The electronic version of this file/report should have the file name:

Type of document.Spill Number.Year-Month.File Year-Year or Report name.pdf

letter.______.File spillfile .pdf

report. hugo 7020 . 1993 - 0401. REMEDIAL PLAN .pdf

Project Site numbers will be proceeded by the following:

Municipal Brownfields - b

Superfund - hw

Spills - sp

ERP - e

VCP - v

BCP - c

non-releasable - put .nf.pdf

Example: letter.sp9875693.1998-01.Filespillfile.nf.pdf

S-5167 South Park Avenue Box 0913 Hamburg, New York 14075 (716)649-8110 Fax: (716)649-8051

REMEDIATION PLAN FOR THE DOWCRAFT CORPORATION SITE 65 SOUTH DOW STREET FALCONER, NEW YORK

April 83

Prepared For:

Dowcraft Corporation 65 South Dow Street Falconer, New York 14733

Attention: Mr. Harry B. Nicholson, Jr. President and CEO

Prepared By:

Empire Soils Investigations, Inc. S-5167 South Park Avenue Hamburg, New York 14075

> BTA-92-266 April 1993

S-5167 South Park Avenue Box 0913 Hamburg, New York 14075 (716)649-8110 Fax: (716)649-8051

TABLE OF CONTENTS

I.	INT	RODUCTION	1			
	A.	General	1			
	В.	Background	2			
II.	PRI	EVIOUS STUDIES COMPLETED AT THE SITE	4			
ш.	SUBSURFACE EXPLORATIONS					
	A.	Test Boring Procedures	7			
	В.	Ground Water Monitoring Well Installation	7			
	C.	Soil Sample Organic Vapor Measurements	10			
	D.	Soil Gas Survey and Results	10			
	E.	Subsurface Conditions	12			
IV.	SUN	MARY OF LABORATORY TESTING AND RESULTS	15			
	A.	General	15			
	В.	Mechanical Laboratory Testing	15			
	C.	Analytical Laboratory Testing - Outfall 002 and				
		Drywells 004 and 005 Sampling and Results	16			
	D.	Analytical Laboratory Testing - Ground Water Sampling				
		and Results	18			
v.	AQ	UIFER PUMP TESTING	32			
	Α.	General	32			
	В.	Supplemental Subsurface Explorations	32			
	C.	Pumping Test Setup	32			
	D.	Pumping Test Procedures	33			
	E.	Pumping Test Results	35			
	F.	Methodology	37			
	G.	Ground Water Quality During Pumping Test	39			

S-5167 South Park Avenue Box 0913 Hamburg, New York 14075 (716)649-8110 Fax: (716)649-8051

VI.	CONCLUSIONS AND PROPOSED GROUND WATER REMEDIATION						
	A.	General	42				
	В.	Recommendations from the Pumping Test Results	42				
	C.	Discharge to Sanitary Sewer System	43				
	D.	Analytical Testing and Reporting	43				

APPENDICES:

Appendix A - Appendix B - Appendix C -	Drawings Limitations Test Boring Logs, Monitoring Well Installation Diagrams and
••	Monitoring Well Development Logs
Appendix E -	Soil Gas Survey Report Mechanical Testing Reports
Appendix F - Appendix G -	Analytical Testing Reports Aquifer Pump Test Calculations

S-5167 South Park Avenue Box 0913 Hamburg, New York 14075 (716)649-8110

REMEDIATION PLAN FOR THE DOWCRAFT SITE 65 SOUTH DOW STREET, JAMESTOWN, NEW YORK

I. INTRODUCTION

A. General

Empire Soils Investigations, Inc. (ESI) is contracted by Dowcraft Corporation (Dowcraft) to prepare a Remediation Plan to address ground water contamination present at the Dowcraft Corporation property and the Jamestown Container property (collectively referred to as the "site") located at 65 South Dow Street, Falconer, New York. Conestoga-Rovers and Associates (CRA) was also retained by Dowcraft for additional environmental consulting capabilities. The remediation scope of work specifically addresses the cleanup of trichloroethene (TCE) and other volatile organic compounds (VOC's) present in the ground water from a limited area on the Dowcraft and Jamestown Container properties. A Site Location Map is included as Drawing No. 1 in Appendix A.

ESI completed a Phase II Environmental Investigation including a sampling and laboratory testing program (mechanical and analytical testing) on soil and ground water samples collected from the site and has incorporated the results into the Remediation Plan. The details of the Remediation Plan will focus on the nature of contamination, vertical and horizontal extent of contamination, aquifer characteristics, remedial design and the analytical testing program to be completed during remediation.

It should be noted that it is the intent of Dowcraft and their environmental consultants that the site remediation be completed with the approval of the New York State Department of Environmental Conservation (NYSDEC). Ground water sampling and analytical testing procedures are designed to be in accordance with industry wide accepted practices and the NYSDEC and United States Environmental Protection Agency (USEPA) guidelines, protocols and procedures.

Limitations to the Remediation Plan are presented in Appendix B.

B. Background

The Dowcraft site consists of property owned by the Dowcraft Corporation and Jamestown Container Corporation located at 65 South Dow Street and 14 Deming Drive in Falconer, New York, respectively. Refer to the Site Plan presented as Drawing No. 2 in Appendix A for the specific location of the Dowcraft facility, Jamestown Container facility, ground water monitoring wells, the Chadakoin River and other site features.

South Dow Street borders the site to the southwest and Conrail Railroad property lies to the southeast. The frontage along South Dow Street is approximately 400-feet and the railroad property borders the property for approximately 1,800-feet. The Chadakoin River is located directly northwest of the site and Phetteplace Street forms the northeast site border approximately 1,700 feet northeast of South Dow Street. The northeast site border extends approximately 480-feet between the railroad property and the Chadakoin River. Based on these dimensions, the subject property occupies approximately 18-acres. It should be noted that the ground water contamination discussed herein is limited to an area generally between the northeast end of the Dowcraft building and the Chadakoin River.

The topography of the property slopes slightly from south southeast to north northwest. The Chadakoin River is the only surface water body present near the site. ESI examined a United States Geological Survey (USGS) quadrangle of the site and determined the difference in elevation across the western end of the site (area of concern) from south southeast to north northwest is approximately 10-feet. The Chadakoin River is the nearest major natural water body with the southern banks of the river located on the northern edge of the subject site.

The Dowcraft facility has occupied the site since the early 1900's. The building was initially a woolen mill, however, in the late 1930's the woolen mill was reportedly converted to a factory which manufactured steel partitions. Today the Dowcraft facility

continues manufacturing steel partitions for office space and the telecommunications industry.

The Jamestown Container plant was also constructed around the turn of the century. The Jamestown Container Corporation manufactures cardboard boxes and related paper packing products.

II. PREVIOUS STUDIES COMPLETED AT THE SITE

ESI was authorized by Dowcraft to complete a Phase I Environmental Site Assessment of the Dowcraft property on August 30, 1990. The Phase I report entitled "Phase I Environmental Site Assessment, Dowcraft Corporation, Falconer, New York" was issued in October, 1990 (ESI Job Number BTA-90-179). The recommendations of the Phase I report were to complete a Phase II Environmental Site Assessment on the Dowcraft property. Specific Phase I recommendations included installation of ground water monitoring wells as well as sampling and analytical testing of the ground water down gradient of the Dowcraft plant.

On October 30, 1990, Dowcraft retained ESI to complete a Phase II Environmental Site Assessment on the Dowcraft property. The Phase II report entitled "Phase II Environmental Site Assessment, Dowcraft Corporation, 65 South Dow Street, Falconer, New York" was issued in December 1990 (ESI Job Number BTA-90-179A). As part of the Phase II investigations, ESI installed five (5) ground water monitoring wells in the access road between the Dowcraft and Jamestown Container buildings. The significant conclusions contained in the Phase II report indicated VOC's, specifically trichloroethene (TCE) and 1,2-dichloroethene (DCE), were present in the ground water in the vicinity of the northeast end of the Dowcraft plant.

Subsequent to the completion of the Phase II investigations, ESI installed and sampled two (2) additional ground water monitoring wells on the east end of the Dowcraft plant to better understand the nature and extend of ground water contamination. Two (2) drywells historically used for discharge of plant process water were also sampled to determine if the drywells were potential source areas for the VOC contamination. The summary report entitled "Environmental Investigation, Dowcraft Corporation, Falconer, New York" was issued in May, 1991 (ESI Job Number BTA-92-179B). A copy of the environmental summary report was submitted to the NYSDEC for their review and comments.

Specifical

The DECI 40

Sur pode

On December 16, 1991 representatives from Dowcraft, ESI and Whiteman, Osterman and Hanna (Dowcraft's attorney) met with the NYSDEC regarding the ground water contamination identified at the site. The NYSDEC indicated that prior to listing the site on New York State's Registry of Inactive Hazardous Waste Sites, the agency could not formally become involved with the project. However, it was determined that additional subsurface investigations would be required in an effort to better define the vertical and horizontal extent of contamination and acceptable pumping rates for remediation. To achieve this objective, ESI completed the following tasks:

- o Installed six (6) shallow ground water monitoring wells across the Dowcraft and Jamestown Container properties;
- o Installed one (1) deep ground water monitoring well (screened in the underlying silt-type soils) where previous testing indicated elevated levels of contamination was present in the sand and gravel overburden;
- O Collected samples from the thirteen (13) shallow and one (1) deep ground water monitoring wells and analyzed the samples for USEPA Target Compound List (TCL) volatile organics, Target Analyte List (TAL) metals and pH;
- o Completed a soil gas survey using a gas chromatograph in the area where ground water contamination was present;
- o Analyzed a water sample collected from Dowcraft plant Outfall 002 for TCL volatile organics;
- o Installed two (2) pumping wells for aquifer pump testing and ground water remediation;
- O Completed grain size analysis on soil samples collected from sand and gravel-type soils present from ground surface to a depth of approximately 25-feet below ground surface and from cohesive soils present below the sand and gravel overburden;

- o Analyzed confirmation samples from monitoring wells ESI-2 (TCL volatile organics), ESI-6 (TCL volatile organics) and ESI-9 (aluminum, iron and manganese) to verify earlier reported levels of contamination;
- o Completed an aquifer pump test to better understand the hydraulic characteristics of the aquifer, and;
- Analyzed ground water samples collected from the two (2) pumping wells during step draw down testing and a 24-hour pumping test to evaluate the effect of long term pumping on contaminant concentrations.

The significant findings of the above tasks were summarized to develop a technically and economically feasible approach to ground water remediation.

III. SUBSURFACE EXPLORATIONS

A. Test Borings Procedures

ESI advanced sixteen (16) test borings at the site to determine subsurface conditions and to facilitate the installation of ground water monitoring/pump wells. The test boring/monitoring well locations are shown on the Site Plan presented as Drawing No. 2 in Appendix A. The subsurface boring logs associated with each test boring are presented in Appendix C.

Test borings ESI-1 through ESI-13 were advanced using 4.25-inch inside diameter (I.D.) hollow stem augers to allow installation of 2-inch I.D. PVC ground water monitoring wells. Test borings PW-1 and PW-2 were advanced using 8.25-inch I.D. hollow stem augers for installation of 6-inch I.D. predominantly stainless steel pumping wells.

Representative soil samples of the overburden were obtained by driving a standard 2-inch outside diameter (O.D.) split-spoon sampler into the undisturbed material below the auger casing with a 140-pound hammer falling freely a distance of 30-inches (American Society of Testing Materials (ASTM) Method D-1586). The number of blows required to drive the split-spoon each 6-inch interval was recorded. Standard Penetration Tests (SPT) conforming to ASTM D-1586 were completed as noted on the subsurface logs. Soil samples were recovered from each sampling interval. The required depth of each test boring was determined in the field by an ESI geologist based on subsurface conditions and ground water encountered during drilling operations. Soil descriptions are reported on the subsurface logs presented in Appendix C.

B. Ground Water Monitoring Well Installation

Ground water monitoring wells were installed in test borings ESI-1 through ESI-13 to allow collection of representative ground water samples. Ground water pumping wells were installed in test borings PW-1 and PW-2 to facilitate pumping ground water from the aquifer for remediation. Table 1 summarizes the ground water monitoring/pumping

well construction. The ground water monitoring well installation diagrams are presented in Appendix C.

Ground water monitoring wells ESI-1 through ESI-5 (excluding ESI-2D) were located to generalize ground water quality down gradient of the Dowcraft plant and associated drywells. Monitoring wells ESI-8 and ESI-9 were located up-gradient of the potential VOC source areas. The location of monitoring wells ESI-6, ESI-7 and ESI-10 through ESI-13 were selected to better define the lateral extent of VOC contamination.

The location and depth of the screened interval for monitoring well ESI-2D was chosen to evaluate whether ground water contamination had migrated downward to the cohesive soils underlying the upper sand and gravel soil deposits. Pumping wells PW-1 and PW-2 were located within the ground water contamination plume to facilitate an aquifer pump test and to maximize remediation efforts. Both pumping wells PW-1 and PW-2 were screened from the bottom of the well to above the observed static water level. The pumping well installation details are presented in Appendix C.

The ground surface elevation at each of the test boring/ground water monitoring well locations was measured in the field by ESI with a Leitz B2C level (Model 300) using differential leveling techniques. The ground surface elevations were referenced to a benchmark established on the westernmost bonnet nut on the top flange of a fire hydrant located on the east end of the Dowcraft plant adjacent to the loading dock. The elevation at this point was selected to be 100.00 feet. The benchmark location is plotted on Drawing No. 2 in Appendix A.

TABLE 1									
SUMMARY OF MONITORING/PUMPING WELL CONSTRUCTION									
Well Number	Date Installed	Test Boring Depth (Feet Below Ground Surface)	Screened Interval (Feet Below Ground Surface)	Well Diameter (Inches)	Well Riser and Screen Material	Ground Surface Elevation (Relative to Established Benchmark)			
ESI-1	11/2/90	16.0	4.7 - 14.7	2.0	PVC	98.44			
ESI-2	11/5/90	17.0	4.7 - 14.7	2.0	PVC	98.75			
ESI-2D	4/16/92	60.0	35.3 - 45.3	2.0	PVC	98.78			
ESI-3	11/5/90	15.9	4.5 - 14.5	2.0	PVC	99.07			
ESI-4	11/5/90	16.8	5.0 - 15.0	2.0	PVC	99.32			
ESI-5	11/6/90	16.0	5.2 - 15.2	2.0	PVC	99.24			
ESI-6	12/26/90	14.0	3.5 - 13.5	2.0	PVC	98.99			
ESI-7	12/26/90	15.0	4.5 - 14.5	2.0	PVC	99.13			
ESI-8	4/8/92	20.0	8.0 - 18.0	2.0	PVC	102.30			
ESI-9	4/8/92	15.0	4.0 - 14.0	2.0	PVC	100.23			
ESI-10	4/9/92	17.0	9.8 - 14.8	2.0	PVC	99.39			
ESI-11	4/10/92	17.5	10.1 - 15.1	2.0	PVC	99.34			
ESI-12	4/10/92	17.8	10.2 - 15.2	2.0	PVC	99.26			
ESI-13	4/13/92	18.0	4.95 - 14.95	2.0	PVC	97.83			
PW-1	11/12/92	28.0	7.0 - 22.0	6.0	Stainless Steel	98.94			
PW-2	11/12/92	28.0	10.0 - 25.0	6.0	Stainless Steel	99.01			

well Summary

C. Soil Sample Organic Vapor Measurements and Results

Recovered soil samples from the test borings were screened by an ESI geologist or engineer using an Hnu photoionization detector (PID) with a 10.2 electron volt lamp to determine the potential presence of VOC's. The PID measurements (reported in parts per million, ppm) provided ESI an indication of VOC's in the recovered soil samples. Ambient (background) organic vapor concentrations were measured prior to sample screening. Table 2 summarizes the organic vapor measurement results. It should be noted that test borings in which no organic vapor concentrations were detected above background are not included in Table 2.

D. Soil Gas Survey and Results

ESI completed a soil gas survey at the Dowcraft site from April 15 to April 17, 1992. C.T. Male Associates, P.C. of Latham, New York was retained by ESI to complete purging, sampling and analysis of soil gas samples. C.T. Males's procedures for sampling and analysis of the soil gas points are included in their report presented in Appendix D. The analysis of the soil gas was completed with a portable gas chromatograph (GC). The locations of the soil gas measurement points are plotted on Drawing No. 3 in Appendix A. A total of 29 soil gas measurement points were sampled at depths ranging from two (2) feet to six (6) feet below the ground surface.

Soil gas sample points were advanced by driving and retrieving a solid steel rod to the required depths. One-half (0.5) inch PVC soil gas sample pipes were inserted in the hole at each location. The pipes were installed to depths approximately one (1) foot above the bottom of the soil gas probe hole. The soil gas hole was then reamed to the specified sample depth with a ream rod which fits inside the PVC pipe. The annulus around each soil gas pipe at the ground surface was sealed with a bentonite paste mix to reduce possible migration of soil vapors from around the outside of the PVC pipes. Each of the pipes were capped with a PVC cap to avoid venting of the soil prior to sample collection.

TABLE 2									
SUMMARY OF ORGANIC VAPOR MEASUREMENTS COLLECTED DURING TEST BORING EXPLORATIONS									
			onization De orded in Part						
Dep th			Monitoring	Well Number	er				
	ESI-6	ESI-7	ESI-10	ESI-2D	PW-1	PW-2			
Background	0.3 - 0.5	0.3	0.3 - 0.4	0.2 - 0.6	0.2 - 0.6	0.2 - 0.6			
0-2	BG	BG	NM	NM	NM	NM			
2-4	0.6	BG	NM	NM	NM	NM			
4-6	BG	0.7	NM	NM	1-2	NM			
6-8	0.8	BG	NM	NM	BG	NM			
8-10	0.8	0.6	NM	NM	BG	NM			
10-1 2	6.6	BG	5.5	NM	BG	BG			
12-14	7.1	BG	4.5	NM	BG-2	BG			
14-1 6	NM	BG	1.0	1-4	5-7	2			
16-1 8	NM	NM	NM	5-10	1-2	BG			
18-2 0	NM	NM	NM	5-10	3-5	20-30			
20-2 2	NM	NM	NM	5-10	3-5	8-10			
22-24	NM	NM	NM	3-5	BG-1	10-15			
24-2 6	NM	NM	NM	BG	BG-1	50 -70			
26-2 8	NM	NM	NM	BG	BG-1	1-2			
>28	NM	NM	NM	BG	NM	NM			

NOTE:

No PID measurements were taken during advancement of test borings ESI-1, ESI-2, ESI-3, ESI-4, ESI-5 and ESI-13. PID measurements collected during advancement of test borings ESI-8, ESI-9, ESI-11 and ESI-12 were all below detection. All soil samples were screened in the field except samples from test boring ESI-7 which were screened in the laboratory. BG and NM represent background concentrations and no measurement was taken, respectively.

The soil gas survey was completed to preliminarily determine if the source of the detected VOC contamination is predominantly in the unsaturated soils. Ground water was measured to be approximately seven (7) feet to ten (10) feet below ground surface. Rational selection of an appropriate remediation alternative can be based on whether the source areas of contamination are present in the saturated soils (ground water) or unsaturated (vadose zone) soils.

Compounds detected during the soil gas survey included trichloroethene (TCE) and toluene. None of the other target compounds for which the GC was calibrated (trans 1,2-dichloroethene, cis 1,2-dichloroethene, benzene and perchloroethene) were detected. Trichloroethene was detected in soil gas points SG-3, SG-4, SG-11, SG-14, SG-17 and SG-18 at concentrations ranging from 3.298 parts per billion (ppb) to 6.904 ppb. Toluene was also present in soil gas sample SG-12 at a concentration of 0.6013 ppb. The presence of TCE and toluene at these concentrations indicates these compounds are not appreciably present in the unsaturated subsurface soils above the ground water. However, it should be noted the soil gas locations which were above the method detection limit were down gradient from the trichloroethene vapor degreaser used within the Dowcraft plant.

E. Subsurface Conditions

ESI evaluated the subsurface conditions based on the sixteen (16) test borings completed at the Dowcraft site. In general, the soil types and nature of fill materials, were consistent between test boring locations.

Fill materials were observed to be present overlying the native soils at varying depths ranging from two (2) feet to four (4) feet below grade. The consistency of the fill included cinders, sand, silt, gravel, shale fragments, brick, concrete, coal, slag and metal. Asphaltic concrete was present overlying crusher run stone sub-base in the first foot at the locations of test borings ESI-2, ESI-2D, ESI-3, ESI-4, ESI-5 and PW-1. Railroad ties were also encountered below the crusher run stone in test borings ESI-2.

Sologia

FILL

ESI-3 and ESI-4 indicating a railroad siding was formerly active in the access road between the Jamestown Container and Dowcraft buildings.

ESI cored through the concrete floor slab (approximately 0.8 feet thick) in the Jamestown Container plant to facilitate drilling test borings ESI-10, ESI-11 and ESI-12. A basement area was present below the ground floor at test boring locations ESI-10 and ESI-11 with the basement floor at a depth of approximately 8-feet below the concrete slab (ground floor). Concrete was also encountered in test borings ESI-7 and ESI-12 at depths of 4.5 - 5.5 and 7.2 - 7.6 feet below grade, respectively.

Underlying the fill materials, the native soils generally consisted of silty sand, fine to coarse sand and fine to coarse gravel to a depth of approximately 21 to 25-feet below grade. In test borings ESI-2D, PW-1 and PW-2 a predominantly gray silt soil unit was encountered at depths of 21.0, 22.0 and 25.0 feet below grade, respectively and deeper. Occasional fine to coarse sand or sandy silt seams were observed within the silt soil strata.

ESI collected four (4) soil samples from test borings PW-1 and PW-2 (two (2) from each boring) for grain size analysis. Samples were retained from the noncohesive and the cohesive native soil units for mechanical testing to estimate permeability characteristics, based on grain size, for each soil type. The results of the grain size analyses will be discussed in Section IV-A.

Ground water levels in the monitoring wells and the elevation of the Chadakoin River were measured on February 9 and 10, 1993. Ground water was encountered between approximately seven (7) and ten (10) feet below the ground surface. The ground water elevations for the above mentioned dates are plotted on Drawing Nos. 4 and 5 in Appendix A. Based on the ground water level measurements obtained on February 9 and 10, 1993, it appears the ground water beneath the site is flowing to the north northeast.

A slightly higher ground water level was recorded for monitoring well ESI-2D which was screened in the underlying silt-type soils. This may indicate a slight upward

vertical hydraulic gradient exists in the underlying silt-type soils. It should be noted that several artesian production wells are present in the general vicinity of the site. A upward vertical hydraulic gradient condition may impede the downward migration of contaminants in the ground water.

IV. SUMMARY OF LABORATORY TESTING AND RESULTS

A. General

Soil and/or ground water samples were collected from the Dowcraft site for laboratory testing to better define the subsurface conditions and level of environmental contamination present. Mechanical testing of samples was completed at ESI's construction testing laboratory in Hamburg, New York. Copies of the mechanical and analytical testing reports are found in Appendices E and F, respectively.

Samples collected for analytical testing were obtained using precleaned specialized environmental sampling equipment. Each sample for analytical testing was placed directly into precleaned environmental sample bottles, preserved (as necessary) and shipped to Huntingdon Analytical Services, Inc. (HAS) in an ice cooler for analytical testing. HAS is a NYSDOH certified laboratory in Middleport, New York. Chain-of-Custody forms were maintained on all samples with the required sample identification and analysis.

B. Mechanical Laboratory Testing

ESI retained soil samples from test borings PW-1 and PW-2 for grain size analysis (ASTM D-422) to estimate the permeability of the cohesive and noncohesive soil units encountered during drilling. The soils classifications for both test borings PW-1 and PW-2 indicated primarily sand and gravel soils were present overlying silt-type soils. Table 3 summarizes the sample identification, composition and percent gravel, sand and fines (silt and clay).

The grain size distribution results indicate that there is a significant difference in the native soil types at approximately 22-feet (test boring PW-1) to 25-feet (test boring PW-2) below ground surface. A predominantly sand and gravel soil unit is overlying cohesive soils (silts and clays) at both test boring locations. The grain size analysis results confirm the soil classifications presented on the subsurface boring logs in Appendix C.

The consistency of the underlying cohesive soil unit is shown by the similar grain size results of samples PW-1L and PW-2L. The overlying sand and gravel soils characteristically are relatively permeable and the underlying cohesive soils a potential confining layer. Based on the opinion of the senior level geologist classifying the subsurface soils, the permeability of the underlying cohesive soils is expected to be several orders of magnitude lower than the sand and gravel-type soils.

	TABLE 3									
8	SUMMARY OF GRAIN SIZE ANALYSIS OF SOIL SAMPLES COLLECTED FROM TEST BORINGS PW-1 AND PW-2									
Test Sample Boring Identification Composite Sample Was Collected Percent Sand Silt										
PW-1	PW-1U	8 - 22 Feet Below Ground Surface	20.2	62.0	17.8					
PW-1	PW-1L	22 - 28 Feet Below Ground Surface	0.0	6.7	93.3					
PW-2	PW-2U	10 - 25 Feet Below Ground Surface	18.2	70.6	11.2					
PW-2	PW-2L	25 - 28 Feet Below Ground Surface	0.0	6.7	93.3					

C. Analytical Laboratory Testing — Outfall 002 and Drywells 004 and 005 Sampling and Results

Soil samples were obtained from Dowcraft Drywells 004 and 005 on February 20, 1991 by ESI assisted by Dowcraft personnel. Refer to Drawing No. 2 presented in Appendix A for Outfall 002 and Drywell 004 and 005 locations. At the time of the sampling Drywell 005 was receiving rinse water from the adjacent phosphatizer unit and non-contact cooling water from the main boiler. A precleaned pipe was used to collect the soil sample from Drywell 005.

· Deywells

Drywell 004 is located on the exterior of the building and was abandoned some time before the sample was collected. There was no free standing water present in Drywell 004 at the time of the sampling. A decontaminated hand auger was used to obtain the sample from Drywell 004. Both soil samples were collected from soils between surface of soils in the drywell and six (6) inches below the surface. The soil samples collected from the drywells were analyzed for Target Compound List (TCL) volatile organics (USEPA Method 8240).

Table 4 summarizes the detectable VOC's found in the soil samples obtained from the drywells. The sample obtained from Drywell 005 was found to contain 440 ug/kg (parts per billion) of 1,2-dichloroethene and 310 ug/kg trichloroethene. The sample collected from Drywell 004 was found to also contain 120 ug/kg trichloroethene.

	TABLE 4	alika ku						
ANALYTICAL RESULTS FOR SOIL SAMPLES COLLECTED FROM DRYWELLS 004 AND 005								
Contaminant	Drywell 004	Drywell 005						
1,2-Dichloroethene, ug/kg	Not Detected	440						
Trichoroethene, ug/kg	120	310						

Reggiolise Lesonys Lend

One (1) outfall sample was collected from Dowcraft Outfall 002 discharge on May 5, 1992. Non-contact cooling water from three (3) spot welders and the trichloroethene vapor degreaser is discharged to Outfall 002 as well as storm water runoff from the roof drains. The outfall sample was analyzed for TCL volatile organics (USEPA Method 624) to ensure Outfall 002 was not a potential source of ground water contamination. There were no volatile organic compounds present in the outfall sample above the method detection limit.

The results of the drywell soil sample analyses indicates slight concentrations of VOC's are present in both drywells. The presence of these compounds at the reported concentrations does not provide an indication whether the drywells could be source areas for ground water contamination at the site. The analytical results of the water sample collected from Outfall 002 indicates VOC's are not entering the outfall unexpectantly causing a potential source for ground water contamination.

D. Analytical Laboratory Testing - Ground Water Sampling and Results

ESI obtained ground water samples from fourteen (14) monitoring wells (ESI-1 through ESI-13 as well as ESI-2D) after development/purging. Well development was accomplished by pumping ground water from the well with either a guzzler pump or a peristaltic pump with dedicated tubing. A minimum of ten (10) water well volumes were development evacuated from each well unless the well went dry during development. Monitoring wells ESI-1, ESI-5, ESI-6 and ESI-9 went dry during development. These wells were allowed to recharge and pumped dry a second time to achieve the desired level of development.

Field measurements of pH, temperature and specific conductivity were obtained during well development to determine whether representative ground water had entered the well. Representative ground water is assumed to have been obtained when the field measurements stabilize (variation of less than ten (10) percent over successive well The well development procedures and data were recorded on well volumes). development logs presented in Appendix C.

Ground water samples were also collected from pump wells PW-1 and PW-2 during aquifer pump testing. Pumping wells PW-1 and PW-2 were not developed according to the procedures discussed above, however, a minimum of five (5) water well volumes were pumped from each well as part of the aquifer pump testing prior to collecting ground water samples. The analytical results for ground water samples collected from the pump wells during the aquifer pump testing are discussed in Section V-G.

ESI collected ground water samples from fourteen (14) monitoring wells (ESI-1 through ESI-13 as well as ESI-2D) with precleaned bailers made of either stainless steel or PVC. Samples collected from pump wells PW-1 and PW-2 were obtained from a sample port in the aquifer pump testing apparatus.

A summary of analytical testing completed on samples collected from the ground water monitoring wells is presented in Table 5. It should be noted, ground water samples collected from monitoring wells ESI-1 through ESI-5 on November 13 and 14, 1990 were part of the Phase II Environmental Site Assessment completed at the site. Subsequent sampling was completed to determine the extent of contamination and assess dynamic concentrations of the contaminants of interest during ground water pumping.

TABLE 5

SUMMARY OF ANALYTICAL TESTING COMPLETED ON GROUND WATER SAMPLES

et Analyte (AL) Metals Total Petroleum Hydrocarbons
X
X
X
X
X
X
X
X

BTA-92-266

Page 20

4/93

TABLE 5 (Continued)

SUMMARY OF ANALYTICAL TESTING COMPLETED ON GROUND WATER SAMPLES

Well Number	Date Sampled	TCL Volatiles	рН	Priority Pollutant Metals	TAL Metals	Total Petroleum Hydrocarbons	Aluminum, Manganese and Iron (Total)	Aluminum, Manganese and Iron (Filtered)
ESI-7	1/2/91	х				Х		
ESI-7	4/16/92	X	X		x			
ESI-8	4/16/92	X	X		X			
ESI-9	4/16/92	X	X		Х			
ESI-9	2/11/93						Х	X
ESI-10	4/16/92	x	X		X			
ESI-11	4/16/92	X	X		х			
ESI-12	4/16/92	X	X		x			
ESI-13	4/16/92	X	X		x			
PW-1	2/9/93	X					X	X
PW-1	2/9/93	X					X	X
PW-2	2/10/93	X					X	х
PW-2	2/11/93	X					X	х
PW-2	2/11/93	X					X	х

NOTE:

Samples collected from pump wells PW-1 and PW-2 were during ground water pumping.

INORGANIC AND pH RESULTS

Table 6 presents the inorganic and pH analytical results for samples collected from the ground water monitoring wells at the Dowcraft site. Analytical results for pump well samples collected during aquifer pump testing are discussed in Section V-G. The reported concentrations were compared to ground water quality standards (Class GA ground water) published by the NYSDEC entitled "Water Quality Regulations, Surface Water and Groundwater Classifications and Standards" (September 1, 1992). This publication forms Parts 700-705, Title C, Chapter X of the New York State Codes, Rules and Regulations.

The pH of ground water samples (field analysis) collected from monitoring wells ESI-3 (9.28 standard units, s.u.) and ESI-5 (12.05 s.u.) during the Phase II Environmental Site Assessment were above the NYSDEC Class GA ground water standard for pH (6.5 s.u. - 8.5 s.u.). Follow-up sampling and laboratory analytical testing for pH completed in April 1992 ranged from 7.02 s.u. - 7.93 s.u. Based on the second pH sampling and analytical testing event, the ground water pH at the Dowcraft site is within the limits of the NYSDEC Class GA ground water standards.

Iron, lead, manganese and sodium were reported to be present above the ground water standards in one or more ground water sample. Iron was above the NYSDEC ground water standard of 0.3 mg/l in all samples collected on April 16, 1992 except for monitoring well ESI-4. The elevated iron concentrations ranged from 0.73 mg/l to 18.6 mg/l. Lead was present in samples collected from monitoring wells ESI-3 (2 events, 0.03 mg/l and 0.04 mg/l), ESI-4 (0.038 mg/l), ESI-5 (0.06 mg/l) and ESI-13 (0.03 mg/l) at levels slightly above the 0.025 mg/l NYSDEC ground water standard. Sodium was present in samples analyzed from monitoring wells ESI-1 through ESI-13 (excluding ESI-5) slightly above the state ground water standard of 20 mg/l. Manganese was also present in samples collected from monitoring wells ESI-2D, ESI-6, ESI-7, ESI-8, ESI-10, ESI-11 and ESI-13 above the 0.30 mg/l NYSDEC ground water standard. The other metals constituents analyzed for were below the NYSDEC criteria presented in Table 6.

The metals data in Table 6 corresponds to a total metals analysis which can be erroneously higher than the soluble metals concentration in the ground water due to the presence of turbidity. Even small quantities of turbidity barely detectable to the human eye can cause the concentration of total metals be reported higher than soluble metals. The NYSDEC ground water standards are established for dissolved or soluble metals.

TABLE 6 DH AND INORGANIC ANALYTICAL RESULTS FOR GROUND WATER SAMPLES COLLECTED FROM MONITORING WELLS Sample Date and **NYSDEC Class GA Monitoring Well Number** pH and Metal Ground Water ESI-1 ESI-1 ESI-2 ESI-2 ESI-2D ESI-3 ESI-3 Concentration Standard Sample Date 11/14/90 4/16/92 11/13/90 4/16/92 4/16/92 11/13/90 4/16/92 6.82 9.28 6.5 - 8.5pH, std. units 6.5 7.27 7.93 7.46 7.30 Aluminum, mg/l NA 1.03 1.71 0.62 7.01 NS NA NA NA 0.08 NA 0.13 0.13 NA 1.0 Barium, mg/l 0.17 63.8 88.2 **60**.1 76.1 NS NA Calcium, mg/l NA NA 0.05 < 0.01 0.04 < 0.01 0.03 0.05 Chromium, mg/l < 0.01 0.05 Copper, mg/l 0.01 < 0.01 0.02 < 0.01 < 0.01 0.04 0.03 0.2 10.2 0.3 Iron, mg/l NA 1.57 NA 2.64 0.73 NA 0.006 0.006 0.01 < 0.005 0.03 0.04 0.025 Lead, mg/l < 0.005 6.69 11.5 NS Magnesium, mg/l NA NA 11.7 11.4 NA Manganese, mg/l 0.18 0.12 0.52 NA 0.52 0.3 NA NA Potassium, mg/l NA 4.1 NA 5.65 21.6 NA 5.8 NS < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 0.01 Selenium, mg/l < 0.005 0.008 38.2 33.2 20 Sodium, mg/l NA NA 21.5 NA 45.7

NOTE:

Total metals analyses were completed (unfiltered). Metals which were below method detection limit for monitoring wells ESI-1 through ESI-3 were not included.

< 0.02

< 0.02

NA - Not Analyzed

0.02

NS - No Standard

< 0.02

Zinc, mg/l

< 0.02

0.08

0.09

0.3

In Organics

TABLE 6 (Continued) PH AND INORGANIC ANALYTICAL RESULTS FOR GROUND WATER SAMPLES COLLECTED FROM MONITORING WELLS **NYSDEC Class GA** Sample Date and **Monitoring Well Number Ground Water** pH and Metal ESI-4 ESI-5 ESI-5 ESI-6 ESI-7 ESI-4 Concentration Standard 4/16/92 4/16/92 4/16/92 Sample Date 11/13/90 4/16/92 11/13/90 12.05 7.49 6.5 - 8.5pH, std. units 8.26 7.51 7.77 7.48 0.65 NA 1.08 3.35 10.8 NS Aluminum, mg/l NA < 0.01 Arsenic, mg/l 0.02 < 0.01 0.01 < 0.01 0.02 0.025 0.08 0.10 0.19 0.33 1.0 Barium, mg/l NA NA < 0.005 < 0.005 0.013 < 0.005 < 0.005 0.01 Cadmium, mg/l < 0.005 40.6 NS Calcium, mg/l 53.7 53.3 NA 65.5 NA 0.05 Chromium, mg/l 0.05 < 0.01 0.03 < 0.01 0.01 0.02 0.2 0.02 Copper, mg/l 0.06 < 0.01 0.05 < 0.01 0.02 6.54 0.3 NA 0.25 NA 1.07 11.3 Iron, mg/l 0.02 0.025 0.038 < 0.005 0.06 < 0.005 0.018 Lead, mg/l 8.73 NA 6.64 NS Magnesium, mg/l 7.43 9.66 NA 4.43 1.05 0.3 Manganese, mg/l NA 0.01 NA 0.06 NS Potassium, mg/l 4.3 NA 3.1 4.6 6.7 NA 20 14.7 33.5 Sodium, mg/l 36.4 37.4 NA NA

NOTE:

Total metals analyses were completed (unfiltered). Metals which were below method detection limit for monitoring wells ESI-4 through ESI-7 were not included.

< 0.02

NA - Not Analyzed

0.13

NS - No Standard

< 0.06

Zinc, mg/l

< 0.02

0.07

0.3

0.02

TABLE 6 (Continued) pH AND INORGANIC ANALYTICAL RESULTS FOR GROUND WATER SAMPLES COLLECTED FROM MONITORING WELLS Sample Date and **Monitoring Well Number NYSDEC Class GA Ground Water** pH and Metal ESI-8 **ESI-10 ESI-11 ESI-12 ESI-13** ESI-9 Concentration Standard 4/16/92 4/16/92 4/16/92 Sample Date 4/16/92 4/16/92 4/16/92 7.56 7.02 7.39 7.34 7.14 6.5 - 8.5pH, std. units 7.23 3.33 0.05 3.27 3.29 16.5 NS Aluminum, mg/l 7.70 < 0.01 Arsenic, mg/l < 0.01 < 0.01 < 0.01 0.01 < 0.01 0.025 0.19 0.10 0.13 0.18 0.11 Barium, mg/l 0.38 1.0 44.8 71.2 55.1 66.9 48.5 68.2 NS Calcium, mg/l Chromium, mg/l < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 0.04 0.05 0.2 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 0.02 Copper, mg/l 4.92 8.18/ 3.55° (1.07) (6.45 18.60.3 Iron, mg/l 0.008 < 0.005 < 0.01 0.009 0.03 0.025 0.011 Lead, mg/l 5.82 8.2 Magnesium, mg/l 5.41 11.0 8.66 13.8 NS 0.61 0.59 1.04 Manganese, mg/l 0.17 (1.12)0.08 0.3 5.0 4.27 3.8 Potassium, mg/l 4.1 5.8 7.3 NS

NOTE:

Total metals analyses were completed (unfiltered). Metals which were below method detection limit for monitoring wells ESI-8 through ESI-13 were not included.

27.2

< 0.02

NA - Not Analyzed

26.4

0.03

NS - No Standard

25.1

< 0.02

Sodium, mg/l

Zinc, mg/l

22.5

< 0.02

22.3

0.01

20

0.3

25.5

< 0.02

On February 11, 1993, ESI collected a ground water sample from monitoring well ESI-9 (the most up-gradient well). The sample was split in the field and part of the sample was filtered to remove turbidity. Both the filtered and unfiltered samples were preserved with nitric acid prior to shipment to Huntingdon Analytical Services for analysis. The analytical results for the filtered (soluble) and unfiltered (total) metals analysis is shown in Table 7. Iron and manganese were both present in the total metals analysis above the ground water standards established by the NYSDEC. However, the filtered sample metals concentrations were significantly lower than the total analysis. The soluble metals concentrations were below the NYSDEC ground water standards for the metals tested.

Based on the results in Table 7, it appears the cause of the elevated total metals concentrations is turbidity in the samples. It is ESI's opinion that the elevated metals concentrations in Table 6 are also caused by turbidity in the samples and would be significantly lower if soluble metals analyses were completed. Additional total and soluble metals analysis comparisons were completed as part of the aquifer pump testing to confirm the effects turbidity has on reported total metals concentrations. The analytical results of samples collected during the aquifer pump test generally support the suspected effects of turbidity and will be discussed in detail in Section V-G.

TABLE 7									
COMPARISON BETWEEN TOTAL AND FILTERED INORGANIC ANALYSIS OF GROUND WATER SAMPLE COLLECTED FROM MONITORING WELL ESI-9 2/11/9 3									
	Concentration (mg/l) NYSDEC Class								
Metal of Concern	Metal of Concern Total Analysis Filtered Analysis Water Standard								
A lu minum	6.47	< 0.03	No Standard						
Iron	5.55	0.043	0.30 mg/l						
Ma nganese	0.326	0.011	0.30 mg/l						

VOLATILE ORGANIC RESULTS

Table 8 presents the detectable VOC concentrations in samples collected from the ground water monitoring wells at the Dowcraft site. Each ground water sample was analyzed for TCL volatile organics (USEPA Method 624). VOC's were detected in ground water samples collected from monitoring wells ESI-1, ESI-2, ESI-2D, ESI-3, ESI-6, ESI-7, ESI-10, ESI-11, ESI-12 and ESI-13. Trichloroethene (TCE) was the principal VOC present in the samples analyzed. However, lesser concentrations of various degradation products of TCE such as 1,2-dichloroethene, vinyl chloride, tetrachloroethene, 1,1,1-trichloroethane and 1,1-dichloroethene were also detected in several samples.

Isoconcentration lines corresponding to total VOC's for samples collected on April 16, 1992 were plotted on Drawing No. 6 (Appendix A) to assess the approximate aerial extent of ground water contamination. Sampling data from monitoring well ESI-2 (April 16, 1992) was not included since it did not agree with the results from the surrounding wells and it was significantly lower than the previous sampling events (1,300 ug/l and 3,100 ug/l). In addition, data from monitoring well ESI-2D was not included since it is not screened in the same soil strata.

It appears the western edge of the ground water contamination plume is located between monitoring wells ESI-3 and ESI-4 and extends in a northern direction towards the Chadakoin River. The southern boundary of the plume is located approximately from the 1976 Dowcraft addition (former storage area for trichloroethene) passing just south of monitoring well ESI-7 to just south of well ESI-1. The eastern edge of the VOC contamination appears to be located slightly east of monitoring wells ESI-1, ESI-13 and ESI-10. The contamination plume extends beyond wells ESI-10, ESI-11 and ESI-12 to the north.

The reported VOC concentrations are generally significantly higher than the ground water (Class GA ground water) standards established by the NYSDEC. The VOC ground

water standards incorporate maximum contaminant levels (MCL's) and the New York State Department of Health (NYSDOH) recommendations for contaminants found in ground water. The Class GA ground water standard for trichloroethene, 1,2-dichloroethene, tetrachloroethene, 1,1,1-trichloroethane and 1,1-dichloroethene is 5 ug/l. The Class GA standard for vinyl chloride is 2 ug/l.

ESI collected ground water samples from the pumping wells during the aquifer pump test to assess the dynamic contaminant concentrations during pumping. Although the results of samples collected during the aquifer test were not plotted on Drawing No. 6 (different sampling events), the results do confirm the location of the plotted isoconcentration lines. The results of the pumping well sampling and analytical testing are presented in Section V-G.

TABLE 8									
VOLATILE ORGANIC ANALYTICAL RESULTS FOR GROUND WATER SAMPLES COLLECTED FROM MONITORING WELLS									
Mon ito ring Well Number	Dat e Sampled	Trichloroethene (ug/l)	1,2-Dichloroethene (ug/l)	Vinyl Chloride (ug/l)	Tetrachloroethene (ug/l)				
ESI-1	11/14/90	12	ND	ND	ND				
ESI-1	4/16/92	20	ND	ND	ND				
ESI-2	11/13/90	1,300	230	ND	ND				
ESI-2	3/9/92	3,100	390	ND	ND				
ESI-2	4/16/92	340	58	ND	ND				
ESI-2D	4/16/92	100	ND	ND	ND				
ESI-3	11/13/90	180	ND	ND	ND				
ESI-3	4/16/92	2,800	310	ND	ND				
ESI-4	11/13/90	ND	ND	ND	ND				
ESI-4	4/16/92	ND	ND	ND	ND				
ESI-5	11/13/90	ND	ND	ND	ND				
ESI-5	4/16/92	ND	ND	ND	ND				
NYSDEC Class GA Ground Water Standard		5	5	2	5				

ND - Not Detected.

