ecology and environment engineering, inc. Global Environmental Specialists

BUFFALO CORPORATE CENTER 368 Pleasant View Drive Lancaster, New York 14086 Tel: (716) 684-8060, Fax: (716) 684-0844

February 9, 2015

Vivek Nattanmai New York State Department of Environmental Conservation 625 Broadway, 12th Floor Albany, New York, 12233-7013

Re: Monitoring Well Sampling Data Summary Report Carroll Landfill, Chautauqua County, New York Site No. 9-07-017 Work Assignment No. D007617

Dear Mr. Nattanmai:

Ecology and Environment Engineering, P.C. (EEEPC) is pleased to provide the New York State Department of Environmental Conservation (NYSDEC) with this Data Summary Report for Monitoring Well Sampling at Carroll Landfill (Site Number 9-07-017) in the Town of Frewsburg, Chautauqua County, New York conducted in September 2014.

If you have any questions or comments on this submittal, please contact me at 716-684-8060.

Sincerely,

James Tweevella

Jim Taravella, P.E. Project Manager

cc: Tom Heins, EEEPC

enclosures

Monitoring Well Sampling Data Summary Report Carroll Landfill Town of Carroll, Chautauqua County, New York Site No. 9-07-017

List of Tables

Table 1 - Monitoring Well Maintenance Needs, September 2014

- Table 2 Monitoring Well Specifications and Groundwater Elevations
- Table 3 Groundwater Sample Water Quality Measurements, September 2014
- Table 4 Summary of Positive Analytical Results for Groundwater Samples, September 2014

Table 5 – Historical Groundwater Sample Analytical Exceedance Summary

List of Figures

- Figure 1 Site Map
- Figure 2 Groundwater Elevation Contours of Shallow Monitoring Wells
- Figure 3 Groundwater Elevation Contours of Intermediate Monitoring Wells

Figure 4 – Groundwater Detections Exceeding Water Quality Standards

List of Appendices

Appendix A – Well Sampling Logs

Appendix B – Data Usability Summary Report

Appendix C – Laboratory Data Report (electronic submittal only)

1 Introduction

Groundwater sampling to monitor existing site groundwater conditions was conducted by Ecology and Environment Engineering, P.C. (EEEPC) on behalf of the New York State Department of Environmental Conservation (NYSDEC) at Carroll Landfill in Frewsburg, New York. The objective of this sampling was to measure the concentration of chemicals present in the groundwater prior to construction of a landfill cover.

1.1 Site Location and Description

The Carroll Town Landfill is a former municipal construction and demolition debris landfill and solid waste transfer station. The landfill is located at the end of an unnamed gravel road approximately 1,400 feet north of NYS Route 62 (also known as Ivory Road) just east of the village of Frewsburg, New York. The landfill occupies approximately 28 acres of a 305-acre lot, owned by the Town of Carroll. The landfill is in a rural area surrounded by inactive farmland, wooded areas, wetlands, and private homes. Conewango Creek, a Class C stream, lies to the north and west of the site and at its closest point is approximately 1,400 feet north of the landfill.

The site is located on a northwest-facing, gently sloping hillside and is composed of two roughly rectangular disposal areas, each surrounded by drainage ditches and swales. The two disposal

areas are each approximately 750 feet (north to south) by 300 feet (east to west). The ground surface of the easternmost cell is estimated to range 1 to 4 feet above the surrounding ditch on the east, north, and west. The topography of the western cell is more uneven, ranging from approximately 1 to10 feet above the surrounding ditch with several flat areas. A drainage area separates the two disposal areas and eventually drains to the northwest into a wetland area before reaching Conewango Creek. An area west of the site is reported to have been used as a borrow area for cover soil.

The Town of Carroll Public Works Garage and the Frewsburg Water District Department facility are located approximately 700 feet west of the site. The water district facility comprises a water supply well and pump station. The Public Works Garage and Water District facility are accessed via Wahlgren Road from NYS Route 62. The nearest residential properties are approximately 1,200 feet to the west and southwest, uphill from the site.

1.2 Site History

The Town of Carroll operated the site as a municipal solid waste landfill from the early 1960s to 1979. Records indicate that industrial wastes were disposed of in the landfill during the period of operation. In 1979, the landfill began operation as a waste transfer station and was limited to accepting only construction and demolition debris for disposal at the landfill (NYSDEC2009). The western landfill cell was closed in May 1980 but it is unclear when the eastern cell closed. The town reported that the site closed as a waste transfer station in 1986. In 1992, as part of the remedial investigation of the Vac Air Alloys site (Site Number 907016) in Frewsburg, it was alleged that industrial waste from Vac Air Alloys was disposed of at the landfill. Allegations included citizens' reports of having witnessed drums of waste labeled as "trichloroethene" being disposed at the landfill. Vac Air Alloys allegedly disposed of drums containing metal debris and metal turnings (NYSDEC 2009). In April 1992 NYSDEC inspected the site and found 55-gallon drums, partially buried. Subsequent sampling results indicated volatile organic compounds (VOCs) in leachate migrating from the site. This led to a listing on June 9, 1992 as a probable hazardous waste disposal site. A preliminary site assessment was completed in February 1997, which led to a Class 2 site listing in 1998 (NYSDEC 2009).

In accordance with the Record of Decision (NYSDEC 2009) for the Carroll Landfill site, contaminated groundwater will be extracted and treated for removal of contamination associated with the landfill, and an engineered soil cover will be constructed on the landfill.

2 Scope of Work

Groundwater at existing monitoring wells at the landfill was sampled by EEEPC in September 2014. Previous sampling had occurred in October 2004, March 2005, August 2008, August 2010, and November 2012 (EEEPC 2012).

In September 2014, groundwater samples were collected from 17 of 19 existing monitoring wells (see Figure 1). Two of the 19 wells could not be sampled due to previous damage to the wells. Because of the proximity of a drinking water supply well to the landfill, drinking water analytical methods were used for VOC and Target Analyte List (TAL) metals analysis. Analytical parameters and methods are listed below.

All monitoring well sampling was performed in accordance with the approved procedures in EEEPC's August 2010 Work Plan (EEEPC 2010). A summary of the work is provided below.

3 Sampling and Analysis

3.1 Groundwater Sampling Procedures and Analyses

A total of 17 of 19 existing groundwater monitoring wells were sampled between September 9 and September 11, 2014:

- Ten shallow wells (MW-102, MW-103, MW-104, MW-105S, MW-106S, MW-107S, MW-108S, MW-109S, MW-110S, and MW-111S);
- Five intermediate wells (MW-102I, MW-107I, MW-108I, MW-110I, and MW-111I); and
- Two deep wells (MW-109D and MW-13 [Sentinel Well]).

Two wells (MW-101 and MW109I) could not be sampled because prior damage of the well casings precluded sampling these wells. Other well maintenance needs that did not affect the ability to sample the wells were recorded at the time of sampling and are summarized in Table 1. Public supply well #5 was not sampled due to ongoing remedial construction activities.

All 17 groundwater monitoring well samples were analyzed by TestAmerica Laboratories of Amherst, New York, for the following parameters:

- VOCs in drinking water: analyzed by United States Environmental Protection Agency (EPA) Method 524.2 (gas chromatography and mass spectrometry [MS]);
- Target Analyte List metals: analyzed by EPA Methods 200.7 Rev 4.4 (inductively coupled plasma [ICP] Atomic Emission Spectroscopy) and 200.8 (ICP-MS); and
- Mercury by EPA Method 245.1 (cold vapor atomic absorption).

Prior to sampling, the static water level and depth of each well were measured (see Table 2). Each monitoring well was purged prior to sampling. The wells were purged with a centrifugal pump and low-flow controller at rates of approximately 0.9 to 2.0 liters per minute. Pumping continued until the well went dry or a minimum of three well volumes was purged and water quality parameters stabilized. During purging, water quality parameters including pH, temperature, conductivity, oxidation-reduction potential, and turbidity were measured using a Myron 6P multi-parameter water quality meter and LaMotte 2020 turbidity meter (see Table 3). Nine of the wells were purged dry in less than three well volumes and were sampled with a bailer within an hour of the completion of purging after sufficient recharge of the well occurred. The remaining eight wells were purged of three well volumes and water quality parameters stabilized during purging. Well sampling logs are provided in Appendix A.

3.2 Quality Assurance/Quality Control (QA/QC) Samples

QA/QC samples, including field duplicates, trip blanks, field blanks, and additional volume for matrix spike/ matrix spike duplicate (MS/MSD) analysis were collected for groundwater samples in accordance with the standard EEEPC Quality Assurance Project Plan (QAPP) for NYSDEC projects (EEEPC 2011). Based on quality control review of the data, appropriate data qualifiers were applied and are included with the analytical results summary (see Table 4).

Duplicate samples provide insight into the homogeneity of a sample matrix and establish a degree of confidence that the sample represents site conditions. A groundwater duplicate sample was collected from monitoring well MW-107I. A review of the duplicate sample results is provided in the Data Usability Summary Report (DUSR) provided in Appendix B. Where the relative percent difference between the original and duplicate sample results exceeded data review guidelines, "J" flags were added to indicate that the results are estimated. This was true only for lead and there were no significant impacts on data usability associated with the field duplicate sample results.

Trip blanks were collected to establish that the transport of sample vials to and from the field did not result in the contamination of the samples from external sources. Trip blanks consisted of laboratory vials containing deionized water for groundwater. One trip blank was transported to and from the field with each sample delivery (two total). Trip blank results are discussed in the DUSR in Appendix B. No analytes were detected in the trip blanks and no data qualification was necessary.

An equipment rinseate blank (FieldBlank-Sep14) was collected to identify possible sources of cross-contamination associated with the reuse of decontaminated equipment. The rinseate blank was collected in the field and therefore may also be used to assess ambient conditions that may potentially affect the sample quality. Several metals (calcium, magnesium, manganese, and lead) were detected at low levels in the field blank and the results for these metals that were detected at similar concentrations in groundwater samples were flagged "U" as not detected. This included lead in MW-103 and MW-108I as well as manganese in MW-13 (see the DUSR in Appendix B).

3.3 Data Review

All laboratory deliverables were reviewed in accordance with appropriate method and general reporting requirements from the NYSDEC Analytical Services Protocol (ASP). The data were qualified following guidelines in EPA Region 2's data validation standard operating procedures (EPA 2012a, 2012b, 2012c, 2014). The data review included an evaluation of the following:

- Holding times;
- Initial and continuing calibration;
- Reporting limits;
- Laboratory blanks;
- Matrix spike/matrix spike duplicate samples;
- Laboratory control samples;

- Field duplicates;
- Sample result verification; and
- Method-specific QC samples.

A DUSR was prepared for the entire sample delivery group by EEEPC's project chemist and was reviewed by EEEPC's project geologist (see Appendix B). Deviations from acceptable QC specifications are discussed in the DUSR. Original laboratory reports are provided in Appendix C (electronic submittal only). Qualifiers were added to the data to indicate potential concerns with data usability and these qualifiers were transferred to the data summary tables. There were no major concerns resulting in significant impacts on data usability. There were minor concerns resulting in qualification of sample results in addition to those related to field QC samples discussed in Section 3.2. Some VOC and metals positive results were qualified as estimated and flagged with a "J" based on laboratory QC results, including laboratory control sample, method blank, and MS/MSD analyses. Non-detect results associated with these issues were flagged "UJ" as non-detect with an estimated reporting limit. Reporting limits were elevated in two samples (twofold in MW-103-SEP14 and fivefold in MW-107S-SEP14) due to sample dilutions required to bring the concentrations of vinyl chloride into the calibrated range of the instrument.

3.4 Decontamination and Investigation-derived Waste

Pumps and equipment were decontaminated using a laboratory-grade detergent wash, potable water rinse, 5% nitric acid solution rinse, and DI water rinse before sampling at each location. Investigation-derived waste (IDW) generated during this investigation included decontamination wastes, groundwater from monitoring well purging, disposable polyethylene tubing and bailers, and spent personal protective equipment (nitrile gloves). Decontamination water and groundwater generated from monitoring well purging and sampling was field-screened for organic vapors with a photoionization detector and visually inspected to determine whether the water was potentially contaminated. No organic vapors or unusual odors/colors were detected and no obvious signs of significant contamination were observed, so these waste waters were discharged to the ground surface at the landfill. All personal protective equipment and disposable polyethylene tubing and bailers were disposed of as non-regulated solid waste by the Frewsburg Water Department at its facility.

4 Results

4.1 Groundwater Flow Direction

Groundwater elevation contour maps were created for the shallow and intermediate zones using water levels measured from 17 monitoring wells at the site between September 9 and 11, 2014 (see Table 2 and Figures 2 and 3). Water levels could not be measured in two damaged wells (MW-101 and MW-109I). Figures 2 and 3 represent groundwater flow conditions at the time of sampling when water supply well #5 was not pumping.

The direction of shallow groundwater flow is generally to the north toward Conewango Creek (see Figure 2). There is possibly some variation in the local direction and magnitude of the shallow groundwater gradient at the east and west sides of the site, which is likely due to

variation in the overburden material at the site. Shallow overburden material at the site consists of lacustrine sandy silt and silty clay to a depth of approximately 20 feet (NYSDEC 2009). Variation in silt and clay content and horizontal layering of overburden can cause localized variation in groundwater flow. However, because the groundwater elevation in well MW-101 could not be measured, the interpretation of the gradient in the southeast corner of the site is made with less certainty. Near the north end of the site, the groundwater flow direction appears to be towards the northwest.

The direction of groundwater flow in the intermediate zone is also generally to the north toward Conewango Creek (see Figure 3). Groundwater in this zone is expected to be flowing at a depth coincident with the glacial outwash sand and gravel unit in the area (NYSDEC 2009). Near the north end of the site, the groundwater flow direction appears to be to somewhat towards the northwest; however, a lack of data points at the north end of the site within the intermediate zone makes interpretation of the groundwater gradient less certain in this area.

Groundwater elevation contours were not drawn for deep groundwater because there are too few wells to depict the gradient. However, a comparison of the groundwater elevations at deep wells MW-109D (1256.40 feet) and MW-13 (1255.01 feet), indicates that there is at least a component of flow to the southwest in this zone, from MW-109D toward MW-13.

4.2 Analytical Results

Groundwater analytical results are summarized in Table 4. For ease of review, these tables include only analytes that were detected in at least one sample. Analytes that were not detected in any sample are included in the laboratory report in Appendix C. Analytical results for the groundwater samples were compared with NYSDEC Class GA groundwater standards and guidance values (NYSDEC 1998). Compounds exceeding NYSDEC criteria during at least one of the sampling rounds between October 2004 and September 2014 are presented on Table 5 and in Figure 4.

Consistent with previous sampling events, six of the nine wells that were purged dry during the sampling event exhibited elevated turbidity values (i.e., above 50 NTU) that may have resulted in higher total (unfiltered) metals concentrations than low-turbidity samples.

Twenty-one metals for which samples were analyzed were detected in at least one well. Iron concentrations exceeded screening criteria in a total of 11 monitoring wells, including 8 shallow wells (MW-104, MW-105S, MW-106S, MW-107S, MW-108S, MW-109S, MW-110S, and MW-111S),2 intermediate wells (MW-107I and MW-110I), and 1 deep well (MW-13). Manganese concentrations exceeded screening criteria in a total of 7 monitoring wells, including 6 shallow wells (MW-104, MW-106S, MW-107S, MW-108S, MW-109S, and MW-111S), and 1 intermediate well (MW-106S, MW-107S, MW-108S, MW-109S, and MW-111S), and 1 intermediate well (MW-110I). Iron and manganese concentrations exceeding screening criteria were also detected during previous sampling rounds (see Table 5 and Figure 4). Iron concentrations were found to exceed criteria in all wells during at least one previous sampling round, and manganese concentrations were found to exceed screening criteria during previous sampling rounds in 7 wells (see Table 5 and Figure 4).

Lead concentrations exceeding screening criteria were detected in one intermediate monitoring well (MW-111I). Lead concentrations exceeding screening criteria were also detected during previous sampling rounds in four wells (see Table 5 and Figure 4).

Barium was detected at a concentration above the screening level criteria in one shallow well (MW-108S). Barium concentrations exceeding screening criteria were also detected during previous sampling rounds in at least one well (see Table 5 and Figure 4).

Eight of the 58 VOCs analyzed were detected in at least one well. Only one VOC, vinyl chloride, was present at concentrations that exceeded the screening criteria in two wells (24 micrograms per liter [μ g/L] in MW-103 and 21 μ g/L in MW-107S). Vinyl chloride concentrations exceeding screening criteria were also detected during previous sampling investigations in at least one well (see Table 5 and Figure 4).

A decreasing trend in VOC concentrations is suggested in one shallow well (MW-102) when comparing current VOC concentrations with concentrations during the previous three sampling rounds (2008, 2010 and 2012). A similar decreasing trend is suggested in one intermediate well (MW-102I) when comparing current VOC concentrations with concentrations during all five previous sampling rounds. Over the previous three sampling rounds (2008, 2010, and 2012), the VOC concentration of vinyl chloride in MW-103 and MW-107 has varied (see Table 5 and Figure 4).

No other spatial patterns concerning VOC or metals concentrations were apparent.

5 References

Ecology and Environment Engineering, P.C. (EEEPC). 2010a. *Master Quality Assurance Project Plan for New York State Department of Environmental Conservation Projects*, Contract No. D007617. April 2011.

_____. 2010b. Groundwater Monitoring Well Sampling Procedure Work Plan Carroll Town Landfill, Chautauqua County, New York, Site No. 7-07-017. August 2010.

_____. 2012. Monitoring Well Sampling Data Summary Carroll Landfill, Town of Carroll, Chautauqua County, New York, Site No. 9-07-017. April 2011.

New York State Department of Environmental Conservation (NYSDEC). 1998. Division of Water Technical and Operational Guidance Series (1.1.1): Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations (with updates). Albany, New York: Division of Water.

_____. 2005. Analytical Services Protocol. July 2005.

_____. 2009. *Record of Decision, Carroll Town Landfill Site, Town of Carroll, Chautauqua County, New York, Site Number 9-07-017.* Albany, New York: Division of Environmental Remediation. March 2009.

_____. 2010. *DER-10, Technical Guidance for Site Investigation and Remediation.* Albany, New York: Division of Environmental Remediation. May 2010.

- O'Brien and Gere Engineers, Inc. 2006. *Remedial Investigation Report, Remedial Investigation/Feasibility Study Town of Carroll Landfill, Site #9-07-017, Frewsburg, New York.* January 2006.
- United States Environmental Protection Agency Region 2 (EPA). 2012a. *ICP-AES Data Validation*. Hazardous Waste Support Section, SOP No. HW-2a. Revision 15. December 2012.
 - _____. 2012b. *ICP-MS Data Validation*. Hazardous Waste Support Section, SOP No. HW-2b. Revision 15. December 2012.

_____. 2012c. *Mercury and Cyanide Data Validation*. Hazardous Waste Support Section, SOP No. HW-2c, Revision 15. December 2012.

_____. 2014. Validating Volatile Organic Compounds by Gas Chromatography/Mass Spectrometry. Hazardous Waste Support Section, SOP No. HW-24. Revision 4. September 2014.

TABLES

	Carron Lanc	unii, Frewsb	urg, New Tor	R .		
Well ID	Heaved/ Broken Pad	Bent Casing	Sediment Buildup In Well	Unable To Sample	Replaced Lock	Notes
MW-13						
MW-101	Yes	Yes	Unknown	Yes		
MW-102					Yes	
MW-102I			Yes			
MW-103			Yes			
MW-104			Yes			
MW-105S			Yes			
MW-106S						
MW-107I			Yes			
MW-107S			Yes			
MW-108I			Yes			
MW-108S						
MW-109D						
MW-109I	Yes	Yes	Unknown	Yes		
MW-109S			Yes			
MW-110I			Yes			
MW-110S			Yes			
MW-111I			Yes			The PVC casing is shattered in two
MW-111S			Yes			

Table 1 Monitoring Well Maintenance Needs, September 2014 Carroll Landfill, Frewsburg, New York

Key

-- Condition not observed

Items for all wells:

New weather tight locks, keyed alike, should be installed on all wells.

Outer well casings should be cleaned and painted.

Grading with soil should be done around well pads to minimize potential infiltration.

