

2022

Periodic Review Report

Dowcraft, South Dow StreetNYSDEC Site #907020
Falconer, Chautauqua County, New York

Prepared for:

Jamestown Container Companies 14 Deming Drive Falconer, New York 14733

> November 2022 Revision 01

TABLE OF CONTENTS

<u>EXE</u>	CUTIVE SUMMARY	1
	CITE OVERVUENA	2
<u>1</u>	SITE OVERVIEW	2
1.1	SITE DESCRIPTION	2
1.2	GEOLOGY AND HYDROGEOLOGY	2
1.3	NATURE AND EXTENT OF CONTAMINATION	2
1.4	SITE HISTORY	3
<u>2</u>	MONITORING PLAN COMPLIANCE REPORT	8
<u>3</u>	REMEDY PERFORMANCE, EFFECTIVENESS AND PROTECTIVENESS	10
<u>4</u>	IC/EC PLAN COMPLIANCE REPORT	12
4.1	IC/EC REQUIREMENTS AND COMPLIANCE	12
	Institutional Controls	12
	ENGINEERING CONTROLS	12
4.2	IC/EC CERTIFICATION	14
<u>5</u>	OPERATION AND MAINTENANCE PLAN COMPLIANCE	15
5.1	GROUNDWATER MONITORING WELLS	15
5.2	SOIL VAPOR MITIGATION SYSTEMS	15
5.2.1	MONTHLY MONITORING	15
5.2.2	Annual Inspection	15
<u>6</u>	CONCLUSIONS AND RECOMMENDATIONS	17
FIGI	URES	
Figu	re 1Historic and Existing Site Featu	RES
Figu	re 2Trichloroethylene Concentratio	NS
Figu	re 3cis-1,2-Dichloroethene Concentration	NS
FIGU	DE A VINIVI CHI ODIDE CONCENTRATIC	MIC

FIGURE 52022 ISCR Treatment **TABLES** TABLE 1July 2013 Groundwater Analytical Results2014 Pre and Post Treatment Groundwater Analytical Results TABLE 2 TABLE 3 2022 PRE AND POST TREATMENT GROUNDWATER ANALYTICAL RESULTS **APPENDICES** APPENDIX A.....LABORATORY ANALYTICAL RESULTS AND DUSR APPENDIX C......INSTITUTIONAL AND ENGINEERING CONTROLS CERTIFICATION FORM APPENDIX D......SSDS INSPECTION REPORTS **ACRONYM LIST** C&S **C&S** Engineers, Inc. DCE CIS-1,2-DICHLOROETHENE JCC JAMESTOWN CONTAINER COMPANIES SITE FORMER DOWCRAFT FACILITY FID FLAME IONIZATION DETECTOR TCE TRICHLOROETHYLENE IRM INTERIM REMEDIAL MEASURES MIP MEMBRANE INTERFACE PROBE NYSDEC New York State Department of Environmental Conservation ROD RECORD OF DECISION **CRA** CONESTOGA-ROVERS & ASSOCIATES

REMEDIAL INVESTIGATION

SOIL CLEANUP OBJECTIVES

PHOTO IONIZATION DETECTOR

RΙ

PID

SCO

SVOC	Semi-volatile		
V V / I V /		I IDC ARIIC	L CANADOATINIDO

VOC VOLATILE ORGANIC COMPOUNDS

SVI SOIL VAPOR INTRUSION

XSD HALOGEN SPECIFIC DETECTOR

EXECUTIVE SUMMARY

C&S Engineers, Inc. (C&S) has prepared the 2022 Periodic Review Report for the former Dowcraft, South Dow Street Site (NYSDEC Site No. 907020) located at 65 South Dow Street in Falconer, New York. From 1939 to 1999, the Site manufactured steel partitions. As part of this manufacturing process, a vapor degreaser was used which included the use of chemicals such as trichloroethylene (TCE).

Previous environmental investigations have detected a TCE plume in the area of the former Dowcraft, South Dow Street Site. TCE contamination is located within two sand/gravel layers separated by a silt/clay lens. According to previous environmental reports, the area of former degreaser pit (area of groundwater monitoring wells PW-3 and PW-3R) is a likely source area for the TCE plume. The plume originates from the degreaser area and has affected groundwater in the upper and lower sand/gravel layers. The plume extends from the degreaser area to the north, under the JCC building and up to the area of the Chadakoin River. This is an area of approximately one acre. The rate of movement is approximately 2 to 3 feet per year to the north. Sampling in the River has not shown any impact to date.

The 2003 Record of Decision of the Site selected in-situ chemical dechlorination using potassium permanganate as the approved remedy. Nine in-situ treatment events occurred between May 2000 and July 2006. In 2014, C&S completed another treatment on the Site. Ten injection borings were advanced throughout the TCE plume and a potassium permanganate treatment fence was installed adjacent to the source area by PW-3R.

In June 2022, 31 injection borings were advanced and injected with combined biological enhanced reductive dechlorination and abiotic in-situ chemical reduction using zero-valent iron. Post-treatment groundwater monitoring indicates that the 2022 treatment was successful in the dechlorination of TCE. The source area was reduced to almost 100% in eight weeks and the treatment products used will remain effective over many years, we expect the source area to continue to contain low concentrations of VOCs. This will eliminate contamination loading to other areas of the Site. We expect VOC concentrations in other monitoring wells to reduce over time.

The Site is compliant with all institutional and engineering controls. The Institutional and Engineering Controls Certification form is provided in **Appendix C**.

November 2022 1 | P a g e

1 SITE OVERVIEW

1.1 Site Description

The Dowcraft, South Dow Street Site is located at 65 South Dow Street in Falconer, New York and occupies approximately 2.2 acres of land situated immediately east of South Dow Street and approximately 100 feet south of the Chadakoin River (Site). The Jamestown Container manufacturing building is situated between the Site and the Chadakoin River.

1.2 Geology and Hydrogeology

Site geology consists of fill material overlying two sand/gravel layers separated by a silt/clay lens. Fill material consists of a mixed matrix of sand, cinders, silt, gavel, brick, concrete, coal, slag and metal. The fill unit ranges in thickness from 2 to over 14 feet, with an average thickness of 8 feet.

Under the fill, the upper sand/gravel layer ranges from 10 to 20 feet in thickness. Underlying the upper sand/gravel layer is a silt/clay lens that ranges from 4 to 8 feet in thickness. The lower sand/gravel layer is 10 to 18 feet thick. Underlying the lower sand layer is a second silt/clay layer that starts approximately 43 feet below ground surface (BGS). This unit is estimated to be 60 feet in thickness according to regional geology.

The average depth to groundwater is 10 feet BGS within the upper sand/gravel layer. Groundwater flow within the upper sand/gravel layer is to the north-northeast at approximately 2.7 feet per year.

1.3 Nature and Extent of Contamination

The chemicals of concern (COC) of the Site are trichloroethylene (TCE) and its daughter compounds (cis-1,2-dichloroethene –DCE - and vinyl chloride). According to previous environmental reports, the area of former degreaser pit (area of groundwater monitoring wells PW-3 and PW-3R) is a likely source area for the COC plume. The plume originates from the degreaser area and has affected groundwater in the upper and lower sand/gravel layers. The plume extends from the degreaser area to the north, under the JCC building and up to the area of the Chadakoin River. This is an area of approximately one acre. Sampling in the River has not shown any impact to date.

Total volatile organic compound (VOC) concentrations range between 2.3 to 1,375.4 ug/L. The volume of the COC plume extends from the degreaser pits to the southern façade of the JCC building (approximate area of 5,000 square feet),

November 2022 2 | Page

then vertically down to the base of the second sand/gravel layer (43 feet BGS); a total volume of approximately 8,333 cubic yards of groundwater and subsurface soil.

Table 1 presents the 2013 baseline groundwater monitoring data. **Table 2** presents data for the pre-treatment and post-treatment groundwater monitoring events. Another groundwater monitoring event was conducted on August 2022. Sampling data will be submitted as a separate report to the NYSDEC.

1.4 Site History

The property was first developed in 1890 as a woolen mill until 1939 when it was converted into a factory which manufactured steel partitions used for offices. In 1986 the deed was transferred to the Dowcraft Corporation. Manufacturing activities continued until the facility closed in 1999. As part of this manufacturing process, a vapor degreaser was used which included the use of chemicals such as trichloroethylene (TCE). This work continued until 1999 when the facility was closed, a portion of the Site was demolished, and the property was sold to JCC.

Figure 1 presents present and historic site features.

The Dowcraft, South Dow Street Site was the subject of environmental investigations in the early 1990s, at which time contaminated groundwater was discovered on site. An interim remedial measure (IRM) was subsequently put in place in 1994 which consisted of groundwater extraction and treatment. In 2000, the use of additional groundwater remediation technologies was approved by the NYSDEC which involved in-situ chemical oxidation of TCE through the injection of potassium permanganate into the overburden groundwater. In 2003, a Record of Decision (ROD) was approved that selected the following remedy:

- In-situ groundwater treatment through chemical oxidation, by injection of potassium permanganate dissolved in water through existing well points into the shallow overburden groundwater table;
- Overburden groundwater monitoring to verify the effectiveness of the treatment;
- Institutional controls will be imposed, in such form as the NYSDEC may approve, that will prevent the use of groundwater as a source of potable or process water without necessary water quality treatment as determined by the Local Health Department; and

November 2022 3 | P a g e

 Annual certification to NYSDEC to certify that institutional controls remain in place.

Conestoga-Rovers & Associates (CRA) conducted nine injection treatments between May 2000 and July 2006, totaling 21,500 pounds of potassium permanganate. These injection treatments were successful in oxidizing TCE in outer plume area; however, the concentrations of TCE in the source area remain high.

2014 and 2015 In-situ Remedial Activities

In May 2013, C&S was asked to re-evaluate the environmental conditions of the Site. On July 2013, baseline groundwater monitoring was conducted to determine the changes, if any, in TCE concentrations since 2006. Based on the findings of this work, a Corrective Measures Work Plan was submitted to the NYSDEC on May 2, 2014. C&S proposed additional in-situ chemical oxidation (ISCO) injections and the installation of a potassium permanganate treatment fence. This work was conducted on December 1 through 9, 2014.

Ten borings were each injected with approximately 33 gallons ISCO solution containing approximately 400 pounds of ISCO material. As the solution was pumped into the subsurface, the drill rods were lifted at a rate designed to inject a consistent amount of materials between 5 and 30 feet below grade. A total of 4,024.12 pounds of potassium permanganate was injected into the TCE plume.

Within the lower sand/gravel layer, the area adjacent to PW-3R contains the highest concentrations of TCE. To address these concentrations, a treatment fence was installed to reduce source loading into downgradient groundwater zones. The treatment fence consisted of 1.5 foot long tubes of paraffin wax mixed with potassium permanganate installed in selected monitoring wells and in the subsurface. A 36-foot treatment fence was installed next to the northwest corner of the building. A total of ten borings to 40 feet below grade were drilled to facilitate the installation of the treatment fence. A potassium permanganate cylinder was dropped down the drill casing. Four feet of casing was removed allowing the bore hole to collapse and another cylinder was placed in series until a total of 5 cylinders were installed (a vertical treatment thickness of approximately 7.5 feet in each boring).

<u>2021 Pre-Treatment Investigation</u>

November 2022 4 | P a g e

Parrat-Wolff, Inc. advanced a membrane interface probe (MIP) in 10 borings to 40 feet from January 4, 2021 to January 8, 2021. The MIP is an in-situ logging tool that measures the relative concentration of volatile organic compounds with depth in soil and groundwater. The MIP probe is advanced at a rate of 1 foot per minute. The MIP probe continuously logs data from several sensors including: photo ionization detector (PID); flame ionization detector (FID); halogen specific detector (XSD) and a sensor for measuring electrical conductivity. The location of the 10 MIP borings is presented in Figure 5.

Many locations contained indications of TCE right above confining layers at about 20-25 feet bgs; in most instances the sensors indicated that TCE contamination diminished at approximately 30 feet bgs. The source area around PW-3R was an exception. High levels of contamination were observed around 30 feet bgs and continued past our 40 foot limit.

Four soil samples were collected from selected MIP borings to correlate the millivolt spikes to ug/kg. Samples were analyzed for VOCs only. MIHPT-1 (adjacent to the JCC Building 5) collected at 17.5 feet bgs contained TCE at 1,800 ug/kg and DCE at 1,300 ug/kg. MIHPT-3 (western edge of the plume) was collected at 22 – 26 feet and contained TCE at 2,500 ug/kg, DCE at 1,300 ug/kg and vinyl chloride at 7.6 ug/kg. MIHPT-4 (adjacent to PW-3R)was collected from 31 – 34 feet and contained TCE at 130,000 ug/kg and DCE at 4,400 ug/kg. MIHPT-9 (adjacent to ESI-6) was collected from 24 – 28 feet bgs and contained TCE at 88 ug/kg and DCE at 5,700 ug/kg. MIP data, plume model and laboratory data report is provided in Appendix F in the 2021 PRR.

2022 In-situ Treatment

On June 6 through June 14, 2022, C&S and NW Contracting implemented the remediation as described in the February 2020 Remedial Action Work Plan.

The remedial method combined biological enhanced reductive dechlorination (ERD) and abiotic in-situ chemical reduction (ISCR) using zero-valent iron. Zero valent iron and biological enhanced dichlorination.

ERD products include 3-D Microemulsion and Bio-Dechlor INOCULM Plus. 3-D Microemulsion provides a controlled release of lactic, organic and fatty acids for the steady production of hydrogen needed for anaerobic biodegradation. The self-distributing features of 3-D Microemulsion combined with its longevity (several years) allow for sufficient coverage with minimal pore volume displacement thereby minimizing application costs. The addition of Bio-Dechlor

November 2022 5 | P a g e

INOCULM Plus insures that the correct anaerobic microbes are applied to the treatment area.

Micro zero-valent iron (MZVI), provides conditions for abiotic reduction via the formation of iron sulfides, oxides and hydroxides, while also maintaining strong reducing conditions in the treatment area for an extended timeframe. This will foster rapid abiotic reduction of chlorinated solvents while reducing the potential for daughter product formation.

A solution of 3-D Microemulsion, MZVI and water was directly injected into the soil in 31 borings within the source area around PW-3R. Two subsurface zones were targeted: sand zone and silt zone. The sand zone consists of sand material located below ground surface to approximately 35 feet bgs. A thick and relatively impervious clay layer separates the sand zone from the silt zone. Silt material is encountered at least 35 or more feet bgs and extends over 40 feet bgs. The volume of ISCR product slightly changes for each of these zones.

Injection points will be spaced every six feet within a row and 15 feet between each row. A 2,775 square foot area is assumed to be the extent of the source area (**Figure 5**). No soils were generated or required disposal during this work.

Storage of EDR and ISCR Chemicals

EDR and ISCR products were shipped directly to the Site and stored in conditions in accordance with the manufacturer's specifications. All EDR and ISCR product was used for this treatment.

Decontamination of equipment, storage, personal protection, and other related safety concerns was completed in accordance with the Material Safety Data Sheets and vendor recommendations.

Mixing of EDR and ISCR Chemicals

NW Contracting was retained to perform the in-situ injections. Injections were conducted on June 6 through June 14, 2022. EDR and ISCR was mixed in steel, 55-gallon drums. IBC totes of ISCR product were staged using a folk lift next to a trailer mounted mixing station. The ISCR/ECR solution was pumped from the mixing station to a truck mounted geo-probe and into the subsurface.

ERD/ISCR product and water will be mixed according to manufacturer's specifications.

November 2022 6 | P a g e

Source area – Sand Zone treatment will inject the following:

- 4,000 pounds of 3-D Microemulsion
- 3,000 pounds of S-MZVI
- 32 liters of Bio-Dechlor INOCULM Plus

The treatment solution will be applied evenly in each injection point from 15 to 35 feet bgs.

Source area – Silt Zone treatment will inject the following:

- 2,000 pounds of 3-D Microemulsion
- 1,500 pounds of S-MZVI
- 9 liters of Bio-Dechlor INOCULM Plus

The treatment solution will be applied evenly in each injection point from 35 to 42 feet bgs.

EDR and ISCR Quantities

A total of 31 borings were each injected with approximately:

- 8 gallons of 3-D Microemulsion
- 3 gallons of S-MZVI
- 0.3 liters of Bio-Dechlor INOCULM Plus
- 133 gallons of water

As treatment solution was pumped into the subsurface, the drill rods were lifted at a rate designed to inject a consistent amount of materials throughout the sand and silt zones.

Daily work reports and a photographic log are provided in **Appendix E.**

November 2022 7 | P a g e

2 Monitoring Plan Compliance Report

The monitoring plan developed by C&S for the Site includes both chemical and hydraulic monitoring of groundwater before and after treatment semi-annually for two years. Sampling frequency was changed to annual on June 2017 just prior to the acceptance of the 2018 Operation, Monitoring and Maintenance Plan. Baseline groundwater monitoring was performed on July 2, 2013 and the chemical data is provided in **Table 1**. Pre and post groundwater monitoring results from the 2014 treatment is provided in **Table 2**. The following monitoring wells are included in the groundwater monitoring plan:

ESI - 1	ESI - 11
ESI - 2	ESI - 12
ESI - 3	ESI -13R
ESI - 6	PW - 1
ESI - 7	PW - 3R
ESI - 10	

The groundwater monitoring activities included the collection of depth-to-water measurements at each monitoring well and the collection of groundwater samples for laboratory analysis. Pre-treatment sampling was conducted on October 21, 22 and 29, 2014 and post-treatment sampling was conducted on:

April 21 and 22, 2015	1st Post-treatment (2014)
November 2 and 3, 2015	2 nd Post-treatment (2014)
April 25 and 26, 2016	3 rd Post-treatment (2014)
October 20 and 21, 2016	4 th Post-treatment (2014)
June 7 and 8, 2017	5 th Post-treatment (2014)
May 7 and 8, 2018	6 th Post-treatment (2014)
	1st Annual Sample Event under new OM&M

November 2022 8 | P a g e

June 25 and 25, 2019	7 th Post-treatment (2014)
	2 nd Annual Sample Event under new OM&M
July 15 and 16, 2020	8 th Post-treatment (2014)
	3 rd Annual Sample Event under new OM&M
October 26 and 27, 2021	9 th Post-treatment (2014)
	4 th Annual Sample Event under new OM&M
August 17 and 18, 2022	1 th Post-treatment (2022)
	5 th Annual Sample Event under new OM&M

Groundwater sampling was conducted in accordance with the U.S. Environmental Protection Agency Low flow sample procedure.

November 2022 9 | P a g e

3 Remedy Performance, Effectiveness and Protectiveness

Contaminant concentrations appeared to have deceased, although some increases were also observed. The table below presents a comparison of total VOC concentrations from each monitoring well and the percent change from pretreatment and post-treatment groundwater monitoring.

_				
CHARICE IN	VAC CAL	ICENTRATION	. 201 <i>1</i>	つハつつ
CHANGEIN	VUL CON	ICENTRATION	1 ZV 14:	·ZUZZ

Monitoring Well	Total VOC Cor	ncentration (ug/L)	Percent Change
, and the second	Pre-Treatment October 2014	_	
PW-1	16.9	83.73	+395.4%
PW-3R	2,609.3	24.32	-99.07%
ESI-1	8.9	4.4	-50.56%
ESI-2	816.08	1,375.4	+68.54%
ESI-3	4.8	30.22	+530%
ESI-6	575.22	33.2	-94.22%
ESI-7	208.39	83.88	-59.75%
ESI-10	352.11	3.6	-98.98%
ESI-11	157	2.3	-98.54%
ESI-12	221.48	4.3	-98.10%
ESI-13R	40	15.5	-61.25%

Pre and post groundwater monitoring results from the 2022 treatment is provided in **Table 3**.

Out of eleven monitoring wells, eight wells show significant decreases, over 40%, in TCE and other chlorinated compounds from the first initial sampling event in 2014. Only three wells showed an increase in total VOC concentrations from the previous sampling event in 2021. Wells inside the JCC building (ESI-10, ESI-11 and ESI-12) showed a continuation of non-detect for TCE.

Total VOC concentrations increased in PW-1, ESI-2 and ESI-3. The reason for this condition is not clear, although a possible explanation is the injections caused the migration of contaminated groundwater towards certain monitoring wells, or the EDR and ISCR materials may have increased the mobilization of contaminants that adhered to soil particles. However, these monitoring wells have increased levels of daughter compounds of TCE, indicating that reductive de-chlorination of TCE is taking place as a result of the 2022 treatment. With the source area treated it

November 2022 10 | P a g e

is expected these concentrations on the exterior of the contaminant plume will be reduced over time.

PW-3R (source area) shows a significant decrease in TCE, DCE and vinyl chloride from the October 2021 sampling event. The table below presents the VOC reductions eight weeks after treatment.

Source Area Change in VOC Concentration 2021-2022

PW-3R (Source Area)	2021 Results (ug/L)	2022 Results (ug/L)	Percent Change
Vinyl chloride	2200	13	-99%
1,1-Dichloroethene	5.1	Not Detected	-100%
trans-1,2-Dichloroethene	21	Not Detected	-100%
Trichloroethene	3000	Not Detected	-100%
cis-1,2-Dichloroethene	2400	2.6	-99%

Considering that the source area was reduced to almost 100% in eight weeks and the treatment products used will remain effective over many years, we expect the source area to continue to contain low concentrations of VOCs. This will eliminate contamination loading to other areas of the Site. We expect VOC concentrations in other monitoring wells to reduce over time.

Historic concentrations of TCE and its daughter compounds from October 2005 to August 2022 are presented on **Figures 2**, **3**, **and 4**. Laboratory analytical results and Data Usability Summary Report (DUSR) are provided in **Appendix A**.

November 2022 11 | P a g e

4 IC/EC PLAN COMPLIANCE REPORT

4.1 IC/EC Requirements and Compliance

As stated in the 2003 ROD, the remedial goals selected for this Site are:

- Treat the source area of groundwater contamination by oxidation dechlorination of the contaminants in place;
- Prevent exposure of human receptors to contaminated groundwater in the sand and gravel unit under Site;
- Prevent or mitigate, to the maximum extent practicable, COC migration via groundwater so that releases from the underlying sand and gravel unit to the Chadakoin River do not exceed applicable standards, criteria and guidance (SCGs);
- Prevent or mitigate, to the maximum extent practicable, the migration of contaminated groundwater to off-site areas;
- Restore on-Site groundwater in the sand and gravel unit to the maximum extent practicable which will not result in exceedances of applicable SCGs; and
- Monitor the groundwater in a manner to verify the effectiveness of the remedial actions.

4.1.1 Institutional Controls

The institutional controls for this Site are:

- Groundwater Use Restriction
- Land Use Restriction
- Monitoring Plan
- Operation and Monitoring Plan

The Site has not changed owners and the land use of the Site has not change. A signed certification that groundwater is not utilized is provided by the property owner in **Appendix B**.

4.1.2 Engineering Controls

As specified under the Engineering Control Provision, any future development on the Site will include provisions for soil gas controls, or an assessment demonstrating that such controls are not needed.

November 2022 12 | P a g e

The soil vapor intrusion (SVI) work plan, submitted on February 20, 2015, targeted areas in the main JCC building and one smaller out building to determine if TCE and other chlorinated compounds in the groundwater have impacted the soil vapor and indoor air quality.

The main JCC building is a linear building that begins at South Dow Street and extends approximately 1,060 feet to the northeast. The main building consists of multiple interconnected buildings that have been added throughout its history. The main building consists of the following portions, starting from South Dow Street:

- Four-story brick building, 55 feet long by 100 feet wide;
- Two-story brick building 300, feet long by 50 feet wide;
- One-story brick building 380, feet long by 80 feet wide; and
- One-story steel building 325, feet long by 100 feet wide.

A second, one-story concrete block building (220 feet long by 50 feet wide), referred by JCC as Building #9, is south of the main building. Building #9 is used for manufacturing.

Building #9 SSD System

Two multi-suction point SSD systems were installed by Mitigation Tech using principles and equipment typically used for soil vapor intrusion mitigation in buildings in compliance with the NYSDOH document, "Guidance for Evaluation Soil Vapor Intrusion in the State of New York, October 2006."

The building was assessed by confirmatory sub-slab air communication testing at the job start to refine data obtained from the preliminary building assessment. The system, comprised of two fans, suction cavities, and other SSD system components, was constructed on March 21 through 27, 2017. Vacuum and air flow measurements were performed continuously during construction to ensure design integrity.

A total of two manometers (B9-1 and B9-2) and two test points (north end of the building) were installed for this system.

A detailed description of the SSDS components are provided in the 2018 OM&M Work Plan.

November 2022 13 | P a g e

Building #5 and #6 SSD System

Mitigation Tech installed five single suction point SSD systems using principles and equipment typically used for soil vapor intrusion mitigation in buildings in compliance with the NYSDOH document, "Guidance for Evaluation Soil Vapor Intrusion in the State of New York, October 2006."

The building was assessed by extensive sub-slab air communication testing at job start to refine data obtained from the preliminary building assessment. Due to a system of sub-slab structural arches and crisscrossing grade beams, sub-slab spaces were either inaccessible or difficult to access. In the case of Building 5, extensive backfilling has occurred such that the soil is present immediately below the floor in the central and northernmost portions of the foundation. The southernmost portion is an open crawlspace with a dirt floor. Mitigation Tech determined that active ventilation of the southernmost sub-slab compartment bounded by buildings 4 and 6A would constitute a zone of defense to intercept soil vapor migrating from the south which would also create some limited depressurization north of the first grade beam. In the case of Building 6, the sub-space is in essence a crawlspace so ventilation was determined the most appropriate strategy to divert vapors from the building interior.

A total of two manometers (B5-1 and B5-2) and two test points (near crawlspace entrance and near folk lift ramp) were installed for this system.

A detailed description of the SSDS components are provided in 2018 OM&M Work Plan.

4.2 IC/EC Certification

As required, the Site Management Periodic Review Report Notice – Institutional and Engineering Controls Certificate Form has been completed and a copy is provided in **Appendix C**.

November 2022 14 | P a g e

5 OPERATION AND MAINTENANCE PLAN COMPLIANCE

An updated Operation, Maintenance and Monitoring (OM&M) Work Plan was approved by the NYSDEC in March 2018. The updated Work Plan includes monitoring the natural attenuation of the groundwater contamination and periodic inspection of two soil vapor mitigation systems over five years. The Remedial Action Monitoring Program consists of monitoring Site groundwater on an annual basis and the performance of the SSDS on a monthly and annual basis.

5.1 Groundwater Monitoring Wells

The following maintenance items were identified:

• No maintenance items were identified at this time.

5.2 Soil Vapor Mitigation Systems

5.2.1 Monthly Monitoring

Monthly monitoring will be conducted as follows:

- Inspect fan vacuum indicator to verify that the value indicated by a mark on the gauge has not changed significantly from the position of the mark. The gauge is inspected by observing the level of colored fluid.
- Record the observed measurement for each fan vacuum indicator on form labeled "SSD System Vacuum Gauge Record". Store all forms in the facility maintenance office.
- Inspect visible components of SSD system for degraded condition.

5.2.2 Annual Inspection

Annual inspection will be conducted as follows:

- Conduct a visual inspection of the complete system (e.g., vent fans, piping, warning devices, labeling).
- Inspect all components for condition and proper operation.
- Identify and repair any leaks in accordance with Sections 4.3.1(a) and 4.3.4(a) of the NYS DOH VI Guidance (i.e., with the systems running, use

November 2022 15 | P a g e

smoke sticks to check for leaks through concrete cracks, floor joints and at the suction points; any leaks will be resealed until smoke is no longer observed flowing through the opening).

- Inspect the exhaust or discharge point of each exhaust fan to verify that no air intakes have been located within 10 feet.
- Conduct pressure field extension testing to ensure that the system is maintaining a vacuum beneath the entire slab. Perform a differential pressure reading at least one vacuum test point.
- Interview appropriate building occupants seeking comments and observations regarding the operation of the system.
- Confirm that the circuit breakers controlling the circuits on which the soil vapor vent fans operate are labeled "Soil Vapor System."

5.2.2.1 SSDS Inspection

On September 21, 2022, Mitigation Tech performed a complete inspection of all system components. Mitigation Tech certifies both systems are effectively maintaining sub-slab depressurization.

Mitigation Tech's inspection reports are provided in **Appendix D**.

November 2022 16 | P a g e

6 Conclusions and Recommendations

Based upon the remedial activates performed, the following conclusions have been formulated:

- All of the required work was completed and is reported herein.
- The remedial activities performed at the Site have prevented any adverse risk to human health and the environment.
- The groundwater flow configuration beneath the Site is stable and remains consistent with the historically identified trends. The groundwater flow is to the north and discharges into the Chadakoin River.
- Sampling suggests a high level of effectiveness of EDR/ISCR injections within the source area. The source area was reduced to almost 100% in eight weeks.
- The treatment products used will remain effective over many years, we expect the source area to continue to contain low concentrations of VOCs. This will eliminate contamination loading to other areas of the Site. We expect VOC concentrations in other monitoring wells to reduce over time.
- The SVI systems comprised of an SSD system for Building 9 and an SSD system and CVS for Buildings 5 and 6 were properly installed and verified for effectiveness.

Groundwater monitoring will continue to occur annually following the Operation, Maintenance and Monitoring (OM&M) Work Plan.

F:\Project\N30 - Jamestown Container\N30001009 - JCC 2021 GW Monitoring\Planning-Study\Reports\DRAFT 2021 PERIODIC REVIEW REPORT.docx

November 2022 17 | P a g e

ect\N30 - Jamestown Container\CADD\Sheet Files\FIGURE 4 VINYL CHLORIDE CONCENTRATIONS.d

roject\N30 - Jamestown Container\CADD\Sheet Files\ISCR Treatment Plan.dw

TABLES

TABLE 1: JULY 2013 GROUNDWATER ANALYTICAL RESULTS - VOLATILE ORGANIC CONMPOUNDS FORMER DOWCRAFT FACILITY

Sample Location	NYSDEC	ESI - 1	ESI - 2	ESI - 3	ESI - 6	ESI - 7	ESI - 10	ESI - 11	ESI - 12	ESI - 13R	PW - 1	PW - 3R
Sample Date	Standards &	2-Jul-13	2-Jul-13	2-Jul-13								
Matrix	Guidance	Water	Water	Water								
Units	Values	ug/L	ug/l	ug/l								
Contaminant												
Volatile Organic Com	pounds											
Acetone	50	<10.0	<10.0	<10.0		<10.0	<10.0	<10.0				13
Benzene	1	< 0.70	< 0.70	< 0.70		< 0.70	< 0.70	< 0.70				0.88 J
Carbon disulfide	N/S	< 2.0	1.3	< 2.0		< 2.0	< 2.0	<2.0				5.0
1,1-Dichloroethane	5	< 2.0	< 2.0	< 2.0		< 2.0	< 2.0	<2.0				5.5
1,2-Dichloroethane	0.6	< 2.0	< 2.0	< 2.0		< 2.0	<2.0	< 2.0				1.2
1,1-Dichloroethene	5	< 2.0	2.8	< 2.0	1.6	< 2.0	0.34 J	< 2.0				48
cis-1,2-Dichloroethene	5	1.1	1,900	<2.0	230	1.9	160	39	48	2.7	2.7	27,000 DL
trans-1,2-Dichloroethene	5	< 2.0	13	< 2.0	1.2	< 2.0	1.6	< 2.0				500 E
1,2-Dichloropropane	1	< 2.0	< 2.0	< 2.0		< 2.0	< 2.0	< 2.0				2.2
Ethylbenzene	5	< 2.0	< 2.0	< 2.0		< 2.0	< 2.0	< 2.0				0.77 J
Methylene Chloride	5	< 5.0	< 5.0	< 5.0		< 5.0	< 5.0	< 5.0				1.3
4-Methyl-2-pentanone	N/S	< 5.0	< 5.0	< 5.0		< 5.0	< 5.0	< 5.0				2.6 J
Tetrachloroethene	5	< 2.0	0.55 J	< 2.0	0.88 J	< 2.0	< 2.0	< 2.0				18
1,1,2-Trichloroethane	1	< 2.0	< 2.0	< 2.0		< 2.0	< 2.0	< 2.0				2.8
Trichloroethene	5	8.2	98	6.3	230	21	18	4.2	92	8.9	11	97000 DL
Toluene	5	< 2.0	< 2.0	<2.0		< 2.0	< 2.0	< 2.0				18
Vinyl chloride	2	< 2.0	800	<2.0	73	<2.0	11	75				6300 DL
Xylene (total)	5	< 2.0	< 2.0	< 2.0		< 2.0	< 2.0	< 2.0				4.8
Total VOCs		9.3	2815.65	6.3	536.68	22.9	190.94	118.2	140	11.6	13.7	130924

Notes

¹⁾ Shaded areas indicate concentration exceeds NYSDEC T.O.G.S 1.1.1 Ambient Water Quality Standards

^{2) &}lt;= not detected - below Method Detection Limit.

³⁾ J = The analyte was positively identified but, the number indicates an estimated value. Detected concentration is less than the contract required quantitation limit but is greater than zero.

