

2023

Periodic Review Report

Dowcraft, South Dow StreetNYSDEC Site #907020
Falconer, Chautauqua County, New York

Prepared for:

Jamestown Container Companies 14 Deming Drive Falconer, New York 14733

> November 2023 Revision 02

TABLE OF CONTENTS

<u>EXE</u>	CUTIVE SUMMARY	1
<u>1</u>	SITE OVERVIEW	2
1.1	SITE DESCRIPTION	2
1.2	GEOLOGY AND HYDROGEOLOGY	2
1.3	NATURE AND EXTENT OF CONTAMINATION	2
1.4	SITE HISTORY	3
<u>2</u>	MONITORING PLAN COMPLIANCE REPORT	8
<u>3</u>	REMEDY PERFORMANCE, EFFECTIVENESS AND PROTECTIVENESS	10
<u>4</u>	IC/EC PLAN COMPLIANCE REPORT	12
	IC/EC REQUIREMENTS AND COMPLIANCE INSTITUTIONAL CONTROLS	12
	2 Engineering Controls	12 12
	IC/EC CERTIFICATION	14
<u>5</u>	OPERATION AND MAINTENANCE PLAN COMPLIANCE	15
5.1	GROUNDWATER MONITORING WELLS	15
5.2	SOIL VAPOR MITIGATION SYSTEMS	15
	MONTHLY MONITORING	15
5.2.2	2 Annual Inspection	15
<u>6</u>	CONCLUSIONS AND RECOMMENDATIONS	17
FIGI	URES	
Figu	re 1 Historic and Existing Site Featu	RES
Figu	re 2Trichloroethylene Concentratio	NS
Figu	re 3cis-1,2-Dichloroethene Concentration	NS
Figu	re 4VINYL CHLORIDE CONCENTRATIO	NS

FIGURE 5 **TABLES** TARLE 1July 2013 Groundwater Analytical Results TABLE 2 TABLE 3 2022 PRF AND POST TREATMENT GROUNDWATER ANALYTICAL RESULTS **GRAPHS** TOTAL VOC CONCENTRATIONS FROM OCTOBER 2014 TO PRESENT. GRAPH 1 **APPENDICES** APPENDIX A...... LABORATORY ANALYTICAL RESULTS AND DUSR APPENDIX C......INSTITUTIONAL AND ENGINEERING CONTROLS CERTIFICATION FORM APPENDIX DSSDS Inspection Reports **ACRONYM LIST** C&S **C&S** Engineers, Inc. DCE CIS-1,2-DICHLOROETHENE JCC JAMESTOWN CONTAINER COMPANIES FORMER DOWCRAFT FACILITY SITE FID FLAME IONIZATION DETECTOR TCE TRICHLOROETHYLENE **IRM** INTERIM REMEDIAL MEASURES MIP MEMBRANE INTERFACE PROBE **NYSDEC** New York State Department of Environmental Conservation **ROD RECORD OF DECISION CRA** CONESTOGA-ROVERS & ASSOCIATES RI REMEDIAL INVESTIGATION

PID	PHOTO IONIZATION DETECTOR
ווט	
1 112	

SCO SOIL CLEANUP OBJECTIVES

SVOC SEMI-VOLATILE ORGANIC COMPOUNDS

VOC VOLATILE ORGANIC COMPOUNDS

SVI SOIL VAPOR INTRUSION

XSD HALOGEN SPECIFIC DETECTOR

EXECUTIVE SUMMARY

C&S Engineers, Inc. (C&S) has prepared the 2023 Periodic Review Report for the former Dowcraft, South Dow Street Site (NYSDEC Site No. 907020) located at 65 South Dow Street in Falconer, New York. From 1939 to 1999, the Site manufactured steel partitions. As part of this manufacturing process, a vapor degreaser was used which included the use of chemicals such as trichloroethylene (TCE).

Previous environmental investigations have detected a TCE plume in the area of the former Dowcraft, South Dow Street Site. TCE contamination is located within two sand/gravel layers separated by a silt/clay lens. According to previous environmental reports, the area of former degreaser pit (area of groundwater monitoring wells PW-3 and PW-3R) is a likely source area for the TCE plume. The plume originates from the degreaser area and has affected groundwater in the upper and lower sand/gravel layers. The plume extends from the degreaser area to the north, under the JCC building and up to the area of the Chadakoin River. This is an area of approximately one acre. The rate of movement is approximately 2 to 3 feet per year to the north. Sampling in the River has not shown any impact to date.

The 2003 Record of Decision of the Site selected in-situ chemical dechlorination using potassium permanganate as the approved remedy. Nine in-situ treatment events occurred between May 2000 and July 2006. In 2014, C&S completed another treatment on the Site. Ten injection borings were advanced throughout the TCE plume and a potassium permanganate treatment fence was installed adjacent to the source area by PW-3R.

In June 2022, 31 injection borings were advanced and injected with combined biological enhanced reductive dechlorination and abiotic in-situ chemical reduction using zero-valent iron. Post-treatment groundwater monitoring indicates that the 2022 treatment was successful in the dechlorination of TCE. The source area was reduced to almost 100% in eight weeks and the treatment products used will remain effective over many years, we expect the source area to continue to contain low concentrations of VOCs. This will eliminate contamination loading to other areas of the Site. We expect VOC concentrations in other monitoring wells to reduce over time.

The Site is compliant with all institutional and engineering controls. The Institutional and Engineering Controls Certification form is provided in **Appendix C**.

November 2023 1 | P a g e

1 SITE OVERVIEW

1.1 Site Description

The Dowcraft, South Dow Street Site is located at 65 South Dow Street in Falconer, New York and occupies approximately 2.2 acres of land situated immediately east of South Dow Street and approximately 100 feet south of the Chadakoin River (Site). The Jamestown Container manufacturing building is situated between the Site and the Chadakoin River.

1.2 Geology and Hydrogeology

Site geology consists of fill material overlying two sand/gravel layers separated by a silt/clay lens. Fill material consists of a mixed matrix of sand, cinders, silt, gavel, brick, concrete, coal, slag and metal. The fill unit ranges in thickness from 2 to over 14 feet, with an average thickness of 8 feet.

Under the fill, the upper sand/gravel layer ranges from 10 to 20 feet in thickness. Underlying the upper sand/gravel layer is a silt/clay lens that ranges from 4 to 8 feet in thickness. The lower sand/gravel layer is 10 to 18 feet thick. Underlying the lower sand layer is a second silt/clay layer that starts approximately 43 feet below ground surface (BGS). This unit is estimated to be 60 feet in thickness according to regional geology.

The average depth to groundwater is 10 feet BGS within the upper sand/gravel layer. Groundwater flow within the upper sand/gravel layer is to the north-northeast at approximately 2.7 feet per year.

1.3 Nature and Extent of Contamination

The chemicals of concern (COC) of the Site are trichloroethylene (TCE) and its daughter compounds (cis-1,2-dichloroethene –DCE - and vinyl chloride). According to previous environmental reports, the area of former degreaser pit (area of groundwater monitoring wells PW-3 and PW-3R) is a likely source area for the COC plume. The plume originates from the degreaser area and has affected groundwater in the upper and lower sand/gravel layers. The plume extends from the degreaser area to the north, under the JCC building and up to the area of the Chadakoin River. This is an area of approximately one acre. Sampling in the River has not shown any impact to date.

Total volatile organic compound (VOC) concentrations range between 2.8 to 1938 ug/L. The volume of the COC plume extends from the degreaser pits to the southern façade of the JCC building (approximate area of 5,000 square feet), then

November 2023 2 | P a g e

then vertically down to the base of the second sand/gravel layer (43 feet BGS); a total volume of approximately 8,333 cubic yards of groundwater and subsurface soil.

Table 1 presents the 2013 baseline groundwater monitoring data. **Table 2** presents data for the pre-treatment and post-treatment groundwater monitoring events. Another groundwater monitoring event was conducted on August 2022. Sampling data will be submitted as a separate report to the NYSDEC.

1.4 Site History

The property was first developed in 1890 as a woolen mill until 1939 when it was converted into a factory which manufactured steel partitions used for offices. In 1986 the deed was transferred to the Dowcraft Corporation. Manufacturing activities continued until the facility closed in 1999. As part of this manufacturing process, a vapor degreaser was used which included the use of chemicals such as trichloroethylene (TCE). This work continued until 1999 when the facility was closed, a portion of the Site was demolished, and the property was sold to JCC.

Figure 1 presents present and historic site features.

The Dowcraft, South Dow Street Site was the subject of environmental investigations in the early 1990s, at which time contaminated groundwater was discovered on site. An interim remedial measure (IRM) was subsequently put in place in 1994 which consisted of groundwater extraction and treatment. In 2000, the use of additional groundwater remediation technologies was approved by the NYSDEC which involved in-situ chemical oxidation of TCE through the injection of potassium permanganate into the overburden groundwater. In 2003, a Record of Decision (ROD) was approved that selected the following remedy:

- In-situ groundwater treatment through chemical oxidation, by injection of potassium permanganate dissolved in water through existing well points into the shallow overburden groundwater table;
- Overburden groundwater monitoring to verify the effectiveness of the treatment;
- Institutional controls will be imposed, in such form as the NYSDEC may approve, that will prevent the use of groundwater as a source of potable or process water without necessary water quality treatment as determined by the Local Health Department; and

November 2023 3 | P a g e

 Annual certification to NYSDEC to certify that institutional controls remain in place.

Conestoga-Rovers & Associates (CRA) conducted nine injection treatments between May 2000 and July 2006, totaling 21,500 pounds of potassium permanganate. These injection treatments were successful in oxidizing TCE in outer plume area; however, the concentrations of TCE in the source area remain high.

2014 and 2015 In-situ Remedial Activities

In May 2013, C&S was asked to re-evaluate the environmental conditions of the Site. On July 2013, baseline groundwater monitoring was conducted to determine the changes, if any, in TCE concentrations since 2006. Based on the findings of this work, a Corrective Measures Work Plan was submitted to the NYSDEC on May 2, 2014. C&S proposed additional in-situ chemical oxidation (ISCO) injections and the installation of a potassium permanganate treatment fence. This work was conducted on December 1 through 9, 2014.

Ten borings were each injected with approximately 33 gallons ISCO solution containing approximately 400 pounds of ISCO material. As the solution was pumped into the subsurface, the drill rods were lifted at a rate designed to inject a consistent amount of materials between 5 and 30 feet below grade. A total of 4,024.12 pounds of potassium permanganate was injected into the TCE plume.

Within the lower sand/gravel layer, the area adjacent to PW-3R contains the highest concentrations of TCE. To address these concentrations, a treatment fence was installed to reduce source loading into downgradient groundwater zones. The treatment fence consisted of 1.5 foot long tubes of paraffin wax mixed with potassium permanganate installed in selected monitoring wells and in the subsurface. A 36-foot treatment fence was installed next to the northwest corner of the building. A total of ten borings to 40 feet below grade were drilled to facilitate the installation of the treatment fence. A potassium permanganate cylinder was dropped down the drill casing. Four feet of casing was removed allowing the bore hole to collapse and another cylinder was placed in series until a total of 5 cylinders were installed (a vertical treatment thickness of approximately 7.5 feet in each boring).

2021 Pre-Treatment Investigation

November 2023 4 | P a g e

Parrat-Wolff, Inc. advanced a membrane interface probe (MIP) in 10 borings to 40 feet from January 4, 2021 to January 8, 2021. The MIP is an in-situ logging tool that measures the relative concentration of volatile organic compounds with depth in soil and groundwater. The MIP probe is advanced at a rate of 1 foot per minute. The MIP probe continuously logs data from several sensors including: photo ionization detector (PID); flame ionization detector (FID); halogen specific detector (XSD) and a sensor for measuring electrical conductivity. The location of the 10 MIP borings is presented in Figure 5.

Many locations contained indications of TCE right above confining layers at about 20-25 feet bgs; in most instances the sensors indicated that TCE contamination diminished at approximately 30 feet bgs. The source area around PW-3R was an exception. High levels of contamination were observed around 30 feet bgs and continued past our 40 foot limit.

Four soil samples were collected from selected MIP borings to correlate the millivolt spikes to ug/kg. Samples were analyzed for VOCs only. MIHPT-1 (adjacent to the JCC Building 5) collected at 17.5 feet bgs contained TCE at 1,800 ug/kg and DCE at 1,300 ug/kg. MIHPT-3 (western edge of the plume) was collected at 22 – 26 feet and contained TCE at 2,500 ug/kg, DCE at 1,300 ug/kg and vinyl chloride at 7.6 ug/kg. MIHPT-4 (adjacent to PW-3R)was collected from 31 – 34 feet and contained TCE at 130,000 ug/kg and DCE at 4,400 ug/kg. MIHPT-9 (adjacent to ESI-6) was collected from 24 – 28 feet bgs and contained TCE at 88 ug/kg and DCE at 5,700 ug/kg. MIP data, plume model and laboratory data report is provided in Appendix F in the 2021 PRR.

2022 In-situ Treatment

On June 6 through June 14, 2022, C&S and NW Contracting implemented the remediation as described in the February 2020 Remedial Action Work Plan.

The remedial method combined biological enhanced reductive dechlorination (ERD) and abiotic in-situ chemical reduction (ISCR) using zero-valent iron. Zero valent iron and biological enhanced dichlorination.

ERD products include 3-D Microemulsion and Bio-Dechlor INOCULM Plus. 3-D Microemulsion provides a controlled release of lactic, organic and fatty acids for the steady production of hydrogen needed for anaerobic biodegradation. The self-distributing features of 3-D Microemulsion combined with its longevity (several years) allow for sufficient coverage with minimal pore volume displacement thereby minimizing application costs. The addition of Bio-Dechlor

November 2023 5 | P a g e

INOCULM Plus insures that the correct anaerobic microbes are applied to the treatment area.

Micro zero-valent iron (MZVI), provides conditions for abiotic reduction via the formation of iron sulfides, oxides and hydroxides, while also maintaining strong reducing conditions in the treatment area for an extended timeframe. This will foster rapid abiotic reduction of chlorinated solvents while reducing the potential for daughter product formation.

A solution of 3-D Microemulsion, MZVI and water was directly injected into the soil in 31 borings within the source area around PW-3R. Two subsurface zones were targeted: sand zone and silt zone. The sand zone consists of sand material located below ground surface to approximately 35 feet bgs. A thick and relatively impervious clay layer separates the sand zone from the silt zone. Silt material is encountered at least 35 or more feet bgs and extends over 40 feet bgs. The volume of ISCR product slightly changes for each of these zones.

Injection points will be spaced every six feet within a row and 15 feet between each row. A 2,775 square foot area is assumed to be the extent of the source area (**Figure 5**). No soils were generated or required disposal during this work.

Storage of EDR and ISCR Chemicals

EDR and ISCR products were shipped directly to the Site and stored in conditions in accordance with the manufacturer's specifications. All EDR and ISCR product was used for this treatment.

Decontamination of equipment, storage, personal protection, and other related safety concerns was completed in accordance with the Material Safety Data Sheets and vendor recommendations.

Mixing of EDR and ISCR Chemicals

NW Contracting was retained to perform the in-situ injections. Injections were conducted on June 6 through June 14, 2022. EDR and ISCR was mixed in steel, 55-gallon drums. IBC totes of ISCR product were staged using a folk lift next to a trailer mounted mixing station. The ISCR/ECR solution was pumped from the mixing station to a truck mounted geo-probe and into the subsurface.

ERD/ISCR product and water will be mixed according to manufacturer's specifications.

November 2023 6 | P a g e

Source area – Sand Zone treatment will inject the following:

- 4,000 pounds of 3-D Microemulsion
- 3,000 pounds of S-MZVI
- 32 liters of Bio-Dechlor INOCULM Plus

The treatment solution will be applied evenly in each injection point from 15 to 35 feet bgs.

Source area – Silt Zone treatment will inject the following:

- 2,000 pounds of 3-D Microemulsion
- 1,500 pounds of S-MZVI
- 9 liters of Bio-Dechlor INOCULM Plus

The treatment solution will be applied evenly in each injection point from 35 to 42 feet bgs.

EDR and ISCR Quantities

A total of 31 borings were each injected with approximately:

- 8 gallons of 3-D Microemulsion
- 3 gallons of S-MZVI
- 0.3 liters of Bio-Dechlor INOCULM Plus
- 133 gallons of water

As treatment solution was pumped into the subsurface, the drill rods were lifted at a rate designed to inject a consistent amount of materials throughout the sand and silt zones.

November 2023 7 | P a g e

2 Monitoring Plan Compliance Report

The monitoring plan developed by C&S for the Site includes both chemical and hydraulic monitoring of groundwater before and after treatment semi-annually for two years. Sampling frequency was changed to annual on June 2017 just prior to the acceptance of the 2018 Operation, Monitoring and Maintenance Plan. Baseline groundwater monitoring was performed on July 2, 2013 and the chemical data is provided in **Table 1**. Pre and post groundwater monitoring results from the 2014 treatment is provided in **Table 2**. The following monitoring wells are included in the groundwater monitoring plan:

ESI - 1	ESI - 11
ESI - 2	ESI - 12
ESI - 3	ESI -13R
ESI - 6	PW - 1
ESI - 7	PW - 3R
ESI - 10	

The groundwater monitoring activities included the collection of depth-to-water measurements at each monitoring well and the collection of groundwater samples for laboratory analysis. Pre-treatment sampling was conducted on October 21, 22 and 29, 2014 and post-treatment sampling was conducted on:

April 21 and 22, 2015	1 st Post-treatment (2014)
November 2 and 3, 2015	2 nd Post-treatment (2014)
April 25 and 26, 2016	3 rd Post-treatment (2014)
October 20 and 21, 2016	4 th Post-treatment (2014)
June 7 and 8, 2017	5 th Post-treatment (2014)
May 7 and 8, 2018	6 th Post-treatment (2014)
	1 st Annual Sample Event under new OM&M

November 2023 8 | P a g e

June 25 and 25, 2019	7 th Post-treatment (2014)
	2 nd Annual Sample Event under new OM&M
July 15 and 16, 2020	8 th Post-treatment (2014)
	3 rd Annual Sample Event under new OM&M
October 26 and 27, 2021	9 th Post-treatment (2014)
	4 th Annual Sample Event under new OM&M
August 17 and 18, 2022	1 th Post-treatment (2022)
	5 th Annual Sample Event under new OM&M
August 30 and 31, 2023	2 nd Post-treatment (2022)
	6 th Annual Sample Event under new OM&M

Groundwater sampling was conducted in accordance with the U.S. Environmental Protection Agency Low flow sample procedure.

November 2023 9 | P a g e

3 Remedy Performance, Effectiveness and Protectiveness

Contaminant concentrations appeared to have deceased across the extent of the plume, although some active dichlorination increases were detected in the source area. The table below presents a comparison of total VOC concentrations from each monitoring well and the percent change from pre-treatment and post-treatment groundwater monitoring.

CHANGE IN VOC CONCENTRATION 2014-2023

Monitoring Well	Total VOC Con	Percent Change	
-	Pre-Treatment October 2014	Post-Treatment August 2023	_
PW-1	16.9	9.9	-41.42%
PW-3R	2,609.3	1,938	-25.73%
ESI-1	8.9	2.8	-68.54%
ESI-2	816.08	8.6	-98.95%
ESI-3	4.8	4.2	-12.5%
ESI-6	575.22	4.6	-99.20%
ESI-7	208.39	19.1	-90.83%
ESI-10	352.11	2.56	-99.27%
ESI-11	157	3.9	-97.52%
ESI-12	221.48	4.2	-98.10%
ESI-13R	40	10	-75%

CHANGE IN VOC CONCENTRATION 2022 INJECTIONS-2023

Monitoring Well	Total VOC Con	Percent Change	
	August 2022	August 2023	
PW-1	83.73	9.9	-88.18%
PW-3R	24.32	1,938	+7,868.75%
ESI-1	4.4	2.8	-36.36%
ESI-2	1,375.4	8.6	-99.37%
ESI-3	30.22	4.2	-86.10%
ESI-6	33.2	4.6	-86.14%
ESI-7	83.88	19.1	-77.23%
ESI-10	3.6	2.56	-28.89%
ESI-11	2.3	3.9	+69.57%
ESI-12	4.3	4.2	-2.33%
ESI-13R	15.5	10	-35.48%

November 2023 10 | P a g e

Pre and post groundwater monitoring results from the 2023 treatment is provided in **Table 3**.

Out of eleven monitoring wells, nine wells show significant decreases, over 40%, in TCE and other chlorinated compounds from the first initial sampling event in 2014. Monitoring wells PW-3R and ESI-11 both showed an increase in total VOC concentrations from the previous sampling event in 2022. Wells inside the JCC building (ESI-10, ESI-11 and ESI-12) showed a continuation of non-detect for TCE. Concentrations continue to decrease from monitoring wells downgrade of the source area.

PW-3R and ESI-11 have increased levels of daughter compounds of TCE, indicating that reductive de-chlorination of TCE is taking place as a result of the 2022 treatment. PW-3R shows a significant increase in TCE daughter compounds; DCE and vinyl chloride from the August 2022 sampling event. The table below presents the VOC after treatment.

SOURCE AREA CHANGE IN VOC CONCENTRATION 2022-202	NGE IN VOC CONCENTRATION 2022-2023
--	------------------------------------

PW-3R (Source Area)	2022 Results	2023 Results	Percent Change
	(ug/L)	(ug/L)	
Vinyl chloride	13	960	+7,284.62%
1,1-Dichloroethene	Not Detected	Not Detected	-100%
trans-1,2-Dichloroethene	Not Detected	Not Detected	-100%
Trichloroethene	Not Detected	Not Detected	-100%
cis-1,2-Dichloroethene	2.6	960	+36,823.08%

Considering that the source area was reduced to almost 100% in eight weeks and, after a year, the emergence of daughter compounds is not a concern, the treatment products used will remain effective over many years. The August 2023 sampling event was possibly conducted at a time that the treatment was in the process of dechlorinating residual contamination. C&S anticipated that targeted source area treatment will eliminate contamination loading to other areas of the Site. Based on the latest sampling results, this appears to be correct.

Historic concentrations of TCE and its daughter compounds from October 2005 to August 2023 are presented on **Figures 2, 3, and 4** and **Graph 1**. Laboratory analytical results and Data Usability Summary Report (DUSR) are provided in **Appendix A**.

November 2023 11 | P a g e

4 IC/EC PLAN COMPLIANCE REPORT

4.1 IC/EC Requirements and Compliance

As stated in the 2003 ROD, the remedial goals selected for this Site are:

- Treat the source area of groundwater contamination by oxidation dichlorination of the contaminants in place;
- Prevent exposure of human receptors to contaminated groundwater in the sand and gravel unit under Site;
- Prevent or mitigate, to the maximum extent practicable, COC migration via groundwater so that releases from the underlying sand and gravel unit to the Chadakoin River do not exceed applicable standards, criteria and guidance (SCGs);
- Prevent or mitigate, to the maximum extent practicable, the migration of contaminated groundwater to off-site areas;
- Restore on-Site groundwater in the sand and gravel unit to the maximum extent practicable which will not result in exceedances of applicable SCGs; and
- Monitor the groundwater in a manner to verify the effectiveness of the remedial actions.

4.1.1 Institutional Controls

The institutional controls for this Site are:

- Groundwater Use Restriction
- Land Use Restriction
- Monitoring Plan
- Operation and Monitoring Plan

The Site has not changed owners and the land use of the Site has not change. A signed certification that groundwater is not utilized is provided by the property owner in **Appendix B**.

4.1.2 Engineering Controls

As specified under the Engineering Control Provision, any future development on the Site will include provisions for soil gas controls, or an assessment demonstrating that such controls are not needed.

November 2023 12 | P a g e

The soil vapor intrusion (SVI) work plan, submitted on February 20, 2015, targeted areas in the main JCC building and one smaller out building to determine if TCE and other chlorinated compounds in the groundwater have impacted the soil vapor and indoor air quality.

The main JCC building is a linear building that begins at South Dow Street and extends approximately 1,060 feet to the northeast. The main building consists of multiple interconnected buildings that have been added throughout its history. The main building consists of the following portions, starting from South Dow Street:

- Four-story brick building, 55 feet long by 100 feet wide;
- Two-story brick building 300, feet long by 50 feet wide;
- One-story brick building 380, feet long by 80 feet wide; and
- One-story steel building 325, feet long by 100 feet wide.

A second, one-story concrete block building (220 feet long by 50 feet wide), referred by JCC as Building #9, is south of the main building. Building #9 is used for manufacturing.

Building #9 SSD System

Two multi-suction point SSD systems were installed by Mitigation Tech using principles and equipment typically used for soil vapor intrusion mitigation in buildings in compliance with the NYSDOH document, "Guidance for Evaluation Soil Vapor Intrusion in the State of New York, October 2006."

The building was assessed by confirmatory sub-slab air communication testing at the job start to refine data obtained from the preliminary building assessment. The system, comprised of two fans, suction cavities, and other SSD system components, was constructed on March 21 through 27, 2017. Vacuum and air flow measurements were performed continuously during construction to ensure design integrity.

A total of two manometers (B9-1 and B9-2) and six test points (north end of the building) were installed for this system.

A detailed description of the SSDS components are provided in the 2018 OM&M Work Plan.

November 2023 13 | P a g e

Building #5 and #6 SSD System

Mitigation Tech installed five single suction point SSD systems using principles and equipment typically used for soil vapor intrusion mitigation in buildings in compliance with the NYSDOH document, "Guidance for Evaluation Soil Vapor Intrusion in the State of New York, October 2006."

The building was assessed by extensive sub-slab air communication testing at job start to refine data obtained from the preliminary building assessment. Due to a system of sub-slab structural arches and crisscrossing grade beams, sub-slab spaces were either inaccessible or difficult to access. In the case of Building 5, extensive backfilling has occurred such that the soil is present immediately below the floor in the central and northernmost portions of the foundation. The southernmost portion is an open crawlspace with a dirt floor. Mitigation Tech determined that active ventilation of the southernmost sub-slab compartment bounded by buildings 4 and 6A would constitute a zone of defense to intercept soil vapor migrating from the south which would also create some limited depressurization north of the first grade beam. In the case of Building 6, the sub-space is in essence a crawlspace so ventilation was determined the most appropriate strategy to divert vapors from the building interior.

A total of two manometers (B5-1 and B5-2) and two test points (near crawlspace entrance and near folk lift ramp) were installed in building 5 for this system.

A total of three manometers (B6-1, B6-2, and B6-3) and three test points (near crawlspace entrance and near folk lift ramp) were installed in building 6 for this system.

A detailed description of the SSDS components are provided in 2018 OM&M Work Plan.

4.2 IC/EC Certification

As required, the Site Management Periodic Review Report Notice – Institutional and Engineering Controls Certificate Form has been completed and a copy is provided in **Appendix C**.

November 2023 14 | P a g e

5 OPERATION AND MAINTENANCE PLAN COMPLIANCE

An updated Operation, Maintenance and Monitoring (OM&M) Work Plan was approved by the NYSDEC in March 2018. The updated Work Plan includes monitoring the natural attenuation of the groundwater contamination and periodic inspection of two soil vapor mitigation systems over five years. The Remedial Action Monitoring Program consists of monitoring Site groundwater on an annual basis and the performance of the SSDS on a monthly and annual basis.

No excavation or importation of materials occurred to the areas under the Environmental Easement within the certifying period.

5.1 Groundwater Monitoring Wells

The following maintenance items were identified:

No maintenance items were identified at this time.

5.2 Soil Vapor Mitigation Systems

5.2.1 Monthly Monitoring

Monthly monitoring will be conducted as follows:

- Inspect fan vacuum indicator to verify that the value indicated by a mark on the gauge has not changed significantly from the position of the mark.
 The gauge is inspected by observing the level of colored fluid.
- Record the observed measurement for each fan vacuum indicator on form labeled "SSD System Vacuum Gauge Record". Store all forms in the facility maintenance office.
- Inspect visible components of SSD system for degraded condition.

Monthly vacuum gauge readings are provided in Appendix D.

5.2.2 Annual Inspection

Annual inspection will be conducted as follows:

• Conduct a visual inspection of the complete system (e.g., vent fans, piping, warning devices, labeling).

November 2023 15 | P a g e

- Inspect all components for condition and proper operation.
- Identify and repair any leaks in accordance with Sections 4.3.1(a) and 4.3.4(a) of the NYS DOH VI Guidance (i.e., with the systems running, use smoke sticks to check for leaks through concrete cracks, floor joints and at the suction points; any leaks will be resealed until smoke is no longer observed flowing through the opening).
- Inspect the exhaust or discharge point of each exhaust fan to verify that no air intakes have been located within 10 feet.
- Conduct pressure field extension testing to ensure that the system is maintaining a vacuum beneath the entire slab. Perform a differential pressure reading at least one vacuum test point.
- Interview appropriate building occupants seeking comments and observations regarding the operation of the system.
- Confirm that the circuit breakers controlling the circuits on which the soil vapor vent fans operate are labeled "Soil Vapor System."

5.2.2.1 SSDS Inspection

On September 29, 2023, Mitigation Tech performed a complete inspection of all system components. Mitigation Tech certifies both systems are effectively maintaining sub-slab depressurization.

Mitigation Tech's inspection reports are provided in **Appendix D**.

November 2023 16 | P a g e

6 Conclusions and Recommendations

Based upon the remedial activates performed, the following conclusions have been formulated:

- All of the required work was completed and is reported herein.
- The remedial activities performed at the Site have prevented any adverse risk to human health and the environment.
- The groundwater flow configuration beneath the Site is stable and remains consistent with the historically identified trends. The groundwater flow is to the north and discharges into the Chadakoin River.
- Sampling suggests a high level of effectiveness of EDR/ISCR injections within the source area. The source area was reduced to almost 100% in eight weeks.
- The treatment products used will remain effective over many years, we expect the source area to continue to actively dechlorinate concentrations of VOCs. This will eliminate contamination loading to other areas of the Site. We expect VOC concentrations in other monitoring wells to reduce over time.
- Potassium permanganate candles were installed in monitoring wells ESI-2, ESI-10, ESI-11 and ESI-12. Based on the last round of sampling the candles appear to still be discharging potassium permanganate due to the purplish or pinkish color water collected during purging. It does appear that the majority of the potassium permanganate has been used. Candles can remain in the monitoring wells until all the potassium permanganate has be exhausted.
- The SVI systems comprised of an SSD system for Building 9 and an SSD system and CVS for Buildings 5 and 6 were properly installed and verified for effectiveness.

Groundwater monitoring will continue to occur annually following the Operation, Maintenance and Monitoring (OM&M) Work Plan.

F:\Project\N30 - Jamestown Container\N30001011 - JCC 2023 GW Monitoring\Planning-Study\Reports\DRAFT 2023 PERIODIC REVIEW REPORT BW.docx

November 2023 17 | P a g e

30 - Jamestown Container\CADD\Sheet Files\FIGURE 2 TRICLOROETHYLENE CONCENTRATIO

30 - Jamestown Container\CADD\Sheet Files\FIGURE 3 cis-1,2-DICHLOROETHENE CONCENTRATIO

ectIN30 - Jamestown Container\CADD\Sheet Files\FIGURE 4 VINYL CHLORIDE CONCENTRATIONS.d

oject\N30 - Jamestown Container\CADD\Sheet Files\ISCR Treatment Plan.dwg

Building #9 - SSDS

SUB-SLAB DEPRESSURIZATION SYSTEM DIAGRAM

Jamestown Container Companies – 65 South Dow St., Falconer, NY 14733

Installed by: Mitigation Tech, 55 Shumway Rd., Brockport, NY 14420

Date of Completion: March 27, 2017 Phone: 1-800-637-9228

SUB-SLAB DEPRESSURIZATION/VENTILATION SYSTEM DIAGRAM Jamestown Container Companies – 65 South Dow St., Falconer, NY 14733 Buildings #5 & #6

Installed by: Mitigation Tech, 55 Shumway Rd., Brockport, NY 14420 Date of Completion: August 4, 2017

TABLES

TABLE 1: JULY 2013 GROUNDWATER ANALYTICAL RESULTS - VOLATILE ORGANIC CONMPOUNDS FORMER DOWCRAFT FACILITY

Sample Location	NYSDEC	ESI - 1	ESI - 2	ESI - 3	ESI - 6	ESI - 7	ESI - 10	ESI - 11	ESI - 12	ESI - 13R	PW - 1	PW - 3R
Sample Date	Standards &	2-Jul-13	2-Jul-13	2-Jul-13								
Matrix	Guidance	Water	Water	Water								
Units	Values	ug/L	ug/l	ug/l								
Contaminant												
Volatile Organic Com	pounds											
Acetone	50	<10.0	<10.0	<10.0		<10.0	<10.0	<10.0				13
Benzene	1	< 0.70	< 0.70	< 0.70		< 0.70	< 0.70	< 0.70				0.88 J
Carbon disulfide	N/S	< 2.0	1.3	< 2.0		< 2.0	< 2.0	<2.0				5.0
1,1-Dichloroethane	5	< 2.0	< 2.0	< 2.0		< 2.0	< 2.0	<2.0				5.5
1,2-Dichloroethane	0.6	< 2.0	< 2.0	< 2.0		< 2.0	<2.0	<2.0				1.2
1,1-Dichloroethene	5	< 2.0	2.8	< 2.0	1.6	< 2.0	0.34 J	<2.0				48
cis-1,2-Dichloroethene	5	1.1	1,900	<2.0	230	1.9	160	39	48	2.7	2.7	27,000 DL
trans-1,2-Dichloroethene	5	< 2.0	13	< 2.0	1.2	< 2.0	1.6	< 2.0				500 E
1,2-Dichloropropane	1	< 2.0	< 2.0	< 2.0		< 2.0	< 2.0	< 2.0				2.2
Ethylbenzene	5	< 2.0	< 2.0	< 2.0		< 2.0	< 2.0	< 2.0				0.77 J
Methylene Chloride	5	< 5.0	< 5.0	< 5.0		< 5.0	< 5.0	< 5.0				1.3
4-Methyl-2-pentanone	N/S	< 5.0	< 5.0	< 5.0		< 5.0	< 5.0	< 5.0				2.6 J
Tetrachloroethene	5	< 2.0	0.55 J	< 2.0	0.88 J	< 2.0	< 2.0	< 2.0				18
1,1,2-Trichloroethane	1	< 2.0	< 2.0	< 2.0		< 2.0	< 2.0	< 2.0				2.8
Trichloroethene	5	8.2	98	6.3	230	21	18	4.2	92	8.9	11	97000 DL
Toluene	5	< 2.0	< 2.0	<2.0		< 2.0	< 2.0	< 2.0				18
Vinyl chloride	2	< 2.0	800	<2.0	73	<2.0	11	75				6300 DL
Xylene (total)	5	< 2.0	< 2.0	< 2.0		< 2.0	< 2.0	< 2.0				4.8
Total VOCs		9.3	2815.65	6.3	536.68	22.9	190.94	118.2	140	11.6	13.7	130924

Notes

¹⁾ Shaded areas indicate concentration exceeds NYSDEC T.O.G.S 1.1.1 Ambient Water Quality Standards

^{2) &}lt;= not detected - below Method Detection Limit.

³⁾ J = The analyte was positively identified but, the number indicates an estimated value. Detected concentration is less than the contract required quantitation limit but is greater than zero.