		Top of PVC		Well Depth	Well Depth	Well Depth						
Monitorina	Ground	Casing	Reported	Measured	Measured	Measured			Groun	d Water Fle	vation	
Well	Elevation	Elevation	Well Depth	2010	2012	2014	Screen Interval		Croan			
ID	(feet AMSL)	(feet AMSL)	(feet BTOC)	(feet BTOC)	(feet BTOC)	(feet BTOC)	(feet AMSL)	Oct-2004	Mar-2005	Aug-2010	Nov-2012	Sen-2014
Shallow	(1000)	(100017111101_)	(()	()	()	(1000 / 1110 _)	000 2004	11101 2000	Aug 2010		000 2014
MW-101	1259.1	1261.24	17.8	NM	NM	NM	1243.44 - 1253.44	1254.72	1257.26	NM	NM	NM
MW-102	1254.6	1256.58	32.0	32.2	NM	32.2	1224.56 - 1234.56	1245.82	1249.63	1254.78	NM	1256.16
MW-103	1250.8	1253.21	34.2	36.3	30.8	30.8	1219.01 - 1229.01	1246.93	1250.33	1253.11	1251.71	1252.17
MW-104	1252.4	1254.61	21.6	21.8	21.6	21.5	1233.01 - 1243.01	1249.15	1249.97	1247.46	1249.04	1249.03
MW-105S	1252.6	1254.97	20.0	19.9	19.8	19.3	1234.97 - 1244.97	1250.41	1251.17	1249.46	1249.53	1249.53
MW-106S	1252.7	1255.14	22.5	22.7	24.6	22.6	1232.64 - 1242.64	1249.54	1251.12	1249.48	1249.73	1249.90
MW-107S	1252.4	1254.56	22.4	22.6	22.5	22.5	1232.16 - 1242.16	1249.75	1249.05	1249.84	1249.58	1249.57
MW-108S	1255.1	1257.68	22.6	22.7	22.7	22.7	1235.08 - 1245.08	1251.28	1252.45	1252.30	1252.36	1253.17
MW-109S	1255.2	1257.52	22.9	23.1	23.0	23.1	1234.62 - 1244.62	1245.84	1249.80	1254.17	1253.17	1256.10
MW-110S	1249.7	1253.16	22.5	22.5	22.7	22.7	1230.66 - 1240.66	1247.85	1249.98	1248.02	1249.21	1247.42
MW-111S	1251.4	1253.66	21.9	19.8	18.9	18.1	1231.76 - 1241.76	1248.86	1249.53	1248.52	1249.06	1249.02
Intermediate							·					
MW-102I	1254.9	1257.47	41.1	43.8	45.5	45.5	1216.37 - 1226.37	1245.74	1249.56	1254.99	1253.64	1256.4
MW-107I	1252.5	1254.87	45.2	44.6	44.6	44.6	1209.67 - 1219.67	1249.17	1251.37	1249.76	1250.02	1249.22
MW-108I	1255.1	1257.59	47.2	47.3	47.3	47.3	1210.39 - 1220.39	1248.79	1251.31	1251.55	1252.23	1253.60
MW-109I	1254.9	1257.25	43.8	NM	NM	NM	1213.45 - 1223.45	1245.91	1249.56	1254.98	NM	NM
MW-110I	1249.8	1252.03	44.0	44.0	42.9	44.5	1208.03 - 1218.03	1246.59	1249.14	1248.09	1249.16	1248.25
MW-111I	1251.3	1253.71	48.1	46.3	43.0	43.0	1205.61 - 1215.61	1248.11	1250.31	1248.89	1248.96	1249.28
Deep												
MW-109D	1255.0	1257.31	71.1	73.2	73.6	73.2	1186.21 - 1196.21	1246.03	1249.56	1254.98	1253.61	1256.40
Other												
MW-13	1260.0	1262.50		71.0	70.9	70.8				1253.66	1252.18	1255.01
Test well #12	1260.0	1262.00		NM	NM	NM				1249.46	NM	1262.00

Table 2 Monitoring Well Specifications and Groundwater Elevations Carroll Landfill, Frewsburg, New York

Key:

AMSL - above mean sea level BTOC - below top of casing

NM - not measured

	Carroll Landf	ill, Frewsburg	, New York							
			Initial Water							
	Sample	Well Depth	Depth	рН	Temperature	ORP	Conductivity	Turbidity	PID Reading	
Sample ID	Date	(feet BTOC)	(feet BTOC)	(s.u.)	(°C)	(millivolts)	(µS/cm)	(NTU)	(ppm)	Comments
MW-102I	9/9/2014	45.49	1.09	7.69	11.9	110	406.3	4.98	0	
MW-102S	9/9/2014	32.19	0.42	7.61	11.2	125	456.6	0.50	0	
MW-103	9/11/2014	30.80	1.04	7.81	11.1	-101	445.2	0.33	0	
MW-104	9/11/2014	21.52	5.58	7.87	11.1	-140	336.2	75.7	0	Purged dry with pump, sampled
										with bailer after recharge.
MW-105S	9/10/2014	19.33	5.44	7.21	14.5	249	352.3	74.0	0	Purged dry with pump, sampled
										with bailer after recharge.
MW-106S	9/11/2014	22.61	5.24	8.17	15.6	90	353.9	17.8	0	Purged dry with pump, sampled
										with bailer after recharge.
MW-107I	9/10/2014	44.60	5.65	7.97	10.2	-117	314.4	8.55	0	Duplicate sample collected.
MW-107S	9/10/2014	22.50	4.99	7.78	10.5	-108	377.7	>1000	0	Purged dry with pump, sampled
										with bailer after recharge.
MW-108I	9/11/2014	47.33	3.99	7.80	11.1	-141	455.2	2.46	0	
MW-108S	9/11/2014	22.71	4.51	7.22	13.1	-136	1054.8	38.0	0	Purged dry with pump, sampled
										with bailer after recharge.
MW-109D	9/9/2014	73.19	0.91	7.80	10.1	96	391.8	3.59	0	MS/MSD
MW-109S	9/9/2014	23.07	1.42	7.81	10.8	105	388.2	78.3	0	Purged dry with pump, sampled
										with bailer after recharge.
MW-110I	9/10/2014	44.52	3.78	7.70	15.6	119	275.8	42.1	0	Purged dry with pump, sampled
										with bailer after recharge.
MW-110S	9/10/2014	22.69	5.74	7.91	15.9	184	319.9	>1000	0	Purged dry with pump, sampled
										with bailer after recharge.
MW-111I	9/10/2014	43.01	4.43	7.91	11.7	-122	369.5	2.35	0	
MW-111S	9/10/2014	18.05	4.64	7.67	16.2	154	478.5	>1000	0	Purged dry with pump, sampled
										with bailer after recharge.
MW-13	9/11/2014	70.78	7.49	7.82	10.9	119	352.8	5.74	0	
(Sentinel well)										

Table 3 Groundwater Sample Water Quality Measurements, September 2014

Key:

°C = degrees Celsius

BTOC = below top of casing

MS/MSD = matrix spike/matrix spike duplicate

 μ S/cm = microSiemens per centimeter

NM = not measured

NTU = nephelometric turbidity units

PID = photo-ionization detector

ppm = parts per million

s.u. = standard units

	Loc	ation ID:	MW-102	MW-102I	MW-103	MW-104	MW-105S
	Samp	le Name:	MW-102-SEP14	MW-102I-SEP14	MW-103-SEP14	MW-104-SEP14	MW-105S-SEP14
	Screen	Interval:	20 - 30 ft	28.6 - 38.6 ft	21.8 - 31.8 ft	9.4 - 19.4 ft	7.7 - 17.7 ft
		Date:	09/09/14	09/09/14	09/11/14	09/11/14	09/10/14
	Screening						
Analyte	Criteria ⁽¹⁾	Notes					
Metals by Method E200.7 Rev 4.4 (μg/L)							
ALUMINUM	NA		< 60 U	60 J	< 60 U	5000	7300
BARIUM	1000		71	77	250	260	250
BERYLLIUM	3	G	< 0.30 U	< 0.30 U	< 0.30 U	< 0.30 U	0.30 J
CADMIUM	5		< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U
CALCIUM	NA		63400	56700	62300	39700	42500
CHROMIUM, TOTAL	50		< 1.0 U	1.1 J	< 1.0 U	6.8	8.5
COBALT	NA		< 0.63 U	< 0.63 U	< 0.63 U	3.4 J	5.0
COPPER	200		1.6 J	< 1.6 U	< 1.6 U	6.2 J	8.9 J
IRON	300		< 19 U	77	200	11100	11400
MAGNESIUM	35000	G	14300	14100	14800	12300	12100
MANGANESE	300		42	65	280	320	300
NICKEL	100		< 1.3 U	< 1.3 U	< 1.3 U	8.3 J	12
POTASSIUM	NA		860	930	920	2800	3500
SELENIUM	10		< 8.7 U	< 8.7 U	< 8.7 U	< 8.7 U	< 8.7 U
SODIUM	20000		3000	3300	4300	15800	11700
VANADIUM	NA		< 1.5 U	< 1.5 U	< 1.5 U	7.2	12
ZINC	2000		< 1.5 U	< 1.5 U	< 1.5 U	< 23 U	33
Metals by Method E200.8 (µg/L)							
ANTIMONY	3		< 0.15 U	< 0.15 U	< 0.15 U	0.22 J	< 0.47 U
ARSENIC	25		< 0.078 U	0.20 J	1.7	55.4	7.7
LEAD	25		< 0.34 U	< 0.27 U	0.17 J	2.5	3.0
THALLIUM	0.5	G	< 0.012 U	< 0.011 U	< 0.0080 U	< 0.016 U	< 0.042 U
Volatile Organics by Method E524.2 (µg/L)							
ACETONE	50	G	< 0.54 U	< 0.54 U	< 1.1 U	1.8 J	< 0.54 U
BENZENE	1		< 0.13 U	< 0.13 U	< 0.26 U	< 0.13 U	< 0.13 U
CHLOROBENZENE	5		< 0.12 U	< 0.12 U	< 0.24 U	< 0.12 U	< 0.12 U
CIS-1,2-DICHLOROETHYLENE	5		3.2	< 0.12 U	< 0.24 U	0.63	< 0.12 U
DICHLOROFLUOROMETHANE	5		< 0.13 U	< 0.13 U	< 0.27 U	< 0.13 U	< 0.13 U
DIETHYL ETHER (ETHYL ETHER)	NA		< 0.12 U	< 0.12 U	< 0.23 U	0.73	< 0.12 U
TRICHLOROETHYLENE (TCE)	5		1.2	0.41 J	< 0.12 U	< 0.060 U	< 0.060 U
VINYL CHLORIDE	2		0.34 J	< 0.059 U	24	< 0.059 U	< 0.059 U

	Loc	ation ID:	MW-106S	MW-107I	MW-107I	MW-107S	MW-108I
	Sampl	le Name:	MW-106S-SEP14	MW-107I-SEP14	FD	MW-107S-SEP14	MW-108I-SEP14
	Screen	Interval:	10.1 - 20.1 ft	32.8 - 42.8 ft	32.8 - 42.8 ft	10.2 - 20.2 ft	34.7 - 44.7 ft
		Date:	09/11/14	09/10/14	09/10/14	09/10/14	09/11/14
	Screening		ĺ				
Analyte	Criteria ⁽¹⁾	Notes					
Metals by Method E200.7 Rev 4.4 (μg/L)							
ALUMINUM	NA		1300	480	480	31500	< 60 U
BARIUM	1000		460	220	210	510	230
BERYLLIUM	3	G	< 0.30 U	< 0.30 U	< 0.30 U	1.5 J	< 0.30 U
CADMIUM	5		< 0.50 U				
CALCIUM	NA		48400	39900	37600	78700	64500
CHROMIUM, TOTAL	50		2.8 J	1.4 J	1.1 J	41	< 1.0 U
COBALT	NA		0.87 J	< 0.63 U	< 0.63 U	31	< 0.63 U
COPPER	200		3.4 J	1.9 J	1.7 J	44	< 1.6 U
IRON	300		4200	700	710	59300	140
MAGNESIUM	35000	G	11100	10100	9400	32200	13300
MANGANESE	300		2300	200	190	1300	260
NICKEL	100		2.5 J	< 1.3 U	< 1.3 U	66	< 1.3 U
POTASSIUM	NA		1200	1100	1100	8400	1100
SELENIUM	10		9.5 J	< 8.7 U	< 8.7 U	< 8.7 U	< 8.7 U
SODIUM	20000		4700	7000	6600	6500	5000
VANADIUM	NA		2.4 J	< 1.5 U	< 1.5 U	50	< 1.5 U
ZINC	2000		< 8.3 U	3.2 J	2.7 J	150	< 1.9 U
Metals by Method E200.8 (μg/L)							
ANTIMONY	3		0.28 J	< 0.15 U	< 0.15 U	< 0.33 U	< 0.15 U
ARSENIC	25		6.0	19.1	19.4	10.5	5.1
LEAD	25		2.8	1.0	2.3	18.9	0.12 J
THALLIUM	0.5	G	< 0.0080 U	< 0.025 U	< 0.0094 U	0.15 J	< 0.011 U
Volatile Organics by Method E524.2 (µg/L)							
ACETONE	50	G	< 0.54 U	< 0.54 U	< 0.54 U	< 1.1 U	< 0.54 U
BENZENE	1		< 0.13 U	< 0.13 U	< 0.13 U	< 0.26 U	< 0.13 U
CHLOROBENZENE	5		< 0.12 U	< 0.12 U	< 0.12 U	< 0.24 U	< 0.12 U
CIS-1,2-DICHLOROETHYLENE	5		< 0.12 U	< 0.12 U	< 0.12 U	3.5	< 0.12 U
DICHLOROFLUOROMETHANE	5		< 0.13 U	< 0.13 U	< 0.13 U	< 0.27 U	< 0.13 U
DIETHYL ETHER (ETHYL ETHER)	NA		< 0.12 U	< 0.12 U	< 0.12 U	0.44 J	< 0.12 U
TRICHLOROETHYLENE (TCE)	5		< 0.060 U	< 0.060 U	< 0.060 U	< 0.12 U	< 0.060 U
VINYL CHLORIDE	2		< 0.059 U	< 0.059 U	< 0.059 U	21	< 0.059 U

	Loc	ation ID:	MW-108S	MW-109D	MW-109S	MW-110I	MW-110S
	Samp	le Name:	MW-108S-SEP14	MW-109D-SEP14	MW-109S-SEP14	MW-110I-SEP14	MW-110S-SEP14
	Screen	Interval:	10 - 20 ft	58.8 - 68.8 ft	10.6 - 20.6 ft	31.8 - 41.8 ft	9.1 - 19.1 ft
		Date:	09/11/14	09/09/14	09/09/14	09/10/14	09/10/14
	Screening						
Analyte	Criteria ⁽¹⁾	Notes					
Metals by Method E200.7 Rev 4.4 (μg/L)							
ALUMINUM	NA		3800	100 J	17200	2700	8400
BARIUM	1000		1700	130	300	160	290
BERYLLIUM	3	G	< 0.30 U	< 0.30 U	0.68 J	< 0.30 U	0.33 J
CADMIUM	5		< 0.50 U	< 0.50 U	0.50 J	< 0.50 U	< 0.50 U
CALCIUM	NA		140000	55200	70100	34400	39000
CHROMIUM, TOTAL	50		5.6	< 1.0 U	24	4.4	9.4
COBALT	NA		2.6 J	< 0.63 U	15	1.6 J	4.5
COPPER	200		5.8 J	< 1.6 U	17	7.1 J	6.5 J
IRON	300		23100	250	26000	4200	9900
MAGNESIUM	35000	G	31100	12800	19200	9400	12700
MANGANESE	300		740	100	5200	310	260
NICKEL	100		7.4 J	< 1.3 U	31	3.9 J	11
POTASSIUM	NA		4600	990	5300	1800	4100
SELENIUM	10		< 8.7 U	< 8.7 U	< 8.7 U	< 8.7 U	< 8.7 U
SODIUM	20000		12200	4100	3300	5200	5800
VANADIUM	NA		6.1	< 1.5 U	27	4.6 J	14
ZINC	2000		< 20 U	< 1.5 U	76	16	31
Metals by Method E200.8 (µg/L)							
ANTIMONY	3		0.30 J	0.20 J	0.37 J	< 0.62 U	< 0.28 U
ARSENIC	25		14.0	< 0.078 U	8.4	12.1	10.5
LEAD	25		3.7	< 0.22 U	7.1	2.9	3.0
THALLIUM	0.5	G	< 0.046 U	< 0.0098 U	< 0.18 U	< 0.024 U	< 0.062 U
Volatile Organics by Method E524.2 (µg/L)							
ACETONE	50	G	2.2 J	< 0.54 U	< 0.54 U	< 0.54 U	< 0.54 U
BENZENE	1		0.38 J	< 0.13 U	< 0.13 U	< 0.13 U	< 0.13 U
CHLOROBENZENE	5		0.40 J	< 0.12 U	< 0.12 U	< 0.12 U	< 0.12 U
CIS-1,2-DICHLOROETHYLENE	5		< 0.12 U	< 0.12 U	< 0.12 U	< 0.12 U	< 0.12 U
DICHLOROFLUOROMETHANE	5		0.85	< 0.13 U	< 0.13 U	< 0.13 U	< 0.13 U
DIETHYL ETHER (ETHYL ETHER)	NA		0.48 J	< 0.12 U	< 0.12 U	< 0.12 U	< 0.12 U
TRICHLOROETHYLENE (TCE)	5		< 0.060 U	< 0.060 U	< 0.060 U	< 0.060 U	< 0.060 U
VINYL CHLORIDE	2		0.32 J	< 0.059 U	< 0.059 U	< 0.059 U	< 0.059 U

	Loc	ation ID:	MW-111I	MW-111S	MW-13
	Samp	le Name:	MW-111I-SEP14	MW-111S-SEP14	MW-13-SEP14
	Screen	Interval:	35.7 - 45.7 ft	9.6 - 19.6 ft	35 - 75 ft
		Date:	09/10/14	09/10/14	09/11/14
	Screening				
Analyte	Criteria ⁽¹⁾	Notes			
Metals by Method E200.7 Rev 4.4 (μg/L)					
ALUMINUM	NA		70 J	22700	310
BARIUM	1000		280	430	73
BERYLLIUM	3	G	< 0.30 U	1.0 J	< 0.30 U
CADMIUM	5		< 0.50 U	< 0.50 U	< 0.50 U
CALCIUM	NA		41500	64500	48700
CHROMIUM, TOTAL	50		< 1.0 U	28	< 1.0 U
COBALT	NA		< 0.63 U	17	< 0.63 U
COPPER	200		< 1.6 U	22	1.8 J
IRON	300		300	35800	310
MAGNESIUM	35000	G	13100	34100	10200
MANGANESE	300		210	670	< 7.5 U
NICKEL	100		< 1.3 U	40	< 1.3 U
POTASSIUM	NA		1500	7900	940
SELENIUM	10		< 8.7 U	< 8.7 U	< 8.7 U
SODIUM	20000		10100	10800	6800
VANADIUM	NA		< 1.5 U	35	< 1.5 U
ZINC	2000		2.2 J	92	< 3.3 U
Metals by Method E200.8 (μg/L)		_			
ANTIMONY	3		0.34 J	< 0.23 U	< 0.15 U
ARSENIC	25		18.0	11.0	0.16 J
LEAD	25		40.7	10.4	0.47 J
THALLIUM	0.5	G	< 0.020 U	0.15 J	< 0.0080 U
Volatile Organics by Method E524.2 (µg/L)					
ACETONE	50	G	< 0.54 U	< 0.54 U	< 0.54 U
BENZENE	1		< 0.13 U	< 0.13 U	< 0.13 U
CHLOROBENZENE	5		< 0.12 U	< 0.12 U	< 0.12 U
CIS-1,2-DICHLOROETHYLENE	5		< 0.12 U	< 0.12 U	< 0.12 U
DICHLOROFLUOROMETHANE	5		< 0.13 U	< 0.13 U	< 0.13 U
DIETHYL ETHER (ETHYL ETHER)	NA		< 0.12 U	< 0.12 U	< 0.12 U
TRICHLOROETHYLENE (TCE)	5		< 0.060 U	< 0.060 U	< 0.060 U
VINYL CHLORIDE	2		< 0.059 U	< 0.059 U	< 0.059 U

02:10C3074.0016.04-B4162 Table 4 - CL Analytical Data (2014).xlsx-1/8/2015

Key:

Qualifiers

J = Estimated value

U = Not detected (method detection limit shown)

UJ = Not detected/estimated detection limit

Notes

G = Guidance value (no standard available)

NA = Not regulated/no available criteria

Other

 $\mu g/L = Micrograms per liter$

"-FD" denotes field duplicate sample (MW-107I-SEP14-FD)

 New York State Department of Environmental Conservation, Technical and Operational Guidance Series Memorandum #1.1.1: Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations, 1998 (with updates), Class GA Groundwater Standards and Guidance Values.