GW. ORGANICS

TABLE 8 (Continued) VOLATILE ORGANIC ANALYTICAL RESULTS FOR GROUND WATER SAMPLES COLLECTED FROM MONITORING WELLS 1,1,1-Trichloro-1.1-Dichloro-**Monitoring** Date Trichloro-1,2-Dichloro-Vinvl Tetrachloro**eth**ane ethane Well Sampled **eth**ene **eth**ene **Chloride** et**hene** (ug/l) (ug/l)(ug/l)Number (ug/l) (ug/l) (ug/l) ESI-6 1/2/91 57 30 ND ND ND ND 100 13 5 8.7 ESI-6 4/16/92 13,000 1,900 36 17 ND ND ESI-6 2/10/93 14,000 1,900 1/2/91 3.9 ND ND ND ND ESI-7 ND ND ND 4/16/92 50 7.1 ND ND ESI-7 ND ND ND ESI-8 ND ND ND 4/16/92 ND ND ND ND ND ESI-9 4/16/92 ND 590 ND ND **ESI-10** 4/16/92 87 160 ND 590 620 87 ND ND ND ESI-11 4/16/92 **ESI-12** 4/16/92 650 160 ND ND ND ND 51 ESI-13 4/16/92 21 ND ND 5 12 5 5 5 2 5 5 NYSDEC Class GA Ground

ND - Not Detected.

Water Standards

V. AQUIFER PUMP TESTING

A. General

ESI completed aquifer pump testing at the Dowcraft Site on February 9, 10 and 11, 1993 to assess the hydraulic characteristics of the overburden soils. The purpose for evaluating the aquifer hydraulic characteristics is to determine the pumping rates for subsequent remediation (ground water pumping and treatment). This section discusses the setup, procedures, results and interpretation of results for the completed aquifer pump testing.

B. Supplemental Subsurface Explorations

ESI installed two (2) pumping wells (PW-1 and PW-2) at the Dowcraft site to facilitate completion of the aquifer pump test and for future ground water remediation. Refer to Section III-A for details on test boring procedures during pump well installation. The pump wells were located within the ground water contamination plume shown on Drawing No. 6 in Appendix A. The location of the pump wells was selected to optimize future remediation efforts based on the location of existing buildings, utilities and the area of the highest concentrations of ground water contamination.

The pump wells were installed to pump ground water from the sand and gravel-type soils overlying the cohesive soils present approximately 25-feet below ground surface. Both wells were screened with stainless steel well screen from the bottom of the sand and gravel soils to above the observed static water level. The pump well installation diagrams are presented in Appendix C.

C. Pumping Test Setup

A downhole pump purchased from General Pump Manufacturing was used for pumping ground water during the aquifer pump test. The pump was capable of pumping 35-gallons per minute (gpm) at 40-feet below ground surface and was powered by a 220-volt power source (supplied by Dowcraft). The ground water was pumped through one (1) inch diameter plastic pipe from the bottom of the well to an activated carbon treatment

system on the ground surface. A six (6) foot section of steel pipe located between the pump and carbon treatment system contained an in-line flow meter, a valve to control the pumping rate and a PVC sample port.

The activated carbon treatment system manufactured by Carbtrol Corporation consisted of three (3) 55-gallon drums of activated carbon, connected in parallel, and the required manifolds and piping for the influent and effluent to the carbon drums. The effluent from the carbon treatment system was discharged through a one (1) inch diameter plastic pipe plumbed into Dowcraft's sanitary sewer. ESI requested and received formal authorization from the City of Jamestown Department of Public Works to discharge the treated ground water generated during the aquifer pump test to the city sanitary sewer system. During the pump test, water was discharged to the sanitary sewer which is ultimately received by the City of Jamestown Publicly Owned Treatment Works (POTW).

ESI collected one (1) effluent sample from the carbon treatment system at the end of the pump test for TCL volatile organic analysis (USEPA Method 624) to determine whether breakthrough of the carbon had occurred during the test. The results of the testing indicated there were no VOC's present above the method detection limit.

D. Pumping Test Procedures

The aquifer pump testing consisted of a step drawdown test in pumping wells PW-1 and PW-2 and a 24-hour long term pump test in pumping well PW-2. The step drawdown tests completed while pumping PW-1 and PW-2 (independently) were completed on February 9 and 10, 1993, respectively. The 24-hour pump test was completed on February 10 and 11, 1993.

A preliminary one (1) hour test was completed on February 9 to check pump operation, flow rates and reaction of the activated carbon treatment system to the influent water pressure. It was determined after the preliminary test, that the pump test apparatus was hydraulically sound and the carbon treatment system responded well to the influent

water pressure. In addition, the valve designed to control the pumping rate was roughly calibrated.

The step drawdown test completed while pumping pumping well PW-1 lasted 98-minutes. The pumping rates were 5 gpm, 8 gpm, 10 gpm, 12 gpm and 14 gpm over the length of the test. Water levels in both pumping wells PW-1 and PW-2 were monitored with electronic water level indicators. Readings were recorded at one-half (0.5) minute intervals during the first five (5) minutes after increasing each pumping rate. After five (5) minutes of pumping at the increased rate, the water level measurements were taken at one (1) to two (2) minute intervals. A two (2) man crew was continuously assigned to measuring ground water levels in the fourteen (14) monitoring wells and the Chadakoin River during the step drawdown tests.

The same procedures were used for the step drawdown test while pumping pumping well PW-2 on February 10. This step drawdown test was longer in duration (148-minutes) due to the well producing larger quantities of ground water than pumping well PW-1. The pumping rates were 5 gpm, 8 gpm, 10 gpm, 12 gpm, 14 gpm, 16 gpm, 18 gpm, 20 gpm, 22 gpm and 24 gpm.

The 24-hour pumping test was completed on February 10 and 11, 1993. Pumping well PW-2 was pumped at a constant rate of 20 gpm over the entire test. Water levels in wells ESI-2, ESI-2D, ESI-3, ESI-6 and PW-1 were measured at two (2) minute intervals for the first 30-minutes of the test, five (5) minute intervals from thirty (30) minutes to one (1) hour, ten (10) minute intervals from one (1) hour to two (2) hours and once an hour thereafter. Water levels were measured in the pumping well (PW-2) at closer intervals during the initial twenty (20) minutes of the test and the same intervals as above after twenty (20) minutes. Water levels in monitoring wells ESI-1, ESI-7, ESI-10, ESI-11, ESI-12 and ESI-13 were read at five (5) minute intervals over the first hour, ten (10) minute intervals over the second hour and once an hour for the remainder of the test. Water levels in well ESI-8 and ESI-9 were monitored beginning at approximately

thirty (30) minutes after pumping had begun at twenty (20) minute intervals for the first ninety (90) minutes and every hour thereafter. Immediately after shutting off the pump, water levels were monitored in approximately the same interval sequence for four (4) hours during recovery portion of the test.

E. Pumping Test Results

Step-Drawdown Tests

The primary purpose for completing the step tests on each of the two pumping wells on the Dowcraft site was to determine the maximum sustainable pumping rates for the 24-hour pumping test, and eventually for ground water remediation. Since data from the 24-hour aquifer test was available for determining hydraulic parameters, the step test data are simply plotted on a linear graph to provide a visual representation of the step test responses.

The step test on PW-1 showed the maximum pump rate obtainable before the water levels were lowered to the pump intake to be 12 gpm (drawdown of 11.82 feet). The maximum drawdown in the observation wells as a result of the PW-1 step test was 0.14 feet in PW-2. (see Table A in Appendix G).

The maximum obtainable pumping rate in PW-2 was 24 gpm. Well PW-2 was pumped for 10 to 20 minutes at pumping rates from 5 to 25 gpm at 2 gpm intervals. The maximum drawdown in the pumping well was 15.15 feet at 24 gpm. The maximum resultant drawdown in the observation wells during the step test on PW-2 was 0.29 feet in PW-1 (refer to Table A in Appendix G). It was decided to complete the 24-hour aquifer test by pumping PW-2 because of the larger drawdown available and higher sustainable pump rates in this well.

24 Hour Pump Test on PW-2

The 24-hour pump test was completed after water levels had recovered to 90% of the pre-step test levels. Table B (Appendix G) summarizes the static water levels before

pump testing began (before the test, BT) and immediately prior to the 24-hour test (initial, INIT).

For 24-hours, PW-2 was pumped at a constant rate of 20 gpm. The pumping well drew down 11-feet during the first 10 minutes of pumping, reaching a final maximum drawdown of 11.62 feet by the end of the 24 hour test (refer to plot X1 in Appendix G). The water level in the pumping well fluctuated significantly for the next 100-minutes, possibly due to turbulent flow within the well. Table C (Appendix G) summarizes the maximum drawdown in each of the 15 observation wells and the water level fluctuations in the nearby Chadakoin River. The wells in Table C (Appendix G) are listed in order of maximum to minimum final drawdown.

The largest drawdown response occurred between the two pumping wells. PW-1 drew down 0.42-feet after 24-hours of pumping PW-2, and 0.29-feet after the 148-minutes step test on PW-2. PW-2 also had the largest response to pumping of PW-1, drawing down 0.14-feet during the 98-minute step test. This is true even though other monitoring wells are closer to the pumping well (i.e. ESI-6 is only 8 feet from PW-2, yet it drew down only 0.28-feet whereas PW-1, 52-feet from PW-2, drew down 0.42-feet). This is partially due to the horizontal stratification of the glacial till soils which make up this aquifer. Both pumping wells are screened across the entire thickness of the aquifer from just above the water table to the top of the gray silt aquitard at approximately 25-feet below grade. Flow occurs laterally more readily than across strata in a vertical direction. All of the other observation wells except ESI-2D, only partially penetrate the aquifer, ending at 15-feet below grade. It should be noted that monitoring well ESI-6 went dry during well development indicating the presence of fill materials or unexpected subsurface conditions may be causing a reduced hydraulic recharge. As a result the observed drawdown appears to be erroneously low.

The step test on PW-1 also indicates the aquifer in the vicinity of PW-1 is tighter than near PW-2. A tighter aquifer will also experience greater drawdown than a more permeable aquifer.

There is some hydraulic connection between the 35 to 45 foot below grade screened zone in the deep well (ESI-2D) and the 6 to 26 foot below grade screened zone in the pumping well. The deep well drewdown 0.13-feet when PW-2 was pumped for 24-hours. This is less drawdown than observed in nearby shallow well ESI-2. (drawdown of 0.21-feet). The gray silt zone at 25-feet appears to be inhibiting flow of contaminants to the 35 to 45 foot zone. There is also a slight upward gradient between ESI-2D and ESI-2 (0.4-feet) which will inhibit downward migration of contaminants into the deep interval.

The effect on the water table elevations and the resultant capture zone from pumping PW-2 alone at 20 gpm for 24-hours can be seen in the Observed Ground Water Capture Zone Map presented as Drawing No. 7 in Appendix A (Data in Table C of Appendix G). Most of the wells were still drawing down slightly after 24 hours of pumping. As will be more extensively discussed in the data analysis section, the effects of delayed gravity drainage are still being observed in many of the wells, and additional drawdown may be expected in the observation wells before they return to a Theissian type response.

F. Methodology

Data from the four wells with the highest drawdowns were analyzed using a variety of techniques to generate estimates of the hydraulic parameters of the aquifer. The drawdown data was used rather than the recovery data because of the longer observation period for the drawdown data. Barometric pressure was measured but no corrections to observed water levels were made because the unconfined nature of the aquifer makes barometric effects negligible. The area of drawdown did not extend to the

Chadakoin River, therefore, no recharge boundaries from this potential lateral source are believed to have influenced the data.

Although the total observed drawdowns in the observation wells were not large, the log-log response curves do have the typical shape of drawdown in unconfined aquifers. Withdrawal of water from an unconfined aquifer occurs in three phases. Initially, water is released from storage due to expansion of the water and compaction of the aquifer just as occurs in a confined aquifer (Theissian type response). Then, as the cone of depression develops, water is supplied through gravity drainage of the aquifer by both vertical and horizontal flow. The curve flattens (drawdown slows down) in this interval because extra water is available through drainage. Finally, when the piezometric head and water table elevations within the drawdown cone coincide, flow is generally horizontal again and the data will again follow a Theis curve response. Neuman has developed a set of type curves for use in determining hydraulic parameters from unconfined aquifers (Neuman, S.P. Water Resources Research, 11 (1975):329-42).

Finally, Neuman type curve matches were made and hydraulic parameters calculated on two of the wells. Both an early elastic response match (ua) and a delayed response curve (ub) match were made. Beta (b-r²/b²) was calculated using an aquifer thickness of 20-feet (as in the Jacob calculations) and the observed distance from the pumping well. The hydraulic conductivity from these curve matches were calculated at 0.002 and 0.011 cm/s, somewhat lower than the values calculated by the Jacob technique as would be expected under dewatering conditions. The parameters derived from these type curves should be the most "accurate" since more of the equation assumptions match the true aquifer characteristics.

We know from the PW-1 step test that conductivity is variable across the site since PW-1 could only be pumped at half the pumping rate obtainable in PW-2, even though they are only 52-feet apart. From these combined results we conclude the water table aquifer at the Dowcraft site has a hydraulic conductivity of on the order of 0.001 to 0.01 cm/s.

G. Ground Water Quality During Pumping Test

Ground water samples were collected from the pumping wells during the aquifer pumping test for analytical testing. The purpose for evaluating the ground water quality during pumping was to assess the dynamic concentrations of the contaminants of interest. The ground water samples were collected from a PVC sample port located on the influent piping to the activated carbon treatment system. Each sample was analyzed for TCL volatile organics, aluminum (total and soluble), iron (total and soluble) and manganese (total and soluble). The volatile organics and metals were analyzed according to USEPA Methods 624 and 200.7, respectively. Table 9 presents the analytical results for samples collected during the aquifer pump test.

The total metal concentrations for iron and manganese were significantly above the NYSDEC ground water (Class GA) standard of 0.3 mg/l. Total aluminum was also present at concentrations well above typical ground water concentrations. However, the filtered sample concentrations for iron was well below the ground water standard. The filtered aluminum samples were also at or near detection levels. The comparison between total and filtered metals for aluminum and iron further supports the contribution of turbidity on the elevated total metals results. The filtered manganese results were very close to the total manganese concentrations. Soluble (filtered) manganese levels ranged between 0.831 mg/l and 2.240 mg/l.

VOC's present in the samples collected from the pump wells consisted of trichloroethene, 1,2-dichloroethene, tetrachloroethene, 1,1,1-trichloroethane and vinyl chloride. As expected, the concentration of trichloroethene was significantly higher than the other detectable VOC's.

The total VOC concentration in pumping well PW-1 increased approximately 36 percent during the step drawdown test. Total VOC levels increased from 6,080 ug/l to 8,260 ug/l after about two (2) hours of pumping (the pumping rate ranged from 5 gpm to 12 gpm). The increase in VOC concentration may have been due to migration of

contaminated ground water with a higher concentration of VOC's from the vicinity of pumping well PW-2. The total organic compounds present in samples collected from pumping well PW-2 decreased from 22,515 ug/l to 19,259 ug/l over approximately 28-hours of pumping ground water at 20 gpm. The reduction of approximately fifteen (15) percent total VOC's was likely due to the flushing effect induced during long term ground water pumping.

The magnitude of VOC concentrations in the pumping wells was significantly higher than the NYSDEC Class GA ground water standards. It should be noted the levels reported in pumping well PW-2 were the highest VOC concentration detected at the site to date. Remediation efficiency will likely be enhanced due to this situation. Total VOC concentrations are expected to be significantly reduced through long term ground water pumping.

		TABLE	9			
	SUMMARY OF ANALYTICAL TESTING COMPLETED ON GROUND WATER SAMPLES COLLECTED DURING AQUIFER PUMP TESTING					
	Sample Designation and Time Elapsed from Beginning of Pumping					
Parameter (ug/L)	PW-1 (5 Minutes)	PW-1 (129 Minutes)	PW-2 (5 Minutes)	PW-2 (1184 Minutes)	PW-2 (1658 Minutes)	
Total Aluminum	61,500	10,100	7,520	847	1,170	
Filtered Aluminum	35	53	46	33	<30	
Total Iron	133,000	22,400	16,100	1,610	2,760	
Filtered Iron	67	98	80	47	79	
Total Manganese	5,100	1,690	2,850	940	900	
Dissolved Manganese	1,480	1,140	2,240	831	893	
Trichloroethene	5,900	8,100	22,000	20,000	19,000	
1,2-Dichloroethene	180	160	410	190	190	
Tetrachloroethene	ND	ND	76	58	54	
1,1,1-Trichloroethane	ND	ND	18	16	15	
Vinyl Chloride	ND	ND	11	ND	ND	
Total VOC's	6,080	8,260	22,515	20,264	19,259	

ND - Not Detected.

VI. CONCLUSIONS AND PROPOSED GROUND WATER REMEDIATION

A. General

The initial concerns of elevated pH and various metals present in the ground water at concentrations above NYSDEC Class GA standards were found to be unjustified. However, remediation of the ground water at the Dowcraft site is required due to the presence of trichloroethene and other VOC's above the NYSDEC Class GA ground water standards. The ground water remediation plan incorporates information gathered from the subsurface investigations, laboratory testing and aquifer pump testing completed at the site. The purpose of the remediation is to reduce the VOC concentrations in the ground water to a level acceptable by the NYSDEC and NYSDOH.

B. Recommendations from the Pumping Test Results

The cone of depression in the natural water table created by pumping PW-2 alone for only 24-hours appears to be generating a significant capture radius (refer to Drawing No. 7 in Appendix A) within the area requiring remediation. Most significantly, contamination from ESI-6, the most highly contaminated well on the site, is readily being captured by pumping PW-2.

Based on the field organic measurements during drilling it appears that the highest concentrations of TCE occur just above the gray silt, or in the bottom 10-feet of the sand and gravel aquifer. The results of all three (3) pumping tests (step tests pumping PW-1/PW-2 and the 24-hour test pumping PW-2) that there is a good hydraulic connection between the either-pumping well and the bottom 10-feet of the sand and gravel aquifer. This was apparent since the largest response to pumping PW-2 was in PW-1 which is screened deeper within the coarse aquifer relative to the other monitoring wells. Therefore, pumping PW-1 and/or PW-2 will likely capture contamination present at these depths.

The maximum observed drawdowns in observation wells at the end of the 24-hour test are most likely not the maximum equilibrium drawdowns which will result with

Gonclusion & RECOMMENDATION sustained pumping over much longer remediation times. The type curves suggest the nearest wells were just beginning to drawdown again after having dewatered the cone of depression, when most flow again comes from the horizontal direction and data follows a more Theissian type response curve. This suggests that the capture zone from pumping PW-2 at 20 gpm for much longer periods of time may be slightly larger than mapped on Drawing No. 7.

We recommend proceeding with remediation, pumping PW-2 at the maximum sustainable rate. Based on the 24-hour pump test we expect pumping well PW-2 to produce approximately 20 gpm consistently. The actual final long term drawdown and contaminant capture will be monitored during the remediation itself, and modifications to the plan made as necessary.

C. Discharge to the Sanitary Sewer System

Ground water will be pumped from pumping well PW-2 and discharged directly to the sanitary sewer system for off-site treatment. Subsequent remediation will occur at the city of Jamestown Publicly Owned Treatment Works (POTW) through bioremediation. Currently, Dowcraft, ESI and CRA are working together to obtain a discharge permit from the City of Jamestown POTW.

D. Analytical Testing and Reporting

Ground water samples will be collected from the monitoring and pumping wells during remediation to determine the concentration of contaminants in the ground water discharged to the POTW and to evaluate the effectiveness of remediation. remediation pumping has started, ground water samples will be collected from pumping 1 st mo well PW-2 weekly during the first month. After one (1) month of ground water 2-3 me pumping, monthly ground water samples will be collected from pumping well PW-2 during months two (2) and three (3). During the fourth month of remediation, samples will be collected from pumping wells PW-1 and PW-2 as well as monitoring wells ESI-3, ESI-10, **ES**I-11 and ESI-12.

monthly

Each sample will be analyzed for trichloroethene using USEPA Method 601. TCE was selected as the indicator parameter due to the high ratio of TCE to other VOC's reported in the previous analytical testing. It should be noted that specific analytical testing required by the POTW will be coordinated with the schedule outlined above. Table 10 summarizes the proposed sampling schedule during remediation.

A letter report will be prepared and submitted to the NYSDEC summarizing the ground water sampling data and the estimated ground water capture area after four months of remediation. A long term sampling and analytical testing program will also be included with the data report.

	TABLE 10			
GROUND WATER SAMPLING SCHEDULE FOR MONITORING AND PUMPING WELLS DURING REMEDIATION				
Time Elapsed From Beginning Remediation	Wells to be Sampled			
1 Week	PW-2			
2 Weeks	PW-2			
3 Weeks	PW-2			
4 Weeks	PW-2			
2 Months	PW-2			
3 Months	PW-2			
4 Months	PW-1, PW-2, ESI-3, ESI-6, ESI-10, ESI-11 and ESI-12			

NOTE:

Each sample will be analyzed for trichloroethene using USEPA Method 601.

APPENDIX A

Site >lun

NOTES:

THIS DRAWING IS FOR ILLUSTRATIVE PURPOSES ONLY

THIS DRAWING WAS ADAPTED FROM A SITE PLAN SUPPLIED BY DOWCRAFT CORP. , DATED 3-27-84

ALL SOIL GAS SAMPLE LOCATIONS ARE APPROXIMATE

EMPIRE SOILS INVESTIGATIONS INC

SOIL GAS SURVEY SAMPLE LOCATION MAP

DOWCRAFT CORPORATION 65 SOUTH DOW ST. FALCONER, NEW YORK

DR.BY:	DAW	SCALE: 1"= 25' 1/-	PROL NO. B	TA 92 266
CK'D BY	k.IS	1 DATE: 4-93	DRWG.NO.	3

Gw. Elev Conton-Mup 2-5-53

D42. 4

G.W. Contor Elev.

2-10-93

NNE .44%

Dw.5

Dw. 6.

SwG 7
6w. captus zono

Huntingdon

APPENDIX B

S-5167 South Park Avenue Box 0913 Hamburg, New York 14075 (716)649-8110 Fax: (716)649-8051

LIMITATIONS

- 1. Empire Soils Investigations, Inc. (ESI) work was completed in accordance with generally accepted practices of other consultants undertaking similar studies, and ESI observed that degree of care and skill generally exercised by other consultants under similar circumstances and conditions. ESI's findings and conclusions must be considered not as scientific certainties but as probabilities based on our
 - professional judgement concerning the significance of the limited data gathered during the course of the work.
- 2. The Environmental Investigation completed has not included comprehensive analytical testing on the site due to cost constraints. Without such testing, ESI can assume no responsibility for the undetected presence of either identified potential conditions or other latent conditions.
- 3. The observations described in this report were made under conditions stated therein. The conclusions presented in the report were based solely upon the services described therein and not on tasks and procedures beyond the scope of described services or the time and budgetary constraints imposed by the client.
- 4. In preparing this report, ESI has relied on certain information provided by the State, County and Town Officials and other parties referenced herein and on information contained in the files of the state and local agencies made available to ESI at the time this report was prepared.
- 5. Observations were made of the subject site and on adjacent sites as indicated within the report. Where access to portions of the site or structures were limited or unavailable, ESI renders no opinion as to the presence of hazardous materials or to the presence of indirect evidence relating to hazardous material in that portion of the site or adjacent structures.
- 6. Unless otherwise specified in the report, ESI did not perform testing or analyses to determine the presence of concentrations of hazardous chemical compounds, asbestos, polychlorinated biphenyls (PCB's), oil, gasoline, radon and lead paint at the subject property.

S-5167 South Park Avenue Box 0913 Hamburg, New York 14075 (716) 649-8110 Fax (716) 649-8051

LIMITATIONS (Continued)

- 7. The purpose of the Environmental Ivestigation was to assess the physical characteristics of the subject property with respect to the presence in the environment of hazardous materials. No specific attempt was made to check on the compliance of present or past owners or operators of the site with federal, state or local laws and regulations, environmental or otherwise.
- 8. Except as noted within the text of the report, no quantitative laboratory testing was performed as part of the Environmental Investigation. Where such analyses have been conducted by a laboratory, ESI has relied upon the data provided and has not conducted an independent evaluation of the reliability of these data.
- 9. Evaluation of the possible impact of activities at neighboring locations on the subject property was beyond the scope of services for this investigation.
- 11. This report has been prepared for the exclusive use of the Dowcraft Corporation and its designated agents and lending institutions for the specific application to the subject property in accordance with generally accepted engineering practice. No other warrant, expressed or implied, is made. The environmental concerns noted in this report (if any) are applicable to the current identified proposed usage of this property.
- 12. ESI cannot warranty that the proposed Remediation Plan will successfully remove the levels of contamination identified at both the Dowcraft and Jamestown Container properties.

APPENDIX C

DATE ESI-1 HOLE NO. ____ STARTED 11-2-90 SOILS INVESTIGATIONS INC. SUBSURFACE LOG SURF. ELEV. ___ G.W. DEPTH See Notes SHEET ______1 OF___1 LOCATION S. Dow Street PROJECT Dowcraft Falconer, New York (BTA-90-179A) PID SOIL OR ROCK NOTES SAMPLER **CLASSIFICATION** Bample 7 12/ Brown-black f-c SAND, some f-m Gravel, little-tr. Silt, tr. brick Note:Concrete obstr-11 11 (moist, FILL) uction at 2 locations Becomes brown-red-gray 13 29 11 moved twice to final Contains "and" f-c GRAVEL (concrete 16 16 plan location. and brick) 8 3 1 Becomes black 3 Contains tr. coal Contains tr. brick 1 3 1 9 Water at approx. Lt. brown-tan f-m GRAVEL and f-c 14 10 8 8.0'. Sand, little Clayey Silt (wet,firm) 5 11 5 7 Driller notes 4 4 running sands and (loose) 2 1 3 gravel at 14.0'. 3 Contains occasional broken rock 3 fragments 15 Free Standing Boring Complete at 16.0'. Water measured at 10.2' inside augers at boring completion. -20-Ground water monitoring well installed tip set at 14.7'. Refer to monitoring well completion report for details. N = No blows to drive 2 spoon 12 with 140 lb. pin wt. falling 30 per blow CLASSIFICATION Visual by Geologist METHOD OF INVESTIGATION: ASTM D-1586 USING 4-1/4" HOLLOW STEM AUGERS

MONITOR WELL COMPLETION REPORT:

				WELL No. ESI-1 JOB No. BTA-9U-1/9A
	•			PROJECT: Dowcraft Corporation
				Falconer, New York
		$\bigcup_{i \in I} I_i$		1. GATE BOX I.D.: 8 INCHES
·.	- 7/2-			2. SURFACE SEAL TYPE: Type I Portland Cement
				3. BOREHOLE DIAMETER 8 INCHES
	, , , , , , , , , , , , , , , , , , ,			4. RISER PIPE:
*DEPTH _	1.0'			a. TYPE 40 Schedule PVC
	•			b. I.D. 2 INCHES
				c. LENGTH 4.5 FEET
			(3)	d. JOINT TYPE Flush Couple Threaded
		<i>V/A</i>	(4)	5. BACKFILL:
			(5)	a. TYPE Type I Portland Cement
	÷	///		b. INSTALLATION Surface Pour
*DEPTH	2.0'	_		
+ 5 5 5 5 5 1	3 .5'	}	6	
*DEPIR .				6. TYPE OF SEAL: Bentonite Pellet
·				T congru
				7. SCREEN:
				a. TYPE 40 Schedule PVC
			(8)	b. I.D. 2 INCHES
				C. SLOT SIZE 0.010 In.
				d. LENGTH 10 FT.
	14.7			
*DEPTH -	<u></u>			8. SCREEN FILTER TYPE: #2 Q Rok Sand
*DEPTH	19.01			
הטבצות -	18.0'	_ (3(1111))	11118	O DECEMBER MUDE
		1	(9)	9. BACKFILL TYPE: Natural Sands & Gravel
*DEPTH	IN FE ET B E	LOW GROU	ND SURFACE.	

FI:	ART	HED	11 11 1_	-5 -9	9 0	-	SOILS	APIRE INVESTIGATIONS INC. SUBSURFACE LOG	G.W.DEPTH <u>See Notes</u>
PROJECT Dowcraft Corporation 10CATION S. Dow Street (BTA-90-179A) - Falconer, New York									
DEPTH-FIL	SAMPLES	SAMPLE NO		BLOWS SAMP	LER 12	z	PID Sampl	SOIL OR ROCK CLASSIFICATION	NOTES
	2.5	1 2 3 4 5 6 7 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	26 16 12 8 4 5 3 2 10 8 10 9 5	23 13 10 7 25 2 7 5 14 10 9 4 5				O-2' ASPHALTIC CONCRETE TO-8' CRUSHER RUN STONE Brown WCOD (RAILROAD TIE), some f-c Sand, tr. gravel (moist, FILL) Black f-c SAND, little Clayey Silt, tr. gravel, tr. wood, tr. coal, tr. brick (moist, FILL) Contains "and" f-m GRAVEL, tr. lime Gray-brown-tan mottled f-c SILTY SAND, some f-c Gravel (moist, loose) Becomes brown-gray Contains "and" f-c GRAVEL, occasional tan silt partings (wet, firm) Contains tr. silt (loose) Boring Complete at 17.0'. Ground water monitoring well installed tip set at 14.7-feet. Refer to monitoring well completion report for details.	Note: Water at approx. 10.0'. Driller notes running sands and gravels at approx. 14.0' Free Standing Water measured at 10.8' inside augers at boring completion.
C = No. blows to drive casing with									

MONITOR WELL COMPLETION REPORT:

			WELL No. ESI-2 JOB No. BTA-90-179A
			PROJECT: Dowcraft Corporation
			Falconer, New York
		(2)	1. GATE BOX I.D.: 8 INCHES
•.		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2. SURFACE SEAL TYPE: Type I Portland Cement
			3. BOREHOLE DIAMETER 8 INCHES
			4. RISER PIPE:
*ДЕРТН	1.0'		a. TYPE 40 Schedule PVC
			b. I.D. 2 INCHES
	<i>'</i> /2		c. LENGTH 4.5 FEET
		3	d. JOINT TYPEFlush Couple Threaded
	•	(A)	5. BACKFILL:
		1 1 (5)	a. TYPE Type I Portland Cement
÷			b. INSTALLATION Surface Pour
*DEPTH	2.2'	(6)	
*DEPTH	3 .5 '	303	6. TYPE OF SEAL: Bentonite Pellet
			7. SCREEN:
			a. TYPE 40 Schedule PVC
		(0)	b. I.D. 2 INCHES
			C. SLOT SIZE <u>0,020</u> In.
			d. LENGTH 10 FT.
+ D D D M (1 :	14.7'		
*DEPTH —			8. SCREEN FILTER TYPE: #4 Q Rok Sand
*DEPTH	17.0'		
		9	9. BACKFILL TYPE: Natural Sands & Gravel
*DEPTH I	N FE ET B ELO	W GROUND SURFACE	· · · · · · · · · · · · · · · · · · ·

BORING NO.: ESI-2D DATE SUBSURFACE SOILS INVESTIGATIONS INC. SURF. ELEV.: 98.8 ± STARTED: 4-3-92 LOG SHEET _1 OF _3 FINISHED: 4-6-92 BTA-92179B LOCATION: 65 South Dow Street Dowcraft Environmental Investigation PROJECT: Falconer, NY Dowcraft Corporation CLIENT: 2 DEPTH-FT. SAMPLES **BLOWS ON** P.I.D. SYMBOL. SOIL OR ROCK SAMPLER **NOTES CLASSIFICATION** BG PID = 0.2 - 0.6 Auger with 8 1/4" I.D. to 15 feet - No ppm samples collected. Refer to Log for ESI-2 for Soil Characteristics 5 10 PID=BG after augering to 10' Brown f-c SAND, some f-m Gravel, tr. silt 3 3 2 (wet, loose, SW) 5-10 2 2 5 4 3 5-10 3 2 3 Gray SILT, tr. sand, tr. clay (wet,loose,ML) 4 5-10 3 2 2 3 3-5 2 2 3 5

DRILLER: P. Bence DRILL RIG: CME-75

METHOD OF INVESTIGATION: ASTM D-1586 USING HOLLOW STEM AUGERS

WEATHER: Partly Cloudy, 40-50 F. CLASSIFIED BY: D. R. Steiner

BORING NO.: ESI-2D DATE **SUBSURFACE** SOILS INVESTIGATIONS INC. SURF. ELEV.: 98.8 ± STARTED: 4-3-92 LOG SHEET 2 OF 3 FINISHED: 4-6-92 BTA-92179B LOCATION: 65 South Dow Street Dowcraft Environmental Investigation PROJECT: Falconer, NY Dowcraft Corporation CLIENT: DEPTH-FT. **BLOWS ON** SYMBOL. a SOIL OR ROCK SAMPLE SAMPLER P.I. **NOTES** CLASSIFICATION 18/24 12 BG Contains increased clay content 5 19 5 Contains Gravel and/or Rock fragments in bottom of spoon (firm) BG 10 13 17 3 Gray f-c SAND, some f-c Gravel, some Clayey Silt (wet, firm, SM-SW) 8WOR/1' 11 14 11 BG Gray f-c GRAVEL, some f-c Sand, tr.-little clayey silt (wet, firm, SW) 65 BG 14 26 39 40 Contains "and" f-c Sand, some Clayey Silt (moist-wet, very compact, GW-GM) BG 10 16 17 14 14 31 Contains tr. silt Gray and brown Clayey SILT, little-some Free standing water BG f-m Sand, tr. gravel (moist, ML) 11WOR 1 6 7 recorded at 14.8' Gray-brown f-m SAND, tr.-little f-m gravel, after augering to 35' tr.-little silt (wet, loose, SP) 13 14 3 8 BG 6 Becomes gray, contains little Silt, tr. gravel (firm, SP-SM) 15 23 BG 3 10 13 13 Contains sandy silt seam 40.5' - 41.0' (compact) 22 19 21 20 40 BG 14 16 BG 8 12 15 8 8 Gray SILT, little f. Sand (wet, firm,ML) (Slight plasticity) Contains little-some f. Sand, occ. moist BG 6 6 10 16 3 seams (loose) AUGER 7 6 BG 17 2 2 4 DRILL RIG: CME-75 DRILLER: P. Bence

METHOD OF INVESTIGATION: ASTM D-1586 USING HOLLOW STEM AUGERS

WEATHER: Partly Cloudy, 40-50 F.

CLASSIFIED BY: D. R. Steiner

BORING NO.: ESI-2D DATE **SUBSURFACE** SURF. ELEV: 98.8 ± SOILS INVESTIGATIONS INC. STARTED: 4-3-92 LOG SHEET 3 OF 3 FINISHED: 4-6-92 BTA-92179B LOCATION: 65 South Dow Street Dowcraft Environmental Investigation PROJECT: Falconer, NY **Dowcraft Corporation** CLIENT: DEPTH-FT. SAMPLES **BLOWS ON** P.I.D. SYMBOL SOIL OR ROCK SAMPLER NOTES CLASSIFICATION Gray fine SAND, little Silt (wet, SP-SM) No recovery for 5 4 5 9 Sample S-18 4 10 21 19 31 BG Gray Silty CLAY, tr.-little f. sand, tr. gravel (moist, CL) AUGER 11 25 BG 8 13 12 20 Gray SILT, tr. sand (slight plasticity) (wet, firm,ML) AUGER BG 4 14 13 18 27 Contains siity clay seam 59' - 59.5' 60 Boring complete at 60.0' 65 70 DRILL RIG: CME-75 DRILLER: P. Bence METHOD OF INVESTIGATION: ASTM D-1586 USING HOLLOW STEM AUGERS

WEATHER: Partly Cloudy, 40-50 F.

CLASSIFIED BY: D. R. Steiner

				WELL No. ESI-2D JOB No. BTA-92-179B
				PROJECT: Dowcraft Environmental Investigation
				1. GATE BOX I.D.: 9 INCHES
•	98.78		$\binom{2}{2}$	
	90.70	- Viv = 1	:-L-V///	2. SURFACE SEAL TYPE: Concrete
		N V		3. BOREHOLE DIAMETER 8 INCHES
				4. RISER PIPE:
DEPTH	0.75			a. TYPE Schedule 40 PVC
				b. I.D. 2.0 INCHES
				c. LENGTH 35.1 FEET
			1/3	d. JOINT TYPE Flush Threaded
			4	5. BACKFILL:
		Y// I	(5)	a. TYPE Cement Grout
	ž.			b. INSTALLATION <u>Surface</u>
DEPTH_	29.5		(6)	
DEPTH .	33.0			6. TYPE OF SEAL: Bentonite Pellets
				7. SCREEN:
		· 💥	(1)	a. TYPE Schedule 40 PVC
			(0)	b. I.D. 2.0 INCHES
•				C. SLOT SIZE <u>0.010</u> In.
	45.3			d. LENGTH 10.0 FT.
DEPTH -				8. SCREEN FILTER TYPE: No. 1 Morie
ሱ ድስጥ፣፣				Silica Sand
DEPTH -	60.0		<i>*************************************</i>	
			(9)	9. BACKFILL TYPE: No. 1 Morie
DEPTH	IN FEET	BELOW GROUP	ND SURFACE.	Silica Sand

EMPIRE SOILS INVESTIGATIONS INC

		-					1
DATE Starte		11-5-	-9 ೧		EI	MPTRE INVESTIGATIONS INC. SUBSURFACE LOC	HOLE NO. ESI-3
STARTE				-	SOILS	INVESTIGATIONS INC. SUBSURFACE LOC	SURF. ELEV.
				-			G. W. DEPTH See Notes
HEET						a LOCATION _ Dow Street	
ROJECT							
	BTA	New York					
= 2 2	ġ l	BLOW			PID	COLL OB BOCK	
SAMPLES	¥	SAME			Sample	SOIL OR ROCK CLASSIFICATION	NOTES
		6 12	12/18.	N	, ,		
						0.2' ASPHALTIC CONCRETE 10.8' CRUSHER RUN STONE	
V						1' Wood Railroad Tie	Driller notes railroad tie at
		1 22	ļ	49	ļ	Brown-gray f-c GRAVEL, some f-c Sand,	approximately 1.0'.
		7 9 _	ļ	<u> </u>		little-tr. Silt, tr. coal, tr. con- crete (moist, FILL)	r t = =
-1/1	2. 8	5		10		Brown-tan mottled f-c SAND, some	_
1	5	- +		17	-	Clayey Silt, little f-c Gravel (moist, loose)	Water at approximat-
-//F	3 6	0 11		1 /		(10000)	ely 8.5'.
1/	4 8		 	25		Brown f-c GRAVEL, some f-c Sand,	,
\dashv / \vdash		2 9				little Clayey Silt (wet, firm)	_
0 1		0 6		13]	
	7	6		<u> </u>			Driller notes
	6 9		<u> </u>	9.	ļ	Contains occasional brown-gray f-c	running sands at
4	4	4_	 			sand seams (loose)	13.0'.
5— [-		_ -	-		 	4	-
	-		┼-	-		15.01	D 05 14 11-4
		-	1 -		 	Boring Complete at 15.9'.	Free Standing Water measured at 12.3'
	_	- -	1			1	inside augers at
							boring completion.
20] [Ground water monitoring well	
4	-	_	 	-		installed tip set at 14.5-feet.	
4		 		 		Refer to monitoring well completion report for details.	
		_ 	 	┤	+	- Topolt for details.	
25-		 	┼	+-	+	4	•
- -	-		1-	+	 	-	
- -		-	1 -	1			
] [
				<u> </u>			
			-		-		
4 }		 -	 -	-	-	_	
		_	-		 	-	
			 -		+ -	1	
+		-	+-	+	+		
1							
						./	
4 = No. b	olows t	o drive_	2	'' 51	000n	12 with 140 lb pin wt. falling 30 "per blow. CLAS	SSIFICATION Visual by
							Onsite Geologist
						D-1586 USING 4-1/4" HOLLOW STEM AUGERS	
: 1 110 0	OLIN	4 E D 11 C	7 LIOI	٠	****		

		•	WELL NO. ESI-3 JOB NO. BTA-90-179A
			PROJECT: Dowcraft Corporation
		1	Falconer, New York
		(2)	1. GATE BOX I.D.: 8 INCHES
•	- North Marine M	1:-1-1:11/4/1/	2. SURFACE SEAL TYPE: Type I Portland Cement
			3. BOREHOLE DIAMETER 8 INCHES
			4- RISER PIPE:
*DEPTH	1.0'		a. TYPE 40 Schedule PVC
			b. I.D. 2 INCHES
			c. LENGTH 4.6 FEET
	\//	(3)	d. JOINT TYPE Flush Couple
	\ //	(A)	Threaded 5. BACKFILL:
		1 7 (5)	a. TYPE Type I Portland Cement
ļ			b. INSTALLATION Surface Pour
*DEPTH	2.0'	4 6	
*DEPTH	3.4'		6. TYPE OF SEAL: Bentonite Pellet
			7. SCREEN:
			a. TYPE 40 Schedule PVC
		(0)	b. I.D. 2 INCHES
			C. SLOT SIZE <u>0.020</u> In.
			d. LENGTH 10 FT.
*DEPTH	14.5!		
			8. SCREEN FILTER TYPE: #4 Q Rok Sand
*DEPTH	15.9'		
		(9)	9. BACKFILL TYPE: Natural Sands & Gravel
*DEPTH I	N FEET BELOW	GROUND SURFACE	• '
			·

[D.T.											
DATE	11-5 -9 0	EN	MPIRE	HOLE NO. ESI-4							
1	11-5 -9 0	SOILS	INVESTIGATIONS INC. SUBSURFACE LOC	SURF. ELEV.							
SHEET				C.W.DEPTH <u>See Notes</u>							
		-	LOCATION Dow Street								
1	PROJECT Dowcraft Corporation LOCATION Dow Street (BTA-90-179A) Falconer, New York										
	BTA-90-1/9/	A)	Taiconer;	New Tork							
SAMPLES AMPLES	BLON VS O N Sam ple R	ON C C	SOIL OR ROCK	NOTES							
DEPTH-FE.	0 6 12 18	BLOW ON CASING C	Classification	HOTES							
0	6 / 12 / 18-		0.2 ASPHALTIC CONCRETE								
1 1	17 8	_	10.8' CRUSHER RUN STONE FILL F Black f-c SAND, some f-m Gravel,	П							
		12	little-tr. Silt, tr. coal, tr. con-								
1 7/	4 3		crete, tr. metal shavings, tr.								
5 / 3	~~+~~+	10	brick (moist, FILL) Becomes brown								
	5 5		Contains little Clayey Silt Contains "and" Clayey Silt, little	-							
1 - 1 	5 6 6 7	12	f. Gravel	H							
// 5		18	Brown-tan f-c GRAVEL, some f-c								
10	9 7		Sand, little Clayey Silt (moist, firm)								
6	8 6	11	Contains "and" f-c SAND (wet)	_							
	5 5			Drilling completed to 8.0' on 11-5-90.							
$-\sqrt{7}$	 + -	10	(loose)	Water at approximately							
1. 4	5 4			10.0'.							
15-1	- 										
			B.,	Free Standing Water							
			Boring Complete at 16.8'.	measured at 14.4'							
				inside augers at							
20				boring completion.							
	_ `		Ground water monitoring well								
			installed tip set at 15.0-feet.	1							
			Refer to monitoring well completion								
25			report for details.								
	 										
