0.002</td><td>-</td><td>0.006</td><td>ND</td><td></td><td>-</td><td>-</td><td>ND</td><td>-</td><td>0.002</td><td>ND</td><td>ND</td><td></td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>U</td><td>+</td><td>ND</td><td>-</td><td>IN</td></dl<>	1	 	ND	0.040		ND	ND	0.007	-	0.00	Z ND	0.002	-	0.006	ND		-	-	ND	-	0.002	ND	ND		ND	ND	ND	ND	U	+	ND	-	IN
Nickel	0.15			1	 	+		-	0.097			-		+	+	-				-	-		-		ND				ND		ND	_	+	-+	-	_
	ND	ND		-	-	ND						-		_	4	_				-	_		-			_	_							-	\rightarrow	_
Selenium	ND ND	ND		-	-	ND			ND			-		_	4	_				-	_		-		ND	_	_		ND ND		ND			-	\rightarrow	_
Silver				_		1		-	ND					_	_	-							-		ND						ND	-	+-	-	\rightarrow	_
Thallium Zinc	<dl ND</dl 			_		1		-	ND					_	_	-							-		ND ND				ND		ND	-	+-	-	\rightarrow	_
Zinc AMETER (mg/l) LEACHATE INDICATO								-	0.13			-									-		-		ND		-	_	ND		ND				_	
AMETER (mg/l) LEACHATE INDICATO Alkalinity	64	F 7	85	_	_	28	38	_	106	44.3	07.0	_	55	20.2	96.3	_	63.6	62.0	_	_	_	39.8	_	44.9	21.0	93	- 13	4.6	157	50.7	117	70	_	49.3	—	21.
	4	5/	85	_		28	38	-		44.3	97.6		55	30.2	96.3	-	63.6	63.9				39.8	-	44.9		93	2	4.6	ND	50.7		70	+-	49.3	\rightarrow	21.
Biochemical Oxygen Demand Boron	ND			<u> </u>	<u> </u>	1		1	ND 0.07					-	-	1									ND ND				0.06		ND 0.09		+	-+	\rightarrow	_
				1	 			-			0.7	-		110		-				-	-		-				—				10.7		+		-	
Chemical Oxygen Demand	10.1	11	11.4	_		ND	ND	-	46	ND	8.7		ND	ND	ND	-	ND	ND				ND	-	ND	34.6	ND	1	0.6	ND	ND		ND	+-	ND	\rightarrow	N
Chromium (Hexavalent)	ND			-	-				ND			-		_	4	_	4.44	2.70		-	_	110	-		ND	2.76			ND	2.00	ND	4.00		2.74	\rightarrow	
Chloride	ND				1	1			ND					_	1		4.44	3./8				ND		1.97		3.76		.44		2.06		4.02		2.74	\rightarrow	N
Color (PCU units)	19			-	-		0.10		50	0.10	0.72	-	0.55	0.13		_	2.20	0.21		-	_		-		100	0.41	—	0.0	20 ND	0.25	45 0.86	0.50		0.34	\rightarrow	
Nitrate-Nitrite	0.3	<dl< td=""><td><dl< td=""><td>-</td><td>-</td><td></td><td>0.19</td><td></td><td>1.8</td><td>0.13</td><td></td><td>-</td><td></td><td>0.13</td><td></td><td>_</td><td>2.28</td><td></td><td></td><td>-</td><td></td><td>0.500</td><td>-</td><td>0.442</td><td></td><td>0.41</td><td></td><td>.86</td><td></td><td></td><td></td><td>0.58</td><td></td><td></td><td>\rightarrow</td><td>0.2</td></dl<></td></dl<>	<dl< td=""><td>-</td><td>-</td><td></td><td>0.19</td><td></td><td>1.8</td><td>0.13</td><td></td><td>-</td><td></td><td>0.13</td><td></td><td>_</td><td>2.28</td><td></td><td></td><td>-</td><td></td><td>0.500</td><td>-</td><td>0.442</td><td></td><td>0.41</td><td></td><td>.86</td><td></td><td></td><td></td><td>0.58</td><td></td><td></td><td>\rightarrow</td><td>0.2</td></dl<>	-	-		0.19		1.8	0.13		-		0.13		_	2.28			-		0.500	-	0.442		0.41		.86				0.58			\rightarrow	0.2
Nitrogen-Ammonia	<dl< td=""><td><dl< td=""><td><dl< td=""><td><u> </u></td><td></td><td>0.2</td><td>0.1</td><td></td><td>0.04</td><td>0.54</td><td></td><td></td><td>0.54</td><td></td><td>0.53</td><td></td><td>0.32</td><td></td><td></td><td></td><td></td><td>0.06</td><td></td><td>0.1</td><td></td><td>0.51</td><td></td><td></td><td></td><td></td><td></td><td>0.3</td><td></td><td>0.29</td><td>_</td><td>N</td></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""><td><u> </u></td><td></td><td>0.2</td><td>0.1</td><td></td><td>0.04</td><td>0.54</td><td></td><td></td><td>0.54</td><td></td><td>0.53</td><td></td><td>0.32</td><td></td><td></td><td></td><td></td><td>0.06</td><td></td><td>0.1</td><td></td><td>0.51</td><td></td><td></td><td></td><td></td><td></td><td>0.3</td><td></td><td>0.29</td><td>_</td><td>N</td></dl<></td></dl<>	<dl< td=""><td><u> </u></td><td></td><td>0.2</td><td>0.1</td><td></td><td>0.04</td><td>0.54</td><td></td><td></td><td>0.54</td><td></td><td>0.53</td><td></td><td>0.32</td><td></td><td></td><td></td><td></td><td>0.06</td><td></td><td>0.1</td><td></td><td>0.51</td><td></td><td></td><td></td><td></td><td></td><td>0.3</td><td></td><td>0.29</td><td>_</td><td>N</td></dl<>	<u> </u>		0.2	0.1		0.04	0.54			0.54		0.53		0.32					0.06		0.1		0.51						0.3		0.29	_	N
Phenols	0.001	ND	<dl< td=""><td></td><td>1</td><td>ND</td><td>ND</td><td></td><td>ND</td><td>ND</td><td>ND</td><td></td><td>ND</td><td></td><td>0.006</td><td></td><td>ND</td><td>ND</td><td></td><td></td><td></td><td>ND</td><td></td><td>0.005</td><td></td><td>ND</td><td></td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td></td><td>ND</td><td></td><td>N</td></dl<>		1	ND	ND		ND	ND	ND		ND		0.006		ND	ND				ND		0.005		ND		ND	ND	ND	ND	ND		ND		N
Sulfate	22.1	5.2	16.2			40	15.0		13	15	23		19		13		68					13		14	16	8.1		21	30	18	23	13		14.8		6.4
Total Organic Carbon (TOC)	5.6	5	4			3	2.0		8.9	5.1	4.6		4	3.8			3.4					3.9		2.9	2.4	3.6		3.8	4.3	2.9	4.9	3		3.2		2.
Total Dissolved Solids (TDS)		254	144			110			76	48	128		123		126	Ь	140					86		58	100	110			103	87	151	118		96		6
Total Hardness	23	44.6	82			51	51.0		101	55	127		116	64	112		73.9	66.4				58.2		52.8		78.5	4	7.6		62.6	122	83.7	لــــــــــــــــــــــــــــــــــــــ	62.9		28.
