2020

GROUNDWATER MONITORING REPORT

FOR FORMER DOWCRAFT FACILITY NYSDEC SITE #907020 FALCONER, CHAUTAUQUA COUNTY, NEW YORK

Prepared by:

C&S ENGINEERS, INC.

141 ELM STREET BUFFALO, NEW YORK 14203

Prepared for:

JAMESTOWN CONTAINER COMPANIES
14 DEMING DRIVE
FALCONER, NEW YORK 14733

AUGUST 2020

TABLE OF CONTENTS

<u>1</u>	INTRODUCTION	<u> </u>
1.1 1.2	BACKGROUND AND SITE DESCRIPTION PROJECT OBJECTIVES	1 2
<u>2</u>	SUBSURFACE CONDITIONS	3
2.1 2.2 2.3	CONTAMINANTS OF CONCERN GEOLOGY AND HYDROGEOLOGY EXTENT OF CONTAMINATION	3 4 5
<u>3</u>	JUNE 2019 GROUNDWATER MONITORING	6
3.1.1 3.1.2 3.1.3 3.1.5 3.2 3.2.1 3.2.2 3.2.3	FIELD SAMPLING PROGRAM 1 MONITORING WELL ARRAY 2 GROUNDWATER SAMPLING 3 WATER LEVEL MONITORING 4 WELL PURGING 5 GROUNDWATER SAMPLE COLLECTION AND ANALYSIS GROUNDWATER RESULTS 1 LABORATORY ANALYSIS 2 GROUNDWATER ELEVATIONS 3 GROUNDWATER ANALYTICAL RESULTS TREATMENT EFFECTIVENESS GROUNDWATER MONITORING RECOMMENDATIONS	6 6 7 7 8 8 8 8 8
TAB	BLES LE 1 – GROUNDWATER ELEVATIONS LE 2 – GROUNDWATER ANALYTICAL RESULTS LE 3 –VOC CONCENTRATION CHANGES	
Figu Figu	URES URE 1 – HISTORIC AND EXISTING SITE FEATURES URE 2 – JULY 2020 GROUNDWATER CONTOUR MAP URE 3 – JULY 2020 GROUNDWATER RESULTS	

APPENDICES

APPENDIX A – GROUNDWATER ANALYTICAL RESULTS

APPENDIX B – FIELD PARAMETER NOTES

ACRONYM LIST

C&S ENGINEERS, INC.

JCC JAMESTOWN CONTAINER COMPANIES

SITE FORMER DOWCRAFT FACILITY

TCE TRICHLOROETHENE

IRM INTERIM REMEDIAL MEASURES

NYSDEC New York State Department of Environmental Conservation

ROD RECORD OF DECISION

CRA CONESTOGA-ROVERS & ASSOCIATES

RI REMEDIAL INVESTIGATION
SCO SOIL CLEANUP OBJECTIVES

SVOC SEMI-VOLATILE ORGANIC COMPOUNDS

VOC VOLATILE ORGANIC COMPOUNDS

NYSDOH NEW YORK STATE DEPARTMENT OF HEALTH

1 Introduction

C&S Engineers, Inc. (C&S) has prepared this Groundwater Monitoring Report on behalf of Jamestown Container Companies (JCC) for the former Dowcraft facility (the Site).

1.1 Background and Site Description

The Dowcraft Site is located at 65 South Dow Street in Falconer, New York and occupies approximately 2.2 acres of land situated immediately east of South Dow Street and approximately 100 feet south of the Chadakoin River (Site). The Jamestown Container manufacturing building is situated between the Site and the Chadakoin River.

The property was first developed in 1890 as a woolen mill until 1939 when it was converted into a factory which manufactured steel partitions used for offices. As part of this manufacturing process, a vapor degreaser was used which included the use of chemicals such as trichloroethene (TCE). This work continued until 1999 when the facility was closed, a portion of the Site was demolished, and the property was sold to JCC.

Figure 1 presents present and historic site features.

The Site was the subject of environmental investigations in the early 1990s, at which time contaminated groundwater was discovered on site. An interim remedial measure (IRM) was subsequently put in place in 1994 which consisted of groundwater extraction and treatment. In 2000, the use of additional groundwater remediation technologies was approved by the NYSDEC which involved in-situ chemical oxidation of TCE through the injection of potassium permanganate into the overburden groundwater. In 2003, a Record of Decision (ROD) was approved that selected the following remedy:

- In-situ groundwater treatment through chemical oxidation, by injection of potassium permanganate dissolved in water, through existing well points into the shallow overburden groundwater table;
- Overburden groundwater monitoring to verify the effectiveness of the treatment:
- Institutional controls to prevent the use of groundwater as a source of potable water; and
- Annual certification to NYSDEC to certify that institutional controls remain in place.

Conestoga-Rovers & Associates (CRA) conducted nine injection treatments between May 2000 and July 2006, totaling 21,500 pounds of potassium permanganate.

Previous injection treatments were successful in oxidizing some TCE; however, the concentrations of TCE in the source area remain high.

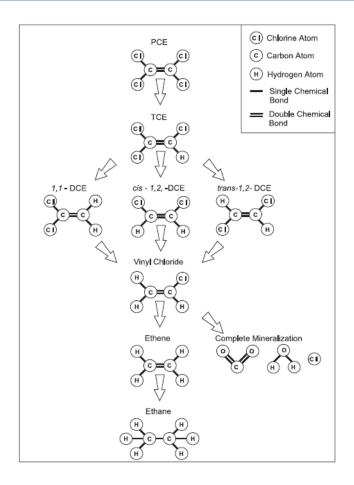
1.2 Project Objectives

As stated in the 2003 ROD, the remedial goals selected for this Site are:

- Treat the source area of groundwater contamination by oxidative dechlorination of the contaminants in place;
- Prevent exposure of human receptors to contaminated groundwater in the sand and gravel unit under Site;
- Prevent or mitigate, to the maximum extent practicable, COC migration via groundwater so that releases from the underlying sand and gravel unit to the Chadakoin River do not exceed applicable standards, criteria and guidance.

To help satisfy these project objectives, periodic groundwater sampling is required. Additionally, the New York State Department of Health (NYSDOH) requested the performance of soil vapor sampling to evaluate potential impacts to air quality by the contamination underlying the Site. This report describes the results from the recent groundwater sampling event that occurred on July 15, 2020.

2 Subsurface Conditions


2.1 Contaminants of Concern

Chlorinated solvents, primarily, trichloroethene (TCE) and its daughter compounds, were identified as the contaminants of concern (COC) for this Site. TCE is a manmade volatile organic compound used for degreasing metal and electronic parts. Remedial considerations for TCE include its low solubility value and heavy molecular weight. TCE is in a class of chemicals called dense non-aqueous phase liquids (DNAPL) that sink through the water column until they encounter an impermeable barrier.

Groundwater contaminant plumes with TCE can undergo a process of reductive dechlorination, during which chlorine atoms are stripped from TCE and daughter compounds are produced. The rate of dechlorination can vary based on:

- Amount of TCE in the subsurface;
- Amount of organic material; and
- Type and concentration of electron acceptors available in the system.

The process of TCE reductive dechlorination is shown below:

2.2 Geology and Hydrogeology

Site geology consists of fill material overlying two sand/gravel layers separated by a silt/clay lens. Fill material consists of a mixed matrix of sand, cinders, silt, gravel, brick, concrete, coal, slag and metal. The fill unit ranges in thickness from 2 to over 14 feet with an average thickness of 8 feet.

The upper sand/gravel layer ranges from 10 to 20 feet in thickness. Underlying the upper sand/gravel layer is a silt/clay lens that ranges from 4 to 8 feet in thickness. The lower sand/gravel layer is 10 to 18 feet thick. Underlying the lower sand layer is a second silt/clay layer that starts approximately 43 feet below ground surface (BGS). This unit is estimated to be 60 feet in thickness according to regional geology.

The average depth to groundwater is 10 feet BGS within the upper sand/gravel layer. Groundwater flow within the upper sand/gravel layer is to the north-northeast at approximately 2.7 feet per year. **Figure 2** shows the inferred groundwater flow direction in the upper sand/gravel layer. The silt/clay layer overlying the lower sand/gravel layer is acting as an aquitard for deeper groundwater and is creating a semi-confined aquifer.

2.3 Extent of Contamination

According to previous environmental reports, the area of former degreaser pit (area of groundwater monitoring wells PW-3 and PW-3R) is a likely source area for the COC plume. The plume originates from the degreaser area and has affected groundwater in the upper and lower sand/gravel layers. The plume extends from the degreaser area to the north, under the JCC building and up to the area of the Chadakoin River. This is an area of approximately one acre. The rate of movement is approximately 2 to 3 feet per year to the north.

3 <u>June 2020 Groundwater Monitoring</u>

3.1 Field Sampling Program

3.1.1 Monitoring Well Array

The Site contains a total of 23 monitoring wells installed in November 1990, November 1991, and April 1992. The monitoring wells below have been shown to be directly within the contaminant plume.

ESI - 1	ESI - 11
ESI - 2	ESI - 12
ESI - 3	ESI - 13R
ESI - 6	PW - 1
ESI - 7	PW - 3R
ESI - 10	

It should be noted that PW-2 has been previously sampled by other consultants; however, during groundwater monitoring conducted by C&S on July 2, 2013, PW-2 could not be developed and sampled because piping was located in the well that could not be removed. Monitoring well ESI - 6 is located within six feet of PW-2 and was developed and sampled as a substitute for PW-2.

Baseline Monitoring

3.1.2 Groundwater Sampling

Iuly 2, 2013

The following groundwater sampling events have been conducted by C&S.

July 2, 2010	basenne Fromtoring
October 21, 22 and 29, 2014	Pre-treatment
April 21 and 22, 2015	1 st Post-treatment
November 2 and 3, 2015	2 nd Post-treatment
April 25 and 26, 2016	3 rd Post-treatment
October 20 and 21, 2016	4 th Post-treatment
June 7 and 8, 2017	5 th Post-treatment

Annual Groundwater Monitoring Report Former Dowcraft Site

May 7 and 8, 2018 6th Post-treatment

(1st Annual Sample Event under OM&M)

June 25 and 26, 2019 7th Post-treatment

(2nd Annual sample event under OM&M)

July 15, 2020 8th Post-treatment

(3rd Annual Sample event under OM&M)

The groundwater monitoring activities included the collection of depth-to-water measurements at each monitoring well and the collection of groundwater samples for laboratory analysis.

Groundwater sampling was conducted in accordance with the U.S. Environmental Protection Agency (USEPA) low flow sample procedure. All equipment used for well purging and sampling was thoroughly washed with tap water and laboratory detergent, Alconox, prior to and after use.

3.1.3 Water Level Monitoring

Prior to purging and sampling each monitoring well was measured with an electronic water level indicator used to measure depth to water and total depth of each well. Measurements were referenced to the top of the well casing. All water levels and total depth measurements were taken to the nearest 0.01 foot.

3.1.4 Well Purging

Water quality parameters were tracked as groundwater was removed from monitoring wells. A Monsoon pump was used to purge monitoring wells until water quality parameters (temperature, specific conductivity, pH, oxygen reduction potential dissolved oxygen and turbidity) were stabilized. Purge water was transferred into five-gallon buckets. Collected purge water was treated through an activated carbon system prior to discharge on the ground surface.

3.1.5 Groundwater Sample Collection and Analysis

Samples were collected from each well immediately after water quality parameters were stabilized. Samples were collected from polyethylene tubing into appropriate sample jars. The sample containers were chemically preserved by the laboratory prior to the field activities. Samples collected for volatile organics analysis were overfilled to form a convex meniscus and, after collection, the sample container was inverted to check for the presence of air bubbles in the sample. All samples were placed in coolers on ice to maintain samples at 4 degrees Celsius. A chain-of-custody manifest was completed on-site and accompanied the samples to the lab. Samples were analyzed for:

Parameter	EPA Method
Volatile Organic Compounds	8260C

3.2 Groundwater Results

3.2.1 Laboratory Analysis

Samples were received by Alpha Analytical Labs on August 8, 2020. The following presents observations associated with the samples:

- The lab confirmed that samples were obtained intact
- On ice and cooler temperature was acceptable
- Chain-of-custody was filled out with all pertinent information
- No discrepancy with sample ID and chain-of-custody
- Samples were received within holding times
- VOA sample vials did not have headspace or bubble is < 6mm in diameter
- Sample bottles were completely filled

3.2.2 Groundwater Elevations

Groundwater elevations are provided in **Table 1** and shown on **Figure 2**. These elevations show that groundwater is generally flowing to the north and east.

3.2.3 Groundwater Analytical Results

Seven out of the eleven wells that were sampled contained groundwater that exceeded water quality standard for TCE (5 ug/L). Analytical results for TCE in these wells ranged from 5.47 ug/L to 708 ug/L. Other chlorinated compounds, including TCE daughter compounds (cis-1,2-dichloroethene, trans-1,2-dichloroethane and vinyl chloride) were detected in five of the eleven wells. Analytical results for daughter compounds in these wells ranged from 5.94 ug/L to 1440 ug/L. The highest concentration of cis-1,2-Dichloroethene was detected in ESI-2 (1910 ug/L). Vinyl chloride was detected in two wells, PW-3R, at 1440 ug/L, and well ESI-2, at 20.3 ug/L.

Well ESI-7 was not sampled for the previous year since it was paved over. Well ESI-7 was rediscovered and sampled again this year as part of the July 2020 sampling event.

The analytical results are summarized in **Table 2**. The July 2020 analytical results are presented on **Figure 3**. The groundwater results were compared to NYSDEC T.O.G.S 1.1. 1 Ambient Water Quality Standards.

4 TREATMENT EFFECTIVENESS

Potassium permanganate was used to treat TCE and other chlorinated volatile organic compounds within a plume that extends adjacent and partially underneath the JCC building. Two methods were implemented in treating the contaminated groundwater. The first method included the injection of a solution of potassium permanganate in ten borings. The second method included the placement of potassium permanganate cylinders as a treatment adjacent to PW-3R and installation of cylinders in monitoring wells inside the main JCC building. Treatment was applied on December 1 through 9, 2014. After sampling was completed on April 2016, potassium permanganate cylinders were placed in ESI-2 and ESI-6. Three cylinders were placed in each monitoring well.

Table 3 presents a comparison of total VOC concentrations from each monitoring well and the percent change from pre-treatment and post-treatment groundwater monitoring.

Out of eleven monitoring wells, six wells show significant decreases, over 40%, in TCE and other chlorinated compounds from the first initial sampling event in 2014. Only three wells showed an increase in total VOC concentrations from the previous sampling event in 2019. TCE and other chlorinated compounds were observed to decrease in a majority of the wells or slightly increased in wells where it did not decrease, compared to the previous groundwater sampling event in June of 2019,in wells on the outside of the contaminant plume (ESI-1, ESI-2 and ESI-13R). Wells inside the JCC building (ESI-10, ESI-11 and ESI-12) showed a continuation of non-detect for TCE. PW-3R shows a decrease in DCE and vinyl chloride from the June 2019 sample event. TCE did rise from non-detect to 75.2 ug/l in PW-3R.

ESI-2, ESI-3, and PW-1 showed rebounds of chlorinated compounds from the December 2014 treatment event. ESI-2 still contains elevated levels of TCE and daughter compounds. Elevated concentrations were observed in sampling events conducted from April 2015 through October 2016. The reason for this observation is not clear, although a possible explanation is the injections caused the migration of groundwater with higher concentrations towards certain monitoring wells, or the ISCO materials may have increased the mobilization of contaminants that may have adhered to soil particles. However, these monitoring wells have increased levels of daughter compounds of TCE, indicating that reductive de-chlorination of TCE is

Annual Groundwater Monitoring Report Former Dowcraft Site

taking place as a result of the potassium permanganate treatment overall when compared to previous treatments, compared to the initially sampling event in 2014.

ESI-2 shows a trend in chlorinated contaminants back to pre-treatment levels, indicating that this area is still in the process of reductive de-chlorination.

4.1 Groundwater Monitoring Recommendations

As outlined in the OM&M Work Plan, C&S will continue to annually monitor groundwater for the next three years. The next submittal is the annual Periodic Review Report (PRR) due in November 2020.

In addition to the groundwater monitoring under the OM&M Plan and PRR, C&S will follow the schedule and guidelines referenced in the RAWP report from February 2020. The schedule referenced from the RAWP report is as follows:

ANTICIPATED DATE	MILESTONE
Early February 2020 Late March 2020	Remedial Action Work Plan Submission Work Plan Approved
Early November 2020	Pre-treatment Investigation
Late April 2021 Late July 2021	ERD/ISCR Treatment Post-treatment Groundwater Monitoring
Mid August 2021	Injection/Groundwater Monitoring Report Submission
Early September 2021 Late November 2021	Discuss Injection/Groundwater Monitoring Report with DEC Periodic Review Report Submission
Late December 2021	Periodic Review Report Acceptance by DEC

F:\Project\N30 - Jamestown Container\N30001002 - JCC 2020 Groundwater Monitoring\Planning-Study\Reports\Annual Monioring Reports\July 2020 Groundwater Monitoring Report .docx

TABLES

TABLE 1: GROUNDWATER MONITORING FORMER DOWCRAFT FACILITY FACLONER, NEW YORK

July 2020

		•		
Monitori ng Well	Depth to Water	Boring Depth	Casing Elevation	Groundw ater Elevation
ESI-1	9.3	15	1264.17	1254.87
ESI-2	9.8	13.8	1264.6	1254.8
ESI-3	9.9	14.2	1264.89	1254.99
ESI-6	10.8	13.75	1264.66	1253.86
ESI-7	10	14	1264.93	1254.93
ESI-10	10.6	14.95	1265.08	1254.48
ESI-11	10.5	15.6	1265.09	1254.59
ESI-12	10.4	15.1	1264.95	1254.55
ESI-13R	8.8	15.2	1263.31	1254.51
PW-1	9.8	19.6	1264.6	1254.8
PW-3R	9.7	36.4	1265.04	1255.34

Location ID Sample Matrix Date Sampled Units	ESI-1 WG 12/02/2014 ug/l		ESI-1 WG 4/21/2015 ug/l		ESI-1 WG 1/03/2015 ug/l		ESI-1 WG 04/25/201 ug/l	6 10	ESI-1 WG /20/2016	ug/l	ESI-1 WG 06/07/2017 ug/l	,	ESI-1 WG 05/07/201 ug/l	8 0	ESI-1 WG 6/26/2019	ug/l 0	ESI-1 WG 7/15/2020		12/02	SI-2 /G 2/2014 g/I	04/22/	ESI-2 WG 2015	ug/l	ESI-2 WG 1/03/2015 ug/l		6I-2 VG 6 uş		SI-2 VG l6 ug/l	ESI-2 WG 06/08/2017 ug/l	ESI-2 WG 05/08/2018 ug/l		ES: W 06/26/ ug	G /2019
NYSDEC Groundwater Standards & Guidance Values																																	
1,1,1-Trichloroethane 5.0 ug/l		U		U	-	U		U		U		U		U		U		U		U		U		U		U		U		***	U		U
1,1-Dichloroethane 5.0 ug/l		U		U	-	U		U		U		U		U		U		U		U		U	-	U		U		U			U		U
1,1-Dichloroethene 5.0 ug/l		U	U,*	-	-	U		U		U		U		U		U		U	1.1			U,*	12			U		U			U	3.7	J
1,2-Dichlorobenzene 3.0 ug/l		U		U	-	U		U		U		U		U		U		U		U		U	-	U		U		U	WELL CAP		U		U
1,2-Dichloroethane 0.6 ug/l		U		U	-	U		U		U		U		U		U		U		U		U		U		U		U	DAMAGED.		U		U
1,3-Dichlorobenzene 3.0 ug/l		U		U	-	U		U		U		U		U		U		U		U		U		U		U		U	SAMPLE NOT		U		U
1,4-Dichlorobenzene 3.0 ug/l		U		U	-	U		U		U		U		U		U		U		U		U	-	U		U		U	-COLLCETED.		U		U
Bromoform 50.0 ug/l		U		U	-	U		U		U		U		U		U		U		U		U		U		U		U	-		U		U
Dibromochloromethane 50.0 ug/l		U		U	-	U		U		U		U		U		U		U		U		U	-	U		U		U	-		U		U
Acetone 50.0 ug/l		U		U	-	U		U		U		U		U	2.2	J		U		U		U		U		U		U	-		U		U
Benzene 1.0 ug/l		U		U	-	U		U		U		U		U		U		U		U		U	-	U		U		U	-		U		U
Carbon Tetrachloride 5.0 ug/l		U		U	-	U		U		U		U		U		U		U		U,*		U		U		U		U	-		U		U
Chlorobenzene 5.0 ug/l		U		U	-	U		U		U		U		U		U		U		U		U		U		U		U	-		U		U
Chloroform 7.0 ug/l		U		U	-	U		U		U		U		U		U		U		U		U		U		U		U	-		U		U
Cis-1,2-Dichloroethylene 5.0 ug/l		U	4.4	-	-	U		U		U		U		U	0.73	J	1.01	J	540	E	740		4400	E	5290		592		-	480		1400	
Ethylbenzene 5.0 ug/l		U		U	-	U		U		U		U		U		U		U		U		U		U		U		U	-		U		U
Methylene Chloride 5.0 ug/l		U		U	-	U		U		U		U		U		U		U		U	7.9	J		U		U		U	-		U		U
Tetrachloroethylene (PCE) 5.0 ug/l		U		U	-	U		U		U		U		U		U		U	0.48	J		U		U		U		U	-		U		U
Toluene 5.0 ug/l		U		U	-	U		U		U		U		U		U		U		U		U		U		U		U	-		U		U
Trans-1,2-Dichloroethene 5.0 ug/l		U		U	-	U		U		U		U		U		U		U	4.5			U	19			U		U	-	27		18	J
Trichloroethylene (TCE) 5.0 ug/l	8.9		15	13	2		4.89		6.52		3.68		4.4		10		6.72	U	130	E	110		1100	E	1260		303		-	450		690	
Vinyl Chloride 2.0 ug/l		U		U	-	U		U		U		U		U		U		U	130	E	130		320		289			U			U	120	
Xylenes 5.0 ug/l		U		U	-	U		U		U		U		U		U		U		U		U	-	U		U		U			U		U
TOTAL VOCs	8.9		19.4	12	2		4.89		6.52		3.68		4.4		12.39		7.73		816.08		988		6151		6,839		895			957		2,228.00	

