New York State Department of Environmental Conservation Division of Environmental Remediation

Periodic Review Report 2020

Keywell L.L.C. Vac-Air Division Site 300 Falconer Street, Frewsburg, NY NYSDEC Site No. 907016

December 19, 2023

Periodic Review Report 2020

Keywell L.L.C. Vac-Air Division Site 300 Falconer Street Frewsburg, NY 14738

Prepared for: NYSDEC Division of Environmental Remediation 270 Michigan Avenue Buffalo, NY 14203-2915

Prepared by: Groundwater & Environmental Services, Inc. 415 Lawrence Bell Drive, Suite 6 Williamsville, NY 14221 TEL: 800-287-7857 www.gesonline.com

GES Project: 0901685

Date: December 19, 2023

n

Owen Ogiony Associate Geologist

im

Thomas D. Palmer Project Manager

k

Gehevieve F. Bock, P.E. Senior Engineering Manager

Table of Contents

Exe	ecut	tive Summary	1
1	Si	te Overview	3
1	.1	Site Background	3
1	.2	Historical Site Activities	4
1	.3	Recent Project Activities	5
2	Si	te Operation, Maintenance & Monitoring Plan Compliance Report	6
3	Re	emedy Performance, Effectiveness, and Protectiveness Evaluation	9
3	8.1	Site Inspections	9
3	8.2	Groundwater Quality Monitoring	9
3	3.3	Remedial System Summary1	2
3	8.4	Remedial Evaluation1	2
4	Ins	stitutional Control/Engineering Control Compliance Report1	4
5	Sι	ummary, Conclusions, and Recommendations1	4
5	5.1	Compliance with OM&M Plan1	4
5	5.2	Performance and Effectiveness of the Remedies1	4
5	5.3	Upcoming work1	6
5	5.4	Recommendations1	6

Figures

- Figure 1 Site Location Map
- Figure 2 Site Map
- Figure 3 Groundwater Contour Map March 31, 2020
- Figure 4 Groundwater Contour Map October 14, 2020

Tables

Within Report

- Table 2.1
 Monitoring Well Network Summary

 Table 2.2
 Modia Manitoring Schedule For 2020
- Table 2.2
 Media Monitoring Schedule For 2020

Attached

- Table 1
 Extraction Well Construction Details
- Table 2 Groundwater Gauging Data
- Table 3Groundwater Analytical Data 2020
- Table 4Remedial System Operation Data 2020
- Table 5Monthly Treatment Data Effluent 2020
- Table 6System VOC Summary 2020

Appendices

- Appendix A Groundwater Sampling Logs
- Appendix B Laboratory Analytical Reports
- Appendix C System Inspection Form

Acronyms

AWQS	Ambient Water Quality Standards
AS	air stripper
bgs	below ground surface
CCU	Catalytic Combustion Unit
Class GA	Groundwater class
DER	Division of Environmental Remediation
DTP	Depth to Product
DTW	Depth to Water
EC	engineering controls
GES	Groundwater & Environmental Services, Inc.
gpm	gallons per minute
HDPE	high-density polyethylene
"Hg	inches of mercury
IC	institutional controls
Keywell	Keywell LLC
LNAPL	light non-aqueous phase liquid
µg/m3	micrograms per cubic meter
µg/L	micrograms per liter
ng/L	nanograms per liter
NYSDEC	New York State Department of Environmental Conservation
OM&M	Post-Remedial Operation, Maintenance, & Monitoring
OWS	oil water separator
PCB	polychlorinated biphenyl
P.E.	Professional Engineer
ppt	parts per trillion
PRB	permeable reactive barrier
PRR	Periodic Review Report
QA/QC	Quality Assurance/Quality Control
RI/FS	Remedial Investigation/Feasibility Study
ROD	Record of Decision
SIM	selective ion monitoring
Site	Keywell L.L.C. Vac-Air Division Site
stormceptor	precast concrete oil/sediment/water separation unit
SVE	Soil Vapor Extraction
TCE	Trichloroethene
TCL	Target Compound List
TOGS 1.1.1	Technical and Operational Guidance Series 1.1.1
TPE	total-phase extraction
TPH	total petroleum hydrocarbons
USEPA	United States Environmental Protection Agency
VLS	vapor/liquid separator
VOCs	Volatile Organic Compounds

Executive Summary

Keywell LLC (Keywell) Vac-Air Division (Site) is located at 300 Falconer Street in the Town of Carroll immediately north of the Village of Frewsburg, New York (**Figure 1**). The property is bound by Conewango Creek to the north; open fields, wooded, and low lying areas to the east; commercial and residential properties to the south; and Falconer Street and Frewsburg Water District Supply Well 2A to the west (**Figure 2**). An unnamed, intermittent drainage way consisting of sections of buried culvert and open swale transverses the property and discharges to a low lying wetland area at the north end of the Site. This low lying area drains to Conewango Creek.

The property was formerly owned by Vac-Air Alloys, which began metal processing operations at the site in 1969. As part of the facility operations, trichloroethene (TCE) was used to clean and degrease metals. Prior to 1969, the property was used for the manufacture of wafer board. Keywell purchased the facility in 1987, filed a petition for reorganization under Chapter 11 of the bankruptcy laws in 2013, and underwent a name change on January 14, 2014 (to SGK Venture, LLC). SGK Ventures, LLC processed stainless steel, titanium, and other high grade scrap metal until March 31, 2015 at which time operations ceased.

As discussed in Section 2.0, remedial measures to address solvent releases by the former owners were undertaken by Keywell beginning in 1997.

The following is a summary of the remedial actions and monitoring performed at the site in 2020:

- Semi-annual groundwater sampling and groundwater elevation measurements.
- Monthly system discharge sampling.
- Monthly system influent sampling.
- Site-wide Sub Surface Investigation via Geoprobe.
- Remediation system upgrades.
- Data logger study in three (3) wells for eight (8) weeks.
- New waterline run to remediation system building and new roof installed.
- Weekly Site inspections and overall Site maintenance in accordance with the *Post-Remedial Operation, Maintenance, & Monitoring (OM&M) Plan* (revised April 2015).
 - An annual Site inspection was completed by Groundwater & Environmental Services, Inc. (GES) on November 23, 2020. All engineering controls (ECs) outlined in the OM&M plan were found to be in good condition with no new evidence of damage.

As outlined in the OM&M Plan, semi-annual groundwater monitoring and sampling events were conducted on April 1 through April 3, 2020, and November 30 through December 1, 2020. Samples were analyzed for volatile organic compounds (VOCs) via United States Environmental Protection Agency (USEPA) Method 8260C. This data was compared to the New York State Department of Environmental Conservation (NYSDEC) technical and operations guidance series 1.1.1 (TOGS 1.1.1) groundwater (Class GA) Ambient Water Quality Standards (AWQS). General observations from the groundwater sampling events are detailed below:

- Spring 2020 results: Of the 16 samples collected, eight (8) contained AWQS exceedances for at least one (1) VOC compound (MW-2, MW-3, MW-4, MW-9R, MW-11R, MW-12, MW-13, and MW-14).
- Fall 2020 results: All seven (7) samples collected contained AWQS exceedances for at least one (1) VOC compound (MW-2, MW-3, MW-4, MW-9R, MW-11R, MW-13, and MW-14).

Based on these concentrations, there are multiple wells that exceed NYSDEC TOGS 1.1.1 Class GA AWQS. The following action items are recommended:

- Continuance of semi-annual groundwater monitoring activities.
- Continued use of the dual-phase extraction system to treat groundwater on site.
- See **Section 5** for additional recommendations to: increase system effectiveness, increase uptime, and maintain the system and associated building.

1 Site Overview

1.1 Site Background

The Site is located at 300 Falconer Street in the Town of Carroll near the northern boundary of the Village of Frewsburg, New York (**Figure 1**). It is located in a rural-industrial area off of Falconer Street. The Site lies within a fenced in manufacturing area. It is bordered to the northwest by the Conewango Creek, and across Falconer Street from the Frewsburg Water District Supply Well 2A (**Figure 2**). There are two (2) large and several small buildings on the parcel, as well as paved, grassy and wooded areas. An unnamed, intermittent drainage way consisting of sections of buried culvert and open swale transverses the property and discharges to a low lying wetland area at the north end of the Site. This low lying area drains to Conewango Creek.

The Site is currently vacant and zoned for industrial-manufacturing and processing. Prior to 1969, the property was used for the manufacture of wafer board. Vac-Air started operations at this Site in 1969. The facility operations consisted of sorting, cleaning and packaging of high grade scrap metal. The metal was cleaned by shot blasting, and degreased with solvents, mainly trichloroethene (TCE). Waste produced from process operations included TCE sludge, spent TCE, and waste lubricating and hydraulic oils. Keywell LLC (Keywell) purchased the facility in 1987 and processed stainless steel, titanium, and other high grade scrap metal. The company signed a Consent Order to conduct the Remedial Investigation/Feasibility Study (RI/FS) and remedial action at the Site. Based upon the RI/FS a Record of Decision (ROD) was signed in 1996. A remedial design was completed and construction began in 1997. The Site remediation included solvent recovery, construction of a barrier wall, air sparging/soil vacuum extraction (SVE), groundwater extraction and treatment, sediment excavation, storm water controls, capping, and long term monitoring. The remedial construction was completed in 1999. SGK Ventures, LLC filed a petition for reorganization under Chapter 11 of the bankruptcy laws in 2013, and underwent a name change on January 14, 2014 (to SGK Venture, LLC). SGK Venture, LLC continued operations until March 31, 2015.

The Site is located in the Allegany Plateau physiographic province of New York State. Geology is highly varied and multi-layered. Generally the geology is composed of a Surficial Overburden Unit over the Upper Sand and Gravel Unit and a Confining Unit of lacustrine sediments which contains a channeled, meandering Lower Sand and Gravel Unit overlying a layer of glacial outwash till and bedrock. The total depth of the surficial overburden unit ranges from 0 to 6 feet below ground surface (bgs) and the Upper Sand and Gravel Unit varies in thickness from 3 feet (north) to 22 feet (south). The Confining Unit varies in thickness from 106 feet to 13.5 feet where it separates the Upper Sand and Lower Sand and Gravel Units below which is another 50 feet of glacial outwash sand gravel and clay over Upper Devonian, Conewango Group gray shale and fine grained sandstones located at 156 feet bgs. Groundwater is found in two stratigraphic units, the Water Table Aquifer (shallow) and the Frewsburg Aquifer (deep). These units are separated by the Confining Unit, whose presence allows the Frewsburg Aquifer to normally exhibit artesian conditions. Depth to water (DTW) in the Water Table Aquifer varies from 3 to 6 feet bgs flowing northward toward Conewango Creek.

1.2 Historical Site Activities

In March 1996, a ROD was made in regards to the Site. In September 1996, Keywell signed a Consent Order to conduct the RIFS. Following the ROD, remedial measures began in 1997 in accordance with the ROD and *Evaluation of North Soil Area Remedial Alternatives* dated May 1996. The majority of the remedial construction activities were completed by January 1998. The remedial measures included:

- Installation of a slurry wall along the down gradient boundary of the North Soil Area.
- Installation of a 12-well groundwater extraction system.
- Construction of a groundwater treatment system consisting of two bag filters, an air stripper, and a catalytic combustion unit (CCU) for vapor treatment, with treated effluent discharge to the surface water of Conewango Creek.
- Installation of a six (6) well SVE collection and treatment system within the Center Soil Area.
- Installation of two (2) monitoring wells (MW-13 and MW-14) and two (2) piezometers (PZ2 and PZ3).
- Installation of a new storm sewer along the west side of the Main Building, replacement of the 36-inch corrugated metal pipe storm sewer that traversed the property with a 28-inch high-density polyethylene (HDPE) sewer and installation of a precast concrete oil/sediment/water separation unit (stormceptor) in-line, and other controls to isolate runoff from potentially contaminated groundwater.
- Excavation and off-site disposal of contaminated sediments from the low-lying wet area.
- Asphalt paving of areas north and west of the Main Building.

A *Final Remedial Design Report* dated June 1997 outlined the final design specifications for the remedial measures being implemented at the Site. The *Final Remedial Construction Report* dated July 1998 summarized all remedial measures completed, thus far, following the requirements laid out in the *Final Remedial Design Report* and the Consent Order.

In August 2004 operation of the SVE system was discontinued with New York State Department of Environmental Conservation (NYSDEC) approval since it was demonstrated that the mass of TCE removed by the SVE system under optimal operating conditions was insignificant in contrast to the effectiveness of the treatment system.

In December 2004 pumping began at MW-2 due to persistence of volatile organic compounds (VOCs) in groundwater outside of the barrier wall; however, the well would run dry sooner than anticipated.

In November 2007 a voluntary program was initiated to pump groundwater from MW-14 due to elevated VOC concentrations compared to nearby extraction well concentrations.

On January 19, 2010 the CCU was taken off-line with NYSDEC approval as it was no longer required to provide treatment of VOC off gases from the air stripper to achieve compliance with air emission discharge limitations.

In May 2011 a NYSDEC approved *Post-Remedial Operation, Maintenance & Monitoring (OM&M) Plan* was implemented to update OM&M activities as part of the long-term operation of the various components of the remedial measures.

In March 2015 a request was submitted to NYSDEC to suspend the OM&M requirements for monthly pumping and sampling of monitoring wells MW-2 and MW-14 due to minimal recovery of impacted groundwater.

From January 2010 to February 2016 Benchmark Environmental Engineering & Science, PLLC performed OM&M at the Site. Work completed was reported in annual Periodic Review Reports (PRRs).

In February 2016 GES was contracted by the NYSDEC to conduct routine O&M of the remediation system, groundwater sampling, Site/system repairs as needed, and other associated activities.

In July 2016 GES performed a pilot test to determine total fluid recovery flow rates to allow sizing of a proper total-phase extraction (TPE) pump to replace the existing centrifugal pump.

On October 4, 2016 GES submitted a *Pilot Test Summary Report* to the NYSDEC. The report recommended the installation of a TPE skid to help increase system effectiveness and reliability.

Between February 22, 2019 and March 13, 2019 GES plumbed and installed a TPE skid and control panel, built by Newterra of Brockville, Ontario.

1.3 Recent Project Activities

Work performed at the Site during the 2020 period included:

- From February 24 through March 12, 2020, a three (3) week long sub-surface soil investigation took place on Site. Using a Geoprobe, 93 locations were probed to depths ranging from 10 feet bgs to 22 feet bgs. Of the 93 locations, 45 were selected for sampling, VOCs, polychlorinated biphenyls (PCBs), and total petroleum hydrocarbons (TPH) were run based off observations in the field. The sub-surface study data will be included under separate cover as requested by the NYSDEC.
- On March 26 and 27, 2020, a Masterflex Peristaltic Pump was used to develop all 18 TPE system extraction wells. Sediment buildup and debris were successfully removed from extraction wells.
- On March 31, 2020, a Site-wide well gauging event took place. All 18 extraction wells along with 19 monitoring wells and one (1) staff gauge reading were completed.
- The low-flow groundwater sampling spring event was performed on April 1 through April 3, 2020. Normal Site groundwater sampling wells were analyzed for VOCs.

- On April 7 and April 8, 2020 the on Site water treatment system oil water separator (OWS) was taken offline for cleaning. The OWS was bypassed directly to the air stripper (AS). OWS sludge was drummed and sampled for waste disposal.
- From April 22through April 29, 2020 a new HDPE waterline was installed to provide the water treatment building with potable water. Trenching took place to tie new waterline into previously existing waterline.
- On May 7, 2020, the non-operational treatment system bedding pump was removed from a confined space vault. New wires were run for new floats and installation of a new pump at a later date.
- On May 7, 2020, three (3) down well data loggers were installed for an eight (8) week water level study in three (3) wells on Site. MW-13, EW-1, and EW-2 were selected based off previous data.
- On June 6, 2020, electrical upgrades were conducted at the control panel to install remote access via a cellular based internet connection. Additional electrical work took place for installation of new bedding pump and floats at a later date.
- On August 7, 2020, a new 6 mil rubber roof was installed on the water treatment building.
- On October 14, 2020, a second Site-wide gauging event took place. All 18 extraction wells along with 19 monitoring wells and one (1) staff gauge reading were completed.
- On November 6, 2020, a new bedding pump was installed in the confined space vault. Floats were wired in, the pump was wired to the control panel, and the new bedding pump was put into operation.
- On November 30 through December 1, 2020, low-flow groundwater sampling was performed at seven (7) wells; well MW-12 was inadvertently not sampled. Samples were analyzed for VOCs.
- On December 2 and December 3, 2020, work took place to rebuild the door and tray gaskets for the 6 tray AS. This work stopped leaks from the equipment to allow for better treatment of waste water.
- Bi-weekly OM&M events were performed to maintain the system and monitor the Site throughout 2020.

2 Site Operation, Maintenance & Monitoring Plan Compliance Report

The Site remedies include monitoring to evaluate the performance of the remedies as follows:

- Site cover system and drainage monitoring
- Groundwater monitoring
- Monthly system effluent sampling
- Monthly system influent sampling

The annual engineering Site inspection was completed by Groundwater & Environmental Services, Inc. (GES) personnel on November 23, 2020. All engineering controls (ECs) as outlined in the OM&M Plan were found to be in good condition and operating as designed. Inspections should be performed annually as a component of the institutional controls (ICs) as presented in the OM&M Plan. The next annual inspection will be performed in the summer of 2021.

As a component of the ICs presented in the OM&M Plan, on-site EC systems (specifically the groundwater treatment system, cover system, storm water control, subsurface barriers, and fencing/access control) must be protected and replaced as necessary to ensure the devices function in the manner specified in the OM&M Plan. During the Site inspection, no deficiencies were noted. No Site ICs or ECs have been modified by any Site work since GES took over OM&M activities for the Site in February 2016.

Semi-annual groundwater level monitoring is conducted approximately concurrently with the semi-annual groundwater sampling events. Gauging is performed on the 18 extraction wells and 16 monitoring wells. **Figure 2** shows the location of all on-Site wells and **Table 1** shows the extraction well construction information.

Groundwater sampling is performed at 16 monitoring wells in the spring and at eight (8) monitoring wells in the fall. **Table 2.1** summarizes the sample names, locations, sampling schedule, and describes the hydrogeologic location for all monitoring wells included in the groundwater monitoring program. Samples are tested for the parameters listed in the **Table 2.2**.

Well ID	Physical Location	Sampling Schedule	General Hydrogeologic Location
MW-1	On-site	Spring Only	Upgradient
MW-2	On-site	Spring and Fall	Downgradient
MW-3	On-site	Spring and Fall	Downgradient
MW-4	On-site	Spring and Fall	Downgradient
MW-4D	On-site	Spring Only	Deep Aquifer Downgradient
MW-5	On-site	Spring Only	Upgradient
MW-5D	On-site	Spring Only	Deep Aquifer Upgradient
MW-6	On-site	Spring Only	Cross/Downgradient
MW-7	Off-site	Spring Only	Crossgradient
MW-8	On-site	Spring Only	Upgradient
MW-9R	On-site	Spring and Fall	Downgradient
MW-10	On-site	Spring Only	Upgradient
MW-11R	On-site	Spring and Fall	Source Area
MW-12	Off-site	Spring and Fall	Cross/Downgradient
MW-13	On-site	Spring and Fall	Downgradient
MW-14	On-site	Spring and Fall	Downgradient

Table 2.1 Monitoring Well Network Summary

System influent and effluent samples are collected monthly and analyzed for the parameters listed in **Table 2.2**. Effluent samples are collected from a dedicated sample port located in the discharge piping from the air stripper effluent. System influent sampling is performed to monitor trends in influent concentrations and verify treatment system efficiency.

Monitoring Program	Frequency	Matrix	Analysis
Groundwater	Semi-Annual	Water	Routine Field Parameters:1. Static Water Level2. Specific Conductance3. Temperature4. pH5. Oxidation-Reduction Potential6. Dissolved Oxygen7. TurbidityLaboratory Analytes:
Groundwater	Semi-Annual	Water	8. Target Compound List VOCs
Treatment Effluent	Monthly	Water	Routine Field Parameters 9. pH Laboratory Analytes 10. Target Compound List VOCs 11. Oil & Grease 12. Total Aluminum, Iron, and Zinc
Treatment Influent	Monthly	Water	Laboratory Analytes 13. Target Compound List VOCs

Table 2.2Media Monitoring Schedule For 2020

Laboratory analysis is performed using United States Environmental Protection Agency (USEPA) Method 8260C (TCL VOCs), USEPA Method 200.7 (Total Aluminum, Iron, and Zinc), and USEPA Method 1664B Oil and Grease). Samples are analyzed by TestAmerica of Amherst, NY under contract by the NYSDEC.

As outlined in the OM&M Plan, semi-annual groundwater monitoring and sampling events were conducted from April 1 through April 3, 2020 and November 30 through December 1, 2020. Samples were collected via low-flow methods utilizing dedicated tubing, a peristaltic pump, and field parameters were collected using a flow-thru cell and a water quality meter. Low-flow sample logs are included in **Appendix A**.

Spring 2020 Groundwater Sampling Summary

- VOCs in the shallow and deep zones are summarized below:
 - In the shallow zone, monitoring wells MW-2, MW-3, MW-4, MW-9R, MW-11R, MW-12, MW-13, and MW-14 had concentrations that exceeded NYSDEC Technical and Operational Guidance Series 1.1.1 (TOGS 1.1.1) groundwater (Class GA) ambient water quality standards (AWQS), while monitoring wells MW-1, MW-5, MW-6, MW-7, MW-8, and MW-10 did not exceed standards.
 - In the deep zone, MW-4D and MW-5D concentrations were below NYSDEC TOGS 1.1.1 Class GA AWQS.

Fall 2020 Groundwater Sampling Summary

- VOCs in the shallow and deep zones are summarized below:
 - In the shallow zone, all seven (7) monitoring well samples, MW-2, MW-3, MW-4, MW-9R, MW-11R, MW-13, and MW-14 had concentrations that exceeded NYSDEC TOGS 1.1.1 Class GA AWQS.
 - No samples were collected from the deep zone during this sampling event.

Groundwater sampling activities conducted in 2020 indicate that current groundwater conditions do not meet the NYSDEC TOGS 1.1.1 Class GA AWQS in multiple monitoring wells.

Results of the 2020 monitoring activities are summarized in **Tables 2** and **3**. Figures showing groundwater contouring for the sampling events are included as **Figure 3** and **Figure 4**. Complete results, including quality assurance/ quality control (QA/QC) sample results, are provided in **Appendix B**. The results of this monitoring program are discussed at greater length in **Section 3**.

3 Remedy Performance, Effectiveness, and Protectiveness Evaluation

Operation, maintenance, and monitoring activities are conducted at the Site as part of the ongoing implementation of the OM&M Plan. These activities provide the data to evaluate remedy performance, effectiveness and protectiveness which are summarized below.

3.1 Site Inspections

The Site is inspected by GES personnel under the following schedule: twice weekly as part of the OM&M schedule, and the system is inspected annually by a licensed Professional Engineer (P.E.) or the P.E.'s designee. The system inspection form is included as **Appendix C**.

The Site cover system is in good condition and operating as designed. The Site access road, fence, and gate are in good condition and working as designed. Additionally, there was no evidence of Site security issues including vandalism, cover system intrusion, or human encroachment.

The stormceptor unit is inspected quarterly, and was found to be free of any collected product. The groundwater monitoring points remained in good condition with well covers in place and secured.

All 18 extraction well pads and road boxes were replaced as part of the well upgrade work performed during 2019.

3.2 Groundwater Quality Monitoring

As outlined in the OM&M Plan, semi-annual groundwater monitoring and sampling was conducted by GES on April 1 through April 3, 2020 and November 30 through December 1, 2020. VOC data is presented in **Table 3** and laboratory analytical reports are included in **Appendix B**.

Groundwater monitoring results are summarized below:

Spring 2020 Groundwater Quality Results

Cis-1,2-Dichloroethene had exceedances in the following monitoring well samples:

- MW-2 at 33,000 micrograms per liter (µg/L)
- MW-3 at 230 µg/L
- MW-4 at 430 µg/L
- MW-9R at 2,900 µg/L
- MW-11R at 230 µg/L
- MW-12 at 100 µg/L
- MW-13 at 580 µg/L
- MW-14 at 860 µg/L

Methylene Chloride had exceedances in the following monitoring well samples:

- MW-11R at 11 μg/L
- MW-13 at 50 µg/L
- MW-14 at 55 µg/L

Trichloroethene had exceedances in the following monitoring well samples:

- MW-3 at 790 µg/L
- MW-4 at 14,000 μg/L
- MW-9R at 2,800 µg/L
- MW-11R at 1,200 µg/L
- MW-12 at 4,900 µg/L
- MW-13 at 2,400 µg/L
- MW-14 at 2,800 µg/L

Vinyl Chloride had exceedances in the following monitoring well samples:

- MW-2 at 33,000 µg/L
- MW-9R at 260 µg/L

In the deep interval, MW-4D and MW-5D sample locations did not exceed NYSDEC TOGS 1.1.1 Class GA AWQS.

Fall 2020 Groundwater Quality Results

Cis-1,2-Dichloroethene had exceedances in the following monitoring well samples:

• MW-2 at 49,000 µg/L

- MW-3 at 100 μg/L
- MW-9R at 820 µg/L
- MW-11R at 130 µg/L
- MW-13 at 510 µg/L
- MW-14 at 1,300 µg/L

Trichloroethene had exceedances in the following monitoring well samples:

- MW-3 at 540 µg/L
- MW-4 at 24,000 µg/L
- MW-9R at 250 µg/L
- MW-11R at 250 µg/L
- MW-13 at 630 µg/L
- MW-14 at 2,000 µg/L

Vinyl Chloride had exceedances in the following monitoring well samples:

- MW-2 at 24,000 µg/L
- MW-9R at 120 µg/L
- MW-13 at 19 µg/L

2020 Groundwater Level Monitoring

Groundwater level monitoring was performed semi-annually concurrently with groundwater sampling. In addition to the water level measurements, the thickness of light non-aqueous phase liquid (LNAPL) was measured and recorded. No LNAPL was detected during the 2020 monitoring activities. An oil/water interface probe was used to measure depth to product (DTP) and depth to water (DTW) levels with an accuracy of approximately ± 0.01 feet. Groundwater gauging and elevation data is presented in **Table 2**.

Groundwater contour maps were developed based on the Spring 2020 (**Figure 3**) and Fall 2020 (**Figure 4**) water level data. Variations in flow direction are observed across the Site, but are fairly minimal between the semi-annual monitoring events. However, as has been consistently observed, the Site groundwater flow direction is primarily to the north, towards the barrier wall and the extraction wells. The spring and fall 2020 gauging events were performed during normal system operation. The upgraded groundwater extraction system is showing a significant impact on groundwater levels across the Site. The North side of the Site shows a cone of depression pulling groundwater towards extraction wells from the North, South, East, and West. Both spring 2020 and fall 2020 data show that during normal system operation groundwater is being pulled to extraction wells and acting to keep groundwater on-Site.

Monitoring of the wells will continue on a semi-annual basis to continue to evaluate contamination levels as well as groundwater flow conditions.

3.3 Remedial System Summary

A TPE skid and control panel, built by Newterra of Brockville, Ontario, were plumbed and installed between February 22, 2019 and March 13, 2019 by GES staff. The TPE skid consists of a 140 gallon vapor/liquid separator (VLS), a high efficiency vacuum pump, inlet vacuum filters, pulse meter (skid totalizer), and transfer pump. The TPE system is capable of continuous vacuum at 24 inches of mercury ("Hg). This vacuum is tied into 18 extraction wells located across the Site, allowing for increased groundwater extraction and treatment. Results are showing an increase in the water table depression across the Site during system operation.

Groundwater is pulled from the 18 extraction wells to the water treatment building. It enters the 140 gallon VLS where larger solids can settle out before a float system triggers the transfer pump. The groundwater is then pumped through two (2) 25 micron bag filters, where smaller sediments are removed. From the bag filters the water then moves to an air stripper before discharge. In 2020 GES bypassed the OWS allowing water to be sent directly to the air stripper for treatment.

From January 2, 2020 through December 31, 2020 the system treated 5,301,249 gallons of groundwater with an average flow rate of approximately 12 gallons per minute (gpm). The system up-time for the reporting period was approximately 87.44%, which takes system downtime into account due to standard system maintenance, repairs, and upgrades. From January 2, 2020 to January 24, 2020 the system was down due to a transfer pump failure. The system operated normally for several months with the occasional shut down due to maintenance or cleaning. From October 27, 2020 to November 6, 2020 the system was down again due to a transfer pump failure. Once the pump was repaired the system had normal operation for the remainder of 2020. All down time and shutdowns are factored into the yearly uptime percentage above.

System operational data for the reporting period including hour meters and totalizer readings is included in **Table 4**.

2020 System Water Quality Results

System effluent samples are collected monthly for Target Compound List (TCL) VOCs, oil and grease, aluminum, iron, and zinc. **Table 5** presents a summary of the monthly effluent results for 2020 compared to the NYSDEC Effluent Limits provided in the 2015 OM&M Manual. **Table 6** presents a summary of monthly treatment system influent and effluent VOC analytical data.

System effluent water VOC concentration results were above effluent limits every month in 2020 with the exception of March 2020. Due to air stripper issues and increased influent sample concentrations, the system was unable to treat recovered groundwater to below the effluent limits in 2020. However, the air stripper has been rebuilt, higher air stripper air flow has been established, and the issues have since been resolved in 2021. See **Table 5** for monthly effluent analytical results.

3.4 Remedial Evaluation

Although the Site remedies and ECs are still in place and functional, an evaluation of the Site 2020 groundwater sampling results reveals the following items of note.

- The highest groundwater VOC concentrations in the Site monitoring well network are present at monitoring well MW-2, which is located downgradient of the slurry wall barrier system, between the barrier and Conewango Creek. However, a drum field has since been discovered to the north of MW-2, outside the existing slurry wall adjacent up to where MW-2 is located. Due to the presence of the drum field adjacent to monitoring well MW-2, the source of the VOC impacts at MW-2 is not defined. Further testing must be conducted to identify the source of VOC impacts at MW-2 in order to evaluate plans for remediation.
 - Operation of the groundwater treatment system in conjunction with the barrier wall is not eliminating all groundwater VOC impacts downgradient of the barrier system (in the vicinity of monitoring well MW-2).
 - Modification of the Site ECs to address groundwater impacts at monitoring well MW-2 should be evaluated.
 - With the 2019 upgrades to the groundwater treatment system, higher system groundwater recovery rates were observed. However, high VOC concentrations still persist at MW-2.
 - Because VOC concentrations at MW-2 have not been affected by the upgraded TPE system, it is recommended test pits be dug on the downgradient side of MW-2 where the drum field is located.
 - Due to the location of the drum field in relation to Conewango Creek, measures must be taken to ensure disturbing the drum field will not send potential impacts into the creek.
- 2. Elevated groundwater VOC concentrations are observed at monitoring wells MW-13 and MW-14, located to the west of the end of the slurry wall and adjacent to and downgradient of the groundwater recovery system extraction wells, respectively.
 - Operation of the upgraded groundwater recovery system in 2020 does show small results in decreasing groundwater VOC concentration trends at these wells; however, operation of the TPE system at the Site in 2020 is not adequately capturing dissolvedphase VOCs from migrating past the line of extraction wells located to the west of the barrier wall.
 - Continued groundwater monitoring in 2021 is recommended to observe if longer-term operation of the upgraded TPE system continues to reduce groundwater VOC concentrations at monitoring wells MW-13 and MW-14. If VOC concentrations at these wells do not decrease in 2021, an extension of the groundwater recovery system to these monitoring wells or an alternate remedial solution to address groundwater VOCs in the vicinity of monitoring wells MW-13 and MW-14 should be evaluated.
- 3. Elevated groundwater VOC concentrations are still observed at off-Site monitoring well MW-12, located west of Falconer Street from monitoring well MW-13.
 - Therefore, the Site ECs are not preventing migration of impacted groundwater off-Site to the west. There is likely a component of groundwater flow at the Site which extends northwest instead of directly north. Therefore, all impacted groundwater from the Site is not captured by the existing groundwater recovery system.
 - Expansion of the Site groundwater recovery system or implementation of an alternate remedial solution along the Site's northwestern property boundary (between

approximately monitoring well MW-13 and MW-4) should be evaluated to mitigate additional off-Site migration of the dissolved-phase plume.

4 Institutional Control/Engineering Control Compliance Report

The Keywell LLC Vac-Air Division Site remedies involve the use of both ICs and ECs, which include the following:

- ICs
 - Land Use restriction
 - Groundwater Use Restriction
 - Long-term OM&M Plan
- ECs
 - Groundwater treatment system
 - Barrier wall
 - Stormwater control with sediment catch basins
 - Paved cap
 - Subsurface barriers
 - Fencing/Access control

Based on review of project documentation and Site inspections, each of the ICs and ECs at the Site are fully in place and have not been modified by any Site work since GES took over OM&M activities in February 2016, with the exception of the groundwater treatment system. The changes to the system can be found in Sections 1.2 and 1.3.

5 Summary, Conclusions, and Recommendations

5.1 Compliance with OM&M Plan

The controlling document for the Site is the approved *Post Remediation OM&M Plan* (prepared by Benchmark Environmental Engineering & Science, PLLC, dated May 2011, revised April 2015). The requirements of the OM&M Plan have been met during the reporting period of this PRR.

5.2 Performance and Effectiveness of the Remedies

• From January 2, 2020 through December 31, 2020 the system treated 5,301,249 gallons with an average flow rate of approximately 12 gpm. The system was down from December 2019 through January 2020 due to a failed transfer pump. In comparison, during 2019 the system treated 2,827,266 gallons at an approximate flow rate of 7.9 gpm.

- The groundwater treatment system uptime was 87.44% for the 2020 reporting period. In comparison, the 2019 uptime was 71%. Uptime in 2020 was affected by system shut downs related to transfer pump failure and warranty replacement along with normal downtime for system maintenance and cleaning.
 - In 2019, GES completed a full extraction well upgrade to compliment the new TPE system equipment. All 18 extraction wells were upgraded with new pitless adaptors, drop tubes, check valves, and shutoffs. This work has shown increased system groundwater recovery and improved performance.
 - Site groundwater concentration trends in 2021 should continue to be evaluated to determine if reductions in the groundwater VOC concentrations at monitoring wells MW-2, MW-12, MW-13, and MW-14 are observed following operation of the enhanced groundwater treatment system at a higher groundwater extraction flow rate.
- The upgrades to all 18 extraction wells in 2019 has allowed GES to gauge the system while it is operating, allowing for measurement of groundwater table depression during system operation at each extraction well. Recent gauging data during system operation has shown DTW ranging from 16 feet bgs to 24 feet bgs across all 18 extraction wells under normal operation. However, GES has noticed a decrease in system performance due to the presence of bacteria growing in extraction wells. The wells and drop tubes need to be cleaned periodically to prevent clogging and allow the system to work at peak efficacy. Currently a treatment plan has been put in place and dosing of the wells with a chemical to counteract the bacteria will begin in the spring of 2021.
 - Site wide groundwater level measurements in 2020 were measured while the system was operational, which have allowed for better determination of hydraulic gradients during system operation. This data shows, under normal operation groundwater is being pulled from North, South, East, and West into all 18 extraction wells. In Figure 3 and Figure 4, groundwater contours indicate a noticeable cone of depression around both of the two (2) portions of the extraction well system. Site-wide gauging events will be conducted during 2021 while the system is operating normally to determine the effectiveness of groundwater depression.
 - Increased pumping rates from the extraction wells in 2021 may increase the groundwater depression zone downgradient of the barrier wall, potentially enhancing mitigation of Site dissolved-phase VOC migration towards Conewango Creek.
- VOC concentrations remain elevated at monitoring well MW-12 (to the west of Falconer Street in the direction of Municipal Supply Well 2A), monitoring wells MW-13 and MW-14 located downgradient of the barrier wall and extraction system wells in the northwest of the Site, and at monitoring well MW-2 located upgradient of the Site remedial measures between the barrier wall and Conewango Creek.

- Therefore, the System ECs of the barrier wall and groundwater extraction system are not adequately mitigating off-Site migration of impacted groundwater.
- Additional contaminant plumes may exist outside the barrier wall and could account for the levels of VOCs in upgradient wells. Test pitting should be conducted outside the barrier wall, in a recently discovered drum field, to determine if contamination is present.
- After an additional year of higher groundwater recovery from the enhanced TPE system, evaluation of additional remedial measures to address these groundwater impacts should be completed.

5.3 Upcoming work

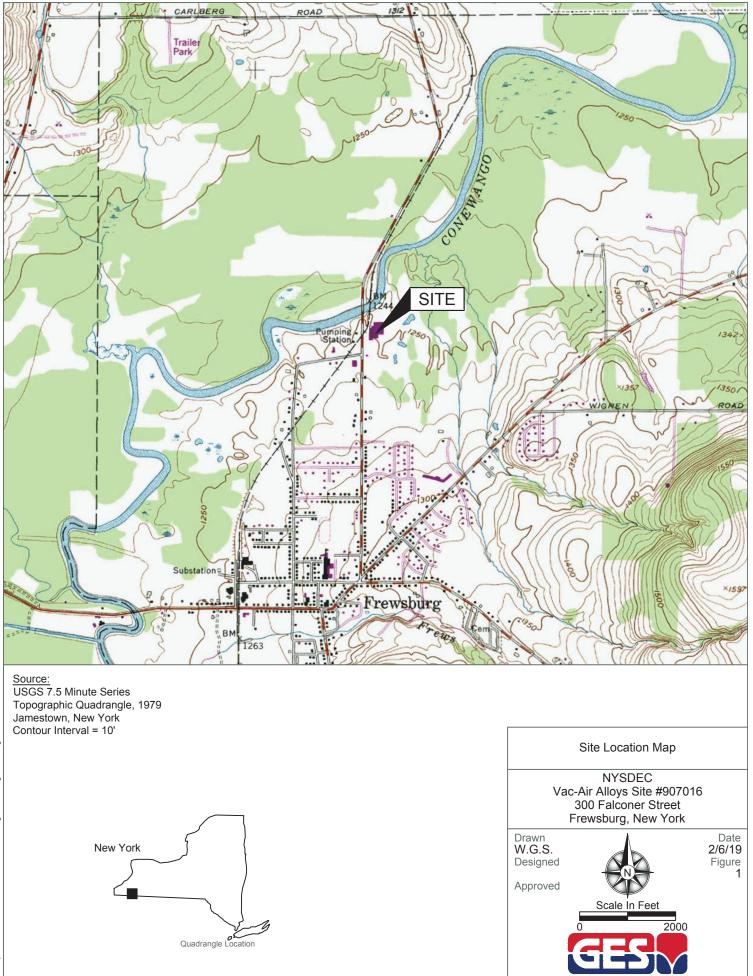
GES will conduct additional Site repairs and upgrades in 2021. This work has already been scheduled or is in the process of being scheduled and will take place throughout 2021.

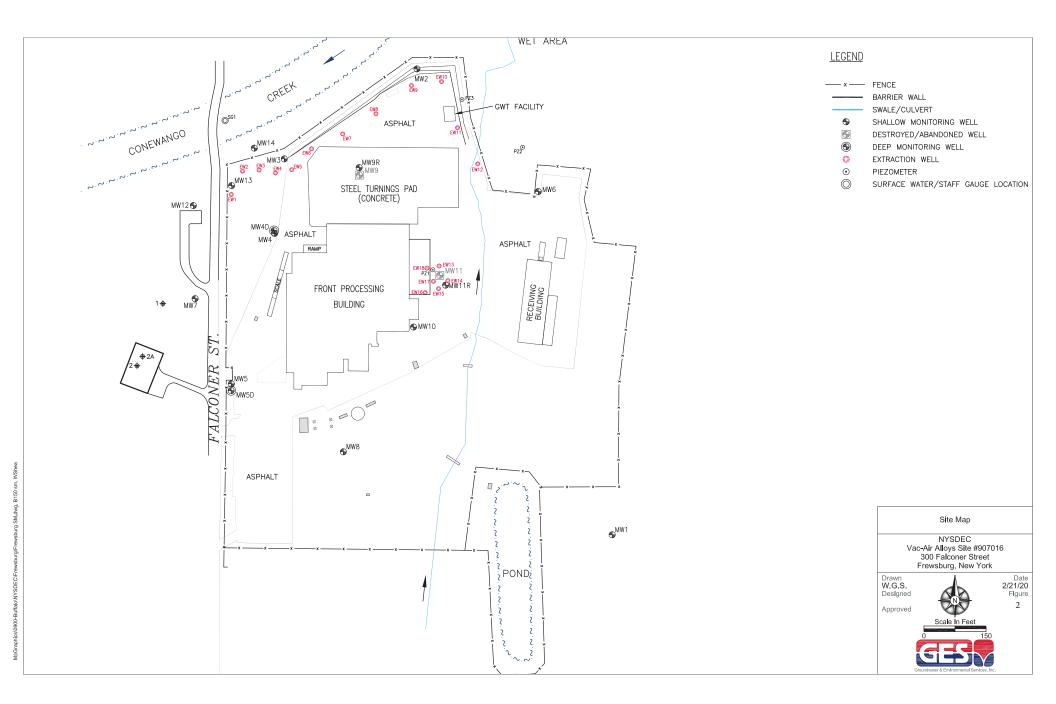
- Boresaver Application The wells will be treated with Boresaver to help alleviate bio-fouling of the wells that is causing increased maintenance and decreased draw-down of the groundwater table.
- Treatment system upgrade The treatment system will be upgraded to include the addition of a variable frequency drive to allow adjustment of the system transfer pump to decrease stress on the pump and premature pump maintenance/failure.
- Flowmeter installation Installation of a new system flowmeter that will interface with the new telemetry system installed in 2020. The new flowmeter will allow more effective remote system monitoring and troubleshooting and decrease trips to the Site to respond to system alarms.

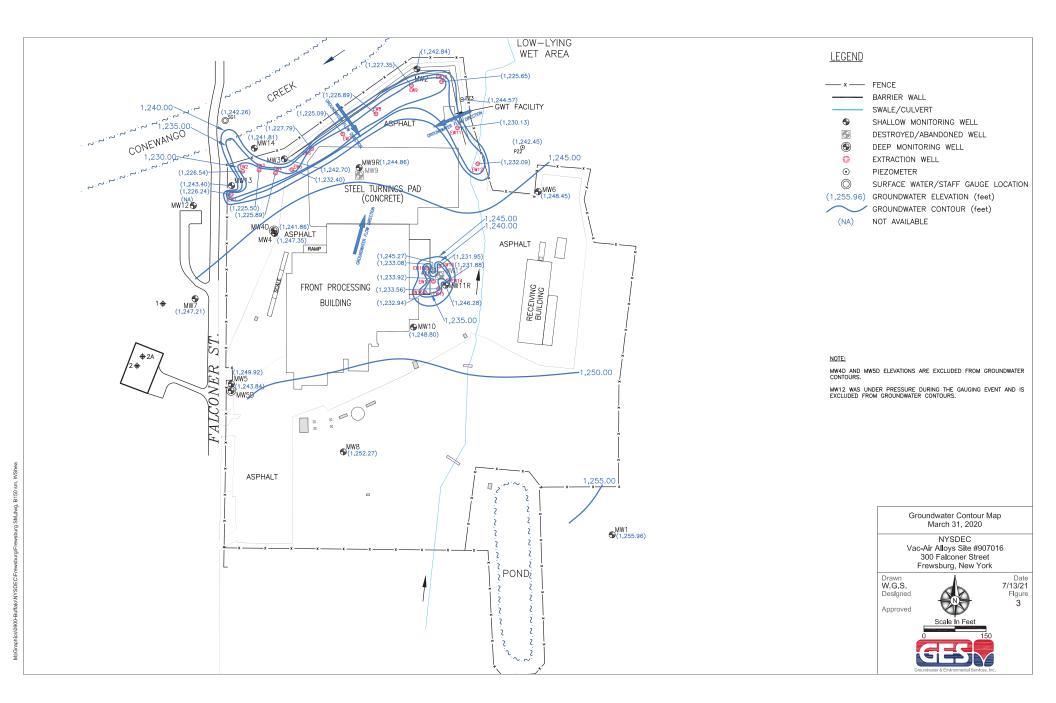
5.4 Recommendations

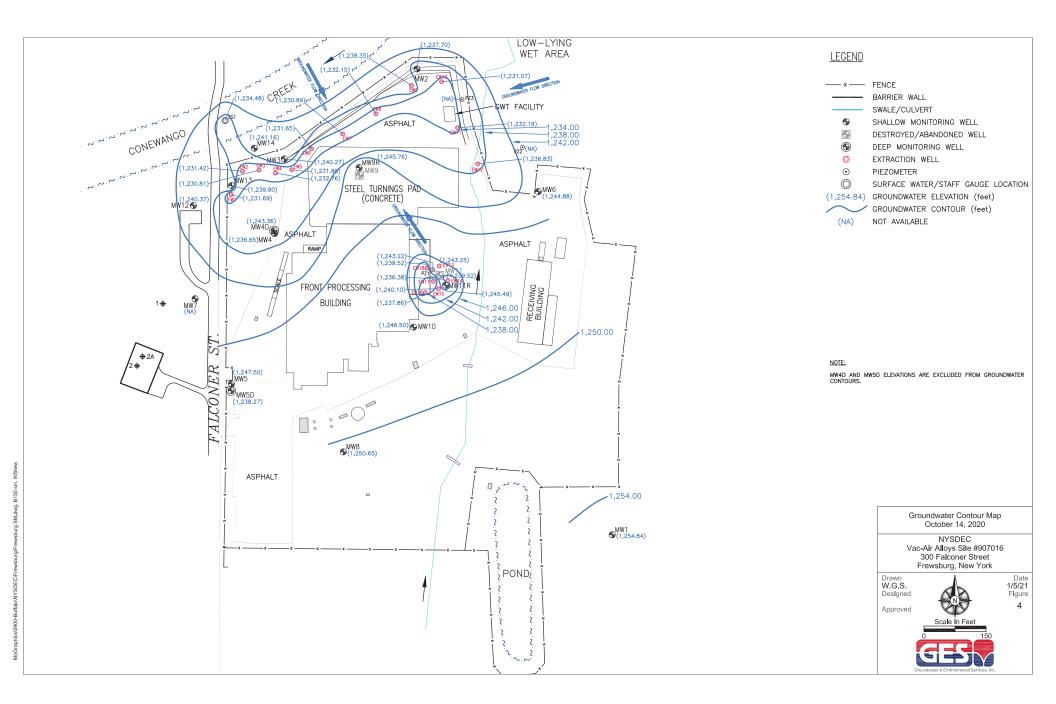
To increase the groundwater treatment system effectiveness, further understand the extent and distribution of on-Site contaminants, and evaluate alternate remedial options to address various areas of Site impacts, GES recommends completion of the activities and evaluations detailed below.

- Repairs & Upgrades:
 - Air stripper effectiveness evaluation The system groundwater influent VOC concentrations showed an increase in 2019 following the treatment system upgrades and effluent exceedances occurred during 2020. Analytical results through the first part of 2021 show a decrease in effluent VOC concentrations to below discharge limits. Analytical data will continue to be tracked monthly throughout 2021 to determine whether or not the trend continues.
 - Bio-fouling of wells Bio-fouling of the extraction wells and subsequently the remediation system has begun to add to the maintenance needs of the system.
 GES worked with Boresaver to sample the wells for bacteria and to develop a




treatment plan to remedy the bio-fouling issue. The initial Boresaver application was performed in May 2021 and subsequent gauging and well inspections will be performed throughout 2021 to determine treatment effectiveness.


- OWS Removal The OWS was bypassed, and cleaned in 2020. The system has been monitored for the presence of product and system water analytical data for any changes related to the removal of the OWS with no changes observed. It is recommended that the OWS be removed from the system.
- Investigation Activities:
 - Water level study To better evaluate the effect of the treatment system and ongoing upgrades on the groundwater elevation, Site wide gauging will be performed while the system has been operational for at least one week.
- Additional Remediation Evaluation:
 - Remedial option evaluations: northwest portion of the Site In order to address groundwater VOC impacts at monitoring wells MW-13 and MW-14 (located adjacent to and downgradient of the system extraction wells in the northwest corner of the Site) and to address off-Site VOC impacts observed at monitoring well MW-12, evaluation of the current system to mitigate this migration and/or evaluation of alternate remedial options should be completed.
 - Upgrades to the Site groundwater recovery system in 2020 may have an effect of more adequately capturing dissolved-phase VOCs in the northwest portion of the Site (in the vicinity of monitoring wells MW-13 and MW-14). Continued sampling and data evaluation in 2021 should assist in determination of system effectiveness in that area of the Site.



Figures

Tables

Table 1

Extraction Well Construction Details

Extraction Well No.	Ground Elevation	Top of Clay Elevation	Bottom of Screen Elevation	Discharge Invert Elevation
EW-1	1246.00	1229.77	1230.02	1241.80
EW-2	1246.48	1228.43	1228.68	1241.50
EW-3	1247.85	1229.85	1230.10	1242.50
EW-4	1248.93	1230.93	1231.18	1244.27
EW-5	1249.35	1227.10	1227.35	1244.31
EW-6	1249.93	1225.93	1226.18	1244.47
EW-7	1249.60	1227.60	1227.85	1244.63
EW-8	1249.10	1231.60	1231.85	1244.82
EW-9	1250.10	1231.93	1232.18	1244.93
EW-10	1249.10	1230.68	1230.93	1245.07
EW-11	1249.35	1232.10	1232.35	1245.17
EW-12	1251.00	1229.77	1230.02	1244.95
EW-13	1251.60	1231.60	1231.85	1244.38
EW-14	1251.35	1233.35	1233.60	1244.34
EW-15	1251.27	1233.27	1233.52	1246.72
EW-16	1251.00	1231.27	1231.52	1246.75
EW-17	1251.27	1231.27	1231.52	1246.54
EW-18	1250.93	1226.93	1227.18	1246.71

Table 2

Groundwater Gauging Data

Well ID	Top of Casing Elevation	Well Diameter		o Water otoc)		er Elevation Imsl)
weirid	(ft amsl)	(inches)	3/31/2020	10/14/2020	3/31/2020	10/14/2020
EW-1	1246.00	4	19.76	14.31	1226.24	1231.69
EW-2	1246.48	4	19.94	15.06	1226.54	1231.42
EW-3	1247.85	4	22.35	17.04	1225.50	1230.81
EW-4	1248.93	4	23.04	16.17	1225.89	1232.76
EW-5	1249.35	4	16.95	17.55	1232.40	1231.80
EW-6	1249.93	4	22.14	18.28	1227.79	1231.65
EW-7	1249.60	4	24.51	18.71	1225.09	1230.89
EW-8	1249.10	4	22.21	16.95	1226.89	1232.15
EW-9	1250.10	4	22.75	11.75	1227.35	1238.35
EW-10	1249.10	4	23.45	18.03	1225.65	1231.07
EW-10	1249.35	4	19.22	17.17	1230.13	1232.18
EW-12	1251.00	4	18.91	14.17	1232.09	1236.83
EW-12	1251.60	4	19.65	8.35	1231.95	1243.25
EW-14	1251.35	4	19.47	11.83	1231.88	1239.52
EW-15	1251.27	4	17.71	11.17	1233.56	1240.10
EW-16	1251.00	4	18.06	13.14	1232.94	1237.86
EW-17	1251.27	4	17.35	14.89	1233.92	1236.38
EW-18	1250.93	4	17.85	11.51	1233.08	1239.42
MW-1	1260.60	2	4.64	5.76	1255.96	1254.84
MW-2	1251.60	2	8.76	13.90	1242.84	1237.70
MW-3	1252.30	2	9.60	12.03	1242.70	1240.27
MW-4	1250.10	2	2.75	13.45	1247.35	1236.65
MW-4D	1249.37	2	7.51	6.01	1241.86	1243.36
MW-5	1256.50	2	6.58	9.00	1249.92	1247.50
MW-5D	1255.14	2	11.30	16.87	1243.84	1238.27
MW-6	1253.70	2	5.25	8.82	1248.45	1244.88
MW-7	1253.76	2	6.55	-	1247.21	-
MW-8	1256.65	2	4.38	6.00	1252.27	1250.65
MW-9R	1249.88	2	5.02	4.12	1244.86	1245.76
MW-10	1253.50	2	4.70	7.00	1248.80	1246.50
MW-11R	1250.80	2	4.52	5.31	1246.28	1245.49
MW-12	1243.08	2	Artesian	2.71	-	1240.37
MW-13	1246.04	2	2.64	6.24	1243.40	1239.80
MW-14	1247.46	2	5.65	6.30	1241.81	1241.16
PZ-1	1250.22	2	4.95	7.00	1245.27	1243.22
PZ-2	1247.43	2	4.98	-	1242.45	-
PZ-3	1250.82	2	6.25	-	1244.57	-
SG-1	1253.91	2	11.65	19.43	1242.26	1234.48

Note:

ft btoc - feet below top of casing

ft amsl - feet above mean sea level

NM - Not measured

NA - Not applicable

* Extraction wells (EW-#) were previously surveyed at ground elevation, no data top of casing

Table 3 Groundwater Analytical Data 2020

			MW-1	M	N-2	M	W-3	DUP-113020	M	N-4	MW-4D	MW-5	MW-5D	MW-6	MW-7
		Well ID						(MW-11R)							
	NYSDEC TOGS	Sample Date	04/01/20	04/01/20	12/01/20	04/01/20	11/30/20	11/30/20	04/01/20	11/30/20	04/01/20	04/01/20	04/01/20	04/02/20	04/02/20
Chemical Name	1.1.1 GWQS	Depth to Water (ft btoc)	3.72	9.03	10.17	9.95	10.75		2.92	4.32	7.83	6.54	7.02	6.04	6.86
1.1.1-Trichloroethane	5	µg/L	ND < 1.0 U	ND < 500 U	ND < 1000 U	ND < 20 U	ND < 10 U	ND < 5.0 U	ND < 500 U	ND < 500 U	ND < 1.0 U	ND < 1.0 U	ND < 1.0 U	ND < 2.0 U	ND < 1.0 U
1.1.2.2-Tetrachloroethane	5		ND < 1.0 U	ND < 500 U	ND < 1000 U	ND < 20 U	ND < 10 U	ND < 5.0 U	ND < 500 U	ND < 500 U	ND < 1.0 U	ND < 1.0 U	ND < 1.0 U	ND < 2.0 U	ND < 1.0 U
1,1,2-Trichloro-1,2,2-trifluoroethane	5	μg/L	ND < 1.0 U	ND < 500 U	ND < 1000 U	ND < 20 U	ND < 10 U	ND < 5.0 U	ND < 500 U	ND < 500 U	ND < 1.0 U	ND < 1.0 U	ND < 1.0 U	ND < 2.0 U	ND < 1.0 U
1.1.2-Trichloroethane	1	μg/L	ND < 1.0 U	ND < 500 U	ND < 1000 U	ND < 20 U	ND < 10 U	ND < 5.0 U	ND < 500 U	ND < 500 U	ND < 1.0 U	ND < 1.0 U	ND < 1.0 U	ND < 2.0 U	ND < 1.0 U
1,1-Dichloroethane	5		ND < 1.0 U	ND < 500 U	ND < 1000 U	ND < 20 U	ND < 10 U	ND < 5.0 U	ND < 500 U	ND < 500 U	ND < 1.0 U	ND < 1.0 U	ND < 1.0 U	ND < 2.0 U	ND < 1.0 U
1,1-Dichloroethene	5		ND < 1.0 U	ND < 500 U	ND < 1000 U	ND < 20 U	ND < 10 U	ND < 5.0 U	ND < 500 U	ND < 500 U	ND < 1.0 U	ND < 1.0 U	ND < 1.0 U	ND < 2.0 U	ND < 1.0 U
1,2,4-Trichlorobenzene	5	µg/L	ND < 1.0 U	ND < 500 U	ND < 1000 U	ND < 20 U	ND < 10 U	ND < 5.0 U	ND < 500 U	ND < 500 U	ND < 1.0 U	ND < 1.0 U	ND < 1.0 U	ND < 2.0 U	ND < 1.0 U
1,2-Dibromo-3-chloropropane	0.04		ND < 1.0 U	ND < 500 U	ND < 1000 U	ND < 20 U	ND < 10 U	ND < 5.0 U	ND < 500 U	ND < 500 U	ND < 1.0 U	ND < 1.0 U	ND < 1.0 U	ND < 2.0 U	ND < 1.0 U
1,2-Dibromoethane	0.0006		ND < 1.0 U	ND < 500 U	ND < 1000 U	ND < 20 U	ND < 10 U	ND < 5.0 U	ND < 500 U	ND < 500 U	ND < 1.0 U	ND < 1.0 U	ND < 1.0 U	ND < 2.0 U	ND < 1.0 U
1,2-Dichlorobenzene	3	μg/L	ND < 1.0 U	ND < 500 U	ND < 1000 U	ND < 20 U	ND < 10 U	ND < 5.0 U	ND < 500 U	ND < 500 U	ND < 1.0 U	ND < 1.0 U	ND < 1.0 U	ND < 2.0 U	ND < 1.0 U
1,2-Dichloroethane	0.6	μg/L	ND < 1.0 U	ND < 500 U	ND < 1000 U	ND < 20 U	ND < 10 U	ND < 5.0 U	ND < 500 U	ND < 500 U	ND < 1.0 U	ND < 1.0 U	ND < 1.0 U	ND < 2.0 U	ND < 1.0 U
1,2-Dichloropropane	1		ND < 1.0 U	ND < 500 U	ND < 1000 U	ND < 20 U	ND < 10 U	ND < 5.0 U	ND < 500 U	ND < 500 U	ND < 1.0 U	ND < 1.0 U	ND < 1.0 U	ND < 2.0 U	ND < 1.0 U
1,3-Dichlorobenzene	3		ND < 1.0 U	ND < 500 U	ND < 1000 U	ND < 20 U	ND < 10 U	ND < 5.0 U	ND < 500 U	ND < 500 U	ND < 1.0 U	ND < 1.0 U	ND < 1.0 U	ND < 2.0 U	ND < 1.0 U
1,4-Dichlorobenzene	3	μg/L	ND < 1.0 U	ND < 500 U	ND < 1000 U	ND < 20 U	ND < 10 U	ND < 5.0 U	ND < 500 U	ND < 500 U	ND < 1.0 U	ND < 1.0 U		ND < 2.0 U	ND < 1.0 U
1.4-Dioxane	NS	μg/L	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
2-Butanone	50	μg/L	ND < 5.0 U	ND < 2500 U	ND < 10000 U	ND < 200 U	ND < 100U	ND < 50 U	ND < 5000 U	ND < 5000 U	ND < 5.0 U	ND < 5.0 U	ND < 5.0 U	ND < 20.0 U	
2-Hexanone	50		ND < 5.0 U	ND < 2500 UT	ND < 5000 U	ND < 100 U	ND < 50 U	ND < 25 U	ND < 2500 U	ND < 2500 U	ND < 5.0 U	ND < 5.0 U	ND < 5.0 U	ND < 10.0 U	ND < 5.0 U
4-Methyl-2-pentanone	NS	μg/L	ND < 5.0 U	ND < 2500 U	ND < 5000 U	ND < 100 U	ND < 50 U	ND < 25 U	ND < 2500 U	ND < 2500 U	ND < 5.0 U	ND < 5.0 U	ND < 5.0 U	ND < 10.0 U	ND < 5.0 U
Acetone	50	μg/L	ND < 10 U	ND < 2500 U	ND < 10000 U	ND < 200 U	ND < 100 U	ND < 50 U	ND < 5000 U	ND < 5000 U	ND < 10.0 U	ND < 5.0 U	ND < 5.0 U	ND < 20.0 U	ND < 5.0 U
Benzene	1		ND < 1.0 U	ND < 500 U	ND < 1000 U	ND < 20 U	ND < 10 U	ND < 5.0 U	ND < 500 U	ND < 500 U	ND < 1.0 U	ND < 1.0 U	ND < 1.0 U	ND < 2.0 U	ND < 1.0 U
Bromodichloromethane	50		ND < 1.0 U	ND < 500 U	ND < 1000 U	ND < 20 U	ND < 10 U	ND < 5.0 U	ND < 500 U	ND < 500 U	ND < 1.0 U	ND < 1.0 U	ND < 1.0 U	ND < 2.0 U	ND < 1.0 U
Bromoform	50	μg/L	ND < 1.0 U	ND < 500 U	ND < 1000 U	ND < 20 U	ND < 10 U	ND < 5.0 U	ND < 500 U	ND < 500 U	ND < 1.0 U	ND < 1.0 U	ND < 1.0 U	ND < 2.0 U	ND < 1.0 U
Bromomethane	50	μg/L	ND < 1.0 U	ND < 500 U	ND < 1000 U	ND < 20 U	ND < 10 U	ND < 5.0 U	ND < 500 U	ND < 500 U	ND < 1.0 U	ND < 1.0 U	ND < 1.0 U	ND < 2.0 U	ND < 1.0 U
Carbon Disulfide	60		ND < 1.0 U	ND < 500 U	ND < 1000 U	ND < 20 U	ND < 10 U	ND < 5.0 U	ND < 500 U	ND < 500 U	ND < 1.0 U	ND < 1.0 U	ND < 1.0 U	ND < 2.0 U	ND < 1.0 U
Carbon tetrachloride	5		ND < 1.0 U	ND < 500 U	ND < 1000 U	ND < 20 U	ND < 10 U	ND < 5.0 U	ND < 500 U	ND < 500 U	ND < 1.0 U	ND < 1.0 U	ND < 1.0 U	ND < 2.0 U	ND < 1.0 U
Chlorobenzene	5		ND < 1.0 U	ND < 500 U	ND < 1000 U	ND < 20 U	ND < 10 U	ND < 5.0 U	ND < 500 U	ND < 500 U	ND < 1.0 U	ND < 1.0 U	ND < 1.0 U	ND < 2.0 U	ND < 1.0 U
Chloroethane	5	μg/L	ND < 1.0 U	ND < 500 U	ND < 1000 U	ND < 20 U	ND < 10 U	ND < 5.0 U	ND < 500 U	ND < 500 U	ND < 1.0 U	ND < 1.0 U	ND < 1.0 U	ND < 2.0 U	ND < 1.0 U
Chloroform	7		ND < 1.0 U	ND < 500 U	ND < 1000 U	ND < 20 U	ND < 10 U	ND < 5.0 U	ND < 500 U	ND < 500 U	ND < 1.0 U	ND < 1.0 U	ND < 1.0 U	ND < 2.0 U	ND < 1.0 U
Chloromethane	5	μg/L	ND < 1.0 U	ND < 500 U	ND < 1000 U	ND < 20 U	ND < 10 U	ND < 5.0 U	ND < 500 U	ND < 500 U	ND < 1.0 U	ND < 1.0 U	ND < 1.0 U	ND < 2.0 U	ND < 1.0 U
cis-1.2-Dichloroethene	5		ND < 1.0 U	33000 F1	49000	230	100	130	430 J	ND < 500 U	ND < 1.0 U	ND < 1.0 U	ND < 1.0 U	ND < 2.0 U	ND < 1.0 U
cis-1,3-Dichloropropene	0.4		ND < 1.0 U	ND < 500 U	ND < 1000 U	ND < 20 U	ND < 10 U	ND < 5.0 U	ND < 500 U	ND < 500 U	ND < 1.0 U	ND < 1.0 U	ND < 1.0 U	ND < 2.0 U	ND < 1.0 U
Cyclohexane	NS		ND < 1.0 U	ND < 500 U	ND < 1000 U	ND < 20 U	ND < 10 U	ND < 5.0 U	ND < 500 U	ND < 500 U	ND < 1.0 U	ND < 1.0 U	ND < 1.0 U	ND < 2.0 U	ND < 1.0 U
Dibromochloromethane	50		ND < 1.0 U	ND < 500 U	ND < 1000 U	ND < 20 U	ND < 10 U	ND < 5.0 U	ND < 500 U	ND < 500 U	ND < 1.0 U	ND < 1.0 U	ND < 1.0 U	ND < 2.0 U	ND < 1.0 U
Dichlorodifluoromethane	5	µg/L	ND < 1.0 U	ND < 500 U	ND < 1000 U	ND < 20 U	ND < 10 U	ND < 5.0 U	ND < 500 U	ND < 500 U	ND < 1.0 U	ND < 1.0 U	ND < 1.0 U	ND < 2.0 U	ND < 1.0 U
Ethylbenzene	5	µg/L	ND < 1.0 U	ND < 500 U	ND < 1000 U	ND < 20 U	ND < 10 U	ND < 5.0 U	ND < 500 U	ND < 500 U	ND < 1.0 U	ND < 1.0 U	ND < 1.0 U	ND < 2.0 U	ND < 1.0 U
Isopropylbenzene	5		ND < 1.0 U	ND < 500 U	ND < 1000 U	ND < 20 U	ND < 10 U	ND < 5.0 U	ND < 500 U	ND < 500 U	ND < 1.0 U	ND < 1.0 U	ND < 1.0 U	ND < 2.0 U	ND < 1.0 U
Methyl acetate	NS		ND < 5.0 U	ND < 2500 U	ND < 2500 U	ND < 50 U	ND < 25 U	ND < 13 U	ND < 1300 U	ND < 1300 U	ND < 5.0 U	ND < 5.0 U	ND < 5.0 U	ND < 5.0 U	ND < 5.0 U
Methyl tert-butyl ether	10		ND < 1.0 U	ND < 500 U	ND < 1000 U	ND < 20 U	ND < 10 U	ND < 5.0 U	ND < 500 U	ND < 500 U	ND < 1.0 U	ND < 1.0 U	ND < 1.0 U	ND < 2.0 U	ND < 1.0 U
Methylcyclohexane	NS		ND < 1.0 U	ND < 500 U	ND < 1000 U	ND < 20 U	ND < 10 U	ND < 5.0 U	ND < 500 U	ND < 500 U	ND < 1.0 U	ND < 1.0 U	ND < 1.0 U	ND < 2.0 U	ND < 1.0 U
Methylene chloride	5		ND < 1.0 U	ND < 500 U	ND < 1000 U	ND < 20 U	ND < 10 U	ND < 5.0 U	ND < 500 U	ND < 500 U	ND < 1.0 U	ND < 1.0 U	ND < 1.0 U	ND < 2.0 U	ND < 1.0 U
Styrene	50	μg/L	ND < 1.0 U	ND < 500 U	ND < 1000 U	ND < 20 U	ND < 10 U	ND < 5.0 U	ND < 500 U	ND < 500 U	ND < 1.0 U	ND < 1.0 U	ND < 1.0 U	ND < 2.0 U	ND < 1.0 U
Tetrachloroethene	5	μg/L	ND < 1.0 U	ND < 500 U	ND < 1000 U	ND < 20 U	ND < 10 U	ND < 5.0 U	ND < 500 U	ND < 500 U	ND < 1.0 U	ND < 1.0 U	ND < 1.0 U	ND < 2.0 U	ND < 1.0 L
Toluene	5		ND < 1.0 U	ND < 500 U	ND < 1000 U	ND < 20 U	ND < 10 U	ND < 5.0 U	ND < 500 U	ND < 500 U	ND < 1.0 U	ND < 1.0 U	ND < 1.0 U	ND < 2.0 U	ND < 1.0 U
trans-1,2-Dichloroethene	5		ND < 1.0 U	ND < 500 U	ND < 1000 U	ND < 20 U	ND < 10 U	ND < 5.0 U	ND < 500 U	ND < 500 U	ND < 1.0 U	ND < 1.0 U	ND < 1.0 U	ND < 2.0 U	ND < 1.0 L
trans-1.3-Dichloropropene	0.4		ND < 1.0 U	ND < 500 U	ND < 1000 U	ND < 20 U	ND < 10 U	ND < 5.0 U	ND < 500 U	ND < 500 U	ND < 1.0 U			ND < 2.0 U	ND < 1.0 L
Trichloroethene	5	μg/L	ND < 1.0 U	ND < 500 U	ND < 1000 U	790	540	260	14000	24000	1.2	ND < 1.0 U	ND < 1.0 U	ND < 2.0 U	ND < 1.0 L
Trichlorofluoromethane	5		ND < 1.0 U	ND < 500 U	ND < 1000 U	ND < 20 U	ND < 10 U	ND < 5.0 U	ND < 500 U	ND < 500 U	ND < 1.0 U	ND < 1.0 U	ND < 1.0 U	ND < 2.0 U	ND < 1.0 L
Vinvl Chloride	2	μg/L	ND < 1.0 U	33000 F1	24000	ND < 20 U	ND < 10 U	ND < 5.0 U	ND < 500 U	ND < 500 U	ND < 1.0 U	ND < 1.0 U		ND < 2.0 U	ND < 1.0 L
Xylenes, Total	5	μg/L	ND < 2.0 U		ND < 2000 U	ND < 40 U	ND < 20 U	ND < 10 U	ND < 1000 U				ND < 2.0 U		

<u>Notes:</u> μg/L = micrograms per liter

ft btoc = feet below top of casing

NYSDEC TOGS 1.1.1 GWQS = New York State Department of Environmental Conservation Technical and Operational Guidance Series 1.1.1 June 1998 Ambient Water Quality Standards and Guidance Values for Groundwater.