Total Kjeldahl Nitrogen (TKN)	0.4								1.5																1.55				ND		3.42		تــــــــــــــــــــــــــــــــــــــ	ــــــــــــــــــــــــــــــــــــــ		
Turbidity (NTU units)	<dl< td=""><td>18</td><td>9</td><td></td><td></td><td>0.4</td><td>1.0</td><td></td><td></td><td>7.9</td><td>175</td><td></td><td>5</td><td>2.6</td><td>0.52</td><td></td><td>12</td><td>2.8</td><td></td><td></td><td></td><td>1</td><td></td><td>0.56</td><td>3.4</td><td>4.3</td><td></td><td>5.5</td><td>0.59</td><td>0.81</td><td>2.7</td><td>2.3</td><td>لــــــــــــــــــــــــــــــــــــــ</td><td>0.38</td><td></td><td>8.8</td></dl<>	18	9			0.4	1.0			7.9	175		5	2.6	0.52		12	2.8				1		0.56	3.4	4.3		5.5	0.59	0.81	2.7	2.3	لــــــــــــــــــــــــــــــــــــــ	0.38		8.8
Cvanide	0.013			1	1				ND																ND				ND		ND					

																																		NYS
	3/04	9/04	3/05	9/05	3/06	11/06	4/07	10/07	4/08	10/08	4/09	9/09	4/10	9/10	5/11	10/11	5/12	10/12	6/13	10/13	6/14	10/14	6/15	11/15	5/16	10/16	3/17	10/17	5/18	9/18	4/19	9/19	MEAN	STD
PARAMETER VOLATILES (ug/L)																																		
Acetone				ND	ND	ND	3.1		2.0	ND		ND			ND	ND		ND	ND		ND		ND	ND		ND	ND	ND	2.0	ND	ND	ND	0.49	50
Acrylonitrile				ND	_	ND	ND	ND	ND	ND	ND		ND	0.00	5																			
Benzene	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND		ND ND	ND	0.00	1.0 5.0																
Bromobenzene Bromochloromethane	ND	ND	ND ND	ND	ND	ND	ND ND	ND	ND	ND ND	ND	ND	ND	1	ND	ND	ND	ND	ND	ND		ND	ND	ND.	ND	ND.	ND.	ND.	ND .	ND.	ND.	ND.	0.00	5.0
Bromodichloromethane	ND	ND	ND		ND	ND	ND		ND	ND	ND		ND	1	ND	ND		ND	ND	ND		ND	0.00	50.0										
Bromoform	ND	ND	ND		ND	ND	ND		ND	ND	ND		ND		ND	ND		ND	ND	ND			ND	0.00	50.0									
Bromomethane	ND		ND	ND	ND	ND	0.34	ND	0.01	5.0																								
2-Butanone				ND		ND	0.00	50.0																										
n-Butylbenzene	ND		ND	-	-	-	-	-	-		-	-	0.00	5.0																				
sec-Butylbenzene	ND		ND			-							0.00	5.0																				
tert-Butylbenzene	ND		ND	ND	ND	ND	ND	ND		ND	ND		-	-					-	-	0.00	5.0												
Carbon disulfide				ND		ND	ND	ND	ND	0.33	ND	0.01	60.0																					
Carbon tetrachloride	ND		ND	0.00	5.0																													
Chlorobenzene	ND	_	ND	0.00	5.0																													
Chloroethane Chloroform	ND ND	ND	ND ND	ND	ND ND	ND	ND	ND	ND	ND	ND ND	ND	ND		ND	ND	ND ND	ND ND	ND ND	DN	ND	ND	DN	ND	ND	ND	ND	ND	ND ND	ND ND	ND ND	ND	0.00	7.0
	ND	ND	ND	ND ND	ND	ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND	1	ND	ND ND	ND	ND	ND	ND		ND	ND	ND ND	ND ND	ND ND	ND ND	ND	ND	ND	ND	ND ND		5.0
Chloromethane 2-Chlorotoluene	ND	ND ND	ND ND		ND	ND ND	ND ND	ND ND	ND ND	ND	ND	ND	ND ND	╁	ND ND	ND	ND	ND	ND	ND	ND ND	ND ND	ND ND	ND -	ND.	ND -	ND.	ND -	ND -	ND -	ND -	ND -	0.00	5.0
4-Chlorotoluene	ND	t	ND	ND	ND	ND	ND	ND			ND		-		-	-		-			0.00	5.0												
Dibromochloromethane	ND	1	ND		ND	0.00	50.0																											
1,2-Dibromo-3-chloropropane	ND	ND	ND		ND		ND	ND	ND	ND	ND	ND			ND	0.00	0.04																	
1,2-Dibromoethane	ND		ND	ND	ND	ND	ND	ND			ND	0.00	5.0																					
Dibromomethane	ND		ND	0.00	5.0																													
1,2-Dichlorobenzene	ND		ND	0.00	3.0																													
1,3-Dichlorobenzene	ND		ND	ND	ND	ND	ND	ND		ND	ND	•	-		-	-	ND		-		0.00	3.0												
1,4-Dichlorobenzene	ND	ND	ND		ND		ND	ND	ND	ND	ND	ND			ND	0.00	3.0																	
trans-1,4-Dichloro-2-butene				ND		ND	ND	ND	ND	ND	ND		ND	0.00	5.0																			
Dichlorodifluoromethane	ND	_	ND	ND	ND	ND	ND	ND			ND			-	-	-	ND				0.00	5.0												
1,1-Dichloroethane	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND		ND ND	ND	ND	ND ND	ND ND	ND ND			ND ND	ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	0.04	5.0
1,2-Dichloroethane 1,1-Dichloroethene	ND	ND	ND	ND ND	ND	ND	ND ND	ND ND	ND	ND ND	ND	ND	ND	1	ND	ND ND	ND ND	ND	ND	ND			ND	ND ND	ND ND	ND	ND	ND	ND	ND	ND ND	ND ND	0.00	5.0
cis-1.2-Dichloroethene	ND	1	ND	ND	ND	ND	ND	ND			ND	ND ND	ND	0.06	5.0																			
trans-1,2-Dichloroethene	ND	ND	ND			ND	ND		ND	ND	ND			1	ND	ND		ND	ND	ND			ND	0.00	5.0									
1.2-Dichloropropane	ND		ND		ND	ND	ND	ND	ND	ND			ND	0.00	1.0																			
1,3-Dichloropropane	ND		ND	-	-	-			ND	-	-	-	0.00	5.0																				
2,2-Dichloropropane	ND		ND	-	-	-	-	-	ND	-	-	-	0.00	5.0																				
1,1-Dichloropropene	ND		ND			-			ND				0.00	5.0																				
cis-1-3-Dichloropropene	ND		ND	ND	ND	ND	ND	ND		ND	0.00	0.4 *																						
trans-1,3-Dichloropropene	ND		ND	ND	ND	ND	ND	ND		ND	0.00	0.4 *																						
Ethylbenzene	ND		ND	ND	ND	ND	ND	ND		ND	0.00	5.0																						
2-Hexanone				ND		ND	0.00	50.0																										
Hexachlorobutadiene Iodomethane	ND	ND	ND	ND	ND ND	ND	ND	ND	ND	ND	ND ND	ND ND	ND ND		ND	ND ND	ND ND	ND ND	ND	ND ND	ND	ND ND	ND	- ND	ND.	ND	- ND	- ND	- ND	ND	ND	- ND	0.00	0.5 5.0
Isopropylbenzene	ND	ND	ND	ND ND		ND	ND ND	ND	ND	ND ND		ND	ND	1	ND ND		ND	ND	ND ND	ND	ND ND	ND	ND ND	ND	0.00	5.0								
p-Isopropylberizene p-Isopropyltoluene	ND	ND	ND	ND	ND ND	ND ND	ND	ND ND	ND ND	ND	ND ND	ND	ND	1	ND	ND ND	ND	-		-				-	-		0.00	5.0						
Methylene chloride	ND	1	ND	ND.	ND	ND	ND	ND.	ND	ND	0.00	5.0																						
4-Methyl-2-pentanone	1	.,,,	.,,,,	ND	1 1	ND	ND	ND	ND	ND	ND		ND	0.00	10 **																			
Naphthalene	ND	t t	ND	ND	ND	ND	ND	ND		ND	ND	-		-	-	-	-	-	-	-	0.00	10 **												
n-Propylbenzene	ND		ND	-	-	-	-	-	-		-	-	0.00	5.0																				
Styrene	ND		ND	0.00	5.0																													
1,1,1,2-Tetrachloroethane	ND		ND	ND	ND	ND	ND	ND		ND	0.00	5.0																						
1,1,2,2-Tetrachloroethane	ND		ND	ND	ND	ND	ND	ND		ND	0.00	5.0																						
Tetrachloroethene	ND		ND	0.00	5.0																													
Toluene	ND	₩	ND	0.02	5.0																													
1,2,3-Trichlorobenzene	ND	₩	ND	-	-	-	•	-	-	-		0.00	5.0																					
1,2,4-Trichlorobenzene	ND ND	\vdash	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND		ND ND	ND ND	- ND	ND	- ND	- ND	- ND	- ND	ND	- ND	- ND	0.00	5.0												
1,1,1-Trichloroethane	ND	ND	ND ND	ND	ND	ND	ND ND	ND ND	ND	ND ND	ND	ND	ND	\vdash	ND	ND	ND ND	ND	ND	ND		ND ND	ND	ND	ND	ND	ND	ND	ND ND	ND ND	ND ND	ND ND	0.00	1.0
Trichloroethane	ND		ND	ND	ND		ND	╁	ND	ND	ND	ND	ND	ND			ND	ND ND	0.00	5.0														