Sam	ocation ID ple Matrix te Sampled Units	ESI-3 WG 10/21/2014 ug/l	04	ESI-3 WG 1/22/2015	ug/l	ESI-3 WG 11/02/201 ug/l	15	ESI-3 WG 04/25/2016 ug/l	10/20	ESI-3 WG 0/2016	ug/l	ESI-3 WG 06/07/2017 ug/l	05/	ESI-3 WG 08/2018		ESI-3 WG 06/26/2019 ug/l) (ESI-3 WG 07/15/2020	ug/l	ESI-6 WG 10/29/20 ug/l	014		ESI-6 WG 2015	ug/l	ESI-6 WG 11/02/2015 ug/l	ESI- WG 04/25/2016	;	ESI We 1 10/21/2016	G	ESI W0 06/08/ ug	G 2017	ESI-6 WG 05/08/2018 ug/l
NYSDEC Groundwater Stand Guidance Values	ards &																															
1,1,1-Trichloroethane 5.0 ug	1		U		U		U		U		U	-	U		U		U		U		U		U	-	- U	-	U		U	-	U	
1,1-Dichloroethane 5.0 ug	1		U		U		U		U		U	-	U		U		U		U		U		U	-	- U	-	U		U	-	U	
1,1-Dichloroethene 5.0 ug	1		U		U		U		U		U	-	U		U		U		U	1.6	U		U	3.	.9	-	U		U		U	
1,2-Dichlorobenzene 3.0 ug	1		U		U		U		U		U	-	U		U		U	-	U		U		U	-	- U	-	U		U		U	
1,2-Dichloroethane 0.6 ug	1		U		U		U		U		U	-	U		U		U		U	**	U		U	-	- U	-	U		U		U	
1,3-Dichlorobenzene 3.0 ug	1		U		U		U		U		U	-	U		U		U	-	U		U		U	-	- U	-	U		U		U	
1,4-Dichlorobenzene 3.0 ug	1		U		U		U		U	-	U	-	U		U	-	U		U		U		U	-	- U	-	U		U	-	U	
Bromoform 50.0 u	g/l		U		U		U		U		U	-	U		U		U	-	U		U		U	-	- U	-	U		U		U	
bromochloromethane 50.0 u	g/l		U		U		U		U		U	-	U		U		U		U	**	U		U	-	- U	-	U		U		U	
Acetone 50.0 u	g/l		U		U		U		U		U	-	U		U	3.4	J	-	U		U		U	-	- U	-	U		U		U	2.4
Benzene 1.0 ug	1		U		U		U		U	-	U	-	U		U	-	U		U		U		U	-	- U	-	U		U	-	U	
Carbon Tetrachloride 5.0 ug	1		U		U		U		U		U	-	U		U		U	-	U		U,*		U	-	- U	-	U		U		U	
Chlorobenzene 5.0 ug	1		U		U		U		U		U	-	U		U		U	-	U		U		U	-	- U	-	U		U		U	
Chloroform 7.0 ug	1		U		U		U		U		U		U		U		U		U		U		U	-	- U		U		U		U	
-1,2-Dichloroethylene 5.0 ug	1		U		U		U		U	1.4	J		U		U		U		U	210	E	1100		10	00 E	322		626		181		5.3
Ethylbenzene 5.0 ug	1		U		U		U		U		U		U		U		U		U		U		U	-	- U	-	U		U		U	
Methylene Chloride 5.0 ug	1		U		U		U		U		U		U		U		U		U		U	10	J	-	- U		U		U	-	U	
rachloroethylene (PCE) 5.0 ug	1		U		U		U		U		U		U		U		U		U	1.1			U	5.	.8		U		U		U	1.4
Toluene 5.0 ug	1		U		U		U		U		U		U		U		U		U		U		U	-	- U	-	U		U		U	
ns-1,2-Dichloroethene 5.0 ug	1		U		U		U		U		U		U		U		U		U	2.2			U	4	ı	-	U	11.1	J	-	U	
ichloroethylene (TCE) 5.0 ug	1	4.8		2.5		4.8		1.06	J	6.99		-	U	0.3		0.8		5.47	U	200	E	810		15	00 E	924		1060		431		40
Vinyl Chloride 2.0 ug	1		U		U		U		U	-	U	-	U		U		U	-	U	160	E	100	*,^	6	8	21.7			U	-	U	
Xylenes 5.0 ug	1		U		U		U		U		U	-	U		U	-	U		U		U		U	-	- U	-	U		U	-	U	
TOTAL VOCs		4.8		2.5		4.8		1.06		8.39		-		0.3		4.2		5.47		575.22		2,020		##	##	1,267.70		1,697.10		612		49.1

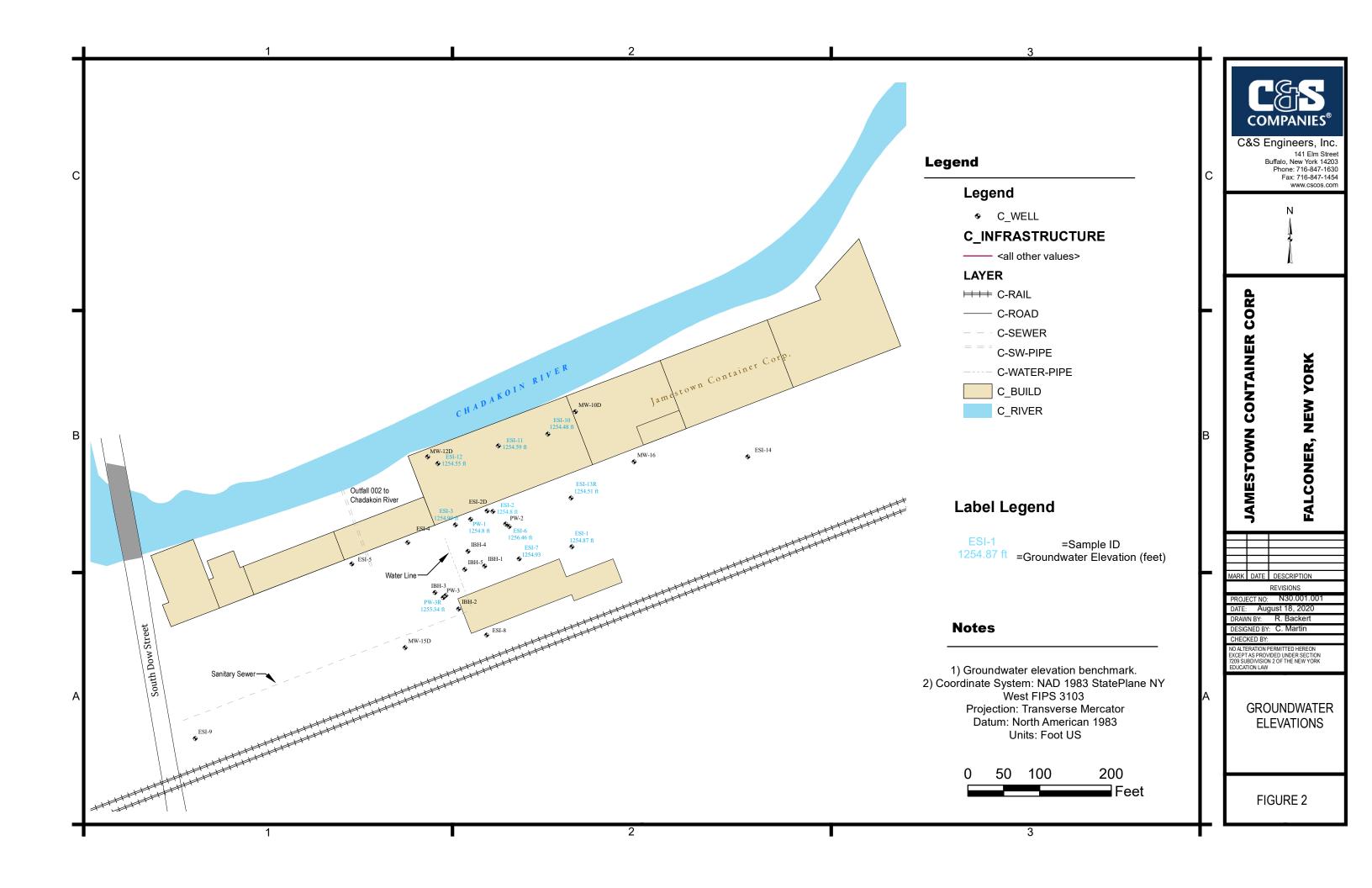
Location ID Sample Matrix Date Sampled Units	ESI-7 WG 10/21/201- ug/l	4	ESI-7 WG 04/21/2015 ug/l	i	ESI-7 WG 11/02/201 ug/l	5	ESI-7 WG 04/25/20 ug/l		ESI-7 WG 10/20/20: ug/l	16	ESI-7 WG 06/08/2017 ug/l	7 05	ESI-7 WG //07/2018	- 4	*ESI-4* WG 06/26/2019 ug/l * Well ESI-7 was paved over, Well		ESI-7 WG 07/15/2020 ug/l	ESI-1 WG 10/29/20 ug/l		ESI- W(04/21/2015	;	ESI-10 WG 11/03/2015 ug/l	ESI- W0 04/26/ ug	G /2016	ESI- W0 10/20/ ug/	3 2016	ESI W 06/07, ug	G /2017	ESI-10 WG 05/07/20 ug/l
NYSDEC Groundwater Standards & Guidance Values															ESI-4 was alternitavely														
1,1,1-Trichloroethane 5.0 ug/l		U		U		U		U		U	-	U		U	U		U		U		U -	- U		U		U	-	U	
1,1-Dichloroethane 5.0 ug/l		U		U		U		U		U		U		U	- U		U		U		U -	- U		U		U		U	
1,1-Dichloroethene 5.0 ug/l		U		U		U		U		U		U		U	- U		U	0.61	J		U -	- U		U		U		U	
1,2-Dichlorobenzene 3.0 ug/l		U		U		U		U		U	-	U		U	- U		U		U		U -	- U		U		U	-	U	
1,2-Dichloroethane 0.6 ug/l		U		U		U		U		U	-	U		U	- U		U		U		U -	- U		U		U	-	U	
1,3-Dichlorobenzene 3.0 ug/l		U		U		U		U		U	-	U		U	- U		U		U		U -	- U		U		U	-	U	
1,4-Dichlorobenzene 3.0 ug/l		U		U		U		U		U	-	U		U	- U		U		U		U -	- U		U		U	-	U	
Bromoform 50.0 ug/l		U		U		U		U		U	-	U		U	U		U		U		U -	- U		U		U	3.01		
Dibromochloromethane 50.0 ug/l		U		U		U		U		U	-	U		U	- U		U		U		U -	- U		U		U	-	U	
Acetone 50.0 ug/l		U		U		U		U	6.89	J	10.1			U	U		U		U	8.5	J (, J	7.16	J	7.11	J	-	U	
Benzene 1.0 ug/l		U		U		U		U		U	-	U		U	U		U		U		U -	- U		U		U	-	U	
Carbon Tetrachloride 5.0 ug/l		U		U		U		U		U	-	U		U	- U		U		U		U -	- U		U		U	-	U	
Chlorobenzene 5.0 ug/l		U		U		U		U		U	-	U		U	U		U		U		U -	- U		U		U	-	U	
Chloroform 7.0 ug/l		U		U		U		U		U	-	U		U	U		U		U		U -	- U		U		U	-	U	
Cis-1,2-Dichloroethylene 5.0 ug/l	78		25		12		8.3		25		5.15		30		U	5.94	U	240	E		U -	- U		U		U	-	U	
Ethylbenzene 5.0 ug/l		U		U		U		U		U		U		U	U		U		U		U -	- U		U		U	-	U	
Methylene Chloride 5.0 ug/l		U		U		U		U		U		U		U	U		U		U		U -	- U		U		U		U	
Tetrachloroethylene (PCE) 5.0 ug/l	0.39	J		U		U		U		U		U		U	U		U		U		U -	- U		U		U		U	
Toluene 5.0 ug/l		U		U		U		U		U		U		U	U		U		U		U -	- U		U		U		U	
Trans-1,2-Dichloroethene 5.0 ug/l		U		U		U		U		U	-	U		U	- U		U	2.5			U -	- U		U		U	-	U	
Trichloroethylene (TCE) 5.0 ug/l	150	E	78		57		43		106		21		52		- U	39.5	U	62			U -	- U		U		U		U	0.94
Vinyl Chloride 2.0 ug/l		U		U		U		U		U		U		U	- U		U	37			-	- U		U		U	-	U	
Xylenes 5.0 ug/l		U		U		U		U		U	-	U		U	- U		U		U		U -	- U		U		U	-	U	
TOTAL VOCs	208.39		103		69		51.2		137.36		36.35		82		-	45.44		352.11		8.5	(5	7.16		7.11		3.01		0.94

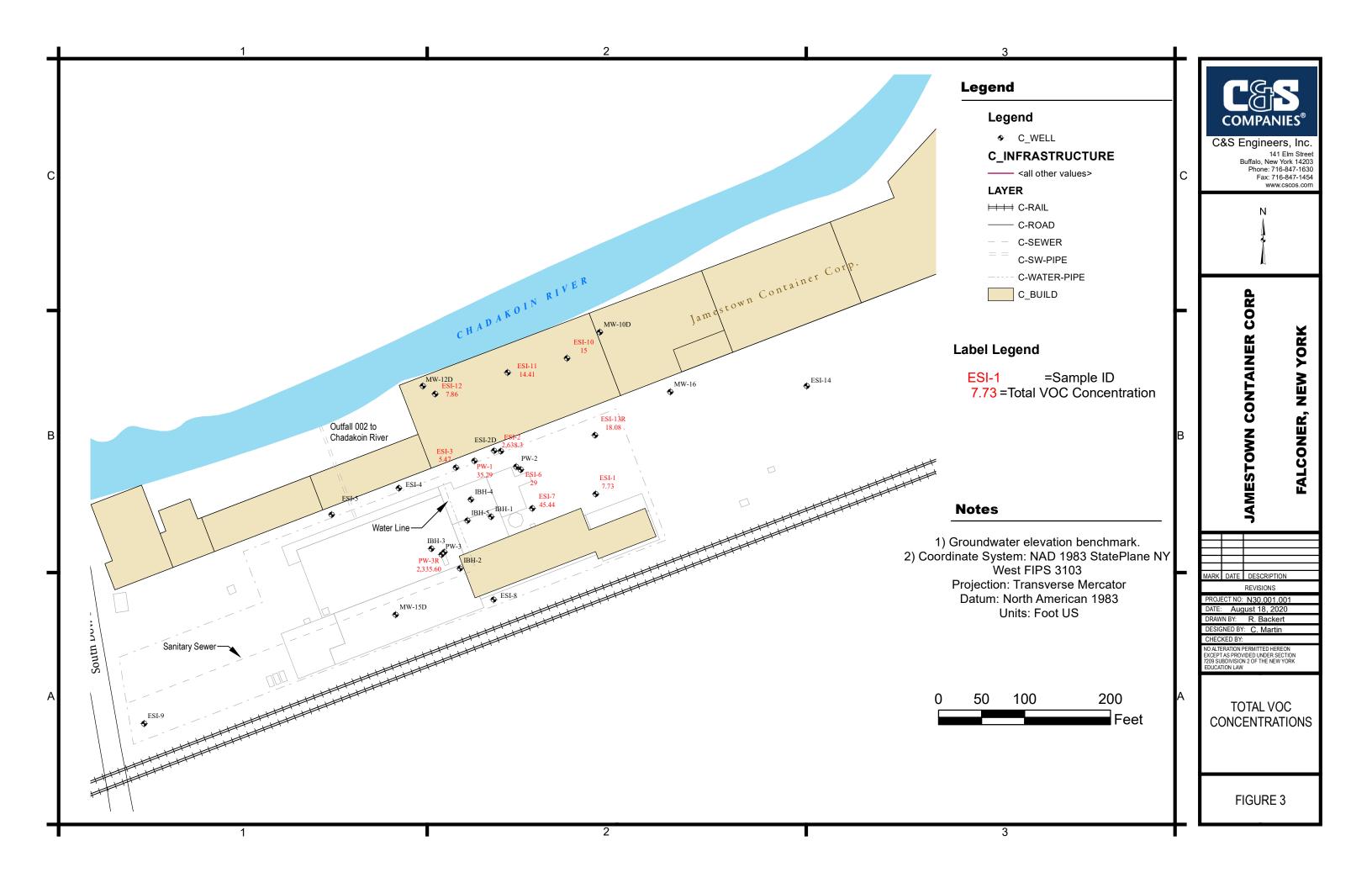
Location ID Sample Ma Date Sampl Units	trix led 10/2	SI-11 WG 29/2014 ug/l		I-11 VG ug	g/l 1	ESI-11 WG 11/03/2015 ug/l	04/2	SI-11 WG :6/2016 :ig/l	10/2	SI-11 WG 20/2016 ug/l	ESI-1 WG 06/07/2 ug/l	017	ESI- WG 05/07/2 ug/	018	ESI-1 WG 06/25/2019		ESI-1 WG 07/15/2020		ESI-1 WG 10/22/2 ug/l	; 2014	(ESI-12 WG 04/21/2015 ug/l		ESI-12 WG I/03/2015 ug/l		ESI-12 WG //26/2016 ug/l	10/	SI-12 WG 21/2016 ug/l		ESI-12 WG /07/2017 ug/l		ESI-12 WG 5/08/2018 ug/l
NYSDEC Groundwater Standards Guidance Values	&																															
1,1,1-Trichloroethane 5.0 ug/l		U		U		U		U		- U	-	U		U		U		U		U		U		U		U		U		U		U
1,1-Dichloroethane 5.0 ug/l		U		U		U		U	-	- U	-	U		U		U		U		U		U		U		U		U		U	-	U
1,1-Dichloroethene 5.0 ug/l		U		U		U		U		- U		U		U		U		U		U		U		U		U		U		U		U
1,2-Dichlorobenzene 3.0 ug/l		U		U		U		U	-	- U	-	U		U		U		U		U		U		U		U		U		U	-	U
1,2-Dichloroethane 0.6 ug/l		U		U		U		U		- U		U		U		U		U		U		U		U		U		U		U		U
1,3-Dichlorobenzene 3.0 ug/l		U		U		U		U	-	- U	_	U		U		U		U		U		U		U		U		U		U		U
1,4-Dichlorobenzene 3.0 ug/l		U		U		U		U		- U		U		U		U		U		U		U		U		U		U		U		U
Bromoform 50.0 ug/l		U		U		U		U	-	- U	4.78			U	2.4	U	8.77	U		U		U		U		U		U	14.50		-	U
Dibromochloromethane 50.0 ug/l		U		U		U		U		- U	1.09			U	-	U		U		U		U		U		U		U		U		U
Acetone 50.0 ug/l		U	3.9	J		7 J	32.	4		- U		U	2.6	J	24	U	5.64	J		U		U	5.6	J	5.9	J	6.2	J		U	3	J
Benzene 1.0 ug/l		U		U		U		U		- U		U		U	-	U		U		U		U		U		U		U		U		U
Carbon Tetrachloride 5.0 ug/l		U,	*	U		U		U	-	- U	-	U		U	-	U		U		U		U		U		U		U		U		U
Chlorobenzene 5.0 ug/l		Ţ		U		U		U	-	- U	-	U		U	-	U		U		U		U		U		U		U		U		U
Chloroform 7.0 ug/l		Ţ		U		U		U	-	- U	-	U		U	-	U		U		U		U		U		U		U		U		U
Cis-1,2-Dichloroethylene 5.0 ug/l	76			U		U		U		- U	-	U		U	-	U		U	71		1.2			U		U		U		U	-	U
Ethylbenzene 5.0 ug/l		Ü		U		U		U	-	- U	-	U		U	-	U		U		U		U		U		U		U		UM		UM
Methylene Chloride 5.0 ug/l		L		U		U		U	-	- U		U		U		U		U		U		U		U		U		U		U		U
Tetrachloroethylene (PCE) 5.0 ug/l		L		U		U		U	-	- U		U		U		U		U	0.48	J	0.54	J		U		U		U		U		U
Toluene 5.0 ug/l	-	U		U		U		U	-	- U		U		U		U		U		U		U		U		U		U		UM		UM
Trans-1,2-Dichloroethene 5.0 ug/l	2	U		U		U		U	-	- U		U		U		U		U		U		U		U		U		U		UM		UM
Trichloroethylene (TCE) 5.0 ug/l	55			U		U		U	-	- U		U		U		U		U	140	E	10			U		U		U		UM		UM
Vinyl Chloride 2.0 ug/l	24			U		U		U	-	- U		U		U		U		U		U		U		U		U		U		UM		UM
Xylenes 5.0 ug/l		U		U		U		U	-	- U		U		U		U		U		U		U		U		U		U		U		U
TOTAL VOCs	157		3.9			7	32.	4	-		5.87		2.6		26.4		14.41		221.48		11.7		5.6		5.9		6.2		14.5		3	