⁴⁾ N/S = No Standard

	Location ID Sample Matrix Date Sampled Units	ESI-1 WG 10/21/2014 ug/l	4	ESI-1 WG 04/21/20 ug/l		ESI-1 WG 11/03/20 ug/l	15	ESI-1 WG 04/25/20 ug/l	16	ESI-1 WG 10/20/20 ug/l	16	ESI-1 WG 06/07/20 ug/l		ESI-1 WG 05/07/2018 ug/l		ESI-1 WG 06/26/201 ug/l	9	ESI-1 WG 07/15/2020 ug/l	0	ESI-1 WG 10/27/2021 ug/l	10	ESI-2 WG 0/29/20 ⁻ ug/l	14	ESI-2 WG 04/22/2 ug/l		ESI-2 WG 11/03/20 ug/l		ESI-2 WG 04/25/20 ug/l		ESI-2 WG 10/21/2016 ug/l
NYSDEC Groundwater S																														
1,1,1-Trichloroethane	5.0 ug/l		U		U		U		U		U		U		U		U		U	5 ι	U		U		U		U		U	
1,1-Dichloroethane	5.0 ug/l		U		U		U		U		U		U		U		U		U	(U		U		U		U		U	
1,1-Dichloroethene	5.0 ug/l		U		U,*		U		U		U		U		U		U		U	(U	1.1			U,*	12			U	
1,2-Dichlorobenzene	3.0 ug/l		U		U		U		U		U		U		U		U		U	(U		U		U		U		U	
1,2-Dichloroethane	0.6 ug/l		U		U		U		U		U		U		U		U		U	(U		U		U		U		U	
1,3-Dichlorobenzene	3.0 ug/l		U		U		U		U		U		U		U		U		U	(U		U		U		U		U	
1,4-Dichlorobenzene	3.0 ug/l		U		U		U		U		U		U		U		U		U	(U		U		U		U		U	
Bromoform	50.0 ug/l		U		U		U		U		U		U		U		U		U	(U		U		U		U		U	
Dibromochloromethane	50.0 ug/l		U		U		U		U		U		U		U		U		U	(U		U		U		U		U	
Acetone	50.0 ug/l		U		U		U		U		U		U		U	2.2	J		U	2.2 .	ı		U		U		U		U	
Benzene	1.0 ug/l		U		U		U		U		U		U		U		U		U	(U		U		U		U		U	
Carbon Tetrachloride	5.0 ug/l		U		U		U		U		U		U		U		U		U	(U		U,*		U		U		U	
Chlorobenzene	5.0 ug/l		U		U		U		U		U		U		U		U		U	(U		U		U		U		U	
Chloroform	7.0 ug/l		U		U		U		U		U		U		U		U		U	(U		U		U		U		U	
Cis-1,2-Dichloroethylene	5.0 ug/l		U	4.4			U		U		U		U		U	0.73	J	1.01	J	(U :	540	E	740		4400	E	5290		592
Ethylbenzene	5.0 ug/l		U		U		U		U		U		U		U		U		U	(U		U		U		U		U	
Methylene Chloride	5.0 ug/l		U		U		U		U		U		U		U		U		U	(U		U	7.9	J		U		U	
Tetrachloroethylene (PCE)	5.0 ug/l		U		U		U		U		U		U		U		U		U	(U (0.48	J		U		U		U	
Toluene	5.0 ug/l		U		U		U		U		U		U		U		U		U	(U		U		U		U		U	
Trans-1,2-Dichloroethene	5.0 ug/l		U		U		U		U		U		U		U		U		U	(U	4.5			U	19			U	
Trichloroethylene (TCE)	5.0 ug/l	8.9		15		12		4.89		6.52		3.68		4.4		10		6.72		7.8		130	E	110		1100	E	1260		303
Vinyl Chloride	2.0 ug/l		U		U		U		U		U		U		U		U		U	l	U	130	E	130		320		289		
Xylenes	5.0 ug/l		U		U		U		U		U		U		U		U		U	l	U		U		U		U		U	
TOTAL VOC	S	8.9		19.4		12		4.89		6.52		3.68		4.4		12.39		7.73		10.7	8	16.08		987.9		6151		6,839		895

	Location ID Sample Matrix Date Sampled Units	WG 06/08/2017	ESI-2 WG 05/08/2018 ug/l	ESI-2 WG 06/26/2019 ug/l	ESI-2 WG 07/15/2020 ug/l	ESI-2 WG 10/27/2021 ug/l	ESI-3 WG 10/21/201 ug/l	ESI- W(4 04/22/ ug,	3 2015	ESI-3 WG 11/02/2015 ug/l	ESI-: WG 04/25/2 ug/	2016	ESI-3 WG 10/20/201 ug/l	16	ESI-3 WG 06/07/2017 ug/l	ESI-3 WG 05/08/2018 ug/l	ESI W 06/26, ug	G /2019	ESI-3 WG 07/15/2020 ug/l	ESI-3 WG 10/26/202 ug/l	1 10/2	ESI-6 WG 29/2014 ug/l	W 04/22	I-6 /G :/2015 g/I
NYSDEC Groundwater Guidance Val																								
1,1,1-Trichloroethane	5.0 ug/l		(J	U	U U		U	U		J	U		U	U	J	U	U		U	U	- U		U
1,1-Dichloroethane	5.0 ug/l		(J	U	U U		U	U		J	U		U	U	J	U	U		U	U	- U		U
1,1-Dichloroethene	5.0 ug/l		(3.7	J	U 0.27 J		U	U		J	U		U	U	J	U	U		U	U 1.	6 U		U
1,2-Dichlorobenzene	3.0 ug/l	WELL CAP	(J	U	U U		U	U		J	U		U	U		U	U		U	U	- U		U
1,2-Dichloroethane	0.6 ug/l	DAMAGED.	(J	U	U U		U	U		J	U		U	U		U	U		U	U	- U		U
1,3-Dichlorobenzene	3.0 ug/l	SAMPLE NOT	(J	U	U U		U	U		J	U		U	U		U	U		U	U	- U		U
1,4-Dichlorobenzene	3.0 ug/l	COLLCETED.	(J	U	U U		U	U		J	U		U	U	J	U	U		U	U	- U		U
Bromoform	50.0 ug/l		(J	U	U U		U	U		J	U		U	U	J	U	U		U	U	- U		U
Dibromochloromethane	50.0 ug/l		(J	U	U U		U	U		J	U		U	U		U	U		U	U	- U		U
Acetone	50.0 ug/l		(J	U	U 8.8		U	U		J	U		U	U		U 3.4	J		U 5.5		- U		U
Benzene	1.0 ug/l		(J	U	U U		U	U		J	U		U	U	J	U	U		U	U	- U		U
Carbon Tetrachloride	5.0 ug/l		(J	U	U U		U	U		J	U		U	U	J	U	U		U	U	- U,	k	U
Chlorobenzene	5.0 ug/l		(J	U	U U		U	U		U	U		U	U	J	U	U		U	U	- U		U
Chloroform	7.0 ug/l		(J	U	U U		U	U		J	U		U	U		U	U		U	U	- U		U
Cis-1,2-Dichloroethylene	5.0 ug/l		480	1400	1910	180		U	U		J	U	1.4	J	U	J	U	U		U	U 21	0 E	1100	
Ethylbenzene	5.0 ug/l		(J	U	U U		U	U		U	U		U	U	J	U	U		U	U	- U		U
Methylene Chloride	5.0 ug/l		(J	U	U U		U	U		U	U		U	U	J	U	U		U	U	- U	10	J
Tetrachloroethylene (PCE)	5.0 ug/l		(J	U	U 0.48 J		U	U		U	U		U	U	J	U	U		U	U 1.	1		U
Toluene	5.0 ug/l		(J	U	U U		U	U		J	U		U	U	J	U	U		U	U	- U		U
Trans-1,2-Dichloroethene	5.0 ug/l		27	18	J	U 5		U	U		J	U		U	U	J	U	U		U	U 2.	2		U
Trichloroethylene (TCE)	5.0 ug/l		450	690	708	190	4.8	2.5		4.8	1.06	J	6.99		U	0.3	0.8		5.47	0.66	20	0 E	810	
Vinyl Chloride	2.0 ug/l		L	J 120	20.3	J U		U	U		J	U		U	U	J	U	U		U	U 16	0 E	100	*,^
Xylenes	5.0 ug/l		(J	U	U U		U	U		U	U		U	U	J	U	U		U	U	- U		U
TOTAL VOC			957	2,228.00	2.638.3	384.55	4.8	2.5		4.8	1.06		8.39			0.3	4.2		5.47	6.16	575	.22	2,020	,

	Location ID Sample Matrix Date Sampled Units	ESI-6 WG 11/02/2015 ug/l	ESI-6 WG 04/25/2016 ug/l	ESI-6 WG 10/21/2016 ug/l	ESI-6 WG 06/08/2017 ug/l	ESI-6 WG 05/08/2018 ug/l	ESI-6 WG 06/26/2019 ug/l	ESI-6 WG 07/15/2020 ug/l	ESI-6 WG 10/27/2021 ug/l	ESI-7 WG 10/21/2014 ug/l	ESI-7 WG 04/21/2015 ug/l	ESI-7 WG 11/02/2015 ug/l	ESI-7 WG 04/25/2016 ug/l	ESI-7 WG 10/20/2016 ug/l	ESI-7 WG 06/08/2017 ug/l	ESI-7 WG 05/07/2018 ug/l	*ESI-4* WG 06/26/2019 ug/l * Well ESI-7 was	ESI-7 WG 07/15/2020 ug/l	ESI-7 WG 10/26/2021 ug/l
NYSDEC Groundwater S Guidance Valu																	paved over, Well ESI-4 was		
	5.0 ug/l	U	U	U	U	U	U	U	I U	U	U	U	U	U	U	L	U	U	
1,1-Dichloroethane	5.0 ug/l	U	U	U	U	U	U	U	U	U	U	U	U	U	U	[U	U	
1,1-Dichloroethene	5.0 ug/l	3.9	U	U	U	U	U	U	U	U	U	U	U	U	U	(U	U	
1,2-Dichlorobenzene	3.0 ug/l	U	U	U	U	U	U	U	U	U	U	U	U	U	U	[U	U	
1,2-Dichloroethane	0.6 ug/l	U	U	U	U	U	U	U	U	U	U	U	U	U	U	(U	U	
1,3-Dichlorobenzene	3.0 ug/l	U	U	U	U	U	U	U	U	U	U	U	U	U	U	(U	U	
1,4-Dichlorobenzene	3.0 ug/l	U	U	U	U	U	U	U	I U	U	U	U	U	U	U	[U	U	
Bromoform	50.0 ug/l	U	U	U	U	U	1.2 J	13.2	2.6	U	U	U	U	U	U	(U	U	
Dibromochloromethane	50.0 ug/l	U	U	U	U	U	U	U	0.37 J	U	U	U	U	U	U	(U	U	
Acetone	50.0 ug/l	U	U	U	U	2.4 J	7.7	15.8	4.7 J	U	U	U	U	6.89 J	10.1	(U	U	3.2
Benzene	1.0 ug/l	U	U	U	U	U	U	U	U	U	U	U	U	U	U	(U	U	
Carbon Tetrachloride	5.0 ug/l	U	U	U	U	U	U	U	U	U	U	U	U	U	U	(U	U	
Chlorobenzene	5.0 ug/l	U	U	U	U	U	U	U	I U	U	I U	U	U	U	U	[U	U	
Chloroform	7.0 ug/l	U	U	U	U	U	U	U	U	U	U	U	U	U	U	(U	U	
Cis-1,2-Dichloroethylene	5.0 ug/l	1000 E	322	626	181	5.3	80	U	U	78		12	8.3	25	5.15	30	U	5.94	
Ethylbenzene	5.0 ug/l	U	U	U	U	U	U	U	I U	U	I U	U	U	U	U	(U	U	
Methylene Chloride	5.0 ug/l	U	U	U	U	U	U	U	I U	U	I U	U	U	U	U	[J U	U	
Tetrachloroethylene (PCE)	5.0 ug/l	5.8	U	U	U	1.4	1.6	U	0.86	0.39 J	U	U	U	U	U	L	J U	U	
Toluene	5.0 ug/l	U	U	U	U	U	U	U	U	U	U	U	U	U	U	[U	U	
Trans-1,2-Dichloroethene	5.0 ug/l	4	U	11.1 J	U	U	1.2 J	U	I U	U	I U	U	U	U	U	L	J U	U	
Trichloroethylene (TCE)	5.0 ug/l	1500 E	924	1060	431	40	200 E	U	I U	150 E	78	57	43	106	21	52	U	39.5	18
Vinyl Chloride	2.0 ug/l	68	21.7	U	U	U	U	U	I U	U	I U	U	U	U	U	L	J U	U	
Xylenes	5.0 ug/l	U	U	U	U	U	U	U	I U	U	I U	U	U	U	U	L	J U	U	
TOTAL VOC		3,281.70	1,267.70	1,697.10	612	49.1	204	29	8.53	208.39	103	69	51.2	137.36	36.35	82		45.44	21.2

	Location ID Sample Matrix Date Sampled Units	ESI-10 WG 10/29/2014 ug/l	ESI-10 WG 04/21/201 ug/l	5 11/	SI-10 WG 03/2015 ug/l	ESI-10 WG 04/26/2016 ug/l	ESI-10 WG 10/20/2016 ug/l	ESI-10 WG 06/07/2017 ug/l	ESI-10 WG 05/07/2018 ug/l	ESI-10 WG 06/25/2019 ug/l	ESI-10 WG 07/15/2020 ug/l	ESI-10 WG 10/27/2021 ug/l	ESI-11 WG 10/29/2014 ug/l	ESI-11 WG 04/21/2015 ug/l	ESI-11 WG 11/03/2015 ug/l	ESI-11 WG 04/26/2016 ug/l	ESI-11 WG 10/20/2016 ug/l	ESI-11 WG 06/07/2017 ug/l	ESI-11 WG 05/07/2018 ug/l	ESI-11 WG 06/25/2019 ug/l
NYSDEC Groundwater Guidance Val																				
1,1,1-Trichloroethane	5.0 ug/l	U		U	U		U	J (J L	J	U	U I	J l	J L	L	J L	J L	J U	U	
1,1-Dichloroethane	5.0 ug/l	U		U	U		U	J (J L	J	U	U I	J (J L	L	J L	J L	J U	U	
1,1-Dichloroethene	5.0 ug/l	0.61 J		U	U		U	J (J L	J	U	U I	J l	J L	I L	J L	J L	J U	U	
1,2-Dichlorobenzene	3.0 ug/l	U		U	U		U	J l	J (J	U	U I	J l	J L	L	J L	J L	J U	U	
1,2-Dichloroethane	0.6 ug/l	U		U	U		U	J l	J (J	U	U I	J l	J L	L	J L	J L	J U	U	
1,3-Dichlorobenzene	3.0 ug/l	U		U	U		U	J (J L	J	U	U I	J (J L	L	J L	J L	J U	U	
1,4-Dichlorobenzene	3.0 ug/l	U		U	U		U	J (J (J	U	U I	J (J L	L	J L	J L	J U	U	
Bromoform	50.0 ug/l	U		U	U		U	3.01	(J	U	U 0.76 .	J (J L	L	J L	J L	4.78	U	2.4
Dibromochloromethane	50.0 ug/l	U		U	U		U	J (J L	J	U	U I	J (J L	L	J L	J L	1.09	U	
Acetone	50.0 ug/l	U	8.5	J 5	5.9 J	7.16	J 7.11	J (J (9.6	U 15	U 3.6 .	J (3.9 J	7 J	32.4	L	J U	2.6 J	24
Benzene	1.0 ug/l	U		U	U		U	J l	J (J	U	U I	J l	J L	L	J L	J L	J U	U	
Carbon Tetrachloride	5.0 ug/l	U		U	U		U	J (J L	J	U	U I	J U	,* L	L	J L	J L	J U	U	
Chlorobenzene	5.0 ug/l	U		U	U		U	J (J L	J	U	U I	J l	J L	L	J L	J L	J U	U	
Chloroform	7.0 ug/l	U		U	U		U	J L	J (J	U	U I	J (J L	(J U	J U	J U	U	
Cis-1,2-Dichloroethylene	5.0 ug/l	240 E		U	U		U	J (J (61	U	U (76	(L	J L	J L	J U	U	
Ethylbenzene	5.0 ug/l	U		U	U		U	J (J (J	U	U I	J (J L	(J L	J L	J U	U	
Methylene Chloride	5.0 ug/l	U		U	U		U	J L	J (J	U	U I	J (J L	(J L	J L	J U	U	
etrachloroethylene (PCE)	5.0 ug/l	U		U	U		U	J (J (0.22	J	U I	J l	J L	L	J L	J L	J U	U	
Toluene	5.0 ug/l	U		U	U		U	J (J L	J	U	U I	J (J L	L	J L	J L	J U	U	
rans-1,2-Dichloroethene	5.0 ug/l	2.5		U	U		U	J (J L	0.8	J	U I	J 2 L	J L	L	J L	J L	J U	U	
Trichloroethylene (TCE)	5.0 ug/l	62		U	U		U	J (0.94	84	U	U (J 55	(I L	J L	J L	J U	U	
Vinyl Chloride	2.0 ug/l	37			U		U	J (J L	J	U	U (J 24	(I L	J L	J L	J U	U	
Xylenes	5.0 ug/l	U		U	U		U	J (J (J	U	U I	J l	J L	I (J L	J L	J U	U	
TOTAL VOC		352.11	8.5		5.9	7.16	7.11	3.01	0.94	155.62	15	4.36	157	3.9	7	32.4		5.87	2.6	26.4

	Location ID Sample Matrix Date Sampled Units	ESI-11 WG 07/15/2020 ug/l)	ESI-11 WG 10/27/2021 ug/l	ı	ESI-12 WG 10/22/2014 ug/l	. (ESI-12 WG 04/21/2015 ug/l	ESI- W0 11/03/ ug,	3 2015	ESI-1 WG 04/26/2 ug/	2016	ESI-1 WG 10/21/2 ug/	i 2016	ESI-12 WG 06/07/2 ug/l	017	ESI-12 WG 05/08/20 ug/l		ESI-12 WG 06/25/20 ug/l		ESI-12 WG 07/15/2020 ug/l	ESI-12 WG 10/27/2021 ug/l	W 10/21	13R /G /2014 _J /l	ESI-13R WG 04/21/2015 ug/l		ESI-13R WG 11/02/201! ug/l	5 (ESI-13R WG 04/25/201 ug/l		ESI-13R WG 10/20/2016 ug/l
NYSDEC Groundwater S Guidance Valu																															
1,1,1-Trichloroethane	5.0 ug/l		U		U		U	L	J	U		U		U		U		U		U	[J (J	U		U		U		U	U
1,1-Dichloroethane	5.0 ug/l		U		U		U	(J	U		U		U		U		U		U	[J (J	U		U		U		U	U
1,1-Dichloroethene	5.0 ug/l		U		U		U	(J	U		U		U		U		U		U	(J (J	U		U		U		U	U
1,2-Dichlorobenzene	3.0 ug/l		U		U		U	(J	U		U		U		U		U		U	(J (J	U		U		U		U	U
1,2-Dichloroethane	0.6 ug/l		U		U		U	(J	U		U		U		U		U		U	(J (J	U		U		U		U	U
1,3-Dichlorobenzene	3.0 ug/l		U		U		U	(J	U		U		U		U		U		U	(J (J	U		U		U		U	U
1,4-Dichlorobenzene	3.0 ug/l		U		U		U	(J	U		U		U		U		U		U	(J (J	U		U		U		U	U
Bromoform	50.0 ug/l	8.77		3.1			U	(J	U		U		U	14.50			U	2.8		6.67	3.1		U		U		U		U	U
Dibromochloromethane	50.0 ug/l		U	0.38	J		U	(J	U		U		U		U		U		U	(0.36		U		U		U		U	U
Acetone	50.0 ug/l	5.64	J	7			U	(5.6	J	5.85	J	6.19	J		U	3	J	19		(5.6		U		U		U		U	U
Benzene	1.0 ug/l		U		U		U	(J	U		U		U		U		U		U	1.19	(J	U		U		U		U	U
Carbon Tetrachloride	5.0 ug/l		U		U		U	(J	U		U		U		U		U		U	(J (J	U		U		U		U	U
Chlorobenzene	5.0 ug/l		U		U		U	(J	U		U		U		U		U		U	(J (J	U		U		U		U	U
Chloroform	7.0 ug/l		U		U		U	(J	U		U		U		U		U		U	[J (J	U		U		U		U	U
Cis-1,2-Dichloroethylene	5.0 ug/l		U		U	71		1.2		U		U		U		U		U		U	(J (18		1:	В	8.3		7.51		9.41
Ethylbenzene	5.0 ug/l		U		U		U	L	J	U		U		U		UM		UM		U	(J (J	U		U		U		U	U
Methylene Chloride	5.0 ug/l		U		U		U	(J	U		U		U		U		U		U	(J (J	U		U		U		U	U
Tetrachloroethylene (PCE)	5.0 ug/l		U		U	0.48	J	0.54		U		U		U		U		U		U	(J (J	U		U		U		U	U
Toluene	5.0 ug/l		U		U		U	L	J	U		U		U		UM		UM		U	L	J (J	U		U		U		U	U
Trans-1,2-Dichloroethene	5.0 ug/l		U		U		U	L	J	U		U		U		UM		UM		U	(J (J	U		U		U		U	U
Trichloroethylene (TCE)	5.0 ug/l		U		U	140	E	10		U		U		U		UM		UM		U	L	J (22		46		19		21		13
Vinyl Chloride	2.0 ug/l		U		U		U	L	J	U		U		U		UM		UM		U	L	J (J	U		U		U		U	U
Xylenes	5.0 ug/l		U		U		U	L	J	U		U		U		U		U		U	(J (J	U		U		U		U	U
TOTAL VOC		14.41		10.48	+	221.48		11.74	5.6		5.85		6.19		14.5		3		21.8		7.86	9.56	40		64	_	27.3		28.51		28.28

	Location ID Sample Matrix Date Sampled Units	ESI-13R WG 06/07/2017 ug/l	ESI-13R WG 05/08/2018 ug/l	ESI-13R WG 06/26/2019 ug/l	ESI-13R WG 07/15/2020 ug/l	ESI-13R WG 10/26/2021 ug/l	PW-1 WG 10/21/2014 ug/l	PW- WG I 04/21/2 ug/	2015	PW-1 WG 11/02/2015 ug/l	PW-1 WG 04/25/2016 ug/l	6 1	PW-1 WG 10/20/2016 ug/l	PW-1 WG 06/08/20 ug/l		PW-1 WG 05/08/2018 ug/l	;	PW-1 WG 06/26/2019 ug/l	PW: W(07/15/ ug,	3 2020	PW-1 WG 10/26/2021 ug/l	PW-3F WG 10/29/20 ug/l		PW-3R WG 04/22/2015 ug/l
NYSDEC Groundwater Guidance Val																								
1,1,1-Trichloroethane	5.0 ug/l	L	J U	U	J U	U		U	U	U		U	U		U		U	(J	U	U		U	U
1,1-Dichloroethane	5.0 ug/l	(J U	U	J U	U		U	U	U		U	U		U		U	(J	U	U	5.1		4.0
1,1-Dichloroethene	5.0 ug/l	[J U	U	J U	U		U	U	U		U	U		U		U	(J	U	U		U	U,
1,2-Dichlorobenzene	3.0 ug/l	(J U	U	J U	U		U	U	U		U	U		U		U	(J	U	U		U	U
1,2-Dichloroethane	0.6 ug/l	(J U	U	J U	U		U	U	U		U	U		U		U	(J	U	U		U	U
1,3-Dichlorobenzene	3.0 ug/l	(J U	U	J U	U		U	U	U		U	U		U		U	(J	U	U		U	U
1,4-Dichlorobenzene	3.0 ug/l	L	J U	U	J U	U		U	U	U		U	U		U		U	(J	U	U		U	U
Bromoform	50.0 ug/l	(J U	U	J U	U		U	U	U		U	U		U		U	(J	U	U		U	U
Dibromochloromethane	50.0 ug/l	L	J U	U	J U	U		U	U	U		U	U		U		U	(J	U	U		U	U
Acetone	50.0 ug/l	L	J U	2.4 J	U	U		U	U	U		U	U	8.09	J		U	2.8 .	J	U	U	12		16
Benzene	1.0 ug/l	L	J U		J U	U		U	U	U		U	U		U		U	(J	U	U	0.61	J	0.53 J
Carbon Tetrachloride	5.0 ug/l		J U	U	J U	U		U	U	U		U	U		U		U	(J	U	U		U,*	U
Chlorobenzene	5.0 ug/l		J U	U	J U	U		U	U	U		U	U		U		U	(J	U	U		U	U
Chloroform	7.0 ug/l	L	J U	(J U	U		U	U	U		U	U		U		U	(J	U	U		U	U
Cis-1,2-Dichloroethylene	5.0 ug/l	(J 1.3	1 J	4.38	U	1.9	8.8		2.4	5.03		7.14	3.88			U	(7.89		U	21		1.6
Ethylbenzene	5.0 ug/l	(J U	U	J U	U		U	U	U		U	U		U		U	(J	U	U		U	U
Methylene Chloride	5.0 ug/l	[J U	U	J U	U		U	U	U		U	U		U		U	(J	U	U		U	U
Tetrachloroethylene (PCE)	5.0 ug/l	[J U	U	J U	U		U	U	U		U	U		U		U	(J	U	U		U	U
Toluene	5.0 ug/l	(J U	U	J U	U		U	U	U		U	U		U		U	(J	U	U	8.1		6.9
Trans-1,2-Dichloroethene	5.0 ug/l	(J U	U	J U	U		U	U	U		U	U		U		U	(J	U	U	39	_	U
Trichloroethylene (TCE)	5.0 ug/l	7.4	7.3	18	13.7	15	15	3.3		11	6.96		22.1	8.39		0.84		1.8	27.4		4.4	0.79	J	U
Vinyl Chloride	2.0 ug/l	L	J U	U	J U	U		U	U	U		U	U		U		U	(J	U	U	1800	Е	120 E
Xylenes	5.0 ug/l		J U	U	J U	U		U	U	U		U	U		U		U	l	J	U	U	2.3	U	1.1 J
TOTAL VOC	_	7.37	8.6	21.4	18.08	15	16.9	12.1		13.4	11.99		29.24	20.36		0.84		4.6	35.29		4.4	2,609.30		147.71

TABLE 2
2014 PRE AND POST TREATMENT GROUNDWATER ANALYTICAL RESULTS

CSS	1
COMPANIES"	

	Location ID Sample Matrix Date Sampled Units	PW-3R WG 11/03/20 ug/l		PW-3R WG 04/26/20 ug/l		PW-3R WG 10/21/20 ug/l		PW-3I WG 06/08/20 ug/l		PW-3F WG 05/08/20 ug/l		PW-3R WG 06/26/20 ug/l		PW-3R WG 07/15/20 ug/l		PW-3F WG 10/26/20 ug/l	
NYSDEC Groundwater																	
Guidance Val	5.0 ug/l		U		U		U		U		U		U		U		U
1,1-Dichloroethane	5.0 ug/l		U		U		U		U		U		U		U		U
1,1-Dichloroethene	5.0 ug/l		U		U		U		U		U		U		U	5.1	J
1,2-Dichlorobenzene	3.0 ug/l		U		U		U		U		U		U		U		U
1,2-Dichloroethane	0.6 ug/l		U		U		U		U		U		U		U		U
1,3-Dichlorobenzene	3.0 ug/l		U		U		U		U		U		U		U		U
1,4-Dichlorobenzene	3.0 ug/l		U		U		U		U		U		U		U		U
Bromoform	50.0 ug/l		U		U		U		U		U		U		U		U
Dibromochloromethane	50.0 ug/l		U		U		U		U		U		U		U		U
Acetone	50.0 ug/l		U	11.3		12.3	J		U	9	- 0	19			U	41	
Benzene	1.0 ug/l		U		U		U		U		U		U		U		U
Carbon Tetrachloride	5.0 ug/l		U		U		U		U		U		U		U		U
Chlorobenzene	5.0 ug/l		U		U		U		U		U		U		U		U
Chloroform	3		U		U		U		U		U		U		U		U
	7.0 ug/l		U		U		U	4.000	U		U		U		U		-
Cis-1,2-Dichloroethylene	5.0 ug/l	140		242		1450		1,990		70		1200		809		2400	
Ethylbenzene	5.0 ug/l		U		U		U		U		U		U		U		U
Methylene Chloride	5.0 ug/l		U		U		U		U		U		U		U		U
Tetrachloroethylene (PCE)	5.0 ug/l		U		U		U		U		U		U		U		U
Toluene	5.0 ug/l	8.0	J	4.90			U		U	4.6		7.3	J		U		U
Trans-1,2-Dichloroethene	5.0 ug/l		U		U		U	10.2		2.2		20	J	11.4	J	21	J
Trichloroethylene (TCE)	5.0 ug/l		U	17.2		84.4		229			U		U	75.2		3000	_
Vinyl Chloride	2.0 ug/l	790	^, E1	134		751		861		110		2200	E	1440		2200	T
Xylenes	5.0 ug/l		U		U		U		U	1.1	J		U		U		U
TOTAL VOC	is .	938		409.4		2285.4		3,090.20		199		3,446.30		2,335.60		7,667.10	

TABLE NOTES

WG - Groundwater

ug/l - micrograms per liter

S.U. - Standard Unit

Qualifier Key

- J Result is less than the Reporting Limit but greater than or equal to the Method Detection Limit and the concentration is an approximate value.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- C Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- I The lower value for the two columns has been reported due to obvious interference.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- A Spectra identified as "Aldol Condensation Product".
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- H- The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- F Denotes a parameter for which Paradigm does not carry cerification, the results for which should therefore only be used where ELAP certification is required, such as personal exposure assessment.
- RE Analytical results are from sample re-extraction.
- R Analytical results are from sample re-analysis.
- D Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- U Not detected at the reported detection limit for the sample.
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- S Analytical results are from modified screening analysis.

ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).

- * Indicates any recoveries outside associated acceptance windows. Surrogate ouliers in samples are presumed matrix effects. LCS demonstrates method compliance unless otherwise noted.
- < Analyzed for but not detected at or above the quantitation limit
- 1 Indicates data from primary column used for QC calculation.

		SAMPLE ID:	ESI-1-102721	ESI-1-081822	ESI-1-083123	ESI-2-102721	ESI-2-081822	ESI-2-083123	ESI-3-102621	ESI-3-081722	ESI-3-083023	ESI-6-102721	ESI-6-081822	ESI-6-083123
		COLLECTION DATE:	10/27/2021	8/18/2022	8/31/2023	10/27/2021	8/18/2022	8/31/2023	10/26/2021	8/17/2022	8/30/2023	10/27/2021	8/18/2022	8/31/2023
		SAMPLE MATRIX:	WATER											
	NY-AWQS	NY-TOGS-GA												
	(ug/l)	(ug/l)	Result Flg											
VOCs														
1,1,1-Trichloroethane	5	5	ND											
1,1,2,2-Tetrachloroethane	5	5	ND											
1,1,2-Trichloroethane	1	1	ND											
1,1-Dichloroethane	5	5	ND											
1,1-Dichloroethene	5	5	ND	ND	ND	0.27 J	2.4 J	ND J	ND	ND	ND	ND	ND	ND
1,2,4-Trichlorobenzene	5	5	ND											
1,2,4-Trimethylbenzene	5	5	ND											
1,2-Dibromo-3-chloropropan		0.04	ND											
1,2-Dibromoethane	0.0006	0.0006	ND											
1,2-Dichlorobenzene	3	3	ND											
1,2-Dichloroethane	0.6	0.6	ND											
1,2-Dichloropropane	11	1	ND											
1,3,5-Trimethylbenzene	5	5	ND											
1,3-Dichlorobenzene	3	3	ND	ND UJ	ND	ND	ND	ND						
1,4-Dichlorobenzene	3	3	ND											
2-Butanone	50	50	ND	ND UJ	ND	ND	10 J	ND	ND	ND UJ	ND	ND	ND UJ	ND
2-Hexanone	50	50	ND											
4-Methyl-2-pentanone	NA	NA	ND											
Acetone	50	50	2.9 J	ND UJ	ND	8.8	49 J	5.9	5.5	ND UJ	ND	4.7 J	24 UJ	3.5 J
Benzene	1	1	ND											
Bromodichloromethane	50	50	ND											
Bromoform	50	50	ND	ND	ND	ND	ND UJ	1.6	ND	ND	ND	2.6	7.3 J	1.1 J
Bromomethane	5	5	ND	ND UJ	ND	ND	ND	ND	ND	ND UJ	ND	ND	ND UJ	ND
Carbon disulfide	60	60	ND	ND UJ	ND UJ									
Carbon tetrachloride	5	5	ND											
Chlorobenzene	5	5	ND											
Chloroethane	5	5	ND	ND	ND UJ									
Chloroform	7	7	ND	1.7 J	ND J	ND	ND	ND						
Chloromethane	NA	NA	ND											
cis-1,2-Dichloroethene	5	5	ND	ND	ND	180	780	ND	ND	22	1.4 J	ND	ND	ND
cis-1,3-Dichloropropene	0.4	0.4	ND											
Cyclohexane	NA	NA	ND	ND UJ	ND									
Dibromochloromethane	50	50	ND	0.37 J	ND UJ	ND								
Dichlorodifluoromethane	5	5	ND	ND UJ	ND UJ	ND	ND UJ	ND UJ	ND	ND UJ	ND UJ	ND	ND	ND UJ
Ethylbenzene	5	5	ND											
Freon-113	5	5	ND	ND UJ	ND									
Isopropylbenzene	5	5	ND											
Methyl Acetate	NA	NA	ND	ND UJ	ND									
Methyl cyclohexane	NA	NA	ND											
Methyl tert butyl ether	10	10	ND											
Methylene chloride	5	5	ND											
n-Butylbenzene	5	5	ND											
n-Propylbenzene	5	5	ND											
Naphthalene	10	10	ND											

		SAMPLE ID:	ESI-1-10272	1 ESI-1-0818	22 ESI-1-083123	ESI-2-102721	ESI-2-081822	ESI-2-083123	ESI-3-102621	ESI-3-081722	ESI-3-083023	ESI-6-102721	ESI-6-081822	ESI-6-083123
		COLLECTION DATE:	10/27/2021	8/18/2022	8/31/2023	10/27/2021	8/18/2022	8/31/2023	10/26/2021	8/17/2022	8/30/2023	10/27/2021	8/18/2022	8/31/2023
		SAMPLE MATRIX:	WATER	WATER	WATER	WATER	WATER	WATER	WATER	WATER	WATER	WATER	WATER	WATER
	NY-AWQS	NY-TOGS-GA												
	(ug/l)	(ug/l)	Result	lg Result	Flg Result Flg	Result Fl	g Result Flg	Result Flg	Result Flg	Result Flg	Result Flg	Result Flg	Result Flg	Result Flg
VOCs														
o-Xylene	5	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
p-Isopropyltoluene	5	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
p/m-Xylene	5	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
sec-Butylbenzene	5	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Styrene	5	930	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
tert-Butylbenzene	5	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Tetrachloroethene	5	5	ND	ND	ND	0.48 J	ND	ND	ND	ND	ND	0.86	ND	ND
Toluene	5	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
trans-1,2-Dichloroethene	5	5	ND	ND	ND	5	14	ND						
trans-1,3-Dichloropropene	0.4	0.4	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Trichloroethene	5	5	7.8	4.4	2.8	200 E	400	1.1	0.66	5.6	2.8	ND	1.9 J	ND J
Trichlorofluoromethane	5	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Vinyl chloride	2	2	ND	ND	UJ ND	ND	120 J	ND J	ND	0.92 J	ND J	ND	ND UJ	ND
TOTAL			10.7	4.4	2.8	394.55	1375.4	8.6	6.16	30.22	4.2	8.53	33.2	4.6

		SAMPLE ID:	ESI-7-102621	ESI-7-081722	ESI-7-083023	ESI-10-102721	ESI-10-081822	ESI-10-083023	ESI-11-102721	ESI-11-081822	ESI-11-083023	ESI-12-102721	ESI-12-081822	ESI-12-0813023
		COLLECTION DATE:	10/26/2021	8/17/2022	8/30/2023	10/27/2021	8/18/2022	8/30/2023	10/27/2021	8/18/2022	8/30/2023	10/27/2021	8/18/2022	8/30/2023
		SAMPLE MATRIX:	WATER	WATER	WATER	WATER	WATER	WATER	WATER	WATER	WATER	WATER	WATER	WATER
	NY-AWQS	NY-TOGS-GA												
	(ug/l)	(ug/l)	Result Flg	Result Flg	Result Flg	Result Flg	Result Flg	Result Flg	Result Flg	Result Flg	Result Flg	Result Flg	Result Flg	Result Flg
VOCs														
1,1,1-Trichloroethane	5	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,2,2-Tetrachloroethane	5	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,2-Trichloroethane	1	1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethane	5	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethene	5	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2,4-Trichlorobenzene	5	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2,4-Trimethylbenzene	5	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dibromo-3-chloropropar		0.04	ND	ND UJ	ND	ND	ND UJ	ND	ND	ND UJ	ND	ND	ND UJ	
1,2-Dibromoethane	0.0006	0.0006	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichlorobenzene	3	3	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichloroethane	0.6	0.6	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichloropropane	1	1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,3,5-Trimethylbenzene	5	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,3-Dichlorobenzene	3	3	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,4-Dichlorobenzene	3	3	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-Butanone	50	50	ND	ND UJ	ND	ND	ND	ND	ND	ND UJ	ND	ND	ND UJ	ND
2-Hexanone	50	50	ND	ND	ND	ND	ND UJ	ND						
4-Methyl-2-pentanone	NA	NA	ND	ND UJ	ND	ND	ND	ND	ND	ND UJ	ND	ND	ND UJ	ND
Acetone	50	50	3.2 J	ND UJ	ND	3.6 J	3.6 UJ	1.9 J	7	ND UJ	2.2 J	5.6	2.3 UJ	3 J
Benzene	1	1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bromodichloromethane	50	50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bromoform	50	50	ND	ND	ND	0.76 J	ND UJ	0.66 J	3.1	2.3	1.7 J	3.6	2	1.2 J
Bromomethane	5	5	ND	ND UJ	ND	ND	ND	ND	ND	ND UJ	ND	ND	ND UJ	ND
Carbon disulfide	60	60	ND	ND	ND UJ	ND	ND	ND	ND	ND	ND UJ	ND	ND	ND UJ
Carbon tetrachloride	5	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chlorobenzene	5	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chloroethane	5	5	ND	ND UJ	ND	ND	ND	ND UJ	ND	ND UJ	ND UJ	ND	ND UJ	ND UJ
Chloroform	7	7	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chloromethane	NA	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
cis-1,2-Dichloroethene	5	5	ND	4.4	1.1 J	ND								
cis-1,3-Dichloropropene	0.4	0.4	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Cyclohexane	NA	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Dibromochloromethane	50	50	ND	ND	ND	ND	ND	ND	0.38 J	ND	ND	0.36 J	ND	ND
Dichlorodifluoromethane	5	5	ND	ND	ND UJ	ND	ND	ND UJ	ND	ND	ND UJ	ND	ND	ND UJ
Ethylbenzene	5	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Freon-113	5	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Isopropylbenzene	5	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Methyl Acetate	NA	NA	ND	ND	ND	ND	ND UJ	ND						
Methyl cyclohexane	NA	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Methyl tert butyl ether	10	10	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Methylene chloride	5	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
n-Butylbenzene	5	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
n-Propylbenzene	5	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Naphthalene	10	10	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND

		SAMPLE ID:	ESI-7-102621	ESI-7-081722	ESI-7-083023	ESI-10-102721	ESI-10-081822	ESI-10-083023	ESI-11-102721	ESI-11-081822	ESI-11-083023	ESI-12-102721	ESI-12-081822	ESI-12-0813023
		COLLECTION DATE:	10/26/2021	8/17/2022	8/30/2023	10/27/2021	8/18/2022	8/30/2023	10/27/2021	8/18/2022	8/30/2023	10/27/2021	8/18/2022	8/30/2023
		SAMPLE MATRIX:	WATER	WATER	WATER	WATER	WATER	WATER	WATER	WATER	WATER	WATER	WATER	WATER
	NY-AWQS	NY-TOGS-GA												
	(ug/l)	(ug/l)	Result Fl	g Result Flo	ı Result Flg	Result Flg	Result Flg	Result Flg	Result Flg	Result Flg	Result Flg	Result Flg	Result Flg	Result Flg
VOCs														
o-Xylene	5	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
p-Isopropyltoluene	5	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
p/m-Xylene	5	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
sec-Butylbenzene	5	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Styrene	5	930	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
tert-Butylbenzene	5	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Tetrachloroethene	5	5	ND	0.48 J	ND J	ND								
Toluene	5	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
trans-1,2-Dichloroethene	5	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
trans-1,3-Dichloropropene	0.4	0.4	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Trichloroethene	5	5	18	79	18	ND								
Trichlorofluoromethane	5	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Vinyl chloride	2	2	ND	ND UJ	ND	ND	ND	ND	ND	ND UJ	ND UJ	ND	ND UJ	ND
TOTAL			21.2	83.88	19.1	4.36	3.6	2.56	10.48	2.3	3.9	9.56	4.3	4.2

		SAMPLE ID:	ESI-13R-10262	1 ESI-13R-0817	722 ESI-13R-083023	PW-1-102621	DUP-081722	PW-1-081822	DUP-081722	PW-1-083023	DUP-083023	PW-3R-102621	PW-3R-081822	PW-3R-083123
		COLLECTION DATE:	10/26/2021	8/17/2022	8/30/2023	10/26/2021	10/26/2021	8/17/2022	8/17/2022	8/30/2023	8/30/2023	10/26/2021	8/18/2022	8/31/2023
		SAMPLE MATRIX:	WATER	WATER	WATER	WATER	WATER	WATER	WATER	WATER	WATER	WATER	WATER	WATER
	NY-AWQS	NY-TOGS-GA												
	(ug/l)	(ug/l)	Result Fl	g Result	Flg Result Flg	Result Fl	g Result Flg	Result Flg	Result F	lg Result Flg	Result Flg	Result Flg	y Result Flg	Result Flg
VOCs														
1,1,1-Trichloroethane	5	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,2,2-Tetrachloroethane	5	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,2-Trichloroethane	1	1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethane	5	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.8 J	ND J
1,1-Dichloroethene	5	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	5.1 J	ND	ND
1,2,4-Trichlorobenzene	5	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2,4-Trimethylbenzene	5	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dibromo-3-chloropropan	0.04	0.04	ND	ND	ND	ND	ND	ND UJ	ND	ND	ND	ND	ND UJ	ND
1,2-Dibromoethane	0.0006	0.0006	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichlorobenzene	3	3	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichloroethane	0.6	0.6	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichloropropane	1	1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.15 J	ND J
1,3,5-Trimethylbenzene	5	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,3-Dichlorobenzene	3	3	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,4-Dichlorobenzene	3	3	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-Butanone	50	50	ND		UJ ND	ND	ND	ND	ND	ND	ND	ND	ND UJ	ND
2-Hexanone	50	50	ND	ND	ND	ND	ND	ND UJ	ND	ND	ND	ND	ND	ND
4-Methyl-2-pentanone	NA	NA 50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Acetone	50	50	ND		UJ ND	ND	1.7 J	ND	ND	ND	1.5 J	41 J	4.2 UJ	18 J
Benzene	1	1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bromodichloromethane	50	50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bromoform	50	50	ND		UJ ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bromomethane	5	5	ND	ND	ND ND	ND	ND	ND UJ	ND	ND ND	ND	ND	ND UJ	ND
Carbon disulfide	60	60	ND		UJ ND UJ	ND	ND	ND	ND	ND UJ	ND	ND	ND UJ	ND UJ
Carbon tetrachloride	5	5 5	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND
Chlorobenzene	5 5	5	ND ND	ND ND	ND UJ		ND	ND ND		ND UJ	ND	ND ND	ND ND	
Chloroethane	7	5 7	ND ND	ND ND		ND	ND	0.73 J	ND 0.71		ND	-		ND UJ
Chloroform Chloromethane	NA	NA	ND ND	ND ND	ND ND	ND ND	ND ND	0.73 J ND	0.71 ND	J ND J ND	ND ND	ND ND	ND ND	ND ND
		_												
cis-1,2-Dichloroethene	0.4	5 0.4	ND ND	1.5 ND	J ND J ND	ND ND	ND ND	ND	ND	4.2 ND	ND	2400 ND	2.6 ND	960 ND
Cyclohexane	NA	NA	ND		UJ ND	ND	ND	ND	ND	ND	ND	ND	ND UJ	ND
Dibromochloromethane	50	50	ND		UJ ND	ND	ND ND	ND	ND	ND	ND	ND	ND ND	ND
Dichlorodifluoromethane	5	5	ND	ND	ND UJ	ND	ND	ND	ND	ND UJ	ND	ND	ND	ND UJ
Ethylbenzene	5	5	ND	ND	ND ND	ND	ND	ND	ND	ND ND	ND	ND	ND	ND ND
Freon-113	5	5	ND		UJ ND	ND	ND	ND	ND	ND	ND	ND	ND UJ	ND
Isopropylbenzene	5	5	ND	ND	ND ND	ND	ND	ND	ND	ND	ND	ND	ND OS	ND
Methyl Acetate	NA	NA NA	ND		UJ ND	ND	ND ND	ND UJ	ND	ND	ND	ND	ND UJ	ND
Methyl cyclohexane	NA	NA	ND	ND	ND ND	ND	ND	ND OS	ND	ND	ND	ND	ND ND	ND
Methyl tert butyl ether	10	10	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Methylene chloride	5	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
n-Butylbenzene	5	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
n-Propylbenzene	5	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Naphthalene	10	10	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Hupitulalelle	10	10	טוו	ואט	IND	שויו	IND	IND	שוו	IND	IND	ואט	IND	IND

		SAMPLE ID:	ESI-13R-102	621 ESI-13R-0	81722	ESI-13R-083	023	PW-1-102621	DUP-081722	PW-1-081822	DUP-081	722	PW-1-083023	DUP-0830	23	PW-3R-1026	21 PV	V-3R-081	822 I	PW-3R-083123
		COLLECTION DATE:	10/26/202	21 8/17/2	022	8/30/202	3	10/26/2021	10/26/2021	8/17/2022	8/17/20)22	8/30/2023	8/30/202	3	10/26/202	1 8	8/18/202	2	8/31/2023
		SAMPLE MATRIX:	WATER	WATI	ER	WATER		WATER	WATER	WATER	WATE	R	WATER	WATER		WATER		WATER		WATER
	NY-AWQS	NY-TOGS-GA																		
	(ug/l)	(ug/l)	Result	Flg Result	Flg	Result	Flg	Result Flo	g Result Flg	Result Flo	g Result	Flg	Result Flg	Result	Flg	Result	Flg	Result	Flg	Result Flg
VOCs																				
o-Xylene	5	5	ND	ND		ND		ND	ND	ND	ND		ND	ND		ND		ND		ND
p-Isopropyltoluene	5	5	ND	ND		ND		ND	ND	ND	ND		ND	ND		ND		ND		ND
p/m-Xylene	5	5	ND	ND		ND		ND	ND	ND	ND		ND	ND		ND		0.87	J	ND J
sec-Butylbenzene	5	5	ND	ND		ND		ND	ND	ND	ND		ND	ND		ND		ND		ND
Styrene	5	930	ND	ND		ND		ND	ND	ND	ND		ND	ND		ND		ND		ND
tert-Butylbenzene	5	5	ND	ND		ND		ND	ND	ND	ND		ND	ND		ND		ND		ND
Tetrachloroethene	5	5	ND	ND		ND		ND	ND	ND	ND		ND	ND		ND		ND		ND
Toluene	5	5	ND	ND		ND		ND	ND	ND	ND		ND	ND		ND		2.7		ND
trans-1,2-Dichloroethene	5	5	ND	ND		ND		ND	ND	ND	ND		ND	ND		21	J	ND		ND
trans-1,3-Dichloropropene	0.4	0.4	ND	ND		ND		ND	ND	ND	ND		ND	ND		ND		ND		ND
Trichloroethene	5	5	15	14		10		4.4	4.4	17	17		5.7	5.8		3000		ND		ND
Trichlorofluoromethane	5	5	ND	ND		ND		ND	ND	ND	ND		ND	ND		ND		ND		ND
Vinyl chloride	2	2	ND	ND	UJ	ND		ND	ND	2	2		ND	ND		2200		13	J	960 J
TOTAL			15	15.5		10		4.4		83.73			9.9			7667.1		24.32		1938

GRAPHS

APPENDIX A LABORATORY ANALYTICAL RESULTS

Well Casing Unit Volume

(gal/l.f.)