Bold values exceed the NYSDEC TOGS 1.1.1 GWQS.

NS = No Standard

ND <# = Indicates compound was analyzed for, but not detected at or above the indicated reporting limit.

J = Result is less than the Reporting Limit but greater than or equal to the Method Detection Limit and the concentration is an approximate value.

U = Compound was not detected at or above laboratory method detection limit (MDL)

Table 3 Groundwater Analytical Data 2020

		Well ID	MW-8	MW	/-9R	MW-10	MW	-11R	DUP-A (MW- 5)	MW-12	MV	/-13	MW	-14
	NYSDEC TOGS	Sample Date	04/02/20	04/02/20	12/01/20	04/02/20	04/03/20	11/30/20	04/03/20	04/02/20	04/03/20	12/01/20	04/03/20	12/01/20
Chemical Name	1.1.1 GWQS	Depth to Water (ft btoc)	3.54	5.11	5.92	4.64	4.2	4.41	04/00/20	Artesian	3.24	4.23	7.41	6.41
1,1,1-Trichloroethane	5	µg/L	ND < 1.0 U	ND < 100 U	ND < 20 U	ND < 1.0 U	ND < 20 U	ND < 5.0 U	ND < 1.0 U	ND < 20 U	ND < 80 U	ND < 10 U	ND < 100 U	ND < 40 U
1.1.2.2-Tetrachloroethane	5	μg/L	ND < 1.0 U	ND < 100 U	ND < 20 U	ND < 1.0 U	ND < 20 U	ND < 5.0 U	ND < 1.0 U	ND < 20 U	ND < 80 U	ND < 10 U	ND < 100 U	ND < 40 U
1.1.2-Trichloro-1.2.2-trifluoroethane	5	µg/L	ND < 1.0 U	ND < 100 U	ND < 20 U	ND < 1.0 U	ND < 20 U	ND < 5.0 U	ND < 1.0 U	ND < 20 U	ND < 80 U	ND < 10 U	ND < 100 U	ND < 40 U
1.1.2-Trichloroethane	1	μg/L	ND < 1.0 U	ND < 100 U	ND < 20 U	ND < 1.0 U	ND < 20 U	ND < 5.0 U	ND < 1.0 U	ND < 20 U	ND < 80 U	ND < 10 U	ND < 100 U	ND < 40 U
1.1-Dichloroethane	5		ND < 1.0 U	ND < 100 U	ND < 20 U	ND < 1.0 U	ND < 20 U	ND < 5.0 U	ND < 1.0 U	ND < 20 U	ND < 80 U	ND < 10 U	ND < 100 U	ND < 40 U
1.1-Dichloroethene	5	μg/L	ND < 1.0 U	ND < 100 U	ND < 20 U	ND < 1.0 U	ND < 20 U		ND < 1.0 U	ND < 20 U	ND < 80 U	ND < 10 U	ND < 100 U	ND < 40 U
1.2.4-Trichlorobenzene	5	μg/L	ND < 1.0 U	ND < 100 U	ND < 20 U	ND < 1.0 U	ND < 20 U		ND < 1.0 U	ND < 20 U	ND < 80 U	ND < 10 U	ND < 100 U	ND < 40 U
1.2-Dibromo-3-chloropropane	0.04		ND < 1.0 U	ND < 100 U	ND < 20 U	ND < 1.0 U	ND < 20 U	ND < 5.0 U	ND < 1.0 U	ND < 20 U	ND < 80 U	ND < 10 U	ND < 100 U	ND < 40 U
1,2-Dibromoethane	0.0006	μg/L	ND < 1.0 U	ND < 100 U	ND < 20 U	ND < 1.0 U	ND < 20 U	ND < 5.0 U	ND < 1.0 U	ND < 20 U	ND < 80 U	ND < 10 U	ND < 100 U	ND < 40 U
1.2-Dichlorobenzene	3	μg/L	ND < 1.0 U	ND < 100 U	ND < 20 U	ND < 1.0 U	ND < 20 U	ND < 5.0 U	ND < 1.0 U	ND < 20 U	ND < 80 U	ND < 10 U	ND < 100 U	ND < 40 U
1,2-Dichloroethane	0.6	µg/L	ND < 1.0 U	ND < 100 U	ND < 20 U	ND < 1.0 U	ND < 20 U	ND < 5.0 U	ND < 1.0 U	ND < 20 U	ND < 80 U	ND < 10 U	ND < 100 U	ND < 40 U
1,2-Dichloropropane	1	μg/L	ND < 1.0 U	ND < 100 U	ND < 20 U	ND < 1.0 U	ND < 20 U	ND < 5.0 U	ND < 1.0 U	ND < 20 U	ND < 80 U	ND < 10 U	ND < 100 U	ND < 40 U
1.3-Dichlorobenzene	3	µg/L	ND < 1.0 U	ND < 100 U	ND < 20 U	ND < 1.0 U	ND < 20 U	ND < 5.0 U	ND < 1.0 U	ND < 20 U	ND < 80 U	ND < 10 U	ND < 100 U	ND < 40 U
1.4-Dichlorobenzene	3	µg/L	ND < 1.0 U	ND < 100 U	ND < 20 U	ND < 1.0 U	ND < 20 U	ND < 5.0 U	ND < 1.0 U	ND < 20 U	ND < 80 U	ND < 10 U	ND < 100 U	ND < 40 U
1.4-Dioxane	NS	µg/L	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
2-Butanone	50	µg/L	ND < 5.0 U	ND < 1000 U	ND < 2000 U	ND < 5.0 U	ND < 100 U	ND < 50 U	ND < 10 U	ND < 100 U	ND < 800 U	ND < 100 U	ND < 1000 U	ND < 400 U
2-Hexanone	50	µg/L	ND < 5.0 U	ND < 500 U	ND < 100 U	ND < 5.0 U	ND < 100 U	ND < 25 U	ND < 5.0 U	ND < 100 U	ND < 400 U	ND < 50 U	ND < 500 U	ND < 200 U
4-Methyl-2-pentanone	NS	µg/L	ND < 5.0 U	ND < 500 U	ND < 100 U	ND < 5.0 U	ND < 100 U	ND < 25 U	ND < 5.0 U	ND < 100 U	ND < 400 U	ND < 50 U	ND < 500 U	ND < 200 U
Acetone	50	µg/L	ND < 5.0 U	ND < 1000 U	ND < 200 U	ND < 1.0 U	ND < 100 U	ND < 50 U	ND < 10 U	ND < 100 U	ND < 800 U	ND < 100 U	ND < 1000 U	ND < 400 U
Benzene	1	µg/L	ND < 1.0 U	ND < 100 U	ND < 20 U	ND < 1.0 U	ND < 20 U	ND < 5.0 U	ND < 1.0 U	ND < 20 U	ND < 80 U	ND < 10 U	ND < 100 U	ND < 40 U
Bromodichloromethane	50	µg/L	ND < 1.0 U	ND < 100 U	ND < 20 U	ND < 1.0 U	ND < 20 U	ND < 5.0 U	ND < 1.0 U	ND < 20 U	ND < 80 U	ND < 10 U	ND < 100 U	ND < 40 U
Bromoform	50	µg/L	ND < 1.0 U	ND < 100 U	ND < 20 U	ND < 1.0 U	ND < 20 U	ND < 5.0 U	ND < 1.0 U	ND < 20 U	ND < 80 U	ND < 10 U	ND < 100 U	ND < 40 U
Bromomethane	50	µg/L	ND < 1.0 U	ND < 100 U	ND < 20 U	ND < 1.0 U	ND < 20 U	ND < 5.0 U	ND < 1.0 U	ND < 20 U	ND < 80 U	ND < 10 U	ND < 100 U	ND < 40 U
Carbon Disulfide	60	µg/L	ND < 1.0 U	ND < 100 U	ND < 20 U	ND < 1.0 U	ND < 20 U	ND < 5.0 U	ND < 1.0 U	ND < 20 U	ND < 80 U	ND < 10 U	ND < 100 U	ND < 40 U
Carbon tetrachloride	5	µg/L	ND < 1.0 U	ND < 100 U	ND < 20 U	ND < 1.0 U	ND < 20 U	ND < 5.0 U	ND < 1.0 U	ND < 20 U	ND < 80 U	ND < 10 U	ND < 100 U	ND < 40 U
Chlorobenzene	5	µg/L	ND < 1.0 U	ND < 100 U	ND < 20 U	ND < 1.0 U	ND < 20 U	ND < 5.0 U	ND < 1.0 U	ND < 20 U	ND < 80 U	ND < 10 U	ND < 100 U	ND < 40 U
Chloroethane	5	µg/L	ND < 1.0 U	ND < 100 U	ND < 20 U	ND < 1.0 U	ND < 20 U	ND < 5.0 U	ND < 1.0 U	ND < 20 U	ND < 80 U	ND < 10 U	ND < 100 U	ND < 40 U
Chloroform	7	µg/L	ND < 1.0 U	ND < 100 U	ND < 20 U	ND < 1.0 U	ND < 20 U	ND < 5.0 U	ND < 1.0 U	ND < 20 U	ND < 80 U	ND < 10 U	ND < 100 U	ND < 40 U
Chloromethane	5	µg/L	ND < 1.0 U	ND < 100 U	ND < 20 U	ND < 1.0 U	ND < 20 U	ND < 5.0 U	ND < 1.0 U	ND < 20 U	ND < 80 U	ND < 10 U	ND < 100 U	ND < 40 U
cis-1,2-Dichloroethene	5	µg/L	ND < 1.0 U	2,900	820	ND < 1.0 U	230	130	ND < 1.0 U	100	580	510	860	1300
cis-1,3-Dichloropropene	0.4	µg/L	ND < 1.0 U	ND < 100 U	ND < 20 U	ND < 1.0 U	ND < 20 U		ND < 1.0 U	ND < 20 U	ND < 80 U	ND < 10 U	ND < 100 U	ND < 40 U
Cyclohexane	NS	µg/L	ND < 1.0 U	ND < 100 U	ND < 20 U	ND < 1.0 U	ND < 20 U	ND < 5.0 U	ND < 1.0 U	ND < 20 U	ND < 80 U	ND < 10 U	ND < 100 U	ND < 40 U
Dibromochloromethane	50	µg/L	ND < 1.0 U	ND < 100 U	ND < 20 U	ND < 1.0 U	ND < 20 U	ND < 5.0 U	ND < 1.0 U	ND < 20 U	ND < 80 U	ND < 10 U	ND < 100 U	ND < 40 U
Dichlorodifluoromethane	5		ND < 1.0 U	ND < 100 UT	ND < 20 U	ND < 1.0 U	ND < 20 U	ND < 5.0 U	ND < 1.0 U	ND < 20 U	ND < 80 U	ND < 10 U	ND < 100 UT	ND < 40 U
Ethylbenzene	5	12	ND < 1.0 U	ND < 100 U	ND < 20 U	ND < 1.0 U	ND < 20 U	ND < 5.0 U	ND < 1.0 U	ND < 20 U	ND < 80 U	ND < 10 U	ND < 100 U	ND < 40 U
Isopropylbenzene	5		ND < 1.0 U	ND < 100 U	ND < 20 U	ND < 1.0 U	ND < 20 U	ND < 5.0 U	ND < 1.0 U	ND < 20 U	ND < 80 U	ND < 10 U	ND < 100 U	ND < 40 U
Methyl acetate	NS	µg/L	ND < 5.0 U	ND < 250 U	ND < 50 U	ND < 5.0 U	ND < 100 U		ND < 2.5 U	ND < 100 U	ND < 200 U	ND < 25 U	ND < 250 U	ND < 100 U
Methyl tert-butyl ether	10	µg/L	ND < 1.0 U	ND < 100 U	ND < 20 U	ND < 1.0 U	ND < 20 U	ND < 5.0 U	ND < 1.0 U	ND < 20 U	ND < 80 U	ND < 10 U	ND < 100 U	ND < 40 U
Methylcyclohexane	NS	µg/L	ND < 1.0 U	ND < 100 U	ND < 20 U	ND < 1.0 U	ND < 20 U	ND < 5.0 U	ND < 1.0 U	ND < 20 U	ND < 80 U	ND < 10 U	ND < 100 U	ND < 40 U
Methylene chloride	5	12	ND < 1.0 U	ND < 100 U	ND < 20 U	ND < 1.0 U	11	ND < 5.0 U	ND < 1.0 U	ND < 20 U	50 J	ND < 10 U	55 J	ND < 40 U
Styrene	50	19	ND < 1.0 U	ND < 100 U	ND < 20 U	ND < 1.0 U	ND < 20 U	ND < 5.0 U	ND < 1.0 U	ND < 20 U	ND < 80 U	ND < 10 U	ND < 100 U	ND < 40 U
Tetrachloroethene	5		ND < 1.0 U	ND < 100 U	ND < 20 U	ND < 1.0 U	ND < 20 U	ND < 5.0 U	ND < 1.0 U	ND < 20 U	ND < 80 U	ND < 10 U	ND < 100 U	ND < 40 U
Toluene	5	µg/L	ND < 1.0 U	ND < 100 U	ND < 20 U	ND < 1.0 U	ND < 20 U	ND < 5.0 U	ND < 1.0 U	ND < 20 U	ND < 80 U	ND < 10 U	ND < 100 U	ND < 40 U
trans-1,2-Dichloroethene	5		ND < 1.0 U	ND < 100 U	ND < 20 U	ND < 1.0 U	ND < 20 U	ND < 5.0 U	ND < 1.0 U	ND < 20 U	ND < 80 U	ND < 10 U	ND < 100 U	ND < 40 U
trans-1,3-Dichloropropene	0.4	12	ND < 1.0 U	ND < 100 U	ND < 20 U	ND < 1.0 U	ND < 20 U	ND < 5.0 U	ND < 1.0 U	ND < 20 U	ND < 80 U	ND < 10 U	ND < 100 U	ND < 40 U
Trichloroethene	5	µg/L	ND < 1.0 U	2,800	250	ND < 1.0 U	1200	250 F1	ND < 1.0 U	4900 F1	2400	630	2800	2000
Trichlorofluoromethane	5	µg/L	ND < 1.0 U	ND < 100 U	ND < 20 U	ND < 1.0 U	ND < 20 U	ND < 5.0 U	ND < 1.0 U	ND < 20 U	ND < 80 U	ND < 400 U	ND < 100 U	ND < 40 U
Vinyl Chloride	2	µg/L	ND < 1.0 U	260	120	ND < 1.0 U	ND < 20 U	ND < 5.0 U	ND < 1.0 U	ND < 20 U	ND < 80 U	19	ND < 100 U	ND < 40 U
Xylenes, Total	5	µg/L	ND < 2.0 U	ND < 200 U	ND < 40 U	ND < 2.0 U	ND < 40 U	ND < 40 U	ND < 2.0 U	ND < 40 U	ND < 160 U	ND < 800 U	ND < 200 U	ND < 80 U

<u>Notes:</u> μg/L = micrograms per liter

T bloc = feet below top of casing NYSDEC TOGS 1.1.1 GWQ5 = New York State Department of Environmental Conservation Technical and O Guidance Series 1.1.1 June 1998 Ambient Water Quality Standards and Guidance Values for Groundwater.

Bold values exceed the NYSDEC TOGS 1.1.1 GWQS.

NS = No Standard

ND <# = Indicates compound was analyzed for, but not detected at or above the indicated reporting limit.

J = Result is less than the Reporting Limit but greater than or equal to the Method Detection Limit and the conc

approximate value.

U = Compound was not detected at or above laboratory method detection limit (MDL)

Table 4

Remedial System Operation Data 2020

Intel Autor Database Control 17/2000 510.4 6.0 286562.0 0.0 0.0 System down, Transfer pump failure 17/2000 510.4 6.0 286562.0 0.0 0.0 System down, Transfer pump failure 17/2000 510.4 0.0 286562.0 10.0 0.0 System down, Transfer pump failure 17/2000 521.2 2873.2 10.6 2893.2 17.771.0 17.3 17/2000 557.0 47.6 22.8 System down, Transfer pump failure 17/2000 557.0 47.6 22.8 System son, Normal operation 17/2000 553.0 41.6 313068.0 11.7 Cystem down, Transfer pump failure 17/2000 554.0 41.0 3139.8 12.2 System down, Transfer pump failure 17/2000 554.0 11.6 System down, Transfer pump failure System down, Transfer pump failure 17/2000 564.0 11.3 System down, Transfer pump failure System down, Transfer pump failure 17/2000 564.1 </th <th>Date</th> <th>Hourmeter</th> <th>Total hours</th> <th>Totalizer</th> <th>Total Volume Discharged</th> <th>GPM</th> <th colspan="5">Operational Status</th>	Date	Hourmeter	Total hours	Totalizer	Total Volume Discharged	GPM	Operational Status				
1/17/202 5131.4 0.0 28ebsco.0 0.0 System down, Transfer purp failure 1/12/202 5133.4 0.0 28ebsco.0 0.0 System down, Transfer purp failure 1/12/202 5133.4 0.0 28ebsco.0 0.0 System down, Transfer purp failure 1/12/202 5133.4 0.0 System down, Transfer purp failure 1/12/202 5534.0 0.0 11.8 System son, Normal operation 1/12/202 5584.1 0.1 11.2 System son, Normal operation 1/12/202 5584.1 0.1 System son, Normal operation 1/12/202 5584.1 0.1 System son, Normal operation 1/12/202 5584.3 13842.8 0.13 System son, Normal operation 1/12/202 5584.5 13842.8 0.1394.1 13.8 System son,	Date	Hourmeter	since last visit	Gallons		GPW					
JHA2000 5183.4 0.0 JB60502.0 0.0 0.0 System dow, Transfer purp failure JU20200 5212.0 10.8 288914.0 10802.0 13.8 System up, Normal operation JU20200 520.4 46.6 286042.5 17.211.0 13.3 System up, Normal operation JU20200 530.0 44.7 278844.0 38460.0 12.8 System up, Normal operation JU20200 530.0 44.7 278844.0 38460.0 11.7 System up, Normal operation JU20200 5541.2 11.92 3200.0 11.7 System up, Normal operation JU20200 5844.3 70.8 33870.0 11.2 System up, Normal operation JU20200 5844.3 70.8 33870.0 11.2 System up, Normal operation JU20200 5844.3 70.8 33870.0 11.8 System up, Normal operation JU20200 591.4 73.4 592.4 11.8 System up, Normal operation JU20200 620.5 11.8 3592.4<		5193.4		2866502.0			System down, Transfer pump failure				
intrinom 5131.4 0.0 20080202 0.0 0.0 System down, Transfer promp failure 1/17/2020 5135.4 0.65 326042.5.0 17731.0 13.3 System down, Transfer goration 1/17/2020 5137.0 47.6 326042.5.0 17731.0 13.3 System down, Transfer goration 1/17/2020 5137.0 47.6 326042.0 18.4 System down, Transfer goration 1/17/2020 5583.1 11.0 3208040.0 8847.0 11.7 System down, Transfer goration 1/17/2020 5583.1 11.0 3208040.0 8347.0 11.3 System down, Transfer goration 1/17/2020 5586.1 47.0 3386753.0 17.22 System down, Transfer goration 1/17/2020 5586.1 48.0 3286753.0 17.22 System down, Transfer goration 1/17/2020 5586.1 48.0 328672.0 11.8 System down, Transfer goration 1/17/2020 5597.5 46.4 364446.0 320642.0 11.5 System down, Transfer gowandown <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>											
174/200 5912 1916 208014.0 1965 13.5 System op, Normal operation 1740/200 5357.0 47.6 299848.0 3847.0 12.2 System op, Normal operation 1740/200 557.4 4.6 131666.0 3300.6 11.8 System op, Normal operation 1740/200 557.4 4.6 131666.0 3300.6 11.8 System op, Normal operation 1740/200 551.4 4.6 33067.0 17.8 System op, Normal operation 1740/200 554.4 4.7 33567.0 4735.0 11.3 System op, Normal operation 1740/200 584.4 70.6 33667.0 6382.7 11.8 System op, Normal operation 1740/200 594.4 70.6 3567.0 6382.7 11.8 System op, Normal operation 1740/200 520.1 677.4 5114.10 6768.0 11.6 System op, Normal operation 1740/200 520.1 677.4 5114.10 6768.0 11.6 System op, Normal operation											
1787/000 55964 985. 289684.0 97721.0 13.3 System up, Normal operation 2/4/200 5477.9 120.9 289688.0 04840.0 12.8 System up, Normal operation 2/4/200 5441.3 1102.9 302086.0 6411.0 11.7 System up, Normal operation 2/11/200 5643.2 1102.3 302086.0 6341.0 11.7 System up, Normal operation 2/11/200 5643.2 1102.3 302086.0 6341.0 11.7 System up, Normal operation 2/11/200 5643.4 40.0 3325867.0 30790.0 112.4 System up, Normal operation 2/11/200 5664.4 40.0 3421840.0 53827.0 11.8 System up, Normal operation 2/11/200 6653.4 114.8 System up, Normal operation System up, Normal operation 3/11/200 676.5 118.8 System up, Normal operation System up, Normal operation 3/11/200 676.5 118.8 System up, Normal operation System up, Normal operation 3/11/200.6 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>											
1/07/020 557.0 47.6 299684.0 94690 12.8 System up, Normal operation 1/07/020 557.4 14.1 3118660 33306 11.8 System up, Normal operation 1/12/020 552.4.0 44.1 3118640 333061 11.7 System up, Normal operation 1/12/020 561.4 40.0 33562.0 3401.0 11.7 System up, Normal operation 1/12/020 564.4 70.5 31692.00 11.3 System up, Normal operation 1/12/020 564.4 70.5 34667.00 11.2 System up, Normal operation 1/12/020 564.4 30597.0 3392.0 11.8 System up, Normal operation 1/12/020 563.5 118.8 37280.0 11.1 System up, Normal operation 1/12/020 563.5 118.8 37284.0 10.9 System up, Normal operation 1/12/020 660.0 117.4 36494.00 3310.0 10.9 System up, Normal operation 1/12/020 660.5 47.5 366											
2µ/200 5477.9 120.9 30850.0 0.8478.0 1/22 System up, Normal operation 2µ/1200 5543.2 119.2 313660.0 11.8 System up, Normal operation 2µ/1200 5643.2 119.2 323687.0 33360.0 11.7 System up, Normal operation 2µ/1200 5844.8 70.5 336678.0 113.1 System up, Normal operation 2µ/1200 5844.8 70.5 336678.0 119.0 System up, Normal operation 2µ/1200 5846.4 70.5 3421840.0 3006.0 11.4 System up, Normal operation 2µ/1200 580.6 440 3421840.0 3006.0 11.8 System up, Normal operation 3µ/1200 560.8 118.2 30060.0 11.8 System up, Normal operation 3µ/1200 660.8 114.2 30060.0 11.6 System up, Normal operation 3µ/1200 661.8 142.2 302400.0 11.6 System up, Normal operation 1µ/1200 664.4 44.3 3722480.0											
2/6/200 5924.0 44.1 313668.0 33360.0 11.8 System up, Normal operation 2/13/200 5691.2 44.0 332686.0 38418.0 11.7 System up, Normal operation 2/13/200 5691.2 44.0 332686.0 38911.0 11.7 System up, Normal operation 2/13/200 5884.8 70.5 336673.0 47335.0 11.2 System up, Normal operation 2/13/200 5886.4 40.5 336673.0 47335.0 11.2 System up, Normal operation 2/17/200 5886.6 40.8 3421449.0 30900.0 12.4 System up, Normal operation 2/17/200 5895.6 44.8 32084.0 11.8 System up, Normal operation 2/17/200 6595.3 118.8 372920.0 11.1 System up, Normal operation 3/17/200 6545.4 47.3 33105.0 10.6 System up, Normal operation 3/17/200 6648.4 47.3 380292.0 12.8 System up, Normal operation 3/17/200.5 44.5 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>											
2/11/200 596.2 119.2 332086/0 68/18.0 11.7 System up, Normal operation 2/18/200 581.4.3 123.1 313801.0 11.7 System up, Normal operation 2/18/200 581.4.3 123.1 313601.0 11.3 System up, Normal operation 2/18/200 581.6 70.8 33667.50 13990.0 12.4 System up, Normal operation 2/18/200 581.6 70.8 3421.840 53066.0 13.9 System up, Normal operation 3/17/200 590.6 4.0 3421.840 System up, Normal operation System up, Normal operation 3/17/200 590.5 4.0 3422.840.0 11.1 System up, Normal operation 3/17/200 680.5 4.1.7 3228.80.0 10.8 System up, Normal operation 3/17/200 684.1 4.5 38205.00 2328.0 13.4 System up, Normal operation 3/17/200 684.1 4.6 13.4 System up, Normal operation 4/17.20 3/17/200 684.1 4.6											
2/13/202 591.2 4.0.0 1225867.0 3360.0 11.7 System up, Normal operation 2/13/202 581.4 173.1 331942.00 473.50.0 11.2 System up, Normal operation 2/13/202 586.4 70.5 335673.0 473.50.0 11.2 System up, Normal operation 2/13/202 560.6 4.0.0 332867.0 11.8 System up, Normal operation 3/13/202 670.8 118.2 System up, Normal operation System up, Normal operation 3/13/202 671.5 46.4 3644405.0 3706.0 11.8 System up, Normal operation 3/13/202 672.5 46.4 3644405.0 3706.0 11.1 System up, Normal operation 3/13/202 673.5 11.8 72048.0 11.0 System up, Normal operation 3/13/202 674.4 385351.0 2226.0 13.4 System up, Normal operation 3/13/202 664.4 14.2 3929.0 12.4 System up, Normal operation 3/13/202 664.4 14.2											
2/18/202 5814.3 123.1 338/878.0 838/878.0 838/878.0 838/878.0 11.2 System up, Normal operation 2/15/2020 5916.6 48.0 338/878.0 13990.0 12.4 System up, Normal operation 2/15/2020 6076.8 118.2 35056.0 8327.0 11.8 System up, Normal operation 3/12/2020 6776.4 554847.7 37801.0 11.8 System up, Normal operation 3/12/2020 6726.7 46.4 6436405.0 37064.0 11.6 System up, Normal operation 3/12/2020 6726.7 47.4 64364305.0 3705510.0 11.1 System up, Normal operation 3/12/2020 646.0 117.4 382972.0 7611.0 10.8 System up, Normal operation 3/12/2020 666.0 117.4 382972.0 7611.0 10.8 System up, Normal operation 3/12/2020 666.0 117.4 38691.0 22.8 13.4 System up, Normal operation 3/12/2020 671.4 432921.0 72.2 S											
2/11/2020 598.8 770.5 336/73.0 47335.0 11.2 System up, Normal operation 2/17/2020 596.6 40.0 328/73.0 10990.0 12.4 System up, Normal operation 3/17/2020 675.8 116.2 356676.0 38877.0 3780.0 11.8 System up, Normal operation 3/17/2020 672.5 46.4 3648405.0 32640.0 11.5 System up, Normal operation 3/17/2020 672.5 46.4 3648405.0 32664.0 11.5 System up, Normal operation 3/17/2020 672.5 46.4 3648405.0 3266.0 10.7 327.2 3/17/2020 668.2 118.8 System up, Normal operation 327.2 3/17/2020 668.2 14.7 32531.0 30.8 10.8 System up, Normal operation 3/17/2020 668.2 14.7 408820.0 3338.0 11.9 System up, Normal operation 3/17/2020 668.4 16.6 406.2 9328.0 11.2 System up, Normal operation <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>											
2/27/202 996.6 40.0 342184.0 35969.0 11.9 System up, Normal operation 3/6/202 6132.4 53.6 353477.0 37801.0 11.8 System up, Normal operation 3/6/202 6132.4 53.6 354477.0 37811.0 6786.0 11.6 System up, Normal operation 3/12/202 6275.5 46.4 364405.0 32064.0 11.5 System up, Normal operation 3/12/202 650.5 47.5 385004.0 3907.0 10.8 System up, Normal operation 3/12/202 660.5 47.5 385004.0 3036.0 10.9 System up, Normal operation 3/12/202 664.1 43.2 32217.2.0 1687.0 13.6 System up, Normal operation 3/12/202 644.5 467.7 406820.0 3338.0 11.9 System up, Normal operation 3/12/202 704.1 47.7 40500.0 2276.0 11.5 System up, Normal operation 3/12/202 704.5 14232.4.0 6480.0 10.9 System u	2/21/2020										
3/1020 inflag 356676.0 3827.0 inflag System up, Normal operation 3/10/200 i23.1 i53.6 354377.0 37811.0 67684.0 i11.6 System up, Normal operation 3/10/200 i23.5 i11.8 372483.0 79075.0 i11.1 System up, Normal operation 3/17/200 i63.6 373.3 i118.8 3722483.0 79075.0 i11.1 System up, Normal operation 3/17/200 i64.4 47.3 33550.00 i13.6 System up, Normal operation 3/17/200 i66.8 31.4 385316.0 25268.0 i3.4 System up, Normal operation 3/17/200 i66.4 116.7 401342.0 9130.0 i2.8 System up, Normal operation 4/17/200 i66.4 116.9 404520.0 3338.0 11.9 System up, Normal operation 4/14/200 i66.4 116.9 427324.0 8954.0 11.5 System up, Normal operation 4/14/2000 i73.6 71.2 438276.0 7920.0 11.4 <	2/25/2020	5911.6	26.8	3386753.0	19990.0	12.4	System up, Normal operation				
3/6/2020 613.4 83.4 83.4477.0 371200.0 11.8 System up, Normal operation 3/12/2020 220.1 97.7 361134.0 6786.0 11.6 System up, Normal operation 3/12/2020 227.5 40.4 384405.0 32046.0 11.1 System up, Normal operation 3/12/2020 656.00 117.4 322353.0 3108.0 10.9 System up, Normal operation 3/16/2020 666.01 138.4 322342.0 1566.00 117.4 32232.0 3/16/2020 668.1 47.5 386004.0 3031.0 10.6 System up, Normal operation 3/16/2020 668.1 452 322217.20 3687.0 13.6 System up, Normal operation 4/16/2020 668.1 416.9 44932.0 3338.0 11.9 System up, Normal operation 4/16/2020 648.1 447.7 441642.0 3338.0 11.9 System up, Normal operation 4/16/2020 704.1 423212.0 7762.0 11.1 System up, Normal operation </td <td>2/27/2020</td> <td>5960.6</td> <td>49.0</td> <td>3421849.0</td> <td>35096.0</td> <td>11.9</td> <td>System up, Normal operation</td>	2/27/2020	5960.6	49.0	3421849.0	35096.0	11.9	System up, Normal operation				
31/02/00 623.0.1 97.7 8611341.0 67864.0 11.6 System up, Normal operation 31/02/00 635.3 1118.8 3722483.0 29078.0 11.1 System up, Normal operation 31/02/00 644.2 47.3 3733510.0 10.9 System up, Normal operation 31/02/00 656.0 117.4 3839732.0 76213.0 10.8 System up, Normal operation 31/02/00 663.8 31.4 385316.0 25268.0 13.4 System up, Normal operation 31/02/00 663.8 314.7 400620.0 33333.0 11.9 System up, Normal operation 47/02/00 666.4 118.7 401342.0 9130.0 12.8 System up, Normal operation 41/02/00 666.4 119.8 412732.0 80504.0 11.5 System up, Normal operation 41/02/00 735.6 71.2 438278.0 9762.00 11.4 System up, Normal operation 41/2/02/0 737.4 4444.4 433638.0 9702.0 11.4 System up, Normal o	3/3/2020	6078.8	118.2	3505676.0	83827.0	11.8	System up, Normal operation				
3/12/200 927.5 46.4 3643405.0 32064.0 11.5 System up, Normal operation 3/19/200 643.5 11.8 372831.0 11.8 System up, Normal operation 3/19/200 663.0 117.4 3329720.0 763.10 10.8 System up, Normal operation 3/19/200 669.7 47.5 3860048.0 10.6 System up, Normal operation 3/19/200 668.1 445.2 392173.0 18657.0 13.6 System up, Normal operation 4/12/200 668.1 46.7 404682.0 13338.0 11.9 System up, Normal operation 4/12/200 668.4 116.9 41727.20 889.5 A47.7 404682.0 133.6 4/12/200 704.1 47.7 416010.0 11.5 System up, Normal operation 4/12/200 704.1 47.7 4493682.0 7978.0 11.4 System up, Normal operation 4/12/200 704.3 17.7 4493682.0 10.6 System up, Normal operation 4/12/200 744.5 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>System up, Normal operation</td>							System up, Normal operation				
31/72000 635.3 118.8 3722483.0 79078.0 11.1 System up, Normal operation 31/47000 656.0 117.4 3829732.0 7513.0 10.8 System up, Normal operation 31/47000 656.0 117.4 3829732.0 7513.0 10.8 System up, Normal operation 31/47000 658.3 31.4 385511.60 2558.0 13.4 System up, Normal operation 31/17000 668.3 118.7 4013482.0 91309.0 12.8 System up, Normal operation 41/17000 664.5 14.6 407342.0 3650.0 11.5 System up, Normal operation 41/17000 646.4 116.9 417324.0 36338.0 11.5 System up, Normal operation 41/17000 716.4 4477.0 148010.00 32776.0 11.4 System up, Normal operation 41/17000 716.5 712.2 7365.0 11.2 System up, Normal operation 41/17000 767.7 80.1 448920.0 10.6 System up, Normal operation <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>											
3/19/200 644.2 6 47.3 3753519.0 31036.0 10.9 System up, Normal operation 3/16/200 6607.5 47.5 386048.0 30316.0 10.6 System up, Normal operation 3/16/200 6667.5 47.5 386048.0 13.6 System up, Normal operation 3/11/200 6684.1 45.2 382315.0 13.6 System up, Normal operation 4/12/201 6684.1 45.2 382317.0 36857.0 13.6 System up, Normal operation 4/12/201 6664.1 16.9 412732.0 80504.0 11.5 System up, Normal operation 4/14/202 6664.1 116.9 412732.0 80504.0 11.5 System up, Normal operation 4/14/2020 113.4 438288.0 9762.0 11.4 System up, Normal operation 4/12/2020 733.5 71.2 438278.0 9762.0 11.4 System up, Normal operation 4/12/2020 757.3 71.4 439278.0 9.6 System up, Normal operation 5/1/12020 767	3/12/2020										
3/24/2000 656.00 117.4 38/2972.00 76213.00 10.8 System u.p. Normal operation 3/31/2000 66637 47.75 3860048.00 3031.60 10.6 System u.p. Normal operation 3/31/2000 66389 31.4 3885316.0 22268.0 13.4 System u.p. Normal operation 4/7/2000 6802.8 118.7 4013482.0 9339.0 11.2 System u.p. Normal operation 4/3/2000 6864.4 116.9 401420.0 System u.p. Normal operation 4/3/2000 718.00 115.9 43272.0.0 780.0 11.4 System u.p. Normal operation 4/3/2000 718.0 115.9 432912.0.0 780.0.0 11.4 System u.p. Normal operation 4/3/2000 713.6 11.2 System u.p. Normal operation System u.p. Normal operation 5/3/2000 746.3 120.7 438278.0 13.6 System u.p. Normal operation 5/3/2000 796.7 14.4 436382.0 10.2 System u.p. Normal operation 5/3/2000 796.7											
3/16/2020 6607.5 47.5 3860048.0 30316.0 10.6 System up, Normal operation 3/12/2020 6684.1 462 3921173.0 36857.0 13.6 System up, Normal operation 4/1/2020 6684.1 46.7 401482.0 91309.0 12.8 System up, Normal operation 4/1/2020 6684.5 46.7 404622.0 33338.0 11.9 System up, Normal operation 4/14/2020 6664.4 116.9 412732.0 80504.0 11.5 System up, Normal operation 4/14/2020 115.7 404622.0 3338.0 12.9 System up, Normal operation 4/14/2020 115.9 9700.0 11.4 System up, Normal operation 4/2/2020 7345.6 71.2 4382786.0 46404.0 10.9 System up, Normal operation 5/1/2020 7645.3 10.7 445822.0 7525.0 16.6 System up, Normal operation 5/1/2020 7573.8 71.4 4597409.0 46809.0 10.9 System up, Normal operation <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>											
311/202 6638 9 31.4 3885316.0 25268.0 13.4 System up, Normal operation 4/1/2020 6684.1 145.2 3922173.0 36857.0 13.6 System up, Normal operation 4/1/2020 66802.8 115.7 4013482.0 31338.0 11.9 System up, Normal operation 4/1/2020 66804 16.9 412722.0 80504.0 11.5 System up, Normal operation 4/1/2020 6704.1 47.7 4406100.0 32776.0 11.5 System up, Normal operation 4/1/2020 7024.1 47.7 4406100.0 32776.0 11.4 System up, Normal operation 4/2/2020 7274.4 144.4 4336382.0 97262.0 11.4 System up, Normal operation 5/1/2020 7607.9 90.1 455020.0 16.8 System up, Normal operation 5/1/2020 7787.7 119.4 457247.0 74838.0 10.4 System up, Normal operation 5/1/2020 7878.7 119.4 457247.0 74838.0 10.4 System up, N											
4/12/200 6684.1 452 9322173.0 36857.0 13.6 System up, Normal operation 4/7/200 6692.8 118.7 4013482.0 91390.0 12.8 System up, Normal operation 4/14/200 6684.5 46.7 4004882.0 3333.0 11.9 System up, Normal operation 4/14/200 1014.1 47.7 4160100.0 3277.6.0 11.5 System up, Normal operation 4/2/2020 173.0 115.9 423912.00 79020.0 11.4 System up, Normal operation 4/2/2020 7345.6 71.2 43822.0 9726.0 11.2 System up, Normal operation 5/1/200 7345.6 71.2 438278.0 96.6 System up, Normal operation 5/1/200 7663 127.4 445504.00 6187.10 11.4 System up, Normal operation 5/1/200 7667.9 90.1 455060.0 6187.10 11.4 System up, Normal operation 5/1/200 7787.7 119.4 46724.0 7488.0 10.4 System up, Normal operati											
4/7/200 6802.8 118.7 4014482.0 9338.0 12.8 System up, Normal operation 4/7/200 68445 4467 404682.0 1333.0 11.9 System up, Normal operation 4/16/202 7041.1 47.7 41600.0 32776.0 11.5 System up, Normal operation 4/16/202 7130.0 115.9 423812.00 79020.0 11.4 System up, Normal operation 4/2/2020 7274.4 144.4 433632.0 97262.0 11.2 System up, Normal operation 5/5/2020 7865.3 12.2 485278.0 9.6 System up, Normal operation 5/1/2020 7797.3 71.4 495949.0 46800.0 10.9 System up, Normal operation 5/1/2020 7797.3 71.4 495949.0 64800.0 10.9 System up, Normal operation 5/1/2020 7978.7 119.4 457247.0 74838.0 10.4 System up, Normal operation 5/26/2020 7964.0 116.3 472242.0 11.7 System up, Normal operation											
4/9/2020 6849.5 467.7 4046820.0 3333.0 11.9 System up, Normal operation 4/14/2020 6966.4 116.9 4127324.0 80590.0 11.5 System up, Normal operation 4/14/2020 713.0.0 115.9 423720.0 11.4 System up, Normal operation 4/12/2020 732.4 144.4 433820.0 77262.0 11.2 System up, Normal operation 4/27/2020 7345.6 71.2 4382786.0 46404.0 10.9 System up, Normal operation 5/7/2020 7366.3 12.7 445820.0 7615.0 10.6 System up, Normal operation 5/1/2020 7673.3 71.4 458709.0 29528.0 9.6 System up, Normal operation 5/14/2020 7673.3 71.4 458709.0 10.9 System up, Normal operation 5/14/2020 7867.7 118.4 467247.0 74888.0 10.4 System up, Normal operation 5/14/2020 7864.0 116.3 478214.0 81832.0 11.7 System up, Normal operation											
4/14/2020 6966.4 116.9 412734.0 88964.0 11.5 System up, Normal operation 4/16/2020 7014.1 47.7 416010.0 32776.0 11.5 System up, Normal operation 4/16/2020 7274.4 144.4 4336382.0 97262.0 11.4 System up, Normal operation 4/27/2020 7274.4 144.4 4336382.0 97262.0 11.2 System up, Normal operation 5/5/2020 7465.3 120.7 4453201.0 76415.0 10.6 System up, Normal operation 5/1/2020 7679.3 90.1 4550600.0 61871.0 11.4 System up, Normal operation 5/11/2020 7667.9 90.1 4550600.0 61871.0 11.4 System up, Normal operation 5/11/2020 7697.3 71.4 459740.0 1488.0 10.4 System up, Normal operation 5/21/2020 7987.1 14.4 470247.0 7488.0 10.4 System up, Normal operation 5/21/2020 7864.0 11.5 System up, Normal operation System up,											
4/16/202 7014.1 47.7 4160100.0 32776.0 11.5 System up, Normal operation 4/21/2020 7130.0 115.9 4239120.0 7902.0 11.4 System up, Normal operation 4/21/2020 7274.4 144.4 438682.0 97262.0 11.2 System up, Normal operation 4/29/2020 7345.6 71.2 4382786.0 46404.0 10.9 System up, Normal operation 5/7/2020 7517.8 51.5 4488729.0 2552.8.0 9.6 System up, Normal operation 5/1/2020 7679.3 91.1 4597409.0 46899.0 10.9 System up, Normal operation 5/14/2021 7697.3 71.4 497049.0 28002.0 9.5 System up, Normal operation 5/12/2020 7864.0 116.3 4782142.0 8183.0 11.7 System up, Normal operation 5/2/2020 7864.0 116.3 4782142.0 8183.0 11.7 System up, Normal operation 5/2/2020 7864.0 116.3 4782142.0 8183.0 11.7 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td>						-					
4/21/2020 7130.0 115.9 4239120.0 79020.0 11.4 System up, Normal operation 4/27/2020 7345.6 71.2 4382786.0 46404.0 10.9 System up, Normal operation 5/5/2020 7365.6 71.2 4382786.0 46404.0 10.9 System up, Normal operation 5/5/2020 7365.5 7482720.0 7645.0 10.6 System up, Normal operation 5/1/2020 7579.3 71.4 4550600.0 61871.0 11.4 System up, Normal operation 5/1/2020 7787.3 71.4 4570400.0 46809.0 10.9 System up, Normal operation 5/12/2020 7787.7 119.4 4672247.0 74838.0 10.4 System up, Normal operation 5/2/2020 798.7 116.3 4782142.0 8189.0 11.7 System up, Normal operation 5/2/2020 8014.8 50.8 481362.4 10.3 System up, Normal operation 5/2/2020 814.8 66.3 489636.6 5521.2 13.9 System up, Normal operation											
4/27/2020 7274.4 144.4 433638.0 97262.0 11.2 System up, Normal operation 4/29/2020 7345.6 71.2 4382786.0 46404.0 10.9 System up, Normal operation 5/7/2020 7317.8 61.5 4489729.0 25528.0 9.6 System up, Normal operation 5/1/2020 7679.3 01.1 4550600.0 61871.0 11.4 System up, Normal operation 5/14/2020 7679.3 71.4 4597409.0 46809.0 10.9 System up, Normal operation 5/14/2020 7787.7 119.4 4672247.0 74838.0 10.4 System up, Normal operation 5/21/2020 7964.0 116.3 4782142.0 81830.0 11.7 System up, Normal operation 5/26/2020 7964.0 116.3 4782142.0 81838.0 12.2 System up, Normal operation 5/26/2020 8014.8 66.3 4896364.0 5212.0 13.9 System down on high K/O and high B alarms 6/2/2020 8115.8 66.5 120.5 System down on o	4/21/2020										
5/5/202 74663 120.7 445920.0 7511.0 10.6 System up, Normal operation 5/7/2020 7517.8 61.5 4488729.0 29528.0 9.6 System up, Normal operation 5/1/2020 7607.9 90.1 455060.0 61871.0 11.4 System up, Normal operation 5/14/2020 7679.3 71.4 4597490.0 4680.9.0 10.9 System up, Normal operation 5/12/2020 788.7 119.4 4672247.0 7483.8.0 10.4 System up, Normal operation 5/21/2020 784.7 40.0 4702249.0 28002.0 9.5 System up, Normal operation 5/21/2020 784.7 40.0 4702249.0 2802.0 9.5 System up, Normal operation 5/21/2020 8014.8 50.8 481362.0 31482.0 10.3 System up, Normal operation 6/2/2020 8164.8 46.0 4930276.0 33912.0 12.3 System up, Normal operation 6/2/2020 8164.8 46.0 4930276.0 33912.0 12.3	4/27/2020	7274.4	144.4	4336382.0	97262.0	11.2	System up, Normal operation				
57/2020 7517.8 51.5 4488729.0 29528.0 9.6 System up, Normal operation 5/1/2020 7607.9 90.1 4550600.0 61871.0 11.4 System up, Normal operation 5/1/2020 7787.7 119.4 459749.0.0 46809.0 10.9 System up, Normal operation 5/12/2020 7787.7 49.0 4700249.0 2802.0 9.5 System up, Normal operation 5/21/2020 7847.7 49.0 4700249.0 2802.0 9.5 System up, Normal operation 5/26/2020 7864.0 116.3 4782142.0 81893.0 11.7 System up, Normal operation 5/30/2020 8052.5 37.7 4841152.0 2732.60 12.2 System up, Normal operation 6/4/2020 8164.8 46.0 4930276.0 33912.0 12.3 System up, Normal operation 6/11/2020 8312.3 26.7 502442.0 15679.0 9.8 System up, Normal operation 6/11/2020 8473.8 45.9 51390220.0 10.8 A8acid was	4/29/2020	7345.6	71.2	4382786.0	46404.0	10.9	System up, Normal operation				
5/11/2020 7607.9 90.1 4550600.0 61871.0 11.4 System up, Normal operation 5/14/2020 7679.3 71.4 4597409.0 46609.0 10.9 System up, Normal operation 5/14/2020 7798.7 119.4 457247.0 7438.8.0 10.4 System up, Normal operation 5/21/2020 7847.7 49.0 4700249.0 28002.0 9.5 System up, Normal operation 5/22/2020 7964.0 116.3 4782142.0 81893.0 11.7 System up, Normal operation 5/28/2020 8014.8 50.8 4813624.0 27328.0 12.2 System up, Normal operation 6/2/2020 8164.8 46.0 4930276.0 33912.0 12.3 System up, Normal operation 6/1/2020 8285.6 120.8 5013763.0 83487.0 11.5 System up, Normal operation 6/1/2020 8247.9 115.6 5109157.0 79715.0 11.5 System up, Normal operation 6/1/2020 8473.8 45.9 5133902.9 29872.0	5/5/2020	7466.3	120.7	4459201.0	76415.0	10.6	System up, Normal operation				
5/14/2020 7679.3 71.4 4597409.0 46809.0 10.9 System up, Normal operation 5/19/2020 7798.7 119.4 4672247.0 74838.0 10.4 System up, Normal operation 5/19/2020 7987.7 49.0 4700249.0 28002.0 9.5 System up, Normal operation 5/26/2020 7964.0 116.3 4782142.0 81893.0 11.7 System up, Normal operation 5/26/2020 8014.8 50.8 4813624.0 31482.0 10.3 System up, Normal operation 6/2/2020 8118.8 66.3 48936364.0 55212.0 13.9 System up, Normal operation 6/2/2020 8164.8 46.0 4930276.0 33912.0 12.3 System up, Normal operation 6/1/2020 8164.8 46.0 4930276.0 115.5 System up, Normal operation 6/1/2020 8124.7.9 115.6 System up, Normal operation 6/11 6/1/2020 847.3 459 5139029.0 29872.0 10.8 A5 acid wash. System up, Normal operation <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>											
5/19/2020 7798.7 119.4 4672247.0 74838.0 10.4 System up, Normal operation 5/12/2020 7847.7 49.0 4700249.0 28002.0 9.5 System up, Normal operation 5/26/2020 7964.0 116.3 4782142.0 81893.0 11.7 System up, Normal operation 5/28/2020 8014.8 50.8 4813624.0 31482.0 10.3 System up, Normal operation 5/28/2020 8052.5 37.7 4441152.0 27528.0 12.2 System up, Normal operation 6/2/2020 8118.8 66.3 4895636.0 53212.0 13.9 System up, Normal operation 6/2/2020 8118.8 46.0 4930276.0 33912.0 12.3 System up, Normal operation 6/1/2020 8285.6 120.8 513173.0 83487.0 11.5 System up, Normal operation 6/18/2020 847.8 45.9 513902.90 29872.0 11.5 System up, Normal operation 6/23/2020 859.1 117.4 521677.0 7648.0 10.3 System up, Normal operation 6/23/2020 8637.6 46.											
5/21/2020 7847.7 49.0 4700249.0 28002.0 9.5 System up, Normal operation 5/26/2020 7964.0 116.3 4782142.0 81893.0 11.7 System up, Normal operation 5/26/2020 8014.8 50.8 4813624.0 31482.0 10.3 System up, Normal operation 5/30/2020 8015.5 37.7 4841152.0 27528.0 12.2 System up, Normal operation 6/2/2020 8116.8 66.3 4896364.0 55212.0 13.9 System up, Normal operation 6/4/2020 8164.8 46.0 4930276.0 33912.0 12.3 System up, Normal operation 6/1/2020 8164.8 46.0 4930276.0 33912.0 12.3 System up, Normal operation 6/11/2020 8127.9 115.6 5109157.0 79715.0 11.5 System up, Normal operation 6/12/2020 847.3 45.9 513902.0 2987.0 10.8 A5 acid wash. System up, Normal operation 6/25/2020 8637.6 46.4 5240877.0 29200.0											
S/26/2020 7964.0 116.3 4782142.0 81893.0 11.7 System up, Normal operation 5/28/2020 8014.8 50.8 4813624.0 31482.0 10.3 System up, Normal operation 5/30/2020 8014.8 50.8 4813624.0 31482.0 11.7 System up, Normal operation 5/30/2020 8118.8 66.3 4896364.0 55212.0 12.2 System up, Normal operation 6/4/2020 8164.8 46.0 4930276.0 33912.0 12.3 System up, Normal operation 6/1/2020 812.3 26.7 502942.0 15679.0 9.8 System down on 6/10 for electrical upgrade/stripper cleaning. Restarted on 6/11 6/18/2020 8473.8 45.9 5139029.0 2982.0 10.8 A5 acid wash. System up, Normal operation 6/23/2020 8591.2 117.4 5211677.0 72648.0 10.3 System up, Normal operation 6/23/2020 8533.6 46.4 5240877.0 29200.0 10.5 System up, Normal operation 7/1/2020 8535.5 137.9											
5/28/2020 8014.8 50.8 4813624.0 31482.0 10.3 System up, Normal operation 5/30/2020 8052.5 37.7 4841152.0 27528.0 12.2 System up, Normal operation 6/2/2020 8118.8 66.3 4896364.0 55212.0 13.9 System up, Normal operation 6/2/2020 818.8 46.0 4930276.0 33912.0 12.3 System up, Normal operation 6/1/2020 8285.6 120.8 5031763.0 83487.0 11.5 System up, Normal operation 6/11/2020 8312.3 26.7 5029442.0 15679.0 9.8 System down of/10 for electrical upgrade/stripper cleaning. Restarted on 6/11 6/18/2020 8473.8 45.9 5139029.0 29872.0 10.8 AS acid wash. System up, Normal operation 6/23/2020 8531.2 117.4 5211677.0 72648.0 10.3 System up, Normal operation 6/23/2020 8738.8 101.2 S306139.0 65262.0 10.7 System up, Normal operation 7/1/2020 8738.8 101.2											
5/30/2020 8052.5 37.7 4841152.0 27528.0 12.2 System down - high K/O and high BF alarms 6/2/2020 8118.8 66.3 4896364.0 55212.0 13.9 System up, Normal operation 6/4/2020 8116.8 46.0 4930276.0 33912.0 12.3 System up, Normal operation 6/1/2020 8285.6 120.8 5013763.0 83487.0 11.5 System up, Normal operation 6/11/2020 8312.3 26.7 5029442.0 15679.0 9.8 System down on 6/10 for electrical upgrade/stripper cleaning. Restarted on 6/11 6/18/2020 8473.8 45.9 5139029.0 29872.0 10.8 As acid wash. System up, Normal operation 6/23/2020 8537.6 46.4 5240877.0 29200.0 10.5 System up, Normal operation 7/1/2020 8738.8 101.2 5306139.0 65262.0 10.7 System up, Normal operation 7/1/2020 8735.5 137.9 5429468.0 92741.0 11.2 System up, Normal operation 7/1/2020 8975.5 5532 5492460.0 34849.0 10.5 System up, Normal operation <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>											
6/2/2020 8118.8 66.3 4896364.0 55212.0 13.9 System up, Normal operation 6/4/2020 8164.8 46.0 4930276.0 33912.0 12.3 System up, Normal operation; generated 3 drums of sludge, pressure washed floors. 6/9/2020 8285.6 120.8 5013763.0 83487.0 11.5 System up, Normal operation; generated 3 drums of sludge, pressure washed floors. 6/11/2020 8312.3 26.7 5029442.0 15679.0 9.8 System down on 6/10 for electrical upgrade/stripper cleaning. Restarted on 6/11 6/18/2020 8473.8 45.9 5139029.0 29872.0 10.8 A5 acid wash. System up, Normal operation 6/23/2020 8591.2 117.4 5211677.0 72648.0 10.3 System up, Normal operation 6/25/2020 8637.6 46.4 5240877.0 29200.0 10.5 System up, Normal operation 7/1/2020 8785.6 46.8 5336727.0 30588.0 10.9 System up, Normal operation 7/1/2020 8725.5 464.8 5437611.0 28143.0 10.0 System up, Normal											
6/4/2020 8164.8 46.0 4930276.0 33912.0 12.3 System up, Normal operation; generated 3 drums of sludge, pressure washed floors. 6/9/2020 8285.6 120.8 5013763.0 83487.0 11.5 System up, Normal operation 6/11/2020 8312.3 26.7 5029442.0 15679.0 9.8 System down on 6/10 for electrical upgrade/stripper cleaning. Restarted on 6/11 6/16/2020 8427.9 115.6 5109157.0 79715.0 11.5 System up, Normal operation 6/18/2020 8473.8 45.9 5139029.0 29872.0 10.8 AS acid wash. System up, Normal operation 6/25/2020 8537.6 46.4 5240877.0 29200.0 10.5 System up, Normal operation 6/29/2020 8738.8 101.2 5306139.0 65262.0 10.7 System up, Normal operation 7/1/2020 8797.3 46.8 533672.7.0 30588.0 10.9 System up, Normal operation 7/1/2020 8970.3 46.8 533672.0 30588.0 10.9 System up, Normal operation 7/14/2											
6/9/20208285.6120.85013763.083487.011.5System up, Normal operation6/11/20208312.326.75029442.015679.09.8System down on 6/10 for electrical upgrade/stripper cleaning. Restarted on 6/116/12/20208427.9115.65109157.079715.011.5System up, Normal operation6/12/20208473.845.95139029.029872.010.8AS acid wash. System up, normal operation.6/23/20208591.2117.45211677.072648.010.3System up, Normal operation6/23/20208537.646.45240877.02920.010.5System up, Normal operation6/29/20208738.8101.25306139.065262.010.7System up, Normal operation7/1/20208735.546.85336727.030588.010.9System up, Normal operation7/7/20208923.5137.95429468.092741.011.2System up, Normal operation7/14/20209025.555.25492460.034849.010.5System up, Normal operation7/14/20209071.045.5553621.043161.015.8System up, Normal operation7/12/2020977.96.95541759.06138.014.8System down on arrival, up on departure7/28/20209128.53.9558651.05482.023.4System down on arrival, up on departure7/28/20209128.53.9558651.05482.023.4System down on arrival, up on departure7/28/											
6/11/2020 8312.3 26.7 5029442.0 15679.0 9.8 System down on 6/10 for electrical upgrade/stripper cleaning. Restarted on 6/11 6/16/2020 8427.9 115.6 5109157.0 79715.0 11.5 System up, Normal operation 6/18/2020 8473.8 46.9 5139029.0 29872.0 10.8 AS acid wash. System up, normal operation. 6/23/2020 8591.2 117.4 5211677.0 72648.0 10.3 System up, Normal operation 6/25/2020 8537.6 46.4 5240877.0 29200.0 10.5 System up, Normal operation 6/29/2020 8738.8 101.2 5306139.0 65262.0 10.7 System up, Normal operation 7/1/2020 8923.5 137.9 5429468.0 92741.0 11.2 System up, Normal operation 7/9/2020 8970.3 48.8 5457611.0 28143.0 10.0 System up, Normal operation 7/14/2020 9025.5 55.2 5492460.0 34849.0 10.5 System up, Normal operation 7/12/2020 9071.0 45.5<											
6/16/2020 8427.9 115.6 5109157.0 79715.0 11.5 System up, Normal operation 6/18/2020 8473.8 45.9 5139029.0 29872.0 10.8 AS acid wash. System up, normal operation. 6/23/2020 8591.2 117.4 5211677.0 72648.0 10.3 System up, Normal operation. 6/25/2020 8637.6 464 5240877.0 29200.0 10.5 System up, Normal operation 6/29/2020 873.8 101.2 5306139.0 65262.0 10.7 System up, Normal operation 7/1/2020 8785.6 46.8 5336727.0 30588.0 10.9 System up, Normal operation 7/1/2020 8970.3 46.8 5457611.0 28143.0 10.0 System up, Normal operation 7/14/2020 9025.5 55.2 5492460.0 34849.0 10.5 System up, Normal operation 7/14/2020 9071.0 45.5 5535621.0 43161.0 15.8 System down on arrival, up on departure 7/23/2020 9124.6 46.7 5581360.0 <											
6/18/2020 8473.8 45.9 5139029.0 29872.0 10.8 AS acid wash. System up, normal operation. 6/23/2020 8591.2 117.4 5211677.0 72648.0 10.3 System up, Normal operation 6/25/2020 8537.6 46.4 5240877.0 29200.0 10.5 System up, Normal operation System samples collected. 6/29/2020 8738.8 101.2 5306139.0 65262.0 10.7 System up, Normal operation 7/1/2020 8785.6 46.8 5336727.0 30588.0 10.9 System up, Normal operation 7/1/2020 8970.3 46.8 5336727.0 30588.0 10.9 System up, Normal operation 7/1/2020 8970.3 46.8 5336727.0 30588.0 10.9 System up, Normal operation 7/1/2020 8970.3 46.8 545761.1.0 28143.0 10.0 System up, Normal operation 7/14/2020 9025.5 55.2 5492460.0 34849.0 10.5 System up, Normal operation 7/12/2020 9071.0 45.5 5553621.0 </td <td>6/16/2020</td> <td></td> <td>115.6</td> <td></td> <td></td> <td></td> <td></td>	6/16/2020		115.6								
Application Distance Distance <thdistance< th=""> Distance Distance</thdistance<>	6/18/2020	8473.8		5139029.0	29872.0	10.8	AS acid wash. System up, normal operation.				
6/29/2020 8738.8 101.2 5306139.0 65262.0 10.7 System up, Normal operation 7/1/2020 8738.8 101.2 5306139.0 65262.0 10.7 System up, Normal operation 7/1/2020 8785.6 46.8 5336727.0 30588.0 10.9 System up, Normal operation 7/1/2020 8920.3. 137.9 5429468.0 92741.0 11.2 System up, Normal operation 7/9/2020 8970.3 46.8 5457611.0 28143.0 10.0 System up, Normal operation 7/14/2020 9025.5 55.2 5492460.0 34849.0 10.5 System up, Normal operation 7/14/2020 9071.0 45.5 5535621.0 43161.0 15.8 System down on arrival, up on departure 7/23/2020 9124.6 46.7 5581850.0 39610.0 14.1 System down on arrival, up on departure 7/28/2020 9128.5 3.9 5586851.0 5482.0 23.4 System was down, new software, system up 7/28/2020 9133.0 24.5 5609725.0	6/23/2020	8591.2		5211677.0	72648.0	10.3	System up, Normal operation				
1/1/2020 8785.6 46.8 5336727.0 30588.0 10.9 System up, Normal operation 7/1/2020 8923.5 137.9 5429468.0 92741.0 11.2 System up, Normal operation 7/9/2020 8970.3 46.8 5457611.0 28143.0 10.0 System up, Normal operation 7/14/2020 9025.5 55.2 5492460.0 34849.0 10.5 System up, Normal operation 7/16/2020 9071.0 45.5 5535621.0 43161.0 15.8 System down on arrival, up on departure 7/21/2020 9077.9 6.9 5541759.0 6138.0 14.8 System down on arrival, up on departure 7/28/2020 9124.6 46.7 5581369.0 39610.0 14.1 System was down, new software, system up 7/28/2020 9128.5 3.9 558681.0 5482.0 23.4 System was down, new software, system up 7/29/2020 9153.0 24.5 5609725.0 22874.0 15.6 System up, Normal operation 8/4/2020 9291.9 138.9 5729128.	6/25/2020						System up, Normal operation System samples collected.				
7/7/2020 8923.5 137.9 5429468.0 92741.0 11.2 System up, Normal operation 7/9/2020 8970.3 46.8 5457611.0 28143.0 10.0 System up, Normal operation 7/14/2020 9025.5 55.2 5492460.0 34849.0 10.5 System up, Normal operation 7/16/2020 9071.0 45.5 5535621.0 43161.0 15.8 System up, Normal operation 7/12/2020 9077.9 6.9 5541759.0 6138.0 14.8 System down on arrival, up on departure 7/28/2020 9124.6 46.7 5583651.0 5482.0 23.4 System down. Software updates 7/28/2020 9128.5 3.9 5586851.0 5482.0 23.4 System was down, new software, system up 7/29/2020 9153.0 24.5 5609725.0 22874.0 15.6 System up, Normal operation 8/4/2020 9291.9 138.9 5729128.0 119403.0 14.3 System up, Normal operation 8/6/2020 9339.9 48.0 5768198.0 390	6/29/2020										
7/9/2020 8970.3 46.8 5457611.0 28143.0 10.0 System up, Normal operation 7/14/2020 9025.5 55.2 5492460.0 34849.0 10.5 System up, Normal operation 7/14/2020 9071.0 45.5 5535621.0 43161.0 15.8 System up, Normal operation 7/21/2020 9077.9 6.9 5541759.0 6138.0 14.8 System down on arrival, up on departure 7/23/2020 9124.6 46.7 5581369.0 39610.0 14.1 System down. Software updates 7/28/2020 9128.5 3.9 5586851.0 5482.0 23.4 System was down, new software, system up 7/29/2020 9153.0 24.5 5609725.0 22874.0 15.6 System up, Normal operation 8/4/2020 9291.9 138.9 5729128.0 119403.0 14.3 System up, Normal operation 8/6/2020 9339.9 48.0 5768198.0 39070.0 13.6 System up, Normal operation 8/11/2020 9460.5 120.6 586272.0 94											
7/14/2020 9025.5 55.2 5492460.0 34849.0 10.5 System up, Normal operation 7/16/2020 9071.0 45.5 5535621.0 43161.0 15.8 System up, Normal operation 7/21/2020 9077.9 6.9 5541759.0 6138.0 14.8 System down on arrival, up on departure 7/23/2020 9124.6 46.7 5581869.0 39610.0 14.1 System down. Software updates 7/28/2020 9128.5 3.9 5586851.0 5482.0 23.4 System was down, new software, system up 7/29/2020 9153.0 24.5 5609725.0 22874.0 15.6 System up, Normal operation 8/4/2020 923.9 48.0 5729128.0 119403.0 14.3 System up, Normal operation 8/6/2020 933.9 48.0 5768198.0 39070.0 13.6 System up, Normal operation 8/11/2020 9460.5 120.6 586272.0 9452.4 13.1 System up, Normal operation 8/13/2020 9510.8 50.3 5900756.0 38034											
7/16/2020 9071.0 45.5 5535621.0 43161.0 15.8 System up, Normal operation 7/16/2020 9077.9 6.9 5541759.0 6138.0 14.8 System down on arrival, up on departure 7/23/2020 9124.6 46.7 5581369.0 39610.0 14.1 System down. Software updates 7/28/2020 9128.5 3.9 5586851.0 5482.0 23.4 System was down, new software, system up 7/29/2020 9153.0 24.5 5609725.0 22874.0 15.6 System up, Normal operation 8/4/2020 9291.9 138.9 5729128.0 119403.0 14.3 System up, Normal operation 8/6/2020 939.9 48.0 5768198.0 39070.0 13.6 System up, Normal operation 8/11/2020 9460.5 120.6 586272.0 9452.4 13.1 System up, Normal operation 8/13/2020 9510.8 50.3 5900756.0 38034.0 12.6 System up, Normal operation											
7/21/2020 9077.9 6.9 5541759.0 6138.0 14.8 System down on arrival, up on departure 7/23/2020 9124.6 46.7 5581369.0 39610.0 14.1 System down. Software updates 7/28/2020 9128.5 3.9 5586851.0 5482.0 23.4 System was down, new software, system up 7/29/2020 9153.0 24.5 5609725.0 22874.0 15.6 System up, Normal operation 8/4/2020 9291.9 138.9 572912.80 119403.0 14.3 System up, Normal operation 8/6/2020 9339.9 48.0 5768198.0 39070.0 13.6 System up, Normal operation 8/11/2020 9460.5 120.6 586272.0 9452.4.0 13.1 System up, Normal operation 8/13/2020 9510.8 50.3 5900756.0 38034.0 12.6 System up, Normal operation											
7/23/2020 9124.6 46.7 5581369.0 39610.0 14.1 System down. Software updates 7/28/2020 9128.5 3.9 5586851.0 5482.0 23.4 System was down, new software, system up 7/28/2020 9128.5 3.9 5586851.0 5482.0 23.4 System was down, new software, system up 8/4/2020 9291.9 138.9 5729128.0 119403.0 14.3 System up, Normal operation 8/6/2020 9339.9 48.0 5768198.0 39070.0 13.6 System up, Normal operation 8/11/2020 9460.5 120.6 5862722.0 94524.0 13.1 System up, Normal operation 8/13/2020 9510.8 50.3 5900756.0 38034.0 12.6 System up, Normal operation											
7/28/2020 9128.5 3.9 5586851.0 5482.0 23.4 System was down, new software, system up 7/29/2020 9153.0 24.5 5609725.0 2287.0 15.6 System up, Normal operation 8/4/2020 9291.9 138.9 5729128.0 119403.0 14.3 System up, Normal operation 8/6/2020 9339.9 48.0 5768198.0 39070.0 13.6 System up, Normal operation 8/11/2020 9460.5 120.6 586272.0 9452.4 13.1 System up, Normal operation 8/13/2020 9510.8 50.3 5900756.0 38034.0 12.6 System up, Normal operation											
7/29/2020 9153.0 24.5 5609725.0 22874.0 15.6 System up, Normal operation 8/4/2020 9291.9 138.9 5729128.0 119403.0 14.3 System up, Normal operation 8/6/2020 9339.9 48.0 5768198.0 39070.0 13.6 System up, Normal operation 8/11/2020 9460.5 120.6 5862722.0 94524.0 13.1 System up, Normal operation 8/13/2020 9510.8 50.3 5900756.0 38034.0 12.6 System up, Normal operation											
8/4/2020 9291.9 138.9 5729128.0 119403.0 14.3 System up, Normal operation 8/6/2020 9339.9 48.0 5768198.0 39070.0 13.6 System up, Normal operation 8/1/2020 9460.5 120.6 5862722.0 94524.0 13.1 System up, Normal operation 8/13/2020 9510.8 50.3 5900756.0 38034.0 12.6 System up, Normal operation											
8/6/2020 9339.9 48.0 5768198.0 39070.0 13.6 System up, Normal operation 8/11/2020 9460.5 120.6 5862722.0 94524.0 13.1 System up, Normal operation 8/13/2020 9510.8 50.3 5900756.0 38034.0 12.6 System up, Normal operation											
8/11/2020 9460.5 120.6 5862722.0 94524.0 13.1 System up, Normal operation 8/13/2020 9510.8 50.3 5900756.0 38034.0 12.6 System up, Normal operation											
8/13/2020 9510.8 50.3 5900756.0 38034.0 12.6 System up, Normal operation	8/11/2020										
	8/13/2020										
	8/18/2020	9611.6	100.8	5974535.0	73779.0	12.2	System was down on arrival. Up on departure				

