The elec tr onic	version	of this	file/report	should	have the	e file name
-------------------------	---------	---------	-------------	--------	----------	-------------

Type of document.Spill Number.Year-Month.File Year-Year or Report name.pdf

letter._____.<u>-__.File_spillfile__.pdf</u>

report. hw907019 . 1999 - 07-11. SUPPLEMENTAL .pdf
REMEDIAL INVESTIGATION KARORI

Project Site numbers will be proceeded by the following:

Municipal Brownfields - b Superfund - hw Spills - sp ERP - e VCP - v

BCP - c

non-releasable - put .nf.pdf

Example: letter.sp9875693.1998-01.Filespillfile.nf.pdf

Supplemental Remedial Investigation Report, D.C. Rollforms\Ingersoll-Rand Site, Jamestown, NY, Site Code 907019

Ingersoll-Rand Company Proj. No. AY000219.0002

Address: 215 Washington Avenue Extension Albany, New York 12205

REPORT

February 11, 1999

Table of Contents

ARCADIS GERAGHTY&MILLER

RECEIVED

FFR 1 2 1999

Section	Tit	e	NYSDEC - REG. 9 FOIL RELUNREL	Page
1.0	Int	oduction		1
	1.1	Purpose		1
	1.2	Organization of Re	eport	1
2.0		nedial In <mark>vesti</mark> ga npling	ation Soil and Sediment	2
	2.1	GP-13 Soil Sample		2
	2.2	Sediment Samplin	g Results	2
3.0	Sco	pe of Work		2
	3.1	Supplemental Back	kgroun d S oil Sampling	2
	3.2	Supplemental Sedi	ment Sampling	3
	3.3	Air Monitoring		4
	3.4	Data Validation		4
4.0	Sup	plemental Rem	nedial Investigation Results	4
	4.1	Analysis of TCLP Le	ead in Soil Samples	4
	4.2	Sediment Samples		4
		4.2.1 VOCs		5
		4.2.2 Metals		5
		4.2.3 Total Orga	nic Carbon	6
		4.2.4 Grain Size	Analysis	6
5.0	Sur	nmary		6
	5.1	Supplemental Soil	Sampling	6
	5.2	Supplemental Sedi	ment Sampling	6
	5.3	Evaluation of Rem	edial Alternatives	7
6.0	Ref	erences		7

Tables

- 1. Summary of Volatile Organic Compounds in Sediment Samples, D.C. Rollforms/Ingersoll-Rand Site, Jamestown, New York.
- 2. Summary Metals in Sediment Samples, D.C. Rollforms/Ingersoll-Rand Site, Jamestown, New York.
- 3. Comparison of Average Metals Concentrations in Chadakoin River Sediment Samples to NYSDEC Sediment Screening Criteria, D.C. Rollforms/Ingersoll-Rand Site, Jamestown, New York.

Figures

1. Supplemental RI Sampling Locations.

Appen**dices**

- A. Sample/Core Logs.
- B. Data Validation Reports.
- C. Soil Sample Laboratory Analytical Results.
- D. Sediment Sample Laboratory Analytical Results.
- E. Geotechnical Laboratory Grain Size Analysis.

1.0 Introduction

1.1 Purpose

On behalf of the Ingersoll-Rand Company, ARCADIS Geraghty & Miller, Inc. has prepared this supplemental Remedial Investigation (SRI) Report for the D.C. Rollforms/Ingersoll-Rand Site (site) located in Jamestown, New York. The SRI was conducted to address the New York State Department of Environmental Conservation (NYSDEC) comments (letter dated June 9, 1998) on the RI Report and specifically the request for additional sediment and background subsurface soil sampling at the site. The scope of work for the SRI was submitted to the NYSDEC on October 6, 1998 and approved by the NYSDEC in November 1998.

The scope of work for the SRI consisted of: 1) the collection of eight additional sediment samples from the Chadakoin River at locations adjacent to and upstream of the site; and 2) the collection of three additional subsurface soil samples in the northeast corner of the site. The sediment samples were collected to evaluate site-related impacts to sediments in the Chadakoin River. The three additional subsurface soil samples were collected from a localized area in the northeast corner of the site where a previous sample (designated as GP-13) had indicated an elevated concentration of lead in soils.

This SRI report summarizes the methods and field activities performed during the SRI. All field investigation and sampling activities conducted during the SRI were performed in accordance with the methods and protocols previously approved by the NYSDEC as part of the field sampling plan (FSP), health and safety plan (HASP), quality assurance project plan (QAPP) and the supplemental RI scope of work letter prepared by ARCADIS Geraghty & Miller dated October 6, 1998. This report supplements the RI report previously submitted to the NYSDEC and is consistent with the interim final "Guidance for Conducting Remedial Investigation and Feasibility Studies Under CERCLA" developed by the United States Environmental Protection Agency (USEPA 1988) and NYSDEC technical and administrative guidance documents.

1.2 Organization of Report

The SRI Report is organized into the following sections: Section 2 provides a brief summary of the results of the RI as it relates to the supplemental sediment and soil sampling conducted for the SRI; Section 3 describes the scope of the work performed for the SRI; Section 4 contains the results of the sediment and soil sampling performed; Section 5 summarizes the findings of the SRI; and Section 6 lists the references cited in the preparation of the SRI report.

2.0 Remedial Investigation Soil and Sediment Sampling

This section provides a brief summary of sediment and background soil sampling activities conducted during the RI. The locations of sediment samples and the designated background soil sample are shown on Figure 1.

2.1 GP-13 Soil Sample

During the RI, a soil sample was collected from soil boring GP-13 for the purpose of establishing background metals concentrations at the site (see Figure 1). The sample was collected from the 4 to 6 foot interval and submitted for analysis of metals. The GP-13 location was chosen as a background sample because no former D.C. Rollforms/Ingersoll-Rand operations were known to have occurred in this area. Copper, lead, nickel, and zinc were detected at estimated concentrations of 584 ppm, 86,900 ppm, 13.9 ppm, and 1,000 ppm, respectively. Due to the elevated concentration of lead in this sample, the NYSDEC requested additional delineation sampling in this area and to determine if the soils were characteristically hazardous for lead.

2.2 Sediment Sampling Results

Analytical results for the sediment sample collected adjacent to the site (SED-1) and the upstream sample (SED-2) during the RI indicated that the concentrations of VOCs, SVOCs, PCBs and certain metals were higher in the upstream sample (see Figure 1). VOCs were not detected in sediment sample SED-1 collected adjacent to the site. Concentrations of SVOCs and PCBs in the upstream sample were more than twice the concentrations in the sediment sample adjacent to the site. Several metals exceeded their respective NYSDEC sediment criteria levels in the sample collected adjacent to the site (SED-1) and in the sample collected upstream of the site (SED-2). Based on these initial results, the NYSDEC requested additional sediment sampling adjacent to the site.

3.0 Scope of Work

The scope of work for the supplemental sediment and soil sampling activities is described below.

3.1 Supplemental Background Soil Sampling

Three additional subsurface soil samples were collected within the vicinity of soil boring GP-13 (see Figure 1). The soil borings were drilled on November 19, 1998 using a hollow-stem auger drill rig and split-spoon sampling methods in accordance with the methods and protocols outlined in the FSP. The additional soil samples were collected from a depth of 4 feet below land surface (bls), corresponding to the GP-13 sample depth collected during the RI, and submitted for analysis of toxicity characteristic leaching procedure (TCLP) lead. Sample/core logs for each of the borings are provided in Appendix A.

Immediately following sample collection, the sediment samples were labeled, packaged on ice in laboratory supplied coolers, and shipped with chain-of-custody documentation via overnight courier service to Severn-Trent Laboratories (STL) in Monroe, Connecticut.

3.2 Supplemental Sediment Sampling

Based on the NYSDEC comments on the draft RI report, additional sediment samples were collected from within the Chadakoin River to further evaluate site-related impacts to sediments. The sediment sample locations are shown on Figure 1. Six additional sediment samples were collected adjacent to and downstream of the site and two additional sediment samples were collected upstream of the site. Originally, four sediment samples were proposed adjacent to the site and two sediment samples were proposed upstream of the site. However, the NYSDEC requested that two additional sediment samples be collected downstream of the site. Jaspal Walia of the NYSDEC met with ARCADIS Geraghty & Miller personnel at the site to determine the downstream sediment sampling locations.

The supplemental sediment samples (SED-4 through SED-10) were collected on December 1, 1998. Prior to collecting the sediment samples, ARCADIS Geraghty & Miller personnel coordinated with the Washington Street dam operator to minimize flow and lower the level of the Chadakoin River. The dam was closed from 7:30 AM to 4:30 PM on December 1, 1998 during which the stream stage dropped approximately 2.5 to 3 feet.

The sediment grab samples were collected from 0-6" below the top of the stream bed using a stainless steel trowel. The sediments were then placed in a stainless steel mixing bowl. Photoionization Detectors (PID) readings of the samples were measured with a Thermo-Environmental Instruments Model 580 B PID. The VOC sample containers were filled first, and the remaining sample was homogenized and immediately transferred to the appropriate remaining sample containers.

The stainless steel trowel and mixing bowl were decontaminated prior to sampling at each location by washing with distilled water and laboratory grade detergent, followed by a final distilled water rinse. The sampling equipment was placed on new polyethylene sheeting after the final rinse. The decontamination fluids were contained in dedicated buckets and transferred to 55-gallon drums on-site.

Immediately following sample collection, the sediment samples were labeled, packaged on ice in laboratory supplied coolers, and shipped with chain-of-custody documentation via overnight courier service to STL laboratory for analysis of TCL VOCs, TAL list metals and total organic carbon. Category B deliverables were requested. One sediment sample was also collected at each location and submitted to Maxim Technologies geotechnical laboratory in Hamburg, New York for grain size analysis.

3.3 Air Monitoring

In accordance with the HASP, air monitoring was performed during the drilling activities. A PID and a MINIRAM particulate monitor were used to monitor air in the immediate vicinity of the boreholes and breathing zones during the drilling activities. The field instruments were calibrated daily, at a minimum. No exceedences in action levels were recorded during the drilling activities.

3.4 Data Validation

The data packages pertaining to the soil samples collected on November 19, 1998 and sediment samples collected on December 1, 1998 were reviewed in accordance with USEPA validation protocols. The data package was validated by Data Validation Services of North Creek, New York according to the procedures specified in Section 10.0 of the QAPP. Reported results were then additionally qualified to reflect the applicable validation qualifiers. In summary, samples were processed with compliance, and all data was found to be usable, although some are qualified as estimated in value. Results for two of the volatile analytes in all samples are considered estimated due to typical calibration variances, and results for nine metal analytes in all samples. Matrix interferences and nonhomogeneity of sediment samples is not uncommon. The qualified metals results may vary by as much as an order of magnitude. Data validation reports are included in Appendix B.

4.0 Supplemental Remedial Investigation Results

This section presents the results of the supplemental field sampling activities conducted in November and December 1998.

4.1 Analysis of TCLP Lead in Soil Samples

Analysis of TCLP lead of soil samples collected in the vicinity of GP-13 indicated concentrations of 5.5 ug/L in SB-1, 70.5 ug/L in SB-2, and 5.2 ug/L in SB-3. Each of these results is below the TCLP regulatory level of 500 ug/L for lead. Therefore, the soils in this area are not characteristically hazardous for lead. Laboratory analytical data sheets are provided in Appendix C.

4.2 Sediment Samples

Sediment samples were collected from locations upstream, adjacent to, and downstream of the site as approved by the NYSDEC. Sediments at each location were generally observed to be coarse-grained sand and gravel. Fragments of concrete and other fill materials were observed in SED-3 through SED-8 and exhibited no odors or staining. The sediment analytical results are presented in Tables 1 and 2 and are discussed below. Laboratory analytical data sheets are provided in Appendix D.

4.2.1 VOCs

The sediment sample results for VOCs are included in Table 1. Methylene chloride and acetone (common laboratory contaminants) were detected in each of the sediment samples collected. An estimated concentration of trichloroethene (TCE) of 0.4 micrograms per kilogram (ug/kg) was detected in SED-8 and an estimated concentration of toluene of 1 ug/kg was detected in SED-9. None of the samples collected during the RI or SRI exceeded available sediment screening criteria for VOCs as outlined in the NYSDEC Division of Fish and Wildlife Technical Guidance for Screening Contaminated Sediments (NYSDEC 1993).

4.2.2 Metals

The sediment sample results for metals are included in Table 2. The data analysis involved first comparing average adjacent/downstream and upstream concentrations, in order to designate chemicals of potential concern (COPCs). Because chemicals adjacent to or downstream of the site at average concentrations less than upstream concentrations are unlikely to be site-related (i.e., they are associated with an upstream source), they were excluded from further evaluation and were not designated as COPCs. If the average concentration of a given chemical was greater adjacent/downstream than upstream, its presence was assumed to be partially site-related and it was designated as a COPC. Because all metals detected adjacent/downstream were also detected upstream, the presence of COPCs downstream cannot be wholly attributed to the site. Average concentrations of COPCs were then compared to the severe effect level (SEL). The data analysis is summarized in Table 3.

Several metals were detected adjacent/ downstream at average concentrations lower than average upstream concentrations and were consequently excluded from the list of COPCs: aluminum, barium, beryllium, calcium, magnesium, manganese, mercury, potassium, and sodium. Of these, calcium, magnesium, potassium, and sodium are also considered essential nutrients. Essential nutrients generally would not be considered potential toxicants, even if they had been present adjacent/downstream at concentrations greater than upstream.

Of the COPCs, average concentrations of five metals were less than the SEL, indicating low likelihood that they pose an ecological risk: antimony, arsenic, cadmium, chromium, and silver. Because sediment quality criteria are not available for four other COPCs (cobalt, selenium, thallium, vanadium), it was not possible to assess their potential to cause an ecological risk.

Five COPCs -- copper, iron, lead, nickel, and zinc - were present adjacent/downstream at average concentrations greater than their respective SELs, indicating their potential to pose an ecological risk.

4.2.3 Total Organic Carbon

The total organic carbon content (TOC) of sediment samples varied from 0.522 milligrams per kilograms (mg/kg) in DUP-1 (SED-5) to 2.09 mg/kg in SED-9. TOC was highest in SED-9 which appears to be generally consistent with the relatively finer grain size distribution of sediment at that location (see Section 4.2.4 below).

4.2.4 Grain Size Analysis

Grain size analysis of sediment samples generally indicated that the streambed sediments are comprised primarily medium to coarse grained sands with varying amounts of fine to medium gravel. Sediment sample SED-9 was comprised of finer-grained sand with trace amounts of gravel and silts. Grain size distribution curves are provided in Appendix E.

5.0 Summary

The general findings of the supplemental remedial investigation are summarized below.

5.1 Supplemental Soil Sampling

Three additional subsurface soil samples were collected as part of the supplemental RI activities the site. The samples were collected from a depth of 2-4 feet bls in borings located in the vicinity of the former GP-13 sample location on the north side of the D.C. Rollforms building. Analysis of TCLP lead indicated concentrations of 5.5 ug/L in SB-1, 70.5 ug/L in SB-2, and 5.2 ug/L in SB-3. Each of these results is below the TCLP regulatory level of 500 ug/L for lead. Based on these findings, no further investigation of this area is warranted.

5.2 Supplemental Sediment Sampling

Eight additional sediment samples were collected from the Chadakoin River during the supplemental RI. Including the RI, seven samples were collected adjacent/downstream of the site and three were collected upstream of the site to evaluate the presence or absence of site-related impacts. Several metals were detected adjacent/downstream at average concentrations lower than average upstream concentrations and were consequently excluded from the list of COPCs.

Of the COPCs, average concentrations of five metals (antimony, arsenic, cadmium, chromium and silver) were less than the SEL, indicating low likelihood that they pose an ecological risk. Sediment quality criteria are not available for four other COPCs (cobalt, selenium, thallium and vanadium) and, therefore, it was not possible to assess their potential to cause an ecological risk. Five COPCs (copper, iron, lead, nickel and zinc) were present adjacent/downstream at average concentrations greater than their respective SELs, indicating their potential to pose an ecological risk.

VOCs were not detected at concentrations exceeding their respective NYSDEC screening criteria upstream or adjacent downstream of the site.

5.3 Evaluation of Remedial Alternatives

The results of the supplemental remedial investigation sampling activities indicate that the chemical constituents detected at the site do not pose an immediate threat to human health or the environment. Potential remedial technologies and remedial alternatives relative to sediments for the final site remedy will be evaluated as part of the Focused Feasibility Study (FFS) being conducted for the site.

6.0 References

- ARCADIS Geraghty & Miller, Inc., Remedial Investigation Report, D.C. Rollforms/Ingersoll-Rand Site, April 1998.
- Long, E.R. and L.G. Morgan. 1990. The Potential for Biological Effects of Sediment-Sorbed Contaminants Tested in the National Status and Trends Program. National Oceanic and Atmospheric Administration (NOAA) Technical Memorandum No. 5, OMA52, NOAA National Ocean Service, Seattle, Washington.
- New York State Department of Environmental Conservation (NYSDEC), Division of Fish & Wildlife. Technical Guidance for Screening Contaminated Sediments. November 1993.
- Persuad, D., R. Jaagumagi and A. Hayton. 1992. Guidelines for the Protection and Management of Aquatic Sediment Quality in Ontario. Ontario Ministry of Environment. Queen's Printer for Ontario.

Table 1. Summary of Volatile Organic Compounds in Chadakoin River Sediment Samples, 1997 and 1998, D.C. Rollforms/Ingersoll-Rand Site, Jamestown, New York.