Trichlorofluoromethane	ND		ND	ND	ND	ND	ND	 	ND	ND	ND	ND	ND	ND		ND	ND ND	ND	0.00	5.0														
1.2.3-Trichloropropane	ND		ND	ND	ND	ND	ND	ND		ND	0.00	0.04																						
1,2,4-Trimethylbenzene	ND	ND	ND		ND	ND	ND		ND	ND	ND		ND	1 1	ND	ND		ND	ND	ND			ND	- 1		- 1			-	-	-	-	0.00	5.0
1,3,5-Trimethylbenzene	ND		ND	ND	ND	ND	ND	ND		ND	ND	-	-	-	-	-	-	-	-	-	0.00	5.0												
Vinyl acetate				ND		ND	0.00	0.00																										
Vinyl chloride	ND		ND	0.00	2.0																													
o-Xylene	ND		ND	0.00	5.0																													
p-Xylene & m-Xylene	ND		ND	0.01	5.0																													

1																																		
	2 (0.4	0/04	3/05	0.00	2 /00	11/06	4 (07	10/07	4 (00	10/00	4 /00	0.000	4/10	0/10	F (1.1	10/11	F (12	10/12	6/12	10/12	C /3.4	10/14	C (1)	11/15	F (1)	10/16	2/17	10/17	F (10	0/10	4/10	0/10	MEAN	NYS
PARAMETER METALS (mg/L)	3/04	9/04	3/05	9/05	3/06	11/06	4/07	10/07	4/08	10/08	4/09	9/09	4/10	9/10	5/11	10/11	5/12	10/12	6/13	10/13	6/14	10/14	6/15	11/15	5/16	10/16	3/1/	10/17	5/18	9/18	4/19	9/19	MEAN	STD
,		ND		ND		2.2		,	0.40		0.439				1.2			0.21	1.64	-		0.15	0.15		0.200	ND	0.533	0.222		0.130	0.208		1.27	
Aluminum	21.2	ND	7.5	ND 29.9	22.0	2.3	171	21.2	0.48	34.5		43.1	25.0	1	1.3	22.1	36	0.31	1.64	20.4	- 22	0.15	0.15 25.8	27.0	0.398	ND	0.533	0.233	22.0	0.139	31.2	- 42	1.27	+
Calcium		29.6						21.2	18									42		29.4				27.9	41.3	33.7			33.8	28.6			23.70	
Iron	0.74	0.05		0.06		2.5	1.2	1	0.42		0.405	0.407			1		0.52		1.74	0.24			0.47		0.524				0.655			0.079		0.3
Magnesium	5.68	8	1.8	8.6	6.2	7.5	4.7	5.7	5.2	10.3	12	13.1	11.4	-	2.7	6.6	12.0	12.0	0.107	9.7	11.1	6.9	7.5	8.8	10.3	9.52	5.46	9.45	9.63	7.74	9.16	12.3	9.27	35
Manganese	0.45	0.33					0.34		0.06	0.03		0.222				0.075	0.27						0.192			ND		0.082		0.242	0.375		1.32	0.3
Potassium	1.51	2.4	1.4	2	1.7	2.2		2.1	1.6	1.8		2.38	2.58		1.4	1.6	2	1.7	2.2	ND	ND	1.5	1.8	ND	ND	ND	1.9	2.47		2.45	2.49	2.2	1.77	
Sodium	2.01	3.4	ND	5.2	2.5	3	1.6	2.3	1.8	5	6	- 5	4.3	<u> </u>	ND	1.9	4.6	ND	4.2	3.2	3.2	1.6	1.7	3.0	ND	ND	3.18	3.52	3.61	2.29	2.89	3.89	2.73	20.0
PARAMETER (mg/l) TOXIC METALS																																		
Antimony		ND		ND		ND		ND	ND		ND				ND			ND	ND	-	-	ND	ND		ND	ND	ND	ND		ND	ND	-	0.00	0.003
Arsenic		ND		ND		ND		ND	ND		ND				ND			ND	ND	-		ND	ND	-	ND	ND	ND	ND	-	ND	ND	-	0.00	0.025
Barium		ND		0.02		0.02		0.019	0.01		0.027				0.012			ND	0.027	-	-	0.01	0.011		ND	ND	0.011	0.015		0.01	0.013	-	0.02	1.0
Beryllium		ND		ND		ND		ND	ND		ND				ND			ND	4E-04	-	-	ND	ND		ND	ND	ND	ND		ND	ND	-	0.00	
Cadmium	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.00	0.005
Chromium (Total)		ND		ND		ND		ND	ND		ND				ND			ND	0.001			ND	ND	•	ND	ND	ND	ND		0.0031	ND		0.00	0.05
Copper		ND		ND		ND		ND	ND		ND				ND			ND	ND	-	-	ND	ND		ND	ND	ND	ND		0.0046	ND		0.00	0.2
Lead	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND	ND	0.001	ND	0.002	ND	ND	ND	ND	ND	ND	ND	ND	0.001	ND	ND	ND	ND	0.00	0.025
Mercury		ND		ND		ND		ND	ND		ND				ND			ND	ND	-		ND	ND		ND	ND	ND	7E-05		ND	ND		0.00	0.0007
Nickel		ND		ND		ND		ND	ND		ND				ND			ND	ND		-	ND	ND		ND	ND	0.001	ND		0.0013	0.0059		0.01	0.1
Selenium		ND		ND		ND		ND	ND		ND				ND			ND	ND	-	-	ND	0.003	-	ND	ND	ND	ND	-	ND	ND	-	0.00	0.01
Silver		ND		ND		ND		ND	ND		ND				ND			ND	ND	-	-	ND	ND	-	ND	ND	ND	ND		ND	ND	-	0.00	0.05
Thallium		ND		ND		ND		ND	ND		ND				ND			ND	ND	-	-	ND	ND		ND	ND	ND	ND		ND	ND		0.00	0.0005
Zinc		ND		ND		ND		ND	ND		ND				ND			ND	0.005	-		ND	ND	-	ND	ND	0.001	0.003		ND	0.0054		0.00	2.0
PARAMETER (mg/l) LEACHATE INDICATORS																																		
Alkalinity	65	111	12.2	85.1	69.2	55.1	48.3	67.8	59	132	160	172	145		40.7	71.5	130	150	144	114	141	86.8	90.9	100	136	96	60.2	134	98.6	103	109	145	84.7	
Biochemical Oxygen Demand		ND		ND		ND		ND	ND		ND				ND		ND	6	ND	-		ND	ND	ND	ND	ND	1.2	1.0	7.7	ND	1.0	1.8	0.7	†
Boron		ND		0.06		ND		0.035	ND		0.069				ND			ND	0.07	-		ND	0.04	-	ND	ND	0.018	0.041	-	0.0288	0.0353		0.0	1.0
Chemical Oxygen Demand	9	ND	ND	ND	ND	ND	15.4	ND	ND	ND	ND	ND	12.6		14.6	16.5	ND	ND	9.5	8.1	143	Q	28.6	113		ND	23.4	14	21.6	0.0441	10.2	25.6	7.0	1
Chromium (Hexavalent)		ND		ND		ND		ND	ND		ND				ND			ND	ND	-	-	ND	ND	-	-	ND	0.007	-	-	ND	ND		0.0	0.05
Chloride	1.9	3.2	ND	10.7	2.3	3.3	1.1	2	1.5	7.6		6.24	4 38		ND	1.3	2.61	4.26	2.8	3.8	2.5	ND	ND	2.9	2.47	ND	2.7	3.3	2.9	1.3	1.7	3.7	2.8	250
Color (PCU units)		5		10		25		30	20		ND				80			5	12		-	34	105		15	10	15	-	-	30	5		19.2	15
Nitrate-Nitrite	0.58	0.17	0.21	ND	0.17	0.26		0.23	0.24	ND	0.107				ND	ND	0.228	0.098	ND	ND	ND	ND.	ND	ND	0.23	ND	0.28	0.2	0.39	ND	ND	0.074	0.3	10
Nitrogen-Ammonia	0.1	ND	0.13	ND	ND	ND	0.13	ND	0.12	ND	ND	ND	0.28		ND	ND	ND	ND	ND	ND	ND	ND	0.051	ND	ND	ND	0.1	0.084	0.028	0.058		0.044	0.3	2.0
Phenois	0.002	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	\vdash	ND	ND	.40	ND	ND	ND	ND		0.007		0.006	0.009			0.0051		ND.	0.004	0.0	0.001
Sulfate	15	8.8	3.8	20	12.8	9.1	8.6	17.6	8.3	5.6	4.9		8.21	\vdash		10.1	ND	ND	5.2	11.6		7.5	5.5	10.1	6.65	41.2	5.9	8.7	7.0	6.9	8.6	8.3	13.2	250
Total Organic Carbon (TOC)	2.8	2.3	2.6	2.7	2.6	2.7	3.6	3.2	2.7	3.4	3.1	1.03	1.4	+ +	6.1	2.4	ND	4	3.5	3.6	3	6.1	10.3	3	3.32	4	ND	4.9	15.5	7.5	3.3	4.9	3.9	+
Total Dissolved Solids (TDS)	115	160	41	167	108	72	164	104	90	195	168	166	144	\vdash	43	80	160	170	154	134	152	112	120	128	150	148	98	148	143	113	153	168	119.5	500
Total Hardness	76	ND	26.1		82.4	93.8	62	76.4	66.3	ND	150	160	140	\vdash		82.2		150	131	114		88.7	95.3	106	104	140	60	116	120	80	90	140	84.8	1 300
Total Kieldahl Nitrogen (TKN)	, 0	ND	20.1	ND	02.4	ND	02	ND	ND	ND	ND	100	140	1 1	ND	02.2	ND	ND	ND	114	120	0.49	0.86	100	0.17	0.18	0.48	0.15	0.21	0.31	0.38	0.49	0.3	+
Turbidity (NTU units)	15	2	41.7		9.2	23	171	7.5	3	3.9	21	0	6	_	9	4.3	10.2	6.9	38.4	1.7	0	7	0.80	0.76	17.2	2.10	13.6	46	40.3	1.3	19.7	1.25	17.7	5.0
Cvanide		ND.	71./	ND	5.2	ND	17.1	ND	ND	3.9	0.027	۰	- 0	\vdash	ND	7.3	10.2	ND	ND	1.7	J	ND ND	ND.	0.70	17.2	ND	ND	70	70.3	ND	ND	1.23	0.0	0.2
Cyaniue			l = Anah		orted at		o New V			larde (a		March	and lun	e 1998)		ctandar	de	ND	ND	-	_	ND	ND		_	ND	ND	-		IND	IND		0.0	U.2

																																		9/01				
PARAMETER VOLATILES (ug/L)	9/90	12/90	3/91	6/91	9/91	12/91	3/92	6/92	9/92	12/92	3/93	6/93	9/93	12/93	3/94	6/94	9/94	12/94	3/95	6/95	9/95	12/95	4/96	9/96	3/97	9/97	3/98	9/98	3/99	9/99	3/00	9/00	3/01	9/01	3/02	9/02	3/03	9/03