Table 4

Remedial System Operation Data 2020

Date	Hourmeter	Total hours	Totalizer	Total Volume Discharged	GPM	Operational Status		
		since last visit	Gallons	Gallons				
8/20/2020	9657.4	45.8	6009467.0	34932.0	12.7	System up, Normal operation		
8/25/2020	9774.7	117.3	6091052.0	81585.0	11.6	System up, Normal operation		
8/28/2020	9829.7	55.0	6129287.0	38235.0	11.6	System was down on arrival. Up on departure		
9/1/2020	9919.6	89.9	6192015.0	62728.0	11.6	System up, Normal operation		
9/4/2020	9988.7	69.1	6230235.0	38220.0	9.2	System up, Normal operation		
9/8/2020	10086.0	97.3	6298793.0	68558.0	11.7	System up, Normal operation		
9/11/2020	10156.3	70.3	6345207.0	46414.0	11.0	System up, Normal operation		
9/15/2020	10254.2	97.9	6409376.0	64169.0	10.9	System up, Normal operation		
9/18/2020	10322.9	68.7	6455409.0	46033.0	11.1	System up, Normal operation		
9/22/2020	10414.3	91.4	6515085.0	59676.0	10.9	System up, Normal operation		
9/25/2020	10485.0	70.7	6555287.0	40202.0	9.5	System up, Normal operation		
9/29/2020	10565.1	80.1	6604445.0	49158.0	14.9	System down on arrival, up on departure		
10/2/2020	10634.7	69.6	6647692.0	43247.0	10.4	System up, Normal operation		
10/6/2020	10725.9	91.2	6709673.0	61981.0	11.3	System down on arrival, up on departure		
10/9/2020	10798.3	72.4	6756198.0	46525.0	10.7	System up, Normal operation		
10/13/2020	10892.1	93.8	6817514.0	61316.0	10.9	System up, Normal operation		
10/16/2020	10963.3	71.2	6862654.0	45140.0	10.6	System up, Normal operation		
10/20/2020	11055.9	92.6	6923282.0	60628.0	10.9	System up, Normal operation		
10/23/2020	11131.3	75.4	6973720.0	50438.0	11.1	System up, Normal operation		
10/27/2020	11219.9	88.6	7038363.0	64643.0	12.2	System down, Transfer pump failure		
10/30/2020	11222.5	2.6	7038363.0	0.0	0	System down, new transfer pump installed, up on departure		
11/3/2020	11252.2	29.7	7068160.0	29797.0	16.7	system was down due to High High alarm, restarted, up on departure		
11/6/2020	11323.3	71.1	7127807.0	59647.0	14	System up, Normal operation		
11/10/2020	11421.8	98.5	7211031	83224.0	14.1	System up, Normal operation		
11/13/2020	11492.6	70.8	7267781	56750.0	13.4	System up, Normal operation		
11/17/2020	11584.6	92.0	7350086	82305.0	14.9	System up, Normal operation		
11/20/2020	11656.7	72.1	7416220	66134.0	15.3	System up, Normal operation		
11/23/2020	11731.2	74.5	7479426	63206.0	14.1	System up, Normal operation		
11/25/2020	11776.5	45.3	7590094	110668.0	40.7	System up, Normal operation		
12/1/2020	11918.3	141.8	7640008	49914.0	5.9	System up, Normal operation		
12/4/2020	11938.5	20.2	7656409	16401.0	13.5	Air Stripper rebuild, system was down for 2 days		
12/8/2020	12034.7	96.2	7738072	81663.0	14.1	System up, Normal operation		
12/11/2020	12106.7	72.0	7797667	59595.0	13.8	System up, Normal operation		
12/15/2020	12147.8	41.1	7833707	36040.0	14.6	System down on arrival, up on departure		
12/18/2020	12189.1	41.3	7871705	37998.0	15.3	System down on arrival, up on departure		
12/22/2020	12284.3	95.2	7954615	82910.0	14.5	.5 System up, Normal operation		
12/24/2020	12334.3	50.0	7998134	43519.0	14.5	14.5 System up, Normal operation		
12/29/2020	12449.9	115.6	8114829	116695.0	16.8	System up, Normal operation		
12/31/2020	12501.3	51.4	8167751	52922.0	17.2	System up, Normal operation		

GPM = Gallons per minute

Table 5 Monthly Treatment Data Effluent 2020

Parameter	Units	Measurement Frequency	Effluent Limits (Daily Max.)	1/30/2020	2/27/2020	3/26/2020	4/23/2020	5/21/2020	6/25/2020	7/28/2020	8/20/2020	9/22/2020	10/20/2020	11/17/2020	12/8/2020
VOCs	ug/L	Monthly	10	15.30	75.90	5.9J	27.00	60.00	203.00	88.00	93.00	138.30	140.00	155.00	45.00
Oil & Grease	mg/L	Monthly	15	3.80	4.7 J	ND	ND	3.1 J	ND	ND	ND	ND	ND	ND	ND
Aluminum	ug/L	Monthly	2,700	ND	ND	ND									
Iron	ug/L	Monthly	2,000	2,200.00	2,300.00	2,300.00	1,400.00	3,900.00	1,900.00	4,600.00	1,800.00	1,800.00	2,600.00	2,200.00	1,800.00
Zinc	ug/L	Monthly	400	ND	27.00	28.00	9.30	11.00	25.00	39.00	8.60	5.60	7.90	32.00	38.00

Notes:

mg/L = milligrams per litre

ug/L = micrograms per liter

NYSDEC TOGS 1.1.1 GWQS = New York State Department of Environmental Conservation Technical and Operational Guidance Series 1.1.1 June 1998 Ambient Water Quality Standards and Guidance Values for Groundwater Bold values exceed the Effluent Limits.

ND <# = Indicates compound was analyzed for, but not detected at or above the indicated reporting limit.

J = Result is less than the Reporting Limit but greater than or equal to the Method Detection Limit and the concentration is an approximate value.

Table 6 System VOC Summary 2020

	Concentration (ug/L)												
Sample Date	TCE	cis-1,2-DCE	Vinyl Chloride	Acetone	Total TCL List VOCs								
Influent													
1/30/2020	3,400.0	3,600.0	190.0	ND<400	7,190.0								
2/27/2020	3,600.0	3,300.0	220.0	ND<40	7,120.0								
3/26/2020	2,800.0	3,400.0	150.0	ND<400	6,350.0								
4/23/2020	3,900.0	3,500.0	210.0	ND<400	7,610.0								
5/21/2020	5,100.0	4,100.0	290.0	ND<400	9,490.0								
6/25/2020	4,900.0	3,800.0	300.0	490.0	9,000.0								
7/28/2020	4,000.0	2,500.0	170.0	ND<400	6,670.0								
8/20/2020	3,900.0	3,300.0	180.0	NS	7,380.0								
9/22/2020	4,200.0	3,900.0	190.0	NS	8,290.0								
10/20/2020	4,400.0	3,900.0	190.0	ND<40	8,490.0								
11/17/2020	4,500.0	3,500.0	150.0	NS	8,150.0								
12/8/2020	5,400.0	3,900.0	190.0	ND<40	9,490.0								
Effluent													
1/30/2020	4.3	11.0	ND<1	ND<10	15.3								
2/27/2020	25.0	49.0	ND<1	ND<10	74.0								
3/26/2020	1.6	4.3	ND<1	ND<10	5.9								
4/23/2020	19.0	27.0	ND<4	ND<40	46.0								
5/21/2020	26.0	34.0	ND<4	ND<40	60.0								
6/25/2020	35.0	48.0	ND<4	120.0	83.0								
7/28/2020	43.0	45.0	ND<4	ND<40	88.0								
8/20/2020	39.0	54.0	ND<4	ND<40	93.0								
9/22/2020	60.0	72.0	ND<4	6.3 J	132.0								
10/20/2020	0/20/2020 61.0		NS	NS	140.0								
11/17/2020	11/17/2020 71.0		NS	NS	155.0								
12/8/2020	18.0	27.0	ND<4	ND<40	45.0								

Notes:

mg/L = milligrams per liter

ug/L = micrograms per liter

ND <# = Indicates compound was analyzed for, but not detected at or above the indicated reporting limit.

J = Result is less than the Reporting Limit but greater than or equal to the Method Detection Limit and the concentration is an approximate value.

TCE = Trichloroethene

cis-1,2-DCE = cis-1,2-Dichloroethene

TCL VOCs = Target Compound List Volatile Organic Compounds

Appendix A – Groundwater Sampling Logs

Site: Project #: Date: Sampling Device: Well ID:	09 4/ Perist	C Frewsburg 201685 1/2020 altic Pump MW-1	Depth to Bo Feet of Wat	h to Water (ft, T(ottom of Well (ft, ter in Well (ft) Water in Well (ga	2" 3.72 20.02 16.30 2.88		
Time	Depth to Water (ft, TOC)	Temperature (°C)	рН	Specific Conductance (mS/cm)	ORP	DO (mg/L)	Turbidity (NTU)
8:30	3.72	7.1	8.29	0.527	71.7	3.04	44.4
8:35	4.4	7.1	7.96	0.522	65.9	2.03	20.86
8:45	4.22	7.4	7.77	0.519	59.6	1.51	5.37
8:50	4.18	7.4	7.69	0.515	61.2	0.97	0.5
8:55	4.2	7.4	7.69	0.515	62.7	0.87	-0.72
9:00	4.22	7.4	7.69	0.515	61.9	0.85	-0.55
Purge Start Time: Purge End Time: Weather: Purge/Sampled by:		±3% 8:30 9:00 inny 40 JH	±0.1 Notes:	±3% 9:00	±10mV Sample Time	±10% or <0.5mg/L e 4.5	±10% or <5NTU gal purged

Site: Project #: Date: Sampling Device: Well ID:	0901685 4/1/2020 Peristaltic Pump		Well Diameter (ID): Initial Depth to Water (ft, TOC) Depth to Bottom of Well (ft, TOC) Feet of Water in Well (ft) Volume of Water in Well (gal)			2" 9.03 15.32 6.29 1.47	
	Meter(s): Depth to Water (f. TOC)			Specific Conductance			Turbidity
Time	(ft, TOC)	(°C)	рН	(mS/cm)	ORP	DO (mg/L)	(NTU)
9:30	9.03	9.2	6.65	1.732	-111.17	0.56	85.26
9:40	9.15	9.1	6.64	1.38	-113.3	0.5	35.04
9:50	9.22	9	6.60	1.11	-117.7	0.41	40.47
10:00	9.22	9	6.60	1.106	-120	0.4	60.5
10:10	9.20	9.1	6.60	1.085	-121.3	0.39	78.12
10:20	9.23	9	6.60	1.053	-123	0.4	128.87
10:30	9.23	9	6.60	1.033	-124.1	0.35	149.37
		±3%	±0.1	±3%	±10mV	±10% or <0.5mg/L	±10% or <5NTU
Purge Start Time:		9:30	Notes:	10:30	Sample Time	e 4.5	gal purged
Purge End Time:		10:30	-				
Weather:	40) Sunny	-				
Purge/Sampled by:		J.H.	-				

Site: Project #: Date: Sampling Device: Well ID:	09 4/ Perist	C Frewsburg 201685 1/2020 altic Pump MW-3	Depth to Bo Feet of Wat	ter (ID): h to Water (ft, TC ttom of Well (ft, er in Well (ft) Vater in Well (ga	2" 9.95 23.00 13.05 2.13		
Time	Depth to Water (ft, TOC)	Temperature (°C)	рН	Specific Conductance (mS/cm)	ORP	DO (mg/L)	Turbidity (NTU)
10:50	4.95	8.80	7.65	0.568	-61.9	1.02	11.42
11:00	15.53	10.30	7.55	0.566	-50.9	0.88	68.72
11:10	18.30	9.90	7.44	0.565	-23.4	0.48	21.24
11:20	21.53	10.20	7.53	0.568	-16.2	0.59	1.11
11:30	21.03	10.40	7.58	0.566	-5.4	1.22	2.38
11:40	21.33	10.50	7.60	0.55	5.1	1.84	24.76
11:50	21.40	10.50	7.60	0.554	8.3	1.79	11.76
12:00	21.35	10.50	7.60	0.555	10.3	2.14	11.43
12:10	21.53	10.40	7.57	0.562	-25.6	1.4	
						±10% or	±10% or
		±3%	±0.1	±3%	±10mV	<0.5mg/L	<5NTU
Purge Start Time: Purge End Time: Weather: Purge/Sampled by:		10:50 12:10 5 Sunny JH	Notes:	12:10	Sample Time	6.5	gal purged

Site: Project #: Date: Sampling Device: Well ID:	09 4/ Perist	C Frewsburg 201685 1/2020 altic Pump IW-4D	Depth to Bo Feet of Wat	eter (ID): h to Water (ft, To ottom of Well (ft, eer in Well (ft) Water in Well (ga	TOC)	2" 7.83 42.16 34.33 5.66		
Time	Depth to Water (ft, TOC)	Temperature (°C)	рН	Specific Conductance (mS/cm)	ORP	DO (mg/L)	Turbidity (NTU)	
12:30	7.83	10.20	8.37	0.04	2.5	7.3	27.5	
12:40	10.18	11.00	7.63	0.039	56.3	7	52.1	
12:50	10.05	11.40	7.30	0.039	75.9	7.28	119.7	
13:00	9.36	11.40	7.20	0.39	79.3	7.07	154.11	
13:10	9.21	11.30	7.08	0.41	86.3	7.08	218	
13:20	9.24	11.30	7.00	0.048	96.9	6.63	280	
13:30	9.25	11.20	6.96	0.058	94.8	6.9	353.57	
	9.30		6.93	0.078	97.7	6.76	355.37	
Purge Start Time: Purge End Time: Weather: Purge/Sampled by:	±3% 12:30 13:40 55 Sunny JH0		±0.1 Notes:	±3% 13:40	±10mV Sample Time	<0.5mg/L	<5NTU gal purged	

Site: Project #: Date: Sampling Device: Well ID:	0901685 4/1/2020 Peristaltic Pump		Initial Dept Depth to Bo Feet of Wat	Well Diameter (ID): Initial Depth to Water (ft, TOC) Depth to Bottom of Well (ft, TOC) Feet of Water in Well (ft) Volume of Water in Well (gal)			2" 2.92 20.48 17.56 2.87	
	Meter(s): Depth to Water	Temperature		Specific Conductance		Turbidity		
Time	(ft, TOC)	(°C)	pН	(mS/cm)	ORP	DO (mg/L)	(NTU)	
13:45	2.92	10.00	7.35	0.753	-90.2	0.8	10.25	
13:50	3.84	10.00	7.42	0.728	-87.4	0.35	12.52	
13:55	3.33	10.00	7.46	0.721	-77.5	0.3	7.86	
14:00	3.87	10.00	7.48	0.705	-69.4	0.29	14.04	
14:10	3.90	10.00	7.49	0.685	-68.4	0.27	45.26	
		±3%	±0.1	±3%	±10mV	±10% or <0.5mg/L	±10% or <5NTU	
L	l	±J/0	0.1	±J/0	±10111 V	~0.JIIIg/L	~J1110	
Purge Start Time:		13:45	Notes:	14:10	Sample Time	e 5	gal purged	
Purge End Time:		14:10	-					
Weather:	5	55 Sun	-					
Purge/Sampled by:		JH	-					

Site: Project #: Date: Sampling Device: Well ID:	09 4/ Perist	C Frewsburg 901685 1/2020 altic Pump MW-5	Well Diamer Initial Deptl Depth to Bo Feet of Wate Volume of V	2" 6.54 20.83 14.29 2.33			
	Meter(s):						
Time	Depth to Water (ft, TOC)	Temperature (°C)	рН	Specific Conductance (mS/cm)	ORP	DO (mg/L)	Turbidity (NTU)
14:45	6.54	9.60	7.74	0.601	25.9	1.36	26.96
14:55	6.71	9.40	7.53	0.602	26.7	1.1	121.8
15:00	6.72	9.40	7.47	0.602	29.2	0.95	116.04
15:05	6.72	9.40	7.44	0.602	31.3	0.87	98.12
	6.70	9.40	7.42	0.602	32.9	0.89	73.3
		±3%	±0.1	±3%	±10mV	±10% or <0.5mg/L	±10% or <5NTU
Purge Start Time: Purge End Time:		14:45 15:15	Notes:	15:15 Dup-A collected	Sample Time	e 5	gal purged

Weather: 55 Sunny Purge/Sampled by: JH

Site: Project #: Date: Sampling Device: Well ID:	09 4/ Perist	C Frewsburg 901685 (1/2020 altic Pump 1W-5D	Depth to Bo Feet of Wat	ter (ID): h to Water (ft, TC ttom of Well (ft, er in Well (ft) Water in Well (ga	2" 7.02 40.70 33.68 5.50		
Time	Depth to Water (ft, TOC)	Temperature (°C)	рН	Specific Conductance (mS/cm)	ORP	DO (mg/L)	Turbidity (NTU)
15:25	7.02	11.00	7.58	0.791	74	7	0.43
15:35	6.34	10.60	7.58	0.793	77.7	7.37	66.73
15:40	6.25	10.40	7.60	0.797	78.7	6.31	6.44
15:50	6.22	10.40	7.58	0.809	81.1	6.71	7.74
15:55	6.03	10.30	7.53	0.819	84.4	6.87	48.13
16:00	5.95	10.30	7.51	0.821	87.1	6.65	14.47
16:05	5.85	10.20	7.50	0.821	88.5	7.02	13.67
	5.82		7.48	0.829	89.4	7.04	17.6
Purge Start Time:		±3%	±0.1 Notes:	±3%	±10mV Sample Time	<0.5mg/L	<5NTU gal purged
Purge End Time:		16:15	-				
Weather:	55	5 Sunny	-				
Purge/Sampled by:		JH	-				

Site:	NYSDE	C Frewsburg	Well Diame	ter (ID):		2"	
Project #:	<u>0901685</u> 4/2/2020		- Initial Dept	h to Water (ft, T	0C)	6.	.04
Date:			Depth to Bo	ottom of Well (ft,	TOC)	15	5.00
Sampling Device:	Perist	altic Pump	Feet of Wat	er in Well (ft)	<u>8.96</u> 1.46		
Well ID:	Ν	MW-6	Volume of V	Water in Well (ga			
			-				
	Meter(s):						
Time	Depth to Water (ft, TOC)	Temperature (°C)	рН	Specific Conductance (mS/cm)	ORP	DO (mg/L)	Turbidity (NTU)
8:20	6.04	8.20	7.30	0.707	-68.9	0.83	26.35
8:30	6.71	8.20	6.99	0.703	-66	0.53	23.03
8:40	6.75	8.10	6.95	0.701	-66.1	0.49	21.79
8:45	6.84	8.00	6.92	0.705	-66.9	0.45	-1.84
8:50	6.82	8.00	6.92	0.706	-67.3	0.4	-2.95
			1	1			
		<u></u>		1			
		±3%	±0.1	±3%	±10mV	±10% or <0.5mg/L	±10% or <5NTU
Purge Start Time:		8:20	Notes:	8:50	Sample Time	e 4.5	gal purged
Purge End Time:		8:50	-				
Weather:	40) Sunny	-				
Purge/Sampled by:		JH					

Site:	NYSDE	C Frewsburg	Well Diame	eter (ID):		2"		
Project #:	09	901685	Initial Dept	h to Water (ft, T	OC)	6.	86	
Date:	4/2/2020		Depth to Bo	ottom of Well (ft,	22.65			
Sampling Device:	Perist	altic Pump	Feet of Wat	er in Well (ft)	15.79			
Well ID:	I	MW-7	Volume of V	Water in Well (ga	l)	1	46	
	Meter(s):							
Time	Depth to Water (ft, TOC)	Temperature (°C)	рН	Specific Conductance (mS/cm)	ORP	DO (mg/L)	Turbidity (NTU)	
9:20	6.86	11.60	7.68	0.699	25.2	0.82	1614.34	
9:30	8.55	11.60	7.48	0.695	29.8	0.88	709.84	
9:35	9.56	11.70	7.46	0.692	29.5	0.37	209.14	
9:40	7.57	11.70	7.45	0.694	29.1	0.37	192.64	
9:45	7.60	11.70	7.44	0.696	27.5	0.35	446.57	
9:50	7.57	11.70	7.44	0.697	24.7	0.34	519.37	
		±3%	±0.1	±3%	±10mV	±10% or <0.5mg/L	±10% or <5NTU	
Purge Start Time:		9:20	Notes:	9:50	Sample Time	e 5	gal purged	
Purge End Time:		9:50	_					
Weather:	4() sunny	_					
Purge/Sampled by:		JH	-					

Site: Project #: Date: Sampling Device: Well ID:	09 4/ Perist	C Frewsburg 201685 2/2020 altic Pump MW-8	Depth to Bo Feet of Wat	eter (ID): h to Water (ft, TC ottom of Well (ft, eer in Well (ft) Water in Well (ga	2" 3.54 19.40 15.86 2.59		
Time	Depth to Water (ft, TOC)	Temperature (°C)	рН	Specific Conductance (mS/cm)	ORP	DO (mg/L)	Turbidity (NTU)
12:30	3.54	8.30	7.97	0.497	64.2	0.78	75.86
12:40	3.57	7.80	7.72	0.501	56.2	0.5	11.01
12:50	3.58	7.70	7.55	0.529	47.2	0.39	5.61
13:00	3.58	7.70	7.45	0.552	42.9	0.34	1.79
13:10	3.59	7.60	7.38	0.568	42.4	0.32	0.64
13:15	3.58	7.70	7.37	0.569	42.1	0.31	-0.37
13:20	3.39	7.60	7.37	0.571	42.2	0.31	-0.6
	3.39	7.60	7.37	0.572			-0.21
Purge Start Time: Purge End Time: Weather: Purge/Sampled by:		±3% 12:30 13:25 5 sunny JH	±0.1 Notes:	±3% 13:20	±10mV Sample Time	±10% or <0.5mg/L	±10% or <5NTU gal purged

Site:	NYSDE	C Frewsburg	Well Diame	ter (ID):			2"		
Project #:	09	901685	Initial Dept	h to Water (ft, TC	DC)	5	.11		
Date:	4/	2/2020	Depth to Bo	ttom of Well (ft, '	22	22.02			
Sampling Device:	Perist	altic Pump	Feet of Wat	er in Well (ft)	16.91				
Well ID:	N	IW-9R	Volume of V	Vater in Well (ga	l)	2	.76		
	Meter(s):								
Time	Depth to Water (ft, TOC)	Temperature (°C)	рН	Specific Conductance (mS/cm)	ORP	DO (mg/L)	Turbidity (NTU)		
14:55	5.11	11.80	7.72	1.393	-121.9	1.24	143.7		
15:05	6.47	11.20	7.32	0.673	-56.7	0.36	140.91		
15:15	6.53	11.20	7.15	0.73	-50.5	0.39	49.44		
15:25	6.53	11.20	7.09	0.809	-53	0.28	14.13		
15:30	6.55	11.20	7.05	0.88	-58.5	0.33	69.69		
15:35	6.61	11.20	7.03	0.96	-63	0.24	101.22		
15:40	6.60	11.10	7.02	0.915	-62.4	0.31	262.57		
15:45	6.61	11.10	6.99	1.009	-64	0.22	131.48		
15:50	6.60	11.20	7.02	1.069	-68.8	0.22	214.32		
15:55	6.58	11.20	7.03	1.09	-70	0.31	332.09		
16:00	6.62	11.20	7.03	1.085	-70.8	0.21	11.26		
16:05	6.62	11.20	7.02	1.099	-70.2	0.21	61.06		
16:10	6.63	11.20	7.03	1.098	-70.4	0.29	31.84		
		±3%	±0.1	±3%	±10mV	±10% or <0.5mg/L	±10% or <5NTU		
Purge Start Time:		14:55	Notes:	16:10	Sample Time	e 8	gal purged		

Purge End Time: 16:10 Weather: 45 Sunny Purge/Sampled by: JH

Site: Project #: Date: Sampling Device: Well ID:	09 4/ Perist	C Frewsburg 201685 2/2002 altic Pump 1W-10	Depth to Bo Feet of Wate	ter (ID): h to Water (ft, TC ttom of Well (ft, er in Well (ft) Vater in Well (ga	2" <u>4.64</u> <u>21.80</u> <u>16.16</u> <u>2.80</u>		
Time	Depth to Water (ft, TOC)	Temperature (°C)	рН	Specific Conductance (mS/cm)	ORP	DO (mg/L)	Turbidity (NTU)
13:55	4.64	10.30	8.04	0.363	-171.8	1.93	10.55
14:05	6.86	10.80	8.01	0.363	-182.2	1.33	5.03
14:10	6.87	10.90	7.98	0.364	-181.5	3.33	16.35
14:20	6.75	10.90	7.95	0.363	-184.3	0.35	10.55
14:30	6.75	10.90	7.93	0.362	-182.4	0.3	137.32
14:35	6.76	10.90	7.92	0.362	-182.8	0.31	46.42
14:40	6.75	11.00	7.91	0.361	-182.6	0.34	12.8
		±3%	±0.1	±3%	±10mV	±10% or <0.5mg/L	±10% or <5NTU
Purge Start Time:		13:55	Notes:	14:40	Sample Time	e 7.5	gal purged
Purge End Time:		14:40	-				
Weather: Purge/Sampled by:	45	5 Sunny JH	-				
1		~	-				

09 4/ Perist	901685 3/2020 altic Pump	Initial Dept Depth to Bo Feet of Wat	h to Water (ft, T(ottom of Well (ft, er in Well (ft)	TOC)	2" 4.70 14.93 10.23 1.67	
Depth to Water (ft, TOC)	Temperature (°C)	рН	Specific Conductance (mS/cm)	ORP	DO (mg/L)	Turbidity (NTU)
4.70	9.30	8.23	0.633	-96	2.04	353.91
5.98	9.30	7.58	0.627	-79.8	0.88	165.66
6.07	8.90	7.36	0.616	-46	0.76	72.47
6.14	8.90	7.27	0.623	-29.1	0.63	148.42
6.13	9.00	7.22	0.624	-20.6	0.53	185.55
6.13	9.00	7.19	0.624	-21.9	0.49	233.01
6.13	8.90	7.17	0.624	-25.2	0.47	282.47
6.13	8.90	7.17	0.624	-12.8	0.46	282.18
6.10	8.90	7.16	0.624	-10	0.46	294.16
	9:00	±0.1 Notes:	±3% 9:00	±10mV Sample Time	±10% or <0.5mg/L e 5	±10% or <5NTU gal purged
		-				
	09 4/ Perist M Meter(s): Depth to Water (ft, TOC) 4.70 5.98 6.07 6.14 6.13 6.13 6.13 6.13 6.13 6.13	Depth to Water (ft, TOC) Temperature (°C) 4.70 9.30 5.98 9.30 6.07 8.90 6.14 8.90 6.13 9.00 6.13 9.00 6.13 8.90 6.13 8.90 6.13 8.90 6.14 8.90 6.13 9.00 6.14 8.90 6.13 8.90 6.10 8.90 6.10 8.90 6.10 8.90 6.10 8.90 6.10 8.90 6.10 8.90 6.10 8.90 6.10 8.90 6.10 8.90 6.10 8.90 6.10 8.90 6.10 8.90 6.10 9.00 6.10 9.00 6.10 9.00 6.10 9.00 6.10 9.00 6.10 9.00 </td <td>0901685 Initial Dept $4/3/2020$ Depth to Bo Peristaltic Pump Feet of Wat MW-11R Volume of V Meter(s): Temperature (°C) Depth to 8.23 5.98 9.30 6.07 8.90 6.14 8.90 6.13 9.00 7.19 6.13 8.90 7.17 6.13 8.90 7.17 6.13 8.90 7.17 6.13 8.90 7.17 6.13 8.90 7.17 6.10 8.90 7.17 6.10 8.90 9.00 7.16 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1</td> <td>0901685 Initial Depth to Water (ft, TC 4/3/2020 Depth to Bottom of Well (ft, Peristaltic Pump Meter(s): Feet of Water in Well (ga Meter(s): PH Conductance (mS/cm) 4.70 9.30 8.23 0.633 5.98 9.30 7.58 0.627 6.07 8.90 7.36 0.616 6.13 9.00 7.22 0.623 6.13 9.00 7.17 0.624 6.13 8.90 7.17 0.624 6.13 8.90 7.17 0.624 6.13 8.90 7.16 0.624 6.10 8.90 7.16 0.624 6.10 8.90 7.16 0.624 6.10 8.90 7.16 0.624 6.10 8.90 7.16 0.624 6.10 8.90 7.16 0.624 6.11 8.90 7.16 0.624 6.10 8.90 1 4.3% 4.0</td> <td>0901685 Initial Depth to Water (ft, TOC) 4/3/2020 Depth to Bottom of Well (ft, TOC) Peristaltic Pump Feet of Water in Well (ft) MW-11R Volume of Water in Well (gal) Meter(s): Temperature Conductance (mS/cm) ORP 4.70 9.30 8.23 0.633 -96 5.98 9.30 7.58 0.627 -79.8 6.07 8.90 7.36 0.616 -46 6.13 9.00 7.22 0.624 -20.6 6.13 9.00 7.17 0.624 -21.9 6.13 8.90 7.17 0.624 -12.8 6.10 8.90 7.16 0.624 -10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 <</td> <td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td>	0901685 Initial Dept $4/3/2020$ Depth to Bo Peristaltic Pump Feet of Wat MW-11R Volume of V Meter(s): Temperature (°C) Depth to 8.23 5.98 9.30 6.07 8.90 6.14 8.90 6.13 9.00 7.19 6.13 8.90 7.17 6.13 8.90 7.17 6.13 8.90 7.17 6.13 8.90 7.17 6.13 8.90 7.17 6.10 8.90 7.17 6.10 8.90 9.00 7.16 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0901685 Initial Depth to Water (ft, TC 4/3/2020 Depth to Bottom of Well (ft, Peristaltic Pump Meter(s): Feet of Water in Well (ga Meter(s): PH Conductance (mS/cm) 4.70 9.30 8.23 0.633 5.98 9.30 7.58 0.627 6.07 8.90 7.36 0.616 6.13 9.00 7.22 0.623 6.13 9.00 7.17 0.624 6.13 8.90 7.17 0.624 6.13 8.90 7.17 0.624 6.13 8.90 7.16 0.624 6.10 8.90 7.16 0.624 6.10 8.90 7.16 0.624 6.10 8.90 7.16 0.624 6.10 8.90 7.16 0.624 6.10 8.90 7.16 0.624 6.11 8.90 7.16 0.624 6.10 8.90 1 4.3% 4.0	0901685 Initial Depth to Water (ft, TOC) 4/3/2020 Depth to Bottom of Well (ft, TOC) Peristaltic Pump Feet of Water in Well (ft) MW-11R Volume of Water in Well (gal) Meter(s): Temperature Conductance (mS/cm) ORP 4.70 9.30 8.23 0.633 -96 5.98 9.30 7.58 0.627 -79.8 6.07 8.90 7.36 0.616 -46 6.13 9.00 7.22 0.624 -20.6 6.13 9.00 7.17 0.624 -21.9 6.13 8.90 7.17 0.624 -12.8 6.10 8.90 7.16 0.624 -10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 <	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

Site: Project #: Date: Sampling Device: Well ID:	09 4/ Perist	NYSDEC Frewsburg Well Diameter (ID): 0901685 Initial Depth to Water (ft, TOC) 4/2/2020 Depth to Bottom of Well (ft, TOC) Peristaltic Pump Feet of Water in Well (ft) MW-12 Volume of Water in Well (gal)		Initial Depth to Water (ft, TOC) Depth to Bottom of Well (ft, TOC) Feet of Water in Well (ft) Volume of Water in Well (gal)			2" 0.00 15.00 15.00 2.45	
Time	Depth to Water (ft, TOC)	Temperature (°C)	рН	Specific Conductance (mS/cm)	ORP	DO (mg/L)	Turbidity (NTU)	
10:15	-	8.00	7.70	0.931	70.8	0.91	3.98	
10:20	2.29	8.10	7.53	0.933	66.7	0.5	11.81	
10:30	2.83	8.40	7.51	0.876	60.8	1.7	1.93	
10:40	2.89	9.50	7.65	0.907	60.8	3.55	0.39	
10:50	3.15	8.30	7.52	0.902	54.8	0.35	-3	
11:00	3.83	8.40	7.51	0.898	47.7	0.29	-3.87	
11:10	4.04	8.30	7.51	0.896	38.7	0.25	-4.3	
11:20	4.19	8.40	7.52	0.893	35.8	2.5	-4.18	
11:30	4.29	8.40	7.52	0.893	34	0.24	-4.14	
		±3%	±0.1	±3%	±10mV	±10% or <0.5mg/L	±10% or <5NTU	
Purge Start Time:		10:15	Notes:	11:30	Sample Time	e 7.5	gal purged	
Purge End Time:		11:30	-					
Weather:	4	15 sun	-					
Purge/Sampled by:		JH	-					

Purge/Sampled by: _____ JH

Site:		C Frewsburg	Well Diame			2"			
Project #:		901685	-	h to Water (ft, To			.24		
Date:		3/2020	-	ttom of Well (ft,		3.48			
Sampling Device:		altic Pump	-	er in Well (ft)		5.24			
Well ID:	N	1W-13	Volume of V	Vater in Well (ga	2	.49			
	Meter(s):								
Time	Depth to Water (ft, TOC)	Temperature (°C)	рН	Specific Conductance (mS/cm)	ORP	DO (mg/L)	Turbidity (NTU)		
9:20	3.24	9.10	8.05	0.687	-218.3	0.46	363.9		
9:30	6.37	8.90	7.75	0.687	-166.5	0.31	64.65		
9:40	7.75	8.90	7.68	0.697	-161	0.33	19.53		
9:50	8.34	9.00	7.59	0.704	-136.1	0.33	16.68		
10:00	8.78	9.10	7.51	0.713	-114	0.31	11.64		
10:05	8.85	9.20	7.48	0.713	-106.9	0.3	20.24		
10:15	8.87	9.20	7.44	0.717	-101.2	0.3	31.8		
10:20	8.87	9.20	7.44	0.713	-97.7	0.27	44.81		
10:25	8.86	9.20	7.42	0.716	-95.7	0.31	62.01		
				ļ					
		±3%	±0.1	±3%	±10mV	±10% or <0.5mg/L	±10% or <5NTU		
Purge Start Time:		9:20	Notes:	10:30	Sample Time	e 7.5	gal purged		
Purge End Time:		10:25			1		0 1 0		
Weather:	- 40) sunny	-						
D /G 1 11									

Site: Project #: Date: Sampling Device: Well ID:	09 4/ Perist	C Frewsburg 201685 3/2020 altic Pump 1W-14	Depth to Bo Feet of Wat	ter (ID): h to Water (ft, T(ottom of Well (ft, er in Well (ft) Water in Well (ga	2" 7.41 20.82 13.41 2.19		
Time	Depth to Water (ft, TOC)	Temperature (°C)	рН	Specific Conductance (mS/cm)	ORP	DO (mg/L)	Turbidity (NTU)
10:40	7.41	8.80	7.73	0.707	160.3	0.49	90.45
10:50	8.63	8.60	7.65	0.705	-164.4	0.29	762.43
10:55	8.93	8.70	7.58	0.69	-138.3	0.34	23.71
11:00	9.00	8.80	7.51	0.687	-136.6	0.26	13.5
11:05	9.01	8.80	7.56	0.685	-135.4	0.24	15.7
11:10	9.05	8.80	7.55	0.682	-135.5	0.23	20.01
11:15	9.13	8.80	7.53	0.677	-132.5	0.22	14.91
11:20	9.13	8.80	7.53	0.678	-130.9	0.22	11.26
11:25	9.13	8.80	7.51	0.675	-129.3	0.21	15.47
11:30	9.13	8.90	7.50	0.675	-128	0.21	24.91
		±3%	±0.1	±3%	±10mV	±10% or <0.5mg/L	±10% or <5NTU
Purge Start Time: Purge End Time: Weather: Purge/Sampled by:		10:40 11:30 5 sunny JH	Notes:	11:30	Sample Time		gal purged

Site:	NYSDE	C Frewsburg	Well Diame	ter (ID):	2"		
Project #:	09	901685	Initial Depth to Water (ft, TOC)			4.41	
Date:	11/	30/2020	Depth to Be	ottom of Well (f	14	1.95	
Sampling Device:	Perist	altic Pump	Feet of Water in Well (ft)			10).54
Well ID:	M	W-11R	Volume of	Water in Well (g	jal)	1	.72
	Meter(s):						
Time	Depth to Water (ft, TOC)	Temperature (°C)	рН	Specific Conductance (mS/cm)	ORP	DO (mg/L)	Turbidity (NTU)
11:10	4.41	10.70	8.18	0.072	64.3	10.13	52.17
11:15	4.91	10.90	7.97	0.071	73.3	10.13	56.12
11:20	5.12	11.20	7.76	0.098	89.6	9.89	69.21
11:25	5.12	11.60	7.61	0.18	98.1	8.75	78.21
11:30	5.12	12.20	7.36	0.326	113.1	6.96	86.02
11:35	5.12	12.20	7.25	0.395	119.1	5.52	87.91
11:40	5.12	12.10	7.22	0.4	123.6	5.01	89.16
11:45	5.12	12.40	7.21	0.406	126.1	4.69	89.25
11:50	5.12	12.70	7.18	0.431	131.2	3.52	93.93
11:55	5.12	12.70	7.18	0.434	131.8	3.47	94.1
12:00	5.12	12.70	7.18	0.431	131.2	3.41	95.12
						1400/	100/
		±3%	±0.1	±3%	±10mV	±10% or <0.5mg/L	±10% or <1NTU
Purge Start Time: Purge End Time:		<u>11:10</u> 12:00	Notes:	12:05	Sample Ti	me 4.5	gal purged
Weather:		0 Rain	-				

 Weather:
 40 Rain

 Purge/Sampled by
 PC

Site:	NYSDE	C Frewsburg	Well Diame	ter (ID):		2"	
Project #:	09	01685	Initial Dept	h to Water (ft, T	OC)	4.32	
Date:	11/3	30/2020	Depth to Bo	ottom of Well (fi	t, TOC)	20	.50
Sampling Device:	Perist	altic Pump	Feet of Wat	ter in Well (ft)		16	.18
Well ID:		лw-4	Volume of Water in Well (gal)				64
	Γ				•		
	Meter(s):						
Time	Depth to Water (ft, TOC)	Temperature (°C)	рН	Specific Conductance (mS/cm)	ORP	DO (mg/L)	Turbidity (NTU)
12:25	4.32	13.60	7.59	0.514	121.1	3.42	8.4
12:30	4.42	14.00	7.57	0.527	120.5	0.36	3.62
12:40	4.42	14.30	7.63	0.502	113.4	0.18	2.21
12:45	4.42	14.30	7.63	0.508	111.9	0.12	3.14
12:50	4.42	14.50	7.63	0.501	111	0.11	2.14
		±3%	±0.1	±3%	±10mV	±10% or <0.5mg/L	±10% or <1NTU
Purge Start Time:		12:25	Notes:	13.00 52	Imple Time	25	gal purged
Purge End Time:		12:50	-	10.00 00		2.0	gai paigea
Weather:		0 rain	-				
Purge/Sampled by		PC	-				

Site:	NYSDE	C Frewsburg	Well Diame	ter (ID):	2"		
Project #:	0901685		Initial Dept	h to Water (ft, T	OC)	10).17
Date:	12	/1/2020	-	ottom of Well (f		15	5.25
Sampling Device:	Perist	altic Pump	Feet of Wat	er in Well (ft)		5.	.08
Well ID:	N	MW-2	Volume of	Water in Well (g	0.	.83	
	Meter(s):						
Time	Depth to Water (ft, TOC)	Temperature (°C)	рН	Specific Conductance (mS/cm)	ORP	DO (mg/L)	Turbidity (NTU)
11:15	10.17	12.90	6.60	1.977	-23.9	2.9	9.91
11:20	10.25	13.00	6.52	1.765	-28	2.7	6.71
11:25	10.33	13.00	6.56	0.933	-78.6	0.15	11.7
11:30	10.55	13.00	6.52	0.92	-83.2	0.14	12.72
11:35	10.55	13.00	6.52	0.921	-82.1	0.15	11.91
11:40	10.55	13.00	6.52	0.922	-81.7	0.14	11.72
						±10% or	±10% or
		±3%	±0.1	±3%	±10mV	<0.5mg/L	<1NTU
Purge Start Time:		11:15	Notes:	11:40	Sample Tir	me 2.5	gal purged
Purge End Time:		11:40	-			-	
Weather:	30	Sunny	-				
Purge/Sampled by		PC					

Purge/Sampled by PC

Site: Project #: Date: Sampling Device: Well ID:	09 12 Perist	C Frewsburg 901685 /1/2020 altic Pump IW-9R	Well Diameter (ID): Initial Depth to Water (ft, TOC) Depth to Bottom of Well (ft, TOC) Feet of Water in Well (ft) Volume of Water in Well (gal)			2" 5.92 22.20 16.28 2.66	
Time	Meter(s): Depth to Water (ft, TOC)	Temperature (ºC)	рН	Specific Conductance (mS/cm)	ORP	DO (mg/L)	Turbidity (NTU)
11:50	6.27	10.30	8.26	0.102	-96.7	8.84	125.12
11:55	6.32	11.00	7.95	0.1	-3	8.71	40.89
12:00	6.32	11.10	7.96	0.098	11.2	8.69	37.02
12:05	6.32	11.20	7.96	0.101	22	8.29	37.96
12:10	6.32	11.40	7.97	0.098	29.8	8.16	40.92
12:15	6.32	11.50	7.80	0.0143	46.6	7.11	46.2
12:20	6.32	11.50	7.68	0.19	51.9	6.4	49.87
12:25	6.32	11.50	7.58	0.253	49.5	6.25	53.88
12:30	6.32	11.60	7.46	0.342	40	5.68	63.02
12:35	6.32	11.50	7.43	0.361	10.1	5.72	82.72
12:40	6.32	11.50	7.43	0.371	10.2	5.62	81.42
12:45	6.32	11.50	7.42	0.372	11.1	5.63	87.12
						±10% or	±10% or
		±3%	±0.1	±3%	±10mV	<0.5mg/L	<1NTU
Purge Start Time: Purge End Time: Weather:	11:50 12:45 30 Snow		Notes:	12:45	Sample Ti	me 3	gal purged

Site: Project #: Date: Sampling Device: Well ID:	09 12 Perist Meter(s):	C Frewsburg 001685 /1/2020 altic Pump 1W-13	Initial Dept Depth to Be Feet of Wat	Diameter (ID):2"Depth to Water (ft, TOC)4.23to Bottom of Well (ft, TOC)18.50f Water in Well (ft)14.27te of Water in Well (gal)2.33		.23 3.50 4.27	
Time	Depth to Water (ft, TOC)	Temperature (°C)	рН	Specific Conductance (mS/cm)	ORP	DO (mg/L)	Turbidity (NTU)
10:25	4.92	13.20	8.12	0.421	-152.7	4.72	121.7
10:30	5.17	13.30	7.91	0.487	-168.1	3.65	110.2
10:35	6.11	13.10	7.85	0.521	-172.5	2.19	13.7
10:40	6.12	13.10	7.72	0.582	-162.1	1.72	11.1
10:45	6.12	13.10	7.68	0.589	-149.7	0.92	5.91
10:50	6.12	13.10	7.61	0.586	-143.2	0.09	4.27
10:55	6.12	13.20	7.61	0.587	-142.1	0.08	4.18
11:00	6.12	13.20	7.62	0.586	-142.1	0.09	4.29
		±3%	±0.1	±3%	±10mV	±10% or <0.5mg/L	±10% or <1NTU
Purge Start Time: Purge End Time: Weather: Purge/Sampled by	11:00 30 sunny		Notes:	11:00	Sample Ti	me 3	gal purged

Site: Project #: Date: Sampling Device: Well ID:	09 12 Perist Meter(s):	C Frewsburg 001685 /1/2020 altic Pump IW-14	685Initial Depth to Water (ft, TOC)2020Depth to Bottom of Well (ft, TOC)c PumpFeet of Water in Well (ft)			2" 6.41 20.65 14.24 2.32	
Time	Depth to Water (ft, TOC)	Temperature (ºC)	рН	Specific Conductance (mS/cm)	ORP	DO (mg/L)	Turbidity (NTU)
9:30	6.41	13.40	8.15	0.182	65.1	11.17	1127
9:35	6.45	10.40	8.12	0.175	92.8	10.37	1157
9:40	6.45	10.40	7.91	0.149	41.7	9.18	9.52
9:45	6.45	10.70	7.87	0.157	82.1	8.78	8.71
9:50	6.45	10.70	7.41	0.321	122.1	7.41	7.42
9:55	6.45	10.90	7.27	0.431	151.7	4.17	6.55
10:00	6.45	10.70	7.15	0.421	151.9	3.12	5.89
10:05	6.45	10.70	7.15	0.427	-131.1	3.12	3.42
		±3%	±0.1	±3%	±10mV	±10% or <0.5mg/L	±10% or <1NTU
Purge Start Time: Purge End Time: Weather: Purge/Sampled by	10:05 30 snow		Notes:	10:10	Sample Ti	me 3	gal purged

Site: Project #: Date: Sampling Device: Well ID:	09 11/ Perist	C Frewsburg 201685 30/2020 altic Pump MW-3	Depth to B Feet of Wa	eter (ID): h to Water (ft, T ottom of Well (f ter in Well (ft) Water in Well (g	2" 10.75 23.12 12.37 2.20		
Time	Depth to Water (ft, TOC)	Temperature (°C)	рН	Specific Conductance (mS/cm)	ORP	DO (mg/L)	Turbidity (NTU)
13:15	10.73	15.10	7.38	0.552	123.3	0.65	16.72
13:20	13.00	15.00	7.30	0.552	122.3	0.6	55.7
13:25	14.17	15.00	7.29	0.551	98.7	0.56	25.3
13:30	15.21	14.80	7.29	0.549	95.6	0.66	23.05
13:35	16.10	14.80	7.29	0.549	97.1	0.64	19.08
13:40	16.10	14.70	7.29	0.537	73.5	0.57	39.23
13:45	16.10	14.70	7.29	0.536	72.6	0.58	44.06
13:50	16.10	14.70	7.29	0.536	72.5	0.59	42.17
13:55	16.10	14.70	7.28	0.537	72.6	0.59	41.17
		±3%	±0.1	±3%	±10mV	±10% or <0.5mg/L	±10% or <1NTU
Purge Start Time: Purge End Time: Weather: Purge/Sampled by	4	13:15 13:55 0 rain Colern	Notes:	14:00	Sample Ti	me 3	gal purged

Appendix B – Laboratory Analytical Records

🛟 eurofins

Environment Testing TestAmerica

ANALYTICAL REPORT

Eurofins TestAmerica, Buffalo 10 Hazelwood Drive Amherst, NY 14228-2298 Tel: (716)691-2600

Laboratory Job ID: 480-168167-1

Client Project/Site: Frewsburg Site #907016

For:

New York State D.E.C. 270 Michigan Avenue Buffalo, New York 14203

Attn: Mr. Maurice Moore

ough V. Gisconsyge

Authorized for release by: 4/13/2020 3:47:22 PM Joe Giacomazza, Project Management Assistant II joe.giacomazza@testamericainc.com

Designee for

Orlette Johnson, Senior Project Manager (484)685-0864 orlette.johnson@testamericainc.com

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Client: New York State D.E.C. Project/Site: Frewsburg Site #907016

> I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed within the body of this report. Release of the data contained in this sample data package and in the electronic data deliverable has been authorized by the Laboratory Manager or his/her designee, as verified by the following signature.

ough V. Giacomo W

Joe Giacomazza Project Management Assistant II 4/13/2020 3:47:22 PM

Table of Contents

Cover Page	1
Table of Contents	3
Definitions	4
Case Narrative	5
Detection Summary	6
Client Sample Results	8
Surrogate Summary	44
QC Sample Results	45
QC Association	65
Chronicle	66
Certification Summary	69
Method Summary	70
Sample Summary	71
Chain of Custody	72
Receipt Checklists	74

Definitions/Glossary

Job ID: 480-168167-1

3 4

Qualifiers

GC/MS VOA	
Qualifier	Qualifier Description
*	LCS or LCSD is outside acceptance limits.
F1	MS and/or MSD recovery exceeds control limits.
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

*	LCS or LCSD is outside acceptance limits.	
F1	MS and/or MSD recovery exceeds control limits.	5
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.	
Glossary		6
Abbreviation	These commonly used abbreviations may or may not be present in this report.	7
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis	
%R	Percent Recovery	0
CFL	Contains Free Liquid	O
CNF	Contains No Free Liquid	
DER	Duplicate Error Ratio (normalized absolute difference)	9
Dil Fac	Dilution Factor	
DL	Detection Limit (DoD/DOE)	
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample	
DLC	Decision Level Concentration (Radiochemistry)	
EDL	Estimated Detection Limit (Dioxin)	
LOD	Limit of Detection (DoD/DOE)	
LOQ	Limit of Quantitation (DoD/DOE)	
MDA	Minimum Detectable Activity (Radiochemistry)	13
MDC	Minimum Detectable Concentration (Radiochemistry)	
MDL	Method Detection Limit	
ML	Minimum Level (Dioxin)	
NC	Not Calculated	
ND	Not Detected at the reporting limit (or MDL or EDL if shown)	
PQL	Practical Quantitation Limit	
QC	Quality Control	
RER	Relative Error Ratio (Radiochemistry)	
RL	Reporting Limit or Requested Limit (Radiochemistry)	
RPD	Relative Percent Difference, a measure of the relative difference between two points	
TEF	Toxicity Equivalent Factor (Dioxin)	
TEO		

TEQ Toxicity Equivalent Quotient (Dioxin)

Job ID: 480-168167-1

Laboratory: Eurofins TestAmerica, Buffalo

Narrative

Job Narrative 480-168167-1

Comments

No additional comments.

Receipt

The samples were received on 4/3/2020 2:00 PM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 3.9° C.

GC/MS VOA

Method 8260C: The following samples were diluted to bring the concentration of target analytes within the calibration range: MW-3 (480-168167-3), MW-3 (480-168167-3[MS]) and MW-3 (480-168167-3[MSD]). Elevated reporting limits (RLs) are provided.

Method 8260C: The following samples were diluted to bring the concentration of target analytes within the calibration range: MW-9R (480-168167-11), MW-12 (480-168167-14), MW-13 (480-168167-15), MW-14 (480-168167-16), (480-168167-A-14 MS) and (480-168167-A-14 MSD). Elevated reporting limits (RLs) are provided.

Method 8260C: The following volatile sample was diluted due to foaming at the time of purging during the original sample analysis: MW-6 (480-168167-8). Elevated reporting limits (RLs) are provided.

Method 8260C: The continuing calibration verification (CCV) associated with batch 480-524795 recovered above the upper control limit for Vinyl chloride and Trichlorofluoromethane. The samples associated with this CCV were non-detect for the affected analytes; therefore, the data have been reported. The associated sample is impacted: MW-11R (480-168167-13).

Method 8260C: The following sample was diluted to bring the concentration of target analytes within the calibration range: MW-11R (480-168167-13). Elevated reporting limits (RLs) are provided.

Method 8260C: Due to the coelution of Ethyl Acetate with 2-Butanone in the full spike solution, these analytes exceeded control limits in the laboratory control sample (LCS) associated with batch 480-524779. The following sample is impacted: MW-2 (480-168167-2).

Method 8260C: The following samples were diluted to bring the concentration of target analytes within the calibration range: MW-2 (480-168167-2), (480-168167-B-2 MS) and (480-168167-B-2 MSD). Elevated reporting limits (RLs) are provided.

Method 8260C: The continuing calibration verification (CCV) associated with batch 480-525015 recovered above the upper control limit for Vinyl chloride. The samples associated with this CCV were non-detect for the affected analyte; therefore, the data have been reported. The associated samples are impacted: DUP-A (480-168167-17) and (480-168322-A-3).

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Detection Summary

Client: New York State D.E.C. Project/Site: Frewsburg Site #907016

Client Sample ID: MW-1

Client Sample ID: MW-2

No Detections.

Job ID: 480-168167-1

Lab Sample ID: 480-168167-1

Lab Sample ID: 480-168167-2

6	
_	

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
cis-1,2-Dichloroethene	33000	F1	500	410	ug/L	500	_	8260C	Total/NA
Vinyl chloride	33000	F1	500	450	ug/L	500		8260C	Total/NA
Client Sample ID: MW-3						Lal	b S	ample ID	: 480-168167-3
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
cis-1,2-Dichloroethene	230		20	16	ug/L	20	_	8260C	Total/NA
Trichloroethene	790		20	9.2	ug/L	20		8260C	Total/NA
Client Sample ID: MW-4						Lal	b S	ample ID	: 480-168167-4
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
cis-1,2-Dichloroethene	430	J	500	410	ug/L	500	_	8260C	Total/NA
Trichloroethene	14000		500	230	ug/L	500		8260C	Total/NA
Client Sample ID: MW-4D						Lal	b S	ample ID	: 480-168167-5
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Trichloroethene	1.2		1.0	0.46	ug/L	1	_	8260C	Total/NA
Client Sample ID: MW-5						Lal	b S	ample ID	: 480-168167-6
No Detections.									
Client Sample ID: MW-5D						Lal	b S	ample ID	: 480-168167-7
No Detections.									
Client Sample ID: MW-6						Lal	o S	ample ID	: 480-168167-8
No Detections.									
Client Sample ID: MW-7						Lal	b S	ample ID	: 480-168167-9
No Detections.									
Client Sample ID: MW-8						Lab	Sa	mple ID:	480-168167-10
No Detections.									
Client Sample ID: MW-9R						Lab	Sa	mple ID:	480-168167-11
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
cis-1,2-Dichloroethene	2900		100	81	ug/L	100	_	8260C	Total/NA
Trichloroethene	2800		100	46	ug/L	100		8260C	Total/NA
Vinyl chloride	260		100	90	ug/L	100		8260C	Total/NA
Client Sample ID: MW-10						Lab	Sa	mple ID:	480-168167-12
No Detections.									
Client Sample ID: MW-11R						Lab	Sa	mple ID:	480-168167-13
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
cis-1,2-Dichloroethene	230		20	16	ug/L	20	_	8260C	Total/NA
This Detection Summary does not include radio	chemical test re	sults.							