⁴⁾ N/S = No Standard

Location ID Sample Matrix Date Sampled IInite NYSDEC Groundwater Standards & Guidance Values	ESI-1 WG 12/02/2014 ua/l	ESI-1 WG 04/21/2015 ua/l	ESI-1 WG 11/03/20 ua/l	15 04/2	ESI-1 WG 25/2016 ua/l	ESI-1 WG 10/20/2016 ua/I	ESI-1 WG 06/07/2017 ua/l	ESI-1 WG 05/07/2018 ua/l	ESI-1 WG 06/26/2019 ua/l	ESI-1 WG 07/15/2020 ua/l	ESI-1 WG 10/27/2021 ua/l	ESI-2 WG 12/02/20 ua/l		ESI-2 WG 04/22/2015 ua/l	ESI-2 WG 11/03/2015 ua/l	ESI-2 WG 04/25/2016 ua/l	ESI-2 WG 10/21/2016 ua/l	ESI-2 WG 06/08/2017 ua/l	ESI-2 WG 05/08/2018 ua/l	ESI-2 WG 06/26/2019 ua/l	ESI-2 WG 07/15/2020 ua/l	ESI-2 WG 10/27/2021 ua/l
,1,1-Trichloroethane 5.0 ug/l	(U	U -	U	U	(J U	U	U	U		U	U	U	U	U			U U	U	
1,1-Dichloroethane 5.0 ug/l	(U	U -	U	U	(J U	U	U	U		U	U	U	U	U			U U	U	
1,1-Dichloroethene 5.0 ug/l	(U,*		U -	U	U	(J U	U	U	U	1.1		U,*	12	U	U			U 3.7 J	U	0.27
,2-Dichlorobenzene 3.0 ug/l	(U	U -	U	U	(J U	U	U	U		U	U	U	U	U	WELL CAP		U U	U	
1,2-Dichloroethane 0.6 ug/l	(U	U -	U	U		J U	U	U	U		U	U	U	U	U	DAMAGED.		U U	U	
1,3-Dichlorobenzene 3.0 ug/l	(U	U -	U	U	(J U	U	U	U		U	U	U	U	U	SAMPLE NOT		U U	U	
,4-Dichlorobenzene 3.0 ug/l	(U	U -	U	U	(J U	U	U	U		U	U	U	U	U	COLLCETED.		U U	U	
Bromoform 50.0 ug/l	(U	U -	U	U	(J U	U	U	U		U	U	U	U	U			U U	U	
bromochloromethane 50.0 ug/l	(U	U -	U	U	(J U	U	U	U		U	U	U	U	U			U U	U	
Acetone 50.0 ug/l	(U	U -	U	U	(J U	2.2 J	U	2.2 J		U	U	U	U	U			U U	U	8.8
Benzene 1.0 ug/l	(U	U -	U	U	(J U	U	U	U		U	U	U	U	U			U U	U	
Carbon Tetrachloride 5.0 ug/l	l		U	U -	U	U	l	J U	U	U	U		U,*	U	U	U	U			U U	U	
Chlorobenzene 5.0 ug/l	(U	U -	U	U	(J U	U	U	U		U	U	U	U	U			U U	U	
Chloroform 7.0 ug/l	(U	U -	U	U	(J U	U	U	U		U	U	U	U	U			U U	U	
-1,2-Dichloroethylene 5.0 ug/l	(4.4		U -	U	U	(J U	0.73 J	1.01 J	U	540	E :	740	### E	5290	592	_	480	1400	1910	180
Ethylbenzene 5.0 ug/l	(U	U -	U	U	(J U	U	U	U		U	U	U	U	U	-		U U	U	
Methylene Chloride 5.0 ug/l	l		U	U -	U	U	l	J U	U	U	U		U	<mark>7.9</mark> J	U	U	U			U U	U	1
rachloroethylene (PCE) 5.0 ug/l	(U	U -	U	U	(J U	U	U	U	0.48	J	U	U	U	U			U U	U	0.48
Toluene 5.0 ug/l	(U	U -	U	U	(J U	U	U	U		U	U	U	U	U			U U	U	
ns-1,2-Dichloroethene 5.0 ug/l	(U	U -	U	U	(J U	U	U	U	4.5		U	19	U	U		27	18 J	U	5
ichloroethylene (TCE) 5.0 ug/l	8.9	15	12	4.8	.89	6.52	3.68	4.4	10	6.72	7.8	130	E	110	### E	1260	303	-	450	690	708	190
Vinyl Chloride 2.0 ug/l	(U	U -	U	U	(J U	U	U	U	130	E .	130	320	289	U			U 120	20.3 J	
Xylenes 5.0 ug/l	(U	U -	U	U	(J U	U	U	U		U	U	U	U	U			U U	U	
TOTAL VOCs	8.9	19.4	12	4.8	89	6.52	3.68	4.4	12.39	7.73	10.7	816.08		988	6151	6,839	895		957	2,228.00	2.638.3	384.55

NYSDEC Groundwa Guidance		ESI-3 WG 10/21/2014 ug/l	ESI-3 WG 04/22/201 ug/l	15 11/0	ESI-3 WG 02/2015 ug/l	ESI-3 WG 04/25/2016 ug/l	ESI W 10/20/ ug	G /2016	ESI-3 WG 06/07/2017 ug/l	ESI-3 WG 05/08/20 ug/l		ESI-3 WG //26/2019 ug/l	ESI-3 WG 07/15/2 ug/l	020	ESI-3 WG 10/26/2021 ug/l	10,	ESI-6 WG 29/2014 ug/l	04,	ESI-6 WG /22/2015 ug/l	ESI W 11/02, ug	G /2015	ESI-6 WG 04/25/20 ug/l		ESI-6 WG 10/21/2016 ug/l	W 06/08	l-6 /G s/2017 g/l	ESI-6 WG 05/08/2018 ug/l		ESI-6 WG 06/26/2 ug/l	019	ESI-6 WG 07/15/2020 ug/l	ESI-6 WG 10/27/202' ug/l
,1,1-Trichloroethan	e 5.0 ug/l	l		U -	- U	(U	U	U		U	U		U	U		U		U		U		U	U		U		U		U	l	U
1,1-Dichloroethane	5.0 ug/l	(U -	- U	(U	U	U		U	U		U	U		U		U		U		U	U		U		U		U	l	U
1,1-Dichloroethene	5.0 ug/l	(U -	- U	(U	U	U		U	U		U	U	1.6	U		U	3.9			U	U		U		U		U	l	U
1,2-Dichlorobenzen	e 3.0 ug/l	(U -	- U	(U	U	U		U	U		U	U		U		U		U		U	U		U		U		U	l	U
1,2-Dichloroethane	0.6 ug/l	L		U -	- U	(U	U	U		U	U		U	U		U		U		U		U	U		U		U		U	L	U
1,3-Dichlorobenzen	e 3.0 ug/l	(U -	- U	(U	U	U		U	U		U	U		U		U		U		U	U		U		U		U	L	U
1,4-Dichlorobenzen	e 3.0 ug/l	L		U -	- U	(U	U	U		U	U		U	U		U		U		U		U	U		U		U		U	L	U
Bromoform	50.0 ug/l	(U -	- U	(U	U	U		U	U		U	U		U		U		U		U	U		U		U	1.2	J	13.2	2.6
bromochlorometha	ne 50.0 ug/l	(U -	- U	(U	U	U		U	U		U	U		U		U		U		U	U		U		U		U	l	U 0.37
Acetone	50.0 ug/l	[U -	- U	(U	U	U		U	3.4 J		U	5.5		U		U		U		U	U		U	2.4	J	7.7		15.8	4.7
Benzene	1.0 ug/l	(U -	- U	(U	U	U		U	U		U	U		U		U		U		U	U		U		U		U	l	U
Carbon Tetrachlorid	e 5.0 ug/l	[U -	- U	(U	U	U		U	U		U	U		U,		U		U		U	U		U		U		U	[U
Chlorobenzene	5.0 ug/l	(U -	- U	(U	U	U		U	U		U	U		U		U		U		U	U		U		U		U	L	U
Chloroform	7.0 ug/l	(U -	- U	(U	U	U		U	U		U	U		U		U		U		U	U		U		U		U	L	U
s-1,2-Dichloroethyle	ne 5.0 ug/l	[U -	- U	(U 1.4	J	U		U	U		U	U	210	E	1100		###	E	322		626	181		5.3		80		[U
Ethylbenzene	5.0 ug/l	(U -	- U	(U	U	U		U	U		U	U		U		U		U		U	U		U		U		U	L	U
Methylene Chloride	5.0 ug/l	L		U -	- U	(U	U	U		U	U		U	U		U	10	J		U		U	U		U		U		U	L	U
rachloroethylene (P	CE) 5.0 ug/l	[U -	- U	(U	U	U		U	U		U	U	1.1			U	5.8			U	U		U	1.4		1.6		[U 0.86
Toluene	5.0 ug/l	(U -	- U	(U	U	U		U	U		U	U		U		U		U		U	U		U		U		U	(U
ns-1,2-Dichloroethe	ene 5.0 ug/l	(U -	- U	(U	U	U		U	U		U	U	2.2			U	4			U	11.1 J		U		U	1.2	J	(
richloroethylene (TC	E) 5.0 ug/l	4.8	2.5	4.	.8	1.06 .	J 6.99		U	0.3		0.8	5.47		0.66	200	E	810		###	E	924	1	1060	431		40		200	E	(U
Vinyl Chloride	2.0 ug/l			U -	- U	(U	U	U		U	U		U	U	160	E	100	*,^	68		21.7		U		U		U		U	L	U
Xylenes	5.0 ug/l	(U -	- U	(U	U	U		U	U		U	U		U		U		U		U	U		U		U		U	L	U
TOTAL '	VOCs	4.8	2.5	4.	.8	1.06	8.39			0.3		4.2	5.47		6.16	575.22		###		###		#####	##	####	612		49.1		204		29	8.53

NYSDEC Groundwa Guidance		ESI-7 WG 10/21/2014 ug/l	ı	ESI-7 WG 04/21/2015 ug/l	ES W 11/02 ug	/G :/2015	ESI-7 WG 04/25/2 ug/l	016	ESI-7 WG 10/20/20 ug/l	16	ESI-7 WG 06/08/201 ug/l	17 (ESI-7 WG 05/07/2018 ug/l	*ESI-4* WG 06/26/2019 ug/l * Well ESI-7 was paved over, Well ESI-4 was	ESI- WG 07/15/3 ug/	5 2020	ESI-7 WG 10/26/20 ug/l	021	ESI-10 WG 10/29/20 ug/l		W 04/21	-10 /G /2015 g/I	ESI-10 WG 11/03/20 ug/l		ESI-10 WG 04/26/2016 ug/l	ESI-10 WG 10/20/2 ug/l	016	ESI-1 WG 06/07/2 ug/l	i 2017	ESI-10 WG 05/07/2018 ug/l	3	ESI- W 06/25, ug	G '2019	ESI-10 WG 07/15/202 ug/l		ESI-10 WG 0/27/202 ⁻ ug/l
1,1,1-Trichloroethane	e 5.0 ug/l		U	U		U		U		U		U	U	U		U		U		U		U	U	-	U		U -		U		U		U		U	
1,1-Dichloroethane	e 5.0 ug/l		U	U		U		U		U		U	U	U		U		U		U		U	U		U		U .		U		U		U		U	
1,1-Dichloroethene	e 5.0 ug/l		U	U		U		U		U		U	U	U		U		U	0.61	J		U	U	-	U		U -		U		U		U		U	
1,2-Dichlorobenzene	e 3.0 ug/l		U	U		U		U		U		U	U	U		U		U		U		U	U		U		U -		U		U		U		U	
1,2-Dichloroethane	e 0.6 ug/l		U	U		U		U		U		U	U	U		U		U		U		U	U		U		U -		U		U		U		U	
1,3-Dichlorobenzene	e 3.0 ug/l		U	U		U		U		U		U	U	U		U		U		U		U	U		U		U -		U		U		U		U	
1,4-Dichlorobenzene	e 3.0 ug/l		U	U		U		U		U		U	U	U		U		U		U		U	U	-	U		U -		U		U		U		U	
Bromoform	50.0 ug/l		U	U		U		U		U		U	U	U		U		U		U		U	U	-	U		J 3.	.01			U		U		U 0.	.76
bromochloromethar	ne 50.0 ug/l		U	U		U		U		U		U	U	U		U		U		U		U	U	-	U		U -		U		U		U		U	
Acetone	50.0 ug/l		U	U		U		U	6.89	J	10.1		U	U		U	3.2	J		U	8.5	J	6 J	7.1	6 J	7.11	J .		U		U	9.6	U	15	U 3	3.6
Benzene	1.0 ug/l		U	U		U		U		U		U	U	U		U		U		U		U	U	-	U		U -		U		U		U		U	
Carbon Tetrachloride	e 5.0 ug/l		U	U		U		U		U		U	U	U		U		U		U		U	U	-	U		U -		U		U		U		U	
Chlorobenzene	5.0 ug/l		U	U		U		U		U		U	U	U		U		U		U		U	U	-	U		U -		U		U		U		U	
Chloroform	7.0 ug/l		U	U		U		U		U		U	U	U		U		U		U		U	U		U		U -		U		U		U		U	
s-1,2-Dichloroethyle	ene 5.0 ug/l	78		25	12		8.3		25		5.15		30	U	5.94			U	240	E		U	U	-	U		U -		U		U	61	U		U	
Ethylbenzene	5.0 ug/l		U	U		U		U		U		U	U	U		U		U		U		U	U	-	U		U -		U		U		U		U	
Methylene Chloride	e 5.0 ug/l		U	U		U		U		U		U	U	U		U		U		U		U	U		U		U :		U		U		U		U	
trachloroethylene (P	CE) 5.0 ug/l	0.39	J	U		U		U		U		U	U	U		U		U		U		U	U		U		U :		U		U	0.22	J		U	
Toluene	5.0 ug/l		U	U		U		U		U		U	U	U		U		U		U		U	U		U		U :		U		U		U		U	
ns-1,2-Dichloroethe	ene 5.0 ug/l		U	U		U		U		U		U	U	U		U		U	2.5			U	U		U		U :		U		U	0.8	J		U	
richloroethylene (TC	E) 5.0 ug/l	150	E	78	57		43		106		21		52	U	39.5		18		62			U	U		U		U :		U	0.94		84	U		U	
Vinyl Chloride	2.0 ug/l		U	U		U		U		U		U	U	U		U		U	37				U		U		U :		U		U		U		U	
Xylenes	5.0 ug/l		U	U		U		U		U		U	U	U		U		U		U		U	U		U		U :		U		U		U		U	
TOTAL \	VOCs	208.39		103	69		51.2		137.36		36.35		82		45.44		21.2		352.11		8.5		6	7.1	6	7.11	3	.01		0.94		155.62		15	4	.36

IVSDEC Crown dura	Location ID Sample Matrix Date Sampled Units	ESI-11 WG 10/29/2014 ug/l	ESI-11 WG 04/21/201! ug/l	V 11/03	I-11 VG 3/2015 g/l	ESI-11 WG 04/26/2016 ug/l	ESI-11 WG 10/20/2016 ug/l	ESI-11 WG 06/07/2017 ug/l	ESI-11 WG 05/07/2018 ug/l	ESI-11 WG 06/25/2019 ug/l	ESI-11 WG 07/15/2020 ug/l	ESI-11 WG 10/27/2021 ug/l	ESI-12 WG 10/22/2014 ug/l		ESI-12 WG /21/2015 ug/l	ESI-12 WG 11/03/2015 ug/l	ESI-12 WG 04/26/2016 ug/l	ESI-12 WG 10/21/2016 ug/l	ESI-12 WG 06/07/2017 ug/l	ESI-12 WG 05/08/2018 ug/l	ESI-12 WG 06/25/2019 ug/l	ESI-12 WG 07/15/2020 ug/l	ESI-12 WG 10/27/202 ug/l
IYSDEC Groundwa Guidance																							
,1,1-Trichloroethane	ne 5.0 ug/l	L		U	U	U		U	U U	U	U	U		U	U	U	U	U	U	U	U	U	
1,1-Dichloroethane	e 5.0 ug/l	L		U	U	U		U	U U	U	U	U		U	U	U	U	U	U	U	U	U	
1,1-Dichloroethene	e 5.0 ug/l	L		U	U	U		U	U U	U	U	U		U	U	U	U	U	U	U	U	U	
,2-Dichlorobenzene	e 3.0 ug/l	L		U	U	U		U	U U	U	U	U		U	U	U	U	U	U	U	U	U	
1,2-Dichloroethane	e 0.6 ug/l	L		U	U	U		U	U U	U	U	U		U	U	U	U	U	U	U	U	U	
,3-Dichlorobenzene	e 3.0 ug/l	(U	U	U		U	U U	U	U	U		U	U	U	U	U	U	U	U	U	
,4-Dichlorobenzene	e 3.0 ug/l	L		U	U	U		U	U U	U	U	U		U	U	U	U	U	U	U	U	U	
Bromoform	50.0 ug/l	(U	U	U		U 4.78	U	2.4 U	8.77	3.1		U	U	U	U	U	14.50	U	2.8	6.67	3.1
oromochlorometha	ne 50.0 ug/l	(U	U	U		U 1.09	U	U	U	0.38 J		U	U	U	U	U	U	U	U	U	0.36
Acetone	50.0 ug/l	L	3.9	J 7	J	32.4		U	U 2.6 J	24 U	5.64 J	7		U	U	6 J	6 J	6 J	U	3 J	19	U	5.6
Benzene	1.0 ug/l	(U	U	U		U	U U	U	U	U		U	U	U	U	U	U	U	U	1.19	
arbon Tetrachloride	le 5.0 ug/l	U,	*	U	U	U		U	U U	U	U	U		U	U	U	U	U	U	U	U	U	
Chlorobenzene	5.0 ug/l	L		U	U	U		U	U U	U	U	U		U	U	U	U	U	U	U	U	U	
Chloroform	7.0 ug/l	(U	U	U		U	U U	U	U	U		U	U	U	U	U	U	U	U	U	
-1,2-Dichloroethyle	ene 5.0 ug/l	76		U	U	U		U	U U	U	U	U	71	1.2		U	U	U	U	U	U	U	
Ethylbenzene	5.0 ug/l	L		U	U	U		U	U U	U	U	U		U	U	U	U	U	UM	UM	U	U	
Methylene Chloride	e 5.0 ug/l	L		U	U	U		U	U U	U	U	U		U	U	U	U	U	U	U	U	U	
rachloroethylene (P	PCE) 5.0 ug/l	L		U	U	U		U	U U	U	U	U	0.48	J 0.54	J	U	U	U	U	U	U	U	
Toluene	5.0 ug/l	L		U	U	U		U	U U	U	U	U		U	U	U	U	U	UM	UM	U	U	
ns-1,2-Dichloroethe	ene 5.0 ug/l	2 L		U	U	U		U	U U	U	U	U		U	U	U	U	U	UM	UM	U	U	
ichloroethylene (TC	E) 5.0 ug/l	55		U	U	U		U	U U	U	U	U	140	E 10		U	U	U	UM	UM	U	U	
Vinyl Chloride	2.0 ug/l	24		U	U	U	==	U	U U	U	U	U		U	U	U	U	U	UM	UM	U	U	
Xylenes	5.0 ug/l	L		U	U	U	==	U	U U	U	U	U		U	U	U	U	U	U	U	U	U	
TOTAL \	VOCs	157	3.9	7		32.4		5.87	2.6	26.4	14.41	10.48	221.48	11.7		6	6	6	14.5	3	21.8	7.86	9.56

		ESI-13R WG 10/21/2014 ug/l	ESI-13R WG 04/21/2015 ug/l	ESI-13R WG 11/02/2015 ug/l	ESI-13R WG 04/25/2016 ug/l	ESI-13R WG 10/20/2016 ug/l	ESI-13R WG 06/07/2017 ug/l	ESI-13R WG 05/08/2018 ug/l	ESI-13R WG 06/26/2019 ug/l	ESI-13R WG 07/15/2020 ug/l	ESI-13R WG 10/26/2021 ug/l	PW-1 WG 10/21/2014 ug/l	14 0	PW-1 WG 04/21/2015 ug/l	PW-1 WG 11/02/2015 ug/l	PW-1 WG 04/25/2016 ug/l	PW-1 WG 10/20/2016 ug/l	PW-1 WG 06/08/2017 ug/l	PW-1 WG 05/08/2018 ug/l	PW-1 WG 06/26/2019 ug/l	PW-1 WG 07/15/2020 ug/l	PW-1 WG 10/26/202 ug/l
,1,1-Trichloroethane	5.0 ug/l	L		U U	I U	U	U	U	U	U	U		U	U	U	U	U	U		U U	U	
1,1-Dichloroethane	5.0 ug/l	L		U U	U	U	U	U	U	U	U		U	U	U	U	U	U		U U	U	
1,1-Dichloroethene	5.0 ug/l	L		U U	U	U	U	U	U	U	U		U	U	U	U	U	U		U U	U	
,2-Dichlorobenzene	3.0 ug/l	L	1	U U	U	U	U	U	U	U	U		U	U	U	U	U	U		U U	U	
1,2-Dichloroethane	0.6 ug/l	L	1	U U	U	U	U	U	U	U	U		U	U	U	U	U	U		U U	U	
,3-Dichlorobenzene	3.0 ug/l	L	1	U U	U	U	U	U	U	U	U		U	U	U	U	U	U		U U	U	
,4-Dichlorobenzene	3.0 ug/l	L	1	U U	U	U	U	U	U	U	U		U	U	U	U	U	U		U U	U	
Bromoform	50.0 ug/l	L	1	U U	U	U	U	U	U	U	U		U	U	U	U	U	U		U U	U	
oromochloromethane	50.0 ug/l	L	1	U U	U	U	U	U	U	U	U		U	U	U	U	U	U		U U	U	
Acetone	50.0 ug/l	L	1	U U	U	U	U	U	2.4 J	U	U		U	U	U	U	U	8.09		U 2.8 J	U	
Benzene	1.0 ug/l	L		U U	I U	U	U	U	U	U	U		U	U	U	U	U	U		U U	U	
arbon Tetrachloride	5.0 ug/l	L		U U	I U	U	U	U	U	U	U		U	U	U	U	U	U		U U	U	
Chlorobenzene	5.0 ug/l	(1	U U	U	U	U	U	U	U	U		U	U	U	U	U	U		U U	U	
Chloroform	7.0 ug/l	L		U U	I U	U	U	U	U	U	U		U	U	U	U	U	U		U U	U	
-1,2-Dichloroethylene	e 5.0 ug/l	18	18	8.3	7.51	9.41	U	1.3	1 J	4.38	U	1.9	8.8		2.4	5.03	7.14	3.88		U U	7.89	
Ethylbenzene	5.0 ug/l	L		U U	U	U	U	U	U	U	U		U	U	U	U	U	U		U U	U	
Methylene Chloride	5.0 ug/l	L		U U	U	U	U	U	U	U	U		U	U	U	U	U	U		U U	U	
rachloroethylene (PCE)) 5.0 ug/l	L		U U	U	U	U	U	U	U	U		U	U	U	U	U	U		U U	U	
Toluene	5.0 ug/l	L		U U	U	U	U	U	U	U	U		U	U	U	U	U	U		U U	U	
ns-1,2-Dichloroethene	e 5.0 ug/l	L		U U	U	U	U	U	U	U	U		U	U	U	U	U	U		U U	U	
ichloroethylene (TCE)	5.0 ug/l	22	46	19	21	13	7.4	7.3	18	13.7	15	15	3.3		11	6.96	22.1	8.39	0.84	1.8	27.4	4.4
Vinyl Chloride	2.0 ug/l	L		U U	U	U	U	U	U	U	U		U	U	U	U	U	U		U U	U	
Xylenes	5.0 ug/l	L	1	U U	U	U	U	U	U	U	U		U	U	U	U	U	U		U U	U	
TOTAL VO)Cs	40	64	27.3	28.51	28.28	7.37	8.6	21.4	18.08	15	16.9	12.1	1	13.4	11.99	29.24	20.36	0.84	4.6	35.29	4.4

NYSDEC Groundwate Guidance V		PW-3I WG 10/29/20 ug/l		WG 04/22/2	PW-3R WG 04/22/2015 ug/l		PW-3R WG 11/03/2015 ug/l		PW-3R WG 04/26/2016 ug/l		PW-3R WG 10/21/2016 ug/l		PW-3R WG 06/08/2017 ug/l		PW-3R WG 05/08/2018 ug/l		PW-3R WG 06/26/2019 ug/l		R 020	PW-3R WG 10/26/2021 ug/l	
1,1,1-Trichloroethane			U		U		U		U		U		U		U		U		U		U
1,1-Dichloroethane	5.0 ug/l	5.1		4.0			U		U		U		U		U		U		U		U
1,1-Dichloroethene	5.0 ug/l		U		U,*		U		U		U		U		U		U		U	5.1	J
1,2-Dichlorobenzene	3.0 ug/l		U		U		U		U		U		U		U		U		U		U
1,2-Dichloroethane	0.6 ug/l		U		U		U		U		U		U		U		U		U		U
1,3-Dichlorobenzene	3.0 ug/l		U		U		U		U		U		U		U		U		U		U
1,4-Dichlorobenzene	3.0 ug/l		U		U		U		U		U		U		U		U		U		U
Bromoform	50.0 ug/l		U		U		U		U		U		U		U		U		U		U
Dibromochloromethane	50.0 ug/l		U		U		U		U		U		U		U		U		U		U
Acetone	50.0 ug/l	12		16			U	11.3	J	12.3	J		U	9		19	J		U	41	J
Benzene	1.0 ug/l	0.61	J	0.53	J		U		U		U		U		U		U		U		U
Carbon Tetrachloride	5.0 ug/l		U,*		U		U		U		U		U		U		U		U		U
Chlorobenzene	5.0 ug/l		U		U		U		U		U		U		U		U		U		U
Chloroform	7.0 ug/l		U		U		U		U		U		U		U		U		U		U
Cis-1,2-Dichloroethylene	5.0 ug/l	21		1.6		140		242		1450		1,990		70		1200		809		2400	_
Ethylbenzene	5.0 ug/l		U		U		U		U		U		U		U		U		U		U
Methylene Chloride	5.0 ug/l		U		U		U		U		U		U		U		U		U		U
Tetrachloroethylene	5.0 ug/l		U		U		U		U		U		U		U		U		U		U
Toluene	5.0 ug/l	8.1		6.9		8.0	J	4.90			U		U	4.6		7.3	J		U		U
Trans-1,2-	5.0 ug/l	39			U		U		U		U	10.2		2.2		20	J	11.4	J	21	J
Trichloroethylene (TCE)	5.0 ug/l	0.79	J		U		U	17.2		84.4	П	229			U		U	75.2		3000	
Vinyl Chloride	2.0 ug/l	1800	E	120	E	790	^,F1	134		751		861		110		2200	E	1440		2200	_
Xylenes	5.0 ug/l	2.3	U	1.1	J		U		U		U		U	1.1	J		U		U		U
TOTAL VO	OCs	2,609.30		147.71		938		409.4		2285.4		3.090.20		199		3.446.30		2.335.60		7.667.10	

TABLE NOTES

WG - Groundwater

ug/l - micrograms per liter

S.U. - Standard Unit

Qualifier Key

- J Result is less than the Reporting Limit but greater than or equal to the Method Detection Limit and the concentration is an approximate value.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- C Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- I The lower value for the two columns has been reported due to obvious interference.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- A Spectra identified as "Aldol Condensation Product".
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- H- The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- F Denotes a parameter for which Paradigm does not carry cerification, the results for which should therefore only be used where ELAP certification is required, such as personal exposure assessment.
- RE Analytical results are from sample re-extraction.
- R Analytical results are from sample re-analysis.
- D Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- U Not detected at the reported detection limit for the sample.
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- S Analytical results are from modified screening analysis.

ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).

- * Indicates any recoveries outside associated acceptance windows. Surrogate ouliers in samples are presumed matrix effects. LCS demonstrates method compliance unless otherwise noted.
- < Analyzed for but not detected at or above the quantitation limit
- 1 Indicates data from primary column used for QC calculation.

FORMER DOWCRAFT FACILITY TOWN OF FALCONER, NEW YORK

	NY-AWQS	SAMPLE ID: COLLECTION DATE: SAMPLE MATRIX: NY-TOGS-GA	ESI-1-102721 10/27/2021 WATER	ESI-1-081822 8/18/2022 WATER	ESI-2-102721 10/27/2021 WATER	ESI-2-081822 8/18/2022 WATER	ESI-3-102621 10/26/2021 WATER	ESI-3-081722 8/17/2022 WATER	ESI-6-102721 10/27/2021 WATER	ESI-6-081822 8/18/2022 WATER	ESI-7-102621 10/26/2021 WATER	ESI-7-081722 8/17/2022 WATER	ESI-10-102721 10/27/2021 WATER	ESI-10-081822 8/18/2022 WATER
	(ug/l)	(ug/l)	Result Flg	Result Flg	Result Flg	Result Flg								
VOC-	(ug/i)	(ug/i)	Result Fig	Result Fig	Result Fig	Result Flg	Result Fig	Result Fig	Result Fig	Result Fig	Result Fig	Result Fig	Result Flg	Result Flg
VOCs					ī		ī							
1,1,1-Trichloroethane	5	5	ND	ND	ND	ND								
1,1,2,2-Tetrachloroethane	5	5	ND	ND	ND	ND								
1,1,2-Trichloroethane	1	1	ND	ND	ND	ND								
1,1-Dichloroethane	5	5	ND	ND	ND	ND								
1,1-Dichloroethene	5	5	ND	ND	0.27 J	2.4 J	ND	ND	ND	ND	ND	ND	ND	ND
1,2,4-Trichlorobenzene	5	5	ND	ND	ND	ND								
1,2,4-Trimethylbenzene	5	5	ND	ND	ND	ND								
1,2-Dibromo-3-chloropropane	0.04	0.04	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND UJ	ND	ND UJ
1,2-Dibromoethane	0.0006	0.0006	ND	ND	ND	ND								
1,2-Dichlorobenzene	3	3	ND	ND	ND	ND								
1,2-Dichloroethane	0.6	0.6	ND	ND	ND	ND								
1,2-Dichloropropane	1	1	ND	ND	ND	ND								
1,3,5-Trimethylbenzene	5	5	ND	ND	ND	ND								
1,3-Dichlorobenzene	3	3	ND	ND	ND	ND	ND	ND UJ	ND	ND	ND	ND	ND	ND
1,4-Dichlorobenzene	3	3	ND	ND	ND	ND								
2-Butanone	50	50	ND	ND UJ	ND	10 J	ND	ND UJ	ND	ND UJ	ND	ND UJ	ND	ND
2-Hexanone	50	50	ND	ND	ND	ND UJ								
4-Methyl-2-pentanone	NA	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND UJ	ND	ND
Acetone	50	50	2.9 J	ND UJ	8.8	49 J	5.5	ND UJ	4.7 J	24 UJ	3.2 J	ND UJ	3.6 J	3.6 UJ
Benzene	1	1	ND	ND	ND	ND								
Bromodichloromethane	50	50	ND	ND	ND	ND								
Bromoform	50	50	ND	ND	ND	ND UJ	ND	ND	2.6	7.3 J	ND	ND	0.76 J	ND UJ
Bromomethane	5	5	ND	ND UJ	ND	ND	ND	ND UJ	ND	ND UJ	ND	ND UJ	ND	ND
Carbon disulfide	60	60	ND	ND UJ	ND	ND	ND	ND						
Carbon tetrachloride	5	5	ND	ND	ND	ND								
Chlorobenzene	5	5	ND	ND	ND	ND								
Chloroethane	5	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND UJ	ND	ND
Chloroform	7	7	ND	ND	ND	ND	ND	1.7 J	ND	ND	ND	ND	ND	ND
Chloromethane	NA	, NA	ND	ND	ND	ND	ND	ND ,	ND	ND	ND	ND	ND	ND
cis-1,2-Dichloroethene	5	5	ND	ND	180	780	ND ND	22 J	ND	ND	ND	4.4	ND	ND
cis-1,3-Dichloropropene	0.4	0.4	ND	ND	ND	ND								
Cyclohexane	NA	NA	ND	ND UJ	ND	ND	ND	ND						
Dibromochloromethane	50	50	ND	ND OJ	ND	ND O	ND	ND OJ	0.37 J	ND UJ	ND	ND	ND	ND
Dichlorodifluoromethane	5	5	ND	ND UJ	ND	ND UJ	ND	ND UJ	ND	ND ND	ND	ND	ND	ND
Ethylbenzene	5	5	ND	ND OJ	ND	ND OJ	ND	ND O	ND	ND ND	ND	ND	ND	ND
Freon-113	<u>5</u>	5	ND	ND UJ	ND ND	ND UJ	ND ND	ND UJ	ND ND	ND UJ	ND	ND ND	ND	ND ND
Isopropylbenzene	<u>5</u>	5	ND	ND 03	ND ND	ND 03	ND ND	ND 0)	ND	ND OJ	ND	ND ND	ND	ND ND
Methyl Acetate	NA	NA	ND	ND UJ	ND ND	ND UJ	ND ND	ND UJ	ND	ND UJ	ND	ND ND	ND	ND UJ
Methyl cyclohexane	NA NA		ND	ND 03	ND ND	ND 07	ND	ND 0)	ND	ND OJ	ND ND	ND ND	ND	ND OJ
		NA 10				ND ND			ND ND			ND ND		
Methylene chloride	10	10 5	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND
Methylene chloride	5	-			ND		ND	ND			ND			
n-Butylbenzene	5	5	ND	ND	ND	ND								
n-Propylbenzene	5	5	ND	ND	ND	ND								
Naphthalene	10	10	ND	ND	ND	ND								

FORMER DOWCRAFT FACILITY TOWN OF FALCONER, NEW YORK

		SAMPLE ID:	ESI-1-102721	ESI-1-081822	ESI-2-102721	ESI-2-081822	ESI-3-102621	ESI-3-081722	ESI-6-102721	ESI-6-081822	ESI-7-102621	ESI-7-081722	ESI-10-102721	ESI-10-081822
		COLLECTION DATE:	10/27/2021	8/18/2022	10/27/2021	8/18/2022	10/26/2021	8/17/2022	10/27/2021	8/18/2022	10/26/2021	8/17/2022	10/27/2021	8/18/2022
		SAMPLE MATRIX:	WATER	WATER	WATER	WATER	WATER							
	NY-AWQS	NY-TOGS-GA												
	(ug/l)	(ug/l)	Result Flg	Result Flg	Result Flg	Result Flg	Result Flg							
VOCs														
o-Xylene	5	5	ND	ND	ND	ND	ND							
p-Isopropyltoluene	5	5	ND	ND	ND	ND	ND							
p/m-Xylene	5	5	ND	ND	ND	ND	ND							
sec-Butylbenzene	5	5	ND	ND	ND	ND	ND							
Styrene	5	930	ND	ND	ND	ND	ND							
tert-Butylbenzene	5	5	ND	ND	ND	ND	ND							
Tetrachloroethene	5	5	ND	ND	0.48 J	ND	ND	ND	0.86	ND	ND	0.48 J	ND	ND
Toluene	5	5	ND	ND	ND	ND	ND							
trans-1,2-Dichloroethene	5	5	ND	ND	5	14	ND	ND	ND	ND	ND	ND	ND	ND
trans-1,3-Dichloropropene	0.4	0.4	ND	ND	ND	ND	ND							
Trichloroethene	5	5	7.8	4.4	200 E	400	0.66	5.6	ND	1.9 J	18	79	ND	ND
Trichlorofluoromethane	5	5	ND	ND	ND	ND	ND							
Vinyl chloride	2	2	ND	ND UJ	ND	120 J	ND	0.92 J	ND	ND <mark>UJ</mark>	ND	ND UJ	ND	ND
TOTAL			10.7	4.4	394.55	1375.4	6.16	30.22	8.53	33.2	21.2	83.88	4.36	3.6

TOTALNY-AWQS: New York TOGS 111 Ambient Water Quality Standards criteria reflects all addendum to criteria through June 2004.