Sa Da	ocation ID ample Matrix ate Sampled nits	ESI-13R WG 10/21/2014 ug/l	04	ESI-13F WG J/21/2015	ug/l	ESI-13F WG 11/02/201 ug/l		ESI-13R WG 04/25/2016 ug/l		ESI-13R WG 0/2016 ug		ESI-13R WG 06/07/2017 ug/l		ESI-13 WG 05/08/20 ug/l		ESI-131 WG 06/26/20 ug/l		ESI-13 WG 07/15/20 ug/l)20	PW W 10/21/ ug	G 2014		PW-1 WG 4/21/2015 ug/l	11/	PW-1 WG 02/2015 ug/l	W 04/25	V-1 /G 5/2016 g/l	PW W 10/20/2010	G	06/08	G	PW-1 WG 05/08/2018 ug/l
NYSDEC Groundwater St Guidance Value																																
1,1,1-Trichloroethane 5.0	0 ug/l		U		U		U		U	U	J		U		U		U		U		U		U		U		U		U		U	
1,1-Dichloroethane 5.0	0 ug/l		U		U		U		U	U	J		U		U		U		U		U		U		U		U		U		U	
1,1-Dichloroethene 5.0	0 ug/l		U		U		U		U	I	J		U		U		U		U		U		U		U		U		U		U	
1,2-Dichlorobenzene 3.0	0 ug/l		U		U		U		U	U	J		U		U		U		U		U		U		U		U		U		U	
1,2-Dichloroethane 0.6	6 ug/l		U		U		U		U	I	J		U		U		U		U		U		U		U		U		U		U	
1,3-Dichlorobenzene 3.0	0 ug/l		U		U		U		U	I	J		U		U		U		U		U		U		U		U		U		U	
1,4-Dichlorobenzene 3.0	0 ug/l		U		U		U		U	U	J		U		U		U		U		U		U		U		U		U		U	
Bromoform 50).0 ug/l		U		U		U		U	I	J		U		U		U		U		U		U		U		U		U		U	
bromochloromethane 50).0 ug/l		U		U		U		U	I	J		U		U		U		U		U		U		U		U		U		U	
Acetone 50).0 ug/l		U		U		U		U	I	J		U		U	2.4	J		U		U		U		U	-	U		U	8.09	J	
Benzene 1.0	0 ug/l		U		U		U		U	I	J		U		U		U		U		U		U		U		U		U		U	
Carbon Tetrachloride 5.0	0 ug/l		U		U		U		U	I	J		U		U		U		U		U		U		U		U		U		U	
Chlorobenzene 5.0	0 ug/l		U		U		U		U	U	J		U		U		U		U		U		U		U	-	U		U		U	
Chloroform 7.0	0 ug/l		U		U		U		U	I	J		U		U		U		U		U		U		U		U		U		U	
-1,2-Dichloroethylene 5.0	0 ug/l	18		18		8.3		7.51		9.41			U	1.3		1	J	4.38	U	1.9		8.8		2.4		5.03		7.14		3.88		
	0 ug/l		U		U		U		U	U	J		U		U		U		U		U		U		U	-	U		U		U	
Methylene Chloride 5.0			U		U		U		U	J	J		U		U		U		U		U		U		U		U		U		U	
rachloroethylene (PCE) 5.0			U		U		U		U	T	J	-	U		U		U		U		U		U		U	-	U		U	-	U	
	0 ug/l		U		U		U		U	I	J		U		U		U		U		U		U		U	-	U		U		U	
ns-1,2-Dichloroethene 5.0	_		U		U		U		U	U	J		U		U		U		U		U		U		U	-	U		U	-	U	
chloroethylene (TCE) 5.0		22		46		19		21		13		7.4		7.3		18		13.7	U	15		3.3		11		6.96		22.1		8.39		0.84
	0 ug/l		U		U		U		U	U	J		U		U		U		U		U		U		U	-	U		U	-	U	
Xylenes 5.0	0 ug/l		U		U		U		U	T	J	-	U		U		U		U		U		U		U	-	U		U	-	U	
TOTAL VOCs		40		64		27.3		28.51		28.28		7.37		8.6		21.4		18.08		16.9	_	12.1		13.4		11.99		29.24	_	20.36		0.84

TABLE 2: GROUNDWATER ANALYTICAL RESULTS - VOLATILE ORGANIC COMPOUNDS FORMER DOWCRAFT FACILITY FALCONER, NEW YORK

	Location ID Sample Matrix Date Sampled Units	PW-3F WG 10/29/20 ug/l		PW-3R WG 04/22/20 ug/l		PW-3 WG 11/03/2 ug/l	015	PW-3R WG 04/26/2016	ug/l	PW-3R WG 10/21/2010 ug/l	5	PW-3R WG 06/08/2017	ug/l (PW-3R WG 05/08/2018		PW-3R WG 06/26/2019		PW-3R WG 07/15/2020	t ug/l
NYSDEC Groundwate Guidance V																			
1,1,1-Trichloroethane	5.0 ug/l		U		U		U		U		U		U		U		U		U
1,1-Dichloroethane	5.0 ug/l	5.1		4.0			U		U		U		U		U		U		U
1,1-Dichloroethene	5.0 ug/l		U		U,*		U		U		U		U		U		U		U
1,2-Dichlorobenzene	3.0 ug/l		U		U		U		U		U		U		U		U		U
1,2-Dichloroethane	0.6 ug/l		U		U		U		U		U		U		U		U		U
1,3-Dichlorobenzene	3.0 ug/l		U		U		U		U		U		U		U		U		U
1,4-Dichlorobenzene	3.0 ug/l		U		U		U		U		U		U		U		U		U
Bromoform	50.0 ug/l		U		U		U		U		U		U		U		U		U
Dibromochloromethane	50.0 ug/l		U		U		U		U		U		U		U		U		U
Acetone	50.0 ug/l	12		16			U	11.3	J	12.3	J		U	9		19	J		U
Benzene	1.0 ug/l	0.61	J	0.53	J		U		U		U		U		U		U		U
Carbon Tetrachloride	5.0 ug/l		U,*		U		U		U		U		U		U		U		U
Chlorobenzene	5.0 ug/l		U		U		U		U		U		U		U		U		U
Chloroform	7.0 ug/l		U		U		U		U		U		U		U		U		U
Cis-1,2-Dichloroethylene	5.0 ug/l	21		1.6		140		242		1450		1,990		70		1200		809	U
Ethylbenzene	5.0 ug/l		U		U		U		U		U		U		U		U		U
Methylene Chloride	5.0 ug/l		U		U		U		U		U		U		U		U		U
Tetrachloroethylene (PCE)	5.0 ug/l		U		U		U		U		U		U		U		U		U
Toluene	5.0 ug/l	8.1		6.9		8.0	J	4.90			U		U	4.6		7.3	J		U
Trans-1,2-Dichloroethene	5.0 ug/l	39			U		U		U		U	10.2		2.2		20	J	11.4	J
Trichloroethylene (TCE)	5.0 ug/l	0.79	J		U		U	17.2		84.4		229			U		U	75.2	U
Vinyl Chloride	2.0 ug/l	1800	E	120	E	790	^,F1	134		751		861		110		2200	E	1440	U
Xylenes	5.0 ug/l	2.3	U	1.1	J		U		U		U		U	1.1	J		U		U
TOTAL VO	OCs	2,609.30		147.71		938		409.4		2285.4		3,090.20		199		3,446.30		2,335.60	


TABLE 3: CHANGE IN TOTAL VOC CONCENTRATIONS FORMER DOWCRAFT FACILITY FALCONER, NEW YORK


Monitoring Well	Total	VOC Conc	centration ((ug/L)						Percent Change Oct. 2014 to July
77611	Oct-14	Apr-15	<i>Nov-15</i>	<i>Apr-16</i>	Oct-16	Apr-17	May-18	Jun-19	<i>Jul-20</i>	2020
ESI-1	8.9	19.4	12	4.89	6.52	3.68	4.4	12.39	7.73	-13.15%
ESI-2	816.08	987.9	6,151	6,839	895	-	957	2,228	2,638	223.25%
ESI-3	4.8	2.5	4.8	1.06	8.39	0	0.3	4.2	5.47	14%
ESI-6	575.22	2,020	3,281.70	1,267.70	1,697.10	612	49.1	204	29	-94.96%
ESI-7	208.39	103	69	51.2	137.36	36.35	82	No sample collected	45.44	-78.19%
ESI-10 ¹	352.11	8.5	5.9	7.16	7.11	3.01	0.94	155.62	15	-95.74%
ESI-11 ¹	157	3.9	7	32.4	0	5.87	2.6	26.4	14.41	-90.82%
ESI-12 ¹	221.48	11.74	5.6	5.85	5.85	14.2	3	21.8	7.86	-96.45%
ESI-13R	40	64	27.3	28.51	28.28	7.37	8.6	21.4	18.08	-54.80%
PW-1	16.9	12.1	13.4	11.99	29.24	20.36	0.84	4.6	35.29	108.8%
PW-3R	2,609.30	147.71	938	409.4	2285.4	3,090.20	199	3,446.30	2,335.60	-10.50%

Only bromoform and dibromochloromethane was detected in the sample and results were below NYSDEC standards.

FIGURES

APPENDICES

APPENDIX A

GROUNDWATER ANALYTICAL RESULTS

Client: <u>Alpha Analytical</u>

Project Reference: L2030254, C&S Companies, Jamestown Container

Sample Identifier: 30254-01 ESI-3-071520

Lab Sample ID:203467-01Date Sampled:7/15/2020Matrix:GroundwaterDate Received:7/28/2020

Volatile Organics

<u>Analyte</u>	Result	<u>Units</u>	Qualifier	Date Analyzed
1,1,1-Trichloroethane	< 2.00	ug/L		7/28/2020 17:32
1,1,2,2-Tetrachloroethane	< 2.00	ug/L		7/28/2020 17:32
1,1,2-Trichloroethane	< 2.00	ug/L		7/28/2020 17:32
1,1-Dichloroethane	< 2.00	ug/L		7/28/2020 17:32
1,1-Dichloroethene	< 2.00	ug/L		7/28/2020 17:32
1,2,3-Trichlorobenzene	< 5.00	ug/L		7/28/2020 17:32
1,2,4-Trichlorobenzene	< 5.00	ug/L		7/28/2020 17:32
1,2,4-Trimethylbenzene	< 2.00	ug/L		7/28/2020 17:32
1,2-Dibromo-3-Chloropropane	< 10.0	ug/L		7/28/2020 17:32
1,2-Dibromoethane	< 2.00	ug/L		7/28/2020 17:32
1,2-Dichlorobenzene	< 2.00	ug/L		7/28/2020 17:32
1,2-Dichloroethane	< 2.00	ug/L		7/28/2020 17:32
1,2-Dichloropropane	< 2.00	ug/L		7/28/2020 17:32
1,3,5-Trimethylbenzene	< 2.00	ug/L		7/28/2020 17:32
1,3-Dichlorobenzene	< 2.00	ug/L		7/28/2020 17:32
1,4-Dichlorobenzene	< 2.00	ug/L		7/28/2020 17:32
1,4-Dioxane	< 20.0	ug/L		7/28/2020 17:32
2-Butanone	< 10.0	ug/L		7/28/2020 17:32
2-Hexanone	< 5.00	ug/L		7/28/2020 17:32
4-Methyl-2-pentanone	< 5.00	ug/L		7/28/2020 17:32
Acetone	< 10.0	ug/L		7/28/2020 17:32
Benzene	< 1.00	ug/L		7/28/2020 17:32
Bromochloromethane	< 5.00	ug/L		7/28/2020 17:32

Client: <u>Alpha Analytical</u>

Project Reference: L2030254, C&S Companies, Jamestown Container

Sample Identifier:	30254-01 ESI-3-071520				
Lab Sample ID:	203467-01		Date Sampled:	7/15/2020	
Matrix:	Groundwater		Date Received:	7/28/2020	
Bromodichloromethane	< 2.00	ug/L		7/28/2020	17:32
Bromoform	< 5.00	ug/L		7/28/2020	17:32
Bromomethane	< 2.00	ug/L		7/28/2020	17:32
Carbon disulfide	< 2.00	ug/L		7/28/2020	17:32
Carbon Tetrachloride	< 2.00	ug/L		7/28/2020	17:32
Chlorobenzene	< 2.00	ug/L		7/28/2020	17:32
Chloroethane	< 2.00	ug/L		7/28/2020	17:32
Chloroform	< 2.00	ug/L		7/28/2020	17:32
Chloromethane	< 2.00	ug/L		7/28/2020	17:32
cis-1,2-Dichloroethene	< 2.00	ug/L		7/28/2020	17:32
cis-1,3-Dichloropropene	< 2.00	ug/L		7/28/2020	17:32
Cyclohexane	< 10.0	ug/L		7/28/2020	17:32
Dibromochloromethane	< 2.00	ug/L		7/28/2020	17:32
Dichlorodifluoromethan	e < 2.00	ug/L		7/28/2020	17:32
Ethylbenzene	< 2.00	ug/L		7/28/2020	17:32
Freon 113	< 2.00	ug/L		7/28/2020	17:32
Isopropylbenzene	< 2.00	ug/L		7/28/2020	17:32
m,p-Xylene	< 2.00	ug/L		7/28/2020	17:32
Methyl acetate	< 2.00	ug/L		7/28/2020	17:32
Methyl tert-butyl Ether	< 2.00	ug/L		7/28/2020	17:32
Methylcyclohexane	< 2.00	ug/L		7/28/2020	17:32
Methylene chloride	< 5.00	ug/L		7/28/2020	17:32
Naphthalene	< 5.00	ug/L		7/28/2020	17:32
n-Butylbenzene	< 2.00	ug/L		7/28/2020	17:32
n-Propylbenzene	< 2.00	ug/L		7/28/2020	17:32

Alpha Analytical Client:

Project Reference: L2030254, C&S Companies, Jamestown Container

-					-	
Sample Identifier:	30254-01 ESI-3-071520)				
Lab Sample ID:	203467-01		Date	e Sampled:	7/15/2020	
Matrix:	Groundwater		Date	e Received:	7/28/2020	
o-Xylene	< 2.00	ug/L			7/28/2020	17:32
p-Isopropyltoluene	< 2.00	ug/L			7/28/2020	17:32
sec-Butylbenzene	< 2.00	ug/L			7/28/2020	17:32
Styrene	< 5.00	ug/L			7/28/2020	17:32
tert-Butylbenzene	< 2.00	ug/L			7/28/2020	17:32
Tetrachloroethene	< 2.00	ug/L			7/28/2020	17:32
Toluene	< 2.00	ug/L			7/28/2020	17:32
trans-1,2-Dichloroethen	e < 2.00	ug/L			7/28/2020	17:32
trans-1,3-Dichloroprope	ene < 2.00	ug/L			7/28/2020	17:32
Trichloroethene	5.47	ug/L			7/28/2020	17:32
Trichlorofluoromethane	< 2.00	ug/L			7/28/2020	17:32
Vinyl chloride	< 2.00	ug/L			7/28/2020	17:32
Surrogate	Perce	ent Recovery	<u>Limits</u>	<u>Outliers</u>	Date Analy	zed
1,2-Dichloroethane-d4		97.9	80.8 - 132		7/28/2020	17:32
4-Bromofluorobenzene		63.3	56.6 - 130		7/28/2020	17:32
Pentafluorobenzene		105	87.4 - 113		7/28/2020	17:32
Toluene-D8		86.2	82.2 - 115		7/28/2020	17:32

Method Reference(s): EPA 5030C

EPA 8260C

Data File: x72087.D

Client: <u>Alpha Analytical</u>

Project Reference: L2030254, C&S Companies, Jamestown Container

Sample Identifier: 30254-02 PW-1-071520

Lab Sample ID:203467-02Date Sampled:7/15/2020Matrix:GroundwaterDate Received:7/28/2020

Volatile Organics

<u>Analyte</u>	Result	<u>Units</u>	Qualifier	Date Analyzed
1,1,1-Trichloroethane	< 2.00	ug/L		7/28/2020 21:38
1,1,2,2-Tetrachloroethane	< 2.00	ug/L		7/28/2020 21:38
1,1,2-Trichloroethane	< 2.00	ug/L		7/28/2020 21:38
1,1-Dichloroethane	< 2.00	ug/L		7/28/2020 21:38
1,1-Dichloroethene	< 2.00	ug/L		7/28/2020 21:38
1,2,3-Trichlorobenzene	< 5.00	ug/L		7/28/2020 21:38
1,2,4-Trichlorobenzene	< 5.00	ug/L		7/28/2020 21:38
1,2,4-Trimethylbenzene	< 2.00	ug/L		7/28/2020 21:38
1,2-Dibromo-3-Chloropropane	< 10.0	ug/L		7/28/2020 21:38
1,2-Dibromoethane	< 2.00	ug/L		7/28/2020 21:38
1,2-Dichlorobenzene	< 2.00	ug/L		7/28/2020 21:38
1,2-Dichloroethane	< 2.00	ug/L		7/28/2020 21:38
1,2-Dichloropropane	< 2.00	ug/L		7/28/2020 21:38
1,3,5-Trimethylbenzene	< 2.00	ug/L		7/28/2020 21:38
1,3-Dichlorobenzene	< 2.00	ug/L		7/28/2020 21:38
1,4-Dichlorobenzene	< 2.00	ug/L		7/28/2020 21:38
1,4-Dioxane	< 20.0	ug/L		7/28/2020 21:38
2-Butanone	< 10.0	ug/L		7/28/2020 21:38
2-Hexanone	< 5.00	ug/L		7/28/2020 21:38
4-Methyl-2-pentanone	< 5.00	ug/L		7/28/2020 21:38
Acetone	< 10.0	ug/L		7/28/2020 21:38
Benzene	< 1.00	ug/L		7/28/2020 21:38
Bromochloromethane	< 5.00	ug/L		7/28/2020 21:38

Client: <u>Alpha Analytical</u>

Project Reference: L2030254, C&S Companies, Jamestown Container

Sample Identifier:	30254-02 PW-1-071520				
Lab Sample ID:	203467-02		Date Sampled:	7/15/2020	
Matrix:	Groundwater		Date Received:	7/28/2020	
Bromodichloromethane	< 2.00	ug/L		7/28/2020	21:38
Bromoform	< 5.00	ug/L		7/28/2020	21:38
Bromomethane	< 2.00	ug/L		7/28/2020	21:38
Carbon disulfide	< 2.00	ug/L		7/28/2020	21:38
Carbon Tetrachloride	< 2.00	ug/L		7/28/2020	21:38
Chlorobenzene	< 2.00	ug/L		7/28/2020	21:38
Chloroethane	< 2.00	ug/L		7/28/2020	21:38
Chloroform	< 2.00	ug/L		7/28/2020	21:38
Chloromethane	< 2.00	ug/L		7/28/2020	21:38
cis-1,2-Dichloroethene	7.89	ug/L		7/28/2020	21:38
cis-1,3-Dichloropropene	< 2.00	ug/L		7/28/2020	21:38
Cyclohexane	< 10.0	ug/L		7/28/2020	21:38
Dibromochloromethane	< 2.00	ug/L		7/28/2020	21:38
Dichlorodifluoromethan	e < 2.00	ug/L		7/28/2020	21:38
Ethylbenzene	< 2.00	ug/L		7/28/2020	21:38
Freon 113	< 2.00	ug/L		7/28/2020	21:38
Isopropylbenzene	< 2.00	ug/L		7/28/2020	21:38
m,p-Xylene	< 2.00	ug/L		7/28/2020	21:38
Methyl acetate	< 2.00	ug/L		7/28/2020	21:38
Methyl tert-butyl Ether	< 2.00	ug/L		7/28/2020	21:38
Methylcyclohexane	< 2.00	ug/L		7/28/2020	21:38
Methylene chloride	< 5.00	ug/L		7/28/2020	21:38
Naphthalene	< 5.00	ug/L		7/28/2020	21:38
n-Butylbenzene	< 2.00	ug/L		7/28/2020	21:38
n-Propylbenzene	< 2.00	ug/L		7/28/2020	21:38

Client: <u>Alpha Analytical</u>

Project Reference: L2030254, C&S Companies, Jamestown Container

Sample Identifier:	30254-02 PW-1-07152	20				
Lab Sample ID:	203467-02		Date	e Sampled:	7/15/2020	
Matrix:	Groundwater		Date	e Received:	7/28/2020	
o-Xylene	< 2.00	ug/L			7/28/2020	21:38
p-Isopropyltoluene	< 2.00	ug/L			7/28/2020	21:38
sec-Butylbenzene	< 2.00	ug/L			7/28/2020	21:38
Styrene	< 5.00	ug/L			7/28/2020	21:38
tert-Butylbenzene	< 2.00	ug/L			7/28/2020	21:38
Tetrachloroethene	< 2.00	ug/L			7/28/2020	21:38
Toluene	< 2.00	ug/L			7/28/2020	21:38
trans-1,2-Dichloroether	ne < 2.00	ug/L			7/28/2020	21:38
trans-1,3-Dichloroprop	ene < 2.00	ug/L			7/28/2020	21:38
Trichloroethene	27.4	ug/L			7/28/2020	21:38
Trichlorofluoromethane	e < 2.00	ug/L			7/28/2020	21:38
Vinyl chloride	< 2.00	ug/L			7/28/2020	21:38
<u>Surrogate</u>	Per	cent Recovery	Limits	<u>Outliers</u>	Date Analy	zed
1,2-Dichloroethane-d4		127	80.8 - 132		7/28/2020	21:38
4-Bromofluorobenzene		63.4	56.6 - 130		7/28/2020	21:38
Pentafluorobenzene		98.8	87.4 - 113		7/28/2020	21:38
Toluene-D8		79.0	82.2 - 115	*	7/28/2020	21:38