		 		<u> </u>							
	— —										
		 									
											
			J								
			with 140 lb. pin wt, falling 30 per blow. CLA								
			"withlb. weight falling"per blow	Geologist							
METHOD OF INVESTIGATION: ASTM D-1586 USING 4-1/4" HOLLOW STEM AUGERS											

			•	WELL No. ESI-4 JOB No. BTA-90-179A
				PROJECT: Dowcraft Corporation
	/			Falconer, New York
	(\vee	(2)	1. GATE BOX I.D.: 8 INCHES
·.				2. SURFACE SEAL TYPE: Type I Portland Cement
				3. BOREHOLE DIAMETER 8 INCHES
		1.0		4. RISER PIPE:
*DEPTH	1.0'			a. TYPE 40 Schedule PVC
	2			b. I.D. 2 INCHES
		7//		c. LENGTH 4.8 FEET
			(3)	d. JOINT TYPEFlush Couple Threaded
		(//	(4)	5. BACKFILL:
			(5)	a. TYPE Type I Portland Cement
J				b. INSTALLATION Surface Pour
*DEPTH_—	2.41	_ ///	(6)	
*DEPTH	4.0'		10	6 MADE OF CENTA PARTIES
				6. TYPE OF SEAL: Bentonite Pellet
				7. SCREEN:
				a. TYPE <u>40 Schedule PVC</u>
			(0)	b. I.D. 2 INCHES
				C. SLOT SIZE <u>0.020</u> In.
				d. LENGTH 10 FT.
	15.0'			
*DEPTH	-			8. SCREEN FILTER TYPE: #4 Q Rok Sand
*DEPTH	16.8'_			
			9	9. BACKFILL TYPE: Natural Sands & Gravel
*DEPTH I	N FE ET BE L	OW GROUN	D SURFACE.	
				•

DATE STARTED 11-6-90 FINISHED 11-6-90 SHEET 1 OF 1	SOILS INVESTIGATIONS INC. SUBSURFACE LOG	HOLE NO. ESI-5 SURF. ELEV G. W. DEPTH See Notes
PROJECT Doweraft Corpo	a	New York
The Transfer of		
SAMPLER O 6 12	SOIL OR ROCK CLASSIFICATION	notes
2 7 10 - 5 3 7 12 26 14 19 13 24 11 9 5 8 8 14 6 2 4 9 5 3 - 7 1 1 2 2 11 1	Brown-tan f-c SAND, some f-c Gravel, little Silt, tr. brick, tr. wood, (moist, FILL) Contains tr. rusted metal shaving f Brown-tan f-c GRAVEL, some f-c Sand, little Silt (moist, firm) (wet)	Railroad tie from approximately 1.5' to 2.7'. Water at approximately 8.0'.
20		Free Standing Water measured at 12.1' inside augers at boring completion.
	Ground water monitoring well installed tip set at 15.2-feet. Refer to monitoring well completion report for details.	
C = No blows to drive" ca	12 with 140 lb. pin wt. falling 30 "per blow. CLASSI sing with lb. weight falling "per blow ASTM D-1586 USING 4-1/4" HOLLOW STEM AUGERS	FICATION Visual by Geologist

		WELL No. ESI- 5 JOB No. BTA-90-179A PROJECT: Dowcraft Corporation
		Falconer, New York
	(2)	1. GATE BOX I.D.: 8 INCHES
	Calabillanii	2. SURFACE SEAL TYPE: Type I Portland Cement
		3. BOREHOLE DIAMETER 8 INCHES
		4. RISER PIPE:
*DEPTH 1.0'		a. TYPE 40 Schedule PVC
		b. I.D. 2 INCHES
~{//}		c. LENGTH 5.0 FEET
₹ /}	(3)	d. JOINT TYPEFlush Couple Threaded
(/)	(A)	5. BACKFILL:
	(5)	a. TYPE Type I Portland Cement
1.5'		b. INSTALLATION Surface Pour
*DEPTH//	6	
*DEPTH3.9!	39	6. TYPE OF SEAL: Bentonite Pellet
		7. SCREEN:
		a. TYPE 40 Schedule PVC
	(8)	b. I.D. 2 INCHES
		C. SLOT SIZE <u>0.010</u> In.
		d. LENGTH 10 FT.
*DEPTH		8. SCREEN FILTER TYPE: #2 Q Rok Sand
*DEPTH 16.0'		
	9	9. BACKFILL TYPE: Natural Sands & Gravel
*DEPTH IN FEET BELOW G	ROUND SURFACE.	•

SHEETOF C. W. DEPTH	
PROJECT Dowcraft Corporation 10CATION 65 South Dow Street Environmental Investigation Falconer, New York 14733	
E S S BLOWSON PID SOUL OF POCK	
CLASSIFICATION NOTES	
1 8 7	detectes as opened orded lion (BG) pace minum was opm.
N = No. blows to drive 2 "spoon 12 " with 140 lb, pin wt. falling 30 "per blow. CLASSIFICATION Visual	
C = No. blows to drive " casing " with lb. weight falling "per blow Geolog METHOD OF INVESTIGATION: ASTM D-1586: BORING ADVANCED USING A CME-45B DRILL RIG W/41" I	1st

R/T Form H :

.				WELL No. ESI-6 JOB No. BTA-90-179B PROJECT: Dowcraft Corp. Environmental Invest.
				65 South Dow Street
}				1. GATE BOX I.D.: 8-3/8" INCHES
·. 				2. SURFACE SEAL TYPE: Cement Grout
		劉由國	1- 7- 1- 1- 1- 1- 1- 1- 1- 1- 1- 1- 1- 1- 1-	3. BOREHOLE DIAMETER 8 INCHES
•				4. RISER PIPE:
*DEPTH	1.0 4			a. TYPE Schedule 40 PVC
				b. I.D. 2 INCHES
		~\/\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		c. LENGTH 3.5 FEET
			(3)	d. JOINT TYPE Flush Threaded
1		V/ V/	(4)	5. BACKFILL:
		1/1 1//	(5)	a. TYPE Cement Grout
+ 5 7 7 7 7 7	1 5			b. INSTALLATION Pour From Ground Surface
*DEPTH_	3.0		(6)	
*DEPTH	3.0			6. TYPE OF SEAL: Bentonite Pellets
				7. SCREEN:
			7	a. TYPE Schedule 40 PVC
			(8)	2 b. I.D. 2 INCHES
· ·				C. SLOT SIZEO.020 In.
*DEPTH -	13.5			d. LENGTH 10 FT.
DUEIH			1	8. SCREEN FILTER TYPE: 4 ORok Sand
*DEPTH	14.0			
	•		(9)	9. BACKFILL TYPE: 4 QRok Sand
*DEPTH	IN FEET BELO	OW GROUND S	SURFACE.	

STARTED 12-26-90 FINISHED 12-26-90 SHEET 1 OF 1 PROJECT DOWCRAFT CORPO		G. W. DEPTH* *
DI D	Investigation Falconer,	New 101K 14/33
SAMPLER SAMPLER	SOIL OR ROCK CLASSIFICATION	NOTES
1 14 9	Brown Clayey SILT AND f-c Sand, little f. Gravel, tr. concrete (damp,FILL) Does not contain concrete little Coal * 0.6 Brown Clayey SILT, little Brick, little Coal (moist,FILL) some fGravel * 0.6 Brown f-c SAND, some Silt, tr. clay, tr. calcareous shells (wet,stiff) tr. silt, tr. clay, no calcareous shells 'And" SILT 'And" fSAND (medium) 'And" f-c SAND, little fGravel, little Silt, tr. clay Boring Complete at 15.0'. Tip of ground water monitoring well set at 14.5' (See Well Construction Diagram for details).	Organic vapor measurements recorded infield (F) using photoionization detector (PID) by an ESI Geologist. Measurements collected as splitspoon was opened. Measurements recorded in parts per million (ppm). Field Background(BG) = 0.4-0.5 ppm. Laboratory headspace measurements (L) collected as aluminum foil capped jar was opened. BG=0.3 ppm. PID not working properly due to temperature. S-8.9: Slight sheen on water surface Note: Auger spoil has slight sheen. **Free standing water measured in well after completion of well construction at depth of 7.11' below grade.
C = No. blows to drive " c.	boon 12 "with 140 lb pin we falling 30 "per blow. CLASS asing "with lb weight falling "per blow. ASTM D-1586; BORING ADVANCED USING A CME-45B	Geologist

SOILS INVESTIGATIONS INC

	WELL No. ESI-7 JOB No. BTA-90-179B
	PROJECT: Dowcraft Corp. Environmental Invest.
	65 South Dow Street
	1. GATE BOX I.D.: 8-3/8" INCHES
	2. SURFACE SEAL TYPE: Cement Grout
	3. BOREHOLE DIAMETER 8 INCHES
	4. RISER PIPE:
*DEPTH 1.0	a. TYPE Schedule 40 PVC
	b. I.D. 2.0 INCHES
	c. LENGTH 6.0 FEET
W/ 1/4-3	d. JOINT TYPE Flush Threaded
	5. BACKFILL:
1/1/5	a. TYPE Cement Grout
*DEPTH 2.5-	b. INSTALLATION Pour From Ground Surface
DEP18 (-6)	•
*DEPTH 6.0	6. TYPE OF SEAL: Bentonite Pellet
	7. SCREEN:
	a. TYPE Schedule 40 PVC
	b. I.D. 2 INCHES
	C. SLOT SIZE 0.020 In.
	d. LENGTH 8 FT.
*DEPTH 14.5	8. SCREEN FILTER TYPE: 4QRok Sand
*DEPTH 15.0 -	
(9)	9. BACKFILL TYPE: 40Rok Sand
*DEPTH IN FEET BELOW GROUND SURFACE.	
	• • •

DATE

FINISHED: 4-8-92

STARTED: 4-8-92 SOILS INVESTIGATIONS INC.

SUBSURFACE LOG

BTA-92179B

BORING NO.: ESI-8 SURF. ELEV .: 102.3 ±

SHEET 1 OF 1

CLASSIFIED BY: K. Shanahan

	PROJECT: Dowcraft Environmental Investigation										
CLI	CLIENT: Dowcraft Corporation							tion		Falconer, Nev	V YORK
DEPTH-FT.	SAMPLES	SAMPLE NO	0/6	SA	DWS MPLI 12/ 18		z	P.I.D.	SYMBOL	SOIL OR ROCK CLASSIFICATION	NOTES
Fo	D	1	3	5	5	7	10	BG	\boxtimes	Red BRICK, little gray Shale, little black Sand (moist, FILL)	0
		2	7	3	4	3	7	BG	$\overset{\otimes}{\otimes}$	Black and gray f-c SAND, little Concrete,	Organic vapor measurements recorded in the field
		3	4	1	1	1	2	BG	\bigotimes	little Brick, tr. gravel (molst, FILL)	as the split spoons were
- 5			24	10	0.4	25	36	BG		Black m-c SAND, little Coat, little Concrete, tr. organics (moist, FILL)	opened. Measurements recorded in parts
		4	24	12	24	25			\boxtimes	Mottled Brown and Black f-c SAND and f-c Gravel, tr. silt (moist, compact, SW)	per million (ppm). Background
		5	25	11	12	12	23	BG		Brown m.SAND, little f-Gravel	measurement 0.2 ppm.
- 10	1	6	34	27	23	14	50	ВG		(moist,firm,SW) f-c GRAVEL, some brown f-c Sand (moist,	
	1	7	10	9	12	8	21	ВG	•	compact,GW) f-c GRAVEL, some brown f-c Sand, tr. silt (wet, firm,GW)	Annoront water
1.		8	10	9	11	12	20	BG		(1101, 1111)	Apparent water table at 13.5 feet below ground
15	Y	9	12	11	6	6	17	BG			surface.
		10	11	11	8	8	19	BG			
20	1		11	' '	-		10	BG			
	+	_	-							Boring complete at 20.0'	
	7		_			-]		
25	1		_		-						
	1						_				
	-	-		_		-					
L 30						1	<u></u>				
DR	DRILLER: P. Bence DRILL RIG: CME-75										

METHOD OF INVESTIGATION: ASTM D-1586 USING HOLLOW STEM AUGERS

WEATHER: Partly cloudy 50-60 F.

SOILS INVESTIGATIONS INC

			•	WELL No. ESI-8 JOB No. BTA-92-179B PROJECT: Dowcraft Environmental Investigation
·.	100.00		(2)	1. GATE BOX I.D.: 9 INCHES
	102.30	# To 2		2. SURFACE SEAL TYPE: Concrete
			The state of the s	3. BOREHOLE DIAMETER 8 INCHES
				4. RISER PIPE:
DEPTH _	0.75			a. TYPE Schedule 40 PVC
				b. I.D. 2.0 INCHES
				c. LENGTH 7.77 _ FEET
			3	d. JOINT TYPE Flush Threaded
		<i>///</i>	(4)	5. BACKFILL:
		(//	(5)	a. TYPE Cement Grout
	₹	///		b. INSTALLATION Surface
DEPTH	5.1		6	
DEPTH _	7.0			6. TYPE OF SEAL: Bentonite Pellets
				7. SCREEN:
				a. TYPE Schedule 40 PVC
			0	b. I.D. 2.0 INCHES
				C. SLOT SIZE 0.010 In.
				d. LENGTH 10.0 FT.
DEPTH -	18.0			
				8. SCREEN FILTER TYPE: No. 1 Morie
DEPTH _	20.0			Silica Sand
			(9)	9. BACKFILL TYPE: No. 1 Morie
*DEPTH	IN FEET	BELOW GROU	ND SURFACE.	Silica Sand

DATE

STARTED: 4-8-92

EMPIRE

SUBSURFACE LOG

BORING NO.: ESI-9

SURF. ELEV.: 100.2 ± SHEET 1 OF 1

CLASSIFIED BY: K. Shanahan

FINISHED: 4-8-92 BTA-92179B LOCATION: 65 South Dow Street PROJECT: . Dowcraft Environmental Investigation Falconer, New York CLIENT: **Dowcraft Corporation** 2 SAMPLES DEPTH-FT **BLOWS ON** ď SOIL OR ROCK SAMPLE SAMPLER P. H. NOTES CLASSIFICATION 18L BG ASPHALT 6 2 17 11 Brown f-c SAND and f-c Gravet, tr. black Organic vapor measurements sand, tr. coal (moist, FILL) 10 11 BG 2 3 5 6 recorded in the field Yellow-Brown SILT, tr. Clay (moist, as the split medium, ML) spoons were BG 10 18 9 9 9 Brown f-c GRAVEL, some Sand (moist, opened. Measurements compact,GW) recorded in parts BG 20 13 8 7 21 per million (ppm). Background measurement 0.2 24 BG Brown f-c SAND, some f. Gravel, tr. slit 8 11 13 12 ppm. (wet, firm, SW) Apparent water at Gray c. SAND, some f. Gravel, little Silt 18 BG 8.2 feet below 13 10 8 6 (wet,firm,SM) around surface. 6 2 1 3 BG 1 Brown f. SAND (wet, loose, SP) 15 Boring complete at 15.0' 20 25 -DRILL RIG: CME-75 DRILLER: P. Bence

METHOD OF INVESTIGATION: ASTM D-1586 USING HOLLOW STEM AUGERS

WEATHER: Partly Cloudy 50's

				WELL No. ESI-9 JOB No. BTA-92-179B
				PROJECT: Dowcraft Environmental Investigation
				1. GATE BOX I.D.: 9 INCHES
	100.23			2. SURFACE SEAL TYPE: Concrete
				3. BOREHOLE DIAMETER 8 INCHES
				4. RISER PIPE:
EPTH	0.75			a. TYPE Schedule 40 PVC
				b. I.D. 2.0 INCHES
				c. LENGTH 3.8 - FEET
			1/2/3	d. JOINT TYPE Flush Threaded
			4	5. BACKFILL:
			(1) (5)	a. TYPE Cement Grout
	2.0			b. INSTALLATION_Surface
DEPTH	··· ··· ·		6	•
DEPTH _	3.6			6. TYPE OF SEAL: Bentonite Pellets
				7. SCREEN:
				a. TYPE Schedule 40 PVC
			(8)	b. I.D. 2.0 INCHES
•				C. SLOT SIZE <u>0.010</u> In.
	14.0			d. LENGTH 10.0 FT.
DEPTH -				8. SCREEN FILTER TYPE: No. 1 Morie
DEPTH	15.0			Silica Sand
_	۱٫۰۲	(Xiii)	(9)	9. BACKFILL TYPE: No. 1 Morie
	*** ***	PETON CROU	ND SURFACE.	Silica Sand

DATE

STARTED: 4-9-92 FINISHED: 4-9-92

SUBSURFACE LOG

BTA-92179B

BORING NO.: ESI-10

SURF. ELEV.: 99.4 ±

SHEET _1_ OF _1_

PROJECT:

Dowcraft Environmental Investigation

LOCATION: 65 South Dow Street

CLIENT:

Dowcraft Corporation

Falconer, New York

DRILLER: P. Bence

METHOD OF INVESTIGATION: ASTM D-1586 USING HOLLOW STEM AUGERS

WEATHER: Partly cloudy 50-60 F

CLASSIFIED BY: K. Shanahan

a. TYPE Schedule 40 PVC b. I.D. 2.0 INCHES c. LENGTH 9.6 —FEET d. JOINT TYPE Flush Threaded *DEPTH 8.0 *DEPTH 9.5 6. TYPE OF SEAL: Bentonite Pellets 7. SCREEN: 1 a. TYPE Schedule 40 PVC b. I.D. 2.0 INCHES c. SLOT SIZE 0.010 In. d. LENGTH 5.0 FT. *DEPTH 17.0 9. BACKFILL TYPE: No. 1 Morie Silica Sand					WELL No. ESI-10 JOB No. BTA-92-179B PROJECT: Dowcraft Environmental Investigation
3. BOREHOLE DIAMETER B INCHES 4. RISER PIPE: a. TYPE Schedule 40 PVC b. I.D2.0 INCHES c. LENGTH 9.6FEET d. JOINT TYPE Flush Threaded 5. BACKFILL: 5 a. TYPE Cement Grout b. INSTALLATION Surface *DEPTH 9.5 6. TYPE OF SEAL: Bentonite Pellets 7. SCREEN: 7. SCREEN: C. SLOT SIZE 0.010 IN. d. LENGTH 5.0 FT. 8. SCREEN FILTER TYPE: No. 1 Morie Silica Sand				(2)	
A. RISER PIPE: A. TYPE Schedule 40 PVC		99.39		- Colombia	2. SURFACE SEAL TYPE: Concrete
DEPTH 0.75 a. TYPE Schedule 40 PVC b. I.D. 2.0 INCHES c. LENGTH 9.6 — FEET d. JOINT TYPE Flush Threaded 4 5. BACKFILL: 5 a. TYPE Cement Grout b. INSTALLATION Surface 7. SCREEN: 7. SCREEN: 1 a. TYPE Schedule 40 PVC b. I.D. 2.0 INCHES C. SLOT SIZE 0.010 In. d. LENGTH 5.0 FT. DEPTH 14.8 8. SCREEN FILTER TYPE: No. 1 Morie Silica Sand					3. BOREHOLE DIAMETER 8 INCHES
a. TYPE Schedule 40 PVC b. I.D. 2.0 INCHES c. LENGTH 9.6 —FEET d. JOINT TYPE Flush Threaded *DEPTH 8.0 *DEPTH 9.5 6. TYPE OF SEAL: Bentonite Pellets 7. SCREEN: 7. SCREEN: 6. TYPE Schedule 40 PVC 6. I.D. 2.0 INCHES 7. SCREEN: 8. SCREEN FILTER TYPE: No. 1 Morie Silica Sand 9. BACKFILL TYPE: No. 1 Morie	NEPTH	0.75			4. RISER PIPE:
C. LENGTH 9.6 — FEET d. JOINT TYPE Flush Threaded 5. BACKFILL: a. TYPE Cement Grout b. INSTALLATION Surface *DEPTH 9.5 6. TYPE OF SEAL: Bentonite Pellets 7. SCREEN: a. TYPE Schedule 40 PVC b. I.D. 2.0 INCHES C. SLOT SIZE 0.010 In. d. LENGTH 5.0 FT. DEPTH 14.8 8. SCREEN FILTER TYPE: No. 1 Morie Silica Sand	D.D. I.I.				a. TYPE Schedule 40 PVC
d. JOINT TYPE Flush Threaded 4. S. BACKFILL: 5. BACKFILL: 6. TYPE Cement Grout 6. TYPE OF SEAL: Bentonite Pellets 7. SCREEN: 7. SCREEN: 6. TYPE Schedule 40 PVC 6. L.D. 2.0 INCHES 7. SLOT SIZE 0.010 In. 8. SCREEN FILTER TYPE: No. 1 Morie Silica Sand 9. BACKFILL TYPE: No. 1 Morie					b. I.D. 2.0 INCHES
*DEPTH 8.0 *DEPTH 9.5 6. TYPE OF SEAL: Bentonite Pellets 7. SCREEN: a. TYPE Schedule 40 PVC b. I.D. 2.0 INCHES C. SLOT SIZE 0.010 In. d. LENGTH 5.0 FT. *DEPTH 17.0 9. BACKFILL TYPE: No. 1 Morie Silica Sand	: 		// /		c. LENGTH 9.6 -FEET
DEPTH 8.0 *DEPTH 9.5 6. TYPE OF SEAL: Bentonite Pellets 7. SCREEN: a. TYPE Schedule 40 PVC b. I.D. 2.0 INCHES c. SLOT SIZE 0.010 In. d. LENGTH 5.0 FT. DEPTH 14.8 8. SCREEN FILTER TYPE: No. 1 Morie Silica Sand 9. BACKFILL TYPE: No. 1 Morie			<i>(/)</i>	3	d. JOINT TYPE Flush Threaded
b. INSTALLATION Surface *DEPTH 9.5 6. TYPE OF SEAL: Bentonite Pellets 7. SCREEN: a. TYPE Schedule 40 PVC b. I.D. 2.0 INCHES C. SLOT SIZE 0.010 In. d. LENGTH 5.02 FT. *DEPTH 14.8 8. SCREEN FILTER TYPE: No. 1 Morie Silica Sand 9. BACKFILL TYPE: No. 1 Morie			<i>\(\)</i>	4	5. BACKFILL:
*DEPTH 8.0 *DEPTH 9.5 6. TYPE OF SEAL: Bentonite Pellets 7. SCREEN: a. TYPE Schedule 40 PVC b. I.D. 2.0 INCHES C. SLOT SIZE 0.010 In. d. LENGTH 5.0 FT. *DEPTH 14.8 8. SCREEN FILTER TYPE: No. 1 Morie Silica Sand 9. BACKFILL TYPE: No. 1 Morie				(5)	a. TYPE Cement Grout
#DEPTH 9.5 6. TYPE OF SEAL: Bentonite Pellets 7. SCREEN: a. TYPE Schedule 40 PVC b. I.D. 2.0 INCHES C. SLOT SIZE 0.010 In. d. LENGTH 5.0 FT. 8. SCREEN FILTER TYPE: No. 1 Morie Silica Sand 9. BACKFILL TYPE: No. 1 Morie	*				b. INSTALLATION Surface
7. SCREEN: a. TYPE Schedule 40 PVC b. I.D				6	
# DEPTH 17.0 A. TYPE Schedule 40 PVC					6. TYPE OF SEAL: Bentonite Pellets
b. I.D. 2.0 INCHES C. SLOT SIZE 0.010 In. d. LENGTH 5.0 FT. *DEPTH 17.0 8. SCREEN FILTER TYPE: No. 1 Morie Silica Sand 9. BACKFILL TYPE: No. 1 Morie					7. SCREEN:
C. SLOT SIZE 0.010 In. d. LENGTH 5.0 FT. 8. SCREEN FILTER TYPE: No. 1 Morie Silica Sand 9. BACKFILL TYPE: No. 1 Morie					a. TYPE Schedule 40 PVC
d. LENGTH 5.0 FT. *DEPTH 14.8 8. SCREEN FILTER TYPE: No. 1 Morie Silica Sand 9. BACKFILL TYPE: No. 1 Morie					b. I.D. 2.0 INCHES
*DEPTH 17.0 8. SCREEN FILTER TYPE: No. 1 Morie Silica Sand 9. BACKFILL TYPE: No. 1 Morie					C. SLOT SIZE 0.010 In.
8. SCREEN FILTER TYPE: No. 1 Morie Silica Sand 9. BACKFILL TYPE: No. 1 Morie		14.8			d. LENGTHFT.
DEPTH 17.0 Silica Sand 9 9. BACKFILL TYPE: No. 1 Morie	F DEPTH				8. SCREEN FILTER TYPE: No. 1 Morie
9 9. BACKFILL TYPE: No. 1 Morie	DEPTH	17.0			
	· · · · · ·		<u> </u>	(9)	9. BACKFILL TYPE: No. 1 Morie
SITTER SAIN	*DEPTH	IN FEET	BELOW GROU	(-)	Silica Sand

A 10-inch diameter protecting casing was installed from approximately 0.4-feet and 8.0-feet below ground surface due to the presence of the basement area

DATE

STARTED: 4-10-92 FINISHED: 4-10-92 SOILS INVESTIGATIONS INC.

SUBSURFACE LOG

BTA-92179B

BORING NO.: ESI-11

SURF. ELEV .: 99.3 ±

SHEET 1 OF 1

PROJECT:

Dowcraft Environmental Investigation

LOCATION: 65 South Dow Street

DRILLER: P. Bence

DRILL RIG: CME-75

METHOD OF INVESTIGATION: ASTM D-1586 USING HOLLOW STEM AUGERS
WEATHER: Partly cloudy 50-60 F. CLASS

CLASSIFIED BY: K. Shanahan

		•		WELL No. ESI-11 JOB No. BTA-92-179B
				PROJECT: Dowcraft Environmental Investigation
		\mathcal{C}		1. GATE BOX I.D.: 9 INCHES
••	99.34			2. SURFACE SEAL TYPE: Concrete
		No.		
				3. BOREHOLE DIAMETER 8 INCHES
				4. RISER PIPE:
EPTH	0.75			a. TYPE Schedule 40 PVC
		%// i		a. Tipe
		% //		b. I.D. 2.0 INCHES
		1//		c. LENGTH 9.9 - FEET
		Y// I		
		<i>Y/\</i>	(// 3)	d. JOINT TYPE Flush Threaded
		<i>\\\</i>	(4)	5. BACKFILL:
			(A) (B)	a. TYPE Cement Grout
	÷	///		
DEP.TH_	7.6			b. INSTALLATION Surface
	· · · · · · · · · · · · · · · · · · ·		(6)	
DEPTH	9.8	प्रक्र	0223	6. TYPE OF SEAL: Bentonite Pellets
				7. SCREEN:
		· 🗱	7	
				a. TYPE Schedule 40 PVC
				b. I.D. 2.0 INCHES
•				C. SLOT SIZE 0.010 In.
	15 1			d. LENGTH 5.0 FT.
EPTH -	15.1			
				8. SCREEN FILTER TYPE: No. 1 Morie
DEPTH	17.5			Silica Sand
•				9 BACKEIII TUDE.
DEDTH	IN FFFT	RETOW CROSS	9	9. BACKFILL TYPE: No. 1 Morie
DEFIR	IN PEET	BELOW GROUN	D SURFACE.	Silica Sand

A 10-inch diameter protecting casing was installed from approximately 0.4-feet and 8.0-feet below ground surface due to the presence of the basement area.

DATE

STARTED: 4-10-92 FINISHED: 4-10-92 SOILS INVESTIGATIONS INC.

SUBSURFACE LOG

BTA-92179B

BORING NO.: ESI-12

SURF. ELEV.: 99.3 ±

SHEET <u>1</u> OF <u>1</u>

PROJECT:

Dowcraft Environmental Investigation

LOCATION: 65 South Dow Street

CLIENT:

Dowcraft Corporation

Faiconer, New York

CLASSIFIED BY: K. Shanahan

METHOD OF INVESTIGATION: ASTM D-1586 USING HOLLOW STEM AUGERS

WEATHER: Partly cloudy 50-60 F.

		÷ ,		WELL No. ESI-12 JOB No. BTA-92-179B
				PROJECT: Dowcraft Environmental Investigation
		\leq 1	(2)	1. GATE BOX I.D.: 9 INCHES
	99.26	. \	- Committee of the contract of	2. SURFACE SEAL TYPE: Concrete
				3. BOREHOLE DIAMETER 8 INCHES
				4. RISER PIPE:
EPTH _	0.75			a. TYPE Schedule 40 PVC
				b. I.D. <u>2.0</u> INCHES
				c. LENGTH 10.0 - FEET
	•		3	d. JOINT TYPE Flush Threaded
			(4)	5. BACKFILL:
			(5)	a. TYPE Cement Grout
	ř			b. INSTALLATION Surface
DEPTH	7.5		(6)	·
DEPTH _	9.5	च्रिक्स		6. TYPE OF SEAL: Bentonite Pellets
				7. SCREEN:
				a. TYPE Schedule 40 PVC
			(0)	b. I.D. 2.0 INCHES
•				C. SLOT SIZE 0.010 In.
				d. LENGTH 5.0 FT.
DEPTH -	15.2			
				8. SCREEN FILTER TYPE: No. 1 Morie
DEPTH	17.5			Silica Sand
				O DACKETY MUDO
* ՄԵՍԱն	TN CCCM	DET ON COC	(9)	9. BACKFILL TYPE: No. 1 Morie
DELLH	IN FEET	BELUW GROU	ND SURFACE.	Silica Sand

DATE

STARTED: 4-13-92

FINISHED: 4-13-92

SOILS INVESTIGATIONS INC.

SUBSURFACE LOG

BTA-92179B

BORING NO.: ESI-13

SURF. ELEV .: 97.8 ±

SHEET 1 OF 1

PROJECT:

Dowcraft Environmental Investigation

LOCATION: 65 South Dow Street

Falconer, New York

DRILLER: P. Bence

DRILL RIG: CME-75

METHOD OF INVESTIGATION: ASTM D-1586 USING HOLLOW STEM AUGERS

WEATHER: Partly cloudy 50-60 F.

CLASSIFIED BY: L. Zimmerman

		. •		WELL No. ESI-13 JOB No. BTA-92-179B
				PROJECT: Dowcraft Environmental Investigation
· .	07.02		(2)	1. GATE BOX I.D.: 9 INCHES
	97.83	انتنتالا	1:-1-6/11/4/18	2. SURFACE SEAL TYPE: Concrete
				3. BOREHOLE DIAMETER 8 INCHES
	0.75			4. RISER PIPE:
PTH	0.75			a. TYPE Schedule 40 PVC
				b. I.D. 2.0 INCHES
		<i>Y/A</i> 1		c. LENGTH 4.7 - FEET
			1/3	d. JOINT TYPE Flush Threaded
		<i>Y/</i> / <i>I</i>	(4)	5. BACKFILL:
			(7) (5)	a. TYPE Cement Grout
	<i>:</i>			b. INSTALLATION <u>Surface</u>
EP.TH	1.9			
EPTH .	3.9			6. TYPE OF SEAL: Bentonite Pellets
				7. SCREEN:
				a. TYPE Schedule 40 PVC
				b. I.D. 2.0 INCHES
				C. SLOT SIZE 0.010 In.
Somu.	14.95			d. LENGTH 10.0 FT.
EPTH -				8. SCREEN FILTER TYPE: No. 1 Morie
a Domit				Silica Sand
EPTH -	15.0		<u>`````````````</u>	
			(9)	9. BACKFILL TYPE: No. 1 Morie
EPTH	IN FEET	BELOW GROU	ND SURFACE.	Silica Sand

BORING NO.: PW-1 DATE SUBSURFACE SURF. ELEV .: ____ ± STARTED: 11-11-92 LOG SHEET 1 OF 1 FINISHED: 11-12-92 BTA-92-266 LOCATION: South Dow Street Dowcraft - Pumping Wells PROJECT: Falconer, New York Dowcraft Corporation CLIENT: **BLOWS ON** DEPTH-FT SYMBOL SOIL OR ROCK PID SAMPLE SAMPLER NOTES CLASSIFICATION Asphaltic Concrete Pavement @ Surface Auger to 4' before taking S. S. Samples G Ε Α U PID = Brown f-c SAND, some Clayey Silt, some 1-2 3 Photoionization f-c Gravel (moist, loose, SM) **Detector Readings** Contains occ. Silty Clay seams 6 BG (PPM) 3 3 3 Background (BG) PID = 0.2 - 0.6 ppmContains little Clayey Silt (wet, compact) BG 12 27 37 39 8 BĞ 2 21 25 21 46 Contains tr. silt, some f-m Gravel (loose, 9 5 4 4 9 BG-2 SW) Contains tr. gravet 5-7 7 6 4 3 Contains occ f-m Sand seams 7 10 10 17 1-2 7 Contains f. Sand, tr. - little Silt (100se, SP-S) 4 1 1 2 2 3-5 Contains occ. seams of f. Sand and Silt 3-5 2 3 2 1 Gray SILT, tr. - little f. Sand (wet, loose, ML) 12 4 5 6 BG-1 10 4 5 7 BG-1 11 4 3 11 BG-1 (firm) 5 5 12 6 5 Boring Complete at 28.0'

DRILLER: P. Bence

DRILL RIG: CME-75 Truck

METHOD OF INVESTIGATION: ASTM D-1586 USING HOLLOW STEM AUGERS

WEATHER: Partly Cloudy 50's CLASSIFIED BY: D.R. Steiner

	•	WELL No. PW-1 JOB No. BTA-92-266 PROJECT: Dowcraft Pumping Wells
		1. GATE BOX I.D.: 9 INCHES 2. SURFACE SEAL TYPE: Concrete
DEPTH 0.75		3. BOREHOLE DIAMETER 12 INCHES 4. RISER PIPE: (PVC 0.5'-2.0' feet) a. TYPE Stainless Steel (Type 304)
		b. I.D. 6 INCHES c. LENGTH 5 FEET d. JOINT TYPE Flush Thread
3.0	(a) (5)	5. BACKFILL: a. TYPE Cement Grout b. INSTALLATION Surface
DEPTH		6. TYPE OF SEAL: Bentonite Pellets
		7. SCREEN: a. TYPE 304 Stainless Steel b. I.D. 6 INCHES
22 .0		c. slot size 0.010 in. d. Length 15 FT.
DEPTH 23.8*		8. SCREEN FILTER TYPE: No. 1 Morie Silica Sand
*DEPTH IN FEET BEL	ow GROUND SURFACE.	9. BACKFILL TYPE: Bentonite Pellets 23.2-23.8 feet; No. 1 Morie Silica Sand above 23.2-feet.

DDO TECT.	Doversfr Phage II En	vironmental Site Asses	sment	
<u></u>				
	MBER: BTA-90-179A		E: <u>11-13-90</u>	
LOCATION:	Dowcraft Plant, 65 S	outh Dow Street, Falco	ner, New York	
WELL NUMBE	ESI- 1			
PERSONNEL:	K. Shanahan, D	. Lauzon		
DEVELOPMEN	DOWN H	S - BK PUMP - OLE PUMP - COMP Guzzler Pump		
REQUIRED D	DEVELOPMENT CRITERI	A:		
	STABLE	OLUMES 10		NTU
WATER LEVE DEVELOPMEN DEVELOPMEN	EL PRIOR TO DEVELOR EL AFTER DEVELOPMEN NT STARTED NT COMPLETED IME OF WATER REMOVE	7.72' (5 11:20 am 12:00 Noon	COR) (elevation (elevation GALLONS	
VOLUME EVACUATED (GALLONS)	<u> </u>	CONDUCTIVITY (umhos cm) x 10		TURBIDITY NTU
1	6 .3 9	56.3	51	Extremely Turbid
5	6 .6 1	36.4	52	345
8	6.58	33.6	52	195
13	6 .6 3	32.2	52	89
16	6.66	31.0	53	98
10	0.00	31.0	, , , , , , , , , , , , , , , , , , ,	, , , ,
NOTES:	Dept h T o Water Surface	ce = 7.69' (TOR)		·

1.04 Gallons

Depth To Bottom of Well= 14.05' (TOR)

1 We**l**l **Vo**lume=

PROJECT: _	Dowcr a ft Phase II En	vironmental Site Assess	ment	
ROJECT NU	MBER: <u>BTA-90-179A</u>	DATE	: 11-12-90	
LOCATION:	Dowcraft Plant, 65 S	outh Dow Street, Falcor	er, New York	
ELL NUMBE	ER: <u>ESI-</u> 2			
PERSONNEL:	K. Shanahan			
DEVELOPMEN	DOWN H	S - BK PUMP - F OLE PUMP - COMPR Guzzler Pump		-
REQUIRED D	DEVELOPMENT CRITERI	A:		
	STABLE	OLUMES 10 pH Yes CONDUCTIVITY Yes		NTU
NATER LEVE DEVELOPMEN DEVELOPMEN	EL PRIOR TO DEVELOPEL AFTER DEVELOPMEN OF STARTED OF COMPLETED OF WATER REMOVE	3:25 pm 4:20 pm	OR) (elevation (elevation GALLONS	<pre>in feet) in feet)</pre>
VOLUME EVACUATED (GALLONS)	pH (STANDARD UNITS)	CONDUCTIVITY (umhos cm) x 10	TEMPERATURE (DEGREES F)	TURBIDITY NTU
11	7.57	53.6	57	Extremely Turbid
4	7.42	50.9	57	ų,
7	7.37	50.0	57	11
10	7.21	48.2	58	11
12	7.17	47.2	61	11
NOTES:	Depth To Water Surface	ce = 8.0' (TOR)		
i	Depth To Bottom of We	ell= 12.92' (TOR)		
	l Wel l Volume=	0.803 Gall	ons	

PROJECT:	Dowc ra ft Phase II En	vironmental Site Assess	ment	
1	MBER: B TA-90-179A		:11-12-9	0
LOCATION:	Dowc ra ft Plant, 65 S	outh Dow Street, Falcon	er, New York	
WELL NUMBE	R: <u>ESI-</u> 3			
PERSONNEL:	K. Shanahan			
DEVELOPMEN	DOWN H	S - BK PUMP - P OLE PUMP - COMPR Guzzler Pump	ERASTALLIC PUMP ESSED AIR	-
REQUIRED D	EVELOPMENT CRITERI	A:		-
	STABLE	OLUMES 10 PH Yes CONDUCTIVITY Yes		NTU
WATER LEVE DEVELOPMEN DEVELOPMEN	EL PRIOR TO DEVELOR EL AFTER DEVELOPMEN IT STARTED IT COMPLETED IME OF WATER REMOVE	2:30 pm 3:15 pm	(elevation (elevation GALLONS	in feet) in feet)
VOLUME EVACUATED	На	CONDUCTIVITY (umhos cm) x 10	TEMPERATURE (DEGREES F)	TURBIDITY NTU
1	10.53	27.7	38	Extremely Turbid
8	9.61	36.4	41	11
12	9.73	35.4	41	11
14	9.56	35.4	41	11
15	1 0. 16	30.3	39	11
NOTES:	Depth To Water Surfa	ce = 8.08' (TOR)		
	Depth To Bottom of W	ell= 13.80' (TOR)		
	1 Well Volume=	0.933 <u>Gallon</u>	S	

PROJECT:	Dowc ra ft Phase II En	vironmental Site Assess	ment	
	UMBER: B TA-90-179A		: 11-12-90	
		outh Dow Street, Falcon	er, New York	
}	ER: E S I- 4			
	.: K. Shanahan			
=======================================	NT MET H OD: BAILER	S - BK PUMP - P OLE PUMP - COMPR Guzzler Pump	ERASTALLIC PUMF ESSED AIR)
REQUIRED	DEVELOPMENT CRITERI	A:		_
	STABLE	OLTY -0- VOLUMES 10 C pH Yes C CONDUCTIVITY Yes		NTU
VATER LEV DEVELOPME DEVELOPME	VEL PRIOR TO DEVELOR VEL AFTER DEVELOPMENT ENT STARTED ENT COMPLETED LUME OF WATER REMOVE	1:20 pm 2:20 pm	OR) (elevation (elevation GALLONS	n i <u>n</u> feet) n in feet)
VOLUME EVACUATED (GALLONS)	D pH (STANDARD UNITS)	CONDUCTIVITY (umhos cm) x 10	TEMPERATURE (DEGREES F)	TURBIDITY NTU
1	6.94	63.6	49	Extremely Turbid
10	6.93	57.9	49	11
12	7.24	63.0	52	11
15	7.11	59.0	56	11
17	7.12	59.8	56	11
NOTES:	Depth To Water Surfa			
	Depth To Bottom of W			
	l We ll Vo lume=	0.653 Gallon	5	

PROJECT:	Dowc ra ft Phase II En	vironmental Site Assess	ment	
PROJECT NU	MBER: B TA-90-179A	DATE	: 11-12-90	
LOCATION:	Dowc ra ft Plant, 65 S	outh Dow Street, Falcon	er, New York	
WELL NUMBE	R: ESI- 5			
PERSONNEL:	K. Shanahan			
DEVELOPMEN	DOWN H	S - BK PUMP - P OLE PUMP - COMPR Guzzler Pump		-
REQUIRED D	EVELOPMENT CRITERI	A:		
	STABLE	ITY OLUMES 10 PH Yes CONDUCTIVITY Yes		NTU
WATER LEVE DEVELOPMEN DEVELOPMEN	L PRIOR TO DEVELOP L AFTER DEVELOPMEN T STARTED T COMPLETED TME OF WATER REMOVE	7.72' (TO 11:45 pm 1:00 pm	OR) (elevation (elevation GALLONS	in feet) in feet)
VOLUME EVACUATED (GALLONS)	pH (STANDARD UNITS)	CONDUCTIVITY (umhos cm) x 10	TEMPERATURE (DEGREES F)	TURBIDITY NTU
1	6.10	64.2	51	Extremely Turbid
5	6 . 56	62.6	52	65
10	. 6.65	60.0	52	27
11	6.79	62.4	53	> 200
13	7.20	627.7	55	87
14	7.14	63.7	53	64
NOTES:	Depth To Water Surfar Depth To Bottom of W 1 Well Volume=			

WELL DEVELOPMENT PARAMETERS

PROJ ECT:	Dowcraft - Additional Wells - Development
LOCATION:	65 South Dow Street
WELL NO:	ESI-6
DATE:	1-2-91
WAT ER LEVI	EL PRIOR TO DEVELOPMENT: 6.34' (Top of Well Riser) (elevation in feet)
WAT ER LE VI	EL AFTER DEVELOPMENT: 6.34' (Top of Well Riser) (elevation in feet)
DEVELOPME	ENT STARTED: 12:25 pm
DEVELOPME	INT COMPLETED: 12:50 pm
TOTAL VOLU	UME OF WATER PRODUCED: 15 (gailons)
SCREENED I	NTERVAL: 13.5'-3.5' (elevation in feet)
DEVEL OPME	Stainless Steel Bailer and Guzzler Band w/ garden hose

D ate	pH (Standard Units)	Conductivity (umho/cm)	Temp (*C)	Volume Evacuated (Gallons)	Turbidity (NTU's) & Comment	
1-2 -91	7.03	1870	13.2	Initial	< 200	Grey Color, Na odor
1-2-91	7.35	1230	9.7	2 gal	< 200	Grey Color, No odor
1-2-91	7.24	990	13.1	4 gal	< 200	Grey-Black
1-2-91	7.36	760	13.7	6 gal	< 200	Grey-Black
1-2-91	7.43	740	11.8	8 gal	<200	Light Grey, No odor
1-2-91	7.31	730	11.2	10 gal	< 200	Light Grey, No odor
1-2-91	7.17	730	14.1	12 gal	< 200	Light Grey, No odor
1-2-91	7.19	700	14.1	15 gal	174	V. Light Grey, No odor

WELL DEVELOPMENT PARAMETERS

PR OJECT :	Dowcraft - Additional Wells - Development
LOCATION:	65 South Dow Street
WE L L NO:	ESI-77
DA TE :	1-2-91
WA T ER LEVE	EL PRIOR TO DEVELOPMENT: 6.34' (Top of Well Riser) (elevation in feet)
WA T ER LEVE	EL AFTER DEVELOPMENT: 6.36' (Top of Well Riser) (elevation in feet)
DE VELO PME	NT STARTED: 12:56 pm
DEVELOPME	INT COMPLETED: 1:37 pm
TOTAL VOLU	UME OF WATER PRODUCED: 20 (gallons)
SC R EE NE D I	NTERVAL: 14.5'-6.5' (elevation in feet)

DEVELOPMENT METHOD: Stainless Steel Bailer and Guzzler Band w/ garden hose.