NY-TOGS-GA: New York TOGS 111 Groundwater Effluent Limitations criteria reflects all addendum to criteria through June 2004.

FORMER DOWCRAFT FACILITY TOWN OF FALCONER, NEW YORK

	NY-AWQS	SAMPLE ID: COLLECTION DATE: SAMPLE MATRIX: NY-TOGS-GA	ESI-11-102721 10/27/2021 WATER	ESI-11-081 8/18/202 WATER	22	ESI-12-102 10/27/20 WATER	21 8	I-12-081822 B/18/2022 WATER		I-13R-102621 10/26/2021 WATER	ESI-13R- 8/17/ WA	2022	PW-1-10 10/26/2 WATI	2021	PW-1-08 8/17/2 WATI	022	PW-3R-10 10/26/20 WATE	021	PW-3R-08 8/18/20 WATE)22
	(ug/l)	(ug/l)	Result Flg	Result	Flg	Result	Flg F	Result Flg	9	Result Flg	Resul	t Flg	Result	Flg	Result	Flg	Result	Flg	Result	Flg
VOCs																				
1,1,1-Trichloroethane	5	5	ND	ND		ND		ND	1	ND	ND		ND		ND		ND		ND	
1,1,2,2-Tetrachloroethane	5	5	ND	ND		ND		ND		ND	ND		ND		ND		ND		ND	
1.1.2-Trichloroethane	1		ND	ND		ND		ND		ND	ND		ND		ND		ND		ND	
1,1-Dichloroethane	 5	5	ND	ND		ND		ND		ND	ND		ND		ND		ND		0.8	
1,1-Dichloroethene	5	5	ND	ND		ND		ND		ND	ND		ND		ND		5.1	J	ND	
1,2,4-Trichlorobenzene	5	5	ND	ND		ND		ND		ND	ND		ND		ND		ND		ND	
1,2,4-Trimethylbenzene	5	5	ND	ND		ND		ND		ND	ND		ND		ND		ND		ND	
1,2-Dibromo-3-chloropropane	0.04	0.04	ND	ND	UJ	ND		ND UJ	,	ND	ND		ND		ND	UJ	ND		ND	UJ
1,2-Dibromoethane	0.0006	0.0006	ND	ND	3,	ND		ND 03		ND	ND		ND		ND		ND		ND	
1,2-Dichlorobenzene	3	3	ND	ND		ND		ND		ND	ND		ND		ND		ND		ND	
1,2-Dichloroethane	0.6	0.6	ND	ND		ND		ND	T	ND	ND		ND		ND		ND		ND	
1,2-Dichloropropane	1	1	ND	ND		ND		ND	1	ND	ND		ND		ND		ND		0.15	
1,3,5-Trimethylbenzene	5	5	ND	ND		ND		ND	+	ND	ND		ND		ND ND		ND		ND	
1,3-Dichlorobenzene	3	3	ND	ND		ND		ND		ND	ND		ND		ND		ND		ND	
1,4-Dichlorobenzene	3	3	ND	ND		ND		ND		ND	ND		ND		ND		ND		ND	
2-Butanone	50	50	ND	ND	UJ	ND		ND UJ		ND	ND	UJ	ND		ND		ND		ND	UJ
2-Hexanone	50	50	ND	ND	0,	ND		ND 03		ND	ND	0,	ND		ND	UJ	ND		ND	- 0,
4-Methyl-2-pentanone	NA	NA	ND ND	ND	UJ	ND		ND UJ		ND	ND		ND		ND ND	0)	ND		ND ND	
Acetone	50	50	7	ND	UJ	5.6		2.3 UJ		ND	ND	UJ	ND		ND ND		41	1	4.2	UJ
Benzene	1	1	, ND	ND	0,	ND		ND	,	ND	ND	03	ND		ND ND		ND	,	ND	- 0,
Bromodichloromethane	50	50	ND	ND		ND		ND		ND	ND		ND		ND		ND		ND	
Bromoform	50	50	3.1	2.3		3.6		2		ND	ND	UJ	ND		ND ND		ND		ND ND	
Bromomethane	5	5	ND	ND	UJ	ND		ND UJ		ND	ND	03	ND		ND ND	UJ	ND		ND ND	UJ
Carbon disulfide	60	60	ND	ND	0,	ND		ND 03		ND	ND	UJ	ND		ND	0,	ND		ND	UJ
Carbon tetrachloride	5	5	ND	ND		ND		ND	1	ND	ND	03	ND		ND ND		ND		ND ND	- 0)
Chlorobenzene	5	<u>5</u>	ND ND	ND		ND ND		ND	1	ND	ND		ND		ND ND		ND		ND ND	
Chloroethane	<u>5</u> 5	<u>5</u>	ND ND	ND	UJ	ND ND		ND UJ		ND	ND		ND		ND ND		ND		ND ND	
Chloroform	7	7	ND	ND	0,	ND		ND 03	+	ND	ND		ND		0.73		ND		ND ND	
Chloromethane	NA	NA	ND ND	ND		ND ND		ND	1	ND	ND		ND		ND	,	ND		ND ND	
cis-1,2-Dichloroethene	5	5	ND	ND		ND		ND	1	ND	1.5		ND		64		2400		2.6	
cis-1,3-Dichloropropene	0.4	0.4	ND	ND		ND		ND		ND	ND		ND		ND		ND		ND	
Cyclohexane	NA	NA	ND ND	ND		ND		ND	+	ND ND	ND	UJ	ND ND		ND ND		ND ND		ND ND	UJ
Dibromochloromethane	50	50	0.38 J	ND		0.36		ND	+	ND	ND	UJ	ND		ND ND		ND ND		ND ND	0)
Dichlorodifluoromethane	5	5	ND	ND		ND		ND	+	ND	ND	UJ	ND		ND ND		ND ND		ND ND	
Ethylbenzene	5	5	ND	ND		ND		ND		ND	ND		ND		ND		ND		ND	
Freon-113	5	5	ND ND	ND ND		ND ND		ND	+	ND ND	ND	UJ	ND ND		ND ND		ND ND		ND ND	UJ
Isopropylbenzene	5	5	ND ND	ND ND		ND ND		ND	+	ND ND	ND	UJ	ND ND		ND ND		ND ND		ND ND	UJ
Methyl Acetate	NA	NA	ND ND	ND ND		ND ND		ND	+	ND ND	ND	UJ	ND ND		ND ND	UJ	ND ND		ND ND	UJ
Methyl cyclohexane	NA NA	NA NA	ND ND	ND ND		ND ND		ND	+	ND ND	ND	UJ	ND		ND	UJ	ND ND		ND ND	0)
Methyl tert butyl ether		10	ND ND	ND ND		ND ND		ND ND	+	ND ND	ND		ND ND		ND ND		ND ND		ND ND	
Methylene chloride	10 5	5	ND ND	ND ND		ND ND		ND ND	+	ND ND	ND		ND ND		ND ND		ND ND		ND ND	
	5 5																i e			
n-Butylbenzene		5	ND	ND		ND		ND	+	ND	ND		ND		ND		ND		ND	
n-Propylbenzene	5	5	ND	ND		ND		ND	+	ND	ND		ND		ND		ND		ND	
Naphthalene	10	10	ND	ND		ND		ND		ND	ND		ND		ND		ND		ND	_

FORMER DOWCRAFT FACILITY TOWN OF FALCONER, NEW YORK

		SAMPLE ID:	ESI-11-102721	ESI-11-081822	ESI-12-102721	ESI-12-081822	ESI-13R-102621	ESI-13R-081722	PW-1-102621	PW-1-081822	PW-3R-102621	PW-3R-081822
		COLLECTION DATE:	10/27/2021	8/18/2022	10/27/2021	8/18/2022	10/26/2021	8/17/2022	10/26/2021	8/17/2022	10/26/2021	8/18/2022
		SAMPLE MATRIX:	WATER	WATER	WATER	WATER	WATER	WATER	WATER	WATER	WATER	WATER
	NY-AWQS	NY-TOGS-GA										
	(ug/l)	(ug/l)	Result Flg	Result Flg	Result Flg	Result Flg	Result Flg	Result Flg				
VOCs												
o-Xylene	5	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
p-Isopropyltoluene	5	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
p/m-Xylene	5	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.87 J
sec-Butylbenzene	5	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Styrene	5	930	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
tert-Butylbenzene	5	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Tetrachloroethene	5	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Toluene	5	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	2.7
trans-1,2-Dichloroethene	5	5	ND	ND	ND	ND	ND	ND	ND	ND	21 J	ND
trans-1,3-Dichloropropene	0.4	0.4	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Trichloroethene	5	5	ND	ND	ND	ND	15	14	4.4	17	3000	ND
Trichlorofluoromethane	5	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Vinyl chloride	2	2	ND	ND UJ	ND	ND UJ	ND	ND UJ	ND	2	2200	13 J
TOTAL			10.48	2.3	9.56	4.3	15	15.5	4.4	83.73	7667.1	24.32

NY-AWQS: New York TOGS 111 Ambient Water Quality Standards criteria reflects all addendum to criteria through June 2004.

NY-TOGS-GA: New York TOGS 111 Groundwater Effluent Limitations criteria reflects all addendum to criteria through June 2004.

APPENDICES

LABORATORY ANALYTICAL RESULTS

Well Casing Unit Volume

(gal/l.f.)

Well Sampling Field Data Sheet

Client Name:		
Site Name:	JCC	
Project No.:	,	
Field Staff:	RICH BOY WEST	

WELL DATA

	4 4		
Date	8/17/22		
Well Number	EST-3		
Diameter (inches)	2"		
Total Sounded Depth (feet)			
Static Water Level (feet)	10.3		
H₂O Column (feet)	LUST)		
Pump Intake (feet)			
Well Volume (gallons)			
Amount to Evacuate (gallons)	2 gul.		
Amount Evacuated (gallons)	2 cul.		

FIELD READINGS

Date	Stabilization	8/17/22					
Time	Criteria	10.49	10:50	10:55	11:00		
pH (Std. Units)	+/-0.1	9.35	8.20	7.31	7.14		
Conductivity (mS/cm)	3%	1874	.918	.963	.966		
Turbidity (NTU)	10%	0.00	0.00	0.00	0.00		
D.O. (mg/L)	10%	3.98	261	1.60	1,41		
Temperature (°C) (°F)	3%	17.26°C	16,100	15.350	15 1900		
ORP ³ (mV)	+/-10 mv	29	40	39	35'		
Appearance	SECTION .	C	C	C	C		
Free Product (Yes/No)		NONE	NONE	NONE	Monte		
Odor		NONE	NONE		NO.E		
Comments	MS+n	SA SAM	JAK (OUNECT	EΔ		

www.cscos.com

Well Casing Unit Volume (gal/l.f.)

1¼" = 0.08 2" = 0.17 3" = 0.38

4" = 0.66 6" = 1.5 8" = 2.6

Well Sampling Field Data Sheet

Client Name:	-korogora wby tall		
Site Name:	THE CONTROL OF THE CONTROL	300	
Project No.:	MESOCIADOS		
Field Staff:	Rich Backert		

WELL DATA

Date	8/17/22	
Well Number	PW-I	
Diameter (inches)	efu	
Total Sounded Depth (feet)		
Static Water Level (feet)	10.0	
H ₂ O Column (feet)		
Pump Intake (feet)	-50.54	
Well Volume (gallons)		
Amount to Evacuate (gallons)		
Amount Evacuated (gallons)	400	

FIELD READINGS

				D IXEADII				
Date	Stabilization	8/17/22						
Time	Criteria	11:30	11:35	11:40	11.45	11.80		
pH (Std. Units)	+/-0.1	751	7.00	ie.91		io 76		
Conductivity (mS/cm)	3%	2944	2968	,949	0971	.970		
Turbidity (NTU)	10%	116	48.3	34.2	16.9	1,48		
D.O. (mg/L)	10%	1.93	1.12	1.04	1.00	= 9Ce		
Temperature (°C) (°F)	3%	16.43°C	15.66°E	1849°6	15.1900	15,40°C		
ORP ³ (mV)	+/-10 mv	113	9u	lele	33	22		
Appearance	A REVENIE	C	C	Ċ	C	C		
Free Product (Yes/No)		NONE	NONE	NONE	NONE	rone		
Odor		work	NONE	LOUE	NONE	wir		
Comments								
		0115	1-E8					
	1 Dup	COLLE	CILV					
	190							

Well Casing Unit Volume

(gal/l.f.)

1½" = 0.08 2" = 0.17 3" = 0.38 4" = 0.66 6" = 1.5 8" = 2.6

Well Sampling Field Data Sheet

Client Name:		
Site Name:	JCC	
Project No.:	1 222101000	
Field Staff:	RICH BICKERT	

WELL DATA

Date	8/172		
Well Number	ESI-7		
Diameter (inches)	2"		
Total Sounded Depth (feet)			
Static Water Level (feet)	10.4		
H ₂ O Column (feet)	(4) (4)		
Pump Intake (feet)			
Well Volume (gallons)	8921		
Amount to Evacuate (gallons)	0		
Amount Evacuated (gallons)	2 gul		

FIELD READINGS

Date	Stabilization	8/17/22					
Time	Criteria	12:35	12:40	12:45			
pH (Std. Units)	+/-0.1	7.83	7.32	7.05			
Conductivity (mS/cm)	3%	. 8le 1	3879	.883			
Turbidity (NTU)	10%	22.2	0.00	0.00			
D.O. (mg/L)	10%	3:89	3.50	3.51			
Temperature (°C) (°F)	3%	18.74°C	17,23°C	16.90°C			
ORP ³ (mV)	+/-10 mv	101	110	117			
Appearance		C	C	C			
Free Product (Yes/No)		NO.NE	rost	NONE			
Odor		NONE	rose	NONE			
Comments							

Well Casing Unit Volume

(gal/l.f.)

1½" = 0.08 2" = 0.17 3" = 0.38 4" = 0.66 6" = 1.5 8" = 2.6

Well Sampling Field Data Sheet

Client Name:	wichous Still VIII (II)	V
Site Name:	CANAL COLUMN	JCC
Project No.:	C-V28CHTU14_5	
Field Staff:	CTG LukerES	RICH BACKFIET

WELL DATA

Date	8/17/22	
Well Number	ESS-13R	
Diameter (inches)	2"	
Total Sounded Depth (feet)	114/2/534	
Static Water Level (feet)	9.0	
H ₂ O Column (feet)	2 21-0-0	
Pump Intake (feet)	Kante .	
Well Volume (gallons)		
Amount to Evacuate (gallons)		
Amount Evacuated (gallons)	281	

FIELD READINGS

			FIEL	D KEADINGS	- 1994		
Date	Stabilization	8/17/22					
Time	Criteria	2:05	2:10	2:15			
pH (Std. Units)	+/-0.1	7.52	7.09	4.93			
Conductivity (mS/cm)	3%	2.060	.974	.947			
Turbidity (NTU)	10%	135	0.00	0.00			
D.O. (mg/L)	10%	8.49	4.78	4.57			
Temperature (°C) (°F)	3%	22.46%	18.7100	15.27°C			
ORP ³ (mV)	+/-10 mv	114	129	133			
Appearance	E-wind	C'	C	C			
Free Product (Yes/No)		NUNE	were	rare			
Odor			rense				
Comments							

Well Casing Unit Volume

(gal/l.f.)

Well Sampling Field Data Sheet

Client Name:	Inburers Way 1, LLC	ř.
Site Name:	210 Stop CampiPlovy	TCC
Project No.:	V28001004	
Field Staff:	Rich Backers	RICH BACKERT

WELL DATA

Date	8-118/22	
Well Number	EST-10	
Diameter (inches)	2"	
Total Sounded Depth (feet)		
Static Water Level (feet)	10.7	
H ₂ O Column (feet)	THE SECOND SECON	
Pump Intake (feet)		
Well Volume (gallons)		
Amount to Evacuate (gallons)	0.04	
Amount Evacuated (gallons)	3gal	

FIELD READINGS

W		1.0100						
Date	Stabilization	8/18/22			133	13.42.3	10-7	-
Time	Criteria	10:00	10:05	10:10	10:15	10:20	10.25	
pH (Std. Units)	+/-0.1	8,20	737	7.03	6.83	4.74	Lell 9	
Conductivity (mS/cm)	3%	. Stel	,538	.518	5515	1514	2514	
Turbidity (NTU)	10%	778	359	177	75,3	14.4	0.00	
D.O. (mg/L)	10%	3.86	2.12	1.46	1,22	1.11	1.07	
Temperature (°C) (°F)	3%	16,170	15.67°C	15.55°c	15.4900	15.47°C	15,460C	
ORP ³ (mV)	+/-10 mv	479	527	545	55 le	541	544	
Appearance		P.NK 1	P.NK 1	Pinke,	Lightliste	C,	C	
Free Product (Yes/No)		treatest	Trutil	rental	Trustul		trutil	
Odor		NONE	rone	ROME	rong	NONE	rose	
Comments		THE PARTY OF THE P		4				
		,			FROM	WELL		
	- Treat	MILLE SI	och pu	ville	,-,			
	" '		•					
					Van Turbid			

Well Casing Unit Volume

(gal/l.f.)

 $1\frac{1}{4}$ " = 0.08 2" = 0.17 3" = 0.38 4" = 0.66 6" = 1.5 8" = 2.6

Well Sampling Field Data Sheet

Client Name:	Common Way		
Site Name:	Comp canal Plate	Jec	
Project No.:	12800101		
Field Staff:	Rich Backert		

WELL DATA

Date	8/18/22	
Well Number	ES2-11	
Diameter (inches)	211	
Fotal Sounded Depth (feet)	and a silver	
Static Water Level (feet)	10.6	
H ₂ O Column (feet)		
Pump Intake (feet)		
Well Volume (gallons)		
Amount to Evacuate (gallons)		
Amount Evacuated (gallons)	Bank	

FIELD READINGS

Time									
Description	Stabilization	8/18/22							ļ
Conductivity (mS/cm) 3% 552 585 ie30	Criteria	10:45							_
Turbidity (NTU) 10% 214 189 109.2 21.8 1.12 D.O. (mg/L) 10% 3.67 2.74 1.75 1.31 1.13 Temperature (°C) (°F) 3% 14.60° 14.37° 14.28°	+/-0.1	7.09		le 72	U.LET	(0.623			
D.O. (mg/L) 10% 3.67 2.74 1.75 1.31 1.13 Temperature (°C) (°F) 3% 14.60° 14.37° 14.28° 14.28° 14.27° ORP³(mV) +/-10 mv 579 590 1002 1002 1004 1006 1006 1006 1007 1006 1006 1006 1007 1006 1007 1006 1007 1006 1007 1006 1007 1006 1007 1006 1007 1006 1007 1006 1007 1006 1007 1006 1007 1006 1007 1006 1007 1006 1007 1	3%	.552	.585	ieso	· ie36	ole360			
Temperature (°C) (°F) 3% 14.60° 14.37° 14.28°C ,4.26°C 14.27° ORP³(mV) +/-10 mv 579 590 602 604 606 Appearance 690 190 190 190 190 190 190 190 190 190 1	10%	214		109.2					
ORP3(mV) +/-10 mv 579 590 LeO2 LeO4 COCC Appearance Free Product (Yes/No) +/-10 mv 579 590 LeO2 LeO4 COCC Lightpide Lightpide Lightpide Lightpide Lightpide FreetCl freetCl freetal freetal freetal freetal	10%	3.07		1.75	1,31				
Appearance Lightpine Lightpine Lightpine Lightpine Lightpine Free Product (Yes/No) Treated freutal treated treated	3%	14,60	14.39°			14.279			
Free Product (Yes/No) Treated frental treated treated treated	+/-10 mv	579	590	602	Leo4	600			
Free Product (Yes/No) treated treated treated treated treated		Lightp Ne	LAntping	Ligner, NL4					
		truted	treutel	treutal	treutel	treeted			
		ROR		rone	NONE	w.c.			
Comments									
Comments		Criteria +/-0.1 3% 10% 10% 3% +/-10 mv	Criteria 10:45 +/-0.1 7.09 3% .552 10% 314 10% 3.07 3% 14.60° +/-10 mv 579 ingntp. Ne. Treated Ac.Ac	Criteria 10:45 10:50 +/-0.1 7.09 4.92 3% 552 585 10% 314 189 10% 3.07 2.74 3% 14.60° 14.70° +/-10 mv 579 590 Lightpide treated treated Lower power	Criteria 10:48 10:50 15:58 +/-0.1 7.09 4.92 4.72 3% 552 .585 .430 10% 314 189 49.2 10% 3 67 2.74 1.75 3% 14.60° 14.37° 14.28°C +/-10 mv 579 590 (202 49ntp: Ac Lantpint Lignipint treated treated treated Now Nove Nove	Criteria 10:45 10:50 10:58 11:060 +/-0.1 7.09 4.92 ie72 ie.77 3% 552 585 ie30 ie36 10% 314 189 ie92 21.8 10% 3.67 2.74 i.75 1.3i 3% 14.60° 14.39° 14.28	Criteria 10:45 [0:50 10:58 11:00 11:05 +/-0.1 7.09 4.92 4.72 4.47 4.48 6.63 11:00 11:05 10	Criteria 10:45 (0:50 10:58 11:00 11:05 11:	Stabilization Criteria 10:45

11/4" = 0.08

4" = 0.66 6" = 1.5

C&S Engineers, Inc. 141 Elm Street Suite 100 Buffalo, New York 14203 Phone: 716-847-1630

	www.cscos.	com	
Well	Casing Unit V	olume	
	(gal/l.f.)		
3.08	2" = 0.17	3" = 0.38	

8" = 2.6

Well Sampling Field Data Sheet

Client Name:	haborers Way 1, LLC	
Site Name:	3≱0 Ship Canal Pkwy	
Project No.:	Ý280010 °	
Field Staff:	Rich Backert	

WELL DATA

Date	8/18/22		
Well Number	ESI-12	10	
Diameter (inches)	2"		
Total Sounded Depth (feet)	20 K 7-07		
Static Water Level (feet)	10.4		
H ₂ O Column (feet)			
Pump Intake (feet)			
Well Volume (gallons)			
Amount to Evacuate (gallons)			
Amount Evacuated (gallons)	41015100-		

FIELD READINGS

			1166	DILADII	100		
Date	Stabilization	418/22					
Time	Criteria	11:25	11:30	11:35	11:40		
pH (Std. Units)	+/-0.1	7.43	7.19	7.20	7.18		
Conductivity (mS/cm)	3%		2878	:840	.853		
Turbidity (NTU)	10%	469	173	593	0.00		
D.O. (mg/L)	10%	7.35	1.31	1,00	,91		
Temperature (°C) (°F)	3%	1581°C	14.4406	143100	14.340c		
ORP ³ (mV)	+/-10 mv	579	602	599	597		
Appearance		PINK 1	Light Pive,	Lightoint-	Light Pink		
Free Product (Yes/No)		trectul	treated	treated	trutul		
Odor		rom	NONE	MME	RONE		
Comments	- Tru	ut ment	sak	IN WE	LL	-	

Well Casing Unit Volume

(gal/l.f.)

146" = 0.08 2" = 0.17 3" = 0.38 4" = 0.66 6" = 1.5 8" = 2.6

Well Sampling Field Data Sheet

Client Name:			
Site Name:	(310 Ship Canal Play)	JCC	
Project No.:	CY28D01004		
Field Staff:	Rich Backert		

WELL DATA

Date	8/18/22		
Well Number	8/18/22 Esi-6		
Diameter (inches)	2"		
Total Sounded Depth (feet)	5 11/4		
Static Water Level (feet)	10.6		
H ₂ O Column (feet)			
Pump Intake (feet)			
Well Volume (gallons)			
Amount to Evacuate (gallons)	, Water		
Amount Evacuated (gallons)	3 cul		

FIELD READINGS

Date	Stabilization	8/18/22					
Time	Criteria	12:30	12:35	12:40	12:45	12:50	
pH (Std. Units)	+/-0.1	7.34	7.35	7.11	7.11	7.08	
Conductivity (mS/cm)	3%	1.08	.972	.939	,903	-38.8	
Turbidity (NTU)	10%	8.82	531	58.4	27.6	0.00	
D.O. (mg/L)	10%	371	3.04	2.54	7.91	7.53	
Temperature (°C) (°F)	3%	14.90°C	14.50°C	14.02°C	14.230€	14.2100	
ORP ³ (mV)	+/-10 mv	1008	606	615	605	598	
Appearance		PiNn	LightPine	Light P. Nr	Lightping	CA	
Free Product (Yes/No)		treated	freated	trutul	treated	tractal	
Odor		when	rove	LONE	NONE	NOME	
Comments	- WEU	1490	A free	HENT	Sock		

Well Casing Unit Volume

(gal/l.f.)

 $1\frac{1}{4}$ " = 0.08 2" = 0.17 3" = 0.38 4" = 0.66 6" = 1.5 8" = 2.6

Well Sampling Field Data Sheet

Client Name:	15	
Site Name:	JCC	
Project No.:	N	
Field Staff:	DICH BACKETT	3

WELL DATA

8/18/22	
EST-2	
2"	7
10.5	
110.0	· ·
	¥.
58.00	
Control of the contro	
3906	
	EST-2

FIELD READINGS

Date	Stabilization	0/18/22						
Time	Criteria	1:10	1:15	1:20	1:25			
pH (Std. Units)	+/-0.1	7.41	7.45	7.32	7.27	4		
Conductivity (mS/cm)	3%	.524	0661	,773	. 81le			
Turbidity (NTU)	10%	943	80.00	0.00	0.00			
D.O. (mg/L)	10%	10.19	8.46	7.98	7.57			
Temperature (°C) (°F)	3%		18 Heac		15.24°C			
ORP ³ (mV)	+/-10 mv	506	50 Le	508	510			
Арреагалсе		ST	ST	A C	0			
Free Product (Yes/No)			work	NONE	rone			
Odor		rove		rone	NONE			
Comments								

www.cscos.com

Well Casing Unit Volume

(gal/i.f.)

11/4" = 0.08 2" = 0.17 3" = 0.38 4" = 0.66 6" = 1.5 8" = 2.6

Well Sampling Field Data Sheet

Client Name:		
Site Name:	JCC	
Project No.:		
Field Staff:	DICH BACKERS	

WELL DATA

Date	8/18/22		
Well Number	ESI-1		
Diameter (inches)	211		
Total Sounded Depth (feet)			
Static Water Level (feet)	9.2		
H ₂ O Column (feet)			
Pump Intake (feet)			
Well Volume (gallons)	in the second		
Amount to Evacuate (gallons)			
Amount Evacuated (gallons)	3 gul		

FIELD READINGS

			1155	D IXEADII	100				
Date	Stabilization	digger							
Time	Criteria	1.50	1:55	2:00	2:05	2:10			
pH (Std. Units)	+/-0.1	7.62	7.02	4.79	4.40	643			
Conductivity (mS/cm)	3%	. 925	1.01	.982	.959	. 939			
Turbidity (NTU)	10%	769	297	169	75.3	76.4	43.8		
D.O. (mg/L)	10%	6.84	5.58	5.37	5.48	5.92			
Temperature (°C) (°F)	3%	18.070	15.8400	15.45°C	15.07%	1508°C			
ORP ³ (mV)	+/-10 mv	440	494	512	518	520			
Арреагалсе		C	C	C	C	C			
Free Product (Yes/No)		rare	LONE	renk	rose	NONE			
Odor		NONE	MONE	rone	rara	rock			
Comments	- purqu	d 3 we	ul Volu	rās tu	bidity	Strye	el Con	US iS HCHA	2

Well Casing Unit Volume

(gal/l.f.)

 $1\frac{1}{4}$ " = 0.08 2" = 0.17 3" = 0.38 4" = 0.66 6" = 1.5 8" = 2.6

Well Sampling Field Data Sheet

Client Name:			
Site Name:	TCC		
Project No.:			
Field Staff:	RICH	RACKERET	

WELL DATA

	7		
Date	8/18/22		
Well Number	PW-3R	N N	
Diameter (inches)			
Total Sounded Depth (feet)	a reme		
Static Water Level (feet)	9.7		
H₂O Column (feet)	ELEVE TO THE TOTAL PROPERTY OF THE PROPERTY OF		
Pump Intake (feet)	AVAILE .		
Well Volume (gallons)			
Amount to Evacuate (gallons)			
Amount Evacuated (gallons)	2 gul		

FIELD READINGS

Date	Stabilization	8/18/22					
Time	Criteria	2:45	2:50	2:55			
pH (Std. Units)	+/-0.1	10.53	10.36	6.15			
Conductivity (mS/cm)	3%	2.73	2.73	276			
Turbidity (NTU)	10%	224	86.1	0.00			
D.O. (mg/L)	10%	3.83	2.36	1.19			
Temperature (°C) (°F)	3%	15.95°C	16:1100	14.8800			
ORP ³ (mV)	+/-10 mv	374	344	198			
Appearance		C	C	C			
Free Product (Yes/No)		rone	NONE	rone			
Odor		NONE	NOME	ross			
Comments							

DATA USABILITY SUMMARY REPORT (DUSR)

JCC Falconer, NY **Project # N30.009.001**

SDG: L2244958

12 Water Samples and 1 Trip Blank

Prepared for:

C&S Companies 141 Elm Street, Suite 100 Buffalo, NY 14203 **Attention: Cody Martin**

November 2022

Table of Contents

APPE	NDIX A NDIX B NDIX C	Validated Analytical Results Laboratory QC Documentation Validator Qualifications					
7.0	TOTAL USABLE D	ATA	4				
6.0	RESULTS OF THE	DATA REVIEW	4				
5.0	DATA VALIDATIO	ON QUALIFIERS	3				
4.0	GUIDANCE DOCU	MENTS AND DATA REVIEW CRITERIA	2				
3.0	SAMPLE AND ANALYSIS SUMMARY						
2.0	INTRODUCTION						
1.0	SUMMARY		1				
REVIE	EWER'S NARRATIV	E					
			Page No.				