CONSTITUENT:	SITE: SAMPLE ID:	SED-3 SED-3	SED-4 SED-4	SED- 2 SED- 2	SED- 5 SED- 5	DUP-1 DUP-1	SED-3 SED-3
(Units in ug/kg)	DATE:	12/1/98	12/1/98	9/17 /97	12/1/98	12/1 /98	9/17 /97
Chlorometha ne		< 10	< 10	< 14	< 10	< 10	< 14
Bromometha ne		< 10	< 10	< 14	< 10	< 10	< 14
Vinyl chloride		< 10	< 10	4	< 10	< 10	< 14
Chloroethane		< 10	< 10	< 14	< 10	< 10	< 14
Methylene ch lo ride	•	11	2 J	< 14	1 J	1 J	< 14
Acetone		9 J	8 J	< 16 J	12	10 J	< 26 J
Carbon disulfi d e		< 5	< 5	< 14	< 5	< 5	< 14
Vinyl Acetate		< 10	< 10	< 14	< 10	< 10	< 14
1,1-Dichloroet h ene	•	< 5	< 5	< 14	< 5	< 5	< 14
1,1-Dichloroet h ane		< 5	< 5	< 14	< 5	< 5	< 14
1,2-Dichloroet h ene	(total)	< 5	< 5	< 14	< 5	< 5	< 14
Chloroform		< 5	< 5	< 14	< 5	< 5	< 14
1,2-Dichloroet h ane		< 5	< 5	< 14	< 5	< 5	< 14
2-Butanone		< 10	< 10	< 14	< 10	< 10	< 14
1,1,1-Trichloro et ha r	ne	< 5	< 5	< 14	< 5	< 5	< 14
Carbon tetra ch lori c	de	< 5	< 5	< 14	< 5	< 5	< 14
Bromodichlor om eth	nane	< 5	< 5	< 14	< 5	< 5	< 14
1,2-Dichloropr o pan	e	< 5	< 5	< 14	< 5	< 5	< 14
cis-1,3-Dichlor op ro p	e ne	< 5	< 5	< 14	< 5	< 5	< 14
richloroethen e		< 5	< 5	2	< 5	< 5	< 14
Dibromochlor o met	hane	< 5	< 5	< 14	< 5	< 5	< 14
I, 1,2-Trichloro et ha n	e	< 5	< 5	< 14	< 5	< 5	< 14
Benzene		< 5	< 5	< 14	< 5	< 5	< 14
rans-1,3-Dich lor opr	opene	< 5	< 5	< 14	< 5	< 5	< 14
3romoform		< 5	< 5	< 14	< 5	< 5	< 14
1-Methyl-2-pe nt an c	one	< 10	< 10	< 14	< 10	< 10	< 14
?-Hexanone .		< 10	< 10	< 14	< 10	< 10	< 14
etrachloroet he ne		< 5	< 5	< 14	< 5	< 5	< 14
,1,2,2-Tetrac hio ro e	thane	< 5	< 5	< 14	< 5	< 5	< 14
oluene		< 5	< 5	< 14	< 5	< 5	< 14
Chlorobenzen e		< 5	< 5	< 14	< 5	< 5	< 14
thylbenzene		< 5	< 5	< 14	< 5	< 5	< 14
Styrene		< 5	< 5	< 14	< 5	< 5	< 14
(ylene (total)		< 5	< 5	< 14	< 5	< 5	< 14

ug/kg Microg**ra**ms **p**er kilogram.

J Estimat**ed** value.

Table 1. Summary of Volatile Organic Compounds in Chadakoin River Sediment Samples, 1997 and 1998, D.C. Rollforms/Ingersoll-Rand Site, Jamestown, New York.

CONSTITUENT:	SITE: SAMPLE ID: DATE:	SED-1 SED DUP 9/17/97	SED-6 SE D-6 12/1/98	SED- 7 SE D-7 12/1 /98	SED- 8 SED- 8 12/1 /98	SED- 9 SED- 9 12/1 /98	SED-10 SED-10 12/1/98
(Units in ug/kg)	DAIE.	9/1//9/	12/1/90	12/1190	12/1/90	12/1/90	12/1/90
Chlorometha n e		< 14	< 10	< 10	< 10	< 10	< 10
Bromometha ne		< 14	< 10	< 10	< 10	< 10	< 10
Vinyl chloride		< 14	< 10	< 10	< 10	< 10	< 10
Chloroethane		< 14	< 10	< 10	< 10	< 10	< 10
Methylene chloride		< 14	٦J	IJ	1 J	2 J	2 J
Acetone		< 22 J	12	12	4 J	24	11 J
Carbon disulf id e		< 14	< 5	< 5	< 5	< 5	< 5
Vinyl Acetate		< 14	< 10	< 10	< 10	< 10	< 10
1,1-Dichloroe th ene	•	< 14	< 5	< 5	< 5	< 5	< 5
1,1-Dichloroethane		< 14	< 5	< 5	< 5	< 5	< 5
1,2-Dichloroethene		< 14	< 5	< 5	< 5	< 5	< 5
Chloroform	(10.0)	< 14	< 5	< 5	< 5	< 5	< 5
1,2-Dichloroe th ane	•	< 14	< 5	< 5	< 5	< 5	< 5
2-Butanone		< 14	< 10	< 10	< 10	< 10	< 10
1,1,1-Trichloroethar	ne	< 14	< 5	< 5	< 5	< 5	< 5
Carbon tetra ch lori	de	< 14	< 5	< 5	< 5	< 5	< 5
Bromodichlor o met	na ne	< 14	< 5	< 5	< 5	< 5	< 5
1,2-Dichloropropar	e	< 14	< 5	< 5	< 5	< 5	< 5
cis-1,3-Dichloroprop	De ne	< 14	< 5	< 5	< 5	< 5	< 5
Trichloroethen e		< 14	< 5	< 5	0.4 J	< 5	< 5
Dibromochlor o met	hane	< 14	< 5	< 5	< 5	< 5	< 5
1,1,2-Trichloroethar	ne	< 14	< 5	< 5	< 5	< 5	< 5
Benzene		< 14	< 5	< 5	< 5	< 5	< 5
trans-1,3-Dich lo ropi	ro pene	< 14	< 5	< 5	< 5	< 5	< 5
Bromoform		< 14	< 5	< 5	< 5	< 5	< 5
4-Methyl-2-pentano	on e	< 14	< 10	< 10	< 10	< 10	< 10
2-Hexanone		< 14	< 10	< 10	< 10	< 10	< 10
Tetrachloroet he ne		< 14	< 5	< 5	< 5	< 5	< 5
1,1,2,2-Tetrac hlo roe	ethane	< 14	< 5	< 5	< 5	< 5	< 5
Toluene		< 14	< 5	< 5	< 5	< 5	< 5
Chlorobenzen e		< 14	< 5	< 5	< 5	< 5	< 5
Ethylbenzene		< 14	< 5	< 5	< 5	< 5	< 5
Styrene		< 14	< 5	< 5	< 5	< 5	< 5
Xylene (total)		< 14	< 5	< 5	< 5	< 5	< 5

ug/kg Microg**ra**ms **pe**r kilogram.

J Estimat**ed** value.

Table 2. Summary of Metals and Cyanide Analysis in Chadakoin River Sediment Samples Collected In September 1997 and December 1998, D.C. Rollforms/Ingersoll-Rand Site, Jamestown, New York.

CO NSTITU ENT: (Units in mg/kg)	SITE: SA MPL E ID: DATE:	SED-03 SE D-3 12/1/98	SED-04 SED-4 12/1/98	SED-02 SED-2 09/17/97	SED-05 SE D-5 12/1/98	DUP-01 D UP-1 12/1/98	SED-06 SED -6 12/1/98	SED-01 SE D-1 09/17/97	SED-01 SE D DUP 09/17/97	SED-07 SED-7 12/1/98	SED-08 SE D-8 12/1/98	SED-09 SED-9 12/1/98	SED-10 SED-10 12/1/98
Aluminum		4,710	6,550	11,500	6,230	4,900	5,470	3,910	3,630	5,400	5,090	5,500	6,560
Antimony		0.88 UN	1.0 BN	< 2	3.0 BN	1.5 BN	4.9 BN	< 2.1	< 2.2	2.0 BN	< 1.0 N	1.0 BN	3.7 BN
Arsenic		13.1 JN	16.4 JN	7.8	28.2 JN	18.6 JN	23.5 JN	30	25.5	17.4 JN	13.9 JN	14.5 JN	14.4 JN
Barium		49.6	56.7	192.	65.6	47.8	61.1	137.	68.6	49.1	46.8	82.5	78.2
Beryllium		0.48 B	0.48 B	1.4	0.54 B	0.42 B	0.44 B	0.47	0.46	0.42 B	0.49 B	0.52 B	0.55 B
Cadmium		0.55BJ*N	0.62 JB*N	1.0	2.7 J*N	2.6 J*N	2.6 J*N	< 0.26	< 0.27	1.4 J*N	1.1 J*N	1.1 J*N	0.93 JB*N
Calcium		20500	16300	45500	21700	26700	8770	3130	4100	12200	12200	9130	6760
Chromium		14.2 J*	20.1 J*	20.8	75.7 J*	56.5 J*	211 J*	130	102	33.5 J*	33 J*	61 J*	35.4 J*
Cobalt		3.9 B	6.0 B	4.1	8.3	7.3 B	13.3	11.0	0.8	7.2 B	6.0 B	6.0 B	7.5 B
Copper		39 J*	47.4 J*	686	178 J*	88.9 J*	9750 J*	497	450	730 J*	541 J*	179 J*	98.1 J*
Iron		17,000	28,900	25700	69800	68000	44800	102000	90300	49.100	38.800	34,200	37,700
Lead		44.5 J*	42.6 J*	76.2	269 J*	26 J⁺	524 J*	73.9 J	381 J	107 J*	63.4 J*	128 J*	151 J*
Magnesium		3,100	5,700	6,920	6,380	8,740	3,940	1,680	2.040	4.780	3,860	3,560	3,600
Manganese		715	5 2 4	1050	832	7 9 5	65 5	1 53 0	8 78.	507	418	513	465
Mercury		0. 053 B	0. 02 7 B	0.15	0.016 B	0. 019 B	0. 0 51 B	< 0.12	< 0.10	0. 04 5 B	0. 053 B	0. 079 B	0. 05 B
Nickel		12.2 J*N	19.1 J*N	63.6	5 3.4 J*N	50.2 J*N	111 J*N	125.	151.	26.1 J*N	51 J*N	28.1 J*N	2 9.3 J*N
Potassium		332 B	405 B	83 8 .	342 B	329 B	324 B	379.	342.	318 B	351 B	493 B	606 B
Setenium		0.94	1.7	1.4	3.3	2.3	1.8	5.3	5.3	2.2	1.8	2.2	2.2
Silver		0.18 JUN	0.18 JUN	< 0.24	0.26 JBN	< 0.19 JN	1.5 JBN	0.61	< 0.27	0.25 JBN	0.26 JBN	0.35 JBN	< 0.22 JN
Sodium		94.3 B	94.9 B	420.	96.2 B	97 B	64.8 B	65.7	64.6	82.8 B	80.2 B	95.2 B	108 B
Thallium		< 1.0	< 1.1	< 0.73 J	1.4	< 1.2	< 1.2	4.4 J	3.4 J	< 1.0	< 1.2	1.3 B	< 1.3
Vanadium		7.6 B	9.7	9.7	12.2	11.8	13.5	16.5	13.0	10.4	9.2 B	12.3	13.6
Zinc		157 J*E	178 J*E	330 J	169 J*E	186 J*E	2380 J*E	231 J	174 J	250 J* E	241 J*E	262 J*E	204 J*E
Cyanide		NS	NS	2.42 J	NS	NS	NS	< 0.63 J	< 0.68 J	NS	NS	NS	2043 E NS

J - Estimated Value.

B - Analyte result between IDL and CRDL.

N - Spiked sample - recovery not within control limits.

^{* -} Duplicate analysis not within control limits.

E - Reported value is estimated due to the presence of interference.

Table 3. Comparison of Average Metals Concentrations in Chadakoin River Sediment Samples to NYSDEC Sediment Screening Criteria, D.C.Rollforms/Ingersoll-Rand Site, Jamestown, New York.

CONSTITUENT: Units in mg/k g)	ADJACENT/DOWNSTREAM MAXIMUM CONCENTRATION	up stream Arithmetic Average	ADJACENT/DOWNSTREAM ARITHMETIC AVERAGE	SEVERE EFFECT LEVEL
Juminum	6,560. 90	7,586.67	5,336.43	NL
Intimony*	4.90	0.81	2.20	25
rsenic*	27.75	12.43	19.26	33
arium	102.8 0	99.43	68.17	NL
eryllium	0.55	0.79	0.48	NL
Cadmium*	2.65	0.72	1.42	9.0
Calcium	24,200. 00	27,433.33	10,982.14	NL
:hromium*	211.0 0	18.37	79.43	110
cobalt*	13.30	4.67	8.19	NL
opper**	9,750.00	257.47	1,700.72	110
on**	10.00	. 2.00	5.00	4.00
ead**	524.0 0	54.43	192.62	110
1agnesium	7,560. 00	5,240.00	4,165.71	NL
langanese	1,204.00	763.00	653.64	1100
lercury	0.08	0.08	0.05	1.3
ickel**	138. 00	31.63	62.19	50
otassium	606.00	525.00	398.29	NL
elenium*	5.30	1.35	2.61	NL
lver*	1.50	0.10	0.44	2.2
odium	108.0 9	203.07	84.68	NL
nallium*	3.90	0.47	1.18	NL
anadium*	14.75	9.00	12.25	NL
nc**	2,380. 00	221.67	531.00	270

Note:

With the exception of iron, all units are mg/kg. Concentration of iron given as a percent.

Concentrations measured in duplicates (SED-05 & DUP-01, SED-01 & SED-01 DUP) were averaged prior to averaging across sampling stations.

Concentrations below the detection limit were assumed to equal one-half the detection limit, for purposes of calculating average concentrations.

^{*}Chemical designated as chemical of potential concern (COPC) because adjacent/downstream concentration is greater than upstream concentration.

[&]quot;COPC is present at average concentration greater than the SEL.

FIGURES

APPENDIX A

Sample/Core Logs

Sample/Core Log

Boring/We	II <u>SB-1</u>		Project/No.	IR-Jamestown/AY0002	21 9.0002.00 0	17			_Page	of	<u> 1</u>
Site					Drilling			Drilling			
Location		Jamestow	n, NY		Started	11/19/9	98	Completed	11/19/9	98	
Total Dept	h Drilled	4	_Fe et	Hole Diameter	8 inches		Type of	f Sample/ Device	Split Sp	oon	
Length and of Coring I		2 feet by	2 inches				-	Sampling Int	erval	2	_feet
Land-Surfa	ce Elev.		_feet	Su rveyed	Estimate	ed .	Datum				<u> </u>
Drilling Flui	d Used		None		·		_	Drilling Meth	nod	H.S.A.	
D r illing Contractor		SJB Servic	es, Inc.				_Driller	Don	_Helper	John	
Prepared By		J. Bonstee	<u> </u>				Hamme Weight	er 140-Auto	Hamme _Drop		_ins.
Sample/Core (feet below the		Core Recovery (feet)	Time/Hydrautic Pressure or Blows per 6 Inches	Sample/Co re Des cripti	o n						OVM
0	0.4	(leet)	Inches	Asphalt and Gravel	011		•	· · · · · · · · · · · · · · · · · · ·			1
0.4	2	1.0	7 10 10 23	Brown/Gray CLAY,	GRAVEL an	d roars	e SAND	dru			0.0
2	4	1.0		Same as 0-2' interv		u coars	LUMIN	, diy			0.0
		 	13,11,17,20	Jame as 0-2 interv							10.0
·.		 									+
	Ī	 	_								+
		 -	<u> </u>								+ -
 		 	-		-1						+
					<u>-</u>						+
			 								+
											-
		 -									+
		 		-		_					+ +
		 									+
		 			<u>-</u>						+ -
		-	 								+
_		-	-	-	_						+
											+
		 			-						+
<u> </u>		 			-						+
	ļ	1									

Sample/Core Log

Boring/Wel	I SB-2		Project/No.	IR-Jamestown/AY0	00021 9.0002.00 0	17			_ Page	1	of <u>1</u>
Site Location		Jamestov	un NV		Drilling Started	11/19/9	98	Drilling Completed	11/19/9	98	
		Jamestov	· ·	·		1171373	Type o	- f Sample/			
Total Dept	n Drilled	4	Fe et	Hole Diameter			Coring	Device	Split Sp	oon	
Length and of Coring D		2 f eet by	2 inches				-	Sampling Int	erval	2	feet
Land-Surfa	ce Elev.		fe et	Surveyed	Estimate	ed	Datum		<u></u> .		
Drilling Flui	d Used		Nane				_	Drilling Meth	nod	H.S.A.	
Drilling Contractor		SJ B Se rvi o	ces, Inc.				_Driller	Don	_Helper	John	
Prepared By		J. Bonstee	el				Hammi Weight	er : <u>140-Auto</u>	Hammi Drop	er _30	ins.
Sample/Core (feet below I	and surface)	Core Recovery	Time/Hydraulic Pressure or Blows per 6	Sample/Core Des							OVM
From	То	(feet)	Inches	1						·	1
0	0.4	10	1222	Asphalt and Gra			l. I1				
0.4	2	1.0	4,2,2,2	Brown CLAY an							0.0
2	4	1.0	3,8,5,5	Brown CLAY, sr	neared with bla	ack clay	, large a	angular grav	rel, moi	st	0.0
		<u> </u>									
	<u></u>										
						<u> </u>					
	<u> </u>				 						
	1		1	-						·	
	<u> </u>						-				
		 									
			 							-	1
		 -				-	-				
		 	 			_					_
		 	1						·		+
·	<u> </u>	 	+		.						_
		 		<u> </u>		-					

Sample/Core Log

Boring/We	II <u>SB-3</u>		Project/No.	IR-Jamestown/AY0	00021 9.0002.00 0	17			_Page	1	of <u>1</u>
Site		la mostav	- MV		Drilling Started	11/10/0	10	Drilling Completed	11/10/	70	
Location		Ja mes to w	VII, NIT		Started	11/19/5		-	11/19/9		
Total Dept	h Drilled	4	Fe et	Hole Diameter	8 inches		Type of	f Sample/ Device	Split Sp	oon	
Length and of Coring [2 feet by	2 inches				_	Sampling Int	erval	2	feet
Land-Surfa	ce Elev.		fe e t	Surveyed	Estimate	ed	Datum				
Drilling Flui	id Used		None				_	Drilling Meth	nod	H.S.A.	
D rilling Contractor		SJ B Se rvi c	es, Inc.				Driller	Don	_ Helper	john	_
Prepared By		J. Bonstee	<u>-</u>				Hamme Weight	er _140-Auto	Hamme _Drop	er 	ins.
Sample/Core (feet below l	land surface)	Core Recovery	Time/Hydraulic Pressure or Blows per 6		via din a						0.44
From	To O A	(feet)	Inches	Sample/Core Desc			···-				OVM
0.4	0.4	0.8	4,4,4,2	Asphalt and Gra Brown/Black CL		Gravel	hrick :	wood			0.0
2	4	 		Tan/Green CLA					maist	_	0.0
	4	1.0	3,4,5,8	1		iu nate i	giavei,	WOOD, Drick	, 1110/31,		10.0
	1			slightly plastic						· · · · · · · · · · · · · · · · · · ·	-
	 	 	 	 	-						+
	 	-		 							+
		 		- 	-	_					+
	-	 									+
	 	 		 							+
	-	<u> </u>	 	+	<u> </u>						
	<u> </u>		+			 -		<u> </u>			
	 		ļ.	+				 , .			+
	 			+	<u> </u>			 			+
	 	<u> </u>		 					··		
			 		-		·				
-		 	-							· · · · · · · · · · · · · · · · · · ·	+
	-	-			<u>_</u>						+
	-		 	ļ							-
			-								-
	1	1	I	1							1

APPENDIX B

Data Validation Reports

Data Validation Services

Cobble Creek Road P. O. Box 208

North Creek, N. Y. 12853

Phone 518-251-4429

December 17, 1998

David Jones Ingersoll-Rand Company 114 Spencer Rd. Cassopolis, MI 49031

RE: Validation of Dowcraft Site Data Packages Severn Trent SDG Nos. A2523 and A2575

Dear Mr. Jones:

Review has been completed for the data packages generated by Severn Trent Laboratories, pertaining to samples collected 11/19/98 and 12/01/98 at the Dowcraft, Jamestown NY Sitc. Nine sediment samples were analysed for TCL volatiles and TAL metals. Three additional soil samples were processed for TCLP lead. Matrix spikes/duplicates were also processed. Methodologies utilized and those of the NYSDEC ASP/USEPA SW846.