 $1\frac{1}{4}$ " = 0.08 2" = 0.17 3" = 0.38 4" = 0.66 6" = 1.5 8" = 2.6

Well Sampling Field Data Sheet

Client Name:				
Site Name:	JCC			
Project No.:	-			
Field Staff:	RICH	RACKERT	+BRIAN	

WELL DATA

Date	8/30/23	
Well Number	PW-I	
Diameter (inches)	410	
Total Sounded Depth (feet)	15	
Static Water Level (feet)	10.2	
H ₂ O Column (feet)	4.8	
Pump Intake (feet)	A STATE OF THE STA	
Veil Volume (gallons)		
Amount to Evacuate (gallons)	3gal	
Amount Evacuated (gallons)	361	

FIELD READINGS

				ווערבוו		 	 T
Date	Stabilization	8/30/27					
Time	Criteria	10:35	10:40	10:45	10:50		
pH (Std., Units)	+/-0.1	7.20	6.75	6.60	6.54		
Conductivity (mS/cm)	3%	.761	766	.776	783		
Turbidity (NTU)	10%	117	0.00	0.00	6.00		
D.O. (mg/L)	10%	2.16	1.39	1.04	0.89		
Temperature (°C) (°F)	3%	15.650	15.33°C	15.23%			
ORP ³ (mV)	+/-10 mv	91	45	35	37		
Appearance		C	C	C	C		
Free Product (Yes/No)		NONE	NONE	None	none		
Odor			NONE	None	None		
Comments							
		o Co	1 lack	00			
	1)//(0)	1160	64			

Well Sampling Field Data Sheet

Well Casing Unit Volume	
(gal/l.f.)	

114" = 0.08 2" = 0.17 3" = 0.38 4" = 0.66 6" = 1.5 8" = 2.6

Client Name:	
Site Name:	JCC
Project No.:	
Field Staff:	Rich Backet + Brian Www.kux

WELL DATA

WELEDAIA									
Date	8/30/200	2							
Well Number	F.S10								
Diameter (inches)	2"								
Total Sounded Depth (feet)									
Static Water Level (feet)	11.1								
H ₂ O Column (feet)									
Pump Intake (feet)									
Well Volume (gallons)									
Amount to Evacuate (gallons)		u u							
Amount Evacuated (gallons)									

FIELD READINGS

			IILL	D KLADII	100				
Date	Stabilization	8/30/2	S						
Time		11:20	11:25	11:36	11:35	11:40			
pH (Std. Units)	+/-0.1	6.85	6.67	6.59	6.58	6.58			
Conductivity (mS/cm)	3%	.672	.561	.536	.528	0.577			
Turbidity (NTU)	10%	364	1.94	42	0.00	0.00			
D.O. (mg/L)	10%	1.75	0.95	77.0	0.69	6.66			
Temperature (°C) (°F)	3%	16.00	15.69	15.59	15.54	15.52			
ORP ³ (mV)	+/-10 mv	548	576	589	590	591			
Appearance	are so a militar	pinKl	pink	Pick.	Pink ,	Pints.			
Free Product (Yes/No)		none	none	none D	1 none	none			
Odor		None	NON	Ueve	none	none			
Comments	-Treetment sock polled from the -Well treated with Potassium permanganate								
	-11	CEITHA	-Well t	reated w	ith Pota	ssium pern	nangana	te	

Well Casing Unit Volume

(gal/l.f.)

 $1\frac{1}{4}$ " = 0.08 2" = 0.17 3" = 0.38 4" = 0.66 6" = 1.5 8" = 2.6

Well Sampling Field Data Sheet

Client Name:						
Site Name:	JCC					
Project No.:				,		
Field Staff:	Rich Backet	L	Brian In	1	leveld	

WELL DATA

Date	8/36/23 ESE-11		
Well Number	ESE-II		
Diameter (inches)	7"		
Total Sounded Depth (feet)	7 10		
Static Water Level (feet)	10.9		
H ₂ O Column (feet)			
Pump Intake (feet)			
Well Volume (gallons)			
Amount to Evacuate (gallons)			
Amount Evacuated (gallons)	24123		

FIELD READINGS

D-1-		0/1/22			T				
Date	Stabilization	8/30/23						-	-
Time	Criteria	12:05	12:10	12:15	12:20	12:25			
pH (Std. Units)	+/-0.1	7.03	6.91	6.77	6.72	6.67			
Conductivity (mS/cm)	3%	779	0.695	0.662	0.645				
Turbidity (NTU)	10%	288	133	19.8		6.00			
D.O. (mg/L)	10%	1.98	0.98	0.77	0.70	0.66			
Temperature (°C) (°F)	3%	15.47	14.93	14.81	14.79	14.78			
ORP ³ (mV)	+/-10 mv	605	617	619	619	619			
Appearance		Pink	Pink ,	Pinks _	Pink _	Pint			
Free Product (Yes/No)		none	none	none	none	none			
Odor		None	Noge	None	None	None			
Comments		-Trustment sock in Well -Well treated with Potassium permanganate							

Well Casing Unit Volume

(gal/l.f.)

 $1\frac{1}{4}$ " = 0.08 2" = 0.17 3" = 0.38 4" = 0.66 6" = 1.5 8" = 2.6

Well Sampling Field Data Sheet

Client Name:		
Site Name:	JCC	
Project No.:		
Field Staff:		

WELL DATA

Date	DECEMBE	8/31/33			
Well Number		EST-12			
Diameter (inches)		2"			
Total Sounded Depth (feet)					
Static Water Level (feet)		11.3'			
H₂O Column (feet)					
Pump Intake (feet)					
Well Volume (gallons)					
Amount to Evacuate (gallons)					
Amount Evacuated (gallons)					

FIELD READINGS

Date	Stabilization	8/30/23						
Time	Criteria	12:45	12:50	12:55	1300			
pH (Std. Units)	+/-0.1	1-98	7.06	7.03	6.96			
Conductivity (mS/cm)	3%	.872	.871	X.848	.846			
Turbidity (NTU)	10%	324	106	0.00	0.00			
D.O. (mg/L)	10%	1.75	0.95	0.78	0.74			
Temperature (°C) (°F)	3%	15.21	14.49	14.43	14.42			
ORP ³ (mV)	+/-10 mv	609	618	613	614			
Appearance		Pink _	Pink.	PinK.	Pints			
Free Product (Yes/No)		none	none	7 none	* none			
Odor	1 S. T. S.	None	None	None	Now			
Comments		-Treatment sock in well -Well treated with Potassium permanganate						

www.cscos.com

Well Casing Unit Volume (gal/l.f.)

 $1\frac{1}{4}$ " = 0.08 2" = 0.17 3" = 0.38 4" = 0.66 6" = 1.5 8" = 2.6

Well Sampling Field Data Sheet

Client Name:		
Site Name:	JCC	
Project No.:		
Field Staff:		

WELL DATA

Date	8/30/23				
Well Number	FSI:7				
Diameter (inches)	2"				
Total Sounded Depth (feet)	15				
Static Water Level (feet)	10.6				
H ₂ O Column (feet)	4.4				
Pump Intake (feet)					
Well Volume (gallons)					
Amount to Evacuate (gallons)					
Amount Evacuated (gallons)					

FIELD READINGS

Date	Stabilization	8/30/13						
Time	Criteria	1340	1345	13:50	13:55			
pH (Std. Units)	+/-0.1	7.63	6.90	6.71	6.60			
Conductivity (mS/cm)	3%	.567	.570	0.576	Q.573			
Turbidity (NTU)	10%	66.6	0.00	0.00	00.			
D.O. (mg/L)	10%	6.88	5.85	5.61	5.55			
Temperature (°C) (°F)	3%	16.70 %	15.944	15.830	15,80%			
ORP ³ (mV)	+/-10 mv	538	551	550	554			
Appearance		Cleck	clear	Clas	Clear			
Free Product (Yes/No)		no	nonc	none	MAL			
Odor		aont	none	nont	none			
Comments								
						*		

Well Casing Unit Volume

(gal/l.f.)

 $1\frac{1}{4}$ " = 0.08 2" = 0.17 3" = 0.38 4" = 0.66 6" = 1.5 8" = 2.6

Well Sampling Field Data Sheet

Client Name:		
Site Name:	JCC	
Project No.:		
Field Staff:		

WELL DATA

Date
ell Number
ameter (inches)
otal Sounded Depth (feet)
Static Water Level (feet)
H ₂ O Column (feet)
ump Intake (feet)
Well Volume (gallons)
Amount to Evacuate (gallons)
Amount Evacuated (gallons)

FIELD READINGS

		1 1		D KEADII			 	
Date	Stabilization	8/30/23						
Time	Criteria	1420	1425	1430	14:35			
pH (Std. Units)	+/-0.1	7.00	7.10	6.85	6.72	6.65		
Conductivity (mS/cm)	3%	3,33	1.34	0.761	.698	.689		
Turbidity (NTU)	10%	200	36.7	0.00	0.08	0.68		
D.O. (mg/L)	10%	6.26	4.88	4.39	4.28	4.25		
Temperature (°C) (°F)	3%	18.560	15.110	14.48%	14.33%	14,30°C		
ORP ³ (mV)	+/-10 mv	435	485	505	513	516		
Appearance		J	C	C	C	C		
Free Product (Yes/No)	A STATE OF THE STA	None	rong	NONL	16nv	NONE		
Odor		none	none	Vous	ronc	none		
Comments								

Well Casing Unit Volume

(gal/l.f.)

 $1\frac{1}{4}$ " = 0.08 2" = 0.17 3" = 0.38 4" = 0.66 6" = 1.5 8" = 2.6

Well Sampling Field Data Sheet

Client Name:		
Site Name:	Jee	
Project No.:	<u> </u>	
Field Staff:		

WELL DATA

Date	9/31/3	
Well Number	EST-10	
Diameter (inches)	2"	
Total Sounded Depth (feet)	15	
Static Water Level (feet)	11.2	
H ₂ O Column (feet)		
Pump Intake (feet)		
Well Volume (gallons)		
Amount to Evacuate (gallons)		
Amount Evacuated (gallons)	~ 2gal	

FIELD READINGS

Date	Stabilization	8/11/23						
Time	Criteria	16:02	16.07	10:12	10:17	10:22		
pH (Std. Units)	+/-0.1	7:84	2.03	7.26	7.27	7.26		
Conductivity (mS/cm)	3%	0.875	1.13	0.849	7484	281		
Turbidity (NTU)	10%	354	336	213	17.5	0.00		
D.O. (mg/L)	10%		4.04	7.69	7.92	7.9/		
Temperature (°C) (°F)	3%	14.362	13.76°C	14.436	14.60°C	14.80		
ORP ³ (mV)	+/-10 mv	586	637	621	604	601		
Appearance		Pints	Piak	Pink .	Pials	Pink _		
Free Product (Yes/No)		↓ none	none	, none	none	none		
Odor		none	none	non	nonu	1000 C		
Comments	-Well t	had reated w	vith Pota	Sock	•	nate		

Well Casing Unit Volume

(gal/l.f.)

 $1\frac{1}{4}$ " = 0.08 2" = 0.17 3" = 0.38 4" = 0.66 6" = 1.5 8" = 2.6

Well Sampling Field Data Sheet

Client Name:		
Site Name:	JCC	
Project No.:		
Field Staff:	RICH ROCKENT	

WELL DATA

Date	8/31/22		
Well Number	EST-2		
Diameter (inches)	2"		
Total Sounded Depth (feet)	15		
Static Water Level (feet)	11.4		
H ₂ O Column (feet)			
Pump Intake (feet)			
Well Volume (gallons)			
Amount to Evacuate (gallons)			
Amount Evacuated (gallons)	19 (E.)		

FIFLD READINGS

			1155	D KLADII	100			
Date	Stabilization	8/31/23						
Time	Criteria	10:45	10:57	10:57	11:02	11:07	11:17	
pH (Std. Units)	+/-0.1	7.62	7.98	7.76	7.64	7,48	7,45	
Conductivity (mS/cm)	3%	1.55	1.48	1.21	0853	0.815	£804	
Turbidity (NTU)	10%	0.00	784	605	594	708	600	
D.O. (mg/L)	10%	5-77	6.59	3.70	6.58	4.42	5-64	
Temperature (°C) (°F)	3%	19.77	18-25	16.85	16.37	16.04°C	15.90	
ORP ³ (mV)	+/-10 mv	593	608	1.6h	595	587	586	
Appearance		Pow Bour	Brown	Brown	Brown	It brown	Lt brown	
Free Product (Yes/No)		None	none	rone	none	NON+	Mone	
Odor		Virager	Virgan	Vineyor	viner	Vinegar	Vialgar	
Comments)			
		Treatme	nt soc	Kinuc	11			
		problety.	vail or	of go daw	n, stays	1 Constant	,	

C = Clear T = Turbid ST = Semi Turbid VT = Very Turbid

-Well treated with Potassium permanganate

Well Casing Unit Volume

(gal/l.f.)

 $1\frac{1}{4}$ " = 0.08 2" = 0.17 3" = 0.38 4" = 0.66 6" = 1.5 8" = 2.6

Well Sampling Field Data Sheet

Client Name:		
Site Name:	JCC	
Project No.:		
Field Staff:	RICH BACKERT	

WELL DATA

Date	8/31/23		
Well Number	ESI-1		
Diameter (inches)	2''		
Total Sounded Depth (feet)	15		
Static Water Level (feet)	9.8		
H ₂ O Column (feet)			
Pump Intake (feet)			
Well Volume (gallons)			
Amount to Evacuate (gallons)	4 Gal		
Amount Evacuated (gallons)	49al		

FIELD READINGS

			1155	DICEADIL					
Date	Stabilization	8/31/23							
Time	Criteria	11:30	11:35	11.40	11:45	11,80	11:55	12:00	
pH (Std. Units)	+/-0.1	7.70	7.26	7.09	7.06	7.09	7.04	7.05	
Conductivity (mS/cm)	3%	.097	.739	.719"	698		0690	1085	
Turbidity (NTU)	10%	903	503	383	234	151	97.3	75 is	
D.O. (mg/L)	10%	5.60	5.29	6.83	7.09	7.11	7.17	7.13	
Temperature (°C) (°F)	3%	16.450	15.86°C	15.22%	15.04%	15.01°C	14.97°C		
ORP ³ (mV)	+/-10 mv	580	582	574	Stele	563	560	559	
Appearance		BROWN	Lightnan	V C	C	C	C	C	
Free Product (Yes/No)		1 BAR	NONE		NOME	LONE	NONE	NONE	
Odor		None	NONE	NOVE	rone	wie	NONE	NORE	
Comments	TURBA		rul						

Well Casing Unit Volume

(gal/l.f.)

 $1\frac{1}{4}$ " = 0.08 2" = 0.17 3" = 0.38 4" = 0.66 6" = 1.5 8" = 2.6

Well Sampling Field Data Sheet

Client Name:	
Site Name:	
Project No.:	
Field Staff:	

WELL DATA

Date		8/31/73				
Well Number		71-3R				
Diameter (inches)	W 575					
Total Sounded Depth (feet)						
Static Water Level (feet)		10.3				
H ₂ O Column (feet)						
Pump Intake (feet)						
Well Volume (gallons)						
Amount to Evacuate (gallons)						
Amount Evacuated (gallons)						

FIELD READINGS

			FIEL	D READIN	163				
Date	Stabilization	8/31/23							
Time	Criteria	12:18	12:23	12:28	12:33	12:38			
pH (Std. Units)	+/-0.1	6.67	1.53	6.58	6.56	6.42			
Conductivity (mS/cm)	3%	1.10	1.16	1.15	1.15	1.15			
Turbidity (NTU)	10%	434	98.3	30,8	14.1	19.7			
D.O. (mg/L)	10%	1.3	0.73	0.55	0.50	0.49			
Temperature (°C) (°F)	3%	17.276	14.796		13.96	13.84			
ORP ³ (mV)	+/-10 mv	506	459	402	361	329			
Appearance		Clear	Clear	Clear	Gear	Clear			
Free Product (Yes/No)		none	Non!	none	NONE	DOUL			
Odor		none	none	non'	none	NOAU			
Comments				bidily 5	stayed co	undant at	25.	-20	

Well Casing Unit Volume

(gal/l.f.)

 $1\frac{1}{4}$ " = 0.08 2" = 0.17 3" = 0.38 4" = 0.66 6" = 1.5 8" = 2.6

Well Sampling Field Data Sheet

Client Name:				
Site Name:	300	,		
Project No.:				
Field Staff:	RICH	BACK GET	+ BRIAN	

WELL DATA

Date	8/30/22		
Well Number	EST-3		
Diameter (inches)	2"		
Total Sounded Depth (feet)	15		
Static Water Level (feet)	10.4		
H ₂ O Column (feet)	4.6		
Pump Intake (feet)			
Well Volume (gallons)			
Amount to Evacuate (gallons)	3gal		
Amount Evacuated (gallons)	390C		

FIELD READINGS

Date	Stabilization	8/30/22						
Time	Criteria	10:00	10:05	10:10	10:15			
pH (Std. Units)	+/-0.1	9.93	7.88	7.22	6.93			
Conductivity (mS/cm)	3%	0914	.837	.836	.835			
Turbidity (NTU)	10%	1.99	0.00	0.00	0.00			
D.O. (mg/L)	10%	4.15	2.29	1.55	1.31			
Temperature (°C) (°F)	3%	15.13°C	14.7900	14.69%	14.Lelec			
ORP ³ (mV)	+/-10 mv	28	44	69	81			
Appearance		C	C	C	C			
Free Product (Yes/No)		ran	NONE	DIE	NONE			
Odor		NONE	NONE	None	NONE			
Comments	MS+	MSD	SANPLI	e lo	llectr	1		

ANALYTICAL REPORT

Lab Number: L2350757

Client: C&S Companies

141 Elm Street

Suite 100

Buffalo, NY 14203

ATTN: Richard Backert Phone: (716) 955-3024

Project Name: JCC

Project Number: N30.009.001

Report Date: 09/15/23

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0826), IL (200077), IN (C-MA-03), KY (KY98045), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), OH (CL108), OR (MA-1316), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #525-23-122-91930).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name: JCC

Project Number: N30.009.001

Lab Number: L2350757 **Report Date:** 09/15/23

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L2350757-01	ESI-3-083023	WATER	FALCONER,NY	08/30/23 10:15	08/31/23
L2350757-02	PW-1-083023	WATER	FALCONER,NY	08/30/23 10:50	08/31/23
L2350757-03	DUP-083023	WATER	FALCONER,NY	08/30/23 10:50	08/31/23
L2350757-04	ESI-10-083023	WATER	FALCONER,NY	08/30/23 11:40	08/31/23
L2350757-05	ESI-11-083023	WATER	FALCONER,NY	08/30/23 12:25	08/31/23
L2350757-06	ESI-12-083023	WATER	FALCONER,NY	08/30/23 13:00	08/31/23
L2350757-07	ESI-7-083023	WATER	FALCONER,NY	08/30/23 13:55	08/31/23
L2350757-08	ESI-13R-083023	WATER	FALCONER,NY	08/30/23 14:40	08/31/23
L2350757-09	ESI-6-083123	WATER	FALCONER,NY	08/31/23 10:22	08/31/23
L2350757-10	ESI-2-083123	WATER	FALCONER,NY	08/31/23 11:12	08/31/23
L2350757-11	ESI-1-083123	WATER	FALCONER,NY	08/31/23 12:00	08/31/23
L2350757-12	PW-3R-083123	WATER	FALCONER,NY	08/31/23 12:38	08/31/23
L2350757-13	TRIP BLANK	WATER	FALCONER,NY	08/31/23 00:00	08/31/23

Project Name: JCC Lab Number: L2350757

Project Number: N30.009.001 **Report Date:** 09/15/23

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.	

 Project Name:
 JCC
 Lab Number:
 L2350757

 Project Number:
 N30.009.001
 Report Date:
 09/15/23

Case Narrative (continued)

Report Submission

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Title: Technical Director/Representative Date: 09/15/23

Melissa Sturgis Melissa Sturgis

ДІРНА

ORGANICS

VOLATILES

Project Name: JCC Lab Number: L2350757

Project Number: N30.009.001 **Report Date:** 09/15/23

SAMPLE RESULTS

Lab ID: L2350757-01 Date Collected: 08/30/23 10:15

Client ID: ESI-3-083023 Date Received: 08/31/23 Sample Location: FALCONER,NY Field Prep: Not Specified

Sample Depth:

Matrix: Water
Analytical Method: 1,8260D
Analytical Date: 09/09/23 05:13

Analyst: PID

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Wes	tborough Lab						
Methylene chloride	ND		ug/l	2.5	0.70	1	
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1	
Chloroform	ND		ug/l	2.5	0.70	1	
Carbon tetrachloride	ND		ug/l	0.50	0.13	1	
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1	
Dibromochloromethane	ND		ug/l	0.50	0.15	1	
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1	
Tetrachloroethene	ND		ug/l	0.50	0.18	1	
Chlorobenzene	ND		ug/l	2.5	0.70	1	
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1	
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1	
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1	
Bromodichloromethane	ND		ug/l	0.50	0.19	1	
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1	
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1	
Bromoform	ND		ug/l	2.0	0.65	1	
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1	
Benzene	ND		ug/l	0.50	0.16	1	
Toluene	ND		ug/l	2.5	0.70	1	
Ethylbenzene	ND		ug/l	2.5	0.70	1	
Chloromethane	ND		ug/l	2.5	0.70	1	
Bromomethane	ND		ug/l	2.5	0.70	1	
Vinyl chloride	ND		ug/l	1.0	0.07	1	
Chloroethane	ND		ug/l	2.5	0.70	1	
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1	
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1	
Trichloroethene	2.8		ug/l	0.50	0.18	1	
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1	

Project Name: JCC Lab Number: L2350757

Project Number: N30.009.001 **Report Date:** 09/15/23

SAMPLE RESULTS

Lab ID: L2350757-01 Date Collected: 08/30/23 10:15

Client ID: ESI-3-083023 Date Received: 08/31/23 Sample Location: FALCONER,NY Field Prep: Not Specified

Sample Depth:

1.4-Dichlorobenzene ND	Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
1,4-Dichlorobenzene ND	Volatile Organics by GC/MS - Westb	orough Lab					
1.4-Dichlorobenzene ND	1,3-Dichlorobenzene	ND		ua/l	2.5	0.70	1
Methyl tert butyl ether ND ug/l 2.5 0.70 1 p/m-Xylene ND ug/l 2.5 0.70 1 o-Xylene ND ug/l 2.5 0.70 1 cis-1,2-Dichloroethene 1.4 J ug/l 2.5 0.70 1 Styrene ND ug/l 2.5 0.70 1 Dichlorodfilluoromethane ND ug/l 5.0 1.0 1 Acetone ND ug/l 5.0 1.0 1 Carbon disulfide ND ug/l 5.0 1.0 1 2-Butanone ND ug/l 5.0 1.0 1 2-Butanone ND ug/l 5.0 1.0 1 4-Methyl-2-pentanone ND ug/l 5.0 1.0 1 1,2-Dibromorbitane ND ug/l 2.5 0.70 1 1,2-Dibromorbitane ND ug/l 2.5 0.70 1	1,4-Dichlorobenzene	ND			2.5	0.70	1
pr/m-Xylene ND ug/l 2.5 0.70 1 o-Xylene ND ug/l 2.5 0.70 1 cis-1,2-Dichloroethene 1.4 J ug/l 2.5 0.70 1 Styrene ND ug/l 2.5 0.70 1 Dichlorodifluoromethane ND ug/l 5.0 1.0 1 Acetone ND ug/l 5.0 1.0 1 Carbon disulfide ND ug/l 5.0 1.0 1 2-Butanone ND ug/l 5.0 1.0 1 4-Methyl-2-pentanone ND ug/l 5.0 1.0 1 4-Methyl-2-pentanone ND ug/l 2.0 0.65 1 1,2-Dibromoethane ND ug/l 2.5 0.70 1 1,2-Dibromoethane ND ug/l 2.5 0.70 1 1-Eethylphenzene ND ug/l 2.5 0.70 1	Methyl tert butyl ether	ND			2.5	0.70	1
co-Xylene ND ug/l 2.5 0.70 1 cis-1,2-Dichloroethene 1.4 J ug/l 2.5 0.70 1 Styrene ND ug/l 2.5 0.70 1 Dichlorodifluoromethane ND ug/l 5.0 1.0 1 Acetone ND ug/l 5.0 1.5 1 Acetone ND ug/l 5.0 1.0 1 2-Butanone ND ug/l 5.0 1.0 1 4-Methyl-2-pentanone ND ug/l 5.0 1.0 1 4-Methyl-2-pentanone ND ug/l 5.0 1.0 1 1-2-Distomosthane ND ug/l 2.5 0.70 1	p/m-Xylene	ND			2.5	0.70	1
ND	o-Xylene	ND			2.5	0.70	1
Dichlorodiffluoromethane ND	cis-1,2-Dichloroethene	1.4	J	ug/l	2.5	0.70	1
Actione ND ug/l 5.0 1.5 1 Carbon disulfide ND ug/l 5.0 1.0 1 2-Butanone ND ug/l 5.0 1.9 1 4-Methyl-2-pentanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 5.0 1.0 1 1,2-Dibromoethane ND ug/l 2.0 0.65 1 n-Butylbenzene ND ug/l 2.5 0.70 1 sec-Butylbenzene ND ug/l 2.5 0.70 1 tert-Butylbenzene ND ug/l 2.5 0.70 1 tert-Butylbenzene ND ug/l 2.5 0.70 1 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 1 Isopropylbenzene ND ug/l 2.5 0.70 1 P-Isopropylbenzene ND ug/l 2.5 0.70 1	Styrene	ND		ug/l	2.5	0.70	1
Carbon disulfide ND ug/l 5.0 1.0 1 2-Butanone ND ug/l 5.0 1.9 1 4-Methyl-2-pentanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 5.0 1.0 1 1,2-Dibromoethane ND ug/l 2.0 0.65 1 n-Butylbenzene ND ug/l 2.5 0.70 1 sec-Butylbenzene ND ug/l 2.5 0.70 1 tert-Butylbenzene ND ug/l 2.5 0.70 1 tert-Butylbenzene ND ug/l 2.5 0.70 1 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 1 Isopropylbenzene ND ug/l 2.5 0.70 1 Isopropylbenzene ND ug/l 2.5 0.70 1 Naphthalene ND ug/l 2.5 0.70 1	Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
2-Butanone ND ug/l 5.0 1.9 1 4-Methyl-2-pentanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 5.0 1.0 1 1,2-Dibromoethane ND ug/l 2.0 0.65 1 n-Butylbenzene ND ug/l 2.5 0.70 1 sec-Butylbenzene ND ug/l 2.5 0.70 1 tert-Butylbenzene ND ug/l 2.5 0.70 1 tert-Butylbenzene ND ug/l 2.5 0.70 1 tert-Butylbenzene ND ug/l 2.5 0.70 1 lsportopylbenzene ND ug/l 2.5 0.70 1 lsportopylbenzene ND ug/l 2.5 0.70 1 Naphthalene ND ug/l 2.5 0.70 1 n-Propylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trinchlorobenzene ND ug/l 2.5 0.70 1	Acetone	ND		ug/l	5.0	1.5	1
4-Methyl-2-pentanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 5.0 1.0 1 1,2-Dibromoethane ND ug/l 2.0 0.65 1 1,2-Dibromoethane ND ug/l 2.5 0.70 1 1.8ec-Butylbenzene ND ug/l 2.5 0.70 1 1.etrl-Butylbenzene ND ug/l 2.5 0.70 1 1.2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 1 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 1 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 1 1.etrl-Butylbenzene ND ug/l 2.5 0.70 1 1.espropylbenzene ND ug/l 2.5 0.70 1 1.espropyltoluene N	Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Hexanone ND ug/l 5.0 1.0 1 1,2-Dibromoethane ND ug/l 2.0 0.65 1 n-Butylbenzene ND ug/l 2.5 0.70 1 sec-Butylbenzene ND ug/l 2.5 0.70 1 tert-Butylbenzene ND ug/l 2.5 0.70 1 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 1 Isopropylbenzene ND ug/l 2.5 0.70 1 P-Isopropyltoluene ND ug/l 2.5 0.70 1 Naphthalene ND ug/l 2.5 0.70 1 n-Propylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 1 1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 1 Methyl Acetate ND ug/l 2.5 0.70 1 Methyl Acetate ND ug/l 2.5 0.70 1 </td <td>2-Butanone</td> <td>ND</td> <td></td> <td>ug/l</td> <td>5.0</td> <td>1.9</td> <td>1</td>	2-Butanone	ND		ug/l	5.0	1.9	1
1,2-Dibromoethane ND ug/l 2.0 0.65 1 nn-Butylbenzene ND ug/l 2.5 0.70 1 sec-Butylbenzene ND ug/l 2.5 0.70 1 tert-Butylbenzene ND ug/l 2.5 0.70 1 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 1 1sopropylbenzene ND ug/l 2.5 0.70 1 1sopropyltoluene ND ug/l 2.5 0.70 1 Naphthalene ND ug/l 2.5 0.70 1 n-Propylbenzene ND ug/l 2.5 0.70 1 n-Propylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 1 1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 1 Methyl Acetate ND ug/l 2.5 0.70 1 Cyclohexane ND ug/l 2.5 0.70 1	4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
n-Butylbenzene ND ug/l 2.5 0.70 1 sec-Butylbenzene ND ug/l 2.5 0.70 1 tert-Butylbenzene ND ug/l 2.5 0.70 1 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 1 Isopropylbenzene ND ug/l 2.5 0.70 1 P-Isopropyltoluene ND ug/l 2.5 0.70 1 Naphthalene ND ug/l 2.5 0.70 1 N-P-ropylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 1 1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 1 Methyl Acetate ND ug/l 2.0 0.23	2-Hexanone	ND		ug/l	5.0	1.0	1
Sec-Butylbenzene ND	1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
tert-Butylbenzene ND ug/l 2.5 0.70 1 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 1 Isopropylbenzene ND ug/l 2.5 0.70 1 Isopropyltoluene ND ug/l 2.5 0.70 1 Naphthalene ND ug/l 2.5 0.70 1 Naphthalene ND ug/l 2.5 0.70 1 n-Propylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 1 1,3,5-Trimethylbenzene ND ug/l 2.5 0.70 1 1,3,5-Trimethylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 1 Methyl Acetate ND ug/l 2.5 0.70 1 Freon-113 ND ug/l 2.0 0.23 1 Freon-113 ND ug/l 2.5 0.70 1	n-Butylbenzene	ND		ug/l	2.5	0.70	1
1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 1 Isopropylbenzene ND ug/l 2.5 0.70 1 p-Isopropyltoluene ND ug/l 2.5 0.70 1 Naphthalene ND ug/l 2.5 0.70 1 n-Propylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 1 1,3,5-Trimethylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 1 Methyl Acetate ND ug/l 2.0 0.23 1 Cyclohexane ND ug/l 10 0.27 1 Freon-113 ND ug/l 2.5 0.70 1	sec-Butylbenzene	ND		ug/l	2.5	0.70	1
Sopropylbenzene ND ug/l 2.5 0.70 1	tert-Butylbenzene	ND		ug/l	2.5	0.70	1
p-Isopropyltoluene ND ug/l 2.5 0.70 1 Naphthalene ND ug/l 2.5 0.70 1 n-Propylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 1 1,3,5-Trimethylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 1 Methyl Acetate ND ug/l 2.0 0.23 1 Cyclohexane ND ug/l 10 0.27 1 Freon-113 ND ug/l 2.5 0.70 1	1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Naphthalene ND ug/l 2.5 0.70 1 n-Propylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 1 1,3,5-Trimethylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 1 Methyl Acetate ND ug/l 2.0 0.23 1 Cyclohexane ND ug/l 10 0.27 1 Freon-113 ND ug/l 2.5 0.70 1	Isopropylbenzene	ND		ug/l	2.5	0.70	1
n-Propylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 1 1,3,5-Trimethylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 1 Methyl Acetate ND ug/l 2.0 0.23 1 Cyclohexane ND ug/l 10 0.27 1 Freon-113 ND ug/l 2.5 0.70 1	p-Isopropyltoluene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 1 1,3,5-Trimethylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 1 Methyl Acetate ND ug/l 2.0 0.23 1 Cyclohexane ND ug/l 10 0.27 1 Freon-113 ND ug/l 2.5 0.70 1	Naphthalene	ND		ug/l	2.5	0.70	1
1,3,5-Trimethylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 1 Methyl Acetate ND ug/l 2.0 0.23 1 Cyclohexane ND ug/l 10 0.27 1 Freon-113 ND ug/l 2.5 0.70 1	n-Propylbenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 1 Methyl Acetate ND ug/l 2.0 0.23 1 Cyclohexane ND ug/l 10 0.27 1 Freon-113 ND ug/l 2.5 0.70 1	1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl Acetate ND ug/l 2.0 0.23 1 Cyclohexane ND ug/l 10 0.27 1 Freon-113 ND ug/l 2.5 0.70 1	1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1
Cyclohexane ND ug/l 10 0.27 1 Freon-113 ND ug/l 2.5 0.70 1	1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1
Freon-113 ND ug/l 2.5 0.70 1	Methyl Acetate	ND		ug/l	2.0	0.23	1
	Cyclohexane	ND		ug/l	10	0.27	1
Methyl cyclohexane ND ug/l 10 0.40 1	Freon-113	ND		ug/l	2.5	0.70	1
	Methyl cyclohexane	ND		ug/l	10	0.40	1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	102		70-130	
Toluene-d8	103		70-130	
4-Bromofluorobenzene	100		70-130	
Dibromofluoromethane	106		70-130	

08/30/23 10:50

Project Name: JCC

Project Number: N30.009.001

SAMPLE RESULTS

Lab Number: L2350757

Date Collected:

Report Date: 09/15/23

SAIVIFLE RESUL

Lab ID: L2350757-02
Client ID: PW-1-083023
Sample Location: FALCONER,NY

Date Received: 08/31/23
Field Prep: Not Specified

Sample Depth:

Matrix: Water
Analytical Method: 1,8260D
Analytical Date: 09/09/23 05:40

Analyst: PID

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westborough Lab						
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	5.7		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1

Project Name: JCC Lab Number: L2350757

Project Number: N30.009.001 **Report Date:** 09/15/23

SAMPLE RESULTS

Lab ID: L2350757-02 Date Collected: 08/30/23 10:50

Client ID: PW-1-083023 Date Received: 08/31/23 Sample Location: FALCONER,NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	tborough Lab					
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	4.2		ug/l	2.5	0.70	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	ND		ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
n-Butylbenzene	ND		ug/l	2.5	0.70	1
sec-Butylbenzene	ND		ug/l	2.5	0.70	1
tert-Butylbenzene	ND		ug/l	2.5	0.70	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
p-Isopropyltoluene	ND		ug/l	2.5	0.70	1
Naphthalene	ND		ug/l	2.5	0.70	1
n-Propylbenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1
Methyl Acetate	ND		ug/l	2.0	0.23	1
Cyclohexane	ND		ug/l	10	0.27	1
Freon-113	ND		ug/l	2.5	0.70	1
Methyl cyclohexane	ND		ug/l	10	0.40	1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	103		70-130	
Toluene-d8	105		70-130	
4-Bromofluorobenzene	103		70-130	
Dibromofluoromethane	105		70-130	

Project Name: JCC Lab Number: L2350757

Project Number: N30.009.001 **Report Date:** 09/15/23

SAMPLE RESULTS

L2350757-03

Date Collected: 08/30/23 10:50

Client ID: DUP-083023 Date Received: 08/31/23
Sample Location: FALCONER,NY Field Prep: Not Specified

Sample Depth:

Lab ID:

Matrix: Water
Analytical Method: 1,8260D
Analytical Date: 09/09/23 06:06

Analyst: PID

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westl	oorough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	5.8		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1

Project Name: JCC Lab Number: L2350757

Project Number: N30.009.001 **Report Date:** 09/15/23

SAMPLE RESULTS

Lab ID: L2350757-03 Date Collected: 08/30/23 10:50

Client ID: DUP-083023 Date Received: 08/31/23 Sample Location: FALCONER,NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westborough	Lab					
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	4.4		ug/l	2.5	0.70	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	1.5	J	ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
n-Butylbenzene	ND		ug/l	2.5	0.70	1
sec-Butylbenzene	ND		ug/l	2.5	0.70	1
tert-Butylbenzene	ND		ug/l	2.5	0.70	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
p-Isopropyltoluene	ND		ug/l	2.5	0.70	1
Naphthalene	ND		ug/l	2.5	0.70	1
n-Propylbenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1
Methyl Acetate	ND		ug/l	2.0	0.23	1
Cyclohexane	ND		ug/l	10	0.27	1
Freon-113	ND		ug/l	2.5	0.70	1
Methyl cyclohexane	ND		ug/l	10	0.40	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	102	70-130	
Toluene-d8	104	70-130	
4-Bromofluorobenzene	104	70-130	
Dibromofluoromethane	104	70-130	

Project Name: JCC

Project Number: N30.009.001

SAMPLE RESULTS

Lab Number: L2350757

Report Date: 09/15/23

Lab ID: L2350757-04 Date Collected: 08/30/23 11:40

Client ID: Date Received: 08/31/23 ESI-10-083023 Sample Location: Field Prep: Not Specified FALCONER,NY

Sample Depth:

Matrix: Water Analytical Method: 1,8260D Analytical Date: 09/09/23 06:33

Analyst: PID

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westb	oorough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
Bromoform	0.66	J	ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	ND		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1