Tables

Table 4-1 Data Validation Guidance Documents

Table 4-2 Quality Control Criteria for Validating Laboratory Analytical Data

Summaries of Validated Results

Table 6-1 VOCs

REVIEWER'S NARRATIVE C&S Companies SDG L2244958 JCC

The data associated with this Sample Delivery Groups (SDG) L2244958, analyzed by Alpha Analytical, Westborough, MA have been reviewed in accordance with assessment criteria provided by the New York State Department of Environmental Conservation following the review procedures provided in the USEPA Functional Guidelines for evaluating organic and inorganic data.

All analytical results reported by the laboratory are considered valid and acceptable except results that have been qualified as rejected, "R". Results qualified as estimated "J", or as non-detects, "U", are considered usable for the purpose of evaluating water and/or soil quality. However, these qualifiers indicate that the accuracy and/or precision of the analytical result is questionable. A summary of all data that have been qualified and the reasons for qualification are provided in the following data usability summary report (DUSR).

Two facts should be noted by all data users. First, the "R" qualifier means that the associated value is unusable. In other words, due to significant quality control (QC) problems, the analysis is invalid and provides no information as to whether the analyte is present or not. Values qualified with an "R" should not appear on the final data tables because they cannot be relied upon, even as the last resort. Second, no analyte concentration, even if it has passed all QC tests, is guaranteed to be accurate. Strict QC serves to increase confidence in data, but any value potentially contains error.

Reviewer's Signature:	Míchael K. Perry	Date:	11/28/2022	
c —	Michael K. Perry			
	Chemist			

1.0 EVENT SUMMARY

SITE: JCC

Falconer, NY

Project #: N30.009.001

SAMPLING DATEs: August 17 - 18, 2022

SAMPLE TYPE: 12 water samples and 1 trip blank

LABORATORY: Alpha Analytical

Westborough, MA

SDG No.: SDGs L2244958

2.0 INTRODUCTION

This data usability summary report (DUSR) was prepared in accordance with guidance provided by the New York State Department of Environmental Conservation (NYSDEC). The DUSR is based on a review and evaluation of the laboratory analytical data package. Specifically, the NYSDEC guidance recommends review and evaluation of the following elements of the data package:

Completeness of the data package as defined under the requirements of the NYSDEC Analytical Services Protocols (ASP) Category B or the United States Environmental Protection Agency (USEPA) Contract Laboratory Program (CLP) deliverables,

Compliance with established analyte holding times,

Adherence to quality control (QC) limits and specifications for blanks, instrument tuning and calibration, surrogate recoveries, spike recoveries, laboratory duplicate analyses, and other QC criteria,

Adherence to established analytical protocols,

Conformance of data summary sheets with raw analytical data, and

Use of correct data qualifiers.

Data deficiencies, analytical protocol deviations, and quality control problems identified using the review criteria above and their effect on the analytical results are discussed in this report.

3.0 SAMPLE AND ANALYSIS SUMMARY

The data package consists of analytical results for 12 water samples and 1 trip blank collected on 8/17/22 - 8/18/22. These samples were analyzed for Volatile Organic Compounds (VOCs).

All laboratory analyses were submitted to Alpha Analytical, Westborough, MA and analyzed as SDG L2244958. The analytical results were provided in NYSDEC ASP Category B format, which includes all raw analytical data and laboratory QC data.

4.0 GUIDANCE DOCUMENTS AND DATA REVIEW CRITERIA

The guidance documents appropriate for reviewing laboratory quality control (QC) data and assigning data qualifiers (flags) to analytical results were selected from those listed in Table 4-1. The QC limits established in the documents applicable to this data review were used to assess the quality of the analytical results. In some cases, however, QC limits established internally by the laboratory were taken into account to determine data quality.

The QC criteria considered for assessing the usability of the reported analytical results provided for each analyte type (i.e. VOCs, SVOCs, metals, etc.) are listed in Table 4-2. These criteria may vary with the analytical method utilized by the laboratory. These criteria comply with the guidance recommended in Section 2.0 above.

5.0 DATA VALIDATION QUALIFIERS

The letter qualifiers (flags) used to define data usability are described briefly below. These letters are assigned by the data validator to analytical results having questionable accuracy and/or precision as determined by reviewing the laboratory QC data associated with the analytical results.

TABLE 4-1

Guidance Used For Validating Laboratory Analytical Data

Analyte Group	Guidance	Date
Metals (ICP-AES)	USEPA SOP HW-3a, Rev. 1	September 2016
Metals (Hg & CN)	USEPA SOP HW-3c, Rev. 1	September 2016
Volatile Organic Compounds (by Methods 8260B & 8260C)	USEPA SOP HW-24, Rev. 4	September 2014
Semi-Volatile Organic Compounds (by Method 8270D)	USEPA SOP HW-22 Rev. 5	December 2010
Pesticides (by Method 8181B)	USEPA SOP HW-44, Rev. 1.1	December 2010
Chlorinated Herbicides (by Method 8151A)	USEPA SOP HW-17, Rev. 3.1	December 2010
Polychlorinated Biphenyls (PCBs)	USEPA SOP HW-37A, Rev. 0	June 2015
Volatile Organic Compounds (Air) (by Method TO-15)	USEPA SOP HW-31, Rev. 6	September 2016
Per- and PolyFluoroAlkyl Substances (PFAS)	* NYSDEC	January 2021
General Chemistry Parameters	per NYSDEC ASP	July 2005

^{*} Sampling, Analysis, and Assessment of Per- and Polyfluoroalkyl Substances (PFAS) Under NYSDEC's Part 375 Remedial Programs, Appendix I

TABLE 4-2

QUALITY CONTROL CRITERIA USED FOR VALIDATING LABORATORY ANALYTICAL DATA

VOCs	SVOCs	Pesticides/PCBs	Metals	Gen Chemistry	PFAS
Completeness of Pkg	Completeness of Pkg	Completeness of Pkg	Completeness of Pkg	Completeness of Pkg	Completeness of Pkg
Sample Preservation	Sample Preservation	Sample Preservation	Sample Preservation	Sample Preservation	Sample Preservation
Holding Time	Holding Time	Holding Time	Holding Time	Holding Times	Holding Time
System Monitoring	Surrogate Recoveries	Surrogate Recoveries	Initial/Continuing	Calibration	Instr Performance
Compounds	Lab Control Sample	Matrix Spikes	Calibration	Lab Control Samples	Check
Lab Control Sample	Matrix Spikes	Blanks	CRDL Standards	Blanks	Initial Calibration
Matrix Spikes	Blanks	Instrument Calibration	Blanks	Spike Recoveries	Continuing Calibration
Blanks	Instrument Tuning	& Verification	Interference Check	Lab Duplicates	Blanks
Instrument Tuning	Internal Standards	Comparison of	Sample		Surrogates
Internal Standards	Initial Calibration	duplicate	Spike Recoveries		Lab Fortified Blank
Initial Calibration	Continuing Calibration	GC column results	Lab Duplicate		Matrix Spikes
Continuing Calibration	Lab Qualifiers	Analyte ID	Lab Control Sample		Internal Standards
Lab Qualifiers	Field Duplicate	Lab Qualifiers	ICP Serial Dilutions		
Field Duplicate		Field Duplicate	Lab Qualifiers		
			Field Duplicate		

Method TO-15 (Air)

Completeness of Pkg
Sample Preservation
Holding Time
Canister Certification
Instrument Tuning
Initial Calibration and
Instrument Performance
Daily Calibration
Blanks
Lab Control Sample
Field Duplicate

The laboratory may also use various letters and symbols to flag analytical results generated when QC limits were exceeded. The meanings of these flags may differ from those used by the independent data validator. Those used by the laboratory are provided with the analytical results.

NOTE: The assignment of data qualifiers by the data reviewer (validator) to laboratory analytical results should not necessarily be interpreted by the data user as a measure of laboratory ability or proficiency. Rather, the qualifiers are intended to provide a measure of data accuracy and precision to the data user, which, for example, may provide a level of confidence in determining whether or not standards or cleanup objectives have been met.

- U The analyte was analyzed for but was not detected at or above the sample quantitation limit.
- J The analyte was positively identified; the associated numerical value is the concentration of the analyte in the sample.

 (The magnitude of any value associated with the result is not determined by data validation).
- J+ The result is an estimated quantity and may be biased high.
- **J-** The result is an estimated quantity and may be biased low.
- UJ The analyte was analyzed for but not detected. The reported quantitation limit is approximate and may be inaccurate or imprecise.
- R The sample result is rejected (i.e., is unusable) due to serious deficiencies in the ability to analyze the sample and meet quality control criteria. The presence or absence of the analyte cannot be verified.
- **NJ** The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated numerical value represents its approximate concentration.

The validated analytical results are attached to this report. Validation qualifiers (flags) are indicated in red print. Data sheets having qualified data are signed and dated by the data reviewer.

6.0 RESULTS OF THE DATA REVIEW

The results of the data review are summarized in Table 6-1. The table lists the samples where QC criteria were found to exceed acceptable limits and the actions taken to qualify the associated analytical results.

7.0 TOTAL USABLE DATA

For SDG L2244958, thirteen samples were analyzed and results were reported for 754 analytes. Even though some results were flagged with a "J" as estimated, all results (100 %) are considered usable. See the summary table for the analyses that have been rejected and qualified and the associated QC reasons.

SDG L2244958

		J	V U	
ESI-3-081722 ESI-13R-081822 ESI-6-081822 ESI-2-081822 ESI-1-081822 PW-3R-081822 Trip Blank	Dichlorodifluoromethane Acetone 2-Butanone	J detects	LCS > QC limit	Data are estimated
ESI-3-081722	cis-1,2-Dichloroethene	J detects UJ non-detects	MS/MSD < QC limit	Data are estimated
ESI-10-081822 ESI-12-081822 ESI-6-081822 PW-3R-081822	Acetone	CRQL-U	Analyte detected in Trip Blank	Data changed to non-detect
ESI-10-081822 ESI-12-081822 ESI-6-081822	Vinyl chloride Bromomethane Chloroethane Acetone 2-Butanone 4-Methyl-2-pentanone DBCP	J detects UJ non-detects	ICV and/or CCV > QC limit	Data are estimated
PW-1-081722 DUP-081722 ESI-10-081822	Bromomethane Methylacetate 2-Hexanone DBCP	J detects UJ non-detects	CCV > QC limit	Data are estimated

SDG L2244958

ESI-3-081722 ESI-13R-081822 ESI-6-081822 ESI-2-081822 ESI-1-081822 PW-3R-081822 Trip Blank	Dichlorodifluoromethane Vinyl chloride Bromomethane Carbondisulfide Freon 113 Acetone Methyl acetate Cyclohexane 2-Butanone	J detects UJ non-detects	CCV > QC limit	Data are estimated
--	---	-----------------------------	----------------	--------------------

ACRONYMS

BSP

Blank Spike

CCAL

Continuing Calibration

CCB

Continuing Calibration Blank

CCV

Continuing Calibration Verification

CRDL

Contract Required Detection Limit

CRQL

Contract Required Quantitation Limit

%D

Percent Difference

ICAL

Initial Calibration

ICB

Initial Calibration Blank

IS

Internal Standard

LCS

Laboratory Control Sample

MS/MSD

Matrix Spike/Matrix Spike Duplicate

QA

Quality Assurance

QC

Quality Control

%R

Percent recovery

RPD

Relative Percent Difference

RRF

Relative Response Factor

%RSD

Percent Relative Standard Deviation

TAL

Target Analyte List (metals)

TCL

Target Compound List (organics)

Appendix A

Validated Analytical Results

www.alphalab.com

Alpha Analytical

Laboratory Code: 11148

SDG Number: L2244958

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Project Name: JCC

Lab Number: L2244958 Project Number: N30.009.001 Report Date: 09/02/22

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L2244958-01	ESI-3-081722	WATER	FALCONER, NY	08/17/22 11:00	08/19/22
L2244958-02	PW-1-081822	WATER	FALCONER, NY	08/17/22 11:50	08/19/22
L2244958-03	DUP-081722	WATER	FALCONER, NY	08/17/22 11:50	08/19/22
L2244958-04	ESI-10-081822	WATER	FALCONER, NY	08/18/22 10:25	08/19/22
L2244958-05	ESI-11-081822	WATER	FALCONER, NY	08/18/22 11:05	08/19/22
L2244958-06	ESI-12-081822	WATER	FALCONER, NY	08/18/22 11:40	08/19/22
L2244958-07	ESI-7-081722	WATER	FALCONER, NY	08/17/22 12:45	08/19/22
L2244958-08	ESI-13R-081722	WATER	FALCONER, NY	08/17/22 14:15	08/19/22
L2244958-09	ESI-6-081822	WATER	FALCONER, NY	08/18/22 12:50	08/19/22
L2244958-10	ESI-2-081822	WATER	FALCONER, NY	08/18/22 13:25	08/19/22
L2244958-11	ESI-1-081822	WATER	FALCONER, NY	08/18/22 14:10	08/19/22
L2244958-12	PW-3R-081822	WATER	FALCONER, NY	08/18/22 14:55	08/19/22
L2244958-13	TRIP BLANK	WATER	FALCONER, NY	08/18/22 16:00	08/19/22

Project Name:JCCLab Number:L2244958Project Number:N30.009.001Report Date:09/02/22

Case Narrative (continued)

Report Submission

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

Sample Receipt

L2244958-03: The sample identified as "DUP-081822" on the chain of custody was identified as "DUP-081722" on the container label. At the client's request, the sample is reported as "DUP-081722".

Volatile Organics

L2244958-09D: The sample has elevated detection limits due to the dilution required by the sample matrix (purple).

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature: Melissa Sturgis

Report Date: 09/02/22

Title: Technical Director/Representative

ДІРНА	NEW YORK CHAIN OF CUSTODY	Service Centers Mahwah, NJ 07430: 35 Wh Albany, NY 12205: 14 Wall Tonawanda, NY 14150: 27	ker Way	105	Pag	of 2	1	e Rec'd	8/	rolr	ALPHA Job#	958
Westborough, MA 01581		Project Information		1.99		DAY SE	Deliverab	les	NAME OF TAXABLE PARTY.		Billing Information	130
8 Walkup Dr. TEL: 508-898-9220	320 Forbes Blvd TEL: 506-822-9300	The state of the s	TCL	1-1-1-0		A STREET, STRE	☐ ASI	E MANUEL CO.		D D		·
FAX: 508-898-9193	FAX: 508-822-3288	Ser. American conservation							_	SP-B	Same as Client In	110
Value William Control		Project Location:	FALLONI	er my			EQ EQ	ulS (1 File)	L EC	QuIS (4 File)	PO#	
Client Information		Project # N30.	069.001				Oth	er				
Client: (15 KA	MINCERS	(Use Project name as	s Project #)				Regulator	y Requireme	ent	A STATE OF THE STA	Disposal Site Informat	ion
Address: 141 FU	M (1	Project Manager:		ACKENT			MINISTER STREET, STREE	rogs		Part 375	Please identify below loca	18000000
Bulloni	14/4203	ALPHAQuote #:	04. 13.	TUCHU			1 =	2 Standards		CP-51	applicable disposal facilitie	
Phone:	1,000	Turn-Around Time	STAY, G. STATE	NAME OF STREET	S HILLS			Restricted Use				
		The second secon		-	APPRAINT N				ferred .	ver	Disposal Facility:	
Fax:	16 10/11		dard 🔏	Due Date	1,		☐ NY I	Inrestricted Us	50		□ NJ ■ N	Y
Email: Rhack	rtocscosio	Rush (only if pre appro	oved)	# of Days	:		☐ NYC	Sewer Discha	arge		Other:	
	been previously analyz						ANALYSI	S			Sample Filtration	I
Other project specif	ic requirements/comn	nents:					0		TT		Done	0
							13				Lab to do	a
							13	1 1	1 1	1 1	Preservation	. 1
Please specify Metal	e or TAI						25			1 1	Lab to do	
ricase specify meta	3 OF TAL.						13	1 1		1 1		В
							1 13	1 1	1 1		(Please Specify below	w) t
ALPHA Lab ID		- In	Col	lection	Sample	Sampler's	12		1 1	1 1	N. S.	t
(Lab Use Only)	Sa	ample ID	Date	Time	Matrix	Initials	2		1 1		Sample Specific Comme	ente
44958 01	P(T-3-	081722	01/2/22		11	1.0	V		\vdash		campic opecinic comme	ma e
THE PARTY OF THE P	102 5 00/10	222	VICTOR	11:00	GW	103	4		-			د ا
701	113 - OKI	F12	8/17/22	11:00	Gus	1203	[_ 3
10	150 - OKI	720	8117122	11:00	600	203	8					15
200	115-1-01	81822	Chithe	11:50	Gw	DA	4					3
-03	Dup. Of	1822	Virtor	11:80	GW	03	\dol_	1/				3
704	ECT-111-	081022	dictas	10:25	GW	1-1-0-	70		1			
25	ESI-11-	0151602	0111/22	1	7	200	-	_	-	+	-	3
		081822	8/19/20	11:08	60	1213	<u>\</u>		-	\perp		
706	65I-12-	0818180	18/18/22	11:40	612	22	>					3
707	ESI-7-	081782	1811712	12:48	GW	NA	2					3
708	ESI- 131	2-081702	8117122	2:15	Gw	102)o					3
Preservative Code:	Container Code	Westboro: Certification	n No: MA935	4			1					
A = None B = HCl	P = Plastic				Con	tainer Type	1//			1 1	Please print clearly,	
C = HNO ₃	A = Amber Glass V = Vial	Mansfield: Certification	I NO: MAU15				V			+	and completely. San	
$D = H_2SO_4$	G = Glass					reservative	101				not be logged in and turnaround time cloc	
E = NaOH	B = Bacteria Cup		7			10001101110	15			1 1	start until any ambig	
F = MeOH	C = Cube	///Relinquishe	ed By:	/ Date/	Time		Received B	v.	Da	te/Time	resolved. BY EXECU	
G = NaHSO ₄	O = Other E = Encore	1/1/5 8		8/9/22		120	AM	,		Contract Con		
$H = Na_2S_2O_3$ K/E = Zn Ac/NaOH	D = BOD Bottle	11/100				100	1115		01141.	1207:50	HAS READ AND AG	REES
O = Other		112/		8/19/12	51:10	1		_	8/00	22 0000	TO BE BOUND BY A	ALPHA'S
		0									TERMS & CONDITIO	SNC.
Form No: 01-25 HC (rev. 3	0-Sept-2013)					12					(See reverse side.)	

Westborough, MA 01581 8 Walkup Dr. TEL: 508-898-9220 FAX: 508-898-9193	NEW YORK CHAIN OF CUSTODY Mansfield, MA 02048 320 Forbes Blvd TEL: 508-822-9300 FAX: 508-822-3288	Service Centers Mahwah, NJ 07430: 35 Whitne Albany, NY 12205: 14 Walker Tonawanda, NY 14150: 275 Co Project Information Project Name: Project Location:	Way	2	Pag 2.0		Delivera	ite Rec'd in Lab bles SP-A QuIS (1 File)	A:	SP-B Quis (4 File)	ALPHA Job # L Z Z UUG 5 Billing Information Same as Client Info	-8
Client Information	TRANSPORT	Project # VS	2 009	.001	y		-	her		Quio (4 rile)	PO#	
The state of the s	YINRAUS	(Use Project name as P			/		-	ory Requirem	ent	IR START	Disposal Site Information	FIE
Address: 141 12	2015/ Ny 14203	Project Manager: / Co		UGAT			□ N	TOGS VQ Standards	N S	Y Part 375 Y CP-51	Please identify below location of applicable disposal facilities.	of
Phone:	/	Turn-Around Time	a late w	Delica de	STATE OF		☐ NY	Restricted Use	Ot	her	Disposal Facility:	
Fax: Email: Abacher	COCSIOS-WOO	Standard Rush (only if pre approved		Due Date # of Days				Unrestricted U C Sewer Disch			Other:	
These samples have be							ANALY	SIS			Sample Filtration	T
Other project specific Please specify Metals		ients:					Ta plac				□ Done □ Lab to do Preservation □ Lab to do (Please Specify below)	o t a l B o t
ALPHA Lab ID (Lab Use Only)	Sa	mple ID	Colle	ection Time	Sample Matrix	Sampler's Initials	JOC				Sample Specific Comments	t
44958 09	ESE-6-0	81822	68/18/W	12:50	60	23	V				odnipie opecine comments	9
-16	ESI-2-0	81822	8/8/22	1:25	GV	123	4					-
-11		08185	8/18/122	2:10	Cru	123	Ý					3
-12	NW-3R	-081822	XIXILL	2:85	Qw	120	8					3
73	714.0	ffred.	ggr	4-00	Ou-	N	×					2
												+
2-4-	a constitution and the											
A = None B = HCI C = HNO ₃ D = H ₂ SO ₄ E = NaOH B = Bacteria Cup A = Amber Glass Mansfield: Certification V = Vial G = Glass B = Bacteria Cup		Westboro: Certification N Mansfield: Certification N	ertification No: MA015 Container Type Preservative		√ B Received				Please print clearly, legibly and completely. Samples can not be logged in and turnaround time clock will not start until any ambiguities are			
H = Na ₂ S ₂ O ₃ E	O = Other E = Encore O = BOD Bottle	BIL		\$ 18 22 8/19/22	280	33	Z		8/19/	11 8 7:50 122 0020	resolved. BY EXECUTIN THIS COC, THE CLIENT HAS READ AND AGREE TO BE BOUND BY ALPH TERMS & CONDITIONS. (See reverse side.)	ES HA'S

GC/MS 8260 Analysis

Client : C&S Companies

Project Name : JCC

Lab ID : L2244958-01
Client ID : ESI-3-081722
Sample Location : FALCONER, NY

Sample Matrix : WATER
Analytical Method : 1,8260C
Lab File ID : V08220825N19

Sample Amount : 10 ml Level : LOW Extract Volume (MeOH) : N/A

 Lab Number
 : L2244958

 Project Number
 : N30.009.001

 Date Collected
 : 08/17/22 11:00

 Date Received
 : 08/19/22

Date Analyzed : 08/26/22 00:37

Dilution Factor : 1
Analyst : MKS
Instrument ID : VOA108
GC Column : RTX-502.2

			ug/L			
CAS NO.	Parameter	Results	RL	MDL	Qualifier	
75-09-2	Methylene chloride	ND	2.5	0.70	U	
75-34-3	1,1-Dichloroethane	ND	2.5	0.70	U	
67-66-3	Chloroform	1.7	2.5	0.70	J	
56-23-5	Carbon tetrachloride	ND	0.50	0.13	U	
78-87-5	1,2-Dichloropropane	ND	1.0	0.14	U	
124-48-1	Dibromochloromethane	ND	0.50	0.15	U	
79-00-5	1,1,2-Trichloroethane	ND	1.5	0.50	U	
127-18-4	Tetrachloroethene	ND	0.50	0.18	U	
108-90-7	Chlorobenzene	ND	2.5	0.70	U	
75-69-4	Trichlorofluoromethane	ND	2.5	0.70	U	
107-06-2	1,2-Dichloroethane	ND	0.50	0.13	U	
71-55-6	1,1,1-Trichloroethane	ND	2.5	0.70	U	
75-27-4	Bromodichloromethane	ND	0.50	0.19	U	
10061-02-6	trans-1,3-Dichloropropene	ND	0.50	0.16	U	
10061-01-5	cis-1,3-Dichloropropene	ND	0.50	0.14	U	
75-25-2	Bromoform	ND	2.0	0.65	U	
79-34-5	1,1,2,2-Tetrachloroethane	ND	0.50	0.17	U	
71-43-2	Benzene	ND	0.50	0.16	U	
108-88-3	Toluene	ND	2.5	0.70	U	
100-41-4	Ethylbenzene	ND	2.5	0.70	U	
74-87-3	Chloromethane	ND	2.5	0.70	U	
74-83-9	Bromomethane	ND	2.5	0.70	U	UJ
75-01-4	Vinyl chloride	0.92	1.0	0.07	J	J
75-00-3	Chloroethane	ND	2.5	0.70	U	
75-35-4	1,1-Dichloroethene	ND	0.50	0.17	U	

Client : C&S Companies

Project Name : JCC

Lab ID : L2244958-01
Client ID : ESI-3-081722
Sample Location : FALCONER, NY

Sample Matrix : WATER
Analytical Method : 1,8260C
Lab File ID : V08220825N19

Sample Amount : 10 ml Level : LOW Extract Volume (MeOH) : N/A Lab Number : L2244958
Project Number : N30.009.001
Date Collected : 08/17/22 11:00

Date Received : 08/19/22 Date Analyzed : 08/26/22 00:37

Dilution Factor : 1
Analyst : MKS
Instrument ID : VOA108
GC Column : RTX-502.2

%Solids : N/A Injection Volume : N/A

ug/L Results MDL Qualifier CAS NO. **Parameter** RL 156-60-5 trans-1,2-Dichloroethene ND 2.5 0.70 U Trichloroethene 79-01-6 5.6 0.50 0.18 95-50-1 1,2-Dichlorobenzene ND 2.5 0.70 U 541-73-1 1,3-Dichlorobenzene ND 2.5 0.70 п U.J 106-46-7 1,4-Dichlorobenzene ND 2.5 0.70 U U 1634-04-4 ND 2.5 0.70 Methyl tert butyl ether 179601-23-1 p/m-Xylene ND 2.5 0.70 U 95-47-6 2.5 0.70 U o-Xylene ND J 156-59-2 cis-1,2-Dichloroethene 22 2.5 0.70 100-42-5 Styrene ND 2.5 0.70 U 75-71-8 Dichlorodifluoromethane ND 5.0 1.0 U UJ 67-64-1 Acetone ND 5.0 1.5 U UJ 75-15-0 Carbon disulfide ND 5.0 1.0 U UJ 78-93-3 2-Butanone ND 5.0 1.9 U UJ U 108-10-1 4-Methyl-2-pentanone ND 5.0 1.0 591-78-6 ND 5.0 1.0 U 2-Hexanone 106-93-4 1,2-Dibromoethane ND 2.0 0.65 U 0.70 U 104-51-8 n-Butylbenzene ND 2.5 135-98-8 sec-Butylbenzene ND 2.5 0.70 U 98-06-6 ND U tert-Butylbenzene 2.5 0.70 96-12-8 ND 0.70 U 1,2-Dibromo-3-chloropropane 2.5 98-82-8 ND 2.5 0.70 U Isopropylbenzene 99-87-6 p-Isopropyltoluene ND 2.5 0.70 ш 91-20-3 ND 2.5 0.70 U Naphthalene ND U 103-65-1 2.5 0.70 n-Propylbenzene

Client : C&S Companies
Project Name : JCC

Lab ID : L2244958-01 Client ID : ESI-3-081722 Sample Location : FALCONER, NY

Sample Matrix : WATER
Analytical Method : 1,8260C
Lab File ID : V08220825N19

Sample Amount : 10 ml Level : LOW Extract Volume (MeOH) : N/A Lab Number : L2244958
Project Number : N30.009.001
Date Collected : 08/17/22 11:00
Date Received : 08/19/22

Date Analyzed : 08/26/22 00:37

Dilution Factor : 1

Analyst : MKS

Instrument ID : VOA108

GC Column : RTX-502.2

%Solids : N/A Injection Volume : N/A

CAS NO.			ug/L			
	Parameter	Results	RL	MDL	Qualifier	
120-82-1	1,2,4-Trichlorobenzene	ND	2.5	0.70	U	
108-67-8	1,3,5-Trimethylbenzene	ND	2.5	0.70	U	
95-63-6	1,2,4-Trimethylbenzene	ND	2.5	0.70	U	
79-20-9	Methyl Acetate	ND	2.0	0.23	U	UJ
110-82-7	Cyclohexane	ND	10	0.27	U	UJ
76-13-1	Freon-113	ND	2.5	0.70	U	UJ
108-87-2	Methyl cyclohexane	ND	10	0.40	U	

Client : C&S Companies

Project Name : JCC

 Lab ID
 : L2244958-02

 Client ID
 : PW-1-081822

 Sample Location
 : FALCONER, NY

Sample Matrix : WATER
Analytical Method : 1,8260C
Lab File ID : V05220825A20

Sample Amount : 10 ml Level : LOW Extract Volume (MeOH) : N/A Lab Number : L2244958
Project Number : N30.009.001
Date Collected : 08/17/22 11:50

Date Received : 08/19/22
Date Analyzed : 08/25/22 14:26

Dilution Factor : 1
Analyst : MKS
Instrument ID : VOA105
GC Column : RTX-502.2

			ug/L			
CAS NO.	Parameter	Results	RL	MDL	Qualifier	
75-09-2	Methylene chloride	ND	2.5	0.70	U	
75-34-3	1,1-Dichloroethane	ND	2.5	0.70	U	
67-66-3	Chloroform	0.73	2.5	0.70	J	
56-23-5	Carbon tetrachloride	ND	0.50	0.13	U	
78-87-5	1,2-Dichloropropane	ND	1.0	0.14	U	
124-48-1	Dibromochloromethane	ND	0.50	0.15	U	
79-00-5	1,1,2-Trichloroethane	ND	1.5	0.50	U	
127-18-4	Tetrachloroethene	ND	0.50	0.18	U	
108-90-7	Chlorobenzene	ND	2.5	0.70	U	
75-69-4	Trichlorofluoromethane	ND	2.5	0.70	U	
107-06-2	1,2-Dichloroethane	ND	0.50	0.13	U	
71-55-6	1,1,1-Trichloroethane	ND	2.5	0.70	U	
75-27-4	Bromodichloromethane	ND	0.50	0.19	U	
10061-02-6	trans-1,3-Dichloropropene	ND	0.50	0.16	U	
10061-01-5	cis-1,3-Dichloropropene	ND	0.50	0.14	U	
75-25-2	Bromoform	ND	2.0	0.65	U	
79-34-5	1,1,2,2-Tetrachloroethane	ND	0.50	0.17	U	
71-43-2	Benzene	ND	0.50	0.16	U	
108-88-3	Toluene	ND	2.5	0.70	U	
100-41-4	Ethylbenzene	ND	2.5	0.70	U	
74-87-3	Chloromethane	ND	2.5	0.70	U	
74-83-9	Bromomethane	ND	2.5	0.70	u l	IJ
75-01-4	Vinyl chloride	2.0	1.0	0.07		
75-00-3	Chloroethane	ND	2.5	0.70	U	
75-35-4	1,1-Dichloroethene	ND	0.50	0.17	U	

Client : C&S Companies

Project Name : JCC

 Lab ID
 : L2244958-02

 Client ID
 : PW-1-081822

 Sample Location
 : FALCONER, NY

Sample Matrix : WATER
Analytical Method : 1,8260C
Lab File ID : V05220825A20

Sample Amount : 10 ml Level : LOW Extract Volume (MeOH) : N/A Lab Number : L2244958
Project Number : N30.009.001
Date Collected : 08/17/22 11:50

Date Received : 08/19/22
Date Analyzed : 08/25/22 14:26

Dilution Factor : 1
Analyst : MKS
Instrument ID : VOA105
GC Column : RTX-502.2

			ug/L			
CAS NO.	Parameter	Results	RL	MDL	Qualifier	
156-60-5	trans-1,2-Dichloroethene	ND	2.5	0.70	U	
79-01-6	Trichloroethene	17	0.50	0.18		
95-50-1	1,2-Dichlorobenzene	ND	2.5	0.70	U	
541-73-1	1,3-Dichlorobenzene	ND	2.5	0.70	U	
106-46-7	1,4-Dichlorobenzene	ND	2.5	0.70	U	
1634-04-4	Methyl tert butyl ether	ND	2.5	0.70	U	
179601-23-1	p/m-Xylene	ND	2.5	0.70	U	
95-47-6	o-Xylene	ND	2.5	0.70	U	
156-59-2	cis-1,2-Dichloroethene	64	2.5	0.70		
100-42-5	Styrene	ND	2.5	0.70	U	
75-71-8	Dichlorodifluoromethane	ND	5.0	1.0	U	
67-64-1	Acetone	ND	5.0	1.5	U	
75-15-0	Carbon disulfide	ND	5.0	1.0	U	
78-93-3	2-Butanone	ND	5.0	1.9	U	
108-10-1	4-Methyl-2-pentanone	ND	5.0	1.0	U	
591-78-6	2-Hexanone	ND	5.0	1.0	U	UJ
106-93-4	1,2-Dibromoethane	ND	2.0	0.65	U	
104-51-8	n-Butylbenzene	ND	2.5	0.70	U	
135-98-8	sec-Butylbenzene	ND	2.5	0.70	U	
98-06-6	tert-Butylbenzene	ND	2.5	0.70	U	
96-12-8	1,2-Dibromo-3-chloropropane	ND	2.5	0.70	U	UJ
98-82-8	Isopropylbenzene	ND	2.5	0.70	U	
99-87-6	p-isopropyltoluene	ND	2.5	0.70	U	
91-20-3	Naphthalene	ND	2.5	0.70	U	
103-65-1	n-Propylbenzene	ND	2.5	0.70	U	

