LIMITED SITE DATA

CARROLL TOWN LANDFILL

TOWN OF CARROLL, CHAUTAUQUA COUNTY, NEW YORK

SITE NO. 907017

These documents that follow are <u>NOT</u> part of the Contract Documents for the remedial work at the **CARROLL TOWN LANDFILL** Site. The Department neither represents that the Site conditions will be the same as in the attached document nor considers the attached documents as being comprehensive and an actual description of the site conditions. The Contractor shall be responsible for performing the remediation work based on the existing conditions at the Site.

Report

Remedial Investigation Report Remedial Investigation/Feasibility Study - Town of Carroll Landfill Site #9-07-017 Frewsburg, New York

New York State Department of Environmental Conservation

January 2006

Remedial Investigation Report

Remedial Investigation/Feasibility Study Town of Carroll Landfill Site #9-07-017 Frewsburg, New York

New York State Department of Environmental Conservation

Haceles M. Gmill

Douglas M. Crawford, P.E. Vice President

January 2006

Contents

List of Tablesiii
Located at end of reportiii
List of Figuresiii
List of Appendicesiv
1. Introduction
1.1. Remedial investigation objectives
1.2. RI report format
2. Background
2.1. Site location and description
2.2. Site history
2.3. Previous investigations
2.3.1. NYSDEC sample collection - 19924
2.3.2. Moody and Associates, Inc. – 1992/19934
2.3.3. ABB Environmental Services - 19965
2.3.4. Chautauqua County Department of Health
2 Difield investigation matheda
3. RI field investigation methods7 3.1. Ground water sampling using passive diffusion bags7
3.2. Soil vapor sample collection
3.4. Surface water sample collection
3.5. Sediment sample collection
3.6. Subsurface soil sample collection
3.6.1. Test pits
3.6.2. Leachate seep soils
3.7. Leachate seep sample collection
3.8. Temporary well installation
3.9. Monitoring wells
3.10. Ground water sample collection
3.11. Hydraulic conductivity testing
3.12. Decontamination and handling of IDW
3.13. Survey
4. RI field investigation results21
4.1. Subsurface conditions
4.1.1. Fill
4.1.2. Geologic conditions
4.1.3. Hydrogeologic conditions
4.2. RI analytical results
4.2.1. Soil vapor
4.2.2. Surface soil
4.2.3. Surface water
i O'Brien & Gere Engineers, Inc.

 Final: January 3, 2006
 i
 O'Brien & Ge

 G:\Syracuse\DIV71\Projects\10653\34241\5_rpts\RI report\Final_RI\RI_report_final_1-3-06.doc

4.2.4. Soundent	
4.2.5. Subsurface soil.	
4.2.6. Leachate seeps	
4.2.7. Ground water	
4.3. Data usability	
	amination
	oounds
5.2. Semivolatile organic of	compounds41
5.3. Inorganics	
5.4. Pesticides/PCBs	
6 Fish and wildlife impact a	nalysis 45
o. Fish and whome impact a	nalysis45
7. Human health exposure p	athway analysis47
8. Conceptual site model	
_	
8.1. Geology	
8.1. Geology8.2. Hydrogeology	
8.1. Geology8.2. Hydrogeology8.3. Contaminant migration	
 8.1. Geology 8.2. Hydrogeology 8.3. Contaminant migratio 8.3.1. VOCs 	
 8.1. Geology 8.2. Hydrogeology 8.3. Contaminant migratio 8.3.1. VOCs 8.3.2. SVOCs 	
 8.1. Geology 8.2. Hydrogeology 8.3. Contaminant migratio 8.3.1. VOCs 8.3.2. SVOCs 8.3.3. Inorganics 	
 8.1. Geology 8.2. Hydrogeology 8.3. Contaminant migration 8.3.1. VOCs 8.3.2. SVOCs 8.3.3. Inorganics 8.3.4. Pesticides/PCBs 	48 49 n
 8.1. Geology 8.2. Hydrogeology 8.3. Contaminant migratio 8.3.1. VOCs 8.3.2. SVOCs 8.3.3. Inorganics 8.3.4. Pesticides/PCBs 8.4. Presence of residual s 	48 49 n
 8.1. Geology 8.2. Hydrogeology 8.3. Contaminant migratio 8.3.1. VOCs 8.3.2. SVOCs 8.3.3. Inorganics 8.3.4. Pesticides/PCBs 8.4. Presence of residual s 8.5. Data gaps 9. Conclusions	48 49 n

List of Tables

4-1 Standards, criteria, and guidance

Located at end of report

- 1 Monitoring well specifications/ground water elevations
- 2 Vertical hydraulic gradient summary
- 3 Hydraulic conductivity results summary
- 4 Soil vapor field screening summary
- 5 Soil vapor analytical summary VOCs
- 6 Surface soil analytical summary inorganics
- 7 Surface soil analytical summary pesticides/PCBs
- 8 Surface water analytical summary SVOCs
- 9 Surface water analytical summary inorganics
- 10 Surface water analytical summary pesticides/PCBs
- 11 Sediment analytical summary VOCs
- 12 Sediment analytical summary SVOCs
- 13 Sediment analytical summary inorganics
- 14 Sediment analytical summary total organic carbon
- 15 Subsurface soil analytical summary VOCs
- 16 Subsurface soil analytical summary SVOCs
- 17 Subsurface soil analytical summary inorganics
- 18 Subsurface soil analytical summary pesticides/PCBs
- 19 Leachate seep analytical summary VOCs
- 20 Leachate seep analytical summary SVOCs
- 21 Leachate seep analytical summary inorganics
- 22 Leachate seep analytical summary pesticides/PCBs
- 23 Ground water analytical summary VOCs
- 24 Ground water analytical summary SVOCs
- 25 Ground water analytical summary inorganics
- 26 Ground water analytical summary pesticides/PCBs
 - 27 Chautauqua County DOH Sample Results Summary
 - 28 Ground water analytical summary methane/ethane/ethane

List of Figures

1	Site location
2	Sample location plan
3	Geologic cross-sections A-A' and B-B'
4	Shallow ground water contour map – October 14, 2004
5	Intermediate ground water contour map – October 14, 2004
6	Shallow ground water contour map – March 7, 2005
7	Intermediate ground water contour map – March 7, 2005
8	Soil vapor detections greater than criteria
9	Surface water and sediment detection greater than criteria
10	Surface soil detections greater than criteria
11	Subsurface soil detections greater than criteria
12	Leachate seep organic constituent detections
13	Ground water detections greater than criteria

List of Appendices

- A Test pit logs
- B Soil boring logs
- C Ground water sampling logs
- D Hydraulic conductivity test data
- E Laboratory data sheets
- F Summary of frequency of SCG exceedances and detections
- G Data usability summary reports
- H Fish and wildlife impact analysis
- I Exposure pathway analysis

1. Introduction

This document presents the Phase I Remedial Investigation (RI) report for the Town of Carroll Landfill (Site) located in Frewsburg, New York. The Site is listed as a Class 2 site on the New York State Registry of Inactive Hazardous Waste Disposal Sites (Site #9-07-017). A Site location plan is included as Figure 1. The RI/FS was performed in accordance with State Superfund Work Assignment #D004090-14 (NYSDEC, 2003) and the RI/FS Work Plan (O'Brien & Gere, June 2004).

1.1. Remedial investigation objectives

The objectives of the RI were to:

- Collect data necessary to evaluate and characterize the nature and extent of Site-related constituents resulting from historic use of the Site
- Evaluate potential exposure pathways between fish and wildlife resources and Site-related constituents
- Evaluate potential exposure pathways between human receptors and Site-related constituents
- Gather sufficient data to support the Feasibility Study to select a remedial alternative that provides protection to human health and the environment, complies to the extent practicable with potentially applicable standards, criteria and guidance (SCGs), and reduces the mobility and/or toxicity of Site-related constituents.

1.2. RI report format

This report contains the following sections:

Section 1 – Introduction Section 2 – Background Section 3 – RI field investigation methods Section 4 – RI field investigation results Section 5 – Nature and extent of contamination

- Section 6 Fish and wildlife impact analyses (FWIA)
- Section 7 Exposure pathway analysis
- Section 8 Conceptual site model
- Section 9 Conclusion and recommendations

2. Background

2.1. Site location and description

The Town of Carroll Landfill was a former municipal and C&D debris landfill, and solid waste transfer station. The landfill is located at the end of an unnamed gravel road, approximately 1,700 feet north of NYS Route 62 (also known as Ivory Road) in the Village of Frewsburg, Town of Carroll, Chautauqua County, New York (Figure 1). The landfill is located on a 305-acre lot, although the landfill occupies only approximately 25 acres of the property. The surrounding area includes active and inactive farmland, wooded areas, wetlands, and private homes. Conewango Creek lies to the north, northwest, and west of the site within a broad flood plain (NYSDEC, 2003).

The Site is located on a northwest-facing, gently sloping hillside and is composed of two roughly rectangular landfill cells, each surrounded by drainage ditches and swales. Based on the field activities conducted at the Site, the western landfill cell is approximately 900-ft from north to south and 450-ft from east to west. The eastern landfill cell is approximately 750-ft from north to south and 300-ft from east to west. The ground surface of the eastern cell is estimated to range from 1 to 4 feet above surrounding ditches on the east, north and west. The topography of the western cell is more uneven, ranging from approximately 1 to 10 feet above the surrounding ditches with several flat areas. A narrow drainage area, approximately 70-ft wide, separates the two landfill cells and eventually drains to the northwest into a wetland area before reaching Conewango Creek (NYSDEC, 2003).

Approximately 700 feet west of the site is the Town of Carroll Public Works Garage area and the Frewsburg Water District including a water supply well and pump station. The Public Works Garage and Water District are located on the same lot, but are accessed from Wahlgren Road off NYS Route 62. The nearest homes are approximately 1200 feet to the west and south and uphill from the site (NYSDEC, 2003).

2.2. Site history

The Site is a former municipal landfill that operated from the early 1960's to 1979. A Part 360 Permit for landfill operation expired in 1976. In June 1979, the Town of Carroll filed a permit application to operate a transfer station at the site. Following the issuance of a Consent Order on October 2, 1979 to address several solid waste violations including

failure to provide a complete application for the landfill operation, the Town operated the site as a C&D debris landfill and transfer station. The western disposal area was closed in 1980 (NYSDEC, 2003).

Information provided in Section 2 of Work Assignment #D004090-14 indicated that during public meetings for the remedial investigation of the Vac Air Alloys site (Site No. 907016), citizens attending the meeting alleged that Vac Air Alloys disposed industrial waste at the Town of Carroll Landfill. Allegations included citizen's reports of having witnessed drums of waste labeled as "trichloroethene" being disposed at the landfill. NYSDEC records indicated that industrial waste was allegedly disposed in the landfill during its operation. These records indicated that Vac Air Alloys allegedly disposed drums containing metal debris and metal turnings. Inspections by NYSDEC indicated the presence of partially buried 55-gallon drums in April 1992. Subsequent sampling results indicated that volatile organic compounds (VOCs) in leachate may have been migrating from the Site. This lead to a listing of the Site on June 9, 1992 as a potential hazardous waste disposal site. A Preliminary Site Assessment (PSA) completed in February 1997 led the NYSDEC to list the Site as a Class P site (potential hazardous waste site) in 1998 (NYSDEC, 2003).

2.3. Previous investigations

2.3.1. NYSDEC sample collection - 1992

Following allegations of industrial waste disposal at the landfill by Vac Air Alloys Corporation at a hearing for the Vac Air Alloys site, NYSDEC conducted a site inspection in April 1992 during which three samples of leachate and one drum sample of brown, granular solids were collected. Several VOCs were detected in the leachate samples including vinyl chloride at 960 ug/l, and cis-l,2-dichloroethene at 380 ug/l and 1,400 ug/l. The drum sample was analyzed for hazardous waste characteristics using the Toxicity Characteristic Leaching Procedure (TCLP). The results indicated the contents of the drum were not characteristic hazardous wastes. The inspection and samples were sufficient to proceed with a more detailed Preliminary Site Assessment (PSA) (NYSDEC, 2003).

2.3.2. Moody and Associates, Inc. – 1992/1993

Between December 1992 and March 1993, Moody and Associates, Inc. performed a hydrogeologic investigation for the Frewsburg Water District to locate a water supply well. After identifying the Town of Carroll Public Works site, adjacent to the landfill, as the probable site for the new water supply well, water quality testing was performed to characterize the aquifer. Ground water samples were analyzed for VOCs, semivolatile organic compounds (SVOCs), iron, manganese, dissolved

solids, hardness, and chloride. At that time, test parameters indicated the water quality was good, except for chloride, which was attributed to runoff from the road salt storage pile and brine storage tank at the Public Works Garage (NYSDEC, 2003).

2.3.3. ABB Environmental Services - 1996

During late 1996, ABB Environmental Services conducted a PSA. The PSA included the following sample collection:

- Two surface water samples were collected from the northern drainage swale at the Site. One sample was collected from the upstream side and one was collected from the downstream side of the Site. VOCs were not detected in the surface water samples, however some inorganic constituents including lead, selenium and cyanide were detected above NYSDEC Class C Surface Water Standards in both samples.
- Six leachate samples and one duplicate were collected during PSA field activities and submitted for laboratory analysis for Target Compound List (TCL) VOCs and Total Analyte List (TAL) inorganics. One of the samples was also analyzed for TCL SVOCs, pesticides, and polychorinated biphenyls (PCBs). Laboratory analysis showed the presence of twelve VOCs with the majority of contamination from samples LT-106, LT-107, and LT-109 near the center portion of the western disposal area. Analysis also indicated eight TCL SVOCs and one pesticide in the sample analyzed for SVOCs. Several inorganic analytes including cadmium, lead, selenium, and cyanide, and a few organic compounds were detected above Class C Surface Water Standards.
- Nine test pit soil/waste samples and a duplicate were collected from excavated test pits within the limits of the disposal area and analyzed for TCL VOCs and SVOCs; pesticides; PCBs; TAL inorganics; TCLP VOCs, SVOCs, and inorganics; and the hazardous characteristics of ignitability, corrosivity, and reactivity. In the analyses, nine VOCs, twenty-two SVOCs and eight pesticides were detected. Seventeen inorganic analytes were detected in samples including cadmium, mercury, silver and thallium. While none of the testing indicated the soil/waste samples to be characteristic hazardous waste, concentrations of certain analytes were detected at several locations above NYSDEC's Technical and Administrative Guidance Memorandum (TAGM) #4046 recommended soil cleanup objectives. The results of five surface and subsurface soil samples taken outside disposal limits were not indicative of hazardous waste.
- As part of the PSA, four ground water monitoring wells (MW-101, MW-102, MW-103, and MW-104) were installed at the Site. In addition, three wells, including Supply Well #5 on the Frewsburg Water District site, were sampled for TCL VOCs and TAL

inorganics. Well MW-102 was also sampled for TCL SVOCs. Results of analysis of the ground water samples from the monitoring wells on the Site included detectable concentrations of vinyl chloride, 1,2-DCE, acetone, methylene chloride, and chlorobenzene in some samples. MW-102 generally had the highest concentrations of VOCs. SVOCs were not detected in MW-102. VOCs were not detected in samples from Supply Well #5 (NYSDEC, 2003).

2.3.4. Chautauqua County Department of Health

The Chautauqua County Department of Health has been conducting sampling of the Frewsburg Water District Supply Well #5 and MW-13 on an almost monthly basis. It has also been sampling landfill monitoring wells on a less frequent basis. Concentrations of cis-l,2-dichloroethene and vinyl chloride have been detected in Supply Well #5 in the more recent samples. The detected concentrations have been below NYS Class GA ground water standards. Concentrations of the same contaminants have also been detected in MW-13 over a greater period of time. MW-13 is downgradient of the disposal area, and upgradient of Supply Well #5.

Testing on an approximate quarterly basis at MW-102, located downgradient of the western disposal area, has consistently indicated concentrations of dichlorodifluoromethane, vinyl chloride, chloroethane, and cis-1,2-dichloroethene. The concentrations appear to have increased over time. Periodic testing of MW-104 located downgradient of the landfill has indicated similar contaminants. The concentrations have generally been within an order of magnitude above or below the NYS Class GA ground water standards (NYSDEC, 2003).

3. RI field investigation methods

This section describes the RI field investigation methods conducted at the Site as part of the Phase I RI. Consistent with the RI/FS Work Plan, the field investigations included the collection of samples from the following environmental media:

- soil vapor
- surface soil
 - surface water
- sediment
- subsurface soil
- leachate seep
- ground water

The main RI field sampling effort during which samples from the above environmental media were collected was conducted between August 16, 2004 and November 10, 2004. A second ground water sampling event was conducted between March 7 and March 11, 2005. Sample locations are shown on Figure 2.

3.1. Ground water sampling using passive diffusion bags

One of the initial RI field sampling tasks was the collection of ground water samples from discrete intervals within monitoring well MW-13. Monitoring well MW-13 was installed as part of a field investigation associated with siting of a supply well (Supply Well #5) for the Village of Frewsburg. MW-13 was installed to a depth of approximately 75-ft below grade and constructed with a 40-ft long well screen. MW-13 is located approximately 185 feet to the northeast of Supply Well #5 between the western landfill cell and the supply well. The location of MW-13 is shown on Figure 2. Prior sampling of MW-13 by NYSDOH indicated the presence of low levels (*i.e.* below ground water standards) of vinyl chloride. As MW-13 is located upgradient of Supply Well #5, there was a concern regarding potential impact to the supply well.

Passive diffusion bags (PDBs) were installed in existing monitoring well MW-13. The total depth of MW-13 is approximately 75 feet below grade. Monitoring well construction data for MW-13 indicates that this well is screened from approximately 35 feet to 75 feet below grade. The purpose of the PDB sampling was to evaluate potential stratification of VOCs within the 40-ft screened interval of MW-13.

The PDB samplers that were installed were 24-inches in length and 1.25inches in diameter. The PDBs were positioned at depths of approximately 40-ft, 50-ft, 60-ft, and 70-ft within the well on August 20, 2004. Ground water samples were collected on September 3, 2004 from these four intervals for analysis.

The four ground water samples collected from MW-13 were submitted to O'Brien & Gere Laboratories for VOC analysis using USEPA Method OLM04.2.

3.2. Soil vapor sample collection

Thirty-seven soil vapor points were installed for VOC and methane screening purposes. The locations of the soil vapor sampling points are shown on Figure 2. Based on the results of VOC levels detected during the screening step, four soil vapor samples were collected for laboratory analysis. A description of the sample locations, procedures used to implement soil vapor screening and sample collection, and laboratory analysis follow.

For each sample, a soil vapor sample probe was installed manually to an approximate depth of 1 to 2 feet below grade, which was estimated to be the thickness of the landfill cover material at each respective location. The probe consisted of a three-quarter inch hollow stainless-steel rod manually driven by a sledge hammer.

The opening at the top of the probe was fitted to tubing that was connected to a ppb range photoionization detector (PID) for measurement of total VOCs. The sensitivity of the PID was calibrated to optimize sensitivity for vinyl chloride. Although a wide range of VOCs would be measured at this calibration setting, the PID would also exhibit high sensitivity to similar chlorinated aliphatic hydrocarbons (CAHs), ammonia (NH4), hydrogen sulfide (H₂S), and other sulfated volatile compounds within this sensitivity range.

For each location, the initial measurement was recorded and a second measurement was recorded after the meter readings had stabilized at the estimated equilibrium point for total VOC concentration.

Following the measurement of total VOCs, landfill gas levels were measured as a percentage of the total gases detected using a landfill gas meter. Measurements were recorded when a stable meter reading was observed. Measured gas levels included oxygen, carbon dioxide, methane and the balance of gases present. The subsequent collection of soil vapor samples for laboratory analysis is described below.

Based on the results of the soil vapor screening measurements, four locations were selected to collect soil vapor samples for laboratory analysis. Although VOC levels were relatively low at the soil vapor screening locations in the northern portions of the landfill cells, higher levels of VOCs were measured at sampling locations SV-16, SV-19, SV-22, SV-31, and SV-34 located in the southern portions of the landfill cells. Based on the VOC levels, locations SV-16, SV-19, SV-31, and SV-34 were selected to represent the highest overall VOC levels in the landfill.

For each sample collected for laboratory analysis, a soil vapor sample probe was installed manually to an approximate depth of 3 feet below grade such that the inlet of the sample tubing was below the landfill cover materials. The probe consisted of a three-quarter inch hollow stainless-steel rod driven by a sledge hammer. The steel rod contained one-eighth inch tubing, which was inserted into a slotted aluminum vapor point at the bottom end of the hollow rod. The hollow rod was removed after the sampling point and tubing was installed to the selected sampling depth.

After removal of the hollow rod, a minimum of 3-inches of crushed stone was placed in the probe hole to cover the vapor point and allow a permeable zone for soil vapor to collect around the vapor probe. Following the installation of crushed stone, concrete grout was installed to seal the probe hole.

To remove stagnant or ambient air from the sample string (consisting of the vapor point, stone pack, and tubing) and to provide samples that were representative of subsurface conditions, one to three sample-string volumes were purged. Sampling points were purged with a 60-ml syringe.

After the sample point was purged, the tubing was connected to the flow controller of a 6-Liter Silonite[®] coated stainless steel vacuum canister. The flow controller was calibrated to collect the sample over a 4-hour period. The valve on the canister was then opened to collect the soil vapor sample. It should be noted that the flow regulator for sample SV-19 was defective and the sample was collected over only a one-minute time period. Quality control samples (trip blank, duplicate, and MS/MSD samples) were not collected for this screening-level sampling event.

When sample collection was completed, the canisters were packaged and sent under chain-of-custody to Lancaster Laboratories for analysis of VOCs using USEPA Method TO-15.

3.3. Surface soil sample collection

Ten surface soil samples (SS-01 to SS-10) were collected on September 16, 2004. Surface soil samples SS-01, SS-02, SS-03, SS-05, SS-09, and SS-10 were collected around the eastern landfill cell and samples SS-04, SS-06, SS-07, and SS-08 were collected around the western landfill cell. The selection of the soil sample locations included considerations based

on visual observation of the site, such as impacted soils, stressed vegetation, and soils close to drums and metal cuttings. The locations of the surface soil samples are presented on Figure 2.

Surface soil samples were collected using disposable plastic scoops. If the selected sampling location was in a vegetated area, the vegetation was removed prior to sample collection. The soil samples were collected from within the top 2-inches of the exposed ground surface or below vegetative cover. The samples were obtained by digging into the soil with a disposable scoop and transferring a sufficient amount of the soil to a plastic bag. The soil within the plastic bag was then homogenized. Finally, the soil sample was transferred from the plastic bag to the appropriate sample containers.

Five surface soil samples (SS-06 to SS-10) were analyzed for the following: TAL metals including mercury and cyanide using USEPA Method ILM04.0 and pesticides/PCB using USEPA Method OLM04.2. At the direction of NYSDEC, five surface soil samples (SS-01 to SS-05) were reserved for analysis at a later date, if deemed necessary.

O'Brien & Gere Laboratories in Syracuse, New York analyzed the TAL metals and pesticide/PCB samples.

3.4. Surface water sample collection

Five surface water samples (SW-1, SW-2, SW-3, SW-4, and SW-5) were collected on September 23, 2004 from the drainage and wet areas around the western and northern portions of the landfill cells. Surface water samples were co-located with the sediment samples. The objective of the sampling was to evaluate potential areas of constituent loading to the wetland areas adjacent to the western and northern portions of the landfill cells. The locations of the surface water samples are shown on Figure 2.

Surface water samples SW-1 and SW-2 were collected from a drainage swale north of the landfill cells. Surface water sample SW-3 was collected from the wetland area west of the western landfill cell. Surface water samples SW-4 and SW-5 were collected in the drainage area that separates the two landfill cells. Some sheen was observed on the surface water around sampling locations SW-2 and SW-3.

Surface water depths were generally observed to be less than 2-ft. The water samples were collected facing upstream in flowing surface water systems and by submerging a sample bottle below the water surface. Surface water samples were analyzed in the field for temperature, pH, and conductivity.

The surface water samples were analyzed by O'Brien & Gere Laboratories in Syracuse, New York. Analyses included TCL SVOCs

using USEPA Method OLM04.2, and TAL metals including mercury and cyanide using USEPA Method ILM04.0.

Surface water sample SW-4 was also analyzed for pesticides/PCBs using USEPA Method OLM04.2. The PCB/pesticide surface water sample was collected from the same location from which a PCB/pesticide sample was collected from the associated sediment sample SED-4.

3.5. Sediment sample collection

Five sediment samples (SED-01, SED-02, SED-03, SED-04, and SED-05) were collected which were co-located with the surface water samples. The locations of the sediment samples are shown on Figure 2.

Sediment samples SED-01 and SED-02 were collected from a drainage swale north of the landfill cells. Sediment sample SED-03 was collected from the wetland area west of the western landfill cell. Sediment samples SED-04 and SED-05 were collected in the drainage area that separates both landfill cells.

The sediment samples were collected using push core techniques. Push core sampling techniques consist of manual penetration of sediment using a polycarbonate tube to collect the sediment core. For the sediment collection, 3-inch diameter, dedicated polycarbonate tubes were used. The push core was manually advanced to depths of approximately 0.5-ft.

The sample portion to be analyzed for VOCs was the first sample collected, and was obtained from the center of the core and placed in sample containers with as little headspace as practicable. The remainder of the 0.5-ft interval was extruded from the core. The sample was homogenized in a dedicated stainless steel mixing bowl and portioned to the appropriate sample jars.

The sediment samples were analyzed by O'Brien & Gere Laboratories in Syracuse, New York. Analyses included VOCs and SVOCs using USEPA Method OLM04.2 and inorganics including cyanide using USEPA Method OLM04.0. In addition, samples were analyzed by Ecology & Environment for total organic carbon using the Lloyd Kahn method.

3.6. Subsurface soil sample collection

Subsurface soil samples were analyzed from selected test pit locations and from areas beneath observed leachate seeps. The test pit and subsurface soil sample locations are shown on Figure 2.

3.6.1. Test pits

Five soil samples were collected from five test pits from the western landfill (TP-04/SS-1, TP-07/SS-2, TP-08/SS-5, TP-10/SS-4, and TP-11/SS-3). Sample TP-04/SS-1 was collected from visually impacted soil. Samples TP-07/SS-2, TP-08/SS-5, TP-10/SS-4, and TP-11/SS-3 were collected adjacent to drum carcasses present in each of the test pits. Test pit logs are provided in Appendix A.

To collect soil samples, the backhoe operator removed a representative portion of soil with the bucket of the backhoe. The field sampler then transferred the soil to be sampled from the bucket to the appropriate sample containers.

The test pit soil samples were analyzed by O'Brien & Gere Laboratories in Syracuse, New York for TCL VOCs and SVOCs using USEPA Method OLM04.2, Target Analyte List (TAL) metals, including mercury and cyanide using USEPA Method OLM04.0, and pesticides/PCBs using USEPA Method OLM04.2.

3.6.2. Leachate seep soils

Three soil samples (SOIL-01, SOIL-02, and SOIL-03) were collected between September 22 and 23, 2004 from areas where leachate seeps were observed. The locations of the soil samples are shown on Figure 2.

Soil samples SOIL-01 and SOIL-02 were collected in the drainage area between the two landfill cells and sample SOIL-03 was collected off the northwest corner of the western landfill. Soil samples SOIL-01 and SOIL-02 were collected from discolored soils adjacent to leachate seeps that exhibited sheens.

Soil samples for VOC analyses were collected by manually grabbing the samples and transferring the soil to laboratory sample jars. Soil samples for the remaining parameters were collected by transferring additional soil from the sample location to a dedicated stainless steel mixing bowl for sample homogenization. After homogenization, the samples were portioned to the appropriate laboratory sample jars.

Soil samples were analyzed for TCL VOCs using USEPA Method OLM04.2 and TAL metals including mercury and cyanide using USEPA Method OLM04.0. In addition, soil sample SOIL-02 was analyzed for TCL SVOCs and PCB/pesticides using USEPA Method OLM04.2.

3.7. Leachate seep sample collection

Three leachate seep samples (LT-01, LT-02, and LT-03) were collected between September 22 and 23, 2004. The leachate samples were colocated with the leachate seep soil samples. The locations of the leachate seep samples are shown on Figure 2.

Samples LT-01 and LT-02 were collected in the drainage area between the two landfill cells and sample LT-03 was collected off the northwest corner of the western landfill. Leachate samples were collected from areas containing sheen and discolored water. Leachate seep samples were collected directly into the laboratory sample bottles.

Leachate seep samples were analyzed by O'Brien & Gere Laboratories in Syracuse, New York. Samples were analyzed for TCL VOCs using USEPA Method OLM04.2 and TAL metals including mercury and cyanide using USEPA Method OLM04.0. One leachate sample, LT-02, was also analyzed for TCL SVOCs and pesticides/PCB using USEPA Method OLM04.2. The pesticide/PCB leachate sample was collected from the same location from which a pesticide/PCB sample was collected from the associated leachate seep soil sample SOIL-02.

3.8. Temporary well installation

Three temporary wells (TW-TP-02, TW-TP-06, and TW-TP-22) were installed at test pit locations TP-02, TP-06, and TP-22. Temporary wells TW-TP-02 and TW-TP-06 were installed on August 17, 2004. Temporary well TW-TP-22 was installed on August 19, 2004. Temporary wells were installed at these locations as they contained the most visibly impacted water at the test pit locations.

Each temporary well consisted of an appropriate length of 2-inch diameter, 0.010-in slot well screen. The well screen was placed into the test pits, and the excavated test pit materials were backfilled around the temporary wells.

The purpose of the temporary well installations was to allow collection of water present from the test pits, while minimizing the amount of sediment in these water samples. Subsequent to installation, the temporary wells were allowed to equilibrate with the surrounding materials for approximately 2 weeks prior to collecting water samples. Water samples were collected from the temporary wells on September 2, 2004. Disposable polyethylene bailers were used to collect the samples. Water samples were collected directly from the temporary wells with no prior purging to minimize the amount of sediment in each sample. Temporary wells TW-TP-06 and TW-TP-22 only contained sufficient water to allow collection of VOC samples. Temporary well TW-TP-02 contained sufficient water to collect VOC, SVOC, pesticide/PCB, and inorganic samples.

The water samples collected from the temporary wells were analyzed by O'Brien & Gere Laboratories in Syracuse, New York. VOC, SVOC, and pesticide/PCB samples were analyzed using USEPA Method OLM04.2. Inorganic samples were analyzed using USEPA Method OLM04.0.

3.9. Monitoring wells

A total of fourteen monitoring wells were installed at the Site between August 30 and September 14, 2004. Seven shallow wells were installed with the screened interval positioned at depths of approximately 10-ft to 20-ft below grade. Six intermediate wells were installed with the screened interval positioned at depths of approximately 35-ft to 45-ft below grade. One deep monitoring well was installed with the screened interval positioned at depths of approximately 60-ft to 70-ft below grade. The locations of the monitoring wells are shown on Figure 2.

Monitoring wells were installed such that the ground water quality associated with the shallow, intermediate, and deep portions of the waterbearing formation could be evaluated. Seven shallow monitoring wells and six intermediate monitoring wells were installed around the western and eastern landfill cells. Three shallow wells MW-109S, MW-110S, and MW-111S and four intermediate wells MW-102I, MW-109I, MW-110I, and MW-1111 were installed west of the western landfill cell in a wet and vegetated area. Three shallow wells MW-106S, MW-107S, and MW-108S and two intermediate wells MW-107I and MW-108I were situated between the western and eastern landfill cells close to the drainage area that separates the two landfill cells. One shallow monitoring well MW-105S was located east of the eastern landfill cell, close to the property line. This monitoring well was relocated from its original location due to drill equipment accessibility problems. NYSDEC's representative agreed with the monitoring well MW-105S relocation.

The shallow and intermediate wells were installed to approximate depths of 20 and 45-ft below grade, respectively. The shallow monitoring wells were installed below the fill material. Most of the shallow wells were located within a silt and clay material, with some fine to medium grained sand at the bottom of the well. Shallow monitoring well MW-108S was installed within a fine to medium grained sand and silt. The intermediate monitoring wells were installed within a medium to coarse sand and gravel unit.

One deep monitoring well MW-109D was installed west of the western landfill cell in a cluster with monitoring well MW-109S and MW-109I.

The deep monitoring well MW-109D was installed to an approximate depth of 70-ft within a medium to coarse grained sand.

Boreholes for the monitoring wells were advanced using hollow-stem auger drilling methods. During advancement of each borehole, soil samples were obtained continuously and described as to color, moisture content, density, grain-size distribution, and recovery.

Soil samples from the borings were screened for the presence of VOCs using a portable PID. The PID screening was conducted by placing a representative portion of the sample in a glass jar, covering the jar with aluminum foil, capping the jar, and allowing the sample to equilibrate. After the equilibration time, usually at the end of the well boring, the jar was uncapped and the aluminum foil pierced. The headspace within the jar was then screened using the PID. The PID screening information was recorded on the Test Boring Log.

Upon completion of each borehole, a 2-inch diameter, schedule 40 PVC monitoring well was constructed. Each monitoring well was constructed using a 10-ft long, 0.010-inch slotted PVC well screen flush-threaded to lengths of PVC riser casing. The well materials were installed through the auger string. The driller verified the total depth of the borehole prior to installation of the well by sounding the bottom with a weighted tape.

A sandpack compatible for use with a 0.010-inch slotted screen was installed within the annular space between the well and the borehole wall. The sandpack materials were installed such that sandpack extended a minimum of two feet above the top of the well screen. A bentonite seal was installed on top of the sandpack. A cement/bentonite grout was tremied on top of the bentonite seal. A 4-inch diameter protective steel casing was installed over the well and set in a concrete well pad.

Monitoring well specifications are summarized on Table 1. Boring logs associated with the monitoring wells are included in Appendix B.

Following the completion of the monitoring well installations, each monitoring well was developed to remove fine-grained materials from the sand pack and formation to restore the hydraulic connection between the well and the water-bearing formation. The wells were developed using either disposable bailers or a submersible pump. Measurements of water quality parameters such as pH, conductivity, temperature, and turbidity were monitored and recorded subsequent to the removal of each well volume. Well development water was relatively clear from the shallow monitoring wells MW-107S and MW-110S, the intermediate wells, and deep well after the removal of five well volumes. Ten well volumes were removed from monitoring wells MW-105S and 102I, however the development water remained turbid. Development of monitoring wells MW-106S, MW-108S, MW-109S, and MW-111S was considered complete after removal of two to four well volumes as each of these wells went dry.

3.10. Ground water sample collection

Ground water samples were collected during two events. The first event was during October 2004 and the second event was during March 2005. During the October 2004 ground water sampling event, samples were collected using low-flow purge and sample methods in accordance with the RI Work Plan from the fourteen newly installed monitoring wells. In addition, five existing monitoring wells (MW-101, MW-102, MW-103, MW-104, MW-13) were included in this ground water sampling effort.

Prior to initiation of the ground water sampling, a complete round of ground water elevations was recorded from the entire site monitoring well network. An electronic water level probe was used to measure the depth to water in each well. The depth to water was measured to the nearest 0.01 foot from the surveyed points on the well casings. The depth to water measurements were recorded in the field log book.

Prior to commencing sampling activities, the ground water quality monitoring probes/meters including pH, conductivity, oxidation-reduction potential (ORP), dissolved oxygen, and turbidity were calibrated daily in accordance with the manufacturer's instructions. Calibration results were recorded in the field log notebook. During the purging process the flow rate did not exceed 500 ml/min.

Measurements of pH, conductivity, temperature, ORP, dissolved oxygen, turbidity, depth to water, and flow rate were recorded at approximately 5-minute interval. This allowed at least one full volume of the flow-through cell to be evacuated between each measurement event.

Ground water samples were collected after equilibration of the water quality parameters. Equilibration was defined as follows:

Temperature	+/-3 % of measurement
pН	+/-0.1 pH units
Specific conductance	+/-3 % of measurement
Redox	+/-10 mV
DO	+/-10 % of measurement
Turbidity	+/-10 % of measurement

During the second ground water sampling event (March 2005), ground water samples were collected from seventeen monitoring wells for VOCs, twelve monitoring wells for inorganics, and seven monitoring wells for methane/ethane/ethene analyses. Similar to the first ground water sampling event, low-flow purge and sample methods were used initially; however, purge and sample problems were encountered due to sub-freezing temperatures. The sampling problems were discussed with NYSDEC and an alternative sampling method using disposable bailers was proposed and subsequently accepted by NYSDEC.

Ground water sampling logs from the October 2004 and March 2005 ground water sampling events are provided in Appendix C. Ground

water samples collected during the first ground water sampling event were analyzed by O'Brien & Gere Laboratories in Syracuse, New York. Analyses included TCL VOCs and TAL metals from all nineteen wells, and TCL SVOCs and pesticides /PCB from four monitoring wells (MW-102S, MW-105S, MW-108I, MW-109D).

Ground water samples collected during the second ground water sampling event were analyzed by O'Brien & Gere Laboratories in Syracuse, New York. Analyses included TCL VOCs from seventeen monitoring wells, inorganics from twelve monitoring wells, and methane, ethane, and ethene from seven monitoring wells.

3.11. Hydraulic conductivity testing

In situ hydraulic conductivity tests were performed on the fourteen newly installed wells and the existing wells MW-101, MW-102, MW-103, and MW-104. The tests were performed to obtain data necessary to evaluate ground water flow velocities through the subsurface materials. The hydraulic conductivity testing consisted of rising and falling head tests at each well. During the falling head test, an initial change in water level was induced by lowering a solid slug below the water level. The decline in water levels toward the static level was then recorded using a pressure transducer. The rising head test was conducted by withdrawing the solid slug. The subsequent rise in water levels was recorded using a pressure transducer.

The static water level was recorded in each of the wells before the beginning of the test. Water level data generated during the hydraulic conductivity tests were collected using an automated pressure transducer. The transducer was installed in the wells and programmed to record data between 1 and 5 second intervals. At the end of the test, the water level data were downloaded to a computer and the transducer was removed from the well. Interpretation of the water level versus time data from the hydraulic conductivity tests was conducted using the Bower & Rice method using Aquifer^{Win32} software. The hydraulic conductivity test results are provided in Appendix D.

3.12. Decontamination and handling of IDW

The RI activities produced investigation-derived wastes (IDW) which required appropriate management. The management of these materials is discussed below.

Split spoon samplers were decontaminated after each use using a nonphosphate detergent wash followed by a potable water rinse. The decontamination water was periodically changed during the drilling program. These decontamination fluids were transferred to 55-gallon drums.

After the completion of each well borehole, the hollow stem augers, drill rods, and other miscellaneous drilling tools were decontaminated using a high-pressure steam cleaner. This decontamination process was conducted on a temporary decontamination pad. The decontamination fluids were collected and transferred to 55-gallon drums.

After the completion of each test pit, the bucket of the backhoe was decontaminated using a high-pressure steam cleaner. This decontamination process was conducted on a temporary decontamination pad. The decontamination fluids were collected and transferred to 55-gallon drums.

The only piece of non-dedicated ground water sampling equipment that was used was the bladder pump. To decontaminate the bladder pump, the pump was disassembled and the bladder was removed and discarded. The outside and inside of the pump were then washed with a nonphosphate detergent solution. The pump was then rinsed with potable water to remove the detergent solution. A new bladder was installed, and the pump reassembled.

Waters generated during decontamination, well development, and ground water sampling activities were containerized in 55-gallon drums. These drums were transported and staged at the Town of Carroll DPW property. The 55-gallon drums were labeled with the monitoring well identification and the date which the ground water was initially containerized. Based on the ground water analytical results from two sampling events (presented on Tables 23 through 26), the containerized water is not indicative of characteristic hazardous waste as defined by 40 C.F.R 261.24, other than potentially one drum that contained purge water from MW-107S. The ground water analytical data from MW-107S indicated the presence of vinyl chloride at concentrations of 600 ug/L and 250 ug/L during the October 2004 and March 2005 sampling events, respectively. These concentrations of vinyl chloride are above the 40 C.F.R 261.24 maximum concentration for vinyl chloride of 200 ug/L. However, the drum containing purge water from MW-107S also contained purge water from MW-104, MW-106, and MW-107I, which based on ground water analytical data did not contain contaminant concentrations that would be indicative of characteristic hazardous waste per 40 C.F.R 261.24. As such, the vinyl chloride concentration in this drum is likely not indicative of characteristic hazardous waste. Currently, it is anticipated that the containerized water will be discharged to the ground surface at the Site.

Soil cuttings generated during drilling activities were placed in two areas of the western landfill cell. These cuttings were covered with polyethylene sheeting to minimize the potential for contact with precipitation. The polyethylene sheeting was "keyed" into the existing cover material to keep the sheeting in place.

Used PPE and other general refuse were placed in trash bags and disposed of in appropriate waste receptacles.

3.13. Survey

Each of the newly-installed monitoring wells, test pits, surface water, sediment/soil sample locations, leachate seep locations, and surface soil sample locations were surveyed for horizontal and vertical control and incorporated into the site base map. The survey was conducted by a New York State licensed surveyor.

Benchmarks previously identified for control during the Preliminary Site Assessment conducted by ABB-ES were used. Horizontal positions were tied into the New York State Plane Coordinate System (North American Datum 1927). Horizontal accuracy was 0.01-ft. Vertical elevations were relative to mean sea level, 1929 General Adjustment. Monitoring wells were surveyed to the nearest 0.01 feet at the top of the riser pipe (measuring point) and top of protective steel casing. Ground surface at each location was surveyed to the nearest 0.1 feet.

4. RI field investigation results

4.1. Subsurface conditions

4.1.1. Fill

The uppermost material encountered within the boundaries of the landfill cells is fill. Fill materials around the edges of the western cell were observed to be mainly composed of wood debris, metal debris, metal turnings, plastic and glass bottles, plastic sheeting, paper, tires, and drum carcasses. Based on the types of wastes encountered around the perimeter and observed on the surface, the western landfill cell can generally be described as containing a mix of municipal and industrial wastes.

Fill materials around the edges of the southern portion of the eastern cell were observed to be mainly composed of municipal waste such as plastics, miscellaneous metallic debris, paper, and plastic toys. Fill materials around the edges of the northern portion of the eastern cell were observed to be mainly composed of brush and log materials.

Specific descriptions of fill materials and thickness encountered in the test pits completed around the perimeter of the landfill cells are provided on the test pit logs and test pit log summary table contained in Appendix A. Test pits completed around the edges of the landfill cells indicate that the depth of fill ranged from approximately 1-ft at TP-18, TP-20, and TP-23 to approximately 9-ft at TP-12. The top of the fill materials encountered in the perimeter test pits was observed between approximately 0.5-ft and 4-ft.

Some areas within the interior portions of the eastern and western landfill cells contained wastes exposed at or just below the surface. In general, these exposed wastes consisted of drum carcasses, tires and bottles. In addition, exposed wastes were observed between the landfill cells, as well as within the drainage channel that separates the landfill cells.

4.1.2. Geologic conditions

The site is located in the Allegany Plateau physiographic province of New York State near the Village of Frewsburg. The subsurface geologic conditions at the Site are described in the soil boring logs presented in Appendix B. Subsurface soil information obtained during the advancement of the monitoring well borings was used to construct two cross-sections (A-A' and B-B') through the Site. Cross-sections A-A' and B-B' are shown on Figure 3. The cross-section locations are shown on Figure 2. The cross-section lines were generally oriented parallel to ground water flow in the shallow and intermediate ground water zones.

The following naturally-occurring hydrogeologic units can be differentiated at the Site: lacustrine sandy silt, lacustrine silty clay, sand and gravel, till, and bedrock.

Lacustrine sandy silt and silty clay

The uppermost naturally occurring material encountered outside of the boundaries of the landfill cells and underlying the fill consists of a yellowish brown, stiff, fine sandy silt with some clay. This sandy silt unit varies in thickness from 5-ft (southwest) to 10-ft (northeast). Underlying this unit is a medium gray, stiff, silty clay unit. This silty clay unit varies in thickness from about 3-ft to 10-ft (southwest) to about 8-ft (northeast). The total depth of these units range from 7-ft to 20-ft below ground surface.

Glacial outwash sand and gravel

An outwash sand and gravel was encountered underlying the lacustrine sandy silt and silty clay unit. The sand and gravel unit consists of yellowish brown, medium dense, fine to coarse sand and gravel with some silt. The total depth of this unit is approximately 45 ft below ground surface.

Till

Till was encountered at the MW-109D location underlying the outwash sand and gravel unit. The glacial till consists of olive gray, very dense, gravel and medium to coarse sand with few cobbles. This unit has a thickness of about 15 ft.

Bedrock

Bedrock was not encountered at the Site during this field investigation. The uppermost bedrock formations consist of upper Devonian age shale and siltstone of the Conneaut Group. The formations may also include limited beds of sandstone and conglomerate (Rickard and Fisher, 1970). Previous activities completed for the investigation for the Frewsburg Water District encountered weathered shale bedrock at 76 to 81 ft below ground surface (Moody & Associates, May 1993).

4.1.3. Hydrogeologic conditions

Ground water elevation data collected on October 11, 2004 and March 7, 2005 are summarized on Table 1. These data were used to generate shallow and intermediate ground water elevation contour maps. The October 14, 2004 shallow and intermediate ground water elevation contour maps are provided as Figures 4 and 5, respectively. The March

7, 2005 shallow and intermediate ground water elevation contour maps are provided as Figures 6 and 7, respectively.

As shown on the shallow ground water elevation contour maps (Figures 4 and 6), there is a flow component within the shallow ground water to the west-northwest towards Conewango Creek. However, during the October 14, 2004 monitoring event, there was also a flow component near monitoring wells MW-109S and MW-110S to the west-southwest, which was not evident based on the March 7, 2005 ground water elevation data. The Frewsburg Water District Supply Well #5 is located about 300-ft southwest of monitoring wells MW-109 and MW-102. It is likely that ground water flow direction is being influenced and redirected by initiation of pumping activities of the supply well in January 1995.

Ground water in the intermediate zone, as shown on Figures 5 and 7, flows to the southwest. Ground water in the intermediate zone is likely influenced, as well, by the pumping activities of the supply well.

Based on the October 14, 2004 ground water elevations in the shallow wells, the shallow hydraulic gradient was higher across the southern portion of the landfill cells compared to the hydraulic gradient across the northern portion of the landfill cells. The shallow hydraulic gradient ranged from approximately 0.006 ft/ft to 0.008 ft/ft across the southern portion of the eastern and western landfill cells, respectively, to 0.002 ft/ft to 0.003 ft/ft across the northern portion of the eastern and western landfill cells, respectively, to 0.002 ft/ft to 0.003 ft/ft across the northern portion of the eastern and western landfill cells, respectively.

Similar to the October 14, 2004 monitoring event, the shallow hydraulic gradient was higher across the southern portion of the landfill cells compared to the hydraulic gradient across the northern portion of the landfill cells based on the March 7, 2005 shallow well ground water elevation data. The shallow hydraulic gradient ranged from approximately 0.009 ft/ft to 0.006 ft/ft across the southern portion of the eastern and western landfill cells, respectively, to 0.006 ft/ft to 0.0006 ft/ft across the northern landfill cells, respectively.

Based on the October 14, 2004 ground water elevations in the intermediate wells, a fairly uniform hydraulic gradient of approximately 0.004 ft/ft, was evident across the western landfill cell. Based on the March 7, 2005 ground water elevations, the intermediate hydraulic gradient ranged from 0.004 ft/ft to 0.002 ft/ft across the northern and southern portions of the western landfill cell, respectively.

Ground water elevations of the shallow, intermediate and deep wells cluster were used to evaluate the vertical hydraulic gradients at the Site. The vertical hydraulic gradients based on the October 11, 2004 and March 7, 2005 monitoring events are summarized on Table 2.

As shown on Table 2, downward hydraulic gradients were evident at well pairs MW-107S/MW-107I, MW-108S/MW-108I, MW-110S/MW-110I, and MW-111S/MW-111I based on the October 14, 2004 ground

water elevations. These downward hydraulic gradients ranged from 0.026 ft/ft at the MW-107S/MW-107I well pair to 0.101 ft/ft at the MW-108S/MW-108I well pair. An upward hydraulic gradient was evident at the MW-109S/MW-109I/MW-109D well cluster. Comparison of the vertical hydraulic gradient based on the October 14, 2004 ground water elevations to the hydraulic gradients based on the March 7, 2005 ground water elevations indicates that downward hydraulic gradients continued to be evident at well pairs MW-108S/MW-108I, MW-110S/MW-110I, and MW-111S/MW-111I. The hydraulic gradients at well pairs MW-107S/MW-107I and MW-109S/MW-109I showed a reversal from downward based on the October 14, 2004 ground water elevation data to upward based on the March 7, 2005 ground water elevation data. The hydraulic gradient at the MW-109I/MW-109D well pair which was upward based on the October 14, 2004 ground water elevation data showed no gradient based on the March 7, 2005 ground water elevation data.

In situ hydraulic conductivity tests were performed on eighteen shallow, intermediate, and deep monitoring wells. The hydraulic conductivity results are summarized on Table 3.

Results indicate that hydraulic conductivity of the shallow hydrogeologic unit range from 0.05 ft/day (MW-105S and MW-108S) to 0.5 ft/day (MW-101). The hydraulic conductivity of the intermediate zone of the sand and gravel is more variable. Hydraulic conductivity values from the intermediate wells range from 0.16 ft/day (MW-110I) to 9.72 ft/day (MW-109I). The hydraulic conductivity of the deep sand and gravel based on data from MW-109D is 2.85 ft/day.

The geometric mean hydraulic conductivity of the intermediate sand and gravel is approximately one order of magnitude higher than the hydraulic conductivity of the lacustrine silts and clay of the shallow hydrogeologic unit. The low hydraulic conductivity values from the shallow wells are representative of the finer grained surficial sandy silt and silty clay units at the Site. Conductivity values from the intermediate wells are representative of the coarser grained sand and gravel unit.

4.2. RI analytical results

The evaluation of the environmental data consisted of comparison of the analytical results with potentially applicable standards, criteria, and guidance values (SCGs) to screen the data for potential constituents of concern. The potentially applicable SCGs used for comparison to the RI analytical data are summarized on Table 4-1 below.

Sample Media	Standards, criteria, and guidance reference
Soil	NYSDEC Technical Administrative Guidance Memorandum Number 4046 (TAGM #4046) – Recommended Soil Cleanup Objectives (RSCOs)
Sediment	NYSDEC Technical Guidance for Screening Contaminated Sediments
Surface water	NYSDEC Technical and Operational Guidance Series 1.1.1 (TOGS 1.1.1) – Class C Surface Water Criteria
Leachate	NYSDEC Technical and Operational Guidance Series 1.1.1 (TOGS 1.1.1) – Class C Surface Water Criteria
Soil vapor	USEPA, 2002 - OSWER Draft Guidance for Evaluating the Vapor Intrusion to Indoor Air Pathway from Groundwater and Soils (Subsurface Vapor Intrusion Guidance)
Surface soil	NYSDEC Technical Administrative Guidance Memorandum Number 4046 (TAGM #4046) – Recommended Soil Cleanup Objectives
Ground water	NYSDEC Technical and Operational Guidance Series 1.1.1 (TOGS 1.1.1) – Class GA Ground Water Criteria

 Table 4-1 Standards, criteria, and guidance

Source: O'Brien & Gere Engineers, Inc.

Laboratory data sheets associated with the samples analyzed as part of the RI are provided in Appendix E.

4.2.1. Soil vapor

Each soil vapor monitoring point was screened for total VOCs using a PID. The initial measurements of total VOCs were relatively low and measurements recorded after stabilization of the meter readings were at, or close to, the general background levels for ambient air.

Landfill gases were also measured for oxygen (O₂), carbon dioxide (CO₂), and methane (CH₄). Many locations had detected concentrations that were consistent with normal atmospheric concentrations for O₂, CO₂, CH₄, and balance gases. For many other locations the distribution of gases was not consistent with atmospheric levels or well correlated among sample locations. Most of these locations had low levels of O₂ (less than 0.80 of atmospheric levels) corresponding to high levels of CO₂ (greater than 10 times atmospheric levels), which would indicate aerobic microbial activity. Detectable levels of CH₄ were recorded at soil vapor sample locations SV-09 (14 %), SV-21 (2.5 %), and SV-30 (3.8 %), which would indicate gases (primarily comprising nitrogen in ambient air) were also relatively low at two of the locations (SV-09 and SV-21) that had detected levels of CH₄. The results of the soil vapor field screening are presented in Table 4.

Based on the total VOC screening data, four soil vapor samples were collected for laboratory analysis (SV-16, SV-19, SV-31, and SV-34). Soil vapor analytical data are summarized on Table 5.

As indicated on Table 5, petroleum hydrocarbons, including BTEX, were detected in all four of the soil vapor samples analyzed. Benzene was detected at up to $6 \ \mu g/m^3$ while toluene, ethylbenzene, and xylene were detected at up to 35 $\ \mu g/m^3$, $6 \ \mu g/m^3$, and 21 $\ \mu g/m^3$, respectively. Trichloroethylene was detected in sample SV-16 at 18 $\ \mu g/m^3$ while tetrachlorothene was detected in samples SV-19 and SV-31 at estimated concentrations of $4 \ \mu g/m^3$ and $0.3 \ \mu g/m^3$, respectively.

Several constituents associated with refrigerants were detected. Dichlorodifluoromethane and trichlorofluoromethane were detected in all four of the soil vapor samples analyzed. The maximum detected concentrations of dichlorodifluoromethane and trichlorofluoromethane were in sample SV-16 and the maximum concentrations were 7,600 μ g/m³ and 56 μ g/m³, respectively.

As indicated on Table 5, relatively low levels of several other VOCs were detected in the soil vapor samples. A table summarizing the frequency of VOC detections is provided in Appendix F.

4.2.2. Surface soil

Five surface soil samples (SS-06, SS-07, SS-08, SS-09, and SS-10) were analyzed during the RI field investigation. Surface soil samples were analyzed for inorganics and pesticide/PCBs. The analytical data for inorganics and pesticide/PCBs are presented on Tables 6 and 7, respectively. A table summarizing the frequency of inorganic, pesticide/PCB, SVOC, and VOC constituents exceeding SCGs and frequency of detections of these constituents is provided in Appendix F.

Inorganics

As summarized on Table 6, eleven inorganic constituents were detected at concentrations exceeding TAGM 4046 Recommended Soil Cleanup Objectives (RSCOs). The majority of inorganic concentrations detected above TAGM 4046 RSCOs fall within, or are similar to the range of Eastern United States and/or New York State background concentration ranges provided in TAGM 4046.

Based on a review of the inorganic data provided on Table 6, the concentrations of the following inorganics fall outside the range of concentrations at other surface soil locations and may be related to the landfill:

- barium at SS-09
- cadmium at SS-09
- lead at SS-09 and SS10

• zinc at SS-09 and SS-10

Pesticides/PCBs

As summarized on Table 7, seven pesticide compounds were detected in the surface soil samples. Detected concentrations of pesticides ranged from 0.001 mg/Kg of alpha-Chlordane at SS-06 to 0.019 mg/Kg of endrin at SS-06. None of the detected pesticide concentrations exceeded the TAGM 4046 RSCOs.

One PCB aroclor (Aroclor-1260) was detected in surface soil samples SS-08 and SS-09 at concentrations of 0.044 mg/Kg and 0.05 mg/Kg, respectively. The detected concentrations are below the TAGM 4046 RSCO of 1 mg/Kg for surface soil. PCBs were not detected in the SS-06 or SS-07 samples. The Aroclor-1260 result from sample SS-10 was rejected during data validation.

4.2.3. Surface water

Five surface water samples (SW-1, SW-2, SW-3, SW-4, and SW-5) were analyzed during the RI field investigation. Surface water samples were analyzed for SVOCs and inorganics. Pesticide/PCBs were also analyzed from the SW-4 sample. The analytical data for SVOCs, inorganics, and pesticide/PCBs are presented on Tables 8, 9, and 10, respectively. A table summarizing the frequency of inorganic, pesticide, and SVOC constituents exceeding SCGs and frequency of detections of these constituents is provided in Appendix F.

SVOCs

As indicated on Table 8, SVOCs were only detected in surface water sample SW-1. Detected SVOCs included acetophenone, phenol, 2methylphenol, and 4-methylphenol. Of these four SVOCs, only phenol was detected at a concentration that exceeded the NYS Class C water quality criteria. Surface water sample SW-1 was collected from the upstream section of the northern drainage swale north of the eastern landfill cell.

Inorganics

As indicated on Table 9, six inorganic constituents (aluminum, cobalt, iron, lead, vanadium, and zinc) were detected at concentrations exceeding NYS Class C water quality criteria.

Pesticide/PCBs

The surface water sample collected at SW-4 was analyzed for pesticides/PCBs in addition to SVOCs and inorganics. The SW-4 sample was collected in the northern portion of the drainage area that separates the two landfill cells. As indicated on Table 10, neither pesticides nor PCBs were detected in the SW-4 sample.

4.2.4. Sediment

Five sediment samples (SED-01, SED-02, SED-03, SED-04, and SED-05) co-located with the surface water samples were analyzed for VOCs, SVOCs, inorganics, and TOC. The analytical data for VOCs, SVOCs, inorganics, and TOC are presented on Tables 11, 12, 13, and 14, respectively. A table summarizing the frequency of inorganic, SVOC, and VOC constituent detections is provided in Appendix F.

VOCs

As indicated on Table 11, five VOCs (acetone, 2-butanone, cis-1,2dichloroethene, toluene, and styrene) were detected in the sediment samples. The most prevalent VOC detected was acetone which was detected in the five sediment samples ranging in concentration from 2 ug/Kg at SED-03 to 39 ug/Kg at SED-05. As indicated on Table 11, the remaining detected VOCs were detected once in different sediment samples.

SVOCs

As indicated on Table 12, two SVOCs were detected in the sediment samples. Benzaldehyde was detected in SED-01 at a concentration of 61 ug/Kg and bis(2-ethylhexyl)phthalate was detected in SED-03 at concentration of 87 ug/Kg.

Sediment sample SED-01 was collected from a drainage swale north of the landfill cells and sediment sample SED-03 was collected from the wet area west of the western landfill cell. No indications of sheen were noted on the surface waters around these sampling locations.

Inorganics

As indicated on Table 13, inorganics were detected in each of the five sediment samples. Of the detected inorganics, iron in the SED-03 and SED-04 samples and manganese in the SED-03 sample were detected at concentrations exceeding the Severe Effect Level criteria.

Total organic carbon

Table 14 summarizes the total organic carbon data. These data were collected to allow normalization of constituent concentrations for comparison to NYSDEC criteria.

4.2.5. Subsurface soil

A total of eight subsurface soil samples were analyzed. Five subsurface soil samples (TP-04/SS-1, TP-07/SS-2, TP-08/SS-5, TP-10/SS-4, and TP-11/SS-3) were collected and analyzed from the test pits. These subsurface soil samples were analyzed for VOCs, SVOCs, and inorganics. In addition, subsurface soil samples collected from TP-11/SS-3, TP-10/SS-4, and TP-08/SS-5 were also analyzed for pesticides/PCBs.

Three subsurface soil samples (SOIL-01, SOIL-02, and SOIL-03) were collected and analyzed from locations co-located with the leachate seep samples. These subsurface soil samples were analyzed for VOCs and inorganics.

The analytical data for subsurface soil VOCs, SVOCs, inorganics, and pesticide/PCBs are presented on Tables 15, 16, 17, and 18, respectively. A table summarizing the frequency of inorganic, SVOC, and VOC constituents exceeding SCGs and frequency of detections of these constituents is provided in Appendix F.

VOCs

As indicated on Table 15, fifteen VOCs were detected in the subsurface soil samples. Detected VOC concentrations ranged from 1 ug/Kg of chlorobenzene in the SOIL-02 sample to 150 ug/Kg of 1,4-dichlorobenzene in the TP-07/SS-2 sample.

The highest number of VOCs (eight compounds) were detected in the SOIL-01 sample, which was collected from an area of discolored soil. The sample collected from SOIL-03 contained the highest detected VOC concentrations, 100 ug/Kg of cis-1,2-dichloroethene and 130 ug/Kg of trichloroethylene. However, none of the VOCs were detected at concentrations exceeding TAGM 4046 RSCOs.

SVOCs

As indicated on Table 16, ten SVOCs were detected in the subsurface soil samples. Detected SVOC concentrations ranged from 45 ug/Kg of benzyl butyl phthalate in the TP-11/SS-3 sample to 62,000 ug/Kg of bis(2-ethylhexyl)phthalate in the TP-07/SS-2 sample. Of the detected SVOCs, bis(2-ethylhexyl)phthalate in the TP-07/SS-2 sample was the only compound detected at a concentration exceeding TAGM 4046 RSCOs.

The subsurface soil sample collected at TP-11/SS-3 contained the highest number of detected SVOCs. This sample was collected from soil located adjacent to a drum carcass. Subsurface soil samples at TP-07/SS-2 and TP-11/SS-3 contained the highest SVOCs concentrations.

Inorganics

As indicated on Table 17, inorganics were detected in each of the subsurface soil samples. Eleven inorganics were detected at concentrations exceeding TAGM 4046 RSCOs. The majority of inorganic concentrations detected above TAGM 4046 RSCOs fall within, or are similar to the range of Eastern United States background concentration ranges.

Based on a review of the inorganic data provided on Table 17, the concentrations of the following inorganics fall outside the range of concentrations at other subsurface soil locations and may be related to the landfill:

cadmium in the TP-07/SS-2 sample

- chromium in the TP-07/SS-2, TP-10/SS-4, and TP-11/SS-3 samples
- cobalt in the TP-07/SS-2, TP-10/SS-4, and TP-11/SS-3 samples
- copper in the TP-07/SS-2, TP-10/SS-4, and TP-11/SS-3 samples
- mercury in the TP-07/SS-2 sample
- nickel in the TP-07/SS-2, TP-10/SS-4, and TP-11/SS-3 samples
- zinc in the TP-07/SS-2 sample

As shown above, the subsurface soil sample collected from TP-07 contained the majority of inorganic constituents that may be considered as resulting from landfill impacts.

Pesticides/PCBs

As indicated on Table 18, pesticides were detected in two subsurface soil samples (TP-10/SS-4 and TP-11/SS-3). Detected pesticide concentrations ranged from 0.0014 mg/Kg of alpha-Chlordane in the TP-11/SS-3 sample to 0.02 mg/Kg of endrin in the TP-10/SS-4 sample. None of the detected pesticide concentrations exceeded the TAGM 4046 RSCOs.

As indicated on Table 18, PCBs were detected in two subsurface soil samples (TP-10/SS-4 and TP-11/SS-3). Detected PCB concentrations ranged from 0.12 mg/Kg of Aroclor-1260 in the TP-11/SS-3 sample to 0.81 mg/Kg of Aroclor-1260 in the TP-10/SS-4 sample. None of the detected PCB concentrations exceeded the TAGM 4046 RSCOs of 10 mg/Kg for subsurface soil.

4.2.6. Leachate seeps

Three leachate seep samples (LT-01, LT-02, and LT-03) were collected. The leachate seep samples were analyzed for VOCs and inorganics. In addition, the leachate seep sample collected at LT-02 was also analyzed for SVOCs and pesticides/PCBs.

The analytical data for leachate seep VOCs, SVOCs, inorganics, and pesticide/PCBs are presented on Tables 19, 20, 21, and 22, respectively. A table summarizing the frequency of inorganic and VOC constituent detections is provided in Appendix F.

VOCs

As indicated on Table 19, four VOCs (acetone, cis-1,2-dichloroethene, trichloroethene, and chlorobenzene) were detected in the leachate seep samples. Detected VOC concentrations ranged from 1 ug/L of chlorobenzene in the LT-01 sample to 24 ug/L of cis-1,2-dichloroethene in the LT-03 sample. VOCs were not detected in the LT-02 sample.

The highest detected VOC concentrations were in leachate sample LT-03, which was collected off the northwest corner of the western landfill from an area exhibiting a visible sheen. The detected concentrations of trichloroethene and chlorobenzene are below the established NYS Class C water quality criteria. Criteria have not been established for NYS Class C water quality for acetone or cis-1,2-dichloroethene.

SVOCs

As indicated on Table 20, SVOCs were not detected in leachate seep sample collected from the LT-02 location.

Inorganics

As indicated on Table 21, twelve inorganic constituents were detected in the leachate seep samples at concentrations exceeding NYS Class C water quality criteria. The most numerous and highest detected concentrations of the inorganic constituents were from the leachate seep sample collected from the LT-03 location.

Pesticides/PCBs

As indicated on Table 22, neither pesticides nor PCBs were detected in the leachate seep sample collected from the LT-02 location.

4.2.7. Ground water

Passive diffusion bag sampling

Four passive diffusion bags (PDBs) were installed at four depths intervals (37-39-ft, 47-49-ft, 57-59-ft, and 67-69-ft) at monitoring well MW-13. Ground water samples collected using the PDBs were analyzed for VOCs. The purpose of this sampling was to evaluate potential vertical stratification of VOCs within the 40-ft screened interval of monitoring well MW-13. The VOC analytical data for the four discrete depth interval samples from MW-13 are provided on Table 23.

As indicated on Table 23, three VOCs (vinyl chloride, acetone, and cis-1,2-dichloroethene) were detected in the samples from the four discrete depth intervals within MW-13. As shown on Table 23, the magnitude of detected VOC concentrations from the four discrete depth intervals was similar. Vinyl chloride concentrations ranged from 0.8 ug/L to 1 ug/L, acetone ranged from 3 ug/L to 5 ug/L, and cis-1,2-dichloroethene concentrations ranged from 1 ug/L to 2 ug/L.

Temporary well sampling

Three temporary wells (TW-TP-02, TW-TP-06, TW-TP-22) were installed in three test pits to evaluate the quality of water that may be perched within the fill materials. The temporary well samples were analyzed for VOCs. In addition, the sample from TW-TP-02 was analyzed for SVOCs, inorganics, and pesticide/PCBs. The VOC, SVOC, inorganic, and pesticide/PCB analytical data are summarized on Tables 23, 24, 25, and 26, respectively.

VOCs

As indicated on Table 23, nine VOCs were detected in the temporary well samples. Benzene and xylene were detected in the TW-TP-02 sample at concentrations of 2 ug/L and 11 ug/L, respectively, which exceed the NYS Class GA ground water standards of 1 and 5 ug/kg, respectively. Other VOCs detected in the temporary well samples included acetone, carbon disulfide, cis-1,2-dichloroethene, toluene, chlorobenzene, ethylbenzene, and 1,4-dichlorobenzene. The concentrations of these VOCs were below the NYS Class GA ground water standards.

SVOCs

As indicated on Table 24, eight SVOCs were detected in the TW-TP-02 sample. Three constituents, 4-methylphenol (60 ug/L), 4-chloro-3-methylphenol (5 ug/L), and 4-nitrophenol (2 ug/L), were detected above the NYS Class GA ground water standards of 1 ug/L for each compound.

Inorganics

As indicated on Table 25, eight inorganic constituents were detected in the TW-TP-02 sample at concentrations exceeding NYS Class GA ground water standards. The eight constituents include arsenic, barium, chromium, iron, lead, magnesium, manganese, and thallium.

Pesticides/PCBs

As indicated on Table 26, neither pesticides nor PCBs were detected in the TW-TP-02 sample.

Monitoring well sampling

Ground water samples were collected during two events. The first event was during October 2004 and the second event was during March 2005. During the October 2004 ground water sampling event, samples were collected and analyzed for VOCs and inorganics from the nineteen monitoring wells. In addition, ground water samples were analyzed for SVOCs and pesticide/PCBs from monitoring wells MW-102, MW-105S, MW-108I, MW-109D. During the second ground water sampling event, ground water samples were collected from seventeen monitoring wells for VOCs, twelve monitoring wells for inorganics, and seven monitoring wells for methane/ethane.

Based on installation depths and corresponding subsurface geologic conditions, the monitoring wells monitor ground water quality in shallow, intermediate, and deep zones. The shallow monitoring wells screen the silt and clay, and the upper 2-ft to 6-ft of the underlying sand and gravel, which will be described as the shallow zone. The intermediate and deep monitoring wells screen the intermediate and deep portion(s) of the sand and gravel, which will be described as the intermediate and deep zones. The monitoring wells are installed in the following zones:

<u>Shallow zone:</u> MW-101, MW-104, MW-105S, MW-106S, MW-107S, MW-108S, MW-109S, MW-110S, and MW-111S

Intermediate zone: MW-102, MW-102I, MW-103, MW-107I, MW-108I, MW-109I, MW-110I, MW-111I, and MW-13

Deep zone: MW-109D and MW-13

Note that monitoring well MW-13 was constructed with a 40-ft screened interval, which is positioned across the intermediate and deep zones.

The VOC, SVOC, inorganic, and pesticide/PCB analytical results are summarized on Tables 23, 24, 25, and 26, respectively. A table summarizing the frequency of inorganic, pesticide, SVOC, and VOC constituents exceeding SCGs and frequency of detections of these constituents is provided in Appendix F.

VOCs

As indicated on Table 23, a total of eleven VOCs were detected in the ground water samples. These eleven VOCs comprise dichlorodifluoromethane, vinyl chloride, chloroethane, carbon disulfide, trans-1,2-dichloroethene, 1,1-dichloroethane, cis-1,2-dichloroethene, 1,2-dichloroethane, benzene, toluene, and acetone. VOC concentrations were detected above NYS Class GA ground water standards in one shallow and one intermediate monitoring well as described below.

Within the shallow ground water zone, eight VOCs were detected. The results of the October 2004 sampling event indicated that four VOCs were detected in the MW-107S sample at concentrations exceeding NYS Class GA ground water standards. MW-107S is located hydraulically downgradient of the northern portion of the eastern landfill cell. The four VOCs detected in the MW-107S sample that exceeded ground water standards included dichlorodifluoromethane (9 ug/L), vinyl chloride (600 ug/L), cis-1,2-dichloroethene (69 ug/L), and 1,2-dichloroethane (2 ug/L). The results of the March 2005 ground water sampling event indicated that concentrations of vinyl chloride (250 ug/L) and cis-1,2-dichloroethene (25 ug/L) exceeded ground water standards in the MW-107S sample.

VOCs were detected in shallow monitoring wells MW-104, MW-106S, MW-108S, and MW-111S, but at concentrations below the NYS Class GA ground water standards. VOCs were not detected in shallow monitoring wells MW-101, MW-105S, MW-109S, or MW-110S.

Within the intermediate ground water zone, six VOCs were detected. The results of the October 2004 ground water sampling event indicated that three VOCs were detected in the MW-102I sample at concentrations exceeding NYS Class GA ground water standards. MW-102I is located hydraulically downgradient of the southern portion of the western landfill cell. The three VOCs detected in the MW-102I sample that exceeded ground water standards included vinyl chloride (5 ug/L), chloroethane (7 ug/L), and cis-1,2-dichloroethene (14 ug/L). The results of the March 2005 ground water sampling event indicated that

concentrations of vinyl chloride (3 ug/L) and cis-1,2-dichloroethene (6 ug/L) exceeded ground water standards in the MW-102I sample.

In addition to the VOCs detected in MW-102I, VOCs were detected in intermediate monitoring wells MW-102, MW-107I, MW-108I, and MW-110I, but at concentrations below the NYS Class GA ground water standards. VOCs were not detected in intermediate monitoring wells MW-103, MW-109I, or MW-111I.

One monitoring well (MW-109D) is screened entirely within the deeper portion of the sand and gravel unit. Within this deep ground water zone, two VOCs were detected based on the results of the October 2004 sampling event. Vinyl chloride and toluene were detected at concentrations of 1 ug/L and 0.8 ug/L, respectively. Based on the results of the March 2005 sampling event, acetone, methylene chloride, and cis-1,2-dichloroethene were detected at concentrations of 3 ug/L, 0.7 ug/L, and 1 ug/L, respectively. None of the detected VOC concentrations in the MW-109D samples exceeded NYS Class GA ground water standards.

The Chautauqua County Department of Health (CCDOH) has been conducting ground water sampling of the Frewsburg Water District Supply Well # 5 and sentinel well MW-13 on a periodic basis. Available VOC analytical results from the CCDOH are summarized in Table 27.

Based on available data from the CCDOH, vinyl chloride and cis-1,2-DCE have been detected in the Town of Carroll supply well MW-5 since 2003. These detections range from 0.5 ug/L to 0.9 ug/L for vinyl chloride and 0.9 ug/L to 2.7 ug/L for cis-1,2-DCE. These detected concentrations were below drinking water standards.

Concentrations of Freon-12, vinyl chloride, chloroethane, and cis-1,2 DCE have been consistently detected in sentinel well MW-13 since July 2003. Vinyl chloride has been consistently detected above the New York State Class GA ground water standard of 2 ug/L since October 2002. Review of data provided on Table 27 indicate that concentrations of vinyl chloride have been slowly increasing between 2002 and 2005. Concentrations of cis-1,2-DCE have also been detected above the New York State Class GA ground water standard of 5 ug/L in samples collected during August and October 2004, and June 2005. Review of data provided on Table 27 indicate that concentrations of cis-1,2-DCE have been slowly increasing between 2005. Review of data provided on Table 27 indicate that concentrations of cis-1,2-DCE have been slowly increasing between 2005. Review of data provided on Table 27 indicate that concentrations of cis-1,2-DCE have been slowly increasing between 2005.

SVOCs

As indicated on Table 24, ground water samples from four monitoring wells (MW-102, MW-105S, MW-108I, and MW-109D) were analyzed for SVOCs. One SVOC, bis(2-ethylhexyl)phthalate, was detected in one intermediate monitoring well (MW-108I at 1 ug/L) and one deep monitoring well (MW-109D at 2 ug/L). The detected bis(2-ethylhexyl)phthalate concentrations are below the NYS Class GA ground water standard. SVOCs were not detected in shallow monitoring well MW-105S or intermediate monitoring well MW-102.

Inorganics

As indicated on Table 25, several inorganic constituents were detected at concentrations exceeding NYS Class GA ground water standards.

Within the shallow ground water zone, inorganic constituents that exceeded ground water standards based on the results of the October 2004 sampling event included the following:

- arsenic at MW-101, MW-104, MW-105S, MW-110S, and MW-111S
- barium at MW-108S
- iron at MW-101, MW-104, MW-105S, MW-106S, MW-107S, MW-108S, MW-109S, MW-110S, and MW-111S
- lead at MW-110S
- magnesium at MW-107S
- manganese at MW-108S

Within the shallow ground water zone, inorganic constituents that exceeded ground water standards based on results of the March 2005 sampling event included the following:

- arsenic at MW-108S
- chromium at MW-108S
- iron at MW-104, MW-105S, MW-107S, MW-108S, MW-109S, and MW-110S
- magnesium at MW-104 and MW-107S
- sodium at MW-104

Within the intermediate ground water zone, inorganic constituents that exceeded ground water standards based on the results of the October 2004 sampling event included the following:

- arsenic at MW-110I
- beryllium at MW-110I
- chromium at MW-110I
- iron at MW-102I, MW-103, MW-107I, MW-108I, MW-109I, MW-110I, and MW-111I
- lead at MW-109I and MW-110I
- magnesium at MW-110I
- manganese at MW-110I
- thallium at MW-110I

Within the intermediate ground water zone, inorganic constituents that exceeded ground water standards based on the results of the March 2005 sampling event included the following:

- arsenic at MW-109I
- cadmium at MW-102
- iron at MW-102, MW-102I, MW-108I, MW-109I, and MW-110I
 - lead at MW-109I
- manganese at MW-109I

• thallium at MW-109I

Within the deep ground water zone, inorganic constituents that exceeded ground water standards based on the results of the October 2004 sampling event included the following:

• iron at MW-109D and MW-13

Within the deep ground water zone, inorganic constituents that exceeded ground water standards based on the results of the March 2005 sampling event included the following:

• iron at MW-109D

Pesticides/PCBs

As indicated on Table 26, ground water samples from four monitoring wells (MW-102, MW-105S, MW-108I, MW-109D) were analyzed for pesticides/PCBs. Neither pesticides nor PCBs were detected in the ground water samples.

Methane, ethane, and ethene

Ground water samples were collected and analyzed for methane, ethane, and ethene during the March 2005 ground water sampling event. These constituents were analyzed to provide a preliminary indication as to whether vinyl chloride detected during the first ground water sampling event may be undergoing degradation. If suitable geochemical conditions are present, vinyl chloride may degrade to ethene, which in turn may degrade to ethane.

As indicated on Table 28, ethene was detected in monitoring wells MW-107S and MW-102I. Vinyl chloride was also detected in these monitoring wells at concentrations above the ground water standards. The presence of ethene at these locations suggests that geochemical conditions near these monitoring wells are serving to allow degradation of vinyl chloride. Also, ethane was detected in shallow monitoring wells MW-107S and MW-110S, and intermediate wells MW-102, MW-102I, MW-103, MW-107I, and MW-110I, suggesting that ethene is degrading to ethane.

4.3. Data usability

Certain analytical data collected as part of the RI were evaluated as to their usability. Data usability summary reports are provided in Appendix G. For the most part, the data are usable for the purposes of evaluating constituent concentrations in the environmental media analyzed. Some analytical results were rejected as follows:

Pesticides/PCBs:

endrin and Aroclor-1260 in surface soil sample SS-10

- 4,4'-DDE, endosulfan II, 4,4'-DDD, endosulfan sulfate, methoxychlor, and endrin aldehyde in subsurface soil sample TP-10/SS-4
- gamma-chlordane in subsurface soil sample TP-11/SS-3
- methoxychlor in subsurface soil sample TP-8/SS-5

Inorganics:

- Lead in subsurface soil samples TP-04/SS-1, TP-07/SS-2, TP-10/SS-4, TP-11/SS-3, TP-8/SS-5
- Calcium in ground water samples MW-101, MW-102, MW-102I, MW-104, MW-105S, MW-106S, MW-107I, MW-108S, MW-108I, MW-109S, MW-109I, MW-109D, MW-110S, MW-111S, MW-111I, and MW-13
- Magnesium in ground water samples MW-101, MW-102, MW-102I, MW-104, MW-105S, MW-106S, MW-107I, MW-108S, MW-108I, MW-109S, MW-109I, MW-109D, MW-110S, MW-111S, MW-111I, and MW-13
- Sodium in ground water samples MW-101, MW-102, MW-102I, MW-103, MW-104, MW-105S, MW-106S, MW-107S, MW-107I, MW-108S, MW-108I, MW-109S, MW-109I, MW-109D, MW-110S, MW-110I, MW-111S, MW-111I, and MW-13

The rejections of the above data are explained in the data usability summary reports provided in Appendix G. While data associated with the second round of ground water sampling have not been validated, validatable data packages were received from the laboratory if validation is deemed necessary.

5. Nature and extent of contamination

The analytical results described above indicate that several VOC, SVOC, inorganic, and pesticides/PCB constituents were detected in environmental media at the Site. However, few constituents were detected above potentially applicable SCGs.

The following provides a summary of the VOCs, SVOCs, inorganics, and pesticides/PCBs that were detected at concentrations exceeding potentially applicable SCGs and the extent of those exceedances. The areal distribution of organic and inorganic constituents that were detected at concentrations exceeding potentially applicable SCGs in soil vapor, surface water and sediment, surface soil, subsurface soil, leachate, and ground water are shown on Figures 8, 9, 10, 11, 12, and 13, respectively.

5.1. Volatile organic compounds

VOCs were analyzed in samples from the following environmental media:

- sediment (5 samples)
- subsurface soil (8 samples)
- leachate seeps (3 samples)
- soil vapor (4 samples)
- ground water (25 samples)

VOCs were detected in each of the media sampled; however, concentrations within the sediment, subsurface soil, and leachate seep samples were below potentially applicable SCGs.

VOCs were detected in soil vapor within the boundaries of the landfill cells at concentrations that exceeded the generic screening levels for target shallow soil gas concentrations at a risk level of 10⁻⁴ (OSWER Draft Guidance for Evaluating the Vapor Intrusion to Indoor Air Pathway from Groundwater and Soils (Subsurface Vapor Intrusion Guidance), USEPA, 2002). The soil vapor data were screened according to OSWER draft guidance to evaluate potential vapor impacts relative to potential future uses of the landfill property. However, occupied structures are not currently present in the immediate vicinity of the landfill, therefore the potential for vapor impacts are considered minimal.

Review of the soil vapor VOC data provided on Table 5 indicates that detected VOCs consist mainly of aromatic hydrocarbons, chlorinated aliphatic hydrocarbons, and refrigerant compounds. The highest concentrations of VOCs were generally detected in the soil vapor sample collected at SV-16. The magnitudes of detected concentrations in the soil vapor samples are relatively low and do not appear indicative of the presence of a significant source at the soil vapor sample locations. Soil vapor samples werecollected within the waste limits. The potential for vapor detections outside waste limit boundaries was not assessed; however, it is assumed to be less than within the waste limits.

With respect to VOCs, ground water was the only environmental medium sampled from which concentrations exceeded potentially applicable SCGs. As shown on Figure 13, concentrations of dichlorodifluoromethane, vinyl chloride, cis-1,2-dichloroethene, and 1,2-dichloroethane were detected within the shallow ground water in one monitoring well (MW-107S) above the NYS Class GA ground water standards. Concentrations of dichlorofluoromethane and 1,2-dichloroethane were slightly elevated above the NYS Class GA ground water standards. The concentrations of vinyl chloride and cis-1,2-dichloroethene were more significantly elevated above the ground water standards.

MW-107S is located hydraulically downgradient of the northern portion of the eastern landfill cell and immediately adjacent to the western landfill cell. The source of the vinyl chloride and cis-1,2-dichloroethene concentrations detected in MW-107S is uncertain, but likely attributable to fill materials in the western landfill cell. As shown on Figure 13, VOC analytical data from monitoring well MW-106 (located hydraulically upgradient of MW-107S), monitoring wells MW-104 and MW-108S (located hydraulically cross-gradient of MW-107S), and monitoring wells MW-110S and MW-109S (located hydraulically downgradient of MW-107S) indicate low levels of VOCs, which suggests a localized area of VOC impacts at or near the MW-107S location.

As shown on Figure 13, VOC concentrations exceeded NYS Class GA ground water standards within the intermediate ground water at one monitoring well (MW-102I). The VOCs that exceeded the ground water standards were vinyl chloride, chloroethane, and cis-1,2-dichloroethene. The concentrations of each were slightly elevated above the NYS Class GA ground water standards.

MW-102I is located hydraulically downgradient of the southern portion of the western landfill cell. As shown on Figure 13, analytical data from monitoring wells MW-103 and MW-108I (located hydraulically upgradient of MW-102I), and monitoring well MW-109I (located hydraulically downgradient of MW-102I) indicate that VOCs were not detected. This suggests that the low levels of VOCs detected in MW-102I are representative of a localized area of VOC impacts at or near the MW-102I location.

Within the deep ground water zone, vinyl chloride, acetone, and cis-1,2dichloroethene were detected in MW-109D and MW-13, and toluene was detected in MW-109D. None of the detected VOC concentrations exceeded the NYS Class GA ground water standards. The results of the VOC samples collected during the RI indicate a slight impact to ground water. Localized areas of VOC impacts in the shallow and intermediate ground water were detected at the MW-107S and MW-102I locations, respectively. The detection of VOCs in the shallow, intermediate and deep monitoring wells suggest that VOCs have migrated from the landfill. However, based on the ground water analytical data, VOC concentrations appear to decrease with depth. This may suggest that the limited detection and low concentration of VOCs in the intermediate and deep sand and gravel unit are the result of attenuation of VOCs along the migration pathways.

5.2. Semivolatile organic compounds

SVOCs were analyzed in samples from the following environmental media:

- surface water (5 samples)
- sediment (5 samples)
- subsurface soil (6 samples)
- leachate seep (1 sample)
- ground water (5 samples)

SVOCs were detected in each of the media sampled other than leachate. SVOCs were detected at concentrations above potentially applicable SCGs within the surface water, subsurface soil, and perched ground water. Detected concentrations were below potentially applicable SCGs in the sediment samples.

As shown on Figure 9, phenol was detected in surface water sample SW-1 at a concentration of 11 ug/L, which is slightly above the NYS Class C water quality criteria of 5 ug/L. No other SVOCs were detected in the surface water samples at concentrations above NYS Class C water quality criteria.

While two SVOCs were detected in two sediment samples (benzaldehyde in SED-01 and bis(2-ethylhexyl)phthalate in SED-03) the detected concentrations did not exceed sediment criteria.

As shown on Figure 11, bis(2-ethylhexyl)phthalate was detected in subsurface soil sample TP-07/SS-2 at a concentration of 62,000 ug/Kg, which exceeds the TAGM 4046 RSCO of 50,000 ug/Kg. The presence of bis(2-ethylhexyl)phthalate in the TP-07/SS-2 sample is most likely attributable to fill materials containing plastics observed in this test pit. SVOCs were not detected in the other subsurface soil samples at concentrations exceeding TAGM 4046 RSCOs.

SVOCs were not detected in the one leachate sample analyzed. As shown on Figure 13, three SVOCs (4-methylphenol, 4-chloro-3-methylphenol, and 4-nitrophenol) were detected in the temporary well water sample collected from TW-TP-02 at concentrations exceeding NYS Class GA ground water standards. The water collected from the TW-TP-02 location was in contact with the fill materials. SVOCs were not detected in the ground water samples collected from the monitoring wells suggesting that the migration of SVOCs present within the fill materials to ground water is limited.

5.3. Inorganics

Inorganics were analyzed from the following environmental media at concentrations exceeding potentially applicable SCGs:

- surface soil (5 samples)
- surface water (5 samples)
- sediment (5 samples)
- subsurface soil (8 samples)
- leachate seeps (3 samples)
- ground water (5 samples)

Within surface soil, the concentrations of inorganic constituents that appear to be related to the landfill due to their elevated concentrations compared to other surface soil sample concentrations include barium, cadmium, lead, and zinc at the SS-09 location, and lead and zinc at the SS-10 location. As shown on Figure 10, these surface soil samples were collected within the eastern landfill cell. Although barium and lead concentrations at SS-09 appear as though they could be related to landfill operations, their respective concentrations are within the range for Eastern United States background soils. Review of the analytical results for cadmium, lead, and zinc indicates that concentrations are within an order of magnitude of either the TAGM 4046 criteria and/or Eastern United States background concentrations ranges, indicating the overall inorganic impacts to surface soil are low.

Within surface water, inorganic constituents that were detected at concentrations exceeding NYS Class C water quality criteria included aluminum, cobalt, iron, lead, vanadium, and zinc. The inorganic constituents detected in the surface water samples are likely attributable to the migration of leachate from the landfill to drainage swales between the two landfill cells, which ultimately drain to the drainage swale to the north of the cells. Similar inorganic constituents were detected in the surface water samples as in the leachate samples. Whether the elevated concentrations of inorganics are adversely impacting Conewango Creek which is located approximately 4,000 feet to the west of the Site is not known. However, given the relatively large distance to Conewango Creek, potential for impacts is considered to be low.

Sediment samples were co-located with the surface water samples. In general, similar inorganic constituents were detected in the sediment samples as in the surface water samples. However, in almost all cases,

constituent concentrations in the sediment were higher than those detected in surface water. Inorganic sediment concentrations were compared to the Lowest Effect Level and the Severe Effect Level. This comparison indicated that arsenic, cadmium, copper, iron, lead, manganese, nickel, and zinc exceeded the Lowest Effect Level, whereas iron in the SED-03 and SED-04 samples, and manganese in the SED-03 sample exceeded the Severe Effect Level. The highest concentrations of arsenic, copper, iron, manganese, and nickel were detected in the SED-03 sample. SED-03 is located within a drainage swale located west of the western landfill cell.

Within leachate, concentrations of aluminum, cadmium, cobalt, copper, iron, lead, mercury, nickel, selenium, thallium, vanadium, and zinc were detected at concentrations that exceeded NYS Class C water quality criteria. Review of the data on Table 21 indicates that the highest concentrations of these constituents were detected at the LT-03 location to the northwest of the western landfill cell. Concentrations of inorganics are generally one order of magnitude greater at the LT-03 location than the other leachate sampling locations. The LT-03 location was observed to have a sheen during sampling.

Within subsurface soil, the concentrations of inorganic constituents that appear to be related to the landfill due to their elevated concentrations compared to other subsurface soil sample concentrations include cadmium, chromium, cobalt, copper, mercury, nickel, and zinc. As shown on Figure 11, these subsurface soil samples were from test pits installed at the northern, eastern and southern limits of the western landfill cell. The highest concentrations of these inorganic constituents were detected in the subsurface soil sample collected from the TP-07/SS-2 location.

Within ground water, arsenic, barium, beryllium, cadmium, chromium, iron, lead, magnesium, manganese, sodium, and thallium were detected at concentrations exceeding ground water standards. Of these constituents, iron was the only constituent that was detected consistently (30 of 31 samples) above ground water standards in the ground water samples. The frequency of detections of the other inorganic constituents that exceeded ground water standards are as follows:

- barium (MW-108S one of two sampling rounds)
- beryllium (MW-110I one of two sampling rounds)
- cadmium (MW-102 one of two sampling rounds)
- sodium (MW-104 one of two sampling rounds)
- chromium (MW-108S and MW-110I one of two sampling rounds)
- thallium (MW-109I and MW-110I one of two sampling rounds)
- manganese (MW-108S, MW-109I, and MW-110I one of two sampling rounds)
- lead (MW-109I both sampling rounds; MW-110S and MW-110I – one of two sampling rounds)

- magnesium (MW-107S both sampling rounds, MW-104 and MW-110I one of two sampling rounds)
- arsenic (MW-101, MW-104, MW-105S, MW-108S, MW-109I, MW-110S MW-110I, MW-111S one of two sampling rounds)

As shown above, inorganic concentrations above the ground water standards were detected sporadically, both spatially and temporally, with the exception of iron. Review of the iron concentrations, combined with the frequency of detection suggests that the detected concentrations are likely representative of background ground water quality conditions.

5.4. Pesticides/PCBs

Pesticides/PCBs were analyzed from the following environmental media:

- surface soil (5 samples)
- surface water (1 sample)
- subsurface soil (3 samples)
- leachate seep (1 sample)
- ground water (5 samples)

Neither pesticides nor PCBs were detected above potentially applicable SCGs in the environmental media sampled.

6. Fish and wildlife impact analysis

A Fish and Wildlife Impact Analysis (FWIA) through Step IIA was completed for the Site. The FWIA was conducted according to the NYSDEC document entitled *Fish and Wildlife Impact Analysis for Inactive Hazardous Waste Sites* (NYSDEC 1994; Guidance). Step I - *Site Description* and Step IIA - *Contaminant-Specific Impact Assessment – Pathway Analysis* of the NYSDEC Guidance were addressed.

The specific objectives of the FWIA were to:

- Describe the ecology of the site and surrounding environs within a 0.5 mile radius of the site including fish and wildlife resources and associated fauna for each natural community within the study area
- Identify other natural resources in the vicinity of the site including significant habitats and endangered, threatened, or species of special concern (ETSC)
- Identify applicable criteria and guidance values
- Identify potential pathways of site stressors to ecological receptors.

The FWIA evaluated the physical and biological characteristics and potential ecological receptors. The results and conclusions of the assessment are summarized below:

- The terrestrial portion of the site consists of the landfill cells, dirt access roads, maintained fields/mowed areas, an old concrete loading bay area, and a small block structure. These features limit the use by resident and transient wildlife species.
- Aquatic areas existing on-site include a portion of the unnamed tributary of Conewango Creek, emergent and scrub-shrub wetlands and several drainage ways. The wetlands provide habitat for a variety of terrestrial and aquatic receptors. The unnamed tributary likely provides some habitat for a variety of fish and other wildlife species that frequent aquatic habitats. However, the relatively small size of the tributary limits the value of this habitat to some wildlife, particularly fish.
- The terrestrial areas surrounding the site and within the study area consists of a mixture of natural communities and areas exhibiting rural (predominantly agricultural and residential) land use. Approximately 45 percent of the areal extent of the study area

consist of agricultural and residential land uses that may somewhat limit use by transient or residential wildlife species.

- Approximately 55 percent of the areal extent of the study area consists of natural covertypes such as coniferous and hardwood forest; freshwater wooded, scrub-shrub and emergent wetlands; and streams that provide appropriate habitat for a variety of fish and wildlife species.
- The USFWS has records of an endangered species, the clubshell, and a candidate species, the rayed bean within a 2-mile radius of the site. The New York Natural Heritage Program had no records of rare, threatened or endangered flora and fauna or significant natural communities within a two-mile radius of the site.
- Based on a review of the applicable state and federal mapping, several freshwater wetlands were identified in within 2-miles of the site. Although a wetland boundary delineation was not performed as part of this assessment, it appears that regulated wetland habitats exist on and adjacent to site.
- Due to the presence of chemical constituents in surface soil, surface water and sediment associated with the site, complete exposure pathways to terrestrial and aquatic receptors likely exist at and down gradient of the site. These pathways should be evaluated further.

The FWIA report is provided in full in Appendix H.

7. Human health exposure pathway analysis

A qualitative exposure pathway analysis was performed to evaluate the potential for human contact with site constituents and is documented in the exposure pathway analysis report (EPAR) included in Appendix I. The qualitative exposure pathway analysis consisted of identification of potentially complete exposure pathways.

Potentially complete exposure pathways identified in the EPAR for the Site were:

Current potential on-site exposure pathways

- Ingestion and dermal contact of surface soil by adult, adolescent, and child trespasser; and adult site worker
- Inhalation of ambient air by adult site worker
- Ingestion and dermal contact of subsurface soil by adult site worker
- Inhalation of outdoor air (trenches/excavations) by adult site worker.
- Ingestion and dermal contact with site ground water by adult site worker
- Ingestion of potable ground water by adult, adolescent, and child town residents

Future potential on-site exposure pathways

- Ingestion and dermal contact of surface soil by adult, adolescent, and child residents; adult site worker; adult commercial worker; adult, adolescent, and child trespasser
- Inhalation of ambient air by adult site worker
- Ingestion and dermal contact of subsurface soil by adult site worker
- Inhalation of outdoor air (trenches/excavations) by adult site worker
- Inhalation of indoor air (vapor intrusion) by adult commercial worker; adult office worker; and adult, adolescent, and child residents
- Ingestion and dermal contact with potable ground water by adult commercial worker; adult office worker; and adult, adolescent, and child residents.

Current/future potential off-site exposure pathways

- Inhalation of indoor air (vapor intrusion) by adult , adolescent, and child residents
- Ingestion and dermal contact with potable ground water by adult, adolescent, and child residents
- Ingestion and dermal contact with ground water by adult construction worker
- Ingestion and dermal contact of sediment by adult, adolescent, and child trespasser.

8. Conceptual site model

The following presents the current understanding of the geology, hydrogeology, ground water quality, and presence of potential sources based on the RI field sampling results.

8.1. Geology

The following five hydrogeologic units can be differentiated at the Site: fill, lacustrine sandy silt and silty clay, outwash sand and gravel, till, and bedrock.

Based on test pitting conducted during the RI field program, the fill boundaries of the eastern and western landfill cells have been approximately delineated. The uppermost unit within the boundaries of the landfill cells is fill. Fill materials around the edges of the western cell were observed to be mainly composed of wood pieces, metal debris, metal turnings, plastic and glass bottles, plastic sheeting, paper, tires, and drum carcasses. Fill materials around the edges of the southern portion of the eastern cell were observed to be mainly composed of municipal waste such as plastics, miscellaneous metallic debris, paper, and plastic toys. Fill materials around the edges of the northern portion of the eastern cell were observed to be mainly composed of brush and log materials. Test pits completed around the edges of the landfill cells indicate that the total depth of fill ranged from approximately 2-ft at TP-01, TP-11, and TP-18 to approximately 10-ft at TP-12. The top of the fill materials was encountered between approximately 1 and 5-ft within each test pit.

The uppermost natural material outside of the boundaries of the landfill cells, and underlying the fill consists of a yellowish brown, stiff, fine sandy silt with some clay. This unit varies in thickness from 5-ft (southwest) to 10-ft (northeast). Underlying this unit is a medium gray, stiff, silty clay unit. This unit varies in thickness from about 3-ft to 10-ft (southwest) to about 8-ft (northeast). The total depth of these units ranges from 7-ft to 20-ft below ground surface.

Glacial outwash sand and gravel

An outwash sand and gravel was encountered underlying the lacustrine sandy silt and silty clay unit. The sand and gravel unit consists of yellowish brown, medium dense, fine to coarse sand and gravel with some silt. The total depth of these this unit is approximately 45-ft below ground surface

Glacial till

Glacial till was encountered at the MW-109D location underlying the outwash sand and gravel unit. The glacial till consists of olive gray, very dense, gravel and medium to coarse sand with few cobbles. This unit has a thickness of about 15-ft.

Bedrock

The uppermost bedrock formations consist of upper Devonian age shale and siltstone of the Conneaut Group. The formations may also include limited beds of sandstone and conglomerate (Rickard and Fisher, 1970). Previous activities completed for the investigation for the Frewsburg Water District encountered weathered shale bedrock at 76 to 81 ft below ground surface (Moody & Associates, May 1993).

8.2. Hydrogeology

Water was encountered in the following test pit locations: TP-01, TP-02, TP-06, and TP-11. These test pits are located around the western landfill cell. The presence of water in these test pit locations is likely attributed to perched water at these locations. Comparison of the approximate bottom elevations of the test pits to shallow ground water elevations further suggests that this is perched water within the fill with no direct hydraulic connection to the water table during the water table elevation monitoring periods.

The nearest discharge for shallow ground water is likely Conewango Creek, which is located approximately 4,000 feet west of the landfill. The direction of ground water flow in the shallow water-bearing materials based on the October 14, 2004 elevation measurements was to the northeast toward Conewango Creek beneath the eastern landfill cell and to the west-southwest toward the Village of Frewsburg Supply Well #5 beneath the western landfill cell. Based on the March 7, 2005 ground water elevation measurements, ground water flow in the shallow water-bearing materials was to the northeast toward Conewango Creek. The western component of shallow ground water flow toward Supply Well #5 observed during the October 14, 2004 monitoring event may be reflective of pumping of Supply Well #5 or seasonal variations in ground water flow.

Based on the October 14, 2004 ground water elevations in the shallow wells, the shallow hydraulic gradient ranged from approximately 0.006 ft/ft to 0.008 ft/ft across the southern portion of the eastern and western landfill cells, respectively, to 0.002 ft/ft to 0.003 ft/ft across the northern portion of the eastern and western landfill cells, respectively. Based on the March 7, 2005 shallow well ground water elevation data, the shallow hydraulic gradient ranged from approximately 0.009 ft/ft to 0.006 ft/ft across the southern portion of the eastern and western landfill cells, respectively. Based on the March 7, 2005 shallow well ground water elevation data, the shallow hydraulic gradient ranged from approximately 0.009 ft/ft to 0.006 ft/ft across the southern portion of the eastern and western landfill cells, respectively, to 0.006 ft/ft to 0.0006 ft/ft across the northern portion of the eastern and western landfill cells, respectively.

As with shallow ground water, the discharge for intermediate ground water is likely Conewango Creek. However, due to the initiation of pumping from Supply Well #5 the direction of ground water flow in the intermediate water-bearing materials based on the October 14, 2004 and March 7, 2005 monitoring events was to the southwest toward the supply well. The actual ground water flow direction(s) in the intermediate ground water prior to pumping is not known. Based on the October 14, 2004 ground water elevations in the intermediate wells, a fairly uniform hydraulic gradient of approximately 0.004 ft/ft, was evident across the western landfill cell. Based on the March 7, 2005 ground water elevations, the intermediate hydraulic gradient ranged from 0.004 ft/ft to 0.002 ft/ft across the northern and southern portions of the western landfill cell, respectively.

The estimated seepage velocity (V_s) of ground water flowing through the shallow water-bearing materials was computed using the following relationship:

 $V_s = KI/n_e$ where:

K equals average hydraulic conductivity, I equals hydraulic gradient, and n_e equals effective porosity for the shallow water bearing materials.

The seepage velocity for the shallow ground water based on the October 14, 2004 hydraulic gradients was estimated to range from 9.29 x 10^{-4} feet/day (0.34 feet/year) to 2.60 x 10^{-3} feet/day (0.95 feet/year) assuming an estimated effective porosity of 0.35. Based on the hydraulic gradients from March 7, 2005, the seepage velocity for the shallow ground water was estimated to range from 1.23 x 10^{-3} feet/day (0.45 feet/year) to 2.79 x 10^{-3} feet/day (1.02 feet/year). The seepage velocity in the intermediate zone was estimated at 0.03 feet/day (11 feet/year) based on the October 14, 2004 hydraulic gradient and assuming an estimated effective porosity of 0.25. Based on the hydraulic gradient from March 7, 2005, the seepage velocity are setimated at 0.02 feet/year).

Vertical hydraulic gradients based on ground water elevations measured in well pairs MW-107S/MW-107I, MW-108S/MW-108I, MW-109S/MW-109I/MW-109D, MW-110S/MW-110I, and MW-111S/MW-111I were predominantly downward during the October 2004 and March 2005 monitoring events. The exceptions were upward gradients between the MW-109I/MW-109D and MW-109S/MW-109I well pairs during October 2004, and between the MW-107S/MW-107I well pair during March 2005.

8.3. Contaminant migration

8.3.1. VOCs

VOCs were detected in each of the media sampled (sediment, subsurface soil, leachate seeps, soil vapor, and ground water). Migration mechanisms for VOCs to environmental media may include volatilization from landfill materials to soil vapor and the infiltration of precipitation through the fill materials generating leachate, which may in turn impact surface water, and potentially subsurface soil, sediment and ground water. However, VOC concentrations within the sediment, subsurface soil, and leachate seep samples were below potentially applicable SCGs, which may indicate that VOC concentrations in the fill materials are low, or are naturally attenuating. Soil vapor and ground water were the only environmental media sampled that contained VOCs at concentrations above potentially applicable SCGs.

Regarding soil vapor, detected VOCs consist of aromatic hydrocarbons, chlorinated aliphatic hydrocarbons, and refrigerant compounds. The highest concentrations of VOCs were generally detected in the soil vapor sample collected at SV-16. The magnitudes of detected concentrations in the soil vapor samples are relatively low and do not appear indicative of the presence of a significant source at the soil vapor sample locations. However, the detection of VOCs in the soil vapor indicates that the fill materials contain VOCs.

VOC migration from the landfill to ground water may be from vertical ground water flow potentials, or due to density-driven mechanisms. Downward hydraulic gradients have been observed based on the two ground water elevation monitoring events; however, it is unclear whether these downward gradients are sufficient to transport VOCs, particularly to the depth of intermediate ground water over relatively small horizontal distances. Another migration mechanism for VOCs may be the downward flow of landfill leachate from the bottom of the landfill. The landfill leachate may be denser than water due to its chemical composition. If this is the case, leachate that may have migrated to depth, may be the source of VOCs in the intermediate and deep ground water.

Ground water samples collected from monitoring wells MW-107S and MW-102I were the only samples in which VOCs were detected above NYS Class GA ground water standards. MW-107S is a shallow monitoring well that monitors the shallow ground water in the finegrained silt and clay and the upper five feet of the underlying sand and gravel. MW-102I is an intermediate monitoring well that monitors ground water in the intermediate portion of the sand and gravel underlying the silt and clay. Regardless of the specific migration mechanism(s), VOC concentrations in ground water are relatively low. Ground water samples collected from shallow monitoring wells upgradient (MW-106S), cross-gradient (MW-104 and MW-108S), and downgradient (MW-109S and MW-110S) of MW-107S indicate low levels of VOCs. The distribution and concentrations of VOCs in shallow ground water suggests a localized area of nominal impacts at or near the MW-107S location. Likewise, ground water samples collected from intermediate monitoring wells upgradient (MW-103 and MW-108I) and downgradient (MW-109I) of MW-102I indicate low levels of VOCs. The distribution and concentrations of VOCs in intermediate ground water suggests a localized area of nominal impacts at or near the MW-102I location.

Review of the ground water analytical data also indicates that VOC concentrations decline with depth. This suggests that the near surface fine-grained silts and clays of the shallow water-bearing materials are limiting transport of VOCs to the deeper and more permeable sands and gravels of the intermediate and deep water-bearing materials.

Based on data collected during the RI, VOCs present within the fill materials have minimally impacted ground water. The relatively low concentrations and number of VOCs detected in the ground water may be due to the following:

- VOC concentrations in the fill materials are low
- VOC migration from the fill materials to ground water is limited by the low permeability nature of soils believed to be underlying the fill
- VOCs migrating from the landfill to ground water are being naturally attenuated at rates sufficient to decrease concentrations, or
- a combination of the above.

Vinyl chloride and cis-1,2-dichloroethene were the predominant VOCs exhibiting concentrations above Class GA ground water standards that are contaminants of concern. These VOC constituents are common degradation products of trichloroethene, which was suspected as having been potentially disposed of in the landfill. During the second ground water sampling event, samples were collected from monitoring wells for methane, ethane, and ethene to provide a preliminary indication as to whether vinyl chloride detected during the first ground water sampling event may be undergoing degradation. Ethene was detected in monitoring wells MW-107S and MW-102I. Vinvl chloride was also detected in these monitoring wells at concentrations above the ground water standards. The presence of ethene at these locations suggests that geochemical conditions near these monitoring wells are serving to allow degradation of vinyl chloride. Also, ethane was detected in shallow monitoring wells MW-107S and MW-110S, and intermediate wells MW-102, MW-102I, MW-103, MW-107I, and MW-110I, suggesting that ethene is degrading to ethane.

Based on analytical data collected by NYSDOH, it is apparent that VOCs have migrated from the landfill to Supply Well #5. Pumping of Supply Well #5 was initiated in 1995. Cis-1,2-dichloroethene and vinyl chloride began to be detected in monitoring well MW-13, located approximately 670 feet west of the western landfill cell, during February 2002 and April

2003, respectively. It appears based on currently available data that vinyl chloride and cis-1,2-dichloroethene began to be detected in Supply Well #5, located approximately 185 feet to the west of MW-13, during February 2003 and March 2003, respectively. The most recent available analytical results, from samples collected during June 2005, indicate that cis-1,2-dichloroethene and vinyl chloride concentrations were 15 ug/L and 10 ug/L, respectively in MW-13, and 2.4 ug/L and 0.8 ug/L, respectively in Supply Well #5. Review of the NYSDOH sample data indicates that concentrations of cis-1,2-dichloroethene and vinyl chloride have generally increased over time. Although concentrations have not yet exceeded ground water quality standards in the supply well, they have exceeded the standards for cis-1,2-dichloroethene since August 2004 and vinyl chloride since October 2002 at MW-13. The detection of these constituents in the supply well approximately eight years after the initiation of pumping suggests that these constituents were drawn to the supply well due to the pumping and were not present in the area of the supply well prior to installation of the supply well.

8.3.2. SVOCs

At least one SVOC was detected in the following environmental media: surface water, sediment, subsurface soil, and ground water. The only SVOCs detected at concentrations exceeding potentially applicable SCGs were phenol in surface water sample SW-1, bis(2-ethylhexyl)phthalate in subsurface soil sample TP-07/SS-02, and 4-methylphenol, 4-chloro-3-methylphenol, and 4-nitrophenol in the water sample collected from TW-TP-02. SVOCs were not detected in the ground water samples collected from the monitoring wells. SVOCs were not detected in the one leachate sample collected.

8.3.3. Inorganics

Inorganics were detected in each of the environmental media sampled (surface soil, surface water, sediment, subsurface soil, leachate seeps, ground water). Several inorganics were detected at concentrations exceeding potentially applicable SCGs.

Review of the ground water data suggests that the inorganic detections may be indicative of background conditions for certain constituents. Within shallow ground water, arsenic, barium, iron, lead, magnesium, and manganese were detected at concentrations above NYS Class GA ground water standards. However, with the exception of barium, lead, and manganese, concentrations of inorganic constituents detected above the ground water standards (arsenic and iron) were within the same order of magnitude in the monitoring wells upgradient and downgradient of the landfill cells. Barium and manganese were detected in one shallow monitoring well (MW-108S), and lead was detected in one monitoring well (MW-110S) at concentrations above ground water standards. Barium, lead, and manganese were also detected at concentrations above ground water standards in the water sample collected from TW-TP-02 located along the western edge of the western landfill cell. As indicated previously, the water collected from the test pits is likely representative of perched water within the fill materials. However, the presence of barium, lead, and manganese in both the water within the fill, and shallow ground water at MW-108S and MW-110S may suggest impact from the fill. Regardless, these data suggest that inorganic impacts to shallow ground water are sporadic and limited in extent.

Ground water inorganic data indicates that there is a general decrease in concentrations with depth. The exceptions are the concentration of iron at the MW-109S/MW-109I well pair, and concentrations of arsenic, beryllium, chromium, iron, lead, manganese, and thallium at the MW-110S/MW-110I well pair. While the iron concentration increased with depth at the MW-109 well pair, the iron concentration detected in the MW-109I sample is generally within the same order of magnitude as the other intermediate wells. Beryllium, chromium, manganese, and thallium were only detected at concentrations above ground water standards in the MW-110I sample. The origin of the elevated concentrations of many inorganic constituents detected during the October 2004 ground water sampling event in the MW-110I sample is not known; however, inorganic concentrations decreased significantly in this well during the March 2005 sampling event.

Within leachate, concentrations of aluminum, cadmium, cobalt, copper, iron, lead, mercury, nickel, selenium, thallium, vanadium, and zinc were detected at concentrations that exceeded NYS Class C water quality criteria. The highest concentrations of these constituents were detected to the northwest of the western landfill cell from an area exhibiting a heavy sheen during sampling. Leachate from this area migrates to the northern drainage swale, which ultimately drains to Conewango Creek approximately 4,000 feet west of the landfill. Surface water samples have not been collected from the northern drainage swale downstream of where leachate was observed entering the swale.

The inorganic constituents detected in the surface water samples are likely attributable to the migration of leachate from the landfill to drainage swales between the two landfill cells, which ultimately drain to the drainage swale to the north of the cells. Similar inorganic constituents were detected in the surface water samples as in the leachate samples. Whether the elevated concentrations of inorganics are adversely impacting Conewango Creek which is located approximately 4,000 feet to the west of the Site is not known. However, given the relatively large distance to Conewango Creek, and that the drainage swales are relatively low flow systems for much of the time, potential for impacts is considered to be low.

In general, similar inorganic constituents were detected in the sediment samples as in the surface water samples. However, in almost all cases, constituent concentrations in the sediment were higher than those detected in surface water. As indicated in Section 5, arsenic, cadmium, copper, iron, lead, manganese, nickel, and zinc exceeded the Lowest Effect Level. Iron and manganese also exceeded the Severe Effect Level. The highest concentrations of arsenic, copper, iron, manganese, and nickel were detected in the SED-03 sample. SED-03 is located within a drainage swale located west of the western landfill cell. The presence of elevated concentrations of inorganic constituents in sediment may be due to direct run-off and deposition of sediment material from the landfill to the drainage swales, or due to potentially more dense landfill leachate flowing to surface water areas, that may subsequently settle into the sediment. The drainage swales from which sediment samples were collected are believed to be low flow systems for much of the time. It is also possible that during certain times of the year, the surface water in the drainage swales evaporates which may potentially concentrate inorganic constituents in the underlying sediment.

Within surface soil, the concentrations of inorganic constituents that appear to be related to the landfill due to their elevated concentrations compared to other surface soil sample concentrations include barium, cadmium, lead, and zinc at the SS-09 location, and lead and zinc at the SS-10 location. These surface soil samples were collected within the eastern landfill cell. Although barium and lead concentrations at SS-09 appear as though they could be related to landfill operations, their respective concentrations are within the range for Eastern United States background soils. Review of the analytical results for cadmium, lead, and zinc indicates that concentrations are within an order of magnitude of either the TAGM 4046 criteria and/or Eastern United States background concentrations ranges, indicating the overall inorganic impacts to surface soil are low.

Within subsurface soil, the concentrations of inorganic constituents that appear to be related to the landfill due to their elevated concentrations compared to other subsurface soil sample concentrations include cadmium, chromium, cobalt, copper, mercury, nickel, and zinc. Subsurface soil samples were collected from test pits and below leachate seeps and are considered to represent worst-case subsurface soil quality.

8.3.4. Pesticides/PCBs

Neither pesticides nor PCBs were detected above potentially applicable SCGs in the environmental media sampled (surface soil, surface water, subsurface soil, leachate, and ground water).

8.4. Presence of residual source(s)

The source of VOCs, SVOCs, and inorganics in environmental media at the Site are attributed to the landfilling operations that have occurred in the past. The landfilling was conducted by initially excavating trenches, and then filling the trenches with municipal and/or industrial wastes. Based on visual examination, the western landfill cell was built up approximately 3 ft to 4 ft above the existing grade. The topography of the eastern landfill cell, based on a visual examination, is relatively flat. During the site inspection, drum carcasses were evident at the ground surface and partially buried within the western landfill cell. Also, the soil cover on the western landfill cell was noted to be eroded in places with a hummocky appearance.

The condition of the soil cover over the eastern and western landfill cells does not appear to be suitable for preventing infiltration of precipitation through the underlying fill materials. As indicated previously, perched water was encountered at various locations around the western landfill cell.

Based on the analytical data in comparison to potentially applicable SCGs, VOC impacts to soil vapor and VOC and SVOC impacts to surface water, leachate, sediment, subsurface soil, and ground water are relatively minor. It does not appear that there is a significant source of organics within the eastern or western landfill cells. The highest concentration of an organic constituent was vinyl chloride detected in the shallow ground water sample collected at MW-107S; however, organic concentrations at this location appear to be limited in horizontal and vertical extent. It is plausible that leachate that may be more dense than water has migrated downward into the intermediate and deep portions of the sand and gravel aquifer, that may act as a continuing source of VOCs.

The majority of impacts to environmental media may be from inorganic constituents. Some inorganics may be attributed to naturally occurring conditions. However, most appear to be related to the presence of fill materials. Inorganic impacts are evident in surface and subsurface soils, surface water and sediment, and shallow and intermediate ground water. Leachate migrating from the fill materials also contain elevated concentrations of inorganic constituents.

8.5. Data gaps

The data gaps within the current conceptual site model are summarized as follows:

• The relationship between the vertical extent of fill within the landfill cells and the water table is not fully understood. Based on an evaluation of the available data, it appears that the bottom of the fill materials around the perimeter of the landfill cells is above the water table. However, there is a lack of information regarding the depth to the bottom of fill in the central portions of the landfill cells. While water was present in fill materials at certain test pit locations, this water is believed to be perched within the fill and not in direct hydraulic connection with the water table.

- Ground water flow conditions beneath the landfill prior to the initiation of pumping from Supply Well #5 is unclear. Pumping was initiated from the supply well during 1995. Monitoring wells were initially installed to monitor ground water quality at the landfill during 1996. This RI added fourteen monitoring wells to the monitoring well network. However, a sufficient database of ground water elevations does not exist prior to pumping of the supply well to evaluate the affects of pumping on natural ground water flow conditions, nor is there sufficient temporal ground water flow.
- The origin of inorganic constituents in ground water that exceed ground water standards is not fully understood. While it appears that some of these inorganics may be attributed to naturally occurring conditions, others may be attributed to the landfill. In general, inorganics, other than iron, were sporadically detected above ground water standards and are not considered to pose a significant threat to human health or the environment. However, the presence of inorganics exceeding ground water standards may be significant in terms of identifying potential remedial alternatives.
- Regarding surface and subsurface soils, samples were not collected from locations that can be considered representative of background conditions, such that site-specific comparisons of soil quality can be evaluated.
- Surface water quality within the northern drainage swale downstream of the leachate seep (LT-03) is not known, which limits evaluation of potential impacts to Conewango Creek, if required.

9. Conclusions

Subsurface geologic data collected as part of the RI field investigation indicate the presence of fine-grained soils consisting of sandy silt and silty clay from the ground surface to depths ranging from 7-ft to 20-ft below grade. These near surface soils appear to be limiting the migration of organic and inorganic constituents within shallow ground water, and further migration to intermediate and deep ground water at the Site.

Based on ground water elevation data collected during October 14, 2004, shallow ground water flow components were evident to the northwest toward Conewango Creek and to the southwest toward the Village of Frewsburg Supply Well #5. However, the March 7, 2005 ground water elevation data indicate consistent shallow ground water flow to the northwest toward Conewango Creek. This suggests seasonal variability in shallow ground water flow. Ground water flow in the intermediate ground water has shown a consistent flow direction to the southwest toward the Village of Frewsburg Supply Well #5 based on the October 14, 2004 and the March 7, 2005 ground water elevations. As indicated previously, prior to the initiation of pumping of Supply Well #5, ground water flow in the intermediate ground water was suspected to flow to the northwest toward Conewango Creek. Pumping of Supply Well #5 appears to have influenced ground water flow in the intermediate ground water, which now flows to the southwest toward the supply well. Pumping of Supply Well #5 appears to be influencing the migration of VOCs in the intermediate ground water.

VOCs, SVOCs, inorganics, and pesticide/PCBs were detected in environmental media sampled as part of the RI field investigation. The concentrations of VOCs and SVOCs detected in environmental media that exceeded potentially applicable SCGs appear to be isolated to small areas of the Site. While VOCs do not appear to be migrating from the landfill at elevated concentrations, the increasing VOC concentrations at MW-13 located near Supply Well #5 suggest that pumping of the supply well is influencing the migration of VOCs. Pesticides/PCBs, while detected in surface soil and subsurface soil at concentrations below potentially applicable SCGs, were not detected in surface water, leachate, or ground water. The majority of impacts to environmental media may be from inorganic constituents. Some inorganics may be attributed to naturally occurring conditions. However, most appear to be related to the presence of fill materials. Inorganic impacts are evident in surface and subsurface soils, surface water and sediment, and shallow and intermediate ground water. Leachate migrating from the fill materials also contain elevated concentrations of inorganic constituents.

Due to the presence of organic and inorganic constituents in surface soil, surface water and sediment associated with the site, complete exposure pathways to terrestrial and aquatic receptors likely exist at and downgradient of the site. These pathways should be evaluated further.

Potentially complete exposure pathways were identified in the EPAR for the Site as summarized in Section 7 and discussed in detail in Appendix I.

The analytical data collected as part of the RI field investigation are sufficient to move forward with development of the Feasibility Study. However, as indicated above, data gaps exist within the current conceptual site model. While these data gaps will not significantly alter the current understanding of the nature and extent of contamination, further data could be collected as a pre-design effort based on the development of remedial alternatives as part of the Feasibility Study.

References

- ABB Environmental Services. 1997. Draft Preliminary Site Assessment Report Volume I, Carroll Town Landfill, Carroll, New York.
- Moody and Associates, Inc. 1993. Town of Carroll Frewsburg Water District Report on Ground Water Supply Exploration and Testing.
- O'Brien & Gere Engineers, Inc. 2004. Remedial Investigation/Feasibility Study Work Plan, Town of Carroll Landfill, Site #9-07-017, Frewsburg, New York.
- NYSDEC. 1994. Fish and Wildlife Impact Analysis for Inactive Hazardous Waste Sites. Division of Fish and Wildlife, Albany, NY.
- NYSDEC. 2003. State Superfund Standby Contract. Work Assignment #D004090-14, Town of Carroll Landfill, Site #9-07-017.
- Rickard, L.V. and Fisher D.W. 1970. Geologic Map of New York Niagara Sheet. New York State Museum and Science Service. Map and Chart Series No. 15.

Table 1

Town of Carroll Landfill RI/FS NYSDEC Site #9-07-017

Monitoring Well Specifications/Ground Water Elevations

Monitoring Well Ground		Top of PVC	Well	Screen	Ground Water Elevation		
ID	Elevation (ft MSL)	Casing elevation (ft MSL)	Depth (ft BTOC)	Interval (ft MSL)	(ft MSL)		
Shallow					10/11/2004	3/7/2005	
MW-101	1259.11	1261.24	17.8	1243.44 - 1253.44	1254.72	1257.26	
MW-104	1252.36	1254.61	21.6	1233.01 - 1243.01	1249.15	1249.97	
MW-105S	1252.63	1254.97	20	1234.97 - 1244.97	1250.41	1251.17	
MW-106S	1252.71	1255.14	22.5	1232.64 - 1242.64	1249.54	1251.12	
MW-107S	1252.39	1254.56	22.4	1232.16 - 1242.16	1249.75	1249.05	
MW-108S	1255.07	1257.68	22.6	1235.08 - 1245.08	1251.28	1252.45	
MW-109S	1255.2	1257.52	22.9	1234.62 - 1244.62	1245.84	1249.8	
MW-110S	1249.72	1253.16	22.5	1230.66 - 1240.66	1247.85	1249.98	
MW-111S	1251.4	1253.66	21.9	1231.76 - 1241.76	1248.86	1249.53	
Intermediate							
MW-102	1254.56	1256.58	32	1224.56 - 1234.56	1245.82	1249.63	
MW-102I	1254.92	1257.47	41.1	1216.37 - 1226.37	1245.74	1249.56	
MW-103	1250.78	1253.21	34.2	1219.01 - 1229.01	1246.93	1250.33	
MW-107I	1252.45	1254.87	45.2	1209.67 - 1219.67	1249.17	1251.37	
MW-108I	1255.13	1257.59	47.2	1210.39 - 1220.39	1248.79	1251.31	
MW-109I	1254.93	1257.25	43.8	1213.45 - 1223.45	1245.91	1249.56	
MW-110I	1249.78	1252.03	44	1208.03 - 1218.03	1246.59	1249.14	
MW-111I	1251.26	1253.71	48.1	1205.61 - 1215.61	1248.11	1250.31	
Deep							
MW-109D	1255.00	1257.31	71.1	1186.21 - 1196.21	1246.03	1249.56	

Notes:

ft MSL - feet mean sea level

ft BTOC - feet below top of casing

Table 2

Town of Carroll Landfill RI/FS NYSDEC Site #9-07-017

Vertical Hydraulic Gradient Summary

Well Nest I.D.	Screen Interval (ft m.s.l.)	Ground Water Elevation (ft m.s.l)		Vertical Hydraulic Gradient (ft/ft)		
		10/14/2004	3/7/2005	10/14/2004	3/7/2005	
MW-107S	1232.6 – 1242.6	1249.75	1249.05	0.026	-0.103	
MW-107I	1209.7 – 1219.7	1249.17	1251.37			
MW-108S	1235.1 – 1245.1	1251.28	1252.45	0.101	0.046	
MW-108I	1210.4 – 1220.4	1248.79	1251.31			
MW-109S	1234.6 – 1244.6	1245.84	1249.8	-0.003	0.011	
MW-109I	1213.5 – 1223.5	1245.91	1249.56			
MW-109I	1213.5 – 1223.5	1245.91	1249.56	-0.004	0	
MW-109D	1186.2 – 1196.2	1246.03	1249.56			
MW-110S	1230.7 – 1240.7	1247.85	1249.98	0.056	0.037	
MW-110I	1208.0 – 1218.0	1246.59	1249.14			
MW-111S	1231.8 – 1241.8	1248.86	1249.53	0.029	0.029	
MW-1111	1205.6 – 1215.6	1248.11	1250.31			

Note:

ft m.s.l – feet mean sea level

Positive gradient indicates downward flow potential Negative gradient indicates upward flow potential

Source: O'Brien & Gere Engineers, Inc.

Table 3

Town of Carroll Landfill RI/FS NYSDEC Site #9-07-017

Hydraulic Conductivity Results Summary

Well I.D.	Screened Material	Hydraulic Conductivity (ft/d)					
Shallow Wells							
MW-101	Silt and Clay	0.5					
MW-104	Silt and Clay	0.09					
MW-105S	Silt and Clay	0.05					
MW-106S	Silt and Clay	0.1					
MW-107S	Silt and Clay	0.25					
MW-108S	Silt and Clay	0.05					
MW-109S	Sand and Silt	0.44					
MW-110S	Silt and Clay	0.16					
MW-111S	Silt and Clay	0.07					
	Geometric Mean	0.13					
Intermediate Wells							
MW-102	Sand and Gravel	5.95					
MW-102I	Sand and Gravel	4.79					
MW-103	Sand and Gravel	0.63					
MW-107I	Sand and Gravel	1.6					
MW-108I	Sand and Gravel	0.42					
MW-109I	Sand and Gravel	9.72					
MW-110I	Sand and Gravel	0.16					
MW-111I	Sand and Gravel	2.93					
	Geometric Mean	1.65					
Deep Well							
MW-109D	Sand	2.85					
Source: O'Brien & Gere Engineers, Inc.							

Town of Carroll Landfill RI/FS

NYSDEC Site #9-07-017

Soil Vapor Field Screening Summary

Penetration										
Location	Depth (1)	PID Meas	urement (2, 3)	Balance						
Number	(feet bls)			Gases %	Methane %	CO2 %	Oxygen %	Date	Time	Notes
		Initial	Stabilized							
1	2	0.94	0.02	79.8	ND	ND	20.2	August 20, 2004	18:44	
2	2	1.65	0.12	79.9	ND	0.2	19.9	August 20, 2004	18:29	
3	2	1.27	0.17	79.7	ND	1.3	19.0	August 20, 2004	18:21	
4	2	0.85	0.85	79.3	ND	6.2	14.5	August 20, 2004	16:55	
5	2	1.71	1.71	78.2	ND	7.5	14.3	August 20, 2004	17:02	
6	2	1.01	1.01	78.8	ND	8.2	13.0	August 20, 2004	17:08	
7	1.6	4.09	0.4	80.3	ND	4.0	15.7	August 20, 2004	17:22	
8	2	1.18	0.9	81.0	ND	15.1	3.9	August 20, 2004	17:30	
9	2	3.52	1.75	65.5	14.2	20.3	ND	August 20, 2004	17:38	
10	2	2.95	1.1	81.0	ND	10.0	9.0	August 20, 2004	18:14	
11	2	0.75	ND	79.5	ND	6.0	14.5	August 20, 2004	18:54	
12	2	1.39	0.31	78.1	ND	8.6	13.3	August 21, 2004	7:07	
13	2	2.84	2.48	78.7	ND	2.2	19.1	August 21, 2004	7:15	
14	2	2.39	0.05	80.1	ND	6.5	13.4	August 21, 2004	7:29	
15	2	2.55	2.48	77.6	ND	11.3	11.1	August 21, 2004	7:39	
16	2	7.39	ND	79.6	ND	7.6	12.8	August 21, 2004	7:53	
17	2	0.74	0.02	71.9	ND	0.1	20.0	August 21, 2004	8:00	
18	2	1.2	0.5	78.8	ND	2.9	18.2	August 21, 2004	10:20	
19	2	12.7	1.7	79.1	ND	1.3	19.6	August 21, 2004	10:35	
20	2	6.87	1.8	79.5	ND	13.6	6.9	August 21, 2004	10:39	
21	2	0.45	ND	72.3	2.5	21.2	3.0	August 21, 2004	13:36	
22	2	179	0.5	79.0	ND	7.2	13.8	August 21, 2004	13:30	
23	1.6	0.95	0.1	79.0	ND	2.2	18.8	August 21, 2004	12:58	
24	2	0.62	0.28	79.8	ND	ND	20.2	August 21, 2004	12:32	
25	2	0.55	0.2	79.9		ND	20.1	August 21, 2004	12:23	
26	2	0.63	0.3	79.9		ND	20.1	August 21, 2004	12:16	
27	2	0.65	0.4	79.9		ND	20.1	August 21, 2004	12:10	
28	2	2.65	1.0	79.3		2.5	18.3	August 21, 2004	13:02	
29	2	2.64	1.0	79.4	ND	10.5	10.1	August 21, 2004	11:05	
30	2	6.84	1.3	80.6	3.8	4.5	11.0	August 21, 2004	11:13	
31	2	8.95	1.0	79.4	ND	2.3	18.3	August 21, 2004	11:22	
32	2	1.7	0.52	80.0		ND	20.0	August 21, 2004	11:32	
33	2	2.44	0.6	79.0	ND	4.1	16.9	August 21, 2004	11:45	
34	2	10.5	0.8	79.8	ND	0.3	19.9	August 21, 2004	11:50	
35	2	2.5	0.73	78.6		4.3	17.1	August 21, 2004	12:01	
36	2	2.97	0.5	79.5		5.1	15.4	August 21, 2004	12:50	
37	1	0.3	ND	80.3	ND	0.1	19.6	August 21, 2004	14:14	

Bold: Greater Bold: Less than

than 10 times 0.8 of

Atmospheric Atmospheric

Levels Levels

Notes:

(1) Samples collected below the estimated depth of cover material.

(2) Parts per billion (ppb) range Photoinization detector (PID) was calibrated to optimize sensitivity for vinyl chloride.

(3) The PID sensitivity setting for vinyl chloride detect ammonia (NH4), hydrogen sulfide (H2S), or other sulfated volatile compounds, which could account for higher initial PID readings than stabilized readings (ION Science representative pers. Comm.).

(4) Ambient atmospheric gases at the surface of the earth include primarily about 78% nitrogen, 21% oxygen, and 0.03% carbon dioxide.