Project Name: JCC Lab Number: L2350757

Project Number: N30.009.001 **Report Date:** 09/15/23

SAMPLE RESULTS

Lab ID: L2350757-04 Date Collected: 08/30/23 11:40

Client ID: ESI-10-083023 Date Received: 08/31/23 Sample Location: FALCONER,NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westborough	Lab					
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	1.9	J	ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
n-Butylbenzene	ND		ug/l	2.5	0.70	1
sec-Butylbenzene	ND		ug/l	2.5	0.70	1
tert-Butylbenzene	ND		ug/l	2.5	0.70	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
p-Isopropyltoluene	ND		ug/l	2.5	0.70	1
Naphthalene	ND		ug/l	2.5	0.70	1
n-Propylbenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1
Methyl Acetate	ND		ug/l	2.0	0.23	1
Cyclohexane	ND		ug/l	10	0.27	1
Freon-113	ND		ug/l	2.5	0.70	1
Methyl cyclohexane	ND		ug/l	10	0.40	1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	103		70-130	
Toluene-d8	105		70-130	
4-Bromofluorobenzene	100		70-130	
Dibromofluoromethane	104		70-130	

Project Name: JCC Lab Number: L2350757

Project Number: N30.009.001 **Report Date:** 09/15/23

SAMPLE RESULTS

Lab ID: L2350757-05 Date Collected: 08/30/23 12:25

Client ID: ESI-11-083023 Date Received: 08/31/23
Sample Location: FALCONER,NY Field Prep: Not Specified

Sample Depth:

Matrix: Water
Analytical Method: 1,8260D
Analytical Date: 09/09/23 06:59

Analyst: PID

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Wes	stborough Lab						
Methylene chloride	ND		ug/l	2.5	0.70	1	
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1	
Chloroform	ND		ug/l	2.5	0.70	1	
Carbon tetrachloride	ND		ug/l	0.50	0.13	1	
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1	
Dibromochloromethane	ND		ug/l	0.50	0.15	1	
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1	
Tetrachloroethene	ND		ug/l	0.50	0.18	1	
Chlorobenzene	ND		ug/l	2.5	0.70	1	
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1	
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1	
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1	
Bromodichloromethane	ND		ug/l	0.50	0.19	1	
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1	
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1	
Bromoform	1.7	J	ug/l	2.0	0.65	1	
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1	
Benzene	ND		ug/l	0.50	0.16	1	
Toluene	ND		ug/l	2.5	0.70	1	
Ethylbenzene	ND		ug/l	2.5	0.70	1	
Chloromethane	ND		ug/l	2.5	0.70	1	
Bromomethane	ND		ug/l	2.5	0.70	1	
Vinyl chloride	ND		ug/l	1.0	0.07	1	
Chloroethane	ND		ug/l	2.5	0.70	1	
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1	
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1	
Trichloroethene	ND		ug/l	0.50	0.18	1	
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1	

Project Name: JCC Lab Number: L2350757

Project Number: N30.009.001 **Report Date:** 09/15/23

SAMPLE RESULTS

Lab ID: L2350757-05 Date Collected: 08/30/23 12:25

Client ID: ESI-11-083023 Date Received: 08/31/23 Sample Location: FALCONER,NY Field Prep: Not Specified

			Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westborough	n Lab					
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	2.2	J	ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
n-Butylbenzene	ND		ug/l	2.5	0.70	1
sec-Butylbenzene	ND		ug/l	2.5	0.70	1
tert-Butylbenzene	ND		ug/l	2.5	0.70	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
p-Isopropyltoluene	ND		ug/l	2.5	0.70	1
Naphthalene	ND		ug/l	2.5	0.70	1
n-Propylbenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1
Methyl Acetate	ND		ug/l	2.0	0.23	1
Cyclohexane	ND		ug/l	10	0.27	1
Freon-113	ND		ug/l	2.5	0.70	1
Methyl cyclohexane	ND		ug/l	10	0.40	1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	104		70-130	
Toluene-d8	103		70-130	
4-Bromofluorobenzene	104		70-130	
Dibromofluoromethane	104		70-130	

Project Name: JCC Lab Number: L2350757

Project Number: N30.009.001 **Report Date:** 09/15/23

SAMPLE RESULTS

Lab ID: L2350757-06 Date Collected: 08/30/23 13:00

Client ID: ESI-12-083023 Date Received: 08/31/23
Sample Location: FALCONER,NY Field Prep: Not Specified

Sample Depth:

Matrix: Water
Analytical Method: 1,8260D
Analytical Date: 09/09/23 07:25

Analyst: PID

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westb	orough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
Bromoform	1.2	J	ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	ND		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1

Project Name: JCC Lab Number: L2350757

Project Number: N30.009.001 **Report Date:** 09/15/23

SAMPLE RESULTS

Lab ID: L2350757-06 Date Collected: 08/30/23 13:00

Client ID: ESI-12-083023 Date Received: 08/31/23 Sample Location: FALCONER,NY Field Prep: Not Specified

ND	Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
1.4-Dichlorobenzene	Volatile Organics by GC/MS - West	borough Lab					
1.4-Dichlorobenzene ND ug/l 2.5 0.70 1 Methyl tert butyl ether ND ug/l 2.5 0.70 1 p/m-Xylene ND ug/l 2.5 0.70 1 o-Xylene ND ug/l 2.5 0.70 1 cis-1,2-Dichlorothene ND ug/l 2.5 0.70 1 Styrene ND ug/l 2.5 0.70 1 Dichlorodifluoromethane ND ug/l 5.0 1.0 1 Acetone 3.0 J ug/l 5.0 1.0 1 Carbon disultide ND ug/l 5.0 1.0 1 2-Butanone ND ug/l 5.0 1.0 1 4-Methyl-2-pentanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 5.0 1.0 1 1,2-Dibromothane ND ug/l 2.5 0.70 1 <tr< td=""><td>1,3-Dichlorobenzene</td><td>ND</td><td></td><td>ug/l</td><td>2.5</td><td>0.70</td><td>1</td></tr<>	1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether ND ug/l 2.5 0.70 1 p/m-Xylene ND ug/l 2.5 0.70 1 o-Xylene ND ug/l 2.5 0.70 1 cis-1,2-Dichloroethene ND ug/l 2.5 0.70 1 Styrene ND ug/l 2.5 0.70 1 Dichlorodifluoromethane ND ug/l 5.0 1.0 1 Acetone 3.0 J ug/l 5.0 1.0 1 Carbon disulfide ND ug/l 5.0 1.0 1 2-Butanone ND ug/l 5.0 1.0 1 4-Methyl-2-pentanone ND ug/l 5.0 1.0 1 1-Le-bitromorehane ND ug/l 5.0 1.0 1 1-P-Butylbenzene ND ug/l 2.5 0.70 1 1-Le-Butylbenzene ND ug/l 2.5 0.70 1	1,4-Dichlorobenzene	ND			2.5	0.70	1
p/m-Xylene ND ug/l 2.5 0.70 1 o-Xylene ND ug/l 2.5 0.70 1 cis-1,2-Dichloroethene ND ug/l 2.5 0.70 1 Styrene ND ug/l 2.5 0.70 1 Dichlorodifluoromethane ND ug/l 5.0 1.0 1 Acetone 3.0 J ug/l 5.0 1.0 1 Carbon disulfide ND ug/l 5.0 1.0 1 2-Butanone ND ug/l 5.0 1.0 1 4-Methyl-2-pentanone ND ug/l 5.0 1.0 1 2-Hoxanone ND ug/l 2.0 0.65 1 1,2-Dibromoethane ND ug/l 2.5 0.70 1 1-Butylbenzene ND ug/l 2.5 0.70 1 1-Ethylbenzene ND ug/l 2.5 0.70 1 <	Methyl tert butyl ether	ND			2.5	0.70	1
cis-1,2-Dichloroethene ND ug/l 2.5 0.70 1 Styrene ND ug/l 2.5 0.70 1 Dichlorodifluoromethane ND ug/l 5.0 1.0 1 Acetone 3.0 J ug/l 5.0 1.5 1 Carbon disulfide ND ug/l 5.0 1.0 1 2-Butanone ND ug/l 5.0 1.9 1 4-Methyl-2-pentanone ND ug/l 5.0 1.0 1 4-Methyl-2-pentanone ND ug/l 5.0 1.0 1 1-2-Hexanone ND ug/l 2.0 0.65 1 1-2-Bitromo-dance ND ug/l 2.5 0.70 1	p/m-Xylene	ND		ug/l	2.5	0.70	1
Styrene ND ug/l 2.5 0.70 1 Dichlorodifluoromethane ND ug/l 5.0 1.0 1 Acetone 3.0 J ug/l 5.0 1.5 1 Carbon disulfide ND ug/l 5.0 1.0 1 2-Butanone ND ug/l 5.0 1.9 1 4-Methyl-2-pentanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 5.0 1.0 1 1-2-Disromoethane ND ug/l 2.5 0.70 1 1-2-Disromoethane ND ug/l 2.5 0.70 1 1-8-Butylbenzene ND ug/l 2.5 0.70 1 1-2-Disromoethane ND ug/l 2.5 0.70 1 1-2-Disromoethane ND ug/l 2.5 0.70 1 1-2-Disromoethane ND ug/l 2.5 0.70 1	o-Xylene	ND		ug/l	2.5	0.70	1
Dichlorodiffluoromethane ND	cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Acetone 3.0 J ug/l 5.0 1.5 1 Carbon disulfide ND ug/l 5.0 1.0 1 2-Butanone ND ug/l 5.0 1.0 1 4-Methyl-2-pentanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 5.0 1.0 1 1.2-Dibromoethane ND ug/l 5.0 1.0 1 1.2-Dibromoethane ND ug/l 2.0 0.65 1 n-Butylbenzene ND ug/l 2.5 0.70 1 tert-Butylbenzene ND ug/l 2.5 0.70 1 1.2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 1 1.2-A-Trichlorobenzene ND ug/l 2.5 0.70 1 1.2-4-Trichlorobenzene ND ug/l 2.5 0.70 1 1.2-4-Trichlorobenzene ND ug/l 2.5 0.70 1 1.2-4-Trichlorobenzene ND ug/l 2.5 0.70 1 1.2-4-Trimethylbenzene ND ug/l 2.5 0.70 1	Styrene	ND		ug/l	2.5	0.70	1
Carbon disulfide ND ug/l 5.0 1.0 1 2-Butanone ND ug/l 5.0 1.9 1 4-Methyl-2-pentanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 5.0 1.0 1 1,2-Dibromoethane ND ug/l 2.0 0.65 1 n-Butylbenzene ND ug/l 2.5 0.70 1 sec-Butylbenzene ND ug/l 2.5 0.70 1 tert-Butylbenzene ND ug/l 2.5 0.70 1 lscoprobylbenzene ND ug/l 2.5 0.70 1 lscoprobylbenzene ND ug/l 2.5 0.70 1	Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
2-Butanone ND ug/l 5.0 1.9 1 4-Methyl-2-pentanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 5.0 1.0 1 1,2-Dibromoethane ND ug/l 2.0 0.65 1 n-Butylbenzene ND ug/l 2.5 0.70 1 sec-Butylbenzene ND ug/l 2.5 0.70 1 tert-Butylbenzene ND ug/l 2.5 0.70 1 tert-Butylbenzene ND ug/l 2.5 0.70 1 tert-Butylbenzene ND ug/l 2.5 0.70 1 lsopropylbenzene ND ug/l 2.5 0.70 1 lsopropylbenzene ND ug/l 2.5 0.70 1 Naphthalene ND ug/l 2.5 0.70 1 n-Propylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 1	Acetone	3.0	J	ug/l	5.0	1.5	1
4-Methyl-2-pentanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 5.0 1.0 1 1,2-Dibromoethane ND ug/l 2.0 0.65 1 1,2-Dibromoethane ND ug/l 2.5 0.70 1 1.8ec-Butylbenzene ND ug/l 2.5 0.70 1 1.etr-Butylbenzene ND ug/l 2.5 0.70 1 1.2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 1 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 1 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 1 1.p-Isopropylbenzene ND ug/l 2.5 0.70 1 1.p-Propylbenzene ND ug/l 2.5 0.70 1 1.2,4-Trichlorobenzene ND ug/l 2.5 0.70 1 1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 1 1.p-Iropylbenzene ND ug/l 2.5 0.70 1	Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Hexanone ND ug/l 5.0 1.0 1 1,2-Dibromoethane ND ug/l 2.0 0.65 1 n-Butylbenzene ND ug/l 2.5 0.70 1 sec-Butylbenzene ND ug/l 2.5 0.70 1 tert-Butylbenzene ND ug/l 2.5 0.70 1 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 1 Isopropylbenzene ND ug/l 2.5 0.70 1 P-Isopropyltoluene ND ug/l 2.5 0.70 1 Naphthalene ND ug/l 2.5 0.70 1 n-Propylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 1 1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 1 Methyl Acetate ND ug/l 2.5 0.70 1 Methyl Acetate ND ug/l 2.5 0.70 1 </td <td>2-Butanone</td> <td>ND</td> <td></td> <td>ug/l</td> <td>5.0</td> <td>1.9</td> <td>1</td>	2-Butanone	ND		ug/l	5.0	1.9	1
1,2-Dibromoethane ND ug/l 2.0 0.65 1 nn-Butylbenzene ND ug/l 2.5 0.70 1 sec-Butylbenzene ND ug/l 2.5 0.70 1 tetr-Butylbenzene ND ug/l 2.5 0.70 1 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 1 1sopropylbenzene ND ug/l 2.5 0.70 1 1sopropyltoluene ND ug/l 2.5 0.70 1 Naphthalene ND ug/l 2.5 0.70 1 n-Propylbenzene ND ug/l 2.5 0.70 1 n-Propylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 1 1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 1 Methyl Acetate ND ug/l 2.5 0.70 1 Cyclohexane ND ug/l 2.5 0.70 1	4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
n-Butylbenzene ND ug/l 2.5 0.70 1 sec-Butylbenzene ND ug/l 2.5 0.70 1 tert-Butylbenzene ND ug/l 2.5 0.70 1 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 1 Isopropylbenzene ND ug/l 2.5 0.70 1 P-Isopropyltoluene ND ug/l 2.5 0.70 1 Naphthalene ND ug/l 2.5 0.70 1 N-P-ropylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 1 1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 1 Methyl Acetate ND ug/l 2.5 0.70	2-Hexanone	ND		ug/l	5.0	1.0	1
Sec-Butylbenzene ND	1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
tert-Butylbenzene ND ug/l 2.5 0.70 1 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 1 Isopropylbenzene ND ug/l 2.5 0.70 1 p-Isopropyltoluene ND ug/l 2.5 0.70 1 Naphthalene ND ug/l 2.5 0.70 1 n-Propylbenzene ND ug/l 2.5 0.70 1 n-Propylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 1 1,3,5-Trimethylbenzene ND ug/l 2.5 0.70 1 1,3,5-Trimethylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 1 Methyl Acetate ND ug/l 2.0 0.23 1 Cyclohexane ND ug/l 2.5 0.70 1 Freon-113	n-Butylbenzene	ND		ug/l	2.5	0.70	1
1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 1 Isopropylbenzene ND ug/l 2.5 0.70 1 p-Isopropyltoluene ND ug/l 2.5 0.70 1 Naphthalene ND ug/l 2.5 0.70 1 n-Propylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 1 1,3,5-Trimethylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 1 Methyl Acetate ND ug/l 2.0 0.23 1 Cyclohexane ND ug/l 10 0.27 1 Freon-113 ND ug/l 2.5 0.70 1	sec-Butylbenzene	ND		ug/l	2.5	0.70	1
Sopropylbenzene ND ug/l 2.5 0.70 1	tert-Butylbenzene	ND		ug/l	2.5	0.70	1
p-Isopropyltoluene ND ug/l 2.5 0.70 1 Naphthalene ND ug/l 2.5 0.70 1 n-Propylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 1 1,3,5-Trimethylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 1 Methyl Acetate ND ug/l 2.0 0.23 1 Cyclohexane ND ug/l 10 0.27 1 Freon-113 ND ug/l 2.5 0.70 1	1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Naphthalene ND ug/l 2.5 0.70 1 n-Propylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 1 1,3,5-Trimethylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 1 Methyl Acetate ND ug/l 2.0 0.23 1 Cyclohexane ND ug/l 10 0.27 1 Freon-113 ND ug/l 2.5 0.70 1	Isopropylbenzene	ND		ug/l	2.5	0.70	1
n-Propylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 1 1,3,5-Trimethylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 1 Methyl Acetate ND ug/l 2.0 0.23 1 Cyclohexane ND ug/l 10 0.27 1 Freon-113 ND ug/l 2.5 0.70 1	p-Isopropyltoluene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 1 1,3,5-Trimethylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 1 Methyl Acetate ND ug/l 2.0 0.23 1 Cyclohexane ND ug/l 10 0.27 1 Freon-113 ND ug/l 2.5 0.70 1	Naphthalene	ND		ug/l	2.5	0.70	1
1,3,5-Trimethylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 1 Methyl Acetate ND ug/l 2.0 0.23 1 Cyclohexane ND ug/l 10 0.27 1 Freon-113 ND ug/l 2.5 0.70 1	n-Propylbenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 1 Methyl Acetate ND ug/l 2.0 0.23 1 Cyclohexane ND ug/l 10 0.27 1 Freon-113 ND ug/l 2.5 0.70 1	1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl Acetate ND ug/l 2.0 0.23 1 Cyclohexane ND ug/l 10 0.27 1 Freon-113 ND ug/l 2.5 0.70 1	1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1
Cyclohexane ND ug/l 10 0.27 1 Freon-113 ND ug/l 2.5 0.70 1	1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1
Freon-113 ND ug/l 2.5 0.70 1	Methyl Acetate	ND		ug/l	2.0	0.23	1
	Cyclohexane	ND		ug/l	10	0.27	1
Methyl cyclohexane ND ug/l 10 0.40 1	Freon-113	ND		ug/l	2.5	0.70	1
	Methyl cyclohexane	ND		ug/l	10	0.40	1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	103		70-130	
Toluene-d8	102		70-130	
4-Bromofluorobenzene	104		70-130	
Dibromofluoromethane	103		70-130	

Project Name: JCC Lab Number: L2350757

Project Number: N30.009.001 Report Date: 09/15/23

SAMPLE RESULTS

Lab ID: L2350757-07 Date Collected: 08/30/23 13:55 Date Received: 08/31/23

Client ID: ESI-7-083023 Sample Location: FALCONER,NY

Field Prep: Not Specified

Sample Depth:

Matrix: Water Analytical Method: 1,8260D Analytical Date: 09/09/23 07:51

Analyst: PID

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westborough	Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	18		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1

Project Name: JCC Lab Number: L2350757

Project Number: N30.009.001 **Report Date:** 09/15/23

SAMPLE RESULTS

Lab ID: L2350757-07 Date Collected: 08/30/23 13:55

Client ID: ESI-7-083023 Date Received: 08/31/23 Sample Location: FALCONER,NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westborough	Lab					
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	1.1	J	ug/l	2.5	0.70	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	ND		ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
n-Butylbenzene	ND		ug/l	2.5	0.70	1
sec-Butylbenzene	ND		ug/l	2.5	0.70	1
tert-Butylbenzene	ND		ug/l	2.5	0.70	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
p-Isopropyltoluene	ND		ug/l	2.5	0.70	1
Naphthalene	ND		ug/l	2.5	0.70	1
n-Propylbenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1
Methyl Acetate	ND		ug/l	2.0	0.23	1
Cyclohexane	ND		ug/l	10	0.27	1
Freon-113	ND		ug/l	2.5	0.70	1
Methyl cyclohexane	ND		ug/l	10	0.40	1

Surrogate	% Recovery		eptance riteria
1,2-Dichloroethane-d4	104	7	70-130
Toluene-d8	103	7	70-130
4-Bromofluorobenzene	101	7	70-130
Dibromofluoromethane	104	ī	70-130

L2350757

08/30/23 14:40

Project Name: JCC

Project Number: N30.009.001

SAMPLE RESULTS

Lab Number:

Date Collected:

Report Date: 09/15/23

Lab ID: L2350757-08 Client ID: ESI-13R-083023

Sample Location: FALCONER,NY Date Received: 08/31/23 Field Prep: Not Specified

Sample Depth:

Matrix: Water Analytical Method: 1,8260D Analytical Date: 09/09/23 08:18

Analyst: PID

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - West	borough Lab						
Methylene chloride	ND		ug/l	2.5	0.70	1	
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1	
Chloroform	ND		ug/l	2.5	0.70	1	
Carbon tetrachloride	ND		ug/l	0.50	0.13	1	
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1	
Dibromochloromethane	ND		ug/l	0.50	0.15	1	
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1	
Tetrachloroethene	ND		ug/l	0.50	0.18	1	
Chlorobenzene	ND		ug/l	2.5	0.70	1	
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1	
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1	
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1	
Bromodichloromethane	ND		ug/l	0.50	0.19	1	
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1	
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1	
Bromoform	ND		ug/l	2.0	0.65	1	
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1	
Benzene	ND		ug/l	0.50	0.16	1	
Toluene	ND		ug/l	2.5	0.70	1	
Ethylbenzene	ND		ug/l	2.5	0.70	1	
Chloromethane	ND		ug/l	2.5	0.70	1	
Bromomethane	ND		ug/l	2.5	0.70	1	
Vinyl chloride	ND		ug/l	1.0	0.07	1	
Chloroethane	ND		ug/l	2.5	0.70	1	
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1	
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1	
Trichloroethene	10		ug/l	0.50	0.18	1	
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1	

MDL

Dilution Factor

Project Name: JCC Lab Number: L2350757

Project Number: N30.009.001 **Report Date:** 09/15/23

SAMPLE RESULTS

Lab ID: L2350757-08 Date Collected: 08/30/23 14:40

Client ID: ESI-13R-083023 Date Received: 08/31/23 Sample Location: FALCONER,NY Field Prep: Not Specified

Qualifier

Units

RL

Result

Sample Depth:

Parameter

raiailletei	Nesuit	Qualifier	Ullita	NL.	WIDE	Dilution i actor
Volatile Organics by GC/MS - Wes	stborough Lab					
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	ND		ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
n-Butylbenzene	ND		ug/l	2.5	0.70	1
sec-Butylbenzene	ND		ug/l	2.5	0.70	1
tert-Butylbenzene	ND		ug/l	2.5	0.70	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
p-Isopropyltoluene	ND		ug/l	2.5	0.70	1
Naphthalene	ND		ug/l	2.5	0.70	1
n-Propylbenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1
Methyl Acetate	ND		ug/l	2.0	0.23	1
Cyclohexane	ND		ug/l	10	0.27	1
Freon-113	ND		ug/l	2.5	0.70	1
Methyl cyclohexane	ND		ug/l	10	0.40	1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	104		70-130	
Toluene-d8	103		70-130	
4-Bromofluorobenzene	103		70-130	
Dibromofluoromethane	105		70-130	

Project Name: JCC Lab Number: L2350757

Project Number: N30.009.001 **Report Date:** 09/15/23

SAMPLE RESULTS

Lab ID: L2350757-09 Date Collected: 08/31/23 10:22

Client ID: ESI-6-083123 Date Received: 08/31/23 Sample Location: FALCONER,NY Field Prep: Not Specified

Sample Depth:

Matrix: Water
Analytical Method: 1,8260D
Analytical Date: 09/09/23 08:44

Analyst: PID

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westb	orough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
Bromoform	1.1	J	ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	ND		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1

Project Name: JCC Lab Number: L2350757

Project Number: N30.009.001 **Report Date:** 09/15/23

SAMPLE RESULTS

Lab ID: L2350757-09 Date Collected: 08/31/23 10:22

Client ID: ESI-6-083123 Date Received: 08/31/23 Sample Location: FALCONER,NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westborough	Lab					
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	3.5	J	ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
n-Butylbenzene	ND		ug/l	2.5	0.70	1
sec-Butylbenzene	ND		ug/l	2.5	0.70	1
tert-Butylbenzene	ND		ug/l	2.5	0.70	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
p-Isopropyltoluene	ND		ug/l	2.5	0.70	1
Naphthalene	ND		ug/l	2.5	0.70	1
n-Propylbenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1
Methyl Acetate	ND		ug/l	2.0	0.23	1
Cyclohexane	ND		ug/l	10	0.27	1
Freon-113	ND		ug/l	2.5	0.70	1
Methyl cyclohexane	ND		ug/l	10	0.40	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	105	70-130	
Toluene-d8	102	70-130	
4-Bromofluorobenzene	103	70-130	
Dibromofluoromethane	105	70-130	

L2350757

Project Name: Lab Number: JCC

Project Number: Report Date: N30.009.001 09/15/23

SAMPLE RESULTS

Lab ID: L2350757-10 Date Collected: 08/31/23 11:12

Client ID: Date Received: 08/31/23 ESI-2-083123 Sample Location: Field Prep: Not Specified FALCONER,NY

Sample Depth:

Matrix: Water Analytical Method: 1,8260D Analytical Date: 09/09/23 09:10

Analyst: PID

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westb	orough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
Bromoform	1.6	J	ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	1.1		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1

Project Name: JCC Lab Number: L2350757

Project Number: N30.009.001 **Report Date:** 09/15/23

SAMPLE RESULTS

Lab ID: L2350757-10 Date Collected: 08/31/23 11:12

Client ID: ESI-2-083123 Date Received: 08/31/23 Sample Location: FALCONER,NY Field Prep: Not Specified

Volatile Organics by GC/MS - Westborough	Lab				
1,3-Dichlorobenzene	ND	ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND	ug/l	2.5	0.70	1
Methyl tert butyl ether	ND	ug/l	2.5	0.70	1
p/m-Xylene	ND	ug/l	2.5	0.70	1
o-Xylene	ND	ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	ND	ug/l	2.5	0.70	1
Styrene	ND	ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND	ug/l	5.0	1.0	1
Acetone	5.9	ug/l	5.0	1.5	1
Carbon disulfide	ND	ug/l	5.0	1.0	1
2-Butanone	ND	ug/l	5.0	1.9	1
4-Methyl-2-pentanone	ND	ug/l	5.0	1.0	1
2-Hexanone	ND	ug/l	5.0	1.0	1
1,2-Dibromoethane	ND	ug/l	2.0	0.65	1
n-Butylbenzene	ND	ug/l	2.5	0.70	1
sec-Butylbenzene	ND	ug/l	2.5	0.70	1
tert-Butylbenzene	ND	ug/l	2.5	0.70	1
1,2-Dibromo-3-chloropropane	ND	ug/l	2.5	0.70	1
Isopropylbenzene	ND	ug/l	2.5	0.70	1
p-Isopropyltoluene	ND	ug/l	2.5	0.70	1
Naphthalene	ND	ug/l	2.5	0.70	1
n-Propylbenzene	ND	ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene	ND	ug/l	2.5	0.70	1
1,3,5-Trimethylbenzene	ND	ug/l	2.5	0.70	1
1,2,4-Trimethylbenzene	ND	ug/l	2.5	0.70	1
Methyl Acetate	ND	ug/l	2.0	0.23	1
Cyclohexane	ND	ug/l	10	0.27	1
Freon-113	ND	ug/l	2.5	0.70	1
Methyl cyclohexane	ND	ug/l	10	0.40	1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	107		70-130	
Toluene-d8	104		70-130	
4-Bromofluorobenzene	105		70-130	
Dibromofluoromethane	105		70-130	

L2350757

Project Name: Lab Number: JCC

Project Number: Report Date: N30.009.001 09/15/23

SAMPLE RESULTS

Lab ID: L2350757-11 Date Collected: 08/31/23 12:00

Client ID: Date Received: 08/31/23 ESI-1-083123 Sample Location: Field Prep: Not Specified FALCONER,NY

Sample Depth:

Matrix: Water Analytical Method: 1,8260D Analytical Date: 09/09/23 09:37

Analyst: PID

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - West	oorough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	2.8		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1

Project Name: JCC Lab Number: L2350757

Project Number: N30.009.001 **Report Date:** 09/15/23

SAMPLE RESULTS

Lab ID: L2350757-11 Date Collected: 08/31/23 12:00

Client ID: ESI-1-083123 Date Received: 08/31/23 Sample Location: FALCONER,NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westborough	Lab					
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	ND		ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
n-Butylbenzene	ND		ug/l	2.5	0.70	1
sec-Butylbenzene	ND		ug/l	2.5	0.70	1
tert-Butylbenzene	ND		ug/l	2.5	0.70	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
p-Isopropyltoluene	ND		ug/l	2.5	0.70	1
Naphthalene	ND		ug/l	2.5	0.70	1
n-Propylbenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1
Methyl Acetate	ND		ug/l	2.0	0.23	1
Cyclohexane	ND		ug/l	10	0.27	1
Freon-113	ND		ug/l	2.5	0.70	1
Methyl cyclohexane	ND		ug/l	10	0.40	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	•
1,2-Dichloroethane-d4	105	70-130	
Toluene-d8	105	70-130	
4-Bromofluorobenzene	103	70-130	
Dibromofluoromethane	105	70-130	

L2350757

09/15/23

Project Name: JCC

Project Number: N30.009.001

L2350757-12

PW-3R-083123

FALCONER,NY

D

SAMPLE RESULTS

Date Collected: 08/31/23 12:38

Lab Number:

Report Date:

Date Received: 08/31/23 Field Prep: Not Specified

Sample Location: Sample Depth:

Lab ID:

Client ID:

Matrix: Water Analytical Method: 1,8260D Analytical Date: 09/09/23 10:03

Analyst: PID

Volatile Organics by GC/MS - Westborough Methylene chloride	n Lab ND				
Methylene chloride	ND				
		ug/l	25	7.0	10
1,1-Dichloroethane	ND	ug/l	25	7.0	10
Chloroform	ND	ug/l	25	7.0	10
Carbon tetrachloride	ND	ug/l	5.0	1.3	10
1,2-Dichloropropane	ND	ug/l	10	1.4	10
Dibromochloromethane	ND	ug/l	5.0	1.5	10
1,1,2-Trichloroethane	ND	ug/l	15	5.0	10
Tetrachloroethene	ND	ug/l	5.0	1.8	10
Chlorobenzene	ND	ug/l	25	7.0	10
Trichlorofluoromethane	ND	ug/l	25	7.0	10
1,2-Dichloroethane	ND	ug/l	5.0	1.3	10
1,1,1-Trichloroethane	ND	ug/l	25	7.0	10
Bromodichloromethane	ND	ug/l	5.0	1.9	10
trans-1,3-Dichloropropene	ND	ug/l	5.0	1.6	10
cis-1,3-Dichloropropene	ND	ug/l	5.0	1.4	10
Bromoform	ND	ug/l	20	6.5	10
1,1,2,2-Tetrachloroethane	ND	ug/l	5.0	1.7	10
Benzene	ND	ug/l	5.0	1.6	10
Toluene	ND	ug/l	25	7.0	10
Ethylbenzene	ND	ug/l	25	7.0	10
Chloromethane	ND	ug/l	25	7.0	10
Bromomethane	ND	ug/l	25	7.0	10
Vinyl chloride	960	ug/l	10	0.71	10
Chloroethane	ND	ug/l	25	7.0	10
1,1-Dichloroethene	ND	ug/l	5.0	1.7	10
trans-1,2-Dichloroethene	ND	ug/l	25	7.0	10
Trichloroethene	ND	ug/l	5.0	1.8	10
1,2-Dichlorobenzene	ND	ug/l	25	7.0	10

Project Name: JCC Lab Number: L2350757

Project Number: N30.009.001 **Report Date:** 09/15/23

SAMPLE RESULTS

Lab ID: L2350757-12 D Date Collected: 08/31/23 12:38

Client ID: PW-3R-083123 Date Received: 08/31/23 Sample Location: FALCONER,NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westborough	Lab					
1,3-Dichlorobenzene	ND		ug/l	25	7.0	10
1,4-Dichlorobenzene	ND		ug/l	25	7.0	10
Methyl tert butyl ether	ND		ug/l	25	7.0	10
p/m-Xylene	ND		ug/l	25	7.0	10
o-Xylene	ND		ug/l	25	7.0	10
cis-1,2-Dichloroethene	960		ug/l	25	7.0	10
Styrene	ND		ug/l	25	7.0	10
Dichlorodifluoromethane	ND		ug/l	50	10.	10
Acetone	18	J	ug/l	50	15.	10
Carbon disulfide	ND		ug/l	50	10.	10
2-Butanone	ND		ug/l	50	19.	10
4-Methyl-2-pentanone	ND		ug/l	50	10.	10
2-Hexanone	ND		ug/l	50	10.	10
1,2-Dibromoethane	ND		ug/l	20	6.5	10
n-Butylbenzene	ND		ug/l	25	7.0	10
sec-Butylbenzene	ND		ug/l	25	7.0	10
tert-Butylbenzene	ND		ug/l	25	7.0	10
1,2-Dibromo-3-chloropropane	ND		ug/l	25	7.0	10
Isopropylbenzene	ND		ug/l	25	7.0	10
p-Isopropyltoluene	ND		ug/l	25	7.0	10
Naphthalene	ND		ug/l	25	7.0	10
n-Propylbenzene	ND		ug/l	25	7.0	10
1,2,4-Trichlorobenzene	ND		ug/l	25	7.0	10
1,3,5-Trimethylbenzene	ND		ug/l	25	7.0	10
1,2,4-Trimethylbenzene	ND		ug/l	25	7.0	10
Methyl Acetate	ND		ug/l	20	2.3	10
Cyclohexane	ND		ug/l	100	2.7	10
Freon-113	ND		ug/l	25	7.0	10
Methyl cyclohexane	ND		ug/l	100	4.0	10

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	106		70-130	
Toluene-d8	104		70-130	
4-Bromofluorobenzene	102		70-130	
Dibromofluoromethane	108		70-130	

Project Name: JCC

Project Number: N30.009.001

SAMPLE RESULTS

Lab Number: L2350757

Report Date: 09/15/23

Lab ID: L2350757-13 Date Collected: 08/31/23 00:00

Client ID: Date Received: 08/31/23 TRIP BLANK Sample Location: Field Prep: Not Specified FALCONER,NY

Sample Depth:

Matrix: Water Analytical Method: 1,8260D Analytical Date: 09/09/23 04:47

Analyst: PID

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - West	oorough Lab						
Methylene chloride	ND		ug/l	2.5	0.70	1	
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1	
Chloroform	ND		ug/l	2.5	0.70	1	
Carbon tetrachloride	ND		ug/l	0.50	0.13	1	
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1	
Dibromochloromethane	ND		ug/l	0.50	0.15	1	
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1	
Tetrachloroethene	ND		ug/l	0.50	0.18	1	
Chlorobenzene	ND		ug/l	2.5	0.70	1	
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1	
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1	
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1	
Bromodichloromethane	ND		ug/l	0.50	0.19	1	
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1	
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1	
Bromoform	ND		ug/l	2.0	0.65	1	
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1	
Benzene	ND		ug/l	0.50	0.16	1	
Toluene	ND		ug/l	2.5	0.70	1	
Ethylbenzene	ND		ug/l	2.5	0.70	1	
Chloromethane	ND		ug/l	2.5	0.70	1	
Bromomethane	ND		ug/l	2.5	0.70	1	
Vinyl chloride	ND		ug/l	1.0	0.07	1	
Chloroethane	ND		ug/l	2.5	0.70	1	
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1	
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1	
Trichloroethene	ND		ug/l	0.50	0.18	1	
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1	

Project Name: JCC Lab Number: L2350757

Project Number: N30.009.001 **Report Date:** 09/15/23

SAMPLE RESULTS

Lab ID: L2350757-13 Date Collected: 08/31/23 00:00

Client ID: TRIP BLANK Date Received: 08/31/23
Sample Location: FALCONER,NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westborough	Lab					
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	ND		ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
n-Butylbenzene	ND		ug/l	2.5	0.70	1
sec-Butylbenzene	ND		ug/l	2.5	0.70	1
tert-Butylbenzene	ND		ug/l	2.5	0.70	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
p-Isopropyltoluene	ND		ug/l	2.5	0.70	1
Naphthalene	ND		ug/l	2.5	0.70	1
n-Propylbenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1
Methyl Acetate	ND		ug/l	2.0	0.23	1
Cyclohexane	ND		ug/l	10	0.27	1
Freon-113	ND		ug/l	2.5	0.70	1
Methyl cyclohexane	ND		ug/l	10	0.40	1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	100		70-130	
Toluene-d8	103		70-130	
4-Bromofluorobenzene	103		70-130	
Dibromofluoromethane	103		70-130	

Project Name: JCC Lab Number: L2350757

Project Number: N30.009.001 **Report Date:** 09/15/23

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260D Analytical Date: 09/09/23 03:53

Analyst: TMS

arameter	Result	Qualifier Units	RL RL	MDL
olatile Organics by GC/MS	- Westborough Lab	for sample(s):	01-13 Batch:	WG1826522-5
Methylene chloride	ND	ug/l	2.5	0.70
1,1-Dichloroethane	ND	ug/l	2.5	0.70
Chloroform	ND	ug/l	2.5	0.70
Carbon tetrachloride	ND	ug/l	0.50	0.13
1,2-Dichloropropane	ND	ug/l	1.0	0.14
Dibromochloromethane	ND	ug/l	0.50	0.15
1,1,2-Trichloroethane	ND	ug/l	1.5	0.50
Tetrachloroethene	ND	ug/l	0.50	0.18
Chlorobenzene	ND	ug/l	2.5	0.70
Trichlorofluoromethane	ND	ug/l	2.5	0.70
1,2-Dichloroethane	ND	ug/l	0.50	0.13
1,1,1-Trichloroethane	ND	ug/l	2.5	0.70
Bromodichloromethane	ND	ug/l	0.50	0.19
trans-1,3-Dichloropropene	ND	ug/l	0.50	0.16
cis-1,3-Dichloropropene	ND	ug/l	0.50	0.14
Bromoform	ND	ug/l	2.0	0.65
1,1,2,2-Tetrachloroethane	ND	ug/l	0.50	0.17
Benzene	ND	ug/l	0.50	0.16
Toluene	ND	ug/l	2.5	0.70
Ethylbenzene	ND	ug/l	2.5	0.70
Chloromethane	ND	ug/l	2.5	0.70
Bromomethane	ND	ug/l	2.5	0.70
Vinyl chloride	ND	ug/l	1.0	0.07
Chloroethane	ND	ug/l	2.5	0.70
1,1-Dichloroethene	ND	ug/l	0.50	0.17
trans-1,2-Dichloroethene	ND	ug/l	2.5	0.70
Trichloroethene	ND	ug/l	0.50	0.18
1,2-Dichlorobenzene	ND	ug/l	2.5	0.70
1,3-Dichlorobenzene	ND	ug/l	2.5	0.70

Project Name: JCC Lab Number: L2350757

Project Number: N30.009.001 **Report Date:** 09/15/23

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260D Analytical Date: 09/09/23 03:53

Analyst: TMS

arameter	Result	Qualifier Units	RL	MDL
olatile Organics by GC/MS -	Westborough Lab	for sample(s):	01-13 Batch:	WG1826522-5
1,4-Dichlorobenzene	ND	ug/l	2.5	0.70
Methyl tert butyl ether	ND	ug/l	2.5	0.70
p/m-Xylene	ND	ug/l	2.5	0.70
o-Xylene	ND	ug/l	2.5	0.70
cis-1,2-Dichloroethene	ND	ug/l	2.5	0.70
Styrene	ND	ug/l	2.5	0.70
Dichlorodifluoromethane	ND	ug/l	5.0	1.0
Acetone	ND	ug/l	5.0	1.5
Carbon disulfide	ND	ug/l	5.0	1.0
2-Butanone	ND	ug/l	5.0	1.9
4-Methyl-2-pentanone	ND	ug/l	5.0	1.0
2-Hexanone	ND	ug/l	5.0	1.0
1,2-Dibromoethane	ND	ug/l	2.0	0.65
n-Butylbenzene	ND	ug/l	2.5	0.70
sec-Butylbenzene	ND	ug/l	2.5	0.70
tert-Butylbenzene	ND	ug/l	2.5	0.70
1,2-Dibromo-3-chloropropane	ND	ug/l	2.5	0.70
Isopropylbenzene	ND	ug/l	2.5	0.70
p-Isopropyltoluene	ND	ug/l	2.5	0.70
Naphthalene	ND	ug/l	2.5	0.70
n-Propylbenzene	ND	ug/l	2.5	0.70
1,2,4-Trichlorobenzene	ND	ug/l	2.5	0.70
1,3,5-Trimethylbenzene	ND	ug/l	2.5	0.70
1,2,4-Trimethylbenzene	ND	ug/l	2.5	0.70
Methyl Acetate	ND	ug/l	2.0	0.23
Cyclohexane	ND	ug/l	10	0.27
Freon-113	ND	ug/l	2.5	0.70
Methyl cyclohexane	ND	ug/l	10	0.40