Method Reference(s): EPA 8260C

EPA 5030C

Data File: x72098.D

Client: Alpha Analytical

Project Reference: L2030254, C&S Companies, Jamestown Container

Sample Identifier: 30254-03 DUP-PW-1-071520

Lab Sample ID:203467-03Date Sampled:7/15/2020Matrix:GroundwaterDate Received:7/28/2020

Volatile Organics

<u>Analyte</u>	Result	<u>Units</u>	Qualifier	Date Analyzed
1,1,1-Trichloroethane	< 2.00	ug/L		7/29/2020 14:36
1,1,2,2-Tetrachloroethane	< 2.00	ug/L		7/29/2020 14:36
1,1,2-Trichloroethane	< 2.00	ug/L		7/29/2020 14:36
1,1-Dichloroethane	< 2.00	ug/L		7/29/2020 14:36
1,1-Dichloroethene	< 2.00	ug/L		7/29/2020 14:36
1,2,3-Trichlorobenzene	< 5.00	ug/L		7/29/2020 14:36
1,2,4-Trichlorobenzene	< 5.00	ug/L		7/29/2020 14:36
1,2,4-Trimethylbenzene	< 2.00	ug/L		7/29/2020 14:36
1,2-Dibromo-3-Chloropropane	< 10.0	ug/L		7/29/2020 14:36
1,2-Dibromoethane	< 2.00	ug/L		7/29/2020 14:36
1,2-Dichlorobenzene	< 2.00	ug/L		7/29/2020 14:36
1,2-Dichloroethane	< 2.00	ug/L		7/29/2020 14:36
1,2-Dichloropropane	< 2.00	ug/L		7/29/2020 14:36
1,3,5-Trimethylbenzene	< 2.00	ug/L		7/29/2020 14:36
1,3-Dichlorobenzene	< 2.00	ug/L		7/29/2020 14:36
1,4-Dichlorobenzene	< 2.00	ug/L		7/29/2020 14:36
1,4-Dioxane	< 20.0	ug/L		7/29/2020 14:36
2-Butanone	< 10.0	ug/L		7/29/2020 14:36
2-Hexanone	< 5.00	ug/L		7/29/2020 14:36
4-Methyl-2-pentanone	< 5.00	ug/L		7/29/2020 14:36
Acetone	< 10.0	ug/L		7/29/2020 14:36
Benzene	< 1.00	ug/L		7/29/2020 14:36
Bromochloromethane	< 5.00	ug/L		7/29/2020 14:36

Client: Alpha Analytical

Project Reference: L2030254, C&S Companies, Jamestown Container

Sample Identifier:	30254-03 DUP-PW-1-071	520			
Lab Sample ID:	203467-03		Date Sampled:	7/15/2020	
Matrix:	Groundwater		Date Received:	7/28/2020	
Bromodichloromethane	< 2.00	ug/L		7/29/2020	14:36
Bromoform	< 5.00	ug/L		7/29/2020	14:36
Bromomethane	< 2.00	ug/L		7/29/2020	14:36
Carbon disulfide	< 2.00	ug/L		7/29/2020	14:36
Carbon Tetrachloride	< 2.00	ug/L		7/29/2020	14:36
Chlorobenzene	< 2.00	ug/L		7/29/2020	14:36
Chloroethane	< 2.00	ug/L		7/29/2020	14:36
Chloroform	< 2.00	ug/L		7/29/2020	14:36
Chloromethane	< 2.00	ug/L		7/29/2020	14:36
cis-1,2-Dichloroethene	8.57	ug/L		7/29/2020	14:36
cis-1,3-Dichloropropene	< 2.00	ug/L		7/29/2020	14:36
Cyclohexane	< 10.0	ug/L		7/29/2020	14:36
Dibromochloromethane	< 2.00	ug/L		7/29/2020	14:36
Dichlorodifluoromethan	e < 2.00	ug/L		7/29/2020	14:36
Ethylbenzene	< 2.00	ug/L		7/29/2020	14:36
Freon 113	< 2.00	ug/L		7/29/2020	14:36
Isopropylbenzene	< 2.00	ug/L		7/29/2020	14:36
m,p-Xylene	< 2.00	ug/L		7/29/2020	14:36
Methyl acetate	< 2.00	ug/L		7/29/2020	14:36
Methyl tert-butyl Ether	< 2.00	ug/L		7/29/2020	14:36
Methylcyclohexane	< 2.00	ug/L		7/29/2020	14:36
Methylene chloride	< 5.00	ug/L		7/29/2020	14:36
Naphthalene	< 5.00	ug/L		7/29/2020	14:36
n-Butylbenzene	< 2.00	ug/L		7/29/2020	14:36
n-Propylbenzene	< 2.00	ug/L		7/29/2020	14:36

Client: <u>Alpha Analytical</u>

Project Reference: L2030254, C&S Companies, Jamestown Container

Sample Identifier:	30254-03 DUP-PW-1	-071520				
Lab Sample ID:	203467-03		Date	e Sampled:	7/15/2020	
Matrix:	Groundwater		Date	e Received:	7/28/2020	
o-Xylene	< 2.00	ug/L			7/29/2020	14:36
p-Isopropyltoluene	< 2.00	ug/L			7/29/2020	14:36
sec-Butylbenzene	< 2.00	ug/L			7/29/2020	14:36
Styrene	< 5.00	ug/L			7/29/2020	14:36
tert-Butylbenzene	< 2.00	ug/L			7/29/2020	14:36
Tetrachloroethene	< 2.00	ug/L			7/29/2020	14:36
Toluene	< 2.00	ug/L			7/29/2020	14:36
trans-1,2-Dichloroethene	< 2.00	ug/L			7/29/2020	14:36
trans-1,3-Dichloroproper	ne < 2.00	ug/L			7/29/2020	14:36
Trichloroethene	30.2	ug/L			7/29/2020	14:36
Trichlorofluoromethane	< 2.00	ug/L			7/29/2020	14:36
Vinyl chloride	< 2.00	ug/L			7/29/2020	14:36
<u>Surrogate</u>	Pe	ercent Recovery	Limits	<u>Outliers</u>	Date Analy	zed
1,2-Dichloroethane-d4		115	80.8 - 132		7/29/2020	14:36
4-Bromofluorobenzene		62.2	56.6 - 130		7/29/2020	14:36
Pentafluorobenzene		103	87.4 - 113		7/29/2020	14:36
Toluene-D8		82.9	82.2 - 115		7/29/2020	14:36
Method Reference(s): EPA 8260C					

Method Reference(s): EPA 8260C EPA 5030C

Data File: x72116.D

Client: <u>Alpha Analytical</u>

Project Reference: L2030254, C&S Companies, Jamestown Container

Sample Identifier: 30254-04 ESI-1-071520

Lab Sample ID:203467-04Date Sampled:7/15/2020Matrix:GroundwaterDate Received:7/28/2020

Volatile Organics

<u>Analyte</u>	Result	<u>Units</u>	Qualifier	Date Anal	yzed
1,1,1-Trichloroethane	< 2.00	ug/L		7/28/2020	17:54
1,1,2,2-Tetrachloroethane	< 2.00	ug/L		7/28/2020	17:54
1,1,2-Trichloroethane	< 2.00	ug/L		7/28/2020	17:54
1,1-Dichloroethane	< 2.00	ug/L		7/28/2020	17:54
1,1-Dichloroethene	< 2.00	ug/L		7/28/2020	17:54
1,2,3-Trichlorobenzene	< 5.00	ug/L		7/28/2020	17:54
1,2,4-Trichlorobenzene	< 5.00	ug/L		7/28/2020	17:54
1,2,4-Trimethylbenzene	< 2.00	ug/L		7/28/2020	17:54
1,2-Dibromo-3-Chloropropane	< 10.0	ug/L		7/28/2020	17:54
1,2-Dibromoethane	< 2.00	ug/L		7/28/2020	17:54
1,2-Dichlorobenzene	< 2.00	ug/L		7/28/2020	17:54
1,2-Dichloroethane	< 2.00	ug/L		7/28/2020	17:54
1,2-Dichloropropane	< 2.00	ug/L		7/28/2020	17:54
1,3,5-Trimethylbenzene	< 2.00	ug/L		7/28/2020	17:54
1,3-Dichlorobenzene	< 2.00	ug/L		7/28/2020	17:54
1,4-Dichlorobenzene	< 2.00	ug/L		7/28/2020	17:54
1,4-Dioxane	< 20.0	ug/L		7/28/2020	17:54
2-Butanone	< 10.0	ug/L		7/28/2020	17:54
2-Hexanone	< 5.00	ug/L		7/28/2020	17:54
4-Methyl-2-pentanone	< 5.00	ug/L		7/28/2020	17:54
Acetone	< 10.0	ug/L		7/28/2020	17:54
Benzene	< 1.00	ug/L		7/28/2020	17:54
Bromochloromethane	< 5.00	ug/L		7/28/2020	17:54

Client: <u>Alpha Analytical</u>

Project Reference: L2030254, C&S Companies, Jamestown Container

Sample Identifier:	30254-04 ESI-1-07152	0			
Lab Sample ID:	203467-04		Date Sampled:	7/15/2020	
Matrix:	Groundwater		Date Received:	7/28/2020	
Bromodichloromethane	< 2.00	ug/L		7/28/2020	17:54
Bromoform	< 5.00	ug/L		7/28/2020	17:54
Bromomethane	< 2.00	ug/L		7/28/2020	17:54
Carbon disulfide	< 2.00	ug/L		7/28/2020	17:54
Carbon Tetrachloride	< 2.00	ug/L		7/28/2020	17:54
Chlorobenzene	< 2.00	ug/L		7/28/2020	17:54
Chloroethane	< 2.00	ug/L		7/28/2020	17:54
Chloroform	< 2.00	ug/L		7/28/2020	17:54
Chloromethane	< 2.00	ug/L		7/28/2020	17:54
cis-1,2-Dichloroethene	1.01	ug/L	J	7/28/2020	17:54
cis-1,3-Dichloropropene	e < 2.00	ug/L		7/28/2020	17:54
Cyclohexane	< 10.0	ug/L		7/28/2020	17:54
Dibromochloromethane	< 2.00	ug/L		7/28/2020	17:54
Dichlorodifluoromethan	e < 2.00	ug/L		7/28/2020	17:54
Ethylbenzene	< 2.00	ug/L		7/28/2020	17:54
Freon 113	< 2.00	ug/L		7/28/2020	17:54
Isopropylbenzene	< 2.00	ug/L		7/28/2020	17:54
m,p-Xylene	< 2.00	ug/L		7/28/2020	17:54
Methyl acetate	< 2.00	ug/L		7/28/2020	17:54
Methyl tert-butyl Ether	< 2.00	ug/L		7/28/2020	17:54
Methylcyclohexane	< 2.00	ug/L		7/28/2020	17:54
Methylene chloride	< 5.00	ug/L		7/28/2020	17:54
Naphthalene	< 5.00	ug/L		7/28/2020	17:54
n-Butylbenzene	< 2.00	ug/L		7/28/2020	17:54
n-Propylbenzene	< 2.00	ug/L		7/28/2020	17:54

Client: <u>Alpha Analytical</u>

Project Reference: L2030254, C&S Companies, Jamestown Container

Sample Identifier:	30254-04 ESI-1-071520					
Lab Sample ID:	203467-04		Dat	e Sampled:	7/15/2020	
Matrix:	Groundwater		Dat	e Received:	7/28/2020	
o-Xylene	< 2.00	ug/L			7/28/2020	17:54
p-Isopropyltoluene	< 2.00	ug/L			7/28/2020	17:54
sec-Butylbenzene	< 2.00	ug/L			7/28/2020	17:54
Styrene	< 5.00	ug/L			7/28/2020	17:54
tert-Butylbenzene	< 2.00	ug/L			7/28/2020	17:54
Tetrachloroethene	< 2.00	ug/L			7/28/2020	17:54
Toluene	< 2.00	ug/L			7/28/2020	17:54
trans-1,2-Dichloroethene	< 2.00	ug/L			7/28/2020	17:54
trans-1,3-Dichloroproper	ne < 2.00	ug/L			7/28/2020	17:54
Trichloroethene	6.72	ug/L			7/28/2020	17:54
Trichlorofluoromethane	< 2.00	ug/L			7/28/2020	17:54
Vinyl chloride	< 2.00	ug/L			7/28/2020	17:54
Surrogate	Perce	nt Recovery	<u>Limits</u>	<u>Outliers</u>	Date Analy	zed
1,2-Dichloroethane-d4		103	80.8 - 132		7/28/2020	17:54
4-Bromofluorobenzene		62.6	56.6 - 130		7/28/2020	17:54
Pentafluorobenzene		105	87.4 - 113		7/28/2020	17:54
Toluene-D8		88.6	82.2 - 115		7/28/2020	17:54

Method Reference(s): EPA 8260C

EPA 5030C

Data File: x72088.D

Client: <u>Alpha Analytical</u>

Project Reference: L2030254, C&S Companies, Jamestown Container

Sample Identifier: 30254-05 ESI-13R-071520

Lab Sample ID:203467-05Date Sampled:7/15/2020Matrix:GroundwaterDate Received:7/28/2020

Volatile Organics

<u>Analyte</u>	Result	<u>Units</u>	Qualifier Date Analyzed
1,1,1-Trichloroethane	< 2.00	ug/L	7/28/2020 18:17
1,1,2,2-Tetrachloroethane	< 2.00	ug/L	7/28/2020 18:17
1,1,2-Trichloroethane	< 2.00	ug/L	7/28/2020 18:17
1,1-Dichloroethane	< 2.00	ug/L	7/28/2020 18:17
1,1-Dichloroethene	< 2.00	ug/L	7/28/2020 18:17
1,2,3-Trichlorobenzene	< 5.00	ug/L	7/28/2020 18:17
1,2,4-Trichlorobenzene	< 5.00	ug/L	7/28/2020 18:17
1,2,4-Trimethylbenzene	< 2.00	ug/L	7/28/2020 18:17
1,2-Dibromo-3-Chloropropane	< 10.0	ug/L	7/28/2020 18:17
1,2-Dibromoethane	< 2.00	ug/L	7/28/2020 18:17
1,2-Dichlorobenzene	< 2.00	ug/L	7/28/2020 18:17
1,2-Dichloroethane	< 2.00	ug/L	7/28/2020 18:17
1,2-Dichloropropane	< 2.00	ug/L	7/28/2020 18:17
1,3,5-Trimethylbenzene	< 2.00	ug/L	7/28/2020 18:17
1,3-Dichlorobenzene	< 2.00	ug/L	7/28/2020 18:17
1,4-Dichlorobenzene	< 2.00	ug/L	7/28/2020 18:17
1,4-Dioxane	< 20.0	ug/L	7/28/2020 18:17
2-Butanone	< 10.0	ug/L	7/28/2020 18:17
2-Hexanone	< 5.00	ug/L	7/28/2020 18:17
4-Methyl-2-pentanone	< 5.00	ug/L	7/28/2020 18:17
Acetone	< 10.0	ug/L	7/28/2020 18:17
Benzene	< 1.00	ug/L	7/28/2020 18:17
Bromochloromethane	< 5.00	ug/L	7/28/2020 18:17

Client: <u>Alpha Analytical</u>

Project Reference: L2030254, C&S Companies, Jamestown Container

Sample Identifier:	30254-05 ESI-13R-071520)			
Lab Sample ID:	203467-05		Date Sampled:	7/15/2020	
Matrix:	Groundwater		Date Received:	7/28/2020	
Bromodichloromethane	< 2.00	ug/L		7/28/2020	18:17
Bromoform	< 5.00	ug/L		7/28/2020	18:17
Bromomethane	< 2.00	ug/L		7/28/2020	18:17
Carbon disulfide	< 2.00	ug/L		7/28/2020	18:17
Carbon Tetrachloride	< 2.00	ug/L		7/28/2020	18:17
Chlorobenzene	< 2.00	ug/L		7/28/2020	18:17
Chloroethane	< 2.00	ug/L		7/28/2020	18:17
Chloroform	< 2.00	ug/L		7/28/2020	18:17
Chloromethane	< 2.00	ug/L		7/28/2020	18:17
cis-1,2-Dichloroethene	4.38	ug/L		7/28/2020	18:17
cis-1,3-Dichloropropene	< 2.00	ug/L		7/28/2020	18:17
Cyclohexane	< 10.0	ug/L		7/28/2020	18:17
Dibromochloromethane	< 2.00	ug/L		7/28/2020	18:17
Dichlorodifluoromethan	e < 2.00	ug/L		7/28/2020	18:17
Ethylbenzene	< 2.00	ug/L		7/28/2020	18:17
Freon 113	< 2.00	ug/L		7/28/2020	18:17
Isopropylbenzene	< 2.00	ug/L		7/28/2020	18:17
m,p-Xylene	< 2.00	ug/L		7/28/2020	18:17
Methyl acetate	< 2.00	ug/L		7/28/2020	18:17
Methyl tert-butyl Ether	< 2.00	ug/L		7/28/2020	18:17
Methylcyclohexane	< 2.00	ug/L		7/28/2020	18:17
Methylene chloride	< 5.00	ug/L		7/28/2020	18:17
Naphthalene	< 5.00	ug/L		7/28/2020	18:17
n-Butylbenzene	< 2.00	ug/L		7/28/2020	18:17
n-Propylbenzene	< 2.00	ug/L		7/28/2020	18:17

Client: <u>Alpha Analytical</u>

Project Reference: L2030254, C&S Companies, Jamestown Container

Sample Identifier:	30254-05 ESI-13R-0	71520				
Lab Sample ID:	203467-05		Date	e Sampled:	7/15/2020	
Matrix:	Groundwater		Dat	e Received:	7/28/2020	
o-Xylene	< 2.00	ug/L			7/28/2020	18:17
p-Isopropyltoluene	< 2.00	ug/L			7/28/2020	18:17
sec-Butylbenzene	< 2.00	ug/L			7/28/2020	18:17
Styrene	< 5.00	ug/L			7/28/2020	18:17
tert-Butylbenzene	< 2.00	ug/L			7/28/2020	18:17
Tetrachloroethene	< 2.00	ug/L			7/28/2020	18:17
Toluene	< 2.00	ug/L			7/28/2020	18:17
trans-1,2-Dichloroether	ne < 2.00	ug/L			7/28/2020	18:17
trans-1,3-Dichloroprop	ene < 2.00	ug/L			7/28/2020	18:17
Trichloroethene	13.7	ug/L			7/28/2020	18:17
Trichlorofluoromethane	e < 2.00	ug/L			7/28/2020	18:17
Vinyl chloride	< 2.00	ug/L			7/28/2020	18:17
<u>Surrogate</u>	P	ercent Recovery	<u>Limits</u>	Outliers	Date Analy	zed
1,2-Dichloroethane-d4		104	80.8 - 132		7/28/2020	18:17
4-Bromofluorobenzene		63.1	56.6 - 130		7/28/2020	18:17
Pentafluorobenzene		103	87.4 - 113		7/28/2020	18:17
Toluene-D8		84.5	82.2 - 115		7/28/2020	18:17

Method Reference(s): EPA 8260C

EPA 5030C

Data File: x72089.D

Client: <u>Alpha Analytical</u>

Project Reference: L2030254, C&S Companies, Jamestown Container

Sample Identifier: 30254-06 ESI-6-071520

Lab Sample ID:203467-06Date Sampled:7/15/2020Matrix:GroundwaterDate Received:7/28/2020

Volatile Organics

<u>Analyte</u>	Result	<u>Units</u>	Qualifier	Date Analyzed
1,1,1-Trichloroethane	< 2.00	ug/L		7/28/2020 18:39
1,1,2,2-Tetrachloroethane	< 2.00	ug/L		7/28/2020 18:39
1,1,2-Trichloroethane	< 2.00	ug/L		7/28/2020 18:39
1,1-Dichloroethane	< 2.00	ug/L		7/28/2020 18:39
1,1-Dichloroethene	< 2.00	ug/L		7/28/2020 18:39
1,2,3-Trichlorobenzene	< 5.00	ug/L		7/28/2020 18:39
1,2,4-Trichlorobenzene	< 5.00	ug/L		7/28/2020 18:39
1,2,4-Trimethylbenzene	< 2.00	ug/L		7/28/2020 18:39
1,2-Dibromo-3-Chloropropane	< 10.0	ug/L		7/28/2020 18:39
1,2-Dibromoethane	< 2.00	ug/L		7/28/2020 18:39
1,2-Dichlorobenzene	< 2.00	ug/L		7/28/2020 18:39
1,2-Dichloroethane	< 2.00	ug/L		7/28/2020 18:39
1,2-Dichloropropane	< 2.00	ug/L		7/28/2020 18:39
1,3,5-Trimethylbenzene	< 2.00	ug/L		7/28/2020 18:39
1,3-Dichlorobenzene	< 2.00	ug/L		7/28/2020 18:39
1,4-Dichlorobenzene	< 2.00	ug/L		7/28/2020 18:39
1,4-Dioxane	< 20.0	ug/L		7/28/2020 18:39
2-Butanone	< 10.0	ug/L		7/28/2020 18:39
2-Hexanone	< 5.00	ug/L		7/28/2020 18:39
4-Methyl-2-pentanone	< 5.00	ug/L		7/28/2020 18:39
Acetone	15.8	ug/L		7/28/2020 18:39
Benzene	< 1.00	ug/L		7/28/2020 18:39
Bromochloromethane	< 5.00	ug/L		7/28/2020 18:39