Date	pH (Standard Units)	Conductivity (umbo/cm)	Temp (°C)	Volume Eracuated (Gallons)	Turbidity (NTU's) & Comments	
1-2-91	8.88	470	11.1	Initial	< 200	Brown-Sandy Order, No odor
1-2-91	9.01	430	10.4	2 gal	< 200	Brown-Sandy, No odor
1-2-91	9.33	380	10.1	6 gal	< 200	Brown-Sandy, No odor
1-2-91	8.82	. 350	5.9	8 gal	< 200	Light Brown, No odor
1-2-91	8.45	350	8.2	10 gal	<200	Light Brown, No odor
1-2-91	7.99	360	7.6	12 gal	<200	Light Brown, No odor
1-2-91	7.75	360	11.2	14 gal	<200	Light Brown, No odor
1-2-91	7.60	370	11.3	16 gal	< 200	Light Brown, No odor
1-2-91	7.74	350	11.0	18 gal	< 200	Light Brown, No odor
1-2-91	7.45	350	11.1	20 gal	< 200	Light Brown, No odor

		•		
PROJECT: _	Dowcraft Corporatio			
PROJECT NU	MBER: <u>BTA-90-179D</u>	DATE	: 4-14-92	
LOCATION:				
WELL NUMBE	R: ESI-1	, , , , , , , , , , , , , , , , , , ,		
PERSONNEL:	L.A. Zimmerman			
DEVELOPMEN	DOWN H	S - BK PUMP - P OLE PUMP - COMPR	ERASTALLIC PUMP ESSED AIR	
REQUIRED D	EVELOPMENT CRITERI	A:		-
	TURBID	ITY20		NTU
	WELL V	OLUMES 10		
	STABLE	CONDUCTIVITY x		
DEVELOPMEN DEVELOPMEN	EL PRIOR TO DEVELOPMENT STARTED OUT COMPLETED OUT OF WATER REMOVE	MENT 8.74 T 14.3 Bottom of 1 10.00 11.25	(elevation (elevation GALLONS	in feet) 14.3 in feet)
TOTAL VOLC	JAIL OF WAILK IGHOVE			
VOLUME EVACUATED (GALLONS)	pH (STANDARD UNITS)	CONDUCTIVITY (umhos cm) x 10	TEMPERATURE (DEGREES	TURBIDITY NTU
1.8	6. 94	0.936	8.5	
3.6	7.19	0.702	8.6	
5.4	7 .07	0.573	8.7	
7.2	7.07	0.523	8.5	
9.0	7.08	0.502	8.7	20
1				

NOTES:	1 Well volume = .9 gallon	90% REC=9.30
Well dry	at 2.5 gallons then recharges & pumps app. 1	gallon at a time. Sample taken at
5.4 wate	r very clear	

PROJECT: _	Dowcraft Corporation			
PROJECT NU	MBER: BTA-90-179	D DATE	4 -15-92	
LOCATION:	7. 			
WELL NUMBE	R: E SI- 2			
PERSONNEL:	L.A. Zimmerman	<u> </u>		
DEVELOPMEN	T ME T HOD: BAILER DOWN HOTHER:	S - BK PUMP - (P OLE PUMP - COMPR	ERASTALLIC PUMD ESSED AIR	
REQUIRED D	EVELOPMENT CRITERI	A:		
	WELL V STABLE	ITY 9 OLUMES 10 pH X CONDUCTIVITY X		NTU
WATER LEVE DEVELOPMEN DEVELOPMEN	L PRIOR TO DEVELOP L AFTER DEVELOPMEN IT STARTED 3:15 IT COMPLETED 3:30 JME OF WATER REMOVE	9.00	(elevation (elevation)	in feet) ₁₄ in feet)
VOLUME EVACUATED (GALLONS)	pH (S TA NDARD UNITS)	CONDUCTIVITY (umhos cm) x 10	TEMPERATURE (DEGREES	TURBIDITY NTU
1.8	7.18	0.504	14.8	
3.6	7 . 0 5	0.490	14.6	
5.4	7 . 0 3	0.486	14.5	
7.2	7 .0 2	0.486	14.4	*
9.0	7.01		14.4	9
NOTES:	1 We 11 V olume = 0.9		90%	7 REC=9.41

Įį.	NOTES: I WELL VOLUME - 0.0.9	90% REC-9.41
li		
I		
II		
H	·	
H		
II		
Ħ		
H		
l	T.	
Ħ		
11		

PROJECT: _	Dowcraft Corporation						
PROJECT NUMBER: BTA-90-179D DATE: 4-15-92							
LOCATION:							
WELL NUMBE	R: <u>E</u> SI- ^{2D}						
PERSONNEL:	L.A. Zimmerman						
DEVELOPMEN	DEVELOPMENT METHOD: BAILERS - BK PUMP - PERASTALLIC PUMP DOWN HOLE PUMP - COMPRESSED AIR OTHER:						
REQUIRED I	EVELOPMENT CRITERI	A:					
	TURBIDITY 144 NTU WELL VOLUMES 10 STABLE PH X STABLE CONDUCTIVITY X						
WATER LEVE DEVELOPMEN DEVELOPMEN	EL PRIOR TO DEVELOPEL AFTER DEVELOPMENT STARTED 12:30 NT COMPLETED 3:00 JME OF WATER REMOVE	T 10.10	(elevation (elevation GALLONS	in feet) in feet)			
VOLUME EVACUATED PH CONDUCTIVITY TEMPERATURE TURBIDITY (GALLONS) (STANDARD UNITS) (umhos cm) x 10 (DEGREES NTU							
11	7 .8 5	0.601	16.1				
22	7 .7 1	0.590	16.3				
33	7 .6 7	0.581	16.2				
44	7 .7 2	0.587	16.0				
55	55 7.71 0.593 15.9						
NOTES: 1 Well volumne = 5.5 Gallons 90% REC= 11.89							

		-][
PROJECT:	Dowcr af t Corporation			
1	MBER: BTA-90-179D	DATE	4-15-92	
LOCATION:				
WELL NUMBER	R: ESI-3			
PERSONNEL:	I.A. Zimmerman			
DEVELOPMEN	T METHOD: BAILER DOWN H OTHER:	S - BK PUMP - (P OLE PUMP - COMPR	ERASTALLIC PUMP ESSED AIR	
REQUIRED D	EVELOPMENT CRITERI	A:		-
	TURBII	DITY 10		UTU NTU
	WELL V	OLUMES 10		
		E PH X E CONDUCTIVITY X		
WATER LEVE DEVELOPMEN DEVELOPMEN	L PRIOR TO DEVELOR L AFTER DEVELOPMENT STARTED 3:45 IT COMPLETED 4:00 IME OF WATER REMOVE	NT 9.28	(elevation (elevation GALLONS	in feet)13.95 in feet)
VOLUME EVACUATED (GALLONS)	pH (STANDARD UNITS)	CONDUCTIVITY (umhos cm) x 10	TEMPERATURE (DEGREES	TURBIDITY NTU
1.6	7 .2 5	0.627	14.5	
3.2	7 .2 2	0.628	14.3	
4.8	7.15	0.629	14.3	
6.4	7.18	0.628	14.3	
8.0	7.13	0.633	14.3	10
<u>t</u>		4		
NOTES:	1 Wel 1 vol umne = 0.8	Gallons	90	% REC= 9.74

	Dowcraft Corporation	DATE:	4-15-92	_
ROJECT NUM	BER: BIR-90-1750	D 220		
OCATION: _				
ELL NUMBER	ESI- 4			•
PERSONNEL:	LA Zi m me rman			
DEVELOPMENT	n MET HOD: BAILERS DOWN HO OTHER:	S - BK PUMP - PE DLE PUMP - COMPRE	ERASTALLIC PUMP	
REQUIRED DE	EVELOPMENT CRITERIA	A:		
	WELL VO	OLUMES 10 PH X CONDUCTIVITY X		NTU
NATER LEVE DEVELOPMEN' DEVELOPMEN'	L PRIOR TO DEVELOP. L AFTER DEVELOPMEN T STARTED 4:10 T COMPLETED 4:30 ME OF WATER REMOVE	T 9.35	(elevation (elevation) (elevation) (GALLONS	in feet) (14.5 in feet)
. VOLUME	nu nu	CONDUCTIVITY (umhos cm) x 10	TEMPERATURE (DEGREES	TURBIDITY NTU
1.8	7 .35	0.661	10.6	
3.6	7.4	0.659	10.2	
· · ·	7.42	0.658	10.2	
5.4		0.655	10.0	
7.2	7.39	0.655		
7.2	7.39	0.656	10.0	40
			10.0	40
7.2		0.656		40 7 REC=9.85

PROJECT: Dower	aft Corporation			
PROJECT NUMBER;	B T A-90-179 _D	DATE	4-15-92	
LOCATION:				
WELL NUMBER: _E	SI- 5			
PERSONNEL: L.A.	Zimmerman			
DEVELOPMENT MET	HOD: BAILER DOWN H OTHER:	S - BK PUMP - POLE PUMP - COMPR	ERASTALLIC PUMP ESSED AIR	
REQUIRED DEVELO	PMENT CRITERI	A:		_
	STABLE	OLUMES 10 C pH x C CONDUCTIVITY x		NTU
WATER LEVEL PRI WATER LEVEL AFT DEVELOPMENT STA DEVELOPMENT CON TOTAL VOLUME OF	rer developmen Arted 4:40 Apleted 4-16-92	BOLLOW OZ WELL	(elevation (elevation) GALLONS	in feet) 14.4 in feet)
VOLUME	nH	CONDUCTIVITY (umhos cm) x 10	TEMPERATURE (DEGREES	YTURBIDITY UTM
	7. 91	0.450	11.5	
4	· · · · · · · · · · · · · · · · · · ·			
6				
8				
10				
NOTES: 1 well	l v ol ume = 1 Gal	lon .	905	% REC= 9.17

Well went dry after 1.5 gallons and again at 2 gallons after well set fo 10 minutes

at 3 gallons. 4-16-92 Purged 1.5 gallon well went dry water well was at 8.61

It takes 5 minutes/foot to recharge will repurge on 4-16-92 in A.M. Stopped Development

ROJECT: Deveraft Corporation ROJECT NUMBER: BTA-90-179D DATE: 4-14-92 COATION: COAT					ļ
DATE: 4-14-92 DATE: 4-14-92	POTECT:	Doweraft Corporation			
DEVELOPMENT METHOD: BAILERS - BX PUMP - PERASTALLIC PUMD DOWN HOLE PUMP - COMPRESSED AIR OTHER: TURBIDITY 140 NTU WELL VOLUMES 10 STABLE PM X STABLE PM X STABLE PM X STABLE CONDUCTIVITY X WATER LEVEL AFTER DEVELOPMENT 2000 EVELOPMENT DEVELOPMENT STARTED 2:00 EVELUPIONT STARTED 2:00 EVACUATED (GALLONS) VOLUME EVACUATED (GALLONS) VOLUME (GALLONS) (STANDARD UNITS) (UMMOS cm) x 10 (DEGREES TORSION NTU 1.4 6.97 0.616 15.6 2.8 7.07 0.606 16.0 4.2 7.04 0.602 16.1 5.6 7.03 0.589 15.7 7.0 7.10 0.592 15.5			DATE:	4-14-92	
PERSONNEL: L.A. Zimmerman DEVELOPMENT METHOD: BAILERS - BX PUMP - PERASTALLIC PUMP DOWN HOLE PUMP - COMPRESSED AIR OTHER: TURBIDITY 140 NTU WELL VOLUMES 10 STABLE PH X STABLE CONDUCTIVITY X WATER LEVEL AFTER DEVELOPMENT 5000 DEVELOPMENT STARTED 2:00 DEVELOPMENT STARTED 2:00 DEVELOPMENT COMPLETED 3:00 DEVELOPMENT COMPLETED 3:00 TOTAL VOLUME OF WATER REMOVED 1 VOLUME EVACUATED (GALLONS) VOLUME (GALLONS) VOLUME OF WATER REMOVED 1 1.4 6.97 0.616 15.6 2.8 7.07 0.606 16.0 4.2 7.04 0.602 16.1 5.6 7.03 0.589 15.7 7.0 7.10 0.592 15.5		·			
DEVELOPMENT METHOD: BAILERS - BX PUMP - PERASTALLIC PUMP DOWN HOLE PUMP - COMPRESSED AIR OTHER: TURBIDITY 140 NTU WELL VOLUMES 10 STABLE PH X STABLE CONDUCTIVITY X WATER LEVEL PRIOR TO DEVELOPMENT 9.22 (elevation in feet) EVELOPMENT STARTED 2:00 DEVELOPMENT STARTED 2:100 DEVELOPMENT COMPLETED 3:00 TOTAL VOLUME OF WATER REMOVED 1 VOLUME EVACUATED PH CONDUCTIVITY (mumbos cm) x 10 (GALLONS) VOLUME (STANDARD UNITS) (umbos cm) x 10 1.4 6.97 0.616 15.6 2.8 7.07 0.606 16.0 4.2 7.04 0.602 16.1 5.6 7.03 0.589 15.7 7.0 7.10 0.592 15.5		707			
DEVELOPMENT METHOD: BAILERS - BX PUMP - (PERASTALLIC PUMP) DOWN HOLE PUMP - COMPRESSED AIR OTHER: TURBIDITY 140 NTU WELL VOLUMES 10 STABLE PH X STABLE PH X STABLE CONDUCTIVITY X WATER LEVEL PRIOR TO DEVELOPMENT HOLTO OF HOLE (elevation in feet) DEVELOPMENT STARTED 2:00 DEVELOPMENT COMPLETED 3:00 TOTAL VOLUME OF WATER REMOVED 7. GALLONS VOLUME EVACUATED PH CONDUCTIVITY (DEGREES NTU) 1.4 6.97 0.616 15.6 2.8 7.07 0.606 16.0 4.2 7.04 0.602 16.1 5.6 7.03 0.589 15.7 7.0 7.10 0.592 15.5	VELL NUMBER	R: <u>ESI- 6</u>			
NATE LEVEL PRIOR TO DEVELOPMENT STABLE PH X STABLE CONDUCTIVITY X (elevation in feet)	PERSONNEL:	L.A. Zimmerman			
TURBIDITY	DEVELOPMENT	DOWN IN	Jun Form	ERASTALLIC PUMP ESSED AIR	
TURBIDITY	REOUIRED D	EVELOPMENT CRITERI	A:		
WATER LEVEL PRIOR TO DEVELOPMENT 9.22 (elevation in feet) WATER LEVEL AFTER DEVELOPMENT EDUTION TO Hole (elevation in feet) DEVELOPMENT STARTED 2:00 GALLONS VOLUME OF WATER REMOVED 1. GALLONS VOLUME EVACUATED (STANDARD UNITS) (umhos cm) x 10 (DEGREES NTU) 1.4 6.97 0.616 15.6 2.8 7.07 0.606 16.0 4.2 7.04 0.602 16.1 5.6 7.03 0.589 15.7 7.0 7.10 0.592 15.5	-	TURBID WELL V STABLE	ITY 140 OLUMES 10		NTU
VOLUME EVACUATED (GALLONS) ph (STANDARD UNITS) CONDUCTIVITY (Umhos cm) x 10 TEMPERATURE (DEGREES) TURBIDITY NTU 1.4 6.97 0.616 15.6 2.8 7.07 0.606 16.0 4.2 7.04 0.602 16.1 5.6 7.03 0.589 15.7 7.0 7.10 0.592 15.5	WATER LEVE DEVELOPMEN DEVELOPMEN	L AFTER DEVELOPMEN T STARTED 2:00 T COMPLETED 3:00	T Botton of Hole	(elevation	in feet) in feet)
VOLUME EVACUATED (GALLONS) ph (STANDARD UNITS) CONDUCTIVITY (Umhos cm) x 10 TEMPERATURE (DEGREES NTU	::				
1.4 6.97 0.616 16.0 2.8 7.07 0.606 16.0 4.2 7.04 0.602 16.1 5.6 7.03 0.589 15.7 7.0 7.10 0.592 15.5	VOLUME	pH (STANDARD UNITS)	CONDUCTIVITY (umhos cm) x 10	TEMPERATURE (DEGREES	TURBIDITY NTU
2.8 7.07 0.602 16.1 3.6 7.03 0.589 15.7 7.0 7.10 0.592 15.5	1.4	6.97	0.616	15.6	
7.04 0.589 15.7 7.0 7.10 0.592 15.5 907 REC= 9.62	2.8	7. 07	0.606	16.0	
7.0 7.10 0.589 15.7 7.0 7.10 0.592 15.5 907 REC= 9.62		7.04	0.602	16.1	
7.0 7.10 0.592 15.5	5.6	7.03	0.589	15.7	
907 REC= 0.62		7. 10	0.592	15.5	
90% REC= 9.62					
				90	7 REC= 9.62

Well dry at 1 gallon and again at 2 gallans

1	. ·			
_	Dowcr af t Corporatio			
ROJECT NUM	BER: BTA-90-179D	DATE	4-14-92	
OCATION:				
ELL NUMBER	R: ESI- 7			
ERSONNEL:	L.A. Zimmerman			
EVELOPMENT	r MET HO D: BAILE DOWN OTHER	RS - BK PUMP - (P HOLE PUMP - COMPR R:	ERASTALLIC PUMP ESSED AIR	
EOUIRED DE	EVELOPMENT CRITER	RIA:		
	WELL STABI STABI	VOLUMES 10 LE pH x LE CONDUCTIVITY x DPMENT 9.29	(elevation	NTU
NATER LEVE DEVELOPMENT DEVELOPMENT	L AFTER DEVELOPMENT STARTED 1:00 TO COMPLETED 1:30 ME OF WATER REMO	9.30	(elevation ————————————————————————————————————	n in feet)
VOLUME		CONDUCTIVITY) (umhos cm) x 10	TEMPERATURE (DEGREES	TURBIDITY NTU
1.6	7.21	0.470	11.5	
3.2	7.12	0.438	11.5	
4.8	7.10	0.432	11.3	
6.4	7. 09	0.430	11.2	
8.0	7. 06	0.434	11.1	
NOTES: _	l Wel l volumne = .8	gallons	91	0% REC= 9.76

OJECT NU	Doweraft Corp. MBER: BTA-90	-179 _D D7	ATE: 4-14-92	
CATION:				
ELL NUMBE	R: ESI- 8			
ERSONNEL:	L.A. Zimmer	man		
EVELOPMEN	T MET HO D:	BAILERS - BK PUMP - COMMINION	PERASTALLIC PUME MPRESSED AIR	-
EQUIRED [DEVELOPMENT (RITERIA:		
		TURBIDITY 200 WELL VOLUMES 10 STABLE pH x STABLE CONDUCTIVITY x	×	NTU
ATER LEVE EVELOPMEN EVELOPMEN	EL PRIOR TO BEL AFTER DEVI NT STARTED NT COMPLETED JME OF WATER	11.35	(elevation (elevation GALLONS	n in feet) 16.95 n in feet)
OLUME VACUATED GALLONS)	pH (STANDARD	CONDUCTIVITY UNITS) (umbos cm) x]	TEMPERATURE 10 (DEGREES	TURBIDITY NTU
1.8	7 . 2 3	0.548	11.1	
3.6	7 .0 5	0.522	11.0	
5.4	6 .9 5	0.490	10.9	
- •	6.94	0.484	10.7	
7.2			10.7	[[
	6 .9 8	0.476	10.7	
7.2	6 .9 8	0.476	10.7	

PROJECT:	Dower a ft Corporation			
	MBER: BTA-90-179D	DATE	4-13-92	
LOCATION: _	Dow Street, Falcone:	c, NY		
WELL NUMBE	R: ES I- 9			
PERSONNEL:	L.A Zimmerman			
DEVELOPM E N'	r me thod: bailer down h other:	S - BK PUMP - Œ OLE PUMP - COMPR	ERASTALLIC PUMP ESSED AIR	
REQUIRED D	EVELOPMENT CRITERI	A:		
	WELL V	OITY 93 OLUMES 10 C pH		NTU
WATER LEVE DEVELOPMEN DEVELOPMEN	L PRIOR TO DEVELOR L AFTER DEVELOPMENT T STARTED 10:40 T COMPLETED 12:00 ME OF WATER REMOVE	VT <u>14</u>	(elevation (elevation GALLONS	in feet) Bottom in feet) 12.85
VOLUME EVACUATED (GALLONS)	pH (STANDARD UNITS)	CONDUCTIVITY (umhos cm) x 10	TEMPERATURE (DEGREES	TURBIDITY NTU
2	6. 95	0.442	10.3	
3	7.15	0.365	9.4	
4	7.36	0.650	10.3	
5	7.16	0.626	10.5	
6	7.43	0.630	10.2	
7	7.25	0.632	10.1	
NOTES:	l well volumne = 1 g	gallon	90	% REC= 7.98
11 11 4 4 4 D .				

to go dry every 1 to 12 gallons NOTE: ESI purged as additional 3 gallons to complete 10 well volumne criteria. Well dry at 2 gallons- Let recharge and purged additional 1 gallon

Well dry at 2 gallons but recharges quickly. Well dry at 3 gallons Water very

turbid (brown) Let well recharge to 10 took from 11:10 to 11:25 well continues

					1
ROJECT:	Doweraft Corpo	ration			
ROJECT NUI	MBER: BTA-90-	179 _D	DATE:	4-15-92	
OCATION:					
TELL NUMBE	R: ESI-10				
	L.A. Zi m merm	an			
DEVELOPMEN	T METHOD:		SK PUMP - (P) MP - COMPR	ERASTALLIC PUMP ESSED AIR	>
REQUIRED D	EVELOPMENT C	RITERIA:			
			х		NTU
WATER LEVE DEVELOPMEN DEVELOPMEN	EL PRIOR TO I EL AFTER DEVI NT STARTED NT COMPLETED IME OF WATER	9:30	10.03 10.16	(elevation (elevation GALLONS	in feet) 14.0 in feet)
VOLUME	nH	CON	DUCTIVITY s cm) x 10	TEMPERATURE (DEGREES	TURBIDITY NTU
1.4	6.66		.536	15.4	
2.8	6.76	0	.510	15.5	
4.2	6.82	0	.520	15.5	
5.6	6.89	0	. 565	15.4	
7.0	6.87	0	.517	15.5	
, , , , , , , , , , , , , , , , , , , ,					
NOTES:	1 well volumn	e = 0.7 gallon		90	0% REC= 10.43

	, -			Ï
PROJECT: _	Dower af t Corporation			
ROJECT NUI	MBER: BTA-90-179D	DATE	4-15-92	
ocation:				
TELL NUMBE	R: <u>ESI- 11</u>			
ERSONNEL:	L.A. Zimmerman			
DEVELOPMEN	T METHOD: BAILER DOWN H OTHER:	S - BK PUMP - (P OLE PUMP - COMPR	ERASTALLIC PUMP ESSED AIR	
REQUIRED D	EVELOPMENT CRITERI	A:		-
	WELL V STABLE STABLE	OLTY 87 VOLUMES 10 E pH x E CONDUCTIVITY x		NTU
WATER LEVE DEVELOPMEN DEVELOPMEN	L PRIOR TO DEVELOR L AFTER DEVELOPMENT STARTED 10:15 NT COMPLETED 10:45	70.00	(elevation elevation	in feet) 14.55 in feet)
TOTAL VOLU	JME OF WATER REMOVE			
VOLUME EVACUATED (GALLONS)	pH (STANDARD UNITS)	CONDUCTIVITY (umhos cm) x 10	TEMPERATURE (DEGREES	TURBIDITY NTU
1.4	7 .2 5	0.627	16.1	
2.8	7 .1 8	0.605	16.1	
4.2	7.14	0.641	16.0	
5.6	7.18	0.589	16.0	
7.0	7.11	0.575	16.0	
*				<u> </u>
NOTES:	1 wel 1 volumne = 0.7		90	0% REC= 10.55

ROJECT:	Dowcraft Corporation			. <u>. </u>
I ROJECT NUM	BER: BTA-90-179D	DATE:	4-15-92	
ocation: _				
ELL NUMBER	R: ESI- 12			
ERSONNEL:	L.A. Zimmerman			
EVELOPMENT	r MET HO D: BAILERS DOWN HO OTHER:	S - BK PUMP - (P) DLE PUMP - COMPR	ERASTALLIC PUMP	
EQUIRED D	EVELOPMENT CRITERIA	A:		-
	WELL V	ITY 196 OLUMES 10 pH × CONDUCTIVITY ×		NTU
NATER LEVE DEVELOPMEN DEVELOPMEN	L PRIOR TO DEVELOP L AFTER DEVELOPMEN T STARTED 11:00 T COMPLETED 11:30 ME OF WATER REMOVE	T 9.73	(elevation (elevation GALLONS	in feet) in feet)
VOLUME	22	CONDUCTIVITY (umhos cm) x 10	TEMPERATURE (DEGREES	TURBIDITY NTU
1.6	7 .5 3	0.515	15.9	
3.2	7 .5 0	0.506	15.4	
4.8	7.41	0.505	15.7	
6.4	7 .3 6	0.497	15.6	
8.0	7 .3 8		15.6	196
				<u> </u>
NOTES:	l Well volume = 0.8		90	0% REC= 10.14
-				

PROJECT:	Doweraft Corporation			
PROJECT NUI	MBER: BTA-90-179D	DATE	4-14-92	
LOCATION: _				
WELL NUMBE	R: <u>ESI- 13</u>	 		
PERSONNEL:	L.A. Zimmerman		0	
DEVELOPMEN'		S - BK PUMP - (P OLE PUMP - COMPR	ERASTALLIC PUMP ESSED AIR	
REQUIRED D	EVELOPMENT CRITERI	A:		
	STABLE	OLUMES 10 PH x CONDUCTIVITY x		NTU NTU
WATER LEVE DEVELOPMEN DEVELOPMEN	L PRIOR TO DEVELOP L AFTER DEVELOPMEN T STARTED 3:20 T COMPLETED 4:00 ME OF WATER REMOVE	T 0.21	(elevation (elevation GALLONS	in feet) ^{14.5} in feet)
VOLUME EVACUATED (GALLONS)	pH (ST A NDARD UNITS)	CONDUCTIVITY (umhos cm) x 10	TEMPERATURE (DEGREES	TURBIDITY NTU
2.2	6.85	2.02	10.9	
4.4	6.75	1.84	11.0	
6.6	6.73	1.64	10.5	
8.8	6.72	1.65	10.5	
11.0	6.73	1.59	10.6	
				<u> </u>
		-1100	90)% REC= 8.79

APPENDIX D

FROM

C.T. MALE ASSOCIATES, P.C.

TO Empire Soils Investigations.

S-5167 S. Park Avenue

Hamburg. NY ZIP 14075

50 Century Hill Drive P.O. Box 727 Latham, New York 12110 Tel. (518) 786-7400 Fax. (518) 786-7299

LETTER OF TRANSMITTAL DATE: Apr 20, 1992 PROJECT NO.: 92.884 RE: Dowcraft Soil Gas Survey 4/15/92 -4/17/92 WE ARE SENDING YOU X ENCLOSED UNDER SEPARATE COVER VIA Mail

ATTENT	ЮN: <u>Мг</u>	Kevin Sha	annahan	THE FOLLOWIN	IC ITEM	ç.
PRI SP	AWINGS OJECT MA ECIFICAT PY OF LET HER SO	IONS ITE R	Vey Chroma	SHOP DRAWING PRINTS SHOP DRAWING REPRODUCIBLES SAMPLES PRODUCT LITERATURE		MEETING NOTES CHANGE ORDER REPORT COST ESTIMATE
NO.OF ORIG.	NO.OF COPIES	IDENT. NO.	DATE.	DESCRIPTION		ACTION CCCE
FOR [VAL ====================================	REVIEW	Soil Gas Survey Chromatograms Job X YOURUSE INFORMA		DISTRIBUTION
ACTIO CODE	N FS	FURNISH AS S	SUBMITTED	FC-FURNISH AS CORRECTED S-SUBMIT SPECIFIED ITEM		R-REJECTED
Kevin Please been	e note t h detecte d 17, #18	it would sho	w a peak ab		letected in P	oints #3, #4, #11, non-detect.

3		4/5/92
		POWCRAPT.
	Wethor File	DOWCRAFT MTD EMPIRE
	Calibration Five	4-92CAL 5011 GAS SC.
		YAGES-
	DATA	DESCRIPTION
	FILE NAME	DESCRIPTION ROMANS
	DOWCRAFTO	RETENTION CHECK STANDARD (5000
	DOWCRET	SYCINGE # 1 BLANK GOOD
	DOUGET 2	SARCE COINT # STR #-
	DWCRET	SAMPUR POINT #1 SYR#1 1min ND
	DOWCEPT'Z	SAMPLE POINT #1 SYRE! ZMIN NO
	DUCRET 3	on et # Z 1 mm 100 UL SIR1
		1000 UL INJ 2 ft dese ! ND
<u>:</u>	DOWCRFTY	SAM PT 3 3 4-5 FT 1000 UE MIN TOE HIT
■ .~.	DOWCRFT 5	we we will a zoon to HIT
	DOWCRET 6	Sm P7 # 4 1000 UL INT 2 MIN SAM 1 NID
	DOWCRET 7	· SAM PT & 5 HOW ULLINT 2 MIN SIM ND
	DOWCRET &	SAMPLE PT # 5 1000 is INT ZMIN SAM ND
# : : : : : : : : : : : : : : : : :	RETCAL!	RETENTION CHECK # 2 WITH STD OK
	DOWCRET 9	SAMPLE PT #7 @ 4 Deep 1000 un >2000
	DOWCETIO	SAMPLE PT # 7 @ 6 DEEP ,000 UL
	Dowcfor 11	South PT #8 8 4' DEED 1000 or 2min
	DOWCFT 12	SAMPLE PT 47 @ 4" DEED EXOUL Z MIN
	DOWCFT 13	SAMPLE PT # 100 4 DEGP 100 UL, ZMIN
41692	NETCHKO3	PETRINION CHECK WITH STD (700)
	DWSBLK 01	SYRINGE # 1 BLANK RUN
-		SYRINGE # 7 BLANK RUN
	5 YRINGOZ	11 11 11 AFTER WESH CLEAN
	Syrmuora	
	Dowce	SAMPLE POINT # 11 IN PHOS ROOM, ZMIN, SYRUL
	11 2-:	SAMPLE PT # 12 IN PHOS ROOM, ZMIN, SYR# 2
	3	Sample OT to 13 11 11 ZMIN, SYRA
	DOWCRFL	Sample pt # 14 11 11 4)
	2 ,	SAMPLE OF IL IS UNDER STARS DYR H Z
	3	RETENTION CITECK W/57 ANDARD
	- 4	Smyll ET # 16 IN Store Room SYR#!
-	5	SAMPLE AT & IT NEAR VAPOR DEGREASER SYRE!
=	Dowcest	SAMPLE PT # 18 IN WARRENTOUSE ROOM! SYR#Z
	3	11 11 # 20 11 11 SYR# Z
	2	U 1 # 20 11 11 11 848# 2
The second section is a second	Children Charles and Children Children	

1			1:			, ,	*		-										. '														•
		+-		-					-		<u> </u>												<u> </u>	 	L .			<u>. </u>		720	ام ۱۸۱	محم	—≒: E
	-	-	<u> </u>				. :			-								<u>'</u>				+								1 1	1	RE	
Ä							_																				-			5 (1		
	 			77	ATA	F	ريد		1		345	121	PI	٥ ٨)_								1		0	اسرع	AR	بدد		1		I	ً و) ا	<u> </u>
					1		-	Ī			 -		<u></u>	<u> </u>				1												G	A/-17	5-Z	
				P	2000	ΩT	- 4		51	me	بيص	P	#	21	~	ß	ی او	C 6	2007	4 ,	5/2	#									7016		
		1					5	•	1	11	1 .	į	i	1	1		}	1	1		1	1	1	RH	2								
		:	-																														<u> </u>
	41	7	92					<u> </u>					ļ												.								
				D	900	To	1		5	TA	17	4	>	À	1	R	En	بهر	na	7	TI	y K	<u> </u>	سر	<i>J</i> ,) 	N	14					
S. M. C.					ļ	C	7			1	<u></u>		<u> </u>	1	<u> </u>		21		ح	بمر	حاح	1	ريالج	<u> </u>	2			ļ	<u> </u>	ļ			
			-	ļ		0	3		5	RIA	عمال	#		B	<u>_</u> #1	×	RUL	<u> </u>	<u> </u>	<u></u>	<u> </u>			<u> · </u>				<u> </u>		ļ			_
			<u> </u>			-0	Ų.		<u>ه ک</u>	MP	2	R) <u>/</u>	<u> </u>	<u>.</u>	<u>ئے:</u>	<u> </u>	an	<u> </u>	<u></u>	নে	rt.	pe	<u> برد</u>	٧	7		<u> </u>					
	-			<u> </u>			5	!	\ S v	- #	12	4	٤	<u> </u>	احد	PX	<u>י</u> אני	<u> </u>	107	1,-	der 	ر <u>نا</u> ح ا	PK	Nh.	ما	T	ļ	ļ <u>-</u>	<u> </u>	<u> </u>		.	
33			1.			3	ه) (<u>.</u>	51	<u> </u>	<u></u>	25	<u> </u>	$\frac{1}{1}$	-		<u>!</u>		-	لنز	-	2	TEA	\$ /	20	aes		tex	-				
			<u> </u>		1	ď	7	!	55	<u>at</u>	5	عا ـُ	ļ ī	11	<u>!</u>	<u>ان م</u>	25	<u>.</u>	<u>خـ لـ</u> ــــــــــــــــــــــــــــــــــ	HE	 	RO	F	NE	41		<u></u>	3E	R				_
			•	-	1	1	3		;	1		1		÷	†	;	-	i .	1	1	1	:	1	4	į	i	1		-	-			<u>. </u>
¥ 200			. <u></u>	<u> </u>	<u>:</u>	<u> </u>	9					i		<u>; </u>	1		i	1	1	i	1	:	1	4		1	İ	<u> </u>	-	-	!	1	<u>:</u>
				-		: . !	<u>د ۱</u>	•		1						•		1			1	1	i	NTA	i	1	<u> </u>	05				<u> </u>	<u>!</u>
4							<u> </u>		- 9 7	<u> </u>	<u>کې</u>	1771 :	<u> 174</u>	RI		TE	1	<u>-</u>	tE		تت	<u>حن</u>	Ŋ	==	<u>- Z</u>	-	:	-	·	 		!	:
ł					<u> </u>		i	•	-	-		<u>: </u>			·			-		·			:	<u> </u>	-			į		-	!	1	:
Section 1				†	i		:			•				·		-							<u>:</u>					1			<u> </u>		<u> </u>
ı							:															:								1		·	
3						:	:						:				:		1				-	:	:						1	•	
											:	:	:		4				,							1						:	
6																	:											:			-	:	
							·								<u>:</u>		:		:	:					_						:		<u>. </u>
14 1	 									٠.			-																	<u> </u>	:		
			 -																											<u> </u>			
,	·	. -	· · · · · · · · · · · · · · · · · · ·	-																								-		-	<u>:</u>	.	
				-	<u></u>	-			<u> </u>			1														1	i	<u> </u>		-	1	<u> </u>	
				-		<u> </u>	: i			:		-	<u> </u>			-		:	·	•						:		1	•	+-	-		· <u> </u>
					<u></u>	<u> </u>	· i		·.	; 		<u> </u>		·			<u>:</u>				<u>:</u>	:	<u>:</u>		<u> </u>	-	,	1		-		!	
		-		-		<u>: </u>			·	1	1	:	<u> </u>		1	<u>:</u>	:			,	· :	<u></u>		:	1	:		1			1	į	-
	<u>-</u>			+		<u>: </u>				-	1	1			-			<u></u>				-	-	<u>.</u> ;	1	:	<u> </u>	-	-	-	: 	<u> </u>	-
				+	:	<u> </u>	-	<u>.</u>	-	-		:	1		1	:	1	-		+-	-	· · ·	-	:	:	:			:	+-			+
_				+-	!	1.	:		-	1		;	-	•	:		;	:	-	-		:	•		:	-	-	i	:	-			
				+		† ;	: _		,	:		:	;		•	;	<u>: :</u>	:	-				: -				-	-		-	1	<u> </u>	<u> </u>
	·			+		-	:			-	1				. :		:		:	-	:	-			<u> </u>		1	-		+		1	<u>:</u>
				+-	1	-	<u> </u>			:	1 .	-				i		;	-	!		!				:	+	1	:		·		1
-	- •	 		+				<u> </u>		4 () () ()					<u>.</u>			<u> </u>		i Na tari		1:.							· .	1 -			

Time : 01:11:50
Data File : DOWCRAFT Date 4/15/1992

Method File : DOWCRAFT

Sample Notes: RETENTION CHECK

Pesk Report

Time 01:11:50 Date 4/15/199

Data File: DOWCRAFT Method File: DOWCRAFT

Method remarks : EMPIRE DOWCRAFT SOIL GAS SURVEY 4/15/92

Sample remarks : RETENTION CHECK

Ch 1 Detector: PID

NUMBER TION	RET, TIME	AREA	HEIGHT	IDENTIFIER	CONCENTRA
1	00 :02:08	2.712E+05	4.195E+04	TRA 12-DCE	505.4
2	00:02:32	6.967E+05	2.510E+04		
3	00:02:52	5.571E+06	5.670E+05	CIS 12-DCE	790.8
4	00: 03:50	1.221E+07	8.634E+05	BENZENE	737.4
5	00:04:39	6.785E+06	4.805E+05	TCE	697 .9
6	00:0 7:28	1.217E+07	4.365E+05	TOLUENE	655.2
7	00:09:41	5.119E+06	1.661E+05	PCE	609.5
8	00: 15:20	2.634E+07	8.595E+05		

The second secon

Time

01:46:43

Date

4/15/199

 \circ

Data File: DOWCRFT1 Method File: DOWCRAFT

Method remarks : EMPIRE DOWCRAFT SOIL GAS SURVEY 4/15/92

Sample remarks : SYRINGE #1 BLANK RUN

Ch 1 Detector: PID

NUMBER TION	RET. TIME	ARE A	HEIGHT	IDENTIFIER	CONCENTRA
. 1	00:02:55	6.836E+04	1.013E+03	CIS 12-DCE	-69.14
				No. 14 S	OLVENT PEAK

Time 02:12:33

Date 4/15/199

Data File: DOWORFT Method File: DOWCRAFT

Method remarks : EMPIRE DOWORAFT SOIL GAS SURVEY 4/15/92

Sample remarks : HOLE NO 1 1000 UL INJ 1 MIN SAMPLE

Ch 1 Detector: PID

NUMBER TION

RET. TIME

AREA

HEIGHT

IDENTIFIER

CONCENTRA

No peaks detected.

Time 02:28:18

Date 4/15/199

Data File: DOWORFT2 Method File: DOWCRAFT

Method remarks : EMPIRE DOWCRAFT SOIL GAS SURVEY 4/15/92

Sample remarks : SAMPLE PT 1 RUN 2, 2 MIN SAMPLE

Ch 1 Detector: PID

NUMBER RET. TIME AREA HEIGHT IDENTIFIER CONCENTRA TION 1 00:02:20 4.063E+04 8.488E+02 TRA 12-DCE 476.4 NO solent peak NOT DEE

Time

02:59:34

Date

4/15/199

Ö

Data File: DOWORFT3 Method File: DOWORAFT

Method remarks : EMPIRE DOWCRAFT SOIL GAS SURVEY 4/15/92

Sample remarks : SAMPLE POINT 2, 1 MIN @ 2 FEET DP

Ch 1 Detector: PID

NUMBER TION	RET. TIME	ARE A	HEIGHT	IDENTIFIER	CONCENTRA
1.	00:02:08	3.049E+04	1.141E+03	TRA 12-DCE	475.1
				ND, IN SO	LVENT PEAK

Time

03:41:29

Date 4/15/199

Data File: DOWORFT5 Method File: DOWORAFT

Method remarks : EMPIRE DOWCRAFT SOIL GAS SURVEY 4/15/92

Sample remarks : SAM POINT 3 1000UL INJ 2 MIN SMPL

Ch 1 Detector: PID

NUMBER TION	RET. TIME	AREA	HEIGHT	IDENTIFI E R	CONCENTRA
1 2	0 0: 02:14	2.720E+04	9.417E+02	TRA 12-DCE	474 .7
	00:05:07	7.567E+04	6.343E+03	TCE	6.90 4

NOTE

TRA. 1,2-DCE IS NO IN SOLVENT PEAK

TCE IS VALID CONC.

ALL CONCENTRATION VALUES ARE PPB WEIGHT / VOLUME

Time 03:18:02

Date 4/15/199

Data File: DOWCRFT4 Method File: DOWCRAFT

Method remarks : EMPIRE DOWCRAFT SOIL GAS SURVEY 4/15/92

Sample remarks : PT NO 4 1000 UL INJ 1 MIN 4-5 FT

Ch 1 Detector: PID

NUMBER TION	RET. TIME	AREA	HEIGHT	IDENTIFIER	CONCENTRA
					التستوسينية
1	.00:02:14	3.315E+04	1.016E+03	TRA 12-DCE	475.4
. 2	0 0:05:07	4.751E+04	4.292E+03	TCE	4.28 1

NOTE

SOLVENT PEAK 1,2-DCE TRA

CONC. (PPB)

Time 04:03:10

Date 4/15/199

0

Data File: DOWCRFT6
Method File: DOWCRAFT

Method remarks : EMPIRE DOWCRAFT SOIL GAS SURVEY 4/15/92

Sample remarks : SAMPLE PT 4, 2 MIN SAMPLE 1000UL

Ch 1 Detector: PID

NUMBER TION	RET. TIME	AREA	HEIGHT	IDENTIFI E R	CONCENTRA
1	00:02:17	3.952E+04	8.826E+02	TRA 12-DCE	476 .2 .