Data validation was performed with guidance from the most current editions of the USEPA CLP National Functional Guidelines for Organic and Inorganic Data Review and the USEPA SOPs HW-2 and HW-6. The following items were reviewed:

- * Data Completeness
- * Custody Documentation
- * Holding Times
- * Surrogate and Internal Standard Recoveries
- * Matrix Spike Recoveries/Duplicate Correlations
- * Preparation/Calibration Blanks
- * Control Spike/Laboratory Control Samples
- * Instrumental Tunes
- * Calibration Standards
- * In**str**ument IDLs
- * Method Compliance
- * Sample Result Verification

Those items showing deficiencies are discussed in the following sections of this report. All others were found to be acceptable as outlined in the above-mentioned validation procedures, and as applicable for the methodology.

Unless noted specifically in the following text, reported results are substantiated by the raw data, generated in compliance with protocol requirements, and generally usable as reported with minor qualification.

In summary, sample processing was primarily conducted with compliance to protocol requirements and with adherance to quality criteria. The volatile and TCLP lead results are usable with minor qualification. The metals results for the sediments are qualified as estimated for many elements, due to apparent sample nonhomogeneity. Additionally, the initially reported forms for the sediment metals did not show all required laboratory qualifiers, and have been resubmitted. These are attached, and should be used as replacements to those originally reported. Reported values were not changed.

Certain edits to, and qualification of, reported results are indicated. These issues are discussed in the following analytical sections, and relate primarily to matrix effects.

Copies of laboratory case narratives are attached to this narrative, and should be reviewed in conjunction with this narrative. Laboratory NYSDEC Sample Preparation and Analysis Summary Forms are also included with this report. The report include a qualification summary outlining the specific validation qualifiers to be applied to the final reported results tables.

Data Completeness

Please see the attached, resubmitted report Forms 1-IN for the sediment metals. Additional resubmitted items are also included with this report.

Volatile Analyses-1995 NYSDEC ASP/SW846

The detection of trichloroethene in SED-8 is rejected due to response below the Method Detection Limit (MDL), indicating likely background contribution. The result for that analyte in the sample should be edited to nondetection at the CRDL.

Although methylene chloride and acetone were not detected in the associated method blank (and no trip or field blank data are available), it should be noted that the reported sample concentrations are at levels typical of contamination. Detected results for those analytes should be regarded with caution.

Due to low daily standard responses (50%D and 31%D), results for chloromethane and acetone should be considered estimated in the samples, possibly biased slightly low. Acetone also showed poor linearity (41%RSD) and elevated spiked blank recovery (225%).

Matrix spikes of SED-6 showed acceptable accuracy and precisiosn. Outlying elevated recoveries were observed in the spiked blank for some analytes. However, reported sample results (which showed nondetection) are unaffected.

Field duplicate correlation between SED-5 and DUPLICATE was acceptable.

Metals Analyses-1995 NYSDEC ASP/SW846

Please see the resubmitted report forms for the sediment samples in SDG A2575. These have been corrected to include additional "N" (for outlying spike recovery) and "E" (for serial dilution outliers) qualifiers.

Matrix spike/duplicate evaluations were performed on SED-6. Results showed signficant outliers for spike recovery of five elements, and for duplicate correlation of six elements. Results for these nine elements in all sediments should be considered estimated:

An al yte	Outlying spike recovery	Outlying Duplicate Correlation
Antimony	69%	
Ar se nic	56	
Ca di mium	46	180%RPD
Chromium		131
Co p per		183
Lead		123
Nickel	19	112
Sil ve r	12	
Zinc		150

When the duplicate correlations vary by these amounts, the reported values can differ by an order of magnitude.

The field duplicates SED-5 and DUP also showed very poor correlation for lead (165%), with values also differing by an order of magnitude.

Results for the analytes not recommended for qualification should also be regarded with caution. They also showed very poor spike recoveries and duplicate correlations, but had concentrations that placed them outside the range for evaluation.

The ICP serial dilution correlation for SED-6 showed possible matrix effect on the zinc recovery (36%D) indicating a low bias to the reported result. Zinc is also qualified as estimated due to duplicate correlation.

TCLP accuracy and precision determinations were performed on batch QC, and were acceptable. Reported TCLP results are substantiated by the raw data.

TOC Analyses - LLoyd Kahn method

Accuracy and precision of SED-6, and field duplicate correlation of SED-5, were acceptable.

Reported results are substantiated by the raw data

QUALIFICATION SUMMARY

Volatile

- 1. Trichloroethene in SED-8 edited to "12U".
- 2. Chloromethane and acetone results for all samples qualified as "J."

Metals

- 1. Resubmitted forms include the addition of the "E" flag to zinc, and the addition of the "N" flag to arsenic, cadmium, nickel, and silver for samples in SDG A2575.
- 2. Results for antimony, arsenic, cadmium, chromium, copper, nickel, silver, lead, and zinc qualified as "J" for all sediments in SDG A2575.

Please do not hesitate to contact me if questions or comments arise during your review of this report.

Very truly yours,

Judy Harry

Data Validation Services

120 Cobble Creek Road P. O. Box 208 North Creek, NY 12853 Phone and Fax (518) 251-4429

Facsimile Transmission

TO: Marsha Culik

COMPANY: STL

FAX NUMBER: 203 268 5346

FROM Judy Harry

DATE: 12-14-98

No. of pages (including cover): 1

COMMENTS: RE: Ingersoll Rand/G&M -- Jamestown Site

IEA SDG Nos. A2523 and A2575

Please provide the following items so that validation of the data can be completed:

SDG 2575

- Please review the flagging for the metals spike and duplicate. It appears that furtheres for spike recovery (i.e. As, Cd, Ni, and Ag) were not flagged accordingly.
- 2. Similarly, please review the flagging for the metals serial dilution of zinc.
- 3. Provide any applicable corrected forms (hand-edits are acceptable).

SIJG 2523

- 1. Please provide a copy of the prep log for the TCLP leaching
- 2. Please explain the metals analysis timegap between 12/03/98 11:30 to 11:46. It appears as though more than ten analyses were processed between standards, and I want to confirm that these were not failed QC runs.

Thank you in advance for an expedited response to this request.

December 15, 1998

Severn Trent Laboratories 200 Monroe Turnpike Monroe CT 06468

Tel: (203) 261-4458 Fax: (203) 268-5346

Ms. Judy Harry
Data Validation Services
120 Cobble Creek Road P.O. Box 208
North Creek, NY 12853

Dear Judy:

Per your fax dated 12/14/98, enclosed please find validation responses for the Ingersoll Rand/G&M-Jamestown site, for various SDGs.

SDG 2575A

- 1. Flagging corrected for the metals spike recoveries.
- 2. Flagging corrected for serial dilution of Zinc.
- 3. All forms corrected and resubmitted.

SDG 2523A

- 1. TCLP prep log enclosed.
- 2. The time gap between 11:30 to 11:46 on 12/3/98 was to repour a CCV cup and double check the analysis.

If you have any further questions or comments please do not hesitate to contact me at (203) 261-4458.

Sincerely,

Marsha Culik

Quality Assurance Manager

Marshe K. Cell

Enclosure

,	·	TNORGANIC A	1 NALYSES D ATA S	HEET		EPA SAMPLE NO
Lab Name: <u>STL</u>						SED-4
Lab Code: STL						SDG No.: A2575
						0005753 00
Matrix (soil/wa	iter): <u>SOIL</u>	<u>-</u> * •	дар	samp.	re ID:	982575A-02
Level (low/med)	: LOW	•	Date	Rece	eived:	12/02/98
% Solids:	88.4	_				
Con	centration	Units (ug/	L or mg/kg dry	weig	ght):	Mg/Kg
	CAS No.	Analyte	Concentration	C	Q	м
<u> </u> -	7429-90-5	Aluminum	6550	+		P
	74 4 0-36-0		1.0		N	P
	7440-38-2	Arsenic	16.4		N	P P
	7440-39-3	Barium	56.7			P
ı .	7440-41-7	Beryllium	0.48			
!	7440-43-9	Cadmium	0.62		* N	P
	7440-70-2	Calcium	16300 20.1		*	P P
	7440-47-3	Chromium Cobalt	6.0			P
	74 4 0-48-4 74 4 0-50-8	Copper	47.4		*	P
	7439-89-6	Iron	28900			P
	7439-92-1	Lead	42.6		*	P
1 F	74 3 9-95-4	Magnesium	5700			P
	74 3 9-96-5	Manganese	524.			P
	7439-97-6	Mercury	0.027			CV
	7440-02-0	Nickel	19.1		*N	P
	74 4 0-09-7	Potassium	405. 1.7			P
	77 8 2-49-2 7440-22-4	Selenium	0.18		<u>N</u>	P
	7440-23-5	Sodium	94.9			P
l -	7440-28-0	Thallium	1.1			P
J -	7440-62-2	Vanadium	9.7		-	P
ļ -	7440-66-6	Zinc	178.		*E	P
l	57 - 12-5	Cyanide				NR
Ĺ			1			
Color Before: E	BLACK	_ Clarit	y Before: OPAO	<u>UE</u>	Text	ure: M
Color After: Y	/ELLOW	_ Clarit	y After: <u>CLEA</u>	R	Arti	facts:
Comments:		·		·		

INORGANIC ANALYSES DATA SHEET EPA SAMPLE NO.

Lab Name: <u>STL</u>		· · · · · · · · · · · · · · · · · · ·	Contract:	····	·	SED	-5
Lab Code: STL	Case	No.: <u>2575A</u>	SAS No.: _		_	SDG N	o.: <u>A2575</u>
Matrix (soil/	water): <u>SOI</u> I	<u> </u>	Lab S	Samp	le ID:	9825	75A-03
Level (low/me	d): LOW		Date	Rec	eived:	12/0	2/9 8
% Solids:	92.7	<u>!</u>					
C	CAS No. 7429-90-5 7440-36-0	Analyte Aluminum	L or mg/kg dry Concentration 6230	С	Q	M	
			3.0	В	N	P	
		Arsenic	28.2		N	P	
	7440-39-3	Barium	65.6			P	
1		Beryllium	0.54	В	···	P	
	7440-43-9		2.7	1	*N	P	
•	7440-70-2	Calcium	21700	-		P	
	7440-47-3	Chromium	75.7		*	P	
	7440-48-4		8.3			P	
	7440-50-8		178.		*	P	
•	7439-89-6	Iron	69800			F	
	7439-92-1	Lead	269.		*	<u> </u>	
	7 4 39-95-4		6380			P	
	7 4 39-96-5 7 4 39-97-6	Manganese	832.	-		다 다 다 다 다 다 다 다 다 다 다 다 다 다 다 다 다 다 다	
	7440-02-0	Mercury Nickel	0.016	B	- 		
1	7 4 40-02-0	Potassium	53.4 342.	-	*N	<u> </u>	
	7 7 82-49-2	Selenium	3.3	В		1 1	
	7440-22-4	Silver	0.26	В	Ň	- - -	
		Sodium	96.2	B	14	P P P P	
	7440-28-0	Thallium	1.4			 	
	7 4 40-62-2	Vanadium	12.2	-+		Þ	
•	7440-66-6	Zinc	169.		*E	F F	
•	57-12-5	Cyanide	100.		- E	NR	
		7			·	1 1 1	
		<u></u>				 -	
Color Before:	BLACK	_ Clarity	Before: OPAQUI	<u>c</u>	Textu	re:	<u>M</u>
Color After:	YELLOW	_ Clarity	After: <u>CLEAR</u>	_	Artif	acts:	· .
Comments:							

INORGANIC ANALYSES DATA SHEET

EPA SAMPLE NO.

Lab Name: STL			Contract:			SED-5
Lab Code: STL	Case	No.: <u>2575A</u>	SAS No.: _			SDG No.: A2575
Matrix (soil/	water): SOII	<u>.</u>	Lab S	Samp	le ID:	982 575 A-03
Level (low/med	i): LOW		Date	Rec	eived:	12/02/98
% Solids:	92.7	<u>, </u>				
Cc	onc e ntration	ı Units (ug/	'L or mg/kg dry	wei	ght):	Mg/Kg
	CAS No.	Analyte	Concentration	С	Q	M
	7429-90-5	Aluminum	6230			P
	7 4 40-36-0	Antimony	3.0	B	N	P
	7 4 40-38-2		28.2		N	P
 	7440-39-3		65.6			P P P
•		Beryllium	0.54	В		T P
·	7 4 40-43-9		2.7		* N	P
J	7 4 40-70-2		21700			P
	7440-47-3	Chromium	75.7		*	P
	7440-48-4		8.3			P
	7440-50-8	Copper	178.		×	P
•	7439-89-6		69800			P
•	7439-92-1	Lead	269.		*	P
	7 4 39-95-4 7 4 39-96-5		6380			I P
	7439-96-5		832.			P P P P P P CV
	7440-02-0	Nickel	0.016	В	437	
	7440-02-0		53.4 342.	В	*N	 P
	7782-49-2	Selenium	3.3	В		P P
•	7440-22-4		0.26	В	N	+
•	7440-23-5		96.2	B	TA	<u> </u>
	7440-28-0		1.4			+ 5
		Vanadium	12.2			P
	7440-66-6		169.		*E	P
	57-12-5	Cyanide		1		NR
				$\overline{}$		

Color	Before:	BLACK	Clarity	Before:	OPAQUE	Texture:	<u>M</u>
Color	After:	YELLOW	Clarity	After:	CLEAR	Artifacts:	
Commer	its:						
	·						

1 INORGANIC ANALYSES DATA SHEET

EPA SAMPLE NO.

Lab Name: STL			Contract:			SED-6	
Lab Code: STL	Case	No.: <u>2575A</u>	SAS No.:		_	SDG No.:	A2575
Matrix (soil/w	at e r): <u>SOI</u> L	Lab Sample ID: 982575A-04					
Level (low/med	Date Received: <u>12/02/98</u>						
% Solids:	86	_					
		_					
	•						
Со	ncentration	Units (ug/	L or mg/kg dry	wei	ght):	Mg/Kg	
	CAS No.	Analyte	Concentration	C	Q	M	
_	7429-90-5	Aluminum	5470			P	
	7 4 40-36-0		4.9	В	N	P	
	7 4 40-38-2		23.5		N	P	
	7440-39-3	Barium	61.1			P	
	7440-41-7		0.44	В		P	
	7 4 40-43-9	Cadmium	2.6		*N	P	
4	7440-70-2		8770			P	
	7440-47-3		211.		*	P	
	7 4 40-48-4		13.3			P	
	7 4 40-50-8	Copper	9750	igspace	*	P	
-	7439-89-6		44800		*	P	
	7439-92-1	Lead	524. 3940		*	P P	
	7 4 39-95-4	Magnesium Manganese	655.			4	
•	7439-96-5	Mercury	0.051	В		CV	
	7440-02-0	Nickel	111.		*N	P	
		Potassium	324.	В		<u> </u>	
	7 7 82-49-2	Selenium	1.8			P	
_	7440-22-4	Silver	1.5	В	N	P	
•	7440-23-5	Sodium	64.8	В		P	
	7440-28-0	Thallium	1.2	Ü		P	
J	7440-62-2	Vanadium	13.5			F	
	7440-66-6	Zinc	2380		*E	P	
	5 7 -12-5	Cyanide				NR	
						i	

Color	Before:	BLACK	Clarity	Before:	OPAQUE	Texture:	<u>M</u>
Color	After:	YELLOW	Clarity	After:	CLEAR	Artifacts:	
Comme	nts:						
-		•					
_							
						. ,	

1 INORGANIC ANALYSES DATA SHEET

EPA SAMPLE NO.

						SED-	7
Lab Name: STL			Contract:				
Lab Code: STL	Case	No.: <u>2575A</u>	SAS No.:		_	SDG No	.: <u>A2575</u>
Matrix (soil/w	at e r): <u>SOIL</u>	<u> </u>	Lab S	amp	le ID:	98257	5A-05
			Data	D	فحدثم	12/02	/00
Level (low/med	.): <u>LOW</u>	• •	Date	Kec	eivea:	12/02	790
% Solids:	<u>87.2</u>	_					
g_		Imite (na/	L or mg/kg dry	wai	aht).	Ma /Ka	
Co	ncentration	onite (ag)	n or ag/kg ary	MCT	gne).	ng/kg	
	CAS No.	Analyte	Concentration	C	Q	M	
		_					
	7429-90-5		5400			P	•
	7 4 40-36-0		2.0	В	N	P	
	7 4 40-38-2	Arsenic	17.4		N	P	
	7440-39-3	Barium	49.1			P	
	7440-41-7		0.42	В		P	
	7 4 40-43-9		1.4		*N	P	
•		Calcium	12200			P	
	7440-47-3		33.5		*	P	
	7 4 40-48-4		7.2	В	*	P	
	7 4 40-50-8	Copper	730.	<u> </u>	*	P	
	7439-89-6		49100	ļ	*	P	
,	7439-92-1	Lead	107.		*	P	
		Magnesium	4780 507.			P	
•		Manganese	0.045	В		σίν	
	7439-97-6 7 4 40-02-0	Nickel	26.1	- B	*N	TÉ T	
		Potassium	318.	В	11	P	
	7782-49-2	Selenium	2.2	-		P	
	7440-22-4	Silver	0.25	В	N	P	
1	7 4 40-23-5	Sodium	82.8	B		P	
	7 4 40-28-0	Thallium	1.0	Ū		P	
	7440-62-2	Vanadium	10.4			P	
	7440-66-6	Zinc	250.		* 5	P	
	5 7 -12-5	Cyanide				NR	

Color Before:	BLACK	Clarity	Before:	OPAQUE	Texture:	<u>M</u>
Color After:	YELLOW	Clarity	After:	CLEAR	Artifacts:	
Comments:						
		· · · · · · · · · · · · · · · · · · ·				

1 INORGANIC ANALYSES DATA SHEET

EPA SAMPLE NO.