Client : C&S Companies
Project Name : JCC

Lab ID : L2244958-02 Client ID : PW-1-081822 Sample Location : FALCONER, NY

Sample Matrix : WATER
Analytical Method : 1,8260C
Lab File ID : V05220825A20

Sample Amount : 10 ml Level : LOW Extract Volume (MeOH) : N/A Lab Number : L2244958
Project Number : N30.009.001
Date Collected : 08/17/22 11:50
Date Received : 08/19/22
Date Analyzed : 08/25/22 14:26

Dilution Factor : 1
Analyst : MKS
Instrument ID : VOA105
GC Column : RTX-502.2

%Solids : N/A Injection Volume : N/A

CAS NO.	Parameter		ug/L			
		Results	RL	MDL	Qualifier	
120-82-1	1,2,4-Trichlorobenzene	ND	2.5	0.70	U	
108-67-8	1,3,5-Trimethylbenzene	ND	2.5	0.70	U	
95-63-6	1,2,4-Trimethylbenzene	ND	2.5	0.70	U	
79-20-9	Methyl Acetate	ND	2.0	0.23	U	UJ
110-82-7	Cyclohexane	ND	10	0.27	U	
76-13-1	Freon-113	ND	2.5	0.70	U	
108-87-2	Methyl cyclohexane	ND	10	0.40	U	

Client : C&S Companies

Project Name : JCC

Lab ID : L2244958-03
Client ID : DUP-081722
Sample Location : FALCONER, NY

Sample Matrix : WATER
Analytical Method : 1,8260C
Lab File ID : V05220825A21

Sample Amount : 10 ml Level : LOW Extract Volume (MeOH) : N/A Lab Number : L2244958
Project Number : N30.009.001
Date Collected : 08/17/22 11:50

Date Received : 08/19/22 Date Analyzed : 08/25/22 14:50

Dilution Factor : 1
Analyst : MKS
Instrument ID : VOA105
GC Column : RTX-502.2

%Solids : N/A Injection Volume : N/A

ug/L Results MDL CAS NO. **Parameter** RL Qualifier 75-09-2 Methylene chloride ND 2.5 0.70 U 75-34-3 ND 2.5 0.70 U 1,1-Dichloroethane 67-66-3 Chloroform 0.71 2.5 0.70 56-23-5 Carbon tetrachloride ND 0.50 0.13 п 78-87-5 1,2-Dichloropropane ND 1.0 0.14 U Dibromochloromethane ND 0.50 0.15 п 124-48-1 79-00-5 1,1,2-Trichloroethane ND 1.5 0.50 U 127-18-4 0.50 0.18 U Tetrachloroethene ND 108-90-7 Chlorobenzene ND 2.5 0.70 U 75-69-4 Trichlorofluoromethane ND 2.5 0.70 U 107-06-2 1,2-Dichloroethane ND 0.50 0.13 U 71-55-6 1.1.1-Trichloroethane ND 0.70 U 2.5 75-27-4 Bromodichloromethane ND 0.50 0.19 U 10061-02-6 ND 0.50 0.16 U trans-1,3-Dichloropropene 10061-01-5 cis-1,3-Dichloropropene ND 0.50 0.14 U 75-25-2 ND 2.0 0.65 U **Bromoform** 79-34-5 1,1,2,2-Tetrachloroethane ND 0.50 0.17 U U 71-43-2 Benzene ND 0.50 0.16 108-88-3 Toluene ND 2.5 0.70 U 100-41-4 ND U Ethylbenzene 2.5 0.70 Chloromethane 74-87-3 ND U 2.5 0.70 74-83-9 **Bromomethane** ND 2.5 0.70 U UJ 75-01-4 Vinyl chloride 2.0 1.0 0.07 75-00-3 Chloroethane ND 2.5 0.70 U 75-35-4 1,1-Dichloroethene ИD 0.50 0.17

Client : C&S Companies

Project Name : JCC

Lab ID : L2244958-03
Client ID : DUP-081722
Sample Location : FALCONER, NY

Sample Matrix : WATER
Analytical Method : 1,8260C
Lab File ID : V05220825A21

Sample Amount : 10 ml Level : LOW Extract Volume (MeOH) : N/A Lab Number : L2244958

Project Number : N30.009.001

Date Collected : 08/17/22 11:50

Date Received : 08/19/22 Date Analyzed : 08/25/22 14:50

Dilution Factor : 1
Analyst : MKS
Instrument ID : VOA105
GC Column : RTX-502.2

%Solids : N/A Injection Volume : N/A

ug/L Results MDL Qualifier CAS NO. **Parameter** RL 156-60-5 trans-1,2-Dichloroethene ND 2.5 0.70 U 79-01-6 Trichloroethene 17 0.50 0.18 95-50-1 1,2-Dichlorobenzene ND 2.5 0.70 541-73-1 1,3-Dichlorobenzene ND 2.5 0.70 п 106-46-7 1,4-Dichlorobenzene ND 2.5 0.70 U 1634-04-4 ND 2.5 0.70 п Methyl tert butyl ether 179601-23-1 p/m-Xylene ND 2.5 0.70 U 95-47-6 2.5 0.70 U o-Xylene ND 156-59-2 cis-1,2-Dichloroethene 65 2.5 0.70 100-42-5 Styrene ND 2.5 0.70 U 75-71-8 Dichlorodifluoromethane ND 5.0 1.0 U 67-64-1 Acetone ND 5.0 1.5 U 75-15-0 Carbon disulfide ND 5.0 1.0 U 78-93-3 2-Butanone ND 5.0 1.9 U U 108-10-1 4-Methyl-2-pentanone ND 5.0 1.0 UJ 591-78-6 ND 5.0 1.0 U 2-Hexanone 106-93-4 1,2-Dibromoethane ND 2.0 0.65 U 0.70 U 104-51-8 n-Butylbenzene ND 2.5 135-98-8 sec-Butylbenzene ND 2.5 0.70 U 98-06-6 ND U tert-Butylbenzene 2.5 0.70 UJ 96-12-8 ND 0.70 U 1,2-Dibromo-3-chloropropane 2.5 98-82-8 ND 2.5 0.70 U Isopropylbenzene 99-87-6 p-Isopropyltoluene ND 2.5 0.70 п 91-20-3 ND 2.5 0.70 U Naphthalene ND U 103-65-1 2.5 0.70 n-Propylbenzene

Client : C&S Companies

Project Name : JCC
Lab ID : L2244958-03
Client ID : DUP-081722
Sample Location : FALCONER, NY

Sample Matrix : WATER
Analytical Method : 1,8260C
Lab File ID : V05220825A21
Sample Amount : 10 ml

Level : LOW Extract Volume (MeOH) : N/A Lab Number : L2244958
Project Number : N30.009.001
Date Collected : 08/17/22 11:50
Date Received : 08/19/22
Date Analyzed : 08/25/22 14:50
Dilution Factor : 1

Analyst : MKS
Instrument ID : VOA105
GC Column : RTX-502.2

%Solids : N/A Injection Volume : N/A

CAS NO.			ug/L			
	Parameter	Results	RL	MDL	Qualifier	
120-82-1	1,2,4-Trichlorobenzene	ND	2.5	0.70	U	
108-67-8	1,3,5-Trimethylbenzene	ND	2.5	0.70	U	
95-63-6	1,2,4-Trimethylbenzene	ND	2.5	0.70	U	
79-20-9	Methyl Acetate	ND	2.0	0.23	U	UJ
110-82-7	Cyclohexane	ND	10	0.27	U	
76-13-1	Freon-113	ND	2.5	0.70	U	
108-87-2	Methyl cyclohexane	ND	10	0.40	U	

Client : C&S Companies

Project Name : JCC
Lab ID : L2244958-04
Client ID : ESI-10-081822
Sample Location : FALCONER, NY

Sample Matrix : WATER
Analytical Method : 1,8260C
Lab File ID : V05220825A22

Sample Amount : 10 ml Level : LOW Extract Volume (MeOH) : N/A Lab Number : L2244958

Project Number : N30.009.001

Date Collected : 08/18/22 10:25

Date Received : 08/19/22

Date Analyzed : 08/25/22 15:13 Dilution Factor : 1

Analyst : LAC Instrument ID : VOA105 GC Column : RTX-502.2

		ug/L			
CAS NO.	Parameter	Results	RL	MDL	Qualifier
75-09-2	Methylene chloride	ND	2.5	0.70	U
75-34-3	1,1-Dichloroethane	ND	2.5	0.70	U
67-66-3	Chloroform	ND	2.5	0.70	U
56-23-5	Carbon tetrachloride	ND	0.50	0.13	U
78-87-5	1,2-Dichloropropane	ND	1.0	0.14	U
124-48-1	Dibromochloromethane	ND	0.50	0.15	U
79-00-5	1,1,2-Trichloroethane	ND	1.5	0.50	U
127-18-4	Tetrachloroethene	ND	0.50	0.18	U
108-90-7	Chlorobenzene	ND	2.5	0.70	U
75-69-4	Trichlorofluoromethane	ND	2.5	0.70	U
107-06-2	1,2-Dichloroethane	ND	0.50	0.13	U
71-55-6	1,1,1-Trichloroethane	ND	2.5	0.70	U
75-27-4	Bromodichloromethane	ND	0.50	0.19	U
10061-02-6	trans-1,3-Dichloropropene	ND	0.50	0.16	U
10061-01-5	cis-1,3-Dichloropropene	ND	0.50	0.14	U
75-25-2	Bromoform	ND	2.0	0.65	U
79-34-5	1,1,2,2-Tetrachloroethane	ND	0.50	0.17	U
71-43-2	Benzene	ND	0.50	0.16	U
108-88-3	Toluene	ND	2.5	0.70	U
100-41-4	Ethylbenzene	ND	2.5	0.70	U
74-87-3	Chloromethane	ND	2.5	0.70	U
74-83-9	Bromomethane	ND	2.5	0.70	U UJ
75-01-4	Vinyl chloride	ND	1.0	0.07	U
75-00-3	Chloroethane	ND	2.5	0.70	U
75-35-4	1,1-Dichloroethene	ND	0.50	0.17	U

Client : C&S Companies

Project Name : JCC

Lab ID : L2244958-04
Client ID : ESI-10-081822
Sample Location : FALCONER, NY

Sample Matrix : WATER
Analytical Method : 1,8260C
Lab File ID : V05220825A22

Sample Amount : 10 ml Level : LOW Extract Volume (MeOH) : N/A Lab Number : L2244958

Project Number : N30.009.001

Date Collected : 08/18/22 10:25

Date Collected : 08/18/22 10:25

Date Received : 08/19/22

Date Analyzed : 08/25/22 15:13

Dilution Factor : 1
Analyst : LAC
Instrument ID : VOA105
GC Column : RTX-502.2

%Solids : N/A Injection Volume : N/A

ug/L Results MDL Qualifier CAS NO. **Parameter** RL 156-60-5 trans-1,2-Dichloroethene ND 2.5 0.70 U Trichloroethene ND U 79-01-6 0.50 0.18 95-50-1 1,2-Dichlorobenzene ND 2.5 0.70 U 541-73-1 1,3-Dichlorobenzene ND 2.5 0.70 п 106-46-7 1,4-Dichlorobenzene ND 2.5 0.70 U 1634-04-4 Methyl tert butyl ether ND 2.5 0.70 п 179601-23-1 p/m-Xylene ND 2.5 0.70 U 95-47-6 2.5 0.70 U o-Xylene ND 156-59-2 cis-1,2-Dichloroethene ND 2.5 0.70 U 100-42-5 Styrene ND 2.5 0.70 U 75-71-8 Dichlorodifluoromethane ND 5.0 1.0 U 67-64-1 Acetone 5.0 1.5 5.0 UJ 75-15-0 Carbon disulfide ND 5.0 1.0 U 78-93-3 2-Butanone ND 5.0 1.9 U ND U 108-10-1 4-Methyl-2-pentanone 5.0 1.0 UJ 591-78-6 2-Hexanone ND 5.0 1.0 U 106-93-4 1,2-Dibromoethane ND 2.0 0.65 U 104-51-8 0.70 U n-Butylbenzene ND 2.5 0.70 135-98-8 sec-Butylbenzene ND 2.5 U 98-06-6 ND 0.70 U tert-Butylbenzene 2.5 1,2-Dibromo-3-chloropropane UJ 96-12-8 ND 0.70 U 2.5 98-82-8 ND 2.5 0.70 U Isopropylbenzene 99-87-6 p-Isopropyltoluene ND 2.5 0.70 п 91-20-3 Naphthalene ND 2.5 0.70 U ND 2.5 U 103-65-1 0.70 n-Propylbenzene

Client : C&S Companies

Project Name : JCC
Lab ID : L2244958-04
Client ID : ESI-10-081822
Sample Location : FALCONER, NY

Sample Matrix : WATER
Analytical Method : 1,8260C
Lab File ID : V05220825A22
Sample Amount : 10 ml

Level : LOW Extract Volume (MeOH) : N/A Lab Number : L2244958
Project Number : N30.009.001
Date Collected : 08/18/22 10:25
Date Received : 08/19/22
Date Analyzed : 08/25/22 15:13
Dilution Factor : 1

Analyst : LAC
Instrument ID : VOA105
GC Column : RTX-502.2
%Solids : N/A

%Solids : N/A Injection Volume : N/A

			ug/L			
CAS NO.	Parameter	Results	RL	MDL	Qualifier	
120-82-1	1,2,4-Trichlorobenzene	ND	2.5	0.70	U	
108-67-8	1,3,5-Trimethylbenzene	ND	2.5	0.70	U	
95-63-6	1,2,4-Trimethylbenzene	ND	2.5	0.70	U	
79-20-9	Methyl Acetate	ND	2.0	0.23	U	UJ
110-82-7	Cyclohexane	ND	10	0.27	U	
76-13-1	Freon-113	ND	2.5	0.70	U	
108-87-2	Methyl cyclohexane	ND	10	0.40	U	

Client : C&S Companies

Project Name : JCC
Lab ID : L2244958-05
Client ID : ESI-11-081822
Sample Location : FALCONER, NY

Sample Matrix : WATER
Analytical Method : 1,8260C
Lab File ID : V22220825A23

Sample Amount : 10 ml Level : LOW Extract Volume (MeOH) : N/A Lab Number : L2244958
Project Number : N30.009.001
Date Collected : 08/18/22 11:05

Date Received : 08/19/22 Date Analyzed : 08/25/22 18:09

Dilution Factor : 1
Analyst : MKS
Instrument ID : VOA122
GC Column : RTX-502.2

			ug/L		
CAS NO.	Parameter	Results	RL	MDL	Qualifier
75-09-2	Methylene chloride	ND	2.5	0.70	U
75-34-3	1,1-Dichloroethane	ND	2.5	0.70	U
67-66-3	Chloroform	ND	2.5	0.70	U
56-23-5	Carbon tetrachloride	ND	0.50	0.13	U
78-87-5	1,2-Dichloropropane	ND	1.0	0.14	U
124-48-1	Dibromochloromethane	ND	0.50	0.15	U
79-00-5	1,1,2-Trichloroethane	ND	1.5	0.50	U
127-18-4	Tetrachloroethene	ND	0.50	0.18	U
108-90-7	Chlorobenzene	ND	2.5	0.70	U
75-69-4	Trichlorofluoromethane	ND	2.5	0.70	U
107-06-2	1,2-Dichloroethane	ND	0.50	0.13	U
71-55-6	1,1,1-Trichloroethane	ND	2.5	0.70	U
75-27-4	Bromodichloromethane	ND	0.50	0.19	U
10061-02-6	trans-1,3-Dichloropropene	ND	0.50	0.16	U
10061-01-5	cis-1,3-Dichloropropene	ND	0.50	0.14	U
75-25-2	Bromoform	2.3	2.0	0.65	
79-34-5	1,1,2,2-Tetrachloroethane	ND	0.50	0.17	U
71-43-2	Benzene	ND	0.50	0.16	U
108-88-3	Toluene	ND	2.5	0.70	U
100-41-4	Ethylbenzene	ND	2.5	0.70	U
74-87-3	Chloromethane	ND	2.5	0.70	U
74-83-9	Bromomethane	ND	2.5	0.70	U UJ
75-01-4	Vinyl chloride	ND	1.0	0.07	U UJ
75-00-3	Chloroethane	ND	2.5	0.70	U UJ
75-35-4	1,1-Dichloroethene	ND	0.50	0.17	U

Client : C&S Companies

Project Name : JCC
Lab ID : L2244958-05
Client ID : ESI-11-081822

Sample Location : FALCONER, NY

Sample Matrix : WATER
Analytical Method : 1,8260C
Lab File ID : V22220825A23

Sample Amount : 10 ml Level : LOW Extract Volume (MeOH) : N/A Lab Number : L2244958

Project Number : N30.009.001

Date Collected : 08/18/22 11:05

Date Received : 08/19/22 Date Analyzed : 08/25/22 18:09

Dilution Factor : 1
Analyst : MKS
Instrument ID : VOA122
GC Column : RTX-502.2

%Solids : N/A
Injection Volume : N/A

ug/L Results MDL Qualifier CAS NO. **Parameter** RL 156-60-5 trans-1,2-Dichloroethene ND 2.5 0.70 U ND U 79-01-6 Trichloroethene 0.50 0.18 95-50-1 1,2-Dichlorobenzene ND 2.5 0.70 U 541-73-1 1,3-Dichlorobenzene ND 2.5 0.70 п 106-46-7 1,4-Dichlorobenzene ND 2.5 0.70 U 1634-04-4 ND 2.5 0.70 п Methyl tert butyl ether 179601-23-1 p/m-Xylene ND 2.5 0.70 U 95-47-6 2.5 0.70 U o-Xylene ND 156-59-2 cis-1,2-Dichloroethene ND 2.5 0.70 U 100-42-5 Styrene ND 2.5 0.70 U 75-71-8 Dichlorodifluoromethane ND 5.0 1.0 U UJ 67-64-1 Acetone ND 5.0 1.5 U 75-15-0 Carbon disulfide ND 5.0 1.0 U 78-93-3 2-Butanone ND 5.0 1.9 U UJ U 108-10-1 4-Methyl-2-pentanone ND 5.0 1.0 UJ 591-78-6 ND 5.0 1.0 2-Hexanone 106-93-4 1,2-Dibromoethane ND 2.0 0.65 U 0.70 U 104-51-8 n-Butylbenzene ND 2.5 135-98-8 sec-Butylbenzene ND 2.5 0.70 U 98-06-6 ND U tert-Butylbenzene 2.5 0.70 UJ 96-12-8 ND 0.70 U 1,2-Dibromo-3-chloropropane 2.5 98-82-8 ND 2.5 0.70 U Isopropylbenzene 99-87-6 p-Isopropyltoluene ND 2.5 0.70 п 91-20-3 ND 2.5 0.70 U Naphthalene ND U 103-65-1 2.5 0.70 n-Propylbenzene

Client : C&S Companies
Project Name : JCC

Lab ID : L2244958-05 Client ID : ESI-11-081822 Sample Location : FALCONER, NY

Sample Matrix : WATER
Analytical Method : 1,8260C
Lab File ID : V22220825A23
Sample Amount : 10 ml

Level : LOW Extract Volume (MeOH) : N/A

Lab Number : L2244958
Project Number : N30.009.001
Date Collected : 08/18/22 11:05

Date Received : 08/19/22 Date Analyzed : 08/25/22 18:09

Dilution Factor : 1
Analyst : MKS
Instrument ID : VOA122
GC Column : RTX-502.2

		ug/L			
Parameter	Results	RL	MDL	Qualifier	
1,2,4-Trichlorobenzene	ND	2.5	0.70	U	
1,3,5-Trimethylbenzene	ND	2.5	0.70	U	
1,2,4-Trimethylbenzene	ND	2.5	0.70	U	
Methyl Acetate	ND	2.0	0.23	U	
Cyclohexane	ND	10	0.27	U	
Freon-113	ND	2.5	0.70	U	
Methyl cyclohexane	ND	10	0.40	U	
	1,2,4-Trichlorobenzene 1,3,5-Trimethylbenzene 1,2,4-Trimethylbenzene Methyl Acetate Cyclohexane Freon-113	1,2,4-Trichlorobenzene ND 1,3,5-Trimethylbenzene ND 1,2,4-Trimethylbenzene ND Methyl Acetate ND Cyclohexane ND Freon-113 ND	Parameter Results RL 1,2,4-Trichlorobenzene ND 2.5 1,3,5-Trimethylbenzene ND 2.5 1,2,4-Trimethylbenzene ND 2.5 Methyl Acetate ND 2.0 Cyclohexane ND 10 Freon-113 ND 2.5	Parameter Results RL MDL 1,2,4-Trichlorobenzene ND 2.5 0.70 1,3,5-Trimethylbenzene ND 2.5 0.70 1,2,4-Trimethylbenzene ND 2.5 0.70 Methyl Acetate ND 2.0 0.23 Cyclohexane ND 10 0.27 Freon-113 ND 2.5 0.70	Parameter Results RL MDL Qualifier 1,2,4-Trichlorobenzene ND 2.5 0.70 U 1,3,5-Trimethylbenzene ND 2.5 0.70 U 1,2,4-Trimethylbenzene ND 2.5 0.70 U Methyl Acetate ND 2.0 0.23 U Cyclohexane ND 10 0.27 U Freon-113 ND 2.5 0.70 U

Client : C&S Companies
Project Name : JCC

Lab ID : L2244958-06 Client ID : ESI-12-081822

Sample Location : FALCONER, NY

Sample Matrix : WATER
Analytical Method : 1,8260C
Lab File ID : V22220825A24

Sample Amount : 10 ml Level : LOW Extract Volume (MeOH) : N/A Project Number : N30.009.001

Date Collected : 08/18/22 11:40

Date Received : 08/19/22

Date Analyzed : 08/25/22 18:35

Dilution Factor : 1

: L2244958

Analyst : MKS
Instrument ID : VOA122
GC Column : RTX-502.2

%Solids : N/A Injection Volume : N/A

Lab Number

		ug/L			
CAS NO.	Parameter	Results	RL	MDL	Qualifier
75-09-2	Methylene chloride	ND	2.5	0.70	U
75-34-3	1,1-Dichloroethane	ND	2.5	0.70	U
67-66-3	Chloroform	ND	2.5	0.70	U
56-23-5	Carbon tetrachloride	ND	0.50	0.13	U
78-87-5	1,2-Dichloropropane	ND	1.0	0.14	U
124-48-1	Dibromochloromethane	ND	0.50	0.15	U
79-00-5	1,1,2-Trichloroethane	ND	1.5	0.50	U
127-18-4	Tetrachloroethene	ND	0.50	0.18	U
108-90-7	Chlorobenzene	ND	2.5	0.70	U
75-69-4	Trichlorofluoromethane	ND	2.5	0.70	U
107-06-2	1,2-Dichloroethane	ND	0.50	0.13	U
71-55-6	1,1,1-Trichloroethane	ND	2.5	0.70	U
75-27-4	Bromodichloromethane	ND	0.50	0.19	U
10061-02-6	trans-1,3-Dichloropropene	ND	0.50	0.16	U
10061-01-5	cis-1,3-Dichloropropene	ND	0.50	0.14	U
75-25-2	Bromoform	2.0	2.0	0.65	
79-34-5	1,1,2,2-Tetrachloroethane	ND	0.50	0.17	U
71-43-2	Benzene	ND	0.50	0.16	U
108-88-3	Toluene	ND	2.5	0.70	U
100-41-4	Ethylbenzene	ND	2.5	0.70	U
74-87-3	Chloromethane	ND	2.5	0.70	U
74-83-9	Bromomethane	ND	2.5	0.70	U UJ
75-01-4	Vinyl chloride	ND	1.0	0.07	U UJ
75-00-3	Chloroethane	ND	2.5	0.70	U UJ
75-35-4	1,1-Dichloroethene	ND	0.50	0.17	U

Client : C&S Companies

Project Name : JCC

Lab ID : L2244958-06
Client ID : ESI-12-081822
Sample Location : FALCONER, NY

Sample Matrix : WATER
Analytical Method : 1,8260C
Lab File ID : V22220825A24

Sample Amount : 10 ml Level : LOW Extract Volume (MeOH) : N/A Lab Number : L2244958
Project Number : N30.009.001
Date Collected : 08/18/22 11:40

Date Received : 08/19/22
Date Analyzed : 08/25/22 18:35

Dilution Factor : 1
Analyst : MKS
Instrument ID : VOA122
GC Column : RTX-502.2

			ug/L			
CAS NO.	Parameter	Results	RL	MDL	Qualifier	
156-60-5	trans-1,2-Dichloroethene	ND	2.5	0.70	U	
79-01-6	Trichloroethene	ND	0.50	0.18	U	
95-50-1	1,2-Dichlorobenzene	ND	2.5	0.70	U	
541-73-1	1,3-Dichlorobenzene	ND	2.5	0.70	U	
106-46-7	1,4-Dichlorobenzene	ND	2.5	0.70	U	
1634-04-4	Methyl tert butyl ether	ND	2.5	0.70	U	
179601-23-1	p/m-Xylene	ND	2.5	0.70	U	
95-47-6	o-Xylene	ND	2.5	0.70	U	
156-59-2	cis-1,2-Dichloroethene	ND	2.5	0.70	U	
100-42-5	Styrene	ND	2.5	0.70	U	
75-71-8	Dichlorodifluoromethane	ND	5.0	1.0	U	
67-64-1	Acetone	2.3	5.0	1.5	J	5.0 UJ
75-15-0	Carbon disulfide	ND	5.0	1.0	U	
78-93-3	2-Butanone	ND	5.0	1.9	U	UJ
108-10-1	4-Methyl-2-pentanone	ND	5.0	1.0	U	UJ
591-78-6	2-Hexanone	ND	5.0	1.0	U	
106-93-4	1,2-Dibromoethane	ND	2.0	0.65	U	
104-51-8	n-Butylbenzene	ND	2.5	0.70	U	
135-98-8	sec-Butylbenzene	ND	2.5	0.70	U	
98-06-6	tert-Butylbenzene	ND	2.5	0.70	U	
96-12-8	1,2-Dibromo-3-chloropropane	ND	2.5	0.70	U	UJ
98-82-8	Isopropylbenzene	ND	2.5	0.70	U	
99-87-6	p-Isopropyltoluene	ND	2.5	0.70	U	
91-20-3	Naphthalene	ND	2.5	0.70	U	
103-65-1	n-Propylbenzene	ND	2.5	0.70	U	

Client : C&S Companies

Project Name : JCC
Lab ID : L2244958-06
Client ID : ESI-12-081822
Sample Location : FALCONER, NY

Sample Matrix : WATER
Analytical Method : 1,8260C
Lab File ID : V22220825A24

Sample Amount : 10 ml Level : LOW Extract Volume (MeOH) : N/A Lab Number : L2244958

Project Number : N30.009.001

Date Collected : 08/18/22 11:40

Date Received : 08/19/22

Date Analyzed : 08/25/22 18:35 Dilution Factor : 1

Analyst : MKS
Instrument ID : VOA122
GC Column : RTX-502.2

			ug/L			
CAS NO.	Parameter	Results	RL	MDL	Qualifier	
120-82-1	1,2,4-Trichlorobenzene	ND	2.5	0.70	U	
108-67-8	1,3,5-Trimethylbenzene	ND	2.5	0.70	U	
95-63-6	1,2,4-Trimethylbenzene	ND	2.5	0.70	U	
79-20-9	Methyl Acetate	ND	2.0	0.23	U	
110-82-7	Cyclohexane	ND	10	0.27	U	
76-13-1	Freon-113	ND	2.5	0.70	U	
108-87-2	Methyl cyclohexane	ND	10	0.40	U	

Client : C&S Companies

Project Name : JCC
Lab ID : L2244958-07
Client ID : ESI-7-081722
Sample Location : FALCONER, NY

Sample Matrix : WATER
Analytical Method : 1,8260C
Lab File ID : V22220825A25

Sample Amount : 10 ml Level : LOW Extract Volume (MeOH) : N/A Lab Number : L2244958

Project Number : N30.009.001

Date Collected : 08/17/22 12:45

Date Received : 08/19/22

Date Analyzed : 08/25/22 19:00

Dilution Factor : 1
Analyst : MKS
Instrument ID : VOA122
GC Column : RTX-502.2

%Solids : N/A Injection Volume : N/A

ug/L MDL CAS NO. **Parameter** Results RL Qualifier 75-09-2 Methylene chloride ND 2.5 0.70 U 75-34-3 ND 2.5 0.70 U 1,1-Dichloroethane 67-66-3 Chloroform ND 2.5 0.70 U 56-23-5 Carbon tetrachloride ND 0.50 0.13 п 78-87-5 1,2-Dichloropropane ND 1.0 0.14 U Dibromochloromethane ND 0.50 п 124-48-1 0.15 79-00-5 1,1,2-Trichloroethane ND 1.5 0.50 U 127-18-4 0.50 0.18 Tetrachloroethene 0.48 J 108-90-7 Chlorobenzene ND 2.5 0.70 U 75-69-4 Trichlorofluoromethane ND 2.5 0.70 U 107-06-2 1,2-Dichloroethane ND 0.50 0.13 U 71-55-6 1.1.1-Trichloroethane ND 0.70 U 2.5 75-27-4 Bromodichloromethane ND 0.50 0.19 U 10061-02-6 ND 0.50 0.16 U trans-1,3-Dichloropropene 10061-01-5 cis-1,3-Dichloropropene ND 0.50 0.14 U 75-25-2 ND 2.0 0.65 U **Bromoform** 79-34-5 1,1,2,2-Tetrachloroethane ND 0.50 0.17 U U 71-43-2 Benzene ND 0.50 0.16 108-88-3 Toluene ND 2.5 0.70 U 100-41-4 ND U Ethylbenzene 2.5 0.70 Chloromethane 74-87-3 ND 2.5 0.70 U 74-83-9 **Bromomethane** ND 2.5 0.70 U UJ 75-01-4 Vinyl chloride ND 1.0 0.07 U UJ 75-00-3 Chloroethane ND 2.5 0.70 UJ ND U 75-35-4 1,1-Dichloroethene 0.50 0.17

Client : C&S Companies

Project Name : JCC

Lab ID : L2244958-07 Client ID : ESI-7-081722 Sample Location : FALCONER, NY

Sample Matrix : WATER
Analytical Method : 1,8260C
Lab File ID : V22220825A25

Sample Amount : 10 ml Level : LOW Extract Volume (MeOH) : N/A Lab Number : L2244958
Project Number : N30.009.001
Date Collected : 08/17/22 12:45

Date Received : 08/19/22 Date Analyzed : 08/25/22 19:00

Dilution Factor : 1
Analyst : MKS
Instrument ID : VOA122
GC Column : RTX-502.2

			ug/L			
CAS NO.	Parameter	Results	RL	MDL	Qualifier	
156-60-5	trans-1,2-Dichloroethene	ND	2.5	0.70	U	
79-01-6	Trichloroethene	79	0.50	0.18		
95-50-1	1,2-Dichlorobenzene	ND	2.5	0.70	U	
541-73-1	1,3-Dichlorobenzene	ND	2.5	0.70	U	
106-46-7	1,4-Dichlorobenzene	ND	2.5	0.70	U	
1634-04-4	Methyl tert butyl ether	ND	2.5	0.70	U	
179601-23-1	p/m-Xylene	ND	2.5	0.70	U	
95-47-6	o-Xylene	ND	2.5	0.70	U	
156-59-2	cis-1,2-Dichloroethene	4.4	2.5	0.70		
100-42-5	Styrene	ND	2.5	0.70	U	
75-71-8	Dichlorodifluoromethane	ND	5.0	1.0	U	
67-64-1	Acetone	ND	5.0	1.5	U	UJ
75-15-0	Carbon disulfide	ND	5.0	1.0	U	
78-93-3	2-Butanone	ND	5.0	1.9	U	UJ
108-10-1	4-Methyl-2-pentanone	ND	5.0	1.0	U	UJ
591-78-6	2-Hexanone	ND	5.0	1.0	U	
106-93-4	1,2-Dibromoethane	ND	2.0	0.65	U	
104-51-8	n-Butylbenzene	ND	2.5	0.70	U	
135-98-8	sec-Butylbenzene	ND	2.5	0.70	U	
98-06-6	tert-Butylbenzene	ND	2.5	0.70	U	
96-12-8	1,2-Dibromo-3-chloropropane	ND	2.5	0.70	U	UJ
98-82-8	Isopropylbenzene	ND	2.5	0.70	U	
99-87-6	p-Isopropyltoluene	ND	2.5	0.70	U	
91-20-3	Naphthalene	ND	2.5	0.70	U	
103-65-1	n-Propylbenzene	ND	2.5	0.70	U	

Client : C&S Companies

Project Name : JCC
Lab ID : L2244958-07
Client ID : ESI-7-081722
Sample Location : FALCONER, NY

Sample Matrix : WATER
Analytical Method : 1,8260C
Lab File ID : V22220825A25
Sample Amount : 10 ml

Level : LOW Extract Volume (MeOH) : N/A

Lab Number : L2244958
Project Number : N30.009.001
Date Collected : 08/17/22 12:45
Date Received : 08/19/22