2. Shaded cells exceed the screening value.

3. Bold values denote positive hits.

Carroll Landfill, Frewsburg, New York

	Well ID:	ID: MW-102					MW-103						
	Date:	10/01/04	03/08/05	08/28/08	08/17/10	11/06/12	09/09/14	10/12/04	03/09/05	08/18/10	08/18/10	11/08/12	09/11/14
	Screening												
Analyte	Criteria (1)												
Metals (µg/L)													
ARSENIC	25				0.2 J	0.4 J	0.078 U				2.4	2.7	1.7
BARIUM	1000				94	82	71				237	240	250
BERYLLIUM	3				0.3 J	2 U	0.30 U				0.2 U	2 U	0.30 U
CHROMIUM, TOTAL	50				0.9 U	4 U	1.0 U				0.9 U	1.1 J	1.0 U
COPPER	200				1.5 U	1.9 J	1.6 J				1.5 U	10 U	1.6 U
IRON	300	32.7	6,220	NA	23 UJ	38 J	19 U	1,030	NS	NA	273 UJ	220	200
LEAD	25				0.1 UJ	1.2 J	0.34 U				0.7 UJ	1 U	0.17 J
MAGNESIUM	35000				19000	13000	14300				13000	16000	14800
MANGANESE	300				152 J	35	42				254	290	280
NICKEL	100				1.3 U	10 U	1.3 U				1.4 J	10 U	1.3 U
SODIUM	20000				3700 J	2500	3000				3900	4600 J	4300
THALLIUM	0.5				0.01 J	0.018 J	0.012 U				0.008 U	0.2 U	0.0080 U
VOCs (µg/L)													
1,2-DICHLOROETHANE	0.6				0.14 U	0.5 U	0.14 U				0.14 UJ	0.5 U	0.28 U
CHLOROETHANE	5	1 J	1 J	11	2	0.5 U	0.070 U				0.07 UJ	0.5 U	0.14 U
CIS-1,2-DICHLOROETHYLENE	5	2 J	1 J	130 D	24	0.56	3.2				0.12 UJ	0.5 U	0.24 U
DICHLORODIFLUOROMETHANE	5				0.2 J	0.5 U	0.070 U				0.21 J	0.5 U	0.14 U
TRICHLOROETHYLENE (TCE)	5	10 U	10 U	9	6.4	0.56	1.2				0.06 UJ	0.5 U	0.12 U
VINYL CHLORIDE	2	2 J	1 J	30 D	3.5	0.5 U	0.34 J	10 U	10 U	2	4.9 J	35 J	24

Key:

D = Compound identified at secondary dilution factor.

J = Estimated value.

NA = Not applicable.

NS = Not sampled.

U = Not detected (lab reporting limit shown).

UJ = Not detected/estimated reporting limit.

 $\mu g/L = Micrograms per liter.$

VOCs = Volatile organic compounds.

Note:

 New York State Department of Environmental Conservation, Technical and Operational Guidance Series Memorandum #1.1.1: Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations, 1998 (with updates), Class GA Groundwater Standards and Guidance Values.

2. Bold values denote positive hits.

3. Shaded cells exceed the screening value.

Carroll Landfill, Frewsburg, New York

	Well ID:			MW	-104					MW-	105S		
	Date:	10/14/04	03/10/05	08/28/08	08/18/10	11/08/12	09/11/14	10/14/04	03/10/05	08/28/08	08/19/10	11/08/12	09/10/14
	Screening												
Analyte	Criteria ⁽¹⁾												
Metals (µg/L)													
ARSENIC	25	53.2	24.1	NA	31	93	55.4	29.2	22.1	NA	9.6	108	7.7
BARIUM	1000				245	430	260				349	2200	250
BERYLLIUM	3				0.2 J	0.72 J	0.30 U				0.3 J	9.7	0.30 J
CHROMIUM, TOTAL	50				1.5 UJ	19	6.8				8.9	310	8.5
COPPER	200				1.5 U	16	6.2 J				5.5 J	320	8.9 J
IRON	300	13200	37300	NA	2070 UJ	29000	11100	53400	50100	NA	9870 J	495000	11400
LEAD	25				0.5 UJ	20	2.5				3.7	90	3.0
MAGNESIUM	35000	R	39500	NA	12000	24000	12300				9510	175000	12100
MANGANESE	300				240	1100	320	NA	NA	NA	1410	13000	300
NICKEL	100				2 J	25	8.3 J				10	570	12
SODIUM	20000	R	27100	NA	18000	19000 J	15800				11000	15000 J	11700
THALLIUM	0.5				0.01 J	0.25	0.016 U				0.09 J	0.93	0.042 U
VOCs (µg/L)													
1,2-DICHLOROETHANE	0.6				0.14 UJ	0.5 U	0.14 U				0.14 UJ	0.5 UJ	0.14 U
CHLOROETHANE	5				0.07 UJ	0.5 U	0.070 U				0.07 UJ	0.5 UJ	0.070 U
CIS-1,2-DICHLOROETHYLENE	5				1.6 J	0.62	0.63				0.12 UJ	0.5 UJ	0.12 U
DICHLORODIFLUOROMETHANE	5				0.07 UJ	0.5 U	0.070 U				0.07 UJ	0.5 UJ	0.070 U
TRICHLOROETHYLENE (TCE)	5				0.06 UJ	0.5 U	0.060 U				0.06 UJ	0.5 UJ	0.060 U
VINYL CHLORIDE	2				0.22 J	0.26 J	0.059 U				0.059 UJ	0.5 UJ	0.059 U

Key:

D = Compound identified at secondary dilution factor.

J = Estimated value.

NA = Not applicable.

NS = Not sampled.

U = Not detected (lab reporting limit shown).

UJ = Not detected/estimated reporting limit.

 $\mu g/L = Micrograms per liter.$

VOCs = Volatile organic compounds.

Note:

 New York State Department of Environmental Conservation, Technical and Operational Guidance Series Memorandum #1.1.1: Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations, 1998 (with updates), Class GA Groundwater Standards and Guidance Values.

2. Bold values denote positive hits.

3. Shaded cells exceed the screening value.

Carroll Landfill, Frewsburg, New York

	Well ID:	Vell ID: MW-106S								MW-	107S		
	Date:	10/14/04	03/10/05	08/28/08	08/19/10	11/07/12	09/11/14	10/12/04	03/10/05	08/28/08	08/17/10	11/07/12	09/10/14
	Screening												
Analyte	Criteria ⁽¹⁾												
Metals (µg/L)													
ARSENIC	25				2.2	95	6.0				7.7	30	10.5
BARIUM	1000				328	1000	460				618	690	510
BERYLLIUM	3				0.3 J	1.8 J	0.30 U				1.6 J	1.3 J	1.5 J
CHROMIUM, TOTAL	50				1.9 UJ	43	2.8 J				37	26	41
COPPER	200				1.5 U	72	3.4 J				47	44	44
IRON	300	8440	NS	NS	1610 UJ	90000	4200	24900	679	NA	60000	44000	59300
LEAD	25				0.9 UJ	72 J	2.8				24	41 J	18.9
MAGNESIUM	35000				12000	63000	11100	R	37.6	NA	35000	52000	32200
MANGANESE	300				228	4000	2300	NA	NA	NA	1470 J	2200	1300
NICKEL	100				2.5 J	67	2.5 J				57	43	66
SODIUM	20000				5000	5900	4700				7100 J	11000	6500
THALLIUM	0.5				0.01 J	0.56	0.0080 U				0.2	0.42	0.15 J
VOCs (µg/L)													
1,2-DICHLOROETHANE	0.6				0.14 UJ	0.5 U	0.14 U	2.0 J	0.6 J	1 U	0.14 U	0.44 J	0.28 U
CHLOROETHANE	5				0.07 UJ	0.5 U	0.070 U				0.33 J	2.1	0.14 U
CIS-1,2-DICHLOROETHYLENE	5				0.12 UJ	0.5 U	0.12 U	69.0 J	25.0 J	1	3	37	3.5
DICHLORODIFLUOROMETHANE	5				0.07 UJ	0.5 U	0.070 U	9.0 J	3.0 J	0.8 J	0.46 J	2	0.14 U
TRICHLOROETHYLENE (TCE)	5				0.06 UJ	0.5 U	0.060 U				0.06 U	0.5 U	0.12 U
VINYL CHLORIDE	2				0.059 UJ	0.39 J	0.059 U	600 D	250	48 D	28	240	21

Key:

D = Compound identified at secondary dilution factor.

J = Estimated value.

NA = Not applicable.

NS = Not sampled.

U = Not detected (lab reporting limit shown).

UJ = Not detected/estimated reporting limit.

 $\mu g/L = Micrograms per liter.$

VOCs = Volatile organic compounds.

Note:

 New York State Department of Environmental Conservation, Technical and Operational Guidance Series Memorandum #1.1.1: Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations, 1998 (with updates), Class GA Groundwater Standards and Guidance Values.

2. Bold values denote positive hits.

3. Shaded cells exceed the screening value.

Carroll Landfill, Frewsburg, New York

	Well ID:	:MW-108S							MW-109S					
	Date:	10/14/04	03/10/05	08/28/08	08/19/10	11/06/12	09/11/14	03/13/04	03/09/05	08/28/08	08/19/10	11/06/12	09/09/14	
	Screening													
Analyte	Criteria ⁽¹⁾													
Metals (µg/L)														
ARSENIC	25	12.1	28.2	NA	8.8	48	14.0				2.2	8.1	8.4	
BARIUM	1000	1230	890	NA	1380	1800	1700				145	200	300	
BERYLLIUM	3				0.2 U	1.1 J	0.30 U				0.2 J	0.61 J	0.68 J	
CHROMIUM, TOTAL	50	8.3	68.4	NA	2.1 UJ	33	5.6				3.3 UJ	14	24	
COPPER	200				2.8 J	33	5.8 J				1.8 J	13	17	
IRON	300	55100	82600	NA	18000 J	85000	23100	2,520	18400	NA	4220 J	18000	26000	
LEAD	25				2.7	24 J	3.7				1.6 U	6.2 J	7.1	
MAGNESIUM	35000				29000	41000	31100				13000	17000	19200	
MANGANESE	300	3150	2890	NA	721	2400	740	NA	NA	NA	375	2400	5200	
NICKEL	100				4.1 J	48	7.4 J				4.6 J	19	31	
SODIUM	20000				13000	8600	12200				3400	3200	3300	
THALLIUM	0.5				0.02 J	0.27	0.046 U				0.04 J	0.14 J	0.18 U	
VOCs (µg/L)														
1,2-DICHLOROETHANE	0.6				0.14 UJ	0.5 U	0.14 U				0.14 UJ	0.5 U	0.14 U	
CHLOROETHANE	5				0.07 UJ	0.5 U	0.070 U				0.07 UJ	0.5 U	0.070 U	
CIS-1,2-DICHLOROETHYLENE	5				0.12 UJ	0.5 U	0.12 U				0.12 UJ	0.5 U	0.12 U	
DICHLORODIFLUOROMETHANE	5				0.34 J	0.5 U	0.070 U				0.07 UJ	0.5 U	0.070 U	
TRICHLOROETHYLENE (TCE)	5				0.06 UJ	0.5 U	0.060 U				0.06 UJ	0.5 U	0.060 U	
VINYL CHLORIDE	2				0.32 J	0.5 U	0.32 J				0.059 UJ	0.5 U	0.059 U	

Key:

D = Compound identified at secondary dilution factor.

J = Estimated value.

NA = Not applicable.

NS = Not sampled.

U = Not detected (lab reporting limit shown).

UJ = Not detected/estimated reporting limit.

 $\mu g/L =$ Micrograms per liter.

VOCs = Volatile organic compounds.

Note:

 New York State Department of Environmental Conservation, Technical and Operational Guidance Series Memorandum #1.1.1: Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations, 1998 (with updates), Class GA Groundwater Standards and Guidance Values.

2. Bold values denote positive hits.

3. Shaded cells exceed the screening value.

Carroll Landfill, Frewsburg, New York

	Well ID:			MW-	110S					MW-	111S		
	Date:	10/13/04	03/10/05	08/28/08	08/20/10	11/08/12	09/10/14	10/13/04	03/09/05	08/28/08	08/16/10	11/07/12	09/10/14
	Screening												
Analyte	Criteria ⁽¹⁾												
Metals (µg/L)													
ARSENIC	25	35.1	10.9	NA	8.1	32	10.5	30.5	NS	NA	5.7	38	11.0
BARIUM	1000				237	890	290				568	690	430
BERYLLIUM	3				0.2 U	4.5	0.33 J				0.6 J	2.3	1.0 J
CHROMIUM, TOTAL	50				3.7 UJ	120	9.4				8.3	53	28
COPPER	200				1.5 U	110	6.5 J				39 J	64	22
IRON	300	74900	6310	NA	1110 U	176000	9900	48800	NS	NA	24000	85000	35800
LEAD	25	26.8	2.1 B	NA	0.4 UJ	57	3.0	NA	NA	NA	29	37 J	10.4
MAGNESIUM	35000				12000 J	71000	12700	NA	NA	NA	42000	57000	34100
MANGANESE	300				232 J	4200	260	NA	NA	NA	1680	2200	670
NICKEL	100				1.3 U	180	11				18	82	40
SODIUM	20000				6000	6800 J	5800				11000	12000	10800
THALLIUM	0.5				0.02 J	0.26	0.062 U				0.1 J	0.33	0.15 J
VOCs (µg/L)													
1,2-DICHLOROETHANE	0.6				0.14 UJ	0.5 U	0.14 U				0.14 U	0.5 U	0.14 U
CHLOROETHANE	5				0.07 UJ	0.5 U	0.070 U				0.07 U	0.5 U	0.070 U
CIS-1,2-DICHLOROETHYLENE	5				0.12 UJ	0.5 U	0.12 U				0.12 U	0.5 U	0.12 U
DICHLORODIFLUOROMETHANE	5				0.07 UJ	0.5 U	0.070 U				0.07 U	0.5 U	0.070 U
TRICHLOROETHYLENE (TCE)	5				0.06 UJ	0.5 U	0.060 U				0.06 U	0.5 U	0.060 U
VINYL CHLORIDE	2				0.059 UJ	0.5 U	0.059 U				0.059 U	0.5 U	0.059 U

Key:

D = Compound identified at secondary dilution factor.

J = Estimated value.

NA = Not applicable.

NS = Not sampled.

U = Not detected (lab reporting limit shown).

UJ = Not detected/estimated reporting limit.

 $\mu g/L = Micrograms per liter.$

VOCs = Volatile organic compounds.

Note:

 New York State Department of Environmental Conservation, Technical and Operational Guidance Series Memorandum #1.1.1: Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations, 1998 (with updates), Class GA Groundwater Standards and Guidance Values.

2. Bold values denote positive hits.

3. Shaded cells exceed the screening value.

Carroll Landfill, Frewsburg, New York

			MW	-102					MW-	1071			
	Date:	10/11/04	03/09/05	08/28/08	08/17/10	11/06/12	09/09/14	10/12/04	03/09/05	08/28/08	08/17/10	11/07/12	09/10/14
	Screening												
Analyte	Criteria ⁽¹⁾												
Metals (µg/L)													
ARSENIC	25				0.3 J	0.38 J	0.20 J				21	19	19.1
BARIUM	1000				103	84	77				298	230	220
BERYLLIUM	3				0.4 J	2 U	0.30 U				0.5 J	2 U	0.30 U
CHROMIUM, TOTAL	50				0.9 U	1.1 J	1.1 J				12	1.3 J	1.4 J
COPPER	200				1.5 U	10 U	1.6 U				12	10 U	1.9 J
IRON	300	3800	12200	NA	277 U	67	77	12100	NS	NA	15000	1200	700
LEAD	25				0.4 UJ	1.2 J	0.27 U				6.4	6.1 J	1.0
MAGNESIUM	35000				18000	15000	14100				14000	11000	10100
MANGANESE	300				187 J	490	65	NA	NA	NA	451 J	220	200
NICKEL	100				1.3 U	10 U	1.3 U				14	1.3 J	1.3 U
SODIUM	20000				3800 J	3100	3300				7700 J	7700	7000
THALLIUM	0.5				0.02 J	0.028 J	0.011 U				0.09 J	0.027 J	0.025 U
VOCs (µg/L)													
1,2-DICHLOROETHANE	0.6				0.14 U	0.5 U	0.14 U				0.14 U	0.5 U	0.14 U
CHLOROETHANE	5	7.0 J	5.0 J	1 U	0.07 U	0.5 U	0.070 U				0.07 U	0.5 U	0.070 U
CIS-1,2-DICHLOROETHYLENE	5	14	6.0 J	12	2.4	0.5 U	0.12 U				0.12 U	0.5 U	0.12 U
DICHLORODIFLUOROMETHANE	5				0.07 U	0.5 U	0.070 U				0.07 U	0.5 U	0.070 U
TRICHLOROETHYLENE (TCE)	5	10 U	10 U	20	3.2	0.37 J	0.41 J				0.06 U	0.5 U	0.060 U
VINYL CHLORIDE	2	5 J	3 J	0.6 J	0.059 U	0.5 U	0.059 U				0.059 U	0.5 U	0.059 U

Key:

D = Compound identified at secondary dilution factor.

J = Estimated value.

NA = Not applicable.

NS = Not sampled.

U = Not detected (lab reporting limit shown).

UJ = Not detected/estimated reporting limit.

 $\mu g/L = Micrograms per liter.$

VOCs = Volatile organic compounds.

Note:

 New York State Department of Environmental Conservation, Technical and Operational Guidance Series Memorandum #1.1.1: Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations, 1998 (with updates), Class GA Groundwater Standards and Guidance Values.

2. Bold values denote positive hits.

3. Shaded cells exceed the screening value.

Carroll Landfill, Frewsburg, New York

Well ID:			MW-108I					MW-110I					
	Date:	10/13/04	03/07/05	08/28/08	08/20/10	11/06/12	09/11/14	10/13/04	03/10/05	08/28/08	08/20/10	11/08/12	09/10/14
	Screening												
Analyte	Criteria ⁽¹⁾												
Metals (µg/L)													
ARSENIC	25				4.7	4.8	5.1	87.8	23	NA	9.8	33	12.1
BARIUM	1000				233	240	230				231	510	160
BERYLLIUM	3				0.2 U	2 U	0.30 U	3.6	0.72	NA	0.2 U	1.8 J	0.30 U
CHROMIUM, TOTAL	50				0.9 U	4 U	1.0 U	112	24.5	NA	3 UJ	44	4.4
COPPER	200				1.5 U	10 U	1.6 U				1.5 U	66	7.1 J
IRON	300	15300	1740	NA	634 U	590	140	191000	37000	NA	1670 U	69000	4200
LEAD	25				0.4 UJ	0.18 J	0.12 J	92.4	15.7	NA	0.7 UJ	54	2.9
MAGNESIUM	35000				13000 J	13000	13300	70900	26300	NA	11000 J	52000	9400
MANGANESE	300				262 J	250	260	3720	880	NA	175 J	3000	310
NICKEL	100				1.3 U	10 U	1.3 U				2 J	65	3.9 J
SODIUM	20000				5400	5400	5000				5700	6900 J	5200
THALLIUM	0.5				0.02 J	0.092 J	0.011 U	14	4.5 U	NA	0.02 J	0.27	0.024 U
VOCs (µg/L)													
1,2-DICHLOROETHANE	0.6				0.14 UJ	0.5 U	0.14 U				0.14 UJ	0.5 U	0.14 U
CHLOROETHANE	5				0.07 UJ	0.44 J	0.070 U				0.07 UJ	0.5 U	0.070 U
CIS-1,2-DICHLOROETHYLENE	5				0.12 UJ	0.5 U	0.12 U				0.12 UJ	0.5 U	0.12 U
DICHLORODIFLUOROMETHANE	5				0.07 UJ	0.5 U	0.070 U				0.07 UJ	0.5 U	0.070 U
TRICHLOROETHYLENE (TCE)	5				0.06 UJ	0.5 U	0.060 U				0.06 UJ	0.5 U	0.060 U
VINYL CHLORIDE	2				0.059 UJ	0.5 U	0.059 U				0.059 UJ	0.5 U	0.059 U

Key:

D = Compound identified at secondary dilution factor.