Acetone Acetone			_	_	_	1				1	1			1	1			1		1			- 1			1		1								-		
Actylonitrile				1	1																		-		-											-		\vdash
Benzene				1	1																															-	-	
Bromobenzene																																				-	-	
Bromochloromethane																																					-	
Bromodichloromethane																																						
Bromoform																																						
Bromomethane																																						<u> </u>
2-Butanone																																						└
n-Butylbenzene																																						<u> </u>
sec-Butylbenzene						<u> </u>																																<u> </u>
tert-Butylbenzene			-	1	1	1																														\longrightarrow		├
Carbon disulfide Carbon tetrachloride			-	1	1	1																														\longrightarrow		├
Chlorobenzene		-	+	+	+	1	-		_					-	-				_	-	_		_		_	-		_		_						\longrightarrow		
Chloroethane		1	+	+	+	1	1												-		-														1			
Chloroform		1	1	+	+	1	1												_		_		-		_											-	-	
Chloromethane			1	1	1	1																			-									1		-	-	1
2-Chlorotoluene			1	1	1	1																			-									1		-	-	1
4-Chlorotoluene				1	1																															$\neg \neg$		
Dibromochloromethane				1	1																															$\neg \neg$		
1,2-Dibromo-3-chloropropane																																						
1,2-Dibromoethane																																						
Dibromomethane																																						
1,2-Dichlorobenzene																																						
1,3-Dichlorobenzene																																						
1,4-Dichlorobenzene																																						
trans-1,4-Dichloro-2-butene																																						
Dichlorodifluoromethane						<u> </u>																																
1,1-Dichloroethane						<u> </u>																																
1,2-Dichloroethane		-	_	-	-	_	-																															<u> </u>
1,1-Dichloroethene cis-1,2-Dichloroethene		-	+	+	+	1	-		_					-	-				_	-	_		_		_	-		_		_						\longrightarrow		
trans-1,2-Dichloroethene		1	+	+	+	1	1												-		-														1			
1,2-Dichloropropane		1	1	+	+	1	1												_		_		-		_											-	-	
1,3-Dichloropropane		1	1	+	+	1	1												_		_		-		_											-	-	
2,2-Dichloropropane				1	1																															-	-	
1,1-Dichloropropene																																						
cis-1-3-Dichloropropene																																						
trans-1,3-Dichloropropene																																						
Ethylbenzene																																						
2-Hexanone																																						
Hexachlorobutadiene						<u> </u>																																
Iodomethane			-	1	1	1	-				—				<u> </u>																			-		∤		
Isopropylbenzene		-	+	1-	1-	1	 				\vdash			-	-							}	_											1		\longrightarrow		←
p-Isopropyltoluene Methylene chloride		-	+	1-	1-	1	1							-	-				-		-		-		-									1	 	\rightarrow		←
4-Methyl-2-pentanone		-	+	+-	+-	1	 				\vdash			—	—							 						1						 	 	\longrightarrow		+
Naphthalene			1	1	1	1																			-									1		-	-	1
n-Propylbenzene			1	1	1	1																			-									1		-	-	1
Styrene																																						
1,1,1,2-Tetrachloroethane																																					-	
1,1,2,2-Tetrachloroethane																																						
Tetrachloroethene																																						
Toluene																																						
1,2,3-Trichlorobenzene																																						
1,2,4-Trichlorobenzene			1	<u> </u>	<u> </u>	1	ļ																														'	ــــــ
1,1,1-Trichloroethane			1	↓	↓	1	<u> </u>							_								<u> </u>												!	L .			ـــــ
1,1,2-Trichloroethane			-	1	1	1	-				 				<u> </u>							 												-		∤		—
Trichloroethene		<u> </u>	1	1	1	1	-		-	-	\vdash		-	<u> </u>	1	-												—		-	-	-	-	-	\vdash			—
Trichlorofluoromethane 1,2,3-Trichloropropane	_	-	1	1	1	1	1		H	-	\vdash		-	-	1	-		\vdash				⊢ ∤						\vdash		H	-		-	-	⊢ ∣	\longrightarrow		├
1,2,3-Trichloropropane 1,2,4-Trimethylbenzene	_	-	1	1	1	1	1		H	-	\vdash		-	-	1	-		\vdash				⊢ ∤						\vdash		H	-		-	-	⊢ ∣	\longrightarrow		├
1,3,5-Trimethylbenzene			1	1	1	1-	1																-											1	-	\dashv		
Vinyl acetate			1	1	1	1-	1																-											1	-	\dashv		
Vinyl chloride			1	1	1	1	 								1																					+		
o-Xylene			1	1	1	1																			-									1		-	-	1
p-Xylene & m-Xylene			1	1	1	1																			-									1		-	-	1
F - 1/2-2-2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -		•			•	•	•						•			•			-		-													•				

						_					_												_		_													
1	0/00	12/00	2/04	6/04	0/01	12/01	2/02	6/02	0/02	12/02	2/02	6102	0/02	12/02	2/04	610.4	0/04	12/04	2/05	CIOE	0/05	12/05	4/06	0/06	2/07	0/07	2/00	0/00	2/00	0/00	2/00	0/00	2/04	0/04	3/02	0/02	2/02	0/02
PARAMETER METALS (mg/L)	9/90	12/30	3/91	0/91	3/31	12/91	3/32	0/32	3/32	12/32	3/33	0/93	3/33	12/93	3/34	0/34	3/34	12/34	3/93	0/93	3/33	12/93	4/30	3/30	3/9/	3/3/	3/30	3/30	3/99	3/33	3/00	3/00	3/01	9/01	3/02	3/02	3/03	9/03
Aluminum			_	Т	Т	_	т —	Т	Т	Т	_									$\overline{}$																		
Calcium			1	1	1	1					1											-				- 1												
Iron			1	1	1		1	1	1	1																												
Magnesium			1	1	1	1					1											-				- 1												
Manganese			1	1	1		1	1	1	1																												
Potassium			1	1	1	1					1											-				- 1												
Sodium			1	1	1	1					1							- 1				-				- 1												
PARAMETER (mg/l) TOXIC METALS				1	1																																	
Antimony			1	1	1	1	1	1	1	1	1	1	1	1				- 1				- 1				- 1						1	1			- 1		
Arsenic			1	1	1		1	1	1	1																												
Barium			1	1	1	1					1							- 1				-				- 1												
Beryllium			1	1	1		1	1	1	1																												
Cadmium			1	†	†		1	t		t										+				t														
Chromium (Total)			1	1	1	1	1	1	1	1	1											-				-												
Copper			1	1	1	1	1	1	1	1	1											-				-												
Lead			1	1	1	1	1	t —	1	t —	1							- 1			- 1	-+	- 1		- 1	- +												
Mercury			1	1	1	1	1	t —	t —	t —	1							- 1			- 1	-+	- 1		- 1	- +												
Nickel			1	1	1		1	1	1	1																												
Selenium			1	+	+	1	+	1	1	1												-+																
Silver			1	+	+	1	+	1	1	1												-+																