		11,011,011					
Lab Name: STL			Contract:			SED-	8
						L	
Lab Code: STL	Case	No.: <u>2575A</u>	SAS No.:		-	SDG No	.: <u>A2575</u>
Matrix (soil/water): SOIL Lab					le ID:	<u>98257</u>	5A-06
Level (low/med	WO.1		Date	Rece	eived:	12/02	/98
Devel (10w/med	<u> 2011</u>					/	
% Solids:	89.1	-					
Cc			L or mg/kg dry				
	CAS No.	Analyte	Concentration	C	Q	M	
	7429-90-5	Aluminum	5090	1		P	
	7440-36-0		1.0	U	N	P	
	7440-38-2	Arsenic	13.9		N	P	
	7440-39-3	Barium	46.8			P	•
	7440-41-7	Beryllium	0.49	В	•	P	
	7440-43-9	Cadmium	1.1	1	*N	P	
	7440-70-2	Calcium	12200			P	
	7440-47-3	Chromium	33.0		*	P	
	7 44 0-48-4	Cobalt	6.0	В		P	
	7 44 0-50-8	Copper	541.		*	च प्रांच च	
•	7439-89-6	Iron	38800				
<u> </u>	7439-92-1	Lead	63.4		*	P	
	7 43 9-95-4		3860	\longrightarrow		P	
		Manganese	418.			P	
	7439-97-6	Mercury	0.053	В	* N	P	
	7440-02-0	Nickel	51.0 351.	B	- 1//	P	
	7 44 0-09-7 7 78 2-49-2	Potassium Selenium	1.8	 " 		P	
•	7440-22-4	Silver	0.26	В	N	P	
i	7440-23-5	Sodium	80.2	B	 -	P	
	7440-28-0	Thallium	1.2	U		P	
	7440-62-2		9.2	В		P	
	7440-66-6	Zinc	241.		* E	P	
 	5 7- 12-5	Cyanide				NR	
Color Before:	BLACK	Clarit	y Before: <u>OPAQU</u>	E	Text	ure:	<u>F</u> _t .
Color After:	YELLOW	_ Clarit	y After: <u>CLEAR</u>	·	Arti	facts:	
Comments:							

INORGANIC ANALYSES DATA SHEET

EPA SAMPLE NO.

SED-9

PP

CV

P

P P

Þ

Þ

P

P

NR

513. 0.079 B

28.1

493.

0.35

95.2 1.3 B 12.3

262.

В

В

В

*E

Lab Name: <u>STL</u>		<u>.</u> 1966 - 196	Contract:				
Lab Code: STL	Case	No.: 2575A	SAS No.:		_	SDG No.	: <u>A2575</u>
Matrix (soil/w	ater): SOIL	<u>. </u>	Lab S	amp	le ID:	982575	A-07
Level (low/med	LOW <u>LOW</u>		Date	Rec	eived:	12/02/	98
% Solids:	<u>73.5</u>	· 					
1							
Co	ncentration	Units (ug/	L or mg/kg dry	weig	ght): l	Mg/Kg	
•	r	T	T	1 1			
	CAS No.	Analyte	Concentration	C	Q	М	
_	7429-90-5	Aluminum	5500			P	
	7440-36-0		1.0	В	N	P	
	7440-38-2	Arsenic	14.5		N	P	
	7440-39-3	Barium	82.5			P	
•	7440-41-7	Beryllium	0.52	В		P	
	7 4 40-43-9	Cadmium	1.1		*N	9	
	7440-70-2		9130	1		P	
_	7440-47-3	Chromium	61.0		*	1	
	7440-48-4	Cobalt	6.0	В	*	P	-
	7440-50-8	Copper	179.	\vdash	л	+ <u>- E</u>	
	7439-89-6 7439-92-1	Iron Lead	34200 128.	 	*	P	
	7 4 39-92-1	Magnesium	3560	 		P	
	/ 1 332-33-4	Magnesium	1 2200	<u>t </u>			

Texture: F Color Before: BROWN Clarity Before: OPAQUE Color After: YELLOW Clarity After: CLEAR Artifacts: Comments:

7**4**39-96-5 | Manganese 7439-97-6 | Mercury

Potassium

Selenium

Thallium

Vanadium

Cyanide

Silver

Sodium

Zinc

7440-02-0 Nickel

7**4**40-09-7 7**7**82-49-2 7440-22-4

7440-23-5

7440-28-0

7440-62-2

7440-66-6

5**7**-12-5

1 INORGANIC ANALYSES DATA SHEET

EPA SAMPLE NO.

Lab Name: STL			Contract:			SED-1	U
Lab Code: STL	Case	No.: <u>2575A</u>	SAS No.:		_	SDG No.	: <u>A2575</u>
Matrix (soil/w	ater): SOIL	<u></u>	Lab S	amp	ole ID:	982575	8-08
Level (low/med): <u>LOW</u>		Date	Rec	eived:	12/02/	98
% Solids:	77.8						
C o	ncentration	Units (ug/	L or mg/kg dry	wei	ght):	Mg/Kg	
	CAS No.	Analyte	Concentration	С	Q	М	
	7429-90-5	Aluminum	6560			P	
	7440-36-0		3.7	В	N	<u> </u>	
		Arsenic	14.4		N	P	
	7440-39-3	Barium	78.2			P	
_	7440-41-7		0.55	В		P	•
	7440-43-9		0.93	В	*N	P	
Į į	7440-70-2		6760			P	
	7440-47-3	Chromium	35.4		*	P	
	7440-48-4		7.5	В		P P P P P	
•	7 44 0-50-8		98.1		*	P	-
•		Iron	37700	<u> </u>	<u> </u>	P	
_	7439-92-1	Lead	151.		*	P	
	7 43 9-95-4		3600			<u> </u>	
	7 43 9-96-5		465.	¥5		CV	
	7439-97-6		0.050 29.3	В	*N	P	
	7440-02-0	Nickel Potassium	606.	В	- 11	P	
	7 44 0-09-7 7 78 2-49-2	Selenium	2.2	В		P	
	7440-22-4	Silver	0.22	U	N	P	
_	7440-23-5	Sodium	108.	В		P	
	7440-28-0	Thallium	1.3	Ü		P	
		Vanadium	13.6			 	
į	7440-66-6	Zinc	204.		*E	P	
	57-12-5	Cyanide				NR	

Color	Before:	BLACK	Clarity	Before:	OPAQUE	Texture:	<u>F.</u>
Color	After:	YELLOW	Clarity	After:	CLEAR	Artifacts:	
Commer	nts:						
_							
_							

1 INORGANIC ANALYSES DATA SHEET

EPA SAMPLE NO.

Matrix (soil/wa			Contract: _			DUP-	-1
Lab Code: <u>STL</u> Matrix (soil/wa			Contract: _			i	
Matrix (soil/wa	Case					L	
·		No.: <u>2575A</u>	SAS No.:		_	SDG No	: <u>A2</u>
	a t er): <u>SOI</u> I	<u>.</u>	Lab	Samp	le ID:	9825	75A-09
evel (low/med)): <u>LOW</u>		Date	Rec	eived:	12/02	<u>2/98</u>
Solids:	91.6	<u></u>					
Cor			L or mg/kg dry		ght):	Mg/Kg	
	CAS No.	Analyte	Concentration	C	Q	М	
	7429-90-5	Aluminum	4900			P	
<u>†</u>	7440-36-0		1.5	В	N	P	
Ì	7 440-38-2		18.6		N	P	
Ī	7440-39-3	Barium	47.8	1		P P P	
	7440-41-7	Beryllium	0.42	В		P	
	7 440-43-9	Cadmium	2.6		*N	F	
Ĭ	7 440-70-2		26700			P	
Ī	7440-47-3	Chromium	56.5		*	P	
Ī	7440-48-4		7.3	В		P	
	74 40-50-8	Copper	88.9		+	P	
	7439-89-6	Iron	68000			P	
	7439-92-1	Lead	26.0		*	P	
[74 39-95-4		8740			P	
	74 39-96-5		795.			P	
	7439-97-6		0.019	В		CV	
_	7440-02-0		50.2	 	* N	P	
-	74 40-09-7		329.	В		P	
-	7 782-49-2 7440-22-4		2.3 0.19	0	N	P	
-	7440-23-5		97.0	B	14	 	
+	74 40-28-0		1.2	101		P P P	
}	7440-62-2		11.8			뉴	
}	7440-66-6	Zinc	186.	} 	*E	P	
<u></u>	57 -12-5	Cyanide		1 1		NR	
Ĺ							
olor Before: <u>F</u>	BLACK	_ Clarit	y Before: <u>OPAOU</u>	E .	Texti	ıre:	M
olor After: Y	YELLOW	_ Clarit	y After: <u>CLEAR</u>		Artif	acts:	
omments:							

TABLE AS-1.0 7098-2575A INGERSOLL RAND TAL METALS

All values are mg/Kg dry weight basis.

				:
Client Sample I.D.	SED-3	SED-4	SED-5	SED-6
Lab Sample I.D.	982575A-01	982575A-02	982575A-03	982575A-04
Aluminum Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium Cobalt Copper Iron Lead Magnesium Manganese Mercury Nickel Potassium Selenium Silver Sodium Thallium	4710 0.88UN 13.1N 49.6 0.48B 0.55B*N 20500 14.2* 3.9B 39.0* 17000 44.5* 3100 715. 0.053B 12.2*N 332.B 0.94 0.18UN 94.3B 1.0U	6550 1.0BN 16.4N 56.7 0.48B 0.62B*N 16300 20.1* 6.0B 47.4* 28900 42.6* 5700 524. 0.027B 19.1*N 405.B 1.7 0.18UN 94.9B 1.1U	6230 3.0BN 28.2N 65.6 0.54B 2.7*N 21700 75.7* 8.3 178.* 69800 269.* 6380 832. 0.016B 832. 0.016B 3.3 0.26BN 96.2B 1.4	5470 4.9BN 23.5N 61.1 0.44B 2.6*N 8770 211.* 13.3 9750* 44800 524.* 3940 655. C.051B 111.*N 324.B 1.8 1.5BN 64.8B 1.2U
Vanadium Zinc	7.6B 157.*E	9.7 178.*E	12.2 169.*E	13.5 2380*E

TABLE AS-1.1 7098-2575A INGERSOLL RAND TAL METALS

All values are mg/Kg dry weight basis.

Client Sample I.D.	SED-6 D 982575A-04D	SED-6 S 982575A-04S	SED-7	SED-8 982575A-06
Aluminum Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium Cobalt Copper Iron Lead	5470 2.1B 27.7 58.3 0.49B 50.9* 8570 43.9* 6.7B 436.* 51500 124.*	6250 68.4N 27.6N 380. 9.2 3.0N NR 134. 91.6 258. 48800 65.2	5400 2.0BN 17.4N 49.1 0.42B 1.4*N 12200 33.5* 7.2B 730.* 49100	5090 1.0UN 13.9N 46.8 0.49B 1.1*N 12200 33.0* 6.0B 541.* 38800 63.4*
Magnesium Manganese Mercury Nickel Potassium Selenium Silver Sodium Thallium Vanadium Zinc		NR 562. 0.25 129.N NR 3.2 2.6N NR 10.0 97.5 272.	4780 507. 0.045B 26.1*N 318.B 2.2 0.25BN 82.8B 1.0U 10.4 250.*E	3860 418. 0.053B 51.0*N 351.B 1.8 0.26BN 80.2B 2U 5.2B 241.*E

TABLE AS-1.2 7098-2575A INGERSOLL RAND TAL METALS

All values are mg/Kg dry weight basis.

Client Sample I.D.	SED-9	SED-10	DUP-1	
Lab Sample I.D.	982575A-07	982575A-08	982575A-09	
Aluminum Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium Cobalt Copper Iron Lead Magnesium Manganese Mercury Nickel Potassium Selenium Silver Sodium Thallium Vanadium	5500 1.0BN 14.5N 82.5 0.52B 1.1*N 9130 61.0* 6.0B 179.* 34200 128.* 3560 513. 0.079B 28.1*N 493.B 2.2 0.35BN 95.2B 1.3B 12.3	6560 3.7BN 14.4N 78.2 0.55B 0.93B*N 6760 35.4* 7.5B 98.1* 37700 151.* 3600 465. 0.050B 29.3*N 606.B 2.2 0.22UN 108.B 1.3U 13.6	4900 1.5BN 18.6N 47.8 0.42B 2.6*N 26*00 56.5* 7.3B 88.9* 68000* 8740 795. 0.019B 50.2*N 329B 50.2*N 329B 50.2*N 329B 50.2*N 11.8	
Zinc	262.*E	204.*E	186.*E	

INORGANIC ANALYSES DATA SHEET

EPA SAMPLE NO.

Lab Name: STL			Contract:			SED-3
					· · · · · · · · · · · · · · · · · · ·	SDG No.: <u>A2575</u>
Matrix (soil/w	water): SOIL		Lab S	amp	le ID:	982 575 A- 0 1
Level (low/med	l): LOW		Date	Rec	eived:	12/02/98
% Solids:	84.9	_				
Co	oncentration	Units (ug/	L or mg/kg dry Concentration		ght): Q	Mg/Kg M
•	7429-90-5		4710	1		P P P P P P P P P P P P P P P P P P P
	7 44 0-36-0		0.88	U	N	P
j .	74 4 0-38-2		13.1		N	P
	7440-39-3	Barium	49.6			P
	7440-41-7	Beryllium	0.48	В	1.44	P
	7440-43-9	Cadmium	0.55	В	*N	1 2
•	7440-70-2	Calcium Chromium	20500	 	*	 P
_	7440-47-3 74 4 0-48-4	Cobalt	14.2 3.9	В		P
	7440-50-8	Copper	39.0	B	*	P
	7439-89-6	Iron	17000	 		ो ।
	7439-92-1	Lead	44.5	 	*	P
I	74 3 9-95-4	Magnesium	3100	 		P
	7439-96-5	Manganese	715.			P
	7439-97-6	Mercury	0.053	В		CV
	7440-02-0	Nickel	12.2		*N	P
	7440-09-7	Potassium	332.	В		P
	77 8 2-49-2	Selenium	0.94			P
	7440-22-4	Silver	0.18	U	N	P
	7440-23-5	Sodium	94.3	В		P
	7440-28-0	Thallium	1.0	U		P
		Vanadium	7.6	В		P
	7440-66-6	Zinc	157.		<u>*E</u>	1
	57 - 12-5	Cyanide	·	-	·	NR
	<u></u>			<u> </u>	····	
Color Before:	BLACK	Clarit	y Before: OPAQU	E	Text	ure: M
Color After:	YELLOW	_ Clarit	y After: <u>CLEAR</u>	 -	Arti:	facts:
Comments:						

5A SPIKE SAMPLE RECOVERY

EPA SAMPLE NO.

		SED-6S
Lab Name: STL	Contract:	

Lab Code: STL Case No.: 2575A SAS No.: SDG No.: A2575

Matrix: SOIL Level (low/med): LOW

% Solids for **S**am**p**le: <u>86</u>

Concentration Units (ug/L or mg/kg dry weight): MG/KG

Analyte	Limit %R	Spiked Sample Result (SSR) C	Sample Result (SR)	С	Spike Added (SA)	&R	Q	М
Aluminum		6252.8442	5474.5487		369.14			Р
Antimony	75 - 12 5	68.4334	4.8612	В	92.28			P
Arsenic	75 - 12 5	27.5621	23.4652		7.38		N	P
Barium	75-125	379.8671	61.1214		359.14			Р
Beryllium	75-125	9.1785	0.4450	В	9.23	5.4.5		Р
Cadmium	75 - 12 5	3.0367	2.6151		0.92		И	P
Calcium			8774.9014		0.0	7		P
Chromium		134.3071	211.0410		36.5%	25		P
Cobalt	75 - 12 5	91.6042	13.2817		92.21			P
Copper		257.5733	9749.8187		46.14	<u> </u>		P
Iron		48840.5500	44774.2609		184.57			P
Lead		65.1852	523.8220		3.69			P
Magnesium			3943.6342		00.00	(1.0		P
Manganese		561.5268	655.3810		92.28			P
Mercury	7 5- 125		0.0510	B	0.23			CĀ
Nickel	75-125	129.1274	111.2624		92.28			P
Potassium			324.5518	В	0.00			P
Selenium	75 - 12 5		1.7708		1.84			P
Silver	7 5- 125	2.6029	1.5084	В	9.23		N	P
Sodium			64.8210	В	0.00	0.0		P
Thallium	75 - 12 5		1.1825		9.23	108.6		P
Vanadium	75-125	97.4762	13.5040		92.28	90		P
Zinc		272.2274	2383.0883		92.28	- 2 287.3		P
Cyanide							L	NR
								LJ
<u> </u>	·							

Comments:			
	 ·	 	
	 	 	

6 DUPLICATES

EPA SAMPLE NO.

				SED-6D
Lab	Name:	STL	Contract:	

Lab Code: STL Case No.: 2575A SAS No.: SDG No.: A2575

Matrix: SOIL Level (low/med): LOW

% Solids for Sample: 86 % Solids for Duplicate: 86

Concentration Units (ug/L or mg/kg dry weight): MG/KG

	Control			
2007-00	Control	Cample (C) C	Dunlingto (D) C	DDD O M
Analyte	Limit	Sample (S) C	Duplicate (D) C	RPD Q M
Aluminum		5474.5487	5472.4673	P
		· · · · · · · · · · · · · · · · · · ·		77.6 P
Antimony			2.1443 B	77.6
Arsenic		23.4652	27.7406	16.7 P
Barium	44.2	61.1214	58.3300	4.7 P
Beryllium		0.4450 B	0.4895 B	9.5 P
Cadmium	1.1	2.6151	50.9145	180.4 * P
Calcium		8774.9014	8569.3112	2.4 P
Chromium		211.0410	43.8624	131.2 × P
Cobalt	11.0	13.2817	6.6852 B	66.1 P
Copper		9749.8187	436.1515	182.9 * P
Iron		44774.2609	51462.7021	13.9 P
Lead		523.8220	124.0366	123.4 * P
Magnesium	1107.4	3943. 634 2	3526.0753	11 2 P
Manganese		655.3810	536.9506	1.9 P
Mercury	0.0	0.0510 B	0.1059	€9, 9 CV
Nickel	8.8	111.2624	31.4692	1:1.8 * P
Potassium		324.5518 B	337.9034 B	0.0 P
Selenium	1.1	1.7708	2.2484	2 8 P
Silver		1.5084 B	0.2911 B	135.3 P
Sodium		64.8210 B	59.2198 B	9.0 P
Thallium		1.1825 U	2.1555 B	200.0 P
Vanadium	11.0	13.5040	10.8027 B	22.2 P
Zinc		2383.0883	336.5103	150.5 * P
Cyanide				NR

9 ICP SERIAL DILUTIONS

EPA SAMPLE NO.