J = Estimated value.

NA = Not applicable.

NS = Not sampled.

U = Not detected (lab reporting limit shown).

UJ = Not detected/estimated reporting limit.

 $\mu g/L = Micrograms per liter.$

VOCs = Volatile organic compounds.

Note:

 New York State Department of Environmental Conservation, Technical and Operational Guidance Series Memorandum #1.1.1: Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations, 1998 (with updates), Class GA Groundwater Standards and Guidance Values.

2. Bold values denote positive hits.

3. Shaded cells exceed the screening value.

Carroll Landfill, Frewsburg, New York

Well ID:			MW-111I					MW-109D					
	Date:	10/13/04	03/09/05	08/28/08	08/16/10	11/07/12	09/10/14	10/12/04	03/08/05	08/28/08	08/19/10	11/06/12	09/09/14
	Screening												
Analyte	Criteria ⁽¹⁾												
Metals (µg/L)													
ARSENIC	25				17	19	18.0				0.3 J	0.42 J	0.078 U
BARIUM	1000				258	260 J	280				137	130	130
BERYLLIUM	3				0.2 U	2 U	0.30 U				0.2 U	2 U	0.30 U
CHROMIUM, TOTAL	50				0.9 U	1.6 J	1.0 U				0.9 U	4 U	1.0 U
COPPER	200				1.5 U	10 U	1.6 U				1.5 U	10 U	1.6 U
IRON	300	20700	NS	NA	1060 U	300	300	8440	29900	NA	453 UJ	190	250
LEAD	25				4.5	8.6 J	40.7				0.4 UJ	1 U	0.22 U
MAGNESIUM	35000				13000	13000 J	13100				13000	13000	12800
MANGANESE	300				227	210 J	210				55	87	100
NICKEL	100				1.3 U	10 U	1.3 U				1.3 U	10 U	1.3 U
SODIUM	20000				10000	11000 J	10100				3900	4000	4100
THALLIUM	0.5				0.01 J	0.019 J	0.020 U				0.008 U	0.012 J	0.0098 U
VOCs (µg/L)													
1,2-DICHLOROETHANE	0.6				0.14 U	0.5 U	0.14 U				0.14 UJ	0.5 U	0.14 U
CHLOROETHANE	5				0.07 U	0.5 U	0.070 U				0.07 UJ	0.5 U	0.070 U
CIS-1,2-DICHLOROETHYLENE	5				0.12 U	0.5 U	0.12 U	10 U	1 J	9	1.4 J	0.5 U	0.12 U
DICHLORODIFLUOROMETHANE	5				0.07 U	0.5 U	0.070 U				0.07 UJ	0.5 U	0.070 U
TRICHLOROETHYLENE (TCE)	5				0.06 U	0.5 U	0.060 U				0.73 J	0.5 U	0.060 U
VINYL CHLORIDE	2				0.059 U	0.5 U	0.059 U	1.0 J	108	0.4 J	0.059 UJ	0.5 U	0.059 U

Key:

D = Compound identified at secondary dilution factor.

J = Estimated value.

NA = Not applicable.

NS = Not sampled.

U = Not detected (lab reporting limit shown).

UJ = Not detected/estimated reporting limit.

 $\mu g/L = Micrograms per liter.$

VOCs = Volatile organic compounds.

Note:

 New York State Department of Environmental Conservation, Technical and Operational Guidance Series Memorandum #1.1.1: Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations, 1998 (with updates), Class GA Groundwater Standards and Guidance Values.

2. Bold values denote positive hits.

3. Shaded cells exceed the screening value.

Carroll Landfill, Frewsburg, New York

				NAVA / 4 0						
	Well ID:	00/02/04	10/11/05	101/22/20	1-13	11/05/12	00/11/14	SUPPLT WELL #5		
	Screening	09/03/04	10/14/03	00/20/00	00/19/10	11/03/12	09/11/14	00/10/10		
Analyte	Criteria ⁽¹⁾									
Metals (µg/L)										
ARSENIC	25				0.6 J	0.55 J	0.16 J	0.6 J		
BARIUM	1000				93	75	73	68		
BERYLLIUM	3				0.2 U	2 U	0.30 U	0.2 U		
CHROMIUM, TOTAL	50				1.1 UJ	1.3 J	1.0 U	0.9 U		
COPPER	200				1.5 U	10 U	1.8 J	1.5 UJ		
IRON	300	NA	979	NA	501 UJ	49 J	310	21 UJ		
LEAD	25				0.6 UJ	1 U	0.47 J	0.8 UJ		
MAGNESIUM	35000				12000	9900	10200	9270		
MANGANESE	300				16 U	3 U	7.5 U	10 U		
NICKEL	100				1.6 J	10 U	1.3 U	1.3 U		
SODIUM	20000				11000	8600	6800	7800		
THALLIUM	0.5				0.008 U	0.017 J	0.0080 U	0.01 J		
VOCs (µg/L)										
1,2-DICHLOROETHANE	0.6				0.14 UJ	0.5 U	0.14 U	0.14 U		
CHLOROETHANE	5				0.07 UJ	0.5 U	0.070 U	0.07 U		
CIS-1,2-DICHLOROETHYLENE	5				0.12 UJ	0.5 U	0.12 U	0.12 U		
DICHLORODIFLUOROMETHANE	5				0.07 UJ	0.5 U	0.070 U	0.07 U		
TRICHLOROETHYLENE (TCE)	5				0.06 UJ	0.5 U	0.060 U	0.06 U		
VINYL CHLORIDE	2				0.059 UJ	0.5 U	0.059 U	0.059 U		

Key:

D = Compound identified at secondary dilution factor.

J = Estimated value.

NA = Not applicable.

NS = Not sampled.

U = Not detected (lab reporting limit shown).

UJ = Not detected/estimated reporting limit.

 $\mu g/L = Micrograms per liter.$

VOCs = Volatile organic compounds.

Note:

 New York State Department of Environmental Conservation, Technical and Operational Guidance Series Memorandum #1.1.1: Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations, 1998 (with updates), Class GA Groundwater Standards and Guidance Values.

2. Bold values denote positive hits.

3. Shaded cells exceed the screening value.

FIGURES

E 351000	<u>N</u>
	LEGEND ↔ MONITORING WELL LOCATION
	NOTES
	1. THIS DRAWING IS A COMBINATION OF CARROL.dwg and ACAD2000-CARROLL LANDFILL.dwg PROVIDED BY THE NYSDEC FROM THE REMEDIAL INVESTIGATION.
	 THE INFORMATION DEPICTED ON THIS MAP REPRESENTS THE RESULTS OF AERIAL MAPPING AND CAN ONLY BE CONSIDERED AS INDICATING THE GENERAL CONDITION EXISTING ON THE DATE OF PHOTOGORAPHY. CONTROL: PROVIDED BY TYGA CONSULTANTS, COORDINATES SHOWN HEREON
	ARE EXPRESSED IN U.S. SURVEY FEET AND REFERENCED TO THE NORTH AMERICAN DATUM OF 1927 (NAD27) — NEW YORK STATE PLANE GRID. ELEVATIONS SHOWN HEREON ARE EXPRESSED IN FEET AND ARE REFERENCED TO THE NATIONAL GEODETIC VERTICAL DATUM OF 1929 (NGVD29).
	 MAPPING COMPILED BY TVGA CONSULTANTS (TVGA) USING PHOTOGRAMMETRIC METHODS. AERIAL PHOTOGRAPHY FLOWN 1 APRIL 2005. THIS MAPPING COMPILED IN ACCORDANCE WITH (NMAS) NATIONAL MAP ACCURACY STANDARDS FOR MAPS AT 1 INCH EQUAL 50 FT. SCALE.
	_
E 351000	SCALE IN FEET
	FIGURE 1 SITE MAP
	CARROLL LANDFILL FREWSBERG, CHAUTAUQUA COUNTY, NEW YORK

LEGEND		
\$	MONITORING WELL LOCATIO WITH GROUND WATER ELEVATION	<u>NC</u>
1249 —	GROUNDWATER CONTOUR (DASHED WHERE INFERREI	D)
NOTES		
1. THIS DRA CARROL.d LANDFILL. FROM THI	WING IS A COMBINATION OF wg and ACAD2000-CARROLL dwg PROVIDED BY THE NYSE E REMEDIAL INVESTIGATION.)EC
2. THE INFO MAP REPI AERIAL M CONSIDER GENERAL DATE OF	RMATION DEPICTED ON THIS RESENTS THE RESULTS OF APPING AND CAN ONLY BE RED AS INDICATING THE CONDITION EXISTING ON THE PHOTOGRAPHY.	Ξ
3. CONTROL: CONSULT/ HEREON SURVEY I NORTH A 1927 (NA PLANE GI ARE EXPI REFERENO VERTICAL	PROVIDED BY TVGA ANTS. COORDINATES SHOWN ARE EXPRESSED IN U.S. FEET AND REFERENCED TO T MERICAN DATUM OF AD27) — NEW YORK STATE RID. ELEVATIONS SHOWN HER RESSED IN FEET AND ARE CED TO THE NATIONAL GEODI DATUM OF 1929 (NGVD29).	HE EON
4. MAPPING CONSULT/ PHOTOGR PHOTOGR THIS MAP WITH (NM STANDARI 50 FT. S	COMPILED BY TVGA ANTS (TVGA) USING AMMETRIC METHODS. AERIAL APHY FLOWN 1 APRIL 2005. PING COMPILED IN ACCORDA IAS) NATIONAL MAP ACCURAC DS FOR MAPS AT 1 INCH EQ CALE.	NCE Y UAL
0	SCALE IN FEET 200 400	600
GROU	FIGURE 2 NDWATER ELEVATION CONTOURS 0 SHALLOW MONITOR WELLS CARROLL LANDFILL ERG, CHAUTAUQUA COUNTY, NEW	F

LEGEND	MONITORING WELL LOC	CATION
1249 —	GROUNDWATER CONTOU	JR
NM	NOT MEASURED	(KED)
NOTEC		
1. THIS DRA CARROL.d LANDFILL. FROM TH	WING IS A COMBINATION wg and ACAD2000—CARR dwg PROVIDED BY THE N E REMEDIAL INVESTIGATIOI	OF OLL IYSDEC N.
2. THE INFO MAP REP AERIAL M CONSIDEF GENERAL DATE OF	PRMATION DEPICTED ON T RESENTS THE RESULTS O IAPPING AND CAN ONLY E RED AS INDICATING THE CONDITION EXISTING ON PHOTOGRAPHY.	HIS F 3E THE
3. CONTROL CONSULT HEREON SURVEY NORTH A 1927 (N/ PLANE G ARE EXP REFEREN VERTICAL	: PROVIDED BY TVGA ANTS. COORDINATES SHOW ARE EXPRESSED IN U.S. FEET AND REFERENCED T .MERICAN DATUM OF AD27) – NEW YORK STAT RID. ELEVATIONS SHOWN RESSED IN FEET AND ARI CED TO THE NATIONAL GE DATUM OF 1929 (NGVD2	WN O THE HEREON E EODETIC 29).
4. MAPPING CONSULT. PHOTOGR PHOTOGR THIS MAF WITH (NM STANDARI 50 FT. S	COMPILED BY TVGA ANTS (TVGA) USING AMMETRIC METHODS. AER APHY FLOWN 1 APRIL 20 PPING COMPILED IN ACCO MAS) NATIONAL MAP ACCU DS FOR MAPS AT 1 INCH SCALE.	IAL 105. RDANCE RACY EQUAL
0	SCALE IN FEET 200 400	60
GROU	FIGURE 3 JNDWATER ELEVATION CONTOU INTERMEDIATE MONITOR WELLS CARROLL LANDFILL ERG, CHAUTAUOUA COUNTY. N	RS OF

10C3074.0016.03\Carroll Landfill Fig4.ai-02/18/15-GRA

SOURCE: OíBrien & Gere Engineers, Inc., 2005.

9/10/14 g/L y00 9/10/14 g/L 2.5 y300* 8.9 y2200 y00* 5 *		
08/19/10 ug/L 9.6 349 0.3 J 8.9 5.5 J 9870 J* 3.7 9510 1410* 10 0.09 J	11/08/12 µg/L 108* 2200* 9.7* 310* 320* 495000* 90* 175000* 13000* 570* 0.93*	09/10/14 μg/L 7.7 250 0.30 J 8.5 8.9 J 11400* 3.0 12100 300 12 0.042 U
08/19/10 µg/L 2.2 1610 UJ 0.9 UJ 12000 228 0.01 J	11/07/12 μg/L 95* 90000* 72 J* 63000* 4000* 0.56*	09/11/14 μg/L 6.0 4200* 2.8 11100 2300* 0.0080 U
08/20/10 µg/L 634 U	11/06/12 μg/L 590*	09/11/14 μg/L 140
08/19/10 µg/L 8.8 1380* 18000 J* 29000 721*	11/06/12 μg/L 48* 1800* 85000 J* 41000* 2400*	09/11/14 μg/L 14.0 1700* 23100* 31100 740*
pled due to	o prior damaç	ge

Town of Carroll Landfill Site Frewsburg, New York NYSDEC SITE #9-07-017 January 2015

LEGEND

- ____
- _ _ _ _

TP-18

MW-1055

•

Edge of Creek

Property Line

- Access Road
- Test Pit Locations
- Monitoring Well Locations

NOTES

- NA Not Applicable
- NS Not Sampled
- U Analyte Not Detected
- Value is Greater than IDL В but less than CRDL
- Concentration Exceeds * Water Quality Standard
- J Estimated Concentration Analytical Result
- R Rejected During Validation
- Compound Identified at D Secondary Dilution Factor

NYS CLASS GA WATER QUALITY STANDARDS AND GUIDANCE (6NYCRR Part 703 or TOGS 1.1.1)

CHEMICAL NAME	
Metals	µg/L
Arsenic	25
Barium	1000
Beryllium	3.0
Chromium	50
Copper	200
Iron	300
Lead	25
Magnesium	35000
Manganese	3000
Nickel	100
Sodium	20000
Thallium	0.5
VOCs	μg/L 5

Dichloro Vinvl Chloride Chloroethane cis-1.2-Dichloroethene 5 1,2-Dichloroethane 0.6 Trichloroethene 5

Figure 4 Groundwater Detections **Exceeding Water Quality Standards** (last 3 reporting periods)

APPROXIMATE SCALE IN FEET 150 300

APPENDICES

Contents:

- A Well Sampling Logs
- **B** Data Usability Summary Report (DUSR)
- C TestAmerica Laboratories Analytical Report J67030-1 (provided electronically)

APPENDIX A

Well Sampling Logs

10f2

- econory and environment currentes, b.	ecology :	and	environment	engin	eering,	p.c
---	-----------	-----	-------------	-------	---------	-----

2	З.
	U)

International Specialists in the Environment

BUFFALO CORPORATE CENTER 368 Pleasant View Drive, Lancaster, New York 14086 Tel: 716/684-8060, Fax: 716/684-0844

WELL PURGE & SAMPLE RECORD

Si	ito Name/Locati	on: Carroll Town	n Landfill, Fi	rewsburg, N	IY		Well ID:	<u>MW-10</u>	25	
F	EEPC Project N	No.:	·····				Date:	9-9-	-14	
-								. 100	C -3	
Ini	tial Depth to Wa	ater: 0.42	feet TOIC	ν.	-	S	tart Time:	083	0	
	Total Well De	epth: 3.90 3	feet TOIC			E	End Time:	104	<u>-</u>	
	Depth to Pu	Imp: 30.19	feet TOIC				Bailer	, ki	Pump	
	Initial Pump F	Rate: 600 144/1	Lpm / gpm			Pu	imp Type: _.	Typhos		
	adjuste	d to:	, at		minutes	Well	Diameter:	<u>'</u> 2	inches	
	adjuste	d to:	at 🚬		minutes	1x We	Il Volume:	5.17	gallons 🛪 3 1	5 SI GAIL
l		Purce Volume	DH	Теттр	ORP	Conductivity	DO	Turbidity	Water	
	Time	(gallons/liters)	(s.u.)	(°C/?F)	(mV)	(µS/cm mS/cm)	र (mg/L) =	(NTU)	Level (feet)	1
ſ	0850	0.01	7.05	12.0	200-77	532.4	ا ، معن	35.1	0.61	
	0855	3.02	7.52	11.6	109	483.7		30.3	0.71	
Ì	0900	W.UL	7.54	11.2	74	467.4	***	21.1	0.71	
	0905	9,02	7.54	11.3	82	566.5		901	0.71	
	0910	12.06	7.55	11.3	86	457.5		6.56	0.71	
	0915	15.0L	7.55	11.5	94	560.7		4.20	0.71	ļ
	0920-	18.04	7.56	11.8	102	461.8		2,79	1710	_
	1925	21.02	756	11.8	98	455.2		1.30	0.71	
	0930	24.0 L	7.58	11.6	105	458.1		1.97	6.71	
	09345	27.06	7.58	12.1	107	417 455	3 -	1.10	0.71	-4
	0940	30.01	1.58	11.3	114	455.1	-	1.17	0.71	
	1945	33.01	7.59	11.3	110	458,0		0,93	0.71	_
	0950	3601	7.60	10.8	114	458.1	-	1.06	0.71	
	0130	342.01	7.63	10.7	118	460.0	-	1.03	0.71	
	1000	42	7.61	10.9	12	455.6		0.54	0.71	
	Einel S	ample Data:		1	1					
				لم	, I,					
	Sample ID:	1W102-50	<u>5914</u>	_	Duplicate	?[Dup	e Samp ID:	<u> </u>		
	Sample Time:	03		_	MS/MSD?					
	<u>Analyses:</u>	Methods:	Comments	Defm .	on Reade	- f pungo le	atu .	<u> </u>		
	🕅 VOCs		Cas	ing lid	not fais	tened to 1	case -	oney he	ud on	
		🗆 SW846	with	- Tock	·					
	🗆 PCBs	🗆 Drink. Wtr.			· · · · · · · · · · · · · · · · · · ·			,,,	<u></u>	
	K) Metals	□	<u> </u>	. . 			A .			
	□	□	Sampler(s): 	<u>Calmba</u>	et L Koed	<u> </u>		-	