ND, IN SOLVENT PEAK

Time 04:14:11

Date 4/15/1992

Data File: DOWCRFT7
Method File: DOWCRAFT

Method remarks: EMPIRE DOWCRAFT SOIL GAS SURVEY 4/15/92

Sample remarks: SAMPLE PT 5 1000UL INJ 2 MIN SAM

Ch 1 Detector: PID

NUMBER RET. TIME AREA HEIGHT IDENTIFIER CONCENTRATION

1 00:02:14 3.351E+04 9.725E+02 TRA 12-DOE 475.5 & ND, IN SOLVENT PEAK

Time 04:28:45

Date 4/15/1992

Data File: DOWCRFT8
Method File: DOWCRAFT

Method remarks: EMPIRE DOWCRAFT SOIL GAS SURVEY 4/15/92

Sample remarks: SAMPLE PT 6 1000UL INJ 2 MIN SAM

Ch 1 Detector: PID

NUMBER RET. TIME AREA HEIGHT IDENTIFIER CONCENTRATION

1 00:02:15 3.311E+04 8.249E+02 TRA 12-DCE 475.4 ND, IN SOLVENT PEAK

Time : 04:48:37

Date 4/15/1992

Data File: RETCAL1
Method File: DOWCRAFT

Sample Notes: RETENTION CHECK WITH STANDARD

Peak Report

Time 04:48:37

Date 4/15/1992

Data File: RETCAL1

Method File: DOWCRAFT

Method remarks: EMPIRE DOWCRAFT SOIL GAS SURVEY 4/15/92

Sample remarks: RETENTION CHECK WITH STANDARD

Ch 1 Detector: PID

NUMBER RET. TIME AREA HEIGHT IDENTIFIER CONCENTRATION

1	00:02:23	1.385E+08	5.733E+04	TRA 12-DCE 643.1
2	00:03:00	6.157E+08	4.320E+05	CIS 12-DCE 882.3
3	00:04:00	1.346E+07	8.621E+05	BENZENE 822.5
4	00:04:48	6.940E+08	3.879E+05	TCE 714.2
5	00:07:38	1.259E+07	4.844E+05	TOLUENE 879
6	00:09:53	5.268E+08	1.895E+05	
7	00:15:33	2.685E+07	8.571E+05	
8	00:18:48	1.177E+07	3.918F+05	•

Time 05:18:51

Date 4/15/1992

Data File: DOWCRFT9
Method File: DOWCRAFT

Method remarks: EMPIRE DOWCRAFT SOIL GAS SURVEY 4/15/92

SAMPLE POINT # 704 2 MIN

Ch 1 Detector: PID

NUMBER RET. TIME AREA HEIGHT IDENTIFIER CONCENTRATION

1 00:02:18 2.906E+04 5.524E+02 TRA 12-DCE 474.9 & ND , IN SOLVENT PEAK

Time 05:28:10

Date 4/15/1992

Data File: DOWCFT10
Method File: DOWCRAFT

Method remarks: EMPIRE DOWCRAFT SOIL GAS SURVEY 4/15/92

Sample remarks: SAMPLE PT 7 @ 6 FT, 1000UL, 2 MIN

Ch 1 Detector: PID

NUMBER RET. TIME AREA HEIGHT IDENTIFIER CONCENTRATION

1 00:02:11 2.610E+04 9.879E+02 TRA 12-DCE 474.5 WD , Solvent PEAK

Time 05:40:38

Date 4/15/1992

Data File: DOWCFT11 Method File: DOWCRAFT

Method remarks: EMPIRE DOWCRAFT SOIL GAS SURVEY 4/15/92

Sample remarks: SAMPLE PT 8 @ 4 FT 1000UL, 2 MIN

Ch 1 Detector: PID

NUMBER RET. TIME AREA HEIGHT IDENTIFIER CONCENTRATION

1 00:02:17 3.829E+04 8.516E+02 TRA 12-DCE 475.8 € ND, SOLVENT PEAK

Time 05:53:5**6**

Date 4/15/1992

Data File: DOWCFT12 Method File: DOWCRAFT

Method remarks: EMPIRE DOWCRAFT SOIL GAS SURVEY 4/15/92

Sample remarks: SAMPLE PT 9 @ FT, 1000UL, 2 MIN

Ch 1 Detector: PID

NUMBER RET. TIME AREA HEIGHT IDENTIFIER CONCENTRATION

1 00:02:08 3.594E+04 1.801E+03 TRA 12-DCE 475.8 WD SO CORNT PEAK

Time 06:06:51

:06:**51 Date 4/15/1992**

Data File: DOWCFT13 Method File: DOWCRAFT

Method remarks: EMPIRE DOWCRAFT SOIL GAS SURVEY 4/15/92

Sample remarks: SAMPLE PT 10 @ 4 FT, 1000UL, 2 MIN

Ch 1 Detector: PID

NUMBER RET. TIME AREA HEIGHT IDENTIFIER CONCENTRATION

1 00:02:13 2.763E+04 8.581E+02 TRA 12-DCE 474.7 - ND , SOLVENT PEAK

Time 20:20:20

Date 4/15/1992

Data File: RETCHK03 Method File: DOWCRAFT

Method remarks: EMPIRE DOWCRAFT SOIL GAS SURVEY 4/15/92

Sample remarks: 4/16/92 AM STD RETENTION CHECK

Ch 1 Detector: PID

NUMBER RET, TIME AREA HEIGHT IDENTIFIER CONCENTRATION

00:02:20 5.750E+06 5.630E+05 TRA 12-DCE 1129 00:03:08 7.733E+08 5.772E+05 CIS 12-DCE 2 00:04:07 1.308E+07 8.596E+05 BENZENE 798.3 00:04:57 6.589E+08 4.566E+05 TCE 677.3 00:07:03 1.319E+06 5.964E+04 TOLUENE 39.32 4.970E+05 00:07:4**7** 1.**2**42E+07 00:09:22 4.989E+05 2.184E+04 PCE 82.72 00:10:05 5.223E+08 1.888E+05 00:14:54 2.803E+08 1.026E+05 M,P-XYLENE 1.412 9 10 00:15:55 2.621E+07 8.544E+05 00:18:19 1.169E+06 3.979E+04 11

Time 20:20:20

Date 4/15/1992

Data File: RETCHK03 Method File: DOWCRAFT

Method remarks: EMPIRE DOWCRAFT SOIL GAS SURVEY 4/15/92

Sample remarks: 4/16/92 AM STD RETENTION CHECK

Ch 1 Detector: PID

NUMBER RET. TIME AREA HEIGHT IDENTIFIER CONCENTRATION

1	00:02:20	5.750E+08	5.630E+05	TRA 12-DCE	1195
2	00:03:06	7.733E+06	5.772E+05	CIS 12-DCE	1129
3	00:04:07	1.308E+07	8.596E+05	BENZENE	798.3
4	00:04:57	6. 5 89E+06	4,586E+05	TCE 67	7. 3
5	00:07:03	1.319E+0 6	5.964E+04		
6	00:07:47	1.242E+07	4.970E+05	TOLUENE	669.3
7	00:09:22	4.989E+05	2.184E+04		
8	00:10:05	5.223E+08	1.888E+05	PCE 62	1.8
9	00:14:54	2.803E+08	1.026E+05	M,P-XYLENE	1.412
10	00:15:5 5	2.621E+07	8.544E+05		
11	00:18:19	1 169F+06	3.979E+04		

Time 20:54:49

Date 4/15/1992

Data File: DOWSBLK1 Method File: DOWCRAFT

Method remarks: EMPIRE DOWCRAFT SOIL GAS SURVEY 4/18/92 SYRINGE NO. 1 AM BLANK KUN

Ch 1 Detector: PID

AREA HEIGHT IDENTIFIER CONCENTRATION NUMBER RET. TIME

No peaks detected.

Time 21:02:54

Date 4/15/1992

Data File: DOWSBLK2 Method File: DOWCRAFT

Method remarks: EMPIRE DOWCRAFT SOIL GAS SURVEY 4/16/92

Sample remarks: SYRINGE NO. 2 AM BLANK RUN

Ch 1 Detector: PID

NUMBER RET. TIME AREA HEIGHT IDENTIFIER CONCENTRATION

1 00:03:13 1.202E+05 2.147E+03 CIS 12-DCE -61.04

Time 21:17:14

Date 4/15/1992

Data File: SYRING02 Method File: DOWCRAFT

Method remarks: EMPIRE DOWCRAFT SOIL GAS SURVEY 4/16/92

Sample remarks: SYRINGE #2 SLANK AFTR MEOH CLEAN

Ch 1 Detector: PID

NUMBER RET. TIME AREA HEIGHT IDENTIFIER CONCENTRATION

1 00:02:30 7.418E+04 2.058E+03

Time 21:28:2**6**

Date 4/15/1992

Data File: SYRNG02A Method File: DOWCRAFT

Method remarks: EMPIRE DOWCRAFT SOIL GAS SURVEY 4/16/92

Ch 1 Detector: PID

NUMBER RET. TIME AREA HEIGHT IDENTIFIER CONCENTRATION

1 00:02:31 6.918E+04 1.779E+03

Time 23:09:31

Date 4/15/1992

Data File: DOWCF1

Method File: DOWCRAFT

Method remarks : EMPIRE DOWCRAFT SOIL GAS SURVEY 4/16/92

Sample remarks: SAMPLE POINT #11 INSIDE PHOS ROOM

Ch 1 Detector: PID

NUMBER RET. TIME AREA HEIGHT IDENTIFIER CONCENTRATION

1 00:02:20 3.599E+04 9.779E+02 TRA 12-DCE 475.8

2 00:05:15 4.597E+04 3.716E+03 TCE 4.139

Time : 23:39:00

Date 4/15/1992

Data File: DOWCF2
Method File: DOWCRAFT

Sample Notes: SAMPLE PT #12 IN PHOS ROOM 2 MIN

Peak Report

Time 23:39:00

Date 4/15/1992

Data File: DOWCF2

Method File: DOWCRAFT

Method remarks: EMPIRE DOWCRAFT SOIL GAS SURVEY 4/16/92

Sample remarks: SAMPLE PT #12 IN PHOS ROOM 2 MIN

Ch 1 Detector: PID

NUMBER RET. TIME AREA HEIGHT IDENTIFIER CONCENTRATION

1 00:02:18 4.848E+04 2.040E+03 TRA 12-DCE 477.4

2 00:07:51 3.852E+04 2.897E+03 TOLUENE 0.8013

Time 00:01:59

Date 4/16/1992

Data File: DOWCF3

Method File: DOWCRAFT

Method remarks: EMPIRE DOWCRAFT SOIL GAS SURVEY 4/16/92

Sample remarks: SAM PT 13 IN PHOS ROOM, 2 MIN

Ch 1 Detector: PID

NUMBER RET. TIME AREA HEIGHT IDENTIFIER CONCENTRATION

1 00:02:11 3.095E+04 9.668E+02 TRA 12-DCE 475.2

Time 00:36:2**6**

Date 4/16/1992

Data File: DOWCRF1
Method File: DOWCRAFT

Method remarks: EMPIRE DOWCRAFT SOIL GAS SURVEY 4/16/92

Sample remarks: SAMPLE PT 14 IN PROD ROOM, 2 MIN

Ch 1 Detector: PID

NUMBER RET. TIME AREA HEIGHT IDENTIFIER CONCENTRATION

1 00:02:12 2.742E+04 8.097E+02 TRA 12-DCE 474.7 2 00:05:03 3.685E+04 3.243E+03 TCE 3.298

Time 00:58:39

Date 4/16/1992

Data File: DOWCRF2 Method File: DOWCRAFT

Method remarks: EMPIRE DOWCRAFT SOIL GAS SURVEY 4/16/92

Sample remarks: SAMPLE PT #15 UNDER STAIRS, 2 MIN

Ch 1 Detector: PID

NUMBER RET. TIME AREA HEIGHT IDENTIFIER CONCENTRATION

Time 01:14:23

Date 4/18/1992

Data File: DOWCRF3
Method File: DOWCRAFT

Method remarks: EMPIRE DOWCRAFT SOIL GAS SURVEY 4/18/92

Sample remarks: AFTERNOON RETENTION CHECK W/STD

Ch 1 Detector: PID

NUMBER RET. TIME AREA HEIGHT IDENTIFIER CONCENTRATION

1	00:02:11	6.079E+08	5.968E+05	TRA 12-DCE	1237
2	00:02:5 5	6. 5 50E+06	7.197E+05	CIS 12-DCE	943.8
3	00:03:53	1.244E+07	8.681E+05	BENZENE	753. 5
4	00:04:42	6.874E+06	5.167E+05	TCE 70	7.3
5	00:07:28	1.280E+07	4.833E+05	TOLUENE	640.1
6	00:09:40	5, 3 59E+06	1.821E+05	PCE (38

Time 02:46:44

Date 4/16/1992

Data File: DOWCRF4
Method File: DOWCRAFT

Method remarks: EMPIRE DOWCRAFT SOIL GAS SURVEY 4/18/92

Sample remarks: SAMPLE PT #16 IN STOR ROOM, 2 MIN

Ch 1 Detector: PID

NUMBER RET. TIME AREA HEIGHT IDENTIFIER CONCENTRATION

1 00:02:17 3.810E+04 8.283E+02 TRA 12-DCE 475.8

Time 03:22:01

Date 4/16/1992

Data File: DOWCRF5
Method File: DOWCRAFT

Method remarks: EMPIRE DOWCRAFT SOIL GAS SURVEY 4/18/92

SAMPLE POINT # 17 NEAR VAPOR DEGREASER

Ch 1 Detector: PID

NUMBER RET. TIME AREA HEIGHT IDENTIFIER CONCENTRATION

1 00:02:12 2.821E+04 1.064E+03 TRA 12-DCE 474.8

2 00:05:05 4.938E+04 4.275E+03 TCE 4.454

Time 04:00:07

Date 4/18/1992

Data File: DOWCRT1 Method File: DOWCRAFT

Method remarks: EMPIRE DOWCRAFT SOIL GAS SURVEY 4/16/92

Sample remarks: SAMPLE PT #18 IN WAREHOUSE ROOM

Ch 1 Detector: PID

NUMBER RET. TIME AREA HEIGHT IDENTIFIER CONCENTRATION

1 00:02:12 2.591E+04 8.625E+02 TRA 12-DCE 474.5

2 00:05:07 5.379E+04 4.548E+03 TCE 4.862

Time 04:18:44

Date 4/16/1992

Data File: DOWCRT2 Method File: DOWCRAFT

Method remarks: EMPIRE DOWCRAFT SOIL GAS SURVEY 4/16/92

Sample remarks: POINT #19 IN WAREHOUSE ROOM

Ch 1 Detector: PID

NUMBER RET. TIME AREA HEIGHT IDENTIFIER CONCENTRATION

1 00:02:11 2.681E+04 8.867E+02 TRA 12-DCE 474.6

Time 04:38:02

Date 4/16/1992

Data File: DOWCRT3
Method File: DOWCRAFT

Method remarks: EMPIRE DOWCRAFT SOIL GAS SURVEY 4/16/92

Sample remarks: SAMPLE PT 20 IN WAREHOUSE ROOM

Ch 1 Detector: PID

NUMBER RET. TIME AREA HEIGHT IDENTIFIER CONCENTRATION

1 00:02:14 3.183E+04 9.065E+02 TRA 12-DCE 475.2

Time 04:59:30

Date 4/16/1992

Data File: DOWCRT4
Method File: DOWCRAFT

Method remarks: EMPIRE DOWCRAFT SOIL GAS SURVEY 4/16/92

Sample remarks: SAMPLE PT 21 IN BOILER ROOM

Ch 1 Detector: PID

NUMBER RET. TIME AREA HEIGHT IDENTIFIER CONCENTRATION

1 00:02:12 3.116E+04 9.764E+02 TRA 12-DCE 475.2

Time 05:26:07

Date 4/16/1992

Data File: DOWCRT5
Method File: DOWCRAFT

Method remarks: EMPIRE DOWCRAFT SOIL GAS SURVEY 4/16/92 Sample remarks: SAMPLE PT 22 OUTSIDE NEAR PALLETTS

Ch 1 Detector: PID

NUMBER RET. TIME AREA HEIGHT IDENTIFIER CONCENTRATION

1 00:02:14 3.141E+04 7.959E+02 TRA 12-DCE 475.2

Time 08:01:23

Date 4/17/1992

Data File: DOWCT02 Method File: DOWCRAFT

Method remarks: EMPIRE DOWCRAFT SOIL GAS SURVEY 4/17/92

Sample remarks: AM STANDARD RET CHECK RUN 2

Ch 1 Detector: PID

NUMBER RET. TIME AREA HEIGHT IDENTIFIER CONCENTRATION

1	00:02:12	1.872E+08	1.059E+05	TRA 12-DCE 681.7
2	00:02:44	6.745E+08	8.113E+05	CIS 12-DCE 974.2
3	00:03:41	1.228E+07	8.616E+05	BENZENE 742.3
4	00:04:29	7.131E+08	5.594E+05	TCE 734.5
5	00:07:12	1.317E+07	4.768E+05	TOLUENE 682.7
8	00:09:22	5.629E+08	1.851E+05	PCE 669.9
7	00:15:14	2.715E+07	8.558E+05	M,P-XYLENE 298.2
8	00:18:24	1 274F±07	4 6805105	

Time : 08:22:57

Date 4/17/1992

Data File: DOWCT03
Method File: DOWCRAFT

Sample Notes: AM SYRINGE BLANK, SYR #1

Peak Report

Time 08:22:57

Date 4/17/1992

Data File: DOWCT03
Method File: DOWCRAFT

Method remarks: EMPIRE DOWCRAFT SOIL GAS SURVEY 4/17/92

Sample remarks: AM SYRINGE BLANK, SYR #1

Ch 1 Detector: PID

NUMBER RET. TIME AREA HEIGHT IDENTIFIER CONCENTRATION

	٤		
·			
PID A:5 h:	2000 PW: 20 GS: 0.8	<u>à </u>	19

Melhod File: DOWCRAFT

Date 4/17/1992

Method remarks: EMPIRE DOWCRAFT SOIL GAS SURVEY 4/17/92

Ch 1 Detector: PID

NUMBER RET. TIME AREA HEIGHT IDENTIFIER CONCENTRATION

Time 09:19:45

Date 4/17/1992

Data File: DOWCT05

Method File: DOWCRAFT

Method remarks: EMPIRE DOWCRAFT SOIL GAS SURVEY 4/17/92

Sample remarks: SAMPLE PT 23 OUTSIDE IN PRKNG LOT

Ch 1 Detector: PID

HEIGHT IDENTIFIER CONCENTRATION AREA NUMBER RET. TIME

Time 09:37:42

Date 4/17/1992

Data File: DOWCT06
Method File: DOWCRAFT

Method remarks: EMPIRE DOWCRAFT SOIL GAS SURVEY 4/17/92

Sample remarks: SAM PT 25 NEAR TRASH COMPACTOR

Ch 1 Detector: PID

NUMBER RET. TIME AREA HEIGHT IDENTIFIER CONCENTRATION

Time 09:52:40

Date 4/17/1992

Data File: DOWCT07 Method File: DOWCRAFT

Method remarks: EMPIRE DOWCRAFT SOIL GAS SURVEY 4/17/92

Sample remarks: SAMPLE PT 26 UNDER SHED NR WOOD

Ch 1 Detector: PID

NUMBER RET. TIME AREA HEIGHT IDENTIFIER CONCENTRATION

Time 10:05:48

Date 4/17/1992

Data File: DOWCT08
Method File: DOWCRAFT

Method remarks: EMPIRE DOWCRAFT SOIL GAS SURVEY 4/17/92

Sample remarks: SAMPLE PT 27 NEAR CHIMNEY BASE

Ch 1 Detector: PID

NUMBER RET. TIME AREA HEIGHT IDENTIFIER CONCENTRATION

No peaks detected.

Time 10:25:16

Date 4/17/1992

Data File: DOWCT09
Method File: DOWCRAFT

Method remarks: EMPIRE DOWCRAFT SOIL GAS SURVEY 4/17/92

Ch 1 Detector: PID

NUMBER RET. TIME AREA HEIGHT IDENTIFIER CONCENTRATION

Time 10:37:33

Date 4/17/1992

Data File: DOWCT10
Method File: DOWCRAFT

Method remarks: EMPIRE DOWCRAFT SOIL GAS SURVEY 4/17/92

Sample remarks: SP NO 29 IN ALLEY ON JT CONT SIDE

Ch 1 Detector: PID

NUMBER RET. TIME AREA HEIGHT IDENTIFIER CONCENTRATION

Time 10:49:17

Date 4/17/1992

Data File: DOWCT11
Method File: DOWCRAFT

Method remarks: EMPIRE DOWCRAFT SOIL GAS SURVEY 4/17/92

PM RETENTION CHECK

Ch 1 Detector: PID

NUMBER RET. TIME AREA HEIGHT IDENTIFIER CONCENTRATION

- 1 00:02:09 4.879E+06 5.084E+05 TRA 12-DCE 1086
- 2 00:02:51 5.895E+08 6.329E+05 CIS 12-DCE 841.3
- 3 00:03:49 1.177E+07 8.612E+05 8ENZENE 708.1
- 4 00:04:38 6.222E+08 4.480E+05 TCE 838.6

Huntingdon Constitution of the Constitution of

APPENDIX E


```
_______
                GRAIN SIZE DISTRIBUTION TEST DATA
           12/16/92
              BTA-92-266
Project No.:
roject: Dowcraft Pumping Wells
________
                       Sample Data
Location of Sample: PW - 1U Composite
ample Description: F-C SAND with Little GRAVEL, Little SILT
                           Liquid limit:
SCS Class:
                           Plasticity index:
AASHTO Class:
                         Notes
Remarks: Sample collected by Empire Soils
ig. No.:
                  Mechanical Analysis Data
 ______
Sieve Size, mm Percent finer
 inches 25.40 100.0
          4.760
                79.8
62.3
 4
 10
 20
           0.840
                  47.0
           0.420
                  37.1
 40
60
           0.250
                  30.4
# 100
           0.149
                  25.9
           0.074
                  17.8
 200
                  Fractional Components
 + 3 in. = 0.0 % GRAVEL = 20.2 % SAND = 62.0
 FINES = 17.8
   6.53 D60= 1.778 D50= 1.012
 85=
 30= 0.2399
```


GRAIN SIZE DISTRIBUTION TEST DATA 12/16/92 Project No.: BTA-92-266
Project: Dowcraft Pumping Wells Sample Data accation of Sample: PW - 1L Composite Sample Description: SILT or CLAY with Trace SAND ISCS Class: Plasticity index: Liquid limit: ASHTO Class: Notes _____ Remarks: Sample collected by Empire Soils ig. No.: Mechanical Analysis Data Size, mm Percent finer
4.760 100.0 ieve # 4 2.000 99.9 0.840 99.6 0.420 99.3 10 20 40 98.8 # 100 0.149 93.3 200 0.074 Fractional Components -------+ 3 in. = 0.0 % GRAVEL = 0.0 % SAND = 6.7 FINES = 93.3


```
GRAIN SIZE DISTRIBUTION TEST DATA
               12/16/92
            BTA-92-266
roject No.:
Project: Dowcraft Pumping Wells
Sample Data
ocation of Sample: PW - 2U Composite
Sample Description: F-C SAND with Little GRAVEL, Little SILT
TSCS Class:
                             Liquid limit:
                             Plasticity index:
ASHTO Class:
  _____
Remarks: Sample collected by Empire Soils
 ig. No.:
                    Mechanical Analysis Data
ieve Size, mm Percent finer inches 25.40 100.0
           4.760 81.8
2.000 69.0
 -10
                   53.0
36.9
25.3
            0.840
20
            0.420
# 40.
            0.250
60
 100
            0.149
                   16.9
# 200
            0.074
                   11.2
                     Fractional Components
% + 3 in. = 0.0 % GRAVEL = 18.2 % SAND = 70.6
 FINES = 11.2
D85= 6.10 D60= 1.189 D50= 0.732
     0.3119 D15= 0.12417
D30=
```


GRAIN SIZE DISTRIBUTION TEST DATA Test No.: 1 ate: Project No.: BTA-92-266
Project: Dowcraft Pumping Wells _________ Sample Data ~ _______ ocation of Sample: PW - 2L Composite of S-8, and S-9 Sample Description: SILT or CLAY with Trace SAND SCS Class: Liquid limit: Plasticity index: ASHTO Class: Notes _____ Remarks: Sample collected by Empire Soils ig. No.: Mechanical Analysis Data _____ Size, mm Percent finer 4.760 100.0 # 4 99.9 99.6 10 2.000 20 0.840 99.3 40 0.420 100 0.149 98.8 0.074 93.3 200 Fractional Components + 3 in. = 0.0 % GRAVEL = 0.0 % SAND = 6.7 FINES = 93.3

Huntingdon

APPENDIX F

ENVIRONMENTAL ANALYTICAL REPORT

REPORT NUMBER: 93-0225

PREPARED FOR:

EMPIRE SOILS INVESTIGATIONS, INC. S-5167 S. PARK AVENUE HAMBURG, NEW YORK 14075

RE: BTA-92-226; DOWCRAFT

PREPARED BY:

HUNTINGDON ANALYTICAL SERVICES
DIVISION OF EMPIRE SOILS INVESTIGATIONS, INC.
P.O. BOX 250
MIDDLEPORT, NEW YORK 14105
TELEPHONE: 716/735-3400; FAX: 716/735-3653

MARCH 2, 1993

PAGE 1

HUNTINGDON ANALYTICAL SERVICES ELAP #10833 ENVIRONMENTAL REPORT

REPORT NUMBER: 93-0225

STATEMENT OF WORK PERFORMED

I HEREBY DECLARE THAT THE WORK WAS PERFORMED UNDER MY SUPERVISION ACCORDING TO THE PROCEDURES OUTLINED BY THE FOLLOWING REFERENCES AND THAT THIS REPORT PROVIDES A CORRECT AND FAITHFUL RECORD OF THE RESULTS OBTAINED.

- 40 CFR PART 136, "GUIDELINES ESTABLISHING TEST PROCEDURES FOR THE ANALYSIS OF POLLUTANTS UNDER THE CLEAN WATER ACT", OCTOBER 26, 1984 (FEDERAL REGISTER) U. S. ENVIRONMENTAL PROTECTION AGENCY.
- U.S. ENVIRONMENTAL PROTECTION AGENCY, "TEST METHODS OF EVALUATING SOLID WASTE PHYSICAL/CHEMICAL METHODS", OFFICE OF SOLID WASTE AND EMERGENCY RESPONSE, SW-846, 2ND EDITION AND 3RD EDITION.

THIS REPORT CONTAINS ANALYTICAL DATA BASED ON OUR EXAMINATION OF THE SAMPLE(S) PRESENTED TO US. THIS REPORT CONTAINS (EXCEPT WHERE EXPLICITLY STATED) A COMPLETE ACCOUNT OF THE ANALYSES REQUESTED TO BE PERFORMED ON THE SAMPLE(S). INFORMATION WHICH WAS NOT REQUESTED TO BE REPORTED IS NOT INCLUDED.

ANDREW P. CLIFTON

MARCH 2, 1993

ENVIRONMENTAL LABORATORY DIRECTOR

REPORT CODE LEGEND:

<DL = Less than detection limit</pre>

ND = NOT DETECTED

NA = NOT APPLICABLE

INP = INFORMATION NOT PROVIDED

MB = METHOD BLANK

HUNTINGDON ANALYTICAL SERVICES

ALUMINUM (TOTAL) Analyte:

Date **Sampl**ed: Date **Prepa**red:

2/11/93

2/23/93

SAM PL E ID:		EPA	DATE	DET.LIMIT RESULT		•	
	HA S #	CLIENT	METHOD	ANALYZED	(ug/L)	ug/L	
	93-02 25-03	ESI-9	6010	2/26/93	3 0.0	6,470	*95
	93-02 25-04	PW-2	6010	2/26/93	30.0	7,520	*95
	93-02 2 5-05	PW-2	6010	2/26/93	3 0.0	847	*95
	93-02 2 5- 06	PW-2	6010	2/26/93	30.0	1,170	*95
	93-02 2 5-0 7	PW-1	6010	2/26/93	150.0	61,500	*95
	93-02 2 5-08	PW-1	6010	2/26/93	30.0	10,100	*95

Analyte:

IRON (TOTAL)

Date **Samp**led: Date **Pr**epared:

2/11/93

SAM P LE ID:		EPA	DATE	DET.LIMIT RESULT	
HA S #	CLIENT	METHOD	ANALYZED	(ug/L)	ug/L
				• • •	# ##O
93-0 22 5- 03	ESI-9	6010	2/26/93	2 0.0	5,550
93-0 22 5- 0 4	PW-2	6010	2/26/93	2 0.0	16,100
93-0 22 5- 0 5	PW-2	6010	2/26/93	2 0.0	1,610
93-0 22 5- 0 6	PW-2	6010	2/26/93	20.0	2,760
93-0 22 5-07	PW-1	6010	2/26/93	100.0	133,000
93-0 22 5 -0 8	PW-1	6010	2/26/93	2 0.0	22,400 _

Analyte: MANGANESE (TOTAL)

Date **S**am**p**led :

2/11/93

Date Prepared:

SAMPLE ID:		EPA	DATE	DET.LIMIT RESULT	
HAS #	CLIENT	METHOD	ANALYZED	<u>(ug/L)</u>	ug/L
93-0 22 5 -0 3	ESI-9	6010	2/26 /93	10.0	326
93-0 22 5- 0 4	PW-2	6010	2/26/93	10.0	2,850
93-0 22 5-05	PW-2	6010	2/26/93	10.0	940
93-0 22 5 -0 6	PW-2	6010	2/26/93	10.0	900
93-0 22 5- 0 7	PW-1	6010	2/26/93	5 0.0	5,100
93-0 22 5-08	PW-1	6010	2/26/93	10.0	1,690

Analyte: ALUMINUM (DISSOLVED)

Date **Sampl**ed: Date **Pr**epared:

2/11/93

SAM PL E ID		EPA	DATE	DET.LIMIT	RESULT
HA S #	CLIENT	METHOD	ANALYZED	(ug/L)	ug/L
93-02 2 5-0 3	ESI-9	6010	2/26/93	3 0.0	< 30
93-02 2 5-04	PW-2	6010	2/26/93	3 0.0	46
93-02 2 5-05	PW-2	6010	2/26/93	3 0.0	33
93-02 2 5-0 6	PW-2	6010	2/26/93	3 0.0	< 30
93-02 2 5-07	PW-1	6010	2/26/93	3 0.0	35
93-02 2 5-08	PW-1	6010	2/26/93	3 0.0	53 _

IRON (DISSOLVED) Analy**te**:

Date **Sampl**ed: Date **Pr**epared:

2/11/93

SAMPLE II	D:	EPA	DATE	DET.LIMIT	RESULT
HA S #	CLIENT	METHOD	ANALYZED	(ug/L)	ug/L
93-02 2 5- 03	ESI-9	6010	2/26 /93	2 0.0	43
93-02 2 5- 04	PW-2	6010	2/26/93	2 0.0	80
93-02 2 5-05	PW-2	6010	2/26/93	2 0.0	47
93-02 2 5- 06	PW-2	6010	2/26/93	2 0.0	79
93-02 2 5-07	PW-1	6010	2/26/93	20.0	67
93-02 2 5-08	PW-1	6010	2/26/93	20.0	98 _

Analyte: MANGANESE (DISSOLVED)

 Date Sampled:
 2/11/93

 Date Prepared:
 2/23/93

SAMPLE ID:		EPA	DATE	DET.LIMIT	RESULT
HA S #	CLIENT	METHOD	ANALYZED	(ug/L)	ug/L_
93-02 2 5- 03	ESI-9	6010	2/26/93	10.0	11
93-02 2 5- 04	PW-2	6010	2/26/93	10.0	2,240
93-02 2 5-05	PW-2	6010	2/26/93	10.0	831
93-02 2 5- 06	PW-2	6010	2/26/93	10.0	893
93-02 2 5-0 7	PW-1	6010	2/26/93	10.0	1,480
93-02 2 5-08	PW-1	6010	2/26/93	10.0	1,140 _

HUNTINGDON ANALYTICAL SERVICES ENVIRONMENTAL

EPA METHOD 824**0**VOLATILE ORGA**NIC**S

			PW-2	PW-2	PW-2	
SAMPLE IDENTIFICATION:	EFFLUENT	ESI-6	2/10/93	2/11/93	2/11/93	
			10:44	06:30	14:22	
HAS SAMPLE #93 022 5	91	02	04	05	06	
COMPOUND	RESULT	RESULT	RESULT	RESULT	RESULT	DL
	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
CHLOROMETHA NE	<10	<10	<10	<10	<10	<10
BROMOMETHANE -	<10	<10	< 10	< 10	<10	<10
VINYL CHLORIDE	<10	36	11	< 10	< 10	< 10
CHLOROETHANE	<10	< 10	< 10	<10	<10	< 10
METHYLENE CHLORIDE	< 10	<10	< 10	< 10	< 10	< 10
ACETONE	<10	<10	<10	<10	<10	< 10
TRICHLOROFLU OR OM ET HANE	<10	<10	<10	< 10	< 10	10
CARBON DISULFIDE	<10	<10	< 10	< 10	<10	< 10
1,1-DICHLOROET HE NE		< 10	<10	< 10	< 10	<10
1,1-DICHLOROETHANE		< 10	<10	< 10	<10	<10
1,2-DICHLOROET HE NE (T OTAL)		1,900	410	190	190	< 10
CHLOROFORM		<10	<10	< 10	< 10	<10
1,2-DICHLOROETHANE		<10	<10	<10	<10	< 10
2-BUTANONE		<10	< 10	<10	<10	< 10
1,1,1-TRICHLORO ET HANE		< 10	18	16	15	<10
CARBON TETRACHLORIDE		< 10	<10	<10	<10	< 10
VINYL ACETATE		< 10	<10	<10	<10	< 10
BROMODICHLOROMETHANE		<10	< 10	< 10	<10	<10
1,2-DICHLOROPR OP ANE		<10	<10	<10	< 10	<10
cis-1,3-DICHLOROPROPENE		<10	< 10	< 10	< 10	< 10
TRICHLOROETH EN E		14,000	22,000	20,000	19,000	<10
DIBROMOCHLOROMETHANE		< 10	<10	< 10	< 10	< 10
1,1,2-TRICHLOROETHANE	<10	< 10	< 10	< 10	<10	<10
BENZENE		< 10	< 10	<10	<10	<10
trans-1,3-DICHLOROPROPENE		<10	<10	<10	<10	< 10
2-CHLOROETHYLVINYL ETHER		<10	< 10	< 10	< 10	<10
BROMOFORM		<10	< 10	<10	<10	< 10
4-METHYL-2-PENTANONE	<10	<10	<10	<10	<10	< 10
2-HEXANONE	<10	< 10	< 10	< 10	<10	< 10
TETRACHLOROETHENE		17	76	58	54	<10
1,1,2,2-TETRACHLOROETHANE		< 10	< 10	< 10	<10	<10 ;
TOLUENE		<10	< 10	<10	<10	<10
CHLOROBENZENE	<10	< 10	< 10	< 10	<10	<10
ETHYL BENZENE		< 10	<10	< 10	<10	<10
STYRENE		<10	< 10	<10	<10	<10
XYLENE (TOTAL)		< 10	< 10	<10	<10	<10
1,3-DICHLOROBENZENE		<10	<10	<10	<10	<10
1,2-DICHLOROBENZENE		< 10	< 10	< 10	<10	<10
1,4-DICHLOROB EN ZEN E		<10	< 10	< 10	<10	<10
DATE SAMPLED:	2-11-93	2-10-93	2-10-93	2 -11-93	2 -11-93	
DATE RECEIVED:	2-12-93	2-12-93	2-12-93	2 -12-93	2 -12-93	
DATE ANALYZE D :	2-16-93	2-16-93	2-16-93	2 -16-93	2 -16-93	

HUNTINGDON ANALYTICAL SERVICES ENVIRONMENTAL

EPA METHOD 8240

VOLATILE ORGANICS

• •				
	PW-1	PW-1		
SAMPLE IDENTIFICATION:	2/9/93	2/9/93	METHOD	
	3:30	5:39	BLANK	
HAS SAMPLE #93 022 5	07	08		
COMPOUND	RESULT	RESULT	RESULT	DL
	ug/L	ug/L	ug/L	ug/L
CHLOROMETHANE	<10	<10	<10	<10
BROMOMETHAN E	<10	<10	<10	<10
VINYL CHLORIDE	<10	<10	<10	<10
CHLOROETHANE	<10	<10	<10	< 10
METHYLENE CHLORIDE	<10	<10	<10	< 10
ACETONE ————	<10	<10	<10	<10
TRICHLOROFLU OR OM ET HANE	<10	<10	<10	<10
CARBON DISULFIDE	<10	<10	<10	< 10
1,1-DICHLOROET HE NE	<10	<10	<10	<10
1,1-DICHLOROETHANE	<10	<10	<10	<10
1,2-DICHLOROETHENE (TOTAL)	180	160	<10	<10
CHLOROFORM	<10	<10	<10	< 10
1,2-DICHLOROETHANE	<10	<10	<10	<10
2-BUTANONE	<10	< 10	< 10	<10
1,1,1-TRICHLOROETHANE	<10	<10	<10	<10
CARBON TETRACHLORIDE	<10	<10	<10	< 10
VINYL ACETATE -	<10	<10	<10	<10
BROMODICHLOROMETHANE	< 10	<10	<10	<10
1,2-DICHLC)ROPROPANE	<10	<10	<10	<10
cis-1,3-DICHLOROPROPENE	<10	<10	<10	<10
TRICHLOROETH EN E	5,900	8,100	<10	<10
DIBROMOCHLOROMETHANE	<10	<10	<10	<10
1,1,2-TRICHLOROETHANE	<10	<10	<10	<10
BENZENE	<10	< 10	< 10	< 10
trans-1,3-DICHLOROPROPENE	< 10	<10	<10	<10
2-CHLOROETHYLVINYL ETHER	<10	<10	<10	<10
BROMOFORM	<10	<10	<10	< 10
4-METHYL-2-PENTANONE	<10	< 10	<10	<10
2-HEXANONE	<10	< 10	<10	< 10
TETRACHLOROETHENE	<10	< 10	<10	< 10
1,1,2,2-TETRACHL O ROETHANE	<10	< 10	< 10	<10
TOLUENE	<10	< 10	<10	<10
CHLOROBENZENE	<10	< 10	< 10	<10
ETHYL BENZENE	<10	<10	< 10	<10
STYRENE	< 10	< 10	<10	<10
XYLENE (TOTAL)	< 10	<10	<10	<10
1,3-DICHLOROBENZENE	<10	<10	<10	<10
1,2-DICHLOROBENZENE	<10	<10	<10	<10
1,4-DICHLOROBENZENE	<10	<10	<10	<10
ay come and a common and an arranged and arranged arranged and arranged arranged arranged arranged and arranged a				
DATE SAMPLED:	2-09-03	2-09-03		
DATE RECEIVED:	2 -12-93	2-12-93		
DATE ANALYZE D:	2-16-93	2-16-93	2-16-93	

HUNTINGDON AN	IAL YTICAL	SERVICES	S - CHAIN	-OF-CUSTO	DY RECC	ORD A	ND AN	ALYTIC	AL REQ	UEST F	ORM	٨		PAGE	OF
Client Name:	_	_	:15 -	Toc.				Client C	1	<u>(.</u> 5		roha	<u>,^_</u>	HAS Quoto #	
Address:	- 15	167	Ny	Pock 140+S				Phone <u>:</u>	<u>C4</u>	9.9	ile	2		P.O. #	
	A 92	26G	Don	VSite Namo: 1 craft HAS Rol. No.	92.66	M		4018		con	\overline{I}		/ /		
Sampler's Signatu	\mathcal{M}	notor		93-02 Sample	725 HAS	T R I	No.	YUX	5/10	stic.	/ /	/ /	,	Analysis Requested Hom Voa	H/Romarks
I.D.	Date 2/11/93	Time 125	Grab	Location acher	Sog. #	$\overset{x}{\mathcal{W}}$	Cont.	2	/					TCL Volatiles	>} -
	21093	0919	9	ESI-G	024	W	2	2	*7					11 11	41, Fei Ma
FSI-9		1945 1044 10630		FGI-9 PW-2	03	W	4	7	2					TCL VolatileS A+B	Al, Fe, Mn
PW-2	7-1-	0630	55 1	PW-Z	05	M	4	2	2					20	11
Pw-2	2/11/93	1422	G	1 2	06	W	4	2	2					(1	\ ''
PW -1	219/92	3130 5:39		PW-1	07	M	4	2	2					/1	1
PW -1	41412				TVP							+			
Relinquished by	201	nulan	12/17/4	Received b	wen_	Mi	n: 20.	Rollo	duishod	by:	ne			Rocoived by:	~46~4.6
Ablinquished by	· · · · · · · · · · · · · · · · · · ·		Date/lip	Heceived to	T.DA	200	1	212	703	12/30	Treilla	ins (OTAL	- + DISSOLVED	C:\QPRO\COC

ENVIRONMENTAL ANALYTICAL REPORT

REPORT NUMBER 92-631

PREPARED FOR:

EMPIRE SOILS INVESTIGATIONS, INC. S-5167 S. PARK AVENUE HAMBURG, NEW YORK 14075

RE: BTA-92, DOWCRAFT

PREPARED BY:

HUNTINGDON ANALYTICAL SERVICES
DIVISION OF EMPIRE SOILS INVESTIGATIONS, INC.
P.O. BOX 250
MIDDLEPORT, NEW YORK 14105

MAY 1, 1992

PAGE 1

HAS

HUNTINGDON ANALYTICAL SERVICES ELAP #10833 ENVIRONMENTAL REPORT

REPORT NUMBER 92-631

STATEMENT OF WORK PERFORMED

I HEREBY DECLARE THAT THE WORK WAS PERFORMED UNDER MY SUPERVISION ACCORDING TO THE PROCEDURES OUTLINED BY THE FOLLOWING REFERENCES AND THAT THIS REPORT PROVIDES A CORRECT AND FAITHFUL RECORD OF THE RESULTS OBTAINED.

- 40 CFR PART 136, "GUIDELINES ESTABLISHING TEST PROCEDURES FOR THE ANALYSIS OF POLLUTANTS UNDER THE CLEAN WATER ACT", OCTOBER 26, 1984 (FEDERAL REGISTER) U. S. ENVIRONMENTAL PROTECTION AGENCY.
- U.S. ENVIRONMENTAL PROTECTION AGENCY, "TEST METHODS OF EVALUATING SOLID WASTE PHYSICAL/CHEMICAL METHODS", OFFICE OF SOLID WASTE AND EMERGENCY RESPONSE, SW-846, 2ND EDITION AND 3RD EDITION.
- NEW YORK STATE DEPARTMENT OF HEALTH, ANALYTICAL TOXICOLOGY LABORATORY HANDBOOK, AUGUST 1982.

RICHARD J. RONAN, PH.D.

MAY 1, 1992

LABORATORY DIRECTOR, ENVIRONMENTAL

REPORT CODE LEGEND:

<DL = LESS THAN DETECTION LIMIT

ND = NOT DETECTED

NA = NOT APPLICABLE

INP = INFORMATION NOT PROVIDED

MB = METHOD BLANK

HUNTINGDON ANALYTICAL SERVICES ENVIRONMENTAL

Inorganio Wet Chemical Analyses

Analyte: pH

EPA Method No.: 150.1

Sample Sample Date	HAS Sample #92-		Date Date Prepared:	Oate i	Method Betection: Limit		Units	
'' 4/16/92	631-001	: 251-10	 4/21/92 	 	0.10	7.02	s.U.	
i 4/16/92 	: : 63 1-002	: E5I-11	 4/21/92 	(4/21/92 	0.10	7.39 7.39	5.U.	i
 4/16/92 	: 63 1-883 	 E5I-12 	1 4/21/92 	((4/2 1/9 2) (Q.10	 7.34 	1 8.U. 1	
1 1 4/16/92 1	: : 6 31-004 :	: : ES1-20 :	 4/21/92 	 - 4/21/92 -	0.10	i 7.93 - i	 5.U. 	95** 95**
1 (4/16/92 1) ! 631-0 05	i I ESI-2 I	 4/21/92 	i 4/21/92 	 0.10 	 7. 30 	s.u. I	<1*** 95**
 4/16/92 	: ; 6 31 -0 06 :	 ES1-3) 4/21/92 	l 4/21/92 	(0.10 	 7.46 	 S.U. 	i 95** 95**
1 1 4/16/92 1	 6 51 -0 07 	1 i ESI-4 I	 4/21/92 -	1 4/21/92 	 0.10 	1 1 7.51 1.	 S.U. 	95** 95**

^{**} This indicates that a 95% confidence limit was achieved with an EFA Quality Control Check analyzed with this sample.

 $[\]star\star\star\star$ This sample was analyzed in duplicate with the RPD indicated above.

HUNTINGDON ANALYTICAL SERVICES ENVIRONMENTAL

Inorganic Wet Chemical Analyses

Analyte: pH

EPA Method No.: 150.1

						· ·		_
Sample i Date !	HAS Sample #92-		 Date Prepared 	Date 1	Method Detection Limit 	 Result 	Units	 QC in
 1 4/16/921	631-008	 ESI-5	4/21/92 	 4/21/92 	 0.10 	1 7.77 f	s.u. 	 95**
i 4/16/921	631-009	l I ESI-9 I	I - I 4/21/92 I	 4/21/92 	 0.10 	1 7.56 l	s.u.	95**
4/16/92 	631-010	 ESI-8 	i 4/21/92 	 4/21/92 	1 1 0.10 1	1 7.23 l	s.u.	 95**
 4/16/92 	631-011	i I ESl-1 I	(4/21/92 	i 4/21/92 	 0.10 		S.U.	 95**
1 4/16/921 1	631-012	i i ESI-7 i	 4/21/92 	 4/21/92 	 0.10) 1 7.48 i 1	S.U.	 95**
1 4/16/92) . I	631-013	: : ÉS1-6 :	i 4/21/92 	i i 4/21/92 i	 0.10 	1 7.49 1	s.u.	1 95***
1 4/16/92 	631-014	: : ESI-13 !	 4/21/92 	(4/21/92 	 0.10 	1 7.14 I	5.U.	<1*4 95**
+		+	+	+	+	+		-+

^{**} This indicates that a 95% confidence limit was achieved with an EPA Quality Control Check analyzed with this sample.

^{***} This sample was analyzed in duplicate with the RPD indicated above.