Table 4

Town of Carroll Landfill RI/FS NYSDEC Site #9-07-017

Soil Vapor Analytical Summary - VOCs

		Soil Gas	Location ID	SV-16	SV-19	SV-31	SV-34
.		Soli Gas	Sample Date	8/20/2004	8/20/2004	8/20/2004	8/20/2004
Chemical Name	CAS No	Levels (ppbv)**	Sample ID Unit	SV-16LAB_08/20/04 ppbv	SV-19LAB_08/20/04 ppbv	SV-31LAB_08/20/04 ppbv	SV-34LAB_08/20/04 ppbv
Ethylbenzene	100-41-4	510		6 JD	5 JD	0.6 J	3
Styrene	100-42-5	2300		2 U	6 JD	0.2 U	0.2 U
cis-1,3-Dichloropropene	10061-01-5	N.L.		2 U	2 U	0.2 U	0.2 U
trans-1,3-Dichloropropene	10061-02-6	N.L.		2 U	2 U	0.2 U	0.2 U
1,4-Dichlorobenzene 1,2-Dibromoethane	106-46-7 106-93-4	1300 0.26		5 U 2 U	5 U 2 U	0.5 U 0.2 U	0.5 U 0.2 U
1,3-Butadiene	106-99-0	3.9		10 U	10 U	1 U	1 U
Acrolein	107-02-8	0.087		5 U	5 U	0.5 U	0.5 U
3-Chloropropene	107-05-1	N.L.		5 U	5 U	0.5 U	0.5 U
1,2-Dichloroethane	107-06-2	23		2 U	2 U	0.2 U	0.2 U
Acrylonitrile Vinyl Acetate	107-13-1	9.2 570		5 U 2 U	5 U 2 U	0.5 U 0.2 U	0.5 U 0.2 U
4-Methyl-2-Pentanone	108-05-4 108-10-1	200		2 U 5 U	5 U	0.2 U	0.2 U
1,3,5-Trimethylbenzene	108-67-8	12		4 JD	2 U	0.2 U	1]
Bromobenzene	108-86-1	N.L.		2 U	2 U	0.2 U	0.2 U
Toluene	108-88-3	1100		35 D	20 D	5	26
Chlorobenzene	108-90-7	130		2 U	2 U	0.2 U	0.2 U
Pentane	109-66-0	N.L.		17 D	20 D	1	3
Hexane Octane	110-54-3 111-65-9	570 N.L.		7 JD 400 D	8 JD 280 D	0.8 J 27	2 180 D
Propene	115-07-1	N.L.		28 D	71 D	1 J	6
1,2,4-Trichlorobenzene	120-82-1	270		10 U	10 U	10	1 U
1,4-Dioxane	123-91-1	N.L.		2 U	2 U	0.2 U	0.2 U
Dibromochloromethane	124-48-1	12		2 U	2 U	0.2 U	0.2 U
Tetrachloroethene	127-18-4	120		2 U	4 JD	0.3 J	0.2 U
Xylene (Total) Ethyl Acadato	1330-20-7 140-88-5	N.L. N.L.		21 D 2 U	12 D 2 U	2 0.2 U	13 0.2 U
Ethyl Acrylate Ethyl Acetate	141-78-6	8700		2 U	2 U	0.2 U	0.2 U
Heptane	142-82-5	N.L.		20 D	10 D	1	6
cis-1,2-Dichloroethene	156-59-2	88		2 U	2 U	0.2 U	0.2 U
trans-1,2-Dichloroethene	156-60-5	180		2 U	2 U	0.2 U	0.2 U
Methyl tert-Butyl ether	1634-04-4	8300		27 D	20 D	4	43
Isooctane	540-84-1 541-73-1	N.L.		2 U	2 U	0.2 J	1
1,3-Dichlorobenzene Carbon Tetrachloride	541-73-1 56-23-5	170 26		5 U 2 U	5 U 2 U	0.5 U 0.2 U	0.5 U 0.2 U
2-Hexanone	591-78-6	N.L.		5 U	2 U	0.2 U	4
4-Ethyltoluene	622-96-8	N.L.		8 JD	2 U	0.2 U	2
1,1,1,2-Tetrachloroethane	630-20-6	48		2 U	2 U	0.2 U	0.2 U
Acetone	67-64-1	1500		60 D	67 D	7	38
Chloroform	67-66-3	22		2 U	2 U	9	0.2 U
Hexachloroethane Benzene	67-72-1 71-43-2	63 98		2 U 8 JD	2 U 7 JD	0.2 U 2	0.2 U 6
1,1,1-Trichloroethane	71-55-6	4000		2 U	2 U	0.2 U	0.2 U
Bromomethane	74-83-9	13		2 U	2 U	0.2 U	0.2 U
Chloromethane	74-87-3	440		2 U	2 U	0.2 U	0.2 U
Methyl Iodide	74-88-4	N.L.		2 U	2 U	0.2 U	0.2 U
Dibromomethane	74-95-3	49		20	2 U	0.2 U	0.2 U
Chloroethane Vipyl Chlorida	75-00-3 75-01-4	38000 110		2 U 2 U	2 U 2 U	0.2 U 0.2 U	0.2 U 0.2 U
Vinyl Chloride Acetonitrile	75-01-4	360		2 U 5 U	2 U 5 U	0.2 U 0.5 U	0.2 U
Methylene chloride	75-09-2	1500		5 U	5 U	0.5 U	0.6 J
Carbon Disulfide	75-15-0	2200		5 U	5 U	2	4
Bromoform	75-25-2	210		2 U	2 U	0.2 U	0.2 U
Bromodichloromethane	75-27-4	21		2 U	2 U	0.2 U	0.2 U
1,1-Dichloroethane 1.1-Dichloroethene	75-34-3 75-35-4	1200 500		2 U 2 U	2 U 2 U	0.2 U 0.2 U	0.2 U 0.2 U
Dichlorofluoromethane	75-43-4	N.L.		2 U	2 U	0.2 U	0.2 U
Chlorodifluoromethane	75-45-6	140000		53 D	10 U	1 U	10
tert-Butyl Alcohol	75-65-0	N.L.		3 JD	2 U	0.2 U	0.9 J
Trichlorofluoromethane	75-69-4	1200		56 D	9 JD	3	0.5 J
Dichlorodifluoromethane	75-71-8	400		7600 D *	46 D	18	0.6 J
1,1,2-Trichloro-1,2,2-trifluoroethane Freon 114	76-13-1	39000		5 U	5 U	0.5 U	0.5 U
1,2-Dichloropropane	76-14-2 78-87-5	N.L. 8.7		2 U 2 U	2 U 2 U	21 0.2 U	0.2 U 0.2 U
2-Butanone	78-93-3	3400		5 U	5 U	0.2 U	9
1,1,2-Trichloroethane	79-00-5	28		2 U	2 U	0.2 U	0.2 U
Trichloroethylene	79-01-6	4.1		18 D *	2 U	0.2 U	0.2 U
1,1,2,2-Tetrachloroethane	79-34-5	6.1		2 U	2 U	0.2 U	0.2 U
Methyl Methacrylate	80-62-6	1700		2 U	2 U	0.2 U	0.2 U
Hexachlorobutadiene o-Xylene	87-68-3	10 16000		5 U 7 JD	5 U 4 JD	0.5 U 0.7 J	0.5 U 4
0-Xylene 1,2-Dichlorobenzene	95-47-6 95-50-1	330		5 U	4 JD 5 U	0.5 U	4 0.5 U
1,2,4-Trimethylbenzene	95-63-6	12		19 D *	2 U	0.6 J	4
1,2,3-Trichloropropane	96-18-4	8.1		2 U	2 U	0.2 U	0.2 U
Methyl Acrylate	96-33-3	300		2 U	2 U	0.2 U	0.2 U
Ethyl Methacrylate	97-63-2	680		2 U	2 U	0.2 U	0.2 U
Isopropylbenzene	98-82-8	810		180 D	2 U	0.2 U	0.2 U
Alpha Methyl Styrene	98-83-9	N.L.		2 U	2 U	0.2 U	0.2 U

** USEPA OSWER (2002): Table 2c: Question 4 Generic Screening Levels and Summary Sheet 1 Risk = 1 x 10-4 Target Shallow Soil Gas Concentration Corresponding to Target Indoor Air Concentration Where the Soil Gas to Indoor Air Attenuation Factor=0.1 Csoil-gas U - Analyte not detected J - Estimated concentration D - Diluted result

Town of Carroll Landfill RI/FS NYSDEC Site #9-07-017

Surface Soil Analytical Summary - Inorganics

Chemical Name	CAS No	TAGM 4046 Rec. Soil Cleanup Objective (mg/Kg)	Eastern USA Background ¹ (mg/Kg)	Location ID SS-06 Sample Date 9/16/2004 Sample ID SS-6 Unit mg/kg	SS-07 9/16/2004 SS-7 mg/kg	SS-08 9/16/2004 SS-8 mg/kg	SS-09 9/16/2004 SS-9 mg/kg	SS-10 9/16/2004 SS-10 mg/kg
Aluminum	7429-90-5	SB	33,000	5920.	7820.	9800.	14400.	8490.
Antimony	7440-36-0	SB	NC	1.0 B	.81 B	1.0 B	2.0 B	1.4 B
Arsenic	7440-38-2	7.5 or SB	3 - 12 **	6.8	9.2 *	11.7 *	12.1 *	9.2 *
Barium	7440-39-3	300 or SB	15 - 600	81.3	89.8	107.	448. *	108.
Beryllium	7440-41-7	0.16 or SB	0 - 1.75	.24 B *	.34 B *	.45 B *	.65 B *	.38 B *
Cadmium	7440-43-9	1 or SB	0.1 - 1	.050 U	.21 B	.040 U	2.9 *	.66 B
Calcium	7440-70-2	SB	130 - 35,000	25600.	11300.	5830.	3520.	13500.
Chromium	7440-47-3	10 or SB	1.5 - 40 **	12.7 *	24. *	14.1 *	24.2 *	19.3 *
Cobalt	7440-48-4	30 or SB	2.5 - 60 **	5.7 B	11.6 B	9.1 B	14.9	8.5 B
Copper	7440-50-8	25 or SB	1 - 50	21.8	39.4 *	26.7 *	89.3 *	46.7 *
Iron	7439-89-6	2 or SB	2,000 - 550,000	14400. *	24900. *	24500. *	71600. *	33900. *
Lead	7439-92-1	SB	4 - 61	16.1	21.8	18.5	45.7	98.
Magnesium	7439-95-4	SB	100 - 5,000	4340.	5790.	4670.	3510.	5320.
Manganese	7439-96-5	SB	50 - 5,000	583.	1010.	685.	1000.	694.
Mercury	7439-97-6	0.1	0.001 - 0.2	.020 B	.19 *	.14 *	.14 B *	.05 B
Nickel	7440-02-0	13 or SB	0.5 - 25	18.8 *	52.4 *	22.5 *	40.3 *	30.6 *
Potassium	7440-09-7	SB	8,500 - 43,000 **	606. B	1060. B	1040. B	1050. B	1330. B
Selenium	7782-49-2	2 or SB	0.1 - 3.9	.65 U	1.0 B	.65 B	2.7 *	.85 U
Silver	7440-22-4	SB	NC	.68 B	.36 U	.32 U	.78 B	.47 U
Sodium	7440-23-5	SB	6,000 - 8,000	47.4 B	32.2 B	29.1 B	49.4 B	40. B
Thallium	7440-28-0	SB	NC	.89 UJ	1.4 BJ	1.5 BJ	4.8 J	1.2 UJ
Vanadium	7440-62-2	150 or SB	1 - 300	10.6 B	14.5	15.3	22.2	13.1 B
Zinc	7440-66-6	20 or SB	9 - 50	42.8 *	87.7 *	68.3 *	229. *	381. *
Cyanide	57-12-5	NC	NC	.60 U	.61 U	.53 U	.71 U	.79 U

SB - Site background

B - Value is greater than IDL but less than CRDL

U - Analyte not detected

J - Estimated concentration

¹ McGovern, 1990. Background Concentrations of 20 Elements in Soils with Special Regard for New York State. NYSDEC, Wildlife Resources Center. Delmar, New York

* - Concentration exceeds TAGM 4046 criteria

** - New York State Background

Town of Carroll Landfill RI/FS NYSDEC Site #9-07-017

Surface Soil Analytical Summary - Pesticides/PCBs

Chemical Name	CAS No	TAGM 4046 Rec. Soil Cleanup Objective	Location ID SS Sample Date 9/1 Sample ID SS Unit mg	16/2004 -6	SS-07 9/16/2004 SS-7 mg/kg	SS-08 9/16/2004 SS-8 mg/kg	SS-09 9/16/2004 SS-9 mg/kg	SS-10 9/16/2004 SS-10 mg/kg
alpha-BHC	319-84-6	0.11 mg/kg	.00	011 J	.002 U	.0018 U	.0024 U	.0026 U
Beta-BHC	319-95-7	0.2 mg/kg	.00	02 U	.002 U	.0018 U	.0024 U	.0026 U
delta-BHC	319-86-8	0.3 mg/kg	.00	02 U	.002 U	.0018 U	.0024 U	.0026 U
gamma-BHC (Lindane)	58-89-9	0.06 mg/kg	.00	02 U	.002 U	.0018 U	.0024 U	.0026 U
Heptachlor	76-44-8	0.1 mg/kg	0.0	0018 J	.002 U	.0018 U	.0024 U	.0026 U
Heptachlor Epoxide	1024-57-3	0.02 mg/kg	.00	02 U	.002 U	.0018 U	.0024 U	.0026 U
Aldrin	309-00-2	0.041 mg/kg	.00	02 U	.002 U	.0018 U	.0024 U	.0026 U
Endosulfan I	959-98-8	0.9 mg/kg	.00	02 U	.002 U	.0018 U	.0024 U	.0026 U
Dieldrin	60-57-1	0.044 mg/kg	.00	04 U	.004 U	.0035 U	.0048 U	.0052 U
4,4'-DDE	72-55-9	2.1 mg/kg	.00	04 U	.0011 JP	.0035 U	.0048 U	.0052 U
Endrin	72-20-8	0.1 mg/kg	.01	19	.004 U	.0035 U	.0048 U	R
Endosulfan II	33213-65-9	0.9 mg/kg	.00	04 U	.004 U	.0035 U	.0048 U	.0052 U
4,4'-DDD	72-54-8	2.9 mg/kg	.00	04 U	.004 U	.0035 U	.0048 U	.0052 U
Endosulfan Sulfate	1031-07-8	1 mg/kg	.00	04 U	.004 U	.0035 U	.0048 U	.0052 U
4,4'-DDT	50-29-3	2.1 mg/kg	.00	04 U	.0032 JP	.0035 U	.0039 J	.0052 U
Methoxychlor	72-43-5	NC	.02	2 U	.02 U	.0018 U	.024 U	.026 U
Endrin Ketone	53494-70-5	NC	.00	04 U	.004 U	.0035 U	.0048 U	.0052 U
Endrin Aldehyde	7421-36-3	NC	.00	04 U	.004 U	.0035 U	.0048 U	.0052 U
alpha-Chlordane	5103-71-9	NC	.00	01 JP	.002 U	.0018 U	.011 PJ	.0026 U
gamma-Chlordane	5103-74-2	0.54 mg/kg	.00	04 U	.002 U	.0018 U	.0098	.0026 U
Toxaphene	8001-35-2	NC	.2	U	.2 U	.18 U	.24 U	.26 U
Aroclor-1016	12674-11-2	1 mg/kg	.04	4 U	.04 U	.035 U	.048 U	.052 U
Aroclor-1221	11104-28-2	1 mg/kg	.08	B U	.081 U	.071 U	.095 U	.1 U
Aroclor-1232	11141-16-5	1 mg/kg	.04	4 U	.04 U	.035 U	.048 U	.052 U
Aroclor-1242	53469-21-9	1 mg/kg	.04	4 U	.04 U	.035 U	.048 U	.052 U
Aroclor-1248	12672-29-6	1 mg/kg	.04	4 U	.04 U	.035 U	.048 U	.052 U
Aroclor-1254	11097-69-1		.04	4 U	.04 U	.035 U	.048 U	.052 U
Aroclor-1260	11096-82-5		.04	4 U	.04 U	.044	.05	R

Notes:

NC - No criteria

J - Estimated concentration

P - Greater than 25% difference for detected concentrations between the two GC columns

B - Analyte detected in associated blank

U - Analyte not detected

R - Analytical result rejected during validation

Town of Carroll Landfill RI/FS NYSDEC Site #9-07-017

Surface Water Analytical Summary - SVOCs

		NYS Class C Water Quality	Sample ID	SW-1	SW-2	SW-3	SW-4	SW-5
		Standards and	Sample Date	9/23/2004	9/23/2004	9/23/2004	9/23/2004	9/23/2004
Chemical Name	CAS No	Guidance Values (ug/L)	Units	ug/l	ug/l	ug/l	ug/l	ug/l
Benzaldehyde	100-52-7	NC		10. U	10. U	10. U	11. U	11. U
Acetophenone	98-86-2	NC		1. J	10. U	10. U	11. U	11. U
bis(2-Chloroethyl)ether	111-44-4	NC		10. U	10. U	10. U	11. U	11. U
Caprolactam	105-60-2	NC		10. U	10. U	10. U	11. U	11. U
Phenol	108-95-2	5		11. *	10. U	10. U	11. U	11. U
1,1'-Biphenyl	92-52-4	NC		10. U	10. U	10. U	11. U	11. U
2-Chlorophenol	95-57-8	1		10. U	10. U	10. U	11. U	11. U
Atrazine	1912-24-9	NC		10. U	10. U	10. U	11. U	11. U
2,2'-oxybis(1-Chloropropane)	108-60-1	NC		10. U	10. U	10. U	11. U	11. U
2-Methylphenol	95-48-7	NC		11.	10. U	10. U	11. U	11. U
Hexachloroethane	67-72-1	0.6		10. U	10. U	10. U	11. U	11. U
N-Nitroso-di-n-propylamine	621-64-7	NC		10. U	10. U	10. U	11. U	11. U
4-Methylphenol	106-44-5	NC		4. J	10. U	10. U	11. U	11. U
Nitrobenzene	98-95-3	NC		10. U	10. U	10. U	11. U	11. U
Isophorone	78-59-1	NC		10. U	10. U	10. U	11. U	11. U
2-Nitrophenol	88-75-5	NC		10. U	10. U	10. U	11. U	11. U
2,4-Dimethylphenol	105-67-9	5		10. U	10. U	10. U	11. U	11. U
bis(2-chloroethoxy)methane	111-91-1	NC		10. U	10. U	10. U	11. U	11. U
2,4-Dichlorophenol	120-83-2	1		10. U	10. U	10. U	11. U	11. U
Naphthalene	91-20-3	13		10. U	10. U	10. U	11. U	11. U
4-Chloroaniline	106-47-8	NC		10. U	10. U	10. U	11. U	11. U
Hexachlorobutadiene	87-68-3	0.01		10. U	10. U	10. U	11. U	11. U
4-chloro-3-Methylphenol	59-50-7	NC		10. U	10. U	10. U	11. U	11. U
2-Methylnaphthalene	91-57-6	4.7		10. U	10. U	10. U	11. U	11. U
Hexachlorocyclopentadiene	77-47-4	0.45		10. U	10. U	10. U	11. U	11. U
2,4,6-Trichlorophenol	88-06-2	1		10. U	10. U	10. U	11. U	11. U
2,4,5-Trichlorophenol	95-95-4	1		25. U	25. U	25. U	28. U	27. U
2-Chloronaphthalene	91-58-7	NC		10. U	10. U	10. U	11. U	11. U
2-Nitroaniline	88-74-4	NC		25. U	25. U	25. U	28. U	27. U

Notes:

NC - No criteria

J - Estimated concentration

U - Analyte not detected

Town of Carroll Landfill RI/FS NYSDEC Site #9-07-017

Surface Water Analytical Summary - SVOCs

		NYS Class C Water Quality	Sample ID	SW-1	SW-2	SW-3	SW-4	SW-5
		Standards and	Sample Date	9/23/2004	9/23/2004	9/23/2004	9/23/2004	9/23/2004
		Guidance						
Chemical Name	CAS No	Values (ug/L)	Units	ug/l	ug/l	ug/l	ug/l	ug/l
Acenaphthylene	208-96-8	NC		10. U	10. U	10. U	11. U	11. U
Dimethyl phthalate	131-11-3	NC		10. U	10. U	10. U	11. U	11. U
2,6-Dinitrotoluene	606-20-2	NC		10. U	10. U	10. U	11. U	11. U
Acenaphthene	83-32-9	5.3		10. U	10. U	10. U	11. U	11. U
3-Nitroaniline	99-09-2	NC		25. U	25. U	25. U	28. U	27. U
2,4-Dinitrophenol	51-28-5	400		25. U	25. U	25. U	28. U	27. U
Dibenzofuran	132-64-9	NC		10. U	10. U	10. U	11. U	11. U
2,4-Dinitrotoluene	121-14-2	NC		10. U	10. U	10. U	11. U	11. U
4-Nitrophenol	100-02-7	NC		25. U	25. U	25. U	28. U	27. U
Fluorene	86-73-7	0.54		10. U	10. U	10. U	11. U	11. U
4-Chlorophenyl phenyl ether	7005-72-3	NC		10. U	10. U	10. U	11. U	11. U
Diethyl phthalate	84-66-2	NC		10. U	10. U	10. U	11. U	11. U
4-Nitroaniline	100-01-6	NC		25. U	25. U	25. U	28. U	27. U
4,6-Dinitro-2-Methylphenol	534-52-1	NC		25. U	25. U	25. U	28. U	27. U
n-Nitrosodiphenylamine	86-30-6	NC		10. U	10. U	10. U	11. U	11. U
4-Bromophenyl phenyl ether	101-55-3	NC		10. U	10. U	10. U	11. U	11. U
Hexachlorobenzene	118-74-1	3		10. U	10. U	10. U	11. U	11. U
Pentachlorophenol	87-86-5	10		25. U	25. U	25. U	28. U	27. U
Phenanthrene	85-01-8	5		10. U	10. U	10. U	11. U	11. U
Anthracene	120-12-7	3.8		10. U	10. U	10. U	11. U	11. U
di-n-Butyl Phthalate	84-74-2	NC		10. U	10. U	10. U	11. U	11. U
Carbazole	86-74-8	NC		10. U	10. U	10. U	11. U	11. U
Fluoranthene	206-44-0	NC		10. U	10. U	10. U	11. U	11. U
Pyrene	129-00-0	4.6		10. U	10. U	10. U	11. U	11. U
Benzyl Butyl Phthalate	85-68-7	NC		10. U	10. U	10. U	11. U	11. U
3,3'-Dichlorobenzidine	91-94-1	NC		10. U	10. U	10. U	11. U	11. U
Benzo[a]anthracene	56-55-3	0.03		10. U	10. U	10. U	11. U	11. U
Chrysene	218-01-9	NC		10. U	10. U	10. U	11. U	11. U
bis(2-ethylhexyl)phthalate	117-81-7	0.6		10. U	10. U	10. U	11. U	11. U

Notes: NC - No criteria

J - Estimated concentration

U - Analyte not detected

O'Brien Gere Engineers, Inc.

Town of Carroll Landfill RI/FS NYSDEC Site #9-07-017

Surface Water Analytical Summary - SVOCs

		NYS Class C Water Quality	Sample ID	SW-1	SW-2	SW-3	SW-4	SW-5
		Standards and	Sample Date	9/23/2004	9/23/2004	9/23/2004	9/23/2004	9/23/2004
Chemical Name	CAS No	Guidance Values (ug/L)	Units	ug/l	ug/l	ug/l	ug/l	ug/l
di-n-Octyl Phthalate	117-84-0	NC		10. U	10. U	10. U	11. U	11. U
Benzo[b]fluoranthene	205-99-2	NC		10. U	10. U	10. U	11. U	11. U
Benzo[k]fluoranthene	207-08-9	NC		10. U	10. U	10. U	11. U	11. U
Benzo[a]pyrene	50-32-8	0.0012		10. U	10. U	10. U	11. U	11. U
Indeno[1,2,3-cd]pyrene	193-39-5	NC		10. U	10. U	10. U	11. U	11. U
Dibenz[a,h]anthracene	53-70-3	NC		10. U	10. U	10. U	11. U	11. U
Benzo[g,h,i]perylene	191-24-2	NC		10. U	10. U	10. U	11. U	11. U

Notes: NC - No criteria J - Estimated concentration U - Analyte not detected

Town of Carroll Landfill RI/FS NYSDEC Site #9-07-017

Surface Water Analytical Summary - Inorganics

		NYS Class C Water Quality	Sample ID	SW-1	SW-2	SW-3	SW-4	SW-5
		Standards and	Sample Date	9/23/2004	9/23/2004	9/23/2004	9/23/2004	9/23/2004
Chemical Name	CAS No	Guidance Values (ug/L)	Units	ug/l	ug/l	ug/l	ug/l	ug/l
Aluminum	7429-90-5	100		10200 *	253 *	2740 *	3820 *	5260 *
Antimony	7440-36-0	NC		2.5 U				
Arsenic	7440-38-2	150		4.2 B	2.7 U	6.2 B	3.2 B	3.7 B
Barium	7440-39-3	NC		77.2 B	133 B	390	170 B	264
Beryllium	7440-41-7	1100		.27 B	.04 U	.04 U	.07 B	.07 B
Cadmium	7440-43-9	4		.2 U	.2 U	.2 U	.85 B	2.2 B
Calcium	7440-70-2	NC		6740	98800	193000	72900	84000
Chromium	7440-47-3	141		9.4 B	.94 U	2.5 B	4.1 B	4.8 B
Cobalt	7440-48-4	5		7.6 B *	.99 U	6.9 B *	.99 U	11.2 B *
Copper	7440-50-8	18		5.5 B	1.2 U	7.3 B	9 B	18 B
Iron	7439-89-6	300		14200 *	1350 *	47900 *	12800 *	38000 *
Lead	7439-92-1	5		11.1 *	1.1 U	8.4 *	10.9 *	22.5 *
Magnesium	7439-95-4	NC		3020 B	13000	20700	10900	12300
Manganese	7439-96-5	NC		869	477	3230	416	876
Mercury	7439-97-6	0.77		.03 B	.02 U	.02 U	.02 U	.04 B
Nickel	7440-02-0	101		9.3 B	8.4 B	42.8	8.6 B	24 B
Potassium	7440-09-7	NC		3360 BJ	4770 BJ	4890 BJ	2880 BJ	4410 BJ
Selenium	7782-49-2	4.6		2.7 U	2.7 U	2.7 U	2.7 U	2.8 BJ
Silver	7440-22-4	16		1.5 U				
Sodium	7440-23-5	NC		786 BJ	5800 J	3330 BJ	7240 J	6900 J
Thallium	7440-28-0	8		3.7 U				
Vanadium	7440-62-2	14		16.6 B *	1.1 U	4.4 B	6.6 B	8.5 B
Zinc	7440-66-6	162		60.2	8.8 B	98.2	69.9	210 *
Cyanide	57-12-5	5.2		10	10	10	10	10

Notes:

NC - No criteria

U - Analyte not detected

B - Value is greater than IDL but less than CRDL

* - Concentration exceeds criteria

J - Estimated concentration

Town of Carroll Landfill RI/FS NYSDEC Site #9-07-017

Surface Water Analytical Summary - Pesticides/PCBs

		NYS Class C Water Quality	Sample ID	SW-4
		Standards and	Sample Date	9/23/2004
Chemical Name	CAS No	Guidance Values (ug/L)	Units	ug/l
alpha-BHC	319-84-6	0.002		.056 U
Beta-BHC	319-95-7	NC		.056 U
delta-BHC	319-86-8	0.008		.056 U
gamma-BHC (Lindane)	58-89-9	0.008		.056 U
Heptachlor	76-44-8			.056 U
Heptachlor Epoxide	1024-57-3	0.0003		.056 U
Aldrin	309-00-2	0.001		.056 U
Endosulfan I	959-98-8	0.009		.056 U
Dieldrin	60-57-1	0.056		.11 U
4,4'-DDE	72-55-9	7		.11 U
Endrin	72-20-8	0.036		.11 U
Endosulfan II	33213-65-9	0.009		.11 U
4,4'-DDD	72-54-8	8		.11 U
Endosulfan Sulfate	1031-07-8	NC		.11 U
4,4'-DDT	50-29-3	1		.11 U
Methoxychlor	72-43-5	0.03		.56 U
Endrin Ketone	53494-70-5	NC		.11 U
Endrin Aldehyde	7421-93-4	NC		.11 U
alpha-Chlordane	5103-71-9	2		.056 U
gamma-Chlordane	5103-74-2	2		.056 U
Toxaphene	8001-35-2	6		5.6 U
Aroclor-1016	12674-11-2	.000001		1.1 U
Aroclor-1221	11104-28-2	.000001		2.2 U
Aroclor-1232	11141-16-5	.000001		1.1 U
Aroclor-1242	53469-21-9	.000001		1.1 U
Aroclor-1248	12672-29-6	.000001		1.1 U
Aroclor-1254	11097-69-1	.000001		1.1 U
Aroclor-1260	11096-82-5	.000001		1.1 U

Notes:

NC - No criteria

J - Estimated concentration

B - Analyte detected in associated blank

P - Greater than 25% difference for detected concentrations between the two GC columns

Town of Carroll Landfill RI/FS NYSDEC Site #9-07-017

Sediment Analytical Summary - VOCs

Health Chemical NameHealth (ug/gOC)Cu (ugDichlorodifluoromethaneChloromethaneVinyl Chloride0.07BromomethaneChloromethaneTrichlorofluoromethaneAcetone1,1-Dichloroethene0.02Methyle chlorideMethylene chloride1,1-Dichloroethene1,1,2-Trichloro-1,2,2-trifluoroethaneCarbon Disulfidetrans-1,2-Dichloroethene2-Butanone2-Butanone2-ButanoneChloroform1,2-Dichloroethane0.71,1,1-TrichloroethaneCarbon Tetrachloride0.6Benzene0.6Trins-1,3-DichloropepaneBromodichloromethane1,2-DichloropepaneTrins-1,3-DichloropeneTrins-1,3-DichloropeneTrans-1,3-DichloropeneTrans-1,3-DichloropeneTrans-1,3-DichloropeneToluenePromodichloromethaneTrans-1,2-DichloropeneTrans-1,3-DichloropeneTrans-1,3-DichloropeneTrans-1,3-DichloropeneTrans-1,3-DichloropeneTrans-1,2-DichloropeneTrans-1,2-DichloropeneTrans-1,2-DichloropeneTrans-1		Location ID Sample Date	SED 9/23/	-01 /2004		D-02 /2004		0-03 /2004		D-04 /2004		0-05 /2004
Dichlorodifluoromethane Chloromethane Vinyl Chloride 0.07 Bromomethane Chloroethane Chloroethane Trichlorofluoromethane Acetone 1,1-Dichloroethene 0.02 Methylene chloride Methyl Acetate 1,1,2-Trichloro-1,2,2-trifluoroethane Carbon Disulfide trans-1,2-Dichloroethene trans-1,2-Dichloroethene 1,1-Dichloroethane 2-Butanone cis-1,2-Dichloroethene 1,2-Dichloroethane 2-Joichloroethane 2-Joichloroethane 2-Joichloroethane 1,2-Dichloroethane 2/2-Dichloroethane 2/2-Dichloroethane 1,2-Dichloropropane stylene 1,2-Dichloropropane 1,2-Dichloroprope	Benthic Chronic	Units	ug/kg	ug/g OC	ug/kg	ug/g OC	ug/kg	ug/g OC	ug/kg	ug/g OC	ug/kg	ug/g OC
Chloromethane Vinyl Chloride 0.07 Bromomethane Chloroethane Trichlorofluoromethane Acetone 1,1-Dichloroethene 0.02 Methylene chloride Methyl Acetate 1,1,2-Trichloro-1,2,2-trifluoroethane Carbon Disulfide Carbon Disulfide trans-1,2-Dichloroethene 1,1-Dichloroethane 2-Butanone cis-1,2-Dichloroethane 0.7 1,1-1-Trichloroethane Qclokexane Carbon Dizoropropane 1,2-Dichloroethane 0.6 Bromodichloromethane 1,2-Dichloropropane Bromodichloromethane 1,2-Dichloropropane Bromodichloromethane 1,2-Dichloropropane 1,1,1-Trichloropropane Trichloropropane		CAS No					10.11		40.11			
Vinyl Chloride 0.07 Bromomethane Chloroethane Trichlorofluoromethane Acetone 1,1-Dichloroethene 0.02 Methylene chloride Methylene chloride Trichlorofluoromethane Methylene chloride Methylene chloride Triss-1,2-Dichloroethene Trans-1,2-Dichloroethene 2-Butanone 2-Butanone 2-Butanone 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloropthane 1,2-Dichloropthane Senzene 0.6 Bromodichloromethane 1,2-Dichloropropane Styliofloropropene 1,1,2-Trichloroethane 1,2-Dichloropropene 1,1,2-Trichloroethane 1,2-Dichloropropene </td <td></td> <td>75-71-8</td> <td>15. U</td> <td></td> <td>14. U</td> <td></td> <td>13. U</td> <td></td> <td>19. U</td> <td></td> <td>14. U</td> <td></td>		75-71-8	15. U		14. U		13. U		19. U		14. U	
Bromomethane Chloroethane Trichlorofluoromethane Acetone 1,1-Dichloroethene 0.02 Methylene chloride I,1,2-Trichloro-1,2,2-trifluoroethane Carbon Disulfide trans-1,2-Dichloroethene 1,1-Dichloroethene 1,1-Dichloroethane 2-Butanone 2-Butanone 1,2-Dichloroethane 0.7 1,2-Dichloroethane 0.7 1,2-Dichloroethane 0.7 1,2-Dichloroethane Carbon Tetrachloride 0.6 Benzene 0.6 Benzene 0.6 Benzene 0.6 Benzene 0.6 Benzene 0.6 Benzene Trichloroethane Bromodichloromptane Trichloroethane Trichloroethane Bromodichloromethane Trichloroethane 0.6 Dibromochloromethane Toluene Hethyl-2-Pentanone Toluene Hethyl-2-Pentanone Hethyl-2-Pentanone Homochloromethane Sytene Chlorobenzene Chlorobenzene Ethylbenzene Xylene (Total) Styrene 1,1,2-Tetrachloroethane 0.3 Isopropylbenzene		74-87-3	15. U		14. U		13. U		19. U		14. U	
Chloroethane Trichlorofluoromethane Acetone 1,1-Dichloroethene 0.02 Methylene chloride Methyl Acetate 1,1,2-Trichloroothane Carbon Disulfide trans 1,2-Dichloroothene 1,1-Dichloroothane 2-Butanone 1,1-Dichloroothane 2-Butanone 1,2-Dichloroothane 0.7 1,1-Trichloroothane 0.7 1,1,1-Trichloroothane Cyclohexane Carbon Tetrachloride 0.6 Benzene 0.6 Dirchlorooptopane Storooptichloropropane 1,2-Dichlorooptopene Storooptichloropropane 1,1,2-Trichlorooptopene 1,1,2-Trichlorooptopene 1,1,2-Trichlorooptone Bromodichloromethane Bromochoromethane		75-01-4	15. U		14. U		13. U		19. U		14. U	
Trichlorofluoromethane Acetone Acetone 1,1-Dichloroethene 0.02 Methylen chloride Methylen chloride 1,1,2-Trichloro-1,2,2-trifluoroethane Carbon Disulfide trans-1,2-Dichloroethene 1,1-Dichloroethane 2-Butanone 2-Butanone 2-Butanone 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloropropane Sprondichloromethane Sprondichloropropene 1,1,2-Trichloroethane 1,2-Dichloropropene 1,1,2-Trichloroethane 1,1,2-Trichloropropene 1,1,2-Trichloroethane		74-83-9	15. U		14. U		13. U		19. U		14. U	
Acetone 1,1-Dichloroethene 0.02 Methylene chloride Methyl Acetate Carbon Disulfide trans-1,2-Dichloroethene Methyl tert-Butyl ether 1,1-Dichloroethene 2-Butanone 2-Butanone 2-Butonone 1,2-Dichloroethene (J-Dichloroethane (J-Dichloroethane (J-Dichloroethane 0.7 1,1,1-Trichloroethane (J-Dichloroptopane Benzene 0.6 Benzene 0.6 Benzene 0.6 Stromodichloromethane 1,2-Dichloropropane Bromodichloromethane 1,1,2-Trichloroethane 0.6 Dibromochloromethane Bromodrim 1,1,2-Trichloroethane Bromodrim		75-00-3	15. U		14. U		13. U		19. U		14. U	
1,1-Dichloroethene0.02Methylene chlorideMethyl AcetateCarbon DisulfideCarbon Disulfidetrans-1,2-Dichloroethenetrans-1,2-Dichloroethene1,1-Dichloroethane2-Butanonecis-1,2-Dichloroethene1,1-Dichloroethane2-Butanonecis-1,2-Dichloroethene1,1-Dichloroethane2-Dichloroethene0.71,1,1-TrichloroethaneCarbon Tetrachloride0.6Benzene0.6Crichloroptylene2.01,2-DichloroptopaneBromodichloromethanetrichloroothylene2.01,2-DichloroptopeneBromodichloromethaneTrichloroothylene1,2-Dichloroptopenetrans-1,3-Dichloropropenetrans-1,3-DichloroptopeneTolueneTolueneToluene1,2-Dibromothane1,2-DibromothaneChlorobenzene1,2-Dibromothane1,2-DibromothaneChlorobenzene1,2-Dibromothane1,2-Dibromothane1,2-Dibromothane1,2-Dibromothane1,2-Dibromothane1,2-Dibromothane1,2-Dibromothane <t< td=""><td></td><td>75-69-4</td><td>15. U</td><td></td><td>14. U</td><td></td><td>13. U</td><td></td><td>19. U</td><td></td><td>14. U</td><td></td></t<>		75-69-4	15. U		14. U		13. U		19. U		14. U	
Methylene chloride Methyl Acetate Acthyl Acetate 1,1,2-Trichloro-1,2,2-trifluoroethane Carbon Disulfide trans-1,2-Dichloroethene 1,1-Dichloroethane 2-Butanone 2-Butanone 2-Dichloroethane 1,2-Dichloroethane 0.7 1,1-Trichloroethane 0.7 1,1,1-Trichloroethane Cyclohexane Carbon Tetrachloride 0.6 Benzene 0.6 Dichoroptopane Bromodichloromethane 1,2-Dichloropropane Bromodichloromethane 1,2-Dichloropropane 1,1,1-Trichloropropane 1,1,2-Trichloropropane 1,1,2-Trichloropropane 1,1,2-Trichloropropane 1,1,2-Trichloropropane 1,1,2-Trichloropro		67-64-1	4. J	0.13	29.	1.3	2. J	0.1	33.	0.58	39.	2.6
Methyl Acetate J, J, 2-Trichloro-1,2,2-trifluoroethane Carbon Disulfide trans-1,2-Dichloroethene Methyl tert-Butyl ether 1,1-Dichloroethane 2-Butanone cls-1,2-Dichloroethane 2-Butanone cls-1,2-Dichloroethane 1,2-Dichloroethane (J-Dichloroethane (J-Dichloroethane (J-Dichloroethane (J-Dichloroethane (J-Dichloroethane (J-Dichloropthane (J-Dichloropthane 0.6 Benzene 0.6 Benzene 0.6 Bromodichloromethane Sornodichloropropopane Stylichloropropopene 1,2-Dichloropropopene 1,1,2-Trichloroethane 0.6 Dibromochloromethane 1,1,2-Trichloroethane 1,1,2-Trichloroethane 1,1,2-Dichloropropopene 1,1,2-Trichloroethane 1,1,2-Dichloropropopene 1,1,2-Dichloropropene		75-35-4	15. U		14. U		13. U		19. U		14. U	
1,1,2-Trichloro-1,2,2-trifluoroethane Carbon Disulfide trans-1,2-Dichloroethene Wethyl ter-Butyl ether 2-Butanone cis-1,2-Dichloroethane 2-Butanone cis-1,2-Dichloroethane 2-Butanone cis-1,2-Dichloroethane 0.7 1,1-Irrichloroethane 0.7 1,1,1-Trichloroethane 0.6 Benzene 0.6 Cyclohexane Carbon Tetrachloride 0.6 Benzene 0.6 Trichloroethylene 2.0 1,2-Dichloropropane Bromodichloromethane Wethylcylohexane cis-1,3-Dichloropropene trans-1,3-Dichloropropene Bromochiromethane Bromochrom Toluene Tetrachloroethene 0.8 2-Hexanone 1,2-Dibromoethane Chlorobenzene		75-09-2	15. U		14. U		13. U		19. U		14. U	
Carbon Disulfide trans-1,2-Dichloroethene Methyl tert-Butyl ether 1,1-Dichloroethane 2-Butanone 2-Butanone 2-Dichloroethene 1,2-Dichloroethane 0.7 1,1,1-Trichloroethane 1,2-Dichloroethane 0.7 1,1,1-Trichloroethane Carbon Tetrachloride 0.6 Benzene 0.6 Brazene 0.6 Bromodichloropropane 1,2-Dichloropropane Strich1.3-Dichloropropane 1,1,2-Trichloropene 1,1,2-Trichloropene 1,1,2-Trichloropene Storene Toluene Toluene 1,2-Dichloropthane 2-Hexanone 1,2-Dichloropthane 2-Hexanone 1,2-Dibromoethane Chlorobenzene <td></td> <td>79-20-9</td> <td>15. U</td> <td></td> <td>14. U</td> <td></td> <td>13. U</td> <td></td> <td>19. U</td> <td></td> <td>14. U</td> <td></td>		79-20-9	15. U		14. U		13. U		19. U		14. U	
trans-1,2-Dichloroethene Methyl tert-Butyl ether 1,1-Dichloroethane Chloroform Chloroform 1,2-Dichloroethane 0.7 1,1,1-Trichloroethane 0.7 1,1,1-Trichloroethane Cyclohexane Cyclohexane 0.6 Benzene 0.6 Benzene 0.6 Benzene 0.6 Trichloroethylene 2.0 1,2-Dichloropropane Bromodichloromethane Methylcylohexane Methylcylohexane trans-1,3-Dichloropropene 1,1,2-Trichloroethane 0.6 Dibromochloromethane Toluene 4-Methyl-2-Pentanone Tetrachloroethene 0.8 2-Hexanone L-Dibromoethane Ethylbenzene Xylene (Total) Styrene L,1,2-Tetrachloroethane 0.3 Isopropylbenzene		76-13-1	15. U		14. U		13. U		19. U		14. U	
Methyl tert-Butyl ether 1,1-Dichloroethane 2-Butanone 2-Butanone 2-Butanone 3c-1,2-Dichloroethane 0.7 1,1-Trichloroethane 0.7 1,1-Trichloroethane 0.7 1,1-Trichloroethane 0.6 Benzene 0.6 Chloroftylene 2.0 1,2-Dichloropropane Bromodichloromethane Bromodichloromothane Bromodichloromethane Bromodichloromethane Bromodichloromethane 0.6 Dibromochloromethane Bromoform Toluene Bromoform Toluene Tetrachloroethene 0.8 2-Hexanone Ly2-Dibromoethane Chlorobenzene Ethylbenzene Zhethyl-2-Pentanone		75-15-0	15. U		14. U		13. U		19. U		14. U	
1,1-Dichloroethane 2-Butanone 2-Butanone cls-1,2-Dichloroethane 0.7 1,1-Trichloroethane 0.7 1,1,1-Trichloroethane Carbon Tetrachloride 0.6 Benzene 0.6 Trichloroethane Carbon Tetrachloride 0.6 Benzene 0.6 Trichloroethylene J_2-Dichloropropane Bromodichloromethane Kethylcylohexane trans-1,3-Dichloropropene trans-1,3-Dichloropropene Bromochloromethane Bromochloromethane Toluene Tetrachloroethene 0.8 2-Hexanone Ly2-Dibromoethane Chlorobenzene Ethylbenzene Zylene (Total) Styrene Ly2-Dibromoethane Styrene <td></td> <td>156-60-5</td> <td>15. U</td> <td></td> <td>14. U</td> <td></td> <td>13. U</td> <td></td> <td>19. U</td> <td></td> <td>14. U</td> <td></td>		156-60-5	15. U		14. U		13. U		19. U		14. U	
2-Butanone cis-1,2-Dichloroethene Chloroform 1,2-Dichloroethane 0.7 1,1-Trichloroethane Cyclohexane Carbon Tetrachloride 0.6 Benzene 0.6 Trichloropropane Bromodichloromethane J_2-Dichloropropane Bromodichloromethane Bromodichloropropene trans-1,3-Dichloropropene 1,1,2-Trichloroethane 0.6 Dibromochloromethane Spromoform 4-Methyl-2-Pentanone Toluene 2-Hexanone 2-Hexanone 2-Hexanone 2-Hylencene Xylene (Total) Styrene 1,1,2,2-Tetrachloroethane 0.3 Isoporphylenzene		1634-04-4	15. U		14. U		13. U		19. U		14. U	
2-Butanone cis-1,2-Dichloroethene Chloroform 1,2-Dichloroethane 0.7 1,1-Trichloroethane Cyclohexane Carbon Tetrachloride 0.6 Benzene 0.6 Trichloropropane Bromodichloromethane J_2-Dichloropropane Bromodichloromethane Bromodichloropropene trans-1,3-Dichloropropene 1,1,2-Trichloroethane 0.6 Dibromochloromethane Spromoform 4-Methyl-2-Pentanone Toluene 2-Hexanone 2-Hexanone 2-Hexanone 2-Hylencene Xylene (Total) Styrene 1,1,2,2-Tetrachloroethane 0.3 Isoporphylenzene		75-34-3	15. U		14. U		13. U		19. U		14. U	
dis-1,2-Dichloroethene Chloroform (J,2-Dichloroethane 0.7 1,1,1-Trichloroethane Cyclohexane 0.6 Benzene 0.6 Trichloroethylene 2.0 1,2-Dichloropropane Bromodichloromethane Methylcylohexane Methylcylohexane I,1,2-Trichloroethane 0.6 Dibromochloromethane Bromodichloromethane Bromodichloromethane Toluene Tetrachloroethene 0.8 2-Hexanone 1,2-Dibromoethane Tetrachloroethene Z-Hexanone Xylene (Total) Styrene Xylene (Total) Styrene Loga Styrene		78-93-3	15. U		14. U		13. U		19. U		5. J	0.33
Chloroform 1,2-Dichloroethane 0.7 1,1,1-Trichloroethane Carbon Tetrachloride 0.6 Benzene 0.6 Trichloroethylene 2.0 1,2-Dichloropropane Bromodichloromethane Methylcylohexane cis-1,3-Dichloropropene trans-1,3-Dichloropropene Bromodichloromethane 0.6 Dibromochloromethane Toluene Toluene Toluene Toluene Ly-Dirbinoroethane 0.8 2-Hexanone Ly-Dirbinoroethane Toluene Tetrachloroethene 0.8 2-Hexanone Ly-Dibromoethane Styrene Lylene (Total) Styrene 0.3 Isoporphylenzene		156-59-2	15. U		14. U		11. J	0.57	19. U		14. U	
1,2-Dichloroethane 0.7 1,1,1-Trichloroethane Cyclohexane Carbon Tetrachloride 0.6 Benzene 0.6 Trichloroethylene 2.0 1,2-Dichloropropane Bromodichloromethane Methylcylohexane 1,3-Dichloropropene 1,1,2-Trichloroethane 0.6 Dibromochloromethane 1,1,2-Trichloroethane 0.6 Dibromochloromethane Stormoform 4-Methyl-2-Pentanone Toluene Toluene Toluene Chlorobenzene Chlorobenzene Zhexanone 2,2-Dibromoethane Chlorobenzene Styrene 1,1,2,2-Tetrachloroethane 0.3 Isoporpylbenzene		67-66-3	15. U		14. U		13. U		19. U		14. U	
1,1,1-Trichloroethane Cyclohexane Carbon Tetrachloride 0.6 Benzene 0.6 Trichloroethylene 2.0 1,2-Dichloropropane Bromodichloromethane Methylcylohexane Itans-1,3-Dichloropropene 1,1,2-Trichloroethane 0.6 Dibromochloromethane 1,1,2-Trichloroethane 0.6 Dibromochloromethane 4-Methyl-2-Pentanone Toluene 1,2-Dibromoethane 2.Hexanone 2.Hexanone 1,2-Dibromoethane Styrene Xylene (Total) Styrene 0.3 Isoporphylenzene		107-06-2	15. U		14. U		13. U		19. U		14. U	
Cyclohexane Carbon Tetrachloride 0.6 Benzene 0.6 Trichloroethylene 2.0 1,2-Dichloropropane Bromodichloromethane Bromodichloromethane dethylcylohexane cis-1,3-Dichloropropene trans-1,3-Dichloropropene Biomochloromethane 0.6 Dibromochloromethane Bromoform Tolucne Tolucne Tetrachloroethene 0.8 2-Hexanone Ly-Dibromoethane Chlorobenzene Ethylbenzene Xylene (Total) Styrene 1,1,2,2-Tetrachloroethane 0.3 Isoporpylbenzene		71-55-6	15. U		14. U		13. U		19. U		14. U	
Carbon Tetrachloride 0.6 Benzene 0.6 Trichloroethylene 2.0 1,2-Dichloropropane Bromodichloromethane Methylcylohexane trans-1,3-Dichloropropene trans-1,3-Dichloropropene bromochloromethane 0.6 Dibromochloromethane 0.6 Dibromochloromethane Yame 4-Methyl-2-Pentanone Toluene Tetrachloroethene 0.8 2-Hexanone 1,2-Dibromoethane Chlorobenzene Kylene (Total) Styrene J,1,2,2-Tetrachloroethane 0.3 Isopropylbenzene		110-82-7	15. U		14. U		13. U		19. U		14. U	
Benzene 0.6 Trichloroethylene 2.0 1,2-Dichloropropane Bromodichloromethane Methylcylohexane cis-1,3-Dichloropropene 1,1,2-Trichloroethane 0.6 Dibromochloromethane 1,1,2-Trichloroethane 0.6 Dibromochloromethane 4-Methyl-2-Pentanone Toluene 2-Hexanone 2-Hexanone 2-Hexanone Styrene Xylene (Total) Styrene 0.3 Isoporphylenzene		56-23-5	15. U		14. U		13. U		19. U		14. U	
Trichloroethylene 2.0 1,2-Dichloropropane Bromodichloromethane Methylcylohexane cis-1,3-Dichloropropene trans-1,3-Dichloropropene 1,1,2-Trichloroethane 0.6 Dibromochloromethane Bromoform 4-Methyl-2-Pentanone Tetrachloroethene 0.8 2-Hexanone 1,2-Dibromoethane Chlorobenzene 2-Hexanone 1,2-Dibromoethane 2-Hexanone 1,2-Dibromoethane 2-Hexanone 1,1,2-Tetrachloroethene 0.8 2-Hexanone 1,1,2-Tetrachloroethane Styrene 1,1,2,2-Tetrachloroethane 0.3 Isoporpylbenzene		71-43-2	15. U		14. U		13. U		19. U		14. U	
1,2-Dichloropropane Bromodichloromethane Methylcylohexane cis-1,3-Dichloropropene trans-1,3-Dichloropropene biromochloromethane 0.6 Dibromochloromethane Bromoform Bromoform Toluene Tetrachloroethene 0.8 2-Hexanone 1,2-Dibromoethane Chlorobenzene Ethylbenzene Xylene (Total) Storrene 0.3 Isoporpylbenzene		79-01-6	15. U		14. U		13. U		19. U		14. U	
Bromodichloromethane Methylcylohexane Sich-J.3-Dichloropropene trans-1,3-Dichloropropene trans-1,3-Dichloropropene trans-1,3-Dichloropropene bibromochloromethane Bromoform 4-Methyl-2-Pentanone Toluene Tetrachloroethene 0.8 2-Hexanone 1,2-Dibromoethane Chlorobenzene Ethylbenzene Xylene (Total) Styrene 0.3 Isopropylbenzene		78-87-5	15. U		14. U		13. U		19. U		14. U	
Methylcylohexane cis-1,3-Dichloropropene trans-1,3-Dichloropropene trans-1,3-Dichloropropene Dibromochloromethane Bromoform Hethyl-2-Pentanone Toluene Z-Hexanone 1,2-Dibromoethane Chlorobenzene Ethylbenzene Xylene (Total) Styrene 1,1,2-Zietrachloroethane 0.3 Isopropylbenzene		75-27-4	15. U		14. U		13. U		19. U		14. U	
cis-1,3-Dichloropropene trans-1,3-Dichloropropene 1,1,2-Trichloroethane 0.6 Dibromochloromethane Bromoform 4-Methyl-2-Pentanone Toluene Tetrachloroethene 0.8 2-Hexanone Ly-Dibromoethane Chlorobenzene Ethylbenzene Ethylbenzene Styrene Styrene 0.3 Isopropylbenzene		108-87-2	15. U		14. U 14. U		13. U 13. U		19. U		14. U 14. U	
trans-1,3-Dichloropropene 1,1,2-Trichloroethane 0.6 Dibromochloromethane Bromoform 4-Methyl-2-Pentanone Toluene Tetrachloroethene 0.8 2-Hexanone 1,2-Dibromoethane Chlorobenzene Ethylbenzene Xylene (Total) Styrene 0.3 Isoporyblenzene			15. U		14. U		13. U		19. U		14. U	
1,1,2-Trichloroethane 0.6 Dibromochloromethane Bromoform 4-Methyl-2-Pentanone Toluene Tetrachloroethene 0.8 2-Hexanone 1,2-Dibromoethane Chlorobenzene Ethylbenzene Xylene (Total) Styrene 0.3 Isopropribenzene		10061-01-5	15. U		14. U		13. U 13. U		19. U		14. U 14. U	
Dibromochloromethane Bromoform 4-Methyl-2-Pentanone Toluene Tetrachloroethene 0.8 2-Hexanone 1,2-Dibromoethane Chlorobenzene Ethylbenzene Styrene Styrene 1,1,2,2-Tetrachloroethane 0.3 Isopropylbenzene		10061-02-6										
Bromoform 4-Methyl-2-Pentanone Toluene Toluchovethene 0.8 2-Hexanone 1,2-Dibromoethane Chlorobenzene Ethylbenzene Xylene (Total) Styrene I.p.2-Diterachloroethane 0.3 Isopropylbenzene		79-00-5	15. U		14. U		13. U		19. U		14. U	
4-Methyl-2-Pentanone Toluene Tetrachloroethene 0.8 2-Hexanone 1,2-Dibromoethane Chlorobenzene Ethylbenzene Xylene (Total) Styrene 1,1,2,2-Tetrachloroethane 0.3 Isopropylbenzene		124-48-1	15. U		14. U		13. U		19. U		14. U	
Toluene Tetrachloroethene 0.8 2-Hexanone 1,2-Dibromoethane Chlorobenzene Ethylbenzene Xylene (Total) Styrene 1,1,2,2-Tetrachloroethane 0.3 Isopropylbenzene		75-25-2	15. U		14. U		13. U		19. U		14. U	
Tetrachloroethene 0.8 2-Hexanone 1,2-Dibromoethane Chlorobenzene Ethylbenzene Xylene (Total) Styrene 1,1,2,2-Tetrachloroethane 0.3 Isopropylbenzene		108-10-1	15. U		14. U		13. U		19. U		14. U	
2-Hexanone 1,2-Dibromoethane Chlorobenzene Ethylbenzene Xylene (Total) Styrene 1,1,2,2-Tetrachloroethane 0.3 Isopropylbenzene	-	108-88-3	4. J	0.13	14. U		13. U		19. U		14. U	
1,2-Dibromoethane Chlorobenzene Ethylbenzene Xylene (Total) Styrene 1,1,2,2-Tetrachloroethane 0.3 Isopropylbenzene		127-18-4	15. U		14. U		13. U		19. U		14. U	
Chlorobenzene Ethylbenzene Xylene (Total) Styrene 1,1,2,2-Tetrachloroethane 0.3 Isopropylbenzene		591-78-6	15. U		14. U		13. U		19. U		14. U	
Ethylbenzene Xylene (Total) Styrene 1,1,2,2-Tetrachloroethane 0.3 Isopropylbenzene		106-93-4	15. U		14. U		13. U		19. U		14. U	
Xylene (Total) Styrene 1,1,2,2-Tetrachloroethane 0.3 Isopropylbenzene	3.5	108-90-7	15. U		14. U		13. U		19. U		14. U	
Styrene 1,1,2,2-Tetrachloroethane 0.3 Isopropylbenzene	24	100-41-4	15. U		14. U		13. U		19. U		14. U	
1,1,2,2-Tetrachloroethane 0.3 Isopropylbenzene	92	1330-20-7	15. U		14. U		13. U		19. U		14. U	
Isopropylbenzene		100-42-5	15. U		14. U		3. J	0.15	19. U		14. U	
Isopropylbenzene		79-34-5	15. U		14. U		13. U		19. U		14. U	
	12	98-82-8	15. U		14. U		13. U		19. U		14. U	
1,3-Dichlorobenzene	12.0	541-73-1	15. U		14. U		13. U		19. U		14. U	
1,4-Dichlorobenzene		106-46-7	15. U		14. U		13. U		19. U		14. U	
1,2-Dichlorobenzene		95-50-1	15. U		14. U		13. U		19. U		14. U	
1,2-Dibromo-3-Chloropropane	-	96-12-8	15. U		14. U		13. U		19. U		14. U	
1,2,4-Trichlorobenzene		120-82-1	15. U		14. U		13. U		19. U		14. U	
Total Organic Carbon (%)	_	120 02 1	3.1		2.28		1.94		5.67		14.0	

Notes:

ug/gOC - micrograms per grams organic carbon J - Estimated concentration U - Analyte not detected B - Analyte detected in associated blank

Town of Carroll Landfill RI/FS NYSDEC Site #9-07-017

Sediment Analytical Summary - SVOCs

			Location ID Sample Date	SED 9/23/	-	SED 9/23/	-	SED- 9/23/		SED 9/23/	-	SED- 9/23/2	
	Human	Benthic	Units	ug/kg		ug/kg		ug/kg		ug/kg			
	Health	Chronic		ug/kg	ug/g OC	ug/kg	ug/g OC	ug/kg	ug/g OC	ug/kg	ug/g OC	ug/kg	ug/g OC
Chemical Name	(ug/gOC)	(ug/gOC)	CAS No										
Benzaldehyde			100-52-7	61 J	1.97	470. U		510. U		670. U		490. U	
Acetophenone			98-86-2	510. U		470. U		510. U		670. U		490. U	
bis(2-Chloroethyl)ether	0.03		111-44-4	510. U		470. U		510. U		670. U		490. U	
Caprolactam			105-60-2	510. U		470. U		510. U		670. U		490. U	
Phenol			108-95-2	510. U		470. U		510. U		670. U		490. U	
1,1'-Biphenyl			92-52-4	510. U		470. U		510. U		670. U		490. U	
2-Chlorophenol			95-57-8	510. U		470. U		510. U		670. U		490. U	
Atrazine			1912-24-9	510. U		470. U		510. U		670. U		490. U	
2,2'-oxybis(1-Chloropropane)			108-60-1	510. U		470. U		510. U		670. U		490. U	
2-Methylphenol			95-48-7	510. U		470. U		510. U		670. U		490. U	
Hexachloroethane			67-72-1	510. U		470. U		510. U		670. U		490. U	
N-Nitroso-di-n-propylamine			621-64-7	510. U		470. U		510. U		670. U		490. U	
4-Methylphenol			106-44-5	510. U		470. U		510. U		670. U		490. U	
Nitrobenzene			98-95-3	510. U		470. U		510. U		670. U		490. U	
Isophorone		427	78-59-1	510. U		470. U		510. U		670. U		490. U	
2-Nitrophenol			88-75-5	510. U		470. U		510. U		670. U		490. U	
2,4-Dimethylphenol			105-67-9	510. U		470. U		510. U		670. U		490. U	
bis(2-chloroethoxy)methane			111-91-1	510. U		470. U		510. U		670. U		490. U	
2,4-Dichlorophenol			120-83-2	510. U		470. U		510. U		670. U		490. U	
Naphthalene		30	91-20-3	510. U		470. U		510. U		670. U		490. U	
4-Chloroaniline			106-47-8	510. UJ		470. UJ		510. UJ		670. UJ		490. UJ	
Hexachlorobutadiene	0.3	5.5	87-68-3	510. U		470. U		510. U		670. U		490. U	
4-chloro-3-Methylphenol			59-50-7	510. U		470. U		510. U		670. U		490. U	
2-Methylnaphthalene		34	91-57-6	510. U		470. U		510. U		670. U		490. U	
Hexachlorocyclopentadiene		4.4	77-47-4	510. U		470. U		510. U		670. U		490. U	
2,4,6-Trichlorophenol			88-06-2	510. U		470. U		510. U		670. U		490. U	
2,4,5-Trichlorophenol			95-95-4	1300. U		1200. U		1300. U		1700. U		1200. U	
2-Chloronaphthalene			91-58-7	510. U		470. U		510. U		670. U		490. U	
2-Nitroaniline			88-74-4	1300. U		1200. U		1300. U		1700. U		1200. U	
Acenaphthylene			208-96-8	510. U		470. U		510. U		670. U		490. U	
Dimethyl phthalate			131-11-3	510. U		470. U		510. U		670. U		490. U	
2,6-Dinitrotoluene			606-20-2	510. U		470. U		510. U		670. U		490. U	
Acenaphthene		140	83-32-9	510. U		470. U		510. U		670. U		490. U	
3-Nitroaniline			99-09-2	1300. U		1200. U		1300. U		1700. U		1200. U	
2,4-Dinitrophenol			51-28-5	1300. U		1200. U		1300. U		1700. U		1200. U	
Dibenzofuran			132-64-9	510. U		470. U		510. U		670. U		490. U	

Notes: ug/gOC - micrograms per gram organic carbon U - Analyte not detected

Town of Carroll Landfill RI/FS NYSDEC Site #9-07-017

Sediment Analytical Summary - SVOCs

		Dauthia	Location ID Sample Date	SED 9/23/	-	SED- 9/23/		SED- 9/23/		SED 9/23/		SED- 9/23/2	
	Human Health	Benthic Chronic	Units	ug/kg	ug/g OC	ug/kg	ug/g OC	ug/kg	ug/g OC	ug/kg	ug/g OC	ug/kg	ug/g OC
Chemical Name	(ug/gOC)	(ug/gOC)	CAS No										
2,4-Dinitrotoluene			121-14-2	510. U		470. U		510. U		670. U		490. U	
4-Nitrophenol			100-02-7	1300. U		1200. U		1300. U		1700. U		1200. U	
Fluorene		8	86-73-7	510. U		470. U		510. U		670. U		490. U	
4-Chlorophenyl phenyl ether			7005-72-3	510. U		470. U		510. U		670. U		490. U	
Diethyl phthalate			84-66-2	510. U		470. U		510. U		670. U		490. U	
4-Nitroaniline			100-01-6	1300. U		1200. U		1300. U		1700. U		1200. U	
4,6-Dinitro-2-Methylphenol			534-52-1	1300. U		1200. U		1300. U		1700. U		1200. U	
n-Nitrosodiphenylamine			86-30-6	510. U		470. U		510. U		670. U		490. U	
4-Bromophenyl phenyl ether			101-55-3	510. U		470. U		510. U		670. U		490. U	
Hexachlorobenzene	0.15	5570	118-74-1	510. U		470. U		510. U		670. U		490. U	
Pentachlorophenol		40	87-86-5	1300. U		1200. U		1300. U		1700. U		1200. U	
Phenanthrene		120	85-01-8	510. U		470. U		510. U		670. U		490. U	
Anthracene		107	120-12-7	510. U		470. U		510. U		670. U		490. U	
di-n-Butyl Phthalate			84-74-2	510. U		470. U		510. U		670. U		490. U	
Carbazole			86-74-8	510. U		470. U		510. U		670. U		490. U	
Fluoranthene		1020	206-44-0	510. U		470. U		510. U		670. U		490. U	
Pyrene		961	129-00-0	510. U		470. U		510. U		670. U		490. U	
Benzyl Butyl Phthalate			85-68-7	510. U		470. U		510. U		670. U		490. U	
3,3'-Dichlorobenzidine			91-94-1	510. U		470. U		510. U		670. U		490. U	
Benzo[a]anthracene		12	56-55-3	510. U		470. U		510. U		670. U		490. U	
Chrysene			218-01-9	510. U		470. U		510. U		670. U		490. U	
bis(2-ethylhexyl)phthalate		199.5	117-81-7	510. U		470. U		87. J	4.5	670. U		490. U	
di-n-Octyl Phthalate			117-84-0	510. U		470. U		510. U		670. U		490. U	
Benzo[b]fluoranthene			205-99-2	510. U		470. U		510. U		670. U		490. U	
Benzo[k]fluoranthene			207-08-9	510. U		470. U		510. U		670. U		490. U	
Benzo[a]pyrene	1.3		50-32-8	510. U		470. U		510. U		670. U		490. U	
Indeno[1,2,3-cd]pyrene			193-39-5	510. U		470. U		510. U		670. U		490. U	
Dibenz[a,h]anthracene			53-70-3	510. U		470. U		510. U		670. U		490. U	
Benzo[g,h,i]perylene			191-24-2	510. U		470. U		510. U		670. U		490. U	
Total Organic Carbon (%)		ı		3.1		2.28		1.94		5.67		1.51	

Town of Carroll Landfill RI/FS NYSDEC Site #9-07-017

Sediment Analytical Summary - Inorganics

			San	cation ID 1ple Date ample ID	9/23/2004	SED-02 9/23/2004 SED-2	SED-03 9/23/2004 SED-3	SED-04 9/23/2004 SED-4	SED-05 9/23/2004 SED-5
Chemical Name	CAS No	Lowest Effect Level (ug/g)	Severe Effect Level (ug/g)	•	ug/g	ug/g	ug/g	SED-4 ug/g	ug/g
Aluminum	7429-90-5				9550	12100	16200	15900	17100
Antimony	7440-36-0	2 (L)	25 (L)		.76 U	.7 U	1.1 B	1.4 B	.73 U
Arsenic	7440-38-2	6 (P)	33 (P)		5.4	4.1	13.8 *	7.5 *	6 *
Barium	7440-39-3				67	138	249	234	227
Beryllium	7440-41-7				.32 B	.55 B	.71 B	.71 B	.67 B
Cadmium	7440-43-9	0.6 (P)	9 (L)		.06 U	.23 B	.49 B	.82 B *	1 B
Calcium	7440-70-2				927 B	2520	7120	3340	2890
Chromium	7440-47-3	26 (P)	110 (P)		9.1	14.6	23.2	19.7	20.9
Cobalt	7440-48-4				3.6 B	10.8 B	16.8	12.6 B	15.7
Copper	7440-50-8	16 (P)	110 (P)		4.2 B	11.3	27.2	21.5	13.9
Iron	7439-89-6	20000 (P)	40000 (P)		13900	25300 *	67300 *	45600 *	36200 *
Lead	7439-92-1	31 (P)	110 (L)		17.4	15.4	28.6	39.9	20.8
Magnesium	7439-95-4				1490 B	3100	5060	3410	3900
Manganese	7439-96-5	460 (P)	1100 (L)		199	611 *	1320 *	885 *	593 *
Mercury	7439-97-6	0.15 (L)	1.3 (L)		.11 B	.06 B	.09 B	.13 B	.07 B
Nickel	7440-02-0	16 (P)	50 (L)		8.2 B	23.2 *	40.4 *	26.8 *	28.2 *
Potassium	7440-09-7				766 B	797 B	1390 B	1150 B	1200 B
Selenium	7782-49-2				1.1 B	.95 B	2.1	2.4	1.7
Silver	7440-22-4	1 (L)	2.2 (L)		.45 U	.42 U	.97 B	.6 U	.44 U
Sodium	7440-23-5				26.6 B	47.6 B	41.9 B	54.6 B	47.6 B
Thallium	7440-28-0				1.1 U	1.6 BJ	4.7 J	3.1 BJ	2.5 BJ
Vanadium	7440-62-2				16	15.8	23.8	24.8	24.3
Zinc	7440-66-6	120 (P)	270 (L)		44.4	105	176 *	191 *	148 *
Cyanide	57-12-5				.76 U	.7 U	.76 U	1 U	.73 U

Notes:

B - Value is greater than IDL but less than CRDL

U - Analyte not detected

* - Concentration exceeds criteria

J - Estimated concentration

(L) - Long and Morgan, 1990. The Potential for Biological Effects of Sediment-Sorbed Contaminants Tested in the National States and Trends Program. National Oceanic Atmospheric Administration Technical Memorandum No. 5, OMA52, NOAA National Ocean Service, Seattle, Washington

(P) - Persaud, 1992. Guidelines for the Protection and Management of Aquatic Sediment Quality in Ontario. Ontario Ministry of the Environment, Queen's Printer for Ontario.

Town of Carroll Landfill RI/FS NYSDEC Site #9-07-017

Sediment Analytical Summary - Total Organic Carbon

Location ID Sample Date Units		SED-02 9/23/2004 mg/Kg	SED-03 9/23/2004 mg/Kg	SED-04 9/23/2004 mg/Kg	SED-05 9/23/2004 mg/Kg
Chemical Name CAS No					
Total Organic Carbon	31000	22800	19400	56700	15100

Town of Carroll Landfill RI/FS NYSDEC Site #9-07-017

Subsurface Soil Analytical Summary - VOCs

			Location ID SOIL-01	SOIL-02	SOIL-03	TP-04	TP-07	TP-10	TP-11	TP-8
		TAGM 4046	Sample Date 9/22/2004	9/22/2004	9/23/2004		8/17/2004	8/19/2004	8/18/2004	8/19/2004
Chemical Name	CAS No	Rec. Soil	Sample ID SOIL-01	9/22/2004 SOIL-02	9/23/2004 SOIL-03	7P-04/SS-1	., ,	7P-10/SS-4		-, -,
		Cleanup	Unit ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg
		Objective		ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg
Dichlorodifluoromethane	75-71-8	NC	35. UJ	18. UJ	33. UJ	11. U	110. U	18. U	13. U	12. U
Chloromethane	74-87-3	NC	35. UJ	18. UJ	33. UJ	11. U	110. U	18. U	13. U	12. U
Vinyl Chloride	75-01-4	200 ug/kg	35. UJ	18. UJ	5. J	11. U	110. U	18. U	13. U	12. U
Bromomethane	74-83-9	NC	3. J	18. UJ	33. UJ	11. U	110. U	18. U	13. U	12. U
Chloroethane	75-00-3	1900 ug/kg	35. UJ	18. UJ	33. UJ	11. U	110. U	18. U	13. U	12. U
Trichlorofluoromethane	75-69-4	NC	35. UJ	18. UJ	33. UJ	11. U	6. J	18. U	13. U	12. U
Acetone	67-64-1	200 ug/kg	74.	7. J	19. J	11. U	110. U	18. U	13. U	12. U
1,1-Dichloroethene	75-35-4	400 ug/kg	35. UJ	18. UJ	33. UJ	11. U	110. U	18. U	13. U	12. U
Methylene chloride	75-09-2	100 ug/kg	35. UJ	18. UJ	33. UJ	11. U	110. U	18. U	13. U	12. U
Methyl Acetate	79-20-9	NC	35. UJ	18. UJ	33. UJ	11. U	110. U	18. U	13. U	12. U
1,1,2-Trichloro-1,2,2-trifluoroethane	76-13-1	6000 ug/kg	35. UJ	18. UJ	33. UJ	11. U	110. U	18. U	13. U	12. U
Carbon Disulfide	75-15-0	2700 ug/kg	35. UJ	18. UJ	33. UJ	11. U	11. J	18. U	13. U	12. U
trans-1,2-Dichloroethene	156-60-5	300 ug/kg	35. UJ	18. UJ	33. UJ	11. U	110. U	18. U	13. U	12. U
Methyl tert-Butyl ether	1634-04-4	120 ug/kg	35. UJ	18. UJ	33. UJ	11. U	110. U	18. U	13. U	12. U
1,1-Dichloroethane	75-34-3	200 ug/kg	35. UJ	18. UJ	33. UJ	11. U	110. U	18. U	13. U	12. U
2-Butanone	78-93-3	300 ug/kg	35. UJ	18. UJ	33. UJ	11. U	110. U	18. U	13. U	12. U
cis-1,2-Dichloroethene	156-59-2	NC	35. UJ	18. UJ	100.	11. U	110. U	18. U	13. U	12. U
Chloroform	67-66-3	300 ug/kg	35. UJ	18. UJ	33. UJ	11. U	110. U	18. U	13. U	12. U
1,2-Dichloroethane	107-06-2	100 ug/kg	35. UJ 35. UJ	18. UJ 18. UJ	33. UJ 33. UJ	11. U	110. U	18. U	13. U	12. U
	71-55-6	0, 0	35. UJ	18. UJ 18. UJ	33. UJ 33. UJ	11. U	110. U	18. U	13. U	12. U
1,1,1-Trichloroethane		800 ug/kg NC							13. U	
Cyclohexane	110-82-7 56-23-5		35. UJ 35. UJ	18. UJ	33. UJ	11. U 11. U	110. U	18. U	13. U 13. U	12. U
Carbon Tetrachloride	71-43-2	600 ug/kg		18. UJ	33. UJ 33. UJ	11. U	110. U 110. U	18. U 18. U	13. U	12. U 12. U
Benzene		60 ug/kg	2. J	18. UJ		11. U 11. U				
Trichloroethylene	79-01-6	700 ug/kg	35. UJ	18. UJ	130.		8. J	18. U	13. U	2. J
1,2-Dichloropropane	78-87-5	NC	35. UJ	18. UJ	33. UJ	11. U	110. U	18. U	13. U	12. U
Bromodichloromethane	75-27-4	NC	35. UJ	18. UJ	33. UJ	11. U	110. U	18. U	13. U	12. U
Methylcylohexane	108-87-2	NC	35. UJ	18. UJ	33. UJ	11. U	31. J	18. U	13. U	12. U
cis-1,3-Dichloropropene	10061-01-5	NC	35. UJ	18. UJ	33. UJ	11. U	110. U	18. U	13. U	12. U
trans-1,3-Dichloropropene	10061-02-6	NC	35. UJ	18. UJ	33. UJ	11. U	110. U	18. U	13. U	12. U
1,1,2-Trichloroethane	79-00-5	NC	35. UJ	18. UJ	33. UJ	11. U	110. U	18. U	13. U	12. U
Dibromochloromethane	124-48-1	N/A ug/kg	35. UJ	18. UJ	33. UJ	11. U	110. U	18. U	13. U	12. U
Bromoform	75-25-2	NC	35. UJ	18. UJ	33. UJ	11. U	110. U	18. U	13. U	12. U
4-Methyl-2-Pentanone	108-10-1	1000 ug/kg	35. UJ	18. UJ	33. UJ	11. U	110. U	18. U	13. U	12. U
Toluene	108-88-3	1500 ug/kg	35. UJ	18. UJ	33. UJ	11. U	13. J	18. U	13. U	12. U
Tetrachloroethene	127-18-4	1400 ug/kg	35. UJ	18. UJ	33. UJ	11. U	110. U	18. U	13. U	12. U
2-Hexanone	591-78-6	NC	35. UJ	18. UJ	33. UJ	11. U	110. U	18. U	13. U	12. U
1,2-Dibromoethane	106-93-4	NC	35. UJ	18. UJ	33. UJ	11. U	110. U	18. U	13. U	12. U
Chlorobenzene	108-90-7	1700 ug/kg	60.	1. J	33. UJ	11. U	110. U	18. U	2. J	12. U
Ethylbenzene	100-41-4	5500 ug/kg	35. UJ	18. UJ	33. UJ	11. U	110. U	18. U	13. U	12. U
Xylene (Total)	1330-20-7	1200 ug/kg	35. UJ	18. UJ	33. UJ	11. U	46. J	18. U	13. U	12. U
Styrene	100-42-5	NC	35. UJ	18. UJ	33. UJ	11. U	110. U	18. U	13. U	12. U
1,1,2,2-Tetrachloroethane	79-34-5	600 ug/kg	35. UJ	18. UJ	33. UJ	11. U	110. U	18. U	13. U	12. U
Isopropylbenzene	98-82-8	5000 ug/kg	6. J	18. UJ	33. UJ	11. U	110. U	18. U	13. U	12. U
1,3-Dichlorobenzene	541-73-1	1600 ug/kg	35. UJ	18. UJ	33. UJ	11. U	110. U	18. U	13. U	12. U
1,4-Dichlorobenzene	106-46-7	8500 ug/kg	40.	4. J	33. UJ	11. U	150.	18. U	7. J	12. U
1,2-Dichlorobenzene	95-50-1	7900 ug/kg	8. J	18. UJ	33. UJ	11. U	110. U	18. U	13. U	12. U
1,2-Dibromo-3-Chloropropane	96-12-8	NC	35. UJ	18. UJ	33. UJ	11. U	110. U	18. U	13. U	12. U
1,2,4-Trichlorobenzene	120-82-1	3400 ug/kg	35. UJ	18. UJ	33. UJ	11. U	110. U	18. U	13. U	12. U

Notes:

NC - No criteria J - Estimated concentration B - Analyte detected in associated blank U - Analyte not detected

Town of Carroll Landfill RI/FS NYSDEC Site #9-07-017

Subsurface Soil Analytical Summary - SVOCs

Chemical Name	CAS No	TAGM 4046 Rec. Soil Cleanup Objective	Location ID SOIL-02 Sample Date 9/22/2004 Sample ID SOIL-02 Unit ug/kg	TP-04 8/17/2004 TP-04/SS-1 ug/kg	TP-07 8/17/2004 TP-07/SS-2 ug/kg	TP-10 8/19/2004 TP-10/SS-4 ug/kg	TP-11 8/18/2004 TP-11/SS-3 ug/kg	TP-8 8/19/2004 TP-8/SS-5 ug/kg
Benzaldehyde	100-52-7	NC	76. J	380. U	52000. U	6100. U	450. U	46. J
Acetophenone	98-86-2	NC	680. UJ	380. U	52000. U	6100. U	450. U	400. U
bis(2-Chloroethyl)ether	111-44-4	NC	680. UJ	380. U	52000. U	6100. U	450. U	400. U
Caprolactam	105-60-2	NC	680. UJ	46. J	52000. U	6100. U	450. U	400. U
Phenol	108-95-2	30 or MDL	680. UJ	380. U	52000. U	6100. U	450. U	400. U
1,1'-Biphenyl	92-52-4	NC	680. UJ	380. U	52000. U	6100. U	450. U	400. U
2-Chlorophenol	95-57-8	800	680. UJ	380. U	52000. U	6100. U	450. U	400. U
Atrazine	1912-24-9	NC	680. UJ	380. U	52000. U	6100. U	450. U	400. U
2,2'-oxybis(1-Chloropropane)	108-60-1	NC	680. UJ	380. U	52000. U	6100. U	450. U	400. U
2-Methylphenol	95-48-7	100 or MDL	680. UJ	380. U	52000. U	6100. U	450. U	400. U
Hexachloroethane N-Nitroso-di-n-propylamine	67-72-1	NC NC	680. UJ	380. U 380. U	52000. U	6100. U	450. U 450. U	400. U 400. U
4-Methylphenol	621-64-7 106-44-5	900	680. UJ 680. UJ	380. U	52000. U 52000. U	6100. U 6100. U	450. U	400. U
Nitrobenzene	98-95-3	200 or MDL	680. UJ	380. U	52000. U	6100. U	450. U	400. U
Isophorone	78-59-1	4400	680. UJ	380. U	52000. U	6100. U	450. U	400. U
2-Nitrophenol	88-75-5	330 or MDL	680. UJ	380. U	52000. U	6100. U	450. U	400. U
2,4-Dimethylphenol	105-67-9	NC	680. UJ	380. U	52000. U	6100. U	450. U	400. U
bis(2-chloroethoxy)methane	111-91-1	NC	680. UJ	380. U	52000. U	6100. U	450. U	400. U
2,4-Dichlorophenol	120-83-2	400	680. UJ	380. U	52000. U	6100. U	450. U	400. U
Naphthalene	91-20-3	13000	680. UJ	380. U	52000. U	6100. U	450. U	400. U
4-Chloroaniline	106-47-8	220 or MDL	680. UJ	380. U	52000. U	6100. U	450. U	400. U
Hexachlorobutadiene	87-68-3	NC 240 or MDI	680. UJ	380. U	52000. U	6100. U	450. U	400. U
4-chloro-3-Methylphenol 2-Methylnaphthalene	59-50-7 91-57-6	240 or MDL 36400	680. UJ 680. UJ	380. U 380. U	52000. U 52000. U	6100. U 6100. U	450. U 450. U	400. U 400. U
Hexachlorocyclopentadiene	77-47-4	NC	680. UJ	380. U	52000. U	6100. U	450. U	400. U
2,4,6-Trichlorophenol	88-06-2	NC	680. UJ	380. U	52000. U	6100. U	450. U	400. U
2,4,5-Trichlorophenol	95-95-4	100	1700. U	960. U	130000. U	15000. U	1100. U	1000. U
2-Chloronaphthalene	91-58-7	NC	680. UJ	380. U	52000. U	6100. U	450. U	400. U
2-Nitroaniline	88-74-4	430 or MDL	1700. U	960. U	130000. U	15000. U	1100. U	1000. U
Acenaphthylene	208-96-8	41000	680. UJ	380. U	52000. U	6100. U	450. U	400. U
Dimethyl phthalate	131-11-3	2000	680. UJ	380. U	52000. U	6100. U	450. U	400. U
2,6-Dinitrotoluene	606-20-2	1000	680. UJ	380. U	52000. U	6100. U	450. U	400. U
Acenaphthene	83-32-9	50000	680. UJ	380. U	52000. U	6100. U	450. U	400. U
3-Nitroaniline 2,4-Dinitrophenol	99-09-2 51-28-5	500 or MDL 200 or MDL	1700. U 1700. U	960. U 960. U	130000. U 130000. U	15000. U 15000. U	1100. U 1100. U	1000. U 1000. U
Dibenzofuran	132-64-9	6200	680. UJ	380. U	52000. U	6100. U	450. U	400. U
2,4-Dinitrotoluene	121-14-2	NC	680. UJ	380. U	52000. U	6100. U	450. U	400. U
4-Nitrophenol	100-02-7	100 or MDL	1700. U	960. U	130000. U	15000. U	1100. U	1000. U
Fluorene	86-73-7	50000	680. UJ	380. U	52000. U	6100. U	450. U	400. U
4-Chlorophenyl phenyl ether	7005-72-3	NC	680. UJ	380. U	52000. U	6100. U	450. U	400. U
Diethyl phthalate	84-66-2	7100	680. UJ	380. U	52000. U	6100. U	450. U	400. U
4-Nitroaniline	100-01-6	NC	1700. U	960. U	130000. U	15000. U	1100. U	1000. U
4,6-Dinitro-2-Methylphenol	534-52-1	NC	1700. U	960. U	130000. U	15000. U	1100. U	1000. U
n-Nitrosodiphenylamine	86-30-6 101-55-3	NC NC	680. UJ 680. UJ	380. U 380. U	52000. U 52000. U	6100. U 6100. U	450. U 450. U	400. U 400. U
4-Bromophenyl phenyl ether Hexachlorobenzene	101-55-3 118-74-1	410	680. UJ 680. UJ	380. U 380. U	52000. U 52000. U	6100. U 6100. U	450. U 450. U	400. U 400. U
Pentachlorophenol	87-86-5	1000 or MDL	1700. U	960. U	130000. U	15000. U	1100. U	1000. U
Phenanthrene	85-01-8	50000	680. UJ	380. U	52000. U	6100. U	63. J	400. U
Anthracene	120-12-7	50000	680. UJ	380. U	52000. U	6100. U	450. U	400. U
di-n-Butyl Phthalate	84-74-2	8100	680. UJ	380. U	52000. U	6100. U	450. U	400. U
Carbazole	86-74-8	NC	680. UJ	380. U	52000. U	6100. U	450. U	400. U
Fluoranthene	206-44-0	50000	680. UJ	380. U	52000. U	6100. U	140. J	400. U
Pyrene	129-00-0	50000	680. UJ	380. U	52000. U	6100. U	260. J	400. U
Benzyl Butyl Phthalate	85-68-7	50000	680. UJ	380. U	52000. U	6100. U	45. J	400. U
3,3'-Dichlorobenzidine Benzo[a]anthracene	91-94-1 56-55-3	NC 224 or MDL	680. UJ 680. UJ	380. U 380. U	52000. U 52000. U	6100. U 6100. U	450. U 62. J	400. U 400. U
Chrysene	218-01-9	224 OF MDL 400	680. UJ	380. U 380. U	52000. U	6100. U	98. J	400. U
bis(2-ethylhexyl)phthalate	117-81-7	50000	680. UJ	380. U	62000. D *	6100. U	1300.	73. J
di-n-Octyl Phthalate	117-84-0	50000	680. UJ	380. U	52000. U	6100. U	450. U	400. U
Benzo[b]fluoranthene	205-99-2	1100	680. UJ	380. U	52000. U	6100. U	91. J	400. U
Benzo[k]fluoranthene	207-08-9	1100	680. UJ	380. U	52000. U	6100. U	450. U	400. U
Benzo[a]pyrene	50-32-8	61 or MDL	680. UJ	380. U	52000. U	6100. U	450. U	400. U
Indeno[1,2,3-cd]pyrene	193-39-5	3200	680. UJ	380. U	52000. U	6100. U	450. U	400. U
Dibenz[a,h]anthracene	53-70-3	14 or MDL	680. UJ	380. U	52000. U	6100. U	450. U	400. U
Benzo[g,h,i]perylene	191-24-2	50000	680. UJ	380. U	52000. U	6100. U	450. U	400. U

Notes:

NC - No criteria J - Estimated concentration U - Analyte not detected MDL - Method detection limit D - Diluted result * - Anaytical result exceeds criteria

Town of Carroll Landfill RI/FS NYSDEC Site #9-07-017

Subsurface Soil Analytical Summary - Inorganics

Chemical Name	CAS No	TAGM 4046 Rec. Soil Cleanup Objective (mg/Kg)	Eastern USA Background (mg/Kg)	Location ID SOIL-01 Sample Date 9/22/2004 Sample ID SOIL-01 Unit mg/kg	SOIL-02 9/22/2004 SOIL-02 mg/kg	SOIL-03 9/23/2004 SOIL-03 mg/kg	TP-04 8/17/2004 TP-04/SS-1 mg/kg	TP-07 8/17/2004 TP-07/SS-2 mg/kg	TP-10 8/19/2004 TP-10/SS-4 mg/kg	TP-11 8/18/2004 TP-11/SS-3 mg/kg	TP-8 8/19/2004 TP-8/SS-5 mg/kg
Aluminum	7429-90-5	SB	33000	14200. J	14500.J	10200. J	10900.	9190.	6970.	10100.	7380.
Antimony	7440-36-0	SB	NC	1.9 BJ	1.5 BJ	2.7 BJ	.42 UJ	24.3 BJ	18.3 BJ	4.1 JB	.43 UJ
Arsenic	7440-38-2	7.5 or SB	3 - 12 **	29.7 J *	10.2 J *	13.8 J *	5.2	26.8 *	6.5	17.1 *	12.1 *
Barium	7440-39-3	300 or SB	15 - 600	271. J	212.J	216.J	127.	206.	93.7	106.	122.
Beryllium	7440-41-7	0.16 or SB	0 - 1.75	.70 BJ *	.62 BJ *	.43 BJ *	.70 B *	.55 B *	.35 B *	.47 B *	.32 B *
Cadmium	7440-43-9	1 or SB	0.1 - 1	1.9 BJ *	.87 BJ	1.9 BJ *	.16 B	23.9 *	1.2 B *	.38 B	.06 U
Calcium	7440-70-2	SB	130 - 35,000	5730. J	4860.J	32200.J	2100.	18200.	13300.	5160.	7410.
Chromium	7440-47-3	10 or SB	1.5 - 40 **	20.7 J *	16.4 J *	14.1 J *	15. *	8870. *	5900. *	291. *	23.1 *
Cobalt	7440-48-4	30 or SB	2.5 - 60 **	7.8 BJ	6.9 BJ	19.9 BJ	8.7 B	731. *	179. *	291. *	11.6 B
Copper	7440-50-8	25 or SB	1 - 50	28.7 J *	16.1J	40.1 J *	11.1	1600. *	297. *	109. *	42.8 *
Iron	7439-89-6	2 or SB	2,000 - 550,000	87200. J *	59100. J *	65000. J *	20600. *	79900. *	75800. *	52100. *	113000. *
Lead	7439-92-1	SB	4 - 61	70.3 J	32.9 J	33.4 J	R	R	R	R	R
Magnesium	7439-95-4	SB	100 - 5,000	3110. BJ	3030.J	2900. BJ	2760.	5150.	2490.	3720.	3060.
Manganese	7439-96-5	SB	50 - 5,000	513.J	556.J	329. J	241.	2380.	1160.	703.	1110.
Mercury	7439-97-6	0.1	0.001 - 0.2	.15 BJ *	.08 BJ	.23 BJ *	.04 B	2.2 *	.16 B *	.060 B	.02 B
Nickel	7440-02-0	13 or SB	0.5 - 25	32.6 J *	22.5 J *	245. J *	23. *	30700. *	4300. *	588. *	27.1 *
Potassium	7440-09-7	SB	8,500 - 43,000 **	1090. BJ	1040. BJ	1070. BJ	607. B	573. B	567. B	883. B	839. B
Selenium	7782-49-2	2 or SB	0.1 - 3.9	4.1 J *	2.4 J *	2.7 BJ *	.61 BJ	3.2 J *	2.5 J *	1.6 J	3.6 J *
Silver	7440-22-4	SB	NC	1.1 UJ	.62 UJ	1.4 BJ	.28 U	4.2	2.1 B	.87 B	1.5 B
Sodium	7440-23-5	SB	6,000 - 8,000	56.1 BJ	42.7 BJ	54. BJ	39.2 B	96.2 B	29. B	36.2 B	30.3 B
Thallium	7440-28-0	SB	NC	2.7 BJ	3.4 BJ	2.6 UJ	1.4 BJ	4.4 J	1.9 BJ	2.0 JB	2.7 J
Vanadium	7440-62-2	150 or SB	1 - 300	24.6 BJ	21.5 J	20.1 BJ	17.3	61.1	32.8	20.6	12.
Zinc	7440-66-6	20 or SB	9 - 50	318. J *	238. J *	347. J *	56.4 *	1820. *	274. *	301. *	80.1 *
Cyanide	57-12-5	NC	NC	1.8 UJ	1.0 UJ	1.8 UJ	.58 U	2.0	.91 U	.68 U	.60 U

Notes:

SB - Site background

NC - No criteria

B - Value is greater than IDL but less than CRDL U - Analyte not detected

J - Estimated concentration

R - Analytical result rejected during validation

* - Concentration exceeds criteria

** - New York State Background

Town of Carroll Landfill RI/FS NYSDEC Site #9-07-017

Subsurface Soil Analytical Summary - Pesticides/PCBs

Chemical Name	CAS No	TAGM 4046 Rec. Soil Cleanup Objective	Location ID TP-10 Sample Date 8/19/2004 Sample ID TP-10/SS- Unit mg/kg	-4 TP-11/SS-3 mg/kg	TP-8 8/19/2004 TP-8/SS-5 mg/kg
alpha-BHC	319-84-6	0.11 mg/kg	.003 U	.0023 U	.002 U
Beta-BHC	319-95-7	0.2 mg/kg	.003 U	.0023 U	.002 U
delta-BHC	319-86-8	0.3 mg/kg	.003 U	.0023 U	.002 U
gamma-BHC (Lindane)	58-89-9	0.06 mg/kg	.003 U	.0023 U	.002 U
Heptachlor	76-44-8	0.1 mg/Kg	.003 U	.0023 U	.002 U
Heptachlor Epoxide	1024-57-3	0.02 mg/kg	.003 U	.0023 U	.002 U
Aldrin	309-00-2	0.041 mg/kg	.003 U	.0023 U	.002 U
Endosulfan I	959-98-8	0.9 mg/kg	.003 U	.0034	.002 U
Dieldrin	60-57-1	0.044 mg/kg	.0061 U	.0045 U	.004 U
4,4'-DDE	72-55-9	2.1 mg/kg	R	.011 JP	.004 U
Endrin	72-20-8	0.1 mg/kg	.02 JP	.0048 JP	.004 U
Endosulfan II	33213-65-9	0.9 mg/kg	R	.0045 U	.004 U
4,4'-DDD	72-54-8	2.9 mg/kg	R	.013	.004 U
Endosulfan Sulfate	1031-07-8	1 mg/kg	R	.0045 U	.004 U
4,4'-DDT	50-29-3	2.1 mg/kg	.0061 U	.0045 U	.004 U
Methoxychlor	72-43-5	NC	R	.023 U	R
Endrin Ketone	53494-70-5	NC	.013 JP	.0048 U	.004 U
Endrin Aldehyde	7421-36-3	NC	R	.005 JP	.004 U
alpha-Chlordane	5103-71-9	NC	.0033 JP	.0014 JP	.002 U
gamma-Chlordane	5103-74-2	0.54 mg/kg	.003 U	R	.002 U
Toxaphene	8001-35-2	NC	.3 U	.23 U	.2 U
Aroclor-1016	12674-11-2	10 mg/kg	.061 U	.045 U	.04 U
Aroclor-1221	11104-28-2	10 mg/kg	.12 U	.091 U	.08 U
Aroclor-1232	11141-16-5	10 mg/kg	.061 U	.045 U	.04 U
Aroclor-1242	53469-21-9	10 mg/kg	.061 U	.045 U	.04 U
Aroclor-1248	12672-29-6	10 mg/kg	.061 U	.16 JP	.04 U
Aroclor-1254	11097-69-1	10 mg/kg	.061 U	.045 U	.04 U
Aroclor-1260	11096-82-5	10 mg/kg	.81 P	.12 JP	.04 U

Notes:

NC - No criteria

U - Analyte not detected

J - Estimated concentration

P - Greater than 25% difference for detected

concentrations between the two GC columns

R - Analytical result was rejected during validation

Town of Carroll Landfill RI/FS NYSDEC Site #9-07-017

Leachate Seep Analytical Summary - VOCs

		NYS Class C Water Quality	Sample ID	LT-01	LT-02	LT-03
		Standards and Guidance Values	Sample Date	9/22/2004	9/22/2004	9/23/2004
Chemical Name	CAS No	Guidance values (ug/L)	Units	ug/l	ug/l	ug/l
Dichlorodifluoromethane	75-71-8	NC		10. U	10. U	10. U
Chloromethane	74-87-3	NC		10. U	10. U	10. U
Vinyl Chloride	75-01-4	NC		10. U	10. U	10. U
Bromomethane	74-83-9	NC		10. U	10. U	10. U
Chloroethane	75-00-3	NC		10. U	10. U	10. U
Trichlorofluoromethane	75-69-4	NC		10. U	10. U	10. U
Acetone	67-64-1	NC		3. J	10. U	4. J
1,1-Dichloroethene	75-35-4	NC		10. U	10. U	10. U
Methylene chloride	75-09-2	200		10. U	10. U	10. U
Methyl Acetate	79-20-9	NC		10. U	10. U	10. U
1,1,2-Trichloro-1,2,2-trifluoroethane	76-13-1	NC		10. U	10. U	10. U
Carbon Disulfide	75-15-0	NC		10. U	10. U	10. U
trans-1,2-Dichloroethene	156-60-5	NC		10. U	10. U	10. U
Methyl tert-Butyl ether	1634-04-4	NC		10. U	10. U	10. U
1,1-Dichloroethane	75-34-3	NC		10. U	10. U	10. U
2-Butanone	78-93-3	NC		10. U	10. U	10. U
cis-1,2-Dichloroethene	156-59-2	NC		10. U	10. U	24.
Chloroform	67-66-3	NC		10. U	10. U	10. U
1,2-Dichloroethane	107-06-2	NC		10. U	10. U	10. U
1,1,1-Trichloroethane	71-55-6	NC		10. U	10. U	10. U
Cyclohexane	110-82-7	NC		10. U	10. U	10. U
Carbon Tetrachloride	56-23-5	NC		10. U	10. U	10. U
Benzene	71-43-2	10		10. U	10. U	10. U
Trichloroethylene	79-01-6	40		10. U	10. U	21.
1,2-Dichloropropane	78-87-5	NC		10. U	10. U	10. U
Bromodichloromethane	75-27-4	NC		10. U	10. U	10. U
Methylcylohexane	108-87-2	NC		10. U	10. U	10. U
cis-1,3-Dichloropropene	10061-01-5	NC		10. U	10. U	10. U
trans-1,3-Dichloropropene	10061-01-5	NC		10. U	10. U	10. U
1,1,2-Trichloroethane	79-00-5	NC		10. U	10. U	10. U
Dibromochloromethane	124-48-1	NC		10. U	10. U	10. U
Bromoform	75-25-2	NC		10. U	10. U	10. U
4-Methyl-2-Pentanone	108-10-1	NC		10. U	10. U	10. U
Toluene	108-10-1	100		10. U	10. U	10. U
Tetrachloroethene	108-88-5	1		10. U	10. U	10. U
	591-78-6	NC		10. U	10. U	10. U
2-Hexanone		NC		10. U	10. U	10. U
1,2-Dibromoethane	106-93-4	5				
Chlorobenzene	108-90-7	5 17		1. J	10. U 10. U	10. U
Ethylbenzene	100-41-4	65		10. U	10. U 10. U	10. U 10. U
Xylene (Total)	1330-20-7			10. U 10. U		
Styrene	100-42-5	NC			10. U	10. U
1,1,2,2-Tetrachloroethane	79-34-5	NC		10. U	10. U	10. U
Isopropylbenzene	98-82-8	2.6		10. U	10. U	10. U
1,3-Dichlorobenzene	541-73-1	5		10. U	10. U	10. U
1,4-Dichlorobenzene	106-46-7	5		10. U	10. U	10. U
1,2-Dichlorobenzene	95-50-1	5		10. U	10. U	10. U
1,2-Dibromo-3-Chloropropane	96-12-8	NC		10. U	10. U	10. U
1,2,4-Trichlorobenzene	120-82-1	5		10. U	10. U	10. U

Notes:

NC - No criteria

J - Estimated concentration B - Analyte detected in associated blank

Town of Carroll Landfill RI/FS NYSDEC Site #9-07-017

Leachate Seep Analytical Summary - SVOCs

		NYS Class C	Sample ID	LT-02
		Water Quality Standards and	Sample Date	9/22/2004
	646 N	Guidance	Units	ug/l
Chemical Name	CAS No	Values (ug/L)	Onics	0.
Benzaldehyde	100-52-7	NC		10. U
Acetophenone	98-86-2	NC		10. U
bis(2-Chloroethyl)ether	111-44-4	NC		10. U
Caprolactam	105-60-2	NC		10. U
Phenol	108-95-2	5		10. U
1,1'-Biphenyl	92-52-4	NC		10. U
2-Chlorophenol	95-57-8	1		10. U
Atrazine	1912-24-9	NC		10. U
2,2'-oxybis(1-Chloropropane)	108-60-1	NC		10. U
2-Methylphenol	95-48-7	NC		10. U
Hexachloroethane	67-72-1	0.6		10. U
N-Nitroso-di-n-propylamine	621-64-7	NC		10. U
4-Methylphenol	106-44-5	NC		10. U
Nitrobenzene	98-95-3	NC		10. U
Isophorone	78-59-1	NC		10. U
2-Nitrophenol	88-75-5	NC		10. U
2,4-Dimethylphenol	105-67-9	5		10. U
bis(2-chloroethoxy)methane	111-91-1	NC		10. U
2,4-Dichlorophenol	120-83-2	1		10. U
Naphthalene	91-20-3	13		10. U
4-Chloroaniline	106-47-8	NC		10. U
Hexachlorobutadiene	87-68-3	0.01		10. U
4-chloro-3-Methylphenol	59-50-7	NC		10. U
2-Methylnaphthalene	91-57-6	4.7		10. U
Hexachlorocyclopentadiene	77-47-4	0.45		10. U
2,4,6-Trichlorophenol	88-06-2	1		10. U
2,4,5-Trichlorophenol	95-95-4	1		25. U
2-Chloronaphthalene	91-58-7	NC		10. U
2-Nitroaniline	88-74-4	NC		25. U
Acenaphthylene	208-96-8	NC		10. U
Dimethyl phthalate	131-11-3	NC		10. U
2,6-Dinitrotoluene	606-20-2	NC		10. U
Acenaphthene	83-32-9	5.3		10. U
3-Nitroaniline	99-09-2	NC		25. U
2,4-Dinitrophenol	51-28-5	400		25. U
Dibenzofuran	132-64-9	NC		10. U
2,4-Dinitrotoluene	121-14-2	NC		10. U
4-Nitrophenol	100-02-7	NC		25. U
Fluorene	86-73-7	0.54		10. U
4-Chlorophenyl phenyl ether	7005-72-3	NC		10. U

Notes:

NC - No criteria U - Analyte not detected

Town of Carroll Landfill RI/FS NYSDEC Site #9-07-017

Leachate Seep Analytical Summary - SVOCs

		NYS Class C Water Quality	Sample ID	LT-02
		Standards and	Sample Date	9/22/2004
Chemical Name	CAS No	Guidance Values (ug/L)	Units	ug/l
Diethyl phthalate	84-66-2	NC		10. U
4-Nitroaniline	100-01-6	NC		25. U
4,6-Dinitro-2-Methylphenol	534-52-1	NC		25. U
n-Nitrosodiphenylamine	86-30-6	NC		10. U
4-Bromophenyl phenyl ether	101-55-3	NC		10. U
Hexachlorobenzene	118-74-1	3		10. U
Pentachlorophenol	87-86-5	10		25. U
Phenanthrene	85-01-8	5		10. U
Anthracene	120-12-7	3.8		10. U
di-n-Butyl Phthalate	84-74-2	NC		10. U
Carbazole	86-74-8	NC		10. U
Fluoranthene	206-44-0	NC		10. U
Pyrene	129-00-0	4.6		10. U
Benzyl Butyl Phthalate	85-68-7	NC		10. U
3,3'-Dichlorobenzidine	91-94-1	NC		10. U
Benzo[a]anthracene	56-55-3	0.03		10. U
Chrysene	218-01-9	NC		10. U
bis(2-ethylhexyl)phthalate	117-81-7	0.6		10. U
di-n-Octyl Phthalate	117-84-0	NC		10. U
Benzo[b]fluoranthene	205-99-2	NC		10. U
Benzo[k]fluoranthene	207-08-9	NC		10. U
Benzo[a]pyrene	50-32-8	0.0012		10. U
Indeno[1,2,3-cd]pyrene	193-39-5	NC		10. U
Dibenz[a,h]anthracene	53-70-3	NC		10. U
Benzo[g,h,i]perylene	191-24-2	NC		10. U

Notes:

NC - No criteria

U - Analyte not detected

Town of Carroll Landfill RI/FS NYSDEC Site #9-07-017

Leachate Seep Analytical Summary - Inorganics

		NYS Class C Water Quality	Sample ID	LT-01	LT-02	LT-03
		Standards and Guidance	Sample Date	9/22/2004	9/22/2004	9/23/2004
Chemical Name	CAS No	Values (ug/L)	Units	ug/l	ug/l	ug/l
Aluminum	7429-90-5	100		998 *	109 B *	110000 *
Antimony	7440-36-0	NC		2.5 U	2.5 U	12.5 U
Arsenic	7440-38-2	150		9.3 B	2.7 U	156 *
Barium	7440-39-3	NC		327	329	2680
Beryllium	7440-41-7	1100		.04 U	.04 U	5.2
Cadmium	7440-43-9	4		.2 U	2.7 B	24.3 *
Calcium	7440-70-2	NC		73700	148000	606000
Chromium	7440-47-3	141		1.4 B	.94 U	142 *
Cobalt	7440-48-4	5		.99 U	.99 U	291 *
Copper	7440-50-8	18		4.9 B	16.6 B	365 *
Iron	7439-89-6	300		102000 *	14600 *	721000 *
Lead	7439-92-1	5		9.9 *	17.4 *	302 *
Magnesium	7439-95-4	NC		8890	15200	51200
Manganese	7439-96-5	NC		1380	1480	4420
Mercury	7439-97-6	0.77		.02 U	.08 B	.78 *
Nickel	7440-02-0	101		5.7 B	8.8 B	2560 *
Potassium	7440-09-7	NC		4770 BJ	3720 BJ	15000 J
Selenium	7782-49-2	4.6		2.7 U	2.7 U	31.2 J *
Silver	7440-22-4	16		1.5 U	1.5 U	8.6 B
Sodium	7440-23-5	NC		4140 BJ	3970 BJ	4210 BJ
Thallium	7440-28-0	8		3.7 U	3.7 U	22.9 *
Vanadium	7440-62-2	14		2.2 B	1.1 U	195 *
Zinc	7440-66-6	162		56.3	124	4150 *
Cyanide	57-12-5	5.2		10 U	10 U	10 U

Notes:

NC - No criteria

U - Analyte not detected

B - Value is greater than IDL but less than CRDL

* - Concentration exceeds criteria

J - Estimated concentration

Town of Carroll Landfill RI/FS NYSDEC Site #9-07-017

NYS Class C Sample ID 9/22/2004 Water Quality Sample Date LT-02 Standards and Guidance Units ug/l Chemical Name CAS No Values (ug/L) alpha-BHC 319-84-6 0.002 .05 U Beta-BHC 319-95-7 NC .05 U delta-BHC 319-86-8 0.008 .05 U gamma-BHC (Lindane) 58-89-9 0.008 .05 U Heptachlor 76-44-8 0.0002 .05 U Heptachlor Epoxide 1024-57-3 0.0003 .05 U Aldrin 0.001 309-00-2 .05 U Endosulfan I 0.009 .05 U 959-98-8 Dieldrin 60-57-1 0.056 .1 U 4,4'-DDE 72-55-9 7 .1 U 0.036 Endrin 72-20-8 .1 U Endosulfan II 0.009 .1 U 33213-65-9 4,4'-DDD 72-54-8 8 .1 U NC Endosulfan Sulfate .1 U 1031-07-8 4,4'-DDT 50-29-3 .1 U 1 Methoxychlor 72-43-5 0.03 .5 U Endrin Ketone 53494-70-5 NC .1 U Endrin Aldehyde NC .1 U 7421-93-4 .05 U alpha-Chlordane 5103-71-9 2 2 .05 U gamma-Chlordane 5103-74-2 Toxaphene 8001-35-2 6 5 U Aroclor-1016 12674-11-2 .000001 1 U Aroclor-1221 11104-28-2 .000001 2 U Aroclor-1232 11141-16-5 .000001 1 U Aroclor-1242 53469-21-9 .000001 1 U Aroclor-1248 12672-29-6 .000001 1 U Aroclor-1254 11097-69-1 .000001 1 U Aroclor-1260 11096-82-5 .000001 1 U

Leachate Seep Analytical Summary - Pesticides/PCBs

Notes:

NC - No criteria

U - Analyte not detected

Town of Carroll Landfill RI/FS NYSDEC Site #9-07-017

Ground Water Analytical Summary - VOCs

Chemical Name	CAS No	NYS Class GA Water Quality Standards and Guidance Values (ug/L)	Location ID Sample Date Sample ID Unit	10/14/2004 MW-101	MW-102 10/11/2004 MW-102 ug/l	MW-102 3/8/2005 MW-102 ug/l	MW-102I 10/11/2004 MW-102I ug/I	MW-102I 3/9/2005 MW-102I ug/l	MW-103 10/12/2004 MW-103 ug/l	MW-103 3/9/2005 MW-103 ug/l
Dichlorodifluoromethane	75-71-8	5		10. U	2. J	1. J	1. J	.9 J	10. U	10. U
Chloromethane	74-87-3	5		10. U	10. U	10. U	10. U	10. U	10. U	10. U
Vinyl Chloride	75-01-4	2		10. U	2. J	1. J	5. J *	3. J *	10. U	10. U
Bromomethane	74-83-9	5		10. U	10. U	10. U	10. U	10. U	10. U	10. U
Chloroethane	75-00-3	5		10. U	1. J	1. J	7.J*	5. J	10. U	10. U
Trichlorofluoromethane	75-69-4	5		10. U	10. U	10. U	10. U	10. U	10. U	10. U
Acetone	67-64-1	50		10. U	10. U	2. JB	10. U	2. JB	10. U	4. JB
1,1-Dichloroethene	75-35-4	5		10. U	10. U	10. U	10. U	10. U	10. U	10. U
Methylene chloride	75-09-2	5		10. U	10. U	.6 JB	10. U	.9 JB	10. U	.5 JB
Methyl Acetate	79-20-9	NC		10. U	10. U	10. U	10. U	10. U	10. U	10. U
1,1,2-Trichloro-1,2,2-trifluoroethane	76-13-1	NC		10. U	10. U	10. U	10. U	10. U	10. U	10. U
Carbon Disulfide	75-15-0	NC		10. U	10. U	10. U	10. U	10. U	10. U	10. U
trans-1,2-Dichloroethene	156-60-5	NC		10. U	10. U	10. U	10. U	10. U	10. U	10. U
Methyl tert-Butyl ether	1634-04-4	NC		10. U	10. U	10. U	10. U	10. U	10. U	10. U
1,1-Dichloroethane	75-34-3	5		10. U	10. U	10. U	10. U	10. U	10. U	10. U
2-Butanone	78-93-3	50		10. U	10. U	10. U	10. U	10. U	10. U	10. U
cis-1,2-Dichloroethene	156-59-2	5		10. U	2. J	1. J	14.*	6. J *	10. U	10. U
Chloroform	67-66-3	7		10. U	10. U	10. U	10. U	10. U	10. U	10. U
1,2-Dichloroethane	107-06-2	0.6		10. U	10. U	10. U	10. U	10. U	10. U	10. U
1,1,1-Trichloroethane	71-55-6	5		10. U	10. U	10. U	10. U	10. U	10. U	10. U
Cyclohexane	110-82-7	NC		10. U	10. U	10. U	10. U	10. U	10. U	10. U
Carbon Tetrachloride	56-23-5	5		10. U	10. U	10. U	10. U	10. U	10. U	10. U
Benzene	71-43-2	1		10. U	10. U	10. U	10. U	10. U	10. U	10. U
Trichloroethylene	79-01-6	5		10. U	10. U	10. U	10. U	10. U	10. U	10. U
1,2-Dichloropropane	78-87-5	1		10. U	10. U	10. U	10. U	10. U	10. U	10. U
Bromodichloromethane	75-27-4	50		10. U	10. U	10. U	10. U	10. U	10. U	10. U
Methylcylohexane	108-87-2	NC		10. U	10. U	10. U	10. U	10. U	10. U	10. U
cis-1,3-Dichloropropene	10061-01-5	0.4		10. U	10. U	10. U	10. U	10. U	10. U	10. U
trans-1,3-Dichloropropene	10061-02-6	0.4		10. U	10. U	10. U	10. U	10. U	10. U	10. U

Notes: U - Not Detected

J - Estimated Concentration

B - Analyte Detected in Prep Blank

NC - No Criteria

Town of Carroll Landfill RI/FS NYSDEC Site #9-07-017

Ground Water Analytical Summary - VOCs

Chemical Name	CAS No	NYS Class GA Water Quality Standards and Guidance Values (ug/L)	Location ID Sample Date Sample ID Unit	10/14/2004 MW-101	MW-102 10/11/2004 MW-102 ug/l	MW-102 3/8/2005 MW-102 ug/l	MW-102I 10/11/2004 MW-102I ug/l	MW-102I 3/9/2005 MW-102I ug/l	MW-103 10/12/2004 MW-103 ug/I	MW-103 3/9/2005 MW-103 ug/l
1,1,2-Trichloroethane	79-00-5	1		10. U	10. U	10. U	10. U	10. U	10. U	10. U
Dibromochloromethane	124-48-1	50		10. U	10. U	10. U	10. U	10. U	10. U	10. U
Bromoform	75-25-2	50		10. U	10. U	10. U	10. U	10. U	10. U	10. U
4-Methyl-2-Pentanone	108-10-1	NC		10. U	10. U	10. U	10. U	10. U	10. U	10. U
Toluene	108-88-3	5		10. U	10. U	10. U	10. U	10. U	10. U	10. U
Tetrachloroethene	127-18-4	5		10. U	10. U	10. U	10. U	10. U	10. U	10. U
2-Hexanone	591-78-6	50		10. U	10. U	10. U	10. U	10. U	10. U	10. U
1,2-Dibromoethane	106-93-4	5		10. U	10. U	10. U	10. U	10. U	10. U	10. U
Chlorobenzene	108-90-7	5		10. U	10. U	10. U	10. U	10. U	10. U	10. U
Ethylbenzene	100-41-4	5		10. U	10. U	10. U	10. U	10. U	10. U	10. U
Xylene (Total)	1330-20-7	5		10. U	10. U	10. U	10. U	10. U	10. U	10. U
Styrene	100-42-5	5		10. U	10. U	10. U	10. U	10. U	10. U	10. U
1,1,2,2-Tetrachloroethane	79-34-5	5		10. U	10. U	10. U	10. U	10. U	10. U	10. U
Isopropylbenzene	98-82-8	NC		10. U	10. U	10. U	10. U	10. U	10. U	10. U
1,3-Dichlorobenzene	541-73-1	3		10. U	10. U	10. U	10. U	10. U	10. U	10. U
1,4-Dichlorobenzene	106-46-7	3		10. U	10. U	10. U	10. U	10. U	10. U	10. U
1,2-Dichlorobenzene	95-50-1	3		10. U	10. U	10. U	10. U	10. U	10. U	10. U
1,2-Dibromo-3-Chloropropane	96-12-8	NC		10. U	10. U	10. U	10. U	10. U	10. U	10. U
1,2,4-Trichlorobenzene	120-82-1	5		10. U	10. U	10. U	10. U	10. U	10. U	10. U

Notes: U - Not Detected

J - Estimated Concentration

B - Analyte Detected in Prep Blank

NC - No Criteria

Town of Carroll Landfill RI/FS NYSDEC Site #9-07-017

Ground Water Analytical Summary - VOCs

Chemical Name	CAS No	NYS Class GA Water Quality Standards and Guidance Values (ug/L)	Location ID Sample Date Sample ID Unit	10/14/2004 MW-104	MW-104 3/9/2005 MW-104 ug/l	MW-105S 10/14/2004 MW-105S ug/I	MW-105S 3/9/2005 MW-105S ug/l	MW-106S 10/14/2004 MW-106S ug/I	MW-106S 3/10/2005 MW-106S ug/l	MW-107S 10/12/2004 MW-107S ug/l
Dichlorodifluoromethane	75-71-8	5		10. U	10. U	10. U	10. U	0.6 J	10. U	9. J *
Chloromethane	74-87-3	5		10. U	10. U	10. U	10. U	10. U	10. U	10. U
Vinyl Chloride	75-01-4	2		2. J	.9 J	10. U	10. U	.6 J	10. U	600. D *
Bromomethane	74-83-9	5		10. U	10. U	10. U	10. U	10. U	10. U	10. U
Chloroethane	75-00-3	5		10. U	10. U	10. U	10. U	10. U	10. U	10. U
Trichlorofluoromethane	75-69-4	5		10. U	10. U	10. U	10. U	10. U	10. U	10. U
Acetone	67-64-1	50		10. U	2. JB	10. U	2. JB	10. U	2. JB	10. U
1,1-Dichloroethene	75-35-4	5		10. U	10. U	10. U	10. U	10. U	10. U	10. U
Methylene chloride	75-09-2	5		10. U	.7 JB	10. U	10. U	10. U	.9 JB	10. U
Methyl Acetate	79-20-9	NC		10. U	10. U	10. U	10. U	10. U	10. U	10. U
1,1,2-Trichloro-1,2,2-trifluoroethane	76-13-1	NC		10. U	10. U	10. U	10. U	10. U	10. U	10. U
Carbon Disulfide	75-15-0	NC		10. U	10. U	10. U	10. U	10. U	10. U	10. U
trans-1,2-Dichloroethene	156-60-5	NC		10. U	10. U	10. U	10. U	10. U	10. U	3. J
Methyl tert-Butyl ether	1634-04-4	NC		10. U	10. U	10. U	10. U	10. U	10. U	10. U
1,1-Dichloroethane	75-34-3	5		10. U	10. U	10. U	10. U	10. U	10. U	2. J
2-Butanone	78-93-3	50		10. U	10. U	10. U	10. U	10. U	10. U	10. U
cis-1,2-Dichloroethene	156-59-2	5		5. J	3. J	10. U	10. U	10. U	10. U	69.*
Chloroform	67-66-3	7		10. U	10. U	10. U	10. U	10. U	10. U	10. U
1,2-Dichloroethane	107-06-2	0.6		10. U	10. U	10. U	10. U	10. U	10. U	2. J *
1,1,1-Trichloroethane	71-55-6	5		10. U	10. U	10. U	10. U	10. U	10. U	10. U
Cyclohexane	110-82-7	NC		10. U	10. U	10. U	10. U	10. U	10. U	10. U
Carbon Tetrachloride	56-23-5	5		10. U	10. U	10. U	10. U	10. U	10. U	10. U
Benzene	71-43-2	1		10. U	10. U	10. U	10. U	10. U	10. U	.6 J
Trichloroethylene	79-01-6	5		10. U	10. U	10. U	10. U	10. U	10. U	10. U
1,2-Dichloropropane	78-87-5	1		10. U	10. U	10. U	10. U	10. U	10. U	10. U
Bromodichloromethane	75-27-4	50		10. U	10. U	10. U	10. U	10. U	10. U	10. U
Methylcylohexane	108-87-2	NC		10. U	10. U	10. U	10. U	10. U	10. U	10. U
cis-1,3-Dichloropropene	10061-01-5	0.4		10. U	10. U	10. U	10. U	10. U	10. U	10. U
trans-1,3-Dichloropropene	10061-02-6	0.4		10. U	10. U	10. U	10. U	10. U	10. U	10. U

Notes: U - Not Detected

J - Estimated Concentration

B - Analyte Detected in Prep Blank

NC - No Criteria

Town of Carroll Landfill RI/FS NYSDEC Site #9-07-017

Ground Water Analytical Summary - VOCs

Chemical Name	CAS No	NYS Class GA Water Quality Standards and Guidance Values (ug/L)	Location ID Sample Date Sample ID Unit	10/14/2004 MW-104	MW-104 3/9/2005 MW-104 ug/l	MW-105S 10/14/2004 MW-105S ug/l	MW-105S 3/9/2005 MW-105S ug/l	MW-106S 10/14/2004 MW-106S ug/I	MW-106S 3/10/2005 MW-106S ug/l	MW-107S 10/12/2004 MW-107S ug/l
1,1,2-Trichloroethane	79-00-5	1		10. U	10. U	10. U	10. U	10. U	10. U	10. U
Dibromochloromethane	124-48-1	50		10. U	10. U	10. U	10. U	10. U	10. U	10. U
Bromoform	75-25-2	50		10. U	10. U	10. U	10. U	10. U	10. U	10. U
4-Methyl-2-Pentanone	108-10-1	NC		10. U	10. U	10. U	10. U	10. U	10. U	10. U
Toluene	108-88-3	5		10. U	10. U	10. U	10. U	10. U	10. U	10. U
Tetrachloroethene	127-18-4	5		10. U	10. U	10. U	10. U	10. U	10. U	10. U
2-Hexanone	591-78-6	50		10. U	10. U	10. U	10. U	10. U	10. U	10. U
1,2-Dibromoethane	106-93-4	5		10. U	10. U	10. U	10. U	10. U	10. U	10. U
Chlorobenzene	108-90-7	5		10. U	10. U	10. U	10. U	10. U	10. U	10. U
Ethylbenzene	100-41-4	5		10. U	10. U	10. U	10. U	10. U	10. U	10. U
Xylene (Total)	1330-20-7	5		10. U	10. U	10. U	10. U	10. U	10. U	10. U
Styrene	100-42-5	5		10. U	10. U	10. U	10. U	10. U	10. U	10. U
1,1,2,2-Tetrachloroethane	79-34-5	5		10. U	10. U	10. U	10. U	10. U	10. U	10. U
Isopropylbenzene	98-82-8	NC		10. U	10. U	10. U	10. U	10. U	10. U	10. U
1,3-Dichlorobenzene	541-73-1	3		10. U	10. U	10. U	10. U	10. U	10. U	10. U
1,4-Dichlorobenzene	106-46-7	3		10. U	10. U	10. U	10. U	10. U	10. U	10. U
1,2-Dichlorobenzene	95-50-1	3		10. U	10. U	10. U	10. U	10. U	10. U	10. U
1,2-Dibromo-3-Chloropropane	96-12-8	NC		10. U	10. U	10. U	10. U	10. U	10. U	10. U
1,2,4-Trichlorobenzene	120-82-1	5		10. U	10. U	10. U	10. U	10. U	10. U	10. U

Notes: U - Not Detected

J - Estimated Concentration

B - Analyte Detected in Prep Blank

NC - No Criteria

Town of Carroll Landfill RI/FS NYSDEC Site #9-07-017

Ground Water Analytical Summary - VOCs

Chemical Name	CAS No	NYS Class GA Water Quality Standards and Guidance Values (ug/L)	Location ID Sample Date Sample ID Unit	3/9/2005 MW-107S	MW-107I 10/12/2004 MW-107I ug/l	MW-107I 3/9/2005 MW-107I ug/l	MW-108S 10/13/2004 MW-108S ug/l	MW-108S 3/7/2005 MW-108S ug/l	MW-108I 10/13/2004 MW-108I ug/l	MW-108I 3/7/2005 MW-108I ug/l
Dichlorodifluoromethane	75-71-8	5		3. J	10. U	10. U	10. U	10. U	10. U	10. U
Chloromethane	74-87-3	5		10. U	10. U	10. U	10. U	10. U	10. U	10. U
Vinyl Chloride	75-01-4	2		250. *	.6 J	10. U	10. U	10. U	10. U	10. U
Bromomethane	74-83-9	5		10. U	10. U	10. U	10. U	10. U	10. U	10. U
Chloroethane	75-00-3	5		10. U	10. U	10. U	10. U	10. U	10. U	10. U
Trichlorofluoromethane	75-69-4	5		10. U	10. U	10. U	10. U	10. U	10. U	10. U
Acetone	67-64-1	50		2. JB	10. U	2. JB	10. U	2. JB	10. U	3. JB
1,1-Dichloroethene	75-35-4	5		10. U	10. U	10. U	10. U	10. U	10. U	10. U
Methylene chloride	75-09-2	5		.8 JB	10. U	.8 JB	10. U	.6 JB	10. U	.6 JB
Methyl Acetate	79-20-9	NC		10. U	10. U	10. U	10. U	10. U	10. U	10. U
1,1,2-Trichloro-1,2,2-trifluoroethane	76-13-1	NC		10. U	10. U	10. U	10. U	10. U	10. U	10. U
Carbon Disulfide	75-15-0	NC		10. U	.7 J	10. U	10. U	10. U	10. U	10. U
trans-1,2-Dichloroethene	156-60-5	NC		1. J	10. U	10. U	10. U	10. U	10. U	10. U
Methyl tert-Butyl ether	1634-04-4	NC		10. U	10. U	10. U	10. U	10. U	10. U	10. U
1,1-Dichloroethane	75-34-3	5		.7 J	10. U	10. U	10. U	10. U	10. U	10. U
2-Butanone	78-93-3	50		10. U	10. U	10. U	10. U	10. U	10. U	10. U
cis-1,2-Dichloroethene	156-59-2	5		25.*	10. U	10. U	10. U	10. U	10. U	10. U
Chloroform	67-66-3	7		10. U	10. U	10. U	10. U	10. U	10. U	10. U
1,2-Dichloroethane	107-06-2	0.6		.6 J	10. U	10. U	10. U	10. U	10. U	10. U
1,1,1-Trichloroethane	71-55-6	5		10. U	10. U	10. U	10. U	10. U	10. U	10. U
Cyclohexane	110-82-7	NC		10. U	10. U	10. U	10. U	10. U	10. U	10. U
Carbon Tetrachloride	56-23-5	5		10. U	10. U	10. U	10. U	10. U	10. U	10. U
Benzene	71-43-2	1		10. U	10. U	10. U	.6 J	.7 J	10. U	10. U
Trichloroethylene	79-01-6	5		10. U	10. U	10. U	10. U	10. U	10. U	10. U
1,2-Dichloropropane	78-87-5	1		10. U	10. U	10. U	10. U	10. U	10. U	10. U
Bromodichloromethane	75-27-4	50		10. U	10. U	10. U	10. U	10. U	10. U	10. U
Methylcylohexane	108-87-2	NC		10. U	10. U	10. U	10. U	10. U	10. U	10. U
cis-1,3-Dichloropropene	10061-01-5	0.4		10. U	10. U	10. U	10. U	10. U	10. U	10. U
trans-1,3-Dichloropropene	10061-02-6	0.4		10. U	10. U	10. U	10. U	10. U	10. U	10. U

Notes: U - Not Detected

J - Estimated Concentration

B - Analyte Detected in Prep Blank

NC - No Criteria

Town of Carroll Landfill RI/FS NYSDEC Site #9-07-017

Ground Water Analytical Summary - VOCs

Chemical Name	CAS No	NYS Class GA Water Quality Standards and Guidance Values (ug/L)	Location ID Sample Date Sample ID Unit	3/9/2005 MW-107S	MW-107I 10/12/2004 MW-107I ug/I	MW-107I 3/9/2005 MW-107I ug/l	MW-108S 10/13/2004 MW-108S ug/l	MW-108S 3/7/2005 MW-108S ug/l	MW-108I 10/13/2004 MW-108I ug/l	MW-108I 3/7/2005 MW-108I ug/l
1,1,2-Trichloroethane	79-00-5	1		10. U	10. U	10. U	10. U	10. U	10. U	10. U
Dibromochloromethane	124-48-1	50		10. U	10. U	10. U	10. U	10. U	10. U	10. U
Bromoform	75-25-2	50		10. U	10. U	10. U	10. U	10. U	10. U	10. U
4-Methyl-2-Pentanone	108-10-1	NC		10. U	10. U	10. U	10. U	10. U	10. U	10. U
Toluene	108-88-3	5		10. U	.6 J	10. U	.5 J	10. U	.6 J	10. U
Tetrachloroethene	127-18-4	5		10. U	10. U	10. U	10. U	10. U	10. U	10. U
2-Hexanone	591-78-6	50		10. U	10. U	10. U	10. U	10. U	10. U	10. U
1,2-Dibromoethane	106-93-4	5		10. U	10. U	10. U	10. U	10. U	10. U	10. U
Chlorobenzene	108-90-7	5		10. U	10. U	10. U	10. U	.8 J	10. U	10. U
Ethylbenzene	100-41-4	5		10. U	10. U	10. U	10. U	10. U	10. U	10. U
Xylene (Total)	1330-20-7	5		10. U	10. U	10. U	10. U	10. U	10. U	10. U
Styrene	100-42-5	5		10. U	10. U	10. U	10. U	10. U	10. U	10. U
1,1,2,2-Tetrachloroethane	79-34-5	5		10. U	10. U	10. U	10. U	10. U	10. U	10. U
Isopropylbenzene	98-82-8	NC		10. U	10. U	10. U	10. U	10. U	10. U	10. U
1,3-Dichlorobenzene	541-73-1	3		10. U	10. U	10. U	10. U	10. U	10. U	10. U
1,4-Dichlorobenzene	106-46-7	3		10. U	10. U	10. U	10. U	10. U	10. U	10. U
1,2-Dichlorobenzene	95-50-1	3		10. U	10. U	10. U	10. U	10. U	10. U	10. U
1,2-Dibromo-3-Chloropropane	96-12-8	NC		10. U	10. U	10. U	10. U	10. U	10. U	10. U
1,2,4-Trichlorobenzene	120-82-1	5		10. U	10. U	10. U	10. U	10. U	10. U	10. U

Notes: U - Not Detected

J - Estimated Concentration

B - Analyte Detected in Prep Blank

NC - No Criteria

Town of Carroll Landfill RI/FS NYSDEC Site #9-07-017

Ground Water Analytical Summary - VOCs

Chemical Name	CAS No	NYS Class GA Water Quality Standards and Guidance Values (ug/L)	Location ID Sample Date Sample ID Unit	10/12/2004 MW-109S ug/l	MW-109S 3/8/2005 MW-109S ug/l	MW-109I 10/12/2004 MW-109I ug/I	MW-109I 3/8/2005 MW-109I ug/l	MW-109D 10/12/2004 MW-109D ug/I	MW-109D 3/8/2005 MW-109D ug/l	MW-110S 10/13/2004 MW-110S ug/l
Dichlorodifluoromethane	75-71-8	5		10. U	10. U	10. U	10. U	10. U	10. U	10. U
Chloromethane	74-87-3	5		10. U	10. U	10. U	10. U	10. U	10. U	10. U
Vinyl Chloride	75-01-4	2		10. U	10. U	10. U	10. U	1. J	10	10. U
Bromomethane	74-83-9	5		10. U	10. U	10. U	10. U	10. U	10. U	10. U
Chloroethane	75-00-3	5		10. U	10. U	10. U	10. U	10. U	10. U	10. U
Trichlorofluoromethane	75-69-4	5		10. U	10. U	10. U	10. U	10. U	10. U	10. U
Acetone	67-64-1	50		10. U	2. JB	10. U	4. JB	10. U	2. J	10. U
1,1-Dichloroethene	75-35-4	5		10. U	10. U	10. U	10. U	10. U	10. U	10. U
Methylene chloride	75-09-2	5		10. U	.6 JB	10. U	.6 JB	10. U	.7 JB	10. U
Methyl Acetate	79-20-9	NC		10. U	10. U	10. U	10. U	10. U	10. U	10. U
1,1,2-Trichloro-1,2,2-trifluoroethane	76-13-1	NC		10. U	10. U	10. U	10. U	10. U	10. U	10. U
Carbon Disulfide	75-15-0	NC		10. U	10. U	10. U	10. U	10. U	10. U	10. U
trans-1,2-Dichloroethene	156-60-5	NC		10. U	10. U	10. U	10. U	10. U	10. U	10. U
Methyl tert-Butyl ether	1634-04-4	NC		10. U	10. U	10. U	10. U	10. U	10. U	10. U
1,1-Dichloroethane	75-34-3	5		10. U	10. U	10. U	10. U	10. U	10. U	10. U
2-Butanone	78-93-3	50		10. U	10. U	10. U	10. U	10. U	10. U	10. U
cis-1,2-Dichloroethene	156-59-2	5		10. U	10. U	10. U	10. U	10. U	1. J	10. U
Chloroform	67-66-3	7		10. U	10. U	10. U	10. U	10. U	10. U	10. U
1,2-Dichloroethane	107-06-2	0.6		10. U	10. U	10. U	10. U	10. U	10. U	10. U
1,1,1-Trichloroethane	71-55-6	5		10. U	10. U	10. U	10. U	10. U	10. U	10. U
Cyclohexane	110-82-7	NC		10. U	10. U	10. U	10. U	10. U	10. U	10. U
Carbon Tetrachloride	56-23-5	5		10. U	10. U	10. U	10. U	10. U	10. U	10. U
Benzene	71-43-2	1		10. U	10. U	10. U	10. U	10. U	10. U	10. U
Trichloroethylene	79-01-6	5		10. U	10. U	10. U	10. U	10. U	10. U	10. U
1,2-Dichloropropane	78-87-5	1		10. U	10. U	10. U	10. U	10. U	10. U	10. U
Bromodichloromethane	75-27-4	50		10. U	10. U	10. U	10. U	10. U	10. U	10. U
Methylcylohexane	108-87-2	NC		10. U	10. U	10. U	10. U	10. U	10. U	10. U
cis-1,3-Dichloropropene	10061-01-5	0.4		10. U	10. U	10. U	10. U	10. U	10. U	10. U
trans-1,3-Dichloropropene	10061-02-6	0.4		10. U	10. U	10. U	10. U	10. U	10. U	10. U

Notes: U - Not Detected

J - Estimated Concentration

B - Analyte Detected in Prep Blank

NC - No Criteria

Town of Carroll Landfill RI/FS NYSDEC Site #9-07-017

Ground Water Analytical Summary - VOCs

Chemical Name	CAS No	NYS Class GA Water Quality Standards and Guidance Values (ug/L)	Location ID Sample Date Sample ID Unit	10/12/2004 MW-109S	MW-109S 3/8/2005 MW-109S ug/l	MW-109I 10/12/2004 MW-109I ug/I	MW-109I 3/8/2005 MW-109I ug/l	MW-109D 10/12/2004 MW-109D ug/l	MW-109D 3/8/2005 MW-109D ug/l	MW-110S 10/13/2004 MW-110S ug/l
1,1,2-Trichloroethane	79-00-5	1		10. U	10. U	10. U	10. U	10. U	10. U	10. U
Dibromochloromethane	124-48-1	50		10. U	10. U	10. U	10. U	10. U	10. U	10. U
Bromoform	75-25-2	50		10. U	10. U	10. U	10. U	10. U	10. U	10. U
4-Methyl-2-Pentanone	108-10-1	NC		10. U	10. U	10. U	10. U	10. U	10. U	10. U
Toluene	108-88-3	5		10. U	10. U	10. U	10. U	.8 J	10. U	10. U
Tetrachloroethene	127-18-4	5		10. U	10. U	10. U	10. U	10. U	10. U	10. U
2-Hexanone	591-78-6	50		10. U	10. U	10. U	10. U	10. U	10. U	10. U
1,2-Dibromoethane	106-93-4	5		10. U	10. U	10. U	10. U	10. U	10. U	10. U
Chlorobenzene	108-90-7	5		10. U	10. U	10. U	10. U	10. U	10. U	10. U
Ethylbenzene	100-41-4	5		10. U	10. U	10. U	10. U	10. U	10. U	10. U
Xylene (Total)	1330-20-7	5		10. U	10. U	10. U	10. U	10. U	10. U	10. U
Styrene	100-42-5	5		10. U	10. U	10. U	10. U	10. U	10. U	10. U
1,1,2,2-Tetrachloroethane	79-34-5	5		10. U	10. U	10. U	10. U	10. U	10. U	10. U
Isopropylbenzene	98-82-8	NC		10. U	10. U	10. U	10. U	10. U	10. U	10. U
1,3-Dichlorobenzene	541-73-1	3		10. U	10. U	10. U	10. U	10. U	10. U	10. U
1,4-Dichlorobenzene	106-46-7	3		10. U	10. U	10. U	10. U	10. U	10. U	10. U
1,2-Dichlorobenzene	95-50-1	3		10. U	10. U	10. U	10. U	10. U	10. U	10. U
1,2-Dibromo-3-Chloropropane	96-12-8	NC		10. U	10. U	10. U	10. U	10. U	10. U	10. U
1,2,4-Trichlorobenzene	120-82-1	5		10. U	10. U	10. U	10. U	10. U	10. U	10. U

Notes: U - Not Detected

J - Estimated Concentration

B - Analyte Detected in Prep Blank

NC - No Criteria

Town of Carroll Landfill RI/FS NYSDEC Site #9-07-017

Ground Water Analytical Summary - VOCs

Chemical Name	CAS No	NYS Class GA Water Quality Standards and Guidance Values (ug/L)	Location ID Sample Date Sample ID Unit	3/9/2005 MW-110S	MW-110I 10/13/2004 MW-110I ug/l	MW-110I 3/9/2005 MW-110I ug/l	MW-111S 10/13/2004 MW-111S ug/l	MW-111S 3/9/2005 MW-111S ug/l	MW-111I 10/13/2004 MW-111I ug/l	MW-1111 3/9/2005 MW-1111 ug/l
Dichlorodifluoromethane	75-71-8	5		10. U	10. U	10. U	10. U	10. U	10. U	10. U
Chloromethane	74-87-3	5		10. U	10. U	10. U	10. U	10. U	10. U	10. U
Vinyl Chloride	75-01-4	2		10. U	10. U	10. U	10. U	10. U	10. U	10. U
Bromomethane	74-83-9	5		10. U	10. U	10. U	10. U	10. U	10. U	10. U
Chloroethane	75-00-3	5		10. U	10. U	10. U	10. U	10. U	10. U	10. U
Trichlorofluoromethane	75-69-4	5		10. U	10. U	10. U	10. U	10. U	10. U	10. U
Acetone	67-64-1	50		2. JB	10. U	2. JB	4. J	2. JB	10. U	3. JB
1,1-Dichloroethene	75-35-4	5		10. U	10. U	10. U	10. U	10. U	10. U	10. U
Methylene chloride	75-09-2	5		.9 JB	10. U	.9 JB	10. U	2. JB	10. U	.5 JB
Methyl Acetate	79-20-9	NC		10. U	10. U	10. U	10. U	10. U	10. U	10. U
1,1,2-Trichloro-1,2,2-trifluoroethane	76-13-1	NC		10. U	10. U	10. U	10. U	10. U	10. U	10. U
Carbon Disulfide	75-15-0	NC		10. U	10. U	10. U	10. U	10. U	10. U	10. U
trans-1,2-Dichloroethene	156-60-5	NC		10. U	10. U	10. U	10. U	10. U	10. U	10. U
Methyl tert-Butyl ether	1634-04-4	NC		10. U	10. U	10. U	10. U	10. U	10. U	10. U
1,1-Dichloroethane	75-34-3	5		10. U	10. U	10. U	10. U	10. U	10. U	10. U
2-Butanone	78-93-3	50		10. U	10. U	10. U	10. U	10. U	10. U	10. U
cis-1,2-Dichloroethene	156-59-2	5		10. U	10. U	10. U	10. U	10. U	10. U	10. U
Chloroform	67-66-3	7		10. U	10. U	10. U	10. U	10. U	10. U	10. U
1,2-Dichloroethane	107-06-2	0.6		10. U	10. U	10. U	10. U	10. U	10. U	10. U
1,1,1-Trichloroethane	71-55-6	5		10. U	10. U	10. U	10. U	10. U	10. U	10. U
Cyclohexane	110-82-7	NC		10. U	10. U	10. U	10. U	10. U	10. U	10. U
Carbon Tetrachloride	56-23-5	5		10. U	10. U	10. U	10. U	10. U	10. U	10. U
Benzene	71-43-2	1		10. U	10. U	10. U	10. U	10. U	10. U	10. U
Trichloroethylene	79-01-6	5		10. U	10. U	10. U	10. U	10. U	10. U	10. U
1,2-Dichloropropane	78-87-5	1		10. U	10. U	10. U	10. U	10. U	10. U	10. U
Bromodichloromethane	75-27-4	50		10. U	10. U	10. U	10. U	10. U	10. U	10. U
Methylcylohexane	108-87-2	NC		10. U	10. U	10. U	10. U	10. U	10. U	10. U
cis-1,3-Dichloropropene	10061-01-5	0.4		10. U	10. U	10. U	10. U	10. U	10. U	10. U
trans-1,3-Dichloropropene	10061-02-6	0.4		10. U	10. U	10. U	10. U	10. U	10. U	10. U

Notes: U - Not Detected

J - Estimated Concentration

B - Analyte Detected in Prep Blank

NC - No Criteria

Town of Carroll Landfill RI/FS NYSDEC Site #9-07-017

Ground Water Analytical Summary - VOCs

Chemical Name	CAS No	NYS Class GA Water Quality Standards and Guidance Values (ug/L)	Location ID Sample Date Sample ID Unit	3/9/2005 MW-110S	MW-110I 10/13/2004 MW-110I ug/l	MW-110I 3/9/2005 MW-110I ug/I	MW-111S 10/13/2004 MW-111S ug/l	MW-111S 3/9/2005 MW-111S ug/I	MW-111I 10/13/2004 MW-111I ug/l	MW-111I 3/9/2005 MW-111I ug/l
1,1,2-Trichloroethane	79-00-5	1		10. U	10. U	10. U	10. U	10. U	10. U	10. U
Dibromochloromethane	124-48-1	50		10. U	10. U	10. U	10. U	10. U	10. U	10. U
Bromoform	75-25-2	50		10. U	10. U	10. U	10. U	10. U	10. U	10. U
4-Methyl-2-Pentanone	108-10-1	NC		10. U	10. U	10. U	10. U	10. U	10. U	10. U
Toluene	108-88-3	5		10. U	.6 J	10. U	.6 J	10. U	10. U	10. U
Tetrachloroethene	127-18-4	5		10. U	10. U	10. U	10. U	10. U	10. U	10. U
2-Hexanone	591-78-6	50		10. U	10. U	10. U	10. U	10. U	10. U	10. U
1,2-Dibromoethane	106-93-4	5		10. U	10. U	10. U	10. U	10. U	10. U	10. U
Chlorobenzene	108-90-7	5		10. U	10. U	10. U	10. U	10. U	10. U	10. U
Ethylbenzene	100-41-4	5		10. U	10. U	10. U	10. U	10. U	10. U	10. U
Xylene (Total)	1330-20-7	5		10. U	10. U	10. U	10. U	10. U	10. U	10. U
Styrene	100-42-5	5		10. U	10. U	10. U	10. U	10. U	10. U	10. U
1,1,2,2-Tetrachloroethane	79-34-5	5		10. U	10. U	10. U	10. U	10. U	10. U	10. U
Isopropylbenzene	98-82-8	NC		10. U	10. U	10. U	10. U	10. U	10. U	10. U
1,3-Dichlorobenzene	541-73-1	3		10. U	10. U	10. U	10. U	10. U	10. U	10. U
1,4-Dichlorobenzene	106-46-7	3		10. U	10. U	10. U	10. U	10. U	10. U	10. U
1,2-Dichlorobenzene	95-50-1	3		10. U	10. U	10. U	10. U	10. U	10. U	10. U
1,2-Dibromo-3-Chloropropane	96-12-8	NC		10. U	10. U	10. U	10. U	10. U	10. U	10. U
1,2,4-Trichlorobenzene	120-82-1	5		10. U	10. U	10. U	10. U	10. U	10. U	10. U

Notes: U - Not Detected

J - Estimated Concentration

B - Analyte Detected in Prep Blank

NC - No Criteria

Town of Carroll Landfill RI/FS NYSDEC Site #9-07-017

Ground Water Analytical Summary - VOCs

Chemical Name	CAS No	NYS Class GA Water Quality Standards and Guidance Values (ug/L)	Location ID MW-13 (39'-41') Sample Date 9/3/2004 Sample ID MW-13 (39'-41') Unit ug/l	MW-13 (49'-51') 9/3/2004 MW-13 (49'-51') ug/l	MW-13 (59'-61') 9/3/2004 MW-13 (59'-61') ug/l	MW-13 (69'-71') 9/3/2004 MW-13 (69'-71') ug/I	MW-13 10/14/2004 MW-13 ug/l	TW-TP-02 9/2/2004 TW-TP-02 ug/l
Dichlorodifluoromethane	75-71-8	5	10. U	10. U	10. U	10. U	10. U	10. U
Chloromethane	74-87-3	5	10. U	10. U	10. U	10. U	10. U	10. U
Vinyl Chloride	75-01-4	2	.8 J	1. J	1. J	1. J	.6 J	10. U
Bromomethane	74-83-9	5	10. U	10. U	10. U	10. U	10. U	10. U
Chloroethane	75-00-3	5	10. U	10. U	10. U	10. U	10. U	10. U
Trichlorofluoromethane	75-69-4	5	10. U	10. U	10. U	10. U	10. U	10. U
Acetone	67-64-1	50	5. J	3. J	3. J	3. J	10. U	11.
1,1-Dichloroethene	75-35-4	5	10. U	10. U	10. U	10. U	10. U	10. U
Methylene chloride	75-09-2	5	10. U	10. U	10. U	10. U	10. U	10. U
Methyl Acetate	79-20-9	NC	10. U	10. U	10. U	10. U	10. U	10. U
1,1,2-Trichloro-1,2,2-trifluoroethane	76-13-1	NC	10. U	10. U	10. U	10. U	10. U	10. U
Carbon Disulfide	75-15-0	NC	10. U	10. U	10. U	10. U	10. U	10. U
trans-1,2-Dichloroethene	156-60-5	NC	10. U	10. U	10. U	10. U	10. U	10. U
Methyl tert-Butyl ether	1634-04-4	NC	10. U	10. U	10. U	10. U	10. U	10. U
1,1-Dichloroethane	75-34-3	5	10. U	10. U	10. U	10. U	10. U	10. U
2-Butanone	78-93-3	50	10. U	10. U	10. U	10. U	10. U	10. U
cis-1,2-Dichloroethene	156-59-2	5	1. J	2. J	2. J	10. U	.8 J	1. J
Chloroform	67-66-3	7	10. U	10. U	10. U	10. U	10. U	10. U
1,2-Dichloroethane	107-06-2	0.6	10. U	10. U	10. U	10. U	10. U	10. U
1,1,1-Trichloroethane	71-55-6	5	10. U	10. U	10. U	10. U	10. U	10. U
Cyclohexane	110-82-7	NC	10. U	10. U	10. U	10. U	10. U	10. U
Carbon Tetrachloride	56-23-5	5	10. U	10. U	10. U	10. U	10. U	10. U
Benzene	71-43-2	1	10. U	10. U	10. U	10. U	10. U	2. J *
Trichloroethylene	79-01-6	5	10. U	10. U	10. U	10. U	10. U	10. U
1,2-Dichloropropane	78-87-5	1	10. U	10. U	10. U	10. U	10. U	10. U
Bromodichloromethane	75-27-4	50	10. U	10. U	10. U	10. U	10. U	10. U
Methylcylohexane	108-87-2	NC	10. U	10. U	10. U	10. U	10. U	10. U
cis-1,3-Dichloropropene	10061-01-5	0.4	10. U	10. U	10. U	10. U	10. U	10. U
trans-1,3-Dichloropropene	10061-02-6	0.4	10. U	10. U	10. U	10. U	10. U	10. U

Notes: U - Not Detected

J - Estimated Concentration

B - Analyte Detected in Prep Blank

NC - No Criteria

Town of Carroll Landfill RI/FS NYSDEC Site #9-07-017

Ground Water Analytical Summary - VOCs

Chemical Name	CAS No	NYS Class GA Water Quality Standards and Guidance Values (ug/L)	Location ID MW-13 (39'-41') Sample Date 9/3/2004 Sample ID MW-13 (39'-41') Unit ug/l	MW-13 (49'-51') 9/3/2004 MW-13 (49'-51') ug/l	MW-13 (59'-61') 9/3/2004 MW-13 (59'-61') ug/l	MW-13 (69'-71') 9/3/2004 MW-13 (69'-71') ug/I	MW-13 10/14/2004 MW-13 ug/l	TW-TP-02 9/2/2004 TW-TP-02 ug/l
1,1,2-Trichloroethane	79-00-5	1	10. U	10. U	10. U	10. U	10. U	10. U
Dibromochloromethane	124-48-1	50	10. U	10. U	10. U	10. U	10. U	10. U
Bromoform	75-25-2	50	10. U	10. U	10. U	10. U	10. U	10. U
4-Methyl-2-Pentanone	108-10-1	NC	10. U	10. U	10. U	10. U	10. U	10. U
Toluene	108-88-3	5	10. U	10. U	10. U	10. U	10. U	3. J
Tetrachloroethene	127-18-4	5	10. U	10. U	10. U	10. U	10. U	10. U
2-Hexanone	591-78-6	50	10. U	10. U	10. U	10. U	10. U	10. U
1,2-Dibromoethane	106-93-4	5	10. U	10. U	10. U	10. U	10. U	10. U
Chlorobenzene	108-90-7	5	10. U	10. U	10. U	10. U	10. U	1. J
Ethylbenzene	100-41-4	5	10. U	10. U	10. U	10. U	10. U	4. J
Xylene (Total)	1330-20-7	5	10. U	10. U	10. U	10. U	10. U	11. *
Styrene	100-42-5	5	10. U	10. U	10. U	10. U	10. U	10. U
1,1,2,2-Tetrachloroethane	79-34-5	5	10. U	10. U	10. U	10. U	10. U	10. U
Isopropylbenzene	98-82-8	NC	10. U	10. U	10. U	10. U	10. U	10. U
1,3-Dichlorobenzene	541-73-1	3	10. U	10. U	10. U	10. U	10. U	10. U
1,4-Dichlorobenzene	106-46-7	3	10. U	10. U	10. U	10. U	10. U	10. U
1,2-Dichlorobenzene	95-50-1	3	10. U	10. U	10. U	10. U	10. U	10. U
1,2-Dibromo-3-Chloropropane	96-12-8	NC	10. U	10. U	10. U	10. U	10. U	10. U
1,2,4-Trichlorobenzene	120-82-1	5	10. U	10. U	10. U	10. U	10. U	10. U

Notes: U - Not Detected

J - Estimated Concentration

B - Analyte Detected in Prep Blank

NC - No Criteria

Town of Carroll Landfill RI/FS NYSDEC Site #9-07-017

Ground Water Analytical Summary - VOCs

Chemical Name	CAS No	NYS Class GA Water Quality Standards and Guidance Values (ug/L)	Location ID Sample Date Sample ID Unit	9/2/2004 TW-TP-06	TW-TP-22 9/2/2004 TW-TP-22 ug/I
Dichlorodifluoromethane	75-71-8	5		10. U	10. U
Chloromethane	74-87-3	5		10. U	10. U
Vinyl Chloride	75-01-4	2		10. U	10. U
Bromomethane	74-83-9	5		10. U	10. U
Chloroethane	75-00-3	5		10. U	10. U
Trichlorofluoromethane	75-69-4	5		10. U	10. U
Acetone	67-64-1	50		43.	25.
1,1-Dichloroethene	75-35-4	5		10. U	10. U
Methylene chloride	75-09-2	5		10. U	10. U
Methyl Acetate	79-20-9	NC		10. U	10. U
1,1,2-Trichloro-1,2,2-trifluoroethane	76-13-1	NC		10. U	10. U
Carbon Disulfide	75-15-0	NC		1. J	2. J
trans-1,2-Dichloroethene	156-60-5	NC		10. U	10. U
Methyl tert-Butyl ether	1634-04-4	NC		10. U	10. U
1,1-Dichloroethane	75-34-3	5		10. U	10. U
2-Butanone	78-93-3	50		10. U	10. U
cis-1,2-Dichloroethene	156-59-2	5		10. U	10. U
Chloroform	67-66-3	7		10. U	10. U
1,2-Dichloroethane	107-06-2	0.6		10. U	10. U
1,1,1-Trichloroethane	71-55-6	5		10. U	10. U
Cyclohexane	110-82-7	NC		10. U	10. U
Carbon Tetrachloride	56-23-5	5		10. U	10. U
Benzene	71-43-2	1		10. U	10. U
Trichloroethylene	79-01-6	5		10. U	10. U
1,2-Dichloropropane	78-87-5	1		10. U	10. U
Bromodichloromethane	75-27-4	50		10. U	10. U
Methylcylohexane	108-87-2	NC		10. U	10. U
cis-1,3-Dichloropropene	10061-01-5	0.4		10. U	10. U
trans-1,3-Dichloropropene	10061-02-6	0.4		10. U	10. U