Thallium			+	+	+	+	+	-	1	-	+	-	-	-	_		\vdash	-			_	-+	_		_			\vdash				-	_					
Zinc			1	+	+	1	+	1	1	1												-+																
PARAMETER (mg/l) LEACHATE INDICATORS				1	1																																	
Alkalinity			1	1	1	1	1	1	1	1	1	1	1	1				Т				- 1				- 1						1	1			- 1		
Biochemical Oxygen Demand																						_																
Boron			1	1	1	1					1											-				- 1												
Chemical Oxygen Demand																						_																
Chromium (Hexavalent)																						_																
Chloride			1	1	1		1	1	1	1																												
Color (PCU units)																						_																
Nitrate-Nitrite			1	1	1		1	1	1	1																												
Nitrogen-Ammonia			1	†	†		1	t		t										+				t														
Phenois				1	1		1	t		t										+				t														
Sulfate			1	1	1	1	1	1	1	1	1											-				-												
Total Organic Carbon (TOC)			1 -	1	1		1	t	1	t																												
Total Dissolved Solids (TDS)			1	1	1	1	1	1	1	1	1											-				-												
Total Hardness			1 -	1	1		1	t	1	t																												
Total Kjeldahl Nitrogen (TKN)			1	†	†		1	t		t										+				t														
Turbidity (NTU units)			1	1	1	1	1	1	1	1	1											-				-												
Cyanide			1	†	†		1	t		t										+				t														
-,				1	1				1																						<u> </u>							
1																																						
I																																						
1																																						
Ì																																						

								40/00								40114	B110				****													NYS STD
PARAMETER VOLATILES (ug/L)	3/04	9/04	3/05	9/05	3/06	11/06	4/07	10/07	4/08	10/08	4/09	9/09	4/10	9/10	5/11	10/11	5/12	10/12	6/13	10/13	6/14	10/14	6/15	11/15	5/16	10/16	3/17	10/17	5/18	9/18	4/19	9/19	MEAN	SID
Acetone	1	1		3.5	ND	ND	2.9	3.1	1.9	5.7	ND	ND	ND	ND	ND	ND	ND	ND	1.6	ND	ND	1.7	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.70345	50.0
Acrylonitrile				ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0	5.0
Benzene				13	ND	ND	1.4	1.5	11	10	0.59	0.7	ND	1.9	1.4	0.86	ND	ND	1.9	ND	7.5	7.2	1.3	ND	ND	ND	ND	ND	1.0	ND	ND	ND	2.11207	1.0
Bromobenzene				ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	-	-			-	-		-	-	0	5.0
Bromochloromethane	1			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0	5.0
Bromodichloromethane	1			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0	50.0
Bromoform Bromomethane	+			ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	0	50.0
2-Butanone	1			ND ND	ND	ND		ND ND	ND	ND	ND	ND	ND	ND		ND ND	ND ND	ND ND	ND	ND ND	ND	ND ND	ND	ND ND	ND ND	ND	ND	ND ND	ND	ND ND		ND	0	50.0
n-Butylbenzene	+			ND	ND	ND		ND	0.48	ND	ND	ND	ND	ND		ND	ND	ND	ND	ND	ND	ND	ND	- IND	-	-		-	·	- IND	- IND	-	0.01655	5.0
sec-Butylbenzene	1			0.47	ND	ND		ND	0.68	0.35	ND	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	-	-	-		-	-	-	-	-	0.05172	5.0
tert-Butylbenzene				ND	ND	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	-	-		-	-	-	-	-	-	0	5.0
Carbon disulfide				ND	ND	ND		ND	ND	ND	ND	ND	ND	ND		ND	ND	ND	ND	ND	ND	0.56	ND	ND		ND	ND	ND	ND	ND		ND	0.01931	60.0
Carbon tetrachloride				ND	ND	ND		ND	ND	ND	ND	ND		ND		ND	ND	ND	ND	ND	ND	ND	ND	ND		ND	ND	ND	ND	ND		ND	0	5.0
Chlorobenzene				13	ND	ND	1.6	1.4	15	12	0.37	0.44		2.2		0.54	ND	3.2	1.6	ND	8.6	9.7	0.87	ND	ND	ND	ND	ND	1.6	ND		ND	2.56345	5.0
Chloroethane	1			2.2	ND	ND	ND	ND	1.6	1.4	ND	0.23	0.26	0.85		ND	ND	ND	0.69	ND	ND	0.92	0.65	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.32621	5.0
Chloroform Chloromethane	+			ND 0.3	ND ND	ND ND	ND ND	ND ND	ND 0.27	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	0.01966	7.0 5.0
Chloromethane 2-Chlorotoluene	 		1	ND	ND ND	ND ND	ND ND	ND ND	0.27 ND	ND ND	ND ND	ND ND	ND ND	ND ND		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND -	ND -	ND.	ND -	ND -	ND.	ND -	ND -	ND -	0.01966	5.0
4-Chlorotoluene	1		1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	-	-	-	-	-	-	_			0	5.0
Dibromochloromethane	1		1	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.44	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.01517	50.0
1,2-Dibromo-3-chloropropane	1		1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND	0.01017	0.04
1,2-Dibromoethane				ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0	5.0
Dibromomethane				ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0	5.0
1,2-Dichlorobenzene				0.58	ND	ND	ND	ND	0.63	0.5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.43	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.07379	3.0
1,3-Dichlorobenzene				ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	-	-			-	ND		-	-	0	3.0
1,4-Dichlorobenzene	1			3.8	ND	ND	0.83	0.68	5	3.7	ND	ND	ND	0.98		ND	ND	ND	0.51	ND	ND	3.2	0.27	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.67897	3.0
trans-1,4-Dichloro-2-butene Dichlorodifluoromethane	 			ND 1.2	ND ND	ND ND	0.37	ND 0.54	ND ND	ND ND	ND ND	ND 0.35	ND ND	ND 0.6	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND	ND	7.6	ND	ND ND	ND	ND	ND	0.36759	5.0
1.1-Dichloroethane	+			6	ND	ND	4.3	5.7	4.6	6.5	13	13	14	2.5	1.4	14	ND ND	ND ND	12	ND ND	ND	4 7	14	ND.	7.9	ND.	11.5	ND	1.4	11.4	ND.	16.6	0.00.00	5.0
1,2-Dichloroethane	+			ND	ND	ND		ND	ND	0.94	ND.	ND.	ND.	ND		ND.	ND	ND	ND.	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND.		ND.	0.03241	0.6
1.1-Dichloroethene	1			ND	ND	ND		ND	ND	ND	ND	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND	0.00759	5.0
cis-1,2-Dichloroethene				3.8	ND	ND	8.4	11	3.2	1.1	18	25	33	10	4.6	20	ND	8.3	41	- 11	ND	ND	54	ND	40	10.1	34.6	ND	5.0	45.5	ND	35.1	14.5759	5.0
trans-1,2-Dichloroethene				0.63	ND	ND	0.36	0.47	0.4	0.4	ND	0.37	0.49	0.43	ND	ND	ND	ND	0.95	ND	ND	0.37	1	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.20241	5.0
1,2-Dichloropropane				ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0	1.0
1,3-Dichloropropane				ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	-	-			-	ND	-	-	-	0	5.0
2,2-Dichloropropane	1			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	-	-			-	ND	⊢	-	-	0	5.0
1,1-Dichloropropene cis-1-3-Dichloropropene	 			ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	- ND	ND	ND	ND	- ND	ND ND	ND	ND	- ND	0	5.0 0.4 *
trans-1,3-Dichloropropene	+			ND	ND	ND	ND	ND ND	ND	ND	ND	ND ND	ND ND	ND	ND	ND ND	ND ND	ND ND	ND	ND ND	ND	ND ND	ND	ND ND	ND ND	ND	ND	ND ND	ND ND	ND	ND	ND	0	0.4