Client: <u>Alpha Analytical</u>

Project Reference: L2030254, C&S Companies, Jamestown Container

Sample Identifier:	30254-06 ESI-6-071520				
Lab Sample ID:	203467-06		Date Sampled:	7/15/2020	
Matrix:	Groundwater		Date Received:	7/28/2020	
Bromodichloromethane	< 2.00	ug/L		7/28/2020	18:39
Bromoform	13.2	ug/L		7/28/2020	18:39
Bromomethane	< 2.00	ug/L		7/28/2020	18:39
Carbon disulfide	< 2.00	ug/L		7/28/2020	18:39
Carbon Tetrachloride	< 2.00	ug/L		7/28/2020	18:39
Chlorobenzene	< 2.00	ug/L		7/28/2020	18:39
Chloroethane	< 2.00	ug/L		7/28/2020	18:39
Chloroform	< 2.00	ug/L		7/28/2020	18:39
Chloromethane	< 2.00	ug/L		7/28/2020	18:39
cis-1,2-Dichloroethene	< 2.00	ug/L		7/28/2020	18:39
cis-1,3-Dichloropropene	< 2.00	ug/L		7/28/2020	18:39
Cyclohexane	< 10.0	ug/L		7/28/2020	18:39
Dibromochloromethane	< 2.00	ug/L		7/28/2020	18:39
Dichlorodifluoromethan	e < 2.00	ug/L		7/28/2020	18:39
Ethylbenzene	< 2.00	ug/L		7/28/2020	18:39
Freon 113	< 2.00	ug/L		7/28/2020	18:39
Isopropylbenzene	< 2.00	ug/L		7/28/2020	18:39
m,p-Xylene	< 2.00	ug/L		7/28/2020	18:39
Methyl acetate	< 2.00	ug/L		7/28/2020	18:39
Methyl tert-butyl Ether	< 2.00	ug/L		7/28/2020	18:39
Methylcyclohexane	< 2.00	ug/L		7/28/2020	18:39
Methylene chloride	< 5.00	ug/L		7/28/2020	18:39
Naphthalene	< 5.00	ug/L		7/28/2020	18:39
n-Butylbenzene	< 2.00	ug/L		7/28/2020	18:39
n-Propylbenzene	< 2.00	ug/L		7/28/2020	18:39

Client: <u>Alpha Analytical</u>

Project Reference: L2030254, C&S Companies, Jamestown Container

Sample Identifier:	30254-06 ESI-6-0715	20				
Lab Sample ID:	203467-06		Date	e Sampled:	7/15/2020	
Matrix:	Groundwater		Date	e Received:	7/28/2020	
o-Xylene	< 2.00	ug/L			7/28/2020	18:39
p-Isopropyltoluene	< 2.00	ug/L			7/28/2020	18:39
sec-Butylbenzene	< 2.00	ug/L			7/28/2020	18:39
Styrene	< 5.00	ug/L			7/28/2020	18:39
tert-Butylbenzene	< 2.00	ug/L			7/28/2020	18:39
Tetrachloroethene	< 2.00	ug/L			7/28/2020	18:39
Toluene	< 2.00	ug/L			7/28/2020	18:39
trans-1,2-Dichloroethene	< 2.00	ug/L			7/28/2020	18:39
trans-1,3-Dichloroproper	ne < 2.00	ug/L			7/28/2020	18:39
Trichloroethene	< 2.00	ug/L			7/28/2020	18:39
Trichlorofluoromethane	< 2.00	ug/L			7/28/2020	18:39
Vinyl chloride	< 2.00	ug/L			7/28/2020	18:39
<u>Surrogate</u>	Per	cent Recovery	<u>Limits</u>	<u>Outliers</u>	Date Analy	zed
1,2-Dichloroethane-d4		105	80.8 - 132		7/28/2020	18:39
4-Bromofluorobenzene		60.4	56.6 - 130		7/28/2020	18:39
Pentafluorobenzene		106	87.4 - 113		7/28/2020	18:39
Toluene-D8		83.9	82.2 - 115		7/28/2020	18:39
Method Reference(s): EPA 8260C					

Method Reference(s): EPA 8260C

EPA 5030C

Data File: x72090.D

Client: <u>Alpha Analytical</u>

Project Reference: L2030254, C&S Companies, Jamestown Container

Sample Identifier: 30254-07 ESI-7-071520

Lab Sample ID:203467-07Date Sampled:7/15/2020Matrix:GroundwaterDate Received:7/28/2020

Volatile Organics

<u>Analyte</u>	Result	<u>Units</u>	Qualifier Date Analyzed
1,1,1-Trichloroethane	< 2.00	ug/L	7/28/2020 19:02
1,1,2,2-Tetrachloroethane	< 2.00	ug/L	7/28/2020 19:02
1,1,2-Trichloroethane	< 2.00	ug/L	7/28/2020 19:02
1,1-Dichloroethane	< 2.00	ug/L	7/28/2020 19:02
1,1-Dichloroethene	< 2.00	ug/L	7/28/2020 19:02
1,2,3-Trichlorobenzene	< 5.00	ug/L	7/28/2020 19:02
1,2,4-Trichlorobenzene	< 5.00	ug/L	7/28/2020 19:02
1,2,4-Trimethylbenzene	< 2.00	ug/L	7/28/2020 19:02
1,2-Dibromo-3-Chloropropane	< 10.0	ug/L	7/28/2020 19:02
1,2-Dibromoethane	< 2.00	ug/L	7/28/2020 19:02
1,2-Dichlorobenzene	< 2.00	ug/L	7/28/2020 19:02
1,2-Dichloroethane	< 2.00	ug/L	7/28/2020 19:02
1,2-Dichloropropane	< 2.00	ug/L	7/28/2020 19:02
1,3,5-Trimethylbenzene	< 2.00	ug/L	7/28/2020 19:02
1,3-Dichlorobenzene	< 2.00	ug/L	7/28/2020 19:02
1,4-Dichlorobenzene	< 2.00	ug/L	7/28/2020 19:02
1,4-Dioxane	< 20.0	ug/L	7/28/2020 19:02
2-Butanone	< 10.0	ug/L	7/28/2020 19:02
2-Hexanone	< 5.00	ug/L	7/28/2020 19:02
4-Methyl-2-pentanone	< 5.00	ug/L	7/28/2020 19:02
Acetone	< 10.0	ug/L	7/28/2020 19:02
Benzene	< 1.00	ug/L	7/28/2020 19:02
Bromochloromethane	< 5.00	ug/L	7/28/2020 19:02

Client: <u>Alpha Analytical</u>

Project Reference: L2030254, C&S Companies, Jamestown Container

Sample Identifier:	30254-07 ESI-7-071520				
Lab Sample ID:	203467-07		Date Sampled:	7/15/2020	
Matrix:	Groundwater		Date Received:	7/28/2020	
Bromodichloromethane	< 2.00	ug/L		7/28/2020	19:02
Bromoform	< 5.00	ug/L		7/28/2020	19:02
Bromomethane	< 2.00	ug/L		7/28/2020	19:02
Carbon disulfide	< 2.00	ug/L		7/28/2020	19:02
Carbon Tetrachloride	< 2.00	ug/L		7/28/2020	19:02
Chlorobenzene	< 2.00	ug/L		7/28/2020	19:02
Chloroethane	< 2.00	ug/L		7/28/2020	19:02
Chloroform	< 2.00	ug/L		7/28/2020	19:02
Chloromethane	< 2.00	ug/L		7/28/2020	19:02
cis-1,2-Dichloroethene	5.94	ug/L		7/28/2020	19:02
cis-1,3-Dichloropropene	e < 2.00	ug/L		7/28/2020	19:02
Cyclohexane	< 10.0	ug/L		7/28/2020	19:02
Dibromochloromethane	< 2.00	ug/L		7/28/2020	19:02
Dichlorodifluoromethar	ne < 2.00	ug/L		7/28/2020	19:02
Ethylbenzene	< 2.00	ug/L		7/28/2020	19:02
Freon 113	< 2.00	ug/L		7/28/2020	19:02
Isopropylbenzene	< 2.00	ug/L		7/28/2020	19:02
m,p-Xylene	< 2.00	ug/L		7/28/2020	19:02
Methyl acetate	< 2.00	ug/L		7/28/2020	19:02
Methyl tert-butyl Ether	< 2.00	ug/L		7/28/2020	19:02
Methylcyclohexane	< 2.00	ug/L		7/28/2020	19:02
Methylene chloride	< 5.00	ug/L		7/28/2020	19:02
Naphthalene	< 5.00	ug/L		7/28/2020	19:02
n-Butylbenzene	< 2.00	ug/L		7/28/2020	19:02
n-Propylbenzene	< 2.00	ug/L		7/28/2020	19:02

Client: <u>Alpha Analytical</u>

Project Reference: L2030254, C&S Companies, Jamestown Container

Sample Identifier:	30254-07 ESI-	7-07152	0				
Lab Sample ID:	203467-07			Dat	e Sampled:	7/15/2020	
Matrix:	Groundwater			Dat	e Received:	7/28/2020	
o-Xylene	<	< 2.00	ug/L			7/28/2020	19:02
p-Isopropyltoluene	<	< 2.00	ug/L			7/28/2020	19:02
sec-Butylbenzene	<	< 2.00	ug/L			7/28/2020	19:02
Styrene	<	< 5.00	ug/L			7/28/2020	19:02
tert-Butylbenzene	<	< 2.00	ug/L			7/28/2020	19:02
Tetrachloroethene	<	< 2.00	ug/L			7/28/2020	19:02
Toluene	<	< 2.00	ug/L			7/28/2020	19:02
trans-1,2-Dichloroether	1e <	< 2.00	ug/L			7/28/2020	19:02
trans-1,3-Dichloroprop	ene <	< 2.00	ug/L			7/28/2020	19:02
Trichloroethene	3	39.5	ug/L			7/28/2020	19:02
Trichlorofluoromethan	e <	< 2.00	ug/L			7/28/2020	19:02
Vinyl chloride	<	< 2.00	ug/L			7/28/2020	19:02
<u>Surrogate</u>		Perce	ent Recovery	<u>Limits</u>	<u>Outliers</u>	Date Analy	zed
1,2-Dichloroethane-d4			113	80.8 - 132		7/28/2020	19:02
4-Bromofluorobenzene			60.6	56.6 - 130		7/28/2020	19:02
Pentafluorobenzene			102	87.4 - 113		7/28/2020	19:02
Toluene-D8			82.3	82.2 - 115		7/28/2020	19:02

Method Reference(s): EPA 8260C

EPA 5030C

Data File: x72091.D

Client: <u>Alpha Analytical</u>

Project Reference: L2030254, C&S Companies, Jamestown Container

Sample Identifier: 30254-08 PW-3R-071520

Lab Sample ID:203467-08Date Sampled:7/15/2020Matrix:GroundwaterDate Received:7/28/2020

Volatile Organics

<u>Analyte</u>	Result	<u>Units</u>	Qualifier	Date Analyzed
1,1,1-Trichloroethane	< 20.0	ug/L		7/28/2020 19:24
1,1,2,2-Tetrachloroethane	< 20.0	ug/L		7/28/2020 19:24
1,1,2-Trichloroethane	< 20.0	ug/L		7/28/2020 19:24
1,1-Dichloroethane	< 20.0	ug/L		7/28/2020 19:24
1,1-Dichloroethene	< 20.0	ug/L		7/28/2020 19:24
1,2,3-Trichlorobenzene	< 50.0	ug/L		7/28/2020 19:24
1,2,4-Trichlorobenzene	< 50.0	ug/L		7/28/2020 19:24
1,2,4-Trimethylbenzene	< 20.0	ug/L		7/28/2020 19:24
1,2-Dibromo-3-Chloropropane	< 100	ug/L		7/28/2020 19:24
1,2-Dibromoethane	< 20.0	ug/L		7/28/2020 19:24
1,2-Dichlorobenzene	< 20.0	ug/L		7/28/2020 19:24
1,2-Dichloroethane	< 20.0	ug/L		7/28/2020 19:24
1,2-Dichloropropane	< 20.0	ug/L		7/28/2020 19:24
1,3,5-Trimethylbenzene	< 20.0	ug/L		7/28/2020 19:24
1,3-Dichlorobenzene	< 20.0	ug/L		7/28/2020 19:24
1,4-Dichlorobenzene	< 20.0	ug/L		7/28/2020 19:24
1,4-Dioxane	< 200	ug/L		7/28/2020 19:24
2-Butanone	< 100	ug/L		7/28/2020 19:24
2-Hexanone	< 50.0	ug/L		7/28/2020 19:24
4-Methyl-2-pentanone	< 50.0	ug/L		7/28/2020 19:24
Acetone	< 100	ug/L		7/28/2020 19:24
Benzene	< 10.0	ug/L		7/28/2020 19:24
Bromochloromethane	< 50.0	ug/L		7/28/2020 19:24

Client: <u>Alpha Analytical</u>

Project Reference: L2030254, C&S Companies, Jamestown Container

Sample Identifier:	30254-08 PW-3R-071520				
Lab Sample ID:	203467-08		Date Sampled:	7/15/2020	
Matrix:	Groundwater		Date Received:	7/28/2020	
Bromodichloromethane	< 20.0	ug/L		7/28/2020	19:24
Bromoform	< 50.0	ug/L		7/28/2020	19:24
Bromomethane	< 20.0	ug/L		7/28/2020	19:24
Carbon disulfide	< 20.0	ug/L		7/28/2020	19:24
Carbon Tetrachloride	< 20.0	ug/L		7/28/2020	19:24
Chlorobenzene	< 20.0	ug/L		7/28/2020	19:24
Chloroethane	< 20.0	ug/L		7/28/2020	19:24
Chloroform	< 20.0	ug/L		7/28/2020	19:24
Chloromethane	< 20.0	ug/L		7/28/2020	19:24
cis-1,2-Dichloroethene	809	ug/L		7/28/2020	19:24
cis-1,3-Dichloropropene	< 20.0	ug/L		7/28/2020	19:24
Cyclohexane	< 100	ug/L		7/28/2020	19:24
Dibromochloromethane	< 20.0	ug/L		7/28/2020	19:24
Dichlorodifluoromethan	e < 20.0	ug/L		7/28/2020	19:24
Ethylbenzene	< 20.0	ug/L		7/28/2020	19:24
Freon 113	< 20.0	ug/L		7/28/2020	19:24
Isopropylbenzene	< 20.0	ug/L		7/28/2020	19:24
m,p-Xylene	< 20.0	ug/L		7/28/2020	19:24
Methyl acetate	< 20.0	ug/L		7/28/2020	19:24
Methyl tert-butyl Ether	< 20.0	ug/L		7/28/2020	19:24
Methylcyclohexane	< 20.0	ug/L		7/28/2020	19:24
Methylene chloride	< 50.0	ug/L		7/28/2020	19:24
Naphthalene	< 50.0	ug/L		7/28/2020	19:24
n-Butylbenzene	< 20.0	ug/L		7/28/2020	19:24
n-Propylbenzene	< 20.0	ug/L		7/28/2020	19:24

Client: <u>Alpha Analytical</u>

Project Reference: L2030254, C&S Companies, Jamestown Container

EPA 5030C

x72092.D

Sample Identifier:	30254-08 PW-3R-0715	20				
Lab Sample ID:	203467-08		Dat	e Sampled:	7/15/2020	
Matrix:	Groundwater		Dat	e Received:	7/28/2020	
o-Xylene	< 20.0	ug/L			7/28/2020	19:24
p-Isopropyltoluene	< 20.0	ug/L			7/28/2020	19:24
sec-Butylbenzene	< 20.0	ug/L			7/28/2020	19:24
Styrene	< 50.0	ug/L			7/28/2020	19:24
tert-Butylbenzene	< 20.0	ug/L			7/28/2020	19:24
Tetrachloroethene	< 20.0	ug/L			7/28/2020	19:24
Toluene	< 20.0	ug/L			7/28/2020	19:24
trans-1,2-Dichloroethene	11.4	ug/L		J	7/28/2020	19:24
trans-1,3-Dichloroprope	ne < 20.0	ug/L			7/28/2020	19:24
Trichloroethene	75.2	ug/L			7/28/2020	19:24
Trichlorofluoromethane	< 20.0	ug/L			7/28/2020	19:24
Vinyl chloride	1440	ug/L			7/28/2020	19:24
<u>Surrogate</u>	Perce	ent Recovery	<u>Limits</u>	<u>Outliers</u>	Date Analy	zed
1,2-Dichloroethane-d4		110	80.8 - 132		7/28/2020	19:24
4-Bromofluorobenzene		59.6	56.6 - 130		7/28/2020	19:24
Pentafluorobenzene		103	87.4 - 113		7/28/2020	19:24
Toluene-D8		79.6	82.2 - 115	*	7/28/2020	19:24
Method Reference((s): EPA 8260C					

This report is part of a multipage document and should only be evaluated in its entirety. The Chain of Custody provides additional sample information, including compliance with the sample condition requirements upon receipt.

Data File:

Client: <u>Alpha Analytical</u>

Project Reference: L2030254, C&S Companies, Jamestown Container

Sample Identifier: 30254-09 DUP-PW-3R-071520

Lab Sample ID:203467-09Date Sampled:7/15/2020Matrix:GroundwaterDate Received:7/28/2020

Volatile Organics

<u>Analyte</u>	Result	<u>Units</u>	Qualifier	Date Analyzed
1,1,1-Trichloroethane	< 20.0	ug/L		7/29/2020 14:13
1,1,2,2-Tetrachloroethane	< 20.0	ug/L		7/29/2020 14:13
1,1,2-Trichloroethane	< 20.0	ug/L		7/29/2020 14:13
1,1-Dichloroethane	< 20.0	ug/L		7/29/2020 14:13
1,1-Dichloroethene	< 20.0	ug/L		7/29/2020 14:13
1,2,3-Trichlorobenzene	< 50.0	ug/L		7/29/2020 14:13
1,2,4-Trichlorobenzene	< 50.0	ug/L		7/29/2020 14:13
1,2,4-Trimethylbenzene	< 20.0	ug/L		7/29/2020 14:13
1,2-Dibromo-3-Chloropropane	< 100	ug/L		7/29/2020 14:13
1,2-Dibromoethane	< 20.0	ug/L		7/29/2020 14:13
1,2-Dichlorobenzene	< 20.0	ug/L		7/29/2020 14:13
1,2-Dichloroethane	< 20.0	ug/L		7/29/2020 14:13
1,2-Dichloropropane	< 20.0	ug/L		7/29/2020 14:13
1,3,5-Trimethylbenzene	< 20.0	ug/L		7/29/2020 14:13
1,3-Dichlorobenzene	< 20.0	ug/L		7/29/2020 14:13
1,4-Dichlorobenzene	< 20.0	ug/L		7/29/2020 14:13
1,4-Dioxane	< 200	ug/L		7/29/2020 14:13
2-Butanone	< 100	ug/L		7/29/2020 14:13
2-Hexanone	< 50.0	ug/L		7/29/2020 14:13
4-Methyl-2-pentanone	< 50.0	ug/L		7/29/2020 14:13
Acetone	< 100	ug/L		7/29/2020 14:13
Benzene	< 10.0	ug/L		7/29/2020 14:13
Bromochloromethane	< 50.0	ug/L		7/29/2020 14:13

Client: <u>Alpha Analytical</u>

Project Reference: L2030254, C&S Companies, Jamestown Container

Sample Identifier:	30254-09 DUP-PW-3R	-071520			
Lab Sample ID:	203467-09		Date Sampled:	7/15/2020	
Matrix:	Groundwater		Date Received:	7/28/2020	
Bromodichloromethane	< 20.0	ug/L		7/29/2020	14:13
Bromoform	< 50.0	ug/L		7/29/2020	14:13
Bromomethane	< 20.0	ug/L		7/29/2020	14:13
Carbon disulfide	< 20.0	ug/L		7/29/2020	14:13
Carbon Tetrachloride	< 20.0	ug/L		7/29/2020	14:13
Chlorobenzene	< 20.0	ug/L		7/29/2020	14:13
Chloroethane	< 20.0	ug/L		7/29/2020	14:13
Chloroform	< 20.0	ug/L		7/29/2020	14:13
Chloromethane	< 20.0	ug/L		7/29/2020	14:1
cis-1,2-Dichloroethene	1000	ug/L		7/29/2020	14:1
cis-1,3-Dichloropropene	< 20.0	ug/L		7/29/2020	14:1
Cyclohexane	< 100	ug/L		7/29/2020	14:1
Dibromochloromethane	< 20.0	ug/L		7/29/2020	14:1
Dichlorodifluoromethan	e < 20.0	ug/L		7/29/2020	14:1
Ethylbenzene	< 20.0	ug/L		7/29/2020	14:1
Freon 113	< 20.0	ug/L		7/29/2020	14:1
Isopropylbenzene	< 20.0	ug/L		7/29/2020	14:1
m,p-Xylene	< 20.0	ug/L		7/29/2020	14:1
Methyl acetate	< 20.0	ug/L		7/29/2020	14:1
Methyl tert-butyl Ether	< 20.0	ug/L		7/29/2020	14:1
Methylcyclohexane	< 20.0	ug/L		7/29/2020	14:1
Methylene chloride	< 50.0	ug/L		7/29/2020	14:1
Naphthalene	< 50.0	ug/L		7/29/2020	14:1
n-Butylbenzene	< 20.0	ug/L		7/29/2020	14:1
n-Propylbenzene	< 20.0	ug/L		7/29/2020	14:1