	UFFALO CORPORA	TE CENTER	368 Pleasar	nt View Drive	, Lancaster, New '	York 14086		
Т	el: 716/684-8060, Fax	:: 716/684-084	4		PROPD			
		WEL	L PURGE &	SAMPLE	ECORD		3 4 3 4 L - 1	676
te Name/Lo	cation: Carroll Tow	n Landfill, F	rewsburg, N	NY	·	Weil ID		<u>ul</u>
EEPC Proje	ct No.:	l 				Date: -		- 19
ial Depth to	Water:	feet TOIC			S	tart Time:		
Total Well	Depth:	feet TOIC	W	99.19		End Time:	<u> </u>	
Depth to	Pump:	feet FOIC	U U			Bailer		Pump
Initial Pum	n Rate:	Lom / gom			Pi	Imp Type:		··
adiu	sted to	at		minutes	Well	Diameter:		inches
adiú	isted to:	 at		minutes	1x We	ll Volume:		gallons
			Tomn	OBb	Conductivity	DO	Turbidity	Water
Time	(gallons/liters)	(s.u.)	(°C/°F)	(mV)	(µS/cm mS/cm)	(mg/L)	(NTU)	Level (feet
1005	HT.OL	7.61	10.7	121	454.9	. <u> </u>	0.81	0.71
1010	48.0L	7.61	10.9	117	454.2		0,92	0.71
1015	51.0L	1.60	11.0	118	456.7		0.86	0.71
1020	54.0L	7.00	10.9	124	455.9		0.61	0.71
1025	57.0L	7.61	11.0	126	456.1	-	0.51	0.71
1030	60.0L	1.61	11.Z	125	456.6		0.50	17.0
		1			٤		ļ	
·			<u> </u>					
,	-							
	1					l		
N ¹						L		
Fina	I Sample Data:	7.61	11.2	125	456.6		0.50	0.1
Sample ID:		- -	-	Duplicate	? 🔲 Dup	e Samp ID:		,,
Sample Tir	ne:		-	MS/MSD				
Analyses:	Methods:	Comments	:		<u> </u>			·
	CLP		·	•				
	□ SW846							
	D Drink. Wtr.				,		2	
L) Metals	······································				1100			

	national Specialists	in the Enviro		ment	enginee		, p.c.		
BUP Tei: 1	FALO CORPORA 716/684-8060, Fax:	TE CENTER 716/684-084	368 Pleasar 4	t View Drive	, Lancaster, New Y	101K 14080			
-		WEL	L PURGE &	SAMPLE R	ECORD			2	-
Site Name/Locat	tion: Carroll Town	n Landfill, Fi	rewsburg, N	IY	·	Well ID:	<u>mw-10</u>	<u> </u>	
EEEPC Project	No.:					Date:	. ~ (1)] +	214	
Initial Death to M	ator: 1.04		х.	-	S	tart Time:	130-	1	
Total Wall D	anth: 30.80 t				E	- End Time:	1425	5	
Denth to Pi	umo: 25.80 t	feet TOIC				- Bailer	<u> </u>	Pump	
Initial Pump F	Rate 1000mu/m				Ρι	Imp Type:	PY	Phoon	
adiuste	ed to:	. at		minutes	Well	Diameter:	2"	inches	4-7001
adjuste	ed to:	at		minutes	1x We	Il Volume:	4.9	gallons = 🍳	+Bgal
					Conductivity	നറ	Turbidity	Water	L.K. 11-11-14
Time	(gallons/liters)	рн (s.u.)	(°C/?F)	(mV)	(µS/cm mS/cm)	.(mg/L)	(NTU)	Level (feet)	
1307	0.0	7.79	11.8	-104	457.5	- ·	42.6	1.95	
1312	10:05	1.83	แฉ	-11-1	443.2		24.6	6.05	
1317	10.04	1.82	11.0	-116	451-2	-	12.1	10.44	
1321	15.02	7.84	11.0	-108	450.5		547	10.61	
1331	25.0 - 20.0 L	7.83	11.2	-101	449.2	-	1.94	9.65	
1341	35.01	7.84	11.1	~પષ્ઠ	443.9		2.34	11.54	
1351-	45.0 L	7.85	11.1	-101	442.5		0.86	11.59	
1401	55.0L	7.86	161	-104	444.3		0.57	11.38	
1411	65.0L	1.85	11.1	-106	્ મવય. (-	0.64	11.38	
1421	75.0L	7.81	161	-101	445.2		0.33	11.38	
								· · · · · · · · · · · · · · · · · · ·	
			·						4
•							·	1	4
								ļ	
Final S	ample Data:	7.81	<u> </u>	-101	445.2		0.33	11.38	
Sample ID:	MALIO3 - S	SGP14		Duplicate?	Dup	e Samp ID:			
Sample Time:	91114	1425	-	MS/MSD?					-
Analyses:	Methods:	Comments:	<u> </u>	en at	discharge	to g	brund	·	_
'ୟ VOCs		W	aler 'el	acin 1 h	lo sheen				-
	□ SW846	<u> </u>		·				<u> </u>	-
D PCBs	🗆 Drink. Wtr.		·		·····		······		-
🔁 Metals	D				, ¹] ,			· · ·	
□		Sampler(s)	: <u> </u>	Labre	In Llord	<u>u</u>	· · · ·		-

1

	ecology al International Specialists	in the Enviro	VITONI onment	ment	enginee	ering	, p.c.	
G	BUFFALO CORPORA Tel: 716/684-8060, Fax:	TE CENTER 716/684-084	1 368 Pleasan 14	it View Drive	, Lancaster, New `	íork 14086		
		WEL	L PURGE &	SAMPLE R	ECORD			
Site Name/I	ocation: Carroll Town	n Landfill, F	rewsburg, N	IY		Well ID:	MWIO	4
EEEPC Pro	ject No.:					Date:	9.11.	14
Initial Denth	to Water: 5:58	feet TOIC			S	tart Time:	090	<u>s</u>
Total W	ell Depth: 21.52	feet TOIC			E	End Time:	୯ମ୍ବଟ	30
Depth	to Pump:	feet TOIC				Bailer	ĽÍ.	Pump
Initial Pu	Imp Rate: Sound Im	Lpm / gpm			Pu	imp Type:	Typh	<u></u>
a	ljusted to:	at		minutes	Well	Diameter:	<u>_2 _</u>	inches
a	djusted to:	at		minutes	1x We	Il Volume:	2.5	gallons 🗶 🏂 😑
	Purae Volume:	DH.	Temp.	. ORP	Conductivity	DO	Turbidity	Water
Time	(gallons/liters)	(s.u.)	(°C/°F)	(mV)	(µS/cm mS/cm)	: (mg/L)	(NTÚ)	Level (feet)
090	5 0.0	7.93	13.0	-222	334.8	· *******	28	6.96
2.091	0 1gotton L	7.82	11.60	-212	333.2		11.4	8.71
110915	3. Supplierel	7.77	12.7	-m	336.1		519	12.61
Jari	3.06	1.18	112	<u>~141</u>	337.60		345	14.01
6925	7.50	7.84	12.4	-120	338.1		71.2	15.48
9:30	10.00	1.84	12.4	-187	3284		94.6	\$7.52
1		DC	4					· · · · · · · · · · · · · · · · · · ·
			<u> </u>	 	· · · · · · · · · · · · · · · · · · ·		ļ	
	·		·					
		-	L	·		l 		
					· · · · · · · · · · · · · · · · · · ·			
•		· .						
						ļ		
Fi	nal Sample Data:	7.87	n.(-140	336.2	-	75.7	12.42
Sample	D. Mislicel	CEAL		Duplicate		e Samp ID:		
Sample '	Time: 9.11.14	1202		MS/MSD?		·		
		Commont	- 	- 1 .1.	· (·			
	S: Methods:	Comments	. <u> </u>	with h	normell	207		
	Cs	<u>`</u> /~^	T oblis	with the				· · · · · · · · · · · · · · · · · · ·
	Drink. Wtr.	ŭ	Ppm ~	- disch	orge to	non	<u>م</u>	. <u></u>
😡 Meta	ls 🗆		-11		5	0		
□		Sampler(s):	Lalmbe	uch Lle	reil		
			-		1			

17

\$

P	ecology a	Sts in the Envi	VI ION	ment	engine	ering	5, p.c.	
	BUFFALO CORPOF Tel: 716/684-8060, Fa	RATE CENTE ax: 716/684-08	R 368 Pleasa 344	int View Driv	e, Lancaster, New	York 14086	3	
		WE	LL PURGE &	SAMPLE	RECORD			
Site Name/I	ocation: Carroll To	wn Landfill,	Frewsburg,	NY	·····	Well ID:	_MW10	55
EEEPC Pro	oject No.:					Date:	9-9-	14
nitial Depth	to Water: 5,44	feet TOIC			:	Start Time:	151	٦
Total W	ell Depth: 19.33	feet TOIC				End Time:	153	33
Depth	to Pump:	feet TOIC				Bailer		Pump
Initial Pu	imp Rate: 1. O	(Lpm)/gpm			Р	ump Type:	Typh	7007
ad	ljusted to:	at		minutes	Wel	Diameter:	- U	inches
ad	justed to:	at		minutes	1x We	ell Volume:		gallons
Time	Purge Volume	pH /sul	Temp.	ORP	Conductivity	DO (mall)		Water
1517	6 Q	8.04	15.6	3	293.5		51000	
1519	1.0L	8,03	14.3	9	295.9		71000	
1521	4.01	8,05	12.9	21	292.6		TIOND	
1524	8.01	8.05	11.8	5	292.4		GOOIS	····
1527	12.04	8.03	11.2	22	309.8		71000	
1530	> 16.02	8.03	12.2	-1.7	316.5		שטול	
			Drup	1533				
	- Sanan de a la finite d'Adman Carlo e son de la de al antidad de		26					
					74. 1			
								••
Fina	Il Sample Data:	7.2 (14.5	249	352.3		74	4-96
Sample ID Sample Tir	: <u>MW105S-</u> ne: <u>9110114 08</u>	<u>SEP14</u> 35	•	Duplicate? MS/MSD?	Dupe	Samp ID:	•	
<u>Analyses:</u>	Methods:	Comments:	NO pid	Render	Dans, water	dunse	d he gra	und
VOCs				ì	1 8-	T T	·····	
□ SVOCs	□ SW846				•			
🗆 PCBs	🗆 Drink. Wtr.							s.
🕅 Metals	□				1		· · ·	8
□	□	Sampler(s):	LK	alubac	h lloe	11		

	BI Te	JFFALO CORPORA : 716/684-8060, Fax	TE CENTER : 716/684-084	R 368 Pleasa 44	nt View Drive	Lancaster, New	York 14086		
	-		WEL	L PURGE 8	SAMPLE F	RECORD	W	116.112	N 51
Si	te Name/Łoc	ation: Carroll Tow	n Landfill, F	rewsburg, l	NY	•	Well ID:		<u>, 165</u>
E	EEPC Projec	t No.:	<u> </u>	<u> </u>		···	Date:	9.10.	14
Ini	tial Denth to	Water: 5.24	feet TOIC	м. С		S	tart Time:	152	1
	Total Well	Depth: $22.(a)$	feet TOIC				End Time:	Typho	1541
	Depth to	17.61 Pump: 27.6+	feet TOIC				Bailer	\heartsuit	Pump
	Initial Pum	Rate: 550 mu	Lpm / gpm			P	ump Type:	Typha	<u></u>
	adiu	sted to:	at		minutes	Well	Diameter:	2	inches
	adiu	sted to:	at		_ minutes	1x We	ll Volume:	2.8	gallons ¥3
E		Purne Volume	DH	Temp	ORP	Conductivity	DO	Turbidity	Water
	Time	(gallons/liters)	(s.u.)	(°C/°F)	(mV)	(µS/cm mS/cm)	. (mg/L)	(NTU)	Level (feet)
	152	0,0 L	8.02	14.8	-161	331.2	· ·	71000	7.94
	1526	2.756	7.97	12.6	-159	343.4		147	10.00
[1529	4.40 L	7.97	(2.1	-158	342.7		69.0	12.01
	1534	5.075	2.95	12.6	-146	343.8	,	81.4	14.00
	1539	9.90L	7.93	12.0	-112	343.2		131	18.30
	(A			DRY	P 15	41			
				·	<u> </u>				
								ļ	
	۰						<u> </u>		1
							<u> </u>	100	1.20
14	<u>}</u>		8.17	15.6	90	353.9		17.8	6.30
45	\. 					<u> </u>		<u> </u>	
									1
	Final	Sample Data:		<u> </u>					<u></u>
	Sample ID:	MW 1065-	-SEP14		Duplicate	? 🗋 🛛 Dup	e Samp ID:		·····
	Sample Tin	ne: 4.11.14	0845		MS/MSD'	? 🛛			
	Analyses.	Methods:	Comments	s: Sa	mole tal	con by bails	x on c	1.11.1t al	- 0845
	VOCs		φ	pm at	disch	matro	pound	ι	•
	□ SVOCs	□ SW846		1		0	J 		<u> </u>
	🗆 PCBs	🗆 Drink. Wtr.							
	171 Motole	п							<u></u>

	ec. Intern	ology an ational Specialists	in the Enviro	VITONI Inment	nent	engin	leering	, p.c.	
B	BUFF Tel: 7	ALO CORPORA 16/684-8060, Fax:	TE CENTER 716/684-084	368 Pleasan 4	t View Drive,	Lancaster, I	New York 14086	5	
			WEL	L PURGE &	SAMPLE R	ECORD			•
Site Name/	Locatio	on: Carroll Town	n Landfill, Fr	rewsb <u>urg, N</u>	IY		Well ID:	MW107	<u>S</u>
EEEPC Pro	oject N	lo.:		<u></u>			Date:	9.10	<u>-1</u>
							Ctart Time:	131	6
Initial Depth	to Wa	iter: <u>4,99</u>	feet TOIC				Start Time.	12:3	
Total W	/ell De	pth: <u>22.50</u> t	feet TOIC					<u></u>	Pump
Depth	n to Pu	mp: 17.50	feet TOIC				L Baller	A.	Pump
Initial P	unip R	ate: 250 mc	Lpm / gpm				Pump Type:	- Tuph	<u>nen</u>
· a	djusted	d to:	at _		minutes		Well Diameter	<u>d</u>	inches
a	djusted	d to:	at 🔔 _		minutes	1	x Well Volume	:	gallons
		Purge Volume	pH	Temp.	ORP	Conductiv	vity DO	Turbidity	Water
Time		(gallons/liters)	(s.u.)	(ºC/ºF)	(mV)	(µS/cm mS	cm) . (mg/L)	(NTU)-	Level (feet)
1310)	0,0 L	8.08	10.8	-122	355.	1	129	
1315	5	1.25 L	7.81	11.8	-142	358.	2 -	66.0	12.16
1320	0	2.50L	7.80	12.2	-149	360.	2 -	57.9	13.28
1376	5	3,751	7.79	12-1	-128	3 59.	3 -	71000	14.05
133	5	5.001	7.79	11.1	-108	362,	5 -	71000	15.69
1372	5	1,251	7.70	10.5	-108	377,	1 -	71000	19.31
<u> </u>	<u>, , , , , , , , , , , , , , , , , , , </u>			NOJ	Q 123	1			
•••••					C	-1			
					<u> </u>				
								+	
'	<u> </u>				<u> </u>	·			
	·				<u> </u>				
		. <u></u>	<u></u>						<u> </u>
			<u> </u>	ļ		 			<u> </u>
4			L	ļ					
			<u> </u>			ļ			
Fi	nal Sa	mple Data:			<u> </u>				
					Duplicate?		Dune Samp ID	:	
Sample	ID:	MWIDIS-	5014	-	MS/MSD2	Π	Bube comp :-		<u></u> ,
Sample	lime:	9.10.14 1	50.5		1010100	,		,	
Analyse	<u>s:</u>	Methods:	Comments	: <u> </u>	pmot	<u>dische</u>	raet of	I KAR	
ø voc	S		<u></u>	ample !	<u>collecte</u>	d by	barles,	<u> </u>	<u></u>
	Cs	□ SW846	-9/10	14. N	ot eno	ngh v	oune t	or wal	<u>дааб"</u>
	s	🗆 Drink. Wtr.	- qua	<u>eizy p</u>	arame	Lazz.			
🔀 Meta	ıls	□	<u> </u>			. 1			
□		۵	Sampler(s)	::	<u>IKamb</u>	uen L-R	oedl		

	BU Tel:	FFALO CORPORA 716/684-8060, Fax	TE CENTER : 716/684-08	t 368 Pleasa 44	nt View Drive	, Lancaster, Ne	w York 14086	5		
			WEL	L PURGE &	SAMPLE F	RECORD				
S	iite Name/Loca	tion: Carroll Tow	n Landfill, F	rewsburg, I	۱Y		Well ID:	MW108	<u>s </u>	
E	EEPC Project	No.:					Date:	9-1	1.14	
	10-1 D 15 4- 14	Intern 11 mil	feet TOIC	м.	-		Start Time	10	5 3	
IN	Itial Depth to V						End Time:	10	18	
	Dopth to P	Peptin: <u>AXXII</u>				Ľ	Bailer		Pump	
	Initial Dump	Pata: 500mL				_	Pump Type:	Tuch	201	
	initial Pump	ndie:	_cpin / gpin		minutes	w	ell Diameter:	2	inches	1
	aujust	ed to:	at		minutes	1x \	Vell Volume:		gallons	
I	-			Tomp	APP	Conductivit		Turbidify	Water	
	Time	(gallons/liters)	рн (s.ü.)	(°C/⁰F)	(mV)	(µS/cm mS/cn	n) (mg/L)	(NTU)	Level (feet)	
	1003		7.13	12.4	-178	1008		ססטול	7.57	
	1008	2.5	7.11	13.1	-147	998,1		71000	10.07	
	1013	5.0	7.12	13.3	-144	1 010		710000	13.25	
	1016	6.5	1.13	13.8	142	993.8		71000	15.69	
				- pry	Lt 1018					
										-
										-
								· ·		4
									· · · ·	4
										-
	·.									4
				plt	Temp	orp	Cond	hrb	With	-
	Final S	ample Data:		7.22	13.1	- 136	1654.8	30	9.31]
	Sample ID:	MALLOBS-	SEPIL		Duplicate?	р 🗖 🛛 р	upe Samp ID:			_
	Sample Time	: 9.11.14	1120	-	MS/MSD?					
	<u>Analyses:</u>	Methods:	Comments		bottom	of well.				-
	🕰 VOCs		chp	pm at a	tischar	get of	ound			-
	□ SVOCs	🗆 SW846		. Seu	mplus !!	by bails	wat_1	120	· · · · · · · · · · · · · · · · · · ·	-
		Drink. Wtr.				<u>. </u>				_
	A Metals				1 1/ 6	1	Qnad			-
	, □	П	Sampler(s)	:	L-Kall	soach 11	- week	~		

,

Ì

.

В	BUFFALO CORPOR el: 716/684-8060, Fa	ATE CENTER x: 716/684-084	368 Pleasar 4	nt View Drive	, Lancaster, New	York 14086		
		WEL	_ PURGE &	SAMPLE R	ECORD			• •
e Name/Lo	ocation: Carroll Toy	wn Landfill, Fr	ewsburg, N	1Y		Well ID:	MWIO	95
EEPC Proie	ect No.:				. <u></u>	Date:	9-9	-14
-		,,		_				
ial Depth to	Water: 1,42	_feet TOIC			5	tart lime:	<u> </u>	
Total Wel	Depth: 23.07	_feet TOIC			-	End lime:	<u>124</u>	<u>D</u>
Depth to	o Pump: 17.07	feet TOIC			Ľ	Baller		Pump
Initial Purr	np Rate: 400	Epm / gpm			Pu	ımp Type:	Typh	<u>10000</u>
adju	usted to:	at		minutes	Well	Diameter:	a	inches
 adju 	usted to:	at		minutes	1x We	II Volume:		gallons
	Purge Volume	рH	Temp.	ORP	Conductivity	DO	Turbidity	Water
🖉 Time	(gallons/liters)	(su)	°C/⁰F)	(mV)	(µS/cm mS/cm)	.:(mg/L)		
1147	0.0	1.82	16.0	104	386.6		21.1	1.24
1151	1,10 L	7.82	13.9	116	374.0		27.6	7.27
1156	3.62	7.79	12.3	155_	340,1	·	23.7	5.40
1200	6.0L	7.80	12.7	123	381.5		17.0	8.91
1205	5 8.0L	7.82	11.6	163	373.4		17.7	11.19
1210	10.0L	7.81	12.0	135	354.7		37.3	14.20
1215	· 12.0L	7.85	11.9	105	375,9		36.6	15.49
1220	HIOL	7.80	11.7	103	379.5		29.8	15.82
1225	16.0L	7.81	10.8	105	388.2	-	78.3	17.44
			<u>a</u> —	RY -			·	
				RI	230			
· · · · · · · · · · · · · · · · · · ·							. <u>.</u>	
Fina	I Sample Data:			(<u> </u>
			,			0		
Sample ID	MW1095-	56914	-	Duplicate	, 🗆 🗆 Dub	e Samp ID:		
Sample Tir	me: <u>9.9.14</u> 17	245	-	MONNOD				
<u>Analyses:</u>	<u>Methods:</u>	Comments:	Well F	wonped	dry. San	ple co	lected	by
🛛 VOCs		<u>bailer</u>	cat 12	45. No	<u>t enough ve</u>	sume	-tox u	sater qu
	s □ SW846	·	<u> ppm</u>	at dise	charge to	grown	<u></u>	
E PCBs	🗆 Drink, Wtr.	-	·		····-			·····
L1003								