Eurofins TestAmerica, Buffalo

Detection Summary

Client: New York State D.E.C. Project/Site: Frewsburg Site #907016

Job ID: 480-168167-1

Client Sample ID: MW-11R (Cont	inued)					Lab	Sa	mple ID:	480-168167-1
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Methylene Chloride	11	J	20	8.8	ug/L	20	_	8260C	Total/NA
Trichloroethene	1200		20	9.2	ug/L	20		8260C	Total/NA
Client Sample ID: MW-12						Lab	Sa	mple ID: 4	480-168167-1
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
cis-1,2-Dichloroethene	100		100	81	ug/L	100	_	8260C	Total/NA
Trichloroethene	4900	F1	100	46	ug/L	100		8260C	Total/NA
Client Sample ID: MW-13						Lab	Sa	mple ID: 4	480-168167-1
– Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
cis-1,2-Dichloroethene	580		80	65	ug/L	80	_	8260C	Total/NA
Methylene Chloride	50	J	80	35	ug/L	80		8260C	Total/NA
Trichloroethene	2400		80	37	ug/L	80		8260C	Total/NA
Client Sample ID: MW-14						Lab	Sa	mple ID: 4	480-168167-1
– Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
cis-1,2-Dichloroethene	860		100	81	ug/L	100	_	8260C	Total/NA
Methylene Chloride	55	J	100	44	ug/L	100		8260C	Total/NA
Trichloroethene	2800		100	46	ug/L	100		8260C	Total/NA
Client Sample ID: DUP-A						Lab	Sa	mple ID: 4	480-168167-1
No Detections.									
Client Sample ID: TRP BLANK						Lab	Sa	mple ID: 4	480-168167-1
No Detections									

No Detections.

Client Sample ID: MW-1 Date Collected: 04/01/20 09:00 Date Received: 04/03/20 14:00

Lab Sample ID: 480-168167-1

Matrix: Water

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
,1,1-Trichloroethane	ND	1.0	0.82	ug/L			04/07/20 15:25	
1,1,2,2-Tetrachloroethane	ND	1.0	0.21	ug/L			04/07/20 15:25	
,1,2-Trichloroethane	ND	1.0	0.23	ug/L			04/07/20 15:25	
,1,2-Trichloro-1,2,2-trifluoroethane	ND	1.0	0.31	ug/L			04/07/20 15:25	• • • • • •
1,1-Dichloroethane	ND	1.0	0.38	ug/L			04/07/20 15:25	
1,1-Dichloroethene	ND	1.0	0.29	ug/L			04/07/20 15:25	
1,2,4-Trichlorobenzene	ND	1.0	0.41	ug/L			04/07/20 15:25	
1,2-Dibromo-3-Chloropropane	ND	1.0	0.39	ug/L			04/07/20 15:25	
1,2-Dichlorobenzene	ND	1.0	0.79	ug/L			04/07/20 15:25	
1,2-Dichloroethane	ND	1.0	0.21	ug/L			04/07/20 15:25	
1,2-Dichloropropane	ND	1.0	0.72	ug/L			04/07/20 15:25	
1,3-Dichlorobenzene	ND	1.0		ug/L			04/07/20 15:25	
1,4-Dichlorobenzene	ND	1.0		ug/L			04/07/20 15:25	
2-Butanone (MEK)	ND	10		ug/L			04/07/20 15:25	
2-Hexanone	ND	5.0		ug/L			04/07/20 15:25	
4-Methyl-2-pentanone (MIBK)	ND	5.0		ug/L			04/07/20 15:25	
Acetone	ND	10		ug/L			04/07/20 15:25	
Benzene	ND	1.0		ug/L			04/07/20 15:25	
Bromodichloromethane	ND	1.0		ug/L			04/07/20 15:25	
Bromoform	ND	1.0		ug/L			04/07/20 15:25	
Bromomethane	ND	1.0		ug/L			04/07/20 15:25	
Carbon disulfide	ND	1.0		ug/L			04/07/20 15:25	
Carbon tetrachloride	ND	1.0		ug/L			04/07/20 15:25	
Chlorobenzene	ND	1.0		ug/L			04/07/20 15:25	
Dibromochloromethane	ND	1.0		ug/L			04/07/20 15:25	
Chloroethane	ND	1.0		ug/L			04/07/20 15:25	
Chloroform	ND	1.0		ug/L			04/07/20 15:25	
Chloromethane	ND	1.0		ug/L			04/07/20 15:25	
cis-1,2-Dichloroethene	ND	1.0		ug/L			04/07/20 15:25	
cis-1,3-Dichloropropene	ND	1.0		ug/L			04/07/20 15:25	
Cyclohexane	ND	1.0					04/07/20 15:25	
Dichlorodifluoromethane	ND	1.0		ug/L ug/L			04/07/20 15:25	
	ND							
Ethylbenzene I.2-Dibromoethane	ND	1.0 1.0		ug/L			04/07/20 15:25 04/07/20 15:25	
,	ND	1.0		ug/L ug/L			04/07/20 15:25	
sopropylbenzene				-				
Methyl acetate	ND	2.5		ug/L			04/07/20 15:25	
Methyl tert-butyl ether	ND	1.0		ug/L			04/07/20 15:25	
Methylcyclohexane	ND	1.0		ug/L			04/07/20 15:25	
Aethylene Chloride	ND	1.0		ug/L			04/07/20 15:25	
Styrene	ND	1.0		ug/L			04/07/20 15:25	
etrachloroethene	ND	1.0		ug/L			04/07/20 15:25	
oluene	ND	1.0		ug/L			04/07/20 15:25	
rans-1,2-Dichloroethene	ND	1.0		ug/L			04/07/20 15:25	
rans-1,3-Dichloropropene	ND	1.0		ug/L			04/07/20 15:25	
Trichloroethene	ND	1.0		ug/L			04/07/20 15:25	
richlorofluoromethane	ND	1.0		ug/L			04/07/20 15:25	
/inyl chloride	ND	1.0	0.90	ug/L			04/07/20 15:25	

Job ID: 480-168167-1

Client Sample ID: MW-1 Date Collected: 04/01/20 09:00 Date Received: 04/03/20 14:00

Lab Sample ID: 480-168167-1 Matrix: Water

ater

5 6 7

Surrogate	%Recovery Qualifier	Limits	Prepare	d Analyzed	Dil Fac
Toluene-d8 (Surr)	96	80 - 120		04/07/20 15:25	1
1,2-Dichloroethane-d4 (Surr)	96	77 - 120		04/07/20 15:25	1
4-Bromofluorobenzene (Surr)	101	73 - 120		04/07/20 15:25	1
Dibromofluoromethane (Surr)	104	75 - 123		04/07/20 15:25	1

Client Sample ID: MW-2 Date Collected: 04/01/20 10:30 Date Received: 04/03/20 14:00

Lab Sample ID: 480-168167-2

Matrix: Water

5

6

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
1,1,1-Trichloroethane	ND		500	410	ug/L			04/08/20 09:34	50
1,1,2,2-Tetrachloroethane	ND		500	110	ug/L			04/08/20 09:34	50
1,1,2-Trichloroethane	ND		500	120	ug/L			04/08/20 09:34	50
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		500	160	ug/L			04/08/20 09:34	50
1,1-Dichloroethane	ND		500	190	ug/L			04/08/20 09:34	50
1,1-Dichloroethene	ND		500	150	ug/L			04/08/20 09:34	50
1,2,4-Trichlorobenzene	ND		500	210	ug/L			04/08/20 09:34	50
1,2-Dibromo-3-Chloropropane	ND		500	200	ug/L			04/08/20 09:34	50
1,2-Dichlorobenzene	ND		500	400	ug/L			04/08/20 09:34	50
1,2-Dichloroethane	ND		500	110	ug/L			04/08/20 09:34	50
1,2-Dichloropropane	ND		500	360	ug/L			04/08/20 09:34	50
I,3-Dichlorobenzene	ND		500	390	ug/L			04/08/20 09:34	50
I,4-Dichlorobenzene	ND		500	420	ug/L			04/08/20 09:34	50
2-Butanone (MEK)	ND	*	5000	660	ug/L			04/08/20 09:34	50
2-Hexanone	ND		2500	620	ug/L			04/08/20 09:34	50
I-Methyl-2-pentanone (MIBK)	ND		2500	1100	ug/L			04/08/20 09:34	50
Acetone	ND		5000	1500	ug/L			04/08/20 09:34	50
Benzene	ND		500	210	-			04/08/20 09:34	50
Bromodichloromethane	ND		500	200				04/08/20 09:34	50
Bromoform	ND		500	130	ug/L			04/08/20 09:34	50
					ug/L				
Bromomethane	ND		500	350	ug/L			04/08/20 09:34	50
Carbon disulfide	ND		500	95	ug/L			04/08/20 09:34	50
Carbon tetrachloride	ND		500	140	ug/L			04/08/20 09:34	50
Chlorobenzene	ND		500	380	ug/L			04/08/20 09:34	50
Dibromochloromethane	ND		500	160	ug/L			04/08/20 09:34	50
Chloroethane	ND		500	160	ug/L			04/08/20 09:34	50
Chloroform	ND		500	170	ug/L			04/08/20 09:34	50
Chloromethane	ND		500	180	ug/L			04/08/20 09:34	50
cis-1,2-Dichloroethene	33000	F1	500	410	ug/L			04/08/20 09:34	50
cis-1,3-Dichloropropene	ND		500	180				04/08/20 09:34	50
Cyclohexane	ND		500	90	ug/L			04/08/20 09:34	50
Dichlorodifluoromethane	ND		500	340	ug/L			04/08/20 09:34	50
Ethylbenzene	ND		500	370	ug/L			04/08/20 09:34	50
,2-Dibromoethane	ND		500	370	ug/L			04/08/20 09:34	50
sopropylbenzene	ND		500	400	ug/L			04/08/20 09:34	50
Methyl acetate	ND		1300	650	ug/L			04/08/20 09:34	50
Nethyl tert-butyl ether	ND		500	80	ug/L			04/08/20 09:34	50
/lethylcyclohexane	ND		500	80	ug/L			04/08/20 09:34	50
Nethylene Chloride	ND		500	220	ug/L			04/08/20 09:34	50
Styrene	ND		500	370	ug/L			04/08/20 09:34	50
etrachloroethene	ND		500	180	ug/L			04/08/20 09:34	50
oluene	ND		500	260	ug/L			04/08/20 09:34	50
rans-1,2-Dichloroethene	ND		500		ug/L			04/08/20 09:34	50
rans-1,3-Dichloropropene	ND		500	190	ug/L			04/08/20 09:34	50
Frichloroethene	ND		500		ug/L			04/08/20 09:34	50
Trichlorofluoromethane	ND		500		ug/L			04/08/20 09:34	50
/inyl chloride	33000	F1	500	450	ug/L			04/08/20 09:34	50
Xylenes, Total	33000 ND		1000		ug/L			04/08/20 09:34	50

Job ID: 480-168167-1

Client Sample ID: MW-2 Date Collected: 04/01/20 10:30 Date Received: 04/03/20 14:00

Lab Sample ID: 480-168167-2 Matrix: Water

vvater

5 6 7

Surrogate	%Recovery Q	Qualifier Limits	Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	100	80 - 120		04/08/20 09:34	500
1,2-Dichloroethane-d4 (Surr)	104	77 _ 120		04/08/20 09:34	500
4-Bromofluorobenzene (Surr)	106	73 - 120		04/08/20 09:34	500
Dibromofluoromethane (Surr)	107	75 - 123		04/08/20 09:34	500

Eurofins TestAmerica, Buffalo

Client Sample ID: MW-3 Date Collected: 04/01/20 12:10 Date Received: 04/03/20 14:00

Lab Sample ID: 480-168167-3

Matrix: Water

5

6

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
1,1,1-Trichloroethane	ND		20	16	ug/L			04/07/20 16:13	2
1,1,2,2-Tetrachloroethane	ND		20	4.2	ug/L			04/07/20 16:13	2
1,1,2-Trichloroethane	ND		20	4.6	ug/L			04/07/20 16:13	2
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		20	6.2	ug/L			04/07/20 16:13	2
1,1-Dichloroethane	ND		20	7.6	ug/L			04/07/20 16:13	2
1,1-Dichloroethene	ND		20	5.8	ug/L			04/07/20 16:13	2
1,2,4-Trichlorobenzene	ND		20		ug/L			04/07/20 16:13	2
1,2-Dibromo-3-Chloropropane	ND		20	7.8	ug/L			04/07/20 16:13	2
1,2-Dichlorobenzene	ND		20	16	ug/L			04/07/20 16:13	2
1,2-Dichloroethane	ND		20	4.2	ug/L			04/07/20 16:13	2
1,2-Dichloropropane	ND		20		ug/L			04/07/20 16:13	2
I,3-Dichlorobenzene	ND		20		ug/L			04/07/20 16:13	2
I,4-Dichlorobenzene	ND		20		ug/L			04/07/20 16:13	2
2-Butanone (MEK)	ND		200	26	ug/L			04/07/20 16:13	2
2-Hexanone	ND		100		ug/L			04/07/20 16:13	2
I-Methyl-2-pentanone (MIBK)	ND		100		ug/L			04/07/20 16:13	2
Acetone	ND		200	60	-			04/07/20 16:13	2
Benzene	ND		200		ug/L			04/07/20 16:13	2
Bromodichloromethane	ND		20		ug/L			04/07/20 16:13	2
Bromoform	ND		20		ug/L ug/L			04/07/20 16:13	2
Bromomethane	ND		20		ug/L			04/07/20 16:13	2
Carbon disulfide	ND		20		ug/L			04/07/20 16:13	2
Carbon tetrachloride	ND		20		ug/L			04/07/20 16:13	2
Chlorobenzene	ND		20		ug/L			04/07/20 16:13	2
Dibromochloromethane	ND		20		ug/L			04/07/20 16:13	2
Chloroethane	ND		20		ug/L			04/07/20 16:13	2
Chloroform	ND		20		ug/L			04/07/20 16:13	
Chloromethane	ND		20	7.0	0			04/07/20 16:13	2
cis-1,2-Dichloroethene	230		20	16	ug/L			04/07/20 16:13	2
sis-1,3-Dichloropropene	ND		20		ug/L			04/07/20 16:13	2
Cyclohexane	ND		20		ug/L			04/07/20 16:13	2
Dichlorodifluoromethane	ND		20	14	ug/L			04/07/20 16:13	2
Ethylbenzene	ND		20	15	ug/L			04/07/20 16:13	2
,2-Dibromoethane	ND		20	15	ug/L			04/07/20 16:13	2
sopropylbenzene	ND		20	16	ug/L			04/07/20 16:13	2
Nethyl acetate	ND		50	26	ug/L			04/07/20 16:13	2
lethyl tert-butyl ether	ND		20	3.2	ug/L			04/07/20 16:13	2
lethylcyclohexane	ND		20	3.2	ug/L			04/07/20 16:13	2
lethylene Chloride	ND		20	8.8	ug/L			04/07/20 16:13	2
Styrene	ND		20	15	ug/L			04/07/20 16:13	2
etrachloroethene	ND		20	7.2	ug/L			04/07/20 16:13	2
oluene	ND		20	10	ug/L			04/07/20 16:13	2
rans-1,2-Dichloroethene	ND		20		ug/L			04/07/20 16:13	2
rans-1,3-Dichloropropene	ND		20		ug/L			04/07/20 16:13	2
Frichloroethene	790		20		ug/L			04/07/20 16:13	2
Trichlorofluoromethane	ND		20		ug/L			04/07/20 16:13	2
/inyl chloride	ND		20		ug/L			04/07/20 16:13	2
Xylenes, Total	ND		40		ug/L ug/L			04/07/20 16:13	2

Client Sample ID: MW-3 Date Collected: 04/01/20 12:10 Date Received: 04/03/20 14:00

Lab Sample ID: 480-168167-3 Matrix: Water

vater

5 6 7

Surrogate	%Recovery Qualifier	Limits		Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	93	80 - 120	-		04/07/20 16:13	20
1,2-Dichloroethane-d4 (Surr)	101	77 _ 120			04/07/20 16:13	20
4-Bromofluorobenzene (Surr)	96	73 - 120			04/07/20 16:13	20
Dibromofluoromethane (Surr)	102	75 - 123			04/07/20 16:13	20

RL

500

MDL Unit

410 ug/L

D

Prepared

Method: 8260C - Volatile Organic Compounds by GC/MS

Result Qualifier

ND

Client Sample ID: MW-4 Date Collected: 04/01/20 14:10 Date Received: 04/03/20 14:00

Analyte

1,1,1-Trichloroethane

Lab Sample ID: 480-168167-4

Analyzed

04/07/20 16:38

Matrix: Water

Dil Fac

aler	
	4
Fac	5
500	
500	6
500	_
500	
500	
500	8
500	0
500	0
500	
500	
500	
500	
500	
500	
500	
500	
500	13
500	

I, I, I-Inchioroethane	ND	500	410 ug/L	04/07/20 10.36	500
1,1,2,2-Tetrachloroethane	ND	500	110 ug/L	04/07/20 16:38	500
1,1,2-Trichloroethane	ND	500	120 ug/L	04/07/20 16:38	500
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	500	160 ug/L	04/07/20 16:38	500
1,1-Dichloroethane	ND	500	190 ug/L	04/07/20 16:38	500
			0		
1,1-Dichloroethene	ND	500	150 ug/L	04/07/20 16:38	500
1,2,4-Trichlorobenzene	ND	500	210 ug/L	04/07/20 16:38	500
1,2-Dibromo-3-Chloropropane	ND	500	200 ug/L	04/07/20 16:38	500
1,2-Dichlorobenzene	ND	500	400 ug/L	04/07/20 16:38	500
1,2-Dichloroethane	ND	500	110 ug/L	04/07/20 16:38	500
1,2-Dichloropropane	ND	500	360 ug/L	04/07/20 16:38	500
1,3-Dichlorobenzene	ND	500	390 ug/L	04/07/20 16:38	500
1,4-Dichlorobenzene	ND	500	420 ug/L	04/07/20 16:38	500
2-Butanone (MEK)	ND	5000	660 ug/L	04/07/20 16:38	500
2-Hexanone	ND	2500	620 ug/L	04/07/20 16:38	500
4-Methyl-2-pentanone (MIBK)	ND	2500	1100 ug/L	04/07/20 16:38	500
Acetone	ND	5000	1500 ug/L	04/07/20 16:38	500
Benzene	ND	500	210 ug/L	04/07/20 16:38	500
Bromodichloromethane	ND	500	200 ug/L	04/07/20 16:38	500
Bromoform	ND	500	130 ug/L	04/07/20 16:38	500
Bromomethane	ND	500	350 ug/L	04/07/20 16:38	500
					500
Carbon disulfide	ND	500	95 ug/L	04/07/20 16:38	
Carbon tetrachloride	ND	500	140 ug/L	04/07/20 16:38	500
Chlorobenzene	ND	500	380 ug/L	04/07/20 16:38	500
Dibromochloromethane	ND	500	160 ug/L	04/07/20 16:38	500
Chloroethane	ND	500	160 ug/L	04/07/20 16:38	500
Chloroform	ND	500	170 ug/L	04/07/20 16:38	500
Chloromethane	ND	500	180 ug/L	04/07/20 16:38	500
cis-1,2-Dichloroethene	430 J	500	410 ug/L	04/07/20 16:38	500
cis-1,3-Dichloropropene	ND	500	180 ug/L	04/07/20 16:38	500
Cyclohexane	ND	500	90 ug/L	04/07/20 16:38	500
Dichlorodifluoromethane	ND	500	340 ug/L	04/07/20 16:38	500
Ethylbenzene	ND	500	370 ug/L	04/07/20 16:38	500
1,2-Dibromoethane			· · · · · · · · · · · · · · · · · · ·		
,	ND	500	8	04/07/20 16:38	500
Isopropylbenzene	ND	500	400 ug/L	04/07/20 16:38	500
Methyl acetate	ND	1300	650 ug/L	04/07/20 16:38	500
Methyl tert-butyl ether	ND	500	80 ug/L	04/07/20 16:38	500
Methylcyclohexane	ND	500	80 ug/L	04/07/20 16:38	500
Methylene Chloride	ND	500	220 ug/L	04/07/20 16:38	500
Styrene	ND	500	370 ug/L	04/07/20 16:38	500
Tetrachloroethene	ND	500	180 ug/L	04/07/20 16:38	500
Toluene	ND	500	260 ug/L	04/07/20 16:38	500
trans-1,2-Dichloroethene	ND	500	450 ug/L	04/07/20 16:38	500
trans-1,3-Dichloropropene	ND	500	190 ug/L	04/07/20 16:38	500
Trichloroethene	14000	500	230 ug/L	04/07/20 16:38	500
Trichlorofluoromethane	ND	500	440 ug/L	04/07/20 16:38	500
Vinyl chloride	ND	500	450 ug/L	04/07/20 16:38	500
Xylenes, Total	ND	1000	330 ug/L	04/07/20 16:38	500

Client Sample ID: MW-4 Date Collected: 04/01/20 14:10 Date Received: 04/03/20 14:00

Lab Sample ID: 480-168167-4 Matrix: Water

AUIA. WALCI

5

6 7

Surrogate	%Recovery Quali	lifier Limits	Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	94	80 - 120		04/07/20 16:38	500
1,2-Dichloroethane-d4 (Surr)	95	77 - 120		04/07/20 16:38	500
4-Bromofluorobenzene (Surr)	100	73 - 120		04/07/20 16:38	500
Dibromofluoromethane (Surr)	96	75 - 123		04/07/20 16:38	500

Client Sample ID: MW-4D Date Collected: 04/01/20 13:40 Date Received: 04/03/20 14:00

Lab Sample ID: 480-168167-5

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		1.0	0.82				04/07/20 17:02	1
1,1,2,2-Tetrachloroethane	ND		1.0	0.21				04/07/20 17:02	
1,1,2-Trichloroethane	ND		1.0	0.23				04/07/20 17:02	
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		1.0	0.31	ug/L			04/07/20 17:02	
1,1-Dichloroethane	ND		1.0	0.38	ug/L			04/07/20 17:02	
1,1-Dichloroethene	ND		1.0	0.29	ug/L			04/07/20 17:02	
1,2,4-Trichlorobenzene	ND		1.0	0.41	ug/L			04/07/20 17:02	
1,2-Dibromo-3-Chloropropane	ND		1.0	0.39				04/07/20 17:02	
1,2-Dichlorobenzene	ND		1.0	0.79				04/07/20 17:02	
1,2-Dichloroethane	ND		1.0	0.21				04/07/20 17:02	
1,2-Dichloropropane	ND		1.0	0.72				04/07/20 17:02	
1,3-Dichlorobenzene	ND		1.0	0.78				04/07/20 17:02	
1,4-Dichlorobenzene	ND		1.0	0.84				04/07/20 17:02	· · · · · · ,
2-Butanone (MEK)	ND		10		ug/L			04/07/20 17:02	
2-Hexanone	ND		5.0		ug/L			04/07/20 17:02	
4-Methyl-2-pentanone (MIBK)	ND		5.0		ug/L			04/07/20 17:02	••••••
Acetone	ND		10		ug/L			04/07/20 17:02	
Benzene	ND		1.0	0.41				04/07/20 17:02	
Bromodichloromethane	ND		1.0	0.39				04/07/20 17:02	
Bromoform	ND		1.0	0.26				04/07/20 17:02	
Bromomethane	ND		1.0	0.69				04/07/20 17:02	
Carbon disulfide	ND		1.0	0.19				04/07/20 17:02	
Carbon tetrachloride	ND		1.0	0.13				04/07/20 17:02	
Chlorobenzene	ND		1.0	0.27				04/07/20 17:02	
Dibromochloromethane	ND		1.0	0.73				04/07/20 17:02	,
Chloroethane	ND		1.0	0.32				04/07/20 17:02	
Chloroform	ND		1.0	0.34				04/07/20 17:02	
Chloromethane	ND		1.0	0.35				04/07/20 17:02	,
cis-1,2-Dichloroethene	ND		1.0	0.81				04/07/20 17:02	1
cis-1,3-Dichloropropene	ND		1.0	0.36				04/07/20 17:02	
Cyclohexane	ND		1.0	0.30				04/07/20 17:02	
Dichlorodifluoromethane	ND		1.0	0.18				04/07/20 17:02	
Ethylbenzene	ND		1.0	0.00	-			04/07/20 17:02	
1.2-Dibromoethane	ND		1.0	0.74	-			04/07/20 17:02	
sopropylbenzene	ND		1.0	0.73				04/07/20 17:02	1
Methyl acetate	ND		2.5		ug/L			04/07/20 17:02	1
Methyl tert-butyl ether	ND		2.5	0.16				04/07/20 17:02	
	ND		1.0						
Methylcyclohexane				0.16				04/07/20 17:02	
Methylene Chloride	ND		1.0	0.44	-			04/07/20 17:02 04/07/20 17:02	
	ND		1.0		ug/L				-
Tetrachloroethene	ND		1.0	0.36	-			04/07/20 17:02	•
	ND		1.0	0.51				04/07/20 17:02	
rans-1,2-Dichloroethene	ND		1.0	0.90	-			04/07/20 17:02	
rans-1,3-Dichloropropene	ND		1.0	0.37				04/07/20 17:02	
Frichloroethene	1.2		1.0	0.46				04/07/20 17:02	
Trichlorofluoromethane	ND		1.0	0.88				04/07/20 17:02	1
Vinyl chloride Xylenes, Total	ND ND		1.0 2.0	0.90	ug/L ug/L			04/07/20 17:02 04/07/20 17:02	1

Limits

80 - 120

77 - 120

73 - 120

75 - 123

%Recovery Qualifier

95

101

101

104

Job ID: 480-168167-1

Client Sample ID: MW-4D Date Collected: 04/01/20 13:40 Date Received: 04/03/20 14:00

Surrogate

Toluene-d8 (Surr)

1,2-Dichloroethane-d4 (Surr)

4-Bromofluorobenzene (Surr)

Dibromofluoromethane (Surr)

Lab Sample ID: 480-168167-5 Matrix: Water

Analyzed

04/07/20 17:02

04/07/20 17:02

04/07/20 17:02

04/07/20 17:02

Prepared

Water 4

1

1

1

1

Client Sample ID: MW-5 Date Collected: 04/01/20 15:15 Date Received: 04/03/20 14:00

Lab Sample ID: 480-168167-6

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		1.0	0.82	ug/L			04/07/20 17:26	
1,1,2,2-Tetrachloroethane	ND		1.0	0.21	ug/L			04/07/20 17:26	
1,1,2-Trichloroethane	ND		1.0	0.23	ug/L			04/07/20 17:26	
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		1.0	0.31	ug/L			04/07/20 17:26	
,1-Dichloroethane	ND		1.0	0.38				04/07/20 17:26	
1,1-Dichloroethene	ND		1.0		ug/L			04/07/20 17:26	
1,2,4-Trichlorobenzene	ND		1.0		ug/L			04/07/20 17:26	••••••
1,2-Dibromo-3-Chloropropane	ND		1.0	0.39				04/07/20 17:26	
1,2-Dichlorobenzene	ND		1.0		ug/L			04/07/20 17:26	
1,2-Dichloroethane	ND		1.0		ug/L			04/07/20 17:26	
1,2-Dichloropropane	ND		1.0		ug/L			04/07/20 17:26	
1,3-Dichlorobenzene	ND		1.0		ug/L			04/07/20 17:26	
1,4-Dichlorobenzene	ND		1.0		ug/L			04/07/20 17:26	,
2-Butanone (MEK)	ND		10		ug/L			04/07/20 17:26	
2-Hexanone	ND		5.0		ug/L			04/07/20 17:26	
4-Methyl-2-pentanone (MIBK)	ND		5.0		ug/L			04/07/20 17:26	
Acetone	ND		10		ug/L ug/L			04/07/20 17:20	
Benzene									
	ND		1.0		ug/L			04/07/20 17:26	
Bromodichloromethane	ND		1.0		ug/L			04/07/20 17:26	
Bromoform	ND		1.0		ug/L			04/07/20 17:26	
Bromomethane	ND		1.0		ug/L			04/07/20 17:26	
Carbon disulfide	ND		1.0		ug/L			04/07/20 17:26	
Carbon tetrachloride	ND		1.0		ug/L			04/07/20 17:26	
Chlorobenzene	ND		1.0		ug/L			04/07/20 17:26	
Dibromochloromethane	ND		1.0		ug/L			04/07/20 17:26	
Chloroethane	ND		1.0	0.32	ug/L			04/07/20 17:26	
Chloroform	ND		1.0		ug/L			04/07/20 17:26	
Chloromethane	ND		1.0	0.35	ug/L			04/07/20 17:26	
cis-1,2-Dichloroethene	ND		1.0	0.81	ug/L			04/07/20 17:26	
cis-1,3-Dichloropropene	ND		1.0	0.36	ug/L			04/07/20 17:26	
Cyclohexane	ND		1.0	0.18	ug/L			04/07/20 17:26	
Dichlorodifluoromethane	ND		1.0	0.68	ug/L			04/07/20 17:26	
Ethylbenzene	ND		1.0	0.74	ug/L			04/07/20 17:26	
1,2-Dibromoethane	ND		1.0	0.73	ug/L			04/07/20 17:26	•••••
sopropylbenzene	ND		1.0	0.79	ug/L			04/07/20 17:26	
Methyl acetate	ND		2.5	1.3	ug/L			04/07/20 17:26	
Methyl tert-butyl ether	ND		1.0	0.16	ug/L			04/07/20 17:26	
Methylcyclohexane	ND		1.0	0.16	ug/L			04/07/20 17:26	
Methylene Chloride	ND		1.0	0.44	ug/L			04/07/20 17:26	
Styrene	ND		1.0	0.73	ug/L			04/07/20 17:26	
Fetrachloroethene	ND		1.0	0.36	ug/L			04/07/20 17:26	
Foluene	ND		1.0		ug/L			04/07/20 17:26	
rans-1,2-Dichloroethene	ND		1.0		ug/L			04/07/20 17:26	
rans-1,3-Dichloropropene	ND		1.0		ug/L			04/07/20 17:26	
Trichloroethene	ND		1.0		ug/L			04/07/20 17:26	
Trichlorofluoromethane	ND		1.0		ug/L			04/07/20 17:26	
/inyl chloride	ND		1.0		ug/L			04/07/20 17:26	
Xylenes, Total	ND		2.0		ug/L			04/07/20 17:26	

Limits

80 - 120

77 - 120

73 - 120

75 - 123

%Recovery Qualifier

94

95

99

101

Job ID: 480-168167-1

Client Sample ID: MW-5 Date Collected: 04/01/20 15:15 Date Received: 04/03/20 14:00

Surrogate

Toluene-d8 (Surr)

1,2-Dichloroethane-d4 (Surr)

4-Bromofluorobenzene (Surr)

Dibromofluoromethane (Surr)

Lab Sample ID: 480-168167-6 Matrix: Water

Analyzed

04/07/20 17:26

04/07/20 17:26

04/07/20 17:26

04/07/20 17:26

Prepared

Dil Fac

1

1

1

1

Client Sample ID: MW-5D Date Collected: 04/01/20 16:15 Date Received: 04/03/20 14:00

Lab Sample ID: 480-168167-7

Matrix: Water

nalyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
1,1-Trichloroethane	ND		1.0	0.82	ug/L			04/07/20 17:50	
,1,2,2-Tetrachloroethane	ND		1.0	0.21	ug/L			04/07/20 17:50	
,1,2-Trichloroethane	ND		1.0	0.23	ug/L			04/07/20 17:50	
,1,2-Trichloro-1,2,2-trifluoroethane	ND		1.0	0.31	ug/L			04/07/20 17:50	
,1-Dichloroethane	ND		1.0	0.38	ug/L			04/07/20 17:50	
,1-Dichloroethene	ND		1.0	0.29	ug/L			04/07/20 17:50	
,2,4-Trichlorobenzene	ND		1.0	0.41	ug/L			04/07/20 17:50	
,2-Dibromo-3-Chloropropane	ND		1.0	0.39				04/07/20 17:50	
,2-Dichlorobenzene	ND		1.0	0.79				04/07/20 17:50	
2-Dichloroethane	ND		1.0		ug/L			04/07/20 17:50	
2-Dichloropropane	ND		1.0	0.72	-			04/07/20 17:50	
,3-Dichlorobenzene	ND		1.0	0.78	-			04/07/20 17:50	
4-Dichlorobenzene	ND		1.0		ug/L			04/07/20 17:50	
-Butanone (MEK)	ND		10		ug/L			04/07/20 17:50	
-Hexanone	ND		5.0		ug/L			04/07/20 17:50	
-Methyl-2-pentanone (MIBK)	ND		5.0		ug/L			04/07/20 17:50	
cetone	ND		10		ug/L			04/07/20 17:50	
enzene	ND		1.0	0.41				04/07/20 17:50	
romodichloromethane	ND		1.0	0.39				04/07/20 17:50	
romoform	ND		1.0	0.26				04/07/20 17:50	
romomethane	ND		1.0	0.69	-			04/07/20 17:50	
arbon disulfide	ND		1.0	0.09				04/07/20 17:50	
arbon distincte	ND		1.0	0.13	-			04/07/20 17:50	
hlorobenzene	ND		1.0	0.27	-			04/07/20 17:50	
ibromochloromethane	ND		1.0	0.73				04/07/20 17:50	
hloroethane	ND		1.0	0.32	-			04/07/20 17:50	
			1.0						
hloroform	ND			0.34				04/07/20 17:50	
hloromethane	ND		1.0		ug/L			04/07/20 17:50	
s-1,2-Dichloroethene	ND		1.0	0.81	-			04/07/20 17:50	
s-1,3-Dichloropropene	ND		1.0	0.36				04/07/20 17:50	
yclohexane	ND		1.0	0.18				04/07/20 17:50	
ichlorodifluoromethane	ND		1.0	0.68				04/07/20 17:50	
thylbenzene	ND		1.0	0.74				04/07/20 17:50	
,2-Dibromoethane	ND		1.0	0.73				04/07/20 17:50	
opropylbenzene	ND		1.0	0.79	-			04/07/20 17:50	
lethyl acetate	ND		2.5		ug/L			04/07/20 17:50	
lethyl tert-butyl ether	ND		1.0		ug/L			04/07/20 17:50	
lethylcyclohexane	ND		1.0	0.16				04/07/20 17:50	
lethylene Chloride	ND		1.0	0.44				04/07/20 17:50	
tyrene	ND		1.0	0.73				04/07/20 17:50	
etrachloroethene	ND		1.0	0.36	ug/L			04/07/20 17:50	
oluene	ND		1.0	0.51				04/07/20 17:50	
ans-1,2-Dichloroethene	ND		1.0	0.90	ug/L			04/07/20 17:50	
ans-1,3-Dichloropropene	ND		1.0	0.37	ug/L			04/07/20 17:50	
richloroethene	ND		1.0	0.46	ug/L			04/07/20 17:50	
richlorofluoromethane	ND		1.0	0.88	ug/L			04/07/20 17:50	
inyl chloride	ND		1.0	0.90	ug/L			04/07/20 17:50	

Limits

80 - 120

77 - 120

73 - 120

75 - 123

%Recovery Qualifier

93

99

98

101

Job ID: 480-168167-1

Client Sample ID: MW-5D Date Collected: 04/01/20 16:15 Date Received: 04/03/20 14:00

Surrogate

Toluene-d8 (Surr)

1,2-Dichloroethane-d4 (Surr)

4-Bromofluorobenzene (Surr)

Dibromofluoromethane (Surr)

Lab Sample ID: 480-168167-7 Matrix: Water

Analyzed

04/07/20 17:50

04/07/20 17:50

04/07/20 17:50

04/07/20 17:50

Prepared

Water 4

1

1

1

Client Sample ID: MW-6 Date Collected: 04/02/20 08:50 Date Received: 04/03/20 14:00

Lab Sample ID: 480-168167-8

Matrix: Water

Analyte	Result Q	ualifier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
I,1,1-Trichloroethane	ND	2.0	1.6	ug/L			04/07/20 14:21	2
1,1,2,2-Tetrachloroethane	ND	2.0	0.42	ug/L			04/07/20 14:21	2
1,1,2-Trichloroethane	ND	2.0	0.46	ug/L			04/07/20 14:21	2
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	2.0	0.62	ug/L			04/07/20 14:21	2
I,1-Dichloroethane	ND	2.0	0.76	ug/L			04/07/20 14:21	2
I,1-Dichloroethene	ND	2.0	0.58	ug/L			04/07/20 14:21	2
I,2,4-Trichlorobenzene	ND	2.0	0.82	ug/L			04/07/20 14:21	2
,2-Dibromo-3-Chloropropane	ND	2.0	0.78	ug/L			04/07/20 14:21	2
I,2-Dichlorobenzene	ND	2.0	1.6	ug/L			04/07/20 14:21	2
I,2-Dichloroethane	ND	2.0	0.42	ug/L			04/07/20 14:21	2
I,2-Dichloropropane	ND	2.0	1.4	ug/L			04/07/20 14:21	2
I,3-Dichlorobenzene	ND	2.0	1.6	ug/L			04/07/20 14:21	2
I,4-Dichlorobenzene	ND	2.0	1.7	ug/L			04/07/20 14:21	2
2-Butanone (MEK)	ND	20	2.6	ug/L			04/07/20 14:21	2
2-Hexanone	ND	10	2.5	ug/L			04/07/20 14:21	2
I-Methyl-2-pentanone (MIBK)	ND	10	4.2	ug/L			04/07/20 14:21	
Acetone	ND	20		ug/L			04/07/20 14:21	2
Benzene	ND	2.0		ug/L			04/07/20 14:21	2
Bromodichloromethane	ND	2.0		ug/L			04/07/20 14:21	
Bromoform	ND	2.0		ug/L			04/07/20 14:21	2
Bromomethane	ND	2.0		ug/L			04/07/20 14:21	:
Carbon disulfide	ND	2.0		ug/L			04/07/20 14:21	
Carbon tetrachloride	ND	2.0		ug/L			04/07/20 14:21	2
Chlorobenzene	ND	2.0		ug/L			04/07/20 14:21	2
Dibromochloromethane	ND	2.0		ug/L			04/07/20 14:21	
Chloroethane	ND	2.0		ug/L			04/07/20 14:21	2
Chloroform	ND	2.0		ug/L			04/07/20 14:21	2
Chloromethane	ND	2.0		ug/L			04/07/20 14:21	
sis-1,2-Dichloroethene	ND	2.0		ug/L			04/07/20 14:21	-
sis-1,3-Dichloropropene	ND	2.0		ug/L			04/07/20 14:21	2
Cyclohexane	ND	2.0		ug/L			04/07/20 14:21	
Dichlorodifluoromethane	ND	2.0		ug/L			04/07/20 14:21	-
Ethylbenzene	ND	2.0		ug/L			04/07/20 14:21	
I.2-Dibromoethane	ND	2.0		ug/L			04/07/20 14:21	
sopropylbenzene	ND	2.0		ug/L			04/07/20 14:21	2
Methyl acetate	ND	5.0		ug/L			04/07/20 14:21	2
Aethyl tert-butyl ether	ND	2.0		ug/L			04/07/20 14:21	
<i>A</i> ethylcyclohexane	ND	2.0		ug/L			04/07/20 14:21	-
Aethylene Chloride	ND	2.0		ug/L			04/07/20 14:21	
Styrene	ND	2.0		ug/L			04/07/20 14:21	
etrachloroethene		2.0		ug/L			04/07/20 14:21	
oluene	ND ND	2.0		-			04/07/20 14:21	2
				ug/L				
rans-1,2-Dichloroethene	ND	2.0		ug/L			04/07/20 14:21	
rans-1,3-Dichloropropene	ND	2.0		ug/L			04/07/20 14:21	
	ND	2.0		ug/L			04/07/20 14:21	
Frichlorofluoromethane	ND	2.0		ug/L			04/07/20 14:21	2
/inyl chloride Kylenes, Total	ND ND	2.0 4.0		ug/L ug/L			04/07/20 14:21 04/07/20 14:21	:

Client Sample ID: MW-6 Date Collected: 04/02/20 08:50 Date Received: 04/03/20 14:00

Lab Sample ID: 480-168167-8 Matrix: Water

water

5 6 7

Surrogate	%Recovery	Qualifier Limits	Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	105	80 - 120		04/07/20 14:21	2
1,2-Dichloroethane-d4 (Surr)	112	77 _ 120		04/07/20 14:21	2
4-Bromofluorobenzene (Surr)	97	73 - 120		04/07/20 14:21	2
Dibromofluoromethane (Surr)	107	75 - 123		04/07/20 14:21	2

Client Sample ID: MW-7 Date Collected: 04/02/20 09:20 Date Received: 04/03/20 14:00

Lab Sample ID: 480-168167-9

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
1,1,1-Trichloroethane	ND		1.0	0.82	ug/L			04/07/20 14:45	
1,1,2,2-Tetrachloroethane	ND		1.0	0.21	ug/L			04/07/20 14:45	
1,1,2-Trichloroethane	ND		1.0	0.23	ug/L			04/07/20 14:45	
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		1.0	0.31	ug/L			04/07/20 14:45	
1,1-Dichloroethane	ND		1.0	0.38				04/07/20 14:45	
1,1-Dichloroethene	ND		1.0		ug/L			04/07/20 14:45	
1,2,4-Trichlorobenzene	ND		1.0	0.41	ug/L			04/07/20 14:45	
1,2-Dibromo-3-Chloropropane	ND		1.0	0.39				04/07/20 14:45	
1,2-Dichlorobenzene	ND		1.0		ug/L			04/07/20 14:45	
1,2-Dichloroethane	ND		1.0		ug/L			04/07/20 14:45	
1,2-Dichloropropane	ND		1.0		ug/L			04/07/20 14:45	
1,3-Dichlorobenzene	ND		1.0		ug/L			04/07/20 14:45	
1,4-Dichlorobenzene	ND		1.0		ug/L			04/07/20 14:45	
2-Butanone (MEK)	ND		10		ug/L			04/07/20 14:45	
2-Hexanone	ND		5.0		ug/L			04/07/20 14:45	
4-Methyl-2-pentanone (MIBK)	ND		5.0		ug/L			04/07/20 14:45	
Acetone	ND		10		ug/L			04/07/20 14:45	
Benzene	ND		1.0						
Bromodichloromethane					ug/L			04/07/20 14:45 04/07/20 14:45	
	ND		1.0	0.39					
Bromoform	ND		1.0		ug/L			04/07/20 14:45	
Bromomethane	ND		1.0		ug/L			04/07/20 14:45	
Carbon disulfide	ND		1.0		ug/L			04/07/20 14:45	
Carbon tetrachloride	ND		1.0		ug/L			04/07/20 14:45	
Chlorobenzene	ND		1.0		ug/L			04/07/20 14:45	
Dibromochloromethane	ND		1.0		ug/L			04/07/20 14:45	
Chloroethane	ND		1.0	0.32				04/07/20 14:45	
Chloroform	ND		1.0		ug/L			04/07/20 14:45	
Chloromethane	ND		1.0	0.35	ug/L			04/07/20 14:45	
cis-1,2-Dichloroethene	ND		1.0	0.81	ug/L			04/07/20 14:45	
cis-1,3-Dichloropropene	ND		1.0		ug/L			04/07/20 14:45	
Cyclohexane	ND		1.0		ug/L			04/07/20 14:45	
Dichlorodifluoromethane	ND		1.0	0.68	ug/L			04/07/20 14:45	
Ethylbenzene	ND		1.0	0.74	ug/L			04/07/20 14:45	
1,2-Dibromoethane	ND		1.0	0.73	ug/L			04/07/20 14:45	
sopropylbenzene	ND		1.0	0.79	ug/L			04/07/20 14:45	
Methyl acetate	ND		2.5	1.3	ug/L			04/07/20 14:45	
Methyl tert-butyl ether	ND		1.0	0.16	ug/L			04/07/20 14:45	
Methylcyclohexane	ND		1.0	0.16	ug/L			04/07/20 14:45	
Methylene Chloride	ND		1.0	0.44	ug/L			04/07/20 14:45	
Styrene	ND		1.0	0.73	ug/L			04/07/20 14:45	
Fetrachloroethene	ND		1.0	0.36	ug/L			04/07/20 14:45	
Foluene	ND		1.0	0.51	ug/L			04/07/20 14:45	
rans-1,2-Dichloroethene	ND		1.0	0.90	ug/L			04/07/20 14:45	
rans-1,3-Dichloropropene	ND		1.0		ug/L			04/07/20 14:45	
Frichloroethene	ND		1.0		ug/L			04/07/20 14:45	
Trichlorofluoromethane	ND		1.0		ug/L			04/07/20 14:45	
/inyl chloride	ND		1.0		ug/L			04/07/20 14:45	
Xylenes, Total	ND		2.0		ug/L			04/07/20 14:45	

Client Sample ID: MW-7 Date Collected: 04/02/20 09:20 Date Received: 04/03/20 14:00

Lab Sample ID: 480-168167-9 Matrix: Water

ater

5 6 7

Surrogate	%Recovery Qualifier	Limits		Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	102	80 - 120	-		04/07/20 14:45	1
1,2-Dichloroethane-d4 (Surr)	111	77 - 120			04/07/20 14:45	1
4-Bromofluorobenzene (Surr)	91	73 - 120			04/07/20 14:45	1
Dibromofluoromethane (Surr)	107	75 - 123			04/07/20 14:45	1

Client Sample ID: MW-8 Date Collected: 04/02/20 13:30 Date Received: 04/03/20 14:00

Lab Sample ID: 480-168167-10

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		1.0	0.82	ug/L			04/07/20 15:10	1
1,1,2,2-Tetrachloroethane	ND		1.0	0.21	ug/L			04/07/20 15:10	1
1,1,2-Trichloroethane	ND		1.0	0.23	ug/L			04/07/20 15:10	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		1.0	0.31	ug/L			04/07/20 15:10	1
1,1-Dichloroethane	ND		1.0	0.38	ug/L			04/07/20 15:10	1
1,1-Dichloroethene	ND		1.0	0.29	ug/L			04/07/20 15:10	1
1,2,4-Trichlorobenzene	ND		1.0	0.41	ug/L			04/07/20 15:10	• • • • • • •
1,2-Dibromo-3-Chloropropane	ND		1.0	0.39				04/07/20 15:10	
1,2-Dichlorobenzene	ND		1.0	0.79	ug/L			04/07/20 15:10	
1,2-Dichloroethane	ND		1.0		ug/L			04/07/20 15:10	,
1,2-Dichloropropane	ND		1.0	0.72	-			04/07/20 15:10	
1,3-Dichlorobenzene	ND		1.0		ug/L			04/07/20 15:10	1
1.4-Dichlorobenzene	ND		1.0		ug/L			04/07/20 15:10	
2-Butanone (MEK)	ND		10		ug/L			04/07/20 15:10	1
2-Hexanone	ND		5.0		ug/L			04/07/20 15:10	
4-Methyl-2-pentanone (MIBK)	ND		5.0		ug/L			04/07/20 15:10	
Acetone	ND		10		ug/L			04/07/20 15:10	
Benzene	ND		1.0	0.41	-			04/07/20 15:10	
Bromodichloromethane	ND		1.0	0.39				04/07/20 15:10	
Bromoform	ND		1.0		ug/L			04/07/20 15:10	
Bromomethane			1.0		-				
Carbon disulfide	ND				ug/L			04/07/20 15:10	
	ND		1.0		ug/L			04/07/20 15:10	
Carbon tetrachloride	ND		1.0		ug/L			04/07/20 15:10	
Chlorobenzene	ND		1.0		ug/L			04/07/20 15:10	
Dibromochloromethane	ND		1.0		ug/L			04/07/20 15:10	
Chloroethane	ND		1.0	0.32				04/07/20 15:10	
Chloroform	ND		1.0		ug/L			04/07/20 15:10	•
Chloromethane	ND		1.0		ug/L			04/07/20 15:10	
cis-1,2-Dichloroethene	ND		1.0		ug/L			04/07/20 15:10	
cis-1,3-Dichloropropene	ND		1.0		ug/L			04/07/20 15:10	•
Cyclohexane	ND		1.0	0.18				04/07/20 15:10	
Dichlorodifluoromethane	ND		1.0	0.68	ug/L			04/07/20 15:10	
Ethylbenzene	ND		1.0		ug/L			04/07/20 15:10	
1,2-Dibromoethane	ND		1.0	0.73	ug/L			04/07/20 15:10	
sopropylbenzene	ND		1.0	0.79	ug/L			04/07/20 15:10	
Methyl acetate	ND		2.5	1.3	ug/L			04/07/20 15:10	
Methyl tert-butyl ether	ND		1.0	0.16	ug/L			04/07/20 15:10	
Methylcyclohexane	ND		1.0	0.16	ug/L			04/07/20 15:10	
Methylene Chloride	ND		1.0	0.44	ug/L			04/07/20 15:10	
Styrene	ND		1.0	0.73	ug/L			04/07/20 15:10	
Fetrachloroethene	ND		1.0	0.36	ug/L			04/07/20 15:10	
Toluene	ND		1.0	0.51	ug/L			04/07/20 15:10	
rans-1,2-Dichloroethene	ND		1.0	0.90	ug/L			04/07/20 15:10	
rans-1,3-Dichloropropene	ND		1.0	0.37	-			04/07/20 15:10	
Trichloroethene	ND		1.0		ug/L			04/07/20 15:10	
Trichlorofluoromethane	ND		1.0	0.88				04/07/20 15:10	
/inyl chloride	ND		1.0	0.90				04/07/20 15:10	
Xylenes, Total	ND		2.0		ug/L			04/07/20 15:10	

Client Sample ID: MW-8 Date Collected: 04/02/20 13:30 Date Received: 04/03/20 14:00

Lab Sample ID: 480-168167-10 Matrix: Water

: Water

5 6 7

Surrogate	%Recovery G	Qualifier Limits	Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	111	80 - 120		04/07/20 15:10	1
1,2-Dichloroethane-d4 (Surr)	117	77 - 120		04/07/20 15:10	1
4-Bromofluorobenzene (Surr)	104	73 - 120		04/07/20 15:10	1
Dibromofluoromethane (Surr)	111	75 - 123		04/07/20 15:10	1

RL

100

100

MDL Unit

82 ug/L

21 ug/L

D

Prepared

Method: 8260C - Volatile Organic Compounds by GC/MS

Result Qualifier

ND

ND

Client Sample ID: MW-9R Date Collected: 04/02/20 16:10 Date Received: 04/03/20 14:00

Analyte

1,1,1-Trichloroethane

1,1,2,2-Tetrachloroethane

Lab Sample ID: 480-168167-11

Analyzed

04/07/20 15:34

04/07/20 15:34

Matrix: Water

water	
	4
Dil Fac	5
100	
100	6
100	
100	
100	
100	8
100	U
100	0
100	9
100	
100	
100	
100	
100	
100	
100	
100	13
100	

3

1, 1, 2, 2 100000000000000	NB	100		ug/L	01/01/2010.01	100
1,1,2-Trichloroethane	ND	100	23	ug/L	04/07/20 15:34	100
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	100	31	ug/L	04/07/20 15:34	100
1,1-Dichloroethane	ND	100	38	ug/L	04/07/20 15:34	100
1,1-Dichloroethene	ND	100	29	ug/L	04/07/20 15:34	100
1,2,4-Trichlorobenzene	ND	100	41	ug/L	04/07/20 15:34	100
1,2-Dibromo-3-Chloropropane	ND	100	39	ug/L	04/07/20 15:34	100
1,2-Dichlorobenzene	ND	100	79	ug/L	04/07/20 15:34	100
1,2-Dichloroethane	ND	100	21	ug/L	04/07/20 15:34	100
1,2-Dichloropropane	ND	100	72	ug/L	04/07/20 15:34	100
1,3-Dichlorobenzene	ND	100	78	ug/L	04/07/20 15:34	100
1,4-Dichlorobenzene	ND	100	84	ug/L	04/07/20 15:34	100
2-Butanone (MEK)	ND	1000	130	ug/L	04/07/20 15:34	100
2-Hexanone	ND	500	120	ug/L	04/07/20 15:34	100
4-Methyl-2-pentanone (MIBK)	ND	500	210	ug/L	04/07/20 15:34	100
Acetone	ND	1000	300	ug/L	04/07/20 15:34	100
Benzene	ND	100	41	ug/L	04/07/20 15:34	100
Bromodichloromethane	ND	100	39	ug/L	04/07/20 15:34	100
Bromoform	ND	100	26	ug/L	04/07/20 15:34	100
Bromomethane	ND	100	69	ug/L	04/07/20 15:34	100
Carbon disulfide	ND	100	19	ug/L	04/07/20 15:34	100
Carbon tetrachloride	ND	100	27	ug/L	04/07/20 15:34	100
Chlorobenzene	ND	100	75	ug/L	04/07/20 15:34	100
Dibromochloromethane	ND	100	32	ug/L	04/07/20 15:34	100
Chloroethane	ND	100	32	ug/L	04/07/20 15:34	100
Chloroform	ND	100	34	ug/L	04/07/20 15:34	100
Chloromethane	ND	100	35	ug/L	04/07/20 15:34	100
cis-1,2-Dichloroethene	2900	100	81	ug/L	04/07/20 15:34	100
cis-1,3-Dichloropropene	ND	100	36	ug/L	04/07/20 15:34	100
Cyclohexane	ND	100	18	ug/L	04/07/20 15:34	100
Dichlorodifluoromethane	ND	100	68	ug/L	04/07/20 15:34	100
Ethylbenzene	ND	100	74	ug/L	04/07/20 15:34	100
1,2-Dibromoethane	ND	100	73	ug/L	04/07/20 15:34	100
Isopropylbenzene	ND	100	79	ug/L	04/07/20 15:34	100
Methyl acetate	ND	250	130	ug/L	04/07/20 15:34	100
Methyl tert-butyl ether	ND	100	16	ug/L	04/07/20 15:34	100
Methylcyclohexane	ND	100	16	ug/L	04/07/20 15:34	100
Methylene Chloride	ND	100	44	ug/L	04/07/20 15:34	100
Styrene	ND	100	73	ug/L	04/07/20 15:34	100
Tetrachloroethene	ND	100	36	ug/L	04/07/20 15:34	100
Toluene	ND	100	51	ug/L	04/07/20 15:34	100
trans-1,2-Dichloroethene	ND	100	90	ug/L	04/07/20 15:34	100
trans-1,3-Dichloropropene	ND	100	37	ug/L	04/07/20 15:34	100
Trichloroethene	2800	100	46	ug/L	04/07/20 15:34	100
Trichlorofluoromethane	ND	100	88	ug/L	04/07/20 15:34	100
Vinyl chloride	260	100	90	ug/L	04/07/20 15:34	100
Xylenes, Total	ND	200	66	ug/L	04/07/20 15:34	100

Client Sample ID: MW-9R Date Collected: 04/02/20 16:10 Date Received: 04/03/20 14:00

Lab Sample ID: 480-168167-11 Matrix: Water

Vater

5 6 7

Surrogate	%Recovery	Qualifier	Limits		Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	110		80 - 120	-		04/07/20 15:34	100
1,2-Dichloroethane-d4 (Surr)	116		77 - 120			04/07/20 15:34	100
4-Bromofluorobenzene (Surr)	99		73 - 120			04/07/20 15:34	100
Dibromofluoromethane (Surr)	109		75 - 123			04/07/20 15:34	100

Client Sample ID: MW-10 Date Collected: 04/02/20 14:40 Date Received: 04/03/20 14:00

Lab Sample ID: 480-168167-12

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		1.0	0.82	ug/L			04/07/20 15:59	1
1,1,2,2-Tetrachloroethane	ND		1.0	0.21	ug/L			04/07/20 15:59	1
1,1,2-Trichloroethane	ND		1.0	0.23	ug/L			04/07/20 15:59	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		1.0	0.31	ug/L			04/07/20 15:59	1
1,1-Dichloroethane	ND		1.0	0.38	ug/L			04/07/20 15:59	1
1,1-Dichloroethene	ND		1.0	0.29	ug/L			04/07/20 15:59	1
1,2,4-Trichlorobenzene	ND		1.0	0.41	ug/L			04/07/20 15:59	1
1,2-Dibromo-3-Chloropropane	ND		1.0	0.39	ug/L			04/07/20 15:59	1
1,2-Dichlorobenzene	ND		1.0	0.79	ug/L			04/07/20 15:59	1
1,2-Dichloroethane	ND		1.0	0.21	ug/L			04/07/20 15:59	1
1,2-Dichloropropane	ND		1.0	0.72				04/07/20 15:59	1
1,3-Dichlorobenzene	ND		1.0	0.78	ug/L			04/07/20 15:59	1
1,4-Dichlorobenzene	ND		1.0	0.84	ug/L			04/07/20 15:59	1
2-Butanone (MEK)	ND		10	1.3	ug/L			04/07/20 15:59	1
2-Hexanone	ND		5.0		ug/L			04/07/20 15:59	1
4-Methyl-2-pentanone (MIBK)	ND		5.0	2.1	ug/L			04/07/20 15:59	1
Acetone	ND		10	3.0	ug/L			04/07/20 15:59	1
Benzene	ND		1.0		ug/L			04/07/20 15:59	1
Bromodichloromethane	ND		1.0	0.39	ug/L			04/07/20 15:59	1
Bromoform	ND		1.0	0.26				04/07/20 15:59	1
Bromomethane	ND		1.0	0.69				04/07/20 15:59	1
Carbon disulfide	ND		1.0	0.19				04/07/20 15:59	1
Carbon tetrachloride	ND		1.0	0.27				04/07/20 15:59	1
Chlorobenzene	ND		1.0	0.75				04/07/20 15:59	1
Dibromochloromethane	ND		1.0	0.32	-			04/07/20 15:59	1
Chloroethane	ND		1.0	0.32				04/07/20 15:59	1
Chloroform	ND		1.0		ug/L			04/07/20 15:59	1
Chloromethane	ND		1.0	0.35				04/07/20 15:59	1
cis-1,2-Dichloroethene	ND		1.0	0.81				04/07/20 15:59	1
cis-1,3-Dichloropropene	ND		1.0	0.36				04/07/20 15:59	1
Cyclohexane	ND		1.0	0.18				04/07/20 15:59	1
Dichlorodifluoromethane	ND		1.0	0.68				04/07/20 15:59	1
Ethylbenzene	ND		1.0		ug/L			04/07/20 15:59	1
1,2-Dibromoethane	ND		1.0	0.73				04/07/20 15:59	1
lsopropylbenzene	ND		1.0	0.79				04/07/20 15:59	1
Methyl acetate	ND		2.5		ug/L			04/07/20 15:59	1
Methyl tert-butyl ether	ND		1.0	0.16				04/07/20 15:59	1
Methylcyclohexane	ND		1.0	0.16				04/07/20 15:59	1
Methylene Chloride	ND		1.0		ug/L			04/07/20 15:59	1
Styrene	ND		1.0		ug/L			04/07/20 15:59	1
Fetrachloroethene	ND		1.0		ug/L			04/07/20 15:59	1
Toluene	ND		1.0		ug/L			04/07/20 15:59	1
rans-1,2-Dichloroethene	ND		1.0		ug/L			04/07/20 15:59	1
rans-1,3-Dichloropropene	ND		1.0		ug/L			04/07/20 15:59	1
Trichloroethene	ND		1.0		ug/L			04/07/20 15:59	1
Trichlorofluoromethane	ND		1.0		ug/L			04/07/20 15:59	
Vinyl chloride	ND		1.0		ug/L			04/07/20 15:59	1
Xylenes, Total	ND		2.0		ug/L			04/07/20 15:59	1

Client Sample ID: MW-10 Date Collected: 04/02/20 14:40 Date Received: 04/03/20 14:00

Lab Sample ID: 480-168167-12 Matrix: Water

ter

5 6 7

Surrogate	%Recovery Qualifie	er Limits	Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	98	80 - 120		04/07/20 15:59	1
1,2-Dichloroethane-d4 (Surr)	110	77 _ 120		04/07/20 15:59	1
4-Bromofluorobenzene (Surr)	88	73 - 120		04/07/20 15:59	1
Dibromofluoromethane (Surr)	104	75 - 123		04/07/20 15:59	1

Client Sample ID: MW-11R Date Collected: 04/03/20 09:00 Date Received: 04/03/20 14:00

Lab Sample ID: 480-168167-13

Matrix: Water

5

6

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
,1,1-Trichloroethane	ND		20		ug/L			04/08/20 11:28	20
,1,2,2-Tetrachloroethane	ND		20		ug/L			04/08/20 11:28	20
,1,2-Trichloroethane	ND		20		ug/L			04/08/20 11:28	20
,1,2-Trichloro-1,2,2-trifluoroethane	ND		20		ug/L			04/08/20 11:28	20
I,1-Dichloroethane	ND		20		ug/L			04/08/20 11:28	20
1,1-Dichloroethene	ND		20		ug/L			04/08/20 11:28	20
1,2,4-Trichlorobenzene	ND		20		ug/L			04/08/20 11:28	20
,2-Dibromo-3-Chloropropane	ND		20		ug/L			04/08/20 11:28	20
,2-Dichlorobenzene	ND		20		ug/L			04/08/20 11:28	20
I,2-Dichloroethane	ND		20		ug/L			04/08/20 11:28	20
•	ND		20					04/08/20 11:28	20
I,2-Dichloropropane	ND		20		ug/L			04/08/20 11:28	20
,3-Dichlorobenzene					ug/L				
,4-Dichlorobenzene	ND		20		ug/L			04/08/20 11:28	20
P-Butanone (MEK)	ND		200		ug/L			04/08/20 11:28	20
-Hexanone	ND		100		ug/L			04/08/20 11:28	20
-Methyl-2-pentanone (MIBK)	ND		100		ug/L			04/08/20 11:28	20
Acetone	ND		200		ug/L			04/08/20 11:28	20
Benzene	ND		20		ug/L			04/08/20 11:28	20
Bromodichloromethane	ND		20		ug/L			04/08/20 11:28	20
romoform	ND		20	5.2	ug/L			04/08/20 11:28	2
romomethane	ND		20	14	ug/L			04/08/20 11:28	2
Carbon disulfide	ND		20	3.8	ug/L			04/08/20 11:28	2
Carbon tetrachloride	ND		20	5.4	ug/L			04/08/20 11:28	2
Chlorobenzene	ND		20	15	ug/L			04/08/20 11:28	20
Dibromochloromethane	ND		20	6.4	ug/L			04/08/20 11:28	20
Chloroethane	ND		20	6.4	ug/L			04/08/20 11:28	20
Chloroform	ND		20	6.8	ug/L			04/08/20 11:28	20
Chloromethane	ND		20	7.0	ug/L			04/08/20 11:28	20
is-1,2-Dichloroethene	230		20	16	ug/L			04/08/20 11:28	20
is-1,3-Dichloropropene	ND		20	7.2	ug/L			04/08/20 11:28	20
Cyclohexane	ND		20	3.6	ug/L			04/08/20 11:28	20
Dichlorodifluoromethane	ND		20		ug/L			04/08/20 11:28	20
thylbenzene	ND		20		ug/L			04/08/20 11:28	20
,2-Dibromoethane	ND		20		ug/L			04/08/20 11:28	20
sopropylbenzene	ND		20		ug/L			04/08/20 11:28	20
Aethyl acetate	ND		50		ug/L			04/08/20 11:28	20
lethyl tert-butyl ether	ND		20		ug/L			04/08/20 11:28	20
lethylcyclohexane	ND		20		ug/L			04/08/20 11:28	20
	11		20		ug/L			04/08/20 11:28	20
lethylene Chloride tyrene	ND	J	20		ug/L			04/08/20 11:28	2
etrachloroethene	ND		20		-				20
					ug/L			04/08/20 11:28	
oluene	ND		20		ug/L			04/08/20 11:28	2
ans-1,2-Dichloroethene	ND		20		ug/L			04/08/20 11:28	2
ans-1,3-Dichloropropene	ND		20		ug/L			04/08/20 11:28	2
richloroethene	1200		20		ug/L			04/08/20 11:28	20
richlorofluoromethane	ND		20		ug/L			04/08/20 11:28	20
/inyl chloride	ND		20	18	ug/L			04/08/20 11:28	2

Client Sample Results

Limits

80 - 120

77 - 120

73 - 120

75 - 123

%Recovery Qualifier

103

113

96

108

Job ID: 480-168167-1

Client Sample ID: MW-11R Date Collected: 04/03/20 09:00 Date Received: 04/03/20 14:00