Sample ID: DOWCRAFT ESI-10 HAS Sample #92-0631-001

Date Sampled: 4/16/92

ANALYT E	EPA METHOD	DATE PREPARED	DATE ANALYZED	DETECTION LIMIT	RESULT mg/l	QC
ALUMIN UM	6010	4/23/92	4/27/92	0.03	0.05	*95
ANTI MONY	6010	4/23/92	4/27/92	0.05	<dl< td=""><td>*95</td></dl<>	* 95
ARSENIC	7060	4/23/92	4/ 24/ 92	0.01	< DL	* 95
BARIUM	6010	4/23/92	4/27/92	0.01	0.13	* 95
BERYLL IU M	6010	4/23/92	4/27/92	0.005	<dl< td=""><td>*95</td></dl<>	* 95
CADMIUM	6010	4/23/92	4/27/92	0.005	<dl< td=""><td>*95</td></dl<>	* 95
CALCIUM	6010	4/23/92	4/27/92	0.02	55.1	* 9 ⁻ 5
CHROMI UM	6010	4/23/92	4/27/92	0.01	<dl< td=""><td>*95</td></dl<>	* 95
COBALT	6010	4/23/92	4/27/92	0.01	<dl< td=""><td>*95</td></dl<>	* 95
COPPER	6010	4/23/92	4/27/92	0.01	<dl< td=""><td>*95</td></dl<>	* 95
IRON	6010	4/23/92	4/27/92	0.02	1.07	* 95
LEAD	7421	4/23/92	4/28/92	0.005	<dl< td=""><td>*95</td></dl<>	* 95
MAGNESIUM	6010	4/23/92	4/27/92	0.04	5.82	* 95
MANGAN ES E	6010	4/23/92	4/27/92	0.01	1.04	* 95
MERCUR Y	7470	4/23/92	4/30/92	0.0002	<dl< td=""><td>*95</td></dl<>	*9 5
NICKEL	6010	4/23/92	4/27/92	0.04	<dl< td=""><td>*95</td></dl<>	* 95
POTASSIUM	6010	4/23/92	4/27/92	3.0	4.27	*95
SELENI UM	7740	4/23/92	4/27/92	0.005	<dl< td=""><td>*95</td></dl<>	* 95
SILVER	6010	4/23/92	4/27/92	0.01	< DL	* 95
SODIUM	6010	4/23/92	4/27/92	0.05	25.1	*95
THALLI U M	7841	4/23/92	4/28/92	0.01	< DL	* 95
VANADI UM	6010	4/23/92	4/27/92	0.02	<dl< td=""><td>*95</td></dl<>	* 95
ZINC	6010	4/23/92	4/2 7 /92	0.02	< DL	* 95

^{*}THIS INDICATES A 95% CONFIDENCE LIMIT ACHIEVED WITH AN EPA QUALITY CONTROL SOLUTION ANALYZED ALONG WITH YOUR SAMPLE.

Sample ID: DOWCRAFT ESI-11

HAS Sample #92-0631-002 Date Sampled: 4/16/92

ANALYTE	EPA METHOD	DATE PREPARED	DATE ANALYZED	DETECTION LIMIT	RESULT mg/l	QC
ALUMINUM	6010	4/23/92	4/27/92	0.03	3.27	* 95
ANTIMONY	6010	4/23/92	4/27/92	0.05	<dl< td=""><td>*95</td></dl<>	* 95
ARSENIC	7060	4/23/92	4/24/92	0.01	<dl< td=""><td>*95</td></dl<>	*95
BARIUM	6010	4/23/92	4/27/92	0.01	0.18	*95
BERYLLI U M	6010	4/23/92	4/27/92	0.005	< DL	* 9 5
CADMIUM	6010	4/23/92	4/27/92	0.005	<dl< td=""><td>*95</td></dl<>	*95
CALCIUM	6010	4/23/92	4/27/92	0.02	66 .9	*95 -
CHROMIUM	6010	4/23/92	4/27/92	0.01	<dl< td=""><td>*95</td></dl<>	* 95
COBALT	6010	4/23/92	4/27/92	0.01	<dl< td=""><td>*95</td></dl<>	* 95
COPPER	6010	4/23/92	4/27/92	0.01	<dl< td=""><td>*95</td></dl<>	* 95
IRON	6010	4/2 3/92	4/27/92	0.02	6.45	* 95
LEAD	7421	4/23/92	4/28/92	0.01	<dl< td=""><td>*95</td></dl<>	*95
MAGNESI U M	6010	4/23/92	4/27/92	0.04	8.56	* 95
mangan es e	6010	4/23/92	4/27/92	0.01	1.12	* 95
MERCUR Y	7470	4/23/92	4/30/92	0.0002	<dl< td=""><td>*95</td></dl<>	* 95
NICKEL	6010	4/23/92	4/27/92	0.04	<dl< td=""><td>*95</td></dl<>	* 95
POTASSI U M	6010	4/23/92	4/27/92	3. 0	5.8	* 95
SELENIUM	7740	4/23/92	4/27/92	0.005	<dl< td=""><td>*95</td></dl<>	* 95
SILVER	6010	4/23/92	4/27/92	0.01	<dl< td=""><td>*95</td></dl<>	* 95
SODIUM	6010	4/23/92	4/27/92	0. 05	27.2	* 95
THALLIUM	7841	4/23/92	4/28/92	0.01	< DL	* 95
VANADIUM	6010	4/23/92	4/27/92	0.02	<dl< td=""><td>*95</td></dl<>	*95
ZINC	6010	4/23/92	4/27/92	0.02	<dl< td=""><td>*95</td></dl<>	*95

^{*}THIS INDICATES A 95% CONFIDENCE LIMIT ACHIEVED WITH AN EPA QUALITY CONTROL SOLUTION ANALYZED ALONG WITH YOUR SAMPLE.

Sample ID: DOWCRAFT ESI-12 HAS Sample #92-0631-003

HAS Sample #92-0631-003 Date Sampled: 4/16/92

ANALYTE	EPA METHOD	DATE PREPARED	DATE ANALYZED	DETECTION LIMIT	RESULT mg/l	QC
ALUMIN UM	6010	4/23/92	4/27/92	0.03	3.29	*95
ANTIMONY	6010	4/23/92	4/27/92	0.05	<dl< td=""><td>*95</td></dl<>	*95
ARSENIC	7060	4/23/92	4/24/92	0.01	0.01	*95
BARIUM	6010	4/23/92	4/27/92	0.01	0.11	* 95
BERYLLIUM	6010	4/23/92	4/27/92	0.005	<dl< td=""><td>*95</td></dl<>	* 95
CADMIUM	6010	4/23/92	4/27/92	0.005	<dl< td=""><td>*95</td></dl<>	* 95
CALCIUM	6010	4/23/92	4/27/92	0.02	48.5	*9 <u>5</u>
CHROMI UM	6010	4/23/92	4/27/92	0.01	<dl< td=""><td>*95</td></dl<>	* 95
COBALT	6010	4/23/92	4/27/92	0.01	<dl< td=""><td>*95</td></dl<>	* 95
COPPER	6010	4/23/92	4/27/92	0.01	<dl< td=""><td>*95</td></dl<>	* 95
IRON	6010	4/23/92	4/27/92	0.02	4.92	* 95
LEAD	7421	4/2 3/92	4/28/92	0.005	0.009	* 95
MAGNESIUM	6010	4/23/92	4/27/92	0.04	8.20	*95
MANGANESE	6010	4/23/92	4/27/92	0.01	0.08	* 95
MERCUR Y	7470	4/23/92	4/30/92	0.0002	<dl< td=""><td>*95</td></dl<>	*95
NICKEL	6010	4/23/92	4/27/92	0.04	<dl< td=""><td>*95</td></dl<>	* 95
POTASSIUM	6010	4/23/92	4/27/92	3.0	3.8	* 95
SELENIUM	7740	4/23/92	4/27/92	0.005	<dl< td=""><td>*95</td></dl<>	* 95
SILVER	6010	4/23/92	4/27/92	0.01	<dl< td=""><td>*95</td></dl<>	* 95
SODIUM	6010	4/23/92	4/27/92	0.05	25.5	* 95
THALLI UM	7841	4/23/92	4/28/92	0.01	< DL	* 95
VANADI UM	6010	4/23/92	4/27/92	0.02	<dl< td=""><td>*95 ·</td></dl<>	*95 ·
ZINC	6010	4/2 3/92	4/27/92	0.02	<dl< td=""><td>*95</td></dl<>	* 95

^{*}THIS INDICATES A 95% CONFIDENCE LIMIT ACHIEVED WITH AN EPA QUALITY CONTROL SOLUTION ANALYZED ALONG WITH YOUR SAMPLE.

Sample ID: DOWCRAFT ESI-2D

HAS Sample #92-0631-004 Date Sampled: 4/16/92

ANALYTE	EPA METHOD	DATE PREPARED	DATE ANALYZED	DETECTION LIMIT	RESULT mg/l	QC
ALUMINUM ANTIMONY ARSENIC BARIUM BERYLLIUM CADMIUM CALCIUM CHROMIUM COBALT COPPER IRON LEAD MAGNESIUM MANGANESE MERCURY NICKEL POTASSIUM	6010 6010 7060 6010 6010 6010 6010 6010	4/23/92 4/23/92 4/23/92 4/23/92 4/23/92 4/23/92 4/23/92 4/23/92 4/23/92 4/23/92 4/23/92 4/23/92 4/23/92 4/23/92 4/23/92 4/23/92 4/23/92 4/23/92 4/23/92 4/23/92	4/27/92 4/27/92 4/27/92 4/27/92 4/27/92 4/27/92 4/27/92 4/27/92 4/27/92 4/27/92 4/27/92 4/27/92 4/27/92 4/27/92 4/27/92 4/27/92 4/27/92 4/27/92 4/27/92	0.03 0.05 0.01 0.01 0.005 0.02 0.01 0.01 0.02 0.01 0.02 0.04 0.01 0.01 0.02	0.62 <dl <dl <dl <dl <dl <dl <dl <dl< td=""><td>**995555555555555555555555555555555555</td></dl<></dl </dl </dl </dl </dl </dl </dl 	**995555555555555555555555555555555555
SELENIUM SILVER SODIUM THALLIUM VANADIUM ZINC	7740 6010 6010 7841 6010 6010	4/23/92 4/23/92 4/23/92 4/23/92 4/23/92 4/23/92	4/27/92 4/27/92 4/27/92 4/28/92 4/27/92 4/27/92	0.005 0.01 0.05 0.01 0.02 0.02	<dl <dl 21.5 <dl <dl <dl< td=""><td>*95 *95 *95 *95 *95 *95</td></dl<></dl </dl </dl </dl 	*95 *95 *95 *95 *95 *95

^{*}THIS INDICATES A 95% CONFIDENCE LIMIT ACHIEVED WITH AN EPA QUALITY CONTROL SOLUTION ANALYZED ALONG WITH YOUR SAMPLE.

Sample ID: DOWCRAFT ESI-2

HAS Sample #92-0631-005 Date Sampled: 4/16/92

ANALYT E	EPA METHOD	DATE PREPARED	DATE ANALYZED	DETECTION LIMIT	RESULT mg/l	QC
ANALYTE ALUMINUM ANTIMONY ARSENIC BARIUM BERYLLIUM CADMIUM CALCIUM CHROMIUM COBALT COPPER IRON LEAD MAGNESIUM MANGANESE MERCURY NICKEL POTASSIUM SELENIUM** SILVER	6010 6010 7060 6010 6010 6010 6010 6010	PREPARED 4/23/92	ANALYZED 4/27/92	LIMIT 0.03 0.05 0.01 0.01 0.005 0.02 0.01 0.01 0.01 0.02 0.04 0.01 0.0002 0.04 3.0 0.005 0.01	mg/1 1.71 <dl 0.008="" 0.010="" 0.04="" 0.12="" 0.13="" 11.7="" 2.64="" 5.65="" 88.2="" <dl="" <dl<="" td=""><td>Q-555555555555555555555555555555555555</td></dl>	Q-555555555555555555555555555555555555
SODIUM THALLI UM VANADI UM ZINC	6010 7841 6010 6010	4/23/92 4/23/92 4/23/92 4/23/92	4/27/92 4/28/92 4/27/92 4/27/92	0.05 0.01 0.02 0.02	45.7 <dl <dl <dl< td=""><td>*95 *95 *95 *95</td></dl<></dl </dl 	*95 *95 *95 *95

^{*}THIS INDICATES A 95% CONFIDENCE LIMIT ACHIEVED WITH AN EPA QUALITY CONTROL SOLUTION ANALYZED ALONG WITH YOUR SAMPLE.

**SELENIUM POST SPIKES WERE OUT OF RANGE FOR THIS SAMPLE.

IT WILL BE REANALYZED AND AN AMENDED REPORTED FORWARDED.

Sample ID: DOWCRAFT ESI-3

HAS Sample #92-0631-006 Date Sampled: 4/16/92

ANALYTE	EPA METHOD	DATE PREPARED	DATE ANALYZED	DETECTION LIMIT	RESULT mg/l	QC
ALUMIN UM	6010	4/23/92	4/27/92	0.03	7.01	* 9 5
ANTIMONY	6010	4/23/92	4/27/92	0.05	<dl< td=""><td>*95</td></dl<>	* 95
ARSENIC	7060	4/23/92	4/24/92	0.01	< DL	*95
BARIUM	6010	4/23/92	4/27/92	0.01	0.17	* 95
BERYLLIUM	6010	4/23/92	4/27/92	0.005	<dl< td=""><td>*95</td></dl<>	* 95
CADMIUM	6010	4/23/92	4/27/92	0.005	<dl< td=""><td>*95</td></dl<>	* 95
CALCIUM	6010	4/23/92	4/27/92	0.02	76.1	* 95_
CHROMIUM	6010	4/23/92	4/27/92	0.01	0.05	* 95
COBALT	6010	4/23/92	4/27/92	0.01	<dl< td=""><td>*95</td></dl<>	*95
COPPER	6010	4/23/92	4/27/92	0.01	0.03	* 95
IRON	6010	4/23/92	4/27/92	0.02	10.2	* 95
LEAD	7421	4/23/92	4/28/92	0.005	0.040	* 95
MAGNESIUM	6010	4/23/92	4/27/92	0.04	11.5	* 95
MANGAN ES E	6010	4/23/92	4/27/92	0.01	0.52	* 95
MERCUR Y	7470	4/23/92	4/30/92	0.0002	<dl< td=""><td>*95</td></dl<>	*95
NICKEL	6010	4/23/92	4/27/92	0.04	<dl< td=""><td>*95</td></dl<>	*95
POTASSIUM	6010	4/23/92	4/27/92	3.0	5.8	* 95
SELENIUM	7740	4/23/92	4/27/92	0.005	<dl< td=""><td>*95</td></dl<>	* 95
SILVER	6010	4/23/92	4/27/92	0.01	<dl< td=""><td>*95</td></dl<>	* 95
SODIUM	6010	4/23/92	4/27/92	0.05	33.2	* 95
THALLIUM	7841	4/23/92	4/28/92	0.01	< DL	* 95
VANADI UM	6010	4/23/92	4/27/92	0.02	<dl< td=""><td>*95</td></dl<>	*95
ZINC	6010	4/23/92	4/27/92	0.02	0.09	* 95

^{*}THIS INDICATES A 95% CONFIDENCE LIMIT ACHIEVED WITH AN EPA QUALITY CONTROL SOLUTION ANALYZED ALONG WITH YOUR SAMPLE.

Sample ID: DOWCRAFT ESI-4 HAS Sample #92-0631-007

Date Sampled: 4/16/92

ANALYTE	EPA METHOD	DATE PREPARED	DATE ANALYZED	DETECTION LIMIT	RESULT mg/l	QC
ALUMIN UM	6010	4/23/92	4/27/92	0.03	0.65	* 95
ANTIMONY	6010	4/23/92	4/27/92	0.05	<dl< td=""><td>*95</td></dl<>	* 95
ARSENIC	7060	4/23/92	4/24/92	0.01	<dl< td=""><td>*95</td></dl<>	* 95
BARIUM	6010	4/23/92	4/27/92	0.01	0.08	* 95
BERYLLI U M	6010	4/23/92	4/27/92	0.005	<dl< td=""><td>*95</td></dl<>	* 95
CADMIUM	6010	4/23/92	4/27/92	0.005	<dl< td=""><td>*95</td></dl<>	* 95
CALCIUM	6010	4/23/92	4/27/92	0.02	65.5	* 9 5 -
CHROMIUM	6010	4/23/92	4/27/92	0.01	<dl< td=""><td>*95</td></dl<>	* 95
COBALT	6010	4/23/92	4/27/92	0.01	<dl< td=""><td>*95</td></dl<>	* 95
COPPER	6010	4/23/92	4/27/92	0.01	<dl< td=""><td>*95</td></dl<>	* 95
IRON	6010	4/23/92	4/27/92	0.02	0.25	* 95
LEAD	7421	4/23/92	4/28/92	0.005	<dl< td=""><td>*95</td></dl<>	* 95
MAGNESIUM	6010	4/23/92	4/27/92	0.04	8.73	* 95
MANGAN ES E	6010	4/23/92	4/27/92	0.01	0.01	* 95
MERCUR Y	7470	4/23/92	4/30/92	0.0002	<dl< td=""><td>*95</td></dl<>	* 9 5
NICKEL	6010	4/23/92	4/27/92	0.04	<dl< td=""><td>*95</td></dl<>	* 95
POTASSIUM	6010	4/23/92	4/27/92	3.0	4.3	* 95
SELENIUM	7740	4/23/92	4/27/92	0.005	<dl< td=""><td>*95</td></dl<>	* 95
SILVER	6010	4/23/92	4/27/92	0.01	< DL	* 95
SODIUM	6010	4/23/92	4/27/92	0.05	36.4	* 95
THALLIUM	7841	4/23/92	4/28/92	0.01	< DL	* 95
VANADIUM	6010	4/23/92	4/27/92	0.02	<dl< td=""><td>*95</td></dl<>	* 95
ZINC	6010	4/23/92	4/27/92	0.02	<dl< td=""><td>*95</td></dl<>	* 95

^{*}THIS INDICATES A 95% CONFIDENCE LIMIT ACHIEVED WITH AN EPA QUALITY CONTROL SOLUTION ANALYZED ALONG WITH YOUR SAMPLE.

Sample ID: DOWCRAFT ESI-5 HAS Sample #92-0631-008 Date Sampled: 4/16/92

ANALYTE	EPA METHOD	DATE PREPARED	DATE ANALYZED	DETECTION LIMIT	RESULT mg/l	QC
ALUMINUM ANTIMONY	6010 6010	4/23/92 4/23/92	4/27/92 4/27/92	0.03 0.05	1.08 <dl< td=""><td>*95 *95</td></dl<>	*95 *95
ARSENIC	7060	4/23/92	4/24/92	0.03	< DL	*95
BARIUM	6010	4/23/92	4/27/92	0.01	0.10	*95
BERYLLIUM	6010	4/23/92	4/27/92	0.005	<dl< td=""><td>*95</td></dl<>	*95
CADMIUM	6010	4/23/92	4/27/92	0.005	<dl< td=""><td>*95</td></dl<>	*95
CALCIUM	6010	4/23/92	4/27/92	0.02	53.7	*9 <u>5</u> _
CHROMI UM	6010	4/23/92	4/27/92	0.01	<dl< td=""><td>*95</td></dl<>	* 95
COBALT	6010	4/23/92	4/27/92	0.01	<dl< td=""><td>*95</td></dl<>	* 95
COPPER	6010	4/23/92	4/27/92	0.01	<dl< td=""><td>*95</td></dl<>	* 95
IRON	6010	4/23/92	4/27/92	0.02	1.07	* 95
LEAD	7421	4/23/92	4/28/92	0.005	<dl< td=""><td>*95</td></dl<>	* 95
MAGNESIUM	6010	4/23/92	4/27/92	0.04	7.43	* 95
MANGAN ES E	6010	4/23/92	4/27/92	0.01	0.06	*95
MERCUR Y	7470	4/23/92	4/30/92	0.0002	<dl< td=""><td>*95</td></dl<>	*9 5
NICKEL	6010	4/23/92	4/27/92	0.04	<dl< td=""><td>*95</td></dl<>	* 95
POTASSIUM	6010	4/23/92	4/27/92	3.0	3.1	* 95
SELENI U M	7740	4/23/92	4/27/92	0.005	<dl< td=""><td>*95</td></dl<>	* 95
SILVER	6010	4/23/92	4/27/92	0.01	<dl< td=""><td>* 9 5</td></dl<>	* 9 5
SODIUM	6010	4/23/92	4/27/92	0.05	14.7	*95
THALLIUM	7841	4/23/92	4/28/92	0.01	<dl< td=""><td>*95</td></dl<>	*95
VANADI U M	6010	4/23/92	4/27/92	0.02	<dl< td=""><td>*95</td></dl<>	*95
ZINC	6010	4/23/92	4/27/92	0.02	<dl< td=""><td>*95</td></dl<>	*95

^{*}THIS INDICATES A 95% CONFIDENCE LIMIT ACHIEVED WITH AN EPA QUALITY CONTROL SOLUTION ANALYZED ALONG WITH YOUR SAMPLE.

Sample ID: DOWCRAFT ESI-9
HAS Sample #92-0631-009

HAS Sample #92-0631-009 Date Sampled: 4/16/92

ANALYTE	EPA METHOD	DATE PREPARED	DATE ANALYZED	DETECTION LIMIT	RESULT mg/l	QC
ALUMIN UM	6010	4/23/92	4/27/92	0.03	3,33	*95
ANTIMONY	6010	4/23/92	4/27/92	3. 05	<dl< td=""><td>*95</td></dl<>	*95
ARSENI C	7060	4/23/92	4/24/92	0.01	< DL	*95
						*95
BARIUM	6010	4/23/92	4/27/92	0.01	0.10	
BERYLLIUM	6010	4/23/92	4/27/92	0.005	<dl< td=""><td>*95</td></dl<>	*95
CADMIUM	6010	4/23/92	4/27/92	0.005	<dl< td=""><td>*95</td></dl<>	*95
CALCIUM	6010	4/23/92	4/27/92	0.02	71.2	* 9 <u>5</u>
CHROMIUM	6010	4/23/92	4/27/92	0.01	<dl< td=""><td>*95</td></dl<>	*95
COBALT	6010	4/23/92	4/27/92	0.01	< DL	* 9 5
COPPER	6010	4/23/92	4/27/92	0.01	<dl< td=""><td>*95</td></dl<>	* 95
IRON	6010	4/23/92	4/27/92	0.02	3.55	* 95
LEAD	7421	4/23/92	4/28/92	0.005	0.008	*95
MAGNESIUM	6010	4/23/92	4/27/92	0.04	11.0	* 95
MANGANESE	6010	4/23/92	4/27/92	0.01	0.17	* 95
MERCUR Y	7470	4/23/92	4/30/92	0.0002	<dl< td=""><td>*95</td></dl<>	* 9 5
NICKEL	6010	4/23/92	4/27/92	0.04	<dl< td=""><td>*95</td></dl<>	* 95
POTASSIUM	6010	4/23/92	4/27/92	3.0	4.1	* 95
SELENI U M	7740	4/23/92	4/27/92	0.005	<dl< td=""><td>*95</td></dl<>	* 95
SILVER	6010	4/23/92	4/27/92	0.01	<dl< td=""><td>*95</td></dl<>	* 95
SODIUM	6010	4/23/92	4/27/92	0.05	22.5	* 95
THALLIUM	7841	4/23/92	4/28/92	0.01	<dl< td=""><td>*95</td></dl<>	* 95
VANADIUM	6010	4/23/92	4/27/92	0.02	<dl< td=""><td>*95 ·</td></dl<>	*95 ·
ZINC	6010	4/23/92	4/27/92	0.02	<dl< td=""><td>*95</td></dl<>	* 95
21110	0010	1/23/32	3/21/52	0.02	(00	2 2

^{*}THIS INDICATES A 95% CONFIDENCE LIMIT ACHIEVED WITH AN EPA QUALITY CONTROL SOLUTION ANALYZED ALONG WITH YOUR SAMPLE.

Sample ID: DOWCRAFT ESI-8 HAS Sample #92-0631-010

Date Sampled: 4/16/92

ANALYTE	EPA METHOD	DATE PREPARED	DATE ANALYZED	DETECTION LIMIT	RESULT mg/l	Q C
ALUMIN UM	6010	4/23/92	4/27/92	0.03	7.70	* 95
ANTIMONY	6010	4/23/92	4/27/92	0.05	<pre><dl< pre=""></dl<></pre>	* 95
ARSENIC	7060	4/23/92	4/24/92	0.01	<dl< td=""><td>*95</td></dl<>	* 95
BARIUM	6010	4/23/92	4/27/92	0.01	0.19	* 9 5
BERYLLIUM	6010	4/23/92	4/27/92	0.005	<dl< td=""><td>*95</td></dl<>	* 95
CADMIUM	6010	4/23/92	4/27/92	0.005	<dl< td=""><td>*95</td></dl<>	* 95
CALCIUM	6010	4/23/92	4/27/92	0.02	44.8	*9 <u>5</u>
CHROMI UM	6010	4/23/92	4/27/92	0.01	<dl< td=""><td>*95</td></dl<>	*9 5
COBALT	6010	4/23/92	4/27/92	0.01	<dl< td=""><td>*95</td></dl<>	* 95
COPPER	6010	4/23/92	4/27/92	0.01	<dl< td=""><td>*95</td></dl<>	* 95
IRON	6010	4/23/92	4/27/92	0.02	8.18	* 95
LEAD	7421	4/23/92	4/28/92	0.005	0.011	* 95
MAGNESIUM	6010	4/23/92	4/27/92	0.04	5.41	* 95
MANGAN E SE	6010	4/23/92	4/27/92	0.01	0.59	* 95
MERCUR Y	7470	4/23/92	4/30/92	0.0002	<dl< td=""><td>*95</td></dl<>	*9 5
NICKEL	6010	4/23/92	4/27/92	0.04	<dl< td=""><td>*95</td></dl<>	* 95
POTASSIUM	6010	4/23/92	4/27/92	3.0	5.0	*95
SELENI U M	7740	4/23/92	4/27/92	0.005	<dl< td=""><td>*95</td></dl<>	* 95
SILVER	6010	4/23/92	4/27/92	0.01	< DL	* 95
SODIUM	6010	4/23/92	4/27/92	0.05	26.4	* 95
THALLI U M	7841	4/23/92	4/28/92	0.01	< DL	* 95
VANADI U M	6010	4/23/92	4/27/92	0.02	<dl< td=""><td>*95 ·</td></dl<>	*95 ·
ZINC	6010	4/23/92	4/27/92	0.02	0.03	* 95

^{*}THIS INDICATES A 95% CONFIDENCE LIMIT ACHIEVED WITH AN EPA QUALITY CONTROL SOLUTION ANALYZED ALONG WITH YOUR SAMPLE.

Sample ID: DOWCRAFT ESI-1
HAS Sample #92-0631-011
Date Sampled: 4/16/92

ANALYTE	EPA METHOD	DATE PREPARED	DATE ANALYZED	DETECTION LIMIT	RESULT mg/l	MS %REC	MSD %REC	RPD
ALUMIN UM	6010	4/23/92	4/27/92	0.03	1.03	*95		
ANTIMONY	6010	4/23/92	4/27/92	0. 05	<dl< td=""><td>*95</td><td></td><td></td></dl<>	*95		
ARSENIC	7060	4/23/92	4/24/92	0.01	< DL	104		<1.0
BARIUM	6010	4/23/92	4/27/92	0.01	0.08		89.1	2.I
BERYLL IU M	6010	4/23/92	4/27/92	0.005	<dl< td=""><td>*95</td><td></td><td></td></dl<>	* 95		
CADMIUM	6010	4/23/92	4/27/92	0.005	< DL	* 95		
CALCIUM	6010	4/23/92	4/27/92	0.02	63.8	*9 <u>5</u>		
CHROMI UM	6010	4/23/92	4/27/92	0.01	<dl< td=""><td>*95</td><td></td><td></td></dl<>	* 95		
COBALT	6010	4/23/92	4/27/92	0.01	<dl< td=""><td>*95</td><td></td><td></td></dl<>	*95		
COPPER	6010	4/23/92	4/27/92	0.01	<dl< td=""><td>80.0</td><td>86.0</td><td>7.2</td></dl<>	80.0	86.0	7.2
IRON	6010	4/23/92	4/27/92	0.02	1.57	* 95		
LEAD	7421	4/23/92	4/28/92	0.005	0.006	104	104	<1.0
MAGNESIUM	6010	4/23/92	4/27/92	0.04	6.69	* 95		
MANGANESE	6010	4/23/92	4/27/92	0.01	0.18	*95		
MERCUR Y	7470	4/23/92	4/30/92	0.0002	<dl< td=""><td>*95</td><td>102</td><td><1.0</td></dl<>	*95	102	<1.0
NICKEL	6010	4/23/92	4/27/92	0.04	<dl< td=""><td>*95</td><td></td><td></td></dl<>	* 95		
POTASSIUM	6010	4/23/92	4/27/92	3.0	4.1	* 95		
SELENI U M	7740	4/23/92	4/27/92	0.005	<dl< td=""><td>*95</td><td></td><td></td></dl<>	* 95		
SILVER	6010	4/23/92	4/27/92	0.01	< DL	* 95		
SODIUM	6010	4/23/92	4/27/92	0.05	38.2	* 95		
THALLIUM	7841	4/23/92	4/28/92	0.01	<dl< td=""><td>90.6</td><td>91.2</td><td><1.0</td></dl<>	90.6	91.2	<1.0
VANADI U M	6010	4/23/92	4/27/92	0. 02	<dl< td=""><td>*95</td><td>•</td><td></td></dl<>	* 95	•	
ZINC	6010	4/23/92	4/27/92	0.02	<dl< td=""><td>81.2</td><td>83.0</td><td>2.1</td></dl<>	81.2	83.0	2.1

^{*}THIS INDICATES A 95% CONFIDENCE LIMIT ACHIEVED WITH AN EPA QUALITY CONTROL SOLUTION ANALYZED ALONG WITH YOUR SAMPLE.

Sample ID: DOWCRAFT ESI-7

HAS Sample #92-0631-012 Date Sampled: 4/16/92

ANALYTE	EPA METHOD	DATE PREPARED	DATE ANALYZED	DETECTION LIMIT	RESULT mg/l	QC
ALUMIN UM	6010	4/23/92	4/27/92	0.03	10.8	* 95
ANTIMONY	6010	4/23/92	4/27/92	0.05	<dl< td=""><td>*95</td></dl<>	*95
ARSENIC	7060	4/23/92	4/24/92	0.01	<dl< td=""><td>*95</td></dl<>	* 95
BARIUM	6010	4/23/92	4/27/92	0.01	0.33	*95
BERYLL IU M	6010	4/23/92	4/27/92	0.005	<dl< td=""><td>*95</td></dl<>	* 95
CADMIUM	6010	4/23/92	4/27/92	0.005	<dl< td=""><td>*95</td></dl<>	*95
CALCIUM	6010	4/23/92	4/27/92	0.02	40.6	*95 <u>.</u>
CHROMI UM	6010	4/23/92	4/27/92	0.01	0.02	* 95
COBALT	6010	4/23/92	4/27/92	0.01	<dl< td=""><td>*95</td></dl<>	* 95
COPPER	6010	4/23/92	4/27/92	0.01	0.02	* 95
IRON	6010	4/23/92	4/27/92	0.02	11.3	* 95
LEAD	7421	4/23/92	4/28/92	0.005	0.018	*95
MAGNESIUM	6010	4/23/92	4/27/92	0.04	6.64	* 9 5
MANGANESE	6010	4/23/92	4/27/92	0.01	1.05	* 95
MERCUR Y	7470	4/23/92	4/30/92	0.0002	< DL	*9 5
NICKEL	6010	4/23/92	4/27/92	0.04	<dl< td=""><td>*95</td></dl<>	* 95
POTASSIUM	6010	4/23/92	4/27/92	3.0	6 .7	*95
SELENI UM	7740	4/23/92	4/27/92	0.005	<dl< td=""><td>*95</td></dl<>	* 95
SILVER	6010	4/23/92	4/27/92	0.01	<dl< td=""><td>*95</td></dl<>	*95
SODIUM	6010	4/23/92	4/27/92	0.05	33.5	*95
THALLIUM	7841	4/23/92	4/28/92	0.01	<dl< td=""><td>*95</td></dl<>	* 95
VANADI UM	6010	4/23/92	4/27/92	0.02	<dl< td=""><td>*95 ·</td></dl<>	*95 ·
ZINC	6010	4/23/92	4/27/92	0.02	0.07	* 95

^{*}THIS INDICATES A 95% CONFIDENCE LIMIT ACHIEVED WITH AN EPA QUALITY CONTROL SOLUTION ANALYZED ALONG WITH YOUR SAMPLE.

Sample ID: DOWCRAFT ESI-6

HAS Sample #92-0631-013 Date Sampled: 4/16/92

ANALYT E	EPA METHOD	DATE PREPARED	DATE ANALYZED	DETECTION LIMIT	RESULT mg/l	QC
ALUMIN UM	6010	4/23/92	4/27/92	0.03	3.35	* ,95
ANTIMON Y	6010	4/23/92	4/27/92	0. 05	<dl< td=""><td>*95</td></dl<>	*95
ARSENIC	7060	4/23/92	4/2 4/ 92	0.01	0.02	* 95
BARIUM	6010	4/23/92	4/27/92	0.01	0.19	*95
BERYLLIUM	6010	4/23/92	4/27/92	0.005	<dl< td=""><td>*95</td></dl<>	* 95
CADMIUM	6010	4/23/92	4/27/92	0.005	<dl< td=""><td>*95</td></dl<>	* 95
CALCIUM	6010	4/23/92	4/27/92	0.02	53.3	*9 5
CHROMIUM	6010	4/23/92	4/27/92	0.01	0.01	*95
COBALT	6010	4/23/92	4/27/92	0.01	<dl< td=""><td>*95</td></dl<>	*95
COPPER	6010	4/23/92	4/27/92	0.01	0.02	*95
IRON	6010	4/23/92	4/27/92	0.02	6.54	* 95
LEAD	7421	4/23/92	4/28/92	0.01	0.02	* 95
Magnes Lun	GO LO	4/23/92	4/27/92	0,04	9,66	*95
MANGAN E SE	6010	4/23/92	4/27/92	0.01	4.43	* 95
MERCUR Y	7470	4/23/92	4/30/92	0.0002	<dl< td=""><td>*95</td></dl<>	*95
NICKEL	6010	4/23/92	4/27/92	0.04	<dl< td=""><td>*95</td></dl<>	* 95
POTASSIUM	6010	4/23/92	4/27/92	3.0	4.6	* 95
SELENI UM	7740	4/23/92	4/27/92	0.005	<dl< td=""><td>*95</td></dl<>	* 95
SILVER	6010	4/23/92	4/27/92	0.01	<dl< td=""><td>*95</td></dl<>	*95
SODIUM	6010	4/23/92	4/27/92	0. 05	37.4	* 95
THALLIUM	7841	4/23/92	4/28/92	0.01	<dl< td=""><td>*95</td></dl<>	*95
VANADI UM	6010	4/23/92	4/27/92	0. 02	<dl< td=""><td>*95</td></dl<>	*95
ZINC	6010	4/23/92	4/27/92	0.02	0.02	* 95

^{*}THIS INDICATES A 95% CONFIDENCE LIMIT ACHIEVED WITH AN EPA QUALITY CONTROL SOLUTION ANALYZED ALONG WITH YOUR SAMPLE.

Sample ID: DOWCRAFT · ESI-13 HAS Sample #92-0631-014

HAS Sample #92-0631-014 Date Sampled: 4/16/92

ANALYT E	EPA METHOD	DATE PREPARED	DATE ANALYZED	DETECTION LIMIT	RESULT mg/l	QC
ALUMIN UM	6010	4/23/92	4/27/92	0.03	16.5	* 95
ANTIMO NY	6010	4/23/92	4/27/92	0.05	<dl< td=""><td>*95</td></dl<>	* 95
ARSENI C	7060	4/23/92	4/24/92	0.01	<dl< td=""><td>*95</td></dl<>	* 95
BARIUM	6010	4/23/92	4/27/92	0.01	0.38	* 95
BERYLLIUM	6010	4/23/92	4/27/92	0.005	<dl< td=""><td>*95</td></dl<>	* 95
CADMIUM	6010	4/23/92	4/27/92	0.005	<dl< td=""><td>*95</td></dl<>	* 95
CALCIUM	6010	4/23/92	4/27/92	0.02	68.2	*9 <u>5</u>
CHROMI UM	6010	4/23/92	4/27/92	0.01	0.04	* 9 5
COBALT	6010	4/23/92	4/27/92	0.01	<dl< td=""><td>*95</td></dl<>	* 95
COPPER	6010	4/23/92	4/27/92	0.01	0.02	* 95
IRON	6010	4/2 3/92	4/27/92	0.02	18.6	* 95
LEAD	7421	4/23/92	4/28/92	0.005	0.03	* 95
MAGNESIUM	6010	4/23/92	4/27/92	0.04	13.8	* 95
MANGANESE	6010	4/23/92	4/27/92	0.01	0.61	* 95
MERCUR Y	7470	4/23/92	4/30/92	0.0002	<dl< td=""><td>*95</td></dl<>	* 9 5
NICKEL	6010	4/23/92	4/27/92	0.04	< DL	* 95
POTASSIUM	6010	4/23/92	4/27/92	3.0	7.3	* 95
SELENI UM	7740	4/23/92	4/27/92	0.005	<dl< td=""><td>*95</td></dl<>	* 95
SILVER	6010	4/23/92	4/27/92	0.01	< DL	* 95
SODIUM	6010	4/23/92	4/27/92	0.05	223	* 95
THALLI U M	7841	4/23/92	4/28/92	0.01	< DL	* 95
VANADI U M	6010	4/23/92	4/27/92	0.02	<dl< td=""><td>*95</td></dl<>	*95
ZINC	6010	4/23/92	4/27/92	0.02	0.10	* 95

^{*}THIS INDICATES A 95% CONFIDENCE LIMIT ACHIEVED WITH AN EPA QUALITY CONTROL SOLUTION ANALYZED ALONG WITH YOUR SAMPLE.

Sample ID: METHOD BLANK HAS Sample #92-0631-MB

Date Sampled: NA

ANALYT E	EPA METHOD	DATE PREPARED	DATE ANALYZED	DETECTION LIMIT	RESULT mg/l	QC
ANALYTE ALUMINUM ANTIMONY ARSENIC BARIUM BERYLLIUM CADMIUM CALCIUM CHROMIUM COBALT COPPER IRON LEAD MAGNESIUM MANGANESE	METHOD 6010 6010 7060 6010 6010 6010 6010 6010					QC *9555555555555555555555555555555555
MERCURY NICKEL POTASSIUM SELENIUM SILVER SODIUM THALLIUM VANADIUM ZINC	7470 6010 6010 7740 6010 6010 7841 6010 6010	4/23/92 4/23/92 4/23/92 4/23/92 4/23/92 4/23/92 4/23/92 4/23/92 4/23/92	4/30/92 4/27/92 4/27/92 4/27/92 4/27/92 4/27/92 4/28/92 4/27/92 4/27/92	0.0002 0.04 3.0 0.005 0.01 0.05 0.01 0.02	<pre><dl <dl="" <dl<="" td=""><td>*95 *95 *95 *95 *95 *95 *95 *95 *95</td></dl></pre>	*95 *95 *95 *95 *95 *95 *95 *95 *95

^{*}THIS INDICATES A 95% CONFIDENCE LIMIT ACHIEVED WITH AN EPA QUALITY CONTROL SOLUTION ANALYZED ALONG WITH YOUR SAMPLE.

HUNTINGDON **AN**A**LY**TICAL **SERVICES** ENVIRONMENT**A**L

EPA METHOD 8240
VOLATILE ORGANI**CS**

				-		
SAMPLE IDENTIFICATION:	ESI-10	ESI-11	ESI-12	ESI-2D	ESI-2	ESI-3
HAS SAMPLE #92-631-	901	002	003	004	005	006
COMPOUND	RESULT	RESULT	RESULT	RESULT	RESULT	RESULT
	υgΛ	υgЛ	пвл	ugA	ug∕l	பத∕ி
CHLOROMETHANE	<10	<10	<10	< 10	<10	< 10
BROMOMETHANE	<10	<10	<10	< 10	<10	< 10
VINYL CHLORIDE	160	87	<10	< 10	< 10	< 10
CHLOROETHANE	<10	<10	<10	<10	< 10	< 10
METHYLENE CHLORIDE	< 5.0	<5.0	< 5.0	< 5.0	< 5.0	< 5.0
ACETONE	<10	<10	<10	<10	28	<10
TRICHLOROFLUOROMETHANE	< 10	<10	<10	<10	<10	_<10
CARBON DISULFIDE	<5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
1,1-DICHLOROETHENE	< 5.0	<5.0	<5.0	< 5.0	< 5.0	< 5.0
1,1-DICHLOROETHANE	<5.0	<5.0	<5.0	< 5.0	< 5.0	< 5.0
1,2-DICHLOROETHENE (TOTAL)	590	620	160	< 5.0	58	310
CHLOROFORM — —	<5.0	<5.0	<5.0	< 5.0	< 5.0	< 5.0
1,2-DICHLOROETHANE	< 5.0	<5.0	<5.0	< 5.0	< 5.0	< 5.0
2-BUTANONE	<10	<10	<10	< 10	<10	<10
1,1,1-TRICHLOROETHANE	< 5.0	<5.0	< 5.0	< 5.0	< 5.0	< 5.0
CARBON TETRACHLORIDE	<5.0	<5.0	<5.0	< 5.0	< 5.0	< 5.0
VINYL ACETATE	<10	<10	<10	< 10	<10	<10
BROMODICHLOROMETHANE	<5.0	< 5.0	<5.0	<5.0	< 5.0	< 5.0
1,2-DICHLOROPROPANE	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
cis-1,3-DICHLOROPROPENE	< 5.0	<5.0	<5.0	< 5.0	< 5.0	< 5.0
TRICHLOROETHENE	87	590	650	100	340	2,800
DIBROMOCHLOROMETHANE	<5.€	<5.0	<5.0	< 5.0	< 5.0	< 5.0
1,1,2-TRICHLOROETHANE	< 5.0	<5.0	<5.0	< 5.0	< 5.0	< 5.0
BENZENE	< 5.0	<5.0	<5.0	< 5.0	< 5.0	< 5.0
trans-1,3-DICHLOROPROPENE	< 5.0	<5.0	<5.0	< 5.0	< 5.0	< 5.0
2-CHLOROETHYLVINYL ETHER	< 20	<20	<20	<20	< 20	< 20
BROMOFORM ————————————————————————————————————	<5.0	<5.0	< 5.0	< 5.0	< 5.0	< 5.0
4-METHYL-2-PENTANONE	< 10	<10	<10	< 10	<10	<10
2-HEXANONE	<10	<10	<10	< 10	<10 _.	<10
TETRACHLOROETHENE -	< 5.0	<5.0	<5.0	< 5.0	<5.0 ⋅ ,	< 5.0
1,1,2,2-TETRACHLOROETHANE	<5.0	<5.0	<5.0	< 5.0	< 5.0	< 5.0
TOLUENE	< 5.0	<5.0	<5.0	< 5.0	< 5.0	< 5.0
CHLOROBENZENE	< 5.0	< 5.0	<.5.0	< 5.0	< 5.0	< 5.0
ETHYL BENZENE	< 5.0	<5.0	<5.0	< 5.0	< 5.0	< 5.0
STYRENE —	< 5.0	<5.0	<5.0	< 5.0	< 5.0	< 5.0
XYLENE (TOTAL)	< 5.0	<5.0	< 5.0	< 5.0	< 5.0	< 5.0
1,3-DICHLOROBENZENE	< 10	<10	<10	<10	< 10	< 10
1,2-DICHLOROBENZENE	< 10	<10	<10	<10	<10	<10
1,4 DICHLOROBENZENE	<10	<10	<10	<10	<10	<10
DATE SAMPLED:	4-16-92	4-16-92	4-16-92	4-16-92	4-16-92	4-16-92
DATE RECEIVED:	4-21-92	4-21-92	4-21-92	4-21-92	4-21-92	4-21-92
DATE ANALYZED:	4- 27-92	4-27-92	4-27-92	4-27-92	4-27-92	4-27-92

EST 2 A

اً ا

.