Ethylbenzene	+			10	ND	ND	ND	ND	16	2	ND	ND	ND	ND	ND	ND	ND	ND ND	ND	ND	ND	0.7	ND	ND	ND ND	ND	ND	ND ND	ND	ND	ND	ND	0.98966	5.0
2-Hexanone	1			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.00000	50.0
Hexachlorobutadiene				ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	-	-	-	-	-	-	-	-	-	0	0.5
Iodomethane				ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0	5.0
Isopropylbenzene				1.4	ND	ND	ND	ND	1.8	1.1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	-	-			-	-	-	-		0.14828	5.0
p-Isopropyltoluene				ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	-	-			-	-		-	-	0	5.0
Methylene chloride	1			0.86	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.02966	5.0
4-Methyl-2-pentanone	1			ND 2.E	ND	ND	ND	ND	ND 5.2	ND 3.3	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0 41724	10.0
Naphthalene n-Propylbenzene	 		 	3.5 1.3	ND ND	ND ND	ND ND	ND ND	5.3	3.3	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	H	-		-		-	-	-	+-	0.41724	10.0 5.0
n-Propyibenzene Styrene	+	-	 	ND	ND	ND	ND	ND ND	ND.	ND	ND	ND	ND	ND		ND ND	ND ND	ND ND	ND	ND ND	ND	ND ND	ND	ND.	ND.	ND.	ND.	ND.	ND.	ND	ND.	ND.	0.14828	5.0
1,1,1,2-Tetrachloroethane	1		1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0	5.0
1,1,2,2-Tetrachloroethane	1		1	ND	ND	ND		ND	ND	ND	ND	ND	ND	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND	0	5.0
Tetrachloroethene				ND	ND	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0	5.0
Toluene				1.1	ND	ND		ND	1.1	0.45	ND	ND		ND		ND	ND	ND	ND	ND	ND	0.42	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.10586	5.0
1,2,3-Trichlorobenzene				ND	ND	ND		ND	ND	ND	ND	ND		ND			ND	ND	ND	ND	ND	ND	ND	ND	-	-	-	-	-			-	0	5.0
1,2,4-Trichlorobenzene	1			ND	ND	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		-	-	-	-	-	-	<u> </u>	<u> </u>	0	5.0
1,1,1-Trichloroethane	1	-	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	2.3	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.07931	5.0
1,1,2-Trichloroethane Trichloroethene	1			ND 0.74	ND ND	ND ND	ND 1.3	ND 0.37	ND 0.65	ND 0.31	ND 1.7	ND 1.8	ND ND	ND 2	ND 1.1	ND 2.1	ND ND	ND ND	ND 2.8	ND ND	ND ND	ND 0.32	ND 5.8	ND ND	ND ND	ND ND	ND ND	ND ND	ND 1.1	ND ND	ND ND	ND ND	0.76172	1.0 5.0
Trichloroftuoromethane	+	-	 	0.74 ND	ND ND	ND ND	1.3 ND	0.37 ND	0.65 ND	0.31 ND	ND	1.8 ND	ND ND	ND	ND	Z.I ND	ND ND	ND ND	Z.8 ND	ND ND	ND ND	0.32 ND	5.8 ND	ND ND	ND ND	ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	0.76172	5.0
1.2.3-Trichloropropage	1		1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0	0.04
1,2,4-Trimethylbenzene	1		1	5.4	ND	ND	ND	ND	4.1	1.2	ND	ND	ND	ND		ND	ND	ND	ND	ND	ND	ND	ND	-	-	-	-	-	-	-			0.36897	5.0
1,3,5-Trimethylbenzene				1.2	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	-	-	-	-	-	-	-	-	-	0.04138	5.0
Vinyl acetate				ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0	
Vinyl chloride				3.2	ND	ND	2.2	3.7	4.6	1.3	2.6	4.4	4.8	7.2		3.5	ND	5.6	9.5	5.4	ND	1.2	6.9	ND	ND	ND	4.9	ND	2.2	5	ND	7.1	3.03103	2.0
			1 -	1.3	ND	ND	ND	ND	2.1	0.53	ND	ND	ND	ND	ND	ND	ND	ND	DN	ND	ND	0.4	DN	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.14931	5.0
o-Xylene p-Xylene & m-Xylene				9.3					6.1	2.1				ND			ND	ND	ND	ND	ND		ND			ND			ND					

/04																																	NYS
	9/04	3/05	9/05	3/06	11/06	4/07	10/07	4/08	10/08	4/09	9/09	4/10	9/10	5/11	10/11	5/12	10/12	6/13	10/13	6/14	10/14	6/15	11/15	5/16	10/16	3/17	10/17	5/18	9/18	4/19	9/19	MEAN	STD
			ND		ND		ND	ND		ND			ND	ND			ND	0.008	0	-	ND	ND		ND	ND	ND	0.147	-	0.1	0.067	-	0.01464	
			122	22.4	55.2	39	49.3	112	128	65	68.7	66.6	89.5	80.3	73.4	34	86	67.2	80	122	118	74.2	28.1	70.8	94.3	71.7	32.9	75.7	81.9	69.7	77.8	74.3345	
			15.9	0.53	0.096	9.6	2.3	22.7	32.1	0.241	0.202	0.383	5.31	5.8	0.65	0.88	6	1.79	5.7	10.3	15.1	1.29	ND	0.311	3.04	0.066	0.204	3.44	0.858	3.66	1.43	5.16831	0.3
			23.4	5.9	17.1	12.5	16.4	22.8	26.2	20.4	21.6	21.2	13.2	12	23.7	11	13	23.2	12.7	24.1	25.5	23.7	8.8	20.2	13.8	22.3	9.62	11	25.7	10.3	24.3	17.78	35.0
			12.8	0.065	0.14	7.6	7.3	12.6	13.2	4.82	2.27	3.03	8.24	7.2	7	0.35	9.2	9.08	8.08	11.2	9.62	7.32	0.014	3.69	7.2	2.04	0.0492	5.33	6.42	6.39	7.12	6.18511	0.3
			7.7	1.8	2.3	3.1	3.6	6.7	8	1.83	2.04	2.08	2.9	2.2	2.3	1.8	2.7	2.2	2.8	4.1	4.7	2.3	ND	ND	ND	2.74	2.48	2.03	2.93	2.39	2.3	2.82828	
			21.2	2.7	15.5	5.7	7.5	16.5	21.2	9.6	9.5	9.2	10.5	6.5	9.6	4.2	ND	8.5	7.4	12.4	14.4	9.1	3	9.92	11.6	7.32	3.6	6.02	10.5	6	8.88	9.24276	20.0
										•			•	•	•							•									•		
			ND		ND		ND	ND		ND			ND	ND			ND	ND	-	-	ND	ND	-	ND	ND	ND	ND	-	ND	ND	-	0	0.003
			ND		ND		ND	ND		ND			0.017	0.023			ND	0.005			0.014	0.005		ND	0.0163	ND	ND		ND	0.0141		0.00429	0.025
			0.48	0.011	0.07		0.18	0.54	0.64	0.0892	0.0543		0.18	0.15			ND	0.091		-	0.283	0.072	-	ND	ND	0.0518	0.0147		0.0696	0.12		0.12386	1.0
			ND		ND		ND	ND		ND			ND	ND			ND	0.0002	-	-	ND	ND	-	ND	ND	ND	ND		ND	ND	-	9.1E-06	
			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0	0.005
			ND	ND	ND		ND	0.0055	0.0059	ND	ND		ND	ND			ND	ND			0.001	ND		ND	ND	ND	ND		0.0052	ND		0.0007	0.05
			ND		ND		ND	ND		ND			ND	ND			ND	ND			0.02	ND		ND	ND	ND	ND		ND	ND		0.00091	0.2
			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.001	ND	0.001	ND	ND	0.003	0.002	ND	0.0043	ND	ND	ND	0.0028	ND	ND	ND	0.00049	0.025
			ND	ND	ND		ND	ND	ND	ND	ND		ND				ND	ND			ND	ND		ND	ND	ND	7E-05		ND	0.0003		1.3E-05	0.0007
			ND		ND		ND	ND		ND			ND				ND	0.005			0.005	0.005		ND	ND	0.0036	ND	-	0.0045	0.0144		0.00179	0.1
			ND	ND	ND		ND	ND	ND	ND	ND		ND				ND	0.005		-	0.006	0.006	-	ND	ND	ND	ND		ND	ND	-	0.00071	0.0
			ND	ND	ND		ND	ND	ND	ND	ND		ND				ND	ND			0.001	0.001		ND	ND	ND	ND		ND	ND		8.3E-05	0.05
			ND		ND		ND	ND		ND			ND				ND	ND		-	ND	ND	-	ND	ND	ND	ND		ND	ND	-	0	0.0005
			ND		ND		ND	ND		ND			0.0466				0.063	0.004		-	0.011	ND	-	ND	0.0221	0.0017	0.0021		0.0032	ND	-	0.00732	2.0
										•					•							•									•		
			468	67.3	151	106	208	520	498	267	254	310	263	287	293	130	280	315	290	462	480	300	102	268	293	299	120	203	347	236	292	279.631	
			6		ND		3.2	7.4		ND			ND	ND		ND	ND	4		-	14.2	3	ND	ND	ND	1	1	ND	ND	1.9	1.8	1.8913	
			0.2		ND		0.074	0.17		0.0417			0.0534	0.052			ND	0.07			0.11	0.06		ND	ND	0.0457	0.0411		0.0507	0.039		0.0458	1.0
			67.1	ND	27.3	ND	ND	43.7	48.1	ND	ND		ND	ND	14	ND	24	10.7	14.2	29.8	12.1	12.8	9.7	-	15.1	13	14	27.7	31.8	ND	30	15.8964	