Notes: U - Not Detected

J - Estimated Concentration

B - Analyte Detected in Prep Blank

NC - No Criteria

Town of Carroll Landfill RI/FS NYSDEC Site #9-07-017

Ground Water Analytical Summary - VOCs

Chemical Name	CAS No	NYS Class GA Water Quality Standards and Guidance Values (ug/L)	Location ID Sample Date Sample ID Unit	9/2/2004 TW-TP-06	TW-TP-22 9/2/2004 TW-TP-22 ug/I
1,1,2-Trichloroethane	79-00-5	1		10. U	10. U
Dibromochloromethane	124-48-1	50		10. U	10. U
Bromoform	75-25-2	50		10. U	10. U
4-Methyl-2-Pentanone	108-10-1	NC		10. U	10. U
Toluene	108-88-3	5		.8 J	2. J
Tetrachloroethene	127-18-4	5		10. U	10. U
2-Hexanone	591-78-6	50		10. U	10. U
1,2-Dibromoethane	106-93-4	5		10. U	10. U
Chlorobenzene	108-90-7	5		10. U	10. U
Ethylbenzene	100-41-4	5		10. U	10. U
Xylene (Total)	1330-20-7	5		10. U	10. U
Styrene	100-42-5	5		10. U	10. U
1,1,2,2-Tetrachloroethane	79-34-5	5		10. U	10. U
Isopropylbenzene	98-82-8	NC		10. U	10. U
1,3-Dichlorobenzene	541-73-1	3		10. U	10. U
1,4-Dichlorobenzene	106-46-7	3		10. U	.6 J
1,2-Dichlorobenzene	95-50-1	3		10. U	10. U
1,2-Dibromo-3-Chloropropane	96-12-8	NC		10. U	10. U
1,2,4-Trichlorobenzene	120-82-1	5		10. U	10. U

Notes: U - Not Detected

J - Estimated Concentration

B - Analyte Detected in Prep Blank

NC - No Criteria

Town of Carroll Landfill RI/FS NYSDEC Site #9-07-017

Ground Water Analyitcal Summary - SVOCs

Chemical Name	CAS No	NYS Class GA Water Quality Standards and Guidance Values (ug/L)	Location ID Sample Date Sample ID Unit	10/11/2004 MW-102 ug/l	MW-105S 10/14/2004 MW-105S ug/l	MW-108I 10/13/2004 MW-108I ug/l	MW-109D 10/12/2004 MW-109D ug/l	TW-TP-02 9/2/2004 TW-TP-02 ug/l
Benzaldehyde	100-52-7	NC		110 U	12. U	10. U	10. U	10. U
Acetophenone	98-86-2	NC		110 U	12. U	10. U	10. U	10. U
bis(2-Chloroethyl)ether	111-44-4	1		110 U	12. U	10. U	10. U	10. U
Caprolactam	105-60-2	NC		110 U	12. U	10. U	10. U	10. U
Phenol	108-95-2	1		110 U	12. U	10. U	10. U	1. J
1,1'-Biphenyl	92-52-4	NC		110 U	12. U	10. U	10. U	10. U
2-Chlorophenol	95-57-8	1		110 U	12. U	10. U	10. U	10. U
Atrazine	1912-24-9	NC		110 U	12. U	10. U	10. U	10. U
2,2'-oxybis(1-Chloropropane)	108-60-1	NC		110 U	12. U	10. U	10. U	10. U
2-Methylphenol	95-48-7	1		110 U	12. U	10. U	10. U	1. J
Hexachloroethane	67-72-1	5		110 U	12. U	10. U	10. U	10. U
N-Nitroso-di-n-propylamine	621-64-7	NC		110 U	12. U	10. U	10. U	10. U
4-Methylphenol	106-44-5	1		110 U	12. U	10. U	10. U	60. *
Nitrobenzene	98-95-3	0.4		110 U	12. U	10. U	10. U	10. U
Isophorone	78-59-1	50		110 U	12. U	10. U	10. U	10. U
2-Nitrophenol	88-75-5	1		110 U	12. U	10. U	10. U	10. U
2,4-Dimethylphenol	105-67-9	50		110 U	12. U	10. U	10. U	10. U
bis(2-chloroethoxy)methane	111-91-1	5		110 U	12. U	10. U	10. U	10. U
2,4-Dichlorophenol	120-83-2	1		110 U	12. U	10. U	10. U	10. U
Naphthalene	91-20-3	10		110 U	12. U	10. U	10. U	4. J
4-Chloroaniline	106-47-8	5		110 U	12. U	10. U	10. U	10. U
Hexachlorobutadiene	87-68-3	0.5		110 U	12. U	10. U	10. U	10. U
4-chloro-3-Methylphenol	59-50-7	1		110 U	12. U	10. U	10. U	5. J *
2-Methylnaphthalene	91-57-6	NC		110 U	12. U	10. U	10. U	1. J
Hexachlorocyclopentadiene	77-47-4	5		110 UJ	12. UJ	10. UJ	10. UJ	10. UJ
2,4,6-Trichlorophenol	88-06-2	1		110 U	12. U	10. U	10. U	10. U
2,4,5-Trichlorophenol	95-95-4	1		260 U	31. U	25. U	25. U	25. U
2-Chloronaphthalene	91-58-7	10		110 U	12. U	10. U	10. U	10. U
2-Nitroaniline	88-74-4	5		260 U	31. U	25. U	25. U	25. U

Notes: NC - No Criteria

J - Estimated Concentration

U - Analyte Not Detected

Town of Carroll Landfill RI/FS NYSDEC Site #9-07-017

Ground Water Analyitcal Summary - SVOCs

Chemical Name	CAS No	NYS Class GA Water Quality Standards and Guidance Values (ug/L)	Location ID Sample Date Sample ID Unit	10/11/2004 MW-102	MW-105S 10/14/2004 MW-105S ug/l	MW-108I 10/13/2004 MW-108I ug/l	MW-109D 10/12/2004 MW-109D ug/l	TW-TP-02 9/2/2004 TW-TP-02 ug/I
Acenaphthylene	208-96-8	NC		110 U	12. U	10. U	10. U	10. U
Dimethyl phthalate	131-11-3	50		110 U	12. U	10. U	10. U	10. U
2,6-Dinitrotoluene	606-20-2	5		110 U	12. U	10. U	10. U	10. U
Acenaphthene	83-32-9	20		110 U	12. U	10. U	10. U	10. U
3-Nitroaniline	99-09-2	5		260 U	31. U	25. U	25. U	25. U
2,4-Dinitrophenol	51-28-5	10		260 U	31. U	25. U	25. U	25. U
Dibenzofuran	132-64-9	NC		110 U	12. U	10. U	10. U	10. U
2,4-Dinitrotoluene	121-14-2	5		110 U	12. U	10. U	10. U	10. U
4-Nitrophenol	100-02-7	1		260 U	31. U	25. U	25. U	2. J *
Fluorene	86-73-7	50		110 U	12. U	10. U	10. U	10. U
4-Chlorophenyl phenyl ether	7005-72-3	5		110 U	12. U	10. U	10. U	10. U
Diethyl phthalate	84-66-2	50		110 U	12. U	10. U	10. U	10. U
4-Nitroaniline	100-01-6	5		260 U	31. U	25. U	25. U	25. U
4,6-Dinitro-2-Methylphenol	534-52-1	1		260 U	31. U	25. U	25. U	25. U
n-Nitrosodiphenylamine	86-30-6	50		110 U	12. U	10. U	10. U	10. U
4-Bromophenyl phenyl ether	101-55-3	5		110 U	12. U	10. U	10. U	10. U
Hexachlorobenzene	118-74-1	0.04		110 U	12. U	10. U	10. U	10. U
Pentachlorophenol	87-86-5	1		260 U	31. U	25. U	25. U	25. U
Phenanthrene	85-01-8	50		110 U	12. U	10. U	10. U	10. U
Anthracene	120-12-7	50		110 U	12. U	10. U	10. U	10. U
di-n-Butyl Phthalate	84-74-2	50		110 U	12. U	10. U	10. U	10. U
Carbazole	86-74-8	NC		110 U	12. U	10. U	10. U	10. U
Fluoranthene	206-44-0	50		110 U	12. U	10. U	10. U	10. U
Pyrene	129-00-0	50		110 U	12. U	10. U	10. U	10. U
Benzyl Butyl Phthalate	85-68-7	50		110 U	12. U	10. U	10. U	10. U
3,3'-Dichlorobenzidine	91-94-1	NC		110 UJ	12. UJ	10. UJ	10. UJ	10. U
Benzo[a]anthracene	56-55-3	0.002		110 U	12. U	10. U	10. U	10. U

Notes: NC - No Criteria

J - Estimated Concentration

U - Analyte Not Detected

Town of Carroll Landfill RI/FS NYSDEC Site #9-07-017

Ground Water Analyitcal Summary - SVOCs

Chemical Name	CAS No	NYS Class GA Water Quality Standards and Guidance Values (ug/L)	Location ID MW-1 Sample Date 10/11, Sample ID MW-1 Unit ug/l	/2004 10/14/2004	MW-108I 10/13/2004 MW-108I ug/l	MW-109D 10/12/2004 MW-109D ug/l	TW-TP-02 9/2/2004 TW-TP-02 ug/I
Chrysene	218-01-9	0.002	110 U	12. U	10. U	10. U	10. U
bis(2-ethylhexyl)phthalate	117-81-7	5	110 U	12. U	1. J	2. J	1. J
di-n-Octyl Phthalate	117-84-0	50	110 U	12. U	10. U	10. U	10. U
Benzo[b]fluoranthene	205-99-2	0.002	110 U	12. U	10. U	10. U	10. U
Benzo[k]fluoranthene	207-08-9	0.002	110 U	12. U	10. U	10. U	10. U
Benzo[a]pyrene	50-32-8	NC	110 U	12. U	10. U	10. U	10. U
Indeno[1,2,3-cd]pyrene	193-39-5	0.002	110 U	12. U	10. U	10. U	10. U
Dibenz[a,h]anthracene	53-70-3	NC	110 U	12. U	10. U	10. U	10. U
Benzo[g,h,i]perylene	191-24-2	NC	110 U	12. U	10. U	10. U	10. U

Notes: NC - No Criteria

J - Estimated Concentration

U - Analyte Not Detected

Town of Carroll Landfill RI/FS NYSDEC Site #9-07-017

Ground Water Analytical Summary - Inorganics

Chemical Name	CAS No	NYS Class GA Water Quality Standards and Guidance Values (ug/L)	Location ID Sample Date Sample ID Unit	10/14/2004	MW-102I 10/11/2004 MW-102I ug/l	MW-102I 3/9/2005 MW-102I ug/l	MW-102 10/11/2004 MW-102 ug/I	MW-102 3/8/2005 MW-102 ug/l
Aluminum	7429-90-5	NC		463	2130	6620	13 U	4420
Antimony	7440-36-0	3		2.5 U	2.5 U	1.8 U	2.5 U	1.8 U
Arsenic	7440-38-2	25		46.1	2.7 U	7.6 B	2.7 U	3.4 B
Barium	7440-39-3	1000		669	152 B	209	165 B	224
Beryllium	7440-41-7	3		.04 U	.08 B	.29 B	.04 U	0.12 B
Cadmium	7440-43-9	5		.2 U	.2 U	.29 U	.2 U	8.4
Calcium	7440-70-2	NC		R	R	108000	R	127000
Chromium	7440-47-3	50		.94 U	2.7 B	10.2	.94 U	7.8 B
Cobalt	7440-48-4	NC		.99 U	.99 U	2.7 B	.99 U	1.5 U
Copper	7440-50-8	200		1.7 B	9.4 B	19.4 B	1.2 U	44.4
Iron	7439-89-6	300		4910	3800	12200	32.7 B	6220
Lead	7439-92-1	25		2.1 B	6.8	13.7	1.1 B	6.1
Magnesium	7439-95-4	35000		R	R	25000	R	26900
Manganese	7439-96-5	3000		983	1570	1750	186	258
Mercury	7439-97-6	0.7		.01 U	.01 B	.01 U	.01 B	.01 U
Nickel	7440-02-0	NC		1.1 B	4.2 B	10.4 B	1 U	7.6 B
Potassium	7440-09-7	NC		752 B	2150 B	3080 B	1030 B	2570 B
Selenium	7782-49-2	10		2.7 U	2.7 U	1.6 U	2.7 U	1.6 U
Silver	7440-22-4	50		1.5 U	1.5 U	1.4 U	1.5 U	1.4 U
Sodium	7440-23-5	20000		R	R	5160	R	4740 B
Thallium	7440-28-0	0.5		3.7 U	3.7 U	4.5 U	3.7 U	4.5 U
Vanadium	7440-62-2	NC		1.4 B	3.4 B	11.2 B	1.1 U	9.2 B
Zinc	7440-66-6	2000		9.2 B	17.4 B	45.8	20.5	46.5
Cyanide	57-12-5	200		10 U	10 U	3.1 U	10 U	3.1 U

Notes:

NC - No criteria

U - Analyte not detected

B - Value greater than IDL but less than CRDL

* - Concentration exceeds criteria

Town of Carroll Landfill RI/FS NYSDEC Site #9-07-017

Ground Water Analytical Summary - Inorganics

Chemical Name	CAS No	NYS Class GA Water Quality Standards and Guidance Values (ug/L)	Location ID Sample Date Sample ID Unit	10/12/2004 MW-103	MW-104 10/14/2004 MW-104 ug/l	MW-104 3/10/2005 MW-104 ug/l	MW-105S 10/14/2004 MW-105S ug/l	MW-105S 3/10/2005 MW-105S ug/l
Aluminum	7429-90-5	NC		634	1150	16000	23800	25900
Antimony	7440-36-0	3		2.5 U	2.5 U	2 B	2.5 U	1.8 B
Arsenic	7440-38-2	25		2.7 U	53.2	24.1	29.2	22.1
Barium	7440-39-3	1000		240	530	566	393	380
Beryllium	7440-41-7	3		.04 U	.04 U	.6 B	1.1 B	1.3 B
Cadmium	7440-43-9	5		.2 U	.2 U	.48 B	.31 B	.29 U
Calcium	7440-70-2	NC		54500	R	126000	R	55800
Chromium	7440-47-3	50		.94 U	3.7 B	25.2	33.8	35.1
Cobalt	7440-48-4	NC		.99 U	.99 U	13.2 B	20 B	21.4 B
Copper	7440-50-8	200		1.2 U	5.5 B	22.3 B	33.3	30.1
Iron	7439-89-6	300		1030	13200	37300	53400	50100
Lead	7439-92-1	25		1.6 B	2.1 B	11	19.5	16.5
Magnesium	7439-95-4	35000		12000	R	39500	R	20800
Manganese	7439-96-5	3000		251	678	1080	1040	748
Mercury	7439-97-6	0.7		.01 U	.01 U	.01 U	.02 B	.01 B
Nickel	7440-02-0	NC		1 U	3.2 B	36.6 B	50.3	48.4
Potassium	7440-09-7	NC		938 B	2240 B	4580 B	6830	6670
Selenium	7782-49-2	10		2.7 U	2.7 U	1.6 U	2.7 U	1.9 B
Silver	7440-22-4	50		1.5 U	1.5 U	1.4 U	1.5 U	1.4 U
Sodium	7440-23-5	20000		R	R	27100	R	12400
Thallium	7440-28-0	0.5		3.7 U	3.7 U	4.5 U	3.7 U	4.5 U
Vanadium	7440-62-2	NC		1.1 U	2.6 B	23.9 B	34.6 B	37.8 B
Zinc	7440-66-6	2000		6.8 B	10.2 B	94.6	119	113
Cyanide	57-12-5	200		10 U	10 U	3.1 U	10 U	5 B

Notes:

NC - No criteria

U - Analyte not detected

B - Value greater than IDL but less than CRDL

* - Concentration exceeds criteria

Town of Carroll Landfill RI/FS NYSDEC Site #9-07-017

Ground Water Analytical Summary - Inorganics

Chemical Name	CAS No	NYS Class GA Water Quality Standards and Guidance Values (ug/L)	Location ID Sample Date Sample ID Unit	10/14/2004	MW-107I 10/12/2004 MW-107I ug/l	MW-107S 10/12/2004 MW-107S ug/l	MW-107S 3/10/2005 MW-107S ug/l	MW-108I 10/13/2004 MW-108I ug/l
Aluminum	7429-90-5	NC		3690	5700	10900	410	7030
Antimony	7440-36-0	3		2.5 U	2.5 U	2.5 U	1.8 U	2.5 U
Arsenic	7440-38-2	25		13	16.1	16.5	2.9 B	4.2 B
Barium	7440-39-3	1000		543	193 B	745	585	384
Beryllium	7440-41-7	3		.11 B	.19 B	.33 B	.05 U	.21 B
Cadmium	7440-43-9	5		.2 U	.2 U	.2 U	.29 U	.2 U
Calcium	7440-70-2	NC		R	R	178000	128000	R
Chromium	7440-47-3	50		6.7 B	9 B	15.5	3.6 B	12.4
Cobalt	7440-48-4	NC		.99 U	1.4 B	3.8 B	1.5 U	.99 U
Copper	7440-50-8	200		8.6 B	12.4 B	17.1 B	1.5 U	14.5 B
Iron	7439-89-6	300		8440	12100	24900	679	15300
Lead	7439-92-1	25		5.2	6	8.8	.74 U	7.8
Magnesium	7439-95-4	35000		R	R	57900	37600	R
Manganese	7439-96-5	3000		533	365	818	571	385
Mercury	7439-97-6	0.7		.05 B	.01 B	.02 B	.01 U	.01 B
Nickel	7440-02-0	NC		9.9 B	11.9 B	24.1 B	2.8 B	11 B
Potassium	7440-09-7	NC		3650 B	9500	4030 B	1970 B	5310
Selenium	7782-49-2	10		2.7 U	2.7 U	2.7 U	1.6 U	2.7 U
Silver	7440-22-4	50		1.5 U	1.5 U	1.5 U	1.4 U	1.5 U
Sodium	7440-23-5	20000		R	R	R	16500	R
Thallium	7440-28-0	0.5		3.7 U	3.7 U	3.7 U	4.5 U	3.7 U
Vanadium	7440-62-2	NC		5.7 B	9.4 B	15.9 B	2.2 B	10.4 B
Zinc	7440-66-6	2000		23.6	30.7	55	6.9 B	34.2
Cyanide	57-12-5	200		10 U	11	10 U	3.1 U	10 U

Notes:

NC - No criteria

U - Analyte not detected

B - Value greater than IDL but less than CRDL

* - Concentration exceeds criteria

Town of Carroll Landfill RI/FS NYSDEC Site #9-07-017

Ground Water Analytical Summary - Inorganics

Chemical Name	CAS No	NYS Class GA Water Quality Standards and Guidance Values (ug/L)	Location ID MW-108I Sample Date 3/7/2005 Sample ID MW-108I Unit ug/l	MW-108S 10/13/2004 MW-108S ug/l	MW-108S 3/7/2005 MW-108S ug/l	MW-109D 10/12/2004 MW-109D ug/l	MW-109D 3/8/2005 MW-109D ug/l
Aluminum	7429-90-5	NC	587	5840	3520	3950	13700
Antimony	7440-36-0	3	1.8 U	2.5 U	1.8 U	2.5 U	1.8 U
Arsenic	7440-38-2	25	3.9 B	12.1	28.2	2.9 B	14
Barium	7440-39-3	1000	612	1230	890	143 B	325
Beryllium	7440-41-7	3	.05 U	.13 B	.18 B	.13 B	.7 B
Cadmium	7440-43-9	5	.29 U	.2 U	.29 U	.2 U	.29 U
Calcium	7440-70-2	NC	91900	R	123000	R	86800
Chromium	7440-47-3	50	2.7 B	8.3 B	68.4	5.6 B	25.9
Cobalt	7440-48-4	NC	1.5 U	.99 U	2.8 B	.99 U	11.2 B
Copper	7440-50-8	200	2. B	8 B	7.9 B	10.2 B	40.9
Iron	7439-89-6	300	1740	55100	82600	8440	29900
Lead	7439-92-1	25	.74 U	9.3	5	7.9	24.6
Magnesium	7439-95-4	35000	18400	R	19200	R	18600
Manganese	7439-96-5	3000	329	3150	2890	873	1270
Mercury	7439-97-6	0.7	.01 U	.01 B	.01 U	.01 B	.02 B
Nickel	7440-02-0	NC	1.5 B	11.5 B	36.7 B	6.1 B	23.1 B
Potassium	7440-09-7	NC	1730 B	9310	5020	2420 B	4020 B
Selenium	7782-49-2	10	1.6 U	2.7 U	2.6 B	2.7 U	1.8 B
Silver	7440-22-4	50	1.4 U	1.5 U	1.4 U	1.5 U	1.4 U
Sodium	7440-23-5	20000	16100	R	9590	R	5400
Thallium	7440-28-0	0.5	4.5 U	3.7 U	4.5 U	3.7 U	4.5 U
Vanadium	7440-62-2	NC	1.3 B	9.2 B	6.8 B	6.2 B	22.7 B
Zinc	7440-66-6	2000	10.5 B	43.4	28.2	21.8	73.6
Cyanide	57-12-5	200	6.7 B	10 U	3.1 U	10 U	3.1 U

Notes:

NC - No criteria

U - Analyte not detected

B - Value greater than IDL but less than CRDL

* - Concentration exceeds criteria

Town of Carroll Landfill RI/FS NYSDEC Site #9-07-017

Ground Water Analytical Summary - Inorganics

Chemical Name	CAS No	NYS Class GA Water Quality Standards and Guidance Values (ug/L)	Location ID Sample Date Sample ID Unit	10/12/2004 MW-109I	MW-109I 3/8/2005 MW-109I ug/l	MW-109S 10/12/2004 MW-109S ug/I	MW-109S 3/8/2005 MW-109S ug/l	MW-110I 10/13/2004 MW-110I ug/I
Aluminum	7429-90-5	NC		17900	33900	1650	9950	82900
Antimony	7440-36-0	3		2.5 U	1.8 B	2.5 U	1.8 U	2.6 B
Arsenic	7440-38-2	25		17.8	37	2.7 U	11	87.8
Barium	7440-39-3	1000		329	562	215	273	725
Beryllium	7440-41-7	3		.93 B	1.9 B	.04 U	.39 B	3.6 B
Cadmium	7440-43-9	5		.2 U	.32 B	.2 U	.29 U	.2 U
Calcium	7440-70-2	NC		R	121000	R	72400	185000
Chromium	7440-47-3	50		24.5	42.8	.94 U	14.4	112
Cobalt	7440-48-4	NC		12.3 B	33 B	.99 U	6.5 B	72.2
Copper	7440-50-8	200		49	96.6	2.6 B	13.9 B	162
Iron	7439-89-6	300		36000	68300	2520	18400	191000
Lead	7439-92-1	25		40.7	87.1	2.6 B	8.6	92.4
Magnesium	7439-95-4	35000		R	29500	R	17100	70900
Manganese	7439-96-5	3000		1970	3720	239	400	3720
Mercury	7439-97-6	0.7		.05 B	.07 B	.02 B	.01 U	.07 B
Nickel	7440-02-0	NC		30.3 B	60.6	3 B	17.3 B	169
Potassium	7440-09-7	NC		8070	15500	1860 B	2980 B	13400
Selenium	7782-49-2	10		2.7 U	1.8 B	2.7 U	1.6 U	4.4 B
Silver	7440-22-4	50		1.5 U	1.9 B	1.5 U	1.4 U	1.7 B
Sodium	7440-23-5	20000		R	14900	R	8410	R
Thallium	7440-28-0	0.5		3.7 U	7.2 B	3.7 U	4.5 U	14
Vanadium	7440-62-2	NC		28.1 B	53.8	2.8 B	14.7 B	118
Zinc	7440-66-6	2000		109	203	8.8 B	55.7	447
Cyanide	57-12-5	200		10 U	3.1 U	10 U	3.7 B	10 U

Notes:

NC - No criteria

U - Analyte not detected

B - Value greater than IDL but less than CRDL

* - Concentration exceeds criteria

Town of Carroll Landfill RI/FS NYSDEC Site #9-07-017

Ground Water Analytical Summary - Inorganics

Chemical Name	CAS No	NYS Class GA Water Quality Standards and Guidance Values (ug/L)	Location ID Sample Date Sample ID Unit	3/10/2005 MW-110I	MW-110S 10/13/2004 MW-110S ug/l	MW-110S 3/10/2005 MW-110S ug/l	MW-111I 10/13/2004 MW-111I ug/l	MW-111S 10/13/2004 MW-111S ug/l
Aluminum	7429-90-5	NC		17400	35300	4210	10300	20600
Antimony	7440-36-0	3		1.8 U	2.5 U	1.8 U	2.5 U	2.5 U
Arsenic	7440-38-2	25		23.9	35.1	10.9	12.7	30.5
Barium	7440-39-3	1000		339	540	312	310	508
Beryllium	7440-41-7	3		.72 B	1.6 B	.19 B	.38 B	.84 B
Cadmium	7440-43-9	5		.29 U	.45 B	.29 U	.2 U	.2 U
Calcium	7440-70-2	NC		81400	R	54400	R	R
Chromium	7440-47-3	50		24.5	46.8	6.6 B	13.8	31.1
Cobalt	7440-48-4	NC		13.1 B	28 B	2.5 B	3.7 B	16.9 B
Copper	7440-50-8	200		30.6	49.9	4.8 B	31.7	30.8
Iron	7439-89-6	300		37000	74900	6310	20700	48800
Lead	7439-92-1	25		15.7	26.8	2.1 B	13.1	16.3
Magnesium	7439-95-4	35000		26300	R	14400	R	R
Manganese	7439-96-5	3000		880	1550	325	530	898
Mercury	7439-97-6	0.7		.01 U	.02 B	.01 U	.01 B	.01 B
Nickel	7440-02-0	NC		34.5 B	69.9	7.1 B	16.9 B	46.6
Potassium	7440-09-7	NC		4770 B	7620	2670 B	5050	8770
Selenium	7782-49-2	10		1.6 U	3.8 B	1.6 U	3 B	2.7 U
Silver	7440-22-4	50		1.4 U	1.5 U	1.4 U	1.5 U	1.5 U
Sodium	7440-23-5	20000		13800	R	7140	R	R
Thallium	7440-28-0	0.5		4.5 U	3.7 U	4.5 U	3.7 U	3.7 U
Vanadium	7440-62-2	NC		26.5 B	52.2	7.6 B	15.2 B	30.6 B
Zinc	7440-66-6	2000		98.9	172	17.7 B	55.3	112
Cyanide	57-12-5	200		3.1 U	10 U	9 B	10 U	10 U

Notes:

NC - No criteria

U - Analyte not detected

B - Value greater than IDL but less than CRDL

* - Concentration exceeds criteria

Town of Carroll Landfill RI/FS NYSDEC Site #9-07-017

Ground Water Analytical Summary - Inorganics

Chemical Name	CAS No	NYS Class GA Water Quality Standards and Guidance Values (ug/L)	Location ID Sample Date Sample ID Unit	10/14/2004 MW-13	TW-TP-02 9/2/2004 TW-TP-02 ug/I
Aluminum	7429-90-5	NC		854	57500
Antimony	7440-36-0	3		2.5 U	1.8 U
Arsenic	7440-38-2	25		2.7 U	55.4
Barium	7440-39-3	1000		97.2 B	1760
Beryllium	7440-41-7	3		.04 U	2.2 B
Cadmium	7440-43-9	5		.2 U	1.3 B
Calcium	7440-70-2	NC		R	204000
Chromium	7440-47-3	50		1.6 B	85
Cobalt	7440-48-4	NC		.99 U	74.9
Copper	7440-50-8	200		2.7 B	95.2
Iron	7439-89-6	300		979	230000
Lead	7439-92-1	25		1.6 B	157
Magnesium	7439-95-4	35000		R	40300
Manganese	7439-96-5	3000		41.1	12300
Mercury	7439-97-6	0.7		.01 U	.34
Nickel	7440-02-0	NC		1 U	152
Potassium	7440-09-7	NC		1470 B	19000
Selenium	7782-49-2	10		2.7 U	5 U
Silver	7440-22-4	50		1.5 U	2.5 B
Sodium	7440-23-5	20000		R	9050
Thallium	7440-28-0	0.5		3.7 U	15.2
Vanadium	7440-62-2	NC		1.8 B	86.7
Zinc	7440-66-6	2000		6.4 B	684
Cyanide	57-12-5	200		10 U	5 U

Notes:

NC - No criteria

U - Analyte not detected

B - Value greater than IDL but less than CRDL

* - Concentration exceeds criteria

Town of Carroll Landfill RI/FS NYSDEC Site #9-07-017

Ground Water Analytical Summary - Pesticides/PCBs

Chemical Name	CAS No	NYS Class GA Water Quality Standards and Guidance Values (ug/L)	Location ID Sample Date Sample ID Unit Unit	MW-105S 10/14/2004 MW-105S ug/l	MW-108I 10/13/2004 MW-108I ug/l	MW-109D 10/12/2004 MW-109D ug/l	TW-TP-02 9/2/2004 TW-TP-02 ug/l
alpha-BHC	319-84-6	0.01	.05 U	.053 UJ	.053 U	.05 U	.05 U
Beta-BHC	319-95-7	NC	.05 U	.053 UJ	.053 U	.05 U	.05 U
delta-BHC	319-86-8	0.04	.05 U	.053 UJ	.053 U	.05 U	.05 U
gamma-BHC (Lindane)	58-89-9	0.05	.05 U	.053 UJ	.053 U	.05 U	.05 U
Heptachlor	76-44-8	0.04	.05 U	.053 UJ	.053 U	.05 U	.05 U
Heptachlor Epoxide	1024-57-3	0.03	.05 U	.053 UJ	.053 U	.05 U	.05 U
Aldrin	309-00-2	NC	.05 UJ	.053 UJ	.053 UJ	.05 UJ	.05 U
Endosulfan I	959-98-8	NC	.05 U	.053 UJ	.053 U	.05 U	.05 U
Dieldrin	60-57-1	0.004	.1 U	.11 UJ	.11 U	.1 U	.05 U
4,4'-DDE	72-55-9	0.2	.1 U	.11 UJ	.11 U	.1 U	.1 U
Endrin	72-20-8	NC	.1 U	.11 UJ	.11 U	.1 U	.1 U
Endosulfan II	33213-65-9	NC	.1 U	.11 UJ	.11 U	.1 U	.1 U
4,4'-DDD	72-54-8	0.3	.1 U	.11 UJ	.11 U	.1 U	.1 U
Endosulfan Sulfate	1031-07-8	NC	.1 U	.11 UJ	.11 U	.1 U	.1 U
4,4'-DDT	50-29-3	0.2	.1 U	.11 UJ	.11 U	.1 U	.1 U
Methoxychlor	72-43-5	35	.5 U	.53 UJ	.53 U	.5 U	.5 U
Endrin Ketone	53494-70-5	NC	.1 U	.11 UJ	.11 U	.1 U	.1 U
Endrin Aldehyde	7421-93-4	0.5	.1 U	.11 UJ	.11 U	.1 U	.1 U
alpha-Chlordane	5103-71-9	NC	.05 U	.053 UJ	.053 U	.05 U	.05 U
gamma-Chlordane	5103-74-2	NC	.05 U	.053 UJ	.053 U	.05 U	.05 U
Toxaphene	8001-35-2	0.09	5 U	5.3 UJ	5.3 U	5 U	5 U
Aroclor-1016	12674-11-2	0.09	1 U	1.1 UJ	1.1 U	1 U	1 U
Aroclor-1221	11104-28-2	0.09	2 U	2.1 UJ	2.1 U	2 U	2 U
Aroclor-1232	11141-16-5	0.09	1 U	1.1 UJ	1.1 U	1 U	1 U
Aroclor-1242	53469-21-9	0.09	1 U	1.1 UJ	1.1 U	1 U	1 U
Aroclor-1248	12672-29-6	0.09	1 U	1.1 UJ	1.1 U	1 U	1 U
Aroclor-1254	11097-69-1	0.09	1 U	1.1 UJ	1.1 U	1 U	1 U
Aroclor-1260	11096-82-5	0.09	1 U	1.1 UJ	1.1 U	1 U	1 U

Notes:

NC - No Criteria

U - Analyte not detected

J - Estimated concentration

P - Greater than 25% difference for detected concentrations between the two GC columns

Town of Carroll Landfill RI/FS NYSDEC Site #9-07-017

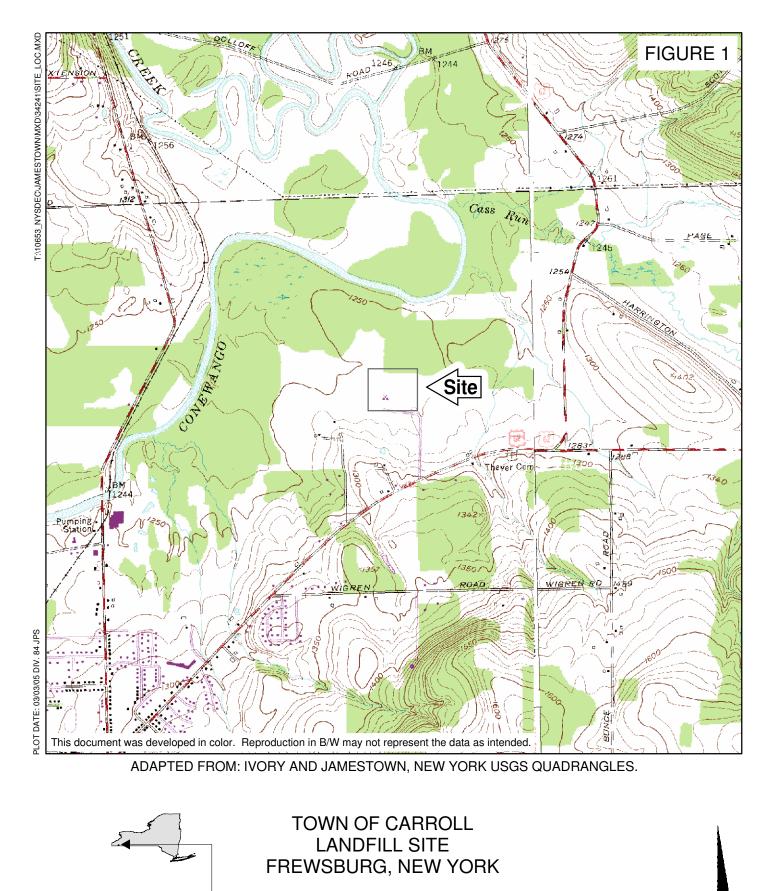
Chautauqua County Department of Health Sample Results Summary

Well ID		Supp	oly Well #5			Ν	IW-13	
Class GA Ground Water Standard	5	2	5	5	5	2	5	5
Constituent	Freon-12	VC	CE	cis-1,2-DCE	Freon-12	VC	CE	cis-1,2-DCE
Sample Date								
4/17/2000	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
2/14/2002		<0.5		<0.5		<0.5		2.3
3/14/2002		<0.5		<0.5				
3/28/2002		<0.5		<0.5		<0.5		0.8
4/1/2002	<0.5	<0.5	<0.5	<0.5	<0.5	0.8	<0.5	1.8
8/5/2002	<0.5	<0.5	<0.5	<0.5	<0.5	0.9	<0.5	0.8
10/7/2002								
10/28/2002					0.5	2.1	<0.5	1.1
2/4/2003		0.5				2.5		
2/24/2003		0.5				1.6		
3/18/2003	<0.5	0.5	<0.5	1.2	<0.5	3.2	<0.5	0.9
4/14/2003	<0.5	<0.5	<0.5	0.9	<0.5	4	<0.5	0.7
5/26/2003	<0.5	0.7	<0.5	1.8	<0.5	5.9	<0.5	1.2
7/14/2003	<0.5	0.7	<0.5	2.5	3.1	2.3	2.3	2.4
10/8/2003	<0.5	0.6	<0.5	2.1	0.6	6.4	1.8	2.5
12/15/2003	<0.5	0.9	<0.5	2.4	0.9	7.7	1.8	2.7
1/21/2004	<0.5	0.9	<0.5	2.6	0.5	6.6	1.1	2.8
8/16/2004	<0.5	0.5	<0.5	2.5	0.6	5.7	0.7	5.3
10/13/2004	0.5	0.8		2.7	5.2	6		6.7
6/6/2005		0.8		2.4	2	10		15

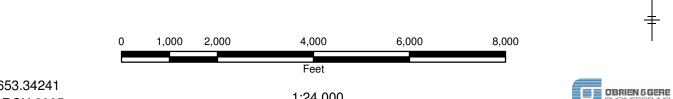
Units: ug/L --- Data not available VC - vinyl chloride CE - chloroethane cis-1,2-DCE - cis-1,2-dichloroethene

Source: Chautauqua County Department of Health

Town of Carroll Landfill RI/FS NYSDEC Site #9-07-017

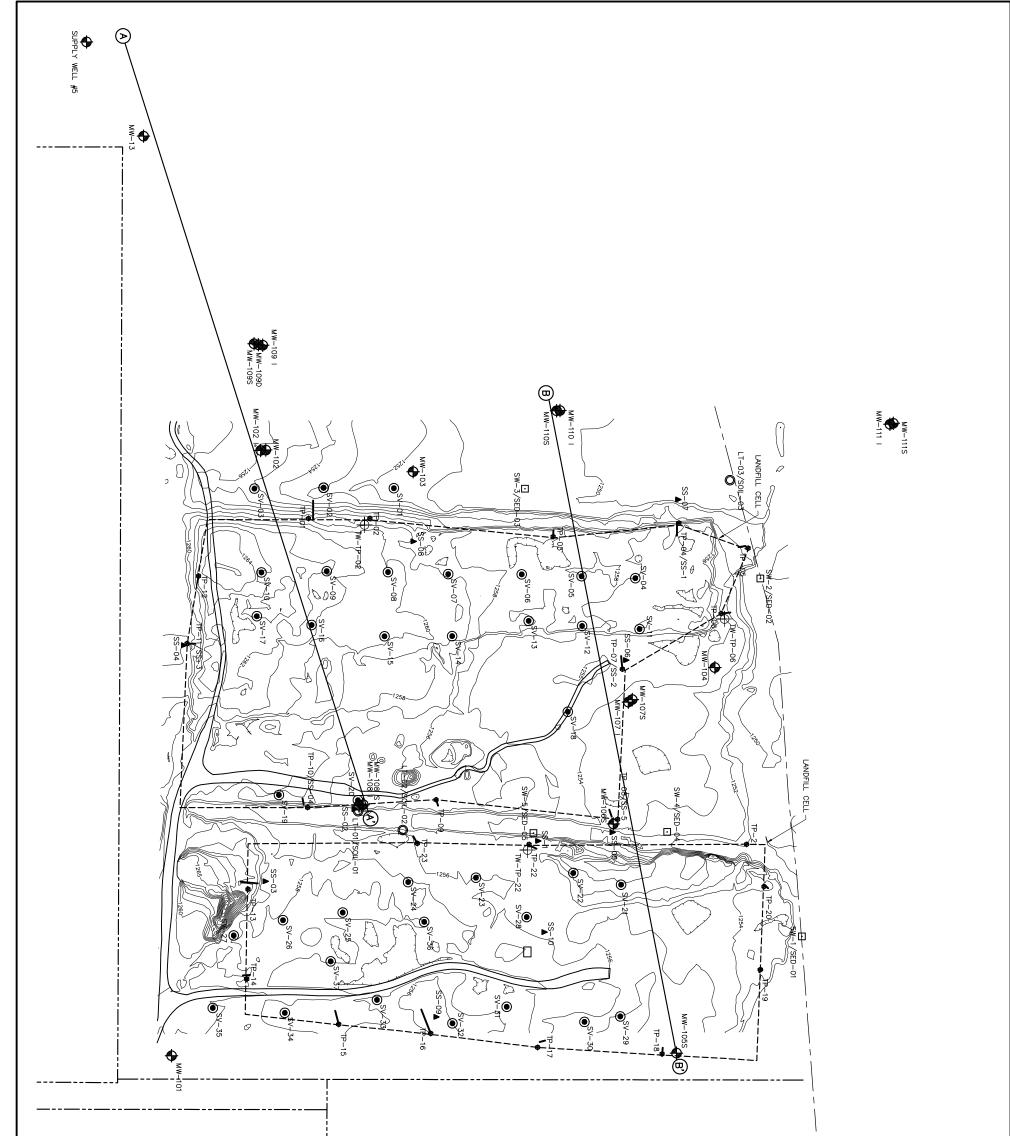

Ground Water Analytical Summary - Methane/Ethane/Ethene

Chemical Name	CAS No	NYS Class GA Water Quality Standards and Guidance Values (ug/L)	Location ID Sample Date Sample ID Unit	3/8/2005 MW-102	MW-102I 3/9/2005 MW-102I ug/l	MW-103 3/9/2005 MW-103 ug/l	MW-107S 3/9/2005 MW-107S ug/I	MW-107I 3/9/2005 MW-107I ug/l	MW-110S 3/9/2005 MW-110S ug/l	MW-110I 3/9/2005 MW-110I ug/I
Methane				2800	2900	220	2400	18	42	31
Ethane				150	160. J	120. U	200. U	3.4 J	3. J	5.5
Ethene				80. U	140. J	4. U	190. J	4. U	4. U	4. U


Notes: U - Not Detected

J - Estimated Concentration

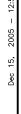
NC - No Criteria

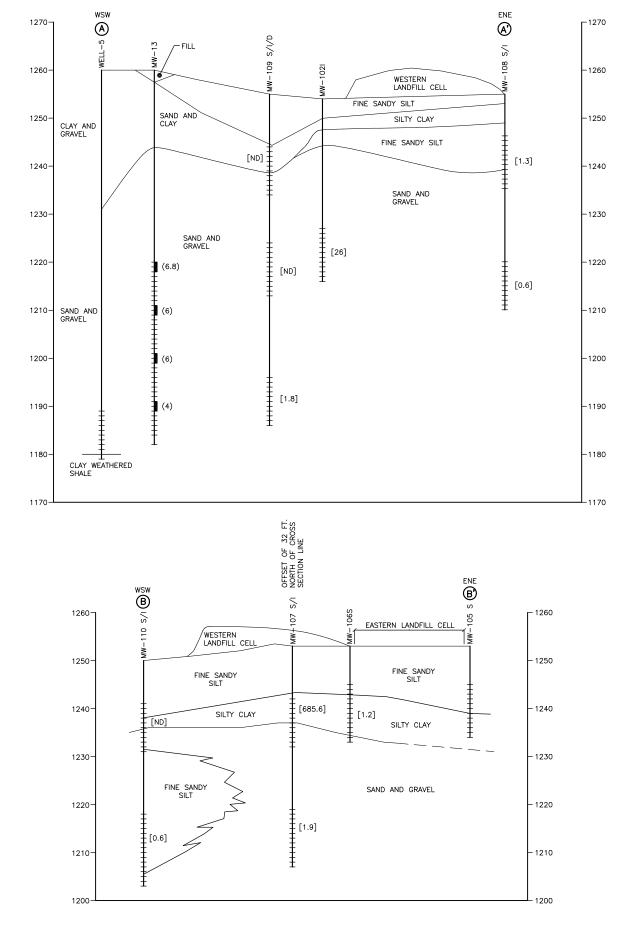


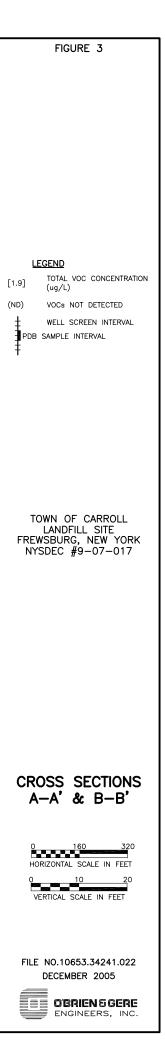
10653.34241 **MARCH 2005**

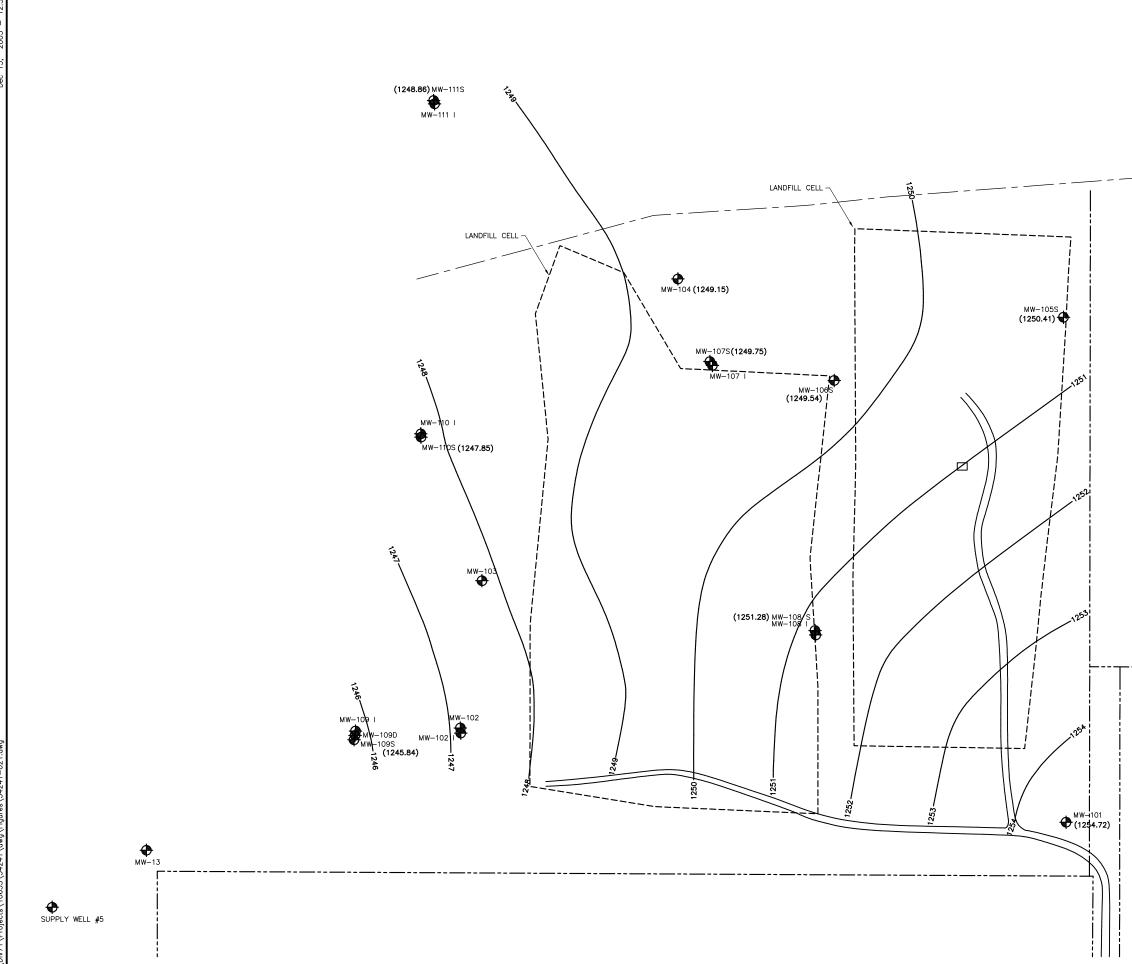
QUADRANGLE LOCATION

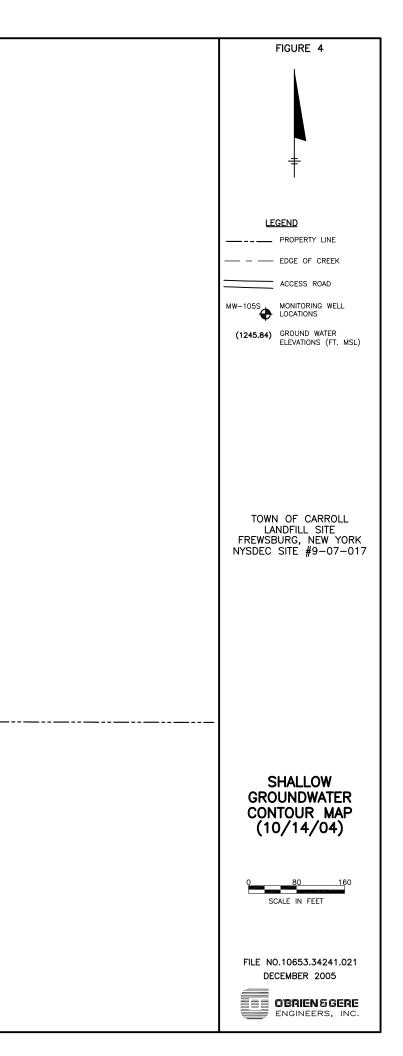
1:24,000

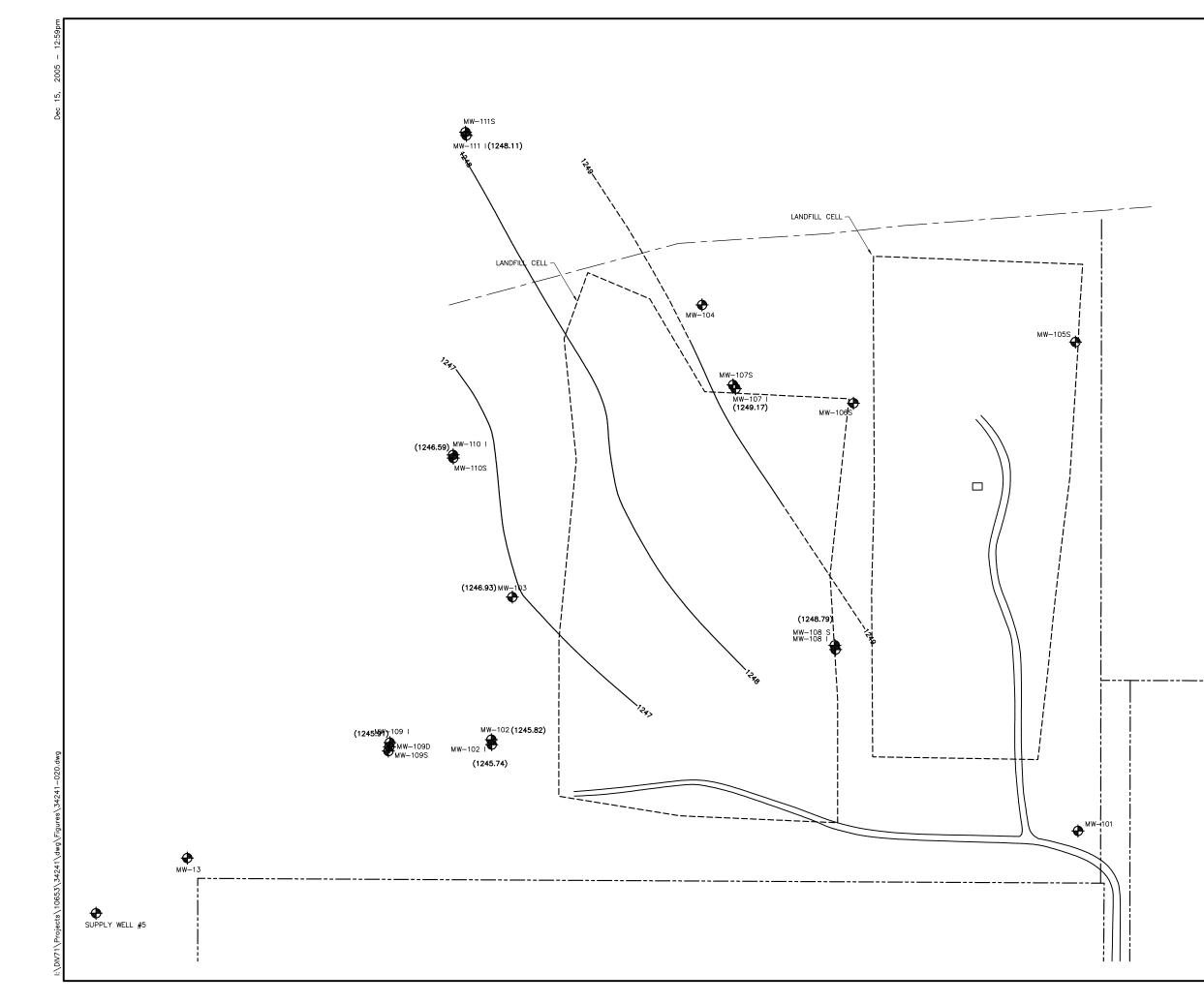


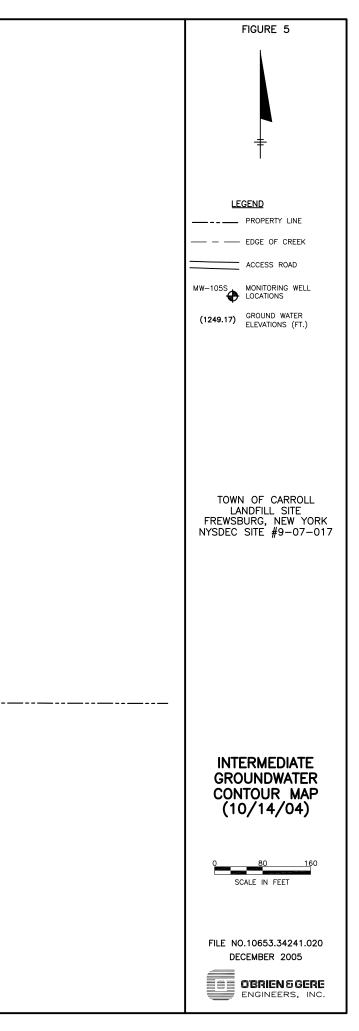


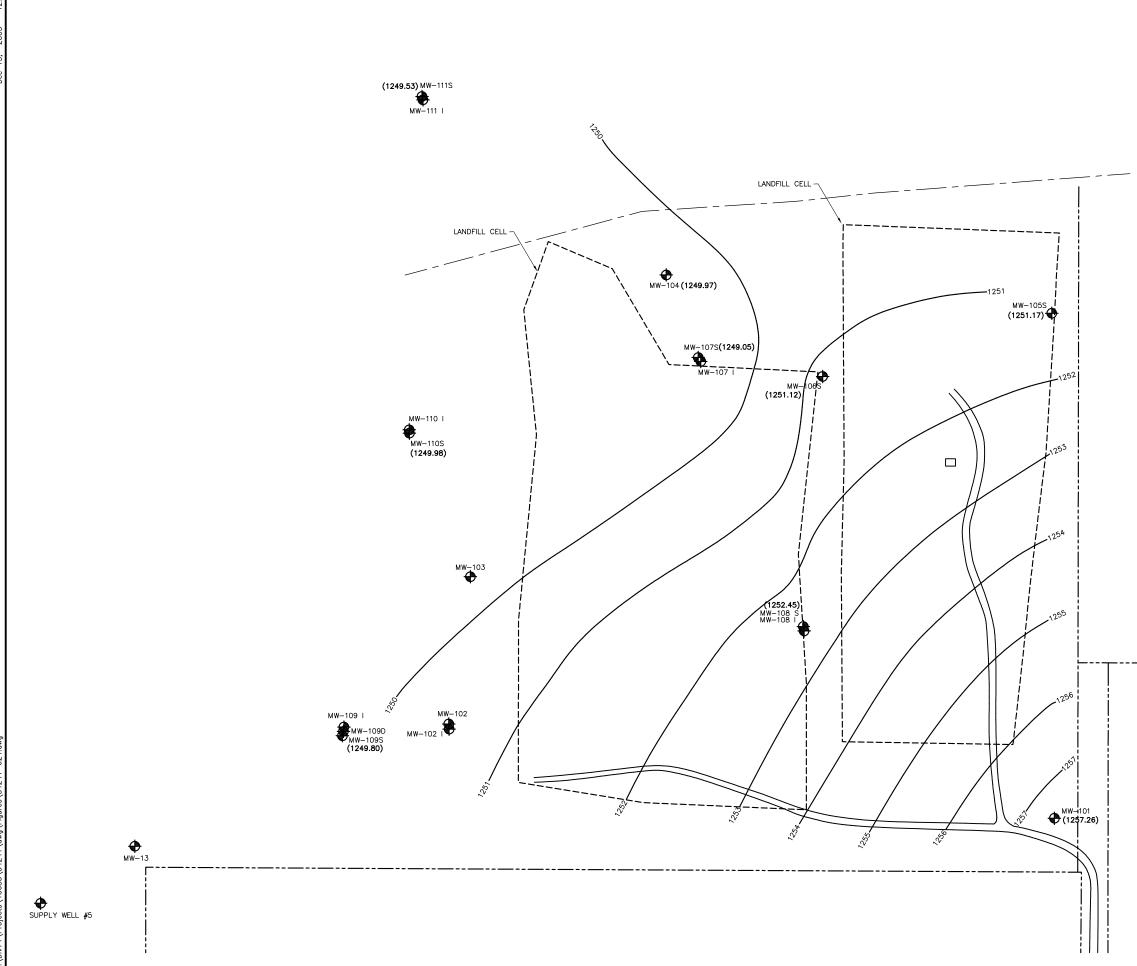

SAMPLE LOCATION PLAN 160 SCALE IN FEET	FIGURE 2 FIGURE 2 FIGURE 2 FROPERTY LIVE FIGURE OF CREEK FIGURE OF CREEK FIGURE OF CREEK FIGURE SOIL VAPOR LOCATIONS SW-1/SED-OISEDMENT LOCATIONS SW-100K OF CARROLL LANDFILL STIE FREWSBURG, NEW YORK NYSDEC SITE #9-07-017

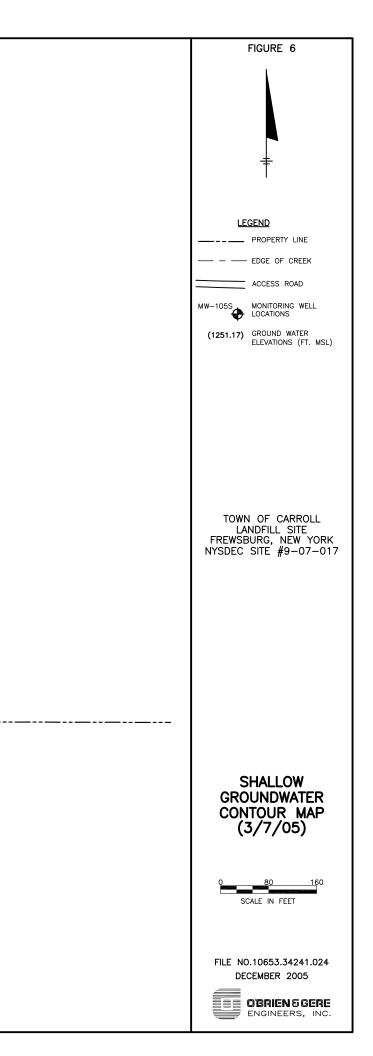

V71\Projects\10653\34241\dwg\Figures\34241-022.dwg

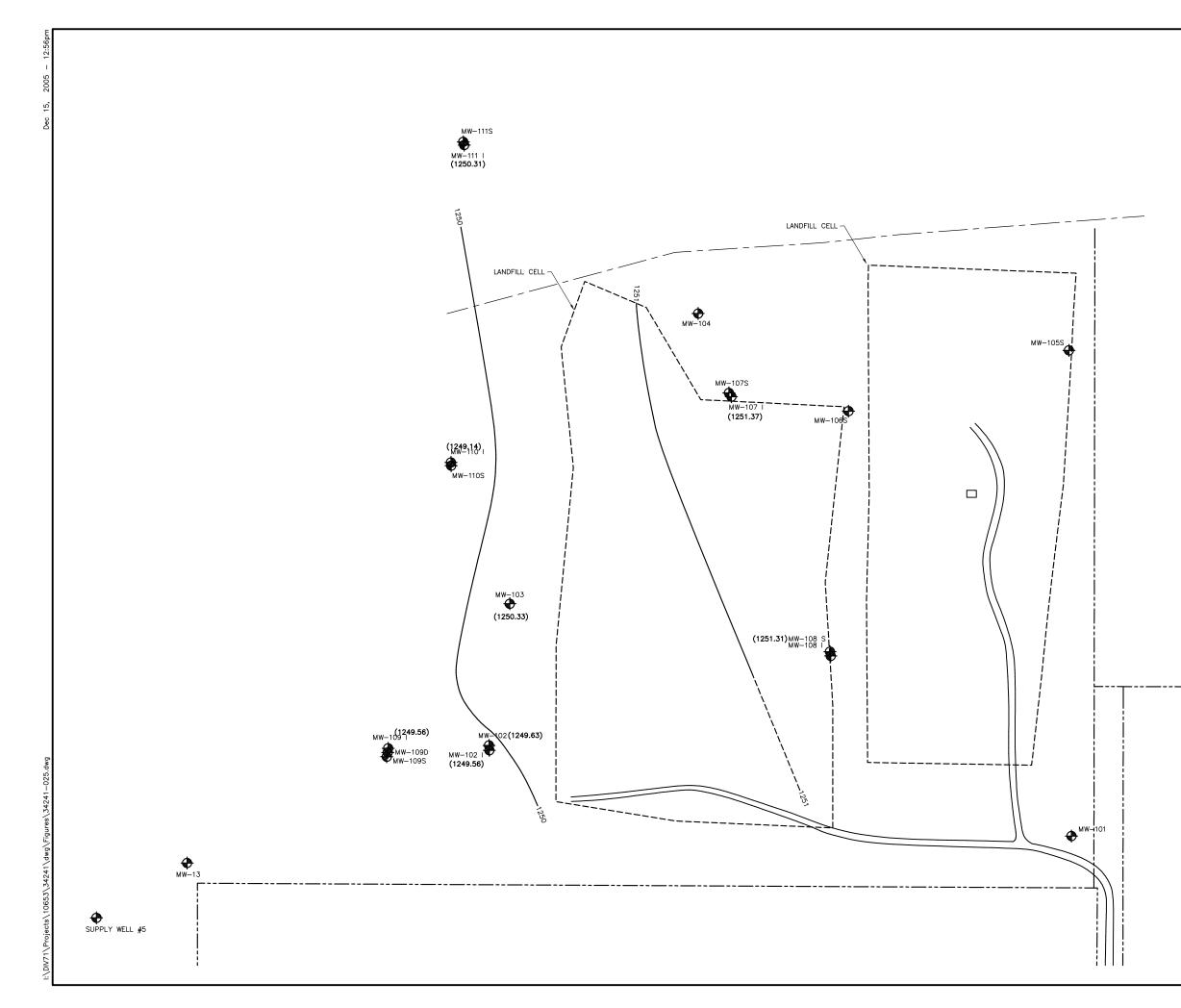


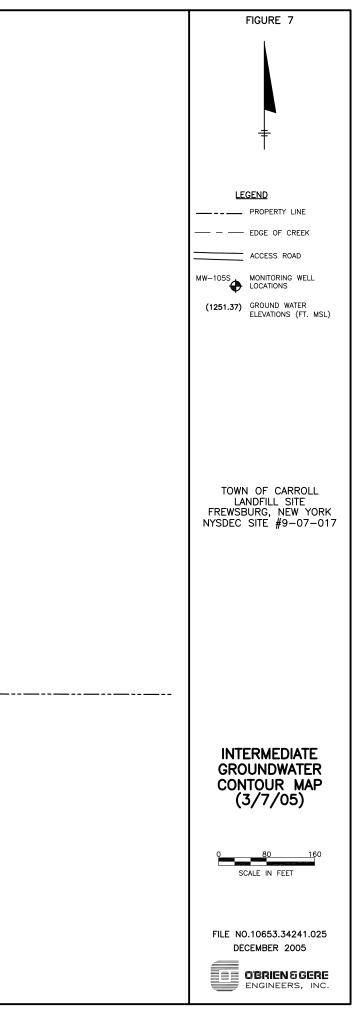




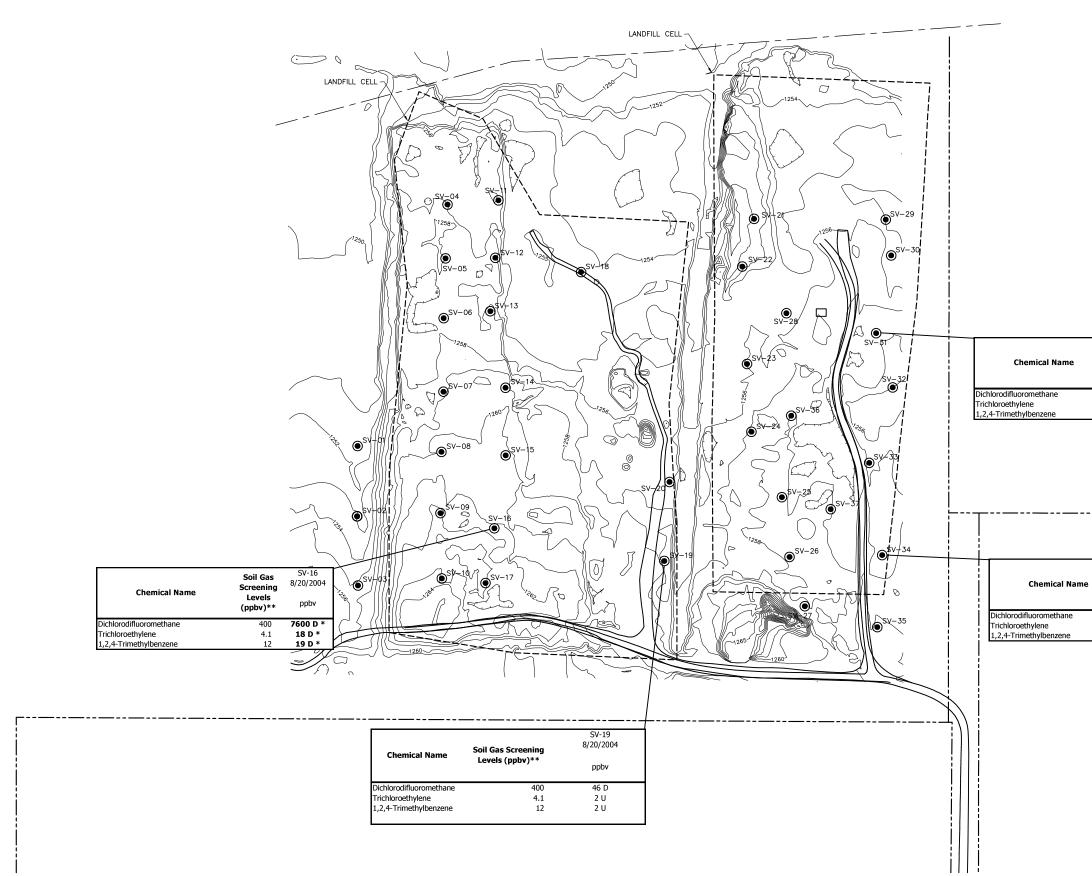


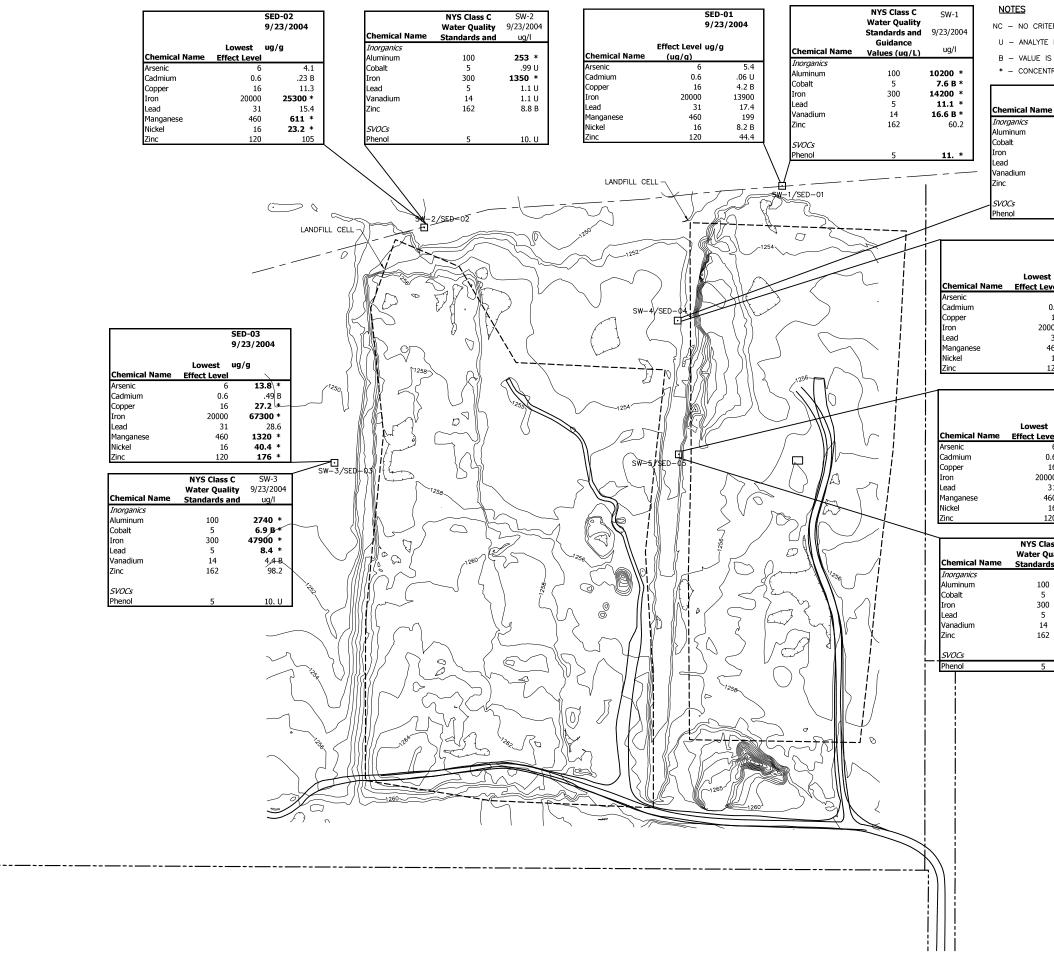




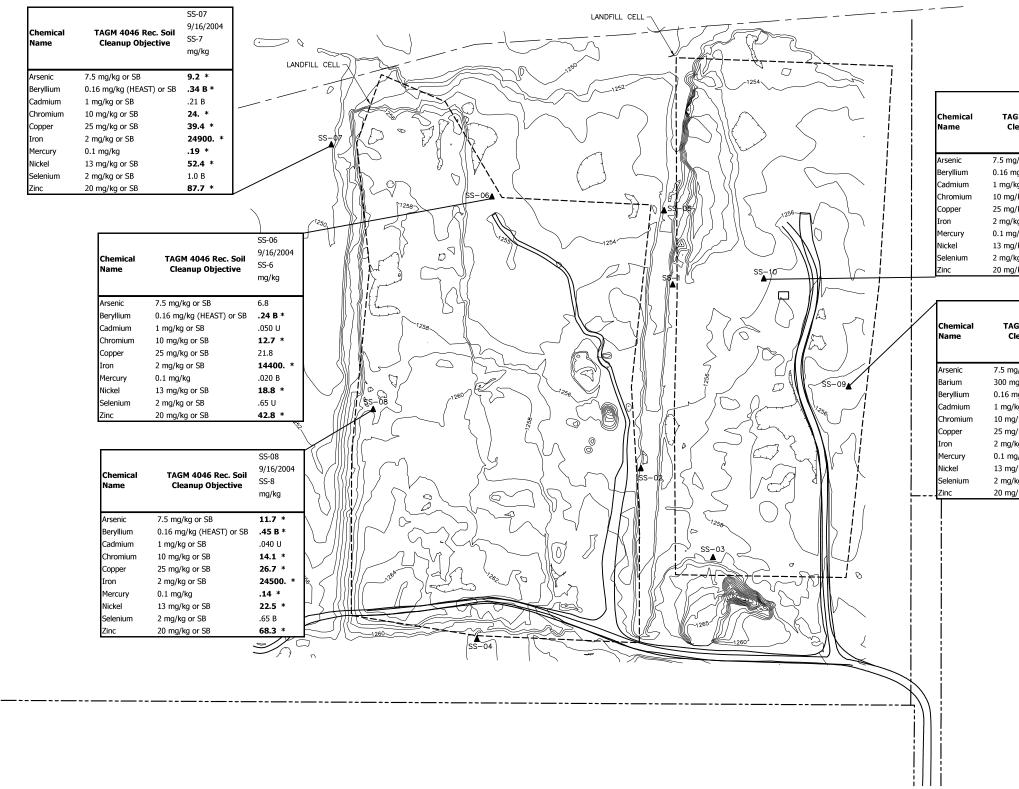


1\Projects\10653\34241\dwg\Figures\34241-024.c





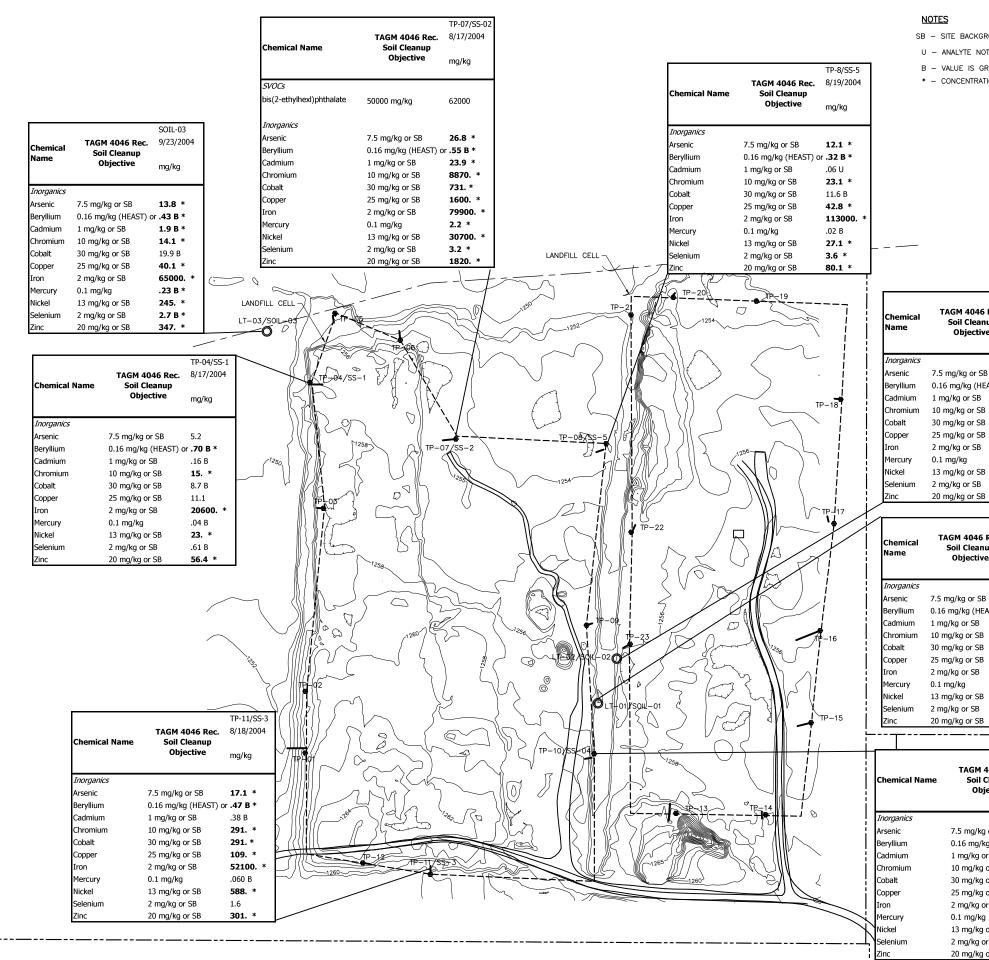
2. TARGET TO TARG GAS TO



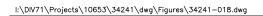
-i

	FIGURE 8
PA OSWER (2002): TABLE 2c: QUESTION 4 GENERIC NING LEVELS AND SUMMARY SHEET RISK = 1x10-4 T SHALLOW SOIL GAS CONCENTRATION CORRESPONDING RGET INDOOR AIR CONCENTRATION WHERE THE SOIL O INDOOR AIR ATTENUATION FACTOR=0.1 Csoil-gas	ŧ
	LEGEND PROPERTY LINE EDGE OF CREEK ACCESS ROAD SV-30 SOIL VAPOR LOCATIONS
Soil Gas SV-31 8/20/2004 Levels (ppbv)** ppbv 400 18 4.1 0.2 U 12 0.6 J	TOWN OF CARROLL LANDFILL SITE FREWSBURG, NEW YORK NYSDEC #9–07–017
Soil Gas SV-34 8/20/2004 Levels ppbv 400 0.6 J 4.1 0.2 U 12 4	SOIL VAPOR DETECTIONS GREATER THAN CRITERIA
	0 80 160 SCALE IN FEET
	FILE NO.10653.34241.014 DECEMBER 2005 OBRIEN & GERE ENGINEERS, INC.

				FIGURE 9
S				
NO CRITERI	A			
	OT DETECTED			
	REATER THAN IDL		HAN CRDL	
	NYS Class C	SW-4	l	
cal Name	Water Quality	9/23/2004		+
nics	Standards and	ug/l		1
ım	100 5	3820 * .99 U		
	300 5	12800 * 10.9 *		LEGEND
ım	14 162	6.6 B 69.9		
	102	05.5		EDGE OF CREEK
	5	11. U		
				ACCESS ROAD
	SED-04 9/23/2004			SURFACE WATER/ SW-1/SED-01 SEDIMENT LOCATIONS
Lowest	SED-4			
ffect Level				
6 0.6	.82 B *			
16 20000				
31 460	39.9 *			
16	26.8 *			
120	191 *			
	SED-05			
	9/23/2004 SED-5			
Lowest ffect Level	ug/g			
6 0.6	6 1 B *			
16	13.9			TOWN OF CARROLL LANDFILL SITE
20000 31	36200 * 20.8			FREWSBURG, NEW YORK NYSDEC SITE #9-07-017
460 16	593 * 28.2 *			····
120	148 *			
NYS Class				
Water Qual Standards a				
100	5260 *			
5	11.2 B *			
300 5	38000 * 22.5 *			
14 162	8.5 B 210 *			
5	11. U			
				SURFACE WATER
				AND SEDIMENT
				DETECTIONS GREATER THAN
				CRITERIA
				0 <u> </u>
				SCALE IN FEET
				JUALE IN FEEL
				FILE NO.10653.34241.015
				DECEMBER 2005
				OBRIENSGERE
				ENGINEERS, INC.


- SB SITE BACKGROUND
- U ANALYTE NOT DETECTED
- B VALUE IS GREATER THAN IDL BUT LESS THAN CRDL * - CONCENTRATION EXCEEDS CRITERIA

SS-10 9/16/2004 SS-10 mg/kg
9.2 *
.38 B *
.66 B
19.3 *
46.7 *
33900. *
.05 B
30.6 *
.85 U
381. *


SS-09
AGM 4046 Rec. Soil Cleanup Objective Mg/kg
mg/kg or SB 12.1 *
mg/kg or SB 448 *
6 mg/kg (HEAST) or SB .65 B *
g/kg or SB 2.9 *
ng/kg or SB 24.2 *
ng/kg or SB 89.3 *
g/kg or SB 71600. *
mg/kg .14 B *
ng/kg or SB 40.3 *
g/kg or SB 2.7 *
ng/kg or SB 229. *

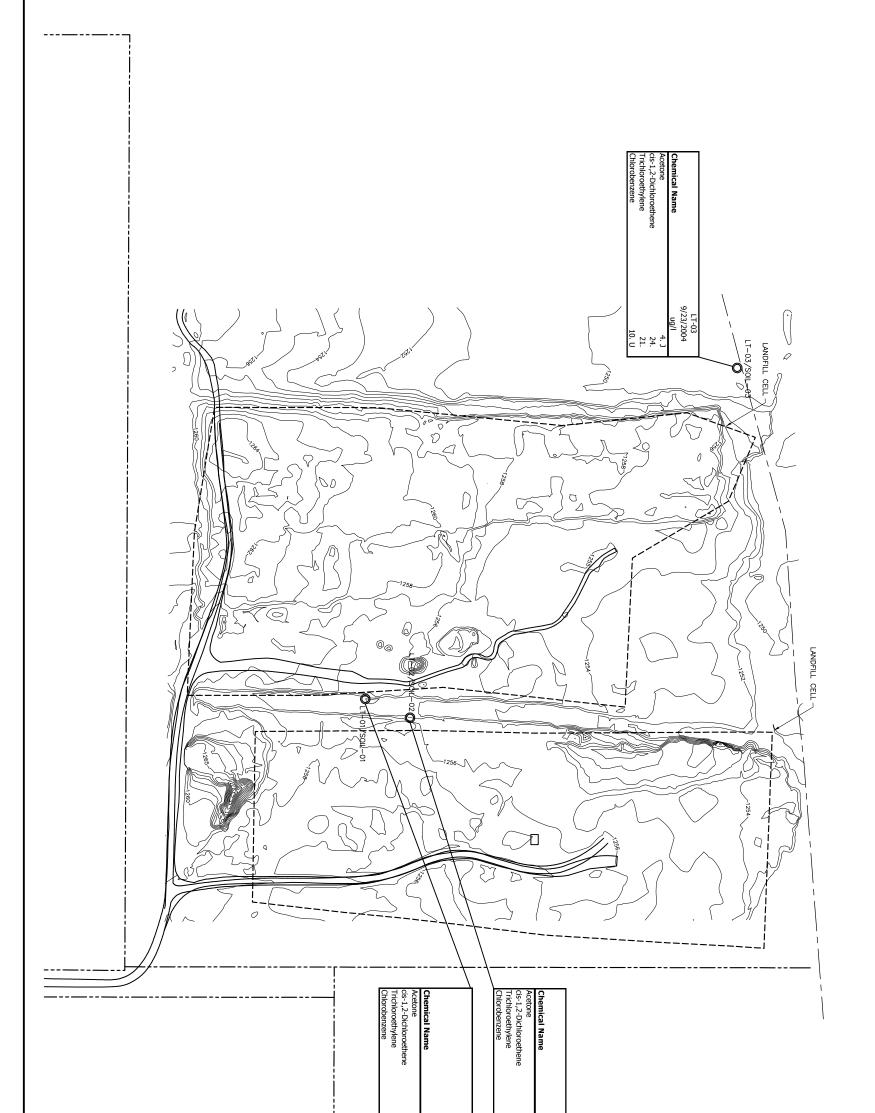



	FIGURE 11
	1
BACKGROUND	
TE NOT DETECTED	
E IS GREATER THAN IDL BUT LESS THAN CRDL	
ENTRATION EXCEEDS CRITERIA	
	⊥ ⊥
	T T
	LEGEND
	PROPERTY LINE
	ACCESS ROAD
	TP-18 TEST PIT LOCATIONS
SOIL-02 14046 Rec. 9/22/2004	
l Cleanup	
bjective mg/kg	
«g or SB 10.2 *	
/kg (HEAST) or .62 B *	
or SB .87 B g or SB 16.4 *	
g or SB 6.9 B	
g or SB 16.1	
or SB 59100. * <g .08="" b<="" td=""><td>TOWN OF CARROLL</td></g>	TOWN OF CARROLL
g or SB 22.5 *	LANDFILL SITE
or SB 2.4 *	FREWSBURG, NEW YORK NYSDEC SITE #9-07-017
g or SB 238. *	π^{-0}
SOIL-01	
4046 Rec. 9/22/2004 Cleanup	
ojective mg/kg	
g or SB 29.7 *	
kg (HEAST) or .70 B *	
or SB 1.9 B *	
g or SB 20.7 * g or SB 7.8 B	
g or SB 28.7 *	
or SB 87200. * g .15 B *	
g or SB 32.6 *	
or SB 4.1 *	
g or SB 318. *	SUBSURFACE SOIL
	DETECTIONS
TP-10/SS-4 FAGM 4046 Rec. 8/19/2004	GREATER THAN
Soil Cleanup	CRITERIA
Objective mg/kg	
i mg/kg or SB 6.5	0 80 160
6 mg/kg (HEAST) or .35 B *	SCALE IN FEET
ng/kg or SB 1.2 B * mg/kg or SB 5900. *	
mg/kg or SB 179. *	
mg/kg or SB 297. *	
ng/kg or SB 75800. * . mg/kg .16 B *	FILE NO.10653.34241.017 DECEMBER 2005
mg/kg or SB 4300. *	
ng/kg or SB 2.5 * mg/kg or SB 274. *	OBRIENSGERE
	ENGINEERS, INC.

NOTES NC – NO CRITERIA J – ESTIMATED C B – ANALYTE DE

FILE NO.10653.34241.018 DECEMBER 2005 OBRIEN 5 GERE ENGINEERS, INC.	
0 80 160 SCALE IN FEET	
LEACHATE SEEP ORGANIC CONSTITUENT DETECTIONS	
TOWN OF CARROLL LANDFILL SITE FREWSBURG, NEW YORK NYSDEC SITE #9-07-017	LT-02 9/22/2004 ug/l 10. U 10. U 10. U 10. U 10. U 9/22/2004 ug/l 10. U 10. U 10. U 10. U
LEGEND PROPERTY LINE EDGE OF CREEK ACCESS ROAD 	
FIGURE 12	RIA CONCENTRATION DETECTED IN ASSOCIATED BLANK

	FIGURE 13
	FIGURE 13
) CRITERIA	
IALYTE NOT DETECTED	
LUE IS GREATER THAN IDL BUT LESS THAN CRDL	
NCENTRATION EXCEEDS CRITERIA TIMATED CONCENTRATION	
ALYTICAL RESULT REJECTED DURING VALIDATION	↓ <u>+</u>
5	LEGEND
00,0005 HYS Claws MWN 1055 GA Watty 10/2003 Chemical Name Standards	PROPERTY LINE
Image Image Optimizer NS Avagencor Guidance NS Avagencor 25 28-2	EDGE OF CREEK
NS Banism 1000 393 380 NS Benjium 3 1.18 1.38 NS Codmism S 3.18 29 U	ACCESS ROAD
K6 Ommun 50 33.8 35.1 K6 Jenn 30.00 53.000 * 59.000 * K5 Land 25 10.5 50.00 * K6 Jenneima 35000 R 20000	TP-18 TEST PIT LOCATIONS
Manganese 3000 1040 740 Solution 2000 R 12400 10. U Thalkern 0.5 3.7 U 4.5 U	
10.0 VDGs 10.0 Dichlorodifluoromethane 5 10.0 10.0 10.0 Wright Chinide 2 10.0 10.0	MW-105S MONITORING WELL LOCATIONS
10. U Ghiroseftane 5 10. U 10. U usi-12_Chiroseftane 5 10. U 10. U 12_2-Delhoroseftane 6. 10. U 10. U Bezeres 1 10. U 10. U	
NS X(lene (Total) S 10. U 10. U NS SIGCe	
4-State/planed 1 12.0 HS 4-Shot-ShotPlaned 1 12.0 HS 4-Riter-planed 1 31.0 HS	
TP-22 2004	
	TOWN OF CARROLL
	LANDFILL SITE FREWSBURG, NEW YORK
	NYSDEC SITE #9-07-017
MYS State MW-1085 # HW-1085 Gal Water 20/12/0265 # HW-1085 Chemical II man Quality	
" 10/13/2004 3/7/2005 "Standards and ug/L ug/L Guidance	
* Argenic 42.6 3.98 584 622 628 Berfilm 304 652 627 13.8 384 652	
21.6 05.1 Combinin 5 2.0 29.0 2.0 2.0 Ohenmin 50 8.18 64.4* 12.4 2.78 Pon 300 55100 * 32400 * 55300 * 12/44 1/44 1/4 1/4 1/4	GROUND WATER
7.8 ;74 U Magnesium 35000 R 19200 R 18400 Manganese 3000 3150 * 2890 385 329 Sodium 20000 R 9590	GREATER THAN
it 16800 TheNhom 0.5 3.7 U 4.5 U 3.7 U 4.5 U 1000 1000 1000 1000	CRITERIA
30. U 10. U Very Checked 2 30. U 30. U 50. U	
10.U 10.U Benzenen 1 .6.J .7.J 10.U 10.U Xylene (Total) 5 10.U 10.U 10.U 10.U	
9-04Car +Medinghebend 1 NA NS 10.U NS +-holso-3-Methylphand 1 NA NS 0.U NS +-hittorg-bethylphand 1 NA NS	
25.U H5	SCALE IN FEET
	FILE NO.10653.34241.019 MARCH 2005
	ENGINEERS, INC.

Appendix A

Test pit logs

.

e
B
ব
E.
ary
B
8
, n
\mathbf{v}
_ <u>P</u> 0
୧
) mart
ij
÷
S
Ies
C

Test Pit ID	Total	Fill Del	Fill Depth (ft bg.)	Cover/Fill Description
	Depth (ft. bg)			
Western Cell		Top	Bottom	
10-41	3	2.5	ς.	Cover material consists of approximately 2.5-ft of silty clay. Fill materials consist of metal debris, metal turnings, plastic, and wood. Water was encountered at approximately 2-ft
				below grade. Water in test pit did not exhibit odor or sheen.
TP-02	~	1.5	4	Cover material consists of approximately 1.5-ft of silty clay. Fill materials consist of metal
	·			turnings, plastic, pieces of clothing, and tires. Water encountered at about 3.5-ft below grade
				within the fill. Water without odor/sheen. Native soil at about 4-ft below grade consisting of
			:	medium gray stiff clay some silt.
TP-03	~	4	7	Cover material consists of approximately 4-ft of gravel and silty clay. Fill material consist of
				scrap metal, plastic, tires, aluminum cans, broken bottles. Native soil encountered
				approximately 7-ft below grade consisting of grayish dark soft clay with some silt. Water
				was not encountered.
TP-04	2	6	4	Cover material consists of approximately 2-ft of silty clay with gravel. Fill materials consist
				of scrap metals, plastic, bottles, tires, and crushed drum. Native soil encountered
				below grade consisting of medium gray stiff clay some silt. W
				encountered.
TP-05	5	2	4	Cover material consists of approximately 2-ft of silty clay and gravel. Fill materials consist
				of scrap metals, plastics, bottles, cans, pieces of cables. Native soil was encountered
				approximately 4-ft below grade consisting of medium gray stiff clay some silt. Water was not
				encountered.
				Note: Limit of fill is further north and closer to a drainage swale than previously expected
	-			based on previous mapping.
TP-06	S	7	،	Cover consists of approximately 2-ft of silty clay and gravel. Fill materials consists of scrap
				metals, plastics, bottles. Water was encountered approximately 3-ft below grade within the
				till. Water in test pit did not exhibit odor or sheen.
/0-41	9	7	9 ~	Cover material consists of approximately 2-ft of silty clay and gravel. Fill materials consist
				of pieces of wood, plastic, and a crushed drum with some metal turnings inside. Water was
				encountered approximately 1-ft below grade.
				Note: Limit of fill was encountered further east than initially expected based on previous
				mapping.
TP-08	3	1.5	2	Cover material consists of approximately 1.5-ft of silty sand and gravel. Fill materials consist
				drums. Native soil
				encountered approximately 2-ft below grade consisting of dark gray clay some silt and
				organic matter. Water was not encountered.
				Note: Limit of fill was encountered approximately 350-ft further east than initially expected
				based on previous mapping.
	ı			

9
ğ
Tal
-
lary
Ë
E
S
ဗိ
Ï
Pit
est
) minute

Test Pit ID	Total	Fill Der	Fill Depth (ft bg.)	Cover/Fill Description
	Depth (ft. bg)		_	4
Western Cell		Top	Bottom	
TP-09	4	5	3.5	Cover consists of approximately 2-ft of silt and fine sand with some gravel. Fill materials consist of household refuse, plastic, bottles, and tires. Native soil was encountered approximately 3.5-ft below grade consisting of brownish clay. Water was not encountered. Note: Limit of fill was encountered approximately 350-ft further east than initially expected based on previous mapping.
TP-10	4	5	3.5	Cover material consists of approximately 2-ft of silt and fine sand. Fill materials consist of household refuse, plastics, and bottles. Crushed drum found close to surface. Native soil was encountered approximately 3.5-ft below grade consisting of brownish clay and silt. Water was not encountered. Note: Limit of fill was encountered approximately 350-ft further east than initially expected based on previous mapping.
TP-11	5	1	Ş	Cover consists of approximately 1-ft of silty clay with some gravel and cobbles. Fill materials consist of crushed drums, scrap metals, plastic, batteries, and stumps. Water encountered approximately 1-ft below grade.
TP-12	10	1.5	6	Cover material consists of approximately 1.5-ft of gravel and silty clay. Fill materials consist of scrap metals, plastics, cans, tires, and crushed drums. Native soil encountered approximately 9-ft below grade consisting of dark gray stiff clay with some silt. Water encountered at approximately 8.5-ft below grade
Test Pit ID	Total Depth (ft. bg)	Fill Del	Fill Depth (ft bg.)	Cover/Fill Description
Eastern Cell		Top	Bottom	
TP-13	4	1	3	Cover material consists of approximately 1-ft of gravel, silt, and sand. Fill materials consists of metal turnings, plastics, papers, toys, bottles, wood, pieces of hose. Native soil encountered approximately 3-ft below grade consisting of clay and silt. Water was not encountered.
TP-14	4		3.5	Cover material consists of approximately 1-ft of silt, sand, and some gravel. Fill materials consist of construction waste such as wires, hose, pipes, metal debris, and some wood. Native soil encountered approximately 3.5-ft below grade consisting of clay and silt. Water was not encountered.
TP-15	3		2.5	Cover material consists of approximately 1-ft of silt and fine sand with some gravel. Fill materials consist of crushed drums, car parts, parts of wheel barrel, bottles, plastics. Native soil encountered approximately 2.5-ft below grade consisting of dark gray clay and silt. Water was not encountered.
TP-16	2	-	7	Cover material consists of approximately 1-ft of silt and fine sand. Fill materials consist of parts of refrigerators, bottles, plastics. Water encountered at approximately 1-ft below grade.

Test Pit Log Summary Table

Test Pit ID Eastern Cell TP-17 TP-18 TP-18 TP-19 TP-20 TP-20 TP-21 TP-21	TotalDepth(fft. bg)553.53.53.5	Fill Dep Top 2 2 2 3urface surface 2	Fill Depth (ft bg.) Top Bottom 2 3 2 3 0.5 1 0.5 1 urface 1 urface 4 2 -3	Cover material consists of approximately 2-ft of silt and fine sand with some gravel. Fill materials consist of tires, bottles, and plastic. Native soil encountered approximately 3-ft below grade consisting of clay and silt. Water was not encountered. Cover materials consist of approximately 0.5-ft of silt. Fill materials consist of brush, logs, and stumps. Native soil encountered approximately 1-ft below grade consisting of gray clayes silt. Water was not encountered. Cover material consists of approximately 1-ft of silt and fine sand. Fill materials consist of brush, logs, and stumps. Native soil encountered approximately 1.5-ft below grade consisting of gray clayes silt. Water was not encountered. Fill material consists of brush, logs, and stumps. Native soil encountered approximately 1-ft below grade consisting of gray clay silt. Water was not encountered. Fill material consists of brush, logs, and stumps. Native soil encountered approximately 1-ft below grade consisting of gray clay silt. Water was not encountered. Fill material consists of brush, logs, and stumps. Native soil encountered approximately 1-ft below grade consisting of gray clay silt. Water was not encountered. Fill material consists of brush, logs, and stumps. Native soil encountered approximately 1-ft below grade consisting of gray clay silt. Water was not encountered. Fill material consists of brush, logs, and stumps. Native soil encountered approximately 1-ft below grade consisting of gray clay silt. Water was not encountered approximately 1-ft below grade consisting of gray clay silt. Water was not encountered approximately 1-ft below grade consists of brush, logs, and stumps. Sutive soil encountered approximately 1-ft below grade consists of brush, logs, and stumps. Native soil encountered approximately 1-ft below grade consists of brush, logs, and stumps. Native soil encountered approximately 1-ft below grade consists of brush. Jogs, and stumps. Native soil encountered approximately 2-ft of silt and fine sand some clay and gravel. Fill
TP-23	4	0.5	1	Cover material consists of approximately 0.5-ft of silt and fine sand with some clay and gravel. Fill material consists of plastics, bottles, and cans. Native soil encountered approximately 1-ft below grade consisting of brownish clay silt.

O'BRIEN & GERE Engineers, Inc.	TEST PIT LOG		TNO. TP-01
PROJECT: Town of Carroll Landf		JOB NO.:	34241.001.002
CLIENT: NYSDEC		GROUND EL	.EV.:
CONTRACTOR: SJB Drilling Co.		Page 1 of	
EQUIPMENT:			ATER DEPTH:
OPERATOR:	TIME STARTED: 1230 PM	DATE STAR	ТЕD: <i>8 16 _D 4</i>
INSPECTOR: Yuri Veliz	TIME FINISHED: 1345 pm	DATE FINIS	HED: 8/18/04
Depth Sample Ft. # PID (ppm)	GEOLOGIC DESCRIPTION	1	REMARKS
1 0.0 Some	DWA (), SOFT, MOIST, SIL ned. is sund and gruvel, yo	DTS.	Native
2 D. D Dark	2.15 is grayish black	y ilay	Nutive 20'
	vown () SOFT, Moist, Sitt 2.1" is grayish black <u>Fill</u> ing of metal pipe, plastic, voots. water at ~ 2' bg.	pieces of= Nater 15	FILL
	but no odor, no sheen. pit at ~ 3' bg.		
		< <u>− 35'</u>	> ↓
TEST PIT LOCATION AND NOTES -WE FOUND WATER AT ~ WE STOP THOSE ble water bottom OF FILL. - 200' From SW Corned	"bg. pit was ~ 3' deep. won't allow to Find the	عند المعند ا 1 31 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	$\frac{1}{1} \frac{1}{1} \frac{1}$

4

· · · · · ·

	BRIEN 5 NGINEERS		TEST PIT LO	G TEST	PIT NO. TP-02		
PROJECT: Town of Carroll Landfill JOB NO.: 34241.001.002							
CLIENT: NY	CLIENT: NYSDEC GROUND ELEV.:						
CONTRACT	OR: SJB Dri	lling Co.		Page 1 of			
EQUIPMEN	ſ:			GROUNE	WATER DEPTH:		
OPERATOR			TIME STARTED: 0800	DATE ST	ARTED: <u>9/17/04</u>		
INSPECTOR	: Yuri Veliz		TIME FINISHED: 0835	DATE FIN	NSHED:		
Depth Sample Ft. #	e PID (ppm)	G	EOLOGIC DESCRIP	TION	REMARKS		
1 -	0.0	Moderate brow Some mid-	(s Guavel, Fine Sam	SILTY CLAY, J.	SILTY CLAY		
2 -		AT~ 1.5 IS FI	the second se	۱. و			
3 -	0.0	-> CLOTHES, F	Lastic, Sevap meta	I, TIVES	FILL		
4				ι	1 marcano to stranen		
5 -	0.0	Medium gray Some SILT.	(NT), Saturned, ST Natur on Top of cla	TIFF, <u>Llay</u> ,	CLAY - SILT -		
6 - 7 _	0.0	End of pit. Well Installo	~ 7'69	7	·		
- 100' Fr - Tempor		1	m 7' bg. Severned	1 3, 1 Maria			
F*07=1	7'-0'bg			1691 1			

	BRIEN & NGINEERS		TEST PIT LOG	TEST PIT	NO. TP
PROJECT: Town of Carroll Landfill JOB NO.: 34241.001.002					
CLIENT: NY				GROUND ELE	:V.:
EQUIPMEN	OR: SJB Dri	lling Co.	·	Page 1 of GROUND WA	
OPERATOR			TIME STARTED: 1430		ED: 8/16/04
INSPECTOR			TIME FINISHED: 1500	DATE FINISH	
Depth Sampl Ft. #		GI	EOLOGIC DESCRIPTIC	DN	REMARKS
ι 2	Ø. D	Moderate ! grave cand	SILTY CLAY.	ose, med-es	Gravel + SILT
2 3 4	0.0	FILL MATERI	algbronce bottles, cu Tives, scrap, netal	n, plastic, 41-	FILL
5 - 6 -	0.0			71	
+ - 8 -	0.0	Gravish davh(<u>SILT</u> End of pot), MOLST, SOFT, Clar	' ľ	clay -Silt
-					
1					
	CATION AN		, vy	اح ا0' - ساليد (اع' ا ع' TEST PIT P	$ \begin{array}{c} \hline \hline \\ \hline \\ \hline \\ \hline \\ \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ $

Ŋ

O'BRIEN & GERE ENGINEERS, INC.	TEST PIT LOG	TEST PIT	NO. TP-04			
PROJECT: Town of Carroll Landfill						
CLIENT: NYSDEC	·······	GROUND ELI	EV.:			
CONTRACTOR: SJB Drilling Co.		Page 1 of				
EQUIPMENT:		GROUND WA	TER DEPTH:			
OPERATOR:	TIME STARTED: 0935	DATE START	ED: 8/17/04			
INSPECTOR: Yuri Veliz	TIME FINISHED: 1625	DATE FINISH	ED:			
Depth Sample Ft. # PID (ppm) G	EOLOGIC DESCRIPTIC	DN .	REMARKS			
0.0 and med la			SILTY LLay			
Fill ma Terri.	al -> Scrap metal, dro	m, plastic	FILL			
SS-1 Soil	Sorries, Tives		r i cc			
1 - supple 5 6.0 Medium gra; 5 SILT	(NS) WET, STIFF ela	y i some	elay			
6 - 7 - 0.0 Endors pit	at ~ 7'bg	7'				
TEST PIT LOCATION AND NOTES:	· · · · · · · · · · · · · · · · · · ·	< <u></u>				
- 200' From TP-D3 (New NW Corne - Soil Surple collected TP		<− 12' -				
- JOIL FOR PLC CONCEPTED TF	- 07 [33 -]	TEST PIT F	PLAN A NORTH			

 $h^{(q)}$

		BRIEN & GINEERS		TEST PIT LOG	TEST PI	NO. TP-05	
PROJ	PROJECT: Town of Carroll Landfill JOB NO.: 34241.001.002						
	IT: NYS				GROUND EL	EV.:	
		R: SJB Dri	lling Co.	· · · · · · · · · · · · · · · · · · ·	Page 1 of		
EQUI	PMENT:				GROUND WA	ATER DEPTH:	
	ATOR:			TIME STARTED: 1130	DATE START		
		Yuri Veliz		TIME FINISHED: 1250	DATE FINISH	ED:	
Depth Ft.	Sample #	PID (ppm)	GI		ON	REMARKS	
1 _		0.0	clay and ,	own (Syr 3/4), dry la ned- cs Gravel, boul	eurs al	SIET-I CLAY	
2		0.0	FILL MATERI.	ut - clothes, sovap Plastic cans, b Pipes, cables	me Tal,	FILL	
4 _ 5 _	- - - - -	0.0	Medium gra clay some	sict.	TI STIFFI	clay	
-					5'		
						•	
-							
- - h.	ard 7	S FINd	the edge of	IC FILL, IT IS closer when map.	I ← · · I I I I I I I I I I I I I I I I I I	$\frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2}$	

		BRIEN S		TEST PIT LO	G TEST PI	TNO TP-06
PROJ	-	GINEERS		·····	JOB NO.:	34241.001.002
	IT: NYS				GROUND E	
		R: SJB Dri	ling Co.		Page 1 of	
	PMENT:		· · · · · · · · · · · · · · · · · · ·			ATER DEPTH:
	ATOR:	Yuri Veliz		TIME STARTED: 1430 TIME FINISHED: 1515	DATE STAR DATE FINIS	
	Sample #	PID (ppm)	GI	EOLOGIC DESCRIP		REMARKS
1		D . U		wn (sxn 3/4) dry, 600 Cs Grunel, boulder		SILTY CLAY Gravel
2-			FILL Mate	lial -> plastic, Sc bott les.	sup metals,	For a second
3 -		0.0	water Com	is out of the fill	3'	FILL
5 _			End of pit	-		Fill
		D. D	Well Installe	ed From 5'-0'bg	5	
-						
-						
_						
-						
- 10	o as	CATION AN ST DF TF NSTalle		ibg	$ \leftarrow i 2'$	

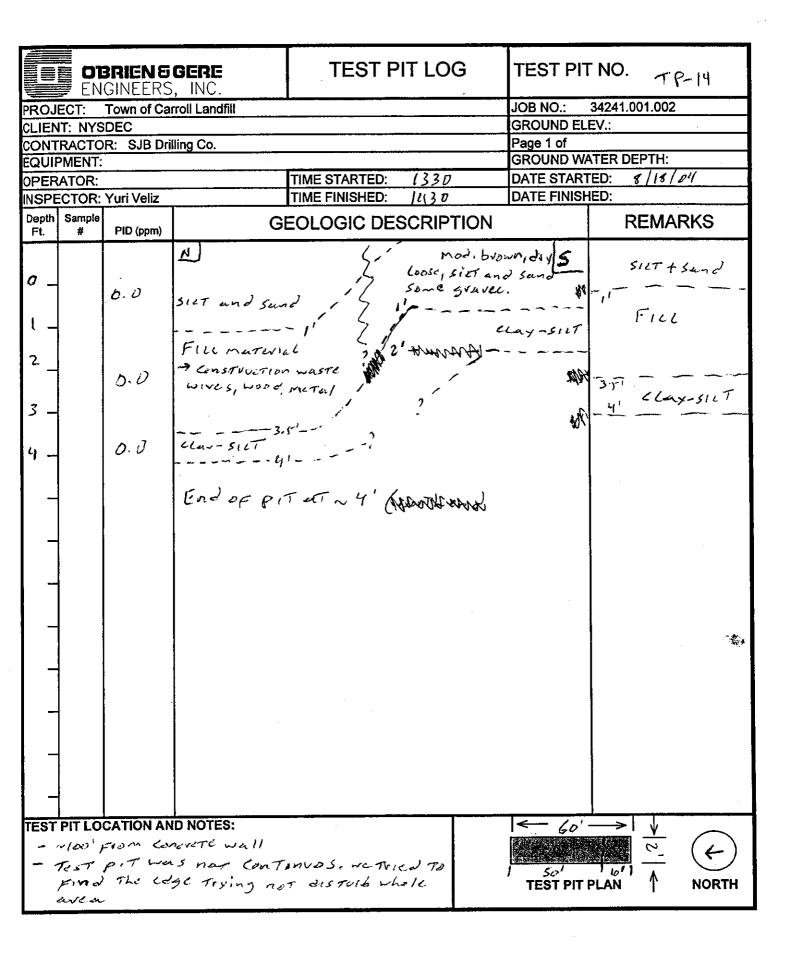
.

OBRIEN 5 ENGINEERS		TEST PIT LOG	TEST PIT	NO. TP-D7		
PROJECT: Town of Ca	rroll Landfill	· · · · · · · · · · · · · · · · · · ·	JOB NO.:	34241.001.002		
CLIENT: NYSDEC GROUND ELEV.:						
CONTRACTOR: SJB Drilling Co. Page 1 of						
EQUIPMENT:			GROUND WA			
OPERATOR:		TIME STARTED: 1520	DATE START			
INSPECTOR: Yuri Veliz		TIME FINISHED: 1730	DATE FINISH	ED:		
Depth Sample Ft. # PID (ppm)	G	EOLOGIC DESCRIPT	ION	REMARKS		
1 - 0.0	and some b	own (SUR 3(4), 204, loo wavel, Fine sund.	2'	SILTX clay Fr sand		
2- D.D 3-55-2 4- DVM	FILL MATEN	ial -> wood: pieces, 55-gal duum cu metals in IT. -> Saturated	plastic, inshed, some	FILL		
5 - 6 _ O.V	End of pir-	or allow see bottom	op Fill.	F126		
	Soil Sample	-, TP-07/55-2 (e	um)			
TEST PIT LOCATION AN	ID NOTES:		I <	$ \begin{array}{c} \longrightarrow \\ & \downarrow \\ \hline \\ & \blacksquare \\ \hline \\ & \blacksquare $		

OBRIENS GERE ENGINEERS, INC. TEST PIT LOG TEST PIT I						
		rroll Landfill		JOB NO.:	34241.001.002	
				GROUND ELE		
LIENT: NYS				Page 1 of		×.
ONTRACTO		ming co.	E ula Euch	GROUND WA	TER DEPTH:	
QUIPMENT:			BACKHOO FORD TIME STARTED: 0800	DATE START		
PERATOR:	Ken	Fuller	TIME FINISHED: 2941	DATE FINISH		
NSPECTOR: Depth Sample Ft. #	PID (ppm)	G	EOLOGIC DESCRIPTIO		REMARK	S
<u> </u>		Modwate bu	10wn (54R 3/4), MO(ST, 100	SC, FIRE	SILTY Same)
1-	g. 🛛	Sand und	SILT, Some guavel.	1.5-1	Gravel	
<u> </u>		AT ~1.5' FIL			FILL	
2 -		-> Savan ne	Tals, bostles, Cans, we	and the second	· 	
		6	, , , , , , , , , , , , , , , , , , , ,	-, ourch'		
3 -		Soil (003	matter),		clay	•
						47
4 -	\mathcal{D} , \mathcal{D}	AT ~2' 15 da	wh guny clay, some SI	LT. This		e J
1	2	depth is Cr.	sistent from the begin	ing of pit		
			assed Contact) vorward			
	tol 20	100' So Far. 1	we keep going cast Try	مرد فرمان م		
_	the contraction of the second s	F FICC		-		j.
-		ding to map	280 'cast from edge of	Fill accor-		
		8/19/04	•	5 /		
			rek have To heep goin	g Further		
-		cast. We found e	Spe of Fill at ~ 3	to cast		
		- cupposse	d consuct. Is collected From dr			
		Soil Sampe FP-D8/SS-	5			
-		- Fhotos - 11	12,13	11		
_						
TEST PIT LO	CATION A	I		< <u>−350'</u>	>\ \	
- 1100	South a	= 1P-07				\frown
^ر ے رہا		1 TINUSS. WC V	~ shipping remain			エノト
- T: 57 P	17 1001	1. TINA SOLL		1 340'	1will	
UNTIL	FINGA	In TIVE Sore		TEST PIT	PLAN ANT 4	IORTH
- CALL S	in nple	collected				

	OBRIEN ENGINEE		TEST PIT LOG	TEST PIT	NO. Tr-9
PROJEC		JOB NO.: 3	4241.001.002		
CLIENT:	: NYSDEC	GROUND ELE			
CONTR	ACTOR: SJB	Drilling Co.		Page 1 of	
EQUIPM	MENT:			GROUND WAT	TER DEPTH:
OPERAT	TOR:		TIME STARTED: 1310	DATE STARTE	D: 8/19/04
INSPEC	TOR: Yuri Veli	Z	TIME FINISHED: 1337	DATE FINISHE	D:
Depth S Ft.	Sample # PID (ppr	m) G	EOLOGIC DESCRIPTIO	ON	REMARKS
0_	0.0	Mod. brown,	Moist, Sict and Fn &	E Sand Some	· ·
' _ 2 _	0.0	FILL MORNIAL-1		SILT +Sand	
3 _ 4 _	0.0	Brownish clay Saturated	י- טאוז	ciny	
-		End of pri Photo = 171,	- ar 41bg. 170,189		
-					
	T LOCATION D ¹ NovTh	AND NOTES: From TP-10		← 15' − 4' 6 7EST PIT PI	

•


.

						Ax.	
		B RIEN 5 Gineers		TEST	PIT LOG	TEST PI	TNO. TP-10
PROJ	ECT:	Town of Ca	rroll Landfill			JOB NO.:	34241.001.002
	NT: NYS					GROUND EL	EV.:
		R: SJB Dri	lling Co.			Page 1 of	
	PMENT:				-1	the second s	ATER DEPTH:
	ATOR:	N(TIME STARTED:	1140	DATE START	
		Yuri Veliz	I · · · · ·	<u> </u>	1230	DATE FINISH	
Ft.	Sample #	PID (ppm)	G		SCRIPTI	ON	REMARKS
			W			E	
0 -		D-0	Mod. brown, Silt + Fn S	dry, loose Sand		SILT +	
2'_					میں کا تہ لے	For Sound	
3' _		0.0	FILL MATERIAL Domestic garbo PLASTIC,	SC, BOTTIES	×	elax-set	
4'_		0. Ū	Brown clarks	sut unit			
-			End of por Soil sample				
-							
-							
-				•			
							L
		ATION AN				l<−_15'	
-12	y w i	eron co	nevere wall, 7	hon 200' NON	/m.		
- 5	oil :	sample.	Collected Fr	on surficia	- 1	1 10	
2	wom	(TP-10)	\$ >- 7/			TEST PIT	AN TNORTH

OBRIENSGERE ENGINEERS, INC.	TEST PIT LOG	TEST PIT NO. TP-11					
PROJECT: Town of Carroll Landfill JOB NO.: 34241.001.002							
CLIENT: NYSDEC GROUND ELEV.:							
CONTRACTOR: SJB Drilling Co.		Page 1 of	Í				
EQUIPMENT:		GROUND WATER DEPTH:					
OPERATOR:	TIME STARTED: jols	DATE STARTED: 9/18/04					
INSPECTOR: Yuri Veliz	TIME FINISHED: NUT	DATE FINISHED:					
Depth Sample Ft. # PID (ppm)	EOLOGIC DESCRIPTION	REMARKS					
D. D Fil material Duums, stump metals, Ratt	mod. brown no	$\frac{5}{10} \frac{5}{10} \frac$	Ø				
2 SS-3 Drum D. D SUTURATEd FILL	Some SILT		5'				
5- 0.0 FROM	$\tau \sim 5' b a$.						
6- BOTTOM OF	pit not found ble	water					
8 _							
TEST PIT LOCATION AND NOTES: - 100' cast From TP-12 - soil somple collected TP-11/55-3	From 2000 (1100)	$\begin{array}{c c} & \longrightarrow & 1 \\ \hline \\$					

	OBRIEN ENGINEE		TEST PIT LO	G TEST PIT	TNO. TP-12
PROJE	CT: Town of	Carroll Landfill			34241.001.002
CLIENT: NYSDEC GROUND ELEV.:					
CONTRACTOR: SJB Drilling Co. Page 1 of EQUIPMENT: GROUND WATER DEPTH:					
EQUIPA	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	TIME STARTED: 1540	DATE STAR	······································
	TOR: Yuri Veli	7	TIME FINISHED: 1630	DATE STAR	
Depth S		6	EOLOGIC DESCRIP		REMARKS
1 -	6.0	Moderate bi gravel and	Nown (), diy, lo SILTY CLAY.	ose, med - Cs 1. t ¹	GUAUCE SICTY CLAY
2 - 3 -		AT ~ 1.5 beg -> Scovap me Tives, dv.	etal, bottles, Can	l. ⁵ , plastic,	
4 - 5 -	<i>b.D</i>	FILL MATCH	via l		Fill
6 -	6.0	FILL Mate	N(al		
7 - 8 -	D, D	FILL MOTO	evial		
9 - 10 _ -	0.0	LITTLE WOTE	· (), wet, stiff, v right at clay. at ~ 10' bg	Clay some 9'	elley-sict
-					
	IT LOCATION ۲۰ - ۲۰ ۲۰ ۲۰ ۲۰			TEST PIT	$ \begin{array}{c} \longrightarrow \\ & \downarrow \\ $

		BRIEN 6 GINEERS		TEST PIT LO	CG	TEST PIT	NO. TP	-13
PROJ		Town of Ca				JOB NO.:	34241.001.002	
CLIENT: NYSDEC GROUND ELEV.:								
		R: SJB Dri	lling Co.			Page 1 of		
	PMENT:					GROUND WA		
OPER	ATOR:			TIME STARTED: 1230	2	DATE START		04
INSPE	ECTOR:	Yuri Veliz		TIME FINISHED: 1311		DATE FINISH	ED:	
Depth Ft.	Sample #	PID (ppm)	GI	EOLOGIC DESCRI			REMA	RKS
1 - 2 -		0.D	P. Gravel + Fill materi > plastic, pa metal, chain (wood, hose.		Light b Loose, C SILT, So	rown, JS ravec and ne sand	FILL Mater	
3 - 4 -		0.0 M	- TIMY-SILT	· · · · · · · · · · · · · · · · · · ·	- ?		clay	
			Crie 24 611,	~ 4' 5 9				
-								
-								
		CATION AN	DNOTES: DAERETE Wall	•		<	> V 	(+) NORTH

		BRIEN G Gineers		TEST PIT LOG	TEST PIT	NO. TP-15
PROJ		Town of Ca			JOB NO.:	34241.001.002
CLIEN	IT: NYS	DEC			GROUND ELI	EV.:
		R: SJB Dri	lling Co.		Page 1 of	
EQUI	PMENT:					TER DEPTH:
					DATE START	
		Yuri Veliz		TIME FINISHED: 1930	DATE FINISH	ED:
Depth Ft.	Sample #	PID (ppm)	GI	EOLOGIC DESCRIPTION		REMARKS
0-		6. D	W nad. blown loose, SIIT + F Some gravec.		T + FM	
2_		D.D	EILL MATENIAL DUUM, Cal F NLCCI LAYVEL, bottics, plasti clay-SILT Gun		xy-silt	
<u> </u>						
			End of pit	~ 3.69		
_						
ŀ						
		,				
1						
-						
· · ·						
2						
-						
-			1			
+		CATION AN	D NOTES:	·	a.c.(
			F TP-14		< <u></u>	
1 -	160'	1000100				
1					1 10' 1 1 TEST PIT F	
1				. \$1.8°	ILGI FIL I	

ŧ

	OBRIEN 5 GERE ENGINEERS, INC. TEST PIT LOG TEST PI							6
		Town of Ca				JOB NO.:	34241.001.002	
_	IT: NYS		·			GROUND ELI	EV.:	
		R: SJB Dri	Iling Co.	······································		Page 1 of		
EQUI	PMENT:					GROUND WA	TER DEPTH:	
OPER	ATOR:			TIME STARTED:	1540	DATE START	ED: 8/18/0	2/
INSPE	CTOR:	Yuri Veliz		TIME FINISHED: (620		DATE FINISH	IED:	
Depth Ft.	Sample #	PID (ppm)	G	EOLOGIC DESCRIP	TION	-	REMAR	٢S
			W			E		i
0-		0.0	Mod buown, d SILT + FN Sa		SILT +	Fri Sand		
1 -			FILL Matery	al Fill	mate	VIAL		
2 _		0-0						
		Endor pit at ~ 2'bg, we hat water right at Fill Material. we did not see the clay-silt						
-	-		UnIT.					
-			we did not access 15 a	Locaciled the edg	ic of	FILL		
-				- 16) was put at 7 T, but this is not				
			OF FILL				-	
-								
-								
-								
-								
-								
		CATION AN				TEST PIT F	<u>र</u> (

		BRIEN 6 GINEERS		TEST PIT LO	G TES	T PIT NO. 7P-17	
PROJ	ECT:	D.: 34241.001.002					
CLIEN	IT: NYS	ND ELEV.:					
CONTRACTOR: SJB Drilling Co. Page 1 of							
	PMENT:			· · · · ·		ND WATER DEPTH:	
OPER	ATOR:			TIME STARTED: 1630	DATE S	STARTED: 4/18/04	
INSPE	CTOR:	Yuri Veliz		TIME FINISHED:	DATE F	FINISHED:	
Depth Ft.	Sample #	PID (ppm)	GI	EOLOGIC DESCRIPT	ΓΙΟΝ	REMARKS	
0 1 2 3 4 - - -		0.0 0.17 0.7	FILL MATEVIAL TIVES, LOTTIES, PLU SMW FILL		N		
		CATION AN			12'	$25' \longrightarrow \downarrow$ $1000 \longrightarrow 1000$	

		BRIEN & GINEERS		TEST PIT LO	G	TEST PIT	ΓNO. TF	>-18
PROJ	ECT:	Town of Ca	rroll Landfill			JOB NO.:	34241.001.002	
CLIEN	NT: NYS	DEC				GROUND EL	EV.:	
CONT	RACTO	R: SJB Dri	lling Co.			Page 1 of		
EQUI	PMENT:					GROUND W/	TER DEPTH:	-
OPER	ATOR:			TIME STARTED: 08 15		DATE START	ED: 8/19	04
INSPE	ECTOR:	Yuri Veliz		TIME FINISHED: 0930		DATE FINISH	IED: <u>8/19/</u>	04
Depth Ft.	Sample #	PID (ppm)	GI	EOLOGIC DESCRIP	TION		REMA	RKS
		0.0	5/	oil, noist L = main/y brush (200 ct unit. Saturated at 21/2 Lain/y brush, no :	r. 			·
		CATION AN いいけん の	D NOTES: F TP-17			IC ID TEST PIT F	····	(†) NORTH

		BRIEN 6 Gineers		TEST PIT LOC	G TEST PI	NO. TP-19		
PROJ		Town of Car			JOB NO.:	34241.001.002		
CLIEN	EV.:							
	CONTRACTOR: SJB Drilling Co. Page 1 of							
	PMENT:					TER DEPTH:		
	ATOR:		····	TIME STARTED: 0845	DATE START	ED: 8/19/04		
		Yuri Veliz		TIME FINISHED: 0910	DATE FINISH			
						· · · · · · · · · · · · · · · · · · ·		
Depth Ft.	Sample #	PID (ppm)	G	EOLOGIC DESCRIPT	ION	REMARKS		
			5		LN			
b			mod. brown. r	1-21(57				
}		0.0	mod. buown, r loose, silt and sand	gend. Si	lt + Fn sand			
'		1	Transa of Elle	mor. Mowe Pari Bios	h mating			
ι_		HO!	~ -					
		0.0	BIDING SILTY 54 Saturated		-3			
3 –		۲ ۲	3	3.5'	-SUT THINK			
_								
			End of pit					
-			acesess cors	not allow go Furt	her North.			
_								
-	1							
_								
-	1							
 _	ł							
	1							
-	1							
_								
	<u> </u>		l			<u>I</u>		
		CATION AN			< <u>←</u> 35′			
- '	270' 1	North Fro	n shed.		Manual Provide	\sim (\leftarrow)		
					j zs' ')			
					TEST PIT	PLAN NORTH		
1								

	OBRIEN 5 ENGINEERS		TEST PIT LO	G TEST PIT	NO. 1P-20
PROJEC				JOB NO.:	34241.001.002
	NYSDEC			GROUND ELE	
	CTOR: SJB Drill	lina Co.		Page 1 of	
EQUIPM				GROUND WA	TER DEPTH:
OPERAT		<u> </u>	TIME STARTED: 0910	DATE START	ED: 8/19/04
	FOR: Yuri Veliz		TIME FINISHED: 0940	DATE FINISH	ED: 81(9/04
Depth Sa		G	EOLOGIC DESCRIP	TION	REMARKS
() } 	0.D 0.0	NO Saibase -1 2' End of pr	d with <u>bushmetter</u> ay - silt unit Tat 2'bg. "IT y does not allow		
-					
	TLOCATION AN	D NOTES: FUD ~ TP-	19	TEST PIT I	

OBRIENG ENGINEERS	GERE , INC.	TEST PIT LO	G TEST P	IT NO. TP-21
PROJECT: Town of Car			JOB NO.:	34241.001.002
CLIENT: NYSDEC			GROUND E	iLEV.:
CONTRACTOR: SJB Dril	ling Co.		Page 1 of	
EQUIPMENT:				VATER DEPTH:
OPERATOR:	· · · · · · · · · · · · · · · · · · ·	TIME STARTED: (100	DATE STAF	RTED: 8/19/04
INSPECTOR: Yuri Veliz		TIME FINISHED: 1120	DATE FINIS	SHED: 8/14 04
Depth Sample Ft. # PID (ppm)	G	EOLOGIC DESCRIP	ΓΙΟΝ	REMARKS
$ \begin{array}{c} 0 \\ 1 \\ 2 \\ 2 \\ 3 \\ 4 \\ - \\ 5 \\ 6 \\ - \\ $	Brush Mate Logs, Stum one piece o Moist. Cuny-siet End of pit Foither no possible, 1	Top Soil, Some woods <u>vial</u> <u>ps, ND garbage</u> <u>F commit, ply voo</u> <u>unit, Moist.</u> <u>at ~ f'bg.</u> <u>ith and west acc</u> <u>source to vain drop</u> <u>mp is present.</u>	255 15 NOT	
TEST PIT LOCATION AN - 100' West Fr			< <u></u> −5′	$ \underbrace$
	·		TEST PI	T PLAN 1 NORTH

•

O'BRIEN 5 GERE ENGINEERS, INC.	TEST PIT LOG	TEST PIT	NO. TP-22
PROJECT: Town of Carroll Landfill			34241.001.002
CLIENT: NYSDEC		GROUND EL	EV.:
CONTRACTOR: SJB Drilling Co.		Page 1 of	
EQUIPMENT:			ATER DEPTH:
OPERATOR:	TIME STARTED: 1030	DATE START	
INSPECTOR: Yuri Veliz	TIME FINISHED: NAME 1041	DATE FINISH	
Depth Sample Ft. # PID (ppm) G	EOLOGIC DESCRIPTION		REMARKS
ω		E	
0 - modern Ter hy	ALLA WET CUT FER Same	1 00.00	
clay, Gr.	oun, wet, siet tfa sand avec.	730~0	
2-	FILL MATERIAL -SATU	Var Te d	
	FILL MATEVIAL -SATU Domestic Gurburge, bo Poper, cans, Lids	TTILD, PLASTIC	· ·
3 -	Poper, cans, Lids	,,	
clay-U	n.r		
	Tat 3.5'65.		
	I a well From 3.5'-0	169	
	3		
TEST PIT LOCATION AND NOTES:		← 15'	
- 200' west From shed			
- Well Installed here	Swam	Stational states and states and the states and	
		ا 5 '۱ او' TEST PIT	

		BRIEN & Gineers		TEST PIT LOG	G TEST	PIT NO. TP-23
PROJ		Town of Ca			JOB NO.:	34241.001.002
1 million (1997)	T: NYS				GROUND	ELEV.:
		R: SJB Dri	lling Co.	······································	Page 1 of	
	MENT:					WATER DEPTH:
	ATOR:			TIME STARTED: 1420	DATE ST	ARTED: \$119(04
		Yuri Veliz	<u></u>	TIME FINISHED: 1436	DATE FIN	NISHED: 8/19/04
	Sample #		GI	EOLOGIC DESCRIPT	ION	REMARKS
			2) E	
			<u> </u>			1
0 -						~
		a ()	mod. brown si	et + Frisand	WALL PLACE	p-51
		0 .D	mez is svare	ct + Frisand Lisone ccay. Fill mat	is demestic	
(1
			clay-sut	UniT	the set of the	
2 _				17 THA	IN KICK	
		0.0				
				1- C. PTRAN	frank frank	V.
3 -	a Marca -		Brownish da	Y-SILT		
		0.0	VALT		~	
′ų–		ŰŰ		~ ~ ~ ~ ~ ~		<u> </u>
			End of pri	at 4'ba		
			PhoTOS - 168,	167, 166, 165		
						1
	1					
						1
	1					
TEST		CATION AN	I		— ,	$2^{\prime} \rightarrow 1$
			F TP-22 -			
-2	200 -	>00 Th 0	+ IFec			
}					<u>الح</u> ال	1 4/1 A
					TEST	PIT PLAN T NORTH

60\i:\division\forms\testpit.xls

Soil boring logs

D'ERI Ellent:			(ટાંગાલ)	NEERS, I	NG.	TEST BORING LOG		RT OF BO ペット 101			
ternedi roj. Lo ile No.	ial Inv oc: To .: 3424	estigatio wn of Ca 11 002.00	arroll, F 01	sibility Stud Frewsburg,	y NY	Sampler: 2ª Split Sp BA A Hammer: Dutionat(C Fall: 30"	Page of 3 Location: "N 42-04/29-2" w 79*09' Start Date: 9 3 04 End Date: 9 3/04				
Boring Company: SJB Services Inc. Foreman: ターし ハイイアトルCS DBG Geologist: Yuri Veliz					•		Screen Riser		Grout Sand Pack Bentonite		
Depth Below Grade	No.	Depth (feet)	Blows /6"	Recovery	"N" Value		Stratum Change General Descript	Equip. Installed	Field Testic PID (ppm)		
		2	3/5 4/7	2/1.5		ouve goar (543/2), da-p stiff, Fn Sandy sitt,	Fr		0.0	4 در ۱	
	$\frac{1}{2}$	ц	7/4	J./. 0		Some Gravel, LITTLE CLAY Topsoil at Top. Sant as above	· >1C7				
4	3	6	7(7 314/	41.8	9	Hive guay (SX 312), danp STIFF, SILTY clay 150m Find Sand. at E.SI	SILTY	4'	0.0		
			-745			Find Sand. at 5. 1 changes to med. gray(my sizty clay to clay	SIVTY	5.5'	0.0		
6	4	4	<u>भू</u> 6/7	2/1.5	_//	sanc as above up To 7' hs. Then is mod-brown	CLAY To CLAY		0.0		
· · · ·						(54314), MOIST, dense, For sundand sixt, some	Fn Sundy	7'			
8	3	10	317 919	20.5	16	red-sund, Little guarde Poor recovery Colles	لعلناد	8'	6.7		
10	6	72	915 10/11	2/1.0	18	Mod. y cildwish brown (10xR S14), wet, dense Franced Sand	area Farred	10'	0.0		
						Sand, some sitt and Gravel, Little clay	Sand Gravel				
12	7	14	12/12 8/10	2/1.0	20	Same as above	Fo-med		1.4		
14	.8	16	17]1] 14/25	2/1.r	25	Sance as above Little Cobles.	Sund Gravel		0. V		
16_	4	19	38/31 10/11	2/1.8	3/	1 169. Then 15		5 mm 1641	0.0		
						moist, dense, cobbles and mediand and graved Listle silt.	Collies t Gravel				
										V	
			·								
. –											
								N.		-	
		~ .	•								

· · · · · ·

			કારાલ	Neteros (ile).	TEST BORING LOG	M	xt of Bo ₩ - 1∂2		ينجني		
Proj. Lo	al Invo c: Tov	stigatio	arroll, F	ibility Stud rewsburg, i	y NY	Sampler: Hammer: Fall:	Page2 of 3 Location: 3 Start Date: 4/3/04					
Soring Forema OBG Ge	Comp n: Da	any: SJI No M	B Servi				End Date: Screen Riser	Grout Sand Pac				
Depth Below Grade	No.	(feet)	Blows /6"	Recovery	"N" Value	Sample Description	Stratum Change General Descript	Equip. Installed	Field Testiı PID (ppm)			
		20	4/14 19/22	2 / 1.0	2.3	mod. brown [542 4/4/, wet, dense, med-ls Sand and cobble, some gravel Little sict.			O. Ø	א נן ו		
10	71	22	17/4/ 49/49	211.5	89	some as above. MET TO Suturated. Some cubbles	- 22 '	S#T. 22'-	0.6			
2.2	12	24	30 50/4	2/10	*	Light OLIVE SVAY (543/2) Satureted, Nery Sunse, 1/10 CS Sand and Grave L	[1221	0.6			
2.4	73	26	28/38	2/1.0	ł	Some cubbles and SILT, med sand. Augu 17 241, Sanc as above	ficances	24'	1.7			
26	14	28	<u>\$0/-3</u> ZI:/22 I-0/-4	2/1.0	82	Med Le Sand, Dugel To 26' Surc us above WET TO SAT. DUger TO 28'	Gravel		2.9			
29	15	30	24/34 40/10/ 13/32	2/ 1.0	74	Surve as a Love	sand Gravel	30'	2.5			
			50/.4		<u> </u>	Saturated, Jense, Med- co Sand, Some Stavel, Trace SICT. Augod To 32'	med-es sand		0.7			
32	<u>1</u> }	34	24/3> 24/30	2/1.0		Same as above. 150 me le gravel and Cobble	med-cs Sand Cobbles		0-4			
34	18	36	2[9 16/44	2/.1.5	25	Light Dlive gray (5x 3/2), Saturated, dense, med. Sand (well sorted), at - 7-1	nedium	:	0.7			
						is Co Sand, Trace CS Bravel, Cobble.	Coarse Sand	- 3 6- 1				
				- <u>-</u>	,	1		<u> </u>	<u> </u>			

بمر

. 5

•

.

•

							TEST BORING LOG			_	
Goring Company: SuB Services Inc. Oronan: Date Martuco OBG Geologist: Yuri Voliz Sand Pack Benonte Below Book Grade No. (foet) 16" Recovery Value Below Pack Fold Change To 38' Same as above, Budd, Budd Same as above, Budd, Same Same as above, Budd, Same	Client: Remedi Proj. Lo	NYSE al Inve c: Tov	DEC estigation which ca	on Feas urroll, F	Ibility Stud	y NY	Hammer:	Page 3 of Location: Start Date	3 : 9[3 04	<u>.</u>	
Depth Below PenetriDepth TRECOVERY ValueSample DescriptionStatum Ganare General Descript Installed DescriptField Testing PD Descript (netailed (ppm) UV261921/02-Pool Tecovery Sume as a bove, Ruydd To 3g'Sand San	Boring (Forema	Comp n: D	any: SJI	B Servi	s l	-	<u>1 611</u>	Screen		Sand Pa	
36 19 37 21/2 2 Pool vicinity. Sume as above, for set or solution, and the set of se	Depth Below		Depth	Blows	Penetr/			Change General		Field Testi PID	ng I
34 20 40 10/14 21/10 44 52/25							Post recovery.	1			NA
Improved and distance Sand Sand Sand Improved and distance Geldlies To bottom Geldlies To bottom Givarce Improved and distance Milled Improved and distance Michaele Improved and distance Milled Milled Milled Improved and distance Milled Milled Improved and Milled<	39	20	40		2/1.0	44			391		
410 21 42 114 21/15 24 02/14/2 (58/3/6), mediumset				2.12.0			increase staves and	sand		2.9	
Image: Series Image: Series Sand Sand Sand Image: Series Series Series Series Sand Sand Image: Series Series Series Series Series Series Image: Series Series Series <	40	2	42	114	2/1.1	4	OLIVE OVAN (543/2), WE	GUANCE	סדן		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				14/44			Medium sand Litrie			0.5	
$ \frac{561.44}{560.44} $ For $2 y a vel a T bottom 560 avel 44' bott$	42	22	44		2/2	54			~	1.4	
Well desing - soren-42'-33' isand-43'-30' South of				501-4			Some gravel at bottom				
							EUB -> 45'bg		- 44'	•	
					-						
										-	
					· · · · · · · · · · · · · · · · · · ·						
									, ,		
					· · · · · · · · · · · · · · · · · · ·						V
Scal-301-27' j Grout-27-012g (min-102. (existing well)	Well	desi				•					°F
			Sc	al -	301-271	61007	1-27-012g fmn	-102. (ensting	well)	
	• .										
						• .					4

ી કાર્ય	: N 23	ಅವಳು	ાસાં સુજો		્ર	TEST BORING LOG		KT OF BO へい-1のら		-	
Silent: Remedi Proj. Lo	al Inve	estigatio	on Feas	Ibility Study rewsburg, I	y NY	Sampler: 2" Split Spo on Hammer: Automatic	Page (of) Location:			• • •	
•		1 002.00	-			Fall: 30"	Start Date: End Date:	113 04 113 04	4		
Soring Forema OBG G	Comp	any: SJ	Servi ATho Yuri V	ces Inc. 1/2 eliz	•	[i all. 2	Screen Riser		Grout Sand Pack Bentonite		
Depth Below Grade	No.	Depth			"N" Value	Sample Description	Stratum Change General Descript	Equip. Installed	Field Testi PID (ppm)		
0		2		20.5	2:	POON ALCONCAY. TOPSOIL - Some wooden	Topsoil		Ŋ. D	AN	
2	2	ч	4	210	2	Fiagments NO Recovery	NR	2'	0.0		
ч	3	6	5/6	2/1.8	12	Mod. yellowish Svown (10412 44), Moist, Stiff	Fn Sandy SILT	. 41			
						FA Sundy SILT, Some clay.	-		5.0		
6	<u> </u>	8	र[२ र/१२	41.5	13	Light Olive Bray (57 Sta) wet to saturated, stiff Fr san Jy SILT, some clay	Frisand				
	5	10	4/4	21.5		Sancas above	- -	5-7.	0.0		
			977			Saturated med. gray (Nt), Satura-	Fr Sand	×	O.D		
10	6	12	4/6 7/2	2/1.5	13	Ted, STIFF, For Sundy SILT, Some clay.		- 12'			
	7	.14	919 313	40		NO RECOVERY Mcd. SVAY (NS) SATURA-	NR	- 14'	0.0		
	9	16	1/2 2/1	2/45	4	Little For Sand.	clay	-16'			
-76	9	19	313 3/2	2/1.5*	6	Mcd. SVAY (NS), SETURATED, SOFT, SILTY CLAY TO CLAY. LITTLE FO SAND	Lav		0.0		
19	10	22	ii.	2/0		NO RECOVERY	NR	-/5/	0.0		
			4/+			EOB - 20'bg. well set at 18'bg	N 12	- 20'			
										₩.	
				- 14' - 9' ;		-19'-6' S Well Relocate				V.	