Project Name: JCC Lab Number: L2350757

Project Number: N30.009.001 **Report Date:** 09/15/23

Method Blank Analysis
Batch Quality Control

Analytical Method: 1,8260D Analytical Date: 09/09/23 03:53

Analyst: TMS

Parameter Result Qualifier Units RL MDL

Volatile Organics by GC/MS - Westborough Lab for sample(s): 01-13 Batch: WG1826522-5

		Acceptance
Surrogate	%Recovery C	lualifier Criteria
1,2-Dichloroethane-d4	100	70-130
Toluene-d8	103	70-130
4-Bromofluorobenzene	103	70-130
Dibromofluoromethane	102	70-130

Lab Control Sample Analysis Batch Quality Control

Project Name: JCC

Project Number: N30.009.001

Lab Number: L2350757

Report Date: 09/15/23

Parameter	LCS %Recovery	Qual	LCSD %Recovery		%Recovery Limits	RPD	RPD Qual Limits	
/olatile Organics by GC/MS - Westborough	Lab Associated	sample(s):	01-13 Batch:	WG1826522-3	WG1826522-4			
Methylene chloride	98		98		70-130	0	20	
1,1-Dichloroethane	110		110		70-130	0	20	
Chloroform	100		100		70-130	0	20	
Carbon tetrachloride	110		120		63-132	9	20	
1,2-Dichloropropane	100		110		70-130	10	20	
Dibromochloromethane	100		100		63-130	0	20	
1,1,2-Trichloroethane	100		98		70-130	2	20	
Tetrachloroethene	110		110		70-130	0	20	
Chlorobenzene	110		110		75-130	0	20	
Trichlorofluoromethane	95		98		62-150	3	20	
1,2-Dichloroethane	100		100		70-130	0	20	
1,1,1-Trichloroethane	110		110		67-130	0	20	
Bromodichloromethane	100		100		67-130	0	20	
trans-1,3-Dichloropropene	100		100		70-130	0	20	
cis-1,3-Dichloropropene	100		100		70-130	0	20	
Bromoform	95		95		54-136	0	20	
1,1,2,2-Tetrachloroethane	110		100		67-130	10	20	
Benzene	100		110		70-130	10	20	
Toluene	110		110		70-130	0	20	
Ethylbenzene	110		110		70-130	0	20	
Chloromethane	97		99		64-130	2	20	
Bromomethane	110		130		39-139	17	20	
Vinyl chloride	86		88		55-140	2	20	

Lab Control Sample Analysis Batch Quality Control

Project Name: JCC

Project Number: N30.009.001

Lab Number: L2350757

Report Date: 09/15/23

Parameter	LCS %Recovery	Qual	LCSD %Recovery	%Recovery Qual Limits	RPD	Qual	RPD Limits
Volatile Organics by GC/MS - Westborough	Lab Associated	sample(s):	01-13 Batch: W	G1826522-3 WG1826522-4			
Chloroethane	69		75	55-138	8		20
1,1-Dichloroethene	82		83	61-145	1		20
trans-1,2-Dichloroethene	110		110	70-130	0		20
Trichloroethene	100		100	70-130	0		20
1,2-Dichlorobenzene	110		110	70-130	0		20
1,3-Dichlorobenzene	110		110	70-130	0		20
1,4-Dichlorobenzene	110		110	70-130	0		20
Methyl tert butyl ether	87		86	63-130	1		20
p/m-Xylene	110		110	70-130	0		20
o-Xylene	105		105	70-130	0		20
cis-1,2-Dichloroethene	110		110	70-130	0		20
Styrene	105		105	70-130	0		20
Dichlorodifluoromethane	100		100	36-147	0		20
Acetone	120		82	58-148	38	Q	20
Carbon disulfide	77		74	51-130	4		20
2-Butanone	93		83	63-138	11		20
4-Methyl-2-pentanone	94		88	59-130	7		20
2-Hexanone	85		78	57-130	9		20
1,2-Dibromoethane	97		94	70-130	3		20
n-Butylbenzene	120		120	53-136	0		20
sec-Butylbenzene	110		110	70-130	0		20
tert-Butylbenzene	110		110	70-130	0		20
1,2-Dibromo-3-chloropropane	86		82	41-144	5		20

Lab Control Sample Analysis Batch Quality Control

Project Name: JCC

Project Number: N30.009.001

Lab Number:

L2350757

Report Date:

Parameter	LCS %Recovery	Qual		LCSD Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics by GC/MS - Westborough L	ab Associated	sample(s):	01-13	Batch:	WG1826522-3	WG1826522-4			
Isopropylbenzene	110			110		70-130	0		20
p-Isopropyltoluene	110			120		70-130	9		20
Naphthalene	81			80		70-130	1		20
n-Propylbenzene	110			120		69-130	9		20
1,2,4-Trichlorobenzene	97			96		70-130	1		20
1,3,5-Trimethylbenzene	110			110		64-130	0		20
1,2,4-Trimethylbenzene	110			110		70-130	0		20
Methyl Acetate	87			82		70-130	6		20
Cyclohexane	120			120		70-130	0		20
Freon-113	86			88		70-130	2		20
Methyl cyclohexane	110			110		70-130	0		20

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
1,2-Dichloroethane-d4	102	101	70-130
Toluene-d8	104	104	70-130
4-Bromofluorobenzene	104	105	70-130
Dibromofluoromethane	101	104	70-130

Matrix Spike Analysis Batch Quality Control

Project Name: JCC

Project Number: N30.009.001

Lab Number:

L2350757

Report Date:

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Qual Found	MSD %Recovery		Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics by GC/MS - ESI-3-083023	- Westborough	Lab Asso	ciated sample((s): 01-13 QC	Batch ID: WG18265	522-6 WG182	6522-7	QC Sample	: L2350	757-01	Client ID:
Methylene chloride	ND	10	11	110	10	100		70-130	10		20
1,1-Dichloroethane	ND	10	12	120	12	120		70-130	0		20
Chloroform	ND	10	12	120	12	120		70-130	0		20
Carbon tetrachloride	ND	10	13	130	13	130		63-132	0		20
1,2-Dichloropropane	ND	10	11	110	11	110		70-130	0		20
Dibromochloromethane	ND	10	11	110	11	110		63-130	0		20
1,1,2-Trichloroethane	ND	10	11	110	11	110		70-130	0		20
Tetrachloroethene	ND	10	12	120	12	120		70-130	0		20
Chlorobenzene	ND	10	12	120	12	120		75-130	0		20
Trichlorofluoromethane	ND	10	12	120	11	110		62-150	9		20
1,2-Dichloroethane	ND	10	12	120	12	120		70-130	0		20
1,1,1-Trichloroethane	ND	10	13	130	13	130		67-130	0		20
Bromodichloromethane	ND	10	12	120	11	110		67-130	9		20
trans-1,3-Dichloropropene	ND	10	11	110	11	110		70-130	0		20
cis-1,3-Dichloropropene	ND	10	10	100	10	100		70-130	0		20
Bromoform	ND	10	11	110	10	100		54-136	10		20
1,1,2,2-Tetrachloroethane	ND	10	12	120	12	120		67-130	0		20
Benzene	ND	10	12	120	11	110		70-130	9		20
Toluene	ND	10	12	120	12	120		70-130	0		20
Ethylbenzene	ND	10	12	120	12	120		70-130	0		20
Chloromethane	ND	10	11	110	11	110		64-130	0		20
Bromomethane	ND	10	8.0	80	10	100		39-139	22	Q	20
Vinyl chloride	ND	10	10	100	9.8	98		55-140	2		20

Matrix Spike Analysis Batch Quality Control

Project Name: JCC

Project Number: N30.009.001

Lab Number:

L2350757

Report Date:

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	MS Qual Fou	_	y Qual	Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics by GC/MS ESI-3-083023	- Westborough	Lab Asso	ciated sample	(s): 01-13 Q	C Batch ID: WG18	326522-6 WG18	26522-7	QC Sample	: L2350	757-01	Client ID:
Chloroethane	ND	10	8.3	83	7.9	79		55-138	5		20
1,1-Dichloroethene	ND	10	9.5	95	9.3	93		61-145	2		20
trans-1,2-Dichloroethene	ND	10	12	120	12	120		70-130	0		20
Trichloroethene	2.8	10	14	112	14	112		70-130	0		20
1,2-Dichlorobenzene	ND	10	12	120	12	120		70-130	0		20
1,3-Dichlorobenzene	ND	10	12	120	12	120		70-130	0		20
1,4-Dichlorobenzene	ND	10	12	120	12	120		70-130	0		20
Methyl tert butyl ether	ND	10	9.8	98	9.7	97		63-130	1		20
o/m-Xylene	ND	20	23	115	23	115		70-130	0		20
o-Xylene	ND	20	23	115	22	110		70-130	4		20
cis-1,2-Dichloroethene	1.4J	10	14	140	Q 13	130		70-130	7		20
Styrene	ND	20	23	115	23	115		70-130	0		20
Dichlorodifluoromethane	ND	10	12	120	12	120		36-147	0		20
Acetone	ND	10	9.2	92	9.3	93		58-148	1		20
Carbon disulfide	ND	10	8.1	81	7.9	79		51-130	2		20
2-Butanone	ND	10	9.7	97	9.6	96		63-138	1		20
4-Methyl-2-pentanone	ND	10	10	100	10	100		59-130	0		20
2-Hexanone	ND	10	9.1	91	9.2	92		57-130	1		20
1,2-Dibromoethane	ND	10	11	110	11	110		70-130	0		20
n-Butylbenzene	ND	10	12	120	12	120		53-136	0		20
sec-Butylbenzene	ND	10	11	110	11	110		70-130	0		20
tert-Butylbenzene	ND	10	12	120	11	110		70-130	9		20
1,2-Dibromo-3-chloropropane	ND	10	9.8	98	9.8	98		41-144	0		20

Matrix Spike Analysis Batch Quality Control

Project Name: JCC

Project Number: N30.009.001

Lab Number:

L2350757

Report Date:

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	/ Qual	MSD Found	MSD %Recovery	Qual	Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics by GC/MS - ESI-3-083023	- Westborough	Lab Asso	ciated sample(s	s): 01-13 Q	C Batch ID	: WG18265	522-6 WG1826	6522-7	QC Sample	e: L2350	757-01	Client ID:
Isopropylbenzene	ND	10	11	110		11	110		70-130	0		20
p-Isopropyltoluene	ND	10	11	110		11	110		70-130	0		20
Naphthalene	ND	10	8.8	88		9.2	92		70-130	4		20
n-Propylbenzene	ND	10	12	120		12	120		69-130	0		20
1,2,4-Trichlorobenzene	ND	10	10	100		10	100		70-130	0		20
1,3,5-Trimethylbenzene	ND	10	11	110		11	110		64-130	0		20
1,2,4-Trimethylbenzene	ND	10	12	120		11	110		70-130	9		20
Methyl Acetate	ND	10	9.4	94		9.4	94		70-130	0		20
Cyclohexane	ND	10	13	130		13	130		70-130	0		20
Freon-113	ND	10	10	100		9.6	96		70-130	4		20
Methyl cyclohexane	ND	10	12	120		11	110		70-130	9		20

	MS	MSD	Acceptance
Surrogate	% Recovery Qualifier	% Recovery Qualifier	Criteria
1,2-Dichloroethane-d4	107	109	70-130
4-Bromofluorobenzene	102	102	70-130
Dibromofluoromethane	106	106	70-130
Toluene-d8	103	103	70-130

Serial_No:09152312:56 *Lab Number:* L2350757

Project Name: JCC

Project Number: N30.009.001 **Report Date:** 09/15/23

Sample Receipt and Container Information

Were project specific reporting limits specified?

Cooler Information

Cooler Custody Seal

A Absent

Container Info	ormation		Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	рН	pН		Pres	Seal	Date/Time	Analysis(*)
L2350757-01A	Vial HCl preserved	Α	NA		3.2	Υ	Absent		NYTCL-8260-R2(14)
L2350757-01A1	Vial HCl preserved	Α	NA		3.2	Υ	Absent		NYTCL-8260-R2(14)
L2350757-01A2	Vial HCl preserved	Α	NA		3.2	Υ	Absent		NYTCL-8260-R2(14)
L2350757-01B	Vial HCl preserved	Α	NA		3.2	Υ	Absent		NYTCL-8260-R2(14)
L2350757-01B1	Vial HCl preserved	Α	NA		3.2	Υ	Absent		NYTCL-8260-R2(14)
L2350757-01B2	Vial HCl preserved	Α	NA		3.2	Υ	Absent		NYTCL-8260-R2(14)
L2350757-01C	Vial HCl preserved	Α	NA		3.2	Υ	Absent		NYTCL-8260-R2(14)
L2350757-01C1	Vial HCl preserved	Α	NA		3.2	Υ	Absent		NYTCL-8260-R2(14)
L2350757-01C2	Vial HCl preserved	Α	NA		3.2	Υ	Absent		NYTCL-8260-R2(14)
L2350757-02A	Vial HCl preserved	Α	NA		3.2	Υ	Absent		NYTCL-8260-R2(14)
L2350757-02B	Vial HCI preserved	Α	NA		3.2	Υ	Absent		NYTCL-8260-R2(14)
L2350757-02C	Vial HCl preserved	Α	NA		3.2	Υ	Absent		NYTCL-8260-R2(14)
L2350757-03A	Vial HCl preserved	Α	NA		3.2	Υ	Absent		NYTCL-8260-R2(14)
L2350757-03B	Vial HCl preserved	Α	NA		3.2	Υ	Absent		NYTCL-8260-R2(14)
L2350757-03C	Vial HCl preserved	Α	NA		3.2	Υ	Absent		NYTCL-8260-R2(14)
L2350757-04A	Vial HCl preserved	Α	NA		3.2	Υ	Absent		NYTCL-8260-R2(14)
L2350757-04B	Vial HCI preserved	Α	NA		3.2	Υ	Absent		NYTCL-8260-R2(14)
L2350757-04C	Vial HCI preserved	Α	NA		3.2	Υ	Absent		NYTCL-8260-R2(14)
L2350757-05A	Vial HCI preserved	Α	NA		3.2	Υ	Absent		NYTCL-8260-R2(14)
L2350757-05B	Vial HCI preserved	Α	NA		3.2	Υ	Absent		NYTCL-8260-R2(14)
L2350757-05C	Vial HCI preserved	Α	NA		3.2	Υ	Absent		NYTCL-8260-R2(14)
L2350757-06A	Vial HCI preserved	Α	NA		3.2	Υ	Absent		NYTCL-8260-R2(14)
L2350757-06B	Vial HCI preserved	Α	NA		3.2	Υ	Absent		NYTCL-8260-R2(14)

Lab Number: L2350757

Report Date: 09/15/23

Project Number: N30.009.001

JCC

Project Name:

Container Info	ormation		Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	рН	рН	deg C	Pres	Seal	Date/Time	Analysis(*)
L2350757-06C	Vial HCl preserved	Α	NA		3.2	Υ	Absent		NYTCL-8260-R2(14)
L2350757-07A	Vial HCI preserved	Α	NA		3.2	Υ	Absent		NYTCL-8260-R2(14)
L2350757-07B	Vial HCI preserved	Α	NA		3.2	Υ	Absent		NYTCL-8260-R2(14)
L2350757-07C	Vial HCI preserved	Α	NA		3.2	Υ	Absent		NYTCL-8260-R2(14)
L2350757-08A	Vial HCI preserved	Α	NA		3.2	Υ	Absent		NYTCL-8260-R2(14)
L2350757-08B	Vial HCI preserved	Α	NA		3.2	Υ	Absent		NYTCL-8260-R2(14)
L2350757-08C	Vial HCI preserved	Α	NA		3.2	Υ	Absent		NYTCL-8260-R2(14)
L2350757-09A	Vial HCI preserved	Α	NA		3.2	Υ	Absent		NYTCL-8260-R2(14)
L2350757-09B	Vial HCI preserved	Α	NA		3.2	Υ	Absent		NYTCL-8260-R2(14)
L2350757-09C	Vial HCI preserved	Α	NA		3.2	Υ	Absent		NYTCL-8260-R2(14)
L2350757-10A	Vial HCI preserved	Α	NA		3.2	Υ	Absent		NYTCL-8260-R2(14)
L2350757-10B	Vial HCI preserved	Α	NA		3.2	Υ	Absent		NYTCL-8260-R2(14)
L2350757-10C	Vial HCI preserved	Α	NA		3.2	Υ	Absent		NYTCL-8260-R2(14)
L2350757-11A	Vial HCI preserved	Α	NA		3.2	Υ	Absent		NYTCL-8260-R2(14)
L2350757-11B	Vial HCI preserved	Α	NA		3.2	Υ	Absent		NYTCL-8260-R2(14)
L2350757-11C	Vial HCI preserved	Α	NA		3.2	Υ	Absent		NYTCL-8260-R2(14)
L2350757-12A	Vial HCI preserved	Α	NA		3.2	Υ	Absent		NYTCL-8260-R2(14)
L2350757-12B	Vial HCI preserved	Α	NA		3.2	Υ	Absent		NYTCL-8260-R2(14)
L2350757-12C	Vial HCI preserved	Α	NA		3.2	Υ	Absent		NYTCL-8260-R2(14)
L2350757-13A	Vial HCl preserved	Α	NA		3.2	Υ	Absent		NYTCL-8260-R2(14)
L2350757-13B	Vial HCl preserved	Α	NA		3.2	Υ	Absent		NYTCL-8260-R2(14)

Project Name: Lab Number: JCC L2350757 **Project Number:** N30.009.001 **Report Date:** 09/15/23

GLOSSARY

Acronyms

LOQ

MS

DL - Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

EDL - Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis

of PAHs using Solid-Phase Microextraction (SPME).

EMPC - Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case

estimate of the concentration. **EPA**

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

LCSD Laboratory Control Sample Duplicate: Refer to LCS.

Environmental Protection Agency.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

LOD - Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

- Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

MDI - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

> - Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated using the native concentration, including estimated values.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's

reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

NR - No Results: Term is utilized when 'No Target Compounds Requested' is reported for the analysis of Volatile or Semivolatile

Organic TIC only requests.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the

values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TEF - Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.

TEO - Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF

and then summing the resulting values.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Report Format: DU Report with 'J' Qualifiers

Project Name:JCCLab Number:L2350757Project Number:N30.009.001Report Date:09/15/23

Footnotes

1 - The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Chlordane: The target compound Chlordane (CAS No. 57-74-9) is reported for GC ECD analyses. Per EPA,this compound "refers to a mixture of chlordane isomers, other chlorinated hydrocarbons and numerous other components." (Reference: USEPA Toxicological Review of Chlordane, In Support of Summary Information on the Integrated Risk Information System (IRIS), December 1997.)

Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'.

Gasoline Range Organics (GRO): Gasoline Range Organics (GRO) results include all chromatographic peaks eluting from Methyl tert butyl ether through Naphthalene, with the exception of GRO analysis in support of State of Ohio programs, which includes all chromatographic peaks eluting from Hexane through Dodecane.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PAH Total: With respect to Alkylated PAH analyses, the 'PAHs, Total' result is defined as the summation of results for all or a subset of the following compounds: Naphthalene, C1-C4 Naphthalenes, 2-Methylnaphthalene, 1-Methylnaphthalene, Biphenyl, Acenaphthylene, Acenaphthene, Fluorene, C1-C3 Fluorenes, Phenanthrene, C1-C4 Phenanthrenes/Anthracenes, Anthracene, Fluoranthene, Pyrene, C1-C4 Fluoranthenes/Pyrenes, Benza(a)anthracene, Chrysene, C1-C4 Chrysenes, Benzo(b)fluoranthene, Benzo(j)+(k)fluoranthene, Benzo(e)pyrene, Benzo(a)pyrene, Perylene, Indeno(1,2,3-cd)pyrene, Dibenz(ah)+(ac)anthracene, Benzo(g,h,i)perylene. If a 'Total' result is requested, the results of its individual components will also be reported.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. In addition, the 'PFAS, Total (6)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA, PFDA and PFOS. For MassDEP DW compliance analysis only, the 'PFAS, Total (6)' result is defined as the summation of results at or above the RL. Note: If a 'Total' result is requested, the results of its individual components will also be reported.

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in the process.
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- F The ratio of quantifier ion response to qualifier ion response falls outside of the laboratory criteria. Results are considered to be an estimated maximum concentration.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- Estimated value. The Target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit
 (MDL) or Estimated Detection Limit (EDL) for SPME-related analyses. This represents an estimated concentration for Tentatively

Report Format: DU Report with 'J' Qualifiers

Project Name:JCCLab Number:L2350757Project Number:N30.009.001Report Date:09/15/23

Data Qualifiers

Identified Compounds (TICs). For calculated parameters, this represents that one or more values used in the calculation were estimated.

- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- ND Not detected at the method detection limit (MDL) for the sample, or estimated detection limit (EDL) for SPME-related analyses.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- V The surrogate associated with this target analyte has a recovery outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)
- Z The batch matrix spike and/or duplicate associated with this target analyte has a recovery/RPD outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)

Report Format: DU Report with 'J' Qualifiers

Serial_No:09152312:56

Project Name: JCC Lab Number: L2350757

Project Number: N30.009.001 Report Date: 09/15/23

REFERENCES

Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - VI, 2018.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Serial_No:09152312:56

Alpha Analytical, Inc. Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

ID No.:17873 Revision 20

Page 1 of 1

Published Date: 6/16/2023 4:52:28 PM

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624.1: m/p-xylene, o-xylene, Naphthalene

EPA 625.1: alpha-Terpineol

EPA 8260D: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: Iodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; 4-Ethyltoluene, Az

EPA 8270E: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine, alpha-Terpineol; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

SM4500: NPW: Amenable Cyanide; SCM: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility

SM 2540D: TSS.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE,

EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B

EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kieldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics,

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625.1: SVOC (Acid/Base/Neutral Extractables).

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603, SM9222D.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522, EPA 537.1.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn.

EPA 245.1 Hg.

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Document Type: Form

Pre-Qualtrax Document ID: 08-113

Д ІРНА	NEW YORK CHAIN OF CUSTODY	Service Centers Mahwah, NJ 07430: 35 Whitney Albany, NY 12205: 14 Walker V Tonawanda, NY 14150: 275 Ce	Vay	05	Page / o		Da	ite Rec'd in Lab	09/0	1/2	3	ALPHA Job# L2350757	7
Westborough, MA 01581	Mansfield, MA 02048 320 Forbes Blvd	Project Information			1	Real Property	Delivera	ables				Billing Information	
8 Walkup Dr. TEL: 508-898-9220	TEL: 508-822-9300	Project Name: 30	C				ПА	SP-A	X	ASP-B		Same as Client Info	6
FAX: 508-898-9193	FAX: 508-822-3288						₹ F	QuIS (1 Fi	_	EQuIS	(4 File)	PO#	
The same of the sa		Project Location: FA	CCONFI	2, 14	_		-			Ludio	(, , ,,,,,	V.A.W.	
Client Information	DEAL ENGINEERS	Project # N30 · O		1			The second liverage of	ther	and the same of th				
Client: CtS ENG	CINETERS	(Use Project name as Pr	and the second s				Regulat	ory Requir			KO IF	Disposal Site Information	
Address: 141 FL	01 50.	Project Manager: /Ci	CH BAK	part			Пи	TOGS	X	NY Part	375	Please identify below location	n of
BUFFER LON	4 14203	ALPHAQuote #:		1000			AI	WQ Standar	ds	NY CP-5	1	applicable disposal facilities.	
Phone:	1	Turn-Around Time					□ N.	Restricted	Use	Other		Disposal Facility:	
Fax:		Standard	7	Due Date:			□ N	/ Unrestricte	ed Use			□ NJ □ NY	
Email: Rbacher	(DISCUSION	Rush (only if pre approved		# of Days:			□ N	C Sewer D	ischarge			Other:	
These samples have b							ANALY	SIS				Sample Filtration	T
Other project specific							7.00.02.1			П			0
			- 0				-					□ Done	l a
MS+ HST	Confector	FROM P	1-5				2			1 1		Lab to do	1
Dus	collected	FROM P	W-1				32	- 1 - 1		1 1		Lab to do	10.54
Please specify Metals	or TAL.						6	- 1 - 1		1 1			В
							2			1 1		(Please Specify below)	9
ALDUM LATER			Colle	ection		To	3			1 1			t
ALPHA Lab ID (Lab Use Only)	Sa	mple ID		The state of the s	Sample Matrix	Sampler's Initials	3					Comple Consilie Comment	- 0
A DETERMINE SET EXCENSION			Date	Time	Million To the	0.000000		_	_		-	Sample Specific Comments	. 6
50757-07			8/20/23	10:45	6W	120	×						7
-01-92	075-6830	23	8/30/23	10:15	CIW	RB	4						3
-01-03	MSD-08	2023	8/30/13	10:15	(1)	RIB	9						3
-02 -04		383027	8/30/23	10:80	GW	1213	V						3
-03-05		3023	8/30/12	10:50	GIN	RB	Y						3
-04 -06		083023	6/30/23	11:40	GW	DP	V						3
-05-07	ECTOLLO	083027	8/30/23	12:25	GW	RD	V						3
-06 -0B	EST-12		8/30/23	1,00	GW	23	Y	+					3
-07 - 09	EST-7.	083023	8/30/27	1:65	GW	W2	X				\rightarrow		3
-00/00 A	ESI-130		2/30/27	2,40	SIN	W?	4	-			+		3
Preservative Code:	Container Code	2.083023	LU-	6,10	UNU	WC		_	_	-	_	The service was provided and the	>
A = None	P = Plastic	Westboro: Certification N	lo: MA935		Con	tainer Type	. /					Please print clearly, leg	T
B = HCI	A = Amber Glass	Mansfield: Certification N	o: MA015		NOT SOLET		V					and completely. Sampl	es can
C = HNO ₃	V = Vial					and the second second	_					not be logged in and turnaround time clock v	uill not
D = H ₂ SO ₄	G = Glass B = Bacteria Cup			- 1	, ,	reservative	3					start until any ambiguiti	
E = NaOH F = MeOH	C = Cube	1 Appelland laborate	D	Detail	Ti		Pacakiad	Die:		Date/Ti	mo	resolved. BY EXECUTI	
G = NaHSO ₄	O = Other	Relinguished I	by.	Date/1		-/	Received		1 01-	-		THIS COC, THE CLIEN	19878
	E = Encore	MIN		8/3/123	15:30		nya	ay (AA	() 8/3	123 1	5.30	HAS READ AND AGRE	EES
NE - ZII AGNAON	D = BOD Bottle	Joseph Zio	U(AAL)	8/31/23	15:30	001	Hei	10		200		TO BE BOUND BY ALI	
O = Other		7	/			097	11/2	3 - 0	1 0 0			TERMS & CONDITION	IS.
Form No: 01-25 HC (rev. 30)-Sept-2013)											(See reverse side.)	

Дірна	NEW YORK CHAIN OF CUSTODY	Service Centers Mahwah, NJ 07430: 35 Whitney Albany, NY 12205: 14 Walker V Tonawanda, NY 14150: 275 Co	Vay	05	Pag 2 d	of Z		Date Re		10	1/2	23	ALPHA Job# LZ35075	7
Westborough, MA 01581 8 Walkup Dr.	Mansfield, MA 02048 320 Forbes Blvd	Project Information					Deliv	erables					Billing Information	
TEL: 508-898-9220	TEL: 508-822-9300	Project Name: JC	C	- W				ASP-A		X	ASP-I	3	Same as Client Info	
FAX: 508-898-9193	FAX: 508-822-3288	Project Location: Fall	carl age	NY			X	EQuIS (1	File)		EQuis	S (4 File)	PO#	
Client Information		Project # N30.	309.0	01				Other						
Client: C+5 En	cinems	(Use Project name as Pr		S			Regu	latory Red	quireme	ent	SA	Will be	Disposal Site Information	-
	In street	Project Manager: R;	ch Back	Kert				NY TOGS		×	NY Pa	rt 375	Please identify below location	of
Buttalo, NY		ALPHAQuote #:						AWQ Stan	dards		NY CP	-51	applicable disposal facilities.	
Phone:		Turn-Around Time	MAN TO BE	1	None of	-		NY Restric	ted Use		Other		Disposal Facility:	
Fax:		Standard	×	Due Date:				NY Unrest	ricted Us	se			□ NJ 📈 NY	
Email: BBatter	to CSCOS, com	Rush (only if pre approved		# of Days:				NYC Sewe	er Discha	arge			Other:	
These samples have be							ANA	LYSIS					Sample Filtration	T
Other project specific							_		T	Т			Done	0
							876						Lab to do	a
1							\ \cdot\						Preservation	10
Please specify Metals	or TAL.						10		1				Lab to do	В
							1			1			(Please Specify below)	0
ALPHA Lab ID	ľ		Colle	ection	Camala	Camalada	1 3						ir rease opening below,	1
(Lab Use Only)	Sar	mple ID	Date	Time	Sample Matrix	Sampler's Initials	\leq						Sample Specific Comments	- 1
50757-41-4	FSI-6-08	3173	V/21/22	10:22	GW	RB			+		\vdash	-	oumpie opecine comments	_
-10 -1/2	EST-2-08	2123	0/31/12	11017	CW	RB	X		+	+	\vdash	_		3
			0/21/22	11.1 Cap		RB	X		+	\vdash	\vdash	_		3
-11 OFFICIAL	PW-3R-08		9/21/10	12:00 pm	GW		×		+	-	\vdash	-		3
-13		131 63	1/10/10		GW	RB	20100	-	+	-	-	_		
13	Tripblank		8/31/23	1:07.pm	GW	20	X		+	-	-	_		2
									+-			_		+
						-			+					+
									-		-			-
									+	_				\perp
Presentine Code:	Containe Code								_			_		
	P = Plastic	Westboro: Certification No			Con	tainer Type	V						Please print clearly, legi	bly
		Mansfield: Certification No	o: MA015		05.071	SENIOR INC.	٧						and completely. Sample	s can
775 T. S.	V = Vial G = Glass			1	,	reservative	B						not be logged in and turnaround time clock w	ill not
E = NaOH	B = Bacteria Cup					Todorranto							start until any ambiguitie	
	C = Cube O = Other	Relinguished B	By:	, Date/⊓	Гime		Receiv	ed By:			Date/	Time	resolved. BY EXECUTIV	
H = Na ₂ S ₂ O ₃	E = Encore	1/4/11		8/31/2	7 15:30	hoor	FN	ion (F	MAG	813	123	15:30	THIS COC, THE CLIEN HAS READ AND AGRE	
IVE - ZITAUNAUN	D = BOD Bottle	Sooden Flow	1 (AA)	8/31/23	3 15:31	D.				1			TO BE BOUND BY ALP	
O = Other			()	. /		nu	1		Cit				TERMS & CONDITIONS	
Form No: 01-25 HC (rev. 30-	Sept-2013)							09/0	111	2 2	0.4	0.0	(See reverse side.)	
Page 50 of 50				11:					11	LJ	0	UU		

DATA USABILITY SUMMARY REPORT (DUSR)

JCC Falconer, NY **Project # N30.009.001**

SDG: L2350757

12 Water Samples and 1 Trip Blank

Prepared for:

C&S Companies 141 Elm Street, Suite 100 Buffalo, NY 14203 **Attention: Cody Martin**

October 2023

Table of Contents

			Page No
REV.	IEWER'S NARRAT	TIVE	
1.0	SUMMARY		1
2.0	INTRODUCTION	N	1
3.0	SAMPLE AND A	NALYSIS SUMMARY	2
4.0	GUIDANCE DOC	CUMENTS AND DATA REVIEW CRITERIA	2
5.0	DATA VALIDAT	TION QUALIFIERS	3
6.0	RESULTS OF TH	IE DATA REVIEW	4
7.0	TOTAL USABLE	DATA	4
APP	ENDIX A ENDIX B ENDIX C	Validated Analytical Results Laboratory QC Documentation Validator Qualifications	

Tables

Table 4-1 Data Validation Guidance Documents

Table 4-2 Quality Control Criteria for Validating Laboratory Analytical Data

Summaries of Validated Results

Table 6-1 VOCs

REVIEWER'S NARRATIVE C&S Companies SDG L2350757 JCC

The data associated with this Sample Delivery Groups (SDG) L2350757, analyzed by Alpha Analytical, Westborough, MA have been reviewed in accordance with assessment criteria provided by the New York State Department of Environmental Conservation following the review procedures provided in the USEPA Functional Guidelines for evaluating organic and inorganic data.

All analytical results reported by the laboratory are considered valid and acceptable except results that have been qualified as rejected, "R". Results qualified as estimated "J", or as non-detects, "U", are considered usable for the purpose of evaluating water and/or soil quality. However, these qualifiers indicate that the accuracy and/or precision of the analytical result is questionable. A summary of all data that have been qualified and the reasons for qualification are provided in the following data usability summary report (DUSR).

Two facts should be noted by all data users. First, the "R" qualifier means that the associated value is unusable. In other words, due to significant quality control (QC) problems, the analysis is invalid and provides no information as to whether the analyte is present or not. Values qualified with an "R" should not appear on the final data tables because they cannot be relied upon, even as the last resort. Second, no analyte concentration, even if it has passed all QC tests, is guaranteed to be accurate. Strict QC serves to increase confidence in data, but any value potentially contains error.

Reviewer's Signature:	Michael K. Perry	Date:	10/6/2023	
C	Michael K. Perry			
	Chemist			

1.0 EVENT SUMMARY

SITE: JCC

Falconer, NY

Project #: N30.009.001

SAMPLING DATEs: August 30 - 31, 2023

SAMPLE TYPE: 12 water samples and 1 trip blank

LABORATORY: Alpha Analytical

Westborough, MA

SDG No.: SDGs L2350757

2.0 INTRODUCTION

This data usability summary report (DUSR) was prepared in accordance with guidance provided by the New York State Department of Environmental Conservation (NYSDEC). The DUSR is based on a review and evaluation of the laboratory analytical data package. Specifically, the NYSDEC guidance recommends review and evaluation of the following elements of the data package:

Completeness of the data package as defined under the requirements of the NYSDEC Analytical Services Protocols (ASP) Category B or the United States Environmental Protection Agency (USEPA) Contract Laboratory Program (CLP) deliverables,

Compliance with established analyte holding times,

Adherence to quality control (QC) limits and specifications for blanks, instrument tuning and calibration, surrogate recoveries, spike recoveries, laboratory duplicate analyses, and other QC criteria,

Adherence to established analytical protocols,

Conformance of data summary sheets with raw analytical data, and

Use of correct data qualifiers.

Data deficiencies, analytical protocol deviations, and quality control problems identified using the review criteria above and their effect on the analytical results are discussed in this report.

3.0 SAMPLE AND ANALYSIS SUMMARY

The data package consists of analytical results for 12 water samples and 1 trip blank collected on 8/30/23 - 8/31/23. These samples were analyzed for Volatile Organic Compounds (VOCs).

All laboratory analyses were submitted to Alpha Analytical, Westborough, MA and analyzed as SDG L2350757. The analytical results were provided in NYSDEC ASP Category B format, which includes all raw analytical data and laboratory QC data.

4.0 GUIDANCE DOCUMENTS AND DATA REVIEW CRITERIA

The guidance documents appropriate for reviewing laboratory quality control (QC) data and assigning data qualifiers (flags) to analytical results were selected from those listed in Table 4-1. The QC limits established in the documents applicable to this data review were used to assess the quality of the analytical results. In some cases, however, QC limits established internally by the laboratory were taken into account to determine data quality.

The QC criteria considered for assessing the usability of the reported analytical results provided for each analyte type (i.e. VOCs, SVOCs, metals, etc.) are listed in Table 4-2. These criteria may vary with the analytical method utilized by the laboratory. These criteria comply with the guidance recommended in Section 2.0 above.

5.0 DATA VALIDATION QUALIFIERS

The letter qualifiers (flags) used to define data usability are described briefly below. These letters are assigned by the data validator to analytical results having questionable accuracy and/or precision as determined by reviewing the laboratory QC data associated with the analytical results.

TABLE 4-1

Guidance Used For Validating Laboratory Analytical Data

Analyte Group	Guidance	Date
Metals (ICP-AES)	USEPA SOP HW-3a, Rev. 1	September 2016
Metals (Hg & CN)	USEPA SOP HW-3c, Rev. 1	September 2016
Volatile Organic Compounds (by Methods 8260B & 8260C)	USEPA SOP HW-24, Rev. 4	September 2014
Semi-Volatile Organic Compounds (by Method 8270D)	USEPA SOP HW-22 Rev. 5	December 2010
Pesticides (by Method 8181B)	USEPA SOP HW-44, Rev. 1.1	December 2010
Chlorinated Herbicides (by Method 8151A)	USEPA SOP HW-17, Rev. 3.1	December 2010
Polychlorinated Biphenyls (PCBs)	USEPA SOP HW-37A, Rev. 0	June 2015
Volatile Organic Compounds (Air) (by Method TO-15)	USEPA SOP HW-31, Rev. 6	September 2016
Per- and PolyFluoroAlkyl Substances	* NYSDEC	January 2021
(PFAS)	** US Dept. of Defense	November 2022
Radiological Analysis		
Uranium	USEPA Method 908.0	June 1999
Radium-226	USEPA Method 903.1	1980
General Chemistry Parameters	per NYSDEC ASP	July 2005

^{*} Sampling, Analysis, and Assessment of Per- and Polyfluoroalkyl Substances (PFAS) Under NYSDEC's Part 375 Remedial Programs, Appendix I

^{**} Data Validation Guidelines Module 6: Data Validation Procedures for Per- and Polyfluoroalkyl Substances Analysis by QSM Table B-24

QUALITY CONTROL CRITERIA USED FOR VALIDATING LABORATORY ANALYTICAL DATA

TABLE 4-2

VOCs	SVOCs	Pesticides/PCBs	Metals	Gen Chemistry	PFAS
Completeness of Pkg	Completeness of Pkg	Completeness of Pkg	Completeness of Pkg	Completeness of Pkg	Completeness of Pkg
Sample Preservation	Sample Preservation	Sample Preservation	Sample Preservation	Sample Preservation	Sample Preservation
Holding Time	Holding Time	Holding Time	Holding Time	Holding Times	Holding Time
System Monitoring	Surrogate Recoveries	Surrogate Recoveries	Initial/Continuing	Calibration	Instr Performance
Compounds	Lab Control Sample	Matrix Spikes	Calibration	Lab Control Samples	Check
Lab Control Sample	Matrix Spikes	Blanks	CRDL Standards	Blanks	Initial Calibration
Matrix Spikes	Blanks	Instrument Calibration	Blanks	Spike Recoveries	Continuing Calibration
Blanks	Instrument Tuning	& Verification	Interference Check	Lab Duplicates	Blanks
Instrument Tuning	Internal Standards	Comparison of	Sample		Surrogates
Internal Standards	Initial Calibration	duplicate	Spike Recoveries		Lab Fortified Blank
Initial Calibration	Continuing Calibration	GC column results	Lab Duplicate		Matrix Spikes
Continuing Calibration	Lab Qualifiers	Analyte ID	Lab Control Sample		Internal Standards
Lab Qualifiers	Field Duplicate	Lab Qualifiers	ICP Serial Dilutions		
Field Duplicate		Field Duplicate	Lab Qualifiers		
			Field Duplicate		

Method TO-15 (Air)	Radiological (U and Ra)
Completeness of Pkg	Completeness of Pkg
Sample Preservation	Sample Preservation
Holding Time	Holding Time
Canister Certification	Sample Specific Yield
Instrument Tuning	Required Detection Limit
Initial Calibration and	Laboratory Control Sample
Instrument Performance	Matrix Spikes
Daily Calibration	Method Blank
Blanks	Instrument Calibration
Lab Control Sample	
Field Duplicate	

The laboratory may also use various letters and symbols to flag analytical results generated when QC limits were exceeded. The meanings of these flags may differ from those used by the independent data validator. Those used by the laboratory are provided with the analytical results.

NOTE: The assignment of data qualifiers by the data reviewer (validator) to laboratory analytical results should not necessarily be interpreted by the data user as a measure of laboratory ability or proficiency. Rather, the qualifiers are intended to provide a measure of data accuracy and precision to the data user, which, for example, may provide a level of confidence in determining whether or not standards or cleanup objectives have been met.

- U The analyte was analyzed for but was not detected at or above the sample quantitation limit.
- J The analyte was positively identified; the associated numerical value is the concentration of the analyte in the sample.

 (The magnitude of any value associated with the result is not determined by data validation).
- J+ The result is an estimated quantity and may be biased high.
- **J-** The result is an estimated quantity and may be biased low.
- UJ The analyte was analyzed for but not detected. The reported quantitation limit is approximate and may be inaccurate or imprecise.
- R The sample result is rejected (i.e., is unusable) due to serious deficiencies in the ability to analyze the sample and meet quality control criteria. The presence or absence of the analyte cannot be verified.
- **NJ** The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated numerical value represents its approximate concentration.