Date Analyzed : 08/25/22 19:00

Dilution Factor : 1
Analyst : MKS
Instrument ID : VOA122
GC Column : RTX-502.2

			ug/L			
CAS NO.	Parameter	Results	RL	MDL	Qualifier	
120-82-1	1,2,4-Trichlorobenzene	ND	2.5	0.70	U	
108-67-8	1,3,5-Trimethylbenzene	ND	2.5	0.70	U	
95-63-6	1,2,4-Trimethylbenzene	ND	2.5	0.70	U	
79-20-9	Methyl Acetate	ND	2.0	0.23	U	
110-82-7	Cyclohexane	ND	10	0.27	U	
76-13-1	Freon-113	ND	2.5	0.70	U	
108-87-2	Methyl cyclohexane	ND	10	0.40	U	

Client : C&S Companies

Project Name : JCC

Lab ID : L2244958-08
Client ID : ESI-13R-081722
Sample Location : FALCONER, NY

Sample Matrix : WATER
Analytical Method : 1,8260C
Lab File ID : V08220825N18

Sample Amount : 10 ml Level : LOW Extract Volume (MeOH) : N/A Lab Number : L2244958

Project Number : N30.009.001

Date Collected : 08/17/22 14:15

Date Received : 08/19/22 Date Analyzed : 08/26/22 00:16

Dilution Factor : 1
Analyst : MKS
Instrument ID : VOA108
GC Column : RTX-502.2

%Solids : N/A Injection Volume : N/A

ug/L

Results MDL Qualifier CAS NO. **Parameter** RL 75-09-2 Methylene chloride ND 2.5 0.70 U ND 75-34-3 2.5 0.70 U 1,1-Dichloroethane 67-66-3 Chloroform ND 2.5 0.70 U 56-23-5 Carbon tetrachloride ND 0.50 0.13 п 78-87-5 1,2-Dichloropropane ND 1.0 0.14 U 124-48-1 Dibromochloromethane ND 0.50 0.15 п 79-00-5 1,1,2-Trichloroethane ND 1.5 0.50 U 127-18-4 0.50 0.18 U Tetrachloroethene ND 108-90-7 Chlorobenzene ND 2.5 0.70 U 75-69-4 Trichlorofluoromethane ND 2.5 0.70 U 107-06-2 1,2-Dichloroethane ND 0.50 0.13 U 71-55-6 1.1.1-Trichloroethane ND 2.5 0.70 U 75-27-4 Bromodichloromethane ND 0.50 0.19 U 10061-02-6 ND 0.50 0.16 U trans-1,3-Dichloropropene ND 0.50 U 10061-01-5 cis-1,3-Dichloropropene 0.14 75-25-2 ND 2.0 0.65 U **Bromoform** 79-34-5 1,1,2,2-Tetrachloroethane ND 0.50 0.17 U 0.50 U 71-43-2 Benzene ND 0.16 108-88-3 Toluene ND 2.5 0.70 U 100-41-4 Ethylbenzene ND 0.70 U 2.5 74-87-3 Chloromethane ND 0.70 U 2.5 74-83-9 **Bromomethane** ND 2.5 0.70 U UJ 75-01-4 Vinyl chloride ND 1.0 0.07 ш UJ 75-00-3 Chloroethane ND 2.5 0.70 U ND U 75-35-4 1,1-Dichloroethene 0.50 0.17

Client : C&S Companies

Project Name : JCC

Lab ID : L2244958-08
Client ID : ESI-13R-081722
Sample Location : FALCONER, NY

Sample Matrix : WATER
Analytical Method : 1,8260C
Lab File ID : V08220825N18

Sample Amount : 10 ml Level : LOW Extract Volume (MeOH) : N/A Lab Number : L2244958
Project Number : N30.009.001
Date Collected : 08/17/22 14:15

Date Received : 08/19/22
Date Analyzed : 08/26/22 00:16

Dilution Factor : 1
Analyst : MKS
Instrument ID : VOA108
GC Column : RTX-502.2

			ug/L			
CAS NO.	Parameter	Results	RL	MDL	Qualifier	
156-60-5	trans-1,2-Dichloroethene	ND	2.5	0.70	U	
79-01-6	Trichloroethene	14	0.50	0.18		
95-50-1	1,2-Dichlorobenzene	ND	2.5	0.70	U	
541-73-1	1,3-Dichlorobenzene	ND	2.5	0.70	U	
106-46-7	1,4-Dichlorobenzene	ND	2.5	0.70	U	
1634-04-4	Methyl tert butyl ether	ND	2.5	0.70	U	
179601-23-1	p/m-Xylene	ND	2.5	0.70	U	
95-47-6	o-Xylene	ND	2.5	0.70	U	
156-59-2	cis-1,2-Dichloroethene	1.5	2.5	0.70	J	
100-42-5	Styrene	ND	2.5	0.70	U	
75-71-8	Dichlorodifluoromethane	ND	5.0	1.0	U	UJ
67-64-1	Acetone	ND	5.0	1.5	U	UJ
75-15-0	Carbon disulfide	ND	5.0	1.0	U	UJ
78-93-3	2-Butanone	ND	5.0	1.9	U	UJ
108-10-1	4-Methyl-2-pentanone	ND	5.0	1.0	U	
591-78-6	2-Hexanone	ND	5.0	1.0	U	
106-93-4	1,2-Dibromoethane	ND	2.0	0.65	U	
104-51-8	n-Butylbenzene	ND	2.5	0.70	U	
135-98-8	sec-Butylbenzene	ND	2.5	0.70	U	
98-06-6	tert-Butylbenzene	ND	2.5	0.70	U	
96-12-8	1,2-Dibromo-3-chloropropane	ND	2.5	0.70	U	
98-82-8	Isopropylbenzene	ND	2.5	0.70	U	
99-87-6	p-Isopropyltoluene	ND	2.5	0.70	U	
91-20-3	Naphthalene	ND	2.5	0.70	U	
103-65-1	n-Propylbenzene	ND	2.5	0.70	U	

Client : C&S Companies
Project Name : JCC

Lab ID : L2244958-08
Client ID : ESI-13R-081722
Sample Location : FALCONER, NY

Sample Matrix : WATER
Analytical Method : 1,8260C
Lab File ID : V08220825N18
Sample Amount : 10 ml

Level : LOW Extract Volume (MeOH) : N/A Lab Number : L2244958
Project Number : N30.009.001
Date Collected : 08/17/22 14:15
Date Received : 08/19/22
Date Analyzed : 08/26/22 00:16
Dilution Factor : 1

Analyst : MKS
Instrument ID : VOA108
GC Column : RTX-502.2

%Solids : N/A Injection Volume : N/A

CAS NO.	Parameter		ug/L			
		Results	RL	MDL	Qualifier	
120-82-1	1,2,4-Trichlorobenzene	ND	2.5	0.70	U	
108-67-8	1,3,5-Trimethylbenzene	ND	2.5	0.70	U	
95-63-6	1,2,4-Trimethylbenzene	ND	2.5	0.70	U	
79-20-9	Methyl Acetate	ND	2.0	0.23	U	UJ
110-82-7	Cyclohexane	ND	10	0.27	U	UJ
76-13-1	Freon-113	ND	2.5	0.70	U	UJ
108-87-2	Methyl cyclohexane	ND	10	0.40	U	

Client : C&S Companies

Project Name : JCC
Lab ID : L2244958-09D
Client ID : ESI-6-081822
Sample Location : FALCONER, NY

Sample Matrix : WATER
Analytical Method : 1,8260C
Lab File ID : V08220825N17

Sample Amount : 1 ml Level : LOW Extract Volume (MeOH) : N/A

 Lab Number
 : L2244958

 Project Number
 : N30.009.001

 Date Collected
 : 08/18/22 12:50

 Date Received
 : 08/19/22

Date Analyzed : 08/25/22 23:55
Dilution Factor : 10
Analyst : MKS

Instrument ID : VOA108
GC Column : RTX-502.2

			ug/L		
CAS NO.	Parameter	Results	RL	MDL	Qualifier
75-09-2	Methylene chloride	ND	25	7.0	U
75-34-3	1,1-Dichloroethane	ND	25	7.0	U
67-66-3	Chloroform	ND	25	7.0	U
56-23-5	Carbon tetrachloride	ND	5.0	1.3	U
78-87-5	1,2-Dichloropropane	ND	10	1.4	U
124-48-1	Dibromochloromethane	ND	5.0	1.5	U
79-00-5	1,1,2-Trichloroethane	ND	15	5.0	U
127-18-4	Tetrachloroethene	ND	5.0	1.8	U
108-90-7	Chlorobenzene	ND	25	7.0	U
75-69-4	Trichlorofluoromethane	ND	25	7.0	U
107-06-2	1,2-Dichloroethane	ND	5.0	1.3	U
71-55-6	1,1,1-Trichloroethane	ND	25	7.0	U
75-27-4	Bromodichloromethane	ND	5.0	1.9	U
10061-02-6	trans-1,3-Dichloropropene	ND	5.0	1.6	U
10061-01-5	cis-1,3-Dichloropropene	ND	5.0	1.4	U
75-25-2	Bromoform	7.3	20	6.5	J
79-34-5	1,1,2,2-Tetrachloroethane	ND	5.0	1.7	U
71-43-2	Benzene	ND	5.0	1.6	U
108-88-3	Toluene	ND	25	7.0	U
100-41-4	Ethylbenzene	ND	25	7.0	U
74-87-3	Chloromethane	ND	25	7.0	U
74-83-9	Bromomethane	ND	25	7.0	U UJ
75-01-4	Vinyl chloride	ND	10	0.71	U UJ
75-00-3	Chloroethane	ND	25	7.0	U
75-35-4	1,1-Dichloroethene	ND	5.0	1.7	U

Client : C&S Companies

Project Name : JCC

Lab ID : L2244958-09D Client ID : ESI-6-081822 Sample Location : FALCONER, NY

Sample Matrix : WATER
Analytical Method : 1,8260C
Lab File ID : V08220825N17

Sample Amount : 1 ml Level : LOW Extract Volume (MeOH) : N/A Lab Number : L2244958 Project Number : N30.009.001

Date Collected : 08/18/22 12:50
Date Received : 08/19/22

Date Analyzed : 08/25/22 23:55

Dilution Factor : 10
Analyst : MKS
Instrument ID : VOA108
GC Column : RTX-502.2

			ug/L			
CAS NO.	Parameter	Results	RL	MDL	Qualifier	
156-60-5	trans-1,2-Dichloroethene	ND	25	7.0	U	
79-01-6	Trichloroethene	1.9	5.0	1.8	J	
95-50-1	1,2-Dichlorobenzene	ND	25	7.0	U	
541-73-1	1,3-Dichlorobenzene	ND	25	7.0	U	
106-46-7	1,4-Dichlorobenzene	ND	25	7.0	U	
1634-04-4	Methyl tert butyl ether	ND	25	7.0	U	
179601-23-1	p/m-Xylene	ND	25	7.0	U	
95-47-6	o-Xylene	ND	25	7.0	U	
156-59-2	cis-1,2-Dichloroethene	ND	25	7.0	U	
100-42-5	Styrene	ND	25	7.0	U	
75-71-8	Dichlorodifluoromethane	ND	50	10.	U	UJ
67-64-1	Acetone	24	50	15.	J	50 UJ
75-15-0	Carbon disulfide	ND	50	10.	U	UJ
78-93-3	2-Butanone	ND	50	19.	U	UJ
108-10-1	4-Methyl-2-pentanone	ND	50	10.	U	
591-78-6	2-Hexanone	ND	50	10.	U	
106-93-4	1,2-Dibromoethane	ND	20	6.5	U	
104-51-8	n-Butylbenzene	ND	25	7.0	U	
135-98-8	sec-Butylbenzene	ND	25	7.0	U	
98-06-6	tert-Butylbenzene	ND	25	7.0	U	
96-12-8	1,2-Dibromo-3-chloropropane	ND	25	7.0	U	
98-82-8	Isopropylbenzene	ND	25	7.0	U	
99-87-6	p-Isopropyltoluene	ND	25	7.0	U	
91-20-3	Naphthalene	ND	25	7.0	U	
103-65-1	n-Propylbenzene	ND	25	7.0	U	

Client : C&S Companies
Project Name : JCC

Lab ID : L2244958-09D Client ID : ESI-6-081822 Sample Location : FALCONER, NY

Sample Matrix : WATER
Analytical Method : 1,8260C
Lab File ID : V08220825N17

Sample Amount : 1 ml Level : LOW Extract Volume (MeOH) : N/A Lab Number : L2244958
Project Number : N30.009.001
Date Collected : 08/18/22 12:50
Date Received : 08/19/22
Date Analyzed : 08/25/22 23:55
Dilution Factor : 10

Analyst : MKS
Instrument ID : VOA108
GC Column : RTX-502.2

%Solids : N/A Injection Volume : N/A

	Parameter		ug/L			
CAS NO.		Results	RL	MDL	Qualifier	
120-82-1	1,2,4-Trichlorobenzene	ND	25	7.0	U	
108-67-8	1,3,5-Trimethylbenzene	ND	25	7.0	U	
95-63-6	1,2,4-Trimethylbenzene	ND	25	7.0	U	
79-20-9	Methyl Acetate	ND	20	2.3	U	UJ
110-82-7	Cyclohexane	ND	100	2.7	U	UJ
76-13-1	Freon-113	ND	25	7.0	U	UJ
108-87-2	Methyl cyclohexane	ND	100	4.0	U	

Client : C&S Companies

Project Name : JCC
Lab ID : L2244958-10D
Client ID : ESI-2-081822
Sample Location : FALCONER, NY

Sample Matrix : WATER
Analytical Method : 1,8260C
Lab File ID : V08220825N16

Sample Amount : 2 ml Level : LOW Extract Volume (MeOH) : N/A Lab Number : L2244958

Project Number : N30.009.001

Date Collected : 08/18/22 13:25

Date Received : 08/19/22

Date Analyzed : 08/25/22 23:34

Dilution Factor : 5
Analyst : MKS
Instrument ID : VOA108
GC Column : RTX-502.2

			ug/L			
CAS NO.	Parameter	Results	RL	MDL	Qualifier	
75-09-2	Methylene chloride	ND	12	3.5	U	
75-34-3	1,1-Dichloroethane	ND	12	3.5	U	
67-66-3	Chloroform	ND	12	3.5	U	
56-23-5	Carbon tetrachloride	ND	2.5	0.67	U	
78-87-5	1,2-Dichloropropane	ND	5.0	0.68	U	
124-48-1	Dibromochloromethane	ND	2.5	0.74	U	
79-00-5	1,1,2-Trichloroethane	ND	7.5	2.5	U	
127-18-4	Tetrachloroethene	ND	2.5	0.90	U	
108-90-7	Chlorobenzene	ND	12	3.5	U	
75-69-4	Trichlorofluoromethane	ND	12	3.5	U	
107-06-2	1,2-Dichloroethane	ND	2.5	0.66	U	
71-55-6	1,1,1-Trichloroethane	ND	12	3.5	U	
75-27-4	Bromodichloromethane	ND	2.5	0.96	U	
10061-02-6	trans-1,3-Dichloropropene	ND	2.5	0.82	U	
10061-01-5	cis-1,3-Dichloropropene	ND	2.5	0.72	U	
75-25-2	Bromoform	ND	10	3.2	U	
79-34-5	1,1,2,2-Tetrachloroethane	ND	2.5	0.84	U	
71-43-2	Benzene	ND	2.5	0.80	U	
108-88-3	Toluene	ND	12	3.5	U	
100-41-4	Ethylbenzene	ND	12	3.5	U	
74-87-3	Chloromethane	ND	12	3.5	U	
74-83-9	Bromomethane	ND	12	3.5	U	UJ
75-01-4	Vinyl chloride	120	5.0	0.36		J
75-00-3	Chloroethane	ND	12	3.5	U	
75-35-4	1,1-Dichloroethene	2.4	2.5	0.84	J	

Client : C&S Companies

Project Name : JCC

Lab ID : L2244958-10D Client ID : ESI-2-081822 Sample Location : FALCONER, NY

Sample Matrix : WATER
Analytical Method : 1,8260C
Lab File ID : V08220825N16

Sample Amount : 2 ml Level : LOW Extract Volume (MeOH) : N/A Lab Number : L2244958
Project Number : N30.009.001
Date Collected : 08/18/22 13:25

Date Received : 08/19/22

Date Analyzed : 08/25/22 23:34

Dilution Factor : 5
Analyst : MKS
Instrument ID : VOA108
GC Column : RTX-502.2

%Solids : N/A Injection Volume : N/A

ug/L

			ug/∟			
CAS NO.	Parameter	Results	RL	MDL	Qualifier	
156-60-5	trans-1,2-Dichloroethene	14	12	3.5		
79-01-6	Trichloroethene	400	2.5	0.88		
95-50-1	1,2-Dichlorobenzene	ND	12	3.5	U	
541-73-1	1,3-Dichlorobenzene	ND	12	3.5	U	
106-46-7	1,4-Dichlorobenzene	ND	12	3.5	U	
1634-04-4	Methyl tert butyl ether	ND	12	3.5	U	
179601-23-1	p/m-Xylene	ND	12	3.5	U	
95-47-6	o-Xylene	ND	12	3.5	U	
156-59-2	cis-1,2-Dichloroethene	780	12	3.5		
100-42-5	Styrene	ND	12	3.5	U	
75-71-8	Dichlorodifluoromethane	ND	25	5.0	U	UJ
67-64-1	Acetone	49	25	7.3		J
75-15-0	Carbon disulfide	ND	25	5.0	U	UJ
78-93-3	2-Butanone	10	25	9.7	J	J
108-10-1	4-Methyl-2-pentanone	ND	25	5.0	U	
591-78-6	2-Hexanone	ND	25	5.0	U	
106-93-4	1,2-Dibromoethane	ND	10	3.2	U	
104-51-8	n-Butylbenzene	ND	12	3.5	U	
135-98-8	sec-Butylbenzene	ND	12	3.5	U	
98-06-6	tert-Butylbenzene	ND	12	3.5	U	
96-12-8	1,2-Dibromo-3-chloropropane	ND	12	3.5	U	
98-82-8	Isopropylbenzene	ND	12	3.5	U	
99-87-6	p-isopropyltoluene	ND	12	3.5	U	
91-20-3	Naphthalene	ND	12	3.5	U	
103-65-1	n-Propylbenzene	ND	12	3.5	U	

Client : C&S Companies

 Project Name
 : JCC

 Lab ID
 : L2244958-10D

 Client ID
 : ESI-2-081822

 Sample Location
 : FALCONER, NY

Sample Matrix : WATER
Analytical Method : 1,8260C
Lab File ID : V08220825N16

Sample Amount : 2 ml Level : LOW Extract Volume (MeOH) : N/A Lab Number : L2244958
Project Number : N30.009.001
Date Collected : 08/18/22 13:25
Date Received : 08/19/22
Date Analyzed : 08/25/22 23:34

Dilution Factor : 5
Analyst : MKS
Instrument ID : VOA108
GC Column : RTX-502.2

%Solids : N/A Injection Volume : N/A

CAS NO.	Parameter		ug/L			
		Results	RL	MDL	Qualifier	
120-82-1	1 2 4 Trichlershousens	ND	12	3.5	U	
120-82-1	1,2,4-Trichlorobenzene	ND	12	3.5	<u> </u>	
108-67-8	1,3,5-Trimethylbenzene	ND	12	3.5	U	
95-63-6	1,2,4-Trimethylbenzene	ND	12	3.5	U	
79-20-9	Methyl Acetate	ND	10	1.2	U	UJ
110-82-7	Cyclohexane	ND	50	1.4	U	UJ
76-13-1	Freon-113	ND	12	3.5	U	UJ
108-87-2	Methyl cyclohexane	ND	50	2.0	U	

Client : C&S Companies

Project Name : JCC

Lab ID : L2244958-11
Client ID : ESI-1-081822
Sample Location : FALCONER, NY

Sample Matrix : WATER
Analytical Method : 1,8260C
Lab File ID : V08220825N15

Sample Amount : 10 ml Level : LOW Extract Volume (MeOH) : N/A Lab Number : L2244958
Project Number : N30.009.001

Date Collected : 08/18/22 14:10 Date Received : 08/19/22 Date Analyzed : 08/25/22 23:13

Dilution Factor : 1
Analyst : MKS
Instrument ID : VOA108
GC Column : RTX-502.2

			ug/L		
CAS NO.	Parameter	Results	RL	MDL	Qualifier
75-09-2	Methylene chloride	ND	2.5	0.70	U
75-34-3	1,1-Dichloroethane	ND	2.5	0.70	U
67-66-3	Chloroform	ND	2.5	0.70	U
56-23-5	Carbon tetrachloride	ND	0.50	0.13	U
78-87-5	1,2-Dichloropropane	ND	1.0	0.14	U
124-48-1	Dibromochloromethane	ND	0.50	0.15	U
79-00-5	1,1,2-Trichloroethane	ND	1.5	0.50	U
127-18-4	Tetrachloroethene	ND	0.50	0.18	U
108-90-7	Chlorobenzene	ND	2.5	0.70	U
75-69-4	Trichlorofluoromethane	ND	2.5	0.70	U
107-06-2	1,2-Dichloroethane	ND	0.50	0.13	U
71-55-6	1,1,1-Trichloroethane	ND	2.5	0.70	U
75-27-4	Bromodichloromethane	ND	0.50	0.19	U
10061-02-6	trans-1,3-Dichloropropene	ND	0.50	0.16	U
10061-01-5	cis-1,3-Dichloropropene	ND	0.50	0.14	U
75-25-2	Bromoform	ND	2.0	0.65	U
79-34-5	1,1,2,2-Tetrachloroethane	ND	0.50	0.17	U
71-43-2	Benzene	ND	0.50	0.16	U
108-88-3	Toluene	ND	2.5	0.70	U
100-41-4	Ethylbenzene	ND	2.5	0.70	U
74-87-3	Chloromethane	ND	2.5	0.70	U
74-83-9	Bromomethane	ND	2.5	0.70	U UJ
75-01-4	Vinyl chloride	ND	1.0	0.07	U UJ
75-00-3	Chloroethane	ND	2.5	0.70	U
75-35-4	1,1-Dichloroethene	ND	0.50	0.17	U

Client : C&S Companies

Project Name : JCC
Lab ID : L2244958-11
Client ID : ESI-1-081822

Sample Location : ESI-1-081822 : FALCONER, NY

Sample Matrix : WATER
Analytical Method : 1,8260C
Lab File ID : V08220825N15

Sample Amount : 10 ml Level : LOW Extract Volume (MeOH) : N/A Lab Number : L2244958

Project Number : N30.009.001

Date Collected : 08/18/22 14:10

Date Received : 08/19/22
Date Analyzed : 08/25/22 23:13

Dilution Factor : 1
Analyst : MKS
Instrument ID : VOA108
GC Column : RTX-502.2

			ug/L			
CAS NO.	Parameter	Results	RL	MDL	Qualifier	
156-60-5	trans-1,2-Dichloroethene	ND	2.5	0.70	U	
79-01-6	Trichloroethene	4.4	0.50	0.18		
95-50-1	1,2-Dichlorobenzene	ND	2.5	0.70	U	
541-73-1	1,3-Dichlorobenzene	ND	2.5	0.70	U	
106-46-7	1,4-Dichlorobenzene	ND	2.5	0.70	U	
1634-04-4	Methyl tert butyl ether	ND	2.5	0.70	U	
179601-23-1	p/m-Xylene	ND	2.5	0.70	U	
95-47-6	o-Xylene	ND	2.5	0.70	U	
156-59-2	cis-1,2-Dichloroethene	ND	2.5	0.70	U	
100-42-5	Styrene	ND	2.5	0.70	U	
75-71-8	Dichlorodifluoromethane	ND	5.0	1.0	U	UJ
67-64-1	Acetone	ND	5.0	1.5	U	UJ
75-15-0	Carbon disulfide	ND	5.0	1.0	U	UJ
78-93-3	2-Butanone	ND	5.0	1.9	U	UJ
108-10-1	4-Methyl-2-pentanone	ND	5.0	1.0	U	
591-78-6	2-Hexanone	ND	5.0	1.0	U	
106-93-4	1,2-Dibromoethane	ND	2.0	0.65	U	
104-51-8	n-Butylbenzene	ND	2.5	0.70	U	
135-98-8	sec-Butylbenzene	ND	2.5	0.70	U	
98-06-6	tert-Butylbenzene	ND	2.5	0.70	U	
96-12-8	1,2-Dibromo-3-chloropropane	ND	2.5	0.70	U	
98-82-8	Isopropylbenzene	ND	2.5	0.70	U	
99-87-6	p-Isopropyltoluene	ND	2.5	0.70	U	
91-20-3	Naphthalene	ND	2.5	0.70	U	
103-65-1	n-Propylbenzene	ND	2.5	0.70	U	

Client : C&S Companies

Project Name : JCC
Lab ID : L2244958-11
Client ID : ESI-1-081822
Sample Location : FALCONER, NY

Sample Matrix : WATER
Analytical Method : 1,8260C
Lab File ID : V08220825N15
Sample Amount : 10 ml

Level : LOW Extract Volume (MeOH) : N/A

Lab Number : L2244958
Project Number : N30.009.001
Date Collected : 08/18/22 14:10
Date Received : 08/19/22
Date Analyzed : 08/25/22 23:13
Dilution Factor : 1

Analyst : MKS
Instrument ID : VOA108
GC Column : RTX-502.2

%Solids : N/A Injection Volume : N/A

CAS NO.	Parameter		ug/L			
		Results	RL	MDL	Qualifier	
120-82-1	1,2,4-Trichlorobenzene	ND	2.5	0.70	U	
108-67-8	1,3,5-Trimethylbenzene	ND	2.5	0.70	U	
95-63-6	1,2,4-Trimethylbenzene	ND	2.5	0.70	U	
79-20-9	Methyl Acetate	ND	2.0	0.23	U	UJ
110-82-7	Cyclohexane	ND	10	0.27	U	UJ
76-13-1	Freon-113	ND	2.5	0.70	U	UJ
108-87-2	Methyl cyclohexane	ND	10	0.40	U	

Client : C&S Companies

Project Name : JCC

Lab ID : L2244958-12 Client ID : PW-3R-081822 Sample Location : FALCONER, NY

Sample Matrix : WATER
Analytical Method : 1,8260C
Lab File ID : V08220825N14

Sample Amount : 10 ml Level : LOW Extract Volume (MeOH) : N/A Lab Number : L2244958
Project Number : N30.009.001
Date Collected : 08/18/22 14:55

Date Received : 08/19/22
Date Analyzed : 08/25/22 22:52

Dilution Factor : 1
Analyst : MKS
Instrument ID : VOA108
GC Column : RTX-502.2

			ug/L			
CAS NO.	Parameter	Results	RL	MDL	Qualifier	
75-09-2	Methylene chloride	ND	2.5	0.70	U	
75-34-3	1,1-Dichloroethane	0.80	2.5	0.70	J	
67-66-3	Chloroform	ND	2.5	0.70	U	
56-23-5	Carbon tetrachloride	ND	0.50	0.13	U	
78-87-5	1,2-Dichloropropane	0.15	1.0	0.14	J	
124-48-1	Dibromochloromethane	ND	0.50	0.15	U	
79-00-5	1,1,2-Trichloroethane	ND	1.5	0.50	U	
127-18-4	Tetrachloroethene	ND	0.50	0.18	U	
108-90-7	Chlorobenzene	ND	2.5	0.70	U	
75-69-4	Trichlorofluoromethane	ND	2.5	0.70	U	
107-06-2	1,2-Dichloroethane	ND	0.50	0.13	U	
71-55-6	1,1,1-Trichloroethane	ND	2.5	0.70	U	
75-27-4	Bromodichloromethane	ND	0.50	0.19	U	
10061-02-6	trans-1,3-Dichloropropene	ND	0.50	0.16	U	
10061-01-5	cis-1,3-Dichloropropene	ND	0.50	0.14	U	
75-25-2	Bromoform	ND	2.0	0.65	U	
79-34-5	1,1,2,2-Tetrachloroethane	ND	0.50	0.17	U	
71-43-2	Benzene	ND	0.50	0.16	U	
108-88-3	Toluene	2.7	2.5	0.70		
100-41-4	Ethylbenzene	ND	2.5	0.70	U	
74-87-3	Chloromethane	ND	2.5	0.70	U	
74-83-9	Bromomethane	ND	2.5	0.70	U	JJ
75-01-4	Vinyl chloride	13	1.0	0.07		J
75-00-3	Chloroethane	ND	2.5	0.70	U	
75-35-4	1,1-Dichloroethene	ND	0.50	0.17	U	

Client : C&S Companies

Project Name : JCC

Lab ID : L2244958-12 Client ID : PW-3R-081822 Sample Location : FALCONER, NY

Sample Matrix : WATER
Analytical Method : 1,8260C
Lab File ID : V08220825N14

Sample Amount : 10 ml Level : LOW Extract Volume (MeOH) : N/A Lab Number : L2244958
Project Number : N30.009.001
Date Collected : 08/18/22 14:55

Date Received : 08/19/22
Date Analyzed : 08/25/22 22:52

Dilution Factor : 1
Analyst : MKS
Instrument ID : VOA108
GC Column : RTX-502.2

%Solids : N/A Injection Volume : N/A

ug/L MDL CAS NO. **Parameter** Results RL Qualifier 156-60-5 trans-1,2-Dichloroethene ND 2.5 0.70 U ND 79-01-6 Trichloroethene 0.50 U 0.18 95-50-1 1,2-Dichlorobenzene ND 2.5 0.70 U 541-73-1 1,3-Dichlorobenzene ND 2.5 0.70 п 106-46-7 1,4-Dichlorobenzene ND 2.5 0.70 U 1634-04-4 ND 2.5 0.70 п Methyl tert butyl ether 179601-23-1 p/m-Xylene 0.87 2.5 0.70 J 95-47-6 0.70 U o-Xylene ND 2.5 156-59-2 cis-1,2-Dichloroethene 2.6 2.5 0.70 100-42-5 Styrene ND 2.5 0.70 U UJ 75-71-8 Dichlorodifluoromethane ND 5.0 1.0 U 5.0 UJ 67-64-1 Acetone 5.0 1.5 75-15-0 Carbon disulfide ND 5.0 1.0 U UJ 78-93-3 2-Butanone ND 5.0 1.9 U UJ U 108-10-1 4-Methyl-2-pentanone ND 5.0 1.0 591-78-6 ND 5.0 1.0 U 2-Hexanone 106-93-4 1,2-Dibromoethane ND 2.0 0.65 U U 104-51-8 n-Butylbenzene ND 2.5 0.70 135-98-8 sec-Butylbenzene ND 2.5 0.70 U 98-06-6 ND U tert-Butylbenzene 2.5 0.70 96-12-8 ND 0.70 U 1,2-Dibromo-3-chloropropane 2.5 98-82-8 ND 2.5 0.70 U Isopropylbenzene 99-87-6 ND 2.5 0.70 ш p-Isopropyltoluene 91-20-3 ND 2.5 0.70 U Naphthalene ND U 103-65-1 2.5 0.70 n-Propylbenzene

Client : C&S Companies
Project Name : JCC

Lab ID : L2244958-12 Client ID : PW-3R-081822 Sample Location : FALCONER, NY

Sample Matrix : WATER
Analytical Method : 1,8260C
Lab File ID : V08220825N14

Sample Amount : 10 ml Level : LOW Extract Volume (MeOH) : N/A Lab Number : L2244958
Project Number : N30.009.001
Date Collected : 08/18/22 14:55
Date Received : 08/19/22
Date Analyzed : 08/25/22 22:52
Dilution Factor : 1

Analyst : MKS
Instrument ID : VOA108
GC Column : RTX-502.2

%Solids : N/A Injection Volume : N/A

CAS NO.	Parameter		ug/L			
		Results	RL	MDL	Qualifier	
120-82-1	1,2,4-Trichlorobenzene	ND	2.5	0.70	U	
108-67-8	1,3,5-Trimethylbenzene	ND	2.5	0.70	U	
95-63-6	1,2,4-Trimethylbenzene	ND	2.5	0.70	U	
79-20-9	Methyl Acetate	ND	2.0	0.23	U	UJ
110-82-7	Cyclohexane	ND	10	0.27	U	UJ
76-13-1	Freon-113	ND	2.5	0.70	U	UJ
108-87-2	Methyl cyclohexane	ND	10	0.40	U	

Results Summary Form 1 Volatile Organics by GC/MS

Client : C&S Companies

Project Name : JCC

Lab ID : L2244958-13
Client ID : TRIP BLANK
Sample Location : FALCONER, NY

Sample Matrix : WATER
Analytical Method : 1,8260C
Lab File ID : V08220825N13

Sample Amount : 10 ml Level : LOW Extract Volume (MeOH) : N/A Lab Number : L2244958