Client: <u>Alpha Analytical</u>

Project Reference: L2030254, C&S Companies, Jamestown Container

Sample Identifier:	30254-09 DUP-PW-3	R-071520				
Lab Sample ID:	203467-09		Dat	e Sampled:	7/15/2020	
Matrix:	Groundwater		Dat	e Received:	7/28/2020	
o-Xylene	< 20.0	ug/L			7/29/2020	14:13
p-Isopropyltoluene	< 20.0	ug/L			7/29/2020	14:13
sec-Butylbenzene	< 20.0	ug/L			7/29/2020	14:13
Styrene	< 50.0	ug/L			7/29/2020	14:13
tert-Butylbenzene	< 20.0	ug/L			7/29/2020	14:13
Tetrachloroethene	< 20.0	ug/L			7/29/2020	14:13
Toluene	< 20.0	ug/L			7/29/2020	14:13
trans-1,2-Dichloroethen	e 13.8	ug/L		J	7/29/2020	14:13
trans-1,3-Dichloroprope	ene < 20.0	ug/L			7/29/2020	14:13
Trichloroethene	92.9	ug/L			7/29/2020	14:13
Trichlorofluoromethane	< 20.0	ug/L			7/29/2020	14:13
Vinyl chloride	1720	ug/L			7/29/2020	14:13
Surrogate	Pe	rcent Recovery	<u>Limits</u>	<u>Outliers</u>	Date Analy	zed
1,2-Dichloroethane-d4		104	80.8 - 132		7/29/2020	14:13
4-Bromofluorobenzene		61.9	56.6 - 130		7/29/2020	14:13
Pentafluorobenzene		103	87.4 - 113		7/29/2020	14:13
Toluene-D8		84.3	82.2 - 115		7/29/2020	14:13

Method Reference(s): EPA 8260C

EPA 5030C

Data File: x72115.D

Client: <u>Alpha Analytical</u>

Project Reference: L2030254, C&S Companies, Jamestown Container

Sample Identifier: 30254-10 ESI-2-071520

Lab Sample ID:203467-10Date Sampled:7/15/2020Matrix:GroundwaterDate Received:7/28/2020

Volatile Organics

Analyte	Result	<u>Units</u>	Qualifier	Date Analyzed
1,1,1-Trichloroethane	< 40.0	ug/L		7/29/2020 13:50
1,1,2,2-Tetrachloroethane	< 40.0	ug/L		7/29/2020 13:50
1,1,2-Trichloroethane	< 40.0	ug/L		7/29/2020 13:50
1,1-Dichloroethane	< 40.0	ug/L		7/29/2020 13:50
1,1-Dichloroethene	< 40.0	ug/L		7/29/2020 13:50
1,2,3-Trichlorobenzene	< 100	ug/L		7/29/2020 13:50
1,2,4-Trichlorobenzene	< 100	ug/L		7/29/2020 13:50
1,2,4-Trimethylbenzene	< 40.0	ug/L		7/29/2020 13:50
1,2-Dibromo-3-Chloropropane	< 200	ug/L		7/29/2020 13:50
1,2-Dibromoethane	< 40.0	ug/L		7/29/2020 13:50
1,2-Dichlorobenzene	< 40.0	ug/L		7/29/2020 13:50
1,2-Dichloroethane	< 40.0	ug/L		7/29/2020 13:50
1,2-Dichloropropane	< 40.0	ug/L		7/29/2020 13:50
1,3,5-Trimethylbenzene	< 40.0	ug/L		7/29/2020 13:50
1,3-Dichlorobenzene	< 40.0	ug/L		7/29/2020 13:50
1,4-Dichlorobenzene	< 40.0	ug/L		7/29/2020 13:50
1,4-Dioxane	< 400	ug/L		7/29/2020 13:50
2-Butanone	< 200	ug/L		7/29/2020 13:50
2-Hexanone	< 100	ug/L		7/29/2020 13:50
4-Methyl-2-pentanone	< 100	ug/L		7/29/2020 13:50
Acetone	< 200	ug/L		7/29/2020 13:50
Benzene	< 20.0	ug/L		7/29/2020 13:50
Bromochloromethane	< 100	ug/L		7/29/2020 13:50

Client: Alpha Analytical

Project Reference: L2030254, C&S Companies, Jamestown Container

	, F,				
Sample Identifier:	30254-10 ESI-2-071520				
Lab Sample ID:	203467-10		Date Sampled:	7/15/2020	
Matrix:	Groundwater		Date Received:	7/28/2020	
Bromodichloromethane	< 40.0	ug/L		7/29/2020	13:50
Bromoform	< 100	ug/L		7/29/2020	13:50
Bromomethane	< 40.0	ug/L		7/29/2020	13:50
Carbon disulfide	< 40.0	ug/L		7/29/2020	13:50
Carbon Tetrachloride	< 40.0	ug/L		7/29/2020	13:50
Chlorobenzene	< 40.0	ug/L		7/29/2020	13:50
Chloroethane	< 40.0	ug/L		7/29/2020	13:50
Chloroform	< 40.0	ug/L		7/29/2020	13:50
Chloromethane	< 40.0	ug/L		7/29/2020	13:50
cis-1,2-Dichloroethene	1910	ug/L		7/29/2020	13:50
cis-1,3-Dichloropropene	< 40.0	ug/L		7/29/2020	13:50
Cyclohexane	< 200	ug/L		7/29/2020	13:50
Dibromochloromethane	< 40.0	ug/L		7/29/2020	13:50
Dichlorodifluoromethan	e < 40.0	ug/L		7/29/2020	13:50
Ethylbenzene	< 40.0	ug/L		7/29/2020	13:50
Freon 113	< 40.0	ug/L		7/29/2020	13:50
Isopropylbenzene	< 40.0	ug/L		7/29/2020	13:50
m,p-Xylene	< 40.0	ug/L		7/29/2020	13:50
Methyl acetate	< 40.0	ug/L		7/29/2020	13:50
Methyl tert-butyl Ether	< 40.0	ug/L		7/29/2020	13:50
Methylcyclohexane	< 40.0	ug/L		7/29/2020	13:50
Methylene chloride	< 100	ug/L		7/29/2020	13:50
Naphthalene	< 100	ug/L		7/29/2020	13:50
n-Butylbenzene	< 40.0	ug/L		7/29/2020	13:50
n-Propylbenzene	< 40.0	ug/L		7/29/2020	13:50

Client: <u>Alpha Analytical</u>

Project Reference: L2030254, C&S Companies, Jamestown Container

Sample Identifier:	30254-10 ESI-2	2-071520					
Lab Sample ID:	203467-10			Date	e Sampled:	7/15/2020	
Matrix:	Groundwater			Date	e Received:	7/28/2020	
o-Xylene	<	40.0	ug/L			7/29/2020	13:50
p-Isopropyltoluene	<	40.0	ug/L			7/29/2020	13:50
sec-Butylbenzene	<	40.0	ug/L			7/29/2020	13:50
Styrene	<	100	ug/L			7/29/2020	13:50
tert-Butylbenzene	<	40.0	ug/L			7/29/2020	13:50
Tetrachloroethene	<	40.0	ug/L			7/29/2020	13:50
Toluene	<	40.0	ug/L			7/29/2020	13:50
trans-1,2-Dichloroether	ne <	40.0	ug/L			7/29/2020	13:50
trans-1,3-Dichloroprop	ene <	40.0	ug/L			7/29/2020	13:50
Trichloroethene	7	08	ug/L			7/29/2020	13:50
Trichlorofluoromethan	e <	40.0	ug/L			7/29/2020	13:50
Vinyl chloride	2	0.3	ug/L		J	7/29/2020	13:50
Surrogate		Percen	t Recovery	<u>Limits</u>	<u>Outliers</u>	Date Analy	zed
1,2-Dichloroethane-d4		Ġ	99.6	80.8 - 132		7/29/2020	13:50
4-Bromofluorobenzene		(65.4	56.6 - 130		7/29/2020	13:50
Pentafluorobenzene		,	107	87.4 - 113		7/29/2020	13:50
Toluene-D8		8	37.1	82.2 - 115		7/29/2020	13:50

Method Reference(s): EPA 8260C

EPA 5030C

Data File: x72114.D

Client: Alpha Analytical

Project Reference: L2030254, C&S Companies, Jamestown Container

Sample Identifier: 30254-11 ESI-10-071520

Lab Sample ID:203467-11Date Sampled:7/15/2020Matrix:GroundwaterDate Received:7/28/2020

Volatile Organics

<u>Analyte</u>	Result	<u>Units</u>	Qualifier	Date Analyzed
1,1,1-Trichloroethane	< 2.00	ug/L		7/28/2020 20:31
1,1,2,2-Tetrachloroethane	< 2.00	ug/L		7/28/2020 20:31
1,1,2-Trichloroethane	< 2.00	ug/L		7/28/2020 20:31
1,1-Dichloroethane	< 2.00	ug/L		7/28/2020 20:31
1,1-Dichloroethene	< 2.00	ug/L		7/28/2020 20:31
1,2,3-Trichlorobenzene	< 5.00	ug/L		7/28/2020 20:31
1,2,4-Trichlorobenzene	< 5.00	ug/L		7/28/2020 20:31
1,2,4-Trimethylbenzene	< 2.00	ug/L		7/28/2020 20:31
1,2-Dibromo-3-Chloropropane	< 10.0	ug/L		7/28/2020 20:31
1,2-Dibromoethane	< 2.00	ug/L		7/28/2020 20:31
1,2-Dichlorobenzene	< 2.00	ug/L		7/28/2020 20:31
1,2-Dichloroethane	< 2.00	ug/L		7/28/2020 20:31
1,2-Dichloropropane	< 2.00	ug/L		7/28/2020 20:31
1,3,5-Trimethylbenzene	< 2.00	ug/L		7/28/2020 20:31
1,3-Dichlorobenzene	< 2.00	ug/L		7/28/2020 20:31
1,4-Dichlorobenzene	< 2.00	ug/L		7/28/2020 20:31
1,4-Dioxane	< 20.0	ug/L		7/28/2020 20:31
2-Butanone	< 10.0	ug/L		7/28/2020 20:31
2-Hexanone	< 5.00	ug/L		7/28/2020 20:31
4-Methyl-2-pentanone	< 5.00	ug/L		7/28/2020 20:31
Acetone	15.0	ug/L		7/28/2020 20:31
Benzene	< 1.00	ug/L		7/28/2020 20:31
Bromochloromethane	< 5.00	ug/L		7/28/2020 20:31

Client: <u>Alpha Analytical</u>

Project Reference: L2030254, C&S Companies, Jamestown Container

Sample Identifier:	30254-11 ESI-10-071520				
Lab Sample ID:	203467-11		Date Sampled:	7/15/2020	
Matrix:	Groundwater		Date Received:	7/28/2020	
Bromodichloromethane	< 2.00	ug/L		7/28/2020	20:31
Bromoform	< 5.00	ug/L		7/28/2020	20:31
Bromomethane	< 2.00	ug/L		7/28/2020	20:31
Carbon disulfide	< 2.00	ug/L		7/28/2020	20:31
Carbon Tetrachloride	< 2.00	ug/L		7/28/2020	20:31
Chlorobenzene	< 2.00	ug/L		7/28/2020	20:31
Chloroethane	< 2.00	ug/L		7/28/2020	20:31
Chloroform	< 2.00	ug/L		7/28/2020	20:31
Chloromethane	< 2.00	ug/L		7/28/2020	20:31
cis-1,2-Dichloroethene	< 2.00	ug/L		7/28/2020	20:31
cis-1,3-Dichloropropene	< 2.00	ug/L		7/28/2020	20:31
Cyclohexane	< 10.0	ug/L		7/28/2020	20:31
Dibromochloromethane	< 2.00	ug/L		7/28/2020	20:31
Dichlorodifluoromethan	e < 2.00	ug/L		7/28/2020	20:31
Ethylbenzene	< 2.00	ug/L		7/28/2020	20:31
Freon 113	< 2.00	ug/L		7/28/2020	20:31
Isopropylbenzene	< 2.00	ug/L		7/28/2020	20:31
m,p-Xylene	< 2.00	ug/L		7/28/2020	20:31
Methyl acetate	< 2.00	ug/L		7/28/2020	20:31
Methyl tert-butyl Ether	< 2.00	ug/L		7/28/2020	20:31
Methylcyclohexane	< 2.00	ug/L		7/28/2020	20:31
Methylene chloride	< 5.00	ug/L		7/28/2020	20:31
Naphthalene	< 5.00	ug/L		7/28/2020	20:31
n-Butylbenzene	< 2.00	ug/L		7/28/2020	20:31
n-Propylbenzene	< 2.00	ug/L		7/28/2020	20:31

Client: <u>Alpha Analytical</u>

Project Reference: L2030254, C&S Companies, Jamestown Container

Sample Identifier:	30254-11 ESI-10-071520					
Lab Sample ID:	203467-11		Date	Sampled:	7/15/2020	
Matrix:	Groundwater		Date	Received:	7/28/2020	
o-Xylene	< 2.00	ug/L			7/28/2020	20:31
p-Isopropyltoluene	< 2.00	ug/L			7/28/2020	20:31
sec-Butylbenzene	< 2.00	ug/L			7/28/2020	20:31
Styrene	< 5.00	ug/L			7/28/2020	20:31
tert-Butylbenzene	< 2.00	ug/L			7/28/2020	20:31
Tetrachloroethene	< 2.00	ug/L			7/28/2020	20:31
Toluene	< 2.00	ug/L			7/28/2020	20:31
trans-1,2-Dichloroether	e < 2.00	ug/L			7/28/2020	20:31
trans-1,3-Dichloroprope	ene < 2.00	ug/L			7/28/2020	20:31
Trichloroethene	< 2.00	ug/L			7/28/2020	20:31
Trichlorofluoromethane	< 2.00	ug/L			7/28/2020	20:31
Vinyl chloride	< 2.00	ug/L			7/28/2020	20:31
Surrogate	Percent	Recovery	<u>Limits</u>	<u>Outliers</u>	Date Analy	zed
1,2-Dichloroethane-d4	1	.15	80.8 - 132		7/28/2020	20:31
4-Bromofluorobenzene	6	2.6	56.6 - 130		7/28/2020	20:31
Pentafluorobenzene	1	.00	87.4 - 113		7/28/2020	20:31
Toluene-D8	8	2.0	82.2 - 115	*	7/28/2020	20:31

Method Reference(s): EPA 8260C

EPA 5030C

Data File: x72095.D

Client: <u>Alpha Analytical</u>

Project Reference: L2030254, C&S Companies, Jamestown Container

Sample Identifier: 30254-12 ESI-11-071520

Lab Sample ID:203467-12Date Sampled:7/15/2020Matrix:GroundwaterDate Received:7/28/2020

Volatile Organics

<u>Analyte</u>	Result	<u>Units</u>	Qualifier	Date Analyzed
1,1,1-Trichloroethane	< 2.00	ug/L		7/28/2020 20:53
1,1,2,2-Tetrachloroethane	< 2.00	ug/L		7/28/2020 20:53
1,1,2-Trichloroethane	< 2.00	ug/L		7/28/2020 20:53
1,1-Dichloroethane	< 2.00	ug/L		7/28/2020 20:53
1,1-Dichloroethene	< 2.00	ug/L		7/28/2020 20:53
1,2,3-Trichlorobenzene	< 5.00	ug/L		7/28/2020 20:53
1,2,4-Trichlorobenzene	< 5.00	ug/L		7/28/2020 20:53
1,2,4-Trimethylbenzene	< 2.00	ug/L		7/28/2020 20:53
1,2-Dibromo-3-Chloropropane	< 10.0	ug/L		7/28/2020 20:53
1,2-Dibromoethane	< 2.00	ug/L		7/28/2020 20:53
1,2-Dichlorobenzene	< 2.00	ug/L		7/28/2020 20:53
1,2-Dichloroethane	< 2.00	ug/L		7/28/2020 20:53
1,2-Dichloropropane	< 2.00	ug/L		7/28/2020 20:53
1,3,5-Trimethylbenzene	< 2.00	ug/L		7/28/2020 20:53
1,3-Dichlorobenzene	< 2.00	ug/L		7/28/2020 20:53
1,4-Dichlorobenzene	< 2.00	ug/L		7/28/2020 20:53
1,4-Dioxane	< 20.0	ug/L		7/28/2020 20:53
2-Butanone	< 10.0	ug/L		7/28/2020 20:53
2-Hexanone	< 5.00	ug/L		7/28/2020 20:53
4-Methyl-2-pentanone	< 5.00	ug/L		7/28/2020 20:53
Acetone	5.64	ug/L	J	7/28/2020 20:53
Benzene	< 1.00	ug/L		7/28/2020 20:53
Bromochloromethane	< 5.00	ug/L		7/28/2020 20:53

Client: <u>Alpha Analytical</u>

Project Reference: L2030254, C&S Companies, Jamestown Container

i oject Keierence.	L2030234, C&3 Companies,	janiestown	Gontainer		
Sample Identifier:	30254-12 ESI-11-071520				
Lab Sample ID:	203467-12		Date Sampled:	7/15/2020	
Matrix:	Groundwater		Date Received:	7/28/2020	
Bromodichloromethane	< 2.00	ug/L		7/28/2020	20:5
Bromoform	8.77	ug/L		7/28/2020	20:5
Bromomethane	< 2.00	ug/L		7/28/2020	20:5
Carbon disulfide	< 2.00	ug/L		7/28/2020	20:5
Carbon Tetrachloride	< 2.00	ug/L		7/28/2020	20:5
Chlorobenzene	< 2.00	ug/L		7/28/2020	20:5
Chloroethane	< 2.00	ug/L		7/28/2020	20:5
Chloroform	< 2.00	ug/L		7/28/2020	20:
Chloromethane	< 2.00	ug/L		7/28/2020	20:
cis-1,2-Dichloroethene	< 2.00	ug/L		7/28/2020	20:
cis-1,3-Dichloropropene	< 2.00	ug/L		7/28/2020	20:
Cyclohexane	< 10.0	ug/L		7/28/2020	20:
Dibromochloromethane	< 2.00	ug/L		7/28/2020	20:
Dichlorodifluoromethan	e < 2.00	ug/L		7/28/2020	20:
Ethylbenzene	< 2.00	ug/L		7/28/2020	20:
Freon 113	< 2.00	ug/L		7/28/2020	20:
Isopropylbenzene	< 2.00	ug/L		7/28/2020	20:
m,p-Xylene	< 2.00	ug/L		7/28/2020	20:
Methyl acetate	< 2.00	ug/L		7/28/2020	20:
Methyl tert-butyl Ether	< 2.00	ug/L		7/28/2020	20:
Methylcyclohexane	< 2.00	ug/L		7/28/2020	20:
Methylene chloride	< 5.00	ug/L		7/28/2020	20:
Naphthalene	< 5.00	ug/L		7/28/2020	20:
n-Butylbenzene	< 2.00	ug/L		7/28/2020	20:
n-Propylbenzene	< 2.00	ug/L		7/28/2020	20:

Client: <u>Alpha Analytical</u>

Project Reference: L2030254, C&S Companies, Jamestown Container

Sample Identifier:	30254-12 ESI-11-07152	20				
Lab Sample ID:	203467-12		Date	e Sampled:	7/15/2020	
Matrix:	Groundwater		Date	e Received:	7/28/2020	
o-Xylene	< 2.00	ug/L			7/28/2020	20:53
p-Isopropyltoluene	< 2.00	ug/L			7/28/2020	20:53
sec-Butylbenzene	< 2.00	ug/L			7/28/2020	20:53
Styrene	< 5.00	ug/L			7/28/2020	20:53
tert-Butylbenzene	< 2.00	ug/L			7/28/2020	20:53
Tetrachloroethene	< 2.00	ug/L			7/28/2020	20:53
Toluene	< 2.00	ug/L			7/28/2020	20:53
trans-1,2-Dichloroethene	< 2.00	ug/L			7/28/2020	20:53
trans-1,3-Dichloroproper	ne < 2.00	ug/L			7/28/2020	20:53
Trichloroethene	< 2.00	ug/L			7/28/2020	20:53
Trichlorofluoromethane	< 2.00	ug/L			7/28/2020	20:53
Vinyl chloride	< 2.00	ug/L			7/28/2020	20:53
<u>Surrogate</u>	Perce	ent Recovery	Limits	<u>Outliers</u>	Date Analy	zed
1,2-Dichloroethane-d4		121	80.8 - 132		7/28/2020	20:53
4-Bromofluorobenzene		66.8	56.6 - 130		7/28/2020	20:53
Pentafluorobenzene		104	87.4 - 113		7/28/2020	20:53
Toluene-D8		82.2	82.2 - 115		7/28/2020	20:53
Method Reference	s). FPA 8260C					

Method Reference(s): EPA 8260C

EPA 5030C

Data File: x72096.D

Client: <u>Alpha Analytical</u>

Project Reference: L2030254, C&S Companies, Jamestown Container

Sample Identifier: 30254-13 ESI-12-071520

Lab Sample ID:203467-13Date Sampled:7/15/2020Matrix:GroundwaterDate Received:7/28/2020