2

	L	بر Interr	ulogy al	nd en s in the Enviro	viron1	nent	engine	ering	, p.c.	
	ΓĘ.	BUF	FALO CORPORA		1 368 Pleasan	t View Drive	, Lancaster, New	York 14086		
		161. 7	10/084-8000,1 ax	WEL	L PURGE &	SAMPLE F	ECORD			-
Site	e Name/	Locati	on: Carroll Tow	n Landfill, F	rewsburg, N	IY		Well ID:	MWII	05
FF		niect N	io.:					Date:	9.9.	14
		-,						-		
Initia	al Depth	to Wa	ater: <u>5,74</u>	feet TOIC	м.	-	:	Start Time:	14	36
	Total W	ell De	pth: <u>22,69</u>	feet TOIC			_	End Time:	150	0
	Depth	ι to Pu	Imp:	feet TOIC				Bailer		Pump
•	Initial Pu	ump R	ate: <u>300 m∟</u> r	Lpm / gpm			P	ump Type:	Typher	1
	a	djuste	d to:	. at		minutes	Wel	l Diameter:	<u> </u>	inches
	a	djuste	d to:	at		minutes	1x W	ell Volume:		gallons
			Purge Volume	ЮН	Temp	. ORP	Conductivity	DO	Turbidity	Water
	Time		(gallons/liters)	(s.u.)	(°C/°F)	(mV)	(µS/cm mS/cm)		(NTU)	Level (feet)
	1436	<u> </u>	0.0 L	8.04	12.4	-79	315.5	· · · · · · · · · · · · · · · · · · ·	> 1000	5.64
	1241	. 144	1 1.5L	8.02	12.1	-63	315.1	<u> </u>	21000	13.15
	144(e	3,0 L	8,05	12.5	- 41	305.6		71000	15.41
	145	1	4.5L	8,03	11.7	-44	316.4		>1000	19.19
					Dryp	1452	······			
			<u></u>							
		-								
Γ										
Γ										
		-	<u>Harter</u> der							
-				+		-				
	Fir	nal Sa	mple Data:	7.91	15.9	18=4	319.9		71000	4.61
e	Sample I	D:	NWILOS-S	CP14	•	Duplicate?	Dup	be Samp ID:		
S	' Sample T	- Fime:	9.10.14	09.00	•	MS/MSD?				
,	Analysee		Methods:	Comments	Diplan	Rent.	, cu Mis	· has	Dura of	- spand
<u>^</u>		<u>, ,</u>		(Vilenal	The S.	unlo a	9-10.14	e with	in 24 h	ry al
6 1		Cs	□ SW846	Smith	15- 9 Porce	y				
		;	🗆 Drink, Wtr.	<u> </u>	170	/				
į	📈 Metal	s	□							
	_ 		□	Sampler(s)	<u>L</u> .	Kalm	bird, C	, Rica	٩	

	International Specialist	s in the Enviro	onment 1 368 Pleasan	t View Drive,	Lancaster, New Y	íork 14086		
U	Tel: 716/684-8060, Fax	: 716/684-084	14 					
		WEL	L PURGE &	SAMPLER	ECORD		44441115	2
Site Name/	Location: Carroll Tow	n Landfill, F	rewsburg, N	Y		Weirid: -		<u>,</u>
EEEPC Pro	oject No.:					Date: -	<u> </u>	9
Initial Depth	to Water: 4.64	feet TOIC	n.	•	S	tart Time:	1000	>
Total W	/ell Depth: 18.05	feet TOIC			ł	End Time:	100	8
Denth	to Pumo:	feet TOIC				Bailer	K)	Pump
· Initial B	um Pate: 7 mm/n	in / apm			Pu	ітр Туре:	Tuphe	m
	dilucted to: 500 MM	in gpm	1005	minutes	Well	Diameter:	20	inches
a	djusted to: <u>300 1</u>	- ^{, al} ,		minutes	1x We	ll Volume:		gallons
e 6						DO	Turbidity	Water
	Purge Volume	рН		ORP.	(us/cmms/cm)	(ma/L)	(NTU)	Level (feet)
		7.62	16.5	232	497.6		51000	
1000	35	752	14.9	118	500.7		7100-0	10.23
1005		7.07	14.7	151	<u><u> </u></u>		21000	12,50
100	<u> </u>	1.01	NOV C	101				
			DETE	ω_{0}				
				· · - · · · ·				
		<u> </u>	<u> </u>					
	-	·	· · · ·					
		<u> </u>					i	
ļ		<u> </u>						
	·		<u> </u>					
			<u> </u>	ļ				
						ļ	· · · · ·	
\				<u> </u>		<u> </u>		
							<u> </u>	
Fi	nal Sample Data:			<u> </u>				<u>.</u>
	10. M. MUG C	Coul		Dunlicate?	Duo Duo	e Samo ID:		
Sample				MS/MSD?		,	.	5
Sample	1 me. <u>4 16.14</u>	Ποφ					с <i>и</i>	E-C
<u>Analyse</u>	s: Methods:	Comments	: <u>Sanu</u>	ple coll	<u>e chect witter</u>	a baile	x at 11	<u> </u>
	s 🗆 CLP		4 ppm o	<u>at dis</u>	chorge T	2 grin	$n \alpha = t$	Tacs
	Cs 🗆 SW846	<u>Not</u>	enough	Volum	- pr w	and t	and a contract	
	s 🗆 Drink. Wtr.	<u> </u>	samp	ng.				
ps-Meta ⊡		Complete	<u></u>		110000		······································	
	U	sampier(s) <u>UKAL</u>	- Mainter	1 Livear			···

١

e Name/Loca EPC Project		14/27	· · · ·			1011111000	· ·	4
e Name/Loca EEPC Project	e > • • • • • •	WE	LL PURGÉ	& SAMPLE	RECORD		51 ¹ (16	~ ~
EEPC Project	tion: Carroll Tow	/n Landfill, I	Frewsburg,	NY		Well ID:	MW-10.	<u>LL</u>
	No.:	, <u> </u>				Date:	9-9	- 14
ial Denth to W	later: 1.09	feet TOIC			S	Start Time:	099	n
Total Well D	enth: 45,49	feet TOIC				End Time:	11:2	2
Denth to P	umo: 40.49	feet TOIC				Bailer	Ø	Pump
Initial Pump	Rate: YOO MIS/P	ernin Inm/anm			P	ump Type:	Typhon	re la companya de la comp
quib ribuin	ed to: 500m/s/20	nmin at	9:17	minutes	Well	Diameter:	2	inches
adjust	ed to: 1000 ms ms	at	10.02	- minutes	1x We	ll Volume:	7.2	gallons \$ 3 : 21
			Tomo	- OBB	Conductivity	DO	Turbidity	Water
Time	(gallons/liters)	(s.u.)	(°C/?F)	(mV)	(µS/cm mS/cm)	(mg/L)	(NTU)	Level (feet)
58509:02	Ô,C	7.64	12.0	107	414.2	<u> </u>	28	1.09
10:112 Sto	4.02	7.64	11.8	108	425.2		119	1.09
10:47717	6.00	7.68	12.3	105	417.6		102.7	1.09
140-19:22	8.5	7.64	12.1	108	417.5	<u>~</u>	98.7	1.09
9:32	11.0	7.60	12,0	109	417.6	~	89.6	1.09
10:02	13.5	7.67	12,4	110	417.7	~	32.9	1.09
1012.	18:0:	7.67	11.2	114	422.1		63.5	1.12
1021	33.0	7.17	11.1	113	421.7		60.5	1.12-
10:31	33.0	7.67	111	118	408.6		9.05	1.12
10,41	43.0	7.70	12.1 /	112	409.2	·	9.43	1.12
10:51	53.0	7.68	123	108	405.5		9.45	1.12
1/:61	63.0	7.CR	11.9	110	407.1	•	4.89	6.12
jr.ji	73.0	7.69	11.9	110	406.1	<u> </u>	4.(1	1.12
11:21	83.0	7.69	11.9	110	406.3	-	4.98	112
			-9					
 Final S	ample Data:	7.69	11.9	110	406.3		19.98	1.12

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		cology an mational Specialists	in the Enviro	viron)	ment	enginee	ring	, p.c.		
WELL PURGE & SAMPLE RECORD Site NameLocation: Carroll Town Landfill, Frewsburg, NY Well ID: $MW107$ Date: $9.10.14$ LOC 30 TY, 0009, 01 Date: $9.10.14$ Date: $9.10.14$ Date: $9.10.14$ Date: $9.10.14$ Date: $9.10.14$ Depth to Water: 5.65 feet TOIC End Time: 13.18 Depth to Pump: 91.66 feet TOIC Depth to Pump: 91.66 feet TOIC adjusted to:	BUI Tel:	FFALO CORPORA 716/684-8060, Fax:	TE CENTER 716/684-084	1 368 Pleasar 14	nt View Drive,	, Lancaster, New ໂ	′ork 14086			
Site Name/Location: Carroll Town Landfill, Frewsburg, NY Well ID:			WEL	L PURGE &	SAMPLE R	ECORD				
EEEPC Project No.: $1023074.00094.01$ Date: $9.10.14$ Initial Depth to Water: 5.65 feet TOIC Start Time: 13.18 Total Well Depth: 44.60 feet TOIC End Time: 12.18 Depth to Pump: 34.60 feet TOIC End Time: 14.977 Initial Pump Rate:	Site Name/Loca	ation: Carroll Town	n Landfill, F	rewsburg, N	NY		Well ID: _	MWIOT		
Initial Depth to Water: $5 \cdot 65$ feet TOIC Start Time: $13 \cdot 18$ Total Well Depth: $44 \cdot 66$ feet TOIC End Time: $14 \cdot 67$ Depth to Pump: $3 \cdot 66$ feet TOIC End Time: $14 \cdot 67$ Initial Pump Rate:	EEEPC Project	No.:	100	<u>C 3074</u>	,0009,	0	Date: _	9.10.1	<u>ч </u>	
Initial Depth: $\frac{1}{24}$ ($\frac{1}{40}$) feet TOIC End Time: $\frac{1}{24}$ ($\frac{1}{40}$) Total Well Depth: $\frac{1}{24}$ ($\frac{1}{40}$) feet TOIC Depth to Pump: $\frac{3}{24}$ ($\frac{1}{40}$) adjusted to:		5.65				s	tart Time:	1351	8	
Idea Holo Pump: $\frac{M}{M}$ by feet TOIC Depth to Pump: $\frac{M}{M}$ by feet TOIC Initial Pump Rate: $\int (pm)^{1}gpm$ adjusted to: at	Initial Depth to V	Valer				· E	- End Time:	14:4	17	
Pump Rate:	Dopth to E	Pump: 94 64	feet TOIC				- Bailer	Ø	Pump	
Initial Pullip Name	Deptil to t	Boto: 1				Pu	mp Type:	Typlo	ou	
adjusted to:	miliai Pump	Kale.	at		minutes	Well	Diameter:	1'2"	inches	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	adjust		at .		minutes	1x We	II Volume:	6.3	gallons 🖌 🤉 =	19.0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	aujusi				OBB	Conductivity	- DO	Turbidity	Water	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Time	gallons/liters)	рн (s.u.)	(°C/°F)	(mV)	(µS/cm mS/cm)		(NTU)	Level (feet)	4
13:23 5.0 7.94 10.5 $-13($ 214.2 $ 48$ 5.44 $13:28$ 16.0 7.94 10.7 71.7 317.2 $ 37.4$ 5.56 $13:73$ 15.0 7.94 10.7 71.7 317.2 $ 37.4$ 5.56 $13:73$ 15.0 7.94 10.7 -122 918.1 $ 33.1$ $5.57b$ $17:78$ 20.0 7.94 10.4 -120 314.3 $ 07.7$ 5.56 $13:73$ 25.6 7.96 18.2 -121 314.6 $ 15.9$ 5.56 $13:73$ 25.6 7.96 18.2 -124 314.6 $ 15.9$ 5.56 $13:74$ 35.0 7.97 10.2 -114 313.2 14.2 5.56 $14:14$ 55.0 7.97 10.2 -117 312.4 -14.4 5.56 $14:14$ 55.0 7.97 10.2 -117 <t< td=""><td>13:18</td><td>0</td><td>2.94</td><td>10.8</td><td>-140</td><td>321.2</td><td>ر</td><td>1000</td><td>5.81</td><td></td></t<>	13:18	0	2.94	10.8	-140	321.2	ر	1000	5.81	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	13.23	5.0	1.94	10.5	-13(314.2		48	5-44	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	13:28	10-0	7.94	10.7	717	317.2		37.4	5.56	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	13:33	15.0	2.94	10.3	-122	218 el	-	33.1	5-56	_
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	12:38	20.0	7.96	10.4	-120	314.3	-	27.7	5.56	4
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1)43	25.0	7.96	18.2	-121	314.6		15.9	5.56	_
13.54 35.0 7.98 102 -114 313.2 14.2 5.56 14.94 45.0 7.98 18.2 -118 318.1 -16.5 5.56 14.14 55.0 7.97 18.2 -117 313.4 -14.1 5.56 14.14 55.0 7.97 18.2 -117 313.4 -14.1 5.56 14.24 65.0 7.97 18.2 -117 313.4 -14.1 5.56 14.24 65.0 7.97 18.2 -110 314.5 -8.95 5.56 14.34 25.0 7.97 10.2 -117 314.3 -8.64 5.56 14.34 25.0 7.97 10.2 -117 314.4 -1.55 5.56 14.34 80.0 197 10.2 -117 314.4 -1.55 5.56 Final Sample Data: 7.97 10.2 -117 314.4 -8.55 5.56	,2:49.	36.0	7.28	10.1	-119	315.0		17.8	5.56	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	13:54	35.0	7.98	10.2	-114	313.2		14.2	5.56	-
$\frac{142}{14} \frac{55.0}{142} \frac{197}{16.2} \frac{10.2}{117} \frac{117}{313.4} \frac{313.4}{-14.4} \frac{-14.4}{5.56} \frac{5.56}{5.56}$ $\frac{142}{142} \frac{142}{142} \frac{10.2}{14.4} \frac{110}{10.2} \frac{111}{117} \frac{114.3}{14.4} \frac{-14.6}{-14.55} \frac{110}{5.56} \frac{111}{14.4} \frac{110}{-14.4} \frac{110}{-14.4} \frac{110}{-14.4} \frac{110}{-14.5} \frac{110}{-14.4} \frac{110}$	14:04	45.0	1.98	18.2	-118	318.1		16.5	5-56	4
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	14.14	55.0	7.97	10.2	-117	313.4		14.(5.56	_
$\frac{1434}{1434} \frac{250}{80.0} \frac{7.97}{191} \frac{10.2}{10.2} -\frac{117}{117} \frac{314.3}{214.4} - \frac{8.64}{9.55} \frac{5.56}{5.56}$ $\frac{1434}{14344} \frac{80.0}{191} \frac{191}{10.2} \frac{10.2}{-117} \frac{214.4}{214.4} - \frac{8.55}{5.56} \frac{5.56}{5.56}$ Final Sample Data: 7.97 10.2 -117 314.4 - 8.55 5.56	14 24	65.0	7.97	10.2	-116	314.5		8.95	5.56	
$\frac{14.94}{19.9} = \frac{80.0}{19.0} = \frac{19.1}{10.2} = \frac{117}{117} = \frac{114.4}{14.4} = \frac{14.55}{14.55} = \frac{5.56}{5.56}$ Final Sample Data: 7.97 10.2 = 117 314.4 = 8.55 5.56 Duplicate? The Dupe Samp ID: MW107I - SEP14-FD	14 34	250	7.97	10.2	-117	314.3		8.64	5.56	-
Final Sample Data: 7.97 10.2 -1(1) 314.4 - 8.55 5.5 % Our la Dia Main Geo 111 Duplicate? Dupe Samp 1D: MW107I-SED14-FD	1444	80.0	191	10.2	-117	314.4		4.55	5.56	
Final Sample Data: 7.97 10.2 -1(7) 314.4 - 8.55 5.5 % Duplicate? Dupe Samp ID: MW107I-SEDI4-FD	1						ļ		<u> </u>	4
Final Sample Data: 7.97 10.2 -1(7) 314.4 - 8.55 5.56 Oundicate? Duplicate? Dupe Samp ID: MW107I-SEP14-FD							<u> </u>			4
Duplicate? Duple Samo ID: WW107I-SEP14-PD	Final	Sample Data:	7.97	10.2	-117	314.4		8.55	5-5 %	
		Mi lan Can'	iti.		Duplicate	? 🗹 - Dup	e Samp ID:	NWIOJI	-SEPIH-F	~D
Sample ID: MO (81 52) (91 Sample Time: (4) 41	Sample ID: Sample Time	e: (4:47		_	MS/MSD7	2 🗆				
Analyses: Methods: Comments: Opphi on fluggacter Dunged to ground	Analyses:	Methods:	Comments	: Sppm	on few	reactor Do	and	to grow	<u>~</u>	
							<i>"</i>			<u> </u>
		□ SW846							· · ·	_
PCBs Drink. Wtr.	□ PCBs	🗆 Drink. Wtr.								
Metais	🖉 Metais	□	<u> </u>		Mul			<u> </u>		_
Sampler(s): <u>Liberty</u> Likausser		_ D	Sampler(s	;): <u> </u>	- Pour (/Lham			<u></u>	

BUFI Tet: 7	FALO CORPORAT 16/684-8060, Fax:	TE CENTER 716/684-084	368 Pleasan 4	t View Drive,		UIK 14050		
		WEL	L PURGE &		CORD	Well ID:	MN1108	I
e Name/Locati	on: Carroll Town	Landfill, Fi	rewsburg, N	IY	;	Date:	9.11.1	4
EEPC Project N	lo.:					-	<u> </u>	
ial Deoth to Wa	ater: 3,99f	eet TOIC		-	SI	art Time:	10:0	<u>(</u>
Total Well De	opth: 41.33 f	eet TOIC			· E	ind Time:	11.4	<u>له</u>
Depth to Pu	ump:f	ieet TOIC				Bailer	j21	Pump
Initial Pump F	Rate: 800 mlspo	ւ <i>տտ</i> Lpm / gpm			Pu	mp Type:	_Typh	50p
adjuste	d to: 600ml	at	10:10	minutes	Well	Diameter:	_2	inches
adjuste	ed to: 1000mbs	at	10:55	minutes	1x We	I Volume:	7.0	gallons (3 =
	Purge Volume	oH 🖉	o Temp.	ORP	Conductivity.	DO	Turbidity	Water
Time	(galtons/liters)	(s.ü.)	(°C/°F)	((Wm))	(µS/cm mS/cm)	(mg/L)		C 2 5
(6:01	.0	7.88	(2.6	-177	450,6		71000	0.03
10:05	Ч L.	7.74	1.2	-165	543.7		1000	730
10:10	86	7:73	11.5	- 16	546.3		21000	(101)
10:15	112	7.69	11.1_	-162_	992.4		160	780
10:05	[7] (7.77	(1.5	135	9712.9		137.0	1.00
10:35	236	7.18	11.1	# 140	436.3		10.24	1.10
10:45	296	1.80	11.1	-147	455.3	reen.	7.90	074
11:55	356	700	11-1	<u> 140</u>	454.1-		4.86	160
11:05	.41C.	130	161_	- 13 1	435.1		7.75	7.48
11:15	4× 541.55	7.79	11-1_	14 2.	43357		2 1	018
(4:25	531-65	7.80	11.1	5171	485.0		2.01	1.68
11.35	5% 75	7.79	11.1	-14	456.0		2 (1)	2.68
11.45	65 85	7-86	11.(-[4]	455.2			
	171							
	· 1/1				1 fela à			766
Final S	Sample Data:	7.80	((.)	- [54]	4 5 Jan		Leifp	
	LINHADT	SCAL	1	Duplicate	? 🔲 🛛 Duj	pe Samp IC):	
Sample ID:	MW1001-	»	<u>,</u>	MS/MSD	? 🛛			
Sample Tink		Common	- Safa	+ lostton	of well			
<u>Analyses:</u>	Methods:	Comment	5. <u></u>	t dise	harge t	0 9(0	und.	
			r n -		<u>J</u> .	0		
	Drink. Wtr.							
⊡ r ∪os N⊒Metals								2
Prototo -	· · · · · · · · · · · · · · · · · · ·	Somplar	el·	1 Valin	bach/Ll	sedl		/

Carroll Towr	WELI	_ PURGE &	SAMPLE R	ECORD	Well ID: _ Date: _	MW110	<u> </u>	
<u>Carroll Town</u>	feet TOIC	ewsburg, N	Y		Well ID: _ Date: _	MW110	Ţ	
3.78	feet TOIC			· · · · · · · · · · · · · · · · · · ·	Date: _	9.9.14		
3.78	feet TOIC							
3.78 1	feet TOIC		-		tert Time:	idl 3		
പലാ				ن ب	and Time:	1430		
<u>44.24</u>	feet TOIC				Bailer	 	Pump	
<u>- 39.52</u>	feet TOIC			 D.			· • • •	
: 600 m-m	Cpm / gpm			PL	imp Type.	_typic	inches	
:	. at _		minutes	Weil	Diameter:	<u> </u>	anlines 2	- 10 0
:	at 😓 -		minutes	1x We	Wolume:	(6.6	galions X 🔿	- 14.1
rge Volume:	рH	Temp	ORP	Conductivity	DO	Turbidity	Water	
llons/liters)	(s.u.)	<u>(°C/?F)</u>	₩(mV)₩	(µS/cm mS/cm)	<u>K(mg/L)</u>		Leventeeue	
U.OL	8.20	12.0	~ 80	31.8		1000	6.40	
3,0 L	8.10	12.2	-114	316.0	• • • • • • • • • • • • • • • • • • •	75	1,40	
6.0 L	8.04	12.9	-101	314.5		· GOTU	69.65	
9.0L	8.02	12.1	99	316.3		71000	17.00	
		DRY 6	<u>1430</u>		· · · · · · · · · · · · · · · · · · ·			
					ļ	ļ	<u> </u>	
						ļ		
					<u> </u>	ļ		-
					<u> </u>	<u> </u>	<u> </u>	-
	1				<u> </u>	L		4
	-							
					-			
			1					
			-					
	770	15.6	119	275.8		42.1	3.3 x	7
	$\frac{600}{100} \text{ m} \text{ m} \text{ m}$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Pump Type: Pump Type: at	Pump Type:yhr at minutes Well Diameter: at	Pump Type:

.