Project Number : N30.009.001

Date Collected : 08/18/22 16:00

Date Received : 08/19/22 Date Analyzed : 08/25/22 22:30

Dilution Factor : 1
Analyst : MKS
Instrument ID : VOA108
GC Column : RTX-502.2

%Solids : N/A
Injection Volume : N/A

ug/L

Results MDL Qualifier CAS NO. **Parameter** RL 75-09-2 Methylene chloride ND 2.5 0.70 U 75-34-3 ND 2.5 0.70 U 1,1-Dichloroethane 67-66-3 Chloroform ND 2.5 0.70 U 56-23-5 Carbon tetrachloride ND 0.50 0.13 п 78-87-5 1,2-Dichloropropane ND 1.0 0.14 U Dibromochloromethane ND 0.50 0.15 п 124-48-1 79-00-5 1,1,2-Trichloroethane ND 1.5 0.50 U 127-18-4 0.50 0.18 U Tetrachloroethene ND 108-90-7 Chlorobenzene ND 2.5 0.70 U 75-69-4 Trichlorofluoromethane ND 2.5 0.70 U 107-06-2 1,2-Dichloroethane ND 0.50 0.13 U 71-55-6 1.1.1-Trichloroethane ND 2.5 0.70 U 75-27-4 Bromodichloromethane ND 0.50 0.19 U 10061-02-6 ND 0.50 0.16 U trans-1,3-Dichloropropene U 10061-01-5 cis-1,3-Dichloropropene ND 0.50 0.14 75-25-2 ND 2.0 0.65 U Bromoform 79-34-5 1,1,2,2-Tetrachloroethane ND 0.50 0.17 U U 71-43-2 Benzene ND 0.50 0.16 108-88-3 Toluene ND 2.5 0.70 U 100-41-4 Ethylbenzene ND U 2.5 0.70 74-87-3 Chloromethane ND 0.70 2.5 U 74-83-9 **Bromomethane** ND 2.5 0.70 U UJ 75-01-4 Vinyl chloride ND 1.0 0.07 U UJ 75-00-3 Chloroethane ND 2.5 0.70 U ND U 75-35-4 1,1-Dichloroethene 0.50 0.17

Results Summary Form 1 Volatile Organics by GC/MS

Client : C&S Companies

Project Name : JCC

Lab ID : L2244958-13
Client ID : TRIP BLANK
Sample Location : FALCONER, NY

Sample Matrix : WATER
Analytical Method : 1,8260C
Lab File ID : V08220825N13

Sample Amount : 10 ml Level : LOW Extract Volume (MeOH) : N/A Lab Number : L2244958

Project Number : N30.009.001

Date Collected : 08/18/22 16:00

Date Received : 08/19/22

Date Analyzed : 08/25/22 22:30

Dilution Factor : 1
Analyst : MKS
Instrument ID : VOA108
GC Column : RTX-502.2

%Solids : N/A Injection Volume : N/A

ug/L Results MDL Qualifier CAS NO. **Parameter** RL 156-60-5 trans-1,2-Dichloroethene ND 2.5 0.70 U Trichloroethene ND U 79-01-6 0.50 0.18 95-50-1 1,2-Dichlorobenzene ND 2.5 0.70 U 541-73-1 1,3-Dichlorobenzene ND 2.5 0.70 п 106-46-7 1,4-Dichlorobenzene ND 2.5 0.70 U 1634-04-4 ND 2.5 0.70 п Methyl tert butyl ether 179601-23-1 p/m-Xylene ND 2.5 0.70 U 95-47-6 2.5 0.70 U o-Xylene ND 156-59-2 cis-1,2-Dichloroethene ND 2.5 0.70 U 100-42-5 Styrene ND 2.5 0.70 U UJ 75-71-8 Dichlorodifluoromethane ND 5.0 1.0 U 67-64-1 Acetone 2.3 5.0 1.5 J J 75-15-0 Carbon disulfide ND 5.0 1.0 U UJ 78-93-3 2-Butanone ND 5.0 1.9 U UJ ND U 108-10-1 4-Methyl-2-pentanone 5.0 1.0 591-78-6 2-Hexanone ND 5.0 1.0 U 106-93-4 1,2-Dibromoethane ND 2.0 0.65 U 0.70 U 104-51-8 n-Butylbenzene ND 2.5 135-98-8 sec-Butylbenzene ND 2.5 0.70 U 98-06-6 ND U tert-Butylbenzene 2.5 0.70 96-12-8 ND 0.70 U 1,2-Dibromo-3-chloropropane 2.5 98-82-8 ND 2.5 0.70 U Isopropylbenzene 99-87-6 p-Isopropyltoluene ND 2.5 0.70 ш 91-20-3 ND 2.5 0.70 U Naphthalene ND U 103-65-1 2.5 0.70 n-Propylbenzene

Results Summary Form 1 Volatile Organics by GC/MS

Client : C&S Companies
Project Name : JCC

Lab ID : L2244958-13
Client ID : TRIP BLANK
Sample Location : FALCONER, NY

Sample Matrix : WATER
Analytical Method : 1,8260C
Lab File ID : V08220825N13
Sample Amount : 10 ml

Level : LOW Extract Volume (MeOH) : N/A

Lab Number : L2244958
Project Number : N30.009.001
Date Collected : 08/18/22 16:00
Date Received : 08/19/22
Date Analyzed : 08/25/22 22:30
Dilution Factor : 1

Analyst : MKS
Instrument ID : VOA108
GC Column : RTX-502.2

%Solids : N/A Injection Volume : N/A

			ug/L			
CAS NO.	Parameter	Results	RL	MDL	Qualifier	
120-82-1	1,2,4-Trichlorobenzene	ND	2.5	0.70	U	
108-67-8	1,3,5-Trimethylbenzene	ND	2.5	0.70	U	
95-63-6	1,2,4-Trimethylbenzene	ND	2.5	0.70	U	
79-20-9	Methyl Acetate	ND	2.0	0.23	U	UJ
110-82-7	Cyclohexane	ND	10	0.27	U	UJ
76-13-1	Freon-113	ND	2.5	0.70	U	UJ
108-87-2	Methyl cyclohexane	ND	10	0.40	U	

MKP 11/28/2022

Appendix B

Laboratory QC Documentation

Laboratory Control Sample Summary Form 3 **Volatiles**

: L2244958 Client : C&S Companies Lab Number Project Name : JCC Project Number: N30.009.001

Matrix : WATER LCS Sample ID : WG1680118-3 Analysis Date : 08/25/22 08:47 File ID : V22220825A01 LCSD Sample ID : WG1680118-4 Analysis Date : 08/25/22 09:12 File ID : V22220825A02

	Laborator	y Control Samı	ole	Laborator	y Control Dupl	icate			
Barranta	True	Found	%R	True	Found	%R	RPD	Recovery	RPD
Parameter	(ug/l)	(ug/l)		(ug/l)	(ug/l)			Limits	Limit
Methylene chloride	10	11	110	10	11	110	0	70-130	20
1,1-Dichloroethane	10	11	110	10	11	110	0	70-130	20
Chloroform	10	11	110	10	11	110	0	70-130	20
Carbon tetrachloride	10	11	110	10	11	110	0	63-132	20
1,2-Dichloropropane	10	10	100	10	11	110	10	70-130	20
Dibromochloromethane	10	9.5	95	10	9.8	98	3	63-130	20
1,1,2-Trichloroethane	10	9.4	94	10	9.8	98	4	70-130	20
Tetrachloroethene	10	9.7	97	10	9.8	98	1	70-130	20
Chlorobenzene	10	10	100	10	10	100	0	75-130	20
Trichlorofluoromethane	10	11	110	10	11	110	0	62-150	20
1,2-Dichloroethane	10	10	100	10	10	100	0	70-130	20
1,1,1-Trichloroethane	10	11	110	10	11	110	0	67-130	20
Bromodichloromethane	10	9.9	99	10	10	100	1	67-130	20
trans-1,3-Dichloropropene	10	9.2	92	10	9.4	94	2	70-130	20
cis-1,3-Dichloropropene	10	9.5	95	10	9.6	96	1	70-130	20
Bromoform	10	8.8	88	10	9.2	92	4	54-136	20
1,1,2,2-Tetrachloroethane	10	9.8	98	10	10	100	2	67-130	20
Benzene	10	11	110	10	11	110	0	70-130	20
Toluene	10	10	100	10	10	100	0	70-130	20
Ethylbenzene	10	10	100	10	10	100	0	70-130	20
Chloromethane	10	9.7	97	10	9.6	96	1	64-130	20
Bromomethane	10	5.4	54	10	5.1	51	6	39-139	20
Vinyl chloride	10	12	120	10	12	120	0	55-140	20
Chloroethane	10	15	150 Q	10	15	150 Q	0	55-138	20
1,1-Dichloroethene	10	12	120	10	12	120	0	61-145	20
trans-1,2-Dichloroethene	10	12	120	10	12	120	0	70-130	20

Laboratory Control Sample Summary Form 3 Volatiles

Client : C&S Companies Lab Number : L2244958
Project Name : JCC Project Number : N30.009.001

Matrix : WATER

Laboratory Control Sample Laboratory Control Duplicate									
	True	Found	%R	True	Found	%R	RPD	Recovery	RPD
Parameter	(ug/l)	(ug/l)		(ug/l)	(ug/l)			Limits	Limit
Trichloroethene	10	11	110	10	11	110	0	70-130	20
1,2-Dichlorobenzene	10	10	100	10	10	100	0	70-130	20
1,3-Dichlorobenzene	10	10	100	10	10	100	0	70-130	20
1,4-Dichlorobenzene	10	10	100	10	10	100	0	70-130	20
Methyl tert butyl ether	10	8.2	82	10	9.7	97	17	63-130	20
p/m-Xylene	20	20	100	20	21	105	5	70-130	20
o-Xylene	20	20	100	20	20	100	0	70-130	20
cis-1,2-Dichloroethene	10	10	100	10	10	100	0	70-130	20
Styrene	20	22	110	20	22	110	0	70-130	20
Dichlorodifluoromethane	10	15	150 Q	10	16	160 Q	6	36-147	20
Acetone	10	15	150 0	10	14	140	7	58-148	20
Carbon disulfide	10	12	120	10	12	120	0	51-130	20
2-Butanone	10	14	140 Q	10	12	120	15	63-138	20
4-Methyl-2-pentanone	10	11	110	10	10	100	10	59-130	20
2-Hexanone	10	9.5	95	10	10	100	5	57-130	20
1,2-Dibromoethane	10	11	110	10	11	110	0	70-130	20
n-Butylbenzene	10	10	100	10	9.9	99	1	53-136	20
sec-Butylbenzene	10	9.8	98	10	9.8	98	0	70-130	20
tert-Butylbenzene	10	9.2	92	10	9.2	92	0	70-130	20
1,2-Dibromo-3-chloropropane	10	8.8	88	10	9.3	93	6	41-144	20
Isopropylbenzene	10	9.0	90	10	8.9	89	1	70-130	20
p-Isopropyltoluene	10	9.4	94	10	9.3	93	1	70-130	20
Naphthalene	10	8.2	82	10	8.2	82	0	70-130	20
n-Propylbenzene	10	9.6	96	10	9.6	96	0	69-130	20
1,2,4-Trichlorobenzene	10	9.2	92	10	9.0	90	2	70-130	20
1,3,5-Trimethylbenzene	10	9.6	96	10	9.6	96	0	64-130	20

Matrix Spike Sample Summary Form 3 **Volatiles**

Client : C&S Companies
Project Name : JCC
Client Sample ID : ESI-3-081722 Lab Sample ID : L2244958-01 Matrix Spike : WG1680167-6 Matrix Spike Dup : WG1680167-7

Lab Number : L2244958
Project Number : N30.009.001

Matrix : WATER
Analysis Date : 08/26/22 00:37 MS Analysis Date : 08/26/22 03:05 MSD Analysis Date: 08/26/22 03:26

		Matrix Sp			Matrix Spi	Matrix Spike Duplicate				
	Sample	Spike	Spike		Spike	Spike				
	Conc.	Added	Conc.	%R	Added	Conc.	%R	RPD	Recovery	RPD
Parameter	(ug/l)	(ug/l)	(ug/l)		(ug/l)	(ug/l)			Limits	Limit
Methylene chloride	ND	10	11	110	10	9.2	92	18	70-130	20
1,1-Dichloroethane	ND	10	13	130	10	10	100	26 Q	70-130	20
Chloroform	1.7J	10	12	120	10	13	130	8	70-130	20
Carbon tetrachloride	ND	10	9.3	93	10	10	100	7	63-132	20
1,2-Dichloropropane	ND	10	12	120	10	11	110	9	70-130	20
Dibromochloromethane	ND	10	10	100	10	10	100	0	63-130	20
1,1,2-Trichloroethane	ND	10	12	120	10	11	110	9	70-130	20
Tetrachloroethene	ND	10	12	120	10	12	120	0	70-130	20
Chlorobenzene	ND	10	11	110	10	11	110	0	75-130	20
Trichlorofluoromethane	ND	10	12	120	10	11	110	9	62-150	20
1,2-Dichloroethane	ND	10	12	120	10	11	110	9	70-130	20
1,1,1-Trichloroethane	ND	10	9.6	96	10	11	110	14	67-130	20
Bromodichloromethane	ND	10	10	100	10	10	100	0	67-130	20
trans-1,3-Dichloropropene	ND	10	9.7	97	10	9.5	95	2	70-130	20
cis-1,3-Dichloropropene	ND	10	8.6	86	10	8.3	83	4	70-130	20
Bromoform	ND	10	9.3	93	10	9.3	93	0	54-136	20
1,1,2,2-Tetrachloroethane	ND	10	11	110	10	11	110	0	67-130	20
Benzene	ND	10	12	120	10	12	120	0	70-130	20
Toluene	ND	10	11	110	10	11	110	0	70-130	20
Ethylbenzene	ND	10	11	110	10	11	110	0	70-130	20
Chloromethane	ND	10	14	140 Q	10	14	140 Q	0	64-130	20
Bromomethane	ND	10	6.8	68	10	7.2	72	6	39-139	20

Matrix Spike Sample Summary Form 3 Volatiles

Client : C&S Companies

Project Name : JCC

Client Sample ID : ESI-3-081722
Lab Sample ID : L2244958-01
Matrix Spike : WG1680167-6
Matrix Spike Dup : WG1680167-7

Lab Number : L2244958

Project Number : N30.009.001

Matrix : WATER

Matrix : WATER
Analysis Date : 08/26/22 00:37
MS Analysis Date : 08/26/22 03:05
MSD Analysis Date : 08/26/22 03:26

		Matrix Sp	ike Sample		Matrix Spi	ke Duplicate				
	Sample	Spike	Spike		Spike	Spike				
	Conc.	Added	Conc.	%R	Added	Conc.	%R	RPD	Recovery	RPD
Parameter	(ug/l)	(ug/l)	(ug/l)		(ug/l)	(ug/l)			Limits	Limit
Vinyl chloride	0.92J	10	14	140	10	14	140	0	55-140	20
Chloroethane	ND	10	14	140 Q	10	13	130	7	55-138	20
1,1-Dichloroethene	ND	10	12	120	10	10	100	18	61-145	20
trans-1,2-Dichloroethene	ND	10	12	120	10	10	100	18	70-130	20
Trichloroethene	5.6	10	18	124	10	17	114	6	70-130	20
1,2-Dichlorobenzene	ND	10	11	110	10	10	100	10	70-130	20
1,3-Dichlorobenzene	ND	10	11	110	10	11	110	0	70-130	20
1,4-Dichlorobenzene	ND	10	11	110	10	11	110	0	70-130	20
Methyl tert butyl ether	ND	10	9.5	95	10	7.8	78	20	63-130	20
p/m-Xylene	ND	20	23	115	20	23	115	0	70-130	20
o-Xylene	ND	20	22	110	20	22	110	0	70-130	20
cis-1,2-Dichloroethene	22	10	33	110	10	28	60 Q	16	70-130	20
Styrene	ND	20	23	115	20	23	115	0	70-130	20
Dichlorodifluoromethane	ND	10	16	160 Q	10	16	160 Q	0	36-147	20
Acetone	ND	10	14	140	10	9.9	99	34 Q	58-148	20
Carbon disulfide	ND	10	12	120	10	11	110	9	51-130	20
2-Butanone	ND	10	9.7	97	10	11	110	13	63-138	20
4-Methyl-2-pentanone	ND	10	9.9	99	10	9.8	98	1	59-130	20
2-Hexanone	ND	10	9.0	90	10	8.7	87	3	57-130	20
1,2-Dibromoethane	ND	10	11	110	10	11	110	0	70-130	20
n-Butylbenzene	ND	10	11	110	10	11	110	0	53-136	20
sec-Butylbenzene	ND	10	11	110	10	11	110	0	70-130	20

Evaluate Continuing Calibration Report

Data Path : I:\VOLATILES\VOA122\2022\220728NICAL\

Data File : V22220728N18.D

Acq On : 29 Jul 2022 01:50 am

Operator : VOA122:PD Sample : C8260STD10PPB Misc : WG1669024,ICAL

ALS Vial : 18 Sample Multiplier: 1

Quant Time: Jul 29 11:47:16 2022

Quant Method : I:\VOLATILES\VOA122\2022\220728NICAL\V122_220728N_8260.m

Quant Title : VOLATILES BY GC/MS

QLast Update : Fri Jul 29 11:43:39 2022

Response via : Initial Calibration

Min. RRF : 0.000 Min. Rel. Area : 50% Max. R.T. Dev 0.50min

Max. RRF Dev : 20% Max. Rel. Area : 200%

		Compound	AvgRF	CCRF	%Dev Area% Dev(min)
1	I	Fluorobenzene	1.000	1.000	0.0 101 0.00
2		Dichlorodifluoromethane	0.283	0.199	29.7# 65 0.00
3	TP	Chloromethane	0.254	0.227	10.6 84 0.00
4	TC	Vinyl chloride	0.306	0.301	1.6 89 0.00
5	TP	Bromomethane	0.252	0.253	-0.4 108 0.00
6	TP	Chloroethane	0.223	0.234	-4.9 94 0.00
7	TP	Trichlorofluoromethane	0.390	0.416	-6.7 97 0.00
8	TP	Ethyl ether	0.088	0.106	-20.5# 114 0.00
10	TC	1,1-Dichloroethene	0.208	0.214	-2.9 95 0.00
11		Carbon disulfide	0.547	0.639	-16.8 109 0.00
12		Freon-113	0.235	0.269	-14.5 105 0.00
13		Iodomethane	0.338	0.315	6.8 85 0.00
14		Acrolein	0.019	0.018	5.3 97 0.00
15	TP	Methylene chloride	0.242	0.241	0.4 97 0.00
17		Acetone	* 10.000	7.659	23.4# 86 0.00
18	TP	trans-1,2-Dichloroethene	0.231	0.243	-5.2 97 0.00
19		Methyl acetate	0.080	0.072	10.0 87 0.00
21		Methyl tert-butyl ether	0.423	0.428	-1.2 99 0.00
22		tert-Butyl alcohol	0.012	0.011	8.3 88 0.00
	TP	Diisopropyl ether	0.550	0.530	3.6 98 0.00
	TP	1,1-Dichloroethane	0.410	0.448	-9.3 100 0.00
	TP	Halothane	0.182	0.206	-13.2 104 0.00
27		Acrylonitrile	0.045	0.046	-2.2 97 0.00
28	TP	Ethyl tert-butyl ether	0.536	0.506	5.6 97 0.00
29		Vinyl acetate	0.304	0.230	24.3# 86 0.00
30		cis-1,2-Dichloroethene	0.254	0.259	-2.0 96 0.00
31		2,2-Dichloropropane	0.344	0.347	-0.9 97 0.00
32		Bromochloromethane	0.113	0.116	-2.7 94 0.00
33	TP	Cyclohexane	0.406	0.408	-0.5 94 0.00
34		Chloroform	0.419	0.442	-5.5 99 0.00
35		Ethyl acetate	0.113	0.097	14.2 88 0.00
	TP	Carbon tetrachloride	0.345	0.369	-7.0 97 0.00
37		Tetrahydrofuran	0.043	0.040	7.0 87 0.00
38	S	Dibromofluoromethane	0.295	0.309	-4.7 102 0.00
	TP	1,1,1-Trichloroethane	0.369	0.424	14.9 105 0.00
	TP	2-Butanone	0.049	0.034	30.6# 82 0.00
42		1,1-Dichloropropene	0.312	0.323	-3.5 96 0.00
44	TP	Benzene	0.836	0.833	0.4 95 0.00
45	TP	tert-Amyl methyl ether	0.470	0.438	6.8 95 0.00

V122_220728N_8260.m Sun Jul 31 15:33:25 2022

Client : C&S Companies Lab Number : L2244958

Project Name : JCC Project Number : N30.009.001

Instrument ID : VOA105 Calibration Date : 08/25/22 07:01

 Lab File ID
 : V05220825A01
 Init. Calib. Date(s)
 : 08/19/22

 Sample No
 : WG1679629-2
 Init. Calib. Times
 : 14:23
 17:52

Compound	Ave. RRF	RRF	Min RRF	%D	Max %D	Area%	Dev(min)
Fluorobenzene	1	1	-	0	20	82	0
Dichlorodifluoromethane	0.245	0.239	-	2.4	20	75	0
Chloromethane	0.259	0.26	-	-0.4	20	78	0
Vinyl chloride	0.28	0.29	-	-3.6	20	82	0
Bromomethane	0.283	0.37	-	-30.7*	20	106	0
Chloroethane	0.214	0.252	-	-17.8	20	91	0
Trichlorofluoromethane	0.558	0.612	-	-9.7	20	84	0
Ethyl ether	0.12	0.126	-	-5	20	82	0
1,1-Dichloroethene	0.212	0.204	-	3.8	20	77	0
Carbon disulfide	0.556	0.549	-	1.3	20	80	0
Freon-113	0.235	0.232	-	1.3	20	77	0
Acrolein	0.025	0.02	-	20	20	65	0
Methylene chloride	0.229	0.219	-	4.4	20	78	0
Acetone	0.032	0.032	-	0	20	87	0
trans-1,2-Dichloroethene	0.238	0.232	-	2.5	20	78	0
Methyl acetate	0.086	0.066	-	23.3*	20	67	0
Methyl tert-butyl ether	0.422	0.362	-	14.2	20	69	0
tert-Butyl alcohol	0.00767	0.00685*	-	10.7	20	69	0
Diisopropyl ether	0.686	0.619	-	9.8	20	73	0
1,1-Dichloroethane	0.426	0.411	-	3.5	20	77	0
Halothane	0.189	0.181	-	4.2	20	77	0
Acrylonitrile	0.042	0.038	-	9.5	20	77	0
Ethyl tert-butyl ether	0.612	0.533	-	12.9	20	71	0
Vinyl acetate	0.428	0.339	-	20.8*	20	67	0 NT
cis-1,2-Dichloroethene	0.263	0.253	-	3.8	20	77	0
2,2-Dichloropropane	0.373	0.357	-	4.3	20	76	0
Bromochloromethane	0.118	0.113	-	4.2	20	76	0
Cyclohexane	0.448	0.422	-	5.8	20	75	0
Chloroform	0.42	0.394	-	6.2	20	75	0
Ethyl acetate	0.131	0.102	-	22.1*	20	68	0 NT
Carbon tetrachloride	0.359	0.335	-	6.7	20	77	0
Tetrahydrofuran	0.037	0.034	-	8.1	20	71	0
Dibromofluoromethane	0.26	0.257	-	1.2	20	81	0
1,1,1-Trichloroethane	0.391	0.373	-	4.6	20	75	0
2-Butanone	0.051	0.044	-	13.7	20	70	0
1,1-Dichloropropene	0.322	0.309	-	4	20	75	0
Benzene	0.935	0.91	-	2.7	20	78	0
tert-Amyl methyl ether	0.513	0.427	-	16.8	20	69	0
1,2-Dichloroethane-d4	0.283	0.275	-	2.8	20	76	0
1,2-Dichloroethane	0.291	0.264	-	9.3	20	73	0
Methyl cyclohexane	0.455	0.433	-	4.8	20	77	0
Trichloroethene	0.268	0.237	-	11.6	20	74	0
Dibromomethane	0.127	0.116	-	8.7	20	73	0

^{*} Value outside of QC limits.

Client : C&S Companies Lab Number : L2244958

Project Name : JCC Project Number : N30.009.001

Instrument ID : VOA105 Calibration Date : 08/25/22 07:01

 Lab File ID
 : V05220825A01
 Init. Calib. Date(s)
 : 08/19/22

 Sample No
 : WG1679629-2
 Init. Calib. Times
 : 14:23
 17:52

1,2-Dichloropropane 0.233 0.221 - 5.2 20 75 Bromodichloromethane 0.309 0.288* - 6.8 20 75 1,4-Dioxane 0.00087 0.00093* - -6.9 20 81 cis-1,3-Dichloropropene 0.339 0.32 - 5.6 20 74 Chlorobenzene-d5 1 1 - 0 20 81 Toluene-d8 1.241 1.3 - -4.8 20 82 Toluene 0.769 0.75 - 2.5 20 77 4-Methyl-2-pentanone 0.058 0.048 - 17.2 20 63 Tetrachloroethene 0.355 0.343 - 3.4 20 75 trans-1,3-Dichloropropene 0.355 0.344 - 3.1 20 71 Ethyl methacrylate 0.252 0.217 - 13.9 20 66 1,1,2-Trichloroethane 0.18 0.166* - 7.8 20 72 Chlorodibromomethane <th>0 0 0 0 0 0 0 0 0 0</th>	0 0 0 0 0 0 0 0 0 0
1,4-Dioxane 0.00087 0.00093* - -6.9 20 81 cis-1,3-Dichloropropene 0.339 0.32 - 5.6 20 74 Chlorobenzene-d5 1 1 - 0 20 81 Toluene-d8 1.241 1.3 - -4.8 20 82 Toluene 0.769 0.75 - 2.5 20 77 4-Methyl-2-pentanone 0.058 0.048 - 17.2 20 63 Tetrachloroethene 0.355 0.343 - 3.4 20 75 trans-1,3-Dichloropropene 0.355 0.344 - 3.1 20 71 Ethyl methacrylate 0.252 0.217 - 13.9 20 66 1,1,2-Trichloroethane 0.18 0.166* - 7.8 20 72	0 0 0 0 0 0 0 0
cis-1,3-Dichloropropene 0.339 0.32 - 5.6 20 74 Chlorobenzene-d5 1 1 - 0 20 81 Toluene-d8 1.241 1.3 - -4.8 20 82 Toluene 0.769 0.75 - 2.5 20 77 4-Methyl-2-pentanone 0.058 0.048 - 17.2 20 63 Tetrachloroethene 0.355 0.343 - 3.4 20 75 trans-1,3-Dichloropropene 0.355 0.344 - 3.1 20 71 Ethyl methacrylate 0.252 0.217 - 13.9 20 66 1,1,2-Trichloroethane 0.18 0.166* - 7.8 20 72	0 0 0 0 0 0 0 0
Chlorobenzene-d5 1 1 - 0 20 81 Toluene-d8 1.241 1.3 - -4.8 20 82 Toluene 0.769 0.75 - 2.5 20 77 4-Methyl-2-pentanone 0.058 0.048 - 17.2 20 63 Tetrachloroethene 0.355 0.343 - 3.4 20 75 trans-1,3-Dichloropropene 0.355 0.344 - 3.1 20 71 Ethyl methacrylate 0.252 0.217 - 13.9 20 66 1,1,2-Trichloroethane 0.18 0.166* - 7.8 20 72	0 0 0 0 0 0 0
Toluene-d8 1.241 1.3 - -4.8 20 82 Toluene 0.769 0.75 - 2.5 20 77 4-Methyl-2-pentanone 0.058 0.048 - 17.2 20 63 Tetrachloroethene 0.355 0.343 - 3.4 20 75 trans-1,3-Dichloropropene 0.355 0.344 - 3.1 20 71 Ethyl methacrylate 0.252 0.217 - 13.9 20 66 1,1,2-Trichloroethane 0.18 0.166* - 7.8 20 72	0 0 0 0 0 0
Toluene 0.769 0.75 - 2.5 20 77 4-Methyl-2-pentanone 0.058 0.048 - 17.2 20 63 Tetrachloroethene 0.355 0.343 - 3.4 20 75 trans-1,3-Dichloropropene 0.355 0.344 - 3.1 20 71 Ethyl methacrylate 0.252 0.217 - 13.9 20 66 1,1,2-Trichloroethane 0.18 0.166* - 7.8 20 72	0 0 0 0 0
4-Methyl-2-pentanone 0.058 0.048 - 17.2 20 63 Tetrachloroethene 0.355 0.343 - 3.4 20 75 trans-1,3-Dichloropropene 0.355 0.344 - 3.1 20 71 Ethyl methacrylate 0.252 0.217 - 13.9 20 66 1,1,2-Trichloroethane 0.18 0.166* - 7.8 20 72	0 0 0 0
Tetrachloroethene 0.355 0.343 - 3.4 20 75 trans-1,3-Dichloropropene 0.355 0.344 - 3.1 20 71 Ethyl methacrylate 0.252 0.217 - 13.9 20 66 1,1,2-Trichloroethane 0.18 0.166* - 7.8 20 72	0 0 0
trans-1,3-Dichloropropene 0.355 0.344 - 3.1 20 71 Ethyl methacrylate 0.252 0.217 - 13.9 20 66 1,1,2-Trichloroethane 0.18 0.166* - 7.8 20 72	0 0 0
Ethyl methacrylate 0.252 0.217 - 13.9 20 66 1,1,2-Trichloroethane 0.18 0.166* - 7.8 20 72	0
1,1,2-Trichloroethane 0.18 0.166* - 7.8 20 72	0
Chlorodibromomethane 0.277 0.252 - 9 20 73	
5 11010 Gillo Titoline (10.11) 0.202 - 5 20 13	U
1,3-Dichloropropane 0.394 0.377 - 4.3 20 72	0
1,2-Dibromoethane 0.189 0.171* - 9.5 20 69	0
2-Hexanone 0.105 0.081 - 22.9* 20 63	0
Chlorobenzene 0.883 0.841 - 4.8 20 76	0
Ethylbenzene 1.55 1.488 - 4 20 76	0
1,1,1,2-Tetrachloroethane 0.306 0.286 - 6.5 20 75	0
p/m Xylene 0.634 0.605 - 4.6 20 77	0
o Xylene 0.627 0.573 - 8.6 20 76	0
Styrene 0.931 0.889 - 4.5 20 76	0
1,4-Dichlorobenzene-d4 1 1 - 0 20 81	0
Bromoform 0.294 0.236 - 19.7 20 72	0
Isopropylbenzene 2.965 2.83 - 4.6 20 75	0
4-Bromofluorobenzene 0.763 0.757 - 0.8 20 79	0
Bromobenzene 0.676 0.617 - 8.7 20 74	0
n-Propylbenzene 3.439 3.378 - 1.8 20 76	0
1,4-Dichlorobutane 0.638 0.556 - 12.9 20 70	0
1,1,2,2-Tetrachloroethane 0.463 0.391 - 15.6 20 70	0
4-Ethyltoluene 2.905 2.768 - 4.7 20 76	0
2-Chlorotoluene 1.888 1.828 - 3.2 20 78	0
1,3,5-Trimethylbenzene 2.515 2.334 - 7.2 20 76	0
1,2,3-Trichloropropane 0.359 0.299 - 16.7 20 67	0
trans-1,4-Dichloro-2-buten 0.134 0.116 - 13.4 20 65	0
4-Chlorotoluene 2.008 1.861 - 7.3 20 74	0
tert-Butylbenzene 2.176 2.051 - 5.7 20 76	0
1,2,4-Trimethylbenzene 2.418 2.26 - 6.5 20 76	0
sec-Butylbenzene 3.154 3.063 - 2.9 20 77	0
p-Isopropyltoluene 2.723 2.611 - 4.1 20 77	0
1,3-Dichlorobenzene 1.346 1.235 - 8.2 20 75	0
1,4-Dichlorobenzene 1.375 1.25 - 9.1 20 77	0
p-Diethylbenzene 1.579 1.463 - 7.3 20 78	0

^{*} Value outside of QC limits.

Client : C&S Companies Lab Number : L2244958

Project Name : JCC Project Number : N30.009.001

Instrument ID : VOA105 Calibration Date : 08/25/22 07:01

 Lab File ID
 : V05220825A01
 Init. Calib. Date(s)
 : 08/19/22

 Sample No
 : WG1679629-2
 Init. Calib. Times
 : 14:23
 17:52

Compound	Ave. RRF	RRF	Min RRF	%D	Max %D	Area%	Dev(min)
n-Butylbenzene	2.247	2.162	-	3.8	20	78	0
1,2-Dichlorobenzene	1.19	1.071	-	10	20	74	0
1,2,4,5-Tetramethylbenzene	2.102	1.875	-	10.8	20	75	0
1,2-Dibromo-3-chloropropan	0.061	0.047	-	23*	20	64	0
1,3,5-Trichlorobenzene	0.788	0.744	-	5.6	20	78	0
Hexachlorobutadiene	0.263	0.255	-	3	20	80	0
1,2,4-Trichlorobenzene	0.61	0.546	-	10.5	20	72	0
Naphthalene	1.194	0.967	-	19	20	66	0
1,2,3-Trichlorobenzene	0.484	0.411	-	15.1	20	71	0

^{*} Value outside of QC limits.