Volatile Organics

<u>Analyte</u>	Result	<u>Units</u>	Qualifier	Date Analy	zed
1,1,1-Trichloroethane	< 2.00	ug/L		7/28/2020	21:15
1,1,2,2-Tetrachloroethane	< 2.00	ug/L		7/28/2020	21:15
1,1,2-Trichloroethane	< 2.00	ug/L		7/28/2020	21:15
1,1-Dichloroethane	< 2.00	ug/L		7/28/2020	21:15
1,1-Dichloroethene	< 2.00	ug/L		7/28/2020	21:15
1,2,3-Trichlorobenzene	< 5.00	ug/L		7/28/2020	21:15
1,2,4-Trichlorobenzene	< 5.00	ug/L		7/28/2020	21:15
1,2,4-Trimethylbenzene	< 2.00	ug/L		7/28/2020	21:15
1,2-Dibromo-3-Chloropropane	< 10.0	ug/L		7/28/2020	21:15
1,2-Dibromoethane	< 2.00	ug/L		7/28/2020	21:15
1,2-Dichlorobenzene	< 2.00	ug/L		7/28/2020	21:15
1,2-Dichloroethane	< 2.00	ug/L		7/28/2020	21:15
1,2-Dichloropropane	< 2.00	ug/L		7/28/2020	21:15
1,3,5-Trimethylbenzene	< 2.00	ug/L		7/28/2020	21:15
1,3-Dichlorobenzene	< 2.00	ug/L		7/28/2020	21:15
1,4-Dichlorobenzene	< 2.00	ug/L		7/28/2020	21:15
1,4-Dioxane	< 20.0	ug/L		7/28/2020	21:15
2-Butanone	< 10.0	ug/L		7/28/2020	21:15
2-Hexanone	< 5.00	ug/L		7/28/2020	21:15
4-Methyl-2-pentanone	< 5.00	ug/L		7/28/2020	21:15
Acetone	< 10.0	ug/L		7/28/2020	21:15
Benzene	1.19	ug/L		7/28/2020	21:15
Bromochloromethane	< 5.00	ug/L		7/28/2020	21:15

Client: <u>Alpha Analytical</u>

Project Reference: L2030254, C&S Companies, Jamestown Container

	22000201, des dompanies,				
Sample Identifier:	30254-13 ESI-12-071520				
Lab Sample ID:	203467-13		Date Sampled:	7/15/2020	
Matrix:	Groundwater		Date Received:	7/28/2020	
Bromodichloromethane	< 2.00	ug/L		7/28/2020	21:15
Bromoform	6.67	ug/L		7/28/2020	21:15
Bromomethane	< 2.00	ug/L		7/28/2020	21:15
Carbon disulfide	< 2.00	ug/L		7/28/2020	21:15
Carbon Tetrachloride	< 2.00	ug/L		7/28/2020	21:15
Chlorobenzene	< 2.00	ug/L		7/28/2020	21:15
Chloroethane	< 2.00	ug/L		7/28/2020	21:15
Chloroform	< 2.00	ug/L		7/28/2020	21:15
Chloromethane	< 2.00	ug/L		7/28/2020	21:15
cis-1,2-Dichloroethene	< 2.00	ug/L		7/28/2020	21:15
cis-1,3-Dichloropropene	< 2.00	ug/L		7/28/2020	21:15
Cyclohexane	< 10.0	ug/L		7/28/2020	21:15
Dibromochloromethane	< 2.00	ug/L		7/28/2020	21:15
Dichlorodifluoromethan	e < 2.00	ug/L		7/28/2020	21:15
Ethylbenzene	< 2.00	ug/L		7/28/2020	21:15
Freon 113	< 2.00	ug/L		7/28/2020	21:15
Isopropylbenzene	< 2.00	ug/L		7/28/2020	21:15
m,p-Xylene	< 2.00	ug/L		7/28/2020	21:15
Methyl acetate	< 2.00	ug/L		7/28/2020	21:15
Methyl tert-butyl Ether	< 2.00	ug/L		7/28/2020	21:15
Methylcyclohexane	< 2.00	ug/L		7/28/2020	21:15
Methylene chloride	< 5.00	ug/L		7/28/2020	21:15
Naphthalene	< 5.00	ug/L		7/28/2020	21:15
n-Butylbenzene	< 2.00	ug/L		7/28/2020	21:15
n-Propylbenzene	< 2.00	ug/L		7/28/2020	21:15

Client: Alpha Analytical

Project Reference: L2030254, C&S Companies, Jamestown Container

•						
Sample Identifier:	30254-13 ESI-12-07152	20				
Lab Sample ID:	203467-13		Date	e Sampled:	7/15/2020	
Matrix:	Groundwater		Date	e Received:	7/28/2020	
o-Xylene	< 2.00	ug/L			7/28/2020	21:15
p-Isopropyltoluene	< 2.00	ug/L			7/28/2020	21:15
sec-Butylbenzene	< 2.00	ug/L			7/28/2020	21:15
Styrene	< 5.00	ug/L			7/28/2020	21:15
tert-Butylbenzene	< 2.00	ug/L			7/28/2020	21:15
Tetrachloroethene	< 2.00	ug/L			7/28/2020	21:15
Toluene	< 2.00	ug/L			7/28/2020	21:15
trans-1,2-Dichloroethene	e < 2.00	ug/L			7/28/2020	21:15
trans-1,3-Dichloroprope	ne < 2.00	ug/L			7/28/2020	21:15
Trichloroethene	< 2.00	ug/L			7/28/2020	21:15
Trichlorofluoromethane	< 2.00	ug/L			7/28/2020	21:15
Vinyl chloride	< 2.00	ug/L			7/28/2020	21:15
<u>Surrogate</u>	Perce	nt Recovery	<u>Limits</u>	<u>Outliers</u>	Date Analy	zed
1,2-Dichloroethane-d4		121	80.8 - 132		7/28/2020	21:15
4-Bromofluorobenzene		64.0	56.6 - 130		7/28/2020	21:15
Pentafluorobenzene		104	87.4 - 113		7/28/2020	21:15

79.9

82.2 - 115

7/28/2020

21:15

Method Reference(s): EPA 8260C

Toluene-D8

EPA 5030C

Data File: x72097.D

Client: <u>Alpha Analytical</u>

Project Reference: L2030254, C&S Companies, Jamestown Container

Sample Identifier: 30254-14 Equipment Blank

Lab Sample ID:203467-14Date Sampled:7/15/2020Matrix:GroundwaterDate Received:7/28/2020

Volatile Organics

<u>Analyte</u>	Result	<u>Units</u>	Qualifier Date Analyzed
1,1,1-Trichloroethane	< 2.00	ug/L	7/28/2020 16:48
1,1,2,2-Tetrachloroethane	< 2.00	ug/L	7/28/2020 16:48
1,1,2-Trichloroethane	< 2.00	ug/L	7/28/2020 16:48
1,1-Dichloroethane	< 2.00	ug/L	7/28/2020 16:48
1,1-Dichloroethene	< 2.00	ug/L	7/28/2020 16:48
1,2,3-Trichlorobenzene	< 5.00	ug/L	7/28/2020 16:48
1,2,4-Trichlorobenzene	< 5.00	ug/L	7/28/2020 16:48
1,2,4-Trimethylbenzene	< 2.00	ug/L	7/28/2020 16:48
1,2-Dibromo-3-Chloropropane	< 10.0	ug/L	7/28/2020 16:48
1,2-Dibromoethane	< 2.00	ug/L	7/28/2020 16:48
1,2-Dichlorobenzene	< 2.00	ug/L	7/28/2020 16:48
1,2-Dichloroethane	< 2.00	ug/L	7/28/2020 16:48
1,2-Dichloropropane	< 2.00	ug/L	7/28/2020 16:48
1,3,5-Trimethylbenzene	< 2.00	ug/L	7/28/2020 16:48
1,3-Dichlorobenzene	< 2.00	ug/L	7/28/2020 16:48
1,4-Dichlorobenzene	< 2.00	ug/L	7/28/2020 16:48
1,4-Dioxane	< 20.0	ug/L	7/28/2020 16:48
2-Butanone	< 10.0	ug/L	7/28/2020 16:48
2-Hexanone	< 5.00	ug/L	7/28/2020 16:48
4-Methyl-2-pentanone	< 5.00	ug/L	7/28/2020 16:48
Acetone	< 10.0	ug/L	7/28/2020 16:48
Benzene	< 1.00	ug/L	7/28/2020 16:48
Bromochloromethane	< 5.00	ug/L	7/28/2020 16:48

Client: Alpha Analytical

Project Reference: L2030254, C&S Companies, Jamestown Container

	, 1				
Sample Identifier:	30254-14 Equipment Bl	ank			
Lab Sample ID:	203467-14		Date Sampled:	7/15/2020	
Matrix:	Groundwater		Date Received:	7/28/2020	
Bromodichloromethane	< 2.00	ug/L		7/28/2020	16:48
Bromoform	< 5.00	ug/L		7/28/2020	16:48
Bromomethane	< 2.00	ug/L		7/28/2020	16:48
Carbon disulfide	< 2.00	ug/L		7/28/2020	16:48
Carbon Tetrachloride	< 2.00	ug/L		7/28/2020	16:48
Chlorobenzene	< 2.00	ug/L		7/28/2020	16:48
Chloroethane	< 2.00	ug/L		7/28/2020	16:48
Chloroform	< 2.00	ug/L		7/28/2020	16:48
Chloromethane	< 2.00	ug/L		7/28/2020	16:48
cis-1,2-Dichloroethene	< 2.00	ug/L		7/28/2020	16:48
cis-1,3-Dichloropropene	< 2.00	ug/L		7/28/2020	16:48
Cyclohexane	< 10.0	ug/L		7/28/2020	16:48
Dibromochloromethane	< 2.00	ug/L		7/28/2020	16:48
Dichlorodifluoromethan	e < 2.00	ug/L		7/28/2020	16:48
Ethylbenzene	< 2.00	ug/L		7/28/2020	16:48
Freon 113	< 2.00	ug/L		7/28/2020	16:48
Isopropylbenzene	< 2.00	ug/L		7/28/2020	16:48
m,p-Xylene	< 2.00	ug/L		7/28/2020	16:48
Methyl acetate	< 2.00	ug/L		7/28/2020	16:48
Methyl tert-butyl Ether	< 2.00	ug/L		7/28/2020	16:48
Methylcyclohexane	< 2.00	ug/L		7/28/2020	16:48
Methylene chloride	< 5.00	ug/L		7/28/2020	16:48
Naphthalene	< 5.00	ug/L		7/28/2020	16:48
n-Butylbenzene	< 2.00	ug/L		7/28/2020	16:48
n-Propylbenzene	< 2.00	ug/L		7/28/2020	16:48

Client: <u>Alpha Analytical</u>

Project Reference: L2030254, C&S Companies, Jamestown Container

	30254-14 Equipmen	t Blank				
Lab Sample ID:	203467-14		Dat	e Sampled:	7/15/2020	
Matrix:	Groundwater		Dat	e Received:	7/28/2020	
o-Xylene	< 2.00	ug/L			7/28/2020	16:48
p-Isopropyltoluene	< 2.00	ug/L			7/28/2020	16:48
sec-Butylbenzene	< 2.00	ug/L			7/28/2020	16:48
Styrene	< 5.00	ug/L			7/28/2020	16:48
tert-Butylbenzene	< 2.00	ug/L			7/28/2020	16:48
Tetrachloroethene	< 2.00	ug/L			7/28/2020	16:48
Toluene	< 2.00	ug/L			7/28/2020	16:48
trans-1,2-Dichloroethen	e < 2.00	ug/L			7/28/2020	16:48
trans-1,3-Dichloroprope	ene < 2.00	ug/L			7/28/2020	16:48
Trichloroethene	< 2.00	ug/L			7/28/2020	16:48
Trichlorofluoromethane	< 2.00	ug/L			7/28/2020	16:48
Vinyl chloride	< 2.00	ug/L			7/28/2020	16:48
Surrogate	Pe	ercent Recovery	<u>Limits</u>	<u>Outliers</u>	Date Analy	zed
1,2-Dichloroethane-d4		89.3	80.8 - 132		7/28/2020	16:48
4-Bromofluorobenzene		68.4	56.6 - 130		7/28/2020	16:48
Pentafluorobenzene		107	87.4 - 113		7/28/2020	16:48
Toluene-D8		89.7	82.2 - 115		7/28/2020	16:48

Method Reference(s): EPA 8260C

EPA 5030C

Data File: x72085.D

Client: <u>Alpha Analytical</u>

Project Reference: L2030254, C&S Companies, Jamestown Container

Sample Identifier: 30254-15 Field Blank

Lab Sample ID:203467-15Date Sampled:7/15/2020Matrix:GroundwaterDate Received:7/28/2020

Volatile Organics

<u>Analyte</u>	Result	<u>Units</u>	Qualifier Date Analyzed
1,1,1-Trichloroethane	< 2.00	ug/L	7/28/2020 17:10
1,1,2,2-Tetrachloroethane	< 2.00	ug/L	7/28/2020 17:10
1,1,2-Trichloroethane	< 2.00	ug/L	7/28/2020 17:10
1,1-Dichloroethane	< 2.00	ug/L	7/28/2020 17:10
1,1-Dichloroethene	< 2.00	ug/L	7/28/2020 17:10
1,2,3-Trichlorobenzene	< 5.00	ug/L	7/28/2020 17:10
1,2,4-Trichlorobenzene	< 5.00	ug/L	7/28/2020 17:10
1,2,4-Trimethylbenzene	< 2.00	ug/L	7/28/2020 17:10
1,2-Dibromo-3-Chloropropane	< 10.0	ug/L	7/28/2020 17:10
1,2-Dibromoethane	< 2.00	ug/L	7/28/2020 17:10
1,2-Dichlorobenzene	< 2.00	ug/L	7/28/2020 17:10
1,2-Dichloroethane	< 2.00	ug/L	7/28/2020 17:10
1,2-Dichloropropane	< 2.00	ug/L	7/28/2020 17:10
1,3,5-Trimethylbenzene	< 2.00	ug/L	7/28/2020 17:10
1,3-Dichlorobenzene	< 2.00	ug/L	7/28/2020 17:10
1,4-Dichlorobenzene	< 2.00	ug/L	7/28/2020 17:10
1,4-Dioxane	< 20.0	ug/L	7/28/2020 17:10
2-Butanone	< 10.0	ug/L	7/28/2020 17:10
2-Hexanone	< 5.00	ug/L	7/28/2020 17:10
4-Methyl-2-pentanone	< 5.00	ug/L	7/28/2020 17:10
Acetone	< 10.0	ug/L	7/28/2020 17:10
Benzene	< 1.00	ug/L	7/28/2020 17:10
Bromochloromethane	< 5.00	ug/L	7/28/2020 17:10

Client: <u>Alpha Analytical</u>

Project Reference: L2030254, C&S Companies, Jamestown Container

Sample Identifier:	30254-15 Field Blank				
Lab Sample ID:	203467-15		Date Sampled:	7/15/2020	
Matrix:	Groundwater		Date Received:	7/28/2020	
Bromodichloromethane	< 2.00	ug/L		7/28/2020	17:10
Bromoform	< 5.00	ug/L		7/28/2020	17:10
Bromomethane	< 2.00	ug/L		7/28/2020	17:10
Carbon disulfide	< 2.00	ug/L		7/28/2020	17:10
Carbon Tetrachloride	< 2.00	ug/L		7/28/2020	17:10
Chlorobenzene	< 2.00	ug/L		7/28/2020	17:10
Chloroethane	< 2.00	ug/L		7/28/2020	17:10
Chloroform	< 2.00	ug/L		7/28/2020	17:10
Chloromethane	< 2.00	ug/L		7/28/2020	17:10
cis-1,2-Dichloroethene	< 2.00	ug/L		7/28/2020	17:10
cis-1,3-Dichloropropene	< 2.00	ug/L		7/28/2020	17:10
Cyclohexane	< 10.0	ug/L		7/28/2020	17:10
Dibromochloromethane	< 2.00	ug/L		7/28/2020	17:10
Dichlorodifluoromethan	e < 2.00	ug/L		7/28/2020	17:10
Ethylbenzene	< 2.00	ug/L		7/28/2020	17:10
Freon 113	< 2.00	ug/L		7/28/2020	17:10
Isopropylbenzene	< 2.00	ug/L		7/28/2020	17:10
m,p-Xylene	< 2.00	ug/L		7/28/2020	17:10
Methyl acetate	< 2.00	ug/L		7/28/2020	17:10
Methyl tert-butyl Ether	< 2.00	ug/L		7/28/2020	17:10
Methylcyclohexane	< 2.00	ug/L		7/28/2020	17:10
Methylene chloride	< 5.00	ug/L		7/28/2020	17:10
Naphthalene	< 5.00	ug/L		7/28/2020	17:10
n-Butylbenzene	< 2.00	ug/L		7/28/2020	17:10
n-Propylbenzene	< 2.00	ug/L		7/28/2020	17:10

Client: Alpha Analytical

Project Reference: L2030254, C&S Companies, Jamestown Container

Sample Identifier:	30254-15 Field Blan	k				
Lab Sample ID:	203467-15		Dat	e Sampled:	7/15/2020	
Matrix:	Groundwater		Dat	e Received:	7/28/2020	
o-Xylene	< 2.00	ug/L			7/28/2020	17:10
p-Isopropyltoluene	< 2.00	ug/L			7/28/2020	17:10
sec-Butylbenzene	< 2.00	ug/L			7/28/2020	17:10
Styrene	< 5.00	ug/L			7/28/2020	17:10
tert-Butylbenzene	< 2.00	ug/L			7/28/2020	17:10
Tetrachloroethene	< 2.00	ug/L			7/28/2020	17:10
Toluene	< 2.00	ug/L			7/28/2020	17:10
trans-1,2-Dichloroether	ne < 2.00	ug/L			7/28/2020	17:10
trans-1,3-Dichloroprop	ene < 2.00	ug/L			7/28/2020	17:10
Trichloroethene	< 2.00	ug/L			7/28/2020	17:10
Trichlorofluoromethan	e < 2.00	ug/L			7/28/2020	17:10
Vinyl chloride	< 2.00	ug/L			7/28/2020	17:10
Surrogate	Pe	ercent Recovery	<u>Limits</u>	<u>Outliers</u>	Date Analy	zed
1,2-Dichloroethane-d4		92.7	80.8 - 132		7/28/2020	17:10
4-Bromofluorobenzene		66.1	56.6 - 130		7/28/2020	17:10
Pentafluorobenzene		110	87.4 - 113		7/28/2020	17:10
Toluene-D8		89.2	82.2 - 115		7/28/2020	17:10

Method Reference(s): EPA 8260C

EPA 5030C

Data File: x72086.D

Analytical Report Appendix

The reported results relate only to the samples as they have been received by the laboratory.

Each page of this document is part of a multipage report. This document may not be reproduced except in its entirety, without the prior consent of Paradigm Environmental Services, Inc.

All soil/sludge samples have been reported on a dry weight basis, unless qualified "reported as received". Other solids are reported as received.

Low level Volatiles blank reports for soil/solid matrix are based on a nominal 5 gram weight. Sample results and reporting limits are based on actual weight, which may be more or less than 5 grams.

The Chain of Custody provides additional information, including compliance with sample condition requirements upon receipt. Sample condition requirements are defined under the 2003 NELAC Standard, sections 5.5.8.3.1 and 5.5.8.3.2.

NYSDOH ELAP does not certify for all parameters. Paradigm Environmental Services or the indicated subcontracted laboratory does hold certification for all analytes where certification is offered by ELAP unless otherwise specified. Aliquots separated for certain tests, such as TCLP, are indicated on the Chain of Custody and final reports with an "A" suffix.

Data qualifiers are used, when necessary, to provide additional information about the data. This information may be communicated as a flag or as text at the bottom of the report. Please refer to the following list of analyte-specific, frequently used data flags and their meaning:

- "<" = Analyzed for but not detected at or above the quantitation limit.
- "E" = Result has been estimated, calibration limit exceeded.
- "Z" = See case narrative.
- "D" = Sample, Laboratory Control Sample, or Matrix Spike Duplicate results above Relative Percent Difference limit.
- "M" = Matrix spike recoveries outside QC limits. Matrix bias indicated.
- "B" = Method blank contained trace levels of analyte. Refer to included method blank report.
- "J" = Result estimated between the quantitation limit and half the quantitation limit.
- "L" = Laboratory Control Sample recovery outside accepted QC limits.
- "P" = Concentration differs by more than 40% between the primary and secondary analytical columns.
- "NC" = Not calculable. Applicable to RPD if sample or duplicate result is non-detect or estimated (see primary report for data flags). Applicable to MS if sample is greater or equal to ten times the spike added. Applicable to sample surrogates or MS if sample dilution is 10x or higher.
- "*" = Indicates any recoveries outside associated acceptance windows. Surrogate outliers in samples are presumed matrix effects. LCS demonstrates method compliance unless otherwise noted.
- "(1)" = Indicates data from primary column used for QC calculation.
- "A" = denotes a parameter for which ELAP does not offer approval as part of their laboratory certification program.
- "F" = denotes a parameter for which Paradigm does not carry certification, the results for which should therefore only be used where ELAP certification is not required, such as personal exposure assessment.