•

	Ô	ec Interr	ology an national Specialists	ICLED V	nment	nent	enginee	ring	, p.c.		
	ΓÇ,	BUF	FALO CORPORA	TE CENTER	368 Pleașar 4	t View Drive,	Lancaster, New Y	'ork 14086			
		1ei, 7	10/084-0000, i ux.	WEL	L PURGE &	SAMPLE R	ECORD				
Site Name/Location: Carroll Town Landfill, Frewsburg, NY								Well ID:	MWILL	Τ	
-T	FEPC Pro	niect N	No.:					Date:	9.10.	14	
-							_		1.0		
Ini	tial Depth	to Wa	ater: <u>4,43</u>	eet TOIC	·.	•	S	tart Time:	102	9	
	Total W	'ell De	epth: 43.01	feet TOIC			E	and Time:		<u>L</u>	
	Depth	i to Pu	imp:	feet TOIC				Bailer	1,254	Pump	
•	Initial P	ump F	Rate: <u>600 m m</u>	Cpm / gpm			Pu	mp Type:	Typher	<u> </u>	
	a	djuste	d to: 1000 - 15 M	· at _	10:36	minutes	Well	Diameter:	<u>2 </u>	inches	
	а	djuste	d to:	at 💡		minutes	1x We	II Volume:	6.2	gallons × S -	18.
			Purge Volume	рН	Temp.	ORP .	Conductivity	DO	Turbidity	Water	
	Time		(gallons/liters)	(s.u.)	(°C/°F)	(mV)	(µS/cm mS/cm)	. (mg/L)	<u>(NTU)</u>	Level (feet)	ł
	1026	2	0,0	7.89	13.8	-5	379.2	. میرو	30,3	4.64	-
X	1036		~2.0	7.93	12.7	-219	371.6		23.8	9.68	-
	104	1	5.0	7.91	13.3	-196	376.2		14.9	4.81	4
	10:40	6)0.0 L	7.92	13.2	-163	382,6		8,98	4.85	$\left \right $
	10.5	(15.06	7.92	12.0	-139	371.2	نی ر.	5.13	4.86	4
	10.5	6	20.0L	7.92	12.0	-121	369.0		3.63	4.87	_
	11.0	1.	25.0L	7.91	12.0	-121	371.3		3.04	4.87	-
	11.0	6	30.0L	7.91	12.0	-112	367.4		2.41	4.87	1
	111	1	35.0L	7.91	12.1	-122	370.5		2.38	4.87	
	112	1	45.01	7.92	12.1	-124	371.0		2.18	4.87	
	113	1	55.0L	7.92	11.2	-125	369.2	-	1.67	4.87	Ţ
	114	 1	65.04	7,92	11.7	-128	369.5		2.30	4.87	
	115	<u>`</u>	75.0L	7.41	1.7	- 122	369.5		2.35	4.87	
		•						Ţ			
							······································				
			mple Data:	7.91	11.7	-122	369.5		2.35	4.87	
	[naroa						<u></u>	• •••		
	Sample	ID:	MWILL-	SEP14	-	Duplicate	Dup	e Samp ID:			_
	Sample	Time:	9.10.14	1152	- 161.1	MS/MSD?	محم				
	Analyse	<u>s:</u>	<u>Methods:</u>	Comments	m.con	may ha	5 bullett	holes	throng	hone_	
	K VOC	S		side	skela	nd PVC	cosings.	. PVC	casina	5 shatter	<u>ad</u>
		Ċs	□ SW846	in two	s sechi	ans. #	Adjusting Flow	Rate.			_
		5	🗆 Drink. Wtr.	<u> </u>	ippm at	- disch	me to	grow	入		
	🖉 Meta	ls	•		-				·· ·		
		.	□	Sampler(s)	: <u> </u>	Imbach	1_LKoed!	-			

FÇ ;	BUFFALO CORPORA		368 Pleasar	at View Drive	, Lancaster, New `	York 14086		
\cup	Tel: 716/684-8060, Fax:	716/684-084		SAMPLE F	ECORD			-
						Well ID:	MALIO	9 D
te Name/Lo	ocation: Carroll Town	i Landfill, r	rewsburg, r			Date:	9-9	
EEPC Proj	ect No.:					-	· · · ·	· · · ·
tial Depth t	o Water: 0.91 _1	feet TOIC		-	5	Start Time:	<u> </u>	5
Total We	Il Depth: 73.19	feet TOIC				End Time:	12:30	0
Depth t	to Pump: 68-19	feet TOIC				Bailer	X	Pump
, Initial Put	mp Rate: 1000 nu por	Lpm / gpm			P	ump Type:	Typh	00m
adi	iusted to:	at		minutes	Well	Diameter:	<u></u>	inches
adi	iusted to:	at		minutes	1x W6	ell Volume:	11.7	gallons ¥3
			Temp	ORP	Conductivity	DO	Turbidity	Water
Time	(gallons/liters)	рп (s.u.)	(°C/°F)	(mV)	(µS/cm mS/cm)	. (mg/L)	(NTU)	Level (feet)
11:4X	C d	7.89	19.6	89	379.1	~ ·	56.Y	0.99
11.50	5 A QAlla	2.81	11.6	91	387.8		19,8	0.99
HI JO	12,00 15 0 9 91/10	283	10.4	116	282-2		12,3	0.99
Mar A C	2010	281	10,6	148	387.1	~	9.48	0.99
1000	250	2.81	1.8.1	125	387.2	-	491	1.00
12/10	32.0	281	10.1	96	390.2	-	6-61	1.00
10115	750	781	16.0	92	391.3	-	6.41	1.03
12520	<u> </u>	501	/0.(91	391.8		3.59	1.00
12125	0.0			<u> </u>	/ / ////	1		
		<u> </u>						
						1		
				<u> </u>				
	<u> </u>							
<u> </u>					_ <u>_</u>			
			111		2010		ON	1.00
Fin_Fin	al Şample Data:	180	[0,[16	<u> </u>		3.01	1. 1
Sample II	D: MUH090-9	iso H		Duplicate	? 🗌 🛛 Du	pe Samp ID:	: <u>mw 10°</u>	<u>10-Sep 1</u>
Sample T	ime: 1230		_	MS/MSC	? 🗖			
	Mothods:	Comment	S: MADIN	on De	no watre	Druped.	te grove	J
		Common		<u> </u>				. <u></u> . <u></u>
	S □ SW846							
	Drink. Wtr.							
Metal	s 🛛	·····		<u></u>	t			
v				Ran	& I.Ko-	hbac	h	

			01K 14060	Lancaster, New 1	view Drive,	368 Pleașan 4	TE CENTER 716/684-084	FALO CORPORA	BUF
				ECORD	SAMPLE R	PURGE &	WELI	/ 10/004-0000, r ax.	lei: /
	3	Mw - 1.	Well ID:		Y	ewsburg, N	ı Landfill. Fr	tion: Carroll Tow	o Namell ocat
	N 11, 2014	September	Date:					No :	
	7							,i i i i i i i i i i i i i i i i i i i	EPC Plojecti
	<u> </u>	<u> </u>	tart Time:	St	•		feet TOIC	later: <u>7. 49</u>	ial Depth to W
	0	<u>160</u> .7.	ind Time:	E			feet TOIC	epth: 70,78	Total Well De
	Pump		Bailer		×		feet TOIC	ump: <u>65,78</u>	Depth to Pr
	1001	<u> </u>	mp Type: _	Pu	÷		Lpm / gpm	Rate: 1.8 4m	Initial Pump F
_	inches	<u>d</u> i	Diameter: _	Well	minutes		at _	ed to:	adjuste
- 30.°	gallons x 3 ≔	10.3	I Volume:	_ 1x Wel	minutes		at	ed to:	adjuste
1231	Water	Turbidity	. 00	Conductivity	ORP	Temp.	j pH°∕	Purge Volume	
		<u>(UTV))</u>	(mg/L)	(µS/cm mS/cm)	(mV)	(°C/°F)	(s.u.)	(gallons/liters)	Time
	1.51	71000		378.3	236	11.9	7.95	0.0 L	1456
	1.52	59.0	•===	356.6	150	11.0	7.82	11114 8-1	1506
	7.52	463	-	353,3	127	10.9	7.83	36.0 L	1516
	7.55	25.4	-	351.6	121	10.9	7.82	54.0L	1526
	7.52	11.4		351.4	117	10.9	7.83	72.02	1536
	7.52	8.56		354.9	115	10.9	7,81	90.0L	1546
	7.52	4.41	~	351.7	112	11.0	7.84	108L	1556
	71.52	5.74		352.8	119	10.9	7.82	126L	1666
									10-4
	<u> </u>	ļ	1						
		ļ	L		1			<u> </u>	<u> </u>
		ļ					1		
									·
								<u></u>	<u> </u>
	7.52	5.74		352.8	119	10.9	T.82	Lemple Data:	E11 0
				······································	<u> </u>	<u> </u>		sample Data:	Final S
-	· ··· ···	<u> </u>	e Samp ID:	?∟ Dup	Duplicate	-	14 -	MW13-SEP	Sample ID:
					MS/MSD'	-	1608	<u>9.11.14</u>	Sample Time
		nd.	<u>o grov</u>	icharge +	m at de	: <u> </u>	Comments	Methods:	Analyses:
			_						KA VOCs
<u> </u>				· · · · · · · · · · · · · · · · · · ·				□ SW846	□ SVOCs
-								🗋 Drink. Wtr.	🗆 PCBs
-		·		<u> </u>				□	Metals
			ral	men 1-100	Kalmt): <u> </u>	Sampler(s		п

Ŷ,

...

APPENDIX B

Data Usability Summary Report

Data Usability Summary Report	Project: Carroll Landfill
Date Completed: October 23, 2014	Completed by: Lynne Kalmbach and Marcia Meredith Galloway

The analytical data provided by the laboratory were reviewed for precision, accuracy, and completeness based on applicable sections of the following guidelines.

- NYSDEC Division of Environmental Remediation Guidance for Data Deliverables and the Development of Data Usability Summary Reports (in DER-10, May 2010)
- USEPA Contract Laboratory Program National Functional Guidelines for Superfund Organic Methods Data Review (EPA-540-R-014-002, August 2014)
- USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Superfund Data Review (EPA 540-R-013-001, August 2014).
- EPA Region 2 Data Validation standard operating procedures HW-2a, HW-2b, HW-2c, and HW-24..

Specific criteria for QC limits were obtained from the master QAPP. Compliance with the project QA program is indicated in the checklist and tables below. Any major or minor concerns affecting data usability are listed below. The checklist and tables also indicate whether data qualification is required and/or the type of qualifier assigned.

Reference:

ProjectID	Lab Work Order	Laboratory Report
10C3074.0016.03	480-67030-1	Test America, Buffalo

Work Order	Matrix	Sample ID	Lab ID	Sample Date	MS/MSD	ID Corrections
480-67030-1	WH	FIELDBLANK-SEP14	480-67136-8	09/11/2014		
480-67030-1	WG	MW102I-SEP14	480-67030-3	09/09/2014		MW-102I-SEP14
480-67030-1	WG	MW102-SEP14	480-67030-2	09/09/2014		MW-102-SEP14
480-67030-1	WG	MW103-SEP14	480-67136-6	09/11/2014		MW-103-SEP14
480-67030-1	WG	MW104-SEP14	480-67136-5	09/11/2014		MW-104-SEP14
480-67030-1	WG	MW105S-SEP14	480-67030-8	09/10/2014		MW-105S-SEP14
480-67030-1	WG	MW106S-SEP14	480-67136-2	09/11/2014		MW-106S-SEP14
480-67030-1	WG	MW107I-SEP14	480-67030-11	09/10/2014		MW-107I-SEP14
480-67030-1	WG	MW107I-SEP14-FD	480-67030-12	09/10/2014		MW-107I-SEP14- FD
480-67030-1	WG	MW107S-SEP14	480-67030-13	09/10/2014		MW-107S-SEP14
480-67030-1	WG	MW108I-SEP14	480-67136-3	09/11/2014		MW-108I-SEP14
480-67030-1	WG	MW108S-SEP14	480-67136-4	09/11/2014		MW-108S-SEP14
480-67030-1	WG	MW109D-SEP14	480-67030-4	09/09/2014	MS/MSD	MW-109D-SEP14
480-67030-1	WG	MW109S-SEP14	480-67030-5	09/09/2014		MW-109S-SEP14
480-67030-1	WG	MW110I-SEP14	480-67030-6	09/10/2014		MW-110I-SEP14
480-67030-1	WG	MW110S-SEP14	480-67030-7	09/10/2014		MW-110S-SEP14
480-67030-1	WG	MW111I-SEP14	480-67030-10	09/10/2014		MW-111I-SEP14
480-67030-1	WG	MW111S-SEP14	480-67030-9	09/10/2014		MW-111S-SEP14
480-67030-1	WG	MW13-SEP14	480-67136-7	09/11/2014		MW-13-SEP14
480-67030-1	WQ	TB-01-SEP14	480-67030-1	09/11/2014		
480-67030-1	WQ	TB-02-SEP-14	480-67136-1	09/09/2014		

Table 1 Sample Summary Tables

Data Usability Summary Report	Project: Carroll Landfill
Date Completed: October 23, 2014	Completed by: Lynne Kalmbach and Marcia
	Meredith Galloway

Work Orders	Matrix	Test Method	Method Name	Number of Samples	Sample Type
480-67030-1	WG	524.2	Volatile Organic Compounds by GC/MS	18	N/FD
480-67030-1	WG	504.1	EDB, DBCP and 1,2,3-TCP (GC)	18	N/FD
480-67030-1	WG	200.7	Metals (ICP)	18	N/FD
480-67030-1	WG	200.8	Metals (ICP/MS)	18	N/FD
480-67030-1	WG	245.1	Mercury (CVAA)	18	N/FD
480-67030-1	WH	524.2	Volatile Organic Compounds by GC/MS	1	RB
480-67030-1	WH	504.1	EDB, DBCP and 1,2,3-TCP (GC)	1	RB
480-67030-1	WH	200.7	Metals (ICP)	1	RB
480-67030-1	WH	200.8	Metals (ICP/MS)	1	RB
480-67030-1	WH	245.1	Mercury (CVAA)	1	RB
480-67030-1	WQ	524.2	Volatile Organic Compounds by GC/MS	2	TB

Table 1A Sample Test Summary

General Sample Information	
Do Samples and Analyses on COC check against Lab Sample Tracking Form?	Yes. The sample names were changed as noted in the ID Correction column in Table 1 to maintain consistency in nomenclature.
Did coolers arrive at lab between 2 and 6°C and in good condition as indicated on COC and Cooler Receipt Form?	Yes.
Frequency of Field QC Samples Correct? Field Duplicate - 1/20 samples Trip Blank - Every cooler with VOCs waters only Equipment Blank - 1/ set of samples per day?	Yes. 1 Field Duplicate/17 samples 1 MS/MSD/17 samples 1 Equipment Blank 1 Trip Blank/Cooler
Case narrative present and complete?	Yes
Any holding time violations?	Yes. Sample MW103-SEP14 was analyzed past the 24 hour holding time post extraction. There was no remaining sample to re-extract; therefore, the results were reported. The sample results were non-detect; therefore, they were qualified UJ as estimated.

The following tables are presented at the end of this DUSR and provided summaries of results outside QC criteria.

- Method Blanks Results (Table 2)
- Surrogates Outside Limits (Table 3)
- MS/MSD Outside Limits (Table 4)
- LCS Outside Limits (Table 5)
- Re-analysis Results (Table 6)
- Field Duplicate Results (Table 7)

Data Usability Summary Report	Project: Carroll Landfill
Date Completed: October 23, 2014	Completed by: Lynne Kalmbach and Marcia
	Meredith Galloway

Go to <u>Tables</u> List

Volatile Organics and Semi-volatile Organics by GC/MS	
Description	Notes and Qualifiers
Any compounds present in method, trip and field blanks (see Table 2)?	No
For samples, if results are <5 times the blank or < 10 times blank for common laboratory contaminants then "U" flag data. Qualification also applies to TICs.	No qualifications required.
Are surrogates for method blanks and LCS within limits?	Yes
Are surrogates for samples and MS/MSD within limits? (See Table 3). If not, were all samples reanalyzed for VOCs? Semi-volatile samples should be reanalyzed if more than one base-neutral and/or more than one acid phase compound for semi-volatiles is out. Matrix effects should be established.	Yes
Is laboratory QC frequency at least one blank and LCS with each batch and one set of MS/MSD per 20 samples?	Yes
Are MS/MSD within QC criteria (see Table 4)? If out and LCS is compliant, then "J" flag positive data in original sample due to matrix.	No. Majority of the spiking compounds failed precision between the MS and MSD in MW-109D-SEP14. Overall, the MSD recoveries were higher than the MS recoveries indicating a laboratory spiking error rather than a matrix effect issue. No qualification of the data was made. The MS and MSD for batch 202584 were spiked with primary routine mixes due to analyst error. Bromomethane was recovered high in the MSD for MW-109D-SEP14. The result was non-detect in the parent sample; therefore, no qualification was required.
Is LCS within QC criteria (see Table 5)? If out, and the recovery is high with no positive values, then no data qualification is required.	Yes.
Do internal standards areas and retention time meet criteria? If not was sample re-analyzed to establish matrix (see Table 6)?	Yes
Is initial calibration for target compounds <20 %RSD or curve fit?	Yes
Is continuing calibration for target compounds <30 %D?	Yes
Were any samples re-analyzed or diluted (see Table 6)? For any sample re-analysis and dilutions is only one reportable result by flagged?	Yes. Samples MW-103-SEP14 and MW- 107S-SEP14 were dilute due to elevated concentrations of vinyl chloride. Elevated reporting limits were provided.
For TICs are there any system related compounds that should not be reported?	N/A

Data Usability Summary Report	Project: Carroll Landfill
Date Completed: October 23, 2014	Completed by: Lynne Kalmbach and Marcia Meredith Galloway

Volatile Organics and Semi-volatile Organics by GC/MS						
Description	Notes and Qualifiers					
Do field duplicate results show good precision for all	N/A					
compounds (see Table 7)?	Volatile compounds were not detected					
	in the field duplicate sample.					