			ND		ND		ND	ND		ND			ND	ND			ND	ND			ND	ND			ND	ND			ND	ND		0	0.05
			39.4	2.3	1.7	5.6	8.9	17	29.1	12	12.6	11.1	23.4	4.1	11.1	2.87	12	9.1	7.5	8.8	12.6	10.2	2.9	8.83	18.6	12.4	3.2	2.9	10.7	2.3	9.3	10.7759	250
			140		ND		60	100		15			0	17.5			5	34		-	380	19		5	10	10		-	5	15	-	37.0682	15
			ND	0.16	ND	0.085	ND	ND	0.3	ND	ND		ND	ND	2.7	0.224	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.0064	0.21	ND	ND	ND	0.049	0.13337	10
			18	0.23	ND	1.9	1.9	9.8	9.8	0.886	0.245	0.245	0.75	0.78	0.43	ND	1.56	0.795	1.35	3.02	8.9	0.674	ND	0.44	1.1	0.19	0.055	0.7	0.3	1	0.61	2.26414	2.0
			ND	ND	0.016	ND	ND	0.0092	0.054	0.0247	ND	ND	ND	ND	ND	ND	ND	ND	0.0174	0.03	0.0527	ND	ND	0.0125	0.0115	ND	0.0025	0.0123	0.0125	0.0141	0.004	0.00943	0.001
			ND	12.8	47.9	7.2	10.9	ND	ND	6.5	7.19	6.83	7.64	8.4	6.4	ND	ND	5.3	4.2	2.6	ND	5.4	10.6	5.78	9.6	6.6	8.6	6.5	5.8	6.3	7.7	7.12897	250
			14.6	2.6	ND	4.2	3.9	13.6	18.4	2.7	2	1.3	4.7	2.6	2.3	ND	ND	4.2	7.3	10.1	14.8	3.1	2.9	1.75	4.9	ND	4.7	13.5	3.1	2.4	2.4	5.10517	
			536	111	436	179	237	446	515	299	296	289	326	278	303	130	350	340	312	494	483	316	115	301	319	287	147	257	299	196	306	307	500
			401	80.2	208	149	191	374	427	250	260	250	280	250	281	130	270	263	252	404	400	283	106	240	310	248	120	260	17.3	200	300	248.431	
			19.8		ND		2.7	ND		ND			1.31	1.3		ND	1.13	1.25		-	9.53	0.86		0.4	1.3	0.32	0.2	0.85	0.38	1.1	1	1.88826	
			22.5	7.4	ND	9.2	9										0	0.3	-	-	7.1	ND	-	0.8	0.8	-	-	0	0	0	-	2.855	5.0
			ND		ND		ND	ND		ND			ND	ND			ND	ND		-	ND	ND		-	ND	ND		-	ND	ND	-	0	0.2
				1122 1539 23.4 15.9 12.8 17.7 21.2 10.0 10.0 10.0 10.0 10.0 10.0 10.0	122 224 15.9 0.53 23.4 5.9 12.8 0.065 7.7 1.8 21.2 2.7 ND ND ND ND ND ND ND	122 22.4 55.2 159 0.53 0.006 128 0.053 0.006 128 0.065 0.14 17.7 1.8 2.3 21.2 2.7 15.5 ND	122 22.4 55.2 30.9 36.5 15.9 0.53 0.09 9.6 23.4 5.9 17.1 12.5 12.8 0.055 0.14 7.6 7.7 1.8 2.3 3.1 21.2 2.7 15.5 5.7 ND	122 224 55.2 39 49.3 49.3 15.9 0.53 0.096 9.6 2.5 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3	122 224 55 2 33 493 112 159 0.53 0.06 9.6 2.3 227 22.4 5.9 17.1 12.5 16.4 22.8 12.8 0.055 0.14 7.6 7.3 12.6 7.7 1.8 2.3 3.1 3.6 6.7 21.2 2.7 15.5 5.7 7.5 16.5 ND	122 22.4 55.2 39 49.3 112 128 15.9 0.53 0.09 9.6 2.3 22.7 32.1 23.4 5.3 17.1 12.5 16.4 22.8 26.2 12.8 0.065 0.14 7.6 7.3 12.6 13.2 7.7 1.8 2.3 3.1 3.6 6.7 8 21.2 2.7 15.5 5.7 7.5 16.5 21.2 ND	122 224 552 39 493 112 128 65 159 0.53 0.096 0.6 2.3 227 321 0.241 23.4 5.9 17.1 12.5 16.4 22.8 26.2 20.4 12.8 0.065 0.14 7.6 7.3 12.6 13.2 4.82 7.7 1.8 2.3 3.1 3.6 6.7 8 1.33 21.2 2.7 15.5 5.7 7.5 16.5 21.2 9.6 ND	122 224 55.2 33 49.3 112 128 65 68.7	122 224 552 39 493 112 128 65 687 66.6 158 0.53 0.53 0.96 0.52 327 321 0.241 0.202 0.333 234 59 17.1 12.5 16.4 22.8 26.2 20.4 21.6 12.8 0.065 0.14 7.6 7.3 12.8 13.2 4.82 2.27 3.03 7.7 1.8 2.3 3.1 3.6 6.7 8 18.3 2.04 2.0 21.2 2.7 15.5 5.7 7.5 16.5 21.2 9.6 9.5 9.2 ND	122 224 552 39 493 112 128 65 687 666 89.5 159, 053 008 96 23 227 324 0241 0240 0283 531 224 5.9 17.1 12.5 16.4 22.9 26.2 20.4 21.6 21.2 13.2 12.8 0.055 0.14 7.6 7.3 12.6 13.2 4.82 2.27 3.03 8.24 7.7 1.8 2.3 3.1 3.6 6.7 8 18.3 2.04 2.08 2.9 21.2 2.7 15.5 5.7 7.5 16.5 21.2 9.6 9.5 9.2 10.5 ND	122 224 552 39 493 3112 128 65 68.7 66.6 89.5 83.8 83 83 83 83 83 83	122 224 552 39 493 112 128 65 687 666 895 803 73.4 159 8.53 0.096 9.6 23 227 321 0.241 0.202 0.383 531 5.8 234 59 17.1 12.5 16.4 22.8 26.2 20.4 21.6 21.2 13.2 12 23.7 12.8 0.055 0.14 7.6 7.3 12.6 13.2 4.82 2.27 3.03 8.24 7.2 7.7 7.7 1.8 2.3 3.1 3.6 6.7 8 1.83 2.04 20.6 2.9 2.2 2.3 21.2 2.7 15.5 5.7 7.5 16.5 21.2 9.6 9.5 9.2 10.5 6.5 9.6 ND	122 224 552 39 493 112 128 65 687 66 895 803 73.4 34 34 34 34 34 34 34	122 224 552 39 493 3112 128 65 68.7 66.6 89.5 80.3 73.4 34 85 1559 0.53 0.096 9.6 23.2 22.7 22.1 0.24 0.202 0.388 53.1 5.8 0.65 0.88 6.8 23.4 5.9 17.1 12.5 16.4 22.8 26.2 20.4 21.6 21.2 13.2 12 23.7 11 13 12.8 0.065 0.14 7.6 7.3 12.6 13.2 4.82 2.27 30.3 8.24 7.2 7 0.355 9.2 7.7 1.8 2.3 3.1 3.6 6.7 6 1.83 2.04 2.08 2.9 2.2 2.3 1.8 2.7 21.2 2.7 15.5 5.7 7.5 16.5 21.2 9.8 9.5 9.2 10.5 6.5 9.6 4.2 ND ND	122 22.4 55.2 39 49.3 112 128 65 68.7 66.6 89.5 80.3 73.4 34 86 67.2 159 0.53 0.096 9.8 2.3 22.7 32.1 0.241 0.220 0.388 33. 8.8 0.65 0.88 6 1.79 22.4 5.9 17.1 12.5 16.4 22.8 26.2 20.4 21.6 21.2 13.2 12 23.7 11 13 33.2 12.8 0.065 0.14 7.6 7.3 12.8 12.8 13.2 4.82 2.27 3.03 8.24 7.2 2.7 0.35 9.2 9.08 7.7 1.8 2.3 3.1 3.6 6.7 8 18.3 2.04 2.08 2.9 2.2 2.3 3.1 8.2 2.7 2.2 21.2 2.7 15.5 5.7 7.5 16.5 21.2 9.6 9.5 9.2 10.5 6.5 9.6 4.2 ND 8.5 ND	122 224 552 33 493 112 128 65 687 666 89.5 80.3 73.4 34 86 67.7 87	122 224 552 39 493 112 128 65 687 666 895 803 73.4 34 86 67.2 80 122	122 22.4 55.2 39 49.3 112 129 65 68.7 66.6 89.5 80.3 73.4 34 86 67.2 80 122 115	122 224 552 39 49.3 112 128 65 68.7 66.6 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69	122 224 562 39 493 112 128 654 674 670 670 670 670 670 670 670 670 670 670 670 670 670 670 670 670 670 670 670 670 670 670 670 670 670 670 670 670 670 670 670 670 670 670 670 670 670 670 670 670 670 670 670 670 670 670 670 670 670 670 670 670 670 670 670 670 670 670 670 670 670 670 670 670 670 670 670 670 670 670 670 670 670 670 670 670 670 670 670 670 670 670 670 670 670 670 670 670 670 670 670 670 670 670 670 670 670 670 670 670 670 670 670 670 670 670 670 670 670 670 670 670 670 670 670 670 670 670 670 670 670 670 670 670 670 670 670 670 670 670 670 670 670 670 670 670 670 670 670 670 670 670 670 670 670 670 670 670 670 670 670 670 670 670 670 670 670 670 670 670 670 670 670 670 670 670 670 670 670 670 670 670 670 670 670 670 670 670 670 670 670 670 670 670 670 670 670 670 670 670 670 670 670 670 670 670 670 670 670 670 670 670 670 670 670 670 670 670 670 670 670 670 670 670 670 670 670 670 670 670 670 670 670 670 670 670 670 670 670 670 670 670 670 670 670 670 670 670 670 670 670 670 670 670 670 670 670 670 670 670 670 670 670 670 670 670 670 670 670 670 670 670 670 670 670 670 670 670 670 670 670 670 670 670 670 670 670 670 670 670 670 670 670 670 670 670 670 670 670 670 670 670 670 670 670 670 670 670 670 670 670 670 670 670 670 670 670 670 670 670 670 670 670 670 670 670 670 670 670 670 670 670 670 670 670 670 670 670 670 670 670 670	122 224 552 