						TEST BORING LOG		RT OF B			
CONTRACTOR OF	in the local line		કારણ	112275351	Ne			<u>Mw -</u>	065		
Cilent: Cemedi			on Feas	ibility Stud	v	Sampler: 2" split spoon	Page / of Location:	1 N 42° 64			
Proj. Lo	c: To	wn of Ca	arroll, F	rewsburg,	ŃY	Hammer: DUTOMATIC		- alila	•••• [N1:	° ° 8.' 4	
ile No.	: 3424	1 002.00)1			Fall: 30"	Start Date: 9///04 End Date: 9///04				
Boring	Comp	any: SJ	B Servi	ces inc.		· · · · · · · · · · · · · · · · · · ·	Screen	E	Grout		
orema BG Ge		st:	Yuri V				Riser		Sand Pa Bentoni		
							Stratum		Fleid		
Depth Selow		Depth	Blows	Penétr/	"N"	Sample Description	Change General	Equip.	PID	ng I	
Grade	No.		/6"	Recovery			Descript	Installed		υv	
0	1	2	2/1 2/3	20.5	3	DUSHY brown (SYR 210), Moist	5			NA	
						Soft, FA Sand and SILT, LITTLE CLay and gravel.	Fasano	1	0.D		
5,	3	a	2/3	210.5	7	Sancus above UP TO 3.5'					
<u> </u>			414	<u>981</u>	<u> </u>	then is Pale yellowish	>(1)		0.0	·	
		•						3_51			
				·		Storr (love 6/2), MAIST STOFF, Otange mattling SILTY CLAY.	SIETY	1			
			2.14		6	SILTY CLAY.	eray	1.1			
.4 .	3	6	314	2/1.0	8	Dorn greenish gray (Sey	Sandy		0.0		
			416			+11), WET, STIFF, FN		1			
		· · ·				Sandy SILT, Some	SIET				
			• () (-11-5		elay '	Sandy		0.0		
6	<u>ч</u>	<u> </u>	3/Y Y/7	2/1.8	13	some as above	SILT				
				· · ·					0.0		
A	S	10-	514	21.8	8	Same as above but	Tandy	,-		1	
			416	/		Saturated .	SILT				
10	6	12	515	2140	7	medium gray (NS), Saturated, stiff, sirty	SIETY	10'	0.0		
			614			Saturated, Stiff, Sitty	clay				
					· · ·	CLAY TO CLAY, LITTLE For sand.	10				
							day	-121	0.0		
	+	19	<u>514</u> 5/7	2/ 1.8	4	medium svay (NS),	SITY				
						Saturated, Stiff, SHETY	1 +				
	·				<u> </u>	Chary some For sund.	Fn Same	4			
14	8	16	312.	445	5	same as above	SILTY		0.0		
-73	4	18	3/3	211.1		Same as about	clay				
			<u>s/</u> -			4		ŕ			
			7/3	 		medium svay (NT), Satura	ef	18'	0.0		
18	10	20	514	2105	6	Tloose, Fine sand some		1		U	
			2/3			SILTY CLUY, Trace grave	יין דואכ אאי			Y	
					<u> </u>	FOB + Zolbs	<u> </u>	20'		<u> </u>	
nell	des	リタクトラ	Sere	- 20	-101			ted ~ S	least 1	=ram	
			sen/	- 845	<u>;</u> 6	1407 - 5'-0' ST	P-08				
						х.		·			
						· ·					
		, è									

Client:	NYSE	DEC		NEERSAI		Sampler: 2" Splat Spoon		RT OF BO かい~ 10	ع ج	· · · · · · · · · · · · · · · · · · ·	
Proj. Lo File No.	x: To : 3424	wn of Ca 11 002.00	arroll, F)1	ibllity Stud rewsburg, i	NY	Hammer: Dytamatic	Start Date: 9/1/04 End Date: 9/1/04				
3oring Forema DBG G	in: Đ	all r	Servi 1 a TV Yuri V		-		Screen Riser		Grout Sand Pack Bentonite		
Depth Below Brade	No.	4 *	Blows /6"	Recovery	"N" Value	Sample Description	Stratum Change General Descript	Equip. Installed	Field Testi PID (ppm)	ing i 	
	<u> </u>	2,	3/3 1/2	2 4.3	<i>4</i> .	FOOL RECOVERY Mod. blown (SXR314), MAIST, LODSC, FR-MCZ SUND, SOMESILT	Sand		D	NA	
2	2	4	<i>111</i> 1/3	210.1	2	ND RECOVER-1	SILT NO Reconut	21.	-	lt	
4	3	6	4/4 6/5	2/1.5	ען	Down Greenish gray (564 4/11), moist, stiff, FA Sandy Sist, Some clay	Sandy Silt	4'	3.4		
6	y		8/6 7/10	2/ 1-8	<u>73</u>	Same as above up TD 71 by. Then IT is Mad. Yellowish brown(loyesty), Jamp, step F, FM Sandy SIET, Some clay	محمد مع مع	5 5 7	0.0		
8	5	10	513 516	2/1.8		Dark greenish gray (BGy 411), Het, Steff, fn Sandy Sict, Some clay	Sandy SILT		2.0		
10	6	31	4/4 5/6	2/18	9	Same as where but Saturated up to 11' 45 Then is Med. gray (wf) Saturated, Stiff, SIBTY	¥ 10'	"'	1.4		
12	7	14	<u>\$/4</u> ९/4	2/4-9	7	CLAY TO CLAY, SOME FR 'sand Med. 9844 (NS), SaTUYARO	SILTY ECAY TO CLAY		1.4		
74	1	-76	212 1/2	2/1.8	3	STIPF, SLUTY CLAY TO CLAY, LITTLE FO Sand Same as above	seary ceary To cear		0.0		
16	7	19	6/7 1/12	2/1.8	76	Same as above . becomes sandy at bottom		18'	0.0		
12	10	20	513 476	2/1.0	7	Medium Juay (NS), Sot. SOFTI FING to medi sand LITTIC SIET and CLAY, THAC	Sand		0.0		
well	desi	ng + 5	criten	- 20'-10		Gravel EDB -> 2016g		201 prated n	م 'هک ا	asT.	

and the second second

• ·

ઝુટ્યત્વ		હાટ્યલ	:::)(::);	NEERS	S165	TEST BORING LOG		RT OF BO		
illent: emedi roj. Lo ile No.	NYSD al Inve c: Tov : 3424	DEC Estigation which of Ca 1 002.00	en Feas Froil, F	ibility Stud rewsburg, i	Y	Sampler: L" Split Spoan Hammer: Dutomatic Fall: 30!	Pagel of Location: Start Date End Date:	Ñ 42'04' <u>3</u> : 9 2 04	5" w7	9'08'
oring orema BG G	n: Ď	ale r	Servi A AT K Yuri V	ces inc. 145 eliz	•	· · · · · · · · · · · · · · · · · · ·	Screen Riser	**	Grout Sand P Benton	
)epth Below Grade	No.	Depth (feet)	Biows /6*	Penetr/ Recovery	"N" Value	Sample Description	Stratum Change General Descript	Equip. Installed	Field Testi PID (ppm)	
0		2	313 41	2/ 0.3	5	POOR RECOVERY. Mod. LOWA (STE 3/4), MOIST, LOOSE	Fr-red Sand		4.5	NA
2	2	<u>q</u>	3/2	210	प फ	FR ned Sand, Sono SILT Top Soil. No recovery	No Receivery	21	-	
4	3	6	2/3 6/7	41.8	7	Darn greenish gray (554 4/1), Jampi STIFF, FO	Sandy SLAT	41	6.1	
	4		5/2	2/1.8		Sandy SILT, some clay LITTLE gravel. Same us above.	Sundy		ar	
			5/7 14			damp TO MOIST Grayish olive (1044/2),	SEET		8.5	
8	5	18	9/5 5/6	2/1.8	10	MOIST TO WET, STIFF, FA SANdy SICT, SOME CLAY			2.1	
]]]	6	12	317 1/17	2/ 1-1		Sanc as above up To 10.5 Then is medi Gray[NJ], Wet To Saturated, Stiff Silty clay To clay isone	SILTY Clay	10-5'	0.1	
52	7	14	314 41	<u>))).</u>	9 14	Fn sand. med. grav/wsl, Satura Ted, StopF, silty clay	SUTY	- - -	0.0	
14	<u> </u>	16	112 F/7	2/1.0	ə	To clay, some for sand Some as above up to 19. Then becomes Sandier	To Clay	15.5'	0.0	
16	4	18	7)7 717	2/1.0	12	moderate brown (NST), Saturated, SOFT, FALME Sand and SIET, Some	Fumed Sand Gravel	, ,	0.	
19	10	2.0	112 2/3	210.8	4	Stavel, LITTle clay Same as above. Types cobbies.	Formed		0.7	
							1			W

· · ·

:

· _ _ }

<u>્ર</u> ાકોલા	- 11 -	ಹೆಸನ	ENCI	NEERS I	Nic,	TEST BORING LOG		とT OF BO いー 1 のす		
ilent: temedi			n Feas	ibility Stud		Sampler:	Pagez of Location:	3		
roj. Lo	c: To	wn of Ca	rroll, F	rewsburg, i	NY	Hammer:		7/2/28/		
lie No.	: 3424	1 002.00	1			Fail:	End Date:	7 12/04		
Boring Forema OBG Go	Comp in: Pa eologi	any: ou xid M st:	Thics Yuri V	ces Inc. S eliz	•.		Screen Riser		Grout Sand Pa Benton	ite
Depth Below Grade	No.	(feet)	Blows /6"	Recovery	"N" Value	Sample Description	Ştratum Change General Descript	Equip. Installed	Field Testi PID (ppm)	
20	N	22	771 37 r	21.5	<u> </u>	sanc as above.	For-mand	-	0.0	NA
72	12	24	3/5	24.5	A	Light ouve gray (543k) Saturated damas	Sand			~
			714			Saturated, douse, For more Sand and guarde, some SILT, LITTLE CLAY	Gravel		0.0	
24	13	26	20	2/1.0	-	light olive gray (573/2)	FASand	24'		
	· · · · ·		50/.3			Daup, dense, Fasand and sict, some clay	SILT		0.0	
				·		LETTLE gravel.				
26	14	28	50/.4	2 0.5	-	POOL RECOVERY. ANGLE TO 28' LIGHT OLIVE SHAY (SY 314),		261	p.9	
						Moist, Linse, med-sand	redivini			
						and gravel (cock fragments) some FA sand and siet.	Gravel			
28	15	30	18	2/ 8.5		Light OLIVE SVAY (SY 3/2),		28'	0.0	
			50/.4			and gravel, cittle steraday	red-cs sand			
30	16	32	<u>4</u> 7	20.5		same as above.			0.4	
			30/.3			Some cobbles. Augul To 30				
32	17	34	20	2/1.0		Lish T alive gray (Sy 3/2), wet To Saturated, dense, Cs Sand			0:0	
						and hunder and	4 Sand			
34	11	36	14	210.5		LISHT OLIVE JUNE (SY312),	Gravel			•
			501.3			WET TO Sat, dense les san	- 734	WET TO SET	0.0	
						and Evavel, some rock	Lo sond			
36	19	38	15	210.5		FURGACITS (calcarcous) colle	Gravel	4		
	- <u>(-</u>]	20	501.3	<i>C</i> [0.]		Wet. augur to 38'			2-0	
					1	-		38' Saturate	d .	
·····							₩ 34'			1
<u> </u>	1	L	1	[<u> </u>		1-

ę.

		to de orozonne	ાર્ટ્સાટો	01111189.0	NC.	TEST BORING LOG	Mn	RT OF BOI <u> 107</u> エ		-		
Client: Remedi Prol. Lo	al Inve	stigatic	n Feas	Ibliity Study rewsburg, i	, V VY	Sampler: Hammer:	Page3 of Location:	3				
File No.			·	, . 	••	Fall:	Start Date: 9/2/ 54 End Date: 9/2/ 54					
Boring Forema OBG Ge	Comp	any: SJI Lとア	B Servi A TT Yuri V	ces inc. 1995 eliz		· · · · · · · · · · · · · · · · · · ·	Screen Riser		Grout Sand Pa Bentoni			
Depth Below Grade	No.	Depth	Blows /6"	•	"N" Value	Sample Description	Stratum Change General Descript	Equip. Installed	Field Testii PID			
38	20	40	24/29	2/ 1-0	79		Fr-med			4,4		
<u>;</u>						Satura Tech dense, Fn- med gravel and Ls sund	Gravel +		0.0			
						LITTIC SILT, Ard. sand	le sand					
48	21	42	32	40.5	-	Same as above			0.0			
			501-4			aiusol T2 42'	Fn-med					
42	22	44	20	210-5		some as above	Gravel		0.0			
			54.4			WET TO SATURATEd Augul To 441	ce sand		0.0	1		
						NO RECOVERY	NO	441	0.0			
44	23	46	50/.3	20			Recovery	46'	0.0	١١.		
·						EUB - 46'bg				₩		
	·						· · .					
	<u> </u>		<i></i>			-	,					
							· ·	· ·	1			
						1						
						· ·						
-						-	1					
					ļ	-		1				
				· · · · ·		4		<i>'</i>		•		
						<u>1</u> .		1				
	<u> </u>		Į									
We	1 225	194	A 194	40 40'		" San 2 - 45'-33' {w	111 10	red ~ 10's		مىلىمى مىر		

·

. . .

\$

S) E RII Client:			ાંગ્લો	NEEKSSI	90	Sampler: 21/ 60/ 6000	. 1	RT OF BC	:5	
Rømedi Proj. Lo File No.:	ai Inve c: Tov : 3424	stigatio wn of Ca 1 002.00	1	ibility Stud rewsburg, i	y NY	Fall: 30" has most	Start Date	N42.04'. 8131	04	9'05'0
Soring Sorema OBG Ge	n: _D,	nle M	3 Servi Artin Yuri V	ces inc. 45 eliz	•		Screen Riser		Grout Sand Pa Benton	
Depth Below Grade	No.	Depth (feet)				Sample Description	Stratum Change General Descript	Equip.	Field Testi PID	
				-		Boring Through with				
						NTURISING, HORDW				
						NTILLISING HORDW Steam auger.				
						Sac soil description in MW-108I boing				
				· · · · · · · · · · · · · · · · · · ·		Log.				
		· .].		·	
				ν.		à là				
				-	· · · · ·					
								•		
				· · ·		4		:		
									ľ	
	-i					-				
		· · · · · ·	 							
						-			·	
	 							•		
well	desi.	19-5 5	creen	-20'-10	165	Sund-201-18'				
					7 010		····			
	·					*				
						Ч. ₁				

Client: Remedi Proj. Lo File No. Boring	NYSE ial Invo oc: Tov : 3424 Comp in: 0	DEC estigation of Ca 1 002.00 any: SJI any: SJI	on Feas urroll, F 01 3 Servio	es	ананананананананананананананананананан	TEST BORING LOG Sampler: 2" Split Spoon Hammer: putomatic Fall: 30"	REPORT OF BORING MW = 108 Pagel of 3 Location: $N'42^{*}04'$. $320'/w19'08$ Start Date: $9(3)/04$ End Date: $9(3)/04'$ Screen = 1 Grout Riser Sand Pack Bentonite					
Depth Below Grade	No.	Døpth (feet)	Blows /6"	Penetr/ Recovery	"N" Value	Sample Description	Stratum Change General Descript	Equip. Installed	Field Testi PID (ppm)			
0	1	_2	112	2/0.5	3	Grayish brown (5+2,510), damp, loose, sitt and FA sand, Trace gravel sitt	Fn Sand silt	2'	0.0	AK		
2	2	4	1/2 2()	2/2.5	Ч	Grayish brown (Syk 3k) damp, soft, Sitty clay Trace sand	SILTY CLAY		0.7			
4	<u>_</u>	6	2/2 2/3	41.5	4	Medium gray (NS), damp, SOFT, SUry Clay To clay, Trace for Sand	SILTY CLay To	9'	0.0			
	4	8	4/3 2/5	2/2	6	Medium Svax (NS), Satu Vinted, STIFF, Fine Sandy Sict, Some		6'	0.1	2		
4	5-	10	3/4 4/4		8	Clay. Dark greenist gray (SEY 4/1); dampisterr	SILT Sandy		0.9			
						Fn sandy silt, some	SILT		• •			
<u> 10</u>	6	12	3/4 1/1	2/ I.D	1	sances above up TO 10.F Then neces light svay (NG), damp, stiff, FA sand and silt	Sandy SILT		0.0			
12	2	.14	4/6 6/7	211.5	12.	save as above Medium dash sray/N4)		14 /				
14			6/8 7/11	2/1.0	/3	- Saturated, dense, Franced sandiand sict Some med by gravel		11	0.0			

· · ·

;

ile No.: 34241 002.001 Fall: 3 End Date: \$\frac{9}{21/69}\$ oring Company: SJB Services Inc. Screen Image: Screen Image: Screen offman: Dxlc Yurl Veliz Stratum Stratum Field Depth Depth Blows Penetr/ "N" Sample Description Stratum Field Made No. (feet) /6" Recovery Value Value Descript Installed (ppm) UV	lient: emed	NYSE al Inve	DEC estigatio	on Feas	NEERS II bility Stud rewsburg, i	У	Sampler: // Hammer:	Page of Location:	: 8/3=/04	Y	
Pepth low DepthDepth BlowsBiows Penetr/Penetr/ "N" "N"Sample DescriptionStratum Change General DescriptionField Testing FindePhile IGISIIIIIIIIIIIIIIIIIIField TestingPhile IGIIIIIIIIIIIIIIIIIIIIIIIIIGIIIIIIIIIIIIIIIIIIIIIIIIIGIIIIIIIIIIIIIIIIIIIIIIGIII	oring oroma	Comp in: Du	any: SJI	B Servi	ces inc. ' () eliz	-	<u> Fall: حز </u>	End Date: Screen	<u>8' 2'/0</u>	9 Grout Sand Pa	
$ \frac{16}{16} = 4 + 18 + 11 + 11 + 18 + 121 + 18 + 121 + 18 + 121 + 18 + 121 + 18 + 121 + 18 + 121 + 18 + 121$	epth glow		Depth	Blows	Penetr/		Sample Description	Change General		Field Testi PID	5
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		4		#19			Medium gray (NH).	Farmed Sand			VA
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	14	10	2.2	14/10 9/14	2/1.0	19	Same as above.			0.0	
$ \frac{22}{12} \frac{12}{12} \frac{24}{41-2} \frac{41-2}{20.5} \frac{20.5}{-} = Porr Receivery. Moist Sict Sict Sold To To Sold $	3.0		22		2/1.0	54	Content. Same as above. Moist		•	0.0	
24 13 26 31/37 2/1.0 - Class, Fine-med Sand Fin-med Sand 24 13 26 31/37 2/1.0 - class, Fine-med Sand Sand Sand 26 14 28 50/22 2/1.7 52 Same as above up Ton 27'lig 0.0 26 14 28 50/22 2/1.7 52 Same as above up Ton 27'lig 27' 0.0 26 14 28 50/22 2/1.7 52 Same as above up Ton 27'lig 27' 0.0 26 14 28 50/22 2/1.7 52 Same as above up Ton 27'lig 7 0.0 21/38 Then is mid. 9vay (Av6), Fine 3and 5 Samd 5 0.0 28 15 30 7/14 2/1.0 31 Same as above 30' 0.0	ı٢	12_	2.4		2/0.5		PON RECOVERY. MOIST	SICT			\bigvee
26 14 28 50/22 2/1.7 52 Same as above up Ton 27'ls 27' 22/38 Then is mid. gray (ab), Fine 50.0 Fine 0.0 0 0 0.0 5107, Truce clay 50.0 5107 28 15 30 9/14 2/1.0 31 Same as above 30' 0.0	24	13	26		2/1.0	-	Medium gray (NU11, MOIST dense, Fine-med Sand Some SIET, med. gravel	Franced			
28 15 30 7/14 2/1.0 31 Same as above 30' 0.0	26	14	28			52	Same as above up TON 2716 Then is mid. gray (NB),		-27'	0.0	
mid. gray (NB), Mois / Find	28	. 15	30			31	same as above	SILT	-37'	0.0	
30 16 32 19/19 2/1.5 419 STIFF, FINC Sand, Sand Sand 2037 SIGT, Trace clary, Med. Sand Sand O. 8	30	16	32	19/14		4	STIFF, FINC Sand, Some SICT, Trace clay, Mid.	Sund	-	0.0	
32 17 39 38 U.S Paol vecouery, Med. 24MY Fine Sol.44 (Nb), wer, STIFF, FINE Sand Stand III Some sict. Trace clay. This For Sand and sitt Levers Sand 341	32	(7)	39	38 50/.4	<u>405</u>		(NB), WET, STIFF, FINC SAN Some sict. Trace clay.	Find	24	0.5	\cdot

. **1**

÷ ,

ŝ

۰.

NUT NUT

						TEST BORING LOG		RT OF BO	-	-
SX21741 Ciliant:	02.1.0.00.00					Sampler: r	Page3of	<u>1w-108</u>	<u>}</u>	
Remedi	al Inve	estigatio		ibility Stud		<	Location:	2	•	
•			-	rewsburg, i	NT-		Start Date:	800/04		
		1 002.00 anv: SJ		ces inc.	*	Fall: 399	End Date: Screen	<u>8/3/0</u>	Grout	··
Forema DBG 'G	n: ,Da	rle M	atth Yuri V	105	•	•	Riser		Sand Pa Benton	
				· ·			Stratum	· · · · · ·	Field	<u> </u>
Depth Below		Depth				Sample Description	Change General	Equip.	Testi PID	l –
Grade 국내	No.	_(feet) 36	/6" }/27	Recovery 211.0	Value 58	Medium gray (N6), WET		Installed	(ppm)	UV
<u></u>	1.0		3/141		20	Lense, Medium Sand	med	34'	0.0	MA
			<u>.</u>			Sanc In sand, Silt,	sand		ľ	
÷÷						Trace newigiavel: "				
			 			Thin for sand + silt lard		4	· ·	
	19	35		211.0		medium gray (NB),	Mcd-		0.0	
36		_ _ .b.	24/.4	<u> </u>	-	Saturated, Loose,	sand			
						Medium Sand, some				
						45 Sand, Truck SILT, 6 Vavel . Augol To 38'				
						STANE MAJOU IS OF	 	36'		
			11 11-			Medium gray (NG),	ned - Cs		0.0	
38	20	40	11/17 19/24	2/1.5	36	Saturated, Losse, Med. To coase sand	Sand			
						Some may condition				
						Luyevs, tirrie Fine-med				
						Some Fine Sand + SIUT Layers, tittle Fine-med Gravel, Trace SICT.	red-cs		1	
						Sancas above up TO Yas	Savio .			₩
40	21	42	20/14 22/56		46	Thenes med. svar (Nb),		40.5'	0.0	4
						Saturnted, dinse, FA	Fn-Sand	ľ		
						Sand and set ut ~	SILT	41		
-				,	-#	41' bg is medium sand				
						some For sand and silt	Sand	111 ml		
				·····		Med- (s Sand at bottom	med- cs	-41.5'		
42	22	44	<u>u -</u>	2/1.0	-	Med. Gray (NB), Saturased	sand		0.0	
		ļ	50/24			dense, med as sand, little			1	
	· · · · ·					SILTIFA Sand. ut ~ 43.5" IS rock Fragments and	Sand+	43-5'		
·····		·	<u>.</u>			Sand, LITTLE GUAVEL.	ROUR FITA			
44	23	46	15/34	2/2	84	Med King (NB), Sur, LOOSC	med-cs			$ \rangle$
. 44	<u></u>		501.4	46	• •	Med-Cs Sand, some Five grave Trace SICT.	Gravel	46'	0.0	¥ ا

I.

Client: Remedi Proj. Lo File No.	NY\$E al Inve c: Tov	DEC- estigation wh of Ca 1 002.00	on Feas urroil, F	NEERS bility Stud rewsburg,		Hammer: Automatic Fall: 30".	Page / of Location: Start Date: End Date:				
Boring Forema OBG Ge	Comp n: acloai	any: SJ a.le. M st:	B Servi <i>MTL</i> Yuri V	ces inc. 2 <i>5</i> eliz		· · · ·	Screen Riser		Grout Sand Pa Benton		
Depth Below Grade	No.	Depth	Blows /6"	· · ·		Sample Description	Stratum Change General Descript	Equip. Installed	Field Testi PID		
						Boring through					
ļ						Duce buy den Uterning 41/44 Hollows Team			h ·		
						auger, To 2016g					
			<u> </u>			Sec soil description			,		
		-		•		in MW-109D boring		· .			
						log.	ч. 1				
						}					
]			·		
i	<u> </u>		 								
	ļ				: · · ;						
						1					
<u>,</u> ,,									1.		
`_			<u> </u>					· .			
	, ,					4					
						4			· ·		
	•										
		· .] .	·].			ŕ	
	<u> </u>						1				
	 	ļ	1		 	-				3 - 2 - 2	ĺ
well	desiv	15:50	1409-	201-10'i	Sand	- 20-8'		· · ·		-	
		554		-5' j G	1007 -						1
					• .						
						~			.		

File No.	: 3424	1 002.00	21	ibility Stud rewsburg, i		Hammor: Automatic Fall: 30"	Start Date: $9/9/04$ End Date: $9/9/04$				
Boring Forema OBG G	n: 🎵	ak M	B Servi athica Yuri Vo	ces inc. S eliz	•		Screen Riser		Sand Pack Bentonite		
Depth Below Grade	No.	Depth (feet)	Blows /6"	Penetr/ Recovery	"N" Value	Sample Description	Stratum Change General Descript	Equip. Installed	Field Testi PID (ppm)		
						Boring through overborden ottering					
						41/4" HSA TO 40 bg					
						41/4 1131 10400		· ·			
						Soc soil description In MW-1090 boring Log					
						IN MW-1010					
			<u> </u>			boving with					
		·									
						-					
				· · · · · · · · · · · · · · · · · · ·		-					
							· ·				
				•							
	·										
		ļ				-					
	ļ		†			7					
	ļ				1	-					
	 	1				-					
		ļ				1		,			
		<u> </u>			1	1					
<u> </u>	 						Ĭ				
	<u> </u>					-					
well	<u>त्र</u> ा	ng: s	uncen	45-35 7	Same	1-45'-33' T= 30'-0'					

•

		(A) (J - 1) (A)		(factor)	97. 1	TEST BORING LOG		TOF BO MW-JC		• • • •
Cilent: Remedia Proj. Lo File No.:	NYSD al inve c: Tov : 3424)EC estigatio	n Feasi rroll, Fi	Ibility Study rewsburg, i	/	Sampler: 2ª 5pla spoor Hammer: Automatic Fall: 30"	Page / of Location: Start Date: End Date: Screen	1	l Grout	
Forema OBG Ge	n: D	ale r	1ath Yuri V	ies	· .		Riser		Sand Pa Bentoni	te
Depth Below Grade	No.	Depth (feet)	Blows /6"	Penetr/ Recovery	"N" Value	Sample Description	Stratum Change General Descript	Equip.	Field Testi PID (ppm)	
0	1_	<u>່</u> ເ	212 417	2/15	6	Topsoil. Dusny brown (Sye 2/2), moist, SOFT Topsoil	Topsoil		0.0	AN
						Then at nibs 15 mod. Yellowish brown (10yr stu		d # !		
			5/ I.	· · · · · · · · · · · · · · · · · · ·	13	damp, stiff, FA Sandy	SILT	1 .		
			9.X			SILT, LITTIL CLay, Trace			0.0	
2	2	4	3/7	2/15	13	sand as about	Ensand,			
-ig	2	6	5/5	21.5	1	Then is light oblive say	SILT			
			416			- (5Y 5/2), MOIST, STICE		5.5'	0.0	
· ·			·	i		In sand and sitty day	1			
6	4	8	5/4 5/6	2/1.8	1	Then is med. INA-1 (NS),	1 . 1	1	0.0	
•						DIE V DIE V CLAY CH	M .			
					<u> </u>	Fhisand & Trace graves med. DVay (NF), Saturated	- 78	4	0.0	
	<u> </u>	10	3/3 2/4	21.5		Fr Sand		10'		
	6	- 12	312	2165		med. Juny (NT), Sat, Stiff)	FSILTY	-10	0.0	
			3/4			SILTY CLAY TO CLAY,	day			
12	17	14	54	2/68	4	- some Frisand. 	SILTY		0.0	, .
			514			med. ava y (NT), Saturated	, clay			
-74	1	16	1/2	2/1.0	1.1	STOFFISILTY CLAY TO CLAY LITTLE FOR Sand	SILTY CLay	,		
	1					Same as above up TO 17'	Tuclay		8.0	
6_	<u> </u>		<u>4</u> 1 2/5	2/1-0		Then is med. guay (NS), sat, dense, FA-ned sand	1 1	- 17'	ļ	
				-		- Some Siety clay, Little - Gouvel, Junce Cabble	Sand			\vee
 	L				<u></u>					
<u> </u>						·····				
•										11
• .										ł

						TEST BORING LOG		T OF BO		
Service and the service of the servi	SALLIN A. TAX	1010000010	ENCI		167.000	A		W-10		
Client: Romedia			n Feasi	ibility Study	1	Sampler:	Page2of Location:	1		•
Proj. Lo	;; Тоу	vn of Ca	rroll, F	rewsburg, l	ŃΥ	Hammer:	Start Date:	917/04	1	
ile No.:	3424	1 002.00	1			raii:	End Date:			
Soring C Foreman	iompi 1: Da	any: SJI しん ア	3 Servic Lathi	ces inc. ୧.୨	· •		Screen Riser		Grout	ck
OBG Ge	ologi	st:	Yuri Ve	oliz	r		O Ama As ana		Bentoni Field	
Depth		•		•		• *	Stratum Change		Testir	
Below	No.	Depth (feet)	Blows /6"	Penetr/ Recovery	"N" Value	Sample Description	General Descript	Equip. Installed	PID (ppm)	ΰv
Grade	70	2.2	97 5	2/1.0		save as above	FR-MCd	BIBLOUIV	1	<u> </u>
			i/r			Same as a pro-	Same		0.0	Αų
20	π	22	7/7	2/0	18	NO RECOVERY	NO	20	1	i.
			177			Poor Account.	RECOVERY	22'	0.0	ŀ
~,	13	24	4/6	210.8	76	Madi yellowish brown	ned-Sano			
22	12	_£1_	10/11		10	(1042 5/4), Saturned, Soft	Gravel	. .	0-D	
						med sand and gravel	GVAVEC	1		
	, ,					Souc for Sand.		241	0.0	
24	13	26	615	2/1.0	1	mod. yell- Lyoun (loth sly	med.			
			6 r	/		Sat, dense, medium	Sand			
			·			Sand, LITTIE GUAVEL			0.0	
26	नय	28	11/21	2/0.5		POON RECOVERY	ned.			
	<u> </u>		4/14			Same us above	Sand		0.0	
						mod. yellowish brown (love		28'	Ŭ. J	
- 78	15_	30	19/14	2/1.5	32	- · · · · · · · · · · · · · · · · · · ·	sand			
						dense, med- is sand	1 +			
					- <u> </u>	and gravel, LITTIC Colle	Gravel		0.0	
30	16	32	1/5 37/30	2/1.0	42	Sanc as above.		· ·		
·			<u>01/34</u>			Increase collo content	ned- cs			
32	.75	34	50.4	2/0/4	-	Poor Accovery.	Same		0.0	
						Save as above. Spoon Refusal. Auged To 34	Gravec			
					-	Light olive gray (sx s12)			0.0	
34	18	36	417	2/1.8	19_	Trati dunse men la	med-ls			
		[and Guaver, Litric Cobbic	Jane			11
36	14	39		211.5	34	save as above	Grusel		0.0	
			501.11			AUGU TO 38'				· .
	t	1	-	1		-1				

.....

							· · · · · · · · · · · · · · · · · · ·		المالية في المراجع	-	
						2000 - A S S S S S	TEST BORING LOG	REPORT			
	11.1.1.1.1.1.1.1.1		A CONTRACTOR	251811		<u>lesses</u>			109	ע.	
	media	NYSD 1 Inva	sticatio	n Feas	ibility and		Sampler:	Page 3of 4 Location:		•	
	oj. Lo	c: Tov	m of Ca	rroll, F	rewşburg, İ	YY I	Hammer:	Start Date: 9	з(ри		e e e e
Eik	e No.s	-3424	1 002.00	1	11 1	•	Fall:	End Date: 9/	8/04:1		
Bo	ring C	Compa	iny: SJI	3 Servi	ceș lnc.			Screen = Riser	G G		k
	roman SG Ge	n: Da ologiu	lin-	Yurly	eliz			Sector Sector			
								Stratum Change		Testin	
Be	pth low				Penetr/		Sample Description		, P	D	- I
	ade	No. 2る	(feet) 40	<u>/6"</u>	Recovery			n ya fa saara ay		1	<u>v</u>
	24	10	<u> </u>	313			Same as above	1 A.A.A.		9.0	NU
						-		o Gravel		ł	1
4	0	21	42	6/17	2/2		Same as above			5. D	
-				17/20	1.5	44 ⁷		mid-is	ľ		
	42	28	<u> 24 9 -</u>	57.4	2/1.5	۹	Same at abort . Augul TO 44'	Sand			
							1. T	+		0. D	
	44	25	46	9124	21.0	ļ	sanc as above up	Gravel		· ·	
-			1 - 125	1.14			To "5.5". Then is		5.5	0. D	
-	ŧ lá	24	24	12/15	21	35	medium sandisone	med.		0. 0	
	r.g	2.3		10/11	.	1	Gravel.	Sand	}		. 1
-		· ·			india.		Same as about		1.	0.0	
1 🗖	18	2.5	1.50	1 0 0 0 1 7 7 1	22/1.5	15	Light DLIVE JUNY (Syster)	Farried			
							Saturated, dense, med.	sand ,		D.	
-				1. A. S.		1	For Sand, Some silt, Little gravel			Ĵ.	
1	50	26	52	116	21.0	4	Same as a Sout. Trace	In-red.		0.0	
				11/		<u> </u>	cubbles	Sand			
	52	22	54	8/10		24	Samestabove				
	,			14/1	 .	╉╌╌──	Tracentelles	Fr-Mid		0.0	
	54	29	36.	4/6	2/1.0	39	Same is about up To -				
	<u> </u>			UI/A			- SE'by Then is Light		51	s. D	
F		<u> </u>					olive guar (sy s/2), sar	ו גוגי	<u>ر</u>		
E							- Gravel and cs sand,			:	
			<u> </u>				TLITTIC COLSIC TVACC NO	J Co band		ŕ	
	· · · · · ·		1		,	1	"Jsand,		•		
	<u> </u>			- - -	· · · · · · · · · · · · · · · · · · ·		Part Horsey Y.	Graver			
							Stran Stafford	4			
-					<u> </u>		ruga of the	ls land	<u>-</u> -	ļ	
				1 •					• ,		1
							•	•			•
•											
· ·		•					•	•			ł.
											1 0
•							i				ì
		· .									•

				Calara - C		TEST BORING LOG		AND - 109			•
Cilent:	NYSD	EC		UE ERS MI		Sampler:	Page4of Location:			, ·.	
Remedi Proj. Lo	al Invé c: Tov	estigation which ca	in Feasi Irroll, Fi	ibility Study rewsburg, I	/ •Y	Hammer:				• •	
-ile No.	: 3424	1 002.00	1		·	Fall:	End Date:	: 9/7/04 <u>_1/8/04</u>			
Soring Porema DBG Ge	n: <i>∫</i> ⊿	sle M	B Servia L <i>Thici</i> Yuri Vo	5		•	Screen Riser		Grout Sand Pa Benton		•••••••••••••••••••••••••••••••••••••••
Depth						· · · · · · · · · · · · · · · · · · ·	Stratum Change		Field Testi		
Selow Grade	No.		Blows /6"	Penetr/ Recovery	"N" Value	Sample Description	General Descript	Equip. Installed	PID	UV	
56	30	69	50/.4	2/0.4		POUR RECOVERY	ŀ		0.0	NA	
						Same as above spoon vero set	Graver				
<u></u>		·				Auger To 60'sg	+ Ci Sana				
51	30	60		.4 211.4	20			1	0.0		
	<u> </u>		µ.,∉,/\$¥∕			Same as above augus to bi					
61	31	67	575	2/40	39	•			0.0	1	
			50/1			auger To 621		-62'			
		ر بر شمر				light olave gray (54 1/1)	midics Sand		0.0		
67	31	69	50/14	2/0.4		Gattine Tedy My dusc Mid- (s Sand, sprit	: Sand	•	0.0		
	·			41		gravel. LITtle in Kand	z I				
64			501.4		69	gravel, LITTle pr band augus To 641			0.0	1.	ľ
	34	69	501.4	2/1.0		Same as a bove avge To 46'	Medils sand		.		
<u> </u>				\$1.1.1	<u> </u>	Sanc as above augus to 18'	Sand		0.0	√//	
61	3.5	10	url19	2110	64	Same as above				ľ	
	1		55/.4				• •				ľ
						EOB-75169		70'			
						Well set at 70169				1	ſ
	1		1		1			·			ľ
						-					
											ł
	1		1		1	-		i.	l ·	ś.	
										•	
	1	1			1	1				1	
	<u> </u>			<u> </u>						- 1 e	1
						· ·					
	1	1			1						
h 10 11		n= -		- 20/- /	5/12	; sand-70'-55' {1	well loca	Tent in Da	<u></u>		-
<u>~~</u> "		د - بست: ک	cal.	- 55'-5		6100T-50'-0'bg (6	sxisting			• · ·	
						•					-
			•				•		•		
						x					
·.	•									٩٠	
. ·										1	•
									•		
· ·								••		•	-

	<u>613</u>	्यस्तरुह	સંસારો	NETTES I	NC	TEST BORING LOG		RT OF BO MW - 112			
Silenti Remedi Proj. Lo File No.	NYSD I Inve c: Tov : 3424	EC stigatio vn of Ca 1 002.00	on Feas Irroll, F	lbility Stud rewsburg, i	v	Sampleri 2ª Split Spoon Hammer: Avionatic Fall: 30"	Page Jof 3 Location: Start Date: $\frac{1}{10}0^{1}$ End Date: $\frac{9}{10}0^{4}$ Screen = Grout				
Boring Forema OBG G	Comp n: උ ologi	any: SJi Lie Mi st:	B Servi Athics Yuri Vo	ces Inc. ; eliz	. *		Screen Riser		Sand Pa Bentoni	te	
Depth Below Grade	No.		Blows /6"	•	"N" Value	Sample Description	Stratum Change General Descript	Equip. Installed	Field Testin PID (ppm)		
0		2	1/2 3/5	2.1.1.5	5	Mod. biown (SYR 514), Moist, soft, sandysilt Some clay. Topsoil To 0.5169.	Fopsoil Fin Sunds Silt		0.0	AN	
2	2	4	<u>3/4</u> 5/6	2]].V	4	Some as above	some Elay		0.D		
4	3	6	<u>s/4</u> 5/7	2/1.5	. <i>¶</i>	Light olive Star (Systel, Moist, Stiff, Frisondy SICT, Little Clay	SILT	, 4′	0.0		
6	4	8	416 717	2/18	13	Sancas above up to -7.7 then is nod. stay (NS), Moist, stiff for sandy see	F En Sand	7 - 64			
9	5	10	3/4 6/5	2/	10	mod (((und) und read	SILT		6. I		
10	6	72	2/2	¥L.8	8	FA sandy SILT, Some clay AT m 7. 1' pen sandy SILT, and Bilty clan. Mod. brown (NI), satura Ted, STIFF, FA Sandy SILT and SULTy, Clay.	- Solt +	507.10-2.	,O. D		
	7	14	<u>.</u> 1/1	2/60	22	mad brown (Nr), Saturate	e silty	-121	0.0		
			<i>u/1</i> 4			KTIFF, SILTY CLay. AT N 13 bg 15 Fn Sand and SIC Some gravel, Trace Cabble	Fin Sand SILT	- 'n'	0.0		
14	1	16	3/5 -\$16	2/0.1	10	Mod. Gray (NF), Salurar. 10052, Fin- mid Sand, Som Stort and Graver	c Formed Sand	-141			
	9	/8	617 576	2/65	. 12	sauces above	Gravel Fa-med		0.0		
							Sand			N	
									<u> </u>		
•	·										
	÷										

•

NEEDE	1312	CITE	EN(0)!	NEERS		TEST BORING LOG		W- WOOT		
lient:	NYSD	EC				Sampler:	Page 1 of			
Rem <mark>edi</mark> Proj. Lo	al inve c: Tov	estigation which of Ca	n Feas Irroll, F	ibility Stud rewsburg, i	y NY	Hammer:	Location:	g/80/04		
File No.	: 3424	1 002.00)1 ^{1a}			Fall:	End Date:	9/10/04	Grout	
Boring (Forema	Comp n: <i>Po</i>	any: SJ	B Servi act ly i	ces inc. シ			Screen Riser		Sand Pa	
OBG G	ologi	st:	Yurl Ve	əliz 🛛	r	· · · · · · · · · · · · · · · · · · ·	Stratum		Benton Field	
Depth Below Grade	No	Depth (feet)	Blows /6"	Penetr/ Recovery	"N" Value	Sample Description	Change General Descript	Equip. Installed	Testi PID (ppm) –	
18	70	20	5/4	2/1.5	8	mod guay (NJ), Saturated dense, Medium sand, sune	medium		o.Ū	NA
	<u> </u>		4/5			dense, medium sundisund silt. at ~ 19'bg'ls FA	sand		0.0	
				···, · · ·		Sundy silt, some clay		4'		
20	Ú.	22	1/2	2/1.0	1	Mod. gray (NF) Suit, STIFF	Fasan Ly SILT		0.0	
		· · · · ·	6/7	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	FA Sandy SIIT, Some clay	nedsund			
				······		Layers of med. sand.	Fin Sandy SILT		0, D	
22	12	24	715	2/(.0	14	Med. gray (NS), Sat, STIFF			0,0	
			9/12			Fin Sandy SILT, Sort elley				
		<u> </u>				at ~ 23.51 becomes moist Little ecay			0.0	
24	(3	26	8110	211.8	29	med. gray (NY), wet to see	- 524	Sat. 24-30	0.0	
	ļ		19/21			FA Sandy SILT, Little Clay	Fn Sandy SILT			
						7			0.0	
26	19	28	30/28	2/1.0	48	sand as above. Saturated.	Fn Sondy			
				· · · · · · · · · · · · · · · · · · ·			SILT		0.0	
28	15	30	718	2/ 1.5	20	some as above				
		 	17/14	/	<u></u>	med- svay (NT), damp TO	Fr San 21	Į		
30	16	32	6/14 14/16	2/1.8	28	MDIST, havd, Fr Sandy SILT, LITTLE TO FRACE CLAY	SILT		0.0	
	<u> </u>					CITTIC TO TVACE CCAY	V2.	SAT 32-34'		
\=. . .						Sanc as above.			0.0	
32	17	34	16/18	2/1.0	35	Saturated	Fr Som 24	,		
					ļ	4	SILT		0.0	
34	18	36	11/12	2/1.5	32	Sure as above	1	· .		
			15/16			damp to MOIST	Fn Sandy			
					40	Sanc as ubore	In Sandy SILT	1	0.0	
3&	19	38	2127	2/1.0	40	MOIST TO WET	>(1)			∀
							ł	l		
	<u>, </u>	1				1				
								الاقان ومعدد معدما فنجي		

i J

					TEST BORING LOG		RT OF BO		•••••
0.0010101010	110000000000000000	ENCI	deersal					· · ·	
NYSD I inve	EC stigatio	n Feas	Ibility Stud	v !	Sampler:	Page 3 of	3		
»: Tov	vn of Ca	urroll, F	rewsburg, l	ŃY	Hammer:	1.			
3424	1 002.00	И			Fall:	End Date:	1/10/04	1	
omp	any: SJE	B Servi	ces inc.	,		Screen		Grout	ack
ەم- :: ologi:	, 12. <i>17-14</i> st:	Yuri V	, etiz			ruser		Benton	
			· · ·			Stratum		Field	
No.		Blows				General	Equip. Installed	PID ·	ອ ປV
20	40	114	211.0	31		1			
	'	13/19			To wet, hard, FA sandy	· · · · ·	1	00	AA
					SILT, LITTILLLAY				
		[· · ·		DE Yest 11 - 4	505	WET TO S.	at .	
			· · · · · · · · · · · · · · · · · · ·			Fo Sands	401-46'	6.0	
21	42	15/21	2/17	42	Same as above.	SILT			
		2/23			WET TO SOT.				
	<u> </u>		· · · · · · · · · · · · · · · · · · ·	<u>+</u>	4				
22	44	17/2	21.8	131	SANC as above. We T TO SOT	SILT		0.0	
				<u></u>	4		441		
23	46		2/15	46	dense For and in a d.		∐		
	<u> </u>			1		sand			
		+			-	Gravel		ŀ	
		1	<u> </u>	1			-46'		
	 		<u> </u>	╂──	Set well at 451 bg				
	<u> </u>	<u></u>	1	1	1			ł	I V
· · · · ·	<u> </u>	<u>+</u>	}	+	4	i.		ļ	
	<u> </u>	1	<u></u>	<u></u>		ł,			ĺ
	<u> </u>	 	+	+	-		· ·		
	1				-				
				+	-				
				—	7	1		ł .	
			<u></u>	<u> </u>		1			
					-		1 ·	ľ	Į.
<u> </u>	1	1	1		1				
	╉────			╉──	- [
<u> </u>	1	1	1	十二					
{	╉────	+			~]		1		
			, and the second se				· · ·	-	
des	د - ومرز	screer	1-45'35	1 ; Sau	J-45'-33' T 30'- 0'bg				
	NySD I Inve :: Tov 3424 : Do Jogli : Do Jogli No. 20 	VYSDEC I Investigatio :: Town of Ca 34241 002.00 company: SJE : _Do. & ~2* ologist: Depth No. (feet) 2D 2D 21 22 22 24 24 24 24 24 25 26 27 28 29 20 20 21 22 24 25 26 27 28 29 20 20 21 22 24 25 26 27 28 29 20 21 22 24 25 26 27 28 29	VYSDEC I Investigation Feasily: :: Town of Carroll, Fi 34241 002.001 company: SJB Service company: SJB Service cologist: Yuri Ve Depth Blows No. (feet) /6" 2.D 4.D 9/14 2.D 4.D 12/24 2.1 4.2 12/24 2.2 4.4 12/24	VYSDEC I Investigation Feasibility Study: :: Town of Carroll, Frewsburg, I 34241 002.001 company: SJB Services Inc. :: Do. & March 123 ologist: Yuri Veliz Depth Blows Penetr/ No. (feet) /6" Recovery 2D 4D /14 2/1.0 13/14 14 14 14 14 14 15 16 16 16 17 17 16 16 16 16 16 16 16 16 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17	I Investigation Feasibility Study : Town of Carroll, Frewsburg, NY 34241 002.001 company: SJB Services Inc. : D_{C} & \mathcal{M} orthics blogist: Yuri Veliz Depth Blows Penetr/ "N" No. (feet) /6" Recovery Value 2D 4D 4/14 2/1.7 3/ 17/14 17/14 21 42 15/27 42 21 42 15/27 42 21 42 15/27 42 21 44 2/1.8 39 22 46 24/17 2/1.8 39	VYSDECSampler:1 Investigation Feasibility Study e: Town of Carroll, Frewsburg, NYHammer:34241 002.001Fall:company: SJB Services Inc. i: Date MeethicsFall:company: SJB Services Inc. i: All is the Service Inc.Fall:company: SJB Services Inc. i: All is the Service Inc.Sance as above. wet To Sertcompany: SJB Services Inc. i: All is the Service Inc.Fall:company: SJB Services Inc. i: All is the Service Inc.Sance as above. wet To Sertcompany: SJB Services Inc. i: All is the Service Inc.Fall: Service Inc.company: SJB Services Inc. i: All is the Service Inc. <t< td=""><td>TYSDEC I Investigation Feasibility Study :: Town of Carroll, Frewsburg, NY 34241 002.001Sampler: Hammer:Page 2 of Location: Start Date: Start Date: End Date: Screen Riser34241 002.001Fall:Start Date: End Date: Screen Riser00glst:Yurl VelizStratum Change General Descript00glst:Yurl VelizStratum Change General Descript00glst:Yurl VelizStratum Change General Descript104/142/1.03/111$71/4$$71/4$12$4/14$$2/1.0$13$71/4$$71/4$14$71/4$$71/4$15$71/4$$71/4$16$71/4$$71/4$17$71/4$$71/4$18$71/4$$71/4$19$71/4$$71/4$19$71/4$$71/4$10$71/4$$71/4$10$71/4$$71/4$11$71/4$$71/4$12$71/4$$71/4$13$71/4$$71/4$14$71/4$$71/4$15$71/4$$71/4$16$71/4$$71/4$17$71/4$</td><td>YYSDEC Investigation Feasibility Study Investigation Feasibility Study Investigation Feasibility Study Investigation Feasibility Study Investigation Feasibility Study Investigation Feasibility Study Stratum Start Date: $4/10/04$ Start Date: $4/10/04$ Start Date: $4/10/04$ Start Date: $4/10/04$ Screen Riser Riser34241 002.001 Sompany: SJB Services Inc. I: Dok Not Netton (feet) 16" Recovery Value Depth Blows Penetr/ "N" Sample DescriptionStart Date: $4/10/04$ Screen RiserNo.Ifen Recovery Value InstalledStratum Change General Descript204D$7/14$ $2/14$$2/1.0$ $2/14$214D$7/14$ $2/12$$2/1.0$ $2/14$214D$2/1.0$ $2/14$$3/1$ $2/14$224D$2/1.0$ $2/14$$3/1000000000000000000000000000000000000$</br></td><td>Sampler:Page 3 of $\frac{1}{2}$Investigation Feasibility StudyHammer:Start Date:$\frac{1}{2} [D/D^4]$34241 002.001Fall:Sompany:SJB Services Inc.Signed and ParticlesStart Date:Sompany:Yuri VelizDepth BlowsPenetr/No.(feet)$1/2$$1/2$$2D$$4/2$$2/2$$4/2$<!--</td--></td></t<>	TYSDEC I Investigation Feasibility Study :: Town of Carroll, Frewsburg, NY 34241 002.001Sampler: Hammer:Page 2 of Location: Start Date: Start Date: End Date: Screen Riser34241 002.001Fall:Start Date: End Date: Screen Riser00glst:Yurl VelizStratum Change General Descript00glst:Yurl VelizStratum Change General Descript00glst:Yurl VelizStratum Change General Descript104/142/1.03/111 $71/4$ $71/4$ 12 $4/14$ $2/1.0$ 13 $71/4$ $71/4$ 14 $71/4$ $71/4$ 15 $71/4$ $71/4$ 16 $71/4$ $71/4$ 17 $71/4$ $71/4$ 18 $71/4$ $71/4$ 19 $71/4$ $71/4$ 19 $71/4$ $71/4$ 10 $71/4$ $71/4$ 10 $71/4$ $71/4$ 11 $71/4$ $71/4$ 12 $71/4$ $71/4$ 13 $71/4$ $71/4$ 14 $71/4$ $71/4$ 15 $71/4$ $71/4$ 16 $71/4$ $71/4$ 17 $71/4$	YYSDEC Investigation Feasibility Study Investigation Feasibility Study 	Sampler:Page 3 of $\frac{1}{2}$ Investigation Feasibility StudyHammer:Start Date: $\frac{1}{2} [D/D^4]$ 34241 002.001Fall:Sompany:SJB Services Inc.Signed and ParticlesStart Date:Sompany:Yuri VelizDepth BlowsPenetr/No.(feet) $1/2$ $1/2$ $2D$ $4/2$ $2/2$ $4/2$ </td

				(1.1.1		TEST BORING LOG		RT OF BC		
ilient: ternedia roj. Lo	NYSD al Inve c: Tov	EC stigatio	n Feas rroll, F	NECKSAI Ibility Study rewsburg, I	1	Sampler: 2" Split Spoon Hammer: Automatic Fall: 30"	Page / of Location: Start Date	<u>1w - 11</u> 3 9/14/04 9/14/04	1	
loring (Compa n: த	any: SJE	3 Servi	5	· .	4	Screen Riser		Grout Sand Pa Benton	
)epth Selow Srade	No.	Depth (feet)				Sample Description	Stratum Change General Descript	Equip. Installed	Field Testi PID (ppm)	
0	7	2		2/ 1.0	4	Topsoil TOND.51. the IT	Tupsoll	-ar'.	0.0	NA
	¥			-,		15 Mod. SIDWA (SXE F/4) Moist, STIFF, SILT., Some FA Sand, LITTLE CLAY	SILT		· ·	
2	2.	-9	7/10	2/1.2	11	for sand, little clay Same us above.	SILT	•	O; D	
						Trace is stratel.			L.	
4	3	6	4/Y 6/10	2/15	11	sance as about out n	SICT		0.0	
						5.5 1s FR Sandy SILT	Fren	- 5.5'	D.D	
	4	<u> </u>	817 8/10	2/1.5		Light DLIVE giny (#512 MOIST, STIFF, Fr Sandy	SILT	1		
đ		10	3/3	2/15	7	SILT, some clay		-solt.	6.0	
			3/4			Med. STAY (NY), Satu- Yuted, Stiff ; Fa Sand	Fr Sand	*		
10	6	12	3/2	2/1.8	6	sitti some clay sanc as above	SILT		0.0	
			4/17		4	1			6.0	
17			376	2/1.5	-12	ined. grav (NT), Satura - Ted, Sopet, SISTy clay	SILT Y	-11'		
			<u> </u>			to elay. then at a 121	TU CCAL SILTY			
		<u> </u>	1			For Sand.	cuny		ò.Ö	
14	8	16	2/3 3/4	2/1.1	6	Medigiay (nr), saturn - Stiff, silty clay, so				
	<u> </u>		4 [4]	2/1.1	10	For Sand	SILTY	16'	00	,
6	 1 		6/7			SAME AS ABOVE. SILTY ELAY TO GLAY	CLAY. To Cla			
-18	10	20		2/1.0	-	Some pasand. Sances above	SUTY	<u>ר</u> י	ə, ö	P \ [
						Suty clay	clay			ν
	}		l·	I	Ц.,		_	20	!	
									<u> </u>	
•			·		*	•				
	,					•				i
·										l,
										•

- 	-151.02	<u>রাজন্যন্</u> য	្រោះស	સંદ્યાસ્ટરના	N e	TEST BORING LOG		RT OF BO いー (
:lient:	NYSD	EC				Sampler:	Page/of Location:			· · ·
Remedi	ai inve	estigation of Ca	n Feas	ibility Stud rewsburg, i	y NY	Hammer				
-			-				Start Date	: 9/ 14 /04	(
File No.	: 3424 Comp	1 002.00 any: SJI)1 B Servi	ces Inc.		Fall:	End Date: Screen	<i>4 14 0</i>	/ Grout	
=orema	n: Ď	ale Y	inthe	25			Riser		Sand P	
OBG G	eologi I	st: I	Yuri V	eliz		1	Stratum		Benton Field	
Depth		B 4	-	Barradad			Change		Testi	ng
Below Grade	No.	Depth (feet)		Penetr/ Recovery		Sample Description	General Descript	Equip. Installed	PID (ppm)	υv
20	1	22	1/2	21.9	4_	Mec. quar (NTI, SUTUYAT.	SILTY			NA
			14			SOFT, SILTY CLAY, Spice	clay		p. I	
	ļ					FA sand.		227.		111
22	12	24		2/1.5		Same as above	SILFY LLMY	· ·	0:0	
						SILTY LAY TO CLAY	To llay	- 74'		
24	13	2.6	5/4	2/1.5	1	Sanc as above up TO	SILTY		00	
			<u>r/6</u>	· · · · · · · · · · · · · · · · · · ·		25' then is mediguay	clay			
	<u> </u>					UNTI, Sat. dense, FA Sand		-251 .	0.0	
7.6	14	28	919	2/1.5	19	25'. then is medigray (NY), sat. dense, for sand and sictisanc medisand and gravel	For Sand	1		
			<u>u/a</u> _		4	- A AVAY (NY), Son TUNAT.	Gravec	1		
· · · · · · · · · ·	<u> </u>	<u> </u>				Jense, FR sand and silt	·			
]	ļ			Some mist sund und	1.		0.0	
						Gravec, LITTLE CLAY	For Same	7	0.0	
2.9	11	30	5/4 817	20.5	12	Light olive stay (sy sie)	Med. +			
·	1		X/#	ŀ		FA Sand and Silty, Sond	Gravel			
			+			Bravel, mod. sand.	· ·		40	
	1					LITTLE CLAY, Trace	France Sund	'		
·	╂───			l		- LS Gravet	Gravel		0.0	
	.	7.0				Same as above	GVAVCC			
30	16.	32	11/10	2/0.5	27			- 32'	0.0	
	17	34	79/21	210.5	71	Light dive goay (54.5/2) Sati dense, is gravel	Le Cyan			
32			50/-3			Then Fri-med Sand	Fr-Mer	시		
	┥──	<u></u> 			+	Livric SILT	Sand		0. 0	? −
34	18	36	21/3	2/0-5	76	- usht dive gray (sr sla) - Sat, dense, es sand and	J	-34'		
			4.0.14	4		Gravelisone med. sand			0.0	14
-	1 ,	17.00		1		SILT.	+		0.0	V.
- 36	19	38	50%	2 2/0.5	-	same as above	Gravel	-	1	
			<u> </u>	1	Ţ	avgar to 38'				<u> </u>
						· ,				
						<u> </u>	· ·		. <u> </u>	

						TEST BORING LOG		TOF BO		·	
) ERE	COLOR DE COLOR		ENCI			Sampler:	Page 2 of 2	W-111			
emedia	al inve	sticatio	n Feas	ibility Study			Page 3 of 3 Location:				
roj. Lo	c: Tov	vn of Ca	rroll, F	rewsburg, I	YY	Hamm o r:	Start Date:	9/14/04	-		
ile No.	3424	1 002.00	1 Semi		<u>.</u>	Fall:	End Date:	9 14 04	Grout		
oremai	n: "D,	all M	lathe	ces inc. 25	•		Riser		Sand Pack		
BG Ge	ologi	st:	Yuri V	eliz		· · · · · · · · · · · · · · · · · · ·	Stratum		Benton Fleic		
)epth Selow				Penetr/	"N"	Sample Description	Change General	Equip.	Testi PID		
Brade 39	NO. VP	(feet) 40	16" 15/6	Recovery	Value 2D		Descript	Installed 397	(ppm)		
	×		14/17			dense, nedive sand.	Sand		00	איק	
						AT~ 39! is medium		39'	1	1, 1	
						att ~ 39! is medium shad and stavel, little	nc J. Sano	1			
	·	<u> </u>				SILTy South is Sand.	Gravel		00		
40	ч	42	10/11 4 C 140	2/1.5	56	Same as about		1	1		
				l 		1 ~	ned. Sano	1.	0.0		
42	22	44	50.4	2/1.8		Same as above	+ Gravel		0.0		
						1		- 4447			
	 		{	 		EUB-45'. Well Set wet 45'69					
			<u> </u>								
· · · ·	<u> </u>	 	<u> </u>	<u></u>	1	- · ·	1				
				· · · ·			· ·				
		1									
			<u> </u>		┨────	-		1			
		:	1	1		1			l		
			╉-──	}		<u>-</u>				4	
		ļ	1	Į]					
			1			_		•	l ·	1	
			+	↓		·		· ·			
			-	1		1				1. A	
				+		4		ŀ	· ·		
		1	1	1	1	-					
	╁╍╍╸			<u> </u>			. .				
	1		1								
			1	1		-1	ł				
						-					
-		1		1		<u> </u>	<u> </u>				
242	n de	- enis			-	. ,	Locuted	~250'	NW 01	<u>-</u>	
			Scul	- 33'- <u>3</u> ,	o'; 6	VOVT- 30'-01 STP-1					
•										,	
•			÷							,	
- 										۲.	
										ļ	
										1	
										•	

Appendix C

Ground water sampling logs

•

O'Brien	& Gere Engine	ers, Inc.		Low F	low Groun	nd Water Sampling Log		
Date	10/14/04	Perso	nnel		Int	Weather	Clover &	50.F
Site Name	Town of Lar		uation Method	Bla	1 det	- Well #	MW-11	
Site Location	Frewsburg,	من Samp	ling Method		e det	Project #		
Well Informa			• <u>••••</u> ••					<u></u>
Depth of Wel	い <u>ノ</u> ア	<u>80</u> ft.		* Measure	ments taken from	n		
Depth to Wat	er*	<u>52</u> ft. 29 ft.				Top of Well Cas	ing	
Length of Wa		<u>. I I .</u> tt.				Top of Protective	-	
イノー	c-> 14/45					(Other, Specify)		
Water param	ieters:							
	Depth	13%	0.1	±3%	Oxidation Reduction	Dissolved	± 10%	
Elapsed	То					Oxygen troy	Turbidity	Flow
Time	Water	Temperature	рН	Conductivity	Potential	(mg/i)	(NTU)	Rate (ml/min)
0	6.72	13.18	7.41	0.593	-13.2	0,78	1491	140
5	6.98	13.12	7.35		-13.1	0.61	103.80	100
10	6.98	13.12	7.30	0.592	-12.0	0.60	76.90	105
15-	7.40	13.11	7.31	0.586	-12.3	0.67	81.30	105
20	7.10	13.15	7.31	0.583	-14.4	0.60	75,90	110
	7.14	13.11	7.31	0.582	-16.3	0.53	51.30	105
<u>3D</u>	7.16	13,17	7.32	0.583	-26.0	0.50	39.40	105
35	7.20	13.17	7.32	0.584	-29.5	0.53	42.10	105
40	2.24	13.17	7.33	0.588	- 33.2	0,51	33.7	10D
						<u> </u>	{	
		·			1	· · · · · ·		
· · ·				·				·
				·				
		1						
						<u></u>		
a	· - · · · · · ·		+					
		1	1		1		<u> </u>	
		1	+	<u> </u>	1	<u> </u>		
Nater sampl	9:					<u></u>		
fime collecte	d: 1530			Total volume o	f purged water re	moved:	~ 4 gui	//
hysical appe	earance at start	4			Physical appea	rance at samplin	~ 4 gu	
	Color Clear Odor NO	1				Color Odor	cicar	-
Sheen/Free P					Sheen/Fr	ee Product	~7	-
Samples coll	lected:				••••••••••••••••••••••••••••••••••••••	<u></u>	; *	
Container Siz		er Type	# Collected	Field Filte	red	Preservative	Contain	er pH
					·			
						1		

ţ

ļ

<u>O'Brien</u>	<u>& Gere Enaine</u>	ers. Inc.		Low F	low Ground	<u>i Water Sa</u>	<u>mplina l</u>	00
Date	10/11/04	Perso	nnel	<u></u>	IRT	Weather		SUNNY FOF
Site Name	Jour DE C	- x. <i>y.yp//</i> Evacu	ation Method	Blo	JJU	Well #	mw.	- 1025
Site Location	Frewsburg,		ling Method		ider	Project #	· · · · · · · · · · · · · · · · · · ·	
Vell informa		.40 tt.		• • • • · · · · · · · · · · · · · · · ·				
Depth of Well Depth to Wat		<u>. 76 </u>		- Measure	ments taken from	Top of Well Cas	ina	
ength of Wa		<u>. 64</u> п.				Top of Protective	-	
-						(Other, Specify)	-	
	- 1630			··		*		
Nater param	leters:							
			•					
······································	Depth	13%	0.1	134.	Oxidation Reduction	Dissolved	10	-/.
Elapsed	То			~ 27.	Reduction -/ P	Oxygen 1/0/	Turbidity	Flow
rimê	Water	Temperature	pH	Conductivity	Potential	(mg/l)	(NTU)	Rate (ml/min
0	10.80	13.56	7.60	0.481	-97.00	1.73	35	250
<u> </u>	10.84	1341	7.59	0.481	-97.5-	613	31.2	250
IV	10.84	12.98	7.50	0.488	-88.7	1.40	10.22	2.2.0
11-	10.84	12.89	7.46	0.498	-82.0	1.50	4.90	220
20	10.84	12.78	7.43	0.507	- 71.3	1.73	2.97	
25	10.84	12.42	2.43	0.511	-59.1	1.94	1.96	
30	10.84	12.29	7.45-	0.512	- 54.4	2.08	1.47	250
35	10-84	12.22	7.45-	0.512	-51.2	2.21	1.21	280
40	10.84	12.18	7.46	0.514	-47.8	2.29	0.94	
40	10.84		1.76	0.319	-17.0			
			┼					
<u> </u>				· · · ·		1	 	
			<u> </u>	·				
····				· .	_		 	
				[_	<u> </u>	<u> </u>
	· · · · · · · · · · · · · · · · · · ·						<u> </u>	
			<u> </u>			<u> </u>	<u> </u>	
	、·		<u> </u>		ļ	ļ	_	
			<u> </u>					
Nater sampl							L	
	d: / 7//~			Total volume o	f purged water re			gall
Physical appe	earance at start	1			Physical appea	rance at samplin Color	e Colo	stess
	Color Color	acc .				Odor	- 6010	1.000 A 45 2.
Sheen/Free F					Sheen/Fr	ee Product	ND	
Samples col			# Collected	Field Filte	ared	Preservative		ontainer pH
Container Siz		ier Type L	* Collected		-	HLL	—ť	<u> </u>
16	PE		2		<u> </u>	HNOZ JA	OH	
IL	south	Y	3					
<u> </u>								

V.A. MINAR

I

<u>O Brien</u>	& Gere Engin	eers, mc,				d Water Sa		<u> </u>
Date	10/11/04	Perso	nnel	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Ist .	Weather	Sunny (65·F
Site Name	Town of Car	vo// Evacu	uation Methor	1 Blad	ist pure	Well #	MW-10	21
Site Location	- FULLSburg	<u>u-√</u> Samp	ling Method	Blade	10 pump	Project #		
Well Inform	ation:							
Depth of We		\$.06 ft. To	ĸ	* Measure	ments taken fron	-		
Depth to Wa		1.73 ft. 70	ŀ.		<u> </u>	Top of Well Cas	-	
		. <u>9.33</u> tt.				Top of Protective (Other, Specify)	-	
	L - 245							
Water parar	neters:							
	Depth	13%	0.1	23.1.	Oxidation Fill Reduction	Dissolved	time	
Elapsed	То		-		1	Oxygen 10%	Turbidity	Flow
Time	Water	Temperature	pH 5	Conductivity	Potential	(mg/l)	(NTU)	Rate (ml/min)
<u> </u>	11.82	14.34	7.61	0.442	-74.7	7.07	500	300
	11.92	12.28	7.175	0.419	-127.2	3.48	420	300
10	11.78	11.94	7.60	0.414	-152.6	1.83	670	300
15	11.78	11.85	7.54	0.425	-144.4	1.08	>1,000	300
2.2	11.7.7	11.84	7.47	0.442	-115-8	0.70	> 1,000	260
25	11.75	11.7.7	7.45	0.446	-99.9	0.58	21,000	200
30	11.7.6	11.52	7.42	0.446	-83.6	0.45	581	32.0
35	11.76	11.42	7.43	0.445	-75.0	0.45	320	320
40	11.76	11.49	7.43	0.446	- 74.1	0.44	310	310
45	11.76	11.65	7.4r	0.446	-53.6	0.63	284	320
J-D	11.76	11.63	7.46	0.446	-39.5	0.84	191	312
<u> </u>	11.76	11.63	7.50	0.448	-112	1.43	129	310
60	11.7.6	1.62	7.46	0.449	-11.5	1.48	100	310
65	11.76	11.63	7.46	0.449	-10.5	<u></u>	106.4	310
<u> </u>			<u> </u>	<u> </u>				
<u> </u>		_	<u> </u>				<u> </u>	
	<u> </u>				<u> </u>			
								<u> </u>
Nater samp				I	<u> </u>	I	<u> </u>	<u> </u>
•	ed: 1550			Total volume of	purged water rer	noved:	~ 890	//
	earance at start				Physical appear	rance at sampling	<u>~8ga</u> Lisht gr	
	Color <u>brown</u>					Color	Light gr	#Y
Sheen/Free I	Odor <u>Cayba</u> Product NO	<u>.58</u>			Sheen/Fre	Odor se Product	<u> </u>	_
								-
Samples co				In the second	· · ·	In	lo	
Container Si: 40~		iner Type n L	# Collected		red <u>state</u>	Preservative H()	Contain	
10~	C P		2			t	POH	
¥		······································				···· · · · · · ·		
	I		1	1		L		

i:\71\projects\forms\microlog.xls

-

-

l

ļ

O'Brien	& Gere Engine	<u>ers. Inc.</u>		Low F	ow Ground	Water Sa	ampling Lo	<u>a</u>	
Date	10/11/04	Persor	ากอุโ	<u>/</u>	RT	Weather	Synn	1 60.F	
Site Name	Town Larr		ation Method	<u> </u>	- d det !	Well #	Mw-	103	
Site Location	Frewsbor	G, NY Sampi	ing Method	Bla	ddd	Project #	^{>} roject #		
Well Informa Depth of Well Depth to Wate	• _3	<u>4.24</u> n. .23 n.		* Measure	ments taken from	Top of Well Ca	sina	<u></u>	
Length of Wa	ter Column Z	• <u>23 </u>				Top of Protecti	-		
Time	17.40					(Other, Specify	í) 		
Water param									
<u> </u>	Depth				Oxidation	Dissolved		-	
Elapsed	То				Reduction	Oxygen	Turbidity	Flow Rate (ml/mi	
Time	Water	Temperature	pH	Conductivity	Potential	(mg/l)	(NTU) 68.7	280	
U	6.70	13.85	8.15	0.398	-66.2	3.13	60.7	190	
5-	6.94	12.83	8.00	0.298	-121,5	Z.94	1 til		
10	6.86	12.50	7.97	0.294	-1228	7.60	9.80	150	
15	686	12.23	7.97	0.294	-134.0	7.34	8.82	/60	
20	6.88	12,03	7.98	0.29Z	-137.6	2.30	4.92	180	
20	6.90	11.87	7.99	0,292	-13.7	2.10	124	Z00	
30	6.80	11,76	8.00	D. 291	-134,0	1.94	16.8	120	
35	6,70	11.88	8.00	0.293	- 135.9	1.18	16.3	140	
-25	WITU	11,00	10.00	<u>, , , , , , , , , , , , , , , , , , , </u>		1.610	1/		
			<u> </u>	<u> </u>	-{	<u> </u>			
	<u> </u>								
			<u> </u>	<u>-</u>		1			
	l		_ <u>_</u>			<u> </u>			
									
				ļ		<u> </u>			
			1				·		
		-1							
					-				
Water samp	le:		تەك ىنچە <u>مەل</u> كى			<u> </u>	~~~~		
	ed: 1815			Total volume	of purged water re	emoved:	Lol-	29A	
	earance at start				Physical appe	arance at samp	ling (lipu		
	Color Clar					Color	<u> </u>	<u>u</u> n	
		<i>v</i>			Óba-c/E	Odor Droduct	-10		
Sheen/Free	ProductA	0			Sneen/H	ree Product			
Samples co	llected:				·····				
Container Si		iner Type	# Collecte	d Field Fil	ered	Preservative		tainer pH	
40 ML		OA	3	the second s	£	610	.C		
250 M		lastic	7		NO	IVac	VH		
2501		11	1		ND	Southan 1	yuntroy		
<u></u>									

<u>D'Brien</u>	& Gere Engin	<u>eers. Inc.</u>		Low F	low Groun	d Water Sa	<u>mplina Lo</u>	a
Date	10/14/04	Pers	onnel		INT	Weather	cloudy	
lite Name	Town of Lan	 (n// Evac	uation Method		dder	Well #	Mw-11	
	FULLSborg,		pling Method		ddel	Project #		<u> </u>
					<u>a c c c c c c c c c c c c c c c c c c c</u>			
Vell Informa	~	.56 tt.						
Depth of Wel				* Measure	ements taken from	7		
Depth to Wat	····	<u>.46</u> ft. 0,0 ft.			<u> </u>	Top of Well Cas	•	
ength of Wa		ter and the second s				Top of Protectiv (Other, Specify)	-	
71	<u>nc > 11</u>	OD AM			L			
Water paran	neters:							
	Depth	to .		MS/CmL	Oxidation /p	Dissolved	±10%	
Elapsed	То	13%	6.1		Reduction	Oxygen ±∕₀ ½	Turbidity	Flow
lime	Water	Temperature	рН	Conductivity	Potential	(mg/l)	(NTU)	Rate (ml/min)
0	5.55	11.86	7.69	0.847	-94,6	1.50	473	125
5	6.020	11.77	7.60	0.874	-105.2	0.50	311	135
10	6.88	11.68	7.59	0.877	-110.7	0.25	259	100
15	14.40	11.69	7.59	10.941	-1129	0.25	243	105
20	7.95	11.70	7.59	0.876	-/14_B	0,20	189	100
21	Q 44	//.¥/	1759	0.873	-114.9	0,18	180	100
30	8,90	11.73	7.59	0.871	-115.7	0.17	146	/05
30 35	9.34	1/ 1/			-115.8	0.15	1777	iln
	19037	1/0+1	7.60	0.869			93.8	110
40	7.00	//.69	+.60	0.867	-//4.8	0.19	1	/. · •
45	9.96	11.70	7.60	0-867	-113.5	6.18	90.5	110
						ļ	<u> </u>	
				· · ·			<u> </u>	
		,				I		
				1		T		
·····					1	1		
				1	· • · · · · · · · · · · · · · · · · · ·			
		·· ····					1	
			╺╉╼────				+	
Water samp	la.			<u> </u>	1			
Time collecte		•		Total volume o	of purged water re	emoved:	~ 29.	a 11
	earance at stagt					arance at samplir	-	
,	Cotor ()lea	Λ				Color	Clear	4
	Odor N	the second s				Odor		
Sheen/Free i	Product	<u>C</u>			Sheen/Fo	ree Product	_~0	
Samples co	llected:	•						
Container Si		iner Type	# Collected	Field Filt	ered	Preservative	Cont	ainer pH
40		nal	3		~	HLL		e <2.
1/20	i P	E	5			MNO2, N	n.011	
)					1 1		

į

-

ļ

ĺ

l

Ĩ

5

)'Brien &	Gere Enginee	ers, Inc.		Low F	ow Ground	nd Water Sampling Log				
	10/14/04		nnei	Yw/	NT	Weather	cloudy	50·F		
ite Name	Town DE Car	Ya // Evacu	ation Method		der		cloudy MW-la	255		
ite Location	Fun of Car Fucusburg,	ック ハック Sampi	ling Method		dded	Project #				
- Vell informati										
epth of Well *	20.	00 tt.		* Measure	ments taken from	ı				
epth to Wate	. 4.5	<u>6</u> tt.			X	Top of Well Casi	ing			
ength of Wate	r • 4.5 er Column 15,4	<u>ч </u>				Top of Protective	e Casing			
	- 1235					(Other, Specify)				
Vater parame										
T	Depth		· · · · · · · · · · · · · · · · · · ·	19.	Oxidation	Dissolved	/0% Turbidity (NTU)			
Iapsed	То	3%	01	3%	Reduction D	Oxygen 10%	Turbidity	Flow		
lime	Water	Temperature	pН	Conductivity	Potential	(mg/l)		Rate (ml/min).		
0	12538	17.53	8.58	0,367	-18.9	7.48	>1,000	190		
5	5.84	12.36	8.31	0,369	-47.6	0.42	71,000	100		
	<u> </u>	1241	8,23	0.368	-58:3	0.36	71,000	115		
<u>10</u>	6.16	17012	014	0.367	-63.1	0.31	71,000	115		
_11^	<u></u>	17110	011		-64el	0.34	7,000	175		
20	- 7.20	17.48	8.17	0,367	the second s	0.34	7,000	110		
25	7,42	12.49	8,17	0.366	-64.3					
30	7.60	17,48	8.16	0,365	65.0	0.35	71,000	110_		
					<u> </u>	<u> </u>	<u></u>			
					1					
				1			1			
	<u></u>	<u></u>					1			
		. <u> </u>		<u> </u>			+			
					1			_		
		<u> </u>		<u> </u>			<u> </u>			
****		1			1					
		1								
					1					
		+								
Water sampl	<u>i</u>									
Time collecte	_			Total volume	of purged water n	emoved:	~ 24	all		
					-	arance at sampli		-		
rnysicai appe	earance at start Color Grac	J			,	Color	ng <u> </u>			
	Odor ND	<u> </u>				Odor	~0			
1					Sheen/F	ree Product	~0			
Sheen/Free F										
						Duranting	Cont			
Samples col				d Field Fill	ered · · · · ·	- Preservative		amerph		
Samples col Container Siz	ze Contain	нег Туре	·· #·Collecte	d Field Film	ered .	Preservative MLL		ainer pH くり		
Samples col Container Siz 40-1	ce Contain	nl.	3	d Field Filt	ered	MLL InNUz (
Samples col Container Siz	ze Contain	al		d Field Filt	ered	Mel				

Ì

l

l

1000

ļ

<u>O'Brien</u>	<u>& Gere Engin</u>	eers, Inc.		Low F	Low Flow Ground Water Sampling Log				
Date	19/4/04	Perso	onnel	nel YV/RT			_ OVIA CA	st ds. 26	
Site Name	TOUNOPCA	TOU Evac	uation Method	Big	sker	Weil #	106-	-5	
	Freushire		oling Method	BIA	sper	- Project #			
Well informa									
Depth of Well		60tt.		* Moonur	ements taken fror	•			
Depth to Wate		2,57, ft.		Measure		Top of Well Ca	asian		
Length of Wa		6.92 tt.				Top of Protecti	-		
-	ne - 08					(Other, Specify	-		
						-			
Water param	ieters:								
	Depth			- 1. L	Oxidation	Dissolved			
Elapsed	То			NS/Cut-	Reduction	Oxygen	Turbidity	Flow	
Time	Water	Temperature		Conductivity	Potential	(mg/l)	(NTU)	Rate (ml/mi	
0	5.84	12.07		Celest.	141.0	3.45	631	180	
\$5	6.50	11.95	7,74	0.663	500	1.21	532	140	
10	6.94	11.96	7.78	0.66t	29.5	1.07	623	160	
15	4.78	11.96	7.83	0.60	-159	0.64	594	105	
20	8.18	17.01	7.86	0.658	-325	0.65	639	//	
25	8.52	17.02	7.87	0,656	-37.4	037	590	105	
30	8.88	12.03	7.80	0.656	-41.0	0,39	503	105	
35	9.28	11.99	789	0.654	-43.4	0.34	799	100	
40	9.50	1195	789	0.652	-450	0,32	219	110	
45	9.51	11.18	7.88	0.65-1	- 44.9	0.32	385	110	
<u> </u>		11.10	7.00	0.011					
				· ·				<u> </u>	
					· · · · · · · · · · · · · · · · · · · ·	+			
	<u>∔</u>						╺-┨╌────		
		<u></u>							
	<u> </u>								
	ļ			· · · · · · · · · · · · · · · · · · ·					
Water samp				Total volume o	of purged water re	moved	~ 200	a.//	
	ed: <u>0945</u>					arance at samp			
Physical app	earance at start Color 01004	1			r nysicai appe	Color	<u><u> </u></u>	/	
	Odor	NO				Odor	~~~		
Sheen/Free I	Product /	<u>ہ</u>			Sheen/F	ree Product	~0		
Complete	llastade								
Samples col Container Siz		ainer Type	# Collected	Field Filt	ered	Preservative	Cor	ntainer pH	
40		ial	3			MUL	the second s	>2	
1/21		DA [*]	2			HNO3 A			
			1			1 7	1		

ļ

2

4

ŗ

	Gere Engine						d Water Sampling Log				
ate	10/12/04 Town Land	Person	nel		<u>nt</u>	Weather	Svnny 6	30.0			
te Name	Town Lard	D// Evacua	ation Method	Block		_ Well #	107S	·			
ite Location	Fremsborg,	ーシン Sampl	ing Method	<u> </u>	Jer	Project #					
ell informat	·	7.1		_							
epth of Well		<u>7,39 </u> ft.		* Measure	ments taken from	n Top of Well Cas					
epth to Wate		<u>8/</u>			<u>/</u>	Top of Protectiv	•				
ength of Wate		17.20 "				(Other, Specify)					
/ater parame	eters:										
	Depth			. 1 6	Oxidation	Dissolved	The sub-Tables	Flow			
lapsed	То			ms cm ^e	Reduction	Oxygen	Turbidity (NTU)	Rate (ml/min).			
ime	Water	Temperature	pH 1	Conductivity	Potential 53.0	(mg/l) 3.66	574	200			
<u></u>	4,48	19,94	7.24	1.187			-311	0.00			
\$5	5.76	HAJUSTINY	PUINP	het Drw	Falling 131.0	Rivelly	589	100			
10	6.80	13.43	6.73	1.276		2.45	483	100			
15	6.82	13,68	6.72	1210	140.Z	7.12	453	11D			
20	6.96	15.65	6.72	106+6	148.1		373	100			
25	6.96	15.84	6,73	1.273	154.5	2.04	1312-	100			
30	7.02	13.68	673	1.263	156.6		<u>797</u>	1/20-			
35	7.14	13,54	6.74	1.259	161.2	11. FS	616	110			
45	7,28	13,47	6.74	1.264	164.9	1.64	297	110.			
			<u> </u>			<u> </u>		┨			
			<u> </u>		<u> </u>	┥───					
			1	T				<u> </u>			
	1		1	1							
	1		1								
Water samp		<u>,_,_,</u>	<u></u>					/			
Time collecte	xd: 1655			Total volume	of purged water		<u>-29a1</u>	/			
Physical app	earance at start	.1			Physical app	earance at samp Color	ling <u>Clearis</u> i	,			
	Color <u>L(Cov</u> Odor No	rish				Odor		<u>~</u>			
Sheen/Free		>			Sheen/	Free Product	~~~				
	·····				-						
Samples co		alman Turna	# Collecte	d ··· Field Fil	lered	Preservative	Contai	ner pH			
Container Si	ze Cont	ainer Type	* Collecte								
						1					
							······				

.

ſ

-

Terrare P

١

ļ

Length of V		52/ft. 70ft. 757ft.		* Measure	ments taken from	n Top of Well Ca Top of Protectin (Other, Specify	ve Casing	
Water para	imeters:							
Elapsed Time	Depth To Water	Temperature	рH	Conductivity	Oxidation Reduction Potential	Dissolved Oxygen (mg/l)	Turbidity (NTU)	Flow Rate (ml/mi
0	6.90	14.01	9.29	0,407	-214.5	4.26	215	370
5	6.00	11.84	8.98	0,392	281.2	2.30	163	370
10	5.91	19.75	8.92	0.384	-395	1.17	/38	160
15	5.91	12066	8.94	0.384	-31.4	0.84	140	200
20	5.91	12048	8,96	0,386	-3/2.3	0.61	150	210
25	5.92	12.26	8,71	0.370	-300.5	0.49	243	2#230
30	5.91	17.24	8.27	0.360	-2766	0.39	290	2.00
35		12.40	B.09	0,358	-251.0	0.32	287	205
	5.92	12110	8.00	0.357	-236.9	0.29	287	200
40	5.92	12.30	17 01	0.357	-224,4	0.24	212	200
45	5.93	12.36	7.88		-2024	0.18	285	200
50	5.92	12.19	7.85	0.355	-2014	0.18	278	200
35	5.92	12019	<u></u>					
					1			
ļ						, 	+	
	<u> </u>		_ <u>_</u>					
·	<u> </u>							
· · · · · · · · · · · · · · · · · · ·	<u> </u>					+		
		<u> </u>	_ <u>_</u>		<u> </u>			
Water sar	nole:	1				_1		 /
Time colle				Total volume	of purged water r	emoved:	<u> </u>	<u>Nl</u>
1	ppearance at start				Physical appe	arance at samp	ling Alam	<u>`</u>
	Color <u>clear</u>					Color Odor	<u> </u>	
Shoon/Fre		D			Sheen/F	Free Product	NO	,
			·······			<u>.</u>		
	collected:		# Collecte	d Field Fil	tered	Preservative	Cor	ntainer pH
Container	Size Con	ainer Type	- In Collecter			11 1030170.075		
	140-							
	,							<u></u>
-								

O'Brien (& Gere Engine	ers. Inc.		Low Flow Ground Water Sampling Log					
Date	10/13/oct	Perso	nnel	RT	<u>yv</u>				
Site Name	TEURSPEARS	/ Evacu	ation Method	BLAN	DER	Well #	1085		
Site Location	Frendoury	-	ling Method		Ner	Project #			
		• •		ند ا سایت ، ا					
Vell Information		,56 th.		• • • • • • • • • • • • • • • • • • • •	ments taken from	-			
Depth of Well Depth to Wate		$\frac{1}{4n}$ ft.		* Measure		Top of Well Ca	eina		
ength of Wat		<u>60</u> ft.				Top of Protecti			
						(Other, Specify			
							·		
Nater param	elers:								
	•								
	Depth			113/cm	Oxidation	Dissolved			
Elapsed	То				Reduction	Oxygen	Turbidity	Flow	
lime	Water	Temperature	pH	Conductivity	Potential	(mg/l)	(NTU)	Rate (ml/min)	
0	6.90	13.15	7.23	987	-1155	0.34	170	130	
3	82019 7.90	13.11	7.22	.988	-1(7.5	0,2	120	100	
10	B=40	1309	7.22	.189	-11707	0.13	174	100	
15	8.73	13.05	7.22	,989	-117.4	014	118	105	
rØ	9.36	12.97	7.21	. 989	~117.1	0.10	141	100	
25	9.90	12.87	7.21	.990	-117.0	0.08	/86	100	
30	10,32	12.76	7.20	.989	-117.0	OUT	ZZB	100	
35	10.70	17 71	7.20	.989	-116.9	0.06	257	100	
20	10.70	ICII	r.w	2/01	-116-1	0,00			
<u> </u>		<u> </u>		<u> </u>				·	
							-		
			<u> </u>				-		
		·	· ·	ļ		<u> </u>			
					•				
			1	1	1				
		1	1	1					
		· ·	1	1	1	1			
	<u> </u>			<u> </u>	1				
Water sampl	l	•••	1	<u></u>					
Time collecto	1. 1045			Total volume o	l purged water r	emoved:	~ 3 9	nll	
Physical appo	arance at start Color <u>U</u> UUU				Physical appe	arance at sampl	lina		
	Color Ularis	/				Color	Clearish		
<i></i>	Odor <u>aquiney</u>	, 			Sheen/S	Odor ree Product			
Sheen/Free F		·····			SheetVr				
Samples col	lected:								
Container Siz		er Type	# Collected	Field Fitt	əred	Preservative	Conta	iner pH	
			1					····	
*									
	• •		1	1			I		

:

ļ

ate	<u>& Gere Engin</u> <u>10/13/04</u> Tourse Can	Perso	nnel Iation Method	TUTH	der	<u>Neather Sampling Log</u> Weather <u>Arcuelst 60's</u> Well # MW 10B E						
	Freusburg		ling Method		dely	Project #						
/ell inform		<u> </u>					<u> </u>					
epth of We		<u>7.16</u> tt.		* Measure	ements taken fro							
epth to Wa		<u>.80</u> ft.			<u> </u>	Top of Weil Ca	-					
ength of Wa	ater Column3	7,36 tt.				Top of Protecti (Other, Specify						
Vater parar	nelers:	<u></u>			<u></u>			·····				
				-		<u> </u>		· · · · · · · · · · · · · · · · · · ·				
	Depth				Oxidation	Dissolved		Elev.				
lapsed	То	-			Reduction	Oxygen	Turbidity (NTU)	Flow Rate (ml/min).				
ime	Water	Temperature	pH 2111	Conductivity	Potential	(mg/l)		14/1				
<u> </u>	9.28	13.25	8.14	0.583	753.4	1.01	326	-14/2				
5	9.36	12.71	814	0.623	183.9	0,72	367	105				
<i>t</i> 0	9,28	12.98	8,14	0.637	-190.2	0.63	362	100				
15	9.28	12.97	8.18	0.641	-191.7	0.62	362	100				
10	9.28	13015	819	0.645	-192.5	0,61	328	105				
25	9.30	12096	8,70	0645	-192.5	0.56	344	10				
30	7.40	12.2.2	8.24	0,650	-197.4	0,48	3,0	110				
35	9.42	12.03	8.26	0.65D	- 190 %	0.46	315	120				
	- 164		0.2g		1/10T	0.43	3/1	110				
40	<u>9.4Z</u>	1/099		0.650	<u>11955</u>		741	1/5				
45	9.42	11.93	8,29	0,650	<u>+/94.9</u>	0.42	291					
	-				_							
				· · ·			_ <u>_</u>					
				<u> </u>								
			+									
		·										
				·{ · · · · · · · · · · · · · · · · · ·		-						
Nater sam				<u></u>								
fime collect	5110			Total volume	of purged water	removed:	34	A NSAM				
	pearance at start					earance at sampl		1				
TIYSICAL AP	Color Veru	١				Color	"Cless_					
	Odor ARbaa	9				Odor	GATOME					
Sheen/Free	Product 1	<u>)</u>			Sheen/i	Free Product	<u>' NO</u>					
Samples c						1-						
Container S	ize Cont	ainer Type	# Collecte	d Field Fit	lered	Preservative		tainer pH				

ļ

ľ

ļ

í de

ļ

مرم

D'Brien &	& Gere Engine	ers, Inc.	<u>-</u>	Low F	low Groun	nd Water Sampling Log				
ate	10/13/04	Perso	anel	y y	AT	Weather	cloud;	5.5.1=		
ite Name	10/13/04 Town of La		uation Method	8 la	221	Well #	ther <u>c(avdy 5.5</u> ** # <u>MW-1105</u>			
	Frensburg		king Method		i dol	Project #				
						-				
Vell Informat	-	2.53 ft.		ेंत • Meesura	ments taken from	n ·				
Pepth of Well				Measure		Top of Well Ca	nsina			
Pepth to Wate ength of Wat		7.22 ft.			A	Top of Protect	•			
						(Other, Specify	n)			
Vater param	nc					******		**************************************		
	Depth				Oxidation	Dissolved				
Elapsed	То		1		Reduction	Oxygen	Turbidity	Flow		
lime	Water	Temperature	рН	Conductivity	Potential	(mg/l)		Rate (ml/min).		
0	5.68	12.43	8.46	0.381	-63.7	1.43	51,000	300		
1-	6.50	11.60	8.41	0.378	- 74.8	0.31	21,000	180		
10	7.10	11.70	8.39	0.378	-77.1	0.22	71,000	120		
15	7.36	12.18	8.39	0,378	-71-9	6.27	31,000	110		
20	7.49	12.06	8.40	0.378	-74.6	0.28	>1,000	/30		
21	7.52	11.98	8,42	0.378	-73.3	0,28	>/,000	140		
	7.44	12.02	8.44	0,376	-65.7	0,26	71,000	/30		
30	1.77			101210						
·								<u> </u>		
	·			· · · · · · · · · · · · · · · · · · ·						
				· · · ·		w	<u></u>			
						<u> </u>				
·										
			-							
	<u> </u>									
Water samp Time collecte				Total volume	of purged water r	removed:	~3 <i>eja</i>	. 11		
						arance at samp				
Physical app	earance at start Color <u>6160</u>	,			i iijoiodi appo	Color	oling 			
	Odor 10	<u> </u>				Odor				
Sheen/Free	Product 10				Sheen/F	Free Product	~D			
								<u></u>		
Samples co		siner Type	# Collecte	d Field Fil	lered	Preservative	Cont	ainer pH		
Container Si:		and type	7		10	NC		<u></u>		
				and the second	11	LOOH				
401		Actic)					and the second se		
	in Ph	Astic	<u>'</u>		<u>~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ </u>	Za Za				

i,

-

ļ

1

İ

ĺ

		ers. Inc.		Low F	low Ground	I Water Sai	<u>mplina Lo</u>	<u>a</u>	
ite Name	10/13/04 Town of Ca.	Persor	nnel ation Method ing Method	BL	I RT a Ider a I Jer	Weather Well # Project #	Clour MW-	<u>14 507</u> = 1115	
epth of Well epth of Well epth to Wate ength of Wat	tion: $\cdot \qquad 2l$ or $\cdot \qquad -\frac{9}{4}$.	4.694n. <u>80</u> n. t.			ements taken from	Top of Well Cas Top of Protective (Other, Specify)			
lapsed	Depth To	±34.	<i>D.f</i>	±3.1.	Oxidation Reduction	Dissolved Oxygen ^{±10} %		7. Flow	
ime	Water	Temperature	pH	Conductivity		(mg/l)		Rate (ml/min). 150	1
0	5-80	11.94	7.94	0.587	-51.2	0.99	24000 24,000	130	1
<u></u>	6.06	11.63	7.88	0.589		0.63	21,000	100	1
10	6.76	11.43	7.86		-42.9	0.66	71,000		1
20	7.20	12.03	7.96	0.595		0.73	74,000		ا سمیع د مراجع
25	7.40	12.25	7.91	0.583	-25.9	0.42	71.000	100	
30	7.64	12.27	7.85	0.583	-20.0	6.88	21,000	0 100	4
31-	8.08	12.31	7.91	0.583	-13.6	0.74	71,000		Hav necp
40	8.40	12.31	7.85	0.580	-10.00	0.98	\$1,042	130	
45	8.64	12.36	7.86	0.577	-5.5	1.00	1,023		
Water samp Time collecte Physical app	ed: ///5	a y		Total volume		arance at sampli Color Odor	~ 2 5 	all	
Sheen/Free	Product				Sneen/F	ree Product			_
Samples co Container Si	and the second second second second second second second second second second second second second second second	ainer Type	# Collecte	d Field Fi	Itered	Preservative	Co	ntainer pH	
		IA-L	3		**	1100		62	_
1/20		1	2		· · · ·	HIND3 1	all _		
				<u>_</u>	· · · · · · · · · · · · · · · · · · ·				
		1			100 ML (r	······································	<u> </u>		

Brien 8	<u>k Gere Enain</u>						Sampling Log		
ate -	10/13/04		nel		NT	Weather		<u>/ 557</u>	
ite Name	Town Chr	<u>ro</u> // Evacu:	ation Method	<u>Bla</u>	Idel	Well #	Mw-	NOI	
ite Location	Frenshur	<u> チ</u> ィン Sampi	ing Method	R	I der	Project #			
/ell informat	ion:	· <u>····································</u>	····						
epth of Well		11 <u>,00</u> ft.		* Measure	ments taken from				
epth to Wate	ut	54,56 tt.			Top of Well Casing Top of Protective Casing				
ength of Wat		<u>54,56</u> tt.				(Other, Specify)	-		
Time	: -> 1240								
ater parame	eters:						and the second second		
1		· ·				E CONTRACTOR			
	Depth				Oxidation	Dissolved		_	
lapsed	То				Reduction	Oxygen	Turbidity	Flow Rate (ml/min).	
ime	Water	Temperature	pH	Conductivity	Potential	(mg/l)	(NTU) 190	160	
<u> </u>	5-58	<u>//.7/</u>	8.45		40.00	1.66	260	140	
_ر	6.36	11.25	8.38	0.353		0.69		140	
10	6.94		8.35	0.354		0.51	370		
15	7.28	11.07	8.33	0.356	-23.8	n.29	71,000	115	
20	7.38	11.33	8.32		-80.3	0.35	>1,000	100	
25	7.41	11.40	8.32	0.362	-100.3	0.25	>1,000	<u> </u>	
30	7.99	11.44	9.32	0.364	-113.1	0.30	>1,000	100	
35	7.46	11.49	8.32	0.366	-118.3	0.24	71,000	100	
40	7.50	11.42	4.31	0.367	-121.6	0.22	21,000	110	
45	7.62	11.33	8.30	0.365	-127.6	0.24	71,000	105	
50	7.70	11.32	8.30	0.36 3	-134.1	0.20	24,000	100	
	<u></u>								
		····							
				1			-		
	<u> </u>							1	
<u> </u>		_ <u> </u>			-{				
						·			
						<u> </u>			
<u></u>					-{				
					<u> </u>				
Water samp	ed: / <u>335</u>			Total volume	of purged water re	emoved:	~2.5	ga11	
	earance at start				Physical appe	arance at samp			
r nysicai app		<u> </u>				Color	- Gra	¥	
	Odor	<u></u>				Odor	<u></u>		
Sheen/Free	Product	0			Sneen/P	ree Product	<u> </u>		
Samples co	llected:							staas old	
Container Si		tainer Type	# Collecte	rd Field Fit	tered	Preservative		ainer pH 22	
40		Ilal	<u> </u>			HNO2.		<u> </u>	
1/2	6	16	2			111001			
	<u> </u>								
	1		I						

-

ţ

Date $I D [I3] / a$ Site Name \overline{Tann} (a)Site Location $\overline{Fy_2u_3burch}$ Site Location $\overline{Fy_2u_3burch}$ Nell information:Depth of Well*Depth of Water *	$\begin{array}{c c} \underline{YY} & \underline{Y}'$	2.4tion Method Ning Method PH 9.71 9.23 8.99 8.94 5.75 8.73	<u> </u>	$\begin{array}{c} 1 & \mathcal{R} & \mathcal{T} \\ \mathcal{J} & \mathcal{J} & \mathcal{I} \\ \end{array}$ ments taken from $\begin{array}{c} \\ \mathcal{R} $	Well # Project # Top of Well Casi Top of Protective (Other, Specify)	Example Casing $\frac{t_{10y}}{Turbidity}$ (NTU) $\frac{t_{1}}{2}$ $\frac{t_{10y}}{2}$ $\frac{t_{10y}}{2}$ $\frac{t_{10y}}{2}$	
ite Name $Torr (a)$ ite Location $Fvrusburg$ Vell Information: Depth of Well * Length of Water Column $TrMC \rightarrow 0855$ Vater parameters: Vater parameters: U 5.69 5 5.69 5 5.68 (D 5.66) 20 5.68 20 5.68 21 5.68 35 5.68 35 5.68 35 5.68 40 5.66 516 5.68 40 5.66 516 6 516 6	$\begin{array}{c c} \underline{YY} & \underline{Y}'$	bling Method D-1 pH 9.71 9.23 8.98 8.98 8.84 5.78 8.73	<u> </u>	Oxidation Reduction -22.7 -132.9 -176.6	Project # Top of Well Casi Top of Protective (Other, Specify) Dissolved Oxygen Fruit (mg/l) 3.52 0.52 0.52	ing 2 Casing Turbidity (NTU) 4770 21, 0.00 21, 0.00	Flow Rate (ml/min) 1250
Vell information: Depth of Well * Depth to Water Column $TIMC \rightarrow 0856$ Vater parameters: Vater parameters: Elapsed To Solution of the second	$\frac{198 - 05}{10.94} \text{ ft.}$ $\frac{198 - 05}{10.95} \text{ ft.}$ $\frac{198 - 05}{10.95} \text{ ft.}$ $\frac{1537}{10.95} \text{ ft.}$ $\frac{1537}{10.95} \text{ ft.}$ $\frac{10.95}{10.54}$	U.1 pH 9.71 9.13 8.98 8.84 5.78 8.73	• Measure • Measure Conductivity 0.368 0.368 0.367 0.367 0.367	$\begin{array}{c c} \text{ments taken from} \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ $	Top of Well Casi Top of Protective (Other, Specify) Dissolved Oxygen $\frac{f(w)}{2}$ (mg/l) $3 \cdot f \cdot 2$ $1 \cdot 5 \cdot 2$ $\mathcal{O} > g \cdot 7$	Example Casing $\frac{t_{10y}}{Turbidity}$ (NTU) $\frac{t_{1}}{2}$ $\frac{t_{10y}}{2}$ $\frac{t_{10y}}{2}$ $\frac{t_{10y}}{2}$	Rate (ml/min) 121 ⁻ 150
Pepth of Well \cdot Length of Water \cdot Length of Water Column $\overline{TIMC} \rightarrow O855$ Water parameters: Water parameters: U 5.69 $\overline{1}$ 5.69 $\overline{1}$ 5.69 $\overline{2}$ 5.69 $\overline{2}$ 5.69 $\overline{2}$ 5.68 $\overline{2}$ 5.68 $\overline{3}$ 5.68 $\overline{3}$ 5.68 $\overline{4}$ 0 5.66 $\overline{5}$ 5.68 $\overline{4}$ 0 5.66 $\overline{5}$ 5.68 $\overline{4}$ 0 5.66 $\overline{5}$ 5.67 $\overline{5}$ 5.67	$\frac{2.60}{12.15}$ h. $\frac{12.15}{15}$ h. Temperature 9.87 10.30 10.46 10.45 10.54	рН 9.71 9.23 8.98 8.84 5.78 8.74	537. Conductivity 0.368 0.368 0.367 0.367 0.367 0.357	X Oxidation Reduction Potential -27.7 -87.9 -132.9 -176.6	Top of Well Casi Top of Protective (Other, Specify) Dissolved Oxygen true; (mg/l) 3.52 1.52 0.87	Example Casing $\frac{t_{10y}}{Turbidity}$ (NTU) $\frac{t_{1}}{2}$ $\frac{t_{10y}}{2}$ $\frac{t_{10y}}{2}$ $\frac{t_{10y}}{2}$	Rate (ml/min) 121 ⁻ 150
Pepth of Well * ength of Water * ength of Water Column $\overline{TIMC} \rightarrow O855$ Vater parameters: Vater parameters: Vater parameters: Vater parameters: Vater parameters: Vater parameters: U 5.69 5.69 5.68 20 5.6820 5.6820 5.6835 5.6840 5.6655 5.6840 5.6655 5.6840 5.6655 5.6840 5.6655 5.6840 5.6655 5.6840 5.6655 5.6655 5.6655 5.6655 5.6655 5.66	$\frac{2.60}{12.15}$ h. $\frac{12.15}{15}$ h. Temperature 9.87 10.30 10.46 10.45 10.54	рН 9.71 9.23 8.98 8.84 5.78 8.74	537. Conductivity 0.368 0.368 0.367 0.367 0.367 0.357	X Oxidation Reduction Potential -27.7 -87.9 -132.9 -176.6	Top of Well Casi Top of Protective (Other, Specify) Dissolved Oxygen true; (mg/l) 3.52 1.52 0.87	Example Casing $\frac{t_{10y}}{Turbidity}$ (NTU) $\frac{t_{1}}{2}$ $\frac{t_{10y}}{2}$ $\frac{t_{10y}}{2}$ $\frac{t_{10y}}{2}$	Rate (ml/min) 121 ⁻ 150
ength of Water Column $TIMC \rightarrow 0855$ Vater parameters: Vater parameters: Vater parameters: Vater parameters: Vater parameters: Vater parameters: Depth To Water parameters: Depth To S.69 S.69 S.68 (D S.66 S.68 S.66 S	$\frac{2.60}{12.15}$ h. $\frac{12.15}{15}$ h. Temperature 9.87 10.30 10.46 10.45 10.54	рН 9.71 9.23 8.98 8.84 5.78 8.74	Conductivity 0.368 0.368 0.367 0.367 0.367 0.367	Oxidation Reduction ^{5,0} Potential -2,7,7 -87,9 -132.9 -132.9 -176.6	Top of Protective (Other, Specify) Dissolved Oxygen $\frac{1}{2}$ (w_2); (mg/l) $3 \cdot f \cdot 2$ $l \cdot 5 \cdot 2$ $\mathcal{O} \circ f \cdot 7$.	Example Casing $\frac{t_{10y}}{Turbidity}$ (NTU) $\frac{t_{1}}{2}$ $\frac{t_{10y}}{2}$ $\frac{t_{10y}}{2}$ $\frac{t_{10y}}{2}$	Rate (ml/min) 121 ⁻ 150
TIMC-> 0855 Vater parameters: Depth To To Vater parameters: 0 0 5.69 7 5.69 7 5.68 (D) 5.64 17 5.66 2.0 5.68 2.0 5.68 37 5.68 37 5.68 40 5.66 70 5.66 70 5.66 70 5.66 70 5.66 70 5.66 70 5.66 70 5.66 70 5.66 70 5.66 70 5.66 70 5.66 70 5.66 70 5.66 70 7.66 70 7.66 70 7.66 70 7.66 70 7.66 70 7.66	231. Temperature 9.87 10.30 10.46 10.41 10.41 10.45 10.54	рН 9.71 9.23 8.98 8.84 5.78 8.74	Conductivity 0.368 0.368 0.367 0.367 0.367 0.367	Potential -27.7 -87.9 -132.9 -176.6	(Other, Specify) Dissolved Oxygen <i>5</i> (<i>w</i>); (mg/l) 3.52 1.52 0.87		Rate (ml/min) 121 ⁻ 150
Vater parameters: Depth To $Vater$ $Vater$ U 5.69 T 5.69 T 5.68 U 5.68 U 5.68 20 5.68 20 5.68 20 5.68 20 5.68 37 5.68 40 5.66 40 5.66 50 5.66 50 5.66 50 5.66 50 5.66 50 5.66 50 5.66 50 5.66 50 5.66 50 5.66 50 5.66 50 5.66 50 5.66 50 5.66 50 5.66 50 5.66 50 5.66 50 5.66 50 5.66	23%. Temperature 9.87 10.30 10.46 10.42 10.42 10.45 10.54	рН 9.71 9.23 8.98 8.84 5.78 8.74	Conductivity 0.368 0.368 0.367 0.367 0.367 0.367	Potential -27.7 -87.9 -132.9 -176.6	Dissolved Oxygen <i>frum</i> ; (mg/l) 3.52 1.52 0.87	Turbidity (NTU) 470 31,000 >1,000	Rate (ml/min) 121 ⁻ 150
Depth To V 5.69 5.69 5.68 (D) 5.68 (D) 5.68 20 5.68 20 5.68 20 5.68 $3\overline{v}$ 5.68 $3\overline{v}$ 5.68 $3\overline{v}$ 5.68 40 5.66 </td <td>Temperature 9.87 10.30 10.46 10.41 10.41 10.45 10.54</td> <td>рН 9.71 9.23 8.98 8.84 5.78 8.74</td> <td>Conductivity 0.368 0.368 0.367 0.367 0.367 0.367</td> <td>Potential -27.7 -87.9 -132.9 -176.6</td> <td>(mg/l) 3.82 1.52 0.87</td> <td>Turbidity (NTU) 470 31,000 >1,000</td> <td>Rate (ml/min) 121⁻ 150</td>	Temperature 9.87 10.30 10.46 10.41 10.41 10.45 10.54	рН 9.71 9.23 8.98 8.84 5.78 8.74	Conductivity 0.368 0.368 0.367 0.367 0.367 0.367	Potential -27.7 -87.9 -132.9 -176.6	(mg/l) 3.82 1.52 0.87	Turbidity (NTU) 470 31,000 >1,000	Rate (ml/min) 121 ⁻ 150
To Water U 5.69 i 5.69 i 5.68 (D) 5.68 (D) 5.68 20 5.68 20 5.68 $3v$ 5.68 $3v$ 5.68 $4D$ 5.66 $4D$ 5.66 5.66 5.66 $4D$ 5.66 <td>Temperature 9.87 10.30 10.46 10.41 10.41 10.45 10.54</td> <td>рН 9.71 9.23 8.98 8.84 5.78 8.74</td> <td>Conductivity 0.368 0.368 0.367 0.367 0.367 0.367</td> <td>Potential -27.7 -87.9 -132.9 -176.6</td> <td>(mg/l) 3.82 1.52 0.87</td> <td>Turbidity (NTU) 470 31,000 >1,000</td> <td>Rate (ml/min) 121⁻ 150</td>	Temperature 9.87 10.30 10.46 10.41 10.41 10.45 10.54	рН 9.71 9.23 8.98 8.84 5.78 8.74	Conductivity 0.368 0.368 0.367 0.367 0.367 0.367	Potential -27.7 -87.9 -132.9 -176.6	(mg/l) 3.82 1.52 0.87	Turbidity (NTU) 470 31,000 >1,000	Rate (ml/min) 121 ⁻ 150
Water Water \mathcal{D} 5.69 $\widehat{1}$ 5.69 $\widehat{1}$ 5.69 2.0 5.68 2.0 5.68 2.0 5.68 $3\overline{v}$ 5.68 $3\overline{v}$ 5.68 $3\overline{v}$ 5.68 $4D$ 5.66 \sqrt{vD} 5.60 \sqrt{vD} 5.60 \sqrt{vD}	Temperature 9.87 10.30 10.46 10.41 10.41 10.45 10.54	рН 9.71 9.23 8.98 8.84 5.78 8.74	Conductivity 0.368 0.368 0.367 0.367 0.367 0.367	Potential -27.7 -87.9 -132.9 -176.6	(mg/l) 3.82 1.52 0.87	(NTU) 470 31,000 >1,000	Rate (ml/min) 121 ⁻ 150
v 5.69 i 5.69 i 5.68 i 5.68 $2v$ 5.68 $2v$ 5.68 $3v$ 5.68 $3v$ 5.68 $4v$ 5.68 $4v$ 5.66 5.60 5.60 5.60 5.60 5.60 5.60 5.60	9.87 10.30 10.46 10.41 10.41 10.45 10.54	9.71 9.23 8.98 8.84 5.78 8.74	0.368 0.368 0.367 0.367 0.367 0.3173	-27.7 -87.9 -132.9 -176.6	3.82 1.52 0.87	470 21,000 >1,000	171- 150
3^{-5} $5.6.8$ $1D$ $5.6.6$ 2.2 $5.6.6$ 2.2 $5.6.6$ $3\overline{v}$ $5.6.8$ $3\overline{v}$ $5.6.8$ $4D$ $5.6.6$ $4D$ $5.6.6$ $4D$ $5.6.6$ $4D$ $5.6.6$	10.30 10.46 10.41 10.41 10.45 10.54	9.13 8.98 8.84 5.18 8.14	0.368 0.367 0.361 0.353	-87.9 -132.9 -176.6	1.52 0.87	21,000 >1,000	150
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	10.46 10.41 10.41 10.45 10.54	8.98 8.84 5.78 8.74	0.367 0.367 0.353	-132.9 -176.6	0.87	>1,000	
11° 5.66 2.0° 5.68 $3\overline{v}$ 5.68 $3\overline{v}$ 5.68 40 5.66 40 5.66 70 5.66 $5\overline{s}$ $5\overline{-}66$ $5\overline{s}$ $5\overline{-}60$ $5\overline{s}$ $5\overline{-}60$ $5\overline{s}$ $5\overline{-}60$ $5\overline{s}$ $5\overline{-}00$ $5\overline{s}$ $5\overline{-}00$	10.41 10.41 10.45 10.54	8.84 5.78 8.77	0.361	-176.6	1		1 1 412
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	10.47 10.45 10.54	5:28 8.77	0.353		0.50		175
21° 5.68 $3\overline{v}$ 5.68 $4\overline{v}$ 5.66 $4\overline{v}$ 5.66 $5\overline{v}$ 5.66 $5\overline{s}$ $5\overline{-}66$ $5\overline{s}$ $5\overline{-}66$ $5\overline{s}$ $5\overline{-}66$ $5\overline{s}$ $5\overline{-}66$ \overline{s} $\overline{s}\overline{-}66$ $\overline{s}\overline{s}$ $\overline{s}\overline{-}66$ $\overline{s}\overline{s}$ $\overline{s}\overline{-}66$ $\overline{s}\overline{s}\overline{s}$ $\overline{s}\overline{-}66$ $\overline{s}\overline{s}\overline{s}\overline{s}\overline{s}\overline{s}\overline{s}\overline{s}\overline{s}\overline{s}$	10.45 10.54	8.14	1		0.41	71,000	180
30 5.68 31 5.68 40 5.66 11 5.66 50 5.66 55 5-66 40 5.66 55 5-66 40 5.66 55 5-66 40 5.66 55 5-66 40 5.66 55 5-66 40 5.66 55 5-68 40 5.66 55 5-68 40 5.66 56 5-68 5.66 5.76	10.54		0.352		1		180
35 5-68 40 5-66 715 5.66 55 5-66 55 5-66 0 0 0 0 0 0 0 0 0 0 0 0 0		بر بر المراجع	1	-209.2	0.38	21,000	180
40 5.66 11 5.66 50 5.66 55 5-66 40 55 5-66 40 55 5-66 40 55 5-66 55 55 5-66 40 55 5-66 40 55 5-66 40 5-66 5-76 5-777 5-76 5-76 5-76 5-76 5-76 5-76 5-76 5-76 5-76 5-76		8.75	0.310	-220.1	0.30	1	170
/1 5.66 \$\$\$ 5.66 \$\$\$ \$5.66 \$\$\$ \$5.66 \$\$\$ \$5.66 \$\$\$ \$5.66 \$\$\$ \$5.66 \$\$\$\$ \$5.66 \$\$\$\$\$ \$5.66 \$	10,71	8.73	0.350	-2207.6	0.29	71,000	
S.66 S.66	10.78	8.72	0.349	-228.8	0.25	780	180
55 5-66	10.79	8.70	0.350	-234.9	0.2.2	970	180
Water sample: Time collected: 1000	10.76	8.70	0.351	-244.0	0.22	930	180
Time collected: 1000	10.79	8.69	0.31-0	-250.2	0.19	857	100
Time collected: 1000		<u> </u>			<u> </u>	┦	
Time collected: 1000					1		<u></u>
Time collected: 1000			<u> </u>				_
Time collected: 1000							_ _
Time collected: 1000							
Time collected: 1000							
Time collected: 1000							
Time collected: 1000	. <u> </u>						
			Total volume	of purged water r	emoved:	~ 4 00	M_
Physical appearance at start					arance at sampli	ng Light B	
	ra-4				Color	Light B	<u>(a.)</u>
Odor 🦯	- 0			Sheen/S	Odor Free Product	Sheen	
Sheen/Free Product	<u></u>			Stieght		<u></u>	چنجبر <u>محمد المحمد ا</u>
Samples collected:							
Container Size	Container Type	# Collecte		tered	Preservative	Conta C2	ainer pH
	Yonc Viac		the second second second second second second second second second second second second second second second s	LL			
126	PE		7/10	<u>, , , , , , , , , , , , , , , , , , , </u>			

Į

-

Ĩ

ĺ

Date	16/12/04	Perso	nnel	40/1	17 .	Weather	Elosey 1		
	Town Caroll		ation Method	Blo.	dde /	Well #	<u>MW-1095</u>		
	Fursburg.		ling Method	Blee	k.1	Project #			
Well Informat	ion:					<u></u>		······································	
Depth of Well	• 40	<u>2.92 </u> tt.		* Measure	ments taken from				
Depth to Wate	ur*	<u>68</u> tt. . 24tt.		Top of Well Casing					
Length of Wat		<u>, 24</u> tt.				Other, Specify	-		
Time	-0850						·/·		
Water param	eters:								
 	Depth		1		Oxidation	Dissolved			
Elapsed	То	20			Reduction	Oxygen	Turbidity	Flow	
Time	Water	Temperature	рН	Conductivity	Potential	(mg/l)	<u>(NTU)</u>	Rate (mi/mi	
D	12.14	8.22	7.52	0.402	12.0	4.71	71,000	120	
5	12-30	8.95	7.66	0,0103	83.9	3.09	27,000	290	
10	12.34	9.75	7.72	0.401	67.1	2.34	71,000	300	
10	12.54	9.80	7.82	0.409	35.2	1.70	852	220	
2.0	12.54	9.84	7.87	0.404	7.5	1.29	81-2	220	
25	12.70	9.58	7.90	0,407	-34.9	0.85	4/1	120	
30	12.50	9.48	7.91	0.409	-49.4	0.70	286	140	
35	12.42	9.45	7,92	0.410	-65,2	0.53	154	150	
			7.92	0.412	-74.0	0.44	94	140	
40	12.42	9.57	7.93	0.411	-77.4	0.45	83.7	140	
45	12,40	9.46_	+12		<u> '''''</u>	10015			
ļ	<u> </u>								
				· · · · · ·					
				· ·					
			_						
				ļ					
Water samp	le:							.,	
Time collecte	nd: 0945-			Total volume	of purged water		<u>~>g</u>	(A_//	
Physical app	earance at start				Physical app	earance at samp	oling <u>color</u>	ince	
1		r Gray_				Color Odor	COLOY	<u>()</u>	
Sheen/Free	Odor <u>ー ー ク</u> Product ー つ				Sheer/	Free Product	UNG an	10 Shelon	
SUGGIVELAG							ندرید : : ایک ان ی در		
Samples co									
Container Si	ze Conta	iner Type	# Collecte	d Field Fil	lered	Preservative		ntainer pH	
Li On		ac	- 3			HCL HNOZ		<u> </u>	
112.6	<u></u>		2			anoz, r.		<u> </u>	

÷ .

ł

o Water *	<u>73, 77</u> ft. <u>11, 97</u> ft. <u>32, 43</u> ft. <u>737</u>		Measure		Top of Well Casi Top of Protective (Other, Specify)	-	
d Depth To Water_	±34.						
d To Water_	134.						
	Temperature	ø.; pH	 Conductivity	Oxidation Reduction	Dissolved Oxygen -/wy (mg/l)	Turbidity (NTU)	Flow Rate (ml/mi
1 11 7 7 7	10.03	9.36	0.495	-34.9	2.64	66.2	180
11.40	10.25	8.62	0.553	-102.6	1.91	60.7	140
11.40	10.33	8.36	0.565	-130-3	1.46	71.4	140
11.40	10.38	8.30	0.567	-146.1	1.22	94.0	160
/1.40							180
- 11.40	10.67						170
2 11.40	The second second second second second second second second second second second second second second second se						170
							180
							180
							160
		-					180
							180
<u> </u>	<u> </u>	8.01	0.601	- 77.5	1.00	71,000	
· · · · · · · · · · · · · · · · · · ·	······································						
						<u> </u>	
						<u> </u>	
			<u> </u>			ļ	<u> </u>
			<u> </u>		<u> </u>	<u></u>	
		<u> </u>		<u> </u>	<u> </u>		<u></u>
			Total volume	of purged water re	moved:	~ 470	x (/
al appearance at start				Physical appea			,
Color <u>Ca</u>	alless				-		<u>svo</u> wn ac
Votor 6.	~B			Sheen/Fi		~0	
	Container Type	# Collecte	d Field Fil	tered	Preservative		ainer pH
ome v	lal	3		·	HNO3, NO	<u> </u>	2
26	P6-	2		-	1/7/V02 . Ala.	1.14	
		$= \frac{11.40}{10.67}$ $= \frac{11.40}{10.67}$ $= \frac{11.40}{11.03}$ $= \frac{11.40}{11.03}$ $= \frac{11.40}{11.03}$ $= \frac{11.38}{10.62}$ $= \frac{11.38}{10.96}$ $= \frac{11.40}{11.07}$ $= $	$\frac{11.40}{10.36} = \frac{11.40}{10.67}$ $\frac{11.40}{10.67} = \frac{10.93}{10.93} = \frac{12.9}{10.93}$ $\frac{11.40}{11.03} = \frac{11.40}{11.03} = \frac{11.40}{11.38}$ $\frac{10.62}{11.38} = \frac{10.62}{10.36} = \frac{11.10}{11.07} = \frac{10.9}{10.07}$ $\frac{11.40}{11.10} = \frac{11.07}{11.10} = \frac{10.07}{10.07}$ $\frac{11.40}{11.10} = \frac{11.10}{11.10} = \frac{10.07}{10.07}$ $\frac{11.40}{10} = \frac{11.10}{11.10} = \frac{10.07}{10.07}$ $\frac{11.40}{10} = \frac{11.10}{11.10} = \frac{10.07}{10.07}$ $\frac{11.40}{11.10} = \frac{10.07}{10.07}$ $\frac{10.40}{10.07} = \frac{10.07}{10.07}$ $\frac{10.07}{10.07} = \frac{10.07}{10.07}$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\frac{ 1.40 }{ 1.40 } = \frac{ 1.40 }{ 1.40 } = 1$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

	<u>Gere Engine (مر</u>	Persor	nel	yv/1	ow Ground	Weather	60°F	
_	Fown Caryol	- 7 Evacu:	ation Method	Blue		Well #	Mw-l	
	Frewsburg N		ing Method	Blad	der	Project #		
Weli Informat								
Depth of Well	-	// ¹ ft.		* Measurer	nents taken from			
Depth to Wate	r* <u> .</u>	E 8 ft.				Top of Well Casi		
Length of Wate	er Column 59	<u>e 573</u> ft.				Top of Protective (Other, Specify)	e Casing	
Time	: 1150				 			
Water parame	eters:							
					Oridation	Dissolved	±10%.	
Elapsed	Depth To	-31.	0.1	13.1.	Oxidation + A D	Oxygen froy.	Turbidity	Flow
Time	Water	Temperature	рН	Conductivity_	Potential	(mg/l)	(NTU)	Rate (ml/m
0	12.38	12.68	8.46	0.413	-219.8	1.82	360	140
I I	11.35	12.33	8.41	0.417	-231.6	1.63	382	140
10	11.34	12.27		0.420	-251.2	1.48	364	140
15	11.38	12.26		0,419	-257.0	1.09	13/3	160
20	11.36	12.12	8.36	.415	-270.8	0.90	3/3	150
25	11.34	12.01	8.35	0.410	-2.76.9	0.54	280	160
30	11.34	12.01	4.34	0.404			250	160
35	11.34	11.93	8.32	0.402			246	150
13 40		12.04	4.29	0.398		0.47	222	160
45	11.34	11.99	8.26	0.395	-274.5		215	140
95	11.34	- 11.97	8.00	0,012				
		<u>- </u>		· <u>·····</u> ····			1	
							1	
							1	
							1	
					<u> </u>			
··	·							
						<u> </u>		
		<u> </u>		<u> </u>				
Water samp	l							
	d: 1240			Total volume o	of purged water re	emoved:	~ 9	<u>gall</u>
Physical app	earance at start				Physical appea	arance at sampli	ng Gravi	/
	Color <u>Gr</u> Odor Jo					Color Odor		
Sheen/Free					Sheen/F	ree Product		
Samples co	llected:							
Container Si	ze Conta	iner Type	·· #·Collected	Field Filt	ered	Preservative	Co	ntainer pH
401		ial	<u> </u>			HNO, 11	a0 /1	<u> </u>
1/2.6	<u>PE</u>	rhed	3					
<u> </u>		-105-1						
Notes:	vols, PLBS/	PIST. 1.17	inted					
	10-315CQ31	Contraction of the			· · · · · · · · · · · · · · · · · · ·			
110103.								

- - -----

i.

D'Brien	& Gere Engine	ers. Inc.		Low F	ow Ground	I Water Sampling Log		
ate	10/14/04	Perso	nnel	yv/	NT	Weather	cloudy	50 1-
ite Name	Town Carro	-	ation Method	Blue	Idel	Well #	MW-13	
	Frensburg		ling Method		Sel	Project #		
Vell informa								
epth of Wel		<u>p</u>		* Measure	ments taken from	ļ		
Pepth to Wat		24tt.				Top of Well Casi	ing	
	iter Column 51					Top of Protective	•	
TI-	L-> 1600				<u></u>	(Other, Specify)		
Vater param	neters:							
					· · · · · · · · · · · · · · · · · · ·			
	Depth	13.1.	6.1	+3.1.	Oxidation	Dissolved Oxygen 10%	Turbidity 10%	Flow
Elapsed	То		pH	Oo water attended	Reduction Potential	(mg/l)	(NTU)	Rate (ml/min)
	Water	Temperature		Conductivity			77.4	90
0	18.26	12.53	7.74	0.586	33.4	0.51		1
<u></u>	18.28	12.40	7.69	0.636	39.5-	0.51	73.0	110
1P	18.28	12.09	7.67	0.729	442	0.40	91.6	<u> 110</u>
15	18.30	11.80	7.67	0.779	48.1	0.21	91.6	110
2.0	18.30	11.72	7.66	0.791	52,2	0.22	73.6	110
25	18:30	11.66	7.67	0.797	56.9	0.23	47.3	<u> 11 D</u>
30	18.30	11.59	7.67	0.796	59.4	0.15	33.9	110
35-	18.30	11.60	7.67	0.799	61.9	0.18	29.4	100
40	18.30	11.62	7.67	0.799	63.1	0.14	27.4	110
10			1/201		1			
				· · · · · · · · · · · · · · · · · · ·				
				· · · · · · · · · · · · · · · · · · ·	1	1	<u> </u>	1
				· · · · ·				
		·			<u>-</u>	<u> </u>	╂	-{
							<u> </u>	
					4		<u> </u>	
					<u></u>	<u> </u>	<u> </u>	
						1	<u> </u>	<u> </u>
Water samp	ole:							
Time collect	ed: 1650			Total volume	of purged water re		·	<i></i>
	pearance at start	,			Physical appea	arance at sampli	ng cleart	1
	Color <u>Clea</u>	w				Color Odor	ND	
Sheen/Free	Odor <u>NO</u> Product NO				Sheen/F	ree Product	<u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u>	
SUCCIVITION								
Samples co	pliected:						la	
Container S		ner Type	· # Collected	d Field Fill	ered	Preservative	Contai	ner pH
l								
·					·			

1 m - 1

.....

-

į

O'Brien	& Gere Engin	<u>eers, Inc.</u>		Low	-low Grou	nd Water Sa	ampling Lo	
Date	3/8/05	Perso	onnel			Weather	Cold MW-1	20-15
Site Name	3/8/05 Town of	ard / Evac	uation Metho	d		Well #	MW-1	02
Site Location			ling Method			Project #		
Well informa							· · · · · · · · · · · · · · · · · · ·	
Depth of Wel				* Moseur	ements taken fro			
Depth to Wat	er* <u> </u>	<u>, ⊅∫</u> ft. <u>42</u> ft. <u>∽.13</u> ft. ×		NGASUI		Top of Well Ca	eina	
Length of Wa	ter Column 2/	<u>72</u>	0.16=	422		Top of Protecti		
		2,	e = 12.2	/		(Other, Specify	+	
							· · · · · · · · · · · · · · · · · · ·	
Water param		prisible pump slowly p in center of scree				liters/minute		
1		ngs at every three r			inping rate of 0.5			
	Depth	Ť			Oxidation	Dissolved]	
Elapsed	То				Reduction	Oxygen	Turbidity	Flow
Time	Water	Temperature	рН	Conductivity	Potential	(mg/l)	(NTU)	Rate (ml/min).
Inst	al	5.70	8.12	0.896			3.8	
4		7.31	8.17	0.968			4.0	
8		ने-31	8.17	0.988			4.90	-
12		7.31	8.17	0.968	1		4.90	
		7.51	<u></u>	0.146			-7. 70	
						<u> </u>		
							[
					····			
	<i></i>						<u> </u>	
								
		1						
Water sample	:							
Time collected	1530			Total volume of	purged water re	moved:	~/3	
Physical appea					Physical appea	rince at sampling		
	Color					Color	clear_	-
Sheen/Free Pro	Odor	<u>_</u> _			Ch / .	Odor	<u> </u>	-
Sileen/Flee Fi		<u></u>			Sneen/rm	e Product	לע	-
amples colle	cted:							
Container Size	Containe	г Туре	# Collected	Field Filter	ed	Preservative	Containe	ar pH
						······		
	l	<u></u>]		L		l		
otes:								

O'Brien	& Gere Engine	eers, Inc.		Low F	low Grour	nd Water Sa	ampling Lo	<u>q</u>
Date	3/9/25	Perso	nnel	CYV/RT		Weather		
Site Name	tain Cas	— /√v// Evacu	ation Method	Bladder P	ump	Well #	MW-1	OTI
Site Location	Fuensburg		ing Method	Bladder P	ump	_ Project #		
Well informat								· · · · · · · · · · · · · · · · · · ·
Depth of Well	• L	11.06 ft.		* Measure	ments taken fro	m		
Depth to Wate	ar* <u>%</u>	25 ft.				Top of Well Ca	sing	
Length of Wat	ter Column 33	. 0 / ft. X	0.16 = 5	5-28	×	Top of Protecti	ve Casing	
-		¥	3 = 15	84		Other, Specify)	· .
Water param	Position pum	11.06 ft. 01 ft. x we have a second	ned interval a	& maximum purr	nn iping rate of 0.5	i liters/minute		
bell c	Depth				Oxidation	Dissolved		
Elapsed	То				Reduction	Oxygen	Turbidity	Flow
Time	Water	Temperature	рН	Conductivity	Potential	(mg/l)	(NTU)	Rate (mi/min).
Inn	ial	6.02	8.19	0.657			30	· · ·
3		7.68	8.47	0.700			40	
2		7.42	8.47	6.814			113	
2		272	8.49	0.944			150	
		<u> </u>			1		1-1-1-1	
	· · · · ·							
	·				<u> </u>			
		<u> </u>						-
		·						
						·		
		,		· ·				
	· · · · · · · · · · · · · · · · · · ·					•		
		- <u> </u>				-		
		_						
		· · · · · · · · · · · · · · · · · · ·						
	· · · · · · · · · · · · · · · · · · ·	_	ļ	· · · ·				
			<u> </u>				<u> </u>	
Water sample Time collected			•	Total volume of	• •	removed: earlince at sampli	//	<u>6 pall</u>
	Color Colyn	iless				Color	Texbe	<u>er</u>
	Odor	0				Odor	×	
Sheen/Free P	roduct	Co			Sheen/F	Free Product	V	_
Camples as"	octodi				· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		
Samples coll Container Size	CONTRACTOR CONTRACTOR OF CONTRACTOR	ner Type	# Collected	Field Fille	red	Preservative	Com	niner pH
***********		· · · · · · · ·						
			1			<u> </u>		
			·			_	*	
Notes:						;		

O'Brien	& Gere Engine	ers. Inc.		Low F	low Groun	nd Water Sa	ampling Loc	L
Date	3/9/05	Perso	nnel	CYV/RT		Weather	Snow	
Site Name	sonn cars		ation Method	i Bladder P	ump	Well #	Muc	10.3
Site Location			ling Method	Bladder P	ump	Project #	·····	
Well informa								·····
Depth of Well		4.24 A.		* Measure	ments taken fro	m		
Depth to Wate		<u>、</u> カダ ft.			[Top of Well Ca	sing	
Length of Wa			0.16=	56.11		Top of Protecti	ve Casing	
			3 = 1			(Other, Specify	1)	
Water param	eters: Lower subme	rsible pump slowly			າກ			<u></u>
		o in center of scree				liters/minute		
	Collect readin	gs at every three n	ninute interva	als				
	Depth				Oxidation	Dissolved		·
Elapsed	То				Reduction	Oxygen	Turbidity	Flow
Time	Water	Temperature	pH O FFA	Conductivity	Potential	(mg/l)	(NTU)	Rate (ml/min).
Instati		8.41	8.419	0.537				
		8.04	8.52	0.516			42	·
2		8.00	4.50	0 500			50	
3		8.97	8.69	0.522				
						· .		
		-	 			-		
	· · · · · · · · · · · · · · · · · · ·	1					1	
	·	· · · · ·					-	
					·····			+
	· .					+		
		,	ļ	·	L			
	· · · · · · · · · · · · · · · · · · ·							
	,	1	<u> </u>					
				<u> </u>			1	
Water sample		<u></u>	<u> </u>	1	1			
Time collected				Total volume of	purged water ra	emoved:	15	gall
Physical appe						arince at sampli		
	Color clean					Cotor	clear	
	Odor 🛛 🔧					Odor		_
Sheen/Free Pi	roduct 💦 🕹 🎸				Sheen/F	ree Product	612	_
Samples colle	ected:			·		······································		
Container Size		ы Туре	# Collected	Field Filte	red	Preservative	Contair	her pH
			ļ					
	k		L	I	<u></u>		1	
Notes:	••							

O'Brien &	& Gere Engine	ers, Inc.		Low F	low Groun	d Water Sa	ampling Log	
Date	3/9/05	Perso	nnel	CYV/RT		Weather		,
Site Name	Pown Latt	Evacu	ation Method	Bladder P	ump	Well #	MW-100	<u> </u>
Site Location	Prensbarry	Samp	ling Method	Bladder P	ump	Project #	<u></u>	
Well informat	tion:			······································				
Depth of Well	-	<u>56 </u> ft.		* Measure	ments taken fron	1		
Depth to Wate		6*/ft.		• / /.		Top of Well Ca	•	
Length of Wat	er Column 16,1		0.16=			Top of Protecti (Other, Specify		
		*	3 = 96	nil	L		/	
Water parame		rsible pump slowly						1
		p in center of scree igs at every three r			ping rate of 0.5 I	iters/minute		1
	Depth	igs at every times i			Oxidation	Dissolved	<u>_</u>	1
Elapsed	То	1			Reduction	Oxygen	Turbidity	Flow
Time	Water	Temperature	рн	Conductivity	Potential	(mg/l)	(NTU)	Rate (ml/min).
	· · · · · · · · · · · · · · · · · · ·	7,30	9.60	0.960			-15	
		7.04	3.4	1.938			34	_
-7		7. 15	19.52	0.9712			320	
3			l na	Y				
		-						
	· <u>····································</u>		9	1997 - 19		L.		· · ·
	······	-	· · · ·					
						1	1	-
·					<u> </u>			
						<u> </u>		
·						1		
<u> </u>			<u>. </u>					
	· 				<u> </u>			
		-						
Water sample Time collected	1/		<u> </u>	Total volume of	f purged water re	moved:	ng Turbid	.11 (went)
	earance at start	* -			Physical appea	ir ince at sampli	ng ()	
	Color <u>Cle</u> Odor v	<u>a.(</u> 10				Color Odor	<u>-1216/9</u>	
Sheen/Free P		12		•	Sheen/Fi	ee Product	- CA	
Samples coll			# Collected	Field Fille		Preservative	Contai	ner pH
Container Siz	e Contai	ter Type	an a composed		1.9-M			······
			1					
						<u> </u>		
	l				· · · · · · · · · · · · · · · · · · ·			
Notes:	••							

O'Brien	Brien & Gere Engineers, Inc.			Low F	low Grour	nd Water S	ampling Log	
Date	314/05	Perso	nnel	CYV/RT		Weather		
Site Name	Tora Lairon	! Evacu	ation Method	Bladder P	ump	Well #	MW-	<u>1055</u>
Site Location	Fursburg		ing Method	Bladder P	ump	Project #		
Well informat	tion:							······································
Depth of Well		. ∂∂ ft.		* Measure	ements taken fro	m		
Depth to Wate	ar *	3.80 ft.			X	Top of Well Ca		
Length of Wat	er Column	•20 ft x	0.16 =	2.59		Top of Protect	-	
	•	<u>•20</u> ft. yc 3x	e 📼	7.77		(Other, Specify	()	
Water param		sible pump slowly			າກ			
		in center of scree				liters/minute		
		is at every three n	ninute interva	lls				·
	Depth	· c			Oxidation	Dissolved	Touch Lalla	Flow
Elapsed	To Water	ر. Temperature	рH	Conductivity	Reduction Potential	Oxygen (mg/l)	Turbidity (NTU)	Rate (mi/min).
Time	AAGTER	4.54	<u> </u>	B.382	r oconican		250	
Inmal	· · · · · · · · · · · · · · · · · · ·	5.53	8.51 8.49	0.388				
	<u> </u>	+			· ·		71,000	
_2		6.71	8.70	0.2.12			74000	
_3		**************************************	<u>t ory</u>					· · ·
						· · · · · · · · · · · · · · · · · · ·		
								ļ
								4 3
		· ·						
	<u></u>	· · · · · · · · · · · · · · · · · · ·						
			<u> </u>		1			
		· · · ·						
			ł					
			<u> </u>					
			·					
		·						
	·		 	<u> </u>				
Water sample				L	<u>I</u>			
Time collected			•	Total volume o	f purged water r	emoved:	ng Twbio	11 Cont
	arance at start					arince at sampli	ng	
• • • •	Color Chen	-N ^a			• • •	Color	TWDIG	
	Odor					Odor		-
Sheen/Free P	roduct	<i>v</i>	•		Sheen/F	ree Product	هير	-
Sampies colle	ected:					· · · · · · · · · · · · · · · · · · ·		
Container Size	Containe	r Type	# Collected	Field Fille	ied	Preservative	Contair	er pH
	·	·····						
			<u>∤</u> .					
				f				·····
Notes:								

0'Brien	& Gere Engine	ers, Inc.		Low F	low Groun	id Water Sa	ampling Log	
Date	3/10/05	Perso	nnel	CYV/RT		Weather		<u> </u>
Site Name	Town of Car	(øi/ Evacu	ation Method	i Bladder P	ump	Well #	1	<u>165</u>
Site Location	Town of Cars Frensburg 1	Sampl	ing Method	Bladder P	ump	Project #		
Well Informat					· · ·			
Depth of Well		ク2.っ ft.		* Measure	ments taken fro	m		
Depth to Wate		52.4 ft.			X	Top of Well Ca	sing	
Length of Wal		50 ft ×0	p.16 = 2	.96		Top of Protecti	=	
	•	34	= 8.88	~ / 0	L	(Other, Specify)	
Water param	eters: Lower submers	sible pump slowly			<u></u> . זות			
		in center of scree				liters/minute		
	Collect reading	s at every three n	ninute interva	als			······	
	Depth		1		Oxidation	Dissolved		P
Elapsed	To	Temperature		Conductivity	Reduction Potential	Oxygen (mg/l)	Turbidity (NTU)	Flow Rate (ml/min).
Time	Water		pH	1 · · · · · · · · · · · · · · · · · · ·	Foteriual	(mgu)	1	
Initial	· · · · · · · · · · · · · · · · · · ·	4.51	8.30	0.605			25	
		6. 37	8.43	0.554	<u> </u>		71,000	
2		7.03	8.70	0.321			24000	·····
3			DR		<u>+</u>			
		·	[<u> </u>		· · · · · · · · · · · · · · · · · · ·	
	· · · · · · · · · · · · · · · · · · ·		· · · · · ·					
		1					-	
	**		· · ·					
<u> </u>			·		·			
· · · · · · · · · · · · · · · · · · ·	· · ·				<u> </u>			
						· · ·		
		·	. ——				· · · · · · · · · · · · · · · · · · ·	
							· · · · · · · · · · · · · · · · · · ·	
			<u> </u>		<u> </u>			1
Water sample				Total values a	f purged water re	- moved:	Sec	(winr)
Time collected				Total volume of		arince at sampli		- Ory /
	color Cleer				Physical appe	Color	-Kybid	
	Odor vu			•		Odor		
Sheen/Free P	roduct <u></u>				Sheen/F	ree Product	10	-
	4- d-					· · · · · · · · · · · · · · · · · · ·		<u></u>
Samples coll Container Size		r Tyrie	# Collected	Fleid Fille	red	Preservative	Contain	erpH
A 1998 1998 1998 1998 1998 1998 1998 199								
					····			
			L	I				
Notes:								

	& Gere Engine	<u>ers. Inc.</u>			ow Groun	d water 3	ampling Lo	4.
)at e	3/9/05	Persor	nel	CYV/RT		Weather		
lite Name	Town Carron	/ Evacu	ation Method	Bladder Pu	imp	Well #	Mw-1	045
Site Location	Town Carros Freusburg.		ing Method	Bladder Pu	ımp	Project #		
Vell informat						· · · ·		<u>.</u>
epth of Well	- 22	~39 ft.		* Measure	ments taken fro	m	-	
epth to Wate	sr• <u>3</u>	<u>.39</u> ft. <u>.34</u> ft. <u>05</u> ft. x				Top of Well Ca	,	
ength of Wat	er Column 11.	05 ft. x	0.16=3.	.05		Top of Protect		
-		¥3	= 10 9	all		Other, Specify	/)	
Nater param	Position pum	rsible pump slowly p in center of scree	ned interval (& maximum pum	nn ping rate of 0.5	liters/minute		
		ngs at every three n	ninute interva T		Oxidation	Dissolved		
1d	Depth To				Reduction	Oxygen	Turbidity	Flow
Elapsed l'ime	Water	Temperature	рH	Conductivity	Potential	(mg/l)	(NTU)	Rate (ml/min).
		4.10	8.59	1.223	MUAB		28	
Insteal	······	3.61	8.65	1.226		1	97	
		and the second second second second second second second second second second second second second second second			<u> </u>		240	
2		3.61	4.65	1.215	<u> </u>			
3		DY	1	an interesting water		- <u> </u>		
								<u></u>
.								
	· · · · · · · · · · · · · · · · · · ·							
								·····
			ļ					
			<u> </u>					
		·		<u> </u>	<u> </u>			·
							·	
<u> </u>					1			
	<u></u>					-	_	
······								
Water sampl Time collecte Physical app	d: /5419 earance at start		<u></u>	Total volume o	f purged water Physical app	ear nce at samp	10 ling	<u>3a.11</u>
	Color Llea					Color	-TW 51.	<u>e</u>
Sheen/Free F	Odor AVD				Sheen/	Odor Free Product		
Samples col	lected:							
Container Siz		iner Type	# Collected	E Field Fill	bered	Preservative	Cont	ainar pH
]					<u></u>
							<u> </u>	·
		·						
	I		_ _	l		l	. <u> </u>	
Notes:								

D'Brien &	Gere Engine	ers, Inc.		Low F	low Grour	nd Water Sa	ampling Lo	a
)ate	319/05	Perso	nnel	CYV/RT		Weather		1
Site Name	town carro	 Evacu	ation Method	Bladder P	ump	Well #	MW-	107I
Site Location	Frensbur		ling Method	Bladder P	ump	Project #		
Well information		4					<u> </u>	-
epth of Well *	···· 45.2	A ft.		* Measure	ments taken fro	m		
epth to Water	. 3.	5 <u>7</u> ft.			X	Top of Well Ca	•	
ength of Water	Column 41.7		0.16= (Top of Protecti (Other, Specify		
	· · ·	34	= 20	6 m M			// 	
Water paramet		sible pump slowly						
۱		in center of scree			nping rate of 0.5	liters/minute		
<u> </u>	Depth	is at every three n			Oxidation	Dissolved	<u> </u>	
Elapsed	То				Reduction	Oxygen	Turbidity	Flow
lime	Water	Temperature	pН	Conductivity	Potential	(mg/l)	(UTV)	Rate (ml/min).
Initial		3.60	9.50	1.212			30	
1		3.61	8.66	1.22.6			22	
2		3.61	8.65	1.226			297	7
3								
			ŀ					
		1						· ·
		-				-		
		1	1					
	······································	1	1					
		<u> </u>						
		1	┨					
				<u>`</u>				
		· · · · · ·						
				<u> </u>	-			····
		·	· · · ·	· · · · · · · · · · · · · · · · · · ·				
	<u> </u>				-			<u> </u>
			÷ 					
								<u></u>
	····				_			
		· [
Water sample: Time collected:	1705		•	Total volume o	of purged water	removed:	20.	sall
Physical appear			• •			ear ince at sampl		
	color	e			• •	Color	ing Tribes	<u>×</u>
)dor					Odor	<u>وسعر</u> هربه	
Sheen/Free Pro	duct	·			Sheen/i	Free Product		
Samples colle	cted:		·					
Container Siza	CONTRACTOR ON A DESCRIPTION OF CONTRACTOR OF	өс Туре	# Collected	Field Fill	Deta	Preservative	Con	lainer pH
<u> </u>								
			- <u> </u>					<u> </u>
		·		·······				
Notes:								

<u>D'Brien </u>	<u>& Gere Engin</u>	<u>eers, Inc.</u>			low Grour	nd yvater Sa	ampling Log	
)ate	3/7/05	Perso	onnel	CYV/RT		Weather	P SUNKY	403-30's
Site Name	TaunoFcarol	le Evac	uation Method	Bladder P	ump	Well #	MW-108	25
Site Location	Janestour y	tY Samı	oling Method	Bladder P	ump	Project #		
Nell informat	tion:							
Depth of Well		ft.		* Measure	ments taken fro	_		
epth to Wate		. <u>25</u> ft.			<u>×</u>	Top of Well Ca Top of Protecti		
ength of Wat	er Column	î.				(Other, Specify	-	
		·····						
Nater param		nersible pump slowl mp in center of scre				iliters/minute		
на на 14		lings at every three						
	Depth			A Stone	Oxidation	Dissolved		
Elapsed	Το				Reduction	Oxygen	Turbidity	Flow Rate (mi/min)
lime	Water	Temperature	pH	Conductivity		(mg/l) 7.8/	(NTU) V40	
0	7.06	Y.73	7.58	<i>1,278</i> 1,284	-91.4	7-81	1 4	
35	7.15	F.75	7.58	<u></u>	-41.3	7.00	135	1.50
60	7.82	7,35	7.46	1275	-40.9	7.62	/13	100
15	8.09	+024	7.38	1,275	-41.8	8.10	142	
20	8.31	7.22	7.38	1.275	-42,7	8.34	77	160
25	8.53	721	7.33	1.JZ7Z_	-42.4	9.70	184	100
30	2.18	7.72	1026	1.267	-44.3	4:27	2.42	100
35	9.6K	7.30	7.24	1.266	-44,2	0,78	232	100
40	1072	7.31	7-23	1,266	-440	0.56	244	100
45	9.95	Q14	7.19	1.266	-43.2	D 63	744	1 Call
	3				*			
					Y			
		· · · ·						
				_				
				1				
	<u> </u>			1				
<u> </u>				1	-			
Water sampl	<u> </u>							
Time collecte			•	Total volume	of purged water		~ <u>7.5-</u> ling 	gall_
Physical appl	earance at start				Physical app	ear nce at samp	ling)
	Color <u>C(ce</u>	·				Color Odor	NO	
Sheen/Free F	Odor	10 <u></u>			Sheen	Free Product		
Sheemrine	-1000001							
Samples col	lected:							
Container Siz	se Cont	ainer Type	# Collected	s Field Fil	tered	Preservative	Cont	inerpH
		· · · · · · · · · · · · · · · · · · ·						
		<u> </u>						

O'Brien &	& Gere Engine	ers, inc.		Low Flow Ground Water Sampling Log						
Date				CYV/RT		Weather				
Site Name		- Evacu	ation Method	Bladder Pump		Well #	MN-105 I			
Site Location		- Sampi	ing Method	Bladder P	ump	Project #				
Well informat	lion:									
Depth of Well		ft.		* Measure	ments taken from)				
Depth to Wate		28 ft.				Top of Well Cas				
Length of Wat		ft.			<u> </u>	Top of Protective				
Time	-> 1710					(Other, Specify)				
Water parame	eters: Lower submers	sible pump slowly	through stag	nant water colur	nn					
	Position pump	in center of scree	ned interval a	& maximum pur	ping rate of 0.5 li	ters/minute				
·		is at every three m		1	Ovidation	Dissolved				
Ttowned.	Depth To	C L'INY	o./	10%	Oxidation	Oxygen 10%	Turbidity	Flow		
Elapsed Time	Water	Temperature	рН	Conductivity	Potential	(mg/i)	<u>(NTU)</u>	Rate (ml/min).		
0	6.72	8.08	7.81	0.857	-27.0	3.00	54.2	-		
5	6.85	8.25	7.72	0 9 24	-20.5	1.01	31.5	170		
	6.86	8.28	7.71	0.943	-32.6	0.57	24	170		
10	6.86	8.30	7.73	0.945	-10.6	0.41	24.2	170		
	6.87	8.2.9	7.72	0.949	-42.5	0.30	18.5	170		
2,0	6-85	8.29	7.74	13.950	-51.6	0.29	19.3	170		
	6-86	8.29	7.75	0.951	-5.4.2	0.27	18.0	170		
30	6.00	0.6.1								
				······						
		<u></u>								
		· · · · · · · · · · · · · · · · · · ·	· · · ·				· ·			
	·		· · · ·							
·		ļ				· · · · · · · · · · · · · · · · ·				
		l								
							· · · · · ·			
				-·						
		· · · · · · · · · · · · · · · · · · ·	<u> </u>				<u> </u>			
			ļ			· · · · · · · · · · · · · · · · · · ·	<u> </u>			
						· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·			
				<u> </u>			<u>1</u>			
Water sample	··· · ···			Total volume of	f purged water rer	noved:	~2.	54:11		
Time collected						nce at sampling	TUIL.			
	arance at start Color Cl (a)	*				Color	TUILIE	_		
	Odor					Odor		-		
Sheen/Free Pi	roduct	ð			Sheen/Fre	ee Product		-		
Samples coll	ected:									
Container Size	······································	ы Туре	# Collected	Field Filte	red	Preservative	Contain	arpH		
		· · · · · · · · · · · · · · · · · · ·	<u> </u>							
ļ. <u>.</u>										
. <u></u>	<u></u>		<u> </u>	*,						
Notes:		<u> </u>	<u>. </u>							

0'Brien	& Gere Engin	eers, Inc.		Low F	Low Flow Ground Water Sampling Log					
Date	3/8/05	Perso	nnel	CYV/RT		Weather				
Site Name	Town of la	 // Evacu	uation Metho	d Bladder P	ump	Well #	Mw-	1095		
Site Location	Frewsburg,		ling Method	Bladder P	ump	Project #				
Well informat			<u> </u>			<u> </u>	<u></u>			
Depth of Well	ווסח: אל אי			* Measure	ments taken fro	m				
Depth to Wate	••• <u>کې</u>	2.00 ft. 7.2 ft. 2.28 ft. x.				Top of Well Ca	ising			
Length of Wat	er Column 27	L.28 ft. x.	0.16 = 1.	.46	X	Top of Protecti				
•		3*	= 5.8	6		(Other, Specify	0			
Water param	Position pum	ersible pump slowly	ened interval	& maximum pun	mn nping rate of 0.5	liters/minute				
	Depth	ngs at every three a	minute interv		Oxidation	Dissolved				
Elapsed	То		1		Reduction	Oxygen	Turbidity	Flow		
Time	Water	Temperature	pН	Conductivity	Potential	(mg/l)	(NTU)	Rate (ml/min).		
Initial		7.8	8.2	0.540			36			
1		8.1	9.5	0.5-70			45			
2		8.1	8.3	0.600			87			
		9.0	8.0	0.550			120	<u>.</u>		
				<u> </u>				· ·		
			+							
					·					
			. .	<u></u>			<u></u>			
	-			<u>. </u>		· · · · · · · · · · · · · · · · · · ·				
						· · · · · · · · · · · · · · · · · · ·				
······										
				1						
<u> </u>										
	<u> </u>				-					
<u> </u>	. <u></u>		-							
	1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -									
				<u></u>			<u></u>			
	<u> </u>	<u> </u>			_ <u></u>		<u> </u>			
Water sampl				Totel volume /	of purged water	removed:	6 -	all		
Time collecte					-	earince at samp	ling Turbic			
Physical appe	iarance at start Color Clc	- 3			i nyawarapp	Color	Turbic	2		
		<u>~~~</u>				Odor	NO			
Sheen/Free F		JJJ			Sheen/	Free Product	10			
Samples col	NAMES AND ADDRESS OF THE ADDRESS ADDRES		# Collecte	d 👘 Field Fill	eteri	Preservative	Com	ainer pH		
Container Siz	a Conta	iner Type			*****					
			1		-					
·····										
								. <u></u>		

.