Surrogate

Toluene-d8 (Surr)

1,2-Dichloroethane-d4 (Surr)

4-Bromofluorobenzene (Surr)

Dibromofluoromethane (Surr)

Lab Sample ID: 480-168167-13 Matrix: Water

Analyzed

04/08/20 11:28

04/08/20 11:28

04/08/20 11:28

04/08/20 11:28

Prepared

Water 4 Dil Fac 20

20

20

20

RL

100

100

100

100

100

100

MDL Unit

21 ug/L

31 ug/L

38 ug/L

29 ug/L

82 ug/L

23 ug/L D

Prepared

Method: 8260C - Volatile Organic Compounds by GC/MS

Result Qualifier

ND

ND

ND

ND

ND

ND

Client Sample ID: MW-12 Date Collected: 04/02/20 11:30 Date Received: 04/03/20 14:00

1,1,2-Trichloro-1,2,2-trifluoroethane

Analyte

1,1,1-Trichloroethane

1,1,2-Trichloroethane

1,1-Dichloroethane

1,1-Dichloroethene

1,1,2,2-Tetrachloroethane

Lab Sample ID: 480-168167-14

Analyzed

04/07/20 16:47

04/07/20 16:47

04/07/20 16:47

04/07/20 16:47

04/07/20 16:47

04/07/20 16:47

Matrix: Water

water	
	4
Dil Fac	5
100	
100	6
100	
100	
100	
100	8
100	U
100	Q
100	3
100	
100	
100	
100	
100	
100	
100	
100	13
100	

r, r-Dicilioroethene	ND	100	20	ug/L	04/07/20 10.47	100
1,2,4-Trichlorobenzene	ND	100	41	ug/L	04/07/20 16:47	100
1,2-Dibromo-3-Chloropropane	ND	100	39	ug/L	04/07/20 16:47	100
1,2-Dichlorobenzene	ND	100	79	ug/L	04/07/20 16:47	100
1,2-Dichloroethane	ND	100	21	ug/L	04/07/20 16:47	100
1,2-Dichloropropane	ND	100	72	ug/L	04/07/20 16:47	100
1,3-Dichlorobenzene	ND	100	78	ug/L	04/07/20 16:47	100
1,4-Dichlorobenzene	ND	100	84	ug/L	04/07/20 16:47	100
2-Butanone (MEK)	ND	1000	130	ug/L	04/07/20 16:47	100
2-Hexanone	ND	500	120	ug/L	04/07/20 16:47	100
4-Methyl-2-pentanone (MIBK)	ND	500	210	ug/L	04/07/20 16:47	100
Acetone	ND	1000	300	ug/L	04/07/20 16:47	100
Benzene	ND	100	41	ug/L	04/07/20 16:47	100
Bromodichloromethane	ND	100	39	ug/L	04/07/20 16:47	100
Bromoform	ND	100	26	ug/L	04/07/20 16:47	100
Bromomethane	ND	100	69	ug/L	04/07/20 16:47	100
Carbon disulfide	ND	100	19	ug/L	04/07/20 16:47	100
Carbon tetrachloride	ND	100	27	ug/L	04/07/20 16:47	100
Chlorobenzene	ND	100	75	ug/L	04/07/20 16:47	100
Dibromochloromethane	ND	100	32	ug/L	04/07/20 16:47	100
Chloroethane	ND	100	32	ug/L	04/07/20 16:47	100
Chloroform	ND	100	34	ug/L	04/07/20 16:47	100
Chloromethane	ND	100	35	ug/L	04/07/20 16:47	100
cis-1,2-Dichloroethene	100	100	81	ug/L	04/07/20 16:47	100
cis-1,3-Dichloropropene	ND	100	36	ug/L	04/07/20 16:47	100
Cyclohexane	ND	100	18	ug/L	04/07/20 16:47	100
Dichlorodifluoromethane	ND	100	68	ug/L	04/07/20 16:47	100
Ethylbenzene	ND	100	74	ug/L	04/07/20 16:47	100
1,2-Dibromoethane	ND	100	73	ug/L	04/07/20 16:47	100
Isopropylbenzene	ND	100	79	ug/L	04/07/20 16:47	100
Methyl acetate	ND	250	130	ug/L	04/07/20 16:47	100
Methyl tert-butyl ether	ND	100	16	ug/L	04/07/20 16:47	100
Methylcyclohexane	ND	100	16	ug/L	04/07/20 16:47	100
Methylene Chloride	ND	100	44	ug/L	04/07/20 16:47	100
Styrene	ND	100	73	ug/L	04/07/20 16:47	100
Tetrachloroethene	ND	100	36	ug/L	04/07/20 16:47	100
Toluene	ND	100	51	ug/L	04/07/20 16:47	100
trans-1,2-Dichloroethene	ND	100	90	ug/L	04/07/20 16:47	100
trans-1,3-Dichloropropene	ND	100	37	ug/L	04/07/20 16:47	100
Trichloroethene	4900 F1	100	46	ug/L	04/07/20 16:47	100
Trichlorofluoromethane	ND	100	88	ug/L	04/07/20 16:47	100
Vinyl chloride	ND	100	90	ug/L	04/07/20 16:47	100
Xylenes, Total	ND	200	66	ug/L	04/07/20 16:47	100
•						

Client Sample ID: MW-12 Date Collected: 04/02/20 11:30 Date Received: 04/03/20 14:00

Lab Sample ID: 480-168167-14 Matrix: Water

Water

5 6 7

Surrogate	%Recovery Qualifier	Limits	Prepare	d Analyzed	Dil Fac
Toluene-d8 (Surr)	105	80 - 120		04/07/20 16:47	100
1,2-Dichloroethane-d4 (Surr)	111	77 - 120		04/07/20 16:47	100
4-Bromofluorobenzene (Surr)	105	73 - 120		04/07/20 16:47	100
Dibromofluoromethane (Surr)	104	75 - 123		04/07/20 16:47	100

Client Sample ID: MW-13 Date Collected: 04/03/20 10:30 Date Received: 04/03/20 14:00

Xylenes, Total

Lab Sample ID: 480-168167-15

Matrix)	
		4
alyzed	Dil Fac	5
20 17:12	80	
20 17:12	80	6
20 17:12	80	
20 17:12	80	7
20 17:12	80	
20 17:12	80	8
20 17:12	80	
20 17:12	80	0
20 17:12	80	3
20 17:12	80	40
20 17:12	80	10
20 17:12	80	
20 17:12	80	11
20 17:12	80	
20 17:12	80	12
20 17:12	80	
20 17:12	80	13
20 17:12	80	
20 17:12	80	14
20 17:12	80	
20 17:12	80	15
20 17:12	80	
20 17:12	80	
20 17:12	80	
20 17:12	80	
20 17:12	80	
20 17:12	80	
20 17:12	80	
20 17:12	80	
20 17:12	80	
20 17.12	80	

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
1,1,1-Trichloroethane	ND	80	66	ug/L			04/07/20 17:12	8
1,1,2,2-Tetrachloroethane	ND	80	17	ug/L			04/07/20 17:12	8
1,1,2-Trichloroethane	ND	80	18	ug/L			04/07/20 17:12	8
,1,2-Trichloro-1,2,2-trifluoroethane	ND	80	25	ug/L			04/07/20 17:12	8
,1-Dichloroethane	ND	80	30	ug/L			04/07/20 17:12	8
,1-Dichloroethene	ND	80	23	ug/L			04/07/20 17:12	8
1,2,4-Trichlorobenzene	ND	80	33	ug/L			04/07/20 17:12	8
,2-Dibromo-3-Chloropropane	ND	80	31	ug/L			04/07/20 17:12	8
,2-Dichlorobenzene	ND	80	63	ug/L			04/07/20 17:12	8
,2-Dichloroethane	ND	80	17	ug/L			04/07/20 17:12	
,2-Dichloropropane	ND	80	58	ug/L			04/07/20 17:12	8
,3-Dichlorobenzene	ND	80	62	ug/L			04/07/20 17:12	;
I,4-Dichlorobenzene	ND	80	67	ug/L			04/07/20 17:12	
2-Butanone (MEK)	ND	800	110	ug/L			04/07/20 17:12	8
2-Hexanone	ND	400	99	ug/L			04/07/20 17:12	;
I-Methyl-2-pentanone (MIBK)	ND	400	170	ug/L			04/07/20 17:12	
Acetone	ND	800	240	ug/L			04/07/20 17:12	
Benzene	ND	80	33	ug/L			04/07/20 17:12	
Bromodichloromethane	ND	80		ug/L			04/07/20 17:12	
Bromoform	ND	80	21	-			04/07/20 17:12	
romomethane	ND	80		ug/L			04/07/20 17:12	
Carbon disulfide	ND	80		ug/L			04/07/20 17:12	
Carbon tetrachloride	ND	80		ug/L			04/07/20 17:12	
Chlorobenzene	ND	80		ug/L			04/07/20 17:12	
Dibromochloromethane	ND	80		ug/L			04/07/20 17:12	
Chloroethane	ND	80		ug/L			04/07/20 17:12	
Chloroform	ND	80		ug/L			04/07/20 17:12	
chloromethane	ND	80		ug/L			04/07/20 17:12	
		80 80		ug/L			04/07/20 17:12	
is-1,2-Dichloroethene is-1,3-Dichloropropene	580 ND	80 80		ug/L			04/07/20 17:12	
							04/07/20 17:12	
	ND ND	80 80		ug/L			04/07/20 17:12	
Dichlorodifluoromethane			54	0				
thylbenzene	ND	80		ug/L			04/07/20 17:12	
,2-Dibromoethane	ND	80		ug/L			04/07/20 17:12	
sopropylbenzene	ND	80		ug/L			04/07/20 17:12	
lethyl acetate	ND	200		ug/L			04/07/20 17:12	
lethyl tert-butyl ether	ND	80		ug/L			04/07/20 17:12	
lethylcyclohexane	ND	80		ug/L			04/07/20 17:12	
lethylene Chloride	50 J	80		ug/L			04/07/20 17:12	
tyrene	ND	80		ug/L			04/07/20 17:12	
etrachloroethene	ND	80		ug/L			04/07/20 17:12	
oluene	ND	80		ug/L			04/07/20 17:12	
ans-1,2-Dichloroethene	ND	80		ug/L			04/07/20 17:12	
ans-1,3-Dichloropropene	ND	80		ug/L			04/07/20 17:12	
richloroethene	2400	80		ug/L			04/07/20 17:12	
richlorofluoromethane	ND	80	70	ug/L			04/07/20 17:12	
/inyl chloride	ND	80	72	ug/L			04/07/20 17:12	
() T ()	ND	100	= 0				04/07/00 47 40	

04/07/20 17:12

160

53 ug/L

ND

Client Sample ID: MW-13 Date Collected: 04/03/20 10:30 Date Received: 04/03/20 14:00

Lab Sample ID: 480-168167-15 Matrix: Water

%Recovery Qualifier	Limits	Prepared	Analyzed		
99	80 - 120		04/07/20 17:12	_	
110	77 - 120		04/07/20 17:12		
85	73 - 120		04/07/20 17:12		
105	75 - 123		04/07/20 17:12		
	99 110 85	99 80 - 120 110 77 - 120 85 73 - 120	99 80 - 120 110 77 - 120 85 73 - 120	99 80 - 120 04/07/20 17:12 110 77 - 120 04/07/20 17:12 85 73 - 120 04/07/20 17:12	

Client Sample ID: MW-14 Date Collected: 04/03/20 11:30 Date Received: 04/03/20 14:00

Lab Sample ID: 480-168167-16

Matrix: Water

ater	
	4
Fac	5
100	
100	6
100	_
100	
100	_
100	8
100	U
100	0
100	9
100	
100	
100	
100	
100	
100	
100	
100	13
100	
100	
100	
100	
100	

Analyte	Result Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND	100	82	ug/L			04/07/20 17:36	100
1,1,2,2-Tetrachloroethane	ND	100	21	ug/L			04/07/20 17:36	100
1,1,2-Trichloroethane	ND	100	23	ug/L			04/07/20 17:36	100
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	100	31	ug/L			04/07/20 17:36	100
1,1-Dichloroethane	ND	100	38	ug/L			04/07/20 17:36	100
1,1-Dichloroethene	ND	100	29	ug/L			04/07/20 17:36	100
1,2,4-Trichlorobenzene	ND	100	41	ug/L			04/07/20 17:36	100
1,2-Dibromo-3-Chloropropane	ND	100	39	ug/L			04/07/20 17:36	100
1,2-Dichlorobenzene	ND	100	79	ug/L			04/07/20 17:36	100
1,2-Dichloroethane	ND	100	21	ug/L			04/07/20 17:36	100
1,2-Dichloropropane	ND	100	72	ug/L			04/07/20 17:36	100
1,3-Dichlorobenzene	ND	100	78	ug/L			04/07/20 17:36	100
1,4-Dichlorobenzene	ND	100	84	ug/L			04/07/20 17:36	100
2-Butanone (MEK)	ND	1000	130	ug/L			04/07/20 17:36	100
2-Hexanone	ND	500	120	ug/L			04/07/20 17:36	100
4-Methyl-2-pentanone (MIBK)	ND	500	210	ug/L			04/07/20 17:36	100
Acetone	ND	1000	300	ug/L			04/07/20 17:36	100
Benzene	ND	100	41	ug/L			04/07/20 17:36	100
Bromodichloromethane	ND	100	39	ug/L			04/07/20 17:36	100
Bromoform	ND	100	26	ug/L			04/07/20 17:36	100
Bromomethane	ND	100	69	ug/L			04/07/20 17:36	100
Carbon disulfide	ND	100	19	ug/L			04/07/20 17:36	100
Carbon tetrachloride	ND	100	27	ug/L			04/07/20 17:36	100
Chlorobenzene	ND	100	75	ug/L			04/07/20 17:36	100
Dibromochloromethane	ND	100	32	ug/L			04/07/20 17:36	100
Chloroethane	ND	100	32	ug/L			04/07/20 17:36	100
Chloroform	ND	100	34	ug/L			04/07/20 17:36	100
Chloromethane	ND	100	35	ug/L			04/07/20 17:36	100
cis-1,2-Dichloroethene	860	100	81	ug/L			04/07/20 17:36	100
cis-1,3-Dichloropropene	ND	100	36	ug/L			04/07/20 17:36	100
Cyclohexane	ND	100	18	ug/L			04/07/20 17:36	100
Dichlorodifluoromethane	ND	100	68	ug/L			04/07/20 17:36	100
Ethylbenzene	ND	100	74	ug/L			04/07/20 17:36	100
1,2-Dibromoethane	ND	100	73	ug/L			04/07/20 17:36	100
Isopropylbenzene	ND	100		ug/L			04/07/20 17:36	100
Methyl acetate	ND	250	130	ug/L			04/07/20 17:36	100
Methyl tert-butyl ether	ND	100		ug/L			04/07/20 17:36	100
Methylcyclohexane	ND	100	16	ug/L			04/07/20 17:36	100
Methylene Chloride	55 J	100		ug/L			04/07/20 17:36	100
Styrene	ND	100		ug/L			04/07/20 17:36	100
Tetrachloroethene	ND	100		ug/L			04/07/20 17:36	100
Toluene	ND	100		ug/L			04/07/20 17:36	100
trans-1,2-Dichloroethene	ND	100		ug/L			04/07/20 17:36	100
trans-1,3-Dichloropropene	ND	100		ug/L			04/07/20 17:36	100
Trichloroethene	2800	100		ug/L			04/07/20 17:36	100
Trichlorofluoromethane	ND	100		ug/L			04/07/20 17:36	100
Vinyl chloride	ND	100		ug/L			04/07/20 17:36	100
Xylenes, Total	ND	200		ug/L			04/07/20 17:36	100

Client Sample ID: MW-14 Date Collected: 04/03/20 11:30 Date Received: 04/03/20 14:00

Lab Sample ID: 480-168167-16 Matrix: Water

ater

5 6 7

ate	%Recovery Qualifier	Limits	Prepared Ar	nalyzed	D
ene-d8 (Surr)	106	80 - 120	04/07	7/20 17:36	
-Dichloroethane-d4 (Surr)	113	77 - 120	04/07	7/20 17:36	
Bromofluorobenzene (Surr)	102	73 - 120	04/07	7/20 17:36	
bromofluoromethane (Surr)	107	75 - 123	04/07	7/20 17:36	

Client Sample ID: DUP-A Date Collected: 04/03/20 00:00 Date Received: 04/03/20 14:00

Lab Sample ID: 480-168167-17

Matrix: Water

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
,1,1-Trichloroethane	ND	1.0	0.82	ug/L			04/09/20 11:13	
,1,2,2-Tetrachloroethane	ND	1.0	0.21	ug/L			04/09/20 11:13	
,1,2-Trichloroethane	ND	1.0	0.23	ug/L			04/09/20 11:13	
,1,2-Trichloro-1,2,2-trifluoroethane	ND	1.0	0.31	ug/L			04/09/20 11:13	
,1-Dichloroethane	ND	1.0	0.38	ug/L			04/09/20 11:13	
,1-Dichloroethene	ND	1.0	0.29	ug/L			04/09/20 11:13	
,2,4-Trichlorobenzene	ND	1.0	0.41	ug/L			04/09/20 11:13	
,2-Dibromo-3-Chloropropane	ND	1.0	0.39	ug/L			04/09/20 11:13	
,2-Dichlorobenzene	ND	1.0	0.79	ug/L			04/09/20 11:13	
,2-Dichloroethane	ND	1.0	0.21	ug/L			04/09/20 11:13	
,2-Dichloropropane	ND	1.0	0.72	ug/L			04/09/20 11:13	
,3-Dichlorobenzene	ND	1.0	0.78	ug/L			04/09/20 11:13	
,4-Dichlorobenzene	ND	1.0	0.84	ug/L			04/09/20 11:13	
-Butanone (MEK)	ND	10		ug/L			04/09/20 11:13	
-Hexanone	ND	5.0		ug/L			04/09/20 11:13	
-Methyl-2-pentanone (MIBK)	ND	5.0		ug/L			04/09/20 11:13	
Acetone	ND	10		ug/L			04/09/20 11:13	
Benzene	ND	1.0		ug/L			04/09/20 11:13	
Bromodichloromethane	ND	1.0		ug/L			04/09/20 11:13	
romoform	ND	1.0		ug/L			04/09/20 11:13	
romomethane	ND	1.0		ug/L			04/09/20 11:13	
Carbon disulfide	ND	1.0		ug/L			04/09/20 11:13	
Carbon tetrachloride	ND	1.0		ug/L			04/09/20 11:13	
chlorobenzene	ND	1.0		ug/L			04/09/20 11:13	
bibromochloromethane	ND	1.0		ug/L			04/09/20 11:13	
Chloroethane	ND	1.0		ug/L			04/09/20 11:13	
Chloroform	ND	1.0		ug/L			04/09/20 11:13	
Chloromethane	ND	1.0		ug/L			04/09/20 11:13	
is-1,2-Dichloroethene	ND	1.0		ug/L			04/09/20 11:13	
is-1,3-Dichloropropene	ND	1.0		ug/L			04/09/20 11:13	
Cyclohexane	ND	1.0		ug/L			04/09/20 11:13	
Dichlorodifluoromethane	ND	1.0		ug/L			04/09/20 11:13	
Ethylbenzene	ND	1.0		ug/L			04/09/20 11:13	
,2-Dibromoethane	ND	1.0		ug/L			04/09/20 11:13	
sopropylbenzene	ND	1.0		ug/L			04/09/20 11:13	
Aethyl acetate	ND	2.5		ug/L			04/09/20 11:13	
Aethyl tert-butyl ether	ND	1.0		ug/L			04/09/20 11:13	
/lethylcyclohexane	ND	1.0		ug/L			04/09/20 11:13	
/ethylene Chloride	ND	1.0		ug/L			04/09/20 11:13	
tyrene	ND	1.0		ug/L			04/09/20 11:13	
etrachloroethene	ND	1.0		ug/L			04/09/20 11:13	
oluene	ND	1.0		ug/L ug/L			04/09/20 11:13	
		1.0						
ans-1,2-Dichloroethene	ND			ug/L			04/09/20 11:13	
ans-1,3-Dichloropropene	ND	1.0		ug/L			04/09/20 11:13	
richloroethene	ND	1.0		ug/L			04/09/20 11:13	
richlorofluoromethane	ND	1.0		ug/L			04/09/20 11:13	
/inyl chloride (ylenes, Total	ND ND	1.0 2.0		ug/L ug/L			04/09/20 11:13 04/09/20 11:13	

Client Sample ID: DUP-A Date Collected: 04/03/20 00:00 Date Received: 04/03/20 14:00

Lab Sample ID: 480-168167-17 Matrix: Water

5 6 7

Surrogate	%Recovery Qu	ualifier Limits	Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	102	80 - 120		04/09/20 11:13	1
1,2-Dichloroethane-d4 (Surr)	110	77 _ 120		04/09/20 11:13	1
4-Bromofluorobenzene (Surr)	92	73 - 120		04/09/20 11:13	1
Dibromofluoromethane (Surr)	105	75 - 123		04/09/20 11:13	1

Client Sample ID: TRP BLANK Date Collected: 04/03/20 00:00 Date Received: 04/03/20 14:00

Lab Sample ID: 480-168167-18

Matrix: Water

Analyte	Result Qua	lifier RL		Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND	1.0		ug/L			04/07/20 18:24	1
1,1,2,2-Tetrachloroethane	ND	1.0		ug/L			04/07/20 18:24	1
1,1,2-Trichloroethane	ND	1.0		ug/L			04/07/20 18:24	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	1.0		ug/L			04/07/20 18:24	1
1,1-Dichloroethane	ND	1.0		ug/L			04/07/20 18:24	1
1,1-Dichloroethene	ND	1.0	0.29	ug/L			04/07/20 18:24	1
1,2,4-Trichlorobenzene	ND	1.0	0.41	ug/L			04/07/20 18:24	1
1,2-Dibromo-3-Chloropropane	ND	1.0	0.39	ug/L			04/07/20 18:24	1
1,2-Dichlorobenzene	ND	1.0		ug/L			04/07/20 18:24	1
1,2-Dichloroethane	ND	1.0	0.21	ug/L			04/07/20 18:24	1
1,2-Dichloropropane	ND	1.0	0.72	ug/L			04/07/20 18:24	1
1,3-Dichlorobenzene	ND	1.0	0.78	ug/L			04/07/20 18:24	1
1,4-Dichlorobenzene	ND	1.0	0.84	ug/L			04/07/20 18:24	1
2-Butanone (MEK)	ND	10	1.3	ug/L			04/07/20 18:24	1
2-Hexanone	ND	5.0	1.2	ug/L			04/07/20 18:24	1
4-Methyl-2-pentanone (MIBK)	ND	5.0	2.1	ug/L			04/07/20 18:24	1
Acetone	ND	10	3.0	ug/L			04/07/20 18:24	1
Benzene	ND	1.0	0.41	ug/L			04/07/20 18:24	1
Bromodichloromethane	ND	1.0	0.39	ug/L			04/07/20 18:24	1
Bromoform	ND	1.0	0.26	ug/L			04/07/20 18:24	1
Bromomethane	ND	1.0	0.69	ug/L			04/07/20 18:24	1
Carbon disulfide	ND	1.0		ug/L			04/07/20 18:24	1
Carbon tetrachloride	ND	1.0		ug/L			04/07/20 18:24	1
Chlorobenzene	ND	1.0		ug/L			04/07/20 18:24	1
Dibromochloromethane	ND	1.0		ug/L			04/07/20 18:24	1
Chloroethane	ND	1.0	0.32	ug/L			04/07/20 18:24	1
Chloroform	ND	1.0	0.34	ug/L			04/07/20 18:24	1
Chloromethane	ND	1.0	0.35	ug/L			04/07/20 18:24	1
cis-1,2-Dichloroethene	ND	1.0		ug/L			04/07/20 18:24	1
cis-1,3-Dichloropropene	ND	1.0		ug/L			04/07/20 18:24	1
Cyclohexane	ND	1.0		ug/L			04/07/20 18:24	1
Dichlorodifluoromethane	ND	1.0		ug/L			04/07/20 18:24	1
Ethylbenzene	ND	1.0		ug/L			04/07/20 18:24	1
1,2-Dibromoethane	ND	1.0		ug/L			04/07/20 18:24	1
sopropylbenzene	ND	1.0		ug/L			04/07/20 18:24	1
Methyl acetate	ND	2.5		ug/L			04/07/20 18:24	1
Methyl tert-butyl ether	ND	1.0		ug/L			04/07/20 18:24	1
Methylcyclohexane	ND	1.0		ug/L			04/07/20 18:24	1
Methylene Chloride	ND	1.0		ug/L			04/07/20 18:24	1
Styrene	ND	1.0		ug/L			04/07/20 18:24	1
Tetrachloroethene	ND	1.0		ug/L			04/07/20 18:24	1
Toluene	ND	1.0		ug/L			04/07/20 18:24	1
rans-1,2-Dichloroethene	ND	1.0		ug/L			04/07/20 18:24	1
trans-1,3-Dichloropropene	ND	1.0		ug/L			04/07/20 18:24	1
Trichloroethene	ND	1.0		ug/L			04/07/20 18:24	1
Trichlorofluoromethane	ND	1.0		ug/L			04/07/20 18:24	
Vinyl chloride	ND	1.0		ug/L			04/07/20 18:24	1
Xylenes, Total	ND	2.0		ug/L			04/07/20 18:24	1

Client Sample Results

Client Sample ID: TRP BLANK Date Collected: 04/03/20 00:00 Date Red

eceived: 04/03/20 14:00					
ate	%Recovery Qu	ıalifier	Limits	Prepared	Analyzed
e-d8 (Surr)	109		80 - 120		04/07/20 18:24

Surrogate	%Recovery	Qualifier	Limits		Prepared	Analyzed	Dil Fac	с
Toluene-d8 (Surr)	109		80 - 120	-		04/07/20 18:24		ī
1,2-Dichloroethane-d4 (Surr)	118		77 - 120			04/07/20 18:24		1
4-Bromofluorobenzene (Surr)	101		73 - 120			04/07/20 18:24		1
Dibromofluoromethane (Surr)	117		75 - 123			04/07/20 18:24		1

Eurofins TestAmerica, Buffalo

Job ID: 480-168167-1

Matrix: Water

Lab Sample ID: 480-168167-18

Method: 8260C - Volatile Organic Compounds by GC/MS Matrix: Water

				Percent Su	Percent Surrogate Recovery (Acceptance		
		TOL	DCA	BFB	DBFM		
Lab Sample ID	Client Sample ID	(80-120)	(77-120)	(73-120)	(75-123)		
480-168167-1	MW-1	96	96	101	104		
480-168167-2	MW-2	100	104	106	107		
480-168167-2 MS	MW-2	94	92	95	95		
480-168167-2 MSD	MW-2	95	95	96	98		
480-168167-3	MW-3	93	101	96	102		
480-168167-3 MS	MW-3	96	102	101	108		
480-168167-3 MSD	MW-3	97	96	100	100		
480-168167-4	MW-4	94	95	100	96		
480-168167-5	MW-4D	95	101	101	104		
480-168167-6	MW-5	94	95	99	101		
480-168167-7	MW-5D	93	99	98	101		
480-168167-8	MW-6	105	112	97	107		
480-168167-9	MW-7	102	111	91	107		
480-168167-10	MW-8	111	117	104	111		
480-168167-11	MW-9R	110	116	99	109		
480-168167-12	MW-10	98	110	88	104		
480-168167-13	MW-11R	103	113	96	108		
480-168167-14	MW-12	105	111	105	104		
480-168167-14 MS	MW-12	101	109	95	108		
480-168167-14 MSD	MW-12	103	105	96	106		
480-168167-15	MW-13	99	110	85	105		
480-168167-16	MW-14	106	113	102	107		
480-168167-17	DUP-A	102	110	92	105		
480-168167-18	TRP BLANK	109	118	101	117		
LCS 480-524581/5	Lab Control Sample	94	94	103	100		
LCS 480-524584/5	Lab Control Sample	101	107	94	108		
LCS 480-524779/5	Lab Control Sample	90	100	96	94		
LCS 480-524795/5	Lab Control Sample	106	105	101	106		
LCS 480-525015/5	Lab Control Sample	108	106	104	110		
MB 480-524581/7	Method Blank	96	100	102	104		
MB 480-524584/7	Method Blank	101	107	93	102		
MB 480-524779/7	Method Blank	93	96	96	96		
MB 480-524795/7	Method Blank	105	107	101	103		
MB 480-525015/7	Method Blank	107	114	100	111		

Surrogate Legend

TOL = Toluene-d8 (Surr)

DCA = 1,2-Dichloroethane-d4 (Surr)

BFB = 4-Bromofluorobenzene (Surr)

DBFM = Dibromofluoromethane (Surr)

Job ID: 480-168167-1

5

6 7 8

Method: 8260C - Volatile Organic Compounds by GC/MS

Lab Sample ID: MB 480-524581/7

Matrix: Water Analysis Batch: 524581

	МВ	МВ							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		1.0	0.82	ug/L			04/07/20 10:01	1
1,1,2,2-Tetrachloroethane	ND		1.0	0.21	ug/L			04/07/20 10:01	1
1,1,2-Trichloroethane	ND		1.0	0.25	ug/L			04/07/20 10:01	1
1,1,2-Trichloro-1,2,2-tri3uoroethane	ND		1.0	0.51	ug/L			04/07/20 10:01	1
1,1-Dichloroethane	ND		1.0	0.58	ug/L			04/07/20 10:01	1
1,1-Dichloroethene	ND		1.0	0.29	ug/L			04/07/20 10:01	1
1,2,4-Trichlorobenf ene	ND		1.0	0.41	ug/L			04/07/20 10:01	1
1,2-Dibroz o-5-Chloromonane	ND		1.0	0.59	ug/L			04/07/20 10:01	1
1,2-Dichlorobenf ene	ND		1.0	0.79	ug/L			04/07/20 10:01	1
1,2-Dichloroethane	ND		1.0	0.21	ug/L			04/07/20 10:01	1
1,2-Dichloromonane	ND		1.0	0.72	ug/L			04/07/20 10:01	1
1,5-Dichlorobenf ene	ND		1.0	0.78				04/07/20 10:01	1
1,4-Dichlorobenf ene	ND		1.0	0.84	ug/L			04/07/20 10:01	1
2-putanone B(EMK	ND		10		ug/L			04/07/20 10:01	1
2-Hexanone	ND		0. (1.2	ug/L			04/07/20 10:01	1
4-(ethyl-2-mentanone B Ip MK	ND).0	2.1	ug/L			04/07/20 10:01	1
Acetone	ND		10		ug/L			04/07/20 10:01	1
p enf ene	ND		1.0		ug/L			04/07/20 10:01	1
proz odichloroz ethane	ND		1.0		ug/L			04/07/20 10:01	1
proz o3orz	ND		1.0		ug/L			04/07/20 10:01	1
proz oz ethane	ND		1.0		ug/L			04/07/20 10:01	1
Carbon disul3de	ND		1.0		ug/L			04/07/20 10:01	1
Carbon tetrachloride	ND		1.0		ug/L			04/07/20 10:01	1
Chlorobenf ene	ND		1.0	0.7)	-			04/07/20 10:01	1
Dibroz ochloroz ethane	ND		1.0		ug/L			04/07/20 10:01	1
Chloroethane	ND		1.0	0.52	-			04/07/20 10:01	1
Chloro	ND		1.0		ug/L			04/07/20 10:01	1
Chloroz ethane	ND		1.0		ug/L			04/07/20 10:01	1
cis-1,2-Dichloroethene	ND		1.0		ug/L			04/07/20 10:01	1
cis-1,5-Dichloromomene	ND		1.0		ug/L			04/07/20 10:01	1
Cyclohexane	ND		1.0		ug/L			04/07/20 10:01	1
Dichlorodi3uoroz ethane	ND		1.0	0.68	-			04/07/20 10:01	1
Ethylbenf ene	ND		1.0		ug/L			04/07/20 10:01	1
1,2-Dibroz oethane	ND		1.0		ug/L			04/07/20 10:01	1
Isomonylbenfene	ND		1.0		ug/L			04/07/20 10:01	1
(ethyl acetate	ND		2.)		ug/L			04/07/20 10:01	1
(ethyl tert-butyl ether	ND		1.0		ug/L			04/07/20 10:01	1
(ethylcyclohexane	ND		1.0		ug/L			04/07/20 10:01	1
(ethylene Chloride	ND		1.0	0.44				04/07/20 10:01	1
Styrene	ND		1.0		ug/L			04/07/20 10:01	1
Tetrachloroethene	ND		1.0		ug/L			04/07/20 10:01	1
Toluene	ND		1.0		ug/L			04/07/20 10:01	1
trans-1,2-Dichloroethene	ND		1.0		ug/L			04/07/20 10:01	
trans-1,5-Dichloromonene	ND		1.0		ug/L			04/07/20 10:01	1
Trichloroethene	ND		1.0		ug/L			04/07/20 10:01	1
Trichloro3uoroz ethane	ND		1.0		ug/L			04/07/20 10:01	· · · · · · · · · · · · · · · · · · ·
Vinyl chloride	ND		1.0		ug/L			04/07/20 10:01	1
Xylenes, Total	ND		2.0		ug/L			04/07/20 10:01	1
1910100, 1014	110		2.0	0.00	~9, L			0 101120 10.01	

Euro3ns TestAz erica, pu33alo

Prep Type: Total/NA

5

8 9

Client Sample ID: Method Blank

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: MB 480-524581/7

Matrix: Water Analysis Batch: 524581

Client Sample ID: Method Blank Prep Type: Total/NA

	MB	MB				
Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	96		80 - 120		04/07/20 10:01	1
1,2-Dichloroethane-d4 (Surr)	100		77 _ 120		04/07/20 10:01	1
4-Bromofluorobenzene (Surr)	102		73 - 120		04/07/20 10:01	1
Dibromofluoromethane (Surr)	104		75 - 123		04/07/20 10:01	1

Lab Sample ID: LCS 480-524581/5 Matrix: Water

Analysis Batch: 524581

Analysis Batch: 524581	Spike	201	LCS				%Rec.
Analyte	Added		Qualifier	Unit	D	%Rec	Limits
1,1,1-Trichloroethane	2).0	2).7	Quaimer	ug/L		105	75 - 126
1,1,2,2-Tetrachloroethane	2).0	26.)		ug/L		106	76 - 120
1,1,2-Trichloroethane	2).0	28.1		ug/L		112	76 - 122
1,1,2-Trichloro-1,2,2-tri3uoroetha	2).0	26.1		ug/L		104	61 - 148
ne				- 5			
1,1-Dichloroethane	2).0	2) .0		ug/L		100	77 - 120
1,1-Dichloroethene	2).0	2).)		ug/L		102	66 - 127
1,2,4-Trichlorobenf ene	2) .0	28.4		ug/L		114	79 - 122
1,2-Dibroz o-5-Chloromomane	2) .0	24.7		ug/L		99) 6 - 154
1,2-Dichlorobenf ene	2).0	27.1		ug/L		108	80 - 124
1,2-Dichloroethane	2).0	26.7		ug/L		107	7) _ 120
1,2-Dichloromonane	2) .0	27.8		ug/L		111	76 - 120
1,5-Dichlorobenf ene	2).0	26.8		ug/L		107	77 - 120
1,4-Dichlorobenf ene	2) .0	27.7		ug/L		111	80 - 120
2-putanone B(EMK	12)	145		ug/L		114) 7 _ 140
2-Hexanone	12)	145		ug/L		11)	6) - 127
4-(ethyl-2-mentanone B(Ip MK	12)	154		ug/L		107	71 - 12)
Acetone	12)	1) 9		ug/L		128) 6 - 142
p enf ene	2) .0	27.1		ug/L		108	71 - 124
proz odichloroz ethane	2) .0	28.4		ug/L		114	80 - 122
proz o3orz	2) .0	28.4		ug/L		114	61 - 152
proz oz ethane	2) .0	2) .6		ug/L		102)) _ 144
Carbon disul3de	2) .0	2) .4		ug/L		102) 9 - 154
Carbon tetrachloride	2).0	2) .6		ug/L		102	72 - 154
Chlorobenf ene	2) .0	27.6		ug/L		110	80 - 120
Dibroz ochloroz ethane	2) .0	28.7		ug/L		11)	7) _ 12)
Chloroethane	2) .0	2) .5		ug/L		101	69 - 156
Chloro3orz	2) .0	2).)		ug/L		102	75 - 127
Chloroz ethane	2) .0	25.)		ug/L		94	68 - 124
cis-1,2-Dichloroethene	2) .0	26.6		ug/L		106	74 - 124
cis-1,5-Dichloromomene	2) .0	28.5		ug/L		115	74 - 124
Cyclohexane	2) .0	24.7		ug/L		99) 9 _ 15)
Dichlorodi3uoroz ethane	2) .0	26.1		ug/L		104) 9 - 15)
Ethylbenf ene	2) .0	27.0		ug/L		108	77 _ 125
1,2-Dibroz oethane	2) .0	28.7		ug/L		11)	77 _ 120
Isomonylbenfene	2) .0	2) .5		ug/L		101	77 _ 122
(ethyl acetate) 0.0)8.)		ug/L		117	74 ₋ 155
(ethyl tert-butyl ether	2) .0	26.)		ug/L		106	77 - 120
(ethylcyclohexane	2).0	2) .8		ug/L		105	68 - 154

Euro3ns TestAz erica, pu3alo

Client Sample ID: MW-3

Prep Type: Total/NA

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCS 480-524581/5

Matrix: Water

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Analysis Batch: 524581

	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
ethylene Chloride		2) .0		ug/L		100	7) _ 124
Styrene	2) .0	28.9		ug/L		116	80 - 120
Fetrachloroethene	2).0	28.1		ug/L		115	74 - 122
oluene	2) .0	26.7		ug/L		107	80 - 122
ans-1,2-Dichloroethene	2).0	26.2		ug/L		10)	75 ₋ 127
ans-1,5-Dichloromomene	2) .0	27.)		ug/L		110	80 - 120
richloroethene	2).0	27.0		ug/L		108	74 - 125
richloro3uoroz ethane	2).0	2).)		ug/L		102	62 - 1) 0
'inyl chloride	2).0	24.2		ug/L		97	6) _ 155

	LUS	103	
Surrogate	%Recovery	Qualifier	Limits
Toluene-d8 (Surr)	94		80 - 120
1,2-Dichloroethane-d4 (Surr)	94		77 - 120
4-Bromofluorobenzene (Surr)	103		73 _ 120
Dibromofluoromethane (Surr)	100		75 - 123

Lab Sample ID: 480-168167-3 MS Matrix: Water

Analysis	Batch:	524581
----------	--------	--------

	Sample	Sample	Spike	MS	MS				%Rec.
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits
1,1,1-Trichloroethane	ND) 00 (486		ug/L		97	75 - 126
1,1,2,2-Tetrachloroethane	ND) 00 (464		ug/L		95	76 - 120
1,1,2-Trichloroethane	ND) 00	467		ug/L		95	76 - 122
1,1,2-Trichloro-1,2,2-tri3uoroetha	ND) 00 (496		ug/L		99	61 ₋ 148
ne									
I,1-Dichloroethane	ND) 00 (470		ug/L		94	77 _ 120
I,1-Dichloroethene	ND) 00 (469		ug/L		94	66 - 127
I,2,4-Trichlorobenf ene	ND) 00 (494		ug/L		99	79 ₋ 122
,2-Dibroz o-5-Chloromomane	ND) 00 (419		ug/L		84) 6 _ 154
1,2-Dichlorobenf ene	ND) 00 (47)		ug/L		9)	80 - 124
1,2-Dichloroethane	ND) 00	479		ug/L		96	7) _ 120
I,2-Dichloromomane	ND) 00	479		ug/L		96	76 - 120
,5-Dichlorobenf ene	ND) 00	461		ug/L		92	77 - 120
I,4-Dichlorobenf ene	ND) 00	470		ug/L		94	78 - 124
2-putanone B(EMK	ND		2) 00	2590		ug/L		96) 7 - 140
2-Hexanone	ND		2) 00	2160		ug/L		86	6) _ 127
I-(ethyl-2-mentanone B Ip MK	ND		2) 00	2220		ug/L		89	71 - 12)
Acetone	ND		2) 00	2490		ug/L		100) 6 - 142
penfene	ND) 00	476		ug/L		9)	71 ₋ 124
oroz odichloroz ethane	ND) 00	485		ug/L		97	80 - 122
oroz otorz	ND) 00	448		ug/L		90	61 ₋ 152
oroz oz ethane	ND) 00	441		ug/L		88)) _ 144
Carbon disul3de	ND) 00	47)		ug/L		9))9_154
Carbon tetrachloride	ND) 00	468		ug/L		94	, 72 ₋ 154
Chlorobenf ene	ND) 00	471		ug/L		94	80 - 120
Dibroz ochloroz ethane	ND) 00	478		ug/L		96	7) _ 12)
Chloroethane	ND) 00	449		ug/L		90	69 - 156
Chloro&rz	ND) 00	467		ug/L		95	75 - 127

Euro3ns TestAz erica, pu3alo

5

8 9

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: 480-168167-3 MS

Matrix: Water Analysis Batch: 524581

Analysis Batch. 524501	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Chloroz ethane	ND) 00	455		ug/L		87	68 - 124	
cis-1,2-Dichloroethene	250) 00	718		ug/L		97	74 - 124	
cis-1,5-Dichloromomene	ND) 00	48)		ug/L		97	74 - 124	
Cyclohexane	ND) 00 (470		ug/L		94) 9 _ 15)	
Dichlorodi3uoroz ethane	ND) 00 (472		ug/L		94) 9 _ 15)	
Ethylbenf ene	ND) 00 (461		ug/L		92	77 - 125	
1,2-Dibroz oethane	ND) 00 (480		ug/L		96	77 - 120	
Isomonylbenf ene	ND) 00 (461		ug/L		92	77 - 122	
(ethyl acetate	ND		1000	1060		ug/L		106	74 - 155	
(ethyl tert-butyl ether	ND) 00 (496		ug/L		99	77 _ 120	
(ethylcyclohexane	ND) 00 (474		ug/L		9)	68 - 154	
(ethylene Chloride	ND) 00 (468		ug/L		94	7) - 124	
Styrene	ND) 00 (48)		ug/L		97	80 - 120	
Tetrachloroethene	ND) 00 (481		ug/L		96	74 - 122	
Toluene	ND) 00	475		ug/L		9)	80 - 122	
trans-1,2-Dichloroethene	ND) 00 (481		ug/L		96	75 - 127	
trans-1,5-Dichloromomene	ND) 00 (448		ug/L		90	80 - 120	
Trichloroethene	790) 00	1240		ug/L		90	74 - 125	
Trichloro3uoroz ethane	ND) 00 (464		ug/L		95	62 - 1)0	
Vinyl chloride	ND) 00 (44)		ug/L		89	6) _ 155	
	MS	MS								

	1//3	1013	
Surrogate	%Recovery	Qualifier	Limits
Toluene-d8 (Surr)	96		80 - 120
1,2-Dichloroethane-d4 (Surr)	102		77 - 120
4-Bromofluorobenzene (Surr)	101		73 - 120
Dibromofluoromethane (Surr)	108		75 - 123

Lab Sample ID: 480-168167-3 MSD Matrix: Water

Analysis Batch: 524581

	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1,1,1-Trichloroethane	ND) 00	470		ug/L		94	75 - 126	5	1)
1,1,2,2-Tetrachloroethane	ND) 00	484		ug/L		97	76 - 120	4	1)
1,1,2-Trichloroethane	ND) 00) 01		ug/L		100	76 - 122	7	1)
1,1,2-Trichloro-1,2,2-tri3uoroetha	ND) 00 (480		ug/L		96	61 - 148	5	20
ne											
1,1-Dichloroethane	ND) 00 (467		ug/L		95	77 - 120	1	20
1,1-Dichloroethene	ND) 00 (477		ug/L		9)	66 _ 127	2	16
1,2,4-Trichlorobenf ene	ND) 00 (499		ug/L		100	79 - 122	1	20
1,2-Dibroz o-5-Chloromomane	ND) 00	451		ug/L		86) 6 - 154	5	1)
1,2-Dichlorobenf ene	ND) 00 (479		ug/L		96	80 - 124	1	20
1,2-Dichloroethane	ND) 00	472		ug/L		94	7) - 120	1	20
1,2-Dichloromomane	ND) 00	485		ug/L		97	76 - 120	1	20
1,5-Dichlorobenf ene	ND) 00	464		ug/L		95	77 _ 120	1	20
1,4-Dichlorobenf ene	ND) 00 (470		ug/L		94	78 - 124	0	20
2-putanone B(EMK	ND		2) 00	2570		ug/L		9)) 7 _ 140	1	20
2-Hexanone	ND		2) 00	2500		ug/L		92	6) - 127	6	1)
4-(ethyl-2-mentanone B Ip MK	ND		2) 00	2550		ug/L		95	71 _ 12))	5)

Euro3ns TestAz erica, pu3alo

Client Sample ID: MW-3

Prep Type: Total/NA

Client Sample ID: MW-3 Prep Type: Total/NA

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: 480-168167-3 MSD

Matrix: Water Analysis Batch: 524581

Analysis Batch. 524501	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Acetone	ND		2) 00	2460		ug/L		99) 6 _ 142	1	1)
penfene	ND) 00	469		ug/L		94	71 _ 124	1	15
proz odichloroz ethane	ND) 00	488		ug/L		98	80 _ 122	1	1)
proz o3orz	ND) 00	470		ug/L		94	61 - 152)	1)
proz oz ethane	ND) 00	45)		ug/L		87)) - 144	2	1)
Carbon disul3de	ND) 00 (467		ug/L		95) 9 _ 154	2	1)
Carbon tetrachloride	ND) 00	4)9		ug/L		92	72 - 154	2	1)
Chlorobenf ene	ND) 00 (486		ug/L		97	80 - 120	5	2)
Dibroz ochloroz ethane	ND) 00) 01		ug/L		100	7) _ 12))	1)
Chloroethane	ND) 00 (456		ug/L		87	69 - 156	5	1)
Chloro&rz	ND) 00	460		ug/L		92	75 _ 127	2	20
Chloroz ethane	ND) 00	41)		ug/L		85	68 - 124	4	1)
cis-1,2-Dichloroethene	250) 00 (695		ug/L		92	74 - 124	4	1)
cis-1,5-Dichloromonene	ND) 00 (480		ug/L		96	74 _ 124	1	1)
Cyclohexane	ND) 00 (4)7		ug/L		91) 9 _ 15)	5	20
Dichlorodi3uoroz ethane	ND) 00 (4)6		ug/L		91) 9 _ 15)	5	20
Ethylbenf ene	ND) 00 (474		ug/L		9)	77 - 125	5	1)
1,2-Dibroz oethane	ND) 00 (49)		ug/L		99	77 _ 120	5	1)
Isomonylbenf ene	ND) 00 (4)9		ug/L		92	77 _ 122	0	20
(ethyl acetate	ND		1000	10) 0		ug/L		10)	74 - 155	1	20
(ethyl tert-butyl ether	ND) 00 (49)		ug/L		99	77 _ 120	0	57
(ethylcyclohexane	ND) 00 (476		ug/L		9)	68 - 154	0	20
(ethylene Chloride	ND) 00 (4)9		ug/L		92	7) _ 124	2	1)
Styrene	ND) 00 (498		ug/L		100	80 - 120	5	20
Tetrachloroethene	ND) 00 (492		ug/L		98	74 _ 122	2	20
Toluene	ND) 00 (487		ug/L		97	80 - 122	5	1)
trans-1,2-Dichloroethene	ND) 00 (480		ug/L		96	75 - 127	0	20
trans-1,5-Dichloromomene	ND) 00 (470		ug/L		94	80 - 120)	1)
Trichloroethene	790) 00	1200		ug/L		82	74 - 125	5	16
Trichloro3uoroz ethane	ND) 00 (449		ug/L		90	62 _ 1) 0	5	20
Vinyl chloride	ND) 00 (452		ug/L		86	6) _ 155	5	1)

	MSD	MSD	
Surrogate	%Recovery	Qualifier	Limits
Toluene-d8 (Surr)	97		80 - 120
1,2-Dichloroethane-d4 (Surr)	96		77 - 120
4-Bromofluorobenzene (Surr)	100		73 - 120
Dibromofluoromethane (Surr)	100		75 - 123

Lab Sample ID: MB 480-524584/7 Matrix: Water Analysis Batch: 524584

MB MB							
Result Qualifi	ier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
ND	1.0	0.82	ug/L			04/07/20 10:) 7	1
ND	1.0	0.21	ug/L			04/07/20 10:)7	1
ND	1.0	0.25	ug/L			04/07/20 10:) 7	1
ND	1.0	0.51	ug/L			04/07/20 10:)7	1
ND	1.0	0.58	ug/L			04/07/20 10:)7	1
	Result Qualif	Result Qualifier RL ND 1.0 ND 1.0 ND 1.0 ND 1.0 ND 1.0	Result Qualifier RL MDL ND 1.0 0.82 ND 1.0 0.21 ND 1.0 0.25 ND 1.0 0.51	Result Qualifier RL MDL Unit ND 1.0 0.82 ug/L ND 1.0 0.21 ug/L ND 1.0 0.25 ug/L ND 1.0 0.51 ug/L	Result Qualifier RL MDL Unit D ND 1.0 0.82 ug/L - ND 1.0 0.21 ug/L ND 1.0 0.25 ug/L ND 1.0 0.51 ug/L	Result Qualifier RL MDL Unit D Prepared ND 1.0 0.82 ug/L ug/L	Result Qualifier RL MDL Unit D Prepared Analyzed ND 1.0 0.82 ug/L 04/07/20 10:)7 04/07/20 10:)7 ND 1.0 0.21 ug/L 04/07/20 10:)7 ND 1.0 0.25 ug/L 04/07/20 10:)7 ND 1.0 0.51 ug/L 04/07/20 10:)7

5

8 9

Client Sample ID: MW-3 Prep Type: Total/NA

Euro3ns TestAz erica, pu3alo

Client Sample ID: Method Blank

Prep Type: Total/NA

RL

1.0

MDL Unit

0.29 ug/L

D

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

MB MB

Qualifier

Result

ND

Lab Sample ID: MB 480-524584/7

Matrix: Water Analysis Batch: 524584

Analyte

1.1-Dichloroethene

Ethylbenf ene

1.2-Dibroz oethane

Isomromylbenf ene

(ethyl tert-butyl ether

(ethylcyclohexane

(ethylene Chloride

Tetrachloroethene

Trichloroethene

Vinyl chloride

Xylenes, Total

Surrogate

Toluene-d8 (Surr)

1,2-Dichloroethane-d4 (Surr)

4-Bromofluorobenzene (Surr)

trans-1,2-Dichloroethene

trans-1,5-Dichloromonene

Trichloro3uoroz ethane

Styrene

Toluene

(ethyl acetate

Client Sample ID: Method Blank

Prep Type: Total/NA 5 Prepared Analyzed Dil Fac 04/07/20 10:)7 1 04/07/20 10:)7 1 04/07/20 10:)7 1 04/07/20 10:)7 1 04/07/20 10:)7 1 8 04/07/20 10:) 7 1 04/07/20 10:)7 1 04/07/20 10:)7 1 04/07/20 10:)7 1 04/07/20 10:) 7 1 04/07/20 10:)7 1 04/07/20 10:)7 1 04/07/20 10:)7 1 04/07/20 10:)7 1 04/07/20 10:)7 1 04/07/20 10:)7 1 04/07/20 10:)7 1 04/07/20 10:)7 1 04/07/20 10:) 7 04/07/20 10:)7 04/07/20 10:) 7 1 04/07/20 10:)7 1 04/07/20 10:)7 1 04/07/20 10:)7 1 04/07/20 10:)7 1 04/07/20 10:)7 1 04/07/20 10:)7 1 04/07/20 10:) 7 1 04/07/20 10:)7 1 04/07/20 10:)7 1 04/07/20 10:)7 1 04/07/20 10:)7 1 04/07/20 10:)7 1 04/07/20 10:)7 1

.,	=			
1,2,4-Trichlorobenf ene	ND	1.0	0.41	ug/L
1,2-Dibroz o-5-Chloromonane	ND	1.0	0.59	ug/L
1,2-Dichlorobenf ene	ND	1.0	0.79	ug/L
1,2-Dichloroethane	ND	1.0	0.21	ug/L
1,2-Dichloromomane	ND	1.0	0.72	ug/L
1,5-Dichlorobenf ene	ND	1.0	0.78	ug/L
1,4-Dichlorobenf ene	ND	1.0	0.84	ug/L
2-putanone B EMK	ND	10	1.5	ug/L
2-Hexanone	ND).0	1.2	ug/L
4-(ethyl-2-mentanone B{ Ip MK	ND) .0	2.1	ug/L
Acetone	ND	10	5.0	ug/L
penfene	ND	1.0	0.41	ug/L
proz odichloroz ethane	ND	1.0	0.59	ug/L
proz o3orz	ND	1.0	0.26	ug/L
proz oz ethane	ND	1.0	0.69	ug/L
Carbon disul3de	ND	1.0	0.19	ug/L
Carbon tetrachloride	ND	1.0	0.27	ug/L
Chlorobenf ene	ND	1.0	0.7)	ug/L
Dibroz ochloroz ethane	ND	1.0	0.52	ug/L
Chloroethane	ND	1.0	0.52	ug/L
Chloro3orz	ND	1.0	0.54	ug/L
Chloroz ethane	ND	1.0	0.5)	ug/L
cis-1,2-Dichloroethene	ND	1.0	0.81	ug/L
cis-1,5-Dichloromomene	ND	1.0	0.56	ug/L
Cyclohexane	ND	1.0	0.18	ug/L
Dichlorodi3uoroz ethane	ND	1.0	0.68	ug/L

ND

101

107

93

%Recovery

MB MB

Qualifier

Euro3ns TestAz erica, pu3alo

04/07/20 10:)7

04/07/20 10:)7

04/07/20 10:)7

04/07/20 10:)7

04/07/20 10:)7

04/07/20 10:)7

04/07/20 10:)7

04/07/20 10:)7

04/07/20 10:)7

Analyzed

04/07/20 10:57

04/07/20 10:57

04/07/20 10:57

Prepared

1

1

1

1

1

1

1

1

1

1

1

Dil Fac

1.0

1.0

1.0

2.)

1.0

1.0

1.0

1.0

1.0

1.0

10

1.0

1.0

1.0

1.0

2.0

Limits

80 - 120

77 - 120

73 - 120

0.74 ug/L

0.79 ug/L

0.16 ug/L

0.44 ug/L

0.75 ug/L

0.56 ug/L

0.)1 ug/L

0.90 ug/L

0.90 ug/L

0.57 ug/L

0.46 ug/L

0.88 ug/L

0.66 ug/L

0.75 ug/L

1.5 ug/L

0.16 ug/L

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: MB 480-524584/7 Matrix: Water								Client S	ample ID: Metho Prep Type: ⁻	
Analysis Batch: 524584									16.176.01	
	MB	MB								
Surrogate	%Recovery	Qualifier	Limits				P	repared	Analyzed	Dil Fa
Dibromofluoromethane (Surr)	102		75 - 123						04/07/20 10:57	
Lab Sample ID: LCS 480-524584/5							Client	Somela	ID: Lab Control	Somel
Matrix: Water							Client	Sample	Prep Type: "	
									Prep Type:	i Otal/INA
Analysis Batch: 524584			Spike	LCS	LCS				%Rec.	
Analyte			Added		Qualifier	Unit	D	%Rec	Limits	
1,1,1-Trichloroethane			2).0	2).8	quantor	ug/L		105	75 - 126	
1,1,2,2-Tetrachloroethane			2).0	25.5		ug/L		95	76 - 120	
1,1,2-Trichloroethane			2).0	24.2		ug/L		97	76 - 122	
1,1,2-Trichloro-1,2,2-tri3uoroetha			2).0	25.9		ug/L		96	61 - 148	
ne			_,	20.0		~g, L		00	0. /10	
1,1-Dichloroethane			2).0	2) .9		ug/L		105	77 - 120	
1,1-Dichloroethene			2).0	2) .2		ug/L		101	66 - 127	
1,2,4-Trichlorobenf ene			2).0	24.2		ug/L		97	79 - 122	
1,2-Dibroz o-5-Chloromomane			2) .0	20.9		ug/L		84) 6 _ 154	
1,2-Dichlorobenf ene			2).0	25.9		ug/L		9)	80 - 124	
1,2-Dichloroethane			2).0	2).2		ug/L		101	7) - 120	
1.2-Dichloromonane			2).0	2).0		ug/L		100	76 ₋ 120	
1,5-Dichlorobenf ene			2).0	24.0		ug/L		96	77 - 120	
1,4-Dichlorobenf ene			2) .0	25.8		ug/L		9)	80 - 120	
2-putanone B(EMK			12)	127		ug/L		102)7_140	
2-Hexanone			12)	116		ug/L		95	6) - 127	
4-(ethyl-2-mentanone B(lp MK			12)	112		ug/L		90	71 - 12)	
Acetone			12)	158		ug/L		110) 6 - 142	
penfene			2) .0	2).6		ug/L		102	, 71 ₋ 124	
proz odichloroz ethane			2) .0	2).2		ug/L		101	80 - 122	
orozo3orz			2) .0	25.7		ug/L		9)	61 - 152	
proz oz ethane			2).0	28.5		ug/L		115)) _ 144	
Carbon disul3de			2).0	2).4		ug/L		101)9-154	
Carbon tetrachloride			2).0	2).4		ug/L		102	72 - 154	
Chlorobenf ene			2).0	25.6		ug/L		9)	80 - 120	
Dibroz ochloroz ethane			2).0	25.4		ug/L		94	7) - 12)	
Chloroethane			2).0	29.1		ug/L		116	69 - 156	
Chloro&rz			2).0	2).0		ug/L		100	75 - 127	
Chloroz ethane			2).0	26.4		ug/L		106	68 - 124	
cis-1,2-Dichloroethene			2).0	20.4		ug/L		100	74 ₋ 124	
cis-1,5-Dichloromonene			2).0	2).9		ug/L		104	74 - 124	
Cyclohexane			2).0	2).5		ug/L		94)9 ₋ 15)	
Dichlorodi3uoroz ethane			2).0	25.4				94 99		
			2).0 2).0	24.8 25.7		ug/L) 9 - 15) 77 - 125	
Ethylbenfene				25.7		ug/L		9) 94	77 ₋ 125 77 ₋ 120	
1,2-Dibroz oethane			2).0	25.6		ug/L			77 - 120	
somonylbenf ene			2).0			ug/L		97 96		
(ethyl acetate) 0.0	47.8		ug/L		96	74 - 155	
(ethyl tert-butyl ether			2).0	2).6		ug/L		102	77 - 120	
(ethylcyclohexane			2).0	22.8		ug/L		91	68 ₋ 154	
ethylene Chloride			2).0	24.5		ug/L		97	7) _ 124	
Styrene			2).0	24.0		ug/L		96	80 - 120	

Euro3ns TestAz erica, pu3alo

Prep Type: Total/NA

Client Sample ID: Lab Control Sample

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample I	D: LCS	480-524584/5
--------------	--------	--------------

Matrix: Water Analysis Batch: 524584

Analysis Batch: 524584								
	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Toluene	2).0	25.4		ug/L		94	80 - 122	
trans-1,2-Dichloroethene	2).0	2).)		ug/L		102	75 - 127	
trans-1,5-Dichloromomene	2) .0	24.1		ug/L		96	80 - 120	
Trichloroethene	2).0	24.9		ug/L		100	74 - 125	
Trichloro3uoroz ethane	2) .0	28.)		ug/L		114	62 - 1) 0	
Vinyl chloride	2) .0	28.9		ug/L		116	6) _ 155	

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
Toluene-d8 (Surr)	101		80 - 120
1,2-Dichloroethane-d4 (Surr)	107		77 - 120
4-Bromofluorobenzene (Surr)	94		73 - 120
Dibromofluoromethane (Surr)	108		75 - 123

Lab Sample ID: 480-168167-14 MS Matrix: Water Analysis Batch: 524584

Analysis Baton. 624664	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,1,1-Trichloroethane	ND		2) 00	2810		ug/L		115	75 - 126	
1,1,2,2-Tetrachloroethane	ND		2) 00	2540		ug/L		94	76 _ 120	
1,1,2-Trichloroethane	ND		2) 00	2) 90		ug/L		104	76 - 122	
1,1,2-Trichloro-1,2,2-tri3uoroetha	ND		2) 00	2780		ug/L		111	61 _ 148	
ne										
1,1-Dichloroethane	ND		2) 00	2770		ug/L		111	77 - 120	
1,1-Dichloroethene	ND		2) 00	27) 0		ug/L		110	66 - 127	
1,2,4-Trichlorobenf ene	ND		2)00	2180		ug/L		87	79 - 122	
1,2-Dibroz o-5-Chloromomane	ND		2)00	1990		ug/L		80) 6 _ 154	
1,2-Dichlorobenf ene	ND		2) 00	2590		ug/L		96	80 - 124	
1,2-Dichloroethane	ND		2) 00	2690		ug/L		108	7) _ 120	
1,2-Dichloromomane	ND		2) 00	2810		ug/L		112	76 - 120	
1,5-Dichlorobenf ene	ND		2) 00	2470		ug/L		99	77 - 120	
1,4-Dichlorobenf ene	ND		2) 00	2460		ug/L		98	78 - 124	
2-putanone B(EMK	ND		12) 00	15400		ug/L		107) 7 _ 140	
2-Hexanone	ND		12)00	12900		ug/L		105	6) _ 127	
4-(ethyl-2-mentanone B{ Ip MK	ND		12) 00	11900		ug/L		9)	71 ₋ 12)	
Acetone	ND		12) 00	12100		ug/L		97) 6 - 142	
p enf ene	ND		2) 00	2840		ug/L		114	71 ₋ 124	
proz odichloroz ethane	ND		2) 00	2760		ug/L		110	80 - 122	
proz o3orz	ND		2) 00	2450		ug/L		97	61 _ 152	
proz oz ethane	ND		2) 00	2990		ug/L		120)) _ 144	
Carbon disul3de	ND		2) 00	2700		ug/L		108) 9 - 154	
Carbon tetrachloride	ND		2) 00	2900		ug/L		116	72 - 154	
Chlorobenf ene	ND		2) 00	2) 70		ug/L		105	80 - 120	
Dibroz ochloroz ethane	ND		2) 00	2440		ug/L		98	7) _ 12)	
Chloroethane	ND		2) 00	5170		ug/L		127	69 - 156	
Chloro3orz	ND		2) 00	2680		ug/L		107	75 - 127	
Chloroz ethane	ND		2) 00	2740		ug/L		110	68 - 124	
cis-1,2-Dichloroethene	100		2) 00	2890		ug/L		111	74 - 124	
cis-1,5-Dichloromromene	ND		2) 00	2720		ug/L		109	74 - 124	

Client Sample ID: MW-12 Prep Type: Total/NA

5

8 9

Euro3ns TestAz erica, pu33alo

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: 480-168167-14 MS

Matrix: Water Analysis Batch: 524584

Analysis Baton. 624004	Sample	Sample	Spike	MS	MS				%Rec.
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits
Cyclohexane	ND		2) 00	2760		ug/L		110) 9 _ 15)
Dichlorodi3uoroz ethane	ND		2) 00	2) 80		ug/L		105) 9 - 15)
Ethylbenf ene	ND		2) 00	2)90		ug/L		104	77 _ 125
1,2-Dibroz oethane	ND		2) 00	2) 50		ug/L		101	77 _ 120
Isomonylbenf ene	ND		2) 00	2490		ug/L		100	77 _ 122
(ethyl acetate	ND) 000 (4970		ug/L		99	74 - 155
(ethyl tert-butyl ether	ND		2) 00	2)70		ug/L		105	77 - 120
(ethylcyclohexane	ND		2) 00	2720		ug/L		109	68 - 154
(ethylene Chloride	ND		2) 00	2) 80		ug/L		105	7) _ 124
Styrene	ND		2) 00	26)0		ug/L		106	80 - 120
Tetrachloroethene	ND		2) 00	2) 40		ug/L		102	74 - 122
Toluene	ND		2) 00	2)60		ug/L		102	80 - 122
trans-1,2-Dichloroethene	ND		2) 00	2750		ug/L		109	75 _ 127
trans-1,5-Dichloromomene	ND		2) 00	2) 50		ug/L		101	80 - 120
Trichloroethene	4900	F1	2) 00	8060	F1	ug/L		127	74 - 125
Trichloro3uoroz ethane	ND		2) 00	5060		ug/L		122	62 - 1)0
Vinyl chloride	ND		2) 00	50) 0		ug/L		122	6) - 155
	MS	MS							
Surrogate	%Recovery	Qualifier	Limits						
Toluene-d8 (Surr)	101		80 - 120						
1,2-Dichloroethane-d4 (Surr)	109		77 - 120						
4-Bromofluorobenzene (Surr)	95		73 - 120						
Dibromofluoromethane (Surr)	108		75 - 123						

Lab Sample ID: 480-168167-14 MSD Matrix: Water Analysis Batch: 524584

Analysis Batch. 524564	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1,1,1-Trichloroethane	ND		2) 00	2750		ug/L		109	75 - 126	5	1)
1,1,2,2-Tetrachloroethane	ND		2) 00	2440		ug/L		98	76 - 120	4	1)
1,1,2-Trichloroethane	ND		2) 00	2620		ug/L		10)	76 - 122	1	1)
1,1,2-Trichloro-1,2,2-tri3uoroetha	ND		2) 00	2710		ug/L		109	61 - 148	2	20
ne 1.1-Dichloroethane	ND		2) 00	2690		ug/L		107	77 - 120	5	20
1.1-Dichloroethene	ND		2)00	2690		ug/L		107	66 - 127	2	16
1.2.4-Trichlorobenf ene	ND		2)00	2550		ug/L		95	79 - 122	6	20
1,2-Dibroz o-5-Chloromonane	ND		2) 00	2070		ug/L		85) 6 - 154	4	1)
1,2-Dichlorobenf ene	ND		2) 00	2)00		ug/L		100	80 - 124)	20
1,2-Dichloroethane	ND		2) 00	2620		ug/L		10)	7) _ 120	5	20
1,2-Dichloromomane	ND		2) 00	2740		ug/L		110	76 - 120	2	20
1,5-Dichlorobenf ene	ND		2) 00	2) 20		ug/L		101	77 _ 120	2	20
1,4-Dichlorobenf ene	ND		2) 00	2))0		ug/L		102	78 - 124	5	20
2-putanone B EMK	ND		12) 00	15500		ug/L		106) 7 _ 140	1	20
2-Hexanone	ND		12) 00	15000		ug/L		104	6) _ 127	0	1)
4-(ethyl-2-mentanone B(Ip MK	ND		12) 00	12000		ug/L		96	71 _ 12)	1	5)
Acetone	ND		12) 00	12800		ug/L		102) 6 _ 142)	1)
penfene	ND		2) 00	2780		ug/L		111	71 - 124	2	15
proz odichloroz ethane	ND		2) 00	2670		ug/L		107	80 - 122	5	1)

Euro3ns TestAz erica, pu3alo

Client Sample ID: MW-12

Prep Type: Total/NA

Client Sample ID: MW-12 Prep Type: Total/NA

Page 53 of 74

Project/Site: Frewsburg Site #907016

Client Sample ID: MW-12

Prep Type: Total/NA

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: 480-168167-14 MSD

Matrix: Water Analysis Batch: 524584

	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
proz otorz	ND		2) 00	2) 40		ug/L		101	61 - 152	4	1)
proz oz ethane	ND		2) 00	2820		ug/L		115)) _ 144	6	1)
Carbon disul3de	ND		2) 00	2670		ug/L		107) 9 _ 154	1	1)
Carbon tetrachloride	ND		2) 00	2750		ug/L		109	72 - 154	6	1)
Chlorobenf ene	ND		2) 00	2)70		ug/L		105	80 - 120	0	2)
Dibroz ochloroz ethane	ND		2) 00	2) 10		ug/L		100	7) _ 12)	5	1)
Chloroethane	ND		2) 00	2920		ug/L		117	69 - 156	8	1)
Chloro&rz	ND		2) 00	2600		ug/L		104	75 - 127	5	20
Chloroz ethane	ND		2) 00	2640		ug/L		106	68 - 124	4	1)
cis-1,2-Dichloroethene	100		2) 00	2850		ug/L		109	74 - 124	2	1)
cis-1,5-Dichloromomene	ND		2) 00	2750		ug/L		109	74 - 124	0	1)
Cyclohexane	ND		2) 00	2640		ug/L		106) 9 - 15)	4	20
Dichlorodi3uoroz ethane	ND		2) 00	2)60		ug/L		102) 9 _ 15)	1	20
Ethylbenf ene	ND		2) 00	2))0		ug/L		102	77 _ 125	2	1)
1,2-Dibroz oethane	ND		2) 00	2) 40		ug/L		102	77 _ 120	0	1)
Isomonylbenf ene	ND		2) 00	2)70		ug/L		105	77 _ 122	5	20
(ethyl acetate	ND) 000 (4900		ug/L		98	74 - 155	1	20
(ethyl tert-butyl ether	ND		2) 00	2)70		ug/L		105	77 _ 120	0	57
(ethylcyclohexane	ND		2) 00	2600		ug/L		104	68 _ 154	4	20
(ethylene Chloride	ND		2) 00	2))0		ug/L		102	7) - 124	1	1)
Styrene	ND		2) 00	2620		ug/L		10)	80 - 120	1	20
Tetrachloroethene	ND		2) 00	2))0		ug/L		102	74 - 122	0	20
Toluene	ND		2) 00	2) 40		ug/L		102	80 - 122	1	1)
trans-1,2-Dichloroethene	ND		2) 00	2660		ug/L		106	75 - 127	5	20
trans-1,5-Dichloromomene	ND		2) 00	2)70		ug/L		105	80 - 120	1	1)
Trichloroethene	4900	F1	2) 00	7850		ug/L		118	74 ₋ 125	5	16
Trichloro3uoroz ethane	ND		2) 00	2900		ug/L		116	62 - 1)0)	20
Vinyl chloride	ND		2) 00	2950		ug/L		117	6) ₋ 155	4	1)
	MSD	MSD									

	INCE	mob	
Surrogate	%Recovery	Qualifier	Limits
Toluene-d8 (Surr)	103		80 - 120
1,2-Dichloroethane-d4 (Surr)	105		77 - 120
4-Bromofluorobenzene (Surr)	96		73 - 120
Dibromofluoromethane (Surr)	106		75 - 123

Lab Sample ID: MB 480-524779/7 Matrix: Water Analysis Batch: 524779

Client Sample ID: Method Blank Prep Type: Total/NA

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		1.0	0.82	ug/L			04/08/20 08:) 7	1
1,1,2,2-Tetrachloroethane	ND		1.0	0.21	ug/L			04/08/20 08:)7	1
1,1,2-Trichloroethane	ND		1.0	0.25	ug/L			04/08/20 08:) 7	1
1,1,2-Trichloro-1,2,2-tri3uoroethane	ND		1.0	0.51	ug/L			04/08/20 08:)7	1
1,1-Dichloroethane	ND		1.0	0.58	ug/L			04/08/20 08:)7	1
1,1-Dichloroethene	ND		1.0	0.29	ug/L			04/08/20 08:)7	1
1,2,4-Trichlorobenf ene	ND		1.0	0.41	ug/L			04/08/20 08:)7	1
1,2-Dibroz o-5-Chloromomane	ND		1.0	0.59	ug/L			04/08/20 08:)7	1

Euro3ns TestAz erica, pu33alo

8 9

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

.....