֡֝֝֝<u>֚</u>

HUNTINGDON ANALYTICAL SERVICES ENVIRONMENTAL

EPA METHOD 8240

VOLATILE ORGANICS

SAMPLE IDENTIFICATION:	ESI-4	ESI-5	ESI-9	ESI-8	ESI-1	ESI-7
						012
HAS SAMPLE #92-631-	007	008	009	010	011	012
COMPOUND	RESULT	RESULT	RESULT	RESULT	RESULT	RESULT
	ug∕l	ug/I	ug∕l	ug/l	ug1	ugΛ
CHLOROMETHANE	<10	<10	<10	<10	<10	<10
BROMOMETHANE —	<10	<10	<10	< 10	< 10	< 10
VINYL CHLORIDE —	< 10	< 10	<10	<10	< 10	< 10
CHLOROETHANE	<10	<10	<10	<10	<10	< 10
METHYLENE CHLORIDE	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
ACETONE	<10	<10	<10	< 10	< 10	<10
TRICHLOROFLUOROMETHANE	<10	<10	<10	< 10	< 10	< 10
CARBON DISULFIDE	<5.0	< 5.0	< 5.0	< 5.0	< 5.0	<5.0
1,1-DICHLOROETH EN E	<5.0	<5.0	<5.0	< 5.0	< 5.0	< 5.0
1,1-DICHLOROETHANE	<5.0	< 5.0	< 5.0	<5.0	< 5.0	< 5.0
	<5.0	< 5.0	< 5.0	< 5.0	< 5.0	7.1
1,2-DICHLOROETH EN E (TO TAL)		<5.0	<5.0	< 5.0	< 5.0	< 5.0
1,2-DICHLOROETH AN E	<5.0 <5.0	<5.0	< 5.0	< 5.0	<5.0	< 5.0
	<10	<10	<10	<10	<10	<10
2-BUTANONE	<5.0	< 5.0	< 5.0	< 5.0	<5.0	<5.0
	<5.0 <5.0	< 5.0	< 5.0	<5.0	< 5.0	< 5.0
CARBON TETRACHLORIDE	<10	<10	<10	<10	<10	<10
BROMODICHLOROMETHANE	<5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
1,2-DICHLOROPROPANE	<5.0	<5.0	<5.0	< 5.0	< 5.0	< 5.0
			< 5.0	< 5.0	<5.0	< 5.0
cis-1,3-DICHLOROPROPENE	<5.0	< 5.0			20	50
TRICHLOROETHENE	< 5.0	< 5.0	< 5.0	< 5.0		< 5.0
DIBROMOCHLOROMETHANE	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	
1,1,2-TRICHLOROETHANE	<5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
BENZENE -	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
trans-1,3-DICHLOROPROPENE	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
2-CHLOROETHYLVINYL ETHER	<20	< 20	< 20	< 20	< 20	< 20
BROMOFORM ————————————————————————————————————	. < 5.0	< 5.0	< 5.0	<5.0	< 5.0	< 5.0
4-METHYL-2-PENTANONE	<10	<10	<10	<10	<10	<10
2-HEXANONE	< 10	<10	<10	< 10	< 10	< 10
TETRACHLOROETHENE	< 5.0	< 5.0	< 5.0	< 5.0	<5.0	< 5.0
1,1,2,2-TETRACHLOROETHANE	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
TOLUENE	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
CHLOROBENZENE	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
ETHYL BENZENE	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
STYRENE	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
XYLENE (TOTAL)	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
1,3-DICHLOROBENZENE	<10	<10	< 10	<10	< 10	<10
1,2-DICHLOROBEN ZE NE	<10	<10	< 10	<10	< 10	< 10
1,4DICHLOROBENZENE	< 10	<10	<10	<10	<10	<10
DATE SAMPLED:	4-16-92	4-16-92	4-16-92	4-16-92	4-16-92	4-16-92
DATE SAMPLED. DATE RECEIVED:	4 -21-92	4-21-92	4-21-92	4-21-92	4-21-92	4-21-92
	4-27-92	4-27-92	4-27-92	4-27-92	4-27-92	4-27-92
DATE ANALYZED:	4- 21-74	4-21-72	* -21-72	+21-72	+41-14	+- L-12

40

And the second

.

HUNTINGDON **AN**A**LY**TICAL SERVICES ENVIRONMENT**A**L

EPA METHOD 8240
VOLATILE ORGANI**CS**

COMPOUND RESULT RESULT RESULT MDL ugfl
Ug1
CHLOROMETHANE
STATE STAT
BROMOMETHANE
VINYL CHLORIDE 160 <10
CHLOROETHANE
ACETONE
TRICHLOROFLUOROMETHANE <10
CARBON DISULFIDE <5.0
CARBON DISULFIDE <5.0
1,1-DICHLOROETHENE
1,1-DICHLOROETHANE
1,2-DICHLOROETHENE (TOTAL)
CHLOROFORM <5.0
2-BUTANONE
2-BUTANONE
CARBON TETRACHLORIDE <5.0
CARBON TETRACHLORIDE <5.0
BROMODICHLOROMETHANE < 5.0
1,2-DICHLOROPROPANE < 5.0
cis-1,3-DICHLOROPROPENE < 5.0
TRICHLOROFTHENE 13,600 21 <5.0 20 DIBROMOCHLOROMETHANE <5.0 <5.0 <5.0 <5.0 <5.0 1,1,2-TRICHLOROETHANE <5.0 <5.0 <5.0 <5.0 <5.0 BENZENE <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 Urans-1,3-DICHLOROPROPENE <5.0 <5.0 <5.0 <5.0 <5.0 2-CHLOROETHYLVINYLETHER <20 <20 <20 <20 BROMOFORM <5.0 <5.0 <5.0 <5.0 <5.0 4-METHYL-2-PENTANONE <10 <10 <10 <10
DIBROMOCHLOROMETHANE < 5.0
1,1,2-TRICHLOROETHANE <5.0
BENZENE <5.0
trans-1,3-DICHLOROPROPENE <5.0
2-CHLOROETHYLVINYLETHER
BROMOFORM <5.0
4METHYL-2-PENTANONE <10 <10 <10 <10
4METRIL 2-PENTANONE
2-HEXANONE <10 <10 <10 <10
TETRACHLOROETHENE 13 5.0 <5.0 <5.0
1,1,2,2-TETRACHLOROETHANE
TOLUENE <5.0 <5.0 <5.0 <5.0
CHLOROBENZENE <5.0 <5.0 <5.0 <5.0
ETHYL BENZENE
STYRENE <5.0 <5.0 <5.0 <5.0
XYLENE (TOTAL)
1,3-DICHLOROBEN ZE NE <10 <10 <10
1,2-DICHLOROBEN ZE NE <10 <10 <10
1,4-DICHLOROBENZENE
DATE SAMPLED: 4-16-92 4-16-92 —
DATE RECEIVED: 4-21-92 4-21-92 —
DATE ANALYZED: 4-27-92 4-27-92

	S - CHAIN-OF-CUSTODY RECORD	AND ANALYTICAL REQUEST FORM	Page 1
Iclient Name Doux raft Co	orporation citent	contect Kevin Sharahan	HAS Quote #
INDUCES FALCONER, N	Y. Phone	(049-8110	P.O. #
Samplers (signature): Samplers (signature): Sme) Q. Zymmenman		Sentelner size i Type	Analysis Requested/ Remarks
Sample	Sample HAS I 8	W/ Y// /	
ESI-10/4/1692/10:45	X SameBoolW14	21	TCL Volatiles, TAL Metals, P
ESI-11 A169211:10	x 1 1002 W 4	2	
1851-12 4169211 40	x 1 10031W14	2	
	$\langle $	12111	
	r 1 10051W14	21111	
1851-3 A 1692 4.20	x 1 10061W14	121111	
	x 1 1007 W 4	12 111	
ESI-5 4-1692 2001	x 10081W14	12111	
81-9 4-16924-00	x 1 1009W14	2	
ESI-8 416984.40N	x 1 - 010 W 4	12 111	
ESI-1 4169215:151	x 011W4	121111	
ESI-7 / 1692 5.50 157	x 1012 W 4	121111	
ESI-6 4 1692 6:15	x 12. 1/10/3/W/4	121111	
ESI 13/1 1/092 (0:40)	X 1, 1011 W 4	121111	
Relinquishedopy: 1 0 nt	e/ Time Received by:	Relinquished by:	Date/ Time: Received By:
1 And Change of the American 4 le	e/ Time delived by:	[Relinquished by:	Date/ Time: Recaived By:
, , , , , , , , , , , , , , , , , , ,	15/ Time: Received for Lab b	y: Deta/ Time: Remarks:	

ENVIRONMENTAL ANALYTICAL REPORT

REPORT NUMBER 92-412

PREPARED FOR:

EMPIRE SOILS INVESTIGATIONS, INC. S-5167 S. PARK AVENUE HAMBURG, NEW YORK 14075

RE: BTA-90-179B, DOWCRAFT

PREPARED BY:

HUNTINGDON ANALYTICAL SERVICES
DIVISION OF EMPIRE SOILS INVESTIGATIONS, INC.
P.O. BOX 250
MIDDLEPORT, NEW YORK 14105

MARCH 24, 1992

PAGE 1

HUNTINGDON ANALYTICAL SERVICES ELAP #10833 ENVIRONMENTAL REPORT

REPORT NUMBER 92-412

STATEMENT OF WORK PERFORMED

I HEREBY DECLARE THAT THE WORK WAS PERFORMED UNDER MY SUPERVISION ACCORDING TO THE PROCEDURES OUTLINED BY THE FOLLOWING REFERENCES AND THAT THIS REPORT PROVIDES A CORRECT AND FAITHFUL RECORD OF THE RESULTS OBTAINED.

- 40 CFR PART 136, "GUIDELINES ESTABLISHING TEST PROCEDURES FOR THE ANALYSIS OF POLLUTANTS UNDER THE CLEAN WATER ACT", OCTOBER 26, T984 (FEDERAL REGISTER) U. S. ENVIRONMENTAL PROTECTION AGENCY.
- U.S. ENVIRONMENTAL PROTECTION AGENCY, "TEST METHODS OF EVALUATING SOLID WASTE PHYSICAL/CHEMICAL METHODS, " OFFICE OF SOLID WASTE AND EMERGENCY RESPONSE, SW-846, 2ND EDITION AND 3RD EDITION.
- NEW YORK STATE DEPARTMENT OF HEALTH, ANALYTICAL TOXICOLOGY LABORATORY HANDBOOK, AUGUST 1982.

RICHARD J. RONAN/PH.D.

MARCH 24, 1992

LABORATORY DIRECTOR, ENVIRONMENTAL

REPORT CODE LEGEND:

<DL = LESS THAN DETECTION LIMIT

ND - NOT DETECTED

NA = NOT APPLICABLE

INP = INFORMATION NOT PROVIDED

MB - METHOD BLANK

HUNTINGDON ANALYTICAL SERVICES ENVIRONMENTAL .

METHOD 601 purgeable haldcarbons

SAMPLE IDENTIFICATION :	SLANK METHOD	ESI-2
HAS SAMPLE #92-412-	no	001
DATE ANALYZED:	3-11-92	3-11-92
COMPOUND	RESULT	RESULT ug/l
CHLOROMETHANE BROMOMETHANE VINYL CHLORIDE DICHLORODIFLUOROMETHANE CHLOROETHANE METHYLENE CHLORIDE TRICHLOROFLUOROMETHANE 1,1-DICHLOROETHANE 1,1-DICHLOROETHANE CHLOROFORM 1,2-DICHLOROETHANE 1,1,1-TRICHLOROETHANE CARBON TETRACHLORIDE BROMODICHLOROMETHANE 1,2-DICHLOROMETHANE 1,2-DICHLOROMETHANE TRICHLOROPROPANE TRICHLOROFOPANE TRICHLOROGETHENE TRICHLOROGETHENE TRICHLOROETHANE 1,2-TRICHLOROPROPANE TRICHLOROETHANE 1,1,2-TRICHLOROETHANE 1,1,2-TRICHLOROETHANE 2-CHLOROETHYLVINYL ETHER	<pre><1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <0.50 <</pre>	<100 <100 <100 <100 <100 <100 <100 <500 <5
BROMDFORM	<5.0 <0.50 <0.50 <0.50	<500 <50 <50 <50 <100 <100 <100

^{*} CONFIRMED BY GC/MS.

	204				CES	CRAIN- OF-	CUSTOD	r_ REG	ORP	AWD_A	HALY	IGAL	REQUE	\$1 10	RM				ege	01
					•	gations,									au !	- -	HAS QU	ote#	005	530
			-5167	South 1	'ārk M	<u>4075</u>			one						-		P.O			
Project	No.	8	TA 9c	179B!	Dowc	Isile Hei	e:	M	ne re	400	1005	TOEL	Size	I lyr	/1	7	A n∌i	ysis	Reques	ted/
Som Ker	ب <u>د</u> (ع	2)1	ature	han		HAS Ref.	HAS	<u>,</u>	ontal	VOA									arks	
					1 Scen	tocation	1559. 1	<u> </u>		L			[<u>/</u>			1/	\overline{f} f	/	
ESI-	13/	191	1510	l 1	X	ESI-2	1001	W	12	2	i i	<u>.</u>	<u>. </u>	<u> </u>	<u> </u>	ICI	_ Yo	lati	E \	· · · · · · · · · · · · · · · · · · ·
4	11			1	1	<u> </u>	1	 	1	<u> </u>	ـــــــــــــــــــــــــــــــــــــ	<u> </u>	1	<u> </u>						
·	1			1		I	1	1	} t	;	1	1	}	1	l !					
l I					l l	1	\ {	 !	1	!]]	!		1				
			<u> </u>		_	1	<u> </u>	<u> </u>	.l ₹	1	1	1	1	!	1	i				
' !	<u> </u>			<u> </u>	<u> </u>		1		<u></u>	 -	<u> </u>	 	 	1	 	\ {				
} 	 l	,	t J	{ .L	! .1			ــــــــــــــــــــــــــــــــــــــ	<u> </u>	<u>.</u>	<u> </u>	1	 	 	1	ļ				
<i>l</i>	1 1		t 1	1	! 	1 		$\stackrel{\star}{\sim}$	_		<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u></u>	<u>.</u>				
!	}		1	1	1	! 1	<u> </u>				<u></u>	<u>.</u> 	1	<u> </u>	<u>. </u>					
·			ì	i	l	1	1	1	1	1	1	7	[]	I	<u> </u>	 				
<u> </u>	<u> </u>		<u> </u>	<u> </u>	_ 1	1	1	<u> </u>	<u> </u>		}	1	1	1	1	1				
İ		<u> </u>	<u></u>	<u></u>	1	1	_l	 -	 1	- 	- 	1	1	1	1	1				
<u> </u>	_ <u>i</u> _		<u> </u>	1	1	<u> </u>		1			<u> </u>	1	<u> </u>	- 	1	\leftarrow				
l I	! 		<u> </u>	_l	1		<u> </u>	<u>.</u>	Ļ.,	<u> </u>	<u> </u>				1					
1	1		†	† [1 :	1	i _i		_l _l	 		_11_				<u>.</u>				
			<u>. </u>	<u> </u>	<u></u>	1		+	1	1	l L	1	1	<u> </u>		1				\geq
14/10	سلـــــا	·	by:	1	pole/	Time: Rec	eived t	·Y:			Reli	nqu l s	hed b	y :	} 1		/ lime:	1		
	relinquished by: 1 polesting: Received to the standard of 1921/701					y:			Ret	nquis	hed t	y:	i	perc	/ Jime:	Rece	ived 1	y =		
[Relies	qui si	140	by:	<u>i</u>	9=15/	Time: Exe	Kine	or L	ab b	γı	1 84	11/	ma	Remai	ks:	<u> </u>	g e			t.

Division of EMPIRE SOILS INVESTIGATIONS INC.

PO Box 250 Middleport New York 14105 Tel: (716) 735-3400 FAX (716) 735-3653

Environmental Analytical Report For:

EMPIRE SOILS INVESTIGATIONS, INC. - HAMBURG

PROJECT NAME: DOWCRAFT

HAS Ref. #91-345

February 28, 1991

HUNTINGDON ANALYTICAL SERVICES ELAP #10833 ENVIRONMENTAL REPORT

HAS Reference Numbers: #91-345

February 28, 1991

Statement of Work Performed

I hereby declare that the work was performed under my supervision according to the procedures outlined by the following references and that this report provides a correct and faithful record of the results obtained.

- 40 CFR Part 136, "Guidelines Establishing Test Procedures for the Analysis of Pollutants Under the Clean Water Act," October 26, 1984 (Federal Register) U. S. Environmental Protection Agency.
- U. S. Environmental Protection Agency, "Test Methods of Evaluating Solid Waste Physical/Chemical Methods, "Office of Solid Waste and Emergency Response, SW-846, 2nd Edition and 3rd Edition.
 - New York State Department of Health, Analytical Toxicology Laboratory Handbook, August 1982.

Katherine A. Syracuse
Lab Director, Environmental

REPORT CODE LEGEND:

<DL = Less than detection limit</pre>

ND = Not detected

NA = Not applicable

INP = Information not provided

MB = Method Blank

HUNTINGDON ANALYTICAL SERVICES ENVIRONMENTAL

METHOD 8010 PURBEABLE HALGCARBONS

	(005)	004		
SAMPLE IDENTIFICATION :	DRY WELL	DRY WELL	METHOD	
CHIRCE IDENTIFICATION I	IN	OUT	BLANK	
	-			5:1/
HAS SAMP le #9 1-345-	001	002		2017
DATE ANALYZ e d :	2/25/31	2/25/91	2/25/91	not
COMPOUN D	RESULT	RESULT	RESULT	
GBCH GBCH	ug/kg	ug/kg	ug/kg	
	agrag	25, 75		
CHLOROMETHANE	<100	<100	<100	
BROMOME TH AN E	<100	<100	<100	
VINYL CHLORIDE	<100	<100	<100	
DICHLORODIFLUOROMETHANE -	<100	<100	<100	
CHLOROETHANE	<100	<100	<100	
METHYLENE CHLORIDE	<50	K50	<50	
TRICHLOROFLUOROMETHANE	<50	₹50	<50	
1,1-DICHLORGETHENE	<50	<50	<50	
1,1-DICHLORDETHANE	<50	<50	<50	
TOTAL 1,2-DICHLOROETHENE	440	<50	<50	
CHLOROF ÓR M	<50	₹50	<50	
1,2-DICHLOROETHANE	(5)	<5 0	<50	
1,1,1-TRICHLOROETHANE	<50	<50	<50	
CARBON TETRACHLORIDE	<50	<50	<50	
BROMODICHLOROMETHANE	₹50	₹50	<50	
1,2-DICHLOROPROPANE	<50	< 50	. <50	
cís-1,3-DICHLOROPROFENE -	₹50	<50	<50	
TRICHLOROETHENE	310	20	<50	
trans-1,3-DICHLOROPROPENE	₹50	<50	<50	
DIBROMOCHLOROMETHANE	₹50	₹50	<50	
1,1,2-TRICHLORGETHANE+	<50	<50	<50	
2-CHLOROETHYLVINYL ETHER	< 500	<500 ·	<500	
BROMOFO RM	₹500	₹500	<5ó0	
1,1,2,2-TETRACHLOROETHANE	<50 €	` / <50	<50	•
TETRACHLOROETHENE	₹50	< 50	₹50	
CHLOROBENZENE	<50	< 50	<50	
1,4-DICHLORDBENZENE	<100	<100	<100	
1,2-DICHLOROBENZENE	₹100	<100	<100	
1,3-DICHLORDBENZENE	₹100	<100 <100	<100	
1,3-DIUMLURUBENZENE	< 100	3,100	< 100	

lent Habb	Emples S S-5167 S FrimBueg,	usu - olis SPAK	EIAII-01 IN VEST KANG. ILT 075	CVETOR	CERI OSII	ient	ALL.	HALYI	IEAL AVE	= } B10	tar:	TY.		NAS Quete # _	
oject Hear		Fauc	PATT	#94- 5 HA8		f of tainers	40 m VOA		iner S				7	Analysis Repo	
	h.10:45	!×	Deguest	1001 Arb	S	2	2					! !	601	1 5	
Shoul /20	4,10:55	X	DRAWEIL	500	5	1	· 	γ		<u> </u>	 	! !	601	5	
	1	<u> </u>	<u> </u>	h	2	 		 							
	1 1	 	l . L	<u> </u>	 	 	<i>.</i> 	 	;.	l L <u>.</u>	l . L	l !	<u> </u>		
		<u> </u>	<u> </u>	<u> </u>	<u> </u>	 	 	 	ļ	! <u> </u>	! !	<u> </u>	 		
	.		1	 	<u> </u>	<u> </u>	 	<u> </u> 	 	! !	 		! !	t seems	
1	1 1	<u> </u>	1 <u>1 </u>		<u> </u>	<u> </u>	 	 			! !	<u> </u>	! !	· .	
			! !	<u> </u>	<u> </u>		><			<u> </u>	<u> </u>	<u> </u>	! !		
<u> </u>	<u> </u>	<u> </u>	! !			! !	 	l 			<u> </u>	! 	! !		
	 	_ 		<u> </u> 	 	. 	! !	l J	 	l 	<u> </u>				
I	1 1	1	<u> </u>	<u> </u>	l 1	<u> </u>	l L	<u> </u> 	l L	l 	! !	ļ Ļ	ļ		
l 		1	l 1	1	! !	! !	! !	l 1	l I	! !	! !	<u> </u>	! 		
			1	<u> </u>	- - <u> -</u>	- -	 		- 		<u> </u> 	<u> </u>	<u> </u>		
	01/	į	1	1	1	 	l 1	<u> </u>	l . L	<u> </u>	<u> </u>	 	<u> </u>		
7, 5(1) - (1)	abyle 12/	20/9/11	ingilade	Yes H	**			telin	qulah	ed by	t	_ 	Pate/	iner Receive	d By:
	4 by:	Pate/	Sing Amy	it wed by	w/ ~	ar		Relin	quish	ed by	1	!-	Pere/_	iner Receive	d Bys

Division of **EMPIRE SOILS INVESTIGATIONS INC.** PO Box 250 Middleport New York 14105

Tel: (716) 735-3400 FAX (716) 735-3653

Environmental Analytical Report For:

EMPIRE SOILS INVESTIGATIONS, INC. - HAMBURG

PROJECT NAME: DOWCRAFT

HAS Ref. #90-1653

November 27, 1990

Sample ID: METHOD BLANK HAS Sample #90-1653-MB Date Sampled: N/A

ANALYTE	EP A MET H OD	DATE PREPARED	DATE ANALYZED	DETECTION LIMIT	RESULT mg/l	QC
ANTIMONY ARSENIC BERYLLIUM CADMIUM CHROMIUM COPPER LEAD MERCURY NICKEL SELENIUM SILVER THALLIUM ZINC	6010 7060 6010 6010 6010 7421 7470 6010 7740 6010 7841 6010	11/15/90 11/15/90 11/15/90 11/15/90 11/15/90 11/15/90 11/15/90 11/15/90 11/15/90 11/15/90 11/15/90 11/15/90	11/21/90 11/20/90 11/21/90 11/21/90 11/21/90 11/21/90 11/21/90 11/21/90 11/21/90 11/21/90 11/21/90 11/21/90	0.05 0.01 0.005 0.005 0.01 0.005 0.0002 0.04 0.005 0.005 0.01 0.01	<pre></pre>	**************************************

^{*}THIS INDICATES A 95% CONFIDENCE LIMIT ACHIEVED WITH AN EPA QUALITY CONTROL SOLUTION ANALYZED ALONG WITH YOUR SAMPLE.

Sample ID: DOWCRAFT ESI-1 HAS Sample #90-1658-001 Date Sampled: 11/14/90

ANALYTE	EP A METH O D	DATE PREPARED	DATE ANALYZED	DETECTION LIMIT	RESULT mg/l	MS %REC	MSD ∜REC	RPD
ANTIMONY ARSENIC	60 10 70 60	11/15/90 11/16/90	11/21/90 11/20/90	0.05 0.01	<dl< td=""><td>86.0 *95</td><td>89.0</td><td>3.5</td></dl<>	86.0 *95	89.0	3.5
BERYLLIUM	60 10	11/15/90	11/21/90	0.005	<dl< td=""><td>96.2</td><td>98.0</td><td>1.8</td></dl<>	96.2	98.0	1.8
CADMIUM CHROMIUM	60 10 60 10	11/15/90 11/15/90	11/21/90 11/21/90	0.005 0.01	<dl 0.05</dl 		74.0	1.0
COPPER	6010	11/15/90	11/21/90	0.01 0.005	0.01 0.006	93.7 *95	94.8	1.1
LEAD MERCURY	74 21 74 70	11/16/90 11/21/90	11/19/90 11/21/90	0.0002	O.OG6	*95		
_NICKEL	6010	11/15/90	11/21/90	0.04 0.005	<dl <dl< td=""><td>95.4 *95</td><td>96.2</td><td><1.0</td></dl<></dl 	95.4 *95	96.2	<1.0
SELENIUM SILVER	77 40 60 10	11/16/90 11/15/90	11/21/90 11/21/90	0.005	<df< td=""><td>108</td><td>105</td><td>2.8</td></df<>	108	105	2.8
THALLIUM ZINC	78 41 60 10	11/16/90 11/15/90	11/21/90 11/21/90	0.01 0.02	<dl 0.02</dl 	*95 89.5	91.0	1.6

^{*}THIS INDICATES A 95% CONFIDENCE LIMIT ACHIEVED WITH AN EPA QUALITY CONTROL SOLUTION ANALYZED ALONG WITH YOUR SAMPLE.

Sample ID: ESI-2 HAS Sample #90-1653-004 Date Sampled: 11/13/90

ANALY	EP A TE MET HO D	DATE PREPARED	DATE ANALYZED	DETECTION LIMIT	RESULT mg/l	QC	
ANTIMO ARSENI BERYLI CADMIU CHROMI COPPEI LEAD MERCUI NICKEI SELENI SILVEI THALLI	IC 7060 LIUM 6010 JM 6010 R 6010 R 6010 RY 7421 RY 7470 L 6010 IUM 7740 R 6010	11/15/90 11/15/90 11/15/90 11/15/90 11/15/90 11/15/90 11/15/90 11/15/90 11/15/90 11/15/90 11/15/90	11/21/90 11/21/90 11/21/90 11/21/90 11/21/90 11/21/90 11/27/90 11/21/90 11/21/90 11/21/90 11/21/90 11/21/90	0.05 0.01 0.005 0.005 0.01 0.005 0.002 0.04 0.005 0.01 0.01	<pre></pre>	* * * * * * * * * * * * * * * * * * *	
TI TI	0010	11, 10, 50	,,				

^{*}THIS INDICATES A 95% CONFIDENCE LIMIT ACHIEVED WITH AN EPA QUALITY CONTROL SOLUTION ANALYZED ALONG WITH YOUR SAMPLE.

Sample ID: ESI-3

HAS Sample #90-1653-003 Date Sampled: 11/13/90

ANALYTE	EP A MET HO D	DATE PREPARED	DATE ANALYZED	DETECTION LIMIT	RESULT mg/l	MS %REC	MSD %REC	RPD
ANTIMONY ARSENIC BERYLLIUM CADMIUM	6010 7060 6010 6010	11/15/90 11/15/90 11/15/90 11/15/90	11/21/90 11/20/90 11/21/90 11/21/90	0.05 0.01 0.005 0.005	<dl <dl <dl< td=""><td>*95 96.2 109</td><td>114</td><td>1.2</td></dl<></dl </dl 	*95 96.2 109	114	1.2
CHROMIUM COPPER LEAD MERCURY	60 10 60 10 74 2 1 74 70	11/15/90 11/15/90 11/15/90 11/27/90	11/21/90 11/21/90 11/19/90 11/27/90	0.01 0.01 0.010 0.0002	0.03 0.04 0.030 <dl< td=""><td>92.2 117 *95 *95</td><td>91.7</td><td><1.0 <1.0</td></dl<>	92.2 117 *95 *95	91.7	<1.0 <1 .0
NICKEL SELENIUM SILVER THALLIUM	60 10 77 40 60 1 0 78 4 1	11/15/90 11/15/90 11/15/90 11/15/90	11/21/90 11/21/90 11/21/90 11/21/90	0.04 0.005 0.01 0.01	<df <df <df <df< td=""><td>91.8 *95 112 *95</td><td></td><td><1.0</td></df<></df </df </df 	91.8 *95 112 *95		<1.0
ZINC	60 1 0	11/15/90	11/21/90	0.02	0.08	89.3	89.3	<1.0

^{*}THIS INDICATES A 95% CONFIDENCE LIMIT ACHIEVED WITH AN EPA QUALITY CONTROL SOLUTION ANALYZED ALONG WITH YOUR SAMPLE.

Sample ID: ESI-4

HAS sample #90-1653-002 Date sampled: **1**1/**1**3/90

ANALYTE	EP A MET H OD	DATE PREPARED	DATE ANALYZED	DETECTION LIMIT	RESULT mg/l	QC
ANTIMONY ARSENIC BERYLLIUM CADMIUM CHROMIUM COPPER LEAD MERCURY NICKEL SELENIUM SILVER	6010 7060 6010 6010 6010 7421 7470 6010 7740 6010	11/15/90 11/15/90 11/15/90 11/15/90 11/15/90 11/15/90 11/15/90 11/15/90 11/15/90 11/15/90	11/21/90 11/20/90 11/21/90 11/21/90 11/21/90 11/21/90 11/27/90 11/21/90 11/21/90 11/21/90	0.05 0.01 0.005 0.005 0.01 0.01 0.005 0.0002 0.04 0.005 0.01	<pre></pre>	*9555555**9555**
THALLIUM ZINC	78 4 1 60 1 0	11/15/90 11/15/90	11/21/90 11/21/90	$0.01 \\ 0.02$	<dl 0.13</dl 	*95 *95

^{*}THIS INDICATES A 95% CONFIDENCE LIMIT ACHIEVED WITH AN EPA QUALITY CONTROL SOLUTION ANALYZED ALONG WITH YOUR SAMPLE.

Sample ID: ESI-5 HAS Sample #90-1653-001 Date Sampled: 11/13/90

ANALYTE	EP A MET H OD	DATE PREPARED	DATE ANALYZED	DETECTION LIMIT	RESULT mg/l	QC
ANTIMONY ARSENIC BERYLLIUM CADMIUM CHROMIUM COPPER LEAD MERCURY NICKEL SELENIUM SILVER THALLIUM ZINC	6010 7060 6010 6010 6010 7421 7470 6010 7740 6010 7841 6010	11/15/90 11/15/90 11/15/90 11/15/90 11/15/90 11/15/90 11/15/90 11/15/90 11/15/90 11/15/90 11/15/90	11/21/90 11/20/90 11/21/90 11/21/90 11/21/90 11/21/90 11/27/90 11/21/90 11/21/90 11/21/90 11/21/90	0.05 0.01 0.005 0.01 0.01 0.005 0.002 0.04 0.005 0.01 0.01 0.01	OL 0.01 CDL 0.013 0.03 0.05 0.060 CDL CDL CDL CDL CDL	*955 *955 *955 *9555 *9555 *9555 *955555555
		,,	,,	*		

^{*}THIS INDICATES A 95% CONFIDENCE LIMIT ACHIEVED WITH AN EPA QUALITY CONTROL SOLUTION ANALYZED ALONG WITH YOUR SAMPLE.

ENTIRODON ENELTTICEL SERVICES

TOLITILE ORGANICS

SUPPLE		DOKCPATT	DOMOSTELL	DOWGELFT	reteod ellkk	
CONTROL CONT	STATE THE MENTIFICATION:	25-1	\$5-2	25-3	מתיים	
CLISCONTELNE	ELS SIMPLE :98-1658	825	હિક	637		
CLISCONTELNE						
CEMPONTELIE	001209/Q					
CONTINUE		ue/£g	#\ <u> </u> [{	re/te	46/48	~\$/14 5
THE CENSIVE	CELOPOWETEANE	(1,633	(1,633	<1,833		•
NIL CELORIDE		(1.033	0.63	(1,833		•
CONTINUE CONTINUE	ALL CELUBIUS	•		(1,833	(1,633	
STEPLIAN CELORIDE C.59 C.59 C.50 C	TODARTINE	•	•	(1,933	<1,833	•
TIONE	NESTRI FUR CELOPITIR		•		(533	<563
	PROFE			<1,835	(1,033	<1,030
CLERON DISTRITURE		•	•	•	(1,033	(1,033
1-DICELOROTTEINE (1914)		•	•	•	<€69	<€93
1-DICELOROFTEINE (TOTAL)				(593	C56 3	<563
1,2-DICELOROFTENE (TOTAL)					<553	(503
CELOROPORM	1-DICEDORUEISERS (TOTAL) -				ংকিট	<598
2-DICELOROFTELNE				(5.63)	(59)	<59∂
DITANORS					<593	<563
1.1.1-TEICELOBOTTELKE					(1,639	<1,000
	TOURS TOURS OF THE		•	*	•	•
Intl acetaes					(593	<5 9∂
EPONDICELOPONETELNE						(1,033
1, 2 - PICELOPOPEDPENE C538 C528 C52			•	•	•	-
Is-1,3-DICELOROPROFINE						<508
THE CHOPOTHEME						
NIBEONOTHICK						
1,2-TRICELOBORTEANE						
TYPER COM CO					-	
TYRES-1, 3-DICELOROFROPENE	,1,2-161CELUEUE1EE6E					
CELOROPETETLY INTL FIELE						
Commonstration Comm						
4-METEVIL-2-PENTANONE			•		•	
2-ETIANONE						
Comparison Com				•	•	•
1,1,2,2-TETEACHLOBOUTELANE -				•	•	
TOLUERE						
CELOBOBENZENE						
THETE BENZENE						
STYEERE						
TYLENE (TOTAL) -	TIEIL BERCERS	- (300 - (201				
1,3-DICELOROBENZENE	SILKING	(598 				
1,2-DICELOROBENZENE	LILLAL (TVILL)	- (300 /(a21				
1,4-DICHLOROBENZERE (1,033 (1,003 (1,003 (1,003 (1,003 (1,003 DETE PROFITED: 11-15-93 11-15-93 11-15-93 11-14-93					•	
DATE RECEIVED: 11-15-99 11-15-99 DATE SAMPLED: 11-14-99 11-14-99			•	-	•	
DATE SAMPLED: 11-14-90 11-14-90	1.4-DICHTOROBENZERR	- (1,000	(1,505	11,100	מתמיני	11,000
DATE SAMPLED: 11-14-90 11-14-90	ULTE PROPIERO	11-15-93	11-15-49	11-15-99	-	
				11-14-59		
				11-17-98	11-17-93	

HUNTINGDON ANALYTICAL SERVICES ENVIRONMENTAL

METHOD 8240 VOLATILE ORGANICS

SAMPLE IDENTIFICATION :	DOWCRAFT SS-1	DOWCRAFT SS-2	DOHCRAFT SS-3	RLLISON SS-1	METHOD BLANK	
HAS SAMPLE #90-1658	8 2 5	96 6	92 7	9 98		
COMPOUND	RESUL ?	RESULT	RESULT	RESULT	RESULT	MDL
	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Eg	ug/Kg
CHLOROMETHANE	<1,000	<1,000	<1,000	<100,000	<1,000	<1,033
BROMOMETHANE	<1,00 0	(1,000	<1,000	<100,000	<1,000	<1,000
VINYL CHLORIDE	(1,000	<1,000	<1,000	<100,000	<1, <i>000</i>	<1,003
CHLORORTHANE	<1,033	<1,930	<1,000	<100,000	<1,030	<1,000
METHYLENE CHLORIDE	(500)	(590	<5₽∂	<50,000	<5 <i>9</i> 9	< 500
ACETONE	<1,00 0	<1, 202	<1, <i>000</i>	(100,000	<1,000	<1,000
TRICHLOROFLUOROMETHANE	<1,00 0	(1,998	<1, <i>000</i>	<1 <i>00</i> , <i>000</i>	<1, <i>000</i>	<1,000
CARBON DISULFIDE	< 5000	<599	<5 <i>9</i> 0	<50, 030	<5 <i>08</i>	<500
1,1-DICHLOROBTHENE	<500	(5 03	<50∕8	<50°,000	<5 <i>0</i> ⁄3	< 500
1,1-DICHLORORTHANE	<500	<5 90	<5ØØ	<5Ø ,000	<50€	<500
1,2-DICHLOROETHENE (TOTAL) -	<5200	<5 9∂	<5₽Ø	<5Ø, <i>0</i> 000	<59⁄8	<5ØØ
CHLOROFORM	<500	<5€6	∢5 <i>9</i> €	<5 0,000	<5₽Ø	<500
1,2-DICELORORTHANE	<500	(500	<59⁄∂	<5 0,000	<50∕∂	<500
2-BUTANONE	<1,000	<1,000	<1, <i>000</i>	<100,000	<1, <i>000</i>	<1,000
1,1,1-TRICHLOROETHANE	<5∂∂	<500	<5 00	<50°,9000	<5₽8	(599)
CARBON TETRACHLORIDE	<59∕8	<500	<5ØØ	<50,000	<598	<500
VINYL ACETATE	<1,000	<1,000	<1,000	<100,000	<1,030	<1,000
BROMODICHLOROMETHANE	< 5 2/2	<500	<500	<50,000	<500	<5 0 0
1,2-DICHLOROPROPANE	<5000	<5 99	<5ØØ	<5Ø,ØØØ	<59∕8	<50 0
cis-1,3-DICHLOROPBOPENE	<500€	<520	<5Ø∂	<50,800	<598	<5 <i>99</i>
TRICHLORORTHENE	<5 99	(500	<500	<50,000	<500	<599
DIBROMOCHLOROMETRANE	< 599	<500	<500	<50,030	<500	<500
1,1,2-TRICHLORORTHANE	<500	<500	<5 00	<50,000	<500	<59⁄∂
BENZENE	<5 99	<500	<500	<50,000	(590) -500	<500
trans-1,3-DICHLOROPROPERE	<5Ø 9	<500	<5000	<50,000	< 5000 -0.0007	<500
2-CHLOROETHYLVINYL ETHER	<2,000	<2,000	<2,000	<2 00,000	<2,000	<2, 000
BROMOFORM	<500	₹598	<5000 -1 -000	(50,000	<5000 1 000	<590
4-MRTHYL-2-PENTANONE	<1,000	<1,000	(1,000	(190,000	(1,000	(1,000
2-HEXANONE	<1,000	(1,000	<1,000	<100,000	<1,000	(1,000
TETRACHLOROETHENE	<5 98	<500	<500 .	<50,000	(500 4500	<5 <i>9</i> 3 <5 <i>9</i> 3
1,1,2,2-TETRACHLOROETHANE	<500	<5 90	<5ØØ √5ØØ	<50,000	<5ØØ √£001	<5000
TOLURNE	(5 99	<5000 ∠som	<500	1,000,000	< 5 <i>00</i> < 5 <i>00</i> 3	<5 <i>0</i> 0
CHLOROBENZENE	<50∕01 √50∕01	<\$98 4503	<5 <i>9</i> ∂ <5 <i>0</i> ∂	<50,000 <50,000	<5ØØ . <5ØØ	<5 <i>8⁄</i> 8
RTHYL BENZENESTYRENE	<5 00 <5 00	<50⁄∂ <50∕∂	<500	(50,000 (50,000	<5 <i>0</i> 00	√5ØØ
XYLENE (TOTAL)	<500 0	<5 <i>00</i>	45 <i>0</i> 6	<50,000	< 5 <i>00</i>	<500
1,3-DICHLOROBENZENE	<1,000	<1, 0 00	<1,888	(100,000	<1, <i>888</i>	<1,000
1,2-DICHLOROBENZENE		<1,000	<1,000 <1,000	(100,000	<1,000	(1,000
1,4-DICHLOROBENZENE	<1, <i>000</i> <1, <i>000</i>	<1,000 <1,000	<1,000 <1,000	<100,000	<1,000	(1,000
די <u></u> -	/1, vo v	\1, 0 00	11,000	vitro i nem	יזיסטע	/11nrn
DATE RECEIVED:	11-15-90	11-15-90	11-15-99	11-15-90		
DATE SAMPLED:	11-14-90	11-14-90	11-14-90	11-14-90		
DATE ANALYZED:	11-17-90	11-17-90	11-17-90	11-20-90	11-17-90	
- ממקוחטום מומע	TT TI MD	77 11 00	11 11 00	11 10 00	44 II VI	

HUNTINGDON AMALYTICAL SERVICES ENVIRONMENTAL

Inorganio Wet Chemical Analyses

Analyte: Percent Solid - dry weight

EPA Method No.: 160.3

Sample	HAS		 Date	Date	l Method Detection	nt t		1
Date	Sample #90-	Client	I.D. Prepared	Analyzed	Limit 		Units	+QC in %+
111/14/901	16 58 -005	SS-1	 11/21/90) 11726/90 	 0.1 	1 78.0 1	% Solid	
11/14/90	16 58-00 6	\$S-2	111/21/90	111/26/90	0.1	1 79.3 1	% Solid	1 1
111/14/90	16 58-0 07	SS-3	; 111/21/90 	11/26/90 	0.1	1 36.8 1	% Solid	
i			1	1	1	1		1

HUNTINGDON ANALYTICAL SERVICES ENVIRONMENTAL

Inorganic Wet Chemical Analyses

Analyte: pH

EPA Method No.: **SW-846 9045**

: Sample : Date :	HAS Sa mple #90-	Client I.D.		Date	, Method Detection Limit	-	Units	: :QC in %:
11/14/90	1 65 8 -0 05	\$S-1	11/16/90	11/16/90	0.10	6.48	S.U.	101*
11/14/90	1 65 8-006	5S-2	; 11/16/ 90	: :11/16/90 :	0.10	6.70	s.u.	101*
11/14/90	1 65 8 -0 07	. 5S-3	11/16/90	11/16/90	0.10	7.59	s.u.	101*
; ; ! ! ! !		; 1 1	1	i i i	; 			

^{*} A known standard of the analyte of interest was analyzed along with this sample with the percent recovery indicated above.

sample ID: METHOD BLANK SOIL

HAS Sample #90-1658-MB

Date Sampled: N/A

ANALYTE	EP A MET HO D	DATE PREPARED	DATE ANALYZED	DETECTION LIMIT	RESULT mg/l	QC
ANTIMONY ARSENIC BERYLLIUM CADMIUM CHROMIUM COPPER LEAD MERCURY NICKEL SELENIUM SILVER THALLIUM	6010 7060 6010 6010 6010 6010 7470 6010 7740 6010 7841 6010	11/15/90 11/15/90 11/15/90 11/15/90 11/15/90 11/15/90 11/15/90 11/15/90 11/15/90 11/15/90 11/15/90	11/21/90 11/21/90 11/21/90 11/21/90 11/21/90 11/21/90 11/21/90 11/21/90 11/21/90 11/21/90 11/21/90 11/21/90	0.05 0.01 0.005 0.005 0.01 0.045 0.0002 0.04 0.005 0.01 0.01	<pre></pre>	* 9 9 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	,,	,,	• • • •		

^{*}THIS INDICATES A 95% CONFIDENCE LIMIT ACHIEVED WITH AN EPA QUALITY CONTROL SOLUTION ANALYZED ALONG WITH YOUR SAMPLE.

Sample ID: DOWCRAFT SS-1 HAS Sample #90-1658-005 Date Sampled: 11/14/90

ANALYTE	EP A MET H OD	DATE PREPARED	DATE ANALYZED	DETECTION LIMIT	RESULT mg/kg	QC
ANTIMONY ARSENIC BERYLLIUM CADMIUM CHROMIUM COPPER LEAD MERCURY NICKEL SELENIUM SILVER THALLIUM ZINC	6010 7060 6010 6010 6010 7421 7471 6010 7740 6010 7841 6010	11/15/90 11/15/90 11/15/90 11/15/90 11/15/90 11/15/90 11/15/90 11/15/90 11/15/90 11/15/90 11/15/90 11/15/90	11/21/90 11/20/90 11/21/90 11/21/90 11/21/90 11/21/90 11/21/90 11/21/90 11/21/90 11/21/90 11/21/90 11/21/90 11/21/90	12.70 2.53 1.27 1.27 2.53 2.53 127.0 0.13 10.1 1.27 2.53 2.53 2.53	<dl 11.4 <dl 59.5 141 177 <dl 30.0 <dl 3.54 <dl 1300</dl </dl </dl </dl </dl 	*95 *95 *95 *95 *95 *95 *95 *95 *955 *955 *955

ALL SOIL/SLUDGE SAMPLE RESULTS ARE BASED UPON DRY WEIGHT

^{*}THIS INDICATES A 95% CONFIDENCE LIMIT ACHIEVED WITH AN EPA QUALITY CONTROL SOLUTION ANALYZED ALONG WITH YOUR SAMPLE.