<u>) Brien ö</u>	Gere Engine	ers, Inc.			low Groun	<u>d Water Sa</u>				
ate _	3/8/05	Perso	nnel	CYV/RT	CYV/RT Weather (cld_Si-U			N TOUNS 6		
ite Name	TOUR OF C	arvall Evacu	ation Method	Bladder P	ump	Well #	MW-	109D		
te Location	Frensburg	LNY Samp	ling Method	Bladder P	ump	Project #		· · · · · · · · · · · · · · · · · · ·		
ell informati	lon:				·····					
epth of Weli '		ft.		* Measure	ments taken from	-7				
epth to Wate		75 ft.				Top of Well Car Top of Protectiv				
ength of Wate	er Column	ft.			<u> </u>	(Other, Specify				
					······		<u>/</u>			
ater parame	ters: Lower subme	ersible pump slowly p in center of scree	through stag	nant water colui	mn noing rate of 0.5	liters/minute				
		p in center of scree ngs at every three i			inhing sere of ere					
<u> </u>	Depth		T		Oxidation	Dissolved				
apsed	το				Reduction	Oxygen	Turbidity	Flow		
ime	Water	Temperature	pH	Conductivity	Potential	(mg/l)	(NTU)	Rate (ml/min).		
	7-89	7.71	8.97	Oil FE	1824	0.16	E3	300		
5	7.89	7.71	243	C.876	186.0	5.34	<u>E3</u>	300		
10	7.90	7.67	8.86	0.716	1116	539	E3	300		
15	7,90	7.71	8.82	0,726	195.0	5.36	<i>E</i> 3	300		
20	7.90	7.71	18,79	0,733	192,1	5.34	Ē3	300_		
25	7.90	7.19	8:44	C.727	200.1	5,30	E3	325		
		-								
		-								
<u></u>	, <u>.</u>									
	<u> </u>						· · · · · · · · · · · · · · · · · · ·			
	········									
				<u> </u>						
							+			
				<u> </u>						
				 						
		· · ·		ļ			<u> </u>			
Vater sample				Total volume r	of purged water i	removed:	49	all		
Time collected						ear ince at sampli	na			
• •	arance at start Color Clea	w				Color	Trib	d		
	Odor		10.10×	MA		Odor	NO			
Sheen/Free P	roduct		12:00	VVV (Sheen/I	Free Product	NO_	· •		
	aatad:		<u></u>	<u></u>		······································				
Samples coll Container Siz	CONCERNMENT OF CONCERNMENT AND A STOCKED	iner Type	# College	i Field Fil	ered	Preservative	COI	nainer pH		
<u></u>		<u></u>								
			_			<u></u>		<u> </u>		
							· · · · · · · · · · · · · · · · · · ·			
			1	1						
		. / .	·····							
votes: F	verthing	is free	engl 1			TIMSD	ç			

•

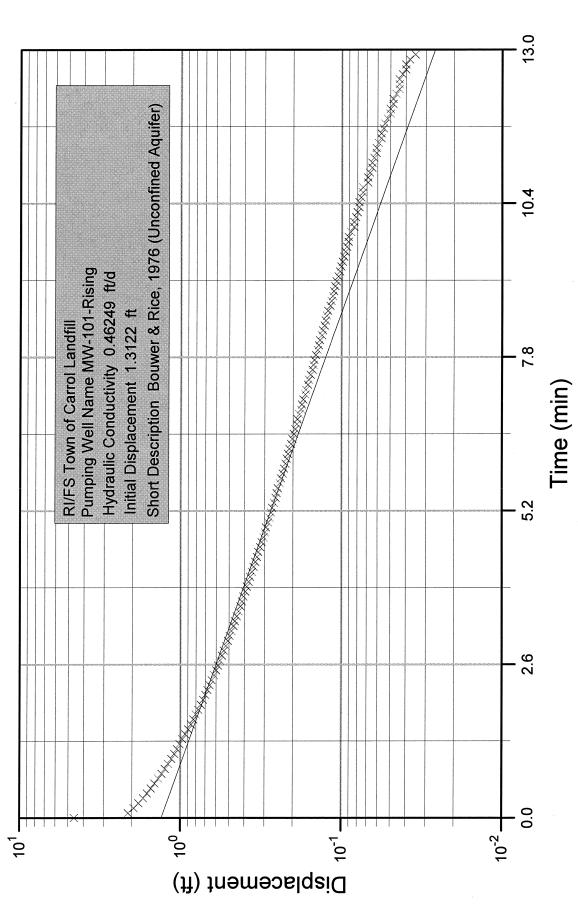
0'Brien &	& Gere Engine	ers. Inc.		Low Fl	Low Flow Ground Water Sampling Log						
Date	3/8/05	Persor	inel	CYV/RT		Weather					
Site Name	Town of 6	- Cr <i>rp (/</i> Evacua	ation Method	Bladder Pu	IMP	Well #	NW-1	09 <u>I</u>			
Site Location			ing Method	Bladder Pu	imp	Project #	<u> </u>				
Well informat		-/						<u> </u>			
Depth of Well		ft.		* Measurei	ments taken from	n					
Depth to Wate		69_ft.				Top of Well Cas	•				
Length of Wat		ft.			X	Top of Protectiv					
						(Other, Specify)					
Water parame	eters: Lower subme	rsible pump slowly	through stag	nant water colum	<u></u>						
	Position pum	p in center of scree	ned interval (& maximum pum	ping rate of 0.5	liters/minute					
		ngs at every three m	ninute interva		Oxidation	Dissolved	r	<u> </u>			
	Depth ·				Reduction	Oxygen	Turbidity	Flow			
Elapsed	To Water	Temperature	pН	Conductivity	Potential	(mg/l)	(NTU)	Rate (ml/min).			
Time <i>O</i>	7.80	2.19	5.89	0.002	122.5	1.16		475			
5 5	7.80	2.21	6.94	0.002	122.0	1.21	7.9.9	1/25			
		2.02	6.00	0.002	120.7	1.32	21,800	475			
10	7.50		6.07		127.6	1.46	71,000	300			
15	7.87	5. 40	6.07	0 201	98.7	148	71,000	300			
20	7.87		6.42		91.9	1.49	71,000	300			
2,1-	7.82	10.67				3.20	71,000	250			
30	285	2.70	8.16	0.558	76.6	0.05	71,000	310			
35	7.81	6.69	3.05	0.578	65.4	0.05					
40	7.85	7.58	8.25	0.576	50.8		7/000	350			
45	7.85	7.61	8.30	0.576	44.8	0,24	31,000				
50	2.85	7.60	8.32	0.576	49.0	0.23	24000	310			
					ļ						
			ļ					· ·			
			·	<u> </u>			ļ	<u></u>			
			<u> </u>	·							
			<u> </u>		· ·						
					<u> </u>						
Water sampl							4				
	u <u>d: //37</u>			Total volume o	f purged water r		~ 4 g				
Physical appe	earance at start Color <u>1001</u>	6.2			Physical appe	arince at sampli Color	Turbis	Į.			
	Color TVV! Odor Odor					Odor	NO	_			
Sheen/Free F					Sheen/F	ree Product	~0	_			
· · · · · · · · · · · · · · · · · · ·				·····	<u></u>						
Samples col	LONDOWNO000007 977224/00/00227222222	iner Type	# Collecte	s Field Filly	Hed	Preservative	Contai	ner pH			
Container Siz	te Conta	nia(:175a									
					· · · · · · · · · · · · · · · · · · ·						
								÷			
	l						<u></u>				
Notes:	Bline	I dup - Co	Herte	<u>ط</u>							

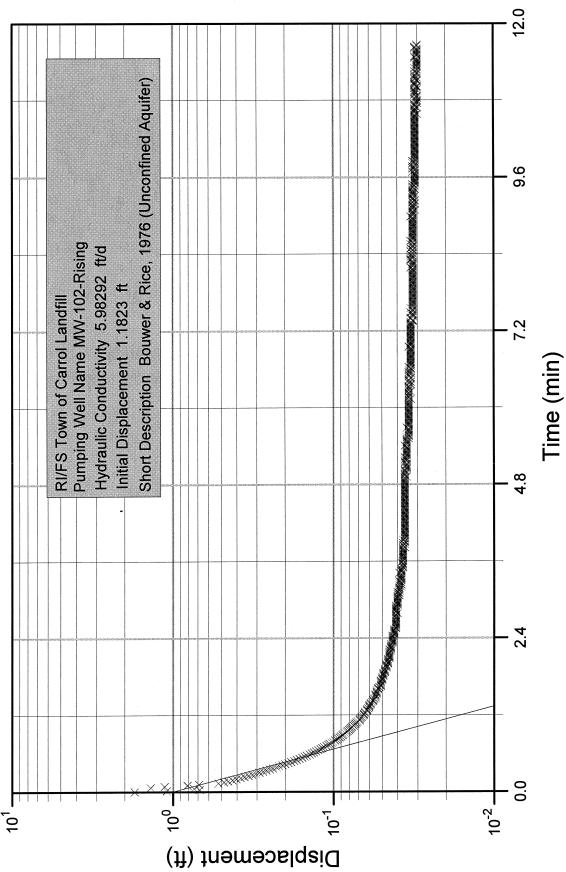
Brien 8	<u>k Gere Engin</u>	<u>eers. Inc.</u>		Low F	Low Flow Ground Water Sampling Log						
ite	3/0/05		nnel	CYV/RT		Weather	SNOW ZO	5			
te Name	TK C.		uation Method	Bladder P	ump 👌 🦷	Well #	110I				
te Location			ling Method	Bladder R	ump Darr	 Project #					
		······································									
ell informat		100 n.		* Measure	ments taken fro	m					
epth of Well opth to Wate		. 89 ft.		HIQUOUI		Top of Well Ca	asing				
ngth of Wat	- O-b	• 1 · · ·				Top of Protect	•				
	10.5	8x3-1	1 - 1			(Other, Specif	y)	· .			
ater parame	eters: Lower subm Position pun	ersible pump slowly np in center of screet ings at every three	/ through stag ened interval 8	k maximum pun		liters/minute					
iett va	Depth				Oxidation	Dissolved					
	То			and the second second	Reduction	Oxygen	Turbidity	Flow			
apsed me	Water	Temperature 4		Conductivity	Potential	(mg/l)	<u>(NTU)</u>	Rate (mi/min).			
0		3.21	8,53	214 3.4			20	_			
1		7.58	862	0,445			50.				
2		7.65	4.12	CN120			350				
3		3 08	9.13		1		-				
~	<u> </u>		<u> </u>	<u></u>		-	·				
								· · · · · · · · · · · · · · · · · · ·			
		¹			·						
			• .			· •					
				<u> </u>							
			<u></u>	· · · · · · ·	·		·				
			-{			-					
		· .									
				-							
		<u> </u>			<u></u>						
ater sample	· • •			Total volume o	f purged water i	removed:	20	3ull			
ne collected						arince at samp		<u> </u>			
	arance at start Color 212	лŸ			, nyaisai ahhe	Color *	Turlid	<u>, </u>			
		IV U				Odor	~				
een/Free P	roduct	7		:	Sheen/F	Free Product					
imples coll intainer Siz		ine: Type	# Collected	Field Filte	Hed	Preservative	Cont	liner pH			
4140000014											
				1	•						
	1										

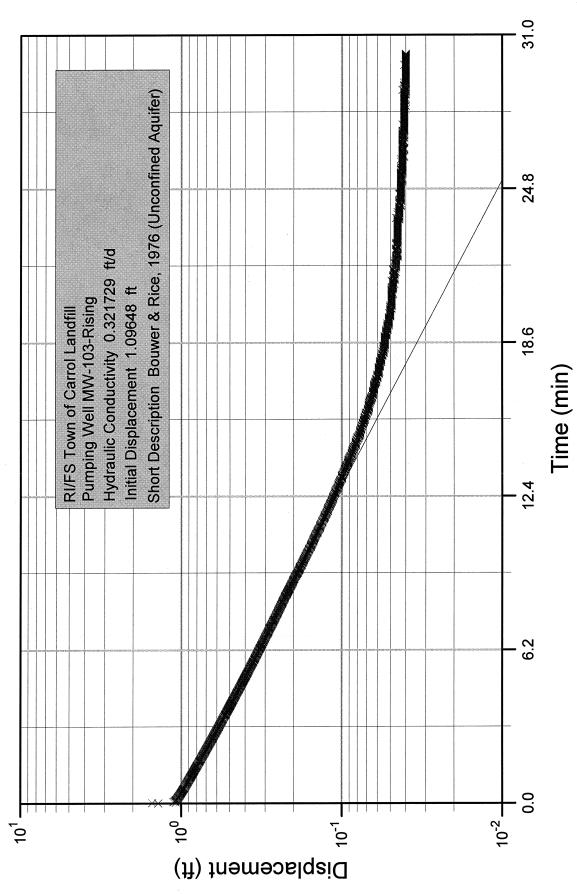
.

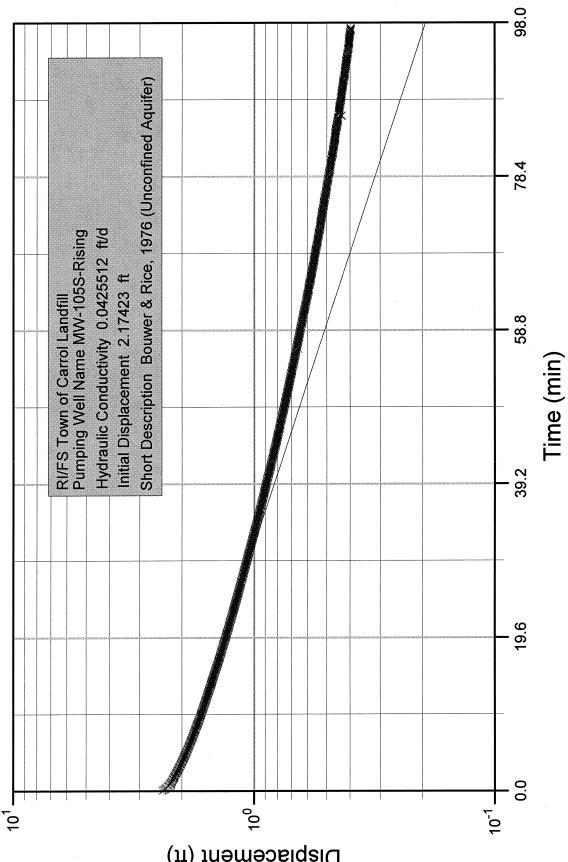
4[,]] 6 6 3

<u>0'Brien &</u>	<u>Gere Engin</u>	and the second se			low Groun		ampling Loo	
Dato	3/9/05			CYV/RT	<u> </u>	Weather	Snow 20	· F
Site Name 🔄	Town Car	VDH Evaci	ation Method	Bladder P	ump	Well #	1105	
Site Location	pronsburg	Samp	ling Method	Bladder P	ump	Project #		
Well informatio				<u> </u>		<u>.</u>		
Depth of Well *		0.50 ft.		* Measure	ements taken fro	m		
Depth to Water 1		3.18 ft.			X	Top of Well Ca	ising	
Length of Water			0.16 = 2	.72		Top of Protect	•	
•		¥3				(Other, Specify	n)	
		ersible pump slowly						· · · · · · · · · · · · · · · · · · ·
Water paramete		ip in center of scree				liters/minute		
		ngs at every three I				·		
	Depth				Oxidation	Dissolved		
Elapsed	То				Reduction	Oxygen	Turbidity	Flow
Time	Water	Temperature	рН	Conductivity	Potential	(mg/l)	(NTU)	Rate (ml/min).
Initial	<u></u>	2.48	9.01	0.492		<u></u>	11	
1		5.13	4.98	0.481			21,000	
2		6.37	9.03	0.429	·		21,000	
		7.18	9.14	0.447			71,000	
		,						
	· · · · · · · · · · · · · · · · · · ·			1				
				<u> </u>				
	<u> </u>		-			· · ·		
	·				·			
								· ·
			·					
	· · · · · · · · · · · · · · · · · · ·							
			<u> </u>					
					· · · ·			
			· 				_	
	·					· · · · ·		
				·				
		_ <u>i</u>		<u> </u>	<u> </u>	<u> </u>		
Water sample:	11-1-1			* ()	f purged water n		ing <u>Fubla</u>	All
Time collected:	1528			total volume o		201		
Physical appear	ance at start olor <i>CL</i> e				Physical appe	artince at sampli Color	Ing Twhen	1
	dor AD				•	Odor	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
Sheen/Free Prod				,	Sheen/F	ree Product	210	
Samples collec	CONTRACTOR AND CONTRACTOR AND AND CONTRACTOR AND AND CONTRACTOR AND CONTRACTOR AND CONTRACTOR AND CONTRACTOR AND AND CONTRACTOR AND AND AND AND AND AND AND AND AND AND							
Container Size	Contai	ner Type	# Collected	Field Filli	Hed	Preservative	CONTRI	tter pH
<u></u>					· · · · · · · · · · · · · · · · · · ·	-{		
			+			-{		
							· · · · · ·	

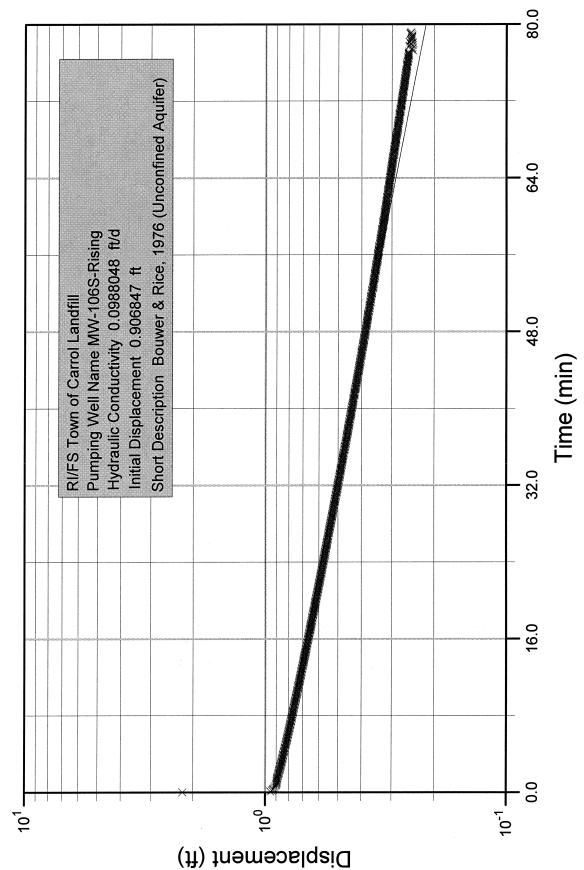

0'Brien &	Gere Engine	<u>ers, Inc.</u>		Low F	Low Flow Ground Water Sampling Log				
Date	3/9/05	Perso	innel	CYV/RT		Weather			
Site Name	Town Carr	 Evacu	uation Method	Bladder P	ump	Well #	121	1115	
Site Location	Frenshag,	Ny Samp	ling Method	Bladder P	ump	Project #			
Well information	on:	······································				· · · · · · · · · · · · · · · · · · ·	<u></u>		
Depth of Well *	_2/	<u> </u>		* Measure	ments taken fro				
Depth to Water		<u>/3</u> ft.			X	Top of Well C			
Length of Wate	r Column <u>/S.s</u>		0.62	5.01	·	Top of Protect (Other, Specif			
		<u> </u>	3 = 6/)) 		
Water parame	ters: Lower subme	rsible pump slowly	through stag	nant water colu	nn				
	Position pum	p in center of scree			ping rate of 0.5	liters/minute			
14. 		ngs at every three	minute interva	ls	Outretter	Dissolved	<u> </u>	<u>-</u> [
	Depth				Oxidation Reduction	Oxygen	Turbidity	Flow	
Elapsed	To Water	Temperature	рH	Conductivity	Potential	(mg/l)	(NTU)	Rate (mi/min).	
Time		3.49	8.90	0.712	1		30		
Inrich			5 51						
		7.25		0. 690			74,000	1	
2	v	7.6	8.94	0.673			71,000		
		5.34	\$ 36	0.312					
						_ <u></u>			
							-		
-				· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·				
·									
					·				
	· · · · · · · · · · · · · · · · · · ·					•			
	<u></u>								
		_							
					1				
<u></u>	<u>.</u>		-		- <u> </u>				
			+	· · · · ·		_			
		-		<u> </u>		· · · · ·		_	
			_ _	· · · · · · · · · · · · · · · · · · ·	_ <u></u>				
	·			· · · · · · · · · · · · · · · · · · ·					
	·		<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u></u>	
Water sample:							In		
Time collected:				Total volume o	of purged water r	=		561	
Physical appea	ránce at start	1			Physical appe	ear ince at samp Color	ling Trob		
	Color <u>Color</u> Odor ~	-0 -0				Odor		<u> </u>	
Sheen/Free Pr	oduct	<u></u>			Sheen/F	Free Product	~ 0	_	
				· · _ · _ · _ · _ · _ · _ · _ · _ ·					
Samples colle	00000000000000000000000000000000000000	-						iner pH	
Container Size	Contal	ner Type	# Collected	Field Fill	HEC.	Preservative	CO-113		
		· · · · · · · · · · · · · · · · · · ·							
<u> </u>					· · · · · · · · · · · · · · · · · · ·				
	I				and the second se				
							<u> </u>		

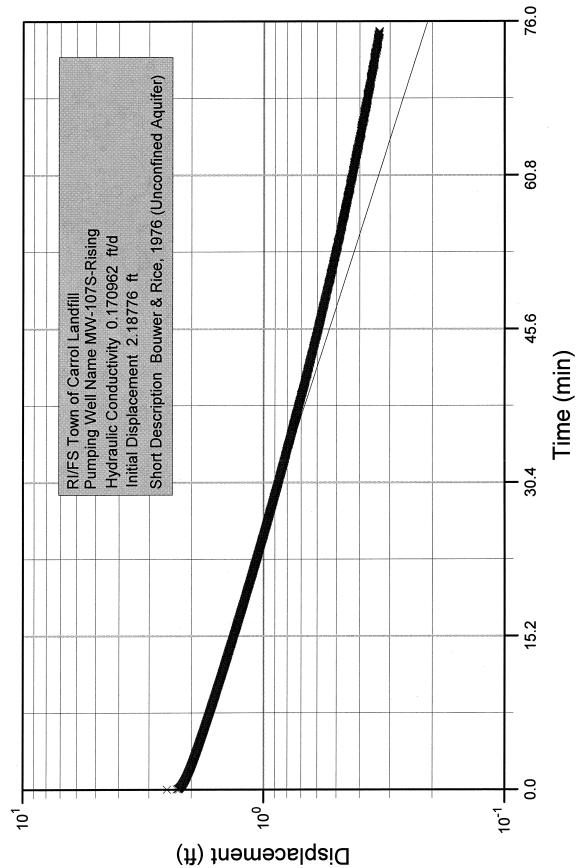

Brien	& Gere Engin	eers, Inc.		Low F	Low Flow Ground Water Sampling Log				
	319/55		nnei	CYV/RT			Clusty Wif		
	Jonn Carrs		ation Method	Bladder P	ump	Well #	Mn.	111	
	Frinsbrig		ling Method	Bladder P	ump	Project #			
ell informa		<u> </u>							
epth of Well	•	14.05 ft.	. 1		ments taken fro				
epth to Wate	ər *	<u>3.40</u> ft. 0.60 ft. x				Top of Well Ca			
ength of Wa	ter Column	0.60 ft. x	0.16 =	6.5	<u> </u>	Top of Protecti (Other, Specify			
	·		= 19.5		L		,		
ater param	eters: Lower subm	ersible pump slowly	through stag	nant water colu	nn 	literelminuto			
		np in center of scree ings at every three r			iping rate or 0.5	N/elsumine		· · · · · · · · · · · · · · · · · · ·	
	Depth	ings at every three i			Oxidation	Dissolved			
lapsed	То		<u>]</u>		Reduction	Oxygen	Turbidity	Flow	
imə	Water	Temperature	рН	Conductivity	Potential	(mg/i)	(NTU)	Rate (ml/min).	
In Ma)		3.31	9.64	0.454	_		31		
1		7.16	9.72	0.234			25.00		
2.		8.12	9.63	0.160			25-0)		
3		7.22	9.46	0.470			337		
			1		· ·				
	······								
	······································								
								·····	
					·{		-		
				<u></u>					
								_	
			·				· .		
<u> </u>	·			<u> </u>	_				
	ļ		<u> </u>						
	ļ			<u> </u>					
	1						<u></u>		
Nater samp			•	Total volume	of purged water	removed:	20	gall	
rime collecte						earince at samp	ling		
Physical app	earance at start Color Color	100 1253				Color	ling <u></u>	<u>e'</u>	
	Odor	NU				Odor	<u></u>		
heen/Free l	Product	10			Sheen	Free Product	0 مر		
	llastadı	<u></u>			<u> </u>	<u></u>			
Samples co Sontainer Si		ainer Type	# Collecte	d Field Fil	eled	Preservative	Cont	ainer pH	
								·	
			_				<u> </u>		
				. <u> </u>					
	enty Vel	· .							
Notes:	いっさい レジし	ک							

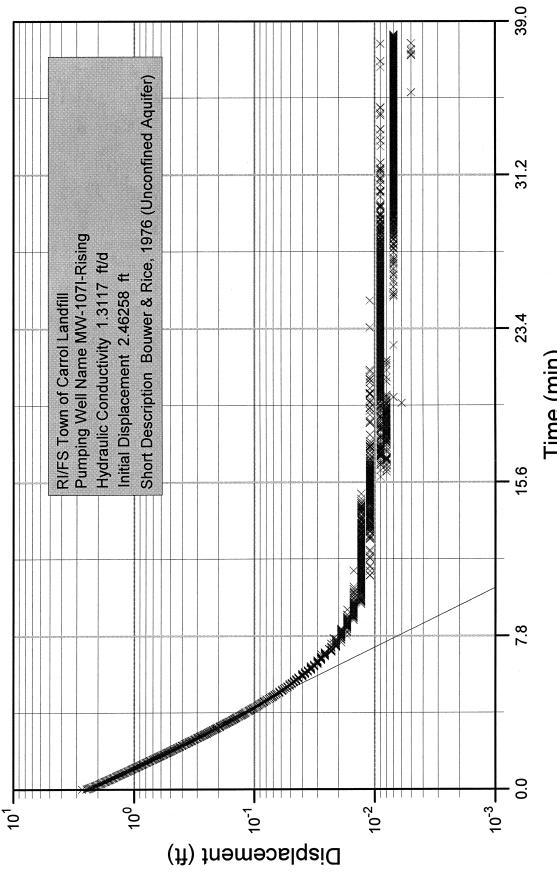

Mr

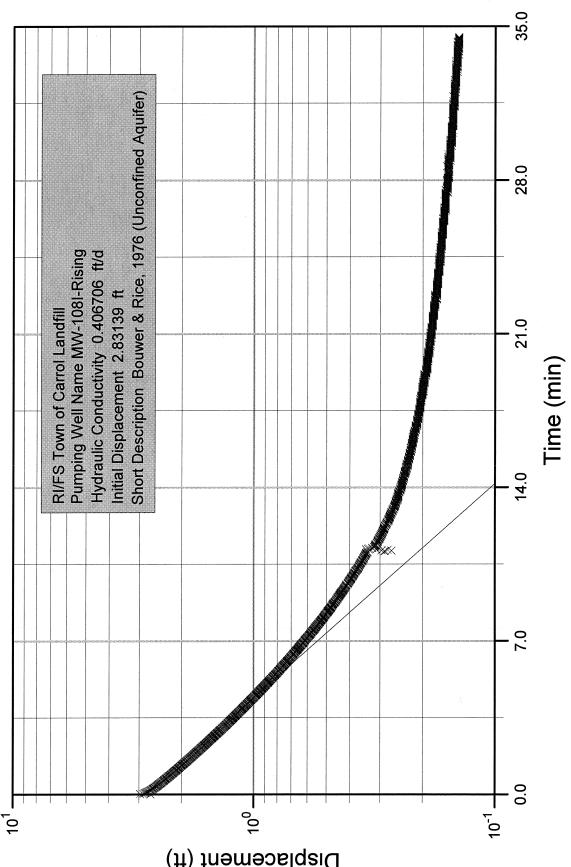

Appendix D

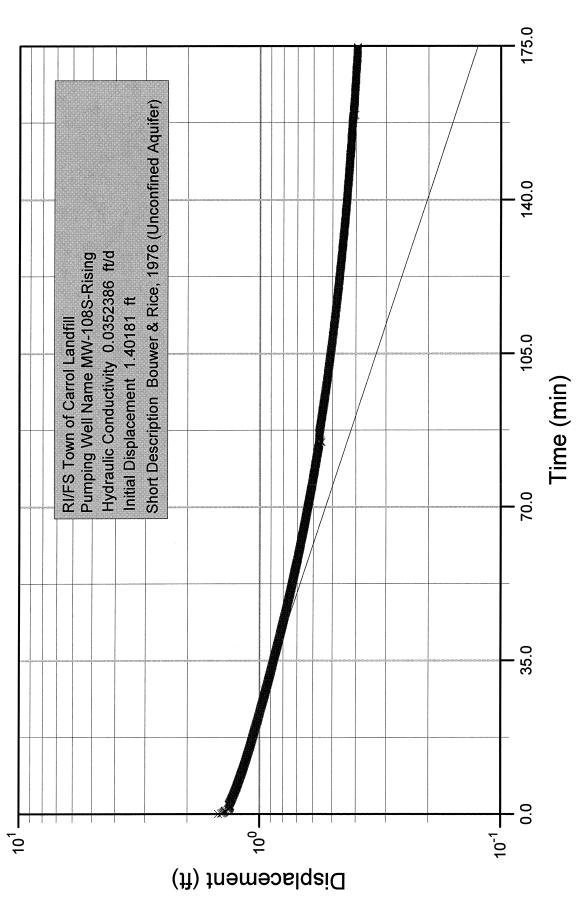
Hydraulic conductivity test data

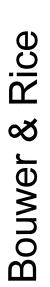


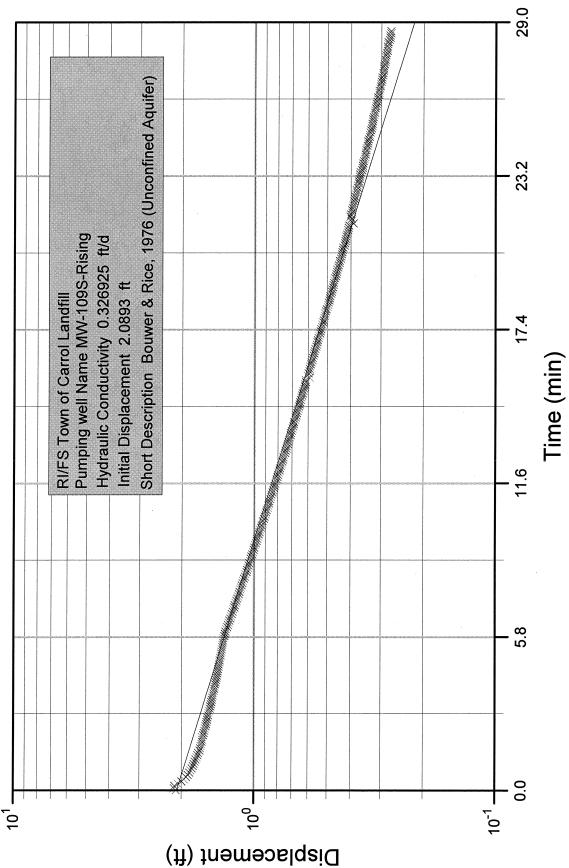


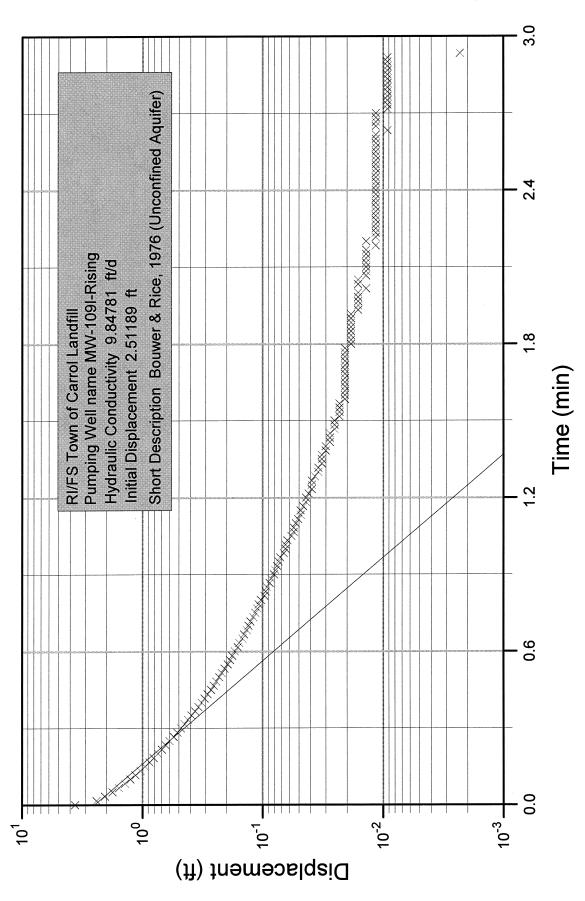



Displacement (ft)

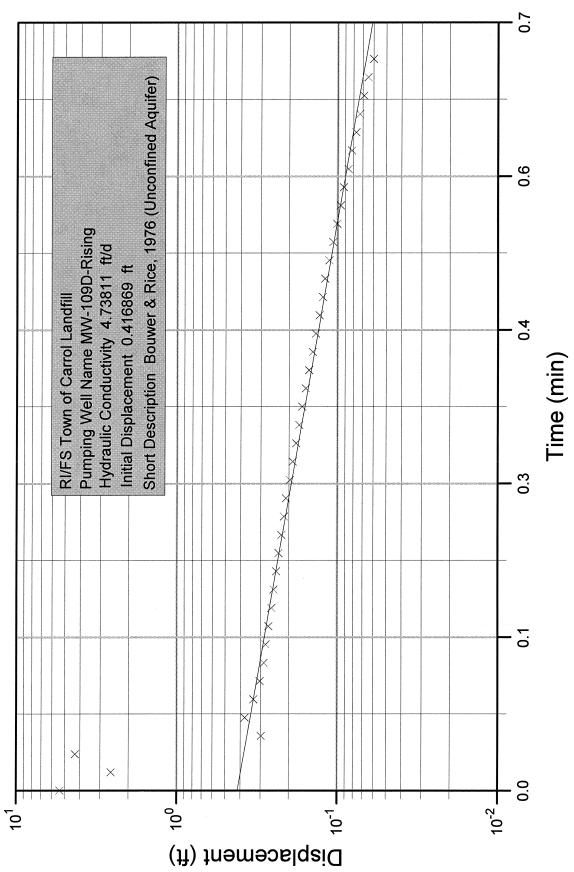


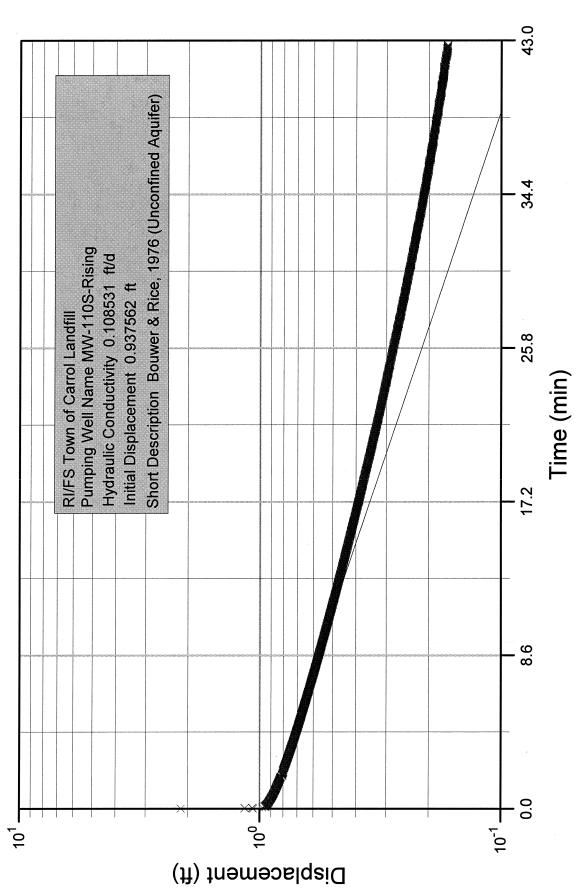


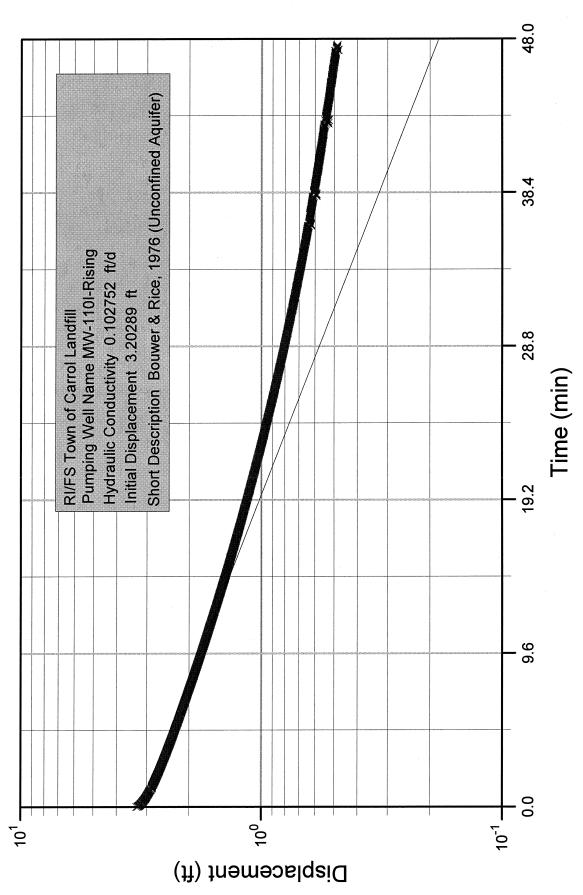

Time (min)

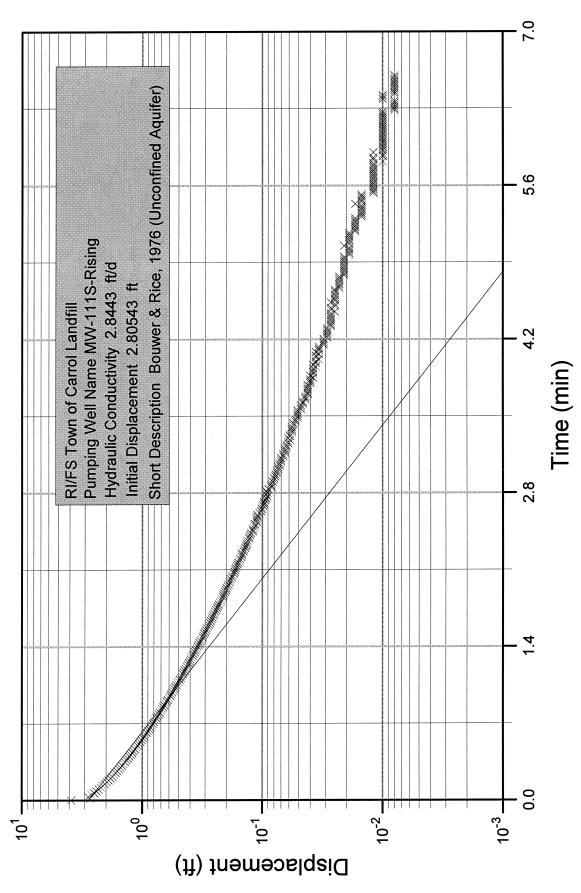


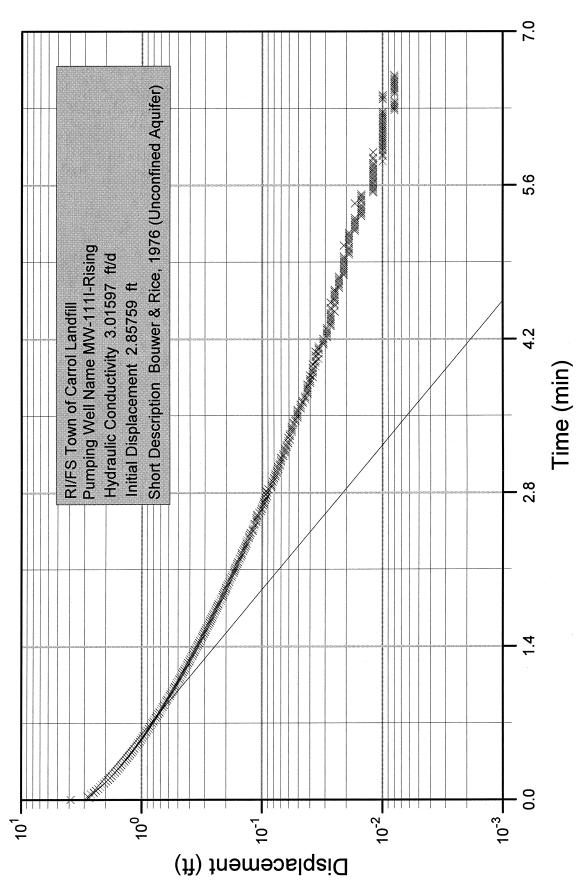
(ft) Inemessender (ft)

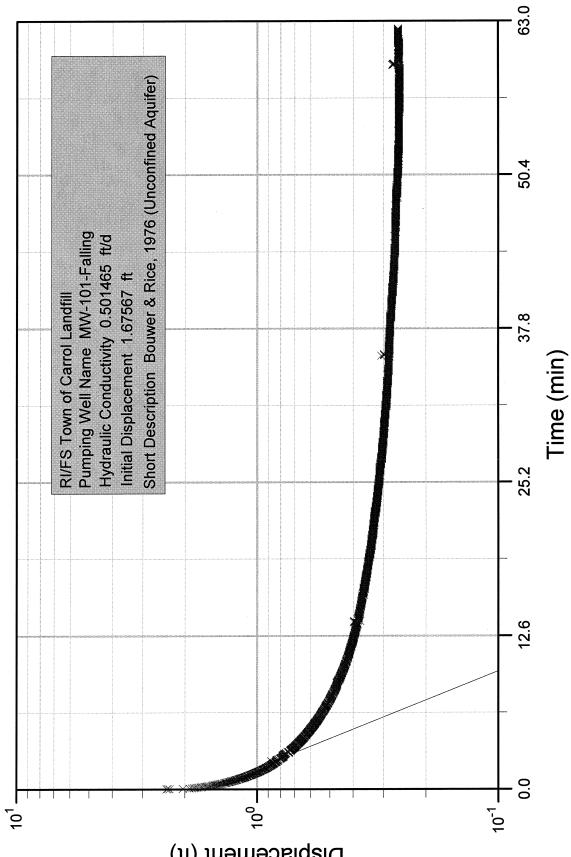


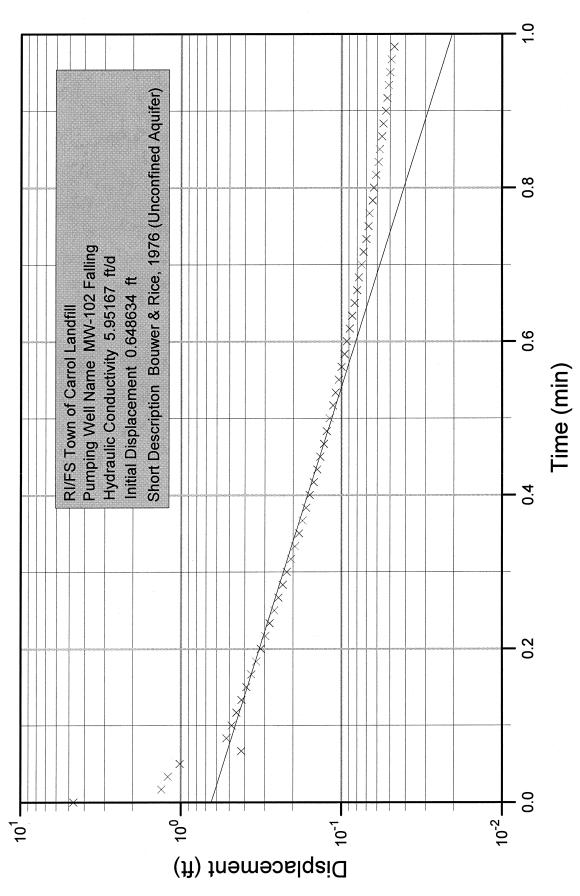


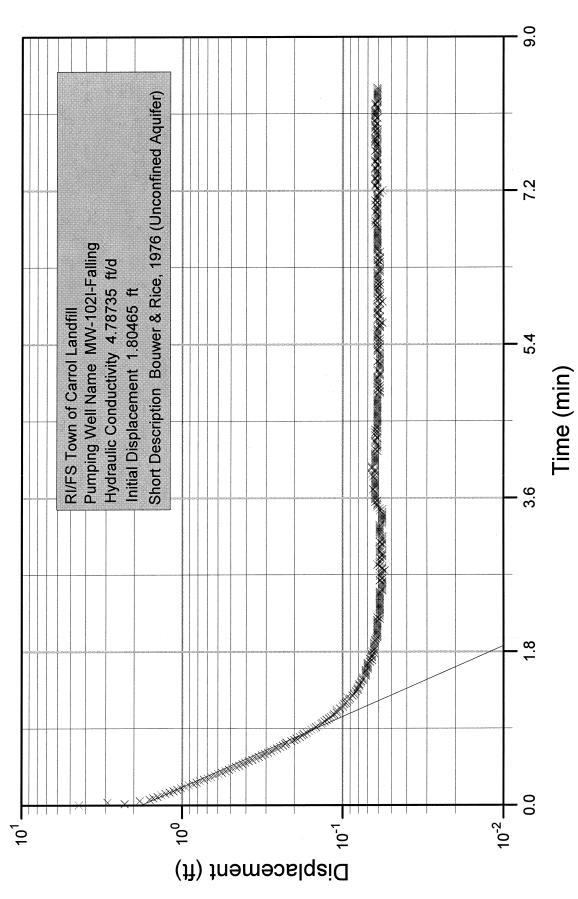


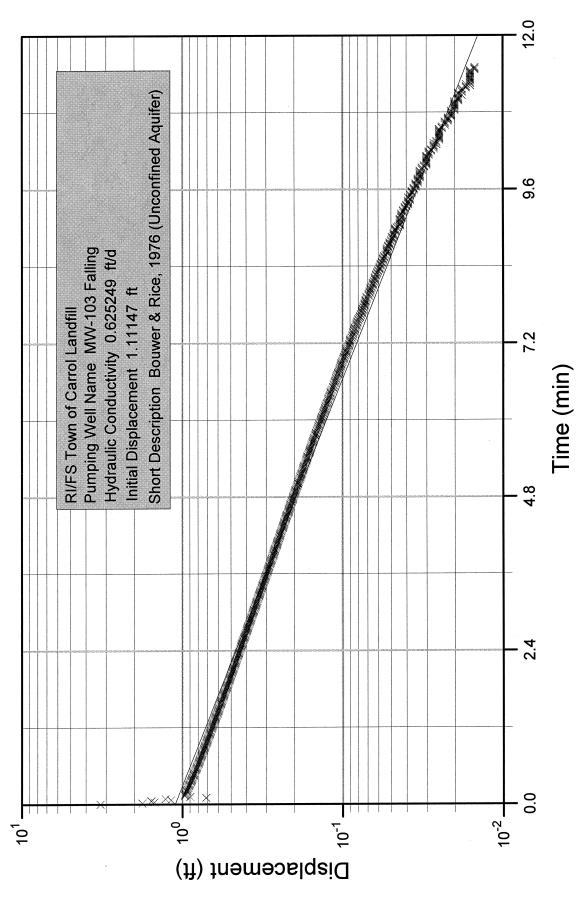


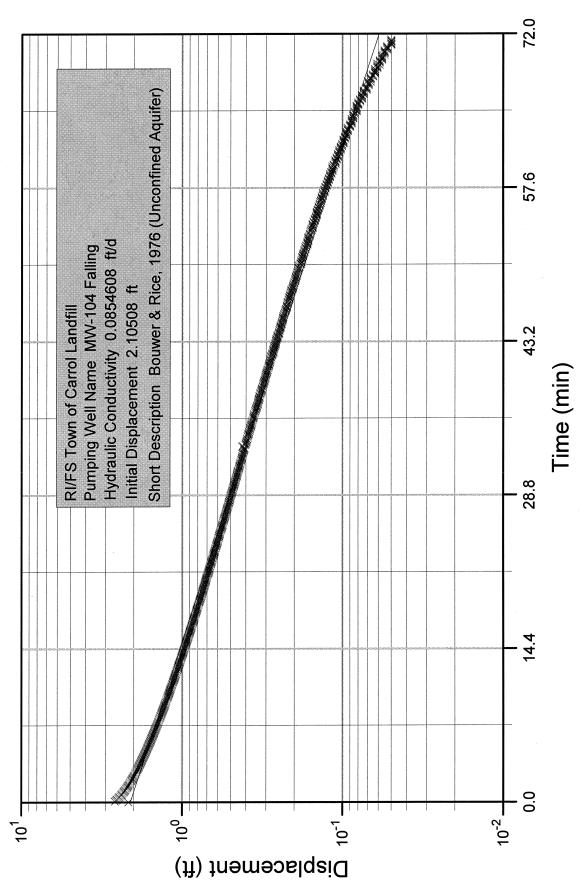

Rice	
Š	
Bouwer	

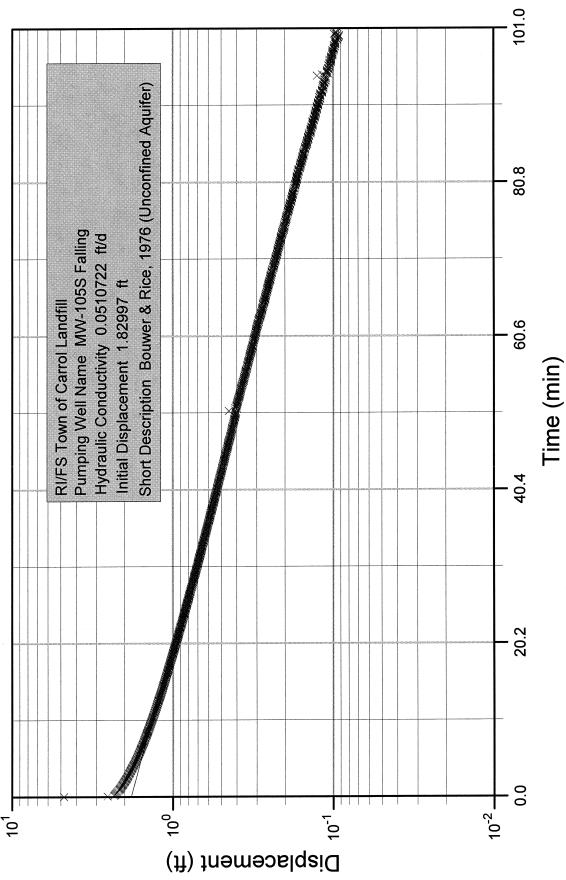


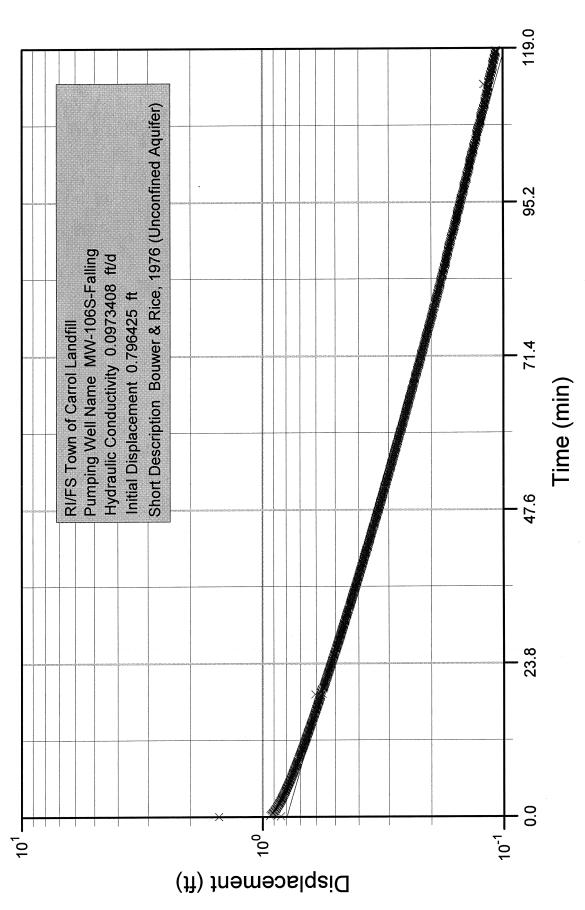


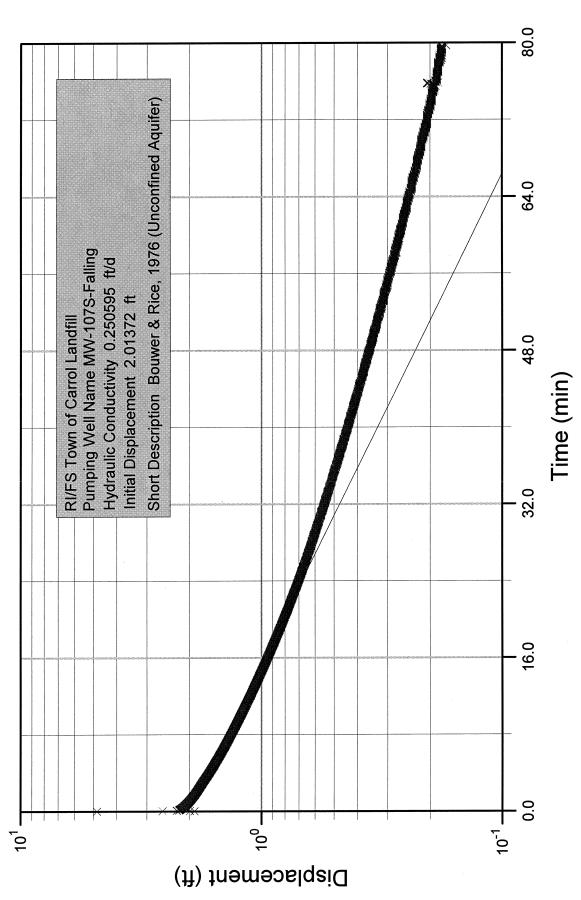


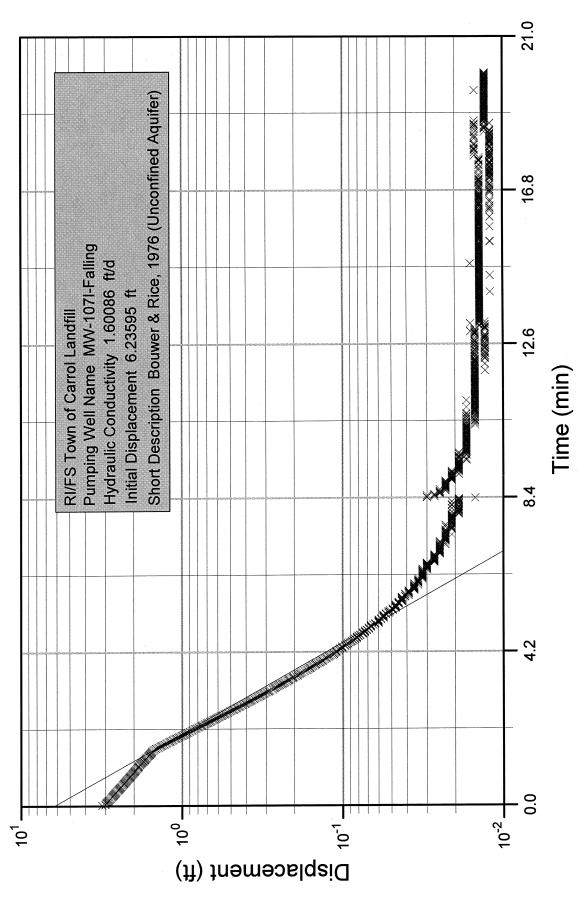


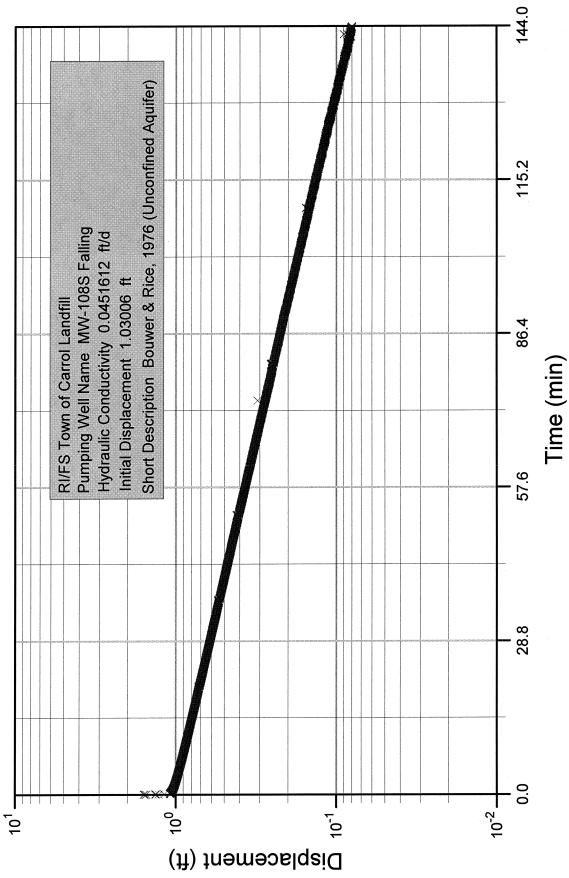


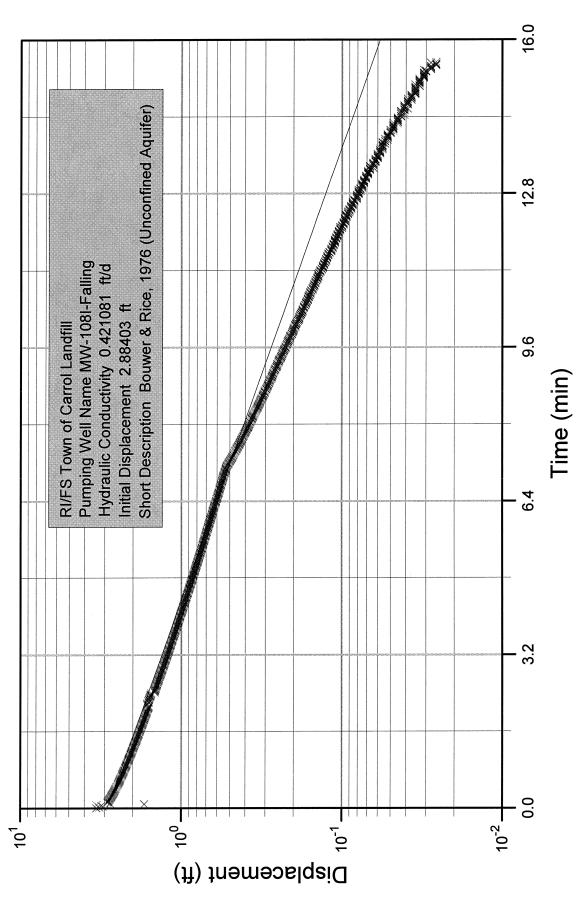

Displacement (ft)

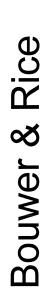


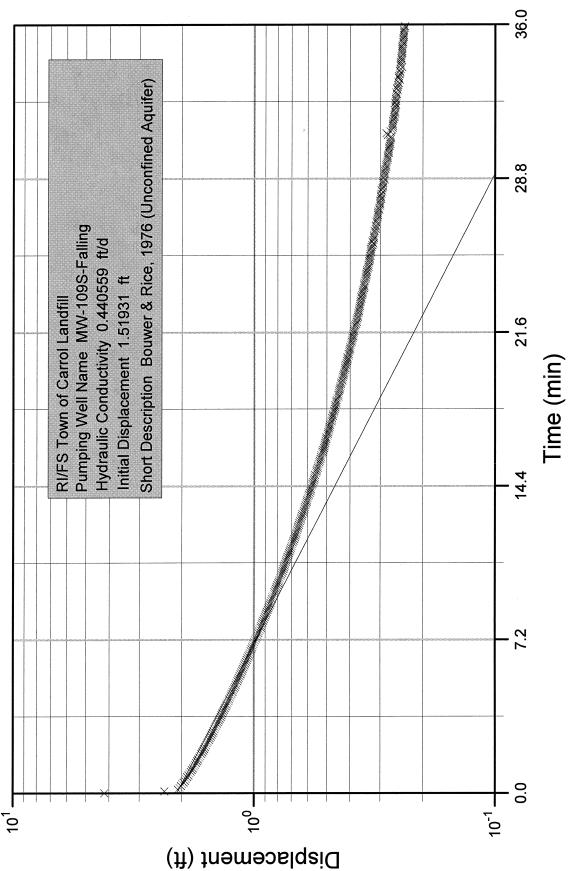


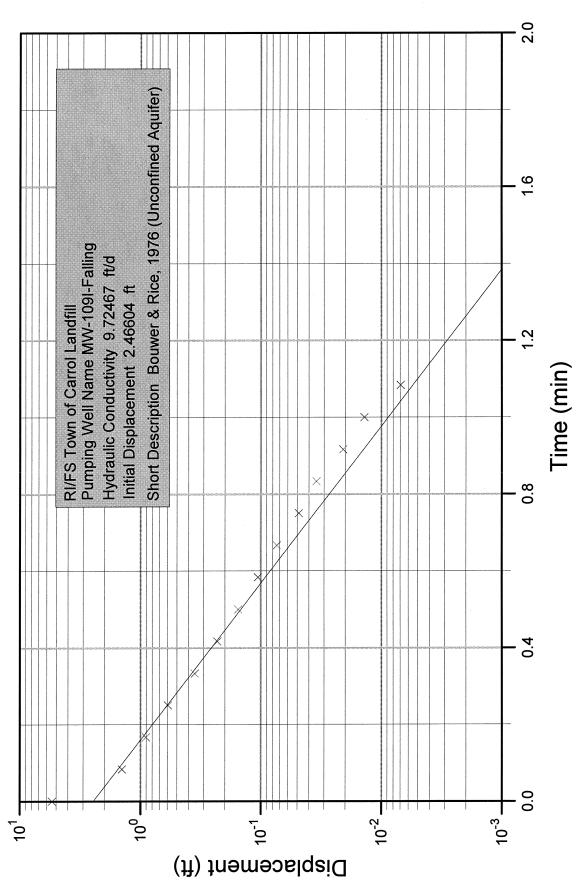


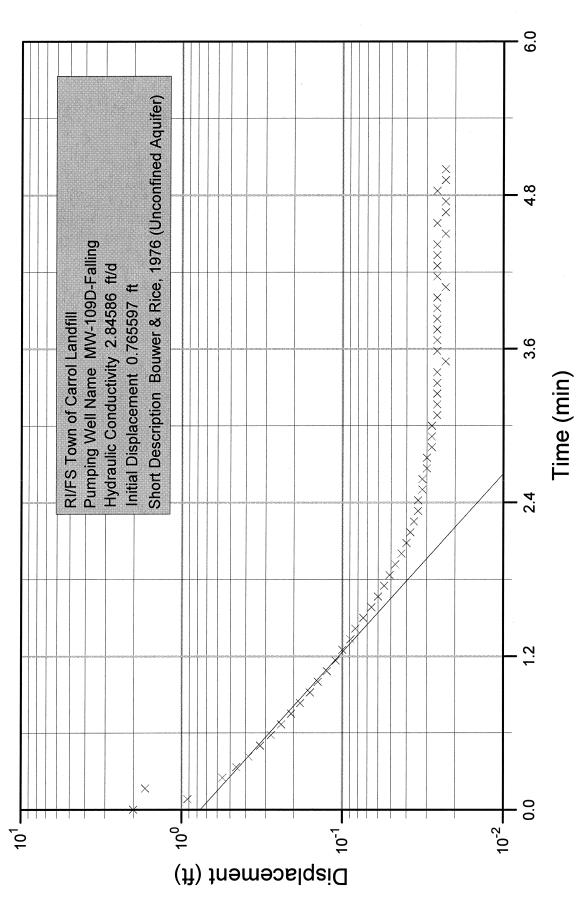


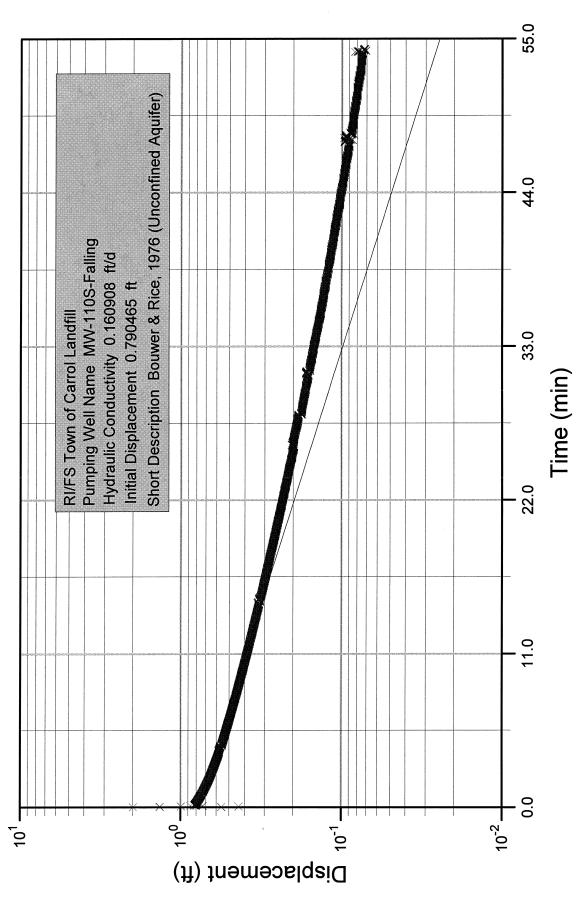


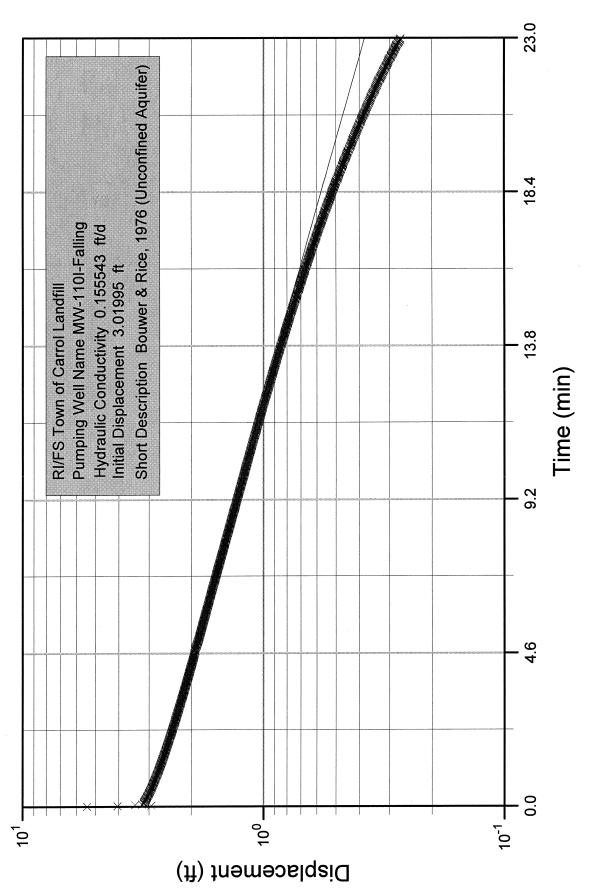


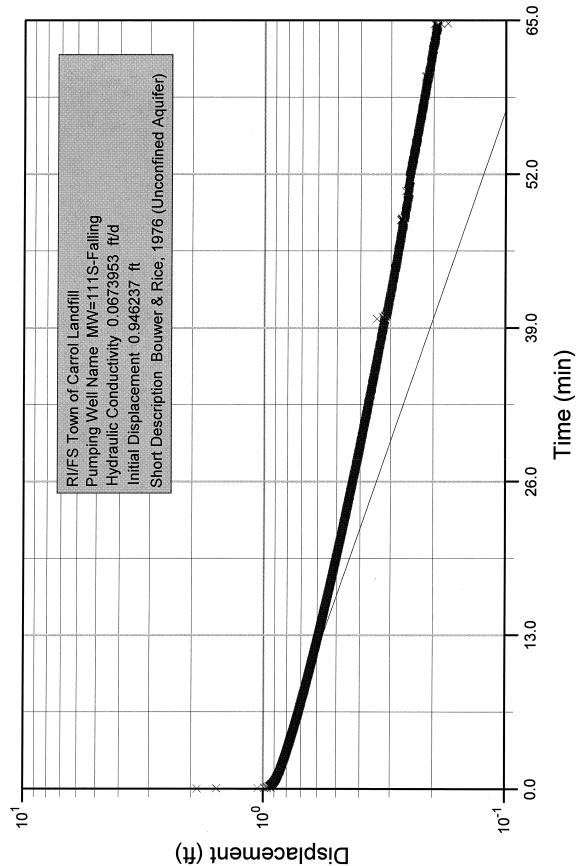


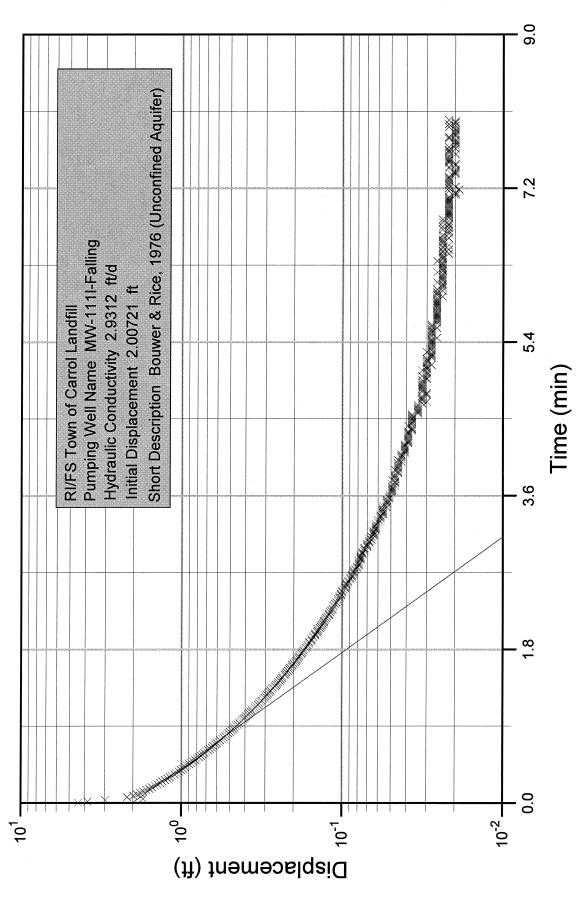


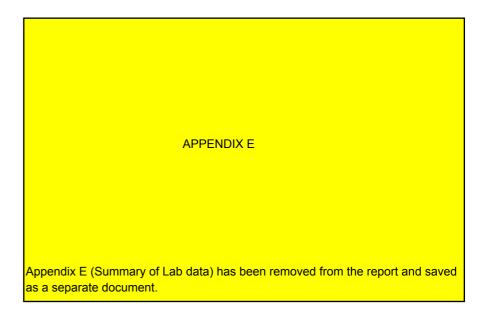












Appendix F

Summary of Frequency of SCG Exceedances and Detections

LEACHATE

		Concentration		Frequency of	Frequency of
Constituent	CAS Number	Range (ug/L)	SCGs (ug/L)	SCG Exceedance	Detections
Inorganics					
Aluminum	7429-90-5	109 - 110000	100	3/3	3/3
Arsenic	7440-38-2	<2.7 - 156	150	1/3	2/3
Barium	7440-39-3	327-2680	NC	0/3	3/3
Beryllium	7440-41-7	1-7 <0.04 - 5.2 1100		0/3	1/3
Cadmium	7440-43-9	<0.2 - 24.3	- 24.3 4		2/3
Calcium	7440-70-2	73700 - 606000	D NC 0/3		3/3
Chromium	7440-47-3			1/3	2/3
Cobalt	7440-48-4	<0.99 - 291	5	1/3	1/3
Copper	7440-50-8	4.9 - 365	18	1/3	3/3
Iron	7439-89-6	14600 - 721000	300	3/3	3/3
Lead	7439-92-1	9.9 - 302	5	3/3	3/3
Magnesium	7439-95-4	8890 - 51200	NC	0/3	3/3
Manganese	7439-96-5	1380 - 4420	NC	0/3	3/3
Mercury	7439-97-6	439-97-6 <0.02 - 0.78 0.77		1/3	2/3
Nickel	7440-02-0	5.7 - 2560	101	1/3	3/3
Potassium	7440-09-7	3720 - 15000	NC	0/3	3/3
Selenium	7782-49-2	<2.7 - 31.2	4.6	1/3	1/3
Silver	7440-22-4	<1.5 - 8.6	16	0/3	1/3
Sodium	7440-23-5	3970 - 4210	NC	0/3	3/3
Thallium	7440-28-0	<3.7 - 22.9	8	1/3	1/3
Vanadium	7440-62-2	<1.1 - 195	14	1/3	2/3
Zinc	7440-66-6	56.3 - 4150	162	1/3	3/3
VOCs					
Acetone	67-64-1	<10 - 4	NC	0/3	2/3
cis-1,2-Dichloroethene	156-59-2	<10 - 24	NC	0/3	1/3
Trichloroethylene	79-01-6	<10 - 21	40	0/3	1/3
Chlorobenzene	108-90-7	<10 - 1	5	0/3	1/3

Notes:

NC - No Criteria

SCG - NYSDEC Technical and Operational Guidance Series 1.1.1 (TOGS 1.1.1)

- Class C Surface Water Criteria

ug/L - microgram per liter

SEDIMENT

	akting ng lan 1943. D	Concentration		Frequency of	Frequency of
Constituent	CAS Number	Range (ug/gOC)	SCGs (ug/gOC)	SCG Exceedance	Detections
Inorganics					
Aluminum	7429-90-5	9550 - 17100	NA	0/5	5/5
Antimony	7440-36-0	<0.7 - 1.4	2	0/5	2/5
Arsenic	7440-38-2	4.1 - 13.8	6	3/5	5/5
Barium	7440-39-3	67 - 249	NA	0/5	5/5
Beryllium	7440-41-7	0.32 - 0.71	NA	0/5	5/5
Cadmium	7440-43-9	0.23 - 1	0.6	1/5	4/5
Calcium	7440-70-2	927 - 7120	NA	0/5	5/5
Chromium	7440-47-3	9.1 - 23.2	26	0/5	5/5
Cobalt	7440-48-4	3.6 - 16.8	NA	0/5	5/5
Copper	7440-50-8	4.2 - 27.2	16	2/5	5/5
Iron	7439-89-6	13900 - 67300	20000	4/5	5/5
Lead	7439-92-1	15.4 - 39.9	31	1/5	5/5
Magnesium	7439-95-4	1490 - 5060	NA	0/5	5/5
Manganese	7439-96-5	199 - 1320	460	4/5	5/5
Mercury	7439-97-6	0.06 - 0.13	0.15	0/5	5/5
Nickel	7440-02-0	8.2 - 40.4	16	4/5	5/5
Potassium	7440-09-7	766 - 1390	NA	0/5	5/5
Selenium	7782-49-2	0.95 - 2.4	NA	0/5	5/5
Silver	7440-22-4	<0.42 - 0.97	1	0/5	1/5
Sodium	7440-23-5	26.6 - 54.6	NA	0/5	5/5
Thallium	7440-28-0	1.6 - 4.7	NA	0/5	4/5
Vanadium	7440-62-2	15.8 - 24.8	NA	0/5	5/5
Zinc	7440-66-6	44.4 - 191	120	3/5	5/5
SVOCs					
Benzaldehyde	100-52-7	<20.6 - 1.97	NA	0/5	1/5
bis(2-ethylhexyl)phthalate	117-81-7	<20.6 - 4.5	199.5	0/5	1/5
VOCs	· · · ·				
Acetone	67-64-1	0.1 - 0.58	NA	0/5	5/5
2-Butanone	78-93-3	<0.67 - 0.33	NA	0/5	1/5
cis-1,2-Dichloroethene	156-59-2	<0.61 - 0.57	NA	0/5	1/5
Toluene	108-88-3	<0.67 - 0.13	49	0/5	1/5
Styrene	100-42-5	<0.61 - 0.15	NA	0/5	1/5

Notes:

x

NC - No Criteria

SCG - NYSDEC Technical Guidance for Screening Contaminated Sediments ug/gOC - microgram per gram organic carbon

SOIL VAPOR

					ः २८ सन्दर्भवाद्याः स्टब्स् तिः अवस्तित्वाः सम्प्रदेशस्य द्वाराः
		Concentration	2000 c (mathia)	Frequency of	Frequency of
Constituent	CAS Number	Range (ppbv)	SCGs (ppbv)	SCG Exceedance	Detections
VOCs	400.44.4	0.0.0	640	0/4	4/4
Ethylbenzene		0.6 - 6	510		<u>4/4</u> 1/4
Styrene	100-42-5	<0.2 - 6	2300	0/4	
1,3,5-Trimethylbenzene	108-67-8	<0.2 - 4	12	0/4	2/4
Toluene	108-88-3	5 - 35	1100	0/4	4/4
Pentane	109-66-0	1 - 20	NC	0/4	4/4
Hexane	110-54-3	0.8 - 8	570	0/4	4/4
Octane	111-65-9	27 - 400	NC	0/4	4/4
Propene	115-07-1	1 - 71	NC	0/4	4/4
Tetrachloroethene	127-18-4	<0.2 - 4	120	0/4	2/4
Xylene (Total)	1330-20-7	2 - 21	NC	0/4	4/4
Heptane	142-82-5	1 - 20	NC	0/4	4/4
Methyl tert-Butyl ether	1634-04-4	4 - 43	8300	0/4	4/4
Isooctane	540-84-1	<2 - 1	NC	0/4	2/4
2-Hexanone	591-78-6	<0.5 - 4	NC	0/4	1/4
4-Ethyltoluene	622-96-8	<0.2 - 8	NC	0/4	2/4
Acetone	67-64-1	7 - 67	1500	0/4	4/4
Chloroform	67-66-3	<0.2 - 9	22	0/4	1/4
Benzene	71-43-2	2 - 8	98	0/4	4/4
Methylene chloride	75-09-2	<0.5 - 0.6	1500	0/4	1/4
Carbon Disulfide	75-15-0	<5 - 4	2200	0/4	2/4
Chlorodifluoromethane	75-45-6	<1 - 53	140000	0/4	1/4
tert-Butyl Alcohol	75-65-0	<0.2 - 3	NC	0/4	2/4
Trichlorofluoromethane	75-69-4	0.5 - 56	1200	0/4	4/4
Dichlorodifluoromethane	75-71-8	0.6 - 7600	400	1/4	4/4
Freon 114	76-14-2	<0.2 - 21	NC	0/4	1/4
2-Butanone	78-93-3	< 0.5 - 9	3400	0/4	1/4
Trichloroethylene	79-01-6	<0.2 - 18	4.1	1/4	1/4
o-Xylene	95-47-6	0.7 - 7	16000	0/4	4/4
1,2,4-Trimethylbenzene	95-63-6	<2 - 19	12	1/4	3/4
Isopropylbenzene	98-82-8	<0.2 - 180	810	0/4	1/4

Notes:

NC - No Criteria

SCG - USEPA, 2002 - OSWER Draft Guidance for Evaluating the Vapor Intrusion to Indoor Air Pathway from Groundwater and Soils (Subsurface Vapor Intrusion Guidance)

ppbv - parts per billion volume

SUBSURFACE SOIL

	n i a i a i a i a		- 69 - 10 - 10 - 10 - 10 - 10 - 10 - 10 - 1		
		Concentration		Frequency of	Frequency of
Constituent	CAS Number	Range	SCGs	SCG Exceedance	Detections
Inorganics (mg/Kg)					
Aluminum	7429-90-5	10200 - 14500	NC	0/8	8/8
Antimony	7440-36-0	1.5 - 2.7	NC	0/8	6/8
Arsenic	7440-38-2	10.2 - 29.7	7.5	6/8	8/8
Barium	7440-39-3	212 - 271	300	0/8 8/8	8/8
Beryllium	7440-41-7				8/8
Cadmium Calcium	7440-43-9 7440-70-2	0.87 - 1.9 4860 - 32200	1 4/8 NC 0/8		7/8 8/8
Chromium	7440-47-3	14.1 - 20.7	10 8/8		8/8
Cobalt	7440-48-4	6.9 - 19.9	30	3/8	8/8
Copper	7440-50-8	16.1 - 40.1	25	6/8	8/8
Iron	7439-89-6	59100 - 87200	2	8/8	8/8
Lead	7439-92-1	32.9 - 70.3	NC	0/8	3/8
Magnesium	7439-95-4	2900 - 3110	NC	0/8	8/8
Manganese	7439-96-5	329 - 556	NC	0/8	8/8
Mercury	7439-97-6	0.08 - 0.23	0.1	4/8	8/8
Nickel	7440-02-0	22.5 - 245	13	8/8	8/8
Potassium	7440-09-7	1040 - 1090	NC	0/8	8/8
Selenium	7782-49-2	2.4 - 4.1	2	6/8	8/8
Silver	7440-22-4	<0.62 - 1.4	NC	0/8	5/8
Sodium	7440-23-5	42.7 - 56.1	NC	0/8	8/8
Thallium	7440-28-0	2.7 - 3.4	NC	0/8	7/8
Vanadium		20.1 - 24.6	150	0/8	8/8
Zinc Pesticides/PCBs (mg/Kg)	7440-66-6	238 - 347	20	8/8	8/8
4,4'-DDE	72-55-9	<0.004 - 0.011	2,1	0/2	1/2
Endrin	72-20-8	<0.0048 - 0.02	0.1	0/2	2/3
4,4'-DDD	72-54-8	<0.004 - 0.013	2.9	0/3	1/2
Endrin Ketone	53494-70-5	< 0.0048 - 0.013	NC	0/2	1/3
Endrin Aldehyde	7421-36-3	<0.004 - 0.005	NC	0/2	1/2
alpha-Chlordane	5103-71-9	<0.002 - 0.0033	NC	0/3	2/3
Aroclor-1248	12672-29-6	<0.61 - 0.16	10	0/3	1/3
Aroclor-1260	11096-82-5	<0.04 - 0.81	10	0/3	2/3
SVOCs (ug/Kg)					
Benzaldehyde	100-52-7	<380 - 76	NC	0/6	2/6
Caprolactum	105-60-2	<450 - 46	NC	0/6	1/6
Phenanthrene	85-01-8	<380 - 63	50000	0/6	1/6
Fluoranthene	206-44-0	<380 - 140	50000	0/6	1/6
Pyrene	129-00-0	<380 - 260	50000	0/6	1/6
Benzyl Butyl Phthalate	85-68-7 56-55-3	<380 - 45	50000	0/6	1/6
Benzo[a]anthracene Chrysene	218-01-9	<380 - 62 <380 - 98	50000 400	0/6	1/6
bis(2-ethylhexyl)phthalate	117-81-7	<380 - 98	50000	1/6	3/6
Benzo[b]fluoranthene	205-99-2	<380 - 91	1100	0/6	1/6
VOCs (ug/Kg)	200-00-2		1100	0/0	
Vinyl Chloride	75-01-4	<11 - 5	200	0/8	1/8
Bromomethane	74-83-9	<11 3	NC	0/8	1/8
Trichlorofluoromethane	75-69-4	<11 - 6	NC	0/8	1/8
Acetone	67-64-1	<11 - 74	200	0/8	3/8
Carbon Disulfide	75-15-0	<11 - 11	2700	0/8	1/8
cis-1,2-Dichloroethene	156-59-2	<11 - 100	NC	0/8	1/8
Benzene	71-43-2	<11 - 2	60	0/8	1/8
Trichloroethylene	79-01-6	<11 - 130	700	0/8	3/8
Methylcylohexane	108-87-2	<11 - 31	NC	0/8	1/8
Toluene	108-88-3	<11 - 13	1500	0/8	1/8
Chlorobenzene	108-90-7	<11 - 60	1700	0/8	3/8
Xylene (Total)	1330-20-7	<11 - 46	1200	0/8	1/8
Isopropylbenzene	98-82-8	<11-6	5000	0/8	1/8
1.4-Dichlorobenzene	106-46-7	<11 - 150	8500	0/8	4/8
1,2-Dichlorobenzene	95-50-1	<11 - 8	7900	0/8	1/8

Notes:

NC - No Criteria SCG - NYSDEC Technical Administrative Guidance Memorandum Number 4046 (TAGM #4046) – Recommended Soil Cleanup Objectives mg/Kg - milligram per kilogram ug/Kg - microgram per kilogram

SURFACE SOIL

		Concertation		Frantiseurief	
Constituent	CAS Number	Concentration Range (mg/Kg)	SCGs (mg/Kg)	Frequency of SCG Exceedance	Frequency of Detections
Inorganics		Trange (my/kg)	SCCS (mg/Ng)	OCG EXCEEDANCE	Detections
Aluminum	7429-90-5	5920 - 14400	NC	0/10	10/10
Antimony	7440-36-0	0.81 - 20.7	NC	0/10	8/10
Arsenic	7440-38-2	5.2 - 26.8	7.5	7/10	10/10
Barium	7440-39-3	81.3 - 448	300	1/10	10/10
Beryllium	7440-41-7	0.24 - 0.7	0.16	10/10	10/10
Cadmium	7440-43-9	0.16 - 23.1	1	3/10	7/10
Calcium	7440-70-2	2100 - 25600	NC	0/10	10/10
Chromium	7440-47-3	12.7 - 8870	10	10/10	10/10
Cobalt	7440-48-4	5.7 - 691	30	3/10	10/10
Copper	7440-50-8	11.1 - 1600	25	8/10	10/10
Cyanide	57-12-5	<0.53 - 2	NC NC	0/10	1/10
Iron	7439-89-6	14400 - 113000	2	10/10	10/10
Lead	7439-92-1	12.7 - 837	NC	0/10	10/10
Magnesium	7439-95-4	2490 - 5790	NC	0/10	10/10
Magnesium	7439-96-5	241 - 2380	NC	0/10	10/10
Manganese	7439-97-6	0.02 - 2.2	0.1	5/10	10/10
Nickel	7440-02-0	18.8 - 27700	13	10/10	10/10
Potassium	7440-02-0	567 - 1330	NC	0/10	10/10
Selenium	7782-49-2	0.61 - 3.6	2	4/10	8/10
Silver	7440-22-4	0.68 - 4.2	NC	0/10	6/10
Sodium	7440-22-4	29 - 96.2	NC	0/10	10/10
Thallium	7440-23-5	1.4 - 4.8	NC	0/10	8/10
					10/10
Vanadium Zinc	7440-62-2 7440-66-6	<u>10.6 - 61.1</u> 42.8 - 1700	150 20	0/10	
Pesticides/PCBs	7440-00-0	42.0 - 1700	20	10/10	10/10
4,4'-DDD	72-54-8	0.2 - 13	2900	0/8	4/8
4,4'-DDD	72-54-6	0.05 - 11			
4,4-DDE 4,4'-DDT	50-29-3	0.55 - 3.9	2100 2100	0/8	8/8
4,4-DD1 Aldrin	309-00-2	0.15 - 0.3	<u>2100</u> 41	0/8	3/8
alpha-BHC	319-84-6	<1.8 - 1.1	110	0/8	<u>2/8</u> 1/8
alpha-Chlordane	5103-71-9	0.94 - 11	NC	0/8	5/8
			NC		
Aroclor-1248 Aroclor-1260	12672-29-6 11096-82-5	<35 - 160 7.8 - 810	NC NC	0/8 0/8	<u>1/8</u> 6/8
Beta-BHC	319-95-7	0.26 - 0.59	NC	0/8	3/8
delta-BHC	319-86-8	<1.8 - 0.18	300	0/8	<u>3/8</u>
Dieldrin	60-57-1	0.16 - 1.3	44	0/8	2/8
Endosulfan I	959-98-8	<1.8 - 3.4	900	0/8	<u></u> 1/8
Endosulfan II	33213-65-9	1.2 - 3.2	900	0/8	2/8
Endosulfan Sulfate	1031-07-8	0.28 - 17	1000	0/8	5/8
Endosulian Sullate	72-20-8	0.67 - 20	1000	0/8	6/8
Endrin Aldehyde	7421-93-4	0.52 - 5.5	NC	0/8	7/8
Endrin Ketone	53494-70-5	0.52 - 5.5	NC	0/8	4/8
gamma-BHC (Lindane)	58-89-9	<1.8 - 0.35	60	0/8	1/8
gamma-Chlordane	5103-74-2	0.25 - 9.8	540	0/8	6/8
Heptachlor	76-44-8	0.23 - 9.8	100	0/8	2/8
Heptachlor Epoxide	1024-57-3	0.093 - 0.85	20	0/8	4/8
Methoxychlor	72-43-5	1.6 - 30	20 NC	0/8	4/8

,

SURFACE SOIL

		Concentration		Frequency of	Frequency of
Constituent	CAS Number	Range (mg/Kg)	SCGs (mg/Kg)	SCG Exceedance	Detections
SVOCs					
Benzaldehyde	100-52-7	<380 - 46	NC	0/5	1/5
Benzo[a]anthracene	56-55-3	<380 - 62	224	0/5	1/5
Benzo[b]fluoranthene	205-99-2	<380 - 91	1100	0/5	1/5
Benzyl Butyl Phthalate	85-68-7	<380 - 45	50000	0/5	1/5
bis(2-ethylhexyl)phthalate	117-81-7	73 - 62000	50000	1/5	3/5
Caprolactam		<380 - 46	NC	0/5	1/5
Chrysene	218-01-9	<380 - 98	400	0/5	1/5
Fluoranthene	206-44-0	<380 - 140	50000	0/5	1/5
Phenanthrene	85-01-8	<380 - 63	50000	0/5	1/5
Pyrene	129-00-0	<380 - 260	50000	0/5	1/5
1,4-Dichlorobenzene	106-46-7	7 - 150	8500	0/5	2/5
VOCs					
Acetone	67-64-1	12 - 39	200	0/5	2/5
Carbon Disulfide	75-15-0	<11 - 11	2700	0/5	1/5
Chlorobenzene	108-90-7	<11 - 2	1700	0/5	1/5
Methylcylohexane	108-87-2	<11 - 31	NC	0/5	1/5
Methylene chloride	75-09-2	4 - 10	100	0/5	5/5
Toluene	108-88-3	<11 - 13	1500	0/5	1/5
Trichloroethylene	79-01-6	2 - 8	700	0/5	2/5
Trichlorofluoromethane	75-69-4	<11 - 6	NC	0/5	1/5
Xylene (Total)	1330-20-7	<11 - 46	1200	0/5	1/5

Notes:

NC - No Criteria

SCG - NYSDEC Technical Administrative Guidance Memorandum Number 4046 (TAGM #4046) – Recommended Soil Cleanup Objectives

mg/Kg - milligram per kilogram

SURFACE WATER

		Concentration			
Constituent	CAS Number	Range (ug/L)	SCGs (ug/L)	Frequency of SCG Exceedance	Frequency of Detections
Inorganics					
Aluminum	7429-90-5	0.253 - 10.2	0.1	5/5	5/5
Arsenic	7440-38-2	0.0032 - 0.0062	0.15	0/5	4/5
Barium	7440-39-3 0.0772 - 0.39 NC		NC	0/5	5/5
Beryllium	7440-41-7	0.00007 - 0.00027	1.1	0/5	3/5
Cadmium	im 7440-43-9 0.00085 - 0.0022 0.004		0/5	2/5	
Calcium	7440-70-2	6.74 - 193	NC	0/5	5/5
Chromium	7440-47-3	0.0025 - 0.0094	0.141	0/5	4/5
Cobalt	7440-48-4	0.0069 - 0.0112	0.005	3/5	3/5
Copper	7440-50-8	0.0055 - 0.018	0.018	0/5	4/5
Iron	7439-89-6	1.35 - 47.9	0.3	5/5	5/5
Lead	7439-92-1	0.0084 - 0.0225	0.005	4/5	4/5
Magnesium	7439-95-4	3.02 - 20.7	NC	0/5	5/5
Manganese	7439-96-5	0.416 - 3.23	NC	0/5	5/5
Mercury	7439-97-6	0.00003 - 0.00004	0.00077	0/5	2/5
Nickel	7440-02-0	0.0084 - 0.0428	0.101	0/5	5/5
Potassium	7440-09-7	2.88 - 4.89	NC	0/5	5/5
Selenium	Selenium 7782-49-2 <0.0027 - 0.0028		0.0046	0/5	1/5
Sodium	Sodium 7440-23-5 0.786 - 7.24		NC	0/5	5/5
Vanadium	7440-62-2	0.0044 - 0.0166	0.014	1/5	4/5
Zinc	7440-66-6	0.0088 - 0.21	0.162	1/5	5/5
Pesticides					
Endrin	72-20-8	<0.11 - 0.029	0.036	0/1	1/1
SVOCs					
2-Methylphenol	95-48-7	<10 - 11	NC	0/5	1/5
4-Methylphenol	106-44-5	<10 - 4	NC	0/5	1/5
Acetophenone	98-86-2	<10 - 1	NC	0/5	1/5
Phenanthrene	85-01-8	ND	5	0/5	0/5
Phenol	108-95-2	<10 - 11	5	1/5	1/5

Notes:

NC - No Criteria

SCG - NYSDEC Technical and Operational Guidance Series 1.1.1 (TOGS 1.1.1)

Class C Surface Water Criteria

ug/L - microgram per liter

GROUND WATER

TALIAN MALANDARI MALANDARI MANANA MANANG MAN					
Occurring and	GAC Number	Concentration	- CO- (0-0)	Frequency of	Frequency of
Constituent	CAS Number	Range (ug/L)	SCGs (ug/L)	SCG Exceedance	Detections
Inorganics	7420 00 5	<12 92000	NC	0/32	24/22
Aluminum	7429-90-5	<13 - 82900			31/32
Antimony	7440-36-0				4/32
Arsenic		<2.7 - 87.8	25	9/32	27/32
Barium	7440-39-3	97.2 - 1760	1000	2/32	32/32
Beryllium	7440-41-7	<0.04 - 3.6	3	1/32	24/32
Cadmium	7440-43-9	<0.29 - 8.4	5	1/32	6/32
Calcium	7440-70-2	54400 - 204000	NC	0/16	16/16
Chromium	7440-47-3	<0.94 - 112	50	3/32	28/32
Cobalt		<1.5 - 74.9	NC	0/32	18/32
Copper		<1.5 - 162	200	0/32	29/32
Cyanide	57-12-5	<10 - 11	200	0/32	5/32
Iron	7439-89-6	32.7 - 230000	300	31/32	32/32
Lead	7439-92-1	<0.74 - 157	25	5/32	30/32
Magnesium	7439-95-4	12000 - 70900	35000	5/16	16/16
Manganese	7439-96-5	41 1 - 12300	3000	4/32	32/32
Mercury	7439-97-6	<0.01 - 0.34	0.7	0/32	19/32
Nickel	7440-02-0	<1 - 169	NC	0/32	29/32
Potassium	7440-09-7	752 - 19000	NC	0/32	32/32
Selenium	7782-49-2	<2.7 - 4.4	10	0/32	7/32
Silver	7440-22-4	<1.5 - 2.5	50	0/32	3/32
Sodium	7440-23-5	4740 - 27100	20000	1/13	13/13
Thallium	7440-28-0	<3.7 - 15.2	0.5	3/32	3/32
Vanadium	7440-62-2	<1.1 - 118	NC	0/32	30/32
Zinc	7440-66-6	6.4 - 684	2000	0/32	32/32
SVOCs					
Phenol	108-95-2	<u> <10 - 1</u>	1	0/5	1/5
2-Methylphenol	95-48-7	<10 - 1	1	0/5	1/5
4-Methylphenol	106-44-5	<10 - 60	1	1/5	1/5
Naphthalene	91-20-3	<10 - 4	10	0/5	1/5
4-chloro-3-Methylphenol	59-50-7	<10 - 5	1	1/5	1/5
2-Methylnaphthalene	91-57-6	<10 - 1	NC	0/5	1/5
4-Nitrophenol	100-02-7	<25 - 2	1	1/5	1/5
bis(2-ethylhexyl)phthalate	117-81-7	<12 - 1	5	0/5	3/5
VOCs					
Dichlorodifluoromethane	75-71-8	<10 - 9	5	1/43	7/43
Vinyl Chloride	75-01-4	<10 - 600	22	4/43	16/43
Chloroethane	75-00-3	<10 - 7	5	1/43	4/43
Acetone	67-64-1	<10 - 43	50	0/43	25/43
Methylene chloride	75-09-2	<10 - 2	5	0/43	16/43
Carbon Disulfide	75-15-0	<10 - 2	NC	0/43	3/43
trans-1,2-Dichloroethene	156-60-5	<10 - 3	NC	0/43	2/43
1,1-Dichloroethane	75-34-3	<10 - 2	5	0/43	2/43
cis-1,2-Dichloroethene	156-59-2	<10 - 69	5	4/43	14/43
1,2-Dichloroethane	107-06-2	<10 - 2	0.6	1/43	2/43
Benzene	71-43-2	<10 - 2	1	1/43	4/43
Toluene	108-88-3	<10 - 3	5	0/43	9/43
Chlorobenzene	108-90-7	<10 - 1	5	0/43	2/43
Ethylbenzene	100-41-4	<10 - 4	5	0/43	1/43
Xylene (Total)	1330-20-7	<10 - 11	5	1/43	1/43
1,4-Dichlorobenzene	106-46-7	<10 - 0.6	3	0/43	1/43

Notes:

SCG - NYSDEC Technical and Operational Guidance Series 1.1.1 (TOGS 1.1.1) - Class GA Ground Water Criteria ug/L - microgram per liter

NC - No Criteria

Appendix G

Data usability summary reports

SUMMARY OF THE ANALYTICAL DATA USABILITY Town of Carroli Landfili

Soil Volatile Organic Analyses Samples Collected August 18th & 19th, 2004 Samples Received August 19th & 20th, 2004 Sample Delivery Group: 8685, 8696 Laboratory Reference Numbers:

TP-11/SS-3	E5141
TP-11/SS-3MS	E5141MS
TP-11/SS-3MSD	E5141MSD
TP-04/SS-1	E5142
TP-07/SS-2	E5143
Storage Blank	E5144
TP-10/SS-4	E5246
TP-8/SS-5	E5247

Data were reviewed for usability according to the following criteria:

- * Data Completeness
- * GC/MS Tuning
- * Holding Times
 - Calibrations
 - Laboratory Blanks
 - Field Blank
 - Trip Blanks
 - Storage Blank
- Equipment Blank
- * System Monitoring Compound Recoveries
- * Internal Standard Recoveries
- * Matrix Spike / Matrix Spike Duplicate
- * Blank Spike
- * Laboratory Control Sample
- Instrument Detection Limits
- * Compound Identification
- * Compound Quantitation

* - Indicates that all criteria were met for this parameter.

DATA USABILITY SUMMARY

The instrument detection limits were analyzed almost one year prior to sample analysis.

Section J of Exhibit B of the NYSDEC ASP protocols states: The Laboratory shall perform and report semiannually verification of instrument detection limits and linear range by methods specified in Exhibit E for each instrument used under this Protocol.

Field, trip and equipment blanks were not analyzed with this sample delivery group.

The minor methylene chloride contamination in the method and trip blanks should be noted.

No other significant problems were found with this sample delivery group, which would affect the usability of the data.

Holding Times

All samples were preserved and analyzed within the 10 day EPA contractual holding time.

Tunes

No problems were detected with the one tune associated with the samples of this delivery group.

System Monitoring Compound Recoveries

All system monitoring compound recoveries were within the required quality assurance limits.

Calibrations

The %RSD of 2-hexanone, 30.2%, was above the 30% quality assurance limit. This compound was not detected in any of the samples and the data were not qualified for the high %RSD.

All of the samples were analyzed on the same day as the initial calibration. A continuing calibration summary was not provided.

Matrix Spike / Matrix Spike Duplicate

Sample TP-11/SS-3 (Lab. #: E5141) was used as the matrix spike and matrix spike duplicate. All recoveries and RPDs were within the NYS DEC ASP quality control limits.

Blank Spike

All blank spike recoveries were within the required quality assurance limits.

Laboratory Control Sample

One laboratory control sample was analyzed with this sample delivery group. The recoveries of all compounds were within the quality assurance limits.

Method Blanks

A low concentration of methylene chloride (1J ug/l) was detected in VBLK01

Methylene chloride was detected in all of the sample of this delivery group at low concentrations. All of the methylene chloride data was reported as "10 U ug/l" and flagged with the "MB" qualifier.

Trip Blanks

A trip blank was not analyzed with this sample delivery group.

Field Blank

A field blank was not analyzed with this sample delivery group.

Storage Blank

Low concentrations of methylene chloride (2JB ug/l) and acetone (2J ug/l) were detected in the storage blank.

Methylene chloride was detected in all of the samples of this delivery group at low concentrations. All of the methylene chloride data was reported as "10 U ug/l" and flagged with the "MB" qualifier.

Acetone was detected in samples TP-11/SS-3 (Lab. #: E5141) and TP-07/SS-2 (Lab. #: E5143) at low concentrations. The acetone data was reported as "10 U ug/l" and flagged with the "SB" qualifier

Equipment Blanks

An equipment blank was not analyzed with this sample delivery group.

Internal Standard Areas and Retention Times

The recoveries and retention times of all internal standards were within the required quality control limits.

Instrument Detection Limits

The instrument detection limits were analyzed almost one year prior to sample analysis.

Section J of Exhibit B of the NYSDEC ASP protocols states: The Laboratory shall perform and report semiannually verification of instrument detection limits and linear range by methods specified in Exhibit E for each instrument used under this Protocol.

Sample Results

No problems were found with the reported results of any of the samples of this delivery group.

. .

•

•

1 INORGANIC ANALYSES DATA SHEET EPA SAMPLE NO.

TP-11/SS-3

Lab Name: OBRIEN_AND	CO	ntract: 3435229748	
Lab Code: 10155_	Case No.: OBGE	SAS No.:	SDG No.: 8685
Matrix (soil/water):	SOIL_	Lab Sample	e ID: E5141
Level (low/med):	LOW	Date Rece	ived: 08/19/04
<pre>% Solids:</pre>	_73.6		

Concentration Units (ug/L or mg/kg dry weight): MG/KG

	· · · · · · · · · · · · · · · · · · ·		·····		****	···········
	CAS No.	Analyte	Concentration	с	Q	м
	7429-90-5	Aluminum	10100			P
	7440-36-0	Antimony_	4.1	Ē	NT	P P P
	7440-38-2	Arsenic	17.1	-	·	P
	7440-39-3	Barium	106	-		p
	7440-41-7	Beryllium	0.47	B		P_
	7440-43-9	Cadmium	0.38			
	7440-70-2	Calcium	5160			P ⁻
	7440-47-3	Chromium	291			P
	7440-48-4	Cobalt -	291			P
	7440-50-8	Copper	109	-		
	7439-89-6	Iron	52100	-		P
	7439-92-1	Lead	273		NR	P- MS= 2101,
	7439-95-4	Magnesium	3720	-		P-1-10- 4101
	7439-96-5	Manganese	703	-		P
•	7439-97-6	Mercury	0.06	B		CV
	7440-02-0	Nickel	588			P
	7440-09-7	Potassium	883	B		P
	7782-49-2	Selenium	1.6		NJ	P
	7440-22-4	Silver	0.87	B		P P
	7440-23-5	Sodium	36.2			P
	7440-28-0	Thallium	2.0	B	2	P-LOW CRDL
. · .	-7440-62-2	Vanadium	20.6			P I
	7440-66-6	Zinc	301	-		P
		Cyanide	0.68	ΰ		c_
or Before:		Clarit	y Before:		_	Texture:
or After:		- Clarit	y After:			Artifacts:
	•					
ments:						
			······································			· · · · · · · · · · · · · · · · · · ·
********					·····	
						<u></u>
	·····	•••••				<u></u>

FORM I - IN

1

EPA SAMPLE NO.

INORGANIC ANALYSES DATA SHEET

 Lab Name: OBRIEN_AND_GERE_LABORATOR
 Contract: 3435229748
 TP-04/SS-1

 Lab Code: 10155______
 Case No.: OBGE______SAS No.: _______SDG No.: 8685____

 Matrix (soil/water): SOIL______
 Lab Sample ID: E5142

 Level (low/med):
 LOW
 Date Received: 08/19/04

Concentration Units (ug/L or mg/kg dry weight): MG/KG

86.6

% Solids:

М CAS No. Analyte Concentration C Q P 7429-90-5 Aluminum 10900 0.42 1 Antimony_ Ρ NJ 7440-36-0 7440-38-2 Arsenic 5.2 P P Barium 127 7440-39-3 P Beryllium 0.70 B 7440-41-7 7440-43-9 Cadmium 0.16 B P Calcium 2100 P 7440-70-2 15.0 P 7440-47-3 Chromium 8.7 B 7440-48-4 Cobalt P Copper 11.1 P 7440-50-8 20600 P 7439-89-6 Iron Lead 12.7 NB ₽_ 7439-92-1 MS= 2107 ... 2760 P 7439-95-4 Magnesium P 7439-96-5 Manganese 241 Mercury CV 7439-97-6 0.04 B 23.0 ₽ Nickel 7440-02-0 Potassium 607 B \mathbf{P} 7440-09-7 7782-49-2 Selenium 0.61 B NJ \mathbf{P} 0.28 U P 7440-22-4 Silver 39.2 B P 7440-23-5 Sodium 1.4 B P 7440-28-0 Thallium LOW ERDL 17.3 P 7440-62-2 Vanadium 7440-66-6 P Zinc 56.4 0.58 JU Cyanide Ĉ Clarity Before: _____ Color Before: Texture: Clarity After: Artifacts: Color After: Comments:

FORM I - IN

ILMO4.0

EPA SAMPLE NO. 1 INORGANIC ANALYSES DATA SHEET TP-07/SS-2 Lab Name: OBRIEN AND GERE LABORATOR Contract: 3435229748 Lab Code: 10155 Case No.: OBGE SAS No.: _____ SDG No.: 8685 Lab Sample ID: E5143 Matrix (soil/water): SOIL Date Received: 08/19/04 Level (low/med): LOW (*) use Bx Eilution 63.5 % Solids: Concentration Units (ug/L or mg/kg dry weight): MG/KG CAS No. Concentration C Q M Analyte 9190 P 7429-90-5 Aluminum P 20 7 NJ 7440-36-0 Antimony * 26.8 P 7440-38-2 Arsenic P 206 7440-39-3 Barium 0.55 B P Beryllium 7440-41-7 ₽ 7440-43-9 Cadmium 23.1 18200 P Calcium 7440-70-2 8870 P 7440-47-3 Chromium P 691 7440-48-4 Cobalt \mathbf{P} ¥ 7440-50-8 Copper 1600 P 79900 7439-89-6 Iron ₽ 837 NR MS= 210% Lead 7439-92-1 м P 5150 7439-95-4 Magnesium 7439-96-5 Manganese 2380 P cv 2.2 7439-97-6 Mercury 277.00 P Nickel Ŷ. 7440-02-0 573 B P 7440-09-7 Potassium NJ P 3.2 7782-49-2 Selenium P 4.2 7440-22-4 Silver 96.2 B P 7440-23-5 Sodium P Thallium 4.4 7440-28-0 LOW ZROL P 61.1 7440-62-2 Vanadium P ¥. 1200 7440-66-6 Zinc Ċ Cyanide 2.0 Clarity Before: _____ Texture: Color Before: ____ . Artifacts: Color After: Clarity After: _____ Comments: N: , 2N above Liven range; Dilote and Recond for Wind IFC elements : 50 cd, co Pb 2N and + •.

FORM I - IN

ILMÓ4.0

 1
 EPA SAMPLE NO.

 INORGANIC ANALYSES DATA SHEET
 TP-07/SS-2

 Lab Name: OBRIEN_AND_GERE_LABORATOR Contract: 3435229748
 TP-07/SS-2

 Lab Code: 10155_
 Case No.: OBGE_____SAS No.: ______SDG No.: 8685____

 Matrix (soil/water): SOIL_
 Lab Sample ID: E5143DL

 Level (low/med):
 LOW______

 § Solids:
 ______63.5

Concentration Units (ug/L or mg/kg dry weight): MG/KG

•

AS No. 429-90-5 440-36-0 440-38-2 440-39-3 440-41-7 440-43-9 440-43-9 440-43-9 440-43-9 440-48-4 440-50-8	Analyte Aluminum Antimony_ Arsenic_ Barium_ Beryllium Cadmium_ Calcium_ Chromium_ Cobalt	Concentration 24.3 23.9	-	Q 	M NR P NR NR NR	
440-36-0 440-38-2 440-39-3 440-41-7 440-43-9 440-70-2 440-47-3 440-48-4 440-50-8	Antimony_ Arsenic Barium Beryllium Cadmium Calcium Chromium				P NR NR NR	
440-38-2 440-39-3 440-41-7 440-43-9 440-70-2 440-47-3 440-47-3 440-48-4 440-50-8	Arsenic Barium Beryllium Cadmium Calcium Chromium				NR NR NR	
440-39-3 440-41-7 440-43-9 440-70-2 440-47-3 440-47-3 440-48-4 440-50-8	Barium Beryllium Cadmium Calcium Chromium	23.9	+ + + + + + + + + + + + + + + + + + + +		NR NR	<u>.</u>
440-41-7 440-43-9 440-70-2 440-47-3 440-48-4 440-50-8	Beryllium Cadmium Calcium Chromium	23.9		•	NR	
440-43-9 440-70-2 440-47-3 440-48-4 440-50-8	Cadmium Calcium Chromium	23.9		*		
440-70-2 440-47-3 440-48-4 440-50-8	Calcium Chromium	······			1 2	
440-47-3 440-48-4 440-50-8	Chromium	·····	1 1		P NR	
440-48-4 440-50-8					NR	
440-50-8		731	-		P	
	Copper				NR	
439-89-6	Iron	····	-		NR	
439-92-1	Lead	888		NR	P	MS= 2107
	Magnesium		-		NR	10-2 A10-5
439-96-5			-		NR	
439-97-6	Mercury				NR	
440-02-0	Nickel	30700			P	
440-09-7	Potassium					•
782-49-2	Selenium					
440-22-4	Silver					
440-23-5	Sodium					
440-28-0						
440-62-2	Vanadium					
440-66-6	Zinc	1820			P	
	Cyanide				NR	
	Clarit	y Before:			Тез	cture:
	Clarit	y After:			Art	ifacts:
	•					
	439-95-4 439-96-5 439-97-6 440-02-0 440-09-7 782-49-2 440-22-4 440-23-5 440-28-0 440-62-2	439-95-4 Magnesium 439-96-5 Manganese 439-97-6 Mercury 440-02-0 Nickel 440-09-7 Potassium 782-49-2 Selenium 440-22-4 Silver 440-23-5 Sodium 440-62-2 Vanadium 440-66-6 Zinc Cyanide Clarit	439-95-4 Magnesium 439-96-5 Manganese 439-97-6 Mercury 440-02-0 Nickel 440-09-7 Potassium 782-49-2 Selenium 440-22-4 Silver 440-23-5 Sodium 440-28-0 Thallium 140-66-6 Zinc 1820	439-95-4 Magnesium	439-95-4 Magnesium	439-95-4 Magnesium NR 439-96-5 Manganese NR 439-97-6 Mercury NR 440-02-0 Nickel NR 440-09-7 Potassium NR 782-49-2 Selenium NR 440-22-4 Silver NR 440-23-5 Sodium

FORM I - IN

EPA SAMPLE NO. 1 INORGANIC ANALYSES DATA SHEET TP-10/SS-4 Lab Name: OBRIEN_AND_GERE_LABORATOR Contract: 3435229748 Lab Code: 10155_____ Case No.: OBGE___ SAS No.: _____ SDG No.: 8685___ Lab Sample ID: E5216 Matrix (soil/water): SOIL_ Level (low/med): LOW_ Date Received: 08/21/04 & Solids: _55.0

Concentration Units (ug/L or mg/kg dry weight): MG/KG

•

1		r	1	1	T	
CAS No.	Analyte	Concentration	с	Q	м	
7429-90-5	Aluminum	6970	-		P	
			Ē		5-	
			1	¥	p -	
	a second s		-	[p	
			Ē		\bar{P}	
	1					
			-		P	
		179	-		P	
	1 Andread and a second s	297		<u></u>	P	
7439-89-6	Iron	75800			P	
7439-92-1	Lead	134		NR	P _	R
· · · · · · · · · · · · · · · · · · ·	the second second second second second second second second second second second second second second second s	2490	-		P	
		1160	-		P	
7439-97-6		0.16	B		CV	
7440-02-0	Nickel	4300			P	
7440-09-7	Potassium	567	B		P	
7782-49-2	Selenium	2.5		NJ	P	
7440-22-4	Silver -	2.1	B		P	
7440-23-5	Sodium					
7440-28-0	Thallium		B	7	P	Low CRDL
7440-62-2	Vanadium				P _	
7440-66-6	Zinc	274			\mathbb{P}_{-}	
	Cyanide	0.91	Ū		C_	
		_				
	Clarit	y Before:		•	Tez	kture:
					۵rt	• -
	Clarit	y After:		-	tat (cifacts:
	7429-90-5 7440-36-0 7440-38-2 7440-39-3 7440-41-7 7440-43-9 7440-43-9 7440-70-2 7440-47-3 7440-48-4 7440-50-8 7439-89-6 7439-92-1 7439-95-4 7439-95-4 7439-95-4 7439-95-5 7439-97-6 7440-02-0 7440-09-7 7782-49-2 7440-22-4 7440-23-5 7440-28-0 -7440-62-2	7429-90-5 Aluminum 7440-36-0 Antimony 7440-38-2 Arsenic 7440-39-3 Barium 7440-41-7 Beryllium 7440-43-9 Cadmium 7440-47-3 Chromium 7440-47-3 Chromium 7440-50-8 Copper 7439-92-1 Lead 7439-95-4 Magnesium 7439-95-4 Magnesium 7439-95-4 Magnesium 7439-95-4 Magnesium 7439-95-5 Manganese 7439-96-5 Manganese 7440-02-0 Nickel 7440-02-0 Nickel 7440-23-5 Sodium 7440-23-5 Sodium 7440-28-0 Thallium 7440-62-2 Vanadium 7440-66-6 Zinc 7440-66-6 Zinc	7429-90-5 Aluminum 6970 7440-36-0 Antimony 18.3 7440-38-2 Arsenic 6.5 7440-39-3 Barium 93.7 7440-41-7 Beryllium 0.35 7440-43-9 Cadmium 1.2 7440-70-2 Calcium 13300 7440-47-3 Chromium 5900 7440-48-4 Cobalt 179 7440-50-8 Copper 297 7439-89-6 Iron 75800 7439-95-4 Magnesium 2490 7439-95-4 Magnesium 2490 7440-02-0 Nickel 4300 7440-02-0 Nickel 4300 7440-22-4 Silver 2.1 7440-22-4 Silver 2.1 7440-23-5 Sodium 29.0 7440-23-5 Sodium 29.0 7440-28-0 Thallium 1.9 7440-62-2 Vanadium 32.8 7440-66-6 Zinc 274	7429-90-5 Aluminum 6970 7440-36-0 Antimony 18.3 7440-38-2 Arsenic 6.5 7440-39-3 Barium 93.7 7440-41-7 Beryllium 0.35 7440-43-9 Cadmium 1.2 7440-43-9 Cadmium 1.2 7440-43-9 Cadmium 1.300 7440-47-3 Chromium 5900 7440-48-4 Cobalt 179 7440-50-8 Copper 297 7439-89-6 Iron 75800 7439-95-4 Magnesium 2490 7439-95-5 Manganese 1160 7440-02-0 Nickel 4300 7440-02-0 Nickel 4300 7440-22-4 Silver 2.1 7440-22-4 Silver 2.1 7440-22-5 Sodium 29.0 7440-22-4 Silver 2.1 7440-22-4 Silver 2.1 7440-22-5 Sodium 29.0 7440-22-2 Vanadium 32.8 7440-66-6	7429-90-5 Aluminum 6970 7440-36-0 Antimony 18.3 7440-38-2 Arsenic 6.5 7440-39-3 Barium 93.7 7440-41-7 Beryllium 0.35 7440-43-9 Cadmium 1.2 7440-43-9 Calcium 13300 7440-47-3 Chromium 5900 7440-48-4 Cobalt 179 7440-50-8 Copper 297 7439-89-6 Iron 75800 7439-92-1 Lead 134 7439-95-4 Magnesium 2490 7440-02-0 Nickel 4300 7440-02-0 Nickel 4300 7440-02-0 Nickel 2.1 7440-22-4 Silver 2.1 7440-23-5 Sodium 29.0 7440-23-5 Sodium 29.0 7440-22-4 Silver 2.1 7440-22-4 Silver 2.1 7440-22-5 Sodium 1.9 7440-22-0 Thallium 1.9 7440-66-6 Zinc <td>7429-90-5 Aluminum 6970 7440-36-0 Antimony 18.3 B N P 7440-38-2 Arsenic 6.5 P 7440-39-3 Barium 93.7 P 7440-41-7 Beryllium 0.35 B P 7440-43-9 Cadmium 1.2 B P 7440-47-2 Calcium 133000 P P 7440-48-4 Cobalt 1799 P P 7440-50-8 Copper 297 P P 7439-89-6 Iron 75800 P P 7439-95-4 Magnesium 2490 P P 7440-02-0 Nickel 4300 P P 7440-02-0 Nickel 4300 P P 7440-22-4 Silver 2.1 B P 7440-22-4 Silver 2.1 B P 7440-22-4 Silver 2.1 B P 7440-22-2 Vanadium 32.8 P<</td>	7429-90-5 Aluminum 6970 7440-36-0 Antimony 18.3 B N P 7440-38-2 Arsenic 6.5 P 7440-39-3 Barium 93.7 P 7440-41-7 Beryllium 0.35 B P 7440-43-9 Cadmium 1.2 B P 7440-47-2 Calcium 133000 P P 7440-48-4 Cobalt 1799 P P 7440-50-8 Copper 297 P P 7439-89-6 Iron 75800 P P 7439-95-4 Magnesium 2490 P P 7440-02-0 Nickel 4300 P P 7440-02-0 Nickel 4300 P P 7440-22-4 Silver 2.1 B P 7440-22-4 Silver 2.1 B P 7440-22-4 Silver 2.1 B P 7440-22-2 Vanadium 32.8 P<

FORM I - IN

EPA SAMPLE NO. 1 INORGANIC ANALYSES DATA SHEET TP-8/SS-5-Lab Name: OBRIEN_AND_GERE_LABORATOR Contract: 3435229748 Lab Code: 10155 Case No.: OBGE SAS No.: _____ SDG No.: 8685___ Lab Sample ID: E5217 Matrix (soil/water): SOIL Date Received: 08/21/04 Level (low/med): LOW 83.3 % Solids: Concentration Units (ug/L or mg/kg dry weight): MG/KG Concentration C Μ Q CAS No. Analyte P 7380 7429-90-5 Aluminum 0.43 0 P NJ Antimony_ 7440-36-0

P Arsenic__ 12.1 7440-38-2 P 122 Barium 7440-39-3 0.32 B P Beryllium 7440-41-7 P 0.06 U 7440-43-9 Cadmium P 7440-70-2 Calcium 7410 P Chromium 23.1 7440-47-3 11.6 B P 7440-48-4 Cobalt_ P 7440-50-8 Copper 42.8 ₽ 113000 Iron 7439-89-6 MS= 2107 P NR Lead 16.6 7439-92-1 Ð Magnesium 3060 7439-95-4 P 1110 Manganese 7439-96-5 0.02 B CV Mercury 7439-97-6 P Nickel 27.1 7440-02-0 P 839 B Potassium 7440-09-7 P NU 3.6 7782-49-2 Selenium p 1.5 B Silver 7440-22-4 p 30.3 B 7440-23-5 Sodium P 2.7 LOW ERDL 7440-28-0 Thallium ₽ Vanadium 12.0 7440-62-2 P 80.1 Zinc 7440-66-6 C 0.60 0 Cyanide Texture: Clarity Before: _____ Color Before: Artifacts: _____ Clarity After: .____ Color After: Comments: •.

FORM I - IN

.

GC/MS Volatile Organics Case Narrative

Client: Job Number: Package #: Methodology: O'Brien & Gere Engineers, Inc. 3435.229.74894 8685, 8696 OLM04.2

10-4-04 Analyzed/Reviewed by (Initials/Date): Supervisor/Reviewed by (Initials/Date): 12-4-0 QA/QC Review (Initials/Date):

File Name:

C:\Documents MS3\Narratives\8685vnar.doc

GC/MS Volatile Organics

The GC/MS Volatile instruments used a Restek Rtx-502.2, 105 m x 0.53 mm ID capillary column and a Vocarb 3000 trap.

Holding Times and Sample Preservation

All samples were prepared and analyzed within the method and/or QAPP specified holding time requirements. Aqueous soil QA/QC samples had a pH of < 2.

Laboratory Control Sample

All spike recoveries met method and/or project specific QC criteria.

MS/MSD/MSB

All spike recovery and RPD data met method and/or project specific QC criteria.

Surrogate Standards

All surrogate standard recoveries met method and/or project specific QC criteria.

Internal Standards

All internal standard areas met method and/or project specific QC criteria.

Calibrations

All initial calibrations and calibration verifications met method and/or project specific QC criteria.

Preparation Blanks

All preparation blanks met method and/or project specific QC criteria.

Miscellaneous

The sample TP-07/SS-2 [E5143] was diluted due to matrix interference and reporting limits are elevated.

GC/MS Semi-Volatile Organics Case Narrative

Client: Job Number: Package #: Methodology: O'Brien & Gere Engineers, Inc. 3435.229.74894 8685,8686 OLM04.2

Analyzed/Reviewed by (Initials/Date):

Supervisor/Reviewed by (Initials/Date):

QA/QC Review (Initials/Date):

File Name:

C:\Documents MS5\Narratives\8685svnar.doc

GC/MS Semi-Volatile Organics

The GC/MS Semi-volatile instruments used a Zebron ZB-5, 30 m x 0.25 mm ID capillary column.

Holding Times and Sample Preservation

All samples were prepared and analyzed within the method and/or QAPP specified holding time requirements.

Laboratory Control Sample

The following compound(s) did not meet laboratory control sample recovery criteria:

LCS No.	Compound	Corrective Action
L082404S1	4-Chloroaniline	1
D082404S1	4-Chloroaniline	1

1 The recovery exceeded the lower control limit. The chromatogram was inspected for concentrations down to the MDL and the analyte was not detected. The control limits used are in-house limits and may not accurately reflect the method. No corrective action was taken.

Surrogate Standards

All surrogate standard recoveries met method and/or project specific QC criteria.

Internal Standards

All internal standard areas met method and/or project specific QC criteria.

Calibrations

All initial calibrations and calibration verifications met method and/or project specific QC criteria.

Preparation Blanks

All preparation blanks met method and/or project specific QC criteria.

Miscellaneous

Samples TP-07/SS-2[E5143] and TP-10/SS-4[E5216] had elevated detection limits due to matrix interference.

GC Semivolatile Organics Case Narrative

Client:	O'Brien & Gere Engineers, Inc.
Job Number:	3435.229.74894
Package #:	8685,8696
Methodology	OLM4.2
Analyzed/Reviewed by (Initials Supervisor/Reviewed by (Initia	
QA/QC Review (Initials/Date):	a 10-27-04
File Name :	A:\8685PST.NAR

A:\8685PST.NAR

Pesticide/PCBs

Holding Times

All samples were prepared and analyzed within the method and/or QAPP specified holding time requirements.

Laboratory Control Samples

The following compound(s) did not meet laboratory control sample recovery criteria:

LCS No.	Compound	Column	Corrective Action
L082404S2	d-BHC	RTXCLP	1

This compound failed marginally and met criteria on the RTXCLP2 column. No corrective 1. action was taken.

MSB

All spike recovery data met method and/or project specific QC criteria.

Surrogates

The following samples did not meet criteria for surrogate recoveries for Decachlorobiphenyl (DCBP):

Sample Description	Sample #	Column	Corrective Action
TP-10/SS-4	E5216	RTXCLP2	1
TP-8/SS-5	E5217	RTXCLP2	1

1. The recoveries failed high due to matrix interference. The control limits are advisory only. No corrective action is required.

Calibrations

All calibrations and calibration verifications met method and/or project specific QC criteria.

Preparation Blanks

All preparation blanks met method and/or project specific QC criteria.

•

GC Semivolatile Organics Case Narrative - Page 2Client:O'Brien & Gere Engineers, Inc.Job Number:3435.229.74894Package:8685,8696Methodology:OLM4.2

Miscellaneous

The resolution check analyzed on the RTXCLP column did not meet the >60% method criteria for Endosulfan I (57%). All other resolution criteria were met and the excursion did not impact peak identification.

A GPC check was not analyzed for this QC batch of samples.

Project Management Case Narrative

INTRODUCTION/ANALYTICAL RESULTS

This report summarizes the laboratory results for O'Brien & Gere Engineers, Inc. samples from the Town of Carroll Landfill. New York State Department of Environmental Conservation forms are included in the Laboratory Report Package.

CONDITION UPON RECEIPT/CHAIN OF CUSTODY

The cooler(s) were received intact. When the cooler(s) were received by the laboratory, the sample custodian(s) opened and inspected the shipment(s) for damage and custody inconsistencies. Chain of custodies documenting receipt are presented in the chain of custody section. Each sample was assigned a unique laboratory number and a custody file created. The samples were placed in a secured walk-in cooler and signed in and out by the chemists performing the tests. The sign out record, or lab chronicle, is presented in the chain of custody section.

No discrepancies were noted upon receipt. Temperatures of the well-iced coolers were 2°C and 2.4°C.

METHODOLOGY

The following methods were used to perform the analyses:

PARAMETER	METHOD	REFERENCE
Volatile Organics	OLM04.2	1
Semivolatile Organics	OLM04.2	1
Pesticides/PCBs	OLM04.2	1
ICP Metals	200.7 CLP-M*	1
Mercury	245.5 CLP-M*	1
Cyanide	335.2 CLP-M*	1
Percent Total Solids	2540-G	2

- 1) <u>New York State Department of Environmental Conservation Analytical Services Protocol</u>, October 1995.
- 2) Standard Methods for the Examination of Water and Wastewater, 18th Edition, 1992.

QUALITY CONTROL

QA/QC results are summarized in the Laboratory Report Package and are also included in the raw data.

RAW DATA

The raw data is organized in the New York State Department of Environmental Conservation Analytical Services Protocol Superfund order of data requirements.

:	1A	NYSD	EC SAMP	LE
	DLATILE ORGANICS ANALYSIS DATA SHE		E5141	
	Gere Laboratories, Inc. Contract: O'B			J
Lab Code: OBG	Case No.: 3435.229. SAS No.:	SDG No.:	8685,869	6
Matrix: (soil/water)		mple ID: TP-11/S		
Sample wt/vol: 5	5.1 (g/ml) <u>G</u> Lab File	D: <u>M5895.</u>)	
Level: (low/med)	OW Date Re	eceived: <u>8/19/04</u>	÷	
_% Moisture: not dec. 2	6.4 Date Ar	nalyzed: <u>8/26/04</u>	<u></u> _	
GC Column: Rtx-502.	_ ID: 0.53 (mm) Dilution	Factor: 1.0		
Soil Extract Volume:	(uL) Soil Aliq	uot Volume:	(uL)
		•		•
м .	CONCENTRATION	UNITS:		
CAS NO.	COMPOUND (ug/L or ug/Kg)	UG/KG	Q	-
75-71-8	Dichlorodifluoromethane	13	U]
74-87-3	Chloromethane	13	U U	
75-01-4	Vinyl chloride	13	Ŭ	
74-83-9	Bromomethane	13	U	
75-00-3	Chloroethane	13	Ŭ	
75-69-4	Trichlorofluoromethane	13	Ū	
67-64-1	Acetone	13 18	- Sin	5,8.
75-35-4	1,1-Dichloroethene	13	U U	2.0.
75-09-2	Methylene chloride	13 8		M.B./S.B.
79-20-9	Methyl acetate	13	U	W.R. 7. 18
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroetha	13	U U	
75-15-0	Carbon disulfide	13	U U	
156-60-5	trans-1,2-Dichloroethene	13	U	
		ور فرود و محمد الماري و بروان الماري و بروان الماري و الماري و الم		
<u>1634-04-4</u> 75-34-3	Methyl tert-Butyl ether	13	<u>U</u>	
78-93-3	1,1-Dichloroethane	13	<u> </u>	
156-59-4	2-Butanone	13	<u> </u>	
67-66-3	cis-1,2-Dichloroethene Chloroform	13	<u> </u>	. •
		13	U	
<u>107-06-2</u> 71-55-6	1,2-Dichloroethane	13	U U	
110-82-7	1,1,1-Trichloroethane	13		
	Cyclohexane	13	<u> </u>	
56-23-5	Carbon tetrachloride	13	<u> </u>	
71-43-2	Benzene	13	<u> </u>	
79-01-6	Trichloroethene	13	<u> </u>	
78-87-5	1,2-Dichloropropane	13	U	
75-27-4	Bromodichloromethane	13	<u> </u>	
108-87-2	Methylcyciohexane	13	<u> </u>	
10061-01-5	cis-1,3-Dichloropropene	13	U	
10061-02-6	trans-1,3-Dichloropropene	13	Ų	
79-00-5	1,1,2-Trichloroethane	13	<u> </u>	
124-48-1	Dibromochloromethane	13	U	
75-25-2	Bromoform	13	U	
108-10-01	4-Methyl-2-pentanone	13	U	
108-88-3	Toluene	13	<u> </u>	
127-18-4	Tetrachloroethene	13	<u> </u>	• .
<u>591-78-6</u>	2-Hexanone	13	<u> </u>	
106-93-4	1,2-Dibromoethane	13	U	
108-90-7	Chlorobenzene	2	J	
100-41-4	Ethylbenzene	13	U	

FORM I VOA

٤.