				SED-6L
Lab	Name:	ST L	Contract:	

Matrix(soil/water): SOIL Level (low/med): LOW

Concentration Units: ug/L

			· · · · · · · · · · · · · · · · · · ·				
Anal y te	Initial Sample Result (I)	С	Serial Dilution Result (S)	С	Differ- ence	Q	М
Aluminum	27777.86		27574.68		0.7	,	1. P
Antimony	24.66	В	25.00		100.0		5
Arsenic	119.06		99.22		16.7		P
Barium	310.13		314.19	В	1.3		F
Beryllium	2.26	В	5.00		100.0		p
Cadmium	13.27		6.03	B	54.5		Þ
Calcium	44523.85		46618.97		4.7		P
Chromium	1070.82		1101.13		2.8		ģ
Cobalt	67 .39		73.28		8.7		P
Copper	49470.58		50835.45		2.8		P
Iron	227184.60		236244.20		4.0		Ē
Lead	2657.87		2729.30		2.7		P
Magn e sium	20010.00		208 64.80	В	4.3		ì
Mang a ne s e	3325.40		34 59.93		4.0		U
Mercury							W.S.
Nick e l	564.54		581.06		2. 9		٠
Pota s sium	1646.78	В	1407.47		14.5		ĪΣ
Sele n ium	8.98		10.00	Ü	100.0		<u> 5</u>
Silver	7.65		9.85	В	28.7		P
Sodi um	328.90	В	342.90	В	4.2		Ĭ,
Thallium	6.00	U	57.15				I
Vana di u m	68.52		71.24	В	4.0		\overline{F}_2
Zinc	12091.79		16463.49		36.2	E	ñ
Cyan id e							NR
			<u></u>				

	M	UU	W	M		
Laboratory Sample ID	PERBUR	25854-01	25\$A00	2533103		
E. Determination of Sample Si	ze (method	requires	00 grams)		
1. Particle size reduction? Y/N	Ŋ	N	N	N		
2. Amount of dry solids. (g)		100.06	99.98	100.11		
3. Amount of multi-phase sample				`		
a. wt of material (g)						
b. Wt of filtrate (g)						
c. Wt of solid material (g)					İ	
F. Determination of Amount of	Extraction	n Fluid		·	· · · · · · · · · · · · · · · · · · ·	
1. For dry solids (20X sample Wt.)		2000	2000	2000		
2. For multi-phasic samples	<u> </u>			<u></u>	<u> </u>	1
G. Record of Leach procedure	(18 hrs ±	2 hrs)	T. THAC		+	
1. Extraction start time		11-20-78	11-2018			
2. Extraction stop time		12:00				
3. Filtration completetion time					-	·
4. pH of filtrate	45	1 1 5	< 5	₹ 5	}	
5. Volume of filtrate (ml)	300	300	300	300	1	<u></u>
H. Record of ZHE Extraction	Test (18 h	rs ±2 hrs)	T		1	
1. Amount of Extraction Fluid 1						
2. Sample mass (g)						
3. Extraction start time		<u> </u>				
4. Starting pressure		-			ļ	4
5. Extraction stop time	 			-		<u> </u>
6. Positive pressure?						
7. Filtration completetion time			ļ			
8. Volume of filtrate			<u> </u>	1 :		1

Review ed b y :	Date:	Page of 120
STL Form# CVF03402.CT		STL Logbook#IV34.9

	\mathcal{M}	M	M	\mathcal{N}		
Laboratory Sample ID	PRES-fruit	253A O	TO ASSIC	ssamo3		
A: Sample Description Number of phases:			(
1. Solid			~	1		
2. Liquid						
Lighter or heavier than water		H	<u>H</u>	+		
B. Percent solid Phase						
1. Weight of filter						
2. Weight of subsample						
3. Weight of filtrate						
4. Weight percent solids (wet)		100	100	10()		
5. Weight percent solids (dry)	-			>		
6. Volume of initial aqueous filtrate						
7. Volume of initial organic filtrate	<u> </u>		<u> </u>		<u> </u>	
C. Extraction Fluid Determinat	ion					
2. Sample weight \checkmark if 5.0 \pm 0.1 gms		V	0	U		
3. Volumeof water ✓ if 96.5 ± 1.0 ml added		V	1	1		
4. Initial pH (after 5 minutes)		7.06	6.11	6.55		\
5. If pH > 5.0, ✓ if 3.5 ml 1N HCL added			V	1		
6. ✓ if heated and held at 50°C for 10 minutes		~	V	1		
7. Secondary pH (room temp.)		1-60	2.01	1.75	<u> </u>	
D. Selection of Extraction Fluid					,	,
1. ✓ if pH from C.4 or C.7 is < 5.0 use extraction fluid No. 1		/	~			
2. ✓ if pH from C.7 is > 5.0, use extraction fluid No.2						

Reviewed by:	Date:	Pagecf 120
STI FORM# CVF03402.CT		STL Logbook#CV3(.9

7098-2575A INGERSOLL RAND

Severn Trent Laboratories 200 Monroe Turnpike Monroe CT 06468

Tel: (203) 261-4458 Fax: (203) 268-5346

Case Narrative

Metals - ICAP metals were determined using a JA61E trace ICAP; mercury was determined by the cold vapor technique utilizing a Spectro Products mercury analyzer using guidance provided in SW846 according to the following Methods: ICAP-3050/6010; mercury-7471.

Antimony failed the controls for spike recovery analysis of sample SED-6 resulting in one "N" flag. A post-digestion spike was analyzed and recovered within the control limits.

Six "*" resulted from duplicate analysis of sample SED-6 for cadmium, copper, chromium, lead, nickel and zinc. A sample homogeneity problem appears to be the cause.

No other problems occurred during analysis. All appropriate protocols were employed. All data appears to be consistent.

IEC's are electronically employed by the JA61E trace ICAP. However, the ICSA is utilized as a monitoring device to detect any additional adjustments that may be required. These modifications are calculated and applied manually. They are so noted in the raw data.

Classical Chemistry - Listed below are the wet chemistry analyte methods and references for the samples analyzed in this SDG. Samples prepared following Lloyd Kahn, Determination of Total Carbon in Sediment, July 27, 1988. No analytical problems were encountered.

Ana ly te	Method	Reference
TOCD	9060	1

References:

1. Test Methods for the Evaluation of Solid Wastes, SW846, 3rd ed., 1986.

Volatile Organics - Volatile organics were determined by purge and trap GC/MS using guidance provided in Method 8260B. The instrumentation used was a Tekmar Dynamic Headspace Concentrator interfaced with a Hewlett-Packard Model 5970A GC/MS/DS.

Other Laboratory Locations:

• 149 Rungeway Road, North Billenca MA 01862

16203 | ... | Kuv | Suite 110, Houston TX 77084
 120 Swithcenter Court, Suite 300, Morrisville NC 27560

315 Fij indon Avenue, Newburgh NY 12550

Least Ulive Road, Pensacola FL 32514
 Westfield Executive Park, 53 Southampton Road, Westfield MA 01065

628 Route 10, Whippany N° 07981

a part of

Section Section

Sample Calculation:

Sample ID - **S**ED-9 Compound - Toluene

(102384)(250) = 1.48 = 1 UG/L. (5791395)(.889)(5)(.67)

No problems were encountered.

I certify that this data package is in compliance with the terms of this contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hardcopy data package and in the computer-readable data submitted on diskette has been authorized by the Laboratory Manager or his designee, as verified by the following signature.

Jeffrey C. Curran

Laboratory Manager

Date

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

SAMPLE IDENTIFICATION AND ANALYTICAL REQUIREMENT SUMMARY

	1	Analytical Requirements						
Customer Laboratory Sample Sample Code Code	*VOA GC/MS Method #	#8NA GC/MS Method #	*VOA GC Method #	*Pest PCBs Method #	*Motale	*Other		
SED-3	982 57 5A-01	х				x		
s)- 4	982 57 5 λ-02	x				x		
S <u>ED</u> -5	982 57 5A-03	х				х		
s -6	982 57 5A- 04	x				x		
SFD-6	982 57 5A- 04 D					x		
s a - 6	982 57 5A- 04M S	x						
	982 57 5A- 04K 8B	x	·					
520-6	982 57 5A- 04K SD	x						
49-6	982 57 5A- 04 6					x		
SED-7	9825753-05	х				x		
	9825753-06	X				х		
SED-9	9825753-07	x				х		
	982 57 5 X-08	х				x		
DU9-1	9825753-09	x				х		
1								

12/91

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

SAMPLE PREPARATION AND ANALYSIS SUMMARY VOLATILE (VOA) ANALYSES

Laboratory Sample ID	Matrix	Date Collecte d	Date Rec'd at Lab	Date Extracted	Date Analyzed
82575A-01	SOIL	12/01/98	12/02/98	NA	12/02/98
A82575A-02	SOIL	12/01/98	12/02/98		
-82575A-03	SOIL	12/01/98	12/02/98		
82575}04	SOIL	12/01/98	12/02/98		
982575A-05	som	12/01/98	12/02/98		
B2575A-06	SOIL	12/01/98	12/02/98		
982575A-07	SOIL	12/01/98	12/02/98		
82575A-08	SCIL	12/01/98	12/02/98	 	
982575A-09	SOIL	12/01/98	12/02/98		
		·			
_				İ	
				<u> </u>	
_					
-			,		
=					
•					

. NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

SAMPLE PREPARATION AND ANALYSIS SUMMARY INORGANIC ANALYSES

Laboratory Sample ID	Hatrix	Metals Requested	Date Rec'd at Lab	Date An a lyzed
982575A-01	SOTL	MRT-NSM846-TAL	12/02/98	12/7/91
982575A-02	SOIL	MET-NSW846-TAL	12/02/98	
982575A-03	SOIL	MET-NSW846-TAL	12/02/98	
982575A-04	SOIL	MET-NSW846-TAL	12/02/98	
982575A-05	SOIL	met-nsw846-tal	12/02/98	
982575A-06	SOIL	MET-NSM846-TAL	12/02/98	
982575A-07	SOIL	met-1846- tal	12/02/98	
982575A-08	SOIL	MXT-NSM846-TAL	12/02/98	
982575A-09	SOIL	met-nome46-tal	12/02/98	7

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

SAMPLE IDENTIFICATION AND ANALYTICAL REQUIREMENT SUMMARY

	_ 	Analytical Requirements						
Customer Sample	Laboratory Sa mp le C ode	+VOA GC/MS Method #	*BNA GC/MS Method #	*VOA GC Method #	*Pest PCBs Method #	*Metals	*Other	
1	98252 3A -01					x		
2	98252 3A -02					x		
	98252 3A -03					x		
	'			. **				
1								
•								
_								
_								

12/91

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

SAMPLE PREPARATION AND ANALYSIS SUMMARY INORGANIC ANALYSES

Laboratory Sample ID	Natrix	Metals Requested	Date Rec'd at Lab	Date Analyzed
523A-01	LEACHATE	PB-XI_SW846	11/20/98	12/5/84
52 -02	Leachate	PB-NLSW846	11/20/98	
52 <u>3</u> A-03	LEACHATE	PB-NLSW846	11/20/98	4
• ,				
<u> </u>				
_				
	İ			

12/91

7098-2523A INGERSOLL RAND

Severn Trent Laboratories 200 Monroe Turnpike Monroe CT 06468

Tel: (203) 261-4458

Fax: (203) 268-5346

Case Narrative

Metals - ICAP metals were determined using a JA61E trace ICAP using guidance provided in SW846 according to the following Methods: ICAP-3010/6010.

No problems occurred during analysis. All appropriate protocols were employed. All data appears to be consistent.

IEC's are electronically employed by the JA61E trace ICAP. However, the ICSA is utilized as a monitoring device to detect any additional adjustments that may be required. These rediffications are calculated and applied manually. They are so noted in the raw data.

Chassical Chemistry - Listed below are the wet chemistry analyte methods and references for a samples analyzed in this SDG. No analytical problems were encountered and all holding times were met.

Analyte	Method	Reference
TCLP-PREP	13 11	1

References:

1. Test Methods for the Evaluation of Solid Waste, SW846, 3rd edition, 1986.

I ertify that this data package is in compliance with the terms of this contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained is this hardcopy data package and in the computer-readable data submitted on diskette has been authorized by the Laboratory Manager or his designee, as verified by the following signature.

Dec. 8, 1998

erire C. Curran

Date

er Laboratory Locations:

oratory Manager

9 Rangeway Road North Billerica MA 01862 5203 Park Row, Suite 110 Houston TX 77084 30 Co. Houston Court Suite 300 Monteelle NO 21560 315 Fullerton Avenue, Newburgh NY 12550
 115 or On a Part Purchase 5, 33514

● LitEast Olive Road, Pensacola Fi. 32514

Nestind Encouse Part. 53 Southampton Road, Westfield MA 01085

a part of

secondrum errors in

APPENDIX C

Soil Sample Laboratory Analytical Results

December 08, 1998

Severn Trent Laboratories 200 Monroe Turnpike Monroe CT 06468

Tel: (203) 261-4458 Fax: (203) 268-5346

Mr. Marc Sanford INGERSOLL RAND Geraghty & Miller 213 Madison Ave. Ext. Albanycreek, NY 12203

Dear Mr. Sanford:

Please find enclosed the analytical results of 3 sample(s) received at our laboratory on November 20, 1998. This report contains sections addressing the following information at a minimum:

sampl**e** summary

definition of data qualifiers and terminology

. analytical methodology

analytical results

. state certifications

chain-of-custody

STL Report #7098-2523A	Purchase Order #907019
Project ID: JAMESTOWN, NY	

Copies of this analytical report and supporting data are maintained in our files for a minimum of five years unless special arrangements have been made. Unless specifically indicated, all analytical testing was performed at this laboratory location and no portion of the testing was subcontracted.

We appreciate your selection of our services and welcome any questions or suggestions you may have relative to this report. Please contact your customer service representative at (203) 261-4458 for any additional information. Thank you for utilizing our services; we hope you will consider us for your future analytical needs.

I have reviewed and approved the enclosed data for final release.

Very truly yours,

y Manager

JCC

cc: D. JONES M. SANFORD

Other Laboratory Locations:

- 149 Rangeway Road, North Billerica MA 01862
- 16203 Park Row, Suite 110, Houston TX 77084
- 120 Southcenter Court, Suite 300, Morrisville NC 27560
- 315 Fuherton Avenue, Newburgh NY 12550
- 11East Olive Road, Persaco'a FL 32514
- Westfield Executive Park, 53 Southampton Road, Witstfield MA 01085

628 Route 10 Wh aparty NJ 07981

a part of

Severa Trent benders Inc

7098-2523A INGERSOLL RAND

Case Narrative

Metals - ICAP metals were determined using a JA61E trace ICAP using guidance provided in SW846 according to the following Methods: ICAP-3010/6010.

No problems occurred during analysis. All appropriate protocols were employed. All data appears to be consistent.

IEC's are electronically employed by the JA61E trace ICAP. However, the ICSA is utilized as a monitoring device to detect any additional adjustments that may be required. These modifications are calculated and applied manually. They are so noted in the raw data.

Classical Chemistry - Listed below are the wet chemistry analyte methods and references for all samples analyzed in this SDG. No analytical problems were encountered and all holding times were met.

A n alyte	M ethod	Re ference
TCLP-PREP	1311	1

References:

1. Test Methods for the Evaluation of Solid Waste, SW846, 3rd edition, 1986.

TABLE AS-1.0 7098-2523A INGERSOLL RAND MISCELLANEOUS ATOMIC SPECTROSCOPY

All values are ug/L.

Client Sample I.D.	SB-1	SB-2	SB-3	
Lab Sample I.D.	982523A-01	982523A-02	982523A-03	
Lead	5.5	70.5	5.2	

INORGANICS APPENDIX

C - Concentration qualifiers

- Indicates analyte was not detected at method reporting limit.
 - Indicates analyte result between IDL and contract required detection limit (CRDL)

Q - QC qualifiers

- = Reported value is estimated because of the presence of interference
 - Duplicate injection precision not met
 - Spiked sample recovery not within control limits
 - The reported value was determined by the method of standard additions (MSA)
 - Post-digest spike recovery furnace analysis was out of 85-115 percent control limit, while sample absorbance was less than 50 percent of spike absorbance
 - Duplicate analysis not within control limit
 - Correlation coefficient for MSA is less than 0.995

M - Method codes

- ICP
- Flame AA
 - Furnace AA
- Cold vapor AA (manual)
- C Cyanide
- R Not Required
- Not Calculated as per protocols

STATE CERTIFICATIONS

In some instances it may be necessary for environmental data to be reported to a regulatory authority with reference to a certified laboratory. For your convenience, the laboratory identification numbers for the STL-Connecticut laboratory are provided in the following table. Many states certify laboratories for specific parameters or tests within a category (i.e. method 325.2 for wastewater). The information in the following table indicates the lab is certified in a general category of testing such as drinking water or wastewater analysis. The laboratory should be contacted directly if parameter-specific certification information is required.