Lab Sample ID: MB 480-524779/7

Matrix: Water Analysis Batch: 524779

Client Sample ID: Method Blank Prep Type: Total/NA

-	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2-Dichlorobenf ene	ND		1.0	0.79	ug/L			04/08/20 08:)7	1
1,2-Dichloroethane	ND		1.0	0.21	ug/L			04/08/20 08:)7	1
1,2-Dichloromonane	ND		1.0	0.72	ug/L			04/08/20 08:)7	1
1,5-Dichlorobenf ene	ND		1.0	0.78	ug/L			04/08/20 08:)7	1
1,4-Dichlorobenf ene	ND		1.0	0.84	ug/L			04/08/20 08:)7	1
2-putanone B(EMK	ND		10	1.5	ug/L			04/08/20 08:)7	1
2-Hexanone	ND		0. (1.2	ug/L			04/08/20 08:)7	1
4-(ethyl-2-mentanone B(Ip MK	ND		0. (2.1	ug/L			04/08/20 08:)7	1
Acetone	ND		10	5.0	ug/L			04/08/20 08:)7	1
p enf ene	ND		1.0	0.41	ug/L			04/08/20 08:)7	1
proz odichloroz ethane	ND		1.0	0.59	ug/L			04/08/20 08:)7	1
proz o3orz	ND		1.0	0.26	ug/L			04/08/20 08:)7	1
proz oz ethane	ND		1.0	0.69	ug/L			04/08/20 08:)7	1
Carbon disul3de	ND		1.0	0.19	ug/L			04/08/20 08:)7	1
Carbon tetrachloride	ND		1.0	0.27	ug/L			04/08/20 08:)7	1
Chlorobenf ene	ND		1.0	0.7)	ug/L			04/08/20 08:)7	1
Dibroz ochloroz ethane	ND		1.0	0.52	ug/L			04/08/20 08:)7	1
Chloroethane	ND		1.0	0.52	ug/L			04/08/20 08:)7	1
Chloro&rz	ND		1.0	0.54	ug/L			04/08/20 08:)7	1
Chloroz ethane	ND		1.0	0.5)	ug/L			04/08/20 08:)7	1
cis-1,2-Dichloroethene	ND		1.0	0.81	ug/L			04/08/20 08:)7	1
cis-1,5-Dichloromomene	ND		1.0		ug/L			04/08/20 08:)7	1
Cyclohexane	ND		1.0	0.18	ug/L			04/08/20 08:)7	1
Dichlorodi3uoroz ethane	ND		1.0	0.68	ug/L			04/08/20 08:)7	1
Ethylbenf ene	ND		1.0	0.74	ug/L			04/08/20 08:)7	1
1,2-Dibroz oethane	ND		1.0	0.75	ug/L			04/08/20 08:)7	1
lsomonylbenf ene	ND		1.0	0.79	ug/L			04/08/20 08:)7	1
(ethyl acetate	ND		2.)	1.5	ug/L			04/08/20 08:)7	1
(ethyl tert-butyl ether	ND		1.0	0.16	ug/L			04/08/20 08:)7	1
(ethylcyclohexane	ND		1.0	0.16	ug/L			04/08/20 08:)7	1
(ethylene Chloride	ND		1.0		ug/L			04/08/20 08:)7	1
Styrene	ND		1.0	0.75				04/08/20 08:)7	1
Tetrachloroethene	ND		1.0	0.56				04/08/20 08:)7	1
Toluene	ND		1.0	0.)1				04/08/20 08:)7	1
trans-1,2-Dichloroethene	ND		1.0	0.90	ug/L			04/08/20 08:)7	1
trans-1,5-Dichloromonene	ND		1.0	0.57	ug/L			04/08/20 08:)7	1
Trichloroethene	ND		1.0		ug/L			04/08/20 08:)7	1
Trichloro3uoroz ethane	ND		1.0	0.88	ug/L			04/08/20 08:)7	1
Vinyl chloride	ND		1.0		ug/L			04/08/20 08:)7	1
Xylenes, Total	ND		2.0	0.66	ug/L			04/08/20 08:)7	1
	MB	MB							
Surrogate	%Recovery		Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	93		80 - 120			-	• • • •	04/08/20 08:57	1
1,2-Dichloroethane-d4 (Surr)	96		77 - 120					04/08/20 08:57	1
4-Bromofluorobenzene (Surr)	96		73 - 120					04/08/20 08:57	1
Dibromofluoromethane (Surr)	96		75 - 123					04/08/20 08:57	1
			-						

Prep Type: Total/NA

Client Sample ID: Lab Control Sample

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCS 480-524779/5

Matrix: Water Analysis Batch: 524779

Analysis Batch: 524779	Spike	201	LCS				%Rec.
Analyte	Added		Qualifier	Unit	D	%Rec	Limits
1,1,1-Trichloroethane		24.6		ug/L		98	75 - 126
1,1,2,2-Tetrachloroethane	2).0	26.2		ug/L		10)	76 - 120
1,1,2-Trichloroethane	2).0	26.1		ug/L		10)	76 - 122
	2).0	26.2				10)	61 - 148
1,1,2-Trichloro-1,2,2-tri3uoroetha ne	2):0	20.2		ug/L		10)	01 - 140
1,1-Dichloroethane	2).0	2).1		ug/L		100	77 _ 120
1,1-Dichloroethene	2).0	2).2		ug/L		101	66 - 127
1,2,4-Trichlorobenf ene	2).0	28.)		ug/L		114	79 - 122
1,2-Dibroz o-5-Chloromomane	2).0	25.6		ug/L		94) 6 _ 154
1,2-Dichlorobenf ene	2).0	27.0		ug/L		108	80 - 124
1,2-Dichloroethane	2).0	24.8		ug/L		99	7) _ 120
1,2-Dichloromonane	2).0	26.0		ug/L		104	76 - 120
1,5-Dichlorobenf ene	2).0	26.2		ug/L		10)	77 - 120
1,4-Dichlorobenf ene	2).0	26.5		ug/L		10)	80 - 120
2-putanone B EMK	12).0	20.3	*	ug/L		176)7 - 140
2-Hexanone	12)	121		ug/L		97	6) ₋ 127
4-(ethyl-2-mentanone B(Ip MK	12)	121 151		ug/L		97 104	71 <u>-</u> 12)
Acetone	12)			ug/L		104) 6 - 142
penf ene	2).0	2).6		ug/L		105	71 - 124
proz odichloroz ethane	2).0	26.6		ug/L		106	80 - 122
proz o3orz	2).0	22.8		ug/L		91	61 - 152
proz oz ethane	2).0	24.7		ug/L		99)) _ 144
Carbon disul3de	2) .0	24.8		ug/L		99) 9 - 154
Carbon tetrachloride	2).0	24.1		ug/L		97	72 - 154
Chlorobenf ene	2).0	26.6		ug/L		106	80 - 120
Dibroz ochloroz ethane	2).0	2) .8		ug/L		105	7) _ 12)
Chloroethane	2) .0	2).)		ug/L		102	69 - 156
Chloro&rz	2) .0	24.)		ug/L		98	75 - 127
Chloroz ethane	2).0	25.6		ug/L		9)	68 - 124
cis-1,2-Dichloroethene	2).0	26.2		ug/L		10)	74 - 124
cis-1,5-Dichloromomene	2).0	26.1		ug/L		104	74 - 124
Cyclohexane	2).0	25.7		ug/L		9)) 9 _ 15)
Dichlorodi3uoroz ethane	2) .0	2) .5		ug/L		101) 9 - 15)
Ethylbenfene	2) .0	2) .7		ug/L		105	77 - 125
1,2-Dibroz oethane	2).0	26.2		ug/L		10)	77 - 120
Isomonylbenf ene	2) .0	26.5		ug/L		10)	77 _ 122
(ethyl acetate) 0.0) 8.)		ug/L		117	74 ₋ 155
(ethyl tert-butyl ether	2).0	26.4		ug/L		10)	77 _ 120
(ethylcyclohexane	2).0	2) .0		ug/L		100	68 ₋ 154
(ethylene Chloride	2).0	24.4		ug/L		98	7) - 124
Styrene	2).0	27.2		ug/L		109	80 - 120
Tetrachloroethene	2).0	27.6		ug/L		111	74 ₋ 122
Toluene	2).0	26.2		ug/L		10)	80 - 122
trans-1,2-Dichloroethene	2).0	2).7		ug/L		105	75 - 127
trans-1,5-Dichloromonene	2).0	2).7		ug/L		105	80 - 120
Trichloroethene	2).0	2).9		ug/L		103	74 - 125
Trichloro3uoroz ethane	2).0	2).5		ug/L		101	62 - 1) 0
Vinyl chloride		2).3				99	6) _ 155
	2).0	24.8		ug/L		99	0) = 100

Euro3ns TestAz erica, pu3alo

Lab Sample ID: LCS 480-524779/5

Matrix: Water

Toluene-d8 (Surr)

Surrogate

Analysis Batch: 524779

1,2-Dichloroethane-d4 (Surr)

4-Bromofluorobenzene (Surr)

Dibromofluoromethane (Surr)

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

LCS LCS

%Recovery Qualifier

90

100

96

94

Limits

80 - 120

77 - 120

73 - 120

75 - 123

Client Sample ID: Lab Control Sample Prep Type: Total/NA 5

Client Sample ID:	MW-2
Prep Type: To	otal/NA

Lab Sample ID: 480-168167-2 MS Matrix: Water Analysis Batch: 524779

	Sample	Sample	Spike	MS	MS				%Rec.
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits
1,1,1-Trichloroethane	ND		12) 00	10400		ug/L		85	75 - 126
1,1,2,2-Tetrachloroethane	ND		12) 00	10800		ug/L		86	76 ₋ 120
1,1,2-Trichloroethane	ND		12) 00	11400		ug/L		91	76 - 122
1,1,2-Trichloro-1,2,2-tri3uoroetha	ND		12) 00	10) 00		ug/L		84	61 - 148
ne									
1,1-Dichloroethane	ND		12) 00	10) 00		ug/L		84	77 - 120
1,1-Dichloroethene	ND		12) 00	10) 00		ug/L		84	66 - 127
1,2,4-Trichlorobenf ene	ND		12) 00	11000		ug/L		88	79 - 122
1,2-Dibroz o-5-Chloromomane	ND		12) 00	9740		ug/L		78) 6 - 154
1,2-Dichlorobenf ene	ND		12) 00	10700		ug/L		86	80 - 124
1,2-Dichloroethane	ND		12) 00	10600		ug/L		8)	7) _ 120
1,2-Dichloromomane	ND		12) 00	11100		ug/L		89	76 - 120
1,5-Dichlorobenf ene	ND		12) 00	10600		ug/L		84	77 _ 120
1,4-Dichlorobenf ene	ND		12) 00	10700		ug/L		86	78 - 124
2-putanone B(EMK	ND	*	62) 00) 0) 00		ug/L		81) 7 _ 140
2-Hexanone	ND		62) 00) 1700		ug/L		85	6) - 127
4-(ethyl-2-mentanone B Ip MK	ND		62) 00) 2000		ug/L		85	71 ₋ 12)
Acetone	ND		62) 00) 2700		ug/L		84) 6 - 142
penfene	ND		12) 00	10800		ug/L		87	71 - 124
proz odichloroz ethane	ND		12) 00	10900		ug/L		87	80 - 122
proz o3orz	ND		12) 00	9860		ug/L		79	61 - 152
proz oz ethane	ND		12) 00	10500		ug/L		82)) _ 144
Carbon disul3de	ND		12) 00	10200		ug/L		81) 9 - 154
Carbon tetrachloride	ND		12) 00	10200		ug/L		82	72 - 154
Chlorobenf ene	ND		12) 00	11500		ug/L		90	80 - 120
Dibroz ochloroz ethane	ND		12) 00	11200		ug/L		89	7) _ 12)
Chloroethane	ND		12) 00	10500		ug/L		85	69 ₋ 156
Chloro3orz	ND		12) 00	10700		ug/L		86	75 - 127
Chloroz ethane	ND		12) 00	9770		ug/L		78	68 ₋ 124
cis-1,2-Dichloroethene	55000	F1	12) 00	56400	F1	ug/L		27	74 ₋ 124
cis-1,5-Dichloromomene	ND		12) 00	10700		ug/L		86	74 - 124
Cyclohexane	ND		12) 00	10100		ug/L		81) 9 _ 15)
Dichlorodi3uoroz ethane	ND		12) 00	10400		ug/L		85) 9 - 15)
Ethylbenf ene	ND		12) 00	10800		ug/L		86	77 - 125
1,2-Dibroz oethane	ND		12) 00	11200		ug/L		90	77 _ 120
Isomonylbenfene	ND		12) 00	10) 00		ug/L		84	77 - 122
(ethyl acetate	ND		2)000	22200		ug/L		89	74 ₋ 155
(ethyl tert-butyl ether	ND		12) 00	10600		ug/L		8)	77 - 120
(ethylcyclohexane	ND		12) 00	10400		ug/L		85	68 - 154

Euro3ns TestAz erica, pu3alo

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: 480-168167-2 MS Matrix: Water

Analysis Batch: 524779

	Sample	Sample	Spike	MS	MS				%Rec.
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits
(ethylene Chloride	ND		12)00	10) 00		ug/L		84	7) _ 124
Styrene	ND		12) 00	11400		ug/L		91	80 - 120
Tetrachloroethene	ND		12)00	11500		ug/L		90	74 - 122
Toluene	ND		12)00	11100		ug/L		89	80 - 122
rans-1,2-Dichloroethene	ND		12) 00	10900		ug/L		87	75 - 127
rans-1,5-Dichloromomene	ND		12)00	10) 00		ug/L		84	80 - 120
Trichloroethene	ND		12)00	10700		ug/L		8)	74 - 125
Trichloro3uoroz ethane	ND		12) 00	10500		ug/L		82	62 - 1)0
Vinyl chloride	55000	F1	12) 00	56700	F1	ug/L		26	6) ₋ 155
	MS	MS							

	1110	1110	
Surrogate	%Recovery	Qualifier	Limits
Toluene-d8 (Surr)	94		80 - 120
1,2-Dichloroethane-d4 (Surr)	92		77 - 120
4-Bromofluorobenzene (Surr)	95		73 - 120
Dibromofluoromethane (Surr)	95		75 - 123

Lab Sample ID: 480-168167-2 MSD Matrix: Water

	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1,1,1-Trichloroethane	ND		12) 00	10200		ug/L		81	75 - 126	2	1)
1,1,2,2-Tetrachloroethane	ND		12) 00	10700		ug/L		86	76 - 120	0	1)
1,1,2-Trichloroethane	ND		12) 00	10800		ug/L		86	76 - 122	6	1)
1,1,2-Trichloro-1,2,2-tri3uoroetha	ND		12) 00	10500		ug/L		82	61 - 148	2	20
ne											
1,1-Dichloroethane	ND		12) 00	10100		ug/L		81	77 - 120	4	20
1,1-Dichloroethene	ND		12) 00	10000		ug/L		80	66 - 127)	16
1,2,4-Trichlorobenf ene	ND		12) 00	10900		ug/L		87	79 - 122	1	20
1,2-Dibroz o-5-Chloromonane	ND		12) 00	9520		ug/L		7)) 6 _ 154	4	1)
1,2-Dichlorobenf ene	ND		12) 00	10400		ug/L		85	80 - 124	5	20
1,2-Dichloroethane	ND		12) 00	10500		ug/L		82	7) _ 120	4	20
1,2-Dichloromomane	ND		12) 00	10700		ug/L		8)	76 _ 120	4	20
1,5-Dichlorobenf ene	ND		12) 00	10200		ug/L		81	77 _ 120	4	20
1,4-Dichlorobenf ene	ND		12) 00	10500		ug/L		85	78 - 124	4	20
2-putanone B EMK	ND	*	62) 00) 2500		ug/L		84) 7 - 140	4	20
2-Hexanone	ND		62) 00) 0900		ug/L		81	6) _ 127	1	1)
4-(ethyl-2-mentanone B(Ip MK	ND		62) 00) 1200		ug/L		82	71 - 12)	2	5)
Acetone	ND		62) 00) 2600		ug/L		84) 6 _ 142	0	1)
penfene	ND		12) 00	10500		ug/L		85	71 - 124)	15
proz odichloroz ethane	ND		12) 00	10700		ug/L		8)	80 - 122	2	1)
proz o3orz	ND		12) 00	9910		ug/L		79	61 - 152	1	1)
proz oz ethane	ND		12) 00	9800		ug/L		78)) _ 144)	1)
Carbon disul3de	ND		12) 00	9910		ug/L		79)9_154	5	1)
Carbon tetrachloride	ND		12) 00	9820		ug/L		79	, 72 ₋ 154	4	1)
Chlorobenf ene	ND		12) 00	10) 00		ug/L		84	80 - 120	7	2)
Dibroz ochloroz ethane	ND		12) 00	11000		ug/L		88	7) _ 12)	2	1)
Chloroethane	ND		12) 00	9990		ug/L		80	69 - 156	5	1)
Chloro3orz	ND		12) 00	99) 0		ug/L		80	75 - 127	7	20

Euro3ns TestAz erica, pu3alo

Client Sample ID: MW-2 Prep Type: Total/NA

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: 480-168167-2 MSD

Matrix: Water Analysis Batch: 524779

-	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit	
Chloroz ethane	ND		12) 00	9260		ug/L		74	68 - 124)	1)	
cis-1,2-Dichloroethene	55000	F1	12) 00	5) 700	F1	ug/L		21	74 - 124	2	1)	ł
cis-1,5-Dichloromomene	ND		12) 00	10) 00		ug/L		84	74 - 124	2	1)	
Cyclohexane	ND		12) 00	9840		ug/L		79) 9 _ 15)	5	20	
Dichlorodi3uoroz ethane	ND		12) 00	9710		ug/L		78) 9 _ 15)	6	20	
Ethylbenf ene	ND		12) 00	10500		ug/L		82	77 _ 125)	1)	
1,2-Dibroz oethane	ND		12) 00	10700		ug/L		8)	77 - 120)	1)	1
lsomonylbenf ene	ND		12) 00	10200		ug/L		82	77 _ 122	5	20	
(ethyl acetate	ND		2)000	25900		ug/L		96	74 _ 155	7	20	
(ethyl tert-butyl ether	ND		12) 00	10) 00		ug/L		84	77 _ 120	1	57	
(ethylcyclohexane	ND		12) 00	10000		ug/L		80	68 - 154	4	20	
(ethylene Chloride	ND		12) 00	10100		ug/L		81	7) - 124)	1)	
Styrene	ND		12) 00	10900		ug/L		87	80 - 120	4	20	
Tetrachloroethene	ND		12) 00	10600		ug/L		8)	74 - 122	7	20	
Toluene	ND		12) 00	10) 00		ug/L		84	80 - 122)	1)	ŝ
trans-1,2-Dichloroethene	ND		12) 00	10400		ug/L		85	75 - 127)	20	
trans-1,5-Dichloromomene	ND		12) 00	10200		ug/L		82	80 - 120	5	1)	5
Trichloroethene	ND		12) 00	10500		ug/L		85	74 - 125	5	16	
Trichloro3uoroz ethane	ND		12) 00	9860		ug/L		79	62 - 1)0	4	20	
Vinyl chloride	55000	F1	12) 00	5) 500	F1	ug/L		14	6) _ 155	4	1)	

	MSD	MSD	
Surrogate	%Recovery	Qualifier	Limits
Toluene-d8 (Surr)	95		80 - 120
1,2-Dichloroethane-d4 (Surr)	95		77 - 120
4-Bromofluorobenzene (Surr)	96		73 - 120
Dibromofluoromethane (Surr)	98		75 - 123

Lab Sample ID: MB 480-524795/7 Matrix: Water

Analysis Batch: 524795

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		1.0	0.82	ug/L			04/08/20 10:45	1
1,1,2,2-Tetrachloroethane	ND		1.0	0.21	ug/L			04/08/20 10:45	1
1,1,2-Trichloroethane	ND		1.0	0.25	ug/L			04/08/20 10:45	1
1,1,2-Trichloro-1,2,2-tri3uoroethane	ND		1.0	0.51	ug/L			04/08/20 10:45	1
1,1-Dichloroethane	ND		1.0	0.58	ug/L			04/08/20 10:45	1
1,1-Dichloroethene	ND		1.0	0.29	ug/L			04/08/20 10:45	1
1,2,4-Trichlorobenf ene	ND		1.0	0.41	ug/L			04/08/20 10:45	1
1,2-Dibroz o-5-Chloromomane	ND		1.0	0.59	ug/L			04/08/20 10:45	1
1,2-Dichlorobenf ene	ND		1.0	0.79	ug/L			04/08/20 10:45	1
1,2-Dichloroethane	ND		1.0	0.21	ug/L			04/08/20 10:45	1
1,2-Dichloromonane	ND		1.0	0.72	ug/L			04/08/20 10:45	1
1,5-Dichlorobenf ene	ND		1.0	0.78	ug/L			04/08/20 10:45	1
1,4-Dichlorobenf ene	ND		1.0	0.84	ug/L			04/08/20 10:45	1
2-putanone B(EMK	ND		10	1.5	ug/L			04/08/20 10:45	1
2-Hexanone	ND		0. (1.2	ug/L			04/08/20 10:45	1
4-(ethyl-2-mentanone B{ Ip MK	ND		0. (2.1	ug/L			04/08/20 10:45	1

Euro3ns TestAz erica, pu3alo

Client Sample ID: Method Blank

Prep Type: Total/NA

Client Sample ID: MW-2 Prep Type: Total/NA

5

8 9

Prep Type: Total/NA

5

8 9

Client Sample ID: Method Blank

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

.....

Lab Sample ID: MB 480-524795/7

Matrix: Water Analysis Batch: 524795

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acetone	ND		10	5.0	ug/L			04/08/20 10:45	1
penfene	ND		1.0	0.41	ug/L			04/08/20 10:45	1
proz odichloroz ethane	ND		1.0	0.59	ug/L			04/08/20 10:45	1
proz o3orz	ND		1.0	0.26	ug/L			04/08/20 10:45	1
proz oz ethane	ND		1.0	0.69	ug/L			04/08/20 10:45	1
Carbon disul3de	ND		1.0	0.19	ug/L			04/08/20 10:45	1
Carbon tetrachloride	ND		1.0	0.27	ug/L			04/08/20 10:45	1
Chlorobenf ene	ND		1.0	0.7)	ug/L			04/08/20 10:45	1
Dibroz ochloroz ethane	ND		1.0	0.52	ug/L			04/08/20 10:45	1
Chloroethane	ND		1.0	0.52	ug/L			04/08/20 10:45	1
Chloro	ND		1.0	0.54	ug/L			04/08/20 10:45	1
Chloroz ethane	ND		1.0	0.5)	ug/L			04/08/20 10:45	1
cis-1,2-Dichloroethene	ND		1.0	0.81	ug/L			04/08/20 10:45	1
cis-1,5-Dichloromonene	ND		1.0	0.56	ug/L			04/08/20 10:45	1
Cyclohexane	ND		1.0	0.18	ug/L			04/08/20 10:45	1
Dichlorodi3uoroz ethane	ND		1.0	0.68	ug/L			04/08/20 10:45	1
Ethylbenf ene	ND		1.0	0.74	ug/L			04/08/20 10:45	1
1,2-Dibroz oethane	ND		1.0	0.75	ug/L			04/08/20 10:45	1
lsomonylbenf ene	ND		1.0	0.79	ug/L			04/08/20 10:45	1
(ethyl acetate	ND		2.)	1.5	ug/L			04/08/20 10:45	1
(ethyl tert-butyl ether	ND		1.0	0.16	ug/L			04/08/20 10:45	1
(ethylcyclohexane	ND		1.0	0.16	ug/L			04/08/20 10:45	1
(ethylene Chloride	ND		1.0	0.44	ug/L			04/08/20 10:45	1
Styrene	ND		1.0	0.75	ug/L			04/08/20 10:45	1
Tetrachloroethene	ND		1.0	0.56	ug/L			04/08/20 10:45	1
Toluene	ND		1.0	0.) 1	ug/L			04/08/20 10:45	1
trans-1,2-Dichloroethene	ND		1.0	0.90	ug/L			04/08/20 10:45	1
trans-1,5-Dichloromonene	ND		1.0		ug/L			04/08/20 10:45	1
Trichloroethene	ND		1.0		ug/L			04/08/20 10:45	1
Trichloro3uoroz ethane	ND		1.0	0.88	ug/L			04/08/20 10:45	1
Vinyl chloride	ND		1.0	0.90	ug/L			04/08/20 10:45	1
Xylenes, Total	ND		2.0	0.66	ug/L			04/08/20 10:45	1
	МВ	МВ							

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	105		80 - 120		04/08/20 10:43	1
1,2-Dichloroethane-d4 (Surr)	107		77 - 120		04/08/20 10:43	1
4-Bromofluorobenzene (Surr)	101		73 - 120		04/08/20 10:43	1
Dibromofluoromethane (Surr)	103		75 - 123		04/08/20 10:43	1

Lab Sample ID: LCS 480-524795/5 Matrix: Water

Analysis Batch: 524795

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,1,1-Trichloroethane	2).0	26.4		ug/L		106	75 - 126	
1,1,2,2-Tetrachloroethane	2) .0	24.8		ug/L		99	76 - 120	
1,1,2-Trichloroethane	2).0	2) .4		ug/L		102	76 - 122	
1,1,2-Trichloro-1,2,2-tri3uoroetha	2) .0	26.7		ug/L		107	61 _ 148	

ne

Euro3ns TestAz erica, pu3alo

Prep Type: Total/NA

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Client Sample ID: Lab Control Sample

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCS 480-524795/5

Matrix: Water Analysis Batch: 524795

	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
I,1-Dichloroethane	2).0	2).)		ug/L		102	77 - 120
,1-Dichloroethene	2) .0	26.7		ug/L		107	66 - 127
,2,4-Trichlorobenf ene	2) .0	25.7		ug/L		9)	79 ₋ 122
,2-Dibroz o-5-Chloromomane	2) .0	21.4		ug/L		86) 6 - 154
,2-Dichlorobenf ene	2).0	2).1		ug/L		100	80 - 124
,2-Dichloroethane	2) .0	2).0		ug/L		100	7) _ 120
,2-Dichloromomane	2) .0	26.7		ug/L		107	76 - 120
,5-Dichlorobenf ene	2) .0	26.0		ug/L		104	77 _ 120
,4-Dichlorobenf ene	2) .0	26.0		ug/L		104	80 - 120
-putanone B(EMK	12)	127		ug/L		102) 7 - 140
-Hexanone	12)	124		ug/L		99	6) _ 127
-(ethyl-2-mentanone B(lpMK	12)	11)		ug/L		92	71 - 12)
cetone	12)	121		ug/L		97) 6 - 142
enfene	2) .0	26.7		ug/L		107	71 ₋ 124
roz odichloroz ethane	2) .0	2) .8		ug/L		105	80 - 122
roz o&rz	2) .0	24.5		ug/L		97	61 - 152
roz oz ethane	2) .0	27.5		ug/L		109)) - 144
arbon disul3de	2).0	26.1		ug/L		10)) 9 - 154
arbon tetrachloride	2).0	27.0		ug/L		108	72 - 154
hlorobenf ene	2).0	2).5		ug/L		101	80 - 120
ibroz ochloroz ethane	2).0	24.4		ug/L		98	7) _ 12)
hloroethane	2) .0	28.5		ug/L		115	69 - 156
hloroЭrz	2) .0	24.9		ug/L		100	75 - 127
hloroz ethane	2) .0	26.1		ug/L		104	68 - 124
is-1,2-Dichloroethene	2).0	2) .8		ug/L		105	74 - 124
is-1,5-Dichloromomene	2) .0	27.1		ug/L		108	74 - 124
yclohexane	2) .0	26.5		ug/L		10)) 9 - 15)
vichlorodi3uoroz ethane	2) .0	2).0		ug/L		100) 9 - 15)
thylbenf ene	2).0	2).6		ug/L		102	77 - 125
,2-Dibroz oethane	2).0	2) .5		ug/L		101	77 - 120
somonylbenfene	2).0	26.4		ug/L		106	77 - 122
ethyl acetate) 0.0	47.8		ug/L		96	74 - 155
ethyl tert-butyl ether	2).0	24.9		ug/L		100	77 - 120
ethylcyclohexane	2).0	26.5		ug/L		10)	68 - 154
ethylene Chloride	2).0	24.4		ug/L		98	7) _ 124
tyrene	2).0	2).)		ug/L		102	80 - 120
etrachloroethene	2).0	2).4		ug/L		101	74 - 122
oluene	2).0	24.9		ug/L		100	80 - 122
ans-1,2-Dichloroethene	2).0	24.0		ug/L		100	75 - 127
ans-1,5-Dichloromonene	2).0	20.0		ug/L		104	80 - 120
richloroethene	2).0	26.5		ug/L		100	74 - 125
richloro3uoroz ethane	2).0	20.3		ug/L		10)	62 - 1)0
/invl chloride	2).0	28.)		ug/L ug/L		114	6) ₋ 155

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
Toluene-d8 (Surr)	106		80 - 120
1,2-Dichloroethane-d4 (Surr)	105		77 - 120
4-Bromofluorobenzene (Surr)	101		73 - 120

Euro3ns TestAz erica, pu3alo

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCS 480-52479 Matrix: Water	95/5						Client Sample	ID: Lab Control Prep Type: 1	
Analysis Batch: 524795									
	LCS L	cs							
Surrogate	%Recovery Q	ualifier	Limits						
Dibromofluoromethane (Surr)	106		75 - 123	•					
Lab Sample ID: MB 480-52501	5/7						Client S	ample ID: Metho	d Blank
Matrix: Water								Prep Type: 1	
Analysis Batch: 525015									
,	M	B MB							
Analyte	Resu	It Qualifier		RL	MDL	Unit	D Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	N	D		1.0	0.82	ug/L		04/09/20 10:40	1
1,1,2,2-Tetrachloroethane	Ν	D		1.0	0.21	ug/L		04/09/20 10:40	1
1,1,2-Trichloroethane	N	D		1.0	0.25	ug/L		04/09/20 10:40	1
1,1,2-Trichloro-1,2,2-tri3uoroethane	N	D		1.0	0.51	ug/L		04/09/20 10:40	1
1,1-Dichloroethane	N	D		1.0		ug/L		04/09/20 10:40	1
1,1-Dichloroethene	N	D		1.0		ug/L		04/09/20 10:40	1
1,2,4-Trichlorobenf ene	N	D		1.0	0.41	ug/L		04/09/20 10:40	1
1,2-Dibroz o-5-Chloromomane	N	D		1.0	0.59	ug/L		04/09/20 10:40	1
1,2-Dichlorobenf ene	N	D		1.0		ug/L		04/09/20 10:40	1
1,2-Dichloroethane	Ν	D		1.0		ug/L		04/09/20 10:40	
1,2-Dichloromomene	Ν	D		1.0		ug/L		04/09/20 10:40	1
1,5-Dichlorobenf ene	Ν			1.0		ug/L		04/09/20 10:40	1
1,4-Dichlorobenf ene	N			1.0		ug/L		04/09/20 10:40	
2-putanone B EMK	Ν			10		ug/L		04/09/20 10:40	1
2-Hexanone		D		0. (ug/L		04/09/20 10:40	1
4-(ethyl-2-mentanone B{ Ip MK	N).0		ug/L		04/09/20 10:40	
Acetone	N			10		ug/L		04/09/20 10:40	1
penfene	N			1.0		ug/L		04/09/20 10:40	1
proz odichloroz ethane	N			1.0		ug/L		04/09/20 10:40	
proz otorionoz otnano	N			1.0		ug/L		04/09/20 10:40	1
proz oz ethane	N			1.0		ug/L		04/09/20 10:40	1
Carbon disul3de	N			1.0		ug/L		04/09/20 10:40	
Carbon tetrachloride	N			1.0		ug/L		04/09/20 10:40	1
Chlorobenf ene	N			1.0		ug/L		04/09/20 10:40	1
Dibroz ochloroz ethane		D		1.0		ug/L		04/09/20 10:40	
Chloroethane		D		1.0		ug/L		04/09/20 10:40	1
Chloro&rz		D		1.0		ug/L		04/09/20 10:40	1
Chloroz ethane		D		1.0		ug/L		04/09/20 10:40	
						ug/L			1
cis-1,2-Dichloroethene	N	D		1.0		•		04/09/20 10:40	1
cis-1,5-Dichloromomene				1.0		ug/L		04/09/20 10:40	۱ ۲
Cyclohexane		D		1.0		ug/L		04/09/20 10:40	1
Dichlorodi3uoroz ethane		D		1.0		ug/L		04/09/20 10:40	1
Ethylbenf ene	N			1.0		ug/L		04/09/20 10:40	1
1,2-Dibroz oethane	N			1.0		ug/L		04/09/20 10:40	1
Isomonylbenf ene	N			1.0		ug/L		04/09/20 10:40	1
(ethyl acetate	N			2.)		ug/L		04/09/20 10:40	1
(ethyl tert-butyl ether	N			1.0		ug/L		04/09/20 10:40	1
(ethylcyclohexane		D		1.0		ug/L		04/09/20 10:40	1
(ethylene Chloride	N			1.0		ug/L		04/09/20 10:40	1
Styrene	N			1.0		ug/L		04/09/20 10:40	1
Tetrachloroethene	N	D		1.0	0.56	ug/L		04/09/20 10:40	1

Euro3ns TestAz erica, pu3alo

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: MB 480-525015/7

Matrix: Water

Client Sample ID: Method Blank Prep Type: Total/NA

Analysis Batch: 525015

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Toluene	ND		1.0	0.) 1	ug/L			04/09/20 10:40	1
trans-1,2-Dichloroethene	ND		1.0	0.90	ug/L			04/09/20 10:40	1
trans-1,5-Dichloromomene	ND		1.0	0.57	ug/L			04/09/20 10:40	1
Trichloroethene	ND		1.0	0.46	ug/L			04/09/20 10:40	1
Trichloro3uoroz ethane	ND		1.0	0.88	ug/L			04/09/20 10:40	1
Vinyl chloride	ND		1.0	0.90	ug/L			04/09/20 10:40	1
Xylenes, Total	ND		2.0	0.66	ug/L			04/09/20 10:40	1
	МВ	MB							
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	107		80 - 120			-		04/09/20 10:40	1

QC Sample Results

eunoguto	,,	quanto			opai oa	, j =04	
Toluene-d8 (Surr)	107		80 - 120	-		04/09/20 10:40	1
1,2-Dichloroethane-d4 (Surr)	114		77 - 120			04/09/20 10:40	1
4-Bromofluorobenzene (Surr)	100		73 - 120			04/09/20 10:40	1
Dibromofluoromethane (Surr)	111		75 - 123			04/09/20 10:40	1

Lab Sample ID: LCS 480-525015/5 Matrix: Water

Analysis Batch: 525015

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,1,1-Trichloroethane	2) .0	2).1		ug/L		100	75 - 126	
1,1,2,2-Tetrachloroethane	2) .0	24.8		ug/L		99	76 - 120	
1,1,2-Trichloroethane	2) .0	24.9		ug/L		100	76 - 122	
1,1,2-Trichloro-1,2,2-tri3uoroetha	2) .0	2) .2		ug/L		101	61 - 148	
ne								
1,1-Dichloroethane	2).0	2) .5		ug/L		101	77 - 120	
1,1-Dichloroethene	2) .0	2) .8		ug/L		105	66 - 127	
1,2,4-Trichlorobenf ene	2) .0	24.4		ug/L		98	79 - 122	
1,2-Dibroz o-5-Chloromomane	2) .0	20.8		ug/L		85) 6 - 154	
1,2-Dichlorobenf ene	2) .0	24.8		ug/L		99	80 - 124	
1,2-Dichloroethane	2) .0	24.4		ug/L		98	7) _ 120	
1,2-Dichloromonane	2) .0	2) .8		ug/L		105	76 - 120	
1,5-Dichlorobenf ene	2) .0	2).)		ug/L		102	77 - 120	
1,4-Dichlorobenf ene	2) .0	24.9		ug/L		100	80 - 120	
2-putanone B(EMK	12)	126		ug/L		101) 7 _ 140	
2-Hexanone	12)	119		ug/L		9)	6) _ 127	
4-(ethyl-2-mentanone B(Ip MK	12)	115		ug/L		90	71 - 12)	
Acetone	12)	15)		ug/L		108) 6 - 142	
p enf ene	2) .0	26.1		ug/L		104	71 - 124	
proz odichloroz ethane	2) .0	24.8		ug/L		99	80 - 122	
proz o3orz	2) .0	25.2		ug/L		95	61 - 152	
proz oz ethane	2) .0	27.2		ug/L		109)) - 144	
Carbon disul3de	2) .0	2) .6		ug/L		102) 9 ₋ 154	
Carbon tetrachloride	2) .0	2) .1		ug/L		100	72 - 154	
Chlorobenf ene	2) .0	24.6		ug/L		98	80 - 120	
Dibroz ochloroz ethane	2) .0	25.6		ug/L		94	7) _ 12)	
Chloroethane	2) .0	28.1		ug/L		112	69 - 156	
Chloro3orz	2) .0	24.)		ug/L		98	75 ₋ 127	
Chloroz ethane	2) .0	2).7		ug/L		105	68 - 124	
cis-1,2-Dichloroethene	2) .0	2) .9		ug/L		104	74 - 124	

Euro3ns TestAz erica, pu3alo

13

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Client Sample ID: Lab Control Sample

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCS 480-525015/5

Matrix: Water Analysis

Matrix: Water Analysis Batch: 525015							Prep Type: Total/NA	
,, ,	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
cis-1,5-Dichloromomene	2).0	2) .4		ug/L		101	74 - 124	
Cyclohexane	2) .0	24.6		ug/L		99) 9 - 15)	
Dichlorodi3uoroz ethane	2) .0	22.1		ug/L		89) 9 _ 15)	
Ethylbenf ene	2) .0	24.)		ug/L		98	77 - 125	
1,2-Dibroz oethane	2).0	24.6		ug/L		98	77 _ 120	
Isomonylbenf ene	2) .0	2) .2		ug/L		101	77 _ 122	
(ethyl acetate) 0.0	46.5		ug/L		95	74 - 155	
(ethyl tert-butyl ether	2) .0	24.9		ug/L		99	77 _ 120	
(ethylcyclohexane	2).0	24.8		ug/L		99	68 - 154	
(ethylene Chloride	2).0	24.7		ug/L		99	7) - 124	
Styrene	2) .0	24.8		ug/L		99	80 - 120	
Tetrachloroethene	2).0	24.8		ug/L		99	74 - 122	
Toluene	2) .0	24.6		ug/L		98	80 - 122	
trans-1,2-Dichloroethene	2).0	2).)		ug/L		102	75 - 127	
trans-1,5-Dichloromomene	2) .0	24.4		ug/L		98	80 - 120	
Trichloroethene	2) .0	2) .5		ug/L		101	74 - 125	
Trichloro3uoroz ethane	2) .0	26.7		ug/L		107	62 - 1)0	
Vinyl chloride	2) .0	28.)		ug/L		114	6) _ 155	

Vinyl chloride			2) .0	28.)	ug/L	114 6) - 155
	LCS	LCS				
Surrogate	%Recovery	Qualifier	Limits			
Toluene-d8 (Surr)	108		80 - 120			
1,2-Dichloroethane-d4 (Surr)	106		77 _ 120			
4-Bromofluorobenzene (Surr)	104		73 - 120			
Dibromofluoromethane (Surr)	110		75_123			

Analysis Batch: 524581

GC/MS VOA

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-168167-1	MW-1	Total/NA	Water	8260C	
480-168167-3	MW-3	Total/NA	Water	8260C	
480-168167-4	MW-4	Total/NA	Water	8260C	
480-168167-5	MW-4D	Total/NA	Water	8260C	
480-168167-6	MW-5	Total/NA	Water	8260C	
480-168167-7	MW-5D	Total/NA	Water	8260C	
MB 480-524581/7	Method Blank	Total/NA	Water	8260C	
LCS 480-524581/5	Lab Control Sample	Total/NA	Water	8260C	
480-168167-3 MS	MW-3	Total/NA	Water	8260C	
480-168167-3 MSD	MW-3	Total/NA	Water	8260C	

Analysis Batch: 524584

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-168167-8	MW-6	Total/NA	Water	8260C	
480-168167-9	MW-7	Total/NA	Water	8260C	
480-168167-10	MW-8	Total/NA	Water	8260C	
480-168167-11	MW-9R	Total/NA	Water	8260C	
480-168167-12	MW-10	Total/NA	Water	8260C	
480-168167-14	MW-12	Total/NA	Water	8260C	
480-168167-15	MW-13	Total/NA	Water	8260C	
480-168167-16	MW-14	Total/NA	Water	8260C	
480-168167-18	TRP BLANK	Total/NA	Water	8260C	
MB 480-524584/7	Method Blank	Total/NA	Water	8260C	
LCS 480-524584/5	Lab Control Sample	Total/NA	Water	8260C	
480-168167-14 MS	MW-12	Total/NA	Water	8260C	
480-168167-14 MSD	MW-12	Total/NA	Water	8260C	

Analysis Batch: 524779

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-168167-2	MW-2	Total/NA	Water	8260C	
MB 480-524779/7	Method Blank	Total/NA	Water	8260C	
LCS 480-524779/5	Lab Control Sample	Total/NA	Water	8260C	
480-168167-2 MS	MW-2	Total/NA	Water	8260C	
480-168167-2 MSD	MW-2	Total/NA	Water	8260C	

Analysis Batch: 524795

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-168167-13	MW-11R	Total/NA	Water	8260C	
MB 480-524795/7	Method Blank	Total/NA	Water	8260C	
LCS 480-524795/5	Lab Control Sample	Total/NA	Water	8260C	

Analysis Batch: 525015

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-168167-17	DUP-A	Total/NA	Water	8260C	
MB 480-525015/7	Method Blank	Total/NA	Water	8260C	
LCS 480-525015/5	Lab Control Sample	Total/NA	Water	8260C	

ient: New York Sta	ite D.E.C.							Job	ID: 480-168167-1
roject/Site: Frewsb	urg Site #90)7016							
Client Sample ID							Lab	Sample ID:	: 480-168167-1
ate Collected: 04/0 ate Received: 04/0									Matrix: Water
	Batch	Batch		Dilution	Batch	Prepared			
Ргер Туре	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab	
Total/NA	Analysis	8260C		1	524581	04/07/20 15:25	AMM	TAL BUF	
Client Sample ID	: MW-2						Lab	Sample ID	: 480-168167-2
Date Collected: 04/0)1/20 10:30								Matrix: Water
Date Received: 04/0	3/20 14:00								
	Batch	Batch		Dilution	Batch	Prepared			
Ргер Туре	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab	
Total/NA	Analysis	8260C		500	524779	04/08/20 09:34	LCH	TAL BUF	
Client Sample ID	: MW-3						Lab	Sample ID	: 480-168167-3
Date Collected: 04/0)1/20 12:10								Matrix: Water
Date Received: 04/0	3/20 14:00								
	Batch	Batch		Dilution	Batch	Prepared			
Ргер Туре	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab	
Total/NA	Analysis	8260C		20	524581	04/07/20 16:13	AMM	TAL BUF	
Client Sample ID): MW-4						Lab	Sample ID	: 480-168167-4
Date Collected: 04/0		i						-	Matrix: Water
Date Received: 04/0	3/20 14:00								
×	Batch	Batch		Dilution	Batch	Prepared			
Ргер Туре	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab	
Total/NA	Analysis	8260C		500	524581	04/07/20 16:38	AMM	TAL BUF	
Client Sample ID	: MW-4D	 1					Lab	Sample ID	: 480-168167-5
Date Collected: 04/0	01/20 13:40	r.							Matrix: Water
Date Received: 04/0	3/20 14:00								
	Batch	Batch		Dilution	Batch	Prepared			
Ргер Туре	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab	
Total/NA	Analysis	8260C		1	524581	04/07/20 17:02	AMM	TAL BUF	
Client Sample ID	: MW-5						Lab	Sample ID	: 480-168167-6
Date Collected: 04/0)1/20 15:15								Matrix: Water
Date Received: 04/0	3/20 14:00								
	Batch	Batch		Dilution	Batch	Prepared			
Ргер Туре	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab	
Total/NA	Analysis	8260C		1	524581	04/07/20 17:26	AMM	TAL BUF	
Client Sample ID	: MW-5D						Lab	Sample ID	: 480-168167-7
Date Collected: 04/0								-	Matrix: Water
Date Received: 04/0	3/20 14:00								
	Batch	Batch		Dilution	Batch	Prepared			
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab	
riep iype						-	-		

Eurofins TestAmerica, Buffalo

Sata Callastad	e ID: MW-6						La	b Sample II	D: 480-168167-
	04/02/20 08:50 04/03/20 14:00								Matrix: Wate
_	Batch	Batch		Dilution	Batch	Prepared			
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab	
Total/NA	Analysis	8260C		2	524584	04/07/20 14:21	CRL	TAL BUF	
Client Sampl	e ID: MW-7						La	b Sample II	D: 480-168167-
Date Collected:									Matrix: Wate
Date Received:									
-	Batch	Batch		Dilution	Batch	Prepared			
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab	
Total/NA	Analysis	8260C			524584	04/07/20 14:45	CRL	TAL BUF	
- Client Semul							Lab	Sample ID	400 400407 4
Client Sampl							LaD	Sample ID:	: 480-168167-1
Date Collected:									Matrix: Wate
Date Received:	04/03/20 14:00								
	Batch	Batch		Dilution	Batch	Prepared			
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab	
Total/NA	Analysis	8260C		1	524584	04/07/20 15:10	CRL	TAL BUF	
Client Sampl	e ID: MW-9R						Lab	Sample ID:	: 480-168167-1
-	04/02/20 16:10								Matrix: Wat
Date Received:									
_	Batch	Batch		Dilution	Batch	Prepared			
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab	
Total/NA	Analysis	8260C		100	524584	04/07/20 15:34		TAL BUF	
10(0// 1//									
_	-						10 A 10 A 10	0 I ID	100 100107 1
_ Client Sampl	e ID: MW-10						Lab	Sample ID:	
– Client Sampl Date Collected:	e ID: MW-10 04/02/20 14:40						Lab	Sample ID:	
– Client Sampl Date Collected:	e ID: MW-10 04/02/20 14:40 04/03/20 14:00						Lab	Sample ID:	
Client Sampl Date Collected: Date Received:	e ID: MW-10 04/02/20 14:40 04/03/20 14:00 Batch	Batch		Dilution	Batch	Prepared			
Client Sampl Date Collected: Date Received: Prep Type	e ID: MW-10 04/02/20 14:40 04/03/20 14:00 Batch Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab	
Client Sampl Date Collected: Date Received:	e ID: MW-10 04/02/20 14:40 04/03/20 14:00 Batch		Run			•			
Client Sampl Date Collected: Date Received: Prep Type Total/NA Client Sampl	e ID: MW-10 04/02/20 14:40 04/03/20 14:00 Batch Type Analysis e ID: MW-111	Method 8260C	Run	Factor	Number	or Analyzed	Analyst CRL	Lab TAL BUF	Matrix: Wat
Client Sampl Date Collected: Date Received: Prep Type Total/NA Client Sampl	e ID: MW-10 04/02/20 14:40 04/03/20 14:00 Batch Type Analysis e ID: MW-111	Method 8260C	Run	Factor	Number	or Analyzed	Analyst CRL	Lab TAL BUF	Matrix: Wat
Client Sampl Date Collected: Date Received: Prep Type Total/NA Client Sampl Date Collected:	e ID: MW-10 04/02/20 14:40 04/03/20 14:00 Batch Type Analysis e ID: MW-111 04/03/20 09:00	Method 8260C	Run	Factor	Number	or Analyzed	Analyst CRL	Lab TAL BUF	Matrix: Wat
Client Sampl Date Collected: Date Received: Prep Type Total/NA Client Sampl Date Collected:	e ID: MW-10 04/02/20 14:40 04/03/20 14:00 Batch Type Analysis e ID: MW-111 04/03/20 09:00	Method 8260C	Run	Factor	Number	or Analyzed	Analyst CRL	Lab TAL BUF	Matrix: Wat
Client Sampl Date Collected: Date Received: Prep Type Total/NA Client Sampl Date Collected:	e ID: MW-10 04/02/20 14:40 04/03/20 14:00 Batch Type Analysis e ID: MW-111 04/03/20 09:00 04/03/20 14:00	Method 8260C	Run	_ <u>Factor</u> 1	Number 524584	or Analyzed 04/07/20 15:59	Analyst CRL Lab	Lab TAL BUF	Matrix: Wat
Client Sampl Date Collected: Date Received: Prep Type Total/NA Client Sampl Date Collected: Date Received:	e ID: MW-10 04/02/20 14:40 04/03/20 14:00 Batch Type Analysis e ID: MW-11I 04/03/20 09:00 04/03/20 14:00 Batch	Method 8260C R Batch		- Factor 1	Number 524584 Batch	or Analyzed 04/07/20 15:59 Prepared	Analyst CRL Lab	Lab TAL BUF	Matrix: Wat
Client Sampl Date Collected: Date Received: Date Received: Total/NA Client Sampl Date Collected: Date Received: Prep Type Total/NA	e ID: MW-10 04/02/20 14:40 04/03/20 14:00 Batch Type Analysis e ID: MW-111 04/03/20 09:00 04/03/20 14:00 Batch Type Analysis	Method 8260C R Batch Method		Factor 1 Dilution Factor	Number 524584 Batch Number	or Analyzed 04/07/20 15:59 Prepared or Analyzed	Analyst CRL Lab	Lab TAL BUF Sample ID: Lab TAL BUF	Matrix: Wat : 480-168167-1 Matrix: Wat
Client Sampl Date Collected: Date Received: Prep Type Total/NA Client Sampl Date Collected: Date Received: Prep Type Total/NA Client Sampl	e ID: MW-10 04/02/20 14:40 04/03/20 14:00 Batch Type Analysis e ID: MW-111 04/03/20 09:00 04/03/20 14:00 Batch Type Analysis e ID: MW-12	Method 8260C R Batch Method		Factor 1 Dilution Factor	Number 524584 Batch Number	or Analyzed 04/07/20 15:59 Prepared or Analyzed	Analyst CRL Lab	Lab TAL BUF Sample ID: Lab TAL BUF	Matrix: Wat : 480-168167-1 Matrix: Wat
Client Sampl Date Collected: Date Received: Prep Type Total/NA Client Sampl Date Collected: Date Received: Prep Type Total/NA Client Sampl Date Collected: Client Sampl Date Collected:	e ID: MW-10 04/02/20 14:40 04/03/20 14:00 Batch Type Analysis e ID: MW-111 04/03/20 09:00 04/03/20 14:00 Batch Type Analysis e ID: MW-12 04/02/20 11:30	Method 8260C R Batch Method		Factor 1 Dilution Factor	Number 524584 Batch Number	or Analyzed 04/07/20 15:59 Prepared or Analyzed	Analyst CRL Lab	Lab TAL BUF Sample ID: Lab TAL BUF	Matrix: Wat : 480-168167-1 Matrix: Wat
Client Sampl Date Collected: Date Received: Prep Type Total/NA Client Sampl Date Collected: Date Received: Prep Type Total/NA Client Sampl Date Collected: Client Sampl Date Collected:	e ID: MW-10 04/02/20 14:40 04/03/20 14:00 Batch Type Analysis e ID: MW-111 04/03/20 09:00 04/03/20 14:00 Batch Type Analysis e ID: MW-12 04/02/20 11:30 04/03/20 14:00	Method 8260C R Batch Method 8260C		Dilution Factor 20	Number 524584 Batch Number 524795	or Analyzed 04/07/20 15:59 Prepared or Analyzed 04/08/20 11:28	Analyst CRL Lab	Lab TAL BUF Sample ID: Lab TAL BUF	Matrix: Wate : 480-168167-1 Matrix: Wate : 480-168167-1
Client Sampl Date Collected: Date Received: Prep Type Total/NA Client Sampl Date Collected: Date Received: Prep Type	e ID: MW-10 04/02/20 14:40 04/03/20 14:00 Batch Type Analysis e ID: MW-111 04/03/20 09:00 04/03/20 14:00 Batch Type Analysis e ID: MW-12 04/02/20 11:30	Method 8260C R Batch Method		Factor 1 Dilution Factor	Number 524584 Batch Number	or Analyzed 04/07/20 15:59 Prepared or Analyzed	Analyst CRL Lab	Lab TAL BUF Sample ID: Lab TAL BUF	: 480-168167-1 Matrix: Wate : 480-168167-1 Matrix: Wate : 480-168167-1 Matrix: Wate

Eurofins TestAmerica, Buffalo

Client Sample ID: MW-13 Lab Sample ID: 480-168167-15 Date Collected: 04/03/20 10:30 Matrix: Water Date Received: 04/03/20 14:00 Dilution Batch Batch Batch Prepared Prep Type Туре Method Run Factor Number or Analyzed Analyst Lab TAL BUF Total/NA Analysis 8260C 80 524584 04/07/20 17:12 CRL **Client Sample ID: MW-14** Lab Sample ID: 480-168167-16 Date Collected: 04/03/20 11:30 Matrix: Water Date Received: 04/03/20 14:00 Batch Batch Dilution Batch Prepared Prep Type Туре Method Run Factor Number or Analyzed Analyst Lab Total/NA Analysis 8260C 100 524584 04/07/20 17:36 CRL TAL BUF **Client Sample ID: DUP-A** Lab Sample ID: 480-168167-17 Date Collected: 04/03/20 00:00 Matrix: Water Date Received: 04/03/20 14:00 Batch Batch Dilution Batch Prepared Method Number Prep Type Туре Run Factor or Analyzed Analyst Lab TAL BUF 8260C 525015 OMI Total/NA Analysis 1 04/09/20 11:13 **Client Sample ID: TRP BLANK** Lab Sample ID: 480-168167-18 Date Collected: 04/03/20 00:00 Matrix: Water Date Received: 04/03/20 14:00 Batch Batch Dilution Batch Prepared Prep Type Туре Method Run Factor Number or Analyzed Analyst Lab Total/NA Analysis 8260C 524584 04/07/20 18:24 CRL TAL BUF

1

Laboratory References:

TAL BUF = Eurofins TestAmerica, Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

5

10

Client: New York State D.E.C. Project/Site: Frewsburg Site #907016 Job ID: 480-168167-1

Laboratory: Eurofins TestAmerica, Buffalo

The accreditations/certifications listed below are applicable to this report.