		,		1A			NYSD	EC SAM	PLE
	١	VOLATILE	ORGAN		YSIS DATA	SHEET		E5141	
Lab Name:	O'Brien	& Gere La	boratorie	s, Inc.	Contract:	O'Brien & (
Lab Code:	OBG	Ca	se No.:	3435.229.	SAS No).: ;	SDG No.:	8685,86	696
Matrix: (soil/v	vater)	SOIL			La	o Sample ID	: <u>TP-11/S</u>	S-3	
Sample wt/vc	у:	5.1	(g/mi)	G	Lat	o File ID:	M5895.	D	
Level: (low/n			•		- Da	te Received:	8/19/04		
% Moisture: r	not dec.	26.4	_		Dai	te Analyzed:	8/26/04		
GC Column:	Rtx-50	2. ID: 0.	53 (n	ım)	Dilu	ution Factor:	1.0		
Soil Extract V	olume:		_ (uL)		Soi	I Aliquot Vol	ume:	•	(úL)
•				CON		ION UNITS:			
CASNO		COMP			- · · · ·	UG/KG		Q	
040 10	•			(uâu	. or ug/ng/	00/10		¥.	
95-47-6	6	Xylen	e (total)				13	U	
100-42	-5	Styre					13	U	-
79-34-	5	1,1,2	2-Tetrac	hioroethan	e		13	U	
98-82-6	3		pylbenz			1	13	U	
541-73	-1			enzene			13	U	7
106-46	-7		ichlorob				7	J	7
95-50-1			ichlorobe				13	Ű	7
96-12-8	3			-chloropro	pane		13	U	7
120-82-				benzene			13	U	7

FORMIVOA

10/95

:

• • •

	VOLATILE ORGANICS ANALYS		NYSDEC	SAMPLE
Lab Name: O'Bri	TENTATIVELY IDENTIFIED C	·	& G E51	41
Lab Code: OBG	Case No.: 3435.229.	SAS No.:	SDG No.: 868	35,8696
Matrix: (soil/water)	SOIL	Lab Sample	ID: TP-11/SS-3	
Sample wt/voi:	<u>5.1 (g/ml) G</u>	Lab File ID:	M5895.D	
Level: (low/med)	LOW	Date Receiv	ed: <u>8/19/04</u>	
% Moisture: not dec	. <u>26.4</u>	Date Analyz	ed: <u>8/26/04</u>	
GC Column: Rtx-	502. ID: <u>0.53</u> (mm)	Dilution Fact	or: <u>1.0</u>	·
Soil Extract Volume	: <u>5</u> (uL)	Soil Aliquot \	/olume: <u>5</u>	(uL)
. .	CONCE		rs:	
Number TICs found	: (ug/L o	ug/Kg) UG/I	<u> </u>	
CAS NO.	COMPOUND NAME	RT	EST. CONC.	Q
1.	unknown C10H18	26.59	11	J

4.00

FORM I VOA-TIC

٤.

....

•

	1A		NYSD	EC SAMP	LE
	VOLATILE ORGANICS ANALY	SIS DATA SHEET		E5142	
Lab Name: O'Brien	& Gere Laboratories, Inc.	Contract: O'Brien & G			
Lab Code: OBG	Case No.: 3435.229.	SAS No.: S	DG No.:	8685,869	<u>6</u>
Matrix: (soil/water)	SOIL	Lab Sample ID:	TP-04/S	S-1	<u></u>
Sample wt/vol:	5.1 (g/ml) G	Lab File ID:	M5896.0)	
Level: (low/med)		Date Received:			
% Molsture: not dec.		Date Analyzed;			
	<u>)2.</u> ID: <u>0.53</u> (mm)				
			-		
Soll Extract Volume:	(UL)	Soll Aliquot Volu	me:	(UL)
	CON	CENTRATION UNITS:			
CAS NO.		or ug/Kg) UG/KG		Q	
			·····		_
75-71-8	Dichlorodifluoromethane		11	U]
74-87-3	Chloromethane			<u> </u>	4
75-01-4	Vinyi chloride		11	U	
74-83-9	Bromomethane		<u>11</u>	<u> </u>	
75-00-3	Chloroethane		11	<u> </u>	
75-69-4 67-64-1	Trichlorofluoromethane		11	<u> </u>	
75-35-4	1,1-Dichloroethene		11	U	
75-09-2	Methylene chloride		<u>11</u>		malar
79-20-9	Methyl acetate		11		M.B./S.B
76-13-1	1,1,2-Trichloro-1,2,2-triflu	oroetha	11	U	
75-15-0	Carbon disulfide		11	U	2
156-60-5	trans-1,2-Dichloroethene		11	U	
1634-04-4	Methyl tert-Butyl ether	······································	11	Ŭ	
75-34-3	1,1-Dichloroethane		11	Ū	
78-93-3	2-Butanone		11	Ŭ	
156-59-4	cis-1,2-Dichloroethene		. 11	U	-
67-66-3	Chloroform		11	U	•
107-06-2	1,2-Dichloroethane		11	U	
71-55-6	1,1,1-Trichloroethane		11	U	
110-82-7	Cyclohexane		11	<u> </u>	
56-23-5	Carbon tetrachloride		11	U	
71-43-2	Benzene		11	U	
79-01-6	Trichloroethene		11	<u> </u>	
78-87-5	1,2-Dichloropropane		11	U	
<u>75-27-4</u> 108-87-2	Bromodichloromethane Methylcyclohexane	· · · · · · · · · · · · · · · · · · ·	<u>11</u> 11	<u>U</u> U	
10061-01-5	cis-1,3-Dichloropropene		11	U U	
10061-02-6	trans-1,3-Dichloropropene		11	<u> </u>	••
79-00-5	1,1,2-Trichloroethane		11	<u> </u>	
124-48-1	Dibromochloromethane		11	-ŭ	
75-25-2	Bromoform		11	U	•
108-10-01	4-Methyl-2-pentanone		11	U	
108-88-3	Toluene		11	U	• •
127-18-4	Tetrachloroethene		11	U	
591-78-6	2-Hexanone		11	U	
106-93-4	1,2-Dibromoethane		11	U	•
108-90-7	Chlorobenzene		11	U	· ·
100-41-4	Ethylbenzene			<u> </u>	

FORMIVOA

10/95

.

,	1A OLATILE ORGANICS ANALY		NYSE	EC SAMPLE
• V		E5142		
Lab Name: O'Brien	& Gere Laboratories, Inc.	Contract: O'Brien & C	<u>}</u>	
Lab Code: OBG	Case No.: 3435.229.	SAS No.:	SDG No.:	8685,8696
Matrix: (soil/water)	SOIL	Lab Sample ID:	TP-04/S	SS-1
Sample wt/vol;	5.1 (g/ml) G	Lab File ID:	M5896.	D
Level: (low/med)		Date Received:	8/19/04	······
% Moisture: not dec.	13.4	Date Analyzed:	8/26/04	
GC Column: Rtx-50	2. ID: 0.53 (mm)	Dilution Factor:	1.0	
Soil Extract Volume:	(uL)	Soil Aliquot Volu	ime:	(UL.)
	CON	CENTRATION UNITS:		•
CAS NO.		or ug/Kg) UG/KG	<u> </u>	Q
95-47-6	Xylene (total)		11	U
100-42-5	Styrene	·	11	Ū
79-34-5	1,1,2,2-Tetrachloroethan	e	11	U
98-82-8	Isopropylbenzene		11	U
541-73-1	1,3-Dichlorobenzene		11	U
106-46-7	1,4-Dichlorobenzene		11	U
95-50-1	1,2-Dichlorobenzene		11	U
96-12-8	1,2-Dibromo-3-chloroprop	Dane	11	Ú
120-82-1	1,2,4-Trichlorobenzene	· · · · · · · · · · · · · · · · · · ·	11	U

· · · · ·

+

FORMIVOA

10/95

	1		1.	E						
	١	OLATILE	ORGANICS	ANAL'	YSIS DATA	SHEET		NYSD	EC SA	MPLE
•			TIVELY IDEI						E5142	
Lab Name:	O'Brien	& Gere La	boratories, l	nc.	Contract:	O'Brien	& G	L		J
Lab Code:	OBG	c	ase No.: 34	35.229.	SAS No	.:	_ SD	G No.:	8685,	8696
Matrix: (soil/	water)	SOIL			Lai	o Sampie	• ID:]	rp-04/s	<u>S-1</u>	
Sample wt/vo	ol:	5.1	(g/ml)G		Lat	o File ID:	. <u>I</u>	M5896.E)	
Levei: (low/n	ned)	LOW			Dat	te Recei	ved: <u>E</u>	3/19/04	<u> </u>	-
% Moisture:	not dec.	13.4			Dat	te Analyz	zed: <u>8</u>	3/26/04		-
GC Column:	Rtx-50	<u>2.</u> ID: 0	.53 (mm)	•	Dik	ition Fac	tor: <u>1</u>	.0		÷
Soil Extract V	/olume:	5	(uL)		Soi	l Aliquot	Volum	e: <u>5</u>	····	_ (uL)
				CON	ICENTRAT	ION UN	ITS:			
Number TICs	found:	0		(ug/l	_ or ug/Kg)	UG	/KG			
CAS NO.		COMPO	UND NAME			RT	EST			Q

FORM I VOA-TIC

	1 A		NYSDE	EC SAMPI	.E
. \	OLATILE ORGANICS ANALY	SIS DATA SHEET	F	5143	7
Lab Name: O'Brien	& Gere Laboratories, Inc.	Contract: O'Brien & C			
Lab Code: OBG	Case No.: 3435.229.	SAS Nó.: \$	SDG No.:	8685,869	<u>6</u>
Matrix: (soil/water)	SOIL	Lab Sample ID:	TP-07/SS	5-2	
	0.7 (g/ml) G	Lab File ID:	M5899.D)	-
Level: (low/med)		Date Received:			
% Moisture: not dec.		Date Analyzed:			
		Dilution Factor:			
+					
Soil Extract Volume:	(uL)	Soil Aliquot Volu		(uL)
~	CON	CENTRATION UNITS:			
CAS NO.	COMPOUND (ug/L			Q	
	• • • • • • • • • • • • • • • • • • •			1	1
75-71-8	Dichlorodifluoromethane		110	<u> U</u>	
74-87-3 75-01-4	Chloromethane Vinyl chloride		<u>110</u> 110		
74-83-9	Bromomethane	···· · · · · · · · · · · · · · · · · ·	110	U	
75-00-3	Chloroethane	·····	110	Ŭ	
75-69-4	Trichlorofluoromethane		6	J	
67-64-1	Acetone		0 38		S.B.
75-35-4	1,1-Dichloroethene		110		· · · ·
75-09-2	Methylene chloride		1079	JB.V	M.B. /5, B
79-20-9	Methyl acetate		110	U	. 10-12, B
76-13-1	1,1,2-Trichloro-1,2,2-triflu	ioroetha	110	U	
75-15-0	Carbon disulfide	•	11	J	
156-60-5	trans-1,2-Dichloroethene		110	U	
1634-04-4	Methyl tert-Butyl ether		110	U	
75-34-3	1,1-Dichloroethane	· · · · · · · · · · · · · · · · · · ·	110	U	
78-93-3	2-Butanone		110	<u> </u>	
156-59-4	cis-1,2-Dichloroethene		110	<u> </u>	
67-66-3	Chloroform		110	<u> </u>	
107-06-2	1,2-Dichloroethane	<u></u>	110	U U	·
71-55-6 110-82-7	1,1,1-Trichloroethane Cyclohexane		<u>110</u> 110	U	
56-23-5	Carbon tetrachloride	·····	110	- Ŭ	
71-43-2	Benzene	·····	110	- Ŭ	
79-01-6	Trichloroethene	· · · · · · · · · · · · · · · · · · ·	8	J	
78-87-5	1,2-Dichloropropane	······································	110	U	
75-27-4	Bromodichloromethane		110	Ŭ	
108-87-2	Methylcyclohexane		31	J	
10061-01-5	cis-1,3-Dichloropropene		110	U	
10061-02-6	trans-1,3-Dichloropropene	9	110	U	
79-00-5	1,1,2-Trichloroethane		110	<u> </u>	
124-48-1	Dibromochloromethane		110	<u> </u>	
75-25-2	Bromoform		110	<u> </u>	
108-10-01	4-Methyl-2-pentanone		110	<u> </u>	
108-88-3	Toluene		13	J	•
127-18-4	Tetrachloroethene		110	<u> </u>	•
591-78-6	2-Hexanone		110	<u>U</u> U	• .
<u>106-93-4</u> -108-90-7	1,2-Dibromoethane Chlorobenzene		110 110		•
100-41-4	Ethylbenzene		110		
		·		<u>v</u>	

FORMIVOA

10/95

4 22 2

•

	N		1A			NYSD	EC SAMP	νLE
	VOL	ATILE ORGAN	ICS ANAL	SIS DATA	SHEET		E5143	7
Lab Name: (O'Brien & (Gere Laboratorie	s, inc.	Contract:	O'Brien & G	_ L	· · · · · · · · · · · · · · · · · · ·	
Lab Code: 0	OBG	Case No.:	3435.229.	SAS No.	.: s	DG No.:	8685,869	36
Matrix: (soil/wa	ater) <u>S</u>	DIL		Lab	Sample ID:	TP-07/S	S-2	
Sample wt/vol:	<u>0.</u>	7 (g/ml)	G	Lab	File ID:	M5899.E)	
Level: (low/me	ed) <u>LC</u>	W		Dat	e Received:	8/19/04		
% Moisture: no	ot dec. <u>36</u>	.5		Dat	e Analyzed:	8/26/04	<u>, , , , , , , , , , , , , , , , , ,</u>	
GC Column:	Rtx-502.	ID: <u>0.53</u> (n	າm)	Dilu	tion Factor:	1.0	······································	
Soil Extract Vol	lume:	(uL)		Soil	Aliquot Volu	me:		(uL)
•			CON		ION UNITS:			
CAS NÖ.		COMPOUND		. or ug/Kg)	UG/KG		Q	

95-47-6	Xylene (total)	47	J
100-42-5	Styrene	110	U
79-34-5	1,1,2,2-Tetrachloroethane	110	U
98-82-8	Isopropyibenzene	110	U
541-73-1	1,3-Dichlorobenzene	110	U
106-46-7	1,4-Dichlorobenzene	150	
95-50-1	1,2-Dichlorobenzene	110	Ŭ
96-12-8	1,2-Dibromo-3-chloropropane	110	U
120-82-1	1,2,4-Trichlorobenzene	110	U

FORMIVOA

.

.. .

1E

Number TICs found: 10

VOLATILE ORGANICS ANALYSIS DATA SHE	E
TENTATIVELY IDENTIFIED COMPOUNDS	:

Lab Name:	O'Brien	& Gere	Laboratories, Inc.	Contract: O'Brie	n & G	E5143
Lab Code:	OBG	•	Case No.: 3435.229.	SAS No.:	st	DG No.: 8685,8696
Matrix: (soil/	water)	SOIL		Lab Sampi	e ID:	TP-07/SS-2
Sample wt/vo	ol:	0.7	(g/ml) G	Lab File ID	:	M5899.D
Level: (low/n	ned)	LOW	· · · · · · · · · · · · · · · · · · ·	Date Recei	ived:	8/19/04
% Moisture: I	not dec.	36.5		Date Analy	zed:	8/26/04
GC Column:	Rb-50	2. ID:	<u>0.53</u> (mm)	Dilution Fa	ctor:	1.0
Soil Extract V	olume:	5	(uL)	Soil Aliquot	Volun	ne: 5 (uL)

CONCENTRATION UNITS:

UG/KG

(ug/L or ug/Kg)

CAS NO.	COMPOUND NAME	RT	EST. CONC.	Q
1.	unknown C8H16	19.22	54	J
2.	unknown C9H18	21.01	58	J
3.	unknown	21.35	380	J
4.	unknown C9H18	21.84	140	J
<u>5.</u>	unknown	22.81	240	J
6.	unknown C9H18	23.94	270	J
7.	unknown hydrocarbon	24.14	330	J
8.	unknown C10H20	25.63	950	J
9. 002958-76-1	Naphthalene, decahydro-2-methy	30.12	510	JN
10. 002958-76-1	Naphthalene, decahydro-2-methy	30.58	610	JN

FORM I VOA-TIC

L.

NYSDEC SAMPLE

ſ

T

:

		1A		,	NYSE	EC SAM	PLE
	VOLATILE ORG/	ANICS ANALY	'SIS DATA	SHEET		E5144	
Lab Name: O'Brien]
Lab Code: OBG		o.: <u>3435.229.</u>	SAS No.	.: s	DG No.:	8685,86	96
Matrix: (soil/water)	SOIL		Lab	Sample ID:	Storage	Blank	.
Sample wt/vol:	<u>5.0 (g/r</u>	ml) <u>G</u>	Lab	File ID:	M5894.	D	
Level: (low/med)				e Received:			
% Moisture: not dec.	0			e Analyzed:		····	
GC Column: Rtx-50		- (mm)					
Soll Extract Volume:		-)	201	Aliquot Volu	me:		(uL)
•		CON	CENTRATI	ON UNITS:			
CAS NO.	COMPOUND			UG/KG		Q	
	· · · · · · · · · · · · · · · · · · ·					~~~~	
75-71-8 74-87-3		uoromethane	····		10	U	
75-01-4	Chlorometh				<u>10</u> 10		
74-83-9	Bromometh				10		
75-00-3	Chloroetha				10	U	-{
75-69-4		oromethane			10	U U	-}
67-64-1	Acetone				2	J	-
75-35-4	1,1-Dichlor	oethene			10	Ű	-f <u>'</u>
75-09-2	Methylene o				2	JB	(m, B)
79-20-9	Methyl acet	ate			10	U U	1(10)
76-13-1		oro-1,2,2-trifiu	oroetha		10	Ŭ	-
75-15-0	Carbon disu			1	10	Ū	1
156-60-5	trans-1,2-Di	chloroethene			10	Ū	-
1634-04-4	Methyl tert-l	Butyl ether	· · · · · · · · · · · · · · · · · · ·		10	Ŭ	1
75-34-3	1,1-Dichloro	ethane			10	U	
78-93-3	2-Butanone				10	U	1
156-59-4	cis-1,2-Dich				10	U]
67-66-3	Chloroform	the second second second second second second second second second second second second second second second s			10	U] .
107-06-2	1,2-Dichloro			• •	10	U	
71-55-6	1,1,1-Trichlo				10	U -]
110-82-7	Cyclohexan		····		10	·U]
56-23-5	Carbon tetra	chloride			10	U	
71-43-2	Benzene				10	U	
79-01-6	Trichloroethe				10	<u> </u>	-
78-87-5	1,2-Dichloro				10	U	4
75-27-4 108-87-2	Bromodichio		· · · · · · · · · · · · · · · · · · ·		10	U	4
10061-01-5	Methylcycloh				10	U	4
10061-02-6	cis-1,3-Dichl				10	<u> </u>	· ·
79-00-5	1,1,2-Trichlo	hloropropene			10	U	ł
124-48-1	Dibromochio				10	<u> </u>	
75-25-2	Bromoform	MILEN ICI IC			<u>10</u> 10	<u> </u>	ł
108-10-01	4-Methyl-2-p	entanone	·····		10	<u> </u>	1
108-88-3	Toluene				10	<u>U</u>	· ·
127-18-4	Tetrachloroel	thene			10	U	
591-78-6	2-Hexanone		·		10	<u> </u>	•
106-93-4	1,2-Dibromoe	ethane		·	10	<u> </u>	• •
108-90-7	Chlorobenzei				10	Ŭ	
100-41-4	Ethylbenzene				10	U	
							· · · · · · · · · · · · · · · · · · ·

FORMIVOA

10

	1A		h	NYSDEC SAI	MPLE
	VOLATILE ORGANICS ANAL	YSIS DATA SHE	ЕТ Г	E5144	
Lab Name: O'Brier	a & Gere Laboratories, Inc.	Contract: <u>O'B</u>	rien & G	LU144	
Lab Code; OBG	Case No.: 3435.229	. SAS No.:	SDG	No.: 8685,8	3696
Matrix: (soil/water)	SOIL	Lab Sar	mple ID: Sto	orage Blank	
Sample wt/vol:	5.0 (g/ml) G	Lab File	ID: M5	894.D	
Level: (low/med)	LOW	 Date Re	ceived: 8/1	9/04	~
% Moisture: not dec.	0	Date An	alyzed: 8/2	6/04	-
GC Column: Rtx-5	02. ID: 0.53 (mm)	Dilution	Factor: 1.0	·····	-
Soil Extract Volume:	(uL)	Soil Aliq	uot Volume:		- (uL)
a	CO	CENTRATION	UNITS:		
CAS NO.	COMPOUND (ug/	L or ug/Kg)	UG/KG	Q	
95-47-6	Xylene (total)		<u> </u>	10 U	<u> </u>
100-42-5	Styrene	- <u>*- ****</u> -*- *		10 U	
79-34-5	1,1,2,2-Tetrachioroetha	ne	1	10 U	
98-82-8	Isopropylbenzene			10 U	
541-73-1	1,3-Dichlorobenzene			10 U	
106-46-7	1,4-Dichlorobenzene			10 U	
95-50-1	1,2-Dichlorobenzene			10 U	
96-12-8	1,2-Dibromo-3-chloropro	pane		10 U	
120-82-1	1,2,4-Trichlorobenzene			10 U	

FORMIVOA

10/95

VOLATILE ORGANICS ANALYSIS DATA TENTATIVELY IDENTIFIED COMPOL		NYSDE	EC SAMPLE
TENTATIVELY IDENTIFIED COMPOL			
	JNDS	[·····
Lab Name: O'Brien & Gere Laboratories, Inc. Contract:	O'Brien & G		5144
Lab Code: OBG Case No.: 3435.229. SAS No	.: S	DG No.:	8685,8696
Matrix: (soil/water) SOIL Lat	Sample ID:	Storage i	Blank
Sample wt/vol: 5.0 (g/ml) G Lat	File ID:	M5894.D)
Level: (low/med) LOW Dat	te Received:	8/19/04	
% Moisture: not dec. 0 Dat	te Analyzed:	8/26/04	
GC Column: <u>Rtx-502.</u> ID: <u>0.53</u> (mm) Dilu	ution Factor:	1.0	
Soil Extract Volume: 5 (uL) Soil	l Aliquot Volu	ime: <u>5</u>	(uL)
CONCENTRAT	ION UNITS:		
Number TICs found: 0 (ug/L or ug/Kg)	UG/KG		
CAS NO. COMPOUND NAME	RT ES	ST. CONC.	. Q

٠,

10/95

. .

	1			A				NYSE	DEC SAMP	νLE
	VO	LATILE	ORGANIC	S ANALI	SIS DATA	SH	EET			
Lab Name:	O'Brien &	Gere La	boratories,	inc.	Contract:	O'E	Brien & G	<u> </u>	E5216	
Lab Code: 0	OBG	· Ci	ase No.: 34	435.229.	SAS No	.:	E	DG No.:	8685,869	96
Matrix: (soil/wa				······				TP-10/8		
Sample wt/vol:				;			-	·····		
Level: (low/me					Dat					
% Moisture: no									······	
								8/26/04		
GC Column:								1.0		
Soil Extract Vol	lume:		(uL)		Soi	Aliq	uot Volu	me:		(uL)
_				CON			LAUTO.			
CASNO		COUR			CENTRAT				_	
CHO NO.		COMP	OUND	(Ug/L	orug/Kg)		UG/KG		Q	
75-71-8		Dichle	orodifluoror	nethane			1	18	U	ר
74-87-3			omethane				1	18	U	1
75-01-4		Vinyl	chloride	_				18	U	1
74-83-9		Brom	omethane					18	U	1.
75-00-3		Chlore	oethane				1	18	U	1
75-69-4			orofiuorom	ethane				18	U]
67-64-1		Aceto					<u> </u>	18	U] .
75-35-4	• ······		ichloroethe				<u> </u>	18	U]
75-09-2	the second second second second second second second second second second second second second second second s		lene chioria	Je			<u> </u>	18%	JB U	$(m, p) = \frac{1}{2} \left(a, m \right)$
79-20-9		Methy	l acetate	. <u></u>	 			18	U	
76-13-1		1,1,2-	Trichloro-1,	2,2-triflu	oroetha		[18	<u> </u>	
75-15-0			n disulfide					18	U	
156-60-5			1,2-Dichlon				ļ	18	U	
<u>1634-04-</u> 75-34-3	4		tert-Butyl					18	<u> </u>	
78-93-3			chloroethar		· · · · · · ·			18	U	
156-59-4		2-Buta	-Dichloroel					18	U .	
67-66-3		Chloro		INGINE				18	<u>U</u>	
107-06-2			chloroethan					<u>18</u> 18	บ บ	
71-55-6			Frichloroeth		*******			18	U U	
110-82-7		Cyclon			· · · · · ·			18	U	
56-23-5			n tetrachlori	ide				· 18	U	
71-43-2		Benzer					-	18	U	
79-01-6		the second second second second second second second second second second second second second second second s	roethene	<u> </u>			· · · ·	18	Ū	
78-87-5		1,2-Dic	hloropropa	ne			• • • • • • • • • •	18	Ŭ	
75-27-4		Bromo	dichlorome	thane			·	18	U	
108-87-2			cyclohexan					18	U	•
10061-01-			-Dichloropr					18	U	
10061-02-	6		,3-Dichloro					18	U	
79-00-5			richloroeth					18	U	•
124-48-1			ochlorome	hane				18	U	
75-25-2		Bromof		····				18	U	
108-10-01			yl-2-pentan	one				18	U	·
108-88-3		<u>Toluene</u>						18	<u> </u>	•
127-18-4			loroethene		· · · · · · · · · · · · · · · · · · ·			18	U	•
591-78-6		2-Hexa						18	U	
106-93-4			romoethan	8			·	18	<u> </u>	• .
100-41-4			enzene		·····			18	U	
	l	Ethylbe	Instant					18	U	

FORMIVOA

10/95

V

				1A			NYS	SDE(C SAMP	ΊE
	V	OLATILE	ORGANI	CS ANAL	YSIS DATA	SHEET		E5216		
Lab Name:	O'Brien	& Gere La	boratorie	s, Inc.	Contract:	O'Brien &	<u> </u>	<u></u>		
Lab Code:	OBG	C	ase No.:	3435.229	SAS No	.:	SDG No	h.: <u>8</u>	685,869)6
Matrix: (soil/w	vater)	SOIL		•	Lai	o Sample IC): <u>TP-10</u>)/SS	4	<u> </u>
Sample wt/vo	d:	5.1	 (g/ml)	G	La	o File ID:	M589	7.D		
Level: (low/m					Da	te Received	i: <u>8/21/(</u>)4	•	
% Moisture: n			<u> </u>		Da	te Analyzed	: <u>8/26/0</u>	<u>)4</u>	 	
GC Column:			• ···	nm)	Dil	ution Factor	: 1.0			
Soil Extract V					So	il Aliquot Vo	olume:			(uL)
				co	NCENTRAI		8:			
CAS NO).	COMF	POUND		/L. or ug/Kg)				Q	
95-47-4	<u> </u>	Xvle	ne (total)				18	3	U	7
100-42		Styr					18	3	U	
79-34-				chloroetha	ine		18	1	U	
98-82-1			ropyiben:				18	;	U	
541-73			Dichlorob				18	<u>, </u>	U	_
106-46			Dichlorob				18		<u> </u>	_
95-50-			Dichlorob				18	<u>,</u>	U	

1,2-Dichlorobenzene

1,2,4-Trichlorobenzene

1,2-Dibromo-3-chloropropane

95-50-1

96-12-8

120-82-1

. -

10/95

U

U

18

18

..

.

	: V		LE ORGAN	1E ICS ANA	LYSIS DAT	A SHEET		NYSDE	EC SAM	MPLE
	•							E	E521 6	
Lab Name:	O'Brien	& Gere	Laboratorie	es, Inc.	_ Contract	: <u>O'Brier</u>	<u>1 & G</u>	L		
Lab Code:	OBG		Case No.:	3435.22	<u>9.</u> SAS M	lo.:	SD	G No.:	8685,8	3696
Matrix: (soil/w	vater)	SOIL			L	ab Sample	e ID: _	TP-10/S	<u>54</u>	
Sample wt/vo	d:	5.1	(g/ml)	G	· L	ab File ID:	: !	M5897.C)	_
Level: (low/m	ned)	LOW			C	ate Recei	ved: <u>8</u>	8/21/04		-
% Moisture: r	not dec.	45	·		C	ate Analy	zed: 8	8/26/04		-
GC Column:	Rtx-50	2. ID:	<u>0.53</u> (n	nm)	Ľ	ilution Fa	ctor:	1.0		-
Soil Extract V	olume:	5	(uL)		S	soil Aliquot	Volun	ne: <u>5</u>	<u> </u>	(uL)
Number TICs	found:	0			DNCENTR		IITS: 5/KG			
CAS NO.		COM		ME		RT	EST	r. conc	;.	Q

.

FORM I VOA-TIC

υ

• • •

	1A	NYSDE	C SAMPLE
V	DLATILE ORGANICS ANALYSIS DATA SH	IEET	5217
Lab Name: O'Brien &	Gere Laboratories, Inc. Contract: O'		
Lab Code: OBG	Case No.: 3435.229. SAS No.:	SDG No.: 5	3685,8696
Matrix: (soil/water)	SOIL Lab Si	ample ID: TP-8/SS-	5
•	5.0 (g/ml) <u>G</u> Lab Fl	le ID: M5898.D	
Level: (low/med)	······································	Received: 8/21/04	
•		·····	
% Moisture: not dec.		Analyzed: 8/26/04	
GC Column: Rtx-502	2. ID: 0.53 (mm) Dilutio	n Factor; 1.0	·
Soil Extract Volume:	(uL) Soil Al	iquot Volume:	(uL)
_		1 FINITO.	
· · · · · · · · ·	CONCENTRATIO		^
CAS NO.	COMPOUND (ug/L or ug/Kg)	UG/KG	Q
75-71-8	Dichlorodifluoromethane	12	U
74-87-3	Chloromethane	12	U
75-01-4	Vinyl chloride	12	<u> U </u>
74-83-9	Bromomethane	12	U
75-00-3	Chloroethane	12	<u> </u>
75-69-4	Trichlorofluoromethane	12	U
67-64-1	Acetone	12	<u> </u>
75-35-4	1,1-Dichloroethene	12	U
75-09-2	Methylene chloride	12.25	JAC M.B/5.8
79-20-9	Methyl acetate	12	
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroetha	12	<u> </u>
75-15-0	Carbon disulfide	12	
156-60-5	trans-1,2-Dichloroethene	12	<u> </u>
1634-04-4	Methyl tert-Butyl ether	<u> </u>	<u> </u>
75-34-3	1,1-Dichloroethane	12	
78-93-3	2-Butanone	12	<u> </u>
156-59-4	cis-1,2-Dichloroethene	12	- U .
67-66-3	Chloroform	12	<u> </u>
107-06-2	1,2-Dichloroethane 1,1,1-Trichloroethane	12	
71-55-6 110-82-7	Cyclohexane	12	U
56-23-5	Carbon tetrachloride	12	Ŭ
71-43-2	Benzene	12	U
79-01-6	Trichloroethene	2	J
78-87-5	1,2-Dichloropropane	12	U
75-27-4	Bromodichloromethane	12	<u> </u>
108-87-2	Methylcyclohexane	12	<u> </u>
10061-01-5	cis-1,3-Dichloropropene	12	U
10061-02-6	trans-1,3-Dichloropropene	12	U
79-00-5	1,1,2-Trichloroethane	12	U
124-48-1	Dibromochloromethane	12	<u> </u>
75-25-2	Bromoform	12	<u> </u>
108-10-01	4-Methyl-2-pentanone	12	<u> </u>
108-88-3		12	<u> </u>
127-18-4	Tetrachloroethene	12	
591-78-6	2-Hexanone	12	<u> </u>
106-93-4	1,2-Dibromoethane	12	<u> </u>
108-90-7	Chlorobenzene	12	
100-41-4	Ethylbenzene	· · ·	لــــــــــــــــــــــــــــــــــــ

				1A			NY	SDE	C SAM	PLE
	V	OLATILE	ORGAN	CS ANAL	YSIS DATA	SHEET		E	5217	
Lab Name:	O'Brien 8	Gere La	boratorie	es, Inc.	Contract:	O'Brien &	<u> </u>		Na]
Lab Code:	OBG	c	ase No.:	3435.229	. SAS No	o.:	SDG N	0.:	8685,86	96
Matrix: (soil/v	water)	SOIL			Lai	b Sample ID): <u>TP-8</u>	vss-	·5	
Sample wt/vo			 (g/ml)	G	Lai	b File ID:	M58	98.D	l	
Levei: (low/n	-		,_ ,		– Da	te Received	1: 8/21	/04		
% Moisture: r						ite Analyzed				
GC Column:) 53 (n	nm)		ution Factor				
				,		il Aliquot Va				(uL)
Soil Extract V	/olume		(02)							()
				co	NCENTRA	TION UNITS	S:			
CAS NO) .	COM	POUND	(ug/	/L or ug/Kg)	UG/K	3		Q	
95-47-	6	Xyle	ne (total))				2	U	
100-42	2-5	Styr	éne	•				2	U	_
79-34-	5	1,1,2	2,2-Tetra	chloroetha	ne			2	<u>U</u>	
98-82-	8	Isop	ropylben	zene			the second second second second second second second second second second second second second second second s	2	U	
541-73	3-1	1,3-	Dichlorob	enzene				2	U	
106-46	3-7	1,4-1	Dichlorob	enzene				2	<u> </u>	
95-50-	1		Dichlorob					2	<u> </u>	
96-12-	8			3-chloropr				2	<u> </u>	
120-82	2-1	1,2,4	4-Trichlor	obenzene			1	2	U	

••

10/95

.

	VOLATILI	1E E ORGANICS ANA	LYSIS DATA	SHEET	NYSDE	EC SAMF	۶LE
		TIVELY IDENTIFI				5217	
Lab Name: O	Brien & Gere L	aboratories, Inc.	Contract:	O'Brien & C		·	ليعيين
Lab Code: O	BG	Case No.: 3435.22	9. SAS No).: (SDG No.:	8685,86	96
Matrix: (soil/wate	er) SOIL		La	b Sample ID:	: <u>TP-8/SS</u>	-5	
Sample wt/vol:	5.0	(g/ml) <u>G</u>	La	b File ID:	M5898.D)	
Level: (low/med	I) LOW		Da	te Received:	8/21/04		
% Moisture: not	dec. <u>16.7</u>		Da	ite Analyzed:	8/26/04		
GC Column:	Rtx-502, ID:	0.53 (mm)	. Dil	ution Factor:	1.0	 	
Soil Extract Volu	ime: <u>5</u>	(uL.)	So	il Aliquot Vol	ume: <u>5</u>	·	(uL)
Number TICs fo	und: 0		g/L or ug/Kg)			<u> </u>	
CAS NO.	COMP			RT E	ST. CONC	;. (Q

•

.

SUMMARY OF THE ANALYTICAL DATA USABILITY Town of Carroll Landfill

Soil Semivolatile Organic Analyses – Method 95-1 With Benzaldehye, Acetophenone and Caprolactam Samples Collected August 18th & 19th, 2004 Samples Received August 19th & 20th, 2004 Sample Delivery Group: 8685, 8696 Laboratory Reference Numbers:

TP-11/SS-3	E5141
TP-04/SS-1	E5142
TP-07/SS-2	E5143
TP-10/SS-4	E5246
TP-8/SS-5	E5247

Data were reviewed for usability according to the following criteria:

- * Data Completeness
- * GC/MS Tuning
- * Holding Times
- * Calibrations
 - Laboratory Blanks
 - Field Blank
 - Storage Blank
 - Equipment Blank
- * System Monitoring Compound Recoveries
- * Internal Standard Recoveries
- Matrix Spike / Matrix Spike Duplicate
- Blank Spike
- Laboratory Control Sample
- * Instrument Detection Limits
- Compound Identification
- * Compound Quantitation

* - Indicates that all criteria were met for this parameter.

DATA USABILITY SUMMARY

The volatile compound 1,1,2,2-tetrachloroethane was reported as a non-target in Sample TP-04/SS-1 (Lab. #: E5142) fraction. This was rejected during the data validation. It should be noted that this compound was not detected in the volatile fraction.

Field blank, storage and equipment blanks were not analyzed with this sample delivery group.

Matrix spikes and blank spikes were not analyzed with this sample.

No other problems were found with this sample delivery group, which would affect the usability of the data.

The minor problems with the laboratory control samples should be noted.

Holding Times

All samples were extracted and analyzed within the EPA contractual holding times.

Tunes

No problems were detected with any of the tunes associated with the samples of this delivery group.

Surrogate Compound Recoveries

All surrogate compound recoveries were within the required quality assurance limits.

The recoveries of sample TP-07/SS-2 (Lab. #: E5143) were diluted out since the sample was analyzed at a 100X dilution due to a high concentration of bis(2-ethylhexyl)phthalate (62,000 mg/kg).

Calibrations

No problems were found with any of the calibrations.

Matrix Spike / Matrix Spike Duplicate

A matrix spike was not analyzed with this sample delivery group.

Blank Spike

A blank spike was not analyzed with this sample delivery group.

Laboratory Control Sample

Two laboratory control samples were analyzed with this sample delivery group. The recoveries of all compounds were within the 40% - 120% quality assurance limits with the exception of 4-chloroaniline (35% & 20%) in both of the LCS standards.

The 4- chloroaniline data was flagged with the "J – LCS" qualifier. It was not detected in any of the samples of this delivery group.

Method Blanks

Low concentrations of nine non-target compounds were detected in the method blank.

When one of these compounds was detected in a sample it was flagged with the "R-MB" qualifier.

Field Blank

A field blank was not analyzed with this sample delivery group.

Storage Blank

A storage blank was not analyzed with this sample delivery group.

Equipment Blank

An equipment blank was not analyzed with this sample delivery group.

Internal Standard Areas and Retention Times

The recoveries and retention times of all internal standards were within the required quality control limits.

Instrument Detection Limits

No problems were detected with the instrument detection limits.

Sample Results

Sample TP-04/SS-1 (Lab. #: E5142)

The volatile compound 1,1,2,2-tetrachloroethane was reported as a non-target in the semivolatile fraction. This was rejected during the data validation. It should be noted that this compound was not detected in the volatile fraction.

No other problems were found with the reported results of any of the samples of this delivery group.

	1B		EPA SAN	IPLE NO.
	NIVOLATILE ORGANICS ANAL			141
Lab Name: O'Brien &	& Gere Laboratories, Inc.	ontract: O'Brien & G	<u>i</u> L	
Lab Code: OBG	Case No.: 3435.229.	SAS No.: S	SDG No.: 8	85,8696
Matrix: (soil/water)	4	Lab Sample ID:	TP-11/SS-	3
Sample wt/vol:	30 (g/ml) G	Lab File ID:	N0133.D	<u></u>
Level: (low/med)		Date Received:	08/19/04	
	decanted:(Y/N) N	Date Extracted:	08/24/04	
		Date Analyzed:		
	/olume: 500 (uL)			
Injection Volume: 2.	0 (uL)	Dilution Factor.	1.0	
GPC Cleanup: (Y/N)	<u>Y</u> pH: <u>7</u>			
~		CONCENTRATION	UNITS:	
	60400180	(ug/L or ug/Kg)		Q
CAS NO.	COMPOUND			
100-52-7	Benzaldehyde		450	U
98-86-2	Acetophenone		450	<u> <u> </u></u>
111-44-4	bis(2-Chloroethyl)ether		450	<u> </u>
105-60-2	Caprolactam		450	<u> </u>
108-95-2	Phenol		450	U
92-52-4	1,1'-Biphenyl	·	450	<u> </u>
.95-57-8	2-Chlorophenol		450	Ū
191-22-49	Atrazine		450	Ū
108-60-1	2,2"-oxybis(1-chloropropa		450	Ū
95-48-7	2-Methylphenol Hexachloroethane		450	υ
67-72-1	N-Nitroso-di-n-propylami	ne l	450	U
621-64-7	4-Methylphenol	<u></u>	450	U
106-44-5	Nitrobenzene	· · · .	450	U
<u>98-95-3</u> 78-59-1	Isophorone		450	U
88-75-5	2-Nitrophenol		450	<u> </u>
105-67-9	2,4-Dimethylphénol		450	<u> </u>
111-91-1	bis(2-Chloroethoxy)meth	ane	450	<u>ບ</u> ບ
120-83-2	2,4-Dichlorophenol		450	<u> </u>
91-20-3	Naphthalene		<u>450</u> 450	<u> </u>
106-47-8	4-Chloroaniline	<u></u>	450	<u> </u>
87-68-3	Hexachlorobutadiene		450	Ŭ
59-50-7 -	4-Chloro-3-methylpheno	·	450	Ū
91-57-6	2-Methylnaphthalene Hexachlorocyclopentadik		450	U
77-47-4	2,4,6-Trichlorophenol	<u></u>	450	U
88-06-2	2,4,5-Trichlorophenol		1100	U
<u>95-95-4</u> 91-58-7	2-Chloronaphthalene		450	U
88-74-4	2-Nitroaniline		1100	U
208-96-8	Acenaphthylene		450	<u> </u>
131-11-3	Dimethyl phthalate		450	<u>U</u>
606-20-2	2,6-Dinitrotoluene		450	<u></u>
83-32-9	Acenaphthene		450	U U
99-09-2	3-Nitroaniline	<u> </u>	1100	
51-28-5	2,4-Dinitrophenol		<u>1100</u> 450	U
132-64-9	Dibenzofuran		450	U U
121-14-2	2,4-Dinitrotoluene	l		<u> </u>

	1C			EPA SAN	APLE NO.
•	OLATILE ORGANICS A			E5	141
Lab Name: O'Brien & G	Gere Laboratories, Inc.	Contract: O'B	nien & G	L	
Lab Code: OBG	Case No.: 3435.22	9. SAS No.:	SD	G No.: 80	585,8696
Matrix: (soil/water) SC		Lab Sar	nple ID: 📋	rp-11/SS-	3
Sample wt/vol: 30	(g/ml) G	Lab File	ID:	10133.D	
Level; (low/med) LC		Date Re	ceived: (08/19/04	
% Moisture: 26	deserted:(V(NI)		-		
			- two de	000000	
Concentrated Extract Vol	ume: 500 (uL)	Date Ar	-		
Injection Volume: 2.0	(uL)	Dilution	Factor:	1.0	
GPC Cleanup: (Y/N)					
"					
		CONCENT			~
CAS NO.	COMPOUND	(ug/L or ug/	Kg) <u>UG</u>	/KG	Q
·····	·			1100	υ
100-02-7	4-Nitrophenol			450	U
86-73-7	Fluorene 4-Chlorophenyl pheny	d other		450	U
7005-72-3				450	U
84-66-2	Diethyl phthalate			1100	U
100-01-6	4-Nitroaniline 4,6-Dinitro-2-methylp	henol		1100	U
534-52-1	n-Nitrosodiphenylami		+	450	U
86-30-6	4-Bromophenyl pheny	vi ether		450	U
101-55-3	4-Bromophenyr phen Hexachlorobenzene			450	U
118-74-1				1100	U
87-86-5	Pentachiorophenol			63	J
85-01-8	Phenanthrene			450	U
120-12-7	Anthracene Di-n-butyl phthalate		-	450	U
84-74-2	Carbazole			450	U
86-74-8	and the second second second second second second second second second second second second second second second			140	J
206-44-0	Fluoranthene		1	260	J
129-00-0	Pyrene Butyl benzyl phthalat			45	J
85-68-7	3,3'-Dichlorobenzidin	×		450	U
91-94-1	Benzo[a]anthracene	×		62	J
56-55-3				98	J
218-01-9	Chrysene bis(2-Ethylhexyl)phth	alate		1300	· ·
117-81-7	Dis(2-Eurymexy)pha Di-n-octyl phthalate			450	Û
117-84-0	Benzo[b]fluoranthem	•		91	J
205-99-2	Benzo[k]fluoranthene	÷	_	450	Ŭ
207-08-9	Benzo[a]pyrene			450	U
50-32-8	Indeno[1,2,3-cd]pyre	ne		450	U
193-39-5	Dibenz[a,h]anthrace	he		450	U
53-70-3 191-24-2	Benzolg,h,i]perylene		1	450	U

309

	SE	MIVOLATILE ORG	1F ANICS AN	ALYSIS DA	TA SHEET	EPA SAMPLE NO.
		TENTATIVELY	DENTIFIE	D COMPOL	JNDS	E5141
Lab Name:	O'Brien	& Gere Laboratorie	es, Inc.	Contract:	O'Brien & G	
Lab Code:	OBG	Case No.:	3435.229	SAS No	.: S	DG No.: 8685,8696
Matrix: (soil/	water)	SOIL		Lat	o Sample ID:	TP-11/SS-3
Sample wt/v	ol:	30 (g/ml)	<u> </u>	_ Lai	o File ID:	N0133.D
Level: (low/i	med)	LOW		Da	te Received:	08/19/04
% Moisture:	26	decanted: ((Y/N) <u>1</u>	N Da	te Extracted:	08/24/04
Concentrate	d Extract	Volume: 500	(uL)	Da	te Analyzed:	09/20/04
Injection Vol			,	Dil	ution Factor:	1.0
CDC Cleanu		V nH'7				

CONCENTRATION UNITS:

Number TICs found:	9	(ug/L or ug/Kg)	UG/KG	· · · · · · · · · · · · · · · · · · ·	1
CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q	
4	unknown	4.84	670	XR	MB
	unknown	5.20	1600	18	m.B
2.	unknown	7.12	. 680	J	
3.	unknown	7.39	1200	JR	m.B
4.	unknown hydrocarbon	15.29	830	J	
5.	unknown hydrocarbon	15.79	1200	J	
6.	unknown hydrocarbon	16.66	1100	J	
	unknown	19.20	1200	J]
<u> 8. </u>	unknown	20.09	950	J]

FORM I SV-TIC

		18				EPA SA	MPLE NO
, 		VOLATILE ORGANICS A Gere Laboratories, Inc.	•			E	5142
							2625 2606
Lab Code:	OBG	Case No.: 3435.22	<u>9.</u> SAS	NO.:	50	G INU	0000,0090
Matrix: (so	il/water) S	SOIL		Lab Sam	ipie ID: [TP-04-/S	<u>S-1</u>
Samole wt	/vol: 3	0 (g/ml) <u>G</u>		Lab File	ID: İ	N0134.D	
					- ceived: (
	v/med) <u>L</u>				-		
% Moisture	e: <u>13</u>	decanted:(Y/N)	N	Date Ext	racted:	08/24/04	
Concentra	ted Extract Vo	olume: 500 (uL)		Date An	alyzed: 🧕	09/20/04	
	olume: 2.0			Dilution	Factor:	1.0	
•					-		
GPC Clear	nup: (Y/N)	Y pH; <u>7</u>					
	,		co	NCENTR	ATION U	INITS:	
~ ~ ~		COMPOUND		/L or ug/k			Q
GAS	NO.	COMPOUND	lug	re or ugrr	-a) <u>-00</u>		
100	-52-7	Benzaldehyde	<u> </u>		· · · ·	380	U
	36-2	Acetophenone				380	U
	-44-4	bis(2-Chloroethyl)ethe	<u>भ</u>			380	U
	-60-2	Caprolactam		. <u></u> .		46	J
108	-95-2	Phenol	<u> </u>		ļ	380	<u> </u>
92-	52-4	1,1'-Biphenyl				380	U U
	57-8	2-Chlorophenol			······	<u>380</u> 380	
	-22-49	Atrazine				380	
	-60-1	2,2'-oxybis(1-chloropr	opane)			380	Ū
	48-7	2-Methylphenol Hexachloroethane		<u> </u>		380	T U
	72-1	N-Nitroso-di-n-propyla	amine			380	U
	<u>-64-7</u> -44-5	4-Methylphenol			1	380	U
- and the second second second second second second second second second second second second second second se	95-3	Nitrobenzene				380	U
	59-1	Isophorone				380	U
	75-5	2-Nitrophenol			Ļ	380	
	-67-9	2,4-Dimethylphenol			ļ	380	
111	-91-1	bis(2-Chloroethoxy)m	ethane	·		380	
	-83-2	2,4-Dichlorophenol				380	<u> </u>
	20-3	Naphthalene	. <u> </u>		· · · · · · · · · · · · · · · · · · ·	380 380	+- <u>Ŭ</u>
	47-8	4-Chloroaniline Hexachlorobutadiene			+	380	U
the second second second second second second second second second second second second second second second s	<u>68-3</u>	4-Chloro-3-methylphe		<u> </u>	<u> -</u>	380	U
	50-7 - 57-6	2-Methylnaphthalene		<u> </u>	1	380	U
	47-4	Hexachlorocyclopent				380	U
هم متبعيبها	06-2	2,4,6-Trichloropheno				380	U
· · · · · · · · · · · · · · · · · · ·	95-4	2,4,5-Trichloropheno				960	U
	58-7	2-Chloronaphthalene		······································	<u> </u>	380	U
	74-4	2-Nitroaniline				960	
	-96-8	Acenaphthylene				380	
	-11-3	Dimethyl phthalate	<u> </u>		<u> </u>	<u>380</u> 380	
the second second second second second second second second second second second second second second second se	-20-2	2,6-Dinitrotoluene				380	U
	32-9	Acenaphthene			+	960	
	<u>09-2</u>	3-Nitroaniline 2,4-Dinitrophenol	<u> </u>			960	t U
	28-5	Dibenzofuran			+	380	Ŭ
the second second second second second second second second second second second second second second second s	2-64-9 -14-2	2.4-Dinitrotoluene			1	380	U

FORM | SV-1

	6 m an		10		~ ~ ~		EPA S/	AMPLE NO.
	SEMI	OLATILE ORG	ANICS AN	ALYSIS DA	ATA SHE	=1		5142
Lab Name:	O'Brien & C	Sere Laboratorie	es, Inc.	Contract:	O'Brien	<u>& G</u>	L	
Lab Code:	OBG	Case No.:	3435.229.	SAS No	.:	SD	G No.:	8685,8696
Matrix: (soil/	water) SC	DIL		Lal	o Sample	ID: 1	rp-04-/s	S-1
Sample wt/vo	ol: 30) (g/ml)	G			-	• • • • • •	
Level: (low/n						-		
•					te Receiv		· ··· · ···	
		decanted:(Dat	te Extract	ed: _	18/24/04	· ·
Concentrated	J Extract Vol	ume: 500	(uL)	Dat	te Analyz	ed: <u>C</u>	9/20/04	
Injection Volu	ime: 2.0	(uL)		Dilu	ution Fact	or: 1	.0	
		_`` Y pH:7	,			_		
		Prir <u>_</u>					•	
				CONCE	ENTRATI	ON U	NITS:	•
CAS NO).	COMPOUND	•	(ug/L of	r ug/Kg)	UG/	KG	Q
	~	T	·····		·····			-
100-02	<u>-7</u>	4-Nitrophenol					960	<u>U</u>
86-73- 7005-7		Fluorene 4-Chlorophen	ul nhanul ai	lh a r			380	UUU
84-66-2		Diethyl phthal					<u>380</u> 380	
100-01		4-Nitroaniline			·		960	U
	2-1	4,6-Dinitro-2-		ol	<u> </u>	•••	960	U
. 86-30-1		n-Nitrosodiph					380	Ū
101-55		4-Bromophen				<u> </u>	380	Ŭ
118-74		Hexachlorobe					380	Ŭ
87-86-		Pentachloropi		······································			960	Ū
85-01-6		Phenanthrene	}				380	U
120-12		Anthracene					380	U
84-74-2	2	Di-n-butyl pht	halate				380	U
86-74-8	3	Carbazole					380	U
206-44	-0	Fluoranthene					380	υ
129-00	and the second data was a second data was a second data was a second data was a second data was a second data w	Pyrene					380	U
85-68-7		Butyl benzyl p					380	U
91-94-1		3,3'-Dichlorob					380	U
56-55-3		Benzolalanthr	acene			·	380	U
218-01-		Chrysene		·			380	<u> </u>
117-81-		bis(2-Ethylhex		3			380	U
117-84		Di-n-octyl phth				·	380	U
205-99-		Benzo[b]fiuora		<u></u>	<u></u>		380	U
207-08-		Benzo[k]fluora		<u> </u>			380	U
50-32-8		Benzo[a]pyrer		<u> </u>			380	U
193-39-		Indeno[1,2,3-c					380	<u> </u>
53-70-3		Dibenz[a,h]an		······			380	U ·
191-24	-2	Benzo[g,h,i]pe	ryiene		1		380	U

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

٦

Г

Lab Name:	O'Brien	& Gere Laboratories, Inc.	Contract: O'Brien & G	E5142
Lab Name. Lab Code:	OBG	Case No.: <u>3435.228</u>	9. SAS No.: SI	DG No.: 8685,8696
Matrix: (soil/	water)	SOIL	Lab Sample ID:	TP-04-/SS-1
Sample wt/v	ol:	30 (g/ml) <u>G</u>	Lab File ID:	N0134.D
Level: (low/i	med)	LOW	Date Received:	08/19/04
% Moisture:	13	decanted: (Y/N)	N Date Extracted:	08/24/04
Concentrate	d Extract	Volume: 500 (uL)	Date Analyzed:	09/20/04
Injection Vol	ume: <u>2.</u>	0(uL)	Dilution Factor:	1.0
GPC Cleanu	ip: (Y/N)	Y pH: <u>7</u>		

CONCENTRATION UNITS:

Number TICs found:	9	(ug/L or ug/Kg)		1	ר
CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q	
1	unknown	4.84	570	NR	m.
2	unknown	5.19	360	NR	m.
3. 000079-34-5	Ethane, 1,1,2,2-tetrachioro-	6.87	280	THE	V V
3. 000075-04-0	unknown hydrocarbon	• 7.13	1000	<u> </u>]
<u>4.</u> 5.	unknown	7.38	250	AK	m
	unknown	13.67	430	XR	m
6. 7. 000057-10-3	Hexadecanoic acid	17.84	280	JN	<u> </u>
	unknown	19.15	270	J	1
<u>8.</u> 9.	unknown	29.64	740	J	J

	1B		EPA SAM	PLE NO.
	VOLATILE ORGANICS ANALYSIS DAT Gere Laboratories, Inc. Contract:		E51	43
	Case No.: 3435.229. SAS No.:		G No · 86	85 8606
•••••				
Matrix: (soil/water) S	*****	Sample ID:	·····	· · · · · · · · · · · · · · · · · · ·
Sample wt/vol: 30	0 (g/ml) <u>G</u> Lab	File ID: 1	N0135.D	<u> </u>
Level: (low/med)	OW Date	e Received: ()8/19/04	
	decanted:(Y/N) N Date	e Extracted: ()8/24/04	<u></u>
Concentrated Extract Vo		- a Analyzed: (
Injection Volume: 2.0		tion Factor: 1		
	<u> </u>			
GPC Cleanup: (Y/N)	<u> </u>			
	CONCE	NTRATION U	NITS:	
CASNO		ug/Kg) UG/		Q
		-99/ 0.0/		-
100-52-7	Benzaldehyde	5	52000	U
98-86-2	Acetophenone	5	2000	U .
111-44-4	bis(2-Chloroethyl)ether		52000	U
105-60-2	Caprolectam		52000	U
108-95-2	Phenol		2000	U
92-52-4	1,1'-Biphenyl		52000	
95-57-8	2-Chlorophenol	the second second second second second second second second second second second second second second second s	2000	U
191-22-49	Atrazine		2000	U
108-60-1	2,2'-oxybis(1-chloropropane)	the second second second second second second second second second second second second second second second s	2000	U
95-48-7	2-Methylphenol		2000	U
67-72-1	Hexachloroethane		2000	U
621-64-7	N-Nitroso-di-n-propylamine		2000	U
106-44-5	4-Methylphenol		2000	U
98-95-3	Nitrobenzene	the second second second second second second second second second second second second second second second s	2000	U
78-59-1	Isophorone		2000	<u>U</u>
88-75-5	2-Nitrophenoi	the second second second second second second second second second second second second second second second s	2000	<u>U</u>
105-67-9	2,4-Dimethylphenol		2000	<u>U</u> .
111-91-1	bis(2-Chloroethoxy)methane		2000	
120-83-2	2,4-Dichlorophenol	in the second second second second second second second second second second second second second second second	2000 2000	U
91-20-3	Naphthalene		2000	U
106-47-8	4-Chloroaniline		2000	Ŭ
87-68-3	Hexachlorobutadiene 4-Chloro-3-methylphenol		2000	U
<u>59-50-7</u>	2-Methylnaphthalené		2000	U
<u>91-57-6</u> 77-47-4	Hexachlorocyclopentadiene	the second second second second second second second second second second second second second second second s	2000	U
88-06-2	2,4,6-Trichlorophenol		2000	Ŭ l
95-95-4	2.4.5-Trichlorophenol		80000	Ū.
91-58-7	2-Chloronaphthalene		2000	Ŭ
- 88-74-4	2-Nitroaniline	and the second	30000	U
208-96-8	Acenaphthylene	and the second second second second second second second second second second second second second second second	2000	Ŭ
131-11-3	Dimethyl phthalate	the second data was not determined by the second data was not been as a second data was not been as a second da	2000	U
606-20-2	2,6-Dinitrotoluene		52000	U.
83-32-9	Acenaphthene		52000	U
99-09-2	3-Nitroaniline		0000	U
51-28-5	2.4-Dinitrophenol		30000	U
132-64-9	Dibenzofuran		2000	U
121-14-2	2.4-Dinitrotoluene		52000	U

	1C		EPA SA	MPLE NO.
SEMIV	OLATILE ORGANICS ANAL	YSIS DATA SH	IEET	
Lab Name: O'Brien & G	ere Laboratories, Inc. C	ontract: O'Bri		5143
Lab Code: OBG	Case No.: 3435.229.	SAS No.:	SDG No.:	8685,8696
Matrix: (soil/water) SO	HL ·	Lab Sam	ple ID: TP-07/SS	5-2
Sample wt/vol: 30	(ġ/ml) G	Lab File I	D: N0135.D	
Levei: (low/med) LO	W	Date Rec	eived: 08/19/04	
% Moisture: 36	decanted:(Y/N) N	Date Extr	acted: 08/24/04	- <u></u>
Concentrated Extract Volu			lyzed: 09/20/04	
Injection Volume: 2.0	• · · ·	Dilution F	actor: 100.0	
GPC Cleanup: (Y/N)	Y pH: 7			
24 · ·		CONCENTR	ATION UNITS:	
				Q
CAS NO.	COMPOUND	(ug/L or ug/K	g) <u>UG/KG</u>	- 4
100-02-7	4-Nitrophenol	<u> </u>	130000	U
86-73-7	Fluorene	·····	52000	U
7005-72-3	4-Chlorophenyl phenyl eth	er	52000	U
84-66-2	Diethyl phthalate	·····	52000	U
100-01-6	4-Nitroaniline		130000	.U
534-52-1	4,6-Dinitro-2-methylpheno	4	130000	U
86-30-6	n-Nitrosodiphenylamine	-	52000	U
101-55-3	4-Bromophenyl phenyl eth	ier	52000	U
118-74-1	Hexachlorobenzene	·	52000	U
87-86-5	Pentachiorophenol		130000	U
85-01-8	Phenanthrene		52000	U
120-12-7	Anthracene		52000	U
84-74-2	Di-n-butyl phthalate		52000	U
86-74-8	Carbazole		52000	U
206-44-0	Fluoranthene		52000	U
129-00-0	Pyrene		52000	U
85-68-7	Butyl benzyl phthalate		52000	U
91-94-1	3,3'-Dichlorobenzidine		52000	U
56-55-3	Benzo[a]anthracene		52000	U
218-01-9	Chrysene		52000	U
117-81-7	bis(2-Ethylhexyl)phthalate)	62000	D
117-84-0	Di-n-octyl phthalate		52000	U
205-99-2	Benzolblfluoranthene		52000	U
207-08-9	Benzo[k]fluoranthene		52000	<u> </u>
50-32-8	Benzo[a]pyrene		52000	U
193-39-5	Indeno[1,2,3-cd]pyrene		52000	U
53-70-3	Dibenz[a,h]anthracene		52000	U
191-24-2	Benzo(g,h,i]perylene		52000	<u> </u>

	S	EMIVOL	ATILE ORG	ANICS AN	IALYSIS DA	TA SHEET	EPA SAMPLE NO.
		TEN	TATIVELY	DENTIFIE	D COMPOL	JNDS	E5143
Lab Name:	O'Brier	n & Gere	Laboratorie	es, Inc.	Contract:	O'Brien & G	
Lab Code:	OBG	······	Case No.:	3435.229	SAS No	.: S	DG No.: 8685,8696
Matrix: (soil/	water)	SOIL		į .	Lat	o Sample ID:	TP-07/SS-2
Sample wt/v	oi:	30	(g/ml)	ġ	_ Lat	o File ID:	N0135.D
Level: (iow/	med)	LOW		ł	Dat	te Received:	08/19/04

N

 % Moisture:
 36
 decanted: (Y/N)

 Concentrated Extract Volume:
 500
 (uL)

 Injection Volume:
 2.0
 (uL)

 GPC Cleanup: (Y/N)
 Y
 pH:
 7

CONCENTRATION UNITS:

.

Date Extracted: 08/24/04

Date Analyzed: 09/20/04

Dilution Factor: 100.0

Number TICs found:	10	(ug/L or ug/Kg)			
CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	٩	
1.	unknown	13.43	13000	JD	
2.	unknown	13.72	11000	JD	
3.	unknown	13.80	25000	JD	
4.	unknown	14.75	24000	JD	
5.	unknown hydrocarbon	15.29	12000	JD	
6.	unknown hydrocarbon	15.79	36000	JD	
7	unknown hydrocarbon	16.66	40000	JD	
8.	unknown	19.18	37000	JD	
9.	unknown	25.21	23000	JD	
<u>0.</u> 10.	unknown	25.80	35000	JD	

966

	1B		EPA SA	MPLE NO.
	OLATILE ORGANICS ANALYSIS E ere Laboratories, Inc. Contract		E	5216
			-	
	Case No.: 3435.229. SAS N			
Matrix: (soil/water) SO	<u>1L L</u>	ab Sample ID:	TP-10/85	i-4
Sample wt/vol: 30	(g/ml) <u>G</u> L	ab File ID:	N0136.D	
Level: (low/med) LO		ate Received:	08/19/04	
	decanted:(Y/N) N D			
	· · · · · · · · · · · · · · · · · · ·			
Concentrated Extract Volu	· · ·	ate Analyzed:		
Injection Volume: 2.0	_(uL)D	ilution Factor:	10.0	
GPC Cleanup: (Y/N)	Y pH: 7			
· · · · ·				
		CENTRATION		~
CAS NO.	COMPOUND (ug/L	or ug/Kg) UC	j/KG	Q.
100-52-7	Benzaldehyde	<u> </u>	6100	U
98-86-2	Acetophenone	<u>``_</u>	6100	U
111-44-4	bis(2-Chloroethyl)ether		6100	U
105-60-2	Caprolactam		6100	U
108-95-2	Phenol		6100	U
92-52-4	1,1'-Biphenyl		6100	U
95-57-8	2-Chlorophenol		6100	U
191-22-49	Atrazine		6100	U
108-60-1	2,2'-oxybis(1-chloropropane)		6100	U
95-48-7	2-Methylphenol		6100	U
67-72-1	Hexachloroethane		6100	U
621-64-7	N-Nitroso-di-n-propylamine		<u>6100</u>	UU
106-44-5	4-Methylphenol		6100	
98-95-3	Nitrobenzene		6100	U
78-59-1	Isophorone		<u>6100</u> 6100	U U
88-75-5	2-Nitrophenol		6100	U
105-67-9	2,4-Dimethylphenol bis(2-Chloroethoxy)methane		6100	Ŭ
111-91-1	2,4-Dichlorophenol		6100	U U
120-83-2	Naphthalene	•	6100	Ū
<u>91-20-3</u> 106-47-8	4-Chloroaniline	··	6100	Ū
87-68-3	Hexachlorobutadiene		6100	Ū
59-50-7	4-Chloro-3-methylphenol		6100	U
91-57-6	2-Methylnaphthalene		6100	U
77-47-4	Hexachlorocyclopentadiene		6100	U
88-06-2	2.4.6-Trichlorophenol		6100	U
95-95-4	2,4,5-Trichlorophenol		15000	U .
91-58-7	2-Chloronaphthalene		6100	U
88-74-4	2-Nitroaniline		15000	U
208-96-8	Acenaphthylene		6100	U
131-11-3	Dimethyl phthalate		6100	U
606-20-2	2,6-Dinitrotoluene	·	6100	U
83-32-9	Acenaphthene		6100	U
99-09-2	3-Nitroaniline		15000	U
51-28-5	2,4-Dinitrophenol		15000	U
132-64-9	Dibenzofuran		6100	U
121-14-2	2,4-Dinitrotoluene		6100	<u> </u>

FORM SV-1

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET Lab Name: O'Brien & Gere Laboratories, Inc. Contract: O'Brien & G Lab Code: OBG Case No.: 3435.229. SAS No.: SDG No.: 8685,8596 Matrix: (soli/water) SOIL Lab Sample ID: TP-10/SS-4 Sample wt/vol: 30 (g/ml) G Lab Sample ID: TP-10/SS-4 Sample wt/vol: 30 (g/ml) G Lab File ID: N0136.D Level: (low/med) LOW Date Received: 08/24/04 Concentrated Extract Volume: 500 (uL) Date Analyzed: 09/20/04 Injection Volume: 2.0 (uL) Date Analyzed: 09/20/04 Injection Volume: 2.0 (uL) Dilution Factor: 10.0 GPC Cleanup: Y/N Y pH: 7 CONCENTRATION UNITS: CAS NO. COMPOUND (ug/L or ug/Kg) UG/KG Q 100-01-6 4-Nitropaniane 15000 U 6466-2 Diethyl phthalate 6100 U 100-01-7 <th></th> <th>1C SEMIVOLATILE ORGANICS AND</th> <th></th> <th>EPA S</th> <th>AMPLE NO.</th>		1C SEMIVOLATILE ORGANICS AND		EPA S	AMPLE NO.
Lab Name: OBJER & Gere Laboratories, Inc. Contract: O'Brien & G Contract: O'Brien & G Lab Code: OBG Case No.: 3435.229. SAS No.: SDG No.: 8685,8696 Matrix: (soli/water) SOIL Lab Sample ID: TP-10/SS-4 Sample wt/vol: 30 (g/ml) G Lab Sample ID: N0138.D Level: (low/med) LOW Date Received: 08/19/04 % Moisture: _45 decanted:(Y/N) N Date Extracted: 08/24/04 Concentrated Extract Volume: 500 (uL) Date Analyzed: 09/20/04 Injection Volume: 2.0 (uL) Date Analyzed: 09/20/04 GPC Cleanup: (Y/N) Y pH: 7 CONCENTRATION UNITS: CAS NO. COMPOUND (ug/L or ug/Kg) UG/KG Q 100-02-7 4-Nitrophenol 15000 U 86-32-1 Diethyl phthalate 6100 U 100-01-6 4-Nitroantinee 6100 U 101-			-5216		
Matrix: SOIL				<u> </u>	
Sample wt/vol: 30 (g/ml) G Lab File ID: N0136.D Level: (low/med) LOW Date Received: 08/19/04 % Moisture: 45 decanted:(Y/N) N Date Extracted: 08/24/04 Concentrated Extract Volume: 500 (uL) Date Analyzed: 09/20/04 Injection Volume: 2.0 (uL) Dilution Factor: 10.0 GPC Cleanup: (Y/N) Y pH: 7	Lab Code: OBC	G Case No.: <u>3435.229</u> .	SAS No.:	SDG No.:	8685,8696
Level: (low/med) LOW Date Received: 08/19/04 % Moisture: 45 decanted:(Y/N) N Date Extracted: 08/24/04 Concentrated Extract Volume: 500 (uL) Date Analyzed: 09/20/04 Injection Volume: 2.0 (uL) Dilution Factor: 10.0 GPC Cleanup: (Y/N) Y pH: 7 CONCENTRATION UNITS: CAS NO. COMPOUND (ug/L or ug/Kg) UG/KG Q 100-02-7 4-Nitrophenol 15000 U 86-73-7 Fluorene 6100 U 7005-72-3 4-Chitophenyl phenyl ether 6100 U 100-01-6 4-Nitroaniline 15000 U 101-55-3 4-Bromophenyl phenyl ether 6100 U 118-74-1 Hexachlorobenzene 6100 U 118-74-1 Hexachlorobenzene 6100 U 120-12-7 Anitracene 6100 U 120-12-7 Anitracene 6100 <td>Matrix: (soil/water)</td> <td>SOIL</td> <td>Lab Sample II</td> <td>): TP-10/S</td> <td>S-4</td>	Matrix: (soil/water)	SOIL	Lab Sample II): TP-10/S	S-4
Level: (low/med) LOW Date Received: 08/19/04 % Moisture: 45 decanted:(Y/N) N Date Extracted: 08/24/04 Concentrated Extract Volume: 500 (uL) Date Analyzed: 09/20/04 Injection Volume: 2.0 (uL) Dilution Factor: 10.0 GPC Cleanup: (Y/N) Y pH: 7 CONCENTRATION UNITS: CAS NO. COMPOUND (ug/L or ug/Kg) UG/KG Q 100-02-7 4-Nitrophenol 15000 U 86-73-7 Fluorene 6100 U 7005-72-3 4-Chitophenyl phenyl ether 6100 U 100-01-6 4-Nitroaniline 15000 U 101-55-3 4-Bromophenyl phenyl ether 6100 U 118-74-1 Hexachlorobenzene 6100 U 118-74-1 Hexachlorobenzene 6100 U 120-12-7 Anitracene 6100 U 120-12-7 Anitracene 6100 <td>Sample wt/vol:</td> <td>30 (g/ml) G</td> <td>Lab File ID:</td> <td>N0136.D</td> <td>· · · · · · · · · · · · · · · · · · ·</td>	Sample wt/vol:	30 (g/ml) G	Lab File ID:	N0136.D	· · · · · · · · · · · · · · · · · · ·
% Moisture: 45 decanted:(Y/N) N Date Extracted: 08/24/04 Concentrated Extract Volume: 500 (uL) Date Analyzed: 09/20/04 Injection Volume: 2.0 (uL) Date Analyzed: 09/20/04 Injection Volume: 2.0 (uL) Date Analyzed: 09/20/04 GPC Cleanup: (Y/N) Y pH: 7 CONCENTRATION UNITS: CAS NO. COMPOUND (ug/L or ug/Kg) UG/KG Q 100-02-7 4-Nitrophenol 15000 U 86-73-7 Fluorene 6100 U 705-72-3 4-Chlorophenyl phenyl ether 6100 U 100-01-6 4-Nitroaniline 15000 U 534-52-1 4.6-Dinitro-2-methylphenol 15000 U 118-74-1 Hexachlorophenyl ether 6100 U 118-74-1 Hexachlorophenol 15000 U 86-01-8 Phenanthrene 6100 U 120-12-7 Anitracene <t< td=""><td></td><td></td><td></td><td>08/19/04</td><td></td></t<>				08/19/04	
Concentrated Extract Volume: 500 (uL) Date Analyzed: 09/20/04 Injection Volume: 2.0 (uL) Dilution Factor: 10.0 GPC Cleanup: YN Y pH: 7 CONCENTRATION UNITS: CAS NO. COMPOUND (ug/L or ug/Kg) UG/KG Q 100-02-7 4-Nitrophenol 15000 U 86-73-7 Fluorene 6100 U 7005-72-3 4-Chlorophenyl phenyl ether 6100 U 84-66-2 Diethyl phthalate 6100 U 100-01-6 4-Nitrosoliphenylamine 15000 U 86-30-6 n-Nitrosociphenylamine 6100 U 101-55-3 4-Bromophenyl phenyl ether 6100 U 118-74-1 Hexachloroberzene 6100 U 86-30-8 Pentachlorophenol 15000 U 86-30-8 Phenanthrene 6100 U 86-44-0 Fluoranthene 6100 U 82-01-8 Phenanthrene 6100 </td <td>% Moisture:</td> <td>45 decanted (Y/N) N</td> <td></td> <td></td> <td></td>	% Moisture:	45 decanted (Y/N) N			
Injection Volume: 2.0 (uL) Dilution Factor: 10.0 GPC Cleanup: Y pH: 7					
GPC Cleanup: (Y/N) Y pH: 7 CONCENTRATION UNITS: CONCENTRATION UNITS: CAS NO. COMPOUND (ug/L or ug/Kg) QG/KG Q 100-02-7 4-Nitrophenol 15000 U SCONCENTRATION UNITS: CONCENTRATION UNITS: CONCENTRATION UNITS: 00-02-7 4-Nitrophenol 15000 U 86-73-7 Fluorene 6100 U 36-72-3 4-Chlorophenyl phenyl ether 6100 U 84-65-2 Diethyl phthalate 6100 U 86-30-6 n-Nitrosodiphenyl ether 6100 U 101-55-3 4-Bitrohoroberizene 6100 U 86-50 Pentachlorophenol 15000			-	·····	
CAS NO. COMPOUND CONCENTRATION UNITS: (ug/L or ug/Kg) UG/KG Q 100-02-7 4-Nitrophenol 15000 U 86-73-7 Fluorene 6100 U 7005-72-3 4-Chlorophenyl phenyl ether 6100 U 84-66-2 Diethyl phthalate 6100 U 100-01-6 4-Nitroanline 15000 U 105-72-3 4-Chlorophenyl phenyl ether 6100 U 100-01-6 4-Nitroanline 15000 U 100-01-6 4-Nitroanline 6100 U 101-55-3 4-Bromophenyl phenyl ether 6100 U 101-55-3 4-Bromophenyl phenyl ether 6100 U 118-74-1 Hexachlorophenol 15000 U 120-12-7 Anthracene 6100 U 86-74-8 Carbazole 6100 U 206-44-0 Fluoranthene 6100 U 129-00-0 Pyrene 6100 U 85-68-7 <t< td=""><td></td><td></td><td>Dilution Factor</td><td>: <u>10.0</u></td><td></td></t<>			Dilution Factor	: <u>10.0</u>	
CAS NO. COMPOUND (ug/L or ug/Kg) UG/KG Q 100-02-7 4-Nitrophenol 15000 U 86-73-7 Fluorene 6100 U 7005-72-3 4-Chlorophenyl phenyl ether 6100 U 84-66-2 Diethyl phthalate 6100 U 100-01-6 4-Nitroantline 15000 U 534-52-1 4,6-Dinitro-2-methylphenol 15000 U 86-30-6 n-Nitrosodiphenylamine 6100 U 101-55-3 4-Bromophenyl phenyl ether 6100 U 101-55-3 4-Bromophenyl phenyl ether 6100 U 118-74-1 Hexachlorobenzene 6100 U 87-86-5 Pentachlorophenol 15000 U 86-74-8 Carbazole 6100 U 86-74-8 Carbazole 6100 U 206-44-0 Fluoranthene 6100 U 85-68-7 Butyl benzyl phthalate 6100 U 91-94-11 3,3'-Dichlorobenzidine	GPC Cleanup: (Y/I	N) <u>Y</u> pH: <u>7</u>			
100-02-7 4-Nitrophenol 15000 U 86-73-7 Fluorene 6100 U 7005-72-3 4-Chlorophenyl phenyl ether 6100 U 84-66-2 Diethyl phthalate 6100 U 100-01-6 4-Nitroaniline 15000 U 534-52-1 4,6-Dinitro-2-methylphenol 15000 U 86-30-6 n-Nitrosodiphenylamine 6100 U 101-55-3 4-Bromophenyl phenyl ether 6100 U 118-74-1 Hexachlorobenzene 6100 U 120-12-7 Anthracene 6100 U 86-74-8 Carbazole 6100 U 206-74-8 Carbazole 6100 U 85-68-7 Butyl benzyl phthalate 6100 U 91-94-1 3,3'-Dichlorobenzidine 6100 U 91-94-1 3,3'-Dichlorobenzidine 6100 U 91-94-1 3,3'-Dichlorobenzidine 6100 U 91-94-1 3,3'-Dichlorobenzidine 6100			CONCENTRATIO	N UNITS:	
100-02-7 4-Nitrophenol 15000 U 86-73-7 Fluorene 6100 U 7005-72-3 4-Chlorophenyl phenyl ether 6100 U 84-68-2 Diethyl phthalate 6100 U 100-01-6 4-Nitroaniline 15000 U 534-52-1 4,6-Dinitro-2-methylphenol 15000 U 86-30-6 n-Nitrosodiphenylamine 6100 U 101-55-3 4-Bromophenyl phenyl ether 6100 U 118-74-1 Hexachkoroberzene 6100 U 85-01-8 Pentachkoroberzene 6100 U 86-74-8 Carbazole 6100 U 84-74-2 Di-n-butyl phthalate 6100 U 86-74-8 Carbazole 6100 U 86-74-8 Carbazole 6100 U 91-94-1 3,3'-Dichloroberzidine 6100 U 91-94-1 3,3'-Dichloroberzidine 6100 U 91-94-1 3,3'-Dichloroberzidine 6100 <td< td=""><td>CAS NO.</td><td>COMPOUND</td><td></td><td></td><td>Q</td></td<>	CAS NO.	COMPOUND			Q
86-73-7 Fluorene 6100 U 7005-72-3 4-Chlorophenyl phenyl ether 6100 U 84-66-2 Diethyl phthalate 6100 U 100-01-6 4-Nitroanlline 15000 U 534-52-1 4,6-Dinitro-2-methylphenol 15000 U 86-30-6 n-Nitrosodiphenylamine 6100 U 101-55-3 4-Bromophenyl phenyl ether 6100 U 118-74-1 Hexachlorobenzene 6100 U 85-01-8 Pentachlorobenzene 6100 U 85-01-8 Phenanthrene 6100 U 86-74-8 Carbazole 6100 U 206-44-0 Fluoranthene 6100 U 129-00-0 Pyrene 6100 U 85-68-7 Butyl benzyl phthalate 6100 U 91-94-1 3,3'-Dichorobenzidine 6100 U 91-94-1 3,3'-Dichorobenzidine 6100 U 128-01-9 Chrysene 6100 U </td <td>400.00 7</td> <td></td> <td>······</td> <td>·····</td> <td></td>	400.00 7		······	·····	
7005-72-3 4-Chlorophenyl phenyl ether 6100 U 84-66-2 Diethyl phthalate 6100 U 100-01-6 4-Nitroantline 15000 U 534-52-1 4.6-Dinitro-2-methylphenol 15000 U 86-30-6 n-Nitrosociphenylamine 6100 U 101-55-3 4-Bromophenyl phenyl ether 6100 U 118-74-1 Hexachlorobenzene 6100 U 86-30-6 pentachlorophenol 15000 U 118-74-1 Hexachlorobenzene 6100 U 86-5 Pentachlorophenol 15000 U 86-01-8 Phenanthrene 6100 U 120-12-7 Anthracene 6100 U 84-74-2 Di-n-butyl phthalate 6100 U 120-12-7 Anthracene 6100 U 86-61-8 Carbazole 6100 U 129-00-0 Pyrene 6100 U 129-00-0 Pyrene 6100 U	100-02-7				
84-66-2 Diethyl phthalate 6100 U 100-01-6 4-Nitroaniline 15000 U 534-52-1 4,6-Dinitro-2-methylphenol 15000 U 86-30-6 n-Nitrosodiphenylamine 6100 U 101-55-3 4-Bromophenyl phenyl ether 6100 U 118-74-1 Hexachlorobenzene 6100 U 87-86-5 Pentachlorophenol 15000 U 86-01-3 Phenanthrene 6100 U 84-74-2 Di-n-butyl phthalate 6100 U 84-74-2 Di-n-butyl phthalate 6100 U 86-74-8 Carbazole 6100 U 206-44-0 Fluoranthene 6100 U 129-00-0 Pyrene 6100 U 129-00-0 Pyrene 6100 U 129-00-0 Pyrene 6100 U 129-00-0 Pyrene 6100 U 129-01-9 Chrysene 6100 U 129-02-0					
100-01-6 4-Nitroaniline 15000 U 534-52-1 4,6-Dinitro-2-methylphenol 15000 U 86-30-6 n-Nitrosodiphenylamine 6100 U 101-55-3 4-Bromophenyl phenyl ether 6100 U 118-74-1 Hexachlorobenzene 6100 U 87-86-5 Pentachlorophenol 15000 U 86-01-8 Phenanthrene 6100 U 120-12-7 Anthracene 6100 U 84-74-2 Di-n-butyl phthalate 6100 U 206-44-0 Fluoranthene 6100 U 129-00-0 Pyrene 6100 U 85-68-7 Butyl benzyl phthalate 6100 U 91-94-1 3,3'-Dichlorobenzidine 6100 U 117-81-7 bis(2-Ethylhexyl)phthalate 6100 U 117-84-0 Di-n-octyl phthalate 6100 U 205-99-2 Benzolkiftuoranthene 6100 U 207-08-9 Benzolkiftuoranthene 6100<	7005-72-3				
534-52-1 4.6-Dinitro-2-methylphenol 15000 U 86-30-6 n-Nitrosodiphenylamine 6100 U 101-55-3 4-Bromophenyl phenyl ether 6100 U 118-74-1 Hexachkorobenzene 6100 U 87-86-5 Pentachkorobenzene 6100 U 86-01-8 Phenanthrene 6100 U 120-12-7 Anthracene 6100 U 84-74-2 Di-n-butyl phthalate 6100 U 84-74-2 Di-n-butyl phthalate 6100 U 206-44-0 Fluoranthene 6100 U 129-00-0 Pyrene 6100 U 85-68-7 Butyl benzyl phthalate 6100 U 91-94-1 3,3'-Dichlorobenzidine 6100 U 218-01-9 Chrysene 6100 U 218-01-9 Chrysene 6100 U 218-01-9 Chrysene 6100 U 205-99-2 Benzo[a]anthracene 6100 U <t< td=""><td></td><td></td><td></td><td></td><td></td></t<>					
86-30-6 n-Nitrosodiphenylamine 6100 U 101-55-3 4-Bromophenyl phenyl ether 6100 U 118-74-1 Hexachlorobenzene 6100 U 87-86-5 Pentachlorophenol 15000 U 85-01-8 Phenanthrene 6100 U 86-74-8 Phenanthrene 6100 U 86-74-8 Carbazole 6100 U 206-44-0 Fluoranthene 6100 U 129-00-0 Pyrene 6100 U 85-68-7 Butyl benzyl phthalate 6100 U 91-94-1 3,3'-Dichlorobenzidine 6100 U 26-55-3 Benzo[a]anthracene 6100 U 218-01-9 Chrysene 6100 U 117-81-7 bis(2-Ethylhexyl)phthalate 6100 U 205-99-2 Benzo[b]fluoranthene 6100 U 117-84-0 Di-n-octyl phthalate 6100 U 207-08-9 Benzo[k]fluoranthene 6100 U					
101-55-3 4-Bromophenyl phenyl ether 6100 U 118-74-1 Hexachlorobenzene 6100 U 87-86-5 Pentachlorophenol 15000 U 87-86-5 Pentachlorophenol 15000 U 85-01-8 Phenanthrene 6100 U 120-12-7 Anthracene 6100 U 84-74-2 Di-n-butyl phthalate 6100 U 206-44-0 Fluoranthene 6100 U 129-00-0 Pyrene 6100 U 85-68-7 Butyl benzyl phthalate 6100 U 91-94-1 3,3'-Dichlorobenzidine 6100 U 117-81-7 bis(2-Ethylhexyl)phthalate 6100 U 117-81-7 bis(2-Ethylhexyl)phthalate 6100 U 205-99-2 Benzo[b]fluoranthene 6100 U 207-08-9 Benzo[k]fluoranthene 6100 U 103-39-5 Indeno[1,2,3-cd]pyrene 6100 U 103-39-5 Indeno[1,2,3-cd]pyrene 61			ol		the second second second second second second second second second second second second second second second s
118-74-1 Hexachlorobenzene 6100 U 87-86-5 Pentachlorophenol 15000 U 85-01-8 Phenanthrene 6100 U 120-12-7 Anthracene 6100 U 84-74-2 Di-n-butyl phthalate 6100 U 86-74-8 Carbazole 6100 U 206-44-0 Fluoranthene 6100 U 129-00-0 Pyrene 6100 U 85-68-7 Butyl benzyl phthalate 6100 U 91-94-1 3,3'-Dichlorobenzidine 6100 U 56-55-3 Benzo[ajanthracene 6100 U 117-81-7 bis(2-Ethylhexyl)phthalate 6100 U 117-84-0 Di-n-octyl phthalate 6100 U 205-99-2 Benzo[b]fluoranthene 6100 U 207-08-9 Benzo[k]fluoranthene 6100 U 133-39-5 Indeno[1,2,3-cd]pyrene 6100 U 193-39-5 Indeno[1,2,3-cd]pyrene 6100 U <td></td> <td></td> <td><u>.</u></td> <td></td> <td></td>			<u>.</u>		
87-86-5 Pentachlorophenol 15000 U 85-01-8 Phenanthrene 6100 U 120-12-7 Anthracene 6100 U 84-74-2 Di-n-butyl phthalate 6100 U 86-74-8 Carbazole 6100 U 206-44-0 Fluoranthene 6100 U 129-00-0 Pyrene 6100 U 85-68-7 Butyl benzyl phthalate 6100 U 91-94-1 3,3'-Dichlorobenzidine 6100 U 56-55-3 Benzo[a]anthracene 6100 U 218-01-9 Chrysene 6100 U 218-01-9 Chrysene 6100 U 218-01-9 Chrysene 6100 U 205-99-2 Benzo[A]anthracene 6100 U 205-99-2 Benzo[b]fluoranthene 6100 U 207-08-9 Benzo[k]fluoranthene 6100 U 207-08-9 Benzo[k]fluoranthene 6100 U 207-08-9 <td></td> <td>4-Bromophenyl phenyl el</td> <td>her</td> <td></td> <td>the second second second second second second second second second second second second second second second s</td>		4-Bromophenyl phenyl el	her		the second second second second second second second second second second second second second second second s
85-01-8 Phenanthrene 6100 U 120-12-7 Anthracene 6100 U 84-74-2 Di-n-butyl phthalate 6100 U 86-74-8 Carbazole 6100 U 206-44-0 Fluoranthene 6100 U 129-00-0 Pyrene 6100 U 85-68-7 Butyl benzyl phthalate 6100 U 91-94-1 3.3'-Dichlorobenzidine 6100 U 56-55-3 Benzo[a]anthracene 6100 U 218-01-9 Chrysene 6100 U 117-81-7 bis(2-Ethylhexyl)phthalate 6100 U 117-84-0 Di-n-octyl phthalate 6100 U 205-99-2 Benzo[b]fluoranthene 6100 U 207-08-9 Benzo[k]fluoranthene 6100 U 193-39-5 Indeno[1,2,3-cd]pyrene 6100 U 193-39-5 Indeno[1,2,3-cd]pyrene 6100 U					
120-12-7 Anthracene 6100 U 84-74-2 Di-n-butyl phthalate 6100 U 86-74-8 Carbazole 6100 U 206-44-0 Fluoranthene 6100 U 129-00-0 Pyrene 6100 U 85-68-7 Butyl benzyl phthalate 6100 U 91-94-1 3,3'-Dichlorobenzidine 6100 U 56-55-3 Benzo[a]anthracene 6100 U 218-01-9 Chrysene 6100 U 117-81-7 bis(2-Ethylhexyl)phthalate 6100 U 205-99-2 Benzo[b]fluoranthene 6100 U 207-08-9 Benzo[k]fluoranthene 6100 U 207-08-9 Benzo[k]fluoranthene 6100 U 193-39-5 Indeno[1,2,3-cd]pyrene 6100 U 193-39-5 Indeno[1,2,3-cd]pyrene 6100 U				15000	
84-74-2 Di-n-butyl phthalate 6100 U 86-74-8 Carbazole 6100 U 206-44-0 Fluoranthene 6100 U 129-00-0 Pyrene 6100 U 85-68-7 Butyl benzyl phthalate 6100 U 91-94-1 3,3'-Dichlorobenzidine 6100 U 56-55-3 Benzo[a]anthracene 6100 U 218-01-9 Chrysene 6100 U 117-81-7 bis(2-Ethylhexyl)phthalate 6100 U 117-84-0 Di-n-octyl phthalate 6100 U 207-08-9 Benzo[b]fluoranthene 6100 U 207-3 Dienci[1,2,3-cd]pyrene 6100 U				6100	
86-74-8 Carbazole 6100 U 206-44-0 Fluoranthene 6100 U 129-00-0 Pyrene 6100 U 85-68-7 Butyl benzyl phthalate 6100 U 91-94-1 3,3'-Dichlorobenzidine 6100 U 56-55-3 Benzo[a]anthracene 6100 U 218-01-9 Chrysene 6100 U 117-81-7 bis(2-Ethylhexyl)phthalate 6100 U 117-84-0 Di-n-octyl phthalate 6100 U 205-99-2 Benzo[b]fluoranthene 6100 U 207-08-9 Benzo[k]fluoranthene 6100 U 193-39-5 Indeno[1,2,3-cd]pyrene 6100 U 193-39-5 Dibenz[a,h]anthracene 6100 U				6100	
206-44-0 Fluoranthene 6100 U 129-00-0 Pyrene 6100 U 85-68-7 Butyl benzyl phthalate 6100 U 91-94-1 3,3'-Dichlorobenzidine 6100 U 56-55-3 Benzo[a]anthracene 6100 U 218-01-9 Chrysene 6100 U 117-81-7 bis(2-Ethylhexyl)phthalate 6100 U 117-84-0 Di-n-octyl phthalate 6100 U 205-99-2 Benzo[b]fluoranthene 6100 U 207-08-9 Benzo[k]fluoranthene 6100 U 193-39-5 Indeno[1,2,3-cd]pyrene 6100 U 53-70-3 Dibenz[a,h]anthracene 6100 U				6100	U
129-00-0 Pyrene 6100 U 85-68-7 Butyl benzyl phthalate 6100 U 91-94-1 3,3'-Dichlorobenzidine 6100 U 56-55-3 Benzojajanthracene 6100 U 218-01-9 Chrysene 6100 U 117-81-7 bis(2-Ethylhexyl)phthalate 6100 U 117-84-0 Di-n-octyl phthalate 6100 U 205-99-2 Benzojbjfluoranthene 6100 U 207-08-9 Benzojkjfluoranthene 6100 U 50-32-8 Benzojajpyrene 6100 U 193-39-5 Indenoj1,2,3-cojpyrene 6100 U 53-70-3 Dibenzja,hjanthracene 6100 U	the second second second second second second second second second second second second second second second s			6100	U
85-68-7 Butyl benzyl phthalate 6100 U 91-94-1 3,3'-Dichlorobenzidine 6100 U 56-55-3 Benzo[a]anthracene 6100 U 218-01-9 Chrysene 6100 U 117-81-7 bis(2-Ethylhexyl)phthalate 6100 U 117-84-0 Di-n-octyl phthalate 6100 U 205-99-2 Benzo[b]fluoranthene 6100 U 207-08-9 Benzo[k]fluoranthene 6100 U 50-32-8 Benzo[a]pyrene 6100 U 193-39-5 Indeno[1,2,3-co]pyrene 6100 U 53-70-3 Dibenz[a,h]anthracene 6100 U	206-44-0	Fluoranthene		6100	U
91-94-1 3,3'-Dichlorobenzidine 6100 U 56-55-3 Benzo[a]anthracene 6100 U 218-01-9 Chrysene 6100 U 117-81-7 bis(2-Ethylhexyl)phthalate 6100 U 117-84-0 Di-n-octyl phthalate 6100 U 205-99-2 Benzo[b]fluoranthene 6100 U 207-08-9 Benzo[k]fluoranthene 6100 U 50-32-8 Benzo[a]pyrene 6100 U 193-39-5 Indeno[1,2,3-co]pyrene 6100 U 53-70-3 Dibenz[a,h]anthracene 6100 U				6100	U
56-55-3 Benzo[a]anthracene 6100 U 218-01-9 Chrysene 6100 U 117-81-7 bis(2-Ethylhexyl)phthalate 6100 U 117-84-0 Di-n-octyl phthalate 6100 U 205-99-2 Benzo[b]fluoranthene 6100 U 207-08-9 Benzo[k]fluoranthene 6100 U 50-32-8 Benzo[a]pyrene 6100 U 193-39-5 Indeno[1,2,3-co]pyrene 6100 U 53-70-3 Dibenz[a,h]anthracene 6100 U				6100	U
218-01-9 Chrysene 6100 U 117-81-7 bis(2-Ethylhexyl)phthalate 6100 U 117-84-0 Di-n-octyl phthalate 6100 U 205-99-2 Benzo[b]fluoranthene 6100 U 207-08-9 Benzo[k]fluoranthene 6100 U 50-32-8 Benzo[a]pyrene 6100 U 193-39-5 Indeno[1,2,3-cd]pyrene 6100 U 53-70-3 Dibenz[a,h]anthracene 6100 U		3,3'-Dichlorobenzidine		6100	U
117-81-7 bis(2-Ethylhexyl)phthalate 6100 U 117-84-0 Di-n-octyl phthalate 6100 U 205-99-2 Benzo[b]fluoranthene 6100 U 207-08-9 Benzo[k]fluoranthene 6100 U 50-32-8 Benzo[a]pyrene 6100 U 193-39-5 Indeno[1,2,3-cd]pyrene 6100 U 53-70-3 Dibenz[a,h]anthracene 6100 U	والمراجع والمراجع والمتحد والمتحد المتكمة فالمتحد والمراجع والمراجع والمراجع والمراجع والمراجع والمراجع والمراجع	Benzo[a]anthracene		6100	U v
117-84-0 Di-n-octyl phthalate 6100 U 205-99-2 Benzo[b]fluoranthene 6100 U 207-08-9 Benzo[k]fluoranthene 6100 U 50-32-8 Benzo[a]pyrene 6100 U 193-39-5 Indeno[1,2,3-cd]pyrene 6100 U 53-70-3 Dibenz[a,h]anthracene 6100 U				6100	U
205-99-2 Benzo[b]fluoranthene 6100 U 207-08-9 Benzo[k]fluoranthene 6100 U 50-32-8 Benzo[a]pyrene 6100 U 193-39-5 Indeno[1,2,3-cd]pyrene 6100 U 53-70-3 Dibenz[a,h]anthracene 6100 U			3	6100	
205-99-2 Benzo[b]fluoranthene 6100 U 207-08-9 Benzo[k]fluoranthene 6100 U 50-32-8 Benzo[a]pyrene 6100 U 193-39-5 Indeno[1,2,3-co]pyrene 6100 U 53-70-3 Dibenz[a,h]anthracene 6100 U		Di-n-octyl phthalate			
207-08-9 Benzo[k]fluoranthene 6100 U 50-32-8 Benzo[a]pyrene 6100 U 193-39-5 Indeno[1,2,3-cd]pyrene 6100 U 53-70-3 Dibenz[a,h]anthracene 6100 U	205-99-2	Benzo[b]fluoranthene			U
50-32-8 Benzo[a]pyrene 6100 U 193-39-5 Indeno[1,2,3-co]pyrene 6100 U 53-70-3 Dibenz[a,h]anthracene 6100 U					
193-39-5 Indeno[1,2,3-cd]pyrene 6100 U 53-70-3 Dibenz[a,h]anthracene 6100 U	50-32-8		······································		
53-70-3 Dibenz[a,h]anthracene 6100 U	193-39-5				
	53-70-3				
	191-24-2		·····		· · · · · · · · · · · · · · · · · · ·

. .

10/95

.

	SE	MIVOLA	TILE ORG	1F ANICS AI	ALYSIS	DA	TA SHEET	EPA S	SAMPLE NO.
		TENI	TATIVELY I	DENTIFIE	ED COMI	POU	NDS		E5216
Lab Name:	O'Brien	& Gere	Laboratorie	es, inc.	Contra	ct:	O'Brien & G	<u> </u>	
Lab Code:	OBG		Case No.:	3435.229) <u>.</u> Sas	No.:	: S	DG No.:	8685,8696
Matrix: (soil/	water)	SOIL	<u></u>			Lab	Sample ID:	TP-10/S	i\$-4
Sample wt/v	ol:	30	(g/ml)	<u>G</u>		Lab	File ID:	N0136.) .
Level: (iow/r	med)	LOW	<u> </u>			Date	e Received:	08/19/0	4
% Moisture:	45	(decanted: (Y/N)	<u>N</u>	Date	e Extracted:	08/24/04	4
Concentrate	d Extract	Volume:	500	(uL)		Date	e Analyzed:	09/20/0-	4
injection Vol	ume: 2.0	0 (uL	.)			Dilut	tion Factor:	10.0	
GPC Cleanu	p: (Y/N)	Y	pH: 7						

CONCENTRATION UNITS:

Number TICs found:	9	(ug/L or ug/Kg)	UG/KG	· · · · · · · · · ·	7
CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q	
1.	unknown	7.37	1500	JDK	1° 6,
2.	unknown	· 13.81	1500	JD .]
3.	unknown	14.61	2600	JD	1
• 4.	unknown	14.75	1900	JD]
5.	unknown	14.84	2200	JD	
6.	unknown	15.39	1700	JD	
7.	unknown	22.78	5600	JD]
8.	unknown	25.22	8900	JD	
9.	unknown	25.81	17000	JD]

	1B		EPA S	AMPLE NO
SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET			E5217	
Lab Name: O'Brien	& Gere Laboratories, Inc. Contract: O'E	Brien & G	L	
Lab Code: OBG	Case No.: 3435.229. SAS No.:	SC	G No.:	8685,8696
Matrix: (soil/water)	SOIL Lab Sa	mple ID:	TP-8/SS	-5
		e ID:		
		-		••
Level: (low/med)	LOW Date R	eceived:	08/19/04	·
% Moisture: 17	decanted:(Y/N) N Date E	xtracted:	08/24/04	
Concentrated Extract	Volume: 500 (uL) Date A	nalyzed: (09/21/04	
		Factor		
Injection Volume: 2			1.0	
GPC Cleanup: (Y/N)	<u>Y</u> pH: <u>7</u>			
~	CONCENT	ΒΑΤΙΩΝ Π		
				.Q
CAS NO.	COMPOUND (ug/L or ug/	ng) <u>UG</u>	KG	`\w
100-52-7	Benzaklehyde		46	J
98-86-2	Acetophenone		400	U
111-44-4	bis(2-Chloroethyl)ether		400	U
105-60-2	Caprolactam		400	U
108-95-2	Phenol		400	U
92-52-4	1,1'-Biphenyl		400	U
. 95-57-8	2-Chlorophenol		400	U
191-22-49	Atrazine		400	U
108-60-1	2,2'-oxybis(1-chloropropane)		400	U
95-48-7	2-Methylphenol		400	U
67-72-1	Hexachloroethane		400	U
621-64-7	N-Nitroso-di-n-propylamine		400	U
106-44-5	4-Methylphenol		400	U
98-95-3	Nitrobenzene		400	U
78-59-1	isophorone		400	U
88-75-5	2-Nitrophenol		400	U
105-67-9	2,4-Dimethylphenol		400	U
111-91-1	bis(2-Chloroethoxy)methane		400	U
120-83-2	2,4-Dichlorophenol		400	U
91-20-3	Naphthalene		400	U
106-47-8	4-Chloroaniline		400	U U
87-68-3	Hexachlorobutadiene		400	U
59-50-7 -	4-Chioro-3-methylphenol	- -	400	U
91-57-6	2-Methyinaphthalene		400	
77-47-4	Hexachlorocyclopentadiene		400	
88-06-2	2,4,6-Trichlorophenol		<u>400</u> 1000	
95-95-4	2,4,5-Trichlorophenol		400	U
91-58-7	2-Chloronaphthalene	+	1000	U
88-74-4	2-Nitroaniline	-+	. 400	U U
208-96-8	Acenaphthylene		400	U
131-11-3	Dimethyl phthalate	+	400	υ
<u>606-20-2</u> 83-32-9	Acenaphthene		400	U
99-09-2	3-Nitroaniline		1000	Ū
51-28-5	2,4-Dinitrophenol		1000	Ū
132-64-9	Dibenzofuran	╺┼╼╺╍╍	400	U
121-14-2	2.4-Dinitrotoluene		400	U

FORM I SV-1

SEMI	1C VOLATILE ORGANICS		EPA	SAMPLE NO.
Lab Name: O'Brien & (E5217
Lab Code: OBG	-	29. SAS No.:	SDG No.:	8685,8696
Matrix: (soil/water) S	OIL	Lab Sar	nple ID: TP-8/S	S-5
Sample wt/vol: 30) (g/mi) G	Lab File	ID: N0140.	D
Level: (low/med)			ceived: 08/19/0	

% Moisture: 17		N Date Ex	tracted: 08/24/0	4
Concentrated Extract Vol	ume: <u>500</u> (uL)	Date An	alyzed: 09/21/0	4
Injection Volume: 2.0	_ (uL)	Dilution	Factor: 1.0	
GPC Cleanup: (Y/N)	Y pH: 7			· · · · .
· · · · · · · · · · · · · · · · · · ·	Prov			
		CONCENTR	ATION UNITS:	
CAS NO.	COMPOUND	(ug/L or ug/ł	(g) UG/KG	Q
	1			
100-02-7	4-Nitrophenol		1000	U
86-73-7	Fluorene		400	U
<u>7005-72-3</u> 84-66-2	4-Chlorophenyl pheny		400	U
100-01-6	Diethyl phthalate 4-Nitroaniline		400	<u> </u>
534-52-1	4,6-Dinitro-2-methylph		1000	U U
.86-30-6	n-Nitrosodiphenylamir		<u> </u>	UUU
101-55-3	4-Bromophenyl pheny		400	U
118-74-1	Hexachlorobenzene		400	
87-86-5	Pentachiorophenol		1000	Ŭ
85-01-8	Phenanthrene		400	Ū
120-12-7	Anthracene		400	U
84-74-2	Di-n-butyl phthalate		400	U
86-74-8	Carbazole		400	U
206-44-0	Fluoranthene		400	U
129-00-0	Pyrene		400	∖ U
85-68-7	Butyl benzyl phthalate		400	U
91-94-1	3,3'-Dichlorobenzidine		400	U
56-55-3 218 01 0	Benzo[a]anthracene	· · · · · · · · · · · · · · · · · · ·	400	<u> </u>
<u>218-01-9</u> 117-81-7	Chrysene bis(2-Ethylhexyl)phtha		400	U U
117-84-0	Dis(2-Envinexy)phina Di-n-octyl phthalate	iale .	73	J
205-99-2-	Benzo[b]fluoranthene		400	UUU
207-08-9	Benzo[k]fluoranthene		400	
50-32-8	Benzojajpyrene		400	
193-39-5	Indeno[1,2,3-cd]pyrene	3	400	U
53-70-3	Dibenz[a,h]anthracene		400	U I
191-24-2	Benzo[g,h,i]pervlene		400	U

	EPA SAMPLE NO.		
Lab Name: O'E	TENTATIVELY IDENTIF Brien & Gere Laboratories, Inc.	IED COMPOUNDS Contract: O'Brien & G	E5217
Lab Code: OB	G Case No.: 3435.2	29. SAS No.:S	DG No.: 8685,8696
Matrix: (soil/wate	r) <u>SOIL</u>	Lab Sample ID:	TP-8/\$\$-5
Sample wt/vol:	<u>30 (g/mi) G</u>	Lab File ID:	N0140.D
Level: (low/med)	LOW	Date Received:	08/19/04
% Moisture:	17 decanted: (Y/N)	N Date Extracted:	08/24/04

FORM I SV-TIC

10/95

CAS NUMBER COMPOUND NAME EST. CONC. RT Q 760 1. JF mB. unknown 4.81 2 5.16 1100 JP unknown M.B. З. 7.10 1200 J unknown hydrocarbon 4. 7.35 520 unknown J 23.41 530 5. J unknown 6. unknown hydrocarbon 23.71 840 J 24.50 7. 820 J unknown 8. unknown hydrocarbon 24.79 1200 J 9. unknown 29.52 560 78 MA.

Concentrated Extract Volume: 500 (uL)

Y

9

pH: 7

Injection Volume: 2.0 (uL)

GPC Cleanup: (Y/N)

Number TICs found:

Date Analyzed: 09/21/04

UG/KG

Dilution Factor: 1.0

CONCENTRATION UNITS:

(ug/L or ug/Kg)

.

SUMMARY OF THE ANALYTICAL DATA VALIDATION Town of Carroll Landfill

Water Pesticide and PCB Analyses Samples Collected August 18th & 19th, 2004 Samples Received August 19th & 20th, 2004 Sample Delivery Group: 8685, 8696 Laboratory Reference Numbers:

> TP-11/SS-3 TP-10/SS-4 TP-8/SS-5

Soil samples were received for analyses of the pesticide and PCB TCL analyte list by US EPA Region II protocols. A complete analytical validation was performed based upon the following parameters:

- Data Completeness
- * Holding Times
- * Laboratory Blanks
 - Field Blanks
- Surrogate Recoveries
- * Surrogate Retention Times
- Matrix Spike / Matrix Spike Duplicate
- * Blank Spike
- * Laboratory Control Sample Recovery
- Initial Calibration
- * Method Blanks
 - Analyte Resolutions
- * Performance Evaluation Mixtures
- * IND A and IND B Standards
- * Florisil Cartridge Check
 - GPC Calibration
 - Compound Identification

* - Indicates that all criteria were met for this parameter.

DATA VALIDATION SUMMARY

The laboratory used retention time windows for target compounds and surrogates that were wider than the ones required according to Method OLM04.2

The laboratory only included the positive hits in the sample raw data. All of the peaks should be included. Without all of the data, it is not possible to verify that compounds were not overlooked.

There were problems with the overlap of retention times on each column:

The retention times for endosulfan I (9.07 - 9.21) and 4,4'-DDE (9.00 - 9.14) overlapped in the range of 9.07 to 9.14 minutes on the CLP column.

The retention times for endosulfan I (10.69 - 10.83) and alpha chlordane (10.57 - 10.71) overlapped in the range of 10.69 to 10.71 minutes on the CLP column.

There should not be a problem with overlapping peaks.

The laboratory's case narrative states:

The resolution check analyzed on the RTXCLP column did not meet the >60% method criteria for Endosulfan I (57%). All other resolution criteria were met and the excursion did not impact peak identification.

During the usability, positives are reported to the practical detection limit of ½ of the reporting limit.

Holding Times

All extractions and analyses were performed within the required holding times.

Surrogate Recoveries

All surrogate recoveries were within the required limits with the following exceptions:

Sample TP-10 / SS-3 TP-8 / SS-5	TCX 1	TCX 2	DCB 1	DCB 2 632% 191%

QC limits: 30% - 150%

The high recoveries were due to inference. The data were not qualified for the high recoveries since only one surrogate was affected.

Matrix Spike

A matrix spike and matrix spike duplicate were not analyzed.

Blank Spike

All blank spike recoveries were within the required limits.

Laboratory Control Sample

All LCS recoveries were within the required limits.

Initial Calibrations

The laboratory used retention time windows for target compounds and surrogates that were wider than the ones required according to Method OLM04.2

OLM04.2	Lab 0.10
± 0.05	0.10

	± 0.05	0.10
beta-BHC	± 0.05	0.10
gamma-BHC (Lindane)	± 0.05	0.10
delta-BHC	± 0.05	0.10
Heptachlor	± 0.05	0.10
Aldrin	== :	0.10
alpha-Chlordane	± 0.07	0.10
gamma-Chlordane	± 0.07	-
Heptachlor epoxide	± 0.07	0.14
Dieldrin	± 0.07	0.14
Endrin	± 0.07	0.14
Endrin aldehyde	± 0.07	0.14
Endrin ketone	± 0.07	0.14
4,4'-DDD	± 0.07	0.14
•	± 0.07	0.14
4,4'-DDE	± 0.07	0.14
4,4'-DDT	± 0.07	0.14
Endosulfan I	± 0.07	0.14
Endosulfan II		0.14
Endosulfan sulfate	± 0.07	
Methoxychlor	± 0.07	0.14
Aroclors	± 0.07	0.14
Toxaphene	± 0.07	0.14
Tetrachloro-m-xylene	± 0.05	0.10
Decachlorobiphenyl	±0.10	0.20
Decachioronipriority		

No problems were detected with the initial calibration.

Analyte Resolution

The laboratory's case narrative states:

The resolution check analyzed on the RTXCLP column did not meet the >60% method criteria for Endosulfan I (57%). All other resolution criteria were met and the excursion did not impact peak identification.

This did not affect the usability of the data.

All other RESC standard percent resolutions were greater than 60% on both the RTX-CLP and RTX-35 columns for both calibrations.

Continuing Calibrations

All PEM and INDA & INDB continuing calibrations were within the required quality assurance limits.

Surrogate Retention Times

All surrogate retention times were within the required limits for both surrogates and on both columns.

Florisil Cartridge Check

All recoveries were within the 80% - 120% quality assurance limits.

GPC Calibration

A GPC cleanup was not performed on this sample.

Method Blanks

No problems were detected with any of the method blanks.

Calibration Blanks

No problems were detected with the calibration blanks associated with this sample delivery group.

Field Blank

A field blank was not collected with this sample delivery group.

Sample Results

Many of the %Ds of the pesticide and PCB concentrations are very high. The data were qualified on the following bases:

% Difference	<u>Qualifier</u>
0 - 25%	None
25 - 70%	"J"
70 - 100%	"JN"
> 100%	"R"
100 - 200% (Interference detected)*	"JN"
> 50% (Pesticide value is < CRQL)**	"U"

Sample TP-11/SS-3

The low concentrations of beta-BHC, gamma-BHC, endosulfan sulfate, methoxychlor and endrin ketone were reported at the quantitation limit since the concentrations were less than ½ of the quantitation limits. The peaks are likely to be noise and false positives.

The data for gamma-chlordane were rejected since the %D was 138%.

The %D of DDE was 36%. The data were flagged with the "J" qualifier and the concentration should be considered to be estimated.

The %D of endrin was 38%. The data were flagged with the "J" qualifier and the concentration should be considered to be estimated.

The %D of endrin aldehyde was 56%. The data were flagged with the "J" qualifier and the concentration should be considered to be estimated.

The %D of Aroclor 1248 was 50%. The data were flagged with the "J" qualifier and the concentration should be considered to be estimated.

The %D of Aroclor 1260 was 33%. The data were flagged with the "J" qualifier and the concentration should be considered to be estimated.

Sample TP-10/SS-4

The low concentrations of beta-BHC and heptachlor epoxide were reported at the quantitation limit since the concentrations were less than ½ of the quantitation limits. The peaks are likely to be noise and false positives.

The data for DDE was rejected since the %D was 153%.

The data for endosulfan II was rejected since the %D was 2,619%.

The data for DDD was rejected since the %D was 215%.

The data for methoxychlor was rejected since the %D was 150%.

The data for endrin aldehyde was rejected since the %D was 1,400%.

The %D of endrin ketone was 100%. The data were flagged with the "JN" qualifier and the concentration should be considered to be highly estimated. It may be a false positive.

The %D of endrin was 60%. The data were flagged with the "J" qualifier and the concentration should be considered to be estimated.

The %D of alpha chlordane was 55%. The data were flagged with the "J" qualifier and the concentration should be considered to be estimated.

The %D of Aroclor 1260 was 60%. The data were flagged with the "J" qualifier and the concentration should be considered to be estimated.

Sample TP-8/SS-5

The low concentrations of delta-BHC and DDE were reported at the quantitation limit since the concentrations were less than ½ of the quantitation limits. The peaks are likely to be noise and false positives.

The data for methoxychlor was rejected since the %D was 422%.

No other problems were detected with the sample data.

EPA SAMPLE NO.

Q

> CONCENTRATION UNITS (ug/L or ug/Kg) UG/KG

CAS NO.

COMPOUND

319-84-6 alpha-BHC		2.3 .26	UDE		
319-95-7 beta-BHC	33	2.3	U		
and of Allerandelta-BHC	23	.35	w Par		
58-89-9 gauma-BHC (Lindane)		2.3	υ		
76-44-8 Heptachlor	4	2.3	υ		
and on a second aldrin	-	2.3	υ		
The second secon		3.4			
959-98-8 Endosulian 1 255 167	-1	4.5	ש ו		
n nieldrin	-	11	2b		
60-57-1 Dietur III 72-55-9 4,4'-DDB State 10-		4.8	JP		
72-20-8 Endrin	-1	4.5	ື		
33213-65-9 Endosulfan II	-	13			
72-54-8 4,4'-DDD	4,5	3~1~8	Work 1		
1031-07-8 Endosulfan sulfate	, 3	4.5	ש		
50-29-3 4,4'-DDT	7 23	19	W.		
72-43-5 Methoxychlor	4.8	:52	HAT-R		
53494-70-5 Endrin ketone		5.0	2B	ł	
7421-36-3 Endrin aldehyde	-1	1.4	JP		
7421-36-3 alpha-Chlordane <u>5</u> 1-xt	-1	.6.1	P-	RYAY	0 > 1007.
5103-74-2 gamma-Chlordane		230	ប		•
8001-35-2 Toxaphene		45	υ	ļ	
12674-11-2 Aroclor-1016		91	υ		
11104-28-2 Aroclor-1221		45	υ	1	
11141-16-5 Aroclor-1232 53469-21-9 Aroclor-1242		45	υ	1	
53469-21-9 Aroclor 1248		160	J. B		
12672-29-6 Aroclor 1254		45	U	1	
11097-69-1 Aroclor 110		120	2 b	1	

EPA SAMPLE NO.

Q

PESTICIDE ORGANICS ANALYSIS DATA SHEETLab Name: O'Brien & Gere Laboratories Contract: OBGTP-8/SS-5Lab Code: 10155 Case No.: _____ SAS No.: _____ SDG No.: 8685 8696Matrix: (soil/water)SOILLab Sample ID: E5217Sample wt/vol: 30 (g/mL) GLab File ID: ______% Moisture: 16.7 decanted: (Y/N) NDate Received: 08/21/2004Extraction: (SepF/Cont/Sonc) SONCDate Extracted: 08/24/2004Concentrated Extract Volume: 5000 (uL)Date Analyzed: 09/29/2004Injection Volume: 2.0 (uL)Dilution Factor: 1.0GPC Cleanup: (Y/N) YpH: 7.0Sulfur Cleanup: (Y/N) N

1D

CONCENTRATION UNITS (ug/L or ug/Kg) UG/KG

CAS NO.

٠.

COMPOUND

		······	
319-84-6	2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 4.0		1.D= 432 1

EPA SAMPLE NO.

0

1D PESTICIDE ORGANICS ANALYSIS DATA SHEET TP-10/SS-4 Lab Name: O'Brien & Gere Laboratories Contract: OBG Lab Code: 10155 Case No.: _____ SAS No.: _____ SDG No.: 8685 8696 Lab Sample ID: E5216 Matrix: (soil/water)SOIL Lab File ID:_____ 30 (g/mL) G Sample wt/vol: Date Received: 08/21/2004 decanted: (Y/N) N % Moisture: 45 Date Extracted: 08/24/2004 Extraction: (SepF/Cont/Sonc) SONC Date Analyzed: 09/29/2004 Concentrated Extract Volume: 5000 (uL) Dilution Factor: 1.0 Injection Volume: 2.0 (uL) Sulfur Cleanup: (Y/N) N GPC Cleanup: (Y/N)Y pH: 7.0

COMPOUND

CONCENTRATION UNITS (ug/L or ug/Kg) UG/KG

CAS NO. υ 3.0 319-84-6----- alpha-BHC VJ P 3.0 319-95-7---- beta-BHC_ υ 3.0 319-86-8----- delta-BHC 3.0 U 58-89-9----- gamma-BHC (Lindane)____ υ 3.0 76-44-8----- Heptachlor TT. 3.0 309-00-2---- Aldrin_ **U**J P 3,0 🛰 1024-57-3----- Heptachlor epoxide____ U 3.0 959-98-8----- Endosulfan I_____ U ·6.1 60-57-1----- Dieldrin_ 7. 021537 RJ P J P 72-55-9----- 4,4'-DDE - 20 72-20-8----- Endrin QJ ₽ 1. D= 2,600 /3.2 33213-65-9---- Endosulfan II_ 5.4 Ρ 1. 3= 2001 72-54-8----- 4,4'-DDD · 17 1031-07-8----- Endosulfan sulfate____ 1.D: 5421 τī 6.1 50-29-3----- 4,4'-DDT 10- 150 ₽ 、30 72-43-5----- Methoxychlor ĩŊδ , 13 53494-70-5---- Rndrin ketone ₽ 9. D= 1460 575 7421-36-3----- Endrin aldehyde_ Р 3.33 5103-71-9---- alpha-Chlordane U 3.0 5103-74-2---- gamma-Chlordane_ U 300 8001-35-2---- Toxaphene TT 61 12674-11-2---- Aroclor-1016_ 120 U 11104-28-2---- Aroclor-1221_ łυ 61 11141-16-5---- Aroclor-1232_ lυ 61 53469-21-9---- Aroclor-1242 61 U 12672-29-6---- Aroclor-1248 lυ 61 11097-69-1---- Aroclor-1254_ ₽ 1 810 11096-82-5---- Aroclor-1260____

.

SUMMARY OF THE ANALYTICAL DATA VALIDATION Town of Carroll Landfill

Metals and Cyanide Analyses Samples Collected August 18th & 19th, 2004 Samples Received August 19th & 20th 2004 Sample Delivery Group: 8685, 8696 Laboratory Reference Numbers:

> TP-11 / SS-3 TP-04 / SS-1 TP-07 / SS-2 TP-10 / SS-4 TP-8 / SS-5 TP-8 / SS-5MS TP-8 / SS-5MD

Soil samples were received for total metals and cyanide analyses by NYS DEC ASP protocols. A complete analytical validation was performed based upon the following parameters;

- * Data Completeness
- * Holding Times
- * Calibration Verification
- *- CRDL Standard
- * Laboratory Control Sample
- * Serial Dilutions
- * Calibration Blanks
- Field Blanks
- * Preparation Blanks
- Matrix Spike
- * Duplicate Analyses
- * ICP Interference Check Sample
- * Detection Limit Results
- * Linear Range
- * Sample Results

* - Indicates that all criteria were met for this parameter.

Data Validation Summary

The lead data were technically rejected because the matrix spike recovery was above 200%. The concentration of spike added (4.8 mg/kg) was more than 4X the sample concentration (16.5 mg/l).

The low recovery of the thallium CRDL standard should be noted.

No other problems were detected with the analyses.

Holding Times

All samples were analyzed within the required holding times.

CRDL Standards

The recoveries of all CRDL standards were within the 80% to 120% quality assurance limits with the one exception of the initial thallium CRDL (74%). Low concentrations of thallium (less than 40 ug/l) were flagged with the "J" qualifier.

Initial and Continuing Calibrations

No problems were detected with any of the calibrations associated with this sample delivery group.

Preparation Blank

No compounds were detected in the one preparation blank associated with the digestions of these samples at concentrations above the CRDL. Several analytes were found in the preparation blank at concentrations between the CRDL and instrument detection limit. These very low concentrations are not required to be noted in the data validation summary table.

Calibration Blanks

Several analytes were found in the continuing calibration blanks at concentrations between the CRDL and instrument detection limit. These very low concentrations are not required to be noted in the data validation summary table and do not affect the end use of the data.

Field Blank

A field blank was not analyzed with this sample delivery group.

ICP Interference Check Sample

No problems were detected with the ICP Interference Check Sample recoveries.

Matrix Spike Recovery

Sample TP-8/SS-5 was used as the matrix spike. All recoveries were within the 75% - 125% quality assurance limits with the exceptions of antimony (36%), lead (210%) and selenium (57%)

The lead data were technically rejected because the matrix spike recovery was above 200%. The concentration of spike added (4.8 mg/kg) was more than 4X the sample concentration (16.5 mg/l).

The antimony and selenium data were flagged with the "J" qualifier and estimated values.

All post digestions spike recoveries were within the required limits.

Duplicate Analysis

Sample TP-8/SS-5 was used as the matrix duplicate. All RPDs that could be accurately calculated were less then 20%.

Laboratory Control Sample

No problems were detected with the recoveries of the LCS standards

Serial Dilutions

Sample TP-8/SS-5 was used for the serial dilution. All percent differences that could be accurately calculated were less than 10%.

Instrument Detection Limit

No problems were found with the instrument detection limits.

ICP Linear Ranges

Sample TP-07 / SS-2 was reanalyzed at a 5X dilution due to high concentrations of nickel and zinc.

The data for nickel and zinc and elements with similar wavelengths – antimony, cadmium, cobalt and lead, should be reported from the 5X dilution.

The data from the original analysis and dilution were not significantly different.

No other problems were detected with the linear ranges.

Sample Results

No problems were detected with the sample data.

Appendix H

Fish and wildlife impact analysis

Report

Fish and Wildlife Impact Analysis Remedial Investigation/Feasibility Study - Town of Carroll Landfill Site #9-07-017 Frewsburg, New York

New York State Department of Environmental Conservation

December 2005

Fish and Wildlife Impacts Analysis

Remedial Investigation/Feasibility Study Town of Carroll Landfill Site #9-07-017 Frewsburg, New York

New York State Department of Environmental Conservation

December 2005

Contents

List of Tables	iii
List of Figures	iii
List of Attachments	iii
1. Introduction	1
2. Study area characterization	
2.1. Site description	
2.2. Covertype delineations	
2.3. Terrestrial covertypes	4
2.4. Palustrine covertypes	6
2.5. Aquatic covertypes	7
3. Description of fish and wildlife resources	9
3.1. Fish and wildlife of the study area	
3.2. Fauna expected within each covertype	
3.3. Observation of stress	
3.4. Other resources	10
3.5. Description of fish and wildlife resource value	
3.5.1. Value of habitat to associated fauna	12
3.5.2. Value of resources to humans	13
3.6. Applicable fish and wildlife regulatory criteria	
3.6.1. Site-specific criteria	
3.6.2. Contaminant-specific criteria	14
4. Pathway analysis	
4.1. Surface soil	
4.2. Surface water and sediment	17
4.3. Ground water	
5. Summary and conclusions	19
References	21

List of Tables

- 1. Potential Wildlife Inhabitants of the Study Area Natural Covertypes
- 2. New York State Breeding Bird Atlas Information
- 3. Potentially Applicable Criteria, Standards or Guidance

List of Figures

- 1. Site Location Map
- 2. Covertype Map
- 3. Documented Natural Resources

List of Attachments

- A. Site photographs
- B. USFWS and NYNHP information request letter responses

1. Introduction

This report presents the results of a Fish and Wildlife Impact Analysis (FWIA) for the Town of Carroll Landfill Site (site) located near Frewsburg, New York. The FWIA was conducted according to the New York State Department of Environmental Conservation (NYSDEC) document entitled Fish and Wildlife Impact Analysis for Inactive Hazardous Waste Sites (NYSDEC 1994; Guidance). Step I - Site Description and Step IIA - Contaminant-Specific Impact Assessment – Pathway Analysis of the NYSDEC Guidance is addressed in this report.

The specific objectives of this FWIA are to:

- describe the ecology of the site and surrounding environs within a 0.5 mile radius of the site including fish and wildlife resources and associated fauna for each natural community within the study area
- identify other natural resources in the vicinity of the site including significant habitats and endangered, threatened, or species of special concern (ETSC)
- identify applicable criteria and guidance values
- identify potential pathways of site stressors to ecological receptors.

This FWIA report is organized into five sections, described below:

- 1. *Introduction*. This section presents general information about the performance of the FWIA, the objectives of the study and the format of the report.
- 2. *Site and study area characterization*. This section characterizes the communities of the Site and study area based on vegetation and associates wildlife species with the communities.
- 3. Description of fish and wildlife resources. This section presents a qualitative evaluation of the ability of the study area to provide habitat for wildlife and discusses the value to humans of the natural resources within the study area. This section also discusses resources other than wildlife, such as significant habitats; protected species; surface waters; and freshwater wetlands that exist within a two-mile radius of the site.
- 4. *Identification of fish and wildlife criteria*. This section identifies applicable fish and wildlife regulatory criteria that may be referenced within the FWIA process.

5. Summary and conclusions. This section presents a summary and a discussion of the FWIA conclusions regarding ecological resources within the study area.

Associated tables, figures and attachments are included at end of the document.

2. Study area characterization

This section describes the physical and biological components of the site and study area under current conditions. In accordance with Step I of the Guidance, this information is used to identify the ecological communities of the study area, associate wildlife species with the communities, evaluate the value of the communities to wildlife and humans, and to provide information necessary for the design of future activities associated with the overall site investigation, if required.

2.1. Site description

According to information provided in the Work Assignment, the Town of Carroll Landfill is a former municipal and C&D debris landfill, and solid waste transfer station located at the end of an unnamed gravel road, approximately 1,700 feet north of NYS Route 62 (also known as Ivory Road) in the Village of Frewsburg, Town of Carroll, Chautauqua County, New York (Figure 1). The landfill area is located on a 305-acre lot, although the landfill occupies only approximately 25 acres of the property. The surrounding area includes active and inactive farmland, wooded areas, wetlands, and private homes. Northwest of the site is Conewango Creek and it's broad floodplain.

The site is located on a northwest-facing, gently sloping hillside and is composed of two roughly rectangular disposal areas, each surrounded by drainage ditches and swales. The dimensions of each disposal area are approximately 750 feet from north to south and 300 feet from east to west. The ground surface of the eastern cell is estimated to range from 1 to 4 feet above surrounding ditches on the east, north and west. The topography of the western cell is more uneven, ranging from approximately 1 to 10 feet above the surrounding ditches with several flat areas. A drainage area separates the two disposal areas and eventually flows to the northwest into a wetland area before discharging to Conewango Creek. An area to the west of the site is reported to have been used as a borrow area for cover soil.

Approximately 700 feet west of the site is the Town of Carroll Public Works Garage area and the Frewsburg Water District property that includes a water supply well and pump station. The Public Works Garage and Water District are located on the same lot, but are accessed from Wahlgren Road off NYS Route 62. The nearest homes are approximately 1200 feet to the west and south and topographically upgradient of the site.

Descriptions of the vegetative communities on-site and in the site's vicinity are presented in the following subsections. Site photographs taken during a site reconnaissance are included as Attachment A.

2.2. Covertype delineations

Evaluation of ecological communities (covertypes) in the study area assists in the identification of fish and wildlife resources and ecological receptors that may enter the site from surrounding areas. This subsection describes the ecological covertypes of the site and study area.

Consistent with the Guidance, the study area for the FWIA is defined as the site property and the area within a 0.5 mile radius of the site. The 0.5 mile radius includes the landfill cells, adjacent agricultural and nearby residential properties, the town garage, and terrestrial and aquatic communities. In the context of this report, a "covertype" is defined as an area characterized by a distinct pattern of natural (e.g., forest) or cultural (e.g., residential) land use. Covertypes of the study area were identified based on the physical and vegetative features observed by an O'Brien & Gere biologist during a study area visit performed in November 2004 and from interpretations of local mapping and aerial photographs that included the study area. A map indicating the covertypes of the study area is presented as Figure 2. Each covertype designation was selected based on a comparison of observed characteristics with the ecological community descriptions presented in the New York Natural Heritage Program document Ecological Communities of New York State (Edinger et al. 2002).

Thirteen covertypes have been identified within the study area. Their locations and approximate boundaries are depicted on Figure 2. The description of each identified covertype, below, includes a list of dominant woody and herbaceous plant species observed during the study area reconnaissance. A mixture of natural and cultural land uses exists within the study area. Agricultural (cropland, non-cropland and pasture) roadways, landfill, and residential properties comprise the majority of the cultural areas. Forested areas, scrub areas, palustrine (wetland) habitats and aquatic (open water) communities comprise the natural areas.

Representative photographs of some of the study area covertypes are presented in Attachment A.

2.3. Terrestrial covertypes

The terrestrial (upland) communities within the study area predominantly consist of "cultural" covertypes with some natural communities. The cultural designation reflects the extent of human disturbance to the study area for land uses such as agricultural fields, roadways, disturbed land (landfill) and residences.

Physical characteristics of the agricultural areas consist of crop and noncrop fields generally larger than 25 acres with interspersed agricultural and residential structures, access roads, and fencing. Residential properties are also present and consist of smaller lots, typically 1-acre to 3 acres in area. In general, these areas do not support large or diverse wildlife communities but do provide some forage and cover areas for wildlife inhabiting the surrounding natural covertypes.

The natural terrestrial covertypes within the study area are representative of forested and scrub-shrub communities. The identified terrestrial covertypes of the study area are further described below.

Landfill/dump. Edinger et al. (2002) characterizes this covertype as a site that has been cleared or excavated, where garbage has been disposed. As shown on Figure 2, the landfill cells of the site are designated as this covertype.

Rural structure exterior. This covertype is characterized by the exterior surfaces of structures such as agricultural and residential buildings and bridges in a rural or sparsely populated suburban area (Edinger *et al.* 2002). The areas near the site included in this designation consist of buildings associated with the Town of Carroll Town Garage to the west of the site and agricultural/residential structures to the south associated with a horse farm. Also observed in this covertype are sub-communities typical of the *Paved and unpaved road/path, mowed lawn* and *mowed roadside*, and *interior of agricultural* and *non-agricultural building* covertypes.

Cropland/Pastureland. Edinger *et al.* provides separate descriptions for each of these covertypes including separate descriptions for *row* and *field* croplands; however, for this report they have been combined as one covertype. This is justified in that agricultural fields are routinely planted in different crops from year to year in a process known as rotating; therefore, what may be observed as hay field (*field cropland*) one year, could be planted with corn (*row cropland*) the following. This covertype is present to the southwest, south and southeast of the site and also occurs in the eastern and northern portions of the study area.

Hemlock-northern hardwood forest. According to Edinger et al. (2002), this covertype occurs on middle to lower slopes of ravines; on cool, midelevation slopes; and on moist, well-drained sites at the margins of wetlands. Portions of the forested communities of the study area are representative of this covertype. The largest areas within the study area representative of this covertype are located to the east and northeast of the site and in the southeastern and southern portions of the study area. These areas, commonly associated with forested wetland areas, included white pine (*Pinus strobus*) intermixed with hemlocks (*Tsuga canadensis*) and other hardwoods such as beech (*Fagus grandifolia*) and sugar maple (*Acer saccharum*). *Rich mesophytic forest.* According to Edinger *et al.* (2002), this covertype occurs on rich, fine-textured, well-drained soils that are favorable for the dominance of a wide variety of tree species. Portions of the forested communities within the study area and within the New York State Freshwater Wetland (NYSFW) JA-6 (described below) are indicated as this covertype on Figure 2. This covertype was observed in the northwestern portion of the study area. The dominant tree species observed in these forested communities consists of oaks (*Quercus* spp.), beech, sugar maple and hickories (*Carya* spp.).

Successional covertypes. A successional hardwood area is located just north of the site and also logged areas within the NYSFW JA-6 exhibit characteristics of successional hardwood. Species observed in this covertype included small diameter maples (Acer spp.), poplars (Populus spp.), and hawthorne (Crataegus sp.).

Areas of *successional shrubland* and *successional old field* are present within the study area, mostly associated with fallow agricultural fields.

2.4. Palustrine covertypes

The presence of freshwater wetlands in the study area was evaluated through a review of the Jamestown and Ivory New York State Freshwater Wetlands (NYSFW) maps and the U.S. Fish and Wildlife Service (USFWS) National Wetland Inventory (NWI) maps. The NYSFW maps present the boundaries of wetlands regulated by NYSDEC. The NWI maps present wetlands inventoried by USFWS to monitor waterfowl habitat. The NWI maps have no regulatory significance but provide an indication of areas potentially meeting the federal criteria for wetlands regulated by the U.S. Army Corps of Engineers.

As noted on Figures 2 and 3, several large freshwater wetland (palustrine) habitats exist in the study area. These wetlands are associated with Conewango Creek and it's floodplain and are predominantly forested wetlands with some areas of scrub-shrub and emergent habitats. The observed wetland habitats are representative of *Open* and *Forested mineral soil wetland* covertypes as classified in Edinger *et al.* (2002). Generally, the wetland areas consist of areas densely vegetated with trees (deciduous and coniferous), shrubs and herbs with little or no open water. Additional discussion concerning wetlands is presented in Section 3.4.

The primary wetland habitats located within the study area include stateregulated freshwater wetlands designated on the NYSFW map as: JA-6, a 279-acre wetland located adjacent to and west and northwest of the site; JA-8, a 50-acre wetland located in the northern portion of the study area; and JA-1, a 246-acre wetland located in the northeastern portion of the study area. Each of these wetlands consists primarily of forested habitat with moderately to extremely dense shrub and herbaceous vegetative layers. Dominant trees observed in JA-6 consist predominantly of 4 inch to 20 inch dbh specimens of oak, poplar, red maple (*Acer rubrum*), hickory, hemlock, pine, and black willow (*Salix nigra*). Vegetative species diversity of the shrub and herbaceous layers was high. Dominant trees reported of JA-1 include ash (*Fraxinus* spp.), maple, oak, and elm (*Ulmus* sp.). Based on a review of the aerial photograph of the study area, NYSFW JA-8 appears to be a deciduous forest wetland that occurs along the northern banks of the Conewango Creek. This wetland was inaccessible at the time of the site reconnaissance.

In many instances, the forested wetlands were surrounded by emergent and scrub-shrub wetlands dominated by dogwoods, sedges (*Carex* spp.), reed canary grass (*Phalaris arundinacea*), cattails (*Typha* sp.), and other aquatic vegetative species. Accordingly, the NWI habitats in the vicinity of the site are designated as "palustrine forested" and "palustrine scrubshrub/emergent" on the NWI maps.

Although a jurisdictional wetland delineation was not part of the scope of the FWIA, it appears that significant portions of the site and Town property contain state and federally-regulated wetlands, as shown on Figures 2 and 3.

At the time of the site reconnaissance, wetland characteristics were observed by the O'Brien & Gere biologist in disturbed areas of the site, particularly the drainage that bisects the two landfill cells and the drainage along the northern and eastern perimeter of the landfill. Therefore, there is a potential for these areas to be classified as jurisdictional (federally-regulated) wetland habitats. A formal wetland delineation, including a review of the applicable information related to the formation of the ponded areas, would confirm the appropriate classification of these areas.

2.5. Aquatic covertypes

Confined River. This covertype is an aquatic community of relatively large, fast flowing sections of streams with a moderate to gentle gradient. Conewango Creek, which is located to the north and northwest of the site within the study area, would likely be considered a *confined river* per the riverine community description in Edinger *et al.* (2002); however, portions of the creek may also exhibit *Unconfined river* characteristics as well. *Unconfined rivers* have very low gradients and clearly distinguished meanders, which are present in the Conewango system further downstream of the site. Conewango Creek flows in a southeasterly direction in the study area. The creek appears to be a moderate to deepwater run in the study area. The channel of the creek is approximately 125 to 150 feet wide and appeared to be at half bank-full at the time of the site reconnaissance (late fall). The water clarity was murky and the substrate was not visible. No vegetation was observed within the creek banks although trees and some shrubs occurred along the top of the creek banks.

Marsh headwater stream. Several drainage ways converge just west of the landfill and form a small stream that meanders westward through scrub-shrub and forested wetlands on the Town property and eventually discharge to Conewango Creek approximately 0.75 mile west of the site. This unnamed tributary to the Conewango Creek represents a Marsh headwater stream as defined in Edinger et al. (2002). The unnamed tributary has a well-defined meandering pattern and contains low flow (unmeasured). The channel of the creek is approximately 6 to 10 feet wide and contained approximately 6 to 12 inches of water at the time of the site reconnaissance (late fall). The substrate consisted primarily of silt and detritus. Little or no emergent vegetation was observed in the tributary. The banks of the tributary as it exists on the site property are approximately 2 to 3 feet high and predominantly vegetated with shrubs and trees. The drainage ways that form this tributary are characteristic of ditch/artificial intermittent stream habitat since these drainage ways appear to have been channelized through the site and through agricultural fields upstream of the site.

Cass Run and two additional unnamed streams exist within the study area. All three of these waterbodies are located to the east and northeast of the site and are not likely influenced by the on-site drainage patterns. Each of these additional streams has similar physical characteristics of *marsh headwater streams* and some of them appear to be channelized through agricultural fields as well.

Farm/artificial pond. Three farm/artificial ponds are located within the study area upgradient of the site. Edinger *et al.* (2002) describes these aquatic communities as typically eutrophic habitats that may be stocked with panfish. These ponds were inaccessible at the time of the site reconnaissance.

3. Description of fish and wildlife resources

The objective of this section is to identify potential ecological receptors of the study area based on observations conducted during the study area reconnaissance or by reasonable association of these resources with the identified covertypes. The results of the tasks performed to meet the objective are discussed in the following subsections.

3.1. Fish and wildlife of the study area

The presence of fish and wildlife in the study area was assessed through contact with regulatory agencies, a literature review, and the study area reconnaissance performed by an O'Brien & Gere biologist in November 2004. During the study area reconnaissance, wildlife were identified based on actual sightings; audible indicators such as bird songs; or other indicators such as nests, tracks, burrows, or scat. A listing of the fish and wildlife species that were either directly observed or concluded to be present based on observed indicators is presented below.

Observed fish and wildlife. Avian species were observed frequenting the site and/or the study area at the time of the site reconnaissance, including, but not limited to: black-capped chickadee (Parus atricapillus), American crow (Corvus brachyrhynchos) gray catbird (Dumetella carolinensis), blue jay (Cyanocitta cristata), white-breasted nuthatch (Sitta carolinensis), fox sparrows (Passerella iliaca), downy woodpecker (Picoides pubescens), red-bellied woodpecker (Melanerpes carolinus), tree sparrow (Spizella arborea), and red-tailed hawk (Buteo jamaicensis). A potential Coopers or sharp-shinned hawk with a recent kill (likely a blue jay or mourning dove based on feather remains) was also observed near the drainage way between the two landfill cells.

Additional species observed in the study area include: white-tailed deer (*Odocoileus virginianus*), woodchuck (*Marmota monax*) and muskrat (*Ondatra zibethicus*) or beaver (*Castor canadensis*) burrows in the banks of the unnamed tributary near the Conewango Creek. Tracks of other unidentified small mammals were also observed throughout the study area.

3.2. Fauna expected within each covertype

In addition to those observed, a variety of other wildlife species are likely to inhabit the natural communities of the study area. The upland forest and wetland forest covertypes (Rich mesophytic forest, Hemlock/northern hardwood, Open and Forested mineral soil wetland) are likely to contain the most diverse wildlife populations due to the ability of these areas to provide food, cover and resting areas for wildlife.

Characteristic wildlife of the forested communities include, but are not limited to, various avian species, (songbirds, woodpeckers, turkey, grouse, hawks and owls); small mammals (raccoon, fox) and large mammals such as white-tailed deer. The aquatic and palustrine habitats within the study area are likely to support benthic invertebrates, reptiles (snakes and turtles), amphibians (frogs, toads, salamanders), fish, waterfowl (ducks and geese), herons, shorebirds, gulls, kingfishers, and songbirds. Additionally, Conewango Creek likely supports warm water sport fish populations such as various species of bass and pan fish (sunfish). Potential wildlife inhabitants of the study area's natural covertypes are presented in Table 1. Additionally, a list of the breeding birds of the site vicinity, as recorded by the New York State Breeding Bird Atlas project, is presented in Table 2.

3.3. Observation of stress

During the study area reconnaissance, evidence of physical or chemical stressors to flora or fauna related to the site such as stained soils, leachate seeps, or wildlife mortality, was not observed in the study area. However, it appears that the placement of garbage and other fill in the cells has altered the vegetative community along the landfill edges by allowing invasive species such as common reed (*Phragmites australis*), box-elder (*Acer negundo*) and burdock (*Arctium* sp.) to become well established. Additionally, evidence of logging, including downed tress, stumps and tire ruts, was apparent in the forested areas to the north of the subject property and dead trees (snags) were present in wet areas just north of the site. The cause of the trees' (snags) poor condition is unknown but likely due to the wet conditions in this portion of the study area.