The validated analytical results are attached to this report. Validation qualifiers (flags) are indicated in red print. Data sheets having qualified data are signed and dated by the data reviewer.

6.0 RESULTS OF THE DATA REVIEW

The results of the data review are summarized in Table 6-1. The table lists the samples where QC criteria were found to exceed acceptable limits and the actions taken to qualify the associated analytical results.

7.0 TOTAL USABLE DATA

For SDG L2350757, thirteen samples were analyzed and results were reported for 754 analytes. Even though some results were flagged with a "J" as estimated, all results (100 %) are considered usable. See the summary table for the analyses that have been rejected and qualified and the associated QC reasons.

SDG L2350757

Table 6-1 VOCs

SAMPLES AFFECTED	ANALYTES	ACTION	QC VIOLATION	COMMENTS
ESI-3-083023	cis-1,2-Dichloroethene	J detects	MS/MSD > QC limit	Data are estimated
All samples	Dichlorodifluoromethane	J detects UJ non-detects	ICV > QC limit	Data are estimated
All samples	Chloroethane Carbon disulfide	J detects UJ non-detects	CCV > QC limit	Data are estimated

ACRONYMS

BSP

Blank Spike

CCAL

Continuing Calibration

CCB

Continuing Calibration Blank

CCV

Continuing Calibration Verification

CRDL

Contract Required Detection Limit

CRQL

Contract Required Quantitation Limit

%D

Percent Difference

ICAL

Initial Calibration

ICB

Initial Calibration Blank

IS

Internal Standard

LCS

Laboratory Control Sample

MS/MSD

Matrix Spike/Matrix Spike Duplicate

QA

Quality Assurance

QC

Quality Control

%R

Percent recovery

RPD

Relative Percent Difference

RRF

Relative Response Factor

%RSD

Percent Relative Standard Deviation

TAL

Target Analyte List (metals)

TCL

Target Compound List (organics)

Appendix A

Validated Analytical Results

www.alphalab.com

Alpha Analytical

Laboratory Code: 11148

SDG Number: L2350757

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Project Name: JCC

Lab Number: L2350757 Project Number: N30.009.001 Report Date: 09/15/23

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L2350757-01	ESI-3-083023	WATER	FALCONER,NY	08/30/23 10:15	08/31/23
L2350757-02	PW-1-083023	WATER	FALCONER,NY	08/30/23 10:50	08/31/23
L2350757-03	DUP-083023	WATER	FALCONER,NY	08/30/23 10:50	08/31/23
L2350757-04	ESI-10-083023	WATER	FALCONER,NY	08/30/23 11:40	08/31/23
L2350757-05	ESI-11-083023	WATER	FALCONER,NY	08/30/23 12:25	08/31/23
L2350757-06	ESI-12-083023	WATER	FALCONER,NY	08/30/23 13:00	08/31/23
L2350757-07	ESI-7-083023	WATER	FALCONER,NY	08/30/23 13:55	08/31/23
L2350757-08	ESI-13R-083023	WATER	FALCONER,NY	08/30/23 14:40	08/31/23
L2350757-09	ESI-6-083123	WATER	FALCONER,NY	08/31/23 10:22	08/31/23
L2350757-10	ESI-2-083123	WATER	FALCONER,NY	08/31/23 11:12	08/31/23
L2350757-11	ESI-1-083123	WATER	FALCONER,NY	08/31/23 12:00	08/31/23
L2350757-12	PW-3R-083123	WATER	FALCONER,NY	08/31/23 12:38	08/31/23
L2350757-13	TRIP BLANK	WATER	FALCONER,NY	08/31/23 00:00	08/31/23

Project Name:JCCLab Number:L2350757Project Number:N30.009.001Report Date:09/15/23

Case Narrative (continued)

Report Submission

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature: Melissa Sturgis Report Date: 09/15/23

Title: Technical Director/Representative

ДІРНА	NEW YORK CHAIN OF CUSTODY	Service Centers Mahwah, NJ 07430: 35 Whitney Albany, NY 12205: 14 Walker V Tonawanda, NY 14150: 275 Co	Vay	5	Page / o		D	ate Rec'o	09/	01/	23	ALPHA Job# L235075	7
Westborough, MA 01581	Mansfield, MA 02048	Project Information		1	440	STORY OF	Deliver	ables	100	190 18 18	FASS	Billing Information	
8 Walkup Dr. TEL: 508-898-9220	320 Forbes Blvd TEL: 508-822-9300	Project Name: 30	_					ASP-A		ASP-	В	Same as Client Inf	fo
FAX: 508-898-9193	FAX: 508-822-3288					_	1	QuIS (1 F		7.7	S (4 File)	PO#	
		Project Location: FA	CONFR	-, MY					ne) [_] EQUI	5 (4 File)	PO#	
Client Information		Project # N30 · O	24.001	, ,				Other					
Client: CtS EN	SI NETERS	(Use Project name as Pr	roject #)				Regula	itory Requi	THE REAL PROPERTY.			Disposal Site Information	n
	or ST.	Project Manager: /Cit	CH BAC	karo				IY TOGS		NY Pa		Please identify below locati	
Preferato 1	U 14203	ALPHAQuote #:					_ A	WQ Standa	rds	NY C	2-51	applicable disposal facilities	5.
Phone:	1	Turn-Around Time						Y Restricted	d Use	Other		Disposal Facility:	
Fax:		Standard	174	Due Date:			П	IY Unrestrict	ed Use			□ NJ □ NY	ė.
	6)10.11.11	Rush (only if pre approved					-	IYC Sewer [Other:	
Email: Rbachen			<u>'</u>	# of Days:			-		viscilarge				T
These samples have b							ANAL	rsis				Sample Filtration	
Other project specific	Annual Control of the	I FROM RS	I-3				sho					☐ Done ☐ Lab to do Preservation	t a
Dup	collected	FROM P	W-1				3					Lab to do	10.50
Please specify Metals	or TAL.						6					Lab to do	В
	22.000.000						2					(Please Specify below	0
ALDUM L-C ID	T T		Collec	otion			3						t
ALPHA Lab ID (Lab Use Only)	Sa	mple ID		0.310(1)	Sample Matrix	Sampler's Initials	3					C	. 0
A DESCRIPTION OF THE PROPERTY			Date	Time	All Parks	0.000000000				_		Sample Specific Commer	100
50757-67	EST-3-0	53023	8/20/23	10:45	6W	140	×					- 1 1	3
-01-02	015-6830	23	8/30/23	10:15	CIW	RB	4						3
-01-03		3023	8/30/13	10:15	(1)	RIB	9						3
-02 -04		083027	8/30/23	10:80	GW	123	×						3
Market and the second s							V		-	_			
-03-05		3023	8/30/13	10:50	GW	RB	1000	_	_	-		-	3
-04 -06	EST-10	-083023	8/30/23	11:40	GW	PR	V			_			3
-05-07	ESI-11-	083021	8/30/23	12:25	Tow	RD	V						3
-06-0B	ESE-12	083023	\$130/23	1,00	BW	203	Y						3
-07 -09	EST-7	- 083023	8/30/27	1:65	GW	RP SW	X						3
-08(DEM)	E.CT - 131	2.083027	4/30/27	2140	Chu	w	V						3
Preservative Code:	Container Code	I Water on I per 3 h Country Country States and Country Countr		6110	UNU	JUI.				_		There is a suppression	
A = None	P = Plastic	Westboro: Certification N	o: MA935		Con	tainer Type	. /					Please print clearly, le	
B = HCI	A = Amber Glass	Mansfield: Certification N	o: MA015	- 1	1	2500120011042003	V					and completely. Sam	ples can
C = HNO ₃	V = Vial			- 1								not be logged in and turnaround time clock	ton Ilius
D = H ₂ SO ₄	G = Glass B = Bacteria Cup			- 1	,	reservative	3					start until any ambigu	
E = NaOH F = MeOH	C = Cube	1 Apolia dishadi	- T	Date	Ton a			d Due		Date	Time	resolved. BY EXECU	
G = NaHSO ₄	O = Other	Relinguished E	sy:	Date/1		\sim	Receive		N 00			THIS COC, THE CLI	
$H = Na_2S_2O_3$	E = Encore	MA		8/3/123	15:30	Lower			7 7 7 7	31/23	15:30	HAS READ AND AGI	
K/E = Zn Ac/NaOH	D = BOD Bottle	Jocopen Zico	U(AAL)	8/31/23	15:30	o prio	nei	4		500	25	TO BE BOUND BY A	Activities and the second
O = Other		1	/			097	17	2 3 - 0	1 0 0			TERMS & CONDITIO	NS.
Form No: 01-25 HC (rev. 30	0-Sept-2013)											(See reverse side.)	

Дірна	NEW YORK CHAIN OF CUSTODY	Service Centers Mahwah, NJ 07430: 35 Whitner Albany, NY 12205: 14 Walker V Tonawanda, NY 14150: 275 Co	Vay	05	Pag 2 c	e of Z	D	ate Rec'		101	1/2	3	ALPHA Job# LZ35075	57
Westborough, MA 01581 8 Walkup Dr.	Mansfield, MA 02048 320 Forbes Blvd	Project Information		THE PROPERTY OF	Re Ball	SECTION OF	Delive	rables				TER	Billing Information	
TEL: 508-898-9220	TEL: 508-822-9300	Project Name: JC	C	200			To	ASP-A		X	ASP-B		Same as Client I	Info
FAX: 508-898-9193	FAX: 508-822-3288	Project Location: Fa/		114			X	EQuIS (1 F	ile)		EQuiS	(4 File)	PO#	
Client Information	CONTRACTOR TO	Project # N30.		01			-	Other	055.50 4 1.	tonad.			(A) (17)	
Client: CHS PA	Janet.	(Use Project name as Pr		01			NAME OF TAXABLE PARTY.	tory Requ	ireme	nt	1000	C-1000	Disposal Site Informa	tion
	In street		1 0	Kert			and the second	Y TOGS		The same of the sa	NY Pari	375	About Meados possessor on testado tros	(100) (10)
Buttale, NY	III STICE	ALPHAQuote #:	ch pa	\err			- =	WQ Standa	ards		NY CP-		Please identify below loc applicable disposal facilit	
Phone:		Turn-Around Time	A STANLEY	STATE OF THE PARTY OF	THE REAL PROPERTY.	STATE OF THE PARTY NAMED IN	=	Y Restricte			Other	5.0	Disposal Facility:	
Fax:		Standard		D D-1	-		-	Y Unrestric			Other		□ NJ 📈	KIN.
Email: BBather	HALCEAS CON		(1) 5-75-75	Due Date:										41
			<u>'</u>	# of Days:			- Secret	IYC Sewer	Dischar	ge			Other:	
These samples have b							ANAL	rsis	_				Sample Filtration	- 0
Other project specific		ents:					TCL 8760						☐ Done ☐ Lab to do Preservation ☐ Lab to do (Please Specify belo	t a B ow) t
ALPHA Lab ID	6-		Colle	ection	Sample	Sampler's	1 7				- 1		12 274	
(Lab Use Only)	Sa	mple ID	Date	Time	Matrix	Initials	9	- 1					Sample Specific Comm	ents e
50757-41-6	FSI-6-08	317.3	8/31/13	10:22-	GW	RB	X							3
-10 -1/2	ESI-2-08	3123	8/31/13	11:12am	CW	RB	X	_			\neg	\neg		3
	FSI-1-08	2173	4/31/2	12:000	GW	RB	X			\vdash	_	12		3
-12	PW-3R-08	(3,73	8/31/23	10:21	GW	BB	×	_			+	-	 	3
-13	Trip blank	10100	8/31/23		GW	20	X	_		-	\rightarrow	-	-	1
	Trip plants		3/21/62	1:07.pm	(300	150	X	_		-	\rightarrow	_		
							\vdash	-		-	\rightarrow	_		-
							-	-		-	\rightarrow	-		-
							-	_		_	-	_		
								_			-	_		-
Preservative Code:	Containes Code							_				_		
	Container Code P = Plastic A = Amber Glass V = Vial	Westboro: Certification No Mansfield: Certification No			Con	tainer Type	^	_			4		Please print clearly, and completely. Sar not be logged in and	mples can
$D = H_2SO_4$	G = Glass				P	reservative	13						turnaround time clos	
	B = Bacteria Cup C = Cube	200		D	encontrol of			1.0		_	D 1 0	tonin	start until any ambig resolved. BY EXEC	
G = NaHSO ₄	O = Other	Relinguished E	sy:	Date/T	-		Received		_		Date/T		THIS COC THE CL	
11 - 11020203	E = Encore D = BOD Bottle	1/4/2/	/	8/3/10	15:30		V 40	by (AF	17)	8/3	123	15:30	HAS READ AND AC	
K/E = Zn Ac/NaOH O = Other		foodyn 700	(AAAC)	8/31/23	3 1013	Р	100	1	-01				TO BE BOUND BY	
		, ,	£ 5			nu	ra		-50				TERMS & CONDITI (See reverse side.)	ONS.
Form No: 01-25 HC (rev. 30)-Sept-2013)						ſ	19/1	11	2 2.	0.4	0.0	(See reverse side.)	Ğ.

GC/MS 8260 Analysis

Client : C&S Companies

Project Name : JCC
Lab ID : L2350757-01
Client ID : ESI-3-083023
Sample Location : FALCONER,NY

Sample Matrix : WATER
Analytical Method : 1,8260D
Lab File ID : V01230909A08

Sample Amount : 10 ml Level : LOW Extract Volume (MeOH) : N/A Lab Number : L2350757
Project Number : N30.009.001
Date Collected : 08/30/23 10:15
Date Received : 08/31/23
Date Analyzed : 09/09/23 05:13

Dilution Factor : 1
Analyst : PID
Instrument ID : VOA101
GC Column : RTX-502.2

			ug/L			
CAS NO.	Parameter	Results	RL	MDL	Qualifier	
75-09-2	Methylene chloride	ND	2.5	0.70	U	
75-34-3	1,1-Dichloroethane	ND	2.5	0.70	U	
67-66-3	Chloroform	ND	2.5	0.70	U	
56-23-5	Carbon tetrachloride	ND	0.50	0.13	U	
78-87-5	1,2-Dichloropropane	ND	1.0	0.14	U	
124-48-1	Dibromochloromethane	ND	0.50	0.15	U	
79-00-5	1,1,2-Trichloroethane	ND	1.5	0.50	U	
127-18-4	Tetrachloroethene	ND	0.50	0.18	U	
108-90-7	Chlorobenzene	ND	2.5	0.70	U	
75-69-4	Trichlorofluoromethane	ND	2.5	0.70	U	
107-06-2	1,2-Dichloroethane	ND	0.50	0.13	U	
71-55-6	1,1,1-Trichloroethane	ND	2.5	0.70	U	
75-27-4	Bromodichloromethane	ND	0.50	0.19	U	
10061-02-6	trans-1,3-Dichloropropene	ND	0.50	0.16	U	
10061-01-5	cis-1,3-Dichloropropene	ND	0.50	0.14	U	
75-25-2	Bromoform	ND	2.0	0.65	U	
79-34-5	1,1,2,2-Tetrachloroethane	ND	0.50	0.17	U	
71-43-2	Benzene	ND	0.50	0.16	U	
108-88-3	Toluene	ND	2.5	0.70	U	
100-41-4	Ethylbenzene	ND	2.5	0.70	U	
74-87-3	Chloromethane	ND	2.5	0.70	U	
74-83-9	Bromomethane	ND	2.5	0.70	U	
75-01-4	Vinyl chloride	ND	1.0	0.07	U	
75-00-3	Chloroethane	ND	2.5	0.70	U	UJ
75-35-4	1,1-Dichloroethene	ND	0.50	0.17	U	

Client : C&S Companies
Project Name : JCC

Lab ID : L2350757-01 Client ID : ESI-3-083023

Sample Location : FALCONER,NY

Sample Matrix : WATER
Analytical Method : 1,8260D
Lab File ID : V01230909A08

Sample Amount : 10 ml Level : LOW Extract Volume (MeOH) : N/A Lab Number : L2350757
Project Number : N30.009.001
Date Collected : 08/30/23 10:15

Date Received : 08/31/23 Date Analyzed : 09/09/23 05:13

Dilution Factor : 1
Analyst : PID
Instrument ID : VOA101
GC Column : RTX-502.2

		ug/L			
Parameter	Results	RL	MDL	Qualifier	
trans-1,2-Dichloroethene	ND	2.5	0.70	U	
Trichloroethene	2.8	0.50	0.18		
1,2-Dichlorobenzene	ND	2.5	0.70	U	
1,3-Dichlorobenzene	ND	2.5	0.70	U	
1,4-Dichlorobenzene	ND	2.5	0.70	U	
Methyl tert butyl ether	ND	2.5	0.70	U	
p/m-Xylene	ND	2.5	0.70	U	
o-Xylene	ND	2.5	0.70	U	
cis-1,2-Dichloroethene	1.4	2.5	0.70	J	J
Styrene	ND	2.5	0.70	U	
Dichlorodifluoromethane	ND	5.0	1.0	U	UJ
Acetone	ND	5.0	1.5	U	
Carbon disulfide	ND	5.0	1.0	U	UJ
2-Butanone	ND	5.0	1.9	U	
4-Methyl-2-pentanone	ND	5.0	1.0	U	
2-Hexanone	ND	5.0	1.0	U	
1,2-Dibromoethane	ND	2.0	0.65	U	
n-Butylbenzene	ND	2.5	0.70	U	
sec-Butylbenzene	ND	2.5	0.70	U	
tert-Butylbenzene	ND	2.5	0.70	U	
1,2-Dibromo-3-chloropropane	ND	2.5	0.70	U	
Isopropylbenzene	ND	2.5	0.70	U	
p-Isopropyltoluene	ND	2.5	0.70	U	
Naphthalene	ND	2.5	0.70	U	
n-Propylbenzene	ND	2.5	0.70	U	
	trans-1,2-Dichloroethene Trichloroethene 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene Methyl tert butyl ether p/m-Xylene o-Xylene cis-1,2-Dichloroethene Styrene Dichlorodifluoromethane Acetone Carbon disulfide 2-Butanone 4-Methyl-2-pentanone 2-Hexanone 1,2-Dibromoethane n-Butylbenzene sec-Butylbenzene tert-Butylbenzene lsopropyltoluene Naphthalene	trans-1,2-Dichloroethene 2.8 1,2-Dichlorobenzene ND 1,3-Dichlorobenzene ND 1,4-Dichlorobenzene ND Methyl tert butyl ether ND p/m-Xylene ND cis-1,2-Dichloroethene 1.4 Styrene ND Dichlorodifluoromethane ND Acetone ND Carbon disulfide ND 2-Butanone ND 4-Methyl-2-pentanone ND 1,2-Dibromoethane ND n-Butylbenzene ND tert-Butylbenzene ND tert-Butylbenzene ND lsopropylbenzene ND lsopropylbenzene ND lsopropylbenzene ND lsopropylboluene ND ND ND ND ND ND ND ND ND ND	Parameter Results RL trans-1,2-Dichloroethene ND 2.5 Trichloroethene 2.8 0.50 1,2-Dichlorobenzene ND 2.5 1,3-Dichlorobenzene ND 2.5 Methyl tert butyl ether ND 2.5 Methyl tert butyl ether ND 2.5 p/m-Xylene ND 2.5 o-Xylene ND 2.5 cis-1,2-Dichloroethene 1.4 2.5 Styrene ND 2.5 Dichlorodiffluoromethane ND 5.0 Acetone ND 5.0 Carbon disulfide ND 5.0 2-Butanone ND 5.0 4-Methyl-2-pentanone ND 5.0 1,2-Dibromoethane ND 5.0 1,2-Dibromoethane ND 2.5 n-Butylbenzene ND 2.5 sec-Butylbenzene ND 2.5 tert-Butylbenzene ND 2.5 tert-Butylbenzene ND <td>Parameter Results RL MDL trans-1,2-Dichloroethene ND 2.5 0.70 Trichloroethene 2.8 0.50 0.18 1,2-Dichlorobenzene ND 2.5 0.70 1,3-Dichlorobenzene ND 2.5 0.70 Methyl tert butyl ether ND 2.5 0.70 p/m-Xylene ND 2.5 0.70 cis-1,2-Dichloroethene 1.4 2.5 0.70 cis-1,2-Dichloroethene 1.4 2.5 0.70 Styrene ND 2.5 0.70 Dichlorodifluoromethane ND 5.0 1.0 Acetone ND 5.0 1.0 Acetone ND 5.0 1.0 Carbon disulfide ND 5.0 1.0 2-Butanone ND 5.0 1.0 4-Methyl-2-pentanone ND 5.0 1.0 1,2-Dibromoethane ND 5.0 1.0 1,2-Dibromoethane ND <t< td=""><td>Parameter Results RL MDL Qualifier trans-1,2-Dichloroethene ND 2.5 0.70 U Trichloroethene 2.8 0.50 0.18 </td></t<></td>	Parameter Results RL MDL trans-1,2-Dichloroethene ND 2.5 0.70 Trichloroethene 2.8 0.50 0.18 1,2-Dichlorobenzene ND 2.5 0.70 1,3-Dichlorobenzene ND 2.5 0.70 Methyl tert butyl ether ND 2.5 0.70 p/m-Xylene ND 2.5 0.70 cis-1,2-Dichloroethene 1.4 2.5 0.70 cis-1,2-Dichloroethene 1.4 2.5 0.70 Styrene ND 2.5 0.70 Dichlorodifluoromethane ND 5.0 1.0 Acetone ND 5.0 1.0 Acetone ND 5.0 1.0 Carbon disulfide ND 5.0 1.0 2-Butanone ND 5.0 1.0 4-Methyl-2-pentanone ND 5.0 1.0 1,2-Dibromoethane ND 5.0 1.0 1,2-Dibromoethane ND <t< td=""><td>Parameter Results RL MDL Qualifier trans-1,2-Dichloroethene ND 2.5 0.70 U Trichloroethene 2.8 0.50 0.18 </td></t<>	Parameter Results RL MDL Qualifier trans-1,2-Dichloroethene ND 2.5 0.70 U Trichloroethene 2.8 0.50 0.18

Client : C&S Companies

Project Name : JCC
Lab ID : L2350757-01
Client ID : ESI-3-083023
Sample Location : FALCONER,NY

Sample Matrix : WATER
Analytical Method : 1,8260D
Lab File ID : V01230909A08
Sample Amount : 10 ml

Level : LOW Extract Volume (MeOH) : N/A

Lab Number : L2350757

Project Number : N30.009.001

Date Collected : 08/30/23 10:15

Date Received : 08/31/23 Date Analyzed : 09/09/23 05:13

Dilution Factor : 1
Analyst : PID
Instrument ID : VOA101
GC Column : RTX-502.2

	ug/L						
CAS NO.	Parameter	Results	RL	MDL	Qualifier		
120-82-1	1,2,4-Trichlorobenzene	ND	2.5	0.70	U		
108-67-8	1,3,5-Trimethylbenzene	ND	2.5	0.70	U		
95-63-6	1,2,4-Trimethylbenzene	ND	2.5	0.70	U		
79-20-9	Methyl Acetate	ND	2.0	0.23	U		
110-82-7	Cyclohexane	ND	10	0.27	U		
76-13-1	Freon-113	ND	2.5	0.70	U		
108-87-2	Methyl cyclohexane	ND	10	0.40	U		
76-13-1 108-87-2							

Client : C&S Companies

Project Name : JCC

Lab ID : L2350757-02
Client ID : PW-1-083023
Sample Location : FALCONER,NY

Sample Matrix : WATER
Analytical Method : 1,8260D
Lab File ID : V01230909A09

Sample Amount : 10 ml Level : LOW Extract Volume (MeOH) : N/A Lab Number : L2350757

Project Number : N30.009.001

Date Collected : 08/30/23 10:50

Date Received : 08/31/23 Date Analyzed : 09/09/23 05:40

Dilution Factor : 1
Analyst : PID
Instrument ID : VOA101

GC Column : RTX-502.2 %Solids : N/A Injection Volume : N/A

ug/L MDL CAS NO. **Parameter** Results RL Qualifier 75-09-2 Methylene chloride ND 2.5 0.70 U 75-34-3 ND 2.5 0.70 U 1,1-Dichloroethane 67-66-3 Chloroform ND 2.5 0.70 U 56-23-5 Carbon tetrachloride ND 0.50 0.13 п 78-87-5 1,2-Dichloropropane ND 1.0 0.14 U Dibromochloromethane ND 0.50 п 124-48-1 0.15 79-00-5 1,1,2-Trichloroethane ND 1.5 0.50 U 127-18-4 0.50 0.18 U Tetrachloroethene ND 108-90-7 Chlorobenzene ND 2.5 0.70 U 75-69-4 Trichlorofluoromethane ND 2.5 0.70 U 107-06-2 1,2-Dichloroethane ND 0.50 0.13 U 71-55-6 1.1.1-Trichloroethane ND 0.70 U 2.5 75-27-4 Bromodichloromethane ND 0.50 0.19 U 10061-02-6 ND 0.50 0.16 U trans-1,3-Dichloropropene 10061-01-5 cis-1,3-Dichloropropene ND 0.50 0.14 U 75-25-2 ND 2.0 0.65 U **Bromoform** 79-34-5 1,1,2,2-Tetrachloroethane ND 0.50 0.17 U U 71-43-2 Benzene ND 0.50 0.16 108-88-3 Toluene ND 2.5 0.70 U 100-41-4 ND U Ethylbenzene 2.5 0.70 Chloromethane 74-87-3 U ND 2.5 0.70 74-83-9 **Bromomethane** ND 2.5 0.70 U 75-01-4 Vinyl chloride ND 1.0 0.07 ш 75-00-3 Chloroethane 2.5 0.70 U ND UJ ND U 75-35-4 1,1-Dichloroethene 0.50 0.17

Client : C&S Companies

Project Name : JCC

 Lab ID
 : L2350757-02

 Client ID
 : PW-1-083023

 Sample Location
 : FALCONER,NY

Sample Matrix : WATER
Analytical Method : 1,8260D
Lab File ID : V01230909A09

Sample Amount : 10 ml Level : LOW Extract Volume (MeOH) : N/A Lab Number : L2350757
Project Number : N30.009.001
Date Collected : 08/30/23 10:50

Date Received : 08/31/23 Date Analyzed : 09/09/23 05:40

Dilution Factor : 1
Analyst : PID

Instrument ID : VOA101 GC Column : RTX-502.2

			ug/L			
CAS NO.	Parameter	Results	RL	MDL	Qualifier	
156-60-5	trans-1,2-Dichloroethene	ND	2.5	0.70	U	
79-01-6	Trichloroethene	5.7	0.50	0.18		
95-50-1	1,2-Dichlorobenzene	ND	2.5	0.70	U	
541-73-1	1,3-Dichlorobenzene	ND	2.5	0.70	U	
106-46-7	1,4-Dichlorobenzene	ND	2.5	0.70	U	
1634-04-4	Methyl tert butyl ether	ND	2.5	0.70	U	
179601-23-1	p/m-Xylene	ND	2.5	0.70	U	
95-47-6	o-Xylene	ND	2.5	0.70	U	
156-59-2	cis-1,2-Dichloroethene	4.2	2.5	0.70		
100-42-5	Styrene	ND	2.5	0.70	U	
75-71-8	Dichlorodifluoromethane	ND	5.0	1.0	U	UJ
67-64-1	Acetone	ND	5.0	1.5	U	
75-15-0	Carbon disulfide	ND	5.0	1.0	U	UJ
78-93-3	2-Butanone	ND	5.0	1.9	U	
108-10-1	4-Methyl-2-pentanone	ND	5.0	1.0	U	
591-78-6	2-Hexanone	ND	5.0	1.0	U	
106-93-4	1,2-Dibromoethane	ND	2.0	0.65	U	
104-51-8	n-Butylbenzene	ND	2.5	0.70	U	
135-98-8	sec-Butylbenzene	ND	2.5	0.70	U	
98-06-6	tert-Butylbenzene	ND	2.5	0.70	U	
96-12-8	1,2-Dibromo-3-chloropropane	ND	2.5	0.70	U	
98-82-8	Isopropylbenzene	ND	2.5	0.70	U	
99-87-6	p-Isopropyltoluene	ND	2.5	0.70	U	
91-20-3	Naphthalene	ND	2.5	0.70	U	
103-65-1	n-Propylbenzene	ND	2.5	0.70	U	

Client : C&S Companies

Project Name : JCC Lab ID : L2350757-02 Client ID : PW-1-083023 Sample Location : FALCONER,NY

Sample Matrix : WATER **Analytical Method** : 1,8260D : V01230909A09 Lab File ID Sample Amount : 10 ml

Level : LOW Extract Volume (MeOH): N/A

Lab Number : L2350757 Project Number: N30.009.001 Date Collected : 08/30/23 10:50

Date Received : 08/31/23 Date Analyzed : 09/09/23 05:40

Dilution Factor : 1 : PID Analyst Instrument ID : VOA101 GC Column

: RTX-502.2

	ug/L						
CAS NO.	Parameter	Results	RL	MDL	Qualifier		
120-82-1	1,2,4-Trichlorobenzene	ND	2.5	0.70	U		
108-67-8	1,3,5-Trimethylbenzene	ND	2.5	0.70	U		
95-63-6	1,2,4-Trimethylbenzene	ND	2.5	0.70	U		
79-20-9	Methyl Acetate	ND	2.0	0.23	U		
110-82-7	Cyclohexane	ND	10	0.27	U		
76-13-1	Freon-113	ND	2.5	0.70	U		
108-87-2	Methyl cyclohexane	ND	10	0.40	U		
76-13-1 108-87-2							

Client : C&S Companies

Project Name : JCC

Lab ID : L2350757-03 Client ID : DUP-083023 Sample Location : FALCONER,NY

Sample Matrix : WATER
Analytical Method : 1,8260D
Lab File ID : V01230909A10

Sample Amount : 10 ml Level : LOW Extract Volume (MeOH) : N/A Lab Number : L2350757

Project Number : N30.009.001

Date Collected : 08/30/23 10:50

Date Received : 08/31/23

Date Analyzed : 09/09/23 06:06 Dilution Factor : 1

Analyst : PID Instrument ID : VOA101 GC Column : RTX-502.2

			ug/L			
CAS NO.	Parameter	Results	RL	MDL	Qualifier	
75.00.0	Madhada a abhada	ND	0.5	0.70		
75-09-2	Methylene chloride	ND	2.5	0.70	U	
75-34-3	1,1-Dichloroethane	ND	2.5	0.70	U	
67-66-3	Chloroform	ND	2.5	0.70	U	
56-23-5	Carbon tetrachloride	ND	0.50	0.13	U	
78-87-5	1,2-Dichloropropane	ND	1.0	0.14	U	
124-48-1	Dibromochloromethane	ND	0.50	0.15	U	
79-00-5	1,1,2-Trichloroethane	ND	1.5	0.50	U	
127-18-4	Tetrachloroethene	ND	0.50	0.18	U	
108-90-7	Chlorobenzene	ND	2.5	0.70	U	
75-69-4	Trichlorofluoromethane	ND	2.5	0.70	U	
107-06-2	1,2-Dichloroethane	ND	0.50	0.13	U	
71-55-6	1,1,1-Trichloroethane	ND	2.5	0.70	U	
75-27-4	Bromodichloromethane	ND	0.50	0.19	U	
10061-02-6	trans-1,3-Dichloropropene	ND	0.50	0.16	U	
10061-01-5	cis-1,3-Dichloropropene	ND	0.50	0.14	U	
75-25-2	Bromoform	ND	2.0	0.65	U	
79-34-5	1,1,2,2-Tetrachloroethane	ND	0.50	0.17	U	
71-43-2	Benzene	ND	0.50	0.16	U	
108-88-3	Toluene	ND	2.5	0.70	U	
100-41-4	Ethylbenzene	ND	2.5	0.70	U	
74-87-3	Chloromethane	ND	2.5	0.70	U	
74-83-9	Bromomethane	ND	2.5	0.70	U	
75-01-4	Vinyl chloride	ND	1.0	0.07	U	
75-00-3	Chloroethane	ND	2.5	0.70	U UJ	
75-35-4	1,1-Dichloroethene	ND	0.50	0.17	U	

Client : C&S Companies

 Project Name
 : JCC

 Lab ID
 : L2350757-03

 Client ID
 : DUP-083023

Sample Location : FALCONER,NY Sample Matrix : WATER

Analytical Method : 1,8260D Lab File ID : V01230909A10

Sample Amount : 10 ml Level : LOW Extract Volume (MeOH) : N/A Lab Number : L2350757 Project Number : N30.009.001

Date Collected : 08/30/23 10:50

Date Received : 08/31/23

Date Analyzed : 09/09/23 06:06

Dilution Factor : 1
Analyst : PID
Instrument ID : VOA101
GC Column : RTX-502.2

			ug/L			
CAS NO.	Parameter	Results	RL	MDL	Qualifier	
156-60-5	trans-1,2-Dichloroethene	ND	2.5	0.70	U	
79-01-6	Trichloroethene	5.8	0.50	0.18		
95-50-1	1,2-Dichlorobenzene	ND	2.5	0.70	U	
541-73-1	1,3-Dichlorobenzene	ND	2.5	0.70	U	
106-46-7	1,4-Dichlorobenzene	ND	2.5	0.70	U	
1634-04-4	Methyl tert butyl ether	ND	2.5	0.70	U	
179601-23-1	p/m-Xylene	ND	2.5	0.70	U	
95-47-6	o-Xylene	ND	2.5	0.70	U	
156-59-2	cis-1,2-Dichloroethene	4.4	2.5	0.70		
100-42-5	Styrene	ND	2.5	0.70	U	
75-71-8	Dichlorodifluoromethane	ND	5.0	1.0	U	UJ
67-64-1	Acetone	1.5	5.0	1.5	J	
75-15-0	Carbon disulfide	ND	5.0	1.0	U	UJ
78-93-3	2-Butanone	ND	5.0	1.9	U	
108-10-1	4-Methyl-2-pentanone	ND	5.0	1.0	U	
591-78-6	2-Hexanone	ND	5.0	1.0	U	
106-93-4	1,2-Dibromoethane	ND	2.0	0.65	U	
104-51-8	n-Butylbenzene	ND	2.5	0.70	U	
135-98-8	sec-Butylbenzene	ND	2.5	0.70	U	
98-06-6	tert-Butylbenzene	ND	2.5	0.70	U	
96-12-8	1,2-Dibromo-3-chloropropane	ND	2.5	0.70	U	
98-82-8	Isopropylbenzene	ND	2.5	0.70	U	
99-87-6	p-Isopropyltoluene	ND	2.5	0.70	U	
91-20-3	Naphthalene	ND	2.5	0.70	U	
103-65-1	n-Propylbenzene	ND	2.5	0.70	U	

Client : C&S Companies

Project Name : JCC
Lab ID : L2350757-03
Client ID : DUP-083023
Sample Location : FALCONER,NY

Sample Matrix : WATER
Analytical Method : 1,8260D
Lab File ID : V01230909A10
Sample Amount : 10 ml

Level : LOW Extract Volume (MeOH) : N/A Lab Number : L2350757 Project Number : N30.009.001

Date Collected : 08/30/23 10:50
Date Received : 08/31/23

Date Analyzed : 09/09/23 06:06 Dilution Factor : 1

Analyst : PID
Instrument ID : VOA101
GC Column : RTX-502.2

CAS NO.		<u></u>				
	Parameter	Results	RL	MDL	Qualifier	
120-82-1	1,2,4-Trichlorobenzene	ND	2.5	0.70	U	
108-67-8	1,3,5-Trimethylbenzene	ND	2.5	0.70	U	
95-63-6	1,2,4-Trimethylbenzene	ND	2.5	0.70	U	
79-20-9	Methyl Acetate	ND	2.0	0.23	U	
110-82-7	Cyclohexane	ND	10	0.27	U	
76-13-1	Freon-113	ND	2.5	0.70	U	
108-87-2	Methyl cyclohexane	ND	10	0.40	U	

Client : C&S Companies
Project Name : JCC

Lab ID : L2350757-04 Client ID : ESI-10-083023 Sample Location : FALCONER,NY

Sample Matrix : WATER
Analytical Method : 1,8260D
Lab File ID : V01230909A11

Sample Amount : 10 ml Level : LOW Extract Volume (MeOH) : N/A Lab Number : L2350757
Project Number : N30.009.001
Date Collected : 08/30/23 11:40
Date Received : 08/31/23

Date Analyzed : 09/09/23 06:33 Dilution Factor : 1

Analyst : PID
Instrument ID : VOA101
GC Column : RTX-502.2

CAS NO.	Parameter	Results	RL	MDL	Qualifier
75-09-2	Methylene chloride	ND	2.5	0.70	U
75-34-3	1,1-Dichloroethane	ND	2.5	0.70	U
67-66-3	Chloroform	ND	2.5	0.70	U
56-23-5	Carbon tetrachloride	ND	0.50	0.13	U
78-87-5	1,2-Dichloropropane	ND	1.0	0.14	U
124-48-1	Dibromochloromethane	ND	0.50	0.15	U
79-00-5	1,1,2-Trichloroethane	ND	1.5	0.50	U
127-18-4	Tetrachloroethene	ND	0.50	0.18	U
108-90-7	Chlorobenzene	ND	2.5	0.70	U
75-69-4	Trichlorofluoromethane	ND	2.5	0.70	U
107-06-2	1,2-Dichloroethane	ND	0.50	0.13	U
71-55-6	1,1,1-Trichloroethane	ND	2.5	0.70	U
75-27-4	Bromodichloromethane	ND	0.50	0.19	U
10061-02-6	trans-1,3-Dichloropropene	ND	0.50	0.16	U
10061-01-5	cis-1,3-Dichloropropene	ND	0.50	0.14	U
75-25-2	Bromoform	0.66	2.0	0.65	J
79-34-5	1,1,2,2-Tetrachloroethane	ND	0.50	0.17	U
71-43-2	Benzene	ND	0.50	0.16	U
108-88-3	Toluene	ND	2.5	0.70	U
100-41-4	Ethylbenzene	ND	2.5	0.70	U
74-87-3	Chloromethane	ND	2.5	0.70	U
74-83-9	Bromomethane	ND	2.5	0.70	U
75-01-4	Vinyl chloride	ND	1.0	0.07	U
75-00-3	Chloroethane	ND	2.5	0.70	u _{UJ}
75-35-4	1,1-Dichloroethene	ND	0.50	0.17	U

Client : C&S Companies

Project Name : JCC

Lab ID : L2350757-04
Client ID : ESI-10-083023
Sample Location : FALCONER,NY

Sample Matrix : WATER
Analytical Method : 1,8260D
Lab File ID : V01230909A11

Sample Amount : 10 ml Level : LOW Extract Volume (MeOH) : N/A Lab Number : L2350757

Project Number : N30.009.001

Date Collected : 08/30/23 11:40

Date Received : 08/31/23
Date Analyzed : 09/09/23 06:33

Dilution Factor : 1
Analyst : PID
Instrument ID : VOA101
GC Column : RTX-502.2

%Solids : N/A Injection Volume : N/A

ug/L MDL CAS NO. **Parameter** Results RL Qualifier 156-60-5 trans-1,2-Dichloroethene ND 2.5 0.70 U 79-01-6 Trichloroethene ND 0.50 U 0.18 95-50-1 1,2-Dichlorobenzene ND 2.5 0.70 U 541-73-1 1,3-Dichlorobenzene ND 2.5 0.70 п 106-46-7 1,4-Dichlorobenzene ND 2.5 0.70 U 1634-04-4 ND 2.5 0.70 п Methyl tert butyl ether 179601-23-1 p/m-Xylene ND 2.5 0.70 U 95-47-6 0.70 U o-Xylene ND 2.5 156-59-2 cis-1,2-Dichloroethene ND 2.5 0.70 U 100-42-5 Styrene ND 2.5 0.70 U 75-71-8 Dichlorodifluoromethane ND 5.0 1.0 U UJ 67-64-1 Acetone 1.9 5.0 1.5 75-15-0 Carbon disulfide ND 5.0 1.0 U UJ 78-93-3 2-Butanone ND 5.0 1.9 U U 108-10-1 4-Methyl-2-pentanone ND 5.0 1.0 591-78-6 ND 5.0 1.0 U 2-Hexanone 106-93-4 1,2-Dibromoethane ND 2.0 0.65 U U 104-51-8 n-Butylbenzene ND 2.5 0.70 135-98-8 sec-Butylbenzene ND 2.5 0.70 U 98-06-6 ND U tert-Butylbenzene 2.5 0.70 96-12-8 ND 0.70 U 1,2-Dibromo-3-chloropropane 2.5 98-82-8 ND 2.5 0.70 U Isopropylbenzene 99-87-6 ND 2.5 0.70 ш p-Isopropyltoluene 91-20-3 ND 2.5 0.70 U Naphthalene ND U 103-65-1 2.5 0.70 n-Propylbenzene