STL-Connecticut
Certification Summary (as of September 1998)

State	Responsible Agency	Certification	Lab Number
Connecticut	Department of Health Services	Drinking Water, Wastewater	PH-0497
Kan sa s	Department of Health & Environment	Drinking Water, Wastewater/Solid, Hazardous Waste	E-10210
Maine	Department of Health and Environmental Services	Drinking Water, Wastewater/Solid, Hazardous Waste	CT023
Massachusetts	Department of Environmental Protection	Potable/Non-Potable Water	CT023
New Hampshire	Department of Environmental Services	Drinking Water, Wastewater	252891
New Jersey	Department of Environmental Protection	Drinking Water, Wastewater	46410
New Yo rk	Department of Health	CLP, Drinking Water, Wastewater, Solid/ Hazardous Waste	10602
North Carolina	Division of Environmental Management	Wastewater	388
Rhode Island	Department of Health	ChemistryNon- Potable Water and Wastewater	A43
Washington	Department of Ecology	Wastewater/Hazardous Waste	C231
Wisconsin	Department of Natural Resources	Wastewater	998355710

7098-2523A INGERSOLL RAND SAMPLE SUMMARY

CLIENT ID	LAB ID	MATRIX	DATE COLLEC TED	DATE RECEIV E D
SB-1	982523A-01	SOIL	11/19/98	11/20/98
SB-2	982523A-02	SOIL	11/19/98	11/20/98
SB-3	982523A-03	SOIL	11/19/98	11/20/98

Page:1

Client ID: SB-1, SB-2, SB-3

Job Number: 7098-2523A

Date: 12/8/98

Oty Matrix Analysis Description

3 LEACHATE MET-PREP-ICAP-TCLP Metals ICAP Prep
3 LEACHATE PB-NLSW846 Lead
1 None DISK Diskette Prep.
3 SOIL MET-N1311-PREP TCLP Metals Leach

2 13 E

TCLP Preparation Logbook (cont)

	M	UU	M	M		
Laboratory Sample ID	PREPERIK	25\$\$A 01	25 2 402	258003		
E. Determination of Sample Size (method requires 100 grams)						
1. Particle size reduction? Y/N	N	N	N	\mathcal{N}_{-}		
2. Amount of dry solids. (g)		100.06	99.98	100.1		
3. Amount of multi-phase sample						
a. wt of material (g)						
b. Wt of filtrate (g)						
c. Wt of solid material (g)						
F. Determination of Amount of	Extraction	n Fluid				
1. For dry solids (20X sample Wt.)		2000	2000	2000		
2. For multi-phasic samples						
G. Record of Leach procedure	(18 hrs ±	2 hrs)				
1. Extraction start time		11-20-18 40-11	11-2018			
2. Extraction stop time		11-21-98				
3. Filtration completetion time						
4. pH of filtrate	<u> </u>	45	<5	く5		
5. Volume of filtrate (ml)	300	300	300	300	1	
H. Record of ZHE Extraction	Test (18 hi	$rs \pm 2 hrs$			1	
1. Amount of Extraction Fluid 1						-
2. Sample mass (g)						
3. Extraction start time						
4. Starting pressure						
5. Extraction stop time	 		ļ	 		
6. Positive pressure?						
7. Filtration completetion time						
8. Volume of filtrate			1		<u> </u>	1

Reviewed by:	Date:	PageSTL Logbook	
CMT Form# CME03402 CT		JII HOGDOOK	,

Teel Treparation Eogooon	M	M	Μ	\mathcal{N}		
Laboratory Sample ID	PRE1-BLUE	2583A :U]	SO ASBAC	35A7403		
A. Sample Description Number of phases:			(
1. Solid		<u></u>	<u></u>	1		
2. Liqui d						
Lighter or heavier than water		H	H	<u>+</u>		
B. Percent solid Phase					<u> </u>	<u> </u>
1. Weight of filter						
2. Weight of subsample						
3. Weight of filtrate						
4. Weight percent solids (wet)		100	100	10()		
5. Weight percent solids (dry)				<u> </u>		
6. Volume of initial aqueous filtrate						
7. Volume of initial organic filtrate						
C. Extraction Fluid Determinat	ion				<u> </u>	
2. Sample weight \checkmark if 5.0 \pm 0.1 gms		V		V		
3. Volumeof water ✓ if 96.5 ± 1.0 ml added		V	V	~		
4. Initial-pH (after 5 minutes)		7.06	6.11	6.55		
5. If pH > 5.0, ✓ if 3.5 ml 1N HCL added			V	1		
6. ✓ if heated and held at 50C for 10 minutes						
7. Secondary pH (room temp.)		1-60	2.01	1.75		
D. Selection of Extraction Fluid					Ŧ	
1. ✓ if pH from C.4 or C.7 is < 5.0 use extraction fluid No. 1		•				
2. ✓ if pH from C.7 is > 5.0, use extraction fluid No.2						

Reviewed by:	Date:
STL Form# CVF03402.CT	

P

APPENDIX D

Sediment Sample Laboratory Analytical Results

December 10, 1998

Severn Trent Laboratories 200 Monroe Turnpike Monroe CT 06468

Tel: (203) 261-4458 Fax: (203) 268-5346

Mr. Marc Sanford INGERSOLL RAND Geraghty & Miller 213 Madison Ave. Ext. Albanycreek, NY 12203

Dear Mr. Sanford:

Please find enclosed the analytical results of 14 sample(s) received at our laboratory on December 2, 1998. This report contains sections addressing the following information at a minimum:

sample summary

definition of data qualifiers and terminology

analytical methodology state certifications

analytical results

chain-of-custody

ST L Report # 7 098-2575A	Pürchase Order #907019
Project ID: JAMESTOWN, NY	·

Copies of this analytical report and supporting data are maintained in our files for a minimum of five years unless special arrangements have been made. Unless specifically indicated, all analytical testing was performed at this laboratory location and no portion of the testing was subcontracted.

We appreciate your selection of our services and welcome any questions or suggestions you may have relative to this report. Please contact your customer service representative at (203) 261-4458 for any additional information. Thank you for utilizing our services: we hope you will consider us for your future analytical needs.

I have reviewed and approved the enclosed data for final release.

terul y

Laboratory Manager

JCC

cc: D. **JO**NE**S** M. **SANFORD**

Other Laboratory Locations:

● 149 Rangeway Road, North Billerica MA 01862

16203 Park Row, Suite 110, Houston TX 77084 ● 120 Southcenter Court, Suite 300 Morrisville NC 27560 • 315 Fullerton Avenue, Newburgh NY 12550

● I 1East Olive Road, Pensaco'a F1 32514

Westfield Executive Park, 53 Southampton Road, Westfield MA 01065

628 Pouts 10, Whoppary NJ 07981.

a part of

les hat Them be vice time.

7098-2575A INGERSOLL RAND

Case Narrative

Metals - ICAP metals were determined using a JA61E trace ICAP; mercury was determined by the cold vapor technique utilizing a Spectro Products mercury analyzer using guidance provided in SW846 according to the following Methods: ICAP-3050/6010; mercury-7471.

Antimony failed the controls for spike recovery analysis of sample SED-6 resulting in one "N" flag. A post-digestion spike was analyzed and recovered within the control limits.

Six "*" resulted from duplicate analysis of sample SED-6 for cadmium, copper, chromium, lead, nickel and zinc. A sample homogeneity problem appears to be the cause.

No other problems occurred during analysis. All appropriate protocols were employed. All data appears to be consistent.

IEC's are electronically employed by the JA61E trace ICAP. However, the ICSA is utilized as a monitoring device to detect any additional adjustments that may be required. These modifications are calculated and applied manually. They are so noted in the raw data.

Classical Chemistry - Listed below are the wet chemistry analyte methods and references for the samples analyzed in this SDG. Samples prepared following Lloyd Kahn, Determination of Total Carbon in Sediment, July 27, 1988. No analytical problems were encountered.

Analyte	Method	Reference
TOCD	9060	1

References:

1. Test Methods for the Evaluation of Solid Wastes, SW846, 3rd ed., 1986.

Volatile Organics - Volatile organics were determined by purge and trap GC/MS using guidance provided in Method 8260B. The instrumentation used was a Tekmar Dynamic Headspace Concentrator interfaced with a Hewlett-Packard Model 5970A GC/MS/DS.

Sample Calculation:

Sample **ID - S**ED-9 Compou**n**d - Toluene

 $\frac{(102384)(250)}{(5791395)(.889)(5)(.67)}$ = 1.48 = 1 UG/L.

No problems were encountered.

TABLE VO-1.0 7098-2575A INGERSOLL RAND TCL VOLATILE ORGANICS + TIC'S

All values are ug/Kg dry weight basis.

Client Sample I.D. Lab Sample I.D. Method Blank I.D. Quant. Factor	Method Blank VBLKKW VBLKKW 1.00	SED-3 982575A-01 VBLKKW 1.22	SED-4 982575A-02 VBLKKW 1.26	Quant. Limits with no Dilution
Chloromethane Bromomethane Vinyl Chloride Chloroethane Methylene Chloride Acetone Carbon Disulfide Vinyl Acetate 1,1-Dichloroethene 1,2-Dichloroethene 1,2-Dichloroethene (total) Chloroform 1,2-Dichloroethane 2-Butanone 1,1,1-Trichloroethane Carbon Tetrachloride Bromodichloromethane 1,2-Dichloropropane cis-1,3-Dichloropropene Trichloroethene Dibromochloromethane 1,1,2-Trichloroethane Benzene trans-1,3-Dichloropropene Bromoform 4-Methyl-2-Pentanone 2-Hexanone Tetrachloroethene Toluene 1,1,2,2-Tetrachloroethane Chlorobenzene Ethylbenzene Styrene	ממפממממממממממממממממממממממ	מממממממממ	:ממממממממממממממממממממממממממממממממממממ	10 10 10 10 10 5 10 5 10 5 10 5 10 5 10
Date Received Date Extracted Date Analyzed	N/A 12/02/98	U 12/02/98 N/A 12/02/98	U 12/02/98 N/A 12/02/98	5.0

TABLE VO-1.1 7098-2575A INGERSOLL RAND TCL VOLATILE ORGANICS + TIC'S

All values are ug/Kg dry weight basis.

Client Sample I.D. Lab Sample I.D. Method Blank I.D. Quant. Factor	SED-5 982575A-03 VBLKKW 1.23	SED-6 982575A-04 VBLKKW 1.25	SED-6 MS 982575A-04MS VBLKKW 1.25	Quant. Limits with no Dilution
1,1-Dichloroethene 1,1-Dichloroethane 1,2-Dichloroethene (total) Chloroform 1,2-Dichloroethane 2-Butanone 1,1,1-Trichloroethane Carbon Tetrachloride Bromodichloromethane 1,2-Dichloropropane cis-1,3-Dichloropropene Trichloroethene Dibromochloromethane	0 12:00	ם פ פ פ פ פ פ פ פ פ פ פ פ	U U U U U U U U U U U U U U U U U U U	10 10 10 10 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.
Date Recei ve d Date Extra ct ed Date Analy ze d	12/02/98 N/A 12/02/98	12/02/98 N/A 12/02/98	12/02/98 N/A 12/02/98	

TABLE VO-1.2 7098-2575A INGERSOLL RAND TCL VOLATILE ORGANICS + TIC'S

All values are ug/Kg dry weight basis.

Client Sample I.D. Lab Sample I.D. Method Blank I.D.	SED-6 MSD 982575A-04 MSD VBLKKW	SED-7 982575A-05 VBLKKW	VBLKKW	Quant. Limits With no
Quant. Factor	1.25	1.11	1.19	Dilution
Chloromethane Bromomethane Vinyl Chloride Chloroethane Methylene Chloride Acetone Carbon Disulfide Vinyl Acetate 1,1-Dichloroethene 1,2-Dichloroethene (total) Chloroform 1,2-Dichloroethane 2-Butanone 1,1,1-Trichloroethane Carbon Tetrachloride Bromodichloromethane 1,2-Dichloropropane cis-1,3-Dichloropropene Trichloroethene Dibromochloromethane 1,1,2-Trichloroethane Benzene trans-1,3-Dichloropropene Bromoform 4-Methyl-2-Pentanone 2-Hexanone Tetrachloroethene Toluene 1,1,2,2-Tetrachloroethane Chlorobenzene Ethylbenzene Styrene Xylene (total)	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		ם פנו מממממממם בא ממממממם ממנו ממנו ממנו ממנו ממנו ממנו מ	10010000000000000000000000000000000000
Date Received Date Extracted Date Analyzed	12/02/98 N/A 12/02/98	12/02/98 N/A 12/02/98	12/02/98 N/A 12/02/98	

TABLE VO-1.3 7098-2575A INGERSOLL RAND TCL VOLATILE ORGANICS + TIC'S

All values are ug/Kg dry weight basis.

		T		
Client Sample I.D.	SED-9	SED-10	DUP-1	
				Quant.
Lab Sample I.D.	982575A-07	982575A-08	982575A-09	Limits
Method Blank I.D.	VBLKKW	VBLKKW	VBLKKW	with no
Quant. Factor	1.49	1.26	1.22	Dilution
Quarte. Tuctor				
Chlorometh a ne	U	Ŭ	Ū	10
Bromomethane	Ü	Ū	Ü	10
Vinyl Chloride	Ü	Ü	Ü	10
Chloroethane	Ŭ	Ŭ	ซื	10
Methylene Chloride	2J	2 J	1Ĵ	5.0
Acetone	24	11J	10Ј	10
Carbon Disulfide	U U	Ü	Ü	5.0
	Ü	Ū	9	10
Vinyl Acetate	ט	บ		5.0
1,1-Dichloroethene 1,1-Dichloroethane		ប	Ü	5.0
		ซ	10	5.0
1,2-Dichloroethene (total)	U		Ü	
Chloroform	ט	U	Ü	5.0
1,2-Dichloroethane 2-Butanone	U	Ŭ	Ü	5.0
2-Butanone	ם	Ü	, p	10
1,1,1-Trichloroethane	U	บ	Ü	5.0
Carbon Tetrachloride	<u>. u</u>	U	· <u>ប</u>	5.0
Bromodichioromethane	Ū	Ū	ט	5.0
1,2-Dichloropropane	Ū	U	י ט	5.0
cis-1,3-Dichloropropene	U	Ŭ	ט	5.0
Trichloroethene Price Control of the	- . .	Ū	្ ប	5.0
Dibromochloromethane	ש	υ	Ŭ	5.0
1,1,2-Trichloroethane	, , , , , , , , , , , , , , , , , , , 	Ŭ	Ü	5.0
Benzene	Ū	Ū	Ü	5.0
trans-1,3-Dichloropropene	U	· " " " U	ט	5.0
Bromoform	Ū	Ū	ש	5.0
4-Methyl-2-Pentanone	U	Ū	Ŭ	10
2-Hexanone	Ū	Ū	ប	10
Tetrachloroethene	U	U	Ŭ	5.0
Toluene	1J	U	ซ	5.0
1,1,2,2-Tetrachloroethane	U	Ü	Ü	5.0
Chlorobenzene	Ū	U	ΰ	5.0
Ethylbenzene	Ū	Ü	Ü	5.0
Styrene	ט	บ	บ	5.0
Xylene (total)	ប	Ū	Ü	5.0
Date Received	12/02/98	12/02/98	12/02/98	
Date Extracted	N/A	N/A	N/A	
Date Analyzed	12/02/98	12/02/98	12/02/98	
	<i>.</i> .			

TABLE AS-1.0 7098-2575A INGERSOLL RAND TAL METALS

All values are mg/Kg dry weight basis.

Client Sar	_	D.	SED-3 982575A-01	SED-4 982575A-02	SED-5 982575A-03	SED-6 982575A-04
Aluminum Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium Cobalt Copper Iron Lead Magnesium Manganese Mercury Nickel Potassium			4710 0.88UN 13.1N 49.6 0.48B 0.55B*N 20500 14.2* 3.9B 39.0* 17000 44.5* 3100 715. 0.053B 12.2*N 332.B	6550 1.0BN 16.4N 56.7 0.48B 0.62B*N 16300 20.1* 6.0B 47.4* 28900 42.6* 5700 524. 0.027B 19.1*N 405.B	6230 3.0BN 28.2N 65.6 0.54B 2.7*N 21700 75.7* 8.3 178.* 69800 269.* 6380 832. 0.016B 53.4*N 342.B	5470 4.9BN 23.5N 61.1 0.44B 2.6*N 8770 211.* 13.3 9750* 44800 524.* 3940 655. 0.051B 111.*N 324.B
Selenium Silver Sodium Thallium Vanadium Zinc	\$ 5 \$ 5 \$ 4		0.94 0.18UN 94.3B 1.0U 7.6B 157.*E	1.7 0.18UN 94.9B 1.1U 9.7 178.*E	3.3 0.26BN 96.2B 1.4 12.2 169.*E	1.8 1.5BN 64.8B 1.2U 13.5 2380*E

See Appendix for qualifier definitions

TABLE AS-1.1 7098-2575A INGERSOLL RAND TAL METALS

All values are mg/Kg dry weight basis.

Client Sample I.D. Lab Sample I.D.	SED-6 D 982575A-04D	SED-6 S 98257 5A-04 S	SED-7 982575A-05	SED-8 982575A-06
Aluminum Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium Cobalt Copper Iron Lead Magnesium Manganese Mercury Nickel Potassium Selenium Silver Sodium Thallium Vanadium	5470 2.1B 27.7 58.3 0.49B 50.9* 8570 43.9* 6.7B 436.0* 51500 124.* 3530 537. 0.10 * 31.5 * 8 2.29B 59.28 10.8B	6250 68.4N 27.6N 380. 9.2 3.0N NR 134. 91.6 258. 48800 65.2 NR 562. NR 562. NR 3.2 2.6N NR 10.0 97.5	5400 2.0BN 17.4N 49.1 0.42B 1.4*N 12200 33.5* 7.2B 730.* 49100 107.* 4780 507. 0.045B 26.1*N 318.B 2.2 0.25BN 82.8B 1.0U	5090 1.0UN 13.9N 46.8 0.49B 1.1*N 12200 33.0* 6.0B 541.* 38800 63.4* 3860 418. 0.053B 51.0*N 351.B 1.8 0.26BN 80.2B 1.2U 9.2B
Zinc	336.*	27 2 .	250.*E	241.*E

See Appendix for qualifier definitions

TABLE AS-1.2 7098-2575A INGERSOLL RAND TAL METALS

All values are mg/Kg dry weight basis.

Client Sampl Lab Sample I	·	SED-9 982575A-07	SED-10 98257 5A-08	DUP-1 982575A-09	
Aluminum Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium Cobalt Copper Iron Lead Magnesium Manganese Mercury Nickel Potassium Selenium Silver		5500 1.0BN 14.5N 82.5 0.52B 1.1*N 9130 61.0* 6.0B 179.* 34200 128.* 3560 513. 0.079B 28.1*N 493.B 2.2 0.35BN	6560 3.7BN 14.4N 78.2 0.55B 0.93B*N 6760 35.4* 7.5B 98.1* 37700 151.* 3600 465. 0.050B 29.3*N 606.B 2.2 0.22UN	4900 1.5BN 18.6N 47.8 0.42B 2.6*N 26700 56.5* 7.3B 88.9* 68000 26.0* 8740 795. 0.019B 50.2*N 329.B 2.3 0.19UN	
Sodium Thallium Vanadium Zinc		95.2B 1.3B 12.3 262.*E	108.B 1.3U 13.6 204.*E	97.0B 1.2U 11.8 186.*E	

See Appendix for qualifier definitions

1 INORGANIC ANALYSES DATA SHEET

EPA SAMPLE NO.