GENERAL TERMS AND CONDITIONS LABORATORY SERVICES

These Terms and Conditions embody the whole agreement of the parties in the absence of a signed and executed contract between the Laboratory (LAB) and Client. They shall supersede all previous communications, representations, or agreements, either verbal or written, between the parties. The LAB specifically rejects all additional, inconsistent, or conflicting terms, whether printed or otherwise set forth in any purchase order or other communication from the Client to the LAB. The invalidity or unenforceability in whole or in part of any provision, tern or condition hereof shall not affect in any way the validity or enforceability of the remainder of the Terms and Conditions. No waiver by LAB of any provision, term, or condition hereof or of any breach by or obligation of the Client hereunder shall constitute a waiver of such provision, term, or condition on any other occasion or a waiver of any other breach by or obligation of the Client. This agreement shall be administered and interpreted under the laws of the state which services are procured.

Warranty.

Recognizing that the nature of many samples is unknown and that some may contain potentially hazardous components, LAB warrants only that it will perform testing services, obtain findings, and prepare reports in accordance with generally accepted analytical laboratory principles and practices at the time of performance of services. LAB makes no other warranty, express or implied.

Scope and Compensation. LAB agrees to perform the services described in the chain of custody to which these terms and conditions are attached. Unless the parties agree in writing to the contrary, the duties of LAB shall not be construed to exceed the services specifically described. LAB wi use LAB default method for all tests unless specified otherwise on the Work Order.

Payment terms are net 30 days from the date of invoice. All overdue payments are subject to an interest charge of one and one-half percent (1-1/2%) per month or a portion thereof. Client shall also be responsible for costs of collection, including payment of reasonable attorney fees if such expense is incurred. The prices, unless stated, do not include any sale, use or other taxes. Such taxes will be added to invoice prices when required.

Prices.

Compensation for services performed will be based on the current Lab Analytical Fee Schedule or on quotations agreed to in writing by the parties. Turnaround time based charges are determined from the time of resolution of all work order questions. Testimony, court appearances or data compilation for legal action will be charged separately. Evaluation and reporting of initial screening runs may incur additional fees.

Limitations of Liability.

In the event of any error, omission, or other professional negligence, the sole and exclusive responsibility of LAB shall be to reperform the deficient work at its own expense and LAB shall have no other liability whatsoever. All claims shall be deemed waived unless made in writing and received by LAB within ninety (90) days following completion of services.

LAB shall have no liability, obligation, or responsibility of any kind for losses, costs, expenses, or other damages (including but not limited to any special, direct, incidental or consequential damages) with respect to LAB's services or results.

All results provided by LAB are strictly for the use of its clients and LAB is in no way responsible for the use of such results by clients or third parties. All reports should be considered in their entirety, and LAB is not responsible for the separation, detachment, or other use of any portion of these reports. Client may not assign the lab report without the written consent of the LAB.

Client covenants and agrees, at its/his/her sole expense, to indemnify, protect, defend, and save harmless the LAB from and against any and all damages, losses, liabilities, obligations, penalties, claims, litigation, demands, defenses, judgments, suits, actions, proceedings, costs, disbursements and/or expenses (including, without limitation attorneys' and experts' fees and disbursements) of any kind whatsoever which may at any time be imposed upon, incurred by or asserted or awarded against client relating to, resulting from or arising out of (a) the breach of this agreement by this client, (b) the negligence of the client in handling, delivering or disclosing any hazardous substance, (c) the violation of the Client of any applicable law, (d) non-compliance by the Client with any

environmental permit or (e) a material misrepresentation in disclosing the materials to be tested.

Hazard Disclosure.

Client represents and warrants that any sample delivered to LAB will be preceded or accompanied by complete written disclosure of the presence of any hazardous substances known or suspected by Client. Client further warrants that any sample containing any hazardous substance that is to be delivered to LAB will be packaged, labeled, transported, and delivered properly and in accordance with applicable laws.

Sample Handling.

Prior to LAB's acceptance of any sample (or after any revocation of acceptance), the entire risk of loss or of damage to such sample remains with Client. Samples are accepted when receipt is acknowledged on chain of custody documentation. In no event will LAB have any responsibility for the action or inaction of any carrier shipping or delivering any sample to or from LAB premises. Client authorizes LAB to proceed with the analysis of samples as received by the laboratory, recognizing that any samples not in compliance with all current DOH-ELAP-NELAP requirements for containers, preservation or holding time will be noted as such on the final report.

Disposal of hazardous waste samples is the responsibility of the Client. If the Client does not wish such samples returned, LAB may add storage and disposal fees to the final invoice. Maximum storage time for samples is 30 days after completion of analysis unless modified by applicable state or federal laws. Client will be required to give the LAB written instructions concerning disposal of these samples.

LAB reserves the absolute right, exercisable at any time, to refuse to receive delivery of, refuse to accept, or revoke acceptance of any sample, which, in the sole judgment of LAB (a) is of unsuitable volume, (b) may be or become unsuitable for or may pose a risk in handling, transport, or processing for any health, safety, environmental or other reason whether or not due to the presence in the sample of any hazardous substance, and whether or not such presence has been disclosed to LAB by Client or (c) if the condition or sample date make the sample unsuitable for analysis.

Legal Responsibility. LAB is solely responsible for performance of this contract, and no affiliated company, director, officer, employee, or agent shall have any legal responsibility hereunder, whether in contract or tort including negligence.

Assignment.

LAB may assign its performance obligations under this contract to other parties, as it deems necessary. LAB shall disclose to Client any assignee (subcontractor) by ELAP ID # on the submitted final report.

Force Majeure.

LAB shall have no responsibility or liability to the Client for any failure or delay in performance by LAB, which results in whole or in part from any cause or circumstance beyond the reasonable control of LAB. Such causes and circumstances shall include, but not limited to, acts of God, acts or orders of any government authority, strikes or other labor disputes, natural disasters, accidents, wars, civil disturbances, difficulties or delays in transportation, mail or delivery services, inability to obtain sufficient services or supplies from LAB's usual suppliers, or any other cause beyond LAB's reasonable control.

Law.

This contract shall be continued under the laws of the State of New York without regard to its conflicts of laws provision.

Westborough, MA 01581 8 Walkup Dr.

Phone:

Buccero

ો

(42)

ALPHAQuote #:

Turn-Around Time

Project Manager:

ACA

SACRES

Regulatory Requirement

Other EQuIS (1 File)

NY TOGS

NY Part 375

Disposal Site Information

NY Restricted Use AWQ Standards

Other NY CP-51

NY Unrestricted Use NYC Sewer Discharge

141600

Client: C <> Address:

COMPANIES

Project # 1/30 001 001

(Use Project name as Project #)

Client Information

FAX: 508-898-9193 TEL: 508-898-9220

320 Forbes Blvd TEL: 508-822-9300 FAX: 508-822-3288

Project Name:

JAMESTOWN

14 DEREN

N PENE CONTRINC Project Information

Project Location:

Mansfield, MA 02048

Please specify Metals or TAL.

ALPHA Lab ID Lab Use Only

EST-

3-07/520 ES53 - 67520

Sample ID

DNJ-1-071520

١

525 9 EST

His/10

12:00 2:00 12:00

2/18/20

S

X

B Initials

6

41SIZ Date

Collection

Sample

Sampler's

8240 VOCS

TCL

Matrix

Time

adsit

2:00

STATE

22/ts - 1-md

F87-

1-071820

7/14/20

7/sho

,,00

ac 60 52 30 S

23

23 B

ಕ

4/4/20

54. ,20

3

B

1 7 8 Other project specific requirements/comments:

These samples have been previously analyzed by Alpha

Email: Chullet & CSLOS. CAT

Rush (only if pre approved)

of Days: Due Date:

ANALYSIS

Standard X

CUSTODY **CHAIN OF**

NEW YORK

Service Centers Mahwah, NJ 07430: 35 Whitney Rd, Suite 5 Albany, NY 12205: 14 Walker Way Tonawanda, NY 14150: 275 Cooper Ave, Suite 105

Page 으

Date Rec'd in Lab

Deliverables ASP-A

K ASP-B EQuIS (4 File)

PO#

Billing Information L2030254 Same as Client Info

Please identify below location of applicable disposal facilities. Disposal Facility: z Ϋ́

Sample Filtration Done

Lab to do

Other:

Preservation (Please Specify below) Lab to do

Sample Specific Comments

	/	1 > 05	٥٦	63	<i>o</i> a	1	100	

100 -100 (eil paratur for 7/2/20 103,	activale	7/27/20	7/16/20	7/16/20	, Date/Time						2:30 GW RE X
1028	200	22:55	16:00	0291	ime		P			Conta	900
ec'd Para	Rolling	/iso	inne	XVII.	R		Preservative			Container Type	r RS
A TON	1 Ch	7	enge.	278	Received By		~ <u>`</u>		<u> </u>		ষ
to 7/2	nico	X	John	,	y:						
The w	7/18/2	2 4	Tim	7/11/2	, D						
ο _{3τ}	000	7/20	imbo ostos	6.16	Date/Time						06
ماداند	18	727		3	 	L st	_ 		<u> </u>	<u>Р</u>	3°C
delivered by Alpha CP	(See reverse side.)	7/27/20 73 FRMS & CONDITIONS.	TO REBOUND BY ALPHA'S	THIS COC, THE CLIENT HAS BEAD AND AGREES	resolved. BY EXECUTING	start until any ambiguities are	turnaround time clock will not	not be logged in and	and completely. Samples can	Please print clearly, legibly	3° iced 7/8/2020
Alpha. G	de.)	DITIONS.	BY ALPHA'S	CLIENT	<i>(ECUTING</i>	mbiguities ar	clock will no) and	Samples ca	arly, legibly	الحد مدهد
0	SL		()			œ_	<u></u>		ž		1

CP7/25/200

V-340

S

Form No: 01-25 HC (rev. 30-Sept-2013)

K/E = Zn Ac/NaOH $H = Na_2S_2O_3$ G = NaHSO₄

D = BOD Bottle

E = Encore O = Other C = Cube G = Glass V = VialA = Amber Glass P = Plastic

quished

 $D = H_2SO_4$ F = MeOH E = NaOH

B = Bacteria Cup

C = HNO₃ B = HCI A = None Preservative Code:

Container Code

Mansfield: Certification No: MA015 Westboro: Certification No: MA935 DS1-6-071520

ESTIBLE

2150-

25/40- 215 250

Thespre

5h.

S

K 3

535

7/5/20

Sh:

7/8/20

FSI-1312-071500

r	ر
0	,
V	لہ
کے	-
б	ì

2
9

)2		An 1/2/100 1035	and Those	recid pur	200	10 00/00	The second	Releter 18	ı	
	(See reverse side.)	Waln askle			11	7/28/2	Z	20,21)-Sept-2013)	Form No: 01-25 HC (rev. 30-Sept-2013)
	TERMS & CONDITIONS.	4.00 0 1 1 1 X	100	031	15:21	20120	Ann	Millerestantin		Casci
	TO BE BOUND BY ALPHA'S	1/ 17/70 00100	Locarelle	Minin	1520	7/16/20	_	MAN CANON	ם - פטט פטווופ	K/E = Zn Ac/NaOH
	HAS BEAD AND AGREES	17/16/20 164	alle	JANA.	1800	07 mit		んなって	E = Encore	$H = Na_2S_2O_3$
	resolved. BY EXECUTING	Date/Time	I CD	₽ ₽			3y:	Rominguistad By:		
	start until any ambiguities are		1					22	C = Cube	T I NAOH
	turnaround time clock will not		ر ا	Preservative	<u>.</u>				G = Glass	= H ₂ SO ₄
	not be logged in and								V = Vial	C = HNO ₃
2	Please print clearly, legibly		<u> </u>	Container Type	Cont		o: MA015	Mansfield: Certification No: MA015	P = Plastic A = Amber Glass	A = None B = HCl
5	white of				50	9	o: MADSE	Westhorn: Codification N	Container Code	Preservative Code:
_	Det visus		6	N N	300	30	3/19/10	4	となり人かり	
	5/		7	p	S	200.5	1187/20	LIAM	12 Dr. 4	()
	14 2		5	ELG	ص۵	5,00	11/s/W	Stank	Eguipment	19
	13		8	[07]	mu	4:53	2/15/10	otiste	ESE . 12.	- D
	12		€	ress	aw	4,30	418/10	025140	1-11-150	63
			ช -	89	Gw	91.10	7/4/20	071800	-10-	
	10		×	Ź	G 1	3:28	4/5/2	71520	R31-2-0	01
	09		<	pus	m	37.8	2/2/12	2 07/520	- Pw-3	09
	ං හ		₹	ES	SV	3: 29	7/15/20	41820	10.3% Qt	80
	07		*	£3	33	3.00	2/18/10	031520		10 CO
	Sample Specific Comments		_	Initials	Matrix	Time	Date		à	(real page of my)
612 - K			82	Š	Sample	ction	Collection	Sample ID	Sal	(I ah Use Only)
	(Please Specify below)		'لو د							A District
			> !						. 61 101	The state of the s
	Lab to do		V (or TAI	Please specify Metals or TAL
			Ct en F71	(ā					122	
	Done		74 74					ents:	requirements/comm	Other project specific requirements/comments:
	Sample Filtration		ANALYSIS					ed by Alpha	These samples have been previously analyzed by Alpha	These samples have b
	Other:	NYC Sewer Discharge	☐ NYC Sewe			# of Days:		Rush (only if pre approved)	CSoston	Email: # Sachura
	_ z	tricted Use	NY Unrestricted Use			Due Date:	8	Standard	-1	Fax:
	Disposal Facility:	cted Use Other	NY Restricted Use	* 1 3 4				Turn-Around Time		Phone:
	applicable disposal facilities.	ndards	AWQ Standards		er (ALPHAQuote #:	in laws	Burreno
	Please identify below location of	NY Part 375	NY TOGS			reed	24 BALLIER	Project Manager: Pack	1.7	Address: 141 FLM
	Disposal Site Information	quirement	Regulatory Requirement				oject#)	(Use Project name as Project #)	18x C32	Client: Myselerust
			Other				001 001	Project# 130 CC		Client Information
	PO#		EQuIS (1 File)		61	DOWE	コンできょう	Project Location: 14		
	Same as Client Info	₩ ASP-B	ASP-A		SUMBLES	Cowy	JANESTOUL	Project Name: JAr	TEL: 508-822-9300 FAX: 508-822-3288	TEL: 508-898-9220 FAX: 508-898-9193
al.	Billing Information		Deliverables	(a) \$500		WE 3 - 1	A MA	Project Information	Mansfield, MA 02048 320 Forbes Blvd	Westborough, MA 01581 8 Walkup Dr.
	12030354	11/00	III Lab			Ö	oper Ave, Suite 10	I onawanda, NY 14150: 275 Cooper Ave, Suite 105	CUSTODY	- Commission
	ALPHA Job#	h	Date Rec'd	7	2° 0°		Vay	Albany, NY 12205: 14 Walker Way	CHAIN OF	ДІРНА
					Page		. J. P	Service Centers Mahwah, NJ 07430: 35 Whitney	NEW YORK	

Chain of Custody Supplement

Client:	Alpha Analytical	Completed by:	Glenn Perzulo
Lab Project ID:	203467	Date:	7/28/2020
	Sample Condit Per NELAC/ELAP 2	ion Requirements 210/241/242/243/244	
Condition	NELAC compliance with the sample Yes	e condition requirements i No	ipon receipt N/A
Container Type			
Comments			
Transferred to method- compliant container			
Headspace (<1 mL)			
Preservation Comments			
Chlorine Absent (<0.10 ppm per test strip) Comments			
Holding Time Comments			
Temperature Comments	3°Ciced		
Compliant Sample Quantity/T	уре		

APPENDIX B

GROUNDWATER FIELD PARAMETERS

1¼" = 0.08 4" = 0.66 C&S Engineers, Inc. 141 Elm Street Suite 100 Buffalo, New York 14203 Phone: 716-847-1630 www.cscos.com

Well Sampling Field Data Sheet

Well	Casing Unit \	<u>/olume</u>	
	(gal/l.f.)		
= 0.08	2" = 0.17	3" = 0.38	

6" = 1.5

8" = 2.6

Client Name:	: JAMESTOWN CONTAINER	
Site Name:	sec	
Project No.:		
Field Staff:	ONC A BOOKENT	

		. 1	٧	VELL DAT	Α , ,				
Date		7/15/20	7/15/20	7/5/20	7/18/2	7/15/20	7/15/20	7/15/20	7/15/20
Well Number	300 S. S. S.	EST 3	7W-1	EST-1	EST-13R		ECL-7		ESI-2
Diameter (inches)	100								
Total Sounded Depth (feet)									
Static Water Level (feet)	DE MER	9.9	9.8	9.3	88	10.8	10.0	97	9.8
H ₂ O Column (feet)		•			- "	, , , , , , , , , , , , , , , , , , , ,		7.	
Pump Intake (feet)				1					
Well Volume (gallons)							А		
Amount to Evacuate (gallons)		2900	2.5 91	2 sil	39l	49cl	19-1	Bel	3 pl
Amount Evacuated (gallons)		250	25 gal	22	3gel	4gel	1 el.	Red	32l
		V	7	- 0	U	9	9	d	

FIELD READINGS

Stabilization Criteria +/-0.1 3% 10%	7/14/20 12:00 4:33	7/15/20 1:00 3.79	1/20	7/45/20 1:45	7/5/20	7/2/20	7/5/20 3:25	3/50
Criteria +/-0.1 3%	4.33		1:20	1.45	2,30	3:00	3.25	
3%	4.33	3.79	4.05	201	. 10			
	104	0 1).8V	11.72		10. Ces	539
100/	N E	1,04	:430	433	2005		2,48	2851
10%	114	101	12,00	108.le	13.60		16.5	872
10%	15.30	8.52	4.59	8.49	909			18.12
3%	13,3206	13.390	20.08°C	131806	17596			1511956
+/-10 mv	279	29/	300	322	343		251	433
1000	C	C .	ST	C	T		l	7
	4765	YES	YES	YES	465		YES	NO
	NOUSE	MONE	white	NONE	NONE		inte	Yes
		l ST	but but	HORIBA	lano:			. hów we
The state of the s	3% +/-10 mv ESI-/ ESI-C	3% (3,72°C) +/-10 mv 279 C YICS NO.VIK EST-1 LOOLCO EST-6 1001000 FST-7 WAS SAM	3% (3,32° 13,39° 1.4-10 mv 279 29/ C C YIS YES NOW NOW EST-1 LOVICE ST EST-6 1021 LOTTURE FST-7 WAS SAMPLED IS	3% (3.32° 13.39° 20.08° 11-10 mv 279 29/ 300 C C ST YES YES YES NOW NOW NOW NOW LOWE EST-6 losted Turbiclo, FST-7 WAS SAMPLED By Ja./C.	3% 13.72° 13.39° 20.08° 13.18° C +/-10 mv 279 29/ 300 322 C C ST C YES YES YES YES YES NUNK NUNE NOWE NOWE NOWE EST-1 LOOKEL ST but HOKIBA EST-6 LOSHELTURBICO, purph	3% (3,32° 13.39° 20,08° 13.18° 17.59° 2 +/-10 mv 279 29/ 300 322 342 C C ST C T YES YES YES YES YES YES NOW NOW NOW NOW NOWE EST-6 COLCUL ST but (DK13A PER EST-6 COLCUL TURB SELO, purph / HND;	3% (3,32° 13,39° 20,08° 13,18° 1759° c +/-10 mv 279 29/ 300 322 342 C C ST C T YES YES YES YES YES YES NOW NOW NOW NOW NOW TO NE EST-1 LOULCE ST but toking READ O.C. EST-6 losted Turbielo, purper / HAD Treater	3% (3.32° 13.39° 20.08° 13.18° 1759° 18.710° 18.710° 11.10 mv 279 29/ 300 322 342 255 16 16 10 mv 279 29/ 300 322 342 255 16 16 10 mv 16 16 16 16 16 16 16 16 16 16 16 16 16

C&S Engineers, Inc. 141 Elm Street Suite 100 Buffalo, New York 14203 Phone: 716-847-1630 www.cscos.com

Well Casing	Unit Volume

(gal/l.f.)

11/4" = 0.08 2" = 0.17 3" = 0.38

4" = 0.66 6" = 1.5 8" = 2.6

Well Sampling Field Data Sheet

Client Name:	
Site Name:	
Project No.:	
Field Staff:	

WELL DATA

Date		1/18/20	7/15/20	Theses			
Well Number	necessary.			EST-12			
Diameter (inches)	(C) 16 (C) (C)						Ì
Total Sounded Depth (feet)					·		
Static Water Level (feet)		10.Le	10.8	10.4			
H ₂ O Column (feet)				-			
Pump Intake (feet)	10 JAN 19 19 19 19						
Well Volume (gallons)			n	0			
Amount to Evacuate (gallons)		Zul	Zul	Zulo			
Amount Evacuated (gallons)		2.1	200	3.6			

FIELD READINGS

				יווטרוויו ט					
Date	Stabilization	7/15/20	7/15/40	7/15/20					
Time	Criteria	4:10	MANNEY 3	4:55					
pH (Std. Units)	+/-0.1	12.03	18.67	14,00					
Conductivity (mS/cm)	3%	,003	2/92	184					
Turbidity (NTU)	10%	86	14.7	60 BA G3					
D.O. (mg/L)	10%	7.53	2.89	le.99					
Temperature (°C) (°F)	3%	20.93%	13,75	H.05°C					
ORP ³ (mV)	+/-10 mv	288	270	247				*****	
Appearance		C	C	e					
Free Product (Yes/No)		YES	YES	405					
Odor		NOWE	rank	ADIR-					
Comments	FNDODA PREATM	e wall	-S SST. SAMIPL	ic frai	, And	85-Pu	RPLEF	iport	

C = Clear T = Turbid ST = Semi Turbid VT = Very Turbid