Client : C&S Companies
Project Name : JCC

Lab ID : L2350757-04
Client ID : ESI-10-083023
Sample Location : FALCONER,NY

Sample Matrix : WATER
Analytical Method : 1,8260D
Lab File ID : V01230909A11
Sample Amount : 10 ml

Level : LOW Extract Volume (MeOH) : N/A

Lab Number : L2350757
Project Number : N30.009.001
Date Collected : 08/30/23 11:40
Date Received : 08/31/23
Date Analyzed : 09/09/23 06:33
Dilution Factor : 1

Analyst : PID
Instrument ID : VOA101
GC Column : RTX-502.2

CAS NO.	Parameter	Results	RL	MDL	Qualifier	
100.00.1	4.0.4 Tribble above	ND	0.5	0.70		
120-82-1	1,2,4-Trichlorobenzene	ND	2.5	0.70	U	
108-67-8	1,3,5-Trimethylbenzene	ND	2.5	0.70	U	
95-63-6	1,2,4-Trimethylbenzene	ND	2.5	0.70	U	
79-20-9	Methyl Acetate	ND	2.0	0.23	U	
110-82-7	Cyclohexane	ND	10	0.27	U	
76-13-1	Freon-113	ND	2.5	0.70	U	
108-87-2	Methyl cyclohexane	ND	10	0.40	U	

Client : C&S Companies

Project Name : JCC

Lab ID : L2350757-05 Client ID : ESI-11-083023 Sample Location : FALCONER,NY

Sample Matrix : WATER
Analytical Method : 1,8260D
Lab File ID : V01230909A12

Sample Amount : 10 ml Level : LOW Extract Volume (MeOH) : N/A Lab Number : L2350757 Project Number : N30.009.001

Date Collected : 08/30/23 12:25
Date Received : 08/31/23

Date Analyzed : 09/09/23 06:59 Dilution Factor : 1

Analyst : PID Instrument ID : VOA101 GC Column : RTX-502.2

%Solids : N/A Injection Volume : N/A

ug/L MDL CAS NO. **Parameter** Results RL Qualifier 75-09-2 Methylene chloride ND 2.5 0.70 U 75-34-3 ND 2.5 0.70 U 1,1-Dichloroethane 67-66-3 Chloroform ND 2.5 0.70 U 56-23-5 Carbon tetrachloride ND 0.50 0.13 п 78-87-5 1,2-Dichloropropane ND 1.0 0.14 U Dibromochloromethane ND 0.50 п 124-48-1 0.15 79-00-5 1,1,2-Trichloroethane ND 1.5 0.50 U 127-18-4 0.50 0.18 U Tetrachloroethene ND 108-90-7 Chlorobenzene ND 2.5 0.70 U 75-69-4 Trichlorofluoromethane ND 2.5 0.70 U 107-06-2 1,2-Dichloroethane ND 0.50 0.13 U 71-55-6 1.1.1-Trichloroethane ND 0.70 U 2.5 75-27-4 Bromodichloromethane ND 0.50 0.19 U 10061-02-6 ND 0.50 0.16 U trans-1,3-Dichloropropene 10061-01-5 cis-1,3-Dichloropropene ND 0.50 0.14 U 75-25-2 2.0 0.65 **Bromoform** 1.7 79-34-5 1,1,2,2-Tetrachloroethane ND 0.50 0.17 U U 71-43-2 Benzene ND 0.50 0.16 108-88-3 Toluene ND 2.5 0.70 U 100-41-4 ND U Ethylbenzene 2.5 0.70 Chloromethane 74-87-3 U ND 2.5 0.70 74-83-9 **Bromomethane** ND 2.5 0.70 U 75-01-4 Vinyl chloride ND 1.0 0.07 ш 75-00-3 Chloroethane ND 2.5 0.70 U UJ ND U 75-35-4 1,1-Dichloroethene 0.50 0.17

Client : C&S Companies

Project Name : JCC

Lab ID : L2350757-05
Client ID : ESI-11-083023
Sample Location : FALCONER,NY

Sample Matrix : WATER
Analytical Method : 1,8260D
Lab File ID : V01230909A12

Sample Amount : 10 ml Level : LOW Extract Volume (MeOH) : N/A Lab Number : L2350757

Project Number : N30.009.001

Date Collected : 08/30/23 12:25

Date Received : 08/31/23

Date Analyzed : 09/09/23 06:59 Dilution Factor : 1

Analyst : PID Instrument ID : VOA101 GC Column : RTX-502.2

			ug/L			
CAS NO.	Parameter	Results	RL	MDL	Qualifier	
156-60-5	trans-1,2-Dichloroethene	ND	2.5	0.70	U	
79-01-6	Trichloroethene	ND	0.50	0.18	U	
95-50-1	1,2-Dichlorobenzene	ND	2.5	0.70	U	
541-73-1	1,3-Dichlorobenzene	ND	2.5	0.70	U	
106-46-7	1,4-Dichlorobenzene	ND	2.5	0.70	U	
1634-04-4	Methyl tert butyl ether	ND	2.5	0.70	U	
179601-23-1	p/m-Xylene	ND	2.5	0.70	U	
95-47-6	o-Xylene	ND	2.5	0.70	U	
156-59-2	cis-1,2-Dichloroethene	ND	2.5	0.70	U	
100-42-5	Styrene	ND	2.5	0.70	U	
75-71-8	Dichlorodifluoromethane	ND	5.0	1.0	U	UJ
67-64-1	Acetone	2.2	5.0	1.5	J	
75-15-0	Carbon disulfide	ND	5.0	1.0	U	UJ
78-93-3	2-Butanone	ND	5.0	1.9	U	
108-10-1	4-Methyl-2-pentanone	ND	5.0	1.0	U	
591-78-6	2-Hexanone	ND	5.0	1.0	U	
106-93-4	1,2-Dibromoethane	ND	2.0	0.65	U	
104-51-8	n-Butylbenzene	ND	2.5	0.70	U	
135-98-8	sec-Butylbenzene	ND	2.5	0.70	U	
98-06-6	tert-Butylbenzene	ND	2.5	0.70	U	
96-12-8	1,2-Dibromo-3-chloropropane	ND	2.5	0.70	U	
98-82-8	Isopropylbenzene	ND	2.5	0.70	U	
99-87-6	p-Isopropyltoluene	ND	2.5	0.70	U	
91-20-3	Naphthalene	ND	2.5	0.70	U	
103-65-1	n-Propylbenzene	ND	2.5	0.70	U	

Client : C&S Companies

Project Name : JCC
Lab ID : L2350757-05
Client ID : ESI-11-083023
Sample Location : FALCONER,NY

Sample Matrix : WATER
Analytical Method : 1,8260D
Lab File ID : V01230909A12

Sample Amount : 10 ml Level : LOW Extract Volume (MeOH) : N/A Lab Number : L2350757

Project Number : N30.009.001

Date Collected : 08/30/23 12:25
Date Received : 08/31/23

Date Analyzed : 09/09/23 06:59

Dilution Factor : 1
Analyst : PID
Instrument ID : VOA101
GC Column : RTX-502.2

			ug/L			
CAS NO.	Parameter	Results	RL	MDL	Qualifier	
120-82-1	1,2,4-Trichlorobenzene	ND	2.5	0.70	U	
108-67-8	1,3,5-Trimethylbenzene	ND	2.5	0.70	U	
95-63-6	1,2,4-Trimethylbenzene	ND	2.5	0.70	U	
79-20-9	Methyl Acetate	ND	2.0	0.23	U	
110-82-7	Cyclohexane	ND	10	0.27	U	
76-13-1	Freon-113	ND	2.5	0.70	U	
108-87-2	Methyl cyclohexane	ND	10	0.40	U	

Client : C&S Companies

Project Name : JCC

Lab ID : L2350757-06 Client ID : ESI-12-083023 Sample Location : FALCONER,NY

Sample Matrix : WATER
Analytical Method : 1,8260D
Lab File ID : V01230909A13

Sample Amount : 10 ml Level : LOW Extract Volume (MeOH) : N/A Lab Number : L2350757

Project Number : N30.009.001

Date Collected : 08/30/23 13:00

Date Received : 08/31/23

Date Analyzed : 09/09/23 07:25

Dilution Factor : 1
Analyst : PID
Instrument ID : VOA101
GC Column : RTX-502.2

			ug/L			
CAS NO.	Parameter	Results	RL	MDL	Qualifier	
75-09-2	Methylene chloride	ND	2.5	0.70	U	
75-34-3	1,1-Dichloroethane	ND	2.5	0.70	U	
67-66-3	Chloroform	ND	2.5	0.70	U	
56-23-5	Carbon tetrachloride	ND	0.50	0.13	U	
78-87-5	1,2-Dichloropropane	ND	1.0	0.14	U	
124-48-1	Dibromochloromethane	ND	0.50	0.15	U	
79-00-5	1,1,2-Trichloroethane	ND	1.5	0.50	U	
127-18-4	Tetrachloroethene	ND	0.50	0.18	U	
108-90-7	Chlorobenzene	ND	2.5	0.70	U	
75-69-4	Trichlorofluoromethane	ND	2.5	0.70	U	
107-06-2	1,2-Dichloroethane	ND	0.50	0.13	U	
71-55-6	1,1,1-Trichloroethane	ND	2.5	0.70	U	
75-27-4	Bromodichloromethane	ND	0.50	0.19	U	
10061-02-6	trans-1,3-Dichloropropene	ND	0.50	0.16	U	
10061-01-5	cis-1,3-Dichloropropene	ND	0.50	0.14	U	
75-25-2	Bromoform	1.2	2.0	0.65	J	
79-34-5	1,1,2,2-Tetrachloroethane	ND	0.50	0.17	U	
71-43-2	Benzene	ND	0.50	0.16	U	
108-88-3	Toluene	ND	2.5	0.70	U	
100-41-4	Ethylbenzene	ND	2.5	0.70	U	
74-87-3	Chloromethane	ND	2.5	0.70	U	
74-83-9	Bromomethane	ND	2.5	0.70	U	
75-01-4	Vinyl chloride	ND	1.0	0.07	U	
75-00-3	Chloroethane	ND	2.5	0.70	u _{UJ}	
75-35-4	1,1-Dichloroethene	ND	0.50	0.17	U	

Client : C&S Companies

Project Name : JCC

Lab ID : L2350757-06
Client ID : ESI-12-083023
Sample Location : FALCONER,NY

Sample Matrix : WATER
Analytical Method : 1,8260D
Lab File ID : V01230909A13

Sample Amount : 10 ml Level : LOW Extract Volume (MeOH) : N/A Lab Number : L2350757 Project Number : N30.009.001

Date Collected : 08/30/23 13:00 Date Received : 08/31/23 Date Analyzed : 09/09/23 07:25

Dilution Factor : 1
Analyst : PID
Instrument ID : VOA101
GC Column : RTX-502.2

			ug/L			
CAS NO.	Parameter	Results	RL	MDL	Qualifier	
156-60-5	trans-1,2-Dichloroethene	ND	2.5	0.70	U	
79-01-6	Trichloroethene	ND	0.50	0.18	U	
95-50-1	1,2-Dichlorobenzene	ND	2.5	0.70	U	
541-73-1	1,3-Dichlorobenzene	ND	2.5	0.70	U	
106-46-7	1,4-Dichlorobenzene	ND	2.5	0.70	U	
1634-04-4	Methyl tert butyl ether	ND	2.5	0.70	U	
179601-23-1	p/m-Xylene	ND	2.5	0.70	U	
95-47-6	o-Xylene	ND	2.5	0.70	U	
156-59-2	cis-1,2-Dichloroethene	ND	2.5	0.70	U	
100-42-5	Styrene	ND	2.5	0.70	U	
75-71-8	Dichlorodifluoromethane	ND	5.0	1.0	U UJ	
67-64-1	Acetone	3.0	5.0	1.5	J	
75-15-0	Carbon disulfide	ND	5.0	1.0	U UJ	
78-93-3	2-Butanone	ND	5.0	1.9	U	
108-10-1	4-Methyl-2-pentanone	ND	5.0	1.0	U	
591-78-6	2-Hexanone	ND	5.0	1.0	U	
106-93-4	1,2-Dibromoethane	ND	2.0	0.65	U	
104-51-8	n-Butylbenzene	ND	2.5	0.70	U	
135-98-8	sec-Butylbenzene	ND	2.5	0.70	U	
98-06-6	tert-Butylbenzene	ND	2.5	0.70	U	
96-12-8	1,2-Dibromo-3-chloropropane	ND	2.5	0.70	U	
98-82-8	Isopropylbenzene	ND	2.5	0.70	U	
99-87-6	p-Isopropyltoluene	ND	2.5	0.70	U	
91-20-3	Naphthalene	ND	2.5	0.70	U	
103-65-1	n-Propylbenzene	ND	2.5	0.70	U	

Client : C&S Companies
Project Name : JCC

Lab ID : L2350757-06
Client ID : ESI-12-083023
Sample Location : FALCONER,NY

Sample Matrix : WATER
Analytical Method : 1,8260D
Lab File ID : V01230909A13
Sample Amount : 10 ml

Level : LOW Extract Volume (MeOH) : N/A Lab Number : L2350757

Project Number : N30.009.001

Date Collected : 08/30/23 13:00

Date Received : 08/31/23

Date Analyzed : 09/09/23 07:25

Dilution Factor : 1
Analyst : PID
Instrument ID : VOA101
GC Column : RTX-502.2

	Parameter		ug/L			
CAS NO.		Results	RL	MDL	Qualifier	
120-82-1	1,2,4-Trichlorobenzene	ND	2.5	0.70	U	
108-67-8	1,3,5-Trimethylbenzene	ND	2.5	0.70	U	
95-63-6	1,2,4-Trimethylbenzene	ND	2.5	0.70	U	
79-20-9	Methyl Acetate	ND	2.0	0.23	U	
110-82-7	Cyclohexane	ND	10	0.27	U	
76-13-1	Freon-113	ND	2.5	0.70	U	
108-87-2	Methyl cyclohexane	ND	10	0.40	U	

Client : C&S Companies

Project Name : JCC

Lab ID : L2350757-07
Client ID : ESI-7-083023
Sample Location : FALCONER,NY

Sample Matrix : WATER
Analytical Method : 1,8260D
Lab File ID : V01230909A14

Sample Amount : 10 ml Level : LOW Extract Volume (MeOH) : N/A Lab Number : L2350757
Project Number : N30.009.001
Date Collected : 08/30/23 13:55

Date Received : 08/31/23 Date Analyzed : 09/09/23 07:51

Dilution Factor : 1
Analyst : PID
Instrument ID : VOA101
GC Column : RTX-502.2

			ug/L		
CAS NO.	Parameter	Results	RL	MDL	Qualifier
75-09-2	Methylene chloride	ND	2.5	0.70	U
75-34-3	1,1-Dichloroethane	ND	2.5	0.70	U
67-66-3	Chloroform	ND	2.5	0.70	U
56-23-5	Carbon tetrachloride	ND	0.50	0.13	U
78-87-5	1,2-Dichloropropane	ND	1.0	0.14	U
124-48-1	Dibromochloromethane	ND	0.50	0.15	U
79-00-5	1,1,2-Trichloroethane	ND	1.5	0.50	U
127-18-4	Tetrachloroethene	ND	0.50	0.18	U
108-90-7	Chlorobenzene	ND	2.5	0.70	U
75-69-4	Trichlorofluoromethane	ND	2.5	0.70	U
107-06-2	1,2-Dichloroethane	ND	0.50	0.13	U
71-55-6	1,1,1-Trichloroethane	ND	2.5	0.70	U
75-27-4	Bromodichloromethane	ND	0.50	0.19	U
10061-02-6	trans-1,3-Dichloropropene	ND	0.50	0.16	U
10061-01-5	cis-1,3-Dichloropropene	ND	0.50	0.14	U
75-25-2	Bromoform	ND	2.0	0.65	U
79-34-5	1,1,2,2-Tetrachloroethane	ND	0.50	0.17	U
71-43-2	Benzene	ND	0.50	0.16	U
108-88-3	Toluene	ND	2.5	0.70	U
100-41-4	Ethylbenzene	ND	2.5	0.70	U
74-87-3	Chloromethane	ND	2.5	0.70	U
74-83-9	Bromomethane	ND	2.5	0.70	U
75-01-4	Vinyl chloride	ND	1.0	0.07	U
75-00-3	Chloroethane	ND	2.5	0.70	u UJ
75-35-4	1,1-Dichloroethene	ND	0.50	0.17	U

Client : C&S Companies

Project Name : JCC

Lab ID : L2350757-07
Client ID : ESI-7-083023
Sample Location : FALCONER,NY

Sample Matrix : WATER
Analytical Method : 1,8260D
Lab File ID : V01230909A14

Sample Amount : 10 ml Level : LOW Extract Volume (MeOH) : N/A Lab Number : L2350757

Project Number : N30.009.001

Date Collected : 08/30/23 13:55

Date Received : 08/31/23

Date Analyzed : 09/09/23 07:51 Dilution Factor : 1

Analyst : PID
Instrument ID : VOA101
GC Column : RTX-502.2

			ug/L					
CAS NO.	Parameter	Results	RL	MDL	Qualifier			
156-60-5	trans-1,2-Dichloroethene	ND	2.5	0.70	U			
79-01-6	Trichloroethene	18	0.50	0.18				
95-50-1	1,2-Dichlorobenzene	ND	2.5	0.70	U			
541-73-1	1,3-Dichlorobenzene	ND	2.5	0.70	U			
106-46-7	1,4-Dichlorobenzene	ND	2.5	0.70	U			
1634-04-4	Methyl tert butyl ether	ND	2.5	0.70	U			
179601-23-1	p/m-Xylene	ND	2.5	0.70	U			
95-47-6	o-Xylene	ND	2.5	0.70	U			
156-59-2	cis-1,2-Dichloroethene	1.1	2.5	0.70	J			
100-42-5	Styrene	ND	2.5	0.70	U			
75-71-8	Dichlorodifluoromethane	ND	5.0	1.0	U U.	J		
67-64-1	Acetone	ND	5.0	1.5	U			
75-15-0	Carbon disulfide	ND	5.0	1.0	U U.	J		
78-93-3	2-Butanone	ND	5.0	1.9	U			
108-10-1	4-Methyl-2-pentanone	ND	5.0	1.0	U			
591-78-6	2-Hexanone	ND	5.0	1.0	U			
106-93-4	1,2-Dibromoethane	ND	2.0	0.65	U			
104-51-8	n-Butylbenzene	ND	2.5	0.70	U			
135-98-8	sec-Butylbenzene	ND	2.5	0.70	U			
98-06-6	tert-Butylbenzene	ND	2.5	0.70	U			
96-12-8	1,2-Dibromo-3-chloropropane	ND	2.5	0.70	U			
98-82-8	Isopropylbenzene	ND	2.5	0.70	U			
99-87-6	p-isopropyitoluene	ND	2.5	0.70	U			
91-20-3	Naphthalene	ND	2.5	0.70	U			
103-65-1	n-Propylbenzene	ND	2.5	0.70	U			

Client : C&S Companies

Project Name : JCC
Lab ID : L2350757-07
Client ID : ESI-7-083023
Sample Location : FALCONER,NY

Sample Matrix : WATER
Analytical Method : 1,8260D
Lab File ID : V01230909A14

Sample Amount : 10 ml Level : LOW Extract Volume (MeOH) : N/A Lab Number : L2350757

Project Number : N30.009.001

Date Collected : 08/30/23 13:55

Date Received : 08/31/23

Date Analyzed : 09/09/23 07:51

Dilution Factor : 1
Analyst : PID
Instrument ID : VOA101
GC Column : RTX-502.2

			ug/L			
CAS NO.	Parameter	Results	RL	MDL	Qualifier	
120-82-1	1,2,4-Trichlorobenzene	ND	2.5	0.70	U	
108-67-8	1,3,5-Trimethylbenzene	ND	2.5	0.70	U	
95-63-6	1,2,4-Trimethylbenzene	ND	2.5	0.70	U	
79-20-9	Methyl Acetate	ND	2.0	0.23	U	
110-82-7	Cyclohexane	ND	10	0.27	U	
76-13-1	Freon-113	ND	2.5	0.70	U	
108-87-2	Methyl cyclohexane	ND	10	0.40	U	

Client : C&S Companies

Project Name : JCC

Lab ID : L2350757-08
Client ID : ESI-13R-083023
Sample Location : FALCONER,NY

Sample Matrix : WATER
Analytical Method : 1,8260D
Lab File ID : V01230909A15

Sample Amount : 10 ml Level : LOW Extract Volume (MeOH) : N/A Lab Number : L2350757
Project Number : N30.009.001
Date Collected : 08/30/23 14:40
Date Received : 08/31/23

Date Analyzed : 09/09/23 08:18

Dilution Factor : 1
Analyst : PID
Instrument ID : VOA101
GC Column : RTX-502.2

		ug/L					
CAS NO.	Parameter	Results	RL	MDL	Qualifier		
75-09-2	Methylene chloride	ND	2.5	0.70	U		
75-34-3	1,1-Dichloroethane	ND	2.5	0.70	U		
67-66-3	Chloroform	ND	2.5	0.70	U		
56-23-5	Carbon tetrachloride	ND	0.50	0.13	U		
78-87-5	1,2-Dichloropropane	ND	1.0	0.14	U		
124-48-1	Dibromochloromethane	ND	0.50	0.15	U		
79-00-5	1,1,2-Trichloroethane	ND	1.5	0.50	U		
127-18-4	Tetrachloroethene	ND	0.50	0.18	U		
108-90-7	Chlorobenzene	ND	2.5	0.70	U		
75-69-4	Trichlorofluoromethane	ND	2.5	0.70	U		
107-06-2	1,2-Dichloroethane	ND	0.50	0.13	U		
71-55-6	1,1,1-Trichloroethane	ND	2.5	0.70	U		
75-27-4	Bromodichloromethane	ND	0.50	0.19	U		
10061-02-6	trans-1,3-Dichloropropene	ND	0.50	0.16	U		
10061-01-5	cis-1,3-Dichloropropene	ND	0.50	0.14	U		
75-25-2	Bromoform	ND	2.0	0.65	U		
79-34-5	1,1,2,2-Tetrachloroethane	ND	0.50	0.17	U		
71-43-2	Benzene	ND	0.50	0.16	U		
108-88-3	Toluene	ND	2.5	0.70	U		
100-41-4	Ethylbenzene	ND	2.5	0.70	U		
74-87-3	Chloromethane	ND	2.5	0.70	U		
74-83-9	Bromomethane	ND	2.5	0.70	U		
75-01-4	Vinyl chloride	ND	1.0	0.07	U		
75-00-3	Chloroethane	ND	2.5	0.70	U UJ		
75-35-4	1,1-Dichloroethene	ND	0.50	0.17	U		

Client : C&S Companies

Project Name : JCC

Lab ID : L2350757-08
Client ID : ESI-13R-083023
Sample Location : FALCONER,NY

Sample Matrix : WATER
Analytical Method : 1,8260D
Lab File ID : V01230909A15

Sample Amount : 10 ml Level : LOW Extract Volume (MeOH) : N/A Lab Number : L2350757
Project Number : N30.009.001
Date Collected : 08/30/23 14:40

Date Received : 08/31/23 Date Analyzed : 09/09/23 08:18

Dilution Factor : 1
Analyst : PID
Instrument ID : VOA101
GC Column : RTX-502.2

%Solids : N/A Injection Volume : N/A

ug/L MDL CAS NO. **Parameter** Results RL Qualifier 156-60-5 trans-1,2-Dichloroethene ND 2.5 0.70 U 79-01-6 Trichloroethene 10 0.50 0.18 95-50-1 1,2-Dichlorobenzene ND 2.5 0.70 541-73-1 1,3-Dichlorobenzene ND 2.5 0.70 п 106-46-7 1,4-Dichlorobenzene ND 2.5 0.70 U 1634-04-4 ND 2.5 0.70 п Methyl tert butyl ether 179601-23-1 p/m-Xylene ND 2.5 0.70 U 95-47-6 0.70 U o-Xylene ND 2.5 156-59-2 cis-1,2-Dichloroethene ND 2.5 0.70 U 100-42-5 Styrene ND 2.5 0.70 U 75-71-8 Dichlorodifluoromethane ND 5.0 1.0 U UJ 67-64-1 Acetone ND 5.0 1.5 U 75-15-0 Carbon disulfide ND 5.0 1.0 U UJ 78-93-3 2-Butanone ND 5.0 1.9 U U 108-10-1 4-Methyl-2-pentanone ND 5.0 1.0 591-78-6 ND 5.0 1.0 U 2-Hexanone 106-93-4 1,2-Dibromoethane ND 2.0 0.65 U U 104-51-8 n-Butylbenzene ND 2.5 0.70 135-98-8 sec-Butylbenzene ND 2.5 0.70 U 98-06-6 ND U tert-Butylbenzene 2.5 0.70 96-12-8 ND 0.70 U 1,2-Dibromo-3-chloropropane 2.5 98-82-8 ND 2.5 0.70 U Isopropylbenzene 99-87-6 ND 2.5 0.70 ш p-Isopropyltoluene 91-20-3 ND 2.5 0.70 U Naphthalene ND U 103-65-1 2.5 0.70 n-Propylbenzene

Client : C&S Companies
Project Name : JCC

Lab ID : L2350757-08
Client ID : ESI-13R-083023
Sample Location : FALCONER,NY

Sample Matrix : WATER
Analytical Method : 1,8260D
Lab File ID : V01230909A15
Sample Amount : 10 ml

Level : LOW Extract Volume (MeOH) : N/A

Lab Number : L2350757

Project Number : N30.009.001

Date Collected : 08/30/23 14:40

Date Received : 08/31/23 Date Analyzed : 09/09/23 08:18

Dilution Factor : 1
Analyst : PID
Instrument ID : VOA101
GC Column : RTX-502.2

	Parameter		ug/L			
CAS NO.		Results	RL	MDL	Qualifier	
120-82-1	1,2,4-Trichlorobenzene	ND	2.5	0.70	U	
108-67-8	1,3,5-Trimethylbenzene	ND	2.5	0.70	U	
95-63-6	1,2,4-Trimethylbenzene	ND	2.5	0.70	U	
79-20-9	Methyl Acetate	ND	2.0	0.23	U	
110-82-7	Cyclohexane	ND	10	0.27	U	
76-13-1	Freon-113	ND	2.5	0.70	U	
108-87-2	Methyl cyclohexane	ND	10	0.40	U	

Client : C&S Companies

Project Name : JCC

Lab ID : L2350757-09
Client ID : ESI-6-083123
Sample Location : FALCONER,NY

Sample Matrix : WATER
Analytical Method : 1,8260D
Lab File ID : V01230909A16

Sample Amount : 10 ml Level : LOW Extract Volume (MeOH) : N/A Lab Number : L2350757

Project Number : N30.009.001

Date Collected : 08/31/23 10:22

Date Received : 08/31/23 Date Analyzed : 09/09/23 08:44

Date Analyzed : 09/09/23 08:44
Dilution Factor : 1

Analyst : PID Instrument ID : VOA101 GC Column : RTX-502.2

		ug/L					
CAS NO.	Parameter	Results	RL	MDL	Qualifier		
75-09-2	Methylene chloride	ND	2.5	0.70	U		
75-34-3	1,1-Dichloroethane	ND	2.5	0.70	U		
67-66-3	Chloroform	ND	2.5	0.70	U		
56-23-5	Carbon tetrachloride	ND	0.50	0.13	U		
78-87-5	1,2-Dichloropropane	ND	1.0	0.14	U		
124-48-1	Dibromochloromethane	ND	0.50	0.15	U		
79-00-5	1,1,2-Trichloroethane	ND	1.5	0.50	U		
127-18-4	Tetrachloroethene	ND	0.50	0.18	U		
108-90-7	Chlorobenzene	ND	2.5	0.70	U		
75-69-4	Trichlorofluoromethane	ND	2.5	0.70	U		
107-06-2	1,2-Dichloroethane	ND	0.50	0.13	U		
71-55-6	1,1,1-Trichloroethane	ND	2.5	0.70	U		
75-27-4	Bromodichloromethane	ND	0.50	0.19	U		
10061-02-6	trans-1,3-Dichloropropene	ND	0.50	0.16	U		
10061-01-5	cis-1,3-Dichloropropene	ND	0.50	0.14	U		
75-25-2	Bromoform	1.1	2.0	0.65	J		
79-34-5	1,1,2,2-Tetrachloroethane	ND	0.50	0.17	U		
71-43-2	Benzene	ND	0.50	0.16	U		
108-88-3	Toluene	ND	2.5	0.70	U		
100-41-4	Ethylbenzene	ND	2.5	0.70	U		
74-87-3	Chloromethane	ND	2.5	0.70	U		
74-83-9	Bromomethane	ND	2.5	0.70	U		
75-01-4	Vinyl chloride	ND	1.0	0.07	U		
75-00-3	Chloroethane	ND	2.5	0.70	u UJ		
75-35-4	1,1-Dichloroethene	ND	0.50	0.17	U		

Client : C&S Companies

Project Name : JCC
Lab ID : L2350757-09
Client ID : ESI-6-083123

Sample Location : ESI-6-083123

Sample Matrix : WATER
Analytical Method : 1,8260D
Lab File ID : V01230909A16

Sample Amount : 10 ml Level : LOW Extract Volume (MeOH) : N/A Lab Number : L2350757

Project Number : N30.009.001

Date Collected : 08/31/23 10:22

Date Received : 08/31/23

Date Analyzed : 09/09/23 08:44
Dilution Factor : 1
Analyst : PID
Instrument ID : VOA101

GC Column : RTX-502.2 %Solids : N/A Injection Volume : N/A

ug/L Results MDL CAS NO. **Parameter** RL Qualifier 156-60-5 trans-1,2-Dichloroethene ND 2.5 0.70 U ND 79-01-6 Trichloroethene 0.50 0.18 U 95-50-1 1,2-Dichlorobenzene ND 2.5 0.70 U 541-73-1 1,3-Dichlorobenzene ND 2.5 0.70 п 106-46-7 1,4-Dichlorobenzene ND 2.5 0.70 U 1634-04-4 ND 2.5 0.70 п Methyl tert butyl ether 179601-23-1 p/m-Xylene ND 2.5 0.70 U 95-47-6 2.5 0.70 U o-Xylene ND 156-59-2 cis-1,2-Dichloroethene ND 2.5 0.70 U 100-42-5 Styrene ND 2.5 0.70 U 75-71-8 Dichlorodifluoromethane ND 5.0 1.0 U UJ 67-64-1 Acetone 3.5 5.0 1.5 75-15-0 Carbon disulfide ND 5.0 1.0 U UJ 78-93-3 2-Butanone ND 5.0 1.9 U U 108-10-1 4-Methyl-2-pentanone ND 5.0 1.0 591-78-6 ND 5.0 1.0 U 2-Hexanone 106-93-4 1,2-Dibromoethane ND 2.0 0.65 U 0.70 U 104-51-8 n-Butylbenzene ND 2.5 135-98-8 sec-Butylbenzene ND 2.5 0.70 U 98-06-6 ND U tert-Butylbenzene 2.5 0.70 96-12-8 ND 0.70 U 1,2-Dibromo-3-chloropropane 2.5 98-82-8 ND 2.5 0.70 U Isopropylbenzene 99-87-6 p-Isopropyltoluene ND 2.5 0.70 ш 91-20-3 ND 2.5 0.70 U Naphthalene ND U 103-65-1 2.5 0.70 n-Propylbenzene

Client : C&S Companies
Project Name : JCC

Lab ID : L2350757-09
Client ID : ESI-6-083123
Sample Location : FALCONER,NY

Sample Matrix : WATER
Analytical Method : 1,8260D
Lab File ID : V01230909A16
Sample Amount : 10 ml

Level : LOW Extract Volume (MeOH) : N/A

Lab Number : L2350757

Project Number : N30.009.001

Date Collected : 08/31/23 10:22

Date Received : 08/31/23

Date Analyzed : 09/09/23 08:44 Dilution Factor : 1

Analyst : PID Instrument ID : VOA101 GC Column : RTX-502.2

	Parameter		ug/L			
CAS NO.		Results	RL	MDL	Qualifier	
120-82-1	1,2,4-Trichlorobenzene	ND	2.5	0.70	U	
108-67-8	1,3,5-Trimethylbenzene	ND	2.5	0.70	U	
95-63-6	1,2,4-Trimethylbenzene	ND	2.5	0.70	U	
79-20-9	Methyl Acetate	ND	2.0	0.23	U	
110-82-7	Cyclohexane	ND	10	0.27	U	
76-13-1	Freon-113	ND	2.5	0.70	U	
108-87-2	Methyl cyclohexane	ND	10	0.40	U	

Client : C&S Companies

Project Name : JCC

Lab ID : L2350757-10
Client ID : ESI-2-083123
Sample Location : FALCONER,NY

Sample Matrix : WATER
Analytical Method : 1,8260D
Lab File ID : V01230909A17

Sample Amount : 10 ml Level : LOW Extract Volume (MeOH) : N/A Lab Number : L2350757

Project Number : N30.009.001

Date Collected : 08/31/23 11:12

Date Received : 08/31/23 Date Analyzed : 09/09/23 09:10

Dilution Factor : 1
Analyst : PID

Instrument ID : VOA101 GC Column : RTX-502.2

			ug/L				
CAS NO.	Parameter	Results	RL	MDL	Qualifier		
75-09-2	Methylene chloride	ND	2.5	0.70	U		
75-34-3	1,1-Dichloroethane	ND	2.5	0.70	U		
67-66-3	Chloroform	ND	2.5	0.70	U		
56-23-5	Carbon tetrachloride	ND	0.50	0.13	U		
78-87-5	1,2-Dichloropropane	ND	1.0	0.14	U		
124-48-1	Dibromochloromethane	ND	0.50	0.15	U		
79-00-5	1,1,2-Trichloroethane	ND	1.5	0.50	U		
127-18-4	Tetrachloroethene	ND	0.50	0.18	U		
108-90-7	Chlorobenzene	ND	2.5	0.70	U		
75-69-4	Trichlorofluoromethane	ND	2.5	0.70	U		
107-06-2	1,2-Dichloroethane	ND	0.50	0.13	U		
71-55-6	1,1,1-Trichloroethane	ND	2.5	0.70	U		
75-27-4	Bromodichloromethane	ND	0.50	0.19	U		
10061-02-6	trans-1,3-Dichloropropene	ND	0.50	0.16	U		
10061-01-5	cis-1,3-Dichloropropene	ND	0.50	0.14	U		
75-25-2	Bromoform	1.6	2.0	0.65	J		
79-34-5	1,1,2,2-Tetrachloroethane	ND	0.50	0.17	U		
71-43-2	Benzene	ND	0.50	0.16	U		
108-88-3	Toluene	ND	2.5	0.70	U		
100-41-4	Ethylbenzene	ND	2.5	0.70	U		
74-87-3	Chloromethane	ND	2.5	0.70	U		
74-83-9	Bromomethane	ND	2.5	0.70	U		
75-01-4	Vinyl chloride	ND	1.0	0.07	U		
75-00-3	Chloroethane	ND	2.5	0.70	U	UJ	
75-35-4	1,1-Dichloroethene	ND	0.50	0.17	U		

Client : C&S Companies

Project Name : JCC
Lab ID : L2350757-10
Client ID : ESI-2-083123
Sample Location : FALCONER,NY

Sample Matrix : WATER
Analytical Method : 1,8260D
Lab File ID : V01230909A17

Sample Amount : 10 ml Level : LOW Extract Volume (MeOH) : N/A Lab Number : L2350757
Project Number : N30.009.001
Date Collected : 08/31/23 11:12
Date Received : 08/31/23
Date Analyzed : 09/09/23 09:10

Dilution Factor : 1
Analyst : PID
Instrument ID : VOA101
GC Column : RTX-502.2

			ug/L				
CAS NO.	Parameter	Results	RL	MDL	Qualifier		
156-60-5	trans-1,2-Dichloroethene	ND	2.5	0.70	U		
79-01-6	Trichloroethene	1.1	0.50	0.18			
95-50-1	1,2-Dichlorobenzene	ND	2.5	0.70	U		
541-73-1	1,3-Dichlorobenzene	ND	2.5	0.70	U		
106-46-7	1,4-Dichlorobenzene	ND	2.5	0.70	U		
1634-04-4	Methyl tert butyl ether	ND	2.5	0.70	U		
179601-23-1	p/m-Xylene	ND	2.5	0.70	U		
95-47-6	o-Xylene	ND	2.5	0.70	U		
156-59-2	cis-1,2-Dichloroethene	ND	2.5	0.70	U		
100-42-5	Styrene	ND	2.5	0.70	U		
75-71-8	Dichlorodifluoromethane	ND	5.0	1.0	U	UJ	
67-64-1	Acetone	5.9	5.0	1.5			
75-15-0	Carbon disulfide	ND	5.0	1.0	U	UJ	
78-93-3	2-Butanone	ND	5.0	1.9	U		
108-10-1	4-Methyl-2-pentanone	ND	5.0	1.0	U		
591-78-6	2-Hexanone	ND	5.0	1.0	U		
106-93-4	1,2-Dibromoethane	ND	2.0	0.65	U		
104-51-8	n-Butylbenzene	ND	2.5	0.70	U		
135-98-8	sec-Butylbenzene	ND	2.5	0.70	U		
98-06-6	tert-Butylbenzene	ND	2.5	0.70	U		
96-12-8	1,2-Dibromo-3-chloropropane	ND	2.5	0.70	U		
98-82-8	Isopropylbenzene	ND	2.5	0.70	U		
99-87-6	p-Isopropyltoluene	ND	2.5	0.70	U		
91-20-3	Naphthalene	ND	2.5	0.70	U		
103-65-1	n-Propylbenzene	ND	2.5	0.70	U		

Client : C&S Companies

Project Name : JCC
Lab ID : L2350757-10
Client ID : ESI-2-083123
Sample Location : FALCONER,NY

Sample Matrix : WATER
Analytical Method : 1,8260D
Lab File ID : V01230909A17
Sample Amount : 10 ml

Level : LOW Extract Volume (MeOH) : N/A Lab Number : L2350757
Project Number : N30.009.001
Date Collected : 08/31/23 11:12
Date Received : 08/31/23
Date Analyzed : 09/09/23 09:10

Dilution Factor : 1
Analyst : PID
Instrument ID : VOA101
GC Column : RTX-502.2

%Solids : N/A Injection Volume : N/A

ug/L CAS NO. Results RL MDL Qualifier **Parameter** 120-82-1 1,2,4-Trichlorobenzene ND 2.5 0.70 U ND U 108-67-8 1,3,5-Trimethylbenzene 2.5 0.70 95-63-6 1,2,4-Trimethylbenzene ND 2.5 0.70 U U 79-20-9 **Methyl Acetate** ND 2.0 0.23 110-82-7 Cyclohexane ND 10 0.27 U ND 2.5 U 76-13-1 Freon-113 0.70 ND 108-87-2 Methyl cyclohexane 10 0.40 U

Client : C&S Companies

Project Name : JCC

Lab ID : L2350757-11
Client ID : ESI-1-083123
Sample Location : FALCONER,NY

Sample Matrix : WATER
Analytical Method : 1,8260D
Lab File ID : V01230909A18

Sample Amount : 10 ml Level : LOW Extract Volume (MeOH) : N/A Lab Number : L2350757