3.4. Other resources

Consistent with the FWIA Guidance, Step I includes the identification of other fish and wildlife resources, such as significant wildlife habitats, rare species, regulated wetlands, or special surface waters that are present within two miles of the site. Special resources were identified through contact with regulatory agencies and review of the associated state and federal wetland maps. The results of these efforts are described below. The approximate location of the identified special resources, as available, is presented on Figure 3. Significant habitats and endangered, threatened, or species of special concern. The presence of significant habitats and ETSC species in the study area was evaluated through contact with the New York Natural Heritage Program (NYNHP) and the USFWS. Letter responses received by O'Brien & Gere from these agencies are included with this report as Attachment B, and discussed below.

The USFWS indicated that a mollusc species, the clubshell (*Pleurobema clava*) is listed as an endangered species that is known to occur in the Allegheny River drainage basin, including Cassadaga Creek, and may occur within Conewango Creek. Another mollusc species, the rayed bean (*Villosa fabalis*) is a candidate for the Federal Endangered and Threatened Wildlife and Plants list that has been found in Cassadaga Creek and may occur within Conewango Creek. Also, occasional transient federally-listed or proposed endangered or threatened species individuals occur in the vicinity of the site.

The NYNHP indicated that their database has no records of known occurrences of rare or state-listed animals or plants or other significant habitats on or in the vicinity of the site.

Wetlands. As previously discussed, the potential presence of freshwater wetlands in the study area was evaluated through a review of applicable state and federal wetland mapping. The NYSFW maps present the boundaries of wetlands identified and regulated by NYSDEC. Nine state-regulated wetlands were identified within two miles of the site perimeter (Figure 3). The three wetlands closest to the site are designated on the NYSFW map as JA-6, JA-8 and JA-1.

New York State classifies the wetlands identified on the NYSFW maps into one of four separate classes that rank wetlands according to their ability to perform wetland functions and provide wetland benefits (6 NYCRR Part 664). Class I wetlands have the highest rank, and the ranking descends through Classes II, III and IV. Wetlands JA-1 and JA-6 are designated as Class I wetlands and JA-8 is designated as a Class II wetland.

Numerous NWI wetland habitats were identified within two miles of the site perimeter including many in similar locations as the state-regulated wetlands (see Figure 3). The NWI maps have no regulatory significance but provide an indication of areas potentially meeting the federal criteria for wetlands regulated by the U.S. Army Corps of Engineers. Most of the NWI habitats in the vicinity of the site are designated as "palustrine scrub/shrub" (PSS) on the NWI map.

Although a jurisdictional wetland delineation was not part of the scope of the FWIA, it appears that portions of the Town of Carroll property contain state and federally-regulated wetlands, as shown on Figures 2 and 3.

Surface waters. As identified on Figures 2 and 3, surface waters within a two-mile radius of the site include: Conewango Creek, Cass Run, the

unnamed tributary and two other relatively small streams, and several small (less than 2 acres) ponds. Conewango Creek is designated as a Class C, Standard C water body, (6 NYCRR Part 800). The unnamed tributary, which traverses the site property, is not specified on the maps in 6 NYCRR part 800 and, therefore, is not listed with a class or standard. However, according to these regulations, streams that are physically present in the field but are not indicated on the map are designated with the class and standard of the water body to which it is tributary. In this case, the unnamed tributary is tributary to Conewango Creek and is therefore designated as a Class C, Standard C. Classification C is applied to waters supporting fisheries and suitable for non-contact activities (6NYCRR Parts 701 and 897). Cass Run is a Class C, Standard C(T) water. Standard C(T) indicates that the water body may support a trout population.

Critical Environmental Areas. Based on information obtained from NYSDEC's Division of Environmental Permits (www.dec.state.ny.us/website/dcs), Critical Environmental Areas do not exist in the vicinity of the site.

3.5. Description of fish and wildlife resource value

The value of the identified covertypes to wildlife and society was evaluated based on the habitat requirements of associated wildlife species and potential resource utilization by humans. In accordance with Step I of the Guidance, habitat requirements such as feeding preferences, home range, and cover for species identified in the study area were considered. Field observations used to evaluate habitat quality included: 1) the diversity of observed wildlife, 2) the availability of suitable habitat in the study area, 3) the size of the habitat, and 4) adjacent land use patterns.

3.5.1. Value of habitat to associated fauna

Site. Although some cover and foraging area is afforded to birds and small mammals on the site, the fill area, mowed areas and active disposal areas of the site do not provide sufficient cover, food sources or nesting and resting areas to make the site attractive to a diverse wildlife population. Therefore, the value of the site's upland habitat to wildlife is concluded to be low.

The portions of the unnamed tributary, drainage ways, and potential wetlands on and in vicinity of the site provide foraging areas for piscivorous animals frequenting the area and habitat for aquatic species including, but not limited to, benthic invertebrates, amphibians and reptiles. However, the relatively small size of these areas limits the utilization of this habitat by wildlife and the overall population size of the groups of animals inhabiting these areas.

Study area. Wildlife species identified in the study area were consistent with those expected to inhabit terrestrial and aquatic communities existing in rural and forested environments. A significant portion of the study area contains diverse and high quality forested and wetland habitat. The rich mesophytic forest, hemlock northern hardwoods, aquatic and various wetland covertypes of the study area offer the most valuable habitat within the study area. Avian and small mammal species find suitable food and cover in these areas. Indicators of use of these covertypes by other mammals such as muskrat, beaver, and deer were observed during the study area reconnaissance.

The culturally influenced habitats (residential and agricultural communities) of the study area also provide vegetation and food sources and "edge" communities that provide habitat diversity to the study area.

Aquatic communities comprise a significant portion of the natural habitat located within the study area due to the presence of Conewango Creek, Cass Run and their tributaries. These areas provide valuable habitat to aquatic and semi-aquatic wildlife. Additionally, the undeveloped areas (primarily forested communities) surrounding these water bodies serve as a riparian corridor providing forage, nesting and roosting areas for local and migratory wildlife.

3.5.2. Value of resources to humans

Site. The current physical character of the site provides little value to humans, although portions of the site are still used for the disposal of yard wastes including tree stumps and limbs. Much of the landfill areas consist of a homogenous vegetative community (*i.e.*, mowed lawn) maintained for cosmetic purposes or areas containing exposed soil with little or no vegetation. The undeveloped areas of the study area, especially the forested and wetland areas adjacent to the north, east and west of the site boundaries, harbor various wildlife species and, therefore, provide aesthetic and recreational values such as hiking and wildlife viewing.

Due to the small size of the unnamed tributary located on-site, sport fish do not likely inhabit the tributary. Therefore, little or no fishing opportunities exist for humans on-site.

Study Area. The undeveloped areas of the study area likely provide opportunity for hiking and similar forms of outdoor recreation, including small and large mammal hunting. Public access to some of these areas may be limited due to private land ownership, dense vegetative growth and/or the lack of established parking areas and walking trails.

The palustrine (wetland) areas located repeatedly within the study area provide a number of wetland-related functions and values to the public. These values include flood storage capacity, sediment/toxicant retention, biological productivity, wildlife habitat, and, to a lesser extent, recreational value (*i.e.*, hiking and nature viewing). These characteristics assist in maintaining water quality in areas downstream of these habitats, such as the Conewango Creek.

3.6. Applicable fish and wildlife regulatory criteria

Step I-D of the Guidance identifies criteria that are potentially applicable to the evaluation of fish and wildlife resources. Table 3 presents a listing of the criteria potentially applicable to the site. The following sections describe these criteria.

3.6.1. Site-specific criteria

New York State's Freshwater Wetlands Act (1975) is designed to prevent the destruction of freshwater wetlands by requiring permits for defined activities in state-regulated wetlands. Similarly, Section 404 of the federal Clean Water Act allows no discharge of fill material into "waters of the United States" including wetlands if there is a practicable alternative that is less damaging to the aquatic environment. Individual or general permits may be received for unavoidable wetland impacts as long as steps have been taken by the permit applicant for avoidance, minimization and mitigation of wetland impacts.

The Use and Protection of Waters is regulated by a permit system under 6 NYCRR Part 608. The basis for permit issuance is a determination that the proposal is in the public interest by being reasonable and necessary; will not endanger the health, safety, or welfare of the people; and will not cause unreasonable, uncontrolled, or unnecessary damage to the natural resources of the state.

Through the Endangered Species Act of 1973, Congress authorized the USFWS to protect our nation's threatened and endangered flora and fauna. Those species protected are identified on a list that is periodically updated by USFWS. At the state level, the NYSDEC has responsibility to protect those species identified on their respective list. State and federal permits must be obtained for activities potentially effecting a listed species and/or its habitat.

3.6.2. Contaminant-specific criteria

The Guidance identifies New York State Water Quality Standards and Guidance Values, NYSDEC Division of Water Technical and Operational Guidance Series, and NYSDEC Technical Guidance for Screening Contaminated Sediments as examples of contaminant-specific criteria potentially applicable to the FWIA. These criteria, and other potentially applicable guidance, are listed in Table 3.

These sources will be referenced as part of the data evaluation performed during additional FWIA Steps, if warranted.

4. Pathway analysis

In accordance with Step IIA of the FWIA guidance, this subsection describes potential routes of exposure for ecological receptors to site related stressors. Exposure is the contact of a receptor with a stressor (e.g., chemical constituent). An exposure pathway is a mechanism by which a receptor may be exposed to a constituent at, or originating from, a source. The two primary routes of exposure for ecological receptors are ingestion and dermal contact. Exposure pathways are classified as being complete or incomplete. An exposure pathway is complete when a receptor could contact and uptake a constituent. The pathway is incomplete if there are no receptors or no exposures could occur. The status of potential exposure pathways for ecological receptors of the study area is discussed in this section.

4.1. Surface soil

Exposures to stressors in surface soil can occur by direct contact to plants, macroinvertebrates, and wildlife or through the terrestrial food gleaning mammals, soil birds. small and chain. Ground macroinvertebrates could be exposed to constituents in soils through direct contact with affected soils. In the terrestrial food chain, soil constituents can enter plants and invertebrates, which are consumed by small mammals, which are subsequently consumed by higher trophic level mammalian and avian predators. Upper food chain receptors consuming these organisms can bioaccumulate constituents.

Small mammal tracks were present at the site, and vegetation is present over a majority of the site. Previous investigations have identified chemical constituents in site surface soils; therefore, the soil exposure pathways through direct contact and through the terrestrial food chain are considered to be complete.

4.2. Surface water and sediment

Surface waters of the study area include: the NYSFW JA-6, JA-1, and JA-8 and other unmapped wetlands; Conewango Creek; an unnamed tributary to Conewango Creek; and several drainage ways. Site-related constituents can enter these water bodies through storm water runoff or seep from the site ground water, or upstream sources. Previous investigations have identified chemical constituents in site surface waters and sediments. Potential receptors, including benthic invertebrates and

fish, are likely present in study area surface waters and sediments. Further, higher trophic level wildlife that may consume these organisms (*e.g.*, kingfisher, raccoon) may also inhabit the study area. Therefore, the surface water and sediment direct contact and food chain exposure pathways are complete for study area receptors.

4.3. Ground water

Wildlife inhabiting or utilizing the site are not likely to contact ground water since dens or burrows are not excavated or inhabited below the water table and wildlife food sources occur above ground or in shallow soil. Therefore, the ground water exposure pathway is considered incomplete for the site. However, constituents in ground water can influence overlying soil quality through water table elevation fluctuation or through volatilization, and can discharge to the study area surface waters. Therefore, the potential contribution of ground water constituents to soil, sediment and surface water exposures are evaluated as part of the assessment of those exposure pathways.

5. Summary and conclusions

This FWIA evaluated the physical and biological characteristics and potential ecological receptors at the Town of Carroll Landfill site in Frewsburg, New York. Step I and Step IIA of the FWIA Guidance was performed for this assessment. The results and conclusions of this assessment are summarized below:

- The terrestrial portion of the site consists of the landfill cells, dirt access roads, maintained fields/mowed areas, an old concrete loading bay area, and a small block structure. These features limit the use by resident and transient wildlife species.
- Aquatic areas existing on-site include a portion of the unnamed tributary of Conewango Creek, emergent and scrub-shrub wetlands and several drainage ways. The wetlands provide habitat for a variety of terrestrial and aquatic receptors. The unnamed tributary likely provides some habitat for a variety of fish and other wildlife species that frequent aquatic habitats. However, the relatively small size of the tributary limits the value of this habitat to some wildlife, particularly fish.
- The terrestrial areas surrounding the site and within the study area consist of a mixture of natural communities and areas exhibiting rural (predominantly agricultural and residential) land use. Approximately 45 percent of the areal extent of the study area consists of agricultural and residential land uses that may somewhat limit use by transient or residential wildlife species.
- Approximately 55 percent of the areal extent of the study area consists of natural covertypes such as coniferous and hardwood forest; freshwater wooded, scrub-shrub and emergent wetlands; and streams that provide appropriate habitat for a variety of fish and wildlife species.
- The USFWS has records of an endangered species, the clubshell, and a candidate species, the rayed bean within a two-mile radius of the site. The NYNHP had no records of rare, threatened or endangered flora and fauna or significant natural communities within a two-mile radius of the site.

- Based on a review of the applicable state and federal mapping, several freshwater wetlands were identified in within two miles of the site. Although a wetland boundary delineation was not performed as part of this assessment, it appears that regulated wetland habitats exist on and adjacent to site.
- Due to the presence of chemical constituents in surface soil, surface water and sediment associated with the site, complete exposure pathways to terrestrial and aquatic receptors likely exist at and down gradient of the site. These pathways should be evaluated further within the FWIA process.

References

Chambers, R.E. 1983. Integrating Timber and Wildlife Management Handbook. State University of New York, College of Environmental Science and Forestry and the New York State Department of Environmental Conservation. Syracuse, New York.

Edinger, E.J., D.J. Evans, S. Gebauer, T.G. Howard, D.M. Hunt and A.M. Olivero (editors). 2002. *Ecological Communities of New York State.* Second Edition. A revised and Expanded Edition of Carol Reschke's *Ecological Communities of New York State.* (Draft for review). New York Natural Heritage Program, New York State Department of Environmental Conservation. Albany, New York.

Efroymson, R.A., M.E. Will, G.W. Suter II, and A.C. Wooten. 1997a. *Toxicological Benchmarks for Screening Contaminants of Potential Concern for Effects on Terrestrial Plants: 1997 Revision.* Oak Ridge National Laboratory, Oak Ridge, Tennessee. ES/ER/TM-83/R3.

Efroymson, R.A., M.E. Will, and G.W. Suter II. 1997b. Toxicological Benchmarks for Contaminants of Potential Concern for Effects on Soil and Litter Invertebrates and Heterotrophic Process: 1997 Revision. Oak Ridge National Laboratory, Oak Ridge, Tennessee. ES/ER/TM-126/R2.

Jones, D.S., G.W. Suter II, and R.N. Hull. 1997. Toxicological Benchmarks for Screening Contaminants of Potential Concern for Effects on Sediment-Associated Biota: 1997 Revision. Report No. ES/ER/TM-95/R4. Oak Ridge National Laboratory, Oak Ridge Tennessee.

New York State Department of Environmental Conservation (NYSDEC). 1999. Technical Guidance for Screening Contaminated Sediments. Division of Fish, Wildlife, and Marine Resources. Albany, NY.

NYSDEC. 1998. TOGS 1.1.1 Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations. New York State Department of Environmental Conservation. Albany, NY.

NYSDEC. 1994. Fish and Wildlife Impact Analysis for Inactive Hazardous Waste Sites (FWIA). Division of Fish and Wildlife. Albany, NY.

Suter, G.W., II and C.L. Tsao. 1996. Toxicological Benchmarks for Screening Potential Contaminants of Concern for Effects on Aquatic Biota: 1996 Revision. Risk Assessment Program. Health Services Research Division. Oak Ridge National Laboratory. Oak Ridge, Tennessee. United States Environmental Protection Agency (USEPA). 2000. *Ecological Soil Screening Level Guidance - Draft*. Office of Emergency and Remedial Response. Washington, DC.

USEPA 2002. National Recommended Water Quality Criteriacorrection. Office of Water. Washington, DC.

Tables

AMPHIBIANS				
American Toad	Northern Two-lined Salamander			
Bullfrog	Pickerel Frog			
Eastern Newt Red back Salamander				
Eastern Tiger Salamander	Red-spotted Newt			
Four-toed Salamander	Slimy Salamander			
Fowler's Toad	Southern Leopard Frog			
Gray Treefrog	Spotted Salamander			
Green Frog	Tiger Salamander			
Jefferson Salamander	Western Chorus Frog			
Marbled Salamander	Wood Frog			
Mink Frog				
Mountain Dusky Salamander				
Northern Dusky Salamander				
Northern Red Salamander				
Northern Spring Peeper				
Northern Spring Salamander				

SOURCES:

Integrating Timber and Wildlife Management. Robert E. Chambers. New York State Department of Environmental Conservation and State University of New York. College of Environmental Science and Forestry. 1983.

REPTILES				
Black Rat Snake	Eastern Worm Snake			
Broadhead Skink Five-lined Skink				
Coal Skink	Ground Skink			
Common Garter Snake	Milk Snake			
Common Kingsnake	Northern Black Racer			
Common Snapping Turtle	Northern Brown Snake			
Copperhead	Northern Copperhead			
Corn Snake	Northern Redbelly Snake			
Eastern Box Turtle	Northern Ringneck Snake			
Eastern Garter Snake	Northern Water Snake			
Eastern Hognose Snake	Painted Turtle			
Eastern Milk Snake	Queen Snake			
Eastern Painted Turtle	Shorthead Garter Snake			
Eastern Ribbon Snake	Wood Turtle			
Eastern Smooth Green Snake				

Integrating Timber and Wildlife Management. Robert E. Chambers. New York State Department of Environmental Conservation and State University of New York. College of Environmental Science and Forestry. 1983.

BIRDS			
Acadian Flycatcher	Common Screech Owl		
Alder Flycatcher	Common Yellowthroat		
American Robin	European Starling		
American Black Duck Field Sparrow			
American Crow	Grasshopper Sparrow		
American Goldfinch	Northern Rough-winged Swallow		
American Redstart	Northern Shrike		
American Kestrel	Northern Three-toed Woodpecker		
Bald Eagle	Pine Siskin		
Bank Swallow	Prairie Warbler		
Barn Owl	Red-eyed Vireo		
Barn Swallow	Ring-billed Gull		
Barred Owl	Yellow-billed Cuckoo		
Bay-breasted Warbler	Yellow-rumped Warbler		
Belted Kingfisher	Cape May Warbler		
Black Duck Cardinal			
Black and White Warbler	Chipping Sparrow		
Black-billed Cuckoo	Cedar Waxwing		
Black-capped Chickadee Chestnut-sided Warbler			
Black-crowned Night Heron	Cerulean Warbler		
Black-throated Green Warbler	Clay-colored Sparrow		
Blackburnian Warbler	Cliff Swallow		
Blackpoll Warbler	Common Crow		
Blue Jay	Common Flicker		
Blue-gray Gnatcatcher	Common Grackle		
Blue-winged Warbler	Common Nighthawk		
Boreal Chickadee	Common Merganser		
Broad-winged Hawk	Cooper's Hawk		
Brown Thrasher	Downy Woodpecker		
Brown Creeper	Eastern Bluebird		
Brown-headed Cowbird	Eastern Kingbird		
Canada Warbler	Eastern Pewee		
Great Crested Flycatcher Eastern Phoebe			
Tab 1 willife inhabitants.doc.doc	O'Brien & Gere Engineers, Inc.		

BIRDS			
Great Blue Heron	Eastern Screech Owl		
Great Horned Owl	Eastern Wood-Pewee		
Green Heron Evening Grosbeak			
Hairy Woodpecker	Golden-crowned Kinglet		
Hermit Thrush	Gray Catbird		
Herring Gull	Golden-winged Warbler		
Hooded Merganser	Gray Jay		
Hooded Warbler	Northern Saw-whet		
House sparrow	Northern Raven		
House Wren	Northern Waterthrush		
House Finch	Orchard Oriole		
Indigo Bunting	Osprey		
Killdeer	Ovenbird		
Least Flycatcher	Philadelphia Vireo		
Loggerhead Shrike Pileated Woodpecker			
Long-eared Owl Peregrine Falcon			
Louisiana Waterthrush Pine Warbler			
Mallard Prothonotary Warbler			
Mourning Dove Purple Finch			
Mourning Warbler Red-bellied Woodpecker			
Nashville Warbler	Red-breasted Nuthatch		
Northern Parula Warbler	Red-headed Woodpecker		
Northern Parula	Red-shouldered Hawk		
Northern Oriole	Red-tailed Hawk		
Northern Mockingbird	Red-winged Blackbird		
Northern Cardinal	Ring-necked Pheasant		
Northern Junco	Warbling Vireo		
Northern Goshawk Whip-poor-will			
Northern Flicker	White-breasted Nuthatch		
Rusty Blackbird White-eyed Vireo			
Rufous-sided Towhee	White-throated Sparrow		
Ruffed Grouse	buse Willow Flycatcher		
Ruby-throated Hummingbird	Winter Wren		
Tab 1 willife inhabitants.doc.doc	O'Brien & Gere Engineers, Inc.		

O'Brien & Gere Engineers, Inc.

BIRDS				
Rock dove	Wood Pewee			
Ruby-crowned Kinglet	Wood Thrush			
Rose-breasted Grosbeak	Wood Duck			
Swainsons Thrush	Worm-eating Warbler			
Swamp Sparrow	Yellow-breasted Chat			
Tennessee Warbler	Yellow Warbler			
Tree Swallow	Yellow-bellied Flycatcher			
Tufted Titmouse	Yellow-bellied Sapsucker			
Turkey Vulture	Yellow-throated Vireo			
Upland sandpiper				
Veery				

SOURCES:

Field Guide to the Birds of North America 2nd Edition. National Geographic Society. 1993. *Integrating Timber and Wildlife Management.* Robert E. Chambers. New York State Department of Environmental Conservation and State University of New York. College of Environmental Science and Forestry. 1983.

MAMMALS				
Beaver	New England Cottontail			
Big Brown Bat	Northern Flying Squirrel			
Boreal Red-backed Vole	Opossum			
Cotton Mouse	Pine Vole			
Deer Mouse	Porcupine			
Eastern Chipmunk	Raccoon			
Eastern Cottontail	Red Bat			
Eastern Mole	Red Fox			
Eastern Pipistrelle	Red Squirrel			
Eastern Spotted Skunk	River Otter			
Eastern Woodrat	Shorttail Shrew			
Fox Squirrel	Shorttail Weasel			
Gray Fox	Silver-haired Bat			
Gray Squirrel	Smoky Shrew			
Hairytail Mole	Southern Bog Lemming			
Hoary Bat	Southern Flying Squirrel			
Indiana Myotis	Starnose Mole			
Keen Myotis	Striped Skunk			
Least Shrew	Virginia Opossum			
Little Brown Myotis	White-footed Mouse			
Long-tailed Weasel	White-tailed Deer			
Masked Shrew Woodchuck				
Meadow Jumping Mouse	Woodland Jumping Mouse			
Meadow Vole	Woodland Vole			
Mink				

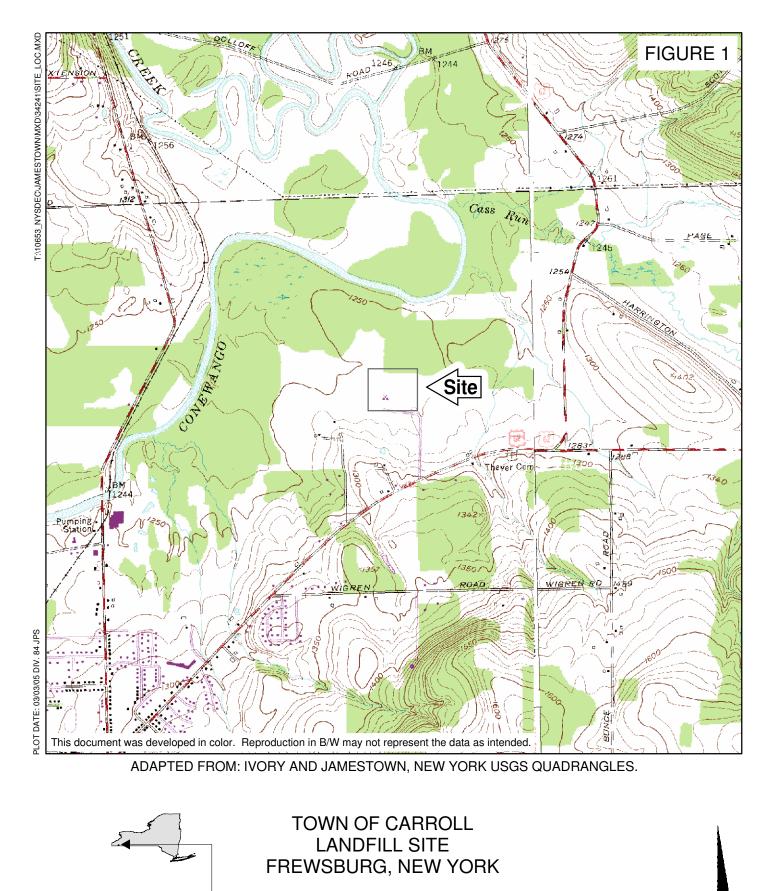
SOURCES:

Field Guide to the Birds of North America 2nd Edition. National Geographic Society. 1993. *Integrating Timber and Wildlife Management*. Robert E. Chambers. New York State Department of Environmental Conservation and State University of New York. College of Environmental Science and Forestry. 1983.

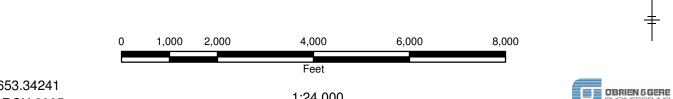
Common Name	Scientific Name	NY Legal Status		
American Bittern	Botaurus lentiginosus	Protected-Special Concern		
Great Blue Heron	Ardea herodias	Protected		
Green Heron	Butorides virescens	Protected		
Turkey Vulture	Cathartes aura	Protected		
Canada Goose	Branta canadensis	Game Species		
Wood Duck	Aix sponsa	Game Species		
Mallard	Anas platyrhynchos	Game Species		
Common Merganser	Mergus merganser	Game Species		
Cooper's Hawk	Accipiter cooperii	Protected-Special Concern		
Northern Goshawk	Accipiter gentilis	Protected-Special Concern		
Bald Eagle	Haliaeetus leucocephalus	Threatened		
Red-tailed Hawk	Buteo jamaicensis	Protected		
American Kestrel	Falco sparverius	Protected		
Ruffed Grouse	Bonasa umbellus	Game Species		
Wild Turkey	Meleagris gallopavo	Game Species		
Ring-necked Pheasant	Phasianus colchicus	Game Species		
Virginia Rail	Rallus limicola	Game Species		
Sora	Porzana carolina	Game Species		
Common Moorhen	Gallinula chloropus	Game Species		
Killdeer	Charadrius vociferus	Protected		
Spotted Sandpiper	Actitis macularia	Protected		
American Woodcock	Scolopax minor	Game Species		
Rock Pigeon	Columba livia	Unprotected		
Mourning Dove	Zenaida macroura	Protected		
Black-billed Cuckoo	Coccyzus erythropthalmus	Protected		
Yellow-billed Cuckoo	Coccyzus americanus	Protected		
Great Horned Owl	Bubo virginianus	Protected		
Barred Owl	Strix varia	Protected		
Chimney Swift Chaetura pelagica		Protected		

Common Name	Scientific Name	NY Legal Status		
Ruby-throated				
Hummingbird	Archilochus colubris	Protected		
Belted Kingfisher	Ceryle alcyon	Protected		
Yellow-bellied	Ontonio	Ducto stad		
Sapsucker Red-bellied	Sphyrapicus varius	Protected		
	Malanarnaa aaralinua	Dratastad		
Woodpecker	Melanerpes carolinus	Protected		
Downy Woodpecker	Picoides pubescens	Protected		
Hairy Woodpecker	Picoides villosus	Protected		
Northern Flicker Pileated	Colaptes auratus	Protected		
Woodpecker	Dryocopus pileatus	Protected		
Eastern Wood-	Dryocopus pileatus			
Pewee	Contopus virens	Protected		
Acadian Flycatcher	Empidonax virescens	Protected		
Alder Flycatcher	Empidonax alnorum	Protected		
Willow Flycatcher	Empidonax traillii	Protected		
Least Flycatcher	Empidonax minimus	Protected		
Eastern Phoebe	Sayornis phoebe	Protected		
Great Crested Flycatcher	Myiarchus crinitus	Protected		
Eastern Kingbird Yellow-throated	Tyrannus tyrannus	Protected		
Vireo	Vireo flavifrons	Protected		
Blue-headed Vireo	Vireo solitarius	Protected		
Warbling Vireo	Vireo gilvus	Protected		
Red-eyed Vireo	Vireo olivaceus	Protected		
Blue Jay	Cyanocitta cristata Corvus	Protected		
American Crow	brachyrhynchos	Game Species		
Tree Swallow	Tachycineta bicolor	Protected		
Cliff Swallow	Petrochelidon	Protostad		
Cliff Swallow Northern Rough-	pyrrhonota Stelgidopteryx	Protected		
winged Swallow	serripennis	Protected		
		Protected		
Cliff Swallow	Riparia riparia Petrochelidon pyrrhonota	Protected		
Barn Swallow	Hirundo rustica	Protected		
Black-capped Chickadee	Poecile atricapillus	Protected		

Common Name	Scientific Name	NY Legal Status		
Tufted Titmouse Red-breasted	Baeolophus bicolor	Protected		
Nuthatch	Sitta canadensis	Protected		
White-breasted Nuthatch	Sitta carolinensis	Protected		
Brown Creeper	Certhia americana	Protected		
Carolina Wren	Thryothorus Iudovicianus	Protected		
House Wren	Troglodytes aedon	Protected		
Winter Wren	Troglodytes troglodytes	Protected		
Marsh Wren	Cistothorus palustris	Protected		
Blue-gray Gnatcatcher	Polioptila caerulea	Protected		
Eastern Bluebird	Sialia sialis	Protected		
Veery	Catharus fuscescens	Protected		
Wood Thrush	Hylocichla mustelina	Protected		
American Robin	Turdus migratorius	Protected		
Gray Catbird	Dumetella carolinensis	Protected		
Brown Thrasher	Toxostoma rufum	Protected		
European Starling	Sturnus vulgaris	Unprotected		
Cedar Waxwing	Bombycilla cedrorum	Protected		
Blue-winged Warbler	Vermivora pinus	Protected		
Yellow Warbler	Dendroica petechia	Protected		
Chestnut-sided Warbler	Dendroica pensylvanica	Protected		
Magnolia Warbler	Dendroica magnolia	Protected		
Yellow-rumped Warbler	Dendroica coronata	Protected		
Black-throated Green Warbler	Dendroica virens	Protected		
Blackburnian Warbler	Dendroica fusca	Protected		
Black-and-white Warbler	Mniotilta varia	Protected		
American Redstart	Setophaga ruticilla	Protected		
Ovenbird	Seiurus aurocapilla	Protected		
Louisiana Waterthrush	Seiurus motacilla	Protected		
Northern Seiurus Waterthrush noveboracensis		Protected		

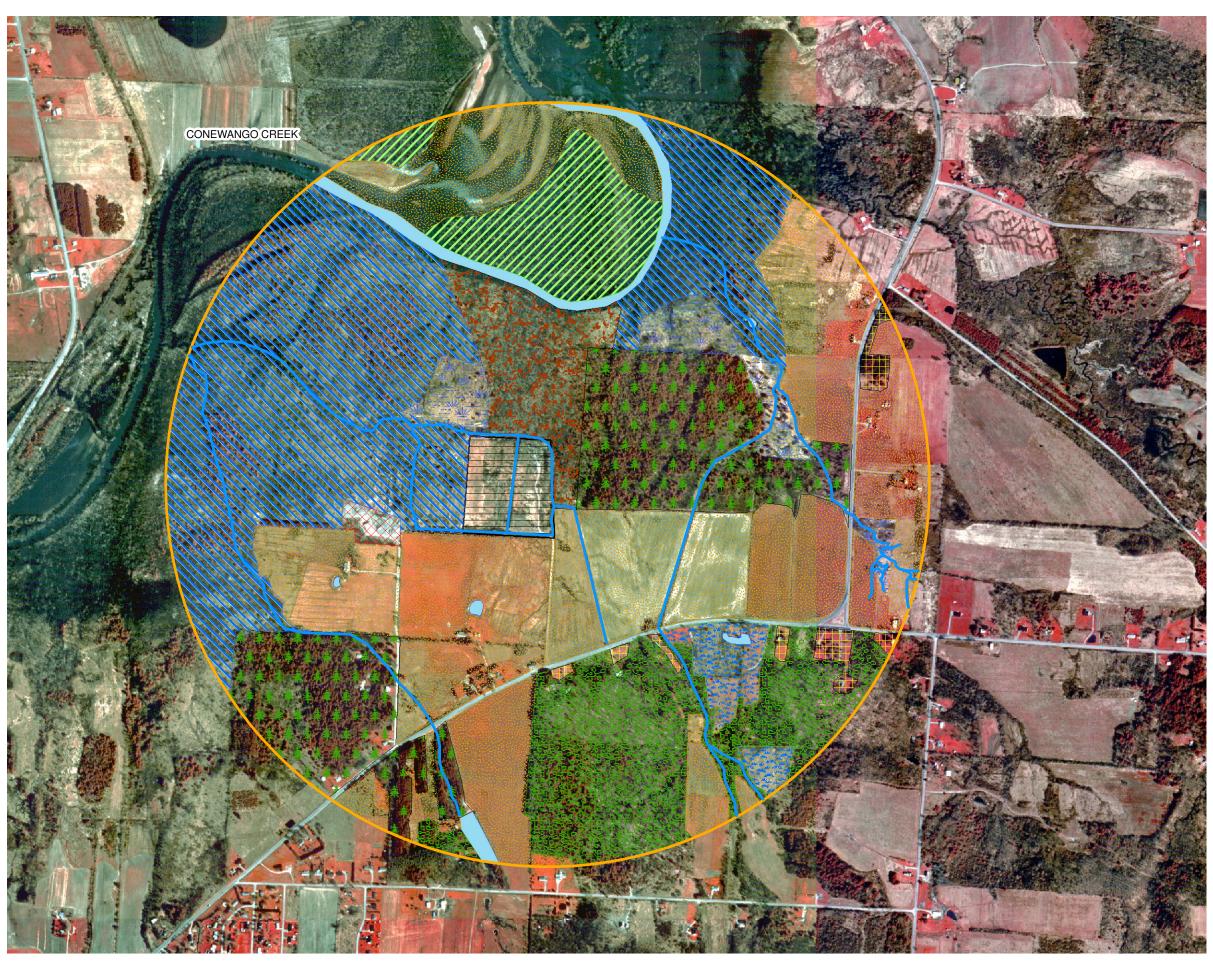

Common Name	Scientific Name	NY Legal Status		
	Oporornis			
Mourning Warbler	philadelphia	Protected		
Common Yellowthroat	Coathlynia triabaa	Protected		
renowinroai	Geothlypis trichas	Protected		
Hooded Warbler	Wilsonia citrina	Protected		
Canada Warbler	Wilsonia canadensis	Protected		
Scarlet Tanager	Piranga olivacea	Protected		
Ŭ	Pipilo			
Eastern Towhee	erythrophthalmus	Protected		
Chipping Sparrow	Spizella passerina	Protected		
	opizona paoconna	1 TOTOGLOG		
Field Sparrow	Spizella pusilla	Protected		
Savannah Sparrow	Passerculus sandwichensis	Drotostad		
Savannah Sparrow	sanuwichensis	Protected		
Song Sparrow	Melospiza melodia	Protected		
		D		
Swamp Sparrow	Melospiza georgiana	Protected		
Dark-eyed Junco	Junco hyemalis	Protected		
Northern Cardinal	Cardinalis cardinalis	Protected		
Rose-breasted Grosbeak	Pheucticus Iudovicianus	Protected		
Grosbeak	100011010103	Theeled		
Indigo Bunting	Passerina cyanea	Protected		
Dahaliali	Deliekense	Durata ata d		
Bobolink Red-winged	Dolichonyx oryzivorus	Protected		
Blackbird	Agelaius phoeniceus	Protected		
Eastern Meadowlark	Sturnella magna	Protected		
Common Grackle	Quiscalus quiscula	Protected		
Brown-headed				
Cowbird	Molothrus ater	Protected		
Baltimore Oriole	lotorus calbula	Protected		
	Icterus galbula Carpodacus	FIDIECIEU		
Purple Finch	purpureus	Protected		
	Carpodacus			
House Finch	mexicanus	Protected		
American Goldfinch	Carduelis tristis	Protected		
House Sparrow	Passer domesticus	Unprotected		

¹ Based on the New York State Department of Environmental Conservation Breeding Bird Atlas (Blocks 1566A, B, C & D and 1466B & D) www.dec.state.ny.us/apps/bba/results/index


Table 3Town of Carroll Landfill SiteFrewsburg, New YorkFish and Wildlife Impact AnalysisPotentially Applicable Criteria, Standards, or Guidance

	Potentially Applicable Criteria, Standards, or Guidance					
	r otentially Applicable offena, Standards, or Guidance					
Media						
Soil	The NYSDEC has not established ecologically-based criteria for contaminated soils					
	Toxicological Benchmarks for Contaminants of Potential Concern for Effects on Terrestrial Plants: 1997 Revision. (Efroymson et al. 1997a)					
	Toxicological Benchmarks for Contaminants of Potential Concern for Effects on Soil and Litter Invertebrates and Heterotrophic Process: 1997 Revision. (Efroymson et al. 1997b)					
	Ecological Soil Screening Level Guidance (USEPA 2000)					
Surface Water	TOGS 1.1.1 Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations. (NYSDEC1998).					
	Use and Protection of Waters – New York Environmental Conservation Law Articles 15 and 17; 6 NYCRR Part 608					
	National Recommended Water Quality Criteria-Correction (USEPA 2002)					
	Toxicological Benchmarks for Screening Potential Contaminants of Concern for Effects on Aquatic Biota (Suter and Tsao 1996)					
Sediments	Technical Guidance for Screening Contaminated Sediments (NYSDEC 1999)					
	Toxicological Benchmarks for Screening Contaminants of Potential Concern for Effects on Sediment-Associated Biota: 1997 Revision (Jones et al., 1997)					
Wetlands	NY Freshwater Wetlands Act (NYS 1985; NYS 1980; 6 NYCRR Parts 663, 664)					
	USEPA Clean Water Act - Section 404					
	Executive Order 11990 – Protection of Wetlands					
	Executive Order 11988 – Floodplain Management					
Waterways	Use and Protection of Waters (6 NYCRR Part 608)					
Flora and Fauna	Endangered Species Act of 1973 (50 CFR Parts 17 and 402)					
	Endangered and Threatened Species of Fish and Wildlife - Species of Special Concern (NY ECL Article 11, Title 5; 6 NYCRR Part 182					

Figures



10653.34241 **MARCH 2005**

QUADRANGLE LOCATION

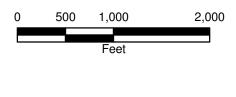
1:24,000

This document was developed in color. Reproduction in B/W may not represent the data as intended.

Source: Aerial photography from http://www.nysgis.state.ny.us/.

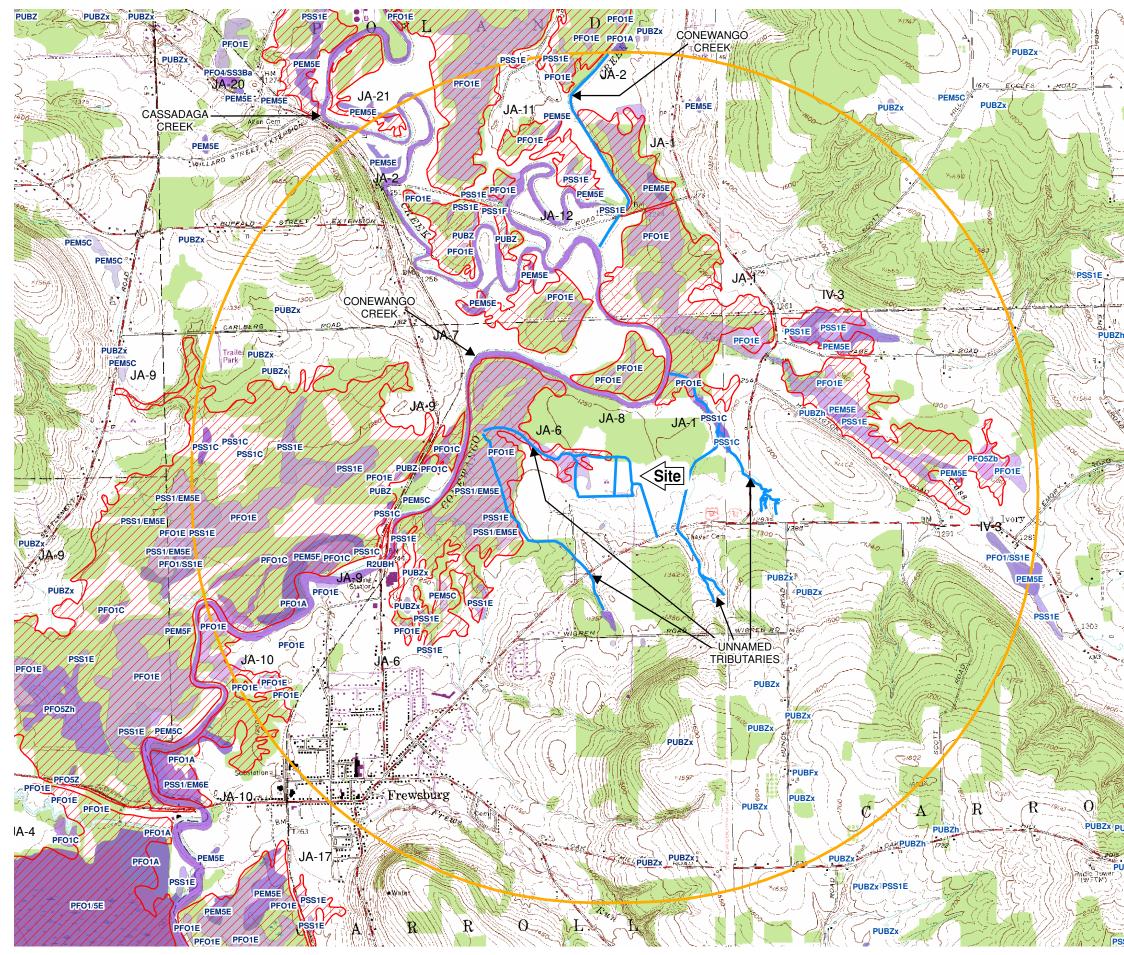
FIGURE 2

LEGEND


 \bigotimes

F

CROPLAND/PASTURELAND HEMLOCK/NORTHERN HARDWOOD FOREST 秦 秦 60 DECIDUOUS FOREST DECIDUOUS FORESTED WETLAND INDUSTRIAL LANDFILL CELLS MIXED FORESTED UPLAND MIXED WETLAND SUCCESSIONAL OLD FIELD OPEN WATER RESIDENTIAL SCRUB-SHRUB WETLAND 1/2 MILE SITE RADIUS STREAM/DRAINAGE WAY


TOWN OF CARROLL LANDFILL SITE FREWSBURG, NEW YORK

STUDY AREA COVERTYPES

MARCH 2005 10653.34241

This document was developed in color. Reproduction in B/W may not represent the data as intended.

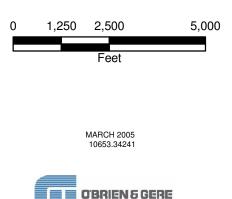
Source: NWI data from http://wetlands.fws.gov/downloads.htm. NYSDEC Fresh Water Wetlands from http://cugir.mannlib.cornell.edu/.

FIGURE 3

STREAM/DRAINAGE WAY

2 MILE SITE RADIUS

NATIONAL WETLANDS INVENTORY HABITAT AREA



PSS1E

NYSDEC FRESH WATER WETLANDS

TOWN OF CARROLL LANDFILL SITE FREWSBURG, NEW YORK

DOCUMENTED NATURAL RESOURCES

NGINEERS, INC.

Attachment A

Site photographs

Photo 1: Looking northwest at southern portion of eastern landfill cell.

Photo 2: Looking southeast at western landfill cell.

Photo 3: Looking north at drainage way located between landfill cells.

Photo 4: Looking west at drainage and scrub-shrub emergent wetland just north of western landfill cell.

Photo 5: Looking south at scrub-shrub wetland and drainage located south of landfill cells.

Photo 6: Looking northwest at northern portion of eastern landfill cell.

Photo 7: Looking northwest at tree stump disposal area at northern portion of eastern landfill cell and forested and scrub-shrub wetland in background of photo.

Photo 8: Looking northwest at unnamed tributary to Conewango Creek and forested wetland (NYSFW JA-6) northwest of site.

Photo 9: Looking south at mouth of unnamed tributary and Conewango Creek.

Photo 10: Looking north at mixed forested wetland north of site within study area.

Attachment B

USFWS and NYNHP information request letter responses

United States Department of the Interior

FISH AND WILDLIFE SERVICE 3817 Luker Road Cortland, NY 13045

January 24, 2005

Mr. Ronald P. Chiarello Project Scientist O'Brien & Gere Engineers, Inc. P.O. Box 4873 Syracuse, NY 13221-4873

Dear Mr. Chiarello:

This responds to your November 9, 2004, letter requesting information on the presence of endangered or threatened species in the vicinity of the proposed Carroll Town Landfill in the Village of Frewsburg, Chautauqua County, New York.

The clubshell (*Pleurobema clava*), listed as an endangered species by the U.S. Fish and Wildlife Service (Service), is known to occur in the Allegheny River drainage, including the Cassadaga Creek, and may occur within the Conewango Creek. The proposed project is less than one mile from the Conewango Creek. In addition to the clubshell, the rayed bean (*Villosa fabalis*), has been found in the Cassadaga Creek and may occur within the Conewango Creek. The rayed bean is a candidate species which is being considered by the Service for addition to the Federal List of Endangered and Threatened Wildlife and Plants. Candidate species are species for which the Service has on file sufficient information on the biological vulnerability and threat(s) to support issuance of a proposal to list, but issuance of a proposed rule is currently precluded by higher priority listing actions. Candidate species do not receive substantive or procedural protection under the Endangered Species Act (ESA) (87 Stat. 884, as amended; 16 U.S.C. 1531 et seq.); however, the Service does encourage Federal agencies and other appropriate parties to consider these species in the project planning process.

Should the rayed bean be <u>proposed</u> for listing as endangered or threatened prior to completion of this project, conference procedures pursuant to Section 7(a)(4) of the ESA may be necessary if your project involves Federal authorizations. Should this species be <u>listed</u> prior to completion of the project, further coordination or consultation pursuant to the ESA will be required to evaluate potential adverse effects of project implementation on the rayed bean or its habitat, and to determine if formal consultation is necessary.

The project's environmental documents should identify project activities that might result in adverse impacts, directly or indirectly, to the clubshell, rayed bean, or their habitat. The following links may assist you as they provide additional information about the rayed bean and clubshell:

http://midwest.fws.gov/Endangered/clams/rayed-bean-sa.pdf, and http://nyfo.fws.gov/es/clubshell.pdf

The project's environmental documents or other information regarding the project's potential impacts on these species should be provided to this office and as they will be used to evaluate potential impacts to the clubshell or its habitat, and to determine the need for further coordination or consultation pursuant to the ESA.

Except for the potential for the clubshell, rayed bean, and occasional transient individuals, no other Federally-listed or proposed endangered or threatened species under our jurisdiction are known to exist in the project impact area. In addition, no habitat in the project impact area is currently designated or proposed "critical habitat" in accordance with provisions of the ESA. Should project plans change, or if additional information on listed or proposed species or critical habitat becomes available, this determination may be reconsidered. The most recent compilation of Federally-listed and proposed endangered and threatened species in New York* is available for your information. If the proposed project is not completed one year from the date of this determination, we recommend that you contact us to ensure that the listed species presence/absence information for the proposed project is current.

The above comments pertaining to endangered species under our jurisdiction are provided pursuant to the ESA. This response does not preclude additional Service comments under other legislation.

The clubshell and rayed bean are listed as endangered by the State of New York. Project plans and the results of the above information should be coordinated with both this office and with the New York State Department of Environmental Conservation (State). The State contacts for the clubshell and rayed bean are:

Ms. Jean Pietrusiak New York State Department of Environmental Conservation New York Natural Heritage Program Information Services 625 Broadway Albany, NY 12233-4757 (518) 402-8935 Mr. Peter Nye New York State Department of Environmental Conservation Endangered Species Unit 625 Broadway Albany, NY 12233 (518) 402-8859

For additional information on fish and wildlife resources or State-listed species, we suggest you contact the appropriate State regional office(s),* and:

New York State Department of Environmental Conservation New York Natural Heritage Program Information Services 625 Broadway Albany, NY 12233-4757

Since wetlands may be present, you are advised that National Wetlands Inventory (NWI) maps may or may not be available for the project area. However, while the NWI maps are reasonably accurate, they should not be used in lieu of field surveys for determining the presence of wetlands or delineating wetland boundaries for Federal regulatory purposes. Copies of specific NWI maps can be obtained from: Cornell Institute for Resource Information Systems 302 Rice Hall Cornell University Ithaca, NY 14853-5601 (607) 255-6520 web: http://iris.css.cornell.edu email: cornell-iris@cornell.edu

Work in certain waters of the United States, including wetlands, may require a permit from the U.S. Army Corps of Engineers (Corps). If a permit is required, in reviewing the application pursuant to the Fish and Wildlife Coordination Act, the Service may concur, with or without recommending additional permit conditions, or recommend denial of the permit depending upon potential adverse impacts on fish and wildlife resources associated with project construction or implementation. The need for a Corps permit may be determined by contacting the appropriate Corps office(s).*

Thank you for your time. If you require additional information please contact Robyn Niver at (607) 753-9334.

Sincerely,

David A. Stilwell Field Supervisor

*Additional information referred to above may be found on our website at: http://nyfo.fws.gov/es/section7.htm

cc: NYSDEC, Allegany, NY (Attn: Environmental Permits) NYSDEC, Albany, NY (Natural Heritage Program) NYSDEC, Albany, NY (Endangered Species; Attn: P. Nye) COE, Buffalo, NY New York State Department of Environmental Conservation Division of Fish, Wildlife & Marine Resources New York Natural Heritage Program

625 Broadway, 5th floor, Albany, New York 12233-4757 **Phone:** (518) 402-8935 • **FAX:** (518) 402-8925 **Website:** www.dec.state.ny.us

November 30, 2004

Ronald P. Chiarello O'Brien & Gere 5000 Brittonfield Pkwy Syracuse, NY 13221-4873

Dear Mr. Chiarello:

In response to your recent request, we have reviewed the New York Natural Heritage Program databases with respect to an Environmental Assessment for the Carroll Town Landfill, File 10653/34241.003.001, area as indicated on the map you provided, including a 2-mile radius, located in the Village of Frewsburg, Chautauqua County.

We have no records of <u>known</u> occurrences of rare or state-listed animals or plants, significant natural communities, or other significant habitats, on or in the immediate vicinity of your site.

The absence of data does not necessarily mean that rare or state-listed species, natural communities or other significant habitats do not exist on or adjacent to the proposed site. Rather, our files currently do not contain any information which indicates their presence. For most sites, comprehensive field surveys have not been conducted. For these reasons, we cannot provide a definitive statement on the presence or absence of rare or state-listed species, or of significant natural communities. This information should not be substituted for on-site surveys that may be required for environmental assessment.

Our databases are continually growing as records are added and updated. If this proposed project is still under development one year from now, we recommend that you contact us again so that we may update this response with the most current information.

This response applies only to known occurrences of rare or state-listed animals and Pplants, significant natural communities and other significant habitats maintained in the Natural Heritage Data bases. Your project may require additional review or permits; for information regarding other permits that may be required under state law for regulated areas or activities (e.g., regulated wetlands), please contact the appropriate NYS DEC Regional Office, Division of Environmental Permits, at the enclosed address.

Sincerely

Betty A. Hetcham, Information Service New York Natural Heritage Program

Enc.

cc:

Reg. 9, Wildlife Mgr. Reg. 9, Fisheries Mgr.

Appendix I

Exposure pathway analysis

Exposure Pathway Analysis Report

As part of the RI for the Town of Carroll Landfill Site (Site), an Exposure Pathway Analysis Report (EPAR) was prepared. The tables within the EPAR were developed consistent with the *Risk Assessment Guidance for Superfund: Volume 1 – Human Health Evaluation Manual (Part D, Standardized Planning, Reporting, and Review of Superfund Risk Assessments* (USEPA 2001), referred to as RAGS Part D. The EPAR contains Table 1 consistent with the RAGS D format.

Attached is Table 1 that was prepared according to RAGS Part D for the Site, and constitutes the EPAR. Table 1 provides a summary of the exposure pathways that were assessed for the qualitative assessment of risk to humans from potential contact with site media. Consistent with the July 15, 2004 RI/FS Final Project Management Work Plan, a comparison to USEPA risk based criteria was not conducted for this Site and chemicals of potential concern (COPC) were not identified as part of this EPAR. Analytical results were compared to NYSDEC TAGM 4046 recommended soil cleanup objectives and NYSDEC Class GA ground water standards as part of the RI. Consistent with the July 15, 2004 Final Project Management Work Plan, this comparison is documented in the analytical data summary tables included in the RI Report.

TABLE 1.1a SELECTION OF ON-SITE EXPOSURE PATHWAYS - CURRENT/FUTURE USES Town of Carroll Landfill								
Scenario	Medium	Exposure Medium	Exposure Point	Receptor Population	Receptor Age	Exposure Route	Type of Analysis	Rationale for Selection or Exclusion of Exposure Pathway
				Construction	Adult	Ingestion	Qual.	A construction worker could have occasional incindental ingestion while performing duties.
				Worker		Dermal	Qual.	A construction worker could have occasional dermal exposure while performing duties.
	Surface soil	Surface soil Site-wide surface soils (0-2ft bgs.) Site surface soil Air Site-wide ambient air	Sito wido ourfoco opilo	Maintenance	Adult	Ingestion	Qual.	A maintenance worker could have occasional incidental ingestion while performing duties.
			WO	worker	Addit	Dermal	Qual.	A maintenance worker could have occasional dermal exposure while performing duties.
				Trespasser	Adult, Adolescent,	Ingestion	Qual.	It is possible that trespassing could occur on site; incidental ingestion of soil could occur while trespassing. For example, hunting reportedly has occurred on the site.
Current/ Future				·		Child	Dermal	Qual.
	Air Si		Construction worker	Adult	Air inhalation	Qual.	It is possible that construction workers could inhale fugitive dust and vapors while performing duties.	
			Site-wide ambient air wo	Maintenance worker	Adult	Air inhalation	Qual.	It is possible that site workers (e.g. utility worker, fencing company employees, maintenance workers) could occasionally inhale fugitive dusts and vapors.
				Trespasser	Adult, Adolescent, Child	Air inhalation	None	This potential pathway is insignificant.
	Site subsurface soil	Subsurface soil	Subsurface soil	Construction	Adult	Ingestion	Qual.	Construction or workers could incidentally ingest soil to a depth of approximately 10ft bgs as part of building projects or construction activities.
			worker	Λυμι	Dermal	Qual.	Construction workers could have dermal exposure to soils at a depth of approximately 10ft bgs as part of building projects or construction activities.	

TABLE 1.1a SELECTION OF ON-SITE EXPOSURE PATHWAYS - CURRENT/FUTURE USES Town of Carroll Landfill								
Scenario	Medium	Exposure Medium	Exposure Point	Receptor Population	Receptor Age	Exposure Route	Type of Analysis	Rationale for Selection or Exclusion of Exposure Pathway
Current/ Future (continued)	Site subsurface soil	Air	Outdoor air- trenches/excavations	Construction worker	Adult	Air inhalation		Construction workers could occasionally inhale vapors originating from excavations made while working.
	Groundwater	Groundwater	Groundwater	Construction worker	Adult	Ingestion	Qual.	Construction workers could ingest groundwater incidentally during construction activities at or below the water table.
						Dermal		Construction workers could have dermal exposure incidentally during construction activities at or below the water table.
		Air	Ambient Air	Construction worker	Adult	inhalation	Qual.	Construction workers could inhale vapors originating from groundwater while working.

	TABLE 1.1b SELECTION OF ON-SITE EXPOSURE PATHWAYS - FUTURE USES Town of Carroll Landfill									
Scenario Timeframe				Receptor Population	Receptor Age	Exposure Route	Type of Analysis	Rationale for Selection or Exclusion of Exposure Pathway		
	Site surface soil	Surface soil	Site-wide surface soils (0-2ft) bgs Site-wide ambient air	Residents	Adult, Adolescent, Child	Ingestion	Qual.	The site is zoned AR-1 intended for agricultural/residential use with a 1 acre minimum lot size. Over 275 acres of the site is undeveloped; the closed landfill comprises the other approximately 25 acres of it. Future residential development of the site could result in incidental ingestion of surface soils by a resident.		
						Dermal	Qual.	The site is zoned AR-1 intended for agricultural/residential use with a 1 acre minimum lot size. Over 275 acres of the site is undeveloped; the closed landfill comprises the other approximately 25 acres of it. Future residential development of the site could result in dermal contact with surface soils by a resident		
				Construction worker	Adult	Ingestion	Qual.	Future construction workers could ingest surface soil incidentally as a part of building projects or repair.		
Future						Dermal	Qual.	Future construction workers could have dermal contact with surface soil as a part of building projects or construction activity.		
				Construction worker	Adult	Air inhalation	Qual.	It is possible that future construction workers could inhale fugitive dust and vapors while performing duties.		
	Site subsurface soil	Subsurface soil	Site -wide subsurface soil (2-10ft bgs)	Construction worker	Adult	Ingestion	Qual.	Future construction workers could incidentally ingest soil to a depth of approximately 10ft bgs as part of building projects or construction activity.		
						Dermal	Qual.	Future construction workers could have dermal exposure to a depth of approximately 10ft bgs as part of building projects or construction activity.		
		Air	Outdoor air - trenches/excavations	Construction worker	Adult	Inhalation	Qual.	Future construction workers could inhale dust or vapors originating from excavations made to perform work.		

	TABLE 1.1b SELECTION OF ON-SITE EXPOSURE PATHWAYS - FUTURE USES Town of Carroll Landfill									
Scenario Timeframe	Medium	Exposure Medium	Exposure Point	Receptor Population	Receptor Age	Exposure Route	Type of Analysis	Rationale for Selection or Exclusion of Exposure Pathway		
		Air (continued)	Indoor air - vapor intrusion	Office worker	Adult	Inhalation	None	Potential exposure to vapor intrusion into indoor air is considered via the ground water pathway. EPA does not recommend indoor air vapor intrusion evaluation from soil data.		
	Subsurface soil (continued)			Commercial worker	Adult	Inhalation	None	Potential future exposure to vapor intrusion into indoor air is considered via the ground water pathway. EPA does not recommend indoor air vapor intrusion evaluation from soil data.		
				Residents	Adult, Adolescent, Child	Inhalation	None	Potential future exposure to vapor intrusion into indoor air is considered via the ground water pathway. EPA does not recommend indoor air vapor intrusion evaluation from soil data.		
Future (continued)	Groundwater	Groundwater	Potable water	Office worker	Adult	Ingestion, dermal contact	Qual.	There are presently no known wells on the Site that provide potable water. However, the village currently operates a production well that is located approximately 700 ft from the site. Use of that well could expose a future office worker to ground water via the potable water supply.		
				Commercial worker	Adult	Ingestion, dermal contact	Qual.	There are presently no known wells on the Site that provide potable water. However, the village currently operates a production well that is located approximately 700 ft from the site. Use of that well could expose a future commercial worker to ground water via the potable water supply.		
				Residents	Adult, Adolescent, Child	Ingestion, dermal contact	Qual.	There are presently no known wells on the Site that provide potable water. However, the village currently operates a production well that is located approximately 700 ft from the site. Use of that well could expose a future resident to ground water via the potable water supply.		
				Office worker	Adult	Inhalation	Qual.	Future development of site could result in office worker that has the potential to inhale indoor air affected by vapor intrusion from groundwater sources.		
		Air	Indoor air - vapor intrusion	Commercial worker	Adult	Inhalation	Qual.	Future development of site could result in commercial worker that has the potential to inhale indoor air affected by vapor intrusion from groundwater sources.		

	TABLE 1.1b SELECTION OF ON-SITE EXPOSURE PATHWAYS - FUTURE USES Town of Carroll Landfill							
Scenario TimeframeMediumExposure MediumExposure PointReceptor PopulationReceptor AgeType of RouteRationale for Selection or Exclusion 								
				Residents	Adult, Adolescent, Child	Inhalation	Qual.	Future residential development of the site could result in residents have the potential to inhale indoor air affected by vapor intrusion from groundwater sources.

	TABLE 1.2 SELECTION OF OFF-SITE EXPOSURE PATHWAYS - CURRENT/FUTURE Town of Carroll Landfill									
Scenario Timeframe	Medium	Exposure Medium	Exposure Point	Receptor Population	Receptor Age	Exposure Route	Type of Analysis	Rationale for Selection or Exclusion of Exposure Pathway		
	Groundwater	Groundwater Groundwater	Potable water	Resident	Adult, Adolescent, Child	Ingestion	Qual.	Village operates potable water supply well located approximately 700 ft from the site. Residents can be exposed to and ingest constituents in potable water during daily activities such as showering/bathing, washing, cooking and cleaning.		
						Dermal	Qual.	Village operates potable water supply well located approximately 700 ft from the site. Residents can be exposed to dermal contact with constituents in potable water during daily activities such as showering/bathing, washing, cooking and cleaning.		
			Groundwater	Construction worker	Adult	Ingestion	Qual.	Construction workers could ingest groundwater incidentally during construction activities at or below the water table.		
Current/ Future						Dermal	Qual.	Construction workers could have dermal exposure incidentally during construction activities at or below the water table.		
			Indoor Air Vapor Intrusion	Resident	Adult, Adolescent, child	Inhalation	Qual.	It is possible that buildings offsite could experience vapor intrusion into buildings from groundwater, leading to inhalation of vapors.		
		Sediment Wetland Sediment Wetlan	Wetland Sediment	Recreational visitor/	Adult, Adolescent, Child	Ingestion	Qual.	It is possible for constituents to be transported from the Site to wetland sediment providing a pathway and potential exposure via incidental ingestion with sediment during recreational activities or trespassing.		
				Trespasser		Dermal	Qual.	It is possible for constituents to be transported from the Site to wetland sediment providing a pathway and potential exposure via dermal contact with sediment during recreational activities or trespassing.		

FINAL REPORT

Town of Carroll Landfill Site Hamlet of Frewsburg, New York Feasibility Study

New York State Department of Environmental Conservation Albany, New York

April 2006

FINAL REPORT

Town of Carroll Landfill Site Feasibility Study Report Hamlet of Frewsburg, New York

New York State Department of Environmental Conservation Albany, New York

Vaugles M. Crowfl

Douglas M. Crawford, P.E Vice President

April 2006

List of Tables	iii
List of Figures	iii
List of Appendices	
1. Introduction	1
1.1. Purpose	1
1.2. Site Background	
1.3. Geology and Hydrogeology	2
1.3.1. Geology	
1.3.2. Hydrogeology	
1.4. Summary of Remedial Investigation	
1.5. Chautauqua County Department of Health Ground Water	
Sampling	8
1.6. Summary of Risk Assessment	
1.6.1. Human Health Risk Assessment	9
1.6.2. Fish and Wildlife Impact Analysis	10
1.7. Conceptual Site Model	11
2. Development of Remedial Alternatives	15
2.1. Development of Remedial Action Objectives	
2.2. Identification of General Response Actions	
2.3. Identification of Areas and Volumes of Media	
2.4. Estimates of Ground Water Remedial Timeframes	
2.5. Identification and Screening of Remedial Technologies and	
Process Options	17
2.5.1. No Action	
2.5.2 Institutional Actions	
2.5.3. Containment Actions	18
2.5.4 Removal Actions	19
2.5.5 Treatment Actions	20
2.5.6 Disposal/Discharge Actions	22
2.6. Evaluation of Remedial Technologies	22
2.7. Assembly of Remedial Alternatives	23
2.7.1. Alternative 1	23
2.7.2. Alternative 2	25
2.7.3. Alternative 3	27
2.7.4. Alternative 4	29
2.7.5. Alternative 5	31

2.7.6. Alternative 6	4
2.7.7. Alternative 7	6
3. Detailed Analysis of Alternatives	9
3.1. Individual Analysis of Alternatives	
3.1.1. Overall Protection of Human Health and the Environment	-
	0
3.1.2. Compliance with SCGs	
3.1.3. Long-Term Effectiveness and Permanence	
3.1.4. Reduction of Toxicity, Mobility, or Volume through	
Treatment	1
3.1.5. Short-Term Effectiveness	1
3.1.6. Implementability	1
3.1.7. Cost	
3.1.8. Support Agency Acceptance	
3.1.9. Community Acceptance	
3.2. Comparative Analysis of Alternatives	
3.2.1. Overall Protection of Human Health and the Environment	
	2
3.2.2. Compliance with SCGs	3
3.2.3. Long-term Effectiveness and Permanence	3
3.2.4. Reduction of Toxicity, Mobility, or Volume through	
Treatment	3
3.2.5. Short-Term Effectiveness	4
3.2.6. Implementability	5
3.2.7. Cost	5
3.2.8. Support Agency Acceptance	6
3.2.9. Community Acceptance	6
References	7

List of Tables

	1	Screening of Remedial Technologies and Process Options
	2	Evaluation of Process Options
	3	Components of Remedial Alternatives
	4	Detailed Analysis of Alternatives
	5	Evaluation of Potential SCGs
	6	Alternative 1 Cost Estimate – No Further Action
	7	Alternative 2 Cost Estimate – Excavation and Off-Site Disposal
	8	Alternative 3 Cost Estimate – Landfill Cover
	9	Alternative 4 Cost Estimate – Landfill Cover with Ground Water
		Extraction and Treatment
	10	Alternative 5 Cost Estimate – Landfill Cover with In Situ
		Enhanced Attenuation
	11	Alternative 6 Cost Estimate – Landfill Cover with In Situ
		Ground Water Treatment
	12	Alternative 7 Cost Estimate – Wellhead Ground Water
		Treatment
	13	Assumptions and Calculations
List of Figures		
	1	Site Location Map
	2	Site Map (with sampling points)

List of Appendices

A Estimates of Remedial Timeframes

1. Introduction

1.1. Purpose

The purpose of this report is to present the Feasibility Study (FS) for the Town of Carroll Landfill Site (Site), New York State Superfund Site No. 9-07-017, located in Frewsburg, New York. A site location map is provided as Figure 1.

This FS was conducted on behalf of the New York State Department of Environmental Conservation (NYSDEC) in accordance with:

- the provisions of CERCLA as amended by SARA
- the National Oil and Hazardous Substances Pollution Contingency Plan (NCP; Federal Register 1990)
- the NYSDEC Division of Environmental Remediation *Technical Guidance for Site Investigation and Remediation* (DER-10; NYSDEC 2002)
- the USEPA Guidance for Conducting Remedial Investigations and Feasibility Studies Under CERCLA (USEPA 1988)
- the NYSDEC revised *Technical Administrative Guidance Memorandum (TAGM) on Selection of Remedial Actions at Inactive Hazardous Waste Sites* (NYSDEC 1990)
- the USEPA Presumptive Remedy for CERCLA Municipal Landfill Sites (USEPA 1993)
- the Remedial Investigation/Feasibility Study Final Project Management Work Plan (PMWP; O'Brien & Gere 2004).

1.2. Site Background

The Town of Carroll Landfill is a former municipal and construction and demolition (C&D) debris landfill and solid waste transfer station. The landfill is located at the end of an unnamed gravel road, approximately 1,700 feet north of NYS Route 62 (also known as Ivory Road) in the Village of Frewsburg, Town of Carroll, Chautauqua County, New York (Figure 1). The landfill is located on a 305-acre lot, although the landfill Site occupies only approximately 25 acres of the property. The surrounding area includes active and inactive farmland, wooded areas, wetlands, and private homes. Conewango Creek lies to the north,

northwest, and west of the Site within a broad floodplain (NYSDEC, 2003).

The Site is located on a northwest-facing, gently sloping hillside and is composed of two roughly rectangular landfill cells, each surrounded by drainage ditches and swales. Based on the field activities conducted at the Site, the western landfill cell is approximately 900 ft from north to south and 450 ft from east to west. The eastern landfill cell is approximately 750 ft from north to south and 300 ft from east to west. The ground surface of the eastern cell is estimated to range from 1 to 4 feet above surrounding ditches on the east, north and west. The topography of the western cell is more uneven, ranging from approximately 1 to 10 feet above the surrounding ditches with several flat areas. A narrow drainage area, approximately 70 ft wide, separates the two landfill cells and eventually drains to the northwest into a wetland area before reaching Conewango Creek (NYSDEC, 2003).

Approximately 700 feet west of the Site is the Town of Carroll Public Works Garage area and the Frewsburg Water District including a water supply well and pump station. The Public Works Garage and Water District are located on the same lot, but are accessed from Wahlgren Road off NYS Route 62. The nearest homes are approximately 1200 feet to the west and south and uphill from the Site (NYSDEC, 2003).

1.3. Geology and Hydrogeology

1.3.1. Geology

The Site is located in the Allegany Plateau physiographic province of New York State near the Village of Frewsburg. The following hydrogeologic units can be differentiated at the Site: fill, lacustrine sandy silt and silty clay, glacial outwash sand and gravel, till, and bedrock.

Fill. The uppermost unit within the boundaries of the landfill cells is fill. Fill materials around the edges of the western cell were observed to be mainly composed of wood pieces, metal debris, metal turnings, plastic and glass bottles, plastic sheeting, paper, tires, and drum carcasses. Fill materials around the edges of the southern portion of the eastern cell were observed to be mainly composed of municipal waste such as plastics, miscellaneous metallic debris, paper and plastic toys. Fill materials around the edges of the northern portion of the eastern cell were observed to be mainly composed of brush and log materials. Test pits completed around the edges of the landfill cells indicate that the total depth of fill ranged from approximately 2-ft at TP-01, TP-11, and TP-18 to approximately 10-ft at TP-12. The top of the fill materials was encountered between approximately 1 and 5-ft within each test pit. A soil cover exists over the fill material, however, this cover was noted to be eroded in places with partially buried drums observed. The cover, did not appear to be suitable for preventing infiltration of precipitation through the underlying fill materials. No consistent cover thickness was noted during field investigations, with several drums observed partially exposed at the surface.

Lacustrine sandy silt and silty clay. The uppermost naturally occurring material outside of the boundaries of the landfill cells, and underlying the fill consists of a yellowish brown, stiff, fine sandy silt with some clay. This sandy silt unit varies in thickness from 5 ft (southwest) to 10 ft (northeast). Underlying this unit is a medium gray, stiff, silty clay unit. This silty clay unit varies in thickness from about 3 ft to 10 ft. The total depth of these units ranges from 7 ft to 20 ft below ground surface.

Glacial outwash sand and gravel. An outwash sand and gravel was encountered underlying the lacustrine sandy silt and silty clay units. The sand and gravel unit consists of yellowish brown, medium dense, fine to coarse sand and gravel with some silt. The total depth of this unit is approximately 45 ft below ground surface.

Till. Till was encountered at the MW-109D location underlying the outwash sand and gravel unit. The glacial till consists of olive gray, very dense gravel and medium to coarse sand with few cobbles. This unit has a thickness of about 15 ft.

Bedrock. Bedrock was not encountered at the Site during the Remedial Investigation (RI; O'Brien & Gere 2005). The uppermost bedrock formations consist of upper Devonian age shale and siltstone of the Conneaut Group. The formations may also include limited beds of sandstone and conglomerate. Previous activities completed for the investigation for the Frewsburg Water District encountered weathered shale bedrock at 76 to 81 ft below ground surface (O'Brien & Gere 2005)

1.3.2. Hydrogeology

Ground water was observed between 3 ft and 9 ft below grade. Shallow ground water is defined as the ground water present to approximately 20 ft below grade. Intermediate ground water is defined as the ground water present between 20 and 45 ft below grade. Deep ground water is defined as ground water present between 45 and 70 ft below grade. Nine wells are installed such that the screen is situated within the shallow ground water zone, eight wells are installed such that the screen is situated within the intermediate zone, and one ground water well is installed within the deep ground water zone.

Flow components of ground water observed during the RI, in combination with historical information, suggest that the natural flow of ground water is generally northerly toward Conewango Creek. The Frewsburg Water District Supply Well #5 is located about 700-ft

southwest of the landfill Site. Shallow ground water was observed during various monitoring events to have a flow component to the westnorthwest or to the west-southwest. Ground water in the intermediate zone flows to the southwest. It is likely that ground water flow direction is being influenced and redirected by initiation of pumping activities of the Frewsburg Water District Supply Well #5 in January 1995.

Shallow ground water hydraulic gradients ranged from 0.002 to 0.009 ft/ft and were noted to generally be higher in the southern portions of the landfill than in the northern portion. Intermediate ground water had a uniform hydraulic gradient of about 0.004 ft/ft. Vertical hydraulic gradients were observed to be both upward and downward depending on the sampling date.

Results indicate that hydraulic conductivity of the shallow hydrogeologic unit ranges from 0.05 ft/day to 0.5 ft/day. Hydraulic conductivity values from the intermediate wells range from 0.16 ft/day to 9.72 ft/day. The hydraulic conductivity of the deep sand and gravel is approximately 2.85 ft/day.

The geometric mean hydraulic conductivity of the intermediate sand and gravel is approximately one order of magnitude higher than the hydraulic conductivity of the silts and clay of the shallow hydrogeologic unit. The low hydraulic conductivity values from the shallow wells are representative of the finer grained surficial sandy silt and silty clay units at the Site. Conductivity values from the intermediate wells are representative of the coarser grained sand and gravel unit.

1.4. Summary of Remedial Investigation

A RI was conducted at the Site by O'Brien & Gere Engineers, Inc. on behalf of NYSDEC from August 16, 2004 through November 10, 2004. The RI is summarized in the Remedial Investigation Report (O'Brien & Gere 2005).

Environmental samples were collected from the following media: soil vapor, surface soil, surface water, sediment, landfill material, leachate seep liquid, and ground water. Ground water wells were installed to three general depths: "shallow" screened within the 10 to 20 ft interval, "intermediate" screened within the 35 to 45 ft interval, and "deep" screened within the 60 to 70 ft interval. Surface soils were sampled, generally, from within 2 inches of the surface. Landfill material was sampled from test pits dug by an excavator at locations along the edges of the western cell. Surface water and sediment samples were collocated. Two surface water/sediment samples were collected from a drainage swale (intermittent stream) north of the landfill cells, one surface water/sediment sample was collected from the wetland area west of the western landfill cell, and two surface water/sediment samples were collected in the drainage swale between the eastern and western landfill

cells. Test wells (those with the designation "TW") were installed in test pit locations that contained visibly impacted water. Sampling locations are shown on Figure 2.

Solid and liquid samples were analyzed by O'Brien and Gere Laboratories in Syracuse New York, while soil vapor samples were screened in the field by a photoionization detector (PID) and subsequently analyzed by Lancaster Laboratories.

The following media were analyzed for volatile organic compounds (VOCs) by USEPA Method OLM04.2 (soil vapor by USEPA Method TO-15):

- Soil Vapor (4 samples)
- Sediment (5 samples)
- Landfill material (8 samples)
- Leachate seeps (3 samples)
- Ground water (25 samples).

VOC compounds were detected in each of the media sampled; however, concentrations within the sediment, landfill material, and leachate seeps were below associated screening criteria.

VOCs were detected in soil vapor within the boundaries of the landfill cells at concentrations that exceeded the generic screening levels for target shallow soil gas concentrations (O'Brien & Gere 2005). Since occupied structures are not currently present in the immediate vicinity of the landfill, potential for vapor impacts are considered minimal. VOCs detected in soil vapor consist mainly of aromatic hydrocarbons, chlorinated aliphatic hydrocarbons, and refrigerant compounds. Detected concentrations in the soil vapor are relatively low and do not indicate the presence of a significant VOC source.

VOCs were detected in shallow and intermediate ground water at concentrations above New York State (NYS) Class GA drinking water standards; however, based on ground water data collected from upgradient, cross gradient, and downgradient monitoring wells, concentrations above NYS Class GA standards in shallow and intermediate ground water appear to be localized at or near monitoring wells MW-107S and MW-102I, respectively. VOCs in deep ground water samples did not exceed the NYS Class GA drinking water standards.

The detection of VOCs in the shallow, intermediate, and deep monitoring wells suggest that VOCs have migrated from the landfill; however, overall VOC concentrations decrease with depth. This may suggest that the limited detection and low concentration of VOCs in the intermediate and deep sand and gravel unit are the result of attenuation of VOCs along the migration pathways.

The following media were analyzed for semivolatile organic compounds (SVOCs) by USEPA Method OLM04.2:

- Surface water (5 samples)
- Sediment (5 samples)
- Landfill material (6 samples)
- Leachate seeps (1 sample)
- Ground water (5 samples).

SVOCs were detected in each medium sampled except for the leachate seeps. SVOCs were detected at concentrations above associated screening levels in surface water, landfill material, and perched ground water. SVOCs detected in sediment were below the associated sediment criteria. While SVOCs were detected in the perched ground water collected from TW-TP-02, they were not detected in ground water samples collected from the monitoring wells, which suggests that the migration of SVOCs from landfill materials is limited.

The following media were analyzed for pesticides and polychlorinated biphenyls (PCBs) by USEPA Method OLM04.2:

- Surface soil (5 samples)
- Surface water (1 sample)
- Landfill material (3 samples)
- Leachate seeps (1 sample)
- Ground water (5 samples).

Neither pesticides nor PCBs were detected above associated screening criteria in any of the environmental media sampled.

The following media were analyzed for inorganic constituents including cyanide by USEPA Method ILM04.0:

- Surface soil (5 samples)
- Surface water (5 samples)
- Sediments (5 samples)
- Landfill material (8 samples)
- Leachate seeps (3 samples)
- Ground water (5 samples).

Within surface soil, the concentrations of inorganic constituents that appear to be related to the landfill due to their elevated concentrations compared to other surface soil sample concentrations are barium, cadmium, lead, and zinc at the SS-09 location, and lead and zinc at the SS-10 location. As shown on Figure 10, these surface soil samples were collected within the eastern landfill cell. Although barium and lead concentrations at SS-09 appear as though they could be related to landfill operations, their respective concentrations are within the range for Eastern United States background soils (NYSDEC 1990). Review of the analytical results for cadmium, lead, and zinc indicates that concentrations are within an order of magnitude of either the TAGM 4046 criteria and/or Eastern United States background concentrations ranges, indicating the overall inorganic impacts to surface soil are low. Within surface water, inorganic constituents that were detected at concentrations exceeding NYS Class C water quality criteria included aluminum, cobalt, iron, lead, vanadium, and zinc. The inorganic constituents detected in the surface water samples are likely attributable to the migration of leachate from the landfill to drainage swales between the two landfill cells, which ultimately drain to the drainage swale to the north of the cells. Similar inorganic constituents were detected in the surface water samples as in the leachate samples. Whether the elevated concentrations of inorganics are adversely impacting Conewango Creek which is located approximately 4,000 feet to the west of the Site is not known. However, given the relatively large distance to Conewango Creek, potential for impacts is considered to be low.

Sediment samples were co-located with the surface water samples. In general, similar inorganic constituents were detected in the sediment samples as in the surface water samples. However, in almost all cases, constituent concentrations in the sediment were higher than those detected in surface water. Inorganic sediment concentrations were compared to the Lowest Effect Level and the Severe Effect Level. This comparison indicated that arsenic, cadmium, copper, iron, lead, manganese, nickel, and zinc exceeded the Lowest Effect Level, whereas iron in the SED-03 and SED-04 samples, and manganese in the SED-03 sample exceeded the Severe Effect Level. The highest concentrations of arsenic, copper, iron, manganese, and nickel were detected in the SED-03 sample. SED-03 is located within a drainage swale located west of the western landfill cell.

Within leachate, concentrations of aluminum, cadmium, cobalt, copper, iron, lead, mercury, nickel, selenium, thallium, vanadium, and zinc were detected at concentrations that exceeded NYS Class C water quality criteria. The highest concentrations of these constituents were detected at the LT-03 location to the northwest of the western landfill cell. Concentrations of inorganics were generally one order of magnitude greater at the LT-03 location than the other leachate sampling locations. The LT-03 location was observed to have a sheen during sampling.

Within subsurface soil, the concentrations of inorganic constituents that appear to be related to the landfill due to their elevated concentrations compared to other subsurface soil sample concentrations were cadmium, chromium, cobalt, copper, mercury, nickel, and zinc. As shown on Figure 11, these subsurface soil samples were from test pits installed at the northern, eastern and southern limits of the western landfill cell. The highest concentrations of these inorganic constituents were detected in the subsurface soil sample collected from the TP-07/SS-2 location.

Within ground water, arsenic, barium, beryllium, cadmium, chromium, iron, lead, magnesium, manganese, sodium, and thallium were detected at concentrations exceeding ground water standards. Of these constituents, iron was the only constituent that was detected consistently (30 of 31 samples) above ground water standards in the ground water

samples. The frequency of detections of the other inorganic constituents that exceeded ground water standards are as follows:

- barium (MW-108S one of two sampling rounds)
- beryllium (MW-110I one of two sampling rounds)
- cadmium (MW-102 one of two sampling rounds)
- sodium (MW-104 one of two sampling rounds)
- chromium (MW-108S and MW-110I one of two sampling rounds)
- thallium (MW-109I and MW-110I one of two sampling rounds)
- manganese (MW-108S, MW-109I, and MW-110I one of two sampling rounds)
- lead (MW-109I both sampling rounds; MW-110S and MW-110I one of two sampling rounds)
- magnesium (MW-107S both sampling rounds, MW-104 and MW-110I – one of two sampling rounds)
- arsenic (MW-101, MW-104, MW-105S, MW-108S, MW-109I, MW-110S MW-110I, MW-111S one of two sampling rounds)

As shown above, inorganic concentrations above the ground water standards were detected sporadically, both spatially and temporally, with the exception of iron. Review of the iron concentrations, combined with the frequency of detection suggests that the detected concentrations are likely representative of background ground water quality conditions.

1.5. Chautauqua County Department of Health Ground Water Sampling

As described in the RI Report (O'Brien & Gere 2005), The Chautauqua County Department of Health (CCDOH) has been conducting ground water sampling of the Frewsburg Water District Supply Well # 5 and sentinel well MW-13 on a periodic basis. Based on available data from the CCDOH, vinyl chloride and cis-1,2-DCE have been detected in the Frewsburg Water District Supply Well # 5 since 2003. These detections range from 0.5 ug/L to 0.9 ug/L for vinyl chloride and 0.9 ug/L to 2.7 ug/L for cis-1,2- DCE. These detected concentrations were below drinking water standards. The analytical results for the Frewsburg Water District Supply Well # 5 are summarized in a table included in the RI Report (O'Brien & Gere 2005).

Concentrations of Freon-12, vinyl chloride, chloroethane, and cis-1,2 DCE have been consistently detected in sentinel well MW-13 since July 2003. Vinyl chloride has been consistently detected above the NYS Class GA ground water standard of 2 ug/L since October 2002. Review of data indicate that concentrations of vinyl chloride have been slowly increasing between 2002 and 2005. Concentrations of cis-1,2-DCE have also been detected above the NYS Class GA ground water standard of 5 ug/L in samples collected during August and October 2004, and June 2005. Review of data indicate that concentrations of cis-1,2-DCE have been slowly increasing between 2003 and 2005. The analytical results

for the sentinel well are summarized in a table included in the RI Report (O'Brien & Gere 2005).

1.6. Summary of Risk Assessment

1.6.1. Human Health Risk Assessment

A qualitative exposure pathway analysis was performed to evaluate the potential for human contact with site constituents and is documented in the exposure pathway analysis report (EPAR) (O'Brien and Gere, 2005a) The qualitative exposure pathway analysis consisted of identification of potentially complete exposure pathways.

Potentially complete exposure pathways identified in the EPAR for the Site were:

Current on-site exposure pathways

- Ingestion and dermal contact of surface soil by adult, adolescent, and child trespasser; and adult site worker
- Inhalation of ambient air by adult site worker
- Ingestion and dermal contact of subsurface soil by adult site worker
- Inhalation of outdoor air (trenches/excavations) by adult site worker.
- Ingestion and dermal contact with site ground water by adult site worker
- Ingestion of potable ground water by adult, adolescent, and child town residents

Future on-site exposure pathways

- Ingestion and dermal contact of surface soil by adult, adolescent, and child residents; adult site worker; adult commercial worker; adult, adolescent, and child trespasser
- Inhalation of ambient air by adult site worker
- Ingestion and dermal contact of subsurface soil by adult site worker
- Inhalation of outdoor air (trenches/excavations) by adult site worker
- Inhalation of indoor air (vapor intrusion) by adult commercial worker; adult office worker; and adult, adolescent, and child residents
- Ingestion and dermal contact with potable ground water by adult commercial worker; adult office worker; and adult, adolescent, and child residents.

Current/future off-site exposure pathways

- Inhalation of indoor air (vapor intrusion) by adult, adolescent, and child residents
- Ingestion and dermal contact with potable ground water by adult, adolescent, and child residents

- Ingestion and dermal contact with ground water by adult construction worker
- Ingestion and dermal contact with sediment by adult, adolescent, and child trespasser.

1.6.2. Fish and Wildlife Impact Analysis

A Fish and Wildlife Impact Analysis (FWIA) through Step IIA was completed for the Site (O'Brien & Gere 2005b). The FWIA was conducted according to the NYSDEC document entitled *Fish and Wildlife Impact Analysis for Inactive Hazardous Waste Sites* (NYSDEC 1994; Guidance). Step I - *Site Description* and Step IIA - *Contaminant-Specific Impact Assessment – Pathway Analysis* of the NYSDEC Guidance were addressed.

The FWIA evaluated the physical and biological characteristics and potential ecological receptors. The results and conclusions of the assessment are summarized below:

- The terrestrial portion of the Site consists of the landfill cells, dirt access roads, maintained fields/mowed areas, an old concrete loading bay area, and a small block structure. These features limit the use by resident and transient wildlife species.
- Aquatic areas existing on-site include a portion of the unnamed tributary of Conewango Creek, emergent and scrub-shrub wetlands and several drainage ways. The wetlands provide habitat for a variety of terrestrial and aquatic receptors. The unnamed tributary likely provides some habitat for a variety of fish and other wildlife species that frequent aquatic habitats. However, the relatively small size of the tributary limits the value of this habitat to some wildlife, particularly fish.
- The terrestrial areas surrounding the Site and within the study area consist of a mixture of natural communities and areas exhibiting rural (predominantly agricultural and residential) land use. Approximately 45 percent of the areal extent of the study area consists of agricultural and residential land uses that may somewhat limit use by transient or residential wildlife species.
- Approximately 55 percent of the areal extent of the study area consists of natural covertypes such as coniferous and hardwood forest; freshwater wooded, scrub-shrub and emergent wetlands; and streams that provide appropriate habitat for a variety of fish and wildlife species.
- The United States Fish & Wildlife Service (USFWS) has records of an endangered species, the clubshell, and a candidate species, the rayed bean, within a 2-mile radius of the Site. The New York Natural

Heritage Program (NYNHP) had no records of rare, threatened or endangered flora and fauna or significant natural communities within a two-mile radius of the Site.

- Based on a review of the applicable state and federal mapping, several freshwater wetlands were identified in within 2 miles of the Site. Although a wetland boundary delineation was not performed as part of this assessment, it appears that regulated wetland habitats exist on and adjacent to the Site.
- Due to the presence of chemical constituents in surface soil, surface water and sediment associated with the Site, complete exposure pathways to terrestrial and aquatic receptors likely exist at and down gradient of the Site.

1.7. Conceptual Site Model

Based on a review of the results of the RI, the following represent the conceptual site model:

- The landfill consists of two distinct and irregularly shaped landfill cells. The fill material of these cells is generally municipal in nature (brush and wood pieces, plastics and glass, miscellaneous metallic debris, paper, plastic toys, tires, etc.) with industrial materials (metal turnings, drum carcasses, metal debris) observed primarily in the northern portions of the western cell.
- The fill material was observed to range from 2 ft to 10 ft in thickness and overlays silty clay and clay layers to a total depth below grade of 7 ft to 10 ft. The fill material is overlain by soil that varies in thickness from 1 to 5 ft from top of fill with several drums partially buried at the surface.
- The soil cover did not appear to prevent or minimize infiltration to fill materials below, and some drums were observed to be only partially buried.
- Observations from test pits around the western landfill cell suggest that shallow ground water within the limits of the landfill cell is "perched". Comparison of the approximate bottom elevations of the test pits to shallow ground water elevations further suggests that this is perched water within the fill with no direct hydraulic connection to the water table during water elevation monitoring events conducted as part of the RI.
- A municipal drinking water well (Frewsburg Water District Supply Well # 5) serving the Frewsburg Water District is located approximately 700 feet southwest of the landfill Site.
- The nearest discharge for shallow and intermediate ground water is likely Conewango Creek to the north; however, ground water flow was observed to be to the southwest toward the municipal drinking water well.

- VOCs were detected in each of the media sampled (sediment, landfill material, leachate seeps, soil vapor, and ground water). VOC concentrations within the sediment, landfill material, and leachate seep samples were below associated screening levels, which may indicate that VOC concentrations in the fill material are low, or are naturally attenuating. Soil vapor and ground water were the only environmental media sampled that contained VOCs at concentrations above associated screening levels. Given the historical placement of fill at the site, the landfill material is likely the source of ground water and soil vapor VOC contamination.
- Regarding soil vapor, the magnitudes of detected concentrations in the soil vapor samples are relatively low and do not appear indicative of the presence of a significant source of VOCs at the sample locations. Exposure to indoor or ambient air is considered to be minimal as occupied structures are not currently present in the immediate vicinity of the landfill.
- Vinyl chloride and cis-1,2-dichloroethene were the predominant VOCs exhibiting concentrations above NYS Class GA ground water standards that are contaminants of concern. These constituents are common degradation products of trichloroethene (TCE).
- Methane, ethane, and ethene were monitored to evaluate degradation. Ethene was detected indicating that geochemical conditions are serving to allow degradation of vinyl chloride. Ethane was also detected in shallow and intermediate wells, indicating that ethene is degrading to ethane.
- Based on data collected by NYSDOH, it is apparent that VOCs have migrated from the landfill to the municipal drinking water well. A review of NYSDOH sample data also indicate that concentrations of vinyl chloride and cis-1,2-dichloroethene have increased over time but constituent concentrations remain below NYS Class GA ground water standards. The detection of these constituents in the municipal drinking well approximately eight years after the initiation of pumping suggests that these constituents were drawn to the municipal drinking water well and were not present in the area prior to installation of the well.
- The highest concentration of an organic constituent was vinyl chloride detected in the shallow ground water sample collected at MW-107S; however, organic concentrations at this location appear to be limited in horizontal and vertical extent.
- Inorganics were detected in each of the environmental media sampled (surface soil, surface water, sediment, landfill material, leachate seeps, ground water). Several inorganics were detected at concentrations exceeding associated screening criteria.
- Review of the ground water data suggests that the inorganic detections may be indicative of background conditions for certain constituents. Concentrations of inorganic constituents were generally within one order of magnitude upstream and downstream of the Site.
- Ground water inorganic data indicates that there is a general decrease in concentrations with depth.

- Within leachate, inorganics were detected at concentrations that exceeded NYS Class GA ground water standards. The highest concentrations of inorganics in leachate were detected to the northwest of the western landfill cell. Leachate from this area ultimately drains to Conewango Creek.
- The inorganic constituents detected in surface water are likely attributable to the migration of leachate from the landfill to the drainage swale between the two landfill cells, which ultimately drain to the drainage swale/intermittent creek north of the landfill. Similar inorganic constituents were detected in the surface water samples as in the leachate samples. Impacts to the Conewango Creek, which is located approximately 4,000 ft to the west of the Site, are not known. However, given the distance to Conewango Creek, and the common low flow conditions in the drainage swales, potential for impacts is considered to be minimal.
- Exposure to impacted surface water and sediments is considered to be minimal based on the limited extent of impacted sediment. The presence of elevated concentrations of inorganic constituents in sediment may be due to direct run-off and deposition of sediment material from the landfill to the drainage swales, or due to potentially more dense landfill leachate flowing to surface water areas that may subsequently settle into the sediment. The drainage swales from which sediment samples were collected are believed to be low flow systems for much of the time. It is also possible that during certain times of the year the surface water in the drainage swales evaporates potentially concentrating inorganic constituents in the underlying sediment.

2. Development of Remedial Alternatives

The objective of this phase of the FS was to develop a range of remedial alternatives for the Site. The development of alternatives process included the development of remedial action objectives; development of general response actions; identification of volumes or areas of media; identification and screening of remedial technologies and process options; evaluation of remedial technologies and process options; and the assembly of remedial alternatives.

2.1. Development of Remedial Action Objectives

Remedial action objectives are goals set for environmental media such as soil, ground water, sediment and surface water (medium-specific objectives) that are intended to provide protection for human health and the environment. These remedial action objectives form the basis for the FS by providing overall goals for site remediation. The remedial action objectives are considered during the identification of appropriate remedial technologies and formulation of alternatives for the Site, and later during the evaluation of remedial alternatives.

Remedial action objectives (RAOs) are based on engineering judgement, risk-based information established in the risk assessment, and potentially applicable or relevant and appropriate standards, criteria and guidance (SCGs). Based on the consideration of potentially complete exposure pathways identified in Sections 1.5.1. and 1.5.2., the conceptual site model described in Section 1.6 and potentially applicable or relevant and appropriate SCGs, the following remedial action objectives (RAOs) have been established:

- Minimize or eliminate unacceptable human health and ecological risks associated with dermal contact or ingestion of landfill materials.
- Minimize or eliminate unacceptable human health risks associated with ingestion of ground water via the Frewsburg Water District drinking water well located adjacent to the Site.
- Minimize, to the extent practicable, discharge and/or migration of leachate from the landfill material to surface water or ground water.
- Meet ground water standards or guidance values to the extent practicable.

2.2. Identification of General Response Actions

General response actions are remedial actions for environmental media such as soil, ground water, sediment and surface water ("mediumspecific actions") that may be combined into alternatives to satisfy the RAOs. Based on RAOs identified in Section 2.1, ground water, landfill material and leachate are the media of concern. General response actions that address the RAOs related to the landfill material include institutional controls, containment, removal, disposal, and treatment. General response actions that address the RAOs related to ground water and leachate are institutional controls, containment, collection, treatment, and discharge actions.

2.3. Identification of Areas and Volumes of Media

Site conditions, the nature and extent of contamination, and RAOs were taken into consideration to estimate the volumes and areas of media to be addressed by the general response actions.

This Site is composed of two "cells" of landfilled materials running generally north-south. These cells are adjacent to one another and generally rectangular in shape, although the width of the western cell varies. A swale separates the two cells. The eastern cell measures approximately 9.3 acres, while the western cell measures approximately 5.2 acres. The areal extent of both landfill cells and contiguous swale measures approximately 20 acres. Fill material was observed to range from approximately 2 ft to 10 ft in thickness based on test pits completed along the perimeter of the cells during the RI. Assuming the depth of fill averages 4 ft over this area, the estimated volume of landfill material is approximately 90,000 cubic yards, with approximately 30,000 cubic yards contained in the western cell.

Contaminated ground water was not observed within the limits of the eastern cell. The areal extent of contaminated ground water, therefore, generally occurs between MW-104 and MW-106S to the northeast and MW-13 to the southwest. This area is approximately 12 acres in area.

2.4. Estimates of Ground Water Remedial Timeframes

In an effort to estimate timeframes for different ground water remedial approaches, a two-dimensional ground water flow model was used. The modeling effort is described in Appendix A.

The estimated remedial timeframe for vinyl chloride in Site ground water using a ground water extraction well system is within approximately 40 years. The remedial timeframe for vinyl chloride currently present in off-site ground water if a site ground water extraction system is implemented is estimated to be within approximately 32 years.

The estimated remedial timeframe for vinyl chloride in Site and off-site ground water using an *in situ* ground water treatment wall is approximately 40 years. If the source of VOCs is removed and no active ground water remediation is implemented, ground water remediation of site ground water is estimated to be within approximately 72 years.

Each of these estimates assumes that the source of VOC concentrations in ground water is removed and the municipal drinking water well continues to be pumped. A range of retardation factors for vinyl chloride was considered and applied to advective ground water flow rates for these estimates; however, natural attenuation was not considered, since there is currently insufficient information to evaluate the rate of natural attenuation.

2.5. Identification and Screening of Remedial Technologies and Process Options

Potentially applicable remedial technology types and process options for each general response action were identified during this step. Process options were screened on the basis of technical implementability. The technical implementability of each identified process option was evaluated with respect to site contaminant information, site physical characteristics, and areas and volumes of affected media.

Descriptions and screening comments for technologies and process options identified for the Site are presented in Table 1. Process options that were viewed as not implementable for the Site were not considered further in the FS. Following are descriptions of technologies that were considered potentially implementable for the Site.

2.5.1. No Action

The no action general response action must be considered in the FS, as specified in the NCP (40 CFR Part 300.430) and DER-10.

2.5.2 Institutional Actions

The institutional actions identified for the landfill material were deed restrictions and access restrictions. Deed restrictions would involve limiting the future uses of the Site, while access restrictions would limit access to the Site. The institutional actions identified for ground water were monitoring and deed restrictions. Deed restrictions identified consist of ground water use restrictions that would preclude the use of contaminated ground water at the Site as a potable source of water without prior treatment. In addition, deed restrictions would preclude the use of untreated contaminated ground water at the Site for sources other than potable use without prior review and approval by NYSDEC.

Ground water monitoring would involve periodic sampling and analysis of ground water at the Site. Ground water monitoring would provide a means to detect changes in VOC, SVOC and inorganics concentrations in the ground water. Data gathered by ongoing monitoring would provide the opportunity to gauge the effectiveness of the implemented alternative. While VOCs are the primary contaminants of concern, monitoring of SVOCs and inorganic constituents would continue allowing for future assessment of these constituents in ground water.

2.5.3. Containment Actions

Presumptive remedy. USEPA has developed presumptive remedies for certain categories of sites that have similar characteristics, such as types of contamination present, types of disposal practices, or how environmental media are affected. The objective of presumptive remedies is to make use of past experience to streamline the FS process. If a presumptive remedy is applicable for the Site, a focused FS can be prepared. The study can then be limited to the "no action" alternative and the presumptive remedy technologies. This is possible because USEPA has conducted an analysis of potentially available technologies for the presumptive remedy site categories and has determined that certain technologies are routinely and appropriately screened out. This detailed analysis serves to substitute for the development and screening of alternatives phases of the FS (and will allow the remaining alternatives to be limited to variations of the presumptive remedy)(USEPA 1993).

The presumptive remedy guidance that is relevant and appropriate for the Site is the *Presumptive Remedy for CERCLA Municipal Landfill Sites* (USEPA 1993). As stated in the Presumptive Remedy guidance, USEPA expects that "engineering controls such as containment will be used for waste that poses a relatively low long-term threat or where treatment is impracticable." For sites such as municipal landfills where wastes are present as large volumes of heterogeneous materials, USEPA generally considers treatment impracticable. Thus, USEPA regards containment as the presumptive remedy for municipal landfill sites (USEPA 1993). The landfill material is considered to be heterogeneous and constitute a considerable volume to warrant the application of the presumptive remedy for municipal landfills.

USEPA presumptive remedy guidance specifies that a soil cover be built to Federal Subtitle D requirements except where State closure requirements are more stringent. The prevailing closure requirement for this Site, therefore, is 6 NYCRR Part 360 requiring the installation of a low permeability landfill cap which must be "constructed to minimize precipitation migration into an inactive area of the landfill" (NYSDEC, 1999). However, minimizing infiltration of precipitation at this Site may not prevent the production of leachate at the Site, given that fill material may be in contact with ground water, based on the RI. The possible incidence of ground water to landfill material was considered in the development of RAOs resulting in the objective to minimize discharge and/or migration of leachate from the landfill to the surface water or ground water to the extent practicable. A soil cover, as defined by presumptive remedy guidance, would be substantively equivalent to the Part 360 cover by meeting this RAO and the containment requirement of the presumptive remedy.

The following containment actions have been identified in accordance with the presumptive remedy:

- Vegetated soil cover. A soil cover for containment of landfill material would incorporate layers of backfill soil material and topsoil to encapsulate the landfill material preventing direct contact when properly maintained. The soil cover would be vegetated to provide stability and resistance to erosion. These layers would be such that surface run off and evapotranspiration are favored over infiltration. The cover would incorporate toe drains at the edges for the management of leachate present or produced as is required by the presumptive remedy. To reduce the overall footprint of the cover, consolidation of the fill could be performed. This would consist of excavation of the western cell and consolidation over the eastern cell prior to installation of the cover.
- Low-permeability cover. A low permeability cover for containment of landfill materials would have the components of a soil cover, however additional layers of low permeability material (*i.e.*, low permeable soils or geocomposites) would be incorporated minimizing infiltration with proper maintenance. The cover would incorporate toe drains at the edges for the management of leachate present or produced as is required by the presumptive remedy. To reduce the overall footprint of the cover, consolidation of the fill could be performed. This would consist of excavation of the western cell and consolidation over the eastern cell prior to installation of the cover.

2.5.4 Removal Actions

The following removal action has been identified for landfill material:

• **Excavation.** Physical removal of the landfill material was considered for this Site to evaluate returning the Site to "pre-disposal conditions" in accordance with NYSDEC DER-10 guidance.

• **Partial excavation.** Physical removal of only a portion of the landfill material, such as the western cell, for options including fill consolidation. Partial excavation is not fundamentally different than Excavation described previously and will not be considered as a distinct removal action. Partial excavation will not return the site to a "pre-disposal" condition, but is applicable as part of other containment and disposal actions for the landfill material.

The following removal action has been identified for ground water:

• **Recovery wells.** Recovery wells are placed such that they intercept and remove contaminated ground water. A pumping test performed on the Site would be required to identify the number and locations to place the recovery wells and evaluate appropriate pumping rates. Recovery wells would require a discharge action, and possibly a treatment action, be implemented.

2.5.5 Treatment Actions

In accordance with the presumptive remedy, treatment actions were not evaluated for landfill material.

The following *in situ* treatment actions have been identified for ground water:

- **Natural Attenuation.** Natural attenuation relies on the biotic and abiotic processes naturally occurring *in situ* to degrade organic constituents in the saturated zone.
- Air sparging. Air sparging is an *in situ* technology used primarily to remove VOCs from the subsurface. Air sparging, when used in conjunction with an *in situ* air stripping system, enables ground water to be stripped of VOCs. Contaminant-free air is introduced into the affected aquifer system in the form of minute bubbles utilizing microporous bubblers (or sparge points). VOCs below the water table are removed by volatilization, and often biodegradation, as the air percolates through the water column and into the unsaturated zone. The movement of the air bubbles tends to facilitate the transfer of VOCs into soil pore spaces in the unsaturated zone where they can be removed by an *in situ* air stripping system.
- **In-well stripping.** In-well stripping is similar in function to the *ex* situ treatment action of air stripping and involves the contact of ground water with air. However, ground water is not drawn up to an above ground treatment system; instead a blower and diffuser release air bubbles into the well itself. Ground water is taken in through either a top or bottom screen and released through the opposite screen contacting the air as it moves through the well. These wells may be driven by the convection induced solely by the air, or they may be a pumped system. Depending on the resulting characteristics

of the discharging air stream, air treatment may be required. In-well stripping would be effective to treat site-related VOCs.

- **Bioremediation/Biobarrier.** A biobarrier is a zone of enhanced natural attenuation established to degrade contaminants by exploiting desired metabolic processes of the natural microorganisms. Electron donors and/or nutrients are added to facilitate the desired process. This process may also include bioaugmentation of the existing microbial fauna. Electron donors and/or nutrients are injected by wells to the required depth. Wells are spaced such that a continuous zone is established perpendicular to flow of ground water to provide treatment as the affected water flows through the zone. Typically, proprietary systems are used that are proven to provide treatment of the desired contaminant.
- Treatment wall (iron wall). An iron wall is a subsurface treatment wall constructed of iron granules or other iron bearing material for treatment of chlorinated VOCs within ground water. Chlorinated VOCs are dechlorinated by oxidizing the iron material as ground water flows through the wall area. Physical treatment walls are typically suitable for long term treatment and control of contaminated ground waters, but are limited to depths achievable by conventional trenching equipment unless injection techniques are utilized.

The following *ex situ* treatment actions have been identified for ground water:

- Air stripping. Air stripping involves the contact of ground water with air in a countercurrent packed or tray column or bulk reactor to transfer volatile contaminants from the ground water to the air. Air stripping would be effective to treat site-related VOCs. Depending on the resulting characteristics of the discharging air stream, air treatment may be required.
- **Carbon adsorption.** Activated carbon can adsorb organic contaminants from ground water onto its surfaces during contact. Carbon adsorption would likely be an effective treatment for site-related VOCs, although only minimally effective for vinyl chloride. The carbon must be periodically replaced, regenerated, treated and/or disposed. Regeneration may be accomplished at the Site or off-site at a permitted facility. Carbon disposal would be off-site at a permitted facility.
- Adsorptive resins. Commercial resins are available which can adsorb organic contaminants from the ground water during contact. Adsorptive resins would likely be an effective treatment for site-related organic compounds. Such resins are typically regenerated on the Site on a periodic basis.

- Chemical oxidation. Chemical oxidation involves the addition of oxidation agents such as hydrogen peroxide or ozone to the ground water in the presence of ultraviolet light to oxidize organic contaminants to non-toxic byproducts. Chemical oxidation would likely be an effective treatment for site-related VOCs. Chemical oxidation is typically performed in a closed reactor system.
- **Biological reactor.** A biological reactor could be used to enhance conditions for co-metabolic degradation of chlorinated organics. Nutrients, co-metabolites, and aeration would be provided as necessary to optimize degradation. Sludge management would be required.

2.5.6 Disposal/Discharge Actions

The following disposal action has been identified for landfill material:

- **Off-site commercial landfill disposal.** Excavated material would be transported off-site for disposal at a permitted facility. Non-hazardous material would be appropriately landfilled. If hazardous material is encountered, it will be appropriately managed to meet land disposal restrictions (LDRs) prior to disposal.
- **On-site relocation (fill consolidation).** Material excavated for the purpose of fill consolidation. Material removed from the western cell would be consolidated to the eastern cell to reduce the footprint of waste on-site.

The following discharge action has been identified for ground water:

• Surface water discharge. Ground water removed and treated *ex situ* would be discharged to the unnamed tributary of Conewango Creek adjacent to the Site. Discharge to surface water would be contingent upon the *ex situ* treatment technology producing effluent meeting Class C surface water limits.

2.6. Evaluation of Remedial Technologies

The process options remaining after the initial screening were evaluated further according to the criteria of effectiveness, implementability, and cost. The effectiveness criterion included the evaluation of: potential effectiveness of the process options in meeting remedial objectives and handling the estimated volumes or areas of media; potential effects on human health and the environment during construction and implementation; and experience and reliability of the process options for site contaminants and conditions. Technical and institutional aspects of implementing the process options were assessed for the implementability criterion. The capital and operation and maintenance (O&M) costs of each process option were evaluated as to whether they were high, medium, or low relative to the other process options of the same technology type. The evaluation of the process options is shown in Table 2.

Based on the evaluation, the more favorable process options of each technology type were chosen as representative process options. The selection of representative process options simplifies the assembly and evaluation of alternatives, but does not eliminate other process options. The process option actually used to implement remediation may not be selected until the remedial design phase.

2.7. Assembly of Remedial Alternatives

Remedial alternatives were developed by assembling general response actions and the process options chosen to represent the various technology types into combinations that address the Site.

Five alternatives were developed for the Site. These alternatives are described in the following subsections, and are summarized in Table 3. Descriptions of each alternative have been developed according to the parameters set forth in DER-10 Section 4.2.5. as follows:

- 1. Size and configuration of process options
- 2. Time for remediation
- 3. Spatial requirements
- 4. Options for disposal
- 5. Substantive technical permit requirements
- 6. Limitations or other factors necessary to evaluate the alternatives, and
- 7. Beneficial and/or adverse impacts on fish and wildlife resources.

2.7.1. Alternative 1

Alternative 1 is the no further action alternative. The no further action alternative is required by the NCP and serves as a benchmark for the evaluation of action alternatives. This alternative involves the following process options:

Ground water monitoring. Ground water monitoring would be implemented to track VOC and SVOC compounds and inorganic constituent concentrations in ground water. For estimating purposes, it is assumed that the 18 existing monitoring wells will be sampled quarterly for VOCs, SVOCs and inorganics (including cyanide) for a period of 30 years.

Five-year reviews. Five-year reviews are required by the NCP (Federal Register 1990) when contaminated material remains at a site. The five-

year review would focus on evaluating the Site with regard to the continuing protection of human health and the environment as evidenced by information such as ground water monitoring and documentation of field inspections.

This alternative is further defined, consistent with Section 2.6, as follows:

I. No process options requiring sizing are included under this alternative.

2. Some natural attenuation is evident by the presence of TCE breakdown products observed during the RI. The results of the RI do not provide enough information to determine the rate at which natural attenuation is occurring. Because source material (western cell landfill material) likely remains at the Site in this alternative, natural attenuation is not anticipated to achieve the NYS Class GA standards for Site ground water for the foreseeable future. For cost estimation purposes, a period of 30 years was assumed for O&M activities.

3. This alternative maintains the existing conditions (surface, subsurface and ground water conditions) of the Site.

4. No options for disposal are associated with this alternative.

5. This option would not allow for the re-permitting of this Site as a landfill or transfer station, as is currently in place.

6. The analysis of this alternative is limited by the lack of information regarding natural attenuation mechanisms. In particular, it is not known if natural attenuation of ground water will continue to be protective for the nearby municipal drinking water well. Ongoing monitoring of the sentinel well (MW-13) shows increasing concentrations of vinyl chloride and cis-1,2-dichloroethene in the sentinel well with recent detections in June 2005 of both compounds at concentrations greater than the respective NYS Class GA standards. Neither of these compounds were detected at concentrations greater than the respective NYS Class GA standards in the municipal drinking water well, and the increasing trend observed in the sentinel well is not clearly evident in this well.

7. The Site currently has a minimal and variable depth of soil covering landfill material that provides some encapsulation of waste. Contamination of surface and ground waters and sediments appear, by the RI, to be relatively limited in extent. Notwithstanding, this alternative does not remove identified potential exposure pathways, nor does it eliminate additional or increased migration of contaminant offsite by means of ground water or surface water. The "no further action" alternative, however, does consist of ground water monitoring, and five year reviews as described in Section 2.6.1, to provide continued assessment of affects to off-site areas.

2.7.2. Alternative 2

The "Pre-Disposal" alternative is required by the NYSDEC DER-10 to establish the cost and feasibility of returning the Site to "pre-disposal condition". This alternative involves the following process options:

Excavation and off site disposal of landfill material. Landfill material would be removed by excavators and appropriately managed. Clean backfill and topsoil would be deposited on-site, graded and seeded for restoration.

Ground water recovery and treatment. Ground water would be pumped from the aquifer by means of approximately one recovery well located downgradient of the western landfill cell to minimize potential future impacts to the Frewsburg Water District Supply Well # 5. As described in Section 2.4, if the source of ground water VOC impacts is removed, it is estimated that remediation of Site ground water to NYS Class GA standards could be accomplished within approximately 40 years. It is estimated that off-site ground water could be remediated to NYS Class GA standards within approximately 32 years. Leachate present would also be recovered and treated incidental to ground water recovery and treatment. Recovered ground water would be treated by an on-site air stripper system for the mass removal of VOCs. Treated water would be discharged to the unnamed tributary of Conewango Creek adjacent to the landfill site. The system would operate until NYS Class GA ground water standards are achieved in the monitoring wells. It has been assumed that air controls would not be required for the treatment system, however, a pretreatment system to handle naturally occurring inorganics and solids may be required.

Institutional controls. Institutional controls would include "use restrictions" as follows:

• *Ground water use restrictions* would preclude the use of untreated ground water with concentrations in excess of NYS Class GA ground water standards as a potable water source, or as a non-potable water source without prior notification and approval from NYSDEC. The property deed would be revised to reflect this restriction. This restriction could be lifted upon attainment of NYS Class GA ground water standards by the recovery and treatment system.

Ground water monitoring. The 18 existing monitoring wells would be employed for continued sampling. It is assumed that the monitoring wells would be sampled quarterly for VOCs, SVOCs and inorganics (including cyanide) for the duration of recovery and treatment activities.

Five-year reviews. Five-year reviews are required by the NCP (Federal Register 1990) when impacted soil remains at a site; however, this program would be applicable to this alternative for the ground water medium. The five-year review would focus on evaluating the Site with regard to the continuing protection of human health and the environment

as evidenced by information such as ground water monitoring and documentation of field inspections conducted for the five-year review.

This alternative is further defined, consistent with Section 2.6, as follows:

1. Both landfill cells, 14.5 acres, would be excavated to an average depth of approximately 4-ft yielding an estimated total excavated volume of 90,000 cubic yards. The recovery well would be installed to capture ground water. Treated ground water would ultimately discharge to surface water.

2. It is estimated that excavation and management of landfill material and restoration of the Site will require 1 to 2 years. It is estimated that ground water remediation to attain NYS Class GA ground water standards at the Site would occur within approximately 40 years. For cost estimation purposes, a period of 30 years was assumed for O&M activities.

3. Implementation of Alternative 2 would disturb approximately 20 acres of site area with a nominal amount of additional space required for the installation of treatment equipment.

4. No options exist for the disposal of landfill material off-site other than handling or treatment and disposal by a permitted facility. Other technologies for the treatment of extracted ground water are available, as is an option to utilize ground water injection as a means of treated water discharge. These options not withstanding, the aspects incorporated into this alternative have been chosen to be representative of the time and costs expected of applicable options.

5. Compliance with substantive requirements for wetland permitting would likely be required for construction of the remedy. Compliance with the substantive requirements of a NYSDEC SPDES discharge permit would be required for surface water disposal of treated ground water. This would likely require flow monitoring as well as periodic sampling to verify that discharge criteria established by the NYSDEC permit are met. The air stripping system may require compliance with substantive requirements of an air permit.

6. The analysis of this alternative is limited by the data available to accurately determine the fill depth, and by extension, the volume of waste material to be removed. The actual volume of waste removed would directly affect remediation time and disposal and remediation costs.

7. This alternative would remove the potential exposure sources, thereby removing the associated potential risks.

2.7.3. Alternative 3

Alternative 3 is the landfill cover and natural attenuation alternative. This alternative incorporates the presumptive remedy of containment as identified by the Superfund Accelerated Cleanup Model (SACM) for landfills composed primarily of municipal waste. Because ground water is a potential exposure pathway at this Site, process options are included for this medium. This alternative would involve the following process options:

Landfill cover. A soil cover would consist of the following minimum components (listed from the finished grade down): 6 inches topsoil and 18 inches soil material as a vegetative support layer. The cover would function to encapsulate the waste, would be vegetated to maximize evapotranspiration, and would be graded to promote surface water runoff. Vegetation and grading would reduce infiltration to the wastes below. A low permeability layer may be installed to further decrease infiltration and consolidation of fill material from the western cell to the eastern cell may be performed to reduce the footprint of the waste and decrease the volume of waste potentially in contact with ground water. To achieve a low permeability cover per 6 NYCRR Part 360, the soil material layer would be expanded to 24 inches to serve as a barrier protection layer and the following additional layers would be installed (listed in order from the barrier protection material down): tri-planar geonet, 40 mil linear low density polyethylene, 6 inches soil bedding layer. Consolidation of fill material would consist of partial excavation and subsequent placement on-site. Results of the RI do not suggest that landfill gas (methane) management is required at this Site. Leachate would be conveyed to a holding tank by toe drains incorporated at the cover edges and hauled off-site for treatment and disposal.

Monitored natural attenuation. This alternative would utilize the natural attenuation mechanisms currently observed at this site. RI results identified the breakdown products of TCE, vinyl chloride and cis-1,2-DCE, as the primary VOCs present suggesting that natural attenuation is active at this Site.

Institutional controls. Institutional controls would generally include "use restrictions" and "access restrictions". The various components are more specifically described as follows:

• *Access/Use restrictions* would preclude the conduct of activities that would potentially disturb or expose contaminated materials or impair the integrity of a cover over contaminated materials without prior notification and approval from NYSDEC.

A program would be established to educate and authorize users about the past uses, remedial technologies in place, potential hazards, and proper conduct while on-site. Persons wishing to engage in an approved use upon the property must receive this education and authorization. This program would be developed by the NYSDEC in conjunction with the Town and implemented by the Town. • *Ground water use restrictions* would preclude the use of untreated ground water with concentrations in excess of NYS Class GA ground water standards as a potable water source, or as a non-potable water source without prior notification and approval from NYSDEC. The property deed would be revised to reflect this restriction. This restriction could be lifted upon attainment of NYS Class GA ground water standards.

Ground water monitoring. The 18 existing monitoring wells would be employed for continued sampling. It is assumed that the monitoring wells would be sampled quarterly for VOCs, SVOCs and inorganics (including cyanide) for a period of 30 years.

Five-year reviews. Five-year reviews are required by the NCP (Federal Register 1990) when impacted material remains at a site. The five-year review would focus on evaluating the Site with regard to the continuing protection of human health and the environment as evidenced by information such as ground water monitoring and documentation of field inspections conducted for the five year review.

This alternative is further defined, consistent with Section 2.6, as follows:

1. It is assumed that a single cover would be installed over fill material.. Based on the area of both cells and contiguous swale area presented in Section 2.3, the largest cover area required would be approximately 20 acres if no consolidation of fill material is incorporated into the designed alternative. If consolidation of the western cell to the eastern cell is performed, the cover area would be approximately 10 acres.

2. It is estimated that either landfill cover option would require approximately 1 to 2 years to install. The rate of attenuation of VOCs in ground water is not known. For cover options other than consolidation, where source material (western cell landfill material) would likely remain in place, natural attenuation is not anticipated to achieve the NYS Class GA standards for Site ground water for the foreseeable future. Under the consolidation cover option, where source material would be removed, it is estimated that Site ground water would exhibit VOC concentrations at or below NYS Class GA standards within 72 years. For cost estimation purposes, a period of 30 years was assumed for O&M activities.

3. Implementation of this alternative would disturb approximately 10 to 20 acres of site area for the installation of the landfill cover plus a nominal surrounding work area during construction activities.

4. If partial excavation of the landfill material is performed, placement on site would be used for disposal of material.

5.Compliance with substantive requirements for wetland permitting would likely be required for construction of the remedy.

6. The analysis of this alternative is limited by the lack of information regarding natural attenuation mechanisms. In particular, it is not known if natural attenuation of ground water will continue to be protective for the nearby municipal drinking water well. Ongoing monitoring of the sentinel well (MW-13) shows increasing concentrations of vinyl chloride and cis-1,2-dichloroethene in the sentinel well with recent detections in June 2005 of both compounds at concentrations greater than the respective NYS Class GA standards. Neither of these compounds were detected at concentrations greater than the respective NYS Class GA standards in the municipal drinking water well, and the increasing trend observed in the sentinel well is not clearly evident in this well. In addition, the analysis of this alternative is limited by the data available to accurately determine the fill depth, and by extension, the volume of waste material to be removed and consolidated.

7. Impacted soil remains on this site, but is encapsulated by the landfill cover minimizing direct contact. The ground water pathway to nearby surface waters is monitored but not removed.

2.7.4. Alternative 4

Alternative 4 is the landfill cover and ground water extraction alternative. This alternative also incorporates the presumptive remedy process option to address the landfill media. However, an engineered process option for the treatment of ground water is utilized. This alternative would involve the following process options:

Landfill cover. As described in Section 2.6.3.

Ground water recovery and treatment. This alternative incorporates ground water recovery wells to pump and treat ground water in place of monitored natural attenuation. As described in Section 2.4, if the source of ground water VOC impacts is removed (*i.e.*, the consolidation cover is implemented), it is estimated that remediation of Site ground water to NYS Class GA standards could be accomplished within approximately 40 years. It is estimated that off-site ground water could be remediated to NYS Class GA standards within approximately 32 years. For cover options other than consolidation where source material (western cell landfill material) would likely remain in place, ground water extraction is not anticipated to achieve the NYS Class GA standards for Site ground water for the foreseeable future. Approximately two, 70-foot deep ground water recovery wells would be installed downgradient of the landfill between the landfill and the municipal drinking water well. Ground water pumped from this system would be treated by an on-site air stripper system for the mass removal of VOC compounds. Treated water would be discharged to the unnamed tributary of Conewango Creek adjacent to the landfill site. It has been assumed that air controls would not be required for the treatment system, however, a pretreatment system to handle naturally occurring inorganics and solids may be required.

Institutional controls. Institutional controls would include "use restrictions" and "access restrictions". The various components are more specifically described as follows:

• *Access/Use restrictions* would preclude the conduct of activities that would potentially disturb or expose contaminated materials or impair the integrity of a cover over contaminated materials without prior notification and approval from NYSDEC.

A program would be established to educate and authorize users about the past uses, remedial technologies in place, potential hazards, and proper conduct while on-site. Persons wishing to engage in an approved use upon the property must receive this education and authorization. This program would be developed by the NYSDEC in conjunction with the Town and implemented by the Town.

• *Ground water use restrictions* would preclude the use of untreated ground water with concentrations in excess of NYS Class GA ground water standards as a potable water source, or as a non-potable water source without prior notification and approval from NYSDEC. The property deed would be revised to reflect this restriction. This restriction could be lifted upon attainment of NYS Class GA ground water standards.

Ground water monitoring. The 18 existing monitoring wells would be employed for continued sampling. It is assumed that the monitoring wells would be sampled quarterly for VOCs, SVOCs and inorganics (including cyanide) for a period of 30 years.

Five-year reviews. Five-year reviews are required by the NCP (Federal Register 1990) when impacted material remains at a site. The five-year review would focus on evaluating the Site with regard to the continuing protection of human health and the environment as evidenced by information such as ground water monitoring and documentation of field inspections conducted for the five-year review.

This alternative is further defined, consistent with Section 2.6, as follows:

1. It is assumed that a single cover would be installed over the fill material. Based on the area of both cells and contiguous swale area presented in Section 2.3, the largest cover area required would be approximately 20 acres if no consolidation of fill material is incorporated into the designed alternative. If consolidation of the western cell to the eastern cell is performed, the cover area would be approximately 10 acres. Nominal additional space may be required along the extents of the cover for the installation of ground water handling piping.

2. It is estimated that either landfill cover option would require approximately 1 to 2 years to install. For cover options other than consolidation where source material (western cell landfill material) remains in place, ground water treatment is not anticipated to achieve the NYS Class GA standards for Site ground water for the foreseeable future. If the source material is removed (e.g. through consolidation of the western cell to the eastern cell), it is estimated that ground water remediation to attain NYS Class GA ground water standards at the Site would be achieved within approximately 40 years. For cost estimation purposes, a period of 30 years was assumed for O&M activities.

3. Spatial requirements would be similar to those for Alternative 3.

4. Other technologies for the treatment of recovered ground water are available, as is an option to utilize ground water injection as a means of treated water discharge. These options not withstanding, the aspects incorporated into this alternative have been chosen to be representative of the time and costs expected from applicable options. If partial excavation of the landfill material is performed, placement on site would be used for disposal of material.

5. Compliance with substantive requirements for wetland permitting would likely be required for construction of the remedy. Compliance with the substantive requirements of a NYSDEC SPDES discharge permit would be required for surface water disposal of treated ground water. This permit would likely require flow monitoring as well as periodic sampling to verify that discharge criteria established by the NYSDEC permit are met. The air stripping system may require compliance with substantive requirements of an air permit.

6. The analysis of this alternative is limited by the data available to accurately determine the fill depth, and by extension, the volume of waste material to be removed and consolidated.

7. Impacted soil remains on this site, but is encapsulated by the landfill cover minimizing direct contact. The movement of impacted ground water to nearby surface waters and associated ecological receptors is greatly reduced by recovery and treatment activities.

2.7.5. Alternative 5

Alternative 5 is the landfill cover and enhanced natural attenuation (biobarrier) of ground water treatment alternative. This alternative also incorporates the presumptive remedy process option to address the landfill media. However, an engineered biological process option for the treatment of ground water is utilized. This alternative would involve the following process options:

Landfill cover. As described in Section 2.6.3.

In situ enhanced natural attenuation (biobarrier). A biobarrier would be constructed between the existing landfill site and the municipal drinking water well (MW-5). Wells would be installed to inject materials that would favor the establishment of a zone within the ground water aquifer where microbial activity is enhanced. The zone would be established such that affected ground water would pass through the "treatment zone" of engineered microbial activity. Based on data collected to date, an approximate treatment zone comprising a 500-foot width and a 75-foot depth has been assumed. As described in Section 2.4, if the source of ground water VOC impacts is removed (i.e., the consolidation cover option is chosen), it is estimated that remediation of impacted ground water to NYS Class GA standards would be achieved within approximately 40 years. For cover options other than consolidation, where source material (western cell landfill material) would likely remain in place, treatment of the ground water is not anticipated to achieve the NYS Class GA standards for Site ground water for the foreseeable future.

Institutional controls. Institutional controls would include "use restrictions" and "access restrictions". The various components are more specifically described as follows:

• *Access/Use restrictions* would preclude the conduct of activities that would potentially disturb or expose contaminated materials or impair the integrity of a cover over contaminated materials without prior notification and approval from NYSDEC.

A program would be established to educate and authorize users about the past uses, remedial technologies in place, potential hazards, and proper conduct while on-site. Persons wishing to engage in an approved use upon the property must receive this education and authorization. This program would be developed by the NYSDEC in conjunction with the Town and implemented by the Town.

• *Ground water use restrictions* would preclude the use of untreated, ground water with concentrations in excess of NYS Class GA ground water standards as a potable water source, or as a non-potable water source without prior notification and approval from NYSDEC. The property deed would be revised to reflect this restriction. This restriction could be lifted upon attainment of NYS Class GA ground water standards.

Ground water monitoring. The 18 existing monitoring wells would be employed for continued sampling. It is assumed that the monitoring wells would be sampled quarterly for VOCs, SVOCs and inorganics (including cyanide) for a period of 30 years.

Five-year reviews. Five-year reviews are required by the NCP (Federal Register 1990) when impacted material remains at a site. The five-year review would focus on evaluating the Site with regard to the continuing protection of human health and the environment as evidenced by

information such as ground water monitoring and documentation of field inspections conducted for the five-year review.

This alternative is further defined, consistent with Section 2.6, as follows:

1. It is assumed that a single cover would be installed over the fill material. Based on the area of both cells and contiguous swale area presented in Section 2.3, the largest cover area required would be approximately 20 acres if no consolidation of fill material is incorporated into the designed alternative. If consolidation of the western cell to the eastern cell is performed, the cover area would be approximately 10 acres. Nominal additional area may be disturbed downgradient of the fill for the installation of ground water treatment injection wells.

2. It is estimated that either landfill cover option would require approximately 1 to 2 years to install. For cover options other than consolidation where source material (western cell landfill material) remains in place, ground water treatment is not anticipated to achieve the NYS Class GA standards for Site ground water for the foreseeable future. If the source material is removed (eg. through consolidation of the western cell to the eastern cell), it is estimated that ground water remediation to attain NYS Class GA ground water standards would be achieved within approximately 40 years. For cost estimation purposes, a period of 30 years was assumed for O&M activities.

3. Spatial requirements would be similar to those for Alternative 3.

4. If partial excavation of the landfill material is performed, placement on site would be used for disposal of material. This option requires no options for ground water disposal to be developed.

5. Compliance with substantive requirements for wetland permitting would likely be required for construction of the remedy.

6. Site investigations to date do not provide adequate detail to determine the dimensions of the *in situ* zone. Pre-design investigations related to ground water treatment would be necessary to identify the biological treatment option, to estimate the number of injection wells necessary, and to estimate the frequency of reagent injection required. In addition, the analysis of this alternative is limited by the data available to accurately determine the fill depth, and by extension, the volume of waste material to be removed and consolidated.

7. Impacted soil remains on this site, but is encapsulated by the landfill cover thereby minimizing direct contact. The movement of impacted ground water to nearby surface waters and associated ecological receptors would be reduced by recovery drains.

2.7.6. Alternative 6

Alternative 6 is the landfill cover and *in situ* ground water treatment (iron wall) alternative. This alternative would involve the following process options:

Landfill cover. As described in Section 2.6.3.

In situ ground water treatment (iron wall). This alternative incorporates a reactive barrier wall designed to intercept contaminated ground water. Treatment would be provided as ground water flows through the wall material. A wall would be installed to a depth of approximately 75 feet below grade, extending approximately 500 feet in length perpendicular to the predominant direction of ground water flow (assumed will be installed between the existing landfill site and the municipal drinking water well, MW-5). Conventional excavation techniques are not expected to achieve sufficient depth of treatment due to the depth of the affected aquifer. Installation of an iron wall to the depths required would require employing a trenched slurry wall or hydrofracturing/injection well techniques. As described in Section 2.4, if the source of ground water VOC impacts is removed (*i.e.*, the consolidation cover option is chosen), it is estimated that ground water remediation to NYS Class GA standards could be achieved within 40 years. For cover options other than consolidation where source material (western cell landfill material) would likely remain in place, treatment of the ground water is not anticipated to achieve the NYS Class GA standards for Site ground water for the foreseeable future.

Institutional controls. Institutional controls would include "use restrictions" and "access restrictions". The various components are more specifically described as follows:

• *Access/Use restrictions* would preclude the conduct of activities that would potentially disturb or expose contaminated materials or impair the integrity of a cover over contaminated materials without prior notification and approval from NYSDEC.

A program would be established to educate and authorize users about the past uses, remedial technologies in place, potential hazards, and proper conduct while on-site. Persons wishing to engage in an approved use upon the property must receive this education and authorization. This program would be developed by the NYSDEC in conjunction with the Town and implemented by the Town.

• *Ground water use restrictions* would preclude the use of untreated, ground water with concentrations in excess of NYS Class GA ground water standards as a potable water source, or as a non-potable water source without prior notification and approval from NYSDEC. The property deed would be revised to reflect this restriction. This restriction could be lifted upon attainment of NYS Class GA ground water standards.

Ground water monitoring. The 18 existing monitoring wells would be employed for continued sampling. It is assumed that the monitoring wells would be sampled quarterly for VOCs, SVOCs and inorganics (including cyanide) for a period of 30 years.

Five-year reviews. Five-year reviews are required by the NCP (Federal Register 1990) when impacted material remains at a site. The five-year review would focus on evaluating the Site with regard to the continuing protection of human health and the environment as evidenced by information such as ground water monitoring and documentation of field inspections conducted for the five-year review.

This alternative is further defined, consistent with Section 2.6, as follows:

1. It is assumed that a single cover would be installed over fill material. Based on the area of both cells and contiguous swale area presented in Section 2.3, the largest cover area required would be approximately 20 acres if no consolidation of fill material is incorporated into the designed alternative. If consolidation of the western cell to the eastern cell is performed, the cover area would be approximately 10 acres. Nominal additional area may be disturbed downgradient of the fill for the installation of an iron wall.

2. It is estimated that either landfill cover option would require approximately 1 to 2 years to install. For cover options other than consolidation where source material (western cell landfill material) remains in place, ground water treatment is not anticipated to achieve the NYS Class GA standards for Site ground water for the foreseeable future. If the source material is removed (eg. through consolidation of the western cell to the eastern cell), it is estimated that ground water remediation to attain NYS Class GA ground water standards could be achieved within approximately 40 years. For cost estimation purposes, a period of 30 years was assumed for O&M activities. Because the life of the iron reactive wall is anticipated to be approximately 15 years, a one-time replacement at year 15 has been included in the O&M costs.

3. Spatial requirements would be similar to those for Alternative 3 with the additional space for the installation of the iron wall.

4. If partial excavation of the landfill material is performed, placement on site would be used for disposal of material. This option requires no options for ground water disposal to be developed.

5. Compliance with substantive requirements for wetland permitting would likely be required for construction of the remedy.

6. Site investigations to date do not provide adequate detail to determine the dimension or location of the iron wall. Pre-design investigations related to ground water treatment would be necessary to estimate the service life of the wall. In addition, the analysis of this alternative is limited by the data available to accurately determine the fill depth, and by extension, the volume of waste material to be removed and consolidated.

7. Impacted soil remains on this site, but is encapsulated by the landfill cover minimizing direct contact. The movement of impacted ground water to nearby surface waters and associated ecological receptors would be reduced by recovery drains.

2.7.7. Alternative 7

Alternate 7 is the wellhead protection alternative. The adjacent municipal drinking water well is specifically addressed. This alternative would involve the following process options:

Air stripping. An air stripper system would be installed on the existing municipal drinking water well system to treat volatile compounds in the well water. The air stripper system would be constructed adjacent to the well and treat pumped ground water prior to release into the potable water distribution system. The system would begin operation only if the concentration of VOCs in the well exceed NYS Class GA ground water standards. It would operate until such time as NYS Class GA ground water standards are attained within the municipal drinking water well or the well is abandoned. For purposes of cost estimation it is assumed that the system would operate for a period of 30 years. It has been assumed that air controls would not be required for the treatment system, however, a pretreatment system to handle naturally occurring inorganics and solids may be required.

Five-year reviews. Five-year reviews are required by the NCP (Federal Register 1990) when impacted material remains at a site. The five-year review would focus on evaluating the Site with regard to the continuing protection of human health and the environment as evidenced by information such as ground water monitoring and documentation of field inspections conducted for the five-year review.

This alternative is further defined, consistent with Section 2.6, as follows:

1. Air stripping equipment would be located adjacent to the existing production water well and would treat water following extraction, but prior to discharge to the distribution system.

2. Installation of the well head air stripper system would require approximately 6 months. It was assumed that the wellhead stripping system would be necessary for the useful life of the production drinking water well. For cost estimation purposes, a period of 30 years was assumed for O&M activities. Because source material (western cell landfill material) remains at the Site in this alternative, natural attenuation is not anticipated to achieve the NYS Class GA standards for ground water for the foreseeable future.

3. This alternative would require nominal space for air stripping equipment.

4. This alternative requires no options for disposal to be developed.

5. This option may require the modification of the permit in place governing the drinking water well. The wellhead air stripper system may be required to meet the substantive requirements of an air permit.

6. The concentration of VOCs observed at the production well and the pumping rate and volume over the useful life of the production well are not known. These gaps in data may limit precision when estimating flow rates and contaminant concentrations for design purposes.

7. This alternative would not address potential impacts to fish or wildlife resources posed by landfill material.

3. Detailed Analysis of Alternatives

The following section documents the detailed evaluation of the alternatives developed for the site. The objective of the detailed analysis of alternatives was to analyze and present sufficient information to allow the alternatives to be compared and a remedy selected. The analysis consisted of an individual assessment of each alternative with respect to nine evaluation criteria that encompass statutory requirements and overall feasibility and acceptability. The detailed evaluation of alternatives also included a comparative evaluation designed to consider the relative performance of the alternatives and identify major trade-offs among them. The nine evaluation criteria are:

- Overall protectiveness of human health and the environment
- Compliance with SCGs
- Long-term effectiveness and permanence
- Reduction of toxicity, mobility, or volume through treatment
- Short-term effectiveness
- Implementability
- Cost
- State acceptance
- Community acceptance

The preamble to the NCP (Federal Register 1990) indicates that, during remedy selection, these nine criteria should be categorized into three groups: threshold criteria, primary balancing criteria, and modifying criteria. The two threshold criteria, overall protection of human health and the environment, and compliance with SCGs, must be satisfied in order for an alternative to be eligible for selection. Long-term effectiveness and permanence; reduction of toxicity, mobility, or volume through treatment; short-term effectiveness; implementability; and cost are primary balancing criteria that are used to balance the trade-offs between alternatives. The modifying criteria are state and community acceptance, which are formally considered after public comment is received on the Proposed Remedial Action Plan. The New York State TAGM entitled Selection of Remedial Actions at Inactive Hazardous (NYSDEC 1990) and NYSDEC's Department of Waste Sites. Environmental Restoration (DER)-10 draft guidance entitled Technical Guidance or Site Investigation and Remediation were also considered during this evaluation (NYSDEC 2002).

3.1. Individual Analysis of Alternatives

In the individual analysis of alternatives, each of the remedial alternatives was evaluated with respect to the evaluation criteria. A summary of the individual analysis of alternatives is presented in Table 4.

3.1.1. Overall Protection of Human Health and the Environment

The analysis of each alternative with respect to this criterion provides an evaluation of whether the alternative achieves and maintains adequate protection and a description of how site risks are eliminated, reduced, or controlled through treatment, engineering, or institutional controls. The individual analysis of each remedial alternative with respect to this criterion is presented in Table 4.

3.1.2. Compliance with SCGs

Identification of potential standards, criteria and guidance (SCGs). Section 121(d) of CERCLA, as amended by the Superfund Amendment and Reauthorization Act (SARA), requires that remedial actions comply with ARARs under federal and state environmental law. USEPA also requires consideration of TBCs (USEPA 1988). NYSDEC evaluates compliance with SCGs, as such, SCGs will be evaluated for this Site.

There are three types of SCGs: chemical-, location-, and action-specific SCGs. Chemical-specific SCGs are health- or risk-based numerical values or methodologies which, when applied to site-specific conditions, result in the establishment of numerical values. These values establish the acceptable amount or concentration of a chemical that may be found in, or discharged to the ambient environment. Location-specific SCGs set restrictions on activities based on the characteristics of the site or immediate environs. Action-specific SCGs set controls or restrictions on particular types of remedial actions once the remedial actions have been identified as part of a remedial alternative

Compliance. Potential SCGs for the Site are presented in Table 5. The alternatives meeting the individual SCGs are noted in Table 5.

3.1.3. Long-Term Effectiveness and Permanence

This criterion assesses the magnitude of residual risk remaining from untreated material or treatment residuals at the site. The adequacy and reliability of controls used to manage untreated material or treatment residuals are also evaluated. The individual analysis of each remedial alternative with respect to this criterion is presented in Table 4.

3.1.4. Reduction of Toxicity, Mobility, or Volume through Treatment

The evaluation of this criterion addressed the expected performance of treatment technologies in each alternative. The individual analysis of each remedial alternative with respect to this criterion is presented in Table 4.

3.1.5. Short-Term Effectiveness

The evaluation of short-term effectiveness addressed the protection of workers and the community during construction and implementation of each alternative, and the potential environmental effects resulting from implementation of each alternative. The time required to achieve remedial objectives was also evaluated under this criterion. The individual analysis of each remedial alternative with respect to this criterion is presented in Table 4.

3.1.6. Implementability

The analysis of implementability involved an assessment of the ability to construct and operate the technologies, the reliability of the technologies, the ease of undertaking additional remedial action, the ability to monitor the effectiveness of each remedy, and the ability to obtain necessary approvals from other agencies. Additionally, the availability of services, capacities, equipment, materials, and specialists necessary for implementation of the alternative was also assessed. The individual analysis of each remedial alternative with respect to this criterion is presented in Table 4.