Sample ID: DOWCRAFT SS-2 HAS Sample #90-1658-006 Date Sampled: 11/14/90

ANTIMONY 6010 11/15/90 11/21/90 12.7	ANALYTE	EP A MET HO D	DATE PREPARED	DATE ANALYZED	DETECTION LIMIT	RESULT mg/kg	QC	_
■SILVER 6010 11/15/90 11/21/90 2.53 4.73 *95 THALLIUM 7841 11/15/90 11/21/90 2.53 <dl *95="" *95<="" 11="" 15="" 21="" 5.06="" 6010="" 630="" 90="" td="" ■zinc=""><td>ARSENIC BERYLLIUM CADMIUM CHROMIUM COPPER LEAD MERCURY NICKEL SELENIUM SILVER THALLIUM</td><td>7060 6010 6010 6010 7421 7471 6010 7740 6010 7841</td><td>11/15/90 11/15/90 11/15/90 11/15/90 11/15/90 11/15/90 11/15/90 11/15/90 11/15/90 11/15/90</td><td>11/20/90 11/21/90 11/21/90 11/21/90 11/21/90 11/21/90 11/21/90 11/21/90 11/21/90 11/21/90</td><td>2.53 1.27 1.27 2.53 2.53 127 0.13 10.10 1.27 2.53 2.53</td><td>7.09 <dl 81.4 236 251 <dl 24.9 <dl 4.73 <dl< td=""><td>*995 *995 *995 *995 *9999 *99995</td><td>_</td></dl<></dl </dl </dl </td></dl>	ARSENIC BERYLLIUM CADMIUM CHROMIUM COPPER LEAD MERCURY NICKEL SELENIUM SILVER THALLIUM	7060 6010 6010 6010 7421 7471 6010 7740 6010 7841	11/15/90 11/15/90 11/15/90 11/15/90 11/15/90 11/15/90 11/15/90 11/15/90 11/15/90 11/15/90	11/20/90 11/21/90 11/21/90 11/21/90 11/21/90 11/21/90 11/21/90 11/21/90 11/21/90 11/21/90	2.53 1.27 1.27 2.53 2.53 127 0.13 10.10 1.27 2.53 2.53	7.09 <dl 81.4 236 251 <dl 24.9 <dl 4.73 <dl< td=""><td>*995 *995 *995 *995 *9999 *99995</td><td>_</td></dl<></dl </dl </dl 	*995 *995 *995 *995 *9999 *99995	_

^{*}THIS INDICATES A 95% CONFIDENCE LIMIT ACHIEVED WITH AN EPA QUALITY CONTROL SOLUTION ANALYZED ALONG WITH YOUR SAMPLE.

ALL SOIL/SLUDGE SAMPLE RESULTS ARE BASED UPON DRY WEIGHT

Sample ID: DOWCRAFT SS-3 HAS Sample #90-1658-007 Date Sampled: 11/14/90

ANALYTE	EP A MET H OD	DATE PREPARED	DATE ANALYZED		RESULT g/kg	QC
ANTIMONY ARSENIC BERYLLIUM CADMIUM CHROMIUM COPPER LEAD MERCURY NICKEL SELENIUM SILVER THALLIUM ZINC	6010 7060 6010 6010 6010 6010 7471 6010 7740 6010 7841 6010	11/15/90 11/15/90 11/15/90 11/15/90 11/15/90 11/15/90 11/15/90 11/15/90 11/15/90 11/15/90 11/15/90 11/15/90	11/21/90 11/20/90 11/21/90 11/21/90 11/21/90 11/21/90 11/21/90 11/21/90 11/21/90 11/21/90 11/21/90 11/21/90 11/21/90	11.4 2.27 1.14 1.14 2.27 2.27 10.2 0.12 9.09 1.14 2.27 2.27 4.55	<pre></pre>	*955 *955 *955 *955 *955 *955 *955 *955

^{*}THIS INDICATES A 95% CONFIDENCE LIMIT ACHIEVED WITH AN EPA QUALITY CONTROL SOLUTION ANALYZED ALONG WITH YOUR SAMPLE.

ALL SOIL/SLUDGE SAMPLE RESULTS ARE BASED UPON DRY WEIGHT

HUNTINGDON ANALYTICAL SERVICES ENVIRONMENTAL

METHOD 624 VOLATILE ORGANICS

SAMPLE IDENTIFICATION :	ESI-5	ESI-4	ESI-3	ESI-2	METHOD BLANK	
HAS SAMPLE #90-1653	991	96 2	26 3	<i>8</i> 64		
CORPOUND	RESULT	RESULT	RESULT	RESULT	RESULT	MDL
	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l
CHLOROMETHANE	<10	<10	<5Ø	<25∅	<10	<10
BROMOMETHANE	<10	<10	₹ 5£0	<25Ø	<1Ø	⟨1∅
VINYL CHLORIDE	<19	<10	<5Ø	<25 0	<10	<10
CHLOROETHANE	<18	<10	<5Ø	<25 0	<10	<10
			₹3 <i>5</i> ₹25	<139	<5.Ø	<5.Ø
METHYLENE CHLORIDE	<5. Ø	<5.₽				₹19
ACETONE	13	<10	<5Ø	<250	<10	
TRICHLOROFLUOROMETHANE	<10	<10	<5₽	<250	<10	<10
CARBON DISULFIDE	<5.₽	<5. B	<25	<130	<5.Ø	₹5.0
1,1-DICHLOROETHENE	₹5.9	<5.₽	₹25	<130	⟨5.₽	⟨5.Ø
1,1-DICHLOROETHANE	⟨5.₿	<5.₽	<25	<13€	<5.Ø	⟨5.₿
1,2-DICHLOROETHENE (TOTAL) -	<5.Ø	<5.₿	<25	239	<5.∅	<5.0
CHLOROFORM	<5.₫	<5.₿	<25	<130	⟨5.Ø	<5.∅
1,2-DICHLOROETHANE	<5.₽	<5.₽	<25	<130	⟨5.∅	<5.Ø
2-BUTANONE	<10	<1₿	<5⁄8	<25Ø	<10	<10
1,1,1-TRICHLOROETHANE	₹5.0	⟨5.₿	<25	<13∅	<5.₿	⟨5.Ø
CARBON TETRACHLORIDE	<5.₽	(\$.Ø	₹25	<130	<5.Ø	<5.Ø
VINYL ACETATE	<1 8	<1₩	≺ 5Ø	<25 2	<10	<10
BROMODICHLOROMETHANE	₹5.₿	₹5.Ø	₹25	<13 9	₹5.Ø	<5.₿
1,2-DICHLOROPROPANE	₹5.9	<5.Ø	₹25	<130	<5.₿	<5.Ø
cis-1,3-DICHLOROPROPENE	<5.₺	<5.₽	<25	<13Ø	<5.₿	<5.∅
TRICHLOROETHENE	<5.₿	₹5. Ø	180	1,390	<5.₿	⟨5.₽
DIBROMOCHLOROMETHANE	∢5.❷	₹5.₿	<25	<13₿	<5.₿	⟨5.Ø
1,1,2-TRICHLOROETHANE	<5. 8	⟨\$.₿	<25	<130	<5.₽	<5.∅
BENZENE	₹5.₩ .*	<5.₩	₹25	<13Ø	<5.₿	<5.₿
trans-1,3-DICHLOROPROPENE	<5. ₿	(5.Ø	≺25	<130	<5.₿	<5.₿
2-CHLOROBTHYLVINYL ETHER	<2 9	<29	<10∕0	<50∕0	<2Ø	(29
BROMOFORM	<5. 9	∢5. 8	<25	<130	<5.₽	<5.Ø
4-METHYL-2-PENTANONE	<10	<19	<5₽	<25₽	<10	<1∅
2-BEXANONE	<10	<1₽	<5 8	<25Ø	<10	<10
TETRACHLOROETHENE	<5.8	⟨5.9	₹25	₹130	<5. ₽	<5.₽
1,1,2,2-TETRACELOROETHANE	<5.∅	<5.Ø	<25	<13∅	₹5.0	<5.₽
TOLUENE	₹5.0	₹5.₽	<25	<13∅	<5.₽	<5.Ø
CHLOROBENZENE	⟨5.8	₹5.8	₹25	<13∅	<5.₺	
ETHYL BENZENE	<5.₽	₹5.₽	<25	<130	₹5.0	⟨5.₽
STYRENE		(5.₽	₹25	(130	₹5.Ø	₹5.18
XYLENE (TOTAL)	₹5.8	⟨5.₽	₹25	<130	₹5.₽	₹5.0
1,3-DICHLOROBENZENE	<10	₹10	₹59	<250	<10	<10
1,2-DICHLOROBENZENE	<10	<10	₹59	₹25Ø	<10	<10
1,4-DICHLOROBENZENE	<10	<10	<5€	<25€	<10	<10
DATE RECEIVED:	11-14-99	11-14-99	11-14-99	11-14-90		
DATE SAMPLED:	11-13 -99	11 -13-9Ø	11-13-99	11-13-90		
DATE ANALYZED:	11-15-99	11-15-98	11-17-93	11-17-90	11-17-90	

SAMPLE IDENTIFICATION :	DOWCRAFT ESI-1	DOWCRAPT BOLLFORM BSI-1	DOWCRAFT ROLLFORM ESI-2	DOWCRAFT ROLLFORM ESI-3	METHOD Blank	
HAS SAMPLE #90-1653	801	98 2	<i>0</i> 23	<i>9</i> 24		
COMPOUND	RESULT ug/l	RESULT ug/l	RESULT ug/l	RESULT ug/l	RESULT ug/l	MDL ug/l
CHLOROMETHANE	<10 <10	<1,888 <1,888	<100 <100	<50 <50	<10 <10	<10 <10
AINAT CHTOBIDE	<10	5,900	189	₹5Ø ₹5Ø	<10 <10 <10	<10 <10
CHLORORTHANK	<10 <5.0	<1,000 <500	<5₽	<25	<5.₿	⟨5.Ø
ACETONE TRICHLOROFLUOROMETHANE	<10 <10	(1,000 (1,000	<100 <100	<5Ø <5Ø	<10 <10	<10 <10
CARBON DISULFIDE	<5.Ø <5.Ø	<500 <500	<5Ø <5Ø	<25 <25	<5.0 <5.0	<5.Ø <5.Ø
1,1-DICHLOROETHANE	<5.Ø <5.Ø	(500 1,000	<549 <549	<25 <25	<5.0 <5.0	<5.0 <5.0
CHLOROFORM	<5.0 <5.0	<500 <500	<5Ø <5Ø	<25 <25	<5.0 <5.0	<5.Ø <5.Ø
2-BUTANONE 1,1,1-TRICELOROETHANE	<10 (5.0	<1,000 < 500	<19⁄∂ <5⁄∂	<50 <25	<10 <5.0	<10 <5.0
CARBON TETRACHLORIDE VINYL ACETATE	<5.9 <10	< 500 <1,000	<50 <100	<25 <5Ø <25	<5.0 <10 <5.0	<5.0 <10 <5.0
BROMODICHLOROMETHANE 1,2-DICHLOROPROPANE	<5.0 <5.0	<5 <i>00</i> <5 <i>00</i>	<5Ø <5Ø <5 Ø	<25 <25 <25	<5.Ø <5.Ø	<5.Ø <5.Ø
cis-1,3-DICHLOROPROPENE TRICHLORORTHENE DIBBOMOCHLOROMRTHANE	<5.07 12 <5.01	<500 <500 <500	₹5Ø ₹5Ø	<25 <25	<5.Ø <5.Ø	<5.0 <5.0
1,1,2-TRICHLORORTHANE	<5.0 <5.0 <5.0	< 500 < 500 < 508	<5Ø <5Ø <5Ø	<25 <25 <25	<5.₽ <5.₽	<5.Ø <5.Ø
trans-1,3-DICHLOROPROPENE	<5.₽	<500	<59 <298	<25 <188	<5.8 <20	₹5.Ø ₹2Ø
2-CHLOROKTHYLVINYL KTHER BROMOFORM	<200 <5.09	<2,800 <500 <1,000	<50 <100	<25 <50	<5.0 <10	<5.0 <10
4-METHYL-2-PENTANONE 2-HEXANONE TETRACHLOROETHENE	<10 <10 <5.0	<1,000 <1,000 <500	<199 <59	₹5Ø ₹25	<1Ø <5.Ø	<10 <5.0
1,1,2,2-TETRACHLORORTEANS TOLUBNE	<5.Ø <5.Ø	< 500 < 500 <500	<59 <59	<25 <25	₹5.Ø ₹5.Ø	<5.0 <5.0
CHLOROBENZENEETHYL BENZENE	<5.8 <5.8	<500 <500	<59 <59	<25 <25	₹5.Ø ₹5.Ø	₹5.Ø ₹5.Ø
STYRENE	<5.8 <5.8	<500 <500 <500	<50 <50	<25 <25 <25	<5.0 <5.0	<5.0 <5.0
1,3-DICHLOROBENZENE 1,2-DICHLOROBENZENE	<10 <10	<1,000 <1,000	<100 <100	<50 <50	<10 <10	<10 <10
1,4-DICHLOROBENZENE	<10	<1,000	<100	<5 2	<10	<10
DATE RECEIVED: DATE SAMPLED:	11-15-90 11-14-90	11-15-90 11-14-90	11-15-99 11-14-99	11-15-90 11-14-90		
DATE ANALYZED:	11-17-90	11-17-99	11-20-99	11-20-90	11-20-90	

Huntingdon

APPENDIX G

DOWCRAFT STEP TEST ON PW-1

Drawdown in Pumping Well: PW-1

■ drawdown (ft) ■ pumping rate (gpm)

2/9/93

STEP TEST ON PW-1 . DRAWDOWN IN THE PUMPING WELL

Γ	ELAPSED TIME	DEPTH TO WAT	TER DRAWDOWN	PUMPING RATE
	(MIN)	(FT)	(FT)	(FT)
	.,			
	$O_{\bullet}OO$	9.37	0.00	5.00
	0.25	9.75	0.38	. 5.00
•-	0.50	9.05	0.68	5.00
_	1.00	9.35	0.98	5.00
1	1.50	9.50	1.13	5.00
Ļ	2.00	9.57	1.20	5.00
	2.50	9.67	1.30	5.00
	3.75	9.76	1.39	5.00
1.	4.00	9.81	1.44	5.00
	4.75	9,83	1.46	5.00
Γ	5.50	9.84	1.47	5.00
1	6.00	9.79	1,42	5.00
	7.00	9.79	1.42	5.00
	8.00	9.91	1.44	<u> </u>
	9.00	9.83	1.46	5.00
L	10.00	9.84	4.47	5,00
-	11.00	9.85	1.48	5.00
	12.00	9.92	4 EURIS 2 EURIS	5.00
ļ.	13.00	9.94		5.00
	14.00	9.98	1.61	5.00
	15.00	10.00	1.63	5.00
!	16.00	10.01	1.64	5.00
	17.00	10.03	1.66	5.00
<u></u>	18.00	10.03	1.66	5.00
	19.00	10.03	1.66	5.00 5.00
•	20.00	10.03	1.66	5.00
_	22.00	10.04	1.67 1.69	5.00
	24.00	10.06 10.09	1.72	5.00
ı	26.00 28.00	10.11	1.74	5.00
	29.00	10.12	1.75	5.00
	33.50	11.31	2.94	8.00
1.	34.00	11,48	3.11	8.00
	34.50	11.68	3.31	8.00
	35.00	11.69	or or a	8.00
1.	36.00	11.88	T	8.00
	37.00	12.03	3.66	8.00
	38.00	12.16	3.79	8.00
	37.00	12.25	3,89	8.00
•	40.00	12.28	3.91	8.00
_	41.00	12.23	3.86	8.00
	42.00	12.22	3.85	8.00
3 4	43.00	12.27	3.70	8.00
<u></u>	45.00	12.37	4.00	8.00
1	47.00	12.38	4.01	8.00
ι.	49.00	12.45	4.08	8.00
_	51,00	12.57	4.20	9. 00
	53.00	12.62	4.25 4.44	8.00 8.00
1.	55.00	12,81	· · · · · · · · · · · · · · · · · · ·	ADD WITHOUT

_	57.00	13.01	4.64	8.00
ī ÷	59.00	15.11	4,74	8.00
ı k	60.00	13.64	5.27	10.00
	60.50	13.64	5 . C7	10.00
	61.00	13.80	5.43	10.00
	61.50	13.98	B. 61	10.00
•	62,00	14.12	5.75	10.00
_	62.50·	14.25	5.88	10.00
,	63.00	14.54	6.17	10.00
.	64.00	14.79	6.42	10.00
	65.00	14.93	6.56	10,00
	66.00	14.99	6.41	10.00
Į	68.00	15.09	6.72	10.00
	70,00	15.29	6.91	10.00
	72,00	15.41	7.04	10.00
,	74.00	a min min min L. cult m subscut	7.18	10.00
•	76.00	15.63	7.26	10.00
	79.00	15.57	7.20	10.00
j	82.00	15.57	7.20	10.00
k.	85.00	15.70	7.33	10.00
	88.00	15.81	7.44	10.00
Γ.	90,00	16.52	8.15	12.00
l ,	90.50	17.11	8.74	12.00
	91.00	17,55	9.18	12.00
Г	91.50	17.96	9.59	12,00
	92.00	18.36	9.99	12,00
•	92.50	18.75	10.38	12.00
	93.00	19,15	10.78	12.00
	94.00	19.57	11.20	12.00
L .	95.00	20.04	11.67	12.00
	96.00	20.19	11.82	12.00
	97.00	20.18	11.81	12.00
i	98.00	INTERMITANT	PUMPING	

- drawdown (ft) - pumping rate (gpm)

2/10/93

STEP TEST ON PW-2 DRAWDOWN IN THE PUMPING WELL

Γ	ELAPSED TIME (MIN)	DEPTH TO (FT)	WATER DRAWDOWN (FT)	PUMPING RATE (FT)
٠.	er, er er	and the kin	0.00	5.00
	0.00	8.85		5. 00
1	0.50	10.14	1.59	5.00
•	1.00	10.35	1.80 2.00	5.00
	1.50	10.55	3,07	5.00
 	2.00	11.62 11.26		5. 00
l.	2.50			5.00
	3,00	10.90	2,10	5.00
	3,50	10.45	1.80	5.00
	4.00	10.35	1.67	5.00
	4.50	10.22	1.53	5.00
_	5.00	10,08		
	5.50	9.94	1,41	5.00 T
1.	<u> </u>	9.92	1.37	5.00
	7.00	7.85	1.30	5.00
	8.00	10.37	1.82	5.00
1.	9.00	10.59	2 n () 4 n	5.00
	10.00	10.72	2.17	5.00
	11.00	10.64	2.09	5.00
	12,00	10.62	2.07	5.00
	14.00	10.52	1.97	5.00
_	16.00	10.46	1.91	5.00
{	18.00	10.30	1.75	8.00
ł.	18.50	11.35	2.80	8.00
	19.00	11.64	3.09	8.00
	19.50	11.78		8.00
1.	20.00	11.75	3,20	8.00
	20.50	11.64	3.09	8.00
	21,00	11.54	2,99	8.00
	22.00	11.46	2.91	8.00
	23.00	11.30	2.75	8.00
	24.00	11.22	2.67	8.00
	25.00	11.20	2.65	8.00
ŧ	26.00	11.18	2,63	8.00
	27.00	11.38	2.83	8.00
	29.00	11.40	2.85	8.00
1.	31.00	11.39	2.63	8.00
	33.00	11.38	2.83	8.00
	35.00	11.37	2.82	8.00
	37.00	11.32	2.77	8.00
,	39.00	11.34	2.79	8.00
_	41.00	11.33	2.79	8.00
	43.00	11.32	2.77	8.00
1 .	45,00	11.32	2.77	10.00
	45.00	11.76		10.00
	45.50	11.85	3.30	10.00
i	46,00	11.88	3,33	10.00

1.				
_	46.50	11.78	3,43	10,00
		11.96		10.00
t .		11.95	3.40	10.00
		12.03	3.48	10.00
<u> </u>	48.50	12.14	3.59	10.00
,	49.00	12.37	3.82	10.00
		12.53	3.98	10,00
	50.00	12.66	4.11	10.00
	51.00	12.75	4,20	10.00
	52.00	12,84	4.29	10.00
_	53.00	12.89	4.34	10.00
	54.00	12.86	4.31	10.00
1		12.84	4.29	10.00
		12,45	4.10	10.00
		12.53	3.78	10.00
		12.45	3.90	10.00
		12,44	3.87	10.00
		12,45	3.90	10.00
		12,43	I.88	10.00
ŧ ,		12.38	3.83	12.00
		12.36	3.81	12.00
Γ.		12.38	3.83	12.00
1.		12.74	4,19	12.00
		12,94	4.39	12.00
		13.08	4.53	12.00
Ĺ		13.06	4.51	12,00
		13.21	4.66 4.70	12.00
		13.25	4.73	12.00 12.00
Γ.	71.50	13.28 13.30	4.75	12.00
•	72.00 73.00	13,35	4.80	12.00
_	74,00	13,36	4.81	12.00
Γ.	75.00	13.35	4.80	12.00
1 .	76.00	13.35	4.80	12.00
	77.00	13.35	4.80	14.00
	77.50	13.34	4.79	14.00
l.	78.00	13.42	4.87	14.00
	78.50	13.66	5.11	14.00
	79.00	13.78	pur engine sud a publish	14,00
! .	79.50	13.90	mi mym Magaeth	14.00
	80.00	13.96	E . 41	14.00
	80.50	14.08	e.es	14.00
	81.00	14.11	5.56	14.00
	81.50	14.13	5.58	14.00
	82.00	14.14	5.59	14.00
Γ.	83.00	14,19	5.64	14.00
	84.00	14,22	5.67	14.00
-	85.00	14.22	5.47	14.00
	86.00	14.17	5.62	14.00
ſ	87.00	14.15	5.60	16.00
	87.50	14.20	5.65	16.00
	88.00	14.31	5.76	16.00
1.	88.50	14.57	6.02	16.00
	87.00	14.72	6.17	16.00
	97.50 21.00	14.87	6.32	16.00
1	91.00	14,95	6.40	16.00

•

ŧ,				
	90.50	14.97	6.42	16.00
	91.00	14.98	6,43	16.00
	91.50	15.01	6.46	16.00
•	92.00	15.01	6.46	16.00
	93.00	15.07	(5 n (52)	16,00
1		•		16.00
	94.00	15.06		16.00
	95.00	15.09	6.54	
	96.00	4 5 . 1 3	6.58	16.00
	97.00	15.14	6.59	18.00
•	97.50	15.40	6. 8 5	18.00
_	98.00	15.48	6.93	18.00
	98.50	15.57	7.02	18.00
ł.,	99.00	15,62	7.07	18.00
	99.50	15.66	7.11	18.00
	100.00	15.77	7.22	18.00
	100.50	15.83	7.28	18.00
* ,	101.00	15.87	7.32	18.00
_	101.50	15.95	7.40	18.00
		16.04	7,49	18.00
I, .	102.00	16.17	7.62	18.00
	103.00	16.28	773	18.00
F	104.00	16.55	8,00	18.00
	105.00		0.38	18.00
•	106.00	14.73	0.62	20.00
_	107.00	17.17	0 . 72	20,00
	107,50	17.27		20.00
l,	108.00	17.31	9.76	
	108,50	17.30	9.75	20. 00 .
	109.00	17.34	9.79	20.00
[,	109.50	17.36	8.81	20.00
	110.00	17.40	G.85	20.00
_	110,50	17.43	8.88	20,00
	111.00	17.43	8.83	20.00
۲.	111.50	17.52	8.97	20,00
	112.00	17.57	9.02	20.00
	113.00	17.93	9.38	20.00
<u>.</u> .	114.00	18.08	9.53	20.00
	115.00	18.13	9.58	20.00
\Box	116.00	18,22	9.47	22.00
	117.00	18.31	9.76	22.00
•.	117.50	18.37	9.82	22.00
	118.00	18,48	9.93	22,00
	118.50	18.58	10.03	22.00
i	119.00	18.68	10.13	22.00
	119.50	18.83	10.28	22.00
	120.00	18.72	10,37	22,00
	120.50	19,04	10.49	22.00
	121.00	19.18	10.43	22,00
_	121.50	19.30	10.75	22.00
	122,00	19.40	10.85	
t	123,00	19.52	10.97	22.00 22.00
	124.00	19.67		
Γ	125.00	17.86	11.12	22.00
	126.00	20.01	11.33	22.00
-	127.00	20.08	11.46	22,00
	129.00			22,00
1	131.00	20 . 23 20 .4 0	11.68	22,00
Ļ	in the in the first	and the street	11.85	22.00

1 .				
	133.00	20.47	. 11.92	22.00
	135.00	20.51	11.76	24.00
L	137.00	20.60	12.05	24.00
	137,50	20.68 ,	12.13	24.00
	138.00	20.99	12.44	2400
l	138,50	21.44	12.89	24.00
	139.00	21.83	13.28	24.00
F	139,50	22.45	13.70	24.00
ì	140,00	23.10	14.55	24.00
•	141.50	23.88	15.13	24,00
	142,00	23.48	15.13	24.00
	142,50	23,70	15.15	24.00
t ,	143.00	23.48	15.13	24.00
	144.00	25.69	15.13	24.00
	145.00	23.70	15.15	24.00
1.	146.00	23.48	15.15	24.00
	147.00	23.69	15,14	24.00
	148.00	25.69	15.14	24.00
1.				

 Γ

Γ.

ESI-2: DELAYED RESPONSE (b=1.5)

o - Data

+ - Type Curve
Unconfined Delayed: beta = 1.50

SOLUTION

Transmissivity = 8.32E+003 gal/day/ft
Aquifer Thick. = 2.00E+001 ft
Hydraulic Cond.= 4.16E+002 gal/day/sq ft
Specific Yield = 2.87E+000

K=416 grd/g+2=,02 cm/s.

TABLE A

						•					
,			DOWCRAFT	WATER	LEVELS	- FW-1:	STEP		BEGIN @		
7		1001 0001	···· • • • • • • • • • • • • • • • • •		1.11	1.13			EMD @	17:32	
		ELEV	SWL	WI	WL.	WL		****		•	
•		TOR	14:30	16:15	17:15	18:00	a1 .44	DD			
_			pretest.	@Sgpm	@iOgpm	bawb (344				
	WELL								į,	VELL.	
		(msl)	(ft)	(+t.)		(ft)		(+t)			
	PW-1	98.52		10.03	15.57	20.19	817:32	11.82		2W-1	
	PW-2	98.63	9.49		8.61	8.63		0.14	ļ.	PW-2	
1	ESI-6	98.66	8.46	8,50	8.51	8,52		0,06	ŗ	ESI-A	
	ESI-7	98.82	8.62	8,63	8.65	8,66		0.04		EG1-7	
	ESI-1	98.10	8.00	The B the sai	8.02	8,03		0.03		:GI-1	
		102,20	11.56	11,57	11.57	11.57		0.01		IGI-8	
		99,94	7.37	7.37	7.37	7.37		0,00			
	ESI-5	98.66	7.88	7.89	7.90	7.91		0.03		EGI-5	
	ESI-4	98,91	8.56	8.57	0.58	a.59		0.03			
•	E91-3	78.83	8.59	8.63	8.65	8.46		0.07		181-3	
_	ESI-2D	98.46	7.87	7.92	7,94	7.96	Compression of the Compression o	0.09		EG1-20	
	EGI-2	98.51	0.34	9.38	8.41	8.432		0.09		EGI-Z	
ĺ				8.80	8.82	8.84	7733.13	0.12		ESI-12	
	ESI-12	78.87	8.72			9.18					
	ESI-11	99,02	9.12.	9.12	9.16			0.06		ESI-11	
·	ESI-10	99.00	9.18	9,20	9.23	9.23		0.05		ESI-10	
	E91-13	97 . 2245	FLOWING							ESI-13	
	RIVER		2.21							RIVER	
			DOWCRAFT	WATER	LEVELS	- FW-2	STEP	TEST	BEGIN @	2/10/93 10:33:30 13:00	
		ELEV	SWL	WIL.	}	WI	WL.	(A)	WL	aa	
		TOR	10:30am	11:00						5.5° A.2	
		1 4731 4	pretest								
_	WELL		1.33 VIII V. VIII III V.	anglan	## # CVFI (21)	72 T. A. 63 37 113	va a congress		-		
	YV h ba. h	(ms1)	(ft)	(ft)	(ft)	(ft)	(ft)	(+t)	recover (ft)	ሃ (f t)	
l.	PW-2	98.63		11,38	12.53	13.35	16.04			11.53	
	PW-1	76.63		9.54	8.59	10.00	8.66		8.45	0.29	
	1 (A) T	TO a COL	All a Marin	O . JA	7D # 7C 7	All n All di	120 4 120 120	7.3 u F A	O a m G	Section about it	
ļ	ESI-6	98.66	8.54	8.57	8.57	9,49	8.56	8.56	8.55	0.02	
	ESI-7	98.82		8.67	8.72	8.72	8.73	8.71	8.73	0.01	
	ESI-1	98,10		8.06	8.08	9.07	8.10	8.08		0.00	
	ESI-8	102.20		11.59	11.65	11.61	11.63	11.61	11.62	0.03	
	ESI-9	99.94		7.38	7.41	7.38	7.44	7.38	7,39	-0.02	
	ESI-5	98.66		7.97	7.99	7.96	8.01	7.93	7.93	-0,09	
	E9I-4	98.91		8.40	8.63	8.40	8.75	8.62	8.63	-0.02	
L.	ESI-3	98.83		8.62	8.48	8.63	8.67	8.68		0.02	
_	ESI-2D	98.46		7.98	7.98	7.92	7.95	7.91	7.97		7
	E61-2	98.51		8.43	8.49)6.28(?			c 6
	ESI-12	98.89		9.43 8.82	8.86	8.85	8.88	9,88		-0.01	ب
	E91-11	99.02		9.12	9.21	9.19	9.24			0.04	
	ESI-10	99.00		9.23	9.21 9.29						
	E91-13	97.26		To all all	7 4 22 7	9.27	9.30	9.29	9.24	0,01 0,00	
٠.			Change)	2.25	2.25		ng ngag	eng engen da a da sal	2 22	~	
	The Visit N	and the second	real test (Charle)	an n da sal	alia a alia sah	da pada sak	dia n dia l	dhi a dhi sub	ation at attention	CA SERVICE	
				•						and the second of the second o	

Final Maximum drawdown on Pumping well PW-2 = 23.69-8.55 = 15.14

DOWCRAFT WATER LEVELS - 24 HOUR TEST

CAPTURE ZONE DATA MAXIMUM DRAWDOWNS & RESULTING GROUNDWATER ELEVATIONS

					use				
	ELEV	SWL	SWL	WL	DD FI-IN	DD FI-BT	ELEV BT SWL	ELEV FIN WL	
WELL	TOR (msl)	BT (ft)	INIT (ft)	FINAL (ft)	(ft)	(ft)	(msl)	(msl)	
PW-2	98.63	8.58	8.58	20.20	11.62	11.62	90.05	78,43	
·ESI-6	98.66	8.55	8.50	8.78	0.23	0.28	90.11	89.88	
ESI-7	98.82	8.73	8.73	8.93	0.20	0.20	90.09	89.89	
ESI-1	98.10	8,10	8.10	8.28	0.18	0.18	90.00	89.82	
ESI-8	102.20	11.62	11.62	11.77	0.15	0.15	90.58	90.43	
ESI-9	99.94	7.39	7,42	7,42	0.03	0,00	92.55	92.52	
ESI-5	98.66	7.93	7.91	8.01	0.08	0.10	90.73	90.65	
ESI-4	98.91	8.63	8.65	8.79	0.16	0.14	90.28	90.12	
E81-3	98.83	9.67	8.65	8.88	0.21	0.23	90.16	89.75	
PW-1	98.52	8.45	8.43	8.85	0.40	0.42	90.07	89.67	
ESI-2D	98.46	7.97	7.96	8.09	0.12	0.13	90.49	90.37	
ESI-2	98.51	8.42	8.42	8.63	0.21	0.21	90.09	89.88	
ESI-12	98.89	8.85	8.89	9.02	0.17	0.13	90.04	89.87	
ESI-11	99.02	9.16	9.24	9.38	0.22	0.14	89.86	89.64	
ESI-10	99.00	9.24	9.31	9.42	0.18	0.11	89.76	89.58	
ESI-13	97.26	7.41	7.41	7.60	0.19	0.19	89.85	87.66	
RIVER	(Rel. C	hange)	2.25	2.31		0.06			

TABLE C

DOWCRAFT WATER LEVELS - 24 HOUR TEST

PUMP PW-2

DISTANCE-DRAWDOWN DATA

	WELL	MAX DRAWDOWN (ft)	DIST to PW2 (ft)	WELL DEPTH (ft)	SCREEN INTV (ft)	ELEV TOR (msl)
Γ.	PW-2 MAX DD	11.62	0	26.0	6-26	98.63
	PW-1	0.42	52	27.0	5-27	78.52
_	ESI-6	0.28	8	13.5	3,5-13.5	<u> </u>
	EGILE	0,23	68	15.0	5-15	98.83
Ĺ.	E31-2	0.21	24	15.0	5-15	98.51
	E81-7	0,20	46	14.5	4.5-14.5	98,82
	ESI-13	0.19	98	?	7	97.26
	EGI-1	0.18	104	15.0	F31-F3	98.10
	E91-8	0.15	156	18.0	8-18	102,20
	E9I-11	0.14	109	15.0	10-15	99.02
	ESI-4	0.14	133	15.0	5-15	98.91
٠.	ESI-12	0.13	125	15.0	10-15	78,87
	ESI-2D	0.13	30	60.0	35-45	98.46
	ESI-10	0.11	138	15.0	10-15	99.00
	ESI-5	0.10	213	15.0	5-15	99.46
	RIVER 💠	0,06	173	15.0	5-15	
	ESI-9 MIN DI	0.00	506	15.0	5-15	99,94

ELASTIC RESPONSE ESI-6=

o - Data

+ - Type Curve Unconfined Elastic: beta = 0.10

SOLUTION

Transmissivity = 4.17E+004 gal/day/ft Aquifer Thick. = 2.00E+001 ft

Hydraulic Cond. = 2.08E+003 gal/day/sq ft

Storativity = 8.16E-002

$$\beta = \frac{r^{3}b^{2}}{8^{2}a^{2}} = \frac{8^{2}}{a^{2}} = 0.16$$

$$R = \frac{208gpd}{fc^{2}} = .040 cm/s$$

ESI-6: DELAYED RESPONSE log t -1.00 0.00 1.00 2.00 3.00 4.00 1.32 0.00 2 + C and the contract of the 0.32 -1.00 0 0 log log W(Up, B) s cor. D -0.68 -2.00 -1.63 -3.00 -2.35 -1.35 -0.35 0.65 1.65 2.65 log 1/Us

o - Data

+ - Type Curve
Unconfined Delayed: beta = 0.10

SOLUTION

Transmissivity = 4.79E+004 gal/day/ft
Aquifer Thick. = 2.00E+001 ft
Hydraulic Cond.= 2.39E+003 gal/day/sq ft
Specific Yield = 1.55E+000

 $\beta = \frac{r^2}{b^2} = \frac{(8)^2}{(20)^2} = 0.16$ $K = 239 \text{ gpd/ft}^2 = 0.011 \text{ cm/s}$

```
2/10/93
                                              Date of Test:
              E81-6
11 Name:
                           20,000 feet
mifer Thickness (b):
med Well Discharge(Q) =
                               20,000 gpm
dius of Pumping Well
                           :::::
                                0.083 feet
stance of Observation Well from Pumping Well
                                                             8,000 feet
                                                   2
                                             t / d
                           Drawdown(s)
intry
             Time(t)
                                          (min./sq.ft.)
TMo.
                               (千七。)
             (min.)
                                          共扬科特特特特特特特特特
| }*****
                          将将将领的被被被被被被
          经转换转换转换转换转换
   3
               0.500
                                0.020
                                            7.8E-003
                                             1.6E-002
                                0.040
  2
               1.000
                                            2.3E-002
   3
                                0.050
               1,500
                                            3.1E-002
               2,000
                                0.050
                                            3.9E-002
   ::::
::::3
                                0.060
               2.500
                                            4.7E-002
               3,000
                                0.060
  ---
                                            5.5E-002
               3,500
                                0.070
                                0.070
                                             6,3E-002
  - (3
               4.000
                                             7.0E-002
                                0.070
               4.500
                                            7.8E-002
                                0.070
                5.000
                                            8,6E-002
  11
                                0.070
               5.500
                                0.080
                                             9.4E-002
 12
               6.000
  1.3
                                0.090
                                             1.0E-001
               6.500
                                             1.1E-001
  14
                7,000
                                0.090
                                             1.2E-001
                7,500
                                0.090
  15
                                0.090
                                             1.3E-001
  16
               8.000
                                0.090
                                             1.3E-001
  17
               8.500
  18
                                0.090
                                             1.4E-001
                9.000
  19
               10,000
                                0.090
                                             1.6E-001
  20
                                0.090
                                             1.7E-001
               11.000
  21
                                0.090
                                             1.9E-001
               12,000
  22
                                             2.0E-001
                                0,090
               13.000
                                             2.2E-001
  23
              14.000
                                0.080
124
               15.000
                                0.070
                                             2.3E-001
  25
                                0.070
                                             2.5E-001
               16.000
  26
               17.000
                                0.070
                                             2.7E-001
 27
               18,000
                                0.070
                                             2.8E-001
  28
               19,000
                                0.070
                                             3.0E-001
  29
                                             3.1E-001
                                0.070
              20.000
  30
              21.000
                                0.070
                                             3,3E-001
  31
              22,000
                                0.070
                                             3.4E-001
  32
                                0.070
               23.000
                                             3.6E-001
133
              24.000
                                0.070
                                             3.8E-001
. . 34
               25,000
                                0.070
                                             3.9E-001
  32
              26,000
                                0.070
                                             4,1E-001
 36
               27.000
                                0.070
                                             4.2E-001
  37
              28,000
                                0.070
                                             4.4E-001
  38
               29.000
                                0.070
                                             4.5E-001
 39
               30,000
                                0.080
                                             4.7E-001
  40
               32.000
                                0.070
                                             5.0E-001
41
               34.000
                                0.070
                                             5.3E-001
  42
               36.000
                                0.070
                                             5.6E-001
  43
               38.000
                                0.080
                                             5.9E-001
144
               40,000
                                0.080
                                             6.3E-001
  A_{T}^{i,m}_{i,j}
                                0.090
               42,000
                                             6.6E-001
 46
               44.000
                                0.080
                                             6.9E-001
  47
               46.000
                                0.080
                                             7,2E-001
  48
                                0.090
                                             7.5E-001
               48,000
  49
                                0.090
                                             7.8E-001
               50.000
  50
                               . 0.090
                                             8.3E-001
               53.000
```

0.090

o. 100

9.1E-001 9.8E-001

: 51

58.000

63.000

the has	CATA a service	Sect of the Sect Sect	de to de tour " in in in
54	73.000	0.110	1.1E+000
	78,000	0.110	1.2E+000
56	83,000	0.110	1.3E+000
57	93,000	0.110	1.5E+000
r 56	103.000	0.110	1.4E+000
59	113.000	0.110	1.8E+000
4.60	123.000	0.120	1.9E+000
_ 61	138.000	0.110	2.2E+000
62	153.000	0.410	2.4E+000
4.63	183.000	0.110	2.9E+000
64	192.000	0.130	3.0E+000
T 65	276.000	0.120	4,3E+000
66	337.000	0.130	5.3E+000
67	397.000	0.150	6.2E+000
- 68	457.000	0.150	7.1E+000
69	516.000	0.150	8.1E+000
L 70	575.000	0.160	9.0E+000
71	635.000	0.170	9.9E+000
72	495.000	0.180	1,1E+001
73	755.000	0.190 0.200	1.2E+001 1.3E+001
74	815.000	0.210	1.4E+001
C 75	876.000	0.250	1.5E+001
76	937.000		
1 77	995.000	0.260	1.6E+001
78	1055.000	0.270	1.6E+001
79	1116.000	0.260	1.7E+00
80	1175.000	0.260	1,/8E+001
81	1240.000	0.260	1.9E+00:
- 82	1295.000	0.260	2.0E+00
83	1352,000	0.260	2.1E+00:
84	1412,000	0.260	2,2E+00
		•	
ι, .			
_			
I.			

.

Γ

3.

o - Data

+ - Type Curve
Unconfined Elastic: beta = 7.00

SOLUTION

Transmissivity = 5.76E+002 gal/day/ft
Aquifer Thick. = 2.00E+001 ft
Hydraulic Cond.= 2.88E+001 gal/day/sq ft

Storativity = 2.20E-003

$$\beta = \frac{r^2}{6^2} = \frac{(68)^2}{(20)^2} = 11.56$$

K= 28.8 gpd/ft2: -001 am/s

ESI-S: DELAYED RESPONSE (=7.0)

o - Data

+ - Type Curve
Unconfined Delayed: beta = 7.00

SOLUTION

Transmissivity = 5.92E+002 gal/day/ft
Aquifer Thick. = 2.00E+001 ft
Hydraulic Cond.= 3.46E+001 gal/day/sq ft
Specific Yield = 3.04E-001

$$\beta = \frac{r^2}{6^2} = \frac{(68)^2}{(20)^2} = 11.56$$

K= 34.6 gpd/ft2= .002 cm/s

Data for Pump Test

· ESI-3 Date of Test: Well Mames 2/10/93 20.000 feet Aquifer Thickness (b): Pumped Well Discharge(0) = 20.000 gpm Radius of Pumping Well ::::: 0.083 feet 68.000 feet Distance of Observation Well from Pumping Well Entry Time(t) Drawdown(s) t / d (min.) No. (ft.) (min./sq.ft.) **** ******* **经长经长条件保存帐户** **** 1 14,000 0.020 3,0E-003 \mathbb{Z} 16.000 0.010 3.5E-003 3 18,000 0.010 3.9E-003 4 0.020 4.3E-003 20,000 113 22,000 4.8E-003 0.020 5.6E-003 **63** 26,000 0.00 7 31,000 0.010 6.7E-003 Θ 36.000 0.010 7.8E-003 49 41,000 0.010 8,9E-003 10 9.9E-003 46,000 0.010 1.1 48.000 0.060 1.0E-002 12 63,000 0.060 1.4E-002 1.7E-002 13 78.000 0.060 14 2.1E-002 98.000 0.060 15 118.000 0.060 2.6E-002 16 143.000 0.080 3.1E-002 17 218.000 0.060 4.7E-002 6.4E-002 18 296.000 0.060 19 353,000 0.070 7.6E-002 8.9E-002 20 413,000 0.080 1.0E-001 21 467,000 0.100 22 528,000 0.100 1.1E-001 23 584.000 0.100 1.3E-001 24 647,000 0.110 1.4E-001 25 705.000 0.120 1.5E-001 26 767,000 0.140 1.7E-001 27 0.160 828.000 1.8E-001 29 889.000 0.170 1.9E-001

0.180

0.200

0.200

0.200

0.210

0.210

0.200

0.200

0.210

0.210

0.210

2.1E-001

2.2E-001

2.3E-001

2.4E-001

2.6E-001

2.7E-001

2.8E-001

2.9E-001

3.0E-001

3.1E-001

0.0E-308

29

30

31

32

33

34

35

36

37

38

39

950.000

1005.000

1064.000

1123.000

1181.000

1246.000

1301.000

1359,000

1407,000

1417,000

RECEIVED

JUN 09 1993

ENVIRONMENT A CONSERVATION