39 493 112 128 65 687 66.8 89.5 80.3 73.4 34 86 67.2 80.7 122 118 74.2 28.1 70.8 1529 253 50.96 80.23 227 32.1 32.4 67.8 66.8 89.5 80.3 73.4 34 86 67.2 80.7 75.7 10.3 15.1 12.9 80.0 31.1 124 253 50.96 73.1 74.2 28.1 70.8 70.8 70.8 70.8 70.8 70.8 70.8 70.8 70.8 70.8 70.8 70.8 70.8 70.8 70.8 70.8 70.8 70.8 70.8 70.8 70.8 70.8 70.8 70.8 70.8 70.8 70.8 70.8 70.8 70.8 70.8 70.8 70.8 70.8 70.8 70.8 70.8 70.8 70.8 70.8 70.8 70.8 70.8 70.8 70.8 70.8 70.8 70.8 70.8 70.8 70.8 70.8 70.8 70.8 70.8 70.8 70.8 70.8 70.8 70.8 70.8 70.8 70.8 70.8 70.8 70.8 70.8 70.8 70.8 70.8 70.8 70.8 70.8 70.8 70.8 70.8 70.8 70.8 70.8 70.8 70.8 70.8 70.8 70.8 70.8 70.8 70.8 70.8 70.8 70.8 70.8 70.8 70.8 70.8 70.8 70.8 70.8 70.8 70.8 70.8 70.8 70.8 70.8 70.8 70.8 70.8 70.8 70.8 70.8 70.8 70.8 70.8 70.8 70.8 70.8 70.8 70.8 70.8 70.8 70.8 70.8 70.8 70.8 70.8 70.8 70.8 70.8 70.8 70.8 70.8 70.8 70.8 70.8 70.8 70.8 70.8 70.8 70.8 70.8 70.8 70.8 70.8 70.8 70.8 70.8 70.8 70.8 70.8 70.8 70.8 70.8 70.8 70.8 70.8 70.8 70.8 70.8 70.8 70.8 70.8 70.8 70.8 70.8 70.8 70.8 70.8 70.8 70.8 70.8 70.8 70.8 70.8 70.8 70.8 70.8 70.8 70.8 70.8 70.8 70.8 70.8 70.8 70.8 70.8 70.8 70.8 70.8 70.8 70.8 70.8 70.8 70.8 70.8 70.8 70.8 70.8 70.8 70.8 70.8 70.8 70.8 70.8 70.8 70.8 70.8 70.8 70.8 70.8 70.8 70.8 70.8 70.8 70.8 70.8 70.8 70.8 70.8 70.8 70.8 70.8 70.8 70.8 70.8 70.8 70.8 70.8 70.8 70.8 70.8 70.8 70.8 70.8 70.8 70.8 70.8 70.8 70.8 70.8 70.8 70.8 70.8 70.8 70.8 70.8 70.8	122 22.4 55.2 39	122 224 552 39	152 224 582 39 493 112 128 65 687 66.6 89.5 80.3 73.4 34 86 67.2 80 122 118 74.2 28.1 70.8 94.3 71.7 71.7 71.8 72.5 72.5 72.5 72.5 72.5 72.5 72.5 72.5 72.5 72.5 72.5 72.5 72.5 72.5 72.5 72.5 72.5 72.5 72.5 72.5 72.5 72.5 72.5 72.5 72.5 72.5 72.5 72.5 72.5 72.5 72.5 72.5 72.5 72.5 72.5 72.5 72.5 72.5 72.5 72.5 72.5 72.5 72.5 72.5 72.5 72.5 72.5 72.5 72.5 72.5 72.5 72.5 72.5 72.5 72.5 72.5 72.5 72.5 72.5 72.5 72.5 72.5 72.5 72.5 72.5 72.5 72.5 72.5 72.5 72.5 72.5 72.5 72.5 72.5 72.5 72.5 72.5 72.5 72.5 72.5 72.5 72.5 72.5 72.5 72.5 72.5 72.5 72.5 72.5 72.5 72.5 72.5 72.5 72.5 72.5 72.5 72.5 72.5 72.5 72.5 72.5 72.5 72.5 72.5 72.5 72.5 72.5 72.5 72.5 72.5 72.5 72.5 72.5 72.5 72.5 72.5 72.5 72.5 72.5 72.5 72.5 72.5 72.5 72.5 72.5 72.5 72.5 72.5 72.5 72.5 72.5 72.5 72.5 72.5 72.5 72.5 72.5 72.5 72.5 72.5 72.5 72.5 72.5 72.5 72.5 72.5 72.5 72.5 72.5 72.5 72.5 72.5 72.5 72.5 72.5 72.5 72.5 72.5 72.5 72.5 72.5 72.5 72.5 72.5 72.5 72.5 72.5 72.5 72.5 72.5 72.5 72.5 72.5 72.5 72.5 72.5 72.5 72.5 72.5 72.5 72.5 72.5 72.5 72.5 72.5 72.5 72.5 72.5 72.5 72.5 72.5 72.5 72.5 72.5 72.5 72.5 72.5 72.5 72.5 72.5 72.5 72.5 72.5 72.5 72.5 72.5 72.5 72.5 72.5 72.5 72.5 72.5 72.5 72.5 72.5 72.5 72.5 72.5 72.5 72.5 72.5 72.5 72.5 72.5 72.5 72.5 72.5 72.5 72.5 72.5 72.5 72.5 72.5 72.5 72.5 72.5 72.5 72.5 72.5 72.5 72.5 72.5 72.5 72.5 72.5 72.5 72.5 72.5 72.5 72.5 72.5 72.5 72.5 72.5 72.5 72.5 72.5 72.5 72.5 72.5 72.5 72.5 72.5 72.5 72.5 72.5 72.5 72.5 72.5	122 224 552 39 483 112 128 65 687 666 895 803 73.4 34 86 67.2 80 122 118 74.2 281 70.8 94.3 71.7 32.9 75.7	122 224 552 39 493 112 128 66 687 666 89.7 666 89.7 666 89.7 666 89.7 666 89.7 666 89.7 666 89.7 666 89.7 666 89.7 666 89.7 666 89.7 68.8 64.7 79.5 79.5 79.5 79.5 79.5 79.5 79.5 79.5 79.5 79.5 79.5 79.5 79.5 79.5 79.5 79.5 79.5 79.5 79.5 79.5 79.5 79.5 79.5 79.5 79.5 79.5 79.5 79.5 79.5 79.5 79.5 79.5 79.5 79.5 79.5 79.5 79.5 79.5 79.5 79.5 79.5 79.5 79.5 79.5 79.5 79.5 79.5 79.5 79.5 79.5 79.5 79.5 79.5 79.5 79.5 79.5 79.5 79.5 79.5 79.5 79.5 79.5 79.5 79.5 79.5 79.5 79.5 79.5 79.5 79.5 79.5 79.5 79.5 79.5 79.5 79.5 79.5 79.5 79.5 79.5 79.5 79.5 79.5 79.5 79.5 79.5 79.5 79.5 79.5 79.5 79.5 79.5 79.5 79.5 79.5 79.5 79.5 79.5 79.5 79.5 79.5 79.5 79.5 79.5 79.5 79.5 79.5 79.5 79.5 79.5 79.5 79.5 79.5 79.5 79.5 79.5 79.5 79.5 79.5 79.5 79.5 79.5 79.5 79.5 79.5 79.5 79.5 79.5 79.5 79.5 79.5 79.5 79.5 79.5 79.5 79.5 79.5 79.5 79.5 79.5 79.5 79.5 79.5 79.5 79.5 79.5 79.5 79.5 79.5 79.5 79.5 79.5 79.5 79.5 79.5 79.5 79.5 79.5 79.5 79.5 79.5 79.5 79.5 79.5 79.5 79.5 79.5 79.5 79.5 79.5 79.5 79.5 79.5 79.5 79.5 79.5 79.5 79.5 79.5 79.5 79.5 79.5 79.5 79.5 79.5 79.5 79.5 79.5 79.5 79.5 79.5 79.5 79.5 79.5 79.5 79.5 79.5 79.5 79.5 79.5 79.5 79.5 79.5 79.5 79.5 79.5 79.5 79.5 79.5 79.5 79.5 79.5 79.5 79.5 79.5 79.5 79.5 79.5 79.5 79.5 79.5 79.5 79.5 79.5 79.5 79.5 79.5 79.5 79.5 79.5 79.5 79.5 79.5 79.5 79.5 79.5 79.5 79.5 79.5 79.5 79.5 79.5 79.5 79.5 79.5 79.5 79.5 79.5 79.5 79.5 79.5 79.5 79.5 79.5 79.5 79.5 79.5 79.5 79.5 79.5 79.5 79.5 7	122 224 552 39 493 112 128 65 687 66 895 893 893 884 86 672 80 122 118 742 281 708 943 717 32.9 75.7 81.9 697	122 224 525 39 483 112 128 66 897 666 895 803 735 804 88 67.2 80 122 118 74.2 28.1 70.8 94.3 71.7 32.9 75.7 19.1 697. 77.8 71.8 71.8 71.8 71.8 71.8 71.8 71.8 71.8 71.8 71.8 71.8 71.8 71.8 71.8 71.8 71.8 71.8 71.8 71.8 71.8 71.8 71.8 71.8 71.8 71.8 71.8 71.8 71.8 71.8 71.8 71.8 71.8 71.8 71.8 71.8 71.8 71.8 71.8 71.8 71.8 71.8 71.8 71.8 71.8 71.8 71.8 71.8 71.8 71.8 71.8 71.8 71.8 71.8 71.8 71.8 71.8 71.8 71.8 71.8 71.8 71.8 71.8 71.8 71.8 71.8 71.8 71.8 71.8 71.8 71.8 71.8 71.8 71.8 71.8 71.8 71.8 71.8 71.8 71.8 71.8 71.8 71.8 71.8 71.8 71.8 71.8 71.8 71.8 71.8 71.8 71.8 71.8 71.8 71.8 71.8 71.8 71.8 71.8 71.8 71.8 71.8 71.8 71.8 71.8 71.8 71.8 71.8 71.8 71.8 71.8 71.8 71.8 71.8 71.8 71.8 71.8 71.8 71.8 71.8 71.8 71.8 71.8 71.8 71.8 71.8 71.8 71.8 71.8 71.8 71.8 71.8 71.8 71.8 71.8 71.8 71.8 71.8 71.8 71.8 71.8 71.8 71.8 71.8 71.8 71.8 71.8 71.8 71.8 71.8 71.8 71.8 71.8 71.8 71.8 71.8 71.8 71.8 71.8 71.8 71.8 71.8 71.8 71.8 71.8 71.8 71.8 71.8 71.8 71.8 71.8 71.8 71.8 71.8 71.8 71.8 71.8 71.8 71.8 71.8 71.8 71.8 71.8 71.8 71.8 71.8 71.8 71.8 71.8 71.8 71.8 71.8 71.8 71.8 71.8 71.8 71.8 71.8 71.8 71.8 71.8 71.8 71.8 71.8 71.8 71.8 71.8 71.8 71.8 71.8 71.8 71.8 71.8 71.8 71.8 71.8 71.8 71.8 71.8 71.8 71.8 71.8 71.8 71.8 71.8 71.8 71.8 71.8 71.8 71.8 71.8 71.8 71.8 71.8 71.8 71.8 71.8 71.8 71.8 71.8 71.8 71.8 71.8 71.8 71.8 71.8 71.8 71.8 71.8 71.8 71.8 71.8 71.8 71.8 71.8 71.8 71.8 71.8 71.8 71.8 71.8 71.8 71.8 71.8 71.8 71.8 71.8 7	122 224 552 39 49.3 112 128 56 69.7 69.6 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69

J = Estimated.
B = Analyte was detected in method blank.