Authority	Program	Identification Number	Expiration Date
New York	NELAP	10026	04-02-21

Eurofins TestAmerica, Buffalo

Client: New York State D.E.C. Project/Site: Frewsburg Site #907016

Method	Method Description	Protocol	Laboratory
8260C	Volatile Organic Compounds by GC/MS	SW846	TAL BUF
5030C	Purge and Trap	SW846	TAL BUF

Protocol References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL BUF = Eurofins TestAmerica, Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

Sample Summary

Client: New York State D.E.C. Project/Site: Frewsburg Site #907016

_ab Sample ID	Client Sample ID	Matrix	Collected	Received
180-168167-1	MW-1	Water	04/01/20 09:00	04/03/20 14:00
180-168167-2	MW-2	Water	04/01/20 10:30	04/03/20 14:00
180-168167-3	MW-3	Water	04/01/20 12:10	04/03/20 14:00
180-168167-4	MW-4	Water	04/01/20 14:10	04/03/20 14:00
180-168167-5	MW-4D	Water	04/01/20 13:40	04/03/20 14:00
80-168167-6	MW-5	Water	04/01/20 15:15	04/03/20 14:00
80-168167-7	MW-5D	Water	04/01/20 16:15	04/03/20 14:00
80-168167-8	MW-6	Water	04/02/20 08:50	04/03/20 14:00
80-168167-9	MW-7	Water	04/02/20 09:20	04/03/20 14:00
80-168167-10	MW-8	Water	04/02/20 13:30	04/03/20 14:00
80-168167-11	MW-9R	Water	04/02/20 16:10	04/03/20 14:00
80-168167-12	MW-10	Water	04/02/20 14:40	04/03/20 14:00
80-168167-13	MW-11R	Water	04/03/20 09:00	04/03/20 14:00
80-168167-14	MW-12	Water	04/02/20 11:30	04/03/20 14:00
80-168167-15	MW-13	Water	04/03/20 10:30	04/03/20 14:00
180-168167-16	MW-14	Water	04/03/20 11:30	04/03/20 14:00
80-168167-17	DUP-A	Water	04/03/20 00:00	04/03/20 14:00
80-168167-18	TRP BLANK	Water	04/03/20 00:00	04/03/20 14:00

	TestAmerica Buffalo				C	Chain of	Cu	iste	ody	Re	core	ł					Т	estAme	ricc
	10 Hazelwood Drive																I	CUALLE	
	Amherst, NY 14228-2223																T		
	phone 716.691.2600 fax 716.691.7991	Regu	latory Pro	gram:	DW	NPDES		CRA		Other:							11	HE LEADER IN ENVIRONME	NTAL TESTING
	Client Contact	Maurice N	loore				Site	Cor	tact	: Tom	Palme	er (GES)	Date:		No. of Concession, Name		С	OC No:	
	NYSDEC-Region 9	Tel/Fax: (7	16) 851-72	20			Lab	Co	ntac	t: Orle	ette	1100000						1 of 2 COC	s
	270 Michigan Avenue		Analysis	s Turnarou	nd Time												, I.	-mpler:	
	Buffalo, NY 14203			DAYS	WORKING	G DAYS			list									Lab Use Only:	
	716-851-7220 Phone		Custom TAT	10	days .			ĩ	4.2								11	Ik-in Client:	
	FAX			2 wee	ks		î	5	OLM04.2 list			480-168	67 Chai					o Sampling:	
	Project Name: DEC Frewsburg, 300 Falconer Street			1 wee	k		7		so		1	1 .	onali	of Cus	stody				
	Site No.: 907016 (GES Project #0901685)			2 days	S		e (MS	TCLVOCS				1.1	L T				b / SDG No.:	
	Contract #:			1 day			Sample	IS/	2			1 1 1					LL		
	Sample Identification	Sample Date	Sample Time	Sample Type (C=Comp, G=Grab)	Matrix	# of Cont.	Filtered S	8	8260C - T(USW/SW							Sample Specific	Notes:
	MW-1 ,	4.1	900	G	w	3	N		x				13 19 19 19 19 19 19 19 19 19 19 19 19 19						
				G	w	3	N		x	+		+++	++	++			++		
_	MW-2	401	1030	G	w		_		_		V	+++		++	++	++	++		
Pa	MW-3 ·	4/1	1210			9	N	~	X		X	+++	++	++			++		
age	MW-4 -	4/1	1410	G	W	3	N		X					++	++	\vdash	\vdash		
72	MW-4D '	4/1	1340	G	W	3	Ν	_	X	_	-	+++	+				\vdash		
<u>o</u> f	MW-5	4/1	1515	G	W	3	Ν		X	_		+++			++		\square		
74	MW-5D `	4/1	1615	G	W	3	Ν		x										
·	MW-6 ·	4/2	830	G	W	3	Ν		X										
	MW-7	4/2	920	G	W	3	Ν		X										
	MW-8 -	4/2	1330	G	W	3	Ν		X										
	MW-9R	4/2	1610	G	W	3	Ν		X										
	MW-10 -	4/2	1440	G	W	3	Ν		X								TT		
	Preservation Used: 1= Ice, 2= HCI; 3= H2SO4; 4=I	HNO3; 5=N	aOH; 6= Ot	her		Constant and the													
	Possible Hazard Identification:	DI						San	nple	Dispos	sal (A	fee may be	assesse	ed if sar	nples ar	e retain	ed Ion	ger than 1 month)	
	Are any samples from a listed EPA Hazardous Waste? Comments Section if the lab is to dispose of the sample		t any EPA	Waste Code	es for the s	ample in th	e		Potu	rn to Clie	ont		and by La		Arch	ine for		Maril	
	Non-Hazard Flammable	Skin Irritant		Poison B	-	Unknown		Ľ	Retui		ent		osal by La	D		ive for		Months	a chil
	Special Instructions/QC Requirements & Comment Category B Deliverable, NYSDEC Equis	s:										0	D					Ц.	TOE
	Custody Seals Intact:	Custody S	Seal No .:					Coo	oler	Temp.	(°C):	Qbs'd:	ptt	Corr'd:			herm	ID No.:	
	Relinguished by: Soc Hallek	Company	GES		Date/Time 4/3			Red	ceive	ily be	m	HOWC	14.01		apy: A	-		Date Time 20 1	400
	Relinquished by:	Company	:		Date/Tim					ed by:	a.h	14 Mar 1	and the second	Comp				Date/Time:	
4	Relinquished by:	Company	:		Date/Tim	e:		Re	ceive	ea in L	abora	atory by:		Comp				Date/Time:	1
4/13/2020							20	~		#18.4	1			For	m No. (CA-C-W	/1-002	, Rev. 4.3, dated 1	2/05/201

TestAmerica Buffalo	0 Hazelwood Drive mherst, NY 14228-2223									cor	d								TestAmerica		
Amnerst, NY 14228-2223 phone 716.691.2600 fax 716.691.7991	Requ	latory Pro	gram:	DDW	NPDES	ΠR	CRA		Other:										THE LEADER IN ENVIRONMENTA	L TESTING	
Client Contact	Maurice N	-	9			A					er (GE	S)	Date	e:		-		-	COC No:		
NYSDEC-Region 9	Tel/Fax: (716) 851-72	20			-	-				Johns		Car						2 of 2 COCs		
270 Michigan Avenue		the second se	s Turnarou	nd Time					1	П	TT		TT		TT	T	TT	T	Sampler:		
Buffalo, NY 14203				WORKING	G DAYS	1		list											For Lab Use Only:		
716-851-7220 Phone		Custom TA	Г: 10	days .		1	î	OLM04.21											Walk-in Client:		
FAX			2 wee	eks		(N)	(X I N)	N.											Lab Sampling:		
Project Name: DEC Frewsburg, 300 Falconer Street			1 wee	ek		7	õ	ō					11								
Site No.: 907016 (GES Project #0901685)			2 day	S		ole (MSI	ő											Job / SDG No.:		
Contract #:			1 day			Sample (Y	IS /	5									11				
Sample Identification	Sample Date	Sample Time	Sample Type (C=Comp, G=Grab)	Matrix	# of Cont.	Filtered Si	Perform M	8260C - TCLVOCs C		MS/MSD									Sample Specific N	otes:	
MW-11R a	4/3	900	G	w	3	N	1	x				500 00		100						10.00	
MW-11K*	4/2		G	w	3	N		x	-	++			+		+		++	-			
	4/3	1130	G	w	3	N		x	+-	++	+	-	++	+	+	+	+				
		1030	G	w	3	N	-	x	-	+			++	-	++	-	++	-			
	4/3	1130	G		E	_			-	++	+		+	-	+		++	-			
DUP-A				w	3	N		X	-	+		-	+	-	+	-		+			
Trip Blank		-				Ν		X		++		-	+	-	+	_	+	_			
2						-		+		++			+	-	+			_			
and the second	_					-	-	+		++	_		+		+	-	+	_			
						-		┢┼┥	_	++	_		+	_		_		_			
						-	1	\vdash	_	+	_			_		-	+				
						-		$ \rightarrow $	_	+						-	+				
Descention line is the last 2 life 2 life 0.4				L	-											-		_			
Preservation Used: 1= Ice, 2= HCI; 3= H2SO4; 4 Possible Hazard Identification: Are any samples from a listed EPA Hazardous Wast Comments Section if the lab is to dispose of the sam	e? Please Lis		and the second	es for the s	ample in th	e													longer than 1 month)	5	
Non-Hazard Flammable	Skin Irritant		Poison B		Unknown			Retur	n to Cl	lient		Disp	osal by	Lab			hive for	- 22	Months	3	
Special Instructions/QC Requirements & Comme Category B Deliverable, NYSDEC Equis	nts:											a	0	7	-	-		1	14 1	° F	
Custody Seals Intact:	Custody S	Seal No.:					Co	ooler	Temp	. (°C)	: Obs'o	d: 🔿	V	Co	rr'd:		The set	The	rm ID No.:		
Relinquished by: Soe Halleck	Company GES In				1400			eceive			2-2	1	- 199	and a c	ompa	A. ha			Date/Time:		
Relinquished by:	Company			Date/Time				eceive	Λ.		11	1			ompa				Date/Time:		
Relinquished by:	Company	/:		Date/Tim	e:		Re	eceive	19 W	Abor	atory t	y/	IKO	160	ompa	TF	7		Date/Timer 26 14	565	

Form'No. CA-C-WI-002, Rev. 4.3, dated 12/05/2013

4/13/2020

Client: New York State D.E.C.

Login Number: 168167 List Number: 1

Creator: Stopa, Erik S

Question	Answer	Comment
Radioactivity either was not measured or, if measured, is at or below background	True	
The cooler's custody seal, if present, is intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the sample IDs on the containers and the COC.	True	
Samples are received within Holding Time (Excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	True	
If necessary, staff have been informed of any short hold time or quick TAT needs	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Sampling Company provided.	True	GES
Samples received within 48 hours of sampling.	True	
Samples requiring field filtration have been filtered in the field.	N/A	
Chlorine Residual checked.	N/A	

List Source: Eurofins TestAmerica, Buffalo

🛟 eurofins

Environment Testing America

ANALYTICAL REPORT

Eurofins TestAmerica, Buffalo 10 Hazelwood Drive Amherst, NY 14228-2298 Tel: (716)691-2600

Laboratory Job ID: 480-178861-1 Client Project/Site: Frewsburg Site #907016

For:

New York State D.E.C. 270 Michigan Avenue Buffalo, New York 14203

Attn: Damianos Skaros

Wight Bloton

Authorized for release by: 12/15/2020 12:09:54 PM Wyatt Watson, Project Management Assistant I Wyatt.Watson@Eurofinset.com

Designee for

LINKS

Review your project results through

Total Access

Have a Question?

Ask-

The

www.eurofinsus.com/Env

Visit us at:

Expert

Orlette Johnson, Senior Project Manager (484)685-0864 Orlette.Johnson@Eurofinset.com

The test results in this report meet all 2003 NELAC, 2009 TNI, and 2016 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed within the body of this report. Release of the data contained in this sample data package and in the electronic data deliverable has been authorized by the Laboratory Manager or his/her designee, as verified by the following signature.

Wight Bloton

Wyatt Watson Project Management Assistant I 12/15/2020 12:09:54 PM

Table of Contents

Cover Page	1
Table of Contents	3
Definitions	4
Case Narrative	5
Detection Summary	6
Client Sample Results	7
Surrogate Summary	25
QC Sample Results	26
QC Association	31
Chronicle	32
Certification Summary	34
Method Summary	35
Sample Summary	36
Chain of Custody	37
Receipt Checklists	38

5

Qualifiers	
GC/MS VOA Qualifier	Qualifier Description
F1	MS and/or MSD recovery exceeds control limits.
Glossary	
Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CFU	Colony Forming Unit
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)
EDL	Estimated Detection Limit (Dioxin)
LOD	Limit of Detection (DoD/DOE)
LOQ	Limit of Quantitation (DoD/DOE)
MCL	EPA recommended "Maximum Contaminant Level"
MDA	Minimum Detectable Activity (Radiochemistry)
MDC	Minimum Detectable Concentration (Radiochemistry)
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
MPN	Most Probable Number
MQL	Method Quantitation Limit
NC	Not Calculated
ND	Not Detected at the reporting limit (or MDL or EDL if shown)
NEG	Negative / Absent
POS	Positive / Present
PQL	Practical Quantitation Limit
PRES	Presumptive
QC	Quality Control
RER	Relative Error Ratio (Radiochemistry)
-	

- RL Reporting Limit or Requested Limit (Radiochemistry)
- RPD Relative Percent Difference, a measure of the relative difference between two points
- TEF Toxicity Equivalent Factor (Dioxin)
- TEQ Toxicity Equivalent Quotient (Dioxin)
- TNTC Too Numerous To Count

Laboratory: Eurofins TestAmerica, Buffalo

Narrative

Job Narrative 480-178861-1

Case Narrative

Comments

No additional comments.

Receipt

The samples were received on 12/1/2020 4:00 PM; the samples arrived in good condition, and where required, properly preserved and on ice. The temperature of the cooler at receipt was 4.6° C.

GC/MS VOA

Method 8260C: The following samples were diluted to bring the concentration of target analytes within the calibration range: MW-2 (480-178861-1), MW-3 (480-178861-2), MW-4 (480-178861-3), MW-9R (480-178861-4), MW-11R (480-178861-5), MW-13 (480-178861-6), MW-14 (480-178861-7) and DUP-113020 (480-178861-8). Elevated reporting limits (RLs) are provided.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Detection Summary

	Detect	lon Sun	nnary	/			Job ID	: 480-178861-1
16								
					Lab Sa	am	ple ID: 4	80-178861-1
Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
49000	·	1000	810	ug/L	1000	_	8260C	Total/NA
24000		1000	900	ug/L	1000		8260C	Total/NA
					Lab Sa	am	ple ID: 4	80-178861-2
Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Ргер Туре
100		10	8.1	ug/L	10	_	8260C	Total/NA
540		10	4.6	ug/L	10		8260C	Total/NA
					Lab Sa	am	ple ID: 4	80-178861-3
Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Р гер Туре
24000		500	230	ug/L	500	_	8260C	Total/NA
					Lab Sa	am	ple ID: 4	80-178861-4
Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
820		20	16	ug/L	20	_	8260C	Total/NA
250		20	9.2	ug/L	20		8260C	Total/NA
120		20	18	ug/L	20		8260C	Total/NA
					Lab Sa	am	ple ID: 4	80-178861-5
Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
130		5.0		0	5		8260C	Total/NA
250	F1	5.0	2.3	ug/L	5		8260C	Total/NA
					Lab Sa	am	ple ID: 4	80-178861-6
Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
510		10	8.1	ug/L	10	_	8260C	Total/NA
630		10		0	10		8260C	Total/NA
19		10	9.0	ug/L	10		8260C	Total/NA
					Lab Sa	am	ple ID: 4	80-178861-7
Result	Qualifier	RL			Dil Fac	D	Method	Prep Type
1300		40	32	ug/L	40	_	8260C	Total/NA
2000		40	18	ug/L	40		8260C	Total/NA
)20					Lab Sa	am	ple ID: 4	80-178861-8
Result	Qualifier	RL			Dil Fac	D	Method	Prep Type
130		5.0	4.1	ug/L	5	_	8260C	Total/NA
260		5.0	2.3	ug/L	5		8260C	Total/NA
200								
	Result 49000 24000 Result 100 540 Result 24000 Result 24000 Result 24000 Result 320 250 120 Result 130 250 120 Result 1300 200 Result 130	Result Qualifier 49000 24000 24000 Qualifier 100 540 Result Qualifier 24000 Qualifier 24000 Qualifier 24000 Qualifier 24000 Qualifier 24000 Qualifier 24000 Participation Result Qualifier 120 F1 Result Qualifier 1300 F1 Result Qualifier 1300 Participation 1300 Qualifier 1300 Participation 1300 Participation <td>Result Qualifier RL 49000 1000 24000 1000 24000 100 Result Qualifier RL 100 10 540 10 Result Qualifier RL 24000 Qualifier RL 24000 20 500 Result Qualifier RL 2200 20 20 Result Qualifier RL 130 5.0 5.0 250 F1 5.0 250 10 10 630 10 10 630 10 10 1300 40 2000 220 40 200</td> <td>Result Qualifier RL MDL 49000 1000 810 24000 1000 900 Result Qualifier RL MDL 100 10 8.1 540 10 4.6 Result Qualifier RL MDL 24000 Qualifier RL MDL 120 20 18 Result Qualifier RL MDL 130 5.0 2.3 Result Qualifier RL MDL 130 5.0 4.1 10 9.0 9.0 10 9.0 4.0 1300 4.0 32 2000 40 18 1300 200 4.1</td> <td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td> <td>16 Lab Sa Result Qualifier RL MDL Unit Dil Fac 49000 1000 900 ug/L 1000 24000 1000 900 ug/L Dil Fac 1000 900 ug/L 1000 1000 Result Qualifier RL MDL Unit Dil Fac 100 10 4.6 ug/L 10 540 10 4.6 ug/L 10 Lab Sa MDL Unit Dil Fac 24000 500 230 ug/L 500 Result Qualifier RL MDL Unit Dil Fac 24000 250 20 9.2 ug/L 20 250 20 9.2 ug/L 20 20 120 20 18 ug/L 20 20 120 20 18 ug/L 01 Fac 130 Fat MDL Unit Unit Dil Fac 130 Gualifier RL<</td> <td>Result 49000 24000 Qualifier RL 1000 MDL 1000 Unit 900 Dil Fac ug/L Dil Fac 1000 Dil 1000 Result 100 Qualifier RL 100 MDL 10 Unit ug/L Dil Fac 100 Dil 100 Result 100 Qualifier RL 100 MDL 10 Unit ug/L Dil Fac 10 Dil 10 Result 24000 Qualifier RL 500 MDL 200 Unit ug/L Dil Fac 500 Dil 500 Result 24000 Qualifier RL 500 MDL 200 Unit ug/L Dil Fac 20 Dil 200 Result 250 Qualifier RL 50 MDL 20 Unit ug/L Dil Fac 20 Dil 20 Result 130 Qualifier RL 5.0 MDL 2.3 Unit ug/L Dil Fac 5 Dil 5 Result 130 Qualifier RL 5.0 MDL 2.3 Unit ug/L Dil Fac 5 Dil 5 Result 1300 Qualifier RL 40 MDL 40 Unit ug/L Dil Fac 5 Dil 40 200 Lab Sam Result 1300 Qualifier RL 40 MDL 40 Unit 40 Dil Fac 40 Dil 40 20 Lab Sam</td> <td>Job ID: Id Lab Sample ID: 4/ Result Qualifier RL MDL Unit Dil Fac D Method 49000 1000 810 ug/L 1000 2860C 2860C Lab Sample ID: 4/ MDL Unit Dil Fac D Method 100 100 10 8.1 ug/L 100 2860C Result Qualifier RL MDL Unit Dil Fac D Method 24000 500 230 ug/L 500 2860C 2860C Lab Sample ID: 4/ Result Qualifier RL MDL Unit Dil Fac D Method 24000 20 20 18 ug/L 20 8260C 250 20 20 18 Dil Fac D Method 820 20 18 ug/L 20 8260C Lab Samp</td>	Result Qualifier RL 49000 1000 24000 1000 24000 100 Result Qualifier RL 100 10 540 10 Result Qualifier RL 24000 Qualifier RL 24000 20 500 Result Qualifier RL 2200 20 20 Result Qualifier RL 130 5.0 5.0 250 F1 5.0 250 10 10 630 10 10 630 10 10 1300 40 2000 220 40 200	Result Qualifier RL MDL 49000 1000 810 24000 1000 900 Result Qualifier RL MDL 100 10 8.1 540 10 4.6 Result Qualifier RL MDL 24000 Qualifier RL MDL 120 20 18 Result Qualifier RL MDL 130 5.0 2.3 Result Qualifier RL MDL 130 5.0 4.1 10 9.0 9.0 10 9.0 4.0 1300 4.0 32 2000 40 18 1300 200 4.1	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	16 Lab Sa Result Qualifier RL MDL Unit Dil Fac 49000 1000 900 ug/L 1000 24000 1000 900 ug/L Dil Fac 1000 900 ug/L 1000 1000 Result Qualifier RL MDL Unit Dil Fac 100 10 4.6 ug/L 10 540 10 4.6 ug/L 10 Lab Sa MDL Unit Dil Fac 24000 500 230 ug/L 500 Result Qualifier RL MDL Unit Dil Fac 24000 250 20 9.2 ug/L 20 250 20 9.2 ug/L 20 20 120 20 18 ug/L 20 20 120 20 18 ug/L 01 Fac 130 Fat MDL Unit Unit Dil Fac 130 Gualifier RL<	Result 49000 24000 Qualifier RL 1000 MDL 1000 Unit 900 Dil Fac ug/L Dil Fac 1000 Dil 1000 Result 100 Qualifier RL 100 MDL 10 Unit ug/L Dil Fac 100 Dil 100 Result 100 Qualifier RL 100 MDL 10 Unit ug/L Dil Fac 10 Dil 10 Result 24000 Qualifier RL 500 MDL 200 Unit ug/L Dil Fac 500 Dil 500 Result 24000 Qualifier RL 500 MDL 200 Unit ug/L Dil Fac 20 Dil 200 Result 250 Qualifier RL 50 MDL 20 Unit ug/L Dil Fac 20 Dil 20 Result 130 Qualifier RL 5.0 MDL 2.3 Unit ug/L Dil Fac 5 Dil 5 Result 130 Qualifier RL 5.0 MDL 2.3 Unit ug/L Dil Fac 5 Dil 5 Result 1300 Qualifier RL 40 MDL 40 Unit ug/L Dil Fac 5 Dil 40 200 Lab Sam Result 1300 Qualifier RL 40 MDL 40 Unit 40 Dil Fac 40 Dil 40 20 Lab Sam	Job ID: Id Lab Sample ID: 4/ Result Qualifier RL MDL Unit Dil Fac D Method 49000 1000 810 ug/L 1000 2860C 2860C Lab Sample ID: 4/ MDL Unit Dil Fac D Method 100 100 10 8.1 ug/L 100 2860C Result Qualifier RL MDL Unit Dil Fac D Method 24000 500 230 ug/L 500 2860C 2860C Lab Sample ID: 4/ Result Qualifier RL MDL Unit Dil Fac D Method 24000 20 20 18 ug/L 20 8260C 250 20 20 18 Dil Fac D Method 820 20 18 ug/L 20 8260C Lab Samp

No Detections.

This Detection Summary does not include radiochemical test results.

Client Sample ID: MW-2 Date Collected: 12/01/20 11:40 Date Received: 12/01/20 16:00

loh	ın	480-1	7886	1_1
JOD	ID.	400-1	1000	1 - 1

Lab Sample ID: 480-178861-1

Matrix: Water

5

6

Analyte	Result Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
,1,1-Trichloroethane	ND	1000	820	ug/L			12/07/20 15:41	1000
,1,2,2-Tetrachloroethane	ND	1000	210	ug/L			12/07/20 15:41	1000
,1,2-Trichloroethane	ND	1000	230	ug/L			12/07/20 15:41	1000
,1,2-Trichloro-1,2,2-trifluoroethane	ND	1000	310	ug/L			12/07/20 15:41	1000
,1-Dichloroethane	ND	1000	380	ug/L			12/07/20 15:41	1000
,1-Dichloroethene	ND	1000	290	ug/L			12/07/20 15:41	1000
,2,4-Trichlorobenzene	ND	1000	410	ug/L			12/07/20 15:41	1000
,2-Dibromo-3-Chloropropane	ND	1000	390	ug/L			12/07/20 15:41	1000
,2-Dichlorobenzene	ND	1000	790	ug/L			12/07/20 15:41	1000
,2-Dichloroethane	ND	1000	210	ug/L			12/07/20 15:41	1000
I,2-Dichloropropane	ND	1000	720	ug/L			12/07/20 15:41	1000
,3-Dichlorobenzene	ND	1000	780	ug/L			12/07/20 15:41	1000
I,4-Dichlorobenzene	ND	1000	840	ug/L			12/07/20 15:41	1000
2-Butanone (MEK)	ND	10000	1300	ug/L			12/07/20 15:41	1000
2-Hexanone	ND	5000	1200	ug/L			12/07/20 15:41	1000
I-Methyl-2-pentanone (MIBK)	ND	5000	2100	ug/L			12/07/20 15:41	1000
Acetone	ND	10000	3000	ug/L			12/07/20 15:41	1000
Benzene	ND	1000	410	ug/L			12/07/20 15:41	1000
Bromodichloromethane	ND	1000	390	ug/L			12/07/20 15:41	1000
Bromoform	ND	1000	260	ug/L			12/07/20 15:41	1000
Bromomethane	ND	1000	690	ug/L			12/07/20 15:41	1000
Carbon disulfide	ND	1000	190	ug/L			12/07/20 15:41	1000
Carbon tetrachloride	ND	1000	270	ug/L			12/07/20 15:41	1000
Chlorobenzene	ND	1000	750	ug/L			12/07/20 15:41	1000
Dibromochloromethane	ND	1000	320	ug/L			12/07/20 15:41	1000
Chloroethane	ND	1000	320	ug/L			12/07/20 15:41	1000
Chloroform	ND	1000	340	ug/L			12/07/20 15:41	1000
Chloromethane	ND	1000	350	ug/L			12/07/20 15:41	1000
cis-1,2-Dichloroethene	49000	1000	810	ug/L			12/07/20 15:41	1000
is-1,3-Dichloropropene	ND	1000	360	ug/L			12/07/20 15:41	1000
Cyclohexane	ND	1000	180	ug/L			12/07/20 15:41	1000
Dichlorodifluoromethane	ND	1000	680	ug/L			12/07/20 15:41	1000
Ethylbenzene	ND	1000	740	ug/L			12/07/20 15:41	1000
,2-Dibromoethane	ND	1000	730	ug/L			12/07/20 15:41	1000
sopropylbenzene	ND	1000	790	ug/L			12/07/20 15:41	1000
/lethyl acetate	ND	2500	1300	ug/L			12/07/20 15:41	1000
Nethyl tert-butyl ether	ND	1000	160	ug/L			12/07/20 15:41	1000
/lethylcyclohexane	ND	1000	160	ug/L			12/07/20 15:41	100
lethylene Chloride	ND	1000	440	ug/L			12/07/20 15:41	1000
Styrene	ND	1000	730	ug/L			12/07/20 15:41	1000
etrachloroethene	ND	1000	360	ug/L			12/07/20 15:41	100
oluene	ND	1000	510	ug/L			12/07/20 15:41	100
rans-1,2-Dichloroethene	ND	1000	900	ug/L			12/07/20 15:41	100
rans-1,3-Dichloropropene	ND	1000	370	ug/L			12/07/20 15:41	100
Frichloroethene	ND	1000	460	ug/L			12/07/20 15:41	1000
richlorofluoromethane	ND	1000	880	ug/L			12/07/20 15:41	100
/inyl chloride	24000	1000		ug/L			12/07/20 15:41	1000
Kylenes, Total	ND	2000		ug/L			12/07/20 15:41	100

Client Sample Results

Client Sample ID: MW-2

Date Collected: 12/01/20 11:40

Lab Sample ID: 480-178861-1

Matrix: Water

Dil Fac

1000

1000

1000

1000

6

Date Received: 12/01/20 16:	00				
Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed
Toluene-d8 (Surr)	101		80 - 120		12/07/20 15:41
1,2-Dichloroethane-d4 (Surr)	102		77 - 120		12/07/20 15:41
4-Bromofluorobenzene (Surr)	101		73 - 120		12/07/20 15:41
Dibromofluoromethane (Surr)	102		75 - 123		12/07/20 15:41

Client Sample ID: MW-3 Date Collected: 11/30/20 14:00 Date Received: 12/01/20 16:00

Lab Sample ID: 480-178861-2 Matrix: Water

Matrix: Water

5

6

nalyte	Result Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
,1,1-Trichloroethane	ND	10	8.2	ug/L			12/07/20 16:04	10
,1,2,2-Tetrachloroethane	ND	10	2.1	ug/L			12/07/20 16:04	10
,1,2-Trichloroethane	ND	10	2.3	ug/L			12/07/20 16:04	10
,1,2-Trichloro-1,2,2-trifluoroethane	ND	10	3.1	ug/L			12/07/20 16:04	10
,1-Dichloroethane	ND	10	3.8	ug/L			12/07/20 16:04	10
,1-Dichloroethene	ND	10	2.9	ug/L			12/07/20 16:04	10
,2,4-Trichlorobenzene	ND	10	4.1	ug/L			12/07/20 16:04	1(
,2-Dibromo-3-Chloropropane	ND	10	3.9	ug/L			12/07/20 16:04	10
,2-Dichlorobenzene	ND	10	7.9	ug/L			12/07/20 16:04	10
,2-Dichloroethane	ND	10	2.1	ug/L			12/07/20 16:04	1(
,2-Dichloropropane	ND	10	7.2	ug/L			12/07/20 16:04	10
,3-Dichlorobenzene	ND	10	7.8	ug/L			12/07/20 16:04	10
,4-Dichlorobenzene	ND	10	8.4	ug/L			12/07/20 16:04	10
-Butanone (MEK)	ND	100		ug/L			12/07/20 16:04	10
-Hexanone	ND	50		ug/L			12/07/20 16:04	1(
-Methyl-2-pentanone (MIBK)	ND	50		ug/L			12/07/20 16:04	10
Acetone	ND	100		ug/L			12/07/20 16:04	1
Benzene	ND	10		ug/L			12/07/20 16:04	1
romodichloromethane	ND	10		ug/L			12/07/20 16:04	1
romoform	ND	10		ug/L			12/07/20 16:04	1
romomethane	ND	10		ug/L			12/07/20 16:04	1
arbon disulfide	ND	10		ug/L			12/07/20 16:04	
arbon tetrachloride	ND	10		ug/L			12/07/20 16:04	1
hlorobenzene	ND	10		ug/L			12/07/20 16:04	1
ibromochloromethane	ND	10		ug/L			12/07/20 16:04	
hloroethane	ND	10		ug/L			12/07/20 16:04	. 1
hloroform	ND	10		ug/L			12/07/20 16:04	1
hloromethane	ND	10		ug/L			12/07/20 16:04	
is-1,2-Dichloroethene	100	10		ug/L			12/07/20 16:04	1
is-1,3-Dichloropropene	ND	10		ug/L			12/07/20 16:04	1
cyclohexane	ND	10		ug/L			12/07/20 16:04	'' 1
vichlorodifluoromethane	ND	10		ug/L ug/L			12/07/20 16:04	1
thylbenzene	ND	10		ug/L ug/L			12/07/20 16:04	1
,2-Dibromoethane	ND	10		ug/L ug/L			12/07/20 16:04	
sopropylbenzene	ND	10		ug/L ug/L			12/07/20 16:04	י 1
lethyl acetate	ND	25		-			12/07/20 16:04	1
				ug/L				
1ethyl tert-butyl ether	ND	10		ug/L			12/07/20 16:04	1
lethylcyclohexane	ND	10		ug/L			12/07/20 16:04	1
lethylene Chloride	ND	10		ug/L			12/07/20 16:04 12/07/20 16:04	1
tyrene	ND	10		ug/L				1
etrachloroethene	ND	10		ug/L			12/07/20 16:04	1
bluene	ND	10		ug/L			12/07/20 16:04	1
ans-1,2-Dichloroethene	ND	10		ug/L			12/07/20 16:04	1
ans-1,3-Dichloropropene	ND	10		ug/L			12/07/20 16:04	1
richloroethene	540	10		ug/L			12/07/20 16:04	1
richlorofluoromethane	ND	10		ug/L			12/07/20 16:04	1
/inyl chloride /ylenes, Total	ND ND	10 20	9.0	ug/L ug/L			12/07/20 16:04 12/07/20 16:04	1 1

Eurofins TestAmerica, Buffalo

Lab Sample ID: 480-178861-2

Matrix: Water

Client Sample ID: MW-3	
Date Collected: 11/30/20 14:00	
Date Received: 12/01/20 16:00	

Surrogate	%Recovery Qualifier	r Limits	Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	101	80 - 120		12/07/20 16:04	10
1,2-Dichloroethane-d4 (Surr)	100	77 - 120		12/07/20 16:04	10
4-Bromofluorobenzene (Surr)	102	73 - 120		12/07/20 16:04	10
Dibromofluoromethane (Surr)	102	75 - 123		12/07/20 16:04	10

Client Sample ID: MW-4 Date Collected: 11/30/20 13:00 Date Received: 12/01/20 16:00

loh	ın	480-178861-1	
JOD	ID.	400-170001-1	

Lab Sample ID: 480-178861-3 Matrix: Water

5

6

nalyte	Result Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
,1,1-Trichloroethane	ND	500	410	ug/L			12/07/20 16:28	500
,1,2,2-Tetrachloroethane	ND	500	110	ug/L			12/07/20 16:28	500
,1,2-Trichloroethane	ND	500	120	ug/L			12/07/20 16:28	500
,1,2-Trichloro-1,2,2-trifluoroethane	ND	500	160	ug/L			12/07/20 16:28	500
,1-Dichloroethane	ND	500	190	ug/L			12/07/20 16:28	500
,1-Dichloroethene	ND	500	150	ug/L			12/07/20 16:28	500
,2,4-Trichlorobenzene	ND	500	210	ug/L			12/07/20 16:28	50
,2-Dibromo-3-Chloropropane	ND	500	200	ug/L			12/07/20 16:28	50
,2-Dichlorobenzene	ND	500	400	ug/L			12/07/20 16:28	50
,2-Dichloroethane	ND	500	110	ug/L			12/07/20 16:28	50
,2-Dichloropropane	ND	500	360	ug/L			12/07/20 16:28	50
,3-Dichlorobenzene	ND	500	390	ug/L			12/07/20 16:28	50
,4-Dichlorobenzene	ND	500	420	ug/L			12/07/20 16:28	50
-Butanone (MEK)	ND	5000	660	ug/L			12/07/20 16:28	50
-Hexanone	ND	2500	620	ug/L			12/07/20 16:28	50
-Methyl-2-pentanone (MIBK)	ND	2500	1100	ug/L			12/07/20 16:28	50
cetone	ND	5000	1500	ug/L			12/07/20 16:28	50
enzene	ND	500		ug/L			12/07/20 16:28	50
romodichloromethane	ND	500		ug/L			12/07/20 16:28	50
romoform	ND	500		ug/L			12/07/20 16:28	50
romomethane	ND	500		ug/L			12/07/20 16:28	50
arbon disulfide	ND	500		ug/L			12/07/20 16:28	50
arbon tetrachloride	ND	500		ug/L			12/07/20 16:28	50
hlorobenzene	ND	500		ug/L			12/07/20 16:28	50
ibromochloromethane	ND	500		ug/L			12/07/20 16:28	50
chloroethane	ND	500		ug/L			12/07/20 16:28	50
chloroform	ND	500		ug/L			12/07/20 16:28	50
hloromethane	ND	500		ug/L			12/07/20 16:28	50
is-1,2-Dichloroethene	ND	500		ug/L			12/07/20 16:28	50
is-1,3-Dichloropropene	ND	500		ug/L			12/07/20 16:28	50
cyclohexane	ND	500		ug/L			12/07/20 16:28	50
Dichlorodifluoromethane	ND	500		ug/L			12/07/20 16:28	50
thylbenzene	ND	500		ug/L			12/07/20 16:28	50
,2-Dibromoethane	ND	500		ug/L			12/07/20 16:28	50
sopropylbenzene	ND	500		ug/L			12/07/20 16:28	50
lethyl acetate	ND	1300		ug/L ug/L			12/07/20 16:28	50
lethyl tert-butyl ether	ND	500					12/07/20 16:28	50
	ND	500		ug/L				50
lethylcyclohexane lethylene Chloride	ND	500		ug/L			12/07/20 16:28 12/07/20 16:28	50
	ND	500		ug/L ug/L			12/07/20 16:28	
tyrene				-				50
etrachloroethene	ND	500		ug/L			12/07/20 16:28 12/07/20 16:28	50
oluene	ND	500		ug/L				50
ans-1,2-Dichloroethene	ND	500		ug/L			12/07/20 16:28	50
ans-1,3-Dichloropropene	ND	500		ug/L			12/07/20 16:28	50
richloroethene	24000	500		ug/L			12/07/20 16:28	50
richlorofluoromethane	ND	500		ug/L			12/07/20 16:28	50
/inyl chloride /ylenes, Total	ND ND	500		ug/L ug/L			12/07/20 16:28	50

Lab Sample ID: 480-178861-3

Matrix: Water

5

6

Client Sample ID: MW-4 Date Collected: 11/30/20 13:00 Date Received: 12/01/20 16:00

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	100	80 - 120		12/07/20 16:28	500
1,2-Dichloroethane-d4 (Surr)	103	77 - 120		12/07/20 16:28	500
4-Bromofluorobenzene (Surr)	101	73 - 120		12/07/20 16:28	500
Dibromofluoromethane (Surr)	102	75 - 123		12/07/20 16:28	500

Client Sample ID: MW-9R Date Collected: 12/01/20 12:45 Date Received: 12/01/20 16:00

Lab Sample ID: 480-178861-4

Matrix: Water

5

6

Analyte	Result Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND	20	16	ug/L			12/07/20 16:51	20
1,1,2,2-Tetrachloroethane	ND	20	4.2	ug/L			12/07/20 16:51	20
1,1,2-Trichloroethane	ND	20	4.6	ug/L			12/07/20 16:51	20
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	20	6.2	ug/L			12/07/20 16:51	20
1,1-Dichloroethane	ND	20	7.6	ug/L			12/07/20 16:51	20
1,1-Dichloroethene	ND	20	5.8	ug/L			12/07/20 16:51	20
1,2,4-Trichlorobenzene	ND	20	8.2	ug/L			12/07/20 16:51	20
1,2-Dibromo-3-Chloropropane	ND	20	7.8	ug/L			12/07/20 16:51	20
1,2-Dichlorobenzene	ND	20	16	ug/L			12/07/20 16:51	20
1,2-Dichloroethane	ND	20	4.2	ug/L			12/07/20 16:51	20
1,2-Dichloropropane	ND	20	14	ug/L			12/07/20 16:51	20
1,3-Dichlorobenzene	ND	20	16	ug/L			12/07/20 16:51	20
1,4-Dichlorobenzene	ND	20	17	ug/L			12/07/20 16:51	20
2-Butanone (MEK)	ND	200		ug/L			12/07/20 16:51	20
2-Hexanone	ND	100		ug/L			12/07/20 16:51	20
4-Methyl-2-pentanone (MIBK)	ND	100		ug/L			12/07/20 16:51	20
Acetone	ND	200		ug/L			12/07/20 16:51	20
Benzene	ND	20		ug/L			12/07/20 16:51	20
Bromodichloromethane	ND	20		ug/L			12/07/20 16:51	20
Bromoform	ND	20		ug/L			12/07/20 16:51	20
Bromomethane	ND	20		ug/L			12/07/20 16:51	20
Carbon disulfide	ND	20		ug/L			12/07/20 16:51	20
Carbon tetrachloride	ND	20		ug/L			12/07/20 16:51	20
Chlorobenzene	ND	20		ug/L			12/07/20 16:51	20
Dibromochloromethane	ND	20		ug/L			12/07/20 16:51	20
Chloroethane	ND	20		ug/L			12/07/20 16:51	20
Chloroform	ND	20		ug/L			12/07/20 16:51	20
Chloromethane	ND	20		ug/L			12/07/20 16:51	20
cis-1,2-Dichloroethene	820	20		ug/L			12/07/20 16:51	20
sis-1,3-Dichloropropene	ND	20		ug/L			12/07/20 16:51	20
Cyclohexane	ND	20		ug/L			12/07/20 16:51	20
Dichlorodifluoromethane	ND	20		ug/L			12/07/20 16:51	20
Ethylbenzene	ND	20		ug/L			12/07/20 16:51	20
.2-Dibromoethane	ND	20		ug/L			12/07/20 16:51	20
sopropylbenzene	ND	20		ug/L			12/07/20 16:51	20
Aethyl acetate	ND	50		ug/L			12/07/20 16:51	20
Aethyl tert-butyl ether	ND	20		ug/L			12/07/20 16:51	20
/lethylcyclohexane	ND	20		ug/L			12/07/20 16:51	20
Aethylene Chloride	ND	20		ug/L			12/07/20 16:51	20
Styrene	ND	20		ug/L			12/07/20 16:51	20
etrachloroethene	ND	20		ug/L			12/07/20 16:51	20
oluene	ND	20		ug/L ug/L			12/07/20 16:51	20
rans-1.2-Dichloroethene				ug/L ug/L			12/07/20 16:51	
,	ND ND	20 20		ug/L ug/L			12/07/20 16:51	20 20
rans-1,3-Dichloropropene		20 20		-				
Trichloroethene	250			ug/L			12/07/20 16:51	20
richlorofluoromethane	ND	20		ug/L			12/07/20 16:51	20
/inyl chloride Kylenes, Total	120 ND	20 40		ug/L ug/L			12/07/20 16:51 12/07/20 16:51	20 20

Lab Sample ID: 480-178861-4

Matrix: Water

Client Sample ID: MW-9R
Date Collected: 12/01/20 12:45
Date Received: 12/01/20 16:00

Surrogate	%Recovery Qualifie	r Limits	Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	99	80 - 120		12/07/20 16:51	20
1,2-Dichloroethane-d4 (Surr)	100	77 - 120		12/07/20 16:51	20
4-Bromofluorobenzene (Surr)	100	73 - 120		12/07/20 16:51	20
Dibromofluoromethane (Surr)	104	75 - 123		12/07/20 16:51	20

Client Sample ID: MW-11R Date Collected: 11/30/20 12:05 Date Received: 12/01/20 16:00

Lab Sample ID: 480-178861-5

Matrix: Water

Analyte	Result Qualifier	RL	MDL		D Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND	5.0		ug/L		12/07/20 17:14	5
1,1,2,2-Tetrachloroethane	ND	5.0		ug/L		12/07/20 17:14	5
1,1,2-Trichloroethane	ND	5.0		ug/L		12/07/20 17:14	5
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	5.0		ug/L		12/07/20 17:14	5
1,1-Dichloroethane	ND	5.0		ug/L		12/07/20 17:14	5
1,1-Dichloroethene	ND	5.0		ug/L		12/07/20 17:14	5
1,2,4-Trichlorobenzene	ND	5.0	2.1	ug/L		12/07/20 17:14	5
1,2-Dibromo-3-Chloropropane	ND	5.0		ug/L		12/07/20 17:14	5
1,2-Dichlorobenzene	ND	5.0	4.0	ug/L		12/07/20 17:14	5
1,2-Dichloroethane	ND	5.0	1.1	ug/L		12/07/20 17:14	5
1,2-Dichloropropane	ND	5.0	3.6	ug/L		12/07/20 17:14	5
1,3-Dichlorobenzene	ND	5.0	3.9	ug/L		12/07/20 17:14	5
1,4-Dichlorobenzene	ND	5.0	4.2	ug/L		12/07/20 17:14	5
2-Butanone (MEK)	ND	50	6.6	ug/L		12/07/20 17:14	5
2-Hexanone	ND	25	6.2	ug/L		12/07/20 17:14	5
4-Methyl-2-pentanone (MIBK)	ND	25	11	ug/L		12/07/20 17:14	5
Acetone	ND	50	15	ug/L		12/07/20 17:14	5
Benzene	ND	5.0	2.1	ug/L		12/07/20 17:14	5
Bromodichloromethane	ND	5.0	2.0	ug/L		12/07/20 17:14	5
Bromoform	ND	5.0	1.3	ug/L		12/07/20 17:14	5
Bromomethane	ND	5.0		ug/L		12/07/20 17:14	5
Carbon disulfide	ND	5.0	0.95	ug/L		12/07/20 17:14	5
Carbon tetrachloride	ND	5.0	1.4	ug/L		12/07/20 17:14	5
Chlorobenzene	ND	5.0		ug/L		12/07/20 17:14	5
Dibromochloromethane	ND	5.0	1.6	ug/L		12/07/20 17:14	5
Chloroethane	ND	5.0	1.6	ug/L		12/07/20 17:14	5
Chloroform	ND	5.0	1.7	ug/L		12/07/20 17:14	5
Chloromethane	ND	5.0	1.8	ug/L		12/07/20 17:14	5
cis-1,2-Dichloroethene	130	5.0	4.1	ug/L		12/07/20 17:14	5
cis-1,3-Dichloropropene	ND	5.0	1.8	ug/L		12/07/20 17:14	5
Cyclohexane	ND	5.0	0.90	ug/L		12/07/20 17:14	5
Dichlorodifluoromethane	ND	5.0	3.4	ug/L		12/07/20 17:14	5
Ethylbenzene	ND	5.0	3.7	ug/L		12/07/20 17:14	5
1,2-Dibromoethane	ND	5.0	3.7	ug/L		12/07/20 17:14	5
lsopropylbenzene	ND	5.0	4.0	ug/L		12/07/20 17:14	5
Methyl acetate	ND	13		ug/L		12/07/20 17:14	5
Methyl tert-butyl ether	ND	5.0		ug/L		12/07/20 17:14	5
Methylcyclohexane	ND	5.0		ug/L		12/07/20 17:14	5
Methylene Chloride	ND	5.0		ug/L		12/07/20 17:14	5
Styrene	ND	5.0		ug/L		12/07/20 17:14	5
Tetrachloroethene	ND	5.0		ug/L		12/07/20 17:14	5
Toluene	ND	5.0		ug/L		12/07/20 17:14	5
rans-1,2-Dichloroethene	ND	5.0		ug/L		12/07/20 17:14	5
rans-1,3-Dichloropropene	ND	5.0		ug/L		12/07/20 17:14	5
Trichloroethene	250 F1	5.0		ug/L		12/07/20 17:14	5
Trichlorofluoromethane	ND	5.0		ug/L		12/07/20 17:14	5
Vinyl chloride	ND	5.0		ug/L		12/07/20 17:14	5
Xylenes, Total	ND	10		ug/L		12/07/20 17:14	5

Client Sample ID: MW-11R

Lab Sample ID: 480-178861-5

Matrix: Water

5 6 7

Date Collected: 11/30/20 12:05		
Date Received: 12/01/20 16:00		
Surrogate	%Recovery Qualifier	1

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	101	80 - 120		12/07/20 17:14	5
1,2-Dichloroethane-d4 (Surr)	103	77 - 120		12/07/20 17:14	5
4-Bromofluorobenzene (Surr)	102	73 - 120		12/07/20 17:14	5
Dibromofluoromethane (Surr)	103	75 - 123		12/07/20 17:14	5

Client Sample ID: MW-13 Date Collected: 12/01/20 11:00 Date Received: 12/01/20 16:00

Lab Sample ID: 480-178861-6

Matrix: Water

5 6 7

Analyte	Result Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND	10	8.2	ug/L			12/07/20 17:37	10
1,1,2,2-Tetrachloroethane	ND	10	2.1	ug/L			12/07/20 17:37	10
1,1,2-Trichloroethane	ND	10	2.3	ug/L			12/07/20 17:37	10
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	10	3.1	ug/L			12/07/20 17:37	10
1,1-Dichloroethane	ND	10	3.8	ug/L			12/07/20 17:37	10
1,1-Dichloroethene	ND	10	2.9	ug/L			12/07/20 17:37	10
1,2,4-Trichlorobenzene	ND	10	4.1	ug/L			12/07/20 17:37	10
1,2-Dibromo-3-Chloropropane	ND	10	3.9	ug/L			12/07/20 17:37	10
1,2-Dichlorobenzene	ND	10	7.9	ug/L			12/07/20 17:37	10
1,2-Dichloroethane	ND	10	2.1	ug/L			12/07/20 17:37	10
1,2-Dichloropropane	ND	10	7.2	ug/L			12/07/20 17:37	10
1,3-Dichlorobenzene	ND	10		ug/L			12/07/20 17:37	10
1,4-Dichlorobenzene	ND	10		ug/L			12/07/20 17:37	10
2-Butanone (MEK)	ND	100		ug/L			12/07/20 17:37	10
2-Hexanone	ND	50		ug/L			12/07/20 17:37	10
4-Methyl-2-pentanone (MIBK)	ND	50		ug/L			12/07/20 17:37	10
Acetone	ND	100		ug/L			12/07/20 17:37	10
Benzene	ND	10		ug/L			12/07/20 17:37	10
Bromodichloromethane	ND	10		ug/L			12/07/20 17:37	10
Bromoform	ND	10		ug/L			12/07/20 17:37	10
Bromomethane	ND	10		ug/L			12/07/20 17:37	10
Carbon disulfide	ND	10		ug/L			12/07/20 17:37	10
Carbon tetrachloride	ND	10		ug/L			12/07/20 17:37	10
Chlorobenzene	ND	10		ug/L			12/07/20 17:37	10
Dibromochloromethane	ND	10		ug/L			12/07/20 17:37	10
Chloroethane	ND	10		ug/L			12/07/20 17:37	10
Chloroform	ND	10		ug/L			12/07/20 17:37	10
Chloromethane							12/07/20 17:37	
	ND	10		ug/L				10
cis-1,2-Dichloroethene	510 ND	10		ug/L			12/07/20 17:37	10
cis-1,3-Dichloropropene	ND	10		ug/L			12/07/20 17:37	10
Cyclohexane	ND	10		ug/L			12/07/20 17:37	10
Dichlorodifluoromethane	ND	10		ug/L			12/07/20 17:37	10
Ethylbenzene	ND	10		ug/L			12/07/20 17:37	10
I,2-Dibromoethane	ND	10		ug/L			12/07/20 17:37	10
sopropylbenzene	ND	10		ug/L			12/07/20 17:37	10
Methyl acetate	ND	25		ug/L			12/07/20 17:37	10
Methyl tert-butyl ether	ND	10		ug/L			12/07/20 17:37	10
/lethylcyclohexane	ND	10		ug/L			12/07/20 17:37	10
lethylene Chloride	ND	10		ug/L			12/07/20 17:37	10
Styrene	ND	10		ug/L			12/07/20 17:37	10
etrachloroethene	ND	10		ug/L			12/07/20 17:37	10
oluene	ND	10		ug/L			12/07/20 17:37	10
rans-1,2-Dichloroethene	ND	10	9.0	ug/L			12/07/20 17:37	10
rans-1,3-Dichloropropene	ND	10	3.7	ug/L			12/07/20 17:37	10
Frichloroethene	630	10	4.6	ug/L			12/07/20 17:37	10
Trichlorofluoromethane	ND	10	8.8	ug/L			12/07/20 17:37	10
/inyl chloride	19	10	9.0	ug/L			12/07/20 17:37	10
Xylenes, Total	ND	20	66	ug/L			12/07/20 17:37	10

Client Sample ID: MW-13

Date Collected: 12/01/20 11:00

Date Received: 12/01/20 16:00

Lab Sample ID: 480-178861-6

Matrix: Water

5

6

Surrogate	%Recovery Qualifie	r Limits	Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	102	80 - 120		12/07/20 17:37	10
1,2-Dichloroethane-d4 (Surr)	102	77 - 120		12/07/20 17:37	10
4-Bromofluorobenzene (Surr)	102	73 - 120		12/07/20 17:37	10
Dibromofluoromethane (Surr)	103	75 - 123		12/07/20 17:37	10

Client Sample ID: MW-14 Date Collected: 12/01/20 10:10 Date Received: 12/01/20 16:00

Lab Sample ID: 480-178861-7 Matrix: Water

Matrix: Water

5

6

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
I,1,1-Trichloroethane	ND	40	33	ug/L			12/07/20 18:01	40
,1,2,2-Tetrachloroethane	ND	40	8.4	ug/L			12/07/20 18:01	40
,1,2-Trichloroethane	ND	40	9.2	ug/L			12/07/20 18:01	40
,1,2-Trichloro-1,2,2-trifluoroethane	ND	40	12	ug/L			12/07/20 18:01	4(
,1-Dichloroethane	ND	40	15	ug/L			12/07/20 18:01	40
,1-Dichloroethene	ND	40	12	ug/L			12/07/20 18:01	40
I,2,4-Trichlorobenzene	ND	40	16	ug/L			12/07/20 18:01	40
,2-Dibromo-3-Chloropropane	ND	40	16	ug/L			12/07/20 18:01	40
I,2-Dichlorobenzene	ND	40	32	ug/L			12/07/20 18:01	40
,2-Dichloroethane	ND	40	8.4	ug/L			12/07/20 18:01	4
I,2-Dichloropropane	ND	40	29	ug/L			12/07/20 18:01	40
,3-Dichlorobenzene	ND	40	31	ug/L			12/07/20 18:01	40
,4-Dichlorobenzene	ND	40	34	ug/L			12/07/20 18:01	4(
2-Butanone (MEK)	ND	400	53	ug/L			12/07/20 18:01	40
2-Hexanone	ND	200	50	ug/L			12/07/20 18:01	40
I-Methyl-2-pentanone (MIBK)	ND	200	84	ug/L			12/07/20 18:01	4(
Acetone	ND	400	120	ug/L			12/07/20 18:01	40
Benzene	ND	40		ug/L			12/07/20 18:01	40
Bromodichloromethane	ND	40	16	ug/L			12/07/20 18:01	4(
Bromoform	ND	40		ug/L			12/07/20 18:01	40
Bromomethane	ND	40		ug/L			12/07/20 18:01	40
Carbon disulfide	ND	40		ug/L			12/07/20 18:01	4(
Carbon tetrachloride	ND	40		ug/L			12/07/20 18:01	40
Chlorobenzene	ND	40		ug/L			12/07/20 18:01	40
Dibromochloromethane	ND	40		ug/L			12/07/20 18:01	4(
Chloroethane	ND	40		ug/L			12/07/20 18:01	40
Chloroform	ND	40		ug/L			12/07/20 18:01	40
Chloromethane	ND	40		ug/L			12/07/20 18:01	4(
cis-1,2-Dichloroethene	1300	40		ug/L			12/07/20 18:01	40
sis-1,3-Dichloropropene	ND	40		ug/L			12/07/20 18:01	40
Cyclohexane	ND	40		ug/L			12/07/20 18:01	4(
Dichlorodifluoromethane	ND	40		ug/L			12/07/20 18:01	40
Ethylbenzene	ND	40		ug/L			12/07/20 18:01	40
,2-Dibromoethane	ND	40		ug/L			12/07/20 18:01	4(
sopropylbenzene	ND	40		ug/L			12/07/20 18:01	40
/lethyl acetate	ND	100		ug/L			12/07/20 18:01	40
Aethyl tert-butyl ether	ND	40		ug/L			12/07/20 18:01	4(
/lethylcyclohexane	ND	40		ug/L			12/07/20 18:01	40
/lethylene Chloride	ND	40		ug/L			12/07/20 18:01	40
ityrene	ND	40		ug/L			12/07/20 18:01	4
etrachloroethene	ND	40		ug/L			12/07/20 18:01	4
oluene	ND	40		ug/L			12/07/20 18:01	4
rans-1,2-Dichloroethene	ND	40		ug/L			12/07/20 18:01	4
rans-1,3-Dichloropropene	ND	40		ug/L			12/07/20 18:01	4
Frichloroethene	2000	40		ug/L			12/07/20 18:01	4
richlorofluoromethane	ND	40		ug/L			12/07/20 18:01	4
/inyl chloride	ND	40		ug/L			12/07/20 18:01	4
Kylenes, Total	ND	80		ug/L			12/07/20 18:01	4

Lab Sample ID: 480-178861-7

Matrix: Water

Client Sample ID: MW-14					
Date Collected: 12/01/20 10:10					
Date Received: 12/01/20 16:00					

	Surrogate	%Recovery	Qualifier	Limits		Prepared	Analyzed	Dil Fac
	Toluene-d8 (Surr)	100		80 - 120	-		12/07/20 18:01	40
	1,2-Dichloroethane-d4 (Surr)	102		77 - 120			12/07/20 18:01	40
	4-Bromofluorobenzene (Surr)	101		73 - 120			12/07/20 18:01	40
Ŀ	Dibromofluoromethane (Surr)	102		75 - 123			12/07/20 18:01	40

Client Sample ID: DUP-113020 Date Collected: 11/30/20 00:00 Date Received: 12/01/20 16:00

Lab Sample ID: 480-178861-8

Matrix: Water

Analyte	Result Q		MDL		D Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND	5.0		ug/L		12/07/20 18:24	5
,1,2,2-Tetrachloroethane	ND	5.0		ug/L		12/07/20 18:24	5
,1,2-Trichloroethane	ND	5.0	1.2	ug/L		12/07/20 18:24	5
,1,2-Trichloro-1,2,2-trifluoroethane	ND	5.0		ug/L		12/07/20 18:24	5
I,1-Dichloroethane	ND	5.0	1.9	ug/L		12/07/20 18:24	5
1,1-Dichloroethene	ND	5.0	1.5	ug/L		12/07/20 18:24	5
1,2,4-Trichlorobenzene	ND	5.0	2.1	ug/L		12/07/20 18:24	5
1,2-Dibromo-3-Chloropropane	ND	5.0	2.0	ug/L		12/07/20 18:24	5
1,2-Dichlorobenzene	ND	5.0	4.0	ug/L		12/07/20 18:24	5
1,2-Dichloroethane	ND	5.0	1.1	ug/L		12/07/20 18:24	5
1,2-Dichloropropane	ND	5.0		ug/L		12/07/20 18:24	5
1,3-Dichlorobenzene	ND	5.0		ug/L		12/07/20 18:24	5
1,4-Dichlorobenzene	ND	5.0		ug/L		12/07/20 18:24	5
2-Butanone (MEK)	ND	50		ug/L		12/07/20 18:24	5
2-Hexanone	ND	25		ug/L		12/07/20 18:24	5
4-Methyl-2-pentanone (MIBK)	ND	25		ug/L		12/07/20 18:24	5
Acetone	ND	50		ug/L		12/07/20 18:24	5
Benzene	ND	5.0		ug/L		12/07/20 18:24	5
Bromodichloromethane	ND	5.0		ug/L		12/07/20 18:24	5
Bromoform	ND	5.0		ug/L		12/07/20 18:24	5
Bromomethane	ND	5.0		ug/L		12/07/20 18:24	5
Carbon disulfide	ND	5.0		ug/L		12/07/20 18:24	5
Carbon tetrachloride	ND	5.0		ug/L		12/07/20 18:24	5
Chlorobenzene	ND	5.0		ug/L		12/07/20 18:24	5
Dibromochloromethane	ND	5.0		ug/L		12/07/20 18:24	5
Chloroethane	ND	5.0		ug/L		12/07/20 18:24	5
Chloroform	ND	5.0		ug/L		12/07/20 18:24	5
Chloromethane	ND	5.0		ug/L		12/07/20 18:24	5
cis-1,2-Dichloroethene	130	5.0		ug/L		12/07/20 18:24	5
cis-1,3-Dichloropropene	ND	5.0		ug/L		12/07/20 18:24	5
Cyclohexane	ND	5.0		ug/L		12/07/20 18:24	5
Dichlorodifluoromethane	ND	5.0		ug/L		12/07/20 18:24	5
Ethylbenzene	ND	5.0		ug/L		12/07/20 18:24	5
⊑tryibenzene 1,2-Dibromoethane	ND	5.0				12/07/20 18:24	
	ND	5.0		ug/L		12/07/20 18:24	5 5
Isopropylbenzene				ug/L			
Methyl acetate	ND	13		ug/L		12/07/20 18:24	5
Methyl tert-butyl ether	ND	5.0		ug/L		12/07/20 18:24	5
Methylcyclohexane	ND	5.0		ug/L		12/07/20 18:24	5
Methylene Chloride	ND	5.0		ug/L		12/07/20 18:24	5
Styrene	ND	5.0		ug/L		12/07/20 18:24	5
Tetrachloroethene	ND	5.0		ug/L		12/07/20 18:24	5
Foluene	ND	5.0		ug/L		12/07/20 18:24	5
rans-1,2-Dichloroethene	ND	5.0		ug/L		12/07/20 18:24	5
rans-1,3-Dichloropropene	ND	5.0		ug/L		12/07/20 18:24	5
Frichloroethene	260	5.0		ug/L		12/07/20 18:24	5
Trichlorofluoromethane	ND	5.0		ug/L		12/07/20 18:24	5
Vinyl chloride	ND	5.0	4.5	ug/L		12/07/20 18:24	5
Xylenes, Total	ND	10	3.3	ug/L		12/07/20 18:24	5

Client: New York State D.E.C. Project/Site: Frewsburg Site #907016

Lab Sample ID: 480-178861-8

Matrix: Water

5

6

Client Sample ID: DUP-113020 Date Collected: 11/30/20 00:00 Date Received: 12/01/20 16:00

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	101	80 - 120		12/07/20 18:24	5
1,2-Dichloroethane-d4 (Surr)	103	77 - 120		12/07/20 18:24	5
4-Bromofluorobenzene (Surr)	100	73 - 120		12/07/20 18:24	5
Dibromofluoromethane (Surr)	106	75 - 123		12/07/20 18:24	5

Client Sample ID: Trip Blank Date Collected: 11/30/20 00:00 Date Received: 12/01/20 16:00

loh	ın	480-1	178	861	_1
JOD	ID.	400-	1/0	001	- 1

Lab Sample ID: 480-178861-9

Matrix: Water

Analyte	Result (Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
I,1,1-Trichloroethane	ND		1.0	0.82				12/07/20 18:48	1
I,1,2,2-Tetrachloroethane	ND		1.0		ug/L			12/07/20 18:48	1
I,1,2-Trichloroethane	ND		1.0	0.21	-			12/07/20 18:48	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		1.0		ug/L			12/07/20 18:48	ا 1
1,1,2-1 richloro-1,2,2-trifiuoroethane	ND ND		1.0 1.0		-			12/07/20 18:48	1
	ND ND		1.0 1.0	0.38	-				
1,1-Dichloroethene				0.29				12/07/20 18:48	1
1,2,4-Trichlorobenzene			1.0	0.41	-			12/07/20 18:48	
1,2-Dibromo-3-Chloropropane	ND		1.0	0.39	-			12/07/20 18:48	1
1,2-Dichlorobenzene	ND		1.0	0.79	-			12/07/20 18:48	1
1,2-Dichloroethane	ND		1.0	0.21	-			12/07/20 18:48	1
1,2-Dichloropropane	ND		1.0	0.72	-			12/07/20 18:48	1
1,3-Dichlorobenzene	ND		1.0	0.78				12/07/20 18:48	1
1,4-Dichlorobenzene	ND		1.0	0.84	-			12/07/20 18:48	1
2-Butanone (MEK)	ND		10		ug/L			12/07/20 18:48	1
2-Hexanone	ND		5.0		ug/L			12/07/20 18:48	1
4-Methyl-2-pentanone (MIBK)	ND		5.0		ug/L			12/07/20 18:48	1
Acetone	ND		10		ug/L			12/07/20 18:48	1
Benzene	ND		1.0	0.41				12/07/20 18:48	1
Bromodichloromethane	ND		1.0		ug/L			12/07/20 18:48	1
Bromoform	ND		1.0		ug/L			12/07/20 18:48	1
Bromomethane	ND		1.0	0.69				12/07/20 18:48	1
Carbon disulfide	ND		1.0	0.19	ug/L			12/07/20 18:48	1
Carbon tetrachloride	ND		1.0		ug/L			12/07/20 18:48	1
Chlorobenzene	ND		1.0	0.75	-			12/07/20 18:48	1
Dibromochloromethane	ND		1.0		ug/L			12/07/20 18:48	1
Chloroethane	ND		1.0	0.32	-			12/07/20 18:48	1
Chloroform	ND		1.0	0.34	-			12/07/20 18:48	1
Chloromethane	ND		1.0	0.35				12/07/20 18:48	
cis-1,2-Dichloroethene	ND		1.0		ug/L			12/07/20 18:48	1
cis-1,3-Dichloropropene	ND		1.0	0.36	-			12/07/20 18:48	1
Cyclohexane	ND		1.0	0.18				12/07/20 18:48	
Dichlorodifluoromethane	ND		1.0	0.68	-			12/07/20 18:48	1
Ethylbenzene	ND		1.0	0.00	-			12/07/20 18:48	1
1.2-Dibromoethane	ND		1.0		ug/L			12/07/20 18:48	
Isopropylbenzene	ND		1.0	0.73	-			12/07/20 18:48	1
Methyl acetate	ND		2.5		ug/L ug/L			12/07/20 18:48	1
Methyl tert-butyl ether	ND		2.5 1.0	0.16				12/07/20 18:48	1
Methylcyclohexane	ND		1.0 1.0		ug/L			12/07/20 18:48 12/07/20 18:48	1
Methylene Chloride	ND		1.0		ug/L				1
Styrene	ND		1.0		ug/L			12/07/20 18:48	1
etrachloroethene	ND		1.0	0.36	-			12/07/20 18:48	1
	ND		1.0		ug/L			12/07/20 18:48	1
rans-1,2-Dichloroethene	ND		1.0		ug/L			12/07/20 18:48	1
rans-1,3-Dichloropropene	ND		1.0		ug/L			12/07/20 18:48	1
Trichloroethene	ND		1.0		ug/L			12/07/20 18:48	1
Trichlorofluoromethane	ND		1.0		ug/L			12/07/20 18:48	1
/inyl chloride	ND		1.0	0.90	ug/L			12/07/20 18:48	1
Xylenes, Total	ND		2.0	0.66	ug/L			12/07/20 18:48	1