Lab Name: STL	Contract:SED-3
Lab Code: STL Case No.: 2575A	SAS No.: SDG No.: <u>A2575</u>
Matrix (soil/water): SOIL	Lab Sample ID: 982575A-01
Level (low/med): LOW	Date Received: <u>12/02/98</u>
% Solids: 84.9	

		····			
CAS No.	Analyte	Concentration	С	Q	M
7429-90-5	Aluminum	4710		-	P
7440-36-0	Antimony	0.88	Ü	N	P P
7440-38-2	Arsenic	13.1		N	P
74 40-39-3	Barium	49.6			Р
7440-41-7	Beryllium	0.48	В		P
7440-43-9	Cadmium	0.55	В	*N	
7440-70-2	Calcium	20500			P
7440-47-3	Chromium	14.2		*	P
7440-48-4	Cobalt	3.9	В		P
7440-50-8	Copper	39.0		*	P
74 39-89-6	Iron	17000			P
7439-92-1	Lead	44.5		*	P
7439-95-4	Magnesium	3100			P
74 39-96-5	Manganese	715.			P
74 39-97-6	Mercury	0.053	В		CV
7440-02-0	Nickel	12.2		*N	P
7440-09-7	Potassium	332.	В		P
77 82-49-2	Selenium	0.94			P
7440-22-4	S er	0.18	Ŭ	N	P
7440-23-5	S um	94.3	В] P
7440-28-0	Thallium	1.0	Ū		P
7440-62-2	Vanadium	7.6	В		4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
7440-66-6	Zinc	157.		*E	
57-12-5	Cyanide				NR

Color Before:	BLACK	Clarity	Before:	OPAOUE	Texture:	<u>M</u>
Color After:	YELLOW	Clarity	After:	CLEAR	Artifacts:	
Comments:						
			·			

1 INORGANIC ANALYSES DATA SHEET

Lab Name: STL		Contract:	SED-4
Lab Code: STL	Case No.: <u>2575A</u>	SAS No.:	SDG No.: <u>A2575</u>
Matrix (soil/water):	SOIL	Lab Sample ID:	982575A-02
Level (low/med):	LOW	Date Received:	12/02/98
% Solids:	88.4		

CAS No.	Analyte	Concentration	С	Q	M
7429-90-5	Aluminum	6550			P
7440-36-0	Antimony	1.0	В	N	P P P
7 440-38-2	Arsenic	16.4		N	P
7440-39-3	Barium	56.7			P
7440-41-7	Beryllium	0.48	В		
7440-43-9	Cadmium	0.62	В	*N	P
7 440-70-2	Calcium	16300			P
7440-47-3	Chromium	20.1		*	P
7440-48-4	Cobalt	6.0	В		P
7440-50-8	Copper	47.4		*	P
7 439-89-6	Iron	28900			P
7439-92-1	Lead	42.6		*	P
7439-95-4	Magnesium	5700			P
7 439-96-5	Manganese	524.			P
7 439-97-6	Mercury	0.027	В		CV
7440-02-0	Nickel	19.1		*N	P
7440-09-7	Potassium	405.	В		L P
7 782-49-2	Selenium	1.7			P
7 440-22-4	Silver	0.18	Ŭ	N	P
7440-23-5	Sodium	94.9	В		P
7440-28-0	Thallium	1.1	Ū		P P P P P
7 440-62-2	Vanadium	9.7			P
7 440-66-6	Zinc	178.		*E	P
57-12-5	Cyanide				NR
					

Color Before:	BLACK	Clarity	Before:	OPAQUE	Texture:	<u>M</u>
Color After:	YELLOW	Clarity	After:	CLEAR	Artifacts:	
Comments:						
						

1 INORGANIC ANALYSES DATA SHEET

EPA SAMPLE NO.

Lab Name: STL	Contract: SED-5
Lab Code: STL Case No.: 2575A	SAS No.: SDG No.: <u>A2575</u>
Matrix (soil/water): SOIL	Lab Sample ID: 982575A-03
Level (low/med): LOW	Date Received: 12/02/98

% Solids: <u>92.7</u>

			1		1
CAS No.	Analyte	Concentration	С	Q	M
7429-90-5	Aluminum	6230		····	P
7440-36-0	Antimony	3.0	В	N	
7440-38-2	Arsenic	28.2		N	P P P
7440-39-3	Barium	65.6			P
7440-41-7	Beryllium	0.54	В		P
7440-43-9	Cadmium	2.7		*N	P P P
7440-70-2	Calcium	21700			P
7440-47-3	Chromium	75.7		*	P
7440-48-4	Cobalt	8.3			P
7440-50-8	Copper	178.		*	P P P
74 39-89-6	Iron	69800			P
	Lead	269.		*	P
7439-95-4	Magnesium	6380			P
74 39-96-5	Manganese	832.			P
7439-97-6	Mercury	0.016	В		CV
7440-02-0	Nickel	53.4		*N	P
7440-09-7	Potassium	342.	В		P
	Selenium	3.3			P
7440-22-4	Silver	0.26	В	N	P
7440-23-5	Sodium	96.2	В		P P P P P
1 1	Thallium	1.4			P
7440-62-2	Vanadium	12.2			P
1	Zinc	169.		*E	P
57-12-5	Cyanide				NR

Color Before:	BLACK	Clarity	Before:	OPAQUE	Texture:	<u>M</u>
Color After:	YELLOW	Clarity	After:	CLEAR	Artifacts:	
Comments:						

I INORGANIC ANALYSES DATA SHEET

EPA SAMPLE NO.

	Lab Name: STL		Contract:	SED-6
	Lab Code: STL	Case No.: <u>2575A</u>	SAS No.:	SDG No.: <u>A2575</u>
	Matrix (soil/water):	SOIL	Lab Sample ID	982575A-04
	Level (low/med):	LOW	Date Received:	12/02/98
	% Solids:	86		
l	•			

		T			_
CAS No.	Analyte	Concentration	С	Q	М
7429-90-5	Aluminum	5470	1		P
7440-36-0	Antimony	4.9	В	N	
74 40-38-2	Arsenic	23.5		N	P
74 40-39-3	Barium	61.1			P
7440-41-7	Beryllium	0.44	В		P
7440-43-9	Cadmium	2.6		*N	P
74 40-70-2	Calcium	8770			P
7440-47-3	Chromium	211.		*	P
7440-48-4	Cobalt	13.3		<u> </u>	P
7440-50-8	Copper	9750		*	P
74 39-89-6	Iron	44800			P
7439-92-1	Lead	524.		*	P
7439-95-4	Magnesium	3940			P
74 39-96-5	Manganese	655 <i>.</i>			P
74 39-97-6	Mercury	0.051	В	_	CV
7440-02-0	Nickel	111.		*N	P
7440-09-7	Potassium	324.	В		P
77 82-49-2	Selenium	1.8			P
74 40-22-4	Silver	1.5	В	N	P
7440-23-5	Sodium	64.8	В		P
7440-28-0	Thallium	1.2	U		P P P P P
74 40-62-2	Vanadium	13.5			P
74 40-66-6	Zinc	2380		*E	P
57-12-5	Cyanide				NR

Color Before:	BLACK	Clarity	Before:	OPAQUE	Texture:	<u>M</u>
Color After:	YELLOW	Clarity	After:	CLEAR	Artifacts:	
Comments:						
						

1 INORGANIC ANALYSES DATA SHEET

EPA SAMPLE NO.

Lab Na	ame:	STL		Contract:	SED-7	
Lab Co	ode:	STL	Case No.: <u>2575A</u>	SAS No.:	SDG No.:	<u>A2575</u>

Matrix (soil/water): SOIL Lab Sample ID: 982575A-05

Level (low/med): LOW Date Received: 12/02/98

% Solids: <u>87.2</u>

CAS No.	Analyte	Concentration	С	Q	М
7429-90-5	Aluminum	5400			P
7440-36-0	Antimony	2.0	В	N	
74 40-38-2	Arsenic	17.4		N	P
74 40-39-3	Barium	49.1			P
7440-41-7	Beryllium	0.42	В		P
7440-43-9	Cadmium	1.4		*N	P
74 40-70-2	Calcium	12200			P
74 40-47-3	Chromium	33.5		*	P
7440-48-4	Cobalt	7.2	В		P
7440-50-8	Copper	730.		*	P
74 39-89-6	Iron	49100			P
74 39-92-1	Lead	107.		*	P
7439-95-4	Magnesium	4780			P
74 39-96-5	Manganese	507.		_	P
74 39-97-6	Mercury	0.045	В	-	CV
7440-02-0	Nickel	26.1		*N	P
7440-09-7	Potassium	318.	В		P P P P
77 82-49-2	Selenium	2.2			P
7440-22-4	Silver	0.25	В	N	P
7440-23-5	Sodium	82.8	В		P
7440-28-0	Thallium	1.0	Ū		P
74 40-62-2	Vanadium	10.4			P P
74 40-66-6	Zinc	250.		*E	P
57-12-5	Cyanide				NR
		_			

Color	Before:	BLACK	Clarity	Before:	OPAQUE	Texture:	<u>M</u>
Color	After:	YELLOW	Clarity	After:	CLEAR	Artifacts:	
Commer	nts:						
_							

1 INORGANIC ANALYSES DATA SHEET

EPA SAMPLE N	O
--------------	---

Lab Name: STL	SED-8 Contract:
Lab Code: STL Case No.: 257	<u>75A</u> SAS No.: SDG No.: <u>A2575</u>
Matrix (soil/water): SOIL	Lab Sample ID: 982575A-06
Level (low/med): LOW	Date Received: <u>12/02/98</u>
% Solids: <u>89.1</u>	

		,			
CAS No.	Analyte	Concentration	С	Q	M
7429-90-5	Aluminum	5090			P
7440-36-0	Antimony	1.0	U	N	P P
7440-38-2	Arsenic	13.9		N	P
74 40-39-3	Barium	46.8			P
7440-41-7	Beryllium	0.49	В		P
7440-43-9	Cadmium	1.1		*N	P P P
74 40-70-2	Calcium	12200			P
74 40-47-3	Chromium	33.0		*	P
7440-48-4	Cobalt	6.0	В		
7440-50-8	Copper	541.		*	P P P
74 39-89-6	Iron	38800			P
74 39-92-1	Lead	63.4		*	P
7439-95-4	Magnesium	3860			P
7439-96-5	Manganese	418.		_	P
74 39-97-6	Mercury	0.053	В		CV
7440-02-0	Nickel	51.0		*N	P
7440-09-7	Potassium	351.	В		P
7782-49-2	Selenium	1.8		_	P
74 40-22-4	Silver	0.26	В	N	P
7440-23-5	Sodium	80.2	В		P
7440-28-0	Thallium	1.2	Ū		P
7440-62-2	Vanadium	9.2	В		P P
74 40-66-6	Zinc	241.		*E	P
57-12-5	Cyanlue				NR

Color	Before:	BLACK	Clarity	Before:	OPAOUE	Texture:	<u>M</u>
Color	After:	YELLOW	Clarity	After:	CLEAR	Artifacts:	
Comme	nts:						
	· · · · · · · · · · · · · · · · · · ·				· · · ·		

INORGANIC ANALYSES DATA SHEET

EPA SAMPLE NO.

Lab Name: STL		Contract:	SED-9
Lab Code: STL	Case No.: <u>2575A</u>	SAS No.:	SDG No.: <u>A2575</u>
Matrix (soil/water):	SOIL	Lab Sample ID:	982575A-07
Level (low/med):	TOM	Date Received:	12/02/98
% Solids:	73.5		

				 	T
CAS No.	Analyte	Concentration	C	Q	M
				_	
7429-90-5	Aluminum	5500			P
7440-36-0	Antimony	1.0	E	N	P
74 40-38-2	Arsenic	14.5		N	P P
74 40-39-3	Barium	82.5		_	P
7440-41-7	Beryllium	0.52	В		P
7440-43-9	Cadmium	1.1		*N	P P P
74 40-70-2	Calcium	9130			P
7440-47-3	Chromium	61.0		*	P P P
7440-48-4	Cobalt	6.0	В		P
7440-50-8	Copper	179.		*	P
7439-89-6	Iron	34200			P
7439-92-1	Lead	128.		*	P
7439-95-4	Magnesium	3560			P
7 4 39-96-5	Manganese	513.			P
7439-97-6	Mercury	0.079	В		CV
7440-02-0	Nickel	28.1		*N	P
7440-09-7	Potassium	493.	В		P
7 7 82-49-2	Selenium	2.2		_	P
7440-22-4	Silver	0.35	В	N	P P P
7440-23-5	Sodium	95.2	В		P
7440-28-0	Thallium	1.3	В		P
7440-62-2	Vanadium	12.3			P
7440-66-6	Zinc	262.		*E	
57-12-5	Cyanide				NR

Color	Before:	BROWN	Clarity	Before:	OPAQUE	Texture:	<u>F</u>
Color	After:	YELLOW	Clarity	After:	CLEAR	Artifacts:	
Commer	nts:						

1 INORGANIC ANALYSES DATA SHEET

EPA	SAMPLE	NO
-----	--------	----

Lab Name: STL	Contract:SED-10
Lab Code: STL Case No.: 2575A	SAS No.: SDG No.: <u>A2575</u>
Matrix (soil/water): SOIL	Lab Sample ID: 982575A-08
Level (low/med): LOW	Date Received: 12/02/98

% Solids: <u>77.8</u>

		Y			1
CAS No.	Analyte	Concentration	С	Q	M
7429-90-5	Aluminum	6560			P
7440-36-0	Antimony	3.7	В	N	
74 40-38-2	Arsenic	14.4		N	P
7440-39-3	Barium	78.2			P
7440-41-7	Beryllium	0.55	В		P
7440-43-9	Cadmium	0.93	В	*N	P
74 40-70-2	Calcium	6760			P
74 40-47-3	Chromium	35.4		*	P
7440-48-4	Cobalt	7.5	В		P
7440-50-8	Copper	98.1		*	P
74 39-89-6	Iron	37700		-	7
74 39-92-1	Lead	151.		*	Ţ
7439-95-4	Magnesium	3600			P
7439-96-5	Manganese	465.			Ъ
74 39-97-6	Mercury	0.050	В		P
7440-02-0	Nickel	29.3		*N	Ъ
7440-09-7	Potassium	606.	В		<u> </u>
7782-49-2	Selenium	2.2			P
74 40-22-4	Silver	0.22	Ŭ	N	P
7440-23-5	Sodium	108.	В		P
7440-28-0	Thallium	1.3	U		P
74 40-62-2	Vanadium	13.6			P P
74 40-66-6	Zinc	204.		*E	
57-12-5	Cyanide				NR
				_	

Color	Before:	BLACK	Clarity	Before:	OPAQUE	Texture:	<u>F</u>
Color	After:	YELLOW .	Clarity	After:	CLEAR	Artifacts:	
Commer	nts:						
		-					

1 INORGANIC ANALYSES DATA SHEET

EPA SAMPLE NO.

			•		DUP-1
Lab	Name:	STL		Contract:	
Lab	Code:	STL	Case No.: <u>2575A</u>	SAS No.:	SDG No.: <u>A2575</u>

Matrix (soil/water): SOIL

Lab Sample ID: 982575A-09

Level (low/med): LOW

Date Received: 12/02/98

% Solids: 91.6

CAS No.	Analyte	Concentration	С	Q	M
7429-90-	5 Aluminum	4900	1		P
7440-36-	0 Antimony	1.5	В	N	P
7440-38-	2 Arsenic	18.6		N	
7440-39-		47.8			P
7440-41-	7 Beryllium	0.42	. B		P
7440-43-	9 Cadmium	2.6		*N	P
7440-70-	2 Calcium	26700			P
7440-47-	3 Chromium	56.5		*	P
7440-48-4	4 Cobalt	7.3	В		P
7440-50-	8 Copper	88.9		*	P
7439-89-	6 Iron	68000			P
7439-92-	1 Lead	26.0		*	P
7439-95-4	4 Magnesium	8740	Ī		P
74 39-96-	5 Manganese	795.			P
7439-97-0	6 Mercury	0.019	В		CV
7440-02-0	0 Nickel	50.2		*N	P
7440-09-	7 Potassium	329.	В		P
7782-49-2		2.3			P P
7440-22-4		0.19	Ü	N	P
7440-23-	5 E Lum	97.0	В		P
7440-28-0	0 luallium	1.2	Ü		P P
7440-62-3	2 Vanadium	11.8			P
7440-66-6	6 Zinc	186.		*E	P
57-12-5	Cyanide				NR
					

Color I	Before:	BLACK	Clarity	Before:	OPAQUE	Texture:	<u>M</u>
Color A	After:	YETTOM .	Clarity	After:	CLEAR	Artifacts:	
Commen	ts:						
							

5A SPIKE SAMPLE RECOVERY

EPA SAMPLE NO.

				SED-6S
Lab	Name:	STL	Contract:	

Matrix: SOIL Level (low/med): LOW

% Solids for Sample: 86

Concentration Units (ug/L or mg/kg dry weight): $\underline{\text{MG/KG}}$

Analyte	Limit %R	Spiked Sample Result (SSR) C	Sample Result (SR) C	Spike Ad ded (SA)	%R Ç	M
Aluminum		6252.8442	5474.5487	369.14	210.8	P
Antimony	7 5- 125	68.4334	4.8612 B	92.28		I P
Arsenic	75-125	27.5621	23.4652	7.38	55.5 N	
Barium	75 -125	379.8671	61.1214	369.14	86.3	P
Beryllium	75-125	9.1785	0.4450 B	9.23	94.6	P
Cadmium	75-125	3.0367	2.6151	0.92	45.7 N	- -
Calcium			8774.9014	0.00	0.0	P
Chromium		134.3071	211.0410	36.91	-207.9	Р
Cobalt	75-125	91.6042	13.2817	92.28	84.9	P
ິງpper		257.5733	9749.8187	46.14	0.0	P
on		48840.5500	44774 . 2609	184.57	2203.1	P
ьead		65.1852	523.8220	3.69	0.0	P
Magnesium			3943.6342	0.00	0.0	P
Manganese		561.5268	655.3810	92.28	-101.7	P
Mercury	75 - 12 5		0.0510 B	0.23	85.0	CV
Nickel	75-125	129.1274	111.2624	92.28	19.4 N	. , – 1
Potassium			324.5518 B	0.00	0.0	P
Selenium	75-125	3.2214	1.7708	1.84	78.6	P
Silver	75 - 1 25	2.6029	1.5084 B	9.23	11.9 N	.
Sodium			64.8210 B	0.00	0.0	Đ
Thallium	75-125	10.0239	1.1825 U	9.23	108.6	P
Vanadium	75 - 12 5	97.4762	13.5040	92.28	91.0	P
Zinc		272.2274	2383.0883	92.28	-2287.3	P
Cyanide						NR

Comr	ments:				

DUPLICATES

EPA SAMPLE NO.

SED-6D

Lab Name: STL Contract:

Lab Code: STL Case No.: 2575A SAS No.:

SDG No.: <u>A2575</u>

Matrix: SOIL

Level (low/med): LOW

% Solids for Sample: 86

% Solids for Duplicate: 86

			- 7			T T		
Analyte	Control Limit	Sample (S)	С	Duplicate (D)	С	RPD .	Q	М
Aluminum		5474.5487		5472.4673				Ð
Antimony		4.8612	B	2.1443		77.6		P
Arsenic		23.4652		27.7406		16.7		P
Barium	44.2	61.1214		58.3300		4.7		P
Beryllium		0.4450	В	0.4895		9.5		P
Cadmium	1.1	2.6151		50.9145		180.4	*	₽
Calcium		8774.9014		8569.3112		2.4		P
Chromium		211.0410		43.8624		131.2	*	P
Cobalt	11.0	13.2817		6.6852	m	66.1		P
Copper		9749.8187		436.1515		182.9	*	P
Iron		44774.2609		51462.7021		13.9		P
Lead		523.8220		124.0366		123.4	*	P
Magnesium	1107.4	3943.6342		3526.0753		11.2		P
Manganese		655.3810		536.9506		19. 9		P
Mercury	0.0	0.0510	В	0.1059		69.9		CV
Nickel	8.8	111.2624	[31.4692		111.8	*	P
Potassium		324.5518	В	337.9034	В	4.0		P
Selenium	1.1	1.7708		2.2484		23.8		Ъ
Silver			В	0.2911	B	135.3		P
Sodium			В	59.2198	B	9.0		P
Thallium		1.1825	U	2.1555	В	200.0		P
Vanadium	11.0	13.5040		10.8027	В	22.2		P
Zinc		2383.0883		336.5103		150.5		P
Cyanide								NR

ICP SERIAL DILUTIONS

EPA SAMPLE NO.