Project Number : N30.009.001

Date Collected : 08/31/23 12:00

Date Received : 08/31/23

Date Analyzed : 09/09/23 09:37 Dilution Factor : 1

Analyst : PID Instrument ID : VOA101 GC Column : RTX-502.2

			ug/L			
CAS NO.	Parameter	Results	RL	MDL	Qualifier	
75-09-2	Methylene chloride	ND	2.5	0.70	U	
75-34-3	1,1-Dichloroethane	ND	2.5	0.70	U	
67-66-3	Chloroform	ND	2.5	0.70	U	
56-23-5	Carbon tetrachloride	ND	0.50	0.13	U	
78-87-5	1,2-Dichloropropane	ND	1.0	0.14	U	
124-48-1	Dibromochloromethane	ND	0.50	0.15	U	
79-00-5	1,1,2-Trichloroethane	ND	1.5	0.50	U	
127-18-4	Tetrachloroethene	ND	0.50	0.18	U	
108-90-7	Chlorobenzene	ND	2.5	0.70	U	
75-69-4	Trichlorofluoromethane	ND	2.5	0.70	U	
107-06-2	1,2-Dichloroethane	ND	0.50	0.13	U	
71-55-6	1,1,1-Trichloroethane	ND	2.5	0.70	U	
75-27-4	Bromodichloromethane	ND	0.50	0.19	U	
10061-02-6		ND				
	trans-1,3-Dichloropropene		0.50	0.16	U	
10061-01-5	cis-1,3-Dichloropropene	ND	0.50	0.14	U	
75-25-2	Bromoform	ND	2.0	0.65	U	
79-34-5	1,1,2,2-Tetrachloroethane	ND	0.50	0.17	U	
71-43-2	Benzene	ND	0.50	0.16	U	
108-88-3	Toluene	ND	2.5	0.70	U	
100-41-4	Ethylbenzene	ND	2.5	0.70	U	
74-87-3	Chloromethane	ND	2.5	0.70	U	
74-83-9	Bromomethane	ND	2.5	0.70	U	
75-01-4	Vinyl chloride	ND	1.0	0.07	U	
75-00-3	Chloroethane	ND	2.5	0.70	U UJ	
75-35-4	1,1-Dichloroethene	ND	0.50	0.17	U	

Client : C&S Companies

Project Name : JCC
Lab ID : L2350757-11
Client ID : ESI-1-083123
Sample Location : FALCONER,NY

Sample Matrix : WATER
Analytical Method : 1,8260D
Lab File ID : V01230909A18

Sample Amount : 10 ml Level : LOW Extract Volume (MeOH) : N/A Lab Number : L2350757
Project Number : N30.009.001
Date Collected : 08/31/23 12:00
Date Received : 08/31/23

Date Analyzed : 09/09/23 09:37 Dilution Factor : 1

Analyst : PID Instrument ID : VOA101 GC Column : RTX-502.2

			ug/L			
CAS NO.	Parameter	Results	RL	MDL	Qualifier	
156-60-5	trans-1,2-Dichloroethene	ND	2.5	0.70	U	
79-01-6	Trichloroethene	2.8	0.50	0.18		
95-50-1	1,2-Dichlorobenzene	ND	2.5	0.70	U	
541-73-1	1,3-Dichlorobenzene	ND	2.5	0.70	U	
106-46-7	1,4-Dichlorobenzene	ND	2.5	0.70	U	
1634-04-4	Methyl tert butyl ether	ND	2.5	0.70	U	
179601-23-1	p/m-Xylene	ND	2.5	0.70	U	
95-47-6	o-Xylene	ND	2.5	0.70	U	
156-59-2	cis-1,2-Dichloroethene	ND	2.5	0.70	U	
100-42-5	Styrene	ND	2.5	0.70	U	
75-71-8	Dichlorodifluoromethane	ND	5.0	1.0	U UJ	
67-64-1	Acetone	ND	5.0	1.5	U	
75-15-0	Carbon disulfide	ND	5.0	1.0	u _{UJ}	
78-93-3	2-Butanone	ND	5.0	1.9	U	
108-10-1	4-Methyl-2-pentanone	ND	5.0	1.0	U	
591-78-6	2-Hexanone	ND	5.0	1.0	U	
106-93-4	1,2-Dibromoethane	ND	2.0	0.65	U	
104-51-8	n-Butylbenzene	ND	2.5	0.70	U	
135-98-8	sec-Butylbenzene	ND	2.5	0.70	U	
98-06-6	tert-Butylbenzene	ND	2.5	0.70	U	
96-12-8	1,2-Dibromo-3-chloropropane	ND	2.5	0.70	U	
98-82-8	Isopropylbenzene	ND	2.5	0.70	U	
99-87-6	p-Isopropyitoluene	ND	2.5	0.70	U	
91-20-3	Naphthalene	ND	2.5	0.70	U	
103-65-1	n-Propylbenzene	ND	2.5	0.70	U	

Client : C&S Companies

Project Name : JCC
Lab ID : L2350757-11
Client ID : ESI-1-083123
Sample Location : FALCONER,NY

Sample Matrix : WATER
Analytical Method : 1,8260D
Lab File ID : V01230909A18
Sample Amount : 10 ml

Level : LOW Extract Volume (MeOH) : N/A

Lab Number : L2350757

Project Number : N30.009.001

Date Collected : 08/31/23 12:00

Date Received : 08/31/23

Date Analyzed : 09/09/23 09:37

Dilution Factor : 1
Analyst : PID
Instrument ID : VOA101
GC Column : RTX-502.2

CAS NO.	Parameter	Results	RL	MDL	Qualifier	
120-82-1	1,2,4-Trichlorobenzene	ND	2.5	0.70	U	
108-67-8	1,3,5-Trimethylbenzene	ND	2.5	0.70	U	
95-63-6	1,2,4-Trimethylbenzene	ND	2.5	0.70	U	
79-20-9	Methyl Acetate	ND	2.0	0.23	U	
110-82-7	Cyclohexane	ND	10	0.27	U	
76-13-1	Freon-113	ND	2.5	0.70	U	
108-87-2	Methyl cyclohexane	ND	10	0.40	U	

Client : C&S Companies

Project Name : JCC

 Lab ID
 : L2350757-12D

 Client ID
 : PW-3R-083123

 Sample Location
 : FALCONER,NY

Sample Matrix : WATER
Analytical Method : 1,8260D
Lab File ID : V01230909A19

Sample Amount : 1 ml Level : LOW Extract Volume (MeOH) : N/A Lab Number : L2350757

Project Number : N30.009.001

Date Collected : 08/31/23 12:38

Date Received : 08/31/23

Date Analyzed : 09/09/23 10:03

Dilution Factor : 10
Analyst : PID
Instrument ID : VOA101
GC Column : RTX-502.2

		ug/L					
CAS NO.	Parameter	Results	RL	MDL	Qualifier		
75-09-2	Methylene chloride	ND	25	7.0	U		
75-34-3	1,1-Dichloroethane	ND	25	7.0	U		
67-66-3	Chloroform	ND	25	7.0	U		
56-23-5	Carbon tetrachloride	ND	5.0	1.3	U		
78-87-5	1,2-Dichloropropane	ND	10	1.4	U		
124-48-1	Dibromochloromethane	ND	5.0	1.5	U		
79-00-5	1,1,2-Trichloroethane	ND	15	5.0	U		
127-18-4	Tetrachloroethene	ND	5.0	1.8	U		
108-90-7	Chlorobenzene	ND	25	7.0	U		
75-69-4	Trichlorofluoromethane	ND	25	7.0	U		
107-06-2	1,2-Dichloroethane	ND	5.0	1.3	U		
71-55-6	1,1,1-Trichloroethane	ND	25	7.0	U		
75-27-4	Bromodichloromethane	ND	5.0	1.9	U		
10061-02-6	trans-1,3-Dichloropropene	ND	5.0	1.6	U		
10061-01-5	cis-1,3-Dichloropropene	ND	5.0	1.4	U		
75-25-2	Bromoform	ND	20	6.5	U		
79-34-5	1,1,2,2-Tetrachloroethane	ND	5.0	1.7	U		
71-43-2	Benzene	ND	5.0	1.6	U		
108-88-3	Toluene	ND	25	7.0	U		
100-41-4	Ethylbenzene	ND	25	7.0	U		
74-87-3	Chloromethane	ND	25	7.0	U		
74-83-9	Bromomethane	ND	25	7.0	U		
75-01-4	Vinyl chloride	960	10	0.71			
75-00-3	Chloroethane	ND	25	7.0	U UJ		
75-35-4	1,1-Dichloroethene	ND	5.0	1.7	U		

Client : C&S Companies

Project Name : JCC

 Lab ID
 : L2350757-12D

 Client ID
 : PW-3R-083123

 Sample Location
 : FALCONER,NY

Sample Matrix : WATER
Analytical Method : 1,8260D
Lab File ID : V01230909A19

Sample Amount : 1 ml Level : LOW Extract Volume (MeOH) : N/A Lab Number : L2350757 Project Number : N30.009.001

Date Collected : 08/31/23 12:38 Date Received : 08/31/23

Date Analyzed : 09/09/23 10:03 Dilution Factor : 10

Analyst : PID Instrument ID : VOA101 GC Column : RTX-502.2

			ug/L		
CAS NO.	Parameter	Results	RL	MDL	Qualifier
156-60-5	trans-1,2-Dichloroethene	ND	25	7.0	U
79-01-6	Trichloroethene	ND	5.0	1.8	U
95-50-1	1,2-Dichlorobenzene	ND	25	7.0	U
541-73-1	1,3-Dichlorobenzene	ND	25	7.0	U
106-46-7	1,4-Dichlorobenzene	ND	25	7.0	U
1634-04-4	Methyl tert butyl ether	ND	25	7.0	U
179601-23-1	p/m-Xylene	ND	25	7.0	U
95-47-6	o-Xylene	ND	25	7.0	U
156-59-2	cis-1,2-Dichloroethene	960	25	7.0	
100-42-5	Styrene	ND	25	7.0	U
75-71-8	Dichlorodifluoromethane	ND	50	10.	U UJ
67-64-1	Acetone	18	50	15.	J
75-15-0	Carbon disulfide	ND	50	10.	U UJ
78-93-3	2-Butanone	ND	50	19.	U
108-10-1	4-Methyl-2-pentanone	ND	50	10.	U
591-78-6	2-Hexanone	ND	50	10.	U
106-93-4	1,2-Dibromoethane	ND	20	6.5	U
104-51-8	n-Butylbenzene	ND	25	7.0	U
135-98-8	sec-Butylbenzene	ND	25	7.0	U
98-06-6	tert-Butylbenzene	ND	25	7.0	U
96-12-8	1,2-Dibromo-3-chloropropane	ND	25	7.0	U
98-82-8	Isopropylbenzene	ND	25	7.0	U
99-87-6	p-Isopropyltoluene	ND	25	7.0	U
91-20-3	Naphthalene	ND	25	7.0	U
103-65-1	n-Propylbenzene	ND	25	7.0	U

Client : C&S Companies

Project Name : JCC
Lab ID : L2350757-12D
Client ID : PW-3R-083123
Sample Location : FALCONER,NY

Sample Matrix : WATER
Analytical Method : 1,8260D
Lab File ID : V01230909A19

Sample Amount : 1 ml Level : LOW Extract Volume (MeOH) : N/A Lab Number : L2350757 Project Number : N30.009.001

Date Collected : 08/31/23 12:38 Date Received : 08/31/23

Date Analyzed : 09/09/23 10:03 Dilution Factor : 10

Analyst : PID Instrument ID : VOA101 GC Column : RTX-502.2

CAS NO.						
	Parameter	Results	RL	MDL	Qualifier	
120-82-1	1,2,4-Trichlorobenzene	ND	25	7.0	U	
108-67-8	1,3,5-Trimethylbenzene	ND	25	7.0	U	
95-63-6	1,2,4-Trimethylbenzene	ND	25	7.0	U	
79-20-9	Methyl Acetate	ND	20	2.3	U	
110-82-7	Cyclohexane	ND	100	2.7	U	
76-13-1	Freon-113	ND	25	7.0	U	
108-87-2	Methyl cyclohexane	ND	100	4.0	U	

Client : C&S Companies

Project Name : JCC

Lab ID : L2350757-13
Client ID : TRIP BLANK
Sample Location : FALCONER,NY

Sample Matrix : WATER
Analytical Method : 1,8260D
Lab File ID : V01230909A07

Sample Amount : 10 ml Level : LOW Extract Volume (MeOH) : N/A Lab Number : L2350757
Project Number : N30.009.001
Date Collected : 08/31/23 00:00

Date Received : 08/31/23 Date Analyzed : 09/09/23 04:47

Dilution Factor : 1
Analyst : PID
Instrument ID : VOA101
GC Column : RTX-502.2

			ug/L			
CAS NO.	Parameter	Results	RL	MDL	Qualifier	
75-09-2	Methylene chloride	ND	2.5	0.70	U	
75-34-3	1,1-Dichloroethane	ND	2.5	0.70	U	
67-66-3	Chloroform	ND	2.5	0.70	U	
56-23-5	Carbon tetrachloride	ND	0.50	0.13	U	
78-87-5	1,2-Dichloropropane	ND	1.0	0.14	U	
124-48-1	Dibromochloromethane	ND	0.50	0.15	U	
79-00-5	1,1,2-Trichloroethane	ND	1.5	0.50	U	
127-18-4	Tetrachloroethene	ND	0.50	0.18	U	
108-90-7	Chlorobenzene	ND	2.5	0.70	U	
75-69-4	Trichlorofluoromethane	ND	2.5	0.70	U	
107-06-2	1,2-Dichloroethane	ND	0.50	0.13	U	
71-55-6	1,1,1-Trichloroethane	ND	2.5	0.70	U	
75-27-4	Bromodichloromethane	ND	0.50	0.19	U	
10061-02-6	trans-1,3-Dichloropropene	ND	0.50	0.16	U	
10061-01-5	cis-1,3-Dichloropropene	ND	0.50	0.14	U	
75-25-2	Bromoform	ND	2.0	0.65	U	
79-34-5	1,1,2,2-Tetrachloroethane	ND	0.50	0.17	U	
71-43-2	Benzene	ND	0.50	0.16	U	
108-88-3	Toluene	ND	2.5	0.70	U	
100-41-4	Ethylbenzene	ND	2.5	0.70	U	
74-87-3	Chloromethane	ND	2.5	0.70	U	
74-83-9	Bromomethane	ND	2.5	0.70	U	
75-01-4	Vinyl chloride	ND	1.0	0.07	U	
75-00-3	Chloroethane	ND	2.5	0.70	U UJ	
75-35-4	1,1-Dichloroethene	ND	0.50	0.17	U	

Client : C&S Companies
Project Name : JCC

Lab ID : L2350757-13
Client ID : TRIP BLANK
Sample Location : FALCONER,NY

Sample Matrix : WATER
Analytical Method : 1,8260D
Lab File ID : V01230909A07

Sample Amount : 10 ml Level : LOW Extract Volume (MeOH) : N/A Lab Number : L2350757
Project Number : N30.009.001
Date Collected : 08/31/23 00:00
Date Received : 08/31/23
Date Analyzed : 09/09/23 04:47

Dilution Factor : 1
Analyst : PID
Instrument ID : VOA101
GC Column : RTX-502.2

			ug/L		
CAS NO.	Parameter	Results	RL	MDL	Qualifier
156-60-5	trans-1,2-Dichloroethene	ND	2.5	0.70	U
79-01-6	Trichloroethene	ND	0.50	0.18	U
95-50-1	1,2-Dichlorobenzene	ND	2.5	0.70	U
541-73-1	1,3-Dichlorobenzene	ND	2.5	0.70	U
106-46-7	1,4-Dichlorobenzene	ND	2.5	0.70	U
1634-04-4	Methyl tert butyl ether	ND	2.5	0.70	U
179601-23-1	p/m-Xylene	ND	2.5	0.70	U
95-47-6	o-Xylene	ND	2.5	0.70	U
156-59-2	cis-1,2-Dichloroethene	ND	2.5	0.70	U
100-42-5	Styrene	ND	2.5	0.70	U
75-71-8	Dichlorodifluoromethane	ND	5.0	1.0	U UJ
67-64-1	Acetone	ND	5.0	1.5	U
75-15-0	Carbon disulfide	ND	5.0	1.0	U UJ
78-93-3	2-Butanone	ND	5.0	1.9	U
108-10-1	4-Methyl-2-pentanone	ND	5.0	1.0	U
591-78-6	2-Hexanone	ND	5.0	1.0	U
106-93-4	1,2-Dibromoethane	ND	2.0	0.65	U
104-51-8	n-Butylbenzene	ND	2.5	0.70	U
135-98-8	sec-Butylbenzene	ND	2.5	0.70	U
98-06-6	tert-Butylbenzene	ND	2.5	0.70	U
96-12-8	1,2-Dibromo-3-chloropropane	ND	2.5	0.70	U
98-82-8	Isopropylbenzene	ND	2.5	0.70	U
99-87-6	p-Isopropyltoluene	ND	2.5	0.70	U
91-20-3	Naphthalene	ND	2.5	0.70	U
103-65-1	n-Propylbenzene	ND	2.5	0.70	U

Client : C&S Companies

Project Name : JCC
Lab ID : L2350757-13
Client ID : TRIP BLANK
Sample Location : FALCONER,NY

Sample Matrix : WATER
Analytical Method : 1,8260D
Lab File ID : V01230909A07
Sample Amount : 10 ml

Level : LOW Extract Volume (MeOH) : N/A Lab Number : L2350757
Project Number : N30.009.001

Date Collected : 08/31/23 00:00

Date Received : 08/31/23

Date Analyzed : 09/09/23 04:47

Dilution Factor : 1
Analyst : PID
Instrument ID : VOA101
GC Column : RTX-502.2

			ug/L			
CAS NO.	Parameter	Results	RL	MDL	Qualifier	
120-82-1	1,2,4-Trichlorobenzene	ND	2.5	0.70	U	
108-67-8	1,3,5-Trimethylbenzene	ND	2.5	0.70	U	
95-63-6	1,2,4-Trimethylbenzene	ND	2.5	0.70	U	
79-20-9	Methyl Acetate	ND	2.0	0.23	U	
110-82-7	Cyclohexane	ND	10	0.27	U	
76-13-1	Freon-113	ND	2.5	0.70	U	
108-87-2	Methyl cyclohexane	ND	10	0.40	U	

Appendix B

Laboratory QC Documentation

Matrix Spike Sample Summary Form 3 Volatiles

Client : C&S Companies

Project Name : JCC

Client Sample ID : ESI-3-083023 Lab Sample ID : L2350757-01 Matrix Spike : WG1826522-6 Matrix Spike Dup : WG1826522-7 Lab Number : L2350757 Project Number : N30.009.001

Matrix (Level) : WATER (LOW)
Analysis Date : 09/09/23 05:13
MS Analysis Date : 09/09/23 13:09
MSD Analysis Date : 09/09/23 13:36

		Matrix Sp	Matrix Spike Sample		Matrix Spike Duplicate					
	Sample	Spike	Spike		Spike	Spike				
	Conc.	Added	Conc.	%R	Added	Conc.	%R	RPD	Recovery	RPD
Parameter	(ug/l)	(ug/l)	(ug/l)		(ug/l)	(ug/l)			Limits	Limit
Vinyl chloride	ND	10	10	100	10	9.8	98	2	55-140	20
Chloroethane	ND	10	8.3	83	10	7.9	79	5	55-138	20
1,1-Dichloroethene	ND	10	9.5	95	10	9.3	93	2	61-145	20
trans-1,2-Dichloroethene	ND	10	12	120	10	12	120	0	70-130	20
Trichloroethene	2.8	10	14	112	10	14	112	0	70-130	20
1,2-Dichlorobenzene	ND	10	12	120	10	12	120	0	70-130	20
1,3-Dichlorobenzene	ND	10	12	120	10	12	120	0	70-130	20
1,4-Dichlorobenzene	ND	10	12	120	10	12	120	0	70-130	20
Methyl tert butyl ether	ND	10	9.8	98	10	9.7	97	1	63-130	20
p/m-Xylene	ND	20	23	115	20	23	115	0	70-130	20
o-Xylene	ND	20	23	115	20	22	110	4	70-130	20
cis-1,2-Dichloroethene	1.4J	10	14	140 Q	10	13	130	7	70-130	20
Styrene	ND	20	23	115	20	23	115	0	70-130	20
Dichlorodifluoromethane	ND	10	12	120	10	12	120	0	36-147	20
Acetone	ND	10	9.2	92	10	9.3	93	1	58-148	20
Carbon disulfide	ND	10	8.1	81	10	7.9	79	2	51-130	20
2-Butanone	ND	10	9.7	97	10	9.6	96	1	63-138	20
4-Methyl-2-pentanone	ND	10	10	100	10	10	100	0	59-130	20
2-Hexanone	ND	10	9.1	91	10	9.2	92	1	57-130	20
1,2-Dibromoethane	ND	10	11	110	10	11	110	0	70-130	20
n-Butylbenzene	ND	10	12	120	10	12	120	0	53-136	20
sec-Butylbenzene	ND	10	11	110	10	11	110	0	70-130	20

Evaluate Continuing Calibration Report

Data Path : K:\VOA101\2023\230727NICAL\

Data File : V01230727N18.D

Acq On : 27 Jul 2023 11:56 pm

Operator : VOA101:PID Sample : C8260STD10PPB Misc : WG1808941,ICAL

ALS Vial : 18 Sample Multiplier: 1

Quant Time: Jul 28 09:48:20 2023

Quant Method: K:\VOA101\2023\230727NICAL\V101_230727N_8260.m

Quant Title : VOLATILES BY GC/MS

QLast Update: Fri Jul 28 09:46:14 2023 Response via: Initial Calibration

Min. RRF : 0.000 Min. Rel. Area : 50% Max. R.T. Dev 0.50min

Max. RRF Dev : 20% Max. Rel. Area : 200%

	Compound	AvgRF	CCRF	%Dev Area% Dev(min)
1 I 2 TP 3 TP 4 TC 5 TP 10 TP 12 TP 14 TP 15 TP 17 TP 18 TP 20 TP 21 TP 22 TP 22 TP 26 TP 27 TP 28 TP 29 TP 27 TP 28 TP 29 TP 27 TP	Fluorobenzene Dichlorodifluoromethane Chloromethane Vinyl chloride Bromomethane Chloroethane Trichlorofluoromethane Ethyl ether 1,1-Dichloroethene Carbon disulfide Freon-113 Acrolein Methylene chloride Acetone trans-1,2-Dichloroethene Methyl acetate Methyl tert-butyl ether tert-Butyl alcohol Diisopropyl ether 1,1-Dichloroethane Halothane Acrylonitrile Ethyl tert-butyl ether Vinyl acetate cis-1,2-Dichloroethene 2,2-Dichloropropane Bromochloromethane Cyclohexane Chloroform Ethyl acetate Carbon tetrachloride Tetrahydrofuran Dibromofluoromethane 1,1,1-Trichloroethane 2-Butanone	AvgRF 1.000 0.327 0.408 0.383 * 10.000 0.217 0.396 0.135 0.241 0.794 0.262 0.040 0.270 0.071 0.256 0.188 0.661 0.022 1.116 0.560 0.202 0.084 0.940 0.350 0.281 0.371 0.126 0.631 0.460 0.243 0.371 0.072 0.292 0.412 0.105	CCRF 1.000 0.166 0.289 0.308 10.003 0.210 0.400 0.139 0.222 0.702 0.256 0.029 0.258 0.061 0.247 0.155 0.598 0.061 0.247 0.155 0.598 0.020 1.098 0.559 0.211 0.083 0.896 0.228 0.269 0.317 0.124 0.613 0.460 0.225 0.376 0.071 0.303 0.415 0.092	*Dev Area* Dev(min) 0.0 98 0.00 49.2# 47# 0.00 29.2# 69 0.00 19.6 79 0.00 -0.0 92 0.00 3.2 89 0.00 -1.0 95 0.00 -3.0 102 0.00 7.9 89 0.00 11.6 89 0.00 2.3 94 0.00 27.5# 75 0.00 4.4 96 0.00 14.1 87 0.00 3.5 89 0.00 17.6 82 0.00 9.5 89 0.00 17.6 82 0.00 9.1 94 0.00 1.6 92 0.00 0.2 93 0.00 -4.5 96 0.00 1.2 95 0.00 4.7 91 0.00 34.9# 64 0.00 14.6 86 0.00 14.6 86 0.00 14.6 86 0.00 14.6 86 0.00 1.6 92 0.00 0.0 96 0.00 7.4 92 0.00 -1.3 93 0.00 -1.3 93 0.00 -1.4 96 0.00 -3.8 101 0.00 -0.7 93 0.00 12.4 88 0.00
39 TP 40 TP 41 TP 42 TP 43 S	2-Butanone 1,1-Dichloropropene Benzene tert-Amyl methyl ether 1,2-Dichloroethane-d4	0.105 0.374 1.023 0.681 0.321	0.092 0.364 1.025 0.638 0.329	12.4 88 0.00 2.7 92 0.00 -0.2 93 0.00 6.3 91 0.00 -2.5 100 0.00

Page: 1

V101_230727N_8260.m Sun Jul 30 18:19:58 2023

Calibration Verification Summary Form 7 Volatiles

Lab Number

Project Number

Calibration Date

: L2350757

: N30.009.001

: 09/09/23 02:08

Client : C&S Companies

Project Name : JCC Instrument ID : VOA101

 Lab File ID
 : V01230909A01
 Init. Calib. Date(s)
 : 07/27/23
 07/27/23

 Sample No
 : WG1826522-2
 Init. Calib. Times
 : 17:16
 21:43

Channel:

Compound	Ave. RRF	RRF	Min RRF	%D	Max %D	Area%	Dev(mi
Fluorobenzene	1	1	-	0	20	87	0
Dichlorodifluoromethane	0.327	0.338	-	-3.4	20	84	0
Chloromethane	0.408	0.397	-	2.7	20	83	0
Vinyl chloride	0.383	0.331	-	13.6	20	75	0
Bromomethane	10	11.406	-	-14.1	20	95	0
Chloroethane	0.217	0.15	-	30.9*	20	56	0
Trichlorofluoromethane	0.396	0.378	-	4.5	20	80	0
Ethyl ether	0.135	0.082	-	39.3*	20	53	0
1,1-Dichloroethene	0.241	0.198	-	17.8	20	70	0
Carbon disulfide	0.794	0.609	-	23.3*	20	68	0
Freon-113	0.262	0.226	-	13.7	20	73	0
Acrolein	0.04	0.043	-	-7.5	20	97	0
Methylene chloride	0.27	0.265	-	1.9	20	87	0
Acetone	0.071	0.082	-	-15.5	20	104	0
trans-1,2-Dichloroethene	0.256	0.286	-	-11.7	20	91	0
Methyl acetate	0.188	0.164	-	12.8	20	77	0
Methyl tert-butyl ether	0.661	0.573	-	13.3	20	75	0
tert-Butyl alcohol	0.022	0.02	-	9.1	20	81	0
Diisopropyl ether	1.116	1.159	-	-3.9	20	86	0
1,1-Dichloroethane	0.56	0.611	-	-9.1	20	90	0
Halothane	0.202	0.228	-	-12.9	20	92	0
Acrylonitrile	0.084	0.079	-	6	20	80	0
Ethyl tert-butyl ether	0.94	0.957	-	-1.8	20	86	0
Vinyl acetate	0.35	0.557	-	-59.1*	20	139	0
cis-1,2-Dichloroethene	0.281	0.307	-	-9.3	20	91	0
2,2-Dichloropropane	0.371	0.443	-	-19.4	20	106	0
Bromochloromethane	0.126	0.136	-	-7.9	20	90	0
Cyclohexane	0.631	0.742	-	-17.6	20	96	0
Chloroform	0.46	0.477	-	-3.7	20	88	0
Ethyl acetate	0.243	0.227	-	6.6	20	82	0
Carbon tetrachloride	0.371	0.424	-	-14.3	20	93	0
Tetrahydrofuran	0.072	0.056	-	22.2*	20	68	0
Dibromofluoromethane	0.292	0.296	-	-1.4	20	87	0
1,1,1-Trichloroethane	0.412	0.46		-11.7	20	92	0
2-Butanone	0.105	0.097	-	7.6	20	82	0
1,1-Dichloropropene	0.374	0.405	-	-8.3	20	91	0
Benzene	1.023	1.083		-5.9	20	87	0
tert-Amyl methyl ether	0.681	0.645	-	5.3	20	82	0
1,2-Dichloroethane-d4	0.321	0.328	-	-2.2	20	89	0
1,2-Dichloroethane	0.367	0.326	-	-3.5	20	90	0
Methyl cyclohexane	0.367	0.495		-3.5	20	92	0
Trichloroethene	0.305	0.495	-	-11.2	20	83	0
Dibromomethane	0.305	0.311	-	-2 -1.4	20	88	0

^{*} Value outside of QC limits.

Appendix C

Validator Qualifications

KENNETH R. APPLIN Geochemist/Data Validator

Ph.D., Geochemistry and Mineralogy, The Pennsylvania State University

M.S., Geochemistry and Mineralogy, The Pennsylvania State University

B.A., Geological Sciences, SUNY at Geneseo, NY

Dr. Applin has over 35 years of experience working with the geochemistry of natural waters. His prior experience includes working as an Assistant Professor of Geology at the University of Missouri-Columbia and as Chief Hydrogeologist and Geochemist with a leading engineering firm in Rochester, NY. In 1993, he established KR Applin and Associates, a small consulting business that focuses on the geochemistry of natural waters, especially as applied to problems involving the contamination of groundwater and surface water.

Dr. Applin is also an experienced analytical data validator and has provided data validation services since 1994 to a variety of clients performing brownfield cleanup projects, hazardous waste remediation, groundwater monitoring at solid waste facilities, and other projects requiring third-party data validation. Dr. Applin has several years of hands-on experience with the laboratory analysis of natural waters and has successfully completed the USEPA Region II certification courses for performing inorganic and organic analytical data validation.

MICHAEL K. PERRY Chemist/Data Validator

B.S. Chemistry, Georgia State University, Atlanta, GA

A.A.S., Chemical Technology, Alfred State College, Alfred, NY

Mr. Perry has over 30 years of experience in the analytical laboratory business. During his early career, he spent several years as a laboratory analyst performing the analysis of soil, water, and air samples for inorganic and organic chemical parameters. During his last 20 years in the environmental laboratory business, he managed and directed two major analytical laboratories in Rochester, NY. His management responsibilities included oversight of the daily operations of the lab, staff training and supervision, the selection, purchase, and maintenance of analytical instruments, the introduction of new laboratory methods, analytical quality assurance and quality control, data acquisition and management, and other business-related activities.

Mr. Perry has an extensive working knowledge of the methods and procedures used for sampling and analyzing both inorganic and organic analytes in soil, water, and air. He is an accomplished laboratory chemist and is familiar with the analytical methods and procedures established under the USEPA Contract Laboratory Protocols (CLP), the NYSDEC Analytical Services Protocols (ASP), and the NYSDOH Environmental Laboratory Approval Program (ELAP).

APPENDIX B
GROUNDWATER USE CERTIFICATION

Jamestown Container Realty Inc. 14 Deming Drive Falconer, NY 14733

November 29, 2023

Re: Site Name:

Dowcraft, South Dow Street

Site No:

907020

Site Address:

65 South Dow Street, Falconer, NY 14733

To Whom It May Concern,

This confirms that the above referenced property is owned by Jamestown Container Realty Inc. As the property owner, Jamestown Container Realty Inc. herby certifies that it is not using any ground water drawn from the property.

If you need anything further, please advise.

Sincerely,

Joseph R. Palmeri

Vice President / COO

APPENDIX C

INSTITUTIONAL AND ENGINEERING CONTROLS CERTIFICATION FORM

Enclosure 2 NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION Site Management Periodic Review Report Notice Institutional and Engineering Controls Certification Form

			Site Details		Box 1	
Sit	e No.	907020				
Sit	e Name Dow	vcraft, South Dow Stree	et			
Cit Co	e Address: 65 y/Town: Falc unty: Chautau e Acreage: 2.	coner uqua	Zip Code: 14733			
Re	porting Period	d: October 31, 2022 to 0	October 31, 2023			
					YES	NO
1.	Is the inform	nation above correct?			X	
	If NO, includ	le handwritten above or	on a separate sheet.			
2.		r all of the site property be endment during this Rep	peen sold, subdivided, merged, or un porting Period?	ndergone a	3	X
3.	Has there be (see 6NYCR	od		X		
4.	Have any fe	een issued		X		
	If you answ that docum	vered YES to questions entation has been prev	2 thru 4, include documentation or viously submitted with this certific	or evidence cation form.		
5.	Is the site cu	urrently undergoing deve	elopment?		<u> </u>	X
					Box 2	
					YES	NO
6.	Is the currer	nt site use consistent with	h the use(s) listed below?		X	
7.	Are all ICs in	n place and functioning a	as designed?	X		
			QUESTION 6 OR 7 IS NO, sign and E REST OF THIS FORM. Otherwise		ind	
A	Corrective Me	easures Work Plan must	be submitted along with this form	to address tl	nese iss	ues.
Sic	unature of Own	ner, Remedial Party or De	esignated Representative	Date		

SITE NO. 907020 Box 3

Description of Institutional Controls

<u>Parcel</u>

371.14-2-42

<u>Owner</u>

Jamestown Container Realty, Inc.

Institutional Control

Ground Water Use Restriction Landuse Restriction Monitoring Plan O&M Plan

Box 4

Description of Engineering Controls

<u>Parcel</u>

Engineering Control

371.14-2-42

Vapor Mitigation

Sub-Slab Depressurization Systems in Buildings 5, 6, & 9

Box	5
$\omega \omega \kappa$	

	Periodic Review Report (PRR) Certification Statements
1.	I certify by checking "YES" below that:
	 a) the Periodic Review report and all attachments were prepared under the direction of, and reviewed by, the party making the Engineering Control certification;
	b) to the best of my knowledge and belief, the work and conclusions described in this certification are in accordance with the requirements of the site remedial program, and generally accepted
	engineering practices; and the information presented is accurate and compete. YES NO
2.	For each Engineering control listed in Box 4, I certify by checking "YES" below that all of the following statements are true:
	(a) The Engineering Control(s) employed at this site is unchanged since the date that the Control was put in-place, or was last approved by the Department;
	(b) nothing has occurred that would impair the ability of such Control, to protect public health and the environment;
	(c) access to the site will continue to be provided to the Department, to evaluate the remedy, including access to evaluate the continued maintenance of this Control;
	(d) nothing has occurred that would constitute a violation or failure to comply with the Site Management Plan for this Control; and
	(e) if a financial assurance mechanism is required by the oversight document for the site, the mechanism remains valid and sufficient for its intended purpose established in the document.
	YES NO
	IF THE ANSWER TO QUESTION 2 IS NO, sign and date below and DO NOT COMPLETE THE REST OF THIS FORM. Otherwise continue.
	A Corrective Measures Work Plan must be submitted along with this form to address these issues.
	Signature of Owner, Remedial Party or Designated Representative Date

IC CERTIFICATIONS SITE NO. 907020

Box 6

SITE OWNER OR DESIGNATED REPRESENTATIVE SIGNATURE

I certify that all information and statements in Boxes 1,2, and 3 are true. I understand that a false statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law.

at 14 Elm Street Suite 100 Busto 100

EC CERTIFICATIONS

	Box 7
Signatu	ıre
Cody Martin at 141 Elm	understand that a false statement made herein is ection 210.45 of the Penal Law. The first for the statement made herein is ection 210.45 of the Penal Law. The first for the statement made herein is ection 210.45 of the Penal Law. The first formula for the statement made herein is ection 210.45 of the Penal Law. The first formula for the penal Law. The first formula
am certifying as a for the	(Owner or Remedial Party)
Signature of , for the Owner or Remedial Party, Rendering Certification	Stamp (Required for PE)

APPENDIX D

SSDS Inspection Reports

mitigation tech

vapor intrusion specialists

INSPECTION REPORT

October 31, 2023

Mr. Cody Martin
Project Manager
C & S Companies
141 Elm Street, Suite 100
Buffalo, NY 14203

Via email: Cody Martin <cmartin@cscos.com>

Re: Jamestown Container Companies – Building 9, 65 South Dow St., Falconer, NY Inspection Report for Sub-slab Depressurization System

For work completed September 29, 2023

- 1. Conducted a visual inspection of the complete System (e.g., vent fan, piping, warning device, labeling on systems, etc.): **SATISFACTORY**
- 2. Conducted an inspection of all surfaces to which vacuum is applied: SATISFACTORY
- 3. Inspected all components for condition and proper operation: SATISFACTORY
- 4. Identify and repair any leaks: NO LEAKS OBSERVED
- 5. Inspect the exhaust or discharge point to verify that no air intakes have been located nearby: **NO AIR INTAKES WITHIN TEN FEET**
- 6. Conduct an airstream velocity measurement: **SATISFACTORY**
- 7. Conduct pressure field extension testing: **SATISFACTORY**
 - a. Stack 1 (north) B9-2
 b. Stack 2 (south) B9-1
 c. Test point 1 (north)
 d. Test point 2 (north)
 1.7 wci
 3.8 wci
 -0.081 wci
 -0.035 wci
- 8. Interview an appropriate individual seeking comments and observations regarding the operation of the System: **SATISFACTORY**

Thank you

Nicholas E. Mouganis EPA listing # 15415-I; NEHA ID# 100722 ***mitigationtech.com

mitigation tech vapor intrusion specialists

INSPECTION REPORT

October 31, 2023

Mr. Cody Martin Project Manager C & S Companies 141 Elm Street, Suite 100 Buffalo, NY 14203 *Via email: Cody Martin <cmartin@cscos.com>*

Jamestown Container Companies - Buildings 5&6, 65 South Dow St., Falconer, NY Re: Inspection Report for Sub-slab Ventilation System

For work completed September 29, 2023

- 1. Conducted a visual inspection of the complete System (e.g., vent fan, piping, warning device, labeling on systems, etc.): SATISFACTORY
- 2. Conducted an inspection of all surfaces to which vacuum is applied: SATISFACTORY
- 3. Inspected all components for condition and proper operation: SATISFACTORY
- 4. Identify and repair any leaks: NO LEAKS OBSERVED
- 5. Inspect the exhaust or discharge points to verify that no air intakes have been located nearby: NO AIR INTAKES WITHIN TEN FEET
- 6. Conduct an airstream velocity measurement: **SATISFACTORY**
- 7. Conduct pressure Stack Vacuum and pressure field extension testing SATISFACTORY
 - a. Stack B 5.1 0.2 wci b. Stack B 5.2 – 0.2 wci c. Stack B 6.1 –d. Stack B 6.2 – 0.08 wci 0.35 wci e. Stack B 6.3– 0.18 wci
 - f. Test point 1 -0.049 wci (near crawlspace entrance)
 - -0.046 wci (near fork lift ramp) g. Test point 2 -
- 8. Interview an appropriate individual seeking comments and observations regarding the operation of the System: SATISFACTORY

Thank you

Nicholas E. Mouganis EPA listing # 15415-I; NEHA ID# 100722 ***mitigationtech.com

14 Deming Drive

Falconer, NY

Sub-Slab Depressurization System Vacuum Gauge Monthly Record

	Initial Values>	0.2	0.2	0.26	0.15	0.17	4.0	1.6	Initial Values
2022	Date Checked	B5-1	B5-2	B6-1	B6-2	B6-3	B9-1	B9-2	Signature
Jan		.2	1	12	+1	.25	4.0	1.7	
Feb		"V	*2	,2	.1	.27	4.0	1.5	The second second
March		,1	. 2	.2	, 1	,32	4.0	1.5	
April		.2-	,2	. 湖江	.1	,35	4,0	15	
May		12	·	12	.05	,15	4.0	1,5	
June		ir	12	.2	105	.15	4.0	10	
July		02	,2	.2	.1	.15	W.O	1, 2	
Aug		" 7	.2	125	,1	14	4,0	1.0	
Sept		1	,7	- 25	1	,13	4.0	105	No.
Oct		. 2	.2	,2		121	HOO.	1,5	
Nov		,2	,2	13	1	.2	4.0	115	
Dec		-		#	100000	100			
	1 1	B5-1	B5-2	B6-1	B6-2	B6-3	B9-1	B9-2	
	Initial Values ->	0.2	0.2	0.26	0.15	0.17	4.0	1.6	Initial Values

14 Deming Drive

Falconer, NY

Sub-Slab Depressurization System Vacuum Gauge Monthly Record

	Initial Values	0.2	0.2	0.26	0.15	0.17	4.0	1.6	Initial Values
2023	Date Checked	B5-1	B5-2	B6-1	B6-2	B6-3	B9-1	B9-2	Signature
Jan		·V	1	.3	. [,02		1,8	
Feb		+ a	. 2	.35	1	-02		15	Cha See
March	WE STATE	2	.2	.25	. [.15		1.8	
April		, 1/	12	25		. 15		1.8	
May		,2	,2	,3	, 1	. 2	37.15		
June		, 2	.2	,15	,07	1	3.75		THE PROPERTY AND ADDRESS OF THE PARTY OF THE
July		.7	1	.25	,05	N	3.75		
Aug		.2	,7	.25	10h	2	3.75		
Sept		. 2	, 2						
Oct							4.0		
Nov		.2	,2	135	,1	,19.	100	1,7	bas
Dec									
		B5-1	B5-2	B6-1	B6-2	B6-3	B9-1	B9-2	
	Initial Values>	0.2	0.2	0.26	0.15	0.17	4.0	1.6	Initial Values