Client Sample ID: Trip Blank Date Collected: 11/30/20 00:00 Date Received: 12/01/20 16:00

Lab Sample ID: 480-178861-9 Matrix: Water

5

6

Surrogate	%Recovery 0	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	101		80 - 120		12/07/20 18:48	1
1,2-Dichloroethane-d4 (Surr)	102		77 - 120		12/07/20 18:48	1
4-Bromofluorobenzene (Surr)	101		73 - 120		12/07/20 18:48	1
Dibromofluoromethane (Surr)	103		75 - 123		12/07/20 18:48	1

12/15/2020

Surrogate Summary

Method: 8260C - Volatile Organic Compounds by GC/MS Matrix: Water

			Pe	ercent Surre	ogate Reco
		TOL	DCA	BFB	DBFM
Lab Sample ID	Client Sample ID	(80-120)	(77-120)	(73-120)	(75-123)
480-178861-1	MW-2	101	102	101	102
480-178861-2	MW-3	101	100	102	102
480-178861-3	MW-4	100	103	101	102
480-178861-4	MW-9R	99	100	100	104
480-178861-5	MW-11R	101	103	102	103
480-178861-5 MS	MW-11R	99	98	101	102
480-178861-5 MSD	MW-11R	101	100	105	102
480-178861-6	MW-13	102	102	102	103
480-178861-7	MW-14	100	102	101	102
480-178861-8	DUP-113020	101	103	100	106
480-178861-9	Trip Blank	101	102	101	103
LCS 480-562163/5	Lab Control Sample	100	102	103	104
MB 480-562163/7	Method Blank	102	102	102	103

TOL = Toluene-d8 (Surr)

DCA = 1,2-Dichloroethane-d4 (Surr)

BFB = 4-Bromofluorobenzene (Surr)

DBFM = Dibromofluoromethane (Surr)

Prep Type: Total/NA

Method: 8260C - Volatile Organic Compounds by GC/MS

MB MB

ND

ND

ND

ND

ND

Result Qualifier

Lab Sample ID: MB 480-562163/7 Matrix: Water

Analysis Batch: 562163

1,1,2-Trichloro-1,2,2-tri3uoroethane

1,1,1-Trichloroethane

1,1,2-Trichloroethane

1,1-Dichloroethane

1,1,2,2-Tetrachloroethane

Analyte

Client Sample ID: Method Blank Prep Type: Total/NA

Analyzed Dil Fac 12/07/20 11:57 1 12/07/20 11:57 1 12/07/20 11:57 1 12/07/20 11:57 1 12/07/20 11:57 1 12/07/20 11:57 1

8
9

	3

	ND	1.0	0.00 ug/L	12/01/20 11:07	
1,1-Dichloroethene	ND	1.0	0.29 ug/L	12/07/20 11:57 1	
1,2,4-Trichlorobenf ene	ND	1.0	0.41 ug/L	12/07/20 11:57 1	
1,2-Dibroz o-5-Chloromomane	ND	1.0	0.59 ug/L	12/07/20 11:57 1	
1,2-Dichlorobenf ene	ND	1.0	0.79 ug/L	12/07/20 11:57 1	
1,2-Dichloroethane	ND	1.0	0.21 ug/L	12/07/20 11:57 1	
1,2-Dichloromonane	ND	1.0	0.72 ug/L	12/07/20 11:57 1	
1,5-Dichlorobenf ene	ND	1.0	0.78 ug/L	12/07/20 11:57 1	
1,4-Dichlorobenf ene	ND	1.0	0.84 ug/L	12/07/20 11:57 1	
2-putanone B(EMK	ND	10	1.5 ug/L	12/07/20 11:57 1	
2-Hexanone	ND	0. (1.2 ug/L	12/07/20 11:57 1	
4-(ethyl-2-mentanone B(Ip MK	ND	0. (2.1 ug/L	12/07/20 11:57 1	
Acetone	ND	10	5.0 ug/L	12/07/20 11:57 1	
penfene	ND	1.0	0.41 ug/L	12/07/20 11:57 1	
proz odichloroz ethane	ND	1.0	0.59 ug/L	12/07/20 11:57 1	
proz o3orz	ND	1.0	0.26 ug/L	12/07/20 11:57 1	
proz oz ethane	ND	1.0	0.69 ug/L	12/07/20 11:57 1	
Carbon disul3de	ND	1.0	0.19 ug/L	12/07/20 11:57 1	
Carbon tetrachloride	ND	1.0	0.27 ug/L	12/07/20 11:57 1	
Chlorobenf ene	ND	1.0	0.7) ug/L	12/07/20 11:57 1	
Dibroz ochloroz ethane	ND	1.0	0.52 ug/L	12/07/20 11:57 1	
Chloroethane	ND	1.0	0.52 ug/L	12/07/20 11:57 1	
Chloro3orz	ND	1.0	0.54 ug/L	12/07/20 11:57 1	
Chloroz ethane	ND	1.0	0.5) ug/L	12/07/20 11:57 1	
cis-1,2-Dichloroethene	ND	1.0	0.81 ug/L	12/07/20 11:57 1	
cis-1,5-Dichloromomene	ND	1.0	0.56 ug/L	12/07/20 11:57 1	
Cyclohexane	ND	1.0	0.18 ug/L	12/07/20 11:57 1	
Dichlorodi3uoroz ethane	ND	1.0	0.68 ug/L	12/07/20 11:57 1	
Ethylbenf ene	ND	1.0	0.74 ug/L	12/07/20 11:57 1	
1,2-Dibroz oethane	ND	1.0	0.75 ug/L	12/07/20 11:57 1	
lsomonylbenf ene	ND	1.0	0.79 ug/L	12/07/20 11:57 1	
(ethyl acetate	ND	2.)	1.5 ug/L	12/07/20 11:57 1	
(ethyl tert-butyl ether	ND	1.0	0.16 ug/L	12/07/20 11:57 1	
(ethylcyclohexane	ND	1.0	0.16 ug/L	12/07/20 11:57 1	
(ethylene Chloride	ND	1.0	0.44 ug/L	12/07/20 11:57 1	
Styrene	ND	1.0	0.75 ug/L	12/07/20 11:57 1	
Tetrachloroethene	ND	1.0	0.56 ug/L	12/07/20 11:57 1	
Toluene	ND	1.0	0.)1 ug/L	12/07/20 11:57 1	
trans-1,2-Dichloroethene	ND	1.0	0.90 ug/L	12/07/20 11:57 1	
trans-1,5-Dichloromomene	ND	1.0	0.57 ug/L	12/07/20 11:57 1	
Trichloroethene	ND	1.0	0.46 ug/L	12/07/20 11:57 1	
Trichloro3uoroz ethane	ND	1.0	0.88 ug/L	12/07/20 11:57 1	
Xinyl chloride	ND	1.0	0.90 ug/L	12/07/20 11:57 1	
Vylenes, Total	ND	2.0	0.66 ug/L	12/07/20 11:57 1	

QC Sample Results

RL

1.0

1.0

1.0

1.0

1.0

MDL Unit

0.82 ug/L

0.21 ug/L

0.25 ug/L

0.51 ug/L

0.58 ug/L

D

Prepared

Euro3ns TestAz erica, pu33alo

QC Sample Results

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Prep Type: Total/NA

1 2 3 4 5 6 7 8

11 12 13

Lab Sample ID: MB 480-562163/7

Matrix: Water Analysis Batch: 562163

Client Sample ID: Method Blank Prep Type: Total/NA

Client Sample ID: Lab Control Sample

	MB N	//B			
Surrogate	%Recovery G	Qualifier Limits	Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	102	80 - 120		12/07/20 11:37	1
1,2-Dichloroethane-d4 (Surr)	102	77 - 120		12/07/20 11:37	1
4-Bromofluorobenzene (Surr)	102	73 - 120		12/07/20 11:37	1
Dibromofluoromethane (Surr)	103	75 - 123		12/07/20 11:37	1

Lab Sample ID: LCS 480-562163/5 Matrix: Water

Analysis Batch: 562163

Analysis Batch. 302103	Spike	LCS	LCS				%Rec.
Analyte	Added		Qualifier	Unit	D	%Rec	Limits
1,1,1-Trichloroethane	2).0	2).6		ug/L		105	75 - 126
1,1,2,2-Tetrachloroethane	2).0	26.6		ug/L		106	76 - 120
1,1,2-Trichloroethane	2) .0	26.)		ug/L		106	76 - 122
1,1,2-Trichloro-1,2,2-tri3uoroetha	2).0	24.4		ug/L		98	61 - 148
ne							
1,1-Dichloroethane	2) .0	2) .9		ug/L		104	77 - 120
1,1-Dichloroethene	2) .0	26.4		ug/L		106	66 - 127
1,2,4-Trichlorobenf ene	2) .0	26.1		ug/L		10)	79 - 122
1,2-Dibroz o-5-Chloromonane	2) .0	27.1		ug/L		108) 6 - 154
1,2-Dichlorobenf ene	2) .0	2) .6		ug/L		102	80 - 124
1,2-Dichloroethane	2) .0	2) .9		ug/L		104	7) - 120
1,2-Dichloromomane	2) .0	2) .6		ug/L		105	76 - 120
1,5-Dichlorobenf ene	2) .0	2) .5		ug/L		101	77 - 120
1,4-Dichlorobenf ene	2) .0	2) .2		ug/L		101	80 - 120
2-putanone B(EMK	12)	140		ug/L		112) 7 - 140
2-Hexanone	12)	158		ug/L		110	6) - 127
4-(ethyl-2-mentanone B(lpMK	12)	156		ug/L		109	71 - 12)
Acetone	12)	128		ug/L		102) 6 - 142
penfene	2) .0	2) .8		ug/L		105	71 - 124
proz odichloroz ethane	2) .0	26.9		ug/L		108	80 - 122
proz o3orz	2) .0	26.9		ug/L		107	61 - 152
proz oz ethane	2) .0	2) .7		ug/L		105)) _ 144
Carbon disul3de	2) .0	2) .0		ug/L		100) 9 - 154
Carbon tetrachloride	2) .0	2) .2		ug/L		101	72 - 154
Chlorobenf ene	2) .0	2) .6		ug/L		102	80 - 120
Dibroz ochloroz ethane	2) .0	27.1		ug/L		109	7) _ 12)
Chloroethane	2) .0	24.5		ug/L		97	69 - 156
Chloro3orz	2) .0	24.6		ug/L		98	75 - 127
Chloroz ethane	2) .0	24.0		ug/L		96	68 - 124
cis-1,2-Dichloroethene	2) .0	26.4		ug/L		106	74 - 124
cis-1,5-Dichloromomene	2) .0	26.1		ug/L		104	74 - 124
Cyclohexane	2) .0	26.4		ug/L		106) 9 _ 15)
Dichlorodi3uoroz ethane	2) .0	2).0		ug/L		100) 9 - 15)
Ethylbenf ene	2) .0	2).)		ug/L		102	77 - 125
1,2-Dibroz oethane	2) .0	27.0		ug/L		108	77 - 120
Isomronylbenf ene	2).0	2).1		ug/L		101	77 - 122
(ethyl acetate) 0.0) 5.0		ug/L		106	74 - 155
(ethyl tert-butyl ether	2) .0	26.7		ug/L		107	77 - 120
(ethylcyclohexane	2) .0	27.2		ug/L		109	68 - 154

Euro3ns TestAz erica, pu33alo

Prep Type: Total/NA

Client Sample ID: Lab Control Sample

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCS 480-562163/5 **Matrix: Water**

Analysis Batch: 562163

	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
(ethylene Chloride	2) .0	24.9		ug/L		100	7) _ 124
Styrene	2) .0	26.1		ug/L		104	80 - 120
Tetrachloroethene	2).0	26.6		ug/L		106	74 - 122
Toluene	2).0	2).0		ug/L		100	80 - 122
trans-1,2-Dichloroethene	2) .0	26.2		ug/L		10)	75 - 127
trans-1,5-Dichloromonene	2).0	2).7		ug/L		105	80 - 120
Trichloroethene	2).0	26.5		ug/L		10)	74 - 125
Trichloro3uoroz ethane	2) .0	26.6		ug/L		106	62_1)0
Xinyl chloride	2).0	26.0		ug/L		104	6) - 155

	LUS	100 102 103	
Surrogate	%Recovery	Qualifier	Limits
Toluene-d8 (Surr)	100		80 - 120
oluene-d8 (Surr) ,2-Dichloroethane-d4 (Surr) -Bromofluorobenzene (Surr)	102		77 - 120
4-Bromofluorobenzene (Surr)	103		73 - 120
Dibromofluoromethane (Surr)	104		75 - 123

Lab Sample ID: 480-178861-5 MS Matrix: Water Analysis Batch: 562163

	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,1,1-Trichloroethane	ND		12)	152		ug/L		106	75 - 126	
1,1,2,2-Tetrachloroethane	ND		12)	122		ug/L		98	76 - 120	
1,1,2-Trichloroethane	ND		12)	12)		ug/L		100	76 - 122	
1,1,2-Trichloro-1,2,2-tri3uoroetha	ND		12)	126		ug/L		101	61 - 148	
ne										
1,1-Dichloroethane	ND		12)	126		ug/L		101	77 - 120	
1,1-Dichloroethene	ND		12)	155		ug/L		106	66 - 127	
1,2,4-Trichlorobenf ene	ND		12)	12)		ug/L		100	79 - 122	
1,2-Dibroz o-5-Chloromomane	ND		12)	119		ug/L		96) 6 - 154	
1,2-Dichlorobenf ene	ND		12)	125		ug/L		99	80 - 124	
1,2-Dichloroethane	ND		12)	125		ug/L		98	7) - 120	
1,2-Dichloromomane	ND		12)	122		ug/L		97	76 - 120	
1,5-Dichlorobenf ene	ND		12)	122		ug/L		98	77 - 120	
1,4-Dichlorobenf ene	ND		12)	125		ug/L		98	78 - 124	
2-putanone B EMK	ND		62)	609		ug/L		97) 7 - 140	
2-Hexanone	ND		62)	615		ug/L		98	6) ₋ 127	
4-(ethyl-2-mentanone B{ lpMK	ND		62)	612		ug/L		98	71 - 12)	
Acetone	ND		62)))2		ug/L		88) 6 - 142	
o enfene	ND		12)	124		ug/L		99	, 71 - 124	
oroz odichloroz ethane	ND		12)	127		ug/L		102	80 - 122	
oroz o3orz	ND		12)	119		ug/L		9)	61 - 152	
oroz oz ethane	ND		12)	128		ug/L		105)) _ 144	
Carbon disul3de	ND		12)	122		ug/L		97)9_154	
Carbon tetrachloride	ND		12)	152		ug/L		10)	72 - 154	
Chlorobenf ene	ND		12)	124		ug/L		99	80 - 120	
Dibroz ochloroz ethane	ND		12)	127		ug/L		102	7) _ 12)	
Chloroethane	ND		12)	120		ug/L		96	69 - 156	
Chloro&rz	ND		12)	118		ug/L		9)	75 - 127	

Euro3ns TestAz erica, pu33alo

Client Sample ID: MW-11R Prep Type: Total/NA

5

Prep Type: Total/NA

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: 480-178861-5 MS Matrix: Water

Analysis Batch: 562163

Analysis Baton. 002100	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	•	Qualifier	Added		Qualifier	Unit	D	%Rec	Limits	
Chloroz ethane	ND		12)	124		ug/L		99	68 - 124	·
cis-1,2-Dichloroethene	150		12)	245		ug/L		89	74 - 124	
cis-1,5-Dichloromomene	ND		12)	125		ug/L		99	74 - 124	
Cyclohexane	ND		12)	158		ug/L		110) 9 _ 15)	
Dichlorodi3uoroz ethane	ND		12)	154		ug/L		107) 9 _ 15)	
Ethylbenf ene	ND		12)	124		ug/L		99	77 - 125	
1,2-Dibroz oethane	ND		12)	127		ug/L		101	77 - 120	
lsomonylbenf ene	ND		12)	122		ug/L		98	77 - 122	
(ethyl acetate	ND		2) 0	255		ug/L		95	74 - 155	
(ethyl tert-butyl ether	ND		12)	122		ug/L		98	77 - 120	
(ethylcyclohexane	ND		12)	140		ug/L		112	68 - 154	
(ethylene Chloride	ND		12)	120		ug/L		96	7) - 124	
Styrene	ND		12)	122		ug/L		98	80 - 120	
Tetrachloroethene	ND		12)	155		ug/L		106	74 - 122	
Toluene	ND		12)	125		ug/L		99	80 - 122	
trans-1,2-Dichloroethene	ND		12)	151		ug/L		10)	75 - 127	-
trans-1,5-Dichloromomene	ND		12)	122		ug/L		98	80 - 120	
Trichloroethene	2)0	F1	12)	540		ug/L		76	74 - 125	
Trichloro3uoroz ethane	ND		12)	159		ug/L		111	62_1)0	
Xinyl chloride	ND		12)	158		ug/L		110	6) - 155	

Toluene-d8 (Surr) 1,2-Dichloroethane-d4 (Surr)	MS	MS	
Surrogate	%Recovery	Qualifier	Limits
Toluene-d8 (Surr)	99		80 - 120
1,2-Dichloroethane-d4 (Surr)	98		77 - 120
4-Bromofluorobenzene (Surr)	101		73 - 120
Dibromofluoromethane (Surr)	102		75 - 123

Lab Sample ID: 480-178861-5 MSD Matrix: Water Analysis Batch: 562163

Analysis Batch. 002100	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1,1,1-Trichloroethane	ND		12)	124		ug/L		99	75 - 126	6	1)
1,1,2,2-Tetrachloroethane	ND		12)	124		ug/L		99	76 - 120	2	1)
1,1,2-Trichloroethane	ND		12)	12)		ug/L		100	76 - 122	0	1)
1,1,2-Trichloro-1,2,2-tri3uoroetha	ND		12)	121		ug/L		97	61 - 148	4	20
ne											
1,1-Dichloroethane	ND		12)	122		ug/L		98	77 - 120	5	20
1,1-Dichloroethene	ND		12)	129		ug/L		105	66 - 127	5	16
1,2,4-Trichlorobenf ene	ND		12)	126		ug/L		101	79 - 122	1	20
1,2-Dibroz o-5-Chloromomane	ND		12)	122		ug/L		98) 6 - 154	2	1)
1,2-Dichlorobenf ene	ND		12)	122		ug/L		98	80 - 124	1	20
1,2-Dichloroethane	ND		12)	121		ug/L		97	7) - 120	1	20
1,2-Dichloromomane	ND		12)	120		ug/L		96	76 - 120	1	20
1,5-Dichlorobenf ene	ND		12)	122		ug/L		97	77 - 120	0	20
1,4-Dichlorobenf ene	ND		12)	122		ug/L		98	78 - 124	1	20
2-putanone B(EMK	ND		62)	614		ug/L		98) 7 _ 140	1	20
2-Hexanone	ND		62)	62)		ug/L		100	6) - 127	2	1)
4-(ethyl-2-mentanone B(lp MK	ND		62)	650		ug/L		101	71 - 12)	5	5)

Euro3ns TestAz erica, pu33alo

Client Sample ID: MW-11R

Prep Type: Total/NA

Client Sample ID: MW-11R

Prep Type: Total/NA

Client Sample ID: MW-11R

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: 480-178861-5 MSD Matrix: Water

Analysis Batch: 562163

Dibromofluoromethane (Surr)

102

		Sample	Spike		MSD				%Rec.		RPD	
Analyte		Qualifier	Added		Qualifier	Unit	D	%Rec	Limits	RPD	Limit	
Acetone	ND		62)))5		ug/L		88) 6 - 142	0	1)	
penf ene	ND		12)	121		ug/L		97	71 - 124	2	15	
proz odichloroz ethane	ND		12)	12)		ug/L		100	80 - 122	2	1)	
proz o3orz	ND		12)	122		ug/L		97	61 - 152	2	1)	
proz oz ethane	ND		12)	122		ug/L		97)) - 144)	1)	
Carbon disul3de	ND		12)	11)		ug/L		92) 9 - 154)	1)	
Carbon tetrachloride	ND		12)	126		ug/L		101	72 - 154	4	1)	
Chlorobenf ene	ND		12)	124		ug/L		99	80 - 120	0	2)	
Dibroz ochloroz ethane	ND		12)	126		ug/L		101	7) _ 12)	1	1)	
Chloroethane	ND		12)	115		ug/L		91	69 - 156	6	1)	
Chloro3orz	ND		12)	117		ug/L		94	75 - 127	1	20	
Chloroz ethane	ND		12)	121		ug/L		97	68 - 124	2	1)	
cis-1,2-Dichloroethene	150		12)	242		ug/L		88	74 - 124	0	1)	
cis-1,5-Dichloromomene	ND		12)	121		ug/L		97	74 - 124	2	1)	
Cyclohexane	ND		12)	151		ug/L		10))9_15))	20	2
Dichlorodi3uoroz ethane	ND		12)	151		ug/L		10)) 9 _ 15)	5	20	
Ethylbenf ene	ND		12)	122		ug/L		98	77 - 125	2	1)	
1,2-Dibroz oethane	ND		12)	126		ug/L		101	77 - 120	1	1)	
Isomonylbenf ene	ND		12)	121		ug/L		97	77 - 122	1	20	
(ethyl acetate	ND		2) 0	256		ug/L		9)	74 - 155	1	20	
(ethyl tert-butyl ether	ND		12)	122		ug/L		98	77 - 120	0	57	
(ethylcyclohexane	ND		12)	152		ug/L		106	68 - 154)	20	
(ethylene Chloride	ND		12)	118		ug/L		9)	7) _ 124	2	1)	
Styrene	ND		12)	125		ug/L		98	80 - 120	0	20	
Tetrachloroethene	ND		12)	150		ug/L		104	74 - 122	2	20	
Toluene	ND		12)	122		ug/L		98	80 - 122	1	1)	
trans-1,2-Dichloroethene	ND		12)	126		ug/L		101	75 - 127	4	20	
trans-1,5-Dichloromomene	ND		12)	125		ug/L		99	80 - 120	1	1)	
Trichloroethene	2) 0	F1	12)	555	F1	ug/L		70	74 - 125	2	16	
Trichloro3uoroz ethane	ND		12)	151		ug/L		10)	62 - 1) 0	6	20	
Xinyl chloride	ND		12)	129		ug/L		105	6) ₋ 155	7	1)	
			-			-					-	
•		MSD										
Surrogate	%Recovery	Qualifier	Limits									
Toluene-d8 (Surr)	101		80 - 120									
1,2-Dichloroethane-d4 (Surr) 4-Bromofluorobenzene (Surr)	100 105		77 - 120 73 - 120									

75 - 123

QC Association Summary

Client: New York State D.E.C. Project/Site: Frewsburg Site #907016 Job ID: 480-178861-1

GC/MS VOA

Analysis Batch: 562163

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-178861-1	MW-2	Total/NA	Water	8260C	
480-178861-2	MW-3	Total/NA	Water	8260C	
480-178861-3	MW-4	Total/NA	Water	8260C	
480-178861-4	MW-9R	Total/NA	Water	8260C	
480-178861-5	MW-11R	Total/NA	Water	8260C	
480-178861-6	MW-13	Total/NA	Water	8260C	
480-178861-7	MW-14	Total/NA	Water	8260C	
480-178861-8	DUP-113020	Total/NA	Water	8260C	
480-178861-9	Trip Blank	Total/NA	Water	8260C	
MB 480-562163/7	Method Blank	Total/NA	Water	8260C	
LCS 480-562163/5	Lab Control Sample	Total/NA	Water	8260C	
480-178861-5 MS	MW-11R	Total/NA	Water	8260C	
480-178861-5 MSD	MW-11R	Total/NA	Water	8260C	

Job ID: 480-178861-1

Client Sam Date Collecte Date Receive	d: 12/01/20 1	1:40					Lab Sa	imple ID:	480-178861-1 Matrix: Water
_	Batch	Batch		Dilution	Batch	Prepared			
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab	
Total/NA	Analysis	8260C		1000	562163	12/07/20 15:41	CRL	TAL BUF	
Client Sam		1_3					Lah Sa		480-178861-2
Date Collecte								imple ib.	Matrix: Water
Date Received									
_	Batch	Batch		Dilution	Batch	Prepared			
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab	
Total/NA	Analysis	8260C		10	562163	12/07/20 16:04	-	TAL BUF	
- Client Sam	nle ID: MW	-4					Lah Sa	mnle ID:	480-178861-3
Date Collecte	d: 11/30/20 1	3:00							Matrix: Water
-	Batch	Batch		Dilution	Batch	Prepared			
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab	
Total/NA	Analysis	8260C		500	562163	12/07/20 16:28	CRL	TAL BUF	
Client Sam	ole ID: MW	/-9R					Lab Sa	mple ID:	480-178861-4
Date Collecte Date Receive	d: 12/01/20 1	2:45						· .	Matrix: Water
_	Batch	Batch		Dilution	Batch	Prepared			
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab	
Total/NA	Analysis	8260C		20	562163	12/07/20 16:51	CRL	TAL BUF	
Client Sam Date Collecte Date Receive	d: 11/30/20 1	2:05					Lab Sa	mple ID:	480-178861-5 Matrix: Water
_	Batch	Batch		Dilution	Batch	Prepared			
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab	
Total/NA	Analysis	8260C		5	562163	12/07/20 17:14	CRL	TAL BUF	
Client Sam Date Collecte	d: 12/01/20 1	1:00					Lab Sa	mple ID:	480-178861-6 Matrix: Water
Date Receive	d: 12/01/20 1	6:00							
_	Batch	Batch		Dilution	Batch	Prepared			
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab	
Total/NA	Analysis	8260C		10	562163	12/07/20 17:37	CRL	TAL BUF	
Client Sam Date Collecte Date Receive	d: 12/01/20 1	0:10					Lab Sa	mple ID:	480-178861-7 Matrix: Water
_	Batch	Batch		Dilution	Batch	Prepared			
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab	

Matrix: Water

Lab Sample ID: 480-178861-8

Client Sample ID: DUP-113020 Date Collected: 11/30/20 00:00 Date Received: 12/01/20 16:00

	Batch	Batch		Dilution	Batch	Prepared			
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab	
Total/NA	Analysis	8260C		5	562163	12/07/20 18:24	CRL	TAL BUF	
lient Sam	ple ID: Trip	Blank					Lab Sa	mple ID:	480-178861-
Client Sam	ple ID: Trip d: 11/30/20 0						Lab Sa	mple ID:	480-178861- Matrix: Wate
Date Collecte		0:00					Lab Sa	mple ID:	
ate Collecte	d: 11/30/20 0	0:00		Dilution	Batch	Prepared	Lab Sa	mple ID:	
ate Collecte	d: 11/30/20 0 d: 12/01/20 1	0:00 6:00	Run	Dilution Factor	Batch Number		Lab Sa	Lab	

Laboratory References:

TAL BUF = Eurofins TestAmerica, Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

Job ID: 480-178861-1

Laboratory: Eurofins TestAmerica, Buffalo

The accreditations/certifications listed below are applicable to this report.

Authority	Program	Identification Number	Expiration Date
New York	NELAP	10026	04-01-21

Method Summary

Client: New York State D.E.C. Project/Site: Frewsburg Site #907016

Method	Method Description	Protocol	Laboratory
3260C	Volatile Organic Compounds by GC/MS	SW846	TAL BUF
5030C	Purge and Trap	SW846	TAL BUF

Protocol References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL BUF = Eurofins TestAmerica, Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

Sample Summary

Client: New York State D.E.C. Project/Site: Frewsburg Site #907016

Lab Sample ID	Client Sample ID	Matrix	Collected	Received	A
80-178861-1	MW-2	Water	12/01/20 11:40	12/01/20 16:00	
30-178861-2	MW-3	Water	11/30/20 14:00	12/01/20 16:00	
30-178861-3	MW-4	Water	11/30/20 13:00	12/01/20 16:00	
30-178861-4	MW-9R	Water	12/01/20 12:45	12/01/20 16:00	
80-178861-5	MW-11R	Water	11/30/20 12:05	12/01/20 16:00	
0-178861-6	MW-13	Water	12/01/20 11:00	12/01/20 16:00	
0-178861-7	MW-14	Water	12/01/20 10:10	12/01/20 16:00	
80-178861-8	DUP-113020	Water	11/30/20 00:00	12/01/20 16:00	
80-178861-9	Trip Blank	Water	11/30/20 00:00	12/01/20 16:00	

TestAmerica Buffalo

Chain of Custody Record

10 Hazelwood Drive

Amherst, NY 14228-2223

Client Contact	Maurice M	oore				Site	Cor	ntact: 1	Tom	Palme	r (GES)	Date	:					COC No:	
NYSDEC-Region 9	Tel/Fax: (7	16) 851-72	20			-	7.5.1				ohnson	Carr	ier:			-			COCs
270 Michigan Avenue			s Turnarou	nd Time		П	Т		Π		TTT	T		П	TT	T	1 5	Sampler:	
Buffalo, NY 14203	the second s		DAYS	WORKIN	G DAYS	1		list									F	For Lab Use	Only:
716-851-7220 Phone		Custom TAT	r: 10	days		11	Î	OLM04.2 list				11			11		V	Walk-in Clien	nt:
FAX			2 we	eks		(N)	EX.	P R							11		L	ab Sampling	g:
Project Name: DEC Frewsburg, 300 Falconer Stree	et		1 wee	ek														_	
Site No.: 907016 (GES Project #0901685)			2 day	s		ole (MS	8									J	lob / SDG No	0.:
Contract #:			1 day	-	_	Sample	MS / MSD	- TCLVOCs			111	11	1		11				
Sample Identification	Sample Date	Sample Time	Sample Type (C=Comp, G=Grab)	Matrix	# of Cont.	2	F	8260C - T		MS/MSD								Sample S	pecific Note
MW-2	12-1-20	1140	G	w	3	N	-	x										N. Inst College	North State
MW-3	11-30-20		G	w	3	N	_	x	\square			++			++		\square		
MW-4	11-30-20		G	w	3	N		x								-			
MW-9R	18-1-20		G	w	3	N	_	x						\square	++	-			
MW-11R	11-30-20		G	w	9	N	_	x		X		++				-			
MW-13		1100	G	w	3	Ν		x	\square			11	1		11	1	\mathbf{H}		
MW-14		1010	G	w	3	N	_	x											
DUP /BO20	11-30-20	-	G	W	3	N	_	x											
Trip Blank			G	w		N		x											
			G	w		Ν		X											
and the second sec			G	w		N	T	x	T		-	480-178	8861	Chain	of Cus	stody			
			G	W		Ν		x			\Box	LL	1	1 1	1 1	1		_	
Preservation Used: 1= Ice, 2= HCI; 3= H2	SO4; 4=HNO3; 5=Na	OH; 6= Ot	her															A STREET	
Possible Hazard Identification: Are any samples from a listed EPA Hazardou Comments Section if the lab is to dispose of	the sample.	any EPA V		es for the sa				Return t				e assess				retaine		nger than 1 m	onth)
Non-Hazard Flammable	Skin Irritant	_	Poison B		Unknown	_	-										_		
Special Instructions/QC Requirements & C Category B Deliverable, NYSDEC Equis	omments:										4	.6						ŧ	. [
Custody Seals Intact:	Custody S					_		oler Te		(°C): (Obs'd:		Corr			Th	nerm I	ID No.:	
Relinquished by: Hatch	Company:	GES		Date/Time 12-1-2				ceived					_	mpany	_			Date/Time:	
Relinquished by:	Company:			Date/Time			Rec	ceived	by:		1000		Co	mpany	<i>¥</i> :		0	Date/Time:	
Relinquished by:	Company:		_	Date/Time) :		Rec	ceived	inLa	aborat	ory by:		Co	mpany	r.	1		Date/Time:	1600

4

12/15/2020

Client: New York State D.E.C.

Login Number: 178861 List Number: 1 Creator: Sabuda, Brendan D

Question	Answer	Comment
Radioactivity either was not measured or, if measured, is at or below background	True	
The cooler's custody seal, if present, is intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	4.6 #1 ICE
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the sample IDs on the containers and the COC.	True	
Samples are received within Holding Time (Excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	True	
If necessary, staff have been informed of any short hold time or quick TAT needs	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Sampling Company provided.	True	
Samples received within 48 hours of sampling.	True	
Samples requiring field filtration have been filtered in the field.	True	
Chlorine Residual checked.	True	

List Source: Eurofins TestAmerica, Buffalo

Appendix C – System Inspection Form

SYSTEM INSPECTION FORM

Client Name:	NYSDEC	n na seneral de la completa de la co
Site Name:	Frewsburg	
Address:	300 Fatanon St, Freusburg	M
GES PM:	T.Palm	GES Engr. G. Boulc
Inspected By:		Date: 11-23- 20
Inspection:	Routine Annual Transition, Startup, or Rec	commission (circle one)

The following checklist is to be completed for all OM&M system sites If the response to any item is "No," explain reasons in the comment section. For items requiring additional explanation, use comments section to discuss findings and/or provide additional information needed to perform corrective measures. For additional comment space, use back of page. A loss or near loss report may be required based on the findings of the inspection.

Previously completed system inspection form Tools to open control panel and other equipment Digital Camera to document conditions Multimeter/amperage clamp to check equipment amperage and voltages Knowledge of the IBC, NEC, fire codes, pressure vessel codes and client specific requirements Site Health & Safety / General Site Conditions 1 2 1 1 1 1 1 2 2 2 3 1 3 1 2 4 2 3 3 3 4 3 4 3 4 4 5 4 5 4 5 5 6 6 7 6 7 6 7 8 9 6 7 9 7	Equipment/Information needed to complete the inspection	n — month characterization of an interface management of the address constraints - an analysis
 Tools to open control panel and other equipment Tools to open manholes and well vaults Digital Camera to document conditions Multimeter/amperage clamp to check equipment amperage and voltages Knowledge of the IBC, NEC, fire codes, pressure vessel codes and client specific requirements Site Health & Safety / General Site Conditions Is current Health & Safety Plan (HASP) in a conspicuous place? Are Safety Data Sheets (SDS) in HASP? Yes No Is GES' Emergency Sign Placard posted in a conspicuous place? Yes No Is the site and enclosure clear of trash and debris? Are walkways clear of trip hazards? Are walkways clear of trip hazards? Is vegetation (trees, vines, weeds) present that may pose trip or overhead hazards, including branches that could fall onto equipment, enclosures, or overhead hazards? Is the log book present, protected from the elements and include all up-to-date permits, Yes No Are on-site soil piles, if present, properly encapsulated? Are there drums/tanks have secondary containment? Are the drums/tanks have secondary containment? Are the drums/tanks properly vented and grounded (product drums must be Yes No Are the drums/tanks properly labeled, including a flammable sticker? 		
 Tools to open manholes and well vaults Digital Camera to document conditions Multimeter/amperage clamp to check equipment amperage and voltages Knowledge of the IBC, NEC, fire codes, pressure vessel codes and client specific requirements Site Health & Safety / General Site Conditions Is current Health & Safety Plan (HASP) in a conspicuous place? Yes No Are Safety Data Sheets (SDS) in HASP? Yes No Is GES' Emergency Sign Placard posted in a conspicuous place? Yes No Is the site and enclosure clear of trash and debris? Are walkways clear of trip hazards? Are vaults/manholes/trenches in good conditions and locked? (Muhdis dmit lock) Yes No Is vegetation (trees, vines, weeds) present that may pose trip or overhead hazards, including branches that could fail onto equipment, enclosures, or overhead tuitiles? Is the log book present, protected from the elements and include all up-to-date permits, Ves No Is there drums or storage tanks on site? (If YES, answer questions below) Do drums/tanks have secondary containment? Are the drums/tanks in good condition? Are the drums/tanks properly vented and grounded (product drums must be grounded)? Are the drums/tanks properly labeled, including a flammable sticker? 		
Digital Camera to document conditions Multimeter/amperage clamp to check equipment amperage and voltages Knowledge of the IBC, NEC, fire codes, pressure vessel codes and client specific requirements Site Health & Safety / General Site Conditions 1. Is current Health & Safety Plan (HASP) in a conspicuous place? 2. Are Safety Data Sheets (SDS) in HASP? 3. Is GES' Emergency Sign Placard posted in a conspicuous place? 4. Is the site and enclosure clear of trash and debris? 5. Are walkways clear of trip hazards? 6. Are vaults/manholes/trenches in good conditions and locked? (Mahols, UM-100) 7. Is vegetation (trees, vines, weeds) present that may pose trip or overhead hazards, including branches that could fall onto equipment, enclosures, or overhead hazards, including branches that could fall onto equipment, enclosures, or overhead hazards, is good conditions and HASP? 8. Is the log book present, protected from the elements and inclusive formation. 9. Are on-site soil piles, if present, properly encapsulated? 10. Are there drums/tanks have secondary containment? 9. Are the drums/tanks properly vented and grounded (product drums must be grounded)? 9. Are the drums/tanks properly vented and grounded (product drums must be grounded)? 9. Are the drums/tanks properly labeled, including a flammable sticker?		
Multimeter/amperage clamp to check equipment amperage and voltages Multimeter/amperage clamp to check equipment amperage and voltages Knowledge of the IBC, NEC, fire codes, pressure vessel codes and client specific requirements Site Health & Safety / General Site Conditions 1. Is current Health & Safety Plan (HASP) in a conspicuous place? 2. Are Safety Data Sheets (SDS) in HASP? 3. Is GES' Emergency Sign Placard posted in a conspicuous place? 4. Is the site and enclosure clear of trash and debris? 5. Are waltkways clear of trip hazards? 6. Are vaults/manholes/trenches in good conditions and locked? (Mahobs duit- luck) 7. Is vegetation (trees, vines, weeds) present that may pose trip or overhead hazards, including branches that could fall onto equipment, enclosures, or overhead hazards, including branches that could fall onto equipment, enclosures, or overhead utilities? 8. Is the log book present, protected from the elements and include all up-to-date permits, iog sheets, checklists/forms and HASP? 9. Are on-site soil piles, if present, property encapsulated? 10. Are there drums/tanks have secondary containment? 9. Are the drums/tanks property vented and grounded (product drums must be grounded)? 9. Are the drums/tanks property labeled, including a flammable sticker? 9.		
□ Knowledge of the IBC, NEC, fire codes, pressure vessel codes and client specific requirements Site Health & Safety / General Site Conditions 1 Is current Health & Safety Plan (HASP) in a conspicuous place? 2. Are Safety Data Sheets (SDS) in HASP? 3. Is GES' Emergency Sign Placard posted in a conspicuous place? 4. Is the site and enclosure clear of trash and debris? 5. Are walkways clear of trip hazards? 6. Are vaults/manholes/trenches in good conditions and locked? (Muhols durit Lock) 7. Is vegetation (trees, vines, weeds) present that may pose trip or overhead hazards, including branches that could fall onto equipment, enclosures, or overhead utilities? 8. Is the log book present, protected from the elements and include all up-to-date permits, log sheets, checklists/forms and HASP? W (uwrth difficult element) 9. Are on-site soil piles, if present, properly encapsulated? Yes No 9. Are there drums or storage tanks on site? (If YES, answer questions below) Yes No 9. Are the drums/tanks have secondary containment? Yes No 9. Are the drums/tanks properly vented and grounded (product drums must be grounded)? Yes No 9. Are the drums/tanks properly labeled, including a flammable sticker? Yes No <td></td> <td></td>		
Site Health & Safety / General Site Conditions 1. Is current Health & Safety Plan (HASP) in a conspicuous place? 2. Are Safety Data Sheets (SDS) in HASP? 3. Is GES' Emergency Sign Placard posted in a conspicuous place? 4. Is the site and enclosure clear of trash and debris? 5. Are walkways clear of trip hazards? 6. Are vaults/manholes/trenches in good conditions and locked? (Mathus drift Jutk) 7. Is vegetation (trees, vines, weeds) present that may pose trip or overhead hazards, including branches that could fall onto equipment, enclosures, or overhead utilities? 8. Is the log book present, protected from the elements and include all up-to-date permits, log sheets, checklists/forms and HASP? Yes No 9. Are there drums or storage tanks on site? (If YES, answer questions below) Yes No 9. Are the drums/tanks have secondary containment? Yes No 9. Are the drums/tanks in good condition? Yes No 9. Are the drums/tanks properly vented and grounded (product drums must be grounded)? Yes No 9. Are the drums/tanks properly labeled, including a flammable sticker? Yes No		
 Is current Health & Safety Plan (HASP) in a conspicuous place? Are Safety Data Sheets (SDS) in HASP? Is GES' Emergency Sign Placard posted in a conspicuous place? Is the site and enclosure clear of trash and debris? Are walkways clear of trip hazards? Are vaults/manholes/trenches in good conditions and locked? (Muhols Unit Hock) Is vegetation (trees, vines, weeds) present that may pose trip or overhead hazards, including branches that could fall onto equipment, enclosures, or overhead utilities? Is the log book present, protected from the elements and include all up-to-date permits, log sheets, checklists/forms and HASP? Are on-site soil piles, if present, properly encapsulated? Are there drums or storage tanks on site? (If YES, answer questions below) Are the drums/tanks in good condition? Are the drums/tanks properly vented and grounded (product drums must be grounded)? Are the drums/tanks properly labeled, including a flammable sticker? 	Li Ritowiedge of the IBC, NEC, life codes, pressure vessel codes and client specific requirement	ients
 Are Safety Data Sheets (SDS) in HASP? Is GES' Emergency Sign Placard posted in a conspicuous place? Is the site and enclosure clear of trash and debris? Are walkways clear of trip hazards? Are vaults/manholes/trenches in good conditions and locked? (Muhols dirit lock) Yes Do Yes No No Yes No 	Site Health & Safety / General Site Conditions	
 Are Safety Data Sheets (SDS) in HASP? Is GES' Emergency Sign Placard posted in a conspicuous place? Is the site and enclosure clear of trash and debris? Are walkways clear of trip hazards? Are vaults/manholes/trenches in good conditions and locked? (Muhols dirit lock) Yes Do Yes No No Yes No 	1. Is current Health & Safety Plan (HASP) in a conspicuous place?	Yes No
 Is GES' Emergency Sign Placard posted in a conspicuous place? Is the site and enclosure clear of trash and debris? Are walkways clear of trip hazards? Are walkways clear of trip hazards? Are vaults/manholes/trenches in good conditions and locked? (Muhols dwith luck) Yes No 		
 4. Is the site and enclosure clear of trash and debris? 5. Are walkways clear of trip hazards? 6. Are vaults/manholes/trenches in good conditions and locked? (Mahobs durit lock) 7. Is vegetation (trees, vines, weeds) present that may pose trip or overhead hazards, including branches that could fall onto equipment, enclosures, or overhead utilities? 8. Is the log book present, protected from the elements and include all up-to-date permits, log sheets, checklists/forms and HASP? (M (uwwar chatters)) 9. Are on-site soil piles, if present, properly encapsulated? 10. Are there drums or storage tanks on site? (If YES, answer questions below) Do drums/tanks have secondary containment? Are the drums/tanks in good condition? Are the drums/tanks properly vented and grounded (product drums must be grounded)? Are the drums/tanks properly labeled, including a flammable sticker? 		E E
 5. Are walkways clear of trip hazards? 6. Are vaults/manholes/trenches in good conditions and locked? (Mahols drif lock) 7. Is vegetation (trees, vines, weeds) present that may pose trip or overhead hazards, including branches that could fall onto equipment, enclosures, or overhead utilities? 8. Is the log book present, protected from the elements and include all up-to-date permits, log sheets, checklists/forms and HASP? IN (uwww dramae permits) 9. Are on-site soil piles, if present, properly encapsulated? 10. Are there drums or storage tanks on site? (If YES, answer questions below) Do drums/tanks have secondary containment? Are the drums/tanks properly vented and grounded (product drums must be grounded)? Are the drums/tanks properly labeled, including a flammable sticker? 		
 6. Are vaults/manholes/trenches in good conditions and locked? (Muhoks dunt lock) 7. Is vegetation (trees, vines, weeds) present that may pose trip or overhead hazards, including branches that could fall onto equipment, enclosures, or overhead utilities? 8. Is the log book present, protected from the elements and include all up-to-date permits, log sheets, checklists/forms and HASP? Wo (uwww diffunge permits) 9. Are on-site soil piles, if present, properly encapsulated? 10. Are there drums or storage tanks on site? (If YES, answer questions below) Do drums/tanks have secondary containment? Are the drums/tanks in good condition? Are the drums/tanks properly vented and grounded (product drums must be grounded)? Are the drums/tanks properly labeled, including a flammable sticker? 	5. Are walkways clear of trip hazards?	
 7. Is vegetation (trees, vines, weeds) present that may pose trip or overhead hazards, including branches that could fall onto equipment, enclosures, or overhead utilities? 8. Is the log book present, protected from the elements and include all up-to-date permits, vers including sheets, checklists/forms and HASP? IN <i>Curve Arburge Permits</i> 9. Are on-site soil piles, if present, properly encapsulated? 9. Are there drums or storage tanks on site? (If YES, answer questions below) Do drums/tanks have secondary containment? Are the drums/tanks in good condition? Are the drums/tanks properly vented and grounded (product drums must be grounded)? Are the drums/tanks properly labeled, including a flammable sticker? 	6. Are vaults/manholes/trenches in good conditions and locked? (Manholas din't lock)	
 including branches that could fall onto equipment, enclosures, or overhead utilities? 8. Is the log book present, protected from the elements and include all up-to-date permits, Yes No log sheets, checklists/forms and HASP? No (uwww distruct forms) 9. Are on-site soil piles, if present, properly encapsulated? 10. Are there drums or storage tanks on site? (If YES, answer questions below) Do drums/tanks have secondary containment? Are the drums/tanks in good condition? Are the drums/tanks properly vented and grounded (product drums must be Yes No grounded)? Are the drums/tanks properly labeled, including a flammable sticker? 	7. Is vegetation (trees, vines, weeds) present that may pose trip or overhead hazards.	
log sheets, checklists/forms and HASP? IVO (uppert) Allinge (Lemma 1 9. Are on-site soil piles, if present, properly encapsulated? IVES 10. Are there drums or storage tanks on site? (If YES, answer questions below) IVES - Do drums/tanks have secondary containment? IVES - Are the drums/tanks in good condition? IVES - Are the drums/tanks properly vented and grounded (product drums must be grounded)? IVES - Are the drums/tanks properly labeled, including a flammable sticker? IVES	including branches that could fall onto equipment, enclosures, or overhead utilities?	
 10. Are there drums or storage tanks on site? (If YES, answer questions below) Do drums/tanks have secondary containment? Are the drums/tanks in good condition? Are the drums/tanks properly vented and grounded (product drums must be Yes □ No grounded)? Are the drums/tanks properly labeled, including a flammable sticker? 	8. Is the log book present, protected from the elements and include all up-to-date permits, log sheets, checklists/forms and HASP? No (univer all these permits)	Yes 🗋 No
 10. Are there drums or storage tanks on site? (If YES, answer questions below) → Do drums/tanks have secondary containment? → Are the drums/tanks in good condition? → Are the drums/tanks properly vented and grounded (product drums must be Yes ○ No grounded)? → Are the drums/tanks properly labeled, including a flammable sticker? 	9. Are on-site soil piles, if present, properly encapsulated?	Yes No No NA
 Do drums/tanks have secondary containment? Are the drums/tanks in good condition? Are the drums/tanks properly vented and grounded (product drums must be Yes INO grounded)? Are the drums/tanks properly labeled, including a flammable sticker? 	10. Are there drums or storage tanks on site? (If YES, answer questions below)	
 Are the drums/tanks in good condition? Are the drums/tanks properly vented and grounded (product drums must be grounded)? Are the drums/tanks properly labeled, including a flammable sticker? 		Yes No
grounded)? Are the drums/tanks properly labeled, including a flammable sticker? Yes No	 Are the drums/tanks in good condition? 	
grounded)? Are the drums/tanks properly labeled, including a flammable sticker? Yes No	 Are the drums/tanks properly vented and grounded (product drums must be 	Yes No
	grounded)?	
COMMENTS: Day to day	Are the drums/tanks properly labeled, including a flammable sticker?	Yes 🗌 No
	COMMENTS: Day internet	
-interto: -intert dum	a comment of the comment	
- sludge drug fin sisten den	- sludge dung fin sisten den	
- slube drung fin system dens - spent bay filter drun.	snort box other drun.	
- Now - Danse	- Jen Jane -	

Page 2 of 5

		applicable 🗌 Not checked
1	and children in good condition, noti, interiorexterior mails, ital	iler 🔛 Yes 🗌 No
	leveling jacks, fence material and posts, stack guy wires, structural elements)	
2	Is the enclosure properly heated, if necessary?	Yes 🗌 No 🗍 N/A
3	Is the air in the enclosure properly exhausted?	Yes 🗌 No
4		Yes No
5		
6		
7		
8.		Yes No N/A
	A second designment of the second design of the second sec	Yes 🗌 No
9.	Are combustible/flammable materials separated from sources of ignition?	Yes 🗌 No
C	OMMENTS:	And address of the same
i.		
1		
1		
	A&M System	
	scribe major system components, noting any changes completed to the remedial system	since the last inspection
s –	THE blower, transfer Dunn (Mun up) An Sm	mes (le-tran)
1		
	(2) Sachter units ballet aug Cur	A Alland
	(2) By Hiter units, bality pump, Sur	op pump
	TPE bluwer, transfer pump (Muzno) Arv Son (D) Bag Filter units, baluts pump, Sun	np pump
	(2) By filter units, bality pump, sur	np pump
	(2) By Hiter units, bality pump, sur	np pump
	(2) By filter units, bality pump, sur	n punp
1		
1.	Has the system changed since the last inspection?	Yes No
2.	Has the system changed since the last inspection? Was the system operating upon arrival?	XYes □No Yes □No □N/A
2. 3.	Has the system changed since the last inspection? Was the system operating upon arrival? Is an accurate copy of system trenching diagram posted?	XYes □ No Yes □ No □ N/A Yes □ No
2. 3. 4.	Has the system changed since the last inspection? Was the system operating upon arrival? Is an accurate copy of system trenching diagram posted? Is the posted P&ID accurate?	XYes □No Yes □No □N/A Yes □No Yes □No Yes No
2. 3. 4. 5.	Has the system changed since the last inspection? Was the system operating upon arrival? Is an accurate copy of system trenching diagram posted? Is the posted P&ID accurate? Are CEs/CSDs/sample ports/manifolds/flow direction/equipment properly labeled?	XYes □ No Yes □ No □ N/A Yes □ No
2. 3. 4.	Has the system changed since the last inspection? Was the system operating upon arrival? Is an accurate copy of system trenching diagram posted? Is the posted P&ID accurate?	XYes □No Yes □No □N/A Yes □No Yes □No Yes No
2. 3. 4. 5.	Has the system changed since the last inspection? Was the system operating upon arrival? Is an accurate copy of system trenching diagram posted? Is the posted P&ID accurate? Are CEs/CSDs/sample ports/manifolds/flow direction/equipment properly labeled? Reviewed system CEs/CSDs, interlock, alarm inspection forms and procedures? Are pipe, tanks, hose, etc., supported properly and in acceptable condition (including	Yes □ No Yes □ No □ N/A Yes □ No Yes □ No Yes ⋈ No Yes ☑ No
2. 3. 4. 5. 6 <i>.</i>	Has the system changed since the last inspection? Was the system operating upon arrival? Is an accurate copy of system trenching diagram posted? Is the posted P&ID accurate? Are CEs/CSDs/sample ports/manifolds/flow direction/equipment properly labeled? Reviewed system CEs/CSDs, interlock, alarm inspection forms and procedures?	Yes No Yes No N/A Yes No Yes No Yes No Yes No Yes No
2. 3. 4. 5. 6 <i>.</i>	Has the system changed since the last inspection? Was the system operating upon arrival? Is an accurate copy of system trenching diagram posted? Is the posted P&ID accurate? Are CEs/CSDs/sample ports/manifolds/flow direction/equipment properly labeled? Reviewed system CEs/CSDs, interlock, alarm inspection forms and procedures? Are pipe, tanks, hose, etc., supported properly and in acceptable condition (including those located in areas difficult to access [behind/under equipment])? Are piping, hoses, tubing, valves, and other system components rated for (e.g.,	Yes No Yes No N/A Yes No Yes No Yes No Yes No Yes No Yes No Yes No
2. 3. 4. 5. 6. 7.	Has the system changed since the last inspection? Was the system operating upon arrival? Is an accurate copy of system trenching diagram posted? Is the posted P&ID accurate? Are CEs/CSDs/sample ports/manifolds/flow direction/equipment properly labeled? Reviewed system CEs/CSDs, interlock, alarm inspection forms and procedures? Are pipe, tanks, hose, etc., supported properly and in acceptable condition (including those located in areas difficult to access [behind/under equipment])? Are piping, hoses, tubing, valves, and other system components rated for (e.g., pressure, temperature, flow capacity, fluid type, concentration, and chemical	Yes No Yes No N/A Yes No Yes No Yes No Yes No Yes No Yes No Yes No
2. 3. 4. 5. 6. 7.	Has the system changed since the last inspection? Was the system operating upon arrival? Is an accurate copy of system trenching diagram posted? Is the posted P&ID accurate? Are CEs/CSDs/sample ports/manifolds/flow direction/equipment properly labeled? Reviewed system CEs/CSDs, interlock, alarm inspection forms and procedures? Are pipe, tanks, hose, etc., supported properly and in acceptable condition (including those located in areas difficult to access [behind/under equipment])? Are piping, hoses, tubing, valves, and other system components rated for (e.g., pressure, temperature, flow capacity, fluid type, concentration, and chemical compatibility) the service for which they are used (e.g., compressed air, high-	Yes No Yes No N/A Yes No Yes No Yes No Yes No Yes No Yes No Yes No
2. 3. 4. 5. 6. 7.	Has the system changed since the last inspection? Was the system operating upon arrival? Is an accurate copy of system trenching diagram posted? Is the posted P&ID accurate? Are CEs/CSDs/sample ports/manifolds/flow direction/equipment properly labeled? Reviewed system CEs/CSDs, interlock, alarm inspection forms and procedures? Are pipe, tanks, hose, etc., supported properly and in acceptable condition (including those located in areas difficult to access [behind/under equipment])? Are piping, hoses, tubing, valves, and other system components rated for (e.g., pressure, temperature, flow capacity, fluid type, concentration, and chemical compatibility) the service for which they are used (e.g., compressed air, high- temperature vapors)?	Yes No Yes No N/A Yes No Yes No Yes No Yes No Yes No Yes No Yes No
2. 3. 4. 5. 6. 7.	Has the system changed since the last inspection? Was the system operating upon arrival? Is an accurate copy of system trenching diagram posted? Is the posted P&ID accurate? Are CEs/CSDs/sample ports/manifolds/flow direction/equipment properly labeled? Reviewed system CEs/CSDs, interlock, alarm inspection forms and procedures? Are pipe, tanks, hose, etc., supported properly and in acceptable condition (including those located in areas difficult to access [behind/under equipment])? Are piping, hoses, tubing, valves, and other system components rated for (e.g., pressure, temperature, flow capacity, fluid type, concentration, and chemical compatibility) the service for which they are used (e.g., compressed air, high-	Yes No Yes No N/A Yes No Yes No Yes No Yes No Yes No Yes No Yes No
2. 3. 4. 5. 6. 7. 8.	Has the system changed since the last inspection? Was the system operating upon arrival? Is an accurate copy of system trenching diagram posted? Is the posted P&ID accurate? Are CEs/CSDs/sample ports/manifolds/flow direction/equipment properly labeled? Reviewed system CEs/CSDs, interlock, alarm inspection forms and procedures? Are pipe, tanks, hose, etc., supported properly and in acceptable condition (including those located in areas difficult to access [behind/under equipment])? Are piping, hoses, tubing, valves, and other system components rated for (e.g., pressure, temperature, flow capacity, fluid type, concentration, and chemical compatibility) the service for which they are used (e.g., compressed air, high- temperature vapors)?	Yes No Yes No Yes No Yes No Yes No Yes No Yes No Yes No Yes No Yes No
 2. 3. 4. 5. 6. 7. 8. 9. 	Has the system changed since the last inspection? Was the system operating upon arrival? Is an accurate copy of system trenching diagram posted? Is the posted P&ID accurate? Are CEs/CSDs/sample ports/manifolds/flow direction/equipment properly labeled? Reviewed system CEs/CSDs, interlock, alarm inspection forms and procedures? Are pipe, tanks, hose, etc., supported properly and in acceptable condition (including those located in areas difficult to access [behind/under equipment])? Are piping, hoses, tubing, valves, and other system components rated for (e.g., pressure, temperature, flow capacity, fluid type, concentration, and chemical compatibility) the service for which they are used (e.g., compressed air, high- temperature vapors)? Are cam locks secured with pins, cable ties, or other equivalent means? Is piping outside the structure properly insulated and heat traced?	Yes No Yes No
 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 	Has the system changed since the last inspection? Was the system operating upon arrival? Is an accurate copy of system trenching diagram posted? Is the posted P&ID accurate? Are CEs/CSDs/sample ports/manifolds/flow direction/equipment properly labeled? Reviewed system CEs/CSDs, interlock, alarm inspection forms and procedures? Are pipe, tanks, hose, etc., supported properly and in acceptable condition (including those located in areas difficult to access [behind/under equipment])? Are piping, hoses, tubing, valves, and other system components rated for (e.g., pressure, temperature, flow capacity, fluid type, concentration, and chemical compatibility) the service for which they are used (e.g., compressed air, high- temperature vapors)? Are cam locks secured with pins, cable ties, or other equivalent means? Is piping outside the structure properly insulated and heat traced? Are buckle clamps used to connect hose to barbs?	Yes No Yes No
 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 	Has the system changed since the last inspection? Was the system operating upon arrival? Is an accurate copy of system trenching diagram posted? Is the posted P&ID accurate? Are CEs/CSDs/sample ports/manifolds/flow direction/equipment properly labeled? Reviewed system CEs/CSDs, interlock, alarm inspection forms and procedures? Are pipe, tanks, hose, etc., supported properly and in acceptable condition (including those located in areas difficult to access [behind/under equipment])? Are piping, hoses, tubing, valves, and other system components rated for (e.g., pressure, temperature, flow capacity, fluid type, concentration, and chemical compatibility) the service for which they are used (e.g., compressed air, high- temperature vapors)? Are cam locks secured with pins, cable ties, or other equivalent means? Is piping outside the structure properly insulated and heat traced? Are buckle clamps used to connect hose to barbs? Is there a floor sump (or other leak/spill detection) within the structure?	Yes No Yes No
 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 	Has the system changed since the last inspection? Was the system operating upon arrival? Is an accurate copy of system trenching diagram posted? Is the posted P&ID accurate? Are CEs/CSDs/sample ports/manifolds/flow direction/equipment properly labeled? Reviewed system CEs/CSDs, interlock, alarm inspection forms and procedures? Are pipe, tanks, hose, etc., supported properly and in acceptable condition (including those located in areas difficult to access [behind/under equipment])? Are piping, hoses, tubing, valves, and other system components rated for (e.g., pressure, temperature, flow capacity, fluid type, concentration, and chemical compatibility) the service for which they are used (e.g., compressed air, high- temperature vapors)? Are cam locks secured with pins, cable ties, or other equivalent means? Is piping outside the structure properly insulated and heat traced? Are buckle clamps used to connect hose to barbs? Is there a floor sump (or other leak/spill detection) within the structure? Is the system free of all additional hazards (e.g., confined space, ladders required)?	Yes No Yes No
 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 	Has the system changed since the last inspection? Was the system operating upon arrival? Is an accurate copy of system trenching diagram posted? Is the posted P&ID accurate? Are CEs/CSDs/sample ports/manifolds/flow direction/equipment properly labeled? Reviewed system CEs/CSDs, interlock, alarm inspection forms and procedures? Are pipe, tanks, hose, etc., supported properly and in acceptable condition (including those located in areas difficult to access [behind/under equipment])? Are piping, hoses, tubing, valves, and other system components rated for (e.g., pressure, temperature, flow capacity, fluid type, concentration, and chemical compatibility) the service for which they are used (e.g., compressed air, high- temperature vapors)? Are cam locks secured with pins, cable ties, or other equivalent means? Is piping outside the structure properly insulated and heat traced? Are buckle clamps used to connect hose to barbs? Is there a floor sump (or other leak/spill detection) within the structure? Is the system free of all additional hazards (e.g., confined space, ladders required)?	Yes No Yes No

1	allow OM8M to be conducted activity							
140	allow OM&M to be conducted safely?							
15	all and a second and a second a se							
16	Is all equipment in good operating condition?	X Yes	No					
	MARENTO.							
COMMENTS:								
	Need to lubel CEs							
	Novel do label LES							
	ctrical Elements and Code Compliance							
1.	Has any electrical component of this system changed since the last inspection?	🗌 Yes	No					
	(If YES, answer section below)							
	How are areas classified? (Write name of area below)							
	a. Class I Div I Class I Div II Not Classified							
	b. Class Div Class Div Not Classified	a)						
1		b)						
		c)						
2.	Is the electrical classification correct?	🗌 Yes						
3.	Does all of the electrical equipment (lights, heaters, pumps, blowers, etc.) comply with	Yes	ΠNo					
	the classification?							
4.	Is the voltage and amperage to the system and components correct?	🔀 Yes	□ No					
5.	Are proper voltage and phase labels posted on circuit breaker panel?		= 1					
6.		X Yes	No					
	Is the proper high voltage (208 volts or greater) label on the outside of the panel?	Yes	□ No					
7.	Are circuit breakers labeled in conjunction with equipment?	🔀 Yes 🛛	🗆 No					
8.	Are the motor starters properly sized?	Yes	No					
9.	Are the Thermal overloads sized and set for the proper motor amperage?	Yes	🗆 No					
10.	Are the gages of the wire correct for the equipment?	Yes						
11.	Is wiring in acceptable condition (no frayed, mashed, or loose wiring or burnt)?	Yes [
12.	Is wiring neat and attached to walls (shed and vaults)?							
		Yes [No					
13.	Are seal-offs poured?	Yes [
14.	Are lights bulbs shatterproof, fluorescent, or shielded?	X Yes [No					
15.	Are GFIs and weather-proof outlets installed?	Yes [No					
16.	Is all equipment properly wired (no extension cords, etc)?	Yes [
	Has an Electrical Inspection Report been completed?	Yes						
COM	MENTS:							
			-					
			1					

Page	4	of	5
------	---	----	---

C	ompressed Air Syste	ms and Pressure Vessels						
1.		r vessels used with the system?	(If no. skip this section)	Yes No				
2.	According to the pr	essure vessel code for the appl	icable state, the pressurized vessel does mment section when the vessel was last					
3.	Are air compressor	guards and warning labels (Dat	nger – Hot) in place?	🗌 Yes 🔲 No				
4.		ressed air lines acceptable?		Yes No				
5.		Are compressed air lines securely connected?						
6.		s air compressor oil compatible with piping (Synthetic oil and ABS piping are not)?						
7.		alescing filter is changed on a re	outine schedule?	🗌 Yes 🔲 No				
8.		anged with the proper type?		🗌 Yes 🔲 No				
9.	Has it been change			Yes No				
10.	Have the air filters l	been inspected and replaced for	the A/C and Filter/ Regulator?	🗌 Yes 🔲 No				
Sve	tem Inspection Corre	otivo Action Form						
ауа 1.		ction corrective action form gene	roted from this increation O	Yes INO				
2.		tem inspection corrective action		Yes No Yes No				
	Completed inspecti	completed inspections must be reviewed and acknowledged by the following:						
	Title	PrintedName	Signature	Date				
1,	Technician	M. Keisch						
2.	Project Engineer	Genevieve Bock	An F. Rik	12/1/2020				
3.	Project Manager	T. Palme	mit	11-23-20				