SED-6L

Lab Name: STL Contract:

Matrix(soil/water): SOIL

Level (low/med): LOW

Concentration Units: ug/L

			Serial		ક		
	T						
	Initial Sample	~	Dilution	~	Differ-	_	١.,
Analyte	Result (I)	C	Result (S)	C	ence	Q	М
Aluminum	27777.86		27574.68		0.7		Р
Antimony		В	25.00	Ū	100.0		P
Arsenic	119.06		99.22		16.7		Ρ
Barium	310.13		314.19	Œ	1.3		₽
Beryllium	2.26	В	5.00	Ŭ	100.0		P
Cadmium	13.27	Ī	6.03	B	54.6		P
Calcium	44523.85		46618.97		4.7		P
Chromium	1070.82	一	1101.13		2.8		₽.
Cobalt	67.39		73.28	В	8.7		Ъ
Copper	49470.58		50835.45		2.8		P
Iron	227184.60		236244.20		4.0		P
Lead	2657.87		2729.30		2.7		P
Magnesium	20010.00		20864.80	В	4.3		P
Manganese	3325.40		3459.93		4.0		P
Mercury							NR
Nickel	564 .54		581.06		2.9		P
Potassium		В	1407.47	В	14.5		P
Selenium	8.98		10.00	Ü	100.0		P.
Silver		В	9.85	В	28.7		P
Sodium	328.90	В	342.90	В	4.2		P
Thallium	6.00	U	57.15				P
Vanadium	68.52	\neg	71.24	В	4.0		Ъ
Zinc	12091.79		16463.49		36.2	E	P
Cyanide							NR
					· · · · · · · · · · · · · · · · · · ·		
·							

ORGANICS APPENDIX

- U Indicates that the compound was analyzed for but not detected.
- J Indicates that the compound was analyzed for and determined to be present in the sample. The mass spectrum of the compound meets the identification criteria of the method. The concentration listed is an estimated value, which is less than the specified minimum detection limit but is greater than zero.
- B This flag is used when the analyte is found in the blanks as well as the sample. It indicates possible sample contamination and warns the data user to use caution when applying the results of this analyte.
- N' Indicates that the compound was analyzed for but not requested as an analyte. Value will not be listed on tabular result sheet.
- S Estimated due to surrogate outliers.
- χ Matrix spike compound.
- (1) Cannot be separated.
- (2) Decomposes to azobenzene. Measured and calibrated as azobenzene.
- A This flag indicates that a TIC is a suspected aldol condensation product.
- E Indicates that it exceeds calibration curve range.
- D This flag identifies all compounds identified in an analysis at a secondary dilution factor.
- C Confirmed by GC/MS.
- T Compound present in TCLP blank.
- P This flag is used for a pesticide/aroclor target analyte when there is a greater than 25 percent difference for detected concentrations between the two GC columns (see Form X).

INORGANICS APPENDIX

C - Concentration qualifiers

- U Indicates analyte was not detected at method reporting limit.
- B Indicates analyte result between IDL and contract required detection limit (CRDL)

Q - QC qualifiers

- E Reported value is estimated because of the presence of interference
- M Duplicate injection precision not met
- N Spiked sample recovery not within control limits
- S The reported value was determined by the method of standard additions (MSA)
- W Post-digest spike recovery furnace analysis was out of 85-115 percent control limit, while sample absorbance was less than 50 percent of spike absorbance
- * Duplicate analysis not within control limit
- + Correlation coefficient for MSA is less than 0.995

M - Method codes

- P ICP
- A Flame AA
- F Furnace AA
- CV Cold vapor AA (manual)
- C Cyanide
- NR Not Required
- NC Not Calculated as per protocols

STATE CERTIFICATIONS

In some instances it may be necessary for environmental data to be reported to a regulatory authority with reference to a certified laboratory. For your convenience, the laboratory identification numbers for the STL-Connecticut laboratory are provided in the following table. Many states certify laboratories for specific parameters or tests within a category (i.e. method 325.2 for wastewater). The information in the following table indicates the lab is certified in a general category of testing such as drinking water or wastewater analysis. The laboratory should be contacted directly if parameter-specific certification information is required.

STL-Connecticut
Certification Summary (as of September 1998)

'State	Responsible Agency	Certification	Lab Number
Connecticut	Department of Health Services	Drinking Water, Wastewater	PH-0497
Kansas	Department of Health & Environment	Drinking Water, Wastewater/Solid, Hazardous Waste	E-10210
Maine	Department of Health and Environmental Services	Drinking Water, Wastewater/Solid, Hazardous Waste	CT023
Massachusetts	Department of Environmental Protection	Potable/Non-Potable Water	CT023
New Hampshire	Department of Environmental Services	Drinking Water, Wastewater	252891
New Jersey	Department of Environmental Protection	Drinking Water, Wastewater	46410
New York	Department of Health	CLP, Drinking Water, Wastewate, Solid/ Hazardous Waste	10602
North Carolina	Division of Environmental Management	Wastewater	388
Rhode Island	Department of Health	ChemistryNon- Potable Water and Wastewater	A43
Washington	Department of Ecology	Waste ater/Hazardous Waste	C231
Wis co nsin	Department of Natural Resources	Wastewater	998355710

7098-2575A INGERSOLL RAND SAMPLE SUMMARY

CLIENT ID	LAB ID	MATRIX	DATE COLLEC TED	DATE RECEIV ED
SED-3	982575A-01	SOIL	12/01/98	12/02/98
SED-4	982575A-02	SOIL	12/01/98	12/02/98
SED-5	982575A-03	SOIL	12/01/98	12/02/98
SED-6	982575A-04	SOIL	12/01/98	12/02/98
SED-6	982575A-04D	SOIL	12/01/98	12/02/98
SED-6	982575A-04MS	SOIL	12/01/98	12/02/98
SED-6	982575A-04MSB	SOIL	12/01/98	12/02/98
SED-6	982575A-04MSD	SOIL	12/01/98	12/02/98
SED-6	982575A-04S	SOIL	12/01/98	12/02/98
SED-7	982575A-05	SOIL	12/01/98	12/02/98
SED-8	982575A-06	SOIL	12/01/98	12/02/98
SED-9	982575A-07	SOIL	12/01/98	12/02/98
SED-10	982575A-08	SOIL	12/01/98	12/02/98
DUP-1	982575A-09	SOIL	12/01/98	12/02/98

IEA-CT ANALYTICAL SUMMARY

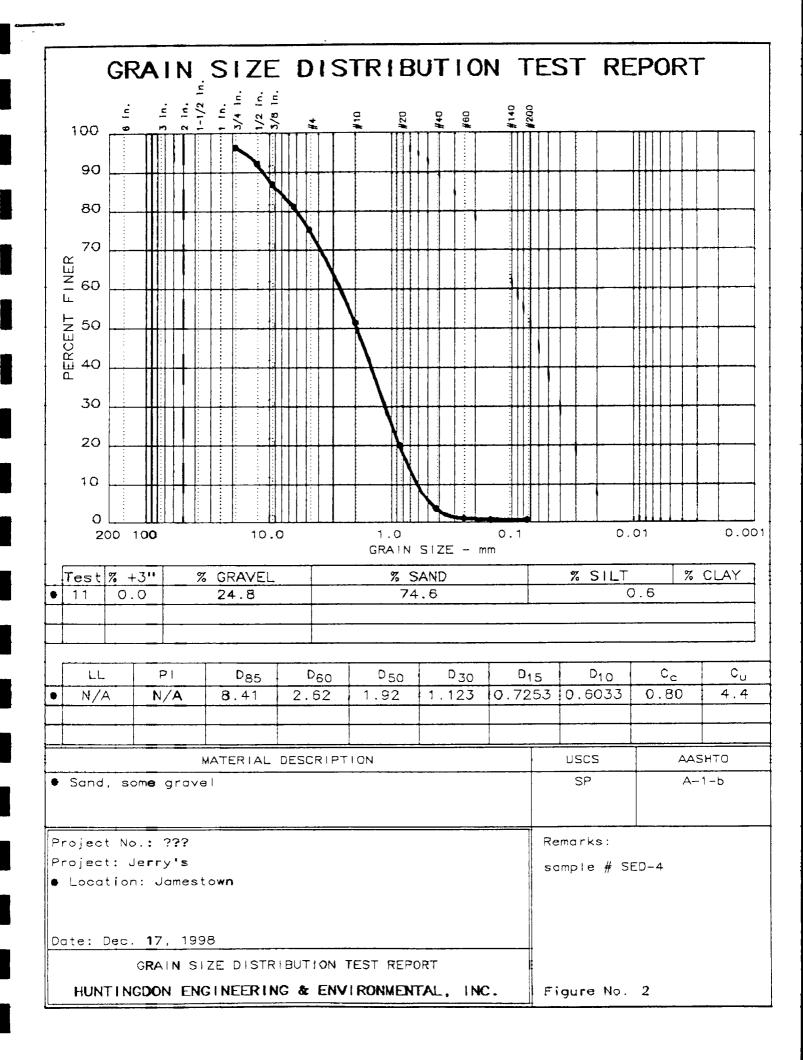
Page:1

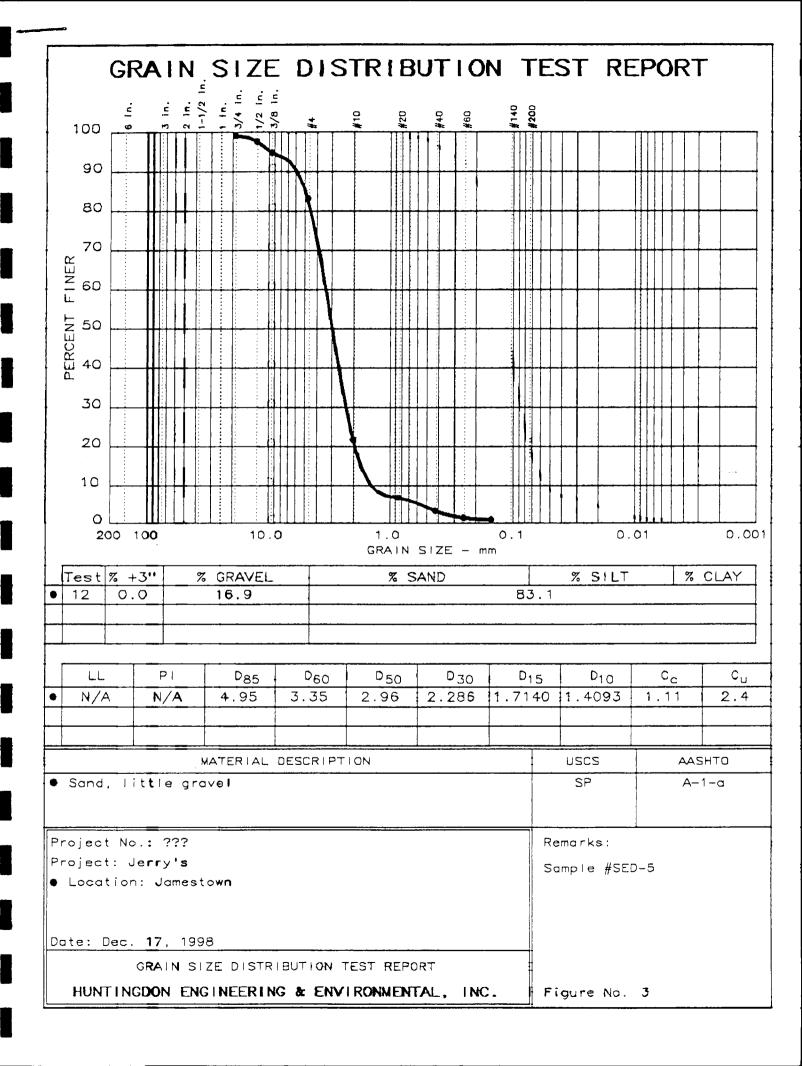
Client ID: DUP-1, SED-10, SED-3, SED-4, SED-5, SED-6, SED-7, SED-8, SED-9
Job Number: 7098-2575A

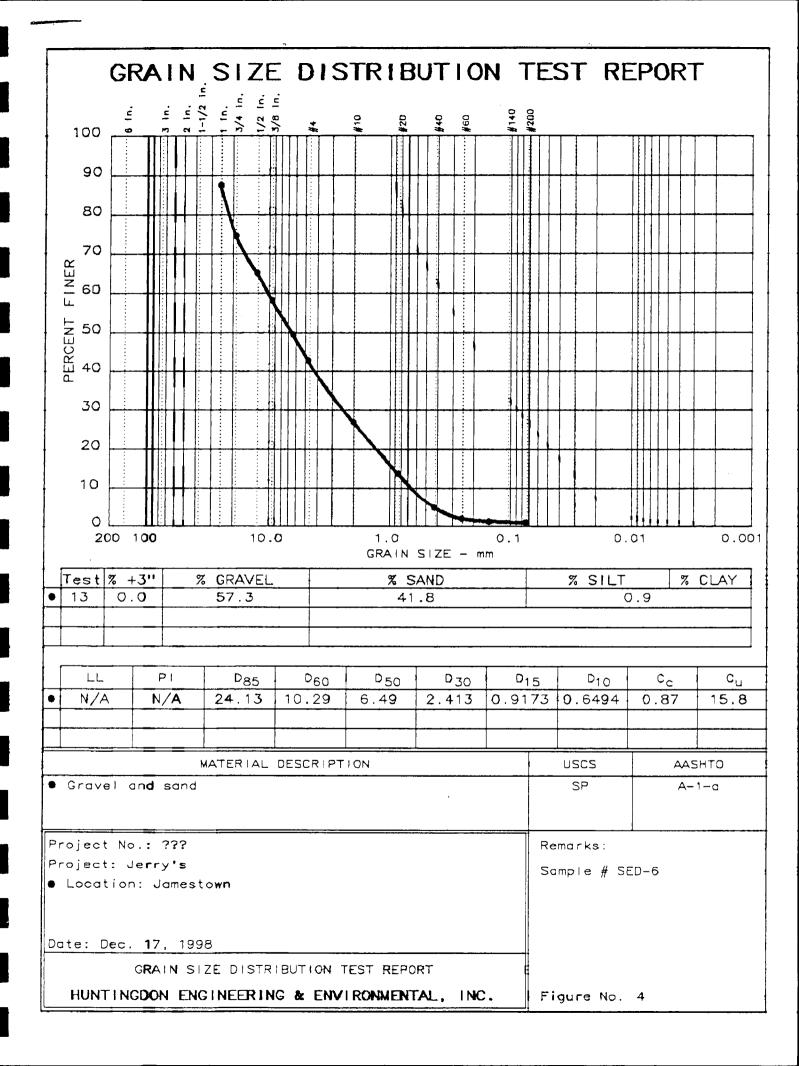
Date: 12/10/98 **

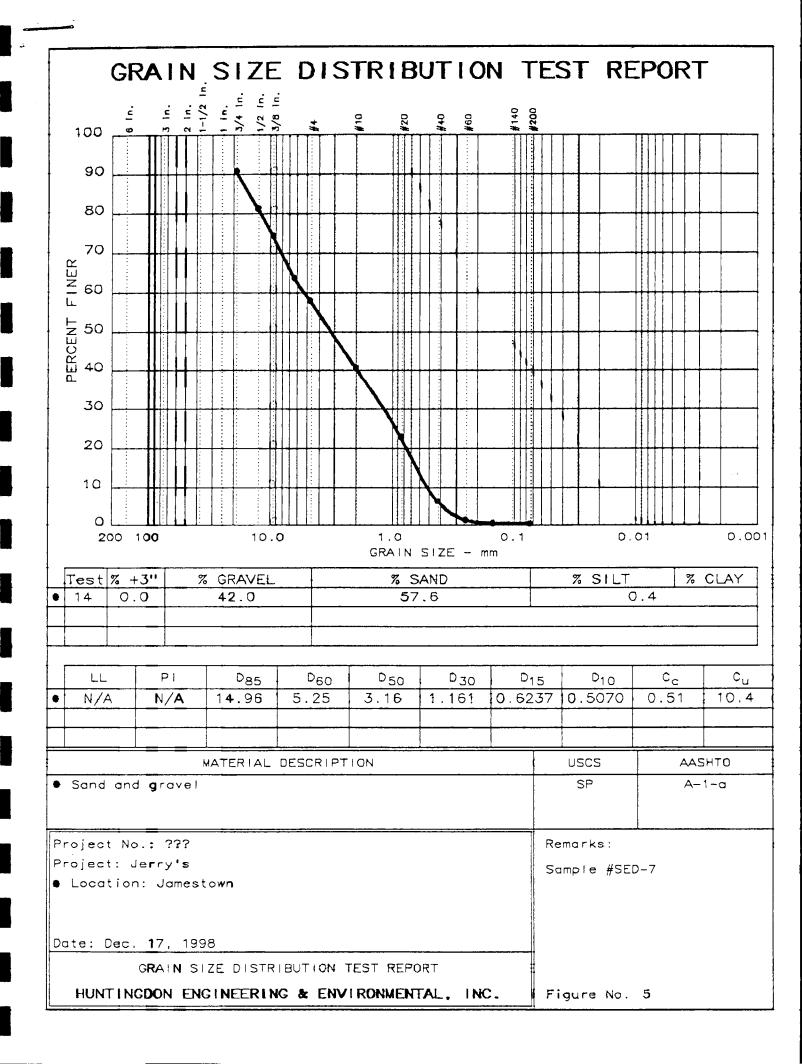
H MY BAR


- 77 VW (


f W


Qty	Matrix		Analysis	Description	
11 11 2 1	None SOIL SOIL SOIL SOIL		DISK MET-NSW846-TAL TOC-NLLOYD KAHN VOA-N8260A-TCL VOA-N8260A-TCL-10 VOA-N8260A-TCL-10	Diskette Prep. TAL Metals Total Organic Carbon TCL Volatile Organic TCL Volatile Organic TCL Volatile Organic	
		A	Birth Control of the		
				and the second s	


APPENDIX E


Geotechnical Laboratory Grain Size Analysis