Client : C&S Companies Lab Number : L2244958

Project Name : JCC Project Number : N30.009.001

Instrument ID : VOA122 Calibration Date : 08/25/22 08:47

 Lab File ID
 : V22220825A01
 Init. Calib. Date(s)
 : 07/28/22

 Sample No
 : WG1680118-2
 Init. Calib. Times
 : 20:02
 23:46

Compound	Ave. RRF	RRF	Min RRF	%D	Max %D	Area%	Dev(min)
Fluorobenzene	1	1	-	0	20	83	0
Dichlorodifluoromethane	0.283	0.265	-	6.4	20	71	0
Chloromethane	0.254	0.246	-	2.1	20	74	0
Vinyl chloride	0.306	0.377	-	-23.2*	20	92	0
Bromomethane	0.252	0.136	-	46*	20	48	0
Chloroethane	0.223	0.341	-	-52.9*	20	112	0
Trichlorofluoromethane	0.39	0.435	-	-11.5	20	84	0
Ethyl ether	0.088	0.082	-	6.8	20	73	0
1,1-Dichloroethene	0.208	0.249	-	-19.7	20	90	0
Carbon disulfide	0.547	0.654	-	-19.6	20	91	0
Freon-113	0.235	0.267	-	-13.6	20	85	0
Acrolein	0.019	0.023	-	-21.1*	20	100	0 NT
Methylene chloride	0.242	0.262	-	-8.3	20	86	0
Acetone	10	6.022	- (39.8*	20	60	0
trans-1,2-Dichloroethene	0.231	0.267	-	-15.6	20	87	0
Methyl acetate	0.08	0.076	-	5	20	74	0
Methyl tert-butyl ether	0.423	0.345	-	18.4	20	65	0
tert-Butyl alcohol	0.01189	0.00938*	-	21.1*	20	61	0 NT
Diisopropyl ether	0.55	0.465	-	15.5	20	71	0
1,1-Dichloroethane	0.41	0.468	-	-14.1	20	86	0
Halothane	0.182	0.194	-	-6.6	20	80	0
Acrylonitrile	0.045	0.04	-	11.1	20	69	0
Ethyl tert-butyl ether	0.536	0.435	-	18.8	20	69	0
Vinyl acetate	0.304	0.254	-	16.4	20	78	0
cis-1,2-Dichloroethene	0.254	0.286	-	-12.6	20	87	0
2,2-Dichloropropane	0.344	0.395	-	-14.8	20	90	0
Bromochloromethane	0.113	0.128	-	-13.3	20	84	0
Cyclohexane	0.406	0.422	-	-3.9	20	80	0
Chloroform	0.419	0.455	-	-8.6	20	83	0
Ethyl acetate	0.113	0.081	-	28.3*	20	61	0
Carbon tetrachloride	0.345	0.379	-	-9.9	20	82	0
Tetrahydrofuran	0.043	0.035	-	18.6	20	62	0
Dibromofluoromethane	0.295	0.31	-	-5.1	20	84	0
1,1,1-Trichloroethane	0.369	0.408	-	-10.6	20	83	0
2-Butanone	0.049	0.036	- (26.5*	20	71	0
1,1-Dichloropropene	0.312	0.31	-	0.6	20	75	0
Benzene	0.836	0.889	-	-6.3	20	83	0
tert-Amyl methyl ether	0.47	0.365	-	22.3*	20	65	0 NT
1,2-Dichloroethane-d4	0.292	0.281	-	3.8	20	79	0
1,2-Dichloroethane	0.268	0.269	-	-0.4	20	78	0
Methyl cyclohexane	0.39	0.368	-	5.6	20	77	0
 Trichloroethene	0.234	0.237	-	-1.3	20	78	0
Dibromomethane	0.134	0.141	-	-5.2	20	79	0

^{*} Value outside of QC limits.

Client : C&S Companies Lab Number : L2244958
Project Name : JCC Project Number : N30.009.0

 Project Name
 : JCC
 Project Number
 : N30.009.001

 Instrument ID
 : VOA122
 Calibration Date
 : 08/25/22 08:47

 Lab File ID
 : V22220825A01
 Init. Calib. Date(s)
 : 07/28/22
 0

 Lab File ID
 : V22220825A01
 Init. Calib. Date(s)
 : 07/28/22

 Sample No
 : WG1680118-2
 Init. Calib. Times
 : 20:02
 23:46

Compound	Ave. RRF	RRF	Min RRF	%D	Max %D	Area%	Dev(min)
1,2-Dichloropropan	e 0.224	0.226	-	-0.9	20	79	0
Bromodichlorometh	nane 0.303	0.302	-	0.3	20	78	0
1,4-Dioxane	0.00139	0.00125*	-	10.1	20	67	0
cis-1,3-Dichloropro	pene 0.326	0.309	-	5.2	20	76	0
Chlorobenzene-d5	1	1	-	0	20	81	0
Toluene-d8	1.304	1.289	-	1.2	20	80	0
Toluene	0.727	0.746	-	-2.6	20	81	0
4-Methyl-2-pentano	one 0.055	0.037	-	32.7*	20	55	0
Tetrachloroethene	0.34	0.329	-	3.2	20	76	0
trans-1,3-Dichlorop	ropene 0.348	0.32	-	8	20	75	0
Ethyl methacrylate	0.242	0.176	-	27.3*	20	55	0 NT
1,1,2-Trichloroetha	ne 0.161	0.151*	-	6.2	20	74	0
Chlorodibromometh	nane 0.285	0.272	-	4.6	20	76	0
1,3-Dichloropropan	e 0.367	0.36	-	1.9	20	78	0
1,2-Dibromoethane	0.195	0.185*	-	5.1	20	76	0
2-Hexanone	0.093	0.053	-	43*	20	46	0
Chlorobenzene	0.81	0.849	-	-4.8	20	83	0
Ethylbenzene	1.417	1.473	-	-4	20	80	0
1,1,1,2-Tetrachloro	ethane 0.287	0.261	-	9.1	20	75	0
p/m Xylene	0.564	0.583	-	-3.4	20	81	0
o Xylene	0.546	0.551	-	-0.9	20	80	0
Styrene	0.883	0.875	-	0.9	20	79	0
1,4-Dichlorobenzen	ne-d4 1	1	-	0	20	82	0
Bromoform	0.308	0.272	-	11.7	20	75	0
Isopropylbenzene	2.753	2.827	-	-2.7	20	81	0
4-Bromofluorobenz	ene 0.9	0.88	-	2.2	20	79	0
Bromobenzene	0.652	0.65	-	0.3	20	80	0
n-Propylbenzene	3.212	3.379	-	-5.2	20	83	0
1,4-Dichlorobutane		0.539	-	18.5	20	67	0
1,1,2,2-Tetrachloro		0.432	-	1.6	20	80	0
4-Ethyltoluene	2.669	2.764	-	-3.6	20	82	0
2-Chlorotoluene	2.18	2.219	-	-1.8	20	82	0
1,3,5-Trimethylbenz		2.249	-	1.4	20	78	0
1,2,3-Trichloroprop		0.335	-	9	20	73	0
trans-1,4-Dichloro-2		0.114	-	16.2	20	67	0
4-Chlorotoluene	1.939	2.036	-	-5	20	84	0
tert-Butylbenzene	2.264	2.266	-	-0.1	20	80	0
1,2,4-Trimethylbenz		2.572	-	1.6	20	78	0
sec-Butylbenzene	2.772	2.865	-	-3.4	20	81	0
p-Isopropyltoluene	2.385	2.429	-	-1.8	20	80	0
1,3-Dichlorobenzen		1.321	-	-3.5	20	83	0
1,4-Dichlorobenzen		1.327	-	-4.1	20	83	0
p-Diethylbenzene	1.398	1.36	-	2.7	20	77	0

^{*} Value outside of QC limits.

Client : C&S Companies Lab Number : L2244958

Project Name : JCC Project Number : N30.009.001

Instrument ID : VOA122 Calibration Date : 08/25/22 08:47

 Lab File ID
 : V22220825A01
 Init. Calib. Date(s)
 : 07/28/22

 Sample No
 : WG1680118-2
 Init. Calib. Times
 : 20:02
 23:46

Compound	Ave. RRF	RRF	Min RRF	%D	Max %D	Area%	Dev(min)
n-Butylbenzene	1.963	2.054	-	-4.6	20	83	0
1,2-Dichlorobenzene	1.152	1.172	-	-1.7	20	81	0
1,2,4,5-Tetramethylbenzene	1.975	1.82	-	7.8	20	73	0
1,2-Dibromo-3-chloropropan	0.074	0.059	-	20.3*	20	62	0
1,3,5-Trichlorobenzene	0.74	0.698	-	5.7	20	75	0
Hexachlorobutadiene	0.241	0.208	-	13.7	20	71	0
1,2,4-Trichlorobenzene	0.623	0.559	-	10.3	20	71	0
Naphthalene	1.457	1.275	-	12.5	20	69	0
1,2,3-Trichlorobenzene	0.512	0.44	-	14.1	20	69	0

^{*} Value outside of QC limits.

Client : C&S Companies Lab Number : L2244958
Project Name : JCC Project Number : N30.009.001
Instrument ID : VOA108 Calibration Date : 08/25/22 18:12

 Lab File ID
 : V08220825N01
 Init. Calib. Date(s)
 : 07/28/22
 07/28/22

 Sample No
 : WG1680167-2
 Init. Calib. Times
 : 00:06
 03:16

Compound	Ave. RRF	RRF	Min RRF	%D	Max %D	Area%	Dev(m	ıin)
Fluorobenzene	1	1	-	0	20	92	0	
Dichlorodifluoromethane	0.143	0.217	-	-51.7*	20	130	0	
Chloromethane	0.191	0.223	-	-16-8	20	101	0	
Vinyl chloride	0.204	0.245	-	-20.1*	20	103	0	
Bromomethane	0.141	0.101	-	28.4*	20	70	0	
Chloroethane	0.14	0.157	-	-12.1	20	99	0	
Trichlorofluoromethane	0.324	0.356	-	-9.9	20	97	0	
Ethyl ether	0.106	0.108	-	-1.9	20	90	0	
1,1-Dichloroethene	0.189	0.217	-	-14.8	20	101	0	
Carbon disulfide	0.509	0.624	-	-22.6*	20	108	0	
Freon-113	0.183	0.235	-	-28.4*	20	114	0	
 lodomethane	0.295	0.098	-	66.8*	20	33	0	NT
 Acrolein	0.027	0.041	-	-51.9*	20	134	0	NT
 Methylene chloride	0.251	0.256	-	-2	20	98	0	
 Acetone	0.056	0.084	-	-50*	20	143	01	
 trans-1,2-Dichloroethene	0.224	0.242	-	-8	20	96	0	
 Methyl acetate	0.141	0.179	- (-27*	20	123	0	
 Methyl tert-butyl ether	0.593	0.484	-	18.4	20	75	0	
 tert-Butyl alcohol	0.019	0.017	-	10.5	20	81	01	
 Diisopropyl ether	0.819	0.749	-	8.5	20	83	01	
 1,1-Dichloroethane	0.449	0.44	-	2	20	87	01	
 Halothane	0.18	0.183	-	-1.7	20	89	02	
 Acrylonitrile	0.078	0.072	-	7.7	20	88	01	
 Ethyl tert-butyl ether	0.767	0.791	-	-3.1	20	96	01	
 Vinyl acetate	0.524	0.546	-	-4.2	20	99	01	
 cis-1,2-Dichloroethene	0.262	0.263	-	-0.4	20	89	02	
 2,2-Dichloropropane	0.373	0.33	-	11.5	20	80	01	
 Bromochloromethane	0.125	0.138	-	-10.4	20	97	0	
 Cyclohexane	0.373	0.449	-	-20.4*	20	111	01	
 Chloroform	0.457	0.469	-	-2.6	20	91	01	
 Ethyl acetate	0.205	0.246	-	-20	20	112	01	
 Carbon tetrachloride	10	9.611	-	3.9	20	89	0	
 Tetrahydrofuran	0.057	0.085	-	-49.1*	20	144	01	NT
 Dibromofluoromethane	0.289	0.291	-	-0.7	20	95	02	141
 1,1,1-Trichloroethane	0.373	0.373	-	0	20	88	0	
 2-Butanone	0.089	0.121	-	-36*	20	131	02	
 1,1-Dichloropropene	0.301	0.322	-	<u>-</u> /	20	94	0	
 Benzene	0.933	0.996	-	-6.8	20	95	01	
 tert-Amyl methyl ether	0.634	0.586	-	7.6	20	83	01	
1,2-Dichloroethane-d4	0.315	0.343	-	-8.9	20	104	0	
1,2-Dichloroethane	0.342	0.376	-	-9.9	20	98	01	
Methyl cyclohexane	0.366	0.361	-	1.4	20	91	0	
 Trichloroethene	0.241	0.259	-	-7.5	20	94	0	

^{*} Value outside of QC limits.

Appendix C

Validator Qualifications

KENNETH R. APPLIN Geochemist/Data Validator

Ph.D., Geochemistry and Mineralogy, The Pennsylvania State University

M.S., Geochemistry and Mineralogy, The Pennsylvania State University

B.A., Geological Sciences, SUNY at Geneseo, NY

Dr. Applin has over 35 years of experience working with the geochemistry of natural waters. His prior experience includes working as an Assistant Professor of Geology at the University of Missouri-Columbia and as Chief Hydrogeologist and Geochemist with a leading engineering firm in Rochester, NY. In 1993, he established KR Applin and Associates, a small consulting business that focuses on the geochemistry of natural waters, especially as applied to problems involving the contamination of groundwater and surface water.

Dr. Applin is also an experienced analytical data validator and has provided data validation services since 1994 to a variety of clients performing brownfield cleanup projects, hazardous waste remediation, groundwater monitoring at solid waste facilities, and other projects requiring third-party data validation. Dr. Applin has several years of hands-on experience with the laboratory analysis of natural waters and has successfully completed the USEPA Region II certification courses for performing inorganic and organic analytical data validation.

MICHAEL K. PERRY Chemist/Data Validator

B.S. Chemistry, Georgia State University, Atlanta, GA

A.A.S., Chemical Technology, Alfred State College, Alfred, NY

Mr. Perry has over 30 years of experience in the analytical laboratory business. During his early career, he spent several years as a laboratory analyst performing the analysis of soil, water, and air samples for inorganic and organic chemical parameters. During his last 20 years in the environmental laboratory business, he managed and directed two major analytical laboratories in Rochester, NY. His management responsibilities included oversight of the daily operations of the lab, staff training and supervision, the selection, purchase, and maintenance of analytical instruments, the introduction of new laboratory methods, analytical quality assurance and quality control, data acquisition and management, and other business-related activities.

Mr. Perry has an extensive working knowledge of the methods and procedures used for sampling and analyzing both inorganic and organic analytes in soil, water, and air. He is an accomplished laboratory chemist and is familiar with the analytical methods and procedures established under the USEPA Contract Laboratory Protocols (CLP), the NYSDEC Analytical Services Protocols (ASP), and the NYSDOH Environmental Laboratory Approval Program (ELAP).

GROUNDWATER USE CERTIFICATION

Jamestown Container Realty Inc. 14 Deming Drive Falconer, NY 14733

August 18, 2022

Re: Site Name:

Doweraft, South Dow Street

Site No:

907020

Site Address:

65 South Dow Street, Falconer, NY 14733

To Whom It May Concern,

This confirms that the above referenced property is owned by Jamestown Container Realty Inc. As the property owner, Jamestown Container Realty Inc. herby certifies that it is not using any ground water drawn from the property.

If you need anything further, please advise.

Sincerely,

Vice President / COO

INSTITUTIONAL AND ENGINEERING CONTROLS CERTIFICATION FORM

Enclosure 2 NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION Site Management Periodic Review Report Notice Institutional and Engineering Controls Certification Form

Sit	Site Details e No. 907020	Box 1			
Sit	e Name Dowcraft, South Dow Street				
Cit _y	e Address: 65 South Dow Street Zip Code: 14733 y/Town: Falconer unty: Chautauqua e Acreage: 2.200				
Re	Reporting Period: October 31, 2021 to October 31, 2022				
		YES	NO		
1.	Is the information above correct?	x			
	If NO, include handwritten above or on a separate sheet.				
2.	Has some or all of the site property been sold, subdivided, merged, or undergone a tax map amendment during this Reporting Period?		X		
3.	Has there been any change of use at the site during this Reporting Period (see 6NYCRR 375-1.11(d))?		x		
4.	Have any federal, state, and/or local permits (e.g., building, discharge) been issued for or at the property during this Reporting Period?		X		
	If you answered YES to questions 2 thru 4, include documentation or evidence that documentation has been previously submitted with this certification form				
5.	Is the site currently undergoing development?		x		
		Box 2			
		YES	NO		
6.	Is the current site use consistent with the use(s) listed below? Industrial	×			
7.	Are all ICs in place and functioning as designed?				
	IF THE ANSWER TO EITHER QUESTION 6 OR 7 IS NO, sign and date below DO NOT COMPLETE THE REST OF THIS FORM. Otherwise continue.	and			
AC	Corrective Measures Work Plan must be submitted along with this form to address t	hese iss	ues.		
 Sig	nature of Owner, Remedial Party or Designated Representative Date				

SITE NO. 907020 Box 3

Description of Institutional Controls

Parcel Owner Institutional Control

104-12-2 Bruce Janowski, Jamestown Container Real

Ground Water Use Restriction

Landuse Restriction Monitoring Plan O&M Plan

Box 4

Description of Engineering Controls

None Required

Not Applicable/No EC's

	Periodic Review Report (PRR) Certification Statements					
1.	I certify by checking "YES" below that:					
	a) the Periodic Review report and all attachments were prepared under the direction of, and reviewed by, the party making the Engineering Control certification;					
	 b) to the best of my knowledge and belief, the work and conclusions described in are in accordance with the requirements of the site remedial program, and gener engineering practices; and the information presented is accurate and compete. 					
	engineering practices, and the information presented is accurate and compete.		NO			
		X				
2.	For each Engineering control listed in Box 4, I certify by checking "YES" below that all of following statements are true:	of the				
	(a) The Engineering Control(s) employed at this site is unchanged since the date that the Control was put in-place, or was last approved by the Dep	artmen	<u>;</u> ;			
	(b) nothing has occurred that would impair the ability of such Control, to protect per the environment;	oublic h	ealth and			
	(c) access to the site will continue to be provided to the Department, to evaluate remedy, including access to evaluate the continued maintenance of this Control;	the				
	(d) nothing has occurred that would constitute a violation or failure to comply with Site Management Plan for this Control; and	h the				
	(e) if a financial assurance mechanism is required by the oversight document for the site, the mechanism remains valid and sufficient for its intended purpose established in the document.					
		YES	NO			
		X				
IF THE ANSWER TO QUESTION 2 IS NO, sign and date below and DO NOT COMPLETE THE REST OF THIS FORM. Otherwise continue.						
A Corrective Measures Work Plan must be submitted along with this form to address these issues.						
	Signature of Owner, Remedial Party or Designated Representative Date					

IC CERTIFICATIONS SITE NO. 907020

Box 6

SITE OWNER OR DESIGNATED REPRESENTATIVE SIGNATURE

I certify that all information and statements in Boxes 1,2, and 3 are true. I understand that a false statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law.

	C&S Engineers			
Cody Martin	at 141 Elm Street, Su	ite 100 Buffalo, NY ,		
print name	print business ad	dress		
am certifying asDesignated Repr	esentative	(Owner or Remedial Party)		
for the Site named in the Site Details Section of this form. Signature of Owner, Remedial Party, or Designated Representative Rendering Certification 11/30/2022 Date				

APPENDIX D

SSDS INSPECTION REPORTS

mitigation tech vapor intrusion specialists

INSPECTION REPORT

October 3, 2022

Mr. Cody Martin Project Manager C & S Companies 141 Elm Street, Suite 100 Buffalo, NY 14203 Via email: Cody Martin <cmartin@cscos.com>

Re: Jamestown Container Companies - Buildings 5&6, 65 South Dow St., Falconer, NY Inspection Report for Sub-slab Ventilation System

For work completed September 21, 2022

- 1. Conducted a visual inspection of the complete System (e.g., vent fan, piping, warning device, labeling on systems, etc.): SATISFACTORY
- 2. Conducted an inspection of all surfaces to which vacuum is applied: SATISFACTORY
- 3. Inspected all components for condition and proper operation: SATISFACTORY
- 4. Identify and repair any leaks: NO LEAKS OBSERVED
- 5. Inspect the exhaust or discharge points to verify that no air intakes have been located nearby: NO AIR INTAKES WITHIN TEN FEET
- 6. Conduct an airstream velocity measurement: **SATISFACTORY**
- 7. Conduct pressure field extension testing **SATISFACTORY**
 - a. Stack 1 0.2 wci
 - c. Test point 1 0.033 wei (near crawlspace entrance)
 d. Test point 2 -0.040 wei (near fork lift roma)
- 8. Interview an appropriate individual seeking comments and observations regarding the operation of the System: **SATISFACTORY**

Thank you

Nicholas E. Mouganis EPA listing # 15415-I; NEHA ID# 100722 ***mitigationtech.com

mitigation tech vapor intrusion specialists

INSPECTION REPORT

October 3, 2022

Mr. Cody Martin Project Manager C & S Companies 141 Elm Street, Suite 100 Buffalo, NY 14203

Via email: Cody Martin <cmartin@cscos.com>

Re: Jamestown Container Companies – Building 9, 65 South Dow St., Falconer, NY Inspection Report for Sub-slab Depressurization System

For work completed September 21, 2022

- 1. Conducted a visual inspection of the complete System (e.g., vent fan, piping, warning device, labeling on systems, etc.): SATISFACTORY
- 2. Conducted an inspection of all surfaces to which vacuum is applied: SATISFACTORY
- 3. Inspected all components for condition and proper operation: SATISFACTORY
- 4. Identify and repair any leaks: NO LEAKS OBSERVED
- 5. Inspect the exhaust or discharge point to verify that no air intakes have been located nearby: NO AIR INTAKES WITHIN TEN FEET
- 6. Conduct an airstream velocity measurement: **SATISFACTORY**
- 7. Conduct pressure field extension testing: **SATISFACTORY**

a. Stack 1 – (north) 1.8 wci b. Stack 2 - (south)4.0 wci c. Test point 1 – (north) -0.073 wci d. Test point 2 - (north) -0.017 wci

8. Interview an appropriate individual seeking comments and observations regarding the operation of the System: SATISFACTORY

Thank you

Nicholas E. Mouganis EPA listing # 15415-I; NEHA ID# 100722 ***mitigationtech.com

PROJECT: PROJEC LOCATION: C&S PROJECT NO. SITE NO. WEATHER Sunny TEMP. Below 32	FORMER DOWC 65 SOUTH DOW N30.001.008 907020 Partly Cloudy 32-50 50-7	STREET ast Rain Snow		DATE: DAY: REPORT NO.	Colo/2022 SMTWTHFS
WIND DIR. NE	Moderate High NW SE S E	sw w			
CONTRACTOR(S) ONSI	TE				
Name of Con	tractor	Drille Halan	Hours Worked		Comments
VISITORS					
Name					
- I I I I I I I I I I I I I I I I I I I		Time	Representing		Comments
DATCH PLANT DICECT PLANT	Coloe				
OMMUNITY AIR MONITO	RING				
NA Issue		Time	Remedy		Comments

Upwind	Location	TWA PID (ppm)	TWA Particulate (mg/m3)
Downwind	NA		

lssue	Time		
Minne	Time	Remedy	Comments
10 me			Comments

Description of Work

Start on IB-18 1. Prill to 42' 2. Inject in subsurface at a rate of zogallons perfect 3. Lift casing up 4. Inject 4 testahs in Sitt Zone and lobatches in Sand Zone	
Completed: IB-18, IB-17 Stopped @ 16! Started IB-16 Stopped due to 5 low progress Casings removed and found bottom 6" plugged, NW Will develop a Solution to grevent this issue,	P

PREPARED BY:

C. Martin

PROJECT:	FORMER DOW	CRAFT SITE		1/7/2-7
PROJEC LOCATION:	65 SOUTH DOV	V STREET	-	DATE: 6/7/2022
C&S PROJECT NO.	N30.001.008			DAY: S M W TH F S
SITE NO.	907020			
				REPORT NO
WEATHER Sunny	Partly Cloudy Over	cast Rain Snow		
TEMP. Below 32	32-50 50-			
WIND Right	Moderate Hig	7		
	To dec ing	_		
VIND DIR.	NW GE	SW		
N	S E	W		
ONTRACTOR(S) ONSI	TF			
Name of Cont		200		
Nin		Title	Hours Worked	Comme
700		Priller/ Labore		Comments
		į.		
ITORS				
ITORS Name				
ITORS Name		Time		
		Time	Representing	Comments
		Time		Comments
		Time		Comments
		Time		Comments
Name		Time		Comments
		Time		Comments
Name		Time		Comments
Name		Time		Comments
Name		Time		Comments
Name		Time		Comments
Name		Time		Comments
Name TE EQUIPMENT		Time		Comments
Name		Time		Comments
Name TE EQUIPMENT			Representing	Comments
Name TE EQUIPMENT UNITY AIR MONITORI		Time		Comments

Upwind Location Downwind	TWA PID (ppm)	TWA Particulate (mg/m3)
--------------------------	---------------	----------------------------

Issue	Th:		
	Time	Remedy	
			Comments

Description of Work

Start on IB-16
Installed value on injection con 1
Installed value on injection casing to prevent plugging and improve increase progress.
of grogress.

Completed: IB-16, IB-19, IB-15, IB-20, IB-14

PROJECT: PROJEC LOCATION: C&S PROJECT NO. SITE NO.	65 SOUTH DOW N30.001.008	CRAFT SITE STREET		DATE: DAY:	6/8/22 SMT/WTH FS
WEATHER Sunny TEMP. Below 32	Partly Overco			REPORT N	10. 3
WIND Light WIND DIR. NE	Moderate High NW SE S E	SW W			
ONTRACTOR(S) ONSI	ГЕ				
Name of Cont		Title			
	/(11de	Hours Worked		Comments
			(()(1	
TTORS					
TTORS Name					
		Time	Representing		Comments
		Time	Representing		Comments
		Time	Representing		Comments
		Time	Representing		Comments
		Time	Representing		Comments
Name		Time	Representing		Comments
		Time	Representing		Comments
Name		Time	Representing		Comments
Name		Time	Representing		Comments
Name		Time	Representing		Comments
Name		Time	Representing		Comments
Name		Time	Representing		Comments
Name		Time	Representing		Comments
Name TE EQUIPMENT		Time	Representing		Comments
Name TE EQUIPMENT UNITY AIR MONITOR		Time	Representing		Comments
Name TE EQUIPMENT		Time	Representing		Comments

Upwind	Location	TWA PID (ppm)	TWA Particulate (mg/m3)
Downwind	NA		

/ Issue			
None	Time	Remedy	Comments
			comments
Description of Worls			

Description of Work

start on IR-2

ZVI was mix at a rate of I gal per batch. This counding up of the actual quantity is running through 2VI at a Slightly higher vate. The Mix vatio was regularly to 0.5 gal per batch Starting tomorrows. BIDI is running low. Regensis only sunt 18.7 L. Need 23L more. Contacted Regensis

PREPARED BY:

C. Matin

Upwind Location	TWA PID (ppm)	TWA Particulate (mg/m3)
Downwind 1//		

Issue	m		
None	Time	Remedy	Comments
			comments
Description of Ward			

Description of Work

Start on Forth TB-11
Start reduced ZVI after completing IBAG.
atter Completing IBA
Carlin
Complete: IB-10, IB-26
Complete: IB-10, IB-26, IB-26 TB-11, IB-24, IB-25, IB-26 henenecic will a land of the second of th
hearnesis will a
hegenesis will Send another BDF next week
<i>3</i>
7 . € 1

PROIFC LOCATION	FORMER DOWCRA	- 0111		
- MOJEC EUCATION:	65 SOUTH DOW ST	REET	-	DATE:
C&S PROJECT NO.	N30.001.008		-	DAY: S M T W TH S
SITE NO.	907020			
	Dawl			REPORT NO. 5
WEATHER Sunny	Partly Cloudy Overcast	Rain Snow		
TEMP. Below 32		70-85 Above 85		
WIND Light	Moderate High			
	High			
VIND DIR. NE	NW SE	SW		
N	S E	w		
ONTRACTOR(S) ONSIT				
Name of Cont		Title	Hours Worked	
·			- Fours Worked	Comments
<u> </u>				
ITORS				
Name				
		Time	Daniel	
		Time	Representing	Comments
		Time	Representing	Comments
		Time	Representing	Comments
		Time	Representing	Comments
		Time	Representing	Comments
TE EQUIPMENT		Time	Representing	Comments
TE EQUIPMENT	((Time	Representing	Comments
TE EQUIPMENT	((Time	Representing	Comments
TE EQUIPMENT	((Time	Representing	Comments
TE EQUIPMENT	((Time	Representing	Comments
TE EQUIPMENT	((Time	Representing	Comments
TE EQUIPMENT		Time	Representing	Comments
		Time	Representing	Comments
		Time	Representing	Comments
TE EQUIPMENT UNITY AIR MONITORI		Time	Representing	Comments

Upwind	Location	TWA PID (ppm)	TWA Particulate (mg/m3)
Downwind	AM		

Issue	Time	Remedy	
Nme			Comments

Description of World	Descr	iption	of W	ork
----------------------	-------	--------	------	-----

Started	IB-27
Complete:	IB-27, IB-8, IB-30, IB-30, IB-30

PROJECT:	FORMER DOWCRA	AFT SITE			1/1-1-
PROJEC LOCATION:	65 SOUTH DOW ST	REET		DATE:	6/3/22
C&S PROJECT NO.	N30.001.008			DAY:	S M T W TH F S
SITE NO.	907020				
	- Company			REPORT NO	o. 6
WEATHER Sunny	Partly Overcast	Rain Snow			
TEMP. Below 32					
	32-50 50-70	70-85 Above 85			
WIND Light	Moderate High				
WIND DIR. NE	NW SE	SW			
N	S E	w			
	in the second				
ONTRACTOR(S) ONSI	TF				
Name of Con	and the same of th	Title	Hours Worked		
	tt		- Worked		Comments
SITORS					
SITORS Name		Time	Representing		
		Time	Representing		Comments
		Time	Representing		Comments
		Time	Representing		Comments
		Time	Representing		Comments
		Time	Representing		Comments
Name		Time	Representing		Comments
		Time	Representing		Comments
Name		Time	Representing		Comments
Name		Time	Representing		Comments
Name	V	Time	Representing		Comments
Name		Time	Representing		Comments
Name		Time	Representing		Comments
Name		Time	Representing		Comments
Name		Time	Representing		Comments
Name TE EQUIPMENT		Time	Representing		Comments
Name ITE EQUIPMENT		Time	Representing		Comments
Name TE EQUIPMENT					Comments
Name ITE EQUIPMENT		Time	Representing		Comments

Location Upwind	TWA PID (ppm)	TWA Particulate (mg/m3)
Downwind		

Issue	Time	D :	
Nano		Remedy	Comments
2014			comments

Description of Work

第 Complete: IB-85, IB-86, IB-87, IB-87 IB-31, IB-30, IB-03, IB-04 IB-05

PROJECT: FORMER DOWG PROJEC LOCATION: 65 SOUTH DOW	CRAFT SITE		DATE:	6/14/2022
	STREET		DAY:	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0:		-	2111.	S M T W TH F S
SITE NO. 907020			REPORT NO	7
WEATHER Sunny Partly Cloudy Overo	0 70-85 Above 85			
WIND DIR. NE NW SE N S E	SW W			
CONTRACTOR(S) ONSITE				
Name of Contractor	Title	Hours Worked		
		Hodrs Worked		Comments
VISITORS				
Name	Time	Dancier		
		Representing		Comments
ONSITE EQUIPMENT		N .		
OMMUNITY AIR MONITORING				
Issue	Time			
TVVX		Remedy	C	omments
2 1 7 - 2 5				

Upwind	Location	TWA PID (ppm)	TWA Particulate (mg/m3)
Downwind	401		

Issue	Time	Dom J	
NN		Remedy	Comments

Description of Work

Starteol	TB-02	-
Slightly	increase mix rate to me	
reming	Product	
1 gat	ZVI	
2 gal	30	

Complete: IB-02, IB-01, IB-28, IB-29 IB-07

Photo Documentation

Project: Former Dowcraft Site (Site #907020) Falconer, New York

Photo 1 – Injection borings laid out as shown in Work Plan.

Photo 2 – Injection borings laid out as shown in Work Plan.

Photo Documentation

Project: Former Dowcraft Site (Site #907020) Falconer, New York

Photo 3 – Injection chemical properly stored until needed.

Photo 4 – View of injection and staging area.

Photo Documentation

Project: Former Dowcraft Site (Site #907020) Falconer, New York

Photo 5 – Injection of chemicals