Metals by ICP and Mercury by CVAA	
Description	Notes and Qualifiers
Are any compounds present in method and field blanks as noted on Table 2?	Yes. Iron, zinc, manganese, lead and thallium were detected in method blanks. Thallium was detected in several initial calibration blanks (ICB) and continuing calibration blanks (CCB). Antimony was detected in one CCB. Calcium, magnesium, manganese, and lead were detected in the rinsate blank.
For samples, if results are <5 times the blank then "U" flag data.	Sample results for iron, zinc, manganese, lead and thallium that were less than 5X the blank detection were U qualified as elevated non-detect. One sample result for manganese and two sample results for lead were qualified as non-detect due to rinsate blank detections.
Is laboratory QC frequency one blank and LCS with each batch and one set of MS/MSD per 20 samples?	Yes
Are MS/MSD within QC criteria (see Table 4)? QC limits are not applicable to sample results greater than 4 times spike amount. All N flagged data for MS are flagged J as estimated.	No. Manganese was recovered high in the MSD for MW-109D-SEP14 and exhibited poor precision between MS and MSD. The results in the parent sample were J qualified as estimated. Calcium failed the MS/MSD/PDS in samples MW-109D-SEP14 and MW- 108I-SEP14 due to the native concentration being 4X greater than the spiking concentration. No qualifications were required.
Were elements recovered <30%? If so, "R" flag associated NDs on Form 1's.	No.
Is LCS within QC criteria (see Table 5)? If out, and the recovery high with no positive values, then no data qualification is required.	Yes.
Is there one serial dilution per 20 samples? Flag all data reported with an "E" as "J".	Yes.
Spot check ICS recoveries 80-120%. Contact lab.	Acceptable.
Spot check ICV 95-105%. Contact lab.	The % recovery for antimony in ICV 480-202359/6 and 480-202360/6 was

Data Usability Summary Report	Project: Carroll Landfill				
Date Completed: October 23, 2014	Completed by: Lynne Kalmbach and Marcia				
	Meredith Galloway				

Metals by ICP and Mercury by CVAA	
Description	Notes and Qualifiers
	106%. EPA SOP HW-2b allows to 90-
	110% recovery; therefore, no
	qualification of the data was made.
	The % recovery for Antimony in ICV
	480-202577/6 was 107%. EPA SOP
	HW-2b allows to 90-110% recovery;
	therefore, no qualification of the data
	was made.
Spot check CCV 90-110% or 80-120% for Hg. Contact lab.	Acceptable.
Do field duplicate results show good precision for all	No.
compounds (see Table 7)?	Lead exhibited poor precision in the
	field duplicate samples. The results
	were J qualified as estimated.

Summary of Impacts on Data Usability

- Detections of lead, thallium, manganese, iron, and zinc in the method blanks/ICBs/CCBs resulted in low level sample results being qualified as non-detect. This impacts the comparability of data; however, no values were greater than the screening criteria.
- Detections of manganese and lead in the rinsate blank resulted in the low level sample results being qualified as non-detect. This impacts the comparability of data; however, no values were greater than the screening criteria.
- Manganese was J qualified as estimated in sample MW-109D-SEP14 due to elevated recovery in the MSD, which contributed to poor precision between MS and MSD results.
- Lead exhibited poor precision in the field duplicate samples. The results were qualified J as estimated.
- Samples MW-103-SEP14 and MW-107S-SEP14 were diluted for VOC analysis due to vinyl chloride exceeding the calibration curve. Elevated reporting limits are provided.

Data Usability Summary Report	Project: Carroll Landfill
Date Completed: October 23, 2014	Completed by: Lynne Kalmbach and Marcia Meredith Galloway

Table 2 - Positive Results for Blank Samples

Method	Sample ID	Sample Type	Analyte	Result	Qualifier	Units	MDL	PQL
E200.8	4802021691A	MB	LEAD	0.0740	J	ug/l	0.069	1.0
E200.8	4802021691A	MB	THALLIUM	0.0236	J	ug/l	0.0080	0.20
E200.8	4802021721A	MB	THALLIUM		J	ug/l	0.0080	0.20
E200.7	4802023441A	MB	MANGANESE	0.00123	J	mg/l	0.00040	0.0030
E200.7	4802023571A	MB	IRON	0.0238	J	mg/l	0.019	0.050
E200.7	4802023571A	MB	ZINC	0.00201	J	mg/l	0.0015	0.010
E200.8	480202359/7	ICB	THALLIUM	0.0153	J	ug/l	0.0080	0.20
E200.8	480202359/51	CCB	THALLIUM	0.0213	J	ug/l	0.0080	0.20
E200.8	480202359/64	CCB	THALLIUM	0.0244	J	ug/l	0.0080	0.20
E200.8	480202359/77	CCB	THALLIUM	0.0244	J	ug/l	0.0080	0.20
E200.8	480202359/88	CCB	THALLIUM	0.0254	J	ug/l	0.0080	0.20
E200.8	480202360/7	ICB	THALLIUM	0.0135	J	ug/l	0.0080	0.20
E200.8	480202360/12	CCB	THALLIUM	0.0131	J	ug/l	0.0080	0.20
E200.8	480202360/24	CCB	THALLIUM	0.0197	J	ug/l	0.0080	0.20
E200.8	480202360/37	CCB	THALLIUM	0.0225	J	ug/l	0.0080	0.20
E200.8	480202360/50	CCB	THALLIUM	0.0193	J	ug/l	0.0080	0.20
E200.8	480202577/7	ICB	THALLIUM	0.00900	J	ug/l	0.0080	0.20
E200.8	480202577/38	CCB	THALLIUM	0.0231	J	ug/l	0.0080	0.20
E200.8	480202577/51	CCB	THALLIUM	0.0179	J	ug/l	0.0080	0.20
E200.8	480202577/64	CCB	THALLIUM	0.0249	J	ug/l	0.0080	0.20
E200.8	480202577/64	CCB	ANTIMONY	0.182	J	ug/l	0.15	1.0
E200.7	FIELDBLANK-SEP14	RB	CALCIUM	0.20	J	mg/l	0.50	0.50
E200.7	FIELDBLANK-SEP14	RB	MAGNESIUM	0.044	J	mg/l	0.20	0.20
E200.7	FIELDBLANK-SEP14	RB	MANGANESE	0.0017	J	mg/l	0.0030	0.0030
E200.8	FIELDBLANK-SEP14	RB	LEAD	0.070	J	ug/l	1.0	1.0

Data Usability Summary Report	Project: Carroll Landfill
Date Completed: October 23, 2014	Completed by: Lynne Kalmbach and Marcia Meredith Galloway

 Table 2A - Samples Qualified for Method Blank Contamination

Method	Lab Blank	Matrix	Analyte	Blank Result	Sample Result	Lab Qualifier	PQL	Affected Samples	Sample Flag
E200.7	4802023571A	RB	IRON	0.0238	0.054	J	0.050	FIELDBLANK-SEP14	U
E200.7	4802023571A	RB	ZINC	0.00201	0.0026	BJ	0.010	FIELDBLANK-SEP14	U
E200.7	4802023571A	WG	ZINC	0.00201	0.023	В	0.010	MW-104-SEP14	U
E200.7	4802023571A	WG	ZINC	0.00201	0.0083	BJ	0.010	MW-106S-SEP14	U
E200.7	4802023571A	WG	ZINC	0.00201	0.0019	BJ	0.010	MW-108I-SEP14	U
E200.7	4802023571A	WG	ZINC	0.00201	0.020	В	0.010	MW-108S-SEP14	U
E200.7	4802023571A	WG	ZINC	0.00201	0.0033	BJ	0.010	MW-13-SEP14	U
E200.8	480202359/88	WG	THALLIUM	0.0254	0.011	BJ	0.20	MW-102I-SEP14	U
E200.8	480202359/88	WG	THALLIUM	0.0254	0.012	BJ	0.20	MW-102-SEP14	U
E200.8	480202359/88	WG	THALLIUM	0.0254	0.0098	BJ	0.20	MW-109D-SEP14	U
E200.8	480202359/88	WG	THALLIUM	0.0254	0.18	BJ	0.20	MW-109S-SEP14	U
E200.8	480202360/37	WG	THALLIUM	0.0225	0.011	BJ	0.20	MW-108I-SEP14	U
E200.8	480202360/37	WG	THALLIUM	0.0225	0.016	BJ	0.20	MW-104-SEP14	U
E200.8	480202360/37	WG	THALLIUM	0.0225	0.046	BJ	0.20	MW-108S-SEP14	U
E200.8	480202577/51	WG	THALLIUM	0.0179	0.025	J	0.20	MW-107I-SEP14	U
E200.8	480202577/51	WG	THALLIUM	0.0179	0.020	J	0.20	MW-111I-SEP14	U
E200.8	480202577/64	WG	THALLIUM	0.0249	0.042	J	0.20	MW-105S-SEP14	U
E200.8	480202577/64	WG	THALLIUM	0.0249	0.0094	J	0.20	MW-107I-SEP14-FD	U
E200.8	480202577/64	WG	THALLIUM	0.0249	0.024	J	0.20	MW-110I-SEP14	U
E200.8	480202577/64	WG	THALLIUM	0.0249	0.062	J	0.20	MW-110S-SEP14	U
E200.8	480202577/64	WG	ANTIMONY	0.182	0.47	J	1.0	MW-105S-SEP14	U
E200.8	480202577/64	WG	ANTIMONY	0.182	0.33	J	1.0	MW-107S-SEP14	U
E200.8	480202577/64	WG	ANTIMONY	0.182	0.62	J	1.0	MW-110I-SEP14	U
E200.8	480202577/64	WG	ANTIMONY	0.182	0.28	J	1.0	MW-110S-SEP14	U
E200.8	480202577/64	WG	ANTIMONY	0.182	0.23	J	1.0	MW-111S-SEP14	U
E200.8	4802021691A	WG	LEAD	0.0740	0.22	BJ	1.0	MW-109D-SEP14	U
E200.8	4802021691A	WG	LEAD	0.0740	0.27	BJ	1.0	MW-102I-SEP14	U
E200.8	4802021691A	WG	LEAD	0.0740	0.34	BJ	1.0	MW-102-SEP14	U

Data Usability Summary Report	Project: Carroll Landfill
Date Completed: October 23, 2014	Completed by: Lynne Kalmbach and Marcia Meredith Galloway

Table 2B - Samples Qualified for Field Blank Contamination

Method	Field Blank	Matrix	Analyte	Blank Result	Sample Result	Lab Qual	PQL	Affected Samples	Sample Flag
E200.8	FIELDBLANK-SEP14	RB	LEAD	0.070	0.12	J	1.0	MW-108I-SEP14	U
E200.8	FIELDBLANK-SEP14	RB	LEAD	0.070	0.17	J	1.0	MW-103-SEP14	U
E200.7	FIELDBLANK-SEP14	RB	MANGANESE	0.0017	0.0075		0.0030	MW-13-SEP14	U

Table 3 - Samples with Surrogates outside Control Limits

None.

 Table 4 - MS/MSD Recoveries and RPDs Outside Control Limits

Method	Sample ID	Sample Type	Analyte	Orig. Result	Spike Amount	Rec.	Dil. Fac.	Low Limit	High Limit	Sample Qualifier
E200.7	MW-109D-SEP14	MS	CALCIUM	55.2	10.0	58	1	70	130	4X
E200.7	MW-108I-SEP14	MSD	CALCIUM	64.5	10.0	61	1	70	130	4X
E200.7	MW-109D-SEP14	MSD	CALCIUM	55.2	10.0	66	1	70	130	4X
E200.7	MW-109D-SEP14	MSD	MANGANESE	0.10	0.201	139	1	70	130	J Flag
E524.2	MW-109D-SEP14	MSD	BROMOMETHANE	0.50	4.00	132	1	70	130	None

Method	Parent Sample	Analyte	Dil Fac	Unit	RPD	RPD Limit	Qualifier	Sample Type
E200.7	MW-109D-SEP14	MANGANESE	1	mg/l	27	20	J Flag	MS/MSD
E524.2	MW-109D-SEP14	1,1,1,2-TETRACHLOROETHANE	1	ug/l	27	20	None	MS/MSD
E524.2	MW-109D-SEP14	1,1,1-TRICHLOROETHANE	1	ug/l	35	20	None	MS/MSD
E524.2	MW-109D-SEP14	1,1,2-TRICHLOROETHANE	1	ug/l	23	20	None	MS/MSD
E524.2	MW-109D-SEP14	1,1-DICHLOROETHANE	1	ug/l	32	20	None	MS/MSD
E524.2	MW-109D-SEP14	1,1-DICHLOROETHENE	1	ug/l	32	20	None	MS/MSD
E524.2	MW-109D-SEP14	1,1-DICHLOROPROPENE	1	ug/l	36	20	None	MS/MSD
E524.2	MW-109D-SEP14	1,2,3-TRICHLOROBENZENE	1	ug/l	31	20	None	MS/MSD
E524.2	MW-109D-SEP14	1,2,4-TRICHLOROBENZENE	1	ug/l	32	20	None	MS/MSD
E524.2	MW-109D-SEP14	1,2,4-TRIMETHYLBENZENE	1	ug/l	35	20	None	MS/MSD
E524.2	MW-109D-SEP14	1,2-DICHLOROBENZENE	1	ug/l	29	20	None	MS/MSD
E524.2	MW-109D-SEP14	1,2-DICHLOROETHANE	1	ug/l	26	20	None	MS/MSD

Data Usability Summary Report	Project: Carroll Landfill
Date Completed: October 23, 2014	Completed by: Lynne Kalmbach and Marcia
	Meredith Galloway

Method	Parent Sample	Analyte	Dil Fac	Unit	RPD	RPD Limit	Qualifier	Sample Type
E524.2	MW-109D-SEP14	1,2-DICHLOROPROPANE	1	ug/l	28	20	None	MS/MSD
E524.2	MW-109D-SEP14	1,3,5-TRIMETHYLBENZENE (MESITYLENE)	1	ug/l	35	20	None	MS/MSD
E524.2	MW-109D-SEP14	1,3-DICHLOROBENZENE	1	ug/l	31	20	None	MS/MSD
E524.2	MW-109D-SEP14	1,3-DICHLOROPROPANE	1	ug/l	23	20	None	MS/MSD
E524.2	MW-109D-SEP14	1,4-DICHLOROBENZENE	1	ug/l	29	20	None	MS/MSD
E524.2	MW-109D-SEP14	2,2-DICHLOROPROPANE	1	ug/l	29	20	None	MS/MSD
E524.2	MW-109D-SEP14	2-CHLOROTOLUENE	1	ug/l	31	20	None	MS/MSD
E524.2	MW-109D-SEP14	4-CHLOROTOLUENE	1	ug/l	33	20	None	MS/MSD
E524.2	MW-109D-SEP14	BENZENE	1	ug/l	31	20	None	MS/MSD
E524.2	MW-109D-SEP14	BROMOBENZENE	1	ug/l	28	20	None	MS/MSD
E524.2	MW-109D-SEP14	BROMOCHLOROMETHANE	1	ug/l	25	20	None	MS/MSD
E524.2	MW-109D-SEP14	BROMODICHLOROMETHANE	1	ug/l	27	20	None	MS/MSD
E524.2	MW-109D-SEP14	BROMOMETHANE	1	ug/l	36	20	None	MS/MSD
E524.2	MW-109D-SEP14	CARBON DISULFIDE	1	ug/l	36	20	None	MS/MSD
E524.2	MW-109D-SEP14	CARBON TETRACHLORIDE	1	ug/l	33	20	None	MS/MSD
E524.2	MW-109D-SEP14	CHLOROBENZENE	1	ug/l	29	20	None	MS/MSD
E524.2	MW-109D-SEP14	CHLOROFORM	1	ug/l	28	20	None	MS/MSD
E524.2	MW-109D-SEP14	CIS-1,2-DICHLOROETHYLENE	1	ug/l	30	20	None	MS/MSD
E524.2	MW-109D-SEP14	CIS-1,3-DICHLOROPROPENE	1	ug/l	24	20	None	MS/MSD
E524.2	MW-109D-SEP14	CYMENE	1	ug/l	35	20	None	MS/MSD
E524.2	MW-109D-SEP14	DIBROMOCHLOROMETHANE	1	ug/l	26	20	None	MS/MSD
E524.2	MW-109D-SEP14	DIBROMOMETHANE	1	ug/l	26	20	None	MS/MSD
E524.2	MW-109D-SEP14	ETHYLBENZENE	1	ug/l	33	20	None	MS/MSD
E524.2	MW-109D-SEP14	HEXACHLOROBUTADIENE	1	ug/l	36	20	None	MS/MSD
E524.2	MW-109D-SEP14	ISOPROPYLBENZENE (CUMENE)	1	ug/l	37	20	None	MS/MSD
E524.2	MW-109D-SEP14	METHYLENE CHLORIDE	1	ug/l	30	20	None	MS/MSD
E524.2	MW-109D-SEP14	NAPHTHALENE	1	ug/l	24	20	None	MS/MSD
E524.2	MW-109D-SEP14	N-BUTYLBENZENE	1	ug/l	40	20	None	MS/MSD
E524.2	MW-109D-SEP14	N-PROPYLBENZENE	1	ug/l	34	20	None	MS/MSD
E524.2	MW-109D-SEP14	SEC-BUTYLBENZENE	1	ug/l	38	20	None	MS/MSD
E524.2	MW-109D-SEP14	STYRENE	1	ug/l	32	20	None	MS/MSD

Data Usability Summary Report	Project: Carroll Landfill
Date Completed: October 23, 2014	Completed by: Lynne Kalmbach and Marcia
	Meredith Galloway

Method	Parent Sample	Analyte	Dil Fac	Unit	RPD	RPD Limit	Qualifier	Sample Type
E524.2	MW-109D-SEP14	T-BUTYLBENZENE	1	ug/l	37	20	None	MS/MSD
E524.2	MW-109D-SEP14	TETRACHLOROETHYLENE(PCE)	1	ug/l	34	20	None	MS/MSD
E524.2	MW-109D-SEP14	TOLUENE	1	ug/l	31	20	None	MS/MSD
E524.2	MW-109D-SEP14	TRANS-1,2-DICHLOROETHENE	1	ug/l	31	20	None	MS/MSD
E524.2	MW-109D-SEP14	TRANS-1,3-DICHLOROPROPENE	1	ug/l	25	20	None	MS/MSD
E524.2	MW-109D-SEP14	TRICHLOROETHYLENE (TCE)	1	ug/l	32	20	None	MS/MSD
E524.2	MW-109D-SEP14	XYLENES, TOTAL	1	ug/l	31	20	None	MS/MSD

Table 5 - LCS Recoveries outside Control Limits None

Table 6 –Samples that were Reanalyzed

Sample ID	Lab ID	Method	Sample Type	Action
MW-103-SEP14	480-67136-6	E524.2	WG	2X: Dilute to bring the concentration of vinyl chloride within calibration range. Elevated reporting limits provided.
MW-107S-SEP14	480-67030-13	E524.2	WG	5X: Dilute to bring the concentration of vinyl chloride within calibration range. Elevated reporting limits provided.

Table 7 – Summary of Field Duplicate Results

					MW-107I-	MW-107I-		RPD	Sample
Method	Analyte	Unit	Matrix	PQL	SEP14	SEP14-FD	RPD	Rating	Qual
E200.7	ALUMINUM	mg/l	Water	0.20	0.48	0.48	0.0%	Good	None
E200.7	BARIUM	mg/l	Water	0.0020	0.22	0.21	4.7%	Good	None
E200.7	CALCIUM	mg/l	Water	0.50	39.9	37.6	5.9%	Good	None
E200.7	CHROMIUM, TOTAL	mg/l	Water	0.0040	0.0014	0.0011	24.0%	Good	None
E200.7	COPPER	mg/l	Water	0.010	0.0019	0.0017	11.1%	Good	None
E200.7	IRON	mg/l	Water	0.050	0.70	0.71	1.4%	Good	None
E200.7	MAGNESIUM	mg/l	Water	0.20	10.1	9.4	7.2%	Good	None
E200.7	MANGANESE	mg/l	Water	0.0030	0.20	0.19	5.1%	Good	None
E200.7	POTASSIUM	mg/l	Water	0.50	1.1	1.1	0.0%	Good	None
E200.7	SODIUM	mg/l	Water	1.0	7.0	6.6	5.9%	Good	None

Data Usability Summary Report	Project: Carroll Landfill
Date Completed: October 23, 2014	Completed by: Lynne Kalmbach and Marcia Meredith Galloway

Method	Analyte	Unit	Matrix	PQL	MW-107I- SEP14	MW-107I- SEP14-FD	RPD	RPD Rating	Sample Qual
E200.7	ZINC	mg/l	Water	0.010	0.0032	0.0027	16.9%	Good	None
E200.8	ARSENIC	ug/l	Water	1.0	19.1	19.4	1.6%	Good	None
E200.8	LEAD	ug/l	Water	1.0	1.0	2.3	78.8%	Poor	J Flag

Acronym List and Table Key:

COC	=	chain of custody
DUSR	=	data usability summary report
GC/MS	=	gas chromatography / mass spectrometry
LCS	=	laboratory control sample
MBLK	=	method blank
MS	=	matrix spike
MSD	=	matrix spike duplicate
ND	=	not detected
NYSDEC	; =	New York State Department of Environmental Conservation
PQL	=	practical quantitation limit
QA	=	quality assurance
QAPP	=	quality assurance project plan
QC	=	quality control
RPD	=	relative percent difference
SDG	=	sample delivery group
TIC	=	tentatively identified compound
VOC	=	volatile organic compound
WQ	=	water quality

APPENDIX C

Laboratory Data Report