3.1.7. Cost

For the cost analysis, cost estimates were prepared for each alternative based on vendor information and quotations, cost estimating guides, and experience. Cost estimates were prepared for the purpose of alternative comparison and were based on information currently known about the study area. The cost estimates include capital costs, annual operation and maintenance costs, and present worth cost. The present worth cost for these alternatives was calculated for the expected duration of the remedy at a 7% discount rate.

The individual cost estimates for the remedial alternatives are included in Tables 6 through 12.

3.1.8. Support Agency Acceptance

Support agency acceptance will be addressed during development of the preferred alternative.

3.1.9. Community Acceptance

Community acceptance will be addressed during the preferred alternative public comment period prior to the ROD.

3.2. Comparative Analysis of Alternatives

In the comparative analysis of alternatives, the performance of each alternative relative to the others was evaluated for each criterion.

As discussed in the following subsections, with the exception of Alternative 1, each alternative satisfies the threshold criteria by providing protection to human health and the environment and by complying with the identified SCGs; therefore, each active alternative is eligible for selection as the final remedy. The primary balancing criteria (long-term effectiveness and permanence; reduction of toxicity, mobility, or volume through treatment; short-term effectiveness; implementability; and cost) were used for balance in the comparative evaluation of alternatives.

3.2.1. Overall Protection of Human Health and the Environment

Concentrations of site-related constituents in the municipal drinking water well are currently below NYS Class GA standards, thus each alternative is protective of human health exposure to VOCs in ground water through the municipal drinking water well. In the event that the municipal drinking water well were to become impacted, Alternative 7 would provide the greatest level of protection for human health exposure to VOCs in the ground water from the municipal drinking water well through the active treatment at the well head. The remaining alternatives would rely on natural attenuation of currently impacted ground water that has reached the vicinity of the municipal drinking water well, as is evidenced by the sentinel well concentrations detected in June 2005. Alternative 2, through source removal and treatment of site ground water, provides the next greatest level of protection, followed by Alternatives 4, 5 and 6 that would provide treatment of on-site ground water. Alternatives 1 and 3 would provide the least level of protection to the municipal drinking water well as these would rely on natural attenuation to address VOCs in on-site ground water that may reach the municipal drinking water well.

Exclusive of wellhead concerns, each alternative, with the exception of Alternatives 1 and 7, would be protective of human health and the environment through institutional controls, removal of fill material, and/or containment of fill material. Alternative 2, by removal of the fill material and the treatment of ground water would provide the greatest overall level of protection to human health and the environment. Alternatives 4, 5, and 6 would provide adequate protection to human health and the environment. Alternative 3, because it relies on natural attenuation, would provide a lesser degree of protection to human health

and the environment from a protection of ground water impacts standpoint, however, it would be just as protective as Alternatives 4, 5 and 6 from fill material/soil impacts.

Although Alternative 7 would be most protective of impacts, should they occur at the municipal drinking water well, it would provide no protection of impacts to human health through exposure to site ground water nor would it be protective of the environment. Alternative 7 would need to be implemented in conjunction with another alternative to be protective of human health through pathways not directly related to the municipal drinking water well and be protective of the environment.

Alternatives 1 and 7 would provide no protection of human health or the environment from the soil medium.

3.2.2. Compliance with SCGs

Attainment of ground water SCGs for inorganics is technically impracticable due to background concentrations. With the exception of inorganics, Alternative 2 would achieve the soil and ground water SCGs through fill material removal and ground water treatment. Alternative 4, 5 and 6 are anticipated to meet ground water SCGs through active ground water treatment. Alternatives 1 and 3 rely on natural attenuation to meet ground water SCGs. Though soil SCGs are not met for Alternatives 3, 4, 5 and 6, soil SCGs are addressed through containment. Action and location specific SCGs can be met for each alternative.

3.2.3. Long-term Effectiveness and Permanence

With the exception of Alternative 1, each active alternative would provide for long-term effectiveness and permanence. With the exception of Alternative 1, each alternative would effectively discourage contact with fill material and provide for management of risks at the site, through deed restrictions, landfill material removal or containment.

Deed restrictions, included in Alternatives 3 through 6, would provide adequate long-term effectiveness for the control of ground water use. Treatment at the well head included in Alternative 7 provides the greatest reduction in the magnitude of potential residual risk to human health relative to the municipal drinking water well, if the municipal drinking water well were to become impacted by site-related constituents.

3.2.4. Reduction of Toxicity, Mobility, or Volume through Treatment

Alternatives 2, 4, 5, 6 and 7 include active treatment of ground water. The treatment processes included in Alternatives 2 4, 5, and 6 would provide a reduction of toxicity of Site ground water to both human and environmental receptors. Treatment of ground water included in Alternative 7 would result in a reduction of toxicity to human receptors. Reduction of ground water toxicity by these alternatives would be an irreversible process.

Containment of the fill material by a cover in Alternatives 3, 4, 5, and 6 would also reduce the volume of impacted ground water potentially produced by increasing runoff and evapotranspiration of surface waters. The option to consolidate fill, as part of Alternative 3, 4, 5, and 6, would provide a reduction of the footprint of the fill material possibly decreasing the amount of fill in contact with ground water, further reducing mobility of contaminant from the soil to the ground water media.

Alternative 2 would reduce the toxicity, mobility and volume of the fill material itself by excavation and removal. Alternatives 3, 4, 5 and 6 provide a reduction in mobility of the fill material. Containment of fill material in this manner is considered an acceptable and relevant action for municipal landfills (USEPA, 1993).

3.2.5. Short-Term Effectiveness

Implementation of Alternatives 1, 3, 4, 5, 6 and 7 would not be anticipated to result in the need for protection of the community during implementation aside from standard construction protections (*e.g.* air and surface water quality). During implementation of Alternative 2, protection of workers and the community would be required with respect to dust, volatile emissions, landfill gas and surface runoff. Engineering controls would be implemented during construction of the alternatives that would be adequately protective of the community and the environment.

Alternative 1 could be implemented immediately. It is assumed that the cover component (either cover configuration) included in Alternatives 3, 4, 5 and 6 would require approximately 1 to 2 years to construct. It is assumed that the landfill material removal component included in Alternative 2 would require approximately 1 to 2 years to construct. It is estimated that in the absence of ground water treatment, ground water would achieve NYS Class GA standards within approximately 72 years of landfill material removal (*i.e.*, Alternative 2 or the consolidation cover in Alternatives 3).

Installation of the ground water treatment system components of Alternatives 2 and 4 though 7 was assumed to require approximately 1 year to construct. When combined with the source removal (*i.e.*, Alternative 2 or the consolidation cover in Alternatives 4 through 6), it was assumed that operation of the ground water extraction and treatment system or installation of an *in situ* treatment wall would result in NYS Class GA standards being achieved in Site ground water within approximately 40 years. In the absence of source removal, active

treatment or natural attenuation of Site ground water is not anticipated to meet NYS Class GA standards in the foreseeable future.

3.2.6. Implementability

Each alternative is implementable. The technologies being used are reliable technologies. Each alternative allows for additional remedial actions to be implemented if necessary, and is readily monitored for effectiveness of the remedy.

3.2.7. Cost

Detailed cost estimates for Alternatives 1 through 7 are included as Tables 6 through 12. Assumptions employed for the development of the costs for each alternative are included as Table 13.

Alternative 7, if implemented as a stand alone alternative, represents the least cost with a present worth value of \$467,000. The cost of Alternate 7 can also be applied as an "adder" to other alternatives to represent the present worth value of incorporating well head treatment. Alternative 1, the no further action alternative, is the second least cost alternative at an estimated present worth value of \$983,000 (due primarily to the ongoing ground water monitoring).

Alternative 3, with soil cover and monitored natural attenuation, is the least cost of the active cover alternatives at estimated present worth values of \$4,620,000 (soil), \$6,842,000 (low permeability with consolidation), and \$9,163,000 (low permeability).

Alternatives 4 and 5, which incorporate active ground water treatment and a cover, are the next least cost alternatives. Alternative 4 with ground water extraction and *ex situ* treatment is the next least cost at an estimated present worth value of \$5,246,000 (soil), \$7,465,000 (low permeability with consolidation), and \$9,788,000 (low permeability). Alternative 5 with *in situ* ground water treatment by biobarrier has an estimated present worth of \$13,768,000 (soil), \$15,988,000 (low permeability with consolidation), and \$18, 309,000 (low permeability).

Alternatives 2 and 6 are the most expensive alternatives. Alternative 6 with *in situ* ground water treatment by iron reactive wall has an estimated present worth value of \$28,224,000 (soil), \$30,765,000 (low permeability with consolidation), and \$32,765,000 (low permeability), and \$24,674,000. Alternative 2, the excavation and disposal and ground water treatment alternative has an estimated total present worth of approximately \$28,492,000.

3.2.8. Support Agency Acceptance

Support agency acceptance will be addressed during development of the preferred alternative.

3.2.9. Community Acceptance

Community acceptance will be addressed during the preferred alternative public comment period prior to the ROD.

References

- Federal Register. 1990. National Oil and Hazardous Substances Pollution Contingency Plan. 40 CFR 300. March 8, 1990.
- NYSDEC. 1990. Technical and Administrative Guidance Memorandum

(TAGM) for the Selection of Remedial Actions at Inactive Hazardous Waste Sites. May 1990.

- NYSDEC. 1999. New York State Code of Rules and Regulations Part 360. Revised Effective November 14, 1999.
- NYSDEC. 2002. Draft DER-10, *Technical Guidance for Site Investigation and Remediation*. Division of Environmental Remediation. December 25, 2002.
- NYSDEC. 2003. State Superfund Standby Contract. Work Assignment #D004090-14, Town of Carroll Landfill, Site #9-07-017.
- O'Brien & Gere Engineers, Inc. 2005a. Remedial Investigation Report.
- O'Brien & Gere Engineers, Inc. 2005b. Fish and Wildlife Impact Analysis.
- United States Environmental Protection Agency (USEPA). 1988. Guidance for Conducting Remedial Investigations and Feasibility Studies Under CERCLA. Interim Final. Washington D.C., October 1988.
- United States Environmental Protection Agency (USEPA). 1993. Presumptive Remedy for CERCLA Municipal Landfill Sites.

GENERAL RESPONSE ACTION	REMEDIAL TECHNOLOGY	PROCESS OPTION	DESCRIPTION	SCREENING COMMENTS
		1	Landfill material	
NO ACTION	None	None	No remedial action.	Required for consideration by NCP.
	Access restrictions	Deed restrictions	Land use restrictions for site.	Potentially applicable.
ACTIONS		Fencing	Installation of fencing surrounding area(s) of contamination.	Potentially applicable.
CONTAINMENT ACTIONS	Capping	Vegetated soil cover	Vegetated soil layer covering landfill	Potentially applicable
(Presumptive Remedy)		Low-permeability cover	Vegetated soil layer used in conjunction with low permeability and protective layers.	Potentially applicable.
REMOVAL ACTIONS	Excavation	Excavation	Use of construction equipment, such as backhoes, bulldozers, clamshells, draglines, or conveyors to remove site soils.	Required for consideration by DER-10 (in conjunction with disposal) to restore site to "Pre-Disposal Conditions".
DISPOSAL ACTIONS	Land disposal	Off-site commercial landfill	Off-site disposal of soil.	Required for consideration by DER-10 (in conjunction with removal) to restore site to "Pre-Disposal Conditions".
		On-site relocation (fill consolidation)	On-site placement of excavated soils to reduce the footprint of impacted material.	Potentially applicable.
	T	T	Ground water	
NO ACTION	None	Natural attenuation	In-place reduction of VOCs, SVOCs in ground water over the long-term by biotic and abiotic attenuation processes.	Required for consideration by NCP. Potentially applicable.

 Table 1. Screening of remedial technologies and process options

GENERAL RESPONSE ACTION	REMEDIAL TECHNOLOGY	PROCESS OPTION	DESCRIPTION	SCREENING COMMENTS
INSTITUTIONAL ACTIONS	Monitoring	Ground water monitoring	Periodic sampling and analysis of ground water to observe and document the effectiveness of natural attenuation or other treatment technology.	Potentially applicable.
INSTITUTIONAL ACTIONS	Use restrictions	Ground water use restriction	Restriction of ground water use at the site.	Potentially applicable.
CONTAINMENT ACTIONS	Vertical barrier	Slurry wall	Soil- or cement-bentonite slurry wall placed around the area of contamination to contain ground water.	Potentially applicable for shallow ground water only.
		Sheet piles	Sheet piles installed around the area of contamination to contain ground water.	Potentially applicable for shallow ground water only.
	Ground water control	Groundwater extraction wells	Removal of ground water by pumping for hydraulic containment to site.	Potentially applicable.
		Recovery trench	Removal of ground water by pumping from recovery trenches for hydraulic containment or mass removal.	Potentially applicable for shallow ground water only.
COLLECTION ACTIONS	Ground water control	Recovery wells	Removal of ground water by pumping from recovery wells for mass removal.	Potentially applicable.
<i>IN SITU</i> TREATMENT ACTIONS	Physical	Air sparging	Injection of air into the saturated soil zone to volatilize constituents from the liquid medium.	Potentially applicable.
		In-well stripping	Injection of air into the water column within a well to volatilize constituents. Ground water circulation is performed in <i>situ</i> ; entering the well at one screen and discharged through a second screen. Air is collected and treated if necessary.	Potentially applicable.

 Table 1. Screening of remedial technologies and process options

GENERAL RESPONSE ACTION	REMEDIAL TECHNOLOGY	PROCESS OPTION	DESCRIPTION	SCREENING COMMENTS
	Biological	Bioremediation/ Biobarrier	Injection of oxygen and/or nutrient (as required) to the aquifer to enhance biological degradation of organics by indigenous microbes. Either in a large spatial area, or as a targeted "treatment zone".	Potentially applicable.
<i>IN SITU</i> TREATMENT ACTIONS	Chemical	Treatment wall	Construction of an iron wall or carbon wall to treat ground water as it flows through the treatment zone.	Potentially applicable.
<i>EX SITU</i> TREATMENT ACTIONS	Physical	Air stripping	Contact of air with water in countercurrent column or bulk reactor to transfer VOCs from water to air.	Potentially applicable.
		Carbon adsorption	Adsorption of organic constituents from water to activated carbon.	Potentially applicable.
		Adsorptive resin Adsorption of organic constituents from water to commercial adsorptive resin.		Potentially applicable.
		Settling	Retention of aqueous stream in tank to settle/separate light or heavy components.	Not applicable for dissolved constituents.
		Filtration	Separation of solids from water phase using semipermeable filter medium.	Not applicable for dissolved constituents.
	Chemical	Chemical oxidation	Addition of oxidation agents such as hydrogen peroxide and ultraviolet light to water to oxidize/destroy organic contaminants.	Potentially applicable.
		Precipitation	pH adjustment of ground water to separate out dissolved metal contaminants.	Not applicable for dissolved organic constituents.

 Table 1. Screening of remedial technologies and process options

GENERAL RESPONSE ACTION	REMEDIAL TECHNOLOGY	PROCESS OPTION	DESCRIPTION	SCREENING COMMENTS
		lon exchange	Chemical alternation of a hazardous constituent to a non-hazardous constituent.	Not applicable for dissolved organic constituents.
<i>EX SITU</i> TREATMENT ACTIONS	Biological	Biological reactor	Addition of oxygen, nutrients, and cometabolites to ground water in reactor to enhance co-metabolic degradation of organic constituents.	Potentially applicable.
DISCHARGE ACTIONS	Treated water discharge	Discharge to Surface water	Discharge of extracted and treated ground water to surface water features such as streams, ponds, culverts, <i>etc</i> .	Potentially applicable.
		Discharge to ground water	Re-injection of extracted and treated ground water back to the sub-surface.	Potentially applicable.
		Discharge to engineered system	Discharge of extracted and treated ground water to sanitary or storm sewers.	Not applicable because these facilities are not available.

GENERAL RESPONSE ACTION	REMEDIAL TECHNOLOGY	PROCESS OPTION	EFFECTIVENESS	IMPLEMENTABILITY	COST					
Landfill material										
NO ACTION	None	Natural attenuation *	Relies on long-term biotic and abiotic degradation. Effectiveness is not certain.	tion.						
INSTITUTIONAL ACTIONS	Access restrictions	Deed restrictions *	Effectively minimizes access to the Site.	Readily implementable.	Low capital No O&M					
		Fencing	Effectively minimizes access to the Site.	Readily implementable.	Low capital Low O&M					
CONTAINMENT ACTIONS	Capping	Vegetated soil cover *	Effectively minimizes human and ecological contact with impacted soil.	Readily implementable.	Low capital Low O&M					
		Low-permeability cover*	Effectively minimizes human and ecological contact with impacted soil.	Readily implementable.	High capital Low O&M					
REMOVAL ACTIONS	Excavation	Excavation *	Effectively removes impacted soil and fill material.	Readily implementable for unsaturated soil. Difficult to implement for soil below ground water table due to dewatering needs in highly permeable soil.	High capital No O&M					
DISPOSAL ACTIONS	Land disposal	Off-site commercial landfill or handling facility*	Effective method of disposal. Minimizes constituent migration.	Readily implementable.	High capital No O&M					
		On-site relocation (fill consolidation)*	Effectively reduces area of cover required for containment and reduces the volume of impacted soil in contact with ground water.	Readily implementable.	Medium capital No O&M					

Table 2. Evaluation of process options

GENERAL RESPONSE ACTION	REMEDIAL TECHNOLOGY	PROCESS OPTION	EFFECTIVENESS	IMPLEMENTABILITY	COST
	1		Ground water		1
NO ACTION	None	Natural attenuation *	Relies on long-term biological and abiotic degradation. Effectiveness is not certain.	Readily implementable.	No capital No O&M
INSTITUTIONAL ACTIONS	Monitoring	Ground water monitoring*	Effective for monitoring changes in organics and metals over time. Useful for evaluating remedy effectiveness.	Readily implementable.	Low capital Low O&M
	Deed restrictions	Ground water use restriction*	Effectively minimizes potable water use of ground water.	Readily implementable.	Low capital No O&M
CONTAINMENT ACTIONS	Vertical barrier Slurry wall		Effectively minimizes movement of ground water into or out of a containment area.	Readily implementable to limited depths.	Medium capital No O&M
		Sheet Piles	Effectively minimizes movement of ground water into or out of a containment area.	Readily implementable to limited depths.	Medium capital No O&M
	Groundwater Control	Groundwater extraction wells	Effectively controls migration of contaminated groundwater from site.	Readily implementable.	Low capital Medium O&M
		Recovery trench	Effectively removes contaminated ground water.	Readily implementable to limited depths.	Medium capital Medium O&M
COLLECTION ACTIONS	Groundwater removal	Recovery wells*	Effectively removes contaminated ground water.	Readily implementable.	Low capital Medium O&M
<i>IN SITU</i> TREATMENT ACTIONS	Physical	Air sparging	Effective for removal of chlorinated VOCs.	Readily implementable.	High capital Medium O&M

Table 2. Evaluation of process options

GENERAL RESPONSE ACTION	REMEDIAL TECHNOLOGY	PROCESS OPTION	EFFECTIVENESS	IMPLEMENTABILITY	COST
		In well air stripping	Effective for removal of chlorinated VOCs.	Readily implementable.	High capital Medium O&M
	Biological	Bioremediation/ Biobarrier*	Effective for removal of chlorinated VOCs	Readily implementable.	Low capital Medium O&M
IN SITU TREATMENT ACTIONS	Chemical	Treatment wall (iron wall)*	Effective for removal of chlorinated VOCs	Readily implementable.	High capital High O&M
<i>EX SITU</i> TREATMENT ACTIONS	Physical	Air stripping*	Effective for removal of chlorinated VOCs.	Readily implementable.	Low capital Medium O&M
		Carbon adsorption	Effective for removal of some chlorinated VOCs.	Readily implementable.	Low capital High O&M
		Adsorptive resin	Effective for removal of some chlorinated VOCs.	Readily implementable.	Medium capital Medium O&M
	Chemical	Chemical oxidation	Effective for destruction of chlorinated VOCs.	Difficult to implement due excessive quantities of extracted water as a result of the underlying sand and gravel.	Medium capital Medium O&M
EX SITU TREATMENT ACTIONS	Biological	Biological reactor	Likely effective for destruction of chlorinated VOCs.	Difficult to implement due excessive quantities of extracted water as a result of the underlying sand and gravel.	Medium capital Medium O&M

Table 3. Components of remedial alternatives

General Response Actions	Remedial technology - process option		2	3	4	5	6	7
Institutional actions	Access/Use restrictions		х	х	х	х	х	
	Ground water monitoring	x	х	х	х	х	х	
	Five-year reviews	x	х	х	х	х	х	х
Containment actions	Landfill cover - vegetated soil cover			х	х	х	х	
	Landfill cover - low permeability cover			х	х	х	х	
Removal actions	Fill excavation (complete)		х					
	Fill excavation (partial relocation)			х	х	х	х	
	Ground water recovery well		х		Х			
Disposal actions	Off-site land disposal of fill (permitted facility)		x					
	On-site land disposal of fill (consolidation of fill)			х	х	х	х	
	Discharge of treated ground water to site surface water				х			
Treatment actions	<i>Ex situ</i> air stripping		х		х			х
	In situ enhanced attenuation (biobarrier)					х		
	In situ groundwater treatment (iron wall)						х	
	Monitored natural attenuation (MNA)			х				

Alternative 1	No Action
Alternative 2	Excavation and disposal with ground water recovery and treatment and institutional controls
Alternative 3	Landfill cover with monitored natural attenuation and institutional controls
Alternative 4	Landfill cover with ground water extraction and treatment and institutional controls
Alternative 5	Landfill cover with in situ ground water enhanced natural attentuation (biobarrior) and institutional controls
Alternative 6	Landfill cover with in situ ground water treatment (iron wall) and institutional controls
Alternative 7	Wellhead protection by ex situ air stripping of municipal drinking water well and five-year reviews.

Criterion	Alternative 1: No further action	Alternative 2: Excavation and off-site disposal with	Alternative 3: Landfill cover with MNA of GW	Alternative 4: Landfill cover with GW extraction and	Alternative 5: Landfill cover with <i>in situ</i> GW	Alternative 6: Landfill cover with <i>in situ</i> GW
Criterion	Ground water monitoring Five year reviews	GW recovery and treatment • Ground water monitoring • Five year reviews • Access/Use restrictions • Excavation of fill material • Offsite fill material disposal • Ground water recovery • Ex situ air stripping • Surface water disposal	 Ground water monitoring Five year reviews Access/Use restrictions Soil or low-permeability landfill cover Natural attenuation of ground water (with monitoring) 	ex situ treatment Ground water monitoring Five year reviews Access/Use restrictions Soil or low-permeability landfill cover Ground water recovery Ex situ air stripping Surface water disposal	treatment by biobarrier Ground water monitoring Five year reviews Access/Use restrictions Soil or low-permeability landfill cover In situ ground water treatment (biobarrier)	treatment by iron wall Ground water monitoring Five year reviews Access/Use restrictions Soil or low-permeability landfill cover In situ ground water treatment (iron wall)
			Overall protection of h	uman health and the environment		
Overall protection of human health	not eliminate any identified exposure	Protection of human health is provided through the removal of fill material from the site. Ground water treatment and onsite disposal would address existing impacts to ground water and protect the adjacent municipal water supply well.	Protection of human health is provided through the isolation of the fill and surface water exposure pathways. Relies on natural attenuation for continued protection of potential and existing pathways for ground water offsite. Future use of onsite ground water would be further restricted through deed restrictions. Impacted ground water already at the vicinity of the drinking water well would be addressed by natural attenuation.	Protection of human health is provided through the isolation of the fill and surface water exposure pathways. Ground water treatment and onsite disposal would provide protection of the exposure pathway of the adjacent municipal drinking water well. Future use of onsite ground water would be further restricted through deed restrictions. Impacted ground water already at the vicinity of the drinking water well would be addressed by natural attenuation.	the adjacent municipal drinking water well. Future use of onsite ground water would be further restricted through deed restrictions. Impacted ground water already at the vicinity of	Protection of human health is provided through the isolation of the fill and surface water exposure pathways. Ground water treatment and onsite disposal would provide protection of the exposure pathway of the adjacent municipal drinking water well. Future use of onsite ground water would be further restricted through deed restrictions. Impacted ground water already at the vicinity of the drinking water well would be addressed by natural attenuation.
Overall protection of the environment	Relies on natural attenuation for protection of the environment.	Protection of the environment is provided through treatment or removal of contaminated media of concern.	Protection of the environment is provided through isolation of the fill and surface water exposure pathways. Consolidation of fill is more protective of ground water media than capping material in place. Relies on natural attenuation of ground water for to provide protection from impacted ground water.	Protection of the environment is provided through isolation of the fill and surface water exposure pathways. Consolidation of fill is more protective of ground water media than capping material in place. Protection of environment is provided through ground water treatment.	provided through isolation of the fill and surface water exposure pathways. Consolidation of fill is more protective of ground water media than capping material in place.	Protection of the environment is provided through isolation of the fill and surface water exposure pathways. Consolidation of fill is more protective of ground water media than capping material in place. Protection of environment is provided through ground water treatment.
			•	ards, criteria, and guidance (SCGs)		
Compliance with chemical- specific SCGs	chemical specific SCGs. Relies on natural attenuation to achieve ground water SCGs. Attainment of NYS Class GA ground water standards for inorganics is technically impracticable	source removal and removal of landfill material and ground water. Attainment	Relies on natural attenuation to achieve ground water SCGs for VOCs. Soil SCGs would be addressed through risk management (containment). Attainment of NYS Class GA ground water standards for inorganics is technically impracticable due to background concentrations.	Attainment of NYS Class GA ground water standards (for VOCs only) is provided through isolation of source material and removal/treatment of ground water. Soil SCGs would be addressed through risk management (containment). Attainment of NYS Class GA ground water standards for inorganics is technically impracticable due to background concentrations.	water standard (for VOCs only) is provided through isolation of source media and treatment of ground water. Soil SCGs would be addressed through risk management (containment). Attainment of NYS Class GA ground water standards for	Attainment of NYS Class GA ground water standard (for VOCs only) is provided through isolation of source media and treatment of ground water. Soil SCGs would be addressed through risk management (containment). Attainment of NYS Class GA ground water standards for inorganics is technically impracticable due to background concentrations.
Compliance with location- specific SCGs		Landfill excavation and treated water discharge would need to be conducted in a manner consistent with NYS and Federal requirements for the protection of wetlands. Cultural resource assessments should be conducted prior to sitework, and depending on outcome, construction activities may need to be conducted such that archeological and historical resources are not damaged.	Landfill cover installation would need to be conducted in a manner consistent with NYS and Federal requirements for the protection of wetlands. Cultural resource assessments should be conducted prior to sitework, and depending on outcome, construction activities may need to be conducted such that archeological and historical resources are not damaged. Landfill cover design would need to consider NYS and Federal requirements concerning construction within a 100- year flood plain.	Landfill cover installation and treated water discharge would need to be conducted in a manner consistent with NYS and Federal requirements for the protection of wetlands. Cultural resource assessments should be conducted prior to sitework, and depending on outcome, construction activities may need to be conducted such that archeological and historical resources are not damaged. Landfill cover design would need to consider NYS and Federal requirements concerning construction within a 100- year flood plain.	Cultural resource assessments should be conducted prior to sitework, and depending on outcome, construction activities may need to be conducted such that archeological and historical resources are not	Landfill cover and <i>in situ</i> technologies would need to be conducted in a manner consistent with NYS and Federal requirements for the protection of wetlands. Cultural resource assessments should be conducted prior to sitework, and depending on outcome, construction activities may need to be conducted such that archeological and historical resources are not damaged. Landfill cover design would need to consider NYS and Federal requirements concerning construction within a 100-year flood plain.

	Alternative 7 Wellhead Protection by <i>ex situ</i> water treatment
	 Five year reviews Ex situ air stripping (of drinking water well) Discharge to distribution system
	Direct treatment of municipal water
of	Direct treatment of municipal water flow would provide protection for ground water pathway of the adjacent municipal drinking water well. No protection from exposure to fill material or affected surface water is
ər	provided by this alternative.
of	
	No protection to the environment is provided by this alternative. Relies on natural attenuation for protection of the environment.
e. ed	
4	Does not attain surface water or soil
•	Does not attain surface water or soil chemical specific SCGs. Relies on natural attenuation to achieve ground water SCGs. Attainment of NYS Class GA ground water standards for inorganics is technically impracticable
e er.	chemical specific SCGs. Relies on natural attenuation to achieve ground water SCGs. Attainment of NYS
e er.	chemical specific SCGs. Relies on natural attenuation to achieve ground water SCGs. Attainment of NYS Class GA ground water standards for inorganics is technically impracticable
e er. or	chemical specific SCGs. Relies on natural attenuation to achieve ground water SCGs. Attainment of NYS Class GA ground water standards for inorganics is technically impracticable
e er. or	chemical specific SCGs. Relies on natural attenuation to achieve ground water SCGs. Attainment of NYS Class GA ground water standards for inorganics is technically impracticable due to background concentrations.
e,	chemical specific SCGs. Relies on natural attenuation to achieve ground water SCGs. Attainment of NYS Class GA ground water standards for inorganics is technically impracticable due to background concentrations.
e or ole	chemical specific SCGs. Relies on natural attenuation to achieve ground water SCGs. Attainment of NYS Class GA ground water standards for inorganics is technically impracticable due to background concentrations.
e,	chemical specific SCGs. Relies on natural attenuation to achieve ground water SCGs. Attainment of NYS Class GA ground water standards for inorganics is technically impracticable due to background concentrations.
e,	chemical specific SCGs. Relies on natural attenuation to achieve ground water SCGs. Attainment of NYS Class GA ground water standards for inorganics is technically impracticable due to background concentrations.

Criterion	Alternative 1: No further action	Alternative 2: Excavation and off-site disposal with GW recovery and treatment	Alternative 3: Landfill cover with MNA of GW	Alternative 4: Landfill cover with GW extraction and ex situ treatment	Alternative 5: Landfill cover with <i>in situ</i> GW treatment by biobarrier	Alternative 6: Landfill cover with <i>in situ</i> GW treatment by iron wall	Alte We wat
	Ground water monitoring Five year reviews	Ground water monitoring Five year reviews Access/Use restrictions Excavation of fill material Offsite fill material disposal Ground water recovery <i>Ex situ</i> air stripping Surface water disposal	 Ground water monitoring Five year reviews Access/Use restrictions Soil or low-permeability landfill cover Natural attenuation of ground water (with monitoring) 	 Ground water monitoring Five year reviews Access/Use restrictions Soil or low-permeability landfill cover Ground water recovery <i>Ex situ</i> air stripping Surface water disposal 	 Ground water monitoring Five year reviews Access/Use restrictions Soil or low-permeability landfill cover In situ ground water treatment (biobarrier) 	 Ground water monitoring Five year reviews Access/Use restrictions Soil or low-permeability landfill cover In situ ground water treatment (iron wall) 	• • •
Compliance with action- specific SCGs	No actions are part of this alternative.	Excavation activities would be conducted consistent with air quality standards and requirements for construction within a flood plain. Offsite disposal of landfill material would be conducted in accordance with transportation and disposal requirements. Construction activities would be conducted in accordance with OSHA safety requirements. The air stripper would be operated according to applicable air discharge regulations.	Construction activities would be conducted consistent with air quality standards and requirements for construction within a flood plain. Site construction activities would be conducted in accordance with OSHA safety requirements.	Construction activities would be conducted consistent with air quality standards and requirements for construction within a flood plain. Site construction activities would be conducted in accordance with OSHA safety requirements. The air stripper would be operated according to applicable air discharge regulations.	construction activities would be	construction activities would be	app
							L
	Impacted media would remain onsite.	Removal of fill material removes risk of	Long-term effe Minimal residual risk to end users of	ctiveness and permanence Minimal residual risk of exposure to	Minimal residual risk of exposure to	Minimal residual risk of exposure to	Ner
Magnitude of residual risk	Impacted media would remain onsite. No reduction of risk associated with landfill material. Minimal potential residual risk to end users of municipa drinking water source from adjacent well due to ground water monitoring.	exposure to fill material. Minimal potential residual risk of exposure to	Minimar residuar nsk to end users of municipal drinking water source from adjacent well due to ground water monitoring. Minimal risk of exposure to on-site ground water through use controls. Minimal potential residual risk of exposure to fill material despite being left onsite.	covered fill material. Minimal potential residual risk of exposure to ground water by treatment and use controls.	covered fill material. Minimal	winimar resolution risk of exposure to covered fill material. Minimal potential residual risk of exposure to ground water by treatment and use controls.	Neg exp wat othe
Adequacy and reliability of controls	Natural attenuation is adequte protection to control direct exposure via the municipal drinking well, however long-term reliability is not known. Ground water monitoring is an adequate and reliable method for detecting increasing concentrations approaching the municipal water supply well.	Removal of landfill material and ground water treatment and use restrictions provide adequate and reliable control of exposures.	Covering landfill material provides adequate and reliable control over exposures to contaminated soil and fill media. Ground water use restrictions provides adequate contro of onsite ground water exposure. Natural attenuation is adequate protection to control direct exposure via the municipal drinking water well, however long-term reliability is not known. Ground water monitoring is an adequate and reliable method of detecting increasing concentrations approaching the municipal water supply well.	Covering landfill material and ground water treatment and use restrictions provide adequate and reliable control of exposures.	Covering landfill material and ground water treatment and use restrictions provide adequate and reliable control of exposures.	Covering landfill material and ground water treatment and use restrictions provide adequate and reliable control of exposures.	pro
			Reduction of toxicity, m	obility, or volume through treatment			
Treatment process used and materials treated	No active treatment processes are used in this alternative. Natural attenuation will be used for ground water.	Excavation and offsite disposal will address contaminats in fill material. Ex situ air stripping will be used to treat VOCs in ground water.	No active treatment processes are used in this alternative. Natural attenuation will be used for ground water.	<i>Ex situ</i> air stripping will be used to treat VOCs in ground water.	In situ treatment zone of increased metabolic activity of site microorganisms established by introduction of nutrients will be used to address VOCs in ground water.	In situ treatment zone established to oxidize VOCs in groundwater by interaction with iron.	Ex atte
Amount of hazardous material destroyed or treated	No active treatment processes or removal are used in this alternative. Natural attenuation will be used for ground water.	Approximately 90,000 cubic yards of fill material will be removed. Approximately 2,000,000 gallons per year of ground water will be treated.	Approximately 90,000 cubic yards of fill material will be isolated by installation of a landfill cover.	Approximately 90,000 cubic yards of fill material will be isolated by installation of a landfill cover. Approximately 2,000,000 gallons per year of ground water will be treated.	Approximately 90,000 cubic yards of fill material will be isolated by installation of a landfill cover. Approximately 2,000,000 gallons per year of ground water will be treated.	Approximately 90,000 cubic yards of fill material will be isolated by installation of a landfill cover. Approximately 2,000,000 gallons per year of ground water will be treated.	will den
Degree of expected reduction in toxicity, mobility, or volume	No active treatment processes or removal are used in this alternative. Natural attenuation provide a sufficient reduction in concentration of organic compounds in ground water. Long term reduction of compounds is not known.	Approximately 90,000 cubic yards of fill material will be removed. Approximately 2,000,000 gallons per year of ground water will be treated. Air strippers can be up to 99% efficient in VOC removal from water.	Consolidation of fill material would reduce potential for mobility of contaminants in fill to ground water (degree based on amount of fill excavated from contact with ground water).	Extraction and treatment of ground water would capture ground water migration toward the municipal well. Consolidation of fill would yield reductions similar to Alt. 3. Air strippers can be up to 99% efficient in VOC removal from water.		Treatment zone would provide reduction of VOC concentration to below Class GA ground water standards.	Atta stai inte

v	Alternative 7 Wellhead Protection by <i>ex situ</i> water treatment
	 Five year reviews Ex situ air stripping (of drinking water well) Discharge to distribution system
e uality r n. Site e OSHA	Site construction activities would be conducted in accordance with OSHA safety requirements. The air stripper would be operated according to applicable air discharge requirements.
re to ure to use	Negligible potential residual risk of exposure via the municipal drinking water well. No reduction of risk for other identified pathways.
round tions control	Treatment of ground water would provide reliable removal of potential risk of exposure to affected ground waters via the municipal drinking water well.
ned to y	Ex situ air stripping and natural attentuation will be used to treat VOCs in ground water.
rds of ns per ated.	The volume of ground water treated will vary based on water system demands.
n to	Attainment of drinking water standards for VOC compounds of interest is expected.

	Alternative 1: No further action	Alternative 2: Excavation and off-site disposal with	Alternative 3: Landfill cover with MNA of GW	Alternative 4: Landfill cover with GW extraction and	Alternative 5: Landfill cover with <i>in situ</i> GW	Alternative 6: Landfill cover with in situ GW	Alte We
Criterion	Ground water monitoring Five year reviews	GW recovery and treatment • Ground water monitoring • Five year reviews • Access/Use restrictions • Excavation of fill material • Offsite fill material disposal • Ground water recovery • Ex situ air stripping • Surface water disposal	Ground water monitoring Five year reviews Access/Use restrictions Soil or low-permeability landfill cover Natural attenuation of ground water (with monitoring)	ex situ treatment Ground water monitoring Five year reviews Access/Use restrictions Soil or low-permeability landfill cover Ground water recovery Ex situ air stripping Surface water disposal	 Ground water monitoring Five year reviews Access/Use restrictions Soil or low-permeability landfill cover In situ ground water treatment (biobarrier) 	 Ground water monitoring Five year reviews Access/Use restrictions Soil or low-permeability landfill cover In situ ground water treatment (iron wall) 	• •
Degree to which treatment is irreversible	Natural attenuation of ground water is irreversible.	Removal of landfill material is irreversible. Treatment of ground water is irreversible.	5	Treatment of ground water is irreversible.	Treatment of ground water is irreversible.	Treatment of ground water is irreversible.	Tre irre
Type and quantity of residuals remaining after treatment	No active treatment processes or removal are used in this alternative.	No residuals would remain after treatment.	90,000 cubic yards of fill material will remain onsite. VOCs will remain in ground water.	90,000 cubic yards of fill material will remain onsite.VOCs will remain in ground water downgradient of treatment zone.	90,000 cubic yards of fill material will remain onsite. VOCs will remain in ground water downgradient of treatment zone.	90,000 cubic yards of fill material will remain onsite. VOCs will remain in ground water downgradient of treatment zone.	90, rem gro
	ł	ł	Short-	erm effectiveness	<u>-</u>	*	
Protection of community during remedial actions	No remedial actions are considered under this alternative.	Dust and volatile emissions, if any, will be controlled during excavation and removal of fill material. Air stripper would be designed such that emissions will be protective of the community.	Dust and volatile emissions, if any, will be controlled during installation of landfill cover.	Dust and volatile emissions, if any, will be controlled during installation of landfill cover. Air stripper would be designed such that emissions will be protective of the community.	Dust and volatile emissions, if any, will be controlled during installation of landfill cover.	Dust and volatile emissions, if any, will be controlled during installation of landfill cover.	Air that the
Protection of workers during remedial actions	No remedial actions are considered under this alternative.	Proper health and safety measures will be established and implemented during remedial activities.	Proper health and safety measures will be established and implemented during remedial activities.	Proper health and safety measures will be established and implemented during remedial activities.	Proper health and safety measures will be established and implemented during remedial activities.	Proper health and safety measures will be established and implemented during remedial activities.	Pro will dur
Environmental impacts	There are no environmental impacts expected as a result of implementation of this alternative.	Dust, volatile emissions, and surface runoff controls will be instituted to minimize impacts to the environment during implementation of this alternative. This action will require the discharge of approximately 6,000 gallons per day of treated ground water to surface waters.	Dust, volatile emissions, and surface runoff controls will be instituted to minimize impacts to the environment during implementation of this alternative.	Dust, volatile emissions, and surface runoff controls will be instituted to minimize impacts to the environment during implementation of this alternative. This action will require the discharge of approximately 6,000 gallons per day of treated ground water to surface waters.	Dust, volatile emissions, and surface runoff controls will be instituted to minimize impacts to the environment during implementation of this alternative.	Dust, volatile emissions, and surface runoff controls will be instituted to minimize impacts to the environment during implementation of this alternative.	Air tha the
Time until remedial action objectives (RAOs) are achieved	ecological receptors will not be met upon completion of the remedy. Natural attenuation under this alternative is not anticipated to	RAOs associated with direct contant of fill and leachate generation would be met upon completion of excavation. RAOs associated with Site ground water contact and criteria are estimated to be met within approximately 40 years. RAOs associated with off-site ground water contact and criteria are estimted to be met within approximately 32 years.	are estimated to be met within approximately 72 years. For cover options other than consolidation, it is not anticipated that natural attenuation will achieve Site ground	natural attenuation will achieve Site	estimated to be met within approximately 40 years. For cover options other than consolidation, it is not anticipated that natural attenuation will achieve Site ground water RAOs in the foreseeable future,	ground water RAOs in the foreseeable future, due to the	Thia RAI gro drirr Nat in S t fore pre VO

GW	Alternative 7 Wellhead Protection by <i>ex situ</i> water treatment • Five year reviews
5	 Ex situ air stripping (of drinking water well) Discharge to distribution system
;	Treatment of ground water is irreversible.
erial will nain in of	90,000 cubic yards of fill material will remain onsite. VOCs will remain in ground water.
if any, allation	Air stripper would be designed such that emissions will be protective of the community.
asures emented	Proper health and safety measures will be established and implemented during remedial activities.
surface ed to ronment	Air stripper would be designed such that emissions will be protective of the environment.
contant n would cover. d water nated to 40 years. bated that ve Site e rrce of	This alternative would achieve the RAO addressing exposure to affected ground water via the municipal drinking water well upon installation. Natural attenuation is not anticipated to achieve NYS Class GA standards in Site ground water in the foreseeable future, due to the presence of a continuing source of VOCs.

	Alternative 1:	Alternative 2:	Alternative 3:	Alternative 4:	Alternative 5:	Alternative 6:	Alt
	No further action	Excavation and off-site disposal with		Landfill cover with GW extraction and	Landfill cover with in situ GW	Landfill cover with in situ GW	We
Criterion		GW recovery and treatment		ex situ treatment	treatment by biobarrier	treatment by iron wall	wa
	Ground water monitoring	Ground water monitoring	Ground water monitoring	Ground water monitoring	Ground water monitoring	Ground water monitoring	+
	Five year reviews	 Five year reviews 	Five year reviews	 Five year reviews 	 Five year reviews 	 Five year reviews 	•
		 Access/Use restrictions 	 Access/Use restrictions 	 Access/Use restrictions 	 Access/Use restrictions 	 Access/Use restrictions 	
		 Excavation of fill material 	 Soil or low-permeability 	 Soil or low-permeability 	 Soil or low-permeability 	 Soil or low-permeability 	•
		Offsite fill material disposal	landfill cover	landfill cover	landfill cover	landfill cover	
		Ground water recovery	 Natural attenuation of 	 Ground water recovery 	 In situ ground water 	 In situ ground water 	
		 Ex situ air stripping 	ground water (with	 Ex situ air stripping 	treatment (biobarrier)	treatment (iron wall)	
		Surface water disposal	monitoring)	Surface water disposal			
				plementability			
	There are no technologies to be	Removal of fill material is readily		Installation of any landfill cover option is	Installation of any landfill cover option		
	constructed in this alternative.	constructable. Installation and operation of ground water recovery	is readily constructable.	readily constructable. Installation and	is readily constructable. Installation of material or equipment of develop	is readily constructable. Installation of material or equipment of develop	mu
Ability to construct and		wells and air stripping equipment is		operation of ground water extraction wells and air stripping equipment is	treatment zones are readily	treatment zones are readily	cor
operate the technology		readily constructable and operable.		readily constructable and operable.	constructable.	constructable.	
		readily constructable and operable.			constructable.	constructable.	
	Ground water sampling and analysis	Removal of soil and fill materials is a	A landfill cover is a reliable	A landfill cover is a reliable technology	A landfill cover is a reliable	A landfill cover is a reliable	Air
	is a reliable means to continue to	reliable technology. Air stripping is a	technology for isolation of impacted	for isolation of impacted soils and for	technology for isolation of impacted	technology for isolation of impacted	to r
	monitor on- and off-site ground water	reliable technology to remove VOCs in	soils and for reduction of surface	reduction of surface water infiltration. A	soils and for reduction of surface	soils and for reduction of surface	gro
	concentrations.	ground water.		low-permeability cover provides the	water infiltration. A low-permeability	water infiltration. A low-permeability	1
			cover provides reliablility for	reliablility for minimizing infiltration and	cover provides the reliablility for	cover provides the reliablility for	
Deliebility of to share to			minimizing infiltration and subsequent potential for contaminant migration.	subsequent potential for contaminant migration. Air stripping is a reliable	minimizing infiltration and subsequent potential for contaminant migration.	minimizing infiltration and subsequent potential for contaminant migration.	1
Reliability of technology			potential for contaminant migration.	technology to remove VOC	Biobarriers are a reliable technology	Iron walls are a reliable technology to	
				concentrations in ground water.	to reduce VOC concentrations in	reduce VOC concentrations in ground	
				concentrations in ground water.	ground water.	water.	1
					9		
Face of undertaking	Additional remedial actions, if	Additional remedial actions, if	Additional remedial actions, if	Additional remedial actions, if necessary,	Additional remedial actions, if	Additional remedial actions, if	Add
Ease of undertaking dditional remedial actions,	necessary, would be readily	necessary, would be readily	necessary, would be readily	would be readily implementable.	necessary, would be readily	necessary, would be readily	nec
if necessary	implementable.	implementable.	implementable.		implementable.	implementable.	imp
-	Ground water monitoring allows the	Effectiveness of remody could be	Effectiveness of remody sould be	Effectiveness of remody could be	Effectiveness of remody could be	Effectiveness of remody could be	E #4
	Ground water monitoring allows the ability to monitor the effectiveness of	Effectiveness of remedy could be monitored through confirmation	Effectiveness of remedy could be monitored by ground water	Effectiveness of remedy could be monitored by ground water monitoring	Effectiveness of remedy could be monitored by ground water	Effectiveness of remedy could be monitored by ground water	Effe
Ability to monitor	natural attenuation.	sampling and ground water monitoring.	monitoring and cover inspection.	and cover inspection.	monitoring and cover inspection.	monitoring and cover inspection.	of s
effectiveness of remedy		sampling and ground water monitoring.	monitoring and cover inspection.		monitoring and cover inspection.	monitoring and cover inspection.	wat
	None required.	Coordination with local authorities	Coordination with local authorities	Coordination with local authorities would	Coordination with local authorities	Coordination with local authorities	Co
		would be necessary to implement use	would be necessary to implement use			would be necessary to implement use	
Coordination with other		and access restrictions.	and access restrictions.	access restrictions.	and access restrictions.	and access restrictions.	and
agencies and property							hea
owners							imp
							mu
Availability of off-site	None required.	Offsite disposal facilities for material	None required.	None required.	None required.	None required.	No
treatment storage and		generated by removal of landfill material	i i i i i i i i i i i i i i i i i i i			interio required.	
disposal services and		are available.					
capacities							
oupuonico	Readily available.	Readily available.	Readily available.	Readily available.	Readily available.	Readily available.	Re
Availability of necessary	i oddily available.	rougily available.			rougily available.	ricusily available.	ne.
quipment, specialists, and							1
materials							L
		#04.000.000	#0.700.000	Costs		#0.001.000	_
a 1: 1: (1)	\$0	\$21,800,000	\$2,720,000	\$3,032,000	\$3,845,000	\$6,024,000	1
Capital cost (1)			\$6,360,000	\$6,671,000	\$7,483,000	\$9,662,000	1
			\$4,500,000	\$4,810,000	\$5,623,000	\$7,801,000	1
Present worth of operation	\$983,000	\$6,692,000	\$1,900,000	\$2,214,000	\$9,923,000	\$22,200,000	1
nd maintenance cost (1)(2)			\$2,803,000	\$3,117,000	\$10,826,000	\$23,103,000	1
			\$2,342,000	\$2,655,000	\$10,365,000	\$22,641,000	
Approximate total net	\$983,000	\$28,492,000	\$4,620,000	\$5,246,000	\$13,768,000	\$28,224,000	
		1			A / A A A A A A A A A A A A A A A A A A	#00 TOF 000	1
present worth cost (1)			\$9,163,000	\$9,788,000	\$18,309,000	\$32,765,000	

⁽¹⁾Where applicable, top figure represents cost for soil cover; middle figure represents cost of low-permeability cover, bottom figure represents of cost of fill consolidation with low-permeability cover. ⁽²⁾ Operation and Maintenance costs for Alternative 6 include a one time cost to reinstall the iron wall after an anticipated 15-year service life. The present worth value of \$19,464,000 has been added to O&M. See Table 11.

	Alternative 7 Wellhead Protection by <i>ex situ</i> water treatment
	Five year reviews
	Ex situ air stripping
	(of drinking water well)
	Discharge to distribution
	system
ion	Addition of air atripping aguinment to
n	Addition of air stripping equipment to municipal well system is readily
)	constructable and operable.
ł	Air stripping is a reliable technology to remove VOC concentrations in
1	ground water.
y	ground water.
.,	
ent	
to	
Ind	
	Additional remedial actions, if
	necessary, would be readily
	implementable.
	Effectiveness of remedy components
	would be monitored through analysis
	of stripper emissions and treated
	water discharge.
	Coordination with authorities,
se	including the local water department
	and state and local departments of
	health, would be necessary to
	implement modifications to the
	municipal ground water well.
	None required.
	-
_	Readily available.
	\$290,000
-	\$177,000
	\$467,000

Table 5. Evaluation of potential SCGs

Medium/Location/ Action	Citation	Requirements	Comments	PotentialSCG	Alternative
		Potential chemical-specific SCGs			
Ground water	6 NYCRR 703 - Class GA ground water quality standards	Fresh ground waters of the state must attain Class GA standards if intended for potable use. There are no specific standards for other ground water classifications.	Potentially applicable to site ground water given proximity to existing municipal water production well.	Yes	1, 2, 3, 4, 5, 6 & 7
Surface water	6 NYCRR 703 - Class C surface water standards	Outlines surface water quality standards and guidance values for Class C surface waters.	Potentially applicable to site surface wa ter.	Yes	1, 2, 3, 4, 5, 6 & 7
Soil	NYSDEC TAGM HWR-94-4046 - Recommended soil cleanup objectives	Guidance that provides recommended soil cleanup objectives.	Potentially applicable to site soil.	Yes	1, 2, 3, 4, 5, 6 & 7
		Potential location-specific SCGs			
Wetlands		Actions occurring in a designated freshwater wetland (within 100 ft) must be approved by NYSDEC or its designee. Activities occurring adjacent to freshwater wetlands must: be compatible with preservation, protection, and conservation of wetlands and benefits; result in no more than insubstantial degradation to or loss of any part of the wetland; and be compatible with public health and welfare.	Potentially applicable since the Site is within 100 ft of one or more NYS designated freshwater wetlands, as shown on available mapping provided in the FWIA for the Site (O'Brien & Gere 2005).	Yes	2, 3, 4, 5, & 6
	Wetlands	Activities occurring in wetlands must avoid, to the extent possible, the long- and short-term adverse impacts associated with the destruction or modification of wetlands. The procedures also require USEPA to avoid direct or indirect support of new construction in wetlands wherever there are practicable alternatives or minimize potential harm to wetlands when there are no practicable alternatives.	Potentially applicable based on available mapping which shows NWI habitat within 100 ft of the Site (O'Brien & Gere 2005). However, delineation of Federal Wetlands has not been conducted at this site.	Yes	2, 3, 4, 5, & 6
100-year flood plain	6 NYCRR 373-2.2 - Location standards for hazardous waste treatment, storage, and disposal facilities -100-yr floodplain	Hazardous waste treatment, storage, or disposal facilities located in a 100-yr floodplain must be designed, constructed, operated and maintained to prevent washout of hazardous waste during a 100-yr flood.	capped on-site and if the Site is in the 100-year	Yes	3, 4, 5, & 6
		EPA is required to conduct activities to avoid, to the extent possible, the long- and short- term adverse impacts associated with the occupation or modification of floodplains. The procedures also require EPA to avoid direct or indirect support of floodplain development wherever there are practicable alternatives and minimize potential harm to floodplains when there are no practicable alternatives.	Potentally applicable for alternatives that involve excavation/grading activities if the Site is located in the 100-year floodplain.	Yes	2, 3, 4, 5, & 6
Within 61 meters (200 ft) of a fault displaced in Holocene time	40 CFR Part 264.18	New treatment, storage, or disposal of hazardous waste is not allowed.	Not applicable or relevant and appropriate. Site is not located within 200 ft of a fault displaced in Holocene time, as listed in 40 CFR 264 Appendix VI.	No	None
River or stream	16 USC 661 - Fish and Wildlife Coordination Act	Requires protection of fish and wildlife in a stream when performing activities that modify a stream or river.	Potentially applicable for actions that may impact the unnamed tributary located adjacent to the site to the north by discharge of treated ground water.	Yes	2, 3, 4, 5, & 6
Habitat of an endangered or threatened species	6 NYCRR 182	Provides requirements to minimize damage to habitat of an endangered species.	Potentially applicable for actions that may impact the habitat of identified endangered species.	Yes	2, 3, 4, 5, & 6
	Endangered Species Act	Provides a means for conserving various species of fish, wildlife, and plants that are threatened with extinction.	Potentially applicable because of the existance of one listed and one recommended endangered species w/in 2 mi. radius of site.	Yes	2, 3, 4, 5, & 6

Table 5. Evaluation of potential SCGs

Medium/Location/ Action	Citation	Requirements	Comments	PotentialSCG	Alternative
		Potential location-specific SCGs (cont.)		1	
Historical property or district	National Historic Preservation Act	Remedial actions are required to account for the effects of remedial activities on any historic properties included on or eligible for inclusion on the National Register of Historic Places.	Potentially applicable or relevant and appropriate, if Site found to be a historical property.	Yes	2, 3, 4, 5, & 6
		Potential action-specific SCGs			
Construction in a floodplain	6 NYCRR 500 - Floodplain management regulations development permits	Development in a 100-year floodplain must be approved by NYSDEC. Construction must not result in increased flood elevations in the community.	Potentially applicable for alternatives that involve excavation, grading, and/or capping if the Site is located in a 100-year floodplain.	Yes	2, 3, 4, 5, & 6
General excavation	6 NYCRR 257-3 - Air Quality Standards	Provide limitations for generation of constituents including particulate matter.	Not applicable or relevant and appropriate because dust emissions would not be from a point source. May be useful for consideration during dust generating activities such as earth moving, grading and excavation of soil.	Yes	2, 3, 4, 5, & 6
	40 CFR 50.1 through 50.12 - National Ambient Air Quality Standards.	Provides air quality standards for pollutants considered harmful to public health and the environment. The six principle pollutants include carbon monoxide, lead, nitrogen dioxide, particulates, ozone, and sulfur oxides.	Potentially applicable during dust generating activities such as earth moving, grading, and excavation of soil.	Yes	2, 3, 4, 5, & 6
Removal & treatment actions	6 NYCRR 373 - Hazardous waste management facilities	Provides requirements for managing hazardous wastes.	Potentially applicable if hazardous waste is present in/removed from the landfill. May also be applicable for treatment of ground water.	Yes	2 & 4
Landfill cover	6 NYCRR 360 - Solid Waste Management Facilities	Provides requirements for construction of the final cover of a solid waste landfill.	Potentially applicable for alternatives that include capping material on-site.	Yes	3, 4, 5, & 6
Land disposal	6 NYCRR 376 - Land disposal restrictions	Provides treatment standards to be met prior to land disposal of hazardous wastes.	Potentially applicable for alternatives that include capping material on-site.	Yes	3, 4, 5, & 6
Discharge to surface water	6 NYCRR Parts 750 - 758 - SPDES	Provides concentration limits and monitoring requirements for discharges to waters of the State.	Potentially applicable for surface discharge of treated ground water	Yes	2 & 4
Construction	29 CFR Part 1910 - Occupational Safety and Health Standards - Hazardous Waste Operations and Emergency Response	Remedial activities must be in accordance with applicable OSHA requirements.	Applicable for construction and monitoring phase of remediation.	Yes	1, 2, 3, 4, 5, 6 & 7
	29 CFR Part 1926 - Safety and Health Regulations for Construction	Remedial construction activities must be in accordance with applicable OSHA requirements.	Applicable for construction phase of remediation.	Yes	2, 3, 4, 5, 6 & 7
Transportation	6 NYCRR 364 - Waste Transporter Permits	Hazardous waste transport must be conducted by a hauler permitted under 6 NYCRR 364.	Potentially applicable.	Yes	2
	6 NYCRR Part 372 - Hazardous Waste Manifest System and Related Standards for Generators, Transporters, and Facilities	Substantive hazardous waste generator and transportation requirements must be met when hazardous waste is generated for disposal. Generator requirements include obtaining an EPA Identification Number and manifesting hazardous waste for disposal.	Potentially applicable.	Yes	2
	49 CFR 172-174 and 177-179 - Department of Transportation Regulations	Hazardous waste transport to offsite disposal facilities must be conducted in accordance with applicable DOT requirements	Potentially applicable.	Yes	2
Generation of air emissions	NYS Air Guide 1	Provides annual guideline concentrations (AGLs) and short-term guideline concentrations (SGCs) for specific chemicals. These are property boundary limitations that would result in no adverse health effects.	Potentially applicable.	Yes	2, 3, 4, 5 & 6
	NYS TAGM 4031 - Dust Suppressing and Particle Monitoring at Inactive Hazardous Waste Disposal Sites	Provides limitations on dust emissions.	Potentially applicable.	Yes	2, 3, 4, 5 & 6

Table 5. Evaluation of potential SCGs

Medium/Location/ Action	Citation	Requirements	Comments	PotentialSCG	Alternative
	construction activities. Pursuant to Article 17 Titles 7 and 8 and Article 70 of the Environmental Conservation Law.	The regulation prohibits discharge of materials other than storm water and all discharges that contain a hazardous substance in excess of reportable quantities established by 40 CFR 117.3 or 40 CFR 302.4, unless a separate NPDES permit has been issued to regulate those discharges. A permit must be acquired if activities involve the disturbance of 5 acres or more. If the project is covered under the general permit, the following are required: development and implementation of a storm water pollution prevention plan; development and implementation of a monitoring program; all records must be retained for a period of at least 3 years after construction is complete.		Yes	2, 3, 4, 5, & 6

Table 6: Alternative #1 No Action COST ESTIMATE

ITEM	UNIT	ESTIMATED QUANTITY	ESTIMATED UNIT COST	ESTIMATED COST	
rect Capital Costs; No Direct Capital Costs are associated with Alterna	tive No. 1				
				SUBTOTAL:	None
		IOIA	L DIRECT CAPITA	L COST:	
lirect Capital Costs; No Indirect Capital Costs are associated with Alte	rnative No. 1				
Contingency (25% Direct Capital Costs)	LS	1	\$0	\$0	
Contingency (25% Direct Capital Costs) Engineering (15% of Direct Capital Costs)	LS	1	\$0 \$0	\$0 \$0	
Engineering (15% of Direct Capital Costs)	LS LS LS	1 1 1	\$0 \$0 \$0	\$0 \$0 \$0	
Contingency (25% Direct Capital Costs) Engineering (15% of Direct Capital Costs) Legal Fees (5% Direct Capital Costs)	LS	1	\$0	\$0 \$0	None
Engineering (15% of Direct Capital Costs)	LS	1	\$0 \$0 FOTAL INDIRECT C	\$0 \$0 CAPITOL COSTS:	None
Engineering (15% of Direct Capital Costs) Legal Fees (5% Direct Capital Costs)	LS	1	\$0 \$0	\$0 \$0 CAPITOL COSTS:	None
Engineering (15% of Direct Capital Costs) Legal Fees (5% Direct Capital Costs) nual Operation & Maintenance Costs	LS LS	1 1 1 1	\$0 \$0 FOTAL INDIRECT C	\$0 \$0 CAPITOL COSTS: DSTS ROUNDED:	None
Engineering (15% of Direct Capital Costs) Legal Fees (5% Direct Capital Costs) nual Operation & Maintenance Costs Site Inspection	LS LS DAYS	1	\$0 \$0 FOTAL INDIRECT C OTAL CAPITAL CC \$800	\$0 \$0 CAPITOL COSTS: DSTS ROUNDED: \$3,200	None
Engineering (15% of Direct Capital Costs) Legal Fees (5% Direct Capital Costs) nual Operation & Maintenance Costs Site Inspection Site Maintenance	LS LS DAYS LS	1 1 1 1	\$0 \$0 TOTAL INDIRECT C OTAL CAPITAL CC \$800 \$2,000	\$0 \$0 CAPITOL COSTS: DSTS ROUNDED: \$3,200 \$2,000	None
Engineering (15% of Direct Capital Costs) Legal Fees (5% Direct Capital Costs) nual Operation & Maintenance Costs Site Inspection Site Maintenance Ground Water Monitoring	LS LS DAYS LS LS	1 1 1 1	\$0 \$0 TOTAL INDIRECT C OTAL CAPITAL CC \$800 \$2,000 \$70,000	\$0 \$0 CAPITOL COSTS: DSTS ROUNDED: \$3,200 \$2,000 \$70,000	None
Engineering (15% of Direct Capital Costs) Legal Fees (5% Direct Capital Costs) nual Operation & Maintenance Costs Site Inspection Site Inspection Site Maintenance Ground Water Monitoring 5 year Review (Annual Cost)	LS LS DAYS LS LS LS	1 1 1 1	\$0 \$0 TOTAL INDIRECT C OTAL CAPITAL CC \$800 \$2,000 \$70,000 \$1,000	\$0 \$0 CAPITOL COSTS: DSTS ROUNDED: \$3,200 \$2,000 \$2,000 \$1,000	None
Engineering (15% of Direct Capital Costs) Legal Fees (5% Direct Capital Costs) nual Operation & Maintenance Costs Site Inspection Site Maintenance Ground Water Monitoring 5 year Review (Annual Cost) Insurance (1% Direct Capital Cost; \$1,500 minimum)	LS LS DAYS LS LS LS LS LS	1 1 1 1	\$0 \$0 TOTAL INDIRECT C OTAL CAPITAL CC \$800 \$2,000 \$70,000 \$1,000 \$0	\$0 \$0 CAPITOL COSTS: DSTS ROUNDED: \$3,200 \$2,000 \$70,000 \$1,000 \$1,500	None
Engineering (15% of Direct Capital Costs) Legal Fees (5% Direct Capital Costs) nual Operation & Maintenance Costs Site Inspection Site Maintenance Ground Water Monitoring 5 year Review (Annual Cost) Insurance (1% Direct Capital Cost; \$1,500 minimum)	LS LS DAYS LS LS LS	1 1 1 1	\$0 \$0 TOTAL INDIRECT C OTAL CAPITAL CC \$800 \$2,000 \$70,000 \$1,000	\$0 \$0 CAPITOL COSTS: DSTS ROUNDED: \$3,200 \$2,000 \$70,000 \$1,000 \$1,500 \$1,500	None
Engineering (15% of Direct Capital Costs) Legal Fees (5% Direct Capital Costs)	LS LS DAYS LS LS LS LS LS	1 1 T T 4 1 1 1 1 1 1	\$0 \$0 TOTAL INDIRECT C OTAL CAPITAL CC \$800 \$2,000 \$70,000 \$1,000 \$0 \$0	\$0 \$0 CAPITOL COSTS: DSTS ROUNDED: \$3,200 \$2,000 \$2,000 \$1,000 \$1,500 \$1,500 \$1,500 \$79,200	None
Engineering (15% of Direct Capital Costs) Legal Fees (5% Direct Capital Costs) nual Operation & Maintenance Costs Site Inspection Site Maintenance Ground Water Monitoring 5 year Review (Annual Cost) Insurance (1% Direct Capital Cost; \$1,500 minimum)	LS LS DAYS LS LS LS LS LS	1 1 T T 4 1 1 1 1 1 1	\$0 \$0 TOTAL INDIRECT C OTAL CAPITAL CC \$800 \$2,000 \$70,000 \$1,000 \$0 \$0 \$0 \$0 \$UBTOTAL:	\$0 \$0 CAPITOL COSTS: DSTS ROUNDED: \$3,200 \$2,000 \$2,000 \$1,000 \$1,500 \$1,500 \$1,500 \$79,200	

Table 7: Alternative #2 Excavation and Offsite Disposal COST ESTIMATE

ITEM	UNIT	ESTIMATED QUANTITY	ESTIMATED UNIT COST	ESTIMATED COST	
Direct Capital Costs					
Direct Capital Costs 1) Mobilization					
Contractor Bond (1%)	LS	1	\$155,567	\$155,567	
Equipment and Site Facilities	LS	1	\$259,000	\$259,000	
			• •	SUBTOTAL:	\$414,567
2) Site Preparation					
Site Survey and Topography	ACRE	16	\$1,000	\$16,000	
Clearing and Grubbing	ACRE	6.4	\$15,300	\$97,920	
Erosion and Sediment Control			• /	AA AAA	
Silt Fence	LF	3,800	\$1	\$3,800 SUBTOTAL:	\$117,720
3) Soil Excavation, Offsite Disposal and Surface Restoration				SUBTUTAL:	\$117,720
Dewatering Pad	LS	1	\$85,000	\$85,000	
Excavation of Landfill Material	CY	90,000	\$15	\$1,350,000	
Soil Management and Staging	LS	1	\$50,000	\$50,000	
Confirmatory Sampling	LS	1	\$150,000	\$150,000	
Offsite Disposal - Hazardous	TON	33,750	\$150	\$5,062,500	
Offsite Disposal - Nonhazardous	TON	101,250	\$75	\$7,593,750	
Backfill Material	CY	15,000	\$12	\$180,000	
Topsoil	CY	12,000	\$22	\$264,000	
Seeding/Mulch	SF	864,000	\$0.50	\$432,000	
	•			SUBTOTAL:	\$15,167,250
4) Groundwater Recovery and Treatment					, . ,
Install 8-inch wells	VLF	140	\$75	\$10,500	
Submersible Well Pump	EA	2	\$2,500	\$5,000	
Level Transducer	EA	2	\$1,000	\$2,000	
Air Stripper Equipment	LS	1	\$12,000	\$12,000	
Air Stripper Enclosure	LS	1	\$85,000	\$85,000	
Controls and Integration	LS	1	\$15,000	\$15,000	
Electrical Conduit and Service	LS	1	\$25,000	\$25,000	
Treatment system discharge piping (8-inch PVC)	LF	250	\$45	\$11,250	
				SUBTOTAL:	\$165,750
5) Other Costs			* ***	AAA AAA	
Winter Shutdown	LS	1	\$30,000	\$30,000	
Deed Restrictions	LS	1	\$20,000	\$20,000	
Air monitoring Dust Control Plan	LS LS	1	\$20,000 \$5,000	\$20,000 \$5,000	
Stormwater Pollution Prevention Plan	LS	1	\$5,000	\$5,000	
SPDES Discharge Permit	LS	1	\$10,000	\$10,000	
Final Site Survey	LS	1	\$16,000	\$16,000	
				SUBTOTAL:	\$106,000
			TOTAL DIRECT	CAPITAL COST:	\$15,971,287
Indirect Capital Costs					
Contingency (30% Direct Capital Costs)		1	\$4,791,386	\$4,791,386	\$4,791,386
Engineering (15% of Direct Capital Costs)		1	\$239,569	\$239,569	\$239,569
Legal Fees (5% Direct Capital Costs)		1	\$798,564 TOTAL INDIRECT (\$798,564	\$798,564 \$5,829,520
					<i>40,020,020</i>
Annual Onevention & Maintenance Ocente			TOTAL CAPITAL CO	OSTS ROUNDED:	\$21,800,000
Annual Operation & Maintenance Costs Site Inspection	DAYS	4	\$800	\$3,200	
Site Maintenance	LS	4	\$10,000	\$10,000	
5 year Review (Annual Cost)	LS	1	\$1,000	\$1,000	
Ground Water Monitoring	LS	1	\$70,000	\$70,000	
SDPES Discharge Monitoring	LS	1	\$18,000	\$18,000	
Electrical Usage	LS	1	\$1,050	\$1,050	
Insurance (1% Direct Capital Cost)	LS	1	\$218,000	\$218,000	
Reserve Fund (1% Direct Capital Cost)	LS	1	\$218,000	\$218,000	
			SUBTOTAL	\$539,250	

PRESENT WORTH* OF ANNUAL O&M: \$6,692,000 *30 yr, I=7%

APPROXIMATE TOTAL PRESENT WORTH COST: \$28,492,000

Table 8: Alternative #3 Landfill Cover COST ESTIMATE

ITEM	UNIT	ESTIMATED QUANTITY	ESTIMATED UNIT COST	ESTIMATED COST	
Direct Capital Costs					
) Mobilization					
Contractor Bond (1%) (Soil cover)	LS	1	\$17,986	\$17,986	
Contractor Bond (1%) (Low perm cover)	LS	1	\$42,002	\$42,002	
Contractor Bond (1%) (Fill consolidation with low perm cover)	LS	1	\$29,720	\$29,720	
Equipment and Site Facilities	LS	1	\$66,000	\$66,000	
				TAL (soil cover):	\$83,986
				low-perm cover):	\$108,002
2) Site Preparation		SUBTUTAL (FIII	consolidation and	iow-perm cover):	\$95,720
Site Survey and Topography	ACRE	16	\$1.000	\$16,000	
Clearing and Grubbing	ACRE	6.4	\$15,300	\$97,920	
Swale/Site Fill Material	CY	10,000	\$12	\$120,000	
Erosion and Sediment Control		,	*	+	
Silt Fence	LF	3,800	\$1	\$3,800	
				SUBTOTAL:	\$237,720
3A) Soil Cover					
Topsoil	CY	16,000	\$22	\$352,000	
Seeding/Mulch	SF	864,000	\$0.50	\$432,000	
Backfill Soil Material (18-inch depth)	CY	48,000	\$12	\$576,000	
Perimeter Drainage Stone Toe Drain	CY LF	320 1,800	\$6 \$15	\$1,920 \$27,000	
Toe Drain Holding Tank	EA	1,800	\$15 \$10,000	\$27,000 \$10,000	
B) Low Permeability Cover (additional components)	EA	I	φ10,000	φ10,000	
Backfill Soil Material (additional 6-inch depth)	CY	16,000	\$12	\$192,000	
Tri-Planar Geonet	SF	864,000	\$1.40	\$1,209,600	
40 mil LLDPE (Impermeable layer)	SF	864,000	\$0.75	\$648,000	
Soil Bedding Material (6-inch depth)	SF	16,000	\$22	\$352,000	
C) Fill Consolidation and Low-Permeability Cover					
Dewatering Pad	LS	1	\$85,000	\$85,000	
Excavation of Landfill Material (western cell)	CY	60,000	\$15	\$900,000	
Topsoil	CY	16,000	\$22	\$352,000	
Seeding/Mulch	SF	864,000	\$0.50	\$432,000	
Backfill Soil Material (24-inch depth)	CY	17,000	\$12	\$204,000	
Tri-Planar Geonet	SF	225,000	\$1.40	\$315,000	
40 mil LLDPE (Impermeable layer)	SF	225,000	\$0.75	\$168,750	
Soil Bedding Material (6-inch depth)	SF	4,000	\$22	\$88,000	
Perimeter Drainage Stone	CY	170	\$6	\$1,020	
Toe Drain Holding Tank	LF EA	1,100 1	\$15 \$10.000	\$16,500 \$10,000	
	En		. ,	TAL (soil cover):	\$1,398,920
				low-perm cover):	\$3,800,520
		SUBTOTAL (Fill	consolidation and	low-perm cover):	\$2,572,270
) Other Costs					
Winter Shutdown	LS	1	\$30,000	\$30,000	
Deed Restrictions	LS	1	\$20,000	\$20,000	
Air monitoring Dust Control Plan	LS LS	1	\$20,000 \$5,000	\$20,000 \$5,000	
Stormwater Pollution Prevention Plan	LS	1	\$5,000	\$5,000	
Final Site Survey	LS	1	\$16,000	\$16,000	
				SUBTOTAL:	\$96,000
			ECT CAPITAL COS	(\$1,816,626
			APITAL COST (LOV		\$4,242,242
ndirect Capital Costs	TOTAL DIRECT CAPITAL (COST (FILL CONSOLI	DATION WITH LOV	V PERM COVER):	\$3,001,710
Soil Cover					
Contingency (30% Direct Capital Costs)		1	\$544,988	\$544,988	\$544,988
Engineering (15% of Direct Capitol Costs)		1	\$272,494	\$272,494	\$272,494
Legal Fees (5% Direct Capital Costs)		1	\$90,831	\$90,831	\$90,831
ow perm cover			¢1 070 070	¢1 070 070	¢1 070 070
Contingency (30% Direct Capital Costs) Engineering (15% of Direct Capitol Costs)		1	\$1,272,673 \$636,336	\$1,272,673 \$636,336	\$1,272,673 \$636,336
Legal Fees (5% Direct Capital Costs)		1	\$212,112	\$212,112	\$030,330 \$212,112
Soil Cover with Fill consolidation and low perm cover			,	. ,=	,=
Contingency (30% Direct Capital Costs)		1	\$900,513	\$900,513	\$900,513
Engineering (15% of Direct Capitol Costs)		1	\$450,256	\$450,256	\$450,256
Legal Fees (5% Direct Capital Costs)			\$150,085	\$150,085	\$150,085
		TOTAL INDIR	ECT CAPITAL COS		\$908,313 \$2,121,121
	TOTAL INDIRECT CAPITAL				\$2,121,121 \$1,500,855
					+ ,,
	TOTAL INDIRECT CAPITAL	TO	TAL CAPITAL COS	T (SOIL COVER):	\$2,720,000

Table 8: Alternative #3 Landfill Cover COST ESTIMATE

ESTIMATED ESTIMATED ESTIMATED ITEM UNIT QUANTITY UNIT COST COST TOTAL CAPITAL COST (FILL CONSOLIDATION WITH LOW PERM COVER): \$4,500,000

Table 8: Alternative #3 Landfill Cover COST ESTIMATE

		ESTIMATED	ESTIMATED	ESTIMATED	
ITEM	UNIT	QUANTITY	UNIT COST	COST	
Innual Operation & Maintenance Costs					
Insurance (1% Direct Capital Cost of Soil cover)	LS	1	\$27,200	\$27,200	
Reserve Fund (1% Direct Capital Cost of Soil cover)	LS	1	\$27,200	\$27,200	
Insurance (1% Direct Capital Cost of Low perm cover)	LS	1	\$63,600	\$63,600	
Reserve Fund (1% Direct Capital Cost of Low perm cover)	LS	1	\$63,600	\$63,600	
Insurance (1% Direct Capital Cost of fill consolidation with low perm cover)	LS	1	\$45,000	\$45,000	
Reserve Fund (1% Direct Capital Cost of fill consolidation with low perm cover)	LS	1	\$45,000	\$45,000	
Site Inspection	DAYS	4	\$800	\$3,200	
Site Maintenance	LS	1	\$12,000	\$12,000	
Off-site Leachate removal and disposal	Gal.	10000	\$1.25	\$12,500	
5 year Review (Annual Cost)	LS	1	\$1,000	\$1,000	
Ground Water Monitoring	LS	1	\$70,000	\$70,000	
		SUB	TOTAL (soil cover):	\$153,100	
		SUBTOTAL	(low-perm cover):	\$225,900	
	SUBTOTAL (Fill consolidation an	\$188,700		

APPROX. PRESENT WORTH* OF ANNUAL 0&M (SOIL COVER): APPROX. PRESENT WORTH* OF ANNUAL 0&M (LOW PERM COVER): APPROX. PRESENT WORTH* OF ANNUAL 0&M (FILL CONSOLIDATION WITH LOW PERM COVER): *30 yr, I=7% \$1,900,000 \$2,803,000 \$2,342,000

APPROXIMATE TOTAL PRESENT WORTH COST (SOIL COVER):	\$4,620,000
APPROXIMATE TOTAL PRESENT WORTH COST (LOW PERM COVER):	\$9,163,000
APPROXIMATE TOTAL PRESENT WORTH COST (FILL CONSOLIDATION WITH LOW PERM COVER):	\$6,842,000

Table 9: Alternative #4 Cover with Ground water Extraction/Treatment COST ESTIMATE

ITEM	UNIT	ESTIMATED QUANTITY	ESTIMATED UNIT COST	ESTIMATED COST	
Direct Capital Costs					
) Mobilization					
Contractor Bond (1%) - Soil cover	LS	1	\$20,014	\$20,014	
Contractor Bond (1%) - Low-permeability cover	LS	1	\$44,030	\$44,030	
Contractor Bond (1%) - Fill consolidation with low-perm cover	LS	1	\$31,747	\$31,747	
Equipment and Site Facilities	LS	1	\$58,000	\$58,000	
				DTAL (soil cover):	\$78,014
				low-perm cover):	\$102,030
		SUBTOTAL: (fil	I consolidation and	•••	\$89,747
) Site Preparation				, i i i i i i i i i i i i i i i i i i i	,
Site Survey and Topography	ACRE	16	\$1,000	\$16,000	
Clearing and Grubbing	ACRE	6.4	\$15,300	\$97,920	
Swale/Site Fill Material	CY	10,000	\$12	\$120,000	
Erosion and Sediment Control	01	10,000	ψī	φ120,000	
Silt Fence	LF	3,800	\$1	\$3,800	
Silt Tence	LI	3,000	ιψ	SUBTOTAL:	\$237,720
) Landfill Cover*				SUBTOTAL.	<i>\$251,120</i>
*See Table 8 (Alternative 3) for detailed estimate of each option					
				DTAL (soil cover):	\$1,398,920
				(low-perm cover):	\$3,800,520
		SUBTOTAL: (fil	I consolidation and	low-perm cover):	\$2,572,270
Groundwater Recovery and Treatment					
Pre-design study	EA	1	\$40,000	\$40,000	
Install 8-inch wells	VLF	140	\$75	\$10,500	
Submersible Well Pump	EA	2	\$2,500	\$5,000	
Level Transducer	EA	2	\$1,000	\$2,000	
Air Stripper Equipment	LS	1	\$12,000	\$12,000	
Air Stripper Enclosure	LS	1	\$85,000	\$85,000	
Controls and Integration	LS	1	\$15,000	\$15,000	
Electrical Conduit and Service	LS	1	\$25.000	\$25,000	
Treatment system discharge piping (8-inch PVC)	LS	250	\$45	\$11,250	
Treatment system discharge piping (o-incit 1 VO)	LI	230	C+Q	SUBTOTAL:	\$205,750
) Other Costs				SUBTOTAL.	\$205,750
Winter Shutdown	LS	1	\$30,000	000 000	
	-	1	. ,	\$30,000	
Deed Restrictions	LS	1	\$20,000	\$20,000	
Air monitoring Dust Control Plan	LS LS	1	\$20,000 \$5,000	\$20,000 \$5,000	
Stormwater Pollution Prevention Plan	LS	1	\$5,000	\$5,000	
Modification of Drinking Water Permit	LS	1	\$5,000	\$5,000	
Final Site Survey	LS	1	\$16,000	\$16,000	
	EO	I	φ10,000	SUBTOTAL:	\$101,000
				SUBTUTAL.	\$101,000
		TOTAL D	IRECT CAPITOL CO	STS (soil cover):	\$2,021,404
		TOTAL DIRECT	CAPITOL COSTS (low-perm cover):	\$4,447,020
	TOTAL DIRECT	CAPITOL COSTS (fil	I consolidation and	low-perm cover):	\$3,206,487
direct Capital Costs oil Cover					
Contingency (30% Direct Capital Costs)		1	\$606 421	\$606 421	\$606 421
Engineering (15% of Direct Capital Costs)		1	\$606,421 \$303,211	\$606,421 \$303,211	\$606,421 \$303,211
Legal Fees (5% Direct Capital Costs)		1	\$101,070	\$101,070	\$303,211 \$101,070
ow-permeability cover			<i>\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\</i>	ψ.01,070	<i><i><i>ϕ</i>,<i>ϕ</i>,<i>ϕ</i>,<i>ϕ</i>,<i>ϕ</i>,<i>ϕ</i>,<i>ϕ</i>,<i>ϕ</i>,<i>ϕ</i>,<i>ϕ</i>,<i>ϕ</i></i></i>
Contingency (30% Direct Capital Costs)		1	\$1,334,106	\$1,334,106	\$1,334,106
Engineering (15% of Direct Capitol Costs)		1	\$667,053	\$667,053	\$667,053
Legal Fees (5% Direct Capital Costs)		1	\$222,351	\$222,351	\$222,351
ill consolidation and low-permeability cover			. ,	. ,	. ,
Contingency (30% Direct Capital Costs)		1	\$961,946	\$961,946	\$961,946
Engineering (15% of Direct Capitol Costs)		1	\$480,973	\$480,973	\$480,973
Legal Fees (5% Direct Capital Costs)		1	\$160,324	\$160,324	\$160,324
		TOTAL IND	IRECT CAPITOL CO		\$1,010,702
			T CAPITOL COSTS	· · ·	\$2,223,510
	TOTAL INDIRECT	CAPITOL COSTS (fil			\$1,603,244
			TOTAL CAPITOL CO	· · ·	\$3,032,000
			CAPITOL COSTS (iow-perm cover):	\$6,671,000

TOTAL CAPITOL COSTS (fill consolidation and low-perm cover): \$4,810,000

Table 9: Alternative #4 Cover with Ground water Extraction/Treatment COST ESTIMATE

ITEM	UNIT	ESTIMATED QUANTITY	ESTIMATED UNIT COST	ESTIMATED COST	
nnual Operation & Maintenance Costs					
Insurance (1% Direct Capital Cost of Soil Cover)	LS	1	\$30,320	\$30,320	
Reserve Fund (1% Direct Capital Cost of Soil Cover)	LS	1	\$30,320	\$30,320	
Insurance (1% Direct Capital Cost of Low-Perm Cover)	LS	1	\$66.710	\$66,710	
Reserve Fund (1% Direct Capital Cost of Low-Perm Cover)	LS	1	\$66,710	\$66,710	
Insurance (1% Direct Capital Cost of Fill Consolidation and Low-Perm Cover)	LS	1	\$48,100	\$48,100	
Reserve Fund (1% Direct Capital Cost of Fill Consol. and Low-Perm Cover)	LS	1	\$48,100	\$48,100	
Site Inspection	DAYS	4	\$800	\$3.200	
Site Maintenance	LS	1	\$12,000	\$12,000	
Off-site Leachate removal and disposal	Gal.	10000	\$1.25	\$12,500	
SPDES Discharge Monitoring	LS	1	\$18,000	\$18,000	
5 year Review (Annual Cost)	LS	1	\$1,000	\$1,000	
Electrical Usage	LS	1	\$1,050	\$1,050	
Ground Water Monitoring	LS	1	\$70,000	\$70,000	
• • • • • • • • • • • • • • • • • • •		SUBTOTAL ANNUA	L O&M (soil cover):	\$178,390	
	SUB	TOTAL ANNUAL O&M	I (low-perm cover):	\$251,170	
SUBTOTA	AL ANNUAL O&N	I (fill consolidation ar	d low-perm cover):		
		PROX. PRESENT W	• •		\$2,214,000
		X. PRESENT WORTH		· · · ·	\$3,117,000
APPROX F		H* OF ANNUAL O&M		· · · /	\$2,655,000
ALLIOAT				*30 yr, I=7%	<i>\$</i> 2,000,000
	APP	ROXIMATE TOTAL P	RESENT WORTH C	OST (soil cover):	\$5,246,000
	APPROXI	MATE TOTAL PRESE	NT WORTH COST	low-perm cover):	\$9,788,000

APPROXIMATE TOTAL PRESENT WORTH COST (two-perin cover): \$5,76,000 APPROXIMATE TOTAL PRESENT WORTH COST (till consolidation and low perm cover): \$7,465,000

Table 10: Alternative #5 Cover with In Situ Enhanced Attenuation COST ESTIMATE

ITEM	UNIT	ESTIMATED QUANTITY	ESTIMATED UNIT COST	ESTIMATED COST	
Direct Capital Costs					
1) Mobilization					
Contractor Bond (1%) - Soil cover	LS	1	\$25,379	\$25,379	
Contractor Bond (1%) - Low-permeability cover	LS	1	\$49,395	\$49,395	
Contractor Bond (1%) - Fill consolidation with low-perm cover	LS	1	\$37,113	\$37,113	
Equipment and Site Facilities	LS	1	\$58,000	\$58,000	
			SUBTO	OTAL (soil cover):	\$83,379
			SUBTOTAL: (low-perm cover):	\$107,395
		SUBTOTAL: (fil	consolidation and	low-perm cover):	\$95,113
2) Site Preparation					
Site Survey and Topography	ACRE	16	\$1,000	\$16,000	
Clearing and Grubbing	ACRE	6.4	\$15,300	\$97,920	
Swale/Site Fill Material	CY	10,000	\$12	\$120,000	
Erosion and Sediment Control					
Silt Fence	LF	3,800	\$1	\$3,800	
				SUBTOTAL:	\$237,720
3) Landfill Cover*					
*See Table 8 (Alternative 3) for detailed estimate of each option					
			SUBTO	DTAL (soil cover):	\$1,398,920
			SUBTOTAL: (low-perm cover):	\$3,800,520
		SUBTOTAL: (fil	consolidation and	low-perm cover):	\$2,572,270
4) In Situ groundwater treatment - Biobarrier					
Predesign Investigation	LS	1	\$32,400	\$32,400	
Injection Wells (7 wells)	VLF	525	\$75	\$39,400	
Initial injection	LS	1	\$99,600	\$99,600	
Regular injection round (1 per mo.)	LS	11	\$49,800	\$547,800	
Ground water sampling (for injection confirmation)	LS	11	\$2,100	\$23,100	
				SUBTOTAL:	\$742,300
5) Other Costs					
Winter Shutdown	LS	1	\$30,000	\$30,000	
Deed Restrictions	LS	1	\$20,000	\$20,000	
Air monitoring	LS	1	\$20,000	\$20,000	
Dust Control Plan	LS	1	\$5,000	\$5,000	
Stormwater Pollution Prevention Plan	LS	1	\$5,000	\$5,000	
Modification of Drinking Water Permit	LS	1	\$5,000	\$5,000	
Final Site Survey	LS	1	\$16,000	\$16,000	
				SUBTOTAL:	\$101,000
		TOTAL D	RECT CAPITOL CO	STS (soil cover):	\$2,563,319
		TOTAL DIRECT	CAPITOL COSTS (low-perm cover):	\$4,988,935
	TOTAL DIRECT	CAPITOL COSTS (fil	consolidation and	low-perm cover):	\$3,748,403
Indirect Capital Costs					
Soil Cover					
Contingency (30% Direct Capital Costs)		1	\$768,996	\$768,996	\$768,996
Engineering (15% of Direct Capitol Costs)		1	\$384,498	\$384,498	\$384,498
Legal Fees (5% Direct Capital Costs)		1	\$128,166	\$128,166	\$128,166
Low-permeability cover			¢1 400 001	¢1 400 001	¢1 400 001
Contingency (30% Direct Capital Costs) Engineering (15% of Direct Capitol Costs)		1	\$1,496,681	\$1,496,681	\$1,496,681
Legal Fees (5% Direct Capital Costs)		1	\$748,340 \$249,447	\$748,340 \$249,447	\$748,340 \$249,447
Fill consolidation and low-permeability cover		I	φ 2+ 3,447	φ 24 3,447	φ 2 43,447
Contingency (30% Direct Capital Costs)		1	\$1,124,521	\$1,124,521	\$1,124,521
Engineering (15% of Direct Capitol Costs)		1	\$562,260	\$562,260	\$562,260
Legal Fees (5% Direct Capital Costs)		1	\$187,420	\$187,420	\$187,420
			RECT CAPITOL CO		\$1,281,660
			T CAPITOL COSTS	• •	\$2,494,468
	TOTAL INDIRECT	CAPITOL COSTS (fill		• •	\$1,874,201
				, .	
		т	OTAL CAPITOL CO	STS (soil cover):	\$3,845,000
			L CAPITOL COSTS	• •	
		1014		ion permitoriti.	\$7,483,000

Table 10: Alternative #5 Cover with In Situ Enhanced Attenuation COST ESTIMATE

ITEM	UNIT	ESTIMATED QUANTITY	ESTIMATED UNIT COST	ESTIMATED COST	
Annual Operation & Maintenance Costs	onn	QUANTIT		0001	
Insurance (1% Direct Capital Cost of Soil Cover)	LS	1	\$38,450	\$38,450	
Reserve Fund (1% Direct Capital Cost of Soil Cover)	LS	1	\$38,450	\$38,450	
Insurance (1% Direct Capital Cost of Low-Perm Cover)	LS	1	\$74,830	\$74,830	
Reserve Fund (1% Direct Capital Cost of Low-Perm Cover)	LS	1	\$74,830	\$74,830	
Insurance (1% Direct Capital Cost of Fill Consolidation and Low-Perm Cover)	LS	1	\$56,230	\$56,230	
Reserve Fund (1% Direct Capital Cost of Fill Consol. and Low-Perm Cover)	LS	1	\$56,230	\$56,230	
Site Inspection	DAYS	4	\$800	\$3,200	
Site Maintenance	LS	1	\$12,000	\$12,000	
Off-site Leachate removal and disposal	Gal.	10000	\$1.25	\$12,500	
Regular injection round (1 per mo.)	LS	12	\$49,800	\$597,600	
Ground water sampling (for injection confirmation)	LS	12	\$2,100	\$25,200	
5 year Review (Annual Cost)	LS	1	\$1,000	\$1,000	
Electrical Usage	LS	1	\$1,280	\$1,280	
Ground Water Monitoring	LS	1	\$70,000	\$70,000	
		SUBTOTAL ANNUA	L O&M (soil cover):	\$799,680	
	SUB	TOTAL ANNUAL O&M	M (low-perm cover):	\$872,440	
SUBTOTA		(fill consolidation ar	· · /	. ,	
		PROX. PRESENT W	• • •	. ,	\$9,923,000
		X. PRESENT WORTH		()	\$10,826,000
		H* OF ANNUAL O&M		· · · /	\$10,365,000
APPROX. P	RESENT WORT	H OF ANNUAL U&M	(iiii consolidation and	,	\$10,365,000
				*30 yr, I=7%	
	APP	ROXIMATE TOTAL P	RESENT WORTH C	OST (soil cover):	\$13,768,000
	APPROXI	MATE TOTAL PRESE	NT WORTH COST (low-perm cover):	\$18,309,000
APPROXIMATE		NT WORTH COST (fill	•	• •	\$15,988,000

Table 11: Alternative #6 Cover with In Situ Ground water Treatment COST ESTIMATE

ITEM	UNIT	ESTIMATED QUANTITY	ESTIMATED UNIT COST	ESTIMATED COST	
Direct Capital Costs					
1) Mobilization					
Contractor Bond (1%) - Soil cover	LS	1	\$39,760	\$39,760	
Contractor Bond (1%) - Low-permeability cover	LS	1	\$63,776	\$63,776	
Contractor Bond (1%) - Fill consolidation with low-perm cover	LS	1	\$51,494	\$51,494	
Equipment and Site Facilities	LS	1	\$58,000	\$58,000	
			SUBTO	DTAL (soil cover):	\$97,760
			SUBTOTAL: (low-perm cover):	\$121,776
		SUBTOTAL: (fil	consolidation and	low-perm cover):	\$109,494
2) Site Preparation					
Site Survey and Topography	ACRE	16	\$1,000	\$16,000	
Clearing and Grubbing	ACRE	6.4	\$15,300	\$97,920	
Swale/Site Fill Material	CY	10,000	\$12	\$120,000	
Erosion and Sediment Control					
Silt Fence	LF	3,800	\$1	\$3,800	
				SUBTOTAL:	\$237,720
3) Landfill Cover*					
*See Table 8 (Alternative 3) for detailed estimate of each option					
			SUBTO	DTAL (soil cover):	\$1,398,920
				low-perm cover):	\$3,800,520
		SUBTOTAL: (fil	consolidation and	,	\$2,572,270
4) In Situ groundwater treatment - iron wall				, i i i i i i i i i i i i i i i i i i i	• /- / -
Pre-design Study	LS	1	\$28,400	\$28,400	
Bench Scale Testing	LS	1	\$15,000	\$15,000	
Zero Valent Iron (including delivery)	LS	1	\$683,000	\$683,000	
Installation (by slurry wall construction technique)	LS	1	\$1,454,000	\$1,454,000	
			. , ,	SUBTOTAL:	\$2,180,400
5) Other Costs					.,,,
Predesign Investigation	LS	1	\$28,390	\$28,390	
Winter Shutdown	LS	1	\$30,000	\$30,000	
Deed Restrictions	LS	1	\$20,000	\$20,000	
Air monitoring	LS	1	\$20,000	\$20,000	
Dust Control Plan	LS	1	\$5,000	\$5,000	
Stormwater Pollution Prevention Plan	LS	1	\$5,000	\$5,000	
Modification of Drinking Water Permit	LS	1	\$5,000	\$5,000	
Final Site Survey	LS	1	\$16,000	\$16,000	
				SUBTOTAL:	\$101,000
		TOTAL D	RECT CAPITOL CO	STS (soil cover):	\$4,015,800
		TOTAL DIRECT	CAPITOL COSTS (low-perm cover):	\$6,441,416
	TOTAL DIRECT	CAPITOL COSTS (fil	consolidation and	low-perm cover):	\$5,200,884
Indirect Capital Costs					
Soil Cover					
Contingency (30% Direct Capital Costs)		1	\$1,204,740	\$1,204,740	\$1,204,740
Engineering (15% of Direct Capitol Costs)		1	\$602,370	\$602,370	\$602,370
Legal Fees (5% Direct Capital Costs)		1	\$200,790	\$200,790	\$200,790
Low-permeability cover			A4 000 105	#1 000 105	#1 000 10
Contingency (30% Direct Capital Costs) Engineering (15% of Direct Capitol Costs)		1	\$1,932,425	\$1,932,425	\$1,932,425
Legal Fees (5% Direct Capital Costs)		1	\$966,212 \$322,071	\$966,212 \$322,071	\$966,212 \$322,071
Fill consolidation and low-permeability cover		I	9022,07 I	4022,U/1	φυζζ,071
Contingency (30% Direct Capital Costs)		1	\$1,560,265	\$1,560,265	\$1,560,265
Engineering (15% of Direct Capital Costs)		1	\$780,133	\$780,133	\$780,133
Legal Fees (5% Direct Capital Costs)		1	\$260,044	\$260,044	\$260,044
· · · · · · · · · · · · · · · · · · ·			RECT CAPITOL CO		\$2,007,900
			T CAPITOL COSTS		\$3,220,708
	TOTAL INDIRECT	CAPITOL COSTS (fil		• •	\$2,600,442
				,	
		1	OTAL CAPITOL CO	STS (soil cover):	\$6,024,000
		τοτα	L CAPITOL COSTS	low-perm cover):	\$9,662,000
	TOTAL	CAPITOL COSTS (fil	consolidation and	low-perm cover):	\$7,801,000

Table 11: Alternative #6 Cover with In Situ Ground water Treatment COST ESTIMATE

		ESTIMATED	ESTIMATED	ESTIMATED	
ITEM	UNIT	QUANTITY	UNIT COST	COST	
nnual Operation & Maintenance Costs					
Insurance (1% Direct Capital Cost of Soil Cover)	LS	1	\$60,240	\$60,240	
Reserve Fund (1% Direct Capital Cost of Soil Cover)	LS	1	\$60,240	\$60,240	
Insurance (1% Direct Capital Cost of Low-Perm Cover)	LS	1	\$96,620	\$96,620	
Reserve Fund (1% Direct Capital Cost of Low-Perm Cover)	LS	1	\$96,620	\$96,620	
Insurance (1% Direct Capital Cost of Fill Consolidation and Low-Perm Cover)	LS	1	\$78,010	\$78,010	
Reserve Fund (1% Direct Capital Cost of Fill Consol. and Low-Perm Cover)	LS	1	\$78.010	\$78,010	
Site Inspection	DAYS	4	\$800	\$3,200	
Site Maintenance	LS	1	\$12,000	\$12,000	
Off-site Leachate removal and disposal	Gal.	10000	\$1.25	\$12,500	
5 year Review (Annual Cost)	LS	10000	\$1.000	\$1,000	
Electrical Usage	LS	1	\$1,280	\$1,280	
Ground Water Monitoring	LS	1	\$70,000	\$70,000	
Ground Water Monitoring	LO	SUBTOTAL ANNUA	. ,	. ,	
	CUB		· · /		
		TOTAL ANNUAL O&I	· · /		
SUBIOIA		I (fill consolidation ar			
		PPROX. PRESENT W		(/	\$2,736,000
		X. PRESENT WORTH		· · · /	\$3,639,000
APPROX. F	PRESENT WORT	'H* OF ANNUAL O&M	(fill consolidation and	l low-perm cover):	\$3,177,000
				*30 yr, I=7%	
einstallation of Iron Wall Costs				-	
Zero Valent Iron (including delivery)	LS	1	\$683.000	\$683,000	
Installation (by slurry wall construction technique)	LS	1	\$1.454.000	\$1,454,000	
initialitation (by olding wall construction toorninguo)	20		wall reinstallation):	., ,	
		•	ENT WORTH* OF R		\$10 464 000
		APPROX. PRES	ENT WORTH" OF R		\$19,464,000
				15 yr, I=7%	
	APP	ROXIMATE TOTAL P	RESENT WORTH C	OST (soil cover):	\$28,224,000
	APPROXI	MATE TOTAL PRESE	NT WORTH COST (low-perm cover):	\$32,765,000
APPROXIMATE		NT WORTH COST (fil	•	• •	\$30,442,000

Table 12: Alternative #7 Wellhead Ground water Treatment COST ESTIMATE

ITEM	UNIT	ESTIMATED QUANTITY	ESTIMATED UNIT COST	ESTIMATED COST	
Direct Capital Costs					
1) Mobilization					
Contractor Bond (1%)	LS	1	\$1,890	\$1,890	
Equipment and Site Facilities	LS	1	\$5,000	\$5,000	
				SUBTOTAL:	\$6,890
2) Wellhead Air Stripping					
Air Stripper with carbon polishing	LS	1	\$49,000	\$49,000	
Air Stripper Enclosure	LS	1	\$85,000	\$85,000	
Miscellaneous Piping Modifications	LS	1	\$5,000	\$5,000	
Controls, Integration and Electrical Modifications	LS	1	\$20,000	\$20,000	
		-	+ , *	SUBTOTAL:	\$159,000
3) Other Costs					
Air monitoring	LS	1	\$20,000	\$20,000	
Modification of Drinking Water Permit	LS	1	\$5,000	\$5,000	
				SUBTOTAL:	\$25,000
			TOTAL DIRECT	CAPITAL COST:	\$190,890
Indirect Capital Costs					
Air Stripper					
Contingency (30% Direct Capital Costs)		1	\$57,267	\$57,267	\$57,267
Engineering (15% of Direct Capitol Costs)		1	\$28,634	\$28,634	\$28,634
Legal Fees (5% Direct Capital Costs)		1	\$9,545	\$9,545	\$9,545
			TOTAL INDIRECT	CAPITOL COSTS:	\$95,445
			TOTAL CAPITAL COST:		\$290,000
Annual Operation & Maintenance Costs					
Insurance (1% Direct Capital Cost of Soil Cover)	LS	1	\$2,900	\$2,900	
Reserve Fund (1% Direct Capital Cost of Soil Cover)	LS	1	\$2,900	\$2,900	
Site Inspection	DAYS	4	\$800	\$3,200	
Site Maintenance	LS	1	\$3,000	\$3,000	
5 year Review (Annual Cost)	LS	1	\$1,000	\$1,000	
Electrical Usage	LS	1	\$1,280	\$1,280	
		SUBT	OTAL ANNUAL O&M	: \$14,280	

APPROX. PRESENT WORTH* OF ANNUAL O&M (SOIL COVER): \$177,000 *30 yr, I=7%

APPROXIMATE TOTAL PRESENT WORTH COST: \$467,000

Table 13: Assumptions and Calculations

	DI	MENSIONS			
<u>Dimensions</u> (approx)	<u>Area (sf)</u> (approx)	<u>Area (ac.)</u> (approx)	<u>Average Depth</u> (approx)	<u>Volume (cf)</u> (approx)	<u>Volume (cy)</u> (approx)
900 x 450	405,000	9.3	4	1,620,000	60,000
750 x 300	225,000	5.2	4	900,000	33,333
	•			2,500,000 1,300,000	90,000 50,000
960' x 900'	864,000	19.8			
70' x 900'	63,000	1.4	4	252,000	10,000
	(approx) 900 x 450 750 x 300 22500 67500 960' x 900'	Dimensions (approx) Area (sf) (approx) 900 x 450 405,000 750 x 300 225,000 630,000 22500 cy 67500 cy 960' x 900' 864,000	(approx) (approx) (approx) 900 x 450 405,000 9.3 750 x 300 225,000 5.2 630,000 14 22500 cy 3375 67500 cy 10125 960' x 900' 864,000 19.8	Dimensions (approx) Area (sf) (approx) Area (ac.) (approx) Average Depth (approx) 900 x 450 405,000 9.3 4 750 x 300 225,000 5.2 4 630,000 14 2 22500 cy 67500 cy 33750 TON 101250 TON 2 960' x 900' 864,000 19.8	Dimensions (approx) Area (sf) (approx) Area (ac.) (approx) Average Depth (approx) Volume (cf) (approx) 900 x 450 405,000 9.3 4 1,620,000 750 x 300 225,000 5.2 4 900,000 630,000 14 2 2,500,000 1,300,000 22500 cy 67500 cy 33750 TON 101250 TON 2 1,300,000

		GLOBAL	COST ESTIMATES		
ltem	Cost	<u>Unit</u>			
Site Survey and Topography	\$1,000	acre			
Clearing and Grubbing	\$5,000	acre			
Excavation	\$15	CY			
Offsite Disposal - Hazardous	\$150	TON			
Offsite Disposal - Nonhazardous	\$75	TON			
Backfill Material	\$12	CY			
Topsoil	\$22	CY			
Seeding/Mulch	\$0.50	SF			
Mirafi 140N Indicator Layer	\$0.08	SF			
Silt Fence	\$1.00	LF			
Soil Management and Staging	\$50,000	LS			
40 mil LLDPE (Impermeable layer)	\$0.75	SF			
Tri-Planar Geonet	\$1.40	SF			
Barrier Protection Material	\$12	CY			
Soil Bedding Layer	\$22	CY			
Crushed Stone	\$6.00	CY			
Leachate Disposal and Treatment	\$1.25	Gal.			

ASSUMPTIONS

1. Site is approximately 40% heavily vegetated requiring clearing and grubbing.

2. Waste material to be removed averages 4-foot deep over both cells.

3. Wastes are generally covered by 1-foot of clean material.

4. A weight to volume ratio of 1.5 has been applied to all excavated material disposed of off-site.

5. Excavated waste will be predominantly municipal in nature and non-hazardous; assume only 25% of all waste excavated disposed of as haz. material.

6. Assume installed topsoil depth to be 6-inches

7. Assume depth to GW at uniformly worst case: 3-feet.

8. No GW monitoring wells will be installed; existing wells assumed to provide adequate monitoring points.

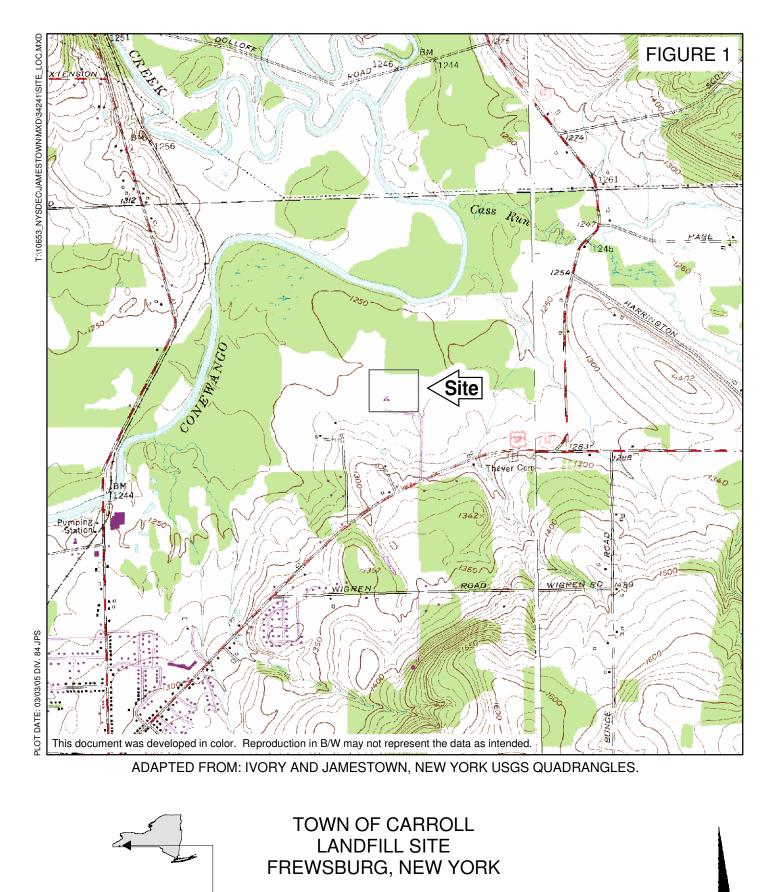
9. Assume 250 LF of discharge piping will be required between Air Stripping equipment and the point of discharge.

10. Final Grade for Alt. 2 is assumed to generally be that of the surrounding swale elevations. An allowance of 15,000 cy of clean fill is assumed to reach final grade.

A site inspection will be performed during quarterly groundwater monitoring site visits.
 "Site Maintenance" for Alt. 3A and 4 includes an allowance for pumping and disposal of holding tank of leachate collected from shallow soils.
 Leachate collected in holding tank (Alt. 3A and 4) will be minimal following installation of cover. An allowance of 10,000 gal/ yr has been assumed.

CALCULATED ESTIMATES

Confirmatory Samp <u>Alternative</u>	ling Volume Removed (cf)	No. of Samples	Cost of Sampling
Alt 2	2,500,000	500	\$150,000
Assume 1 sample / 5000 cf excava Analysis to be VOC and S \$300 per sample.			


Table 13: Assumptions and Calculations

			=	lations		
CALCULATED ESTIMATES (continued)						
Downstaning Dad						
Dewatering Pad F&I Components	Cost	Unit	Area of pad (sf)	Extended Total		
<u>. a componente</u>	0000	<u>onn</u>	<u>,</u>	<u>Extended Petal</u>		
40 mil LLDPE	\$0.75	sf				
Tri-Planar Geonet	\$1.40	sf				
12" Crushed Stone	\$0.65	cf				
Mirafi Layer	\$0.15 \$2.05	sf	00500	\$66.375.00		
Subtotal: 6-Inch Pump	\$2.95 \$1,500.00	sf ea	22500	\$1,500.00		
Maintenance Contingency (25%):	φ1,300.00	ea		<u>\$16,968.75</u>		
Maintenance Contingency (2576).				<u>\u0300.75</u>		
Pad Total:				\$85,000		
Groundwater Monitoring				SPDES Discharge Mo	nitoring	
ssume one sample analyzed for VO	C/SVOC/Inorg.			0	U U	
. Sampling Events per year:	4			12		
. Wells Sampled per event:	18				Assume outfall only sa	ampled
. Samples per well	1			1		
nual No. Samples Taken:	72	annually		12 p	per event	
bor Hours per sampling event:	10	per event		0 -	per event	
otal Sampling hours per year:		annually			annually	
o. Analite types per sample ost per Analysis	3 \$300			3 \$300		
abor Rate:		per hour			ber hour	
boi nate.	φου			<u> </u>		
nnual Analysis Cost: nnual Labor Cost:	\$64,800 \$5,120			\$10,800 a \$7,680 a		
otal Annual GW Monitoring Cost:	\$70,000	(rounded)	Tot. Annual SPDES cost:	\$18,000 (rounded)	
Site Fill, Restoration and Low Perm Layers						
Alternative	Backfill (cy)	Topsoil (cy)	Seeding/mulch (sf)	Backfill Soil Mat.(cy)	Backfill Soil Mat.(cy)	Soil Bedding (c
	D = Varies	D = 0.5 ft		D = 18in	D = 6in	D = 0.5 ft
Alt. 2	15,000	12,000	0			
Low permeability cover (both cells)	10,000	16,000	864,000	48,000	16,000	16,000
	Tri-Planar Geonet=	864,000		E (Impermeable layer)=	864,000	
ow permeability cover (consolidation)	17,000	16,000	864,000			4,000
			864,000	E (Impermeable layer)= E (Impermeable layer)=	864,000 225,000	4,000
Perimeter Drainage Stone	17,000 Tri-Planar Geonet=	16,000 225,000	864,000 40 mil LLDPE			4,000
Perimeter Drainage Stone ssume stone "wedge" at edge of cover	17,000 Tri-Planar Geonet= r. 18-inches deep at edge	16,000 225,000 of cover, 3-foot wide	864,000 40 mil LLDPI			4,000
ssume stone "wedge" at edge of cover (1.5' x 3' x 1') / 2 = CF stone per LF of	17,000 Tri-Planar Geonet= r. 18-inches deep at edge perimeter length = 2.25 C	16,000 225,000 of cover, 3-foot wide F	864,000 40 mil LLDP! e to end of stone.	E (Impermeable layer)=	225,000	
Perimeter Drainage Stone ssume stone "wedge" at edge of cover 1.5' x 3' x 1') / 2 = CF stone per LF of 60LF + 900LF)*2 = 3,800LF (approx)	17,000 Tri-Planar Geonet= r. 18-inches deep at edge perimeter length = 2.25 C x 2.25 CF/LF =	16,000 225,000 of cover, 3-foot wide F 860	864,000 40 mil LLDP	E (Impermeable layer)=	225,000	Alt 3A/B
Perimeter Drainage Stone isume stone "wedge" at edge of cover 1.5' x 3' x 1') / 2 = CF stone per LF of 60LF + 900LF)*2 = 3,800LF (approx)	17,000 Tri-Planar Geonet= r. 18-inches deep at edge perimeter length = 2.25 C x 2.25 CF/LF =	16,000 225,000 of cover, 3-foot wide F 860	864,000 40 mil LLDP! e to end of stone.	E (Impermeable layer)=	225,000	
Perimeter Drainage Stone ssume stone "wedge" at edge of cover 1.5' x 3' x 1') / 2 = CF stone per LF of 60LF + 900LF)*2 = 3,800LF (approx)	17,000 Tri-Planar Geonet= r. 18-inches deep at edge perimeter length = 2.25 C x 2.25 CF/LF =	16,000 225,000 of cover, 3-foot wide F 860	864,000 40 mil LLDP	E (Impermeable layer)=	225,000	Alt 3A/B
Perimeter Drainage Stone ssume stone "wedge" at edge of cover (1.5' x 3' x 1') / 2 = CF stone per LF of 960LF + 900LF)*2 = 3,800LF (approx) '50LF + 300LF)*2 = 2100 LF (approx)	17,000 Tri-Planar Geonet= r. 18-inches deep at edge perimeter length = 2.25 C x 2.25 CF/LF = x 2.25 CF/LF=	16,000 225,000 of cover, 3-foot wide F 860 470	864,000 40 mil LLDP	E (Impermeable layer)=	225,000	Alt 3A/B
Perimeter Drainage Stone ssume stone "wedge" at edge of cover (1.5' x 3' x 1') / 2 = CF stone per LF of 60LF + 900LF)*2 = 3,800LF (approx) 50LF + 300LF)*2 = 2100 LF (approx) Toe Drain ssume toe drain to be 5' deep by 3' wide	17,000 <u>Tri-Planar Geonet=</u> r. 18-inches deep at edge perimeter length = 2.25 C x 2.25 CF/LF = x 2.25 CF/LF= de with 6-inch CPP integr	16,000 225,000 of cover, 3-foot wide F 860 470 al.	864,000 40 mil LLDP e to end of stone. 00 CF (approx) 00 CF (approx)	<u>E (Impermeable layer)=</u> 320 (170 (225,000	Alt 3A/B
Perimeter Drainage Stone ssume stone "wedge" at edge of cover 1.5' x 3' x 1') / 2 = CF stone per LF of 60LF + 900LF)*2 = 3,800LF (approx) 50LF + 300LF)*2 = 2100 LF (approx) Toe Drain ssume toe drain to be 5' deep by 3' wid 5' x 3' x 1') = 15 CF stone per LF of per	17,000 <u>Tri-Planar Geonet=</u> r. 18-inches deep at edge perimeter length = 2.25 C x 2.25 CF/LF = x 2.25 CF/LF= de with 6-inch CPP integr erimeter length	16,000 225,000 of cover, 3-foot wide F 860 470 al. \$6 / CY x (15 CF / 27	864,000 40 mil LLDP(e to end of stone. 00 CF (approx) 00 CF (approx) 7)= \$3	<u>Ξ (Impermeable layer)=</u> 320 C 170 C	225,000	Alt 3A/B
Perimeter Drainage Stone sume stone "wedge" at edge of cover 1.5' x 3' x 1') / 2 = CF stone per LF of 60LF + 900LF)*2 = 3,800LF (approx) 50LF + 300LF)*2 = 2100 LF (approx) Toe Drain sume toe drain to be 5' deep by 3' wide 5' x 3' x 1') = 15 CF stone per LF of per	17,000 <u>Tri-Planar Geonet=</u> r. 18-inches deep at edge perimeter length = 2.25 C x 2.25 CF/LF = x 2.25 CF/LF= de with 6-inch CPP integr erimeter length	16,000 225,000 of cover, 3-foot wide F 860 470 al.	864,000 40 mil LLDP! e to end of stone. 00 CF (approx) 00 CF (approx) 7)= \$3 \$12	<u>Ξ (Impermeable layer)=</u> 320 C 170 C	225,000	Alt 3A/B
Perimeter Drainage Stone ssume stone "wedge" at edge of cover 1.5' x 3' x 1') / 2 = CF stone per LF of 60LF + 900LF)*2 = 3,800LF (approx) 50LF + 300LF)*2 = 2100 LF (approx) Toe Drain ssume toe drain to be 5' deep by 3' wid 5' x 3' x 1') = 15 CF stone per LF of per S-inch CPP	17,000 <u>Tri-Planar Geonet=</u> r. 18-inches deep at edge perimeter length = 2.25 C x 2.25 CF/LF = x 2.25 CF/LF= de with 6-inch CPP integr erimeter length	16,000 225,000 of cover, 3-foot wide F 860 470 al. \$6 / CY × (15 CF / 27 \$12 / LF	864,000 40 mil LLDP! e to end of stone. 00 CF (approx) 00 CF (approx) 10 CF (approx) 7)= \$3 \$12 \$15	<u>E (Impermeable layer)=</u> 320 (170 (225,000	Alt 3A/B
Perimeter Drainage Stone ssume stone "wedge" at edge of cover 1.5' x 3' x 1') / 2 = CF stone per LF of 60LF + 900LF)*2 = 3,800LF (approx). 50LF + 300LF)*2 = 2100 LF (approx). Toe Drain ssume toe drain to be 5' deep by 3' wid 5' x 3' x 1') = 15 CF stone per LF of per S-inch CPP Power Usage	17,000 <u>Tri-Planar Geonet=</u> r. 18-inches deep at edge perimeter length = 2.25 C x 2.25 CF/LF = x 2.25 CF/LF= de with 6-inch CPP integr erimeter length	16,000 225,000 of cover, 3-foot wide F 860 470 al. \$6 / CY × (15 CF / 27 \$12 / LF	864,000 40 mil LLDP! e to end of stone. 00 CF (approx) 00 CF (approx) 7)= \$3 \$12	<u>E (Impermeable layer)=</u> 320 (170 (225,000	Alt 3A/B
Perimeter Drainage Stone sume stone "wedge" at edge of cover 1.5' x 3' x 1') / 2 = CF stone per LF of S0LF + 900LF)*2 = 3,800LF (approx) 50LF + 300LF)*2 = 2100 LF (approx) Toe Drain sume toe drain to be 5' deep by 3' wid 5' x 3' x 1') = 15 CF stone per LF of per- inch CPP Power Usage 2/4 (2 HP) GW Extraction Pump	17,000 <u>Tri-Planar Geonet=</u> r. 18-inches deep at edge perimeter length = 2.25 C x 2.25 CF/LF = x 2.25 CF/LF= de with 6-inch CPP integr erimeter length (Assume 80% efficiency <u>Effective HP</u> 1.6	16,000 225,000 of cover, 3-foot wide F 866 470 al. \$6 / CY x (15 CF / 27 \$12 / LF to pumps/blowers; A <u>kW equivalent</u> 1.1936	864,000 40 mil LLDP(a to end of stone. 00 CF (approx) 00 CF (approx) 7)= \$3 <u>\$12</u> \$15 ssume cost / kWh = \$0.065; <u>Operating Hours / YR</u> 8760	<u>E (Impermeable layer)=</u> 320 (170 C / LF <u>Annual KWH</u> 10456	225,000 CY (approx) CY (approx) <u>Annual Cost</u> \$680	Alt 3A/B Alt 3C (rounded) \$700
Perimeter Drainage Stone sume stone "wedge" at edge of cover 1.5' x 3' x 1') / 2 = CF stone per LF of 60LF + 900LF)*2 = 3,800LF (approx) 50LF + 300LF)*2 = 2100 LF (approx) Toe Drain sume toe drain to be 5' deep by 3' wid 5' x 3' x 1') = 15 CF stone per LF of per Former Usage 2/4 (2 HP) GW Extraction Pump 2/4 (1 HP) Blower	17,000 <u>Tri-Planar Geonet=</u> r. 18-inches deep at edge perimeter length = 2.25 C x 2.25 CF/LF = x 2.25 CF/LF= de with 6-inch CPP integr erimeter length (Assume 80% efficiency <u>Effective HP</u> 1.6 0.8	16,000 225,000 of cover, 3-foot wide F 866 470 al. \$6 / CY × (15 CF / 27 \$12 / LF to pumps/blowers; A <u>kW equivalent</u> 1.1936 0.5968	864,000 40 mil LLDP(e to end of stone. 0 CF (approx) 0 CF (approx) 10 CF (approx) 7)= \$3 \$12 \$15 ssume cost / kWh = \$0.065; <u>Operating Hours / YR</u> 8760 8760	<u>E (Impermeable layer)=</u> 320 (170 (/ LF <u>Annual KWH</u> 10456 5228	225,000 CY (approx) CY (approx) Annual Cost \$680 \$340	Alt 3A/B Alt 3C (rounded) \$700 \$350
Perimeter Drainage Stone sume stone "wedge" at edge of cover 1.5' x 3' x 1') / 2 = CF stone per LF of 50LF + 900LF)*2 = 3,800LF (approx) 50LF + 300LF)*2 = 2100 LF (approx) Toe Drain sume toe drain to be 5' deep by 3' wid 5' x 3' x 1') = 15 CF stone per LF of per- inch CPP Power Usage 2/4 (2 HP) GW Extraction Pump 2/4 (1 HP) Blower	17,000 <u>Tri-Planar Geonet=</u> r. 18-inches deep at edge perimeter length = 2.25 C x 2.25 CF/LF = x 2.25 CF/LF= de with 6-inch CPP integr erimeter length (Assume 80% efficiency <u>Effective HP</u> 1.6	16,000 225,000 of cover, 3-foot wide F 866 470 al. \$6 / CY x (15 CF / 27 \$12 / LF to pumps/blowers; A <u>kW equivalent</u> 1.1936	864,000 40 mil LLDP(a to end of stone. 00 CF (approx) 00 CF (approx) 7)= \$3 <u>\$12</u> \$15 ssume cost / kWh = \$0.065; <u>Operating Hours / YR</u> 8760	<u>E (Impermeable layer)=</u> 320 (170 C / LF <u>Annual KWH</u> 10456	225,000 CY (approx) CY (approx) <u>Annual Cost</u> \$680	Alt 3A/B Alt 3C (rounded) \$700
Perimeter Drainage Stone sume stone "wedge" at edge of cover 1.5' x 3' x 1') / 2 = CF stone per LF of 60LF + 900LF)*2 = 3,800LF (approx) 50LF + 300LF)*2 = 2100 LF (approx) Toe Drain sume toe drain to be 5' deep by 3' wid 5' x 3' x 1') = 15 CF stone per LF of per Former Usage 2/4 (2 HP) GW Extraction Pump t 2/4 (1 HP) Blower 17 (7.5 HP) Blower	17,000 <u>Tri-Planar Geonet=</u> r. 18-inches deep at edge perimeter length = 2.25 C x 2.25 CF/LF = x 2.25 CF/LF= de with 6-inch CPP integr erimeter length (Assume 80% efficiency <u>Effective HP</u> 1.6 0.8	16,000 225,000 of cover, 3-foot wide F 866 470 al. \$6 / CY × (15 CF / 27 \$12 / LF to pumps/blowers; A <u>kW equivalent</u> 1.1936 0.5968	864,000 40 mil LLDP(e to end of stone. 0 CF (approx) 0 CF (approx) 10 CF (approx) 7)= \$3 \$12 \$15 ssume cost / kWh = \$0.065; <u>Operating Hours / YR</u> 8760 8760	<u>E (Impermeable layer)=</u> 320 (170 (/ LF <u>Annual KWH</u> 10456 5228	225,000 CY (approx) CY (approx) Annual Cost \$680 \$340	Alt 3A/B Alt 3C (rounded) \$700 \$350
Perimeter Drainage Stone ssume stone "wedge" at edge of cover 1.5' x 3' x 1') / 2 = CF stone per LF of 60LF + 900LF)*2 = 3,800LF (approx) 50LF + 300LF)*2 = 2100 LF (approx) Toe Drain ssume toe drain to be 5' deep by 3' wid 5' x 3' x 1') = 15 CF stone per LF of per S-inch CPP Power Usage t 2/4 (2 HP) GW Extraction Pump t 2/4 (1 HP) Blower	17,000 <u>Tri-Planar Geonet=</u> r. 18-inches deep at edge perimeter length = 2.25 C x 2.25 CF/LF = x 2.25 CF/LF= de with 6-inch CPP integr erimeter length (Assume 80% efficiency <u>Effective HP</u> 1.6 0.8	16,000 225,000 of cover, 3-foot wide F 866 470 al. \$6 / CY x (15 CF / 27 \$12 / LF to pumps/blowers; A <u>kW equivalent</u> 1.1936 0.5968 4.476	864,000 40 mil LLDP(e to end of stone. 0 CF (approx) 0 CF (approx) 10 CF (approx) 7)= \$3 \$12 \$15 ssume cost / kWh = \$0.065; <u>Operating Hours / YR</u> 8760 8760	<u>E (Impermeable layer)=</u> 320 (170 (/ LF <u>Annual KWH</u> 10456 5228	225,000 CY (approx) CY (approx) <u>Annual Cost</u> \$680 \$340 \$1,274	Alt 3A/B Alt 3C (rounded) \$700 \$350
Perimeter Drainage Stone sume stone "wedge" at edge of cover 1.5' x 3' x 1') / 2 = CF stone per LF of 60LF + 900LF)*2 = 3,800LF (approx) 50LF + 300LF)*2 = 2100 LF (approx) Toe Drain sume toe drain to be 5' deep by 3' wid 5' x 3' x 1') = 15 CF stone per LF of per Former Usage 2/4 (2 HP) GW Extraction Pump t 2/4 (1 HP) Blower 17 (7.5 HP) Blower	17,000 <u>Tri-Planar Geonet=</u> r. 18-inches deep at edge perimeter length = 2.25 C x 2.25 CF/LF = x 2.25 CF/LF= de with 6-inch CPP integr erimeter length (Assume 80% efficiency <u>Effective HP</u> 1.6 0.8 6	16,000 225,000 of cover, 3-foot wide F 866 470 al. \$6 / CY × (15 CF / 27 \$12 / LF to pumps/blowers; A <u>kW equivalent</u> 1.1936 0.5968	864,000 40 mil LLDP(40 mil	<u>E</u> (Impermeable layer)= 320 (170 C / LF	225,000 CY (approx) CY (approx) Annual Cost \$680 \$340	Alt 3A/B Alt 3C (rounded) \$700 \$350
Perimeter Drainage Stone ssume stone "wedge" at edge of cover (1.5' x 3' x 1') / 2 = CF stone per LF of 60LF + 900LF)*2 = 3,800LF (approx) 50LF + 300LF)*2 = 2100 LF (approx) Toe Drain ssume toe drain to be 5' deep by 3' wid (5' x 3' x 1') = 15 CF stone per LF of per 6-inch CPP Power Usage tt 2/4 (2 HP) GW Extraction Pump tt 2/4 (1 HP) Blower tt 7 (7.5 HP) Blower Air Stripper	17,000 <u>Tri-Planar Geonet=</u> r. 18-inches deep at edge perimeter length = 2.25 C x 2.25 CF/LF = x 2.25 CF/LF= de with 6-inch CPP integr erimeter length (Assume 80% efficiency <u>Effective HP</u> 1.6 0.8 6 <u>Pump Rate</u>	16,000 225,000 of cover, 3-foot wide F 86/CY × (15 CF / 27 \$12 / LF al. \$6 / CY × (15 CF / 27 \$12 / LF to pumps/blowers; A <u>kW equivalent</u> 1.1936 0.5968 4.476 <u>Cost</u>	864,000 40 mil LLDP(2 to end of stone. 0 CF (approx) 0 CF (approx) 0 CF (approx) 7)= \$3 \$12 \$15 ssume cost / kWh = \$0.065; <u>Operating Hours / YR</u> 8760 8760 4380 <u>Discharge</u>	<u>E</u> (Impermeable layer)= 320 (170 C / LF	225,000 CY (approx) CY (approx) <u>Annual Cost</u> \$680 \$340 \$1,274	Alt 3A/B Alt 3C (rounded) \$700 \$350

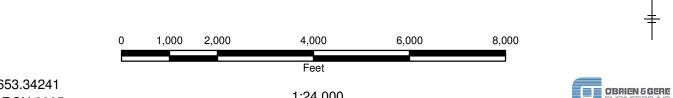
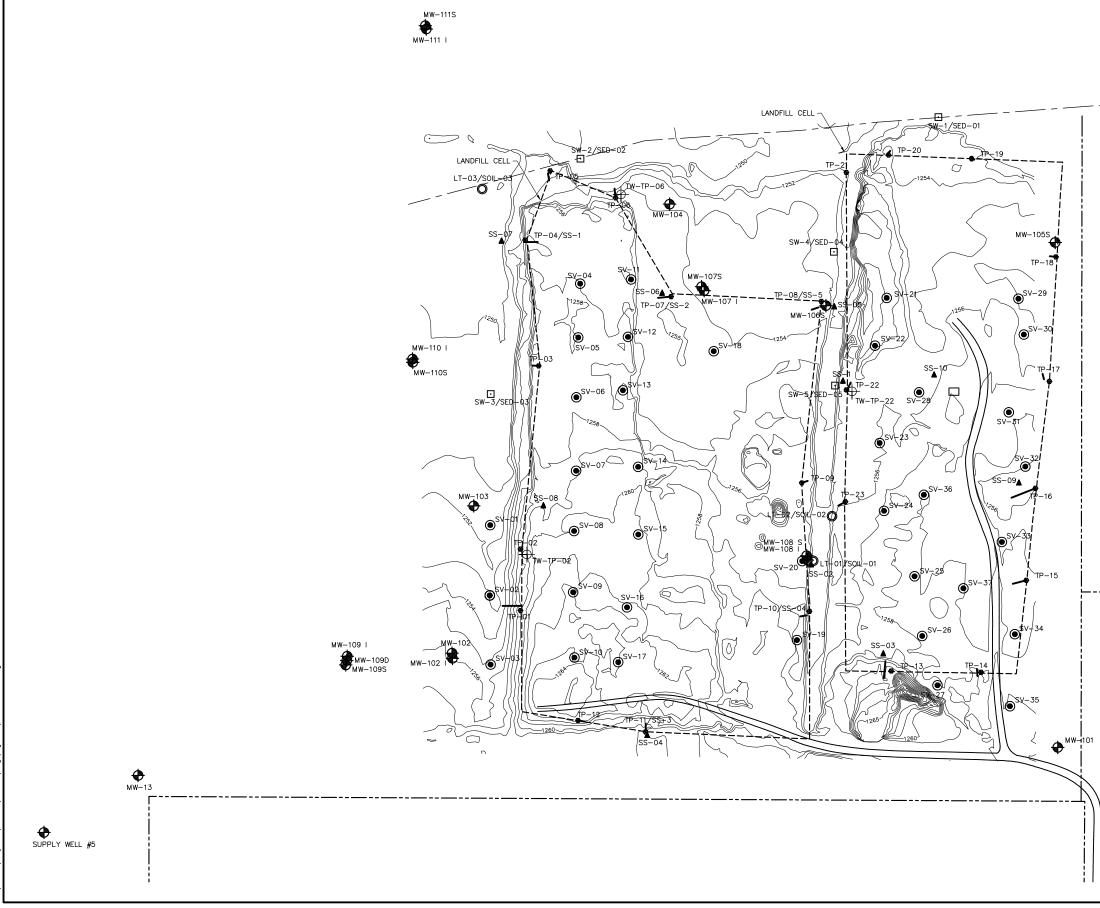
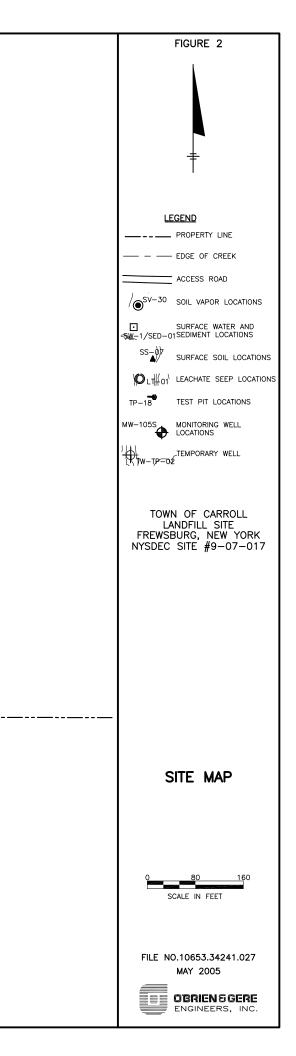

Vendor quote does not indicate a need for pretreatment based on an initial screening of groundwater constituents. Each alternative includes cost of the basic system with controls, alarms and enclosure. Alt. 7 includes the cost of a discharge pump to match water system pressures.

Table 13: Assumptions and Calculations

General In Situ treatment assumptions						
In Situ treatment "zone" has been assumed to extend the full depth of the aquifer (to approx. 75-ft below grade); Assumed 500-ft wide. A predesign study will be required for any in situ treatment technology to further assess plume extents and chemistry.						
Predesign Ground Water Study						
Installation of monitoring wells (2-in OD)	<u>No. wells</u> 10 Samples per well	<u>Depth</u> 75 Analysis Cost/samp	<u>Cost / VLF</u> \$25 Labor hours	<u>Cost per well</u> \$1,875 Labor Rate	<u>Total cost</u> \$18,750	
Sampling/Analysis for VOCs Bench-scale microbiological assay	3	\$300 addnl cost for biobarrier	8	\$80	\$9,640	
<u>Total Predesign Cost</u> Alt 6 (Iron Wall). Alt 5 (biobarrier).					\$28,390 \$32,390	
In Situ Bio Barrier Assumptions						
7 injection wells (on 25-foot centers) D Assume one round of injections per mont Sampling: assume 7 GW samples for VO Assumed that bench scale treatability res	h for a period of 15 yea Cs collected monthly. (7 * \$300 per analysis = \$	2,100)	tions/constituents.		


10653.34241 **MARCH 2005**


QUADRANGLE LOCATION

1:24,000

Appendix A Estimated Remedial Timeframes for Ground Water Town of Carroll Landfill Site Feasibility Study

A two-dimensional ground water flow model (WinTran by Environmental Simulations, Inc.) was used to evaluate ground water travel times based on estimated aquifer parameters obtained during the Remedial Investigation. The flow modeling was restricted to the intermediate/deep aquifer. The shallow water-bearing formation was not modeled due to the low hydraulic conductivity and resulting slow ground water velocity within this formation (~2.5 ft/year) and limited impacts at the landfill.

The travel times for an *in-situ* treatment wall remedial scenario (Alternatives 5 and 6), a ground water extraction remedial scenario (Alternatives 2 and 4), and a waste consolidation and capping remedial scenario were evaluated using the ground water flow model. The locations of the different treatment components for these remedies are shown on Figure A1. A key assumption in this evaluation is that the source of ground water contaminants has been effectively controlled such that continued contaminant loading to ground water does not occur. Also, this evaluation estimates remedial timeframes based on March 2005 ground water flow conditions and pumping from the Frewsburg Water District Supply Well # 5. If the supply well is shutdown or pumping rates significantly altered, ground water flow directions and velocities may change the remedial timeframes presented herein.

Aquifer parameter inputs to the ground water flow model for the intermediate/deep aquifer were as follows:

•	hydraulic conductivity	9.7 feet per day (based on site-specific hydraulic conductivity testing and testing within the flow model)
٠	aquifer thickness	60 feet (based on site-specific monitoring well installations)
•	hydraulic gradient	0.002 feet per foot (based on ground water elevations across the southern portion of the western landfill cell during March 2005)
•	aquifer porosity	0.25 (estimate based on mixed sand and gravel (Fetter, 1980))

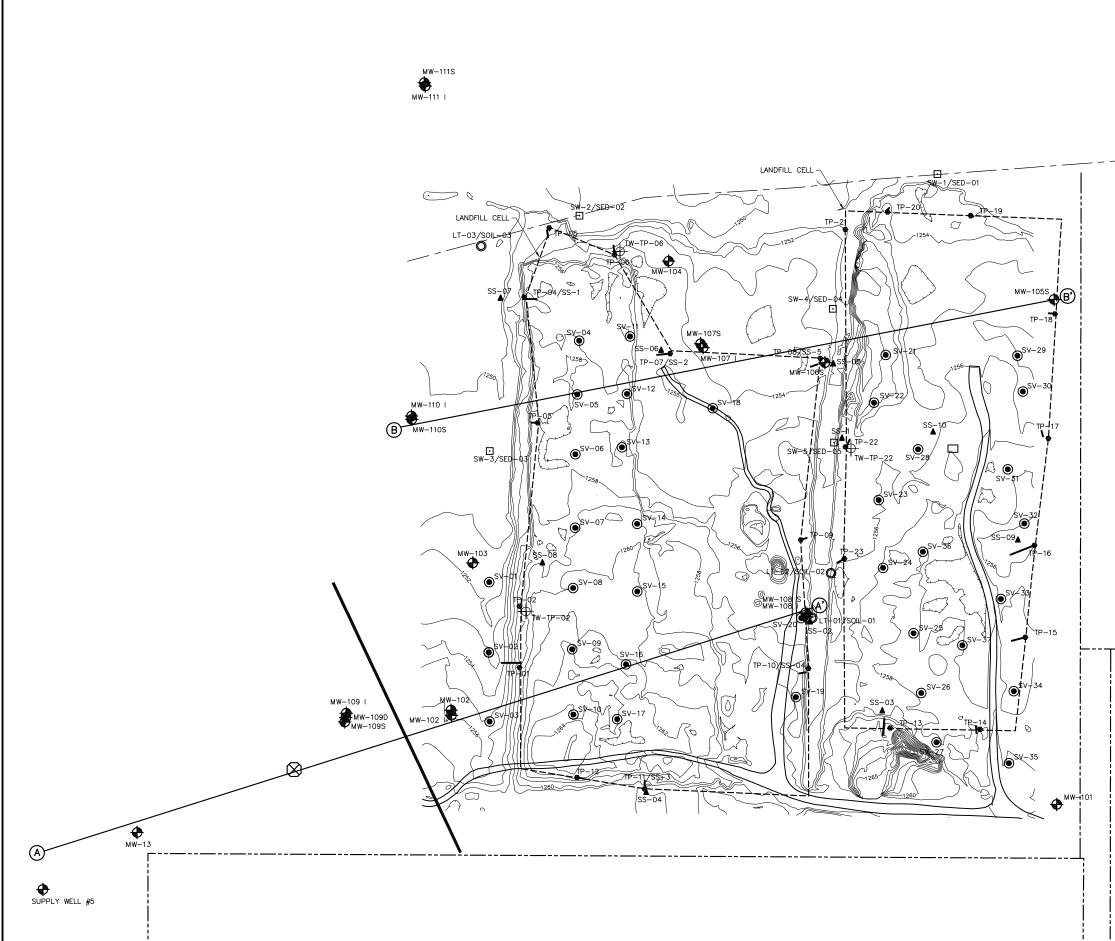
The travel time results from the model are representative of advective ground water flow. The ground water modeling provided the following travel times for the two remedial scenarios:

	Estimated Travel Time of Ground Water (Years)		
Remedial Scenario	Upgradient of Remedy	Downgradient of Remedy	
In-situ treatment wall (Alt. 5 & 6)	25	25	
Ground water extraction (Alt. 2 & 4)	25	20	
Consolidation/Capping		45	

Note: The ground water extraction scenario included one extraction well pumping at a rate of 10 gallons per minute

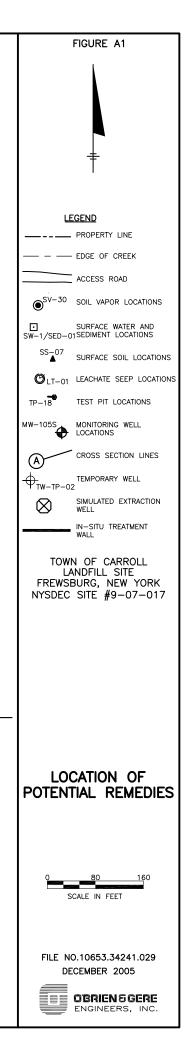
To better represent contaminant travel time, a retardation factor should be applied. For the purposes of this evaluation, sorption was assumed to be the primary process influencing retardation of contaminant transport. The retardation factor is dependent on the amount of organic carbon present in an aquifer. In addition to the amount of organic carbon present in an aquifer, contaminant retardation is also dependent on the specific contaminant. Some organic contaminants sorb more readily than others depending on their chemical structure.

For the purposes of estimating contaminant travel time, vinyl chloride was selected as the contaminant of concern as it was detected at the highest concentration within site ground water, and also detected in the sentinel well (MW-13) near the Town of Carroll Supply Well #5. Retardation factors for vinyl chloride have been calculated to range from 1 to 1.6 depending on the fraction of organic carbon present in an aquifer (0.0001 to 0.1) and assuming a porosity and bulk soil density of 0.35 and 1.72, respectively


(Wiedemeier, 1999). If the retardation factor for vinyl chloride is estimated to be 1, then the travel time for vinyl chloride is equal to advective ground water flow and would equal the travel times provided in the table above. If the retardation factor of vinyl chloride is estimated to be 1.6, then the travel time of vinyl chloride is 1.6 times slower than the advective ground water flow and the values presented in the table above would be multiplied by 1.6. Using the retardation factor for vinyl chloride of 1.6, the following travel times are estimated:

	Estimated Travel Time of Vinyl Chloride (Years)			
Remedial Scenario	Upgradient of Remedy	Downgradient of Remedy		
In-situ treatment wall (Alt. 5 & 6)	40	40		
Ground water extraction (Alt. 2 & 4)	40	32		
Consolidation/Capping		72		

REFERENCES


Fetter, C.W., 1980. Applied Hydrogeology. Bell & Howell Company. ISBN 0-675-08126-2.

Wiedemeier, T.H., 1999. Natural Attenuation of Fuels and Chlorinated Solvents in the Subsurface. John Wiley & Sons, Inc. ISBN 0-471-19749-1.

71\Projects\10653\34241\dwg\Figures\34241-029.dwg

*c 14, 2005 - 2::

